Content Chemistry experiments - video Physics experiments - video Home Page - Chemistry and Chemists

Chemistry and Chemists № 1 2026

Journal of Chemists-Enthusiasts
Donate to the journal Chemistry and ChemistsDonate to the journal Chemistry and Chemists




Electrospinning - pt.12, 13


Chemist


Having noticed a mistake in the text, allocate it and press Ctrl-Enter


The next possible solvents for polystyrene were methylene chloride (boiling point ≈40°C) and tetrahydrofuran (boiling point ≈66°C). The colleague initially suggested using chloroform, dichloroethane, or methylene chloride, but I wanted to avoid toxic organochlorine solvents whenever possible. For this reason, I initially refrained from using organochlorines to dissolve expanded polystyrene and instead worked with the "Acetone+" solvent, ethyl acetate, methyl acetate, and acetone.

The first two solvents dissolved polystyrene well, but their use led to incomplete evaporation of the solution during electrospinning, especially in the case of ethyl acetate. Since dichloromethane has a low boiling point, its use in electrospinning offered hope of overcoming the problem of insufficient solvent evaporation during the process.

I weighed 13.720 g of methylene chloride and 3.435 g of expanded polystyrene. I began adding pieces of the polymer to the solvent. The expanded polystyrene dissolved rapidly, releasing gas bubbles. Dissolution proceeded faster than in the case of ethyl acetate or the "Acetone+" solvent. The process looked remarkable: a small volume of liquid quickly absorbed a large volume of solid material, although the dissolution rate gradually slowed. As with ethyl acetate, after most of the expanded polystyrene had dissolved, small white lumps remained in the liquid; these dissolved over time with continued stirring.

The result was a slightly cloudy 20.0% solution of polystyrene in methylene chloride.



Растворение пенополистирола в хлористом метилене - Часть 12
Следующими возможными растворителями для полистирола были хлористый метилен (температура кипения около 40°C) и тетрагидрофуран (температура кипения около 66°C). Первоначально использовать хлороформ, дихлорэтан или хлористый метилен предложил мой коллега, однако, я стремился по возможности избежать использования токсичных хлорорганических растворителей. Поэтому первоначально отказался применять хлорорганику для растворения пенополистирола, использовав для этой цели заменитель ацетона, этилацетат, метилацетат, ацетон. Два первых растворителя хорошо растворяли полистирол, однако при их использовании возникла проблема неполного испарения раствора в процессе электроспиннинга (особенно в случае этилацетата). Поскольку дихлорметан имеет низкую температуру кипения, его применение для электроспиннинга давало надежду решить проблему неполного испарения растворителей в ходе процесса.

Взвесил 13.720 г метиленхлорида и 3.435 г пенополистирола. Начал добавлять кусочки полимера в растворитель. Пенополистирол быстро исчезал, выделяя пузырьки газа. Растворение происходило быстрее, чем в случае этилацетата или растворителя "Ацетон +". Процесс выглядел невероятно: небольшой объем жидкости быстро поглощал большой объем твердого материала, хотя со временем скорость растворения упала. Как и в случае этилацетата, после растворения основного количества пенополистирола в жидкости остались небольшие белые комочки, которые при перемешивании со временем растворились.

В результате был получен слегка мутный 20.0% раствор полистирола в хлористом метилене.


Download the Video (99 Mb, .avi )

Dissolving Expanded Polystyrene in Methylene Chloride
Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride

Dissolving Expanded Polystyrene in Methylene Chloride




Having noticed a mistake in the text, allocate it and press Ctrl-Enter


The boiling point of dichloromethane is so low (about 40°C) that it is not much higher than normal human body temperature. Therefore, I expected the 20% polystyrene solution to evaporate without difficulty during electrospinning.

I drew the solution into a syringe and began the process. The good news was that the polystyrene solution in dichloromethane began to form fibers, just as the polystyrene solutions in ethyl acetate and the "Acetone+" solvent had. The fibers settled on the collector, forming a white coating.

However, my joy was premature. Along with the fibers, gel-like dendrites also formed, extending and branching without detaching from the needle. Taylor cones, from which the fibers originated, appeared directly on these dendrites. As the dendrites grew toward the collector, the distance between the points where the fibers formed and the collector decreased significantly. This led to the familiar problem of incomplete solvent evaporation, which had previously occurred with ethyl acetate and, to a lesser extent, with the "Acetone+" solvent.

In addition, a large droplet often formed at the tip of the needle and continued to grow as more solution arrived. The electrostatic field was insufficient to effectively draw fibers from this droplet, because the surface tension of the solution was too high. I was frustrated. Could it be that dichloromethane is not an appropriate solvent for electrospinning?

I stopped the process and examined the surface of the collector electrode under a microscope. The fibers were clearly visible, but in some areas there were signs of partial dissolution of fibers that had already been deposited on the collector. The presence of "beads" on the fibers was also noticeable.

I diluted the solution with methylene chloride to a polystyrene concentration of 13.9% and resumed electrospinning. Fibers formed and were then attracted to the collector and to other surrounding surfaces, forming a "web." The process was still not entirely smooth. Dendrites continued to form, but they were now "dry," resembling a "beard," and no longer served as channels through which the solution approached the collector. As a result, the collector became coated with a white, cotton-like material. No wet spots were observed. The reverse side of the collector was also partially covered with polystyrene fibers.

I examined the resulting material under a microscope. Numerous fibers without "beads" were visible. The fiber diameter was larger than that obtained with the "Acetone+" solvent and was roughly comparable to the diameter of fibers produced from a polystyrene solution in ethyl acetate.

Unlike other solvents I have worked with, the odor of dichloromethane was barely noticeable. Given the toxicity of this compound, the lack of a clearly perceptible odor is a negative factor. I later learned that the solvent has a sweet, ether-like odor, but people quickly become accustomed to it and do not perceive methylene chloride at low concentrations. The odor becomes noticeable only when its concentration exceeds safe limits.

I conducted electrospinning in a closed fume hood, but switched the hood on only occasionally, as a strong, uncontrolled airflow interfered with the process. In later experiments, I observed fibers detaching from the needle but failing to adhere to the collector or any other surface, as they were carried away by even a weak air current.

Having confirmed that methylene chloride could be used for electrospinning polystyrene, I began experiments with the less toxic tetrahydrofuran.



Электроспиннинг: раствор полистирола в метиленхлориде - Часть 13
Температура кипения дихлорметана настолько низкая (40°C), что она не намного выше нормальной температуры человеческого тела. Следовательно, я ожидал, что 20% раствор полистирола будет испаряться без проблем в процессе электроспиннинга.

Набрал раствор в шприц и начал процесс. Хорошей новостью было то, что раствор полистирола в дихлорэтане стал образовывать волокна, как это было в случае раствора полистирола в этилацетате и растворителе "Ацетон +". Волокна оседали на коллекторе, образуя белое покрытие.

Однако, моя радость оказалась преждевременной. Вместе с волокнами образовались также гелеобразные дендриты, которые удлинялись и разветвлялись, не отрываясь от иглы. Конусы Тейлора, из которых образовывались волокна, возникали именно на дендритах. Поскольку дендриты росли в сторону коллектора, расстояние между точками, в которых начиналось образование волокон, и коллектором значительно сократилось. В результате возникла хорошо знакомая проблема неполного испарения растворителя. Раннее она имела место при использовании этилацетата и в меньшей мере - растворителя "Ацетон +".

Кроме того, на конце иглы часто формировалась большая капля, которая постоянно росла за счет поступления нового раствора. Силы электростатического поля было недостаточно, чтобы эффективно вытягивать из этой капли волокна, поскольку поверхностное натяжение раствора было слишком высоким. Я расстроился. Неужели с дихлорметаном ничего не получится?

Прекратил процесс и изучил поверхность электрода-коллектора под микроскопом. Были четко видны волокна, однако, в некоторых местах наблюдались признаки частичного растворения волокон, уже осевших на коллекторе. Также было заметно присутствие на волокнах "бусинок".

Разбавил раствор хлористым метиленом до концентрации полистирола 13.9% и возобновил процесс электроспиннинга. Волокна образовывались, затем притягивались к коллектору, а также к другим окружающим поверхностям, образуя "паутину". Процесс также не протекал гладко. Дендриты по-прежнему формировались, но теперь они были "сухими", напоминали "бороду" и больше не служили каналами, внутри которых раствор приближался к коллектору. В результате коллектор покрылся белым материалом, который напоминал вату. Мокрых пятен не наблюдалось. Обратная сторона коллектора также частично покрылась волокнами полистирола.

Рассмотрел полученный материал под микроскопом: были видны многочисленные волокна без "бусинок". Диаметр волокон был больше, чем в случае растворителя "Ацетон +", и примерно соответствовал диаметру волокон, полученных из раствора полистирола в этилацетате.

В отличие от других растворителей, с которыми я работал, запах дихлорметана почти не ощущался. Учитывая токсичность данного соединения, отсутствие четко-различимого запаха было отрицательным фактором. Позже прочитал, что растворитель имеет сладкий запах, подобный запаху эфира, однако, люди быстро к нему привыкают и перестают ощущать запах хлористого метилена при невысоких концентрациях. Присутствие дихлорметана становится ощутимым только, когда его концентрация превышает безопасный предел.

Электроспиннинг я проводил в закрытом вытяжном шкафу, но тягу включал только эпизодически, поскольку сильный неконтролируемый поток воздуха вредит процессу. Позже в других экспериментах я наблюдал, как волокна отрываются от иглы, но не пристают к коллектору или другой поверхности, поскольку их уносит в сторону даже слабым потоком воздуха.

Убедившись, что хлористый метилен можно использовать для электроспиннинга полистирола, приступил к экспериментам с менее токсичным тетрагидрофураном.


Download the Video (104 Mb, .avi )

Electrospinning: Solution of Polystyrene in Methylene Chloride
Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride

Electrospinning: Solution of Polystyrene in Methylene Chloride



[ Electric Arc, Electrical Discharges, Experiments with Electricity (Part 2) ] [ Polymers, Monomers, Natural Polymers, Plastics, Natural products ]

Electrospinning - Discussion on the forum
Experiments with Polymers and Monomers (including natural ones) - Discussion on the forum
[Submit a Comment / Error Message - Отправить Комментарий / Сообщение об ошибке]