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Abstract

Stable levitation of one magnet by another with no energy input
is usually prohibited by Earnshaw’s Theorem. However, the intro-
duction of diamagnetic material at special locations can stabilize such
levitation. A magnet can even be stably suspended between (diamag-
netic) fingertips. A very simple, surprisingly stable room temperature
magnet levitation device is described that works without supercon-
ductors and requires absolutely no energy input. Our theory derives
the magnetic field conditions necessary for stable levitation in these
cases and predicts experimental measurements of the forces remark-
ably well. New levitation configurations are described which can be
stabilized with hollow cylinders of diamagnetic material. Measure-
ments are presented of the diamagnetic properties of several samples
of bismuth and graphite.

1 Diamagnetic materials

Most substances are weakly diamagnetic and the tiny forces associated with
this property make two types of levitation possible. Diamagnetic materi-
als, including water, protein, carbon, DNA, plastic, wood, and many other
common materials, develop persistent atomic or molecular currents which



oppose externally applied magnetic fields. Bismuth and graphite are the ele-
ments with the strongest diamagnetism, about 20 times greater than water.
Even for these elements, the magnetic susceptibility y is exceedingly small,
X &~ —170 x 107°.

In the presence of powerful magnets the tiny forces involved are enough
to levitate chunks of diamagnetic materials. Living things mostly consist of
diamagnetic molecules (such as water and proteins) and components (such as
bones). Contrary to our intuition, these apparently nonmagnetic substances,
including living plants and small animals, can be levitated in a magnetic
field [1, 2].

Diamagnetic materials can also stabilize free levitation of a permanent
magnet which is the main subject of this paper. This approach can be
used to make very stable permanent magnet levitators that work at room
temperature without superconductors and without energy input. Recently,
levitation of a permanent magnet stabilized by the diamagnetism of human
fingers (x ~ —107°) was demonstrated at the High Field Magnet Lab in
Nijmegen, The Netherlands [3, 4].

While the approximate magnitude of the diamagnetic effect can be de-
rived from simple classical arguments about electron orbits, diamagnetism
is impossible within classical physics. The Bohr-Leeuwen Theorem states
that no properties of a classical system in thermal equilibrium can depend in
any way on the magnetic field [5, 6]. In a classical system, at thermal equi-
librium the magnetization must always vanish. Diamagnetism is a macro-
scopic manifestation of quantum physics that persists at high temperatures,
KT > piponrB.

2 Earnshaw’s Theorem

Those who have studied levitation, charged particle traps, or magnetic field
design for focusing magnets have probably run across Earnshaw’s theorem
and its consequences. There can be no purely electrostatic levitator or parti-
cle trap. If a magnetic field is focusing in one direction, it must be defocusing
in some orthogonal direction. As students, most of us are asked to prove the
electrostatic version which goes something like this: Prove that there is no
configuration of fixed charges and/or voltages on fixed surfaces such that a
test charge placed somewhere in free space will be in stable equilibrium. It
is easy to extend this proof to include electric and magnetic dipoles.
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Figure 1: top: Levitation of a magnet 2.5 m below an unseen 11 T super-
conducting solenoid stabilized by the diamagnetism of fingers (y &~ —1079).
bottom: Demonstrating the diamagnetism of our favorite text explaining
diamagnetism.



It is useful to review what Earnshaw proved and the consequences for
physics. As can be seen from the title of Earnshaw’s paper [7], “On the nature
of the molecular forces which regulate the constitution of the luminiferous
ether”, he was working on one of the frontier physics problems of his time
(1842). Earnshaw wrote before Maxwell’s work, before atoms were known
to be made up of smaller particles, and before the discovery of the electron.
Scientists were trying to figure out how the ether stayed uniformly spread
out (some type of repulsion) and how it could isotropically propagate the
light disturbance.

Earnshaw discovered something simple and profound. Particles in the
ether could have no stable equilibrium position if they interacted by any
type or combination of 1/r? forces. Most of the forces known such as gravity,
electrostatics, and magnetism are 1/7? forces. Without a stable equilib-
rium position (and restoring forces in all directions), ether particles could
not isotropically propagate wavelike disturbances. Earnshaw concluded that
the ether particles interacted by other than 1/7? forces. Earnshaw’s paper
torpedoed many of the popular ether theories of his time.

Earnshaw’s theorem depends on a mathematical property of the 1/r type
energy potential. The Laplacian of any sum of 1/r type potentials is zero,
or V? ¥k;/r = 0. This means that at any point where there is force balance
(—=V Xk;/r = 0), the equilibrium is unstable because there can be no local
minimum in the potential energy. Instead of a minimum in three dimensions,
the energy potential surface is a saddle. If the equilibrium is stable in one
direction, it is unstable in an orthogonal direction.

Since many of the forces of nature are 1/r? forces, the consequences of
Earnshaw’s theorem go beyond the nature of the ether. Earnshaw understood
this himself and writes that he could have titled his paper “An Investigation
of the Nature of the Molecular Forces which regulate the Internal Constitu-
tion of Bodies”. We can be sure that when J. J. Thomson discovered the
electron fifty-five years later, he considered Earnshaw’s theorem when he pro-
posed the plum pudding model of atoms. Thomson’s static model avoided
1/r? forces by embedding the electrons in a uniform positive charge. In this
case the energy obeys Poisson’s equation rather than LaPlace’s. Ruther-
ford’s scattering experiments with Geiger and Marsden in 1910 soon showed
that the positive charge was concentrated in a small massive nucleus and
the problem of atomic structure was not solved until Bohr and quantum
mechanics.

Earnshaw’s theorem applies to a test particle, charged and/or a magnet,
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located at some position in free space with only divergence- and curl-free
fields. No combination of electrostatic, magnetostatic, or static gravitational
forces can create the three-dimensional potential well necessary for stable
levitation in free space. The theorem also applies to any array of magnets or
charges.

An equivalent way to look at the magnetic case is that the energy U of a
magnetic dipole M in a field B is

U=-M-B=—M,B, — M,B, — M.B.. (1)

If M is constant the energy depends only on the components of B. However,
for magnetostatic fields,
V?’B =0 (2)

and the Laplacian of each component is zero in free space and so V2U = 0
and there is no local energy minimum.

At first glance, any static magnetic levitation appears to contradict Earn-
shaw’s theorem. There must be some loopholes though, because magnets
above superconductors, the spinning magnet top, diamagnets including liv-
ing things, and the magnet configurations to be described here do stably
levitate.

3 Beyond Earnshaw

Earnshaw’s theorem does not consider magnetic materials except for hard
fixed magnets. Ferro- and paramagnetic substances align with the magnetic
field and move toward field maxima. Likewise, dielectrics are attracted to
electric field maxima. Since field maxima only occur at the sources of the
field, levitation of paramagnets or dielectrics in free space is not possible.
(An exception to this statement is when a paramagnet is made to behave
like a diamagnet by placing it in a stronger paramagnetic fluid. Bubbles in
a dielectric fluid act in a similar way. A second exception is when isolated
local maxima are created by focusing an AC field as with laser tweezers [8].)

Paramagnets and diamagnets are dynamic in the sense that their magneti-
zation changes with the external field. Diamagnets are repelled by magnetic
fields and attracted to field minima. Since local minima can exist in free
space, levitation is possible for diamagnets. We showed above that there are
no local minima for any vector component of the magnetic field. However
there can be local minima of the field magnitude.



Soon after Faraday discovered diamagnetic substances, and only a few
years after Earnshaw’s theorem, Lord Kelvin showed theoretically that dia-
magnetic substances could levitate in a magnetic field [9]. In this case the
energy depends on B2 = B - B and the Laplacian of B? can be positive. In
fact [1, §]

V2 B?>0. (3)

The key idea here and in the levitation schemes to follow, the way around
Earnshaw’s theorem, is that the energy is not linearly dependent on the
individual components of B. The energy is dependent on the magnitude B.
Three-dimensional minima of individual components do not exist. For static
fields, local maxima of the field magnitude cannot exist in free space away
from the source of the field. However, local minima of the field magnitude
can exist.

Braunbek [10] exhaustively considered the problem of static levitation
in 1939. His analysis allowed for materials with a dielectric constant e and
permeability p different than 1. He showed that stable static levitation is
possible only if materials with € < 1 or 4 < 1 are involved. Since he believed
there are no materials with ¢ < 1, he concluded that stable levitation is only
possible with the use of diamagnetic materials.

Braunbek went further than predicting diamagnetic levitation. He figured
out the necessary field configuration for stable levitation of a diamagnet
and built an electromagnet which could levitate small specks of diamagnetic
graphite and bismuth [10]. With the advent of powerful 30 Tesla magnets,
even a blob of water can now be levitated.

Superconducting levitation, first achieved in 1947 by Arkadiev [11], is
consistent with Braunbek’s theory because a superconductor acts like a per-
fect diamagnet with ¢ = 0. Flux pinning in Type II superconductors adds
some complications and can lead to attractive as well as repulsive forces.

The only levitation that Braunbek missed is spin-stabilized magnetic lev-
itation of a spinning magnet top over a magnet base which was invented by
Roy Harrigan [12]. Braunbek argued that if a system is unstable with respect
to translation of the center of mass, it will be even more unstable if rotations
are also allowed. This sounds reasonable but we now know that imparting
an initial angular momentum to a magnetic top adds constraints which have
the effect of stabilizing a system which would otherwise be translationally
unstable [13, 14]. However, this system is no longer truly static though once
set into motion, tops have been levitated for 50 hours in high vacuum with



| Material | —x (x107°) |

water 8.8
gold 34
bismuth metal 170
graphite rod 160
pyrolytic gr. L 450
pyrolytic gr. || 85

Table 1: Values of the dimensionless susceptibility x in SI units for some dia-
magnetic materials. The measurement method for the graphites is discussed
in a later section.

no energy input [15].

The angular momentum and precession keep the magnet top aligned an-
tiparallel with the local magnetic field direction making the energy dependent
only on the magnitude |B| = [B - B]'/2. Repelling spinning dipoles can be
levitated near local field minima. Similar physics applies to magnetic gra-
dient traps for neutral particles with a magnetic moment due to quantum
spin [16]. The diamagnetically stabilized floating magnets described below
stay aligned with the local field direction and also depend only on the field
magnitude.

4 Magnet Levitation with Diamagnetic Sta-
bilization

We know from Earnshaw’s theorem that if we place a magnet in the field
of a fixed lifter magnet where the magnetic force balances gravity and it is
stable radially, it will be unstable vertically. Boerdijk (in 1956) used graphite
below a suspended magnet to stabilize the levitation [17]. Ponizovskii used
pyrolytic graphite in a configuration similar to the vertically stabilized lev-
itator described here [18]. As seen in table I, the best solid diamagnetic
material is pyrolytic graphite which forms in layers and has an anisotropic
susceptibility (and thermal conductivity). It has much higher susceptibility
perpendicular to the sheets than parallel.

It is also possible to levitate a magnet at a location where it is stable ver-
tically but unstable horizontally. In that case a hollow diamagnetic cylinder



can be used to stabilize the horizontal motion [3, 4].
The potential energy U of a floating magnet with dipole moment M in
the field of the lifter magnet is,

U=-M-B+mgz = —MB + mgz. (4)

where mgz is the gravitational energy. The magnet will align with the local
field direction because of magnetic torques and therefore the energy is only
dependent on the magnitude of the magnetic field, not any field components.
Taking advantage of the irrotational and divergenceless nature of mag-
netostatic fields in free space, we can expand the field around the levitation
point in terms of the primary field direction, here B,, and its derivatives.

1 1
B.=By+ Bz + 53”% — ZB”(:zz:2 +y?) 4 (5)
]‘ / ]‘ "
B, = —an—anz+-~- (6)
1 1
By = —iB,y — iBﬂyZ —+ -
where 0B 925
B = 8;, and B" = 822Z (7)

and the derivatives are evaluated at the levitation point.
For a cylindrically symmetric geometry we expand around the B, com-
ponent and its derivatives.

1 1
B.=DBy+B'z+ 53”22 — ZB”H 4o (8)
1 1
B, = —aB’r— §B”TZ+--~ 9)
Then
1
B? = Bf +2ByB'z + {ByB" + B*}2* + Z{B’2 —2ByB"}r? + -+ (10)

where 72 = 2?2 + 9%
Expanding the field magnitude of the lifter magnet around the levitation
point using equations 7, 8, and 9 and adding two new terms C,z? and C,r?

8



which represent the influence of diamagnets to be added and evaluated next,
the potential energy of the floating magnet is

mg 1 " _2 1 Bl2 " 2 2 2
U:—M{B +{B’——} LB +—{——B }r +~-}+sz e
0 M 2 428, )

At the levitation point, the expression in the first curly braces must go
to zero. The magnetic field gradient balances the force of gravity

myg

B = 12
& (12
The conditions for vertical and horizontal stability are
1
K,=C, — QMB” > 0 vert. stability (13)

1 B/2 1 m2g2
K, =C. —M{B"——}:Cr —M{B”—i} 0 hor. stabilit
h —|—4 5B, —1—4 SM2B, > or. stability
(14)

Without the diamagnets, setting C,. = 0 and C, = 0, we see that if B” < 0
creating vertical stability, then the magnet is unstable in the horizontal plane.
If the curvature is positive and large enough to create horizontal stability,
then the magnet is unstable vertically.

We consider first the case where B” > 0 and is large enough to create
horizontal stability K, > 0. The top of figure 2 shows plots of K, and K},
for the case of a ring magnet lifter. The dashed line shows the effect of
the C', term. Where both curves are positive, stable levitation is possible if
M B’ = mg. It is possible to adjust the gradient or the weight of the floating
magnet to match this condition.

We can see that there are two possible locations for stable levitation,
one just below the field inflection point where B” is zero and one far below
the lifter magnet where the fields are asymptotically approaching zero. The
upper position has a much stronger gradient than the lower position. The
lower position requires less diamagnetism to raise K, to a positive value and
the stability conditions can be positive over a large range of gradients and a
large spatial range. This is the location where fingertip stabilized levitation
is possible. It is also the location where the magnet in the compact levitator
of figure 4 floats.
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Figure 2: top: Stability functions K, and K}, for a ring lifter magnet with
OD 16 cm and ID 10 cm. The x-axis is the distance below the lifter magnet.
The dashed line shows the effect of adding diamagnetic plates to stabilize
the vertical motion. Levitation is stable where both K, and K, are positive.
middle: The dashed line shows the effect of adding a diamagnetic material
to stabilize the radial motion. bottom: Magnetic field (7T'), gradient (7'/m),
and curvature (T//m?) of the lifting ring magnet. The dashed line is equal
to —mg/M of a NdFeB floater magnet. Where the dashed line intersects
the gradient, there will be force balance. If force balance occurs in a stable
region, levitation is possible.
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The combined conditions for vertically stabilized levitation can be written

2C 1 /mg\?
Z>B”>—(—). 15
M 2By \ M (15)

C, is proportional to the diamagnetic susceptibility and gets smaller if the
gap between the magnet and diamagnet is increased. We can see that the
largest gap, or use of weaker diamagnetic material, requires a large B field
at the levitation position.

Here it is interesting to note that the inflection point is fixed by the
geometry of the lifter magnet, not the strength of the magnet. The instability
is related to the curvature of the lifter field and force balance depends on the
gradient. That makes it feasible to engineer the location of the stable zones
by adjusting the geometry of the lifter magnet and to control the gradient
by adjusting the strength. With a solenoid for example, the stable areas will
be determined by the radius and length of the solenoid and the current can
be adjusted to provide force balance at any location.

The middle plot of figure 2 shows that it is also possible to add a positive
C, to K}, where it turns negative to create a region where both K, and K},
are positive, just above the inflection point. The bottom plot shows the lifter
field, gradient, and curvature on the symmetry axis and the value of —mg/M
for a NdFeB floater magnet of the type typically used. (The minus sign is
used because the abscissa is in the —z direction. The plotted gradient is the
negative of the desired gradient in the +z direction.) Force balance occurs
where the dashed line intersects the gradient curve.

5 Evaluating the (. diamagnetic term

We assume a linear constitutive relation where the magnetization density is
related to the applied H field by the magnetic susceptibility y, where x is
negative for a diamagnetic substance.

The magnetic induction B inside the material is

B = jo(1 + x)H = popd (16)

where i, the relative magnetic permeability, might be a scalar, vector, or
tensor depending on the isotropy properties of the material. A perfect dia-
magnet such as a Type I superconductor has ¢ = 0 and will completely cancel
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the normal component of an external B field at its surface by developing sur-
face currents. A weaker diamagnet will partially expel an external field. The
most diamagnetic element in the Handbook of Chemistry and Physics is bis-
muth with ¢ = 0.99983, just less than the unity of free space. Water, typical
of the diamagnetism of living things, has a ¢ = 0.999991. Even so, this small
effect can have dramatic results.

When a magnet approaches a weak diamagnetic sheet of relative per-
meability 4 = 1+ x =~ 1 we can solve the problem outside the sheet by
considering an image current I’ induced in the material but reduced by the
factor (u—1)/(u+ 1) = x/2 (see section 7.23 of Smythe [19]).

rort ol X (17)

w1 2
If the material were instead a perfect diamagnet such as a superconductor
with x = —1 and p = 0, an equal and opposite image is created as expected.

To take the finite size of the magnet into account we should treat the
magnet and image as ribbon currents but first, for simplicity, we will use a
dipole approximation which is valid away from the plates and in some other
conditions to be described. The geometry is shown in figure 3.

5.1 Dipole approximation of C,

We will find the force on the magnet dipole by treating it as a current loop
subject to I X B force from the magnetic field of the image dipole. The
image dipole is inside a diamagnetic slab a distance D

D=2d+L (18)

from the center of a magnet in free space and has strength determined by
equation 17. The magnet has length L and radius R and is positioned at the
origin of a coordinate system at z = 0. We only need the radial component
of the field from the induced dipole, B;,. at z = 0.

Using the field expansion equations 7 and 9 for the case of the image
dipole we have

1 poxM 3r
B;, = —=Blir = —. 19
g i 8t D* (19)
The lifting force is
M27R 3M?| x| o
m mR? 47 D4 (20)
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Dipole Approximation Ribbon Current Geometry

2R 2R
—> >
L Mi magnet Izﬂz L | magnet
R S
I d I d
d
d+L/2
image (M image X1 [I' || L
dipole " current 9 —
>
2R
Diamagnetic Slab Diamagnetic Slab

Figure 3: Geometry for the image dipole and image ribbon current force
calculations.
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lifting magnet

graphite
D separation

suspended magnet
mass m, moment M

Figure 4: Diamagnetically stabilized magnet levitation geometry for one com-
pact implementation.

For equilibrium at z = 0, the lifting force will be balanced by the lifting
magnet and gravity so that the net force is zero. The net force from two
diamagnetic slabs will also be zero if the magnet is centered between the two
slabs as shown in figure 4. This is the case we want to consider first.
We now find the restoring force for small displacements in the z-direction
from one slab on the bottom.
or; oF; 61> X0
z = 20 = ———FF—=2
od oD wD?
For the case of a magnet centered between two slabs of diamagnetic material,
the restoring force is doubled. We can equate this restoring force to the C, 2>
term in the energy expansion equation 11. We take the negative gradient of
the energy term to find the force in the z-direction and equate the terms.
For the two slab case

(21)

62| x]|po
—QCZZ = _QWZ
62| x| po
C, 22
w Db (22)
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5.2 Alternate route to C,

The same result can be derived directly from the equation for the potential
energy of a magnet with fixed dipole M in the induced field B; of its image
in a para or diamagnetic material [19]

1

We assume that the magnet is in equilibrium with gravity at z = 0 due
to forces from the lifter magnet and possibly forces from the diamagnetic
material and we want to calculate any restoring forces from the diamagnetic
material. The energy of the floater dipole M in the fields B; of the induced
dipoles from diamagnetic slabs above and below the magnet is

X[ M1 1 1

87 |@d+i+2:27  (2d+1—22)7 (24)
We expand the energy around the levitation point z = 0
1

U = U¢0+U{Z+§U{/Z2+... (25)

x| M2 g 2 48 5
= e 26
37 |@d+ip T drip |t (26)

6|X|M2MO 2

= C+C.2%+.... (28)

This gives the same result as equation 22.

5.3 Maximum gap D in dipole approximation

Adding diamagnetic plates above and below the floating magnet with a sep-
aration D gives an effective energy due to the two diamagnetic plates

6o M2 || 2
w D>

in the dipole approximation. From the stability conditions (eq. 13,14), we
see that levitation can be stabilized at the point where B’ = mg/M if

Upia = C,2% = (29)

12M0M‘X| > B// > (mg)2

—— 30
w D> 2M? By (30)
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This puts a limit on the diamagnetic gap spacing

1200 M X115 (240 ByM3|x|)
D<{ Mo |X|} <{ Ho Do |X|}

TB" 7(mg)? (31)

If we are far from the lifter magnet field, we can consider it a dipole
moment M at a distance H from the floater. The equilibrium condition,

equation 12, is
1
MM 1
H= {w} (32)
2mmg

Then, the condition for stability and gap spacing at the levitation point is [20]

1

D < H{2|X|M£L}g (33)

The most important factor for increasing the gap is using a floater with the
strongest possible M/m. Using the strongest diamagnetic material is also
important. Lastly, a stronger lifting dipole further away (larger H) produces
some benefit.

5.4 Surface current approximation

Treating the magnets and images as dipoles is useful for understanding the
general dependencies but if the floater magnet is large compared to the dis-
tance to the diamagnetic plates, there will be significant errors. These errors
can be seen in equation 29 where the energy becomes infinite as the distance
D = 2d + L goes to zero. Since the gap spacing d is usually on the order
of the floater magnet radius and thickness, more accurate calculations of the
interaction energy are necessary. (In the special case when the diameter of
a cylindrical magnet is about the same as the magnet length, the dipole ap-
proximation is quite good over the typical distances used as can be confirmed
in figure 6.)

Even treating the lifter magnet as a dipole is not a very good approxima-
tion in most cases. A better approximation for the field B; from a simple
cylindrical lifter magnet of length [, and radius Ry at a distance H from the
bottom of the magnet is

B _ BLT H+ZL o H (34)
L 2 H+1,)2+ R2 H2 + R2
(H+1L)*+ Rj + [y,
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250
‘/\ surface current approximation

200+

150+

B gauss

100 -

50

Figure 5: Measured field from a ring lifter magnet with fits to a dipole
approximation and a surface current approximation. The lifter is a ceramic

material with B, of 3,200 gauss. The dimensions are O.D. 2.8 cm, 1.D. 0.9
cm, and thickness 0.61 cm.

where By, is the remanent or residual flux density of the permanent magnet
material. (The residual flux density is the value of B on the demagnetization
B-H curve where H is zero when a closed circuit of the material has been
magnetized to saturation. It is a material property independent of the size
or shape of the magnet being considered.) This equation is equivalent to
using a surface current or solenoid model for the lifter magnet and is a very
good approximation. If the lifter is a solenoid By, is the infinite solenoid
field poN1/1y.

Figure 5 shows the measured field of a lifter ring magnet we used. The
fit of the surface current approximation is better even 4 cm away which was
approximately the levitation force balance position. The ring magnet has
an additional equal but opposite surface current at the inner diameter which
can be represented by a second equation of form 34.

6 Method of image currents for evaluating C,

The force between two parallel current loops of equal radii a separated by
a distance ¢ with currents I and I’ can be written as (see section 7.19 of
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Smythe [19])

B , c 2a% + 2
Eoops - ,UOI[ m [_K + 2 E] (35)

where K and E are the elliptic integrals

Py N S
0 V1—k2sin®0

E:/E V1 — k2sin?0d6 (37)
0

) 4a®
" 4a? + 2
We extend this analysis to the case of two ribbon currents because we
want to represent a cylindrical permanent magnet and its image as ribbon
currents. The geometry is shown in figure 3. We do a double integral of the
loop force equation 35 over the length dimension L of both ribbon currents.
With a suitable change of variables we arrive at the single integral

and
(38)

1
F= MOII'/ J{1 — vsgn(v)}dv (39)
-1
where
— 12
B 1
= I
_ ¢ + L (1+4v)
T RV
sgn(v) = sign of v
Y1 if v>0
- 0 if v=0 (41)
-1 if v<0

d is the distance from the magnet face to the diamagnetic surface and R and
L are the radius and length of the floating magnet.
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From measurements of the dipole moment M of a magnet, we convert to
a current
=M (42)
area  mTR?
Using equation 17, we have
e
21 R?
Once M, x, and the magnet dimensions are known, equation 39 can be inte-
grated numerically to find the force. If the force is measured, this equation
can be used to determine the susceptibility y of materials. We used this
method to make our own susceptibility measurements and this is described
below.

In the vertically stabilized levitation configuration shown in figure 4, there
are diamagnetic plates above and below the floating magnet and at the equi-
librium point, the forces balance to zero. The centering force due to the two
plates is twice the gradient of the force F' in equation 39 with respect to d,
the separation from the diamagnetic plate, times the vertical displacement
z of the magnet from the equilibrium position. We can equate this force to
the negative gradient of the C,z? energy term from equation 11

(43)

OF
—2C,z = 2%2. (44)

Therefore, the coefficient C, in equations 11 and 13 is

OF

Cz:_%

(45)

and this force must overcome the instability due to the unfavorable field
curvature B”. Figure 6 shows the force and gradient of the force for floating
magnets of different aspect ratios.

6.1 Oscillation frequency

When the vertical stability conditions (equation 13) are met, there is an
approximately quadratic vertical potential well with vertical oscillation fre-

quency
y— \li{—Qa—F—MB”} (46)

~or\\m od
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L/R=1

0.2

0.1

L/R=2

0.125¢°
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0.025
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0.6 0.8
d/R
0.6 0.8

L/R=3

0.
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0.6 0.8

d/R
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force gradient

dipole approx.

.......

ribbon current

Figure 6: Dipole approximation compared to image current solution for three
different magnet length to radius ratios. The force axis is in units of pgl?x/2.
The ribbon current I is related to the dipole moment M of the magnet by
M = I7R?. The force gradient axis is in units —uol*y/2R.
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Applying equation 22, in the dipole approximation, the vertical bounce fre-

quency is
1 |1 [12uM?
v \l_{M_MB//}' (47)

:% m w D5

The expressions in the curly braces, 2K, represents the vertical stiffness of
the trap. 2K, represents the horizontal stiffness.

The theoretical and measured oscillation frequencies are shown later in
figure 12. It is seen that the dipole approximation is not a very good fit to
the data whereas the image current prediction is an excellent fit.

7 The C, term

We now consider the case just above the inflection point where B” < 0.
A hollow diamagnetic cylinder with inner diameter D as shown in figure 7
produces an added energy term (in the dipole approximation) [3]

A5 io| x| M? 2

.= 2 —
Udm = Crr 16D5

(48)

Near the inflection point where B” is negligible, the horizontal stability con-
dition equation 14 becomes

45p0X|M? _ MB® _m’g®

_ 49

2D5 By  MB, (49)
45110 By M?| x| | *

D < | 22HoPo IXI 50

{ 2(mg)? (50)

This type of levitator can also be implemented on a tabletop using a large
diameter permanent magnet ring as a lifter as described in the middle plot
of figure 2.

The horizontal bounce frequency in the approximately quadratic potential
well is

(51)

Uy

1J1{45MOM2\X]+MB” MB’Q}
— .

~oa\m 8D 9 4B,

The expression in the curly braces, 2K}, represents the horizontal stiffness
of the trap.
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Figure 7: Vertical and horizontal stability curves for magnet levitation show-
ing the stabilizing effect of a diamagnetic cylinder with an inner diameter of
8 mm and the levitation geometry. Magnet levitation is stable where both
curves are positive and the magnetic lifting force matches the weight of the
magnet.
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8 Counterintuitive levitation configuration

There is another remarkable but slightly counterintuitive stable levitation
position. It is above a lifter ring magnet with the floater in an attractive
orientation. Even though it is in attractive orientation, it is vertically stable
and horizontally unstable. The gradient from the lifter repels the attracting
magnet but the field doesn’t exert a flipping torque. This configuration
is a reminder that it is not the field direction but the field gradient that
determines whether a magnet will be attracted or repelled. A bismuth or
graphite cylinder can be used to stabilize the horizontal instability.

Figure 8 shows the stability functions and magnetic fields for this lev-
itation position above the lifter magnet. We have confirmed this position
experimentally:.

9 Experimental results

Before we can compare the experimental results to the theory, we need to
know the values of the magnetic dipole moment of the magnets and the
susceptibility of diamagnetic materials we use. The dipole moment can be
determined by measuring the 1/73 fall of the magnetic field on axis far from
a small magnet. For Nd;Fe,B magnet material, it is an excellent approxi-
mation to consider the field as created by a solenoidal surface current and
use the finite solenoid equation (34) fit to measurements.

The diamagnetic susceptibility was harder to measure. Values in the
Handbook of Chemistry and Physics were problematic. Most sources agree
on some key values such as water and bismuth. (There are multiple quantities
called susceptibility and one must be careful in comparing values. Physicists
use what is sometimes referred to as the volume susceptibility. Chemists use
the volume susceptibility divided by the density. There is also a quantity
sometimes called the gram molecular susceptibility which is the volume sus-
ceptibility divided by the density and multiplied by the molecular weight of
the material. There are also factors of 47 floating around these definitions.
In this paper we use the dimensionless volume susceptibility in SI units).

The values given in the Handbook of Chemistry and Physics and other
some other published sources for graphite are inexplicably low. This could
be because graphite rods have many different compositions and impurities.
Iron is a major impurity in graphite and can overwhelm any diamagnetic
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Figure 8: top: Vertical and horizontal stability curves for magnet levitation a
distance H above a ring lifter magnet. The dashed line shows the stabilizing
effect of a diamagnetic cylinder. Magnet levitation is stable where both
curves are positive and the magnetic lifting force matches the weight of the

magnet. bottom: B (T), B’ (T/cm), B” (T/cm?), and mg/M (T/cm) for a
16 cm OD, 10 cm ID, 3 c¢m thick ring lifting magnet and a NdFeB floater.
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effect. We have seen graphite rods that are diamagnetic on one end and
paramagnetic on the other. Braunbek noticed that used graphite arc rods
were more diamagnetic on the side closest the arc. He speculated that the
binder used in the rods was paramagnetic and was vaporized by the heat
of the arc. We found that in practice, purified graphite worked as well as
bismuth and our measurements of its susceptibility were consistent with this.

Values for a form of graphite manufactured in a special way from the
vapor state called pyrolytic graphite, are not given in the Handbook and the
other literature gives a wide range of values. Pyrolytic graphite is the most
diamagnetic solid substance known. It has an anisotropic susceptibility. Per-
pendicular to the planar layers, the diamagnetic susceptibility is better than
in pure crystal graphite [21]. Parallel to the planar layers, the susceptibility
is lower than randomly oriented pressed graphite powder.

We developed a technique to measure the diamagnetic susceptibility of
the materials we used. Later, we were able to get a collaborator (Fred Jeffers)
with access to a state of the art vibrating sample magnetometer to measure
some samples. There was very good agreement between our measurements
and those made using the magnetometer.

9.1 Measurements of diamagnetic susceptibility

A simple and useful method for testing whether samples of graphite are
diamagnetic or not (many have impurities that destroy the diamagnetism) is
to hang a small NdFeB magnet, say 6 mm diameter as the bob of a pendulum
with about 1/2 m of thread. A diamagnetic graphite piece slowly pushed
against the magnet will displace the pendulum a few cm before it touches,
giving a quick qualitative indication of the diamagnetism.

The method we used to accurately measure the susceptibility was to hang
a small NdFeB magnet as a pendulum from pairs of long threads so that the
magnet could move along only one direction. The magnet was attached to
one end of a short horizontal drinking straw. At the other end of the straw, a
small disk of aluminum was glued. A translation stage was first zeroed with
respect to the hanging magnet without the diamagnetic material present.
Then the diamagnetic material to be tested was attached to a micrometer
translation stage and moved close to magnet, displacing the pendulum from
the vertical. The force was determined by the displacement from vertical of
the magnet and x was determined from equations 39 and 17 which is plotted
as the force in figure 6.
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A sample of bismuth was used as a control and matched the value in the
standard references [22]. Once the value for our sample of bismuth was con-
firmed, the displacement was measured for a fixed separation d between the
magnet and bismuth. All other samples were then easily measured by using
that same separation d; the relative force/translation giving the susceptibility
relative to bismuth.

The difficult part was establishing a close fixed distance between the mag-
net and the diamagnetic material surface with high accuracy. This problem
was solved by making the gap part of a sensitive LC resonant circuit. At-
tached to the translation stage a fixed distance from the diamagnetic material
under test, was the L part of the LC oscillator. When the gap between the
diamagnet and magnet reached the desired fixed value, the flat piece of alu-
minum on the other side of the straw from the magnet, came a fixed distance
from the L coil, changing its inductance. The separation distance could be
set by turning a micrometer screw to move the translation stage until the
frequency of the LC circuit reached the predetermined value for each sample
under test. The setup is shown in figure 9.

This method was perhaps more accurate for our purposes than the vi-
brating sample magnetometer, an expensive instrument. Our method was
independent of the volume of the diamagnetic material. The vibrating sam-
ple magnetometer is only as accurate as the volume of the sample is known.
Samples are compared to a reference sample of nickel with a specific geometry.
Our samples were not the same geometry and there was some uncertainty in
the volume. Our measurements measured the susceptibility of the material
in a way relevant to the way the material was being used in our experiments.

We measured various samples of regular graphite and pyrolytic graphite
and bismuth. Our average values for the graphite materials are shown in
table 1 and are consistent with the values from the vibrating sample mag-
netometer. Our value for graphite is higher than many older values such as
that reported in the Handbook of Chemistry and Physics, but is lower than
that stated in a more recent reference [23]. Our values for pyrolytic graphite
are below the low end of the values stated in the literature [18, 24]. The value
for the pyrolytic graphite parallel to the planar layers is from the vibrating
sample magnetometer.
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Figure 9: Setup for measuring diamagnetic susceptibility. The diamagnetic
material is moved close to the magnet, deflecting the magnet pendulum, until
the gap between the magnet and diamagnet reaches a preset value. When the
aluminum is a fixed distance from the inductor coil, the LC circuit resonates
at the desired frequency, corresponding to the preset value of the gap. This
is an accurate way to measure the small gap. The force is determined from
the displacement of the pendulum. The force is then compared to the force

—()

frequency counter

from a previously calibrated sample of bismuth with the same gap.
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9.2 Experimental realization of levitation

The fingertip and book stabilized levitation shown in figure 1 was achieved
using a 1 m diameter 11 T superconducting solenoid 2.5 m above the levitated
magnet where the field was 500 G. Using regular graphite and an inexpensive
ceramic lifter magnet it is possible to make a very stable levitator about 5 cm
tall with a gap D of about 4.4 mm for a 3.175 mm thick 6.35 mm diameter
NdFeB magnet. Using pyrolytic graphite, the gap D increases to almost 6
mm for the same magnet. This simple design (similar to figure 4) could find
wide application. The stability curves and gradient matching condition can
be seen in figure 10. The magnitude of C, was determined from the force
gradient of figure 6 with L/R = 1 at two different gaps d using our measured
susceptibility of pyrolytic graphite.

Figure 7 shows an experimental realization of horizontal stabilization at
the High Field Magnet Laboratory in Nijmegen. We also achieved horizontal
stabilization on a tabletop using a permanent magnet ring and a graphite
cylinder.

We were recently able to achieve stable levitation at the counterintuitive
position above the ring lifter magnet (described above). The floater is in
attractive orientation but is naturally vertically stable and radially unstable.
Radial stabilization was provided by a hollow graphite cylinder.

Other configurations for diamagnetically stabilized magnet levitation are
possible and rotational symmetry is not required. For example, at the levi-
tation position described just above, if an oval magnet or a noncircular array
is used for a lifter instead of a circular magnet, the x — 2z plane can be made
stable. Instead of using a hollow cylinder to stabilize the horizontal motion,
flat plates can be used to stabilize the y direction motion.

For vertical stabilization with flat plates, if a long bar magnet is used
horizontally as a lifter, the levitation point can be turned into a line. With a
ring magnet, the equilibrium point can be changed to a circle. Both of these
tricks have been demonstrated experimentally.

Another quite different configuration is between two vertical magnet pole
faces as shown in figure 11. Between the pole faces, below center and just
above the inflection point in the magnetic field magnitude, the floating mag-
net is naturally vertically stable. Diamagnetic plates then stabilize the hori-

zontal motion. To our knowledge, this configuration was first demonstrated
by S. Shtrikman.
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Figure 10: top: Stability functions K, and K, for the demonstration levita-
tor. Stability is possible where both functions are positive. The dashed lines
show the effect of two different values of the C, term on K,. The smaller
value corresponds to a large gap spacing d = 1.9 mm. The larger value cor-
responds to a gap of only 0.16 mm. bottom: The levitation position is where
—mg/M intersects the gradient —B’ at approximately H = 4.5 cm below the
lifter magnet. B in T, —B’ in T/cm, and B” in T/cm?.
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Figure 11: Graphite plates stabilize levitation of a magnet below the center-
line between two pole faces and just above the inflection point in the field
magnitude. Not shown in the picture but labelled N and S in the figure are
the 25 cm diameter pole faces of an electromagnet spaced about 15 cm apart.
The poles can be from permanent or electromagnets.
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9.3 Measurements of forces and oscillation frequencies

One way to probe the restoring forces of the diamagnetic levitator is to
measure the oscillation frequency in the potential well. For the vertically
stabilized levitator of figure 4 we measured the vertical oscillation frequency
as a function of the gap spacing d and compared it to the dipole and image
current forces and prediction equations 46 and 47. The lifting magnet used
for this experiment was a 10 cm long by 2.5 cm diameter cylindrical magnet.
This magnet was used because its field could be accurately determined from
the finite solenoid equation. The dipole moment was measured to be 25 Am?.
The floater magnet was a 4.7 mm diameter by 1.6 mm thick NdFeB magnet
with a dipole moment of 0.024 Am?. It weighed 0.22 grams and levitated 8
cm below the bottom of the lifter magnet as expected.

The graphite used was from a graphite rod, not pyrolytic graphite. We
measured this sample of graphite to have a susceptibility of —170x 1075, The
oscillation frequency was determined by driving an 1800 Ohm coil below the
levitated magnet with a sine wave. The resonant frequency was determined
visually and the vibration amplitude kept small. The gap was changed by
carefully turning a ifQO SCrew.

Figure 12 shows the theoretical predictions and the experimental mea-
surements of the oscillation frequency as a function of gap spacing d. There
are no adjustable parameters in the theory predictions. All quantities were
measured in independent experiments. The agreement between the data and
the image current calculation is remarkably good. There is a limit to how
much the total gap D = 2d + [ can be increased. If D is too great, the
potential well becomes double humped and the magnet will end up closer to
one plate than the other. The last point with d greater than 1.4 mm was
clearly in the double well region and was plotted as zero.

10 Levitation solutions for a cylindrically sym-
metric ring magnet

A ring magnet provides many combinations of fields, gradients and curvatures
as shown in figure 13. Considering the field topology but not the magnitudes,
we show all possible positions where diamagnets, spin-stabilized magnets,
and magnets stabilized by diamagnetic material can levitate. The fields and
gradients shown may not be sufficient to levitate a diamagnet in the position
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Figure 12: Data points on the vertical oscillation frequency versus the gap
spacing d with the dipole approximation prediction curve and the image
current theory curve. The curves are not fit to the data. They are predictions
from the measured properties of the magnets and diamagnets, with no free
parameters. The last point is beyond the zero frequency limit and is plotted
as zero. At zero frequency, the gap is too large to provide stability and the
potential well becomes double humped, with stable points closer to one plate
than the other. This clearly was the case with the last point around d > 1.4
min.
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Table 2: Magnetic field requirements for levitation of diamagnets, spin-
stabilized magnet levitation, and diamagnetically stabilized levitation of

magnets. 4+ and — indicate the sign with respect to the sign of B.
| | M aligned with B| B'| B" |

levit. of diamagnets - — | +or—
spin-stabilized magnet - - +
diamag. stab. horiz. + + -
diamag. stab. vert. + + +

Table 3: Stability functions for levitation of diamagnets, spin-stabilized mag-
nets, and diamagnetically stabilized magnets. The functions must be positive
for stability and assume By in the positive z direction.

‘ ‘ vertical ‘ horizontal ‘
levit. of diamagnets ByB" + B” B"? —2B,B"
spin-stabilized magnet B" B"? —2B,B"
diamag. stab. magnet | C, — 1MB" | C, + iM{B” - %}

shown against 1 ¢ of gravity, but the topology is correct if the magnetic field
could be increased enough.

Each type of levitation has its own requirements for radial and horizontal
stability and the stable regions for each are shown. Other requirements such
as matching the magnetic field gradient to mg/M need be met. The fields
must be in the right direction so as not to flip the magnet. These required
directions of B, B’, and B” are shown in table 2. The directions are all
compared to the direction of B.

The most fruitful place to look for levitation positions is around the inflec-
tion points of the magnetic field. These are the places where the instability is
weakest. The two levitation regions in figure 13 marked with a question mark
have not been demonstrated experimentally and are probably not accessible
with current magnetic and diamagnetic materials. The lower position with
a question mark would work using a diamagnetic cylinder for radial stabi-
lization. However, it may require more diamagnetism than is available. The
levitation positions without the question marks have been demonstrated ex-
perimentally. The position for levitation of a diamagnet marked with the *
has been recently demonstrated by the authors.
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Figure 13: B (T), B’ (T/cm), and B” (T/cm?), for a 16 cm OD, 10 cm 1D, 3
cm thick ring lifting magnet showing the fields on axis above and below the
magnet. All possible levitation positions are shown for spin-stabilized mag-
net levitation, diamagnetically stabilized magnet levitation, and levitation
of diamagnets. h and v indicate use of diamagnetic material for horizontal
or vertical stabilization. The two regions with question marks have not yet
been verified experimentally and may be difficult to achieve. The levitation
of diamagnets marked with * has recently been demonstrated by the authors.
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The locations for diamagnetically stabilized magnet levitation are inter-
esting for another reason. At these locations servo control can be used to
provide active stabilization very efficiently, since the instability is weak at
those locations. The diamagnetic plates or cylinder act as a very weak servo
system.
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