THILOSOTHICAL TRANSACTIONS:

On Fluid Chlorine

M. Faraday and H. Davy

Phil. Trans. R. Soc. Lond. 1823 113, 160-165

doi: 10.1098/rstl.1823.0016

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

XIV. On fluid Chlorine. By M. FARADAY, Chemical Assistant in the Royal Institution. Communicated by Sir H. DAVY, Bart. Pres. R. S.

Read March 13, 1823.

It is well known that before the year 1810, the solid substance obtained by exposing chlorine, as usually procured, to a low temperature, was considered as the gas itself reduced into that form; and that SIR HUMPHRY DAVY first showed it to be a hydrate, the pure dry gas not being condensible even at a temperature of—40° F.

I took advantage of the late cold weather to procure crystals of this substance for the purpose of analysis. The results are contained in a short paper in the Quarterly Journal of Science, Vol. XV. Its composition is very nearly 27.7 chlorine, 72.3 water, or 1 proportional of chlorine, and 10 of water.

The President of the Royal Society having honoured me by looking at these conclusions, suggested, that an exposure of the substance to heat under pressure, would probably lead to interesting results; the following experiments were commenced at his request. Some hydrate of chlorine was prepared, and being dried as well as could be by pressure in bibulous paper, was introduced into a sealed glass tube, the upper end of which was then hermetically closed. Being placed in water at 60°, it underwent no change; but when put into water at 100°, the substance fused, the tube became

filled with a bright yellow atmosphere, and, on examination, was found to contain two fluid substances: the one, about three-fourths of the whole, was of a faint yellow colour, having very much the appearance of water; the remaining fourth was a heavy bright yellow fluid, lying at the bottom of the former, without any apparent tendency to mix with it. As the tube cooled, the yellow atmosphere condensed into more of the yellow fluid, which floated in a film on the pale fluid, looking very like chloride of nitrogen; and at 70° the pale portion congealed, although even at 32° the yellow portion did not solidify. Heated up to 100° the yellow fluid appeared to boil, and again produced the bright coloured atmosphere.

By putting the hydrate into a bent tube, afterwards hermetically sealed, I found it easy, after decomposing it by a heat of 100°, to distil the yellow fluid to one end of the tube, and so separate it from the remaining portion. In this way a more complete decomposition of the hydrate was effected, and, when the whole was allowed to cool, neither of the fluids solidified at temperatures above 34°, and the yellow portion not even at oo. When the two were mixed together they gradually combined at temperatures below 60°, and formed the same solid substances as that first introduced. If, when the fluids were separated, the tube was cut in the middle, the parts flew asunder as if with an explosion, the whole of the yellow portion disappeared, and there was a powerful atmosphere of chlorine produced; the pale portion on the contrary remained, and when examined, proved to be a weak solution of chlorine in water, with a little muriatic acid, probably from the impurity of the hydrate used. When that end of the tube in which the yellow fluid lay was broken under

a jar of water, there was an immediate production of chlorine gas.

I at first thought that muriatic acid and euchlorine had been formed; then, that two new hydrates of chlorine had been produced; but at last I suspected that the chlorine had been entirely separated from the water by the heat, and condensed into a dry fluid by the mere pressure of its own abundant vapour. If that were true, it followed, that chlorine gas, when compressed, should be condensed into the same fluid, and, as the atmosphere in the tube in which the fluid lay was not very vellow at 50° or 60°, it seemed probable that the pressure required was not beyond what could readily be obtained by a condensing syringe. A long tube was therefore furnished with a cap and stop-cock, then exhausted of air and filled with chlorine, and being held vertically with the syringe upwards, air was forced in, which thrust the chlorine to the bottom of the tube, and gave a pressure of about 4 atmospheres. Being now cooled, there was an immediate deposit in films, which appeared to be hydrate, formed by water contained in the gas and vessels, but some of the yellow fluid was also produced. As this however might also contain a portion of the water present, a perfectly dry tube and apparatus were taken, and the chlorine left for some time over a bath of sulphuric acid before it was introduced. Upon throwing in air and giving pressure, there was now no solid film formed, but the clear yellow fluid was deposited, and more abundantly still upon cooling. After remaining some time it disappeared, having gradually mixed with the atmosphere above it, but every repetition of the experiment produced the same results.

Presuming that I had now a right to consider the yellow fluid as pure chlorine in the liquid state, I proceeded to examine its properties, as well as I could when obtained by heat from the hydrate. However obtained, it always appears very limpid and fluid, and excessively volatile at common pressure. A portion was cooled in its tube to oo: it remained fluid. The tube was then opened, when a part immediately flew off, leaving the rest so cooled by the evaporation as to remain a fluid under the atmospheric pressure. The temperature could not have been higher than —40° in this case; as Sir Humphry Davy has shown that dry chlorine does not condense at that temperature under common pressure. Another tube was opened at a temperature of 50°; a part of the chlorine volatilised, and cooled the tube so much as to condense the atmospheric vapour on it as ice.

A tube having the water at one end and the chlorine at the other was weighed, and then cut in two; the chlorine immediately flew off, and the loss being ascertained was found to be 1.6 grains: the water left was examined and found to contain some chlorine: its weight was ascertained to be 5.4 grains. These proportions, however, must not be considered as indicative of the true composition of hydrate of chlorine; for, from the mildness of the weather during the time when these experiments were made, it was impossible to collect the crystals of hydrate, press, and transfer them, without losing much chlorine; and it is also impossible to separate the chlorine and water in the tube perfectly, or keep them separate, as the atmosphere within will combine with the water, and gradually reform the hydrate.

Before cutting the tube, another tube had been prepared

exactly like it in form and size, and a portion of water introduced into it, as near as the eye could judge, of the same bulk as the fluid chlorine: this water was found to weigh 1.2 grains; a result, which, if it may be trusted, would give the specific gravity of fluid chlorine as 1.33; and from its appearance in, and on water, this cannot be far wrong

Note on the condensation of Muriatic Acid Gas into the liquid form. By Sir H. DAVY, Bart. Pres. R. S.

In desiring Mr. FARADAY to expose the hydrate of chlorine to heat in a closed glass tube, it occurred to me, that one of three things would happen; that it would become fluid as a hydrate; or that a decomposition of water would occur, and euchlorine and muriatic acid be formed; or that the chlorine would separate in a condensed state. This last result having been obtained, it evidently led to other researches of the same kind. I shall hope, on a future occasion, to detail some general views on the subject of these researches. I shall now merely mention, that by sealing muriate of ammonia and sulphuric acid in a strong glass tube, and causing them to act upon each other, I have procured liquid muriatic acid: and by substituting carbonate for muriate of ammonia, I have no doubt that carbonic acid may be obtained, though in the only trial I have made the tube burst. I have requested Mr. FARADAY to pursue these experiments, and to extend them to all the gases which are of considerable density, or to any extent soluble in water; and I hope soon to be able to lay an account of his results, with some applications of them that I propose to make, before the Society.

I cannot conclude this note without observing, that the generation of elastic substances in close vessels, either with or without heat, offers much more powerful means of approximating their molecules than those dependent upon the application of cold, whether natural or artificial: for, as gases diminish only about $\frac{1}{480}$ in volume for every — degree of FAHRENHEIT's scale, beginning at ordinary temperatures, a very slight condensation only can be produced by the most powerful freezing mixtures, not half as much as would result from the application of a strong flame to one part of a glass tube, the other part being of ordinary temperature: and when attempts are made to condense gases into fluids by sudden mechanical compression, the heat, instantly generated, presents a formidable obstacle to the success of the experiment; whereas, in the compression resulting from their slow generation in close vessels, if the process be conducted with common precautions, there is no source of difficulty or danger; and it may be easily assisted by artificial cold in cases when gases approach near to that point of compression and temperature at which they become vapours.