Химия и Химики № 7 (2009)

Получение хромового ангидрида и

United Medic AMMODING DICHROMA ANGER ANG

бихромата аммония

Хромовый ангидрид CrO₃ [оксид хрома (VI)]

Свойства

Темно-красные блестящие кристаллы ромбической системы, расплывающиеся на воздухе. Пл. 2,70 г/см³. Реактив хорошо растворяется в воде (62,58% при 20 °C), при этом образуется раствор хромовой кислоты H_2CrO_4 (константы диссоциации $K_1 = 1,8\cdot 10^{-1}$, $K_2 = 3,20\cdot 10^{-7}$ при 25 °C). При нагревании препарат чернеет, при 196 °C плавится в красно-бурую жидкость. Выше 250 °C разлагается с отщеплением кислорода и образованием Cr_2O_3 , при 435 °C разложение заканчивается. Хромовый ангидрид является очень сильным окислителем: может вызывать воспламенение бумаги, спирт также вспыхивает при соприкосновении с кристаллами CrO_3 .

Получение

Хромовый ангидрид можно получить путем обработки раствора K₂Cr₂O₇ конц. H₂SO₄.

К раствору 300 г $K_2Cr_2O_7$ в 500 мл воды, нагретой до 75 °C, добавляют при перемешивании (осторожно!) 420 мл H_2SO_4 (пл. 1,84). Смесь сильно разогревается и после охлаждения выпадают кристаллы $KHSO_4$. Через 6—8 ч раствор сливают с кристаллов, нагревают его на водяной бане до 80—90 °C и при перемешивании добавляют еще 150 мл H_2SO_4 (пл. 1,84). Выпавшие мелкие кристаллы CrO_3 растворяют в минимальном количестве воды. Раствор упаривают до образования толстой пленки кристаллов и затем медленно охлаждают. Образовавшиеся крупные кристаллы CrO_3 отсасывают на фарфоровой воронке без бумажного фильтра, а маточный раствор снова упаривают до образования пленки кристаллов и кристаллизуют 1.

Для удаления примеси H_2SO_4 кристаллы CrO_3 , не промывая, переносят в банку с притертой пробкой и заливают их HNO_3 (ч.д.а., пл. 1,40) так, чтобы жидкость полностью покрывала кристаллы. Время от времени смесь взбалтывают. Через 10—12 ч кислоту сливают. Наливают свежую порцию HNO_3 и повторяют промывку, как указано выше.

-

¹ Маточный раствор после второй кристаллизации целесообразно использовать в качестве хромовой смеси.

Химия и Химики № 7 (2009)

Всего проводят три промывки. Затем кристаллы отсасывают на воронке Бюхнера (не применяя бумажного фильтра), промывают 3 раза и сушат (под тягой) в чашке на песочной бане при 60—100 °C, часто перемешивая, особенно в конце сушки. Когда выделение белых паров HNO₃ прекратится и масса станет сыпучей и сухой, сушку продолжают в сушильном шкафу при 100 °C, после чего охлаждают в эксикаторе над H_2SO_4 .

Выход 110—115 г (54—58%). Полученный препарат обычно соответствует реактиву квалификации ч. д. а. или ч.²

Бихромат аммония $(NH_4)_2Cr_2O_7$

Свойства

Оранжево-красные кристаллы моноклинной системы, пл. 2,15 г/см 3 . Реактив хорошо растворим в воде (26,1% при 20 °C) и этиловом спирте. При 168 °C разлагается (реакция сопровождается появлением пламени), с выделением Cr_2O_3 в виде рыхлого порошка:

$$(NH_4)_2Cr_2O_7 = Cr_2O_3 + N_2 + 4H_2O$$

Получение

Препарат получают взаимодействием хромового ангидрида с водным аммиаком:

$$2CrO_3 + 2NH_3 \cdot H_2O = (NH_4)_2Cr_2O_7 + H_2O$$

² Наивысшая чистота препарата не превышает 99,87% даже при длительном высушивании в вакууме при 70 °C с периодическим продуванием воздуха для удаления паров HNO₃.

Химия и Химики № 7 (2009)

Растворяют 156 г CrO_3 в 200 мл воды при 45—50 °C, дают отстояться и осторожно сливают раствор с осадка. В стакан или фарфоровую чашку, охлаждаемую льдом, помещают 120 мл прозрачного раствора, охлаждают до 8—10 °C и затем добавляют небольшими порциями при непрерывном помешивании $NH_3 \cdot H_2O$ (около 60 мл, пл. 0,91) до нейтральной реакции на конго красный, следя за тем, чтобы температура не

Раствор охлаждают до 10 °C. Выпавшие кристаллы отсасывают на воронке Бюхнера, промывают 10—15 мл ледяной воды и сушат при 50 °C.

поднималась выше 15 °C.

Получают ~50 г препарата, обычно соответствующего квалификации ч. д. а. Маточный раствор после упаривания при 70 °C до образования пленки кристаллов и последующего охлаждения до 10 °C дает еще 30 г менее чистого препарата. Такой продукт можно перекристаллизовать. Для этого 30 г соли растворяют в 45 мл воды при 70—75 °C, фильтруют, фильтрат упаривают при 70 °C до образования кристаллической пленки и охлаждают до 10 °C. Выход ~12 г.

Источник: Ю.В. Карякин, И.И. Ангелов. Чистые химические вещества.

Предупреждение: работа с соединениями хрома (VI) и в особенности – с хромовым ангидридом связана с повышенным риском для здоровья. Методики рассчитаны только на опытных химиков, которые работают в условиях хорошо оборудованной лаборатории.