Volume 11 (1960)

- 1. The Beckmann Rearrangement L. Guy Donaruma and Walter Z. Heldt
- 2. The Demjanov and Tiffeneau-Demjanov Ring Expansions Peter A. S. Smith and Donald R. Baer
- 3. Arylation of Unsaturated Compounds by Diazonium Salts Christian S. Rondestvedt, Jr.
- 4. The Favorskii Rearrangement of Haloketones Andrew S. Kende
- 5. Olefins from Amines: The Hofmann Elimination Reaction and Amine Oxide Pyrolysis - Arthur C. Cope and Elmer R. Trumbull

CHAPTER 1

THE BECKMANN REARRANGEMENT

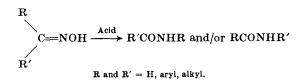
L. GUY DONARUMA AND WALTER Z. HELDT*

Explosives Department, E. I. du Pont de Nemours and Company, Inc.

CONTENTS

_											PA	GE
INTRODUCTION	• •			·	•	·	•	•	•	·	•	2
Stereochemistry	OF THI	e Rea	RRAI	IGEME	ENT	•	•	•	•	•	•	4
MECHANISM .	• •	· ·		•	•	•	•	•	•	•	•	5
Scope and Limita	TIONS .			•	•	•	•	•	•	•	•	14
Aliphatic Ketoxi	mes .						•				•	14
Aliphatic Aroma	tic Ket	oxime	s	•		•	•	•	•	•	•	17
Diaryl Ketoxime	s :			•	•			•				21
Alicyclic Ketoxir	nes .			•								26
Heterocyclic Ket	oximes											32
Oximes of Polyfu	inction	al Ket	ones	•				•	•			35
Cleavage of Oxin	mes an	d Rela	\mathbf{ated}	Comp	ound	s Der	ived :	from	Benzo	oins an	ıd	
α-Diketones						•				•		38
Aldoximes .				• ·	•		•	•				41
Carbon-Nitrogen	Rearr	angen	nents	of	Oxim	e De	erivat	ives	and	Relate	\mathbf{d}	
Compounds					•	•		•	•	•		45
Oxime Esters					•							45
Imines and N-	Halo Ir	nines.			•					•	•	46
Nitrones .												47
Nitroles .												48
Derivatives of	Hydro	xamic	Acid	ls								48
Hydrazones an												48
Related Carbon-I	Nitroge	n Rea	rrang	gemen	ts	•	•	•	•	•	•	49
Stereochemistry	OF OX	IMES .										51

* The authors wish to express their thanks to Miss Diamond C. Ascani, Dr. George R. Coraor, and Dr. Thomas H. Regan for their help in proofreading the manuscript. Miss Adele MacIntyre also deserves acknowledgement for aiding in the preparation of the final manuscript.


ORGANIC REACTIONS

.....

										FAGE
Experimental Conditions	•	•	•	•	•	·		•	•	55
Catalyst and Solvent .										55
Temperature									•	56
Rearrangement of Oximes by Pho			rus P	entachl	hlorid	в.			•	56
Rearrangement of Oximes h							•	•	•	57
Experimental Procedures		•						•	•	57
Homodihydrocarbostyril										57
Phenanthridone										57
δ -Valerolactam		•								57
ϵ -Caprolactam		•								58
Acetanilide										58
Pivalanilide										58
Heptanamide	•	•	•	•	•	•	•	•	•	58
TABULAR SURVEY									•	59
Table I. Aliphatic Ketoxir	nes								,	60
Table II. Aliphatic Aroma	tic I	ζetoxir	nes							67
Table III. Diaryl Ketoxin	nes									83
Talbe IV. Alicyclic Ketox	imes									96
Table V. Steroid Oximes										114
Table VI. Heterocyclic Ke	etoxi	mes								119
Table VII. Monoximes of	Dike	tones								126
Table VIII. Dioximes of I	Diket	ones								127
Table IX. Quinone Oxime	s.									131
Table X. Cleavage of Oxir	nes a	and Ox	ime 1	Deriva	tives					135
Table XI. Aldoximes .		•								145
Table XII. Nitrones .			•					•	•	149

INTRODUCTION

The rearrangement of a ketoxime to the corresponding amide was discovered in 1886 by E. Beckmann¹ and is known as the Beckmann rearrangement. The rearrangement is brought about by acids including

Lewis acids. The more common rearranging agents are concentrated sulfuric acid, phosphorus pentachloride in ether, and Beckmann's mixture, hydrogen chloride in a mixture of acetic acid and acetic anhydride.

¹ Beckmann, Ber., 19, 988 (1886); 20, 1507 (1887).

2

Since the discovery of the reaction, numerous publications have appeared which deal with the mechanism of the reaction, the determination of the stereochemical configurations of the oximes employed, and the synthetic applications of the reaction. The Beckmann rearrangement is used frequently to determine the structure of ketones, by identification of the acid and amine obtained by hydrolysis of the amide formed by the rearrangement.

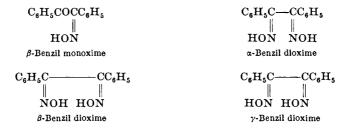
Blatt,² Jones,³ and, more recently, Knunyants⁴ have summarized the published literature concerning the Beckmann rearrangement up to 1948.

There is no uniform convention for the designation of the stereochemistry of oximes in the literature. In this review the following conventions are used:

(a) The configuration of a ketoxime is referred to as syn or anti when the hydroxyl group is cis or trans, respectively, to the first group named following the prefix syn or anti in the name of the compound.

(b) The configuration of aldoximes is referred to as syn or anti to the hydrogen of the aldoxime. In the older literature aldoxime configurations are often referred to as α (syn) or β (anti).

C ₈ H ₅ CH	$C_{6}H_{5}CH$
NOH	HON
syn-Benzaldoxime	anti-Benzaldoxime

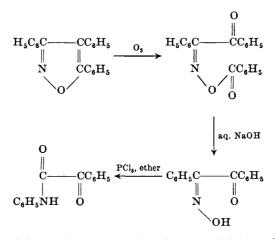

(c) The nomenclature used in the literature for designating the configurations of benzoin oximes, benzil oximes, and benzil dioximes has been retained.

α-Benzoin oxime	β -Benzoin oxime	a-Benzil monoxime
OH NOH	OH HON	NOH
C ₆ H ₅ CH—CC ₆ H ₅	$C_6H_5CH - CC_6H_5$	C ₆ H ₅ COCC ₆ H ₅

² Blatt, Chem. Revs., 12, 215 (1933).

³ Jones, Chem. Revs., 35, 335 (1944).

⁴ Knunyants and Fabrichnyi, Uspekhi Khim., 18, 633 (1949) [C.A., 45, 6572 (1951)].

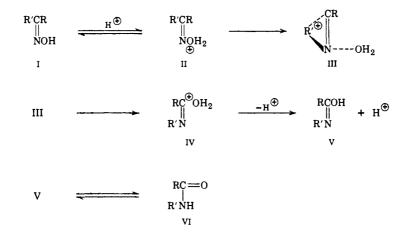


STEREOCHEMISTRY OF THE REARRANGEMENT

Two stereoisomeric forms of an aldoxime or an unsymmetrical ketoxime are possible. Therefore, theoretically, the Beckmann rearrangement may occur with either a *syn* or an *anti* migration:

$$\begin{array}{c} \mathbf{O} = \mathbf{CR'} & \underline{Anti} & \mathbf{RCR'} & \underline{Syn} & \mathbf{RC} = \mathbf{0} \\ | & & & \parallel & \underline{Syn} & | \\ \mathbf{RNH} & \xrightarrow{\mathbf{migration}} & \mathbf{NOH} & \xrightarrow{\mathbf{migration}} & \mathbf{HNR'} \end{array}$$

Beckmann assumed that the rearrangement occurs stereospecifically with syn migration, and the configurations assigned to the parent oximes up to about 1923 are based upon this assumption. In 1921 Meisenheimer carefully determined the configuration of β -benzil monoxime and rearranged the oxime with phosphorous pentachloride in ether.⁵ No


isomerization of the carbon-nitrogen bond occurred during the ozonolysis of 3,4,5-triphenylisoxazole. The product obtained from the ozonolysis, upon mild hydrolysis, yielded β -benzil monoxime. The rearrangement of the oxime gave only benzoylformanilide. Therefore Meisenheimer concluded that rearrangement must proceed with *anti* migration.

⁵ Meisenheimer, Ber., 54, 3206 (1921).

When other acids such as Beckmann's mixture,^{6,7} sulfuric acid, or its salts^{8,9} are used as rearranging agents, products stemming from a possible syn and/or *anti* migration are isolated. The syn migration may be explained by assuming that isomerization of the oxime occurs *prior* to rearrangement.

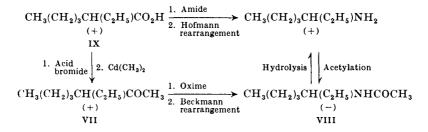
MECHANISM

The mechanism of the Beckmann rearrangement consists essentially of the formation of an electron-deficient nitrogen atom by the partial ionization of the oxygen-nitrogen bond of the oxime with a simultaneous intramolecular migration of the group anti to the departing hydroxyl

group. Rearrangement of II and III proceeds essentially as an intramolecular displacement, whereby R', if optically active, retains its optical activity.^{10,11} Thus the oxime of (+)-3-ethylheptan-2-one (VII) has been rearranged to furnish the levorotatory amide (VIII). The amide (VIII) also was obtained from (+)-2-ethylhexanoic acid (IX) via the Hofmann degradation which is known to proceed with retention of configuration. (See equation on p. 6.)

The first product of the rearrangement is always an imine derivative (IV or V), which usually rearranges rapidly to the corresponding amide.

^e Brown, van Gulick, and Schmidt, J. Am. Chem. Soc., 77, 1094 (1955).


⁷ Smith, Ber., 24, 4025 (1891).

⁸ von Auwers and Jordan, Ber., 58, 26 (1925).

⁹ Kauffmann, Ann., 344, 30 (1906).

¹⁰ Kenyon and Campbell, J. Chem. Soc., 1946, 25.

¹¹ Kenyon and Young, J. Chem. Soc., 1941, 263.

The presence of an imine intermediate in the rearrangement was demonstrated by Kuhara, who showed that diphenyl ketoxime benzenesulfonate (X) rearranged initially to N-phenylbenzimidobenzenesulfonate (XI), which in turn rearranged to N-benzenesulfonyl benzanilide (XII).¹²

$$\begin{array}{cccccc} C_6H_5CC_6H_5 & \xrightarrow{\text{Room temp.}} & C_6H_5COSO_2C_6H_5 \rightarrow C_6H_5C=O \\ \parallel & & \parallel & \parallel \\ & NOSO_2C_6H_5 & C_6H_5N & C_6H_5NSO_2C_6H_5 \\ & X & XI & XII \end{array}$$

The existence of an imine intermediate was further indicated by the isolation of imine derivatives (XIII) formed by displacement of the sulfonyl ester by strong nucleophilic agents,¹³ and by the formation of

XI $\xrightarrow{\text{HOCH}_3}$ C₆H₅COCH₃ + HOSO₂C₆H₅ $\downarrow \downarrow$ C₆H₅N XIII

+ $HOSO_2C_6H_5$

tetrazoles in the presence of hydrazoic acid.^{14,15} Tetrazoles (XVI) are not formed from oximes or amides except under the conditions of the

- ¹³ Oxley and Short, J. Chem. Soc., 1948, 1514.
- ¹⁴ Csuros, Zech, and Zech, Acta Chim. Acad. Sci. Hung., 1, 83 (1951) [C.A., 46, 5003 (1952)].
- ¹⁵ Burke and Herbst, J. Org. Chem., 20, 726 (1955).

¹² Kuhara, Matsuimya, and Matsunami, Mem. Coll. Sci. Kyoto Imp. Univ., **1**, 105 (1914) [C.A., **9**, 1613 (1915)].

Beckmann rearrangement.¹⁴ Other nucleophiles which have been employed are phenol, primary and secondary amines, and phenyl sulfamide.¹³

Chapman contributed greatly to the elucidation of electronic effects involved in the rearrangement of substituted benzophenone oxime ethers (XVII).¹⁸ No acid catalyst was required to bring about the rearrangement of XVII to XVIII. The rate of rearrangement increased with

$$\begin{array}{ccc} p \cdot \mathrm{XC}_{6}\mathrm{H}_{4}\mathrm{CC}_{6}\mathrm{H}_{4}\mathrm{Y} \cdot p & p \cdot \mathrm{YC}_{6}\mathrm{H}_{4}\mathrm{C} \Longrightarrow \mathrm{O} \\ \| & & & & | \\ \mathrm{NOC}_{6}\mathrm{H}_{2}(\mathrm{NO}_{2})_{3} & p \cdot \mathrm{XC}_{6}\mathrm{H}_{4}\mathrm{NC}_{6}\mathrm{H}_{2}(\mathrm{NO}_{2})_{3} \\ & & & \mathrm{XVIII} & & \mathrm{XVIII} \end{array}$$

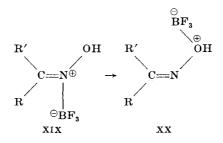
increasing electron-supplying power of X and was slightly increased by increased electron-supplying power of Y. An increase in the dielectric constant of the medium appeared to augment the rate of rearrangement. Therefore Chapman concluded that the rate-determining step in the rearrangement must be the partial ionization of the nitrogen-oxygen bond of the oxime ether with simultaneous migration of the aryl group *anti* to the picryl group.¹⁶ Furthermore, Kuhara had demonstrated earlier that the rates of rearrangement of a series of esters of benzophenone oxime in chloroform were proportional to the acid strength of the esterifying acid.^{17, 18} The ease of rearrangement therefore increases with the dissociation constant of the esterifying acid.

$\mathrm{C_6H_5SO_3H} > \mathrm{ClCH_2CO_2H} > \mathrm{C_6H_5CO_2H} > \mathrm{CH_3CO_2H}$

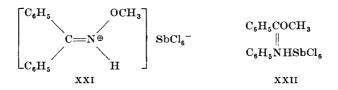
Because of the multitude of possible intermediates involved in the Beckmann rearrangement the rate-determining step of the rearrangement (I to VI) depends upon the reaction temperature, the solvent, and the catalyst employed. In fact, two intermediates in the reaction sequence (I to VI) may rearrange with approximately equal rates and the determination of the rate-determining step may become quite difficult. The rate-determining step may precede the rearrangement (I to II), may proceed simultaneously with the migration of R' (II to III), or may follow the rearrangement (III to VI) depending upon the oxime, acid, and other reaction conditions employed.

The rate-determining process precedes the rearrangement when an oxonium salt (XX) is formed from a nitronium salt (XIX).¹⁹ The salt

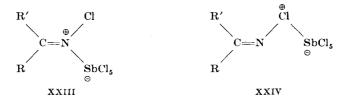
¹⁷ Kuhara and Todo, Mem. Coll. Sci., Kyoto Imp. Univ., 2, 387 (1910) [C.A., 5, 1278 (1911)].


¹⁶ Chapman and Fidler, J. Chem. Soc., 1936, 448.

¹⁸ Kuhara and Watanabe, Mem. Coll. Sci., Kyoto Imp. Univ., **9**, 349 (1913) [C.A., **11**, 579 1917)].


¹⁹ Hauser and Hoffenberg, J. Org. Chem., **20**, 1482, 1491 (1955); Hoffenberg and Hauser, *ibid.*, **20**, 1496 (1955).

ORGANIC REACTIONS

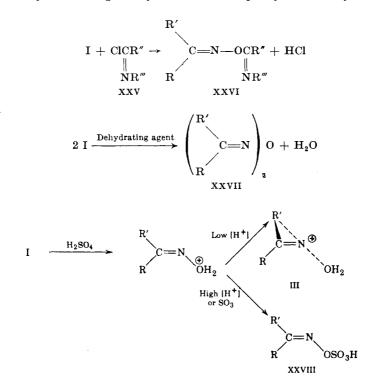

XIX must first rearrange to XX before undergoing the Beckmann rearrangement. Similarly, two types of antimony pentachloride adducts

(XXI and XXII) are formed with benzophenone oxime methyl ether.²⁰ The adduct XXII is formed in concentrated solution from antimony pentachloride and benzophenone oxime methyl ether. The adduct XXI

is formed in dilute solution under otherwise identical conditions and cannot be rearranged to benzanilide. These results appear to indicate that, while in dilute solution the stable nitronium adduct XXI is formed, in concentrated solution the corresponding oxonium salt is formed and rearranges rapidly to XXII. Other examples are the addition products (XXIII and XXIV) formed by the reaction of antimony pentachloride with chlorimines.²¹

The rate-determining step of the rearrangement (I to VI) may be the formation of oxime imino ethers (XXVI),²² oxime anhydrides (XXVII),²³

²⁰ Theilacker, Gerstenkorn, and Gruner, Ann., 563, 109 (1949).


²¹ Theilacker, Angew Chem., 51, 834 (1938); Theilacker and Mohl, Ann., 563, 99 (1949).

²² Chapman, J. Chem. Soc., 1935, 1223.

²³ Stephen and Staskun, J. Chem. Soc., 1956, 980.

or oxime sulfonates (XXVIII),²⁴⁻²⁷ which rearrange rapidly after the oxime derivative is formed.

The occurrence of intermediates such as XXVI and XXVII was suggested by the strong catalytic effect of N-phenylbenzimidoyl chloride

upon the rearrangement of benzophenone oxime in ether and by the fact that one mole of a Lewis acid, such as phosphorus pentachloride, rearranges two moles of ketoxime to a mixture containing the corresponding amide and oxime imino ether in approximately the same amounts.^{22, 23}

Ogata and others found that the rate of rearrangement of ketoximes in sulfuric acid is first order and follows the Hammett acidity function (H_0) up to 65% of sulfuric acid.^{24, 27-29} They suggested that at low acid concentrations the concentration of XXVIII is low and that the

¹⁷ Ogato, Okano, and Matsumoto, J. Am. Chem. Soc., 77, 4643 (1955).

²⁴ Pearson and Ball, J. Org. Chem., 14, 118 (1949).

²⁵ Wichterle and Rocek, Chem. Listy, 45, 257, 379 (1951) [C.A., 46, 10809 (1952)].

²⁶ Rocek and Bergl, Chem. Listy, 47, 472 (1953) [C.A., 48, 3279 (1954)].

²⁸ Sluiter, Rec. trav. chim., 24, 372 (1905).

²⁹ Hammett and Deyrup, J. Am. Chem. Soc., 54, 2721 (1932).

ORGANIC REACTIONS

rate-determining step may be the dissociation of III.²⁷ At higher acid concentrations, the rearrangement is no longer dependent upon H_0 and the rate-determining step appears to be exclusively the formation of XXVIII.³⁰

If the formation of II is simple and without complication, II \rightarrow III can be identified as the rate-determining step. Rearrangement of oxime picrates^{16, 30-35} and oxime tosylates^{36, 37} in nonpolar solvents proceeds without the formation of III as the slow step. The reaction products isolated are N-substituted amides, and the rearrangement of the imine $\stackrel{\oplus}{\oplus}$ is replaced by either 2,4,6-C₆H₂(NO₂)₃ or *p*-CH₃C₆H₄SO₂) to VI is rapid compared to the transition II to III.^{37, 38} Recently the transition state III for the Beckmann rearrangement was suggested.^{30, 34-37, 39-41}

Such a transition state (or transitory intermediate) is similar to the phenonium ion occurring in anchimerically assisted rearrangements⁴² or the azacyclopropene ring system isolated in the Neber rearrangement.⁴¹ The following evidence argues for the formation of III as a transition state in the rate-determining step: the rate of rearrangement of a series of substituted *anti* acetophenone oxime picrates in 1,4-dichlorobutane depends strongly upon the nature of the *p*-substituent.⁴³ The reaction constant, ρ , calculated from the Hammett plot⁴⁴ was found to be -4.1, which is comparable to the ρ values found for typical electrophilic aromatic substitution reactions;^{45, 46} and the rate-determining step under these conditions appears to be the electrophilic attack of nitrogen on the benzene ring as described by III.

Ortho substituents greatly increase the rate of rearrangement of substituted acetophenone oximes (or picryl ethers) in relation to the corresponding meta or para substituents.^{40, 43, 47} This effect is attributed to the

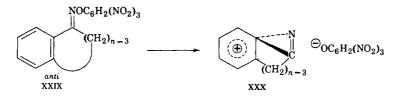
- 32 Chapman, J. Chem. Soc., 1934, 1550.
- 33 Chapman, Chem. & Ind., (London), 1935, 463.
- 34 Huisgen, Ugi, Assemi, and Witte, Ann., 602, 127 (1957).
- 35 Huisgen, Chimia (Switz.), 10, 266 (1956).
- ³⁶ W. Z. Heldt, unpublished results.
- 37 Heldt, J. Am. Chem. Soc., 80, 5880, 5972 (1958).
- ³⁸ Chapman, J. Chem. Soc., 1927, 1743.
- 39 Pearson, Baxter, and Martin, J. Org. Chem., 17, 1511 (1952).
- 40 Pearson and Cole, J. Org. Chem., 20, 488 (1955).
- ⁴¹ Cram, J. Am. Chem. Soc., 74, 2137 (1952); Cram and Hatch, ibid., 75, 33 (1953).

⁴² Winstein, Morse, Grunwald, Schreiber, Corse, Marshall, James, Trifan, Brown, Schlesinger, and Ingraham, J. Am. Chem. Soc., 74, 1113-1164 (1952).

- 43 Huisgen, Witte, Walz, and Jira, Ann. 604, 191 (1957).
- 44 Hammett, Physical Organic Chemistry, p. 184, McGraw-Hill, New York, 1940.
- ⁴⁵ Roberts, Sanford, Sixma, Cerfontain, and Zagt, J. Am. Chem. Soc., 76, 4525 (1954).
- 46 Kuivila and Benjamin, J. Am. Chem. Soc., 77, 4834 (1955).
- ⁴⁷ Pearson and Watts, J. Org. Chem., 20, 494 (1955).

³⁰ Huisgen, Angew. Chem., 69, 341 (1957).

³¹ Chapman and Howis, J. Chem. Soc., 1933, 806.


steric interaction between the ortho-substituted ring and the oxime group, resulting in the loss of coplanarity of the latter with the benzene ring.

The ortho substituent increases the potential energy of the oxime because of the partial loss of resonance stabilization; the oxime resembles the transition state where the azacyclopropene ring is perpendicular to the benzene ring system. The electronic effect of the ortho substituent appears to contribute only slightly to this increase of the rate of rearrangement.⁴⁸

The ortho effect accounts for the spontaneous rearrangement of di-orthosubstituted acetophenone oximes when treated with hydroxylamine hydrochloride.⁴⁹⁻⁵²

The steric requirements for this transition state III were nicely demonstrated in the benzcycloalkanone oxime system.⁵³ The stereochemistry of XXX requires that the methylene group attached to the

phenyl group and the one attached to the azacyclopropene ring be in the planes of the respective rings, which in turn are perpendicular to each other. This requirement is fulfilled without straining the molecule only if n is eight or more in XXX.

The sequence of rate constants for the *anti* form of XXIX represented in the table on p. 12 indicates that the formation of an azacyclopropene ring system in the transition state (or transitory intermediate) appears to be correct.

The table also indicates the relative rates of aryl versus alkyl migration.

- ⁴⁸ Huisgen, Witte, and Jira, Chem. Ber. 90, 1850 (1957).
- 49 Kadesch, J. Am. Chem. Soc., 66, 1207 (1944).
- ⁵⁰ Feith and Davies, Ber., 24, 3546 (1891).
- ⁵¹ Chichibabin, Bull. soc. chim. France, [4] 51, 1436 (1932).
- ⁵² Pearson and Greer, J. Am. Chem. Soc., 77, 6649 (1955).
- 53 Huisgen, Witte, and Ugi, Chem. Ber., 90, 1844 (1957).

ORGANIC REACTIONS

RATES OF REARRANGEMENT OF BENZCYLOALKANONE OXIME PICRYL ETHERS XXX IN 1,4-DICHLOROBUTANE⁵³

Configuration	n	$k_1 imes 10^{6} { m sec^{-1}} \ ({ m at} \ 70^{\circ})$
Anti	5	Too slow to be measured
Anti	6	< 0.02
Anti	7	1,865
Anti	8	429, 000
Syn	7	6.43
Syn	8	2.96

The anti form of XXIX, with n = 8, rearranges 140,000 times faster than the corresponding syn form. Contrariwise, the rate of rearrangement of acetophenone oxime picryl ether (aryl migration) is only 3.4 times faster than the rate of rearrangement of cyclopentadecanone oxime picryl ether (alkyl migration). Whereas, in acetophenone oxime, the oxime double bond is conjugated with the benzene ring, such an effect is much diminished in XXIX where n = 8. The system present in XXIX therefore appears to give a better picture of alkyl versus aryl migration than the acetophenone oxime system.⁵³ In almost all investigations reported in the literature, the rate-determining step is either $I \rightarrow II$ or $II \rightarrow III$. Only in one case, the acetolysis of cyclopentanone oxime *p*-toluenesulfonate, did the rate-determining step appear to follow III. The slow step in this reaction appears to be the solvolysis of the ion pair III (OH₂ = OTs).³⁷

The reaction medium profoundly influences the products and the rate of rearrangement. A recent study of the products formed from a number of cyclohexanone oxime esters in aqueous solution shows that three classes of oxime esters yielding different products may be distinguished:⁵⁴

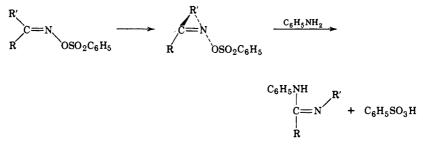
(a) Oxime esters which hydrolyze in dilute acids or bases to regenerate the oxime and the acid. Esters of cyclohexanone oxime derived from acetic, butyric, oxalic, sulfuric, dithionic, and o-toluenesulfonic acids fall in this group.

(b) Oxime esters which in dilute acidic or basic solution generate undetermined peroxy compounds or perhaps nitrogen oxides. Cyclohexanone oxime benzoate and anhydride belong in this group.

(c) Oxime esters which undergo the Beckmann rearrangement. Cyclohexanone oxime benzenesulfonate, β -naphthalenesulfonate, p-toluenesulfonate, and picryl ether are in this group. The rate of rearrangement in this group decreases in the following sequence:

$$C_{6}H_{5}SO_{2} > \beta - C_{10}H_{7}SO_{2} > p - CH_{3}C_{6}H_{4}SO_{2} > 2,4,6 - (O_{2}N)_{8}C_{6}H_{2}$$

⁵⁴ Csuros, Zech, Dely, and Zalay, Acta Chim. Acad. Sci. Hung., 1, 66 (1951) [C.A., 46 5003 (1952)].


The yield of ϵ -caprolactam produced from this group of esters was independent of the esterifying group. The same results were obtained in 10% aqueous sulfuric acid solution and 10% sodium hydroxide solution. The yields were in the range 75-80%.

The rate of rearrangement of picryl ethers of benzophenone oxime in various solvents decreases in the following order:^{31, 32}

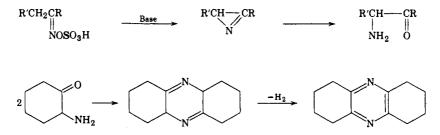
$CH_3CN > CH_3NO_2 > (CH_3)_2CO > C_6H_5Cl > nonpolar solvents$

Therefore the rate of rearrangement is roughly proportional to the dielectric constant of the solvent. Since the rate-determining step in the rearrangement of an oxime picrate involves the partial ionization of the nitrogen-oxygen bond of the oxime,¹⁶ it is probably the ionizing power of the solvent rather than the dielectric constant which determines the rate of rearrangement. Similarly, the rate of rearrangement of cyclohexanone oxime with sulfur trioxide is faster in sulfuric acid⁵⁵ than in nonpolar solvents such as carbon disulfide or chlorinated hydrocarbons.^{56, 57}

Solvents of high nucleophilic power, such as water, amines, or alcohols, both increase the rate of rearrangement and compete for the imine intermediate.^{13, 36} The second effect arrests the reaction at the imine stage as indicated by the following equations.⁵⁸

The ability of the solvent to interact with the intermediate probably increases with the nucleophilic power of the solvent.^{36, 58} Solvolysis of ketoxime sulfonates is used extensively as a preparative method for imines.¹³ Furthermore, several other reactions may be promoted selectively by different solvents. Cyclohexanone oxime sulfonate is probably an intermediate formed in the rearrangement of cyclohexanone

⁵⁵ Giltges and Welz (to Farbenfabriken Baeyer), Ger. pat. appl. F 11,979 (1954).


⁵⁸ Wichterle (Chemicke Zavody), U.S. pat. 2,573,374 (1951) [C.A., 48, 7585 (1952)].

 $^{^{57}}$ Blaser and Tischberek (to Henkel and Cie G.m.b.H.), Ger. pat. appl. H 9,265 and H 8,640 (1951).

⁵⁸ Atherton, Morrison, Cremyln, Kenner, Todd, and Webb, Chem. & Ind. (London), 1955, 1183.

ORGANIC REACTIONS

oxime in sulfuric acid.²⁴ When cyclohexanone oxime was rearranged in sulfuric acid, a trace $(1 \times 10^{-4} \text{ mole})$ of octahydrophenazine was formed.⁵⁹ Rearrangement of cyclohexanone oxime sulfonate in aqueous dioxane increased the yield of octahydrophenazine to 7%.⁶⁰ Perhaps the formation of octahydrophenazine proceeds in a manner analogous to the Neber rearrangement.⁶¹ Similarly, a trace of aniline, 0.1 mole per cent, was

isolated from the Beckmann rearrangement of the same oxime in concentrated sulfuric acid,⁵⁹ the source possibly being a little-understood aromatization reaction of cyclic ketoximes.^{62, 63}

SCOPE AND LIMITATIONS

Under the proper conditions, most oximes will undergo the normal Beckmann rearrangement to yield an amide or a mixture of amides. The generality of the reaction makes it difficult to consider the scope and limitations other than by noting specific instances where the normal products were not obtained or where oximes were rearranged under unusual conditions.

Aliphatic Ketoximes

The Beckmann rearrangement has been applied to a wide variety of aliphatic ketoximes employing many different acidic materials as catalysts.

$$\begin{array}{c} \text{RCR'} \xrightarrow{\text{Catalyst}} \text{RCONHR' and/or } \text{R'CONHR} \\ \parallel \\ \text{NOH} \end{array}$$

where catalyst = PCI_5 ;⁴⁴ R = CH_3 , R' = $n \cdot C_3H_7$, $n \cdot C_4H_9$, $n \cdot C_5H_{11}$, $n \cdot C_6H_{13}$; R = $n \cdot C_4H_9$, R' = $n \cdot C_4H_9$; R = C_2H_5 , R' = $n \cdot C_3H_7$. Yields range from 70 to 84%. where catalyst = H_2SO_4 ;^{44,65} R = CH_3 , R' = CH_3 , $n \cdot C_3H_7$, $n \cdot C_9H_{19}$; R = C_2H_5 , R' = $n \cdot C_3H_7$. Yields range from 85 to 100%. where catalyst = BF_9 ;¹⁹ R = CH_3 , R' = $C_6H_5CH_2$. Yield is $\approx 50\%$. ⁵⁹ Schaffler and Ziegenbein, Chem. Ber., **88**, 767 (1955).

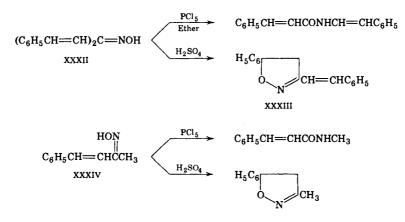
⁶⁰ Smith, J. Am. Chem. Soc., 70, 323 (1948).

⁶¹ Hatch and Cram, J. Am. Chem. Soc., 75, 38 (1953).

⁶³ Beringer and Ugelow, J. Am. Chem. Soc., 75, 2635 (1953).

⁴³ Horning, Chem. Revs., 33, 89 (1943).

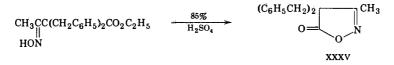
One of the more unusual catalysts is metallic copper. Products that result from the rearrangement of dibenzyl ketoxime (XXXI) followed by reduction, dehydration, and/or hydrolysis of the rearrangement products were formed when the gaseous oxime was passed over copper at 200° in the presence of hydrogen.^{66, 67} When acetoxime was subjected to the


$$(C_{6}H_{5}CH_{2})_{2}C = NOH$$

$$XXXI \qquad C_{4}H_{2}$$

$$C_{6}H_{5}CH_{2}CO_{2}H + C_{6}H_{5}CH_{2}CONH_{2} + C_{6}H_{5}CH_{2}CN$$

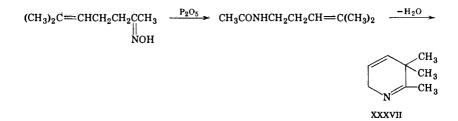
same conditions, only reduction and hydrolysis of the oxime occurred.⁶⁶ An attempted rearrangement of the cuprous chloride complex of acetoxime gave inconclusive results.⁶⁸


Catalysis of the rearrangement is often quite specific. Phosphorus pentachloride rearranges dibenzalacetone oxime (XXXII) to N-styrylcinnamamide, but concentrated sulfuric acid causes cyclization to the

isoxazoline XXXIII.⁶⁹ syn-Benzalacetone oxime (XXXIV) behaves similarly under identical conditions. This behavior is fairly general for oximes of α,β -unsaturated ketones.^{69, 70}

Many abnormal products of the Beckmann rearrangement arise from dehydration or analogous reactions. Ethyl α,α -dibenzylacetoacetate oxime loses a molecule of ethanol to yield the isoxazolone (XXXV).⁷¹

- 64 McLaren and Schachat, J. Org. Chem., 14, 254 (1949).
- 65 Wallach, Ann. 312, 171 (1900).
- 66 Yamaguchi, Bull. Chem. Soc. Japan, 1, 35 (1926) [C.A., 21, 75 (1927)].
- ⁶⁷ Yamaguchi, Bull. Chem. Soc. Japan, 1, 54 (1926) [C.A., 21, 75 (1927)].
- 68 Comstock, Am. Chem. J., 19, 484 (1897).
- 69 von Auwers and Brink, J. prakt. Chem., [2] 133, 154 (1932).
- ⁷⁰ Blatt and Stone, J. Am. Chem. Soc., 53, 1133, 4134 (1931).
- ⁷¹ Felkin, Compt. rend., 227, 510 (1948).


The oxime of N-p-tolylmesoxalamide (XXXVI) gives N-p-tolylcyanoformamide when treated with phosphorus pentachloride.⁷²

$$\begin{array}{c} H_2NCOCCONHC_6H_4CH_3-p \xrightarrow{PCl_5} NCCONHC_6H_4CH_3-p + NH_3 + CO_2 \\ \parallel \\ NOH \\ XXXVI \end{array}$$

Oximes of α -keto acids decarboxylate and dehydrate successively to form nitriles^{73, 74} as shown in the following equation:

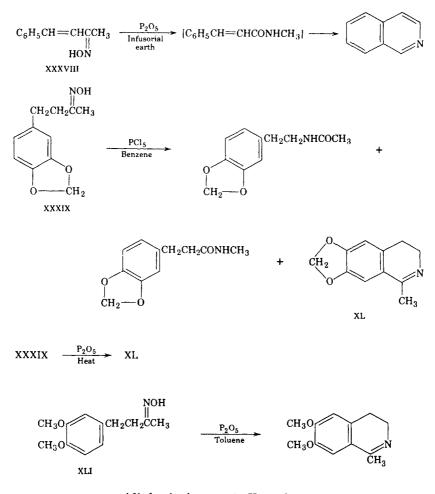
$$\begin{array}{c} \operatorname{RCCO_2H} \xrightarrow{\operatorname{Catalyst}} \operatorname{RCN} + \operatorname{CO}_2 + \operatorname{H}_2\operatorname{O} \\ \| \\ \operatorname{NOH} \\ \operatorname{R} = \operatorname{CH}_3, \operatorname{C}_2\operatorname{H}_5, \operatorname{i-C}_3\operatorname{H}_7, \operatorname{n-C}_4\operatorname{H}_9, \operatorname{n-C}_6\operatorname{H}_{13}, \operatorname{HO}_2\operatorname{C}(\operatorname{CH}_2)_3, \operatorname{HO}_2\operatorname{C}(\operatorname{CH}_2)_4 \\ \operatorname{Catalyst} = \operatorname{CH}_3\operatorname{COC}; \ (\operatorname{CH}_3\operatorname{CO})_2\operatorname{O}; \ \operatorname{H}_2\operatorname{SO}_4. \end{array}$$

6-Methyl-5-hepten-2-one oxime yields the dihydropyridine XXXVII when treated with phosphorus pentoxide.⁷⁵ Similarly, oximes (XXXVIII,

XXXIX, XLI) containing an aryl group on the carbon atom β to the oximino group yield isoquinoline derivatives when treated with phosphorus pentoxide or phosphorus pentachloride.^{76–78}

72 Plowman and Whitley, J. Chem. Soc., 125, 587 (1924).

⁷⁸ Dieckmann, Ber., 33, 579 (1900).


¹⁴ Locquin, Bull. soc. chim. France, [3] 31, 1068 (1904).

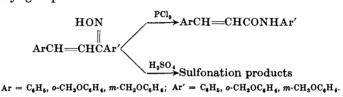
⁷⁵ Wallach, Ann., **319**, 77 (1901).

¹⁷ Kaufmann and Rodsevic, Ber., 49, 675 (1916).

⁷⁸ Whaley and Govindachari, in Adams, Organic Reactions, Vol. VI, p. 77, John Wiley & Sons, New York, 1951.

⁷⁶ Goldsehmidt, Ber., 28, 818 (1895).

Aliphatic Aromatic Ketoximes


The Beckmann rearrangement of acetophenone and related oximes has been studied extensively. The rearrangement products formed from this type of oxime are anilides, benzamides, or mixtures of the two. The anilide is the product isolated in most of the recorded reactions. The

CH₃CAr
$$\xrightarrow{\text{Catalyst}}$$
 CH₃CONHAr and/or ArCONHCH₃
 \parallel 75-100%
NOH

 rearrangement has been effected with a large number of catalysts.^{18, 19, 79-84} Even catalysts like copper⁸⁵ or Japanese acid earth⁸⁶ will rearrange acetophenone oxime.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} Cu, H_2, 200^{\circ} \\ C_{6}H_5CO_2H + C_{6}H_5CN \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_3CC_{6}H_5 \\ \end{array} \\ \begin{array}{c} HON \\ \end{array} \\ \begin{array}{c} Japanese \ acid \\ earth, 180^{\circ} \end{array} \\ \end{array} \\ \begin{array}{c} C_{6}H_5CO_2H + CH_3CO_2H, C_{6}H_5NH_2, C_{6}H_5CN, \\ C_{6}H_5COCH_3 + CH_3CONHC_6H_5 \end{array} \\ \end{array}$$

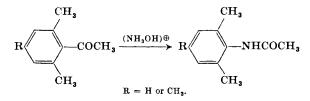
Sulfuric acid is not a good catalyst if the aryl group is substituted with an alkoxyl group.⁸⁷

Products which appear to have been formed as a result of the Beckmann rearrangement have been obtained by refluxing ether solutions of lithium aluminum hydride and certain substituted acetophenone oximes.^{88, 89}

$$\begin{array}{c} \operatorname{ArCCH}_{3} \xrightarrow{\operatorname{LiAlH}_{4}} [\operatorname{ArNHCOCH}_{3}] \rightarrow \operatorname{ArNHC}_{2}\operatorname{H}_{5} + \operatorname{ArCH}(\operatorname{NH}_{2})\operatorname{CH}_{3} \\ \| \\ & 15-59\% & 4-50\% \\ \operatorname{NOH} \\ & \operatorname{Ar} = \operatorname{C}_{6}\operatorname{H}_{5}, \ p \cdot \operatorname{XC}_{6}\operatorname{H}_{6}(\operatorname{X} = \operatorname{F}, \operatorname{Cl}, \operatorname{Br}, \operatorname{I}), \ p \cdot \operatorname{CH}_{3}\operatorname{OC}_{6}\operatorname{H}_{4}, \ p \cdot \operatorname{CH}_{3}\operatorname{C}_{6}\operatorname{H}_{4}. \end{array}$$

A number of investigators have observed the spontaneous rearrangement of di-o-methyl-substituted acetophenone oximes when the parent ketones were treated with hydroxylamine salts.⁴⁹⁻⁵² As discussed earlier on p. 11, an explanation of these observations may be that the orthosubstituent decreases coplanarity of the oximino side chain with the

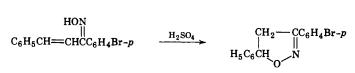
⁸⁸ Huber (to du Pont), U.S. pat. 2,721,199 (1955) [C.A., 50, 10762 (1956)].


- ** Swaminathan, Science and Culture (Calcutta), 12, 199 (1946) [C.A., 41, 2402 (1947)].
- ⁸⁵ Yamaguchi, Mem. Coll. Sci., Kyoto Imp. Univ., 7A, 281 (1924) [C.A., 18, 2880 (1924)].
- ^{\$\$} Inoue, Bull. soc. chim. Japan, 1, 177 (1926) [C.A., 21, 892 (1927)].
- ⁸⁷ von Auwers and Brink, Ann., 493, 218 (1932).
- ⁸⁸ Larsson, Svensk. Kem. Tidskr., 61, 242 (1949) [C.A., 44, 1898 (1950).]
- ⁴⁰ Lyle and Troscianiec, J. Org. Chem., 20, 1757 (1955).

⁷⁹ Bachmann and Barton, J. Org. Chem., 3, 300 (1938).

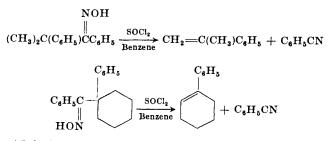
⁸⁰ Stephen and Bleloch, J. Chem. Soc., 1931, 886.

⁸¹ Beckmann and Wegerhoff, Ann., 252, 1, 11 (1889).


⁶⁸ Hudlicky, Collection Czechoslov. Chem. Communs., **16–17**, 611 (1951–1952) [C.A., **47**, 8012 (1953)].

aromatic ring.⁵² Therefore resonance stabilization of the oxime is impeded and the rearrangement proceeds at an abnormally high rate.

 α,β -Unsaturated ketoximes yield isoxazolines with sulfuric acid⁷⁰ as do similar compounds discussed in the aliphatic series.⁶⁹ However, ring formation did not occur under similar conditions with the oxime of α -bromobenzal-*p*-bromoacetophenone.⁷⁰



The formation of amidines was observed when aliphatic aromatic ketoximes were rearranged by treatment with thionyl chloride in ether.⁸⁰

$$\begin{array}{c} \text{NOH} \\ \parallel \\ \text{ArCR} \end{array} \xrightarrow{\text{SOCl}_2} \text{RCONHAr} + \text{RC} \\ \text{ArCR} \\ \text{R} = \text{CH}_3, \text{C}_2\text{H}_5, n\text{-}\text{C}_3\text{H}_7, \text{C}_6\text{H}_6\text{CH}_2; \text{Ar} = \text{C}_6\text{H}_6, p\text{-}\text{CH}_3\text{C}_6\text{H}_4. \end{array}$$

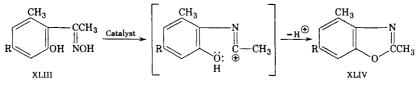
Certain acetophenone oximes containing a tertiary α -carbon atom form olefins and benzonitrile on treatment with thionyl chloride.⁹⁰

⁹⁰ Lyle and Lyle, J. Org. Chem., 18, 1058 (1953).

ORGANIC REACTIONS

When dilute hydrochloric acid is used as a catalyst for rearrangement, hydrolysis to the parent ketone is the principal reaction.⁹¹

NOH


$$\stackrel{\parallel}{\overset{\parallel}{\overset{}}_{\text{HCl}}}$$
 ArCOR + ArNH₂ + RCO₂H + NH₂OH

Another hydrolysis reaction which has been observed is the formation of N-phenyloxalamide (XLII) by treatment of benzoyl cyanide oxime with phosphorus pentachloride.⁹² Other catalysts gave no reaction.

$$\begin{array}{c} C_{6}H_{5}CCN & \xrightarrow{PCl_{5}} \\ \| & \xrightarrow{Pcl_{5}} [C_{6}H_{5}NHCOCN] \xrightarrow{H_{2}O} C_{6}H_{5}NHCOCONH_{2} \\ \end{array}$$
NOH Ether (C_{6}H_{5}NHCOCN) (C_{6}H_{5}NHCOCONH_{2}) (C_{6}H_

The o- and p-chlorobenzoyl cyanide oximes failed to rearrange.

Oximes of o-hydroxyacetophenones (XLIII) yield benzoxazoles (XLIV) when subjected to the conditions of the Beckmann rearrangement.^{8, 91}

Catalyst = Beckmann's mixture, PCl_5 , $KHSO_4$. $R = CH_3$ or H.

The hydrochlorides of the same oximes rearrange to benzoxazoles on heating. Another unusual reaction was disclosed by Busch and his coworkers who tentatively formulated the structure of the uncharacterized product XLV as an "anhydroöxime."^{93, 94}

$$p-RC_{\theta}H_{4}NHCH_{2}CC_{\theta}H_{5} \xrightarrow{PCl_{5}} p-RC_{\theta}H_{4}N \xrightarrow{N} O$$

$$\| HON$$

$$R = CH_{3}, CH_{3}O \qquad XLV$$

Both the syn- and anti-oximes of benzoylformic acid undergo successive decarboxylation and dehydration to yield nitriles when treated with benzenesulfonyl chloride in sodium hydroxide.⁹⁵

$$\begin{array}{c} C_{6}H_{5}C(NOH)CO_{2}H \xrightarrow{C_{6}H_{5}SO_{2}Cl} & [C_{6}H_{5}CH(NOH)] + CO_{2} \xrightarrow{-H_{2}O} C_{6}H_{5}CN \\ syn \text{ or anti} & C_{6}H_{5}CN \end{array}$$

⁹¹ von Auwers, Lechner, and Bundesman, Ber., 58, 36 (1925).

- ⁹³ Busch, Stratz, Unger, Reichald, and Eckhardt, J. prakt. Chem., [2] 150, 1 (1937).
- ⁹⁴ Busch and Kammerer, Ber., 63, 649 (1930).
- ⁹⁵ Werner and Piguet, Ber., 37, 4295 (1904).

20

⁹² Zimmermann, J. prakt. Chem., [2] 66, 353 (1902).

Diaryl Ketoximes

In general, diaryl ketoximes can be rearranged easily with the common catalysts to yield an amide or mixture of amides.^{8, 79, 96-105}

$$(C_{6}H_{5})_{2}C \longrightarrow \text{NOH} \xrightarrow{\text{Catalyst}} C_{6}H_{5}CONHC_{6}H_{5}$$

$$\xrightarrow{70-100\%}$$
Catalyst = HF, HCl, HBr, H_{3}PO_{4}P_{2}O_{5}, PCl_{5}, CH_{3}COCl.
$$ArCAr' \xrightarrow{PCl_{5}} ArCONHAr' \text{ and/or } Ar'CONHAr$$

$$\parallel NOH$$

$$Ar = C_{6}H_{5}.$$

$$Ar' = p \cdot Clc_{6}H_{4}, o \cdot BrC_{8}H_{4}, p \cdot NO_{2}C_{6}H_{4}, o \cdot HOC_{6}H_{4}, p \cdot CH_{3}OC_{6}H_{4}, o \cdot H_{2}NC_{6}H_{4}$$

$$p \cdot CH_{3}C_{6}H_{4}, p \cdot C_{6}H_{5}C_{6}H_{4}, 1 \cdot p \text{henanthryl.}$$

A number of unusual catalysts have been employed in the rearrangement of diaryl ketoximes; for example, benzophenone oxime was converted to benzanilide by the chlorides of K, Mg, Li, Hg, Fe(III), and Al, though their sulfates, hydroxides, and oxides were ineffective.⁹⁹ Chloral will rearrange benzophenone oxime hydrochloride to benzanilide.¹⁰⁶

Thiobenzanilide was obtained from benzophenone oxime, phosphorus pentasulfide being used as a rearrangement catalyst.^{107,108} When a mixture of phosphorus pentasulfide and phosphorus pentoxide was employed, the intermediate XLVI was isolated.^{107, 108}

$$[(C_{6}H_{5})_{2}C = N - S]_{2}PO_{2}H \underbrace{\stackrel{P_{2}O_{5}}{P_{2}S_{5}}}_{XLVI} (C_{6}H_{5})_{2}C = NOH \xrightarrow{P_{2}S_{5}} C_{6}H_{5}CSNHC_{6}H_{5}$$

$$\underbrace{\stackrel{Weat}{\underset{P_{2}S_{5}}{Heat}} [(C_{6}H_{5})_{2}C = NSH] \xrightarrow{Heat} Heat$$

96 Bachmann and Boatner, J. Am. Chem. Soc., 58, 2097 (1936).

97 Hantzch, Ber., 24, 13 (1891).

98 Meisenheimer and Kappler, Ann., 539, 99 (1939).

99 Beckmann and Bark, J. prakt. Chem., [2] 105, 327 (1923).

¹⁰⁰ Beckmann, Ber., 20, 2580 (1887).

¹⁰¹ Meisenheimer and Meis, Ber., 57, 289 (1924).

¹⁰² Lehmann, Angew. Chem., 36, 360 (1923).

¹⁰³ Kardos, Ber., 46, 2086 (1913).

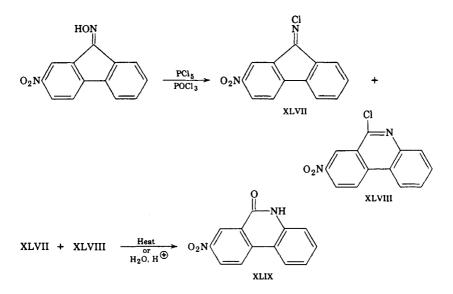
¹⁰⁴ Simons, Archer, and Randall, J. Am. Chem. Soc., **62**, 485 (1940).

¹⁰⁵ Kuhara and Kainosho, *Mem. Coll. Sci.*, *Kyoto Imp. Univ.*, **1906–1907**, 254 [C.A., **1**, 2882 (1907)].

¹⁰⁶ Kuhara, Agatsuma, and Araki, *Mem. Coll. Sci., Kyoto Imp. Univ.*, **3**, No. 1, 1 (1917) [C.A., **13**, 119 (1919)].

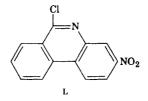
¹⁰⁷ Dodge, Ann., **264**, 184 (1891); Ciusa, Atti reale accad. Lincei, [5] **15**, **II**, 379 (1906) (Chem. Zentr., **1907**, **1**, 28).

¹⁰⁸ Kuhara and Kashima, Mem. Coll. Sci., Kyoto Imp. Univ., **4**, 69 (1919) [C.A., **15**, 69 (1921)].

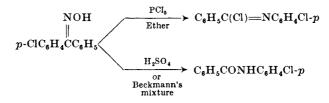

ORGANIC REACTIONS

Spontaneous formation of the amides obtainable by rearrangement of the oximes of 2,2',4'-trimethylbenzophenone oxime and 2,4,6-trimethylbenzophenone oxime was observed when the parent ketones were heated with an aqueous solution of hydroxylamine hydrochloride.⁷ The previously cited explanations (p. 11) for similar phenomena also may

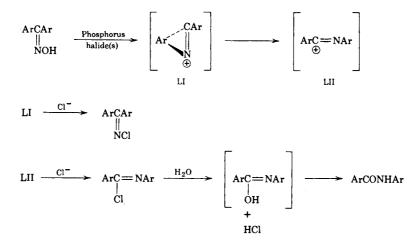
$$\begin{array}{c} \operatorname{ArCAr'} & \xrightarrow{\operatorname{NH}_2\operatorname{OH}\cdot\operatorname{HCl}, \operatorname{H}_2\operatorname{O}} \\ & 0 & \xrightarrow{120^\circ} & \operatorname{ArCONHAr'} + \operatorname{Ar'CONHAr} \\ & \operatorname{Ar} = \operatorname{C}_{4}\operatorname{H}_{5}, \operatorname{Ar'} = \operatorname{mesityl}; \ \operatorname{Ar} = \operatorname{o-tolyl}, \operatorname{Ar'} = 2,4\cdot(\operatorname{CH}_3)_2\operatorname{C}_{6}\operatorname{H}_3. \end{array}$$


apply here.⁵² 4,4'-Bis(dimethylamino)benzophenone (Michler's ketone) also undergoes spontaneous rearrangement when treated with hydroxylamine hydrochloride.¹⁰⁹

The aromatic ketoximes sometimes yield products resulting from the reaction of the catalyst with the oxime or amide. For example, acetanilide was isolated from the rearrangement of benzophenone oxime with acetic anhydride.¹⁰⁰ The chlorine-containing products XLVII and, perhaps, XLVIII have been isolated from the rearrangement of 2-nitrofluorenone oxime with phosphorus pentachloride.¹¹⁰ On further reaction both XLVII and XLVIII gave only the phenanthridone XLIX. More recent work has indicated that both XLVIII and its isomer L can be isolated



 ¹⁰⁹ Morin, Warner, and Poirier, J. Org. Chem., 21, 616 (1956).
 ¹¹⁰ Moore and Huntress, J. Am. Chem. Soc., 49, 2618 (1927).


from the reaction of 2-nitrofluorenone oxime with phosphorus pentachloride and phosphorus oxychloride.¹¹¹

Phosphorus pentachloride was the only catalyst with which intermediate products could be isolated from p-chlorobenzophenone oxime.⁸¹ Concentrated sulfuric acid and Beckmann's mixture both yielded only p-chlorobenzanilide.

The formation of these chlorine-containing products might be rationalized in the following manner.

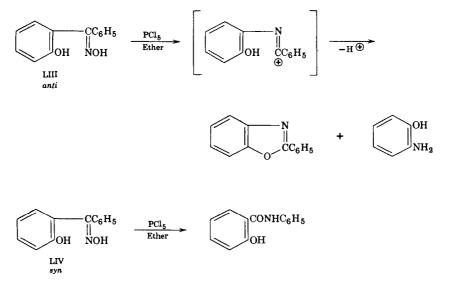
¹¹¹ Nunn, Schofield, and Theobald, J. Chem. Soc., 1952, 2797.

Some of the products obtained from the reaction of Grignard reagents with oximes may have been formed as the result of a Beckmann rearrangement.¹¹², 113

$$(C_{6}H_{5})_{2}C = NOH \xrightarrow{CH_{3}MgI \text{ or}} [C_{6}H_{5}CONHC_{6}H_{5}] \rightarrow C_{6}H_{5}COR + C_{6}H_{5}NH_{2}$$

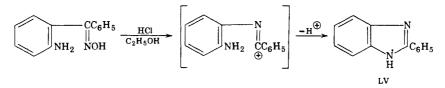
$$R = CH_{3} \text{ or } C_{2}H_{5}$$

Amidines occur as by-products of the rearrangement of diaryl ketoximes.⁸⁰ Benzophenone oxime and p-ethoxybenzophenone oxime both yielded amidines as well as amides when treated with thionyl chloride.

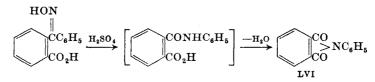

NO T

$$(C_{\mathfrak{g}}H_{\mathfrak{s}})_{2}C = NOH \xrightarrow{SOCl_{2}} C_{\mathfrak{g}}H_{\mathfrak{s}}CONHC_{\mathfrak{g}}H_{\mathfrak{s}} + C_{\mathfrak{g}}H_{\mathfrak{s}}C$$

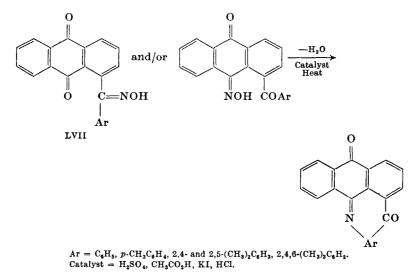
$$NOH \xrightarrow{\mathbb{N}C_{\mathfrak{g}}H_{\mathfrak{s}}} P \cdot C_{\mathfrak{g}}H_{\mathfrak{s}}OC_{\mathfrak{g}}H_{\mathfrak{s}}CONHC_{\mathfrak{g}}H_{\mathfrak{s}} + C_{\mathfrak{g}}H_{\mathfrak{s}}CONHC_{\mathfrak{g}}H_{\mathfrak{s}}$$


$$p \cdot C_{\mathfrak{s}}H_{\mathfrak{s}}OC_{\mathfrak{g}}H_{\mathfrak{s}}CC_{\mathfrak{g}}H_{\mathfrak{s}} \xrightarrow{SOCl_{\mathfrak{s}}} p \cdot C_{\mathfrak{s}}H_{\mathfrak{s}}OC_{\mathfrak{g}}H_{\mathfrak{s}}OC_{\mathfrak{g}}H_{\mathfrak{s}}CONHC_{\mathfrak{g}}H_{\mathfrak{s}} + C_{\mathfrak{g}}H_{\mathfrak{s}}CONHC_{\mathfrak{g}}H_{\mathfrak{s}}OC_{\mathfrak{s}}H_{\mathfrak{s}}OC_{\mathfrak{s}}H_{\mathfrak{s}}OC_{\mathfrak{s}}H_{\mathfrak{s}}OC_{\mathfrak{s}}H_{\mathfrak{s}}CONHC_{\mathfrak{g}}H_{\mathfrak{s}} + C_{\mathfrak{g}}H_{\mathfrak{s}}CONHC_{\mathfrak{g}}H_{\mathfrak{s}}OC_{\mathfrak{s}}H$$

anti-2-Hydroxybenzophenone oxime (LIII) yielded 2-phenylbenzoxazole, possibly due to dehydration of the amide formed by the rearrangement.¹¹⁴ The syn-oxime (LIV) yielded the anilide of salicylic acid. In

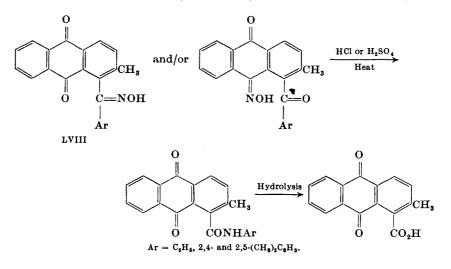

¹¹² Grammaticakis, Compt. rend., 210, 716 (1940).

- ¹¹³ Hoch, Compt. rend., 203, 799 (1936).
- ¹¹⁴ Kohler and Bruce, J. Am. Chem. Soc., 53, 1569 (1931).

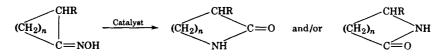


an analogous reaction, 2-phenylbenzimidazole (LV) was obtained from 2-aminobenzophenone oxime.¹¹⁵ The formation of benzoxazoles or benzimidazoles from *anti*-2-hydroxy or 2-amino aryl ketoximes, respectively, is a general reaction;¹¹⁶ a rationalization of the reaction has been suggested. The *syn*-oximes give the normal rearrangement products.¹¹⁴

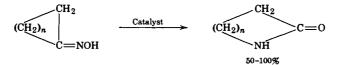
Phthalanilide (LVI) can be prepared from 2-carboxy benzophenone oxime. 101



Under the conditions of the Beckmann rearrangement, oximes of 1-aroylanthraquinones (LVII) yield peri-benzoylene-9-morphan-thridones.¹¹⁷⁻¹¹⁹


- ¹¹⁶ von Auwers and Jordan, Ber., 57, 800 (1924).
- ¹¹⁶ Blatt, J. Org. Chem., 20, 591 (1955).
- ¹¹⁷ Scholl, Semp, and Stix, Ber., 64, 71 (1931).
- ¹¹⁸ Scholl, Stephani, and Stix, Ber., 64, 315 (1931).
- ¹¹⁹ Scholl, Mueller, and Donat, Ber., 64, 639 (1931).

The Beckmann rearrangement of certain 2-methyl-1-aroylanthraquinones (LVIII) yields 1-carboxy-2-methylanthraquinone carboxylic acids rather than *peri*-benzoylene-9-morphanthridones.



Alicyclic Ketoximes

Alicyclic ketoximes rearrange to yield lactams.

The reaction is very general for rings of all sizes.^{57, 82, 83, 120-129}

Where n = 3, catalyst = HF, H₂SO₄, H₃PO₄-P₂O₅. Where n = 4, catalyst = HF, H₂SO₄, NaHSO₄, CF₃CO₂H, SO₃, SOCl₂. Where n = 5, catalyst = HF, H₃PO₄, SO₃. Where n = 6, catalyst = H₂SO₄. Where n = 13, catalyst = H₃SO₄.

¹²⁰ (To I. G. Farben), Ger. pat. appl., I 63,377 (1938).

¹²¹ Novotny, U.S. pat. 2,579,851 (1951).

¹²² Ruzicka, Goldberg, Hurbin, and Boeckenoogen, *Helv. Chim. Acta*, **16**, 1323 (1933). ¹²³⁻¹²⁹ (See p. 27.) The rearrangement of cyclohexanone oxime to ϵ -caprolactam, which is typical of the entire alicyclic series, has been studied in great detail and thus serves as a very broad standard of comparison for the other alicyclic ketoximes.

Cyclohexanone oxime rearranges to ϵ -caprolactam under almost any conditions known to effect the Beckmann transformation. The most common catalyst is sulfuric acid, but the use of this reagent is subject to certain difficulties. The yield of ϵ -caprolactam at a given temperature is dependent upon the strength of the acid employed.¹³⁰ At 100°, 97.5% acid gave an 83.4% yield of the lactam. The yield of the lactam gradually diminished to 64.5% as the acid strength was lowered to 85%. The loss of product was accounted for by hydrolysis of the oxime to cyclohexanone. Silicon dioxide was present in the reaction mixture as an accelerator and to absorb water.

The temperature at which the rearrangement is carried out is also important. With 80-85% sulfuric acid as a catalyst the yield of ϵ -caprolactam was 75% at 120°, 95% at 140°, and 85% at 160°.¹³¹ The temperature of the usually highly exothermic reaction can be easily controlled by using the proper solvent,^{56, 57, 120, 132-140} additives,¹³⁹⁻¹⁴¹ or equipment.¹⁴¹⁻¹⁴⁵

- ¹²⁴ (To Maatschappij voor Kolenbewerking), Brit. pat. 719,109 (1954) [C.A., **49**, **5**043 (1955)].
 - ¹²⁵ Stickdorn (to Deutsche Hydrierwerke G.m.b.H.), Ger. pat. 920,072 (1954).

126 Hudlicky, Chem. Listy, 46, 92 (1946) [C.A., 47, 8013 (1953)].

- ¹²⁷ (To Deutsche Hydrierwerke Aktiengesellschaft), Fr. pat. 892,603 (1944).
- ¹²⁸ Runge and Maas, Chem. Tech. (Berlin), 5, 421 (1953) [C.A., 49, 3845 (1955)].
- ¹²⁹ Kipping, J. Chem. Soc., 65, 490 (1894).
- ¹³⁰ Hajime, Tatsuo, and Nakamura (to Dai-Nippon Celluloide), Jap. pat. 157,331 (1943).

¹³¹ (To Zellwolle and Kunstseide-Ring G.m.b.H.), Ger. pat. appl. Z 1,391 (1942).

¹³² (To Société des Usines Chimiques Rhône-Poulenc), Brit. pat. 594,263 (1947) [C.A., **42**, 2268 (1948)].

¹³³ (To Deutsche Hydrierwerke A. G.), Fr. pat. 894,102 (1944).

¹³⁴ (To Phrix-Werke A. G.), Fr. pat. 903,790 (1945).

- ¹³⁵ (To Deutsche Hydrierwerke A. G.), Ger. pat. 875,811 (1953).
- ¹³⁶ Welz (to Farbenfabriken Baeyer), Ger. pat. appl. F 7,449 (1951).
- ¹³⁷ (To Deutsche Hydrierwerke), Ger. pat. appl. D 4,334 (1952).

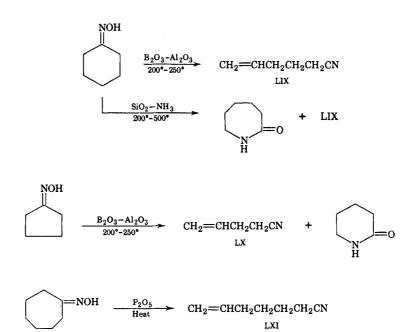
¹³⁸ Moncrieff and Young (to Brit. Celanese Ltd.), U.S. pat. 2,423,200 (1947) [C.A., 41, 6577 (1947)].

¹³⁹ Lincoln and Cohn (to Brit. Celanese Ltd.), U.S. pat. 2,723,266 (1955) [C.A., 50, 15580 (1956)].

¹⁴⁰ (To Deutsche Hydrierwerke A. G.), Ger. pat. 859,167 (1952).

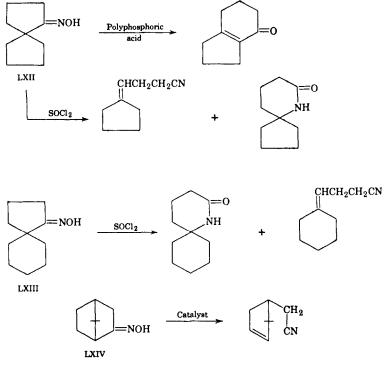
¹⁴¹ Johnson and MacCormack (to du Pont), U.S. pat. 2,487,246 (1949) [C.A., 44, 2016 (1950)].

142 (To Bata A. G.), Fr. pat. 896,244 (1945).

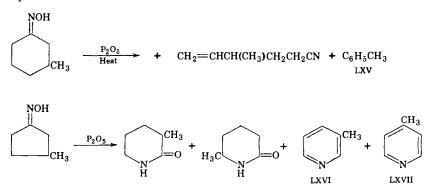

¹⁴³ (To Bata A. G.), Fr. pat. 900,577 (1945).

¹⁴⁴ Klar and Hilgetag (to I. G. Farbenind.), Ger. pat. 735,727 (1943) [C.A., 38, 2663 (1944)].

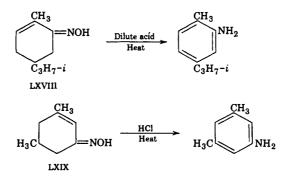
¹⁴⁵ (To Thuringische Zellwolle), Ger. pat. appl. T 4,820 (1941).


¹²³ Horning and Stromberg, J. Am. Chem. Soc., 74, 2680 (1952).

Under certain conditions, cyclohexanone oxime yields the cleavage product 5-cyano-1-pentene (LIX).¹⁴⁶⁻¹⁴⁸ Five- and seven-membered ring ketoximes also yield related nitriles (LX, LXI) under similar conditions.¹⁴⁶⁻¹⁴⁸

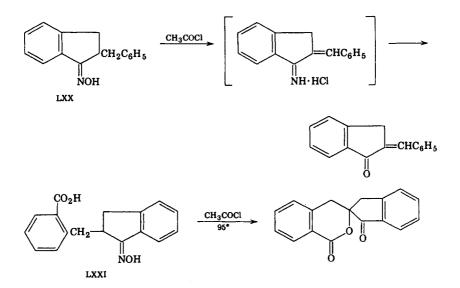

Certain spirane oximes (LXII, LXIII) yield unusual products when treated with polyphosphoric acid or thionyl chloride.¹⁴⁹ Similarly, camphor oxime (LXIV) and β -pericyclocamphenone oxime form nitriles when treated with catalysts known to cause the Beckmann rearrangement.^{150, 151} These reactions are analogous to those described earlier on p. 19.⁹⁰ The formation of ω -olefinic nitriles and other cleavage products from alicyclic ketoximes is known.^{147, 140–155} Under the conditions used to prepare the ω -olefinic nitriles (LIX–LXI), aromatic compounds

- 146 Lazier and Rigby (to du Pont), U.S. pat. 2,234,566 (1941) [C.A., 35, 3650 (1941)].
- ¹⁴⁷ Wallach, Ann., 309, 1 (1889).
- 148 Davydoff, Chem. Tech. (Berlin), 7, 647 (1955) [C.A., 50, 10678 (1956)].
- 149 Hill and Conley, Chem. & Ind. (London), 1956, 1314.
- ¹⁵⁰ Borsche and Sander, Ber., 48, 117 (1915).
- ¹⁵¹ Bredt and Holz, J. prakt. Chem., [2] 95, 133 (1917).
- 153 Lyle, Fielding, Cauquil, and Rouzand, J. Org. Chem., 20, 623 (1955).
- ¹⁵³ Wallach and Kempe, Ann., 329, 82 (1903).
- ¹⁵⁴ Meisenheimer and Theilacker, Ann., 493, 33 (1932).
- ¹⁵⁵ Rupe and Splittgerber, Ber., 40, 4313 (1907).



(LXV-LXVII) are also formed.^{65, 147, 156, 157} Other examples of aromatization are known.^{59, 65, 147, 156, 157} They are illustrated by the following equations.

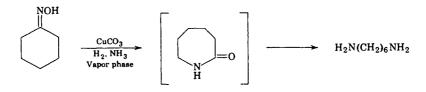
¹⁵⁶ Wolff, Ann., 322, 351 (1902).


¹⁵⁷ Wallach, Ann., 346, 266 (1906).

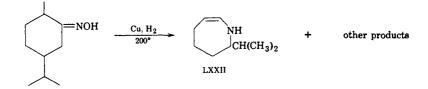
The aromatization of cyclohexenone oximes (LXVIII, LXIX) is a general reaction.¹⁵⁶⁻¹⁶¹

Cyclohexanone oxime forms octahydrophenazine and aniline in small amounts under the conditions of the Beckmann transformation.⁵⁹

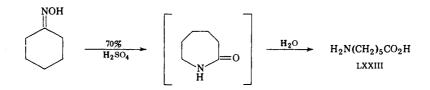
The two hydrindone oximes, LXX, and LXXI, yield unusual products when treated with acetyl chloride.¹⁶²


¹⁵⁶ Schroeter, Gluschke, Gotsky, Huang, Irmisch, Laves, Schrader, and Stier, *Ber.*, **63**, 1308 (1930).

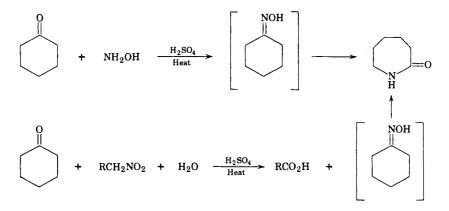
159 Hardy, Ward, and Day, J. Chem. Soc., 1956, 1979.

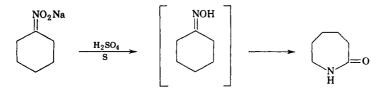

¹⁶⁰ Bhatt, Experientia, 13, 70 (1957) [C.A., 51, 17857 (1957)].

- ¹⁶¹ Vanags and Vitols, J. Gen. Chem. U.S.S.R., 25, 1953 (1955) [C.A., 50, 8644 (1956)].
- ¹⁶² Leuchs and Raueh, Ber., 48 1531 (1915).


Cyclohexanone oxime can be rearranged to ϵ -caprolactam in the vapor phase in the presence of dehydration catalysts.^{163, 164} Cyclohexanone oxime can also be converted to hexamethylene diamine in the vapor phase.¹⁶⁵

In a somewhat similar fashion, 1-menthone oxime yields small amounts of the azacycloheptene LXXII.¹⁶⁶


 ϵ -Aminocaproic acid (LXXIII) can be prepared directly from cyclohexanone oxime by refluxing with 70% sulfuric acid.¹²⁰


Simultaneous oximation of cyclohexanone and rearrangement of the oxime formed *in situ* has been accomplished with the use of hydroxylamine and sulfuric acid,^{121, 167, 168} and by employing primary nitroparaffin as a source of hydroxylamine.¹⁶⁹ δ -Valerolactam can be prepared from cyclopentanone under the same conditions.¹⁶⁸

- ¹⁶⁴ Hopff and Drossbach (to I. G. Farbenind.), Ger. pat. 752,574 (1944).
- ¹⁶⁵ (To I. G. Farbenind, A. G.), Fr. pat. 896,330 (1945).
- ¹⁶⁶ Kornatsu and Kurata, Mem. Coll. Sci., Kyoto Imp. Univ., 7, 151 (1924) [C.A., 18, 2149 (1924)].
 - ¹⁶⁷ Novotny, U.S. pat. 2,569,114 (1951) [C.A., 46, 5078 (1952)].
 - ¹⁶⁸ (To Bata), Brit. pat. appl. 33,342 (1948).
 - 169 Hass and Riley, Chem. Revs., 32, 373 (1943).

¹⁶³ (To I. G. Farbenind.), Fr. pat. 895,509 (1945).

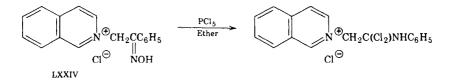
Nitrocyclohexane can be converted to ϵ -caprolactam by passing the vaporized nitroparaffin over a dehydration catalyst.¹⁷⁰ Sodium *aci*-nitrocyclohexane gives ϵ -caprolactam when added to hot oleum containing sulfur.¹⁷¹ In this case, the intermediate oxime is probably formed by the self-reduction of the *aci*-salt.^{172,173}

Steroid oximes rearrange to lactams.¹⁷⁴⁻¹⁷⁸

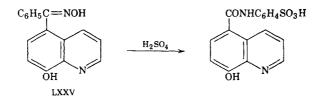
Heterocyclic Ketoximes

The classification of heterocyclic ketoximes here is purely arbitrary. Included are ketoximes which contain a hetero atom within a ring system in any portion of the molecule.

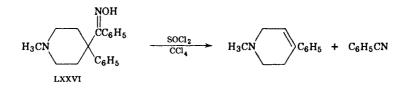
In general, ketoximes containing a variety of hetero atoms and ring


- ¹⁷¹ (To I. G. Farbenind. A. G.), Fr. pat. 977,095 (1951) [C.A., 47, 9998 (1953)].
- ¹⁷⁴ Schickh (Badische Anilin und Soda Fabrik), U.S. pat. 2,712,032 (1955).
- ¹⁷³ Donaruma and Huber, J. Org. Chem., 21, 965 (1956).
- ¹⁷⁶ Regan and Hayes, J. Am. Chem. Soc., 78, 639 (1956),
- ¹⁷⁵ Kaufmann, J. Am. Chem. Soc., 73, 1779 (1951).
- 174 Anliker, Muller, Wohlfahrt, and Heusser, Helv. Chim. Acta, 38, 1399, 1404 (1955).
- 177 Schmidt-Thomé, Ber., 88, 825 (1955).
- ¹⁷⁸ Julian, Cole, Meyer, and Magnani, U.S. pat. 2,531,441 (1950) [C.A., 45, 2988 (1951)].

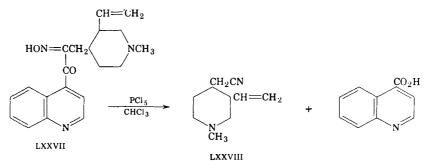
¹⁷⁰ England (to du Pont), U.S. pat. 2,634,269 (1953) [C.A., 48, 2767 (1954)].


members undergo the Beckmann rearrangement in the normal manner to yield amides or mixtures of isomeric amides. The usual catalysts and solvents employed in the rearrangement of other types of oximes may be used to rearrange heterocyclic ketoximes.

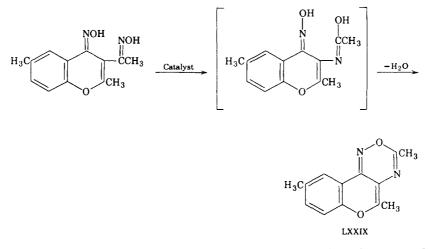
In certain cases, abnormal products may be formed by interaction of the oxime or product with the catalyst or because of elimination, cleavage, polymerization, or hydrolysis reactions of the oxime or amides in the reaction mixture.


The oxime of N-phenacylisoquinolinium chloride (LXXIV), when rearranged with phosphorus pentachloride, yields a chlorination product

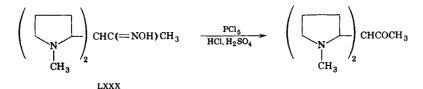
of the expected amide.¹⁷⁹ The oxime of 5-benzoyl-8-hydroxyquinoline (LXXV) yields a ring-sulfonated anilide upon rearrangement with sulfuric acid.¹⁸⁰



N-Methyl-4-phenyl-4-benzoylpiperidine oxime (LXXVI) undergoes an elimination reaction of the type previously described on p. 19 to yield an


olefin and a nitrile.⁹⁰ Another example of nitrile formation is shown by formulas LXXVII and LXXVIII.¹⁸¹

- 179 Ihlder, Arch. Pharm., 240, 691 (1902) (Chem. Zentr., 1903, I, 402).
- ¹⁸⁰ Matsumura and Sone, J. Am. Chem. Soc., 52, 4433 (1930); 53, 1493 (1931).
- ¹⁸¹ Rabe and Ritter, Ann., 350, 180 (1906).



N-Methyl-4-piperidone oxime yields a polymer when treated with polyphosphoric acid.¹⁸²

The dioxime of 2-methyl-3-acetyl-6-methylbenzopyran-4-one forms an oxadiazine (LXXIX) when treated with sulfuric acid, acetyl chloride, or phosphorus pentachloride.¹⁸³

Cuskohygrine oxime (LXXX) yields only cuskohygrine when treated with phosphorus pentachloride, hydrogen chloride, or sulfuric acid.¹⁸⁴

¹⁶⁵ Barkenbus, Diehl, and Vogel, J. Org. Chem., 20, 871 (1955).
¹⁶³ Wittig and Bangert, Ber., 58, 2627 (1925).
¹⁶⁴ Hess and Fink, Ber., 53, 781 (1920).

Oximes of Polyfunctional Ketones

Oximes of ketones containing two or more carbonyl groups will rearrange to yield amides. The notable exceptions to this statement occur, for the most part, with oximes derived from α -diketones.

It has been demonstrated that the monoxime of an α -diketone may rearrange to yield one of two possible amides, depending on the configuration of the oxime.^{95, 185-187}

 $\begin{array}{ccc} \text{RCOCR'} & \xrightarrow{\text{Catalyst}} & \text{RCONHCOR'} \\ & & & & \\$

However, in many cases cleavage to a nitrile and an acid accompanies rearrangement or is the main reaction.95,99,188-193

$$\begin{array}{c} \operatorname{RCOCR}' \to \operatorname{RCO}_2 H + \operatorname{R'CN} \\ \| \\ \operatorname{NOH} \end{array}$$

These cleavage reactions are sometimes referred to as "second-order" Beckmann rearrangements.⁹⁵ This phenomenon is not confined to monoximes of α -diketones and, therefore, is discussed in more detail later (p. 38).

The Beckmann rearrangement of monoximes of diketones in which the two carbonyl groups are not adjacent to each other proceeds in the conventional manner.^{95, 194–196}

 $\begin{array}{c} \mathrm{RC} \longrightarrow (\mathrm{CR}_2')_n \mathrm{COR} \rightarrow \mathrm{RNHCO}(\mathrm{CR}_2')_n \mathrm{COR} \quad \mathrm{and/or} \quad \mathrm{RCONH}(\mathrm{CR}_2')_n \mathrm{COR} \\ \parallel \\ \mathrm{HON} \end{array}$

$$\mathbf{R}' = \mathbf{alkyl}, \mathbf{aryl}, \mathbf{or} \mathbf{H}$$

¹⁸⁵ Meisenheimer and Lange, Ber., 57, 282 (1924).

¹⁹⁹ Rule and Thompson, J. Chem. Soc., 1937, 1761.

- 187 Francesconi and Pirrazoli, Gazz. chim. ital., 33, 36 (1903).
- ¹⁰⁶ Borsche and Sander, Ber., 47, 2815 (1914).
- ¹⁸⁹ Bulow and Grotrosky, Ber., 34, 1479 (1901).
- 190 Brady and Bishop, J. Chem. Soc., 1926, 810.
- ¹⁹¹ Meisenheimer, Beisswenger, Kauffmann, Kummer, and Link, Ann., 468, 202 (1929).
- ¹⁹² Bishop and Brady, J. Chem. Soc., 121, 2364 (1922).
- ¹⁹³ Taylor, J. Chem. Soc., 1931, 2018.

196 Raphael and Vogel, J. Chem. Soc., 1952, 1958.

¹⁹⁴ Finzi, Gazz. chim. ital., 42, 356 (1912).

¹⁹⁵ Beckmann and Liesche, Ber., 56, 1 (1923).

Monoximes of diketones appear to react abnormally chiefly by cleavage reactions. However, a few unusual products arising by reaction of the oxime or the rearrangement product with the catalyst have been recorded.

The α -diketone monoxime LXXX*a*, in which the locations of the methoxy and methylenedioxy groups have not been established, yielded the acyl derivative LXXXI upon refluxing with acetic anhydride.¹⁹⁷

$$(CH_{3}O)(CH_{2}O_{2})C_{6}H_{2}CCOCH_{3} \xrightarrow{(CH_{3}CO)_{2}O}_{At \text{ reflux}} (CH_{3}O)(CH_{2}O_{2})C_{6}H_{2}CON(COCH_{3})_{2}$$

$$\|$$

$$HON$$

$$LXXXa$$

$$LXXXI$$

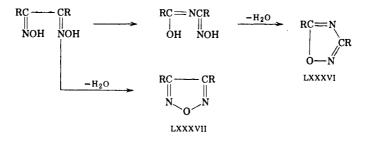
5-Phenyl-5-oximinopentan-2-one and α -benzil monoxime have been reported to yield imido esters (LXXXII, LXXXIII) when rearranged with benzenesulfonyl chloride in the presence of base.^{95, 194} Similar products

HON
$$C_6H_5N$$

 α -oxime LXXXIII
en obtained with phosphorus pentachloride as a catal

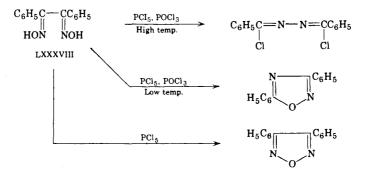
have been obtained with phosphorus pentachloride as a catalyst. N-Benzoylbenzimido chloride (LXXXIV) has been obtained from benzil monoxime in this manner.¹⁹⁸

Similarly the preparation of LXXXV from the monoxime of 2,4dinitrobenzil and phosphorus pentachloride has been reported.¹⁹²


$$2,4-(O_2N)_2C_6H_3COCC_6H_5 \xrightarrow[]{\text{PCl}_5}{\text{Ether}} 2,4-(O_2N)_2C_6H_3CON$$

197 Rimini, Gazz. chim. ital., 35, 406 (1905).

¹⁹⁸ Beckmann and Sandel, Ann., 296, 279 (1897).


The behavior of dioximes of diketones is similar to that of the corresponding monoximes. Dioximes of α -diketones usually do not yield amides under the conditions of the Beckmann rearrangement.

1,2,4-Oxadiazoles (LXXXVI) apparently are formed when α -diketone dioximes are treated with reagents known to cause rearrangement of oximes.^{187, 199-202} The reaction probably involves a Beckmann rearrangement followed by dehydration. Under similar and sometimes identical conditions furazans (LXXXVII) may be formed by elimination of water

from the oximino groups.¹⁹⁹⁻²⁰³ The configuration of the dioxime may determine whether a furazan or an oxadiazine will be formed. However, there is not sufficient information concerning the stereochemistry of dioximes to enable one to make valid statements on this subject.

 α -Benzil dioxime (LXXXVIII) has been reported to yield three different products under closely related conditions.^{200,203,204}

199 Ponzio, Gazz. chim. ital., 62, 854 (1932).

²⁰⁰ Ponzio, Gazz. chim. ital., 62, 1025 (1932).

- ²⁰¹ Gastaldi, Langiane, and Sircona, Gazz. chim. ital., 56, 550 (1926).
- ²⁰² Brady and Muers, J. Chem. Soc., 1930, 216.

203 Gunter, Ber., 21, 516 (1888).

²⁰⁴ Gunter, Ann., 252, 44 (1889).

Dioximes of diketones usually rearrange in the normal manner when other groups are interposed between the oximino functions.^{122, 205-207} However, abnormal reactions other than cleavage can occur.²⁰⁸

 $\begin{array}{ccc} \text{RNHCO}(\text{CR}_2')_n \text{CONHR} \\ \text{RC}(\text{CR}_2')_n \text{CR} & \text{and/or} \\ \| & \| & \rightarrow & \text{RNHCO}(\text{CR}_2')_n \text{NHCOR} \\ \text{HON NOH} & & \text{and/or} \\ \text{RCONH}(\text{CR}_2')_n \text{NHCOR} \end{array}$

Attempts to rearrange trioximes or derivatives of trioximes have been reported.^{206, 209} Investigation of higher homologs has not been reported.

Cleavage of Oximes and Related Compounds Derived from Benzoins and α-Diketones

In previous portions of the text, the cleavage of oximes to yield nitriles has been discussed.^{65,90,146-151,181} These cleavages may be related to the more generally known cleavage of benzil- and benzoin-type oximes which has been termed a "second-order" Beckmann rearrangement.

In 1904 and 1905 Werner, Piguet, and Deutscheff found that, when the monoximes of benzil (LXXXIX, XC) were treated with benzenesulfonyl chloride, the normal rearrangement products (N-benzoylbenzamide and benzoylformanilide) were not obtained.^{95, 210} Instead, a mixture of benzonitrile and benzoic acid was isolated from the rearrangement of α -benzil monoxime (LXXXIX), and phenyl isocyanide and benzoic acid were obtained from β -benzil monoxime (XC).⁹⁵ The oximes of benzoin

$$C_{\theta}H_{5}CCOC_{\theta}H_{\delta} \xrightarrow{C_{\theta}H_{\delta}SO_{2}Cl} Pyridine} C_{\theta}H_{\delta}CN + C_{\theta}H_{5}CO_{2}H$$

$$\| HON$$

$$\xrightarrow{\alpha \text{-oxime}} LXXXIX$$

$$C_{\theta}H_{5}CCOC_{\theta}H_{5} \xrightarrow{C_{\theta}H_{\delta}SO_{2}Cl} Pyridine} C_{\theta}H_{5}NC + C_{\theta}H_{5}CO_{2}H$$

$$\| NOH$$

$$\xrightarrow{\beta \text{-oxime}} XC$$

²⁰⁵ Knunyants and Fabrichnyi, *Doklady Akad. Nauk S.S.S.R.*, 88, 701 (1949) [C.A., 44, 1918 (1950)].

206 Milane and Venturello, Gazz. chim. ital., 68, 808 (1936).

- ²⁰⁷ Anderson, Fritz, and Scotoni, J. Am. Chem. Soc., 79, 6511 (1957).
- ²⁰⁸ Mamlok, Bull. soc. chim. France, 1956, 1182.
- ²⁰⁹ Schenek, Z. physiol. Chem., 89, 360 (1914).
- ²¹⁰ Werner and Deutscheff, Ber., 38, 69 (1905).

(XCI, XCII) were cleaved to benzaldehyde and benzonitrile or phenyl isocyanide depending upon the configuration of the oxime.²¹⁰ α -Benz-furoin oxime under similar conditions yielded benzaldehyde and 2-cyano-furan, while β -benzfuroin oxime yielded benzaldehyde but no carbyl-amine.²¹⁰

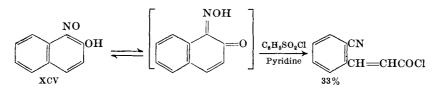
The cleavage of oximes and their parent ketones was later studied in considerable detail.²¹¹ The accompanying formulations illustrate the behavior of several oximes toward benzenesulfonyl chloride.

Benzil can be cleaved with potassium cyanide to benzaldehyde and benzoic acid.²¹² Benzoin yielded small amounts of benzaldehyde under similar conditions.^{213, 214} Phenylbenzoin (XCIII) and methylbenzoin (XCIV) also can be cleaved with potassium cyanide.²¹¹

- ²¹¹ Blatt and Barnes, J. Am. Chem. Soc., 56, 1148 (1934).
- ²¹² Jourdan, Ber., 16, 659 (1883).
- ²¹³ Buck and Ide, J. Am. Chem. Soc., 53, 2350 (1931).
- ^{\$14} Buck and Ide, J. Am. Chem. Soc., 53, 2784 (1931).

17 (1)1

$$\begin{array}{c} 2(C_{6}H_{5})_{2}C(OH)COC_{6}H_{5} \xrightarrow{KCN} 2(C_{6}H_{5})_{2}CO + C_{6}H_{5}CH(OH)COC_{6}H_{5} \\ XCIII \end{array}$$


$$\begin{array}{c} 2C_{6}H_{5}C(CH_{3})(OH)COC_{6}H_{5} \xrightarrow{KCN} 2C_{6}H_{5}COCH_{3} + C_{6}H_{5}CH(OH)COC_{6}H_{5} \\ XCIV \end{array}$$

 α -Benzil monoxime and α -benzoin oxime also undergo cleavage when treated with potassium cyanide.²¹¹ However, no isonitrile could be

detected from the reaction of the β -form of either oxime with potassium cyanide. Benzonitrile was isolated from β -benzil monoxime. A mechanism has been proposed to account for the formation of benzonitrile from β -benzil monoxime.²¹⁵

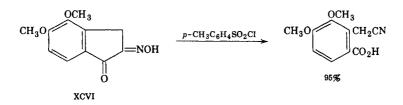
Although a large number of benzoin and benzil oximes and their esters are known to undergo cleavage,^{95, 210, 211, 216-219} not enough is yet known about the structural factors in the oxime to specify the scope of the process in a satisfactory manner.

 α -Nitroso- β -naphthol (XCV) yields o-cyanocinnamoyl chloride when treated with benzenesulfonyl chloride in pyridine.^{95, 195, 219} 2,3-Dime-

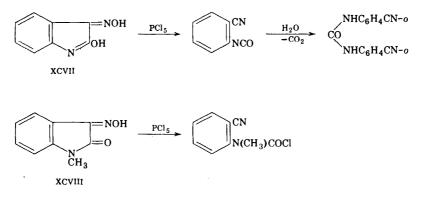
thoxy-6-carboxyphenylacetonitrile is obtained from the indandione monoxime (XCVI) on treatment with p-toluenesulfonyl chloride in aqueous sodium hydroxide.²²⁰ Furoin oxime²¹⁰ appears to yield 2-furyl isocyanide

^{\$15} Tessieri and Oakwood, "The Cleavage of β -Benzil Monoximes," presented at the 112th A.C.S. Meeting, New York, 1947.

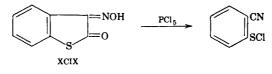
²¹⁶ Buck and Ide, J. Am. Chem. Soc., 53, 1912 (1931).


²¹⁷ Meisenheimer and Lamparter, Ber., 57, 276 (1924).

²¹⁸ Gheorghiu and Cozubschi-Scuirevici, Bull. soc. sci. Cluj., Rumanie, 24, 15 (1942) [C.A., 38, 3276 (1944)].


²¹⁹ Borsche and Sander, Ber., 47, 2815 (1914).

²²⁰ Chakravarti and Swaminathan, J. Indian Chem. Soc., 11, 101 (1934).


under similar conditions, and phenanthraquinone monoxime yields 2-cyano-2'-carboxybiphenyl.⁹⁵

3-Oximinoisatin (XCVII) yields o-isocyanatobenzonitrile when treated with phosphorus pentachloride.^{99,188} Under similar conditions,

N-methyl-3-oximinoisatin (XCVIII) yields o-cyano-N-methylphenylcarbamyl chloride.¹⁸⁸ 2,3-Dihydro-2-oxo-3-oximinobenzothiophene (XCIX) yields o-cyanophenylsulfenyl chloride under the same conditions.¹⁸⁸

Aldoximes

Under the proper conditions aldoximes will undergo the Beckmann rearrangement to yield amides.

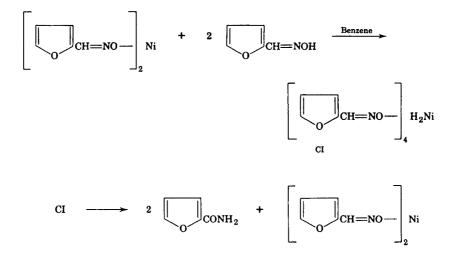
 $\begin{array}{l} \mathrm{RCH} \mathchoice{\longrightarrow}{\leftarrow} \mathrm{Catalyst} \\ \mathrm{RCH} \mathchoice{\longrightarrow}{\leftarrow}{\leftarrow} \mathrm{RCONH}_2 & \mathrm{and/or} & \mathrm{HCONHR} \\ \mathrm{R} = \mathrm{CH}_3, n \cdot \mathrm{C}_3\mathrm{H}_7, \ \mathrm{C}_6\mathrm{H}_5\mathrm{CH} \char{\longrightarrow}{\leftarrow} \mathrm{CH}, \ \mathrm{C}_8\mathrm{H}_5, \ p \cdot \mathrm{ClC}_6\mathrm{H}_4, \ m \cdot \mathrm{O}_2\mathrm{NC}_6\mathrm{H}_4, \\ & o \cdot \mathrm{HOC}_6\mathrm{H}_4, \ p \cdot \mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4, \ p \cdot \mathrm{(CH}_3)_2\mathrm{NC}_6\mathrm{H}_4. \\ & \mathrm{Catalysts \ Include: \ Nl, \ Cu, \ BF_3, \ CF_3\mathrm{C}_{2}\mathrm{H}, \ \mathrm{PCl}_6, \ \mathrm{H}_2\mathrm{SO}_4. \end{array}$

Usually, only the unsubstituted amide is formed. Only rarely has the isolation of a substituted formamide been recorded.^{221, 222}

Benzamide was obtained as one of the products formed by passing benzaldoxime and hydrogen over copper at 200° .^{223, 224}

$$C_{6}H_{5}CH = NOH \xrightarrow{Cu, H_{2}} C_{6}H_{5}CONH_{2} + C_{6}H_{5}CN + C_{6}H_{5}CO_{2}H$$

Similarly, pyrolysis of the sodium salt of benzaldoxime yielded benzamide along with benzoic acid, benzonitrile, ammonia, and benzamidine.²²⁵


Aldoximes can be rearranged to amides with Raney nickel catalysts.^{226, 227} The intermediate complex C was described as a red oil. Traces of iron

$$RCH = NOH \xrightarrow{\text{Raney Ni}} [complex] \rightarrow RCONH_2$$

$$C$$

$$R = C_8H_5, n - C_8H_{13}, C_8H_5CH_2CH_2, C_8H_8CH=CH, 2 - furyl.$$

and aluminum in the Raney nickel may actually catalyze the transformation of the nickel complex to the amide. Tetrakis(furfuraldoxime)

²²¹ Hantzsch and Lucas, Ber., 28, 744 (1895).

²²² Horning and Stromberg, J. Am. Chem: Soc., 74, 5151 (1952).

²²³ Yamaguchi, Bull. Chem. Soc. Japan, 1, 35 (1926) [C.A., 21, 75 (1927)].

²²⁴ Yamaguchi, Mem. Coll. Sci., Kyoto Imp. Univ., 9A, 33 (1925) [C.A., 19, 3261 (1925)].

²²⁵ Komatsu and Hiraidzumi, Mem. Coll. Sci., Kyoto Imp. Univ., 8A, 273 (1925) [C.A., 19, 2475 (1925)].

²²⁶ Paul, Compt. rend., 204, 363 (1937).

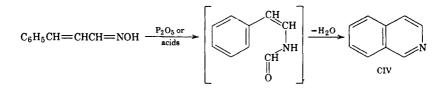
227 Paul, Bull. soc. chim. France, [5] 4, 1115 (1937).

nickel (CI) can be decomposed to yield pyromucamide and bis(furfuraldoxime) nickel.²²⁸ This evidence suggests that a nickel complex may be present as a reaction intermediate as postulated by Paul.²²⁷

Some other unusual catalysts which are known to rearrange aldoximes to amides are cuprous chloride and cuprous bromide,⁶⁸ both of which rearrange benzaldoxime to benzamide. Cinnamaldoxime is known to form a complex (CII) with cuprous bromide that can be converted to cinnamamide by heating in toluene.⁶⁸

$$[C_{6}H_{5}CH=CHCH=NOH]CuBr \xrightarrow[Toluene]{Heat} C_{6}H_{5}CH=CHCONH_{2}$$
CII

Phenylglyoxaldoxime (CIII) can be converted to benzoylformamide with sodium bisulfite.²²⁹


$$\begin{array}{c} C_{6}H_{5}COCH = NOH \xrightarrow{NaHSO_{3}} C_{6}H_{5}C(OH)(SO_{3}Na)CH(SO_{3}Na)(NHSO_{3}Na)\\ CIII & \downarrow^{20\% H_{2}SO_{4}}\\ C_{6}H_{5}COCONH_{2} \end{array}$$

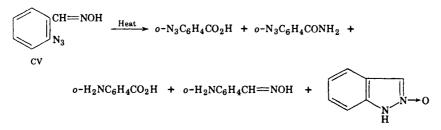
Aldoximes can be dehydrated readily by acidic reagents to form nitriles.

$$\text{RCH} \longrightarrow \text{RCN} + \text{H}_2\text{O}$$

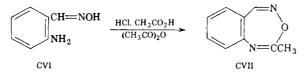
Therefore nitriles are often formed from aldoximes under the conditions of the Beckmann rearrangement.^{221, 230-236}

Isoquinoline (CIV) is formed when cinnamaldoxime is treated with certain catalysts known to cause the Beckmann rearrangement.^{237, 238}

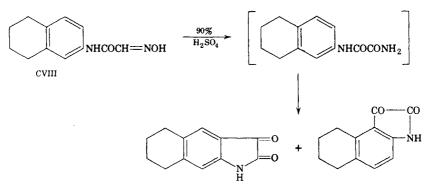
²²⁸ Bryson and Dwyer, J. Proc. Roy. Soc. N.S. Wales, 74, 471 (1941) [C.A., 35, 4768 (1941)].


²²⁹ Kodama, J. Chem. Soc. Japan, 44, 339 (1923) [C.A., 17, 3023 (1923)].

²³⁰ Meisenheimer, Zimmermann, and von Kummer, Ann., 446, 205 (1926).


- ²³¹ Pawlewski, Anz. Akad. Wiss. Krakau, 1903, 8 (Chem. Zentr., 1903, 1, 837).
- ²³² von Auwers and Hugel, J. prakt. Chem., [2] 143, 179 (1935).
- 233 von Auwers and Wolter, Ann., 492, 283 (1932).
- ²³⁴ Steinkopf and Bohrmann, Ber., 41, 1044 (1908).
- ²³⁵ Meisenheimer, Theilacker, and Beisswenger, Ann., 495, 249 (1932).
- ²³⁶ Wohl and Losanitsch, Ber., 40, 4723 (1907).
- 237 Bamberger and Goldschmidt, Ber., 27, 1954 (1894).
- 238 Komatsu, Mem. Coll. Sci., Kyoto Imp. Univ., 7, 147 (1924) [C.A., 18, 2126 (1924)].

This is analogous to the formation of isoquinolines from β -phenyl α,β unsaturated ketoximes.⁷⁶⁻⁷⁸ This is an example of a reaction in which the formamide rather than the unsubstituted amide may be formed, *in situ*, by the rearrangement.^{221, 224, 225}


o-Azidobenzaldoxime (CV) can be rearranged thermally to o-azidobenzamide and other products.²³⁹

o-Aminobenzaldoxime (CVI) does not rearrange with Beckmann's mixture; instead it yields the oxadiazacycloheptatriene CVII.²⁴⁰

6-(N-Oximinoglyoxal) aminotetralin (CVIII) undergoes a normal Beckmann rearrangement followed by cyclization when treated with 90%sulfuric acid.²⁴¹

²³⁹ Bamberger and Demuth, Ber., 35, 1885 (1902).

240 Meisenheimer and Diedrich, Ber., 57, 1715 (1924).

²⁴¹ Von Braun, Rohmer, Jungmann, Zobel, Brauns, Bayer, Stuekenschmidt, and Reutter, Ann., **451**, 1 (1926).

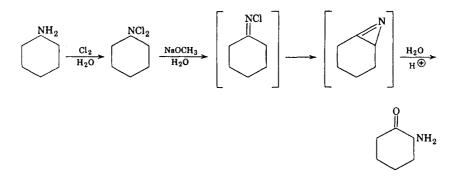
Carbon-Nitrogen Rearrangements of Oxime Derivatives and Related Compounds

Oxime Esters. Oxime esters are converted, under the proper conditions, to amides.¹²⁻¹⁴, 19, 43, 60, 158, 242-245

$$\begin{array}{c} \operatorname{NOX} \\ \parallel \\ \operatorname{RCR} \end{array} \xrightarrow{} \left[\begin{array}{c} \operatorname{OX} \\ \mid \\ \operatorname{RC} = \operatorname{NR} \end{array} \right] \xrightarrow{\operatorname{H}_2 \operatorname{O}} \operatorname{RCONHR} + \operatorname{XOH}$$

X = Acyl, benzenesulfonyl, p-toluenesulfonyl, picryl, etc.

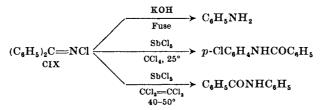
Acids, ^{19,23,36, 54, 60, ²⁴⁵ bases, ^{13, 54} and materials of high solvolytic power such as water or alcohols^{54, 158, 242} will facilitate the transformation. The behavior of the oxime esters in the rearrangement is analogous to that of oximes. Abnormal products formed under rearranging conditions are, in general, similar to those formed from oximes: amidines, ¹³ phenazines, ⁶⁰ isoxazoles, ²⁴⁶ nitriles, ²¹⁶ imino ethers, ^{13, 58} or lactims and other solvolysis products.^{37, 158} Oxime sulfonates or arylsulfonates can be rearranged merely by heating the ester in solution.^{247, 248}}


In the presence of strong bases, oxime ary lsulfonates are converted to α -aminoketones.^{249–259} This reaction has become known as the Neber

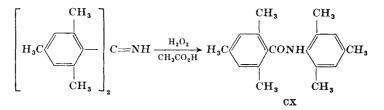
$$(\operatorname{RCH}_2)_2 C = \operatorname{NOSO}_2 \operatorname{Ar} \xrightarrow{\operatorname{KOR}} \operatorname{RH}_2 CC \xrightarrow{\operatorname{CHR}} \operatorname{CHR} \xrightarrow{\operatorname{H}_2 O} \operatorname{RCH}_2 COCH(\operatorname{NH}_2) \operatorname{R}$$

rearrangement. The reaction is general for most oxime arylsulfonates having hydrogen atoms on the carbon atom adjacent to the one bearing

- ²⁴² Knunyants and Fabrichnyi, *Doklady Akad. Nauk S.S.S.R.*, **68**, 528 (1949) [C.A., **44**, 1469 (1950)].
 - ²⁴³ Huntress and Walker, J. Am. Chem. Soc., 70, 3702 (1948).
 - ²⁴⁴ Wege, Ber., 24, 3537 (1891).
 - ²⁴⁵ Lindemann and Romanoff, J. prakt. Chem., [2] 122, 214 (1929).
 - ²⁴⁶ Hill and Hale, Am. Chem. J., 29, 253 (1903).
 - ²⁴⁷ Scheuing and Walach, Ger. pat. 579,227 [C.A., 27, 4630 (1933)].
 - 248 Knoll, Ger. pat. 574,943 (1933) (Chem. Zentr., 1933, 1, 4040).
 - ²⁴⁹ Neber, U.S. pat. 2,055,583 (1936) [C.A., **30**, 7583 (1936)].
 - ²⁵⁰ Neber and von Friedolsheim, Ann., 449, 109 (1926).
 - ²⁵¹ Neber and Uber, Ann., 467, 52 (1928).
 - ²⁵² Neber and Burgard, Ann., 493, 281 (1932).
 - ²⁵³ Neber and Huh, Ann., 515, 283 (1935).
 - ²⁵⁴ Neber, Hartung, and Ruopp, Ber., 58, 1234 (1925).
 - 255 Geissman and Armen, J. Am. Chem. Soc., 77, 1623 (1955).
 - ²⁵⁶ Neber, Burgard, and Thier, Ann., 526, 277 (1936).
- ²⁵⁷ Neber (to Zellwolle and Kunstseide-Ring G.m.b.H.), Ger. pat. 870,415 (1953) (Chem. Zentr., 1954, 1598).
 - ²⁵⁸ Baumgarten and Bower, J. Am. Chem. Soc., 76, 4561 (1954).
 - ²⁵⁹ Cram and Hatch, J. Am. Chem. Soc., 75, 33 (1953).


the oximino group. Recently Baumgarten and Bower²⁵⁸ have found that under similar conditions certain N,N-dichloroamines will form products characteristic of the Neber rearrangement.

Acidic catalysts that rearrange oximes will also convert oxime ethers to amides. $^{260-263}$


$$\begin{array}{c} \operatorname{NOR'} \\ \parallel \\ \operatorname{RCR} + \operatorname{H}_2 O \xrightarrow{\operatorname{Acid}} \operatorname{RCONHR} + \operatorname{R'OH} \end{array}$$

Imines and N-Halo Imines. The reaction of N-chlorobenzophenone imine (CIX) with potassium hydroxide to yield aniline and with antimony pentachloride to yield benzanilide or p-chlorobenzanilide has been reported.^{21, 90}

Dimesityl ketimine was converted to the amide (CX) with hydrogen peroxide in glacial acetic $acid.^{264}$

- ²⁶⁰ Theilacker, Gerstenkorn, and Gruner, Ann., 563, 104 (1949).
- ²⁶¹ Hudlicky and Hokr, Collection Czechoslov. Chem. Communs., 14, 561 (1949) [C.A., 44, 5826 (1950)].
 - 262 Perold and von Reiche, J. Am. Chem. Soc., 79, 465 (1957).
 - ²⁶² Donaruma, J. Org. Chem., 22, 1024 (1957).
 - ²⁶⁴ Hauser and Hoffenberg, J. Am. Chem. Soc., 77, 4885 (1955).

Nitrones. Nitrones are converted to amides when treated with catalysts which are acidic, or basic, or are esterifying agents.²⁶⁵⁻²⁷⁶ In fact, some nitrones will yield amides when heated in solution.²⁶⁸ Mono-substituted nitrones (CXI) apparently undergo rearrangement,^{265-271, 274, 275}

$$\begin{array}{c} & \stackrel{O}{\uparrow} \\ \text{RCH} = & \text{NR}' \rightarrow \text{RCONHR}' \\ & \text{cxi} \\ & \stackrel{O}{\uparrow} \\ \text{R}_2\text{C} = & \text{NR}' \rightarrow \text{RCONHR} + \text{R'NH}_2 \\ & \text{cxii} \end{array}$$

while disubstituted nitrones (CXII) are known to disproportionate to yield an amide and an amine²⁷² and to rearrange to oxime ethers.²⁷³

Intermediate solvolysis products of monosubstituted nitrones, e.g., CXIII, have been isolated.²⁶⁹ The group on the nitrogen does not appear to migrate during the rearrangement of a monosubstituted nitrone.^{265-271, 274, 275}

$$ArCH = NC_{6}H_{5} \xrightarrow[CH_{3}OH]{KCN} ArC = NC_{6}H_{5} \xrightarrow[H_{2}O]{H_{2}O} ArCONHC_{6}H_{5}$$

$$CXIII$$

$$Ar = o, m, or p - O_{2}NC_{6}H_{4}.$$

265 Alessandrini, Gazz. chim. ital., 51, 75 (1921).

266 Barrow, Griffiths, and Bloom, J. Chem. Soc., 121, 1713 (1922).

²⁶⁷ Tonasescu and Nanu, Ber., 72, 1083 (1939).

268 Tonasescu and Nanu, Ber., 75, 650 (1942).

²⁶⁹ Bellavita, Gazz. chim. ital., **65**, 755, 889, 897 (1935); Atti congr. nazl. chim. pura ed appl., 5th Congr., Rome, **1935**, Part I, 285 (1936) [C.A., **30**, 2935, 3419–3420 (1936)].

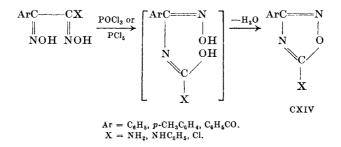
²⁷⁰ Brady, Dunn, and Goldstein, J. Chem. Soc., 1926, 2411.

²⁷¹ Krohnke, Chem. Ber., 80, 298 (1947).

- ²⁷² Exner, Collection Czechoslov. Chem. Communs., 16, 258 (1951) [C.A., 47, 5884 (1953)].
- ²⁷³ Cope and Haven, J. Am. Chem. Soc., 72, 4897 (1950).

274 Beckmann, Ber., 37, 4136 (1904).

²⁷⁵ Scheiber and Brandt, J. prakt. Chem., [2] 78, 80 (1908).


276 Splitter and Calvin, J. Org. Chem., 23, 651 (1958).

These observations suggest that the reaction is not similar mechanistically to the Beckmann rearrangement and that it may be the oxygen that migrates or is exchanged by solvolysis. Perhaps oxaziranes are intermediates in this transformation.²⁷⁶

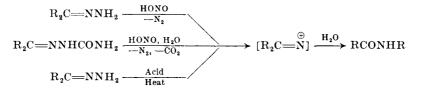
Nitroles. Products which may be the result of a Beckmann rearrangement are formed by the thermal decomposition of nitroles.^{277, 278}

$$\begin{array}{c} \text{HCNO}_2 \xrightarrow{\text{Heat}} \text{HN} == \text{C} == \text{O} + \text{HNO}_2 \\ \| \\ \text{NOH} \\ \text{CH}_3 \text{CNO}_2 \xrightarrow{\text{Heat}} \text{CH}_3 \text{N} == \text{C} == \text{O} + \text{KNO}_2 \\ \| \\ \text{NOK} \end{array}$$

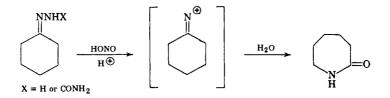
Derivatives of Hydroxamic Acids. 1,2,4-Oxadiazoles (CXIV) have been prepared from α -oximino hydroxamic acids, acid chlorides, amides, and anilides.^{199,200}

Hydroxamic acid amides also undergo the Beckmann rearrangement to yield unsymmetrical ureas; the reaction is known as the Tiemann reaction.²⁷⁹

$$\begin{array}{c} \operatorname{RCNH}_2 \xrightarrow{C_6H_5SO_2Cl} \operatorname{RCNH}_2 & \xrightarrow{\operatorname{ChCl}_2} C_6H_5SO_2OH + \operatorname{RNHCONH}_2 \\ \| & \| \\ \operatorname{NOH} & \operatorname{NOSO}_2C_6H_5 \end{array} \xrightarrow{CHCl} C_6H_5SO_2OH + \operatorname{RNHCONH}_2 \end{array}$$


Hydrazones and Semicarbazones. When hydrazones and semicarbazones are treated with nitrous acid²⁸⁰⁻²⁸² or heated with strong

- ²⁷⁸ Hantzch and Kanasirski, Ber., 42, 889 (1909).
- ²⁷⁹ Partridge and Turner, J. Pharm. Pharmacol., 5, 103 (1953) [C.A., 47, 12278 (1953)].
- ²⁸⁰ Pearson, Carter, and Greer, J. Am. Chem. Soc., 75, 5905 (1953).
- ²⁸¹ Pearson and Greer, J. Am. Chem. Soc., 71, 1895 (1949).
- 282 Carter, J. Org. Chem., 23, 1409 (1958).


48

²⁷⁷ Wieland, Ber., 42, 803 (1909).

acids,²⁸³⁻²⁸⁵ products characteristic of the Beckmann rearrangement are sometimes formed.

The reactions employing nitrous acid have been used to prepare benzanilides and perhaps are involved in the mechanism of certain reactions which yield ϵ -caprolactam.^{286–288}

Acids and anilines can be obtained by heating *p*-chlorobenzophenone hydrazones to 450° in the presence of zinc chloride.²⁸⁵

These reactions may be related to the Beckmann rearrangement because rearrangement of an alkyl group to an electron-deficient nitrogen atom occurs.

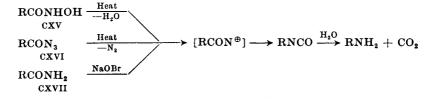
Related Carbon-Nitrogen Rearrangements

The Lossen (CXV),²⁸⁹ Curtius (CXVI),²⁹⁰ and Hofmann (CXVII)²⁹¹ reactions are mechanistically related to the Beckmann rearrangement in that the three reactions all proceed via the migration of a group from a carbon atom to an electron-deficient nitrogen atom. Since there is only

- ²⁸⁸ Donaruma (to Du Pont), U.S. pat. 2,763,644 (1956) [C.A., **51**, 5822 (1957)].
- ²⁸⁹ Yale, Chem. Revs., 33, 243 (1943).

²⁹¹ Wallis and Lane, in Adams. Organic Reactions, Vol. III, p. 267, John Wiley & Sons, New York, 1946.

²⁸³ Steiglitz and Senior, J. Am. Chem. Soc., 38, 2727 (1916).


²⁸⁴ Smith and Most, J. Org. Chem., 22, 358 (1957).

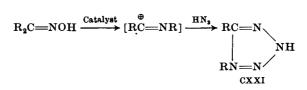
²⁸⁵ Xanthopaulos, Abstr. of Theses, University of Chicago, Science Series, **4**, 195 (1925) [C.A., **22**, 3639 (1928)].

²⁸⁸ Ohashi (to East Asia Synthetic Chem. Ind.), Jap. pat. 125(1952) [C.A., 48, 1430 (1954)].

²⁸⁷ Donaruma (to Du Pont), U.S. pat. 2,777,841 (1956) [C.A., **51**, 10565 (1957)].

²⁹⁰ Smith, in Adams, Organic Reactions, Vol. III, p. 337, John Wiley & Sons, New York, 1946.

one group which can migrate in these three reactions, there are no stereochemical factors present as in the Beckmann rearrangement and only a single product can be formed. This statement also holds true for one phase of the Schmidt reaction, the reaction of hydrazoic acid with carboxylic acids (CXVIII).²⁹²


$$\begin{array}{c} \operatorname{RCO}_{2}H \xrightarrow{H_{3}SO_{4}} [\operatorname{RCONN}_{2}]^{\oplus} \xrightarrow{-N_{2}} \operatorname{RCO}_{N}^{\oplus}H \to \overset{\oplus}{\operatorname{CONHR}} \xrightarrow{-H^{\oplus}} \operatorname{RN} = C = O \\ \xrightarrow{\operatorname{RN}} \operatorname{RN} = C = O \xrightarrow{H_{3}O} \operatorname{RNH}_{2} + \operatorname{CO}_{2} \end{array}$$

However, when ketones are treated with hydrazoic acid, the possibility of migration of one of two groups arises.

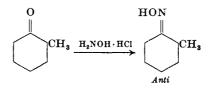
CXIX and/or CXX $\xrightarrow{-H^{\oplus}}$ RCONHR' and/or R'CONHR

Aldehydes usually form nitriles when treated with hydrazoic acid.²⁹²

When hydrazoic acid or one of its salts is added to a system in which the Beckmann rearrangement is being carried out, tetrazoles (CXXI) are

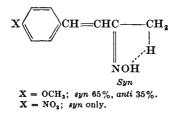
¹⁹⁴ Wolff, in Adams, Organic Reactions, Vol. III, p. 307, John Wiley & Sons, New York, 1946.

formed.^{14, 248, 293-298} The reaction is applicable to a large number of oximes and oxime derivatives, particularly alicyclic ketoximes.

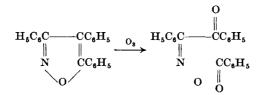

STEREOCHEMISTRY OF OXIMES

The Beckmann rearrangement has important synthetic uses. Since the rearrangement is stereospecific, a brief review of the stereochemistry of oximes is in order.

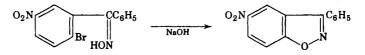
The oximation of ketones and aldehydes when measured in buffered systems appears to be an equilibrium reaction at low pH values and may become irreversible at pH 7.^{299,300} Optimum yields of oximes in such buffered systems are obtained at about pH 4.5.²⁹⁹ The rates for oxime formation and oxime hydrolysis appear to be quite rapid.^{299,301,302}


$$\begin{array}{ccc} \mathrm{RCOR}' + \mathrm{NH}_2\mathrm{OH} \rightleftharpoons \mathrm{RR}'\mathrm{C}(\mathrm{OH})(\mathrm{NHOH}) \rightleftharpoons \mathrm{RCR}' & \mathrm{and/or} & \mathrm{RCR}' + \mathrm{H}_2\mathrm{O} \\ & & & & \\ & & & \\ & & & & \\ &$$

Few investigators have attempted to determine the ratio of syn to *anti* isomers formed on oximation. This may be due to the fact that adequate methods for the analysis of such systems were not available until recently. Often only one stereoisomeric form is isolated The composition of the equilibrium mixture of oximes of unsymmetrical ketones frequently appears to be determined by stereochemical considerations.^{79, 96, 303, 304, 304a}

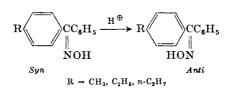


- ³⁹³ Harrill, Herbst, and Roberts, J. Org. Chem., 15, 58 (1950).
- ¹⁹⁴ Boehringer, Brit. pat. 309,949 (1929) (Chem. Zentr., 1930, 1, 287).
- ³⁹⁵ Knoll, Ger. pat. 538,981 (1931) (Chem. Zentr., 1932, I, 1297).
- ³⁹⁶ Boehringer, Fr. pat. 645,265 (1928) (Chem. Zentr., 1929, 1, 2586).
- ³⁹⁷ Boehringer, Ger. pat. 543,026 (1928) [C.A., 26, 3263 (1932)].
- ¹⁹⁸ Boehringer, Brit. pat. 285,080 (1927) [C.A., 22, 4538 (1928)].
- ³⁹⁹ Olander, Z. physik. Chem., 129, 1 (1927).
- ⁸⁰⁰ Fitzpatrick and Gettler, J. Am. Chem. Soc., 78, 530 (1956).
- ³⁰¹ Craft, Landrum, Suratt, and Lester, J. Am. Chem. Soc., 73, 4462 (1951).
- ³⁰³ Vavon and Montheard, Compt. rend., 207, 926 (1938).
- ³⁰³ Ungnade and McLaren, J. Oug. Chem., 10, 29 (1945).
- ³⁰⁴ Decombe, Jacquemain, and Rabinovitch, Bull. soc. chim. France, 1948, 447.
- 304a Hantsch, Ber., 24, 4018 (1891).


However, resonance and inductive effects often influence the configuration of the oxime formed as the result of the stabilization of one stereoisomer by hydrogen bonding. $^{305, 306}$

The configuration of an oxime may be determined by chemical or physical methods or both. Ring cleavage of the corresponding isoxazole^{5, 307, 308} has frequently been employed for this purpose.

Other chemical methods employed are ring closure to the corresponding isoxazole,^{116,230,309} or formation of coordination compounds with metal ions.^{310,311}



Some of the physical methods used for the determination of the configuration of an oxime are dipole measurements^{312, 313} and infrared,^{314, 315} ultraviolet,³¹⁶ and nuclear magnetic resonance spectroscopy.³¹⁷

- 305 Corbett and Davy, J. Chem. Soc., 1955, 296.
- ³⁰⁴ Brady and Benger, J. Chem. Soc., 1953, 3612.
- ³⁰⁷ Kohler, J. Am. Chem. Soc., 46, 1733 (1924).
- 306 Kohler and Richtmyer, J. Am. Chem. Soc., 50, 3092 (1928).
- ³⁰⁶ Brady and Bishop, J. Chem. Soc., 127, 1357 (1925).
- ³¹⁰ Brady and Muers, J. Chem. Soc., 1930, 1599.
- 311 Chugaev, Ber., 41, 1678 (1923).
- ³¹² Sutton and Taylor, J. Chem. Soc., 1931, 2190.
- ³¹³ Sutton and Taylor, J. Chem. Soc., 1933, 63.
- ³¹⁴ Palm and Werbin, Can. J. Chem., 31, 1004 (1953).
- ³¹⁵ Palm and Werbin, Can. J. Chem., 32, 858 (1954).
- ³¹⁶ Brady and Grayson, J. Chem. Soc., 1933, 1037.
- ³¹⁷ Phillips, Ann. N.Y. Acad. Sci., 70, 817 (1958).

Much experimental work has been reported in the older literature on the isomerization of oximes. Unfortunately, because many of the authors were not able to employ pure reagents, the conclusions drawn from their work frequently are questionable.

The equilibrium distribution of the two isomeric oximes appears to depend to a high degree upon the structure of the oxime, the acid employed in the reaction, and the reaction medium. Isomerization of one oxime form to the other may be effected by acids in nonpolar solvents^{97, 221} or bases in ionizing solvents.³¹⁸⁻³²¹ The stability of the *syn* oxime relative to the *anti* oxime depends upon steric and electrostatic effects. *syn-t*-Butyl phenyl ketoxime appears to isomerize prior to rearrangement when Beckmann's mixture is used as the reagent. Under similar conditions *syn*-isopropyl phenyl ketoxime yields only the normal products expected from *trans* migration.⁶ The relative stabilities of monosubstituted benzophenone oximes also have been investigated.⁷

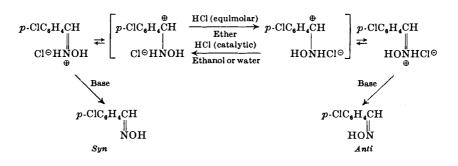
The anti oximes were more stable and their stability increased with the electron-releasing effect of the substituent $(CH_3 > C_2H_5 > n \cdot C_3H_7)$.

The importance of reaction medium upon the relative stability of two isomeric oximes is exemplified by the isomerization of mesitylaldoxime.²²¹

2,4,6-(CH₃)₃C₆H₂CH
$$\xrightarrow{\text{Wet ether, HCl}}_{\text{Dry ether, HCl}}$$
 2,4,6-(CH₃)₃C₆H₂CH \parallel
HON·HCl HCl·NOH

In wet ethereal solution, the *syn*-aldoxime appears to be the more stable; in dry ethereal solution the *anti* oxime is the more stable form.

Recently it has been shown that the more stable syn-2-chlorobenzaldoxime was converted to the *anti*-oxime by equimolar amounts of hydrogen chloride or boron trifluoride in ether¹⁹ (see equations on p. 54). A salt was formed which precipitated and displaced the equilibrium in favor of the *anti* oxime salt. The less stable *anti* form was isomerized to the *syn* form in ethanol or water by catalytic amounts of hydrochloric


²¹⁸ Patterson and Montgomery, J. Chem. Soc., 101, 2100 (1912).

^{\$19} Hauser and Jordan, J. Am. Chem. Soc., 58, 1304, (1936).

³²⁰ Brady and Thomas, J. Chem. Soc., 1922, 2098.

³²¹ Gilman, Organic Chemistry, John Wiley and Sons, New York, 1943, Vol. I, p. 472.

acid or by traces of boron trifluoride in ether. The equilibrium appears to be displaced in favor of the syn oxime because the acid catalyst is removed continuously from the syn oxime by the nucleophilic solvent. This example may explain the larger number of similar isomerizations effected by acids in different media.

Isomerization in alkaline media has been observed quite frequently. Electrostatic repulsion appears to play an important role in these isomerizations.^{7,116,322} Such effects may be prevented by conversion to the corresponding oxime ether.

$$\begin{array}{c} C_{6}H_{5}CCO_{2}H \underbrace{\overset{NaOH}{\longleftarrow}}_{HC1} C_{6}H_{5}CCO_{2}^{\ominus}Na^{\oplus} \\ \| \\ NOH \\ Na^{\oplus}ON \end{array}$$

Little is known about the function of temperature and catalyst upon isomerization of oximes.¹¹⁶

The effect of the reaction medium on the distribution of products from the Beckmann rearrangement is very important. Rearrangements by phosphorus pentachloride in benzene and in ether proceed without isomerization provided the reaction is carried out at or below room temperature.^{8, 79, 323} A solvent of high dielectric constant or a solvent of high nucleophilic power and/or solvolytic power may favor the isomerization considerably. Whereas *syn-t*-butyl phenyl ketoxime is rearranged by phosphorus pentachloride in ether without isomerization, hydrogen chloride in acetic acid isomerizes the oxime *before* rearrangement.⁶ An increase in the acid concentration of the rearranging agent increases the amount of isomerization preceding the rearrangement. Eighty-five per cent sulfuric acid rearranges methyl *n*-propyl ketoxime to

⁸²² Hantsch, Ber., 25, 2164 (1892).

³²³ Blakey, Jones, and Scarborough, J. Chem. Soc., 1927, 2865.

N-n-propylacetamide.⁶⁴ Rearrangement with 93% sulfuric acid yields both isomeric amides.⁶⁴ In view of these observations, oxime configurations determined on the basis of *anti* rearrangement should be considered highly suspect unless it has been shown previously that the rearrangement conditions will not isomerize the oxime in question. Phosphorus pentachloride in ether at or below room temperature appears to be a system wherein no isomerization occurs.^{5-7, 69, 70,79, 323} However, possible exceptions to this statement are known.^{7,323a} Hydrogen chloride, in acetic acid or ethanol,^{6, 115} and sulfuric acid^{64, 243} isomerize oximes prior to rearrangement. Before 1921 some oxime configurations were determined on the assumption that *cis* migration occurs during rearrangement.² Therefore oxime configurations determined up to 1924 may not be correct.

PREPARATION OF OXIMES

Oximes can be prepared conveniently from the reaction of aldehydes or ketones with hydroxylamine salts in the presence of a base (i.e., pyridine or sodium hydroxide).^{309, 324} Oximes can also be prepared by the reduction of nitroparaffins³²⁵⁻³³² or the reaction of nitroparaffin *aci* salts with acid solutions of hydroxylamine salts,³³³ and by nitrosation of carbon atoms.³³⁴

EXPERIMENTAL CONDITIONS

Catalyst and Solvent. The basis for the choice of catalyst and solvent can best be illustrated by describing the results which might be expected from certain catalysts and solvents.

Phosphorus pentachloride in ether appears to favor a stereospecific rearrangement.^{70,79} Therefore, for determining the configuration of an

323a Terent'ev and Makarova, Zhur. Obshchei Kkim., 21, 270 (1951) [C.A., 45, 7105 (1951)].

³²⁴ Shriner, Fuson, and Curtin, The Systematic Identification of Organic Compounds, p. 254, John Wiley & Sons, New York, 1956.

³⁴⁵ Hopff, Reidel, and v. Schickh (to Badische Anilin und Soda Fabrik), Ger. pat. 922,709 1955) (Chem. Zentr., **1955**, 5183).

³¹⁸ Weise (to Farbenfabriken Bayer), Ger. pat. 917,426 (1954) (Chem. Zentr., 1954, 10816).
 ³²⁷ Weise (to Farbenfabriken Bayer), Ger. pat. 916,948 (1954) (Chem. Zentr., 1954, 10816).

328 Welz (to Farbenfabriken Bayer), Ger. pat. 910,647 (1954) (Chem. Zentr., 1954, 6344).

³²⁸ Welz and Giltges (to Farbenfabriken Bayer), Ger. pat. 877,304 (1953) (Chem. Zentr., 1953, 6567).

³³⁰ Ufer (to Badische Anilin und Soda Fabrik), Ger. pat. 877,303 (1953) (Chem. Zentr., 1953, 8208).

³³¹ Weist (to Badische Anilin und Soda Fabrik), Ger. pat. 855,555 (1952) (Chem. Zentr., 1954, 1591).

³³² Welz (to Farbenfabriken Bayer), Ger. pat. 855,253 (1952) (*Chem. Zentr.*, **1954**, 1351). ³³³ Hopff and Schickh (to Badische Anilin und Soda Fabrik), Ger. pat. 900,094 (1953) (*Chem. Zentr.*, **1954**, 9393).

³³⁴ Touster, in Adams, Organic Reactions, Vol. VII, p. 346, John Wiley & Sons, New York, 1953.

oxime on the basis of *anti* migration, this system would seem to be preferred.

If a high yield of amide is desired, polyphosphoric acid and fuming sulfuric acid are recommended as catalysts.^{222,335} With these catalysts, hydrolysis of the oxime to the ketone and of the amide to the acid and amine is negligible.

Hydrolysis of the amide formed *in situ* to the acid and amine can be achieved by employing 70% sulfuric acid as a catalyst.¹²⁰ Likewise, solvolysis of oxime sulfonates to obtain imino ethers,^{13,37,158} and amidines,¹³ can be achieved by employing solvents such as alcohols, phenols, or amines, respectively, in the presence of a suitable catalyst.

Steroids rearrange best if the acid chloride of a weak sulfonic acid, such as p-acetamidobenzenesulfonyl chloride, is used as a catalyst.¹⁷⁴⁻¹⁷⁸

Temperature. The optimum temperature for a given rearrangement is important for a high yield of product. The optimum temperature at which a Beckmann rearrangement must be carried out depends on the nature of the oxime, the product, the catalyst, and the solvent and often cannot be predicted accurately. However, when sulfuric acid is used as a catalyst, the rearrangement usually proceeds best between 100° and 140°.

Catalysts like phosphorus pentachloride,⁷⁰ hydrogen fluoride,^{83,104,126} and sulfur trioxide^{55,57,336} enable one to carry out the reaction near or below room temperature.

Temperature can also be controlled by employing the proper reactor, $^{142-145}$ by using solvents, $^{56, 57, 132-136}$ and by adding inorganic salts, 139,140 or other additives 141 to the rearrangement system.

Rearrangement of Oximes by Phosphorus Pentachloride

A large number of oximes have been rearranged to amides with phosphorus pentachloride as a catalyst.⁷⁰

The usual procedure is to dissolve the oxime in absolute ether and cool the solution in an ice bath. Excess phosphorus pentachloride is added to the cold solution, which is then allowed to warm to room temperature. If the reaction is vigorous, further cooling may be necessary. The mixture is allowed to stand at room temperature for several hours and is then poured over crushed ice. The ether can be evaporated by directing an air stream over it. If the product is a solid, it can be removed by filtration and recrystallized. A liquid product can be isolated by solvent extraction. The extract should be dried and, after the solvent has been removed, the residue can be purified by distillation.

³³³ Horning, Stromberg, and Lloyd, J. Am. Chem. Soc., 74, 5153 (1952).

³³⁶ Potts (Henkel and Cie. G.m.b.H.), Brit. pat. 732,899 (1955) [C.A., 50, 5738 (1956)].

Rearrangement of Oximes by Concentrated Sulfuric Acid

Fifty grams of the oxime is added in small portions to 50 g. of wellstirred concentrated sulfuric acid, the temperature of the solution being held below 25° by external cooling. When all the oxime has dissolved, the solution is added dropwise to 25 g. of concentrated sulfuric acid at $120-130^{\circ}$. The temperature of the reaction mixture is held at $120-130^{\circ}$ for an additional five to ten minutes and then brought down to below 36°. At this temperature or below, the *p*H of the reaction mixture is adjusted to 6 with 28% aqueous ammonia. The mixture is extracted several times with chloroform or another suitable solvent; the combined extracts are dried, and the solvent removed by distillation. The residue can be recrystallized or distilled.

This procedure is a slight modification of that described by Wiest³³⁷ and is applicable to most oximes. The yields range from 50 to 90%.

EXPERIMENTAL PROCEDURES

Homodihydrocarbostyril (Rearrangement of 1-Tetralone Oxime by Polyphosphoric Acid).³³⁵ Four grams of 1-tetralone oxime was heated with 120 g. of polyphosphoric acid for ten minutes at 120–130°. The solution was cooled, treated with 350 ml. of water, and extracted with chloroform. After the chloroform solution was washed, dried, and evaporated, there remained 3.64 g. (91%) of slightly discolored crystalline material, m.p. 135.5–138°. Recrystallization from ethanol provided colorless homodihydrocarbostyril, m.p. 142.5–143°. The aqueous solution remaining after the chloroform extraction was made alkaline with 25% aqueous potassium hydroxide and subjected to continuous ether extraction. The ether furnished 0.19 g. of a red oil, which was not characterized but which may have contained β -naphthylamine.

Phenanthridone (Rearrangement of Fluorenone Oxime by Polyphosphoric Acid).³³⁵ A mixture of 2.00 g. of fluorenone oxime and 60 g. of polyphosphoric acid was heated with manual stirring to $175-180^{\circ}$ and maintained at this temperature for a few minutes. The resulting solution was cooled and treated with 300 ml. of water. The product separated in crystalline form and was removed by filtration. After washing and drying, there was obtained 1.85 g. (93%) of phenanthridone, m.p. 286-289°.

 δ -Valerolactam (Rearrangement of Cyclopentanone Oxime with Benzenesulfonyl Chloride and Sodium Hydroxide).²⁵⁷ To a cold solution containing 26 g. of sodium hydroxide, 200 ml. of water, and 49 g. of

³³⁷ Wiest (to Alien Property Custodian), U.S. pat. 2,351,381 (1944) [C.A., 38, 5225 (1944)].

cyclopentanone oxime was added 115 g. of benzenesulfonyl chloride. The mixture was allowed to stand for twelve hours in an ice bath and was then neutralized and extracted with chloroform. The solvent was removed by distillation, and the residue distilled to yield 47.6 g. (95%) of δ -valerolactam, b.p. $95^{\circ}/10$ mm.

\epsilon-Caprolactam (Direct Preparation from Cyclohexanone Using Nitromethane as a Source of Hydroxylamine).¹⁶⁷ To 500 g. of well-stirred concentrated sulfuric acid heated to 125° , 305 g. of nitromethane was added dropwise with external cooling when necessary to hold the temperature of the acid at $125-130^{\circ}$. After an additional five minutes at $125-130^{\circ}$, 440 g. of cyclohexanone was added slowly to the mixture, which was again heated when necessary to hold the temperature at $120-125^{\circ}$. When the addition of the ketone was complete, the temperature of the mixture was then cooled to below 36° and held at that temperature or below while it was neutralized with 28% aqueous ammonia. The mixture was filtered and the filtrate extracted several times with chloroform. The chloroform extract was dried and the solvent removed by distillation. The residue was distilled to yield 360 g. (79%) of ϵ -caprolactam, b.p. $138^{\circ}/10$ mm.

Acetanilide (Rearrangement of Acetophenone Oxime by Trifluoroacetic Acid).⁸² A solution of 25 g. of acetophenone oxime in 60 g. of trifluoroacetic acid was slowly added to 38 g. of boiling trifluoroacetic acid. The reaction temperature increased from 72° to 108°. After digestion at this temperature for one-half hour, the excess acid was removed by distillation under reduced pressure, and the residue recrystallized from a methanol-water mixture to yield 22.8 g. (91%) of acetanilide.

Pivalanilide (Rearrangement of Pivalophenone Oxime by Hydrogen Chloride in Acetic Acid).⁶ Into a solution of 1.0 g. of pivalophenone oxime in 15 ml. of acetic acid, hydrogen chloride was bubbled for fifteen minutes. The mixture was allowed to stand overnight. It was then heated to boiling for five minutes and poured over ice. The mixture was neutralized with dilute aqueous sodium hydroxide and extracted with ether. The extract was dried and the solvent removed to yield 0.94 g. (94%) of pivalanilide, m.p. 118–141°. After one recrystallization from heptane the pivalanilide melted at 117–124°.

Heptanamide (Rearrangement of Heptanaldoxime by Raney Nickel).^{226, 227} The solid mass obtained by heating 5.0 g. of heptanaldoxime with 1 g. of Raney nickel at 100° for ninety minutes was triturated with ether to separate the catalyst from the product. The ether was evaporated to yield 5 g. (100%) of crystals melting at 93°. By treatment with activated charcoal and then by recrystallization from benzene, heptanamide was obtained as silky white platelets, m.p. 95°.

THE BECKMANN REARRANGEMENT

TABULAR SURVEY OF THE BECKMANN REARRANGEMENT

The data listed in the twelve tables that follow represent a compilation of most of the available publications concerning the Beckmann rearrangement from 1887 to 1957. The authors feel that the data are reasonably complete, but some publications were undoubtedly missed.

The tables are arranged in the order in which different classes of oximes were discussed in the text. Oxime ethers and esters are listed with the ketoximes from which they are derived. The compounds within a class are listed in order of increasing number of ketone carbon atoms. To find a compound in the tables all that is required is to know the number of carbon atoms in the parent ketone and to look up this number in the proper table. For instance, cyclohexanone oxime, cyclohexanone oxime methyl ether, and cyclohexanone oxime *p*-toluenesulfonate are all in Table IV in the six-carbon-atom group. The tables include the name of the oxime or starting material, the product(s) formed by rearrangement, the conditions and reagents employed (catalyst(s), solvent(s)), the percentage yield of product, and the pertinent reference(s) when this information was available.

ALIPHATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experimental Conditions	References
C_2	Potassium methyl nitrole	CH ₃ NCO, KNO ₂		278
C ₃	Acetoxime	Acetone and isopropylamine	Cu, H ₂ (carrier gas)	66
~3		N-Methylacetamide	H ₂ SO ₄ , CH ₃ CO ₂ H	65
		Diphenyl N-methylacet- amidoyl phosphate	Diphenylphosphochloridate, pyridine	338
	Acetoxime benzenesulfonate	N-Methylacetimino phenyl ether (100)	C ₆ H ₅ OH, C ₆ H ₅ CH ₃	13
		N-Methylacetimino p -tolyl ether (90)	p-CH ₃ C ₆ H ₄ OH, C ₆ H ₅ CH ₃	13
		N-Benzenesulfony1-N'-methyl- acetamidine (35)	$C_6H_5SO_2NH_2$, pyridine	13
		N-Benzenesulfonyl-N,N'- dimethylacetamidine (43)	$C_6H_5SO_2NH_2$, methylamine	13
		N-2-Pyridyl-N'-methyl- acetamidine (84)	2-Aminopyridine	13
		N-2-Furfuryl-N'-methyl- acetamidine (69)	Furfurylamine	13
		N,N-3-Oxapentamethylene- N'-methylacetamidine (40) and 4-(1'-methylimino- ethyl)morpholine	Morpholine	13
		N,N-Diphenyl-N'-methyl- acetamidine (82)	$(C_6H_5)_2NH$	13
		N-Methylacetamidine (21)	Aq. ammonia	13
		N-Cyclohexyl-N'-methyl- acetamidine (75)	Cyclohexylamine	13

		N-Phenyl-N'-methyl- acetamidine (85)	Aniline	13	
		1,5-Dimethyl-1,2,3,4-tetrazole	NaN ₃ , C ₂ H ₅ OH	296	
		Methylamine	CHCl ₃	106	
	bis-Acetoxime copper(I) chloride	Unidentified product	C ₆ H ₅ CH ₃	68	
C4	Methyl ethyl ketoxime	N-Ethylacetamide (81)	$PCl_{5}, (C_{2}H_{5})_{2}O$	64	
		Ethylamine (66) and methyl- amine (33)	PCl ₅	340	н
	Methyl ethyl ketoxime benzenesulfonate	N-Cyclohexyl-N'-ethyl- acetamidine	Cyclohexylamine	13	THE
		Tetrabenzylpyrophosphate* (38)	CH_3CN , $(C_2H_5)_3N$	338	BECKMANN
	Propionylformic acid oxime	C_2H_5CN , CO_2 , and H_2O	H_2SO_4	74	R S
C ₅	Methyl <i>n</i> -propyl ketoxime	N-n-Propylacetamide (84)	$PCi_{5}, (C_{2}H_{5})_{2}O$	64	Al
·		N-n-Propylacetamide (88)	93% H ₂ SO4	64	ź
		N-n-Propylacetamide	HCl, (CH ₃ CO ₂)O, CH ₃ CO ₂ H	100	Ŗ
		Methylamine and ethylamine	PCl ₅	340	ΕA
	Methyl isopropyl ketoxime	N-Isopropylacetamide (83)	$PCl_{5}, (C_{2}H_{5})_{2}O$	64, 340	R
		N-Isopropylacetamide (88)	85% H ₂ SO ₄	64	RA
	Methyl cyclopropyl ketoxime	N-Cyclopropylacetemide (80)	PCl_5 , $(C_2H_5)_2O$	64	N
		N-Methylcyclopropanecarbox- amide (80)		341	REARRANGEMENT
		N-Cyclopropylacetamide (35)	$PCl_{5}, (C_{2}H_{5})_{2}O$	341	- R
	Diethyl ketoxime	N-Ethylpropionamide	H ₂ SO ₄ , CH ₃ CO ₂ H	65	н
		N-Ethylpropionamide (, 97)		342, 456	
	Diethyl ketoxime benzene- sulfonate	N,N-Diphenyl-N'-ethyl- propionamidine (80)	$(C_6H_5)_2NH$	13	
		N-Cyclohexyl-N'-ethyl- propionamidine (78)	Cyclohexylamine	13	

Note: References 338 to 593 are on pp. 152-156.

* The isolation of the amide was not reported.

		ALIPHATIC KETOXIMES		
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experimental Conditions	References
C ₅	α-Oximinovaleric acid	n-C ₃ H ₇ CN, CO ₂ , and H ₂ O	H₂SO₄	74
(continued)	β -Methyl- α -oximinobutyric acid	i-C ₃ H ₇ CN, CO ₂ , and H ₂ O	H ₂ SO ₄	74
	Levulinic acid oxime	N-Methylsuccinamic acid (50)	H_2SO_4	339
C ₆	Methyl n-butyl ketoxime	N-n-Butylacetamide (74)	$PCl_{5}, (C_{2}H_{5})_{2}O$	64
•	Pinacolone oxime	N-t-Butylacetamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	343
	Ethyl <i>n</i> -propyl ketoxime	N-n-Propylpropionamide (74)	$PCl_{5}, (C_{2}H_{5})_{2}O$	64
		N-n-Propylpropionamide (92)	93% H ₂ SO ₄	64
	Ethyl acetoacetate oxime sulfonate	Unidentified product	HCl (4N), CH ₃ CO ₂ H	60
	α-Oximinocaproic acid	$n-C_4H_9CN$, CO_2 , and H_2O	H_2SO_4	74
	γ-Methyl-α-oximinovaleric acid	β -Methylbutyronitrile, CO ₂ , and H ₂ O	H_2SO_4	74
	α -Oximinoadipic acid	γ-Cyanobutyric acid ⊕	$(CH_{3}CO)_{2}O$	73
	Acetonyltrimethylammonium chloride oxime	[(CH ₃) ₃ NCH ₂ CONHCH ₃]Ci⊖ ⊕	$\begin{array}{l} \mathrm{PCl}_{5}; \ \mathrm{CH}_{3}\mathrm{COCl}, \ (\mathrm{CH}_{3}\mathrm{CO})_{2}\mathrm{O}; \\ \mathrm{H}_{2}\mathrm{SO}_{4}; \ \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{COCl} \end{array}$	344
	Acetonyltrimethylammonium bromide oxime	[(CH ₃) ₃ ŇCH ₂ CONHCH ₃]Br⊖	$\begin{array}{c} \mathrm{PCl}_{5}; \ \mathrm{H}_{2}\mathrm{SO}_{4}; \ \mathrm{CH}_{3}\mathrm{COCl}, \dagger \\ (\mathrm{CH}_{3}\mathrm{CO})_{2}\mathrm{O} \end{array}$	344
C ₇	Methyl n-amyl ketoxime	N-n-Amylacetamide (76)	$PCl_{5}, (C_{2}H_{5})_{2}O$	64
,	Di-n-propyl ketoxime	N-n-Propyl-n-butyramide	H ₂ SO ₄ , CH ₃ CO ₂ H	65
	Diisopropyl ketoxime	Isobutyric acid and isopropylamine	CH ₃ COCI	346
	Dicyclopropyl ketoxime	N-Cyclopropylcyclopropane- carboxamide (65)	C ₆ H ₅ SO ₂ Cl, 62% dioxane	347

	δ-Methyl-α-oximinocaproic acid	γ -Methylvaleronitrile, CO ₂ , and H ₂ O	H_2SO_4	74	
	α-Oximinopimelic acid	δ -Cyanovaleric acid	(CH ₃ CO) ₂ O	73	
C ₈	Methyl <i>n</i> -hexyl ketoxime	N-n-Hexylacetamide (73)	$PCl_{5}, (C_{2}H_{5})_{2}O$	64, 340	
	2-Oximino-3,4,4-trimethyl- pentane	N-(1,2,2-Trimethylpropyl)- acetamide (36)	$PCl_{5}, (C_{2}H_{5})_{2}O$	348	
	2-Oximino-4,4-dimethylhexane	N-(2,2-Dimethylbutyl)- acetamide (20)	PCl_5 , $(C_2H_5)_2O$	348	
		N-(2,3-Dimethylbutyl)- acetamide (20)	C ₆ H ₅ SO ₂ Cl	348	THE
	2-Methyl-2-hepten-6-one oxime	Dihydrocollidone	P_2O_5	75	BECKMANN
	α-Oximinocaprylic acid	$n-C_{6}H_{13}CN$, CO ₂ , and H ₂ O	(CH ₃ CO) ₂ O	73	ΚŅ
C ₉	Di-n-butyl ketoxime	N-n-Butylvaleramide (40)	$PCl_{5}, (C_{2}H_{5})_{2}O$	64	1A
	Ethyl cyclohexyl ketoxime	N-Cyclohexylpropionamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	349	ZZ
	(+)-2-Oximino-3-ethylheptane	(-)-N-Acetyl-3-aminoheptane	$PCl_{5}, (C_{2}H_{5})_{2}O$	11	
	dl-2-Oximino-3-ethylheptane	dl-N-Acetyl-3-aminoheptane	$PCl_{5}, (C_{2}H_{5})_{2}O$	11	Ē
	d + dl-2-Oximino-3-ethyl- heptane	d + dl-N-Acetyl-3-amino- heptane	PCl_5 , $(C_2H_5)_2O$	11	ARR.
	Phenylacetone oxime	N-Benzylacetamide (40)	BF ₃ , CH ₃ CO ₂ H	19	AN
	Phenylacetone oxime sulfonate	2,5-Diphenyl-3,6-dimethyl piperazine	HCl (4N), CH ₃ CO ₂ H	60	REARRANGEMENT
C10	(+)-Methyl α-phenylethyl ketoxime	$(-)$ -N- α -Phenylethylacetamide	H_2SO_4 , $(C_2H_5)_2O$	10	ENT
	α -Oximino- β -methylpelargonic acid	α -Methylcaprylonitrile, CO ₂ , and H ₂ O	H_2SO_4	74	
	Ethyl α, α -diethyl- β -oximino- butyrate		85% H ₂ SO ₄	71	

† Benzoyl chloride did not bring about rearrangement.

‡ Phosphorus pentachloride, sulfuric acid, and hydrochloric acid were not satisfactory catalysts.

ORGANIC REACTIONS

TABLE I—Continued

		ALIPHATIC KETOXIMES			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experimental Conditions	References	
C ₁₀	Benzalacetone oxime	Quinoline	P_2O_5 , infusorial earth	76	
(continued)	<i>syn</i> -Methyl styryl ketoxime	N-Styrylacetamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	69	
	anti-Methyl styryl ketoxime	N-Methylcinnamamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	69	
		3-Methyl-4-phenylisoxazole	H ₂ SO ₄	69	9Į0
	syn-Methyl 4-nitrostyryl ketoxime	N-4-Nitrostyrylacetamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	305	ORGANIC
	a-Chlorobenzalacetone oxime	N-Phenylacetylacetamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	69	IIC
	a-Bromobenzalacetone oxime	N-Phenylacetylacetamide	$PCi_{5}, (C_{2}H_{5})_{2}O$	69	
	5-Keto-3,4,6-trimethyl- heptanoic acid oxime	Isobutyric acid § and isopropylamine	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	350	REACTIONS
C ₁₁	Methyl n-nonyl ketoxime	N-Nonylacetamide	80% H ₂ SO ₄	351	TI
- 11		n-C ₉ H ₁₉ CONHCH ₃ , CH ₃ CONHC ₉ H ₁₉ -n	H ₂ SO ₄	352	ONS
	CH ₂ CH ₂ CCH HON OCH ₂	 β-(3-Piperonyl)propionic acid N-methyl amide (20), N-β- (3-piperonyl)acetamide (45), l-methyl-6,7-methylene- dioxyisoquinoline (15) 	PCl ₅ , C ₆ H ₆	77	
		CH ₂ O CH ₃	P ₂ O ₅ , C ₆ H ₅ CH ₃	77	

(4)

	<i>syn</i> -Methyl 4-methoxystyryl ketoxime	N-4-Methoxystyrylacetamide	PCl_5 , $(C_2H_5)_2O$	305
	anti-Methyl 4-methoxystyryl ketoxime	N-Methyl-(4-methoxy)- cinnamamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	305
C ₁₂	6-Cyclohexyl-6-oxocaproic acid oxime	N-Cyclohexyladipic acid monoamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	354
	Methyl β -(3,4-dimethoxy- phenyl)ethyl ketoxime	l-Methyl-3,4-dihydro-6,7- dimethoxyisoquinoline	P ₂ O ₅ , C ₆ H ₅ CH ₃	77
	<i>p</i> -Dimethylaminobenzal- acetone oxime	Failed to react		355
C ₁₃	Methyl undecyl ketoxime	Undecylamine and lauric acid	H ₂ SO ₄ , CH ₃ CO ₂ H	356
- 13		N-Undecylacetamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	357
C ₁₄	Ethyl α,α-di- <i>n</i> -butyl-β- oximinobutyrate	$CH_3CONH(C_4H_9-n)_2CO_2C_2H_5$	85% H ₂ SO ₄	71
	α -Kessylketoxime (C ₁₄ H ₂₃ NO ₂)	Isoxime (m.p. 160°), nitrile (m.p. 155°)	H_2SO_4	358
C ₁₅	Dibenzyl ketoxime	Phenylacetamide (11) Phenylacetic acid (12) Phenylacetonitrile (13) Dibenzyl ketone (64)	Cu, H_2 (carrier gas), 200°	67
	Dibenzyl ketoxime benzene- sulfonate	N-Benzylphenylacetamide	H ₂ O	106
	1,1-Diphenylacetone oxime p-toluenesulfonate	N-Acetylbenzhydrylamine (35)	Pyridine	61
C ₁₇	Methyl n-pentadecyl ketoxime	<i>n</i> -Pentadecylamine and pal- mitic acid*	H ₂ SO ₄ , CH ₃ CO ₂ H	356
	2-Oximino-3,3-dibenzyl propane	No reaction	SOCl ₂	231

Note: References 338 to 593 are on pp. 152-156.

* The isolation of the amide was not reported.

§ The amide was hydrolyzed to yield the product(s).

65

THE BECKMANN REARRANGEMENT

TABLE I-Continued

ALIPHATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experimental Conditions	References	
C ₁₇ (continued)	Dibenzalacetone oxime	Unidentified product 3-Phenyl-5-styrylisoxazoline	$\begin{array}{l} H_2SO_4 \\ H_2SO_4 \end{array}$	360 69	
		N-Styrylcinnamamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	69	
C ₁₈	Ethyl pentadecyl ketoxime	Pentadecylamine and palmitic acid§	H_2SO_4 , CH_3CO_2H	356	
	3-Oximinostearic acid	N-Tetradecylsuccinamide	H_2SO_4	359	
	10-Oximinostearic acid	n-Octylamine, 9-amino- nonanoic acid, sebacic acid, pelargonic acid§	H ₂ SO ₄	359	ORGANIC
C ₁ ,	n-Propyl pentadecyl ketoxime	Pentadecylamine and palmitic acid§	H_2SO_4 , CH_3CO_2H	356	
C ₂₀	Ethyl n-heptadecyl ketoxime	n-Heptadecylamine and stearic acid§	H ₂ SO ₄ , CH ₃ CO ₂ H	356	REACTIONS
	Ethyl α,α-dibenzyl-β-oximino- butyrate	3-Methyl-4,4-dibenzyl-5- isoxazolone (25–40)	85% H ₂ SO ₄	71	TION
C ₂₉	10-Nonacosanone oxime	N-Nonyleicosanamide	H ₂ SO ₄ , CH ₃ CO ₂ H	361	S.
2.0		Mixture of amides	H ₂ SO ₄ , CH ₃ CO ₂ H	356	
	$\beta,\beta,\beta',\beta'$ -Tetraphenyldiethyl ketoxime	$N-\beta,\beta$ -Diphenylethyl- $\beta'-\beta'$ - diphenylpropionamide	PCi_5 , $(C_2H_5)_2O$	362	
C ₃₁	Palmitone oxime	N-n-Pentadecylpalmitamide	H_2SO_4 , CH_3CO_2H	356	
C ₅₀	CH ₃ C(=NOH)C ₄₇ H ₉₃		PCl_5 , $(C_2H_5)_2O$	363	

Note: References 3338 to 593 are on pp. 152-156.

§ The amide was hydrolyzed to yield the product(s).

TABLE II

ALIPHATIC AROMATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₈	Acetophenone oxime	Acetanilide (39)	CH ₃ COCl	18,100	
		Acetanilide (41)	C,H,COCI	18	
		Acetanilide (40)	CICH,COCI	18	
		Acetanilide (98)	C ₆ H ₅ SO ₂ Cl	18	Ξ
		Acetanilide (70-80)	$C_{6}H_{5}SO_{2}Cl, (C_{2}H_{5})_{2}O;$ PCl ₅ , (C ₂ H ₅) ₂ O	6	THE E
		Acetanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	81	Ĕ
		Acetanilide (80), diphenyl- acetamidine (15–20)	$SOCl_2$, $(C_2H_5)_2O$	80	BECKMANN
		Acetanilide	HCl; HBr; HI	102	ž
	Acetanilide	$H_2SO_4(5M)$	1		
		Acetanilide (65)	Anhydrous HF	83	RJ
		Acetanilide (87–98)	BF ₃ , CH ₃ CO ₂ H	19	3A
		Acetanilide	HCl, $(CH_3CO)_2O$, CH_3CO_2H	100	REARRANGEMENT
		Acetanilide (91, 53)	CF ₃ CO ₂ H	82, 409	NG
		Acetanilide (33) and 4-chloro- acetanilide (22)	$Cl_2 \cdot Br_2$, SO_2	364	EME
		N-Ethylaniline (9) and α -phenyl- ethylamine (30)	$LiAlH_{4}, (C_{2}H_{5})_{2}O$	89	NT
	N-Ethylaniline $(10-15)$ and α -phenyl- ethylamine	$LiAlH_4, (C_2H_5)_2O$	88		
		C ₆ H ₅ CN and C ₆ H ₅ CO ₂ H	Cu, H ₂	85	
		CH ₃ CO ₂ H, C ₆ H ₅ CN, NH ₃ , C ₆ H ₅ CO ₂ H, C ₆ H ₅ COCH ₃ , C ₆ H ₅ NH ₂ , and CH ₃ CONHC ₆ H ₅	Japanese acid earth (Al ₂ O ₃)	86	
	ferences 338 to 593 are on pp. 152–156				67

Note: References 338 to 593 are on pp. 152-156.

TABLE II—Continued

ALIPHATIC AROMATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References		
C ₈	Acetophenone oxime (continued)	Acetanilide	H ₃ BO ₃ -Al ₂ O ₃	148		
(continued)	· ,	2-Methyl-3-phenyl-5-ethyl-6-methyl- 4-pyrimidone (65)*	$PCl_{5}, (C_{2}H_{5})_{2}O$	365		
		No reaction	(CH ₃ CO) ₂ O	80, 100		
	Acetophenone oxime hydrochloride	Acetanilide and diphenylacetamidine		102		
	Acetophenone oxime hydrobromide	Acetanilide		102		
	Acetophenone oxime cuprous chlor- ide complex	Unidentified product	C ₆ H ₅ CH ₃	68	ONGANIC	
	Acetophenone oxime sulfonate	Acetanilide (77)	HCl, dioxane	60	1	
	Potassium acetophenone oxime sulfonate	1-Phenyl-5-methyltetrazole (72)	Alkali or acid and NaN _a	14		
	Acetophenone oxime methane- sulfonate	N,N'-Diphenylacetamidine (24)	C ₆ H ₅ NH ₂	13	NEAC	
	Acetophenone oxime benzene- sulfonate	Acetanilide (27)		13	VENCTION	
		Tetrabenzyl pyrophosphate (16)†	Dibenzyl hydrogen phosphate, CH_3CN , $(C_2H_5)_3N$	338	Ŭ	
	Acetophenone oxime <i>p</i> -toluene- sulfonate	N,N'-Diphenylacetamidine (95)	C ₆ H ₅ NH ₂	13		
	Acetophenone oxime picryl ether	N-Picrylacetanilide‡		43		
	Methyl 4-fluorophenyl ketoxime	N-Ethyl- <i>p</i> -fluoroaniline (8) and α -4- fluorophenylethylamine (35)	$LiAlH_4$, $(C_2H_5)_2O$	89	89	
	Methyl 4-fluorophenyl ketoxime picryl ether	N-Picryl-4-fluoroacetanilide‡		43		
	Methyl 2-chlorophenyl ketoxime	N-Acetyl-2-chloroaniline (90)	H_2SO_4	40		
		Methyl 2-chlorophenyl ketone	18% HCl	91		

68

ORGANIC REACTIONS

Methyl 2-chlorophenyl ketoxime picryl ether	N-Picryl-2-chloroacetanilide‡		43	
Methyl 3-chlorophenyl ketoxime picryl ether	N-Picryl-3-chloroacetanilide‡		43	
Methyl 4-chlorophenyl ketoxime	N-Ethyl- <i>p</i> -chloroaniline (7) and α - 4-chlorophenylethylamine (50)	LiAlH4, (C2H5)2O	89	
Methyl 4-chlorophenyl ketoxime picryl ether	N-Picryl-4-chloroacetanilide‡		43	
Methyl 4-bromophenyl ketoxime	N-Ethyl- <i>p</i> -bromoaniline (5) and α - 4-bromophenylethylamine (35)	$LiAlH_4$, $(C_2H_5)_2O$	89	THE
Methyl 4-bromophenyl ketoxime benzenesulfonate	N,N'-bis(4-Bromophenyl)acetamidine (96)	p-BrC ₆ H ₄ NH ₂	13	
Methyl 2-iodophenyl ketoxime	Methyl 2-iodophenyl ketone	18% HCl	91	Ř
Methyl 4-iodophenyl ketoxime	N-Ethyl- <i>p</i> -iodoaniline (7) and α -4- iodophenylethylamine (14)		89	BECKMANN
Methyl 4-iodophenyl ketoxime picryl ether	N-Picryl-4-iodoacetanilide‡		43	
Methyl 2-nitrophenyl ketoxime	N-Acetyl-2-nitroaniline (86)	H,SO₄	40	Ä
	Methyl 2-nitrophenyl ketone	18% HCl	91	RF
Methyl 2-nitrophenyl ketoxime picryl ether	N-Picryl-2-nitroacetanilide‡		43	REARRANGEMENT
Methyl 4-nitrophenyl ketoxime picryl ether	N-Picryl-4-nitroacetanilide‡		43	EME
Methyl 2-hydroxyphenyl ketoxime	Methyl 2-hydroxyphenyl ketone	18% HCl	91	IN
Methyl 2-hydroxy-5-nitrophenyl ketoxime acetate	3-Methyl-5-nitrobenzisoxazole and 2-hydroxy-5-nitroacetanilide	Not specified	245	

* The amide was not isolated. The intermediate chlorimide was treated with an α -alkyl- β -aminocrotonate ester to yield The ainde was not isolated. The intermediate chlorinate was structed with an a dary, p characteristic to a property in the solution of the amide was not reported.
The picryl ethers were rearranged in 85–90% yield by heating in ethylene dichloride or another chlorinated hydrocarbon.

TABLE II—Continued

ALIPHATIC AROMATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- Re mental Conditions	eferences
C ₈	Methyl 2-aminophenyl ketoxime	Unidentified product	18% HCl	91
(continued)		N-Acetyl-o-phenylenediamine and C ₁₀ H ₁₀ NO ₂	$\begin{array}{c} P_2O_5; ZnCl_2; HCl, \\ (CH_3CO)_2O, CH_3CO_2H \end{array}$	367
	Methyl 2-bromo-5-nitrophenyl ket- oxime (syn-anti mixture)	2-Bromo-5-nitroaniline (50)	H_2SO_4	368
		2-Bromo-5-nitroacetanilide (77)	$PCl_{5}, (C_{2}H_{5})_{2}O$	368
	syn-Methyl 2-bromo-5-nitrophenyl ketoxime	2-Bromo-5-nitroacetanilide (58)	$PCl_{5}, (C_{2}H_{5})_{2}O$	368
		2-Bromo-5-nitroaniline	H_2SO_4	368
	syn-Chloromethyl phenyl ketoxime	Chloroacetanilide	PCl_5 , $(C_2H_5)_2O$	369
	Chloromethyl phenyl ketoxime picryl ether	N-Picrylchloroacetanilide (100)‡		48
	syn-Bromomethyl phenyl ketoxime	Bromoacetanilide	PCl_5 , $(C_2H_5)_2O$	369
	Chloromethyl 4-chlorophenyl ketoxime	N-Chloroacetyl-4-chloroaniline	H_2SO_4	370
	Chloromethyl 4-bromophenyl ketoxime	N-Chloroacetyl-4-bromoaniline	H_2SO_4	370
	anti-Bromomethyl 3-nitrophenyl ketoxime	N-Bromoacetyl-3-nitroaniline	PCl_{5} , $(C_{2}H_{5})_{2}O$	369
	Bromomethyl 4-chlorophenyl ketoxime	N-Bromoacetyl-4-chloroaniline	H_2SO_4	370
	Dibromomethyl 4-bromophenyl ketoxime	N-Dibromoacetyl-4-bromoaniline	H_2SO_4	370
	Benzoylformic acid oxime (syn or anti)	Benzonitrile	C ₆ H ₅ SO ₂ Cl, pyridine	95
	Benzoyl cyanide oxime	N-Phenyloxalamide	PCl_5 , $(C_2H_5)_2O$	92

o-Chlorobenzoyl cyanide oxime p-Chlorobenzoyl cyanide oxime	No reaction No reaction	PCl_{5} , $(C_{2}H_{5})_{2}O$ PCl_{5} , $(C_{2}H_{5})_{2}O$	$\begin{array}{c} 92 \\ 92 \end{array}$	
C ₉ Ethyl phenyl ketoxime	Propionanilide (65–80) Propionanilide (85) and N,N'-di- phenylpropionamidine (15)	PCl_5 , $(C_2H_5)_2O$; $C_6H_5SO_2Cl$ $SOCl_2$, $(C_2H_5)_2O$	6 80	
Ethyl phenyl ketoxime picryl ether	N-Picryl-n-propionanilide (96)‡		48	
Methyl o-anisyl ketoxime	Sulfonation products Methyl o-anisyl ketone and anisidine	H ₂ SO ₄ 18% HCl	40 91	THE
Methyl o-anisyl ketoxime picryl ether	N-Picryl-2-methoxyacetanilide‡	,. 100/ IICI	43	
Methyl m-anisyl ketoxime Methyl m-anisyl ketoxime picryl ether	Methyl m-anisyl ketone N-Picryl-3-methoxyacetanilide‡	18% HCl	91 43	BECKMANN
Methyl <i>p</i> -anisyl ketoxime	p-Anisidine (75–85) N-Ethyl-p-anisidine (59) and α- anisylethylamine (4)	$PCl_{5}, (C_{2}H_{5})_{2}O$ LiAlH ₄ , $(C_{2}H_{5})_{2}O$	84 89	
Methyl <i>p</i> -anisyl ketoxime picryl ether	Acet-p-aniside (99) N-Picryl-4-methoxyacetanilide‡	Polyphosphoric acid	123 43	REARRANGEMENT
Methyl o-tolyl ketoxime	Methyl o-tolyl ketone and o-toluidine N-Acetyl-o-toluidine (100)	18% HCl H ₂ SO ₄	91 40	ANGE
Methyl o-tolyl ketoxime picryl ether Methyl m-tolyl ketoxime	N-Picryl-2-methylacetanilide‡ Methyl m-tolyl ketone	18% HCl	43 91	MENJ
Methyl <i>m</i> -tolyl ketoxime picryl ether Methyl <i>p</i> -tolyl ketoxime	N-Ethyltoluidine (30) and α -tolyl-	$LiAlH_4$, $(C_2H_5)_2O$	43 89	
	ethylamine (17) N-Acetyl-p-toluidine (80) and N,N'- di-p-tolylacetamidine (20)	$SOCl_2$, $(C_2H_5)_2O$	80	

‡ The picryl ethers were rearranged in 85–90 % yield by heating in ethylene dichloride or another chlorinated hydrocarbon. 📑

TABLE II—Continued Aliphatic Aromatic Ketoximes

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C , (continued)	Methyl p-tolyl ketoxime (continued)	2-Methyl-3- <i>p</i> -tolyl-5-ethyl-6-methyl- 4-pyrimidone (65)*§	PCl_5 , $(C_2H_5)_2O$	81, 365	
	Methyl <i>p</i> -tolyl ketoxime picryl ether	N-Picryl-4-methylacetanilide [‡]		43	
	Methyl 2-methyl-4-hydroxyphenyl ketoxime	Methyl 2-methyl-4-hydroxyphenyl ketone and 4-hydroxy-6-methyl- aniline	18% HCl	91	0
	Methyl 2-hydroxy-3-methylphenyl. ketoxime	Methyl 2-hydroxy-3-methylphenyl ketone	18% HCl	91	ORGANIC
	Methyl 3-methyl-4-hydroxyphenyl ketoxime	Methyl 3-methyl-4-hydroxyphenyl ketone	18% HCl	91	
	Methyl 2-hydroxy-4-methylphenyl ketoxime	Methyl 2-hydroxy-4-methylphenyl ketone	18% HC1	91	REAC
	Methyl 2-hydroxy-5-methylphenyl ketoxime	Methyl 2-hydroxy-5-methylphenyl ketone	18%HC1	91	REACTIONS
		2,5-Dimethylbenzoxazole	$\begin{array}{c} P_2 O_5; \ P_2 O_5, (C_2 H_5)_2 O; \\ KHSO_4; \ PCl_5, \\ (C_2 H_5)_2 O\end{array}$	8	SN
	Methyl 2-hydroxy-5-methylphenyl ketoxime hydrochloride	Methyl 2-hydroxy-5-methylphenyl ketone, 2-hydroxy-5-methylben- zoic acid, 2-hydroxy-5-methyl- benzanilide, 2-hydroxy-5-methyl- aniline, and, 2,5-dimethylbenzoxa- zole	H ₂ O	8	
C ₁₀	n-Propyl phenyl ketoxime	N,N'-Diphenylbutyramidine (80) and butyranilide (20)	$SOCl_2$, $(C_2H_5)_2O$	80, 372	

	2-n-Propyl-3-phenyl-5-ethyl-6- methyl-4-pyrimidone (72)§	PCl_5 , $(C_2H_5)_2O$	365	
n-Propyl phenyl ketoxime picryl ether	N-Picryl-n-butyranilide (88)‡		48	
syn-Isopropyl phenyl ketoxime	Isobutyranilide	C ₆ H ₅ SO ₂ Cl, pyridine	373	
syn-Isopropyl phenyl ketoxime picryl •ether	. N-Picrylisobutyranilide (81)‡		48	
anti-Isopropyl phenyl ketoxime	N-Isopropylbenzamide (31)	C ₆ H ₅ SO ₂ Cl, pyridine	373	
<i>anti</i> -Isopropyl phenyl ketoxime picryl ether	N-Picryl-N-isopropyl benzamide (84)‡		48	THE
Ethyl 2-fluoro-5-methylphenyl ket- oxime	2-Fluoro-5-methylaniline	PCl_5 , $(C_2H_5)_2O$	374	BEC
Ethyl 4-fluoro-6-methylphenyl ket- oxime	4-Fluoro-6-methylaniline	PCl_5 , $(C_2H_5)_2O$	374	BECKMANN
Methyl <i>p</i> -phenetyl ketoxime	<i>p</i> -Phenetidine (80)	PCl_5 , $(C_2H_5)_2O$	84	Z Z
Methyl 2,3-dimethylphenyl ketoxime	Methyl 2,3-dimethylphenyl ketone	18% HCl	91	
Methyl 2,4-dimethylphenyl ketoxime	2,4-Dimethylacetanilide	PCl ₅	375	Ĩ
	Methyl 2,4-dimethylphenylketone and 2,4-dimethylaniline	18% HCl	91	ARR.
Methyl 2,6-dimethylphenyl ketoxime	Methyl 2,6-dimethylphenyl ketone	18% HCl	91	AN
Methyl 2-methoxy-3-methylphenyl ketoxime	Methyl 2-methoxy-3-methylphenyl ketone and 2-methoxy-3- methylaniline	18% HCl	91	REARRANGEMENT
Methyl 2-methoxy-4-methylphenyl ketoxime	2-Methoxy-4-methylaniline and methyl 2-methoxy-4-methylphenyl ketone	18% HCl	91	ΥT

* The amide was not isolated. The intermediate chlorimide was treated with an α -alkyl- β -aminocrotonate ester to yield the 4-pyrimidone.

¹ The picryl ethers were rearranged in 85–90% yield by heating in ethylene dichloride or another chlorinated hydrocarbon. § The 5-methyl pyrimidone can be made in the same fashion using the proper crotonate ester.

TABLE II—Continued

ALIPHATIC AROMATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- R mental Conditions	eferences
C ₁₀ (continued)	Methyl 2-methoxy-5-methylphenyl ketoxime	Methyl 2-methoxy-5-methylphenyl ketone and 2-methoxy-5-methyl- aniline	18%HCl	91
	Methyl 2-methyl-4-methoxyphenyl ketoxime	Methyl 2-methyl-4-methoxyphenyl ketone and 2-methyl-4-methoxy- aniline	18% HC1	91
	Methyl 2-hydroxy-3,5-dimethyl- phenyl ketoxime	Methyl 2-hydroxy-3,5-dimethyl- phenyl ketone	18% HCl	91 OKGANIC
	syn-Methyl 2-hydroxy-4,6-dimethyl- phenyl ketoxime	2,4,6-Trimethylbenzoxazole (100)	HCl, CH ₃ CO ₂ H; HCO ₂ H, H ₂ O	
		2,4,6-Trimethylbenzoxazole	PCl_{5} , $(C_{2}H_{5})_{2}O$; heat; KHSO ₄	8 8 8 8
	syn-Methyl 2-hydroxy-4,6-dimethyl- phenyl ketoxime hydrochloride	2,4,6-Trimethylbenzoxazole		8 0110
	anti-Methyl 2-hydroxy-4,6-dimethyl- phenyl ketoxime	No reaction	HCl, $(CH_3CO)_2O$, CH_3CO_2H ; HCO ₂ H, H_2O	8 2
		2,4,6-Trimethylbenzoxazole	PCl_5 , $(C_2H_5)_2O$; KHSO ₄	8
	anti-Methyl 2-hydroxy-4,6-dimethyl- phenyl ketoxime hydrochloride	2,4,6-Trimethylbenzoxazole		8
C11	syn-Isobutyl phenyl ketoxime	N-Methylisovaleranilide (65–72)	PCl ₅ , (C ₂ H ₅) ₂ O; C ₆ H ₅ SO ₂ Cl, (C ₂ H ₅) ₂ O	6
		N-Isobutylbenzamide (70)	HCI, CH,CO,H	6
	anti-Isobutyl phenyl ketoxime	N-Isobutylbenzamide (28-72)	$PCl_{5}^{'}, (C_{2}H_{5})_{2}O;$ $C_{6}H_{5}SO_{2}Cl, (C_{2}H_{5})_{2}O$	6
		N-Isobutylbenzamide (80)	HCl, CH ₃ CO ₂ H	6

73

ORGANIC REACTIONS

	n-Propyl 2-hydroxy-5-methylphenyl ketoxime	n-Propyl 2-hydroxy-5-methylphenyl ketone	18% HCl	91	
	Methyl 2-methoxy-3,5-dimethyl- phenyl ketoxime	Methyl 2-methoxy-3,5-dimethyl- phenyl ketone and 2-methoxy-3,5- dimethylaniline	18% HCl	91	
	Methyl 2-methoxy-4,6-dimethyl- phenyl ketoxime	Methyl 2-methoxy-4,6-dimethyl- phenyl ketone and 2-methoxy-4,6- dimethylaniline	18% HCl	91	
	Ethyl 2,4-dimethylphenyl ketoxime	Ethyl 2,4-dimethylphenyl ketone and 2,4-dimethylaniline	18% HCl	91	THE
	Methyl mesityl ketone	Mesidine and acetic acid	NH ₂ OH · HCl	50	
	Methyl mesityl ketoxime	Acetomesidide (94)	H ₂ SO ₄	52	BECKMANN
		Acetomesidide (86)	BF3	264	CR
	5-Acetylindane oxime	N-Acetyl-5-aminoindane	$PCl_{5}, (C_{2}H_{5})_{2}O$	376	R
		5-Aminoindane	PCl ₅ , (C ₂ H ₅) ₂ O	377	AN
	4-Nitro-5-acetylindane oxime	4-Nitro-5-(N-acetylamino)indane	$PCl_{5}, (C_{2}H_{5})_{2}O$	378	Ĩ
	Methyl 4-carbethoxyphenyl ketoxime picryl ether	N-Picryl-4-carbethoxyacetanilide‡		43	REA
2	Methyl 2,5-diethylphenyl ketoxime	Methyl 2,5-diethylphenyl ketone and 2,5-diethylaniline	18% HCl	91	IRRA
	<i>n</i> -Propyl 2-methoxy-5-methylphenyl ketoxime	n-Propyl 2-methoxy-5-methylphenyl ketone and 2-methoxy-5-methyl aniline	18% HCl	91	REARRANGEMENT
	Methyl 2-ethoxy-3,4-dimethylphenyl ketoxime	2-Ethoxy-4,5-dimethylaniline	SOCl ₂ , CHCl ₃	377a	ENT
	Methyl 1-naphthyl ketoxime	Acetic acid (99) and 1-naphthoic acid (1)	PCl ₅ , C ₆ H ₆	79	
	Methyl 2-naphthyl ketoxime	Acetic acid (99) and 2-naphthoic acid (1)	PCl ₅ , C ₆ C ₆	79	

C₁₂

 \ddagger The picryl ethers were rearranged in 85–90% yield by heating in ethylene dichloride or another chlorinated hydrocarbon. || The amide was hydrolyzed to the product(s) without prior isolation.

TABLE II—Continued

ALIPHATIC AROMATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₁₂ (continued)	Methyl 2-naphthyl ketoxime sulfonate	N-Acetyl-2-naphthylamine (87)	HCl (4N), dioxane	60	
•	β -Naphthacyl bromide oxime	β -Naphthylamine (61)	None given	590	
	β -Naphthacyl iodide oxime	β -Naphthylamine (71)	None given	590	
	2-Acetyl-5,6,7,8-tetrahydro- naphthalene oxime	N-Acetyl-2-amino-5,6,7,8-tetra- hydronaphthalene		381	
	1-Acetylazulene oxime	1-Acetamidoazulene (16)	$PCl_{5}, (C_{2}H_{5})_{2}O$	382	2
	6-p-Anisyl-5-ketovaleric acid oxime	N-(4-Methoxyphenyl)glutaramic acid	BF_{3} , $(C_{2}H_{5})_{2}O$	384	ORGANIC
C ₁₃	6-p-Phenetyl-5-ketovaleric acid oxime	N-(4-Ethoxyphenyl)glutaramic acid	BF ₂ , (C ₂ H ₅) ₂ O	384	
	Cyclohexyl phenyl ketoxime	N-Cyclohexylbenzamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	349, 383	Ĩ
	syn-Ethyl 3,5-dimethoxy-4-ethyl- phenyl ketoxime	3,5-Dimethoxy-4-ethylaniline (68)	PCl_5 , $(C_2H_5)_2O$	379	REACTIONS
	1-Methoxy-4-acetylnaphthalene oxime	l-(N-Acetylamino)-4-methoxy- naphthalene (55-60)	PCl ₅ , (C ₂ H ₅) ₂ O	84	ONS
	1-Methoxy-2-acetylnaphthalene oxime picryl ether	N-Picryl-N-(1-methoxy-2-naphthyl)- acetamide‡		48	
	3-Methoxy-2-acetylnaphthalene oxime picryl ether	N-Picryl-N-(3-methoxy-2-naphthyl)- acetamide‡		48	
C ₁₄	Benzyl phenyl ketoxime	Phenylacetanilide	C ₆ H ₅ SO ₂ Cl, pyridine	95	
14	• • •	Phenylacetanilide (60)	$PCl_{5}, (C_{2}H_{5})_{2}O$	385, 203	
		Phenylacetanilide (80-85) and N,N'- diphenylphenylacetamidine (15-20)	$SOCI_2$, $(C_2H_5)_2O$	80	
	Benzyl phenyl ketoxime picryl ether	N-Picryl-N-phenylacetanilide (88)‡		48	
	syn-Benzyl 2-chlorophenyl ketoxime	2'-Chloro-2-phenylacetanilide (65)	$PCl_{5}, (C_{9}H_{5})_{9}O$	371	
	Benzyl 4-chlorophenyl ketoxime	C ₆ H ₅ CH ₂ CONHC ₆ H ₄ Cl-4	PCl_5 , $(C_2H_5)_2O$	371	
	• • •				

76

syn-2-Chlorobenzyl phenyl ketoxime	2-ClC ₆ H ₄ CH ₂ CONHC ₆ H ₅	$PCl_{5}, (C_{2}H_{5})_{2}O$	371	
syn-4-Chlorobenzyl phenyl ketoxime	4-ClC ₆ H ₄ CH ₂ CONHC ₆ H ₅	$PCl_{5}, (C_{2}H_{5})_{2}O$	371	
2-Chlorobenzyl 2-chlorophenyl	2-ClC ₆ H ₄ CH ₂ CONHC ₆ H ₄ Cl-2 and	$PCi_5, (C_2H_5)_2O$	371	
ketoxime	2-CIC ₆ H ₄ CONHCH ₂ C ₆ H ₄ Cl-2	J' L J'L		
syn-4-Chlorobenzyl 4-chlorophenyl	$4-ClC_6H_4CH_2CONHC_6H_4Cl-4$ (55-80)	$PCl_{5}, (C_{2}H_{5})_{2}O$	371	
ketoxime		3, (- 2 3,2 -		
syn-2-Chlorobenzyl 4-chlorophenyl	$2-ClC_6H_4CH_2CONHC_6H_4Cl-4$ (55-80)	$PCl_{5}, (C_{2}H_{5})_{2}O$	371	
ketoxime				
syn-4-Chlorobenzyl 2-chlorophenyl	$4-ClC_6H_4CH_2CONHC_6H_4Cl-2$ (65)	$PCl_{5}, (C_{2}H_{5})_{2}O$	371	
ketoxime				E
Methyl 2,5-di- <i>n</i> -propylphenyl	Methyl 2,5-di-n-propylphenyl ketone	18% HCl	91	THE
ketoxime	and 2,5-di-n-propylaniline			
Phenyl anilinomethyl ketoxime	Anilinoacetanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	93	Έ
Methyl <i>p</i> -xenyl ketoxime	Acetic acid (99) and 4-carboxybi-	PCl_5, C_6H_6	79	BECKMANN
	phenyl (1)			MA
Methyl <i>p</i> -xenyl ketoxime picryl ether	N-Picryl-4-phenylacetanilide‡		43	'n
Cyclopropyl β -naphthyl ketoxime	β -Naphthoic acid	Polyphosphoric acid	387	\mathbf{z}
5-Acetyl-6-nitroacenaphthene oxime	5-Acetamido- 6 -nitroacenaphthene	HCl, CH ₃ CO ₂ H,	36 6	RI
	(95)	(CH ₃ CO) ₂ O		ĒA
4-Acetyl-s-hydrindacene oxime	4-Acetamido-s-hydrindacene (81)	HCl, $(CH_3CO)_2O$,	388	RF
		CH ₃ CO ₂ H		A
Benzoylformanilide oxime methyl	Oxalic acid dianilide	PCl ₅	202	REARRANGEMENT
ether				E
syn-Benzyl 4-methoxyphenyl	$C_6H_5CH_2CONHC_6H_4OCH_3-4$ (60)	$PCl_{5}, (C_{2}H_{5})_{2}O$	385	Æ
ketoxime				LN
	N-Benzyl-p-methoxybenzamide	$C_6H_5SO_2Cl$, aq. NaOH	390	
syn-4-Methoxybenzyl phenyl	2-(p-Methoxyphenyl) acetanilide	PCl_5 , $(C_2H_5)_2O$	390	
ketoxime				
anti-4-Methoxybenzyl phenyl	N-(4-Methoxybenzyl)benzamide	$C_6H_5SO_2Cl$, aq. NaOH	390	
ketoxime				

 $\mathbf{C}_{\mathbf{15}}$

the picryl ethers were rearranged in 85-90% yield by heating in ethylene dichloride or another chlorinated hydrocarbon.
 ↓ The amide was hydrolyzed to the product(s) without prior isolation.

TABLE II—Continued

ALIPHATIC	AROMATIC	KETOXIMES
-----------	----------	-----------

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi-F mental Conditions	References	
C ₁₅ (continued)	syn-2-Chlorobenzyl 4-methoxyphenyl ketoxime	$2-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}\mathrm{CONHC}_{6}\mathrm{H}_{4}\mathrm{OCH}_{3}-4 (60)$	PCl_5 , $(C_2H_5)_2O$	385	
		2-ClC ₆ H ₄ CH ₂ CONHC ₆ H ₄ OCH ₃ -4	$C_6H_5SO_2Cl$, aq. NaOH	390	
	syn-4-Chlorobenzyl 4-methoxyphenyl ketoxime	$4-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}\mathrm{CONHC}_{6}\mathrm{H}_{4}\mathrm{OCH}_{3}-4 (60)$	PCl_5 , $(C_2H_5)_2O$	385	
	syn-Benzyl 3,4-methylenedioxy- phenyl ketoxime	N-Piperonylphenylacetamide	$C_6H_5SO_2Cl$, aq. NaOH	390	ORG
	syn-2-Chlorobenzyl 3,4-methyl- enedioxyphenyl ketoxime	$2\text{-ClC}_{6}\text{H}_{4}\text{CH}_{2}\text{CONHC}_{6}\text{H}_{3}(\text{O}_{2}\text{CH}_{2})\text{-}3,4$	PCl ₅ , (C ₂ H ₅) ₂ O; C ₆ H ₅ SO ₂ Cl, aq. NaOH	390	ORGANIC
	Phenyl <i>p</i> -anisidinomethyl ketoxime	<i>p</i> -Anisidinoacetanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	93, 94	
	Phenyl <i>p</i> -toluidinomethyl ketoxime	$\begin{array}{c} \mathbf{C}_{6}\mathbf{H}_{5}\mathbf{C} \longrightarrow \mathbf{C}\mathbf{H}_{2} \\ \parallel \\ \mathbf{O} \leftarrow \mathbf{N} \longrightarrow \mathbf{N}\mathbf{C}_{6}\mathbf{H}_{5}\mathbf{C}\mathbf{H}_{3} p \end{array}$	$PCl_{5}, (C_{2}H_{5})_{2}O$	93, 94	REACTIONS
	syn-Methyl 1-(2-hydroxy-3-carbeth- oxy)naphthyl ketoxime	N-Acetyl-2-hydroxy-3-carbethoxy- l-naphthylamine (30)	HCO ₂ H	235	IONS
	syn-Methyl 1-(2-hydroxy-3-carbeth- oxy)naphthyl ketoxime	N-Acetyl-2-hydroxy-3-carbethoxy naphthylamine (100)	PCl ₅ , dioxane	235	
	anti-Methyl 1-(2-hydroxy-3-carbeth- oxy)naphthyl ketoxime	N-Methyl-2-hydroxy-3-carbethoxy- 1-naphthamide (40)	PCl ₅ , dioxane	235	
	Phenyl styryl ketoxime	Cinnamanilide	PCl ₅ , (C ₂ H ₅) ₂ O	391	
	anti-Phenyl styryl ketoxime	Cinnamanilide	PCl_5 , $(C_2H_5)_2O$	392	
	syn-Styryl 2-chlorophenyl ketoxime	N-2-Chlorophenylcinnamamide	PCl_5 , $(C_2H_5)_2O$	70	
	syn-Styryl 2-bromophenyl ketoxime	N-2-Bromophenylcinnamamide	PCl_5 , $(C_2H_5)_2O$	70	
	Styryl 4-bromophenyl ketoxime	N-4-Bromophenylcinnamamide and N-styryl-4-bromobenzamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	70	

	syn-Styryl 4-bromophenyl ketoxime	N-4-Bromophenylcinnamamide (100)	PCl_5 , $(C_2H_5)_2O$	70	
		3- p -Bromophenyl- 5 -phenylisoxazoline		70	
	anti-Styryl 4-bromophenyl ketoxime	3-p-Bromophenyl-5-phenylisoxazoline	H_2SO_4	70	
	α-Bromostyryl phenyl ketoxime	Benzoic acid	$PCl_{5}, (C_{2}H_{5})_{2}O$	70, 391	
	α-Bromostyryl 4-bromophenyl ket- oxime	p-Bromobenzoic acid	PCl_5 , $(C_2H_5)_2O$	70	
		No reaction	H_2SO_4	70	
	α,β-Dibromo-β-phenylethyl phenyl ketoxime	lpha,eta-Dibromo- eta -phenylpropionanilide	PCl_5 , $(C_2H_5)_2O$	87, 391	THE
	syn-α,β-Dibromo-β-phenylethyl-4- bromophenyl ketoxime	N-4-Bromophenyl-α,β-dibromo-β- phenylpropionamide	PCl_5 , $(C_2H_5)_2O$	70	
	anti- α,β -Dibromo- β -phenylethyl-4- bromophenyl ketoxime	N-Styryl- <i>p</i> -bromobenzamide	PCl_5 , $(C_2H_5)_2O$	70	BECKMANN
	3,4-(CH ₃ O) ₂ C ₆ H ₃ CC ₆ H ₅ ∥ NOH	Two amides		379	
	3,5-Diphenylisoxazoline	4-Phenyl-3,4-dihydrocarbostyril	HI	393	ĜA
C ₁₆	β -Phenylbutyrophenone oxime	β -Phenyl- <i>n</i> -butyranilide (43)	$SOCl_2$, $(C_2H_5)_2O$	394	RI
016	2-Chlorobenzyl 3,4-dimethoxyphenyl ketoxime	2-ClC ₆ H ₄ CH ₂ CONHC ₆ H ₃ (OCH ₃) ₂ -3,4	PCl_5 , $(C_2H_5)_2O$	390	REARRANGEMENT
	Benzyl 4-dimethylaminophenyl ketoxime	$\mathrm{C_6H_5CH_2CONHC_6H_4N(CH_3)_2-4}$	$C_6H_5SO_2Cl$, aq. NaOH	390	EME
	2-Chlorobenzyl 4-dimethylamino- phenyl ketoxime	$2\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}\mathrm{CONHC}_{6}\mathrm{H}_{4}\mathrm{N}(\mathrm{CH}_{3})_{2}\text{-}4$	PCl_5 , $(C_2H_5)_2O$	390	NT
	С ₆ H ₅ SCH ₂ CC ₆ H ₃ (ОСН ₃)₂-3,4 ∥ NOH	Two amides		395	

|| The amide was hydrolyzed to the product(s) without prior isolation.

79

TABLE II—Continued

ALIPHATIC AROMATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C16	Methyl 4'-ethyl-p-xenyl ketoxime	4'-Ethyl-p-xenylacetamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	396	
(continued)	Methyl 1-anthryl ketoxime	l-Aminoanthracene (20) and 1-car- boxyanthracene	PCl_5, C_6H_6	79	
	Methyl 1-phenanthryl ketoxime	N-1-Phenanthrylacetamide (71) and N-methyl-1-phenanthramide	PCl_5, C_6H_6	96	
	Methyl 2-phenanthryl ketoxime	N-2-Phenanthrylacetamide (81) and N-methyl-2-phenanthramide (1)	PCl ₅ , C ₆ H ₆	96	0110
	Methyl 3-phenanthryl ketoxime	N-3-Phenanthrylacetamide (87) and N-methyl-3-phenanthramide (2)	PCl ₅ , C ₈ H ₈	96	
	Methyl 9-phenanthryl ketoxime	N-9-Phenanthrylacetamide (50) and N-methyl-9-phenanthramide (6)	PCl ₅ , C ₆ H ₆	96	
	Styryl o-anisyl ketoxime	N-o-Anisylcinnamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	87	2
		Sulfonation products	H_2SO_4	87	È
	Styryl <i>m</i> -anisyl ketoxime	N-m-Anisylcinnamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	87	Ç
	Styryl <i>p</i> -anisyl ketoxime	N-p-Anisylcinnamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	87, 391	ŧ
	o-Methoxystyryl phenyl ketoxime	o-Methoxycinnamanilide	PCl_5 , $(C_2H_5)_2O$	87	
		Sulfonation Products	H_2SO_4	87	
	<i>m</i> -Methoxystyryl phenyl ketoxime	<i>m</i> -Methoxycinnamanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	87	
		Sulfonation products	H_2SO_4	87	
	β -Methylstyryl phenyl ketoxime	β -Methylcinnamanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	397	
	Phenyl α-phenyl-α-methylethyl ketoxime	.2-Phenylpropylene and benzonitrile	SOCI ₂ , C ₆ H ₆	90	
		$C_6H_5C(CH_3)_2CONHC_6H_5$ (80)	HCl, CH ₃ CO ₂ H	90	
	α-Bromostyryl <i>p</i> -anisyl ketoxime	β -Bromocinnamic acid aniside	$PCl_{5}, (C_{2}H_{5})_{2}O$	391	
	β -Bromostyryl p -anisyl ketoxime	p-Anisic acid	PCl_5 , $(C_2H_5)_2O$	ર91	

ORGANIC REACTIONS

C ₁₇	4-Methoxybenzyl 3,4-dimethoxy- phenyl ketoxime	No reaction	PCl_5 , $(C_2H_5)_2O$, C_6H_6	398	
	4-Methyl-9-acetyl-1,2,3,4-tetra- hydrophenanthrene oxime	4-Methyl-9-(N-acetylamino)-1,2,3,4- tetrahydrophenanthrene (63)		378	
	7-Acetyl-9-methyl-1,2,3,4-tetra- hydrophenanthrene oxime	7-(N-Acetylamino)-9-methyl-1,2,3,4- tetrahydrophenanthrene		378	
	syn-Styryl p-phenetyl ketoxime	N-p-Phenetylcinnamamide	$H_{2}SO_{4}$	399	
	OH CH ₂ C(==NOH)C ₆ H ₅	2-Hydroxyapocamphane l-acetani- lide (28), camphenecarboxanilide (10), 2-hydroxyapocamphone-l acetic acid	PCl_5 , $(C_2H_5)_2O$	400	THE BECK
C ₁₈	3,4(CH ₃ O) ₂ C ₆ H ₃ SCH ₂ - CC ₆ H ₃ (OCH ₃) ₂ -2,4 ∥ NOH	Two unidentified products		395	BECKMANN RE
	9,14-Benz-12-acetylacenaphthene oxime	9,14-Benz-12-acetamido- acenaphthene	$PCl_{5}, (C_{2}H_{5})_{2}O$	401	ARR.
	7-Ethyl-9-acetyl-1,2,3,4-tetrahydro- phenanthrene oxime	Unidentified product		378	ANGI
	2-Chloro-3-acetyl-9,10-dimethyl- anthracene oxime	2-Chloro-3-amino-9,10-dimethyl- anthracene	H_2SO_4	402	REARRANGEMENT
	l-Chloro-4-acetyl-9,10-dimethyl- anthracene oxime	l-Chloro-4-amino-9,10-dimethyl- anthracene	H ₂ SO ₄	402	T

|[The amide was hydrolyzed to the product(s) without prior isolation.

81

TABLE II—Continued

ALIPHATIC AROMATIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₁₉	2,9,10-Trimethyl-3-acetylanthracene oxime	2-Methyl-3-amino-9,10-dimethyl- anthracene	H_2SO_4	402	
	p-CH ₃ C ₆ H ₄ C(CH ₃) ₂ CH ₂ (=NOH)- C ₆ H ₄ CH ₃ - p	$p-\mathrm{CH}_{3}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{C}(\mathrm{CH}_{3})_{2}\mathrm{CONHC}_{6}\mathrm{H}_{4}\mathrm{CH}_{3}-p$ (87)	PCl_5 , $(C_2H_5)_2O$	588	
C_{20}	6-Acetylchrysene oxime	6-(N-Acetylamino)chrysene (96)	PCl_5 , $(C_2H_5)_2O$	403	
20	1-Methyl-2-acetyl-7-isopropyl- phenanthrene oxime	l-Methyl-2-acetamido-7-isopropyl- phenanthrene (95)	PCl_5 , $(C_2H_5)_2O$	587	0
	6-Propionylchrysene oxime	6-(N-Propionylamino)chrysene	$PCl_{5}, (C_{2}H_{5})_{2}O$	403	RG
	β,β -Diphenylethyl phenyl ketoxime	β,β -Diphenylpropionanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	404	AI
	Benzaldesoxybenzoin oxime	Benzoic acid and benzyl phenyl ketone	PCl_5 , $(C_2H_5)_2O$	70	ORGANIC I
		Unidentified product	H_2SO_4	70	Ē
	β -Phenylbenzalacetophenone oxime	β -Phenylcinnamanilide (100)	$PCl_{5}, (C_{2}H_{5})_{2}O$	70	AC
		3-Phenyl-5,5-diphenylisoxazoline	H_2SO_4	70	Ë
C ₂₂	3-Bromoacetylhexosterol dimethyl ether oxime	3-Bromoacetamidohexosterol dimethyl ether	$PCl_{5}, (C_{2}H_{5})_{2}O$	405	REACTIONS
	3-Acetylhexosterol dimethyl ether oxime	3-Acetamidohexosterol dimethyl ether (80)	PCl ₅ , (C ₂ H ₅) ₂ O	405	
C ₂₃	3-n-Propionylhexosterol dimethyl ether oxime	3-Propionamidohexosterol dimethyl ether	PCl_5 , $(C_2H_5)_2O$	405	
C ₂₄	3-n-Butyrylhexosterol dimethyl ether oxime	3-Butyramidohexosterol dimethyl ether	PCl ₅ , (C ₂ H ₅) ₂ O	405	
C ₂₉	3-n-Pelargonylhexosterol dimethyl ether oxime	3-n-Pelargonamidohexosterol dimethyl ether	$PCl_{5}, (C_{2}H_{5})_{2}O$	405	

Note: References 338 to 593 are on pp. 152-156.

|| The amide was hydrolyzed to the product(s) without prior isolation.

TABLE III

		DIARYL KETOXIMES	
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- References mental Conditions
C ₁₃	Benzophenone oxime	Benzanilide (100,84)	PCl ₅ , (C ₂ H ₅) ₂ O; PCl ₅ , 104, 411 then H ₂ O
		Benzanilide	PCl_5 ; $POCl_4$ 406
		Benzanilide (quant.)	
		Benzanilide (72)	Polyphosphoric acid 123 HF, CH_3CO_2H 104
		Benzanilide	HCI: HBr 102
		Benzanilide (quant.)	HI 102 E
		Benzanilide	HCl, xylene 102
		Benzanilide (quant.)	HI 102 E HCl, xylene 102 E HCl, CH ₃ CO ₂ H, 100 M (CH ₃ CO) ₂ O Z Z HaSO ₄ : CH ₅ COCl: 1.95, 100, 105, Z Z
		Benzanilide	H_2SO_4 ; CH_3COCI ; 1, 95, 100, 105, Ξ
			$\begin{array}{c} C_{6}H_{5}SO_{2}Cl \text{ or } 244 \\ p-CH_{3}C_{6}H_{4}SO_{2}Cl, \\ aq. NaOH \\ CH_{3}COCl \text{ or } ClCH_{2}COCl, 17 \\ CHCl_{3} \\ CF_{3}CO_{2}H \\ BF_{3}, CH_{3}CO_{2}H \\ BF_{3}, (C_{2}H_{5})_{2}O \\ BF_{3}, (C_{2}H_{5})_{2}O \\ \end{array}$
		Benzanilide (50–90)	CH ₃ COCl or ClCH ₂ COCl, 17
		Benzanilide (88)	CF ₃ CO ₂ H 409
		Benzanilide (70–96)	BF_3 , CH_3CO_2H 19
		Benzanilide	BF_{3} , $(C_{2}H_{5})_{2}O$ 384 Z
		Benzanilide (20)	Benzophenone oxime 408 H hydrochloride
		Benzanilide (48)*	Picric acid, CH ₃ NO ₂ 22
		Benzanilide	Various metal halides† 68, 99
Notes D			• •

Note: References 338 to 593 are on pp. 152-156.

* The phenylbenzimino picrate formed was hydrolyzed to the product.

† The oxides and halides used, the conditions and yields when given follow: KCl at 150–160°, 33%; MgCl₂ at 170°, 33%; $ZnCl_2$ at 120–130°, 86%; AlCl₃ at 100–110°, 86%; FeCl₂ at 165–170°, 66%; FeCl₃, 60%; HgCl, 70%; HgCl₂, 86%; SbCl₃, 80%.

TABLE III—Continued

DIARYL KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₁₃	Benzophenone oxime (continued)	Benzanilide	Al ₂ O ₃	410	
(continued)		Benzanilide and N,N'-diphenylbenz- amidine	$SOCi_2$, $(C_2H_5)_2O$	80	
		$\begin{array}{c} C_6H_5CH_2CH_2C_6H_5, \ C_6H_5C_6H_5, \\ (C_6H_5)_2CO, \ (C_6H_5)_2C=NH \end{array}$	Cu in H_2 atm. at 200°	66	
		Acetophenone and aniline	CH_3MgI , $(C_2H_5)_2O$	113	
		$CH_3CH_2COC_6H_5$ and aniline	CH ₃ CH ₂ MgI, (C ₂ H ₃) ₂ O	113	
		Diphenyltetrazole	SO ₂ Cl ₂ , then NaN ₃ in CHCl ₃	296	
		2,3-Diphenyl-5-ethyl-6-methyl-4- pyrimidone (55)	PCl_5 , $(C_2H_5)_2O$	365	
		Thiobenzanilide (92,)	$P_2S_5, CS_2; P_2S_5, C_6H_6$	107	
		$(C_{6}H_{5})_{2}C = NS_{2}P(0)OH$	P_2S_5 , $(C_2H_5)_2O$	108	
		$C_{6}H_{5}CONHC_{6}H_{4}Cl-2$ (28) and $C_{6}H_{2}CONHC_{6}H_{4}Cl-4$ (52)	$Cl_2 \cdot Br_2$, SO_2	364	
		$C_{6}H_{5}CONHC_{6}H_{4}Br-4$ (52)	Br_2 , SO_2	364	
	Benzophenone oxime hydrochloride	Benzanilide (48)	H_2O_1 (boil)	408	
	20m20pm0n0	Benzanilide (100)	ZnCl ₂ , CHCl ₃	106	
		Benzanilide (91)	Chloral (10 min. at 90°)	106	
		Benzanilide	CHCl ₃	106	
	Benzophenone oxime methyl ether	Trifluoroboron benzanilide complex (85)	BF3	412	
		Benzanilide (53)‡	BF ₃ , CH ₃ CO ₂ H	19	
		N-Phenylbenzimido methyl ether (63)‡	SbCl ₅ , C ₆ H ₅ Cl (110°)	260	
		Benzophenone oxime methyl ether hexachloroantimonateacidsalt (52)	SbCl ₅ , CHCl ₃ (wet)	260	

84

Benzophenone oxime methyl ether hexachlorostibine salt	N-Phenylbenzimino methyl ether hexachloroantimonate acid salt (72)	$SbCl_5$, C_6H_5Cl	20, 260	
	Aniline; methyl benzoate (72)	Tartaric acid, H_2O	20, 260	
N-Chlorobenzohydrylidenimine	p-Chlorobenzanilide (5)‡	SbCl ₅ , CCl ₄	21	
	Benzanilide (75)‡	SbCl ₅ , CHCl ₂ CHCl ₂ $(40-45^{\circ})$	21	
	Aniline	KOH (fuse)	106	
Benzophenone oxime acetate	Benzanilide‡	HCl (gas), CHCl ₃	105	Ц
	Benzylamine (79%) and N-phenyl- benzylamine	LiAlH ₄ , tetrahydro- furan	413	THE
	Benzanilide (70)‡	BF ₃ , CH ₃ CO ₂ H	19	BE
	Benzanilide	BF_3	19	Ğ
	Benzanilide	C ₆ H ₅ SO ₃ H	106	Â
	Benzanilide (96)	HCl (gas), CHCl ₃	106	BECKMANN
Benzophenone oxime benzenesul- fonate	Benzanilide	Aq. NaOH	244	-
	Benzanilide and benzenesulfonic acid*	CHCl ₃	12	REARRANGEMENT
	Benzanilide‡	CHCl ₃	106	R.¢
	N-Phenylbenzimino phenyl ether	C ₆ H ₅ OH, C ₆ H ₆	13	- Z
	N,N'-Diphenylbenzamidine (92)	$C_6H_5NH_2$, C_6H_6	13	GE
	N-Benzoyl-N,N'-diphenylbenz- amidine	$(C_6H_5)_2NH$	13	MEN
	N-Phenylbenzimino ethyl ether	Pyridine, C ₂ H ₅ OH	13	Ŧ
	N-Phenylbenzamidine (18)	NH_3 , C_6H_6	13	
	N-Phenyl-N,N'-dïethylbenzamidine (90)	$(C_2H_5)_2NH, C_6H_6$	13	

* The phenylbenzimino-benzenesulfonate formed was hydrolyzed to the product.

‡ The products were obtained by treating the reaction mixture with water.

680

TABLE III—Continued

		DIARYL KETOXIMES		
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C ₁₃ (continued)	Benzophenone oxime benzenesul- fonate (continued)	N'-Phenyl-N,N-pentamethylene- benzamidine (89)	Piperidine, C_6H_6	13
		N-Phenyl-N'-benzylbenzamidine (93)	C ₆ H ₅ CH ₂ NH ₂ , C ₆ H ₆	13
		N-Phenyl-N'-p-tolylbenzamidine (100)	p-H ₂ NC ₆ H ₄ CH ₃ , C ₆ H ₆	13
		N-Phenyl-N'-o-chlorophenylbenz- amidine (94)	$o\text{-}\mathrm{H_2NC_6H_4Cl}, \mathrm{C_6H_6}$	13
		N-Phenyl-N'-p-chlorophenylbenza- amidine (96)	p-H ₂ NC ₆ H ₄ Cl, C ₆ H ₆	13
		N,N,N'-Triphenylbenzamidine (83)	Aniline, C ₆ H ₆	13
		N-Phenyl-N'-2-pyridylbenzamidine (20)	Pyridine, C ₆ H ₆	13
	Benzophenone oxime <i>p</i> -toluenesul- fonate	Benzanilide	Aq. NaOH	244
	Benzophenone oxime picryl ether	N-(2,4,6-Trinitrophenyl)benzanilide	Acetone	414
		Benzanilide (50)	Aq. acetone	13
	Benzophenone oxime β -naphthalene- sulfonate	Benzanilide	Aq. NaOH	244
	Benzophenone oxime α-phenylimido- benzyl ether	Benzanilide (100)	Conc. HCl	2 2
	•	Benzanilide (45)	HC1, (C,H,),O	22
		Benzoyl-s-diphenylbenzylamidine	H_2SO_4 , $(C_2H_5)_2O$	22
	Benzophenone oxime diphenylphos- phorochloridate	Benzanilide	Al ₂ O ₃	410
	Benzophenone	Benzanilide (91)	Polyphosphoric acid, CH ₃ NO ₂	415

86

-	2-Chlorobenzanilide and aniline	$PCl_{5}, (C_{2}H_{5})_{2}O$	101
	2-Chlorobenzophenone	18% HCl	91
4-Chlorobenzophenone oxime	Benzoic acid (44%) and 4-chloro- benzoic acid (56%)‡	PCl_5, C_6H_6	79
	$p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{C}(\mathrm{Cl})=\mathrm{NC}_{6}\mathrm{H}_{5}$	$PCl_{5}, (C_{2}H_{5})_{2}O$	81
	4-Chlorobenzanilide	HCl (gas), $(CH_3CO)_2O$, CH ₃ CO ₂ H; H ₂ SO ₄	81
4,4'-Dichlorobenzophenone oxime	4,4'-Dichlorobenzanilide		416
2-Bromobenzophenone oxime	2-Bromobenzanilide (100)	$PCl_{5}, (C_{2}H_{5})_{2}O$	101
	2-Bromobenzophenone	18% HCl	91
2-Nitrobenzophenone oxime	2-Nitrobenzophenone	18% HCl	91
syn-4-Nitrobenzophenone oxime	4-Nitrobenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	417
	4-Nitrobenzanilide (94)	$POCl_3$, $(C_2H_5)_2O$	418
anti-4-Nitrobenzophenone oxime	4'-Nitrobenzanilide (90)	POCl ₃	418
	4'-Nitrobenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	417, 419
2-Hydroxybenzophenone oxime	Salicylanilide (62)	$PCl_{5}, (C_{2}H_{5})_{2}O$	101
syn-2-Hydroxybenzophenone oxime	Salicylanilide (45, –)	$PCl_{5}, (C_{2}H_{5})_{2}O$	114
anti-2-Hydroxybenzophenone oxime	2'-Hydroxybenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	114
	2-Phenylbenzoxazole (42) and o-aminophenol	$PCi_{5} (C_2H_5)_2O$	114
syn-4-Hydroxybenzophenone oxime	4-Hydroxybenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	7
anti-4-Hydroxybenzophenone oxime	4'-Hydroxybenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	7
2-Aminobenzophenone oxime	2-Aminobenzanilide	$PCi_{5}, (C_{2}H_{5})_{2}O$	101
syn-2-Aminobenzophenone oxime	2-Phenyl-4,5-benzimidazole	HCl, C ₂ H ₅ OH	115
anti-2-Aminobenzophenone oxime	2-Phenyl-4,5-benzimidazole	HCl, C ₂ H ₅ OH	115
2-Chloro-5-nitrobenzophenone oxime	2-Chloro-5-nitrobenzanilide (63) and $C_{13}H_{10}O_6N_2PCl \cdot H_2O$	PCl_5 , $(C_2H_5)_2O$	230
2-Bromo-5-nitrobenzophenone oxime	2-Bromo-5-nitrobenzanilide (77) and $C_{13}H_{10}O_6N_2PBr$ (14)	PCl_5 , $(C_2H_5)_2O$	230

‡ The products were obtained by treating the reaction mixture with water.

87

TABLE III—Continued

		DIARYL KETOXIMES		
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi-	References
C13	Fluorenone oxime	Phenanthridone (84)	PCl ₅ , POCl ₃	110
(continued)	Fluorenone	Phenanthridone (67)	Polyphosphoric acid, CH ₃ NO ₂	415
	2-Nitrofluorenone oxime	9-Aza-10-chloro-2-nitrophenanthrene (16) and 2-nitrofluorenone-9-imino chloride (84)	PCl ₅ , POCl ₃	110
		9-Aza-10-chloro-2-nitrophenanthrene (58) and 10-aza-9-chloro-2-nitro- phenanthrene (29)	PCl ₅ , POCl ₃	111
	3-Nitrofluorenone oxime	10-Aza-9-oxo-3-nitro-9,10-dihydro- phenanthrene (87)	PCl ₅ , POCl ₃	111
C ₁₄	2-Methylbenzophenone oxime	o-ToIuic acid (77) and benzoic acid (23) [†]	PCl_5, C_6H_6	7, 79
	3-Methylbenzophenone oxime	<i>m</i> -Toluic acid (50) and benzoic acid (50)‡	PCl ₅ , C ₆ H ₆	79
	4-Methylbenzophenone oxime	4-CH ₃ C ₆ H ₄ CONHC ₆ H ₅	PCl ₅ , $(C_2H_5)_2O$; HCl CH ₃ CO ₂ H, $(CH_3CO)_2O$	81)
		<i>p</i> -Toluic acid (52) and benzoic acid (48) [†]	PCl ₅ , C ₆ H ₆	79
		$C_{e}H_{s}CONHC_{6}H_{4}CH_{3}-4$ (100)	PCl_5, C_6H_6	97
		C ₆ H ₅ CONHC ₆ H ₄ CH ₃ -4	C ₆ H ₅ COCl, C ₆ H ₆ ; CH ₃ COCl; (CH ₃ CO) ₂ C POCl ₃	97);
		4-CH ₃ C ₆ H ₄ CONHC ₆ H ₅ and C ₆ H ₅ CONHC ₆ H ₄ CH ₃ -4	$PCl_{5}, (C_{2}H_{5})_{2}O$	97

88

	4-Methoxybenzophenone oxime	Benzoic acid (51) and 4-methoxy- benzoic acid (49) [†]	PCl ₅ , C ₆ H ₆	97	
	2-Carboxybenzophenone oxime	Phthalanilide	H_2SO_4	101	
	2'-Carboxy-4'-hydroxybenzophenone oxime	4-Hydroxyphthalanilide	None given	583	
	anti-Phenyl 2-hydroxy-5-methyl- phenyl ketoxime	2-Hydroxy-5-methylbenzanilide and/ or 5-methyl-2-phenylbenzoxazole	$PCl_{5}, (C_{2}H_{5})_{2}O$	8, 584	
	syn-3-Bromo-4-methoxybenzo- phenone oxime	3-Bromo-4-methoxybenzanilide	PCl_5 , $(C_2H_5)_2O$	323	THE
	anti-3-Bromo-4-methoxybenzo- phenone oxime	3'-Bromo-4'-methoxybenzanilide	PCl_5 , $(C_2H_5)_2O$	323	
	syn-3-Iodo-4-methoxybenzophenone oxime	3-Iodo-4-methoxybenzanilide	PCl_5 , $(C_2H_5)_2O$	323	BECKMANN
	anti-3-Iodo-4-methoxybenzophenone oxime	3'-Iodo-4'-methoxybenzanilide	PCl_5 , $(C_2H_5)_2O$	323	ANN
	syn-3-Nitro-4-methoxybenzophenone oxime	3-Nitro-4-methoxybenzanilide	PCl_5 , $(C_2H_5)_2O$	323	REA
	2-Methoxy-5-nitrobenzophenone oxime	2-Methoxy-5-nitrobenzanilide	PCl_5 , $(C_2H_5)_2O$	230	RRA
	2-Bromo-2'-hydroxy-5'-methyl-5- nitrobenzophenone oxime	Unidentified product	PCl_5 , $(C_2H_5)_2O$	420	NGE
	syn-3,5-Dichloro-4-methoxybenzo- phenone oxime	$3, 5\text{-} {\rm Dichloro-4}\text{-} {\rm methoxy benzanilide}$	PCl_5 , $(C_2H_5)_2O$	323	REARRANGEMENT
C ₁₅	syn-4-Ethylbenzophenone oxime	4-Ethylbenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	7	H
10	anti-4-Ethylbenzophenone oxime	4'-Ethylbenzanilide (100)	$PCl_{5}, (C_{2}H_{5})_{2}O$	7	
	4-Ethoxybenzophenone oxime	4- and 4'-Ethoxybenzanilide	SOCl ₂	80	
	syn-4-Ethoxybenzophenone oxime	4-Ethoxybenzanilide (90)	$SOCl_{2}, (C_{2}H_{5})_{2}O$	80	
	anti-4-Ethoxybenzophenone oxime	4'-Ethoxybenzanilide	SOCl ₂	80	
Note: R	eferences 338 to 593 are on pp. 152-156	3.			

‡ The products were obtained by treating the reaction mixture with water.

68

TABLE III—Continued

DIARYL KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C ₁₅ (continued)	4-Dimethylaminobenzophenone oxime	Benzanilide and <i>p</i> -dimethylamino- aniline (75)	PCl ₅ , C ₂ H ₅ OH	421
	syn-4-Dimethylaminobenzophenone oxime	4-(Dimethylamino)benzanilide (75)	PCl ₅ , CHCl ₃	422
	anti-4-Dimethylaminobenzophenone oxime	4'-(Dimethylamino)benzanilide (80)	PCl ₅ , CHCl ₃	422
	2,4-Dimethylbenzophenone oxime	2,4-Dimethylbenzanilide (34)	H ₂ SO ₄ , CH ₃ CO ₂ H	117
		2,4-Dimethylbenzophenone	18% HCl	91
	anti-2,4-Dimethylbenzophenone	2,4-Dimethylbenzanilide and	PCl_{5} , $(C_{2}H_{5})_{2}O;$	7
	oxime	2',4'-dimethylbenzanilide	CH ₃ COCl (room temp.)	
		2',4'-Dimethylbenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O(-20^{\circ})$	7
	syn-2,4-Dimethylbenzophenone oxime	2,4-Dimethylbenzanilide	PCl_5 , $(C_2H_5)_2O$	7
	2,4'-Dimethylbenzophenone oxime	2,4'-Dimethylbenzanilide		423
	2,5-Dimethylbenzophenone oxime	2,5-Dimethylbenzophenone and methylaniline	18% HCl	91
	4,4'-Dimethylbenzophenone oxime	2,3-Di-p-tolyl-5-ethyl-6-methyl-4- pyrimidone (60)§	$PCl_{5}, (C_{2}H_{5})_{2}O$	365
	syn-2,4-Dimethoxybenzophenone oxime	2,4-Dimethoxybenzoic acid	H_2SO_4	9
	anti-2,4-Dimethoxybenzophenone oxime	Benzoic acid	H_2SO_4	9
	4,4'-Dimethoxybenzophenone oxime	4,4'-Dimethoxybenzanilide	Polyphosphoric acid; PCl ₅ , $(C_2H_5)_2O$	123 424

ORGANIC REACTIONS

	2-Hydroxy-3,5-dimethylbenzo- phenone oxime	2-Phenyl-5,7-dimethylbenzoxazole (34)	PCl ₅ , (C ₂ H ₅) ₂ O	420
	3-Hydroxy-4,6-dimethylbenzo- phenone oxime	3'-Hydroxy-2',4'-dimethylbenzanilide and trace of 3-hydroxy-2,4-di- methylbenzanilide	CH ₃ COCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	420
	2-Bromo-2'-methoxy-5'-methyl- benzophenone oxime	2-Bromo-2'-methoxy-5'-methyl benzanilide	PCl ₅ , CHCl ₃	420
C ₁₆	syn-4-n-Propylbenzophenone oxime	4-n-Propylbenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	7
	anti-4-n-Propylbenzophenone oxime	4'-n-Propylbenzanilide	PCl_5 , $(C_2H_5)_2O$	7
	syn-4-Isopropylbenzophenone oxime	4-Isopropylbenzanilide (100)	$PCl_{5}, (C_{2}H_{5})_{2}O$	7
	anti-4-Isopropylbenzophenone oxime	4- and 4'-Isopropylbenzanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	7
	syn-3-Methoxy-4,6-dimethylbenzo- phenone oxime	3-Methoxy-4,6-dimethylbenzanilide (100)	PCl_5 , $(C_2H_5)_2O$	420
	2-Carboxy-2',4'-dimethylbenzo- phenone oxime	Phthalic acid and 2,4-xylidine	H_2SO_4	101
	2,2',4'-Trimethylbenzophenone	2,2',4'-Trimethylbenzanilide and 2,4,2'-trimethylbenzanilide	Aq. NH ₂ OH·HCl	7
	2, 4, 6-Trimethylbenzophenone	2,4,6- and 2',4',6'-Trimethylbenz- anilide	Aq. H ₂ NOH · HCl	7
	2,4,6-Trimethylbenzophenone oxime	2',4',6'-Trimethylbenzanilide (94)	BF ₃ , CH ₃ CO ₂ H; PCl ₅	264
	5-Hydrindenyl phenyl ketoxime	5-Hydrindanilide	HCl, $(CH_3CO_2)O$, CH_3CO_2H	386
	2,2',4,4'-Tetramethoxybenzophenone oxime	2,2',4,4'-Tetramethoxybenzanilide	PCl_5 , $(C_2H_5)_2O$	9
C ₁₇	syn-3-Ethoxy-4,6-dimethylbenzo- phenone oxime	3-Hydroxy-4,6-dimethylbenzoic acid (100) and aniline (100)	CH ₃ COCl, (CH ₅ CO) ₂ O, CH ₃ CO ₂ H	420
	syn-Phenyl 1-naphthyl ketoxime	N-1'-Naphthylbenzamide	P_2O_5 , $(C_2H_5)_2O$	425

 The amide was not isolated. The intermediate chlorimide was treated with an α -alkyl- β -aminocrotonate ester to yield the 4-pyrimidone. || The 5-methyl derivative can be prepared by analogous reaction.

TABLE III—Continued

		DIARYL KETOXIMES			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental conditions	References	
C ₁₇ (continued)	anti-Phenyl 1-naphthyl ketoxime syn-Phenyl 2-naphthyl ketoxime anti-Phenyl 2-naphthyl ketoxime syn-2-(5,6,7,8-Tetrahydronaphthyl)	1-Naphthanilide N-2'-Naphthylbenzamide 2-Naphthanilide 2(5,6,7,8-Tetrahydronaphth)anilide	P_2O_5 , $(C_2H_5)_2O$ PCl_5 , $(C_2H_5)_2O$ PCl_5 , $(C_2H_5)_2O$	425 426 426 381	
	phenyl ketoxime anti-2-(5,6,7,8-Tetrahydronaphthyl) phenyl ketoxime	N-2-(5,6,7,8-Tetrahydronaphthyl)- benzamide		381	ОK
	meso-Benzanthrone	8-(o-Carboxyphenyl)-1-naphthyl- amine	PCl ₅ , POCl ₃	427	ORGANJ
	4,4'-Bis(dimethylamino)benzo- phenone	4,4'-Bis(dimethylamino)benzanilide	NH2OH·HCl, C2H5OH	109, 428	IC RI
	4,4'-Bis(dimethylamino)thiobenzo- phenone	4,4'-Bis(dimethylamino)benzanilide	NH ₂ OH·HCl, C ₂ H ₅ OH	428, 429	SACT
	4,4'-Bis(dimethylamino)benzo- phenone oxime	4,4'-Bis(dimethylamino)benzanilide (85, 61)	SOCI ₂ , CCI ₄	109, 428	TONS
C ₁₈	4- <i>t</i> -Butyl-4'-methylbenzophenone	4'-t-Butyl-4-methylbenzanilide	PCl ₅ , C ₆ H ₆	430	υ.
C ₁₉	Dimesityl ketimine	2,2'4,4',6,6'-Hexamethylbenzanilide	H ₂ O ₂ , CH ₃ CO ₂ H	264	
19	5,5'-Diindanyl ketoxime	N'-5'-Indanyl-5-indancarboxylic acid amide	$PCl_{\mathfrak{z}}, (C_2H_{\mathfrak{z}})_2O$	376	
	p-Xenyl phenyl ketoxime	Biphenyl-4-carboxylic acid (51) and benzoic acid (49)‡	PCl_5 , C_6H_6	79	
	syn-p-Xenyl phenyl ketoxime	4-Phenylbenzanilide (100)	PCl ₅ , C ₆ H ₆	79	
	anti-p-Xenyl phenyl ketoxime	N-p-Xenylbenzamide (100)	PCI_5, C_6H_6	79	
C ₂₀	p-Xenyl o-tolyl ketoxime	Biphenyl-4-carboxylic acid (34) and o-toluic acid (64) ⁺	PCl_5, C_6H_6	79	

92

91

THE BECKMANN REARRANGEMENT

	p-Xenyl m-tolyl ketoxime	<i>m</i> -Toluic acid (47) and <i>p</i> -phenyl- benzoic acid $(53)^+_{\pm}$	PCl_5, C_6H_6	79	
	p-Xenyl p-tolyl ketoxime	<i>p</i> -Toluic acid (34) and <i>p</i> -phenyl- benzoic acid (53) [‡]	PCl ₅ , C ₆ H ₆	79	
	2-(p-Nitrobenzoyl)benzophenone oxime	2-(p-Nitrobenzoyl)benzanilide (50)		431	
C_{21}	4,4'-Di-t-butylbenzophenone oxime	4,4'-Di- <i>t</i> -butylbenzanilide	PCl_5, C_6H_6	430	
	4,4'-Bis(diethylamino)benzophenone	4,4'-Bis(diethylamino)benzanilide	NH ₂ OH · HCl, C ₂ H ₅ OH	432	
	Di-1-naphthyl ketoxime	N-1'-Naphthyl-1-naphthamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	433	THE
	Di-2-naphthyl ketoxime	N-2'-Naphthyl-2-naphthamide	PCl_5 , $(C_2H_5)_2O$	433	ΞE
	2-Naphthyl 1-naphthyl ketoxime	N-2'-Naphthyl-1-naphthamide	$PCl_{5}, (C_{2}H_{5})_{2}O$	433	в
	1-Phenanthryl phenyl ketoxime	N-1-Phenanthrylbenzamide (18) and N-phenyl-1-phenanthramide (82)	PCl_5, C_6H_6	96	BECKMANN
	2-Phenanthryl phenyl ketoxime	N-2-Phenanthrylbenzamide (44) and N-phenyl-2-phenanthramide (56)	PCl_5, C_6H_6	96	MAN
	3-Phenanthryl phenyl ketoxime	N-3-Phenanthrylbenzamide (37) and N-phenyl-3-phenanthramide (63)	PCl_5, C_6H_6	96	
	9-Phenanthryl phenyl ketoxime	N-9-Phenanthrylbenzamide (4) and N-phenyl-9-phenanthramide (96)	PCl_5, C_6H_6	96	LARR.
	l-Benzoylanthraquinone oxime		H ₂ SO ₄ , CH ₃ CO ₂ H	117, 118	REARRANGEMENT

 \ddagger The products were obtained by treating the reaction mixture with water.

93

94

TABLE III—Continued

		DIARYL KETOXIMES			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C_{21} (continued)	l-Benzoylanthraquinone oxime (continued)	Anthraquinone-l-carboxylic acid (55), anthraquinone-l-carbox- anilide (35), and trace of C ₂₁ H ₁₁ ON	Aq. HCl	117-119	
C ₂₂	2-Methyl-1-benzoylanthraquinone oxime	2-Methylanthraquinone-l-carboxylic acid	H ₂ SO ₄ , CH ₃ CO ₂ H	117119	
	p-Toluylanthraquinone oxime	(50)	H ₂ SO ₄ , CH ₃ CO ₂ H	117-119	ORGANIC REACTIONS
C23	l-(2,4-Dimethylbenzoyl)- anthraquinone oxime	(50)	H ₂ SO ₄ , CH ₃ CO ₂ H	117119	

		3,4-Dimethylanthraquinone-1-car- boxanilide (small)	HCl, C ₂ H ₅ OH	117–119	
	l-(2,5-Dimethylbenzoyl)- anthraquinone oxime	(50)	H2SO4, CH3CO2H	117–119	THE BECKMANN
C24	Mesitoylanthraquinone oxime	Starting material (50)	H ₂ SO ₄ , CH ₃ CO ₂ H	117-119	IAN
	2-Methyl-1-(2,4-dimethylbenzoyl)- anthraquinone oxime	2-Methylanthraquinone-1-carboxylic acid (trace)	H_2SO_4 , CH_3CO_2H	117-119	
	•	2,2',4'-Trimethylanthraquinone-1- carboxanilide	HCl, C ₂ H ₅ OH	117-119	EARI
	2-Methyl-1-(2,5-dimethylbenzoyl)- anthraquinone oxime	2-Methylanthraquinone-1-carboxylic acid (trace)	H_2SO_4 , CH_3CO_2H	117–119	REARRANGEMENT
C_{25}	<i>m</i> -Terphenylyl phenyl ketoxime	N-m-Terphenylylbenzamide (50)	$PCl_{5}, (C_{2}H_{5})_{2}O$	434	1

TABLE IV

		ALICYCLIC KETOXIMES			
No. of C Atoms	Starting Material	Products (% Yield).	Catalysts and Experi- mental Conditions	References	
C ₅	Cyclopentanone oxime	 δ-Valerolactam (60, 98, 92) δ-Valerolactam (94) δ-Valerolactam (53) δ-Valerolactam δ-Valerolactam δ-Valerolactam (82) δ-Valerolactam (82) δ-Valerolactam (82) δ-Valerolactam (74) δ-Valerolactam (47) δ-Valerolactam (37) δ-Valerolactam (74) 5-Benzamidovaleric acid (71) 	$\begin{array}{c} H_{2}SO_{4} \\ 92\% \ H_{2}SO_{4}^{*} \\ 90\% \ H_{2}SO_{4} \\ 80-90\% \ H_{2}SO_{4} ; \ 80\% \\ H_{2}SO_{4} \\ H_{2}SO_{4} \\ H_{2}SO_{4} \cdot 3H_{2}SO_{4} \\ Aq. \ H_{2}SO_{4} \cdot 3H_{2}SO_{4} \\ Aq. \ H_{2}SO_{4} \cdot GH_{3}CO_{2}H \\ H_{2}SO_{4} , \ CH_{3}CH_{2}CO_{2}H \\ H_{2}SO_{4} , \ fatty \ acids \\ Metaphosphoric \ acid ; \\ 270^{\circ}\$ \\ Polyphosphoric \ acid \\ SOCl_{2}, \ CHCl_{3} \\ Br_{2}, \ SO_{2} \\ HF \\ H_{2}SO_{4}, \ then \ NaOH \\ and \ C_{6}H_{5}COCl \\ \\ NH_{3} \end{array}$	$\begin{array}{c} 462 \\ 441 \\ 140 \\ 138 \\ 137 \\ 439 \\ 125 \\ 123 \\ 440 \\ 364 \\ 83, 126 \end{array}$	ORGANIC REACTIONS
		(57)	C ₆ H ₅ NH ₂	13	

	Tetramethylenetetrazole	H_2SO_4 , NaN ₃ ; CHCl ₃ , ClSO ₃ H, NaN ₃	248
Cyclopentanone oxime sulfonate	Tar	Aq. HCl, dioxane	60
Cyclopentanone oxime benzenesul- fonate	δ -Valerolactam (93)	Dibenzyl hydrogen phosphate;	338
		$(C_2H_5)_3N$, CH_3NO_2	
	C-OPCH ₂ C ₆ H ₅		
Cyclopentanone oxime p-nitroben-	(CH ₂) ₅ OCH ₂ C ₆ H ₅	$(C_6H_5CH_2O)_2PO_2NH_4,$	58
zenesulfonate	N ⁿ N	C ₂ H ₅ NO ₂ or CH ₃ CN	
	δ -Valerolactam (99)	CH ₃ CN, CHCl ₁ †	442
Cyclopentanone	δ -Valerolactam (100)	H ₂ SO ₄ ,	121
		$(\mathrm{NH}_{2}\mathrm{OH})_{2} \cdot \mathrm{H}_{2}\mathrm{SO}_{4}$	141
	δ -Valerolactam (81)	(1) (1)	168
Nitrocyclopentane	δ -Valerolactam	H,SO, CH,NO,	443
2-Methylcyclopentanone oxime	5-Methyl-5-valerolactam $(61-76\%)$	75% ILSO	444
3-Methylcyclopentanone oxime	β - and γ -Picoline, pentenonitrile	P_2O_5	147
	3-Methyl-5-valerolactam and 4- methyl-5-valerolactam	80% H ₂ SO ₄	65, 445

Note: References 338 to 593 are on pp. 152-156.

* Special equipment or procedure was employed.
† Dibenzyl hydrogen phosphate and selected amines and solvents gave similar results.
‡ Substituted lactams are named according to the following system: 2-methyl-5-valerolactam is

 $\begin{array}{c} \begin{array}{c} \text{NH} \\ \text{H}_2\text{C}_5 & \stackrel{6}{1}\text{CO} \\ \text{H}_2\text{C}_4 & \stackrel{3}{3} & \stackrel{2}{2}\text{CHCH}_3 \\ \text{CH}_2 \end{array}$

 \S . This reaction was run in the vapor phase under reduced pressure.

THE BECKMANN REARRANGEMENT

ALICYCLIC KETOXIMES		
Products (% Yield)	Catalysts and Experi-	References
€-Caprolactam (41)	K ₂ S ₂ O ₇ , pumice, H ₂ §	164
e-Caprolactam (60)	KHSO4, pumice, vacuum§	453
-Caprolactam (95)	$ClSO_3H$, alone or with SO_3	456
ϵ -Caprolactam (45)	SO ₃ or SOCl ₂ ; SO ₂	128, 342
€-Caprolactam (50–60)	SOCl ₂ , SO ₂	463
•	SOCl ₂ alone or with CHCl ₃	54
ϵ -Caprolactam (93)	C ₆ H ₅ SO ₂ Cl, aq. NaOH	$257,446\ 457$
€-Caprolactam	$CH_3SO_2Cl \text{ or}$ $p-CH_3C_6H_4SO_2Cl,$ aq. NaOH	457
€-Caprolactam (67, 46)	HF	83, 126
e-Caprolactam (92)	Anhydrous HF	458
(82-87)	$CF_{3}CO_{2}H$	82
€-Caprolactam (85)	70% HClO4, CH3CO2H	135
«-Caprolactam	89% H ₃ PO ₄ , C ₆ H ₆ , o CHCl ₃	r 54
€-Caprolactam (85)	Orthophosphoric acid §	125, 133
e-Caprolactam (89)	Polyphosphoric acid	123
-Caprolactam (85)	$NaHSO_4, H_3PO_4, poly-phosphoric acid,H_4P_2O_7§$	127

ϵ -Caprolactam (50–60)	P ₂ O ₅ , POCl ₃ , PCl ₃ , PBr ₃ , SOCl ₂	463
ϵ -Caprolactam (56–79)	$B_{2}O_{3}$ (21.5–36.5% on $Al_{2}O_{3}$)	148
«-Caprolactam (41)	BPO_4 , H_2 , NH_3	164
«-Caprolactam	NH ₃ , SiO ₂ , 200-500°	146
«-Aminocaproic acid (88)	70% H ₂ SO ₄	120
€-Caprolactam(70–98)	H ₂ SO ₄ *	15 455 149
·····	24	124, 464, H 465 441 E
		465, 441, E
«-Caprolactam (59–99)	H_2SO_4	142, 445 BE 65, 447, CK 439, 142, M 460, 445, A 438, 449 N
	112004	439, 142,
		460, 445,
		438, 449 Z
«-Caprolactam (92, 87–90)	H_2SO_4 , cyclohexane,	
e-capiolaciani (32, 01-30)	$C_{2}H_{4}Cl_{2}; H_{2}SO_{4},$	
	$C_{2}\Pi_{4}C_{12}; \Pi_{2}SO_{4};$ $CH_{3}CO_{2}H$	401 A
- Compolestere	• •	138 R
'e-Caprolactam	25-28% H ₂ SO ₄ ,	138 È
	CH ₃ CO ₂ H	ALC AC
«-Caprolactam (60)	60% oleum	452 E
e-Caprolactam (91)	60–90% H ₂ SO ₄ *	144 🔮
€-Caprolactam (80–97)	$75-96.4\%$ H_2SO_4	444 E
«-Caprolactam (80)	80% H ₂ SO ₄ *	145, 462 🖻
€-Caprolactam (75–95)	80-85% H ₂ SO ₄	131
←Caprolactam (89)	80-94% H ₂ SO ₄	436

Starting Material

Cyclohexanone oxime

No. of C Atoms C₆

(continued)

* Special equipment or procedure was employed.

§ This reaction was run in the vapor phase under reduced pressure.
|| Vapor phase reaction.

		TABLE IV—Continued			100
		ALICYCLIC KETOXIMES			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₆ (continued)	Cyclohexanone oxime (<i>continued</i>)	«-Caprolactam (90) «-Caprolactam (96, 66, —)	$\begin{array}{c} 86\% \ \mathrm{H_2SO_4} \\ 90\% \ \mathrm{H_2SO_4} \end{array}$	437 144,* 450, 454	
		ε-Caprolactam (87) ε-Caprolactam (78) ε-Caprolactam (96)	$\begin{array}{c} 90-96\% \ {\rm H_2SO_4} \\ 95\% \ {\rm H_2SO_4} \\ 98\% \ {\rm H_2SO_4}; 100\% \\ {\rm H_2SO_4} \end{array}$	435 451 141, 337	OR
		ε-Caprolactam (96) ε-Caprolactam	Oleum, SO ₃ Oleum, CCl ₄ , C ₆ H ₆ , or other hydrocarbons	55 56	ORGANIC
		ε-Caprolactam (90−98) ε-Caprolactam (90−94)	1-60% Oleum 6-60% Oleum, $C_8H_5NO_2$, or 1- nitro-1-methyl- cyclopentane	459 136	REACTIONS
		e-Caprolactam (87–97) e-Caprolactam (98) e-Caprolactam (good,) e-Caprolactam (100,,)	15% Oleum 65% Oleum SO ₃ , CS ₂ SO ₃ , CH ₂ ClCH ₂ Cl; SO ₃ , CCl ₂ $=$ CCl ₂ ; SO ₃ , chlorinated hydrocarbon	461 466 57, 468 57, 336	<i>3</i> 2
		ε-Caprolactam (93) ε-Caprolactam	SO_3 , SO_2 SO_3 , SO_2 , fluorinated or chlorinated hydrocarbons	463 342, 336	

	«Caprolactam	NH ₄ HSO ₄ , H ₂ SO ₄ , SO ₂ , CS ₂ , or chlori- nated hydrocarbon	139	
	«-Caprolactam (74)	$\rm NH_4HSO_4 \cdot H_2SO_4$	469	
	«-Caprolactam	Na,SO, 3H,SO	140	
	e-Caprolactam (83–85)	85-97.5% H ₂ SO ₄ , SiO ₂ ; H ₂ SO ₄ , SiO ₂	130, 451	
	←Caprolactam	KHSO ₄ , pumice, H ₂ or NH ₃	163	THE
	«-Caprolactam (30–70)	$Cl_2 \cdot Br_2$ or $Cl_2 \cdot I_2$ or $Br_2 \cdot I_2$ or $Br_2 \cdot SOCl_2$, with SO_2	364	E BECKMANN
	δ -Caprolactam	None given	592	×
	ϵ -Aminocaproic acid (good)	Oleum, then water	134	A
	1,6-Hexamethylenediamine	CuCO ₃ on SiO ₂ , H ₂ or NH ₃ *§¶	165	
	Pentamethylenetetrazole (95)	H ₂ SO ₄ , NaN ₃ , CHCl ₃ ; ClSO ₃ , NaN ₃	248	EAR
	Pentamethylenetetrazole	POCl ₃ or SOCl ₂ with NaN ₃ and CHCl ₃	248	REARRANGEMENT
Cyclohexanone oxime hydrochloride	ϵ -Caprolactam (84, —)	H ₂ SO ₄ ; H ₂ SO ₄ , HCl	470, 591	ΞE
Cyclohexanone oxime methyl ether	«-Caprolactam	10% Oleum	261	Ľ
	«-Caprolactam (68)	H ₂ SO ₄	263	Z
Cyclohexanone oxime allyl ether	«-Caprolactam (50)	10% Oleum	261	F
Cyclohexanone oxime picryl ether	e-Caprolactam (77-79)	Aq. acid or base	54, 128	

Note: References 338 to 593 are on pp. 152-156.

* Special equipment or procedure was employed.
§ This reaction was run in the vapor phase under reduced pressure.
¶ Other catalysts, such as H₃PO₄-SiO₂, H₃BO₃-SiO₂, and H₄TiO₄-TiO₂-U₂O₅ were also used.

TABLE IV—Continued

		ALICYCLIC KETOXIMES			õ
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
Ce	Cyclohexanone oxime sulfonate	Octahydrophenazine (7)	HCl (4N), dioxane	60	
(continued)	•	Tetrahydrophenazine (5)	Pyridine, CH ₃ OH	60	
ζ- ,	Cyclohexanone oxime potassium sulfonate	e-Caprolactam	Aq. HCl	14	
		Pentamethylenetetrazole (70)	NaN_3, H_2O	248	
	Cyclohexanone oxime benzene- sulfonate	2-Iminohexamethyleneimine (50)	NH ₃	13	ORGANIC
		2-Anilinohexamethyleneimine (72)	$C_{s}H_{5}NH_{2}$	13	GA
		ϵ -Caprolactam (77)	Aq. acid or base	54	ź
	Cyclohexanone oxime o-toluene- sulfonate	Cyclohexanone oxime	Aq. base or acid	54	
	Cyclohexanone oxime <i>p</i> -toluene- sulfonate	ϵ -Caprolactam (79)	Aq. acid or base	54	EACI
		Pentamethylenetetrazole	NaNO ₂ and N_2H_4 , CH ₄ CO ₂ H, CHCl ₃	294	REACTIONS
	Cyclohexanone oxime 2-naphthyl- sulfonate	€-Caprolactam (78)	Aq. acid or base	54	<i>o</i> o
	Cyclohexanone	ε-Caprolactam (87)	$\begin{array}{c} \text{Oleum,} \\ (\text{NH}_2\text{OH})_2 \cdot \text{H}_2\text{SO}_4 \end{array}$	168	
		ϵ -Caprolactam (90)	$\begin{array}{c} \mathrm{H_2SO_4,} \\ \mathrm{(NH_2OH)_2 \cdot H_2SO_4} \end{array}$	121, 471	
		ϵ -Caprolactam (79)	H ₂ SO ₄ , primary nitro- paraffin	167	
		€-Caprolactam	$(\mathbf{NH}_{2}\mathbf{OH})_{2} \cdot \mathbf{H}_{2}\mathbf{SO}_{4},$ $(\mathbf{CH}_{3}\mathbf{CO})_{2}\mathbf{O},$ $\mathbf{CH}_{3}\mathbf{CO}_{3}\mathbf{H}^{**}$	472	

	Nitrocyclohexane	←Caprolactam (35)	SiO ₂ , N ₂ ; BPO ₄ , N ₂ ; phosphomolybdic acid, N ₂ ; silico- tungstic acid, N ₂	170	
		ϵ -Caprolactam (30)	20% Oleum, S	171	
		e-Caprolactam	H_2SO_4 , $C_2H_5NO_2$	443	
		e-Caprolactam	Salt*	473	
		e-Caprolactam (74)	$(\mathrm{NH}_{2}\mathrm{OH})_{2}\cdot\mathrm{H}_{2}\mathrm{SO}_{4};$ 20% oleum	443	TI
		ϵ -Caprolactam (60)	H ₂ SO ₄ , CH ₃ NO ₂	443	THE
	<i>syn-</i> Cyclohexenone oxime	Δ^2 -6-Caprolactam (25)	Polyphosphoric acid	475	в
	anti-Cyclohexenone oxime	Unidentified product	Polyphosphoric acid	475	EC
	2-Chlorocyclohexanone oxime	Octahydrophenazine	Aq. HCl, dioxane	60	BECKMANN
C ₇	2-Ethylcyclopentanone oxime	5-Ethyl-5-valerolactam (61)	80% H ₂ SO4	444	MA
•	2-Methylcyclohexanone oxime	6-Methyl-6-caprolactam (88–97)	85-96.4% H ₂ SO ₄	444	Ē
		2-Methyl-6-caprolactam (70%) and 6-methyl-6-caprolactam (30%)	SO_3 - H_2SO_4	476	
		6-Methyl-6-caprolactam (67)	H ₂ SO ₄	303	A
		2-Methyl-6-caprolactam and 6- methyl-6-caprolactam (50–80)	$PCl_5, C_6H_6; H_2SO_4$	477	RAI
		2-Methyl-6-caprolactam	H ₂ SO ₄	477	Ğ
		10-Methylpentamethylenetetrazole (61)	CISO,H, NaN3, CH,ClCH,Cl	293	REARRANGEMENT
	3-Methylcyclohexanone oxime	3-Methyl-6-caprolactam and 5- methyl-6-caprolactam	80% H ₂ SO4	65, 445, 478	NT
		5-Methyl-6-caprolactam	$C_6H_5SO_2Cl$, aq. NaOH	446	

Note: References 338 to 593 are on pp. 152-156.

* Special equipment or procedure was employed.

 Vapor phase reaction.
 ** Monochloroacetic acid may be used in place of acetic acid and CH₃CONHOCOCH₃ may be used in place of hydroxylamine sulfate.

		ALICYCLIC KETOXIMES			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₇ (continued)	3-Methylcyclohexanone oxime (con- tinued)	7-Methylpentamethylenetetrazole (63)	ClSO ₃ H, NaN ₃ , CH ₂ ClCH ₂ Cl	293	
		Toluene and hexenonitrile, lutidine and mixed lactams	P_2O_5	147	
	4-Methylcyclohexanone oxime	4-Methyl-6-caprolactam (62)	H ₂ SO ₄	303	
		4-Methyl-6-caprolactam (good)	C ₆ H ₅ SO ₂ Cl, aq. KOH	446, 457	0
		4-Methyl-6-caprolactam (89)	90% H ₂ SO ₄ *	144	RC
		8-Methylpentamethylenetetrazole (57)	CISO3, HN3, aq. NaOH	293	ORGANIC
	Cycloheptanone oxime	2-Oxoheptamethylenimine (92)	SO3-H2SO4; 60% oleum	124, 459	
		2-Oxoheptamethylenimine (50)	H_2SO_4	65, 147, 474, 445	REACTIONS
		2-Oxoheptamethylenimine (80)	o-Phosphoric acid§	125	<u>o</u>
		2-Oxoheptamethylenimine (30)	HF	83, 126	SIS
		2-Oxoheptamethylenimine	H ₂ SO ₄ *	441	
	Cycloheptanone	2-Oxoheptamethylenimine (93)	H_2SO_4 ,	121	
			$(\mathrm{NH_2OH})_2 \cdot \mathrm{H_2SO_4}$		
C_8	2-n-Propylcyclopentanone oxime	5-n-Propyl-5-valerolactam (59)	80% H ₂ SO ₄	444	
	2-Ethylcyclohexanone oxime	6-Ethyl-6-caprolactam (99)	H_2SO_4 , CCl_4	593	
	3-Ethylcyclohexanone oxime	5-Ethyl-6-caprolactam (77)	H ₂ SO	303	
	4-Ethylcyclohexanone oxime	4-Ethyl-6-caprolactam (90)	H_2SO_4	480	
	trans-2,4-Dimethylcyclohexanone oxime	4,6-Dimethyl-6-caprolactam (53)	H_2SO_4	303	

	trans-2,5-Dimethylcyclohexanone oxime	3,5-Dimethyl-6-caprolactam (71)	H_2SO_4	303	
	3,4-Dimethylcyclohexanone oxime	Dimethyl- ϵ -caprolactam (67)	H_2SO_4	303	
	3,5-Dimethylcyclohexanone oxime	4,6-Dimethyl-6-caprolactam (60)	H_2SO_4	480	
	,,,	7,9-Dimethylhexamethylenetetra- zole (58)	ClSO ₃ H, NaN ₃ , CH ₂ ClCH ₂ Cl	293	
	<i>cis</i> -3,5-Dimethylcyclohexanone oxime	cis-4,6-Dimethyl-6-caprolactam (45)	H_2SO_4	303	н
	Bicyclo[2.2.1]heptan-2-one oxime	2-Aza-3-oxobicyclo[2.2.1]octane (70-90)	85% H ₂ SO ₄	481	THE
	Cycloöctanone oxime	2-Oxoöctamethylenimine (80, 85–90)	80% H ₂ SO ₄	122	BE
	•	2-Oxoöctamethylenimine (68)	90% H,SO	474	Ĝ
	Cycloöctanone oxime hydrochloride	2-Oxoöctamethylenimine (69)	H,SO, HCI	591	8
C ₉	Indanone oxime	4,5-Benzvalerolactam (10)	$PCl_{5}, (C_{2}H_{5})_{2}O$	129	BECKMANN
•		Hydrocarbostyril	PCl ₅	482	N
	2-Oximinoindanone	o-Carboxyphenylacetamide	H ₂ SO ₄	483	R
	5-Oximinohydrindene	2-Oxo-5,6-cyclopentanohexamethyl- enimine (70)	$C_6H_5SO_2Cl$, aq. NaOH	484	EARI
	l-Oximino-2-nitro-3-ketoindane	1-Chloro-3-nitro-4-hydroxyiso- quinoline	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H; POCl ₃ , CH ₃ CO ₂ H	161	REARRANGEMENT
	4-n-Propylcyclohexanone oxime	4-n-Propyl-6-caprolactam (76)	H,SO	485	MI
	2-Isopropylcyclohexanone oxime	6-Isopropyl-6-caprolactam	H ₂ SO ₄	480	Ĩ
	3-Isopropylcyclohexanone oxime	8-Isopropylhexamethylenetetrazole (67)	CISO ₃ H, HN ₃ , CH ₂ ClCH ₂ Cl	15, 293	Н
	4-Isopropylcyclohexanone oxime	4-Isopropyl-6-caprolactam (72)	H_2SO_4	480	
Note:	References 338 to 593 are on pp. 152–15	6.			

* Special equipment or procedure was employed. § This reaction was run in the vapor phase under reduced pressure.

TABLE IV-Continued

		ALICYCLIC KETOXIMES		
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C ₉ (continued)	3-Ethyl-5-methylcyclohexanone oxime	7-Methyl-9-ethylhexamethylene- tetrazole (32)	ClSO ₃ H, NaN ₃ , CH ₂ ClCH ₂ Cl	15, 293
		7-Methyl-9-ethylhexamethylene- tetrazole	ClSO ₃ H, NaN ₃	293
	2,3,5-Trimethylcyclohexanone oxime	3,5,6-Trimethyl-6-caprolactam (73)	H_2SO_4	303
	2,4,6-Trimethylcyclohexanone oxime	2,4,6-Trimethyl-6-caprolactam (57)	H ₂ SO ₄	303
	3,3,5-Trimethylcyclohexanone oxime	7,9,9-Trimethylhexamethylene- tetrazole (72)	CISO ₃ H, NaN ₃ , CH,ClCH,Cl	293
		3,5,5- and 3,3,5-Trimethyl-6-capro- lactam	50% H ₂ SO4	477
	3,5,5-Trimethyl-2-cyclohexen-1-one oxime (isophorone oxime)	3,3,5-Trimethyl-Δ ⁵ - and 3,5,5-tri- methyl-Δ ² -6-caprolactam	80-100% H ₂ SO ₄	486
	syn-3,5,5-Trimethyl-2-cyclohexen-1- one oxime (syn-isophorone oxime)	3,5,5-Trimethyl- Δ^2 -6-caprolactam (25)	PCl_5 , $(C_2H_5)_2O$	487
	anti-3,5,5-Trimethyl-2-cyclohexen-1- one oxime (anti-isophorone oxime)	3,3,5-Trimethyl- Δ^{δ} -6-caprolactam (20)	PCl_5 , $(C_2H_5)_2O$	487
	4,4,6-Trimethylcyclohexanone oxime	3,3,5- and 3,5,5-Trimethyl-6-capro- lactam	50% H ₂ SO ₄	477
C ₁₀	4-sec-Butylcyclohexanone oxime	8-sec-Butylhexamethylenetetrazole (50)	ClSO ₃ H, NaN ₃ , CH ₂ ClCH ₂ Cl	293
	t-Butylcyclohexanone oxime	t-Butyl-6-caprolactam (100)	H ₂ SO ₄	337
	4-t-Butylcyclohexanone oxime	4-t-Butyl-6-caprolactam (82)	H ₂ SO	480
		8-t-Butylhexamethylenetetrazole (68)	ClSO ₃ H, NaN ₃ , CH ₂ ClCH ₂ Cl	293
	3-Methyl-3-n-propylcyclohexanone oxime	7-Methyl-7-isopropylhexamethyl- enetetrazole (37)	$CISO_{3}H$, NaN_{3} , $CH_{2}CICH_{2}CI$	293

2-Isopropyl-5-methylcyclohexanone oxime	7-Methyl-10-isopropylhexamethyl- enetetrazole (27)	ClSO ₃ H, NaN ₃ , CH,ClCH,Cl	293
3-Isopropyl-5-methylcyclohexanone oxime	7-Methyl-9-isopropylhexamethyl- enetetrazole (50)	$ClSO_3H$, NaN_3 , CH_4ClCH_4Cl	293
d-Carvone oxime	Unknown product C ₁₀ H ₆ ClNO	PCi,	487
Tetrahydrocarvone oxime	Unidentified product	60% H ₂ SO ₄ , CH ₃ CO ₂ H; H ₂ SO ₄	65, 445, 488
Pulenone oxime	3,6,6-Trimethyl-6-caprolactam	POCI ₃ , CHCI ₃	153
	3,6-Dimethyl-5-heptenonitrile	(CH3CO)20; PCl5, PO	Cl, 153
Menthone oxime	3-Methyl-6-isopropyl-6-caprolactam and decylenic acid, menthylamines and menthonitrile	H ₂ SO ₄	445, 488 H
	CH ₃		EC
<i>l</i> -Menthone oxime	$\bigcup_{H}^{C_{13}} C_{3}H_{7}-i$	Cu, H ₂	BECKMANN 1 166
syn-Isonitrosocamphor	1,2,2-Trimethylcyclopentane-1,3- dicarboximide	PCl_{5} , $(C_{2}H_{5})_{2}O$	154 RR
eta-Thujone oxime	$ \begin{array}{c} $	PCl ₅ , CHCl ₃	REARRANGEMENT 489
2-Methyl-2-hydroxy-5-(2'-hydroxy- isopropyl)cyclohexanone oxime		HCl or HBr, CH ₃ CO ₂ H or C ₆ H ₆	490

Note: References 338 to 593 are on pp. 152-156.

†† This product was obtained by hydrolysis of the lactam

TABLE IV-Continued

		ALICYCLIC KETOXIMES			9
		Mile Pelife METOAIMES			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₁₀ (continued)	β -Dihydroumbellulone oxime	l-Isopropyl-5-methyl-2-azabicyclo- [4.1.0]-heptan-3-one	p-CH ₃ C ₆ H ₄ SO ₂ Cl or p-BrC ₆ H ₄ SO ₂ Cl, pyridine	491	
	β -Dihydroumbellulone oxime p -toluenesulfonate	1-Isopropyl-5-methyl-2-azabicyclo- [4.1.0]-heptan-3-one	HCl, pyridine	491	
	anti-1,2-Benzcyclohexanone oxime picryl ether	N-Picryl-5,6-benz-6-caprolactam ^{‡‡}		53	ç
	1-Tetralone oxime p -toluenesulfonate	6,7-Benz-6-caprolactam <i>p</i> -toluene- sulfonic acid salt	C ₆ H ₅ OH	158	0
		6,7-Benz-6-caprolactim phenyl ether	C ₆ H ₅ OH	158	10 101
		$(CH_2)_3CO_2CH_3 $ (100) $NH_3^{\textcircled{O}} O_3SC_6H_4CH_3-p$	СН₃ОН	158	
		$(CH_2)_3CO_2C_2H_5 $ $NH_3^{\bigoplus}OO_{3}SC_6H_4CH_3-p$ (30)	C₂H₅OH	158	
	7-Nitro-1-tetralone oxime	l-Amino-7-nitronaphthalene (10)	Polyphosphoric acid	492	
	7-Nitro-1-tetralone oxime acetate	l-Amino-7-nitronaphthalene (45)	HC1	492	
	7-Nitro-1-tetralone oxime phenyl- carbamate	1-Amino-7-nitronaphthalene (22)	HCl, C ₂ H ₅ OH	492	
	2-Tetralone oxime	o-(2-Aminoethyl)phenylacetolactam (78)	p-CH ₃ C ₆ H ₄ SO ₂ Cl, aq. NaOH	493	

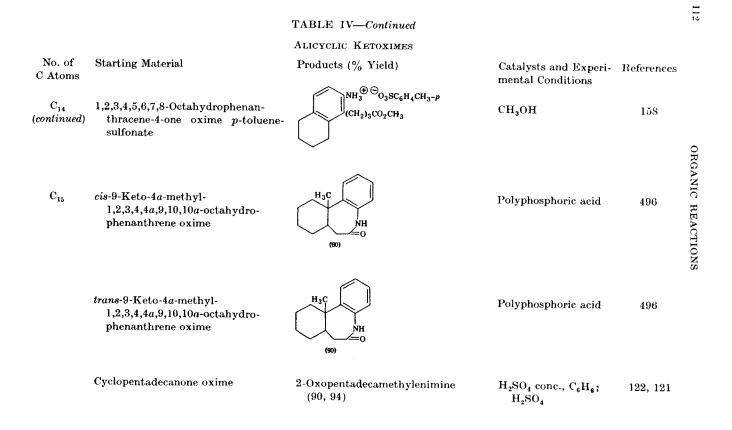
108

	1-Tetralone oxime sulfonate 2-Tetralone oxime <i>p</i> -toluenesulfonate	α-Naphthylamine (12) 3,4-Benz-6-caprolactam (78)	Aq. HCl, dioxane CH ₃ OH	$\begin{array}{c} 60\\ 242\end{array}$	
	2-Decalone oxime	NH and NH =0	80% H ₂ SO ₄	437	
		(mixture, 90)			
	cis-2-Decalone oxime	(mixture, 33)	98-100% H ₂ SO ₄	337	THE BECKMANN
C11	4-t-Amylcyclohexanone oxime	8-t-Amylhexamethylenetetrazole (57)	CISO ₃ H, NaN ₃ , CH ₂ ClCH ₂ Cl	293	
	2-t-Butyl-4-methylcyclohexanone oxime	4-Methyl-6- <i>t</i> -butyl-6-caprolactam (69)	H_2SO_4	303	REAR
	6-Methoxy-1-tetralone oxime <i>p</i> -tolu- enesulfonate	$CH_{3}O (CH_{2})_{3}CO_{2}CH_{3} NH_{3} \oplus O_{0}_{3}SC_{6}H_{4}CH_{3}-p$	СН³ОН	158	REARRANGEMENT
	8-Methyl-1-tetralone oxime	CH ₃ H	HCl, $(CH_3CO)_2O$, CH_3CO_2H	158	

Note: References 338 to 593 are on pp. 152-156.

‡‡ The picryl ether was rearranged by heating in ethylene dichloride.

TABLE IV—Continued


		ALICYCLIC KETOXIMES			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₁₁ (continued)	Thujamethone oxime	3-Isopropyl-4,5-dimethyl-5-valero- lactam	H_2SO_4	489	
	β -Thujamethone oxime	2,3-Dimethyl-4-isopropyl-5-valero- lactam	66% H ₂ SO ₄ , CH ₃ CO ₂ H	494, 489	
	syn-1,2-Benzcycloheptanone oxime picryl ether	N-Picryl-2,3-benz-7-enantholactam‡‡		53	0
	anti-1,2-Benzcycloheptanone oxime picryl ether	N-Picryl-6,7-benz-7-enantholactam ^{‡‡}		53	ORGANIC
C ₁₂	2-Cyclohexylcyclohexane oxime	6-Cyclohexyl-6-caprolactam (100)	H ₂ SO ₄	354	I
	4-Cyclohexylcyclohexanone oxime	8-Cyclohexylhexamethylenetetrazole (51)	$CISO_3H$, NaN ₃ , CH_2CICH_2CI	293	
	5,8-Dimethyl-1-tetralone oxime acetate	CH ₃ CH ₃ H = 0	HCl, (CH₃CO)₂O CH₃CO₂H	158	REACTIONS
	5,8-Dimethyl-1-tetralone oxime p- toluenesulfonate	$ \begin{array}{c} CH_{3} \\ (CH_{2})_{3}CO_{2}CH_{3} \\ NH_{3} \oplus \Theta_{O_{3}}SC_{6}H_{4}CH_{3}-p \\ CH_{3} \end{array} $	СН₃ОН	158	
	3-Carbomethoxy-1-tetralone oxime	3-Carbomethoxy-5,6-benz-6-capro- lactam (50)	Polyphosphoric acid	495	

	<pre>syn-1,2-Benzcycloöctanone oxime picryl ether</pre>	N-Picryl-2,3-benz-8-caprylolactam ‡‡		53
	anti-1,2-Benzcycloöctanone oxime picryl ether	N-Picryl-7,8-benz-8-caprylolactam ^{‡‡}		53
C ₁₃	4-Cyclohexylmethylcyclohexanone oxime	4-Cyclohexylmethyl-6-caprolactam	H_2SO_4	480
	syn-3-Methyl-5-phenyl-2-cyclohexen- l-one oxime	3-Phenyl-5-methyl- Δ^{5} -6-caprolactam (25)	$\mathrm{PCl}_5,\ (\mathrm{C_2H_5})_2\mathrm{O},\ \mathrm{C_6H_6}$	487
	anti-3-Methyl-5-phenyl-2-cyclo- hexen-l-one oxime	3-Methyl-5-phenyl- Δ^2 -6-caprolactam (15)	PCl_5 , $(C_2H_5)_2O$, C_6H_6	487
	α-Ionone oxime	2,2,6-Trimethyl-4-cyclohexene-1- acetaldehyde (60)	PCl ₅ , CHCl ₃	479
	3-Carbethoxy-1-tetralone oxime	3-Carbethoxy-5,6-benz-6-capro- lactam (86)	Polyphosphoric acid	495
C ₁₄	1,2,3,4,6,7,8,9-Octahydroanthracene- 1-one oxime <i>p</i> -toluenesulfonate	$(CH_2)_3CO_2CH_3$ $NH_3^{\bigoplus} \odot_{O_3}SC_6H_4CH_{3}-p$	CH³OH	158
		N=OC ₆ H ₅	C ₆ H ₅ OH	158

THE BECKMANN REARRANGEMENT

Note: References 338 to 593 are on pp. 152-156.

‡‡ The picryl ether was rearranged by heating in ethylene dichloride.

Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
Estrone oxime	3-Hydroxy-13 <i>a</i> -amino-13,17-seco- 1,3,5(10) estratrien-17-oic acid 13,17-lactam (82.5)	SOCl ₂ , dioxane; 40°	174
Estrone methyl ether oxime	O-Methyl estroic acid	$PCl_{5}, (C_{2}H_{5})_{2}O$	500
	3-Methoxy-13 <i>a</i> -amino-13,17-seco- 1,3,5(10) estratrien-17-oic acid 13,17-lactam (80)	$SOCl_2$, dioxane	174
4-Androstene-13,17-dione 17-oxime	Δ^4 -13 <i>a</i> -Amino-13,17-seco-androsten- 3-one-17-oic acid 13,17-lactam (50)	p-Acetamidobenzene- sulfonyl chloride, pyridine	175
	Δ^{4} -13 <i>a</i> -Amino-13,17-seco-androsten- 3-one-17-oic acid (50)	p-Acetamidobenzene- sulfonyl chloride, aq. NaOH	501
		-	

C₂₁ $3-\beta$ -Hydroxypregnan-20-one oxime $3-\beta$ -Hydroxy-5-pregnen-2-one oxime $3-\beta$ -Acetoxy-5-androsten-17-one oxime

oxime

No. of

C Atoms C18

C₁₉

502 $3-\beta$ -Acetoxy-17-acetamidoetiocholanol POCl₃, pyridine 177 17-Amino-5-androstene- 3β -ol (60) $3-\beta$ -Hydroxy- Δ^{5} -13*a*-amino-13,17-SOCl₂, dioxane 174seco-androsten-17-oic acid lactam p-Acetamidobenzene- $3-\beta$ -Hydroxy- Δ^{5} -13*a*-amino-13,17-175, 176 seco-androsten-17-oic acid lactam sulfonyl chloride, pyridine (50, 73) $3-\beta$ -Hydroxy- Δ^{5} -13*a*-amino-13,17-501 p-Acetamidobenzeneseco-androsten-17-oic acid lactam sulfonyl chloride, (50) aq. NaOH $3-\beta$ -Acetoxy-17-ketoandrostan $3-\beta$ -Acetoxy-13*a*-amino-13,17-secop-Acetamidobenzene-176sulfonyl chloride, androstane-17-oic acid 13,17lactam pyridine

	3-β-Acetoxy-5-androsten-16,17-dione 16-oxime	3-β-Acetoxy-16,17-seco-5-androsten- 16,17-imide (68)	SOCl ₂	174	
C ₂₂	<i>i</i> -Pregnenolone methyl ether oxime	6-Methoxy-i-androsten-17-amine	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	178	
	i-Pregnenolone methyl ether oxime p -toluenesulfonate	6-Methoxy-i-androsten-17-amine	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	178	
	3-Acetoxy-17-acetyl-1,3,5,16- estratetraene oxime	Esterone (40)	p-NH ₂ C ₆ H ₄ SO ₂ Cl, pyridine	503	
C ₂₃	$3-\beta$ -Acetoxy-5-pregnen-20-one oxime	17 -Amino- Δ^5 -androstene- 3 - β -ol	POCl ₃ , pyridine	177	TH
		17-Amino- Δ^{5} -androstene-3- β -ol (87)	$C_6H_5SO_2Cl \text{ or}$ $p-CH_3C_6H_4SO_2Cl,$ pyridine	178	THE BEC
		17-Amino- Δ^{5} -androsten-3- β -ol (30–95)	SOCI ₂ , C ₆ H ₆	177	BECKMANN
		17-Amino- Δ^5 -androsten-3- β -ol (87)	$C_6H_5SO_2Cl \text{ or}$ $p-CH_3C_6H_4SO_2Cl,$ basic solvent*	178	
	Acetylpregnenolone oxime	3-Oxy-17-aminoandrostene	$SOCl_2, C_6H_6$	504	AF
	3-Acetoxyallopregnan-20-one oxime	3-Hydroxy-17-aminoandrostane	$p-CH_{3}C_{6}H_{4}SO_{2}Cl,$ HOCH_{6}CH_{1}NH_{2}	178	REARRANGEMENT
		3-Hydroxy-17-aminoandrostane	$p-\mathrm{CH}_{3}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{SO}_{2}\mathrm{Ci},$ pyridine	178	IGEM
	3-β-Acetoxyallopregnan-20-one oxime	$3-\beta$ -Acetoxy-17-acetaminoandrostane	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	502	IENT
	3-β-Acetoxy-17-α-5-pregnen-20-one oxime	Dehydroepiandrosterone acetate	POCl ₃ , pyridine	505	
	5,16-Pregnadien-3- β -ol-20-one 3- acetate oxime	Dehydroepiandrosterone	$p-H_2NC_6H_4SO_2Cl,$ pyridine	503	

Note: References 338 to 593 are on pp. 152-156.

* The solvents used were methanol, sodium ethoxide in ethanol, n-butylamine, cyclohexylamine, N-ethylcyclohexylamine, 115 and sodium 1-hexoxide in 1-hexanol.

TABLE V—Continued

STEROID OXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C ₂₃ (continued)	7,16-Allopregnadien-3-β-ol-20-one acetate oxime	Δ^{7} -Androsten-3- β -ol-17-one (75)	$p-H_2NC_6H_4SO_2Cl$, pyridine	503
	16-Allopregnen-3- β ,11 <i>a</i> -20-one diacetate oxime	Androstan-3- β ,11 <i>a</i> -diol-17-one (50)	$p-H_2NC_6H_4SO_2Cl,$ pyridine	503
	3-Acetoxy-5-ternorcholenyl methyl ketone oxime	3-Hydroxy-5-pregnen-20-amine	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	178
	8,11-Diketolanostan-2-yl acetate 8- oxime	8,11-Diketo-8 <i>a</i> -aza- β -homolanostan- 2-yl actate (50)	PCl ₅ , C ₆ H ₆ or petroleum ether	506
	8,11-Diketolanost-9-ene-2-yl acetate 8-oxime	8,11-Diketo-7 <i>a</i> -aza- <i>a</i> - β -homolanost- 9-en-2-yl acetate and 8,11-diketo- 8 <i>a</i> -aza- β -homolanost-9-en-2-yl acetate (55)	PCl ₅ , C ₆ H ₆	506
	Desoxybilianic acid monoxime	Desoxybilianic acid isoxime	90% H ₂ SO ₄	507
	$C_{20}H_{33} \begin{cases} (CO_2H)_3 \\ (=NOH) \end{cases}$	$C_{20}H_{33} \Big\{ (CO_2H)_3 \\ -CONH \Big\}$		
	β -Cholantricarboxylic acid oxime	β -Cholantricarboxylic acid isoxime	90% H ₂ SO ₄	508
	$\mathbf{C_{20}H_{33}} \Big\langle \underbrace{(\mathbf{CO_2H})_3}_{==\mathbf{NOH}} \right\rangle$	$C_{20}H_{33} \begin{pmatrix} (CO_2H)_3 \\ -CONH_2 \end{pmatrix}$		
	5-Pregnene-3- β ,17 α -diol-20-one-3- acetate oxime	Dehydroepiandrosterone acetate (98)	POCl ₃ , pyridine	509
	allo-Pregnan-3- β ,17 α -diol-20-one-3- acetate oxime	epi-Androsterone acetate (90)	POCl ₃ , pyridine	509

118

C ₂₄	Dehydrocholic acid dioxime	/ /	90% H ₂ SO ₄	510	
	$C_{23}H_{35} \left(\underbrace{-CO_2H}_{(==NOH)_2} \right)$	$C_{22}H_{35}\left(-CO_{2}H\right)_{2}$			
	Dehydrocholic acid trioxime	Dehydrocholic acid isodioxime 12 (?)	90% H ₂ SO ₄	209, 511, 512	
	$\mathbf{C_{23}H_{33}} \Big\{ \underbrace{\mathbf{CO_2H}}_{(==\mathbf{NOH})_3} \Big\}$	$C_{23}H_{33} \begin{cases} -CO_2H \\ -(CONH)_2 - \\ = NOH \end{cases}$			I
	Bilianic acid dioxime	Bilanic acid dioxime	90% H ₂ SO ₄	512	THE
	$\mathbf{C_{21}H_{31}}_{(==\mathbf{NOH})_2}^{(\mathbf{CO_2H})_3}$	$C_{19}H_{31}\left\{\begin{array}{c}(CO_2H)_3\\ (CONH-)_2 \end{array}\right.$			BECKMANN
	Bilianic acid dioxime	Bilianic acid isoxime amino carboxylic acid	H_2SO_4	513	ƙMA
	$C_{20}H_{33} \begin{cases} (CO_2H)_4 \\ (=NOH) \\NH_2 \end{cases}$	$C_{19}H_{33}$ $\left\{ \begin{array}{c} (CO_2H)_4 \\NH_2 \\CONH \end{array} \right\}$			
	Isobilianic acid dioxime	Isobilianic acid isoxime	90% H ₂ SO ₄	514, 511	RR
	$\mathbf{C}_{21}\mathbf{H}_{31} \Big (\underbrace{-\mathbf{CO}_{2}\mathbf{H}}_{3})_{2} \\ (\underbrace{=\mathbf{NOH}}_{2})_{2} \Big $	$C_{20}H_{31}\begin{cases} (CO_2H)_3 \\CONH \\ =-NOH \end{cases}$			REARRANGEMENT
C_{25}	3-β-21-Diacetoxyallopregnan-20-one oxime	$3-\beta$ -Acetoxy-17-aminoandrostane (96)	POCl ₃ , pyridine	177	ENT
	Estrone 3-benzoate oxime	3-Hydroxy-13 <i>a</i> -amino-13,17-seco- 1,3,5(10)-estratrien-17-oic acid 13,17-lactam (82.5)	<i>p</i> -CH ₃ CONHC ₆ H ₄ SO ₂ Cl pyridine	174, 175	
		3-Hydroxy-13α-amino 13,17-seco- 1,3,5(10) estratrien-17-oic acid 13,17-lactam (50)	p-CH ₃ CONHC ₆ H ₄ SO ₂ Cl aq. NaOH	501	

Note: References 338 to 593 are on pp. 152-156.

TABLE V-Continued

	STEROID OXIMES				
No. of C Atoms	Starting Material	Products (% Yield)	Cataylsts and Experi- mental Conditions	References	
C ₂₉	15-Keto- $\Delta^{8(14)}$ -cholesten-3 β -ol acetate oxime	15-Aza-16-keto- $\Delta^{8(14)}$ -D-homocho- lesten-3 β -ol acetate	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	515	
C ₃₁	30-Nor-20-ketothurberogenin acetate oxime	Unidentified product (5)	POCl ₃ , pyridine	516	
C ₃₄	syn-16-Ketocholestan-3 β -ol benzoate oxime	17-Aza-16-keto- D -homocholesten- 3β - ol benzoate (55)	$p-CH_{3}C_{6}H_{4}SO_{2}Cl,$ pyridine	515	
	anti-16-Ketocholestan-3 β -ol benzoate oxime	16-Aza-17-keto- D -homocholesten- 3β - ol benzoate	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	515	
	16-Keto- Δ^{14} -cholestenyl benzoate oxime	17-Aza-16-keto- Δ^{14} -D-homocholesten- 3 β -ol benzoate (16)	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	515	

Note: References 338 to 593 are on pp. 152-156.

TABLE VI

HETEROCYCLIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₅	Tetrahydro-1,4-thiapyrone oxime Tetrahydro-1,4-thiapyrone-1,1- dioxide oxime	l-Aza-5-thiacycloheptan-2-one (85) Potassium 2-[2'-aminoethylsulfonyl]- propionate*	Polyphosphoric acid 85% H ₂ SO ₄	$\begin{array}{c} 182 \\ 524 \end{array}$	THE
	Tetrahydro-1,4-pyrone oxime	l-Aza-5-oxacycloheptan-2-one	Polyphosphoric acid	182	Ξ
	4-Piperidone oxime hydrochloride	1,5-Diazacycloheptan-2-one	SOCI,	517	B
	Tetrahydro-2,6-dioxy-1,4-thiapyrone oxime	Unidentified product	Polyphosphoric acid	182	BECKMANN
C ₆	l-Methyl-4-piperidone oxime	Polymer	Polyphosphoric acid	182	МА
	l-Methyl-4-piperidone oxime hydro- chloride	1,5-Diaza-5-methylcycloheptan- 2-one	SOCI ₂	517	
	2-Acetylthiophene oxime	2-Acetamidothiophene (55) 2-Aminothiophene	PCl ₅ , (C ₂ H ₅) ₂ O PCl ₅ , (C ₂ H ₅) ₂ O	518 518	REARRANGEMENT
	2-Hydroxyacetylfuran oxime <i>p</i> -toluenesulfonate	$CH_3COCOCH = CH(OCH_2CH_3)_2$	C ₂ H ₅ OH	407	RAN
	syn-Methyl 2-pyrryl ketoxime	2-C ₄ H ₄ NCONHCH ₃	PCl_{5} , $(C_{2}H_{5})_{2}O$	321, 586	G
	anti-Methyl 2-pyrryl ketoxime	2-CAHANCONHCH	PCl_{5} , $(C_{2}H_{5})_{2}O$	321, 586	EM
	2-Oxo-3-acetyl-4-butyrolactone oxime	2-Acetoxy-3-acetamido- Δ^2 -butyro- lactone	CH ₃ COCI, H ₂ O	519	ENT
С,	2,6-Dimethyl-4-piperidone oxime hydrochloride	l,4-Diaza-3,5-dimethylcycloheptan- 2-one	SOCl ₂	517	
	Methyl-4-pyridyl ketoxime p-toluenesulfonate	4-Aminoacetylpyridine diethylketal	К , С ₂ Н ₅ ОН	520	

Note: References 338 to 593 are on pp. 152-156.

* The amide was not isolated.

119

TABLE VI-Continued

HETEROCYCLIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C ₇ (continued)	2-Acetyl-5-methylfuran oxime p-toluenesulfonate	Starting material	C ₂ H ₅ OH	407
Υ ·	2-Propionylfuran oxime p-toluene sulfonate	Ammonium <i>p</i> -toluenesulfonate and 2-propionylfuran	C ₂ H ₅ OH	407
	2,6-Dimethyl-1,4-pyrone oxime	l-Aza-4,6-dimethyl-5-oxacyclo- heptan-2-one (70)	Polyphosphoric acid	182
	2,3-Dimethyl-1,4-thiapyrone oxime	Unidentified product	$\begin{array}{c} H_2SO_4; \ POCl_3, \ HCl; \\ PCl_5; \ CH_3COCl \end{array}$	99
	3-(Hydroxymethyl)-5,6-dihydro-1,4- pyrone-2-carboxylic acid lactone oxime	OCCCH3 OCCCH3	CH3COCI	519
C ₈	Acetonylpyridinium chloride oxime	Unidentified product	PCl ₅ , POCl ₃	344
-	2,2,5,5-Tetramethyl-3-oximinotetra- hydrofuran	1-Aza-2,2,4,4-tetramethyl-3-oxa- cyclohexan-6-one (64)	77% H ₂ SO ₄	523
	о	l-Oxa-3-aza-5,6-benzcyclohexane- 2,4-dione (40)	PCl ₅ , petroleum ether	522
	2,2,5,5-Tetramethyl-4,5-dihydro- 3(2 <i>h</i>)-furanone oxime	Acetone (64), NH ₃ (55), (CH ₃) ₂ C==CHCO ₂ H	77% H ₂ SO ₄	523

C,	2,3,5,6-Tetramethyl-4-piperidone oxime hydrochloride	1,4-Diaza-2,3,5,6-tetramethylcyclo- heptan-2-one	SOCl ₂	517	
	CH ₃ O ^{NOH}	О СН ₃ 0 (45-50)	PCl _s , petroleum ether	522	
	H ₃ C =0 NOH	H ₃ C NH	PCl _s , petroleum ether	522	THE BECKMANN
	H ₃ C 0 NOH	H ₃ C (50-52) 0 NH	PCl ₅ , petroleum ether	522	
	4-Thiachromanone-1,1-dioxide oxime 4-Thiachromanone-1,1-dioxide oxime benzenesulfonate	Unidentified products Unidentified products	PCl ₅ ; POCl ₃ ; H ₂ SO ₄ Polyphosphoric acid	524 524	REARRANGEMENT
	4-Thiachromanone-1,1-dioxide oxime 2-nitrobenzenesulfonate	2-[2'-Aminobenzenesulfonyl]- propionic acid lactam (43)	Aq. HCl	524	ENT
C ₁₉	C ₆ H ₅ C HON HN O N	C ₆ H ₅ CONH—C=N HN O=N	PCl ₅ ; CH ₃ COCl	5 2 5	
N.4. P		(75-80)			121
woie: R	<i>Vote:</i> References 338 to 593 are on pp. 152–156.				

TABLE VI—Continued

HETEROCYCLIC KE	TOXIMES
-----------------	---------

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- J mental Conditions	References	
C11	2-Benzoylfuran oxime <i>p</i> -toluene- sulfonate	Furanilide	C ₂ H ₅ OH	407	
	2,3-Dimethylbenzopyrone oxime	Unidentified sulfonic acid	H ₂ SO ₄ †	99	
	Methyl 5-(8-hydroxyquinolyl) ketoxime	5-Acetamido-8-hydroxyquinoline	SOCl ₂ , (C ₂ H ₅) ₂ O; H ₂ SO ₄ ; HCl, (CH ₃ CO) ₂ O, CH ₃ CO,H	180	ORGANIC
	2-Benzoylthiophene oxime	Unidentified product	PCl ₅	97	GA
C ₁₂	syn-Phenyl 2-pyridyl ketoxime	2-Benzamidopyridine (68)	SOCI ₂ , CHCl ₃	243	È
	syn-Phenyl 2-pyridyl ketoxime p- toluenesulfonate	Benzoic acid and 2-aminopyridine (90)	CHCl ₃	243	
	anti-Phenyl 2-pyridyl ketoxime	α-Picolinic acid anilide (86)	SOCl ₂ or PCl ₅ , CHCl ₃	243	ĒA
	anti-Phenyl 2-pyridyl ketoxime p- toluenesulfonate	Benzoic acid and 2-aminopyridine (92)	CHCl ₃	243	REACTIONS
	Methyl 3-(2-methylquinolyl) ketoxime	2-Methyl-3-aminoquinoline	H_2SO_4	526	SS
		2-Methyl-3-acetamidoquinoline	PCl ₅ , POCl ₃	526	
	6-Acetyl-4-chloroquinaldine oxime	6-Acetamido-4-chloroquinaldine (79)	PCl ₅ , C ₆ H ₆	589	
	Ethyl 5-quinolyl ketoxime	N-Ethyl quinoline-5-carboxamide (80)	$SOCl_2$, $(C_2H_5)_2O$	528	
	l-Hydroxy-5,6-benzisatin oxime	2,3-Naphthyleneurea		527	
	2- p -Methoxybenzoylfuran oxime p-toluenesulfonate	CONHC ₆ H ₄ OCH ₃ -p	C ₂ H ₅ OH	407	
C13	Cuskohygrine oxime	Cuskohygrine	PCl ₅	184	
	2-Pyridylmethyl phenyl ketoxime	2-Pyridylacetanilide (90)	PCl_{5} , $(C_{2}H_{5})_{2}O$	529	
	2-Pyridyl 4-carboxyphenyl ketoxime	Terephthalic acid	PCl ₅	530	
		-	-		

	4-Pyridyl 4-carboxyphenyl ketoxime	Terephthalic acid	PCl ₅	530	
	NCH ₂ CC ₆ H ₅ ⊕ ∥ Cl [⊖] NOH		PCl ₅	531	
	NCH₂CC6H5 ⊕ ∥ Br⊖ NOH	Not isolated	PCl ₅	521	THE
	Dr.	MCH ₂ CONHC ₆ H ₅	H_2SO_4	521	BECKMANN
	2,6-Dimethyl-3-acetylchromone dioxime	2,6-Dimethyl-3,4-methyloxadiazino- chromone	H ₂ SO ₄ ; PCl ₅	183	
	Thiaxanthone-5,5-dioxide oxime	Thiaxanthone-5,5-dioxide and 2-(2'- aminobenzensulfonyl)benzoic acid	PCl ₅ ; POCl ₃	524	REARRANGEMENT
C14	3-Acetyldibenzthiophene oxime	N-Acetyl-3-aminodibenzthiophene	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	532	RAN
	2-Acetylphenoxathiin oxime	2-Aminophenoxathiin (75)	PCl_5, C_6H_6	533	GE
	_ 11000 (2-Acetamidophenoxathiin (80)	$PCl_{5}, (C_{2}H_{5})_{2}O$	534	M
C ₁₅	2-Benzoylbenzofuran oxime p-toluenesulfonate	2-Carboxanilidobenzofuran (84)	C ₂ H ₅ OH	407	ENT
	CCH ₂ CH ₃	NH2	PCl_5 , $(C_2H_5)_2O$	535	

† There was no reaction with hydrogen chloride, acetyl chloride, or phosphorus pentachloride.

TABLE VI—Continued HETEROCYCLIC KETOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₁₆	2-Acetyl-7-chloro-9-ethylcarbazole oxime	2-Acetamido-7-chloro-9-ethyl- carbazole	PCl_5 , $(C_2H_5)_2O$	536	
	Phenyl 5-(8-hydroxyquinolyl) ketoxime	5-Benzamido-8-hydroxyquinoline (100)	$SOCl_2$, $(C_2H_5)_2O$	180	0
		5-Benzamido-8-hydroxyquinoline	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	180	ORGANIC
		Sulfonated benzamide	H ₂ SO ₄	180	NI
	4-Pyridyl α-naphthyl ketoxime	N-(4-Pyridyl)-α-naphthamide (90)	PC1,	537	
	3,6-Diacetyldibenzothiophene dioxime	N,N'-Diacetyl-3,6-diaminodibenzo- thiophene	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	532	REA
	2,6-Diphenyltetrahydro-1,4-thia- pyrone oxime	l-Aza-4,6-diphenyl-5-thiacyclo- heptan-2-one (75)	Polyphosphoric acid	182	REACTIONS
	2,8-Diacetylphenoxathiin dioxime	2,8-Diaminophenoxathiin (75)	PCl_5, C_6H_6	533	NS N
C ₁₇	6-Benzoylquinaldine	Quinaldine-6-carboxylic acid (50)	$PCl_{5}, (C_{2}H_{5})_{2}O$	587	
		Quinaldine-6-carboxylic acid and benzoic acid	$PCl_{5}, (C_{2}H_{5})_{2}O$	589	
	CP NOH	NCH ₂ CCl ₂ NHC ₆ H ₅ Cl [⊖]	PCl ₅ , (C ₂ H ₅) ₂ O	179	

C₁₈ 3-Benzoyl-6-phenylpyridine oxime

2-Phenylnicotinic acid anilide (100) PCl₅

	Dihydrocodeinone oxime	H H H H H H H H H H H H H H H H H H H	SOCl ₂ , POCl ₃ , PCl ₃	539	
	CH ₃ CH ₂ C HON Se	H ₂ N NH ₂	PCl_5 , $(C_2H_5)_2O$	535	THE BECKMANN
C19	2-Phenyl-3-cyano-5,6-dihydro-6-	(95) 2-Phenyl-3-cyano-5,6-dihydropyran-	SOCI,, CHCI,	540	K MA
019	benzoylpyran oxime	o-carboxylic acid anilide	5001 ₂ , CHO1 ₃	340	NN
C ₂₀	4-Quinolyl β -(1-methyl-3-vinyl-4- piperidinyl)ethyl ketoxime	4-Aminoquinoline (52) and 1-methyl- 3-vinyl-4-(β-aminoethyl)piperidine (28)	PCl ₅ , CHCl ₃	541	REARRANGEMENT
		4-Carboxymethylquinoline (6) and 4- aminoquinoline (43)	PCl ₅ , CHCl ₃	541	RAN
	l-Aceto-6-acetylcodein oxime	CH ₃ CONHC ₁₈ H ₂₀ O ₃ N	HCl, CH ₃ CO ₂ H	542	GEM
C ₂₂	3,4-Diphenyl-5-benzoylisoxazole oxime	H_5C_6 CONHC ₆ H_5 H_5C_6 and H_5C_6	PCl ₅	543	IENT
		$H_{5}C_{6} = C(=NCl)C_{6}H_{5}$ $H_{5}C_{6} = N$			_

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C,	$C_{a}H_{5}C(==NOH)COCH_{3}$	No reaction	10% H,SO4	544
C10	p-CH ₃ OC ₆ H ₄ C(=NOH)COCH ₃	CH ₃ COCONHC ₆ H ₄ OCH ₃ -p	10% H.SO	544
C ₁₁	1-Oximino-1-phenylpentan-4-one	C ₆ H ₅ SO ₂ OC(CH ₂) ₂ COCH	C.H.SO.Cl, aq. NaOH	194
		ll C₀H₅N		
		and 4-ketovaleranilide		
	$CH_3O(CH_2O_2)C_8H_2C(=NOH)COCH_3^{\dagger}$	CH ₃ O(CH ₂ O ₂)C ₅ H ₂ CONHCOCH ₃	(CH ₃ CO) ₂ O	197
C14	a-Benzil monoxime	Dibenzamide	$PCl_5, (C_2H_5)_2O$	5, 544a
		$C_{6}H_{5}C(Cl) = NCOC_{6}H_{5}$	PCl ₅	198
	β -Benzil monoxime	Benzoylformanilide	$PCl_{5}, (C_{2}H_{5})_{2}O$	5, 544a
	γ-Benzil monoxime	C ₆ H ₅ SO ₂ OCCOC ₆ H ₅	C ₆ H ₅ SO ₂ Cl, pyridine	95
		C ₆ H ₅ Ň		
	$2,4-(O_2N)_2C_6H_3COC(=NOH)C_6H_5$	$2,4-(O_2N)_2C_6H_3COC(Cl)=NC_6H_5$	$PCl_{5}, (C_{2}H_{5}), O$	192
C15	p-CH ₃ OC ₆ H ₄ C(=NOH)COC ₆ H ₅	<i>p</i> -Anisoylformanilide, <i>p</i> -anisic acid, and <i>p</i> -anisoylformic acid	$PCl_5, (C_2H_5)_2O$	185
	$p-CH_3OC_6H_4COC(=NOH)C_6H_5$	p-Anisic acid and benzoic acid	$PCl_{5}, (C_{2}H_{5})_{2}O$	185
C ₂₁	$C_{6}H_{5}COC(C_{6}H_{5})=CHC(=NOH)C_{6}H_{5}$	$C_{\mathbf{g}}H_{5}COC(C_{\mathbf{g}}H_{5}) = CHNHCOC_{\mathbf{g}}H_{5}$	C ₆ H ₅ SO ₂ Cl, pyridine	545

† The location of the methoxyl and methylenedioxy groups has not been established.‡ The same reaction may be obtained using aqueous sodium hydroxide instead of pyridine.

TABLE VIII

DIOXIMES OF DIKETONES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₆	1,4-Cyclohexanedione dioxime	Succinic acid, ethylene diamine, and alanine	p-CH ₃ C ₆ H ₄ SOCl, pyridine	204	
	1,4-Cyclohexanedione dioxime di- hydrochloride	1,4-Diamino-2-chlorobenzene	Polyphosphoric acid	208	THE
C ₈	Benzoylformohydroxamic acid oxime	4-Hydroxy-5-phenyl-1,2,3-oxadia- zole	POCl ₃	200	BEC
		3-Phenyl-5-hydroxy-1,2,4-oxadia- zole and benzonitrile	PCl_5 , $(C_2H_5)_2O$	200	BECKMANN
	α-Benzoylformohydroxamic acid oxime	Monoanilide of oxalic acid mono- hydroxamic acid	PCl_5 , $(C_2H_5)_2O$	201	
	β -Benzoylformohydroxamic acid oxime	3-Phenyl-5-amino-1,2,4-oxadiazole	POCl ₃	200	REARRANGEMENT
		Benzonitrile and 3-phenyl-5-hydroxy- 1.2.4-oxadiazole	PCl_5 , $(C_2H_5)_2O$	201	RRAI
	α-Benzoylformohydroxamic acid oxime disodium salt	Isomeric β -oxime and 3-phenyl-5- hydroxy-1,2,4-oxadiazole	CH ₃ COCl, C ₆ H ₆	201	NGEN
	Benzoylformohydroxamic acid chloride oxime	Benzonitrile and 3-phenyl-5-chloro- 1.2.4-oxadiazole	PCl_5 , $(C_2H_5)_2O$	200	1EN1
		Monoanilide of oxalic acid hydro- xamic acid and 4-chloro-5-phenyl- 1,2,3-oxadiazole	Steam distil	200	.]
	α-Benzoylformohydroxamic acid amide oxime	4-Amino-5-phenyl-1,2,3-oxadiazole	POCl ₃	199	
	β -Benzoylformohydroxamic acid amide oxime	5-Amino-3-phenyl-1,2,4-oxadiazole	POCl ₃	199	127

TABLE VIII—Continued

DIOXIMES OF DIRETONES

No. of C Atoms	Starting Material	Product (%Yield)	Catalysts and Experi- mental Conditions	References	
C,	α-Benzoylacetyl dioxime	3-Phenyl-5-methyl-1,2,4-oxadiazole	POCl ₃	200	
•	β -Benzoylacetyl dioxime	3-Phenyl-5-methyl-1,2,4-oxadiazole	POCI	200	
	α-p-Toluylformohydroxamic acid amide oxime	4-Amino-5-p-tolyl-1,2,3-oxadiazole	POCl ₃	199	
	β -p-Toluylformohydroxamic acid amide oxime	5-Amino-3-p-tolyl-1,2,4-oxadiazole	POCl ₃	199	ORGANIC
	C ₆ H ₅ COC(NOH)C(NOH)NH ₂	4-Amino-5-benzoyl-1,2,3-oxadiazole	POCl ₃	199	A
C ₁₀	a-Phenyldiacetyl dioxime	3-Benzoyl-5-methyl-1,2,4-oxadiazole	POCl ₃	200	
	H ₃ CCCC ₆ H ₅ N N NOH	H ₃ CC CONHC ₆ H ₅ N N O-O	POCl ₃	206	REACTIONS
C14	Benzil dioxime	Unidentified product	H_2SO_4	203, 204	$\mathbf{N}_{\mathbf{S}}$
		No reaction	HCl, $(CH_3CO)_2O$, CH_3CO_2H	203, 204	
		3,5-Diphenyl-1,2,4-oxadiazole C ₆ H ₅ C(Cl)=NN=C(Cl)C ₆ H ₅	PCl ₅	204	
	α-Benzil dioxime	4,5-Diphenyl-1,2,3-oxadiazole	PCl ₅ , PBr ₃ or POCl ₃ , (C ₂ H ₅) ₂ O	203	
		3,5-Diphenyl-1,2,4-oxadiazole	$POCl_3$; PCl_5 , $(C_2H_5)_2O$	200	
		$C_{\bullet}H_{5}C(Cl) = N - N = C(Cl)C_{\bullet}H_{5}$	$POCl_3$; PCl_5 , $(C_2H_5)_2O$	200	
		3,5-Diphenyl-1,2,4-oxadiazole	POCl ₃	200	
		N-Phenyl-N'-benzoylurea	$PCl_{5}, (C_{2}H_{5})_{2}O$	200	
			0		

eta-Benzil dioxime	Aniline, carbon dioxide, sulfanilic acid, ammonia, and carbon monoxide	POCl ₃ ; PCl ₅ , $(C_2H_5)_2O$ or C_6H_6 ; H_2SO_4 ; P_2O_5	203	
	Dibenzamide	PCl ₅	203	
	Oxalic acid dianilide	$POCl_3; PCl_5, (C_2H_5)_2O$	200	
α-Benzil dioxime monomethyl ether	3,5-Diphenyl-1,2,3-oxadiazole	PCl ₅	202	
eta-Benzil dioxime monomethyl ether	C ₆ H ₅ CCONHC ₆ H ₅ ∥ NOCH ₃	PCl ₅	202	THE
γ -Benzil dioxime monomethyl ether	C ₆ H ₅ CCONHC ₆ H ₅ ∥ CH₃ON	PCls	202	BECKMANN
Benzoylformohydroxamic acid anilide oxime	4-Anilino-5-phenyl-1,2,3-oxadiazole	POCl ₃	199	AANN
1,3-Diacetylazulene dioxime	1,3-Diacetamidoazulene (21) and 1- acetyl-3-acetamidoazulene (25)	PCl_5 , $(C_2H_5)_2O$	207	
1,3-Diacetylazulene dioxime diacetate	1,3-Diacetamidoazulene (6) and 1- acetyl-3-acetamidoazulene (16)	Aq. CH ₃ CO ₂ H	207	ARR/
	1,3-Diacetamidoazulene (30), 1- acetyl-3-acetamidoazulene (30), and 1-acetyl-3-acetamidoazulene oxime (11)	Al ₂ O ₃ , aq. NaOH	207	REARRANGEMENT
	1,3-Diacetamidoazulene (0-50), 1- acetyl-3-acetamidoazulene (20-70), and 1-acetyl-3-acetamidoazulene oxime (2-30)	$CH_{3}CO_{2}Na, (CH_{3}CO)_{2}O, C_{2}H_{5}OH; CH_{3}CO_{2}Na, CH_{3}CO_{2}H, C_{2}H_{5}OH; CH_{3}CO_{2}H, C_{2}H_{5}OH$	207	ΥT

TABLE VIII—Continued

DIOXIMES	OF	Diketones
DIOMIMICO	U 1	DIMERONIDO

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C16	4,4'-Dimethoxybenzil α-dioxime	3,5-Di-p-anisyl-1,2,4-oxadiazole	POCl ₃	200
		3,5-Di-p-anisyl-1,2,4-oxadiazole and oxalic acid di-p-aniside	POCl ₃	200
C ₁₇	1,5-Diphenylpentane-1,5-dione dioxime	Glutaric acid dianilide	POCl ₃	206
C ₃₀	Cyclotriconta-1,16-dione dioxime	$CO-(CH_2)_{14}-NH (85)$ NH-(CH_2)_{14}-CO	H_2SO_4	122
		or		
		CO(CH ₂) ₁₄ CO NH(CH ₂) ₁₄ NH		

TABLE IX

		QUINONE OXIMES		
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C ₆	1,4-Benzoquinone monoxime	4,4'-Dihydroxyazoxybenzene (45)	C ₆ H ₅ SO ₂ Cl, pyridine	196
		1-Benzenesulfonoxy-4-nitroso- benzene; 1-aza-2,5-dioxo-3,6- cycloheptadiene	C ₆ H ₅ SO ₂ Cl, pyridine	195
	1,4-Benzoquinone dioxime	Unidentified product	HCl; CH_3CO_2H , ($CH_3CO)_2O$; PCl_5	195
		No reaction	SOCl ₂ ; HCl	
		1,4-Benzoquinone dioxime dibenzenesulfonate	C ₆ H ₅ SO ₂ Cl	
C ₁₀	1,2-Naphthoquinone 2-oxime	Unidentified product, C ₁₀ H ₆ ClNO	PCl ₅ , petroleum ether	195
	C = CH = CH	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H; C ₆ H ₅ COCl pyridine	195	
	1,2-Naphthoquinone dioxime	N O	PCl ₅ , petroleum ether	195
	1,4-Naphthoquinone monoxime	l-Acetoxy-2,3-dichloro-2,3-dihydro- 4-nitrosonaphthalene	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	195

131

TABLE IX—Continued

QUINONE	OXIMES
---------	--------

No. of C Atoms	Starting Material	Products (% Yield).	Catalysts and Experi- mental Conditions	References	
C ₁₀ (continued)	1,4-Naphthoquinone monoxime (continued)	l-Benzenesulfonoxy-4-nitroso-2,3- dihydronaphthalene	$C_6H_5SO_2Cl$, pyridine	195	
		Unidentified product	CH ₃ COCl	195	
	1,4-Naphthoquinone dioxime	2,3-Dihydro-1,4-naphthoquinone dioxime diacetate	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	195	
C ₁₂	Acenaphthenequinone monoxime		C ₆ H ₅ SO ₂ Cl, pyridine	95	ORGANIC REAC
			HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	187	REACTIONS
			Heat	186	

C14	Anthraquinone monoxime	CONH	Polyphosphoric acid	195	
	Anthraquinone dioxime	Dianthranilide (85)	Polyphosphoric acid	546	THE
	<i>syn</i> -1-Chloro- <i>anti</i> -5-chloroanthra- quinone dioxime	$CI \qquad 0 \\ N \qquad CI \qquad 0 \\ CI \qquad 0 \\ CI \qquad 0 \\ (38)$	Polyphosphoric acid; (CH ₃ CO) ₂ O, CH ₃ CO ₂ H, HCl	195, 546	E BECKMANN REARRANGEMENT
	<i>anti</i> -1-Chloro- <i>anti</i> -5-chloroanthra- quinone dioxime	4,10-Dichloroanthranilide (72)	Polyphosphoric acid	546	EMEN
	Phenanthraquinone monoxime	2,2'-Diphenic acid imide (80)	HCl, (CH3CO)2O, CH3CO2H	81	Г
		2,2'-Diphenic acid imide (40-50) and 1-carboxyfluorenone amide (45)	H ₂ SO ₄	81	
	Phenanthraquinone dioxime	1-Carboxyfluorenenone (80)	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	81	
Note: R	eferences 338 to 593 are on pp. 152–156	6.			133

TABLE IX-Continued

		QUINONE OXIMES			_
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	UNGA
C ₁₅	Aceanthrenequinone monoxime	1,9-Anthracenedicarboximide (100)	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H; H ₂ SO ₄	103	T OT M
C ₁₈	Chrysoquinone monoxime	2-(o-Benzamido)-1-naphthoic acid and 2-(o-benzoic acid)-1-naphth- amide	H ₂ SO ₄	547	NEACT
		6-Benzo[3,4,b]fluorenonecarboxylic acid	H ₂ SO ₄	548	IONS

Note: References 338 to 593 are on pp. 152-156.

TABLE X

CLEAVAGE OF OXIMES AND OXIME DERIVATIVES ("Second Order" Beckmann Rearrangement)

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₃	Isonitrosoacetone	Pyruvic acid	Isopropyl phosphono- fluorodate, Na ₂ HPO ₄	549	
C4	Diacetyl monoxime	Acetyl chloride and acetaldoxime	HCI	550	THE
C ₅	Cyclopentanone oxime	Pentenonitrile	$P_{2}O_{5}$	65	ΞE
		δ -Valerolactam (27) and 4-penteno- nitrile	B ₂ O ₃ and Al ₂ O ₃ *	148	
C_6	Cyclohexanone oxime	5-Hexenonitrile	$P_2O_5; SiO_2, NH_3; B_2O_3-Al_2O_3^*$	146, 148	BECKMANN
C ₇	2-Methylcyclohexanone oxime	Heptenonitrile	P_2O_5	147	Ś
C ₈	Isonitrosoacetophenone	Benzoic acid	Isopropyl phosphono- fluorodate, Na ₂ HPO ₄ , (CH ₃) ₂ CHOH	549	N REARRANGEMENT
	C ₆ H ₅ C(==NOH)C(==NOH)OH	Benzonitrile and 3-phenyl-4-hydroxy- 1,2,4-oxadiazole	PCl ₅ , POCl ₃	200	RRAI
	Isatin 3-monoxime	2-Cyanophenyl isocyanate	PCl ₅ ; PCl ₃	99, 188	- NG
	2-Keto-3-oximino-2,3-dihydrobenzo- thiophene	2-Cyanophenylsulfenyl chloride	PCl ₅	188	EME
C9	Acetyl benzoyl dioxime NOH 	Benzonitrile and benzoyl chloride	PCl_5 , $(C_2H_5)_2O$	200	NT
	o-NO ₂ C ₆ H ₄ CCOCO ₂ H	2-Nitrobenzonitrile and oxalic acid		550a	
	l-Methylisatin 3-oxime	2-Cyano-N-methylphenylcarbamyl chloride	PCl_5 , $(C_2H_5)_2O$	188	
Note: Re	eferences 338 to 593 are on pp. 152–156	3.			135

* This reaction was run in the vapor phase under reduced pressure.

TABLE X-Continued

CLEAVAGE OF OXIMES AND OXIME DERIVATIVES ("Second Order" Bechmann Rearrangement)

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- F mental Conditions	leferences	
C ₉ (continued)	Spiro-[4,4]-nonan-l-one oxime	Δ ^{8,9} -Hydrinden-4-one 6-Azaspiro-[4,5]-decan-7-one and 4-cyclopentylidenebutyronitrile	Polyphosphoric acid SOCl ₂	149 149	
C ₁₀	Camphor oxime	Unidentified nitriles 2,3,3-Trimethylcyclopentane-4-acetic acid	SOCl ₂ ; aq. HCl Conc. HCl	$231, 551 \\ 552$	ORGANIC
		Unidentified nitrile and camphor oxime anhydride	Aq. HCl; H ₂ SO ₄	553	
		α-Campholenic amide, α-campholenic acid, campholenonitrile, and bornylamine	Cu, H ₂ (200°)	556	REACTIONS
	Isonitrosocamphor	1,2,2-Trimethyl-3-cyanocyclo- pentene-1-carboxylic acid (100)	PCl_5 , ligroin; $(CH_3CO)_2C$) 155	ONS
		2,3,3-Trimethyl-1-cyclopentene-4- carbonitrile (40)	PCl_5 , $(C_2H_5)_2O$	150	
	anti-a-Isonitrosocamphor	1,2,2-Trimethyl-3-cyanocyclo- pentane-1-carboxylic acid	PCl_5 , $(C_2H_5)_2O$	154	
		1,2,2-Trimethylcyclopentane-1,3-di- carboxylic acid and its anhydride	PCl_5 , $(C_2H_5)_2O$	554	
	syn - α -Isonitrosocamphor	l,2,2-Trimethyl-3-cyanocyclo- pentane-1-carboxylic acid and 1,2,2-trimethylcyclopentane-1,3- dicarboximide	PCl_5 , $(C_2H_5)_2O$	154	

136

anti-Isonitros	ocamphor oxime	1,2,2-Trimethylcyclopentane-1,3-di- carboximide (50); 1,2,2-trimethyl- 3-cyanocyclopentane-1-carboxylic acid (20); 1,2,2-trimethylcyclo- pentane-1,3-dicarboxylic acid (3)	Αq. Η ₂ SO ₄	554	
		1,2,2-Trimethyl-3-cyanocyclo- pentane-1-carboxylic acid and 1,2,2-trimethylcyclopentane-1,3- dicarboxylic acid	Conc. H ₂ SO ₄	554	THE
		1,2,2-Trimethylcyclopentane-1,3-di- carboxylic acid	PC1 ₅ , (C ₂ H ₅) ₂ O	554	
<i>l</i> -Menthone or	kime	Menthononitrile and decylenic acid	A1 ₂ O ₃ *	86	CI
Camphenilone	e oxime	Camphocene nitrile (78-80) (struc- ture not determined), and iso- camphenyl oxime	CH ₃ COCI	555	BECKMANN
Pinocamphon	e oxime	Pinocamphene nitrile	$H_2SO_4; P_2O_5$	557	
<i>β-peri</i> -Camph	anone oxime	CN	Aq. H ₂ SO4	151	REARRANGEMENT
1.2-Naphthog	uinone 1-monoxime	2-Cyanocinnamoyl chloride	$PCl_{5}, (C_{2}H_{5})_{2}O$	188	EM
	uinone 2-monoxime	2-Chlorocarboxycinnamonitrile	PCl ₅	188	EP
α -Nitroso- β -na		2-Cyanocinnamic acid	C ₆ H ₅ SO ₂ Cl, pyridine	95, 195,	T
- 1.101.000 p -10	-F		- 0 - 5 - 2 - 7 1 5	210, 219	
α-Furoin oxin	ne	2-Isocyanofuran	C ₆ H ₅ SO ₂ Cl, aq. NaOH	210	
β -Furoin oxin	ne	2-Cyanofuran	C ₆ H ₅ SO ₂ Cl, aq. NaOH	210	
1-Acetylisatin	3-oxime	2-Cyanophenyl isocyanate	PCl ₅ , POCl ₃	99	
Note: References 338 to	593 are on pp. 152–15	6.			

* This reaction was run in the vapor phase under reduced pressure.

138

TABLE X—Continued

CLEAVAGE OF OXIMES AND OXIME: DERIVATIVES ("Second Order" Beckmann Rearrangement)

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C ₁₀ (continued)	Spiro-[4,5]-decan-1-one oxime.	3-Oxo-1-cyclodecene 7-Azaspiro-[5,5]-undecan-8-one and 4-cyclohexylidenebutyronitrile	Polyphosphoric acid SOCl ₂	149 149
	Spiro-[4,5]-decan-6-one oxime NOH	2-Cyclopentylidenecyclopentanone and δ -cyclopentylidenevaleramide	Polyphosphoric acid	149
C11	C ₆ H ₅ CH=CHCCOCH ₃	Cinnamic acid (40)	(COC1) ₂	558
	p-CH ₃ C ₆ H ₄ CCOCOCH ₃ \parallel \parallel NOCOCH ₃ NOCOCH ₃	p-Tolunitrile and p-toluylformic acid oxime; 3-p-tolyl-5-hydroxy-1,2,4- oxadiazole	NaOH	568
	С ₆ H ₅ COCCOCOCH ₃ NOH	Benzoyl cyanide, acetic acid, and carbon monoxide	C ₆ H ₆	559
	Spiro-[5,5]-undecan-l-one oxime 3-Methylcamphor oxime	Bicyclo-[5.4.0]-10-undecene-4-one 2,3,3-Trimethyl-4-α-cyanoethyl-1- cyclopentene	Polyphosphoric acid Conc. HCl	149 560
C ₁₂	C ₆ H ₅ CHOHC	Benzaldehyde and 2-cyanofuran	$C_6H_5SO_2Cl$, aq. NaOH	210

2a,3,4,5-Tetrahydro-4-oximino-5- acenaphthenone α-(N,N-Dimethylamino)ethyl	7-Carboxy-1-indonacetonitrile (70)		
a.(N N-Dimethylamino)ethyl		C ₆ H ₅ SO ₂ Cl, pyridine	561
piperonyl ketoxime	3,4-Methylenedioxybenzonitrile	SOCl ₂ , CHCl ₃	380
Benzoin oxime	Benzaldehyde and benzonitrile	C ₆ H ₅ SO ₂ Cl, aq. NaOH	95, 210
α-Benzoin oxime	Unidentified material	KCN	211
β -Benzoin oxime	Benzaldehyde and phenyl isocyanide	C ₆ H ₅ SO ₂ Cl, aq. NaOH	95, 210
α -Benzoin oxime acetate	Benzonitrile, benzaldehyde, and benzoin	Aq. NaOH	211
	Benzaldehyde and benzonitrile	Heat with water	211
β -Benzoin oxime acetate	β -Benzoin oxime (100)	Aq. NaOH	211
	Benzaldehyde, benzonitrile, and phenyl isocyanide	KCN, aq. C ₂ H ₅ OH	211
α -Benzoin oxime mesitoate	Mesitoic acid, benzaldehyde, and benzonitrile	NaOH, CH3OH; Na2CO3, CH3OH	562
β -Benzoin oxime mesitoate	Mesitoic acid, benzaldehyde, and benzonitrile	NaOH, CH3OH; Na2CO3, CH3OH	562
Benzil monoxime	Benzonitrile and benzoic acid	$C_8H_5SO_2Cl$, pyridine	95
α-Benzil monoxime	Benzoic acid and benzonitrile	Aq. NaOH	211
β -Benzil monoximė	No reaction	Aq. NaOH	211
Benzil monoxime acetate	Benzonitrile and benzoic acid	10% NaOH	230
α-Benzil monoxime acetate	Benzoic acid and benzonitrile	Heat	211
β -Benzil monoxime acetate	No reaction	Heat	211
Benzil monoxime propionate	Benzoic acid and benzonitrile	Conc. NH ₄ OH	230
Benzil monoxime ethoxalate	Benzonitrile and benzoic acid	10% NaOH	230
Benzil monoxime benzoate	$C_{s}H_{5}C(Cl) = NCOC_{s}H_{5}$	$PCl_{5}, (C_{2}H_{5})_{2}O$	198

TABLE X-Continued

CLEAVAGE OF OXIMES AND OXIME DERIVATIVES ("Second Order" Beckmann Rearrangement)

	(800011	i order Deckmann Realiangement)			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C14	α-Benzil monoxime benzoate	Benzoic acid (90)	Aq. NaOH	5	
(continued)	β -Benzil monoxime benzoate	Benzonitrile (80) and benzoic acid (94)		5	
	Benzil monoxime cinnamate	Benzonitrile, benzoic acid (100), and cinnamic acid (100)	10% NaOH	230	
	y-Benzil dioxime diacetate	3,4-Diphenylfurazan	Aq. NaOH	217	0
	α-Benzil dioxime dibenzoate	α-Benzil monoxime, benzoic acid, and aniline	25% NaOH	217	ORGANIC
	β -Benzil dioxime dibenzoate	β -Benzil monoxime	15% NaOH	217	I
	y-Benzil dioxime dibenzoate	3,4-Diphenylfurazan	Aq. NaOH	217	
	syn-Phenyl 2,4-dinitrobenzoyl ketoxime	Benzonitrile and 2,4-dinitrobenzoic acid	PCl_{5} , $(C_{2}H_{5})_{2}O$	190	REACTIONS
		$2 \cdot Hy droxy \cdot 4 \cdot nitrobenzon itrile$	NaOH	192	OTIO:
		O2N ON C6H5	C₂H₅OH	190	SN
	anti-Phenyl 2,4-dinitrobenzoyl ketoxime	Benzoic acid and 2,4-dinitrobenzo- trile	PCl ₅ , (C ₂ H ₅) ₂ O	190	
		O2N C6H5	$NaOC_2H_5$	190	

C₁₄

C ₆ H ₅ CCl	Benzonitrile and 2,4-dinitrobenzoic acid	Aq. NaOH	192
$\overset{\parallel}{\mathrm{NCOC}}_{6}\mathrm{H}_{3}(\mathrm{NO}_{2})_{2}$ -2,4			
$C_{s}H_{5}C(Cl) = NOCOC_{s}H_{5}$	Benzonitrile and benzoyl chloride	Heat	198
9,10-Phenanthraquinone monoxime	4-Cyanofluorenone	PCl_5 , $(C_2H_5)_2O$	188
	2-Cyanobiphenyl-2'-carboxylic acid	C ₆ H ₅ SO ₂ Cl, pyridine	95
2-Nitro-9,10-phenanthraquinone 10- monoxime	2-Cyano-4-nitrobiphenyl-2'-car- boxylic acid	C ₆ H ₅ SO ₂ Cl, pyridine	95
2,7-Dinitro-9,10-phenanthraquinone monoxime	2-Cyano-4,4'-dinitrobiphenyl-2'- carboxylic acid	C ₆ H ₅ SO ₂ Cl, pyridine	95
O2N ON C6H5	2-Hydroxy-4-nitrobenzoic acid and benzonitrile	NaOH	190
Methylbenzoin oxime	Acetophenone, benzoin, and desylacetophenone	$C_{\boldsymbol{\theta}}\mathbf{H}_{5}\mathbf{SO}_{2}\mathbf{Cl}, \text{ pyridine}$	211
C ₆ H ₅ CHCC ₆ H ₄ OCH ₃ -p │	Benzaldehyde (94) and <i>p</i> -anisonitrile (98)	$C_{\pmb{\theta}}H_5COCl$, pyridine	216
syn-o-Tolyl benzoyl ketoxime	Benzoic acid and o-tolunitrile	NaOH	191
0	Benzoic acid (99) and o-tolunitrile	NaOH, C2H5OH	191
syn-Phenyl p-anisoyl ketoxime benzoate	Benzonitrile, benzoic acid, and <i>p</i> -anisic acid	Aq. NaOH	185
anti-Phenyl p-anisoyl ketoxime	<i>p</i> -Anisoylformanilide (55), <i>p</i> -anisic acid, and <i>p</i> -anisoylformic acid	PCl_5 , $(C_2H_5)_2O$	185
α-Piperidinylethyl piperonyl ketoxime	3,4-Methylenedioxybenzonitrile	$SOCl_2$, CHCl_3; p-CH ₃ C ₆ H ₄ SO ₂ Cl, aq. NaOH, acetone	380

C₁₅

TABLE X—Continued

CLEAVAGE OF OXIMES AND OXIME DERIVATIVES ("Second Order" Beckmann Rearrangement)

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₁₆	C₅H₅CHOHCC₅H₄N(CH₃)₂-p ∥ NOH	Benzaldehyde (86) and p-(N,N-di- methylamino)phenyl isocyanide	C ₆ H ₅ SO ₂ Cl, pyridine	216	
	C₅H₅CHOHCC₅H₄N(CH₃)₂-p ∥ HON	p-(N,N-Dimethylamino)benzonitrile and benzoic acid	$C_6H_5SO_2Cl$, pyridine	563	ORG
		Benzoic acid and p-(N,N-dimethyl- amino)benzonitrile	C ₆ H ₅ SO ₂ Cl, pyridine	218	ORGANIC
	p-(CH ₃)₂NC ₆ H₄CHOHCC ₆ H ₅ ∥ HON	Benzäldehyde and <i>p</i> -(N,N-dimethyl- amino)benzonitrile	SOCl ₂ , CHCl ₃	564	REACTIONS
	p-(CH ₃)₂NC₅H₄CHOHCC₅H₅ ∥ NOH	Benzaldehyde and p-N,N-dimethyl- aminophenyl isocyanide	C ₆ H ₆ SO ₂ Cl, NaOH	216	TIONS
	C₅H₅CHOHCC₅H₃(CH₂OH)₂-3,4 ∥ HON	Benzaldehyde (92) and 3,4-bis- (hydroxymethyl)benzonitrile (98)	C ₆ H ₅ SO ₂ Cl, NaOH	216	
	2-ClC ₆ H₄CHOHCC ₆ H ₃ (OCH ₃) ₂ -3,4 ∥ HON	2-Chlorobenzaldehyde (78) and 3,4- dimethoxybenzonitrile (61)	C ₆ H ₅ SO ₂ Cl, NaOH	216	
	2-ClC ₆ H ₄ CHOHCC ₆ H ₄ N(CH ₃) ₂ -4 HON	2-Chlorobenzaldehyde (77) and 4- (N,N-dimethylamino)benzonitrile (83)	C ₆ H ₅ SO ₂ Cl, NaOH	216	

142

THE BECKMANN REARRANGEMENT

	2-ClC ₆ H ₄ CHOHCC ₆ H ₂ (CH ₂ OH) ₂ -3,4 ∥ HON	2-Chlorobenzaldehyde (65) and 3,4- bis(hydroxymethyl)benzonitrile (56)	C ₆ H ₅ SO ₂ Cl, NaOH	216	
	2-CH ₃ OC ₆ H ₄ CHOHCC ₆ H ₄ OCH ₃ -4	2-Methoxybenzaldehyde (96) and anisole (98)	C ₆ H ₅ SO ₂ Cl, NaOH	216	
	Dioximinothebenone	Thebedinitrile (55)	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	565	THE
	epi-Dioximinothebenone	epi-Thebedinitrile (28)	p-CH ₃ C ₆ H ₄ SO ₂ Cl, pyridine	565	
C ₁₇	C ₆ H ₅ CC(OCH ₃) ₂ C ₆ H ₄ OCH ₃ - <i>p</i> ∥ NOH	Benzonitrile and p -anisic acid	HCl, (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	185	BECKMANN
C ₁₈	2-Methyl-7-isopropyl-9,10-phen- anthraquinone 10-oxime	2-Cyano-3-methyl-4'-isopropyl- biphenyl-2'-carboxylic acid	$C_6H_5SO_2Cl$, pyridine	95	
C ₁₀	2,2-Diphenylcycloheptanone oxime	7,7-Diphenylheptamide and un- identified product, C ₁₉ H ₁₉ NO	Polyphosphoric acid	149	REARRANGEMENT
		7,7-Diphenyl-6-heptenonitrile (50–97)†	$SOCl_2, C_6H_6; HCl, CH_3CO_2H$	152	RANC
	l-Methyl-4-phenyl-4-benzoyl- piperidine oxime	C_6H_5CN and 1-methyl-4-phenyl- $\Delta^{3,4}$ - piperidine	$SOCl_2$, CCl_4	90	EME
	Isonitrosocinchotoxin	l-Methyl-3-vinyl-4-cyanomethyl- piperidine (29) and quinoline-4- carboxylic acid	PCl ₅ , CHCl ₃	181	ENT
	1-Phenyl-1-benzoylcyclohexane oxime	C_6H_5CN and 2-phenylcyclohexene	SOCl ₂ , C ₆ H ₆	90	

† No product was obtained using sulfuric acid.

143

TABLE X---Continued CLEAVAGE OF OXIMES AND OXIME DERIVATIVES ("Second Order" Beckmann Rearrangement)

	-			
Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	Ç
Phenylbenzoin oxime	Benzophenone and benzoin	C ₆ H ₅ SO ₂ Cl, pyridine	211	ିନ୍
Flavothebaone trimethyl ether desazo-4-methine oxime	Flavothebaone trimethyl ether desazaneomethine and acetonitrile	$SOCl_2 (-10^\circ)$	566	ORGANIC
	1,2,7,10-Tetramethoxy-l1-vinyl chrysofluorene	$SOCl_2 (-5^\circ)$	566	NES
Flavothebaone trimethyl ether hexahydrodesazomethine oxime	Flavothebaone trimethyl ether dihydrodesazaneomethine a nd acetonitrile	SOCI2	566	REACTIONS
Flavothebaone trimethyl ether hexa- hydrodesazomethine oxime	Unidentified product, $C_{26}H_{31}NO_5$	SOCI2	566	Ŭ
Flavothebaone trimethyl ether 4- methine oxime	Flavothebaone trimethyl ether neo- methine and acetonitrile	SOCl ₂	56 0	
	Phenylbenzoin oxime Flavothebaone trimethyl ether desazo-4-methine oxime Flavothebaone trimethyl ether hexahydrodesazomethine oxime Flavothebaone trimethyl ether hexa- hydrodesazomethine oxime Flavothebaone trimethyl ether 4-	Phenylbenzoin oxime Flavothebaone trimethyl ether desazo-4-methine oximeBenzophenone and benzoin Flavothebaone trimethyl ether desazaneomethine and acetonitrile 1,2,7,10-Tetramethoxy-11-vinyl chrysofluoreneFlavothebaone trimethyl ether hexahydrodesazomethine oximeFlavothebaone trimethyl ether dihydrodesazaneomethine and acetonitrileFlavothebaone trimethyl ether hexahydrodesazomethine oximeFlavothebaone trimethyl ether dihydrodesazaneomethine and acetonitrileFlavothebaone trimethyl ether hexa- hydrodesazomethine oximeUnidentified product, C26H31NO5Flavothebaone trimethyl ether 4-Flavothebaone trimethyl ether neo-	Phenylbenzoin oximeBenzophenone and benzoin $C_6H_5SO_2Cl$, pyridineFlavothebaone trimethyl ether desazo-4-methine oximeBenzophenone and benzoin $C_6H_5SO_2Cl$, pyridineFlavothebaone trimethyl ether hexahydrodesazomethine oximeFlavothebaone trimethyl ether desazaneomethine and acetonitrile $SOCl_2 (-10^\circ)$ Flavothebaone trimethyl ether hexahydrodesazomethine oximeFlavothebaone trimethyl ether dihydrodesazaneomethine and acetonitrile $SOCl_2 (-5^\circ)$ chrysofluoreneFlavothebaone trimethyl ether hydrodesazomethine oximeFlavothebaone trimethyl ether dihydrodesazaneomethine and 	Phenylbenzoin oximeBenzophenone and benzoin $C_6H_5SO_2Cl, pyridine$ 211Flavothebaone trimethyl ether desazo-4-methine oximeFlavothebaone trimethyl ether desazaneomethine and acetonitrile 1,2,7,10-Tetramethoxy-11-vinyl $SOCl_2 (-10^\circ)$ 566Flavothebaone trimethyl ether hexahydrodesazomethine oximeFlavothebaone trimethyl ether dihydrodesazaneomethine and acetonitrile $SOCl_2 (-5^\circ)$ 566Flavothebaone trimethyl ether hexahydrodesazomethine oximeFlavothebaone trimethyl ether dihydrodesazaneomethine and acetonitrile $SOCl_2$ 566Flavothebaone trimethyl ether hexa- hydrodesazomethine oximeFlavothebaone trimethyl ether hexa- hydrodesazomethine oxime $SOCI_2$ 566Flavothebaone trimethyl ether 4-Flavothebaone trimethyl ether neo- $SOCI_2$ 566

Note: References 338 to 593 are on pp. 152-156.

144

TABLE XI

ALDOXIMES

		HEDOWINES			
No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C1	Nitrole	Nitrous acid, isocyanic acid		277	
C ₂	Acetaldoxime	Acetamide (88, 86)	Raney nickel	226, 227	
-		Acetaldehyde and unidentified amine	Cu, H, (carrier gas)	223	Н
	α-Nitroacetaldoxime	Nitroacetonitrile	$SOCl_2$, $(C_2H_5)O$	234	THE
C4	Butyraldoxime	Butyramide	CF ₃ CO ₂ H	82	
•	Succinaldoxime	Succinimide (5)	Polyphosphoric acid	567	Œ
C ₅	γ-Methylbutyraldoxime sodium salt	y-Methylbutyronitrile (97)	Heat	225	CK
5	Furfuraldoxime	Pyromucamide (88,)	Raney nickel, alone or with ethanol		BECKMANN
		Pyromucamide (45), furfural (55)	Cu, H ₂ (carrier gas)	66, 2 2 3	Z
	Nickel tetrakisfurfuraldoxime	Pyromucamide (50) and nickel bis- (furfuraldoxime)	Heat, C ₆ H ₆	228	REA
C ₇	n-Heptanaldoxime	n-Heptanamide (90, 74)	Raney nickel; BF ₃	227, 569	RF
	Benzaldoxime	Benzamide (65)	Raney nickel, (C ₂ H ₅) ₂ O	2 26	Ā
		Benzamide (75–76)	Raney nickel	226, 227	NG
		Benzamide (98)	BF ₃ , CH ₃ CO ₂ H	569	E
		Benzamide	90% H_2SO_4 ; CuCl, CuBr, SbCl ₃ , C ₆ H_5CH_3	1, 68	REARRANGEMENT
		Benzoic acid, benzamide, phenyl- nitromethane, benzohydroxamic acid, and 3,5-diphenyl-1,2,4-oxa- diazole	$K_{2}S_{2}O_{5}, H_{2}O, H_{2}SO_{4}$	570	
		Benzamide (50) and benzoic acid (12)	H ₂ SO ₄	571	
Note	References 338 to 593 are on pp. 152–15		- •		145
110000	$\frac{1}{1000} \text{ are on pp. 102-10}$				5

TABLE XI—Continued

ALDOXIMES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₇ (continued)	Benzaldoxime (continued)	Benzamide (52), benzonitrile (58), and benzoic acid (21)	Cu, H ₂ (carrier gas)	67	
		Benzonitrile	H ₃ BO ₃ -Al ₂ O ₃ , vapor phase, 250°	148	
	syn-Benzaldoxime	Benzamide, benzoic acid, and benzo- nitrile, and ammonia	Cu, H ₂ (carrier gas)	224	or
	anti-Benzaldoxime	Benzamide, benzoic acid, and benzo- nitrile	Cu, H_2 (carrier gas)	224	ORGANIC
		Benzonitrile, sulfur dioxide, and hydrogen chloride	SOCl ₂	231	
	Sodium benzaldoxime	Benzamide (5), benzonitrile (86), benzoic acid (7), and ammonia	Heat	225	REACTIONS
	4-Chlorobenzaldoxime	4-Chlorobenzamide (95)	BF _s	569	TI
	3-Nitrobenzaldoxime	3-Nitrobenzamide (98,)	BF ₃ ; H ₂ SO ₄	569, 571	ž
	Salicylaldoxime	Salicylamide (47)	BF ₃	569	ζΩ
	2-Azidobenzaldoxime	2-Oxy-1,2-benzodiazole, 2-azidobenz- amide, 2-aminobenzaldehyde, 2- azidobenzoic acid, and anthranilic acid	Heat; aq. NaOH	239	
	2-Aminobenzaldoxime	1-Acetylbenzodiazole or $N = CH_3$	HCl; (CH ₃ CO) ₂ O, CH ₃ CO ₂ H	240	

	2-Chloro-5-nitrobenzaldoxime	2-Chloro-5-nitrobenzonitrile (95)	$PCl_{5}, (C_{2}H_{5})_{2}O$	230	
	2-Chloro-5-nitrobenzaldoxime acetate	2-Chloro-5-nitrobenzoic acid	HCI	309	
	syn-2,6-Dichloro-3-nitrobenz-	2.6-Dichloro-3-nitrobenzonitrile	$PCl_{5}, (C_{2}H_{5})_{2}O$	572	
	aldoxime	_,			
	Benzohydroxamic acid amide	Benzamide, benzoic acid, and benzo-	Cu, H_2 (carrier gas)	66	
		nitrile			
C ₈	Anisaldoxime	Anisamide (70)	BF ₃	569	Н
. 0	3-Methoxybenzaldoxime hydro-	3-Methoxybenzamide	-	573	THE
	chloride	- <u></u>			
	Piperonaldoxime	Unidentified product	BF_3	569	BECKMANN
	Phenylglyoxal dioxime	3-Phenylfurazan	C ₆ H ₅ COCl, pyridine	574	R
	Phenylglyoxal monoxime	Benzoylformamide	NaHSO ₃ , 20% H ₂ SO ₄	229	_M,
	1-Ethyl-3,4-dehydropiperidine-3-	l-Ethyl-3,4-dehydro-3-cyanopiperi-	SOCl ₂	236	N
	carboxaldehyde oxime	dine hydrochloride			
	N-Glyoxyloximinoaniline	Isatin	H_2SO_4	575	RE
	N-a-Bromoglyoxyl-o-toluidine oxime	5-Bromo-7-methylisatin	H_2SO_4	576	A
C,	4-Dimethylaminobenzaldoxime	4-Dimethylaminobenzamide (95)	$\mathbf{BF_3}$	569	RR
	Cinnamaldoxime	Isoquinoline	P_2O_5	237, 238	- È
		Cinnamaldehyde, cinnamonitrile	Cu, H_2 (carrier gas)	66	GN
		Cinnamamide (30)	Raney nickel	226, 227	Ē
		Isoquinoline	H_2SO_4	233	Ē
	Bis(cinnamaldoxime)copper(I) bromide	Cinnamamide	Heat, C ₆ H ₅ CH ₃	68	REARRANGEMENT
	β -Chlorocinnamaldoxime	$trans-\beta$ -Chlorocinnamonitrile (48)	$PCl_{5}, (C_{2}H_{5})_{2}O$	232	
	cis-anti-β-Chlorocinnamaldoxime	$trans-\beta$ -Chlorocinnamonitrile	$PCl_{5}, (C_{2}H_{5})_{2}O$	232	
	cis - syn - β -Chlorocinnamaldoxime	$trans-\beta$ -Chlorocinnamonitrile	$PCl_{5}, (C_{2}H_{5})_{2}O$	232	
	N-Glyoxyloximino-3-chloro-6-	4-Chloro-7-methoxyisatin	H ₂ SO ₄	575	
	methoxyaniline	-	- •		
37.4.	D-6 228 4- 702 150 150				÷

147

148

ORGANIC REACTIONS

ALDOXIMES No. of Starting Material Products (% Yield) Catalysts and Experi- References C Atoms mental Conditions C, cis-a-Bromocinnamaldoxime trans-a-Bromocinnamonitrile PCl_5 , $(C_2H_5)_2O$ 391 (continued) C₆H₅N=CHCHCH=NOCOCH₃ C₆H₅N=CHCHCN HCl, (CH₃CO₂)O, 246 CH₃CO₂H NO₂ NO2 C10 Citronellaldoxime Citronellonitrile (72-86) $(CH_3CO)_2O$ 577 Citronellamide (50) Raney nickel 578 syn-Mesitaldoxime Formomesidide, mesitonitrile $PCl_{5}, (C_{2}H_{5})_{2}O$ 221 anti-Mesitaldoxime Mesitonitrile PCl_5 , $(C_2H_5)_2O$ 221 œ C₁₂ N-Glyoxyloximino-2-amino-5,6,7,8-90% H₂SO₄ ŇН 241 (70) tetrahydronaphthalene NHCOCONH2 (30)

TABLE XI-Continued

C₁₅ l,2,3,4-Tetrahydro-9-anthraldehyde oxime Uncharacterized product reduced to PCl_5 , $(C_2H_5)_2O$ 9-anthraldehyde with $SnCl_2$

579

Note: References 338 to 593 are on pp. 152-156.

TABLE XII

NITRONES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References	
C ₈	Phenyl N-methyl nitrone	N-Methylbenzamide		270	
	2-Nitrophenyl N-methyl nitrone	N-Methyl-2-nitrobenzamide	(CH ₃ CO) ₂ O	270	
	3-Nitrophenyl N-methyl nitrone	N-Methyl-3-nitrobenzamide	(CH ₃ CO) ₂ O	270	TH
	3-Nitrophenyl N-methyl nitrone hydrochloride	N-Methyl-3-nitrobenzamide	. 3 /2	270	E
	4-Nitrophenyl N-methyl nitrone	4-O ₂ NC ₆ H ₄ C(=NCH ₃)OCH ₃	KCN, CH ₂ OH	269	BECKMANN
		N-Methyl-4-nitrobenzamide	(CH ₃ CO),O	270	K
C,	2-Anisyl N-methyl nitrone	N-Methyl-2-anisamide		270	MA
	4-Anisyl N-methyl nitrone	N-Methyl-N-acetyl-4-anisamide	(CH ₃ CO) ₂ O	270	Ś.
C ₁₀	3,4-(Methylenedioxy)phenyl N- methyl nitrone	N-Methyl-3,4-(methylenedioxy)- benzamide		270	N REARRANGEMENT
	Cinnamyl N-methyl nitrone	N-Methylcinnamide		270	A
C ₁₃	Phenyl N-phenyl nitrone	Benzanilide		265	RR
	2-Nitrophenyl N-phenyl nitrone	2-Nitrobenzanilide	CH ₃ COCl	267	A
		N-Acetyl-2-nitrobenzanilide	(CH ₃ CO) ₂ O	267	Ğ
		2-Nitrobenzanilide	KCN, C,H ₅ OH	269	E۷
		$2 - O_2 NC_6 H_4 C(OCH_3) = NC_6 H_5$	KCN; CH ₃ OH	269	Æ
	3-Nitrophenyl N-phenyl nitrone	3-Nitrobenzanilide	(CH ₃ CO) ₂ O; KCN, C ₂ H ₅ OH	267, 269	NT
		$3-O_2NC_6H_4C(OCH_3) = NC_6H_5$	KCN, CH ₃ OH	269	
	4-Nitrophenyl N-phenyl nitrone	$4-O_2NC_6H_4C(OC_2H_5)=NC_6H_5$	KCN, C ₂ H ₅ OH	269	
		4-Nitrobenzanilide	(CH ₃ CO) ₂ O	267	
	2,4-Dinitrophenyl N-phenyl nitrone	N-Acetyl-2,4-dinitrobenzanilide	HCl, CH ₃ CO ₂ H, H ₂ O; CH ₃ COCl	266, 267	
		N-Acetyl-2,4-dinitrobenzanilide	(CH ₃ CO) ₂ O	267	149

TABLE XII—Continued

NITRONES

No. of C Atoms	Starting Material	Products (% Yield)	Catalysts and Experi- mental Conditions	References
C ₁₃ (continued)	2,4,6-Trinitrophenyl N-phenyl nitrone	2,4,6-Trinitrobenzanilide	CH3COCI	267
•	2-Hydroxyphenyl N-phenyl nitrone	Salicylanilide		265
C ₁₄	Phenyl N-benzyl nitrone	N-Benzylbenzamide, ammonium benzenesulfonate, N,N,N-tri- benzylaminosulfonate	$C_6H_5SO_2Cl, C_6H_6$	274
		N-Benzylbenzamide	C ₆ H ₅ SO ₂ Cl, H ₂ O	274
	x-Methoxyphenyl N-phenyl nitrone	Anisanilide		265
	2,4-Dinitrophenyl N-2-tolyl nitrone	2,4-Dinitro-2'-methylbenzanilide	KOH, C ₂ H ₅ OH; CH ₃ COCl	268
		$2,4-(O_2N)_2C_6H_3CON(COCH_3)-C_6H_4CH_3-2$	(CH ₃ CO) ₂ O, CH ₃ CO ₂ Na	268
	2,4-Dinitrophenyl N-3-tolyl nitrone	2,4-Dinitro-3'-methylbenzanilide	CH ₃ COCI	268
		$2,4-(O_2N)_2C_6H_3CON(COCH_3)-C_6H_4CH_3-3$	(CHCO) ₂ O, CH ₃ CO ₂ Na	268
	2,4-Dinitrophenyl N-4-tolyl nitrone	2,4-Dinitro-4'-methylbenzanilide	CH ₃ COCl	267
		$2,4-(O_2N)_2C_4H_3CON(COCH_3)-C_4H_4CH_3-2$	(CH ₃ CO) ₂ O	267
	Diphenyl N-methyl nitrone	Benzanilide (27)	PCl ₅ , POCl ₃	272
		$CH_{3}CON(CH_{3})OCOCH_{3}$ (40)	(CH ₃ CO) ₂ O	272
		Benzophenone (24) and methylamine	SbCl ₅ , CHCl ₃	272
		N,N'-Diphenyloxamide	CH ₃ CO ₂ H; (CH ₃ CO) ₂ O	580

C ₁₅	p-Anisyl N-benzyl nitrone	N-Benzyl-p-anisamide, sulfur dioxide, water, ammonium benzenesulfonate	$C_6H_5SO_2C1; C_6H_6$	274	
		N-Benzyl- <i>p</i> -anisamide	Phthaloyl chloride or picryl chloride, C _s H _s	274	
	<i>p</i> -Nitrophenyl N-(4-dimethylamino)- phenyl nitrone	N-Acetyl-4-nitro-4'-dimethylamino- benzanilide	(CH ₃ CO) ₂ O	267	
	2,4-Dinitrophenyl N-(4-dimethyl- amino)phenyl nitrone	$2,4-(O_2N)_2C_6H_3CON(COCH_3)-C_6H_4N(CH_3)_2-4$	(CH ₃ CO) ₂ O	268	Ч
	2,4-Dinitrophenyl N-(4-dimethyl- amino)phenyl nitrone	Unidentified product	CH ₃ COCl, PCl ₅	268	THE
C ₁₆	Benzoyl N-(4-dimethylamino)phenyl nitrone	$C_6H_5COCONHC_6H_4N(CH_3)_2-4$ (88)	$(CH_3CO)_2O$	271	BECH
		C ₆ H ₅ COCCN ∥ NC ₆ H ₄ N(CH ₃)₂-4	Aq. NaCN	271	BECKMANN
		N-Formyl-4'-dimethylamino- benzanilide (55)	Uv light, acetone	581	REA
		4'-Dimethylaminobenzanilide (14, 25,)	Air, 14 da.; aq. Na ₂ CO ₃ ; uv light, pyridine	581	REARRANGEMENT
		Benzoic acid	NH3 or aq. NaOH	581	Ē
С17	Phenyl N-a-naphthyl nitrone	N-a-Naphthylbenzamide	$(C_{\mathbf{g}}\mathbf{H}_{5}CO)_{2}O,$ $C_{\mathbf{g}}\mathbf{H}_{5}COCI,$ $C\mathbf{H}_{3}COCI$	275	AENT
C ₂₁	1-Anthraquinoyl N-phenyl nitrone	Anthraguinone-l-carboxylic acid	H ₂ SO ₄ , CH ₃ CO ₂ H	582	
C ₂₂	2,3,5-Triphenyl-3-hydroxy-Δ ^{3,5} -pyr- roline N-oxide	N- β -Benzoylstyrylbenzamide	$\mathbf{PCl}_{5}, (\mathbf{C}_{2}\mathbf{H}_{5})_{2}\mathbf{O}^{T}$	545	
C ₂₆	Diphenyl N-benzhydryl nitrone	Benzophenone oxime O-benzhydryl ether (100)		273	

Note: References 338 to 593 are on pp. 152-156.

151

ORGANIC REACTIONS

REFERENCES FOR TABLES I-XII

- ³³³ Todd, Kenner, and Webb, J. Chem. Soc., 1956, 1231.
- ³³⁹ Bredt and Boeddinghous, Ann. 251, 316 (1889).
- ⁸⁴⁰ Hantsch, Ber., 24, 4018 (1891).
- ^{\$41} Roberts and Chambers, J. Am. Chem. Soc., 73, 3176 (1951).
- ³⁴³ (To Badische Anilin und Soda Fabrik), Ger. pat. 858,397 (1952) [C.A., 48, 12810 (1954)].
- ^{\$43} Scholl, Weil, and Halderman, Ann., 338, 1 (1904).
- ³⁴⁴ Schmidt and Furnee, Arch. Pharm., 236, 334 (1898) (Chem. Zentr., 1898, II, 629, 631).
- ³⁴⁵ Nef, Ann., **310**, 316 (1895).
- ³⁴⁶ Meyer and Warrington, Ber., 20, 500 (1887).
- ³⁴⁷ Hart and Curtis, J. Am. Chem. Soc., 78, 112 (1956).
- ⁸⁴⁶ Drake, Kline, and Rose, J. Am. Chem. Soc., 56, 2076 (1934).
- ³⁴⁹ Mayer and Scharvin, Ber., 30, 2862 (1897).
- ³⁵⁰ Burrows and Eastman, J. Am. Chem. Soc., 79, 3756 (1957).
- ³⁵¹ Thoms, Ber. deut. pharm. Ges., 11, 3 (1900) (Chem. Zentr., 1901, 1, 524).
- ^{\$83} Houben, Ber., 35, 3587 (1902).
- ³⁶³ Schmidt, Arch. Pharm., 237, 222 (1899) (Chem. Zentr., 1900, 11, 581).
- ⁸⁵⁴ Wallach, Ann., 389, 169 (1912).
- ³⁵⁵ Rupe, Collin, and Schmiderer, Helv. Chim. Acta, 14, 1340 (1931).
- ³⁵⁴ Furukawa, Sci. Papers Inst. Phys. Chem. Research (Tokyo), 20, 71 (1933) [C.A., 27, 2131 (1933)].
 - ³⁵⁷ Blaise and Guerin, Bull. soc. chim. France, [3], 29, 1211 (1903).
 - ^{\$58} Asahina and Hongo, J. Pharm. Soc. Japan, 506, 227 (1924) [C.A., 18, 2510 (1924)].
- ³⁵⁹ Shukoff and Schestakoff, J. Russ. Phys. Chem. Soc., 35, 1 (1903) (Chem. Zentr., 1903, I, 825).
 - ³⁶⁰ Minunni, Gazz. chim. ital., 27, II, 263 (1899).
- ³⁶¹ Furukawa, Sci. Papers Inst. Phys. Chem. Research (Tokyo), **19**, 27 (1932) [C.A., **27**, 303 (1933)].
 - ³⁶² Kohler and Heritage, Am. Chem. J., 34, 568 (1905).
 - ³⁶³ Asano and Takashi, J. Pharm. Soc. Japan, 65, 811 (1945) [C.A., 45, 4303 (1951)].
 - ³⁶⁴ Tokura, Asami, and Todo, J. Am. Chem. Soc., 79, 3135 (1957).
 - ³⁸⁵ Stephen and Staskun, J. Chem. Soc., 1956, 4708.
 - ³⁸⁶ Richter, J. Org. Chem., 21, 619 (1956).
 - ³⁸⁷ von Auwers and Meyenburg, Ber., 24, 2370 (1891).
 - ³⁶⁶ Meisenheimer, Zimmermann, and Kummer, Ann., 446, 205 (1925).
 - ³⁶⁹ Korten and Scholl, Ber., 34, 1901 (1901).
 - ³⁷⁰ Callet, Bull. soc. chim. France, [3] 27, 539 (1902).
 - ³⁷¹ Jenkins and Richardson, J. Am. Chem. Soc., 55, 1618 (1933).
 - ³⁷² Graziano, Gazz. chim. ital., 45, II, 390 (1915).
 - ³⁷³ Kissman and Williams, J. Am. Chem. Soc., 72, 5323 (1950).
 - ⁸⁷⁴ Buu-Hoï and Xuong, J. Chem. Soc., 1953, 386.
 - ³⁷⁵ Tshizaka, Ber., 47, 2460 (1914).
 - ³⁷⁶ Borsche and John, Ber., 57, 656 (1924).
 - ³⁷⁷ Buu-Hoï, Jacquignon, and Lavit, J. Chem. Soc., 1956, 2593.
 - ^{377a} Eckert, Royer, and Buu-Hoï, Compt. rend., 233, 1461 (1951).
 - ³⁷⁸ Bachmann and Dice, J. Org. Chem., **12**, 876 (1947)
 - ⁸⁷⁹ Richtzenhain and Nippus, Chem. Ber., 82, 408 (1949).
 - ³⁸⁰ Ohara, J. Pharm. Soc. Japan, 71, 1244 (1951) [C.A., 46, 5552 (1952)].
 - ³⁶¹ Scharwin, Ber., 35, 2511 (1902).
 - ³⁸² Anderson, Fritz, and Scotoni, J. Am. Chem. Soc., 79, 6511 (1957).
 - ³⁸³ Scharvin, Ber., 30, 2862 (1897).
 - ³⁸⁴ van der Zanden, de Vries, and Dijkstra, Rec. trav. chim., 61, 280 (1942).
 - ³⁸⁶ Jenkins, J. Am. Chem. Soc., **55**, 703 (1933).
 - ³⁸⁶ Borsche and Pammer, Ber., 54, 102 (1921).
 - ³⁸⁷ Close, J. Am. Chem. Soc., 79, 1455 (1957).
 - 368 Arnold and Craig, J. Am. Chem. Soc., 72, 2728 (1950).

- ³⁸⁹ Berezovskii, Kurdyukova, and Preobrazhenskii, Zhur. Priklad. Khim., 22, 533 (1949) C.A., 44, 2463 (1950)].
 - ³⁹⁰ Buck and Ide, J. Am. Chem. Soc., 53, 1536 (1931).
 - ³⁹¹ von Auwers and Seyfried, Ann., **484**, 178 (1930).
 - ³⁹² Henrich, Ann., 351, 172 (1907).
 - 393 Perold and Reiche, J. Am. Chem. Soc., 79, 465 (1957).
 - 394 Brewster and Kline, J. Am. Chem. Soc., 74, 5179 (1952).

³⁹⁵ Vinklør and Authøried, Acta Univ. Szegediensis, Chem. et Phys., 2, 50 (1948) [C.A., 45, 580 (1951)].

- 896 Buu-Hoi, Hoan, and Royer, Bull. soc. chim. France, 1950, 489.
- ³⁹⁷ Henrich and Wirth, Ber., 37, 731 (1904).
- ⁸⁹⁸ Cain, Simonsen, and Sumter, J. Chem. Soc., 103, 1035 (1913).
- ³⁹⁹ von Auwers, Ber., 62, 1320 (1929).
- 400 Hasselstrom and Hampton, J. Am. Chem. Soc., 61, 3445 (1939).
- 401 Buu-Hoï and Cagniant, Rec. trav. chim., 62, 719 (1943).
- ⁴⁰² Bruyn, Compt. rend., 228, 1953 (1949).
- 402 Buu-Hoï, J. Org. Chem., 19, 721 (1954).
- 404 Kohler, Am. Chem. J., 31, 642 (1904).
- 405 Buu-Hoï, Hoan, and Xuong, J. Am. Chem. Soc., 72, 3992 (1950).
- 406 Beckmann, Ber., 19, 988 (1886).
- 407 Vargha and Gonczy, J. Am. Chem. Soc., 72, 2738 (1950).
- 408 Lachmann, J. Am. Chem. Soc., 46, 1477 (1924).
- 409 Hudlický, Chem. Listy, 51, 470 (1957) [C.A., 51, 10443 (1957)].
- ⁴¹⁰ Turnbull, Chem. & Ind. (London), 1956, 350.
- 411 Brodskii, Izvest. Akad. Nauk S.S.S.R., Otdel Khim., 1949, 3 [C.A., 43, 5011 (1949)].
- ⁴¹² Meerwein, Angew. Chem., 67, 374 (1955).
- 413 Exner, Chem. Listy, 48, 1634 (1951) [C.A., 49, 14674 (1955)].
- 414 Lampert and Bordwell, J. Am. Chem. Soc., 73, 2369 (1951).
- 415 Amet, Bovin, and Dewar, Can. J. Chem., 35, 180 (1957) [C.A., 51, 11281 (1957)].
- ⁴¹⁸ Montagne, Rec. trav. chim., 25, 376 (1906).
- 417 Brady and Mehta, J. Chem. Soc., 125, 2297 (1924).
- ⁴¹⁸ Meisenheimer and Gaiser, Ann., **539**, 95 (1939).
- ⁴¹⁹ Sutton and Taylor, J. Chem. Soc., 1931, 2190.
- 420 Meisenheimer, Hanssen, and Wachterowitz, J. prakt. Chem., [2] 119, 315 (1928).
- ⁴²¹ Shah and Ichaporia, J. Univ. Bombay, **3**, 172 (1934) [C.A., **29**, 4755 (1935)].
- 422 Meisenheimer, Ann., 539, 99 (1939).
- 423 Scharwin and Schorigin, Ber., 36, 2025 (1903).
- 424 Schnackenburg and School, Ber., 36, 654 (1903).
- 425 Betti and Becciolini, Gazz. chim. ital., 45, II, 218 (1915).
- 426 Poccianti, Gazz. chim. ital., 45, II, 111 (1915).
- 427 Campbell and Woodham, J. Chem. Soc., 1952, 843.
- 428 Munchmeyer, Ber., 19, 1845 (1886); 20, 228 (1887).
- ⁴²⁹ Baither, Ber., 20, 1731 (1887).
- 430 Larner and Peters, J. Chem. Soc., 1952, 680.
- ⁴³¹ Ecary, Ann. chim. (Paris), [12] 3, 445 (1948).
- 432 Lynch and Reid, J. Am. Chem. Soc., 55, 2515 (1933).
- ⁴³³ Beckmann, Liesche, and Correns, Ber., 56, 341 (1923).
- 434 Bradsher and Swerlick, J. Am. Chem. Soc., 72, 4189 (1950).
- 435 Cass (to du Pont), U.S. pat. 2,221,369 (1940) [C.A., 35, 584 (1941)].
- ⁴³⁶ Schlack (to Alien Property Custodian), U.S. pat. 2,313,026 (1943) [C.A., 37, 5078 (1943)].
- 437 Wiest and Hopff (to I. G. Farbenind.), Ger. pat. 736,735 (1943) [C.A., 38, 2967 (1944)].
- ⁴³⁸ (To Badische Anilin und Soda Fabrik), Ger. Pat. 863,657 (1957).
- ⁴³⁹ Lowery, Ger. pat. appl. D 4,334 (1952).
- 440 Stephen and Staskun, J. Chem. Soc., 1956, 4694.

⁴⁴¹ Van Krevelen and De Gelder (to Maatschappij voor Kohlenbeiverkung) U.S. pat. 2,769,000 (1956).

446 Todd, Chase, Kenner, and Webb, J. Chem. Soc., 1956, 1371.

⁴⁴⁸ Donaruma and England (to du Pont), U.S. pat. 2,769,807 (1956) [C.A., **51**, 6685 (1957)]; Novotny, Czech. pats. 85,505 and 85,524 (1957) [C.A., **51**, 463 (1957)].

444 Hildebrand and Bogert, J. Am. Chem. Soc., 58, 650 (1936).

445 Wallach, Ann., 312, 177 (1900).

448 Oxley and Short, Brit. pat. 577,696 (1946).

447 Marvel and Eck, Org. Syntheses, 17, 60 (1937).

⁴⁴⁸ Lukes and Smolek, Collection Czechoslov. Chem. Communs., **11**, 506 (1939) [C.A., **34**, 7868 (1940)].

⁴⁴⁹ Mokudai and Oda, Bull. Inst. Phys. Chem. Research (Tokyo), 20, 343 (1941) [C.A., 36, 3049 (1942)].

⁴⁵⁰ Ruzicka, Helv. Chim. Acta, 4, 472 (1921).

⁴⁵¹ (To Dai Nippon Celluloid Co.), Jap. pat. 157,331 (1943) [C.A., 44, 1531 (1950)].

⁴⁵² Hopff and Wiest (to I. G. Farbenind.), Ger. pat. 755,944 (1944).

⁴⁵⁸ Stickdorn and Hentrick (to Deutsche Hydrierwerke), Ger. pat. 919,047 (1954).

⁴⁵⁴ Schlack (to I. G. Farbenind.), U.S. pat. 2,249,177 (1941) [C.A., 35, 6599 (1941)].

⁴⁵⁵ (To Bata), Fr. pat. 903,687 (1945).

⁴⁵⁶ (To. I. G. Farbenind.), Fr. pat. 1,001,570 (1952).

⁴⁵⁷ Oxley and Short, (to Boots Pure Drug Co.), Brit. pat. 577,696 (1946) [C.A., **41**, 2433 (1947)].

⁴⁵⁶ Moller, Bayer, and Wilms (to Farbenfabriken Bayer), Ger. pat. 924,866 (1955).

⁴⁵⁹ (To Bata), Belg. pat. 448,478 (1943) [C.A., 41, 6576 (1947)].

⁴⁶⁰ Aikawa (to Oriental Rayon Co.), Jap. pat. 6,178 (1951) [C.A., 50, 3673 (1956)].

⁴⁶¹ (To Directie van de Staatsmijnen im Limburg), Fr. pat. 1,023,858 (1953).

468 Taubock (to I. G. Farbenind.), Ger. pat. 686,902 (1939) [C.A., 38, 2663 (1944)].

⁴⁸³ Tokura, Asami, and Tado, Sci. Repts. Research Insts., Tohoku Univ., A8, 149 (1956) [C.A., 51, 4944 (1957)].

⁴⁸⁴ (To Directie van de Staatsmijnen im Limburg), Dutch pat. 78,624 (1955) [C.A., **50**, 13989 (1956)].

⁴⁶⁵ Van Krevelin (to Stamicarbon N.V.), Ger. pat. appl. M 13,706 (1957).

⁶⁸⁸ Novotny and Bauer (to Farbenfabriken Bayer), Ger. pat. 834,987 (1952) [C.A., **51**, 14789 (1957)].

⁴⁶⁷ Cohn (to Brit. Celanese Ltd.), Brit. pat. 750,222 (1956) [C.A., 50, 15579 (1956)].

486 Blaser and Tischberek (to Henkel and Cie), Ger. pat. 944,730 (1956).

⁴⁶⁹ Cohn, Groombridge, and Lincoln (to Brit. Celanese Ltd.), U.S. pat. 2,723,266 (1956) [C.A., 50, 15580 (1956)].

⁴⁷⁰ Wagner and O'Hara (to Olin Matheson Corp.), U.S. pat. 2,797,216 (1957).

⁴⁷¹ (To Bata), Belg. pat. 447,859 (1942).

⁴⁷² Barnett, Cohn, and Lincoln (to Brit. Celanese Ltd.), U.S. pat. 2,754,298 (1956) [C.A., 51, 2583 (1957)].

⁴⁷³ (To Stamicarbon), Belg. pat. 534,950 (1955).

⁴⁷⁴ Coffman, Cox, Martin, Mochel, and van Natta, J. Polymer Sci., 3, 85 (1948).

⁴⁷⁵ Donat and Nelson, J. Org. Chem., 22, 1107 (1957).

⁴⁷⁸ Schaffler and Ziegenbein, Chem. Ber., 88, 1374 (1955).

⁴⁷⁷ Wallach, Ann., **346**, 249 (1906).

⁴⁷⁸ Wallach, Ann., 332, 337 (1904).

⁴⁷⁹ Knunyants and Fabrichnyi, *Doklady Akad. Nauk S.S.S.R.*, **85**, 793 (1952) [C.A., **47**, 9945 (1953)].

⁴⁸⁰ Schaffler, Kaufold, and Ziegenbein, Chem. Ber., 88, 1906 (1955).

⁴⁶¹ (To Inventa A. G.), Swiss pat. 287,863 (1953) [C.A., 49, 2490 (1955)].

482 Kipping, Proc. Chem. Soc., 1893, 240.

463 Peters, Ber., 40, 240 (1907).

⁴⁸⁴ Pailer and Allmer, Monatsh., 86, 819 (1955).

485 Mosher, Farker, Williams, and Oakwood, J. Am. Chem. Soc., 74, 4627 (1952).

⁴⁶⁶ Morris (to Shell Development Co.), U.S. pat. 2,462,009 (1949) [C.A., 43, 3451 (1949)].

⁴⁶⁷ Montgomery and Dougherty, J. Org. Chem., **17**, 823 (1952).

- ⁴⁸⁸ Read and Cook, J. Chem. Soc., 127, 2782 (1925).
- ⁴⁸⁹ Wallach and Fritzsche, Ann., **336**, 247 (1904).
- 400 Cusmano, Gazz. chim. ital., 42, I, 1 (1919).
- 401 Burrows and Eastman, J. Am. Chem. Soc., 79, 3756 (1957).
- 492 Hardy, Ward, and Day, J. Chem. Soc., 1956, 1979.

⁴⁹³ Knunyants and Fabrichnyi, Doklady Akad. Nauk S.S.S.R., **68**, 523 (1949) [C.A., **44**, 1469 (1950)].

- 494 Wallach, Ann., 408, 163 (1914).
- 495 Lloyd, Matternas, and Horning, J. Am. Chem. Soc., 77, 5932 (1955).
- ⁴⁹⁸ Barnes and Beachem, J. Am. Chem. Soc., 77, 5388 (1955).
- ⁴⁹⁷ Walbaum, J. prakt. Chem., [2] **113**, 166 (1926).
- 498 Ruzicka, Helv. Chim. Acta, 9, 230 (1926).
- 400 Cassaday and Bogert, J. Am. Chem. Soc., 63, 1452 (1941).
- ⁵⁰⁰ Litvan and Robinson, J. Chem. Soc., 1938, 1997.

⁵⁰¹ Kaufmann, Mem. Congr. cient. Mex., IV, Centenario Univ., Mexico, 2, 107 (1953) [C.A., 49, 7585 (1955)].

- ⁵⁰² Schmidt-Thomé, Ger. pat. 871,010 (1949) (Chem. Zentr., 1953, 6938).
- ⁵⁰³ Rosenkrantz, Mancera, Sondheimer, and Djerassi, J. Org. Chem., 21, 520 (1956).
- ⁵⁰⁴ Buckmuhl, Ehrhart, Ruschig, and Aumiller, Ger. pat. 723,615 (1942) [C.A., 37, 5558 (1943)].
 - ⁵⁰⁵ Schmidt-Thomé, Angew. Chem., 67, 715 (1955).
 - ⁵⁰⁶ Barnes, Barton, Fawcett, and Thomas, J. Chem. Soc., 1952, 2339.
 - ⁵⁰⁷ Schenck and Kirchof, Z. physiol. Chem., 166, 142 (1927).
 - ⁵⁰⁸ Borsche, Nachr. kgl. Ges. Wiss. Göttingen, 1920, 192 (Chem. Zentr., 1921, III, 174).
 - ⁵⁰⁹ Schmidt-Thomé, Ann., **603**, 43 (1957).
 - ⁵¹⁰ Schenck, Z. physiol. Chem., 128, 53 (1923).
 - ⁵¹¹ Schenck and Kirchof, Z. physiol. Chem., 180, 107 (1929).
 - ⁵¹² Schenck, Z. physiol. Chem., 89, 360 (1914).
 - ⁵¹³ Schenck, Z. physiol. Chem., 211, 88 (1932).
 - ⁵¹⁴ Schenck, Z. physiol. Chem., 263, 55 (1940).
 - 515 Tsuda and Hayatsu, J. Am. Chem. Soc., 78, 4107 (1956).
 - ⁵¹⁶ Djerassi and Hodges, J. Am. Chem. Soc., 78, 3534 (1956).
 - ⁵¹⁷ Dickerman and Lindwell, J. Org. Chem., 14, 534 (1949).
 - ⁵¹⁸ Cymerman-Craig and Willis, J. Chem. Soc., 1955, 1071; Steinkopf, Ann., 403, 17 (1914).
 - ⁵¹⁹ Foldi, Acta Chim. Acad. Sci. Hung., 6, 307 (1955) [C.A., 51, 1983 (1957)].
 - ⁵²⁰ Van der Meer, Koffmann, and Veldstino, Rec. trav. Chim., 72, 236 (1953).
 - ⁵²¹ Rumpel, Arch. Pharm., 237, 233 (1899) (Chem. Zentr., 1899, 1, 1284; 1900, 11, 581).
 - ⁵²² Mameli, Gazz. chim. ital., 56, 759 (1926).
 - ⁵²³ Hennion and O'Brian, J. Am. Chem. Soc., 71, 2933 (1949).
 - 524 Truce and Simmons, J. Org. Chem., 22, 617 (1957).
 - 525 Ostrogovich and Tanislau, Gazz. chim. ital., 66, 672 (1936).
 - 526 Stark, Ber., 40, 3425 (1907).
 - ⁵²⁷ Etienne and Staehelin, Compt. rend., 230, 1960 (1950).
 - ⁵²⁸ Matsumura, J. Am. Chem. Soc., 57, 124 (1935).
 - 529 Galinawsky and Kainz, Monatsh., 77, 137 (1947).
 - ⁵³⁰ Villiani and Papa, J. Am. Chem. Soc., 72, 2722 (1950).
 - 531 Van Ark, Arch. Pharm., 238, 321 (1900) (Chem. Zentr., 1900, II, 581).
 - ⁵³² Burger, Wartman, and Lutz, J. Am. Chem. Soc., **60**, 2628 (1938).
 - 533 Nobis, Blaydinelli, and Blaney, J. Am. Chem. Soc., 75, 3384 (1953).
 - ⁵³⁴ Buu-Hoï, Lescot, and Xuong, J. Chem. Soc., 1956, 2408.
 - ⁵³⁵ Buu-Hoï and Hoan, J. Org. Chem., 17, 643 (1952).
 - ⁵³⁶ Buu-Hoï and Royer, J. Org. Chem., 16, 1198 (1951).
 - 537 Ghigi, Ber., 75, 1316 (1942).
 - ⁵³⁸ Benary and Psille, Ber., 57, 828 (1924).
 - ⁵³⁹ Schapf, Ann., **452**, 211 (1927).
 - ⁵⁴⁰ Fuson and Kao, J. Am. Chem. Soc., 54, 313 (1932).

- 541 Königs, Ber., 40, 648, 2873 (1907).
- ⁵⁴² Small and Mallanu, J. Org. Chem., 5, 286 (1940).
- ⁵⁴³ Kohler, J. Am. Chem. Soc., 46, 1733 (1924).
- 544 Borsche, Ber., 40, 737 (1907).
- ^{544a} Beckmann and Koster, Ann., 274, 1 (1893).
- ⁵⁴⁵ Blatt, J. Am. Chem. Soc., 56, 2774 (1934).
- 545 Rydon, Williams, and Smith, J. Chem. Soc., 1957, 1900.
- 547 Badger and Seidler, J. Chem. Soc., 1954, 2329.
- 548 Graebe and Honigsberger, Ann., 311, 257 (1900).
- 549 Green and Saville, J. Chem. Soc., 1956, 3887.
- ⁵⁵⁰ Diels and Van der Leeden, Ber., 38, 3357 (1905).
- ^{550a} Reissert, Ber., 41, 3810 (1908).
- ⁵⁵¹ Goldschmidt, Ber., 20, 484 (1887).
- 552 Konowalov, J. Russ. Phys.-Chem. Soc., 33, 45 (1901) (Chem. Zentr., 1901, II, 1002).
- 558 Leuckart, Ber., 20, 110 (1887).
- ⁵⁵⁴ Nagata and Takeda, J. Pharm. Soc. Japan, 72, 1566 (1952) [C.A., 47, 10504 (1953)].
- ⁵⁸⁵ Blaise and Blanc, Compt. rend., **129**, 886 (1899).
- ⁵⁵⁵ Komatsu and Yamaguchi, Mem. Coll. Sci., Kyoto Imp. Univ., 6, 245 (1923) [C.A., 17, 3495 (1923)].
 - 557 Wallach and Rojahn, Ann., 313, 367 (1900).
 - ⁵⁵⁸ Diels and Sharkoff, Ber., 46, 1862 (1913).
 - ⁵⁵⁹ Diels, Buddenberg, and Wang, Ann., **451**, 223 (1927).
 - ⁵⁵⁰ Haller and Bauer, Compt. rend., 156, 1503 (1913).
 - ⁵⁵¹ Rappoport and Pasky, J. Am. Chem. Soc., 78, 3788 (1956).
 - ⁵⁵² Blatt and Barnes, J. Am. Chem. Soc., 58, 1900 (1936).
 - 543 Gheorghiu and Cozubschi-Sciurevici, Ann. sci. univ. Jassy, Sect. 1, 28, 209 (1942)
- [C.A., 38, 3276 (1944)].
 - ⁵⁵⁴ Matsumura, J. Am. Chem. Soc., 57, 955 (1935).
 - 565 Rappoport and Lavigne, J. Am. Chem. Soc., 75, 5329 (1953).
 - ⁵⁶⁵ Bently and Ringl, J. Org. Chem., 22, 424 (1957).
 - ⁵⁶⁷ Findlay, J. Org. Chem., **21**, 644 (1956).
 - 588 Baiardo, Gazz. chim. ital., 56, 567 (1926).
 - ⁵⁸⁹ Hauser and Hoffenberg, J. Org. Chem., 20, 1496 (1955).
 - ⁵⁷⁰ Bamberger, Ber., 33, 1781 (1888).
 - ⁵⁷¹ Brady and Whitehead, J. Chem. Soc., 1927, 2033.
 - ⁵⁷² Meisenheimer, Theilacker, and Beisswenger, Ann., 495, 249 (1932).
 - ⁵⁷³ Brady and Dunn, J. Chem. Soc., 123, 1783 (1923).
 - ⁵⁷⁴ Ponzio and Avogadro, Gazz. chim. ital., 53, 311 (1923).
 - ⁵⁷⁵ Martinet and Coisset, Compt. rend., 172, 1234 (1921).
 - ⁵⁷⁵ Ressy and Ortodocsu, Bull. soc. chim. France, [4] 33, 637 (1923).
 - ⁵⁷⁷ Moluch and Minslow, J. Org. Chem., 20, 1311 (1955).
 - ⁵⁷⁸ Coldwell and Jones, J. Chem. Soc., 1946, 599.
 - ⁵⁷⁹ Coleman and Pyle, J. Am. Chem. Soc., 68, 2007 (1946).
 - ⁵⁸⁰ Pechmann, Ber., 30, 2791, 2873 (1897).
 - ⁵⁸¹ Kröhnke, Ann., **604**, 203 (1957).
 - ⁵⁸² Scholl and Donat, Ber., 64, 318 (1931).
 - 588 Oddo and Curti, Gazz. chim. ital., 54, 577 (1924).
 - ⁵⁸⁴ Blatt and Russell, J. Am. Chem. Soc., 58, 1903 (1936).
 - ⁵⁸⁵ Fox, Dunn, and Stoddard, J. Org. Chem., 6, 410 (1914).
 - 585 Terent'ev and Makarova, Vestnik Moskov Univ., 1947, No. 4,101 [C.A., 42, 1590 (1948)].
 - ⁵⁸⁷ Buu-Hoï, Royer, Daudel, and Martin, Bull. soc. chim. France, 1948, 329.
 - ⁵⁸⁸ Hukki, Acta Chem. Scand., 3, 288 (1949) [C.A., 43, 7916 (1949)].
- ⁵⁸⁹ Kaslow, Genser, and Goodspeed, Proc. Indiana Acad. Sci., **59**, 134 (1950) [C.A., **45**, 8534 (1951)].
 - ⁵⁹⁰ Bahner, Scott, Cate, Walden, and Baldridge, J. Am. Chem. Soc., 73, 4013 (1951).
 - ⁵⁹¹ v. Schickh (to Badische Anilin und Soda Fabrik), Ger. pat. 1,024,515 (1956).
 - ⁵⁹² (To Stamicarbon), Dutch pat. 81,037 (1956) [C.A., 51, 2853 (1957)].
 - 598 Samlo, Lemetre, Giolitti, Marahini, and Pierucci, Chim. e ind. (Milan), 39, 905 (1957).

CHAPTER 2

THE DEMJANOV AND TIFFENEAU-DEMJANOV RING EXPANSIONS

PETER A. S. SMITH AND DONALD R. BAER* University of Michigan

CONTENTS

]	PAGE
INTRODUCTION .	•		•	•	•	•	•	•	•	•	158
Mechanism	•	•	•	•		•	•			•	158
SCOPE AND LIMITATIO	NS.			•			•				16 3
Ring Size											163
Unsaturated Rings											163
Heterocyclic Rings											164
Alkyl and Aryl Subs											165
Bicyclic and Polycy							÷			÷	169
Rings Substituted w	•							•	•	•	171
Tungs Substitution #			uncin	inar o	roups	•	•	•	•	•	
Application to Synt	HESIS	•	•	-	•	•		•	•		172
Experimental Condi	TIONS	•	•	•		•				•	175
EXPERIMENTAL PROCE	DURES	•	•		•			•			178
Cycloheptanone .											178
3-Hydroxydodecahy								the I	Demia	nov	
• • •					-	-	-		-		178
Cycloheptanol by th											178
Cycloöctanone by th									÷		179
ogetorenaniono ag in			—j								
TABULAR SURVEY .				•	•	•		•	•		180
Table I. Mononucle	ar Carl	boey	elie Ri	ngs							181
Table II. Polynucle	ear Car	boey	elie Sy	stems	s with	Fusio	n at a	a Sing	le Side	э.	185
Table III. Polynuc											187
Table IV. Heterocy											187

* Present address: Jackson Laboratory, E. I. du Pont de Nemours and Company, Inc., Wilmington, Delaware.

INTRODUCTION

The reaction of aminomethylcycloalkanes with nitrous acid to produce cycloalkanols in which the ring is larger by one carbon atom is known as the Demjanov (Demianov, Demjanow, Dem'yanov) rearrangement. The first example of this type of ring expansion was encountered by Demjanov and Luschnikov in 1901,¹ but was not recognized until 1903 when cyclopentanol was identified as one of the products formed from cyclobutanemethylamine.² Since that time the reaction has been

$$\begin{array}{c|c} CH_2 - CHCH_2NH_2 & CH_2 - CHOH \\ & & \\ & & \\ & & \\ CH_2 - CH_2 & CH_2 - CH_2 \end{array} \xrightarrow{HNO_2} CH_2 - H_2O$$

extended to rings of many sizes. Olefins almost invariably accompany the alcohols that are formed. The Demjanov rearrangement includes within its scope the rearrangements that occur when acyclic amines are treated with nitrous acid as well as the ring expansions considered in this chapter.

A highly useful extension of the Demjanov reaction, reported in 1937 by Tiffeneau, Weill, and Tchoubar,³ consists of the treatment of 1-aminomethylcycloalkanols with nitrous acid, forming ring-enlarged ketones. Since Tiffeneau's name is associated with other reactions, the term

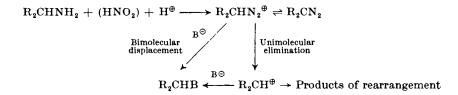
$$\begin{array}{c|c} CH_2NH_2 \\ (CH_2)_n & C \\ OH \end{array} \xrightarrow{(CH_2)_n} (CH_2)_n \\ CH_2 \\ CH$$

Tiffeneau-Demjanov ring expansion will be used in this chapter to designate ring enlargements by pinacolic deamination.

Inasmuch as both alcohols and ketones can be converted readily to amines, and ketones can be converted to amino alcohols, the Demjanov or Tiffeneau-Demjanov ring expansion can be made the key step in the conversion of a cyclic alcohol or ketone into its next higher ring homolog.

MECHANISM

The Demjanov ring enlargement may be regarded as a special case of the rearrangement which so often accompanies the reaction of aliphatic


¹ Demjanov and Luschnikov, J. Russ. Phys.-Chem. Soc., 33, 279 (1901) (Chem. Zentr., 1901, II, 335).

² Demjanov and Luschnikov, J. Russ. Phys. Chem. Soc., 35, 26 (1903) (Chem. Zentr., 1903, I, 828).

³ Tiffeneau, Weill, and Tchoubar, Compt. rend., 205, 54 (1937).

primary amines with nitrous acid. Accordingly, information concerning its mechanism can be derived from investigations of analogous reactions of acyclic compounds. Similarly, the Tiffeneau-Demjanov ring expansion may be regarded as a special case of the semi-pinacol rearrangement, or pinacolic deamination.

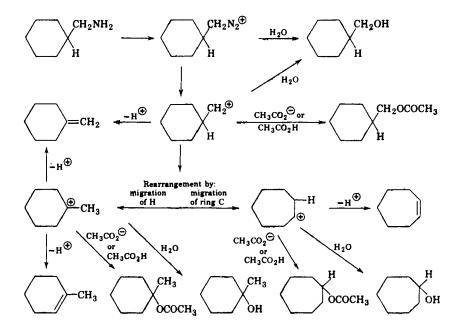
Recent extensive kinetic investigations have established with high probability that the initial step of the reaction of most, if not all, amines with nitrous acid involves the free amine and a derivative of nitrous acid, such as N_2O_3 , and results in the formation of a diazonium ion.⁴⁻¹⁰ Such an ion is unstable in an aliphatic system, and may lose nitrogen by several possible paths or lose a proton from the α -carbon atom to give a diazo compound. Since the product formed by unimolecular elimination of nitrogen is a carbonium ion, the large body of information about the behavior of carbonium ions is applicable to nonreductive deaminations in general.

Both the Demjanov and the Tiffeneau-Demjanov ring expansions are commonly regarded as special cases of the rearrangement of a carbonium ion.¹¹⁻¹⁵ It is immediately seen that rearrangement is always competitive with a displacement reaction which precludes rearrangement, as well as with the possible combination of the unrearranged carbonium ion with a base. Consequently it is not surprising that rearrangement is generally only one of several reactions that take place.

These considerations are illustrated by the reaction of cyclohexanemethylamine with nitrous acid in dilute aqueous acetic acid.¹⁶ The

- ^e Hughes, Ingold, and Ridd, J. Chem. Soc., 1958, 65.
- ⁷ Hughes, Ingold, and Ridd, J. Chem. Soc., 1958, 77.
- ⁸ Hughes, Ingold and Ridd, J. Chem. Soc., 1958, 88.
- ⁹ Hughes and Ridd, J. Chem. Soc., 1958, 70.
- ¹⁰ Hughes and Ridd, J. Chem. Soc., 1958, 82.
- ¹¹ Hückel and Wilip, J. prakt. Chem., [2] 158, 21 (1941).
- 14 Tchoubar, Bull. soc. chim. France, 1951, C44.
- ¹³ Wheland, Advanced Organic Chemistry, p. 512, John Wiley & Sons, New York, 1949.

¹⁴ Alexander, Principles of Ionic Organic Reactions, pp. 49-51, John Wiley & Sons, New York, 1950.


¹⁵ Fuson, Advanced Organic Chemistry, p. 523, John Wiley & Sons, New York, 1950.

¹⁶ Smith and Baer, J. Am. Chem. Soc., 74, 6135 (1952).

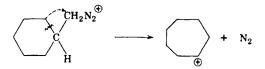
⁴ Austin, Hughes, Ingold, and Ridd, J. Am. Chem. Soc., 74, 555 (1952).

⁵ Hughes, Ingold, and Ridd, J. Chem. Soc., 1958, 58.

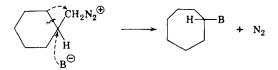
products which result are cyclohexylcarbinol, 1-methylcyclohexanol, cycloheptanol, the acetates of these alcohols, and a mixture of isomeric olefins (cycloheptene¹⁷ and presumably some methylenecyclohexane and 1-methylcyclohexene). Cycloheptanol and its acetate are the principal products. Rearrangement by migration of a hydride ion or a ring carbon

atom as shown is to be expected from the consideration that a secondary or tertiary carbonium ion is thereby produced from a primary one, in accord with the known relative stabilities of such species.¹⁸ Predominance of ring expansion over the formation of tertiary alcohol is a fortunate circumstance arising from the higher entropy of activation required for hydrogen migration.¹⁹

The acetate esters are formed in amounts out of proportion to the stoichiometric concentration of acetic acid; the relative preferences of carbonium ions for the various nucleophilic species that may be available to them are governed by somewhat complex considerations which have not been completely elucidated.^{11, 20}


¹⁸ Dostrovsky, Hughes, and Ingold, J. Chem. Soc., 1946, 173.

¹⁷ Ruzioka and Brugger, Helv. Chim. Acta, 9, 399 (1926).


¹⁹ Cannell and Taft, J. Am, Chem. Soc., 78, 5813 (1956).

¹⁰ Hine, Physical Organic Chemistry, pp. 134-167, McGraw-Hill, New York, 1956,

In addition to the foregoing interpretation, aliphatic diazonium ions may be considered to yield a rearranged carbonium ion directly by internal displacement.²¹ Furthermore this process may be considered to be a concerted one, leading then directly from a diazonium ion to a final

product of rearranged structure without passing through a carbonium ion stage. The evidence available at present does not permit one to specify with certainty the path or paths by which the Demjanov rearrangement

occurs. However, the carbonium ion path is supported by the success with which knowledge of the behavior of carbonium ions can be applied in interpreting amine-nitrous acid rearrangements. A general theoretical treatment of aliphatic deaminations, embracing the situations in which ring expansion is possible, has recently been given by Streitwieser.^{22, 23}

Of historical interest is the earlier concept that a diazonium compound (usually written as a non-ionic hydroxide) may simultaneously lose water and nitrogen to form a cyclopropane derivative, which by cleavage of any of the three bonds of the cyclopropane ring might give rise to the observed products.^{24, 25} One is reminded of this concept by the polycyclic, non-classical carbonium ion proposed more recently to account for the singular behavior of cyclopropanemethylamine.²⁶ The facts that cyclobutylamine undergoes partial ring contraction²⁴ and cyclopropanemethylamine partial expansion,²⁷ to give in each case a nearly 1:1 mixture of cyclobutanol and cyclopropylcarbinol,²⁸ have been explained on the basis of

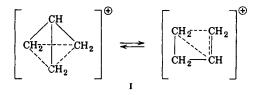
22 Streitwieser and Schaeffer, J. Am. Chem. Soc., 79, 2888 (1957).

²⁴ Demjanov, Ber., 40, 4961 (1907).

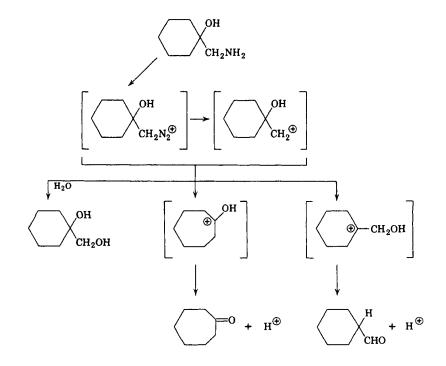
28 Skrabal, Monatsh., 70, 420 (1937).

²¹ Bernstein and Whitmore, J. Am. Chem. Soc., **61**, 1324 (1939).

²³ Streitwieser, J. Org. Chem., 22, 861 (1957).


²⁵ Wallach and Fleischer, Ann., 353, 318 (1907).

²⁶ Roberts and Mazur, J. Am. Chem. Soc., 73, 3542 (1951); Roberts, 16th Nationa lOrganic Chemistry Symposium, American Chemical Society, Seattle, June, 1959.


²⁷ Demjanov, Ber., 40, 4393 (1907); J. Russ. Phys. Chem. Soc., 39, 1077 (1907).

a common set of intermediates deduced to have structures represented by $I^{.26}$

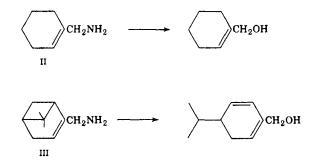
The mechanisms of the Tiffeneau-Demjanov and the Demjanov ring expansions are fundamentally the same. However, two important effects are operative in the former that favor ring expansion. There is no hydrogen atom in the position from which it could migrate in competition

with a ring carbon atom; also, the ion resulting from rearrangement bears its positive charge on a protonated carbonyl group, an arrangement generally of much lower energy than a simple carbonium ion structure. As a result, ring expansion is more complete, and the product does not contain the substantial amount of olefins found in the Demjanov reaction.

In a consideration of the expansion of unsymmetrical rings, the question of "migration aptitudes" arises. The same circumstance introduces the possibility of diastereomeric aminomethylcycloalkanes, and with it the possibility of steric control of the direction of enlargement. Experimental evidence to resolve these questions is incomplete and in part contradictory.²⁹ However, there is partial evidence for steric control of the course, of the Tiffeneau-Demjanov expansion in the steroid field.³⁰⁻³³ Since steric control has been demonstrated in the analogous noncyclic pinacolic deamination,³⁴ and the pertinence of conformational factors has been justified in a general way,^{22, 35} steric control in ring expansions seems probable.

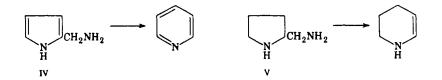
SCOPE AND LIMITATIONS

Ring Size. All ring sizes from cyclopropane^{27, 36} through cycloöctane¹⁷ have been expanded by the Demjanov method with some degree of success. The ratio of the yield of the alcohol with one more carbon atom in the ring to the alcohol with the same carbon skeleton as the amine varies from 1:1 for cyclopropanemethylamine³⁶ through a maximum of > 3:1 for cyclobutane-² and cyclopentane-methylamines³⁷ to 2:3 for cycloöctanemethylamine.¹⁷ The presence of substituents on the rings would be expected to change these ratios. It appears that the Demjanov expansion is most useful for the preparation of five-, six-, and seven-membered rings, and is of considerably less value for the preparation of smaller or larger rings.


The Tiffeneau-Demjanov expansion has been successfully applied to the preparation of five-,³⁸ six-, seven-, eight-, and nine-membered rings.³⁹ with a slight decrease in yield with increasing ring size.⁴⁰ It has not yet been applied to the expansion of three-membered rings. Whenever a comparison has been made, the Tiffeneau-Demjanov method has given a higher yield.

Unsaturated Rings. Two cycloalkenemethylamines have been studied, each one having a double bond on the carbon atom holding the

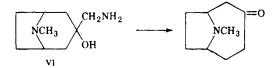
- ¹⁹ Wendler, Taub, and Slates, J. Am. Chem. Soc., 77, 3559 (1955).
- ³⁰ Goldberg and Studer, Helv. Chim. Acta, 24, 295E (1941).
- ^{\$1} Heusser, Herzig, Fürst, and Plattner, Helv. Chim. Acta, 33, 1093 (1950).
- ³³ Ramirez and Stafiej, J. Am. Chem. Soc., 77, 134 (1955).
- ³⁸ Ramirez and Stafiej, J. Am. Chem. Soc., 78, 644 (1956).
- ³⁴ Pollak and Curtin, J. Am. Chem. Soc., 72, 961 (1950).
- ³⁵ Cram and McCarty, J. Am. Chem. Soc., 79, 2866 (1957).
- ³⁶ Roberts and Mazur, J. Am. Chem. Soc., 73, 2509 (1951).
- ³⁷ Smith, Baer, and Ege, J. Am. Chem. Soc., 76, 4564 (1954).
- 33 Roberts and Gorham, J. Am. Chem. Soc., 74, 2278 (1952).
- 39 Ruzicka, Plattner, and Wild, Helv. Chim. Acta, 26, 1631 (1943).
- 40 Tchoubar, Bull. soc. chim. France, 1949, 164.


ORGANIC REACTIONS

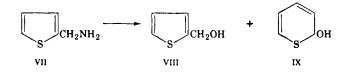
aminomethyl group. Cyclohexene-1-methylamine (II) forms only the unrearranged alcohol,⁴¹ and aminoterebenthene (III) undergoes an allylic rearrangement but not ring expansion. In the latter case the results must be interpreted with caution since uncertainties as to the structures of the starting material and product exist.

There are no data regarding the effect of an isolated double bond in a simple ring system, but expansion would be expected to be less affected in these cases.

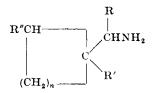
Heterocyclic Rings. Of the small number of aminoheterocyclic compounds to which the Demjanov expansion has been applied, 2-aminomethylpyrrole (IV) and 2-aminomethylpyrrolidine (V) have given low



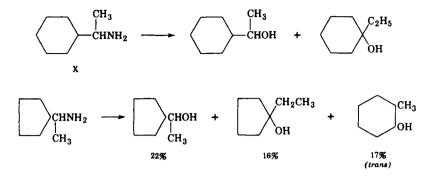
yields of pyridine and tetrahydropyridine, respectively.⁴² It should be noted that the position of the nitrogen atom inevitably involves it in the structure of the carbonium ion formed in the rearrangement. The presence of a nitrogen (or other) atom further removed from the site of the expansion would be expected to have less effect on the course of the reaction. This presumption is supported by the success of the single reported example of the Tiffeneau-Demjanov expansion of a heterocyclic ring; 3-aminomethyl-3-tropanol (VI) gave R-homotropinone in good yield.⁴³

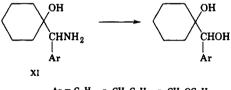

⁴¹ Jacquier and Zagdoun, Bull. Soc. chim. France, 1952, 699.

⁴² Putoshin, J. Russ. Phys. Chem. Soc., 62, 2226 (1930) [C.A., 25, 3996 (1931)].


⁴³ Cope, Nace, and Estes, J. Am. Chem. Soc., 72, 1123 (1950).

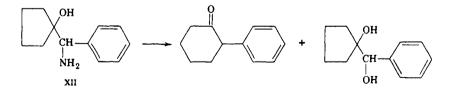
One sulfur heterocycle, 2-thenylamine (VII), has been shown to give the unrearranged alcohol VIII and a small amount of what appears to be hydroxythiopyran (IX). Complete ring enlargment of 2-aminomethylfuran to 2-hydroxypyran has been reported.^{43a}


Alkyl and Aryl Substitution. Three cases of significantly different consequences can be distinguished: substitution on the aminomethyl carbon atom (R in the following formula); on the ring carbon atom attached to the aminomethyl group (\mathbf{R}'), and elsewhere on the ring (\mathbf{R}'').


Substitution of an aryl or alkyl group on the aminomethyl side chain (R) invariably hinders both the Demjanov and the Tiffeneau-Demjanov expansions. Thus α -cyclohexylethylamine (X)^{32, 37} and its 4-methyl derivative^{37, 44} do not give detectable amounts of cycloheptane derivatives, and α -cyclobutyl- and α -cyclopentyl-ethylamine give less expansion than retention of ring size.³⁷ The presence of a phenyl group introduces an even greater hindrance to ring expansion as evidenced by the fact that no Demjanov-type ring expansion occurs when α -cyclopentyl-³⁷ or α -cyclohexyl-benzylamine⁴⁵ is treated with nitrous acid. Only the unrearranged alcohols are obtained. Further proof of the stabilization of the benzyl cation is shown by the fact that 2-phenylcyclohexylamine

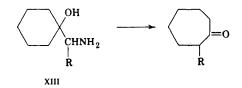
- ⁴⁴ Wallach and Pohle, Nachr. kgl. Ges. Wiss. Göttingen, 1915, 1-27 (16/1) (Chem. Zentr. 1915, II, 828).
 - ⁴⁵ Elphimoff-Felkin and Tchoubar, Compt. rend., 233, 799 (1951).

⁴³⁴ Colonge and Corbet, Compt. rend., 247, 2144 (1958).

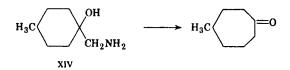


contracts its ring to form the same alcohol that arises from α -cyclopentylbenzylamine on treatment with nitrous acid.⁴⁶ The same results are obtained in the Tiffeneau-Demjanov expansion of three different α -(lhydroxycyclohexyl)benzylamines (XI). Five-membered rings containing

 $Ar = C_6H_5, p-CH_3C_6H_4, p-CH_3OC_6H_4.$

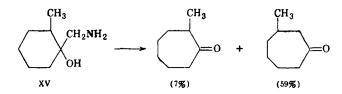

an aryl group on the aminomethyl side chain, in contrast to the sixmembered rings, will enlarge under the Tiffeneau-Demjanov conditions. Thus α -(1-hydroxycyclopentyl)benzylamine (XII) produces about equal amounts of expanded and nonexpanded rings. Since both alkyl and aryl

substitution, particularly the latter, increase the stability of a carbonium ion, such substitution on the aminomethyl side chain saps the driving force of the ring expansion; only when additional driving force is available, such as by relief of ring strain or change to a more stable type of positive ion, does expansion occur when the side chain bears an alkyl group.


⁴⁶ Nightingale and Maienthal, J. Am. Chem. Soc., 72, 4823 (1950).

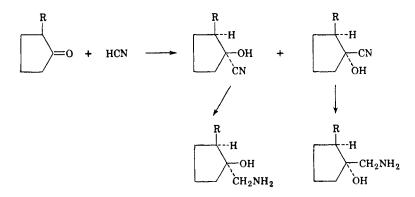
Thus 1-(α -aminoalkyl)cyclohexanols (XIII) rearrange readily to give 2-alkylcycloheptanones.⁴⁷

In contrast, substitution at the ring carbon atom attached to the aminomethyl group (R') would be expected to favor expansion. Evidence on this point is confined to four examples, in which there are some uncertainties about the structures of the products. α -(1-Phenylcyclopentyl)ethylamine appears to undergo ring expansion without occurrence of side reactions to an appreciable extent, showing that a 1-phenyl group can completely override the hindrance to ring expansion due to a methyl substituent on the side chain.³⁷ Two cyclopentanemethylamine derivatives bearing 1-methyl groups and 1-methylcyclopropylmethylamine²⁶ have been found to give ring-enlarged alcohols,⁴⁸⁻⁵⁰ indicating no adverse affect on ring expansion of the substitution of the 1-carbon atom.


Substitution on a ring carbon atom in a position other than the 1 position does not significantly affect the course of the expansion reactions if the substituent is symmetrically placed. Thus 4-methylcyclohexanemethylamine⁵¹ and 4-methyl-1-hydroxycyclohexanemethylamine $(XIV)^{40,52}$ give good yields of 4-methylcycloheptanol and 4-methylcycloheptanone, respectively.

An unsymmetrically placed substituent on an aminomethylcycloalkane or aminomethylcycloalkanol gives rise to the possibility of alternative directions of expansion leading to products which are position isomers. In most cases of this type, mixtures have been obtained with one isomer usually predominating markedly over the other if the substituent was in

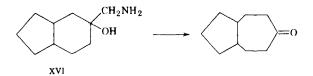
- ⁴⁷ Elphimoff-Felkin and Tchoubar, Compt. rend., 233, 964 (1951).
- 48 Bredt, J. prakt. Chem., [2], 95, 70 (1917).
- 49 Errera, Gazz. chim. ital., 22, II, 109 (1892).
- ⁵⁰ Rupe and Splittgerber, Ber., 40, 4311 (1907).
- ⁵¹ Qudrat-i-Khuda and Ghosh, J. Indian Chem. Soc., 17, 19 (1940).
- 52 F. F. Blicke, private communication.


the 2 position. Thus 1-aminomethyl-2-methylcyclohexanol (XV) gave a 66% yield of ketones consisting of 2- and 3-methylcycloheptanone in the proportion 1:9, while 1-aminomethyl-3-methylcyclohexanol gave 3- and

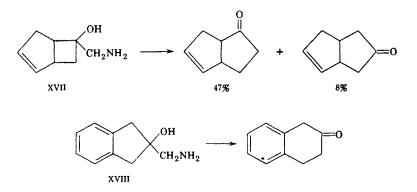
4-methylcycloheptanones in nearly equal amounts.⁴⁰ Other examples are encountered among the bicyclic compounds (see the next section) and in the tables. Information on the Demjanov expansion of unsymmetrically substituted rings is limited to the indication that mixtures are produced.^{53, 54}

Since diastereomers of unsymmetrically substituted cyclic compounds are possible, the probable steric control of the direction of the expansion must be considered (see p. 163). The stereochemical nature of the amine to be subjected to ring expansion will depend on the method by which it was prepared. It is thus probable that the ratios of position isomers are determined at least in part by factors governing the reactions by which the amines were prepared, and that different routes for synthesizing an amine may result in different ratios of the position isomers of the product of ring expansion.

Since the amino alcohols required for the Tiffeneau-Demjanov expansion are usually produced by reduction of an addition product of a ketone (such as a cyanohydrin), a substituent in the 2 position has a much



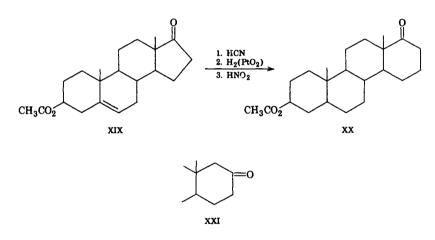
53 Barbier, Helv. Chim. Acta, 23, 519 (1940).


³⁴ Barbier, Helv. Chim. Acta, 23, 524 (1940).

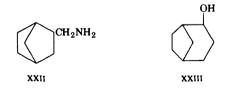
greater influence than one further removed from the site of reaction, since it influences the stereochemistry of the addition product. Similar considerations presumably apply to the Demjanov expansion; however, the stereochemical nature of the amine is usually determined by a reductive step, such as the hydrogenation of an unsaturated nitrile.

Bicyclic and Polycyclic Systems. The principal synthetic application of the Demjanov and Tiffeneau-Demjanov ring expansions has been to polynuclear systems. Apart from the formation of position isomers when the aminomethyl group is unsymmetrically placed, ring expansion proceeds normally by both methods. Thus 5-aminomethylhydrindane has been converted to a mixture of isomeric bicyclo[5.3.0]-

decanols,^{55,56} and 5-aminomethylhydrindan-5-ol (XVI) has been converted to a mixture of bicyclo[5.3.0]decanones (largely the 4-isomer) in useful yields. A mixture of 1-keto- and 2-keto-hexahydropentalene in the ratio 85: 15 has been obtained from 6-aminomethylbicyclo[3.2.0]-2-hepten-6-ol (XVII).³⁸ Expansion is successful when one nucleus is aromatic, as shown by the conversion of β -aminomethyl- β -hydrindenol (XVIII) to β -tetralone.⁴⁰


A number of steroids have been converted to ring homologs by the Tiffeneau-Demjanov method. The expanded ring was in all cases fused

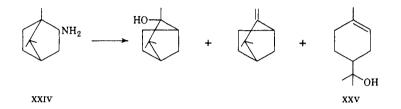
⁵⁵ Arnold, Ber., 76, 777 (1943),


⁵⁶ Plattner, Fürst, and Studer, Helv. Chim. Acta, 30, 1091 (1947).

ORGANIC REACTIONS

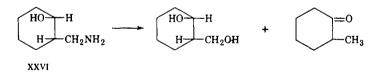
to a saturated cyclohexane ring, but other portions of the molecules contained benzene nuclei, ethylenic double bonds, ester groups, hydroxyl groups, or an epoxide group. Of particular interest is the fact that the stereochemistry of the ring fusion of the expanded ring was apparently undisturbed.⁵⁷. Throughout these examples the expanded ring was unsymmetrical and the formation of isomeric ketones was to be expected, but in practice one isomer always predominated. Thus from the hydrogenated cyanohydrin of *trans*-dehydroandrosterone acetate (XIX) there was obtained 37% of $3-\beta$ -acetoxy- 17α -keto-D-homoandrostane (XX) and 5% of its 16-keto isomer (XXI).⁵⁸ However, when the diastereomeric cyanohydrins were separated beforehand, the major isomer gave only the 17a-ketone.³¹

Expansion of rings that are part of a cage structure has been accomplished by the Demjanov route. Thus 2,5-endomethylenehexahydrobenzylamine (XXII) gave bicyclo[3.2.1]octan-2-ol (XXIII) in good yield,^{58a} and ω -aminoisocamphane gave an R-homocamphenilol of uncertain positional and stereochemical nature.⁵⁹ The opening of a bicyclic



57 Goldberg and Studer, Helv. Chim. Acta, 25, 1553 (1942).

- 58 Goldberg and Wydler, Helv. Chim. Acta, 26, 1142 (1943).
- 58a Kornblum and Iffland, J. Am. Chem. Soc., 71, 2137 (1949).


59 Lipp, Dessauer, and Wolf, Ann., 525, 271 (1936).

structure is illustrated by the behavior of bornylamine (XXIV).⁶⁰ The major products, camphene and its hydrate, are the result of the usual Demjanov reaction; as a consequence of the bicyclic structure, the expansion of the ring not bearing the amino group simultaneously contracts the other ring. In addition, about 20% of (+)- α -terpineol (XXV) is formed; the opening of the transannular bridge can also be accounted for as a carbonium ion rearrangement. Isobornylamine gives only camphene and its hydrate.

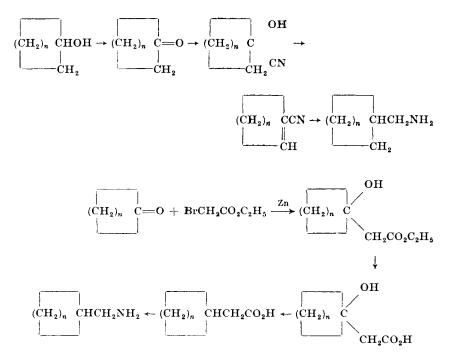
Rings Substituted with Other Functional Groups. The information about the effect of other functional groups on attempted ring expansion is limited to the several examples cited in the discussion of steroids, a few hydroxy compounds, and to two halogen compounds.

Compounds containing a hydroxyl group attached to the carbon atom bearing the aminomethyl group present the special case of the Tiffeneau-Demjanov ring expansion. A hydroxyl group in the 2 position of cyclohexanemethylamine has been reported to prevent ring expansion.⁶¹ From the *trans* isomer XXVI a mixture of the corresponding glycol and

2-methylcyclohexanone is obtained, and from the cis isomer cyclohexanecarboxaldehyde is also formed. trans-2-Hydroxycyclopentanemethylamine similarly gives 2-methylcyclopentanone and the unrearranged glycol. From 2-methyl-2-hydroxycyclohexanemethylamine only the glycol was obtained.

Halogenated rings show less tendency for ring enlargement. 2-Chlorocyclohexanemethylamine is reported to undergo no rearrangement.⁶²

⁶⁰ Hückel and Nerdel, Ann., 528, 57 (1937).

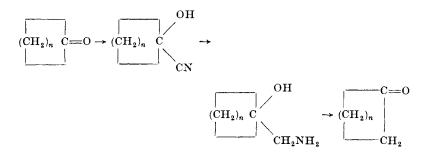

⁶¹ Mousseron, Jullien, and Winternitz, Compt. rend., 226, 1909 (1946).

⁸² Mousseron, Jullien, and Winternitz, Bull. soc. chim. France, 1948, 878.

Since 2,2,3,3-tetrafluorocyclobutanemethylamine gives the unrearranged alcohol as the sole product,⁶³ it appears that the presence of highly electronegative substituents such as fluorine inhibits ring expansion.

APPLICATION TO SYNTHESIS

The Demjanov ring expansion can be made the essential step in the conversion of a cyclic alcohol into its ring homolog when combined with one of several methods for preparing the aminomethyl compound from the alcohol. The obvious route via the cycloalkyl halide, cyanide, and reduction is not generally used because the reaction of a cycloalkyl halide with cyanide usually gives a poor yield of nitrile. Alternatively, the cyanide can be obtained via the Grignard reagent and the carboxylic acid. The alternative that often presents advantages consists of oxidation of the alcohol to a ketone, followed by preparation of the cyanohydrin, dehydration, and reduction.¹⁷ In many cases direct reduction of the cyanohydrin is possible, and then the Tiffeneau-Demjanov expansion is used. Unsaturated nitriles can be reduced successfully by catalytic hydrogenation¹⁷ or with sodium and alcohol.^{17, 51} A slightly longer route



63 Baer, J. Org. Chem., 23, 1560 (1958).

makes use of the Reformatskiĭ reaction,⁶⁴ followed by reduction to a cycloalkylacetic acid and degradation of the carboxyl group to an amino group.⁶⁵

If ring expansion of an available cyclic alcohol is not the objective, other routes to aminomethylcycloalkanes may of course be used. The reduction of nitrosites, obtained by the addition of oxides of nitrogen to cycloalkenes with exocyclic double bonds, is a rare but applicable method.⁶⁶ The aminomethylcyclohexanes can be prepared by hydrogenation of the corresponding benzylamine or by the hydrogenation of an arylacetic acid⁵⁵ followed by any of the several methods for replacement of a carboxyl group by an amino group.^{67–69}

The Tiffeneau-Demjanov expansion is somewhat more easily adapted to the preparation of the next higher ring homologs. A cyclic ketone may be converted in three steps, via its cyanohydrin and reduction to the aminocycloalkanol, to the next higher cyclic ketone. The reduction of cyanohydrins is usually successful by low-pressure hydrogenation with

platinum oxide catalyst.^{56, 70-73} Cyanohydrins vary in the ease with which they dissociate into ketone and hydrogen cyanide, and the occasionally poor results of catalytic hydrogenation have been attributed to the easy reversal and poisoning of the catalyst by the hydrogen cyanide

⁴⁴ Bachmann and Hoffman, in Adams, Organic Rections, Vol. I, pp. 224-262, John Wiley & Sons, New York, 1944.

65 Wallach, Ann., 353, 284 (1907).

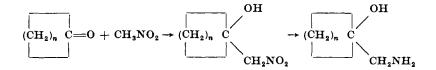
66 Wallach and Isaac, Ann., 346, 243 (1906).

⁶⁷ Wallis and Lane, in Adams, Organic Reactions, Vol. III, pp. 267-306, John Wiley & Sons, New York, 1946.

⁴⁸ Wolf, in Adams, Organic Reactions, Vol. III, pp. 307-336, John Wiley & Sons, New York, 1946.

⁴⁹ Smith, in Adams, Organic Reactions, Vol. III, pp. 337-450, John Wiley & Sons, New York, 1946.

⁷⁰ Tehoubar, Compt. rend., **212**, 1033 (1941).


⁷¹ Gutsche, J. Am. Chem. Soc., 71, 3513 (1949).

⁷² Goldberg and Kirchensteiner, Helv. Chim. Acta, 26, 288 (1943).

⁷³ Tchoubar, Bull. soc. chim. France, 1949, 160.

formed.⁷³ Cyclohexanone cyanohydrin presents such a case;^{70, 72-74} consequently 1-aminomethylcyclohexanol is usually prepared either by reduction of the cyanohydrin with lithium aluminum hydride⁷⁴ or by electrolytic⁷⁵ or chemical⁷⁶ reduction of the nitromethane-cyclohexanone adduct. Reduction of some cyanohydrins with lithium aluminum hydride^{74, 77, 78} also proceeds poorly, for the basic reagent appears to favor the reversal.^{31, 38} However, the greater specificity of lithium aluminum hydride, which does not reduce unconjugated double bonds, makes it a desirable reagent for the reduction of cyanohydrins.⁷⁹ Thus dehydroepiandrosterone acetate was successfully expanded at ring D without disturbing the double bond in ring B; lithium aluminum hydride was used for the reduction of the cyanohydrin.³¹ Dissociation of a cyanohydrin can be overcome by acetylation, and the route is then synthetically useful.^{31, 38} However, acetylation of the cyanohydrin hydroxyl group does not appear to improve the yields in catalytic hydrogenation.⁷² Dissociation of the cyanohydrin can also be prevented by temporarily converting the hydroxyl group to an ether with vinyl isopropyl ether⁸⁰ or dihydropyran.81

Cyclic ketones have occasionally been condensed with nitromethane to give 1-nitromethylcycloalkanols^{76, 82} which can be reduced to 1-aminomethylcycloalkanols.⁷⁶ Such nitro alcohols appear to require rather

specific conditions for satisfactory reduction, but they have been reduced successfully both catalytically⁷⁶ and electrolytically.⁷⁵

Amino alcohols for the Tiffeneau-Demjanov expansion have also been produced by the reaction of ammonia with epoxides,³ but this route is not used much because the epoxides are relatively inaccessible.⁴⁰ Another route not involving reduction is the Reformatskii reaction between a

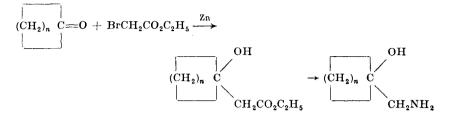
⁷⁴ Nace and Smith, J. Am. Chem. Soc., 74, 1861 (1952).

⁷⁵ Blicke, Doorenbos, and Cox, J. Am. Chem. Soc., 74, 2924 (1952).

¹⁶ Dauben, Ringold, Wade, and Anderson, J. Am. Chem. Soc., 73, 2359 (1951).

¹⁷ Blicke, Azuara, Doorenbos, and Hotelling, J. Am. Chem. Soc., 75, 5418 (1953).

⁷⁸ Nystrom and Brown, J. Am. Chem. Soc., 70, 3738 (1948).


⁷⁹ Brown, in Adams, Organic Reactions, Vol. VI, pp. 409-571, John Wiley & Sons, New York, 1951.

⁸⁰ Tchoubar, Compt. rend., 237, 1006 (1953).

⁸¹ Elphimoff-Felkin, Compt. rend., 236, 387 (1953).

⁸² Nightingale, Erickson, and Shackelford, J. Org. Chem., 17, 1005 (1952).

cyclic ketone and ethyl bromoacetate, followed by conversion of the carboxylic ester to the amine.⁸³

EXPERIMENTAL CONDITIONS

The general procedure is to dissolve the amine in dilute aqueous acid, add excess aqueous sodium nitrite, and, when the evolution of nitrogen ceases, to isolate the product either by steam distillation or by extraction with an immiscible solvent. The optimum pH appears to be not far from 7, in agreement with the formulation of the reaction as one between the free base and nitrous acid. It has been shown that high acidity (pH 3) stops the reaction of aliphatic amines with nitrous acid.⁸⁴ At too low acidity (pH7 or above), the reaction either does not occur or is impractically slow. The desired pH is readily provided by dissolving the amine or its acetate in excess dilute acetic acid.^{2, 3, 25} Alternatively, the amine hydrochloride may be used with a few drops of excess acid (mineral or acetic).^{1,50,85} Occasionally other salts, such as oxalates,⁶⁶ have been used. Hydrochloric,⁷⁷ sulfuric,⁷⁵ and perchloric³⁶ acids have been used successfully, but when acids of this strength are used the excess must be small. Sodium dihydrogen phosphate and phosphoric acid are quite satisfactory,^{16, 37} but, owing to the weak acidity of the former reagent, reaction is slow.

Although the choice of acid is often dictated by convenience, the possible involvement of the anion of the acid in the reaction should not be overlooked. This does not appear to be important in the Tiffeneau-Demjanov expansion where the product results by elimination of a proton, even though halohydrins are by-products when the halide ion concentration is high.^{86,87} In the Demjanov expansion, the last step is a combination of an intermediate with a nucleophilic species, commonly water. It has been demonstrated that the alkyl group of an amine undergoing deamination with nitrous acid is ultimately found combined

⁸³ Bergmann and Sulzbacher, J. Org. Chem., 16, 84 (1951).

⁸⁴ Kornblum and Iffland, J. Am. Chem. Soc., 71, 2137 (1949).

⁸⁵ Alder and Windemuth, Ber., 71, 2404 (1938).

⁸⁶ Felkin, Compt. rend., 226, 819 (1948).

⁸⁷ Tchoubar, Bull. soc. chim. France, 1949, 169.

to some extent with all anions present,⁸⁸ and that the relative amounts may not be in proportion to their concentrations.¹¹ Alcohols produced by the Demjanov expansion in acetic acid solution are usually heavily contaminated with their acetate esters.¹⁶ It is for this reason that phosphate¹⁶ and perchlorate³⁶ solutions have been used.

The temperature is usually adjusted to 0° at the start of the Demjanov or Tiffeneau-Demjanov reaction, allowed to rise slowly to room temperature, and finally raised to near 100° . The choice of an initially low temperature is perhaps in part due to the instability of free nitrous acid, and partly due to the very occasionally rapid evolution of nitrogen; nevertheless, it does not appear to be generally necessary. When gas evolution has subsided, heating is begun. Successful results have also been obtained without heating, when the reaction mixture was allowed to stand for several hours.^{40, 43} The time and temperature required appear to depend as much on the acidity of the medium as on the nature of the amine.

The source of nitrous acid is almost invariably sodium or potassium nitrite, although in the older literature the use of silver nitrite with amine hydrochlorides is described.^{49,89} Excesses of nitrite as high as $50\%^{72}$ and $200\%^{40}$ have been used, although one equivalent is the common amount. Since some nitrous acid is almost invariably lost through disproportionation, the use of only one equivalent of nitrite usually leads to recovery of considerable amounts of unreacted amine.^{16,17,56} Because nitrous acid may react with the olefinic products accompanying the Demjanov expansion and with the ketones from the Tiffeneau-Demjanov expansion, it is best to avoid an unnecessary excess. An effective scheme is to use at first one equivalent, remove the products which are formed (by steam distillation or extraction), and then treat the remaining aqueous solution with fresh portions of acid and nitrite.⁸⁵

Moderately dilute solutions are usual, about 5-20% in amine and the same range of a weak acid, if one is employed; for strong acids, as has been mentioned, the total quantity is kept at little more than that equivalent to the amine, and the acid is usually diluted to a concentration of less than 10%.

Since the deamination products are usually not basic; they commonly separate from solution as the reaction proceeds. Solid products can, of course, be removed by filtration. Liquid products are commonly isolated by extraction with ether and fractional distillation of the dried extracts. Steam distillation from the reaction mixture^{53, 54, 85} is occasionally employed; it has the advantage of freeing the product from the

⁸⁸ Whitmore and Langlois, J. Am. Chem. Soc., 54, 3441 (1932).

⁸⁹ Demjanov, J. Russ. Phys.-Chem. Soc., 36, 166 (1904) (Chem. Zentr., 1904, 1, 1214).

nonvolatile tars which are so often formed, especially in the Demjanov expansion, and to some extent from the small amounts of glycols sometimes formed in the Tiffeneau-Demjanov expansion.^{77,87}

The products of a Demjanov expansion are easily separated into an olefin (lower boiling) and an alcohol fraction; either or both may, of course, be the desired product. Purification of the alcohol fraction is generally not practicable by distillation, owing to the similar boiling points of the isomeric alcohols. Where acetic acid solutions have been used, esters must first be saponified or cleaved with lithium aluminum hydride. Since the unrearranged alcohol is almost always primary, and the expanded alcohol is almost always secondary, either oxidation or differential esterification 17, 51, 54 may be used to separate the isomers. The small amounts of tertiary alcohols that are sometimes present may also often be eliminated by such procedures. Oxidation, usually with chromic acid, converts the expanded alcohol to a ketone and the primary alcohol either to an aldehyde or acid, allowing separation by obvious means.^{17, 51} Esterification of primary alcohols with phthalic anhydride, usually in benzene solution, is fairly rapid; esterification of secondary alcohols is much slower and requires prolonged heating, and tertiary alcohols are either dehydrated or unaffected.⁹⁰ The alkyl hydrogen phthalates produced can be separated from unesterified material by extraction with very dilute alkali and then recrystallized.^{51,90} Regeneration of the alcohol by saponification presents no complications.^{17, 54, 90} The olefins produced in the Demjanov reaction usually are not easily separated from each other, but oxidation to ketones, keto acids, or acids may elucidate their structures.¹⁷

The products of a Demjanov expansion usually include small amounts of nitrogen-containing compounds which often appear in the high-boiling residue. These substances are usually neglected. Those isolated have been identified as nitroalkanes, $^{60, 91}$ which presumably result from the action of oxides of nitrogen on the olefins formed.

The isolation of the ketones from Tiffeneau-Demjanov expansions is somewhat simpler, since the principal accompanying substances (other than unreacted amine) are glycols which are very much less volatile than the ketones. However, when it is not desirable to separate the ketone by distillation, as in the steroid field, it may be necessary to separate the ketone through the semicarbazone,^{38, 72} by reaction with Girard's reagents, or by chromatography.^{72, 82}

⁹⁰ Ingersoll, in Adams, Organic Reactions, Vol. II, p. 393, John Wiley & Sons, New York, 1944.

⁹¹ Cook, Jack, and Loudon, J. Chem. Soc., 1952, 607.

⁹⁹ Goldberg and Studer, Helv. Chim. Acta, 24, 478 (1941).

EXPERIMENTAL PROCEDURES

Cycloheptanone. Detailed directions for the preparation of cycloheptanone in a 40-42% over-all yield from cyclohexanone by the Tiffeneau-Demjanov rearrangement are given in *Organic Syntheses.*⁹³

3-Hydroxydodecahydroheptalene and Decahydroheptalene by the Demjanov Rearrangement.⁹⁴ To a solution of 7.1 g. of 2'-aminomethylcyclohexanocycloheptane and 3.5 ml. of glacial acetic acid in 70 ml. of water is added a solution of 4.2 g. of sodium nitrite in 28 ml. of water, and the mixture is heated on a water bath until the evolution of nitrogen ceases. The oil that separates is extracted with ether and the extracts are washed with aqueous sodium hydroxide, dried, and distilled to give two main fractions: (a) 1.5 g. (23%) of crude olefins, b.p. $53-93^{\circ}/0.5$ mm.; and (b) 3.6 g. (51%) of crude alcohols, b.p. $105-115^{\circ}/1$ mm. Redistillation of fraction (a) over sodium gives decahydroheptalene as a colorless oil (1.0 g., 14°_{0}) b.p. $58-62^{\circ}/0.5$ mm. Fraction (b) consists mainly of 3-hydroxydodecahydroheptalene.

Cycloheptanol by the Demjanov Rearrangement.^{16,37} To a solution of 45 g. (0.038 mole) of syrupy, 85% orthophosphoric acid in about 300 ml. of water containing some ice is added 56.5 g. (0.5 mole) of cyclohexanemethylamine; a white, crystalline precipitate forms. A solution of 35 g. (0.5 mole) of sodium nitrite in about 60 ml. of water is added all at once to the cold amine solution, boiling chips are added, and the mixture is allowed to stand for one hour in a 1-l. round-bottomed flask. During this time the precipitate dissolves, nitrogen is slowly evolved, and an oil separates. The reaction mixture is then distilled; an efficient condenser should be used if it is desired to avoid loss of olefin. After most of the oil has come over (usually 200-250 ml. of distillate), distillation is stopped and the distilland is cooled somewhat; 7.5 g. (0.107 mole) of sodium nitrite in concentrated aqueous solution and 4.5 g. (0.04 mole) of 85% orthophosphoric acid are then added. Distillation is resumed until only isolated lumps of tar float in the distilland; usually 50-150 ml. of distillate is required. This second distillate is collected in a separate flask containing several grams of potassium carbonate in water solution to neutralize nitrous fumes.

The distillates are combined, the layers separated, and the aqueous layer extracted twice with 25-m). portions of petroleum ether (b.p. $30-40^{\circ}$). The combined extracts are then dried over potassium carbonate, filtered through a filter paper moistened with petroleum ether, and distilled through an 18-inch Vigreux column or its equivalent until the solvent is

⁹³ Dauben, Org. Syntheses, 34, 19 (1954).

⁸⁴ Aspinwall and Baker, J. Chem. Soc., 1950, 743.

removed (90°). If the distillation is carred further at this point, there are obtained 6-8 g. (12-17%) of mixed olefins, b.p. 95-125° (mostly 105-115°) and 25-30 g. (44-52%) of mixed alcohols, b.p. 125-185° (mostly 155-180°). It is usually desirable to purify the alcohol by chemical means, for which purpose the solvent-free but unfractionated material is suitable.

To remove cyclohexanemethanol from the product, the residue after removal of the solvent is mixed with 10 g. (0.07 mole) of phthalic anhydride and heated under reflux at $120-140^{\circ}$ for one-half to one hour. The cooled mixture is shaken with 8.5 g. of sodium carbonate monohydrate in 350 ml. of water and 50 ml. of petroleum ether (b.p. $30-40^{\circ}$), and the layers are separated. The organic layer is washed with two 50-ml. portions of water.*

The combined petroleum ether solutions are dried over potassium carbonate and distilled through an 18-inch Vigreux column or its equivalent. There are obtained 5-6 g. (10-12%) of olefins, b.p. $103-127^{\circ}$ (mostly $105-115^{\circ}$), and 22-23 g. (38-40%) of alcohol, b.p. $127-187^{\circ}$. Redistillation of the alcohol mixture gives about 20 g. (35%) of somewhat impure cycloheptanol, b.p. $150-180^{\circ}$. Further purification may be accomplished, if desired, by converting the crude cycloheptanol to its hydrogen phthalate, using the detailed directions given for 2-octyl hydrogen phthalate in an earlier volume of this series (Ref. 90, p. 400); pure cycloheptyl hydrogen phthalate melts at $100-102^{\circ}$.

Cycloöctanone by the Tiffeneau-Demjanov Rearrangement.⁷⁷ 1-Aminomethylcycloheptanol (124 g., 0.87 mole) is dissolved in 400 ml. of 10% hydrochloric acid and cooled to below 5°. A solution of 69 g. (1 mole) of sodium nitrite in 300 ml. of water is added slowly with stirring, and the resulting solution is allowed to stand for two hours, during which time it warms to room temperature. It is then heated on a steam bath for one hour, cooled, and the oily layer is separated. The aqueous layer is extracted with about 100 ml. of ether, and the combined extracts are dried over potassium carbonate and distilled under reduced pressure through a short column. There is obtained 67 g. (61%) of cycloöctanone, b.p. $85-87^{\circ}/17$ mm. The higher-boiling residue contains 2-hydroxymethylcycloheptanol, which may also be collected by distillation; the yield is 5 g. (4%), b.p. $142-147^{\circ}/2$ mm.

^{*} To recover the unrearranged alcohol the combined aqueous layers are washed with 50 ml. of petroleum ether. The hexahydrobenzyl hydrogen phthalate is recovered by acidi-fying the aqueous solution with hydrochloric acid, allowing the precipitated oil to crystallize, and recrystallizing from ligroin or aqueous acetic acid. There is thus obtained 11-13 g. (8-10%) of a white solid whose melting point is usually in the range $110-120^\circ$.

ORGANIC REACTIONS

TABULAR SURVEY OF THE DEMJANOV AND TIFFENEAU-DEMJANOV RING EXPANSIONS

In the tables are included all the examples of successful or attempted ring enlargements by the Demjanov and Tiffeneau-Demjanov methods that could be found through the year 1957. In addition some pertinent later examples are included.

The examples are given in four tables: mononuclear carbocyclic rings; polynuclear carbocyclic systems with one shared side; polynuclear carbocyclic systems with more than one shared side, and heterocyclic rings. Within each table the entries appear in the order of increasing ring size, and, for compounds of the same ring size, in the order of the number of carbon atoms. In many of the examples of the Demjanov reaction, the yields quoted do not represent pure substance isolated, but are calculated from the total yield and the composition analysis.

180

TABLE I

MONONUCLEAR CARBOCYCLIC RINGS

Amine	Rearranged Alcohol or Ketone	Yield % (Ref.)	Olefin Yield % (Ref.)	Unrearranged Alcohol Yield % (Ref.)
Cyclopropanemethylamine	Cyclobutanol Allylcarbinol	50 (27), 17, (36) 2 (36)	(27, 36)	50 (27), 17 (36)
α-Cyclopropylethylamine	•			(95)
1-Methylcyclopropanemethylamine	1-Methylcyclobutanol	High (26)		0 (26)
Cyclobutanemethylamine	Cyclopentanol	(2)	(2)	(2)
2,2,3,3-Tetrafluorocyclobutane- methylamine		0 (63)	(63)	(63)
α -Cyclobutylethylamine	1-Methylcyclopentanol, 1-ethyl- cyclobutanol, <i>trans</i> -2-methyl- cyclopentanol (trace)	46 (37)	14 (37)	— (37)
Cyclopentanemethylamine	Cyclohexanol	30 (25, 37), 7 (37)	- (25, 37)	3 (37)
1-Hydroxycyclopentanemethyl- amine	Cyclohexanone	75 (40, 96, 97)		
α-Cyclopentylethylamine	trans-2-Methylcyclohexanol	17 (37)	9 (37)	22 (37)
	1-Ethylcyclopentanol	16 (37)		
α-(l-Hydroxycyclopentyl)ethyl- amine	2-Methylcyclohexanone	70 (97)		
trans-2-Hydroxycyclopentane- methylamine	2-Methylcyclopentanone	— (61, 98)		(61, 98)
2-Methyl-l-hydroxycyclopentane- methylamine	3-Methylcyclohexanone	80 (40, 99)		
3-Methyl-1-hydroxycyclopentane- methylamine	3-Methylcyclohexanone	35 (40)		
•	4-Methylcyclohexanone	35 (40)		
Note: References 95 to 110 are or	n p. 188.			

TABLE I-Continued

MONONUCLEAR CARBOCYCLIC RINGS

	MONOROODIAN CAMBOCICIAC	10111005			
Amine	Rearranged Alcohol or Ketone	Yield % (Ref.)	Olefin Yield % (Ref.)	Unrearranged Alcohol Yield % (Ref.)	
1,2,2,3-Tetramethylcyclopentane- methylamine	1,3,3,4- or 1,2,2,3-Tetramethyl cyclohexanol	- (48, 49)	— (49)		
1,2,2-Trimethyl-3-carboxycyclo- pentanemethylamine	A trimethylhydroxycyclohexane- carboxylic acid	(48, 50)			
α-(1-Hydroxycyclopentyl)- benzylamine	2-Phenylcyclohexanone	50 (97)			ORGANIC
1-Phenylcyclopentyl-1'-ethylamine	2-Phenylcyclohexanol (cis and trans)	73 (37)	0 (37)	0 (37)	Ĝ.
Cyclohexanemethylamine	Cycloheptanol	29 (16), 64 (17)	27 (16), 21 (17)	15 (16)	ž
	1-Methylcyclohexanol	2 (16)	(89)		IC
1-Hydroxycyclohexanemethylamine	Cycloheptanone	60 (3, 40) 65 (76), 57 (75)		- (40, 75)	REACTIONS
α-Cyclohexylethylamine	1-Ethylcyclohexanol	16 (37, 76, 100)	3 (37)	23 (37)	Ĝ
β -Cyclohexylethylamine	α-Cyclohexylethanol	— (101)	Trace (101)	-(101)	E
cis-2-Hydroxycyclohexanemethyl- amine	Cyclohexanecarboxaldehyde	- (60, 98)		- (60, 98)	ONS
trans-2-Hydroxycyclohexane- methylamine	2-Methylcyclohexanone	(60, 98)		- (59, 98)	
2-Chlorocyclohexanemethylamine	None	0 (62)		<u>(62</u>)	
α-(1-Hydroxycyclohexyl)ethyl- amine	2-Methylcycloheptanone	60 (47), 55 (97)		•	
2-Methyl-1-hydroxycyclohex- anemethylamine	2-Methylcycloheptanone	6 (40, 96)			
	3-Methylcycloheptanone	60 (40, 96)			
2-Hydroxy-2-methylcyclohex- anemethylamine	None	0 (62)		- (40)	

182

3-Methyl-l-hydroxycyclohex- anemethylamine	3-Methylcycloheptanone	40 (40, 96)		
	4-Methylcycloheptanone	40 (40, 96)		
4-Methyl-1-hydroxycyclohex- anemethylamine	4-Methylcycloheptanone	60 (52), 65 (40)		
4-Methylcyclohexanemethylamine	4-Methylcycloheptanol	55 (51)	20 (51)	
α -(4-Methylcyclohexyl)ethylamine	None	0(37, 44)	25 (37)	39* (37, 44)
3,5-Dimethylcyclohexanemethyl- amine	2,4-Dimethylcycloheptanol	— (44)	•	
3,3,5-Trimethylcyclohexane- methylamine	$3,5,5$ -Trimethylcycloheptanol \dagger	— (53)	— (53)	(53)
3,3,5-Trimethyl-l-hydroxycyclo- hexanemethylamine	3,5,5- and 3,3,5-Trimethylcyclo- heptanone	(40)		
2,2,6-Trimethylcyclohexane- methylamine	2,2,6-Trimethylcycloheptanol†	(54)	(54)	— (54)
1-Hydroxycyclohexane-1'-iso- butylamine	2-Isopropylcycloheptanone	50 (102)		— (102)
1-Hydroxycyclohexane-1'- neopentylamine	2-t-Butylcycloheptanone	30-40 (102)	§(102)	0 (102)
α-Cyclohexylbenzylamine	None	0 (45)		- (45)
2-Phenyl-1-hydroxycyclohex- anemethylamine	3-Phenylcycloheptanone	64‡ (71)		
α-(l-Hydroxycyclohexyl)benzyl- amine	None	0 (103)		— (103)

* This figure includes some tertiary alcohol.

† The position of the hydroxyl group is uncertain.
‡ The yield is based on the cyanohydrin.
§ Appreciable amounts of cyclohexanone were formed in this experiment.

TABLE I-Continued

MONONUCLEAR CARBOCYCLIC RINGS

Amine	Rearranged Alcohol or Ketone	Yield % (Ref.)	Olefin Yield % (Ref.)	Unrearranged Alcohol Yield % (Ref.)	ORGA
α-(l-Hydroxycyclohexyl)-p-methyl-	None	— (103)		(103)	NIC
benzylamine, α-(1-Hydroxycyclohexyl)hexa- hydrobenzylamine	2-Cyclohexylcycloheptanone	50 (102)		(102)	REA
Cycloheptanemethylamine	Cycloöctanol	- (25)			Ĕ
1-Hydroxycycloheptanemethyl- amine	Cycloöctanone	61 (77), 70 (40)		4 (77)	CTIONS
Cycloöctanemethylamine	Cyclononanol	18 (17)	38 (17)	26 (17)	
1-Hydroxycycloöctanemethylamine	Cyclononanone	50 (40), 57 (39)			

Note: References 95 to 110 are on p. 188.

			Olefin
Amine	Rearranged Alcohol or Ketone	Yield % (Ref.)	Yield % (Ref.)
6-Hydroxybicyclo[3.2.0]-2-heptene-6-methyl- amine	Bicyclo[3.3.0]-2-octen-6-one	47* (38)	
	Bicyclo[3.3.0]-2-octen-7-one	8* (38)	
cis-2-Hydroxybicyclo[3.3.0]-octane-2- methylamine	Hydrindan-5-one	60 (104)	
2-Hydroxyindane-2-methylamine	β -Tetralone	- (40, 99)	
17-Aminomethylestradiol-3-acetate	D -Homoestrone acetate	38(30, 92)	
3-trans-17-Dihydroxy-17-aminomethyl- androstane	3-trans-Hydroxy-D-homoandrostan-17a-one	51 (105)	
3-trans-Acetoxy-17-hydroxy-17-amino- methylandrostane	3-trans-Acetoxy-D-homoandrostan-17a-one	51 (105)	
3-epi-17-Dihydroxy-17-aminomethyl- androstane	3-epi-Hydroxy-D-homoandrostan-17a-one	73 (105)	
3β-Acetoxy-17-hydroxy-17-aminomethyl- androstane	3β -Acetoxy-D-homoandrostan-17 <i>a</i> -one	37 (58)	
	3β -Acetoxy-D-homoandrostan-17-one	5 (58)	
$\Delta^{5,6-3\beta}$,17-Dihydroxy-17-aminomethyl- androstene	$\Delta^{5,6}$ -3 β -Hydroxy-17 <i>a</i> -keto-D-homo- androstene	80 (31)	
3β -Acetoxy-5, 6β -oxido-17-hydroxy-17- aminomethylandrostane	3β -Acetoxy-5,6 β -oxido-D-homoandrostan- 17 <i>a</i> -one	26 (106)	
	3β -Acetoxy-5,6 β -oxido-D-homoandrostan- 17-one	2 (106)	

Note: References 95 to 110 are on p. 188.

* The yield is based on the acetylated cyanohydrin.

TABLE II—Continued

POLYNUCLEAR CARBOCYCLIC SYSTEMS WITH FUSION AT A SINGLE SIDE

Amine	Rearranged Alcohol or Ketone	Yield % (Ref.)	Olefin Yield % (Ref.)	0
Hydrindane-5-methylamine	4,5-Cyclopentanocycloheptanol	68 (55), 57 (56, 107)	20 (55), 15 (56)	ORGA
5-Hydroxyhydrindane-5-methylamine	Bicyclo[5.3.0]decan-3-one	89 (56)		ZI
5-Methylhydrindane-6-methylamine	2-Methyl-4,5-cyclopentanocycloheptanol + 6-methyl-3,4-cyclopentanocycloheptanol	54 (55)	(55)	C RE
3,4-Cycloheptanocyclohexanemethylamine	3-Hydroxydodecahydroheptalene	50 (94)	24 (94)	\geq
9-Aminomethyl-9,10-dihydro-2,3,4,7-tetra- methoxyphenanthrene	Deaminocolchinol methyl ether	(91)	- (91)	CTIONS
17a-Hydroxy-17a-aminomethyl-D-homo- estrol-3-monoacetate	D-bis-Homoestrone acetate	76 (57)		NS
3-Aminomethyl-17-acetoxyandrostan-3-ol	A-Homo-17-acetoxyandrostan-4-one	(72)		
3-Hydroxy- 3 -aminomethylcholestane	A-Homocholestanone	70 (72)		
Note: References 95 to 110 are on p. 188.				

TABLE II

POLYNUCLEAR CARBOCYCLIC SYSTEMS WITH FUSION AT A SINGLE SIDE

DEMJANOV AND TIFFENEAU-DEMJANOV RING EXPANSIONS 185

TABLE III

POLYNUCLEAR SYSTEMS WITH FUSION AT MORE THAN ONE EDGE

Amine	Rearranged Alcohol or Ketone	Yield % (Ref.)	Olefin Yield % (Ref.)
2,5-Endomethylenecyclohexanemethylamine	2,5-Endomethylenecycloheptanol	Good (85)	
ω-Aminoisocamphane	R-Homocamphenilol	45 (108)	16 (108)
ω-Aminotricyclene	Not identified	(109)	
Bornylamine	(+)-Camphene hydrate	31 (60)	13* (60)
·	(+)-α-Terpineol	26 (60)	
Isobornylamine	(-)-Camphene hydrate	— (60)	— (60) *
ω -Aminopinene (aminoterebenthene)	p-Isopropyl-3,4-dihydrobenzyl alcohol	(66)	
Note: References 95 to 110 are on p. 188.			

* The olefin was camphene

TABLE IV

HETEROCYCLIC RINGS

Amine	Rearranged Alcohol or Ketone	Yield % (Ref.)	Unrearranged Alcohol Yield % (Ref.)
2-Aminomethylfuran	2-Hydroxypyran	High $(43a)$	
Pyrrolidine-a-methylamine	Piperideine	Low (42)	
Pyrrole-a-methylamine	Pyridine	25 (42)	
3-Aminomethyl-3-tropanol	R-Homotropinone	57 (43)	
2-Thenylamine	Hydroxythiopyran	(110)	(110)

Note: References 95 to 110 are on p. 188.

ORGANIC REACTIONS

REFERENCES FOR TABLES I-IV

- ⁹⁸ Demjanov and Pinegin, J. Russ. Phys.-Chem. Soc., 46, 58 (1914) (C.A., 8, 1965 (1914)].
- ** Tiffeneau and Tchoubar, Compt. rend., 212, 195 (1941).
- ⁹⁷ Elphimoff-Felkin and Tchoubar, Compt. rend., 237, 726 (1953).
- ⁹⁸ Mousseron, Jacquier, and Jullien, Bull. soc. chim. France, 1951, C89.
- ** Tiffeneau and Tchoubar, Compt. rend., 215, 224 (1942).
- ¹⁰⁰ Jennen, Compt. rend., 234, 961 (1952).
- ¹⁰¹ Wallach and Lorge, Ann., 359, 312 (1908).
- ¹⁰⁸ Elphimoff-Felkin and Gault, Compt. rend., 248, 1871 (1958).
- ¹⁰⁸ Elphimoff-Felkin and Tchoubar, Compt. rend., 231, 1314 (1950); 233, 596 (1951).
- ¹⁰⁴ Granger and Nau, Bull. soc. chim. France, 1957, 986.
- ¹⁰⁴ Goldberg and Monnier, Helv. Chim. Acta, 23, 376 (1940).
- ¹⁰⁸ Goldberg, Sice, Robert, and Plattner, Helv. Chim. Acta, 30, 1441 (1947).
- ¹⁰⁷ Plattner, Heilbronner, and Fürst, Helv. Chim. Acta, 30, 1100 (1947).
- ¹⁰⁸ Lipp, Dessauer, and Wolf, Ann., **525**, 271 (1936).
- ¹⁰⁹ Lipp, Ber., 53, 769 (1920).

188

¹¹⁰ Putoshin and Egorova, J. Gen. Chem. U.S.S.R., 10, 1873 (1940) [C.A., 35, 4377 (1941)].

CHAPTER 3

ARYLATION OF UNSATURATED COMPOUNDS BY DIAZONIUM SALTS (THE MEERWEIN ARYLATION REACTION)

CHRISTIAN S. RONDESTVEDT, JR.*

CONTENTS

											1	PAGE
INTRODUCTION	•		•	•	•	•	•	•	•	•		190
Mechanism .				•		•	•	٠	•		•	192
SCOPE AND LIMI	TATIO	NS.			•					•	•	198
The Unsaturat	ed Co	mpone	nt.									198
		• .										201
Miscellaneou					nds							203
Reactivities				•								205
Decarboxyla				-					Acids			· 206
The Diazonium		-										206
Factors Influer	icing 4											208
Side Reactions	<u> </u>											209
Comparison wit	н Оті	HER S	YNTHI	ETIC N	Иетно	DDS	•	•	•		•	211
EXPERIMENTAL (CONDI	TIONS			•	•	•		•			214
Effects of Read	tion I	Mediur	n.									215
Solvent .												215
Anions .												217
Catalysts .				•								217
Acidity .		•										218
EXPERIMENTAL H	ROCE	DURES	•	•	•	•		•	•	•	•	219
1-p-Nitropheny	lbuta	diene										219
3-p-Nitropheny												219
trans.p.Chloroc			d and	l p-Ni	trocin	namio	e Acid					219
2-Methoxy-4'-p												220
p'-Nitrocinnam												220

* Present address: Jackson Laboratory, E. I. du Pont de Nemours & Company, Inc. Wilmington 99, Delaware.

ORGANIC REACTIONS

								1	PAGE
α -p-Chlorophenyl-N-isopropylmale	oimide	э.			•				220
p-Nitrophenylmaleic Anhydride	•	•							221
l,4-Bis(2'-chloro-2'-cyanoethyl)ber	nzene	(Use	ofa	Diami	ne)		•		221
2-o-Chlorophenylbenzoquinone	•	•	•	•	•	•	•	•	221
TABULAR SURVEY					•				222
Table I. Nonconjugated Olefins	and A	cetyle	enes					••	224
Table II. Conjugated Dienes and							•		225
Table III. α,β -Unsaturated Alde	hydes	and	Keto	nes		•	•		229
Table IV. Aliphatic α, β -Unsature	ated I	Monob	asic.	Acids,	Ester	s, Nit	riles		231
Table V. Aromatic α, β -Unsatura	ited A	ids,	Este	rs, Nit	riles	•	•		235
Table VI. Heterocyclic α,β -Unsa	iturat	ed Ac	ids	•	•		•		240
Table VII. α,β -Unsaturated γ -K							•		241
Table VIII. Conjugated Dienoic	Acids	s and	Este	rs.	•		•		242
Table IX. Polybasic α,β -Unsatu	rated	Acids	, Nit	riles, l	Esters,	, Imie	des		243
Table X. Quinones			•	•					248
Table XI. Hydroquinone .	•	•		•	•			•	254
Table XII. Coumarins .					•	•			254
Table XIII. Miscellaneous .									255
A. Bisdiazonium Salts .	•				•				255
B. Nitroölefins	•								255
C. Vinyl Ethers	•		•						255
D. Active Methylene Compound	ds								256
E. Oximes and Semicarbazones	ι.								256
F. Furfural									258
G. Furoic Acid	•	•	•	•	•	•	•	•	259

INTRODUCTION

The arylation of olefinic compounds by diazonium halides with copper salt catalysis was discovered by Hans Meerwein.^{1,2} This reaction has been referred to as the Meerwein reaction despite the possibility of its being confused with the Meerwein-Ponndorf-Verley reduction or the Wagner-Meerwein rearrangement. The Meerwein arylation reaction proceeds best when the olefinic double bond is activated by an electronattracting group Z, such as carbonyl, cyano, or aryl. The net result is the union of the aryl group from the diazonium salt with the carbon atom β to the activating group, either by substitution of a β -hydrogen atom or by addition of Ar and Cl to the double bond.

$$\operatorname{ArN_2Cl} + \operatorname{RCH} = \operatorname{CRZ} \xrightarrow{\operatorname{Copper}} \operatorname{ArCR} = \operatorname{CRZ} + \operatorname{ArCHRC(R)ClZ}$$

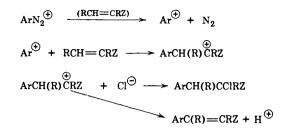
¹ Meerwein, Buchner, and van Emster, J. prakt. Chem., [2] **152**, 239 (1939); Schering-Kahlbaum, Brit. pat. 480,617 [C.A., **32**, 6262⁶ (1938)]; Meerwein, U.S. pat. 2,292,461 [C.A., **37**, 654⁹ (1943)].

¹ Franzen and Krauch, *Chemiker-Ztg.*, **79**, 101 (1955). These authors state that the original discovery is due to Curt Schuster, but his results were published only in internal reports of the I. G. Farbenindustrie.

The reaction is a valuable synthetic tool. Although the yields are often low (commonly 20-40%), such yields are offset by the availability at low cost of a wide variety of aromatic amines and unsaturated compounds, and by the ease and simplicity of performing the reaction. Furthermore, the polyfunctional product built up in a single operation from commercial chemicals is capable of undergoing many subsequent transformations.

The accompanying examples are typical of the scope of the reaction. They also show some of the realized and potential transformations of the products.

This review will be confined to reactions in which a new carbon-carbon bond is formed between the aromatic ring of a diazonium salt and an aliphatic unsaturated compound, including olefins, acetylenes, quinones, oximes, and such heterocycles as furan and thiophene. The arylation of aromatic compounds by diazonium salts and related compounds (the Gomberg-Bachmann reaction) has been reviewed in Volume II of Organic Reactions.


MECHANISM

The mechanism of the Meerwein arylation reaction is not known with certainty, although some features have been established. The correct mechanism must account for the following facts. (1) The olefinic double bond must be activated by an electron-attracting group; the few reported exceptions^{3,4} to this generalization have not been confirmed. (2) The incoming aryl group occupies the position β to the (stronger) activating group. (3) Diazonium salts bearing electron-attracting substituents usually give better results than those possessing electron-releasing substituents. (4) In most cases the reaction is specifically catalyzed by copper salts. (5) The rate of reaction (nitrogen evolution) appears to be markedly dependent on the structure of both the unsaturated compound and the diazonium salt. (6) The yields are dependent upon the pH, the nature of the solvent, and other components of the reaction medium; the presence of halide ion appears to be advantageous,⁴ though not indispensable.⁵

Ionic Mechanism. Meerwein¹ proposed that the diazonium cation loses nitrogen to form an aryl cation as a result of "the polarizing influence of the unsaturated compound." The cation then adds to the double bond. He showed that iodonium salts, which he believed could react only by an ionic mechanism, likewise arylated unsaturated compounds. Recent work has shown that diaryliodonium salts also may react by radical mechanisms.⁶,⁷ The ionic mechanism for the Meerwein arylation has been supported by other workers.⁸⁻²²

- ⁴ Müller, Angew. Chem., 61, 179 (1949).
- ⁵ C. S. Rondestvedt, Jr., unpublished experiments.
- * Sandin and Brown, J. Am. Chem. Soc., 69, 2253 (1947).
- ⁷ Beringer, Geering, Kuntz, and Mausner, J. Phys. Chem., 60, 141 (1956).
- ⁸ Brunner and Perger, Monatsh., 79, 187 (1948).
- ⁹ Brunner and Kustatscher, Monatsh., 82, 100 (1951).
- ¹⁰ Bergmann and Weinberg, J. Org. Chem., 6, 134 (1941).
- ¹¹ Bergmann, Weizmann, and Schapiro, J. Org. Chem., 9, 408 (1944).
- ¹² Bergmann and Weizmann, J. Org. Chem., 9, 415 (1944).
- ¹³ Bergmann and Schapiro, J. Org. Chem., 12, 57 (1947).
- ¹⁴ Bergmann, Dimant, and Japhe, J. Am. Chem. Soc., 70, 1618 (1948).
- ¹⁸ Freund, Brit. pat. 670,317 [C.A., 46, 10201c (1952)]; Freund, U.S. pat. 2,710,874
- [C.A., 49, 11705c (1955)]; Freund, Austral. pat. 147,045 [C.A., 51, 15595d (1957)].
 - ¹⁶ Freund, J. Chem. Soc., 1951, 1943.
 - 17 Freund, J. Chem. Soc., 1952, 1954.
 - ¹⁸ Freund, J. Chem. Soc., 1952, 3068.
 - ¹⁹ Freund, J. Chem. Soc., **1952**, 3072.
 - 20 Freund, J. Chem. Soc., 1952, 3073.
 - ²¹ Freund, J. Chem. Soc., 1953, 2889.
 - 22 Freund, J. Chem. Soc., 1953, 3707.

³ Müller, "Zetko Austausch," Dept. of Commerce, Office of Technical Services, P.B. No. 737.

The cationic mechanism explains the effect of substituents in the diazonium salt (point 3 above): electron-attracting groups increase the electrophilicity of the cation. It also accounts for point 5, though "the polarizing influence of the olefin" is not a very specific explanation. However, a cationic mechanism fails to account for points 1 and 3, for the olefins most reactive toward arylation are those with double bonds rendered electron-deficient by the group Z. Yet these compounds are the least reactive in typical electrophilic additions (bromination, etc.). The normal ionic polarization of the olefins renderes the β carbon positive

$$\begin{bmatrix} {}^{\oplus}CH_{2}CHC = O \leftrightarrow {}^{\oplus}CH_{2}CH = C - O^{\ominus} \\ | & | \\ R & R \end{bmatrix}$$

as demonstrated by the following additions.

$$\begin{array}{l} \overset{\odot}{\operatorname{NOH}} + \operatorname{CH}_2 = \operatorname{CHCN} \xrightarrow{\operatorname{Base}} \operatorname{ROCH}_2 \operatorname{CH}_2 \operatorname{CN} \\ \overset{\oplus}{\operatorname{HCl}} + \operatorname{CH}_2 = \operatorname{CHCO}_2 \operatorname{H} \rightarrow \operatorname{ClCH}_2 \operatorname{CH}_2 \operatorname{CO}_2 \operatorname{H} \end{array}$$

Alternatively one must invoke an abnormal polarization $\tilde{C}H_2\tilde{C}HCOR$ to explain why the hypothetical cation attacks the β -carbon atom. The alternative ionic mechanism involving an aryl anion is equally difficult to accept, for the existence of aryl anions in the aqueous acid medium is highly unlikely.

Finally, in reactions of diazonium salts with olefins that are certainly ionic, very different products are obtained, as shown in the ensuing equations.

$$C_{6}H_{5}N_{2}BF_{4} + CH_{2} = CHCN \rightarrow [CH_{2} = CHC \overset{\oplus}{CH_{2}} = NAr]BF_{4} \xrightarrow{\oplus} CH_{2} = CHCONHC_{6}H_{5} \quad (Refs. 23, 24)$$

²³ Makarova and Nesmeyanov, Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, **1954**, 1019; Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci., (Engl. Transl.), **1954**, 1109, [C.A., **50**, **241**a (1956)].

24 Meerwein, Laasch, Mersch, and Spille, Chem. Ber., 89, 209 (1956).

Compare

$$[(C_{2}H_{5})_{3}O]^{\oplus}BF_{4}^{\ominus} + RCN \rightarrow [RC = NC_{2}H_{5}]^{\oplus}BF_{4}^{\ominus} \xrightarrow{H_{2}O} RCONHC_{2}H_{5}$$
(Ref. 24)

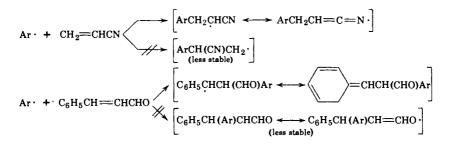
 $C_6H_5N_2BF_4 + CH_2 = CHCO_2CH_3 \rightarrow CH_2 = C(C_6H_5)CO_2CH_3$ (Ref. 25)

Note the α -arylation, not β -arylation as obtained under Meerwein arylation conditions.

Free-Radical Mechanism. A radical mechanism was proposed by Koelsch and Boekelheide²⁶ and by Müller,⁴ and supported by others.² At pH 3–5, the diazonium salt is in equilibrium with the covalent diazo acetate (from the acetate buffer) or diazo chloride, either of which may decompose to an aryl radical which then may add to the double bond. The alkyl radical is thought to be oxidized by cupric ion to a cation which then acquires chloride ion or loses a proton to give the product. The cuprous ion is reoxidized by the acetate (or chloride) radical to cupric ion.

$$ArN_{2}^{\oplus} + OCOCH_{3}^{\odot} \rightarrow ArN = NOCOCH_{3}$$
$$ArN = NOCOCH_{3} \rightarrow Ar \cdot + N_{2} + \cdot OCOCH_{3}$$
$$Ar \cdot + RCH = CRZ \rightarrow ArCH(R)CRZ$$
$$ArCH(R)CRZ + Cu^{++} \rightarrow ArCH(R)CRZ + Cu^{++}$$
$$Cu^{+} + \cdot OCOCH_{3} \rightarrow Cu^{++} + OCOCH_{3}^{\ominus}$$

The radical mechanism explains the direction of addition to unsymmetrical olefins.* With a monosubstituted olefin, only one of the two possible intermediate radicals can be stabilized by resonance. With unsymmetrical 1,2-disubstituted ethylenes, such as β -substituted styrenes, resonance with the aryl group is more effective in controlling orientation than resonance with a carbonyl or cyano group. These principles are illustrated in the examples on p. 195.


Despite its success in accounting for the position occupied by the attacking group, the free-radical mechanism cannot be accepted without modification. Many of the olefins arylated in the Meerwein reaction are vinyl monomers which are readily polymerized by authentic radicals.

²⁶ Nesmeyanov, Makarova, and Tolstaya, Tetrahedron, 1, 145 (1957).

$$\mathrm{CH}_{3}^{\oplus}\mathrm{CHCH}_{2}\mathrm{CO}_{2}\mathrm{H} \xleftarrow{\mathrm{H}^{\oplus}} \mathrm{CH}_{2} = \mathrm{CHCH}_{2}\mathrm{CO}_{2}\mathrm{H} \xrightarrow{\mathrm{Br} \cdot} \mathrm{Br}\mathrm{CH}_{3}\mathrm{CHCH}_{2}\mathrm{CO}_{2}\mathrm{H}$$

¹⁶ Koelsch and Boekelheide, J. Am. Chem. Soc., 66, 412 (1944).

^{*} It was argued that the observed arylation of vinylacetic acid at the γ -carbon atom was possible only with an ionic mechanism.¹³ Actually, this experiment provides no evidence for either mechanism, since both cations and radicals attack the γ -carbon atom; that is,

It is known that many monomers are polymerized by diazonium salts in the absence of copper,²⁷ yet styrene,^{9, 28, 29} acrylonitrile,^{4, 8, 29} vinyl halides,^{4, 30} acrylic acid³¹ and its esters,³² and maleimide derivatives^{33, 34} give good yields of Meerwein products without appreciable formation of polymers other than "diazo resins." Probably the copper salt or another component of the medium functions as an efficient chain transfer agent to prevent the growth of the monomer radical ArCH₂CHZ, which is converted instead to ArCH₂CHClZ or ArCH=CHZ. However, copper salts may also promote the polymerizing activity of diazonium salts under certain conditions.³⁵

Other evidence suggests that the radical is different from the radicals which initiate vinyl polymerization. Diazonium salts under the conditions of the Meerwein reaction gave better yields in the arylation of coumarin and other selected olefins than the aryl radicals derived from aroyl peroxides, N-nitrosoacetanilides, and 1-aryl-3,3-dimethyltriazenes.³⁶ On the other hand, arylation of aromatic compounds by diazonium salts under Meerwein conditions proceeds in fair yields, in a few cases at least,^{37, 38} and arylation of aromatic compounds is normally a homolytic reaction.^{39,40}

²⁷ Willis, Alliger, Johnson, and Otto, *Ind. Eng. Chem.*, **45**, 1316 (1953); Cooper, *Chem. & Ind. (London)*, **1953**, 407; Marvel, Friedlander, and Inskip, *J. Am. Chem. Soc.*, **75**, 3846 (1953); Horner and Stöhr, *Chem. Ber.*, **86**, 1066 (1953).

- 28 Kochi, J. Am. Chem. Soc., 77, 5090 (1955).
- 39 Kochi, J. Am. Chem. Soc., 78, 4815 (1956).
- ³⁰ Cristol and Norris, J. Am. Chem. Soc., 76, 3005 (1954).
- ³¹ Rai and Mathur, J. Indian Chem. Soc., 24, 413 (1947).
- ³² Koelsch, J. Am. Chem. Soc., 65, 57 (1943).
- ³³ Rondestvedt and Vogl, J. Am. Chem. Soc., 77, 2313 (1955).
- 34 Rondestvedt, Kalm, and Vogl, J. Am. Chem. Soc., 78, 6115 (1956).
- ³⁵ Furukawa, Sasaki, and Murakami, Chem. High Polymers (Tokyo), **11**, 77 (1954) [C.A., **50**, 5548e (1956)].
 - 36 Vogl and Rondestvedt, J. Am. Chem. Soc., 77, 3067 (1955).
 - 37 Dickerman, Weiss, and Ingberman. J. Org. Chem., 21, 380 (1956).
 - 38 Dickerman and Weiss, J. Org. Chem., 22, 1070 (1957).
 - 39 Rondestvedt and Blanchard, J. Org. Chem., 21, 229 (1956).
 - 40 Augood and Williams, Chem. Revs., 57, 123 (1957).

Intermediate Complex Formation. Neither the simple ionic nor the radical mechanism accounts for the dependence of the reaction rate (nitrogen evolution) upon the structure of the olefin. For example, solutions of many diazonium chlorides in an acetate buffer containing cupric chloride are stable for some time. Addition of an olefin, such as acrylic acid,³¹ initiates rapid nitrogen evolution. There is a wide range of temperatures at which nitrogen evolution begins, dependent upon the structure of the olefin.⁴¹⁻⁴⁴ These and other examples led to the proposal that a complex was formed between diazonium salt, olefin, and copper chloride which then decomposed by internal one-electron transfers to products.^{26, 33} A tentative description of the complex has been given.³³

Function of Catalyst. The copper salt is usually added as cupric chloride. However, it is known that cupric chloride reacts slowly with acetone to form cuprous chloride and chloroacetone.^{37,45} The cuprous chloride thus produced is a powerful catalyst for the Sandmeyer reaction and for the arylation of benzene by 2,4-dichlorobenzenediazonium chloride.³⁷ This cuprous chloride will also induce a Meerwein arylation of styrene or acrylonitrile by *p*-chlorobenzenediazonium chloride.^{28, 29, 46} From these results it was concluded that the Meerwein reaction is catalyzed by univalent copper, not by divalent copper.⁴⁵ The following mechanism, reproduced in part, has been suggested.³⁷

$$ArN_{2}^{\oplus} + CuCl_{2}^{\odot} \rightarrow ArN = N \cdot + CuCl_{2}$$

$$ArN = N \cdot \rightarrow Ar \cdot + N_{2}$$

$$Ar \cdot + C = C \rightarrow ArC - C \cdot$$

$$| \qquad | \qquad | \qquad |$$

$$ArC - C \cdot + CuCl_{2} \rightarrow ArC - CCl + CuCl$$

$$| \qquad | \qquad |$$

$$Ar \cdot + CuCl_{2} \rightarrow ArCl (by - product) + CuCl$$

$$Ar \cdot + CH_{2}COCH_{3} \rightarrow ArH (by - product) + CH_{3}COCH_{2} \cdot$$

The mechanism involving cuprous catalysis is in harmony with some of the facts known about the Meerwein reaction, such as the formation

- 43 L'Écuyer and Olivier, Can. J. Research, B27, 689 (1949).
- 44 L'Écuyer and Olivier, Can. J. Research, B28, 648 (1950).
- 45 Kochi, J. Am. Chem. Soc., 77, 5274 (1955).
- 48 Kochi, J. Am. Chem. Soc., 78, 1228 (1956).

⁴¹ L'Écuyer and Turcotte, Can. J. Research, **B25**, 575 (1947).

⁴² L'Écuyer, Turcotte, Giguère, Olivier, and Roberge, Can. J. Research, B26, 70 (1948).

of chloroacetone,¹ the hydrocarbon, and the aryl halide, and it explains the generally beneficial effect of acetone and halide ions.^{4, 5} However, it is not compatible with other facts. Thus acetonitrile^{1, 36} (which does not reduce cupric chloride⁴⁵), N-methylpyrrolidone,⁵ dimethyl sulfoxide,³⁴ sulfolane,⁵ and dimethylsulfolane⁵ are fairly satisfactory solvents in the few cases studied. Furthermore, acetone is actually harmful in many reactions, as with acrylic acid,³¹ maleic acid,⁴⁷ and furfural.⁴⁸⁻⁵¹ These compounds are better arylated in aqueous solution. Meerwein¹ and Terent'ev⁵² commented that cuprous salts were poorer catalysts than cupric salts, or that they were ineffective, but they gave no experimental details in support of this statement. It may be mentioned that cuprous salt catalysis is strongly inhibited by oxygen,⁴⁶ yet a common experimental technique for the reaction involves vigorous stirring in contact with air, which oxidizes any cuprous copper as it is formed.

Recent experiments with methacrylonitrile⁵ have shown that, when the diazonium salts bear electron-attracting groups, cupric copper gives better yields than cuprous copper. The reverse is true with diazonium salts lacking an electron-attracting group.

When considered together, all the facts suggest that there are at least two mechanisms of initiation of the Meerwein arylation. The rates of the reactions by the different mechanisms will probably be found to depend on the nature of the substituents in the diazonium salt and the character of the unsaturated compound. It is also likely that a variety of one-electron oxidation-reduction systems, such as ferrous-ferric or ferrocyanide-ferricyanide, can function as catalysts in selected examples. Indeed, if the olefin-diazonium salt combination possesses the proper oneelectron oxidation-reduction potential, the reaction should proceed without a metallic catalyst. This has been realized with coumarin⁵³ and, especially, with gulnones.^{18, 20, 21, 54-71}

- 48 Oda, Mem. Fac. Eng. Kyoto Univ., 14, 195 (1952) [C.A., 48, 1935c (1954)].
- 49 Grummitt and Splitter, J. Am. Chem. Soc., 74, 3924 (1952).
- ⁵⁰ Kost and Terent'ev, Zhur. Obshchei Khim., 22, 655 (1952) [C.A., 47, 2759c (1953)].
- ⁵¹ Akashi and Oda, J. Chem. Soc. Japan, Ind. Chem. Sect., **53**, 81 (1950) [C.A., **47**, 2164e (1953)]; Repts. Inst. Chem. Research, Kyoto Univ., **19**, 93 (1949) [C.A., **45**, 7519h (1951)]; Teijin Times, **19**, No. 4, 7 (1949) [C.A., **44**, 5314 (1950)].

⁵² Dombrovskii, Terent'ev, and Yurkevich, Zhur. Obshchei Khim., **26**, 3214 (1956); J. Gen. Chem. U.S.S.R. (Engl. Transl.), **26**, 3585 (1956) [C.A., **51**, 8038e (1957)].

53 Rondestvedt and Vogl, J. Am. Chem. Soc., 77, 3401 (1955).

54 Huisgen and Horeld, Ann., 562, 137 (1949).

⁵⁵ Borsche, Ber., 32, 2935 (1899); Ann., 312, 211 (1900).

⁴⁷ Rai and Mathur, J. Indian Chem. Soc., 24, 383 (1947).

⁵⁶ Günther, U.S. pat. 1,735,432 (Chem. Zentr., 1930, II, 137); Gor. pat. 508,395 (Chem. Zentr., 1931, I, 1676); Brit. pat. 390,029 [C.A., 27, 468² (1933)].

⁵⁷ Schimmelschmidt, Ann., 566, 184 (1950).

⁵⁸⁻⁷¹ See page 198.

Kinetic studies of the Meerwein arylation have suggested that it is mechanistically closely related to the Sandmeyer reaction.^{29, 46, 72, 73} However, the rate expressions are too complicated to permit more than qualitative conclusions. These conclusions were based on the assumption that cuprous copper is the sole catalytic species, so that they do not apply to examples where cuprous copper cannot function.

SCOPE AND LIMITATIONS

The Unsaturated Component

Olefins ranging from simple to complicated have been arylated. For the most part, the ethylenic double bond is attached to an electronattracting group such as carbonyl, cyano, halogen, aryl, or vinyl. Important examples are given in the accompanying equations, with selected references.

$$ArN_{2}Br + CH_{2} = CHBr \rightarrow ArCH_{2}CHBr_{2}$$
(Ref. 30)
$$ArN_{2}Cl + Ar'CH = CH_{2} \rightarrow ArCH_{2}CHClAr' + ArCH = CHAr'$$

$$Ar' = phenyl,$$
 substituted phenyl, 2-pyridyl. (Refs. 9, 28, 46, 74, 75)

$$ArN_2Cl + CH_2 \longrightarrow CHCH \implies CH_2 \rightarrow ArCH_2CH \implies CHCH_2Cl$$
(Refs. 3, 4, 49, 76–79)

 $ArN_2Cl + CH_2 = CHCO_2H \rightarrow ArCH = CHCO_2H$ (Refs. 4, 31, 80)

- 58 Kvalnes, J. Am. Chem. Soc., 56, 2478 (1934).
- 59 Marini-Bettolo, Gazz. chim. ital., 71, 627 (1941).
- 60 Marini-Bettolo and Rossi, Gazz. chim. ital., 72, 208 (1942).
- ⁶¹ Marini-Bettolo, Polla, and Abril, Gazz. chim. ital., 80, 76 (1950).
- 62 Neunhoeffer and Weise, Ber., 71, 2703 (1938).
- 63 Kögl, Erxleben, and Janecke, Ann., 482, 119 (1930).
- 64 Dobàš, Chem. Listy, 46, 277 (1952) [C.A., 47, 8669d (1953)].
- ⁶⁵ Asano and Kameda, J. Pharm. Soc. Japan, 59, 768 (1939) [C.A., 34, 2345⁶ (1940)].
- 66 Malinowski, Roczniki Chem., 29, 47 (1955) [C.A., 50, 3364f (1956)].
- ⁶⁷ Fieser, Leffler, et al., J. Am. Chem. Soc., 70, 3203 (1948).
- ⁸⁸ Akagi and Hirose, J. Pharm. Soc. Japan, 62, 191 (1942) [C.A., 45, 6169d (1951)].
- 69 Akagi, J. Pharm. Soc. Japan, 62, 195 (1942) [C.A., 45, 6169f (1951)].
- ¹⁰ Akagi, J. Pharm. Soc. Japan, 62, 199 (1942) [C.A., 45, 6169h (1951)].
- ¹¹ Akagi, J. Pharm. Soc. Japan, 62, 202 (1942) [C.A., 45, 2898e (1951)].
- ⁷² Kochi, J. Am. Chem. Soc., 79, 2942 (1957).
- ⁷³ Dickerman, Weiss, and Ingberman, J. Am. Chem. Soc., 80, 1904 (1958).
- ⁷⁴ Dale and Ise, J. Am. Chem. Soc., 76, 2259 (1954).
- ²⁵ Razumovskii and Rychkina, Doklady Akad. Nauk S.S.S.R., 88, 839 (1953) [C.A., 48,
- 3311i (1954)]; cf. Dilthey, J. prakt. Chem., 142, 177 (1935).
 - ⁷⁶ Ropp and Coyner, Org. Syntheses, 31, 80 (1951).
 - ⁷⁷ Coyner and Ropp, J. Am. Chem. Soc., 70, 2283 (1948).
 - ⁷⁸ Ropp and Coyner, J. Am. Chem. Soc., 72, 3960 (1950).
 - ⁷⁹ Braude and Fawcett, J. Chem. Soc., 1951, 3113.
 - ⁸⁰ Krishnamurti and Mathur, J. Indian Chem. Soc., 28, 507 (1951).

 $\begin{aligned} & \operatorname{ArN_2Cl} + \operatorname{CH_2} = \operatorname{CHCN} \to \operatorname{ArCH_2CHClCN} \\ & & (\operatorname{Refs.} 4, 8, 15, 28, 32, 43, 46, 81-83) \\ & \operatorname{ClN_2ArN_2Cl} + 2\operatorname{CH_2} = \operatorname{CHCN} \to \operatorname{Ar(CH_2CHClCN)_2} \\ & & (\operatorname{Refs.} 4, 84) \\ & \operatorname{ArN_9Cl} + \operatorname{CH_2} = \operatorname{CHCOCH_3} \to \operatorname{ArCH_2CHClCOCH_3} \\ & & (\operatorname{Refs.} 3, 4, 85) \end{aligned}$

Acetylenes will participate, but the examples are few.

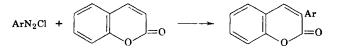
$$ArN_{2}Cl + CH \equiv CH \rightarrow ArCH \equiv CHCl$$
(Ref. 4)

(Diazonium salts react with cuprous acetylide to form mono- and di-arylacetylenes in low yield.⁸⁶)

$$ArN_2Cl + C_6H_5C \equiv CH \rightarrow ArCH \equiv CClC_6H_5$$
 (Ref. 5)

$$ArN_{2}Cl + C_{6}H_{5}C \equiv CCO_{2}H \rightarrow C_{6}H_{5}CCl = C(Ar)CO_{2}H$$
(Ref. 1)

The ethylenic bond may be substituted with two activating groups. If both are on the same carbon atom, the aryl group becomes attached to the other carbon atom. Symmetrical 1,2-disubstituted ethylenes can give only one orientation. If the activating groups on the α - and β -carbon atoms are different, the compound formed can be predicted from the rule that the product will be the one formed via the intermediate radical that is the more resonance stabilized.²⁶ The accompanying equations illustrate arylation of multiply activated olefins.


$$ArN_2Cl + CHCl = CCl_2 \rightarrow ArCHClCCl_3$$
 (Refs. 3, 4)

$$ArN_2Cl + Ar'CH = CHCO_2CH_3 \rightarrow Ar'CHClCH(Ar)CO_2CH_3$$
 (Refs. 1, 26)

$$ArN_2Cl + C_6H_5(CH=CH)_2CO_2CH_3 \rightarrow C_6H_5CH=CHCH=C(Ar)CO_2CH_3$$

(Ref. 26)

$$ArN_{2}Cl + C_{6}H_{5}CH = CHCHO \rightarrow C_{6}H_{5}CH = C(Ar)CHO$$
(Ref. 1)

(Refs. 1, 15, 16, 53)

⁸¹ Dhingra and Mathur, J. Indian Chem. Soc., 24, 123 (1947).

⁸² Gaudry, Can. J. Research, B23, 88 (1945).

⁸³ Malinowski, Roczniki Chem., 26, 85 (1952) [C.A., 48, 620i (1954)].

⁸⁴ Malinowski and Benbenek, Roczniki Chem., 27, 379 (1953) [C.A., 49, 1034h (1955)].

⁸⁵ Malinowski, Roczniki Chem., 29, 37 (1955) [C.A., 50, 3292h (1956)].

⁸⁶ Sokol'skii and Nikolenko, Doklady Akad. Nauk S.S.S.R., **82**, 923 (1952) [C.A., **47**, 2723b (1953)].

$$ArN_{2}Cl + RO_{2}CCH = CHCO_{2}R \rightarrow cis \text{ or } trans$$

$$RO_{2}CCH = C(Ar)CO_{2}R + RO_{2}CCHClCH(Ar)CO_{2}R \quad (Refs. 1, 87, 88)$$

$$ArN_{2}Cl' + \left\| \begin{array}{c} CHCO \\ CHCO \end{array} \right\| R \xrightarrow{ArC} CO \\ CHCO \end{array} + \left\| \begin{array}{c} CHCO \\ CHCO \end{array} \right\| R \xrightarrow{ArC} CHCO \\ CHCO \end{array} + \left\| \begin{array}{c} CHCO \\ CHCO \end{array} \right\| CHCO \qquad (Refs. 33, 34)$$

Certain α,β -unsaturated acids, such as cinnamic acid and maleic acid, undergo arylation at the carbon atom bearing the carboxyl group. In these reactions decarboxylation accompanies arylation, the extent apparently depending upon the *p*H (see section on reaction conditions). Examples of this phenomenon follow.

$$ArN_2Cl + Ar'CH = CHCO_2H \rightarrow ArCH = CHAr'$$
(Refs. 1, 11-13, 16, 41)

$$ArN_2Cl + HO_2CCH = CHCO_2H \rightarrow ArCH = CHCO_2H$$
 (Ref. 47)

$$ArN_2Cl + C_6H_5COCH = CHCO_2H \rightarrow ArCH = CHCOC_6H_5$$
 (Refs. 89, 90)

$$ArN_{2}Cl + RCH = CHCH = CHCO_{2}H \rightarrow RCH = CHCH = CHAr$$

R = CH₃, C₆H₅. (Refs. 11-13, 26, 91)

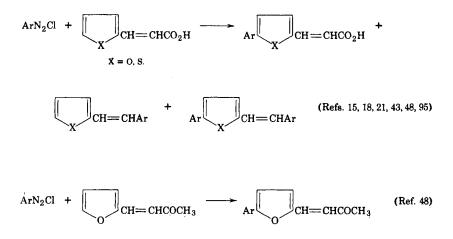
Occasionally the reaction proceeds without decarboxylation. Thus maleic acid is arylated at a pH of about 2 in a reaction involving only addition.⁹² Monoarylmaleic acids give α,β -diaryl- α -chlorosuccinic acids under these conditions.⁹² Cinnamic acids are sometimes arylated without decarboxylation;¹ the resulting α -arylcinnamic acids are not further arylated.¹⁴

$$ArN_{2}Cl + HO_{2}CCH = CHCO_{2}H \xrightarrow{pH2} ArCH(CO_{2}H)CHClCO_{2}H \qquad (Ref. 92)$$

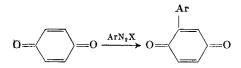
$$ArN_2Cl + HO_2CCH = C(Ar')CO_2H \rightarrow HO_2CCH(Ar)CCl(Ar')CO_2H$$
 (Ref. 92)

$$ArN_2Cl + Ar'CH = CHCO_2H \rightarrow Ar'CH = C(Ar)CO_2H$$
 (Ref. 1)

There is one report of a nitro group being lost during arylation. The formation of benzyl p-nitrophenyl ketone from ω -nitrostyrene and


- 88 Vogl and Rondestvedt, J. Am. Chem. Soc., 78, 3799 (1956).
- ⁸⁹ Mehra and Mathur, J. Indian Chem. Soc., 32, 465 (1955).
- ⁹⁰ Mehra and Mathur, J. Indian Chem. Soc., 33, 618 (1956).
- 91 Fusco and Rossi, Gazz. chim. ital., 78, 524 (1948).
- 92 Denivelle and Razavi, Compt. rend., 237, 570 (1954).

⁸⁷ Taylor and Strojny, J. Am. Chem. Soc., 76, 1872 (1954).


p-nitrobenezenediazonium chloride is believed to proceed via a Nef reaction on the supposed intermediate aci-nitro compound.⁹³

$$p \cdot O_2 NC_6 H_4 N_2 Cl + C_6 H_5 CH = CHNO_2 \rightarrow C_6 H_5 CH = CHC_6 H_4 NO_2 \cdot p + C_6 H_5 CH_2 COC_6 H_4 NO_2 \cdot p$$

Arylation of β -2-furyl- and β -2-thienyl-acrylic acid is complicated by the preferential or simultaneous occurrence of ring arylation at the 5 position. The high nuclear reactivity of furan derivatives in the Meerwein arylation has been demonstrated in arylations of furfural.⁵¹ Since furan may also be arylated by diazonium salts under the conditions of the Gomberg-Bachmann free-radical biaryl synthesis,⁹⁴ its arylation under Meerwein conditions illustrates the similarity between these two reactions.

Quinones. Apparently the first examples of quinone arylation were provided by Borsche,⁵⁵ who phenylated benzoquinone monoxime (p-nitrosophenol) and toluquinone monoxime in low yield. After a period of dormancy, the reaction was applied by Günther to the synthesis of arylbenzoquinones.⁵⁶ Subsequently others have shown the reaction to be general and to proceed according to the following equation.

⁹³ Bergmann and Vromen, Bull. Research Council Israel, 3, Nos. 1/2, 98 (1953) [C.A., 49, 1605f (1955)].

⁹⁴ Johnson, J. Chem. Soc., 1946, 895.

⁹⁵ Brown and Kon, J. Chem. Soc., 1948, 2147.

A large variety of quinones has been arylated by diazonium salts or by the related N-nitroso-N-arylacetamides. Methylated, halogenated, and arylated benzoquinones have been studied, although benzoquinone itself has been investigated most extensively. 1,4-Naphthoquinone has received some attention, though it is arylated much less readily than benzoquinone. An extensive series of 2-hydroxy-3-arylnaphthoquinones has been prepared by this reaction, though mostly in very poor yields.^{66, 67}

Schimmelschmidt made a significant contribution to quinone arylation technique.⁵⁷ The reaction with benzoquinone could be run very efficiently in weakly alkaline medium *if a trace of hydroquinone was present*. Under these conditions, the diazonium salt reacts with the quinone with the speed of a titration. Pure benzoquinone did not react at all until a little hydroquinone was added. These conditions give very good (but unspecified) yields of arylquinones with a wide variety of diazonium salts, mostly the *ortho*-substituted ones which others had found to be recalcitrant.

Hydroquinone itself has been treated with diazonium salts, and it has been recommended as a reagent for the reductive removal of the diazo group.⁹⁶ Schimmelschmidt stated that diazonium salts and hydroquinone form an intractable tar, but other workers have had some success in preparing arylhydroquinones by this procedure.^{61, 64} These compounds are probably better prepared by reduction of the quinones.

It is difficult to discuss the limitations of the arylation of quinones by the diazonium salt reaction because of the almost universal failure of authors in this field to report yields or exact reaction conditions. All that can be said is that most diazonium salts will give some product with a mononuclear quinone. The difficulty which many workers have experienced with *ortho*-substituted diazonium salts has been overcome by addition of a trace of hydroquinone.⁵⁷

A number of different experimental conditions have been employed. Most authors have used an aqueous or ethanolic medium with the pH one or two units on either side of neutrality. Some have preferred a more strongly acidic medium with added copper powder or cupric chloride.^{59-61, 66, 97} The only comparison of a variety of reaction conditions was made by Fieser and Leffler,⁶⁷ but they used the rather unreactive 2-hydroxy-1,4-naphthoquinone in their studies. They did not find that any one set of conditions consistently gave the best results. Since the best yields were reported by Schimmelschmidt, his conditions⁵⁷ are probably the most suitable for trial experiments with new examples of this reaction.

The use of N-nitroso-N-arylacetamides appears to be promising,

⁹⁶ Orton and Everatt, J. Chem. Soc., 93, 1021 (1908).

⁹⁷ Brassard and L'Écuyer, Can. J. Chem., 36, 700 (1958). See also refs. 158-160.

since these compounds are soluble in moderately polar or nonpolar solvents such as ethanol or ethanol-ether mixtures, $^{68-71}$ or benzene.⁵⁴

Since the experimental conditions under which quinones may be arylated are so diverse, it appears that more than one mechanism may be operative. Schimmelschmidt⁵⁷ has proposed a scheme to account for the participation of hydroquinone. When the conditions approximate those of the Meerwein reaction, quinone arylation probably involves the same reaction path. In the absence of copper, or in neutral or alkaline solution, or with nitrosoacetanilides, the mechanism is doubtless similar to that for arylation of aromatic compounds.^{39,40} Further study is required before the mechanism(s) of quinone arylation can be considered to be established.

Miscellaneous Unsaturated Compounds. Several examples of the C-arylation of aldoximes have been reported. Although this reaction has received only limited study, it appears to be a potentially useful way of synthesizing aromatic aldehydes and ketones.⁹⁸⁻¹⁰³ Aldehyde semicarbazones react similarly.

Malonic ester and nitromethane have been arylated, although the more usual reaction of active methylene compounds with diazonium salts is azo coupling followed by tautomerism to an arylhydrazone. Compare *Organic Reactions*, Volume 10, Chapter 1.

$$\operatorname{ArN}_{2}Cl + CH_{2}(CO_{2}C_{2}H_{5})_{2} \rightarrow \operatorname{ArCH}(CO_{2}C_{2}H_{5})_{2} \qquad (\text{Ref. 104})$$

 $ArN_{2}Cl + CH_{3}NO_{2} \rightarrow ArCH_{2}NO_{2}$ (Ref. 105)

Despite the impressive array of examples of the Meerwein arylation reaction, there are numerous gaps. Any compound with olefinic unsaturation conjugated with another group should be a candidate for arylation, yet many important classes of such compounds have received little or no attention. Only one paper deals with arylation of acrolein

^{**} Kanno, J. Pharm. Soc. Japan, 73, 118 (1953) [C.A., 47, 11154b (1953)].

^{**} Kanno, J. Pharm. Soc. Japan, 73, 120 (1953) [C.A., 47, 11154e (1953)].

¹⁰⁰ Beech, J. Chem. Soc., 1954, 1297.

¹⁰¹ Borsche, Ber., 40, 737 (1907).

¹⁰² Philipp, Ann., **523**, 285 (1936).

¹⁰³ Beech, J. Chem. Soc., 1955, 3094.

¹⁰⁴ Haginiwa and Murakoshi, J. Pharm. Soc. Japan, 73, 1015 (1953) [C.A., 48, 10670d (1954)].

¹⁰⁵ Tsurata and Oda, J. Chem. Soc. Japan, Ind. Chem. Sect., **53**, 16 (1950) [C.A., **47**, 5909a (1953)]; cf. Busch and Schäffner, Ber., **56**, 1613 (1923); Oda and Tsurata, Repts. Inst. Chem. Research, Kyoto Univ., **19**, 89 (1940) [C.A., **45**, 7541h (1951)].

and its derivatives,¹⁰⁶ and this reaction is worthy of more study as a new route to cinnamaldehydes. The only nitroölefin studied is β -nitrostryene,

$$ArN_{2}Cl + CH_{2} = C(R)CHO \rightarrow ArCH_{2}CCl(R)CHO \rightarrow ArCH = C(R)CHO \quad (Ref. 106)$$

in which the phenyl group directs the incoming aryl group to the carbon atom holding the nitro group; the nitro group is lost.⁹³ Arylation of aliphatic nitroölefins has not been studied, but it would be expected to proceed as shown in the following equation.

$$ArN_2Cl + CH_2 \longrightarrow CHNO_2 \rightarrow ArCH_2CHCINO_2 \rightarrow ArCH \longrightarrow CHNO_2$$

Vinyl esters have not been studied, while vinyl ethers reportedly give azo coupling in the absence of copper salts.¹⁰⁷ Both are worth examination as routes to arylacetaldehydes.

Simple dienes give 1-arylbutadienes after dehydrohalogenation. Further arylation of 1-arylbutadienes has been explored cursorily as a route to 1,4-diarylbutadienes.¹⁰⁸ The latter compounds can also be made by Meerwein arylation of cinnamylideneacetic acid.²⁶ Because arylation of anthracene is handicapped by its low solubility, its arylation has required very dilute solutions;^{109,110} discovery of a better solvent would enhance the attractiveness of this simple route to 9-aryl- and 9,10diarylanthracenes. Phenanthrene has not been studied.

Unsaturated sulfur compounds have received little attention. The experiments with 2-phenylethene-1-sulfonic acid in aqueous solution gave no pure product; the sulfonic acid was not attacked at pH 3-6 by various diazonium salts, but at a more alkaline pH it was converted by *p*-nitrobenzenediazonium chloride to a neutral material (loss of the sulfo group) which was not *p*-nitrostilbene.^{111,112} Ethylenesulfonic acid has not been tested. A few unsaturated sulfides and sulfones have been tried.⁵ There is no mention of the arylation of ethylenephosphonic acid or its derivatives. Enamines have not been studied.

Although unsaturated acids, esters, nitriles, and cyclic imides undergo the Meerwein reaction, amides appear not to react. It was observed that acrylamide, N-t-butylacrylamide, N,N'-methylenebisacrylamide, cinnamamide, and N-methylcinnamamide did not give detectable amounts

¹⁰⁶ Malinowski and Benbenek, Roczniki Chem., 30, 1121 (1956) [C.A., 51, 8688f (1957)].

¹⁰⁷ Terent'ev and Zagorevskii, Zhur. obshchei Khim., **26**, 200 (1956); J. Gen. Chem. U.S.S.R. (Engl. Transl.), **26**, 211 (1956) [C.A., **50**, 13777i (1956)].

¹⁰⁸ Dombrovskii, Doklady Akad. Nauk S.S.S.R., **111**, 827 (1956); Proc. Acad. Sci. U.S.S.R., Sect. Chem. (Engl. Transl.), **111**, 705 (1956) [C.A., **51**, 9507f (1957).

¹⁰⁹ Étienne and Degent, Compt. rend., 236, 92 (1953); 238, 2093 (1954).

¹¹⁰ Dickerman, Levy, and Schwartz, Chem. & Ind. (London), 1958, 360.

¹¹¹ C. S. Rondestvedt, Jr., and C. D. Ver Nooy, unpublished results.

¹¹² C. S. Rondestvedt, Jr., and O. Vogl, unpublished results.

of arylated product by the customary procedure in acetone.¹¹² Acrylamide and methacrylamide were not arylated in aqueous solution in the presence of cuprous chloride.⁵ It is not clear why amides should be so unreactive, particularly when contrasted with the high reactivity of maleimide derivatives.*

Reactivities of Unsaturated Compounds. In the absence of quantitative data concerning relative reactivities in the Meerwein arylation reaction, only a few qualitative trends based upon yields can be given (see, however, Ref. 73). Compounds with a terminal double bond usually give better results than compounds of the same type where the double bond is not terminal. Thus acrylic and methacrylic acids and their esters^{31,44,80,91} give much better yields than crotonic acid and its esters.^{1,26,31} This may be due to steric factors, or it may reflect a lower degree of polarizability of the nonterminal double bond.⁹ Parallel results have been obtained in polymerization studies.

Cinnamic acid appears to be less reactive than acrylic or maleic acid, since cinnamic acids can be prepared by the Meerwein arylation of acrylic and maleic acids.^{31,47} The difference is probably attributable to the energy barrier to decarboxylation which occurs during the reaction with cinnamic acids (see below), or to steric hindrance.

Activated cyclic double bonds are very reactive. The yields of 3-arylcoumarins¹ are high compared to the yields of products from benzalacetone⁴³ and methyl cinnamate.^{1, 26} Maleimide and N-substituted maleimides^{33, 34} generally give satisfactory yields of arylated products, while amides are quite unreactive.^{5, 112} Quinones are sufficiently reactive to undergo arylation without a cupric catalyst. The possibility of arylating a double bond activated by a strained ring system, as in bicyclo[2.2.1]heptene, has not been tested.

A triple bond is less reactive than a double bond. One can arylate styrene in far higher yield than phenylacetylene.⁵ Vinylacetylene is arylated in good yield at the double bond but not at the triple bond.¹¹³ The difference can probably be ascribed to the greater rigidity of the intermediate radical, necessarily containing a double bond, or to the more strained geometry of the intermediate complex.

The relative efficiencies of various groups in directing the incoming aryl group should be noted. An aryl group is superior to vinyl, carboxyl, carbalkoxyl, cyano, aldehyde or ketone carbonyl, or nitro; no exceptions have been found to the generalization that the incoming aryl group always takes up the position β to the aryl group already present in the structure $\operatorname{ArCH}^{\alpha} = \operatorname{CHZ}^{\beta}$. The other available comparison of directing

^{*} A private communication from George Cleland indicates that conditions may be found in which amides will undergo the Meerwein arylation.

¹¹³ Barney and Pinkney, U.S. pat. 2,657,244 [C.A., 48, 12800g (1954)].

power is that a benzoyl group is stronger than carboxyl; arylation of β -benzoylacrylic acid occurs β to the benzoyl group.^{89,90} These effects may be rationalized in terms of radical stabilities, as discussed above, or by the relative steric sizes of the directing groups.

More detailed comparisons of relative reactivities will require the results from competitive experiments or other quantitative studies.

Decarboxylation during Arylation of Cinnamic and Maleic Acids. Cinnamic acids are decarboxylated during arylation. In only a few examples were small amounts of α -arylcinnamic acids isolated.^{1, 15, 16} Likewise, when maléic, citraconic, and bromomaleic acids were arylated at the usual *p*H, monocarboxylic acids were the only acidic materials isolated.^{31, 46, 80, 89, 114, 115}

Decarboxylation appears to depend on pH. By operating in somewhat more acidic solutions (about pH 2) than customary, maleic acid and arylmaleic acids were arylated without loss of carbon dioxide.⁹² This information was utilized to prepare arylmaleic anhydrides by cyclizing the resulting α -aryl- β -chlorosuccinic acids with hot acetic anhydride. It has not been determined whether cinnamic acids may be arylated at a low pH without decarboxylation.

The mechanism of decarboxylation during arylation is obscure. One mechanism involves formation of the β -halo acid which then undergoes dehalogenative decarboxylation. This is unlikely at the *p*H commonly used, since dehalogenative decarboxylation is a reaction of the anion which occurs only in neutral or basic solution.¹¹⁶ β -Lactone formation and decomposition are also unlikely.¹¹⁶ Another mechanism was based on a study of the acid-catalyzed decarboxylation of cinnamic acids.¹¹⁷

It proposes that the intermediate ion $\operatorname{ArCH}(\operatorname{Ar'})\operatorname{CO}_2^{\odot}$, which in the Meerwein arylation reaction could arise by oxidation of the free-radical intermediate,²⁶ undergoes scission to the olefin and carbon dioxide by a simple electron shift. The failure to decarboxylate at low pH is then attributable to the decreased dissociation of the carboxyl group.

The Diazonium Salt

A wide variety of diazotizable aromatic amines participate in the Meerwein arylation reaction. Thus halo-, nitro-, alkoxy-, acetamido-, sulfo-, arsono-, alkyl-, and aryl-anilines have been used, as well as α - and

¹¹⁴ Rehan and Mathur, J. Indian Chem. Soc., 28, 540 (1951).

¹¹⁵ Mathur, Krishnamurti, and Pandit, J. Am. Chem. Soc., 75, 3240 (1953).

¹¹⁶ Vaughan and Craven, J. Am. Chem. Soc., 77, 4629 (1955).

¹¹⁷ Johnson and Heinz, J. Am. Chem. Soc., 71, 2913 (1949).

 β -naphthylamines. Disubstituted anilines, mostly dihaloanilines, and trisubstituted anilines have found occasional use. Diamines such as p-phenylenediamine and benzidine yield bis-products when tetrazotized and coupled with two equivalents of acrylonitrile.

No generalizations can be made about the effects of substituents that will be free from exceptions. However, several trends have been noticed that will be helpful in predicting whether a new example is likely to succeed. First, diazonium salts containing electron-attracting groups usually give better yields than does benzenediazonium chloride. Nitro groups and halogen atoms are often particularly beneficial. There are not enough comparisons with other electron-attracting substituents (such as carboxyl, cyano, acetyl, sulfo) to permit confident prediction, but they appear to lead to better yields. It also appears that the electron-attracting group must not be insulated from the ring by a methylene group; this statement is based on the report that *p*-carboxymethyl-, *p*-cyanomethyl-, and *p*-methoxymethylbenzenediazonium chloride fail to react with cinnamic acid.¹¹⁸

Alkyl groups, as in the toluidines and xylidines, are frequently harmful, and the yields from the alkylbenzenediazonium salts are usually inferior to those from nitro- and halo-benzenediazonium salts. An aryl group is usually helpful, unless condensed as in the naphthylamines.

The effect of a methoxyl group is ambiguous. Most of the data show that the yields from diazotized anisidines are better than with diazotized aniline, but not so good as with nitro- and halodiazonium salts. Occasionally the best yields (or the poorest) in a series are obtained from alkoxylated diazonium salts.

Second, the position of the substituent may be critical. The tables at the end of this chapter show that the best yields are usually obtained when the substituent is *para* to the diazonium function, poorest when it is *ortho*. This seems to be especially true of the more negative, bulkier groups such as nitro and carboxy and less true of methyl and methoxyl groups. One *ortho* halogen atom seems to have little effect, but two *ortho* halogen atoms sometimes completely prevent the reaction. Significant exceptions are found in the arylation of quinone,⁵⁷ butadiene,⁷⁹ benzalacetone,⁴³ and cinnamic acid,¹ where the yields of *ortho*- and *para*nitro products are comparable.

Probably the position effect is not entirely steric. For example, in the arylation of acrylic acid, the yields of o-halocinnamic acid were not affected in the series o-chloro-, o-bromo-, and o-iodo-benzenediazonium chloride, being 26% in each case.³¹ Even 2,6-dichlorobenzenediazonium chloride gave a 20% yield of 2,6-dichlorocinnamic acid. On the other

¹¹⁸ Kon, J. Chem. Soc., 1948, 224.

hand, in the same reaction, the yields from o-, m-, and p-nitrobenzenediazonium chloride were 7, 29, and 60%, respectively.³¹ Possibly the adverse effect of an o-nitro or o-carboxyl group is a result of formation of an internal complex between the diazonium group and the substituent, which does not readily accept an electron from the unsaturated compound. The yield differences also may result in part from the fact that among the three isomeric products, the *para* isomer is usually the easiest to purify because of its lower solubility and higher melting point.

In view of the numerous exceptions to these generalizations concerning the effects of substituents in the diazonium salt, the potential user of this reaction should not be deterred from attempting it with apparently unpromising diazonium salts.

Although the simple diazonium salts are well represented in the tables, less attention has been devoted to more complicated compounds. In view of the variety of aromatic amines commercially available as dye intermediates, it is surprising to find that investigation of the Meerwein arylation reaction with polysubstituted anilines has been limited almost entirely to the polyhaloanilines. One explanation may be that the more weakly basic amines require special techniques for diazotization. Since such procedures have been highly developed in the dye industry, their use should permit examination of many weakly basic amines. Heterocyclic primary amines comprise another large and neglected class. Quinoline-3-diazonium chloride reacted with methacrylonitrile in the expected manner.⁵ 6-Methoxyquinoline-8-diazonium chloride gave only 6-methoxy-8-chloroquinoline on attempted reaction with cinnamic acid.¹¹⁹ There is no reason to doubt that moderately stable heterocyclic diazonium salts will take part in the Meerwein arylation reaction. It is also possible that the less stable ones, such as those derived from 2- and 4-aminopyridine which commonly lose nitrogen to give 2- and 4-halopyridine, may be used in the Meerwein reaction by application of Malinowski's technique⁸⁴ of diazotizing the amine in the presence of the unsaturated compound and cupric chloride.

Factors Influencing Addition vs. Substitution

The Meerwein arylation reaction will in general give two products, one arising from substitution of a hydrogen on the β -carbon atom of the olefin by the aryl group, the other by addition of the aryl group and chlorine atom to the double bond. It would be helpful to be able to predict which product will be formed from a given reaction and what experimental conditions will favor one or the other product. (In many

¹¹⁹ Cook, Heilbron, and Steger, J. Chem. Soc., 1943, 413.

cases this knowledge is not important, for the addition product can usually be converted to the substitution product by dehydrohalogenation with a tertiary amine or a stronger base such as potassium hydroxide.)

$$ArN_{2}Cl + RCH = CRZ \rightarrow ArCR = CRZ + ArCH(R)C(R)ClZ$$

$$A \qquad B$$

However, no systematic study of this aspect of the reaction has been published. Therefore several tentative generalizations based upon a few scattered observations can serve only as rough guides.

The controllable factor which seems to influence the proportion of addition and substitution products is the pH of the reaction medium. The basis for this statement is the fact that arylation of maleic acid at the customary pH of 3 to 5 proceeds with decarboxylation,⁴⁷ while in more acidic medium the addition product is formed without decarboxylation.⁹² If this is generally true, it is probable that the best yields of addition product will be obtained by operating in the most acidic medium that will permit the reaction to occur. The concentration of chloride ion probably also plays a role.

The most important factor, namely the structure of the olefin, cannot be controlled. It appears from the tables that most olefins give chiefly addition products. The exceptions are cinnamaldehyde, benzalacetone, acrylic acid, methacrylic acid, cinnamylideneacetic ester, coumarin, sometimes maleimides, and of course those compounds that undergo decarboxylation. It is likely that a careful examination of most of the reported reactions would disclose the presence of both types of product. One may tentatively conclude that, if the substitution product is extensively stabilized by resonance, as with the 3-arylcoumarins, such products will be formed, probably because an extended conjugated system is thereby formed. This explanation does not account for the fact that acrylic and methacrylic acids give the substitution product exclusively, whereas the corresponding esters give addition products. This situation may result from the use of sodium bicarbonate during the isolation of the products from the acids,^{31, 47, 80, 81, 114, 115} since the addition product is dehydrohalogenated by this reagent, as shown by the presence of ionic halide after the bicarbonate treatment.

Side Reactions

The low yields often obtained in the Meerwein arylation reaction attest to the prominence of side reactions. This is not surprising in view of the wide variety of reactions that diazonium salts undergo. Those that have been identified as occurring during the Meerwein arylation reaction are replacement of the diazo group by a halogen atom, hydrolysis to the phenol, reductive loss of nitrogen (deamination), formation of symmetrical azo compounds, and decomposition to the inevitable tars (diazo resins) almost always associated with the reactions of diazonium salts.

The Sandmeyer reaction involving negatively substituted diazonium salts (precisely those diazonium salts that give the best results in the Meerwein reaction) proceeds well in the presence of cupric chloride,¹²⁰ although cuprous chloride formed in small amounts was the catalytic agent.¹²⁰ Cuprous chloride is also present in those Meerwein reactions conducted in the presence of acetone.^{37, 45} The arylation reaction is much faster than the Sandmeyer reaction when the highly reactive olefin styrene is present.⁴⁶ With olefins less reactive than styrene, the Sandmeyer reaction competes very effectively.¹¹⁹ Thus the reaction of p-nitrobenzenediazonium chloride with methyl vinyl ketone gave 20% of p-nitrochlorobenzene and 41% of the Meerwein product;⁸⁵ in the same reaction, diazotized anthranilic acid or ester gave no Meerwein product, but instead a large amount of o-chlorobenzoic acid or ester. It is doubtless true that most Meerwein reactions are accompanied by products of the Sandmeyer reaction, although most authors have not reported the presence of the latter, nor have they given yields.

It should be possible to suppress the competitive Sandmeyer reaction by control of the pH and halide ion concentration,¹²⁰ and by minimizing the quantity of *cuprous* halide by operating in a solvent other than acetone. Present knowledge suggests the desirability of changing the above variables and the reaction temperature before abandoning a new Meerwein arylation reaction because of the formation of the products of a Sandmeyer reaction.

Formation of phenols is not always detected: first, because the rapid hydrolysis of a diazonium salt usually requires temperatures much higher than those normally used in the Meerwein arylation reaction, and, second, because any phenol that is formed is likely to be consumed by azo coupling, especially if the medium is more alkaline than pH 3-4. Phenol formation seems to be seriously competitive with some *ortho*-substituted diazonium salts. Thus salicylic acid or ester was a major by-product in the reaction of *o*-carboxy- or carbalkoxy-benzenediazonium chloride with methyl vinyl ketone.⁸⁵ *o*-Cresol was the major product isolated from the reaction of *o*-toluenediazonium chloride with methacrylonitrile.⁵

Reductive replacement of the diazo group (deamination) is a much more serious side reaction. Meerwein traced it to a reaction with acetone.

$$ArN_2Cl + CH_3COCH_3 \rightarrow ArH + N_2 + ClCH_2COCH_3$$

¹¹⁰ Pfeil, Angew. Chem., 65, 155 (1953), and papers cited therein.

In the reaction of p-chlorobenzenediazonium chloride with acetone without cupric salt and sodium acetate, about 14% of chloroacetone was produced. Cupric chloride and sodium acetate increased the yield of chloroacetone to 45%. Comparison of variously substituted diazonium salts showed that the yield of chloroacetone in the presence of cupric chloride and sodium acetate was greatest with negatively substituted diazonium salts; highest with 2,4-dichlorobenzenediazonium chloride (65%), and lowest with p-methoxybenzenediazonium chloride (18%). Unfortunately, although the deamination product was isolated in several cases, yields and reaction rates were not given. Therefore the data do not show what fractions came from the independent attack of cupric chloride on acetone.²⁸ This point deserves reinvestigation. The reduction may be explained as hydrogen transfer to the intermediate aryl radical from acetone.^{37, 121}

The symmetrical azo compound ArN = NAr is often one of the components of the tarry by-product that accompanies the Meerwein arylation reaction. In some reactions this azo compound has been isolated.^{15, 16, 19, 122} It not uncommonly accompanies the Sandmeyer reaction, especially in the presence of insufficient cuprous chloride.^{123, 124}

The most annoying and least understood side reaction is the formation of diazo resins. While these may be formed entirely from the diazonium salt, it is quite likely that some of the unsaturated compound is incorporated in the tar. Although the homopolymer of acrylonitrile could not be detected in a typical example,³⁶ it is known that diazonium salts may function as polymerization initiators.^{27, 35} If chain transfer is less than 100% efficient, the 1:1 radical intermediate may add a few more monomer molecules before its growth is stopped.

Further discussion of the decomposition of diazonium salts is given in the excellent monograph by Saunders.¹²³

COMPARISON WITH OTHER SYNTHETIC METHODS

Despite the low yields often obtained in the Meerwein arylation reaction, an appreciation of its synthetic value is best obtained by surveying other methods that may be used for the preparation of the same compounds. The ensuing discussion is not intended to be an exhaustive survey of

¹²¹ Waters, J. Chem. Soc., 1937, 2007; 1938, 843.

¹¹³ Nesmeyanov, Perevalova, and Golovnya, *Doklady Akad. Nauk S.S.S.R.*, **99**, 539 (1954) [*C.A.*, **49**, 15918c (1955)].

¹²³ Saunders, The Aromatic Diazo Compounds, 2nd ed., p. 228, Arnold, London, 1949.

¹²⁴ Holt and Hopson-Hill, J. Chem. Soc., **1952**, 4251; Atkinson et al., J. Am. Chem. Soc., **72**, 1397 (1950); **67**, 1513 (1945); and previous papers.

alternative routes. Rather, one or two of the more general alternative synthetic methods for the major classes of compounds available from the Meerwein arylation reaction will be considered.

The Meerwein reaction has been used most frequently for preparing stilbenes. One common alternative method involves the Perkin condensation of an arylacetic acid with an aromatic aldehyde, followed by decarboxylation of the resulting α -arylcinnamic acid—a two-step process. Except where the aldehyde and the arylacetic acid are commercially available, both must be synthesized. A second and more recent method¹²⁵ involves the self-condensation of benzyl halides in the presence of alkali metal amides. At present this method appears to be limited to symmetrical stilbenes and at least requires the synthesis of the substituted benzyl halide. In contrast, the Meerwein arylation requires the aromatic amines (more available than the corresponding aldehydes) and the cinnamic acids (or styrenes). The cinnamic acids usually may be prepared by a Meerwein arylation of acrylic or maleic acid. Thus, complicated stilbenes are available in two steps, and the starting materials are two aromatic amines and commercial acrylic or maleic acid.

Cinnamic acids may be prepared by the Reformatskiĭ, the Perkin, or the Doebner-Knoevenagel condensation.¹²⁶ The aromatic aldehyde is the required starting material and usually must be synthesized. The Meerwein procedure requires the aromatic amine and either acrylic or maleic acid. Though the yields may be low, the product is readily freed from tar by extraction of the acid with sodium bicarbonate.

The Meerwein arylation of acrolein and methacrolein, recently reported,¹⁰⁶ yields β -aryl- α -chloropropionaldehydes. If the yields could be improved, and if dehydrochlorination offered no difficulty, the reaction would constitute a valuable synthesis for ring-substituted cinnamaldehydes. These important compounds are usually prepared by a crossed aldol condensation between an aromatic and an aliphatic aldehyde.

3-Arylcoumarins are prepared by condensation of salicylaldehyde with ring-substituted phenylacetic acids.¹²⁷ Since the latter are more difficultly accessible than aromatic amines, the Meerwein reaction appears to be the method of choice for the synthesis of 3-arylcoumarins.

1-Arylbutadienes have been made by adding Grignard reagents to aldehydes and dehydrating the carbinols, for example, by adding allylmagnesium chloride to benzaldehydes or methylmagnesium iodide to cinnamaldehydes.^{49, 77, 78} Again the aldehydes are the starting materials.

¹²⁵ Hauser, Brasen, Skell, Kantor, and Brodhag, J. Am. Chem. Soc., 78, 1653 (1956).

¹²⁶ Johnson, in Adams, Organic Reactions, Vol. I, p. 233, John Wiley & Sons, New York, 1942.

¹²⁷ von Walther and Wetzlich, J. prakt. Chem., [2] 61, 169 (1900).

The Meerwein reaction of aromatic amines with butadiene appears to be preferable, since the 1-aryl-4-chlorobutenes are readily dehydrochlorinated to 1-arylbutadienes.^{76, 108, 128} 1,4-Diarylbutadienes can be prepared by successive Meerwein reactions, although this application has not been explored in detail.¹⁰⁸ At present, 1,4-diarylbutadienes are prepared by Grignard reactions or by the Meerwein arylation of cinnamylideneacetic acids.²⁶

2-Aryl-1,4-quinones have been prepared in low yields by arylation of a quinone with a diaroyl peroxide,⁶⁷ the latter usually being made from the aromatic acid. The convenience of using an aromatic amine instead of a peroxide which usually must be synthesized, together with the better yields from the amine, suggests that the arylquinones are best prepared by the Schimmelschmidt,⁵⁷ Kvalnes,⁵⁸ or L'Écuyer⁹⁷ modification of the Meerwein reaction.

One important general method for coupling an aromatic ring to an aliphatic side chain is the Grignard reaction. It suffers from the serious limitation that aryImagnesium halides will react with functional groups other than the desired one. Thus one cannot prepare Grignard reagents from aryl halides containing nitro, cyano, sulfo, acyl, carboxy, or carbalkoxy groups, i.e., just those substituents which promote the Meerwein reaction.

Another method for attaching a functional aliphatic side chain to an aromatic nucleus is the Friedel-Crafts reaction.¹²⁹ For example, methacrylic acid condenses with toluene or *p*-xylene to form α -arylisobutyric acids.¹³⁰ Crotonic acid condenses with benzene to form, after cyclization, **3**-methylhydrindanone.¹³¹ Cinnamic acids react with aromatic compounds giving β , β -diarylpropionic acids,¹³² although α -phenylacrylic acid is arylated at the α -carbon atom to give α , α -diarylpropionic acids.¹³² In these examples, the orientation is the opposite of that obtained in the Meerwein reaction, and the acids obtained have saturated side chains. Furthermore the Friedel-Crafts reaction is hindered or prevented by strongly electron-attracting groups in the aromatic nucleus, again the same substituents which promote the Meerwein reaction.

In summary, the Meerwein reaction is no synthetic panacea. It occupies an important place among those reactions which form a new bond between an aromatic ring and a functionally substituted side chain.

- ¹²⁸ Dombrovskii and Terent'ev, Zhur. obshchei Khim., **27**, 415 (1956); J. Gen. Chem. U.S.S.R. (Engl. Transl.), **27**, 469 (1956) [C.A., **51**, 15454d (1957)].
 - ¹²⁹ Kirk, U.S. pat. 2,497,673 [C.A., 44, 5389d (1950)].
- ¹³⁰ Colonge and Weinstein, Bull. soc. chim. France, **1951**, 820; Prijs, Helv. Chim. Acta, **35**, 780 (1952); Colonge and Pickat, Bull. soc. chim. France, **1949**, 177.
 - ¹³¹ Koelsch, J. Am. Chem. Soc., 65, 59 (1943).
 - ¹³² Dippy and Young, J. Chem. Soc., 1955, 3919; 1952, 1817; 1951, 1415.

It is particularly attractive because of the low cost and ready availability of aromatic amines and because of its experimental simplicity. Further study directed toward improving the yields obtainable by suppressing side reactions will increase its value still more.

EXPERIMENTAL CONDITIONS

The technique of a Meerwein reaction is usually very simple, requiring no elaborate apparatus. The diazonium salt is prepared from one equivalent of aromatic amine, dissolved in 2.5–3.0 equivalents of hydrochloric (or hydrobromic) acid, by the addition of sodium nitrite solution. The cold solution is filtered if necessary to remove any diazoamino compound. Although the excess nitrous acid may be removed with sulfamic acid or urea, it appears from qualitative experiments that the subsequent reaction proceeds faster in the presence of small amounts of nitrite ion.^{5, 112} The cold mixture is then adjusted to about pH 3–4 by addition of concentrated sodium acetate or chloroacetate solution. A pH meter or short-range pH paper is helpful in the operation.

Meanwhile the unsaturated compound is dissolved in water, acetone, or other desired solvent. The two solutions are mixed and cupric chloride (or bromide) dihydrate (0.07–0.15 mole) is added. At this point, additional water or acetone may be needed to render the mixture homogeneous. Nitrogen evolution may begin immediately or after a short induction period. Otherwise, the solution is warmed slowly to the temperature at which nitrogen evolution begins; this is usually below 25°. Stirring is usually unnecessary. Once the reaction begins, some cooling may be necessary for control. Strong cooling may stop the reaction, and it is then difficult to initiate it again. Addition of 1-2% of nitrite ion is sometimes helpful to reinitiate reactions that have stopped.¹¹²

When nitrogen evolution is complete, the acetone, if present, is removed by distillation at ordinary or reduced pressure. Steam distillation is usually desirable since many of the by-products such as the chloro compound resulting from the Sandmeyer reaction, the phenol, the chloroacetone, the deamination product, and often the unreacted starting material are steam distillable. The product is separated from the aqueous phase by filtration or by extraction with methylene chloride, ether, or other solvent. The product may be freed from tar if the former is soluble in acid or base. Distillation of the product is recommended where feasible, since the tars are almost invariably nonvolatile.* If the product cannot be distilled, it often can be purified by dissolving it in petroleum ether, carbon tetrachloride, or benzene and passing the solution

^{*} Caution: Distillation of nitro-containing tars may lead to explosions.

through a short column of alumina; the diazo resin is usually retained as a strongly adsorbed band at the top of the column. In favorable cases, the product may be crystallized from an appropriate solvent, often with the aid of activated charcoal.

Should the simple procedure just described be unsuccessful, the first variable to alter is the pH. It is probable that each combination of diazonium salt and unsaturated compound will have an optimum pH. For example, in the arylation of maleic acid, negatively substituted diazonium salts react at an appreciably lower pH than other diazonium salts.⁴⁷ The second variable to change is the solvent. As noted below, acetone is frequently harmful, and its use should probably be avoided when the unsaturated compound is sufficiently water-soluble.

In the event of continued failure, the experimenter should make at least one trial with 5-15% of *cuprous* chloride catalyst in the absence of oxygen before concluding that the reaction should be abandoned.

Difficulties in purification often arise because a mixture of substitution and addition products is formed (see above). When the substitution product is the one that is sought, the crude product may advantageously be treated with base to effect dehydrohalogenation. Treatment with hot or cold alcoholic alkali is doubtless the most rapid method. The use of tertiary amines such as dimethylaniline, 2,6-lutidine, sym-collidine, or triethylamine at temperatures from 25° to as high as 220° is recommended for products destroyed by stronger bases.

Effects of Reaction Medium

Solvent. When the unsaturated component is sufficiently soluble in water, an organic co-solvent is usually unnecessary. In the arylation of acrylic acid and maleic acid, the yields are considerably lower when acetone is present.^{31,47} The same is true in the arylation of furfural.⁵¹ Ferrocene^{122,133-135} and quinones ⁵⁷ do not require acetone, though comparisons of yields with and without acetone have not been made.

Acetone is by far the most popular organic solvent, though a few others have received some attention. Methyl ethyl ketone, acetonitrile, Nmethylpyrrolidone, pyridine, dimethyl sulfoxide, sulfolane (tetrahydrothiophene-1,1-dioxide), and 2,4-dimethylsulfolane appear, from very limited data, to be useful. In the arylation of coumarin with p-chloro- or

¹⁸³ Weinmayr, J. Am. Chem. Soc., 77, 3012 (1955).

¹³⁴ Nesmeyanov, Perevalova, Golovnya, and Nesmeyanova, *Doklady Akad. Nauk S.S.S.R.*, **97**, 459 (1954) [*C.A.*, **49**, 9633f (1955)].

¹³⁵ Nesmeyanov, Perevalova, Golovnya, and Shilovtseva, *Doklady Akad. Nauk S.S.S.R.*; **102**, 535 (1955) [*C.A.*, **50**, 4925h (1956)].

p-nitro-benzenediazonium chloride, acetonitrile as the solvent gave yields comparable to acetone as the solvent. However, the yield in the p-chlorophenylation of methacrylonitrile was lower in acetonitrile and the reaction was slow.⁵ Dimethyl sulfoxide gave fair results in the *p*-nitrophenylation of coumarin.³⁴ The two sulfolanes have been tried only in the p-chlorophenylation of methacrylonitrile, with excellent results, although the isolation of the products was more difficult because of the high boiling points of these solvents.⁵ There are scattered reports of the use of pyridine as a buffering ingredient.^{1,8} Pyridine also has been used as a constituent of a solvent mixture for difficulty soluble cinnamic acids.^{136,137} Less satisfactory solvents are dimethylformamide, tetrahydrofuran, and ethylene glycol dimethyl ether, judging from results in the p-nitrophenylation of coumarin.⁵³ N-Methylpyrrolidone has been used in the p-chlorophenylation of methacrylonitrile with fair results.⁵ Ethanol is definitely unsatisfactory.^{28, 53, 138} Diethyl ether has been employed in the self-catalyzed (no copper salt) reaction of ferrocene with diazonium salts,¹²² and ethanol-ether mixtures were satisfactory in the arylation of quinones by N-nitroso-N-arylacetamides.⁶⁸⁻⁷¹ However, these reactions are not typical Meerwein reactions.

As yet untried are esters such as methyl formate or butyrolactone. There is no report of attempts to conduct the reaction deliberately in a two-phase system with solvents such as chloroform, carbon tetrachloride, methylene chloride, or benzene. The two-phase technique might possess the same advantages it has in the related Gomberg-Bachmann arylation of aromatic compounds.⁴⁰

Consideration of the structures of the useful solvents suggests that their beneficial effect is associated with the presence of easily polarized unsaturation electrons, which may assist in the transfer of an electron from the olefin to the diazonium salt. Alcohols and ethers, with merely unshared electrons, seem incapable of functioning as demanded. Furthermore, the latter solvents reduce (deaminate) diazonium salts.^{138, 139}

The state of the art does not permit a reliable prediction of the best solvent medium for a new Meerwein reaction. Initial experiments should be tried in aqueous solutions if the solubility of the olefin permits. Otherwise, acetone is probably the best cosolvent, considering cost, availability, and ease of subsequent removal. If acetone proves unsatisfactory, acetonitrile should be tried next. Not enough is known about the other solvents to provide a basis for comment.

¹³⁶ Drefahl, Seeboth, and Degen, J. prakt. Chem. [4] 4, 99 (1956).

¹³⁷ Drefahl, Gerlach, and Degen, J. prakt. Chem. [4] 4, 119 (1956).

¹³⁸ Meerwein, Angew. Chem., 70, 211 (1958).

¹³⁹ Dombrovskii and Stadnichuk, Zhur. Obshchet Khim., **25**, 1737 (1955) [C.A., **50**, 5548e (1956)].

Anions. Almost all studies of this reaction have been performed with diazonium chlorides. The few reported examples of the use of diazonium bromides have given roughly comparable yields.^{1,4,30} On the other hand, some attempts to use the diazonium sulfates or nitrates have failed.¹ It has been stated (without specifying the particular examples) that no reaction (nitrogen evolution) took place between an olefin, a diazonium sulfate, and copper sulfate until hydrochloric or hydrobromic acid was added.⁴

This behavior is understandable for those reactions where halogen is incorporated into the product. Here the presence of a readily polarizable nucleophilic anion would be essential. It is not so clear why it should be true when the ionic halogen is not incorporated into the product, as is true with coumarin,¹ cinnamaldehyde,¹ cinnamic acid,¹ acrylic acid,³¹ etc. In fact, it is not certain that halide ion is essential, since no specific examples have been cited in support of the claim that it is. Recent experiments have shown that halide ion is desirable but not indispensable.⁵ Both the *p*-nitrophenylation of acrylic acid (no acetone) and the *p*-chlorophenylation of cinnamic acid (with acetone) proceed when the chloride ion is replaced by sulfate. However, the reactions had to be heated to 60° to produce a rate of nitrogen evolution equal to those from controls at room temperature containing a plentiful supply of chloride ion. The chloride-promoted reaction is thus about ten times faster. The yields without chloride were only about 60% of those with chloride. Other examples from the literature, such as arylation of quinones and ferricinium ion, are not typical Meerwein reactions.

One possible explanation for the function of halide is that a crucial stage in the reaction requires a covalent diazo compound ArN=NX. Anions such as bisulfate, sulfate, and nitrate do not readily form covalent bonds. A high concentration of acetate ions should then permit formation of a covalent diazo acetate in the absence of halide ions. A more plausible explanation is that a complex copper *anion* such as CuCl₃⁻ or CuCl₄⁻ is the effective catalyst. Such complex anions form readily with halides but not with nitrate, etc. If one accepts the postulate that *cuprous* salt is sometimes the active catalyst, halide is required both for the attack on acetone (see, however, Ref. 73) and for complexing and solubilizing the otherwise unstable and insoluble cuprous copper.

Further experimental evidence is necessary to clarify the function of the anion.

Catalysts. Apart from copper salts, which have been discussed above, only copper powder,¹⁴⁰ mercuric chloride, and zinc chloride exhibited a

¹⁴⁰ Dobáš, Marhan, Krejčí, and Pirkl, Collection Czechoslov. Chem. Communs., 22, 1473 (1957); Chem. Listy, 51, 463 (1957) [C.A., 51, 10449 (1957)].

ORGANIC REACTIONS

modest catalytic activity in the *p*-nitrophenylation of coumarin.⁵³ A wide variety of other transition metal salts was essentially inert, affording no better yield than that obtained in the absence of added catalyst (8%). More recent studies of various metal salts in other olefin-diazonium salt systems confirmed this observation. However, since the oxidation-reduction potential of each olefin-diazonium salt pair is different, it is probable that there exist systems in which other catalysts will be effective. The complexing ability of the metal salt is doubtless a significant factor, but it cannot be assessed at the present time.

Certain reactions proceed without a catalyst. None was employed in the arylation of ferrocene.^{122, 133-135} Many satisfactory quinone arylations⁵⁷ require no copper salt; a trace of hydroquinone functions as the catalyst. In these typical cases, the unsaturated compound requires no added catalyst to transfer an electron to the diazonium salt. Furthermore, quinones are notably efficient radical traps. In a few reactions conducted near pH 6, nitrogen evolution was observed before the addition of a copper salt.¹⁵⁻²² However, this observation was not followed up.

Acidity. Most Meerwein reactions have been conducted in the pH range 3-4, occasionally as low as $pH 2^{92}$ or as high as $pH 6.^{15-22}$ Control of the pH is important in minimizing side reactions. In the lower pH range, the Sandmeyer reaction consumes a large fraction of the diazonium salt,¹ and at high pH the formation of diazo resins is accelerated.¹ In the arylation of maleic acid the yields were poor if the mixture was too acidic.⁴⁷ However, maleic acid arylated at pH 2 gives α -aryl- β -chlorosuccinic acids in good (though unspecified) yields.⁹² Acrylonitrile and methyl vinyl ketone have been arylated in unbuffered hydrochloric acid solution with good results.^{84, 85, 119, 141} Müller apparently did not neutralize the free acid left over from diazotization in some reactions.⁴

A study of the effect of pH upon yield and quality of 3-p-nitrophenylcoumarin showed that best results were obtained in the range pH 2-4.53At pH 3, the nature of the buffering anion is important;⁵³ acetate and chloroacetate¹ are best, while succinate, phosphate, tartrate, and citrate are inferior. Pyridine usually, but not always, gives poorer results than acetate.

Deviations toward the alkaline side may result in azo coupling with some compounds. Thus 7-hydroxycoumarin and p-hydroxycinnamic acid were arylated in a chloroacetate buffer of unspecified pH, but underwent azo coupling if the medium became more alkaline.¹ The reverse of this pH effect was noted in the arylation of 2-hydroxy-l,4-naphthoquinone.⁶²

¹⁴¹ Malinowski, Roczniki Chem., 27, 54 (1953) [C.A., 48, 13678h (1954)].

Experiments with a new Meerwein reaction probably should begin in an acetate buffer at pH 3-4. Variations toward the acid side probably will be more fruitful than variations in the basic direction, but the optimum pH will have to be determined experimentally.

EXPERIMENTAL PROCEDURES

1-p-Nitrophenylbutadiene. The preparation of 1-p-nitrophenyl-4chloro-2-butene from p-nitroaniline and butadiene (89% crude yield) and its dehydrohalogenation with methanolic potassium hydroxide to 1-p-nitrophenylbutadiene (57-61% based on p-nitroaniline) has been described in Organic Synthesis.⁷⁶

3-p-Nitrophenylcoumarin.^{1,53} *p*-Nitroaniline (4.1 g., 0.03 mole) is diazotized by treatment with 25 ml. of 1:1 hydrochloric acid, 15 g. of ice, and 7.0 ml. of 30% aqueous sodium nitrite. The *p*H is brought to 3-4 by addition of saturated aqueous sodium acetate, and the filtered solution is added in one portion to a solution of 4.4 g. (0.03 mole) of coumarin in 75-90 ml. of acetone. Then 0.8 g. (0.0045 mole) of cupric chloride dihydrate is added, and the mixture is stirred at ambient temperature until nitrogen evolution is complete. Slight cooling may be necessary if the reaction becomes too vigorous. The mixture is then steam-distilled until no more organic material distills. The water-insoluble residue is collected by filtration, washed with water, triturated with several small portions of acetone to remove unchanged coumarin and diazo resins, and finally recrystallized from anisole (10-12 ml. per g.). Pure *p*-nitrophenylcoumarin melting at 264° is obtained in a yield of 2.8-3.6 g. (35-45%).

trans-p-Chlorocinnamic Acid.³¹ p-Chloroaniline (3.2 g., 0.025 mole) is diazotized as above. The filtered diazonium solution (22–25 ml.) is added to a solution of 1.8 g. (0.025 mole) of acrylic acid, 5.8 g. of sodium acetate, and 1 g. of cupric chloride dihydrate in 80 ml. of water. After the vigorous evolution of nitrogen ceases, the insoluble material is collected by filtration and extracted with 5% sodium bicarbonate solution. The insoluble tarry portion is discarded, and the aqueous filtrate is acidified with dilute sulfuric acid. The p-chlorocinnamic acid is collected and crystallized from aqueous methanol; yield, 1.3 g. (28%), m.p. 239–240°.

A similar procedure with p-nitroaniline yields 2.9 g. (60%) of p-nitrocinnamic acid, m.p. $285-286^{\circ,31}$ The writer has confirmed this yield and has found that 2-methoxyethanol containing a little ethanol is a much better solvent than ethanol for the crystallization of p-nitrocinnamic acid. The Meerwein arylation is far more convenient than the nitration of cinnamic acid followed by separation of isomers. 2-Methoxy-4'-phenylstilbene.⁴² p-Aminobiphenyl (16.9 g., 0.1 mole) is diazotized in hydrochloric acid in the usual manner. The diazonium solution is added to a solution of 17.8 g. (0.1 mole) of *o*-methoxycinnamic acid in 1 l. of acetone containing 25 g. of anhydrous sodium acetate and 4.2 g. of cupric chloride dihydrate. Nitrogen evolution is complete after 3 hours at 20-25°. The solid remaining after steam distillation is sublimed at 125°/1 μ and then crystallized from alcohol. Ten grams (35%) of the stilbene is obtained as small white prisms, m.p. 184-185°.

In the preparation of stilbenes substituted in both rings, it is highly desirable to use the more soluble of the two possible cinnamic acids and to supply the second aryl group via the amine.

trans-p-Nitrocinnamonitrile.⁴ p-Nitroaniline (4.2 kg.) in 181. of hot 1:1 hydrochloric acid is cooled to $30-40^{\circ}$, mixed with 24 kg. of ice, and diazotized with 7.3 l. of 30°_{0} aqueous sodium nitrite. The filtered diazonium solution is added to 1.76 kg. of acrylonitrile in 15 l. of acetone. After addition of 0.6 kg. of cupric chloride dihydrate, nitrogen evolution sets in at 18°. (A sodium acetate buffer is not specified.) The temperature is maintained below 30° by cooling. After nitrogen evolution is complete, the product is collected and crystallized from methanol. The yield of α -chloro-p-nitrohydrocinnamonitrile, m.p. 110°, is 5.3 kg. (83°_{0}) .

The chloronitrile (5.2 kg.) is dehydrohalogenated by boiling it for 10 hours with a solution of 4 kg. of sodium acetate in 20 l. of ethanol and 8 l. of water. The insoluble *p*-nitrocinnamonitrile which separates is collected, washed, and crystallized from chlorobenzene, m.p. 200°; yield, 3.6 kg. (79%).

 α -p-Chlorophenyl-N-isopropylmaleimide.³³ p-Chlorobenzenediazonium chloride solution, prepared in the usual way from 0.1 mole of p-chloroaniline, is added to an ice-cold solution of 0.1 mole of N-isopropylmaleimide in 30 ml. of acetone. The pH is brought to 3 with aqueous sodium acetate, 0.015 mole of cupric chloride is added, then enough acetone or water to form a homogeneous solution. Nitrogen evolution begins immediately. The mixture is kept in an ice bath for $\frac{1}{2}$ hour, then warmed to 35-40° and maintained at that temperature with stirring for 3 hours. The acetone is then evaporated under reduced pressure, and the oily product is separated.

The oil is dissolved in 50 ml. of 2,6-lutidine, heated nearly to boiling, cooled, diluted with 75 ml. of benzene, and filtered. The filtrate is partitioned between ether and water, the organic layer is washed with dilute sulfuric acid and water, then dried and evaporated. The crystalline residue is recrystallized from ether-petroleum ether. Alternatively, the residue may be distilled at reduced pressure; the product is then more

easily recrystallized. The yield of pure material, m.p. $102-104^{\circ}$, is 14.6 g. (51%).

p-Nitrophenylmaleic Anhydride.⁹² A solution of *p*-nitrobenzenediazonium chloride is prepared by diazotizing 27.6 g. (0.2 mole) of *p*-nitroaniline in the presence of sufficient hydrochloric acid to make the *p*H of the resulting solution about 2. It is then added with vigorous stirring to a solution of 23 g. (0.2 mole) of maleic acid in 80 ml. of acetone containing 8 g. of cupric chloride dihydrate in 14 ml. of water. The temperature is maintained between 12 and 18° for 2 hours, and the mixture is then allowed to stand for 24 hours at room temperature. The layers are separated, and the lower layer is concentrated under reduced pressure. The solid residue is crystallized from a mixture of ethanol and benzene, giving 27 g. (50%) of α -*p*-nitrophenyl- β -chlorosuccinic acid as micro crystals, m.p. 275° (dec.).

For the preparation of *p*-nitrophenylmaleic anhydride, 12 g. of the chlorosuccinic acid is dissolved in 24 g. of acetic anhydride and boiled under reflux for 6 hours. The solvent is then removed at reduced pressure, and the residue is crystallized from ligroin, giving 8.8 g. (92%) of *p*-nitrophenylmaleic anhydride, m.p. 127°.

1,4-Bis-(2'-chloro-2'-cyanoethyl)benzene (Use of a Diamine).⁸⁴ A solution of 21.2 g. (0.4 mole) of acrylonitrile in 100 ml. of acetone is added to a solution of 36 g. (0.2 mole) of *p*-phenylenediamine dihydrochloride, 100 ml. of water, 50 ml. of concentrated hydrochloric acid, and 10 g. of cupric chloride dihydrate. The mixture is cooled to -7° and slowly treated with 27.6 g. of sodium nitrite in water. During the course of 2 hours, about 1 mole of nitrogen is evolved. The end point is determined with starch-iodide paper.

The cold mixture (a dark bronze, oily liquid) is filtered and allowed to warm to 28° during the course of 1 hour. At this temperature nitrogen is evolved vigorously. On the following day, tarry particles are removed by filtration, and the filtrate is steam distilled. About 1 l. of distillate, containing about 3 ml. of a yellow immiscible liquid with an acrid odor, is collected. The distillation is then stopped despite the fact that the distillate is still cloudy.

The tarry residue solidifies on cooling. It is crystallized from 5 l. of methanol with 10 g. of decolorizing carbon. The product weighs 18 g. (36%) and melts at 178–180°. After two recrystallizations from ethanol, pure 1,4-bis(2'-chloro-2'-cyanoethyl)benzene, m.p. 184°, is obtained. A larger run gave a 45% yield.

2-o-Chlorophenylbenzoquinone.⁵⁷ A solution of 325 g. of o-chloroaniline in 500 ml. of water and 500 ml. of concentrated hydrochloric acid is prepared by warming, then cooled and mixed with 2 kg. of ice. Sodium nitrite (350 ml. of a 40% solution) is added with vigorous stirring and efficient cooling below the surface of the first solution as rapidly as possible. The mixture is filtered; the filtrate has a volume of 3.5-4.01. It must be acid to Congo red and contain free nitrous acid.

Meanwhile a suspension of *p*-benzoquinone is prepared by oxidizing 220 g. of hydroquinone in 21. of water with 121 g. of potassium bromate and 110 ml. of N sulfuric acid. The suspension is heated at $60-75^{\circ}$ until all the dark quinhydrone crystals have disappeared. It is then cooled to 5°, and 350 g. of sodium bicarbonate is added just before the coupling reaction is started.

The quinone suspension is placed in a 10-1. flask and stirred vigorously while the diazonium solution is added below the surface of the suspension from a graduated dropping funnel at the rate of 25 ml. per minute. The temperature is maintained in the range 5-8° during addition. The mixture is tested periodically to be sure that it is still alkaline. It is also tested with cotton soaked in Naphthol-AS solution or paper soaked in the sodium salt of β -naphthol. If this test shows the presence of unreacted diazonium salt, a trace of hydroquinone is added.

Reaction stops abruptly when about 104% of the theoretical amount of diazonium solution has been added. The product is collected by filtration, washed with water, and dried. The crude product weighs 450 g. It is purified by distillation, giving 410 g., b.p. $160-162^{\circ}/3$ mm. The residue consists of the decomposition products of polyarylated benzoquinone. 2-o-Chlorophenylquinone may be recrystallized from methanol or ethanol; m.p. $82-83^{\circ}$. The yield is 90% based on amine or 94% based on hydroquinone.

TABULAR SURVEY OF THE MEERWEIN ARYLATION REACTION

In the following thirteen tables are collected the examples of the Meerwein reaction which could be found in the literature up to October, 1958. The search was conducted with *Chemical Abstracts Subject Indexes* through Vol. 50, 1956. More recent references were located by scanning titles in *Current Chemical Papers* for titles suggestive of the Meerwein reaction.

In each table, the unsaturated components are arranged in the following order: the parent compound of the series; its halogen derivatives in the order F, Cl, Br, I; its alkyl derivatives in the order of increasing size and complexity; its phenyl derivatives and its nuclear-substituted phenyl derivatives; and finally heterocyclic derivatives of the parent compound.

Under each unsaturated component the diazonium salts used are arranged in the following order: benzenediazonium chloride, then

THE MEERWEIN ARYLATION REACTION

nuclear substitution products in the order F, Cl, Br, I, NO₂, OH, OCH₃, NH₂, NHCOCH₃, SO₃H, SO₂NH₂, AsO₃H₂, alkyl in the order of increasing size and complexity, aryl (including condensed aryl as in naphthalenediazonium chloride), CHO, CO₂H, CO₂R, COR, CN, and finally heterocyclic diazonium salts.

The individual diazonium salts are not entered in the tables since they are adequately identified by inspection of the products.

The practice has been followed of reporting the highest yield claimed in the literature for a particular reaction; that figure is given by the first reference cited, followed by the others in numerical order. The symbol (--) indicates that no yield was reported. Unsuccessful experiments have been included in the tables.

223

ORGANIC REACTIONS

TABLE I

NONCONJUGATED OLEFINS AND ACETYLENES

NONCONJUGATED ULEFINS AND ACETYLENES	
Product (Yield, %)	References
p-O ₂ NC ₆ H ₄ CH ₂ CH ₂ Cl (< 20)	3, 4
$p - O_2 NC_6 H_4 CH_2 CHBr_2$ (77)	30
p-ClC ₆ H ₄ CH ₂ CHClCH ₂ Cl ()	3, 4
p-ClC ₆ H ₄ CHClCCl ₃ * ()	3, 4
$p-\text{ClC}_{6}\text{H}_{4}\text{CH} = \text{CHCII}_{2}\text{CO}_{2}\text{H}$ (5)	13
$p - O_2 NC_6 H_4 CH = CHCl ()$	3, 4
$p-HO_2CC_6H_4CH_2CHClSi(C_2H_5)_3$ (13)	142
$C_6H_5CH_2CHClSi(C_6H_5)_3$ (0)	142
p-ClC ₆ H ₄ CH ₂ CHClSi(C ₆ H ₅) ₃ (37)	142
p-BrC ₆ H ₄ CH ₂ CHClSi(C ₆ H ₅) ₃ (15)	142
$m - O_2 NC_6 H_4 CH_2 CHClSi(C_6 H_5)_3$ (16)	142
$p-O_2NC_6H_4CH_2CHClSi(C_6H_5)_3$ (28)	142
p-CH ₃ OC ₆ H ₄ CH ₂ CHClSi(C ₆ H ₅) ₃ (0)	142
$p \cdot CH_3C_6H_4CH_2CHClSi(C_6H_5)_3$ (0)	142
$p-C_6H_5C_6H_4CH_2CHClSi(C_6H_5)_3$ (11)	142
p-HO ₂ CC ₆ H ₄ CH ₂ CHClSi(C ₆ H ₅) ₃ (23)	142
	Product (Yield, %) $p \cdot O_2NC_6H_4CH_2CH_2Cl (< 20)$ $p \cdot O_2NC_6H_4CH_2CHBr_2 (77)$ $p \cdot ClC_6H_4CH_2CHClCH_2Cl ()$ $p \cdot ClC_6H_4CH=CHClCL_2CO_2H (5)$ $p \cdot ClC_6H_4CH=CHCII_2CO_2H (5)$ $p \cdot O_2NC_6H_4CH=CHCII_{})$ $p \cdot HO_2CC_6H_4CH_2CHClSi(C_2H_5)_3 (13)$ $C_6H_5CH_2CHClSi(C_6H_5)_3 (0)$ $p \cdot ClC_6H_4CH_2CHClSi(C_6H_5)_3 (37)$ $p \cdot BrC_6H_4CH_2CHClSi(C_6H_5)_3 (15)$ $m \cdot O_2NC_6H_4CH_2CHClSi(C_6H_5)_3 (16)$ $p \cdot O_2NC_6H_4CH_2CHClSi(C_6H_5)_3 (16)$ $p \cdot CH_3CC_6H_4CH_2CHClSi(C_6H_5)_3 (0)$ $p \cdot CH_3CC_6H_4CH_2CHClSi(C_6H_5)_3 (0)$ $p \cdot CH_3C_6H_4CH_2CHClSi(C_6H_5)_3 (0)$ $p \cdot CH_3C_6H_4CH_2CHClSi(C_6H_5)_3 (0)$ $p \cdot CH_3C_6H_4CH_2CHClSi(C_6H_5)_3 (11)$

Note: References 142 to 161 are on p. 260.

* This structure was assigned by analogy.

TABLE	II
-------	----

Conjugated Dienes and Acetylenes, Styrenes

	TED DIENES AND ACETTLENES, STIRENES	
A	. Conjugated Dienes and Acetylenes	
Diene	Product (Yield, %)	References
CH2=CHCH=CH2	$C_6H_5CH_2CH = CHCH_2Cl$ (70)	128, 108, 143,
		144 🗳
	$C_6H_5CH_2CH = CHCH_2Br$ (33)	143 H 108, 143, 3, 4
	p-ClC ₆ H ₄ CH ₂ CH=CHCH ₂ Cl (67)	
	2,4-Cl ₂ C ₆ H ₃ CH ₂ CH=CHCH ₂ Cl (64)	108, 143, 3, 4
	p-BrC ₆ H ₄ CH ₂ CH=CHCH ₂ Cl (60)	108, 143, 3, 4 M 108, 143, 78 E 108, 143 R 108, 143 E 108, 143 E 79, 108, 143 U
	$2,4$ - $Br_2C_6H_3CH_2CH$ -CHCH $_2Cl$ (62)	108, 143
	$p \cdot IC_6H_4CH_2CH = CHCH_2Cl$ (30)	108, 143 🗧
	o-O2NC6H4CH2CH=CHCH2Cl (76)	
	$m - O_2 NC_6 H_4 CH_2 CH = CHCH_2 Cl (57)$	108, 143 🍃
	p-O ₂ NC ₆ H ₄ CH ₂ CH=CHCH ₂ Cl (89)	108, 143 49, 3, 4, 76, 77, EV 108, 143, 145 108, 143 108, 143 108, 143 108, 143
		108, 143, 145
	$p-CH_3OC_6H_4CH_2CH=CHCH_2Cl$ (41)	108, 143
	$o - CH_3C_6H_4CH_2CH = CHCH_2Cl (52)$	108, 143
	m-CH ₃ C ₆ H ₄ CH ₂ CH==CHCH ₂ Cl (50)	
	$p-\mathrm{CH}_{3}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}\mathrm{CH}=\mathrm{CH}\mathrm{CH}_{2}\mathrm{Cl}$ (52)	108, 143 R 108, 3 A 3 OTTO 3, 4 OZ
$CH_2 = CHCCl = CH_2$	$C_6H_5CH_2CH == CClCH_2Cl^* (57)$	108, 3
	p-ClC ₆ H ₄ CH ₂ CH=CClCH ₂ Cl*(45)	3 ČŢ
	$2,4-\text{Cl}_2\text{C}_6\text{H}_3\text{CH}_2\text{CH}=\text{CClCH}_2\text{Cl}^*$ (ca. 70)	3, 4 10
	$2,5-\text{Cl}_2\text{C}_6\text{H}_3\text{CH}_2\text{CH}==\text{CClCH}_2\text{Cl}^* (68)$	
	$3,4-Cl_2C_6H_3CH_2CH == CClCH_2Cl*()$	3, 4
	$o - O_2 NC_6 H_4 CH_2 CH = CClCH_2 Cl^* ()$	3, 4
	$m - O_2 NC_6 H_4 CH_2 CH = CClCH_2 Cl^*$ (ca. 70)	3, 4
	$p - O_2 NC_6 H_4 CH_2 CH = CClCH_2 Cl^* ()$	4
	m-NCC ₆ H ₄ CH ₂ CH=CClCH ₂ Cl* (ca. 70)	3
Note: References 142 to 161 are on p. 260.		N2 12 15
* The structure is assigned by analogy; no	o conclusive structure proof is given.	-

226

TABLE II—Continued

CONJUGATED DIENES AND ACETYLENES, STYRENES

A. Conjugated Dienes and Acetylenes—Continued

1. 000	Juguica Dienes una Metrytenes Commute	
Diene	Product (Yield, %)	References
CH2=CHCH=CHCH3	$C_{6}H_{5}CH_{2}CH = CHCHClCH_{3}^{*}$ (56)	108
•	$p - O_2 NC_5 H_4 CH_2 CH = CHCHClCH_3^* (40)$	108
$CH_2 = CHC(CH_3) = CH_2$	$C_{4}H_{5}CH_{2}CH = C(CH_{3})CH_{2}Cl^{*}$ (68)	108, 1, 3, 4
	o-O,NC,H,CH,CH=C(CH,)CH,Cl ()	146
CH ₂ =CHC(CH ₃)=CHCH ₃	$C_{s}H_{5}CH_{2}CH = C(CH_{3})CHCICH_{3}*$ (48)	108 0
$CH_2 = C(CH_3)C(CH_3) = CH_2$	$C_{5}H_{5}CH_{2}C(CH_{3}) = C(CH_{3})CH_{2}CI(68)$	108, 1, 3, 4
CH ₂ =CHCH=CHC ₆ H ₅	$C_{\mathbf{a}}H_{5}CH = CHCH = CHC_{\mathbf{a}}H_{5}$ (80)	108
CH2=CHCH=CHC6H4CH3-p	$C_{s}H_{5}CH = CHCH = CHC_{s}H_{4}CH_{3} p$ (70)	108 0 108, 1, 3, 4 0 108 A 108 A 108 0
$CH_2 = CHC(C_8H_5) = CH_2$	$C_6H_5CH = CHC(C_6H_5) = CH_2(-)$	108
CH2=CHC=CH	$C_{5}H_{5}CH_{2}CHClC \cong CH (40-45)$	113 문
-	$2,5-Cl_2C_6H_3CH_2CHClC \equiv CH (-)$	113
Anthracene ($C_{14}H_{10}$)	$9 - C_6 H_5 C_{14} H_8 ()$	113 E 113 A 113 A 110 TT 109, 110 Q 110 Z
	$9,10-(C_{6}H_{5})_{2}C_{14}H_{6}$ ()	109, 110 💆
	$9 - p - ClC_6H_4C_{14}H_9$ (7)	110 🕺
	$9,10-(p-\text{ClC}_6\text{H}_4)_2\text{C}_{14}\text{H}_8$ (37)	110, 109
	$9,10-(o-O_2NC_6H_4)_2C_{14}H_8$ ()	109
	$9 - p - O_2 NC_6 H_4 C_{14} H_9$ (16)	110
	$9,10-(p-O_2NC_6H_4)_2C_{14}H_6$ (20)	109, 110
	$9 - p - CH_3OC_6H_4C_{14}H_9$ (10)	110
	$9,10-(p-CH_3OC_6H_4)_2C_{14}H_8$ (9)	110
9-Phenylanthracene $(9-C_6H_5C_{14}H_9)$	$9,10-(C_6H_5)_2C_{14}H_8$ (18)	110
	$9-C_6H_5-10-p-O_2NC_6H_5C_{14}H_8$ (54)	110
Anthracene-9-carboxylic acid (C ₁₄ H ₉ CO ₂ H-9)	$10 - p - ClC_6H_4C_{14}H_8CO_2H - 9$ (8)	110
	$10 - p - O_2 NC_6 H_4 C_{14} H_8 CO_2 H - 9$ (29)	110

Ferrocene (dicyclopentadienyliron, $C_{10}H_{10}Fe$)	$C_{s}H_{s}C_{10}H_{9}Fe$ (66)	147
	$(C_{e}H_{s})_{e}C_{10}H_{s}Fe^{*}$ (42)	122
	m-ClC ₆ H ₄ C ₁₀ H ₆ Fe (34)	147
	$o - O_2 N C_5 H_4 C_{10} H_9 Fe^{\dagger}$ (5)	147
	$m - O_2 NC_6 H_4 C_{10} H_9 Fe^{\dagger} ()$	135
	$p - O_2 NC_6 H_4 C_{10} H_9 Fe^{\dagger}$ (64)	122, 134, 147
	$p - HOC_{6}H_{4}C_{10}H_{9}Fe$ (39)	135, 147 💾
	$p-CH_3OC_6H_4C_{10}H_9Fe$ (40)	$\begin{array}{c} 135, 147 \\ 122, 147 \\ \end{array}$
	$p-HO_3SC_6H_4C_{10}H_9Fe$ ()	147
	$o-CH_{3}C_{6}H_{4}C_{10}H_{6}Fe$ (43)	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	$p-CH_{3}C_{6}H_{4}C_{10}H_{9}Fe$ (57)	122 🛱
	$(C_{10}H_7)_{x}C_{10}H_{10-x}^{*}^{\dagger}()$	122 🗧
	$o-HO_2CC_6H_4C_{10}H_9Fe$ (7)	147 법
	$p-CH_3COC_6H_4C_{10}H_9Fe$ ()	
Ferricinium ion	$C_{6}H_{5}C_{10}H_{9}Fe(17)$	133 A 133 YYLA 133 LA 133 133 133 133 0 133 0
	$(C_6H_5)_2C_{10}H_8Fe^*$ (20)	133 🛱
	$p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{C}_{10}\mathrm{H}_{9}\mathrm{Fe}$ ()	133
	$p - O_2 NC_6 H_4 C_{10} H_9 Fe$ (10)	133 1
	$(p - O_2 N C_6 H_4)_2 C_{10} H_8 Fe^* (60)$	133 0
	$p - HOC_8 H_4 C_{10} H_9 Fe$ (60)	133
	$(p-C_{6}H_{5}C_{6}H_{4})_{3}C_{10}H_{7}Fe^{*}$ (50)	133 🎇
	$(o-HO_2CC_6H_4)_2C_{10}H_8Fe^*$ (15)	133 A
	$8-HO_2C-1-C_{10}H_8C_{10}H_9Fe$ (6)	133
Note: References 142 to 161 are on p. 260.		133 REACTION

Note: References 142 to 161 are on p. 260.

* The structure is assigned by analogy; no conclusive structure proof is given.

† The nitrobenzenediazonium salts oxidized some of the ferrocene to ferricinium ion; no product was obtained from $2,4-(O_2N)_2C_6H_3N_2+HSO_4^{-.147}$

‡ It was not specified whether the naphthyl group was α or β .

TABLE II-Continued

CONJUGATED DIENES AND ACETYLENES, STYRENES

B. Styrenes and Phenylacetylene

	D. Sigrence and I hengedecogeone	
Unsaturated Compound	Product (Yield, %)	References
$CH_2 = CHC_6H_5$	$C_{\mathfrak{s}}H_{\mathfrak{s}}CH = CHC_{\mathfrak{s}}H_{\mathfrak{s}}$ (23)	9
• • • •	$p-\text{ClC}_{\mathbf{g}}\mathbf{H}_{4}\text{CH} = \text{CHC}_{\mathbf{g}}\mathbf{H}_{5}$ (41)	9
	p-ClC ₆ H ₄ CH ₂ CHClC ₆ H ₅ (75)	28
	$2,4-Cl_2C_6H_3CH_2CHClC_6H_5$ ()	73
	$p - O_2 NC_6 H_4 CH = CHC_6 H_5 (32)$	9 Q
	$p-CH_3OC_6H_4CH=CHC_6H_5$ (13)	9 ORGANIC 9 74 74
CH2=CHC6H4NO2-p	p-ClC ₆ H ₄ CH ₂ CHClC ₆ H ₄ NO ₂ - p (9)	74 AZ
	$p - O_2 NC_6 H_4 CH_2 CHClC_6 H_4 NO_2 - p(4)$	74 10
	$p-CH_3C_6H_4CH_2CHClC_6H_4NO_2-p$ (4)	7 4
$CH_2 = C(CH_3)C_6H_5$	$2,4-Cl_2C_8H_3CH_2CCl(CH_3)C_8H_5$ ()	REACTIONS
CH ₃ CH=C(CH ₃)C ₆ H ₅	$C_6H_5C(CH_3) = C(CH_3)C_6H_5$ (8)	9 6
	$p - O_2 NC_6 H_4 C(CH_3) = C(CH_3) C_6 H_5$ (36)	9 FI
	$p-CH_3OC_8H_4C(CH_3) = C(CH_3)C_8H_5(0)$	9 N
$C_2H_5CH = C(C_2H_5)C_6H_4OCH_3-p$	$p-CH_3OC_6H_4C(C_2H_5)=C(C_2H_5)C_6H_4OCH_3-p$ (0.8)	9 x
$CH_2 = C(C_6H_5)_2$	$p \cdot O_2 NC_6 H_4 CH = C(C_6 H_5)_2$ (10)	75
2-Vinylpyridine	$p-\text{ClC}_{6}\text{H}_{4}\text{CH}_{2}\text{CHClC}_{5}\text{H}_{4}\text{N}-2$ (20)	74
	$p - O_2 NC_8 H_4 CH_2 CHClC_5 H_4 N - 2$ (15)	74
	$p-CH_3C_6H_4CH_2CHClC_5H_4N-2$ (54)	74
HC=CC ₆ H ₅	$C_{\mathbf{s}}\mathbf{H}_{5}\mathbf{C} \equiv CC_{\mathbf{s}}\mathbf{H}_{5} \S (5)$	5
· ·	p-ClC ₆ H ₄ C==CC ₆ H ₅ § (24)	5
	$p - O_2 NC_6 H_4 C \equiv CC_6 H_5 \S$ (14)	5

 The crude product was a mixture of $ArC \equiv CC_{6}H_{5}$ and $ArCH = CClC_{6}H_{5}$; it was dehydrohalogenated without purification to the diarylacetylene.

TABLE III

α,β -Unsaturated Aldehydes and Ketones

Unsaturated Carbonyl Compound	Product (Yield %)	References	
CH2CHCHO	$C_6H_5CH_2CHClCHO$ (10)	106	
	m-ClC ₆ H ₄ CH ₂ CHClCHO (27)	106	
	p-ClC ₆ H ₄ CH ₂ CHClCHO (38)	106	THE
	$p - O_2 NC_6 H_4 CH_2 CHClCHO$ (11)	106	ਦ
$CH_2 = C(CH_3)CHO$	p-ClC ₆ H ₄ CH ₂ CCl(CH ₃)CHO (43)	106	M
$CH_2 = C(C_2H_5)CHO$	p-ClC ₆ H ₄ CH ₂ CCl(C ₂ H ₅)CHO (33)	106	MEERWEIN
CH ₂ ==CHCOCH ₃	$C_6H_5CH_2CHClCOCH_3$ (18)	85	RV
	p-ClC ₆ H ₄ CH ₂ CHClCOCH ₃ (22)	85	VΕ
	2,5-Cl ₂ C ₆ H ₃ CH ₂ CHClCOCH ₃ ()	3, 4	IN
	$p - O_2 NC_6 H_4 CH_2 CHClCOCH_3$ (41)	85	Ä
	$o-HO_2CC_6H_4CH_2CHClCOCH_3$ ()	85	AR
	$p-HO_2CC_6H_4CH_2CHClCOCH_3$ (26)	85	ΥL
	o-CH ₃ O ₂ CC ₆ H ₄ CH ₂ CHClCOCH ₃ ()	85	AT
	m-NCC ₆ H ₄ CH ₂ CHClCOCH ₃ ()	3	LATION
CH ₃ O = O		149	IN REACTION
C ^e H ² CH=CHCHO	$cH_3 \circ OCH_3 \circ OCH_3$	1	Ň

Note: References 142 to 161 are on p. 260.

* The starting amine was methyl 2-aminotrimethylgallate; the intermediate addition product underwent spontaneous hydrolysis and lactonization.

230

TABLE III—Continued

 α,β -Unsaturated Aldehydes and Ketones

Unsaturated Carbonyl Compound	Product (Yield %)	References
C ₆ H ₅ CH==CHCOCH ₃	$o-ClC_{6}H_{4}CH(COCH_{3})CHClC_{6}H_{5}$ (20)	43
	m-ClC ₆ H ₄ CH(COCH ₃)CHClC ₆ H ₅ (39)	43
	p-ClC ₆ H ₄ C(COCH ₃)=CHC ₆ H ₅ (45)	1, 43 🖸
	p-BrC ₆ H ₄ C(COCH ₃)=CHC ₆ H ₅ (10)	1, 43 OR 43 GA 43 AN 43 IC
	$o-O_2NC_6H_4CH(COCH_3)CHClC_6H_5$ (38)	43 A
	$m - O_2 NC_6 H_4 C(COCH_3) = CHC_6 H_5 (18)$	43 👸
	$p - O_2 NC_6 H_4 C(COCH_3) = CHC_6 H_5 (39)$	10
	$o-CH_3C_6H_4CH(COCH_3)CHClC_6H_5$ (15)	43 REACTIONS 43 43 43 43 43
	m-CH ₃ C ₆ H ₄ CH(COCH ₃)CHClC ₆ H ₅ (20)	43 6
	$p-C_{6}H_{5}C_{6}H_{4}CH(COCH_{3})CHClC_{6}H_{5}$ (20)	43
$m - O_2 NC_6 H_4 CH = CHCOCH_3$	$p - O_2 NC_6 H_4 CH (COCH_3) CHClC_6 H_4 NO_2 - m^{\dagger} ()$	43 2
C ₆ H ₅ CH=CHCOC ₆ H ₅	$p - O_2 NC_6 H_4 C(COC_6 H_5) = CHC_6 H_5$ (20)	44 00
CH=CHCOCH ₃	$5-p-ClC_6H_4C_4H_2O(CH=CHCOCH_3)-2$ (30)	48

† This product could not be purified.

TABLE	\mathbf{IV}
-------	---------------

Aliphatic α,β -Unsaturated Monobasic Acids, Esters, Nitriles

IInacturated Commound		D. 6.	
Unsaturated Compound	Product (Yield, %)	References	
$CH_2 = CHCO_2H$	$C_{6}H_{5}CH = CHCO_{2}H$ (0)	31	د
	$o-\text{ClC}_6\text{H}_4\text{CH}=\text{CHCO}_2\text{H}$ (26)	31	THE
	m-ClC ₈ H ₄ CH=CHCO ₂ H (28)	31	
	p-ClC ₆ H ₄ CH=CHCO ₂ H (28)	31	IM
	$p-\text{ClC}_6\text{H}_4\text{CH}_2\text{CHClCO}_2\text{H}$ ()	3, 4	E
	$2,6-Cl_2C_6H_3CH \longrightarrow CHCO_2H$ (20)	31	RV
	$o-BrC_6H_4CH=CHCO_2H$ (25)	31	VE
	m-BrC ₆ H ₄ CH=CHCO ₂ H (26)	31	MEERWEIN
	p-BrC ₆ H ₄ CH=CHCO ₂ H (26)	31	
	$o-IC_6H_4CH == CHCO_2H$ (26)	31	R
	$o - O_2 NC_6 H_4 CH = CHCO_2 H$ (7)	31	ΥI
	$m - O_2 NC_6 H_4 CH = CHCO_2 H$ (29)	31	ARYLATION
	$p - O_2 NC_6 H_4 CH \longrightarrow CHCO_2 H$ (60)	31	FIC
	$p - O_2 NC_6 H_4 CH_2 CHClCO_2 H ()$	3, 4	ž
	$o-CH_3OC_6H_4CH = CHCO_2H(0)$	31	R
	$p-CH_3OC_6H_4CH = CHCO_2H$ (0)	31	ΈA
	$p-CH_{3}COHNC_{6}H_{4}CH=CHCO_{2}H(0)$	31	G
	$p-H_2NO_2SC_6H_4CH_2CHBrCO_2H$ ()	3, 4	REACTION
	$3 \cdot O_2 N \cdot 4 \cdot H_3 CC_6 H_3 CH \Longrightarrow CHCO_2 H$ (15)	31	ž
	$p-\mathrm{CH}_{3}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CH}=\mathrm{CHCO}_{2}\mathrm{H}(0)$	31	
	$2,3-(CH_3)_2C_6H_3CH = CHCO_2H (0)$	31	
	α -C ₁₀ H ₂ CH=CHCO ₂ H (7)	31	
	α -C ₁₀ H ₇ CH ₂ CHClCO ₂ H ()	3, 4	
	β -C ₁₀ H ₂ CH=CHCO ₂ H (10)	31	
			231

TABLE IV—Continued

Aliphatic α,β -Unsaturated Monobasic Acids, Esters, Nitriles

Unsaturated Compound	Product (Yield, %)	References
CH2=CHCO2CH3	$2,4-Cl_2C_6H_3CH_2CHClCO_2CH_3$ ()	3, 4
	$p - O_2 NC_6 H_4 CH_2 CHClCO_2 CH_3 (50)$	150
	p-CH ₃ C ₆ H ₄ CH ₂ CHClCO ₂ CH ₃ (23 crude)	32
CH2=CHCN	$C_{e}H_{5}CH_{2}CHClCN$ (81)	
-	p-ClC ₆ H ₄ CH ₂ CHClCN (85)	8, 3, 4, 28, 43,
		46
	2,4-Cl ₂ C ₆ H ₃ CH ₂ CHClCN ()	8, 32, 50, 82 OR 8, 3, 4, 28, 43, G 46 N 3, 4, 73 C
	3,4-Cl ₂ C ₆ H ₃ CH ₂ CHClCN ()	0.4
	4-Cl-2-HO ₂ CC ₆ H ₃ CH ₂ CHClCN ()	3 E
	$o - O_2 NC_6 H_4 CH_2 CHClCN$ ()	83 A
	$m - O_2 NC_6 H_4 CH_2 CHClCN$ (58)	3, 4 3 82 83 8, 3, 4, 32 8, 3, 4, 32, 43, N 8, 3, 4, 32, 43, N
	$p - O_2 NC_6 H_4 CH_2 CHClCN$ (91)	8, 3, 4, 32, 43, 9
	· · · · ·	83 22
	5-O ₂ N-2-HO ₂ CC ₆ H ₃ CH ₂ CHClCN ()	83
	o-CH ₃ OC ₆ H ₄ CH ₂ CHClCN (17)	8
	$p-CH_3OC_6H_4CH_2CHClCN$ (76)	8, 82
	$p-HO_3SC_6H_4CH_2CHClCN$ (93)	8
	$p-H_2NO_2SC_6H_4CH_2CHClCN$ (98 crude)	3, 4
	$p-H_2O_3AsC_6H_4CH_2CHClCN$ ()	15
	$p-CH_{3}C_{6}H_{4}CH_{2}CHClCN$ (40)	32
	$\alpha - C_{10}H_7CH_2CH_2CO_2H^* (45)$	150
	$\beta - C_{10}H_7CH_2CH_2CO_2H^* (50)$	150
	p-NCC ₆ H ₄ CH ₂ CHClCN ()	3, 4

	o-HO ₂ CC ₆ H ₄ CH ₂ CHClCN ()	83
	$p-HO_2CC_5H_4CH_2CHClCN$ (88)	8, 4, 83
CH ₂ =CHCONH ₂	p-ClC ₆ H ₄ CH ₂ CHClCONH ₂ (0)	112
CH ₂ =CHCONHC ₄ H ₂ -t	p-ClC ₆ H ₄ CH ₂ CHClCONHC ₄ H ₉ - t (0)	112
(CH, =CHCONH), CH,	$(p-\text{ClC}_{s}\text{H}_{4}\text{CH}_{2}\text{CH}\text{ClCONH})_{s}\text{CH}_{s}(0)$	112
$CH_2 = C(CH_3)CO_2H$	$C_{5}H_{5}CH = C(CH_{3})CO_{2}H$ (26) [†]	91
• • •	p-ClC ₅ H ₄ CH==C(CH ₃)CO ₂ H (12)	80
	$m - O_2 NC_5 H_4 CH = C(CH_3)CO_2 H$ (12)	80 TH 80 HE
	$p - O_{n}NC_{s}H_{a}CH = C(CH_{a})CO_{s}H(20)$	80
	$o-CH_3OC_6H_4CH = = C(CH_3)CO_2H(28)^{\dagger}$	91 🗧
	p-CH ₃ OC ₅ H ₄ CH=C(CH ₃)CO ₂ H (25) [†]	90 M 91 EE 91 R 91 B 91 EI 80 N
	$o-CH_3C_6H_4CH = C(CH_3)CO_2H(23)^{\dagger}$	91 😴
	$p-CH_3C_6H_4CH=C(CH_3)CO_2H(28)^{\dagger}$	91 E
	$\beta - C_{10}H_7CH = C(CH_3)CO_2H (9)$	80 🗵
$CH_2 = C(CH_3)CO_2CH_3$	$C_{6}H_{5}CH_{2}CCl(CH_{3})CO_{2}CH_{3}$ (47)	150 🛓
	p -ClC ₆ H ₄ CH ₂ CCl(CH ₃)CO ₂ CH ₃ \ddagger (57)	150 ARYLATION 44 73 44 73 44 44
	$2,4-Cl_2C_6H_3CH_2CCl(CH_3)CO_2CH_3$ ()	73 🛒
	p -BrC ₆ H ₄ CH ₂ CCl(CH ₃)CO ₂ CH ₃ \ddagger (32)	44 🔁
	$o-O_2NC_6H_4CH_2CCl(CH_3)CO_2CH_3$ [†] (27)	44 🧕
	m-O ₂ NC ₆ H ₄ CH ₂ CCl(CH ₃)CO ₂ CH ₃ ⁺ (63)	44
	$p - O_2 NC_6 H_4 CH_2 CCl(CH_3) CO_2 CH_3 (72)$	150, 44
	p -CH ₃ OC ₆ H ₄ CH ₂ CCl(CH ₃)CO ₂ CH ₃ \ddagger (26)	44 🔀
	p-CH ₃ C ₆ H ₄ CH ₂ CCl(CH ₃)CO ₂ CH ₃ (57)	44 🚊
Note: References 142 to 161 are on p. 26	0.	150, 44 REACTION 44 A4 TION

* The intermediate product C₁₀H₇CH₂CHClCN was not isolated as such, but was reduced and hydrolyzed directly to C₁₀H₇CH₂CH₂CO₂H.

⁺ This was the yield of a mixture of stereoisomers whose separation was attended by great loss of material.

‡ The low halogen content of the product suggests that partial dehydrochlorination occurred on distillation.

TABLE IV—Continued

Aliphatic α,β -Unsaturated Monobasic Acids, Esters, Nitriles

Unsaturated Compound	Product (Yield, %)	References	
$CH_2 = C(CH_3)CN$	$C_6H_5CH_2CCl(CH_3)CN$ (42)	5	
-, .	$p-\text{ClC}_6\text{H}_4\text{CH}_2\text{CCl}(\text{CH}_3)\text{CN}$ (66)	5	
	$2,4-Cl_2C_6H_3CH_2CCl(CH_3)CN$ (56)	5	
	$3,4-Cl_2C_6H_3CH_2CCl(CH_3)CN$ (58)	5	
	m-BrC ₆ H ₄ CH ₂ CCl(CH ₃)CN (42)	5	0F
	$m-O_2NC_6H_4CH_2CCl(CH_3)CN$ (59)	5	ORGANIC
	$p - O_2 NC_6 H_4 CH_2 CCl(CH_3) CN$ (64)	5	AZ
	$p-CH_3OC_6H_4CH_2CCl(CH_3)CN$ (40)	5	IC.
	$2-CH_{3}O-5-ClC_{6}H_{3}CH_{2}CCl(CH_{3})CN (0)$	<u>ج</u>	
	$o-CH_3C_6H_4CH_2CCl(CH_3)CN$ (27)	5	Ē
	$p-CH_{3}C_{6}H_{4}CH_{2}CCl(CH_{3})CN$ (53)	5	G .
	m-CF ₃ C ₆ H ₄ CH ₂ CCl(CH ₃)CN (68)	5	
	$2,6-(C_2H_5)_2C_6H_3CH_2CCl(CH_3)CN$ (0)	5	REACTIONS
	CH ₂ CCl(CH ₃)CN (59)	5	
	N	U	
CH ₃ CH=CHCO ₂ H	$p-O_2NC_6H_4CH(CH_3)CHClCO_2H$ (9)	26, 1, 31	
CH ₃ CH==CHCO ₂ CH ₃	$2,4-Cl_2C_6H_3CH(CH_3)CHClCO_2CH_3$ (20)	26, 1	
CH ₃ CH=CHCO ₂ C ₂ H ₅	$C_{g}H_{5}CH(CH_{3})CHClCO_{2}C_{2}H_{5}$ (8)	26	
-	p-ClC ₆ H ₄ CH(CH ₃)CHClCO ₂ C ₂ H ₅ (34)	26	

Unsaturated Compound	Product (Yield, %)	References
C ₆ H ₅ CH=CHCO ₂ H	$C_6H_5CH = CHC_6H_5$ (36)*	1, 12
	$o-ClC_{6}H_{4}CH = CHC_{6}H_{5}(9)$	11
	m-ClC ₆ H ₄ CH=CHC ₆ H ₅ (16)	11 TH 1, 11 E
	$p-\text{ClC}_{6}\text{H}_{4}\text{CH}=\text{CHC}_{6}\text{H}_{5}$ (69)*	1, 11 🗒
	$2,4-Cl_2C_6H_3CH = CHC_6H_5$ (34)	1, 13 🔀
	$2,5-\text{Cl}_2\text{C}_6\text{H}_3\text{CH} = \text{CHC}_6\text{H}_5 (28)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$2,6-\mathrm{Cl}_{2}\mathrm{C}_{6}\mathrm{H}_{3}\mathrm{CH} = \mathrm{CHC}_{6}\mathrm{H}_{5} (0)$	13 ਲ
	$3,4-\text{Cl}_2\text{C}_6\text{H}_3\text{CH}=\text{CHC}_6\text{H}_5$ (40)	13 🔮
	$2 - \text{Cl} - 5 - \text{H}_3 \text{CC}_6 \text{H}_3 \text{CH} == \text{CHC}_6 \text{H}_5 (27)$	13
	$o - BrC_6H_4CH == CHC_6H_5 (8)$	11
	m-BrC ₆ H ₄ CH=CHC ₆ H ₅ (17)	11 ARYLATION 11 13 13 13 13 13
	p-BrC ₆ H ₄ CH=CHC ₆ H ₅ (23)	11 🞽
	5-Br-2-CH ₃ OC ₆ H ₃ CH=CHC ₆ H ₅ (28)	13
	$o - O_2 NC_6 H_4 CH == CHC_6 H_5 (44)^*$	1 1
	$m \cdot O_2 NC_6 H_4 CH = CHC_6 H_5$ (33)	13 ^O Z
	$p - O_2 NC_6 H_4 CH = CHC_6 H_5 (58)^*$	1 🛪
	$2 \cdot O_2 N \cdot 4 \cdot CH_3 OC_6 H_3 CH = CHC_6 H_5 (18)$	13 ਦ
	$4 - O_2 N - 1 - C_{10} H_6 CH = CHC_6 H_5 (12)$	10 5
	o-CH ₃ OC ₆ H ₄ CH=CHC ₆ H ₅ ()	13 EA 10 ACTIO 13 11 1 0
	$p-CH_3OC_6H_4CH=CHC_6H_5$ (49)	1 2
	$p-\mathrm{HO}_{3}\mathrm{SC}_{6}\mathrm{H}_{4}\mathrm{CH}=\mathrm{CHC}_{6}\mathrm{H}_{5}$ (78)*	1
	$o - H_2O_3AsC_6H_4CH = CHC_6H_5 (0)$	16
	$m \cdot H_2O_3AsC_6H_4CH == CHC_6H_5$ ()	22, 16
	$p-\mathrm{H}_{2}\mathrm{O}_{3}\mathrm{AsC}_{6}\mathrm{H}_{4}\mathrm{CH}=\mathrm{CHC}_{6}\mathrm{H}_{5}$ (30–35)	16, 15
	$o-\mathrm{CH}_{3}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CH}=-\mathrm{CHC}_{6}\mathrm{H}_{5} (12)$	13
* This yield has been correc	ted to allow for recovered starting acid.	19 25 5

TABLE V

Aromatic α,β -Unsaturated Acids, Esters, Nitriles

236

	TABLE V—Continued		36
A	ROMATIC α,β -Unsaturated Acids, Esters, Nitriles		
Unsaturated Compound	Product (Yield, %)	References	
$C_6H_5CH = CHCO_2H$ (continued)	m-CH ₃ C ₆ H ₄ CH=CHC ₆ H ₅ (14)	13	
	$p-CH_{3}C_{6}H_{4}CH=CHC_{6}H_{5}$ (40)	13, 1	
	$p-CH_3OCH_2C_6H_4CH = CHC_6H_5$ (0)	118	
	$p - HO_2CCH_2C_6H_4CH = CHC_6H_5 (0)$	118	
	$p - C_2 H_5 O_2 CCH_2 C_6 H_4 CH = CHC_6 H_5 (0)$	118	
	p-NCCH ₂ C ₆ H ₄ CH=CHC ₆ H ₅ (0)	118	0
	$p-C_6H_5C_6H_4CH = CHC_6H_5$ (12)	12	RG
	α -C ₁₀ H ₇ CH=CHC ₆ H ₅ (trace)	13	Al
	β -C ₁₀ H ₇ CH=CHC ₆ H ₅ (5)	13	ORGANIC
	$o-C_{6}H_{5}CH = CHC_{6}H_{4}CH = CHC_{6}H_{5}$ (15)	41	
	$m-C_{6}H_{5}CH \longrightarrow CHC_{6}H_{4}CH \longrightarrow CHC_{6}H_{5}$ (20)	41	REACTIONS
	$p-C_{6}H_{5}CH = CHC_{6}H_{4}CH = CHC_{6}H_{5}$ (35)	41	AC
	p-OCHC ₆ H ₄ CH=CHC ₆ H ₅ (20)	151	Ē
	$o-HO_2CC_6H_4CH \cong CHC_6H_5(0)$	152	02
	$m - HO_2CC_6H_4CH = CHC_6H_5 \pmod{3}$	152	S
	$p-\mathrm{HO}_{2}\mathrm{CC}_{6}\mathrm{H}_{4}\mathrm{CH}=\mathrm{CHC}_{6}\mathrm{H}_{5}$ (60)	152, 118	
	p-CH ₃ O ₂ CC ₆ H ₄ CH=CHC ₆ H ₅ (52)	153	
	$p-C_2H_5O_2CC_6H_4CH = CHC_6H_5$ (36)	153	
	$p-CH_3COC_6H_4CH=-CHC_6H_5$ (45)	118	
	$p-C_{2}H_{5}COC_{6}H_{4}CH = CHC_{6}H_{5}$ (22)	154	
	$p-C_6H_5COC_6H_4CH=CHC_6H_5$ (25)	154	
	$CH = CHC_6H_5 $ (0)	119	

o-CIC ₆ H ₄ CH=CHCO ₂ H p-CIC ₆ H ₄ CH=CHCO ₂ H m-O ₂ NC ₆ H ₄ CH=CHCO ₂ H	$\begin{array}{l} o-{\rm ClC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(12)\\ p-{\rm ClC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(28)\\ p-{\rm BrC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(17)\\ o-{\rm O}_{2}{\rm NC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(25)\\ p-{\rm O}_{2}{\rm NC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(26)\\ o-{\rm CH}_{3}{\rm OC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(26)\\ o-{\rm CH}_{3}{\rm OC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(26)\\ o-{\rm CH}_{3}{\rm OC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(12)\\ p-{\rm C}_{6}{\rm H}_{5}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(12)\\ p-{\rm C}_{6}{\rm H}_{5}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(12)\\ p-{\rm R}_{0}{\rm 2}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - o~(12)\\ p-{\rm R}_{0}{\rm Q}_{2}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - v~(10){}^{\dagger}_{1}\\ o-{\rm ClC}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm Cl} - v~(12)\\ p-{\rm H}_{2}{\rm O}_{3}{\rm Asc}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(12)\\ p-{\rm B}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(12)\\ p-{\rm B}{\rm r}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(12)\\ p-{\rm B}{\rm r}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(12)\\ m-{\rm O}_{2}{\rm N}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(18)\\ p-{\rm O}_{2}{\rm N}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(18)\\ p-{\rm O}_{2}{\rm O}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(18)\\ p-{\rm CH}_{3}{\rm O}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(18)\\ p-{\rm CH}_{3}{\rm O}{\rm C}_{6}{\rm H}_{4}{\rm CH} == {\rm CHC}_{6}{\rm H}_{4}{\rm NO}_{2} - m~(12)\\ \end{array}$	$\begin{array}{c} 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\$	THE MEERWEIN ARYLATION
p-O₂NC6H4CH==CHCO2H‡	$o-CH_3C_6H_4CH \longrightarrow CHC_6H_4NO_2-m (5)$ $p-CH_3C_6H_4CH \longrightarrow CHC_6H_4NO_2-m (10)$ $o-ClC_6H_4CH \longrightarrow CHC_6H_4NO_2-p (5)$ $p-ClC_6H_4CH \longrightarrow CHC_6H_4NO_2-p (12)$ $p-BrC_6H_4CH \longrightarrow CHC_6H_4NO_2-p (8)$ $o-O_2NC_6H_4CH \longrightarrow CHC_6H_4NO_2-p (5)$	42 42 42 42, 1 42 42	REACTION

Note: References 142 to 161 are on p. 260.

† The group R was not specified.

¹ The low yields probably resulted from the sparing solubility of the cinnamic acid. The better yields reported with o-chlorocinnamic acid in Ref. 42 were obtained by the use of a large volume of acetone.

TABLE	V—Continued
-------	-------------

AROMATIC α,β -UNSATURATED ACIDS, ESTERS, NITRILES

Unsaturated Compound	Product (Yield, %)	References
$p - O_2 NC_6 H_4 CH == CHCO_2 H^{\ddagger}_{\downarrow}$ (continued)	$p - O_2 NC_6 H_4 CH = CHC_6 H_4 NO_2 - p$ (11)	42
	$o-CH_3OC_6H_4CH = CHC_6H_4NO_2-p$ (8)	42
	$p-CH_3OC_5H_4CH=CHC_5H_4NO_2-p$ (10)	42
	p-CH ₃ C ₆ H ₄ CH=CHC ₆ H ₄ NO ₂ - p (14)	42
	$p-C_{6}H_{5}C_{6}H_{4}CH = CHC_{6}H_{4}NO_{2}-p$ (12)	42
3-O ₂ N-4-HOC ₆ H ₃ CH=CHCO ₂ H	$p-H_2O_3AsC_6H_4CH = CHC_6H_3OH-4-NO_2-3$ (2)	19, 15, 16
$p-HOC_6H_4CH = CHCO_2H$	$p-\text{ClC}_{6}\text{H}_{4}\text{CH} = \text{CHC}_{6}\text{H}_{4}\text{OH} - p$ (56)	1 9
	$p-H_2O_3AsC_6H_4CH = CHC_6H_4OH-p$ (31)	16, 15 <u>ဋ</u>
	$3 \cdot O_2 N \cdot 4 \cdot H_2 O_3 A_3 C_6 H_3 CH = CHC_6 H_4 OH - p$ (7)	19, 15 💆
o-CH ₃ OC ₆ H ₄ CH==CHCO ₂ H	$p-\text{ClC}_{6}\text{H}_{4}\text{CH} = \text{CHC}_{6}\text{H}_{4}\text{OCH}_{3}-o$ (8)	1 OR 16, 15 GA 19, 15 AN 42 IC
· · · ·	p-BrC ₆ H ₄ CH=CHC ₆ H ₆ OCH ₃ -o (13)	10
	$o - O_2 NC_6 H_4 CH = CHC_6 H_4 OCH_3 - o$ (5)	42 REACTIONS 42 42 42 42 42 42 42 42 42 42 42 42 42 4
	$m - O_2 NC_6 H_4 CH = CHC_6 H_4 OCH_3 - o$ (25)	42 6
	$p - O_2 NC_6 H_4 CH = CHC_6 H_4 OCH_3 - o$ (8)	42
	o-CH ₃ OC ₆ H ₄ CH=CHC ₆ H ₄ OCH ₃ -o (8)	42 \breve{z}
	$p-CH_3OC_6H_4CH = CHC_6H_4OCH_3-o$ (21)	42 22
	$p-C_6H_5C_6H_4CH = CHC_6H_4OCH_3-o$ (35)	42
p-CH ₃ OC ₆ H ₄ CH=CHCO ₂ H	$o-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH} = \mathrm{CHC}_{6}\mathrm{H}_{4}\mathrm{OCH}_{3}-p (14)$	13
	p-ClC ₆ H ₄ CH=CHC ₆ H ₄ OCH ₃ - p (61)	1
	$p - H_2O_3AsC_6H_4CH = CHC_6H_4OCH_3 - p$ (ca. 20)	16, 15
$p-CH_3COHNC_6H_4CH==CHCO_2H$	$p - HO_3SC_6H_4CH = CHC_6H_4NHCOCH_3 - p ()$	137
	$p - H_2 NO_2 SC_6 H_4 CH = CHC_6 H_4 NHCOCH_3 - p$ (20)	137
	$p-H_2O_3AsC_6H_4CH = CHC_6H_4NHCOCH_3-p$ (25)	137
	p-OHCC ₆ H ₄ CH=CHC ₆ H ₄ NHCOCH ₃ - p (30)	136
	$p-HO_2CC_6H_4CH == CHC_6H_4NHCOCH_3-p$ (35)	136
<i>p</i> -CH ₃ C ₆ H ₄ CH==CHCO ₂ H	$p-H_2O_3AsC_8H_4CH = CHC_6H_4CH_3-p$ (30)	16, 15

$C_6H_5C(CH_3) = CHCO_2H$	$C_{\epsilon}H_{5}CH = C(CH_{3})C_{\epsilon}H_{5}$ (36)	44
	p-ClC ₆ H ₄ CH==C(CH ₃)C ₆ H ₅ (35)	44
	p-BrC ₆ H ₄ CH==C(CH ₃)C ₆ H ₅ § (23)	44
	$0 - O_2 NC_6 H_4 CH = C(CH_3)C_6 H_5$ (18)	44
	$m - O_2 N C_6 H_4 CH = -C(CH_3) C_6 H_5 \S (28)$	44
	$p - O_2 N C_6 H_4 C H == C (C H_3) C_6 H_5 (32)$	44
	$p-CH_3OC_6H_4CH \longrightarrow C(CH_3)C_6H_5 \S (11)$	44
	$p-CH_3C_6H_4CH \Longrightarrow C(CH_3)C_6H_5\S (11)$	44
	$p - C_{13} - C_{13}$	44
CH)C=CHCOH		14
$(C_6H_5)_2C = CHCO_2H$	$p - O_2 N C_6 H_4 C H = C (C_6 H_5)_2 (48)$	14
	$p-\mathrm{CH}_{3}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CH}=\mathrm{C}(\mathrm{C}_{6}\mathrm{H}_{5})_{2} (11)$	
p-FC ₆ H ₄ C(C ₆ H ₅)=CHCO ₂ H	$p - O_2 NC_6 H_4 CH = C(C_6 H_5) C_6 H_4 F - p$ (35)	14
$(p - FC_6H_4)_2C = CHCO_2H$	$p - O_2 NC_6 H_4 C H == C(C_6 H_4 F - p)_2 (50)$	14
p-BrC ₆ H ₄ C(C ₆ H ₅)==CHCO ₂ H	$p - O_{2}NC_{6}H_{4}CH = C(C_{6}H_{5})C_{6}H_{4}Br - p$ (30, 11)	14
$(p-CH_3OC_6H_4)_2C = CHCO_2H$	$p - O_2 NC_6 H_4 CH = C(C_6 H_4 OCH_3 - p)_2 (28)$	14
	$p-CH_3C_6H_4CH = C(C_6H_4OCH_3-p)_2$ (small)	14
$(p-H_3CC_6H_4),C=CHCO_9H$	$m - O_2 N C_6 H_4 C H == C (C_6 H_4 C H_3 - p)_2 (30)^*$	14
$C_6H_5CH = C(C_6H_5)CO_2H$	$p - O_2 N C_6 H_4 C (C_6 H_5) = CHC_6 H_5 (0) \P$	14
$C_6H_5CH = CHCO_2CH_3$	$C_{e}H_{5}CHClCH(CO_{2}CH_{3})C_{6}H_{4}Cl-p$ (30)	1, 26
0_{6} 1_{5} 0_{11} -0_{11} 0_{2} 0_{11} 0_{3}		1, 20
0.11.011.011.011.011	$C_6H_5CHBrCH(CO_2CH_3)C_6H_4Cl-p$ (26)	1
C ₆ H ₅ CH=CHCN	$C_6H_5CH=C(CN)C_6H_4Cl-p$ (76)	1
	$C_6H_5CH = C(CN)C_6H_4AsO_3H_2-p$ (ca. 20)	16, 15
$p - O_2 NC_6 H_4 CH = CHCN$	$p - O_2 NC_6 H_4 CH = C(CN)C_6 H_4 NO_2 - p$ (12)	43

* This yield has been corrected to allow for recovered starting acid.

‡ The low yields probably resulted from the sparing solubility of the cinnamic acid. The better yields reported with o-chlorocinnamic acid in Ref. 42 were obtained by the use of a large volume of acetone.

§ The analysis of the product suggests the presence of some hydrogen chloride addition product.
§ The 30% yield was obtained from the cinnamic acid of m.p. 175°; the 11% yield from acid of m.p. 169-170°.
¶ The starting acid decarboxylates extensively under the reaction conditions.

THE MEERWEIN ARYLATION REACTION

TABLE VI

ρ τι тт .

	Heterocyclic α, β -Unsaturated Acids	
d	Products (Yield, %)	References
	$p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH}=-\mathrm{CHC}_{4}\mathrm{H}_{3}\mathrm{O}$ (),	18
[_] Сн=снсо₂н	$5-p-ClC_{6}H_{4}C_{4}H_{2}O(CH=CHCO_{2}H)-2$ (, 26*),	
-	$5 - p - \text{ClC}_6 \text{H}_4 \text{C}_4 \text{H}_2 \text{O}(\text{CH} = \text{CHC}_6 \text{H}_4 \text{Cl} - p) - 2 ()$	
	$o \cdot O_2 NC_6 H_4 C(CO_2 H) = CHC_4 H_3 O^{\dagger} (21)$	18
	$p - O_2 NC_6 H_4 CH = CHC_4 H_3 O(23, 30^*)$	43, 95
	$5 - p - O_2 NC_6 H_4 C_4 H_2 O(CH \longrightarrow CHCO_2 H) - 2 (12),$	18
	$5 - p - O_2 NC_6 H_4 C_4 H_2 O(CH \longrightarrow CHC_6 H_4 NO_2 - p) - 2 (36)$	
	$5 \cdot p \cdot HO_3SC_6H_4C_4H_2O(CH = CHC_6H_4SO_3H \cdot p) \cdot 2 (),$	18
	$5 - p - HO_3SC_6H_4C_4H_2O(CH = CHCO_2H) - 2 $ (4)	
	$5 - p - H_2O_3AsC_6H_4C_4H_2O(CH == CHCO_2H) - 2 (),$	18, 15
	$5 - p - H_2O_3AsC_6H_4C_4H_2O(CH = CHC_6H_4AsO_3H_2 - p) - 2 ()$	
	$5 - p - C_2 H_5 O_2 C C_6 H_4 C_4 H_2 O (CH = CH CO_2 H) - 2$ (14),	18
	$5 - p - C_2 H_5 O_2 C C_6 H_4 C_4 H_2 O (CH = CH C_6 H_4 C O_2 C_2 H_5 - p) - 2 ()$	
г	$p-\text{ClC}_{s}\text{H}_{4}\text{CH}=\text{CHC}_{4}\text{H}_{3}\text{S}$ (35)	21
CH=CHCO ₂ H	$p - O_2 NC_4 H_4 CH = CHC_4 H_3 S$ (36),	21
	$5 - p - O_2 NC_5 H_4 C_4 H_4 S(CH = CHC_5 H_4 NO_2 - p) - 2$ (8)	
	$p-H_2O_3AsC_6H_4CH = CHC_4H_3S$ (30)	20
	$p-HO_2CC_6H_4CH == CHC_4H_3S(22)$	21

* This yield refers to an article by Oda,⁴⁸ who was probably describing the product in question. The original article was not available, and the nomenclature used in the abstract is ambiguous. † The structure of the product was not proved.

Acid ſ

TABLE VII

	α, β -UNSATURATED γ -KETO ACIDS		
Acid	Product (Yield, %)	References	THE
C ₅ H ₅ COCH=CHCO ₂ H	$C_6H_5CH = CHCOC_6H_5$ (trace)	90	E
••••••	$o-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH} = \mathrm{CHCOC}_{6}\mathrm{H}_{5} (5)$	89	X
	m-ClC ₆ H ₄ CH==CHCOC ₆ H ₂ (5)	89	MEERWEIN
	$p-ClC_6H_4CH = CHCOC_6H_5$ (27–29)	89	R
	p-BrC ₆ H ₄ CH=CHCOC ₆ H ₅ (17–18)	89	VΕ
	$o - O_2 NC_6 H_4 CH = CHCOC_6 H_5 (10-14)$	89	Ħ
	$m - O_2 NC_6 H_4 CH = CHCOC_6 H_5 (12 - 14)$	89	-
	$p-O_2NC_6H_4CH = CHCOC_6H_5$ (16–19)	89	ARYLATION
p-CH ₃ OC ₆ H ₄ COCH=CHCO ₂ H	$C_{6}H_{5}CH = CHCOC_{6}H_{4}OCH_{3} \cdot p (7)$	90	Ţ
	$o-\text{ClC}_{6}\text{H}_{4}\text{CH} = \text{CHCOC}_{6}\text{H}_{4}\text{OCH}_{3}-p$ (12)	90	Â
	$p-\text{ClC}_{6}\text{H}_{4}\text{CH} = \text{CHCOC}_{6}\text{H}_{4}\text{OCH}_{3} \cdot p$ (13)	90	
	$o-BrC_{6}H_{4}CH = CHCOC_{6}H_{4}OCH_{3}-p (9)$	90	ž
	$p-\operatorname{BrC}_{6}\operatorname{H}_{4}\operatorname{CH} = \operatorname{CHCOC}_{6}\operatorname{H}_{4}\operatorname{OCH}_{3} p (10)$	90	\mathcal{R}
	$o - O_2 NC_6 H_4 CH = CHCOC_6 H_4 OCH_3 - p$ (8)	90	REACTION
	$m - O_2 NC_6 H_4 CH = CHCOC_6 H_4 OCH_3 - p$ (10)	90	3
	$p-O_2NC_6H_4CH = CHCOC_6H_4OCH_3-p$ (23)	90	
$3,4-(CH_3O)_2C_6H_3COCH=CHCO_2H$	$C_6H_5CH = CHCOC_6H_3(OCH_3)_2 - 3,4 (8)$	90	ž
	$2-O_2NC_6H_4CH = CHCOC_6H_3(OCH_3)_2-3,4 (23)$	90	
	$3-O_2NC_6H_4CH = CHCOC_6H_3(OCH_3)_2-3,4 (22)$	90	
	$4 - O_2 NC_6 H_4 CH = CHCOC_6 H_3 (OCH_3)_2 - 3,4 (21)$	90	

241

TABLE VIII

CONJUGATED DIENOIC ACIDS AND ESTERS

Unsaturated Compound	Product (Yield, %)	References
CH,CH=CHCH=CHCO,H	$CH_3CH = CHCH = CHC_6H_5$ (26)	26
C _s H _s CH=CHCH=CHCO ₂ H	$C_{g}H_{5}CH = CHCH = CHC_{g}H_{5}$ (28)	26, 12
•••	$C_{g}H_{5}CH = CHCH = CHC_{g}H_{4}Cl-o$ (10)	11
	$C_{6}H_{5}CH = CHCH = CHC_{6}H_{4}Cl-m$ (29)	11
	$C_{g}H_{5}CH = CHCH = CHC_{g}H_{4}Cl-p$ (33)	11
	$C_{8}H_{5}CH = CHCH = CHC_{8}H_{4}NO_{2}-o$ (10)	155, 13
	$C_{6}H_{5}CH = CHCH = CHC_{6}H_{4}NO_{2}-m$ (12)	13, 41
	$C_{6}H_{5}CH = CHCH = CHC_{6}H_{4}NO_{2}-p$ (25)	10
	C ₆ H ₅ CH=CHCH=CHC ₆ H ₄ OCH ₃ -o (18)	41
	$C_{s}H_{5}CH = CHCH = CHC_{s}H_{4}OCH_{3}-p$ (22)	41
	$C_{g}H_{5}CH = CHCH = CHC_{g}H_{4}C_{g}H_{5}-p$ (20)	12
	$C_{8}H_{5}CH = CHCH = CHC_{8}H_{4}CH = CHC_{8}H_{5}-m$ ()	41
C ₆ H ₅ CH=CHCH=CHCO ₂ CH ₃	$C_{6}H_{5}CH = CHCH = C(CO_{2}H)C_{6}H_{5}^{*} (19)$	26
	$C_{6}H_{5}CH = CHCH = C(CO_{2}H)C_{6}H_{4}Cl \cdot p^{*} (37)$	26

Note: References 142 to 161 are on p. 260.

* The intermediate ester was saponified directly.

ORGANIC REACTIONS

IADLE IA

Polybasic α,β -Unsaturated Acids, Nitriles, Esters, Imides

Unsaturated Compound	Product (Yield, %)	References	
Maleic acid (Reactions conducted at pH 3-4,	$C_{s}H_{s}CH = CHCO_{s}H(0)$	47	THE
in the absence of acetone)	o-ClC ₆ H ₄ CH==CHCO ₂ H (28)	47	Ē
,	m-ClC ₆ H ₄ CH=CHCO ₂ H (28)	47	М
	p-ClC ₆ H ₄ CH=CHCO ₉ H (28)	47	EF
	$2,6-Cl_2C_5H_3CH = CHCO_2H$ (21)	47	MEERWEIN
	o-BrC ₆ H ₄ CH=CHCO ₂ H (23)	47	WI
	m-BrC ₆ H ₄ CH=CHCO ₂ H (26)	47	EIN
	p-BrC ₆ H ₄ CH==CHCO ₂ H (29) ⁻	47	
	$o-IC_6H_4CH = CHCO_2H$ (23)	47	AR
	$o - O_2 NC_6 H_4 CH = CHCO_2 H$ (7)	47	Y
	$m - O_2 NC_6 H_4 CH = CHCO_2 H$ (24)	47	LATION
	$p - O_2 NC_6 H_4 CH = CHCO_2 H (58)^*$	47	T]
	$2,4-(O_2N)_2C_6H_3CH = CHCO_2H$ (7)	47	N N N
	$3 - O_2 N - 4 - H_3 CC_6 H_3 CH = CHCO_2 H (14)$	47	
	$o-\mathrm{CH}_{3}\mathrm{OC}_{6}\mathrm{H}_{4}\mathrm{CH}=\mathrm{CHCO}_{2}\mathrm{H} (0)$	47	Ē
	$p-CH_3OC_6H_4CH = CHCO_2H$ (0)	47	AC
	$p-CH_3COHNC_6H_4CH = CHCO_2H$ (0)	47	REACTION
	2,3-(CH_3) ₂ C ₆ H ₃ CH=CHCO ₂ H (0)	47	0N
	$\alpha - C_{10}H_{7}CH = CHCO_{2}H (7)$	47	
	β -C ₁₀ H ₇ CH=CHCO ₂ H (8)	47	

* The author of this chapter was unable to duplicate this yield in several attempts. The average yield in his experiments was 30%.

243

TABLE IX—Continued

POLYBASIC α,β -UNSATURATED ACIDS, NITRILES, ESTERS, IMIDES

4	· · · · · · · · · · · · · · · · · · ·		
Unsaturated Compound	Product (Yield, %)	References	
Maleic acid (Reactions conducted at pH 1-2,	$HO_{s}CCHClCH(CO_{s}H)C_{s}H_{s}^{\dagger}()$	92	
in the presence of acetone)	$HO_2CCHClCH(CO_2H)C_6H_4NO_2-p$ (50)	92	
-	$HO_2CCHClCH(CO_2H)C_2H_4CH_3-p^{\dagger}()$	92	
	$HO_2CCHClCH(CO_2H)C_{10}H_7-\alpha^{\dagger}(-)$	92	
	$HO_2CCHClCH(CO_2H)C_{10}H_7-\beta^{\dagger}(-)$	92	
Dimethyl maleate	$HO_2CCH = C(CO_2H)C_6H_5 \ddagger (18)$	87	
	$HO_2CCH = C(CO_2H)C_6H_4Cl-p_{\uparrow}^{\dagger} (47)$	1	~
	$CH_{3}O_{2}CCH = C(CO_{2}CH_{3})C_{6}H_{4}Cl \cdot p \parallel (26)$	88	ORGANIC
Dimethyl fumarate	$HO_2CCH = C(CO_2H)C_6H_4Cl-p^{\dagger}$ (70)	1	G A
	$CH_{3}O_{2}CCH = C(CO_{2}CH_{3})C_{6}H_{4}Cl-p \parallel (48)$	88	z.
Di-n-butyl maleate	$n \cdot C_4 H_9 O_2 CCH == C(CO_2 C_4 H_9 - n) C_6 H_4 Cl - p (40) \S$	88	G
Di-n-butyl fumarate	$n - C_4 H_9 O_2 CCH = C(CO_2 C_4 H_9 - n) C_6 H_4 Cl - p \parallel (62) $	88	ਣ
Maleonitrile	$NCCH = C(CN)C_6H_4Cl-p \parallel (45)$	88	REACTIONS
Fumaronitrile	$NCCH = C(CN)C_{6}H_{4}Cl-p \parallel (52)$	88	3
	$NCCH = C(CN)C_6H_3Cl_2-2,4 \parallel (good) $	112	Ю
	$NCCH = C(CN)C_6H_4NO_2 p \P (36)$	88	Ř
	$\text{NCCH} = \text{C(CN)C}_{6}\text{H}_{4}\text{OCH}_{3}\text{-}p (\text{crude})$	112	
Maleimide (C ₄ H ₂ O ₂ NH)**	$C_6H_5C_4HO_2NH$ (21)	33	
	$0-ClC_6H_4C_4HO_2NH$ ()	34	
	$\alpha - m - \text{ClC}_{6} \mathbf{H}_{4} - \beta - \text{ClC}_{4} \mathbf{H}_{2} \mathbf{O}_{2} \mathbf{N} \mathbf{H} $ (41)	34	
	$p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{C}_{4}\mathrm{HO}_{2}\mathrm{NH}~(>50)$	112, 33	
	$2,4-\mathrm{Cl}_{2}\mathrm{C}_{6}\mathrm{H}_{3}\mathrm{C}_{4}\mathrm{HO}_{2}\mathrm{NH} (56)$	34	
	2,5-Cl ₂ C ₆ H ₃ C ₄ HO ₂ NH (51 crude)	34	
	m-BrC ₆ H ₄ C ₄ HO ₂ NH (— crude)	34	
	p-BrC ₆ H ₄ C ₄ HO ₂ NH (47)	33	
	$o - O_2 NC_6 H_4 C_4 HO_2 NH (0)$	112	
	$p-O_2NC_6H_4C_4HO_2NH$ (36)	33	

	$o-CH_3OC_6H_4C_4HO_2NH(-)^{\dagger\dagger}$	34	
	$m-CH_3OC_6H_4C_4HO_2NH$ () ^{††}	34	
	$p-CH_3OC_6H_4C_4HO_2NH$ (45) [†] [†]	33	
	$(p-\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4)_2\mathrm{C}_4\mathrm{O}_2\mathrm{NH}$ (35)§§	33	
	$p-CH_{3}C_{6}H_{4}C_{4}HO_{2}NH$ (28)	33	
	α -C ₁₀ H ₂ C ₄ HO ₃ †† ()	33	
	β -C ₁₀ H ₂ C ₄ HO ₃ †† (—)	33 -	-
N-Ethylmaleimide	p-ClC ₆ H ₄ C ₄ HO ₂ NC ₂ H ₅ (27)		<u>г</u> 1
N-Isopropylmaleimide	$C_{6}H_{5}C_{4}HO_{2}NCH(CH_{3})_{2}$ (27)	34	
	o-ClC ₆ H ₄ C ₄ HO ₂ NCH(CH ₃) ₂ (36)	34	3
	m-ClC ₆ H ₄ C ₄ HO ₂ NCH(CH ₃) ₂ (36)	34 5	MEERWEIN
	p-ClC ₆ H ₄ C ₄ HO ₂ NCH(CH ₃) ₂ (51)	34	8
	$2,4-Cl_2C_6H_3C_4HO_2NCH(CH_3)_2$ (26)	34 5	E
	$2,5-Cl_2C_6H_3C_4HO_2NCH(CII_3)_2$ (54)	34 2	Z
	$o-BrC_6H_4C_4HO_2NCH(CH_3)_2$ (51)	34 2	A.
	m-BrC ₆ H ₄ C ₄ HO ₂ NCH(CH ₃) ₂ (crude)	34	Ñ
	$o - O_2 N C_6 H_4 C_4 H O_2 N C H (C H_3)_2 (0)$	34 5	T,A
	$p - O_2 NC_6 H_4 C_4 HO_2 NCH (CH_3)_2$ (19)	34	É.
	p-CH ₃ OC ₆ H ₄ C ₄ HO ₂ NCH(CH ₃) ₂ (41)	34	ARYLATION
† The product isolated was t	he substituted maleic anhydride, obtained by heating the chlorosu		
anhydride.	• • • •		ΕA
[‡] The intermediate ester was	saponified without purification.	č	<u>C</u>
§ This is the combined yield o	of a mixture of stereoisomers.		REACTION
The crude product was deh	ydrohalogenated by treatment with a tertiary amine.		ž

The structure of this product is not certain.
** The yields could doubtless be improved in most of these reactions if the product were dehydrohalogenated before, rather than after, purification.

†† The intermediate imide was saponified and cyclized to the anhydride.

‡‡ Excess maleimide was used in this reaction.

§§ Excess diazonium salt was used in this reaction.

TABLE IX—Continued

POLYBASIC α,β -UNSATURATED ACIDS, NITRILES, ESTERS, IMIDES

Unsaturated Compound	Product (Yield, %)	References
N-n-Hexylmaleimide	$o-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{C}_{4}\mathrm{HO}_{2}\mathrm{NC}_{6}\mathrm{H}_{13}-n$ (48)	156
N-Phenylmaleimide	o-ClC ₆ H ₄ C ₄ HO ₂ NC ₆ H ₅ ()	156
•	$p-\text{ClC}_6\text{H}_4\text{C}_4\text{HO}_2\text{NC}_6\text{H}_5$ (33)	33 😋
Maleic hydrazide	$p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{C}_{4}\mathrm{HO}_{2}\mathrm{N}_{2}\mathrm{H}_{2}(0)$	33 ORGA 34 GA 114 NI 114 C
Bromomaleic acid	$HO_2CCBr = CHC_6H_4Cl-o$ (11)	114 A
	$HO_{2}CCBr = CHC_{6}H_{4}Cl-m$ (20)	114 8
	$HO_2CCBr = CHC_6H_4Cl-p$ (20)	114
	$HO_2CCBr = CHC_6H_4Br-p (27)$ §	114 REACTION 114 114 CTION 114 114 114
	$HO_2CCBr = CHC_6H_4NO_2 - o$ (5)	114 0
	$HO_2CCBr = CHC_6H_4NO_2 - m$ (21)	114 🗧
	$HO_2CCBr = CHC_6H_4NO_2 p$ (15)	114 2
	$HO_2CCBr = CHC_{10}H_7 - \alpha$ (4)	114 ⁰⁰
	$HO_2CCBr = CHC_{10}H_7 - \beta$ (3)	114
Dibromomaleic acid	$HO_2CCBr = CBrC_6H_4Cl-p$ (0)	114
$HO_2CC(CH_3) = CHCO_2H (cis)$	$HO_2CC(CH_3) = CHC_6H_5(0)$	81
	$HO_2CC(CH_3) = CHC_6H_4Cl-p$ (34)	80
	$HO_2CC(CH_3) = CHC_6H_4Br-p$ (10)	81
	$HO_2CC(CH_3) = CHC_6H_4NO_2 - o ()$	81
	$HO_2CC(CH_3) = CHC_6H_4NO_2 - m ()$	81
	$HO_2CC(CH_3) = CHC_6H_4NO_2 - p (14)$	81
	$HO_2CC(CH_3) = CHC_6H_4CO_2H-p$ (0)	81
	$HO_2CC(CH_3) = CHC_6H_4SO_3H-p (0)$	81

	$HO_2CC(CH_3) = CHC_{10}H_2 - \alpha$ (0)	81
	$HO_2CC(CH_1) = CHC_{10}H_2 - \beta$ ()	81
HO ₂ CC(CH ₃)=CHCO ₂ H (trans)	$HO_{2}CC(CH_{2}) = CHC_{4}H_{4}NO_{2}-p$ (10)	81
N-Isopropylcitraconimide	a-Methyl-a-chloro-a'-(p-chlorophenyl)-N-isopropyl-	
-	succinimide (56)	33
$CH_2 = C(CO_2H)CH_2CO_2H$	$C_{e}H_{5}CH_{2}C(CO_{2}H) = CH_{2}$ (few drops)	115
	o-ClC ₆ H ₄ CH ₂ C(CO ₂ H)=CH ₂ (16)	115
	p-ClC ₆ H ₄ CH ₂ C(CO ₂ H)=CH ₂ (10)	115
	p-BrC ₆ H ₄ CH ₂ C(CO ₂ H)=CH ₂ (20)	115
	$p - O_2 NC_6 H_4 CH_2 C(CO_2 H) = CH_2 (18)$	115
$HO_2CCH = C(CO_2H)CH_2CO_2H$	$C_{e}H_{c}CH = C(CO_{e}H)CH_{c}CO_{e}H$ (0)	115
	m-ClC ₆ H ₄ CH==C(CO ₂ H)CH ₂ CO ₂ H (0)	115
	p-ClC ₄ H ₄ CH=C(CO ₄ H)CH ₂ CO ₄ H (25)	115
	o-BrC ₆ H ₄ CH==C(CO ₂ H)CH ₂ CO ₂ H (0)	115
	m-BrC ₆ H ₄ CH==C(CO ₂ H)CH ₂ CO ₂ H (8–16)	115
	p-BrC ₆ H ₄ CH==C(CO ₂ H)CH ₂ CO ₂ H (8-16)	115
	$m - O_2 NC_2 H_4 CH == C(CO_2 H) CH_2 CO_2 H$ (0)	115
	$p - O_2 NC_6 H_4 CH = C(CO_2 H) CH_2 CO_2 H$ (8-16)	115
Phenylmaleic acid	Diphenylmaleic anhydride	92
	Phenyl-p-tolylmaleic anhydride ()	-92
	Phenyl- β -naphthylmaleic anhydride (28)	92
<i>p</i> -Nitrophenylmaleic acid	Di-(p-nitrophenyl)maleic anhydride $ ()$	92
Notes Deferences 149 to 161 eres -	- N 40	

Note: References 142 to 161 are on p. 260.

§ This is the combined yield of a mixture of stereoisomers.

 $\|\|$ This experiment was conducted at pH = 1-2 in the presence of acetone. The crude product was cyclized to the substituted maleic anhydride by heating with acetic anhydride.

QUINONES

A. Benzoquinone Derivatives

Substituent(s) in Product Benzoquinone (Yield, %)	References
$C_{6}H_{5}^{*\dagger}$ (84)	97, 54, 56, 58,
	65, 68, 157
$o - ClC_{6}H_{4}$ (90–94)	57, 97
m-ClC ₆ H ₄ (90)	97
$p-{\rm ClC}_{6}{\rm H}_{4}$ (88)	97, 56
$2,3-Cl_2C_6H_3$ ()	57
$2,4-Cl_2C_6H_3$ ()	57
$2,5-Cl_2C_6H_3$ ()	57
$2,6-Cl_2C_6H_3$ (73)	97, 57
$o-\mathrm{BrC}_{6}\mathrm{H}_{4}$ (75)	97
p-BrC ₆ H ₄ ()	61
$o - O_2 NC_6 H_4$ (76)	97, 56, 57,
	59 - 61
$m \cdot O_2 NC_6 H_4 ()$	58, 59
$p - O_2 NC_6 H_4$ (89)	97, 56, 58, 59
$o-\mathrm{HOC}_{6}\mathrm{H}_{4}(77)$	97
$p-\mathrm{HOC}_{6}\mathrm{H}_{4}$ (59)	97
$o-CH_3OC_6H_4$ (81)	97
$p-CH_{3}OC_{6}H_{4}^{*\dagger}$ (93)	97, 58, 63, 65,
	68
$2-Cl-4-CH_3OC_6H_3$ ()	57
$2-Cl-5-CH_3OC_6H_3$ ()	57
$2-Cl-6-CH_3OC_6H_3$ ()	57
$3,4-(CH_{3}O)_{2}C_{6}H_{3}$ (84)	97, 71
$p\text{-}\mathrm{CH}_{3}\mathrm{COHNC}_{6}\mathrm{H}_{4} \ (\mathrm{good})$	56

$p-H_{2}NO_{2}SC_{4}H_{4}()$	59	
$p - (p - HO_3SC_6H_4N = N)C_6H_4 ()$	56	
$o-CH_3C_6H_4$ (62)	97	
m-CH ₃ C ₆ H ₄ (81)	97	
$p-CH_3C_8H_4^{\dagger}()$	65, 58, 68	
$2-Cl-3-CH_{3}C_{6}H_{3}()$	57	
$2-Cl-4-CH_{3}C_{6}H_{3}()$	57	ц
$2-Cl-5-CH_3C_6H_3()$	57	THE
$2-Cl-6-CH_{3}C_{5}H_{3}()$	57	
$2-Br-4,5-(CH_{1})C_{1}H_{2}$ ()	57	ME
$4-Br-2,6-(CH_3)_2C_6H_2$ (73)	97	MEERWEIN
$o-C_6H_5C_6H_4$ (88)	97	RW
$p-C_6H_5C_6H_4$ ()	56, 58	Έ
$\alpha - C_{10}H_7$ (78)	97	Ī
β -C ₁₀ H ₇ ()	58	А
$2-Cl-l-C_{10}H_{6}$ ()	57	RY
$1-Cl-2-C_{10}H_{6}$ ()	57	ARYLATION
$3-Br-2-C_{10}H_{6}$ ()	57	AT
$o-\mathrm{HO}_{2}\mathrm{CC}_{6}\mathrm{H}_{4} \ (\mathrm{good})$	56	ю
$o-CH_3O_2CC_6H_4$ (81)	97	
$p-\mathrm{HO}_{2}\mathrm{CC}_{6}\mathrm{H}_{4}()$	58	RH
$p-C_2H_5O_2CC_6H_4$ ()	58	REACTION
$m-CH_3COC_6H_4$ (84)	97	CT
$p-CH_3COC_6H_4$ ()	58	ю
2-Cl, 6-C ₆ H ₅ (54); 2-Cl, 3-C ₆ H ₅ (30)	158	z
2-Cl, 5-C ₆ H_5 ()	56	
2-Cl, 6- p -ClC ₆ H ₄ (66); 2-Cl, 3- p -ClC ₆ H ₄ (18)	158	

2-Chlorobenzoquinone

Starting Quinone p-Benzoquinone

Note: References 142 to 161 are on p. 260.

* The product was accompanied by diaryl and/or polyaryl quinones.

† This product was prepared by the action of an N-nitrosoacetanilide upon the quinone.

ORGANIC REACTIONS

249

QUINONES A. Benzoquinone Derivatives—Continued

A	. Denzoquinone Derivarioes—Continueu	
Starting Quinone	Substituent(s) in Product Benzoquinone (Yield, %)	References
2,3-Dichlorobenzoquinone	$2,3-Cl_2, 5-C_sH_5$ (69)	158
х —	$2,3-Cl_2, 5-p-ClC_6H_4$ (81)	158
2,5-Dichlorobenzoquinone	$2,5-Cl_2, 3-C_6H_5^{*\dagger}(17)$	69, 58
	$2,5-Cl_2, 3-p-CH_3OC_6H_4^{++}()$	69, 71
	$2,5-Cl_2, 3-p-CH_3O_2CC_6H_4^{++}()$	69
	$2,5-Cl_2, 3-p-CH_3C_6H_4^{++}()$	69
2,6-Dichlorobenzoquinone	$2,6-Cl_2, 3-p-ClC_6H_4$ (72)	158
2,5-Dihydroxybenzoquinone	$2,5-(HO)_2, 3-C_6H_5, 6-C_6H_5N=N$ (28)	159
	$2,5-(HO)_2, 3-m-CH_3C_6H_4, 6-m-CH_3C_6H_4N=N$ (48)	159
	$2,5-(HO)_2, 3,6-(o-CH_3C_6H_4)_2$ (32)	159
2,5-Dimethylbenzoquinone	$2,5-(CH_3)_2, 3-m-O_2NC_6H_4$ ()	58
2-Chloro-6-phenylbenzoquinone	2-Cl, 3,6-(C_6H_5) ₂ (20)	158
o-Chlorophenylbenzoquinone	$2,5-(o-ClC_{6}H_{4})_{2}$ (42)	160
<i>m</i> -Chlorophenylbenzoquinone	$2,5-(m-{\rm ClC_6H_4})_2$ (46)	160
p-Chlorophenylbenzoquinone	$2,5-(p-\text{ClC}_{6}\text{H}_{4})_{2}$ (43)	160
2-Chloro- 6 - p -chlorophenylbenzoquinone	2-Cl, 3,6- $(p-ClC_{6}H_{4})_{2}$ ()	158
o-Bromophenylbenzoquinone	$2,5-(o-BrC_{6}H_{4})_{2}$ (40)	160
‡	$2-C_{6}H_{5}, 5-m-BrC_{6}H_{4}$ (32)	160
‡	$2-C_6H_5$, $5-o-CH_3OC_6H_4$ (20)	160
‡	$2-C_6H_5, 5-p-CH_3OC_6H_4 (32)$	160
‡	$2 - p - CH_3C_6H_4$, $5 - p - CH_3OC_6H_4$ † ()	68
‡	$2-C_{6}H_{5}, 5-p-CH_{3}C_{6}H_{4}^{\dagger}()$	68
‡	$2 - C_6 H_5, 5 - \beta - C_{10} H_7$ (36)	160
o-Carbomethoxyphenylbenzoquinone	$2,5-(o-CH_3O_2CC_6H_4)_2$ (38)	160
ſ	$2,5-Cl_2, 3-C_6H_5, 6-p-CH_3OC_6H_4$ ()	70
T	$2,5-Cl_2, 3-C_6H_5, 6-p-CH_3C_6H_4 ()$	70
ſ	$2,5-\text{Cl}_2, 3-p-\text{CH}_3\text{OC}_6\text{H}_4, 6-p-\text{CH}_3\text{C}_6\text{H}_4 ()$	70
2,5-Dichloro- 3 - p -tolylbenzoquinone	$2,5-\text{Cl}_2, 3-p-\text{CH}_3\text{C}_6\text{H}_4, 6-[3,4-(\text{CH}_3\text{O})_2\text{C}_6\text{H}_3]$ (29)	71

	B. Naphthoquinones	
Starting Naphthoquinone	Substituent(s) in Product Naphthoquinone (Yield, %)	References
1,2-Naphthoquinone $(C_{10}H_sO_2)$	$3.4-(p-HO_{\circ}CC_{\circ}H_{\star}), ()$	58
1,4-Naphthoquinone (C ₁₀ H ₆ O ₂)	$2 \cdot C_s H_5$ (poor)*†	58, 54
	$2 - o - O_0 N C_0 H_A(0)$	58
	$2-m \cdot O_{2}NC_{2}H_{4}$ ()	58 _H
	2-p-0, NC, H, § (50)	58 T 60, 56 H
	$2 - p - HO_{\circ}CC_{\circ}H_{\circ}()$	66
	$2 - [2, 6 - (CH_3), C_sH_s] (0)$	58 ŠE
	$2 - \alpha - C_{10} H_7(0)$	58 Ĕ
2-Hydroxy-1,4-naphthoquinone	$3 - C_{e}H_{5}, 2 - HO ()$	58 MEEER 58 EER 62, 67 WE 67 EIN 67 IN
• • • • •	$3 - p - FC_{g}H_{4}, 2 - HO$ (18)	67 🛃
	$3-o-ClC_{e}H_{4}$, 2-HO (low)	67 Z
	$3 - m - ClC_6 H_4$, 2-HO (20)	67 >
	$3 - p - ClC_{a}H_{a}$, 2-HO (30)	67 ARYLATION 67 67 67 67 67 67 67 67
	$3-(2,4-Cl_2C_6H_3), 2-HO(20)$	67
	$3-(2,5-Cl_{0}C_{0}H_{3}), 2-HO(20)$	67 A
	$3 - o - BrC_{s}H_{a}, 2 - HO$ (20)	67 Ö
	$3 - m - BrC_{6}H_{4}, 2 - HO$ (20)	67 Z
	$3-p-BrC_{6}H_{4}$, 2-HO (18-31)	67 R
Note: References 142 to 161 are on p.	260.	ACT
 The product was accompanied by d This product was prepared by the a 	iaryl and/or polyaryl quinones. ction of an N-nitrosoacetanilide upon the quinone.	67 REACTION

† This product was prepared by the action of an N-nitrosoacetanilide upon the quinone.

‡ The authors did not specify which of the two possible pairs of starting compounds (monoarylquinone and diazonium salt) was employed to prepare this product.

 \S Copper powder was beneficial in this reaction.

¶ A monoaryl-2,5-dichloroquinone and a nitrosoacetanilide were used in this reaction. The author did not specify which aryl group in the product came from the quinone and which from the nitrosoacetanilide.

ORGANIC REACTIONS

ORGANIC REACTIONS

TABLE X-Continued

QUINONES

B. Naphthoquinones-Continued

Starting Naphthoquinone	Substituent(s) in Product Naphthoquinone (Yield, $\%$)	References
2-Hydroxy-1,4-naphthoquinone (continued)	$3 - p - IC_{e}H_{e}, 2 - HO$ (11)	67
	$3 - m - O_2 NC_4 H_4$, 2-HO (low)	67
	$3 - p - O_2 NC_8 H_4$, 2-HO (low)	67
	$3-0-CH_3OC_8H_4$, 2-HO (0)	67
	$3 - p - CH_3OC_6H_4$, 2-HO (6)	67,62
	$3 - p - C_2 H_5 O C_6 H_4$, 2-HO (9)	67
	$3 - p - HO_3SC_6H_4, 2 - HO ()$	62
	$3 - p - H_2 NO_2 SC_6 H_4, 2 - HO (27)$	67
	3-p-(2-Pyridyl)HNO ₂ SC ₆ H ₄ , 2-HO (20)	67
	$3-p-H_2NC(=NH)HNO_2SC_6H_4$, 2-HO (20)	67
	$3-p-(2-\text{Thiazolyl})\text{HNO}_2\text{SC}_6\text{H}_4, 2-\text{HO}$ (20)	67
	$3 - p - (2 - Pyrimidyl) HNO_2SC_6H_4, 2 - HO(20)$	67
	$3 - p - H_2 O_3 As C_6 H_4, 2 - HO (0)$	67
	$3 - p - C_6 H_5 N = N C_6 H_4, 2 - HO (0)$	67
	3-o-CH ₃ C ₆ H ₄ , 2-HO (66)	62, 67
	$3 - m - CH_3C_6H_4$, 2-HO (10)	67
	$3-p-CH_{6}C_{6}H_{4}, 2-HO ()$	62
	$3-[2,4-(CH_3)_2C_6H_3], 2-HO$ (11)	67
	$3-[2-CH_3-5-i-C_3H_7C_6H_3], 2-HO(0)$	67
	$3 - (p - t - C_5 H_{11} C_6 H_4), 2 - HO (0)$	67
	$3-(2-CH_3-4-ClC_6H_3), 2-HO(7)$	67
	$3-(2-CH_3-4-BrC_6H_3), 2-HO (21)$	67
	$3-p-C_{6}H_{5}C_{6}H_{4}, 2-HO$ (20)	67

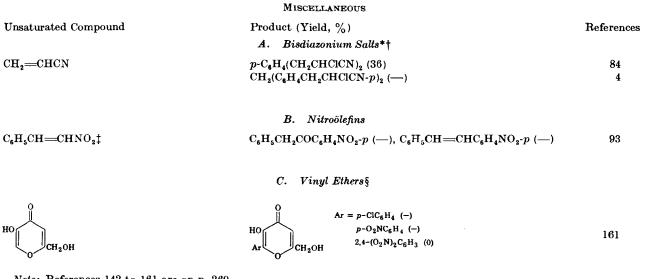
	$3 - \alpha - C_{10} H_7, 2 - HO$ (10)	67
	$3-\beta-C_{10}H_7, 2-HO ()$	62
	$3-(4-Br-1-C_{10}H_6), 2-HO(0)$	67
	3-(2-Fluorenyl), 2-HO (trace)	67
	3-(3-Acenaphthenyl), 2-HO (0)	67
	3-(2-Dibenzofuranyl), 2-HO (0)	67
	$3-(2-CH_3-1-anthraquinonyl), 2-HO(0)$	67
	$3 - (o - HO_2CC_8H_4), 2 - HO ()$	62
	$3 - (p - HO_2CC_6H_4), 2 - HO ()$	62
	$3 - (o - CH_3O_2CC_6H_4), 2 - HO(0)$	67
	$3-(p-CH_3COC_6H_4), 2-HO(20)$	67
2-Methoxy-1,4-naphthoquinone**	$3 - C_6 H_5$, $2 - C H_3 O(0)$	66, 58
	$3-p-ClC_6H_4, 2-CH_3O$ ()	66
	$3 - p - O_2 NC_6 H_4$, 2-CH ₃ O (41)	66
	$3-p-CH_3OC_6H_4$, $2-CH_3O$ (0)	66
	3-p-HO ₂ CC ₆ H ₄ , 2-CH ₃ O ()	66
	$3-(3-HO-4-HO_2CC_6H_3), 2-CH_3O$ ()	66
2-Methyl-1,4-naphthoquinone**	$3 - m - O_2 NC_6 H_4, 2 - CH_3 ()$	60
	$3 - p - O_2 NC_6 H_4, 2 - CH_3 ()$	60
	$3-p-CH_3OC_6H_4, 2-CH_3 ()$	60
	$3 - p - CH_3C_6H_4, 2 - CH_3 ()$	60
2,6-Dimethyl-1,4-naphthoquinone	3-C ₆ H ₅ , 2,6-(CH ₃) ₂ (poor)	58

|| The arylating agent was a diaroyl peroxide. ** Attempts to arylate this quinone with tetrazotized benzidine yielded only polymer.⁶⁶

THE MEERWEIN ARYLATION REACTION

TABLE XI

HYDROQUINONE Substituent in Hydroquinone Product (Yield, %)


Substituent in Hydroquinone Product (Yield, %)	References
2-Phenyl (0)	61
2-p-Bromophenyl* ()	61
2-o-Nitrophenyl [†] (26)	64
2-m-Nitrophenyl (12-15)	61
2-p-Nitrophenyl (89)	64, 61
2-(2',4'-Dinitrophenyl) (87 crude)	64
2-p-Carbethoxyphenyl* (50–55)	61

* The quinhydrone was also formed.
† This product was accompanied by a 23% yield of diarylhydroquinones.

	TABLE XII	
	COUMARINS	
Coumarin Arylated	Substituents in Coumarin Product (Yield, %)	References
Coumarin	3-Phenyl (60)*	1
	3-p-Chlorophenyl (78)*	1
	3-o-Nitrophenyl (11)	1
	3-m-Nitrophenyl (—)	41
	3-p-Nitrophenyl (50)	1, 53
	3-p-Anisyl (66)*	1
	3-p-Acetamidophenyl (28)	1
	3-p-Sulfophenyl (58)*	1
	3-p-Arsonophenyl (55)	16, 15
	3-p-Arsenosophenyl (—)	15
	$3-\beta$ -Naphthyl (30)*	1
	3-p-Carboxyphenyl (82)*	1
7-Hydroxycoumarin	3-p-Chlorophenyl-7-hydroxy (48)	1
4-Methyl-7-hydroxycoumarin	3-p-Chlorophenyl-4-methyl-7-hydroxy (small)	17
	3-p-Bromophenyl-4-methyl-7-hydroxy ()	17
	3-p-Anisyl-4-methyl-7-hydroxy (very poor)	17

3-p-Anisyl-4-m * This yield is corrected for unreacted coumarin recovered.

TABLE XIII

Note: References 142 to 161 are on p. 260.

* Müller^{3, 4} refers to the reaction of tetrazotized benzidine. dichlorobenzidine, 4,4'-diaminodiphenylmethane, diaminodimethyldiphenylmethane, and 4,4'-diaminodiphenylsulfone with acrylonitrile, acrylic acid, and methyl vinyl ketone. No details of the reactions or properties of the products are given.

[†] The reactions of tetrazotized 2,2'-diaminobiphenyl with maleimide and tetrazotized benzidine with N-isopropylmaleimide gave products that could not be purified.³⁴

 \ddagger On treatment with p-O₂NC₆H₄N₂Cl, the aliphatic nitro group was lost, perhaps as a result of a Nef reaction.

§• Exposure of alkyl vinyl ethers to diazonium salts in the absence of copper salts led to azo coupling.¹⁰⁷

250

	TABLE XIII—Continued	256
	MISCELLANEOUS	
Unsaturated Compound	Product (Yield, %)	References
	D. Active Methylene Compounds	
CH ₃ NO ₂	$C_6H_5CH_2NO_2$ () $p-CH_3OC_6H_4CH_2NO_2$ ()	105 105
$\mathrm{CH}_2(\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5)_2$	$p-CH_{3}C_{6}H_{4}CH_{2}NO_{2} ()$ $C_{6}H_{5}CH_{2}CO_{2}C_{2}H_{5} ()$	105 104
	E. Oximes and Semicarbazones	0
CH2==NOH**	$C_{6}H_{5}CHO (40)$ $o-ClC_{6}H_{4}CHO (52)$ $m-ClC_{6}H_{4}CHO (50)$ $p-ClC_{6}H_{4}CHO (60)$ $o-O_{2}NC_{6}H_{4}CHO (33)$ $o-HOC_{6}H_{4}CHO (9)$ $o-CH_{3}OC_{6}H_{4}CHO (34)$ $p-CH_{3}OC_{6}H_{4}CHO (42)$ $o-CH_{3}C_{6}H_{4}CHO (46)$ $m-CH_{3}C_{6}H_{4}CHO (41)$ $p-CH_{3}C_{6}H_{4}CHO (46)$ $o-C_{6}H_{5}C_{6}H_{4}CHO (46)$ $o-C_{6}H_{5}C_{6}H_{4}CHO (very poor)$	ORGANIC REACTIONS 100 100 100 100 100 100 100 100 100 100
	β -C ₁₆ H ₇ CHO (25) 3-Pyridylcarboxaldehyde (14) o-C ₂ H ₅ O ₂ CC ₆ H ₄ CHO (0) p-C ₂ H ₅ O ₂ CC ₆ H ₄ CHO (20) o-NCC ₆ H ₄ CHO (0) p-OHCC ₆ H ₄ C ₆ C ₆ H ₄ CHO- p (very poor) p-OHCC ₆ H ₄ O ₆ H ₄ CHO- p (very poor)	100 100 100 100 100 100 100

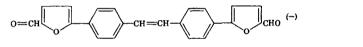
CH ₃ CH==NOH**	o-ClC ₆ H ₄ COCH ₃ (43)	100	
	p-ClC ₆ H ₄ COCH ₃ (35-45)	100	
	$3,4-(HO_2C)_2C_6H_3COCH_3$ (27)	100	
	$m - C_{6} H_{4} (COCH_{3})_{2} \dagger \dagger (27)$	100	
	$p-C_6H_4(COCH_3)_2$ ⁺⁺ (33)	100	
	$4 - ClC_{6}H_{3}(COCH_{3})_{2} - 1,3^{\dagger} + (15)$	100	
CH ₃ CH=NNHCONH ₂	p-ClC ₆ H ₄ C(CH ₃)==NNHCONH ₂ (40)	100	Т
CH ₃ CH ₂ CH=NOH**	$p-\text{ClC}_{6}\text{H}_{4}\text{COCH}_{2}\text{CH}_{3}(30)$	100	THE
C ₆ H ₅ CH=NOH	$p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{COC}_{6}\mathrm{H}_{5}(0)$	100	
CH ₃ COCH=NOH	$CH_3COC(=NOH)C_8H_5$ (82)	103, 101, 102	1E
	$CH_{3}COC(=NOH)C_{6}H_{4}Cl-m(-)$	103	EF
	$CH_3COC(=NOH)C_6H_4Cl \cdot p()$	103, 102	Ŵ
	$CH_3COC(=NOH)C_6H_4NO_2-p$ ()	103	MEERWEIN
	$CH_{3}COC(=NOH)C_{6}H_{4}OCH_{3}-o$ (22)	101	Z
	$CH_{3}COC(=NOH)C_{6}H_{4}OCH_{3}-p$ (50)	102, 101	AI
	$CH_3COC(=NOH)C_6H_4OC_2H_5-p$ (65)	102	ARYLATION
	$CH_{3}COC(=NOH)C_{6}H_{4}NHCOCH_{3}-p$ ()	103	LA
	$CH_{3}COC(=NOH)C_{6}H_{3}OCH_{3}-3-NHCOCH_{3}-4$ ()	103	Ξ
	CH ₃ COC(=:NOH)C ₆ H ₄ CH ₃ -o ()	103	õ
	$CH_{3}COC(=:NOH)C_{6}H_{4}CH_{3}-p (60)$	102, 101	
	$CH_3COC(=NOH)C_6H_3(CH_3)_2-2,4$ ()	101	RE
	$CH_{3}COC(=NOH)C_{10}H_{7}-\beta (40)$	102	Ă
	l-Oximino-l-(3'-pyridyl)-2-propanone (60)	103	Ĕ
	$CH_{3}COC(=NOH)C_{6}H_{4}CO_{2}C_{2}H_{5}-p$ (70)	10?	REACTION
			4

 \parallel With p-ClC₆H₄N₂Cl or p-O₂NC₆H₄N₂Cl, the product is the hydrazone resulting from conventional azo coupling.

The product was isolated by hydrolysis, decarboxylation, and re-esterification.
 ** The product was isolated as the aldehyde or ketone after hydrolysis of the oxime. Control experiments¹²⁵ showed a loss of about 15% during hydrolysis and purification.

†† The appropriate aminoacetophenone was diazotized and allowed to react with acetaldoxime.

TABLE XIII—Continued


MISCELLANEOUS

Unsaturated Compound	Product (Yield, %)	References
	E. Oximes and Semicarbazones-Continued	98, 101 98, 101 98
C,H,COCH=NOH	$C_{6}H_{5}COC(=NOH)C_{6}H_{5}()$	98, 101
U 0	$C_6H_5COC(=NOH)C_6H_4NO_2-p$ ()	98 1
	$C_{6}H_{5}COC(=NOH)C_{6}H_{4}OC_{2}H_{5}-p(-)$	98
p-O2NC6H4COCH=NOH**	$p - O_2 NC_3 H_4 COCOC_6 H_4 NO_2 - p ()$	8. 98 88 99 99 99 99
A - Z - O N -	$p - O_2 NC_6 H_4 COCOC_6 H_4 OC_2 H_5 - p ()$	98 A
3-Pyridylglyoxal monoxime	$3-C_5H_4NCOC(=NOH)C_8H_5()$	99 🗄
	$3 - C_5 H_4 NCOC = NOH C_6 H_4 NO_2 - p ()$	99 💡
	$3 - C_5 H_4 NCOC = NOH C_5 H_4 OC_2 H_5 - p ()$	89 6 8
	$3-C_5H_4NCOC(=NOH)C_6H_4CH_3-p()$	99
4-Pyridylglyoxal monoxime	$4-C_{3}H_{4}NCOC(=NOH)C_{6}H_{4}CH_{3}-p()$	99

F. Furfural

Substituents in Furfural (Yield, %)	References
5-Phenyl (49)	48, 51
5-p-Chlorophenyl (90)	48, 51, 141
5-o-Nitrophenyl ()	51
5-p-Nitrophenyl (96)	48, 51, 141

5-p-Sulfophenyl (44)	48, 51
5-p-Anisyl ()	51
5-p-Aminophenyl ()	51
5-p-Acetamidophenyl ()	51
5-p-Dimethylaminophenyl ()	51
5-p-Tolyl ()	51
5-p-Carboxyphenyl ()	141
5-(2-Anthraquinonyl) ()	51
5-(2-Hydroxy-1-naphthyl-4-sulfonic acid) ()	51

G. Furoic Acid

51

Product (Yield, %)	References
5-Phenylfuroic Acid (60)	48
5-p-Chlorophenylfuroic acid (93)	48, 141
5-p-Nitrophenylfuroic acid (96)	48, 141

** The product was isolated as the aldehyde or ketone after hydrolysis of the oxime. Control experiments showed a loss of about 15% during hydrolysis and purification.

ORGANIC REACTIONS

REFERENCES FOR TABLES I-XIII

¹⁴² Benkeser, Bennett, and Hickner, J. Am. Chem. Soc., 79, 6253 (1957); Benkeser and Hickner, *ibid.*, 86, 5298 (1958).

¹⁴³ Dombrovskii and Terent'ev, Zhur. obshchei Khim., **26**, 2776 (1956); J. Gen. Chem. U.S.S.R. (Engl. Transl.), **26**, 3091 (1956) [C.A., **51**, 7337 (1957)].

¹⁴⁴ Dombrovskil and Terent'ev, Zhur. obshchei Khim., 27, 2000 (1957); J. Gen. Chem. U.S.S.R. (Engl. Transl.), 27, 2058 (1957).

- ¹⁴⁵ Ropp and Raaen, J. Am. Chem. Soc., 76, 4484 (1954).
- ¹⁴⁸ Taylor and Strojny, J. Am. Chem. Soc., 78, 5104 (1956).
- ¹⁴⁷ Broadhead and Pauson, J. Chem. Soc., 1955, 367.
- ¹⁴⁴ Rosenblum, Abstr. Am. Chem. Soc. Meeting, San Francisco, April 1958, p. 5N.
- ¹⁴⁸ Bernauer and Schmidt, Ann., 591, 153 (1955).

¹³⁰ Dombrovskil, Terent'ev, and Yurkevich, Zhur. Obshchei Khim., 27, 419 (1957); J. Gen.

- Chem. U.S.S.R. (Engl. Transl.), 27, 473 (1957) [C.A., 51, 15454g (1957)].
 - ¹⁵¹ Drefahl and Hartrodt, J. prakt. Chem. [4] 4, 124 (1956).
 - ¹⁵² Bell and Waring, J. Chem. Soc., 1948, 1024.
 - ¹⁵⁰ Fuson and Cooke, J. Am. Chem. Soc., **62**, 1180 (1940).
 - ¹⁸⁴ Drefahl, Hochbarth, and Möller, J. prakt. Chem. [4] 4, 130 (1956).
 - ¹⁵⁵ Bachman and Hoaglin, J. Org. Chem., 8, 300 (1943).
 - ¹⁸⁸ A. Johnson, private communication.
 - ¹⁵⁷ Wieland et al., Ann., 514, 148 (1934); Betterton and Waters, J. Chem. Soc., 1953, 329.
 - ¹⁵⁹ Brassard and L'Écuyer, Can. J. Chem., 36, 814 (1958).
 - ¹⁵⁹ Brassard and L'Écuyer, Can. J. Chem., 36, 1346 (1958).
 - ¹⁸⁰ Brassard and L'Écuyer, Can. J. Chem., **36**, 709 (1958).
 - ¹⁰¹ Quilico and Musante, Gazz. chim. ital., 74, 26 (1944).

260

CHAPTER 4

THE FAVORSKIÏ REARRANGEMENT OF HALOKETONES

ANDREW S. KENDE

Lederle Laboratories Division, American Cyanamid Co.

CONTENTS

									3	PAGE
NATURE OF THE REACTION										262
Mechanism and Stereochemi	STRY	•	•	•	•	•	•	•	•	263
Unsymmetrical Mechanisms										263
Symmetrical Mechanisms										265
Sterecspecificity		•	•	•	•	•	•	•	•	267
SCOPE AND LIMITATIONS .	•									270
Acyclic Monohaloketones								•		270
Alicyclic Monohaloketones								•		271
Aralky'l Monohaloketones										274
Steroid Monohaloketones										275
Dihalcketones										277
Trihal ketones		•		•	•	•	•	•	٠	282
EXPERIMENTAL CONDITIONS	•	•								283
Side Feactions										283
Nature of the Halogen .										285
Choice of Base and Solvent						•				286
Tabe I. Reaction of (CH ₂	$_{3})_{2}CB$	rCOC	CH3							286
Tab B II. Yields of Rearra	ingen	ent .	Acid	Using	Vario	us Al	koxid	e-Solv	ent	
Patirs				•						287
Reaction Time and Temperat	ure	•	•		•	•	-	•	•	288
EXPERIMENTAL PROCEDURES		•			•					289
Methy Cyclopentanecarboxy	late									289
Ethyl Trimethylacetate										289
Ethyl 3.3.Diphenylpropionate	e									289
Cyclohexanecarboxylic Acid										290
Methy 3-Methyl-2-butenoate						•				290
20-Breino-17(20)-pregnen-3 β -	ol-21	oic A	Acid	•	•		•			290

			÷~					
							P.	AGE
TABULAR SURVEY	•	•	•	•	•	•	•	291
Table III. Acyclic Monohaloketones								292
Table IV. Alicyclic Monohaloketones								294
Table V. Aralkyl Monohaloketones								302
Table VI. Steroid Monohaloketones								307
Table VII. Dihaloketones								310
Table VIII. Trihaloketones	•					•		315

ORGANIC REACTIONS

262

NATURE OF THE REACTION

The Favorskii rearrangement is the skeletal rearrangement of α -halogenated ketones in the presence of certain nucleophilic bases, such as hydroxides, alkoxides, or amines, to give carboxylic acid salts, esters, or amides, respectively. Monohaloketones undergo the reaction to yield derivatives of saturated acids having the same number of carbon atoms.

$$(CH_3)_2 CBr COCH_3 + {}^{\Theta}OCH_3 \rightarrow (CH_3)_3 CCO_2 CH_3 + Br^{\Theta}$$

In a similar manner, suitable dihaloketones produce unsaturated carboxylic acids.

$$CH_3CCl_2COCH_3 + 2OH^{\odot} \rightarrow CH_2 = C(CH_3)CO_2H + 2Cl^{\odot}$$

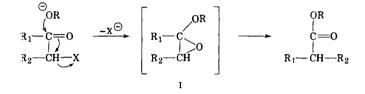
Analogous rearrangement of trihaloketones can give rise to unsaturated halo acids.

 $(CH_3)_2 CBrCOCHBr_2 + 2OH^{\odot} \rightarrow (CH_3)_2 C = CBrCO_2H + 2Br^{\odot}$

Since the description of this rearrangement by Favorskii¹ in 1894, successive investigations have largely clarified its scope, mechanism, and, more recently, its stereochemistry. Accordingly, the Favorskii rearrangement has become an increasingly reliable and specialized instrument of organic synthesis. The reaction has found application for the preparation of highly branched acyclic carboxylic acids. It is a preferred route to various 1-substituted cyeloalkanecarboxylic acids, and provides a direct method for ring contraction in simple alicyclic systems and in the steroids. Other typical applications include its use in the modification of the ring-D side chain of steroids and in the stereospecific synthesis of 8-methyl-1hydrindone.

A review of the Favorskiĭ rearrangement, covering the literature through 1949, has been published.²

¹ Favorskii, J. Russ. Phys.-Chem. Soc., 26, 559 (1894); J. prakt. Chem., [2] 51, 533 (1895).


² Jacquier, Bull. soc. chim. France, [5] 17, D35 (1950).

MECHANISM AND STEREOCHEMISTRY

Five fundamental mechanisms have been advanced to account for the Favorshi rearrangement. These are discussed here with immediate reference to the action of alkoxides on α -monohaloketones, but their extension to other bases or to polyhaloketones will be evident.

Unsymmetrical Mechanisms

The rearrangement was considered by Favorskii³ to proceed by addition of alkocide to the carbonyl carbon, with concomitant ejection of halide ion, to produce an epoxyether (I), followed by rearrangement to product.

Although the isolation of epoxyethers from the action of alkoxides on certain a-haloketones is well established, the postulated rearrangement of the epoxyether I into product is inherently improbable.^{*} Such a transformation is experimentally precluded by failure to effect this rearrangement starting with pure epoxyethers under a variety of conditions. Thus the epoxyether intermediate is clearly not involved in the main course of the Favorskiĭ reaction, although it plays a central role in the formation of certain by-products.

A second mechanism, that of Richard,⁴ envisions the action of base on α -haloketones to involve abstraction of hydrogen halide, either by simultaneous α -elimination⁵ or by loss of halide from a mesomeric enolate anion. The resulting species II would rearrange directly to the ketene

$$\begin{array}{c} H_1 \longrightarrow C = O \\ \downarrow \\ H_2 \longrightarrow CHX \end{array} \xrightarrow{-HX} \begin{bmatrix} R_1 \longrightarrow C \longrightarrow O^{\ominus} & R_1 \longrightarrow C = O \\ \parallel & \downarrow & \downarrow \\ R_2 \longrightarrow C^{\oplus} & R_2 \longrightarrow C \end{array} \xrightarrow{O} \begin{array}{c} O \\ \parallel \\ R_2 \longrightarrow C \oplus \\ H \end{array} \xrightarrow{III} \begin{array}{c} O \\ R_1 \longrightarrow C = O \\ R_2 \longrightarrow C \oplus \\ R_1 \longrightarrow C \oplus \\ R_1 \longrightarrow C \oplus \\ R_2 \oplus \\ R_2$$

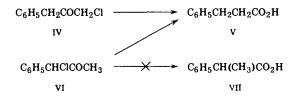
³ Faverskii, J. prakt. Chem., [2] 88, 641 (1913).

* The formation and reactions of these epoxyethers are outlined in the discussion of side reactions.

^{*} Richard, Compt. rend., 197, 1432 (1933).

⁵ Hine. Physical Organic Chemistry, pp. 131-133, 188, McGraw-Hill, New York, 1956.

ORGANIC REACTIONS


III, which would rapidly react with the nucleophile to give product.⁶ This mechanism fails to accommodate those numerous examples of the Favorskiĭ rearrangement that produce esters of the trialkylacetic type, which cannot arise from a ketene precursor.

A third mechanism has seemed particularly attractive because of its analogy to the benzilic acid rearrangement. This semibenzilic mechanism

features addition of alkoxide to the carbonyl carbon atom of the haloketone, followed by a concerted displacement of halide ion by the I,2migration of an alkyl group with its electron pair.⁷

A common feature of each of the three preceding mechanisms is their prediction that the rearrangement product of a given α -haloketone would be different from that derived from its α' -halogenated isomer.* For example, 1-chloro-3-phenylacetone (IV) should, according to any of the above pathways, give rise to 3-phenylpropionic acid (V), while 1-chloro-1-phenylacetone (VI) should rearrange exclusively to 2-phenylpropionic acid (VII). It is found, however, that both haloketones IV and VI yield

the same acid, V, and that such a result normally occurs.⁸ Evidently the preceding mechanisms, which would maintain a given positional asymmetry from starting haloketone to product, are untenable without appropriate modification.

- ⁶ Horner, Spietschka, and Gross, Ann., 573, 17 (1951); Ber., 85, 225 (1952).
- ⁷ Tchoubar and Sackur, Compt. rend., 208, 1020 (1939).
- * The prefixes α and α' will be used to differentiate the two carbon atoms which are adjacent to the carbonyl function of a haloketone. The halogen substituent of a mono-haloketone is regarded as being on the α -carbon atom.

⁸ McPhee and Klingsberg, J. Am. Chem. Soc., 66, 1132 (1944).

Symmetrical Mechanisms

One rationalization of the above observations would require halogen migration from the α - to the α' -carbon atom.^{9,10} Relevant here are such reactions as the solvolysis of 3-bromo-1,1-diphenylacetone to 1-hydroxy-1,1-diphenylacetone,¹¹ the reaction of α -chloroacetoacetic ester with ethanolic potassium cyanide to form both α - and γ -cyanoacetic esters,¹² and the conversion of 2α -bromocholestan-3-one to both the 2α - and 4α acetoxycholestan-3-ones by potassium acetate in acetic acid.¹³ Alternatively, McPhee and Klingsberg postulate a carbonium ion mechanism in which a haloketone such as VI undergoes unimolecular dissociation (α) to a carbonium ion VIII which can tautomerize (b) through a common enol IX to the isomeric carbonium ion X.⁸ The latter can then undergo rearrangement (c) to the acid V. The carbonium ion mechanism largely

(a)
$$C_6H_5CHCICOCH_3 \rightarrow [C_6H_5\overset{\oplus}{C}HCOCH_3]$$

VI VIII

(b)
$$[C_6H_5CHCOCH_3] \rightleftharpoons [C_6H_5CHC(OH)=CH_2] \rightleftharpoons [C_6H_5CH_2COCH_2]$$

VIII IX X

(c)
$$[C_{6}H_{5}CH_{2}CO\overset{\oplus}{C}H_{2}] \rightarrow [C_{6}H_{5}CH_{2}CH_{2}\overset{\oplus}{C}O] \rightarrow C_{6}H_{5}CH_{2}CH_{2}CO_{2}H$$

 X V

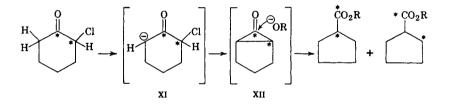
lacks analogy and has the drawback that no key role is assigned to the base which is a normal requisite of the Favorskiĭ rearrangement.

The generality of any of the preceding mechanisms was disproved in 1950 by the elegant work of Loftfield.¹⁴ A study was made of the rearrangement of C¹⁴-labeled 2-chlorocyclohexanone, a structure which did not preclude the operation of any of the postulated mechanisms. The rearrangement of this chloroketone in dilute ethanolic sodium ethoxide was shown to follow essentially first-order kinetics with respect to both haloketone and alkoxide. When 2-chlorocyclohexanone-1,2-C¹⁴, in which the isotope was equally distributed between carbon atoms 1 and 2, was treated with less than one equivalent of sodium isoamyloxide in isoamyl alcohol, the principal product was isoamyl cyclopentanecarboxylate, accompanied by some recovered chloroketone. Careful stepwise

* Richard, Compt. rend., 200, 1944 (1935).

¹⁰ Wendler, Graber, and Hazen, Chem. & Ind. (London), **1956**, 847; Tetrahedron, **3**, 144 (1958).

¹¹ Stevens and Lenk, Org. Chem. Abstr., XIIth Congr. Intern. Union Pure and Appl. Chem., 1951, p. 470.

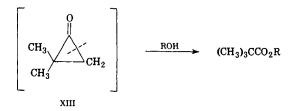

¹² Hantzsch and Schiffer, Ber., 25, 728 (1892).

¹³ Fieser and Romero, J. Am. Chem. Soc., 75, 4716 (1953).

¹⁴ Loftfield, J. Am. Chem. Soc., 72, 632 (1950); 73, 4707 (1951).

degradation of both the ester and the haloketone established that the recovered chloroketone had the same isotope distribution as starting material, and that the radiocarbon in the ester fraction was distributed 50% on the carboxyl carbon atom, 25% on the ring α -carbon atom, and 25% on the two ring β -carbon atoms.

The preceding facts clearly exclude any reversible halogen migration in a rearrangement of this type, and necessarily rule out significant participation by any of the mechanisms so far discussed. The data are compatible, however, with any reaction intermediate in which, by reason of symmetry, the α - and α' -carbon atoms of the cyclohexanone are formally equivalent. This criterion is satisfied by a mechanism that involves a cyclopropanone intermediate. (The concept of cyclopropanone intermediates in the reactions of α -haloketones with bases was well established in the German chemical literature prior to 1900.^{12,15-17}) According to this view, the initial step is the removal of a proton from the α' -carbon atom to give the haloketone enolate anion XI. Concerted or subsequent ejection of halide ion leads to a cyclopropanone which is rapidly cleaved by alkoxide to give the rearrangement product. In the Loftfield experiment, random cleavage of the cyclopropanone XII, having radiocarbon


distributed as marked, would lead to the isotope distribution observed in the ester fraction.

The Loftfield mechanism resembles the pathways suggested for the rearrangement of α -halosulfones,¹⁸ α -haloacetanilides,¹⁹ and oxime *p*-toluenesulfonates.²⁰ It is consistent with the known behavior of cyclopropanone derivatives^{21, 22} and in good agreement with the observed effect of various substituents on the facility and course of the Favorskiĭ

- ¹⁵ Wolff, Ann., 260, 79 (1890); Ber., 26, 2220 (1893).
- ¹⁶ Conrad, Ber., 32, 1005 (1899).
- ¹⁷ Pauly and Rossbach, Ber., 32, 2000 (1899).
- ¹⁸ Bordwell and Cooper, J. Am. Chem. Soc., 73, 5187 (1951).
- ¹⁹ Sarel and Greenberger, J. Org. Chem., 23, 330 (1958).
- ²⁰ Hatch and Cram, J. Am. Chem. Soc., 75, 38 (1953).
- ²¹ Lipp, Buchkremer, and Seeles, Ann., 499, 1 (1932).

²² R. B. Woodward and A. S. Kende, unpublished observations; A. S. Kende, Ph.D. thesis, Harvard University, 1956.

rearrangement. In particular, it leads to the correct prediction that rearrangement of unsymmetrical α -haloketones leads to the product formed through cleavage of the cyclopropanone intermediate so as to give the more stable of the two possible transient carbanions. Stabilities of unconjugated carbanions increase in the order tertiary < secondary < primary < benzyl.²³⁻²⁵ Thus the cyclopropanone XIII derived from

3-bromo-3-methylbutan-2-one opens to the tertiary trimethylacetic ester, forming a transient primary rather than tertiary carbanion.²⁶ Similarly, the cyclopropanone from 1-chloro-1-phenylacetone opens by way of a benzylic carbanion to give 3-phenylpropionic acid derivatives.⁸

On the basis of the evidence at hand, it is likely that the Favorskii rearrangement normally proceeds by a cyclopropanone mechanism. The few rearrangements which for structural reasons cannot utilize this pathway require special reaction conditions and probably take place through a variant of the semibenzilic mechanism.²⁷ A "push-pull" modification of the latter has been proposed for the quasi-Favorskii rearrangement of such haloketones on treatment with silver salts.²⁸

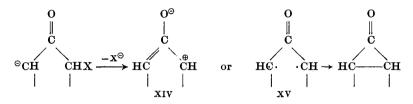
Stereospecificity

Although the cyclopropanone mechanism has received general acceptance and can often predict the formation of a preferred position isomer, its stereochemical implications are less firmly established. The Loftfield thesis implies that cyclopropanone formation is synchronous with an internal S_N^2 -type displacement on the halogen-bearing carbon atom with consequent inversion at that center.

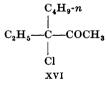
²³ Haubein, Iowa State Coll. J. Science, 18, 48 (1943) [C.A., 38, 716 (1944)].

²⁴ Bartlett, Friedman, and Stiles, J. Am. Chem. Soc., 75, 1771 (1953).

²⁶ G. S. Hammond, in Newman, Steric Effects of Organic Chemistry, pp. 439-441, John Wiley & Sons, New York, 1956.


²⁶ Aston and Greenburg, J. Am. Chem. Soc., 62, 2590 (1940).

²⁷ Stevens and Farkas, J. Am. Chem. Soc., 74, 5352 (1952).


²⁸ Cope and Graham, J. Am. Chem. Soc., 73, 4702 (1951).

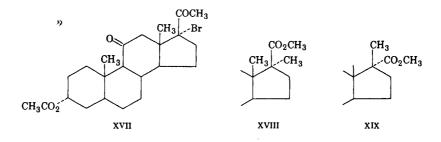
ORGANIC REACTIONS

This view has been questioned by Burr and Dewar on quantum mechanical grounds.²⁹ The latter suggest that the geometry of the enolate π -orbital is not suitable for effective S_N 2-type overlap with the σ -orbital of the halogen-bearing α -carbon atom. Rather, they agree with Aston and Newkirk³⁰ that loss of halide from the enolate anion precedes cyclo-propanone formation, and involves the generation of a species variously represented as a mesomeric zwitterion³⁰ (XIV) or as a "no-bond" canonical form (XV) of a cyclopropanone.^{29,31} Subsequent collapse of this species to the more stable cyclopropanone would lead to the product.

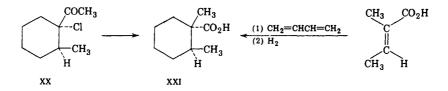
The synchronous and nonsynchronous mechanisms are not kinetically distinguishable if enolate formation is rate-determining, but they clearly differ in stereochemical implications. The synchronous process would entail steric inversion with the maintenance of essentially sp^3 hybridization at the halogen-bearing carbon. However, the intermediacy of a discrete species XIV or XV of high resonance energy would predict racemization of the α -carbon atom. The pathways could thus be differentiated by the rearrangement of a suitable optically active haloketone, such as XVI, into a trialkylacetic acid which would indicate by its optical purity the degree of participation of the synchronous as against the nonsynchronous mechanism.

For some years there has been only meager evidence on this point.^{32, 33} Wendler has shown that 17α -bromo- 3α -acetoxypregnane-11,20-dione (XVII) of proven configuration gives on rearrangement a

²⁹ Burr and Dewar, J. Chem. Soc., 1954, 1201.

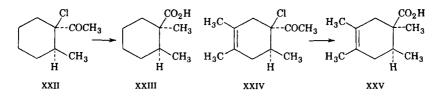

³⁰ Aston and Newkirk, J. Am. Chem. Soc., 73, 3900 (1951).

³¹ J. G. Burr, Jr., private communication; Burr, Tracer Applications for the Study of Organic Reactions, Interscience, New York, 1957.


³² Heusser, Engel, and Plattner, Helv. Chim. Acta, 33, 2237 (1950).

³³ W. S. Johnson, M. M. Roth, and D. D. Cameron, unpublished observations; M. M. Roth, Ph.D. thesis, 1951, and D. D. Cameron, Ph.D. thesis, 1953, University of Wisconsin.

3:2 mixture of the epimeric 17-methyl-17-carboxylic esters XVIII and XIX, respectively.¹⁰ This result, inexplicable by the synchronous mechanism, was rationalized by invoking bromine migration to C-21 prior to rearrangement, although independent evidence for such a shift was not adduced.



A clearcut case of stereospecific rearrangement has recently been demonstrated using the pair of epimeric 1-chloro-1-acetyl-2-methyl-cyclohexanes XX and XXII of proven configuration.³⁴ Rearrangement of XX with sodium benzyloxide gave a benzyl ester converted by hydrogenolysis into a single 1,2-dimethylcyclohexanecarboxylic acid, XXI.

The stereochemistry of this acid was demonstrated by independent synthesis involving the stereospecific Diels-Alder addition of butadiene to tiglic acid.

Rearrangement of the epimeric chloroketone XXII gave in turn exclusively the benzyl ester of the diastereomeric acid XXIII. In addition, the chloroketone XXIV was shown to rearrange to the ester of

³⁴ G. Stork and I. Borowitz, J. Am. Chem. Soc., 82 (1960), in press; I. Borowitz, Ph.D. thesis Columbia University, 1956.

XXV, proven to have carboxyl and methyl *cis* by its nonidentity with the adduct of tiglic acid and 2,3-dimethylbutadiene.

These results are consistent with the Loftfield mechanism and suggest that cyclopropanone formation and halide loss are synchronous or very nearly so; as a minimum they would require that any intermediate XIV or XV, if formed, should collapse stereospecifically to a cyclopropanone before the departing halide recedes beyond "shielding" range.³⁵ However, the zwitterion mechanism may have significance for systems wherein steric barriers retard ring closure in the normal direction and thus allow the halide anion to travel beyond the range of stereoselective electrostatic interaction before the new bond is formed.

SCOPE AND LIMITATIONS

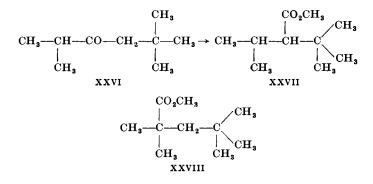
Acyclic Monohaloketones

The Favorskii rearrangement of acyclic α -monohaloketones is particularly sensitive to both structural factors and reaction conditions. Because some of the acyclic haloketones reported in the literature are of uncertain structure, and because of reaction conditions that are not comparable, precise evaluation of the scope of the reaction in the acyclic series is difficult. Certain general structural correlations are nevertheless possible. In accord with the cyclopropanone mechanism, it is observed that the rearrangement becomes more difficult as the rate of proton release from the α' -carbon atom is reduced by increasing alkyl substitution.^{14, 36,37} For example, in the series (CH₃)₂CBrCOR, the yield of rearrangement product where R is methyl, ethyl, or *n*-propyl ranges from 39% to 69% (dry alkoxides in ether being used); where R is isopropyl the yield is at most 29%, while where R is *t*-butyl (no α' -hydrogen atom) rearrangement is not observed.^{26,38}

Alkyl substituents on the halogen-bearing carbon atom, on the other hand, promote the rearrangement. This has been ascribed to steric hindrance toward competing bimolecular substitution or addition reactions.³⁹ For this reason, rearrangement of halomethyl alkyl ketones is unfavorable, whereas a number of α -haloisopropyl alkyl ketones do rearrange to give, as a rule, alkyldimethylacetic acids in good yields.

Although the formation of the more fully substituted acetic acids from the above rearrangements is generally observed, instances are known in

³⁵ Ingold, Structure and Mechanism in Organic Chemistry, pp. 382-384, Cornell Univ. Press, Ithaca, 1953.


³⁶ Pearson and Dillon, J. Am. Chem. Soc., 75, 2439 (1953).

³⁷ Cardwell, J. Chem. Soc., 1951, 2442.

³⁹ Sacks and Aston, J. Am. Chem. Soc., 73, 3902 (1951).

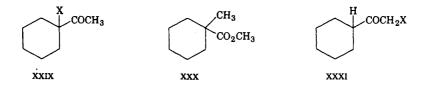
³⁸ Aston, Clarke, Burgess, and Greenburg, J. Am. Chem. Soc., 64, 300 (1942).

which the product formed is the unexpected, less-branched isomer. Thus rearrangement of the bromination product of 2,2,5-trimethylhexan-3-one (XXVI) leads to 93% of the ester XXVII, rather than to the isomer XXVIII.³⁶ Possibly the steric hindrance to solvation of the carbanion intermediate leading to XXVIII, in which the negative charge is on a particularly hindered neopentyl-type carbon atom, is greater than that required by the intermediate leading to the observed XXVII.

Alicyclic Monohaloketones

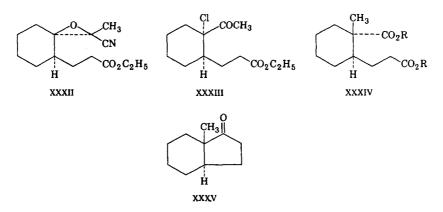
The ring contraction of α -halocyclanones to carboxylic acid derivatives of the next lower cycle is an important application of the Favorskii reaction. (Ring contraction of cyclic ketones to carboxylic acids has also been directly achieved in 23–34% yields by use of hydrogen peroxide in the presence of selenium dioxide.⁴⁰) Such rearrangements are usually less sensitive to variations of structure and reaction conditions than in the acyclic series, and thus prove a valuable synthetic route to certain alicyclic intermediates. The reaction is reasonably general for α -halocyclanones in rings of from six to ten carbon atoms. Under appropriate conditions, yields ranging from 40% to 75% can be obtained from the unsubstituted as well as from the majority of alkyl-substituted α -haloketones that have been studied.

A possible limitation would seem to be rearrangement of 2-halo-2alkylcyclohexanones, two examples of which reportedly fail to undergo the reaction.^{34,41} In contrast, 2-chloro-2-methylcycloheptanone gives the expected 1-methylcyclohexanecarboxylic acid in 41% yield.³⁴


The rearrangement of 2-bromocyclodecanone in over 75% yield provides a preferred synthesis of cyclononanecarboxylic acid.⁴²

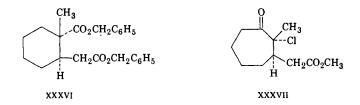
⁴⁰ Payne and Smith, J. Org. Chem., 22, 1680 (1957).

⁴¹ Mousseron and Granger, Bull. soc. chim. France, [5] 10, 428 (1943).

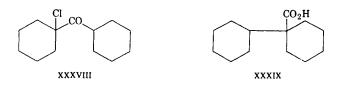

⁴² Schenker and Prelog, Helv. Chim. Acta, 36, 896 (1953).

A number of α -halogenated acylcycloalkanes undergo rearrangement to derivatives of the corresponding 1-alkylcycloalkanecarboxylic acids. With these haloketones, the position of the halogen has a characteristic effect on the yield of the rearrangement product. The 1-halo-1-acylcycloalkanes (XXIX) tend to rearrange smoothly, while the isomeric halomethyl cycloalkyl ketones (XXXI) do so in lower yield. A striking illustration arises from the set of bromoketones derived from acetylcyclohexane itself. The bromoketone XXIX (X = Br) gives the methyl ester XXX in 79% yield, whereas the isomer XXXI (X = Br) leads only to a side reaction under identical conditions.^{33, 43, 44} This difference, which is

less pronounced in the chloro analogs, has been attributed to the relatively slow rate-determining ionization of the tertiary proton in XXXI, which allows competing side reactions to predominate.^{14, 43} Of interest in this connection is the rearrangement of the comparatively acidic β -keto ester 6-bromo-2-carbethoxycyclohexanone, which furnishes cyclopentane-1,2trans-dicarboxylic acid in high yield.^{44a}


The rearrangement has been adapted to a reaction sequence which serves as a model for the stereospecific synthesis of the steroid D ring.^{33,34,45} The

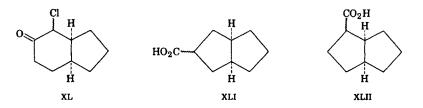
- 43 Loftfield and Schaad, J. Am. Chem. Soc., 76, 35 (1954).
- 44 Wagner and Moore, J. Am. Chem. Soc., 72, 2884 (1950).
- ⁴⁴⁴ E. E. van Tamelen and J. E. Brenner, unpublished observations; J. E. Brenner, Ph.D thesis, University of Wisconsin, 1958.
 - ⁴⁵ G. Stork and W. S. Worrall, unpublished observations.


epoxynitrile ester XXXII, obtained by Darzens condensation of 2-chloropropionitrile with the appropriate keto ester, was treated with hydrogen chloride followed by dilute base to give the chloroketone XXXIII. Rearrangement of this chloroketone with sodium benzyloxide led to the diester XXXIV (R=C₆H₅CH₂ or C₂H₅) which on Dieckmann cyclization and hydrolysis gave 8-methyl-trans-1-hydrindone (XXXV). The rearrangement proceeded in 21-25% yield.

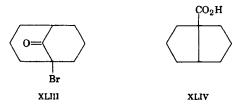
A lower homolog of XXXIV, the diester XXXVI, was obtained in about 15% yield by stereospecific rearrangement of the chloroketone XXXVII, which in turn was prepared by sulfuryl chloride chlorination

of the corresponding δ -ketoester. Although the yields in the rearrangement of the chloroketones XXXIII and XXXVII were low, the stereospecificity of the reaction can make this a preferred route of synthesis for such intermediates.

The rearrangement of an α -chlorodicycloalkyl ketone, XXXVIII, to the difficultly accessible acid XXXIX has found synthetic utility.⁴⁶

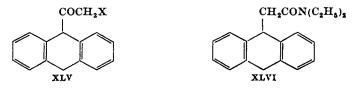


Limited data on α -haloketones in fused bicyclic systems suggest that their behavior parallels the monocyclic as well as the more complex polycyclic analogs. The rearrangement of 4-chloro-*cis*-5-hydrindone (XL) led to a 65% yield of a mixture of the bicyclo[3.3.0]octane-2- and -3-carboxylic acids XLI and XLII.⁴⁷ The rearrangement of 3-chloro*trans*-2-decalone to hydrindane derivatives has been reported.^{48, 49}


- ⁴⁶ Kopp and Tchoubar, Bull. soc. chim. France, [5] 19, 84 (1952); 22, 1363 (1955).
- ⁴⁷ Granger, Nau, and Corbier, Bull. soc. chim. France, [5] 22, 5, 479 (1955); 23, 247 (1956).

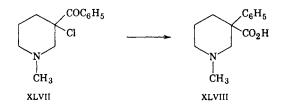
49 Mousseron, Granger, et al., Bull. soc. chim. France, [5] 10, 42 (1943); 14, 606 (1947).

⁴⁸ Cauquil and Tsatsas, Bull. soc. chim. France, [5] 10, 47 (1943).



The 1-bromo-bicyclo[3.3.1]nonan-9-one system (XLIII) is readily transformed by a variety of reagents, such as silver or mercuric salts, sodium amide, or potassium hydroxide in ether, into derivatives of bicyclo-[3.3.0]octane-1-carboxylic acid (XLIV).^{28, 50} These quasi-Favorskiĭ rearrangements are believed to proceed by a special "push-pull" mechanism related to the benzilic acid rearrangement.

Aralkyl Monohaloketones


The labilizing effect of an aryl group leads to particularly facile rearrangement for haloketones of the type $ArCH_2COCHXR$. Yields of the order of 80% are obtained in the conversion of 1-chloro-3-arylacetones to the corresponding 3-arylpropionic esters.^{8,51} When two aryl groups activate the α' -carbon atom, rearrangement is very rapid, so that even the highly nucleophilic dialkylamines can serve as the basic reagents. Thus the dihydroanthracene ketones XLV (X = Cl, Br) on treatment with diethylamine give the diethylamide rearrangement product XLVI in about 40% yield.^{14, 52, 53}

⁴⁰ Cope and Synerholm, J. Am. Chem. Soc., 72, 5228 (1950).

- ¹¹ Eastham, Fisher, Kulka, and Hibbert, J. Am. Chem. Soc., 66, 26 (1944).
- ⁵² Dauben, Hiskey, and Muhs, J. Am. Chem. Soc., 74, 2082 (1952).
- ⁵² May and Mosettig, J. Am. Chem. Soc., 70, 1077 (1948).

The presence of an enolizable α' -hydrogen atom remains a requirement for rearrangement under normal conditions. Haloketones lacking this feature, such as 1-chloro-1-benzoylcyclohexane or 2-chloro-1-tetralone, do not give rearrangement products on treatment with alkoxides.^{54, 55} However, the use of silver salts or solid alkali-metal hydroxides can sometimes effect a quasi-Favorskiĭ rearrangement of these systems,^{27, 28, 56} as illustrated by the nonstereospecific conversion of the levorotatory chloroketone XLVII to the racemic acid XLVIII by the action of sodium hydroxide in boiling xylene.⁵⁷

Aryl substitution on the halogen-bearing carbon atom appears to have a favorable effect on the rearrangement. Thus 1-chloro-1-phenylacetone reacts with methanolic methoxide to give rearrangement products in 69%yield,⁸ and the tertiary haloketone XLIX rearranges to give ethyl 3,3diphenylpropionate in 85% yield.⁵⁸

Steroid Monohaloketones

The Favorskiĭ rearrangement has found synthetic utility in the steroids as a direct route to A-norsteroids and in transformations leading to 17methyletianic acid derivatives.

Reaction of 2-halocholestanones (L) with alkoxides has been studied in several laboratories.⁵⁹⁻⁶² Two esters, LI and LII, can be isolated, the

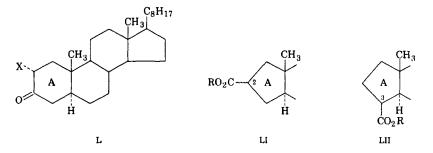
⁵⁴ Stevens, Malik, and Pratt, J. Am. Chem. Soc., 72, 4758 (1950).

⁵⁶ Stevens, Beereboom, and Rutherford, J. Am. Chem. Soc., 77, 4590 (1955).

⁵⁶ Tchoubar, Compt. rend., 228, 580 (1949); 235, 720 (1952).

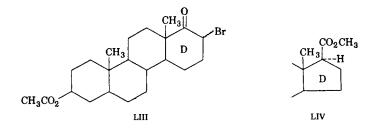
⁵⁷ Smissman and Hite, J. Am. Chem. Soc., 81, 1201 (1959); Abstracts, Medicinal Chemistry

Section, 135th Meeting, Am. Chem. Soc., Boston, 1959, p. 18N.

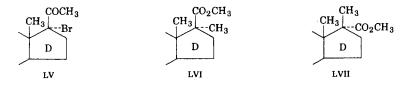

58 Stevens and Sherr, J. Org. Chem., 17, 1228 (1952).

⁵⁹ Winternitz and de Paulet, Bull. soc. chim. France, [5] 21, 288 (1954); 22, 1393 (1955).

⁴⁰ Evans, de Paulet, Shoppee, and Winternitz, Chem. & Ind. (London), **1955**, 355; J. Chem. Soc., **1957**, 1451.

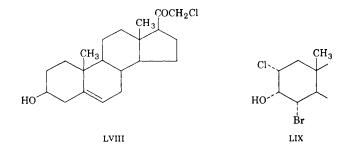

¹¹ Smith and Nace, J. Am. Chem. Soc., 76, 6119 (1954).

** A. S. Kende, unpublished observations.



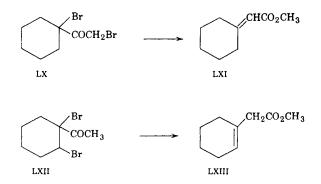
former predominating. The position of the carboxyl group was demonstrated in each product by Barbier-Wieland degradation to the corresponding A-norcholestan-2-one and A-norcoprostan-3-one, respectively. The reaction of 4β -bromocoprostan-3-one proceeds along similar lines to give approximately 25% each of the A-norcoprostane-2- and -3-carboxylates.

In contrast to the above instances, the reaction with methoxide ion of 17-brominated D-homoandrostan-17*a*-one LIII, which lacks an α' -hydrogen atom, gave only traces of the ester LIV.^{60, 63}


Halogenated 20-ketosteroids undergo rearrangement very readily. A number of 17α -bromo-20-ketosteroids (LV) are transformed by methanolic bicarbonates in high yield to 17-methyletianic esters. The 17α -methyl ester LVI is invariably the principal product, but it is usually accompanied by a significant amount of the 17β -epimer LVII.^{10, 32, 64}

63 Prins and Shoppee, J. Chem. Soc., 1946, 494.

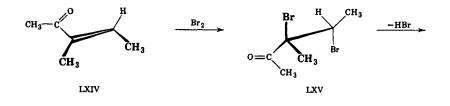
64 Engel, J. Am. Chem. Soc., 78, 4727 (1956).

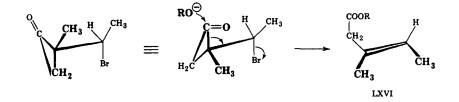

The action of potassium methoxide on 21-chloro-5-pregnen- 3β -ol-20-one (LVIII) proceeds comparably to give 63% and 24%, respectively, of the 17 α - and 17 β -methyletianic esters described above.³² The rearrangement of a 21-fluoro-20-ketosteroid takes a similar course.^{64a}

The reaction of 2α -chloro- 4α -bromocholestan- 3α -ol (LIX) with ethanolic potassium hydroxide appears to involve a Favorskiĭ transformation.⁶⁵ The C₂₇H₄₆O₂ acid product, obtained in high yield, was assigned an A-norcholestane structure corresponding to the Favorskiĭ ester LI or LII, and could arise by rearrangement of an intermediate halocholestan-3-one.

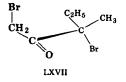
Dihaloketones

In 1894 Favorskiĭ reported that several aliphatic dichloroketones were rearranged in refluxing potassium carbonate solution into unsaturated acids.¹ Subsequent studies by Wagner have shown that the rearrangement of a number of α, α' - or α, β -dihaloketones can be effected smoothly with sodium alkoxides. It was established that the primary product from an α, α' -dihaloketone (LX) is an α, β -unsaturated ester (LXI), while

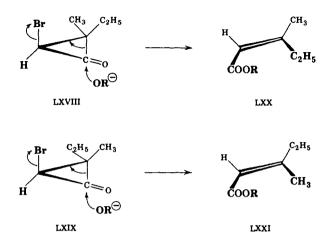



64a Kende, Chem & Ind. (London), 1959, 1346.

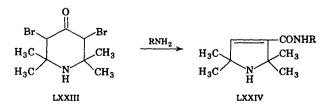
⁶⁵ Beereboom and Djerassi, J. Org. Chem., 19, 1196 (1954).


the product from an α,β -dihaloketone (LXII) is a β,γ -olefinic ester (LXIII).⁶⁶

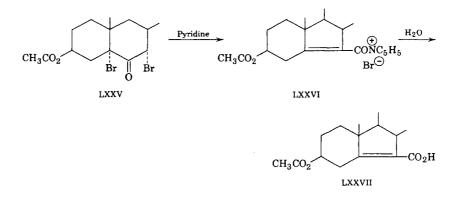
In practice this product specificity is not always observed because prototropic equilibration between an α,β - and a β,γ -isomer can occur.^{67, 68} However, the above primary course of the reaction is well accommodated by the cyclopropanone mechanism which, moreover, is consistent with the stereochemistry found for some of the olefinic rearrangement products. Thus it has been pointed out that the dibromoketone LXV, derived from what is most probably *trans*-3-methyl-3-penten-2-one (LXIV), gives solely the *trans*-pentenoate LXVI on rearrangement.^{14, 68}



Likewise, rearrangement of the dibromoketone LXVII should proceed through both cyclopropanones LXVIII and LXIX.¹⁴ The observed yields of 29% cis-pentenoate LXX and 22% trans-pentenoate LXXI are in accord with this reasoning.⁶⁶


- 44 Wagner and Moore, J. Am. Chem. Soc., 72, 974 (1950).
- ⁶⁷ Marker, Wagner, and Wittbecker, J. Am. Chem. Soc., 64, 2093 (1942).
- ** Wagner, J. Am. Chem. Soc., 71, 3214 (1949).

Yields of 51-84% are reported by Wagner for the alkoxide-catalyzed rearrangement of several aliphatic α, α' - and α, β -dibromoketones.^{66, 68} The principal side reaction is the addition of alcohol to the α, β -olefinic esters, which gives rise to β -alkoxy esters.⁶⁸ The rearrangement of the endocyclic dibromoketone LXXII to derivatives of 2-methylcyclohexene-1-carboxylic acid is effected by sodium benzyloxide.³⁴

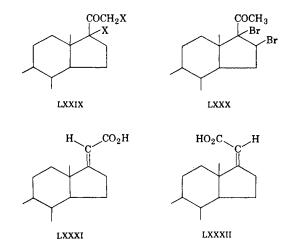


Certain dibromoketones are rearranged by the action of amines. Of particular interest is the heterocyclic dihaloketone LXXIII, which reacts with ammonia or primary amines to give the Δ^3 -pyrroline derivatives LXXIV.^{17, 69}

* Pauly, Ber., 31, 668 (1898).

The use of a tertiary amine is illustrated by the transformation of 5α , 7α -dibromo- 3β -acetoxycholestan-6-one (LXXV) into the olefinic acid LXXVII by refluxing pyridine.⁷⁰ The acylpyridinium salt LXXVI has been suggested as an intermediate in this reaction.

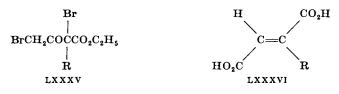
On treatment with hot dimethylaniline or potassium hydroxide solution, the dibromination product of cyclononanone undergoes a transannular reaction to give the bicyclic ketone LXXVIII.⁴²


Steroidal 17,21-dihalo-20-ketones (LXXIX, X = Br, I) and 16,17dibromo-20-ketones (LXXX) are smoothly converted by methanolic potassium hydroxide into the corresponding $\Delta^{17(20)}$ -21-carboxylic acids. The rearrangement of 17 α -bromo-21-iodopregn-5-ene-3 β -ol-20-one acetate has been shown to give both the *trans* and *cis* acids, LXXXI and LXXXII respectively, the former predominating.⁷¹

The rearrangement of certain terpene dibromoketones by aqueous base is a feature of the "Wallach degradation."⁷² An illustration is the transformation of pulegone dibromide (LXXXIII) to "pulegenic acid," a mixture from which a 2-isopropylidene-5-methylcyclopentanecarboxylic

⁷⁰ Woodward and Clifford, J. Am. Chem. Soc., 63, 1123, 2727 (1941).

⁷¹ Romo and Romo de Vivar, J. Am. Chem. Soc., 79, 1118 (1957).


⁷² Wallach, Ann., 414, 271 (1918).

acid (LXXXIV) has been characterized.⁷³ Many of Wallach's dibromoketones and their transformation products are of uncertain purity and structure. Phenols, α -hydroxy acids, and substances resulting from ring cleavage are frequently produced in preference to the Favorskiĭ product.

The conversion of the β -keto ester LXXXV, $R = CH_3$, to mesaconic acid (LXXXVI, $R = CH_3$) may be regarded as the earliest example of the Favorskiĭ rearrangement.^{74, 75} Although the generality of the

⁷³ Wallach, Ann., 327, 125 (1903); 414, 233 (1918)

- ⁷⁴ Demarcay, Ann. chim. et phys., [5] 20, 433 (1880).
- ¹⁵ Cloez, Bull. soc. chim. France, [3] 3, 602 (1890).

reaction had not been established, its course was clearly discussed by Wolff four years before Favorskii's initial paper appeared.¹⁵ Subsequently Conrad showed that the acetylsuccinic ester LXXXV, $R = CH_2CO_2C_2H_5$, behaves similarly, giving aconitic acid (LXXXVI, $R = CH_2CO_2C_2H_5$).¹⁶

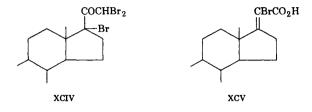
Trihaloketones

The reaction of several α, α, α' -trihaloketones with alkaline reagents has been examined. The aliphatic tribromoketone LXXXVII reacts with aqueous base to give β,β -dimethylglyceric acid (LXXXVIII).³ (The formation of LXXXVIII is analogous to the production of mandelic acid from the action of alkali on α, α -dibromoacetophenone.⁷⁶) However, ethanolic potassium hydroxide converts LXXXVII to the Favorskiĭ product LXXXIX in low yield.⁷⁷

$$\begin{array}{cccc} \mathbf{Br} & \mathbf{OH} & \mathbf{OH} \\ | & | & | \\ (\mathbf{CH}_3)_2 \mathbf{CCOCHBr}_2 & (\mathbf{CH}_3)_2 \mathbf{C} \longrightarrow \mathbf{CHCO}_2 \mathbf{H} & (\mathbf{CH}_3)_2 \mathbf{C} \Longrightarrow \mathbf{CBrCO}_2 \mathbf{H} \\ \mathbf{LXXXVII} & \mathbf{LXXXVIII} & \mathbf{LXXXIX} \end{array}$$

Similarly, dibromomethyl α -bromocyclohexyl ketone (XC) gives α -bromocyclohexylideneacetic acid (XCI).⁷⁷

The cyclic trihaloketone XCII reacts with sodium acetate in aqueous ethanol to give the Favorskiĭ product 2-chloro-1-cyclohexene carboxylic acid (XCIII); the 2,2,8-trihalocycloöctanones undergo rearrangement with comparable ease.⁷⁸

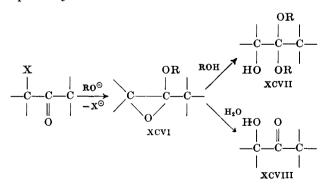


⁷⁶ Neville, J. Am. Chem. Soc., 70, 3499 (1948).

⁷⁷ Wagner and Moore, J. Am. Chem. Soc., 72, 3655 (1950).

⁷⁶ Hesse and Krehbiel, Ann., **593**, 42 (1955); Hesse and Urbanek, Chem. Ber., **91**, 2733, (1958).

In the steroids, rearrangements of the tribromoketone system XCIV to the corresponding bromo acids XCV are effected in 57-72% yield by ethanolic potassium hydroxide.^{71, 77}



EXPERIMENTAL CONDITIONS

Side Reactions

The principal side reactions encountered in the rearrangement of α -haloketones by alkoxides give rise to epoxyethers (XCVI), α -hydroxy ketals (XCVII) and α -hydroxy ketones (XCVIII) having the same carbon skeleton as the original haloketone. Less frequent by-products are α -alkoxyketones, unsaturated ketones, and acids resulting from secondary cleavage reactions.

The main side reaction competing with rearrangement proceeds through nucleophilic addition of alkoxide to the carbonyl group, with the formation of a labile epoxyether (XCVI). This intermediate can react further with alcohols or water to form hydroxy ketal or hydroxy ketone, respectively.^{14, 43, 54, 79-83}

¹⁹ Ward, J. Chem. Soc., 1929, 1541.

- ⁸⁰ Mousseron, Jacquier, and Fontaine, Bull. soc. chim. France, [5] 19, 767, (1952).
- ⁸¹ Stevens and Farkas, J. Am. Chem. Soc., 74, 618 (1952).
- ** Stevens and Tazuma, J. Am. Chem. Soc., 76, 715 (1954).
- 82 Bergmann and Miekeley, Ber., 64, 802 (1931).

Pure epoxyethers have been obtained by action of ethereal alkoxides on α -halopropiophenones and α -halocyclohexyl phenyl ketones.^{54, 81, 84} These well-characterized epoxyethers reacted rapidly with methanol or methanolic methoxide to form α -hydroxy ketals, and with aqueous acid or base to give α -hydroxy ketones, but no rearrangement to esters was observed. Because of their lability, α -epoxyethers are not normally isolated as such from Favorskiĭ reaction mixtures.* In the presence of alcohols during reaction or isolation of the products, the principal byproduct is the expected hydroxy ketal,^{26, 44} or an epoxyether dimer believed to be formed by reaction of hydroxy ketal with the epoxyether.⁴³

Hydroxy ketones result on treatment of α -haloketones by hydroxides,^{26, 38} or through hydrolysis of epoxyethers during reaction or isolation of the products.^{43,77} Such α -hydroxy ketones may undergo subsequent hydrolytic or oxidative cleavage to give carboxylic acids. The formation of 21% of cyclohexanecarboxylic acid from chloromethyl cyclohexyl ketone and sodium methoxide has been ascribed to hydrolysis of the intermediate hydroxymethyl ketone, since formation of the acid was largely eliminated under rigorously anhydrous reaction conditions.^{43†} Formally similar reactions in the steroids have been attributed to the reaction of hydroxy ketone intermediates with oxygen in the presence of alkoxide.^{60, 61,85}

The extent to which side reactions such as the above interfere with the normal Favorskiĭ reaction must depend on the rate of epoxyether formation compared to the rate of rearrangement. This ratio is a function of several factors, primarily the structure of the haloketone and the nature of the halogen. With a given haloketone, there appears to be a dependence on the polarity of the reaction medium and possibly the nature of the alkoxide.^{14,43} The effects of these experimental variables are discussed in the following sections.

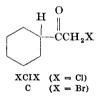
Other side reactions include direct substitution of certain α -haloketones by alkoxides, particularly methoxide ion, to form α -alkoxy ketones.^{26, 38, 86} The use of amines as Favorskii reagents gives rise to α -amino ketones.^{52, 53, 87, 88} In some instances, dehydrohalogenation to unsaturated ketones may occur.⁸⁰

- ⁸⁷ Jullien and Fauche, Bull. soc. chim. France, [5] 20, 374 (1953).
- ⁸⁸ Dodson, Morello, and Dauben, J. Am. Chem. Soc., 76, 806 (1954).

⁸⁴ Temnikova and Kropacheva, J. Gen. Chem. U.S.S.R., **19**, 1917 (1949) [C.A., **44**, 1929 (1950)].

^{*} The reported⁸⁰ formation of α -epoxyethers from the action of alcoholic alkoxides on alicyclic α -haloketones has been questioned by Stevens, who has identified several such products as α -hydroxy ketals.⁸⁸

[†] Hydroxymethyl cyclohexyl ketone and 1-hydroxy-1-benzoylcyclohexane are known to cleave in base to give cyclohexanecarboxylic acid and benzoic acid, respectively.^{27,33,43}


⁸⁶ Stoll and Hulstkamp, Helv. Chim. Acta, 30, 1815 (1947).

⁸⁶ Barnes, Pausacker, and Badcock, J. Chem. Soc., 1951, 730.

The cationoid character of halogen in bromoketones renders the latter liable to reduction or disproportionation in the presence of strong bases.^{46,89} The reaction of 2-bromocyclohexanone and related substances with alkali is accompanied by formation of α -hydroxy acids having a rearranged carbon skeleton.^{14,72,89} These are considered to arise through disproportionation to dibromoketones followed by hydrolysis to α -diketones, which undergo the benzilic acid rearrangement.^{90,91}

Nature of the Halogen

Chloroketones are normally preferable to bromoketones as reactants in the Favorskiĭ rearrangement. For example, chloromethyl cyclohexyl ketone (XCIX) reacts with sodium methoxide to give 38% of Favorskiĭ ester, whereas the corresponding bromoketone (C) under these conditions gives exclusively side-reaction products⁴³ Comparable differences have been observed for the 2-halocyclohexanones¹⁴ and the α -halodicyclohexyl ketones.⁴⁷

Loftfield has pointed out that, although the rates of rearrangement for haloketones XCIX and C are probably comparable, the rate of the main competing side reaction, epoxyether formation, is much greater for the bromoketone C than for the chloro compound XCIX.⁴³ (The consequent suggestion that α -fluoroketones might serve as superior starting materials for the rearrangement awaits experimental verification.^{64a}) Extension of this principle to aliphatic α -monohaloketones has not been investigated in detail but is probably valid.^{26,92} In the rearrangement of 2-halo-3ketosteroids⁶² or 21-halo-20-ketosteroids⁹³ the chloro compound offers only minor advantages over the bromoketone. Data are lacking concerning the rearrangement of simple α -iodoketones. The reaction of α -p-toluenesulfonyloxyketones with alkoxides can proceed with elimination of p-toluenesulfinate anion to give α -diketones.⁹⁴

- 92 Delbaere, Bull. soc. chim. Belges, 51, 1 (1942).
- ⁹³ Plattner, Heusser, and Boyce, Helv. Chim. Acta, 31, 603 (1948).

⁹⁴ R. B. Woodward and S. Levine, unpublished observations; S. Levine, Ph.D. thesis, Harvard University, 1953.

⁸⁹ Lyle and Covey, J. Am. Chem. Soc., 75, 4973 (1953).

⁹⁰ Schwarzenbach and Wittwer, Helv. Chim. Acta, 30, 663 (1947).

⁹¹ Buchman and Sargent, J. Org. Chem., 7, 148 (1952).

Choice of Base and Solvent

The choice of base and solvent can profoundly affect the yield of a Favorskiĭ reaction. This is particularly clear-cut in the aliphatic series, as is illustrated by the data in Table I on the rearrangement of the bromoketone CI, in which the Favorskiĭ ester CII, the hydroxy ketal CIII, and the ketol CIV may be formed.

TABLE I

Reaction of $(CH_3)_2CBrCOCH_3$ (CI) under Conditions of the Favorskii Reaction

Base	Solvent	Yield (%) of CII	Yield (%) of By- products	Reference
Sodium isopropoxide	Diethyl ether	64	0	26
Sodium ethoxide	Diethyl ether	61	0	26
Sodium methoxide	Diethyl ether	39	20 CIII	26
Sodium isopropoxide	Isopropyl alcohol	20	8 CIII	26
Sodium ethoxide	Ethanol	14	32 CIII	26
Sodium methoxide	Methanol	0	77 CIII	26
Barium carbonate	Water	3		95
Potassium hydroxide	Water	0	76 CIV	95

Base and solvent effects on the rearrangement of 2-chlorocyclohexanone and 1-chloro-1-acetylcyclohexane have been studied in detail by Stork and Borowitz.³⁴ No correlation is found between yield and the pK_a of the alcohol, nor is there observed a simple dependence of yield on the size of the alkoxide ion, as earlier data seem to suggest.^{26,80*} The use of excess alkoxide (2 to 4 equivalents) and high base concentrations leads to significantly higher yields in the homogeneous reactions. Rigorously anhydrous conditions are not essential for these haloketones, although traces of water have a deleterious effect in the reaction of other haloketones.^{43,60} Yields obtained with given solvent-alkoxide combinations are listed in Table II.

^{**} Venus-Danilova, J. Gen. Chem. U.S.S.R., 11, 847, (1941) [C.A. 36, 4094 (1942)].

Potassium t-butoxide gave a poor yield in the rearrangement of 2-chlorocyclohexanone.³⁴

TABLE II

Base	Solvent	Yield (%) from 2-Chlorocyclo- hexanone	Yield (%) from 1-Chloro-1- acetylcyclo- hexane
Sodium ethoxide	Ethanol	60 (64)*	41
Sodium ethoxide	Diethyl ether		56
Sodium methoxide	Methanol	44	
Sodium isopropoxide	Isopropyl alcohol	36	
Sodium isopropoxide	Diethyl ether		45
Sodium isoamyloxide	Isoamyl alcohol	(47)*	
Sodium benzyloxide	Benzyl alcohol	75	57
Sodium benzyloxide	Diethyl ether	57	72

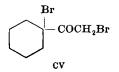
YIELDS OF REARRANGEMENT ACID USING VARIOUS ALKOXIDE-SOLVENT PAIRs³⁴

* Data of Loftfield.¹⁴

Survey of the literature reveals no single alkoxide-solvent combination as clearly superior for α -monohaloketones in general. The use of diethyl ether as solvent is indicated for the simpler haloketones, and theoretical considerations suggest that solvents of low polarity might have a generally favorable effect.¹⁴ Sodium benzyloxide, used under a nitrogen atmosphere, and sodium ethoxide are among the more consistently successful reagents. The optimum choice of base and solvent appears to vary with the structure of the individual haloketone.

The use of hydroxides or carbonates generally leads to extensive hydroxyketone formation. Significant exceptions include the conversion of 2-chlorocycloheptanone to cyclohexanecarboxylic acid (69% yield) on treatment with hot aqueous potassium carbonate.⁹⁶ Similarly high yields are obtained in the rearrangement of 17-bromo-20-ketosteroids with refluxing methanolic bicarbonates.^{64, 97} Sodium hydroxide in an inert solvent is moderately effective with some aralkyl ketones,^{8, 57, 58, 98} and appears to be the reagent of choice in the quasi-Favorskii rearrangement of 1-chloro-1-benzoylcyclohexane.^{7,27}

The use of secondary amines has limited scope and offers no advantages over alkoxides.^{53, 87,88} Sodium salts of various bifunctional alcohols and of alicyclic alcohols, such as menthol, also appear relatively unpromising.⁸⁰ Phenoxides and thiophenoxides lead primarily to substitution products.^{80,99*} Relatively non-nucleophilic bases, such as


- ⁹⁷ Heusser, Engel, Herzig, and Plattner, Helv. Chim. Acta, 33, 2229 (1950).
- ⁹⁸ Richard, G., Thèse Sciences, Univ. Nancy, 1936.
- ⁹⁹ Mousseron and Jacquier, Bull. soc. chim. France, [5] 16, 689 (1949).
- * Kopp-Mayer has claimed high yields of esters on treatment of aralkyl chloroketones with sodium phenoxide in dioxane.100

⁹⁶ Gutsche, J. Am. Chem. Soc., 71, 3513 (1949).

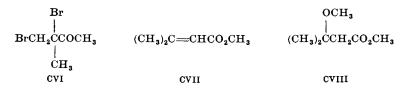
¹⁰⁰ Kopp-Mayer, Compt. rend., 240, 1115 (1955).

sodium hydride or sodium triphenylmethide, do not effect rearrangement of 2-chloro-2-methylcycloheptanone.³⁴

Rearrangement of the dibromoketone CV using sodium methoxide in diethyl ether proceeds in 48% yield;⁶⁶ the yield drops to 20% and 7% with the use of aqueous potassium hydroxide and carbonate, respectively.¹⁰¹ Steroidal 17,21-dibromo-20-ketones, however, show relatively little sensitivity to such variations in reaction conditions.^{64,102}

Reaction Time and Temperature

Rearrangement of an α -monohaloketone is effected by adding the ketone to a fairly concentrated solution or suspension of the alkoxide at -20° to $+30^{\circ}$. Rapid addition of the ketone to an excess of the base is recommended. A mildly exothermic reaction usually results; short-term variations in reaction temperature normally have no effect on yield.³⁴


Under the above conditions, homogeneous reactions of simple α -haloketones are generally complete within 10–30 minutes at room temperature.^{14, 34,58} With α -haloketones requiring ionization of a hindered proton, or with heterogeneous reactions, e.g., sodium alkoxides in ether, considerably longer reaction times may be required.^{26,34,43} The reaction rate may be followed by determining the hydrogen halide liberated, through titration as acid or ionic halogen.^{14,58, 80}

Reaction temperatures above 50° are rarely necessary for rearrangements using alkoxides and, if maintained, may reduce the yield.⁶¹ On the other hand, reactions in which a weak base such as methanolic bicarbonate is employed usually require 2 to 4 hours of heating under reflux.^{64,93}

In the rearrangement of aliphatic dibromoketones, minimum reaction time and temperature, together with inverse addition of base to haloketone, are advisable to reduce the formation of β -alkoxy esters and resins.^{66,68} For example, reaction of the dibromoketone CVI with ethereal sodium methoxide for 2.5 hours gives 64% of the olefinic ester CVII and 2% of the alkoxy ester CVIII, whereas a 30-hour reaction period leads to 42% of CVII and 16% of CVIII.

¹⁰¹ Wagner and Moore, J. Am. Chem. Soc., 72, 1873 (1950).

¹⁰² Koechlin and Reichstein, Helv. Chim. Acta, 27, 549 (1944).

Experimental Procedures

Methyl Cyclopentanecarboxylate. Detailed directions for the preparation of methyl cyclopentanecarboxylate in 56-61% yield from 2-chlorocyclohexanone and sodium methoxide in diethyl ether are given in Organic Syntheses.^{102a}

Ethyl Trimethylacetate.²⁶ (Rearrangement of a Bromoketone with Sodium Ethoxide in Diethyl Ether). To a dry 1-l. three-necked flask equipped with a dropping funnel and an efficient reflux condenser, each protected by a drying tube, is added 500 ml. of anhydrous diethyl ether. Into the ether is placed finely sliced sodium (11.5 g., 0.5 mole), which is followed by the addition of 29.2 ml. (0.5 mole) of absolute ethanol. The mixture is held at reflux for 48 hours to ensure reaction of the metal.*

The suspension is cooled in ice and 82.5 g. (0.5 mole) of 3-bromo-3methyl-2-butanone is added over a period of 2 hours. The reaction mixture is heated under reflux for 3 hours, then water is added to dissolve the precipitated sodium bromide. The layers are separated and the ether dried over sodium sulfate. Fractionation gives 39.8 g. (61%) of ethyl trimethylacetate, b.p. $116^{\circ}/725$ mm., n_{D}^{20} 1.3912.

Ethyl 3,3-Diphenylpropionate.⁵⁸ (Rearrangement of a Chloroketone with Sodium Ethoxide in Ethanol). In a 100-ml. round-bottomed flask fitted with a calcium chloride tube is placed 5.4 g. (0.022 mole) of 1-chloro-1,1-diphenylacetone in 40 ml. of absolute ethanol. To this solution is added 9.2 ml. of freshly prepared ethanolic sodium ethoxide containing 2.42 millimoles of sodium ethoxide per milliliter of solution. During the addition, heat is evolved and the reaction mixture turns brown. After 1 minute, titration of an aliquot of the solution with hydrochloric acid shows that 89% of the sodium ethoxide has been consumed. The solution is poured onto ice, the water layer neutralized with dilute hydrochloric

^{102a} Goheen and Vaughan, Org. Syntheses, 39, 37 (1959).

^{*} Preparation of the alkoxide is facilitated by equipping the flask with a sealed stirrer and replacing the sodium metal with 12.0 g. of sodium hydride powder (Metal Hydrides Inc., Beverly, Mass.). The ethanol is slowly added to the stirred hydride suspension at a rate that maintains steady hydrogen evolution. After the reaction has largely subsided, a 1-hour reflux period completes formation of the ethoxide.⁴²

acid, and the organic material extracted with several portions of ether. The combined ether layers are dried over sodium sulfate, and the solvent is removed at room temperature with a water aspirator. The residue, 4.75 g. of a dark yellow oil, is distilled to give 4.5 g. (85%) of ethyl 3,3-diphenylpropionate, b.p. 129–133°/0.3 mm., m.p. 19–22°, n_{25}^{25} 1.4850.

Cyclohexanecarboxylic Acid.⁹⁶ (Rearrangement of a Chloroketone Using Aqueous Potassium Carbonate). A mixture of 5.0 g. of 2-chlorocycloheptanone, 15 g. of potassium carbonate, and 20 ml. of water is stirred vigorously at the reflux temperature for 6 hours. The reaction mixture is cooled and extracted with ether to remove neutral by-products (0.76 g.). The aqueous layer is acidified and is re-extracted with ether to isolate the acid fraction. Evaporation of the dried extract gives 3.0 g. (69%) of cyclohexanecarboxylic acid, m.p. 22-26°.

Methyl 3-Methyl-2-butenoate.⁶⁶ (Rearrangement of a Dibromoketone Using Inverse Addition of Sodium Methoxide in Diethyl Ether). A 2-1. three-necked flask is equipped with a sealed stirrer, thermometer, and a 5-l. separatory funnel. The funnel is equipped with a sealed stirrer and a wide-bore stopcock. A solution of 244 g. (1 mole) of 1,3-dibromo-3methyl-2-butanone in 250 ml. of absolute diethyl ether is placed in the flask and cooled in a salt-ice bath. In the separatory funnel is placed 111.5 g. (2 moles) of freshly opened sodium methoxide powder (95%assay, Mathieson Alkali Works) suspended in 500 ml. of ether. The slurry of sodium methoxide is kept stirred and is added in small portions, over a 4-hour period, to the stirred reaction mixture at a temperature of $0-5^{\circ}$. After stirring for an additional 30 minutes, an aliquot of the reaction mixture is titrated with standard acid and it is found that less than 4% of the sodium methoxide remains. The reaction mixture is poured onto ice, the layers are separated, and the water layer is extracted with ether. The combined ether extracts are dried over anhydrous potassium carbonate and the ether is removed by distillation. The concentrate is rapidly distilled through a Claisen flask under reduced pressure to free it from any high-boiling and bromine-containing material. The crude distillate is carefully fractionated through a column packed with glass helices and the methyl 3-methyl-2-butenoate collected at $60^{\circ}/50$ mm. The product weighs 66 g. (58%) and has n_D^{20} 1.4382.

20-Bromo-17(20)-pregnen-3 β -ol-21-oic Acid.⁷⁷ (Rearrangement of a Tribromoketone Using Potassium Hydroxide in Ethanol). To a solution of 3.0 g. of 17,21,21-tribromopregnan-3 β -ol-20-one acetate in 600 ml. of boiling ethanol is added a solution of 12.0 g. of potassium hydroxide in 40 ml. of aqueous ethanol. The solution is refluxed for 2 hours, and the ethanol is then distilled under reduced pressure until solid material separates. The mixture is diluted with water and extracted with several

THE FAVORSKII REARRANGEMENT OF HALOKETONES 291

portions of ether to remove neutral products. The aqueous layer, containing the sparingly soluble potassium salt of the acid, is treated with an excess of dilute sulfuric acid, and the organic acid is then extracted with ether. The ether extracts are washed with water, dried over sodium sulfate, and concentrated. When the volume is reduced to 100 ml., crystals begin to appear. After further concentration of the solution, the crystals are filtered and dried. The yield of bromo acid, m.p. $264-265^{\circ}$, is 1.27 g. (61%).

TABULAR SURVEY OF FAVORSKIĬ REARRANGEMENTS

Tables III-VIII list those haloketones from which products of the Favorskiĭ reaction have been isolated. In addition, characteristic examples of unsuccessful Favorskiĭ reactions have been included. The haloketones are tabulated in the order acyclic monohaloketones, alicyclic monohaloketones (except steroids), aralkyl monohaloketones, steroid monohaloketones, dihaloketones, trihaloketones. Since halogenation of unsymmetrical ketones can give rise to position isomers, a question mark following the position of the halogen is used to indicate doubt as to the identity or purity of a claimed structure. The yields given refer to the stated rearrangement product, except that when the yield figure is in parentheses it refers to yield of free acid derived from the primary rearrangement product.

The survey covers the literature available to the author through September 1958. A few later references are included.

TABLE III

ACYCLIC MONOHALOKETONES

					Yield	Refer-
Formula	Haloketone	Base	$\mathbf{Solvent}$	Rearrangement Product	(%)	ences
C ₃ H ₅ OCl	Chloroacetone	кон	$(C_2H_5)_2O$	Propionic acid		98, 103
C ₃ H ₅ OBr	Bromoacetone	KOCH ₃	CH ₃ OH	*		83
C ₄ H ₇ OCl	1-Chloro-2-butanone	КОН	$(C_2H_5)_2O$	Butyric acid		98
	3-Chloro-2-butanone	кон	$(C_2H_5)_2O$	Butyric and isobutyric acids	5	98
C ₄ H ₇ OBr	3-Bromo-2-butanone	NaOCH ₃	$(C_2H_5)_2O$	t		39
C ₅ H ₉ OCl	3-Chloro-3-methyl-2- butanone	NaOH	H ₂ O	Trimethylacetic acid		92
C ₅ H ₉ OBr	2-Bromo-3-pentanone	BaCO ₃	H ₂ O	3-Methylbutyric acid	2	95
	3-Bromo-3-methyl-2- butanone	NaOCH(CH ₃) ₂	(CH ₃) ₂ CHOH	Isopropyl trimethylacetate	20	26
		NaOCH(CH ₃) ₂	$(C_{2}H_{5})_{2}O$	Isopropyl trimethylacetate	64	26
		$NaOC_2H_5$	C_2H_5OH	Ethyl trimethylacetate	14	26
		$NaOC_2H_5$	$(C_2H_5)_2O$	Ethyl trimethylacetate	61	26
		NaOCH ₃	CH ₃ OH	*		26
		NaOCH ₃	$(C_2H_5)_2O$	Methyl trimethylacetate	39	26
		кон	C_2H_5OH	t		26
		кон	C_2H_5OH	Trimethylacetic acid	33	95
		BaCO ₃	H ₂ O	Trimethylacetic acid	3	95
$C_6H_{11}OBr$	2(?)-Bromo-2-methyl-3- pentanone	NaOCH ₃	$(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl 2,2-dimethyl- butyrate	57	26
C7H13OC1	2-Chloro-3-heptanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl 2-ethylvalerate	65	30
	4-Chloro-3-heptanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl 2-ethylvalerate	77	30
C7H13OBr	3-Bromo-4-heptanone	K ₂ CO ₃	H ₂ O	2-Ethylvaleric acid	10	95
		CaCO ₃	H_2O	2-Ethylvaleric acid	9	95
		BaCO ₃	H_2O	2-Ethylvaleric acid	2	95

	THE
	FAVORSKIŤ
	REARRANCEMENT
ŝ	0 F
	HALOKETONES

hexanone			butyrate
2-Bromo-2,4-dimethyl-3- pentanone	$\rm NaOCH_2C_6H_5$	$(C_2H_5)_2O$	Benzyl 2,2,3-trimethyl- butyrate
	$NaOCH(CH_3)_2$	$(\mathrm{C_2H_5})_2\mathrm{O}$	Isopropyl 2,2,3-trimethyl- butyrate
	NaOCH ₃	$(C_{2}H_{5})_{2}O$	†
3(?)-Bromo-4,4-dimethyl- 2-pentanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl 2,3,3-trimethyl- butyrate
2(?)-Bromo-2-methyl-3- heptanone	NaOCH ₃	$(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl 2,2-dimethyl- hexanoate
3(?)-Bromo-3-methyl-4- heptanone	$NaOCH(CH_3)_2$	$(C_2H_5)_2O$	Isopropyl 2-methyl-2- ethylvalerate
	NaOCH ₃	$(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl 2-methyl-2-ethyl- valerate
2(?)-Bromo-2,5-dimethyl- 3-hexanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl 2,4-dimethyl- pentane-3-carboxylate
2-Bromo-2,4,4-trimethyl- 3-pentanone	$NaOCH(CH_3)_2$	$(\mathrm{C_2H_5})_2\mathrm{O}$	t
2(?)-Bromo-2-methyl-3- octanone	NaOCH,	$(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl 2,2-dimethyl- heptanoate
2(?)-Bromo-2,5,5-tri- methyl-3-hexanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl 2,2,4-trimethyl- pentane-3-carboxylate
3(?)-Bromo-3,5,5-tri- methyl-2-hexanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl 2,2,4,4-tetra- methylvalerate

 $(C_2H_5)_2O$

Methyl 2-ethyl-3-methyl-

butyrate

6**9**

 $\mathbf{29}$

17

73

73

41

83

83

93

78

38

30

30 30

39

38

38

39

38

38

38

38

38

Note: References 103 to 127 are on p. 316.

2(?)-Bromo-2-methyl-3-

hexanone

 $\rm C_8H_{15}OBr$

 $C_9H_{17}OBr$

NaOCH₃

* Only hydroxy ketal was isolated.

† No rearrangement product was isolated.

ORGANIC REACTIONS

TABLE IV

ALICYCLIC MONOHALOKETONES

	ILDICIONIC A	ionomenonen oneo				
Haloketone	Base	Solvent	Rearrangement, Product.	Yield	Refer-	
			•	(/0)		
2-Chlorocyclopentanone			*			
		• •				
2-Fluorocyclohexanone	$\rm NaOC_2H_5$	C ₂ H ₅ OH	Ethyl cyclopentane- carboxylate	6	64 <i>a</i>	
	NaOCH ₃	$(C_2H_5)_2O$	Methyl cyclopentane- carboxylate	40	64a	
2-Chlorocyclohexanone†	$NaOCH_2C_6H_5$	$\mathbf{C_6H_5CH_2OH}$	Benzyl cyclopentane- carboxylate	30	80	ORGANIC
	$\rm NaOCH_2C_6H_5$	$\mathbf{C_6H_5CH_2OH}$	Benzyl cyclopentane- carboxylate	75	34	INIC
	$NaOCH_2C_6H_5$	$(\mathbf{C_2H_5})_{2}\mathbf{O}$	Benzyl cyclopentane- carboxylate	(53, 57)	34	REA
	NaOCH ₂ CH ₂ - CH(CH ₃) ₂	$(CH_3)_2CHCH_2$ - CH_2OH	Isoamyl cyclopentane- carboxylate	47	14	REACTIONS
	NaOCH(CH ₃) ₂	(CH ₃) ₂ CHOH	Isopropyl cyclopentane- carboxylate	(25, 36)	34	ONS
	NaOCH(CH ₃) ₂	(CH ₃) ₂ CHOH	Isopropyl cyclopentane- carboxylate	55-60	80	
	$\rm NaOC_2H_5$	C_2H_5OH	Ethyl cyclopentane- carboxylate	(64)	14	
	$\rm NaOC_2H_5$	C_2H_5OH	Ethyl cyclopentane- carboxylate	(42-60)	34	
	$\rm NaOC_2H_5$	C_2H_5OH	Ethyl cyclopentane-	(53)	105	
	$\rm NaOC_2H_5$	C_2H_5OH	Ethyl cyclopentane- carboxylate	(45–50)	80	
	Haloketone 2-Chlorocyclopentanone 2-Fluorocyclohexanone 2-Chlorocyclohexanone	2-Chlorocyclopentanone 2-Fluorocyclohexanone 2-Fluorocyclohexanone 2-Chlorocyclohexanone 2-Chlorocyclohexanone NaOCH ₂ C ₆ H ₅ NaOCH ₂ CH ₂ - CH(CH ₃) ₂ NaOCH(CH ₃) ₂ NaOCH(CH ₃) ₂ NaOC ₂ H ₅ NaOC ₂ H ₅	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c } Haloketone & Base & Solvent & Rearrangement Product (%) \\ \hline 2-Chlorocyclopentanone & NaOCH_3 & CH_3OH & * \\ KOH & C_2H_5OH & * \\ \hline 2-Fluorocyclohexanone & NaOC_2H_5 & C_2H_5OH & Ethyl cyclopentane- & 6 \\ & carboxylate & & & & & & & & & & & & & & & & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		NaOCH ₃	CH 3OH	Methyl cyclopentane- carboxylate	(44)	34
		NaOCH ₃	$(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl cyclopentane- carboxylate	(56-61)	102a
		кон	C ₂ H ₅ OH	Cyclopentanecarboxylic aci	d	106
C ₆ H ₉ OBr	2-Bromocyclohexanone	$\rm NaOC_2H_5$	C ₂ H ₅ OH	Ethyl cyclopentane- carboxylate	(10)	14
		$\rm NaOC_2H_5$	$(C_2H_5)_2O$	Ethyl cyclopentane- carboxylate	(21)	14
$C_7H_{11}OCl$	Chloromethyl cyclopentyl ketone	NaOCH ₃	CH3OH	Methyl 1-methylcyclo- pentanecarboxylate	50	80
	2-Chloro-2-methylcyclo- hexanone	$NaOCH_2C_6H_5$	$C_6H_5CH_2OH$	*		34
		$NaOC_{2}H_{5}$	C ₂ H ₅ OH	*		34
		NaOCH ₃	CH ₃ OH	*		34, 107
	2-Chloro-4-methylcyclo- hexanone	NaOCH ₃	CH ₃ OH	3-Methylcyclopentane- carboxylic acid	4045	80
	2-Chloro-5(?)-methylcyclo- hexanone	NaOCH ₃	CH ³ OH	3-Methylcyclopentane- carboxylic acid	40-45	80, 108
		кон	CH3OH	3-Methylcyclopentane- carboxylic acid	50	108
		KOH	C_2H_5OH	3-Methylcyclopentane- carboxylic acid	43	106
	2-Chloro-6-methylcyclo- hexanone	NaOCH ₃	CH ₃ OH	2(?)-Methylcyclopentane- carboxylic acid		107
	2-Chlorocycloheptanone	$\rm NaOC_2H_5$	Not given	Ethyl cyclohexane- carboxylate	58	87
		кон	C ₂ H ₅ OH	Cyclohexanecarboxylic acid	l 50	104
		кон	C ₂ H ₅ OH	Cyclohexanecarboxylic acid	l 53	109

Note: References 103 to 127 are on p. 316.

* No rearrangement product was isolated.

* A number of base-solvent combinations applied to this ketone have not been tabulated because of space limitations.

THE FAVORSKII REARRANGEMENT OF HALOKETONES

TABLE IV-Continued

ALICYCLIC MONOHALOKETONES

Formula	Haloketone	Base	Solvent	Rearrangement Product	Yield (%)	Refer- ences	
C ₇ H ₁₁ OCl	2-Chlorocycloheptanone	NaOH	Not given	Cyclohexanecarboxylic acid		87	
(continued)	(continued)	K ₂ CO ₃	H ₂ O	Cyclohexanecarboxylic acid		96	
(00/10/10/00/00)	(00,000,000,000,000,000,000,000,000,000	Na ₂ CO ₃	Not given	Cyclohexanecarboxylic acid		87	
		$(CH_2)_5NH$	Not given	N,N-Pentamethylenecyclo-		87	
		(= - 2/3	1.00 8.101	hexanecarboxamide	(20)		
		$(CH_3)_2NH$	Not given	N,N-Dimethylcyclo- hexanecarboxamide	(20)	87	ORG
Ç ₈ H ₁₁ OCl	Chloromethyl cyclohexenyl ketone	NaOCH ₃	CH ₃ OH	Methyl cyclohexenyl-1- acetate	20	80	ORGANIC
C ₈ H ₁₃ OCl	Chloromethyl cyclohexyl ketone	$\rm NaOC_2H_5$	C_2H_5OH	Ethyl 1-methylcyclo- hexanecarboxylate	20	43	
		NaOCH ₃	$(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl 1-methylcyclo- hexanecarboxylate	9	33	REACTIONS
		NaOCH ₃	CH3OH	Methyl 1-methylcyclo- hexanecarboxylate	15, 35	33, 43	ONS
		NaOCH3	CH₃OH	Methyl 1-methylcyclo- hexanecarboxylate and methyl cyclohexyl- acetate [†]	50	80, 110	
		NaOCH ₃	CH ₃ OH-pet. ether	Methyl 1-methylcyclo- hexanecarboxylate	38	43	
	1-Chloro-1-acetylcyclo- hexane	$\rm NaOCH_2C_6H_5$	$\rm C_{6}H_{5}CH_{2}OH$	Benzyl 1-methylcyclo- hexanecarboxylate	50, 57	34	
		$\rm NaOCH_2C_6H_5$	$(C_2H_5)_2O$	Benzyl 1-methylcyclo- hexanecarboxylate	72	34	

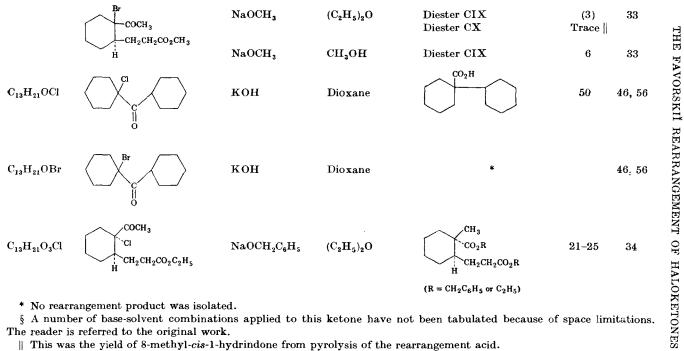
		$\rm NaOCH(CH_3)_2$	$(\mathrm{C_2H_5})_2\mathrm{O}$	Isopropyl 1-methylcyclo- hexanecarboxylate	45	34
		$\rm NaOC_2H_5$	C_2H_5OH	Ethyl 1-methylcyclo- hexanecarboxylate	41	34
		${ m NaOC_2H_5}$	$(\mathrm{C_2H_5})_2\mathrm{O}$	Ethyl 1-methylcyclo- hexanecarboxylate	56	34
		NaOCH ₃	СН ₃ ОН	Methyl 1-methylcyclo- hexanecarboxylate	30	80, 110
		кон	$(C_2H_5)_2O$	1-Methylcyclohexane- carboxylic acid		7
		AgNO ₃	Aq. dioxane	*		56
	2-Chloro-2-methylcyclo- heptanone	NaOCH ₂ C ₆ H ₅	C ₆ H ₅ CH ₂ OH	Benzyl 1-methylcyclo- hexanecarboxylate	(41)	34
	2-Chlorocycloöctanone	NaOH	C_2H_5OH	Cycloheptanecarboxylic acid	l	109
H ₁₃ OBr	Bromomethyl cyclohexyl ketone	$\rm NaOC_2H_5$	C ₂ H ₅ OH	*		43
		NaOCH ₃	$(C_{2}H_{5})_{2}O$	*		44
	1-Bromo-1-acetylcyclo- hexane	NaOCH ₃	$(C_2H_5)_2O$	Methyl 1-methylcyclo- hexanecarboxylate	79	44
	2-Bromocycloöctanone	NaOH	H_2O	Cycloheptanecarboxylic acid	68	78
9H ₁₃ OCi	4-Chloro- <i>cis</i> -5-hydrindone	NaOCH ₃	CH ₃ OH	Methyl <i>cis</i> -bicyclo[3.3.0]- octane-2- and 3-carboxyl- ates	65	47

Formula	Haloketone	Base	Solvent	Rearrangement Product	Yield (%)	Refer-
romula	Haloketone	Dase		Rearrangement r routet		ences
$C_9H_{13}OBr$	1-Bromo-bicyclo[3.3.1]- nonan-9-one	кон	$(C_2H_5)_2O$	Bicyclo[3.3.0]octane-1- carboxylic acid	34	28
		$\mathrm{Hg}(\mathrm{OCOCH}_3)_2$	C_2H_5OH	Ethyl bicyclo[3.3.0]octane- 1-carboxylate	- 71	28
		$AgNO_3$	Aq. alcohols	Bicyclo[3.3.0]octane-1- carboxylic acid (and corresponding esters)		28
		Na or NaNH ₂	Liq. NH3	Bicyclo[3.3.0]octane-1- carboxamide	65–70	50
$\mathrm{C_{9}H_{13}O_{3}Br}$	6-Bromo-2-carbethoxy- cyclohexanone	NaOH	Aq. C ₂ H ₅ OH	Cyclopentane-1,2- <i>trans</i> - dicarboxylic acid	91	44 a
C9H15OCl	COCH ₃ Cl CH ₃ H	$\rm NaOCH_2C_6H_5$	$(C_2H_5)_2O$	CH ₃ CO ₂ CH ₂ C ₆ H ₅ CH ₃	(44, 53)	34
	CI CCI CH ₃ H	$NaOCH_2C_6H_5$	$(C_2H_5)_2O$	CCO ₂ CH ₂ C ₆ H ₅ CH ₃ CH ₃	(29)	34
C ₉ H ₁₅ OBr	2-Bromocyclononanone	C ₅ H ₅ N(CH ₃),	None	Cycloöctanecarboxylic acid		42
- 10	3-Chloro-trans-2-decalone					
$C_{10}H_{15}OCl$	5-Onoro-wans-2-decalone	NaOCH ₃	CH₃OH	Methyl trans-2-hydrindane carboxylic acid	- (20)	49
		кон	C_2H_5OH	Two unidentified acids		48

298

--- --

41 C10H17OC1 2-Chloro-2-isopropyl-5-NaOCH₃ CH₃OH * methylcyclohexanone $C_{10}H_{17}OBr$ 42 ${\small 2-} Bromocyclode can one$ NaOCH₃ СН3ОН (75) Methyl cyclononanecarboxylate 41 2-Bromo-3-methyl-6-iso-NaOCH3 CH₃OH Methyl 2-methyl-5-isopropylcyclopentanepropylcyclohexanone carboxylate CO2CH2C6H5 H₂(H₃C (44) COCH3 34 $C_{11}H_{17}OCl$ $NaOCH_2C_6H_5$ $(C_2H_5)_2O$ CH3 CH3 H₃C CH3 H₃C H ų. CH₃ ж, NaOCH₂C₆H₅ CO2CH2C6H2 (15) 34 C11H17O3Cl $(C_2H_5)_2O$ CH₂CO₂CH₃ CH2CO2CH2C6H5 COCH₂Cl $C_{12}H_{19}O_3Cl$ NaOCH(CH₃)₂ $(CH_3)_2CHOH$ 33 CH2CH2CO2CH н́


* No rearrangement product was isolated.

§ A number of base-solvent combinations applied to this ketone have not been tabulated because of space limitations. The reader is referred to the original work.³³

TABLE IV-Continued

ALICYCLIC MONOHALOKETONES

Formula	Haloketone	Base	Solvent	Rearrangement Product	Yield (%)	Refer- ences	
C ₁₂ H ₁₉ O ₃ Cl (continued)	(continued)	NaOCH3	$(C_2H_5)_2O$	$CH_3 -CO_2CH_3 -CH_2CH_2CO_2CH_3 H CIX$	(11)	33	0
				CO_2CH_3 CH_3 CH_2CH_2CO_2CH_3 H CX	6 [ORGANIC REA
		NaOCH ₃	СН ³ ОН	Diester CIX Diester CX	(27)	33	REACTIONS
	$C_{\rm L}^{\rm Cl} = COCH_3$ CH_2CH_2CO_2CH_3	NaOCH3	$(C_2H_5)_2O$	Diester CIX Diester CX	(9) 5	33	02
		NaOCH_3	CH ₃ OH	*		33	
C ₁₂ H ₁₉ O ₃ Br	H -COCH ₂ Br -CH ₂ CH ₂ CO ₂ CH ₃	NaOCH ₃	CH ₃ OH or (C ₂ H ₃) ₂ O	*		33	

* No rearrangement product was isolated.

§ A number of base-solvent combinations applied to this ketone have not been tabulated because of space limitations. The reader is referred to the original work.

|| This was the yield of 8-methyl-cis-1-hydrindone from pyrolysis of the rearrangement acid.

TABLE V

ARALKYL MONOHALOKETONES

Formula	Haloketone	Base	Solvent	Deserves and Destand	Yield	Refer-	
				Rearrangement Product	(%)	ences	
C,H,OCl	1-Chloro-1-phenylacetone	NaOCH ₃	СН3ОН	Methyl 3-phenylpropionate	60	8, 98	
				3-Phenylpropionic acid	9		
		КОН	$(C_2H_5)_2O$	3-Phenylpropionic acid		98	
		NaOH	СН ₃ ОН	3-Phenylpropionic acid	48	8	
		$NaOC_{6}H_{5}$	C_6H_5OH	Phenyl 3-phenylpropionate	65	100	0f
		$NaOC_{6}H_{5}$	Dioxane	Phenyl 3-phenylpropionate	100	100	ନ୍ତି
	1-Chloro-3-phenylacetone	NaOCH ₃	СН ₃ ОН	Methyl 3-phenylpropionate	80	8	AN
	α-Chloropropiophenone	NaOCH ₃	$(C_2H_5)_2O$	*		54	ORGANIC
C ₁₀ H ₉ OCl	2-Chloro-1-tetralone	NaOCH ₃	CH ₃ OH	*		55	
		NaOCH ₃	CH ₃ OH	Methyl 1-indanecarboxylate	•	80, 111	Ē
	3-Chloro-2-tetralone	NaOCH ₃	CH ₃ OH	Methyl 2-indanecarboxylate	•	80,111	Ą
C ₁₀ H ₉ OBr	2-Bromo-1-tetralone	NaOCH ₃	CH ₃ OH	*		55	I.
C ₁₀ H ₁₁ OC]	1-Chloro-1-phenyl-2- butanone	NaOCH ₃	CH ³ OH	2-Benzylpropionic acid		98	REACTIONS
		кон	$(C_2H_5)_2O$	2-Benzylpropionic acid		98	
		NaOC ₆ H ₅	C ₆ H ₅ OH	Phenyl 2-benzylpropionate	30	100	
		NaOC ₅ H ₅	Dioxane	Phenyl 2-benzylpropionate	50	100	
	2-Chloro-1-phenyl-3- butanone	NaOCH ₃	CH3OH	4-Phenylbutyric acid		98	
		NaOH	CH ₃ OH	Unidentified acid		8	
		КОН	$(C_{2}H_{5})_{2}O$	4-Phenylbutyric acid		9, 98	
	l-Chloro-4-phenyl-2- butanone	NaOH	СН3ОН	4-Phenylbutyric acid		8	
		КОН	$(\mathbf{C_2H_5})_{2}\mathbf{O}$	4-Phenylbutyric acid		98	

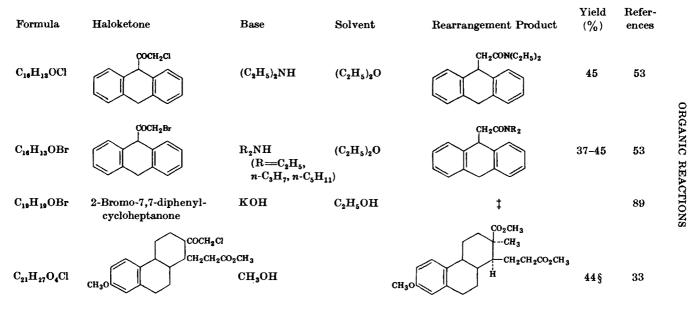
C ₁₀ H ₁₁ OBr	α-Bromoisobutyrophenone	NaOCH3	$(C_2H_5)_2O$	†		39
		KOH	$(C_2H_5)_2O$	†		28
		AgNO ₃	Aq. C ₂ H ₅ OH	2-Methyl-2-phenylpropionic acid	•	28
$\mathrm{C_{11}H_{13}O_3Cl}$	1-Chloro-3-(3,4-dimethoxy- phenyl)acetone	$NaOC_2H_5$	C ₂ H ₅ OH	Ethyl 3-(3,4-dimethoxy- phenyl)propionate		8, 51
		NaOCH ₃	CH ³ OH	Methyl 3-(3,4-dimethoxy- phenyl)propionate		8, 51
		KOH	СН ₃ ОН	Methyl 3-(3,4-dimethoxy- phenyl)propionate	80	8, 51
$\mathrm{C_{13}H_{15}OCl}$	1-Chloro-1-benzoylcyclo- hexane	NaOCH ₃	$(C_2H_5)_2O$	Ť		54
		NaOH	Xylene	1-Phenylcyclohexane- carboxylic acid	53	27
		NaOH	Toluene	1-Phenylcyclohexane- carboxylic acid	51	27
		NaOH	$(C_2H_5)_2O$	1-Phenylcyclohexane- carboxylic acid	8	27
		КОН	$(C_2H_5)_2O$	1-Phenylcyclohexane- carboxylic acid	30-40	7
		кон	Aq. dioxane	t		27
		AgNO ₃	Aq. dioxane	1-Phenylcyclohexane- carboxylic acid	40	56
$C_{13}H_{15}OBr$	1-Bromo-1-benzoylcyclo- hexane	NaOCH ₃	СН3ОН	†		81
		NaOH	Xylene	1-Phenylcyclohexane- carboxylic acid	39	27

Note: References 103 to 127 are on p. 316.

* Only hydroxy ketal was isolated.† No rearrangement product was isolated.

TABLE V—Continued

ARALKYL	Monohaloketones
---------	-----------------


Formula	Haloketone	Base	Solvent	Rearrangement Product	Yield (%)	Refer ences	
C ₁₃ H ₁₅ OBr (continued)	1-Bromo-1-benzoylcyclo- hexane (continued)	NaOH	Toluene	1-Phenylcyclohexane- carboxylic acid	34	27	
		NaOH	$(\mathrm{C_2H_5})_2\mathrm{O}$	1-Phenylcyclohexane- carboxylic acid	6	27	OR
		AgNO ₃	C_2H_5OH	1-Phenylcyclohexane- carboxylic acid	18	27	ORGANIC
		AgNO ₃	Aq. dioxane	1-Phenylcyclohexane- carboxylic acid	30	56	
		None	Aq. dioxane	1-Phenylcyclohexane- carboxylic acid	2	27	REACTIONS
C ₁₃ H ₁₆ ONCl	$Cl - COC_6H_5$	NaOH	Xylene	C ₆ H ₅ CO ₂ H	8	57	IONS
	Cl COC ₆ H ₅	NaOH	Xylene	HO ₂ C N CH ₃	25	57	

$\mathrm{C_{15}H_{13}OCl}$	1-Chloro-1,1-diphenyl- acetone	$\rm NaOC_2H_5$	C ₂ H ₅ OH	Ethyl 3,3-diphenyl- propionate	85	58	
		NaOCH,	CH ₃ OH	3,3-Diphenylpropionic acid		98	
		NaOH	$(C_2H_5)_2O$	3,3-Diphenylpropionic acid	55	58	H
		KOH	$(C_2H_5)_2O$ $(C_2H_5)_2O$	3,3-Diphenylpropionic acid	00	9, 98	THE
	l-Chloro-l,3-diphenyl- acetone	NaOC ₂ H ₅	Not given	Ethyl 2,3-diphenyl- propionate	4 0	87	; FAVORSKIĬ
		NaOH	Not given	2,3-Diphenylpropionic acid		87	Q
		KOH	$(C_2H_5)_2O$	2,3-Diphenylpropionic acid		98	RS
		Piperidine	Not given	$C_6H_5CH_2CH(C_6H_5)CONC_5H_{10}$	20	87	KI
		$(CH_3)_2NH$	Not given	t 1		87	
	1-Chloro-3,3-diphenyl- acetone	$\rm NaOC_2H_5$	C ₂ H ₅ OH	Ethyl 3,3-diphenyl- propionate	69	58	REARRANGEMENT
				3,3-Diphenylpropionic acid	12		RR
		$\rm NaOCH_3$	CH3OH	Methyl 3-3-diphenyl- propionate	77	52	ANG
				3,3-Diphenylpropionic acid	3.5		EM
		NaOCH ₃	$(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl 3,3-diphenyl- propionate	43	52	IENT
				3,3-Diphenylpropionic acid	7		
$\mathrm{C_{15}H_{13}OBr}$	l-Bromo-3,3-diphenyl- acetone	NaOCH ₃	сн ³ о́н	Methyl 3,3-diphenyl- propionate	71	52	OF H
				3,3-Diphenylpropionic acid	6		E
		NaOCH ₃	$(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl 3,3-diphenyl- propionate	31	52	OKE
		$(C_2H_5)_2NH$	$(\mathrm{C_2H_5})_2\mathrm{O}$	N,N-Diethyl-3,3-diphenyl- propionamide	15	88	HALOKETONES
† No rear	rangement product was isole	ated					a

† No rearrangement product was isolated.

TABLE V--Continued

ARALKYL MONOHALOKETONES

‡ No normal Favorskii product was isolated.

§ This was the yield of estrone-c methyl ether obtained from the rearrangement product by Dieckmann cyclization and subsequent hydrolysis.

TABLE VI

STEROID MONOHALOKETONES

		0.2.0012				
Formula	Haloketone	Base	Solvent	Rearrangement Product	Yield (%)	Refer- ences
$\mathrm{C_{21}H_{29}O_2Cl}$	21-Chloro-4-pregnen-3,20- dione	KOCH3	СН ³ ОН	Methyl 3-oxo-17β-methyl- 4-etienate	58	112
				Methyl 3-oxo-17a-methyl- 4-etienate	25	32, 93
$C_{21}H_{31}O_2F$	21-Fluoro-5-pregnen-3β-ol- 20-one	NaOCH ₃	СН ₃ ОН	Methyl 3β-hydroxy-17α- methyl-5-etienate	ca. 20	6 4 a
				Methyl 3 β -hydroxy-17 β - methyl-5-etienate	ca. 10	
$C_{21}H_{31}O_2Cl$	21-Chloro-5-pregnen-3β-ol- 20-σne	KOCH3	CH ³ OH	Methyl 3β-hydroxy-17α methyl-5-etienate	63	32, 93
				Methyl 3β-hydroxy-17β- methyl-5-etienate	24	
$\mathrm{C_{21}H_{31}O_{2}Br}$	21-Bromo-5-pregnen- 3β -ol- 20-one	KOCH3	CH3OH	Methyl 3β-hydroxy-17α- methyl-5-etienate		32, 93
				Methyl 3β -hydroxy-17 β - methyl-5-etienate		
C ₂₂ H ₃₃ O ₃ Br	17-Bromo-D-homoandro- stan-3β-oI-17a-one acetate	NaOCH ₃	Dioxane	Methyl 3β -hydroxy-allo- etianate	0.3	63
C ₂₃ H ₃₃ O ₃ Br	17α-Bromo-5-pregnen-3β- ol-20-one acetate	NaHCO3	H ₂ O-CH ₃ OH	3β-Hydroxy-17α-methyl- 5-etienic acid and methyl ester	85*	97

Note: References 103 to 127 are on p. 316.

* This was the yield of the methyl ester acetate; its stereochemical homogeneity (about C-17) is uncertain.

307

TABLE VI-Continued

STEROID MONOHALOKETONES

Formula	Haloketone	Base	Solvent	Rearrangement Product	Yield (%)	Refer- ences
$\mathrm{C_{23}H_{33}O_4Br}$	17α-Bromopregnan-3α-ol- 11,20-dione acetate	NaOCH ₃	CH ³ OH	Methyl 3a-hydroxy-11-oxo 17a-methyletianate	- 60	10
	· · · ·			Methyl 3α-hydroxy-11- oxo-17β-methyletianate	40	
		КНСО ₃	СН₃ОН	3α-Hydroxy-11-oxo-17α- methyletianic acid and methyl ester	77 (crude)	64, 113
				Methyl 3α -hydroxy-ll- oxo-17 β -methyletianate	20 (crude)	
$\mathrm{C_{23}H_{35}O_{3}Br}$	17α -Bromo-allopregnane- 3β -ol-20-one acetate	KHCO3	СН₃ОН	Methyl 3β-hydroxy-17- methylalloetianate	37*	93
	17α -Bromopregnane- 3β -ol- 20-one acetate	KHCO3	CH ₃ OH	Methyl 3β-hydroxy-17- methyletianate	49*	114
$\mathrm{C}_{27}\mathrm{H}_{45}\mathrm{OC1}$	2α -Chlorocholestan-3-one	NaOCH ₃	CH ³ OH	Methyl A-norcholestane- 2-carboxylate	30	62

2a-Bromocholestan-3-one	$\rm NaOC_2H_5$	C_2H_5OH	Ethyl A-norcholestane-2- carboxylate	14–30	60, 61
			Ethyl A-norcholestane-3- carboxylate	12-20	
	NaOCH ₃	$CH_3OH-(C_2H_5)_2O$	Methyl A-norcholestane-2- carboxylate	25	59, 60
			Methyl A-norcholestane-3- carboxylate	1	
4β -Bromocoprostan-3-one	NaOCH ₃	$\mathrm{CH_3OH}\text{-}(\mathrm{C_2H_5})_2\mathrm{O}$	Methyl A-norcoprostane-2- carboxylate	24	60
			Methyl A-norcoprostane-3- carboxylate	24	
	NaOCH ₃	CH3OH	carboxylate and methyl A-norcoprostane-3-	61	60
	NaOCH3	Aq. CH ₃ OH	A-Norcoprostane 2-car- boxylic acid and A- norcoprostane 3-car- boxylic acid	18	60
		NaOCH ₃ 4β-Bromocoprostan-3-one NaOCH ₃ NaOCH ₃	NaOCH ₃ CH ₃ OH- $(C_2H_3)_2$ O 4 β -Bromocoprostan-3-one NaOCH ₃ CH ₃ OH- $(C_2H_3)_2$ O NaOCH ₃ CH ₃ OH	 carboxylate Ethyl A-norcholestane-3- carboxylate NaOCH₃ CH₃OH-(C₂H₃)₂O Methyl A-norcholestane-2- carboxylate Methyl A-norcholestane-3- carboxylate Methyl A-norcholestane-3- carboxylate 4β-Bromocoprostan-3-one NaOCH₃ CH₃OH-(C₂H₃)₂O Methyl A-norcoprostane-2- carboxylate Methyl A-norcoprostane-3- carboxylate NaOCH₃ CH₃OH Methyl A-norcoprostane-3- carboxylate NaOCH₃ CH₃OH Methyl A-norcoprostane-3- carboxylate and methyl A-norcoprostane-3- carboxylate NaOCH₃ Aq. CH₃OH A-Norcoprostane 2-car- boxylate NaOCH₃ Aq. CH₃OH A-Norcoprostane 2-car- boxylic acid and A- norcoprostane 3-car- 	carboxylateKaOCH3CH3OH-(C2H3)2OMaOCH3CH3OH-(C2H3)2OMethyl A-norcholestane-2- carboxylate4β-Bromocoprostan-3-oneNaOCH3CH3OH-(C2H3)2OMethyl A-norcholestane-2- carboxylate4β-Bromocoprostan-3-oneNaOCH3CH3OH-(C2H3)2OMethyl A-norcoprostane-2- carboxylate4β-Bromocoprostan-3-oneNaOCH3CH3OH-(C2H3)2OMethyl A-norcoprostane-2- carboxylate4β-Bromocoprostan-3-oneNaOCH3CH3OH-(C2H3)2OMethyl A-norcoprostane-2- carboxylate4β-Bromocoprostan-3-oneNaOCH3CH3OHMethyl A-norcoprostane-2- carboxylateAnorcoprostane-3- carboxylate61 carboxylateNaOCH3Aq. CH3OHA-norcoprostane 2-car- boxylate18 boxylic acid and A- norcoprostane 3-car-

Note: References 103 to 127 are on p. 316.

* This was the yield of the methyl ester acetate; its stereochemical homogeneity (about C-17) is uncertain.

TABLE VII

DIHALOKETONES

17	TT 1.1.4.	Dece			Yield	Refer-	
Formula	Hạloketone	Base	Solvent	Rearrangement Product	(%)	ences	
$C_3H_4OCl_2$	1,1-Dichloroacetone	K ₂ CO ₃	H ₂ O	Acrylic acid		1	
$C_4H_6OCl_2$	3,3-Dichloro-2-butanone	K ₂ CO ₃	H ₂ O	α-Methylacrylic acid		1	
C ₅ H ₈ OCl ₂	Mixture of 3,3-dichloro-2- pentanone and 2,2-di-	K ₂ CO ₃	H ₂ O	Angelic acid 2-Ethylacrylic acid		1	
	chloro-3-pentanone					_	
C ₅ H ₈ OBr ₂	l,3-Dibromo-3-methyl-2- butanone	кон	C ₂ H ₅ OH	3-Methyl-2-butenoic acid Ethyl 3-methyl-2- butenoate		3	
		NaOCH ₃	$(C_2H_5)_2O$	Methyl 3-methyl-2- butenoate	58	66	
	1,2-Dibromo-2-methyl-3- butanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl 3-methyl-2- butenoate	42, 64	68	
$C_6H_8OBr_2$	2,6-Dibromocyclohexanone	NaOCH ₃	CH ³ OH	Methyl cyclopentene-1- carboxylate	(5)	110	
		кон	H ₂ O	*		72	
$C_6H_{10}OCl_2$	Mixture of 3,3-dichloro-2-	K ₂ CO ₃	H ₂ O	2-n-Propylacrylic acid		1	
	hexanone and 2,2-di- chloro-3-hexanone			2-Methyl-2-pentenoic acid			
C ₆ H ₁₀ OBr	1,3-Dibromo-3-methyl-2- pentanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl <i>cis</i> -2-methyl-2- pentenoate	29	66	
	-			Methyl <i>trans</i> -2-methyl-2- pentenoate	22		
	3,4-Dibromo-3-methyl-2- pentanone	NaOCH ₃	$(C_2H_5)_2O$	Methyl <i>trans</i> -2-methyl-3- pentenoate	55	68	

C7H10OBr	2,3-Dibromo-2-methyl- cyclohexanone	$NaOCH(CH_3)_2$	(CH ₃) ₂ CHOH	*		34	
	CH ₃			HO ₂ C H		Тны 74 75 Б	
C7H10O3Br	BrCH ₂ COCCO ₂ C ₂ H ₅ Br	кон	C ₂ H ₅ OH	C=C H ₃ C CO ₂ H		11, 10	
$C_7H_{12}OCl_2$	Mixture of 3,3-dichloro-4- heptanone and 4,4-di- chloro-3-heptanone	K ₂ CO ₃	H ₂ O	Unidentified unsaturated acid		PAVORSKI1	
$\mathrm{C_8H_{12}OCl_2}$	2,8-Dichlorocycloöctanone	NaOH	Aq. C ₂ H ₅ OH	Cycloheptene-1-carboxylic acid	85	78 ^R EAI	7 1 / L
$\mathrm{C_8H_{12}OBr_2}$	1-Bromo-1-bromoacetyl- cyclohexane	NaOCH ₃	$(C_2H_5)_2O$	Methyl cyclohexylidene- acetate	48	78 REAR 66 REA 115 OG 101 EM 101 EM 101 EM 103 T	5
	•	кон	C ₂ H ₅ OH	Cyclohexylideneacetic acid		115 🋱	5
		кон	H ₂ O	Cyclohexylideneacetic acid	20	101 💱	5 Z
		K ₂ CO ₃	H ₂ O	Cyclohexylideneacetic acid	7	101	-
	1,2-Dibromo-l-acetylcyclo- hexane	NaOCH ₃	$(C_2H_5)_2O$	Methyl cyclohexenyl-1- acetate	34		
	2,3-Dibromo-2-methyl cycloheptanone	NaOCH2C6H5	C ₆ H ₅ CH ₂ OH	Benzyl 1-methylcyclo- hexene-2-carboxylate and benzyl 1-methyl- cyclohexene-6-carboxylate	(69)	34 07 HALONE 78 10 78 20	
	2,8-Dibromocycloöctanone	NaOH	C ₂ H ₅ OH	Cycloheptene-1-carboxylic acid	87	78	アデアハ
		NaOH	H ₂ O	Cycloheptene-1-carboxylic acid	96	78 2 5	NES

Note: References 103 to 127 are on p. 316.

* No normal Favorskiĭ product was isolated.

ORGANIC REACTIONS

TABLE VII-Continued

		Dim	BOREIONES			
Formula	Haloketone	Base	Solvent	Rearrangement Product	Yield (%)	Refer- ences
$\mathrm{C_8H_{14}OBr_2}$	2,4-Dibromo-2,5-dimethyl- 3-hexanone	NaOCH ₃	$(\mathrm{C_2H_5})_2\mathrm{O}$	$(CH_3)_2C = C(CO_2CH_3)CH - (CH_3)_2$	84	66
$\mathrm{C_{9}H_{14}OBr_{2}}$	2,2(?)-Dibromocyclo- nonanone	$\mathrm{C_6H_5N(CH_3)_2}$	None	*		42
$\mathrm{C_9H_{15}ONBr_2}$	3,5-Dibromo-2,2,6,6-tetra- methyl-4-piperidone	NH ₃	H_2O	2,2,6,6-Tetramethyl-3- pyrroline-3-carboxamide		26, 69
		CH ₃ NH ₂	H ₂ O	2,2,6,6-Tetramethyl-3- pyrroline-3-N-methyl- carboxamide		26, 116
		RN H	None	2,2,6,6-Tetramethyl-3- pyrroline-3-N-alkyl- carboxamides		26, 116
$\mathrm{C_{10}H_{14}OCl_2}$	3,3-Dichloro-trans-2- decalone	Na_2CO_3	H ₂ O	*		117
	$CO_2C_2H_5$			HO ₂ C H		
$C_{10}H_{14}O_5Br_2$	$\begin{array}{c} \operatorname{BrCH}_2\operatorname{COCCH}_2\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_{\mathfrak{z}}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	BaCO3	H ₂ O	HO ₂ CCH ₂ CO ₂ H		16
$\mathrm{C_{10}H_{16}OBr_2}$	Dibromopulegone	кон	H ₂ O	2-Methyl-5-isopropylidene- cyclopentanecarboxylic acid (and unidentified congeners)		73
	2,2(?)-Dibromocyclo- decanone	$\mathrm{C_6H_5N(CH_3)_2}$	None	*		42

ORGANIC REACTIONS

$\mathrm{C_{21}H_{30}OBr_2}$	17α,21-Dibromo-allo- pregnan-20-one	КОН	CH₃OH	17(20)-Allopregnen-21-oic acid		118			
$C_{21}H_{30}O_2F_2$	21,21-Difluoro-5-pregnen- 3β-ol-20-one	NaOCH ₃	СН ₃ ОН	Methyl 5,17(20)-trans- pregnadien-3β-ol-21-oate	30	64 <i>a</i>			
$C_{21}H_{32}O_{2}Br_{2}$	$17\alpha, 21$ -Dibromopregnan- 3β -ol-20-one	кон	СН₃ОН	17(20)-Pregnen-3β-ol-21-oic acid		119			
C ₂₃ H ₃₂ O ₃ BrI	17α-Bromo-21-iodo-5- pregnen-3β-ol-20-one acetate	КОН	СН₃ОН	5,17(20)-Pregnadien-3 β - ol-21-oic acid	85, 100 (crude)	120–122			
		кон	СН₃ОН	$(R = H and CH_3)$	ca. 25	71			
				$\begin{array}{c c} RO_2C & H \\ CH_3 \\ \hline \\ CXII \end{array} (R = H and CH_3) \\ CXII \end{array}$	c a. 15				
$C_{23}H_{32}O_4Br_2$	17α,21-Dibromopregnan- 3α-ol-11,20-dione acetate	кон	Aq. CH ₃ OH	17(20)-Pregnen-3α-ol-11- one-21-oic acid	70	10, 64			
Note: Refe	Note: References 103 to 127 are on p. 316.								

* No normal Favorskiĭ product was isolated.

TABLE. VII---Continued Dihaloketones

Yield Refer-Formula Haloketone Base Solvent **Rearrangement Product** (%) ences 16,17-Dibromopregnan- 3β кон CH3OH 67 $C_{23}H_{34}O_3Br_2$ 17(20)-Pregnen-3 β -ol-21-60 ol-20-one acetate oic acid Methyl 17(20)-pregnen- 3β -8 ol-21-oate 17α,21-Dibromo-allopregкон CH₃OH 17(20)-Allopregnen- 3β -ol-83 115 nan-3 β -ol-20-one acetate 21-oic acid KOH or CH₃OH 17(20)-Allopregnen- 3β -ol-93, 102 aq. KHCO₃ 21-oic acid and methyl ester C₂₅H₃₀O₅Br₂ 21,21-Dibromo-21-ethoxy-NaOCH₃ CH₃OH Methyl 1,4,17(20)-pregna-40 123 oxalyl-1,4-pregnadientrien-3-one-21-oate† 3,20-dione C₂₅H₃₀O₆Br₂ 21,21-Dibromo-21-ethoxy-NaOCH₃ CH₃OH Methyl 1,4,17(20)-pregna-123trien-11a-ol-3-one-21oxalyl-1,4-pregnadien-11a-ol-3,20-dione oate† C₂₅H₃₂O₆Br₂ 21,21-Dibromo-21-ethoxy-NaOCH₃ СН,ОН Methyl 4,17(20)-pregna-60 124 dien-3,11-dione-21-oate† oxalyl-4-pregnen-3,11,20trione $C_{25}H_{34}O_6Br_2$ 21,21-Dibromo-21-ethoxy-NaOCH₃ CH₃OH Methyl 4,17(20)-pregnadien-124 oxalyl-4-pregnen-11a-11α-ol-3-one-21-oate† ol-3.20-dione кон СН3ОН 102 $C_{25}H_{36}O_5Br_2$ 17,21-Dibromopregnan-17(20)-Pregnen- 3α , 12β - $3\alpha, 12\beta$ -diol-20-one diol-21-oic acid diacetate C_5H_5N $\mathrm{C_{29}H_{46}O_3Br_2}$ 5a,7a-Dibromocholestan-None B-Nor-5(6)-cholestene- 3β - $\mathbf{23}$ 70 3β -ol-6-one-acetate ol-6-carboxylic acid acetate

Note: References 103 to 127 are on p. 316.

 \dagger In the absence of excess base the thermodynamically less stable $\Delta^{17(20)}$ -cis ester (partial structure CXII) is obtained.¹²³⁻¹²⁵

TABLE VIII Trihaloketones

TRIHALOKETONES									
Formula	Haloketone	Base	Solvent	Rearrangement Product	Yield (%)	Refer- ences			
C ₅ H ₇ OBr ₃	1,1,3-Tribromo-3-methyl-	KOH	Aq. C ₂ H ₅ OH	2-Bromo-3-methyl-2-	10	77			
	2-butanone	КОН	H ₂ O	butenoic acid *		3			
$C_7H_9OClBr_2$	2-Chloro-2,7-dibromo- cycloheptanone	CH ₃ CO ₂ Na	Aq. C ₂ H ₅ OH	2-Chloro-1-cyclohexene- carboxylic acid	43–55	78			
$C_8H_{11}OCl_3$	2,2,8-Trichlorocyclo- öctanone	NaOH	Aq. C ₂ H ₅ OH	2-Chlorocycloheptene-1- carboxylic acid	68	78			
$C_8H_{11}OBr_3$	l-Bromo-1-dibromoacetyl- cyclohexane	кон	C_2H_5OH	α-Bromocyclohexylidene- acetic acid	33	77			
	2,2,8-Tribromocyclo- öctanone	$\rm NaOC_2H_5$	C_2H_5OH	Ethyl 2-bromocyclo- heptene-1-carboxylate	83	78			
		NaOH	H_2O	2-Bromocycloheptene-1- carboxylic acid	83	78			
		CH ₃ CO ₂ Na	C_2H_5OH	Ethyl 2-bromocyclohepten 1-carboxylate	e-	78			
		CH ₃ CO ₂ Na	$\rm CH_3CO_2H$	2-Bromocycloheptene-l- carboxylic acid	83	78			
		$\mathrm{HCO_2Na}$	C_2H_5OH	Ethyl 2-bromocyclo- heptene-1-carboxylate		78			
$\mathrm{C}_{23}\mathrm{H}_{31}\mathrm{O}_{3}\mathrm{Br}_{3}$	$17\alpha, 21, 21$ -Tribromo-5- pregnen-3 β -ol-20-one acetate	КОН	Aq. CH ₃ OH	20-Bromo-5,17(20)-preg- nadien- 3β -ol-21-oic acid	72	71			
$C_{23}H_{33}O_{3}Br_{3}$	$17\alpha, 21, 21$ -Tribromopreg- nan-3 β -ol-20-one acetate	кон	C_2H_5OH	20-Bromo-17(20)-pregnen- 3β -ol-21-oic acid	57, 61	77			
$\mathrm{C_{25}H_{35}O_5Br_3}$	17,21,21-Tribromo-3a,12a- diacetoxypregnen-20-one	КОН	Aq. C ₂ H ₅ OH	20-Bromo-17(20)-pregnen- 3a,12a-diol-21-oic acid		126			
$\mathrm{C}_{29}\mathrm{H}_{33}\mathrm{O}_{9}\mathrm{Br}_{3}$	2,21,21-Tribromo-2,21- <i>bis</i> - ethoxyoxalyl-4-pregnen- 3,11,20-trione	NaOCH ₃	CH3OH	Methyl 2-bromo-4,17(20)- pregnadiene-3,11-dione- 21-carboxylate	58	127			

Note: References 103 to 127 are on p. 316.

* No normal Favorskiĭ product was isolated.

ORGANIC REACTIONS

REFERENCES FOR TABLES III-VIII

¹⁰³ Richard, Bull. soc. chim. France, [5] 5, 286 (1938).

¹⁰⁴ Favorskii and Bozhovskii, J. Russ. Phys.-Chem. Soc., 50, 582 (1920) [C.A., 18, 1476 (1924)].

¹⁰⁶ Jackman, Bergman, and Archer, J. Am. Chem. Soc., 70, 497 (1948).

¹⁰⁶ Favorskii and Bozhovskii, J. Russ. Phys. Chem. Soc., 46, 1097 (1914) [C.A., 9, 1900 (1915)].

¹⁰⁷ Mousseron, Winternitz, and Jacquier, Bull. soc. chim. France, [5] 14, 83 (1947).

- ¹⁰⁸ Mousseron, Richaud, and Granger, Bull. soc. chim. France, [5] 13, 625 (1946).
- ¹⁰⁹ Steadman, J. Am. Chem. Soc., 82, 1606 (1940).
- ¹¹⁰ Mousseron, Jacquier, Fontaine, and Canet, Compt. rend., 232, 1562 (1951).
- ¹¹¹ Mousseron and Phuoc Du, Compt. rend., 218, 281 (1944).
- ¹¹² Engel and Just, J. Am. Chem. Soc., 76, 4909 (1954).
- ¹¹³ Engel, J. Am. Chem. Soc., 77, 1064, (1955).
- ¹¹⁴ Marker and Wagner, J. Am. Chem. Soc., 84, 216 (1942).
- ¹¹⁶ Marker, Crooks, Wagner, and Wittbecker, J. Am. Chem. Soc., 64, 2089 (1942).
- ¹¹⁹ Pauly and Boehm, Ber., 33, 919 (1900).
- ¹¹⁷ Lehmann and Krätschell, Ber., 68, 360 (1935).
- ¹¹⁸ Marker et al., J. Am. Chem. Soc., 64, 822 (1942).
- ¹¹⁰ Marker, Crooks, and Wagner, J. Am. Chem. Soc., 64, 817 (1942).
- ¹²⁰ Julian and Karpel, J. Am. Chem. Soc., 72, 362 (1950).
- ¹²¹ Marker, Crooks, Jones, and Shabica, J. Am. Chem. Soc., 64, 1276 (1942).
- ¹²² Sondheimer, Mancera, Urquiza, and Rosenkranz, J. Am. Chem. Soc., 77, 4145 (1955).
- ¹²³ Magerlein and Hogg, J. Am. Chem. Soc., 80, 2220 (1958).
- ¹²⁴ Hogg et al., J. Am. Chem. Soc., 77, 4436 (1955).
- ¹²⁵ J. Hogg, private communication.
- ¹²⁶ Adams, Patel, Petrow, and Stuart-Webb, J. Chem. Soc., 1954, 1825.
- ¹²⁷ Hogg et al., J. Am. Chem. Soc., 77, 4438 (1955).

CHAPTER 5

OLEFINS FROM AMINES: THE HOFMANN ELIMINATION REACTION AND AMINE OXIDE PYROLYSIS

ARTHUR C. COPE

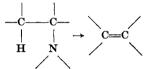
Massachusetts Institute of Technology

Elmer R. Trumbull

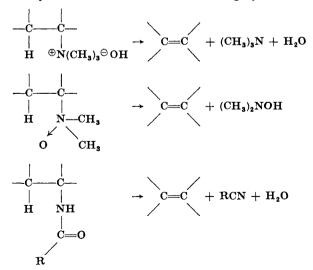
Colgate University

CONTENTS

INTRODUCTION .			•	•	•		•	•		•	PAGE 319
THE HOFMANN EXHAUST	TIVE	MET	HYLAI	NON	•				•	•	320
Mechanism	•	•			•		•	•			3 22
DIRECTION OF ELIMINAT	ION			•			•	•			331
Aliphatic Amines											332
Alicyclic Amines											336
Heterocyclic Amines											338
The Hofmann Rule							•	•			348
REACTION WITH DIAMINI	es									•	349
SIDE REACTIONS: ALKY	LATI	ONS I	ay Qu	ATER	NARY	Сомр	OUNDS	з.		•	350
Alcohol Formation Ethers and Epoxides	•	•	•		•	•		•	•		350 352
ISOMERIZATION OF OLEFI	ns l	Form	ÊD	•	•	•	•		•		355
MOLECULAR REARRANGEN	IENT	s		•			•	•			356
Analogous "Onium" Co	мро	UNDS	•	•		·	•	•			357
EXPERIMENTAL CONSIDER	ATIC	ONS	•	•	•	•	•	•	•	•	357
NATURE OF THE BASE	•					•	•	•	٠		357


ORGANIC REACTIONS

											PAGE
PYROLYSIS OF AMI	NE OXID	ES.	•			•			•	•	361
Mechanism			•	•			•	•		•	362
DIRECTION OF ELI	MINATION				•			•			363
Acyclic Amines											363
Alicyclic Amines	•	•	•	•	•	•	•	•	•	·	365
Heterocyclic Am	ines .	•	•	•	•	•	•	•	•	•	368
Side Reactions		:	:			÷			•	:	368
DECOMPOSITION OF	AMINE]	PHOSPH	IATES								371
DECOMPOSITION OF	ACYL D	ERIVAT	IVES (OF A	MINES			•	•	•	371
REACTION OF QUA	TERNARY	SALTS	WITH	H OR	GANON	IETAL	LIC CO	OMPO	UNDS (OR	
Alkali Metal A	AMIDES	•	•	•	•	•	•	•	•	·	373
Comparison of Mi	ETHODS		•	•	•	•		•	•	•	374
Experimental Col	NDITIONS	and H	PROCE	DURE	з.	•					376
Isolation of Prod	ucts .										377
Preparation of A		les	•								378
Phosphoric Acid			•	•	•	•	•	•	•	•	379
Cycloheptyltrime			Iodide	. A1	kvlati	on wi	th Mei	thvl 1	odide	·	379
<i>n</i> -Propyltrimethy	-				•			-		•	380
Di-n-butyldiisoan				-			•			·	380
Preparation of Si	•		Julue.		.y 10010		, maina		I IIIII0	·	380
Di-n-butyldiisoan			Iudrov	abir	Uso d	.f.gil.		ida	•	•	381
Decomposition of	•		•					lue	•	•	381
-	ylation w	•	•			•		oritio	noftl	· ho	301
Sulfate .	y lation w		moony	I Dui	1400 4		ccomp	051010			381
des-N-Methylaph	· · · ulline T	Jecomn	Orition	nofe	. ()))a)	tornai	· ·v Hva	Irovid	Jound	0T	001
Reduced Press		lecomp	0010101		a agaaa		.y 1190		at und		382
Dihydro-des-N-di		tisine	Deco	mno	sition	Foll	owed	by	Hydr		002
genation .								~5		Ŭ.	382
Ũ	of Cycle	propy	ltrime	thyla	mmon	ium	Hvdi	oxide	e. Hig	zh	
Temperature D	•										383
l-Benzoyl-7-propi			. Dec	omp	osition	ofa	β. Αmi	no K	etone		383
N-Uramidohomor									lide wi	th	
Excess Base	• •	•	•	•	•	•	•	•	•	•	384
Preparation and I					ylphen	ethyl	dimeth	ylam	moniu	m	
•	se of Tha		•		•	·	•	•	•	·	384
trans.1,2-Octalin.						•			• •	٠	385
des-N-Methyldihy								-		•	385
Cularinemethine.	-			•						•	386
Methylenecyclohe				ylhy	droxyl	amin	e Hydı	ochlo	oride	•	386
N,N Dimethylcyc	•		ide	·	·	•	•	•	•	•	386
cis-Cycloöctene		•	•	•	•	•		•	•	•	387


TABULAR SURVEY	PAGE 387
Table XI. Epoxides from β Amino Alcohols	389
Table XII. Pyrolysis of Amines with Phosphoric Acid or Phosphorus	
Pentoxide	391
Table XIII. Olefins from Acetyl Derivatives of Amines	393
Table XIV. Pyrolysis of Amine Oxides .	394
Table XV. Pyrolysis of Oxides of Tertiary Amines without N-Methyl Groups	400
Table XVI. Decomposition of Quaternary Ammonium Compounds	401
Table XVII. Quaternary Compounds that Contain No N-Methyl Groups .	43 0
Table XVIII. Hofmann Elimination Reaction with Alkaloids .	433
Table XIX. List of Alkaloids by Type .	487

INTRODUCTION*

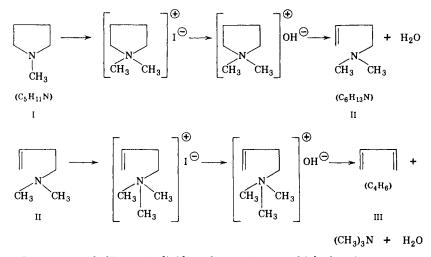
The conversion of an amine to an olefin by elimination of the nitrogen atom and an adjoining hydrogen atom is a useful procedure for degradation and synthesis.

The Hofmann exhaustive methylation method has been used most often to bring about this change, but other methods such as the thermal decomposition of amine oxides and the pyrolysis of amine phosphates or acetyl or benzoyl derivatives have often been employed to advantage.

• The authors are indebted to Robert W. Gleason for checking the literature referred to in the final draft of this chapter.

In this chapter the Hofmann elimination will be reviewed first because of its extensive history. This will be followed by a consideration of the alternative methods and a comparison of these reactions as a means of converting amines to olefins.

THE HOFMANN EXHAUSTIVE METHYLATION*


Decomposition of a quaternary ammonium hydroxide with the formation of a tertiary amine, an olefin, and water was reported by Hofmann in $1851.^{1, 2}$ However, it was only with his application of the reaction to the study of the structure of piperidines in $1881^{3, 4}$ that the utility of this method in the investigation of nitrogenous bases was appreciated. Since then it has become a routine step in the study of alkaloids. Since a methyl group cannot be eliminated as an olefin, cleavage must take place to free another group from the nitrogen atom. If the original amine is

$$\begin{bmatrix} H & H & CH_2 \\ | & | & \oplus \\ CH_3 - C - C - N - CH_3 \\ | & | & \\ H & H & CH_3 \end{bmatrix} \stackrel{\odot}{\underset{O}{\oplus}} H \rightarrow \begin{bmatrix} CH_3 & H \\ C = C \\ H & H \\ H & H \end{bmatrix} \stackrel{(CH_3)_3N + H_2O}{\underset{H}{\longrightarrow}} H$$

heterocyclic, this cleavage gives rise to a compound containing both an olefinic and a tertiary amino group. Repetition of the procedure yields a diene and trimethylamine. The degradation of N-methylpyrrolidine⁵ (I) may be used to illustrate these steps.

* The term "Hofmann degradation" is often used to describe the reaction sequence under discussion but may be confusing because it is also used to designate the Hofmann hypobromite reaction (Organic Reactions, Vol. III, Chapter 7). Furthermore, some authors distinguish between the pyrolysis of a quaternary ammonium hydroxide itself and the pyrolysis of the same compound in the presence of excess alkali hydroxide, calling only the latter a "Hofmann degradation." Recently it has been proposed to restrict the phrase "exhaustive methylation" to those instances in which the procedure of methylation and pyrolysis is carried through enough stages to eliminate the nitrogen atom from the original molecule. However, most authors seem to use the phrase "exhaustive methylation" to designate an elimination reaction which involves the preparation of a quaternary ammonium compound by methylation and pyrolysis of this compound in the presence of base or pyrolysis of the corresponding quaternary hydroxide. It is in this sense that "Hofmann exhaustive methylation" is used in this chapter. The more general phrases "decomposition of quaternary salts" and "decomposition of quaternary hydroxides" will be used to denote reactions that do not fit the foregoing definition.

- ¹ Hofmann, Ann., 78, 253 (1851).
- ² Hofmann, Ann., 79, 11 (1851).
- ³ Hofmann, Ber., 14, 494 (1881).
- ⁴ Hofmann, Ber., 14, 659 (1881).
- ⁵ Ciamician and Magnaghi, Ber., 18, 2079 (1885).

In compounds like quinolizidine derivatives in which the nitrogen atom is located at a bridgehead, three such steps would be necessary to eliminate it as trimethylamine.

Quinolizidine

Thus the degradation not only introduces a new functional group, the olefinic double bond, which allows further degradation, but the number of steps required to liberate the nitrogen atom as trimethylamine is an indication of its situation in the original compound. In some instances the course of the reaction has been cited as evidence for a particular stereo-chemical assignment in the original amine.⁶, ⁷

In order to describe these reaction products in cases in which the structure of the parent amine is still unknown, or systematic nomenclature would be too cumbersome, two systems are in common use. According to the "methine" system, the Hofmann product is called the methine or methine base of the parent alkaloid; so II would be pyrrolidinemethine. The product obtained by repeating the process of methylation and pyrolysis would be the *bis*-methine and that obtained after three steps, a *tris*-methine. This nomenclature is used widely in naming degradation products of morphine and its derivatives and some other alkaloids. The

⁶ Findlay, J. Am. Chem. Soc., 76, 2855 (1954).

⁷ Goutarel, Janot, Prelog, and Sneeden, Helv. Chim. Acta, 34, 1962 (1951).

alternative "des" system takes advantage of the fact that, after each step of the Hofmann degradation, one more methyl group has been added to the nitrogen atom. When the amino group is finally eliminated, the resulting compound may be described as the "des aza" derivative. Thus II would be des-N-dimethylpyrrolidine and III would be des-aza-pyrrolidine. The product is called the "des" base of the parent amine with a prefix to indicate the number of methyl groups which have been added to the nitrogen atom.

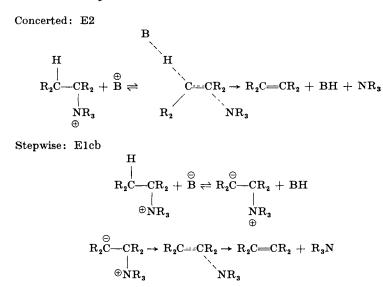
In addition to its value in alkaloid studies, the Hofmann elimination reaction has been useful in the preparation of certain cyclic olefins such as cyclopropene⁸ and *trans*-cycloöctene.⁹ It may be useful also in preparing other olefins of known configuration although little advantage has been taken of this possibility.

MECHANISM

The decomposition of quaternary ammonium compounds was described as belonging to that class of bimolecular elimination reactions called E2 reactions by Hughes, Ingold, and Patel in 1933.¹⁰ Subsequent work has served to confirm the opinion that this is the usual course of the reaction, but it has also revealed cases in which this mechanism is not correct. In some instances the nature of the alternative mechanism seems clear, while in others a choice cannot be made at present. In this section consideration will be given first to the E2 process and then to the other possibilities. It may be well to point out here, however, that the fact that mechanisms other than E2 are known to prevail in some Hofmann eliminations and that these do not require *trans* elimination means that it is not safe to assign stereochemical configuration to an amine on the basis of this reaction alone.

The general requirements of the Hofmann elimination reaction suggest that a moderately strong base, a β hydrogen atom, and a positively charged nitrogen center are involved since all of these are usually necessary. Most quaternary salts do not undergo elimination in the presence of phenoxide or acetate ions¹¹ or amines;¹² quaternary salts derived from phenethylamines do. Elimination proceeds without difficulty in many compounds that do not have an α hydrogen atom. Several examples of this type can be found in the tables at the end of this chapter. These observations are in accord with either a concerted process (E2) or a stepwise reaction (Elcb, El

^{*} Schlatter, J. Am. Chem. Soc., 63, 1733 (1941).


^{*} Cope, Pike, and Spencer, J. Am. Chem. Soc., 75, 3212 (1953).

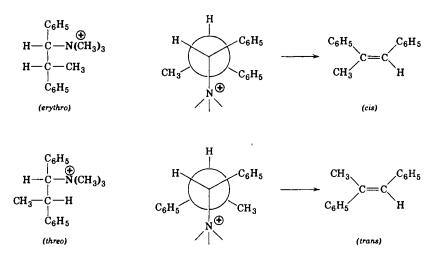
¹⁰ Hughes, Ingold, and Patel, J. Chem. Soc., 1933, 526.

¹¹ Hanhart and Ingold, J. Chem. Soc., 1927, 997.

¹³ Hunig and Baron, Chem. Ber., 90, 395 (1957).

elimination in the conjugate base) in which the β hydrogen atom is removed first, forming a carbanion intermediate. Actually, as Ingold pointed out in 1933¹⁰ and as has been restated recently,¹³ these mechanisms may be taken as extremes which merge as the lifetime of the carbanion is considered to become shorter in the stepwise reaction or as the degree of carbon to hydrogen bond breaking in the transition state becomes greater in the concerted process.

A choice between these mechanisms cannot be made on the basis of kinetic order, since both require second order behavior. The two extremes in mechanism do, however, lead to different predictions about the stereochemistry of the process. One of the requirements of the E2 mechanism is that the hydrogen atom and the nitrogen group involved in the elimination process be coplanar and in the *trans* conformation. This arrangement is shown using Newman's convention.¹⁴ (It must be

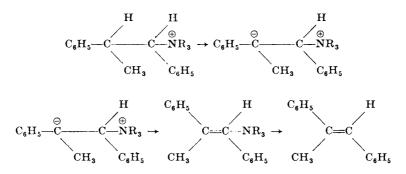


¹³ Saunders and Williams, J. Am. Chem. Soc., 79, 3712 (1957).

¹⁴ Newman, Steric Effects in Organic Chemistry, John Wiley and Sons, New York, 1956, Chap. 1.

ORGANIC REACTIONS

emphasized that *trans* as used in the phrase "*trans* elimination" is employed in this sense and does not refer to the geometrical isomer of the olefin produced in such an elimination; with suitable starting materials either a *cis* or a *trans* olefin can be prepared by a stereospecific elimination.) If the substituent groups are properly chosen, it is possible to test the *trans* nature of an elimination reaction. This criterion has been applied very convincingly to the Hofmann elimination in 1,2-diphenylpropylamines by treating the quaternary iodides with ethoxide ion in ethanol.¹⁵ The *erythro* and *threo* isomers were studied separately and found to undergo stereospecific *trans* elimination. The *erythro* form gives *cis*-1,2-diphenylpropene, while the *threo* compound gives the *trans* olefin. It is also a consequence of the relatively rigid geometrical requirements of the transition state in these isomers that the *threo* form should react more rapidly than the *erythro* form, and this prediction was verified.

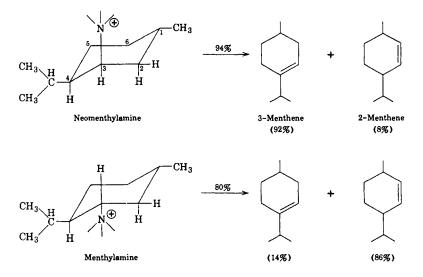


There can be no clearer demonstration of the E2 mechanism; the only question that may arise is how far these results can be extrapolated to other compounds and to other reaction conditions.

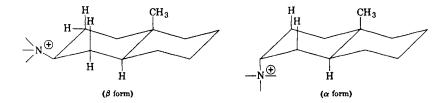
A study of the elimination reaction with the same compounds using t-butoxide ion in t-butyl alcohol¹⁵ provides an example of the consequences of the stepwise mechanism and emphasizes the risk of extrapolation from one set of conditions to another. In this instance both the *erythro* and *threo* forms gave the same *trans* olefin and the isomers reacted at virtually the same rate. The *cis* olefin was shown to be stable under the reaction conditions, so it cannot have been formed and then isomerized. These

¹⁵ Cram, Greene, and Depuy, J. Am. Chem. Soc., 78, 790 (1956).

are the results to be expected of the two-step reaction if the carbanion has an appreciable lifetime. Presumably the change from the E2 mechanism to the stepwise mechanism is due to the greater basicity of the *t*-butoxide ion which favors removal of the β hydrogen atom to a greater degree than does ethoxide ion. The carbanion then equilibrates so that the species obtained from either the *erythro* or the *threo* compound is the same and must go through the rate- and product-determining steps in the same way. In this instance these steps lead to the formation of the *trans* isomer, presumably because the transition state from carbanion to *trans* product involves less steric interaction than the one leading to *cis* olefin.


Other evidence for the *trans* nature of the Hofmann elimination reaction is provided by a study of the olefins produced from the N,N,N-trimethylammonium hydroxides of menthyl- and neomenthyl-amine.^{16, 17} With neomenthylamine there is a hydrogen atom in the *trans* relationship to the amino group on both β carbon atoms, and elimination can give either 2-menthene or 3-menthene. The predominance of the latter isomer is taken to indicate that, given suitable geometry, the hydrogen atom at the 4 position is removed preferentially. The course of the reaction of menthylamine that yields 2-menthene as the major product must be governed by the fact that in menthylamine the only *trans* hydrogen atom suitable for elimination is the one located on the 2 carbon atom. The change in product composition is some measure of the preference for *trans* elimination in this series. The 3-menthene produced from menthylamine must be formed by some other reaction path. (See equation on p. 326.)

Similar evidence for *trans* elimination in alicyclic amines is provided by certain 3-amino steroids in the 5α -cholestane and 5α -pregnane (A-B *trans*) series.¹⁸ In these compounds conversion of one chair form to

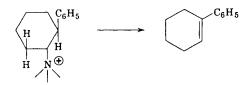

¹⁶ Cope and Acton, J. Am. Chem. Soc., 80, 355 (1958).

¹⁷ McNiven and Read, J. Chem. Soc., 1952, 153.

¹⁸ Haworth, McKenna, and Powell, J. Chem. Soc., 1953, 1110.

another whereby all axial positions become equatorial and vice-versa is prohibited by the fused ring system. Consequently the equatorial β amino isomers have no hydrogen atom in the coplanar *trans* orientation but the axial α isomers do. Only the α forms undergo elimination in

reasonable yield. A similar illustration is provided by the 6-aminocholestanes, except that in this system the 6β amine has the axial conformation.¹⁹ However, with a double bond in the 5 position, the stereospecificity is lost and the 3β amino compounds give the 3,5-diene.¹⁸

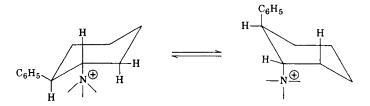

Evidence for the E2 mechanism instead of the two-step process in a simple alkyl ammonium compound is provided by the studies of Shiner and Smith,²⁰ who found that hydrogen atoms in the position β to the amino group were not exchanged for deuterium atoms during reaction although α hydrogen atoms were exchanged. Furthermore, by comparing the rate of decomposition of ethyl-2,2,2-d₃-trimethylammonium hydroxide

¹⁹ Gent and McKenna, J. Chem. Soc., 1959, 137.

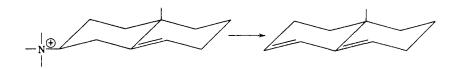
²⁰ Shiner and Smith, J. Am. Chem. Soc., 80, 4095 (1958).

with that of ethyltrimethylammonium hydroxide, it was found that replacement of hydrogen by deuterium caused roughly a four-fold decrease in rate. This isotope effect shows that a β hydrogen atom is involved in the rate-determining step, and lack of exchange at the β position shows that any intermediate carbanion that may be postulated collapses to olefin much more rapidly than it is neutralized by solvent, indicating that the elimination reaction is of the E2 type.

Evidence for the E2 mechanism is provided by kinetic, stereochemical, and isotope exchange data for aliphatic and alicyclic amines. Yet, one instance has already been discussed¹⁵ in which use of t-butoxide ion as the base caused a change to a non-stereospecific reaction, presumably proceeding through the intermediate carbanion. Usually the E1cb mechanism requires a higher free energy of activation than the E2 process, but conditions may be found in which this relationship is reversed. The reaction of *cis*- and *trans*-2-phenylcyclohexylammonium compounds may provide an example of this type. Both substances yield 1-phenylcyclohexene.²¹ The *trans* isomer cannot do this by *trans* elimination since the only suitably located *trans* hydrogen atom is the one that would be lost


to give 3-phenylcyclohexene. It has been shown that 3-phenylcyclohexene does not isomerize rapidly enough under the reaction conditions to account for its absence in the reaction products.²² Conclusive evidence that a direct elimination to form 1-phenylcyclohexene must be involved was provided by a study of the reaction using *trans*-2-phenylcyclohexyltrimethylammonium hydroxide bearing deuterium atoms on carbon atoms 3 and 6. The 1-phenylcyclohexene formed in 91% yield contained no detectable amount of the 3-phenyl isomer and had the same deuterium content as the quaternary base from which it was prepared.²³ The difference between the direction of elimination in this compound and that in the structurally similar menthylamine has been attributed to the effect of the phenyl group in increasing the acidity of the β hydrogen atom. It is also true that *trans* elimination in *trans*-2-phenylcyclohexylamine would require both the phenyl and trimethylamino groups to assume axial

²¹ Arnold and Richardson, J. Am. Chem. Soc., 76, 3649 (1954).


²² Weinstock and Bordwell, J. Am. Chem. Soc., 77, 6706 (1955).

²³ A. C. Cope, G. A. Berchtold, and D. L. Ross (in press, 1960).

positions, and this should be an important factor in raising the energy of the E2 transition state so that an alternative mechanism is favored. The isomeric cis-2-phenylcyclohexylamine may react by an E2 mechanism

forming 1-phenylcyclohexene. The observation mentioned earlier,¹⁶ that introduction of a double bond into the 5 position of a steroid nucleus enabled elimination to proceed using the otherwise unreactive 3β amino group suggests that allylic hydrogen atoms may be sufficiently acidic to enter into the two-step mechanism when the concerted process is not possible. If these examples are correctly interpreted, the intermediate carbanion mechanism may be expected to apply to compounds containing

allylic or benzylic β hydrogen atoms, but probably only when the *trans* elimination process is unfavorable. The mechanism in such cases is best described as non-stereospecific in that no particular geometry is required of the reactant. The reaction proceeds to give the more stable olefin, which, in the alicyclic compounds described immediately above, is *cis* and conjugated.

However, Hofmann elimination reactions that cannot proceed by a *trans* elimination mechanism are known in which the β hydrogen atoms are activated only by the positive nitrogen center. For these cases, it is possible to suggest the β carbanion mechanism, but an alternative is available.

It has been shown^{20,24} that exchange of hydrogen for deuterium can occur in the α positions of quaternary ammonium bases. Such an exchange must involve ylides (α carbanions) as short-lived intermediates. It has also been shown^{25,25 α ,²⁶ that ylides are intermediates in elimination reactions}

²⁴ Doering and Hoffmann, J. Am. Chem. Soc., 77, 521 (1955).

²⁵ Wittig and Polster, Ann., 599, 13 (1956).

^{25a} Grob, Kny, and Gagneux, Helv. Chim. Acta, 40, 130 (1937).

²⁶ Cope, Ciganek, and Le Bel, J. Am. Chem. Soc., 81, 2799 (1959).

forming olefins, presumably by a cyclic cis mechanism similar to the one proposed for the decomposition of tertiary amine oxides (p. 362). Consequently, ylides could be intermediates in the Hofmann elimination reaction.

It has been reported²⁷ that decomposition of β -tritioethyltrimethylammonium hydroxide at *ca*. 150° in the presence of excess superheated steam (introduced to minimize the introduction of tritium by exchange at the α positions) led to formation of trimethylamine containing 7.8% of the tritium that had been present in the quaternary base. It was concluded that the tritium was introduced into the trimethylamine by an intramolecular ylide elimination mechanism and not by exchange in the methyl groups of the quaternary ammonium hydroxide.

Similar tracer experiments with β deuterium labeling have led to results that are not in agreement with this conclusion.^{27a} In the decomposition of 1-cyclohexylmethyl-1d-trimethylammonium hydroxide at 90– 110° and of β,β,β -trideuterioethylammonium hydroxide at ca. 115°, the trimethylamine formed initially contained no deuterium. As the decomposition progressed, the trimethylamine produced was found to contain increasing amounts of deuterium, paralleling exchange in the methyl groups of the quaternary hydroxide with the DOH formed by β elimination,

When β , β , β -trideuterioethyltrimethylammonium hydroxide was decomposed to the extent of 70% at 150-160° in the presence of a large excess of superheated steam, the trimethylamine formed contained less than 0.3% of monodeuteriotrimethylamine. These results appear to rule out a significant role for the ylide reaction path for the Hofmann elimination reaction of these two quaternary bases, and by inference for Hofmann eliminations in other simple compounds. With structures in which *trans* elimination cannot occur, the ylide mechanism may become important.²⁶

Another possible reaction path leading to elimination is a two-step process in which the carbon-nitrogen bond breaks, first forming a carbonium ion and an amine (El mechanism). Base is not required for these

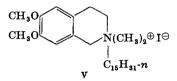
$$\begin{split} \mathrm{RN}^{\oplus}(\mathrm{CH}_3)_3 &\to \mathrm{R}^{\oplus} \,+\, \mathrm{N}(\mathrm{CH}_3)_3 \\ \mathrm{R}^{\oplus} &\to \mathrm{olefin} \,+\, \mathrm{H}^{\oplus} \end{split}$$

processes, and the quaternary iodides themselves undergo elimination. Pavinemethine,²⁸ N-methylemetinetetrahydromethine mono- and dimethiodides,²⁹ and the model compound IV³⁰ react in this way. In these

²⁷ Weygand, Daniel, and Simon, Chem. Ber., 91, 1691 (1958).

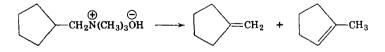
^{27a} A. C. Cope, N. A. Le Bel, P. T. Moore, and W. R. Moore, to be published.

²⁸ Battersby and Binks, J. Chem. Soc., 1955, 2888.


²⁹ Battersby and Openshaw, J. Chem. Soc., 1949, S59.

³⁰ Norcross and Openshaw, J. Chem. Soc., 1949, 1174.

cases the carbonium ion postulated is benzylic and stabilized by a methoxyl group in the para position. Reaction with the solvent to form an alcohol


$$\begin{array}{c} \mathrm{CH}_{3}\mathrm{O} \\ \mathrm{CH}_{3}\mathrm{O} \\ \mathrm{H}_{3}\mathrm{O} \\ \mathrm{IV} \\ \mathrm{IV} \\ \mathrm{IV} \\ \mathrm{IV} \\ \mathrm{IV} \\ \mathrm{CH}_{3}\mathrm{)_{3}} \oplus \mathrm{I}^{\ominus} \\ \end{array} \xrightarrow{\mathrm{Diethyl}}_{\mathrm{ketone, 100^{\circ}}} \begin{array}{c} \mathrm{CH}_{3}\mathrm{O} \\ \mathrm{CH}_{3}\mathrm{O} \\ \mathrm{CH}_{3}\mathrm{O} \\ \mathrm{CH}_{3}\mathrm{O} \\ \end{array} \xrightarrow{\mathrm{CH}=\mathrm{C}(\mathrm{CH}_{3})_{2}}_{\mathrm{CH}=\mathrm{C}(\mathrm{CH}_{3})_{2}} \\ \end{array}$$

or ether is an important side reaction in this process unless a nonhydroxylic solvent such as a ketone is used. The decomposition of the methiodides in the absence of base does not occur when the nitrogen atom is heterocyclic, as in emetine itself, in many other alkaloids containing the tetrahydroisoquinoline nucleus, and in such model compounds as V.³¹

The molecular rearrangements typical of carbonium ion reactions usually are not observed in Hofmann eliminations even with systems of the neopentyl type.³² However, neobornyltrimethylammonium iodide in the presence of base in aqueous ethylene glycol yields camphene as the major product plus some tricyclene and bornylene.³³ Dry distillation of bornyl- or neobornyl-ammonium hydroxide produces bornylene without rearrangement.³³

One reaction that is not readily accommodated by any of the preceding mechanisms is the formation of 1-methylcyclopentene during the decomposition of cyclopentylmethyltrimethylammonium hydroxide.³⁴ The proportion of 1-methylcyclopentene in the olefin mixture formed was as great as 29%. In some way, migration of a hydrogen atom to the α carbon atom has occurred, and experiments with cyclopentylmethylamine labeled with deuterium at the β position have shown that this atom is not the one which shifts.³⁵

- ³¹ Pailer and Bilek, Monatsh., 79, 135 (1948).
- 32 Stevens and Richmond, J. Am. Chem. Soc., 63, 3132 (1941).
- 33 McKenna and Slinger, J. Chem. Soc., 1958, 2759.
- 34 Cope, Bumgardner, and Schweizer, J. Am. Chem. Soc., 79, 4729 (1957).
- ³⁵ N. A. Le Bel, unpublished results.

DIRECTION OF ELIMINATION

Predictions of the olefins which will be formed from unsymmetrical quaternary bases can be based upon the many studies of decompositions with compounds of the type $RR'N^{\oplus}(CH_3)_2OH^{\ominus}$ or $R_2R'_2N^{\oplus}OH^{\ominus}$ in which the ratios of olefins derived from R and R' have been compared.^{36, 37} Similar information can be obtained from studies of the decomposition of compounds of the type $RCH_2CHN^{\oplus}(CH_3)_3OH^{\ominus}$ or from comparison of

CH₂R'

the ratio of elimination to displacement in a series of quaternary hydroxides such as $\operatorname{RCH}_2\operatorname{CH}_2\operatorname{N}^{\oplus}(\operatorname{CH}_3)_3\operatorname{OH}^{\ominus}$ and $\operatorname{R'CH}_2\operatorname{CH}_2\operatorname{N}^{\oplus}(\operatorname{CH}_3)_3\operatorname{OH}^{\ominus}$, etc.^{11, 38, 39} The goal in most of this research has been to contribute to an understanding of the reaction mechanism rather than to prepare olefins. The results have been summarized in the various expressions of the Hofmann rule for elimination reactions of "onium" compounds. However, no simple expression of this rule will apply to a very wide range of amines, and discussion of the rule will be deferred until the results of eliminations with different types of amines have been presented.

For many years the only evidence on which to base a discussion of the Hofmann elimination reaction was knowledge of the general reaction conditions and the direction of elimination. Largely because of the reaction conditions, the mechanism was assumed to be of the E2 type, yet the olefin formed from a quaternary base is very often not the one that would be produced by an E2 elimination of the corresponding halide. In providing explanations for the course that elimination will take in a given

$$CH_3CH_2CHBrCH_3 + NaOC_2H_5 \rightarrow 2$$
-butene, $81\% + 1$ -butene, 19% (ref. 40)

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{CHCH}_{3} & \xrightarrow{97\%} 2\text{-butene, } 5.4\% + 1\text{-butene, } 94.6\% & (ref. 36) \\ \text{N(CH}_{3})_{2}\text{OH} & \end{array}$$

case, three general factors are considered to be of importance, although there is some area of disagreement about the weighting of these factors. They are: the extent to which the olefin being formed may be stabilized by conjugation or hyperconjugation; the acidity of the β hydrogen atom that is to be eliminated; and the influence of steric interactions of the various groups in the rather rigid transition state assumed for the concerted elimination. The operation of the steric factor in particular is

³⁶ Cope, LeBel, Lee, and Moore, J. Am. Chem. Soc., 79, 4720 (1957).

³⁷ Smith and Frank, J. Am. Chem. Soc., 74, 509 (1952).

³⁸ Ingold and Voss, J. Chem. Soc., **1928**, 3125.

³⁹ von Braun, Ann., 382, 1 (1911).

⁴⁰ Dhar, Hughes, and Ingold, J. Chem. Soc., 1948, 2058.

quite different in aliphatic, alicyclic, and heterocyclic amines and, for simplicity in this respect, these types will be given separate consideration.

Aliphatic Amines

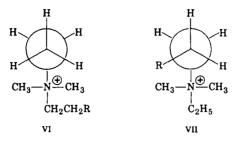
In the study of quaternary ammonium hydroxides containing various primary alkyl groups, Hofmann^{1, 2} observed that the ethyl group is the most readily eliminated (as ethylene). There is no exception to this generalization, which is one expression of the Hofmann rule, when it is restricted to primary alkyl groups. With methods such as gas chromatography³⁶ and mass spectrometry³⁷ it has been possible to obtain quite precise analyses of the olefin mixtures prepared in this way. In Table I

TABLE I

RELATIVE EASE OF ELIMINATION OF ALKYL GROUPS AS OLEFIN³⁶ Not Corrected for Corrected for Number Number of β of β Hydrogen Alkyl Group Hydrogen Atoms Atoms (100)Ethyl (100)Isopropyl 143 72 t-Butyl 1280427 n-Propyl 2.453.7 n-Butyl 1.6 2.42.5n-Decyl 1.651.2 Isoamyl 0.8 β -t-Butylethyl³⁷ 0.24 0.16 2.7Isobutvl 0.9 2-Phenethyl 2.6×10^{6} 3.9×10^6

values are given which express the relative ease of elimination of a given group as an olefin versus the ethyl group in terms of parts of olefin from "R" per 100 parts of ethylene. In the third column, correction has been made for the number of hydrogen atoms on the β carbon atom; i.e., three for ethyl, two for other *n*-alkyl groups, six for the isopropyl group and so on. A striking difference among simple alkyl groups is observed when the first three examples in Table I, in which the β hydrogen atoms are located on methyl groups, are compared with the others. Differences among other alkyl groups are slight; in particular it is interesting to note that the difference between the *n*-butyl and isobutyl groups is almost entirely a question of the number of available β hydrogen atoms. From the figures 1.6 and 0.9 given for these groups it would be predicted that the olefin mixture produced by pyrolysis of *n*-butylisobutyldimethylammonium hydroxide would contain 64% 1-butene and 36% isobutylene, which is exactly the composition found.³⁶ Branching at the γ carbon atom seems to have a greater effect than branching at the β position, to judge by the results of the decomposition of compounds containing isoamyl (β -isopropylethyl) and 3,3-dimethylbutyl (β -t-butylethyl) groups.³⁷

These results illustrate the degree of validity of the Hofmann rule for elimination as applied to alkyl groups. The ease of elimination of isopropyl and t-butyl groups can be accommodated to the rule if it is stated that in elimination reactions of ammonium bases, β hydrogen atoms are lost most readily from a methyl group. To explain why the introduction of an alkyl group at the β position causes removal of a β hydrogen atom to become slower, an inductive effect was assumed to decrease its acidity.⁴¹ However, the values above show that the introduction of a second alkyl group at the β position (compare *n*-propyl and isobutyl) has little additional effect on the rate of elimination but that an alkyl group which is branched at the γ carbon atom shows considerably decreased ease of elimination. In a study designed to test the susceptibility of the Hofmann reaction to inductive effects, a series of quaternary bases of the type $R_2CHCH_2N(CH_3)_3OH$, where $R = C_2H_5$, $n - C_3H_7$, $i - C_3H_7$, and $t - C_4H_9$, was pyrolyzed to give the following yields of the corresponding olefins: 77% (R = C₂H₅), 73% (R = n-C₃H₇), 67% (R = i-C₃H₇), and 81% $(R = t - C_4 H_9)$. The lowering of yield as R increases in branching from ethyl to isopropyl appears to be too small to be attributable to inductive effects. The high yield when R is t-butyl may be explained as the result of reaction by cis elimination. An examination of molecular models indicated that normal *trans* elimination is prohibited by interaction between the t-butyl groups and the trimethylammonium group.⁴²

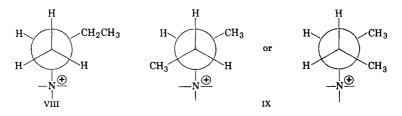

The dependence on size of the group rather than the number of groups is suggestive of a steric rather than an inductive influence on the reaction.^{43, 44} The way in which the steric factor might operate is indicated in the following representations of transition states which involve the elimination of ethylene (VI) as compared with the elimination of $\text{RCH}=\text{CH}_2$ (VII) from $\text{RCH}_2\text{CH}_2\text{N}^{\oplus}(\text{C}_2\text{H}_5)(\text{CH}_3)_2\text{OH}^{\odot}$. In formula VII the R group has one skew interaction with the quaternary ammonium group, and the decrease in ease of elimination as R changes in the sequence hydrogen, methyl, ethyl, isopropyl, *t*-butyl (i.e., with the ethyl, *n*-propyl, *n*-butyl, isoamyl, 3,3-dimethylbutyl groups attached to the nitrogen atom) is readily understood. Actually, formulas VI and VII are representations of specific conformations of the ground states. In the transition states the bonds to the hydrogen and nitrogen atoms are being broken

⁴¹ Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithaca, New York, 1953, pp. 427 et seq.

⁴² A. C. Cope and D. L. Ross, to be published.

⁴³ Schramm, Science, 112, 367 (1950).

⁴⁴ Brown and Moritani, J. Am. Chem. Soc., 78, 2203 (1956).


and should be somewhat lengthened while the remaining groups should be somewhat flattened toward the planar arrangement that they will assume in the olefin. These modifications do not affect the nature of the argument, although the fact that the bond between the carbon atoms α and β to the nitrogen atom has some double bond character means that R could have a stabilizing effect on the transition state if it could conjugate with this developing unsaturation. When the substituent on the β carbon atom is a phenyl group, the steric factor is unimportant relative to the acidity of the β hydrogen atom and the elimination of styrene is so much more rapid than ethylene formation that it is usually reported as the only olefin produced.³⁷ Other groups such as the carbonyl group and the vinyl group which also can enter into conjugation with the new double bond greatly enhance the rate of elimination.⁴⁵ Such compounds must be considered as outside the scope of the Hofmann rule.

By a rather easy extension the Hofmann rule may be applied to predict which isomer is to be expected in the greater amount when the elimination reaction involves a group branched at the α carbon atom so that the double bond might be formed in either branch. The *sec*-butyl group affords a simple example of this type in which the choice involves removal of a β hydrogen atom from a methyl or a methylene group. This example is

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{CHCH}_{3} & \xrightarrow{97\%} & \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}, 95\% \\ |_{\oplus} & \odot & + \\ \text{N(CH}_{3})_{3}\text{OH} & \text{cis- and } trans-2\text{-butene, } 5\% \end{array}$$
(ref. 36)

similar to one in which ethyl and *n*-propyl groups are attached to the same nitrogen atom and, in accord with the preference shown previously, the less highly substituted olefin is formed in the greater amount. Here the choice between rotational forms (and presumably also between transition states) leading to elimination from the methyl and the ethyl branches (VIII and IX, respectively) is in favor of the former because the most bulky group $[N^{\oplus}(CH_3)_3]$ would encounter less hindrance in VIII. As with the

⁴⁵ Wieland, Koschara, Dane, Renz, Schwarze, and Linde, Ann., 540, 103 (1939).

compounds discussed previously, a phenyl group on the β carbon atom directs elimination toward the conjugated olefin even in competition with a methyl group.

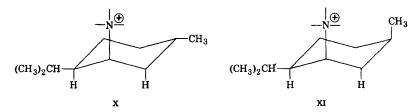
$$C_{6}H_{5}CH_{2}CHCH_{3} \rightarrow C_{6}H_{5}CH=CHCH_{3}$$

$$\downarrow \\ \oplus N(CH_{3})_{3}$$

$$C_{6}H_{5}CH_{2}CHCH_{2}OH \rightarrow C_{6}H_{5}CH=CHCH_{2}OH$$

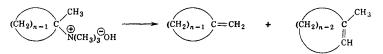
$$\downarrow \\ \oplus N(CH_{3})_{3}$$

Relatively little evidence is available concerning the stereochemistry of the olefin produced by the Hofmann elimination when *cis* and *trans* isomers may be formed. In the decomposition of 3-pentyltrimethylammonium hydroxide the 2-pentene obtained is a mixture containing 55.5%*cis* and 44.5% *trans* isomer.³⁶ sec-Butyltrimethylammonium hydroxide forms 5.4% of 2-butene of which 59% is *cis* and 41% is *trans*.³⁶ It


$$\begin{array}{c} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}\mathrm{CH}_{2}\mathrm{CH}_{3} \xrightarrow{96\%} \mathrm{CH}_{3}\mathrm{CH} = \mathrm{CH}\mathrm{CH}_{2}\mathrm{CH}_{3} \\ \downarrow & \bigcirc \\ {}^{\oplus}\mathrm{N}(\mathrm{CH}_{3})_{3}\mathrm{OH} \end{array} \xrightarrow{(cis \text{ and } trans)}$$

appears that in aliphatic cases there is produced a mixture considerably richer in the *cis* isomer than the equilibrium ratio of *cis* to *trans*. However, the quaternary hydroxide prepared from 1,2-diphenylethylamine forms *trans*-stilbene,⁴⁶ while quaternary bases of 1-phenyl-2-propylamine⁴⁷ and 1-phenyl-1-propylamine⁴⁸ give 1-phenylpropene which is largely the *trans* isomer, and ring-substituted derivatives of phenylalanine give derivatives of *trans*-cinnamic acid.^{49, 50} These results suggest that when a phenyl group is present the more stable *trans* isomer is formed preferentially.

- 48 Thomson and Stevens, J. Chem. Soc., 1932, 1932.
- 47 Doering and Meislich, J. Am. Chem. Soc., 74, 2099 (1952).
- ⁴⁸ E. R. Trumbull and G. L. Willette, unpublished results.
- 49 Körner and Menozzi, Gazz. chim. ital., 11, 549 (1881).
- ³⁰ Johnson and Kohmann, J. Am. Chem. Soc., 37, 1863 (1915).

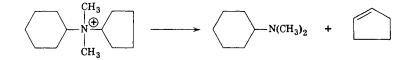

Alicyclic Amines

As contrasted with aliphatic amines, the most important factor in the elimination reaction of alicyclic amines, at least those having rings of six carbon atoms or less, is the availability of a *trans* β hydrogen atom. This factor has been discussed as evidence for the *trans* nature of the elimination process. When there are *trans* β hydrogen atoms available on both sides of the amino group, as with neomenthylamine¹⁶, ¹⁷ (X) and neoisomenthylamine¹⁷ (XI), the tendency seems to be for elimination to produce

the more highly substituted 3-menthene by loss of the tertiary hydrogen atom. The ratio of 3-menthene to 2-menthene from neomenthylamine is about 9:1, showing a greater preference for tertiary over secondary hydrogen than is found in the aliphatic series. However, the greater reactivity of the methyl hydrogen atoms is still demonstrated by the results shown in Table II with a series of 1-methylcycloalkylamines. With the

TABLE II

n	Total Olefin Yield, %	Relative Amounts of Olefins Formed, $\%$		
5	71	91	9	
6	85	98.6	1.4	
7	84	78.2	21.8	
8	82	63.5	36.5 cis, 0.0 trans	
9	83	48.0	51.0 cis, 1.0 trans	
10	92	66.4	31.4 cis, 2.2 trans	


exception of the nine-membered ring compound, the principal products are the less $stable^{51}$, s^{52} exomethylene compounds.³⁴, s^{52a} The very low

^{\$1} Turner and Garner, J. Am. Chem. Soc., 79, 253 (1957).

⁵² Cope, Ambros, Ciganek, Howell, and Jacura, *J. Am. Chem. Soc.*, **81**, 3153 (1959); **82**, 1750, (1960).

^{52a} Cope, Ciganek, Howell, and Schweizer, J. Am. Chem. Soc., 82, (in press, 1960).

proportion of 1-methylcyclohexene (n = 6) may be accounted for by the fact that the orientation required for *trans* elimination within the ring would place the bulky trimethylammonium group in the axial position. The suggestion that cyclopentene derivatives are formed more readily than cyclohexene compounds is supported by a study of the decomposition of cyclopentylcyclohexyldimethylammonium hydroxide, which gave mostly cyclopentene⁵³ (95% of the product corresponded to the compounds formulated in the equation).

When a phenyl group is located on the β carbon atom, elimination to give the conjugated olefin is preferred and, as indicated in the discussion of the mechanism of the reaction, there is some reason to believe that this is so even when the hydrogen atom to be removed is *cis* to the amino group.

The problem of explaining the stereochemistry of the olefin produced in these reactions is a difficult one. In alicyclic compounds with sevenmembered or smaller rings only the *cis* form of the olefin is known, so the question does not arise. Both the *cis* and *trans* forms of cycloöctene,⁹, ⁵⁴ cyclononene,^{55, 56} and cyclodecene⁵⁶ are known, and the Hofmann elimination reaction leads to a mixture in which the *trans* isomer predominates in each case, Table III. However, in all these compounds the *cis* isomer is the more stable,^{57, 58} and it will be of interest to find an explanation for the

TABLE III

$ \begin{array}{c} CH_2 \longrightarrow \\ CH_2 \longrightarrow \\ (CH_2)_{n-2} \end{array} \xrightarrow{\bigoplus} \\ CHN(CH_3)_3 OH \longrightarrow \\ CH_2 \longrightarrow \\ CH_2 \longrightarrow \\ CH_3 \longrightarrow \\$			- CH (CH ₂) _n	$CH = CH$ $(CH_2)_{n-2}$	
n	Olefin Yield, %	trans, %	cis, %	References	
8	89	60	40	54	
9	83	100 ^a		55, 56	
10	90	98	2	56, 58	

^{α} Based on infrared analysis. The product may contain a small amount of the *cis* isomer not detected by that method.

- 53 Jewers and McKenna, J. Chem. Soc., 1958, 2209.
- 54 Ziegler and Wilms, Ann., 567, 1 (1950).
- 55 Blomquist, Liu, and Bohrer, J. Am. Chem. Soc., 74, 3643 (1952).
- ⁵⁶ Cope, McLean, and Nelson, J. Am. Chem. Soc., 77, 1628 (1955).
- ⁵⁷ Cope, Moore, and Moore, J. Am. Chem. Soc., 81, 3153 (1959).
- 58 Cope, Moore, and Moore, J. Am. Chem. Soc., 82, 1744 (1960).

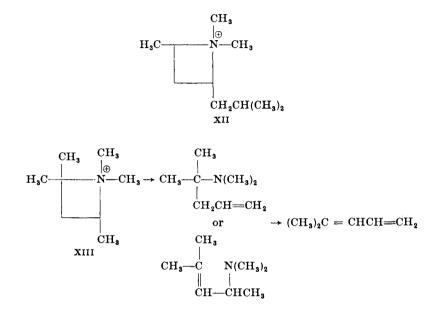
formation of the less stable *trans* form when a path is available that would yield the more stable *cis* isomer.

Even when there is a double bond already in the ring and the system is presumably less flexible, the tendency of the Hofmann elimination to yield the *trans* product is observed. Thus the decomposition of *cis*cycloöcten-3-yltrimethylammonium hydroxide gives 15% of *cis*-trans-1,3-cycloöctadiene and 41% of *cis*-*cis*-1,3-cycloöctadiene;⁵⁹ the ratio of *trans* to *cis* changes from 3:2 in cycloöctylamine to 0.73:2 in cycloöctenylamine. With *cis*-cyclodecen-3-yltrimethylammonium hydroxide, *cis*-trans-1,3-cyclodecadiene was reported to be the only diene formed,⁶⁰ the new double bond apparently being introduced in the *trans* configuration exclusively, as is essentially the case with cyclodecylamine. Both of these *cis*-trans dienes are much more reactive than the *cis*-*cis* isomers and are sterically strained.

Heterocyclic Amines

Most of the useful applications of the Hofmann elimination reaction have been with alkaloids containing the nitrogen atom in a ring, usually five- or six-membered. In this work the structure of the alkaloid has been the primary concern and the structures of intermediates between the alkaloid and the final nitrogen-free product usually have not been investigated in detail. If the elimination reaction forms a mixture of olefins, the mixture may be subjected to a second Hofmann elimination reaction, or the isomers may be converted to a single compound by hydrogenation. Thus these reactions often do not provide information about the direction of elimination. Fewer model compounds have been studied in the heterocyclic series than in those previously treated. Such data as are available are explained by the assumptions of *trans* elimination,⁶¹ preference for the formation of a conjugated olefin when possible, and preferential loss of hydrogen from a methyl group in competition with other alkyl groups.

There seems to be no record of the Hofmann elimination reaction as applied to a derivative of ethylene imine. Decompositions of some highly substituted compounds containing four-membered heterocyclic rings have been studied. 1,1,2-Trimethyl-4-isobutyltrimethyleneimonium hydroxide⁶² (XII) is reported to yield an olefin whose structure was not established, and 1,1,2,2,4-pentamethyltrimethyleneimonium hydroxide (XIII) also undergoes ring opening to give a product for which two structures

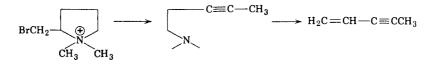

¹⁹ Cope and Burngardner, J. Am. Chem. Soc., 78, 2812 (1956).

^{**} Blomquist and Goldstein, J. Am. Chem. Soc., 77, 998 (1955).

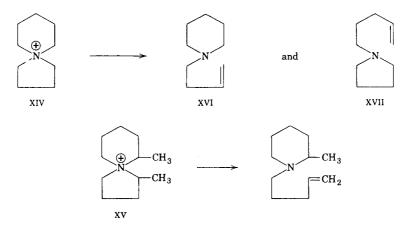
⁶¹ McKenna, Chem. & Ind. (London), 1954, 406.

⁴³ Kohn and Giaconi, Monatsh., 28, 461 (1907).

have been suggested.^{63, 64} Either of these isomers would be expected to produce 4-methyl-1,3-pentadiene (the observed product) in a second step, as indeed would other isomers. The observation that the N-ethyl-N-methyl derivative of XIII undergoes ring opening rather than elimination


of ethylene might be explained as a manifestation of ring strain or of the fact that one of the positions is rather similar to a *t*-butyl group. If a hydrogen atom is removed from the ring, a strictly *trans* orientation of the hydrogen and nitrogen atoms is not possible but, if the hydrogen atom comes from one of the methyl groups, this geometry could be attained. Trimethyleneimonium compounds without substituents in the 2 or 4 position do not appear to have been subjected to the conditions of the Hofmann elimination reaction.

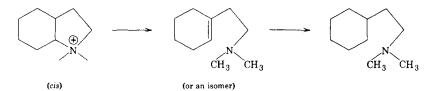
Examples of the Hofmann elimination reaction with compounds containing five-membered heterocyclic rings are more numerous. By analogy with cyclopentane, the pyrrolidine ring should have a slightly puckered conformation in which a β hydrogen atom is coplanar with the nitrogen atom.⁶¹ Pyrrolidinium compounds undergo the elimination reaction without difficulty. Decomposition of the 2-bromomethyl compound is of interest because of the long-standing question of the nature of


⁴³ Kohn and Morgenstern, Monatsh., 28, 479 (1907).

⁴⁴ Kohn and Morgenstern, Monatsh., 28, 529 (1907).

the final product, pirylene.^{65, 66} The decomposition of the quaternary salt is accompanied by loss of hydrogen bromide, and an acetylenic amine is formed.⁶⁷ A second elimination yields methylvinylacetylene (pirylene).⁶⁸

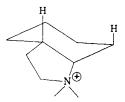
Some measure of the relative reactivity of five- and six-membered rings is provided by the spiro compounds XIV and XV. In direct competition the pyrrolidinium and piperidinium rings appear about equally reactive, giving XVI and XVII in equal amounts.⁵³



When an α methyl group is available, elimination occurs with loss of a hydrogen atom on the methyl group of the five-membered ring. Attack at the methyl group might be expected, but the marked preference for the one attached to the pyrrolidinium ring is surprising.⁵³

Elimination reactions in the octahydroindole series afford some interesting examples. *cis*-Octahydroindole is cleaved between the sixmembered ring and the nitrogen atom, but the position of the double bond was not determined because the product was identified by reduction to N,N-dimethyl- β -cyclohexylethylamine.⁶⁹ With the 2-methyl compound,

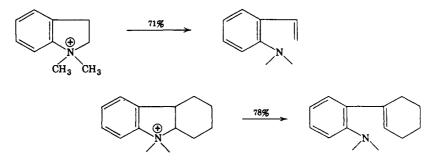
- 66 von Braun and Teuffert, Ber., 61, 1902 (1928).
- ⁶⁷ E. R. Buchman, private communication.
- 68 Sargent, Buchman, and Farquhar, J. Am. Chem. Soc., 64, 2692 (1942).
- ⁶⁹ King, Bovey, Mason, and Whitehead, J. Chem. Soc., 1953, 250.


⁶⁵ Ladenburg, Ann., 247, 1 (1888).

however, cleavage occurs within the five-membered ring, presumably by attack at the methyl group, although again the position of the double

bond was not established.⁷⁰ The stereochemistry of cis-octahydroindole should be similar to that of cis-hydrindane, and the nitrogen atom can be

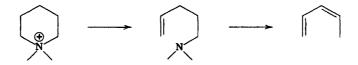
located on an axial bond of the cyclohexane ring where it is *trans* to neighboring axial hydrogen atoms. However, in *trans*-octahydroindole the nitrogen atom is probably in the equatorial position and no hydrogen atom in the cyclohexane ring is coplanar with it. One of the hydrogen atoms on the heterocyclic ring is removed, and the product is *trans*-N,N-dimethyl-2-vinylcyclohexylamine.⁷¹

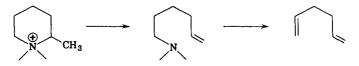


2,3-Dihydroindole and hexahydrocarbazole react normally with cleavage of the five-membered ring to give ortho-substituted derivatives of dimethylaniline.⁷²

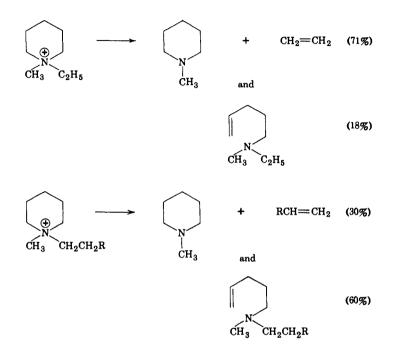
⁷⁰ Fujise, Sci. Papers Inst. Phys. Chem. Research (Tokyo), 8, 185 (1927) Chem. Zentr., 99, II, 993 (1928).

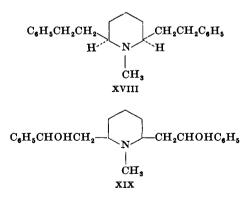
⁷¹ Booth and King, J. Chem. Soc., 1958, 2688.


⁷² Booth, King, and Parrick, J. Chem. Soc., 1958, 2302.


Piperidinium compounds should exist mainly in the chair form analogous to cyclohexane, and in this situation equatorial hydrogen atoms at the β position are coplanar with the bond between the α carbon atom

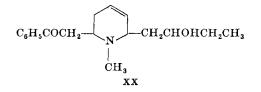
and the nitrogen atom.⁶¹ The ring is opened smoothly by the Hofmann procedure, although if the process is continued to the diene an allylic shift occurs and 1,3-pentadiene (piperylene) is the product.⁴ When


 α -methylpiperidine is subjected to Hofmann exhaustive methylation, the first elimination is toward the methyl group and in the second step isomerization does not occur, so that 1,5-hexadiene (biallyl) is obtained.⁷³

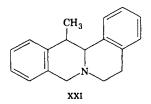

Some indication of the ease of opening of the piperidine ring in relation to elimination of simple alkyl groups is provided by the observation that N-ethyl-N-methylpiperidinium hydroxide yields 71% of ethylene and 18% of open-chain amine while the N-propyl, N-butyl, N-hexyl, and

⁷⁸ Merling, Ann., 264, 310 (1891).

N-octyl compounds give about the statistical ratio of 2:1 for ring opening versus loss of the alkyl group.⁷⁴

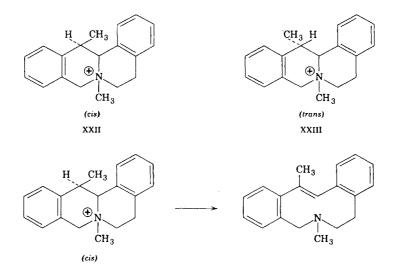


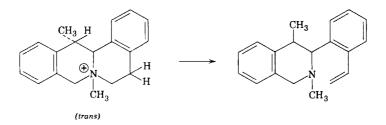
Two cases in which the Hofmann elimination fails are reported with the piperidine derivatives lobelan (XVIII)^{75, 76} and lobelanidine (XIX).⁷⁵


- ⁷⁴ von Braun and Buchman, Ber., 64, 2610 (1931).
- ⁷⁵ Wieland, Schöpf, and Hermsen, Ann., 444, 40 (1925).
- ¹⁶ Schöpf and Boettcher, Ann., 448, 1 (1926).

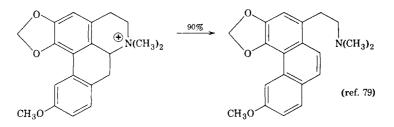
Even the diketone corresponding to lobelanidine in which the hydrogen atoms β to the nitrogen atom are especially acidic does not give a good yield in the first step, although once the ring is opened the final elimination of the amino group is very easy.⁷⁷ When there is a double bond in the piperidine nucleus, as with lobinine (XX), ring opening is extremely

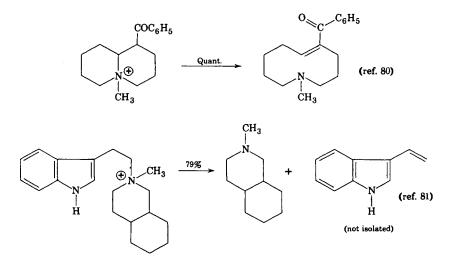
facile.⁴⁵ The poor results obtained in the Hofmann elimination reaction of α, α' -disubstituted piperidine compounds has not been explained.

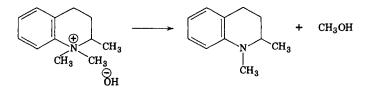

The tetrahydroisoquinoline ring is opened especially easily by the Hofmann procedure,⁶⁶ presumably because it is of the phenethyl type. This structural unit occurs commonly in alkaloids, and many examples of its activity in the Hofmann reaction are available. One especially interesting case is afforded by certain alkaloids of the protoberberine type XXI

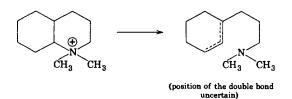

which have a methyl group at one benzylic position. When the amine is converted to the N-methyl quaternary compound, two products are obtained and, for simplicity, these can be considered to arise by introduction of the N-methyl group on one side or the other of the plane of the molecule, creating a new asymmetric center at the nitrogen atom. In one of the diastereoisomers thus formed, the methyl group of the amino group and the one at the benzylic position are *cis* and, in the other, they are *trans* (XXII and XXIII). In the *cis* form the hydrogen and nitrogen atoms are suitably positioned for elimination and reaction occurs to form a dibenzazacyclodecene.⁷⁸ In the *trans* form the corresponding hydrogen atom is not in the correct orientation, so elimination occurs with the other β hydrogen atom forming a vinyl group.⁷⁸ Apparently a hydrogen atom

¹⁷ Wieland and Dragendorff, Ann., 473, 83 (1929).

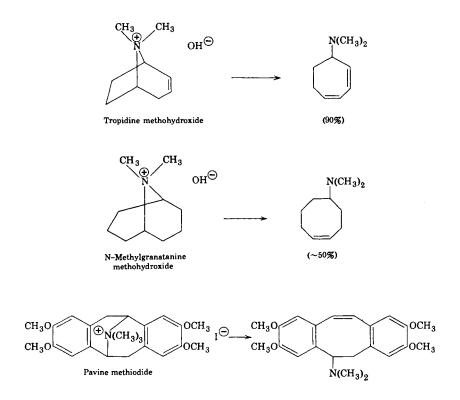

⁷⁸ Bersch, Arch. Pharm., 283, 36 (1950).


is eliminated from the tertiary rather than the secondary position when the stereochemistry of the amine allows a choice.


The following reactions may be considered illustrations of the principle that elimination will proceed in such a way as to yield a conjugated olefin when the stereochemistry is suitable.


¹⁹ Schlittler, Helv. Chim. Acta, 15, 394 (1932).

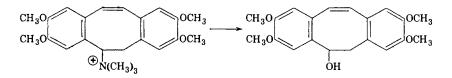
In marked contrast to tetrahydroisoquinolines, tetrahydroquinolinium compounds do not undergo elimination even when an α methyl group is available.^{82, 83} Instead, the principal reaction is the attack of hydroxide ion on the N-methyl groups to form methanol. This is a common side reaction in the Hofmann procedure. It occurs to some extent with most


compounds, but here it becomes the sole reaction. It seems unlikely that the effect is steric since both *cis*- and *trans*-decahydroquinoline react to

- ⁸⁰ Schöpf, Schmidt, and Braun, Ber., 64, 683 (1931).
- ⁸¹ Witkop, J. Am. Chem. Soc., 71, 2559 (1949).
- 82 Feer and Koenigs, Ber., 18, 2388 (1885).
- ⁸³ Moller, Ann., 242, 313 (1887).

give ring opening by cleavage between the cyclohexyl ring and the nitrogen atom. $^{70,\ 84}$

A number of bicyclic compounds with nitrogen as the bridging atom have been opened successfully by the Hofmann method. Tropidine,⁸⁵ granatanine,⁸⁶ and pavine²⁸ may be mentioned as examples of this type.



The example of pavine is especially interesting because the second step, which should yield a derivative of dibenzcycloöctatetraene, does not proceed normally but results in replacement of the amine function by a hydroxyl group. Yet the dihydro derivative reacts normally to form a dibenzcycloöctatriene,²⁸ and a model system without the four methoxyl groups gives dibenzcycloöctatetraene in "satisfactory" yield.⁸⁷

- 86 Willstätter and Veraguth, Ber., 40, 957 (1907).
- ⁸⁷ Wittig, Angew. Chem., **63**, 15 (1951).

⁸⁴ Fujise, Sci. Papers Inst. Phys. Chem. Research (Tokyo), 9, 91 (1928) [Chem. Zentr., 99, II, 2359 (1928)].

⁸⁶ Merling, Ber., 24, 3108 (1891).

Many compounds which have the nitrogen atom at a bridgehead have been degraded by the Hofmann procedure. Quinuclidine⁸⁸ and 1azabicyclo[2.2.1]heptane⁸⁹ do not afford olefins in good yield; the main products are the recovered amines. Alkaloids containing pyrrolizidine, quinolizidine, and other fused ring systems with a nitrogen atom at the ring juncture have been degraded successfully. Several examples are to be found in Tatle XVIII.

The Hofmann Rule

As a means of summarizing the previous information, the extent to which different types of ammonium compounds adhere to a general rule for elimination will be considered. A simple expression of the Hofmann rule will be used, as follows: "In elimination reactions of ammonium compounds the β hydrogen atom is removed most readily if it is located on a CH₃ group, next from RCH₂, and least readily from R₂CH."

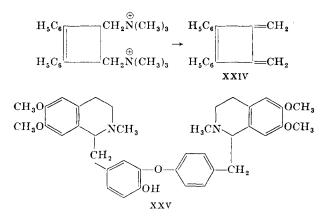
With simple alkyl groups this rule holds, although the difference between RCH_2 and R_2CH is not striking and is largely a matter of the number of β hydrogen atoms. If R is phenyl, vinyl, carbonyl, or a similar group, the rule does not hold.

With alicyclic compounds containing an external methyl group in the appropriate position, the rule seems to hold. Within the ring, the necessity of having the amino group and hydrogen atom *trans* to each other is most important. Given *trans* hydrogen atoms in both β positions, the hydrogen atom is eliminated from the R₂CH groups; thus the rule is not followed. Whenever possible, a conjugated olefin will be formed.

Comparable generalizations may be made for heterocyclic compounds.

The Hofmann Rule as expressed here applies only to alkyl groups without unsaturated functions attached directly to the β carbon atom. Compounds containing bulky, highly branched alkyl groups may not react according to the prediction of the rule.

Application of the Hofmann rule depends on the assumption, which is usually valid, that the ratio of olefins formed in the elimination is determined by the relative rates of the competing reactions which lead to the different olefins and that, once formed, they do not equilibrate. Since


⁸⁸ Lukeš, Štrouf, and Ferles, Collection Czechoslov. Chem. Communs., 22, 1173 (1957).

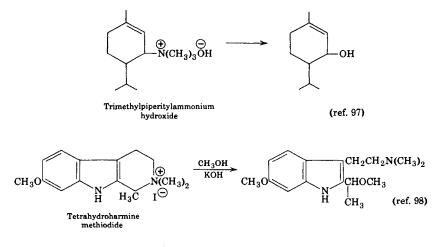
⁸⁹ Lukeš, Štrouf, and Ferles, Collection Czechoslov. Chem. Communs., 24, 212 (1959).

the ratio of styrene to ethylene, for example, obtained in the Hofmann elimination reaction of ethyl phenethyl quaternary bases is very large, the rate of formation of styrene is much greater than the rate of formation of ethylene. It would be expected that decomposition of a salt containing a phenethyl group would occur at a lower temperature than the decomposition of a compound containing only alkyl groups, and that in general the ease with which elimination reactions occur will be dependent on the substituents in the ammonium compound. Indeed, quaternary salts bearing only alkyl substituents usually decompose slowly if at all in boiling aqueous solution, but reactions of phenethyl compounds and derivatives of tetrahydroisoquinoline occur readily at steam bath temperatures. Quaternary hydroxides derived from β amino ketones are still more reactive and decompose rapidly in solution at room temperature or lower. In some instances, therefore, the conditions necessary to bring about elimination serve as evidence concerning the structure of the quaternary compound.

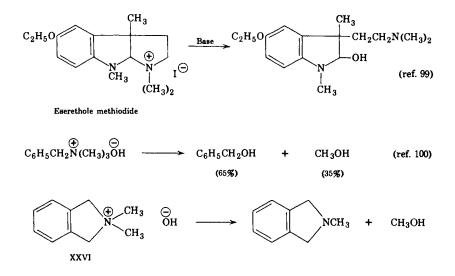
REACTION WITH DIAMINES

The Hofmann elimination reaction has not been used widely for the synthesis of simple olefins, although cyclopropene,⁸ cyclobutene,⁹⁰ transcycloöctene,⁹ and a few other alicyclic olefins are best prepared in this way. In addition, some polyenes are most easily prepared from diamines by way of the quaternary hydroxides. For example, 1,12-diaminododecane gave 1,11-dodecadiene in 65% yield,⁹⁴ and similar dienes have been prepared in fair yield by this method. The interesting derivative of dimethylenecyclobutene XXIV was prepared from a diamine,^{92, 93} and a

- ⁹⁰ Roberts and Sauer, J. Am. Chem. Soc., 71, 3925 (1949).
- ⁹¹ von Braun and Anton, Ber., 64, 2865 (1931).
- 92 Blomquist and Meinwald, J. Am. Chem. Soc., 79, 5317 (1957).
- ⁹³ Blomquist and Meinwald, J. Am. Chem. Soc., 81, 667 (1959).


number of alkaloids, e.g., of the bisbenzylisoquinoline type such as dauricine (XXV) are degraded at both functions simultaneously in good yield.⁹⁴ If the amino groups are sufficiently close together in the molecule, a conjugated olefin is usually produced. Thus 1,5-pentanediamine gives 1,3-pentadiene, not 1,4-pentadiene.⁹⁵

SIDE REACTIONS: ALKYLATIONS BY QUATERNARY COMPOUNDS


Alcohol Formation

The most common process that competes with elimination when a quaternary ammonium compound reacts with hydroxide ion is a displacement reaction at the α carbon atom. Unlike the exchange reaction of α hydrogen atoms, which does not interfere with elimination, attack at the α carbon atom by hydroxide ion forms an alcohol and a tertiary amine, which are usually stable products under the reaction conditions. This side reaction may be important. In a few cases (tetrahydroquinoline, pavinemethine) the formation of an alcohol and a tertiary amine is the only reaction reported.

Attack at the α carbon atom by hydroxide ion is apparently a bimolecular displacement reaction with most compounds, although this is not the only possible mechanism.^{10, 96} A unimolecular reaction which does

- ⁸⁴ Kondo, Narita, and Uyeo, Ber., 68, 519 (1935).
- 95 von Braun, Ann., 386, 273 (1911).
- ** Ingold and Patel, J. Chem. Soc., 1933, 67.
- ⁹⁷ Read and Storey, J. Chem. Soc., 1930, 2770.
- ⁹⁸ Perkin and Robinson, J. Chem. Soc., 115, 933 (1919).

not require hydroxide ion has been demonstrated to occur with certain benzylamines having methoxyl substituents in the ring.³⁰ This is an exceptional case in which the carbonium ion would be especially well stabilized, but in most instances a nucleophile is required. The following examples illustrate this type of reaction with hydroxide and methoxide ions. It is interesting that the benzyl group does not have this high reactivity when it is part of a heterocyclic ring; the dihydroisoindolium derivative XXVI reacts mainly at the methyl groups.¹⁰¹

There is no way to avoid completely the side reaction which forms an alcohol, because the rate of this displacement and the rate of the elimination vary with hydroxide concentration in the same way. If anions less basic than hydroxide or alkoxide, such as acetate, phenoxide or carbonate, are used, the displacement reaction becomes more important.¹¹ For this reason solutions of quaternary hydroxides should be protected from carbon dioxide and should always be concentrated under reduced pressure rather than in an open vessel.¹⁰² If no benzyl or allyl groups are attached to the nitrogen atom, most of the attack on carbon will occur at the methyl groups to regenerate the original tertiary amine. Thus the starting

 $\mathbb{R}N(CH_3)_3 \oplus OH^{\ominus} \rightarrow \mathbb{R}N(CH_3)_2 + CH_3OH$

material is not lost, and it may be remethylated and the degradation

^{**} Stedman and Barger, J. Chem. Soc., 127, 247 (1925).

¹⁰⁰ Hughes and Ingold, J. Chem .Soc., 1933, 69.

¹⁰¹ Fränkel, Ber., 33, 2808 (1900).

¹⁰² von Braun, Teuffert, and Weissbach, Ann., 472, 121 (1929).

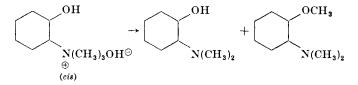
repeated. Since attack at the methyl group does not affect the bond between the alkyl group and the nitrogen atom, the regenerated amine is not changed in stereochemical configuration.

Ethers and Epoxides

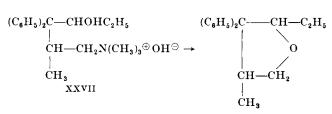
In addition to the alkylation of hydroxide ions by the quaternary compounds to form an alcohol, other hydroxyl groups may be alkylated to produce ethers. This reaction is the predominant one when β amino alcohols are subjected to the Hofmann elimination procedure and leads to the formation of epoxides. Examples of this reaction are collected in

$$\begin{array}{c} OH & O \\ \downarrow \\ R_2C - CH - R \rightarrow R_2C - CHR + (CH_3)_3N + H_2O \\ \downarrow \\ N(CH_3)_3OH \\ \oplus \end{array}$$

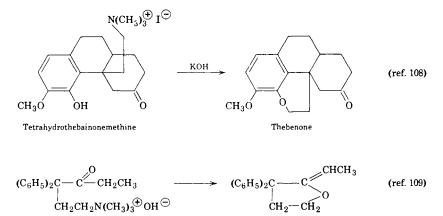
Table XI, p. 389. As would be expected from the general nature of the reaction, trimethylamine is displaced with inversion at the carbon atom to which it was attached. Thus the quaternary hydroxide prepared from ephedrine gives *trans*- β -methylstyrene oxide and the quaternary hydroxide


from pseudoephedrine yields the *cis* oxide.¹⁰³ Also, the *erythro* and *threo* forms of 1,2-diphenylethanolamine yield *trans*- and *cis*-stilbene oxides respectively.¹⁰⁴ The stereochemistry of the molecule may preclude the formation of an oxide by this process as in the case of *cis*-2-dimethylamino-cyclohexanol. When the methohydroxide of this compound is heated, the main products are recovered amino alcohol and its methyl ether; no cyclohexene oxide is obtained. The methyl ether may be produced by intramolecular alkylation.¹⁰⁵ With cyclic β amino alcohols containing twelve-, thirteen- and sixteen-membered rings in which the substituents can assume a *trans* conformation, the *cis* amino alcohol yields the *trans*

¹⁰³ Witkop and Foltz, J. Am. Chem. Soc., 79, 197 (1957).


¹⁰⁴ Rabe and Hallensleben, Ber., 43, 884 (1910).

¹⁰⁵ A. C. Cope, E. J. Ciganek, and J. Lazar, to be published.


oxide and the trans amino alcohol the cis oxide.¹⁰⁶ Compounds with the

hydroxyl group farther removed from the nitrogen atom may also give oxygen-containing heterocycles. Thus the quaternary hydroxide from isomethadol (XXVII) gives a derivative of tetrahydrofuran in good yield.¹⁰⁷

Compounds containing phenolic and enolic hydroxyl groups also are alkylated internally to give cyclic products if the hydroxyl and amino groups are in suitable proximity. The following examples illustrate this reaction.

In order to avoid their alkylation by the quaternary base, phenolic hydroxyl groups are commonly converted to methyl or ethyl ethers before

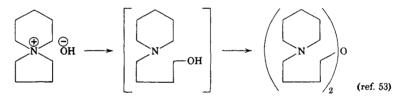
- ¹⁰⁶ Svoboda and Sichee, Collection Czechoslov. Chem. Communs., 23, 1540 (1958).
- ¹⁰⁷ Easton and Fish, J. Am. Chem. Soc., 77, 2547 (1955).
- ¹⁰⁸ Rapoport and Lavigne, J. Am. Chem. Soc., 75, 5329 (1953).
- ¹⁰⁹ Easton, Nelson, Fish, and Craig, J. Am. Chem. Soc., 75, 3751 (1953).

application of the Hofmann elimination reaction. When the stereochemistry is not favorable or when elimination is facilitated by structural factors, the alkylation reaction is not important.

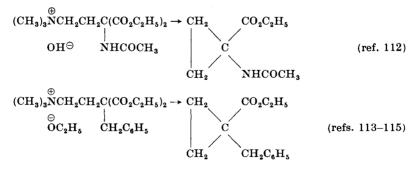
$$C_{6}H_{5}CH_{2}CHCH_{2}OH \rightarrow C_{6}H_{5}CH=CHCH_{2}OH$$

$$(ref. 110)$$

$$N(CH_{3})_{3} \oplus OH^{\ominus}$$


$$HO$$

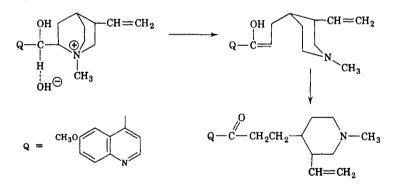
$$CH_{2}CH_{2}N(CH_{3})_{3} \oplus OH^{\ominus} \rightarrow HO$$


$$CH=CH_{2}$$

$$(ref. 111)$$

The alcohols that are often formed as by-products in the Hofmann procedure may themselves be alkylated by the unreacted quaternary compound to produce ethers. Small amounts of such products have been observed in several instances and may have been overlooked in others.

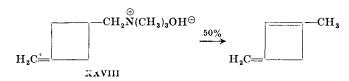
Groups other than the oxygen-containing ones described above might be alkylated by quaternary ions, but compounds with structures suitable for testing such reactions have not been studied. There are a few examples in which the products are most easily explained by assuming alkylation of carbon by the quaternary nitrogen.


- ¹¹⁰ Karrer and Horlacher, Helv. Chim. Acta, 5, 571 (1922).
- ¹¹¹ Stork, Wagle, and Mukharji, J. Am. Chem. Soc., 75, 3197 (1953).
- ¹¹³ Rinderknecht and Niemann, J. Am. Chem. Soc., 73, 4259 (1951).
- ¹¹³ Ingold and Rogers, J. Chem. Soc., 1935, 722.
- ¹¹⁴ Weinstock, J. Org. Chem., 21, 540 (1956).

¹¹⁸ Rogers, J. Org. Chem., 22, 350 (1957).

An unusual alkylation on nitrogen is reported with the alkaloid gelsemine and its dihydro and octahydro derivatives.^{116, 117}

A few β amino alcohols have been observed to undergo a cleavage reaction instead of elimination or epoxide formation. This reaction is illustrated with quinine with the formulation suggested by Turner and Woodward.¹¹⁹ Narcotine undergoes an analogous reaction.¹²⁰


ISOMERIZATION OF OLEFINS FORMED

The Hofmann elimination reaction often leads to the formation of an olefin which is not the most stable isomer. For instance, at temperatures below 200° almost any terminal olefin is less stable than an isomeric non-terminal olefin. However, the olefins from the Hofmann elimination are obtained free of isomerized products except when there is the possibility of an allylic shift of a proton that would move the double bond into conjugation with another unsaturated system. Several examples of this

- ¹¹⁶ Habgood, Marion, and Schwarz, Helv. Chim. Acta, 35, 638 (1952).
- ¹¹⁷ Prelog, Patrick, and Witkop, Helv. Chim. Acta, 35, 640 (1952).
- ¹¹⁸ Lovell, Pepinsky, and Wilson, Tetrahedron Letters, No. 4, p. 1, 1959.
- ¹¹⁹ Turner and Woodward, in Manske and Holmes, *The Alkaloids*, Vol. III, Academic Press, New York, 1953, pp. 9. 10.

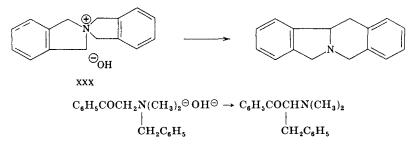
¹²⁰ Stevens, Creighton, Gordon, and MacNicol, J. Chem. Soc., 1928, 3193.

type have been mentioned, for instance, formation of piperylene and pirylene. The reaction of the methylenecyclobutane derivative XXVIII provides another instance of such an isomerization.¹²¹

In the case of 3-phenylpropylammonium salts which yield *trans*-1phenylpropene, initial reaction to form 3-phenylpropene followed by isomerization has been assumed, and the isomerization of 3-phenylpropene has been shown to occur rapidly.¹¹⁴ The decomposition of *trans*-2-phenylcyclohexyltrimethylammonium hydroxide to 1-phenylcyclohexene was assumed to involve a similar rearrangement, but it is now clear that this reaction proceeds instead by *cis* elimination.^{22, 23}

MOLECULAR REARRANGEMENTS

Usually the Hofmann elimination procedure does not cause a change in the carbon skeleton of the molecule. In particular, carboniumtype rearrangements of quaternary ammonium hydroxides are not found even with structures such as XXIX;³² however, see p. 330.³³ With


$$(CH_3)_3CCHCH_3 \rightarrow (CH_3)_3CCH=CH_2$$

$$|$$

$$N(CH_3)_3 \oplus OH^{\ominus}$$

$$XXIX$$

N-benzyl derivatives of phenacylamines, the Stevens rearrangement is observed.^{120, 122} A similar rearrangement has been observed with the spiro quaternary compound XXX⁸⁷ and with similar compounds.¹²³

¹²¹ Caserio, Parker, Piccolini, and Roberts, J. Am. Chem. Soc., 80, 5507 (1958).

- ¹²² Stevens, J. Chem. Soc., 1930, 2107.
- ¹²³ Wittig, Koenig, and Clauss, Ann., 593, 127 (1955).

In all these cases the normal elimination reaction could not occur for structural reasons.

ANALOGOUS "ONIUM" COMPOUNDS

Although quaternary ammonium compounds are the only ones which have been used in degradative and synthetic work, sulfonium hydroxides have been studied carefully and have been found to react in a manner similar to the ammonium analogs.¹²⁴ Phosphonium hydroxides usually decompose in a different way to form a hydrocarbon and a phosphine oxide.¹²⁵ Ammonium compounds rarely decompose in this way, the

$$R_{4} \stackrel{\oplus}{\mathrm{POH}} \xrightarrow{\ominus} \mathrm{RH} + \mathrm{R}_{3} \mathrm{P} \rightarrow \mathrm{O}$$

only reported instance being that of the nitrobenzylammonium compounds which apparently give some nitrotoluene.¹²⁶ Sulfones also

$$\operatorname{NO_2C_6H_4CH_2N(CH_3)_3NO_3}^{\textcircled{\odot}} \rightarrow \operatorname{NO_2C_6H_4CH_3}^{\textcircled{\odot}}$$

undergo an elimination reaction in the presence of base, although decomposition to give a paraffin has been observed as well.^{124, 127}

$$C_2H_5SO_2R + KOH \rightarrow CH_2 = CH_2 + RSO_2K + H_2O$$

EXPERIMENTAL CONSIDERATIONS

The Hofmann elimination reaction has usually been conducted by heating and concentrating an aqueous solution of the quaternary hydroxide until decomposition occurs. The base necessary for the reaction is often the quaternary hydroxide itself, and, depending on how much water is removed by distillation before the decomposition takes place, the reaction may proceed in aqueous solution or without a solvent. Variations of this procedure have been investigated and will be described below; none of them in general has proved more useful than concentrating aqueous solutions of the quaternary hydroxides under reduced pressure and raising the temperature until elimination occurs.

NATURE OF THE BASE

In the preparation of olefins from quaternary ammonium salts, hydroxide ion usually is the basic anion of choice. Instead of preparing the

¹²⁴ Ingold, Jessop, Kuriyan, and Mandour, J. Chem. Soc., 1933, 533.

¹²⁵ Fenton and Ingold, J. Chem. Soc., 1929, 2342.

¹²⁶ Ing and Robinson, J. Chem. Soc., 1926, 1655.

¹²⁷ Fenton and Ingold, J. Chem. Soc., 1928, 3127.

quaternary hydroxide, an alternative way of providing the base is to add excess potassium hydroxide to a solution of a quaternary chloride or iodide directly and pyrolyze this mixture.¹²⁸⁻¹³¹ This method has most often been applied to substances that undergo reaction easily, but no study has been made that would indicate whether better yields are to be expected from this method or from pyrolysis of the quaternary hydroxide itself.

The concentration of base can be controlled either by regulating the concentration of the quaternary hydroxide or by adding excess base to the solution. Since kinetic investigations¹³² have shown that the rate of reaction is proportional to the concentration of hydroxide ion, this would seem to be one way of controlling the course of the reaction. Unfortunately, the most common side reaction, substitution by hydroxide ion to form an alcohol, is usually affected in the same way so that the yield of olefin is not improved by this method. The results in Table IV, obtained

TABLE IV

 \sim

DECOMPOSITIO	N OF	n-C10H21	⊕ N(CF	I3)3	ŏн	AT	200°	AND
26	ATMO	SPHERES	FOR	10	Ho	URS		

⊖ Conc. of RN(CH ₃) ₃ OH	Decene, %	СН₃ОН, %	Ratio of Elimination to Displacement
2%	8	14	0.57:1
6%	23	42	0.55:1
16%	29	49	0.59:1
Syrup, distilled	62	30	2.1 : 1

by conducting the reaction for a fixed length of time but at different concentrations, illustrate both the increase in rate and the fixed ratio of elimination to substitution.¹⁰² However, in very concentrated solution this ratio is no longer constant.

When the effect of excess base was tested by adding four equivalents of potassium hydroxide to a syrup of the quaternary hydroxide, the results as shown in Table V indicated that excess base may favor the elimination reaction.¹⁰²

Other basic anions have been tested with quaternary salts, including alkoxides, phenoxides, and carbonates.^{11, 133} Again, two courses of reaction are possible, one leading to elimination by attack at the β hydrogen

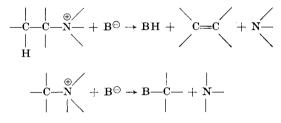
358

¹²⁸ Manske, J. Am. Chem. Soc., 72, 55 (1950).

¹²⁹ Woodward and Doering, J. Am. Chem. Soc., 67, 860 (1945).

¹³⁰ Willstätter, Ber., 29, 393 (1896).

¹³¹ Freund and Becker, Ber., 36, 1521 (1903).


¹³² Hughes and Ingold, J. Chem. Soc., 1933, 523.

¹³³ Ingold and Patel, J. Chem. Soc., 1933, 68.

TABLE V

Dr	Decomposition of $\operatorname{RN}^{\oplus}(\operatorname{CH}_3)_3^{\odot}\operatorname{OH}$					
Compound	Olefin, %	сн₃он, %	\mathbf{Ratio}			
$n-C_4H_9N(CH_3)_3OH$	77	12	6.4 : 1			
Same + 4KOH \oplus \ominus	81	12	6.7:1			
n-C ₁₀ H ₂₁ N(CH ₃) ₃ OH	62	30	2.1:1			
Same + 4KOH	79	13	6.1:1			

atom and the other leading to substitution at the α carbon atom. The relative importance of these paths is determined by the relative reactivity of the anion with a β hydrogen atom and an α carbon atom. Anions such

as phenoxide, acetate, carbonate, and halide preferentially attack carbon rather than hydrogen and give much less olefin than does hydroxide ion (Table VI).¹¹

TABLE VI

EFFECT OF THE ANION ON THE DECOMPOSITION OF n-C₃H₇N(CH₃)₃X⊖ XΘ Propylene, % CH₃X, % $\Theta H\Theta$ 81 19 CO,⊜ $\mathbf{26}$ C₅H₅O⊖ 15 65 ŢΘ 13 CI⊖ 10 CH₃CO₂⊖ Trace

The alkoxide ions cannot be compared with hydroxide ion in aqueous solution, but in two instances neither the methoxide nor the ethoxide derivative prepared in the corresponding alcohol led to higher yields of olefins than the hydroxide prepared in water (Table VII).¹³³

An important result of these studies of the effect of various anions has been the recognition that carbon dioxide absorbed from the atmosphere seriously reduces the yield of olefin.^{11, 102} The results of experiments in

TABLE VII

EFFECT OF ALKOXIDE	IONS ON THE DE	COMPOSITION OF	$\stackrel{\oplus}{\operatorname{RN}}(\operatorname{CH}_3)_3 \mathrm{X}^{\ominus}$
Compound	$\mathbf{X}=\mathbf{OH}^{\ominus}$	$X = OCH_3^{\ominus}$	$\mathbf{X}=\mathbf{OC_2H_5}^{\ominus}$
$C_2H_5\overset{\oplus}{\operatorname{N}(\operatorname{CH}_3)_3}_\oplus$	Ethylene, 94%	90%	88%
$i-C_4H_9\overset{\smile}{\mathrm{N}}(\mathrm{CH}_3)_3$	Isobutylene, 63%	57%	55%

which the quaternary hydroxide solution was concentrated under reduced pressure as compared with concentration on a steam bath in air emphasize this point (Table VIII).¹⁰²

TABLE VIII						
	Decomposition of $\operatorname{RN}^{\oplus}(\operatorname{CH}_3)_3\operatorname{OH}^{\ominus}$					
	Under Reduced Pressure In Air					
\mathbf{R}	Olefin, %	Alcohol, %	Olefin, %	Alcohol, %		
n-C4H9 n-C10H21	77	10	23	50		
$n - C_{10} H_{21}$	62	30	25	72		
N	82	Small	65	ca. 20		

Some of the low yields reported in the early literature may be accounted for by consideration of this factor. Strangely enough, in a few special cases, especially with strychnine, decomposition of the carbonate gives better yields than any other method, although in no case is the yield good.^{134, 135}

As stated previously, most Hofmann reactions have been conducted in aqueous solution or with the residue obtained when the water is distilled from these solutions. However, a few solvents have been employed to advantage in special instances, most of these being hydroxylic solvents such as glycerol, ethylene glycol, cyclohexanol, and amyl alcohol. Unfortunately, hydroxide ion can react with such solvents to form an alkoxide ion plus water and, while the position of equilibrium may be such that the alkoxide is not present in large amount at low temperature, when the water is removed by distillation this equilibrium will be displaced. Furthermore, the concentration of reactants will be lower in solution than in the syrupy quaternary ammonium hydroxide. Hence it is not clear which effect is responsible for the different results observed. A comparison of some decompositions of quaternary hydroxides alone and in

¹³⁴ Achmatowicz and Robinson, J. Chem. Soc., 1934, 581.

¹³⁵ Achmatowicz, Lewi, and Robinson, J. Chem. Soc., 1935, 1685.

glycerol solution indicates that in general this solvent lowers the yield of olefin (Table IX).^{74, 102}

TABLE IX

DECOMPOSITION OF QUATERNARY BASES IN GLYCEROL

	Free Hydroxide		Glycerol	Solution	
Quaternary Base	Olefin, $\frac{0}{70}$	Alcohol, %	Olefin, %	Alcohol, %	
$n-C_4H_9N(CH_3)_3OH^{\ominus}$	77	10	17	69	
$\stackrel{\oplus}{\operatorname{n-C_{10}H}}_{21}^{\oplus}\mathrm{N}(\mathrm{CH}_3)_3\mathrm{OH}^{\ominus}$	62	30	14	76	
⊕ CH ₃ CH ₃ OH [☉]	82	Small	32	49	

In other cases the use of potassium hydroxide in ethylene glycol¹³⁶ or sodium cyclohexoxide in cyclohexanol¹³⁷ is reported to give better yields than pyrolysis of the quaternary hydroxide. Amyl and isoamyl alcohol also have been used¹³⁸, ¹³⁹ but seem to offer little advantage.

Because of the effect of the ion-solvating power of the medium on bimolecular elimination and substitution reactions (ref. 41, p. 453), it would be expected that the ratio of olefin to alcohol would be increased by the use of non-aqueous solvents. This generalization might not be expected to extend to the very concentrated solutions employed in the usual conditions for the Hofmann elimination, and the results available do not constitute a fair test of this prediction. From what information is now at hand there seems to be little evidence to recommend the use of a solvent.

PYROLYSIS OF AMINE OXIDES

The oxides of tertiary amines decompose when heated to yield an olefin plus a derivative of hydroxylamine. Examples of this reaction are

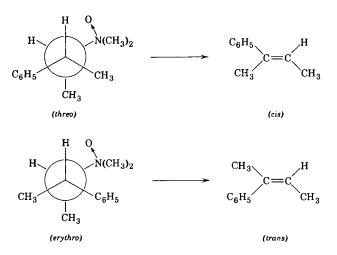
$$\begin{array}{ccc} \mathbf{R_2CHCR_2} & \rightarrow \mathbf{R_2C=:}\mathbf{CR_2} + (\mathbf{CH_3})_2\mathbf{NOH} \\ & & \\ & & \\ \mathbf{O} \leftarrow \mathbf{N}(\mathbf{CH_3})_2 \end{array}$$

reported in the early literature,^{140, 141} but the utility of the reaction as a means for synthesizing olefins was not emphasized until $1949.^{142}$ The

¹³⁶ Julian, Meyer, and Printy, J. Am. Chem. Soc., 70, 887 (1948).

¹³⁷ Mosettig and Meitzner, J. Am. Chem. Soc., 56, 2738 (1934).

¹³⁸ Cahn, J. Chem. Soc., 1930, 702.


¹³⁹ Ing, J. Chem. Soc., 1931, 2195.

¹⁴⁰ Wernick and Wolffenstein, Ber., 31, 1553 (1898).

¹⁴¹ Mamlock and Wolffenstein, Ber., 33, 159 (1900).

¹⁴² Cope, Foster, and Towle, J. Am. Chem. Soc., 71, 3929 (1949).

method is useful for preparing certain olefins and may also be used for the preparation of N,N-disubstituted derivatives of hydroxylamine.

Mechanism

There is good evidence that the pyrolysis of amine oxides involves *cis* elimination. The evidence has been obtained by the decomposition of *threo* and *erythro* derivatives of 2-amino-3-phenylbutane.¹⁴³ The *threo* isomer reacts to give predominantly the *cis* conjugated olefin, the ratio of *cis*- to *trans*-2-phenyl-2-butene being at least 400 to 1. With the *erythro* form the *trans* isomer is favored by a ratio of at least 20 to 1. The *threo* form, reacting through a transition state that involves less steric interaction than does the transition state for the *erythro* isomer, reacts more readily than the *erythro* form. There are several examples of pyrolysis of alicyclic amines oxides which show the *cis* nature of the elimination reaction. This evidence establishes an intramolecular mechanism involving a planar, five-membered cyclic transition state. The pyrolysis of amine oxides accordingly resembles the Chugaev reaction and the pyrolysis of esters.

$$\begin{array}{cccc} R_2C & \xrightarrow{CH_2} & CH_2 \\ \downarrow & \downarrow & \downarrow \\ H & & & N(CH_3)_2 \end{array} \longrightarrow R_2C = CH_2 + (CH_3)_2NOH \\ \end{array}$$

A few examples of a low-temperature decomposition of amine oxides have been described which may be base catalyzed. Salts of amine oxides

¹⁴³ Cram and McCarty, J. Am. Chem. Soc., 76, 5740 (1954).

derived from β -aminopropionic esters or nitriles undergo the reaction, which has been described as a reversal of the Michael addition, facilitated by the formal positive charge on nitrogen.¹⁴⁴

$$\begin{array}{c} R_2NCH_2CH_2CO_2C_2H_5 \xrightarrow{Base} R_2NOH + CH_2 \xrightarrow{} CHCO_2C_2H_5 \\ \downarrow \\ O \end{array}$$
(not isolated)

DIRECTION OF ELIMINATION

Acyclic Amines

With simple alkyl-substituted amine oxides the direction of elimination seems to be governed almost entirely by the number of hydrogen atoms at the various β positions. The marked preference for attack at a β methyl group in the Hofmann reaction finds no parallel in the amine oxide decomposition. Table X gives the ease of elimination of some alkyl groups relative to ethyl groups.³⁶

TABLE X

Alkyl Group	Not Corrected for Number of β Hydrogen Atoms	Corrected for Number of β Hydrogen Atoms
Ethyl	100	100
Isopropyl	264	132
t-Butyl	606	202
n-Propyl	60	90
n-Butyl	80	120
Isoamyl	76	114
n-Decyl	88	132
Isobutyl	44	133
Phenethyl	$7~ imes~10^{3}$	$1.0 imes 10^4$

RELATIVE EASE OF ELIMINATION OF ALKYL GROUP AS OLEFIN

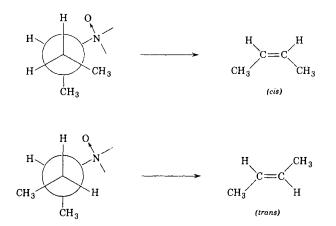
Significant variations from the general value of 100 ± 30 are shown by the *t*-butyl group and the phenethyl group in which the relief of steric interactions and acidity of the β hydrogen atom, respectively, are factors that favor their elimination as olefins as compared with the ethyl group. The data were obtained by analysis of the olefin mixtures obtained by pyrolysis of compounds such as methylethylisopropylamine oxide and

144 Rogers, J. Chem. Soc., 1955, 769.

can be used to predict the ratio of olefins which would be formed in such a reaction. They may be extended to other cases with some sacrifice of accuracy. For example, with the use of the values of 100 and 60 for the ethyl and *n*-propyl groups respectively, the ratio of isomers predicted from the decomposition of dimethyl-sec-butylamine oxide is 62.5% of butene-1 and 37.5% of butene-2. The actual amounts of isomers produced in this decomposition are 67.3% of butene-1 and 32.7% of cis- and trans-butene-2.³⁶

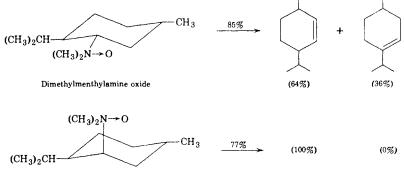
$$\begin{array}{c} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}\mathrm{CH}_{3} \xrightarrow{91\%} \mathrm{CH}_{3}\mathrm{CH} = \mathrm{CH}\mathrm{CH}_{3} + \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH} = \mathrm{CH}_{2} \\ \downarrow \\ \mathrm{N}(\mathrm{CH}_{3})_{2} \\ \downarrow \\ \mathrm{O} \end{array}$$

Use of the values for phenethyl and ethyl, and their application to the decomposition of 2-amino-3-phenylbutane, leads to the prediction that 97% of 2-phenyl-2-butene and 3% of 3-phenyl-1-butene will be formed, whereas the actual results are 92–93% and 7–8%, respectively.¹⁴³ For many purposes such predictions would be sufficiently accurate.


$$\begin{array}{c} C_6H_5CH--CHCH_3 \rightarrow C_6H_5C=-CHCH_3 + C_6H_5CHCH=-CH_2 \\ | & | & | \\ CH_3 & N(CH_3)_2 & CH_3 & CH_3 \\ \downarrow & & \\ O \end{array}$$

Addition of unsymmetrical secondary amines (RR'NH) to α,β -unsaturated carbonyl compounds, followed by conversion of the product to an amine oxide and decomposition, provides a method for preparing unsymmetrical dialkylhydroxylamines (RR'NOH).¹⁴⁴

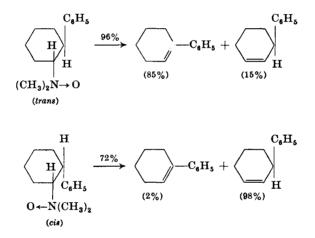
$$\begin{array}{cccc} R & R & \\ & & & \\ & & & \\ & & & \\ R' & O & & \\ R' & O & & \\ \end{array} \xrightarrow{\begin{subarray}{c} NCH_2CH_2CO_2_{6}H_5 \rightarrow \\ R' & & \\ & &$$


In general, with acyclic amines which could undergo elimination forming either a *cis* or a *trans* olefin, the more stable *trans* form is obtained. Thus N,N-dimethyl-3-pentylamine oxide gives 86% of 2-pentene which consists

of 29.2% of *cis*- and 70.8% of *trans*-2-pentene. Pyrolysis of N,Ndimethyl-2-butylamine oxide forms 91% of a mixture of 1-butene (67.3%) and 2-butene (33.7%). The 2-butene contains 35.8% of the *cis* isomer and 64.2% of the *trans* isomer.³⁶ Presumably the more stable *trans* olefins are formed because the steric factors which operate to influence the relative stabilities of the olefins also operate in the transition states leading to these olefins.

Alicyclic Amines

With alicyclic amines the pyrolysis has been shown to follow the pattern of *cis* elimination in the case of menthyl and neomenthyl compounds and with *cis*- and *trans*-2-phenylcyclohexylamine.^{16, 145} Neomenthylamine

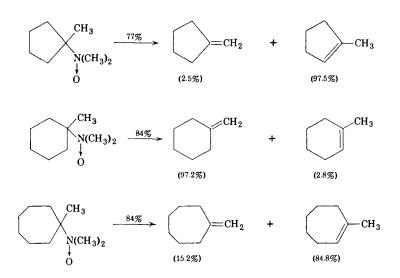


Dimethylneomenthylamine oxide

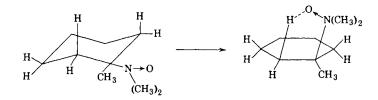
¹⁴⁵ Cope and Bumgardner, J. Am. Chem. Soc., 79, 960 (1957).

has only the *cis* hydrogen atom at the 2 position available and only 2menthene is formed, whereas menthylamine has *cis* hydrogen atoms at the 2 and 4 positions and both menthenes are isolated. The preference for 2-menthene in the latter instance has been explained in terms of the eclipsing of the isopropyl group in the 4 position with the hydrogen atom in the 3 position that is required in the cyclic transition state if elimination takes this path.¹⁶

Pyrolysis of *trans*-2-phenylcyclohexyldimethylamine oxide gives 85% of 1-phenylcyclohexene and 15% of 3-phenylcyclohexene, showing less preference for elimination toward phenyl than is observed in an acyclic case. With the *cis* amine oxide, an olefin mixture containing 98% of 3-phenylcyclohexene and 2% of 1-phenylcyclohexene was obtained.¹⁴⁵ The small amount of 1-phenylcyclohexene may have been formed from a small amount of *trans* amine in the starting material; it is not formed by isomerization since 3-phenylcyclohexene does not isomerize under the

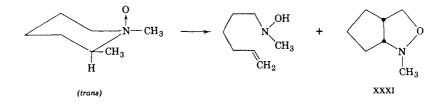


reaction conditions. Cycloheptyl- and cycloöctyl-dimethylamine oxide yield *cis*-cycloheptene and *cis*-cyeloöctene,⁹ respectively, and *cis*-cycloöcten-3-yldimethylamine oxide yields *cis*-*cis*-1,3-cycloöctadiene.⁶⁰ However, cyclononyl- and cyclodecyl-dimethylamine oxides form the *trans* olefins almost exclusively.⁵⁶ The thermal decompositions of cyclodecyl acetate and xanthate also form principally *trans*-cyclodecene.¹⁴⁶


When an exocyclic branch in which the double bond may be formed is present, product stability parallels the direction of elimination, except in the cyclohexyl compounds. The examples below show the results with such amines.³⁴ Preference for the formation of the endocyclic double

¹⁴⁶ Blomquist and Goldstein, J. Am. Chem. Soc., 77, 1001 (1955).

bond in the cyclopentyl and cycloheptyl systems may simply be a reflection in the transition state of the greater stability of endocyclic olefins.


With the cyclohexyl derivative, however, elimination to form an endocyclic olefin through a planar five-membered transition state would require the ring to bend toward a more nearly planar, cyclohexene-like structure. This would introduce eclipsed interactions between the groups at the

1, 2, 3, and 6 positions which are not present in cyclohexene. Elimination toward the methyl group will not change the geometry of the cyclohexane ring if the double bond character of the transition state is not great. This effect may be unimportant with the cyclopentyl compound because the ring is already nearly planar and there would be little additional interaction introduced by endocyclic elimination. Because the geometries of the cycloheptyl and cycloheptenyl systems are less well known than those of the smaller rings, these arguments cannot be extended with certainty to the seven-membered ring at present.

Heterocyclic Amines

Pyrolysis of N-methylpiperidine oxide does not result in ring opening. However, the seven- and eight-membered cyclic amines do undergo ring opening in 53% and 79% yield, respectively.¹⁴⁷ Presumably, with azacycloalkanes containing larger rings, the ring system would also be sufficiently flexible to permit the formation of the cyclic transition state and elimination with ring opening should occur. N-Methyl- α -pipecoline oxide, which contains a six-membered ring, reacts to give a mixture of the unsaturated hydroxylamine and the saturated bicyclic compound XXXI.¹⁴⁷ Only the *trans* isomer forms these products; the *cis* isomer does not undergo the elimination reaction. N-Methyl- and N-ethyltetrahydroquinoline oxide are reported to yield tetrahydroquinoline plus formaldehyde and acetaldehyde, respectively.¹⁴⁸

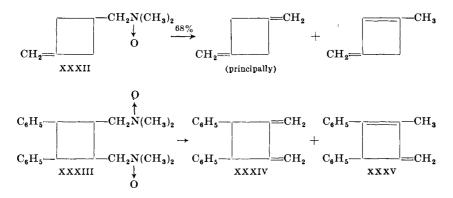
Side Reactions

One of the most attractive features of the synthesis of olefins by pyrolysis of amine oxides is the stability of the product under the reaction conditions. Migration of the double bond into conjugation with other unsaturated systems in the molecule is not observed in the first two examples given below.¹⁴⁵

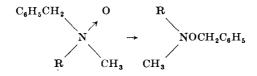
$$CH_{2} = CHCH_{2}CH_{2}CH_{2}CH_{2}N(CH_{3})_{2} \xrightarrow{61\%} CH_{2} = CHCH_{2}CH = CH_{2}$$

$$\downarrow O$$

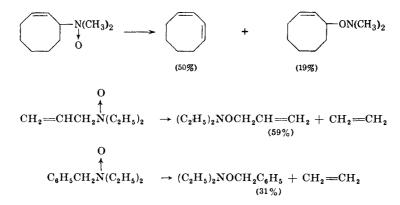
$$C_{6}H_{5}CH_{2}CH_{2}CH_{2}N(CH_{3})_{2} \xrightarrow{91\%} C_{6}H_{5}CH_{2}CH = CH_{2}$$


$$\downarrow O$$

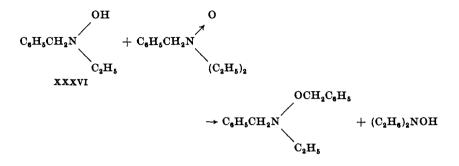
However, the dimethylenecyclobutane formed by pyrolysis of the amine oxide XXXII contains a small amount of the conjugated isomer,¹²¹ and in a similar series of cyclobutane derivatives (XXXIII) having phenyl


¹⁴⁷ Cope and Le Bel. J. Am. Chem. Soc., 82 (in press, 1960).

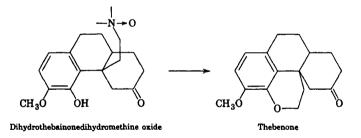
¹⁴⁸ Dodonov, J. Gen. Chem. U.S.S.R., **14**, 960 (1944) [C.A., **39**, 4612 (1945)].


substituents the olefin mixture produced contains equal parts of the isomers XXXIV and XXXV.¹⁴⁹

If an allyl or a benzyl group is attached to the nitrogen atom of an amine oxide, these groups may rearrange from nitrogen to oxygen with the formation of O-substituted hydroxylamines. Apparently this



process can compete favorably with elimination since allyldiethylamine oxide and benzyldiethylamine oxide as well as cycloöcten-3-yldimethylamine oxide give considerable amounts of the rearranged products.^{142, 60}

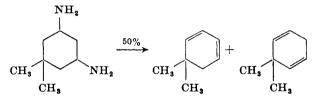


149 Blomquist and Meinwald, Abstracts, A.C.S. Meeting, April 1958, 77 N.

In the case of benzyldiethylamine oxide the normal product XXXVI expected from elimination of ethylene was isolated in 34% yield as well as products which may arise by alkylation of XXXVI by the amine oxide.¹⁴² The conversion of dihydrothebainonedihydromethine oxide to

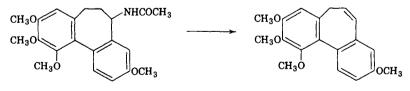
thebenone¹⁵⁰ illustrates the formation of a heterocycle by this alkylation process. The formal similarity between amine oxides and quaternary salts has been suggested earlier, and the use of the latter as alkylating agents is well known.

Commonly a small amount of tertiary amine is recovered from the pyrolysis of the amine oxide.^{42, 151}


An unexplained side reaction is involved in the pyrolysis of *n*-propylisoamylmethylamine oxide where the pentene fraction (55.9%) was found to contain 49.1% of 3-methyl-1-butene and two unexpected products, 11.2% of 2-methyl-2-butene and 1% of 2-methyl-1-butene.³⁶ Isoamylene was not isomerized under the reaction conditions, and the starting amine must have been pure since it reacted by the Hofmann elimination to give pure 3-methyl-1-butene.

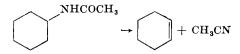
¹⁶⁰ Bentley, Ball, and Ringe, J. Chem. Soc., 1956, 1963.

¹⁵¹ Cope and Ciganek, Org. Syntheses, 39, 40 (1959).


DECOMPOSITION OF AMINE PHOSPHATES

A third method of converting an amine to an olefin involves the distillation of the amine from crystalline phosphoric acid. This method was discovered and developed to some extent by Harries,¹⁵², ¹⁵³ but apparently it has found little use in other laboratories. Most of the amines Harries investigated were derivatives of cyclohexylamine related to various terpenes,^{154, 155} and in several instances a diamine was used to prepare a diene in one step. The yields rarely exceeded 50%, and since the method apparently does not lend itself to the degradation of heterocyclic amines (which has been the main use of the Hofmann elimination reaction) it has received little attention. Formally, this method is similar to the dehydration of alcohols with phosphoric acid, but it is not possible at present to determine how closely this analogy applies. Primary amines may be used directly; apparently secondary and tertiary amines have not been investigated.

DECOMPOSITION OF ACYL DERIVATIVES OF AMINES


A few olefins have been obtained by heating N-acyl amines with phosphorus pentoxide in boiling xylene. This method apparently was discovered in the study of colchicine, and it is the method of choice in converting N-acetylcolchinol methyl ether to deaminocolchinol methyl ether.¹⁵⁶ Since the reaction seemed novel, it was investigated by Cook and applied to some simpler amines such as diphenylethylamine and

N-Acetylcolchinol methyl ether

- 182 Harries, Ber., 34, 300 (1901).
- 183 Harries and Johnson, Ber., 38, 1832 (1905).
- ¹⁵⁴ Harries and Antoni, Ann., **328**, 88 (1903).
- ¹⁵⁵ Harries, Ann., 328, 322 (1903).
- ¹⁵⁴ Cook, Graham, Cotten, Lapsley, and Lawrence, J. Chem. Soc., 1944, 322.

cyclohexylamine.¹⁵⁷ In the latter case acetonitrile was isolated, and this is presumably the fate of the acyl group in other instances as well. The reaction is an extension to the N-alkyl amides of the dehydration of amides to nitriles. In this respect it is of interest that the reverse reaction,

addition of an olefin to a nitrile, has been observed with a number of reactive olefins in the presence of sulfuric acid.¹⁵⁸ The N-alkyl amides obtained in this way were observed to undergo decomposition to an olefin on acid hydrolysis if the N-alkyl group was tertiary.

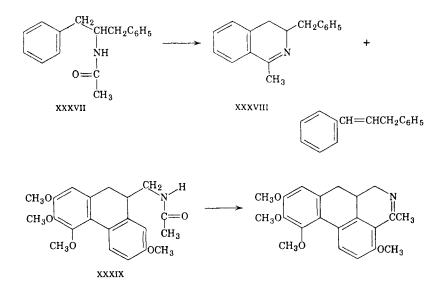
$$(\mathrm{CH}_3)_3\mathrm{CNHCOCH}_3 \xrightarrow{\mathrm{H}_2\mathrm{O}, \mathrm{H}^{\oplus}} (\mathrm{CH}_3)_2\mathrm{C} = \mathrm{CH}_2 + \mathrm{CH}_3\mathrm{CO}_2\mathrm{H} + \mathrm{NH}_3$$

From the results at hand it would seem that this type of decomposition depends strongly on the degree of branching of the N-alkyl group. N-Ethyl- and N-*n*-propyl-acetamide are reported to yield no olefin; Ncyclohexylacetamide gives cyclohexene when treated with phosphorus pentoxide in boiling xylene;¹⁵⁷ and N-tertiary alkyl acetamides form olefins when boiled with 15% hydrochloric acid.¹⁵⁸

The use of phosphorus pentoxide in xylene for the degradation of amides involves reaction conditions identical with those often employed in the Bischler-Napieralski synthesis of dihydroisoquinolines.¹⁵⁹ With a properly constituted amine this type of reaction may be observed. For example, the acetyl derivative of 1,3-diphenyl-2-aminopropane (XXXVII) gives some of the dihydroisoquinoline (XXXVIII) as well as 1,3-diphenylpropene;¹⁵⁷ and the colchinol analog (XXXIX) undergoes ring closure exclusively.¹⁵⁷ (See formulas on p. 373.)

With the exception of the study by Cook and one application to a derivative of colchicine,¹⁶⁰ the preparation of olefins from N-acyl amines has not been studied in detail, and it is not possible to make any general statement concerning the scope or mechanism of the reaction.

The acetyl derivatives of amines have been pyrolyzed to olefins in the absence of phosphorus pentoxide by using temperatures of $500-600^{\circ}$.¹⁶¹ Olefins were obtained in 14-67% conversion by one passage through the heated column. Better yields were obtained using an N-phenyl-N-alkyl derivative of acetamide than with compounds in which the aromatic


¹⁵⁷ Cook, Dickson, Elliş, and Loudon, J. Chem. Soc., 1949, 1074.

¹⁵⁸ Ritter and Minieri, J. Am. Chem. Soc., 70, 4045 (1948).

¹⁵⁹ Whaley and Govindachari, Org. Reactions, 6, 75 (1951).

¹⁶⁰ Tarbell, Frank, and Fanta, J. Am. Chem. Soc., 68, 502 (1946).

¹⁶¹ Bailey and Bird, J. Org. Chem., 23, 996 (1958).

group was replaced by a methyl group or a hydrogen atom. In the cases reported, the direction of elimination was similar to that observed in the pyrolysis of esters.

REACTION OF QUATERNARY SALTS WITH ORGANOMETALLIC COMPOUNDS OR ALKALI METAL AMIDES

Olefins can be prepared from quaternary salts by treatment with phenyllithium in ether, potassium amide in liquid ammonia, or other strong bases.^{25, 26, 162-164} These reactions involve an ylide intermediate and may yield a product which differs from that obtained by the usual Hofmann procedure. For example, the ratio of *trans*- to *cis*-cycloöctene is 5.7 : I when the mixture is prepared from cycloöctyltrimethylammonium bromide and potassium amide¹⁶³ but 1.5 : I when it is prepared from the quaternary hydroxide.⁹ In a variant of this method the ylide is generated by treatment of a halomethyl quaternary derivative with phenyllithium. This process presumably involves halogen-metal interchange.¹⁶²

$$\stackrel{\oplus}{\operatorname{RN}}_{\operatorname{CH}_3)_2\operatorname{CH}_2X} + \operatorname{C}_6\operatorname{H}_5\operatorname{Li} \to \stackrel{\oplus}{\operatorname{RN}}_{\operatorname{CH}_3)_2\operatorname{CH}_2\operatorname{Li} + \operatorname{C}_6\operatorname{H}_5X$$

Cyclohexylmethyltrimethylammonium bromide containing deuterium at the β -position gave methylenecyclohexane free of deuterium, and

¹⁶² Wittig and Polster, Ann., 599, 13 (1956).

¹⁶³ Wittig and Polster, Ann., **612**, 102 (1958).

¹⁶⁴ Rabiant and Wittig, Bull. soc. chim. France, 1957, 798.

trimethylamine which contained all the deuterium originally present,¹⁶⁵ thus confirming the postulated mechanism.

$$\underbrace{ \begin{array}{c} \begin{array}{c} D \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} CH_2 \\ H_3 \\$$

However, the reaction of ethyltrimethylammonium bromide labeled with tritium at any of the positions in the ethyl group or in the methyl group showed extensive proton exchange among these positions when treated with phenyllithium.²⁵

The composition of the products obtained from a quaternary salt may depend on whether potassium amide in liquid ammonia or phenyllithium in ether is used.¹⁶³

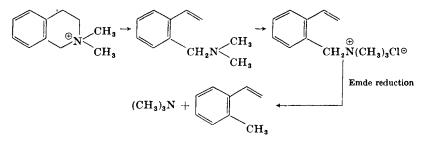
Two cases are reported in which treatment of a quaternary halide with sodium amide in liquid ammonia forms cyclopropyl derivatives.^{165a} In these instances the γ -hydrogen atom is benzylic. In other instances the

$$C_{6}H_{5}CH_{2}CH_{2}CH_{2}N(CH_{3})_{3}Br \rightarrow H_{5}C_{6}CH \Big|_{CH_{2}}$$

reaction of sodium amide in ammonia with quaternary bromides produced olefins.

COMPARISON OF METHODS

Of the four ways discussed for bringing about the conversion of an amine to an olefin it is obvious that the Hofmann exhaustive methylation procedure has been most extensively studied. As long as there is a β hydrogen atom in the quaternary base, the Hofmann method will almost always give some olefin, the important competing reaction being displacement to form an alcohol. The amine oxide method offers some advantages in experimental ease and usually does not cause isomerization of the olefin. However, the fact that it does not open the common nitrogencontaining rings is a limitation on its use as a tool in alkaloid investigations. In some instances the amine oxide method may lead to a geometrical isomer of the olefin different from that obtained from the quaternary hydroxide.


The pyrolyses of amines or their N-acyl derivatives in the presence of phosphoric acid have received so little attention that it is difficult to assess

¹⁶⁵ A. C. Cope and N. A. LeBel, unpublished results.

¹⁶⁶⁴ Bumgardner, Chem. & Ind. (London), 1958, 1555.

their utility. It is questionable whether heterocyclic amines would form olefins by these methods. As a method of preparing an olefin from a given primary amine, these reactions avoid the alkylation and subsequent procedures common to the Hofmann and amine oxide pyrolyses which may compensate for the somewhat lower yields obtained. (Olefin isomerization would be expected under the acidic reaction conditions employed.)

If the amine elimination reactions are considered as methods of degradation rather than syntheses, then the Hofmann reaction is the most useful, since it is most generally applicable. In this field there are two other methods which may accomplish the same sort of cleavage. The von Braun cyanogen bromide reaction¹⁶⁶ will open heterocyclic rings, but the relative reactivities of various groups differ from those observed in the exhaustive methylation procedure since attack at the α carbon atom rather than at the β hydrogen atom is involved. Methyl groups, for example, are readily removed and other substituents with no β hydrogen atoms may be cleaved. Reductive cleavage and especially the Emde reduction of quaternary salts to an amine and a hydrocarbon is the other general method.^{167, 168} However, this process does not usually succeed unless the group to be removed is of the benzylic or allylic type. Lithium aluminum hydride may be used to reduce a quaternary salt to a tertiary amine and, with this reagent, alkyl groups may be removed from the nitrogen atom.^{145, 167, 169, 170} In alkaloid degradations the Emde reduction may be used to remove the amino group from compounds of the tetrahydroisoquinoline type after a Hofmann step. Of course, this final cleavage cannot be accomplished by the Hofmann method. As the three methods

of degradation are complementary rather than competitive in most instances, it is meaningless to discuss their relative utility.

- 166 Hageman, Org. Reactions, 7, 198 (1953).
- ¹⁶⁷ Kenner and Murray, J. Chem. Soc., 1950, 406.
- ¹⁶⁸ Emde, Helv. Chim. Acta, 15, 1330 (1932).
- ¹⁶⁹ Gaylord, Reduction with Complex Metal Hydrides, Interscience Publishers, New York, 1956, pp. 781-789.
 - ¹⁷⁰ Cope, Ciganek, Fleckenstein, and Meisinger, J. Am. Chem. Soc., 82 (in press, 1960).

EXPERIMENTAL CONDITIONS AND PROCEDURES

The fully alkylated amine required in the Hofmann and amine oxide procedures can be prepared in several ways. It is not our purpose here to include a comprehensive survey of methods of alkylation,* but to indicate the more commonly used techniques. In the application of the Hofmann reaction to alkaloids, methyl iodide has most often been used to prepare the tertiary amine and then the quaternary iodide in one reaction. For synthetic purposes, especially where a primary amine is to be degraded, there may be considerable advantage in using the formaldehyde-formic acid procedure¹⁷¹ to prepare the tertiary amine. Other reagents that have been used to alkylate amines to obtain quaternary compounds for use in the Hofmann elimination reaction include dimethyl sulfate,⁹¹ methyl *p*-toluenesulfonate,¹⁷² ethyl chloroacetate,¹⁷³ and trimethyloxonium fluoborate¹⁷⁴.

To prepare the quaternary salt from a tertiary amine, the alkyl halides or sulfates are useful. Most commonly, methyl iodide has been used. Although there is no difficulty in preparing quaternary iodides with methyl

$R_3N + R'X \rightarrow R_3R'NX$

iodide, it might be pointed out that the general reaction (cf. refs. 37, 175, 176) does not always proceed easily. Ethyl acetate and methyl ethyl ketone have proved to be useful solvents in cases where equilibration of the quaternary halide with the various possible tertiary amines and alkyl halides is to be avoided. When dimethyl sulfate is used, only one methyl group is transferred to nitrogen per mole of sulfate, so that the salt formed

is a quaternary methosulfate, $R_4 N(SO_4 CH_3)$.

The quaternary hydroxide may be prepared from the iodide by using a base such as silver oxide that forms an insoluble iodide. This method suffers from the expense of the reagent and in some instances from the oxidizing power of silver salts in basic solution, but it is still most generally used. Thallous hydroxide, may be used to obviate the oxidation effect, if not the cost of the silver salt.^{75, 81, 177} If the quaternary methosulfate is used, it may be hydrolyzed to the sulfate and then converted to the hydroxide with barium hydroxide.⁹¹ Perhaps the most promising method

^{*} For such a survey see J. Goerdeler in Houben-Weyl, Methoden der organischen Chemie 4th ed., Vol. XI, part 2, Georg Thieme, Stuttgart, 1958.

¹⁷¹ Moore, Organic Reactions, 5, 301 (1947).

¹⁷² Reynolds and Kenyon, J. Am. Chem. Soc., 72, 1597 (1950).

¹⁷³ Read and Hendry, Ber., 71, 2544 (1938).

¹⁷⁴ Meerwein, Battenberg, Told, Pfeil, and Willfang, J. prakt. Chem., 154, 83 (1940).

¹⁷⁶ Hey and Ingold, J. Chem. Soc., 1933, 66.

¹⁷⁶ Hughes, J. Chem. Soc., 1933, 75.

¹⁷⁷ von Bruchhausen, Oberembt, and Feldhaus, Ann., 507, 144 (1933).

of effecting the exchange of hydroxide ion for halide ion with a sensitive compound is the use of a basic ion exchange resin.^{178, 36} The solutions obtained in this way are more dilute than those formed by other methods, and the apparatus takes longer to assemble, but this procedure seems to avoid most of the objectionable features of the precipitation methods.

Once the quaternary hydroxide has been prepared, the clear aqueous solution is decomposed directly. Depending on the ease with which the elimination reaction occurs, this may be accomplished by warming on a steam bath or by distillation at higher temperatures. The most recent practice seems to be to remove most of the water under reduced pressure with gentle heating. If decomposition does not occur during this process, the residual syrup or solid is heated in an oil bath under reduced pressure until it does decompose. This should rarely require a temperature as high as 200°. With some difficult decompositions very low pressures have been used to advantage,^{178–180} but in general pressures readily attained with an oil pump or water aspirator have proved satisfactory. The importance of excluding carbon dioxide has been pointed out, and the early practice of concentrating the basic solution by allowing it to evaporate in an open vessel should not be employed.

In many instances the quaternary salt has not been converted to the hydroxide, but instead has been treated directly with excess base and then pyrolyzed. Usually, 10-20% aqueous sodium or potassium hydroxide has been used and the solution heated on a steam bath until decomposition seems to be complete. Not all compounds will decompose under such mild conditions, but, from a consideration of the compounds with which this method is useful, it appears that when more drastic conditions have been needed the previously described technique of preparing the quaternary hydroxide has been employed. However, decompositions of quaternary iodides by direct treatment with excess base have been carried out at temperatures up to 250°,7 and the method may be quite generally applicable. With amines of high molecular weight the quaternary iodide may have a very low solubility, and it may be useful to prepare the quaternary chloride instead in order to obtain its solution in the basic reaction medium. This can be accomplished by digesting the iodide with freshly precipitated silver chloride.¹⁸¹⁻¹⁸³

Isolation of Products. Because of the great differences in physical properties of the olefins formed in the Hofmann degradation it is not

¹⁷⁸ Weinstock and Boekelheide, J. Am. Chem. Soc., 75, 2546 (1953).

¹⁷⁹ Small and Lutz, J. Am. Chem. Soc., 56, 1738 (1934).

¹⁸⁰ Späth and Tharrer, Ber., 66, 904 (1933).

¹⁸¹ Gadamer and Sawai, Arch. pharm., 264, 401 (1926).

¹⁸² von Bruchhausen and Stippler, Arch. Pharm., 265, 152 (1927).

¹⁸³ Ghose, Krishna and Schlittler, Helv. Chim. Acta, 17, 919 (1934).

possible to describe a method of isolation that will apply to all cases. Decomposition of the water-soluble quaternary base gives rise to olefins and amines that are usually less soluble and which may distil, steam distil, or remain as a residue, depending on the conditions of the pyrolysis. Usually some of the quaternary base will undergo displacement to regenerate the original tertiary amine, which will then be present as a contaminant. If the olefinic product is non-basic an easy separation is possible, but if nitrogen is retained in this portion of the molecule, as is the case when the original amine was heterocyclic, the problem of separating these amines may result. Faced with this situation, many investigators have simply remethylated the crude product and repeated the degradation until a nitrogen-free product was obtained. If it is necessary to separate the mixture of tertiary amines, this usually is achieved by taking advantage of a difference in solubility of the amines themselves or of one of their salts.

It is frequently possible for the degradation to yield a mixture of isomeric unsaturated amines. Furthermore, allylic rearrangement of the double bond may give rise to still more isomers. If several steps are to be carried out consecutively, the mixtures obtained add to the experimental difficulties. In such a case, the problem is simplified by hydrogenating the product after each step until the amino group is removed. Of course, less information about the structure of the original amine is obtained by this procedure, but the number of steps required to remove the amino group may still be used to determine its situation in the original compound.

In the investigation of alkaloids it is of interest to know when trimethylamine has been evolved during a pyrolysis. Usually the odor or a test with moistened litmus paper is sufficient indication of the liberation of an amine. When the decomposition is carried out under reduced pressure, the amine may be trapped in a receiver cooled in solid carbon dioxide or liquid nitrogen or in a trap containing acid.⁸, ³⁷ Occasionally dimethylamine is eliminated in a decomposition and, if the amines are collected in a trap containing hydrochloric acid, the melting point of the hydrochloride serves to distinguish between trimethylamine and dimethylamine. When different tertiary amines may be formed, the mixture may be trapped and separated by the methods described in ref. 184 or analyzed by gas chromatography.⁵³

Preparation of Amine Oxides. Tertiary amines may be converted to the corresponding oxides by the use of 35% aqueous hydrogen peroxide in water or methanol solution at room temperature. Since the oxidation of the amine at room temperature may be a slow process, it is convenient to follow the conversion by spot tests with phenolphthalein; the amine

¹⁸⁴ Schryver and Lees, J. Chem. Soc., 79, 563 (1901).

oxides are not sufficiently basic to give a color test with this reagent.⁹ The excess peroxide must be completely destroyed before pyrolysis to avoid the danger of explosion during concentration; this destruction is accomplished by the addition of platinum black⁹ or of catalase.¹²¹ The decomposition of the excess peroxide can be followed by periodic tests with lead sulfide paper, which is whitened immediately by hydrogen peroxide in low concentrations but not by solutions of amine oxides.⁹ Amines such as tri-*n*-propylamine and those with larger alkyl groups are converted to the oxides with hydrogen peroxide very slowly, and stronger reagents such as 40% peroxyacetic acid¹⁸⁵ or monoperoxyphthalic acid¹⁴⁴ are used for their oxidation.

The solution of amine oxide is concentrated under reduced pressure to a syrup which is then pyrolyzed by heating in an oil bath. The isolation procedure is essentially the same as would be used after the Hofmann decomposition. In a few cases, in which the amino group is attached to a tertiary carbon atom or the β carbon atom is highly branched, the elimination may occur spontaneously during oxidation of the amine.¹⁸⁶

Phosphoric Acid Deamination. The examples of this reaction which have been found (see Table XII, p. 391) are almost entirely those reported by Harries. The experimental procedures were not described in detail, and the reaction is largely unexplored. In many of the cases investigated by Harries a dihydrobenzene derivative was isolated and, perhaps for this reason, the decompositions were carried out in a carbon dioxide atmosphere.

In cases in which the N-substituted acetamide was heated with phosphorus pentoxide it was necessary first to prepare the acyl derivative of the amine. The usual methods of acylating amines with acid chlorides, anhydrides, etc., will not be reviewed here.

It is also possible to prepare the desired amides by treating an alcohol with acetonitrile, benzonitrile, or other nitriles under acidic conditions.¹⁵⁸ However, if the starting material to be converted to an olefin is an alcohol, probably one of the usual dehydration procedures would be more suitable.

To bring about decomposition, the amide is heated with an excess of phosphorus pentoxide in boiling xylene. The number of examples of the procedure is so small that variations in this technique are untested.

Cycloheptyltrimethylammonium Iodide. Alkylation with Methyl Iodide.¹⁸⁷ A solution of 66 g. of cycloheptylamine hydrochloride in 400 ml. of methanol is prepared in a large round-bottomed flask fitted with an efficient reflux condenser and two dropping funnels. The solution

¹⁸⁵ Cope and Lee, J. Am. Chem. Soc., 79, 964 (1957).

¹⁸⁸ A. C. Cope, F. M. Acton, and R. A. Pike, unpublished work.

¹⁸⁷ Willstätter, Ann., 317, 204 (1901).

is cooled in ice water until the theoretical quantities of reactants have been added in a manner to be described, and then for one additional hour. One hundred grams of a solution of potassium hydroxide (25% by weight) in methanol is added through one funnel and 126 g. of a 50% solution of methyl iodide in methanol through the other. When the reaction mixture becomes neutral or acid to litmus, the same quantities of base and methyl iodide are added. This procedure is repeated until 300 g. of potassium hydroxide solution and 378 g. of methyl iodide solution have been added. After the mixture has warmed to room temperature, an additional 100 g. of methyl iodide is added and 140–150 g. of potassium hydroxide solution is added slowly in small portions until the reaction mixture is neutral.

The methanol is removed by distillation from a steam bath, and the methiodide is precipitated by the addition of concentrated sodium hydroxide solution. The product is collected by filtration and washed with a mixture of water, methanol, and acetone. The dried product weighs 119 g. (95%). It may be purified by extraction with chloroform or acetone in a Soxhlet apparatus, or it may be recrystallized from acetone (a large quantity of solvent is required because of the low solubility of the iodide in boiling acetone).

n-Propyltrimethylammonium Iodide.³⁷ Alkylation of Trimethylamine. Thirty milliliters of a 25% solution of trimethylamine in absolute methanol is added to 17.2 g. of *n*-propyl iodide in a glass-stoppered 125-ml. Erlenmeyer flask. The mixture is cooled in ice for one hour and allowed to stand at room temperature overnight. The solution is then warmed on a steam bath until the trimethylamine is driven off (odor); then 65 ml. of ethyl acetate is added, and the mixture is heated to boiling. On cooling, large needles separate and are collected by filtration, washed with cold ethyl acetate, and dried. The yield of *n*-propyltrimethylammonium iodide melting at 192.0–192.5° is 22 g. (96%).

Di-*n*-butyldiisoamylammonium Iodide.³⁷ Alkylation of a Hindered Amine. A solution of 19.9 g. (0.1 mole) of isoamyldi-*n*-butylamine, 19.8 g. (0.1 mole) of isoamyl iodide, and 25 ml. of methyl ethyl ketone is heated under slow reflux for eighteen hours. The white crystals that separate when the solution is cooled are collected, washed with pure solvent, and dried. The yield of crude material melting at 117.0–119.5° is 25 g. Addition of 50 ml. of dry ether to the filtrate precipitates an additional 3 g. of product. The fractions are combined and recrystallized from ethyl acetate, yielding 25 g. (63%) of material melting at 120.0–120.5°.

Preparation of Silver Oxide.¹⁸⁸ A solution of one part by weight of silver nitrate in 10 parts of water is heated to 85° on a steam bath and

¹⁸⁸ Helferich and Klein, Ann., 450, 219 (1926).

treated with an equally warm solution of 0.23 part by weight of pure sodium hydroxide in 10 parts of water. The precipitated oxide is washed by decantation with 5 portions of hot water. This freshly precipitated oxide may be used as such. For pure, dry silver oxide, the precipitate is suspended in 5 parts of absolute ethanol, collected on a hardened filter paper, and washed several times with ethanol. The product is dried in air and then in a desiccator over phosphorus pentoxide.

Di-n-butyldiisoamylammonium Hydroxide.³⁷ Use of Silver Oxide. A solution of 6 g. (0.015 mole) of di-n-butyldiisoamylammonium iodide in 40 ml. of water and 5 ml. of methanol is shaken for one hour with thoroughly washed silver oxide prepared as described above from 5.1 g. (0.03 mole) of silver nitrate. The mixture is filtered as rapidly as possible with suction, and the filtrate is standardized acidimetrically.

Decomposition of Di-n-Butyldiisoamylammonium Hydroxide.³⁷ A 100-ml. pear-shaped flask, fitted with a capillary nitrogen inlet tube, containing 52 ml. (0.0111 mole) of the quaternary hydroxide solution prepared as described above is connected by large-diameter tubing to a condenser set for distillation. The condenser leads to a train of two 125-ml. gas-washing bottles containing 20 ml. of 3N hydrochloric acid, a drying tube, a trap cooled in liquid nitrogen, and finally to a mercury bubbler. The system is swept with nitrogen for thirty minutes, and then the flask is immersed in an oil bath at 85° and the temperature raised to 175° . At the latter temperature most of the water will have distilled into the first wash bottle. When the temperature is raised to 200° , vigorous decomposition sets in as evidenced by frothing in the flask, the appearance of oil in the condenser, and a rapid increase in the flow of gas through the wash bottles. Decomposition is complete in twenty minutes. The system is swept with nitrogen and the trap is closed and weighed. The olefin weighs 0.631 g. (94%) and consists of 67% butylene and 33%isoamylene as shown by mass spectral analysis.

1-Hexene. Methylation with Dimethyl Sulfate and Decomposition of the Sulfate.⁹¹ One mole of *n*-hexylamine is suspended in 9 moles of a 25% solution of sodium hydroxide in water and shaken for a short time with 4 moles of dimethyl sulfate, which is added in small portions with cooling. The quaternary salt appears as a thick oil floating on the solution and is separated in a separatory funnel. The oil may be crystallized by solution in chloroform and precipitation with ether; however, the crude product may be used directly for decomposition.

The oily quaternary salt is dissolved in 1.5 moles of 20% sulfuric acid solution and heated for one and one-half to two hours under reflux. The solution is cooled and treated with a slight excess of barium hydroxide solution, and the precipitate of barium sulfate is removed by filtration. The filtrate is concentrated under reduced pressure at 50° , 4 moles of a 50% solution of potassium hydroxide is added, and the solution is distilled. The distillate is placed in a separatory funnel and the aqueous layer removed. The oily mixture of olefin and amine is washed with dilute sulfuric acid, and the olefin is collected by distillation after being washed and dried. The entire fraction (60%) boils at 66° and is pure 1-hexene. The amine recovered from the acid washing amounts to 20% of the starting material.

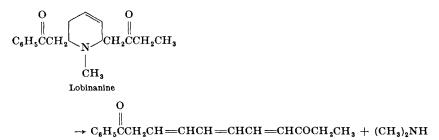
In general, 1 mole of dimethyl sulfate and 2 moles of base per mole of dimethyl sulfate are required for each methyl group to be introduced. In addition, an excess of dimethyl sulfate is usually employed; the procedure above uses a one molar excess of alkylating agent and a one molar excess of base over that required by the 2:1 ratio.

des-N-Methylaphylline.¹⁸⁹ Decomposition of a Quaternary Hydroxide under Reduced Pressure. Ten grams of aphylline methiodide is dissolved in water and treated with the freshly precipitated silver oxide prepared from 5 g. of silver nitrate. The mixture is allowed to stand for twenty-four hours, and the precipitate is removed by filtration and washed with hot water. The combined filtrates are concentrated on a water bath at 6–15 mm. The "des" base separates from solution as white needles during this process. The mixture is heated on a water bath for one hour to complete the Hofmann elimination reaction. The material in the flask is taken up in ether, dried over potassium carbonate, and the ether is removed by distillation, leaving 5.5 g. (82%) of an oil that solidifies on cooling. The "des" base is purified by recrystallization from petroleum ether and is obtained as colorless needles, m.p. 113–115°.

Dihydro-des-N-dimethylcytisine.¹⁹⁰ Decomposition Followed by Hydrogenation. Seventeen grams of methylcytisine methiodide is dissolved in water and digested with excess silver oxide. The precipitate is collected by filtration, washed with hot water, and the combined filtrate and washings are concentrated under reduced pressure. The solution of quaternary base is transferred to a hydrogenation flask, palladium on charcoal catalyst is added, and the mixture is further concentrated under reduced pressure to the consistency of a syrup. The flask is then immersed in water at $80-90^{\circ}$ for ten minutes to complete the decomposition, and the reaction mixture is diluted with cold water and hydrogenated at once.

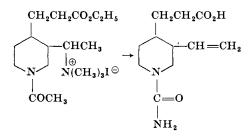
When uptake of hydrogen has ceased (500 ml.), the catalyst is removed by filtration, washed well, and the solution is extracted with four portions of chloroform. The aqueous portion is concentrated, heated, and hydrogenated once again (uptake 150 ml. of hydrogen) in the manner described.

¹⁸⁹ Orechoff and Menshikoff, Ber., 65, 234 (1932).


¹⁹⁰ Späth and Galinovsky, Ber., 65, 1526 (1932).

The catalyst is again removed, and the solution is extracted with chloroform. The combined extracts are distilled, finally at 1μ pressure. Dihydro-des-N-dimethylcytisine (5.5 g.) collects as a viscous oil at an air bath temperature of 150–160° at 1μ pressure. From the aqueous portion of the extracts 5.1 g. of undecomposed starting material is recovered so that the yield of product (based on material not recovered) is 72%.

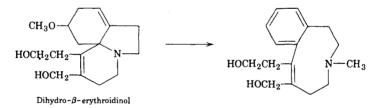
Decomposition of Cyclopropyltrimethylammonium Hydroxide. **High Temperature Decomposition.**⁸ A pyrolysis tube is made by sealing one end of a piece of 30-mm. Pyrex tubing 12 cm. in length. The open end is constricted to hold a small two-hole stopper containing a gas inlet tube and a short-stemmed dropping funnel. A condenser made from 8-mm. Pyrex tubing is sealed to the side of the pyrolysis tube 8 cm. from the bottom, and the closed end of the pyrolysis tube is lined with a layer of 20% platinized asbestos 3 mm. thick. The condenser is attached to a 100-ml. receiver, in series with which are a 100-ml. spiral gas washing bottle containing 3N hydrochloric acid and a gasometer containing a saturated solution of sodium chloride. After concentrating a solution of the quaternary hydroxide [prepared from 22.7 g. (0.1 mole) of cyclopropyltrimethylammonium iodide] under reduced pressure at 40° in a nitrogen-filled apparatus, the pyrolysis tube is swept with carbon dioxide and heated to 320-330°. The concentrated solution of the quaternary hydroxide is dropped into the pyrolysis tube under a positive pressure of 30 cm. of water over a period of ten to twelve minutes. The gas collected amounts to 1.6-1.81., which can be converted to 8.0-9.5 g. of cyclopropene dibromide, b.p. 57-58°/50 mm., m.p. -1 to $+1^{\circ}$, n_{D}^{20} 1.5360, d_{4}^{25} 2.0838. Some dimethylcyclopropylamine may be recovered from the hydrochloric acid wash bottle. Bromination of the gas also forms 1.5-2.0 g. of a tetrabromide, indicating the presence of some methylacetylene in the pyrolysis product.


1-Benzoyl-7-propionylheptatriene.⁴⁵ Decomposition of a β

mino Ketone. An ethereal solution of lobinanine is treated with an excess of methyl iodide and allowed to stand for two days. The solvent is decanted from the precipitated methiodide, which is then washed with

ether. The methiodide is suspended in water and shaken with ether and aqueous sodium bicarbonate. Dimethylamine is evolved, and the ether layer becomes intensely yellow in color. The layers are separated, and the ether layer is washed with 0.1N hydrochloric acid, water, and dried over calcium chloride. The ether is removed by distillation, leaving a yellow-brown crystalline residue which is recrystallized from ligroin as dark-yellow crystals, m.p. $81-82^{\circ}$.

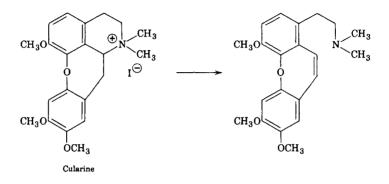
N-Uramidohomomeroquinene.¹²⁹ Decomposition of a Quaternary Iodide with Excess Base. N-Acetyl-10-trimethylammoniumdihydrohomomeroquinene ethyl ester iodide (1.45 g.) is taken up in an


equal quantity of water and heated in a platinum or nickel crucible with vigorous stirring with 2.5 ml. of a solution of 5 g. of sodium hydroxide in 4 ml. of water. Vigorous evolution of trimethylamine commences at 140° . The temperature is gradually raised to $165-180^{\circ}$ while stirring is continued and water is added from time to time to replace that lost by evaporation. When the evolution of amine has ceased (one-half to one hour), the mixture is allowed to cool and the excess base is removed with a pipette from the upper layer of product, which is a light-tan solid or semisolid material. The latter is taken up in 3 ml. of water, neutralized to litmus with concentrated hydrochloric acid, and decolorized with Norit.

The carbon is removed by filtration and the filtrate treated with 0.35 g. of potassium cyanate in a small quantity of water. The solution is heated on a steam bath for thirty minutes, then acidified with concentrated hydrochloric acid to Congo Red while hot. N-Uramidohomomeroquinene (0.30 g., 38%) crystallizes from the solution when cooled as small shining prisms, m.p. 163–164° dec.

Preparation and Decomposition of Cyclohexylphenethyldimethylammonium Hydroxide.⁷⁵ Use of Thallous Hydroxide. A solution of 2.5 g. of thallous sulfate in 25 ml. of water is treated with 0.85 g. of barium hydroxide. This cloudy solution is used directly to prepare the free base from a solution of 3 g. of cyclohexylphenethyldimethylammonium iodide in 30 ml. of ethanol. The precipitated thallous iodide makes the precipitate of barium sulfate more easily removed by filtration. The solution is protected from atmospheric carbon dioxide during filtration. The clear filtrate is allowed to drop into a distilling flask heated at 120° in an oil bath, whereupon it decomposes at once. The products, styrene and cyclohexyldimethylamine, distil with the water and are collected in a receiver containing hydrochloric acid. The styrene is extracted from this mixture with ether and converted to the dibromide, giving 1.05 g. (64%) of this derivative, m.p. 72°.

trans-1,2-Octalin.¹⁹¹ Use of Silver Sulfate and Barium Hydroxide. Twenty-five grams of trans- α -decalyltrimethylammonium iodide is dissolved in water and treated with 13 g. of silver sulfate. The precipitated silver iodide and undissolved silver sulfate are removed by filtration. The silver remaining in solution is precipitated with hydrogen sulfide, and the excess hydrogen sulfide is expelled with a stream of carbon dioxide. Concentrated barium hydroxide is added dropwise until no further precipitation of barium sulfate and carbonate is observed. Finally the solution is filtered again and the quaternary base is concentrated and decomposed by heating in a water bath at 3-4 mm. pressure. A yield of 4.1 g. (40%) of trans-1,2-octalin is obtained, b.p. 185°, $d_4^{15.6}$ 0.8970, $n_{He}^{15.6}$ 1.48722.


des-N-Methyldihydro- β -erythroidinol. Use of an Ion Exchange Resin.¹⁷⁸ A solution of 1.29 g. of dihydro- β -erythroidinol and 3 ml. of

methyl iodide in 15 ml. of methanol is allowed to stand overnight and is then boiled under reflux for one hour. After removal of the solvent under reduced pressure, the residue is taken up in 15 ml. of water and passed through an 8-mm. tube packed to a height of 30 cm. with Amberlite IRA-400 (basic form). The column is eluted with 15 ml. of water, and the combined eluates are concentrated under reduced pressure. Distillation of the residue in a molecular still at 0.03 mm. (pot temperature $130-150^{\circ}$) gives a viscous oil which is taken up in methanol and treated with hexane. This causes separation of 0.95 g. (78%) of a white solid, m.p. 93-97°. Reerystallization of this material from hexane gives white crystals, m.p. 96-98°.

¹⁹¹ Huckel and Naab, Ann., 502, 136 (1933).

Cularinemethine.¹²⁸ Decomposition in Aqueous Solution with Added Base. A suspension of 5 g. of cularine in 5 ml. of methanol is treated at room temperature with 4 g. of methyl iodide. The alkaloid dissolves readily and the methiodide then slowly separates in colorless crystals which melt at 205° after recrystallization from hot methanol.

The methiodide is dissolved in water, any remaining organic solvent is removed by boiling, and a turbidity is removed by filtration. The solution (ca. 75 ml.) is then heated for twenty-four hours on a steam bath with 10 g. of potassium hydroxide. The oil that separates is extracted with ether, and the ether is removed, leaving a residue that weighs 5.2 g. when dried under reduced pressure. The residue does not crystallize, but the picrate crystallizes readily from methanol in pale-yellow needles melting sharply at 167°.

Methylenecyclohexane and N,N-Dimethylhydroxylamine Hydrochloride.¹⁵¹ This Organic Syntheses procedure illustrates the standard method used for the preparation and pyrolysis of amine oxides. Methylenecyclohexane is obtained in 79–88% yield and N,N-dimethylhydroxylamine hydrochloride in 78–90% yield from 0.35 mole of N,Ndimethylcyclohexylmethylamine.

N,N-Dimethylcycloöctylamine Oxide.⁹ A solution of 5.0 g. (0.032 mole) of N,N-dimethylcycloöctylamine in 10 ml. of methanol is cooled in an ice bath, and 10.0 g. (0.094 mole) of 35% hydrogen peroxide is added slowly (thirty minutes). The solution is allowed to come to room temperature and stand for twenty-six hours, at which time it gives a negative spot test for the amine with phenolphthalein. The excess hydrogen peroxide is decomposed by stirring the solution with 0.25 g. of platinum black for five hours, at which time a drop of the solution fails to whiten lead sulfide paper (negative hydrogen peroxide test). The platinum black is separated and the filtrate is concentrated at 10–12 mm. with a

bath temperature of $30-40^{\circ}$, leaving the amine oxide as a colorless, viscous syrup.

Hindered amines or amines of high molecular weight are not converted to amine oxides by this procedure and should be oxidized with a peroxy acid (see p. 379).

cis-Cycloöctene.⁹ The N,N-dimethylcycloöctylamine oxide described above is heated in a nitrogen atmosphere at 10 mm. in a 100-ml. roundbottomed flask connected through a short Vigreux column to two traps in series, the first cooled with solid carbon dioxide (Dry Ice) and the second with liquid nitrogen. The flask is placed in an oil bath and the temperature is raised 1-2° per minute; decomposition of the amine oxide begins at 100° and is complete at 120° after twenty-five minutes, at which time practically no material remains in the flask. The distillate is acidified with dilute hydrochloric acid, and the aqueous layer is frozen by cooling with solid carbon dioxide. The layer of *cis*-cycloöctene is removed with a pipette and distilled through a semimicro column. The yield is 3.22 g. (90%), b.p. 65° (59 mm.), n_{25}^{25} 1.4684.

After removal of the *cis*-cycloöctene, the aqueous hydrochloric acid solution is concentrated under reduced pressure, and the residual N,Ndimethylhydroxylamine hydrochloride is dried by adding absolute ethanol and removing it under reduced pressure. After further drying in a vacuum desiccator over potassium hydroxide the N,N-dimethylhydroxylamine hydrochloride weighs 2.91 g. (95%), and melts at 100–103° (sealed capillary). The melting point is raised to 104.5–106° (sealed capillary) by two crystallizations from ethanol-ether.

TABULAR SURVEY

The following tables list examples of epoxides prepared from β amino alcohols (Table XI), and olefins prepared by the pyrolysis of amines in the presence of phosphoric acid or phosphorus pentoxide (Table XII), by the pyrolysis of acetyl derivatives of amines (Table XIII), by the pyrolysis of amine oxides (Tables XIV and XV), and by the Hofmann elimination reaction (Tables XVI, XVII, and XVIII). The literature through 1957 has been searched for examples of these reactions and many more recent references are included. In each table amines are listed in order of increasing carbon content of the amine considered to be the parent compound; within a given carbon content the amines are listed in the order primary, secondary, tertiary; and within these divisions in the order aliphatic, alicyclic, heterocyclic, and polyfunctional. Thus *n*-hexylamine, 2-methylpiperidine, and triethylamine are all located (in the above order) under C₆ in Table XV, with the understanding that the compound actually degraded was the exhaustively methylated quaternary derivative. The carbon content of the free amine, not its acetyl derivative, is listed in Table XIII, and in Table XIV the carbon content of the unmethylated amine is listed with the understanding that in each case a tertiary amine oxide was pyrolyzed. If the precursor of the amine oxide is a tertiary amine that does not contain a methyl group, the amine is listed separately in Table XV with other similarly constituted amines, because the product sought in the pyrolysis of such an amine oxide is usually the dialkyl-hydroxylamine rather than the olefin. In the tabulation the yield of the dialkylhydroxylamine is given in these instances.

The examples of the Hofmann elimination reaction are divided into two categories, alkaloids and non-alkaloids. Unfortunately, because of the problem of locating examples there are undoubtedly many instances of the application of this reaction which are not listed. In the tables of non-alkaloidal amines (Tables XVI and XVII) the amines are tabulated as indicated above. For the alkaloid section (Table XVIII) the Manske and Holmes treatise, The Alkaloids, 192 has been used as a guide for nomenclature and structure except (a) for morphine and its derivatives, where the conventions of Bentley's monograph, The Chemistry of the Morphine Alkaloids, 193 were used, and (b) where more recent information was available. Closely related alkaloids are tabulated together under a group name which indicates the basic structure such as quinolizidine alkaloids, or which names one member of the group, such as the morphine alkaloids. Within the table of degradations the group names are in alphabetical order and the individual alkaloids are in the same order within each group. When feasible, a general structural formula is given for the whole group. It is to be understood that substituents in the alkaloids such as methoxyl groups are present in the degradation products unless otherwise specified.

A list of alkaloids in alphabetical order is provided in Table XIX which indicates group under which a given alkaloid is listed. In addition there is given the page in Table XVIII on which each group of alkaloids first appears. Those alkaloids whose names clearly indicate their relationships to alkaloids listed in Table XIX are not included in that table. Thus acetocodeine, bromocodeine, and dihydrocodeine are not listed in Table XIX as their relationship to codeine, which is listed, is obvious.

¹⁹² Manske and Holmes, The Alkaloids, Academic Press, New York, 1953.

¹⁹³ Bentley, The Chemistry of the Morphine Alkaloids, Oxford University Press, New York, 1954.

Epoxides from β Amino Alcohols

Amino Alcohol	Epoxide	Yield, %	References
trans-2-Aminocyclopentanol	Cyclopentene oxide	50	194
trans-2-Aminocyclohexanol	Cyclohexene oxide	74	194, 195
cis-2-Aminocyclohexanol	No oxide		105
2-Amino-1-heptanol	1-Heptene oxide	80	196
β -Cyclohexyl- β -aminoethanol	Cyclohexylethylene oxide	70	197
1-Phenyl-2-amino-1-propanol	1-Phenyl-2-methylethylene oxide	40	198
4-Phenyl-2-amino-1-butanol	4-Phenyl-1-butene oxide	70	197 LEFIN 197 FIN 104 NS
4-Phenoxy-2-amino-1-butanol	4-Phenoxy-1-butene oxide	Poor	197 🗄
erythro-1,2-Diphenylethanolamine	trans-Stilbene oxide	68	104 🛛 🔁
threo-1,2-Diphenylethanolamine	cis-Stilbene oxide	62	1 4 9 . 2
2-Amino-1-hexadecanol	1-Hexadecene oxide		197 FR 106 OM
cis-2-Aminocyclodecanol	No oxide		106 9
trans-2-Aminocyclodecanol	cis-Cyclodecene oxide	85	100
cis-2-Aminocyclododecanol	trans-Cyclododecene oxide	48	106 AMIN 106 IN 106 ES
trans-2-Aminocyclododecanol	cis-Cyclododecene oxide	91	106 Ξ
cis-2-Aminocyclotridecanol	trans-Cyclotridecene oxide	95	106 Ē
trans-2-Aminocyclotridecanol	cis-Cyclotridecene oxide	84	106
cis-2-Aminocyclohexadecanol	trans-Cyclohexadecene oxide	90	106
trans-2-Aminocyclohexadecanol	cis-Cyclohexadecene oxide	84	106
CHCH ₂ CH ₃ , conhydrine	N O CHCH ₂ CH ₃	90	199-201

389

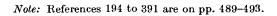
Note: References 194 to 391 are on pp. 489-493.

TABLE XI-Continued 390Epoxides from β Amino Alcohols Amino Alcohol Epoxide Yield, % References Dihydropseudoconhydrinemethine $\mathbf{202}$ $[(CH_3)_2NCH_2CH(OH)(CH_2)_5CH_3]$ CH(CH₂)₅CH₃ сн. Ephedrine 30 103, 203, 204 C₆H₅CH(OH)CH(NHCH₃)CH₃ С₆н₅сн `снсн_з (erythro)(trans ORGANIC REACTIONS Pseudoephedrine С₆н₅сн СНСН₃ $\mathbf{25}$ 103, 204 (threo) (cis) dl- α -1-p-Chlorophenyl-0 75204a1,2-diphenyl-2-aminoethanol erythro form $trans-C_6H_5CH-C(C_6H_5)C_6H_4Cl-p$ 0 threo form cis-C6H5CH- $-\dot{C}(C_6H_5)C_6H_4Cl-p$ 85 204aQuinine 119, p. 11 ---сн=сн2 СН=СН₂ снон N | CH₃ сн30 сн30

Note: References 194 to 391 are on pp. 489-493.

TABLE XII

Pyrolysis of Amines with Phosphoric Acid or Phosphorus Pentoxide


	Pyrolysis of Amines with	H PHOSPHORIC ACID OR PHOSPHO	DRUS PENTOXIDE		
No. of C Atoms	Amine	Olefin	Yield, %	References	
C4	Cyclobutylamine	Butadiene	23	205	
C_5	Cyclobutylmethylamine	Cyclopentene		206	
$\tilde{C_6}$	$(CH_3)_2C(NH_2)CH_2CH(NH_2)CH_3$	"Methylpentadiene"	60	152	
	NH 2 NH 2 NH 2	1,3-Cyclohexadiene	25	154 OLEFINS	
	NH ₂ NH ₂	1,4-Cyclohexadiene	25	US FROM AMINES	1
C,	H ₃ C NH ₂ NH ₂	CH ₃	50	문 152, 154	
C_8	H ₃ C CH ₃ H ₂ N NH ₂	H ₃ C CH ₃	50	154	
Nole: Re	ferences 194 to 391 are on pp. 489–493.			391	

392

TABLE XII—Continued

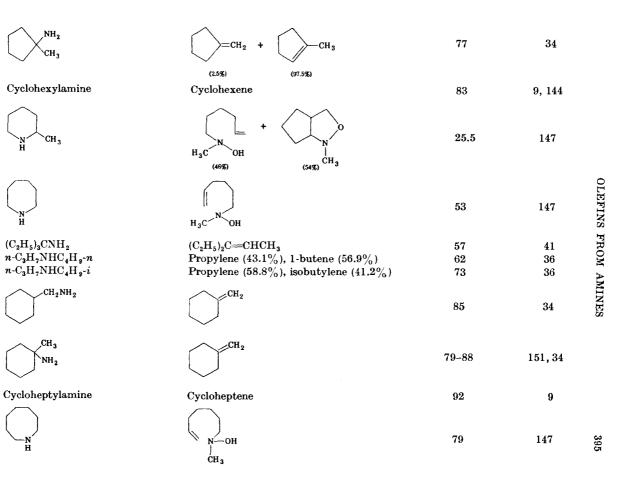
Pyrolysis of Amines with Phosphoric Acid or Phosphorus Pentoxide

	A A A A A A A A A A A A A A A A A A A				
No. of C Atoms	Amine	Olefin	Yield, %	References	
C ₁₀	H ₃ C NH ₂	CH 3 (?)	50	154 PR	
	Dihydroterpenylamine	Menthadiene		ORGANIC 207	
	NH ₂	Menthadiene	73	153 REACTIONS	
	NH ₂	Menthadiene	30	155	

TABLE XIII

OLEFINS FROM ACETYL DERIVATIVES OF AMINES

OLEFINS FROM ACETYL DERIVATIVES OF AMINES					
No. of				Yield,	
C Atoms	Amine	Conditions	Product(s)	%	References
C_6	4-Methyl-2-pentylamine	590°	4-Methyl-1-pentene (largely), 4-methyl-2-pentene	14	161
	Cyclohexylamine	P ₂ O ₅ , xylene	Cyclohexene	36	157
	C ₂ H ₅ NHCH ₂ CH ₂ OCOCH ₃	490°	Vinyl acetate	25	161
C7	Methyl-(4-methyl-2-pentyl)amine	570°	4-Methyl-1-pentene, 4-methyl-2- pentene (more than half)	27	161
C_8	2,4,4-Trimethyl-2-pentylamine	510°	2,4,4-Trimethyl-1-pentene, 2,4,4-trimethyl-2-pentene (2:1)	35	161
C ₁₂	Phenyl-(4-methyl-2-pentyl)amine	510°	4-Methyl-1-pentene, 4-methyl-2- pentene (1:1)	67	161 LEFI
C14	1,2-Diphenylethylamine	P ₂ O ₅ , xylene	trans-Stilbene	70	157 🛛 💥
C15	1,3-Diphenyl-1-propylamine	P ₂ O ₅ , xylene	1,3-Diphenylpropene	75	157
-	1,3-Diphenyl-2-propylamine	P ₂ O ₅ , xylene	1,3-Diphenylpropene	10	157 📈
	² ³ ⁴ ⁵ ⁷	P_2O_5 , xylene		68	161 OLEFINS FROM 157 157 157 AMINES 208 NR
	Colchinol methyl ether (2,3,4,7-tetra- methoxy derivative of structure above)	P_2O_5 , xylene	Deaminocolchinol methyl ether	~	156
	Iodocolchinol methyl ether (2,3,4,7- tetramethoxy-6-iodo derivative of structure above)	P_2O_5 , xylene	Deaminoiodocolchinol methyl ether	50-70	160
	1-Phenyl-3- <i>p</i> -methoxyphenyl- propylamine	P_2O_5 , xylene	1-Phenyl-3-p-methoxyphenylpropene	Low	157 చి అది ఆర్


OLEFINS FROM AMINES

393

TABLE XIV

Pyrolysis of Amine Oxides

No. of C Atoms	Amine	Olefin(s) (Composition of Olefin Mixture)	Yield, %	References
C3 C4	n-C ₃ H ₇ NH ₂ (C ₂ H ₅) ₂ NH	Propylene Ethylene	_	144 144
	Cyclobutylamine CH ₃ CH ₂ CH(NH ₂)CH ₃	Cyclobutene 1-Butene 67.3%, 2-butene (<i>cis</i> , 11.7%; <i>trans</i> , 21.0%)	$\begin{array}{c} 50 - 60 \\ 91 \end{array}$	90 36
C ₅	$\begin{array}{l} \mathrm{CH_3CH_2CH(NH_2)CH_2CH_3}\\ \mathrm{CH_3CH_2NHCH_2CH_2CH_3}\\ \mathrm{CH_3CH_2NHCH(CH_3)_2}\\ \mathrm{CH_2 = CH(CH_2)_3NH_2} \end{array}$	2-Pentene (cis, 29.2% ; trans, 70.8%) Ethylene (62.5%), propylene (37.5%) Ethylene (27.5%), propylene (72.5%) 1,4-Pentadiene	86 82 90 61	36 ORGA 36 36 ANIC 145 C
	N H	No ring opening		147 REACTIONS 42 St
C ₆	(C ₂ H ₅) ₂ CHCH ₂ NH ₂ C ₂ H ₅ NHC ₄ H ₉ - <i>n</i> C ₂ H ₅ NHC ₄ H ₉ - <i>i</i> C ₂ H ₅ NHC ₄ H ₉ - <i>t</i> (<i>n</i> -C ₃ H ₇) ₂ NH	$(C_2H_5)_2C=CH_2$ Ethylene (55.5%), 1-butene (44.5%) Ethylene (67.6%), isobutylene (32.4%) Ethylene (14.2%), isobutylene (85.8%) Propylene	80 85 85 76	42 36363636144
	H ₂ C=CH ₂ NH ₂	H ₂ C=CH ₂	69	121
	CH2NH2	CH2	61	34

C7

TABLE XIV-Continued

Pyrolysis of Amine Oxides

No. of C Atoms	Amine	Olefin(s) (Composition of Olefin Mixture)	Yield, %	References
C ₇ (cont.)	NH ₂			
	endo	Bicycloheptadiene	1.4	27
	exo	Bicycloheptadiene	32	27
	NH ₂			ORGANIC REACTIONS 27 27 22 42 42 36
	endo	Bicycloheptene	2.9	27 ^년
	exo	Bicycloheptene	65	27
C_8	$(n-C_3H_7)_2CHCH_2NH_2$	$(n-C_3H_7)_2C = CH_2$	77	42 G
	$(i-C_3H_7)_2$ CHCH ₂ NH ₂	$(i-C_3H_7)_2C=CH_2$	80	42 6
	n-C4H9NHC4H9-i	1-Butene (64.8%), isobutylene (35.2%)	86	36 Ž
	C ₃ H ₇ NHC ₅ H ₁₁ -i	Propylene (38.7%), 3-methyl-1-butene (49.1%), 2-methyl-2-butene (11.2%), 2-methyl-1-butene (1.0%)	80	36
	CH 2NH 2	Methylenecycloheptane	82	34
	CH ₃ NH ₂	$\bigcirc = CH_2 + \bigcirc -CH_3$	84	34
		(15.2%) (84.6%)		

Cycloöctylamine	cis-Cycloöctene	90	9	
(cia)	cis-cis-1,3-Cycloöctadiene	48	59	
NH ₂	cis-cis-1,5-Cycloöctadiene (91%), cis,cis-1,4- cycloöctadiene (6%), unidentified products (3%)	84	209	0
C ₆ H ₅ CH(NH ₂)CH ₃	Styrene	70	142	OLEFINS
NH ₂	Bicycloöctadiene	67	26	INS FROM
CeHa(CHa)aNHa	C _e H _e CH ₂ CH==CH ₂	91	145	
C.H.CH(NH.)CH.CH.	trans-C ₆ H ₅ CH=CHCH ₃	60	48	AMINES
$C_{6}H_{5}C(NH_{2})(CH_{3})_{2}$	$C_{\epsilon}H_{\epsilon}C(CH_{\epsilon})=CH_{\epsilon}$	78	142	E
Cyclononylamine	trans-Cyclononene	90	56	Exa
Cycloöctylmethylamine	Methylenecycloöctane	79	52a	
1-Methylcycloöctylamine	Methylenecycloöctane (1.4%), cis-1-methylcycloöctene (98.6%)	84	52a	
(t-C,H),CHCH,NH,	$(t-C_4H_9)_2C=CH_2$	73	42	
n-Decylamine	1-Decene	80	210	
Cyclononylmethylamine	Methylenecyclononane	80	52a	
C ₆ H ₅ CH ₂ CH ₂ NHC ₂ H ₅	Ethylene (1.5%) , styrene (98.5%)	85	36	
C ₆ H ₅ C(CH ₃) ₂ CH ₂ NH ₂	No olefin		142	

Note: References 194 to 391 are on pp. 489-493.

 $\mathbf{C}_{\mathbf{9}}$

C₁₀

TABLE XIV-Continued

PYROLYSIS OF 'AMINE OXIDES

No. of		Olefin(s)		
C Atoms	Amine	(Composition of Olefin Mixture)	Yield, %	References
C ₁₀ (cont.)	CH ₃	CH ₃ CH ₃		
	C ₆ H ₅ CHCH(NH ₂)CH ₃	C ₆ H ₅ Ċ=CHCH ₃ C ₆ H ₅ ĊHCH=CH ₂ cis trans		143
	threo erythro	93–94% 0.1–0.2% 7% 2–4% 89–90% 7–8%		OF
	Menthylamine	2-Menthene (65%) , 3-menthene (35%)	85	16 ភ្ល័
	Neomenthylamine	2-Menthene (100%)	77	16
	Cyclodecylamine	trans-Cyclodecene (98%), cis-cyclodecene (2%)	90	16 ORGANIC 16 56, 58 IC
	1-Methylcyclononylamine	Methylenecyclononane (6%), 1-methyl- cyclononene (cis, 82%; trans, 12%)	72	52a REACTIONS
	Bornylamine	Bornylene and tricyclene		33
	Neobornylamine	Bornylene and camphene		33 ž
C11	Cyclodecylmethylamine	Methylenecyclodecane	74	52a ⁰⁰
	1-Methylcyclodecylamine	Methylenecyclodecane (2.5%), 1-methyl- cyclodecene (cis, 64%; trans, 34%)	86	52a
C ₁₂	NH ₂ C ₆ H ₅	C ₆ H ₅		
	cis	(2%) (98%)	72	145
	trans	(85%) $(15%)$	96	145
C ₁₃	n-C ₃ H ₇ NHC ₁₀ H ₂₁ -n	Propylene (40.4%), 1-decene (59.6%)	55	36

NH2 $\substack{\mathbf{C_{15} and}\\\mathbf{C_{16}}}$ сн₃о́ OH(OCH3) CH 30 OH(OCH3) **15**0 α -Tetrahydrocodeimethine 13-Vinyl morphenol derivative 45 a-Tetrahydrocodeimethine 13-Vinyl derivative 62 150methyl ether Dihydrocodeimethine 13-Vinyl derivative 23 15018 150 α-Codeimethine 13-Vinyl derivative **OLEFINS FROM AMINES** 150 $\mathbf{24}$ β -Codeimethine 13-Vinyl derivative 13-Vinyl derivative 13-Vinyl derivative α -Codeimethine methyl ether 46 15015035 β -Codeimethine methyl ether 150Dihydrothebaine methine 13-Vinyl derivative 45 60 150Dihydrothebaine dihydromethine 13-Vinyl derivative 15013-Vinyl derivative $\mathbf{20}$ Dihydro-14-hydroxycodeinone methine 10 150 Metathebainone methyl ether 13-Vinyl derivative methine NH₂ $\mathbf{42}$ 150сн₃о́ юн CH₂C Dihydrothebaine dihydromethine C₆H₅-CH2NH2 C₆H₅ _CH₂ CH 3 C_6H_5 1**49** 399 +

=сн2

C₆H₅

 C_6H_5

=сн

C₁₈

C₆H₅-

-CH2NH2

	TABLE XV			400			
Pyrolysis of Oxides of Tertiary Amines without N-Methyl Groups							
Amine	Product(s)	Yield, %	References				
$(C_2H_5)_3N$	$(C_2H_5)_2NOH$	69, 67	185, 144				
N-Ethylpiperidine	N OH	42	140, 144				
$(n-C_{3}H_{7})_{3}N$	$(C_3H_7)_2$ NOH	84	141, 185, 144	0			
$(C_2H_5)_2NCH_2CH_2CO_2C_2H_5$	(C ₂ H ₅) ₂ NOH	_	144	RG.			
NCH ₂ CH ₂ CO ₂ C ₂ H ₅	0 NOH		144	ORGANIC REACTIONS			
NCH ₂ CH ₂ CO ₂ C ₂ H ₆	NOH		144	ACTION			
$(n-C_3H_7)_2$ NCH ₂ CH ₂ CO ₂ C ₂ H ₅	$(n-C_3H_7)_2$ NOH		144	S			
$C_6H_5CH_2N(C_2H_5)_2$	C ₆ H ₅ CH ₂ N(C ₂ H ₅)OH	34	142				
$(n-C_4H_8)_3N$	$(n-C_4H_8)_2$ NOH	79	185				
$(n-C_4H_8)_2$ NCH ₂ CH ₂ CO ₂ C ₂ H ₅	$(n-C_4H_9)_2$ NOH		144				
$(n-C_5H_{11})_3N$	$(n-C_5H_{11})_2$ NOH	75	185				
	1-Pentene	65					
(<i>i</i> -C ₅ H ₁₁) ₃ N	$(i-C_5H_{11})_2$ NOH	42	185				
5 11/5	Isoamylene	53					
$(n-C_{6}H_{13})_{3}N$	$(n-C_{6}H_{13})_{2}NOH$	70	185				
	1-Hexene	64					
$(n - C_7 H_{15})_3 N$	$(n-C_7H_{15})_2$ NOH	71	185				
	1-Heptene	76					
	*						

TABLE XV

TABLE XVI

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

		DECOMPOSITION OF	QUATERNA	RY AMMONIUM COMPOUNDS			
No. of C				Elimination Product(s)			
Atoms	Amine	Derivative	Conditions	(Composition of Mixture)	Yield, %	References	
C_2	Ethylamine	OH	Distil	Ethylene	95-100	37, 211, 38	
C_3	n-Propylamine	ОН	200°	Propylene	83	37	
			Distil	Propylene	High	211	
			Distil	Propylene	84	38, 11	
	Isopropylamine	ОН	Distil	Propylene	"Mostly"	211	
	Cyclopropylamine	ОН	325°, Pd	Cyclopropene	45	8	0
	Allylamine	OH	320°	Methylacetylene (88%)	34	212	OLEFINS
				+allene (12%)			FIN
				+ oxygen-containing products			\mathbf{s}
	1,3-Diaminopropane		Distil	Allyldimethylamine*		95	F
	β -Alanine	Betaine	140°, aq.	CH ₂ =CHCO ₂ H		213	FROM
			base				Ř
C 4	n-Butylamine		Distil	1-Butene	79	38, 11, 214	A
			200°	1-Butene	80	37, 102, 39	MI
	Isobutylamine	ОН	Distil	Isobutylene	63	11	AMINES
			\mathbf{Distil}		None	211	S
	sec-Butylamine	ОН	150°/	1-Butene $(95\%) + 2$ -	97	36	
			20 mm.	butenes (5%)			
		OH	Distil	1-Butene	65	11	
	t-Butylamine	OH	Distil	Isobutylene	High	11	
	Diethylamine	OH	Distil	Ethylene	High	39	
	Cyclobutylamine	OH	140°/	Cyclobutene	73	90	
			50 mm.	~ · · · ·	00	015 005	
			Distil	Cyclobutene	30	215, 205	

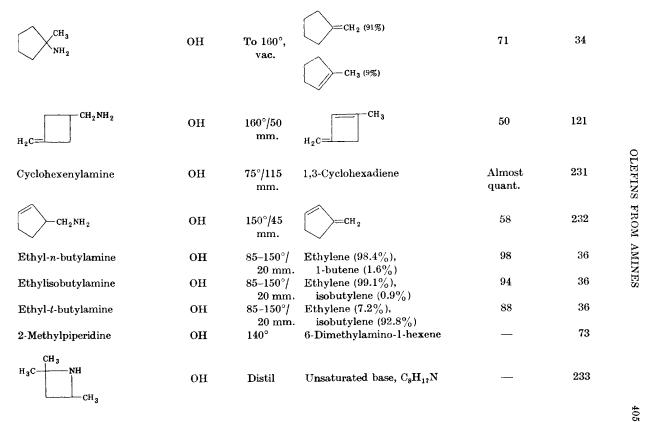
Note: References 194 to 391 are on pp. 489-493.

* No allene was isolated.

401

TABLE XVI-Continued

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS


No. of C		FOSITION OF	QUALENNA	Elimination Product(s)			
Atoms	Amine	Derivative	Conditions	(Composition of Mixture)	Yield, %	References	
C ₄ (cont.)	Pyrrolidine	Iodide + KOH	Distil	4-Dimethylamino-l-butene		5	
	1-Amino-3-butene	Iodide, KOH	Distil	1,3-Butadiene	_	5	
	1,2-Diaminobutane	Di OH	250°	Ethylacetylene	45	214	
				Methylallene	55		0
	1,3-Diaminobutane	Di OH	160°	Butadiene		216	RG
	2,3-Diaminobutane	Di OH	250°	Butadiene, mixture of ethyl- acetylene and methylallene	45	214	ORGANIC
	1,4-Diaminobutane	Di OH	Distil	1,3-Butadiene	<u> </u>	217, 218	
	1,3-Diamino-l-butene	tert-Methy	- 160°/	CH ₃ CH=C=CN(CH ₃) ₂		219	RE
		lated amine	250 mm.				ACT
	1,4-Diamino-2-butene	Di OH	100–120°/ 13 mm.	Vinylacetylene	29	220	REACTIONS
	trans-1,2-Diaminocyclobutane	Di OH	350°/0.1 mm.	No olefin, cyclobutanone + other products	—	221	
	1,3-Diaminocyclobutane	Di OH	120–200°/ 20 mm.	Butadiene		222	
	Piperazine	Chloride, OH	Distil	Acetylene, tetramethylethylene diamine, dimethylethanolamine		223	
C5	<i>n</i> -Amylamine	он	Distil	1-Pentene	77	38, 39	
-	Isoamylamine	он	20 0°	3-Methyl-1-butene	78	37, 38, 211	
	2-Pentylamine	Iodide, KOC ₂ H ₅	130°	1-Pentene (98%), 2-pentene (2%)	67	224	
		он	Distil	Pentene	_	11	

3-Pentylamine	OH	85–150°/	2-Pentene (cis, 55% ;	96	36	
		20 mm.	, ,,,,,			
<i>t</i> -Amylamine	ОН	\mathbf{Distil}	Pentene		211	
	Iodide, KOC ₂ H	130° [₅	2-Methyl-1-butene (93%), 2-methyl-2-butene (7%)	84	44	
	Iodide, 2,6-	Reflux	2-Methyl-1-butene (93%), 2-methyl-2-butene (7%)	79	44	
	lutidine					
Ethyl-n-propylamine	ОН	85–150°/ 15 mm.	Ethylene (97.6%), propylene (2.4%)	94	36, 11	
Ethylisopropylamine	OH	85–150°/ 15 mm.	Ethylene (41.2%) , propylene (58.8%)	88	36	OLEFINS
Cyclobutylcarbinylamine	ОН	Distil	Methylenecyclobutane	Poor	206	EF
Cyclopropylmethyl-	ОН	Distil	Vinylcyclopropane	68	225	Ĩ
carbinylamine	011	Distri	V myteyetopropane			
Piperidine	OH	\mathbf{Distil}	5-Dimethylamino-1-pentene	80	102, 91, 4, 65	ਸ਼ਿ
l-Amino-4-pentene	OH	Distil	1,3-Pentadiene (piperylene)	_	4	9
l-Amino-2,4-pentadiene	ОН		CH ₃ C=CCH=CH ₂ (pirylene)	—	226	И А
CH ₂ NH ₂	ОН	310°	CH2	13	227	FROM AMINES
H ₂ N CH ₂	ОН	160°/ 40 mm.	CH2	68	228	
3-Methylpyrrolidine	Iodide, KOH	Distil	4-Dimethylamino-2-(or 3)- methyl-1-butene		229	
4-Amino-2-(or 3)-	Iodide,	Distil	Isoprene		230, 229	
methyl-1-butene	кон					
: References 194 to 391 are on	pp. 489–493.					403

TABLE XVI—Continued

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

No.	DECOM	nosinon or	QUAILINA	RI AMMONIUM COMPOUNDS			
of C				Elimination Product(s)			
Atoms	Amine	Derivative	Conditions	(Composition of Mixture)	Yield, %	References	
C_5 (cont.)	2-Methylenepyrrolidine	Iodide, KOH	Distil	Mixture of bases	70	68, 66, 7	
	Second step	Iodide, KOH	Distil	CH ₃ C=CCH=CH ₂ (pirylene)	59	68, 66, 7	
	1,5-Diaminopentane	Di OH	Distil	Piperylene	Good	95	~
		Mono OH	Distil	$CH_2 = CH(CH_2)_3 N(CH_3)_2$	ca. 40	39	л Я
С.	n-Hexylamine	ОН	Distil	1-Hexene	76	38, 39, 91	ORGANIC
	3,3-Dimethylbutylamine	он	200°	t-Butylethylene	20	37	Ŕ
	2,2-Dimethyl-3-aminobutane	он	$30^{\circ}/1~\mu$	t-Butylethylene	"Only"	32	G
			160°	t-Butylethylene	48	32	R
	2-Ethylbutylamine	OH	Distil	$(C_2H_5)_2C = CH_2$	43	11	EA
		\mathbf{OH}	100°/	$(C_2H_5)_2C = CH_2$	77	42	REACTIONS
			10 mm.				IO
	5-Amino-1-hexene	\mathbf{OH}	Distil	Biallyl and an isomer	<u> </u>	73	Ž
	5-Methoxypentylamine	он	Distil	Methoxypentene	ca. 30	39	01
	6-Amino-1-hexene	OH	160°	Biallyl and an isome r	80	73	
	Cyclohexylamine	ОН	105120°/ 11 mm.	Cyclohexene	62	9	
	CH ₂ NH ₂	он	To 160°, vac.	-CH ₂ (94%)	50	34	

Ċi

TABLE XVI—Continued

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

NT-	DECOM	OBILION OF	QUAILMAA	IT AMMONIUM COMPOUNDS			
No. of C Atoms	Amine	Derivative	Conditions	Elimination Product(s) (Composition of Mixture)	Yield, %	References	
C ₆ (cont.)	O H H	ОН	100°, vac.	CH ₂ N(CH ₃) ₂	60	234	ORG.
	Triethylamine	он	Distil	Ethylene	High	211, 91	ANIC
	₩ N H	Betaine	Distil	Amine and CO ₂	—	213	ORGANIC REACTIONS
	N,N'-Diethylethylene diamine	Di OH	Boil	Ethylene	48	11	SNC
	NH ₂ NH ₂ .	ОН	120–160°	Benzene	80-85	231	
		он	3 50°	1-Methyl-4-methylene- piperidine	46	89	

C,	n-Heptylamine Cycloheptylamine 3-Aminocycloheptene	OH OH OH Bromide, KOH	Distil Distil Distil Distil	1-Heptene Cycloheptene Cycloheptadiene Cycloheptadiene	74 87 80 85–90	38, 39 9, 187 187 235	
	CH2NH2	ОН	To 160°, vac.	Methylenecyclohexane	69	34	
	CH ₃ NH ₂	ОН	To 160°, vac.	Methylenecyclohexane (99%), 1-methylcyclohexene (1%)	85	34	OLI
	endo-Norbornylamine	он	110–125°,	Bicyclo[2.2.1]heptene	3.5	27	OLEFINS
		ОН	vac. 90–110°, vac.	Bicyclo[2.2.1]heptene	77	27	FROM
	NH ₂						AMINES
	endo	ОН	110–120°, vac.	\bigwedge	3.1	27	Ø
	exo	он	110–125, vac.	Bicyclo[2.2.1]heptadiene	58	27	
	NH ₂	ОН	—			236	
Note:	· References 194 to 391 are on pr	o. 489–493.		-			407

TABLE XVI—Continued

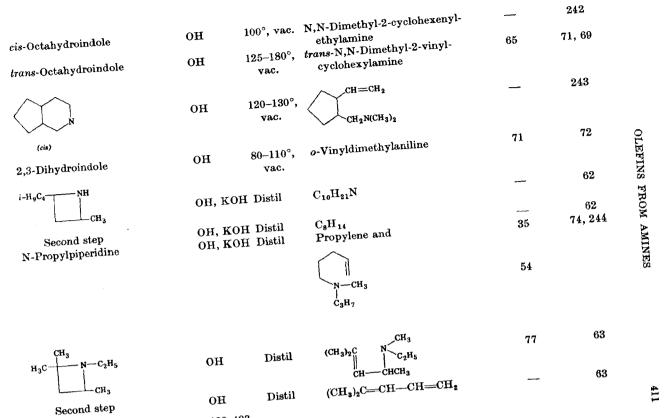
DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

	DECO.	MPOSITION OF	e QUAILMAA	INT AMMONIUM COMPOUNDS			
No. of C Atoms	Amine	Derivativ	e Conditions	Elimination Product(s) (Composition of Mixture)	Yield, %	References	
C ₇ (cont.)	n-Butyl-n-propylamine	ОН	85–105°/ 20 mm.	Propylene (59.8%), 1-butene (40.2%)	94	36	
· · ·	<i>n</i> -Propylisobutylamine	ОН	85–150°/ 20 mm.	Propylene (72.9%), isobutylene (27.1%)	92	36	
	N-Ethylpiperidine	${{ m OH}} + { m KOH}$	Distil	Ethylene and	71	74, 4	OF
				CH ₃ C ₂ H ₅	18		ORGANIC F
	Quinuclidine	он	35 0°	1-Methyl-4-vinylpiperidine	Low	88	lEAC
	С СН3	ОН	3 40°	l-Methyl-4-vinylpiperidine	50	237	REACTIONS
	$\mathrm{C_2H_5OCH_2N(C_2H_5)_2}$	ОН	Room temp., vac.	Ethylene	82	238	
			135°	Ethylene	10	238	
	1,7-Diaminoheptane	Di OH	Distil	Heptadiene	<i>ca</i> . 5	95	
	1,4-Diaminocyclohept-2-ene	Di OH	Distil	Cycloheptatriene		187	
	$\begin{array}{c} CH_3 \\ H_3C \\ \hline \\ H_2N \end{array} CH_2NH_2 \\ \end{array}$	Di OH	160°/40 mm.	H_3C CH_3 CH_2	52	228, 232	

	endo-5-Aminobicyclo- [2.2.1]hept-2-ene	Iodide + KOH	Distil	No olefin	—	239
		ОН	Distil	No olefin	_	2 39
Cs	<i>n</i> -Octylamine	OH	Distil	1-Octene	75	38, 39
	2-n-Propylpentylamine	ОН	Distil	as-Di-n-propylethylene	31	11
	2-Amino-2,4,4-trimethylpentane	OH + NaOH	100°	2,4,4-Trimethyl-1-pentene	70	-1-1
		Iodide + pyri dine	100°	2,4,4-Trimethyl-1-pentene (88%), 2,4,4-trimethyl-2- pentene (12%)	80	44
		Iodide + 2-picolin	100° ie	95% Δ^1 - and 5% Δ^2 -olefin	86	44
		Iodide + 2,6-luti- dine		99% $\Delta^{\rm t} - {\rm and} ~ 1\% \Delta^2 {\rm -olefin}$	96	44
	$(n-C_3H_7)_2CHCH_2NH_2$	ОН	100°/10 mm.	$(n-C_3II_7)_2C = CII_2$	73	42
	$(i-('_{3}H_{7})_{2}CHCH_{2}NH_{2}$	ОН	100°/10 m m.	$(i-C_3II_7)_2C==CH_2$	67	42
	Phenethylamine	ОН	Distil	Styrene	"Com- pletely"	39
			100°	Styrenc	"Com- pletely"	132
	β -(p-Nitrophenyl)ethylamine	Io d ide + H ₂ O	100°	p-Nitrostyrene	High	132
	Cycloöctylamine	OH	150°, vac.	trans-Cycloöctene	62	54
	· ·		120°/11 mm.	Cycloöctene (cis, 40%; trans, 60%)	89	9

409

OLEFINS FROM AMINES


TABLE XVI—Continued

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

No.	DECOMP	OSITION OF	QUATERNAI	RY AMMONIUM COMPOUNDS			
of C Atoms	Amine	Derivative	Conditions	Elimination Product(s) (Composition of Mixture)	Yield, %	References	
C ₈ (cont.)	cis-3-Aminocycloöctene	ОН	70–185°/ 28–10 mm.	1,3-Cycloöctadiene cis-trans cis-cis	15 41	59	
	cis-4-Cycloöctenylamine	он	70–185°/ 3 mm.	cis, cis-1,3-Cycloöctadiene (10%), cis, trans-1,5-cycloöctadiene (90%)	64	209	OR
	\frown	OH	Distil. vac.	1,5-Cycloöctadiene	77	54	GA
	CH ₂ NH ₂	ОН	,	Methylenecycloheptane	74	34	ORGANIC 1
				Methylcycloheptene	0.5		RE.
	CH ₃	он	To 160°, vac.	Methylenecycloheptane (78%), methylcycloheptene (22%)	84	34	REACTIONS
	CH2NH2	ОН	120–140°, vac.	CH ₂	61	240	Ø
	2-Aminobicyclo[2.2.2]octane	он, кон	Distil	Bicyclo[2.2.2]octene	50	241	
	5-Aminobicyclo[2.2.2]oct-2-ene	он		Bicyclo[2.2.2]octadiene	40	26	
	n-Butylisobutylamine	он	85–150°/ 20 mm.	1-Butene (64%), isobutylene (36%)	92	36	
	n-Propylisoamylamine	он	85–150°/ 20 mm.	Propylene (75%), isoamylene (25%)	95	36	

410

ORGANIC REACTIONS

412

TABLE XVI—Continued

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

	DECOMPO)STION OF	•••			
No.			Elimination Product(s) Conditions (Composition of Mixture) Yie	eld, %	References	
of C Atoms	Amine	Dellagrad	CH ₃	60	245	
C ₆ (cont.)	1-Methylpyrrolizidine .(heliotridane)	0H	$\begin{array}{c} 100^{\circ}/20 \\ \text{mm.} \\ \text{CH}_{3} \end{array} \xrightarrow{\text{CH}_{2}\text{CH}=\text{CH}_{2}} $			ORGANIC
	2-n-Propyl-3-methylpyrrolidine		$ \begin{array}{c} & \begin{array}{c} & CH_{3} \\ & C_{3}H_{7} \\ & CH_{3} \end{array} \\ CH_{3} \end{array} \\ CH_{3} \end{array} $	-	246	
	sec-Butylpyrrolidine	_	CH ₃ CH ₃		246	REACTIONS
		ОН	$100^{\circ}/$ 20 mm. H_3C $CH_2CH=CH_2$	66	247	
	2-Methylpyrrolizidine		CH ₃	10-20	248-250	
С	Diaminocycloöctadiene	Di OH	0.2 mm.	2 8	40, 251 145	
	3-Phenylpropylamine	0H 0H	75-120°/ 1-Phenylpropene (trans, 54%), nie 5%), 3-phenylpropene, 1%	90	39	
	3-Phenoxypropylamine	ОН	0.5 mm. 233, 0743 - 1 Distil 3-Phenoxy-1-propene			

i-Phenyl-2-propylamine	${f Iodide}\ +$ NaOH	80°	1-Phenyl-1-propene		47
3-Phenyi-2-amino-1-propanol	OH	Distil, vac.	3-Phenylallyl alcohol (cinnamyl alcohol)	—	110
3-Nitro-4-hydroxyphenyl- alanine	Iodide + NaOH	Boil	3-Nitro-4-hydroxycinnamic acid	78	50
HO CH ₂ CH ₂ NH ₂	ОН	100°/ 2 mm.	H0 CH=CH ₂	_	112
CH ₂ CH ₂ NH ₂	ОН	150°	CH=CH ₂	High	111
CH ₂ NH ₂	он	120°, vac.	-C ₂ H ₅ -CH ₂	Low	25 2
(cís or trans)					
Cyclononylamine	011	150°, vac.	trans-Cyclononene	69	55
1-Methylcycloöctylamine	он	80–90°, vac.	Methylenecycloöctane (64%), cis-1-methylcycloöctene (36%)	83 82	56 52a
Cycloöctylmethylamine	ОН	95–110°, vac.	Methylenecycloöctane (99%), 1-methylcycloöctene (0.5%)	83	52a
<i>n</i> -Butylisoamylamine	ОН	200°	Butylene (66%), isoamylene (34%)	83	37
<i>cis-</i> 2- Methyloctahy d roindole	ОН	Distil	cis-2-n-Propyl-N,N-dimethyl- cyclohexylamine (after H2)		84

OLEFINS FROM AMINES

413

414

Note: References 194 to 391 are on pp. 489-493.

TABLE XVI—Continued

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

	DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS											
No. of C				Elimination Product(s)								
Atoms	Amine	Derivative	Conditions	(Composition of Mixture)	Yield, %	References						
C,	2,3-Dihydro-2-methylindole	OH	70°, vac.	o-Propenyldimethylaniline	77	72						
(cont.)	cis-Decahydroquinoline	он	Distil	cis-2-n-Propyl-N,N-dimethyl- cyclohexylamine (after H ₂)		70						
	trans-Decahydroquinoline	он	Distil	trans-2-n-Propyl-N,N-dimethyl- cyclohexylamine (after H ₂)		70						
	trans-2-Propylcyclohexylamine	ОН	Distil	C3H7-n		70	ORGANIC					
	Tetrahydroisoquinoline	ОН	Distil	N,N-Dimethyl-2-vinyl- benzylamine	High	66	NIC R					
	cis-Decahydroisoquinoline	ОН	120°, vac.	CH=CH ₂ CH ₂ N(CH ₃) ₂ (cis)	81	252	REACTIONS					
	<i>trans</i> -Decahydroisoquinoline	он	120°, vac.	$CH = CH_2$ $CH_2N(CH_3)_2$ (trans)	81	252						
	Tetrahydroquinoline	OH	1 50°	No olefin		82						
	N-Butylpiperidine	он, кон	Distil	Butylene and	31	74, 244						
				CH ₃ C ₄ H ₉ -n	59							

		он	Distil, vac.	N CH ₃ (position of unasturation	_70	253	
				not determined)			
	3-Ethylquinuclidine	он	Distil	Unsaturated amine	Low	254	
	CH2NH2 CH2NH2 (trans)	Di OH	120-140°, vac.	CH ₂ CH ₂	57	240	OLEFINS
	<i>n</i> -Amyldiethylamine	он	Distil	Ethylene		1	
	C ₆ H ₅ N(CH ₃)CH ₂ CH ₂ NH ₂	он	Distil	Vinylmethylaniline		255	FROM
C ₁₀	n-Decylamine	он	Distil	1-Decene	75	210, 102	
10	4-Phenoxybutylamine	он	Distil	4-Phenoxy-1-butene (?)	43	40	AJ
	3,7-Dimethyloctylamine	он, кон	Distil	3,7-Dimethyl-1-octene	65	256	
	3,7-Dimethylocta-2,6- dienylamine	ОН	Distil	Myrcene		219	AMINES
	(t-C ₄ H ₉) ₂ CHCH ₂ NH ₂	ОН	100°/10 mm,	$(t-C_4H_9)_2C=CH_2$	81	42	
	3,7-Dimethylocta-6-enylamine	он	Distil	β -Linalolene		219	
	1-Benzylallylamine	OSO2OCH		Phenylbutadiene		46	
	Cyclodecylamine	ОН	Heat, vac.	Cyclodecene (cis, 2%; trans, 98%)	90, 64	56, 58, 257	
Note	· References 104 to 301 are on pp	480-403					41

415

TABLE XVI—Continued

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

No.	DECOM	OSITION OF	QUATERNAL	NY ARMONION COMPOUNDS			
of C				Elimination Product(s)		,	
Atoms	Amine	Derivative	Conditions	(Composition of Mixture)	Yield, %	References	
C10	3-Amino-cis-cyclodecene	он	110°, vac.	cis-trans-1,3-Cyclodecadiene	20	60	
(cont.)	6-Hydroxycyclodecylamine	он		6-Hydroxycyclodecene (cis, 60%; trans, 40%)	90	257a	
	Cyclononylmethylamine	он	140180°, vac.	Methylenecyclononane (96%) , 1-methylcyclononene (4%)	71	52a	~
	1-Methylcyclononylamine	ОН	85–100°, vac.	Methylenecyclononane (48%), 1-methylcyclononene (cis-, 51%; trans, 1%)	83	52 <i>a</i>	ORGANIC
	Menthylamine	он	130-140°	87% Δ^2 - and 14% Δ^3 - Menthene	80, 30		
	Isomenthylamine	он	145–200°, vac.	Δ^2 -Menthene	58	17	REACTIONS
	Neomenthylamine	он	130-140°	8% Δ^2 - and 92% Δ^3 - Menthene	94, 86	16, 17, 173	ION
	Neoisomenthylamine	ОН	130140°	Δ^{3} -Menthene "mainly"	30	17	02
	Carvomenthylamine	он	166°/20 mm.	Δ^2 -Menthene	3	258	
	Piperitylamine	он	Steam distil	Neopiperitol, α-Phellandrene	27 15	97	
	Piperitylamine	Iodide	150–200°/ 30 mm.	α-Phellandrene, α-terpinene	68	97	
	2-Aminotetralin	он	50°/12 mm.	1,2-Dihydronaphthalene	60	259	
	trans-a-Decalylamine	ОН	100°/3- 4 mm.	<i>trans</i> - $\Delta^{1,2}$ -Octalin	40	191, 260, 261	

	Bornylamine	он	Pyrolyze	Bornylene		260, 261, 33	
	Neobornylamine	он	180°	Bornylene and tricyclene (little)		33	
	Pinocamphylamine	он	150°/0.02 mm.	α - and δ -Pinene		262, 263	
	α-Aminocamphene	он	Distil	Camphinene	42	264	
	3-(p-Methoxyphenyl)-2- amino-1-propanol	ОЙ	Vac. distil	3-(p-Methoxyphenyl)allyl alcohol		110	
	Phenethylethylamine	ОН	85–150°/ 20 mm.	Styrene, 0.004% ethylene	93	36, 11	
	2-Methyltetrahydroquinoline	ОН	Distil	No olefin, recovered amine	—	83	0
	NH	ОН	100°, vac.	N,N-Dimethyl-1- naphthylamine	55	265	OLEFINS
	1,10-Diaminodecane	ОН	Distil	1,9-Decadiene	6	95	FROM
	CH ₂ NH ₂ (trans)	Di OH	120–140° vac.	CH ₂ CH ₂	56	240	M AMINES
	N-Amylpiperidine	он	Distil	Amylene and N CH ₃ C ₅ H ₁₁ -n		266	
	p-Methoxyphenylalanine	Iodide + KOH	100°	p-Methoxycinnamic acid		49	
Note	e: References 194 to 391 are on pp	. 489–493.					417

TABLE XV	I—Continued
----------	-------------

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

Decomposition of Quaternary Ammonium Compounds									
No. of C Atoms	Amine	Derivative	Conditions	Elimination Product(s) (Composition of Mixture)	Yield, %	References			
C11	1-Amino-5-phenylpentane	ОН	Distil	5-Phenyl-1-pentene (?)	20	39			
\mathbf{U}_{11}	5-Phenoxyamylamine	OH	Distil	5-Phenoxy-1-pentene	33	39			
	1-(3,4-Dimethoxyphenyl)- propylamine	Iodide	100°, aq. soln.	(CH ₃ O) ₂ C ₆ H ₃ CH=CHCH ₃ , (CH ₃ O) ₂ C ₆ H ₃ CHOHCH ₂ CH ₃		30			
	1-(p-Methoxyphenyl)iso- butylamine	Free amine	Heat in formic acid	<pre>isobutylene (?)</pre>		30	0		
	Cyclodecylmethylamine	ОН	110-130°, vac.	Methylenecyclodecane (98%), 1-methylcyclodecene (2%)	74	52a	RGAÌ		
	1-Methylcyclodecylamine	ОН	Vac.	Methylenecyclodecane (66%), 1-methylcyclodecene (cis, 31%; trans, 2%)	92	52a	ORGANIC REACTIONS		
	Isoamyl-(3,3-dimethylbutyl)- amine	он	Distil, vac.	Isoamylene (91%), <i>t</i> -butylethylene (9%)	68	37	ACTI		
	Cyclopentylcyclo- hexylamine	ОН	140°	Cyclopentene (95%) , cyclohexene (5%)		53	ONS		
		он	35–110°, vac.	N(CH ₃) ₂	80	72			
	N-Hexylpiperidine	ОН	Distil, KOH	Hexene and $n-C_6H_{13}$ CH ₃	28 59	74			

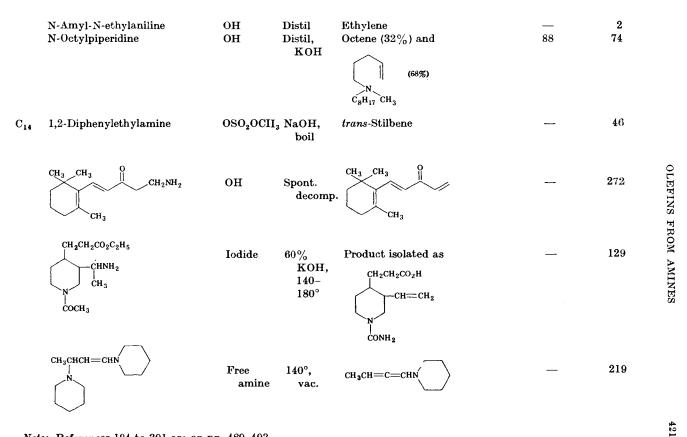

	N-Ethyltetrahydroquinoline N-Ethyl-N-propylaniline	ОН ОН	Distil Distil, KOH	Ethylene Ethylene (mostly), propylene	"Entirely" —	244 267	
	N-Cyclohexylpiperidine	он	200°	C ₆ H ₁₁ CH ₃	80	268	
	CH ₂ NH ₂ CH ₂ NH ₂	Di OH	120–140°, vac.	CH ₂ CH ₂	61	240	OLE
C ₁₂	$n-C_8H_{17}CH(C_2H_5)CH_2NH_2$	он, кон	Distil	$n-C_8H_{17}C(C_2H_5) = CH_2$	45	256	FI
	5-Benzamido-1-pentylamine	OH	Distil	C ₆ H ₅ CONH(CH ₂) ₃ CH=CH ₂	40	39	S
	trans-2-Phenylcyclohexylamine	он	Distil	1-Phenylcyclohexene	73	21	Ξ
	trans-2-Phenyl-3,3,6,6-d ₄ - cyclohexylamine	он	90°/1 mm.	l-Phenyl-3,3,6,6-d ₄ - cyclohexene	91	23	ROM
	cis-2-Phenylcyclohexylamine	OH	Distil	1-Phenylcyclohexene	—	21	A
		он	85–90°, vac.	N(CH ₃) ₂	78	72	OLEFINS FROM AMINES
	N-Benzylpiperidine	он	Distil	C ₆ H ₅ CH ₂ CH ₃		266	
	Second step	он	Distil	1,4-Pentadiene		266	419
Note	· References 194 to 391 are on nn	480-403					9

TABLE XVI-Continued Decomposition of Quaternary Ammonium Compounds

No. Elimination Product(s) of C Derivative Conditions (Composition of Mixture) Yield, % References Atoms Amine 269 60 N-Phenethylpyrrolidine OH Heat Styrene C_{12} N-Propyltetrahydoquinoline он Distil Propylene $\mathbf{25}$ $\mathbf{244}$ (cont.)65 91 1,11-Dodecadiene 1,12-Diaminododecane \mathbf{OH} Distil C₁₃ $\mathbf{270}$ 2-Phenyl-3-aminobicyclo- \mathbf{OH} Distil Neutral material ___ [2.2.1]heptane 93 36 OH 85-150°/ Propene (59.7%), n-Decylpropylamine 1-decene (40.3%) 20 mm. 53 \mathbf{OH} -140° Methylenecyclohexane, CH₂NHCH₂ methylenecyclopentane, ca. 2:1 ratio CH CH 72 115–120°, он vac. ĥ сн, СН3 (cis) CH3 CH₃O 271 OSO2OCH3 KOH, CH₃O -CH₃ .CH₃ сн₃с steam сн30 ŃН ℃H₃ bath ĊH3 ċн_з (or isomer) .СН3 $\mathbf{271}$ OSO2OCH3 KOH, Second step CH₃O steam CH₃O bath

420

ORGANIC REACTIONS

Note: References 194 to 391 are on pp. 489-493.

 \mathbf{OH}

Distil

Hexadecene

n-Cetylamine

C16

TABLE XVI—Continued

422

No.	DECOM	POSITION OF	QUATERNAI	RY AMMONIUM COMPOUNDS			
of C				Elimination Product(s)			
	Amine	Derivative	Conditions	(Composition of Mixture)	Yield, %	References	
C ₁₅	$\mathrm{C_6H_5CH(CH_3)CH(NH_2)C_6H_5}$	OC_2H_5	C ₂ H ₅ OH, reflux				
	erythro			cis-1,2-Diphenylpropene	85	15	
	threo			trans-1,2-Diphenylpropene	90	15	
	Either isomer	OC₄H ₉ -t	<i>t</i> -C ₄ H ₉ OH, 30°	trans-1,2-Diphenylpropene (mainly)	98	15	ORG
	O II			O II			ORGANIC
	C ₆ H ₅ [©] CHCH ₂ C ₆ H ₄ X NH ₂	OSO₂OCH₂	KOH, boil	C ₆ H ₅ ["] CH=CHC ₆ H ₄ X		122, 273	REACTIONS
	$\mathbf{X} = m$ -Br, p -Br, p-NO ₂ , p -OCH ₃			$\mathbf{X} = m$ -Br, p-Br, p-NO ₂ , p-OCH ₃			ONS
	C ₆ H ₅ CH ₂ CHCH ₂ C ₆ H ₄ X NH ₂	ОН	KOH, distil in vac.	$C_{6}H_{5}CH = CHCH_{2}C_{6}H_{4}X (I),$ $C_{6}H_{5}CH_{2}CH = CHC_{6}H_{4}X (II)$			
	$X = m \text{- or } p \text{-Cl}$ $= m \text{-CH}_{3}$ $= p \text{-CH}_{3}$				90 93 95	274 274 274	
a	. Ost-longing	OT	Dist:	F ===3; == 70 =; == 70 ==		20	

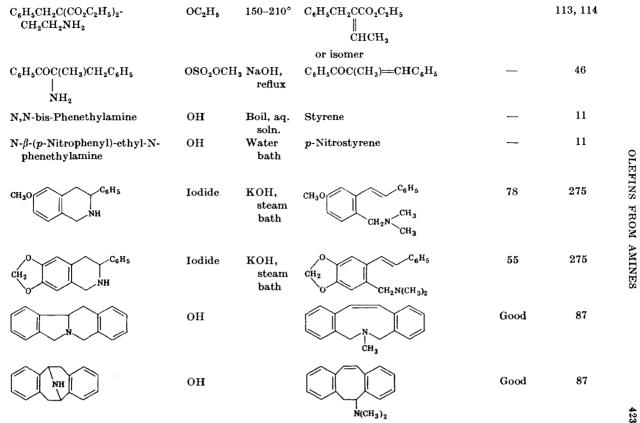
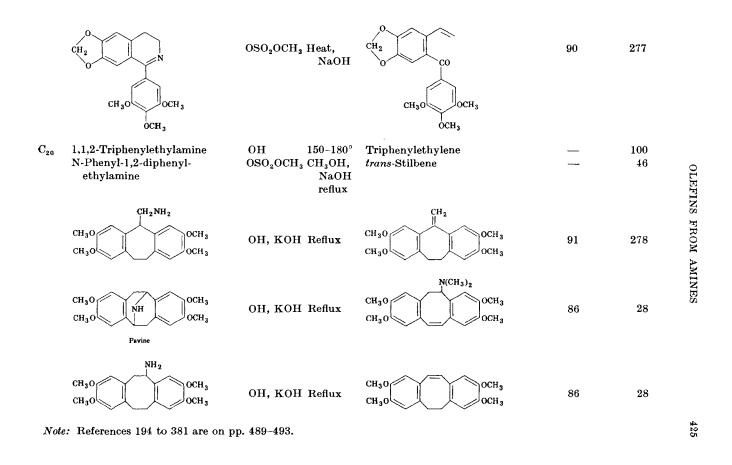



TABLE XVI—Continued

424

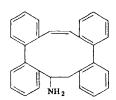
DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

	DECOMIC		QUALLIMAN A	I IMMONIUM COMPOUNDO			
No. of C Atoms	Amine	Derivative		Elimination Product(s) (Composition of Mixture)	Yield, %	References	
C ₁₆ (cont.)	NH ₂	он			Satis- factory	87	
		он	Heat	N(CH ₃) ₂	85	265	ORGANIC
C ₁₇	C ₆ H ₅ COCH ₂ NH(CH ₂) ₃ C ₆ H ₅ Amine, C ₁₇ H ₃₅ N, from naphthenic acid	Bromide OH	NaNH ₂ Distil	C ₆ H ₅ CH _ CHCH ₃ Olefin	Small 63	276 91	ORGANIC REACTIONS
C ₁₈	$H_5C_6 - CH_2NH_2$ $H_5C_6 - CH_2NH_2$	ОН	100–140°/ 0.5 mm.	H_5C_6 CH_2 H_5C_6 CH_3	_	149	NS
	H_5C_6 CH_2NH_2 H_5C_6 CH_2NH_2	ОН	120-140°/ 0.5 mm.	$H_5C_6 \xrightarrow{CH_2} CH_2$ $H_5C_6 \xrightarrow{CH_2} CH_2$	_	92	
C ₁₉	$C_6H_5(CH_2)_3CHCH_2NH_2$ $(CH_2)_2C_6H_5$	он, кон	Distil, vac.	C=CH ₂	70	256	
				$C_6H_5(CH_2)_2$			

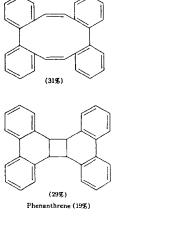
No.	Decomp	OSITION OF	QUATERNA	RY AMMONIUM COMPOUNDS			126
of C Atoms	Amine	Derivative		Elimination Product(s) (Composition of Mixture)	Yield, %	References	
C ₂₀ (cont.)	CH ₃ O CH ₃ O CH ₃ O	OSO₂OCH₃	120°	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃ O	_	279	ORGA
	CH ₃ 0 CH ₃ 0 CH ₃ 0 CH ₃ 0 CH ₃ (second step)	OSO₂OCH₃	KOH, steam bath	CH ₃ O CH		279	ORGANIC REACTIONS
C ₂₁	$\mathrm{C_6H_5COCH(NH_2)CH(C_6H_5)_2}$	OSO2OCH3	Alkali, reflux	$C_6H_5COCH=C(C_6H_5)_2$		122	
	3(α), 12(α)-Dihydroxy-20- aminopregnane (partly acetylated)	Iodide	50% NaOH, 180°	Isolated as $3(\alpha), 12(\alpha)$ - diacetoxy- Δ^{20} -pregnene	35	280	
	$3(\alpha)$ -Aminoallopregnane	он	200°/5 μ	Allopregnene, Δ^2 - or Δ^3 -	30	18	
	$3(\beta)$ -Aminoallopregnane	он	200°/5 μ	Allopregnene, Δ^2 - or Δ^3 -	4	18	
	3-Acetoxy-20-amino- Δ^{s} - pregnene	Iodide	KOH, ethylene glycol	3-Hydroxy- Δ^5 , ²⁰ -pregnadiene	65	136	

TABLE XVI—Continued

	C ₆ H ₅ CH ₂ CH ₂ NH(CH ₂) ₅ - NHCH ₂ CH ₂ C ₆ H ₅	OH	Heat	Styrene	60	269
C ₂₃	$3(\alpha), 12(\alpha)$ -Dihydroxy-23-amino- norcholane (partly acetylated)	Iodide	50% KOH, 200°	Isolated as $3(\alpha), 12(\alpha)$ - diacetoxy- Δ^{22} -norcholene	14	280
C ₂₄	3(α)-Hydroxy-12-aminocholanic acid	Iodide	60% KOH, 160°	$3(\alpha)$ -Hydroxy- \triangle^{11} -cholanic acid (isolated as the methyl ester)	35	280
	$o\text{-}\mathrm{C_6H_4(CH_2NHCH_2CH_2C_6H_5)_2}$	OH	Heat	Styrene	65	269
C ₂₆	CH ₃ O CH ₃ O (CH ₂) ₁₄ CH ₃	ОН	100°	$CH_{3}O$ $CH_{$	_	31
	$CH_{3}O = C_{2}H_{5}$ $CH_{3}O = C_{15}H_{31}$ H_{2}	Iodide	100°	$CH_{30} CH_{2}H_{5}$ $CH_{30} CH=CHC_{14}H_{29}$	_	31
C ₂₇	3(a)-Aminocholestane	OH	170°/0.5 mm.	Δ^2 - and Δ^3 -Cholestene	50	18
	$3(\beta)$ -Aminocholestane	он	170°/0.5 mm.	Neutral product, not investigated	ca. 3	18
	$3(\beta)$ -Amino- Δ^{5} -cholestene	он	180°/0.1 mm.	Δ^{3} , 5-Cholestadiene		18
	6-(x)-Aminocholestane	ОН	175–195°/ 0.02 mm.	5- and 6-Cholestene	Very low	19
	6 -(β)-Aminocholestane	011	Room temp., vac.	5-Cholestene	65	19


428

No. of C Elimination Product(s) Yield, % Derivative Conditions (Composition of Mixture) References Atoms Amine OCH3 CH₃O сн30 31 100° он C₂₈ оснз ORGANIC REACTIONS CH 30 Ń H -(CH₃)₂ CH₃C N H ¦с́н₂ .с́н₂ CH2-CH2-CH2 (CH₂)4 C₂H₅ CH30 C₂H₅ CH 3O 31 Di-100° ÇHNH₂ CH3O Сн сн_зоі iodide H CH-CH₂CH₂ CH₂CH₂CH₂-____2 280a он 180-190° 82сн_з


TABLE XVI-Continued

DECOMPOSITION OF QUATERNARY AMMONIUM COMPOUNDS

OLEFINS FROM AMINES

он

Note: References 194 to 391 are on pp. 489-493.

429

OLEFINS FROM AMINES

280a

TABLE XVII

QUATERNARY COMPOUNDS THAT CONTAIN NO N-METHYL GROUPS

No.						
of C Atoms	Ammonium Ion	Derivative	Conditions	Elimination Product(s) (Composition of Mixture)	Yield, %	References
C ₈	Tetraethyl	он	Distil	Ethylene		1
C,		ОН	140°	N and N (50g) (50g)		ORGANIC REACTIONS
C10	Diethyldi-n-propyl	он	Distil	Ethylene (96%), propylene (4%)	99	37 ION
	O N O	он	170°, vac.		57	234
C11	<i>n</i> -Amyltriethyl	он	Distil	Ethylene		1
	Isoamyltriethyl	он	Distil	Ethylene		39
	N H ₃ C CH ₃	ОН	140°	N H ₃ C		53

℃Н2 71 $\mathbf{234}$ он 75-160°, vac. $\mathbf{2}$ C_{12} Phenyltriethyl \mathbf{OH} Heat Ethylene Distil Propylene (83%), butylene (17%) 37 C13 n-Butyltri-n-propyl OH OLEFINS FROM AMINES $\mathbf{281}$ \mathbf{OH} Distil, vac. CH.,) 37 C_{14} Di-n-propyldi-n-butyl он Distil Propylene (63%), butylene (37%) 95 Phenethyltriethyl Distil Styrene 79 37 он он Distil 281 223 Chloride кон, NCH 2CH 2 heat and acetylene, β -hydroxyethylpiperidine Propylene (36%), butylene (64%) 37 n-Propyltri-n-butyl он Distil 98 C_{15}

Note: References 194 to 381 are on pp. 489-493.

TABLE XVII—Continued

QUATERNARY COMPOUNDS THAT CONTAIN NO N-METHYL GROUPS						
Ammonium Ion	Derivative	Conditions	Elimination Product(s) (Composition of Mixture)	Yield, %	References	
Di-n-propyldiisoamyl	он	Distil	Propylene (96%), isoamylene (4%)	94	37	
	он	220°/20 mm.	CH2-N	60	281	OF
Di-n-butyldiisoamyl	ОН	Distil	Butylene (67%), isoamylene (33%)	94	37	ORGANIC
$\mathrm{C_6H_5COCH_2N(C_2H_5)_2C_6H_5}$	Bromide	KOH, heat	Ethanol		276	
NO ₂ NO ₂ NO ₂	B r omide	250°/0.01 mm.	2,4'-Dinitrodiphenylacetylene	55	282	REACTIONS
Tetra- <i>n</i> -amyl	ОН	Distil	Amylene		2	
$(C_6H_5)_2CCH \downarrow CH_2 \\ CH_2 \\ CH_2$	Iodide	NaOH, reflux	(C ₆ H ₅) ₂ C=	-	283	
	Ammonium Ion Di- <i>n</i> -propyldiisoamyl $\Box = \int_{N} $	Ammonium Ion Di-n-propyldiisoamylDerivative OH $(\Box + \Box + \Box + \Box + \Box + \Box)$ $(\Box + \Box + \Box + \Box)$ $(\Box + \Box + \Box + \Box)$ $(\Box + \Box + \Box)$ $(\Box + \Box + \Box)$ $(\Box + \Box)$ $(\Box + \Box + \Box)$ $(\Box + \Box)$	Ammonium Ion Di-n-propyldiisoamylDerivative Conditions OH OH Distil OH $Distil$ OH $220^{\circ}/20$ mm.Di-n-butyldiisoamylOH OH Distil $C_6H_5COCH_2N(C_2H_5)_2C_6H_5$ Bromide KOH , heat OH $250^{\circ}/0.01$ mm. OH $250^{\circ}/0.01$ mm.Tetra-n-amylOH $(C_6H_5)_2CCH < H_2$ IodideNaOH,	Ammonium Ion Di-n-propyldiisoamylDerivative OHConditions (Composition of Mixture) 	Ammonium Ion Di-n-propyldiisoarnylDerivative OHConditions (Composition of Mixture)Yield, % 94 OH DistilPropylene (96%), isoarnylene (4%))94 OH DistilButylene (67%), isoarnylene (33%)94 $C_6H_5COCH_2N(C_2H_5)_2C_6H_5$ BromideKOH, heatEthanol OH DistilButylene (67%), isoarnylene (33%)94 OH DistilButylene (67%), isoarnylene (33%)94 OH DistilButylene (67%), isoarnylene (33%)94 OH DistilAmylene OH DistilAmylene $(c_6H_5)_2CCH < H^2$ IodideNaOH, isoaH, iceH_5)_2C <	Ammonium Ion Di-n-propyldiisoamylDerivative OHConditions (Composition of Mixture) Propylene (96%), isoamylene (4%))Yield, % 94References 37 $(J-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I$

QUATERNARY COMPOUNDS THAT CONTAIN NO N-METHYL GROUPS

Note: References 194 to 391 are on pp. 489-493.

TABLE XVIII

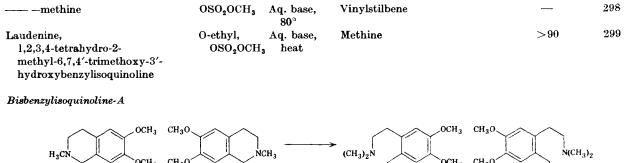
HOFMANN ELIMINATION REACTIONS WITH ALKALOIDS

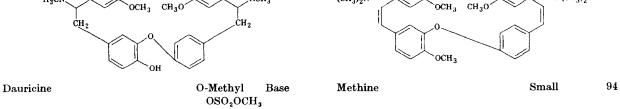
Name Aporphine	Derivativ e	Conditions	Product	Yield, %	References		
	>		N(CH ₃) ₂			OLEFINS	
		Methir	in the second	8-Vinylphenanthrene			
Actinodaphnine, 3,4-dimethoxy- 5,6-methylenedioxyaporphine	Iodide	Aq. KOH, boil	Methine		183	FROM AMI	
	Chloride Iodide, O-Methyl	Base, heat Aq. base, 100°	Vinylphenanthrene Methine		18 3 284	AMINES	
methine	Iodide	Aq. base	Vinylphenanthrene		284		
Anonaine, 5,6-methylenedioxyaporphine	Iodide	Aq. base, heat	Methine	91	285		
methine	Io di de	CH ₃ OH, base, heat	Vinylphenanthrene	76	2 85		
Note: References 194 to 391 are	on pp. 489–493	}.					
* The methine nomenclature is explained on p. 321.							

TABLE XVIII—Continued HOFMANN ELIMINATION REACTION WITH ALKALOIDS						
Name Aporphine (Continued)	Derivative	Conditions	Product	Yield, %	References	
			$ \sum_{\mathbf{N}(\mathbf{CH}_3)_2} \longrightarrow \underbrace{ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$			ORGANIC
		Meth	ine* 8-Vinylphena	nthrene		
Boldine, 2,6-dihydroxy-3,5- dimethoxyaporphine	O,O-Di- ethyl, OH	100°, vac.	Methine		180	REACTIONS
methine Crebanine, 1,2-dimethoxy-5,6- methylenedioxy aporphine	он	100°, vac. —	Vinylphenanthrene l,2-Dimethoxy-5,6-methylene- dioxyphenanthrene, after oxidation and decarboxylation	_	180 286	NS
Dicentrine, 2,3-dimethoxy-5,6- methylenedioxyaporphine	Iodide	Aq. base, 100°	Methine		287	
Glaucine, 2,3,5,6-tetramethoxy- aporphine	Iodide	Heat, base	Methine	_	288, 289	
methine	он	Distil, base	Vinylphenanthrene	83	288, 289	

Isothebaine, 3,5-dimethoxy-4-hydroxy- aporphine	O-Methyl, OSO2OCH	Aq. base, 3 heat	Methine	85	290, 291	
methine	OSO2OCH3	Base, CH ₃ OH, heat	Vinylphenanthrene	80	290, 291	
Laureline, 3-methoxy-5,6-methylenedioxy aporphine	Iodide	Aq. KOH, boil	Methine	_	292, 79	
methine	Chloride	Aq. KOH, boil	Vinylphenanthrene	89	292, 79	
Laurotetanine, 2-hydroxy-3,5,6-trimethoxy- aporphine	N-Ethyl-, O-ethyl-, iodide	Aq. NaOH, heat	Methine	_	293	OLEFINS
	OH	Heat	Methine	88	294	Ŧ
	ОН	Distil, vac.	Methine		295	N
methine	Chloride	Aq. NaOH	Vinylphenanthrene	_	293	
	ОН	Heat	Vinylphenanthrene	60	294	ਸ
	ОН	100°/10 mm.	Vinylphenanthrene	70, overall	295	FROM
Pukateine, 4-hydroxy-5,6-methylene- dioxyaporphine	Iodide, O-methyl	Aq. KOH, heat	Methine	_	292	AMINES
methine	Chloride	Aq. KOH, heat	Vinylphenanthrene		292	IES
Tuduranine, 3-hydroxy-5,6-	O-Methyl iodide	Aq. NaOH, heat	Methine	_	296	
methylenedioxyaporphine	O-Ethyl iodide	Aq. NaOH, heat	Methine	_	296	
methine	O-Methyl iodide	Aq. NaOH, heat	Vinylphenanthrene	_	296	
	O-Ethyl iodide	Aq. NaOH, heat	Vinylphenanthrene	_	296	
Note: References 194 to 391 are	on pp. 489–493					435

* The methine nomenclature is explained on p. 321.


436


TABLE XVIII—Continued

HOFMANN ELIMINATION REACTION WITH ALKALOIDS

Name	Derivative	Conditions	Product	Yield, %	References
Benzylisoquinoline					
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>		N(CH ₃) ₂ CH CH		ORGANIC REACTIONS
ť		Methi	ine	Vinylstilbene	TIO
Armepavine, 1,2,3,4-tetrahydro-2- methyl-6,7-dimethoxy-4'- nydroxybenzylisoquinoline	Iodide, O-Methyl	CH ₃ OH, base, heat	Methine	Quant.	297 2
methine	Iodide	CH₃OH, base, heat	Vinylstilbene	95	297
Coclaurine, 1,2,3,4-tetrahydro-6- methoxy-7,4'-dihydroxy-	OSO ₂ OCH ₃ , O,O- dimethyl	Aq. base, 120 130°	Methine		298

benzylisoquinoline

OLEFINS FROM AMINES

HOFMANN ELIMINATION REACTION WITH ALKALOIDS Yield, % References Derivative Conditions Product Name Bisbenzylisoquinoline-B R₁O R_1O R₁0 OR₃ OR₃ OR₃ (CH₃)2¹ R N(CH₃)2 ORGANIC REACTIONS СН ∥ СН С́Н ∥ С́Н OR2 OR₂ СН || .СН OR₂ ċн₂ ĊH2 o 0 -0 A 0 R4O R₄Ó Ř₄0́ Methine des-aza Product R₁O R10. OR3 OR₃ (CH₃)2^Ń (СН₃)2 СНО сно OR. онс OHC OR 0 0 Cepharanthine $R_1 = R_4 = R_5 = R_4 = CH_3$ $R_3 = R_3 = --CH_3$ 300 Iodide Aq. base, a-Methine, 30 parts β -Methine, 1 part heat

TABLE XVIII—Continued

α-Methine, ozonized	Iodide	Aq. base,	des-aza Aldehyde		300	
Daphnandrine $R_1 = R_3 = R_4 = CH_3$ $R_5 = H$	O-Methyl iodide	Aq. base, heat	Methine		301	
$\begin{array}{l} \mathbf{R_5} \text{ or } \mathbf{R_6} = \mathbf{CH_6} \\ \mathbf{R_6} \text{ or } \mathbf{R_5} = \mathbf{H} \end{array}$						
methine	Iodide	Aq. base, heat	des-aza Product	_	301	
Daphnoline (trilobamine) $R_1 = R_3 = CH_3$	O,O- Diethyl iodide	Aq. base, heat	Methine	_	301, 302 C	
$\begin{aligned} \mathbf{R}_{\mathbf{s}} &= \mathbf{R}_{4} = \mathbf{H} \\ \mathbf{R}_{5} \text{ or } \mathbf{R}_{6} &= \mathbf{CH}_{6} \end{aligned}$	Iouiu				OLEFINS	
R_6 or $R_6 = H$ Hydroepistephanine $R_1 = R_3 = R_3 = R_4 = R_5 = CH$			Methine		303 ^{FR} OM	
$R_6 = H$ methine	•		des-aza Product			
Oxyacanthine $R_1 = R_3 = R_3 = R_3 = R_3 = CH$ $R_4 = H$	O-Methyl 3 OSO2OCH	Aq. base, [₃ heat	Methine		303 M 304 Z Z	
methine	O-Methyl OSO2OCE	Aq. base,	des-aza Product	—	304	
Repandine $R_1 = R_3 = R_3 = R_5 = R_6 = CH$ $R_4 = H$	O-Methyl	Aq. base, heat	Methine	—	305	

Name

439

Yield, %

References

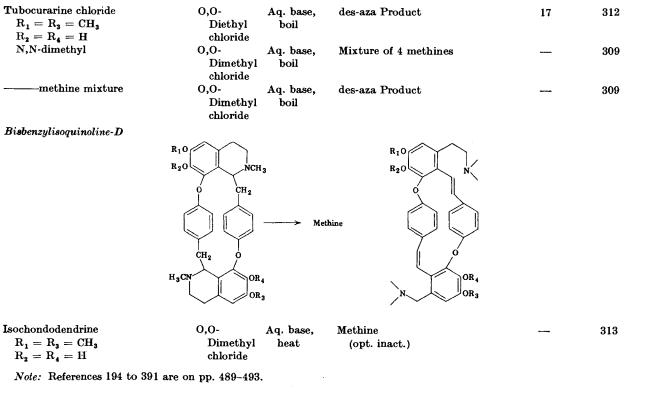
TABLE XVIII—Continued

HOFMANN ELIMINATION REACTION WITH ALKALOIDS

Product

Conditions

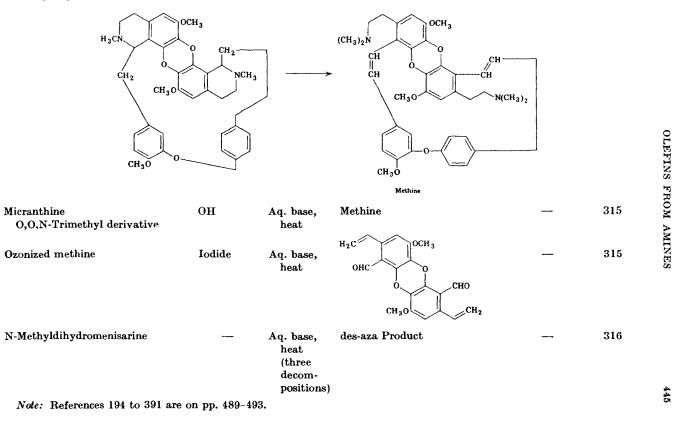
Derivative


Bisbenzylis oquinoline-B'OR3 R10 OR₃ R₁O OR₃ R₁O ORGANIC REACTIONS [|] N(CH₃)₂ СНО JOR2 (CH3)2N OR2 R₆N OR2 (CH₃)₂N NR. Ν(CH3)2 СH || CH `СН ∥ СН онс ,ċн2 ċн2 Ozonized α -methin OR₄ OR a-Methine OR₃ R₁O OR3 R10 / / (CH3)2N. OR2 OHC OR2 CHN(CH₃)₂ сно ĊН CH2 0 ĊН2 des-aza Aldehyde OR₄ β -Methine

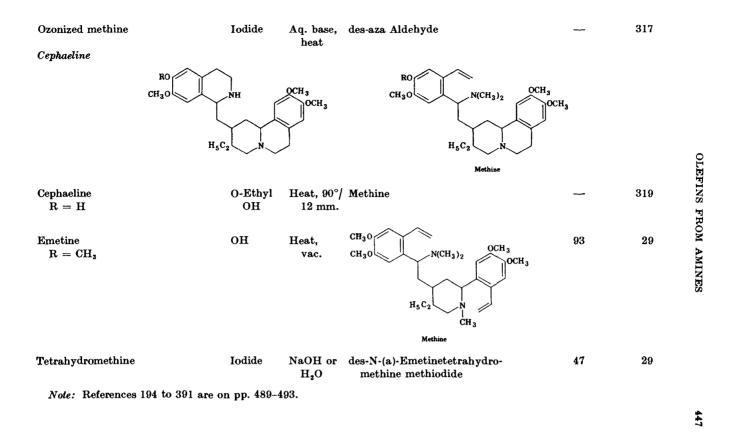
Berbamine $R_1 = R_2 = R_3 = R_5 = R_6 = CH$	O-Methyl 3 OH	Aq. base, heat	α-Methine		177
$R_4 = H$ Pheanthine (1-isotetrandrine)			α - and β -Methine	—	306
$R_{1} = R_{2} = R_{3} = R_{4} = R_{5} = R_{4}$ = CH ₃ Tetrandrine $R_{1} = R_{2} = R_{3} = R_{4} = R_{5} = R_{6}$ = CH ₃	_	Aq. base, heat	α -Methine and β -methine Mixture of α - and β -methines		307 177
Ozonized-a-methine		Aq. base, heat	des-aza Aldehyde		307

OLEFINS FROM AMINES

442 HOFMANN ELIMINATION REACTION WITH ALKALOIDS Derivative Conditions Produet Yield, % References Name Bisbenzylisoquinoline-CR₁O R₁O исн³ CH 2 OR₂ ORGANIC REACTIONS Mixture of methines ĊН OR4 H₃CN OR4 OR 3 ŎR3 (des-aza Product) **O-Ethyl** des-aza Product 308 Bebeerine Aq. base, (chondodendrine) $R_1 = R_3 = CH_3$ $R_2 = R_4 = H$ chloride boil 0,0-Aq. base, des-aza Product 309 Dimethyl boil chloride 0,0-Aq. base, des-aza Product 310 Dimethyl boil chloride Chondrofoline R_1 or $R_3 = CH_3$ R_3 or $R_1 = H$ $R_2 = R_4 = CH_3$ Aq. base, boil **O-Methyl** Methines 23 311 chloride (as methiodide)


TABLE XVIII—Continued

OLEFINS FROM AMINES


TABLE XVIII—Continued							
HOFMANN ELIMINATION REACTION WITH ALKALOIDS			14				
Name Derivative Conditions Product	Yield, %	References					
Bisbenzylisoquinoline-D (Continued)							
$\begin{array}{c} R_{1}0 \\ R_{2}0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			ORGANIC REACTIONS				
Oxidized methine Chloride Aq. base, CH_3O heat CH_3O CO_2H		313					
NeoprotocuridineO,O-Aq. base,Methine $R_1 = R_3 = H$ Dimethylboil(opt. inact.) $R_2 = R_4 = CH_3$ chloride	_	314					

Bisbenzylisoquinoline-E

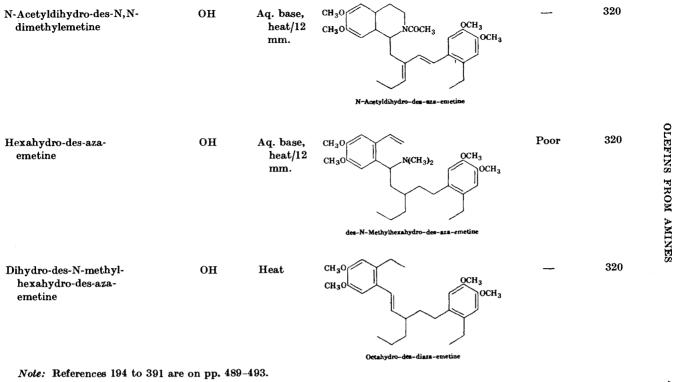
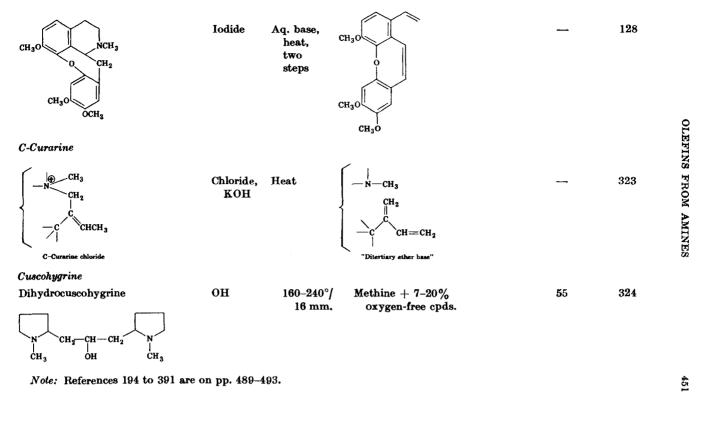

HOFMANN ELIMINATION REACTION WITH ALKALOIDS Derivative Conditions Product Yield, % References Name . Bisbenzylisoquinoline-F осн3 QCH₃ 1 Methine Ozonized methine H₃Ch онс ċн2 сно ORGANIC REACTIONS С́Н2 OCH3 des-aza Aldehyde CH3 (CH₃) OH онс сн₃о́ $(CH_3)_2 N$ Aq. base, Methine Trilobine OSO2OCH3 ca. 80 317 \mathbf{heat} (opt. inact.) Aq. base, **Ozonized** methine Di-iodide des-aza Aldehyde 317 heat Isotrilobine OSO2OCH3 Aq. base, Methine 317 heat (opt. act.) ĊH 2 ĊH, OSO2OCH3 Base Methine 318 осн.

TABLE XVIII-Continued

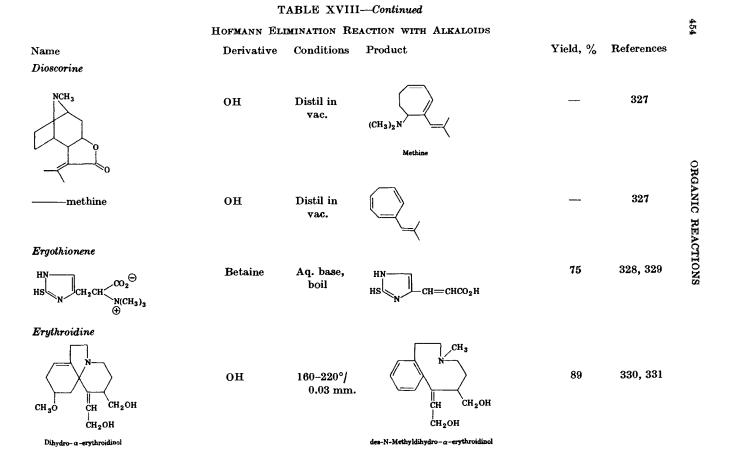
HOFMANN ELIMINATION REACTION WITH ALKALOIDS **Derivative Conditions Product** Yield, % References Name Cephaeline (Continued) RC RO OCH 3 OCH3 N(CH₃)₂ CH nu OCH, осн, ORGANIC REACTIONS H₅C₂ H₅C₂ Methi CH₃O 320 Emetine N-Acetyl Heat OCH3 он снзс $\mathbf{R} = \mathbf{CH}_{\mathbf{3}}$ COCH3 осн3 1 ĊН Acetyl des-N-methyle CH30 320 Good N-Acetyl он Aq. base, OCH₃ heat/12 CH₃ dihydro-des-N-ICOCH3 10CH3 methylemetine mm. N(CH3)2 N-Acetyldihydro -N.N-

TABLE XVIII-Continued


449

HOFMANN ELIMINATION REACTION WITH ALKALOIDS **Derivative Conditions Product** Yield, % References Name Colchinol 321 100-260°/ сн_зс Colchinol methyl ether он 15 mm. CH₃C CH30 NH₂ CH₃Ò **ЭСН**3 CH₃O сн3о olchinol methyl ethe n осн3 Coniine (CH3)2 Conii Conhydrine, он 100°, 6,7-Epoxyconiine methine 199-201 7-hydroxyconiine vac. 100°, 5,6-Dihydroxyoctene, 199-201 -methine, Low он 6,7-Epoxyconiine methine vac. 5,6-epoxyoctene 3-Hydroxyconiine 32 $\mathbf{202}$ Pseudoconhydrine, он Base, 100°, methine 3-hydroxyconiine vac. 202 он Base, 1,2-Epoxyoctane Dihydromethine, 6,7-Dihydro-3-hydroxyheat, coniine methine vac. 322 он Heat Coniine methine Coniine Coniine methine он Heat Octadiene 322

TABLE XVIII—Continued


ORGANIC REACTIONS

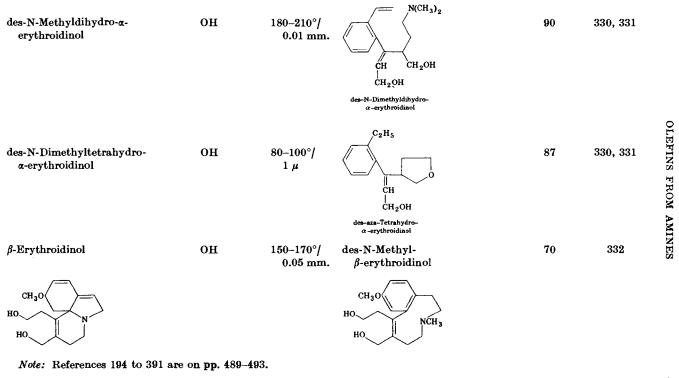
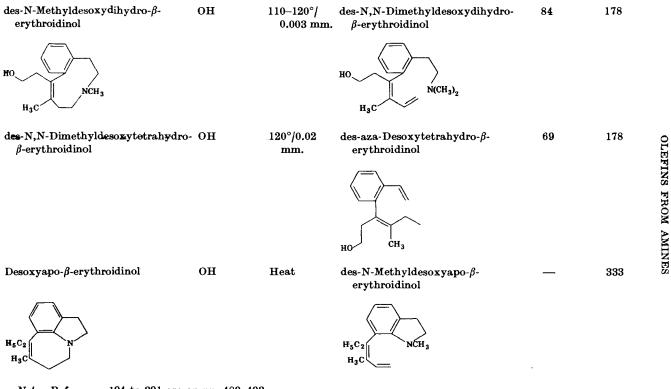

Cularine

TABLE XVIII—Continued						152
	Hofmann Eli	MINATION RE	ACTION WITH ALKALOIDS			
Name	Derivative	Conditions	Product	Yield, %	References	
Cuscohygrine (Continued)						
Dihydrocuscohygrine- methine (hydrogenated first)	ОН	65–150°/ 17. mm. repeated until all N re- moved	After hydrogenation : Foundecan-6-ol and undecane	_	324	ORC
Cylisine						AN
	Iodide	Amyl al- cohol, reflux	des-N-Dimethylcytisine	—	139	ORGANIC REACTIONS
ö	ОН	Evapor- ated, heat at 90°/5- 10 mm. with Pd- C hydro- genate immedi- ately		72	190	TIONS
des-N-Dimethylcytisine	ОН	Amyl alcohol, reflux	C ₂₂ H ₂₂ N ₂ O ₂ (bimolecular), des-aza-cytisine		139	

Dihydro-des-N-dimethylcytisine	ОН	120°	Dihydrohemicytisylene	70	190	
Tetrahydrodesoxycytisine	N-Acetyl OH	Distil at 140°/ 0.01 mm. (3 de- grada- tions)	H_3C C_5H_{11} I $COCH_3$	_	325	
Tetrahydrodesoxycytisine	ОН	Distil	des-N-Dimethyltetrahydro- desoxycytisine	90	190	~
Dihydro-des-N-dimethyltetra- hydrodesoxycytisine	ОН	Distil at 100° (3 degrada- tions followed by hydro- genation)	C ₁₃ H ₂₉ N	_	190	OLEFINS FROM A
<i>Delphinine</i> Delphinine	Iodide	Distil from aq. base	Methine base		326	AMINES

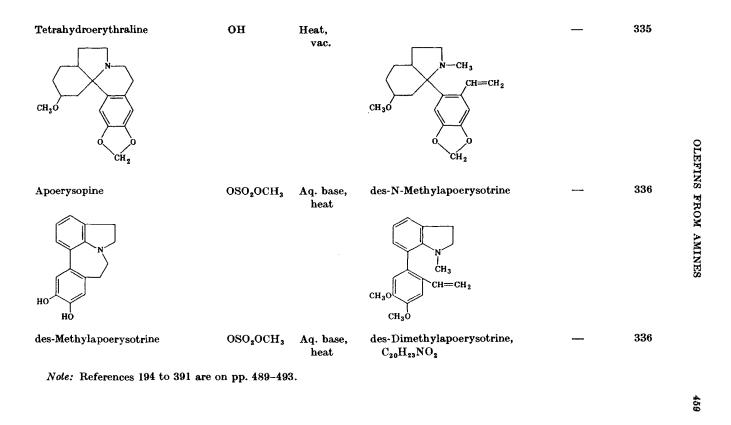

455

	Hofmann Eli	MINATION REA	action with Alkaloids			156
Name	Derivative	Conditions	Product	Yield, %	References	
Erythroidine (Continued)						
Dihydro- β -erythroidinol	ОН	130–150°/ 0.03 mm.	des-N-Methyldihydro-β- erythroidinol	78	178	
			HO NCH ₃			ORGANIC
des-N-Methyldihydro-β- erythroidinol	ОН	160–170°/ 0.03 mm.	des-N,N-Dimethyldihydro-β- erythroidinol	90	178	NIC RI
			HON(CH ₃) ₂			REACTIONS
des-N,N-Dimethyldihydro-β- erythroidinol	он	150–160°/ 0.001 mm	des-aza-Dihydro-β- a. erythroidinol	84	178	
			но но			

TABLE XVIII--Continued

456

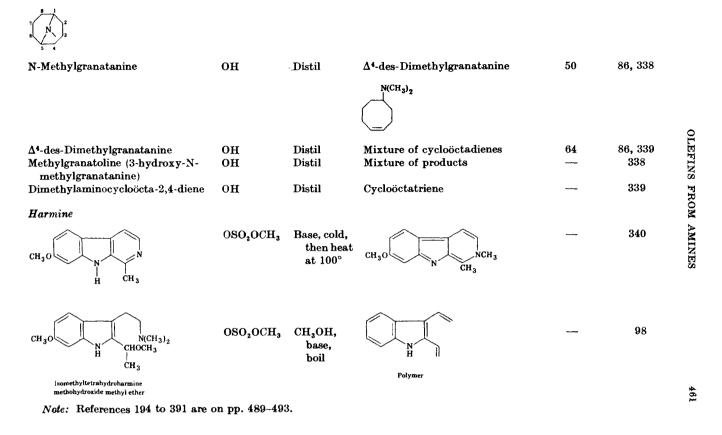
ORGANIC REACTIONS


457

458

Name	Derivative	Conditions	Product	Yield, %	References	
Erythroidine (Continued)						
Apo- β -erythroidine	Iodide	Aq. base	des-N-Methylapo- β -erythroidinol	54	334, 178	
						ORG
des-N-Methyldihydroapo- β .	ОН	Heat,	des-N,N-Dimethyldihydroapo-β-	55	334	ANI
erythroidinol		1.5 mm.	erythroidinol			G H
			0=N(CH_3)2			ORGANIC REACTIONS
Erysotrine						
Tetrahydroerysotrine	ОН	120°, vac.			335	
CH ₃ O CH ₃ O CH ₃ O			CH ₃ O CH ₃ O CH ₃ O			

TABLE XVIII—Continued


HOFMANN ELIMINATION REACTION WITH ALKALOIDS

	-		000000000			0
HOFMANN ELIMINATION REACTION WITH ALKALOIDS						
Name	Derivative	Conditions	Product	Yield, %	References	
Gelsemine						
$ \begin{array}{c} & & \\ & & $	Iodide	Aq. base, 240– 250°, vac.	CH ₃ CH ₃		7, 116, 117	ORGAN
			N(a)-Methylgelsemine			IC
Dihydrogelsemine	Iodide	Aq. base, 240– 250° vac.	N(a)-Methyldihydrogelsemine		7, 116, 117	ORGANIC REACTIONS
Octahydrogelsemine	Io di de	Aq. base, 240– 250° vac.	N(a)-Methyloctahydrogelsemine	_	7, 116	
Gramine						
CH ₂ N(CH ₃) ₂	Iodide	Methanol or aq. b a se	CH2OCH3	_	337	

TABLE XVIII—Continued

Granatanine

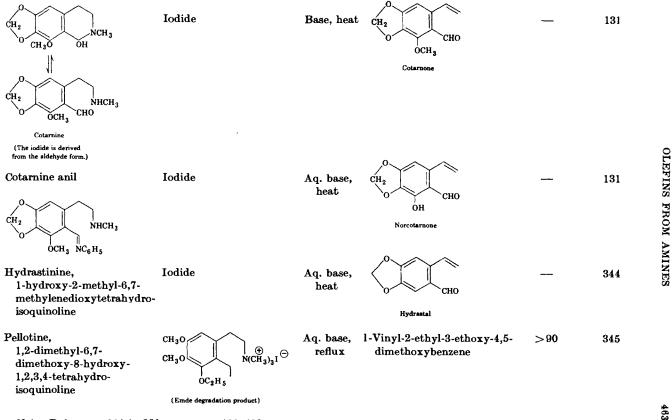


TABLE XVIII—Continued					
	Hofmann El	IMINATION REACTION WITH ALKALOIDS			
Name	Derivative	Conditions Product	Yield, %	References	
Hetisine					
$C_{20}H_{27}NO_3$	ОН	160–200°/ des-N-Methylhetisine 0.3 mm.		341	
Dihydrohetisine,	0.77			0.41	
C ₂₀ H ₂₉ NO ₃	он	160-200°/ Methine base 0.3 mm.	_	341	•
Hordenine)RG
HO N(CH ₃) ₂	ОН	120–130° CH ₃ O	90	342	ORGANIC RE
Hypaphorine					REACTIONS
$\underbrace{\bigvee_{\substack{N \\ H}}^{CH_2 CHCO_2^{\Theta}}}_{H}$	Betaine	Aq. base, Indole heat		343	ONS

Isoquinoline

(Several derivatives of tetrahydroisoquinoline are included that are converted to the corresponding phenethylamine methiodides prior to the Hofmann elimination.)

464 TABLE XVIII-Continued HOFMANN ELIMINATION REACTION WITH ALKALOIDS Name **Derivative Conditions Product** Yield, % References Laburnine CH20H (3 degra-N-Free product 346 dations) ۱н Lobelia Alkaloids ORGANIC REACTIONS ≈_{R1} Ro Rí R, R۱ (CH3)2 ĊН3 Substituted Methine heptadiene Lelobanine ОН Heat $C_6H_5CH(CH_2)_7CHC_2H_5$ 45 0 ÓН ÓН $\mathbf{R_1} = - \mathbf{C}\mathbf{H_2}\mathbf{\ddot{C}C_2}\mathbf{H_5}$ (after hydrogenation) 0 $\mathbf{R_2} = -\mathbf{C}\mathbf{H_2} \overset{"}{\mathbf{C}}\mathbf{C_6}\mathbf{H_5}$ Lobelanidine он Heat, 270° "N-Containing compound" 75 Poor $\mathbf{R_1} = \mathbf{R_2} = -\mathbf{C}\mathbf{H_2}\mathbf{C}\mathbf{H} - \mathbf{C_6}\mathbf{H_5}$ ŲР

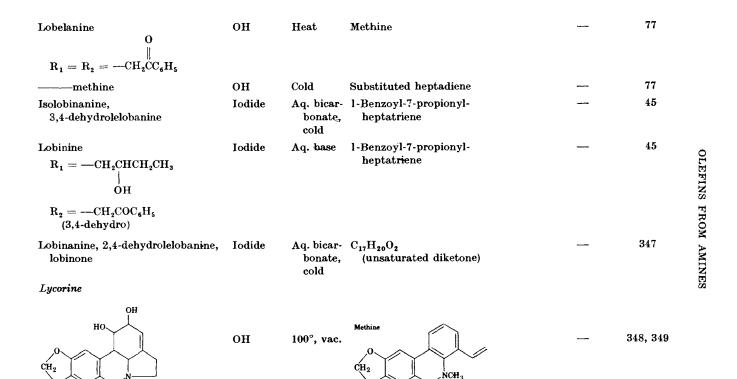


TABLE XVIII—Continued 466 HOFMANN ELIMINATION REACTION WITH ALKALOIDS **Derivative** Conditions Product Name Yield, % References Mavacurine <u>⊕</u>сн₃ Chloride кон, 350 -CH3 alcohol, heat ORGANIC REACTIONS но́ HO E₂-Dihyo Morphine CH N(CH₃)₂ ÒR2 R₁Ò Ò₽₂ R₁Ò ÓR2 R1Ó ÓR. α -Methine 13-Vinyl morphenol derivative Morp bol Aq. base, Methyl codeinemethine Codeine **O-Methyl** $\mathbf{72}$ 351 $R_1 = CH_3, R_2 = H$ iodide heat -methine он Aq. No elimination 137 NaOH, reflux

465

Acetocodeine	Iodide	Aq. base,	1-Acetomethine	70	352
(1-acetocodeine)		heat		_	
methine	он	200°/0.1 mm.	1-Acetomethylmorphenol	Low	352
Bromocodeine (1-bromocodeine)	Iodide	Aq. base, heat	1-Bromomethine	87	353
methine	OSO2OCH		1-Bromomethylmorphenol	_	353
Bromodesoxycodeine-C	OSO2OCH	Aq. NaOH			353
Br CH ₃ O O			Br CH ₃ O O		
Dihydrocodeine, $R_1 = CH_3, R_2 = H,$	Iodide	Aq. base, reflux	Dihydromethine	91	351
7,8-dihydro				**	~ ~ •
dihydromethine	он	140–190°/ 0.4 mm.	6-Hydroxy- and 6-methoxy-13- vinylhexahydromethylmorphenol	59	351
tetrahydromethine	он	140–190°/ 0.4 mm.	6-Hydroxy- and 6-methoxy-13-	56	351
tetrahydromethine	O-Methyl OH	140°/0.4 mm,	6-Methoxy-13-vinyloctahydro- methylmorphenol	87	351
Note: References 194 to 391 are of	on pp. 489–4	93.			

TABLE XVIII—Continued

HOFMANN ELIMINATION REACTION WITH ALKALOIDS

R10

Morphenol

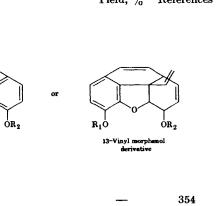
Derivative Conditions Product

R10

Iodide

a - Methine

N(CH3)2


ḋR₂

heat

Aq. base, Methine

467

OLEFINS FROM AMINES

83

355

ORGANIC REACTIONS

CH₃ сн₃о́ но сн₃ 6-Methyldihydrocodeine

Desoxycodeine-D

Name

СН30

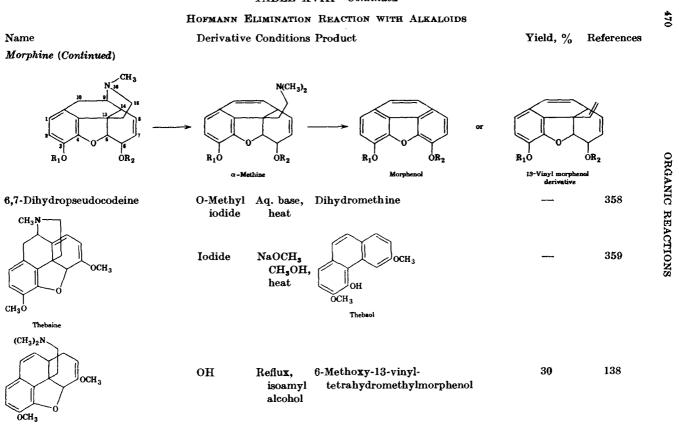
Morphine (Continued)

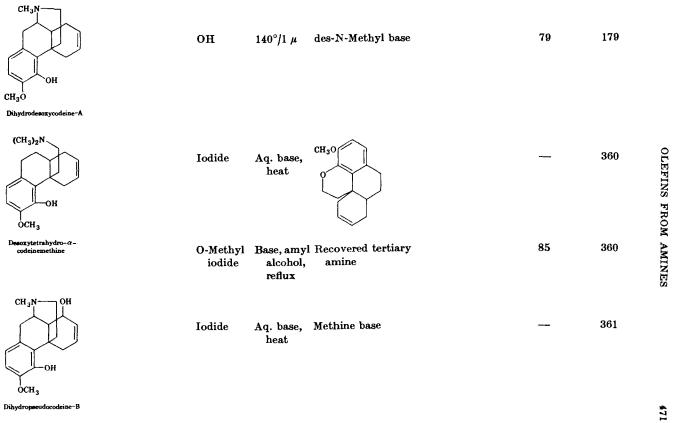
.CH₃

ÓR2

снз

Aq. base, Methine Iodide heat


Yield, % References


468

methine	ОН	100°, vac.	6-Methyl-6-hydroxy-13- vinylhexahydro- methylmorphenol	62	355	
$\begin{array}{l} \text{Morphine} \\ \text{R}_1 = \text{R}_2 = \text{H} \end{array}$	Always de	graded as n	nethyl ether; see Codeine			
N OH HO	Phenolic methyl ether iodide	Aq. base, heat	Methylisomorphimethine		184	
Isomorphine						ΟL
methine Neopine	OH OSO ₂ OCH ₃	160° Aq. base, heat	Methylmorphenol β -Codeinemethine	_	184 356	EFINS
CH ₃ O OH						OLEFINS FROM AMINES
CH ₃ N OH	O-Methyl iodide	Aq. base, heat	Methine	_	357	
CH ₃ O Pseudocodeine						4
Vote: Doferences 104 to 201 are o	n nn 100 11	10				469

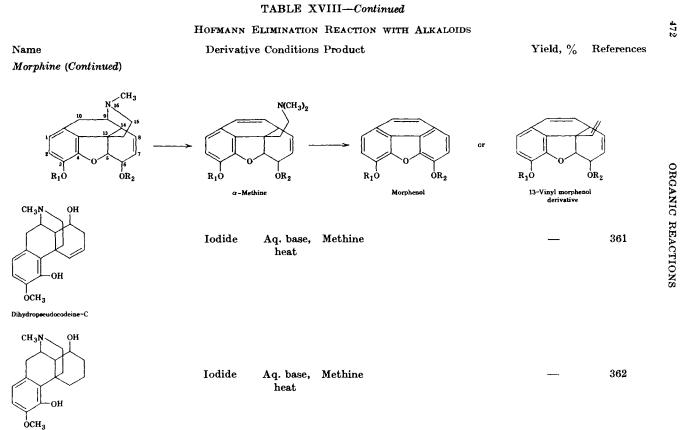
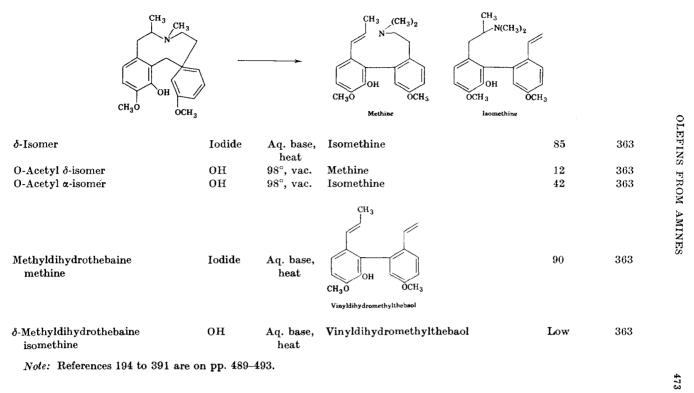

Dihydrothebaine methine

TABLE XVIII-Continued



Dihydroallopseudocodeine

Methyldihydrothebaine

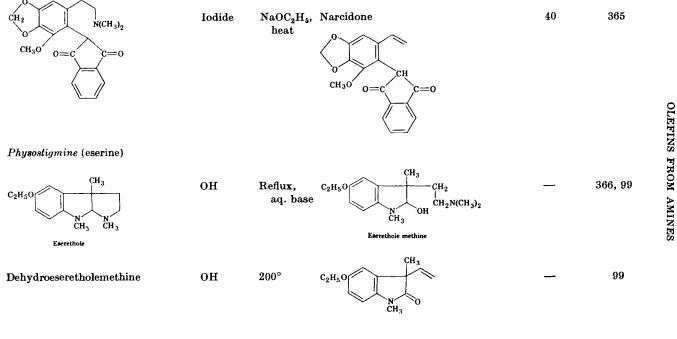

474

TABLE XVIII—Continued

HOFMANN ELIMINATION REACTION WITH ALKALOIDS

Derivative Conditions Product Yield, % References Name Methyldihydrothebaine (Continued) ĊН3 ĊНэ (CH3)2 H3 CH 1 -N(CH₃)₂ ORGANIC REACTIONS N OH ΩН ΩН сн30 о́сн₃ осн 3 о́сн₃ сн3о осн3 Methine Isomethine Thebaizone (a) 364 OН \mathbf{Heat} des-N-Methylthebaizone acid C19H2105N OHC CH₃O₂O CH3 СН₃О des-N-Methyldihydrodesoxy-364 Dihydrodesoxythebaizone $\mathbf{0H}$ Heat thebaizone acid, C₁₉H₂₃O₄N

Narcidonine

Note: References 194 to 391 are on pp. 489-493.

475

Yield, %

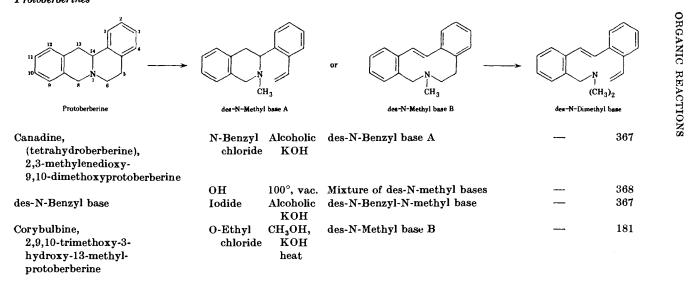

References

TABLE XVIII—Continued

HOFMANN ELIMINATION REACTION WITH ALKALOIDS

Derivative Conditions Product

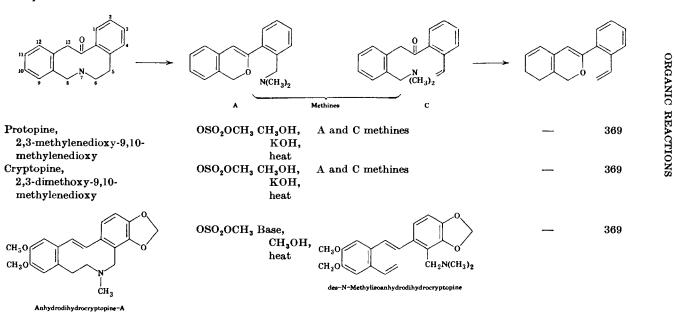
Name Protoberberines

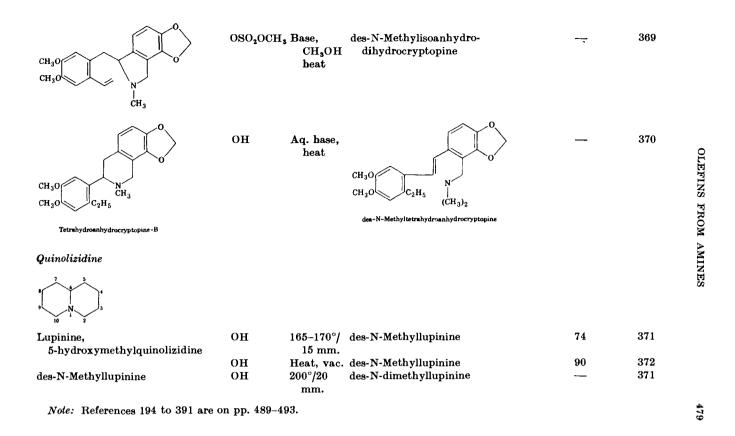
Corydaline, 2,3,9,10-tetramethoxy-13- methyl protoberberine	Chloride	Base, distil	des Base A from "meso" material; des base B from racemic material		78
	Chloride	CH3OH, KOH, heat	des-N-Methyl base		182
Isocryptopine chloride, 2,3-dimethoxy-9,10- methylenedioxy- 13,14-dehydro-N-methyl- protoberberine chloride	Chloride	CH3OH, KOH heat	des-N-Methyl base A	_	369
Dihydroisocryptopine chloride, 13,14-dihydro- isocryptopine	Chloride	CH3OH, KOH, heat	des-N-methyl bases A and B	_	369
-des-N-Methyl bases	OSO₂OCH	³ CH ₃ OH, KOH, heat	des-N,N-Dimethyl base	_	369
Thalictricavine, 2,3-methylenedioxy-9,10- dimethoxy-13-methyl- protoberberine	Chloride	Base, distil	des-N-Methyl bases A or B depending on isomer of starting material used		78

477

OLEFINS FROM AMINES

478


Yield, % References


TABLE XVIII—Continued

HOFMANN ELIMINATION REACTION WITH ALKALOIDS

Derivative Conditions Product

Name Protopine

TABLE XVIII—Continued						
	Hofmann	ELIMINATION	N REACTION WITH ALKALOIDS			
Name	Derivati	ve Condition	s Product	Yield, %	References	
Quinolizidine (Continued)						
$ \begin{array}{c} $						OR
Dihydro-des-N- methyilupinine	ОН	Distil, 180°/12 mm.	Dihydro-des-N,N-dimethyl- lupinine	83	372	ORGANIC]
des-N,N-Dimethyl- lupinine	ОН	Distil, vac.	Unsaturated alcohol		371	REAC
Tetrahydro-des-N,N- dimethyllupinine	ОН	120°/15 mm.	Unsaturated alcohol	46	372	REACTIONS
5-Benzoylquinolizidine	Iodide	Aq. NaOH heat		Quant.	80	

Scopoline (oscine)

HO

NCH₃ ٥

$\overline{)}$	O-Methyl	160°/13	C ₉ H ₁₅ NO ₂ ,	 373, 374
\rangle	\mathbf{OH}	mm.	des-N-Methyl-	
			scopolines (mixture of isomers)	

СН3

Sparteine

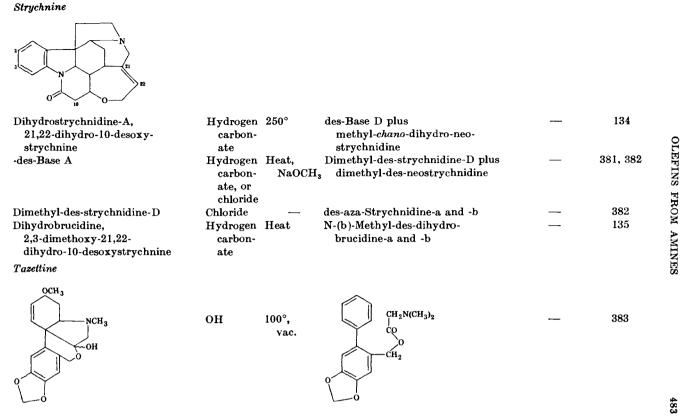
Anagyrine, 2-keto-3,4,5,6-	ОН	Benzene, heat	Anagyrine methine		375	
dehydrosparteine						
Dihydroanagyrine methine	он	120°/10 mm.	Dihydroanagyrine bismethine		375	0
Tetrahydroanagyrine bismethine	ОН	120°/10 mm.	Tetrahydroanagyrine tris-methine		375	OLEFINS
Aphyllidine,	он	Heat,	des-N-Methylaphyllidine,	93	189	Ī
5,6-dehydro-10-ketosparteine	on	vac.	$C_{1a}H_{2a}N_{2}O$	•••		S
0,0 denjulo 10 ketospulteme	Iodide	Base.	des-N-Methylaphyllidin	80	376	FI
	Tourde	CH ₃ OH reflux		00	010	FROM .
des-N-Methylaphyllidine	он	Heat, vac.	des-N,N-Dimethylaphyllidine, C ₁₂ H ₂₄ N ₂ O		189	AMINES
	Iodide	Base, CH ₃ OH reflux	des-N,N-Dimethylaphyllidine		376	IES
des-N,N-Dimethylaphyllidine	он	250°/11 mm.	Hemiaphyllidylene, C ₁₅ H ₁₈ NO		189	
	он	CH ₃ OH, distil	Hemiaphyllidylene		376	
Aphylline,	Iodide,	Base,	des-N-Methylaphylline,	80	189	
10-ketosparteine	ОН	heat, vac.	C ₁₆ H ₂₆ N ₂ O			

Note: References 194 to 391 are on pp. 489-493.

482

TABLE XVIII-Continued

HOFMANN ELIMINATION REACTION WITH ALKALOIDS


Derivative Conditions Product	Yield, %	References

Sparteine (Continued)

Name

ОН	Distil, vac.	des-N,N-Dimethylaphylline, C12H20N2O	73	189
ОН	Heat, vac.	Hemiaphylline,		189
он	(6 degra	Nitrogen-free product	_	377, 378
OH	N ₂ , 40–50° vac.	, α - and β -des-N-Methyl- sparteine	(a) 45-55	379
OH	Heat	des-N-Methyloxysparteine, C ₁₆ H ₂₆ ON ₂	98	380
OH	170°/0.05 mm.	des-N,N-Dimethyloxysparteine, C ₁₇ H ₂₉ ON ₂	65	380
OH	Heat	Dihydro-des-N-dimethyl- oxysparteine		380
он	150°	Tetrahydrohemioxyspartylene, $C_{15}H_{26}ON$	49	380
	он он он он он	$\begin{array}{c} & \mbox{vac.}\\ \mbox{OH} & \mbox{Heat,}\\ \mbox{vac.}\\ \mbox{OH} & \mbox{Heat,vac.}\\ \mbox{(6 degradations)}\\ \mbox{OH} & \mbox{N}_2, 40{-}50^\circ,\\ \mbox{vac.}\\ \mbox{OH} & \mbox{Heat}\\ \mbox$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vac. $C_{17}H_{28}N_2O$ OHHeat,Hemiaphylline,vac. $C_{15}H_{21}NO$ OHHeat, vac.Nitrogen-free product

ORGANIC REACTIONS

TABLE XVIII—Continued						*
	Hofmann	Elimination	REACTION WITH ALKALOIDS			
Name Tropane	Derivativ	ve Conditions	Product	Yield, %	References	
N CH_3 R_2 r r r r r r r r r r						ORGANIC
Ecgonine $R_1 =OH$ $R_2 =CO_2H$	Ethyl ester iodide	Aq. base, heat	Cycloheptatriene carboxylic acid, $C_8H_8O_2$		384	
Anhydroecgonine (ecgonidine) $R_1 = H$ $R_2 = CO_2H$	Ethyl ester iodide	Aq. base, heat			385	REACTIONS
Dihydroanhydroecgonine	Ethyl ester iodide	Aq. base, heat	Cycloheptadienecarboxylic acid		386, 387	NS
Hydroecgonidine $R_1 = H$ $R_2 = CO_2H$	Ethyl ester iodide	Aq. base	(CH ₃) ₂ N		387	
	Ethyl ester	K ₂ CO ₃ , 75°	2-Carboxy-5-dimethyl- aminocycloheptene 2-Carboxy-5-dimethyl- aminocycloheptene	60	386	

iodide

PARIE XVIII Continue

484

2-Carbethoxy-5-dimethylamino- cycloheptene	Iodide	Base, heat	Cycloheptadienecarboxylic acid	85	386, 387	
3,4-Dehydrotropidine $R_1 = R_2 = H$	он	Aq. base, distilled	Dimethylaminocycloheptadiene "methyl tropidine"	90	85	
$\begin{array}{l} \text{Hydrotropidine} \\ \text{R}_1 = \text{R}_2 = \text{H} \end{array}$	он	100°	Dimethylaminocycloheptene "methyl hydrotropidine"		388	
Methylhydrotropidine	ОН	100°	Cycloheptadiene		388	
Methyltropidine	он	Heat, aq. soln.	Cycloheptatriene	82	85	
$ \begin{array}{l} \text{Tropinone} \\ \text{R}_1 = 0 \\ \text{R}_2 = H \end{array} $	OH iodide	Heat, base	Mixture of cycloheptadienones	80	389, 130	0
$ \frac{1}{2} = 11 $ Tropinic acid $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Dimethyl ester iodide	Aq. base	"des-N-Methyltropinic acid, dimethyl ester"	90	390	OLEFINS FROM
des-N-Methyltropinic acid dimethyl ester	Iodide	Aq. base	Unsaturated dicarboxylic acid	75	390	AMINES
Yohimbine						SA.
CH ₃ O ₂ C	ОН	Distil, vac.	Methylyohimboic acid, $C_{21}H_{26}N_2O_3$		391	
ОН						48

485

486

TABLE XVIII—Continued

HOFMANN ELIMINATION REACTION WITH ALKALOIDS

. Yield, % Derivative Conditions Product References chano-Desoxyyohimbol OH H₃CN Heat, 81 ORGANIC REACTIONS vac. N H (trans) chano-Dihydrodesoxyyohimbol Bicarbon- 180°/30 H₃CN 79 81 ate mm. `N´ H

Name

TABLE XIX

LIST OF ALKALOIDS BY TYPE

The parenthesized number following each entry in the second column indicates the page in Table XVIII on which each type of alkaloid first appears.

Alkaloid

Listed Under

Astinoflambaina	Aporphine (433)
Actinoflaphnine	Sparteine (481)
	Protopine (478)
Anhydrocryptopine	
Anolobine	Aporphine (433)
Anonaine	Aporphine (433)
Aphyllidine	Sparteine (481)
Aphylline	Sparteine (481)
Apoerysopine	Erysotrine (458)
Armepavine	Benzylisoquinoline (436)
Bebeerine	Bisbenzylisoquinoline-C (442)
Berbamine	Bisbenzylisoquinoline-B' (440)
Boldine	Aporphine (433)
Brucidine	Strychnine (483)
Canadine	Protoberberine (476)
Cephaeline	Cephaeline (447)
Cepharanthine	Bisbenzylisoquinoline-B (438)
Chondodendrine, see Bebeerine	
Chondrofoline	Bisbenzylisoquinoline-C (442)
Coclaurine	Benzylisoquinoline (436)
Codeine	Morphine (466)
Colchinol	Colchinol (450)
Conhydrine	Coniine (450)
Coniine	Coniine (450)
Corybulbine	Protoberberine (476)
Corydaline	Protoberberine (476)
Cotarnine	Isoquinoline (462)
Crebanine	Aporphine (433)
Cryptopine	Protopine (478)
Cularine	Cularine (451)
C-Curarine	C-Curarine (451)
Cuscohygrine	Cuscohygrine (451)
Cytisine	Cytisine (452)
Daphnandrine	Bisbenzylisoquinoline-B (438)
Daphnoline	Bisbenzylisoquinoline-B (438)
Dauricine	Bisbenzylisoquinoline-A (437)
Delphinine	Delphinine (453)
Dicentrine	Aporphine (433)
Dioscorine	Dioscorine (454)
Ecgonidine	Tropane (484)
Ecgonine	Tropane (484)
Enetine	Cephaeline (447)
Epistephanine	Bisbenzylisoquinoline-B (438)
Bharehuanne	Dispensynsorunomie-D (400)

TABLE XIX—Continued

LIST OF ALKALOIDS BY TYPE

Alkaloid	Listed Under
Ergothionene	Ergothionene (454)
Erysotrine	Erysotrine (458)
α-Erythroidine	Erythroidine (454)
β -Erythroidine	Erythroidine (454)
Eserethole	Physostigmine (475)
Eserine, <i>see</i> Physostigmine	3 -----------
Gelsemine	Gelsemine (460)
Glaucine	Aporphine (433)
Gramine	Gramine (460)
Granatanine	Granatanine (461)
Harmine	Harmine (461)
Hetisine	Hetisine (462)
Homotrilobine, see Isotrilobine	
Hordenine	Hordenine (462)
Hydrastinine	Isoquinoline (462)
Hypaphorine	Hypaphorine (462)
Isochondodendrine	Bisbenzylisoquinoline-D (443)
Isocryptopine chloride	Protoberberine (476)
Isolobinanine	Lobelia Alkaloids (464)
Isolupanine, see Oxysparteine	Lobena Alkalolus (101)
Isomorphine	Morphine (466)
Isotetrandrine, see Pheanthine	Morphine (400)
Isothebaine	Aporphine (433)
Isotrilobine	Bisbenzylisoquinoline-F (446)
Laburnine	Laburnine (464)
Laudenine	Benzylisoquinoline (436)
Laureline	• •
Laurotetanine	Aporphine (433)
Lelobanine	Aporphine (433) Lobalia alkalaida (464)
	Lobelia alkaloids (464)
Lobelanidine	Lobelia alkaloids (464)
Lobelanine	Lobelia alkaloids (464)
Lobinanine	Lobelia alkaloids (464)
Lobinine	Lobelia alkaloids (464)
Lobinone, see Lobinanine	
Lupinine	Quinolizidine (479)
Lycorine	Lycorine (465)
Mavacurine	Mavacurine (466)
Menisarine	Bisbenzylisoquinoline-E (445)
Micranthine	Bisbenzylisoquinoline-E (446)
Morphine	Morphine (466)
Narcidonine	Narcidonine (475)
Neopine	Morphine (466)
Neoprotocuridine	Bisbenzylisoquinoline-D (443)
Oscine, see Scopoline	
Oxyacanthine	Bisbenzylisoquinoline-B (438)

TABLE XIX—Continued

LIST OF ALKALOIDS BY TYPE

Alkaloid

Listed Under

Oxysparteine
Pellotine
Pheanthine
Physostigmine
Protopine
Pseudocodeine
Pseudoconhydrine
Pukateine
Repandine
Scopoline
Sparteine
Strychnine (dihydrostrychnidine-A)
Tazettine
Tetrahydroberberine, see Canadine
Tetrahydroerythraline
Tetrandrine
Thalictricavine
Thebaine
Thebaizone (a)
Trilobamine, see Daphnoline
Trilobine
Tropidine
Tropinic acid
Tropinone
Tubocurarine chloride
Tuduranine
Yohimbine

Sparteine (481) Isoquinoline (462) Bisbenzylisoquinoline-B' (440) Physostigmine (475) Protopine (478) Morphine (466) Coniine (450) Aporphine (433) Bisbenzylisoquinoline-B (438) Scopoline (480) Sparteine (481) Strychnine (483) Tazettine (483)

Erysotrine (458) Bisbenzylisoquinoline-B' (440) Protoberberine (476) Morphine (466) Morphine (466)

Bisbenzylisoquinoline-F (446) Tropane (484) Tropane (484) Bisbenzylisoquinoline-C (442) Aporphine (433) Yohimbine (485)

REFERENCES FOR TABLES XI-XIX

- ¹⁹⁴ Bersch and Hübner, Arch. Pharm., 289, 673 (1956).
- ¹⁹⁵ Wilson and Read, J. Chem. Soc., 1935, 1269.
- ¹⁹⁹ von Braun and Schirmacher, Ber., 56, 1845 (1923).
- ¹⁹⁷ von Braun, Ber., 56, 2178 (1923).
- ¹⁹⁸ Rabe and Hallensleben, Ber., 43, 2622 (1910).
- ¹⁹⁹ Späth and Adler, Monatsh., 63, 127 (1933).
- ²⁰⁰ Sicher and Lichy, Chem. & Ind. (London), 1958, 16.
- ²⁰¹ Hill, J. Am. Chem. Soc., 80, 1609 (1958),
- ²⁰² Späth, Kuffner, and Ensfellner, Ber., 66, 591 (1933).
- ²⁰³ Schmidt, Arch. Pharm., 253, 52 (1915).
- 204 Rabe, Ber., 44, 824 (1911).
- ²⁰⁴⁴ Curtin, Harris, and Pollak, J. Am. Chem. Soc., 73, 3453 (1957).
- ²⁰⁵ Willstätter and Bruce, Ber., 40, 3979 (1907).
- ²⁰⁶ Demjanow and Dojarenko, Ber., 55, 2727 (1922).
- ²⁰⁷ Harries and Morrell, Ann., **410**, 70 (1915).
- 208 Cook, Dickson, and London, J. Chem. Soc., 1947, 746.

ORGANIC REACTIONS

- ^{\$09} A. C. Cope and C. F. Howell, to be published.
- ³¹⁰ C. L. Bumgardner, Ph.D. Thesis, Massachusetts Institute of Technology, 1956.
- ²¹¹ Collie and Schryver, J. Chem. Soc., 57, 767 (1890).
- ^{\$15} Howton, J. Org. Chem., 14, 1 (1949).
- ³¹³ Willstätter, Ber., 35, 584 (1902).
- ³¹⁴ Hurd and Drake, J. Am. Chem. Soc., 61, 1943 (1939).
- ²¹⁵ Willstätter and Schmaedel, Ber., 38, 1992 (1905).
- ^{\$16} Mannich and Margotte, Ber., 68, 273 (1935).
- ²¹⁷ Konowalowa and Magidson, Arch. Pharm., 266, 449 (1928).
- ³¹³ Willstätter and Heubner, Ber., 40, 3869 (1907).
- ²¹³ Mannich, Handke, and Roth, Ber., 69, 2112 (1936).
- ²²⁰ Willstätter and Wirth, Ber., 46, 535 (1913).
- ³³¹ Buchman, Schlatter, and Reims, J. Am. Chem. Soc., 64, 2701 (1942).
- ²²³ Avram, Nenitzescu, and Marica, Chem. Ber., 90, 1857 (1957).
- ³³³ Knorr and Rothe, Ber., 39, 1420 (1906).
- ³³⁴ Brown and Wheeler, J. Am. Chem. Soc., 78, 2199 (1956).
- ²²⁵ Demjanow and Dojarenko, Ber., 55, 2718 (1922).
- ¹¹¹ Lukes and Pliml, Collection Czechoslov. Chem. Communs., 21, 625 (1956).
- ^{\$37} Howton and Buchman, J. Am. Chem. Soc., 78, 4011 (1956).
- ³¹³ Applequist and Roberts, J. Am. Chem. Soc., 78, 4012 (1956).
- ²³⁰ Euler, J. prakt. Chem., [2] 57, 131 (1898).
- ³³⁰ Euler, Ber., 30, 1989 (1897).
- ²²¹ Willstätter and Hatt, Ber., 45, 1464 (1912).
- ²³³ Nazarov and Kuznezov, J. Gen. Chem. (U.S.S.R.), 29, 767 (1959).
- ³³³ Kohn, Ann., 351, 134 (1907).
- ²²⁴ Cope and Schweizer, J. Am. Chem. Soc., 81, 4577 (1959).
- ²³⁵ Kohler, Tishler, Potter, and Thompson, J. Am. Chem. Soc., 61, 1057 (1939).
- ²³³ Vogel, Fortsch. chem. Forsch., 3, 469 (1955).
- ²¹⁷ Lukes, Strouf, and Ferles, Collection Czechoslov. Chem. Communs., 23, 326 (1958).
- ³³³ Stewart and Aston, J. Am. Chem. Soc., 49, 1718 (1927).
- ³³³ Parham, Hunter, Hanson, and Lahr, J. Am. Chem. Soc., 74, 5646 (1952).
- ³⁴⁰ Alder, Hartung, and Netz, Chem. Ber., 90, 1 (1957).
- ¹⁴¹ Seka and Tramposch, Ber., 75, 1379 (1942).
- ³⁴³ King, Barltrop, and Walley, J. Chem. Soc., 1945, 277.
- ²⁴³ Ayerst and Schofield, J. Chem. Soc., 1958, 4097.
- ³⁴⁴ von Braun, Ber., 42, 2532 (1909).
- ³⁴³ Menshikoff, Ber., 68, 1555 (1935).
- ³⁴³ Menshikoff, Bull. acad. sci. U.R.S.S., Classe sci. math., Sér. chim., 5, 1035 (1937) [C.A.,
- 32, 2944 (1938); Chem. Zentr., 110, I, 2790 (1939)].
 - ^{\$47} Menshikoff, Ber., 69, 1802 (1936).
 - ³⁴³ Willstätter and Waser, Ber., 44, 3423 (1911).
 - ³⁴⁹ Willstätter and Heidelberger, Ber., 46, 517 (1913).
 - ²⁵⁰ Cope and Overberger, J. Am. Chem. Soc., 70, 1433 (1948).
 - ³⁵¹ Senfter and Tafel, Ber., 27, 2309 (1894).
 - ²⁵³ King and Booth, J. Chem. Soc., 1954, 3798.
 - ³⁵³ Prolog and Seiwerth, Ber., 72, 1638 (1939).
 - ³⁵⁴ Koenigs and Bernhart, Ber., 38, 3049 (1905).
 - ^{\$55} von Braun and Kirschbaum, Ber., 52, 2261 (1919).
 - 236 von Braun and Teuffert, Ber., 62, 235 (1929).
 - ²⁵⁷ Blomquist, Burge, and Sucsy, J. Am. Chem. Soc., 74, 3636 (1952).
 - ²⁵⁷^a A. C. Cope and P. N. Jenkins, to be published.
 - ³⁵⁵ McNiven and Read, J. Chem. Soc., 1952, 159.
 - ²⁵² Willstätter and King, Ber., 46, 527 (1913).
 - ³⁵⁰ Shriner and Sutherland, J. Am. Chem. Soc., **60**, 1314 (1938).
 - ³⁶¹ Ruzicka, Helv. Chim. Acta, 3, 748 (1920).
 - ³¹³ Ruzicka and Trebler, Helv. Chim. Acta, 3, 756 (1920).

- 283 Ruzicka and Pontalti, Helv. Chim. Acta, 7, 489 (1924).
- 264 Nametkin and Zabrodin, Ber., 61, 1491 (1928).
- 265 Wittig and Behnisch, Chem. Ber., 91, 2358 (1958).
- 266 Schotten, Ber., 15, 421 (1882).
- ²⁶⁷ Claus and Hirzel, Ber., 19, 2785 (1886).
- 268 Mannich and Davidsen, Ber., 69, 2106 (1936).
- 269 von Braun and Cahn, Ann., 436, 262 (1924).
- 270 Parham, Hunter, and Hanson, J. Am. Chem. Soc., 73, 5068 (1951).
- ²⁷¹ Bruckner, Kovacs, and Kovacs, Ber., 77, 610 (1944).
- ²⁷² Karrer and Karanth, Helv. Chim. Acta, 33, 2202 (1950).
- 273 Stevens, Sneeden, Stiller, and Thomson, J. Chem. Soc., 1930, 2119.
- ²⁷⁴ von Braun and Hamann, Ber., 65, 1580 (1932).
- 275 Reichert and Hoffmann, Arch. Pharm., 274, 153 (1936).
- ²⁷⁶ Dunn and Stevens, J. Chem. Soc., 1934, 279.
- ²⁷⁷ Gensler and Samour, J. Am. Chem. Soc., 74, 2959 (1952).
- ²⁷⁸ Battersby and Binks, J. Chem. Soc., 1955, 2896.
- ²⁷⁹ Robinson and Sugasawa, J. Chem. Soc., 1932, 789.
- 280 MacPhillamy and Scholz, J. Org. Chem., 14, 643 (1949).
- ^{280a} Wittig, Koenig, and Clauss, Ann., 593, 127 (1955).
- ²⁹¹ von Braun, Ber., 49, 2629 (1916).
- 282 Kröhnke and Meyer-Delius, Chem. Ber., 84, 941 (1951).
- ²⁸³ Lipp, Buchkremer, and Seeles, Ann., 499, 1 (1932).
- ²⁸⁴ Manske, Can. J. Research, 16B, 76 (1938).
- 285 Barger and Weitnauer, Helv. Chim. Acta, 22, 1036 (1939).
- 286 Tomita and Shirai, J. Pharm. Soc. Japan, 63, 532 (1943) [C.A., 45, 3401a (1951)].
- ²⁸⁷ Manske, Can. J. Research, 8B, 592 (1933).
- 288 Warnat, Ber., 58, 2768 (1925).
- ²⁸⁹ Warnat, Ber., 59, 85 (1926).
- ²⁹⁰ Klee, Arch. Pharm., 252, 211 (1914).
- ²⁹¹ Schlittler and Müller, Helv. Chim. Acta, 31, 1119 (1948).
- ²⁹² Barger and Girardet, Helv. Chim. Acta, 14, 481 (1931).
- ²⁹³ Barger, Eisenbrand, Eisenbrand, and Schlittler, Ber., 66, 450 (1933).
- 284 Späth and Tharrer, Ber., 66, 583 (1933).
- 295 Späth and Suominen, Ber., 66, 1344 (1933).
- 296 Goto, Ann., 521, 175 (1936).
- ²⁹⁷ Marion, Lemay, and Portelance, J. Org. Chem., 15, 216 (1950).
- 298 Kondo and Kondo, J. prakt. Chem., 126, 24 (1930).
- ²⁹⁹ Schöpf and Thierfelder, Ann., 537, 142 (1939).
- ^{\$00} Kondo and Keimatsu, Ber., 71, 2553 (1938).
- ³⁰¹ Bick, Ewen, and Todd, J. Chem. Soc., 1949, 2767.
- ³⁰² Kondo and Tomita, J. Pharm. Soc. Japan, 55, 646 (1935) [C.A., 33, 627⁴ (1939)].
- ³⁰³ Kondo and Tanaka, J. Pharm. Soc. Japan, 63, 273 (1943) [C.A., 45, 3400b (1951)].
- ³⁰⁴ von Bruchhausen and Schultze, Arch. Pharm., 267, 567 (1929).
- ³⁰⁵ Bick and Todd, J. Chem. Soc., 1948, 2170.
- ³⁰⁶ Santos, Ber., 65, 472 (1932).
- ³⁰⁷ Kondo and Yano, Ann., 497, 90 (1932).
- ³⁰⁸ King, J. Chem. Soc., 1939, 1157.
- ³⁰⁹ King, J. Chem. Soc., 1935, 1381.
- ³¹⁰ King, J. Chem. Soc., 1936, 1276.
- ³¹¹ King, J. Chem. Soc., 1940, 737.
- ³¹² King, J. Chem. Soc., 1948, 265.
- ³¹³ Faltis and Dieterich, Ber., 67, 231 (1934).
- ³¹⁴ King, J. Chem. Soc., 1937, 1472.
- ³¹⁵ Bick and Todd, J. Chem. Soc., 1950, 1606.
- ³¹⁶ Kondo and Tomita, J. Pharm. Soc. Japan, 55, 637 (1935) [C.A., 33, 626⁴ (1939)].
- ³¹⁷ Kondo and Tomita, Ann., 497, 104 (1932).

- ³¹⁸ Tomita and Tani, J. Pharm. Soc. Japan, 62, 468 (1942) [C.A., 45, 47280 (1951)].
- ³¹⁹ Pailer and Porschinski, Monatsh., 80, 101 (1949).
- ³²⁰ Pailer, Monatsh., 79, 127 (1948).
- ³²¹ Windaus, Ann., 439, 59 (1924).
- ³²² Hofmann, Ber., 14, 705 (1881).
- ³²³ Philipsborn, Schmid, and Karrer, Helv. Chim. Acta, 38, 1067 (1955).
- ³²⁴ Hess and Bappert, Ann., 441, 137 (1925).
- ³²⁵ Späth and Galinovsky, Ber., 66, 1338 (1933).
- ³²⁶ Schneider, Arch. Pharm., 283, 86 (1950).
- ³²⁷ Gorter, Rec. trav. chim., 30, 161 (1911).
- 328 Heath, Lawson, and Rimington, J. Chem. Soc., 1951, 2215.
- ³²⁹ Barger and Ewins, J. Chem. Soc., 99, 2336 (1911).
- 330 Godfrey, Tarbell, and Boekelheide, J. Am. Chem. Soc., 77, 3342 (1955).
- ³³¹ Boekelheide and Morrison, J. Am. Chem. Soc., 80, 3905 (1958).
- ³³² Boekelheide, Weinstock, Grundon, Sauvage, and Agnello, J. Am. Chem. Soc., 75, 2550 (1953).
 - 333 Grundon, Sauvage, and Boekelheide, J. Am. Chem. Soc., 75, 2541 (1953).
 - ³³⁴ Grundon and Boekelheide, J. Am. Chem. Soc., 75, 2537 (1953).
 - ³³⁵ Kenner, Khorana, and Prelog, Helv. Chim. Acta, 34, 1969 (1951).
 - 336 Folkers, Koniuszy, and Shavel, J. Am. Chem. Soc., 73, 589 (1951).
 - 337 Madinaveitia, J. Chem. Soc., 1937, 1927.
 - ³³⁸ Willstätter and Veraguth, Ber., 38, 1984 (1905).
 - ³³⁹ Willstätter and Veraguth, Ber., 38, 1975 (1905).
 - 340 Perkin and Robinson, J. Chem. Soc., 115, 933 (1919).
 - ³⁴¹ Jacobs and Heubner, J. Biol. Chem., 170, 189 (1947).
 - ³⁴² Léger, Compt. rend., 144, 488 (1907).
 - 343 Van Romburgh, Koninkl. Akad. Wentenschap. Amsterdam, Wisk. Natuurk, Afdel., 19,
- 1250 [Chem. Zentr., 82, I, 1548 (1911)].
 - ³⁴⁴ Freund, Ber., 22, 2329 (1889).
 - 345 Späth and Boschan, Monatsh., 63, 141 (1933).
 - 346 Galinovsky, Goldberger, and Pohm, Monatsh., 80, 550 (1949).
 - ³⁴⁷ Wieland and Ishimasa, Ann., 491, 14 (1931).
 - ³⁴⁸ Kondo, Katsura, and Uyeo, Ber., 71, 1529 (1938).
- ³⁴⁹ Humber, Kondo, Kotera, Takagi, Takeda, Taylor, Thomas, Tsuda, Tsukamoto, Uyeo,
- Yajima, and Yanaihara, J. Chem. Soc., 1954, 4622.
 - ³⁵⁰ Bickel, Schmid, and Karrer, Helv. Chim. Acta, 38, 649 (1955).
 - ³⁵¹ Rapoport, J. Org. Chem., 13, 714 (1948).
 - ³⁵² Small and Mallonee, J. Org. Chem., 12, 558 (1947).
 - ³⁵³ Small and Turnbull, J. Am. Chem. Soc., 59, 1541 (1937).
 - ³⁵⁴ Small and Mallonee, J. Org. Chem., 5, 350 (1940).
 - 355 Small and Rapoport, J. Org. Chem., 12, 284 (1947).
 - ³⁵⁶ Van Duin, Robinson, and Smith, J. Chem. Soc., 1926, 903.
 - ³⁵⁷ Small and Lutz, J. Am. Chem. Soc., 57, 361 (1935).
 - 358 Lutz and Small, J. Am. Chem. Soc., 54, 4715 (1932).
 - ³⁵⁹ Knorr, Ber., 37, 3499 (1904).
 - ³⁶⁰ Cahn, J. Chem. Soc., 1926, 2562.
 - ³⁶¹ Lutz and Small, J. Am. Chem. Soc., 56, 1741 (1934).
 - ³⁶² Lutz and Small, J. Am. Chem. Soc., 56, 2466 (1934).
 - ³⁶³ Small and Fry, J. Org. Chem., 3, 509 (1939).
 - ³⁶⁴ Wieland and Small, Ann., 467, 17 (1928).
 - ³⁶⁵ Freund and Oppenheim, Ber., 42, 1084 (1909).
 - ³⁶⁶ Polonovski and Polonovski, Bull. soc. chim. France, [4] 23, 335 (1918).
 - ³⁶⁷ McDavid, Perkin, and Robinson, J. Chem. Soc., 101, 1218 (1912).
 - ³⁶⁸ Pyman, J. Chem. Soc., 103, 817 (1913).
 - 369 Perkin, J. Chem. Soc., 109, 815 (1916).
 - ³⁷⁰ von Bruchhausen and Bersch, Ber., 63, 2520 (1930).

OLEFINS FROM AMINES

- ³⁷¹ Willstätter and Fourneau, Ber., 35, 1910 (1902).
- ³⁷² Karrer, Canal, Zohner, and Widmer, Helv. Chim. Acta, 11, 1062 (1928).
- ³⁷³ Hess, Ber., 52, 1947 (1919).
- ³⁷⁴ Hess and Wahl, Ber., 55, 1979 (1922).
- ³⁷⁵ Ing, J. Chem. Soc., 1933, 504.
- ³⁷⁸ Orechoff and Norkina, Ber., 67, 1974 (1934).
- ³⁷⁷ Schirm and Bisendorf, Arch. Pharm., 280, 64 (1942).
- ³⁷⁸ Karrer, Shibata, Wettstein, and Jacobowicz, Helv. Chim. Acta, 13, 1292 (1930).
- ³⁷⁹ Schöpf and Braun, Ann., 465, 132 (1928).
- 380 Späth and Galinovsky, Ber., 71, 1282 (1938.)
- ³⁸¹ Achmatowicz and Dybowski, J. Chem. Soc., 1938, 1483.
- 382 Achmatowicz and Dybowski, J. Chem. Soc., 1938, 1488.
- ⁸⁸³ Ikeda, Taylor, Tsuda, and Uyeo, Chem. & Ind. (London), **1956**, 411; Ikeda, Taylor, Tsuda, Uyeo, and Yajima, J. Chem. Soc., **1956**, 4749.
 - ³⁸⁴ Einhorn and Friedlaender, Ber., 26, 1482 (1893).
 - ^{\$86} Einhorn and Tahara, Ber., 26, 324 (1893).
 - ³⁸⁵ Willstätter, Ber., 30, 702 (1897).
 - ³⁸⁷ Willstätter, Ber., **31**, 2498 (1898).
 - ³⁸⁹ Willstätter, Ber., 30, 721 (1897).
 - 389 Meinwald, Emerman, Yang, and Büchi, J. Am. Chem. Soc., 77, 4401 (1955).
 - ³⁹⁰ Willstätter, Ber., 28, 3271 (1895).
 - ³⁹¹ Spiegel and Corell, Ber., 49, 1086 (1916).