Periodic Table of the Elements with the Gmelin System Numbers

2 He I	10 Ne 1	18 Ar I	36 Kr I	54 Xe I	86 Rn I	* NH ²³			
H 2	9 Е	17 CI 6	35 Br 7	53 1 8	85 At				
	8 0 3	16 S 9	34 Se 10	52 Te ¹¹	84 Po 12			71 Lu	103 Lr 71
	7 N 4	15 P 16	33 As 17	51 Sh 18	83 Bi 19			q, Хр 02	102 71 No 71
	6 C 14	14 Si 15	32 Ge ⁴⁵	50 Sn 46	82 Pb 47			69 Tm	101 Md 71
	5 B 13	13 Al 35	31 Ga ³⁶	49 In 37	81 TI 38			68 Er	100 Fm 71
			30 Zn 32	48 Cd 33	80 Hg ³⁴			67 Ho	99 Es 71
			29 Cu 60	47 Ag 61	79 Au 62			66 Dy	98 Cf 71
			28 Ni 57	46 Pd 65	78 Pt 68			65 Th	97 ₈
			27 Co ⁵⁸	45 Rh ⁶⁴	77 1r ⁶⁷			64 Gd	96 Cm ⁷ 1
			26 Fe 59	44 Ru ⁶³	76 0s ⁶⁶			63 Eu	95 Am ⁷¹
			25 Mn 56	43 Tc ⁶⁹	75 Re 70			62 Sm	94 Pu 71
			24 Cr 52	42 Mo 53	74 54 W			61 Pm	93 71 Np 71
			23 V 48	41 Nb 49	73 Ta 50	105 71		60 Nd	92 55 U 55
			22 Ti 41	40 Zr 42	72 Hf 43	104 71		59 Pr	91 Pa ⁵¹
			21 Sc 39	39 Y 39	57** La ³⁹	89*** Ac ⁴⁰		58 Ce	90 Th 44
	4 Be ²⁶	12 Mg 27	20 Ca ²⁸	38 Sr 29	56 Ba 30	88 Ra 31	2	anides 39	nides
I Н 2	3 Li 20	II Na ²¹	19 * K ²²	37 Rb ²⁴	55 Cs 25	87 Fr		**Lant	***Act

A Key to the Gmelin System is given on the Inside Back Cover

Gmelin Handbook of Inorganic Chemistry

8th Edition

Volumes on "Fluorine" (Syst. No. 5) and "Carbon" (Syst. No. 14)

The perfluorohalogenoorgano compounds of main group elements are described in the following volumes and are a part of Syst. No. 5 "Fluorine". - On account of the close connection to carbon, the volumes of Syst. No. 14 "Carbon", are also listed.

F Fluorine

Perfluorohalogenoorgano Compounds of Main Group Elements

Tl. 1 (Erg.-Werk, Bd. 9): Verbindungen von Schwefel – 1973
Tl. 2 (Erg.-Werk, Bd. 12): Verbindungen von Schwefel (Fortsetzung), Selen, Tellur – 1973
Tl. 3 (Erg.-Werk, Bd. 24): Verbindungen von Phosphor, Arsen, Antimon und Wismut – 1975
Tl. 4 (Erg.-Werk, Bd. 25): Verbindungen mit Elementen der 1. bis 4. Hauptgruppe (außer Kohlenstoff) – 1975
Tl. 5: Verbindungen mit Stickstoff (Heterocyclische Verbindungen) – 1978
Tl. 6: Verbindungen mit Stickstoff (Heterocyclische Verbindungen) (Fortsetzung). Formelregister für Tl. 5 und 6 – 1978
Tl. 7: Aliphatische und aromatische Stickstoff-Verbindungen – 1979

Tl. 8: Aliphatische und aromatische Stickstoff-Verbindungen (Fortsetzung) – 1980

Pt. 9: Aliphatic and Aromatic Nitrogen Compounds (Conclusion) – 1981

Suppl. Vol. 1: Compounds with Elements of Main Groups 1 to 5 (excluding N) and with S (partially) - 1984 (present volume)

"Fluor" Hauptband – 1926

"Fluor" Ergänzungsband 1 — 1959

"Fluorine" Suppl. Vol. 2 (Element) - 1980

"Fluorine" Suppl. Vol. 3 (Compounds with Hydrogen) - 1982

C Carbon

Tl. B1: Isotope. Atom. Molekel. Einstoffsystem. Dampf. Diamant - 1967

Tl. B2: Graphit – 1968

Tl. B3: Chemisches Verhalten von Graphit. Graphitverbindungen. Kolloider Kohlenstoff -1968

Tl. C1: Verbindungen mit Edelgasen, Wasserstoff und Sauerstoff - 1970

Tl. C2: Chemisches Verhalten von CO und $CO_2 - 1972$

Tl. C3: Gleichgewicht CO_2/CO . Wasserhaltige Lösungen von Kohlensäure. Carbonat-Ionen. Peroxokohlensäuren — 1973

Tl. C4: Ausgewählte C-H-O Radikale. HCOOH. CH_3COOH. H_2C_2O_4 - 1975

Tl. D1: Kohlenstoff-Stickstoff-Verbindungen - 1971

Tl. D2 und D3: Kohlenstoff-Halogen-Verbindungen – 1974 bzw. 1976

Tl. D4 und D5: Kohlenstoff-Schwefel-Verbindungen - 1977

Tl. D6: Kohlenstoff-Schwefel-Verbindungen (Fortsetzung). Kohlenstoff-Selen- und Kohlenstoff-Tellur-Verbindungen – 1978

Gmelin Handbook of Inorganic Chemistry

8th Edition

Gmelin Handbuch der Anorganischen Chemie

Achte, völlig neu bearbeitete Auflage

Prep	bared	
and	issued	by

Gmelin-Institut für Anorganische Chemie der Max-Planck-Gesellschaft zur Förderung der Wissenschaften Director: Ekkehard Fluck

Founded by	Leopold Gmelin
8th Edition	8th Edition begun under the auspices of the Deutsche Chemische Gesellschaft by R. J. Meyer
Continued by	E. H. E. Pietsch and A. Kotowski, and by Margot Becke-Goehring

Springer-Verlag Berlin Heidelberg GmbH 1984

Gmelin-Institut für Anorganische Chemie der Max-Planck-Gesellschaft zur Förderung der Wissenschaften

ADVISORY BOARD

Dr. J. Schaafhausen, Vorsitzender (Hoechst AG, Frankfurt/Main-Höchst), Dr. G. Breil (Ruhrchemie AG, Oberhausen-Holten), Dr. G. Broja (Bayer AG, Leverkusen), Prof. Dr. G. Fritz (Universität Karlsruhe), Prof. Dr. N. N. Greenwood (University of Leeds), Prof. Dr. R. Hoppe (Universität Gießen), Prof. Dr. R. Lüst (Präsident der Max-Planck-Gesellschaft, München), Dr. H. Moell (BASF-Aktiengesellschaft, Ludwigshafen), Prof. Dr. E. L. Muetterties (University of California, Berkeley, California), Prof. Dr. H. Nöth (Universität München), Prof. Dr. G. zu Putlitz (Universität Heidelberg), Prof. Dr. A. Rabenau (Max-Planck-Institut für Festkörperforschung, Stuttgart), Prof. Dr. Dr. h.c. mult. G. Wilke (Max-Planck-Institut für Kohlenforschung, Mülheim/ Ruhr)

DIRECTOR DEPUTY DIRECTOR DEPUTY DIRECTOR Dr. Dr. h.c. Ekkehard Fluck Dr. W. Lippert

CHIEF EDITORS

Dr. K.-C. Buschbeck – Dr. H. Bergmann, Dr. H. Bitterer, Dr. H. Katscher, Dr. R. Keim, Dipl.-Ing. G. Kirschstein, Dipl.-Phys. D. Koschel, Dr. U. Krüerke, Dr. H. K. Kugler, Dr. E. Schleitzer-Rust, Dr. A. Slawisch, Dr. K. Swars, Dr. B. v. Tschirschnitz-Geibler, Dr. R. Warncke

STAFF

A. Alraum, D. Barthel, Dr. N. Baumann, Dr. W. Behrendt, Dr. L. Berg, Dipl.-Chem. E. Best, P. Born, E. Brettschneider, Dipl.-Ing. V. A. Chavizon, E. Cloos, Dipl.-Phys. G. Czack, I. Deim, Dipl.-Chem. H. Demmer, R. Dombrowsky, R. Dowideit, Dipl.-Chem. A. Drechsler, Dipl.-Chem. M. Drößmar, M. Engels, Dr. H.-J. Fachmann, Dr. J. Faust, I. Fischer, Dr. R. Froböse, J. Füssel, Dipl.-Ing. N. Gagel, E. Gerhardt, Dr. U. W. Gerwarth, M.-L. Gerwien, Dipl.-Phys. D. Gras, Dr. V. Haase, K. Hartmann, H. Hartwig, B. Heibel, Dipl.-Min. H. Hein, G. Heinrich-Sterzel, H.-P. Hente, H. W. Herold, U. Hettwer, Dr. I. Hinz, Dr. W. Hoffmann, Dipl.-Chem. K. Holzapfel, Dr. S. Jäger, Dr. J. von Jouanne, Dipl.-Chem. W. Karl, H.-G. Karrenberg, Dipl.-Phys. H. Keller-Rudek, Dipl.-Phys. E. Koch, Dr. E. Koch, Dipl.-Chem. K. Koeber, Dipl.-Chem. H. Köttelwesch, R. Kolb. E. Kranz, Dipl.-Chem. I. Kreuzbichler, Dr. A. Kubny, Dr. P. Kuhn, Dr. W. Kurtz, M. Langer, Dr. A. Leonard, A. Leonhard, Dipl.-Chem. H. List, Prof. Dr. K. Maas, H. Mathis, E. Meinhard, Dr. P. Merlet, K. Meyer, M. Michel, Dipl.-Chem. R. Möller, K. Nöring, Dipl.-Min. U. Nohl, Dr. W. Petz, C. Pielenz, E. Preißer, I. Rangnow, Dipl.-Phys. H.-J. Richter-Ditten, Dipl.-Chem. H. Rieger, E. Rieth, Dr. J. F. Rounsaville, E. Rudolph, G. Rudolph, Dipl.-Chem. S. Ruprecht, Dr. R. C. Sangster, V. Schlicht, Dipl.-Chem. D. Schneider, Dr. F. Schröder, Dipl.-Min. P. Schubert, A. Schwärzel, Dipl.-Ing. H. M. Somer, E. Sommer, M. Teichmann, Dr. W. Töpper, Dipl.-Ing. H. Vanecek, Dipl.-Chem. P. Velić, Dipl.-Ing. U. Vetter, Dipl.-Phys. J. Wagner, R. Wagner, Dr. E. Warkentin, Dr. G. Weinberger, Dr. B. Wöbke, K. Wolff, U. Ziegler

CORRESPONDENT MEMBERS OF THE SCIENTIFIC STAFF

Dr. J. L. Grant, Dr. I. Kubach, Dr. D. I. Loewus, Dr. K. Rumpf, Dr. U. Trobisch

EMERITUS MEMBER OF THE INSTITUTE

Prof. Dr. Dr. E.h. Margot Becke

CORRESPONDENT MEMBERS OF THE INSTITUTE

Prof. Dr. Hans Bock Prof. Dr. Dr. Alois Haas, Sc. D. (Cantab.)

Gmelin Handbook of Inorganic Chemistry

8th Edition

F Perfluorohalogenoorgano Compounds of Main Group Elements

	Supplement Volume 1
	Compounds with Elements of Main Groups 1 to 5 (excluding N) and with S (partially)
	with 3 illustrations
	By Alois Haas
AUTHORS	Michael R. Chr. Gerstenberger, Ruhr-Universität, Bochum Alois Haas, Ruhr-Universität, Bochum Dieter Koschel, Gmelin-Institut, Frankfurt am Main Peter Merlet, Gmelin-Institut, Frankfurt am Main Karl Schlosser, Ruhr-Universität, Bochum
EDITORS	Dieter Koschel and Peter Merlet, Gmelin-Institut, Frankfurt am Main
CHIEF EDITOR	Dieter Koschel, Gmelin-Institut, Frankfurt am Main

System Number 5

Springer-Verlag Berlin Heidelberg GmbH 1984

LITERATURE CLOSING DATE: 1981

Library of Congress Catalog Card Number: Agr 25-1383

ISBN 978-3-662-06320-0 ISBN 978-3-662-06318-7 (eBook) DOI 10.1007/978-3-662-06318-7

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under §54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1983

Originally published by Springer-Verlag Berlin Heidelberg New York Tokyo in 1983 Softcover reprint of the hardcover 8th edition 1983

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Preface

This is the first of three Supplement Volumes which complete (up to the end of 1981) the series "Perfluorohalogenoorgano Compounds of Main Group Elements", Part 1 to 9.

Supplement Volume 1 describes the compounds of the Main Group Elements 1 to 4, as well as the compounds of phosphorus, arsenic, antimony, and bismuth, and is concluded by chapters on sulfur(II) compounds (thiocarbonyls). Supplement Volume 2 continues the coverage of the sulfur(II) compounds followed by the description of sulfur(IV), sulfur(VI), selenium, tellurium and halogen compounds (in an oxidation state higher than 1) as well as a formula index for the Supplement Volumes 1 and 2. The third volume surveys the nitrogen compounds and contains a formula index for this volume.

Concept, organization, and selection as to the coverage of the material are the same as in the Main Volumes. Title compounds are newly synthesized ones as well as those compounds already referenced in the Main Volumes and for which new facts have been published. These Main Volume compounds are always cited in the chapters on preparation. If no new preparation is mentioned, a reference is given concerning the Main Volume citation and to the chapters on physical and chemical properties in the Supplement Volume.

Conventions as to the presentation of the data are given in the prefaces of the Main Volumes. In contrast to the convention for NMR chemical shifts used previously, the sign of the chemical shift is now designated as positive downfield from the reference standard according to: IUPAC Commission on Molecular Structure and Spectroscopy, Pure and Applied Chemistry **29** [1972] 625/8, **45** [1976] 217/9.

I wish to thank Prof. Dr. Dr. h.c. E. Fluck and his coworkers for their excellent cooperation. I also wish to take the opportunity to express my appreciation to colleagues who assisted me by providing reprints and patents.

Bochum, December 1983

A. Haas

Table of Contents

	Page
1 Perfluorohalogenoorgano Compounds of Main Group 1 Elements	1
1.1 Preliminary Remarks	1
1.2 Perfluorohalogenoorgano Compounds of Lithium and Sodium	1
1.2.1 Preparation and Physical Properties	1
1.2.2 Chemical Reactions	9
Hydrolysis, Carboxylation and Reactions with SO_2	9
Thermal Stability. Reactions with Br_2 and I_2	10
Halogenobenzenes	10
Reactions with Alcohol, Ketones and Aldehydes	11
Reactions with Olefins, Cyclopentadiene and $C_6H_5ICl_2$	12
Reactions with Transition Metal Compounds	12
1.0. Berlinenskeleren og ander af Betereiner and Cassium	16
	10
2 Perfluorohalogenoorgano Compounds of Main Group 2 Elements	20
2.1 Preliminary Remarks	20
2.2 Perfluorohalogenoorgano Compounds of Magnesium	20
2.2.1 Preparation and Physical Properties	20
2.2.2 Chemical Reactions	21
General Remarks	21
Reactions with Halogens, CuBr, CuI, CdCl ₂ , (CH ₃) _n SiCl _{4-n} (n = 1, 2), RPCl ₂ , Thio-	22
cyanates, Benzalacetophenones, Butene	22
drides	23
Reactions with Transition Metal Compounds	26
	07
	21
3 Perfluorohalogenoorgano Compounds of Main Group 3 Elements	28
3.1 Preliminary Remarks	28
3.2 Perfluorohalogenoorgano Compounds of Boron	28
3.3 Perfluorohalogenoorgano Compounds of Aluminium	33
3.4 Perfluorohalogenoorgano Compounds of Gallium	34

IX

3.5	Perfluorohalogenoorgano Compounds of Indium	Page . 34									
3.6	Perfluorohalogenoorgano Compounds of Thallium	. 35									
3.6.1	Preparation and Physical Properties	. 35									
3.6.2	2 Chemical Reactions	. 37									
Re	eactions of $C_6F_5Tl(OSO_2CF_3)_2$, $(C_6F_5)_2TlOH$, $(C_6F_5)_3Tl$ and $(C_6F_5)_2TlNO_3$. 37									
Re	Reactions of $(C_6F_5)_2$ TIX $(X = Cl, Br)$										
	Reactions with $(C_{e}H_{e})_{2}PO$. $(C_{e}H_{e})_{2}P$ and 2.2'-Bipvridvl	. 38 . 38									
	Oxidative Addition Reactions	. 38									
	Pentafluorophenylation Reactions	. 39									
4 0	Defluerebologonoergana Compoundo of Main Group 4 Flomenta	11									
4 F		. 41									
4.1	Preliminary Remarks	. 41									
4.2	Perfluorohalogenoorgano Compounds of Silicon	. 41									
4.2.1	Preparation	. 41									
4.2.2	Physical Properties	. 43									
4.2.3	3 Chemical Reactions	. 47									
4.3	Perfluorohalogenoorgano Compounds of Germanium	. 49									
4.3.1	Preparation	. 49									
4.3.2	Physical Properties	. 54									
Cr	rystal Structure	. 54									
Ma	ass Spectrum of $(C_{12}F_8)_2$ Ge and $(C_{12}F_8S)_2$ Ge	. 55									
EL	ectronic Spectra	. 50 . 59									
4.3.3	Chemical Reactions	. 63									
4.4	Perfluorohalogenoorgano Compounds of Tin	. 66									
4.4.1	Preparation and Physical Properties	. 66									
4.4.2	2 Chemical Reactions	. 69									
4.5	Perfluorohalogenoorgano Compounds of Lead	70									
5 P	erfluorohalogenoorgano Compounds of Main Group 5 Elements	71									
5.1	Preliminary Remarks	71									
5.2	Perfluorohalogenoorgano Compounds of Phosphorus	71									
5.2.1	Cyclic Perfluorohalogenoorgano Compounds of Phosphorus	71									
Ho	omocyclic Phosphorus Compounds	71									
	Preparation and Physical Properties	71									
He	eterocyclic Phosphorus Compounds	74 75									

Pag	е								
5.2.2 Perfluoroorganophosphines	1								
Preparation and Formation									
Physical Properties									
Chemical Reactions	4								
Pyrolysis	4								
Reactions of CF ₂ FH ₂ and ($CF_{3/2}$ FH \ldots	с 6								
Reactions of (C ₆ F ₆) ₉ PH	6								
	Ū								
5.2.3 Perfluorohalogenoorganophosphorus Oxygen Compounds	7								
Preparation	7								
Physical Properties	9								
Chemical Reactions	4								
5.2.4 Perfluoroorganophosphorus Acids, Their lons and Salts	6								
5.25 Perfluoroorganophosphonic and phosphinic Halides	ē.								
5.2.6 Perfluorohalogenoorganophosphorus Nitrogen Compounds 10	1								
5.2.7 Perfluorohalogenoorganophosphorus Halides and Their Anions 10	4								
Perfluorohalogenoalkyl- and Perfluorovinylhalogenophosphines and -phosphoranes 10	4								
Preparation	4								
Perfluoroalkyl- and Perfluorovinylfluorophosphines and -phosphoranes 10	4								
Perfluoroalkylpromonhosphines and phosphoranes 10	5								
Perfluoroalkyliodonhosphines and phosphoranes	6								
Trifluoromethylhalogenophosphines	7								
Perfluoroalkylhalogenophosphoranes	8								
Physical Properties	8								
Ground State Structures of Trifluoromethylhalogenophosphoranes by Means of									
NMR Spectroscopy and Theoretical Results	8								
Electron Diffraction	0								
"Cl Nuclear Quadrupole Resonance	1								
Vibrational Spectra 11	ו ר								
Chemical Reactions	<u>م</u>								
Thermolysis and Photolysis	9								
Hydrolysis	9								
Reactions with Halogens, HI, Hg, Air, N ₂ O ₄ , (CF ₃) ₂ NO, NH ₃ , and B ₄ H ₈ CO 12	0								
Reactions with SbX ₃ , AgX (X = F, Cl), AgOC(O)R, NaOC(CF ₃) ₂ CN, LiOCH(CF ₃) ₂ ,									
$R(CF_3)PH$, and Alkyl lodides	0								
Reactions with Alcohols and Mercaptans	1								
Reactions with Metal Alkyls	3								
Reactions with Trimethylsilyl Compounds, F_3SiPH_2 and $(CH_3)_3EAsH_2$ (E = Si,	_								
Sn)	5								
Reactions with Amines	8								
neactions of Periluoroalkylnalogenophosphines with Transition Metal Com-	^								
Perfluorohalogenonhenvinhosphines and -phosphoranes	2								
Formation and Preparation	2								

~ /	
¥	I
~	ł

F (Pai	Physical Properties	Page 133 135 137
5.2.8 Pre Phy Ch	Perfluoroalkyl- and Perfluorophenylphosphorus Sulfur Compounds . eparation and Formation . vsical Properties . emical Reactions .	139 139 140 143
529	Perfluoroalkylphosphorus Selenium Compounds	145
5210	Perfluoroalkylphosphorus Boron Compounds	146
5.2.11	Tris(perfluorobalogenoorgano)phosphines Perfluorophosphapropene Fluoro-	140
0	phosphaethyne	149
Pre	eparation and Formation	149
Ch	vsical Properties	151 155
		100
5.2.12	Bis(trifluoromethyl)phosphinosilane	159
5.2.13	Perfluoroalkyldiphosphines. Bis(trifluoromethyl)phosphinoarsine	160
5.3	Perfluorohalogenoorgano Compounds of Arsenic	162
5.3.1	Homocyclic and Heterocyclic Perfluoroorgano Compounds of Arsenic	162
5.3.2	Perfluoroalkylarsines	163
5.3.3	Perfluoroorganoarsenic Oxygen Compounds	165
5.3.4	Perfluoroalkylarsenic Nitrogen Compounds	166
5.3.5	Perfluorohalogenoorganohalogenoarsines	166
Pre Ch	eparation and Physical Properties	166 172
5.3.6	Tris(perfluorohalogenoorgano)arsines	174
5.3.7	Perfluoroorganodiarsines, Bis(trifluoromethyl)phosphinoarsine, $(C_6F_5)_3$ As-Ag Complexes	175
5.4	Perfluorohalogenoorgano Compounds of Antimony	177
5.4.1	Preparation and Physical Properties	177
5.4.2	Chemical Reactions	181
5.5	Perfluoroorgano Compounds of Bismuth	182
6 Pe	erfluorohalogenoorgano Compounds of Main Group 6 Elements	183
6.1	Preliminary Remarks	183

6.2 Perfluorohalogenoorgano Compounds of Sulfur	Page 183
6.2.1 Perfluorobalogenosulfur/II) Compounds	183
	100
This such a structure and the structure and the structure structur	183
	183
	183
The Molecule. Spectra	184
Chemical Reactions	187
Fluorothiocarbonyl chloride	188
Preparation	188
Molecule and Spectra	189
Chemical Reactions	191
Fluorothiocarbonyl bromide	192
Fluorothiocarbonyl isocyanate, Fluorothiocarbonyl amide	192
Perfluorohalogenoorganothiocarbonyl Compounds	193
Preparation and Physical Properties	193
Chemical Reactions	194
Trifluoromethylmercaptothiocarbonyl Compounds	198
Preparation and Formation	198
Physical Properties	100
Chemical Beactions	200
	200
	201
	201
	201
Table of Conversion Factors	211

1 Perfluorohalogenoorgano Compounds of Main Group 1 Elements

1.1 Preliminary Remarks

The compounds of the Main Group 1 elements are covered to the end of 1973 in "Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente" Part 4, 1975 (cited here as Part 4), for further details see the preface of this Supplement Volume.

1.2 Perfluorohalogenoorgano Compounds of Lithium and Sodium

1.2.1 Preparation and Physical Properties

Difluorodilithiomethane CF₂Li₂

Trifluoromethyllithium CF₃Li

Chlorodifluoromethyllithium ClCF₂Li

Trifluorovinyllithium F2C=CFLi

Difluorodilithiumethylene F₂C=CLi₂

Chlorodifluorovinyllithium F_2C =CClLi and ClFC=CFLi

The molecular energies for planar and tetrahedral geometries of a number of molecules with a tetracoordinated carbon atom, among them CF_2Li_2 , have been surveyed by ab initio MO calculations. It was shown that in the case of CF_2Li_2 , the energy of the form with C_2 symmetry, obtained by rotating the FCF plane in the cis planar form by 20° about the angle bisector, is 0.7 kcal/mol lower than the energy of the planar structure, for details see [1].

For CF_3Li and $F_2C=CFLi$ no new preparations are reported (see Part 4, p. 2), for chemical reactions see Chapter 1.2.2, p. 9.

 $ClCF_2Li$ is formed in the reaction of $ClCF_2C(O)OCH_3$ with LiCl in the solvent hexamethylphosphoric triamide and is stabilized by the interaction with the solvent forming a complex [2, 3].

 F_2C =CFLi is obtained in almost quantitative yield reacting F_2C =CFCl and n-C₄H₉Li in a mixture of tetrahydrofuran, ether and pentane (5:3:3) at -135 °C [4]. It also forms in more than 90% yield on adding CH₃Li to a solution of F_2C =CFBr in tetrahydrofuran, ether and pentane at -110 °C [5].

When n-C₄H₉Li in ether is added to a solution of F₂C=CCl₂ in tetrahydrofuran (-120° C, 10 min) and the temperature is then raised to -90° C (5 min), F₂C=CClLi is formed in more than 85% yield [6]. In ether as the only solvent the yield lowers to 40% [7], for the dependance of the yield from the ratio of both solvents see [6]. In an ether solution F₂C=CCl₂ reacts with n-C₄H₉Li at -70° C (0.5 h) to form F₂C=CClLi [8]. FClC=CFLi is prepared by the reaction of ClFC=CFCl with n-C₄H₉Li at -115° C in ether/tetrahydrofuran [7].

The barriers of rotation around carbon-carbon double bonds and the relative stability of planar and perpendicular olefins, among them $F_2C=CLi_2$, were analysed within the framework of the ab initio unrestricted Hartree-Fock theory in terms of electrostatic, exchange repulsion, polarization, charge transfer, and their coupling interactions [54].

F₂

1-Lithium-2-chlorodifluorocyclopropene Cl

1-Lithiumperfluoro(2,2-dimethylpropane) (CF₃)₃CCF₂Li

1-Lithiumperfluoro(3-oxa-4-methylpentane) (CF₃)₂CFOCF₂CF₂Li

1,6-Dilithiumdodecafluorohexane Li(CF₂)₆Li

CNDO/2 calculations with a partial-geometry optimation were carried out on 1-lithium-2chlorodifluorocyclopropene[9].

The metalation of $(CF_3)_3CCF_2H$ with RLi $[R = CH_3, n-C_4H_9, (CH_3)_3C]$ gives $(CF_3)_3CCF_2Li$. The reaction is carried out with CH_3Li in ether and with $n-C_4H_9Li$ or $(CH_3)_3CLi$ in alkane solvents [10].

 $n-C_4H_9Li$ in ether reacts with $(CF_3)_2CFOCF_2CF_2I$ at $-78^{\circ}C$ (1 h) to give $(CF_3)_2CFOCF_2CF_2Li$ [11]; replacing $n-C_4H_9Li$ by C_6F_5Li increases the yield [12].

 $Li(CF_2)_6Li$ forms on reacting $Br(CF_2)_6Br$ or $(CH_3)_2SiH(CF_2)_6SiH(CH_3)_2$ in tetrahydrofuran with C_2H_5Li or $(CH_3)_3CLi$ at -190 to -78 °C (15 min) or -95 °C (12 min), respectively [13].

On adding an ether solution of C_4H_9Li at $-35^{\circ}C$ (1 h, N₂ atmosphere) to a stirred ether solution of 2,3,4-tris(trifluoromethyl)furan the Li-substituted furan forms with further stirring (1 h) [14].

Pentafluorophenyllithium C_6F_5Li

 C_6F_5Li is prepared by adding a hexane solution of $n-C_4H_9Li$ to an ether solution of C_6F_5Br or C_6F_5H at -78 °C (1 h) [15].

The ion-pair equilibrium between 9-t-butylfluorene (R) and C_6F_5H in cyclohexylamine according

$$R^{-}Li^{+} + C_{6}F_{5}H \rightleftharpoons RH + C_{6}F_{5}^{-}Li^{+}$$

is covered in [16].

Perfluoro(4-methylphenyl)lithium 4-CF3-C6F4Li

1,2-, 1,3- and 1,4-Dilithiumtetrafluorobenzene 1,2-Li₂-C₆F₄, 1,3-Li₂-C₆F₄, 1,4-Li₂-C₆F₄

1,3,5-Trilithiumtrifluorobenzene 1,3,5-Li₃-C₆F₃

At -30 °C (0.5 h) C_4H_9Li reacts with 4-Br- $C_6F_4CF_3$ to form 4- CF_3 - C_6F_5Li [17]. On adding an ether solution of 1,2-Br₂- C_6F_4 to a stirred hexane solution of C_4H_9Li over 50 min, followed by stirring for further 35 min, 1,4-Li₂- C_6F_4 is formed. 1,2-Li₂- C_6F_4 is obtained on adding n- C_4H_9Li in hexane over 23 min to 1,2-Br₂- C_6F_4 in ether, with further stirring (70 min) [18]. Similar reactions between n- C_4H_9Li and 1,3- H_2 - C_6F_4 , 1,3- Br_2 - C_6F_4 or 1,4- Br_2 - C_6F_4 in ether at -70 °C (about 2 h, stirring) form the corresponding title compounds [19].

1,3,5-Trifluorobenzene was metalated with $n-C_4H_9Li$ in ether forming 1,3,5-Li₃-C₆F₃ [20].

Gmelin Handbook CF Comp. Suppl. 1

$\label{eq:2.1} \textbf{4-Lithiumtetrafluorophenylperfluoropolyether} \ \textbf{4-Li-C}_6 F_4 C F_2 C F(C F_3) O C F_2 C F(C F_3) O C_3 F_7$

 $\begin{array}{l} \textbf{4-Lithiumtetrafluorobenzoylperfluoropolyethers} \ \textbf{4-Li-C}_6F_4C(O)R_{f}, \\ R_f = CF(CF_3)OC_3F_7, \ CF(CF_3)OCF_2CF(CF_3)OC_3F_7, \ CF(CF_3)[OCF_2CF(CF_3)]_4OC_3F_7, \\ CF_2(OC_2F_4)_2OC_2F_5, \ CF_2(OCF_2)_3OCF_3 \end{array}$

The first compound forms by the reaction of a tetrahydrofuran/ether solution of 4-Br- $C_6F_4CF_2CF(CF_3)OCF_2CF(CF_3)OC_3F_7$ with a hexane solution of C_4H_9Li . The other compounds are obtained by similar reactions with 4-Br-benzoyl compounds as starting materials [21].

In an ether-hexane mixture, 2-H-heptafluoronaphthalene was reacted with C_4H_9Li at -75 °C (2 h) under N₂ to yield heptafluoro-2-naphthyllithium [22, 23]. Lithiation of 2,2'-dibromooctafluorobiphenyl took place in ether at -78 °C by adding a hexane solution of n- C_4H_9Li with stirring over a period of 40 min. After additional stirring for 1.5 h 2-lithium-2'-bromooctafluorobiphenyl is obtained. Similarly 2-lithiumnonafluorobiphenyl was prepared from 2-bromononafluorobiphenyl and n- C_4H_9Li , and 2,2'-dilithiumoctafluorobiphenyl by the reaction of 2,2'-dibromooctafluorobiphenyl and n- C_4H_9Li [24]. In tetrahydrofuran 3,3'- H_2 - C_6F_4 - C_6F_4 and n- C_4H_9Li , dissolved in hexane, reacted at -76 °C (2.0 h) to give 3,3'- Li_2 - C_6F_4 - C_6F_4 [19].

Perfluoro(9-phenylfluorenyl)lithium and -sodium

Perfluoro(4-alkylphenyl)pentafluorophenylcyanomethyllithium and -sodium

 $M = Li, Na, R_f = CF_3, C_2F_5, CF(CF_3)_2, C(CF_3)_3$

Perfluoro(4-alkylphenyl)perfluoro(4-methylphenyl)cyanomethyllithium and -sodium

 $M = Li, Na, R_{f} = CF_{3}, C_{2}F_{5}, CF(CF_{3})_{2}, C(CF_{3})_{3}$

9-Hydroperfluoro(9-phenylfluorene) reacts with LiH or NaH in 1,2-dimethylether at 20 to 25°C (1 h) to form the lithium and sodium salts. In the following is given the ¹⁹F NMR spectrum of the lithium salt, which is almost identical with that of the sodium compound (chemical shifts δ in ppm have a positive sign downfield from the internal standard C_6F_6 , dimethylether as solvent): $\delta(F^3,F^6) = -17.3$, $\delta(F^2,F^7) = -6.6$, $\delta(F^{3'},F^{5'}) = -3.8$, $\delta(F^{4'}) = 0.0$, $\delta(F^1,F^8) = 2.9$, $\delta(F^4,F^5) = 19.8$, $\delta(F^{2'},F^{6'}) = 23.2$, $J(F^1-F^2) = 20.5$ Hz, $J(F^1-F^3) = 9$ Hz, $J(F^1-F^4) \approx 9$ Hz, $J(F^2-F^3) = 20.5$ Hz, $J(F^3-F^4) = 19$ Hz, $J(F^1-F^{2'}) \approx 4$ Hz, $J(F^{3'}-F^{4'}) = 21.5$ Hz [25]. The difference of the chemical shifts of the perfluoro(9-phenylfluorenyl)ion and of 9-hydroperfluoro-(9-phenylfluorene) is given and discussed in [26].

The metal compounds of the perfluoro(diaryl)cyanomethanes were prepared [27] in dimethylformamide according to

$$4-R_{f}-C_{6}F_{4}-CH(CN)-C_{6}F_{5} + MH \rightarrow 4-R_{f}-C_{6}F_{4}-CM(CN)-C_{6}F_{5}$$

and

 $4\text{-}R_{f}\text{-}C_{6}F_{4}\text{-}CH(CN)\text{-}C_{6}F_{4}\text{-}CF_{3}\text{-}4' + MH \rightarrow 4\text{-}R_{f}\text{-}C_{6}F_{4}\text{-}CM(CN)\text{-}C_{6}F_{4}\text{-}CF_{3}\text{-}4'$

 $\mathsf{R}_{\mathsf{f}}=\mathsf{CF}_3,\,\mathsf{M}=\mathsf{Li},\,\mathsf{Na};\,\mathsf{R}_{\mathsf{f}}=\mathsf{C}_2\mathsf{F}_5,\,\mathsf{M}=\mathsf{Li},\,\mathsf{Na};\,\mathsf{R}_{\mathsf{f}}=(\mathsf{CF}_3)_2\mathsf{CF},\,\mathsf{M}=\mathsf{Li},\,\mathsf{Na};\,\mathsf{R}_{\mathsf{f}}=(\mathsf{CF}_3)_3\mathsf{C},\,\mathsf{M}=\mathsf{Li},\,\mathsf{Na}$

The ¹⁹F NMR data of the compounds are compiled in Table 1, p. 5, and Table 2, p. 5.

Table 1

¹⁹F NMR Spectra of the Lithium and Sodium Compounds of the Following Perfluoro(diaryl)cyanomethanes [27]:

Chemical shift δ in ppm (positive sign means lowfield from the internal standard C₆F₆), spinspin coupling constant J in Hz, 10 mol% solution in 1,2-dimethoxyethane, ^{a)} \pm 0.7 ppm, ^{b)} \pm 0.2 ppm, ^{c)} \pm 0.5 ppm.

м	R _f	δ(F²)	δ(F ^{2'})	δ(F ³)	δ(F ^{3′})	δ(F ^{4′})	δ(CF ₃)	δ(CF _n)	Absolute J(F-F) cou- pling constants in Hz
Na	CF ₃	15.0 ^{c)}	21.5	15.0	-4.3 ^{b)}	-4.3 ^{b)}	110.2	_	_
Li	CF_3	15.5 ^{c)}	21.2	15.5	-3.6 ^{b)}	-3.6 ^{b)}	110.3	_	
Na	CF ₃ CF ₂	15.2	21.6	16.1	-3.8 ^{a)}	-3.8 ^{a)}	77.2	55.4	$J(CF_2 - F^3) = 29$
Li	CF_3CF_2	15.6	21.4	16.6	-3.5 ^{a)}	-3.5 ^{a)}	77.1	55.1	$J(CF_2 - F^3) = 29,$
									$J(CF_3 - CF_2) = 3.3,$
									$J(CF_3 - F^3) = 7$
Na	(CF ₃) ₂ CF	15.8	21.6	20.0	-4.0 ^{a)}	-4.0 ^{a)}	87.9	-11.4	_
Na	$(CF_3)_3C$	16.2	21.6	27.1	-3.6 ^{a)}	-3.6	101.5	_	_
Li	$(CF_3)_3C$	16.9	21.8	27.7	-3.3 ^{a)}	-3.3	102.0	-	$J(CF_3-F^3) = 25.7,$
									$J(F^2 - F^3) = 14.5$

Table 2

¹⁹FNMR Spectra of the Lithium and Sodium Compounds of the Following Perfluoro(diaryl)cyanomethanes [27]:

For definitions see Table 1; ^{a)} \pm 0.6 ppm, ^{b)} 0.6 ppm, ^{c)}: because of poor resolution of the signals the chemical shift value could not be determined exactly.

М	R _f	δ(F²)	δ(F ^{2′})	δ(F ³)	δ(F ^{3′})	δ(4′-CF ₃)	$\delta(CF_3)$	$\delta(CF_n)$	Absolute J(F-F) cou- pling constants in Hz
Na	CF ₃	19.5	19.5	16.1	16.1	108.8	108.8	_	$J(CF_3-F^3) = 21.2$
Li	CF_3	19.9	19.9	16.5	16.5	108.6	108.6	-	$J(CF_3 - F^3) = 21.5$
Na	CF ₃ CF ₂	19.9 ^{a)}	19.9	17.5	16.8	108.9	77.3	54.7	_
Li		20.0 ^{a)}	20.0	18.0	16.7	108.2	77.2	54.7	$J(CF_3 - F^3) = 29.5,$
	0 -								$J(4'-CF_3-F^{3'}) = 20.5$
Na	(CF ₃) ₂ CF	20.1 ^{b)}	20.1	20.1	16.5	109.0	87.9	- 12.5	-
Li	(CF ₃) ₂ CF	20.2 ^{b)}	20.2	21.1	16.8	109.1	88.0	- 12.8	$J(4'-CF_3-F^{3'}) = 21.0,$
									$J(CF-F^3) = 39.5,$
									$J(CF_3 - F^3) = 12.5,$
									$J(CF_3-CF) = 6$

Gmelin Handbook CF Comp. Suppl. 1

М	R _f	δ(F²)	δ(F ^{2′})	δ(F ³)	δ(F ^{3′})	δ(4′-CF ₃) δ(CF ₃)	δ(CF _n)	Absolute J(F-F) cou- pling constants in Hz
Na	(CF ₃) ₃ C	20.4 ^{c)}	20.4	28.2	16.3	108.9	101.8		_
Li	(CF ₃) ₃ C	20.9	20.6	28.9	16.8	109.0	102.4	_	$\begin{array}{l} J(4'\text{-}CF_3\text{-}F^{3'})=21.5,\\ J(CF_3\text{-}F^3)=25.9,\\ J(F^2\text{-}F^3)=11.0 \end{array}$

Table 2 (continued)

Tris(pentafluorophenyl)methylsodium $(C_6F_5)_3CNa \text{ and -lithium } (C_6F_5)_3CLi$

Bis(pentafluorophenyl)-4-chlorotetrafluorophenylmethylsodium M = Na, X = Cl

Bis(pentafluorophenyl)-4-bromotetrafluorophenylmethylsodium $M\,=\,Na,\,X\,=\,Br$

(C₆F₅)₂(4-X-C₆F₄)CM

Bis(pentafluorophenyl)-4-trifluoromethyltetrafluorophenylmethyllithium and -sodium M = Li, Na; X = CF_3

Bis(pentafluorophenyl)-3-chlorotetrafluorophenylmethyllithium and -sodium $(C_6F_5)_2(3\text{-}Cl\text{-}C_6F_4)CM\ (M=Li,\ Na)$

Bis(pentafluorophenyl)-3,5-dichlorotrifluorophenylmethylsodium (C₆F₅)₂(3,5-Cl₂-C₆F₃)CNa

 $\textbf{Bis(pentafluorophenyl)pentachlorophenylmethylsodium} (C_6F_5)_2 (C_6Cl_5) CNa$

Bis(pentafluorophenyl)heptafluoro-2-naphthylmethyllithium and **-sodium** (M = Li, Na)

To a solution of $(C_6F_5)_2$ CHR in hexamethylphosphoric triamide, NaH was added and the solution stirred at 20 to 25 °C (5 to 10 h). The replacement of H by Na takes place according to:

 $(C_6F_5)_2CHR + NaH \rightarrow (C_6F_5)_2CNaR + H_2$

$$\label{eq:R} \begin{split} R &= C_6 F_5, 4 - Cl - C_6 F_4, 4 - Br - C_6 F_4, 4 - CF_3 - C_6 F_4, 3 - Cl - C_6 F_4, 3, 5 - Cl_2 - C_6 F_3, C_6 Cl_5, heptafluoro-2-naphthyl (C_{10} F_7). \end{split}$$

In a similar way, lithium compounds were prepared using $(C_6F_5)_2$ CHR with $R = C_6F_5$, 4-CF₃-C₆F₄, 3-Cl-C₆F₄, heptafluoro-2-naphthyl [17]. The ¹⁹F NMR data of these compounds are given in **Table 3**, p. 7.

Table 3 ¹⁹F NMR Spectra of the Compounds A, B, and C [17].

Chemical shift δ in ppm, positive sign lowfield from the internal standard C_6F_6 , spin-spin coupling constant J in Hz, concentration of the compounds 10 mol% in hexamethylphosphoric triamide.

Com- pound	М	R	δ(R)	δ(F ²)	δ(F ^{2′})	δ(F ³)	δ(F ^{3′})	δ(F ⁴)	δ(F ^{4′})
A	Na	F	14.6	- 17.5	- 17.5	6.1	6.1	14.6	δ(B)
A ^{a)}	Li	F	15.0	- 17.3	- 17.3	6.4	6.4	15.0	δ(R)
А	Na	Cl	_	- 17.9	- 17.9	6.0	- 13.7	12.9	_
А	Na	Br		- 18.3	- 18.3	6.1	-21.0	12.9	_
А	Na	CF_3	- 111.2	- 19.8	- 13.9	5.2	- 13.9	8.2	δ(R)
Ab	Li	CF ₃	- 111.8	- 19.3	- 14.0	5.2	- 14.0	8.2	δ(R)
В	Na	F	4.8	- 17.3	-23.3	6.1	δ(R)	14.7	— 6.7 [°]
					-41.6(F ^{6′})				
B ^{c)}	Li	F	4.8	- 17.3	-23.3	6.0	δ(R)	14.7	- 6.8
					-41.5(F ^{6′})				
B ^{d)}	Na	Cl		- 16.8	-46.6	6.6	_	15.4	-28.5
С	Na	C ₆ Cl ₅	_	- 17.5	_	6.4	_	15.4	
С	Na	$C_{10}F_7$		- 18.6	_	5.8	_	10.9	_
С	Li	C ₁₀ F ₇		- 19.1	—	5.5	_	10.8	_

 $^{a)} J(F^{3}-F^{4}) = 21.8, \ J(F^{2}-F^{4}) = 7.0, \ J(F^{2}-F^{3}) = 19.0 \ Hz. - {}^{b)} J(F^{3}-F^{4}) = 22.0, \ J(CF_{3}-F^{3'}) = 3.8 \ Hz. - {}^{c)} J(F^{3}-F^{4}) = 22.5, \ J(R-F^{6'}) = 6.0, \ J(F^{2'}-F^{4'}) = 10, \ J(F^{2'}-F^{6'}) = 4.0, \ J(F^{2}-F^{2'}) = J(F^{4'}-F^{6'}) = 0, \ J(R-F^{2'}) = J(R-F^{4'}) = 23.8 \ Hz. - {}^{d)} J(F^{3}-F^{4}) = 22.5, \ J(F^{2'}-F^{4'}) = 4.5, \ J(F^{2}-F^{4}) = 7.5, \ J(F^{2}-F^{2'}) = 0 \ Hz.$

Heptafluoro-2-naphthyldicyanomethylsodium R = R' = CN; M = Na

Heptafluoro-2-naphthylpentafluorophenylcyanomethyllithium and -sodium $R=C_6F_5,\,R'=CN;\,M=Li,\,Na$

Heptafluoro-2-naphthyl-4-tetrafluoropyridylcyanomethyllithium and -sodium R = 4-C_5F_4N, R' = CN; M = Li, Na

Gmelin Handbook CF Comp. Suppl. 1

Bis(heptafluoro-2-naphthyl)cyanomethylsodium

 $R = \beta$ -heptafluoronaphthyl, R' = CN; M = Na

Heptafluoro-2-naphthylbis(pentafluorophenyl)methylsodium and -lithium $R=R^\prime=C_6F_5;\,M=Li,\,Na$

Heptafluoro-2-naphthylmethanes react in 1,2-dimethoxyethane or hexamethylphosphoric triamide under dry nitrogen with LiH or NaH at 20 to 25°C (4 h) to form the corresponding metalated compounds [28] according to

The ¹⁹F NMR spectra are shown in Table 4.

Table 4

 19 F NMR Spectra of the Lithium and Sodium Compounds of the β -Heptafluoronaphthylmethanes [28].

Chemical shift δ in ppm, positive sign lowfield from the internal standard C_6F_6 , spin-spin coupling constant J in Hz, HPMA = hexaphosphoric triamide, DME = 1,2-dimethoxyethane, 10 mol% solution in HPMA or DME.

М	R	R′	Solvent	δ(F ¹)	δ(F ³)	δ(F ⁴)	δ(F ⁵)	δ(F ⁶)	δ(F ⁷)	δ(F ⁸)
Na	CN	CN	НМРА	-34.8	-26.9	- 9.0	- 12.4	3.2	-2.5	- 12.4
Na	C ₆ F ₅	CN	DME	-36.0	-27.0	- 9.3	- 12.8	3.1	-2.3	- 12.8
Li ^{a)}		CN	DME	- 36.9	-27.1	- 9.8	- 13.6	2.0	-2.9	- 13.6
Na	C ₆ F ₅	CN	HMPA	-34.9	-28.0	- 9.0	- 12.9	4.6	-2.1	- 12.9
Li ^{b)}	$C_{6}F_{5}$	CN	HMPA	- 35.1	-28.3	- 9.1	- 13.2	4.6	-2.3	- 13.2
Na	4-C ₆ F₄N	CN	DME	-41.8	-28.4	- 10.1	- 14.3	-2.3	-3.5	- 15.3
Li ^{c)}	4-C ₆ F₄N	CN	DME	-43.0	-29.2	- 10.6	- 14.9	-2.8	-4.0	- 15.8
Na ^{d)}	$C_{10}F_7$	CN	DME	- 39.1	-28.3	- 9.7	- 14.1	1.1	-2.9	- 14.1
Na	$C_{10}F_7$	CN	HMPA	- 39.2	-29.6	- 9.6	- 14.1	1.6	-3.0	- 14.1
Na	C ₆ F ₅	C_6F_5	HMPA	-34.2	-27.5	- 8.3	- 12.3	5.7	- 1.2	- 13.0
Li	C_6F_5	C_6F_5	HMPA	-34.6	-27.9	- 8.3	- 12.9	5.5	-1.6	- 12.9
a) //E	¹ -E ⁸) - 68) — 60 Ц-	b) 1/1	= ¹ -= ⁸ \	65 1/E ⁴ -E	5) - 56			^B) _ 67

^{a)} $J(F^1-F^8) = 68$, $J(F^4-F^5) = 60 \text{ Hz.} - {}^{\text{b}} J(F^1-F^8) = 65$, $J(F^4-F^5) = 56 \text{ Hz.} - {}^{\text{c}} J(F^1-F^8) = 67$, $J(F^4-F^5) = 56 \text{ Hz.} - {}^{\text{d}} J(F^1-F^8) = 65$, $J(F^4-F^5) = 54 \text{ Hz.}$

References p. 14

Gmelin Handbook CF Comp. Suppl. 1

1-lodo-2-lithiumdodecafluorobicyclo[2.2.2]octane

1-Lithium-undecafluoro-bicyclo[2.2.2]octa-2-ene Li

A stirred ether solution of 1-hydrododecafluorobicyclo[2.2.2]octane reacted with CH_3Li at 18 °C to give 1-lithiumtridecafluorobicyclo[2.2.2]octane. Refluxing for 70 h leads to a slow loss of LiF to give the transient dodecafluorobicyclo[2.2.2]octa-2-ene. Back addition of Lil affords 1-iodo-2-lithiumdodecafluorobicyclo[2.2.2]octane. 1-Lithiumtridecafluorobicyclo[2.2.2]octane is, at reflux temperature, in equilibrium with 1-lithiumundecafluorobicyclo[2.2.2]octa-2-ene and 1-iodotridecafluorobicyclo[2.2.2]octane [29].

1.2.2 Chemical Reactions

1.2.2.1 Hydrolysis, Carboxylation and Reactions with SO₂

Perfluorohalogenoorgano compounds of the Main Group 1 elements are sensitive to H_2O , acids and bases. They hydrolyse to the corresponding hydrogenated perfluorochlorohydrocarbons and M^+ according to:

$$R_fM + H^+ \rightarrow HR_f + M^+ (M = Li, Na)$$

Another typical reaction is CO_2 insertion forming $R_1C(O)OM$; e.g., heptafluoro-2-naphthyllithium reacts with CO_2 at $-75^{\circ}C$ (0.5 h) to yield the corresponding lithium salt which on treatment with 4 M HCl gives heptafluoro-2-naphthoic acid (melting point 188 to 189°C) [22]. In a similar way 5-lithium-2,3,4-tris(trifluoromethyl)furan gave 2,3,4-tris(trifluoromethyl)-5furancarboxylic acid in 72.8% yield (melting point 81°C) [14].

For the preparation of octafluoro-9-fluorenone and 2,2'-octafluorodiphenic acid using this method, see [24].

Perfluorohalogenoorganolithium compounds are very reactive intermediates and are used in situ for further reactions. They are often used for the preparation of the title compounds, e.g. [30]:

$$F_{2}C=CFLi + SO_{2} \rightarrow F_{2}C=CFSO_{2}Li \xrightarrow{H^{+}} F_{2}C=CFSO_{2}H$$

Therefore, these types of reactions are not recorded here.

Gmelin Handbook CF Comp. Suppl. 1

1.2.2.2 Thermal Stability. Reactions with Br₂ and I₂

The enthalpy of the decomposition of LiCF₃ according to

 $LiCF_3 \rightarrow LiF + CF_2$

has been calculated by thermodynamic data to be 2 kcal/mol. MINDO/3 and MINDO/2 calculations resulted in 2 and 0 kcal/mol, respectively [31].

 $(CF_3)_3CCF_2Li$ decomposes in ether on standing overnight at -78 °C. Under the same conditions it is much more stable in alkane solutions, which are the solvents of choice for the investigation of the reaction of the carbene species generated by α elimination of LiF [10].

Significant decomposition of $Li(CF_2)_6Li$ occurs at -78 °C [13].

At -78 °C (CF₃)₂CFOCF₂CF₂Li formed from n-C₄H₉Li is at least stable for 20 h. When the temperature is raised to -30 °C (2 h) decomposition with the formation of (CF₃)₂CFOCF=CF₂ is observed. When C₆F₅Li was used as starting material (CF₃)₂CFOCF₂CF₂Li was found to be unstable even at -78 °C providing (CF₃)₂CFOCF=CF₂ [12].

Heptafluoro-2-naphthyllithium eliminates LiF on warming from -78 to 20°C to give hexafluoro-1,2-naphthalene, for condensation with excess furan or heptafluoro-2-naphthyllithium see the original paper [23].

1-lodo-2-lithiumdodecafluorobicyclo[2.2.2]octane decomposes to give 1-iodoundecafluorobicyclo[2.2.2]oct-2-ene. Refluxing 1-lithiumtridecafluorobicyclo[2.2.2]octane results in the formation of dodecafluorobicyclo[2.2.2]octa-2-ene [29].

lodation of 1-lithiotridecafluorobicyclo[2.2.2]octane with I_2 leads to the corresponding iodo compound [29]. Heptafluoro-2-naphthyllithium reacts with Br_2 to yield 2-bromoheptafluoro-naphthalene (melting point 73 to 74°C) [22].

1.2.2.3 Reactions with Organohalogenosilanes, -phosphines, -phosphineoxides, Benzene and Halogenobenzenes

Reactions of C_6F_5Li with the reagents $C_6F_5X (X = H, F, Cl, Br, I)$, $C_6F_4X'_2 (X' = H, Cl)$, $C_6F_3Cl_3$, C_6H_6 , $(C_6Y_5)_3P$, $(C_6Y_5)_3PO$, $(C_6Y_5)Si(CH_3)_3 (Y = H, F)$ and $(CH_3)_{4-n}SiCl_n (n = 1, 2)$ in ether or in ether/n-hexane solution were investigated by GC/MS techniques. For details and results see original paper [15].

An ether solution of C_6F_5Li condenses with $(CH_3)_2(CHCl_2)SiCl$ at $-70^{\circ}C$ then warming to 20°C forming $C_6F_5Si(CH_3)_2CHCl_2$ (45% yield, boiling point 122°C/50 Torr). IR bands and ¹H NMR chemical shifts are presented. Five more compounds containing a $C_6F_5Si(CH_3)_2$ group were prepared and used as protecting groups for steroid alcohols forming volatile ethers, detectable at picogram levels in gas chromatography [32]. 1,3,5-Trifluorobenzene is metalated by C_6F_5Li in tetrahydrofuran at $-70^{\circ}C$ and gives 2-lithium-1,3,5-trifluorobenzene, which reacts with $(CH_3)_3SiCl$ to form 2- $(CH_3)_3Si-1,3,5-C_6F_3H_2$ (16.1% yield) and $(CH_3)_3SiC_6F_5$ (52%) [20].

 C_6F_5Li with $(C_6H_5)_3B$ in a N₂ atmosphere at -78 °C (3 h) and then at 20 °C (12 h) forms the complex Li[B(C_6H_5)_3C_6F_5]. In a similar reaction Li[B(4-CH₃-C₆H₄)_3C₆F₅] is prepared [33].

Li(CF₂)₈Li reacts with (CH₃)₃SiCl at -95° C yielding 72% (CH₃)₃Si(CF₂)₈Si(CH₃)₃ [13].

Lithiumtridecafluorobicyclo[2.2.2]octane forms with $(CH_3)_3SiCl$ in ether at 18°C (16 h) 1-(trimethylsilyl)tridecafluorobicyclo[2.2.2]octane (melting point 97 °C) [29].

1.2.2.4 Reactions with Alcohol, Ketones and Aldehydes

The decomposition of $ClCF_2Li$ in hexamethylphosphoric triamide in the presence of CF_3CH_2OH at reflux temperature (12 h) gives 100% CHF_2Cl . The lithium compound reacts with ketones under similar conditions according to:

$$ClCF_{2}Li + RC(O)R' \rightarrow RR'C(OLi)CF_{2}Cl \xrightarrow{H^{+}} RR'C(OH)CF_{2}Cl$$

R, R', boiling point °C/Torr, yield (%): C_6H_5 , CF_3 , 68 to 70/8; 63%; n- C_4H_9 , CF_3 , 52 to 53/18, 39%; C_6H_5 , CF_2Cl , -, 18%; additional product 50% $C_6H_5CCl=CF_2[2, 3]$. The reaction mechanisms and further reactions are described in [2].

When C_6H_5 CHO is added to F_2 C=CFLi dissolved in a mixture of tetrahydrofuran, ether and pentane (4:1:1) at -60 °C (0.5 h), C_6H_5 CH(OH)CF=CF₂ (96% yield) is formed after treatment with 2 N HCl; ¹H NMR data are presented [5]. In a mixture of tetrahydrofuran, ether and pentane (5:3:3), F_2 C=CFLi reacts with ketones and aldehydes dissolved in ether at -13 °C (for acetophenone at -30 °C) according to:

R, R', boiling point in °C/Torr, n_D^{20} , yield : C_6H_5 , CH_3 , 40/0.1, 1.4875, 88% ; -(CH_2)₅-, 36/0.05, 1.4320, 88% ; C_6H_5 , H, 51/0.1, 1.4865, 83% ; C_5H_{11} , H, 37/0.5, 1.3985, 88%. IR bands [ν (C=C)], ¹H and ¹⁹F NMR spectra are presented [4].

Cyclohexanone adds ClCF=CFLi (at -110° C, then warmed to -80° C, 10 min) to yield after hydrolysis with 6 N H₂SO₄ 85% 1-(2-chloro-1,2-difluoroethenyl)-1-cyclohexanol (boiling point 45°C/0.05 Torr). IR bands and ¹⁹F NMR data are provided. Similarly F₂C=CClLi reacts with n-C₃H₇CHO to give 40% n-C₃H₇CH(OH)CCl=CF₂ (boiling point 60 to 62°C/13 Torr, n_D²⁰ = 1.4185). IR bands and ¹⁹F NMR data are given [7]. F₂C=CClLi adds ketones and aldehydes according to:

$$CF_2=CCILi + R^1R^2C=O \rightarrow R_1R_2C(OLi)C(CI)=CF_2 \xrightarrow{H^+} R_1R_2C(OH)CCI=CF_2$$

R¹, R², boiling point in °C/Torr, n_D^{20} and yields are as following: C_6H_5 , H, 63 to 64/0.05, 1.5110, 82%; CH₃, CH₃, 37 to 40/13, 1.4160, 70%; -(CH₂)₅-, 44 to 45/0.05, 1.4630, 86%. IR[v(C=C)], ¹H and ¹⁹F NMR values are recorded [6]. With cyclohexanone dissolved in ether, F₂C=CCLLi forms on warming from -70 to 17°C (1.7 h) 62% 1-(1-chloro-2,2-difluorovinyl)cyclohexanol (boiling point 68 to 72°C/8 Torr) [8].

In ether 4-CF₃-C₆F₄Li reacts with $(C_6F_5)_2$ CO to yield after hydrolysis with concentrated HCl 4-trifluoromethyl-2,3,5,6-tetrafluorophenylbis(pentafluorophenyl)carbinol which sublimes at 170 °C/5 Torr. IR and ¹⁹F NMR spectra are given [17]. Addition of $(CF_3)_2$ CFOCF₂CF₂Li to $(CF_3)_2$ CO at -78 °C (3 h) in hexane gives 94% $(CF_3)_2$ CFOCF₂CF₂C(CF₃)₂OLi (boiling point 155 to 157/0.3 Torr) [11].

Gmelin Handbook CF Comp. Suppl. 1

12 Compounds of Main Group 1 Elements

1.2.2.5 Reactions with Olefins, Cyclopentadiene and C₆H₅ICl₂

Adding CF₃CF=CF₂ in the form of a gas to an ether solution of C₆F₅Li in a stream of dry argon between -80 and 50°C, keeping the mixture at -70°C (3 h) and, afterwards acidifying with 10% HCl at 10°C, gives 8% cis-1-perfluoro(phenylpropylene), 40% trans-1-perfluoro-(phenylpropylene), 10% trans-perfluoro[α -(4-biphenyl)propylene] and 5% pentafluorobrombenzene [34]. With excess n-C₄H₉Li dissolved in ether F₂C=CCl₂ forms at -40°C (0.5 h) 1-hexyne via F₂C=CClLi [8]. An etheral solution of C₆F₅Li reacts at -78°C (1 h) with C₆H₅ICl₂ to give 23% C₆F₅(C₆H₅)ICl (decomposition point 174°C) [35].

 C_6F_5Li reacts with cyclopentadiene in hexane on refluxing (2 h) to yield 5,6,7,8-tetrafluoro-1,4-dihydro-1,4-methanonaphthalene (boiling point 93 to 94°C/18 Torr, melting point 44 to 44.5°C) [36].

1.2.2.6 Reactions with Transition Metal Compounds

When 1,3-Li₂C₆F₄ is treated with C₂H₅HgCl in ether at -70° C (2 h) and then at -40° C (3 h), low yields of 1,3-(C₂H₅Hg)₂-C₆F₄ are obtained (melting point 75 to 76°C). Treatment of 1,3-Li₂-C₆F₄ with C₂H₅HgCl gave impure 1-C₂H₅Hg-3-Br-C₆F₄ in low yields. In tetrahydrofuran 1,4-Li₂-C₆F₄ reacted with (CF₃)₂CFHgCl at -70° C (0.3 h), then at -40° C (3.5 h) to give 9% 1,4-[(CF₃)₂CFHg]₂-C₆F₄ (melting point about 142°C). Condensation of 3,3'-Li₂-C₆F₄-C₆F₄ with C₂H₅HgCl in tetrahydrofuran/hexane at -70° C (2.75 h) gave 39% 3,3'-(C₂H₅Hg)₂-C₆F₄-C₆F₄ [19]. The preparation of perfluorobiphenylmercury can be achieved either by the reaction of 2,2'-Li₂-C₆F₄-C₆F₄ and HgCl₂ in ether or heating 2,2'-Li₂-C₆F₄-C₆F₄ with Hg at 300°C (melting point >370°C) [37].

In ether $(\pi$ -C₅H₅)Co(CO)I₂ and 2,2'-Li₂-C₆F₄·C₆F₄ are mixed at -78 °C. The solution is warmed to 20 °C (24 h) giving 49% 5-(π -cyclopentadienyl)-5-carbonyl-1,2,3,4,6,7,8,8-octafluoro-dibenzocobaltole. The Rh and Ir complex are made similarly [38].

Norbornadieneplatinum dichloride and $2,2'-Li_2-C_6F_4-C_6F_4$ form 3.6% 5,5-norbornadiene-1,2,3,4,6,7,8,9-octafluorodibenzoplatinole. Similar 5,5-di(π -cyclopentadienyl)-1,2,3,4,6,7,8,9-octafluorodibenzozirconole in 4% yield is obtained [38].

Reactions of C₆F₅Li

An ether solution of C_6F_5Li reacts with $ZrCl_4$ at -78 °C to yield $Zr(C_6F_5)_4 \cdot C_2H_5OC_2H_5$ (73%) [39]. In an inert atmosphere C_6F_5Li and $[\pi$ - Cp_2TiCl_2 (Cp = cyclopentadienyl) react at -78 °C (4 h) to yield 75% π - $Cp_2Ti(C_6F_5)$, melting point 111 to 113 °C, decomposition [40].

A solution of VCl₄ in tetrahydrofuran was added under stirring at -80° C to a hexane solution of C₆F₅Li. The mixture was allowed to warm slowly to 20°C. In this procedure 70% (C₆F₅)₃VCl is formed as tetrahydrofuran adduct (melting point 10 to 15°C) [41]. Treatment of VCl₃ · (tetrahydrofuran)₃ with C₆F₅Li, dissolved in tetrahydrofuran, at -78° C followed by raising the temperature gradually to 20°C, gives 85% (C₆F₅)₃V·(tetrahydrofuran) (melting point 10°C) [42]. C₆F₅Li reacts with (π -C₅H₅)₃UCl to form (π -C₅H₅)₃UC₆F₅ [43] and with Cul at -78° C to give CuC₆F₅ which reacts with I₂ in tetrahydrofuran/hexane to yield 75% C₆F₅I and 7% C₆F₅C₆F₅ [44].

The salt Li[(CO)₄FeC(O)C₆F₅] was prepared in ether at -78 °C from C₆F₅Li and Fe(CO)₅ [45].

In an ether solution C_6F_5 Li reacts with trichlorogermanium cyclopentadienyldicarbonyliron to form $(C_6F_5)_3$ GeFe(CO)₂Cp. Additional compounds were prepared analogously [46] according to:

 $(C_6H_5)_{3-n}X_nMM' + nC_6F_5Li \rightarrow (C_6H_5)_{3-n}(C_6F_5)_nMM' + nLiCl$

 $X = Cl \text{ or } Br, n = 1, 2, M = Si, M' = Mn(CO)_5^ X = Cl, Br, n = 1 \text{ to } 3, M = Ge, M' = Mn(CO)_5^ X = Cl, Br, n = 1 \text{ to } 3, M = Sn, M' = Fe(CO)_2Cp$ $X = Cl, Br, n = 3, M = Si \text{ or } Ge, M' = Fe(CO)_2Cp.$

In ether C_6F_5Li reacts with ClAu(tht) at -40 °C to yield 84% $C_6F_5Au(tht)$. The tht ligand (tht = tetrahydrothiophene) can be replaced by adding more C_6F_5Li (4:1 excess). After hydrolysis of the intermediate, treatment with $[(n-C_4H_9)_4N]Br$ gives 60% of $[(n-C_4H_9)_4N][Au(C_6F_5)_2]$ which is also obtained as a by-product in 44% yield from C_6F_5Li , $K[AuCl_4]$ and $[(n-C_4H_9)_4N]Br$. The desired product, $[(n-C_4H_9)_4N][Au(C_6F_5)_4]$, is formed in 12% yield. A higher yield (47%) of $[(n-C_4H_9)_4N][Au(C_6F_5)_4]$ is obtained from $Cl_3Au(tht)$ and C_6F_5Li in ether at -78 °C. In this reaction 30% $[(n-C_4H_9)_4N][Au(C_6F_5)_2]$ are produced [47, 48].

The complexes trans- $Ir(CO)(C_6F_5)L_2$ were prepared in 65% yield [49] via

trans-lr(CO)ClL₂ + C₆F₅Li $\xrightarrow{-78^{\circ}\text{C}}$ *trans*-lr(CO)(C₆F₅)L₂

 $L = (C_6H_5)_3P$, $(C_6H_5)_2PCH_3$, $(4-CH_3-C_6H_4)_3P$

C₆F₅-substituted complexes of Pd and Pt were made [50] according to:

 $\mathsf{L_2MCl_2} + 2 \ \mathsf{C_6F_5Li} \rightarrow \mathsf{L_2M(C_6F_5)_2} + 2 \ \mathsf{LiCl}$

 $M=Pd,\ L_2=2C_5H_5N,\ H_2NCH_2CH_2NH_2,\ 1,10\ phenanthroline,\ 1,2\ bis(diphenylphosphino)-ethane,\ N,N,N',N'-tetramethylenediamine$

M = Pt, $L_2 = 2 C_5 H_5 N(cis)$, $2 C_5 H_5 N(trans)$, 2,2'-bipyridine, 1,10-phenanthroline

Gmelin Handbook CF Comp. Suppl. 1

The C_6F_5 substitution of *cis* and *trans* isomers of Cl_2PtL_2 was carried out with C_6F_5Li in ether at -78 °C. The solution was stirred (12 h) while allowing it to warm to room temperature. Reaction takes place according to

$$\begin{aligned} \mathsf{Cl}_2\mathsf{PtL}_2 \,+\, 2\,\mathsf{LiC}_6\mathsf{F}_5 &\to\, (\mathsf{C}_6\mathsf{F}_5)_2\mathsf{PtL}_2 \,+\, 2\,\mathsf{LiCl} \\ \mathsf{L} \,=\, (\mathsf{C}_6\mathsf{H}_5)_2\mathsf{AsCH}_2\mathsf{CH}_2\mathsf{As}(\mathsf{C}_6\mathsf{H}_5)_2,\,\mathsf{P}(\mathsf{C}_4\mathsf{H}_9)_3,\,\mathsf{As}(\mathsf{C}_6\mathsf{H}_5)_3 \end{aligned}$$

If $L = P(C_4H_9)_3$ no isomerization was observed, where as both the *cis*- and the *trans*-Cl₂Pt[As(C₆H₅)₃]₂ led only to cis-(C₆F₅)₂Pt[As(C₆H₅)₃]₂ [51].

When trans-PdCl₂L₂ [L = As(C₆H₅)₃, H₂NCH₂C₆H₅] was added to a stirred solution of C₆F₅Li dissolved in ether at -78° C during 15 min and the mixture was allowed to warm to 20°C after 3 h, 70% of *cis*-, *trans*-Pd(C₆F₅)₂[As(C₆H₅)₃]₂ and 75% *trans*-Pd(C₆F₅)₂(NH₂CH₂C₆H₅)₂ are produced [52].

To a solution of C_6F_5Li in ether, $K_2[PdCl_4]$ was added at -78 °C and the solution was stirred at 20 °C (21 h) to give 26% $[(C_4H_9)_4N]_2[Pd(C_6F_5)_4]$ after addition of $[(C_4H_9)_4N]Br$. The reactions of $[MCl_2(tht)_2]$ (tht = tetrahydrothiophene) with C_6F_5Li is dependent on the ratio C_6F_5Li : dichloro complex and the reaction time. Reaction takes place according to

$$[\mathsf{MCL}_2(\mathsf{tht})_2] + \mathsf{C}_6\mathsf{F}_5\mathsf{Li} \rightarrow [\mathsf{M}(\mathsf{C}_6\mathsf{F}_5)_2(\mathsf{tht})_2] \xrightarrow{\mathsf{C}_6\mathsf{F}_5\mathsf{Li}} [\mathsf{M}(\mathsf{C}_6\mathsf{F}_5)_3(\mathsf{tht})]^- \xrightarrow{\mathsf{C}_6\mathsf{F}_5\mathsf{Li}} [\mathsf{M}(\mathsf{C}_6\mathsf{F}_5)_4]^{2-1} = \mathsf{M}(\mathsf{C}_6\mathsf{F}_5)_4 \mathsf{M}(\mathsf{C}_6\mathsf{K}_5)_4 \mathsf{M}(\mathsf{C}_6\mathsf{K$$

If the ratio is 2:2:1 the neutral compounds are obtained in about 60% yield. For M = Pt both the *cis*- and *trans*-[Pt(C₆F₅)₂(tht)₂] are formed, while with M = Pd only *trans*-[Pd(C₆F₅)₂(tht)₂] is available. The components were mixed at -78 °C in ether and stirred at +20 °C (4 h). If the ratio was increased to 3:1 and the reaction time extended to 12 h, after addition of [(C₄H₉)₄N]Br the complex [(C₄H₉)₄N][M(C₆F₅)₃(tht)] is formed. The yields are 24% for M = Pd and 56% for M = Pt. With a 6:1 ratio and 24 h of stirring 70% [(C₄H₉)₄N]₂[Pd(C₆F₅)₄] is formed. In the case of Pt it was not possible to isolate [Pt(C₆F₅)₄]²⁻ even with a larger excess of LiC₆F₅. At 0°C a very exothermic reaction takes place between PdCl₂ and LiC₆F₅ giving 15% of [(C₄H₉)₄N]₂[Pd₂(μ -Br)₂(C₆F₅)₄]. In the case of PtCl₂ the reaction with LiC₆F₅ is smooth and allows the isolation of 66% [(C₄H₉)₄N]₂[Pt(C₆F₅)₄]. Mixing C₆F₅Li and [(C₄H₉)₄N][Pd₂(μ -Br)₂Br₄] in ether at -78 °C and stirring the solution at 20 °C (20 h) leads to 64% [(C₄H₉)₄N]₂[Pd(C₆F₅)₄] after addition of [(C₄H₉)₄N]Br [53].

References:

[1] J. B. Collins, J. D. Hill, E. D. Jemmis, Y. Apeloig, P. von R. Schleyer, R. Seeger, J. A. Pople (J. Am. Chem. Soc. 98 [1976] 5419/27). - [2] G. A. Wheaton, D. J. Burton (J. Org. Chem. 43 [1978] 2643/51). - [3] D. J. Burton, G. A. Wheaton (J. Am. Chem. Soc. 96 [1974] 6787/8). - [4] J. F. Normant, J. P. Foulon, D. Masure, R. Sauvètre, J. Villieras (Synthesis 1975 122/5). - [5] H. Neumann, D. Seebach (Chem. Ber. 111 [1978] 2785/812).

[6] D. Masure, C. Chuit, R. Sauvètre, J. F. Normant (Synthesis **1978** 458/60). - [7] D. Masure, R. Sauvètre, J. F. Normant, J. Villieras (Synthesis **1976** 761/4). - [8] K. Okuhara (J. Org. Chem. **41** [1976] 1487/94). - [9] S. K. Choi, M. G. Koh (Bull. Korean Chem. Soc. **2** [1981] 46/8; C.A. **95** [1981] No. 168318). - [10] J. L. Adcock, E. B. Renk (J. Org. Chem. **44** [1979] 3431/3).

[11] K. K. Sun, C. Tamborski, K. C. Eapen (J. Fluorine Chem. 17 [1981] 457/61). - [12] D.
D. Denson, G. J. Moore, K. K. Sun, C. Tamborski (J. Fluorine Chem. 10 [1977] 75/80). - [13]
M. R. Smith, H. Gilman (J. Fluorine Chem. 6 [1975] 161/9). - [14] R. V. Grigorash, V. V. Lyalin,
L. A. Alekseeva, L. M. Yagupol'skii (Zh. Org. Khim. 14 [1978] 2623/4; J. Org. Chem. [USSR] 14
[1978] 2414/5; C.A. 90 [1979] No. 30825). - [15] S. Lin, J. M. Miller (J. Fluorine Chem. 9 [1977] 161/9).

[16] A. Streitwieser, C. C. C. Shen (Tetrahedron Letters 1979 327/30). - [17] V. M. Vlasov,
G. G. Yakobson (Zh. Org. Khim. 12 [1976] 255/66; J. Org. Chem. [USSR] 12 [1976] 249/58; C.A.
84 [1976] No. 134767). - [18] R. J. Bertino, B. A. W. Coller, G. B. Deacon, I. K. Johnson (J. Fluorine Chem. 5 [1975] 335/57). - [19] M. W. Buxton, R. H. Mobbs, D. E. M. Wotton (J. Fluorine Chem. 1 [1971/72] 179/84). - [20] S. S. Dua, H. Gilman (Indian J. Chem. B 17 [1979] 562/5; C.A. 93 [1980] No. 185318).

[21] H. Gopal, H. Snyder, C. E. Jun, C. Tamborski (J. Fluorine Chem. 14 [1979] 511/8). –
[22] J. Burdon, H. S. Gill, I. W. Parsons (J. Chem. Soc. Perkin Trans. I 1980 2494/6). – [23] J. Burdon, H. S. Gill, I. W. Parsons, J. C. Tatlow (J. Chem. Soc. Chem. Commun. 1979 1147/8). –
[24] R. Filler, A. E. Fiebig, M. Y. Pelister (J. Org. Chem. 45 [1980] 1290/5). – [25] V. M. Vlasov, G. G. Yakobson, E. S. Petrov, A. I. Shatenshtein (J. Fluorine Chem. 9 [1977] 321/5).

[26] V. M. Vlasov, G. G. Yakobson (Zh. Org. Khim. 17 [1981] 242/50; J. Org. Chem. [USSR]
17 [1981] 194/203; C.A. 94 [1981] No. 208221). - [27] V. M. Vlasov, O. V. Zahkarova, G. G. Yakobson (J. Fluorine Chem. 9 [1977] 257/70). - [28] V. M. Vlasov, G. G. Yakobson (Zh. Org. Khim. 12 [1976] 2418/26; J. Org. Chem. [USSR] 12 [1976] 2345/52; C.A. 86 [1977] No. 121024). - [29] J. Battersby, R. Stephens, J. C. Tatlow, L. F. Thomas (J. Fluorine Chem. 15 [1980] 139/61). - [30] R. Sauvètre, D. Masure, C. Chuit, J. F. Normant (Compt. Rend. C 288 [1979] 335/8).

[31] V. I. Faustov, A. I. D'yachenko, O. M. Nefedov (Izv. Akad. Nauk SSSR Ser. Khim. 1979 2183/6; Bull. Acad. Sci. USSR Div. Chem. Sci. 1979 2006/9; C.A. 92 [1980] No. 93690). – [32] F. D. Morgan, C. F. Poole (J. Chromatog. 104 [1975] 351/8). – [33] L. P. Klemann, G. H. Newman, E. L. Stogryn, Exon Research and Engineering Co. (Ger. Offen. 2901367 [1979]; C.A. 92 [1980] No. 61799). – [34] V. V. Brovko, V. M. Vlasov, L. I. Kann, T. D. Petrova, V. A. Sokolenko, G. G. Yakobson (Zh. Org. Khim. 11 [1975] 1049/51; J. Org. Chem. [USSR] 11 [1975] 1031/9; C.A. 83 [1975] No. 78747). – [35] M. Schmeißer, K. Dahmen, P. Sartori (Chem. Ber. 103 [1970] 307/11).

[36] G. M. Brooke, R. S. Matthews, A. C. Young (J. Chem. Soc. Perkin Trans. I 1977 1411/7). - [37] S. B. Awad, D. S. Brown, S. C. Cohen, R. E. Humphries, A. G. Massey (J. Organometal. Chem. 127 [1977] 127/38). - [38] S. A. Gardner, H. B. Gordon, M. D. Rausch (J. Organometal. Chem. 60 [1973] 179/88). - [39] V. N. Latyaeva, A. N. Lineva, E. N. Shatalin, G. A. Razuvaev (Zh. Obshch. Khim. 46 [1976] 931/2; J. Gen. Chem. [USSR] 46 [1976] 931/2; C.A. 84 [1976] No. 180372). - [40] T. Chivers, E. D. Ibrahim (J. Organometal. Chem. 77 [1974] 241/6).

[41] G. A. Razuvaev, L. I. Vyshinskaya, V. V. Drobotenko (Zh. Obshch. Khim. **50** [1980]
1535/40; J. Gen. Chem. [USSR] **50** [1980] 1241/5; C.A. **94** [1981] No. 15829). – [42] G. A.
Razuvaev, V. N. Latyaeva, L. I. Vyshinskaya, V. V. Drobotenko (J. Organometal. Chem. **208**[1981] 169/82). – [43] T. J. Marks, J. R. Kolb, A. M. Seyam (Proc. 10th Rare Earth Res. Conf.,
Carefree, Ariz., 1973, Vol. 1, pp. 347/53; C.A. **85** [1976] No. 143236). – [44] M. T. Rahman, H.
Gilman (J. Indian Chem. Soc. **51** [1974] 1018/23). – [45] M. J. Bennett, W. A. G. Graham, R.
P. Stewart, R. M. Tuggle (Inorg. Chem. **12** [1973] 2944/9).

[46] H. C. Clark, A. T. Rake (J. Organometal. Chem. **74** [1974] 29/42). – [47] R. Usón, A. Laguna, J. Vincente (J. Organometal. Chem. **131** [1977] 471/5). – [48] R. Usón, A. Laguna, J. Vicente (J. Chem. Soc. Chem. Commun. **1976** 353/4). – [49] B. F. Jordan, A. H. Harris, K. C. Nainan, C. T. Sears (J. Inorg. Nucl. Chem. **39** [1977] 1451/2). – [50] R. Usón, J. Forniés, J. Gimeno, P. Espinet, R. Navarro (J. Organometal. Chem. **81** [1974] 115/22).

[51] R. Usón, J. Forniés, P. Espinet (J. Organometal. Chem. **116** [1976] 353/9). – [52] R. Usón, J. Forniés, R. Navarro, M. P. García (Inorg. Chim. Acta **33** [1979] 69/75). – [53] R. Usón, J. Forniés, F. Martinez, M. Tomas (J. Chem. Soc. Dalton Trans. **1980** 888/94). – [54] S. Nagase, K. Morukuma (J. Am. Chem. Soc. **100** [1978] 1661/6).

1.3 Perfluorohalogenoorgano Compounds of Potassium and Caesium

Perfluoroisopropylpotassium (CF₃)₂CFK

16

1-Chloro-1,2,2,2-tetrafluoroethylpotassium CF3CFClK

KF in tetramethylenesulfone reacts with $CF_3CF=CF_2$ or $F_2C=CFCl$ in the presence of small amounts of CsF at 100°C overnight to form $(CF_3)_2CFK$ or CF_3CFClK , respectively [1]. Both substances react with organothiocyanates [1] according to:

$$CF_3C(X)FK + RSCN \rightarrow CF_3C(X)FSR + KCN$$

In the following are presented X, R, yield in % and boiling point in °C/Torr:

CF ₃ , C ₆ H ₅ CH ₂ , 37%, 85/20	CF ₃ , 4-O ₂ N-C ₆ H ₄ , 57%, 120/3
$CF_{3}, CH_{3}, 51\overline{\%}, 53$ to 55	Cl, C ₆ H ₅ CH ₂ , 50%, 75 to 80/1
CF ₃ , C ₆ H ₅ , 56%, 67 to 69/20	

¹H and ¹⁹F NMR data for the sulfides are given in [1].

Perfluoro(t-butyl)caesium (CF₃)₃CCs

In aprotic dipolar solvents $(CF_3)_2C=CF_2$ reacts with CsF to form $(CF_3)_3CCs$ [2], ¹⁹F NMR (external standard CF₃COOH, positive sign downfield): $\delta = 27$ ppm [3]. With 1-chloroacetylenes containing a sufficiently strong electron-acceptor substituent R the compound reacts [2] according to

$$(CF_3)_3CCs + ClC = CR \rightarrow (CF_3)_3CC = CR + CsCl$$

 $R = CF_3$, 90% yield, boiling point 47 to 49°C, $v(C \equiv C) = 2310 \text{ cm}^{-1}$, ¹⁹F NMR (external standard CF₃COOH): $\delta(CF_3) = 24 \text{ ppm}$, $\delta[C(CF_3)_3] = 17 \text{ ppm}$.

 $R = C_6H_5$, 50% yield, boiling point 66 to 67°C/16 Torr, $v(C=C) = 2245 \text{ cm}^{-1}$, $\delta[C(CF_3)_3] = 10 \text{ ppm}$.

In diglyme at -15 °C (CF₃)₃CCs and arylsulfenylchlorides dissolved in CH₃CN were mixed, heated to 20 °C (0.3 h) and then stirred at 40 °C (2 h) to form (CF₃)₃CSR (^{a)} IR and ¹⁹F NMR spectrum is given) [9]:

R [.]	C ₆ H ₅ ^{a)}	4-Cl-C ₆ H₄	3-O ₂ N-C ₆ H ₄	$4-O_2N-C_6H_4$
yield in %	75	84	78	86
Boiling point in °C/Torr	175 to	87 to	114 to	(63 to 64)
(melting point in °C)	176/750	88/16	115/10	_
n_D^{20}	1.4210	1.4430	1.4574	

A chlorine replacement by the $(CF_3)_3C$ group is also observed with $ClCH_2OCH_2Cl$, Cl_2CHOCH_3 and $N(CH_2Cl)_3$. The reaction with $ClCH_2OCH_2Cl$ was carried out in diglyme at 35 to 40°C (0.5 h) to give 71% $(CF_3)_3CCH_2OCH_2C(CF_3)_3$ (boiling point 156 to 157°C, IR, ¹H and ¹⁹F NMR data are given). Similarly Cl_2CHOCH_3 and $(CF_3)_3CCS$ reacted in a sealed tube at 180°C (16 h) to give 35% $(CF_3)_3CCHCl(OCH_3)$ (boiling point 112 to 113°C, $n_D^{20} = 1.3620$). Reacting $(CF_3)_3CCS$ in diglyme with a solution of $N(CH_2Cl)_3$ in CCl_4 at 60 to 70°C (1 h) forms $N[CH_2C(CF_3)_3]_3$ (32%), boiling point 65 to 66°C, ¹H and ¹⁹F NMR data are given for the two compounds) [10]. In the reaction between $(CF_3)_2C=CF_2$ and CHX_3 (X = Cl, Br, I) in the presence of CsF in diglyme, giving 3,3-difluoro-2-halogeno-4,4,5,5-tetrakis(trifluoromethyl)cyclopent-1-ene, $(CF_3)_3CCs$ is postulated as an intermediate; for details, see [11]. For further reactions see [3].

Compounds of Potassium and Caesium

$[\textbf{Bis(trifluoromethyl)heptafluoropropyl]methylcaesium} (CF_3)_2 (C_3F_7) CCs$

 $(CF_3)_2C=C(F)C_2F_5$ adds CsF in diglyme to form $(CF_3)_2(C_3F_7)CCs$. The compound reacts with $C_6H_5CH_2Br$ in diglyme at 50 to 60°C (2 h), then left overnight to give 90% $C_3F_7(CF_3)_2CCH_2C_6H_5$ (boiling point 66 to 68°C, ¹H and ¹⁹F NMR data are given) [4].

Caesium Compounds

When a suspension of CsF and $(CF_3)_2C=C=C(CF_3)_2$ in absolute diglyme was stirred at 35°C (3 h) a homogeneous solution of $[(CF_3)_2CFC(CF_3)_2]^{\oplus}C$ was formed, IR: $v(C=C) = 1628 \text{ cm}^{-1}$, ¹⁹F NMR (external standard CF₃COCH): $\delta(CF_3) = 24.7$ (doublet), $\delta(CF) = 3.7$ (multiplet) ppm, J(CF₃-C-F) = 20 Hz. The compound is thermally very stable. No decomposition occurs upon standing for several days at 20°C or on heating to 150°C. Hydrolysis of the salt in diglyme with H₂O leads to (CF₃)₂CHCF=C(CF₃)₂ and traces of (CF₃)₂CHC(O)CH(CF₃)₂ [5, 6]. With C₆H₅COCl no substitution takes place, but C₆H₅COF, (CF₃)₂C=C=C(CF₃)₂ and CsCl are formed. At elevated temperatures $[(CF_3)_2CCFC(CF_3)_2]^{\oplus}CS$ is alkylated by compounds containing a mobile halogen atom [5], e.g.,

 $[(CF_3)_2C\overset{\ominus}{CFC}(CF_3)_2]\overset{\oplus}{Cs} + RX \rightarrow (CF_3)_2CRCF=C(CF_3)_2 + CsX$ with

 $R = CH_3$, X = I, 120 °C (20 h), 44% yield, boiling point 95 to 100 °C/752 Torr

 $R=CH_2CH\text{=}CH_2,\ X=Br,\ 160\,^\circ\text{C}$ (40 h), 52% yield, boiling point 125 $^\circ\text{C}/749\,\text{Torr},\ n_D^{20}=1.3270$

 $R=CH_2OCH_3,\ X=Cl,\ 55\,^{o}C$ (15 h), 56% yield, boiling point 127 to 130 $^{o}C/746$ Torr, $n_D^{20}=1.3205$

IR, ¹⁹F NMR and mass spectroscopic data are provided in [5]. With HCl the compound gives $(CF_3)_2CHCF=C(CF_3)_2$ [6].

In absolute diglyme freshly calcinated CsF reacts with the perfluorinated α,α -bis-(isobutenyl)isobutylene to form compound A according to

$$(CF_{3})_{2}C = C \begin{pmatrix} CF = C(CF_{3})_{2} \\ CF = C(CF_{3})_{2} \end{pmatrix} + CsF \rightarrow \begin{bmatrix} (CF_{3})_{2}C^{1} - C^{2} \begin{pmatrix} C^{5}F - C^{6}(CF_{3})_{2} \\ 0 \end{pmatrix} \\ CF = C(CF_{3})_{2} \end{pmatrix} Cs^{\oplus}$$

Gmelin Handbook CF Comp. Suppl. 1

The ¹⁹F NMR spectrum of the anion shows four unresolved signals with a 12:6:2:1 ratio of intensities. The chemical shifts (external standard CF₃COOH) are $\delta(1-CF_3) = 2.1$ (m), $\delta(4-,6-CF_3) = 19.5$ (m), $\delta(3-,5-CF) = 18.2$ (m), $\delta(1-CF) = -91.0$ (m) ppm. On standing at 20°C for 6 d the salt rearranges forming a cyclic anion (B) according to:

¹⁹F NMR of the cyclic anion (external standard CF₃COOH): $\delta(1-CF_3) = 2.3$ (m), $\delta(4-CF_3) = 26.5$ (m), $\delta(6-CF_3) = 12.5$ (m), $\delta(5-CF) = -10.0$ (m); $\delta(1-CF) = -99.0$ (m) ppm. At -50 °C the signal $\delta(4-CF_3)$ is split into two signals appearing at -28.2 and -24.9 ppm due to retarded rotation around the C³-C⁴ bond and a partial double-bond character. The signal of one of the 4-CF₃ groups is close to the 1-CF signal and is split into a doublet with J(4-CF₃-1-CF) = 41.5 Hz. The 1-CF signal is split into a quartet also with J = 41.5 Hz [7].

Both compounds A and B react with Cl_2 at -78 °C to yield compound C and D, respectively:

When the compound A is heated under vacuum or treated with H_2O , the original perfluorinated triene is regenerated. With HCl, compound A forms compound E. The compound B reacts with $BF_3 \cdot O(C_2H_5)_2$ to yield the cyclic compound F [7]:

IR, Raman, ¹⁹F NMR, and mass spectroscopical data are provided [7].

Pentafluorophenylcaesium C₆F₅Cs

The ion pair equilibrium between 9-t-butylfluorene (RH) and C_6F_5H in cyclohexylamine has an almost zero entropy for C_6F_5Cs [8].

Compounds of Potassium and Caesium

References:

[1] T. Nguyen, M. Rubinstein, C. Wakselman (J. Org. Chem. 46 [1981] 1938/40). - [2] N. I. Delyagina, B. L. Dyatkin, I. L. Knunyants (Izv. Akad. Nauk SSSR Ser. Khim. 1974 1666/7; Bull. Acad. Sci. USSR Div. Chem. Sci. 1974 1594; C.A. 81 [1971] No. 104647). - [3] B. L. Dyatkin, N. I. Delyagina, S. R. Sterlin (Usp. Khim. 45 [1976] 1205/21; Russ. Chem. Rev. 45 [1976] 607/ 14; C.A. 85 [1976] No. 142102). - [4] K. N. Makarov, L. L. Gerwits, I. L. Knunyants (J. Fluorine Chem. 10 [1977] 157/8). - [5] N. S. Mirzabekyants, L. L. Gervits, Yu. A. Cheburkov, I. L. Knunyants (Izv. Akad. Nauk SSSR Ser. Khim. 1977 2772/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1977 2563/6; C.A. 90 [1979] No. 120923).

[6] L. L. Gervits, L. A. Rozov, N. S. Mirzabekyants, K. N. Makarov, Yu. V. Zeifman, Yu. A. Cheburkov, I. L. Knunyants (Izv. Akad. Nauk SSSR Ser. Khim. 1976 1626; Bull. Acad. Sci. USSR Div. Chem. Sci. 1976 1592; C.A. 85 [1976] No. 123251). - [7] V. G. Ter-Gabrielyan, N. P. Gambaryan, E. P. Lur'e, I. L. Knunyants (Dokl. Akad. Nauk SSSR 254 [1980] 898/902; Dokl. Chem. Proc. Acad. Sci. USSR 250/255 [1980] 459/62; C.A. 94 [1981] No. 120597). - [8] A. Streitwieser, C. C. C. Shen (Tetrahedron Letters 1979 327/30). - [9] N. V. Kondratenko, V. I. Popov, L. G. Yurchenko, A. A. Kolomiitsev, L. M. Yagupol'skii (Zh. Org. Khim. 14 [1978] 1914/7; J. Org. Chem. [USSR] 14 [1978] 1775/8; C.A. 90 [1979] No. 54603). - [10] K. N. Makarov, T. N. Abroskina, Yu. A. Cheburkov, I. L. Knunyants (Izv. Akad. Nauk SSSR Ser. Khim. 1976 940/2; Bull. Acad. Sci. USSR Div. Chem. Sci. 1976 922/4; C.A. 85 [1976] No. 20544).

[11] B. L. Dyatkin, N. I. Delyagina, E. I. Mysov, I. L. Knunyants (Tetrahedron **30** [1974] 4031/6).

2 Perfluorohalogenoorgano Compounds of Main Group 2 Elements

2.1 Preliminary Remarks

The compounds of the Main Group 2 elements are covered to the end of 1973 in "Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente", Part 4, 1975 (cited here as Part 4), for further details see the preface of this Supplement Volume.

2.2 Perfluorohalogenoorgano Compounds of Magnesium

2.2.1 Preparation and Physical Properties

Trifluoromethylmagnesium bromide CF3MgBr

Pentafluoroethylmagnesium bromide C_2F_5MgBr

 $\label{eq:perfluoro-n-propylmagnesium bromide n-C_3F_7MgBr} Perfluoro-n-propylmagnesium bromide n-C_3F_7MgBr$

 $\label{eq:pertubut} \textbf{PerfluorobutyLmagnesium bromide} \ n\text{-}C_4F_9MgBr$

 $\label{eq:pertubbasis} \textbf{PerfluorohexyLmagnesium bromide} \ C_6F_{13}MgBr$

 $\label{eq:pertuber} \textbf{PerfluorooctyLmagnesium bromide} \ C_8 F_{17} MgBr$

Perfluorodecylmagnesium bromide $C_{10}F_{21}MgBr$

Perfluoro(3-oxa-4-methylpentane)-1-magnesium bromide (CF₃)₂CFOCF₂CF₂MgBr

For the thermal decomposition of $n-C_3F_7MgBr$ and $C_{10}F_{21}MgBr$ (Part 4, p. 61) see p. 22, for the reaction of a suspension of activated Mg in tetrahydrofuran with CF_3Br to give 1% CF_3MgBr [1] see also Part 4, p. 61. In ether solution C_6H_5MgBr reacts with $C_nF_{2n+1}I$ (n = 2, 6, 8) under N_2 atmosphere at $-40^{\circ}C$ with stirring to form $C_nF_{2n+1}MgBr$. The temperature of the reaction should not exceed $-30^{\circ}C$. Replacement of C_6H_5MgBr by C_2H_5MgBr shows advantages on separating the products [2]. Under similar conditions $n-C_4F_9I$ and C_2H_5MgBr form $n-C_4F_9MgBr$ [3]. At $-78^{\circ}C$ (1 h, stirring) C_6H_5MgBr and $(CF_3)_2CFOCF_2CF_2I$ react to $(CF_3)_2CFOCF_2CF_2MgBr$ [4].

Perfluoro-1-octenylmagnesium bromide $C_6F_{13}CF$ =CFMgBr

Perfluoro-1-octynylmagnesium bromide C₆F₁₃C≡CMgBr

Perfluoro-1-decynylmagnesium iodide C₈F₁₇C≡CMgl

1,6-Bis(bromomagnesium)perfluorohexane $BrMg(CF_2)_6MgBr$

1,11-Bis(bromomagnesium)perfluoro(3,9-dioxaundecane) $BrMg(CF_2)_2O(CF_2)_5O(CF_2)_2MgBr$

The reaction between magnesium and $C_6F_{13}CF=CFBr$ takes place at 20°C in tetrahydrofuran giving $C_6F_{13}CF=CFMgBr$ [5]. The following exchange reaction is carried out in ether under reflux conditions according to

$$R_{f}C = CH + RMgX \rightarrow R_{f}C = CMgX + RH$$

with $R_f = C_6F_{13}$, $R = C_2H_5$, X = Br and with $R_f = C_8F_{17}$, $R = CH_3$, X = I [6]. At -95° C in tetrahydrofuran (CH₃)₂SiH(CF₂)₆SiH(CH₃)₂ reacts with n-C₄H₉MgBr to form BrMg(CF₂)₆MgBr in low yield [7]. Better yields (see also Part 4, p. 66) are obtained from C₂H₅MgBr and

Gmelin Handbook CF Comp. Suppl. 1

20

 $Br(CF_2)_6Br$ in tetrahydrofuran at -70 °C (0.5 h stirring) [21]. $BrMg(CF_2)_2O(CF_2)_5O(CF_2)_2MgBr$ can be prepared by the metal-halogen exchange reaction at -78 °C in ether [4] according to:

 $\mathsf{I}(\mathsf{CF}_2)_2\mathsf{O}(\mathsf{CF}_2)_5\mathsf{O}(\mathsf{CF}_2)_2\mathsf{I} + 2 \mathsf{C}_2\mathsf{H}_5\mathsf{MgBr} \rightarrow \mathsf{BrMg}(\mathsf{CF}_2)_2\mathsf{O}(\mathsf{CF}_2)_5\mathsf{O}(\mathsf{CF}_2)_2\mathsf{MgBr} + 2 \mathsf{C}_2\mathsf{H}_5\mathsf{I}$

Pentafluorophenylmagnesium bromide C₆F₅MgBr

4-Bromotetrafluorophenylmagnesium bromide 4-Br-C₆F₄MgBr

Tridecafluorobicyclo[2.2.2]octan-1-ylmagnesium iodide

A suspension of Mg in tetrahydrofuran reacts with C_6F_5Br at $-30^{\circ}C$ to give 80% C_6F_5MgBr [1], which is also formed on mixing ether solutions of Mg and of C_6F_5Br at $-15^{\circ}C$ and then allowing the resulting stirred mixture, in a dry N₂ atmosphere, to warm to 0°C during 2 h [9], and on refluxing the mixture for 1 h [32] and by an exchange reaction between C_2H_5MgBr and C_6F_5Br in ether at 0°C (0.5 h). Similarly 4-Br- C_6F_4MgBr was prepared from C_2H_5MgBr and 4-Br- C_6F_4Br [8]. Refluxing (2 h) a mixture of Mg and 1-iodotridecafluorobicyclo[2.2.2]octane in dry ether in the presence of a crystal of iodine, tridecafluorobicyclo[2.2.2]octan-1-ylmagnesium iodide is obtained [10]. ¹⁹F NMR studies indicate that C_6F_5MgBr is the initially formed species in the reaction between C_6F_5Br and Mg. It is in an equilibrium with $(C_6F_5)_2Mg$ [18] according to:

$$2 C_6 F_5 MgBr \rightleftharpoons (C_6 F_5)_2 Mg + MgBr_2$$

¹⁹F NMR spectra are presented (see also Part 4, pp. 67/8) [18].

2.2.2 Chemical Reactions

2.2.2.1 General Remarks

Perfluorohalogenoorganomagnesium compounds are sensitive to moisture and should therefore be prepared in anhydrous solvents. Hydrolysis and acidolysis give the corresponding alkanes according to:

$$R_fMgX + HX' \rightarrow R_fH + MgXX'$$

with X = halogen and with X' = OH or an acidic group, e.g., F, Cl, Br, I, HSO₄

The hydrolysis of $(CF_3)_2CFOCF_2CF_2MgBr \text{ or of } BrMg(CF_2)_2O(CF_2)_5O(CF_2)_2MgBr \text{ with } 6 \text{ N HCl}$ at $-78^{\circ}C$ gives $(CF_3)_2CFOCF_2CF_2H$ or $HCF_2CF_2O(CF_2)_5OCF_2CF_2H$, respectively [4]. Similarly, $C_6F_{13}CF=CFMgBr$ gives with hydrous acids $C_6F_3CF=CFH$. It could be shown that the *trans* configuration of the vinyl F atoms of the starting bromoolefin was maintained in $C_6F_3CF=CFH$ [5]. Dilute H_2SO_4 reacts with tridecafluorobicyclo[2.2.2]octan-1-ylmagnesium iodide to 1-H-tridecafluoro[2.2.2]octane and its 1-iodo analogue [10]. Another overall reaction is the reaction with CO_2 via

$$R_{f}MgBr + CO_{2} \xrightarrow{H^{+}} R_{f}COOH$$

Gmelin Handbook CF Comp. Suppl. 1

At -78° C (CF₃)₂CFO(CF₂)₂MgBr (16 h) or BrMg(CF₂)₂O(CF₂)₅O(CF₂)₂MgBr (20 h) reacts with CO₂ to give after treatment with concentrated H₂SO₄ the acids (CF₃)₂CFO(CF₂)₂COOH or HOC(O)(CF₂)₂O(CF₂)₅O(CF₂)₂COOH [4]. In the analogous reaction C₆F₁₃CF=CFMgBr forms with CO₂ the acid C₆F₁₃CF=CFCOOH [5]. In ether, C₆F₅MgBr and PCl₃ react to form (C₆F₅)₂PCl [9].

2.2.2.2 Thermal Decomposition

The decomposition of the compounds R_fMgBr (prepared from C_6H_5MgBr and R_fI) in ether on warming the mixture from -40 to +20 °C leads to the formation of perhalogenated olefins, which are characterized by their ¹⁹F NMR and mass spectroscopic data. The following decompositions have been investigated:

 $\begin{array}{l} C_2F_5MgBr \rightarrow F_2C=CFBr + F_2C=CFI + F_2C=CBr_2 \\ n\mbox{-}C_3F_7MgBr \rightarrow CF_3CF=CFBr + C_3F_4Br_2 \\ C_6F_{13}MgBr \rightarrow CF_3(CF_2)_3CF=CFBr + CF_3(CF_2)_3CF=CFI + C_{12}F_{24} \\ C_8F_{17}MgBr \rightarrow CF_3(CF_2)_5CF=CFBr + CF_3(CF_2)_5CF=CFI + C_{14}F_{32} \end{array}$

For the discussion of the mechanism of the decomposition see the original paper [2].

In a similar investigation it is shown that the decomposition of $R_tCF_2CF_2MgX$ in ether, pentane or tetrahydrofuran at 20°C ($R_f = C_4F_{17}$, C_6F_{13} , C_8F_{17} , X = Cl, Br, I) yields the *trans*-1-haloperfluorinated olefins $R_tCF=CFX$. Coproducts are $R_tCF=CF_2$, an isomeric mixture of $R_tCF_2CF_2CF=CFR_t$, and unidentified compounds. In the presence of RMgX ($R = CH_3$, C_2H_5) the decomposition leads additionally to the formation of the *trans*-1-alkylperfluorovinyl compounds. For the physical data of the reaction products and for the discussion of the possible reaction mechanism see [12].

In presence of C_6H_5MgBr the Grignard $C_8F_{17}MgBr$ in ether decomposes forming a mixture of unsaturated perfluorinated compounds. The composition of this mixture depends strongly on the experimental conditions. The main products are $C_6F_{13}CF=CFBr$, $C_6F_{13}CF=CFC_6H_5$, and $C_6F_{13}C=CC_6H_5$ [11].

A solution of $BrMg(CF_2)_6MgBr$ in tetrahydrofuran decomposes to 60% of its original concentration at -78 °C during 2 h; for further details see [7]. Another investigation shows that this compound (formed at -70 °C, see p. 20) decomposes after rapid warming to room temperature (0.15 min) to give 90% perfluorocyclohexene [21].

2.2.2.3 Reactions with Halogens, CuBr, CuI, $CdCl_2$, $(CH_3)_nSiCl_{4-n}$ (n = 1, 2), RPCl₂, Thiocyanates, Benzalacetophenones, Butene

The halogenation with Cl_2 converts $C_6F_{13}C\equiv CMgBr$ not to $C_6F_{13}C\equiv CCl$ but to $C_6F_{13}C\equiv CBr$ (55% yield, boiling point 123 to 126°C/760 Torr). $C_6F_{13}C\equiv CMgl$ reacts with Br_2 forming $C_6F_{13}C\equiv CCl$ (boiling point 48 to 53°C/15 Torr, IR and ¹⁹F NMR data are provided) [6].

In etheral solution, C_6F_5MgBr reacts with CuBr at reflux temperature (1.5 h) under dry N_2 to give C_6F_5Cu , which is isolated as a $(C_6F_5Cu)_2$ ·dioxane complex in 63 to 80% yield [13]. The reaction between C_6F_5MgCl and Cul at 0°C mainly gives C_6F_5l (72 to 84%) and some $C_6F_5C_6F_5$ (8 to 11%) [16].

As a reactive intermediate $(C_6F_5)_2Cd$ is formed from C_6F_5MgBr and $CdCl_2$ in refluxing ether during 75 min [15].

The reactions of C_6F_5MgBr with $(CH_3)_nSiCl_{4-n}$ (n = 1, 2) were studied by GC/MS techniques, for details see [32]. A solution of $BrMg(CF_2)_6MgBr$ in tetrahydrofuran reacted with an excess $(CH_3)_3SiCl$ at -70°C (72 h) to give $(CH_3)_3Si(CF_2)_6Si(CH_3)_3$ [21], see also [1].

Below 20°C in ether, C_6F_5MgBr and $C_6H_5PCl_2$ form after 13 h a mixture of $C_6F_5(C_6H_5)PX$ (X = Cl, Br) (melting point 45 to 48°C) [9]. When a freshly prepared solution of C_6F_5MgBr in ether is added dropwise to an ether solution of RPCl₂ [R = CH₃, C_2H_5 , C(CH₃)₃] at 20°C (2 h) and the mixture is stirred at 20°C for additional 2 h the following compounds [14] are formed:

 $CH_3P(C_6F_{5})_2$ (75% yield, boiling point 60 to 63°C/0.05 Torr), $C_2H_5P(C_6F_5)_2$ (77% yield, boiling point 86 to 89°C/0.05 Torr), $(CH_3)_3CP(C_6F_5)X$, X = Cl, Br (mixture of 20% chloride and 80% bromide, boiling point 55 to 70°C/1 Torr).

In a similar manner $(C_2H_5)_2NP(R)C_6F_5$ compounds are made from $(C_2H_5)_2NP(R)Cl$ and C_6F_5MgBr [14]:

 $(C_2H_5)_2NP(C_6F_5)CH_3$ (80% yield, boiling point 64°C/0.1 Torr), $(C_2H_5)_2NP(C_6F_5)C_2H_5$ (81.5% yield, boiling point 75°C/0.1 Torr), $(C_2H_5)_2NP(C_6F_5)C(CH_3)_3$ (79% yield, boiling point 47°C/0.05 Torr). ¹⁹F and ³¹P NMR data are provided [14].

At -15° C C₄F₉MgBr reacts with C₆H₅CH₂SCN in ether to 50% C₄F₉SCH₂C₆H₅ (boiling point 130 to 135°C/15 Torr) and with 4-Cl-C₆H₄-CH₂SCN to 45% 4-Cl-C₆H₄CH₂SC₄F₉ (boiling point 70 to 75°C/1 Torr). ¹H and ¹⁹F NMR data are presented [3].

On dropping an ether solution of benzalacetophenone to an ether solution of C_6F_5MgBr at 20°C (18 h) under $N_2 C_6H_5(C_6F_5)CHCHC(O)C_6H_5$ is formed (yield 36%, melting point 183 to

$C_6H_5CHCH_2C(O)C_6H_5$

184°C). A similar reaction took place with $C_6F_5CH=CHC(O)C_6H_5$ and C_6F_5MgBr giving 42% $(C_6F_5)_2CHCHC(O)C_6H_5$ (melting point 158 to 159°C). The reaction of $C_6H_5CH=CHC(O)C_6F_5$ and

C₆F₅CHCH₂C(O)C₆H₅

 C_6F_5MgBr gives 45% $C_6H_5(C_6F_5)CHCH_2C(O)C_6F_5$ (melting point 63 to 64.5°C). Similarly, $(C_6F_5)_2CHCH_2C(O)C_6F_5$ (melting point 63.5 to 64.5°C) can be made from $C_6F_5CH=CHC(O)C_6F_5$ and C_6F_5MgBr [15].

Trans-1,4-dibromo-2-butene and C_6F_5MgBr react in anhydrous ether at reflux temperature (28 h, stirring) to form 68% $C_6F_5CH_2CH=CHCH_2C_6F_5$ (melting point 94 to 94.5 °C) [17].

2.2.2.4 Reactions with Aldehydes, Ketones, Carboxylic Acids, -Halides and -Anhydrides

In anhydrous ether C_2F_5MgBr condenses with RCH=CHCHO at $-40^{\circ}C$ to form RCH= CHCH(OH) C_2F_5 ; $R = CH_3$, 60% yield, boiling point 116°C; $R = C_6H_5$, 70% yield, melting point 52°C. Similarly C_2F_5MgBr reacts with $H_2C=C(CH_3)CHO$ to yield 60% $H_2C=C(CH_3)CH(OH)C_2F_5$ (boiling point 110°C). With R_fMgBr and $C_6H_5CH=CHCHO$ 60% $C_6H_5CH=CHCH(OH)R_f$ are obtained: $R_f = C_6F_{13}$ (melting point 56°C), $R_f = C_8F_{17}$ (melting point 58°C). IR, ¹H and ¹⁹F data are provided [2]. When dry CH_3CHO is added dropwise to a solution of tridecafluorobicyclo[2.2.2]octan-1-ylmagnesium iodide dissolved in ether 1-(1'-hydroxyethyl)tridecafluorobicyclo[2.2.2]octane is formed (melting point 89°C) [10]. Ferrocenecarboxaldehyde and C_6F_5MgBr react at 20°C in ether to form 98.5% (α pentafluorophenyl)ferrocenemethanol (melting point 110°C) [19]. With aldehydes and ketones $CF_2=CFMgI$ forms secondary [RCH(OH)CF=CF_2] and tertiary alcohols [RR'C(OH)CF=CF_2] which rearrange rapidly to
fluoroanhydrides of crotonic and cinnamic acids. The following compounds are made this way [20]:

Compound	Boiling point (in °C/Torr)	n _D	D (in g/cm ³)
C ₆ H ₅ CH=CFC(O)F	83.5 to 85/10	1.5588 (19.5°C)	1.255 (19.5°C)
CH ₃ CH=C(CFH ₂)C(O)F	98 to 99	1.3931 (23°C)	1.112 (23°C)
(CH ₃) ₂ CHCH ₂ CH=CFC(O)F	121 to 122	1.3932 (25°C)	1.036 (25°C)
CH₃CH₌CFCOOH	74.5/741	1.3688 (20°C)	1.125 (20°C) [20]

In anhydrous tetrahydrofuran $(CF_3)_2CFOCF_2CF_2MgBr reacts with <math>(CF_3)_2CO at -78^{\circ}C (16 h)$ and 20°C (4.5 h) to form 50% $(CF_3)_2CFO(CF_2)_2C(CF_3)_2OH$ (boiling point 123 to 124°C) [4]. Cyclohexanone and BrMg $(CF_2)_6MgBr$ react at $-70^{\circ}C (5 h, stirring)$ to give some 1-cyclo- $C_6H_{10}OH(CF_2)_6H$ and 43% 1,6-(cyclo- $C_6H_{10}OH)_2(CF_2)_6$ (melting point 151 to 152°C). Similarly BrMg $(CF_2)_6MgBr$ and $(CH_3)_2CO$ react at $-70^{\circ}C (18 h, stirring)$ to yield $H(CF_2)_6C(CH_3)_2OH (34\%$ yield). The reaction of BrMg $(CF_2)_6MgBr$ with $(CF_3)_2CO$ gives $(CH_3)_2C(OH)(CF_2)_6C(CH_3)_2OH$ (28% yield, melting point 88 to 89°C) and $(CF_3)_2C(OH)(CF_2)_6C(CF_3)_2OH, 62\%$ yield [21].

When $C_6F_{13}C=CMgX$ is treated with $[CH_3C(O)]_2O$ at -30 °C for X = Br 25% and for X = I50% CH₃C(O)CX=C(C₆F₁₃)C(O)CH₃ is isolated. If X = Br 17% of CH₃C(O)C=CC₆F₁₃ is also obtained. Similarly CF₃C(O)CH=C(OC₃H₇)C₆F₁₃ is formed in refluxing ether from C₆F₁₃C=CMgX and CF₃COOC₃H₇. The yields are for X = I 30% and for X = Br 40%. IR, ¹H and ¹⁹F NMR data are provided [6]. In ether, C₆F₅MgBr and C₃F₇OCF(CF₃)C(O)F at 0°C (9 d) form 45% C₆F₅H (from hydrolysis of C_6F_5MgBr) and the products $C_6F_5C(O)CF(CF_3)OC_3F_7$ and $4-C_6F_5-C_6F_4C(O)CF (CF_3)OC_3F_7$ in the ratio 121:3. After additional 7 d at 20 °C only 12% C_6F_5H remained and the ratio was 80:10. The same reaction carried out in tetrahydrofuran gave after 4 h $C_{P_5}C(O)CF$ - $(CF_3)OC_3F_7$ (boiling point 94 °C/36 Torr) and 4-C₆F₅-C₆F₄C(0)CF(CF₃)OC₃F₇ (boiling point 145 to 146°C/10 Torr) in the ratio 41:55. In a competitive reaction between C₃F₇OCF(CF₃)CF₂OCF- $(CF_3)C(O)F$ and $C_2F_5O(CF_2CF_2)_2CF_2C(O)F$ with C_6F_5MgBr at 0°C in ether after 3.5 h, only 25% of C_6F_5MgBr reacted. The reaction mixture, allowed to warm to 20 °C and stirred for another 48 h, gave after hydrolysis 14.2% C₆F₅H, 71.7% C₂F₅O(CF₂CF₂O)₂CF₂C(O)C₆F₅ (boiling point 95 to 96°C), 5.4% C₃F₇OCF(CF₃)CF₂OCF(CF₃)C(O)C₆F₅ and 8.7% (C₆F₅)₂C(OH)CF₂(OCF₂CF₂)₂- OC_2F_5 . Analogously 4-Br-C₆F₄MgBr and C₃F₇OCF(CF₃)C(O)F reacted in ether at -20 °C (12 d) to form 36% 4-Br-C₆H₄H, 47.5% 4-Br-C₆F₄C(O)CF(CF₃)OC₃F₇ (boiling point 89°C/8.5 Torr), 8% 4-Br-C₆F₄Br and 7% 1,4-[C₃F₇OCF(CF₃)C(O)]₂-C₆F₄. When the same reaction is carried out in tetrahydrofuran at 0°C (2 h) the major products are 1,4-Br₂-C₆F₄ and 1,4-[C₃F₇OCF(CF₃)C(O)]₂-C₆F₄ in a 1:1 ratio [8].

Perfluoroalkylmagnesium halides react with α -halogenocarbonyl compounds in ether to form diastereoisomeric halohydrins which cyclisize to the corresponding perfluoroalkyl epoxides according to:

References p. 26

Magnesium Compounds

The configuration of the epoxides RS and RR could be determined by the value of the 4 J(H-F)spin-spin coupling constant between the proton of the epoxide and the R_f group. Since the cyclization of the halohydrines to form the epoxides is stereospecific, the configuration of the halohydrines could be determined from the configuration of the epoxides. The synthesized compounds are given in Table 5, for spectroscopic data see the original paper [22].

Table 5 Reactions of Perfluoroalkylmagnesium Halides with α -Halogenocarbonyl Compounds [22].

Carbonyl compounds	R _f MgX	Relative amounts of halo RS	hydrine and of epoxide RR
C₂H₅CHCHO │ Cl	C₃F ₇ MgBr	C ₃ F ₇ H OH 63% Cl H C ₂ H ₅	Н Н 0Н 37% СІ С ₂ Н ₅ С ₃ F7
C ₆ H₅CHCHO │ Cl	C₂F₅MgBr	C ₂ F ₅ H 0H 50% Cl H C ₆ H ₅	Н 50% H ОН CI С ₂ F ₅
CH₃COCH₂CI	C ₇ F ₁₅ MgBr	С7F15 СН3-С-СН2СІ ОН	
C ₂ H ₅ COCHCH ₃ Br	C₂F₅MgBr	C ₂ F ₅ C ₂ H ₅ 44%	C ₂ H ₅ C ₂ F ₅ 56%
С ₂ Н ₅ СОСНСН ₃ СІ	C₃F ₇ MgBr	C ₃ F ₇ C ₂ H ₅ 31%	C ₂ H ₅ C ₃ F ₇ 69%
С	C₂F₅MgBr	0 C ₂ F ₅ 17%	0H 83%
CI	C₃F ₇ MgBr	0 C ₃ F ₇ 30%	0H 70%
		Potoroncos n. 26	Cmolin Handbook

2.2.2.5 Reactions with Transition Metal Compounds

Titanocenedichloride reacts with C_6F_5MgBr to form $CpTi(C'_p)(C_6F_5)Cl$ (C_p = cyclopentadienyl, $C'_{p} = \pi - 2 - (CH_{3})_{2}CH - C_{5}H_{3}CH_{3}$, $\pi (C_{6}H_{5})_{2}CH - C_{5}H_{3}CH_{3}$ [23] and Cp = cyclopentadienvl. $Cp' = \pi$ -t-butylcyclopentadienyl) [24]. In a similar reaction cyclopentadienyl-(1-phenylethylcyclopentadienyl)titanium dichloride and C_6F_5MgBr gave the corresponding diastereomers CpCp'Ti(C6F5)Cl [25]. The reaction of ZrCl4 with C6F5MgBr (ratio 1:4) in ether at -15 °C and then at 20 °C gave 94% Zr(C₆F₅₎₄ [26]. Similar Ni(C₆F₅)₂ is made from NiBr₂ and C_6F_5MgBr [27]. A C_6F_5/Br exchange takes place between C_6F_5MgBr and BrCo(acac)(en)P(C₆H₅)₃. After acid hydrolyses the complex $C_6F_5Co(acac)(en) \cdot H_2O$ is obtained [28]. When MCl(CS)[P($\dot{C}_{6}H_{5})_{3}]_{2}$ is added to a solution of $C_{6}F_{5}MgBr$ in tetrahydrofuran and the mixture is left for 40 h at 20 °C a yield of 60 to 62% $M(C_6F_5)(CS)[P(C_6H_5)_3]_2$ with M = Rh, Ir is produced [29]. A tetrahydrofuran solution of C_6F_5MgCl was slowly added to a suspension of VCl₃ (tetrahydrofuran)₃ in ether at -10° C. The products formed here are C₆F₅H and VCl₂. $4 C_5 H_5 N$ after treatment of the mixture with pyridine. If the molar ratio of the starting materials are changed from 1:1 to 1:2 at -15° C (1 h) and warming up to 20°C 43% (C₆F₅)₄V· 2 (tetrahydrofuran) were isolated besides 47% VCl₂·4 C₅H₅N [30]. Treating TiCl₄ with four moles of C_6F_5MgBr in ether at -20 °C leads to $(C_6F_5)_4Ti$. Partial substitution is obtained with two moles $C_{6}F_{5}MgBr$ giving $(C_{6}F_{5})_{2}TiCl_{2}$ [31]. For anylation of $K_{2}[PdCl_{4}]$, MCl_{2} , MCl_{2} (tht)₂, and $[(C_4H_9)_4N]_2[M_2(-Br)_2Br_4]$ (M = Pd, Pt; tht = tetrahydrothiophene) with C₆F₅MgBr, see [33] and p. 14.

References:

[1] K. J. Klabunde (Angew. Chem. **87** [1975] 309/14; Angew. Chem. Intern. Ed. Engl. **14** [1975] 287/92). — [2] T. Nguyen (J. Fluorine Chem. **5** [1975] 115/25). — [3] T. Nguyen, M. Rubinstein, C. Wakselman (J. Org. Chem. **46** [1981] 1938/40). — [4] D. D. Denson, G. J. Moore, K. K. Sun, C. Tamborski (J. Fluorine Chem. **10** [1977] 75/80). — [5] P. Moreau, G. Dalverny, A. Commeyras (J. Chem. Soc. Chem. Commun. **1976** 174/5).

[6] G. Santini, M. Le Blanc, J. G. Riess (J. Organometal. Chem. **102** [1975] C21/C24). – [7] M. R. Smith, H. Gilman (J. Fluorine Chem. **6** [1975] 161/9). – [8] H. Gopal, C. Tamborski (J. Fluorine Chem. **13** [1979] 337/51). – [9] A. H. Cowley, M. Cushner, M. Fild, J. A. Gibson (Inorg. Chem. **14** [1975] 1851/5). – [10] J. Battersby, R. Stephens, J. C. Tatlow, L. F. Thomas (J. Fluorine Chem. **15** [1980] 139/61).

[11] P. Moreau, R. Albadri, A. Commeyras (Nouv. J. Chim. 1 [1977] 497/502; C.A. 88 [1978]
No. 169519). - [12] R. D. Howells, H. Gilman (J. Fluorine Chem. 5 [1979] 99/114). - [13] A. Cairncross, W. A. Sheppard, E. Wonchoba (Org. Syn. 59 [1980] 122/31). - [14] M. Fild, T. Stankiewicz (Z. Anorg. Allgem. Chem. 406 [1974] 115/23). - [15] R. Filler, V. D. Beaucaire, H. H. Kang (J. Org. Chem. 40 [1975] 935/9).

[16] M. T. Rahman, H. Gilman (J. Indian Chem. Soc. **51** [1974] 1018/23; C.A. **83** [1975] No. 58297). - [17] R. Filler, E. W. Choe (Can. J. Chem. **53** [1975] 1491/5). - [18] H. W. H. J. Bodewitz, C. Blomberg, F. Bickelhaupt (Tetrahedron Letters **1975** 2003/6). - [19] E. B. Sokolova, G. P. Chalykh, T. A. Malikova, L. B. Sevost'yanova, O. A. Nemchinova (Zh. Obshch. Khim. **43** [1973] 1333/7; J. Gen. Chem. [USSR] **43** [1973] 1325/8; C.A. **79** [1973] No. 66530). - [20] R. N. Sterlin, R. D. Yatsenko, I. L. Knunyants (Khim. Nauka Prom. **3** [1958] 540/2 from C.A. **1959** 4195).

[21] D. D. Denson, G. J. Moore, C. Tamborski (J. Fluorine Chem. **5** [1975] 475/80). — [22] T. Nguyen, C. Wakselman (J. Fluorine Chem. **6** [1975] 311/29). — [23] J. Besançon, B. H. Tan, F. Huq, J. Tirouflet (Bull. Soc. Chim. France **1978** II 465/70). — [24] C. Moise, J. C. LeBlanc, J. Tirouflet (J. Am. Chem. Soc. **97** [1975] 6272/4). — [25] J. C. LeBlanc, C. Moise, T. Bounthakna (Compt. Rend. C **278** [1974] 973/5).

Calcium Compounds

[26] V. N. Latyaeva, A. N. Lineva, E. N. Shatalin, G. A. Razuvaev (Zh. Obshch. Khim. 46 [1976] 931/2; J. Gen. Chem. [USSR] 46 [1976] 931/2; C.A. 84 [1976] No. 180372). - [27] A. Arcas, P. Royo (Inorg. Chim. Acta 30 [1978] 205/7). - [28] R. Royo, J. Sancho (Transition Metal Chem. [Weinheim] 1 [1976] 212/5; C.A. 86 [1977] No. 155785). - [29] G. Tresoldi, F. Faraone, P. Piraino (J. Chem. Soc. Dalton Trans. 1979 1053/6). - [30] G. A. Razuvaev, V. N. Latyaeva, L. I. Vyshinskaya, V. V. Drobotenko (J. Organometal. Chem. 208 [1981] 169/82).

[31] P. L. Pena, R. Usón (Rev. Acad. Cienc. Exact. Fis. Quim. Nat. Zaragoza [2] 27 [1972] 75/120; C.A. 77 [1972] No. 164813). - [32] S. Lin, J. M. Miller (J. Fluorine Chem. 9 [1977] 161/ 9). - [33] R. Usón, J. Forniés, F. Martinez, M. Thomás (J. Chem. Soc. Dalton Trans. 1980 888/ 94).

2.3 Perfluoroalkylcalciumiodides R_fCal ($R_f = C_2F_5$, C_6F_{13})

Perfluoroalkyliodides react at 20°C with finely divided calcium in basic solvents such as tetrahydrofuran, dioxane or ether to form perfluoroalkylcalciumiodides as reactive intermediates. When pure calcium metal is used, the reaction starts vigorously at -20 °C after an induction period of 0.5 h. Large proportions of undesired R_tH are produced, the proportion increasing with higher temperature. This disadvantage was partially overcome using calcium amalgam. The reaction starts immediately, proceeds smoothly, and is complete after 2 h at 20°C or 10 h at -20°C [1, 2]. In the presence of ketones or aldehydes at -20 to 40°C the reaction gives lower yields of R_fH and a higher yield of the corresponding alcohol. When the aldehyde or ketone is added after RrCal is formed, high yields of RrH and lower yields of the alcohols are found. Reaction takes place in tetrahydrofuran [1, 2] according to:

$$R_{f}I + Ca + R^{1}C(O)R^{2} \rightarrow R_{f}^{1} \qquad C \qquad R_{f}^{2}$$

The alcohol is obtained after hydrolysis.

In the following are given R_f , R^1 , R^2 , reaction temperature in °C (time in h), yield, boiling point/Torr, (melting point)

 $C_{2}F_{5}, C_{6}H_{5}, H, -40$ (20), 69%, 214°C;

 C_6F_{13} , CH_3 , CH_3 , -40 (20), 37%, 47°C/15 Torr (38 to 40°C); [in addition CH₃C(OH)(C₆F₁₃)CH₂C(CH₃)₂OH, boiling point 130°C/0.05 Torr is formed in 30% yield];

 $C_{6}F_{13}$, CH_{3} , $C_{2}H_{5}$, -30 (18), 30%, 176°C [in addition 10% $CH_{3}C(OH)(C_{2}H_{4})CH_{2}C(OH)(C_{3}H_{4})C_{6}F_{3}$ is obtained];

 C_6F_{13} , C_2H_5 , C_2H_5 , -40 (8), 66%, 198°C; C_6F_{13} , $(CH_3)_2CH$, $(CH_3)_2CH$, -40 (18), 40%, 86 to 92°C/13 Torr; C_6F_{13} , C_6H_5 , H, -40 (20), 56%, (52 to 54°C); C_6F_{13} , CH_3 , C_6H_5 , -35 (22), 30%, product not free from $C_6H_5C(O)CH_3$; C_6F_{13} , -(CH₂)₅-, -20 (8), 58%, 222°C; C_6F_{13} , 2-HO- C_6H_4 , H, -40 (20), 21%, (75 to 79°C).

¹H, ¹⁹F NMR and mass spectroscopic data are given in [2].

References:

[1] G. Santini, M. LeBlanc, J. G. Riess (J. Chem. Soc. Chem. Commun. 1975 678/9). - [2] G. Santini, M. LeBlanc, J. G. Riess (J. Organometal. Chem. 140 [1977] 1/9).

3 Perfluorohalogenoorgano Compounds of Main Group 3 Elements

3.1 Preliminary Remarks

The compounds of the Main Group 3 elements are covered to the end of 1973 in "Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente", Part 4, 1975 (cited here as Part 4), for further details see the preface of this Supplement Volume.

Perfluorohalogenoorgano Compounds of Boron 3.2

Perfluorovinyldihalogenoboranes $F_2C=CFBX_2$ (X = F, Cl)

Tris(trifluorovinyl)boranes (F2C=CF)3B

No new syntheses and chemical reactions have been published (see Part 4, p. 117).

The IR spectra of gaseous and solid F₂C=CFBF₂ and of F₂C=CFBCl₂ have been recorded along with the Raman spectra of all three physical states. The wave numbers are given in [8]. The interpretation of the spectra, on assuming planar geometry for both molecules, gives the fundamental vibrations of the molecules in the gaseous state, see Table 6.

Fundamental Vibrational Frequencies v_i (in cm⁻¹) for Gaseous F₂C=CFBF₂ and F₂C=CFBCl₂ [8]. F₂C=CFBF₂ F₂C=CFBCl₂ Approximate description ٧ı 1725 ν1 1694 C-C stretching 1410 1290 C-F stretching v2 ν2 1390 1392 antisymmetric CF₂ stretching ν3 v₃ 1323 981 antisymmetric BX₂ stretching ν4 ν₆ 1179 symmetric CF₂ stretching 1128 ν5 ν4 1040 1023 B-C stretching ν₆ ν₅ 709 864 symmetric BX₂ stretching ν7 ν7 679 532 CF₂ rocking ν8 ν8 404 584 BX₂ scissoring ٧g ν₉ 370 329 CF₂ scissoring v₁₀ v₁₀ BX₂ rocking 351 163 v₁₁ v₁₂ 248 217 CF bending V₁₂ V₁₁ 138 135 C-C-B bending v₁₃ v_{13} Α″ 682 632 V₁₄ V₁₄ CF₂ wagging 596 245 BX₂ wagging V₁₅ V₁₆ 335 323 CF bending v₁₆ v₁₅ V₁₇ 123 ν₁₇ 90 CF₂ twisting

V₁₈

(30)

The IR spectra of gaseous and solid (F₂C=CF)₃B and the Raman spectra of this compound in all three physical states have been recorded. Spectral changes that occur on solidification indicate the presence of two conformers in the fluid phases. A detailed vibrational assignment is proposed for the more stable form on the basis of C_3 molecular symmetry. The spectrum inclusive of assignment is given in the original paper [9].

BX₂ torsion

28

Table 6

A′

V₁₈

(69)

Potassiumtrifluoromethyltrifluoroborate $K[CF_3BF_3]$, $CF_3BF_3^-$ Anion

Bis(trifluoromethyl)difluoroboric acid H[(CF₃)₂BF₂]

Bis(trifluoromethyl)difluoroborates $M[(CF_3)_2BF_2]$ (M = K, Cs), (CF_3)_2BF_2^- Anion

The reaction between $(CH_3)_3SnCF_3$ and BF_3 (molar ratio 3:1) at 60°C (12 h) in CCl_4 yields as the main product $[(CF_3)_2BF_2]^-$ and $[CF_3BF_3]^-$. By addition of KF, the corresponding salts were isolated. $K[(CF_3)_2BF_2]$ is formed in 60% yield. The free acid $H[(CF_3)_2BF_2]$ is obtained by passing $K[(CF_3)_2BF_2]$ through the acidic ion exchange column (Riedel Permutit SC 102) and evaporation of the aqueous solution to dryness. By titration of $H[(CF_3)_2BF_2]$ with an aqueous solution of CsOH the slightly soluble $Cs[(CF_3)_2BF_2]$ is precipitated [1].

Physical Properties

K[CF₃BF₃] crystallizes in the monoclinic system with space group P2₁/c-C⁵_{2h} (No. 14). The unit cell with dimensions a = 4.8453, b = 16.331, c = 6.348 ± 0.002 Å, $\beta = 101^{\circ} (\pm 3^{\circ})$ contains four molecules. The X-ray density is 2.378, the pycnometric density (in CH₂Cl₂) is 2.5 ± 0.1 g/cm³. The structure was refined to a R factor of 0.0058. The compound forms ionic crystals which impose no crystallographic symmetry on the ions. The CF₃BF₃⁻ anion deviates somewhat from C_{3v} symmetry, the CF₃ and BF₃ groups being rotated about 8° from the staggered conformation. The average C-F, B-F and B-C bond distances are 1.343(8) Å (1.360 Å), 1.391(5) Å (1.409 Å) and 1.625(6) Å (1.640 Å), respectively. The values in parentheses are distances corrected for libration. The mean values of the angles are α (F-C-F) = 104.9(2)°, α (B-C-F) = 113.7(3)°, α (F-B-F) = 109.9(5)° and α (C-B-F) = 109.1(4)°.

The IR spectra of KF and polyethylene pellets of $K[CF_3BF_3]$ as well as Raman spectra of its aqueous solution, of crystal powder and of single crystals in the region of 50 to 2000 cm⁻¹ were recorded and assigned for a staggered C_{3v} model of the $CF_3BF_3^-$ anion, see **Table 7** [7]. A normal-coordinate analysis yielded a harmonic force field. The following stretching force constants were obtained: $f_{CF} = 4.85$, $f_{BF} = 4.19$ and $f_{BC} = 3.63$ mdyn/Å. Bonding in CF_3B- compounds is discussed on the basis of X-ray and spectroscopic data [7].

¹⁹F NMR (in aqueous solution, internal standard CF₃COONH₄, chemical shifts δ refer to the standard CFCl₃, negative values of δ means highfield) [1]:

$$[CF_3BF_3]^-: \delta(CF_3) = -77.3 \text{ ppm}, \delta(BF_3) = -156.0 \text{ ppm}, J(B-F) = 40.7 \text{ Hz}, J(F-C-B) = 33.6 \text{ Hz}.$$

IR		Raman	Assignment and approximate		
	crystal	solution	description		
80 w					
120 s					
189 m	190 vw	185 vw	v ₁₁ (e)	ջ(BF ₃)	
308) 315 w	314 m	312 s, p	v ₅ (a ₁)	$\delta(BF_3)$	
	331)				
331 w	334 342	329 m, dp	v ₁₀ (e)	ջ(CF ₃)	
	,		-		

Table 7 Vibrational Spectra of $K[CF_3BF_3]$ (in cm⁻¹) [7].

Gmelin Handbook CF Comp. Suppl. 1 References p. 33

IR	Ra	man	Assignment and approximate		
	crystal	solution	description		
465 475 }m	465) 475 ∫ vw	466 vw	v ₉ (e)	$\delta(BF_3)$	
560 vw	555) 559(s	556 m, dp	v ₈ (e)	$\delta(CF_3)$	
· 11 - ·	625 vw	625 vw	2v ₅ (A ₁)		
637.4 [™] B) 640.5 ¹⁰ B)s	639 ¹¹ B) 643 ¹⁰ B ∫ m	639 ¹¹ B	$v_4(a_1)$	$\delta(CF_3)$	
732.0 w	732 vs	731 vs, p	v ₃ (a ₁)	v(BF)	
963 ¹¹ B) 986 ¹⁰ B) vs	962 ¹¹ B) 984 ¹⁰ B) vw	961 ¹¹ B 985 ¹⁰ B } vw	v ₇ (e)	v(BF)	
	$\left.\begin{array}{c}1054\\1080\\1070\\1070\\1096\end{array}\right\}^{11}B\\w$	$1063 \ {}^{11}B$ $1076 \ {}^{10}B$ w	v ₆ (e)	v(CF)	
1066 ¹¹ B 1094 ¹⁰ B } vs	1 023 ¹¹ B 1 054 ¹⁰ B } vw		$v_2(a_1)$	v(CF)	
1 191 1 203 ∫ ^w			ν ₃ + ν ₉ (Ε)		
1342 ¹¹ B 1358 ¹⁰ B w	1 343 ¹¹ B	1 339 ¹¹ B) 1 356 ¹⁰ B) m, p	v ₁ (a ₁)	v(BC)	
1518 ''B 1541 ¹⁰ B ∫ ^{vw}			$v_7 + v_8(A_1 + A_2 + E)$		

Table 7 (continued)

Cs[(CF₃)₂BF₂] crystallizes in the monoclinic system with space group P2₁/m-C²_{2h} (No. 11). The unit cell with dimensions 5.958(1), b = 7.628(1), c = 8.2997(9) Å, β = 100.50(1)° contains two molecules. The density is 2.863 g/cm³. The structure was refined to a R factor of 0.028. The average C-F, B-F and B-C bond distances are 1.353, 1.391 and 1.618 Å, respectively. The mean values of the angles are α (F-C-F) = 104.5°, α (B-C-F) = 114.0°, α (F-B-F) = 108.1° and α (C-B-F) = 108.7°. Apparently because of Cs…F(B,C) interactions, one B-C bond has a staggered and the other an eclipsed conformation in the solid state. The IR (KF and polyethylene pellets) and Raman spectra (aqueous solution) were recorded and assigned assuming C_{2v} symmetry for the (CF₃)₂BF₂⁻ anion in solution, see **Table 8** [6]. The analysis of

Table 8 Vibrational Spectra of the $(CF_3)_2BF_2^-$ Anion (in cm⁻¹) [6]. Assignment of the vibrations according to [14].

Raman IR (natural B) ¹¹ B/ ¹⁰ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IR ¹¹ B/ ¹⁰ B	Assignment and	Assignment and approximate description				
	≈70(s)	lattice vibration					
	122(sh)	ν ₈ (a ₁)	δ(BC ₂)				
	180(m)	$v_{26}(b_2)$	δ(CBX)				
234(m)	234(m)	$v_{13}, v_{21} (a_2, b_1)$	δ(CBX)				
		References p. 3	33	Gmelin Handbook CF Comp. Suppl. 1			

Raman	IR	Assignment and	approximate description	
(natural B)	¹¹ B/ ¹⁰ B	U		
286(sp)	286(w)	ν ₆ (a ₁)	δ(BC ₂)	
305(sh)		$v_{12}(a_2)$	$\varrho(CF_3)$	
311(m)	310(vw)	$v_{19}(b_1)$	$\varrho(CF_3)$	
334(mp)	334(m)	$v_5(a_1)$	$\varrho(CF_3)$	
430(vw)	429(vw)	v_{24} (b ₂)	$\varrho(CF_3)$	
515(mp)	514(m)	$v_4(a_1)$	$\delta_{as}(CF_3)$	
553(sh)		v_{18} (b ₁)	$\delta_{as}(CF_3)$	
	\approx 560(vw)			
564(m)		v ₂₃ (b ₂)	$\delta_{as}(CF_3)$	
595(mp)	595(m)	v ₉ (a ₁)	$\delta(BF_2)$	
689(w)	689/691(s)	ν ₁₆ (b ₁)	$\delta_{s}(CF_{3})$	
725(vsp)	725(w)	v ₂ (a ₁)	$\delta_{s}(CF_{3})$	
	880/907(vs)	v ₂₀ , v ₂₅ (a ₁ , b ₂)	$\nu(BC_2), \nu(BF_2)$	
1010(vw)	1011/1038(vs)	v ₇ (a ₁)	v(BF ₂)	
\sim 1055(w)	\sim 1050(s)	ν ₁₇ , ν ₁₀ (b ₁ , a ₂)	$v_{as}(CF_3)$	
	\sim 1090(vs)	v ₃ (a ₁)	$v_{as}(CF_3)$	
\sim 1 095(m)	\sim 1 100/1 120(vs)	v ₂₂ (b ₂)	$v_{as}(CF_3)$	
1319(mp)	1320/1334(s)	v ₁₅ (b ₁)	v _s (CF ₃)	

Table 8 (continued)

the vibrational spectra of K[(CF₃)₂BF₂] yielded very similar wave numbers for the fundamentals of the anion [1]. A quadratic local symmetry force field via a normal coordinate analysis has been calculated. The most important force constants are $f(B-C) = 3.68 \times 10^2$, $f(B-F) = 417 \times 10^2$ and 4.85×10^2 N/m [6]. ¹⁹F NMR of $[(CF_3)_2BF_2]^-$ (in aqueous solution, internal standard CF₃COONH₄, chemical shifts δ refer to the standard CFCl₃, negative values of δ means highfield): $\delta(CF_3) = -76.0$ ppm, $\delta(BF_2) = -181.3$ ppm, J(B-F) = 58.3 Hz, J(F-C-B) = 29.6 Hz [1].

Tris(pentafluorophenyl)borane (C₆F₅)₃B

Pentafluorophenyldichloroborane C₆F₅BCl₂

Lithiumtetrakis(pentafluorophenyl)borate Li[B(C₆F₅)₄]

No new syntheses are published for these compounds (see Part 4, p. 118).

During refluxing $(C_6F_5)_3B$ with $(C_6F_5NHBNC_6F_5)_3$ in toluene for 19 h no reaction is observed [10].

Reactions of C₆F₅BCl₂

The reaction between $C_6F_5BCl_2$ and $[(CH_3)_3Si]_2NH$ in n-hexane yields 67% $[(CH_3)_3Si]_2NB(C_6F_5)Cl$, boiling point 69°C/0.001 Torr, ¹¹B NMR ($(C_2H_5)_2O \cdot BF_3$ external standard): $\delta(B) = 41.3$ ppm. Similarly $(CH_3)_3C[(CH_3)_3Si]NB(C_6F_5)Cl$ was obtained from $C_6F_5BCl_2$ and

 $(CH_3)_3CNHSi(CH_3)_3$ in 68% yield, boiling point 64°C/0.001 Torr, ¹¹B NMR: $\delta = 38.8$ ppm. The substance 2,4,6- $(CH_3)_3$ -C₆H₂[$(CH_3)_3$ Si]N-B(C₆F₅)Cl was made from C₆F₅BCl₂ and 2,4,6- $(CH_3)_3$ -C₆H₂-NHSi(CH₃)₃ in 82% yield, boiling point 110 to 112°C/0.001 Torr, ¹¹B NMR: $\delta = 37.3$ ppm. ¹H, ¹⁹F NMR and mass spectra were also provided [3].

Specific electric resistance ϱ of Li[B(C₆F₅)₄] in dioxalane [13]:

Molal concentration	1.39	0.91	0.69	0.45	0.23
ϱ(Ω·cm)	210	195	207	219	3215

Refluxing a mixture of $C_6F_5BCl_2$ and bis[3-(3-thienyl)-2-thienylammonium]hexachlorostannate(IV) in dry benzene for 36 h gave 4-(pentafluorophenyl)-4,5-borazarobenzo[1,2-b; 4,3-b']dithiophene [45%, melting point 194.0 to 194.5°C (sublimation)] [11]. On adding a solution of (E)-3-amino-2-[2-(2-thienyl)ethenyl]thiophene in C_6H_6 to a solution of $C_6F_5BCl_2$ in benzene with stirring and cooling the mixture reacted after refluxing for 32 h yielding about 61% 5-(pentafluorophenyl)-6-(2-thienyl)-5,4-borazarobenzo[b]thiophene melting range 161 to 165°C. Similarly methyl (E)-4-amino-5-[2-(2-thienyl)ethenyl]-2-thiophenecarboxylate and $C_6F_5BCl_2$ gave after 24 h an impure sample of methyl-5-(pentafluorophenyl)-6-(2-thienyl)-5,4borazarobenzo[b]thiophene-2-carboxylate [12].

Lithium-tris(pentafluorophenyl)fluoroborate Li[B(C₆F₅)₃F]

Poly-o- and Poly-m-carboranylene-perfluorophenylene $(CB_{10}H_{10}C-C_6F_4)_n$

A solution of $(C_6F_5)_3B$ in anhydrous dimethoxyethane reacts at reflux temperature (4 d) under an inert atmosphere to give Li[B(C_6F_5)_3F]. The specific electric resistance in a 1-molal solution in dimethoxyethane is 180 $\Omega \cdot \text{cm}$ [13].

The dioxaborolandione is obtained in 95% yield on reacting $C_6F_5BCl_2$ in toluene with waterfree oxalic acid (molar ratio 1:1) at 20°C (66 h stirring). IR: $v_s(C=O) = 1635$, $v_{as}(C=O) = 1835$ cm⁻¹ [2], ¹¹B NMR [external standard: $(C_2H_5)_2O \cdot BF_3$]: $\delta = 26$ ppm, MS: m/e = 266, M⁺ (23); 194, $C_6F_5BO^+$ (100); 28, CO⁺ (23) [4]. The compound decomposes before reaching sublimation temperature at 130°C. It reacts with pyridine forming an adduct which melts with decomposition at 139°C [2]. It also forms 1:1 adducts with 3,4-dihydroiso-quinoline-N-oxide, N-methylbenzaldimine-N-oxide, pyridine-N-oxide and N-phenylsydnone. For physical data, see [4].

The decomposition of the dioxaborolandione (see below) at 130 °C (1 h) in toluene yields 97% tris(pentafluorophenyl)boroxine (melting point 282 °C). The compound can also be made from $C_6F_5BCl_2$ and H_2O in acetone at -78 °C in 55% yield [2]. Reacting a mixture of $C_6F_5B=NC(CH_3)_3$ with $(C_6H_5)_2CO$ in CHCl₃ at -30 °C (24 h) yields $(C_6F_5BO)_3$ [3].

Poly-o- and -m-carboranyleneperfluorophenylenes were prepared by reaction of o- or mdilithiocarborane with C_6F_6 in refluxing xylene according to:

$$LiCB_{10}H_{10}CLi + C_6F_6 \rightarrow (CB_{10}H_{10}C-C_6F_4)_n + 2 LiF$$

In both cases ether soluble and insoluble materials are obtained. The total yield for $m(vCB_{10}H_{10}C-C_6F_4)_n$ is 93%. The insoluble part does not melt before 300°C, the soluble between 180 to 240°C. The yield for the o isomer is 75% with the insoluble part not melting before 340°C and the soluble melting between 168 to 242°C. v(B-H) = 2610; v(C=C) = 1600 to 1400; v(C-F) = 1400 to 1000; 723 cm⁻¹ (BH skeletal vibration) [5].

References:

[1] G. Pawelke, F. Heyder, H. Bürger (J. Organometal. Chem. **178** [1979] 1/4). – [2] P. I. Paetzold, W. Scheibitz, E. Scholl (Z. Naturforsch. **26b** [1971] 646/9). – [3] P. Paetzold, A. Richter, T. Thijssen, S. Würtenberg (Chem. Ber. **112** [1979] 3811/27). – [4] P. Paetzold, P. Bohm, A. Richter, E. Scholl (Z. Naturforsch. **31b** [1976] 754/64). – [5] C. Arnold (J. Polym. Sci. Polym. Chem. Ed. **13** [1975] 517/20).

[6] D. J. Brauer, H. Bürger, G. Pawelke (J. Organometal. Chem. **192** [1980] 305/17). - [7] D. J. Brauer, H. Bürger, G. Pawelke (Inorg. Chem. **16** [1977] 2305/13). - [8] J. R. Durig, E. J. Stampf, J. D. Odom, V. F. Kalasinsky (Inorg. Chem. **16** [1977] 2895/900). - [9] J. D. Odom, E. J. Stampf, J. R. Durig, V. F. Kalasinsky, S. Riethmiller (J. Phys. Chem. **82** [1978] 308/11). -[10] J. M. Miller, G. L. Wilson (J. Fluorine Chem. **4** [1974] 207/12).

[11] S. Gronowitz, I. Ander (Chem. Scr. **15** [1980] 23/6). — [12] S. Gronowitz, I. Ander (Chem. Scr. **15** [1980] 135/44). — [13] L. P. Klemann, G. H. Newman, E. L. Stogryn, Exxon Research and Engineering Co. (Ger. Offen. 2901367 [1979]; C.A. **92** [1980] No. 61799). — [14] H. Bürger, G. Pawelke (Spectrochim. Acta A **35** [1979] 525/40).

3.3 Perfluorohalogenoorgano Compounds of Aluminium

Pentafluorophenylalane-etherate $C_6F_5AlH_2 \cdot [O(C_2H_5)_2]_n$, n = 1, 2

Pentafluorophenylalane-trimethylamine $C_6F_5AlH_2 \cdot [N(CH_3)_3]_n$, n = 1, 2

Bis(pentafluorophenyl)alane-etherate $(C_6F_5)_2AlH \cdot [O(C_2H_5)_2]_n$, n = 1, 2

 $\textbf{Bis(pentafluorophenyl)alane-trimethylamine} \ (C_6F_5)_2AlH \cdot [N(CH_3)_3]_n, \ n = 1, 2$

Pentafluorophenylbromoalane-etherate $C_6F_5Al(Br)H \cdot C_2H_5OC_2H_5$

Bis(pentafluorophenyl)chloroalane-etherate $(C_6F_5)_2AlCl \cdot O(C_2H_5)_2$

Bis(pentafluorophenyl)chloroalane-trimethylamine $(C_6F_5)_2AlCl \cdot N(CH_3)_3$

Tris(pentafluorophenyl)alane-etherate $(C_6F_5)_3Al \cdot O(C_2H_5)_2$

Tris(pentafluorophenyl)alane-trimethylamine $(C_6F_5)_3Al \cdot N(CH_3)_3$

Lithiumtetrakis(pentafluorophenyl)alanate-etherate $Li[Al(C_6F_5)_4] \cdot O(C_2H_5)_2$

Lithiumtetrakis(pentafluorophenyl)alanate-trimethylamine $Li[Al(C_6F_5)_4] \cdot N(CH_3)_3$

The preparation of $(C_6F_5)_nAlH_{3-n}$ occurs according to:

$$AlH_{3-n}Cl_n + nC_6F_5Li \rightarrow (C_6F_5)_nAlH_{3-n} + nLiCl$$

Stoichiometrical amounts of C_6F_5Li and $AlH_{3-n}Cl_n$ were reacted at $-30\,^{\circ}C$ in ether to yield $(C_6F_5)_nAlH_{3-n} \cdot [O(C_2H_5)_2]_x$ with n = 1, 2 and x = 1, 2. When treating the adducts with $(CH_3)_3N$, ether is replaced and $(C_6F_5)_nAlH_{3-n} \cdot x[N(CH_3)_3]$ is obtained. As a by-product $C_6F_5AlHBr \cdot O(C_2H_5)_2$ is formed from $C_6F_5AlH_2$ and C_4H_9Br (obtained from $C_6F_5Br + C_4H_9Li$) in ether solution [1]. Reacting stoichiometrical amounts of $AlCl_3$ in ether with C_6F_5Li gives $(C_6F_5)_2AlCl \cdot O(C_2H_5)_2$, $(C_6F_5)_3Al \cdot O(C_2H_5)_2$ and $Li[Al(C_6F_5)_4] \cdot O(C_2H_5)_2$. In all compounds ether can be replaced by $(CH_3)_3N$ [2]. No physical data are presented.

References:

[1] R. Usón, F. Iranzo (Rev. Acad. Cienc. Exact. Fis. Quim. Nat. Zaragoza [2] **28** [1973] 481/ 7; C.A. **81** [1974] No. 91620). – [2] R. Usón, F. Iranzo (Rev. Acad. Cienc. Exact. Fis. Quim. Nat. Zaragoza [2] **29** [1974] 107/11; C.A. **82** [1975] No. 98037).

3.4 Perfluorohalogenoorgano Compounds of Gallium

Since Part 4 (see p. 127) appeared, no new results on these gallium compounds were published.

3.5 Perfluorohalogenoorgano Compounds of Indium

Pentafluorodichloroindane-1,4-dioxane $C_6F_5InCl_2 \cdot 1,4$ -dioxane

For preparation and physical properties see Part 4, p. 128/31.

Ether solutions of equimolar amounts of C_6F_5 InCl₂·1,4-dioxane and the appropriate ligand react at 20°C (5 to 10 min) to give in more than 80% yield the complexes according to the following ligand exchange reaction

 $C_6F_5lnCl_2 \cdot 1,4\text{-}dioxane\ +\ L \rightarrow C_6F_5lnCl_2L\ +\ 1,4\text{-}dioxane\$

In the following are given the reactant L, the melting point and v(In-Cl) (in cm⁻¹) of the reaction product: N,N,N',N'-tetramethylethylenediamine, 128°C, 317 (m, br), 264 (m, br); 1,2-bis(diphenylphosphino)ethane, ~210°C, 313 (s, br), 304 (m, sh); 2,2'-bipyridyl, 166 to 167°C, 303 (m, br), 277 (m, br); 1,10-phenanthroline, ~145°C, 314 (m, br), 294 (s, br); 2,2':6',2''-terpyridyl, >200°C (decomposition), 311 (m, br), 265 (s, br), for the complete list of IR bands see the original paper [1].

Reactions of C_6F_5 InCl₂-dioxane with pyridine, $(C_6H_5)_3P$ and $(CH_3)_2SO$ cause quantitative rearrangement into InCl₃ and In(C_6F_5)₃. Mixing solutions of $(C_6F_5)_3$ In-1,4-dioxane and quinolin-8-ol in ether and keeping the mixture at 20°C (48 h) pentafluorophenylbisquinolin-8-olatoindium(III) (65%) is obtained. The same product can be made also from C_6F_5 InCl₂-1,4-dioxane and thallous quinolin-8-olate in CHCl₃ at 20°C (2 h) in a quantitative yield. The decomposition temperature is about 240°C. A solution of equimolar amounts of $(C_6F_5)_3$ In-1,4-dioxane and quinolin-8-ol in ether gave impure bis(pentafluorophenyl)quinolin-8-olato-indium(III) with a decomposition temperature of ~240°C. IR absorptions are presented [1].

Reference:

[1] G. B. Deacon, J. C. Parrot (Australian J. Chem. 27 [1974] 2547/55).

3.6 Perfluorohalogenoorgano Compounds of Thallium

3.6.1 Preparation and Physical Properties

Bis(pentafluorophenyl)thallium hydroxide (C₆F₅)₂TlOH

Bis(pentafluorophenyl)thallium nitrate (C₆F₅)₂TlNO₃

No new syntheses have been published for these compounds (see Part 4, pp. 131/46). New details on chemical reactions are given in Chapter 3.6.2, p. 37.

Pentafluorophenylthallium(III)bis(trifluoromethanesulfonate) $C_6F_5Tl(OSO_2CF_3)_2$

Bis(pentafluorophenyl)thallium(III)pentafluorophenylbenzoate $(C_6F_5)_2TIOC(O)C_6F_5$

 $C_6F_5Tl(OSO_2CF_3)_2$ has been obtained in 67% yield on adding C_6F_6 to a solution of $[CF_3C(O)O]_3Tl$ and CF_3SO_3H in CF_3COOH containing a small amount of water. The reaction mixture was heated under reflux (4 h), then cooled, evaporated to half volume and allowed to stand at 20°C for 12 h. The white precipitate was dried and recrystallized. ¹⁹F NMR (negative shifts δ upfield from the internal standard $CFCl_3$): $\delta(CF_3SO_2) = -77.8$, $\delta(F^2,F^6) = -121.6$ (d of d), $\delta(F^3,F^5) = -157.2$ (d of tr), $\delta(F^4) = -147.6$ ppm (d of tr), $J(F^2,F^6-F^4) = 20$ Hz, $J(F^3,F^5-F^2) = 20$ Hz, $J(Tl-F^2,F^6) = 1385$ Hz, $J(Tl-F^3,F^5) = 787$ Hz, $J(Tl-F^4) = 179$ Hz [1].

For preparation of $(C_6F_5)_2TIOC(O)C_6F_5$ see Part 4, p. 131. The compound melts at 270 to 271°C (decomposition). ¹⁹F NMR (internal standard CFCl₃, F atoms attached to the benzoate ring are designated by primes): $\delta(F^2,F^6) = -120.6$ (d of d), $\delta(F^3,F^5) = -160.2$ (d of tr), $\delta(F^4) = -151.7$ ppm (d of tr), $J(TI-F^2,F^6) = 967$ Hz, $J(TI-F^3,F^5) = 415$ Hz, $J(TI-F^4) = 91$ Hz, $\delta(F^{2'},F^{6'}) = -140.7$ (d of d), $\delta(F^{3'},F^{5'}) = -163.1$ (m), $\delta(F^{4'}) = -154.4$ ppm (tr); mass spectrum: m/e = 583, M⁺ - C_6F_5 (<1); 539, (C₆F₅)₂TI⁺ (100); 334, C₁₂F₁₀ (6) [2].

Bis(pentafluorophenyl)thallium chloride (C₆F₅)₂TlCl

Bis(pentafluorophenyl)thallium bromide (C₆F₅)₂TlBr

A solution of C_6F_5Li in ether was reacted with anhydrous TlCl₃ at $-78^{\circ}C$ (0.5 h, stirring) to yield 83% (C_6F_5)₂TlCl (see Part 4, p. 131), melting point 220°C [3], 249 to 252°C; IR: v(Tl-Cl) = 213, δ (Tl-Cl) = 133 cm⁻¹ [10]. ¹⁹F NMR [internal standard CFCl₃, solvent (CD₃)₂CO]: δ (F²,F⁶) = -119.4 (d of d), δ (F³,F⁵) = -160.6 (d of tr), δ (F⁴) = -152.6 (d of tr) ppm, J(Tl-F²,F⁶) = 812 Hz, J(Tl-F³,F⁵) = 360 Hz, J(Tl-F⁴) = 84 Hz [10].

When a solution of C_2H_5MgBr in ether was filtered into a stirred ether solution of an equimolar amount of C_6F_5Br and heated under reflux for 1 h, C_6F_5MgBr is formed. It reacts with TlCl₃ (molar ratio $C_6F_5MgBr/TlCl_3 = 8:3$) to yield 74% (C_6F_5)₂TlBr (see Part 4, p. 131) [2], melting point 224 to 228 [2, 10]; IR: v(Tl-Br) = 150, δ (Tl-Br) = 68 cm⁻¹ [10]; ¹⁹F NMR [internal standard CFCl₃, solvent (CD₃)₂CO]: δ (F²,F⁶) = -119.7, δ (F³,F⁵) = -160.4, δ (F⁴) = -152.5 ppm, J(Tl-F²,F⁶) = 780 Hz, J(Tl-F³,F⁵) = 339 Hz, J(Tl-F⁴) = 82 Hz. The change of the ¹⁹F NMR spectrum of the bromide in the solvent sequence pyridine, perdeuteroacetone, methanol, and perdeuterodimethylsulfoxide has been discussed [4].

Tris(pentafluorophenyl)thallium (C₆F₅)₃Tl

A solution of $(C_6F_5)_2TIOC(O)C_6F_5$ in pyridine was heated in a stream of O_2 -free N_2 under reflux (1 h) to give $(C_6F_5)_3TI$ pyridine as an intermediate. After heating, the pyridine was

removed under vacuum and the residue was sublimed in vacuo at 100 to 150 °C. Treatment of the sublimate with 1,4-dioxane and recrystallization from 1,4-dioxane gave 60% (C₆F₅)₃Tl · 1,4dioxane (melting point 269 to 276 °C) [2]. The decomposition of neat (C_6F_5)₂TlOC(O) C_6F_5 under N₂ in absence of a solvent at 310 °C (1 h) gave 40% (C_6F_5)₃Tl · 1,4-dioxane after treatment as described above, melting range 258 to 263 °C [2, 5]. In boiling dry pyridine, $(C_{6}F_{s})_{2}$ TlBr and $(C_6F_5SO_2)_2$ Ba react after 50 min to give $(C_6F_5)_3$ Tl (66%) (see Part 4, p. 131) as a crude pyridine complex. After recrystallization from dioxane 38% (C₆F₅)₃Tl·1,4-dioxane is obtained [6, 9]. When $(C_6F_5)_2TlBr$ was heated with Cu powder in refluxing 1,4-dioxane (2 h) about 50% (C₆F₅)₃Tl · 1,4-dioxane is formed, melting range 260 to 265°C (decomposition) [7, 8]. In boiling ether $(C_6F_5)_2$ TlBr and Cu powder react during 4 h, followed by after addition of dioxane, to 75% (C₆F₅)₃Tl · 1,4-dioxane [8]; ¹⁹F NMR [internal standard CFCl₃, solvent (CD₃)₂CO]: δ(F²,F⁶) = -118.1 [4], -118.2 (d of d) [9], $\delta(F^3,F^5) = -159.3$ [4], -161.0 (d of tr) [9], $\delta(F^4) = -151.5$ [4], -154.1 (d of tr) ppm $[9], J(Tl-F^2,F^6) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) $[4], J(Tl-F^3,F^5) = 542$ Hz [9], 546 + 8 Hz (in dioxane) [4], 546 + 8223 Hz [9], 217 \pm 8 Hz (in dioxane) [4], J(F⁴-Tl) = 51 Hz [9], 58 \pm 1 Hz (in dioxane) [4]; IR: 2990 (w), 2922 (w), 2894 (sh), 2868 (w), 1638 (m), 1611 (w), 1512 (vs), 1471 (vs, br), 1443 (sh), 1376 (sh), 1368 (m), 1360 (m), 1296 (w), 1269 (m), 1259 (m), 1137 (sh), 1126 (sh), 1108 (s), 1087 (vs), 1076 (vs), 1070 (sh), 1055 (sh), 1044 (sh), 1007 (w, br), 960 (vs, br), 895 (m), 861 (vs), 779 (m), 740 (w, br), 718 (w), 610 (m), 606 (m), 581 (w), 485 (w) cm⁻¹ [8]. Mass spectrum: m/e = 706, $(C_6F_5)_3Tl^+$; 539 $(C_6F_5)_2Tl^+$; 334, $(C_6F_5)_2^+$; 265, $C_{11}F_7^+$ [8].

Tetrakis(pentafluorophenyl)thalliate(III) $M[Tl(C_6F_5)_4]$

Bis(pentafluorophenyl)-bis(pentachlorophenyl)thalliate(III) $M[Tl(C_6F_5)_2(C_6Cl_5)_2]$

 $\label{eq:pentafluorophenyltrichlorothalliate(III) M[Tl(C_6F_5)Cl_3]$

Tris(pentafluorophenyl)chlorothalliate(III) $M[Tl(C_6F_5)_3Cl]$

Hexakis(pentafluorophenyl)thalliate(III) $M_3[Tl(C_6F_5)_6]$

 $\label{eq:chloro-bis[tris(pentafluorophenyl)]} dithalliate(III) \ \ M[(C_6F_5)_3TlClTl(C_6F_5)_3]$

For M see Table 9 and the following paragraph.

In the presence of tetraalkylammoniumbromide, $(C_6F_5)_2TlBr$ or $TlCl_3$ reacts with C_6F_5Li in ether to give $[R_4N][Tl(C_6F_5)_4]$. The reaction is carried out at -78 °C under dry N_2 . While stirring for 4 h the solution is allowed to warm up to 20 °C. The yields are 70 to 90%. On adding $(C_6F_5)_2TlBr$ to a stirred ether solution of C_6Cl_5Li at -15 °C in dry N_2 followed by the addition of $[(n-C_4H_9)_4N]Br$, $[(n-C_4H_9)_4N][Tl(C_6F_5)_2(C_6Cl_5)_2]$ is produced. In ether solution $[(n-C_4H_9)_4N]$ - $[Tl(C_6F_5)_4]$ reacts with TlCl_3 at 20 °C (40 h, stirring) to form $[(n-C_4H_9)_4N][(C_6F_5)_3TlClTl(C_6F_5)_3]$ as a precipitate as well as $[(n-C_4H_9)_4N][Tl(C_6F_5)_3Cl]$ which was isolated from the filtrate [11, 12]. At -78 °C ($C_6F_5)_2TlBr$, C_6F_5Li (molar ratio 1:6) and $(n-C_4H_9)_4N]_3[Tl(C_6F_5)_6]$ (44% yield). The reaction of an ether solution of $[(n-C_4H_9)_4N][Tl(C_6F_5)_4]$ and $(C_6F_5)_2TlCl$ (stirring at 20 °C, 6 h) gave $[(n-C_4H_9)_4N][(C_6F_5)_3TlClTl(C_6F_5)_3]$ (73% yield) [12]. Physical Properties of the complexes are given in **Table 9**.

References p. 39

Table 9											
Physical	l Prope	erties	of the	Thal	lium(III) Cor	mplexe	es [11, 1	12].			
Molting	noint	(mn	doo	_	dooomnooi	ition)	molar	conductivity	۸	(in	0-1.

Melting	point	(m.p.,	dec.	=	decomposition),	molar	conductivity	Λ	(IN	Ω	'∙cm-	·mol	٠,
$5 \cdot 10^{-4}$ M	∕I solut	ions, s	olvent	ac	etone), IR stretchi	ing vibr	ations v(Tl-C)	an	d v(TI-C	:l) (in (cm ⁻¹)).

Compound	m.p. (in °C)	Λ	v(Tl-C)	v(Tl-Cl)
$[(n-C_4H_9)_4N][Tl(C_6F_5)_4]$	127 (dec.)	99	765(s)	_
$[(C_2H_5)_4N][Tl(C_6F_5)_4]$	132 (dec.)	117	762(vs)	
$[(C_{6}H_{5})_{3}(C_{6}H_{5}CH_{2})N][Tl(C_{6}F_{5})_{4}]$	128	100	765(s)	—
$[(n-C_4H_9)_4N][Tl(C_6F_5)_2(C_6Cl_5)_2]$	142 (dec.)	85	760(m), 754(m)	
$[(n-C_4H_9)_4N][Tl(C_6F_5)_3Cl]$	83	97	790(m), 770(m)	250(m)
$[(C_{e}H_{5})_{3}C_{e}H_{5}CH_{2}N][Tl(C_{e}F_{5})Cl_{3}]$	127	127	_	295(s),
				280(s)
$[(n-C_4H_0)_4N][Cl(C_6F_5)_2TlClTl(C_6F_5)_2Cl]$	152	114	790(s), 778(m)	255(m),
				201(m)
$[(n-C_{4}H_{0})_{4}N][(C_{6}F_{5})_{3}TlClTl(C_{6}F_{5})_{3}]$	107	83	775(s), 768(sh)	205(m)
$[(n-C_4H_0)_4N]_2[Tl(C_8F_5)_6]$	63	288	764(m)	_ ` `
		(in CH₃l	NO ₂)	

3.6.2 Chemical Reactions

3.6.2.1 Reactions of C₆F₅Tl(OSO₂CF₃)₂, (C₆F₅)₂TlOH, (C₆F₅)₃Tl and (C₆F₅)₂TlNO₃

In aqueous solution $(C_6F_5)_2Tl(OSO_2CF_3)_2$ reacts with Nal to yield 67% C_6F_5l . The reaction with NaOC(O)CH₃ gives 20% $(C_6F_5)_2TlOC(O)CH_3$, melting point 234°C (decomposition), ¹⁹F NMR (negative shifts highfield from the internal standard CFCl₃, solvent CDCl₃): $\delta(F^2,F^6) = -119.9$ (d of m), $\delta(F^3,F^5) = -159.5$ (d of m), $\delta(F^4) = -151.8$ ppm (d of m), $J(Tl-F^2,F^6) = 1385$, $J(Tl-F^3,F^5) = 787$, $J(Tl-F^4) = 179$ Hz. For ¹H NMR, IR and mass spectra see the original paper [1].

An equimolar mixture of $(C_6F_5)_2$ TlOH and ascorbic acid in pyridine forms $[(C_6F_5)_2$ Tl]⁺[ascorbate]⁻. The ESR spectrum of the complex is provided [25]. Using this method, two other radical anions are formed with o-benzoquinone and 3-[(CH₃)₃C]-5-[(C₆H₅)₃C]-1,2-(HO)₂-C₆H₂. ESR data are provided [26].

Reactions of $(C_6F_5)_3Tl\cdot 1,4$ -dioxane with 1,3-diphenyltriazene (Hdpt) or 1-phenyl-3-(2'-pyridyl)triazene (Hppt) in refluxing benzene under N₂ results in forming the corresponding tris(triazenido)thallium(III) derivatives $Tl(dpt)_3$ or $Tl(ppt)_3$, and C_6F_5H [27]. Formation constants for the compounds formed from $(C_6F_5)_2TlNO_3$ and the neutral ligands ethylenediamine, hexamethylphosphortriamide, pyridine, $(CH_3)_2SO$, $(CH_3)_2NC(O)H$ and CH_3CN are given [28].

. - 1

2

3.6.2.2 Reactions of $(C_6F_5)_2TLX$ (X = Cl, Br)

3.6.2.2.1 Dimerization

The compounds ($C_6F_{5}_{2}TIX$ (X = Cl, Br) are dimerized in benzene. The equilibrium constant K (in dm³/mol) for the dimerization reaction

$$2 (C_6F_5)_2 T L X \rightleftharpoons [(C_6F_5)_2 T L X]_2$$

is $K = 1.5 \times 10^4$ (concentration c = 0.0116 mol/dm³, expressed in terms of the monomer concentration), $K = 6.1 \times 10^2$ (c = 0.0113). In acetone, the compounds are nonelectrolytes and monomeric or very slightly associated [10]. For further information see Part 4, p. 152.

3.6.2.2.2 Reactions with (C₆H₅)₃PO, (C₆H₅)₃P and 2,2'-BipyridyL

Stoichiometric amounts of $(C_6F_5)_2TIX$ and $(C_6H_5)_3PO$ (X = Cl, Br) react in a polar solvent to give the 1:1 complexes $[(C_6F_5)_2(C_6H_5)_3PO]TICI$ (melting point 221 to 222°C, decomposition) and $[(C_6F_5)_2(C_6H_5)_3PO]TIBr$ (melting point 202 to 203 °C, decomposition). $(C_6F_5)TIBr$ and $(C_6H_5)_3P$ (molar ratio 1:1) react in a methanol-water mixture to yield 87% $[(C_6F_5)_2(C_6H_5)_3P]TIBr$ (melting point 135 to 137 °C, decomposition). Similarly $(C_6F_5)_2TIX$ and 2,2'-bipyridyl form 1:1 complexes. For X = Cl: 89% yield, melting point 160 to 166 °C, single crystals melt at 167 to 168 °C; for X = Br 92% yield melting range 174 to 176 °C. For equilibrium constants and specific conductivity see the original paper [10].

3.6.2.2.3 Oxidative Addition Reactions

Reactions of $(C_6F_5)_2TLX$ (X = Cl, Br) with metals in low oxidation states give TLX and an organometallic compound containing the metal, in two oxidation states higher. The following examples illustrate this type of reaction. Refluxing of an acetone solution of (C6F5)2TICI with SnCl₂ for 3 h leads to $(C_6F_5)_2$ SnCl₂ (see p. 68) [3, 13]. Under similar conditions Pt[P($C_6H_5)_3$]₄ gave cis-(C₆F₅)₂Pt[P(C₆H₅)₃]₂, and ClRh[P(C₆H₅)₃]₂ yielded (C₆F₅)₂RhCl[P(C₆H₅)₃]₂. As many as 15 pentafluorophenylmetal complexes were prepared in a similar manner [13]. Treating $(C_6H_5)_3$ PAuX with $(C_6F_5)_2$ TLX in benzene leads to $(C_6H_5)_2(C_6H_5)_3$ PAuX. If X = Br the reaction is carried out at 20 °C (2 h); for X = I refluxing for 3 h is necessary. Similarly $(C_6F_5)_2(C_6H_5)_3$ AsAuCl was prepared by refluxing $(C_6F_5)_2$ TIBr and $(C_6H_5)_3$ AsAuCl in benzene for 4 h [14]. Refluxing a solution of ClAu(dpe)AuCl¹⁾ and $(C_6F_5)_2$ TlBr in benzene for 3 h leads to 53% $Cl(C_8F_5)_2Au(dpe)Au(C_8F_5)_2Cl$ [15]. Similarly XAuL and $(C_8F_5)_2TlY$ reacted in boiling benzene under stirring to give $XAu(C_6F_5)_2L$. In the following X, Y, L and reaction conditions are given: Br, Br, As(C₆H₅)₃, 2 h; I, I, As(C₆H₅)₃ 20°C (1 h); Cl, Br, P(C₆H₅)₃ [16]. When to a solution of [(n- $C_4H_9)_4N][(C_6F_5)AuBr]$ in benzene ($C_6F_5)_2TlBr$ was added and the mixture was stirred for 5 h at $20^{\circ}C 90\%$ [(n-C₄H₉)₄N][(C₆F₅)₃AuBr] is obtained [17]. Nickel complexes were made [18] according to:

$$2 \text{ XNiL}_3 + (C_6F_5)_2\text{TlBr} \rightarrow 2 \text{ XNi}(C_6F_5)\text{L}_2 + \text{TlBr} + 2 \text{ L},$$

$$X = Cl, Br, I; L = P(C_6H_5)_3 and As(C_6H_5)_3$$

The same products can also be obtained from $XNi(CO)_2[P(C_6H_5)_3]_2$ (X = Cl, Br) [18].

Mixtures of bi- and mononuclear palladium(II) compounds were synthesized by

$$X_2PdL_2 + (C_6F_5)_2TlBr \rightarrow X_2Pd_2(C_6F_5)_2L_2 + XPd(C_6F_5)L_2$$

 $X = Cl, L = P(C_6H_5)_3, P(C_6H_5)_2CH_3, As(C_6H_5)_3$

¹⁾ dpe = 1,2-bis(diphenylphosphino)ethane

No Pd^{IV} complex is formed in this reaction [19]. The conversion of $[Co(diars)_2]Br_2$ into $[trans-C_6F_5(Br)Co(diars)_2]Br$ by $(C_6F_5)_2TlBr$ has been mentioned without further information [diars = o-phenylenebis(dimethylarsine)] [20, 21]. Cobalt(II)Schiff base complexes react with $(C_6F_5)_2TlBr$ according to:

$$2 \text{ CoL} + (C_6 F_5)_2 \text{ TlBr} \rightarrow 2 (C_6 F_5) \text{ CoL} + \text{ TlBr},$$

L = N,N'-ethylenebis(acetylacetonimine) [22, 24], N,N'-ethylenebis(salicylaldimine), N,N'-o-phenylenebis(salicylaldimine) [22].

Trans-Cl₂Pt[P(C₂H₅)₃]₂ and *cis*-Cl(C₆F₅)Pt[P(C₂H₅)₃]₂ react with $(C_6F_5)_2$ TlBr to give [Cl₂Pt[P(C₂H₅)₃]₂Tl(C₆F₅)₂Br] and [Cl(C₆F₅)Pt[P(C₂H₅)₃]Tl(C₆F₅)₂Br] [23].

3.6.2.2.4 Pentafluorophenylation Reactions

A type of reactions different from those in the preceeding chapter is observed on reacting XAuP(C_6H_5)₃ (X = C_6H_5 , NO₃, CH₃COO, SCN) with (C_6F_5)₂TlBr. In all these cases no oxidative addition but only ligand exchange X for C_6F_5 takes place, according to:

$$XAuP(C_6H_5)_3 + (C_6F_5)_2TlBr \rightarrow C_6F_5AuP(C_6H_5)_3 + C_6F_5Tl(Br)X$$

Refluxing XAuP(C₆H₅)₃ and (C₆F₅)₂TlBr in benzene for 3 h (X = C₆H₅), respectively, 1 h (X = NO₃, CH₃COO, SCN) gave C₆F₅AuP(C₆H₅)₃. In addition (C₆F₅)₂TlX (X = NO₃, CH₃COO, SCN) and (C₆H₅)₂TlBr were obtained. No reaction occurred between C₆F₅AuP(C₆H₅)₃ and (C₆F₅)₂TlBr. On refluxing [(C₆H₅)₃P]₂AuClO₄ with (C₆F₅)₂TlBr in benzene for 2.5 h, C₆F₅AuP(C₆H₅)₃ and TlClO₄ are formed [16].

References:

[1] G. B. Deacon, D. Tunaley (Australian J. Chem. **32** [1979] 737/53). — [2] G. B. Deacon,
R. J. Phillips (Australian J. Chem. **31** [1978] 1709/24). — [3] R. Usón, A. Laguna, T. Cuenca (J. Organometal. Chem. **194** [1980] 271/5). — [4] G. B. Deacon, R. M. Slade, D. G. Vince (J. Fluorine Chem. **11** [1976] 57/69). — [5] G. B. Deacon, G. J. Farquharson, R. J. Phillips (J. Fluorine Chem. **8** [1976] 545/8).

[6] G. B. Deacon, R. J. Phillips (J. Organometal. Chem. **171** [1979] C1/C4). – [7] G. B. Deacon, D. G. Vince (J. Fluorine Chem. **5** [1975] 87/8). – [8] G. B. Deacon, D. G. Vince (Australian J. Chem. **28** [1975] 1931/41). – [9] R. J. Phillips, G. B. Deacon (Australian J. Chem. **32** [1979] 2381/93). – [10] G. B. Deacon, R. J. Phillips (J. Organometal. Chem. **199** [1980] 15/32).

[11] R. Usón, A. Laguna, J. Vincente, J. A. Abad (J. Organometal. Chem. **131** [1977] C5/
C6). - [12] R. Usón, A. Laguna, J. A. Abad (J. Organometal. Chem. **194** [1980] 265/70). - [13]
R. Royo (Rev. Acad. Cienc. Exact. Fis. Quim. Nat. Zaragoza [2] **27** [1972] 235/51 from C.A. **78**[1973] No. 136403). - [14] A. Laguna, P. Royo, R. Usón (Rev. Acad. Cienc. Exact. Fis. Quim. Nat. Zaragoza [2] **27** [1972] 19/74; C.A. **77** [1972] No. 152303). - [15] R. Usón, A. Laguna, J. Vicente, J. Garcia (J. Organometal. Chem. **104** [1976] 401/6).

[16] R. Usón, P. Royo, A. Laguna (J. Organometal. Chem. **69** [1974] 361/5). - [17] E. Usón, A. Laguna, J. Vicente (J. Organometal. Chem. **131** [1977] 471/5). - [18] F. Caballero, P. Royo (Syn. Reactiv. Inorg. Metal-Org. Chem. **7** [1977] 531/6). - [19] R. Usón, P. Royo, J. Forniés, F. Martinez (J. Organometal. Chem. **90** [1975] 367/74). - [20] R. S. Nyholm (Quart. Rev. [London] **24** [1974] 1/19).

[21] D. Dodd, M. D. Johnson (J. Organometal. Chem. 52 [1973] 1/121). - [22] M. F. Corrigan,
G. B. Deacon, B. O. West, D. G. Vince (J. Organometal. Chem. 105 [1976] 119/25). - [23] R.
Usón, P. Royo, J. Gimeno (Rev. Acad. Cienc. Exact. Fis. Quim. Natur. Zaragoza [2] 28 [1973] 355/71; C.A. 81 [1974] No. 49793). - [24] P. Royo, J. Sancho (Transition Metal Chem.
[Weinheim] 1 [1976] 212/5; C.A. 86 [1977] No. 155785). - [25] H. B. Stegmann, K. Scheffler, P.
Schuler (Angew. Chem. 90 [1978] 392/3; Angew. Chem. Intern. Ed. Engl. 17 [1978] 365).

[26] K. B. Ulmschneider, H. B. Stegmann, K. Scheffler, G. Viertel (Z. Naturforsch. **33b** [1978] 237/40). – [27] D. St. C. Black, V. C. Davis, G. B. Deacon, R. J. Schultze (Inorg. Chim. Acta **37** [1979] L528). – [28] I. F. Gurikin, K. P. Butin, I. P. Beletskaya, O. A. Reutov (Izv. Akad. Nauk SSSR Ser. Khim. **1976** 1762/5; Bull. Acad. Sci. USSR Div. Chem. Sci. **1976** 1661/4; C.A. **84** [1976] No. 58432).

4 Perfluorohalogenoorgano Compounds of Main Group 4 Elements

4.1 Preliminary Remarks

The compounds of the Main Group 4 elements are covered to the end of 1973 in "Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente", Part 4, 1975 (cited here as Part 4), for further details see the preface of this Supplement Volume.

4.2 Perfluorohalogenoorgano Compounds of Silicon

4.2.1 Preparation

(Trifluoromethyl)iododifluorosilane CF3SiF2I

(Pentafluoroethyl)trifluorosilane C2F5SiF3

Tris(pentafluorophenyl)silane (C₆F₅)₃SiH

Tetrakis(pentafluorophenyl)silane (C₆F₅)₄Si

Hexakis(pentafluorophenyl)disilane $(C_6F_5)_3SiSi(C_6F_5)_3$

 $\label{eq:hexakis} \textbf{Hexakis(pentafluorophenyl)disilyLmercury} ~ (C_6F_5)_3SiHgSi(C_6F_5)_3$

Bis(octafluorobiphenyl)silane (C12F8)2Si

No new syntheses are published for these compounds, for preparation see Part 4, pp. 146/ 65. New details on physical properties and on chemical reactions are given in the following sections.

2,2-Difluorosilaethylene F₂C=SiH₂

1,1,2,2-Tetrafluorosilaethylene F2C=SiF2

CNDO/2 calculations have been carried out on unknown compounds with a silicon-carbon double bond, among them F_2C -Si H_2 and F_2C -Si F_2 . Geometries, charge densities, bond orders [1] and dipole moments are predicted [2].

3,3,3-Trifluoro-1-propynylsilane CF₃C≡CSiH₃

The reaction between $CF_3C=CMgl$ and H_3SiBr at 20°C (0.5 h) gives $CF_3C=CSiH_3$ in yields of 40 to 60% [18].

Bis(trifluoromethyl)tetrafluorodisiloxane CF₃SiF₂OSiF₂CF₃

At 20 °C (5 min) CF_3SiF_2I reacts with HgO in the presence of small amounts of $SbCl_5$ to give 38% $CF_3SiF_2OSiF_2CF_3$ [3].

(Trifluoromethyl)trifluorosilane CF₃SiF₃

(Heptafluoropropyl)trifluorosilane CF₃CF₂CF₂SiF₃

 $(\textbf{2-Chloro-1,1,2,2-tetrafluoroethyl}) trifluorosilane \ ClCF_2CF_2SiF_3$

(Pentafluorophenyl)trifluorosilane C₆F₅SiF₃

Gmelin Handbook CF Comp. Suppl. 1 References p. 48

(Chlorotetrafluorophenyl)trifluorosilane C₆F₄ClSiF₃

The fluorination of CF₃SiF₂I with SbF₃ gives CF₃SiF₃ (see Part 4, p. 148). It is also a byproduct in the reaction of CF₃SiF₂I with SbCl₃. Higher yields (\geq 90%) are obtained by use of CF₃SiF₂Br. In the presence of Sb₂O₃ or Ag₂CO₃ at 20 °C CF₃SiF₂I decomposes to substantial quantities of CF₃SiF₃ [3]. n-C₃F₇SiF₃ was synthesized from n-C₃F₇SiF₂I [4].

Passing $ClCF_2CF_2SiCl_3$ (see Part 4, p. 149) repeatedly in vacuo through a column (20 cm) containing SbF_3 and $SbCl_5$ (5% by weight) gave $ClCF_2CF_2SiF_3$ in 92% yield. The chlorination of $HCF_2CF_2SiF_3$ with Cl_2 in a sealed silica ampule gives on irradiation at 20°C (24 h) the title compound in a quantitative yield [5].

The interaction of C_6F_6 or C_6F_5Cl with HSiCl₃, induced by accelerated electrons, at 130 to 150 °C gives a mixture of compounds from which $C_6F_5SiF_3$ or $C_6F_4ClSiF_3$ (unknown constitution) could be isolated [6].

(Trifluoromethyl)chlorodifluorosilane CF3SiF2Cl

(Trifluoromethyl)bromodifluorosilane CF₃SiF₂Br

The reaction of CF_3SiF_2l and $SbCl_5$ produces CF_3SiF_2Cl in 52% yield. Similarly, $SbBr_3$ gives CF_3SiF_2Br in a somewhat lower yield [3].

(Pentafluorophenyl)chlorodifluorosilane $C_6F_5SiF_2Cl$

(Chlorotetrafluorophenyl)chlorodifluorosilane $C_6F_4ClSiF_2Cl$

(Pentafluorophenyl)dichlorofluorosilane C₆F₅SiFCl₂

(2,5-Dichloro-3,4,6-trifluorophenyl)chlorodifluorosilane

 $(Tetrafluorophenyl) difluorochlorosilyldichlorofluorosilane\ C_6F_4(SiF_2Cl)SiFCl_2$

(Tetrafluorophenyl)bis(dichlorofluorosilane) C₆F₄(SiFCl₂)₂

(Tetrafluorophenyl)dichlorofluorosilyltrichlorosilane C₆F₄(SiFCl₂)SiCl₃

References p. 48

 $(\mbox{Chlorotrifluorophenyl}) fluorodichlorosilyltrichlorosilane C_6 F_3 Cl(SiFCl_2) SiCl_3 Cl(SiFCl_2) S$

 $(Dichlorodifluorophenyl) bis(fluorodichlorosilane) C_6 F_2 Cl_2 (SiFCl_2)_2$

(Pentafluorophenyl)trichlorosilane C₆F₅SiCl₃

(4-Chloro-2,3,5,6-tetrafluorophenyl)trichlorosilane and Isomers

(2,5-Dichloro-3,6,6-trifluorophenyl)trichlorosilane

SiCla

(Tetrafluorophenyl)bis(trichlorosilane) C₆F₄(SiCl₃)₂

The fluorochlorosilanes, containing a perfluorinated phenyl group (C_6F_5), are made at 130 to 150 °C in a reaction, induced by accelerated electrons, of C_6F_6 with SiHCl₃. The yield of the individual products depends on temperature, molar ratio of the reactants and absorbed dose. Diagrams are pointing out these dependences. Under similar conditions C_6F_5 Cl reacts with HSiCl₃ to form a mixture from which C_6F_4 ClSiF_{3-n}Cl_n (n = 0, 1, 2, 3) could be isolated [6].

Silanes of known constitution and containing chlorofluorophenyl groups are synthesized by irradiating a mixture of $1,4-Cl_2-C_6F_4$ and $HSiCl_3$ with electrons (1.5 MeV, $60 \mu A$) in a flow system. The yield of $2,5-Cl_2-C_6F_3SiCl_3$ is 7%. The compounds $4-Cl-C_6F_4SiCl_3$ and $2,5-Cl_2-C_6F_3SiCl_2F$ are obtained as a mixture in 40 to 44% yield and similarly $4-Cl-C_6F_4SiFCl_2$ together with $2,5-Cl_2-C_6F_3SiF_2Cl$ in 5% yield. An isomeric mixture of $C_6F_3Cl(SiFCl_2)SiCl_3$ plus $C_6F_2Cl_2(SiFCl_2)_2$ is formed in 10 to 13% yield. The yields of monosilyl- and disilyl products were 35 and 8%. The constitution of the disilylated compounds are in all cases unknown [4].

(Trifluoromethyl)pentafluorodisilane CF₃SiF₂SiF₃

(Hexafluorodisilyl)difluoromethane SiF₃CF₂SiF₃

Both compounds are obtained from iodosilane precursors which are formed in the reaction of SiF_2 with CF_3I (see Part 4, p. 149) [4].

4.2.2 Physical Properties

Physical data for the silanes are collected in **Table 10**, p. 44. Additional investigations are reported below.

Crystal Structure of (C₆F₅)₄Si

Single-crystal X-ray data show that the compound forms tetragonal crystals with space group $I4_1/a-C_{4n}^6$ (No. 88). The unit cell with the dimensions $a = 17.165 \pm 0.012$ Å, $c = 8.125 \pm 0.008$ Å contains four molecules, density $D_0 = 2.90$ g/cm³. Bond distances and angles are presented in [8].

Table 10

Physical Data for Perfluorohalogenoorganosilanes.

Boiling point (b.p.) in °C/pressure in Torr, melting point (m.p.) in °C, refractive index n_D , density D in g/cm³, NMR spectrum: chemical shift δ (positive values lowfield from the standard), spin-spin coupling constant J (s = singlet, tr = triplet), IR spectrum in cm⁻¹.

Compound	b.p./Torr (m.p.) in °C	¹ H and ¹⁹ F NMR (δ in ppm), If n _D , D	R spectrum (in cm ⁻¹),
CF ₃ C≡CSiH ₃ [18]	21 ⁵⁾ (— 127)	¹ H NMR ⁶): δ (SiH ₃) = 3.91; δ ¹⁹ F NMR ⁷): δ (CF ₃) = -53.0 IR (gas) ⁸): 2202 (ms), 1268 (m), 1213 (m), 1176 (vs), 920 613 (w), 346 (mw), 312 (w), 2	J(H-F) = 1.7 Hz (vs), 1260 (vs), 1219 (m), 914 (s), 685 (m), 235 (w)
CF ₃ SiF ₂ OSiF ₂ CF ₃ [3]	-		$\begin{array}{llllllllllllllllllllllllllllllllllll$
CF ₃ SiF ₃ [3]	_		$(SiF_3) = -150.7, J(F-2)$ (s), 866 (m), 730 (vw),
CF ₃ CF ₂ SiF ₃ [4]	_	$\begin{array}{rll} {}^{19}\text{F} \ \text{NMR}{}^{1)}\colon \delta(\text{CF}_3) &=& -86.\\ \delta(\text{SiF}_3) &=& -150.2, \ \text{J}(\text{CF}_3\text{-}\text{CF}_2\\ \text{SiF}_3) &=& -2.81 \ \text{Hz}, \ \text{J}(\text{CF}_2\text{-}\text{SiF}_3)\\ \text{F}) &=& +275.3 \ \text{Hz} \end{array}$	5, $\delta(CF_2) = -134.4$,) = -3.59 Hz, J(CF ₃ - F ₃) = +4.92 Hz, J(Si-
CF ₃ CF ^a ₂ CF ^b ₂ SiF ₃ [4]	-		0, $\delta(CF_2^a) = -127.2$, -148.8 , $J(CF_3-CF_2^a) =$ $\beta = +9.10$ Hz, $J(CF_3-CF_2^a) = 0.62$ Hz, $J(CF_2^a-CF_2^a) = 0.62$ Hz, $J(CF_2^a-CF_2^a) = +4.82$ Hz, $J(Si-CF_2^a-CF_2^a) = +4.82$ Hz, $J(Si-CF_2^a-CF_2^a-CF_2^a) = +4.82$ Hz, $J(Si-CF_2^a-CF_2^a-CF_2^a-CF_2^a) = +4.82$ Hz, $J(Si-CF_2^a-CF_2$
CF ₃ SiF ₂ Cl [3]	_		$\begin{array}{llllllllllllllllllllllllllllllllllll$
CF₃SiF₂Br [3]	_		3, $\delta(SiF_2) = -127.8$, = 321.7 Hz (s), 906 (s), 740 (w),
CF ₃ SiF ₂ I [3]	_		$ θ, \delta(SiF_2) = -120.1, = 342.4 Hz (m), 896 (s), 742 (w), $
CICF ₂ CF ₂ SiF ₃ [5]	37	¹⁹ F NMR ² : δ (CF ₂ Cl) = +7.5 (tr), δ (SiF ₃) = -68.8 (s), J(C	$\delta(tr), \delta(CF_2) = -48.0$ $\delta(F_2Cl-CF_2) = 8.7 \text{ Hz}$
	Re	eferences p. 48	Gmelin Handbook CF Comp. Suppl. 1

Table 10 (continued)

Compound	b.p./Torr (m.p.) in °C	^{1}H and ^{19}F NMR (δ in ppm), IR spectrum (in cm $^{-1}$), n_D, D
C ₆ F ₅ SiF ₃ [6]	_	IR ³⁾ : 1 650 (m), 1524 (s), 1 486 (vs), 1 400 (w), 1 310 (s), 1 250 (w), 1 110 (vs), 995 (vs), 988 (vs), 912 (s), 518 (m), 444 (s), 408 (w) $n_D^{20} = 1.3661, D_{20}^{20} = 1.6315$
C ₆ F ₅ SiF ₂ Cl [6]	_	IR ³⁾ : 1655 (m), 1529 (s), 1487 (vs), 1400 (w), 1310 (s), 1260 (w), 1110 (vs), 995 (s), 985 (vs), 920 (s), 635 (m), 602 (s), 580 (m), 520 (w), 455 (w), 445 (w), 413 (s) $n_D^{20} = 1.3831, D_{20}^{20} = 1.6135$
C ₆ F ₅ SiFCl ₂ [6]	_	IR ³⁾ : 1651 (m), 1527 (s), 1487 (vs), 1398 (w), 1308 (w), 1256 (w), 1108 (vs), 986 (vs), 940 (s), 640 (s), 612 (m), 590 (m), 560 (s) $n_D^{20} = 1.4168, D_{20}^{20} = 1.6251$
C ₆ F ₅ SiCl ₃ [6]	_	IR ³⁾ : 1650 (m), 1528 (s), 1480 (vs), 1390 (w), 1305 (m), 1250 (w), 1105 (vs), 985 (vs), 635 (s), 610 to 600 (vs, br), 540 (s), 475 (m) $n_D^{20} = 1.4663, D_{20}^{20} = 1.6427$
C ₆ F ₄ ClSiF ₃ ⁹⁾ [6]	-	IR ³⁾ : 1632 (m), 1517 (s), 1490 (s), 1475 (s), 1460 (vs), 1340 (w), 1270 (m), 1108 (s), 993 (vs), 967 (w), 930 (m), 915 (m), 874 (m), 518 (w), 475 (m), 445 (m), 423 (w) $n_D^{20} = 1.4065, D_{20}^{20} = 1.6275$
C ₆ F ₄ ClSiF ₂ Cl ⁹⁾ [6]	_	IR ³⁾ : 1632 (m), 1520 (w), 1490 (vs), 1475 (s), 1458 (vs), 1390 (w), 1360 (w), 1270 (m), 1110 (vs), 982 (vs), 930 (s), 920 (w), 902 (s), 882 (m), 620 (s), 597 (vs), 582 (m), 450 (w), 420 (m) $n_D^{20} = 1.4223, D_{20}^{20} = 1.6685$
C ₆ F ₄ ClSiFCl ₂ ⁹⁾ [6]	_	IR ³⁾ : 1632 (m), 1515 (w), 1490 (s), 1475 (vs), 1457 (vs), 1390 (w), 1367 (w), 1270 (m), 1105 (vs), 972 (s), 932 (s), 920 (s), 890 (m), 660 (w), 637 (vs), 615 (s), 572 (s), 552 (s) $n_D^{20} = 1.4495$, $D_{20}^{20} = 1.6812$
C ₆ F ₄ ClSiCl ₃ ⁹⁾ [6]	_	IR ³⁾ : 1630 (s), 1610 (w), 1510 (w), 1490 (s), 1470 (vs), 1455 (vs), 1390 (m), 1265 (s), 1100 (vs), 968 (s), 923 (s), 890 (m), 655 (w), 637 (m), 623 (m), 607 (vs, br), 550 (s), 523 (s) $n_D^{20} = 1.4901, D_{20}^{20} = 1.7038$
4-Cl-C ₆ F ₄ -SiCl ₃ [7]	_	$n_D^{20} = 1.4920, D_{20}^{20} = 1.7362$
2,5-Cl ₂ -C ₆ F ₃ SiCl ₃ [7]	_	$n_D^{20} = 1.5221, D_{20}^{20} = 1.7603$
4-Cl-C ₆ F ₄ SiFCl ₂ [7]	_	$n_D^{20} = 1.4690, D_{20}^{20} = 1.6534$
Gmelin Handbook CF Comp. Suppl. 1	Re	ferences p. 48

Compound	b.p./Torr (m.p.) in °C	^{1}H and ^{19}F NMR (δ in ppm), IR spectrum (in cm $^{-1}),$ $n_{D}^{},$ D
2,5-Cl ₂ -C ₆ F ₃ SiFCl ₂ [7]	_	$n_D^{20} = 1.4987, D_{20}^{20} = 1.7289$
2,5-Cl ₂ -C ₆ F ₃ SiF ₂ Cl [7]	_	$n_D^{20} = 1.4756, D_{20}^{20} = 1.6980$
C ₆ F ₃ Cl(SiFCl ₂)SiCl ₃ ⁴⁾ [7]	_	$n_D^{20} = 1.5040, D_{20}^{20} = 1.7608$
$C_{6}F_{2}Cl_{2}(SiFCl_{2})_{2}^{4}$ [7]	_	$n_D^{20} = 1.5108, D_{20}^{20} = 1.7667$
CF ₃ SiF ₂ SiF ₃ [4]	_	^{19}F NMR $^{1)}$: $\delta(\text{CF}_3)=-69.8,\ \delta(\text{SiF}_2)=-142.4,\ \delta(\text{SiF}_3)=-123.3,\ \text{J}(\text{CF}_3\text{-}\text{SiF}_2)=+6.09\ \text{Hz},\ \text{J}(\text{CF}_3\text{-}\text{SiF}_3)=+1.91\ \text{Hz},\ \text{J}(\text{SiF}_2\text{-}\text{SiF}_3)=+13.27\ \text{Hz}$
SiF ₃ CF ₂ SiF ₃ [4]	_	$^{19}{\sf F}$ NMR: $\delta({\sf SiF}_3)=-150.5,\ \delta({\sf CF}_2)=-146.6,\ {\sf J}({\sf SiF}_3\text{-}{\sf CF}_2)=+2.97$ Hz, ${\sf J}({\sf SiF}_3\text{-}{\sf SiF}_3)=+1.66$ Hz

Table 10 (continued)

¹⁾ Negative values of chemical shifts upfield from CFCl₃. Values for CF₃SiF₂I are for a neat sample referenced to external CFCl₃. Values for the other compounds correspond to samples including some CF₃SiF₂I, which was used as an internal reference. $-^{2)}$ External standard CF₃COOH. $-^{3)}$ Tentative partial assignments are given in the original paper. $-^{4)}$ Mixture of isomers. $-^{5)}$ Extrapolated from log p(Torr) = 6.695 - 1320/T, $\Delta H_v = 25.2 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta H_v/T_s = 91.9 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. $-^{6)}$ Internal standard Si(CH₃)₄. $-^{7)}$ Internal standard CFcl₃. $-^{8)}$ The IR spectrum in the solid state and assignments are also reported [18]. $-^{9)}$ Constitution unknown.

Mass Spectrum of (C12F8)2Si

The partial mass spectrum is presented as a percentage of total ion current with all isotopic contributions to a particular species. Extensive metastable peaks permit the assignment of the following partial fragmentation scheme [9].

Silicon Compounds

Vibrational and Electronic Spectra. Molecular Constants

In the IR spectrum of CF₃C=CSiH₃, the fine structure due to overall or unrestricted internal rotation in perpendicular bands associated with motions of the SiH₃ group has been investigated. The following vibrational bands are given : v = 2206.8 (Si-H stretching), 2v = 4342.4, $\delta = 945.1$ (SiH₃ deformation), $\varrho = 680.5$ cm⁻¹ (SiH₃ rocking). The rotational constants for the symmetric-top molecule are A" = 2.811 and B" = 0.030 cm⁻¹. For details see the original paper [10].

From the integral intensity of the Si-H stretching band, the Si-H bond dipole moment for $(C_6F_5)_3$ SiH is calculated to be 0.75 D. With a Si-H bond distance of 1.47 Å a charge on the H atom of -0.11 is obtained. Similar results are found for further tris-substituted silanes and are discussed in respect to the Si-C bond [11]. Similarly, the relation between the integral intensity and the $(p-d)\pi$ interaction of groups attached to Si with the silicon atom is investigated for a series of organosilicon compounds, among them $(C_6F_5)_3$ SiH [12], see also [13].

The integral intensities of the C-C vibrational bands were measured in the range of 1650 to 1580 cm⁻¹ for 15 compounds $C_6F_5MX_3$ (M = Si, C; X = H, F, Cl, OC_2H_5) including $C_6F_5SiF_3$, $C_6F_5SiFCl_2$ and $C_6F_5SiCl_3$. The results indicated a higher polarity of the C_6F_5Si fragment compared with C_6F_5C [14].

UV absorption spectra [wavelength λ in nm (molar absorptivity $\varepsilon \cdot 10^{-3}$)]:

 $\begin{array}{l} C_6F_5SiF_3\colon\lambda_{max}\,=\,206\,\,(6.20),\,\,272\,\,(1.70)\,\,[14]\\ C_6F_5SiFCl_2\colon\lambda_{max}\,=\,209\,\,(8.60),\,\,274\,\,(1.65)\,\,[14]\\ C_6F_5SiCl_3\colon\lambda_{max}\,=\,211\,\,(11.70),\,\,274\,\,(194)\,\,[14]\\ (C_6F_5)_3SiH\colon\lambda_{max}\,\,(\text{in pentane})\,=\,270\,;\,\lambda_{max}\,\,(\text{in CH}_2Cl_2)\,=\,270\,\,[15]\\ (C_6F_5)_3SiSi(C_6F_5)_3\colon\lambda_{max}\,\,(\text{in pentane})\,=\,239\,\,(\text{sh}),\,273\,;\,\lambda_{max}\,\,(\text{in CH}_2Cl_2)\,=\,272\,\,[15]\\ (C_6F_5)_3SiHgSi(C_6F_5)_3\colon\lambda_{max}\,\,(\text{in pentane})\,=\,250\,;\,\lambda_{max}\,\,(CH_2Cl_2)\,=\,252\,\,[15] \end{array}$

The longwave absorption bands are associated with the presence of the C_6F_5S fragment and indicate for $(C_6F_5)_3SiHgSi(C_6F_5)_3$ the presence of intramolecular coordination of orthofluorine atoms to the Hg atom [15].

4.2.3 Chemical Reactions

Thermal Stability and Hydrolysis

Heating $ClCF_2CF_2SiF_3$ in a Carius tube at 175°C (17 h) gives a 98% decomposition forming equimolar amounts of SiF₄ and F₂C=CFCl. The formation of the carbene $ClCF_2CF$ was demonstrated by heating $ClCF_2CF_2SiF_3$ at 175°C (24 h) in the presence of excess $(CH_3)_3SiH$. The products obtained were: 99% SiF₄, 6.5% F₂C=CFCl and 92% $ClCF_2CHFSi(CH_3)_3$ (boiling point 82°C) [5]. Each of the compounds CF_3SiF_2X (X = F, Cl, Br) decomposes in the vapor phase at 100°C rather rapidly with a half-life time less than 0.5 h to form a mixture of C_2F_4 , cyclo- C_3F_6 and SiF₃X. No reaction was observed between CF_2 and SiF₃Cl or SiF₃Br. Pyrolysis of CF_3SiF_2l at 100°C/250 Torr proceeds with a half-life time of 12 min. If the pyrolysis is terminated before complete destruction of CF_3SiF_2l , the colors of the solid products range from orange to brick red. In addition two liquid substances of low volatility colored ruby red and yellow are formed. Among the gaseous products, unreacted CF_3SiF_2l , CF_3SiF_3 , Si_2F_6 , SiF_3l , and CF_2l_2 in order of decreasing amounts were identified. Complete pyrolysis results in the formation of colored solids and a yellow liquid which were not characterized. Analysis of the gas phase shows the abundance of C_2F_4 and SiF₄ which are decomposition products of CF_3SiF_3 [3].

Gmelin Handbook CF Comp. Suppl. 1 References p. 48

In the gas phase CF_3SiF_2I reacts with water vapor at 20 °C to form in the first step CF_3SiF_2OH and HI. In a secondary reaction CF_3SiF_2OH condenses to $CF_3SiF_2OSiF_2CF_3$ and H_2O . The disiloxane is attacked by water vapor somewhat less rapidly than CF_3SiF_2I forming CF_3SiF_3 and involatile polymeric materials. In the presence of excess HI, CF_3SiF_3 reacts with water vapor to give CF_2HI and SiF_4 . Also, CF_3SiF_2CI and CF_3SiF_2Br behave similarly to CF_3SiF_2I on exposure to water vapor. Hydrolytic attack occurs at the heavier halogen and generates CF_3SiF_3 through the intermediate $(CF_3SiF_2)_2O$. A secondary reaction of CF_2 and HBr leads to CF_2HBr . No CF_2HCI is formed at 25 °C. The hydrolytic reactions studied suggest the rate of attack of water vapor on Si-X bonds follow the order I > Br > CI, O > F. The Si-F bond in CF_3SiF_3 is apparently not directly attacked [3].

Reactions of (C₆F₅)₃SiH with CH₃ONa and CH₃Li

The product isotope effect (PIE), k_{SiH}/k_{SiD} , was measured for nine trisubstituted silanes. For the reaction (C_6F_5)₃SiH plus CH₃ONa in CH₃OH/CH₃OD at 21°C, PIE was 3.98. A value of 4.03 was obtained when CH₃ONa was replaced by pyridine and a value of 3.70 with a HCl/HDO/CH₃OH/CH₃OD medium was measured. For (C_6F_5)₃SiH the PIE value is smaller than those found for the much less reactive (p-Cl-C₆H₄)₃SiH and (p-CF₃-C₆H₄)₃SiH [16]. In ether (C_6F_5)₃SiH reacts with CH₃Li at -50°C (1 h) to give, after treatment of the reaction products with CO₂ in H₂O/H⁺, 90% C₆F₅COOH [17].

Reactions of CLCF₂CF₂SiF₃ with Olefins

Pyrolyses of ClCF₂CF₂SiF₃ at 175 °C (24 h) in the presence of *trans*-2-butene gave 99% SiF₄, 11% F₂C=CFCl and 86% A. The latter is formed by stereospecific addition of the carbene (CF₂Cl)CF to the olefin. However, under the same reaction conditions, reacting the silane with *cis*-2-butene did not result in a stereospecific addition. The products obtained were 99% SiF₄, 18% F₂C=CFCl, 19% A, 48% B, and 15% C.

The characterization of the three isomers were carried out by means of ¹⁹F NMR spectroscopy. When the silane was heated with allene in a sealed tube at 180 °C (17 h) 93% SiF₄, a trace of F₂C=CFCl and 92% 1-chlorodifluoromethyl-1-fluoro-2-methylenecyclopropene (boiling point 71 °C) are obtained. Heating with F₂C=CF₂ at 180 °C (17 h), SiF₄ and CF₂=CFCl (contaminated with a trace of tetrafluoroethylene) are formed quantitatively with some (CF₂)_x also formed [5].

References :

[1] R. Damrauer, D. R. Williams (J. Organometal. Chem. 66 [1974] 241/7). — [2] B. G. Gowenlock, J. A. Hunter (J. Organometal. Chem. 140 [1977] 265/72). — [3] K. G. Sharp (Inorg. Chem. 14 [1975] 1241/4). — [4] K. G. Sharp, S. Li, R. B. Johannesen (Inorg. Chem. 15 [1976]

2295/7). — [5] R. N. Haszeldine, C. R. Pool, A. E. Tipping, R. O'B. Watts (J. Chem. Soc. Perkin Trans. I **1976** 513/7).

[6] E. A. Vaks, B. I. Vainshtein (Zh. Obshch. Khim. 45 [1975] 1315/22; J. Gen. Chem.
[USSR] 45 [1975] 1289/95; C.A. 83 [1975] No. 97451). - [7] E. A. Vaks, B. I. Vainshtein (Zh. Obshch. Khim. 47 [1977] 782/5; J. Gen. Chem. [USSR] 47 [1977] 713/6; C.A. 87 [1977] No. 53421). - [8] A. Karipides, B. Foerst (Acta Cryst. B 34 [1978] 3494/6). - [9] G. F. Lanthier, J. M. Miller, S. C. Cohen, A. G. Massey (Org. Mass Spectrom. 8 [1974] 235/46). - [10] S. Cradock, A. R. Green, J. L. Duncan (J. Mol. Spectrosc. 77 [1979] 385/401).

[11] A. N. Egorochin, N. S. Vyazankin, M. G. Voronkov (Dokl. Akad. Nauk SSSR 211 [1973]
859/61; Dokl. Chem. Proc. Acad. Sci. USSR 208/213 [1973] 616/8; C.A. 79 [1973] No. 114 966).
[12] E. I. Sevast'yanova, S. Ya. Khorshev, A. N. Egorochkin (Dokl. Akad. Nauk SSSR 258
[1981] 627/30; Dokl. Chem. Proc. Acad. Sci. USSR 256/261 [1981] 224/6; C.A. 95 [1981] No. 131 836).
[13] A. N. Egorochkin, S. Ya. Khorshev, N. S. Ostasheva, M. G. Voronkov, N. S. Vyazankin, T. V. Kashik, O. V. Kuz'min, N. S. Nametkin, N. A. Pritula (J. Organometal. Chem. 99 [1975] 47/52).
[14] M. G. Voronkov, V. V. Dorokhova, E. I. Brodskaya, V. P. Baryshok, B. I. Vainshtein (Dokl. Akad. Nauk SSSR 250 [1980] 1410/2; Dokl. Chem. Proc. Acad. Sci. USSR 250/255 [1980] 158/60; C.A. 93 [1980] No. 45 417).
[15] M. A. Lopatin, V. A. Kuznetsov, A. N. Egorochkin, M. N. Bochkarev (Zh. Obshch. Khim. 49 [1979] 2257/63; J. Gen. Chem. [USSR] 49 [1979] 1983/7; C.A. 92 [1980] No. 93 527).

[16] C. Eaborn, I. D. Jenkins (J. Organometal. Chem. **69** [1974] 185/92). - [17] R. D. Howells, H. Gilman (J. Organometal. Chem. **77** [1974] 177/81). - [18] D. W. W. Anderson (Diss. Edinburgh 1973).

4.3 Perfluorohalogenoorgano Compounds of Germanium

4.3.1 Preparation

Pentafluorophenylgermane C₆F₅GeH₃

Bis(octafluorobiphenyl)germane

Bis(2,2'-thiobis-3,4,5-tetrafluorophenyl)germane

Bis[tris(pentafluorophenyl)germanyl]cadmium $(C_6F_5)_3$ GeCdGe $(C_6F_5)_3$

No new syntheses are published for these compounds, for preparation see Part 4, pp. 165/ 81. New details on physical and on chemical reactions are given in the following sections.

Gmelin Handbook CF Comp. Suppl. 1 4

2,2-Difluorogermaethylene F2C=GeH2

1,1,2,2-Tetrafluorogermaethylene F₂C=GeF₂

CNDO/2 calculations have been carried out on the as yet unprepared compounds F_2C =GeH₂ and F_2C =GeF₂. Geometries, charge densities and bond orders are predicted [1]. In addition optimized bond lengths, electron densities, dipole moments, valence of atoms and bond indices are calculated [10].

Trifluoromethylgermane CF₃GeH₃

Bis(trifLuoromethyL)germane (CF₃)₂GeH₂

Tris(trifluoromethyl)germane (CF₃)₃GeH

Bis(pentafluorophenyl)germane (C₆F₅)₂GeH₂

Tris(pentafluorophenyl)germane (C₆F₅)₃GeH

 $\textbf{Bis(pentafluorophenyl)chlorogermane} (C_6F_5)_2GeHCl$

Bis(pentafluorophenyl)bromogermane (C₆F₅)₂GeHBr

1,1,2,2-Tetrakis(pentafluorophenyl)digermane $(C_6F_5)_2GeHGeH(C_6F_5)_2$

A twofold excess of CF₃Br was reacted with KGeH₃ in hexamethylphosphoramide at 0°C (2 min) to give 5% CF₃GeH₃ [20]. At 20°C (0.5 h) GeH₃Cl reacts with CF₃C≡CMgl in diglyme to give 40 to 60% CF₃C≡CGeH₃ [41]. The reaction of (CF₃)₃Gel and of (CF₃)₂Gel₂, dissolved in aqueous HBr, with a solution of NaBH₄ in H₂O at 0°C (0.5 h) in a N₂ atmosphere gave 93% (CF₃)₃GeH and 85% (CF₃)₂GeH₂, respectively [2].

The reaction of $[(C_2H_5)_3Ge]_2Ge(C_6F_5)_2$ with H_2O at 100 °C (1 h) in tetrahydrofuran gave quantitatively $(C_6F_5)_2GeH_2$, which was also obtained from the trigermane and HCl in tetrahydrofuran at 50 °C (2 h) in 87% yield. Some $(C_6F_5)_2$ GeH₂ is formed on heating the trigermane with CH₃OH in tetrahydrofuran at 50 °C for 9 h [3]. In similar reactions, (C₆F₅)₃GeGe(C₂H₅)₃ hydrolyzed in tetrahydrofuran at 20 °C (15 min) to give 82% (C₆H₅)₃GeH, which also is formed quantitatively in the reaction of the digermane with HCl at 20 °C (20 min). Reaction of (C₆F₅)₃GeGe(C₂H₅)₃ with CuCl₂ at 50 °C (0.5 h), with AgCl at 100 °C (3 h) or with AuCl₃ at 100 °C (0.75 h) in tetrahydrofuran gave 50, 56 or 46% yields of $(C_6F_5)_3$ GeH, respectively [3]. UV irradiation of a degassed solution of $(C_6F_5)_3$ GeHgPt[P $(C_6H_5)_3$]₂Ge $(C_6F_5)_3$ in toluene at 40 to 50 °C (4 h) gave 50% (C_6F_{5})₃GeH [4], which is also obtained from this starting compound and HCl in C_6H_6 at 80 °C (2 h) in 68% yield. When H_2 is bubbled through a solution of the complex in C_6H_6 at 80 °C some (C_6F_5)₃GeH is formed on standing at 20 °C for 15 h [4]. (C₆F₅)₃GeGe(C₆F₅)₃ reacts in tetrahydrofuran with water, methanol, HCl, CH₃COOH, CF₃COOH at temperatures of 70 to 100 °C (0.25 to 1 h) to give 70 to 98% ($C_6F_{5,3}$ GeH [5, 8]. With ($C_2H_{5,3}$ SnH, the digermane forms 84% (C_6F_5)₃GeH at 70 °C (8 h) [8]. The compound [(C_6F_5)₃Ge]₂Hg · M(C_6F_5)₃ (M = Tl, Pr) reacts with HCl in tetrahydrofuran forming $(C_6F_5)_3GeH$ quantitatively for M = Tl[6] and for M = Pr (20 °C, 12 h). As a side product (C_6F_{5})₃GeH forms in 47% yield in the reaction of the complex with $(C_6F_{5})_3$ GeBr in tetrahydrofuran at 20°C [7]. In boiling benzene (17 h), (C₆F₅)₃GePt[P(C₆H₅)₃]₂H is cleaved by HCl to give 64% (C₆F₅)₃GeH [9]. Dry HCl gas reacts with $[(C_6F_5)_3Ge]_2BiC_2H_5$ (dissolved in tetrahydrofuran) at 20°C (20 min) yielding 95% (C_6F_5)_3GeH [17].

50

The heterocycle $[(C_6F_5)_2Ge]_3Bi_2$ is cleaved by HCl in tetrahydrofuran at 20°C (72 h) to give 95% (C_6F_5)₂GeHCl, which was also obtained by the following route [17]:

 $(C_6F_5)_2GeBr_2 + Mg/Hg \xrightarrow{ether} [(C_6F_5)_2Ge]_n \xrightarrow{HCl/THF} (C_6F_5)_2GeHCl$

A mixture of $(C_6F_5)_2GeBr_2$ and $(C_6F_5)_2GeH_2$ under Ar reacted at 160 to 165 °C (6 h) to yield 74% $(C_6F_5)_2GeHBr$. In hexane $(C_6F_5)_2GeHBr$ and $(C_6F_5)_2Ge(H)Sn(C_2H_5)_3$ reacted at 20 °C (30 to 40 h) to give 81% $[(C_6F_5)_2GeH]_2$ [10].

Tris(pentafluorophenyl)germanole (C₆F₅)₃GeOH

Hexakis(trifluoromethyl)digermoxane (CF₃)₃GeOGe(CF₃)₃

Hexakis(pentafluorophenyl)digermoxane (C₆F₅)₃GeOGe(C₆F₅)₃

Tris(pentafluorophenyl)trifluoroacetyloxygermane (C₆F₅)₃GeOC(O)CF₃

In a sealed tube $(CF_3)_3$ Gel reacts with excess HgO at 20 °C (24 h) to yield $(CF_3)_3$ GeOGe $(CF_3)_3$ quantitatively. Hydrolysis of $(CF_3)_3$ Gel with 3 M hydrochloric acid gave $(CF_3)_3$ GeOGe $(CF_3)_3$ in good yields [2]. A mixture of $(C_6F_5)_3$ GeGe $(C_6F_5)_3$ and H₂O in tetrahydrofuran react on heating to 70 °C (0.25 h) to give 95% (C_6F_5)_3GeOH [5, 8]. Heating of neat $(C_6F_5)_3$ GeOH at 140 °C (11 h) forms 95% (C_6F_5)_3GeOGe $(C_6F_5)_3$ which is also obtained from $(C_6F_5)_3$ GeGe $(C_6F_5)_3$ and $(CH_3)_3$ COOH at 40 °C (23 h) in tetrahydrofuran in 47% yield [8]. The reaction between CF₃COOH and $(C_6F_5)_3$ GeOGe $(C_6F_5)_3$ in tetrahydrofuran at 100 °C (1 h) gives 65% (C_6F_5)_3GeOC(O)CF₃ [5, 8].

Trifluoromethyltrihalogenogermane CF_3GeX_3 (X = Br, I) Pentafluoroethyltrihalogenogermane $C_2F_5GeX_3$ (X = Br, I)

Bis(trifluoromethyl)dihalogenogermane $(CF_3)_2GeX_2$ (X = Br, I)

Tris(trifluoromethyl)halogenogermane $(CF_3)_3GeX$ (X = F, Cl, Br, I)

At 110 °C (18 h) an almost equimolar mixture of GeBr₄ and $(CF_3)_2$ Hg reacts in a sealed tube to give 55% CF₃GeBr₃, 22% (CF₃)₂GeBr₂ and 18% (CF₃)₃GeBr [12]. With a 2:1 molar ratio of $(CF_3)_2$ Hg to GeBr₄ at 150 °C (24 h) 65% (CF₃)₃GeBr and 10% (CF₃)₂GeBr₂ are obtained. The reaction of $(CF_3)_2$ Hg and GeBr₄ in ether at 50 °C (7 d) gives only CF₃GeBr₃. Much higher temperatures (195 °C) are required for the formation of C₂F₅GeBr₃ (45% yield) from (C₂F₅)₂Hg and GeBr₄. The reaction of Gel₄ with (CF₃)₂Hg (molar ratio based on Gel₄) at 120 °C (120 h) in a sealed tube gave the following product distribution (yields in %) [2]:

Molar ratio	CF_3Gel_3	$(CF_3)_2Gel_2$	(CF ₃) ₃ Gel	(CF ₃) ₃ GeF	(CF ₃) ₄ Ge ^{b)}	
0.55	90	5			_	
0.98	13	53	16	_	_	
1.72	_	_	72	_	22	
2.0	-	_	72	11 ^{a)}	15	

^{a)} The mechanism for the formation of $(CF_3)_3$ GeF has not been elucidated. - ^{b)} For $(CF_3)_4$ Ge, see p. 53.

 $(C_2H_5)_2Hg$ and Gel_4 gave at 135°C (21 d) as the only product $C_2F_5Gel_3$ in 53% yield. At 155°C (CF_3)₃Gel undergoes a redistribution reaction into $(CF_3)_2Gel_2$ and $(CF_3)_4Ge$ [2]. During direct fluorination of $Ge(CH_3)_4$ (see p. 53) some $(CF_3)_3GeF$ is formed [19]. When a large excess of AgBr was reacted with $(CF_3)_3Gel$ at 20°C (24 h) 95% of $(CF_3)_3GeBr$ was obtained. Similar reactions of $(CF_3)_3Gel$ with excess AgCl and AgF gave $(CF_3)_3GeCl$ and $(CF_3)_3GeF$ in 92 and 73% yield [2].

Pentafluorophenyltrihalogenogermane $C_6F_5GeX_3$ (X = Cl, Br)

Pentafluorophenyldichlorobromogermane $C_6F_5GeCl_2Br$

 $\textbf{Pentafluorophenylchlorodibromogermane} \ C_6F_5GeClBr_2$

Bis(pentafluorophenyl)dihalogenogermane (C_6F_5)₂GeX₂ (X = Cl, Br)

Tris(pentafluorophenyl)halogenogermane $(C_6F_5)_3GeX (X = F, Cl, Br)$

1,1,1-Tris(pentafluorophenyl)-2,2,2-trichlorodigermane $(C_6F_5)_3GeGeCl_3$

1,1,1,3,3,3-Hexakis(pentafluorophenyl)-2,2-difluorotrigermane (C₆F₅)₃GeGeF₂Ge(C₆F₅)₃

(Trifluoromethyl)fluorogermanates $M'_2[(CF_3)_nGeF_{6-n}]$ (n = 1, M' = Na, NH₄; n = 2, M' = Na, K, NH₄) and M[(CF₃)₃GeF₂] (M = NH₄, Na)

A solution of GeCl₄ in C₆H₆ was added to an etheric solution of C₆F₅MgBr. The ether was driven off and replaced by more C_6F_6 . The mixture was refluxed for 10 h giving 14% $C_6F_5GeCl_3$, 18% $C_6F_5GeCl_2Br$, 17% $C_6F_5GeClBr_2$ and 51% $C_6F_5GeBr_3$. Additionally, $(C_6F_5)_2GeBr_2$ and $(C_6F_5)_3$ GeBr were identified as well [13]. When Br₂ was added to a solution of $(C_6F_5)_3$ GeBi $(C_2H_5)_2$ in benzene 94% (C_6F_5)₃GeBr are formed [17]. The reaction of [(C_6F_5)₃Ge]₂Hg · (C_6F_5)₃GeTl and HgCl₂ in tetrahydrofuran gives at 20°C (10 min) 90% (C₆F₅)₃GeCl [6]. Similarly $[(C_6F_5)_3Ge]_2Pr \cdot Hg[Ge(C_6F_5)_3]_2$, dissolved in tetrahydrofuran, reacted with HCl at 20°C (12 h) with subsequent heating at 70°C (2 h) to yield 95.8% (C6F5)3GeCl [7]. The Ge-Ge bond in $(C_6F_5)_3$ GeGe $(C_2H_5)_3$ is cleaved by BiCl₃ in tetrahydrofuran at 100°C (1 h) to produce 83% $(C_6F_5)_3$ GeCl [5]. Similarly, HgCl₂ decomposes $(C_6F_5)_3$ GeGe $(C_6F_5)_3$ in tetrahydrofuran at 70°C (1 h) to form 99% $(C_6F_5)_3$ GeCl [5, 8]. Analogous reactions are observed between $(C_6F_5)_3GeGe(C_6F_5)_3$ and $CuCl_2$ (100°C, 0.75 h), C_2H_5HgCl (70°C, 0.5 h), $ZnCl_2 + I_2$ (100°C, 6 h), GeCl₄ (100 °C, 1 h) to give $(C_6F_5)_3$ GeCl in yields of 97, 63, 84 and 126%, respectively. The reaction with GeCl₄ also leads to the formation of $(C_6F_5)_3$ GeGeCl₃ in 33% yield [8]. In benzene solution, $(C_6F_5)_3$ GeHgPt[P($C_6H_5)_3$]₂Ge(C_6F_5)₃ forms with HCl at 80°C (2 h) 68% (C_6F_5)₃GeCl and with Br₂ at 20°C (5 min) 98% (C₆F₅)₃GeBr [4]. In C₆H₆ at 20°C (C₆F₅)₃GePt[P(C₆H₅)₂]₂H reacts with Br₂ to yield 74% (C_6F_5)₃GeBr [9]. Heating a benzene solution of [(C_6F_5)₃Ge]₂Hg with I₂ at 60°C (1.5 h) results in the formation of 31% (C_6F_5)₃Gel [13].

In the reaction of GeF₂ and $(C_6F_5)_3$ GeGe $(C_2H_5)_3$ at 100 °C (2 h) in tetrahydrofuran an amorphous solid (decomposing on fusion) was isolated and shown to be $[(C_6F_5)_3GeGeF]_n$ (no physical data). Similarly equimolar amounts of GeF₂ and $(C_6F_5)_3GeGe(C_6F_5)_3$ in tetrahydrofuran

reacted at 100°C (5 h), then left at 20°C (10 h), to yield 37% $(C_6F_5)_3GeGeF_2Ge(C_6F_5)_3$. The insoluble amorphous solid consisted of a mixture of $(C_6F_5)_3GeF$ and $[(C_6F_5)_3GeGeF]_n$ in 43% yield [15].

In aqueous solution $(CF_3)_n GeX_{4-n}$ reacts [14] with M'F according to:

 $\begin{array}{l} (CF_3)_n GeX_{4-n} + M'F \rightarrow M'_2[(CF_3)_n GeF_{6-n}] \\ (M' = Na, NH_4 \text{ for } n = 1; M' = Na, K, NH_4 \text{ for } n = 2) \end{array}$

and with MF according to:

$$(CF_3)_3GeX + MF \rightarrow M[(CF_3)_3GeF_2]$$
 (M = NH₄, Na; X = F, Cl, Br, I)

For n = 2 and M' = K the *trans*-isomer was shown by ¹⁹F NMR spectroscopy to have a yield of 90%. The *cis*-compound K₂[(CF₃)₂GeF₄] is less soluble in water and was isolated. Its nature was characterized by an X-ray structure determination. When $(CF_3)_4$ Ge is dissolved in a saturated NH₄F solution mainly [(CF₃)₃GeF₂]NH₄ is formed [14], for the ¹⁹F NMR data of the anions see Table 11, p. 61.

Bis[tris(pentafluorophenyl)germyl] sulfide [(C₆F₅)₃Ge]₂S

Bis[tris(pentafluorophenyl)germyl] selenide [(C₆F₅)₃Ge]₂Se

Shaking a mixture of $(C_6F_5)_3$ GeGe $(C_6F_5)_3$ and sulfur or selenium in tetrahydrofuran at 60 °C (3 h) or 100 °C (5 h) gives 52% $[(C_6F_5)_3Ge]_2$ S or 41% $[(C_6F_5)_3Ge]_2$ Se, respectively [5, 8].

Tetrakis(trifluoromethyl)germane (CF₃)₄Ge

A most convenient preparation of $(CF_3)_4Ge$ (43% yield) at ambient temperature is the reaction of $(CF_3)_2Cd \cdot CH_3OCH_2CH_2OCH_3$ with Gel₄ in 1,2-dibromoethane [42].

A small excess of GeBr₄ reacted with Hg(CF₃)₂ at 110°C (18 h) forms 4% (CF₃)₄Ge. In a 1:2 molar ratio, GeBr₄ and Hg(CF₃)₂ reacted at 150°C (24 h) to yield 20% (CF₃)₄Ge. On recycling the less substituted products with more Hg(CF₃)₂ the yield of (CF₃)₄Ge increases to 40%. For the reaction Gel₄ and Hg(CF₃)₂ at 120°C (120 h) see p. 51 [2]. For the preparation of (CF₃)₄Ge in the plasma-initiated reaction of CF₃ radicals (from C₂F₆) with GeBr₄, as already described in Part 4, p. 168, see also [21]. The direct fluorination of Ge(CH₃)₄ by He-diluted F₂ at -100 to -60°C gave only 1 to 6% Ge(CF₃)₄. When the temperature was raised from -100 to -20°C 66% Ge(CF₃)₄ are obtained [19].

Hexakis(trifLuoromethyL)digermane $(CF_3)_3GeGe(CF_3)_3$

 $\textbf{Hexakis(pentafluorophenyl)digermane}~(C_6F_5)_3GeGe(C_6F_5)_3$

Bis[tris(pentafluorophenyl)germyl]mercury $[(C_6F_5)_3Ge]_2Hg$

Bis[tris(pentafluorophenyl)germyl]praseodymium halides $[(C_6F_5)_3Ge]_2PrX (X = Cl, Br)$

Gmelin Handbook CF Comp. Suppl. 1 References p. 65

Tris[bis(pentafluorophenyl)germyl]dibismutane [(C₆F₅)₂Ge]₃Bi₂

The reaction between $(CF_3)_3$ Gel and sodium amalgam (0.5% Na) at 20° C (72 h) gave 60% $(CF_3)_3$ GeGe(CF₃)_3 [2]. Photolysis of $(C_6F_5)_3$ GeHgPt[P(C_6H_5)_3]_2Ge(C_6F_5)_3, dissolved in toluene, at 40 to 50° C (4 h) gave only a yield of 3% [4]. The condensation of $(C_6F_5)_3$ GeBr in ether with lithium amalgam at 20° C (50 min) provided 89% $(C_6F_5)_3$ GeGe(C_6F_5)_3 [8]. In tetrahydrofuran $(C_6F_5)_3$ GeGe(C_2H_5)_3 reacted at 20° C (2 to 3 min) with $(C_6F_5)_3$ GeBr to form 66% digermane. While $(C_6F_5)_3$ GeGe(C_2H_5)_3 in tetrahydrofuran reacts with CuCl₂ at 20° C (0.5 h) to give 20% $(C_6F_5)_3$ GeGe(C_6F_5)_3, the reaction with HgCl₂ at 20° C (3 h) leads to the formation of 72% $[(C_6F_5)_3Ge]_2$ Hg [3]. At 130° C (3.5 h) $(C_6F_5)_3$ GeBr reacts with Bi(C_2H_5)_3 to form 54% $(C_6F_5)_3$ GeGe(C_6F_5)_3 [7].

A mixture of $[(C_6F_5)_3Ge]_2Hg$ and finely divided praseodymium was shaken at 20°C (50 h). From the resulting green solution 85.8% $[(C_6F_5)_3Ge]_2Hg \cdot Pr[Ge(C_6F_5)_3]_3$ was isolated. Treating this complex in tetrahydrofuran at 20°C (12 or 1 h) with HCl or with $(C_6F_5)_3GeBr$ gives 70% $[(C_6F_5)_3Ge]_2PrCl$ or 70% $[(C_6F_5)_3Ge]_2PrBr$ together with 83.5% $(C_6F_5)_3GeGe(C_6F_5)_3$ [7].

A solution of $[(C_6F_5)_3Ge]_2Hg$ in dimethoxyethane was added to finely divided thallium. After shaking the mixture at 90°C for 5 h 84.5% $(C_6F_5)_3GeTl \cdot Hg[Ge(C_6F_5)_3]_2$ is obtained. The thallium complex reacts in tetrahydrofuran with HCl at 20°C (immediately) and with HgCl₂ at 20°C (10 min) to give $(C_6F_5)_3GeHgGe(C_6F_5)_3$ (about 95% yield). The reaction of the complex with $(C_6F_5)_3GeBr$ at 20°C (12 h) yields 81% $(C_6F_5)_3GeGe(C_6F_5)_3$ [6]. When $(C_6F_5)_3GeBr$ was heated with Bi $(C_2H_5)_3$ at 130°C (3.5 h) 54% $(C_6F_5)_3GeGe(C_6F_5)_3$ was obtained [17]. A mixture of Hg and $(C_6F_5)_3GeBi(C_2H_5)_3$ in tetrahydrofuran was shaken at 20°C (6 d) to form 61% $[(C_6F_5)_3Ge]_2Hg$ [17]. The reaction of $(C_6F_5)_2GeH_2$ with Bi $(C_2H_5)_3$ in toluene at 110°C (4 h) leads not to the formation of $[(C_6F_5)_2GeBi(C_2H_5)_2]_2$ [17] but forms 59% $[(C_6F_5)_2Ge]_3Bi_2$ with the following structure as was shown by X-ray analysis [18]:

4.3.2 Physical Properties

Physical data for the germanium compounds are collected in **Table 16**, p. 60. Additional investigations are reported below.

4.3.2.1 Crystal Structure

Single crystal X-ray investigations gave the following results:

 $K_2[cis-(CF_3)_2GeF_4]$ forms orthorhombic crystals with space group lbca- D_{2h}^{27} (No. 73). The unit cell with the dimensions a = 17.815(2) Å, b = 11.474(1) Å, c = 8.4782(6) Å contains eight molecules, density D = 2.80 g · cm⁻³. Bond distances and angles are presented in [14].

		(CF₃)₃GeF	(CF ₃) ₃ GeCl	(CF ₃) ₃ GeBr	(CF ₃) ₃ Gel	Approximate description
A ₁	V ₁	1 160 ¹⁾	1 153 ¹⁾	1 150 ¹⁾	1 143 ¹⁾	$v_{as}(CF_3)$
(Ra/IR)	V2	1 198	1 196	1 192	1 189	$v_{s}(CF_{3})$
	v ₃	528	527	528	528	$\delta_{as}(CF_3)$
	v4	725	736	736	735	$\delta_{s}(CF_{3})$
	v_5	302	289	255 ¹⁾	245 ¹⁾	$\varrho(CF_3)$
	v ₆	237 ¹⁾	238 ¹⁾	232 ¹⁾	344	v(GeC ₃)
	v ₇	741	465	367	206 ¹⁾	v(GeX)
	ν_8	80 ²⁾	82 ¹⁾	82 ²⁾	80 ¹⁾	δ(GeC ₃)
A ₂	Va	1 145 ²⁾	1 138	1 137 ²⁾	1 135 ²⁾	$v_{as}(CF_3)$
(-)	V10	525 ²⁾	522 ²⁾	522 ²⁾	522 ²⁾	$\delta_{as}(CF_3)$
. ,	V ₁₁	223 ²⁾	223 ²⁾	223 ²⁾	223 ²⁾	$\varrho(CF_3)$
	v ₁₂	_	_	_	_	τ
E	ν ₁₃	1 132	1 131	1 129	1 128	$v_{as}(CF_3)$
(Ra/IR)	V ₁₄	1 176	1 178 ¹⁾	1 167	1 164	$v_{as}(CF_3)$
	v ₁₅	1 180 ¹⁾	1 178	1 175 ¹⁾	1 170 ¹⁾	$v_{s}(CF_{3})$
	v ₁₆	528	527	528	528	$\delta_{as}(CF_3)$
	v ₁₇	528	527	528	528	$\delta_{as}(CF_3)$
	ν ₁₈	736 ²⁾	736	736	735	$\delta_{s}(CF_{3})$
	v ₁₉	232	224 ¹⁾	222 ¹⁾	218 ¹⁾	ϱ(CF ₃)
	v ₂₀	250	251 ¹⁾	255 ¹⁾	254 ¹⁾	Q(CF ₃)
	v ₂₁	360	353	351	347 ¹⁾	v(GeC ₃)
	v ₂₂	70 ¹⁾	70 ¹⁾	68 ¹⁾	65 ¹⁾	$\delta(\text{GeC}_3)$
	v ₂₃	143 ¹⁾	110 ¹⁾	89 ¹⁾	80 ¹⁾	δ(XGeĊ)
	v_{24}	_	—	-	-	τ

Table 11 Fundamental Vibrations v_i of (CF₃)₃GeX (X = F, Cl, Br, I) [27]. Symmetry group A₁, A₂ and E, with activity of the vibration in the IR and Raman spectrum in parentheses, v, δ , ϱ and τ are stretching, deformation, rocking and torsion vibrations, s and

¹⁾ Liquid phase. $-^{2)}$ Calculated values.

 $(C_6F_5)_3$ GeHgGe $(C_6F_5)_3$ forms orthorhombic crystals with space group Pbcn- D_{2h}^{14} (No. 60). The unit cell with the dimensions a = 17.77(2) Å, b = 12.653(7) Å, c = 16.897(8) Å contains four molecules, density D = 2.36 g \cdot cm⁻³. Bond distances and angles are given in [24].

 $[(C_6F_5)_2Ge]_3Bi_2$ forms (at -120 °C) monoclinic crystals with space group C2/c-C_{2h}⁶ (No. 15). The unit cell with the dimensions a = 41.561(7) Å, b = 8.492(2) Å, c = 23.320(8) Å contains eight molecules, density D₀ = 2.63 g · cm⁻³, pycnometric density D = 2.55 g · cm⁻³. Bond distances and angles of the heteroelement framework are given in the original paper [18].

4.3.2.2 Mass Spectrum of $(C_{12}F_8)_2$ Ge and $(C_{12}F_8S)_2$ Ge

Fragmentation and rearrangement processes found in the mass spectra of $(C_{12}F_8)_2$ Ge and $(C_{12}F_8S)_2$ Ge are presented in [25]. The partial mass spectra of these compounds are shown in tables in the original reference [25]. Extensive metastable peaks for $(C_{12}F_8)_2$ Ge

permit this assignment of partial fragmentation schemes, see below. Although no metastable ions were observed for $(C_{12}F_8S)_2Ge$, a tentative fragmentation scheme, see below, was suggested [25].

4.3.2.3 Molecular Structures, Rotational and Vibrational Spectra

Hydrides

In the IR spectrum of CF₃C[±]CGeH₃ (D₃ symmetry), the fine structure, due to overall or unrestricted internal rotation in perpendicular bonds associated with motions of the GeH₃ group, has been investigated. The IR bands were assigned as follows: v = 2131.6 (Ge-H stretching), 2v = 4195.3, $\delta = 882.0$ (GeH₃ deformation), $\delta = 622.7$ (GeD₃ deformation), $\varrho = 626.6$ (GeH₃ rocking). The rotational constants (in cm⁻¹) for the symmetric top molecules in the vibrational ground state are A" = 2.750, B" = 0.018 for CF₃C[±]CGeH₃ and A" = 1.375, B" = 0.016 for CF₃C[±]CGeD₃. For details see the original paper [31].

Microwave spectra of five isotopic species of CF_3GeH_3 have been investigated in the region 15000 to 31000 MHz. The height of the potential barrier hindering the internal rotation equals 1250 ± 150 cal \cdot mol⁻¹ [20].

From the integral intensity (A) of the Si-H stretching band in IR spectra of 30 R₃GeH and 20 R₂GeH₂ compounds a correlation between $A^{1/_2}$ and the sum of inductive Taft ($\Sigma\sigma^*$) constants of the substituents R was established. As stretching frequency is taken for (C₆F₅)₃GeH v(Ge-H) = 2 150 cm⁻¹ [33], and for (C₆F₅)₂GeH₂ v(Ge-H) = 2 140 cm⁻¹ [34]. In an earlier work the equation $v = 23 \Sigma\sigma^* + 2015$ was found for R₃GeH compounds [35].

Halides

The vibrational spectra of CF_3GeX_3 and $(CF_3)_2GeX_2$ (X = F, Cl, Br, I) were published in Part 4, pp. 171/3 as private communications. The full papers have appeared by now [27, 28].

The gase phase IR and liquid phase Raman spectra of $(CF_3)_3$ GeX (X = F, Cl, Br, I) are reported in [27]. The solid phase Raman spectrum of $(CF_3)_3$ GeF is interpreted assuming a dimeric structure with Ge-F-Ge bonds. The assignment of the bands to the molecular vibrations bases on the assumption of C_{3v} molecular symmetry. A normal coordinate analysis has been performed, for details see the original reference [27]. In **Table 11**, p. 55, are reported the observed and calculated frequencies, in **Table 13**, p. 58, the force constants for these molecules.

IR (gas)	Raman (liquid)	Assignment and approximate description			
	66 m	v ₈ (e)	v(Ge-C ₄)		
78 w-m		$v_{19}(f_2)$	$\delta(\text{Ge-C}_4)$		
	232 VE D	$v_{11}(I_1) \sim 225^{-7}$	$\mathcal{Q}(\mathbf{CP}_3)$		
244 w	232 VS, p 247 m-s	$v_3(a_1)$	$o(CE_{a})$		
244 0	225 m	$v_{17}(e)$	$o(CF_2)$		
359 vs	359	$v_{18}(f_2)$	v(Ge-C)		
528 m	528 w	$v_6(e), v_{15}(f_2)$	$\delta_{as}(CF_3)$		
	733 s, p	$v_2(a_1)$	$\delta_{s}(CF_{3})$		
737 s		$v_{16}(f_2)$	$\delta_{s}(CF_{3})$		
1125 m-s		$v_{9}(f_{1})$	$v_{as}(CF_3)$		
	1 144 w	$v_5(e)$	$v_{as}(CF_3)$		
1174 vs	1158 w	$v_{15}(f_2)$	$\delta_{as}(CF_3)$		
	1 190 w	$v_{14}(f_2)$	v _s (CF ₃)		
	1208 vw p	$v_1(a_1)$	$v_{s}(CF_{3})$		

Table 12 Observed Fundamental Vibrations of $(CF_3)_4$ Ge (in cm⁻¹) [30]. For abbreviations see Table 11, p. 55.

^{a)} Derived from combination band.

References p. 65

internuclear distances $r = r(C-F)$, $s = r(Ge-C)$, $t = Ge-X$.								
Compound	f _r	f _{rr}	f _s	f _{ss}	f _t	f _{tt}	f _{st}	Ref.
(CF₃)₄Ge	5.86	0.96	2.30	0.11	-	_	_	[30]
(CF ₃) ₆ Ge ₂	5.83	0.93	2.29	0.16	1.62	-	0.00	[30]
(CF ₃) ₃ GeF	5.84	0.88	2.40	0.10	4.73	—	0.12	[29]
(CF ₃) ₃ GeCl	5.80	0.88	2.31	0.13	2.90	-	0.09	[29]
(CF ₃) ₃ GeBr	5.78	0.87	2.29	0.14	2.21	-	0.08	[29]
(CF ₃) ₃ Gel	5.75	0.86	2.23	0.15	1.83	_	0.07	[29]

Force Constants (in N \cdot cm⁻¹) of (CF₃)₄Ge, (CF₃)₆Ge₂ and (CF₃)₃GeX (X = F, Cl, Br, I). Internuclear distances r = r(C-F), s = r(Ge-C), t = Ge-X.

(CF₃)₄Ge and (CF₃)₃GeGe(CF₃)₂

Electron diffraction investigations of $(CF_3)_4$ Ge yield the following internuclear distances r (in Å) and angles α : r(C-F) = 1.330 ± 0.002, r(Ge-C) = 1.989 ± 0.005, α (FCF) = 108.9° ± 0.3°. CNDO/2 calculations agree very well with these results [26]. The gas phase IR and liquid phase Raman spectra of $(CF_3)_4$ Ge and $(CF_3)_6$ Ge₂ (additionally the solid phase Raman spectrum) are reported and assigned to T_d and D_{3d} symmetry, respectively. A normal coordinate analysis has been performed and force constants as well as frequencies of inactive vibrations have been obtained [30]. The observed fundamental bands and their assignment to the molecular vibrations are given in **Table 12**, p. 57, and **Table 14**. For observed overtones and combination bands as well as for a full set of the fundamentals and the potential energy distribution, see the original paper [30]. The calculated force constants are covered in Table 13.

Table 14 Observed Fundamental Vibrations of $(CF_3)_6Ge_2$ (in cm⁻¹) [30]. For abbreviations see Table 11, p. 55.

IR (gas)	Raman (liquid)	Raman (solid)	Assignment and description	approximate
	67 p?	66 m-s	v ₇ (a _{1g}), v ₂₂ (e _g)	δ(Ge-C ₃)
80 s			v ₄₇ (e _u)	ϱ(Ge-C₃)
	80	81 m-s	$v_{23} (e_{a})$	ϱ(Ge-C₃)
	178 p	178 vs	$v_8(a_{1q})$	v(Ge-Ge)
	228	228 m	$v_{19} (e_{a})$	Q(CF ₃)
	244 p	245 s	$v_5(a_{1g})$	$\varrho(CF_3)$
	255	255 m	$v_{20} (e_{a})$	$\varrho(CF_3)$
302 s			v_{34} (a_{2u})	$\varrho(CF_3)$
342 s			v_{45} (e _u)	v(Ge-C)
	348	348 w	v_{21} (e _a)	v(Ge-C)
	373 p	373 w	$v_{6}^{'}(a_{1g})$	v(Ge-C)
		Reference	es p. 65	Gmelin Handbook CF Comp. Suppl.1

Table 13

IR (gas)	Raman (liquid)	Raman (solid)	Assignment and approximes description	nate
527 w	529	526 w 530 w	$\begin{array}{l} \nu_{32}\;(a_{2u}),\;\nu_{40}\;(e_u),\;\nu_{41}\;(e_u)\\ \nu_3\;(a_{1g}),\;\nu_{16}\;(e_g),\;\nu_{17}\;(e_g) \end{array}$	$\delta_{as}(CF_3) \\ \delta_{as}(CF_3)$
734.5 s	732 p	732 s	v ₄ (a _{1g}) v ₃₃ (a _{2u}), v ₄₂ (e _u) [v ₉ (a ₂₀), v ₃₀ (a _{2u}), ∼1 122] ^{a)}	$\delta_s(CF_3) \delta_s(CF_3) v_{as}(CF_3)$
1 135 s 1 169 vvs 1 178 vs	1 136	1 137 w	$\begin{array}{c} v_{37} \; (e_u) \\ v_{13} \; (e_g) \\ v_{30} \; (a_{2u}), \; v_{38} \; (e_u) \\ v_{25} \; (a_{1u}), \; v_{39} \; (e_u) \end{array}$	$v_{as}(CF_3)$ $v_{as}(CF_3)$ $v_{as}(CF_3)$ $v_{as}(CF_3)$,
	1 168	1 165 vw	v_1 (a _{1g}), v_{15} (e _g)	v _s (CF ₃) v _{as} (CF ₃), v _a (CF ₂)
	1 203	1204 vw	ν ₂ (a _{1g})	v _s (CF ₃)

Table 14 (continued)

^{a)} Derived from combination band.

Table 15 UV Absorption Spectra of Germanium Compounds in Pentane [32]. Wavelength λ in nm.

Compound	λ	Compound	λ
(C ₆ F ₅) ₃ GeH	267	(C ₆ F ₅) ₂ GeHGeH(C ₆ F ₅) ₂	267
(C ₆ F ₅) ₄ Ge	267	$(C_6F_5)_3GeOGe(C_6F_5)_3$	268
C ₆ F ₅ GeH ₃	268	$(C_6F_5)_3GeSGe(C_6F_5)_3$	268
(C ₆ F ₅) ₃ GeCl	269	$(C_6F_5)_3$ GeSeGe $(C_6F_5)_3$	270
(C ₆ F ₅) ₃ GeBr	270	$(C_6F_5)_3$ GeCdGe $(C_6F_5)_3$	260
(C ₆ F ₅) ₃ GeOC(O)CF ₃	268	$(C_6F_5)_3$ GeHgGe $(C_6F_5)_3$	250, 257(sh)
$(C_6F_5)_3GeGe(C_6F_5)_3$	239(sh), 268	[(C ₆ F ₅) ₃ GeHg(C ₆ F ₅) ₂ Ge] ₂	256, 287, 317

4.3.2.4 Electronic Spectra

The electronic spectra are covered in Table 15.

The longwave absorption bands are assigned to the C_6F_5Ge group and indicate in $(C_6F_5)_3GeXGe(C_6F_5)_3$ (X = Hg, Cd) the presence of intramolecular coordination of ortho-fluorine atoms and the X atom [32].

By means of electronic emission spectroscopy it was shown that at 77 K the quenching of the luminescence of $(C_6F_5)_nGeH_{4-n}$ (n = 1, 2, 3, 4) and $(C_6F_5)_2GeHGeH(C_6F_5)_2$ conforms to the Stern-Volmer relation. For details see [36].
Table 16

Physical Data of Perfluorohalogenoorgano Germanium Compounds.

Boiling point (b.p.) in °C/pressure in Torr, melting point (m.p.) in °C, NMR spectra (chemical shifts δ in ppm are positive lowfield from the standard, spin-spin coupling constant J); IR spectrum in cm⁻¹, mass spectra (m/e, ion, relative intensity).

Compound	b.p./Torr (m.p.) in °C	¹ H, ¹⁹ F and ¹³ C NMR, IR and mass spectra
CF₃C≡CGeH₃ [41]	18 ²⁰⁾	$\label{eq:hardware} \begin{array}{l} {}^{1}\text{H NMR}{}^{21)}\!\!\!\!:\delta = 3.91 \;(\text{qu}), \; \text{J}(\text{F-H}) = 1.8 \; \text{Hz} \\ \text{IR}(\text{gas}) \!\!\!: 2218(\text{m}), \; 2126(\text{s}), \; 1255(\text{vs}), \\ 1218(\text{m}), \; 1167(\text{vs}), \; 888(\text{m}), \; 822(\text{s}), \; 627(\text{m}), \\ 320(\text{w}), \; 268(\text{m}), \; 235(\text{w}) \end{array}$
CF ₃ GeH ₃ [20]	_	$^{19}{\sf F}\;{\sf NMR}:\;{\sf J}({\sf H}{\sf -}{\sf F})\;=\;8.6\;{\sf Hz}$ $^{1}{\sf H}\;{\sf NMR}^{\;2)}:\;\delta\;=\;4.13({\sf qu}),\;{\sf J}({\sf F}{\sf -}{\sf H})\;=\;8.7\;{\sf Hz}$
(CF ₃) ₂ GeH ₂ [2]	_	
(CF₃)₃GeH [2]	31.6 (<i>—</i> 102)	$\label{eq:19} \begin{array}{l} {}^{19} \mbox{F NMR}^{1)} \colon \delta(\mbox{CF}_3) \ = \ 26.4 \\ {}^{1} \mbox{H NMR}^{2)} \colon \delta \ = \ 5.23 \ ; \ \mbox{J}(\mbox{H-F}) \ = \ 6.7 \ \mbox{Hz} \\ \mbox{IR} \colon \ 2 \ 155(\mbox{s}), \ 1 \ 167(\mbox{vvs}), \ 734(\mbox{s}) \\ \mbox{MS} \colon \ \mbox{(CF}_3)_2(\mbox{CF}_2)\mbox{GeH}^+ \ ; \ \mbox{(CF}_3)_2\mbox{GeH}^+ \end{array}$
(C ₆ F ₅) ₂ GeHCl [17]	93 to 94/1 (41 to 42)	IR: v(Ge-H) = 2165
(C ₆ F ₅) ₂ GeHBr [10]	109 to 110/ 1.5 ³⁾	_
(C ₆ F ₅) ₂ GeHGeH(C ₆ F ₅) ₂ [10]	(149 to 150)	_
(CF ₃) ₃ GeOGe(CF ₃) ₃ [2]	98	$^{19}F\ NMR\ ^{1)}:\ \delta(CF_3)\ =\ 21.8$ IR : 1 175(vs), 1 155(vs), 735(vs) MS : (CF_3)_5Ge_2O^+,\ (CF_3)_4Ge_2OF^+
(C ₆ F ₅) ₃ GeOH [8]	(112 to 113)	_
(C ₆ F ₅) ₃ GeOGe(C ₆ F ₅) ₃ [8]	(269 to 270)	_
CF ₃ GeBr ₃ [12]	_	$\begin{array}{l} {}^{19}F \ NMR \ {}^{1)}\!\!: \delta(CF_3) \ = \ 13.3 \\ IR : \ v(C\text{-}F) \ = \ 1 \ 165(vs), \ \delta(CF_3) \ = \ 735(vs) \\ MS : \ CF_3GeBr_3^+ \ ; \ GeFBr_3^+, \ CF_3GeBr_2^+ \end{array}$
C ₂ F ₅ GeBr ₃ [2]	_	$^{19}{\sf F}~{\sf NMR}^{1)}{:}~\delta({\sf CF}_3)=1.0,~\delta({\sf CF}_2)=-38.8,~J({\sf CF}_3{\text{-}}{\sf CF}_2)=2.9~{\sf Hz}$
C ₂ F ₅ Gel ₃ [2]	-	$^{19}\text{F}\ \text{NMR}^{4),12)}{:}\ \delta(\text{CF}_3)=0.9(\text{tr}),\ \delta(\text{CF}_2)=-41.3(\text{qu}),\ \text{J}(\text{CF}_3\text{-}\text{CF}_2)=2.2\ \text{Hz}\\\text{MS}{:}\ C_2F_5\text{Gel}_3^+,\ \text{FGel}_3^+,\ \text{Gel}_3^+$
(CF ₃) ₂ GeBr ₂ [12]	_	$\begin{array}{l} {}^{19}F\ NMR\ {}^{1)}\!\!:\delta(CF_3)\ =\ 19.1\\ IR:\ \nu(C\text{-}F)\ =\ 1165(vs),\ \delta(CF_3)\ =\ 735(vs)\\ MS:\ (CF_3)_2GeBr_2^+,\ CF_3GeCF_2Br_2^+,\ CF_3GeBr_2 \end{array}$
	Refere	nces p. 65 Gmelin Handbook CF Comp. Suppl. 1

60

¹H, ¹⁹F and ¹³C NMR, IR and mass spectra Compound b.p./Torr (m.p.) in °C (CF₃)₃GeF [2] 19.1⁵⁾ ¹⁹F NMR¹): $\delta(CF_3) = 22.1$, $\delta(GeF) = -142.6$; (27 to 30)⁶⁾ $J(CF_3-GeF) = 3.7 Hz$ IR: 1263(s), 1176(vs), 725(s), for a complete assignment see p. 55 MS: $(CF_3)_3Ge^+$, $(CF_3)_2GeF^+$ ¹⁹F NMR¹: $\delta(CF_3) = 22.6$ 37 (-98) (CF₃)₃GeCl [2] IR: 1193(s), 1168(vs), 736(s), for a complete assignment see p. 55 MS: $(CF_3)_2Ge(CF_2)Cl^+$, $(CF_3)_3Ge^+$ ¹⁹F NMR¹): $\delta(CF_3) = 23.1$ (CF₃)₃GeBr [2] 49(-63)IR: 1256(s), 1164(vs), 737(s), for a complete assignment see p. 55 MS⁷): (CF₃)₃GeBr⁺, (CF₃)₂GeBrCF₂⁺ ¹⁹F NMR¹): $\delta(CF_2) = 23.9$ (CF₃)₃Gel [2] 72(-39.8)IR: 1258(s), 1165(vs), 735(s), for a complete assignment see p. 55 MS: $(CF_3)_3$ Gel⁺, $(CF_3)_2$ GelCF⁺₂ (C₆F₅)₃GeCl [8] (104 to 107) $(C_6F_5)_3$ Gel [13] (118 to 120) $(C_6F_5)_3GeGeCl_3$ [8] (81 to 83)⁸⁾ $(C_{6}F_{5})_{3}GeGeF_{2}Ge(C_{6}F_{5})_{3}$ [15] (174 to 176) ¹⁹F NMR⁹: $\delta(CF_3) = 14.05$, $\delta(GeF) = -45.4$, ₇2- [14] $\delta(\text{GeF'}) = -42.1$; J(CF₃-GeF) = 14.6 Hz, $J(CF_3-GeF') < 0.3$ Hz, J(GeF-GeF') = 23.7 Hz ₇2- ¹⁰⁾ [14] ¹⁹F NMR⁹: $\delta(CF_3) = 14.13$, $\delta(GeF) = -47.1$, $J(CF_3-GeF) = 14.5 \text{ Hz}$ ¹⁹F NMR^{9) 11)}: $\delta(CF_3) = 15.10$, $\delta(GeF) =$ -60.5; J(CF₃-GeF) = 9.5 Hz $(C_6F_5)_3GeSGe(C_6F_5)_3$ (165 to 168) [5] -(167 to 169) [8] $(C_6F_5)_3GeSeGe(C_6F_5)_3$ [5] (158 to 161) References p. 65

Gmelin Handbook CF Comp. Suppl. 1

Table 16 (continued)

Compound		b.p./Torr (m.p.) in °C	¹ H, ¹⁹ F and ¹³ C NMR, IR and mass spectra		
(CF₃)₄Ge		31.7 (<i>—</i> 19.7) [2]	¹⁹ F NMR: $\delta(CF_3) = 27.0^{12}$ [19], 27.6 ¹²) [12], 27.4 ¹² [42], -46 ¹⁷ [22], -49.2 ¹⁹ [26] ¹³ C NMR ¹⁸ : $\delta(C) = 126.1$, J(¹³ C-F) = 330.7 Hz [23] IR: For the analysis of the vibrational spectrum see p. 57 MS: m/e = 331, (CF ₃) ₃ GeCF ₂ ⁺ (8); 281, (CF ₃) ₃ Ge ⁺ (44) [42], see also [2, 12]		
(CF ₃) ₃ GeGe(CF ₃) ₃ [2]		20/20 (72 to 74)	^{19}F NMR $^{1)}: \delta(\text{CF}_3) = 22.1 ^{13)}$ IR: 1170(vs), 1135(s), 737(s), for a complete assignment see p. 58 MS: (CF_3)_5Ge_2CF_2^+; (CF_3)_5Ge_2^+		
(C ₆ F ₅) ₃ GeGe(C ₆ F ₅) ₃		220/0.1 ¹⁴⁾ (308 to 315) [4] 210 to 230/ 0.02 ¹⁴⁾ (312 to 318) [8] 210 to 230/ 0.01 ¹⁴⁾ (312 to 318) [3]	_		
(C ₆ F ₅) ₃ GeHgGe(C ₆ F ₅	₅) ₃ [3]	(229 to 231)	_		
[(C ₆ F ₅)₃Ge]₃Pr · Hg[G	Ge(C ₆ F ₅) ₃] ₂ ¹⁵⁾ [7]	⁾ (270 to 280) ⁸⁾	_		
	X = Cl	(255 to 260) ⁸⁾	-		
[(U ₆ F ₅)3GeJ2FrX [/]	X = Br	(240 to 245) ⁸⁾	_		
(C ₆ F ₅)₃GeTl · Hg[Ge(C ₆ F ₅) ₃] ₂ [6]	(129 to 131) ⁸⁾	_		
C ₆ F ₅) ₂ Ge Ge(C ₆ F ₅) ₂ Bi	¹⁶⁾ Ge(C ₆ F ₅) ₂	(>160) ⁸⁾ [17, 18]	IR : $v(C-Bi) = 630(w)$ [18]		
[(C ₆ F ₅) ₃ Ge] ₂ Cd [39]		_	$IR: v(C_6F_5-Ge) = 812$		

Table 16 (continued)

¹⁾ Neat compounds, CF₃COOH as external standard. $-^{2)}$ External standard (CH₃)₄Si. $-^{3)}$ The sample contained 22% (C₆F₅)₂GeH₂ and 4% (C₆F₅)₂GeBr₂. $-^{4)}$ Dissolved in diethylether. $-^{5)}$ Extrapolated.

⁶⁾ Sealed capillary. $-^{7)}$ Additional ions: $(CF_3)_2GeBr^+$, $(CF_3)_3Ge^+$. $-^{8)}$ Decomposition. $-^{9)}$ Internal standard CF_3COONH_4 . $-^{10)}$ The dianion exists in solution in more than 90% as the trans isomer.

References p. 65

 $^{11)}$ Measured in a saturated NH₄F solution. - $^{12)}$ External standard CF₃COOH. - $^{13)}$ Solution in C₂H₅OC₂H₅. - $^{14)}$ Sublimation. - $^{15)}$ Pale green solid.

¹⁶⁾ Light orange crystalline product. $-^{17)}$ External standard CFCl₃. $-^{18)}$ External standard Si(CH₃)₄. $-^{19)}$ Standard CFCl₃. $-^{20)}$ Extrapolated from the equation log p(Torr) = 7.705–1710/T (between 213 and 253 K), fitting measured vapor pressures, evaporation enthalpy $\Delta H_v = 32.7 \pm 0.6 \text{ kJ} \cdot \text{mol}^{-1}, \Delta H_v/T_s = 111.2 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

²¹⁾ Internal standard Si(CH₃)₄.

4.3.3 Chemical Reactions

Thermal Stability, Solvolysis Reactions

No decomposition occurred when each of the compounds $(CF_3)_4Ge$, $(CF_3)_3Gel$, $(CF_3)_3GeCl$, and $(CF_3)_2Gel_2$ was heated at 145°C (7 d). At 190°C (7 d) slow decomposition to perfluorocyclopropane and the expected germanium fluoride, e.g., $(CF_3)_3GeF$ from $(CF_3)_4Ge$, occurs. The trifluoromethylgermaniumhalides are stable towards C_3F_6 formation but redistribution reactions occur slowly. When $(CF_3)_3Gel$ is heated at 155°C in a sealed tube, $(CF_3)_4Ge$ and $(CF_3)_2Gel_2$ are formed. The following relative amounts are obtained starting from 1.00 $(CF_3)_3Gel$: After 15 h 0.06 and 0.08; after 30 h 0.11 and 0.12; after 90 h 0.19 $(CF_3)_4Ge$ and 0.19 $(CF_3)_2Gel_2$ [2].

 $(C_6F_5)_3$ GeGeCl₃ is thermally unstable. It decomposes slowly even at 0°C forming $(C_6F_5)_3$ GeCl and the polymer [GeCl₂]_n [8]. Solvolysis of $(C_6F_5)_3$ GeGe $(C_6F_5)_3$ with CH₃OH at 60°C (0.25 h) or CH₃COOH at 100°C (1 h) yields 85% $(C_6F_5)_3$ GeOCH₃ or 69% of $(C_6F_5)_3$ GeOC(O)CH₃ [5, 8].

Reactions with Organometallic Compounds

At 20 °C a mixture of $(C_6F_5)_3$ GeH and $Bi(C_2H_5)_3$ was prepared and heated to 70 °C. Finally the temperature was raised gradually to 110 °C (1 h), and 75% $(C_6F_5)_3$ GeBi $(C_2H_5)_2$ was formed (melting point 92 to 94 °C). When the mixture with a molar ratio of 2:1 was heated from 70 to 120 °C (0.5 h) and then to 170 °C (1 h), 72% $[(C_6F_5)_3Ge]_2BiC_2H_5$ is obtained (melting point 148 to 150 °C) [17]. Reactions of $(C_6F_5)_3$ GeH or $(C_6F_5)_2$ GeH₂ with $(C_2H_5)_3$ GeN $(C_2H_5)_2$ in hexane at 100 °C (1 h) lead respectively to 73% $(C_6F_5)_3$ GeGe $(C_2H_5)_3$ (boiling point 144 to 151 °C/1.5 Torr; melting point 98 to 102 °C) and 66% $(C_2H_5)_3$ GeGe $(C_6F_5)_2$ Ge $(C_2H_5)_3$ (boiling point 164 to 166 °C/1.5 Torr; melting point 41 to 44 °C) [3].

A twofold excess of Cd(CH₃)₂ reacts with (CF₃)₃Gel at 20 °C (24 h) to give 90% (CF₃)₃GeCH₃ (boiling point 57.5 °C; melting point -48.5 °C). Analogously, (CF₃)₂Gel₂ gives 92% (CF₃)₂Ge(CH₃)₂ (boiling point 78 °C) and C₂F₅Gel₃ yields 100% C₂F₅Ge(CH₃)₃. For NMR and IR spectra see [2]. (C₆F₅)GeCl₃ reacts in boiling C₆H₆ (10 h) with C₂H₅MgBr to form C₆F₅Ge(C₂H₅)₃ (boiling point 108 to 114 °C, n_D²⁰ = 1.4683, D₄²⁰ = 1.3954 g · cm⁻³). Analogously, (C₆F₅)₂GeBr₂ gave 67% (C₆F₅)₂Ge(C₂H₅)₂ (boiling point 134 °C/5 Torr, n_D²⁰ = 1.4805). The reaction of (C₆F₅)₃GeBr and C₂H₅MgBr yields 60% (C₆F₅)₃GeC₂H₅ (boiling point 156 °C/ 1 Torr, melting point 89 to 92 °C) [13]. In 19% yield (C₆F₅)₃GeGe(C₂H₅)₃ is formed from (C₂H₅)₃GeBr and [(C₆F₅)₃Ge]₂Hg · TIGe(C₆F₅)₃ in tetrahydrofuran [6].

The reaction of a mixture of $(C_6F_5)_3$ GeGe $(C_6F_5)_3$ and GeF₂ with 100% excess of C_6H_5 MgBr in ether gave $(C_6F_5)_3$ GeGe $(C_6H_5)_2$ Ge $(C_6F_5)_3$. A mixture of $(C_6F_5)_3$ GeGe $(C_6F_5)_3$ reacted with C_6H_5 GeCl at 100°C (2 h) to yield 24% of $(C_6F_3)_3$ GeGe (C_6H_5) ClGe $(C_6F_5)_3$ [8].

Reactions with $(C_6H_5P)_5$, $C_6H_5PLi_2$, Dimethylbutadiene and

 $(CH_3)_2N(C_6H_5)Ge$ CH₃ CH₃ CH₃

A suspension of $(C_6F_5)_3GeGe(C_6F_5)_3$ and $(C_6H_5P)_5$ in benzene was heated at 180°C (15 h) in a carius tube forming 39% of $(C_6F_5)_3GeP(C_6H_5)Ge(C_6F_5)_3$ (melting point 90 to 92°C). The same product can also be made from $C_6H_5PLi_2$ and $(C_6F_5)_3GeCl$ in 45% yield. When $(C_6F_5)_3GeH$ was mixed with the heterocycle A in tetrahydrofuran, crude

was formed, which exploded during an attempted distillation. The germaheterocycle was also made from $(C_6F_5)_3$ GeGe $(C_6F_5)_3$, GeF₂, C_6H_5 MgBr and dimethylbutadiene at 130 °C (2 h) in 27% yield [15].

Complexing Reactions

A solution of $Pt[P(C_6H_5)_3]_3$ in benzene and $[(C_6F_5)_2Ge]_3Bi_2$ gave 98% $[(C_6F_5)_2Ge]_3Bi_2Pt[P(C_6H_5)_3]_3$. A X-ray structure of the complex is provided [18]. Insertion reactions are shown between Ge-H bonds and $Pt[P(C_6H_5)_3]_3$. This is demonstrated by the following examples: A mixture of $(C_6F_5)_3GeH$ and $Pt[P(C_6H_5)_3]_3$ reacted at 20°C (1 h) to yield $(C_6F_5)_3GePt[P(C_6H_5)_3]_2H$ (62%). Similarly $(C_6F_5)_2GeH_2$ and $Pt[P(C_6H_5)_3]_3$ gave on standing at 20°C after 1 h $(C_6F_5)_2GeHPt[P(C_6H_5)_3]_2H$. Depending on the molar ratio of $(C_6F_5)_2GeHGeH(C_6F_5)_2$ to $Pt[P(C_6H_5)_3]_3$, the reaction in benzene takes place according to:

$$(C_{6}F_{5})_{2}GeHGeH(C_{6}F_{5})_{2} + Pt[P(C_{6}H_{5})_{3}]_{3} \rightarrow (C_{6}F_{5})_{2}GeHGe(C_{6}F_{5})_{2}Pt[P(C_{6}H_{5})_{3}]_{2}H \xrightarrow{Pt[P(C_{6}H_{5})_{3}]_{3}} (C_{6}F_{5})_{2}GePt[P(C_{6}H_{5})_{3}]_{2}HGe(C_{6}F_{5})_{2}Pt[P(C_{6}H_{5})_{3}]_{2}H$$

The complex $(C_6F_5)_3$ GeSPt[P $(C_6H_5)_3$]₂H is obtained from $(C_6F_5)_3$ GeSH and Pt[P $(C_6H_5)_3$]₃ in benzene at 20 °C (1 h) [9]. Similar insertions are given in the following examples [4]:

 $[(C_6F_5)_3Ge]_2M + Pt[P(C_6H_5)_3]_3 \xrightarrow{\text{benzene}} (C_6F_5)_3GeMPt[P(C_6H_5)_3]_2Ge(C_6F_5)_3$ (M = Hg, Cd, Zn)

The platinum complex can be replaced by $Pd[P(C_6H_5)_3]_2$ to form $(C_6F_5)_3GeHgPd-[P(C_6H_5)_3]_2Ge(C_6F_5)_3$ [4], see also [37, 40]. At 20 °C (1 h) $[(C_6F_5)_3Ge]_2Hg$ and $Cr(C_6H_6)_2$ react to $[(C_6H_5)_2Cr^+]_2\{[(C_6F_5)_3Ge]_4Hg\}^{2^-}$ [38]. Several complexes of $[(C_6F_5)_3Ge]_2Cd$ were synthesized with donor ligands L. All together eighteen substances of the formula $[(C_6F_5)_3Ge]Cd-xL$ were made [39].

Gmelin Handbook CF Comp. Suppl. 1

Polymerization Reactions

When a mixture of $(C_6F_5)_2$ GeHGeH $(C_6F_5)_2$ was heated with $(C_6F_5)_3$ GeHg C_2H_5 in toluene at 80 °C (1 h) and then heated to 110 °C, an oligomer (77% yield) forms with the empirical formula $C_{60}F_{50}$ Ge₄Hg₂ (melting point 221 to 223 °C). When Pt[P($C_6H_5)_3$]₃ in benzene or Hg{N[Si($CH_3)_3$]₂ $\}_2$ in toluene is added to this digermane at 20 °C (1 or 20 h) the polymers $C_{150}H_{78}F_{50}$ Ge₄Hg₂P₄Pt₂ and $(C_{24}F_{10}$ Ge₂Hg)₄ (86% yield) are produced, respectively [10].

References:

[1] B. G. Gowenlock, J. A. Hunter (J. Organometal. Chem. 140 [1977] 265/7). - [2] R. J. Lagow, R. Eujen, L. L. Gerchman, J. A. Morrison (J. Am. Chem. Soc. 100 [1978] 1722/6). [3] M. N. Bochkarev, N. S. Vyazankin, L. N. Bochkarev, G. A. Razuvaev (J. Organometal. Chem. 110 [1976] 149/57). - [4] M. N. Bochkarev, G. A. Razuvaev, L. P. Maiorova, N. P. Makarenko, V. I. Sokolov, V. V. Bashilov, O. A. Reutov (J. Organometal. Chem. 131 [1977] 399/408). - [5] M. N. Bochkarev, G. A. Razuvaev, N. S. Vyazankin, O. Yu. Semenov (J. Organometal. Chem. 74 [1974] C4/C5).

[6] M. N. Bochkarev, N. I. Gur'ev, L. V. Pankratov, G. A. Razuvaev (Inorg. Chim. Acta 44 [1980] L59/L60). - [7] G. A. Razuvaev, L. N. Bochkarev, G. S. Kalinina, M. N. Bochkarev (Inorg. Chim. Acta 24 [1977] L40/L42). - [8] M. N. Bochkarev, G. A. Razuvaev, N. S. Vyazankin (Izv. Akad. Nauk SSSR Ser. Khim. 1975 1820/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1975 1701/5; C.A. 84 [1976] No. 5085). - [9] M. N. Bochkarev, L. P. Maiorova, S. E. Skobeleva, G. A. Razuvaev (Izv. Akad. Nauk SSSR Ser. Khim. 1979 1854/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1979 1717/22; C.A. 92 [1980] No. 6630). - [10] M. N. Bochkarev, L. P. Maiorova, G. A. Razuvaev (Zh. Obshch. Khim. 50 [1980] 903/7; J. Gen. Chem. [USSR] 50 [1980] 730/3; C.A. 93 [1980] No. 71887).

[11] R. Eujen, H. Bürger (J. Organometal. Chem. 88 [1975] 165/9). - [12] J. A. Morrison,
L. L. Gerchman, R. Eujen, R. J. Lagow (J. Fluorine Chem. 10 [1977] 333/9). - [13] M. N.
Bochkarev, N. S. Vyazankin, L. P. Maiorova, G. A. Razuvaev (Zh. Obshch. Khim. 48 [1978] 2706/12; J. Gen. Chem. [USSR] 48 [1978] 2454/9; C.A. 90 [1979] No. 152310). - [14] D. J.
Brauer, H. Bürger, R. Eujen (Angew. Chem. 92 [1980] 859/60; Angew. Chem. Intern. Ed. Engl.
19 [1980] 836/7). - [15] A. Castel, J. Escudie, P. Riviere, J. Satgé, M. N. Bochkarev, L. P.
Maiorova, G. A. Razuvaev (J. Organometal. Chem. 210 [1981] 37/42).

[16] B. G. Gowenlock, J. A. Hunter (J. Organometal. Chem. 111 [1976] 171/8). - [17] M.
N. Bochkarev, N. I. Gur'ev, G. A. Razuvaev (J. Organometal. Chem. 162 [1978] 289/95). [18] M. N. Bochkarev, G. A. Razuvaev, L. N. Zakharov, Yu. T. Struchkov (J. Organometal. Chem. 199 [1980] 205/16). - [19] E. K. S. Liu, R. J. Lagow (J. Organometal. Chem. 145 [1978] 167/82). - [20] L. C. Krisher, W. A. Watson, J. A. Morrison (J. Chem. Phys. 61 [1974] 3429/ 33).

[21] R. J. Lagow, L. L. Gerchman, R. A. Jacob, Massachusetts Institute of Technology (U.S. 3954585 [1974/76]; C.A. **85** [1976] No. 160324). – [22] E. K. S. Liu, R. J. Lagow (J. Chem. Soc. Chem. Commun. **1977** 450). – [23] L. S. Harmon, E. K. S. Liu, R. J. Lagow (Inorg. Chem. **18** [1979] 607/9). – [24] L. G. Kuz'mina, T. V. Timofeeva, Yu. T. Struchkov, M. N. Bochkarev (Zh. Strukt. Khim. **22** [1981] 60/7; J. Struct. Chem. [USSR] **22** [1981] 44/9; C.A. **94** [1981] No. 201 149). – [25] G. F. Lanthier, J. M. Miller, S. C. Cohen, A. G. Massey (Org. Mass Spectrom. **8** [1974] 235/46).

[26] H. Oberhammer, R. Eujen (J. Mol. Struct. **51** [1979] 211/6). – [27] H. Bürger, R. Eujen (Spectrochim. Acta A **31** [1975] 1645/54). – [28] H. Bürger, R. Eujen (Spectrochim. Acta A **31** [1975] 1655/64). – [29] R. Eujen, H. Bürger (Spectrochim. Acta A **35** [1979] 549/58). – [30] R. Eujen, H. Bürger (Spectrochim. Acta A **35** [1979] 549/58). –

[31] S. Cradock, A. R. Green, J. L. Duncan (J. Mol. Spectrom. 77 [1979] 385/401). – [32] M. A. Lopatin, V. A. Kuznetsov, A. N. Egorochin, M. N. Bochkarev (Zh. Obshch. Khim. 49

[1979] 2257/63; J. Gen. Chem. [USSR] 49 [1979] 1983/7; C.A. 92 [1980] No. 93 527). — [33]
A. N. Egorochkin, E. I. Sevast'yanova, S. Ya. Khorshev, S. Kh. Ratushnaya, J. Satgé, P. Riviere, J. Barrau, S. Richelme (J. Organometal. Chem. 162 [1978] 25/35). — [34] A. N. Egorochkin, S. Ya. Khorshev, E. I. Sevast'yanova, S. Kh. Ratushnaya, J. Satgé, P. Riviere, J. Barrau, S. Richelme (J. Organometal. Chem. 155 [1978] 175/83). — [35] A. N. Egorochkin, S. Ya. Khorshev, J. Barrau, S. Richelme (J. Organometal. Chem. 155 [1978] 175/83). — [35] A. N. Egorochkin, S. Ya. Khorshev, J. Satgé, P. Riviere, J. Barrau, M. Massol (J. Organometal. Chem. 76 [1974] 29/36).

[36] M. A. Lopatin, V. A. Kuznetsov, A. N. Egorochkin, M. N. Bochkarev, A. V. Shabanov (Zh. Obshch. Khim. **50** [1980] 1757/64; J. Gen. Chem. [USSR] **50** [1980] 1428/33; C.A. **93** [1980] No. 238 258). — [37] V. I. Sokolov, V. V. Bashilov, D. A. Reutov, M. N. Bochkarev, L. P. Maiorova, G. A. Razuvaev (J. Organometal. Chem. **112** [1976] C47/C49). — [38] M. N. Bochkarev, L. W. Pankrato, G. A. Razuvaev (Izv. Akad. Nauk SSSR Ser. Khim. **1980** 2666; Bull. Acad. Sci. USSR Div. Chem. Sci. **1980** 2666/7; C.A. **94** [1981] No. 121 675). — [39] M. N. Bochkarev, V. S. Andreevichev, N. S. Vyazankin (Izv. Akad. Nauk USSR Ser. Khim. **1973** 702/ 3; Bull. Acad. Sci. USSR Div. Chem. Sci. **1973** 689/91; C.A. **79** [1973] No. 5429). — [40] M. N. Bochkarev, G. N. Bortnikov, N. P. Makarenko, L. P. Maiorova, A. V. Kiselev, Ya. I. Yashin (J. Chromatog. **170** [1979] 53/63).

[41] D. W. W. Anderson (Diss. Edinburgh 1973). - [42] L. J. Krause, J. A. Morrison (J. Am. Chem. Soc. **103** [1981] 2995/3001).

4.4 Perfluorohalogenoorgano Compounds of Tin

4.4.1 Preparation and Physical Properties

Tris(pentafluorophenyl)stannane (C₆F₅)₃SnH

 $\textbf{Bis(pentafluorophenyl)dichlorostannane}~(C_6F_5)_2SnCl_2$

Tetrakis(pentafluorophenyl)stannane (C₆F₅)₄Sn

Hexakis(pentafluorophenyl)distannane $(C_6F_5)_3SnSn(C_6F_5)_3$

[Hexakis(pentafluorophenyl)distannyl]mercury $(C_6F_5)_3SnHgSn(C_6F_5)_3$

 $[Tris(pentafluorophenyl)stannyl-tris(pentafluorophenyl)germyl]mercury (C_6F_5)_3SnHgGe(C_6F_$

In benzene SnCl₂ reacts with (C₆F₅)₂TlBr to give (C₆F₅)₂SnCl₂ [4]; see also Part 4, p. 182.

No new syntheses have been published for the other compounds, since Part 4, pp. 181/92, has appeared. New details on physical properties are given below, for chemical reactions see Chapter 4.4.2, p. 69.

UV absorption spectra (λ in nm) [11]:

 $(C_6F_5)_3SnH: \lambda_{max}$ (in pentane) = 267, λ_{max} (in CH_2Cl_2) = 267

 $(C_6F_5)_3SnSn(C_6F_5)_3$: λ_{max} (in pentane) = 243 (sh), 268 (sh); λ_{max} (in CH_2Cl_2) = 268 (sh)

 $[(C_6F_5)_3Sn]_2Hg: \lambda_{max} \text{ (in pentane)} = 260, 276 \text{ (sh)}; \lambda_{max} \text{ (in CH}_2Cl_2) = 260 \text{ (sh)}, 278$

 ^{199}Hg NMR of saturated solutions of $[(C_6F_5)_3\text{Sn}]_2\text{Hg}$ in toluene (a) and in CH $_2\text{Cl}_2$ (b): Chemical shift [standard (CH $_3)_2\text{Hg}]$ $\delta=-644.5$ (a) and -682 ppm (b), J(Hg- $^{117/119}\text{Sn})=18380/17550$ (\pm 10) Hz (a), J(Hg- $^{117/119}\text{Sn})=18690/17862$ (\pm 5) Hz (b) [19].

References p. 69

	A ₁ (Raman, p)	A ₂ (-)	E (Raman, dp)	F ₁ (—)	F ₂ (Raman, dp; IR)
v _{as} (CF ₃)			ν ₅	v ₉	V ₁₃
$v_{s}(CF_{3})$	ν ₁				ν ₁₄
$\delta_{as}(CF_3)$			ν ₆	ν ₁₀	v ₁₅
$\delta_s(CF_3)$	ν ₂				ν ₁₆
ջ(CF ₃)			ν ₇	ν ₁₁	v ₁₇
v(SnC₄)	ν ₃				ν ₁₈
$\delta(SnC_4)$			ν ₈		ν ₁₉
τ		ν_4		ν ₁₂	

Table 17 Fundamental Vibrations of $(CF_3)_4$ Sn according T_d symmetry [12]. For abbreviations see Table 11, p. 55.

Table 18

IR and Raman Spectra of (CF₃)₄Sn [12].

m ^V 8 V10	1 115	vs	1 108 w	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} & & 1 & 147 \\ & & & 1 & 238 \\ 5 & & & 1 & 286 \\ 6 & & & 1 & 393 \\ v_{17} & & & 1 & 832 \\ v_{3} & & & 1 & 865 \\ v_{16} & & & 2 & 214 \\ & & & & 2 & 240 \\ r & & & & 2 & 258 \\ v_{19} & & & 2 & 319 \\ v_8 & & & v_{48} \end{array}$	vvs w, sh } vw	~1135 vw, sh 1178 w, p	$\begin{array}{l} v_5, v_{13} \\ v_{14} \\ v_1 \\ v_{14} + v_8 \\ v_{15} + v_{16} \\ impurity \\ v_{13} + v_{18} \\ v_{13} + v_{16} \\ v_{14} + v_{16} \\ 2v_9 \\ v_9 + v_{14} \\ v_{13} + v_{14} \\ 2v_{14} \\ v_1 + v_{14} \end{array}$
	$\begin{array}{cccc} & & v_{19} \\ v_{3} & v_{3} \\ n & v_{7}, v_{1} \\ v & v_{18} \\ v & v_{6}, v_{1} \\ v_{5}, p & v_{2}, v_{1} \\ v_{13} - \\ v_{13} - \\ v_{3} + \\ ? \\ v_{16} + \\ 2v_{16} \\ v_{13} - \\ v_{13} - \\ v_{13} - \\ v_{13} - \\ v_{14} - \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Trifluoromethylstannane CF₃SnH₃

Trifluoromethyltribromostannane CF₃SnBr₃

Bis(trifluoromethyl)dibromostannane (CF₃)₂SnBr₂

Tris(trifluoromethyl)bromostannane (CF₃)₃SnBr

Tetrakis(trifluoromethyl)stannane (CF₃)₄Sn

The reduction of CF₃SnBr₃ with LiAlH₄ in dry diethyl ether at $-78 \,^{\circ}$ C (1.5 h) gave a mixture of compounds, which contains about 10% CF₃SnH₃. The rather unstable compound was characterized by ¹H NMR at $-40 \,^{\circ}$ C [external standard Si(CH₃)₄, positive sign downfield: $\delta = 7.00 \,$ ppm (quartet), J(F-H) = 2 to 3 Hz (not unambiguously resolved)] and by the mass spectrum. The most intense ions are CF₃¹²⁰SnH₂⁺ (m/e = 191) and a series of ions CF₃SnH_n⁺, FSnH_n⁺ and SnH_n⁺ [1].

On heating a mixture of SnBr₄ and Hg(CF₃)₂ in a sealed tube at 125 °C (67 h), 54% CF₃SnBr₃ and 19% (CF₃)₂SnBr₂ were obtained [2, 3]. When SnBr₄ and Hg(CF₃)₂ were reacted at 112 °C (42 h) 46% CF₃SnBr₃ and 3% (CF₃)₂SnBr₂ were isolated. The yields of CF₃SnBr₃ and (CF₃)₂SnBr₂ as a function of time and temperature are presented in [1]. The reaction of (CF₃)₂Cd · CH₃OCH₂CH₂OCH₃ with SnBr₄ in 1,6-dibromohexane yields, along with the main product (CF₃)₄Sn, the compounds CF₃SnBr₃ and (CF₃)₃SnBr in yields of 10 and 5%, respectively [18].

 CF_3SnBr_3 : ¹⁹F NMR (neat samples, positive shifts are lowfield from external standard CF_3COOH): $\delta(CF_3) = 31.2 \text{ ppm}$, ²J(Sn-F) = 875/831 Hz [1], $\delta(CF_3) = 29.8 \text{ ppm}$, J(Sn-F) = 868, 822 Hz, $\delta(CF_3) = 30.8 \text{ ppm}$, J(Sn-F) = 871/835 Hz; IR: 1212 (w), 1142 (s), 1130 (vs), 1091 (w), 1070 (sh), 1040 (w), 730 (w) cm⁻¹ [2, 3]. Mass spectrum at 70 eV [m/e, ion (relative intensity)]: 413, $CF_2SnBr_3^+$ (11); 363, $SnBr_3^+$ (100); 282, $SnBr_2^+$ (11); 201, $SnBr^+$ (77); 139, SnF^+ (33); 120, Sn^+ (88) [1]. Also observed were $SnBr_3^+$, $CF_3SnBr_2^+$, CF_3SnBr^+ and CF_3Sn^+ ; the first two ions were the most intense [3].

 $\begin{array}{l} (CF_3)_2 SnBr_2 \colon {}^{19} F \ NMR \colon \delta(CF_3) = 33.3 \ ppm, \ J(Sn-F) = 721/689 \ Hz \ [1]; \ \delta(CF_3) = 34.7 \ ppm, \ J(Sn-F) = 717/689 \ Hz. \ IR \colon 1180 \ (sh), \ 1140 \ (vs), \ 1114 \ (m), \ 1095 \ (sh), \ 1040 \ (vw), \ 730 \ (w) \ cm^{-1} \ [2, 3]. \\ \mbox{Mass spectrum} \ [m/e, \ ion \ (relative \ intensity)] \colon 399, \ CF_3(CF_2)SnBr_2^+ \ (2); \ 351, \ CF_3SnBr_2^+ \ (81); \ 337, \ (CF_3)_2SnBr^+ \ (32); \ 299, \ FSnBr_2^+ \ (23); \ 280, \ SnBr_2^+ \ (27); \ 201, \ SnBr^+ \ (100); \ 139, \ SnF^+ \ (68); \ 120, \ Sn^+ \ (64) \ [1], \ see \ also \ [18]. \ Also \ observed \ were \ CF_3SnBr_2^+ \ \ (base \ peak), \ (CF_3)_2SnBr^+, \ SnBr_2^+, \ SnBr_3(I) \ SnBr_3(I) \ SnBr_3(I) \ SnBr_3(I) \ SnBr_4(I) \ SnBr_4(I) \ SnBr_5(I) \ SnBr_5($

 $(CF_3)_3SnBr: {}^{19}F$ NMR (external standard CF_3COOH): $\delta = 36.3$ ppm, J(Sn-F) = 678, 656 Hz. Mass spectrum: m/e = 337, $(CF_3)_2CF_2SnBrF^+$ (20); 287, $CF_3SnF_2Br^+$ (20) [18].

A most convenient method of preparing $(CF_3)_4Sn$ is the reaction of $(CF_3)_2Cd \cdot CH_3OCH_2CH_2OCH_3$ with $SnBr_4$ [18]. $(CF_3)_4Sn$ is also formed by reacting SnI_4 with CF_3 radicals (e.g., from C_2F_6), formed in a low-energy plasma [5], ¹⁹F NMR (external standard $CFCI_3$): $\delta(CF_3) = -43$ ppm, ¹³C NMR [external standard $Si(CH_3)_4$]: $\delta(C) = 132.7$ ppm, $J(^{13}C-F) = 349.2$ Hz [7], ¹⁹F NMR (external standard CF_3COOH): $\delta = 38.8$ ppm, J(Sn-F) = 537, 514 Hz. Mass spectrum: m/e = 377, $(CF_3)_3SnCF_3^+$ (5); 327, $(CF_3)_3Sn^+$ (51) [18].

The molecular structure of $(CF_3)_4$ Sn has been determined by electron diffraction yielding the geometric parameters $r_a(C-F) = 1.338 \pm 0.002$ Å, $r_a(Sn-C) = 2.201 \pm 0.005$ Å and α (F-C-F) = 108.2°. The molecule has T_d symmetry [12]. The IR spectrum in the gas phase and the Raman spectrum in the liquid phase have been recorded (see **Table 18**, p. 67). The assignment is supported by means of a normal coordinate analysis. Distribution and notation of the fundamental vibrations are given in **Table 17**, p. 67).

Tetrakis(3,3,3-trifluoropropynyl)stannane (CF₃C≡C)₄Sn

Tetrakis(pentafluorophenylethynyl)stannane (C₆F₅C≡C)₄Sn

 $(CF_3C\equiv C)_4$ Sn was prepared by reaction of $CF_3C\equiv CMgl$ with SnBr₄ in ether solution [8]. A gas-phase electron diffraction study of $(CF_3C\equiv C)_4$ Sn yields the following internuclear distances r (in Å) and angles α , based on T_d symmetry for the C-Sn skeleton and on C_{3v} symmetry for the CF₃ groups: r(Sn-C) = 2.070 \pm 0.007 Å, r(C \equiv C) = 1.215 ± 0.006 Å, r(C-C) = 1.460 ± 0.007 Å, v(C-F) = 1.343 ± 0.002 Å, α (CCF) = 111.3° ± 0.2° [8]. These values are confirmed by a further diffraction study [9].

In 60 to 80% yield $(C_6F_5C\equiv C)_4$ Sn forms in the reaction of $[(C_2H_5)_2N]_4$ Sn with $C_6F_5C\equiv CH$. The melting point is 186 to 188 °C; ¹⁹F NMR (internal standard C_6F_6 , values recalculated to the standard CFCl₃): $\delta(F^2, F^6) = -135.05$, $\delta(F^3, F^5) = -162.01$, $\delta(F^4) = -150.40$ ppm, $J(F^2-F^4) = 3.0$ Hz, $J(F^3-F^4) = -20.0$ Hz [10].

4.4.2 Chemical Reactions

For an improved quantitative determination of fluorine in C_6F_5 and CF_3 compounds, among them $(C_6F_5)_4Sn$, by combustion of the sample in a closed tube filled with O_2 , followed by titration of F^- with $Th(NO_3)_4$ solution in the presence of Alizarine Red S, see [6].

Thermal Stability. Reactions with Cd(CH₃)₂, CH₃Li, (CH₃)₃CC=CSn(CH₃)₃

 CF_3SnH_3 which is thermally less stable than SnH_4 decomposes rapidly at -40 °C to yield a brown unidentified solid [1]. A neat sample of $(CF_3)_2SnBr_2$ decomposed totally in 72 h at 125 °C in an evacuated sealed tube [1]. Complete decomposition is also observed when $(CF_3)_4Sn$ was heated to 100 °C (24 h) in a sealed tube. The decomposition products consist of one equivalent cyclo- C_3F_6 , a small amount of SiF₄ and a nonvolatile residue. At 66 °C (24 h) only 58% of $(CF_3)_4Sn$ was decomposed to yield the same products. CF_3SnBr_3 was only slightly decomposed at 125 °C (24 h), since traces of $(CF_3)_2SnBr_2$ were observed [3].

CF₃SnBr₃ reacts with a small excess Cd(CH₃)₂ at 20°C (15 min) to give 92% CF₃Sn(CH₃)₃. With a tenfold excess Cd(CH₃)₂ under the same conditions CF₃Sn(CH₃)₃ is formed immediately and quantitatively. The reaction of CF₃SnBr₃ with substoichiometric amounts of Cd(CH₃)₂ yielded 58% CF₃Sn(CH₃)₃, 8% CF₃(CH₃)₂SnBr and 11% CF₃(CH₃)SnBr₂, along with unreacted CF₃SnBr₃. At 20°C (15 min) (CF₃)₂SnBr₂ reacted with Cd(CH₃)₂ to give 91% (CF₃)₂Sn(CH₃)₂. In an ether solution CH₃Li and CF₃SnBr₃ reacted at 20°C (3 min) to give 71% CF₃Sn(CH₃)₃. With a large excess of CH₃Li, 31% CF₃Sn(CH₃)₃ and 70% (CH₃)₄Sn were isolated. ¹H, ¹⁹F NMR and mass spectra of the methylated tin compounds are given in [1].

When $(CF_3C=C)_4Sn$ is heated with $(CH_3)_3CC=CSn(CH_3)_3$ to 140°C, $CF_3C=CSn(CH_3)_3$ is formed [13].

Complex Formation

Insertion reactions between $[(C_6F_5)_3Sn]_2Hg$ or $(C_6F_5)_3SnHgGe(C_6F_5)_3$ with $Pt[P(C_6H_5)_3]_3$ take place in benzene at 20 °C (2 h) according to $(C_6F_5)_3SnHgM(C_6F_5)_3 + Pt[P(C_6H_5)_3]_3$ $\rightarrow (C_6F_5)_3SnHgPt[P(C_6H_5)_3]_2M(C_6F_5)_3 + P(C_6H_5)_3$ (M = Sn, Ge) [14, 15]. The reaction between $(C_6F_5)_3SnHgGe(C_6F_5)_3$ and $Pt[P(C_6H_5)_3]_3$ gives the two isomers $(C_6F_5)_3SnPt[P(C_6H_5)_3]_4HgGe(C_6F_5)_3$ and $(C_6F_5)_3GPt[P(C_6H_5)_3]_2HgSn(C_6F_5)_3$ in 90 and 10% yield. An X-ray structure of $(C_6F_5)_3SnPt[P(C_6H_5)_3]_2HgGe(C_6F_5)_3$ is provided [16]. The complex $(C_6F_5)_3SnHgPt-[P(C_6H_5)_3]_2Sn(C_6F_5)_3$ was separated by chromatography [17].

References:

[1] L. J. Krause, J. A. Morrison (Inorg. Chem. **19** [1980] 604/7). – [2] J. A. Morrison, L. L. Gerchman, R. Eujen, R. J. Lagow (J. Fluorine Chem. **10** [1977] 333/9). – [3] R. J. Lagow, R. Eujen, L. L. Gerchman, J. A. Morrison (J. Am. Chem. Soc. **100** [1978] 1722/6). – [4] P. Royo (Rev. Acad. Cienc. Exactas Fis. Quim. Nat. Zaragoza **27** [1972] 235/51; C.A. **78** [1973] No. 136403). – [5] R. J. Lagow, L. L. Gerchman, R. A. Jacob, Massachusetts Institute of Technology (U.S. 3954585 [1974/76]; C.A. **85** [1976] No. 160324).

[6] M. N. Baryshnikova, T. P. Brioxanova, W. N. Lutjajeva (Khim. Elementorg. Soedin.
[Gorky] No. 4 [1976] 108/9; C.A. 88 [1978] No. 145673). - [7] L. A. Harmon, E. K. S. Liu, R. J. Lagow (Inorg. Chem. 18 [1979] 607/9). - [8] V. P. Novikov, L. S. Khaikin, L. V. Vilkov (J. Organometal. Chem. 42 [1977] 139/46). - [9] V. P. Novikov, L. S. Khaikin, L. V. Vilkov, E. T. Bogoradowskii, V. S. Zavgorodnii, A. A. Petrov (Zh. Obshch. Khim. 47 [1977] 958/9; J. Gen. Chem. [USSR] 47 [1977] 874/5; C.A. 87 [1977] No. 135681). - [10] E. T. Bogoradovskii, V.

S. Zavgorodnii, S. E. Skobeleva, A. N. Egorochkin, V. L. Maksimov, V. N. Cherkasov, A. A. Petrov (Zh. Obshch. Khim. **50** [1980] 2040/4; J. Gen. Chem. [USSR] **50** [1980] 1649/52; C.A. **94** [1981] No. 46 328).

[11] M. A. Lopatin, V. A. Kuznetsov, A. N. Egorochkin, M. N. Bochkarev (Zh. Obshch. Khim. 49 [1979] 2257/63; J. Gen. Chem. [USSR] 49 [1979] 1983/7; C.A. 92 [1980] No. 93 527).
[12] R. Eujen, H. Bürger, H. Oberhammer (J. Mol. Struct. 71 [1981] 109/16). – [13] E. T. Bogorodovskii, V. N. Cherkasov, V. S. Zavgorodnii, A. A. Petrov (Zh. Obshch. Khim. 47 [1977] 1433/4; J. Gen. Chem. [USSR] 47 [1977] 1317/8; C.A. 87 [1977] No. 135695). – [14] V. I. Sokolov, V. V. Bashilov, O. A. Reutov, M. N. Bochkarev, L. P. Mayorova, G. A. Razuvaev (J. Organometal. Chem. 112 [1976] C47/C49). – [15] M. N. Bochkarev, G. A. Razuvaev, L. P. Maiorova, N. P. Makarenko, V. I. Sokolov, V. V. Bashilov, O. A. Reutov (J. Organometal. Chem. 131 [1977] 399/ 408).

[16] T. N. Teplova, L. G. Kuz'mina, Yu. T. Struchkov, V. I. Sokolov, V. V. Bashilov, M. N. Bochkarev, L. P. Maiorova, P. V. Petrovskii (Koord. Khim. **6** [1980] 134/41; C.A. **92** [1980] No. 156 163). - [17] M. N. Bochkarev, G. N. Bortnikov, N. P. Makarenko, L. P. Maiorova, A. V. Kiselev, Ya. I. Yashin (J. Organometal. Chem. **170** [1979] 53/63). - [18] L. J. Krause, J. A. Morrison (J. Am. Chem. Soc. **103** [1981] 2995/3001). - [19] Yu. K. Grishin, V. A. Roznyatowskii, Yu. A. Ustynyuk, M. N. Bochkarev, G. S. Kalinina, G. A. Razuvaev (Izv. Akad. Nauk SSSR Ser. Khim. **1980** 2190).

4.5 Perfluorohalogenoorgano Compounds of Lead

Since the appearance of Part 4 in 1975, no new papers on lead compounds have been published.

5 Perfluorohalogenoorgano Compounds of Main Group 5 Elements

5.1 Preliminary Remarks

The compounds of the Main Group 5 elements phosphorus, arsenic, antimony, and bismuth, are covered to the end of 1973 in "Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente", Part 3, 1975 (cited here as Part 3), for further details see the preface of this Supplement Volume. The compounds with nitrogen will be reported separately.

5.2 Perfluorohalogenoorgano Compounds of Phosphorus

5.2.1 Cyclic Perfluorohalogenoorgano Compounds of Phosphorus

5.2.1.1 Homocyclic Phosphorus Compounds

5.2.1.1.1 Preparation and Physical Properties

Tetrakis(trifluoromethyl)cyclotetraphosphine (CF₃P)₄

Pentakis(trifluoromethyl)cyclopentaphosphine (CF₃P)₅

On dropping R₄Pb (R = CH₃, C₂H₅) into stirred CF₃Pl₂ under inert-gas atmosphere (CF₃P)₄ is formed according:

$$CF_{3}PI_{2} + R_{4}Pb \rightarrow (CF_{3}P)_{4} + RI + R_{3}PbI$$

 R_3PbI forms a deposit. After the end of the reaction the mixture is heated to 100 to 120 °C for 3 to 8 h and distilled in vacuo [1]. Mixtures of $(CF_3P)_4$ and $(CF_3P)_5$ are obtained by reaction of CF_3PHI and AgCN (20 °C, 2 h) [2] and by reduction of CF_3PI_2 with Hg in presence of less than stoichiometric amounts of HI [3].

Fig. 1. Ring shape characterization of $(CF_3P)_4$. The phosphorus atoms are designated by numbers.

Gmelin Handbook CF Comp. Suppl. 1 References p. 74

³¹P NMR Spectra. Molecular Structure

 $(CF_3P)_4$ shows in benzene the chemical shift $\delta(^{31}P) = -76.4$ ppm [4] or -76.71 ppm at 30 °C [5], referred to 85% H_3PO_4 (negative sign means highfield from the standard). The ¹⁹Fdecoupled ³¹P NMR spectra were investigated in nematic solvents [4, 5]. Measurements in "Merck Phase 4" give δ values between -67.08 (at 9.5°C) and -70.21 ppm (at 40°C) at different ordering parameters S_{77} of the molecule in the liquid-crystal phase (obtained by varying the temperature). These values are corrected for the temperature dependence of the phosphorus chemical shift, $\Delta\delta/\Delta t = 0.052$ ppm/°C. From a relation between the shifts in the isotropic phase (benzene solution, see above) and in the nematic phase (for $S_{77} \rightarrow 0$) the chemical shift anisotropy $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} = 129 \pm 15$ ppm results ($\sigma_{\parallel} = \sigma_{zz}, \sigma_{\perp} = (\overline{\sigma}_{xx} + \sigma_{yy})/2$, for the coordinate system see **Fig. 1**, p. 71). The spin-spin coupling constant $J_{1,2} = \mp 100.6$ Hz is obtained from the ³¹P NMR in a 60:40 mixture of N-(4-methoxybenzylidene-4-n-butylaniline) and butyl-4-(4-ethoxyphenoxycarbonyl)phenylcarbonate. Assuming that the J₁₂ coupling is isotropic, the dependence of the dipole-dipole coupling constants D12 and D13 from Szz gives a ring folding angle $\alpha = 24.8^{\circ} \pm 0.7^{\circ}$ [4, 5]. The P-P-P angle is 84.5° [5]. The ¹⁹F-decoupled 40 MHz- 31 P spectrum of (CF₃P)₅ at 40 °C shows a well-resolved AA'BB'C system spread over 1000 Hz. The shifts δ (in ppm, external standard 85% H₃PO₄) and coupling constants J (in Hz) are given in the following [6]:

The analysis of the spectrum shows that the phosphine has a rigid C_s symmetry or that a conformational change, fast on the NMR time scale, occurs to produce an average C_s symmetry. According to X-ray structural data (see Part 3, p. 4) the latter hypothesis seems more likely [6].

Photoelectron Spectra

The analysis of the He(I) photoelectron spectra of $(CF_3P)_4$ gives the vertical ionization energies $E_i = 10.18$ and 10.58 eV, which are assigned to ionization from the phosphorus lonepair MO's of symmetry a_1 and e, respectively, further $E_i = 12.38$ eV (ionization from σ_{pp} MO, symmetry e), and $E_i = 12.89$ eV (overlap of ionizations from the b_2 phosphorus lone pair MO and the a_1 and $b_1 \sigma_{pp}$ MO's). The assignment used in an earlier analysis, see Part 3, p. 3, is changed in this investigation in the light of MO calculations [7]. For (CF₃P)₅, the five peaks at 9.79, 10.13, 10.71, 11.21, and 12.1 eV are assigned to the ionization of the phosphorus lone pair MO's of the symmetries a", a', a', a", and a' (in order of increasing energy) [7].

References p. 74

Tris(pentafluorophenyl)cyclotriphosphine (C₂F₅P)₃

Tetrakis(pentafluorophenyl)cyclotetrakisphosphine (C₂F₅P)₄

Pentakis(pentafluorophenyl)cyclopentaphosphine (C₂F₅P)₅

For preparation and properties, see Part 3, p. 1. — The question of the existence of the trimer and pentamer is investigated by ¹⁹F-decoupled ³¹P NMR spectroscopy [8]. The reaction of $C_2F_5Pl_2$ and Hg (see Part 3, p. 1) forms mixtures which are said to contain $(CF_3P)_3$ and $(CF_5P)_4$ according to [9] or $(CF_3P)_5$ and $(CF_3P_4)_4$ according to [10]. In freshly prepared mixtures the ³¹P NMR shows a singlet at $\delta = -72.9$ and a multiplet at $\delta = -145.1$ ($J_{P.P} = 168$ Hz, external standard 85% H₃PO₄). The singlet is assigned to the tetramer, the multiplet corresponds to the AB₂ spin system of a trimer [8]. This fact confirms the assignment of the -71.9 ppm [10] signal, but contradicts the interpretation [10] of a shift of -144.2 ppm as the signal of the pentamer [8]. On standing for several weeks at room temperature there is observed a 100% conversion of the trimer to the tetramer [8, 10], see also the investigation of this conversion in [11], which is corrected and discussed in [8].

The analysis of the He(I) photoelectron spectrum of $(C_2F_5P)_4$ gives the vertical ionization energies $E_i = 9.9$ and 10.48 eV (ionization from the phosphorus lone-pair MO's of symmetry a_1 and e, respectively), further $E_i = 11.95$ (ionization from σ_{pp} MO, symmetry e) and $E_i =$ 12.65 eV (overlap of ionization from the b_2 phosphorus lone-pair MO and the a_1 and $b_1 \sigma_{pp}$ MO's). For $(C_2F_5P)_3$ the peaks at 10.39, 10.83 and 11.69 eV are assigned to the ionization from the lone-pair MO's of symmetry a', a'' and a', respectively. The ionization from σ_{pp} MO's leads to $E_i = 12.76$ (a'') and 14.42 eV (a') [7].

Tris(heptafluoropropyl)cyclotriphosphine (C₃F₇P)₃

Tetrakis(heptafluoropropyl)cyclotetrakisphosphine $(C_3F_7P)_4$

Pentakis(heptafluoropropyl)cyclopentakisphosphine (C₃F₇P)₅

 $(i-C_3F_7P)_3$ forms in quantitative yield by reaction of $i-C_3F_7Pl_2$ with Hg. The stable and transparent liquid solidifies at 20 °C. The vapor pressure at 25 °C is 0.75 Torr. The ³¹P NMR spectrum shows a chemical shift $\delta = -130$ ppm (standard H₃PO₄); UV: broad absorption band at 200 to 260 nm, IR: 1270 (s), 1240 (s), 1160 (m), 950 (w), 900 (w) cm⁻¹ [12]. The reaction of $n-C_3F_7Pl_2$ with an excess of mercury in a closed ampule overnight gives $(n-C_3F_7P)_4$ which was identified by its ³¹P (¹⁹F) NMR spectrum, a sharp singlet at $\delta = -62.6$ ppm (85% H₃PO₄ as external standard, C_6D_6 as solvent) [8]. The second resonance at $\delta = -141.4$ ppm, which was earlier observed in such a reaction mixture and assigned to the pentamer [10, 13] could not be found [8]. Similar to the interpretation of the perfluoromethyl system (see above), this signal should have been assigned to the three-membered ring [8].

Tetrakis(pentafluorophenyl)cyclotetraphosphine $(C_6F_5P)_4$

For preparation and physical properties, see Part 3, p. 2; additional reactions are given on p. 74.

5.2.1.1.2 Chemical Reactions

Cyclic phosphines react with fluoroiodoalkanes at temperatures between 160 to 220 °C in 4 to 10 h forming secondary unsymmetrically substituted iodophosphines (see pp. 106/7) [14, 15, 16] according to:

$$\frac{1}{4}$$
 (RP)₄ + R'I \rightarrow R(R')PI R = CF₃, C₂F₅, R' = n-C₃F₇, i-C₃F₇, CHFCF₂CL

The kinetics of the reaction were studied in the temperature range from 145 to 185 °C. The kinetic curves for conversion of the phosphine from 0 to 0.6 to 0.8 are represented by first-order equations. The reaction constants k and activation energies E_a (in kcal/mol) in the case of $R = CF_3$ are given in the following [14]:

 $R' = n-C_3F_7$, $k = 26 \times 10^2 h^{-1}$, $E_a = 31$, $R' = i-C_3F_7$, $k = 10 \times 10^2 h^{-1}$, $E_a = 36$, $R' = CHFCF_2Cl$, $k = 17 \times 10^2 h^{-1}$, $E_a = 33$

The determination of the reaction order with respect to the phosphine for the reaction with excess C_3F_7l gave n = 1. This fact, together with the overall first-order behavior of the reaction, leads to suppose that the reaction passes through the intermediate formation of a molecular complex, the rate of breakdown of which determines the rate of the whole process [17]. $(CF_3P)_5$ also forms secondary unsymmetrically substituted iodophosphines. The reaction proceeds not directly but with intermediate conversion of the pentamer to the tetramer which reacts with the fluoroiodophosphines [18].

On condensing $(CH_3)_3P$ into a solution of $(CF_3P)_4$, of $(CF_3P)_5$ or of a mixture of both phosphines in $C_6H_5CF_3$, a phosphine-phosphinidene $(CH_3)_3PPCF_3$, an analogue of a Wittig reagent, is formed. The NMR spectra are measured in presence of $(CH_3)_3P$ under slow-exchange conditions. ¹⁹F NMR (external standard CFCl₃): $\delta(CF_3) = -26.7 \pm 1.4$ (doublet of doublets, position solvent-dependent), $J(CF_3-P) = 37.2$ Hz, $J(CF_3P-P) = 23.6$ Hz, ³¹P NMR (external standard 85% H₃PO₄): $\delta(CF_3P) = -81.0$ ppm (doublet of quartets) and $\delta[P(CH_3)_3] = 12.7$ ppm (doublet of quartets), J(P-P) = 436.5 and 436.3 Hz, respectively, $J(P-CF_3) = 37.4$ Hz, $J(P-PCF_3) = 23.3$ Hz. Positive signs mean downfield values. ¹H and ¹³C NMR data are also presented [19].

 $(CF_3P)_4$ reacts with $(CH_3)_3SiH$ and with $(CH_3)_3GeH$ to a negligible extent at 20°C in nine weeks. The reaction with $(CH_3)_3SnH$ is complete within 15 min [20] according to:

 $(\mathsf{CF}_3\mathsf{P})_4 + (\mathsf{CH}_3)_3\mathsf{SnH} \rightarrow (\mathsf{CH}_3)_3\mathsf{SnPHCF}_3 + (\mathsf{CH}_3\mathsf{Sn})_2\mathsf{PCF}_3 + \mathsf{CF}_3\mathsf{PH}_2$

 $(C_6F_5P)_4$ cleaves on reaction with Pt[P(C_6H_5)_3]_3 in boiling benzene in N₂ atmosphere. The fragments act as ligands forming Pt[P(C_6H_5)_3]_2[PC_6F_5]_2 [21].

References:

[1] E. G. Sochilin, A. N. Lavrent'ev, I. G. Maslennikov (U.S.S.R. 435249 [1974]; C.A. 81
[1979] No. 91726). - [2] R. C. Dobbie, P. D. Gosling, B. P. Straughan (J. Chem. Soc. Dalton Trans. 1975 2368). - [3] R. C. Dobbie, P. D. Gosling (J. Chem. Soc. Chem. Commun. 1975 585). - [4] J. P. Albrand, A. Cogne, D. Gagnaire, J. B. Robert (Mol. Phys. 31 [1976] 1021/30). - [5] J. P. Albrand, A. Cogne, J. B. Roberts (J. Am. Chem. Soc. 100 [1978] 2600/4).

[6] J. P. Albrand, J. B. Robert (J. Chem. Soc. Chem. Commun. **1974** 644/5). - [7] A. H. Cowley, M. J. S. Dewar, M. Lattman, J. L. Mills, M. McKee (J. Am. Chem. Soc. **100** [1978] 3349/54). - [8] L. R. Smith, J. L. Mills (J. Am. Chem. Soc. **98** [1976] 3852/7). - [9] A. H. Cowley, T. H. Furtsch, D. S. Dierdorf (Chem. Commun. **1970** 523/4). - [10] P. S. Elmer, M. E. Redwood, B. O. West (Chem. Commun. **1970** 1120).

Phosphorus Compounds

[11] A. N. Lavrent'ev, I. G. Maslennikov, V. A. Efanov, E. G. Sochilin (Zh. Obshch. Khim.
44 [1974] 2589; J. Gen. Chem. [USSR] 44 [1974] 2550; C.A. 82 [1975] No. 57098). - [12] R.
A. Wolcoft, J. L. Mills (Inorg. Chim. Acta 30 [1978] L331/L333). - [13] H. G. Ang, M. E.
Redwood, B. O. West (Australian J. Chem. 25 [1972] 493/8). - [14] A. N. Lavrent'ev, I. G.
Maslennikov, E. G. Sochilin (Zh. Obshch. Khim. 45 [1975] 1702/4; J. Gen. Chem. [USSR] 46
[1976] 1841/2; C.A. 86 [1977] No. 72753). - [15] E. G. Sochilin, A. N. Lavrent'ev, I. G.
Maslennikov (U.S.S.R. 423788 [1974]; C.A. 81 [1974] No. 4064).

[16] I. G. Mastennikov, A. N. Lavrent'ev, V. I. Shibaev, E. G. Sochitin (Zh. Obshch. Khim.
46 [1976] 1904/5; J. Gen. Chem. [USSR] 45 [1975] 1668/70; C.A. 83 [1975] No. 206376). –
[17] A. N. Lavrent'ev, I. G. Mastennikov, E. G. Sochitin (Zh. Obshch. Khim. 48 [1978] 942/3; J. Gen. Chem. [USSR] 48 [1978] 863; C.A. 89 [1978] No. 23 390). – [18] I. G. Mastennikov, A. N. Lavrent'ev, E. G. Sochitin (Zh. Obshch. Khim. 49 [1979] 2387/8; J. Gen. Chem. [USSR] 49 [1979] 2107/8; C.A. 92 [1980] No. 76603). – [19] A. H. Cowtey, M. C. Cushner (Inorg. Chem. 19 [1980] 515/8). – [20] S. Ansari, J. Grobe (Z. Naturforsch. 30 b [1975] 531/4).

[21] P. S. Elmes, M. L. Scudder, B. O. West (J. Organometal. Chem. 122 [1976] 281/8).

5.2.1.2 Heterocyclic Phosphorus Compounds

A mixture of 80% 1,3-diphosphetane and 20% 1,2-diphosphetane forms in 40 to 50% yield in the BF₃-catalyzed decomposition of $(CF_3)_2PSiH_3$ at 60 °C in 20 to 40 h. The reaction time decreases with increasing BF₃ concentration. The diphosphetanes are obtained in 40% yield on decomposing $(CF_3)_2PSi(CH_3)_3$ at 20 °C (5 h) in the presence of BF₃ (molar ratio phosphine/ BF₃ 1:2). The ¹⁹F NMR spectrum of the 1,2-diphosphetane (the ¹⁹F NMR spectrum of the 1,3diphosphetane is covered in Part 3, p. 11) shows the signals of the CF₃ groups as doublet of triplets, $\delta = -47$ ppm (standard CFCl₃), spin-spin coupling constants ²J = 92 Hz, ³J = 12.2 and 3.4 Hz. The CF₂ groups give a spectrum of second order, $\delta = -81$ ppm. This pattern was bounded by two major multiplets whose centers were 278 Hz apart [1].

2,3,5,6-Tetrakis(trifluoromethyl)-1,4-diphosphabenzene F₃C P CF₃

The compound forms on refluxing 2,3,5,6,7,8-hexakis(trifluoromethyl)-7-methoxy-1,4-diphosphabicyclo[2.2.2]octa-2,5-diene (see compound C, p. 77) in an oxygen-free stream of argon for 40 h [2, 3] or pyrolyzing 4,5,9,10,11,12-hexakis(trifluoromethyl)-1,8-diphosphatetracyclo- $[6.2.2.0^{2,7}.0^{3,6}]$ -dodeca-4,9,12-triene (see compound F, p. 78) at 180°C for 3 h [4].

The phosphabenzene is very sensitive to oxygen and base, but it is thermally stable (no change on heating at 180 °C for 3 h). The UV spectrum in hexane shows a strong absorption

band at 282 nm (molar absorptivity > 4000 to 5000). ¹⁹F NMR (benzotrifluoride as internal standard): $\delta = 11.6$ ppm [doublet, J(P-F) = 66 Hz]. ³¹P NMR (external standard 50% solution of H₃PO₄ in D₂O): $\delta = 287.1$ ppm. ¹³C NMR [external standard (CH₃)₄Si, in CDCl₃, decoupled by ¹⁹F]: δ (-C=P-) = 163.9 ppm [quartet, J(PC²) = 80.5 Hz, J(PC³) = 5.0 Hz], δ (CF₃) = 123.5 ppm (multiplet) [3]. (Downfield shifts are shown as positive.) In the mass spectrum a relatively weak molecular ion peak appears at m/e = 386 and a strong peak at m/e = 317 (M⁺ - CF₃) [2, 3].

The reaction of the diphosphabenzene with hexafluoro-2-butyne [2, 3], the photolysis [5, 6] and the thermolysis in presence of sulfur [7] yield new title compounds, see pp. 77, 79.

The phosphabenzene reacts with cyclohexene thioxide forming the following cycloadduct in addition to the 7-thia-1,4-diphosphanorbornadiene (see p. 80) [7]:

The diphosphabenzene reacts with acetylenic compounds to give 1:1 Diels-Alder adducts. The reactions with dimethylacetylene [3] and methylacetylenedicarboxylate [2, 3] in n-pentane as solvent in a sealed stainless-steel tube at 90 to 95 °C (14 h) yield the compounds A and B, respectively:

$$F_{3C} \xrightarrow{F_{3}C} P \xrightarrow{CF_{3}} A : X = CH_{3}$$

$$F_{3C} \xrightarrow{P} \chi \qquad B : X = CO_{2}CH_{3}$$

A: 78.7% yield, colorless needles, melting point 152 to 153 °C, IR: v(C=C) = 1600 cm⁻¹, UV (in CH₃OH): $\lambda_{max} = 272$ nm (log $\epsilon = 2.96$), 326 nm (log $\epsilon = 2.79$), ¹⁹F NMR [standard benzotrifluoride, in (CD₃)₂CO]; $\delta = 6.30$ ppm [doublet, ¹/₂(J_{PF} + J_{PF'}) = 37 Hz], MS: m/e = 440 (M⁺), ¹H NMR see [3].

B: 51.2% yield, pale yellow plates, melting point 108 to 110°C, $\lambda_{max} = 317$ nm (shoulder), ¹⁹F NMR (in CDCl₃): $\delta = 6.60$ ppm [doublet, ¹/₂(J_{JP} + J_{PF'}) = 40 Hz], MS: m/e = 528 (M⁺), ¹H NMR see [2, 3].

The reaction with hexamethyl-Dewar-benzene at 80 °C (1 h) in a sealed tube gives the following 1:1 Diels-Alder adduct [3]:

References p. 81

Yield 56%, yellow plates, melting point 182 to 184 °C, IR: v(C-H) = 2960, 2920, 2860 cm⁻¹, v(C=C) = 1610, 1585 cm⁻¹, ¹⁹F NMR: $\delta = 5.76$ ppm [6F, doublet, ¹/₂(J_{PF} + J_{PF'}) = 49.6 Hz, CF₃], 6.36 ppm [6F, doublet, ¹/₂(J_{PF} + J_{PF'}) = 54.1 Hz, CF₃]; MS: m/e = 548 (M⁺), ¹H NMR see [3].

The compound (see also Part 3, p. 10) forms on reacting 2,3,5,6-tetrakis(trifluoromethyl)-1,4-diphosphabenzene with hexafluoro-2-butyne in a sealed stainless-steel tube in pentane at 90 to 95°C for 14 h [3], see also [2]. It is also obtained in quantitative yield by the thermolysis of 2,3,5,6,7,8-hexakis(trifluoromethyl)-7-methoxy-1,4-diphosphabicyclo[2.2.2]octa-2,5-diene (compound C, see below) with 0.5 molar equivalent of sulfur [7].

Physical Properties are given in Part 3, p. 12.

Stirring the octatriene in CH_3OH in presence of $RhCl_3$ gave the three products C, D and E [2, 3].

Compound **C** is the main product of the reaction (55% yield), melting point 68 to 70 °C, ¹⁹F NMR (internal standard benzotrifluoride, solvent CDCl₃): $\delta = -3.36$ ppm (3F, multiplet, CF₃), 6.80 ppm (15 F, multiplet, CF₃), UV (in CH₃OH): $\lambda_{max} = 243$ nm (log $\varepsilon = 3.29$), 332 nm (log $\varepsilon = 3.00$), IR (in KBr): v(C=C) = 1600 cm⁻¹, ¹H NMR see [3]. Compound **D** is obtained in 3.8% yield, melting point 85 to 86 °C, ¹⁹F NMR: $\delta = -3.88$ ppm (3F, multiplet, CF₃), 6.40 ppm (12 F, multiplet, 4 × CF₃), v(C=O) = 1740, v(C=C) = 1710 cm⁻¹, ¹H NMR see [3]. Compound **E** (5.3% yield) melts at 81 to 82 °C, ¹⁹F NMR: $\delta = -2.20$ ppm (3F, multiplet, CF₃), 5.80 ppm [13 F, multiplet, 4 × CF₃ + C=CF(OCH₃)], v(C=C) = 1645, 1620 cm⁻¹, ¹H NMR see [3].

The reaction with diazomethane yields quantitatively at 20°C 3,4-bis(trifluoromethyl)pyrazole [4, 8] (after sublimation at 90°C/6 Torr colorless needles, melting point 122°C [8]). The reaction with phenylazide (sealed Pyrex tube, heating at 80°C for 50 h in a solution of C_6H_6 and CH_3CN) gives quantitatively 1-phenyl-4,5-bis(trifluoromethyl)-1,2,3-triazole [4, 8], a pale yellow oil, ¹⁹F NMR: δ = 8.0 and 3.8 ppm [both doublets, J(F-F) = 6.8 Hz] [4]. With furan, 2,5-dimethylfuran and tetraphenylcyclopentadienenone no reaction of the octatriene occurs. The reaction with cyclobutadiene (generated from cyclobutadiene ironthiocarbonyl) gives the following compounds, which are separated by SiO₂-column chromatography [4, 9].

Gmelin Handbook CF Comp. Suppl. 1

References p. 81

Exo adduct: Yield 23.7%; melting point 97 to 98 °C; ¹⁹F NMR (standard benzotrifluoride): $\delta = 5.40$ ppm [6F, doublet, $1/2(J_{PF} + J_{PF'}) = 40.6$ Hz, CF₃], 6.06 ppm [6F, doublet, $1/2(J_{PF} + J_{PF'}) = 38.4$ Hz, CF₃], 6.16 ppm [6F, doublet, $1/2(J_{PF} + J_{PF'}) = 38.8$ Hz, CF₃].

Endo adduct: Yield 33.2%, melting point 111 to 112°C, ¹⁹F NMR : $\delta = 2.84$ ppm [6 F, doublet, ¹/₂(J_{PF} + J_{PF'}) = 41.7 Hz, CF₃], 6.04 ppm [6 F, doublet, ¹/₂(J_{PF} + J_{PF'}) = 39.5 Hz, CF₃], 6.08 ppm [6 F, doublet, ¹/₂(J_{PF} + J_{PF'}) = 39.5 Hz, CF₃], 6.08 ppm

The reaction with 2,3-dimethylbutadiene (stainless-steel tube, 100 °C, 5 h) does not give the expected primary adduct but 1,2-dimethyl-4,5-bis(trifluoromethyl)-1,4-cyclohexadiene as a decomposition product and additionally an unidentified compound (for the physical properties of both compounds, see the original reference) [4]. The reaction with butadiene is mentioned, but no details are given [4].

Dodecafluoro-13,14-diphosphatriptycene

2,3,5,6-Tetrakis(trifluoromethyl)-7,7-dichloro-1,4-diphosphabicyclo[2.2.1]hepta-2,5-diene

The compound is obtained in 54% yield by heating 2,3,5,6,7,8-hexakis(trifluoromethyl)-7-methoxy-1,4-diphosphabicyclo[2.2.2]octa-2,5-diene in CCl₄ in an evacuated Pyrex tube [3]. The compound forms yellow needles (sublimation at 30 °C/760 Torr) [3], melting point 39 to 39.5 °C, IR (KBr) v(C=C) = 1 600 cm⁻¹, ¹⁹F NMR (standard benzotrifluoride): $\delta = 8.00$ ppm [doublet, ¹/₂(J_{PF} + J_{PF'}) = 22.6 Hz], mass spectrum m/e = 468 (M⁺) [3, 11].

References p. 81

1,3,4,6-Tetrakis(trifluoromethyl)-2,5-diphosphatricyclo[3.1.0.0^{2,6}]hex-3-ene

Irradiation (high-pressure lamp) of a solution 2,3,5,6,7,8-hexakis(trifluoromethyl)-7-methoxy-1,4-diphosphabicyclo [2.2.2]octa-2,5-diene in perfluoropentane sealed in vacuo in a Pyrex tube for 72 h at room temperature yields the compound after trap-to-trap distillation. It is a colorless volatile oil which solidified at -78 °C. The yield is 41%, based on octa-2,5diene. The compound is also obtained by irradiation of 2,3,5,6-tetrakis(trifluoromethyl)-1,4diphosphabenzene (formed in situ by thermolysis of the diphosphabicyclooctadiene in nhexane) in perfluoropentane at 20°C (72 h, Ar atmosphere) [6]. IR (in n-pentane): v(C=C) = 1620 [10, 11], 1300 to 1100 cm⁻¹ [6]. ¹⁹F NMR (in n-pentane, internal standard benzotrifluoride): δ = 10.2 ppm [6F, doublet, $\frac{1}{2}(J_{PF} + J_{PF})$ = 22.6 Hz], 6.0 ppm (6F, triplet, J_{PF} = 5.2 Hz). ¹³C NMR (CDCl₃): δ = 71.71 ppm (triplet, J_{PC} = 47.5 Hz), 191.1 to 123.0 ppm (multiplet, CF₃) [6] (¹⁹F-decoupled spectrum pictured in [10]). ³¹P NMR (CDCl₃, external standard 85% H₃PO₄): δ = 17.96 ppm [5, 6]. Mass spectrum m/e = 386 (M⁺) [5, 6].

The compound is stable at room temperature and is not attacked by oxygen. On heating it isomerizes to 2,3,5,6-tetrakis(trifluoromethyl)-1,4-diphosphabenzene. The half-life of the diphosphacyclohexene in perfluorobenzene at 198°C is found to be 75 min. Irradiation of the compound with a low pressure mercury lamp also yields the 1,4-diphosphabenzene (see p. 75) [6].

The Diels-Alder reaction with 2,3-dimethyl-1,3-butadiene gave the stable 8,9-dimethyl-1,3,4,6-tetrakis(trifluoromethyl)-2,5-diphosphatetracyclo[$4.4.0.0^{2.4}.0^{3.5}$]dec-8-ene, melting point 55 to 56 °C. ¹⁹F NMR (CDCl₃, internal standard benzotrifluoride) δ = 9.2 ppm (6F, multiplet), 3.2 ppm (6F, doublet, J_{PF} = 22.6 Hz), ¹H NMR see [6].

The reaction with furan in n-pentane at 20 °C (5d) under stirring yields the adduct (colorless crystals)

Melting point 66 to 70 °C. ¹⁹F NMR (CDCl₃, internal standard benzotrifluoride): δ = 10.8 ppm (6 F, doublet, J_{PF} = 31.6 Hz), 8.8 ppm (6 F, multiplet), for ¹H NMR, see the original [6].

The treatment with phenylazide in n-pentane in a sealed Pyrex tube (50°C, 2 d) gave 9-phenyl-1,3,4,6-tetrakis(trifluoromethyl)-2,5-diphosphatriazatetracyclo [$4.3.0.0^{2,4}.0^{3.5}$]non-7-ene as a pale yellow oil, boiling point 70 °C/7 Torr. ¹⁹F NMR (internal standard benzotrifluoride, CDCl₃): δ = 10.8 ppm (3 F, multiplet), 10.0 ppm (3 F, multiplet), 5.2 to -2.8 ppm (CF, multiplet), ¹H NMR see [6].

2,3,5,6-Tetrakis(trifluoromethyl)-7-thia-1,4-diphosphanorbornadiene

The thermolysis of 2,3,5,6,7,8-hexakis(trifluoromethyl)-7-methoxy-1,4-diphosphabicyclo-[2.2.2]octa-2,5-diene with excess sulfur in pentane in a sealed tube at 100 °C (48 h) gave the title compound as an air-stable yellow oil. It is also obtained in almost quantitative yield in the reaction of 2,3,5,6-tetrakis(trifluoromethyl)-1,4-diphosphabenzene with cyclohexene thioxide. The compound shows the C=C stretching band at 1610 cm⁻¹, ¹⁹F NMR (in pentane, external standard benzotrifluoride): $\delta = 6.8$ ppm (J_{PF} = 24.8 Hz). The desulfurization of the norbornadiene with (C₆H₅)₃P leads to the 1,4-diphosphabenzene [7].

The compound forms on the thermolysis of 2,3,5,6,7,8-hexakis(trifluoromethyl)-7-methoxy-1,4-diphosphabicyclo[2.2.2]octa-2,5-diene with 0.5 molar equivalent of sulfur in almost quantitative yield as a very air-sensitive oil. IR: v (C-F) = 1238, 1175 cm⁻¹, ¹⁹F NMR (in pentane, external standard benzotrifluoride): δ = 12.8 ppm (J_{PF} = 51 Hz), UV (in hexane): λ_{max} = 248 (ε > 1100), 322 nm (ε > 850). The compound is a good diene for Diels-Alder reactions. With hexafluoro-2-butyne it reacts forming 2,3,5,6-tetrakis(trifluoromethyl)-7-thia-1,4-diphosphanorbornadiene quantitatively. Treatment with maleic anhydride in pentane gave the adduct

in 57% yield, melting point 135 to 136°C, ¹⁹F NMR (in CDCl₃): $\delta = 9.6$ ppm (J_{PF} = 27.1 Hz) [7].

5-Pentafluorophenyloctafluorodibenzophosphole

The phosphole (melting point 151 to $153 \,^{\circ}$ C) is prepared [12] using the method given in [13] for the preparation of 5-phenyloctafluorodibenzophosphole from octafluoro-2,2'dilithiobiphenyl and phenyldichlorophosphine. The mass spectrum of the compound is discussed in [12]. It gives rise to a large variety of fluoroaromatic fragments, many of which result from PF_n losses (n = 1, 2, 3) [12].

References:

[1] L. Maya, A. B. Burg (Inorg. Chem. 14 [1975] 698/700). - [2] Y. Kobayashi, I. Kumadaki,
A. Ohsawa, H. Hamana (Tetrahedron Letters 1976 3715/6). - [3] Y. Kobayashi, H. Hamana,
S. Fujino, H. Ohsawa, I. Kumadaki (J. Am. Chem. Soc. 102 [1980] 252/5). - [4] Y. Kobayashi,
H. Hamana, S. Fujino, A. Ohsawa, I. Kumadaki (J. Org. Chem. 44 [1979] 4930/3). - [5] Y.
Kobayashi, S. Fujino, H. Hamana, I. Kumadaki, Y. Hanzawa (J. Am. Chem. Soc. 99 [1977] 8511).

[6] Y. Kobayashi, S. Fujino, H. Hamana, Y. Hanzawa, S. Morita, I. Kumadaki (J. Org. Chem. 45 [1980] 4683/5). — [7] Y. Kobayashi, S. Fujino, I. Kumadaki (J. Am. Chem. Soc. 103 [1981] 2465/6). — [8] Y. Kobayashi, I. Kumadaki, A. Ohsawa, H. Hamana (Tetrahedron Letters 1977 867/8). — [9] Y. Kobayashi, I. Kumadaki, Y. Hanzawa, H. Hamana, S. Fujino (Tetrahedron Letters 1976 4815/6). — [10] C. M. Woodard, G. Hughes, A. G. Massey (J. Organometal. Chem. 112 [1976] 9/19).

[11] Y. Kobayashi, I. Kumadaki, H. Hamana, S. Fujino (Tetrahedron Letters **1977** 3057/8). - [12] T. R. B. Jones, J. M. Miller, S. A. Gardner, M. D. Rausch (Can. J. Chem. **57** [1979] 335/41). - [13] R. D. Chambers, D. J. Spring (J. Fluorine Chem. **1** [1971/72] 309/20).

5.2.2 Perfluoroorganophosphines

5.2.2.1 Preparation and Formation

2,2-Difluorophosphaethylene F₂C=PH

 $F_2C=PH$ was postulated as an intermediate in the reaction of phosphines containing the group >CFPH- with aqueous bases [1] and its ion was found in the mass spectra of some trifluoromethylphosphines [2]. The short-lived compound has been detected by MW spectroscopy in the flow-system pyrolysis of CF_3PH_2 at 1000 °C at pressures in the range from 10 to 30 μ m, as half-live 1.3 min were determined [3]. It forms also on passing of a CF_3PH_2 stream at 30 Torr at room temperature through a tube filled with broken KOH pellets [4, 5].

Trifluoromethylphosphine CF₃PH₂

The phosphine is formed in quantitative yield by the reaction of CF_3PI_2 with Hg and excess HI (>2 mol) [6]; for this reaction see also Part 3, p. 14. CF_3PH_2 is obtained on decomposition of CF_3PHCl or CF_3PHBr and on decomposition of CF_3PHI in presence of AgCl, AgBr, AgCN, HgCl₂ and SbF₃ (all reactions at room temperature) [7]. Cleavage of $CF_3PHPHCF_3$ by HCl [7] or HI [6] at room temperature as well as the reaction of $(CF_3P)_4$ with $(CH_3)_3SH$ (15 min at room temperature) [8] gives CF_3PH_2 . It also forms in a low-pressure silent discharge of $CF_3PHPHCF_3$ and of $(CF_3)_2PH$ [30]. Very high yields of the phosphine are found in the reaction of CF_3PI_2 with $(CH_3)_3SH$ in sealed tube at room temperature within a few minutes [9]. CF_3PH_2 forms quantitatively on reacting $[(CH_3)_3M]_2PCF_3$ or $(CH_3)_3MPHCF_3$ (M = Si, Ge, Sn) with HBr and by decomposition of $(CH_3)_3MPHCF_3$.

Bis(trifluoromethyl)phosphine (CF₃)₂PH

The phospine forms in the reaction of $(CH_3)_3SnH$ with $(CF_3)_3PI$ at 20°C in a few minutes in >95% yield [9] and with $(CF_3)_4P_2$ at 20°C in one hour [8]. CF_3AsH_2 or $(CH_3)_3MAsHCF_3$ cleaves off $(CF_3)_2PH$ from compounds of the type $(CH_3)_3MP(CF_3)_3$ (M = Si, Ge, Sn) [13]. The phosphine is obtained quantitatively by decomposition of $(CF_3)_2PAsH_2$ above -40°C or by the reaction of $(CF_3)_2PAsH_2$ with Br₂, HBr, $(CH_3)_2AsH$, $(CH_3)_3SiH$ and $(CH_3)_4As_2$ [11]. The cleavage of $R(CF_3)PP(CF_3)_2$ by HCl at 20°C gives the phosphine in yields increasing in the order R = CH_3 , CH_2F , CHF_2 ; it is also obtained by the reaction of $(CF_3)_2PCH_2P(CF_3)P(CF_3)_2$ with HCl [12].

Cleavage reactions of $(CF_3)_2PP(CF_3)_2$ with $(CH_3)_3GeH$ at 150 °C or with $(CH)_3SnH$ at 20 °C form $(CF_3)_2PH$, which is also obtained from $(CF_3)_2PAs(CH_3)_2$ and $(CH_3)_3SnH$ at 20 °C. $(CF_3)_2PXCF_3$ (X = S, Se) reacts with $(CH_3)GeH$ at 100 °C and with $(CH_3)_3SnH$ at -10 °C for X = S, and at 0 °C for X = Se, quantitatively to yield the phosphine. The formation of $(CF_3)_2PH$ is also observed in the reaction of $(CF_3)_2PYCH_3$ (Y = Se, Te) with HI, of $(CF_3)_2PTECH_3$ with HBr at 20 °C, of $(CF_3)_2PXCH_3$ (X = S, Se) with $(CH_3)_3SnH$ (at 0 °C and 0.4 h for X = S and -40 °C and 0.4 h for X = Se) and with $(C_6H_5)_3SnH$ (at 20 °C and 1 d for X = S, Se), furthermore in the reaction of $(CF_3)_2PSn(CH_3)_3$ with CH_3XH (X = S, Se) at -40 °C (0.2 h) and with $(CH_3)_2ASH$ at 20 °C (1 d) [13]. The phosphine forms in the reaction of $(CF_3)_2PSn(CH_3)_3$ with $Cr(CO)_5(CH_3)_2ASH$ at 20 °C [14] and in the hydrolysis of $(CF_3)_2PSeP(CF_3)_2$ with hydrochloric acid [15].

 $(CF_3)_2$ PH forms in a low-pressure silent discharge of CF_3 PH₂ [30].

Trifluoromethylcyanophosphine CF₃PHCN

The compound has been detected by NMR spectroscopy in solutions of $CF_3P(CN)_2$ and CF_3PH_2 after standing for several weeks [7].

1,1-Bis(trifluoromethyl)diphosphine (CF₃)₂PPH₂

1,2-Bis(trifLuoromethyL)diphosphine CF₃PHPHCF₃

 $(CF_3)_2PPH_2$ is obtained by the reaction of F_3SiPH_2 with $(CF)_2PI$ in a sealed tube at 20°C (5 d) [16].

On reacting CF_3PI_2 with a less than stoichiometric amount of anhydrous HI in the presence of mercury, $CF_3PHPHCF_3$ is formed and can be separated easily from the by-products $[CF_3PH_2, (CF_3P)_n, n = 4,5]$ by fractional distillation [6]. Shaking CF_3PHI with dry mercury for 20 min yields the diphosphine in 96% yield. $CF_3PHPHCF_3$ is also formed in the reaction of CF_3PHI with HgCl₂, AgCl, SbF₃ CdF₂, and with NaF in acetonitrile, also in the reaction of CF_3PH_2 with Cl_2 and with $CF_3P(CN)_2$ as well as in the thermal decomposition of CF_3PHBr [7]. The diphosphine is obtained by a low-pressure silent discharge of CF_3PH_2 [30].

5.2.2.2 Physical Properties

F2C=PH

The analysis of the microwave spectrum gives the experimental rotational constants $A_0 = 11107.33$, $B_0 = 4766.33$ and $C_0 = 3330.79$ MHz. Rotational constants have been calculated from preliminary structural data; r(C-F) = 1.315 Å and $\alpha(F-C-F) = 107^{\circ}$ have been transferred

from F_2CS , r(P-H) = 1.420 Å from $(CH_3)_2PH$. The distance r(C=P) = 1.671 Å and the angle $\alpha(C-P-H) = 100^{\circ}$ have been obtained by variation to give the best agreement between the experimental and calculated rotational constants [3]. Ab initio MO-SCF calculations with the bases STO-3G and STO 4-31G resulted in the following values for the molecular energy E_T , the geometry parameters and the dipole moment μ [17]:

Basis	Ε _τ	r(C=P)	r(P-H)	α(C-P-H)	μ	
STO-3G	- 570.91108 a.u.	1.67 Å	1.39 Å	92.6°	2.60 D	
STO 4-31G	- 570.25194 a.u.	1.74 Å	1.67 Å	94.4°	1.024 D	

The calculation of the charge distribution shows that there is a substantial positive charge on the phosphorus atom. The barrier to in-plane inversion is calculated (STO-3G basis) to be 315 kJ/mol and the barrier for the out-of-plane rotation of the C-P-H fragment to be 570 kJ/mol [17].

The ¹H, ¹⁹F and ³¹P NMR spectra show the following chemical shifts δ (in ppm) and spinspin coupling constants J (in Hz), lowfield shifts are positive from the standards (CH₃)₄Si, CFCl₃ and P(OCH₃)₃ [5, 18]:

 $\delta(F^1)=4.2,\ \delta(F^2)=24.6,\ \delta(P)=-201.4,\ \delta(H)=3.55,\ J(P-H)=166.6,\ J(F^1-H)=19.2,\ J(F^2-H)=40.0,\ J(P-F^1)=213.6,\ J(P-F^2)=82.3,\ J(F^1-F^2)=25.4$

CF₃PH₂ and (CF₃)₂PH

The investigation of the He(I) photoelectron spectra of both phosphines gives the following vertical ionization potentials (in eV) which are tentatively assigned to localized molecular orbitals assuming C_s skeletal symmetry [19].

Assignment	Lone electron pair on phosphorus	P-C σ bond A″ 13.21	P-H σ bond Α' 13.86	F nonbonding orbitals on CF_3 groups		
symmetry CF ₃ PH ₂	A′ 11.50			A ₂ 15.34	E 16.16	E 16.93
symmetry (CF₃)₂PH	A′ (n) 11.18	A′ 13.24	A″ 14.08	A ₂ 15.06	E 15.83	E 16.69

The analysis of the IR and Raman spectra of $(CF_3)_2PH$ in [20] agrees well with the results of investigations covered in Part 3, p. 17. NMR spectra of $(CF_3)_2PH$: The chemical shifts (in ppm, negative sign mean upfield to the standard) and the spin-spin coupling constants J (in Hz) are given in the following [21].

 ^{13}C NMR (standard C_6D_6): $\delta = -0.09, \text{ J(C-F)} = 314, \text{ J(C-P)} = 13.55, \text{ J(CP-CF)} = 6.3, \text{ J(C-PH)} = 4.7$

³¹P NMR (standard 15% H₃PO₄ in D₂O, calibration against 85% H₃PO₄): $\delta = -49.6$, J(P-CF) = 69.4. J(P-H) = 216

¹⁹F NMR (standard CFCl₃, measured in D₂O solution of CF₃COOH): $\delta = -48.9$, J(FC-P) = 70, J(FC-PH) = 10

¹H NMR [standard (CH₃)₄Si, solvent CHCl₃]: $\delta = 4.06$, J(H-P) = 214, J(HC-PF) = 9.86

CF₃**PHPHCF**₃

The diphosphine can exist in two diastereomeric forms [22]:

d, l diastereomer (b)

The ¹⁹F NMR spectrum shows for each diastereomer a doublet (with large spacing) of doublets (with small spacing) plus weaker peaks as expected for the M part of a MM'AA'XX' system. The values observed (internal standard CFCl₃) are as follows: for the low field diastereomer $\delta = -40.7 \text{ ppm} [J(P-CF) + J(P-P-CF) = 69 \text{ Hz}, J(HP-CF) + J(HP-P-CF) =$ 12.5 Hz], for the highfield diastereomer $\delta = -41.5$ ppm (61 Hz, 11.5 Hz) [30]. Both isomers could be distinguished by further NMR experiments. The temperature-dependent ${}^{1}H{}^{19}F{}$ and $^{31}P{19F}$ spectra show the expected AA'XX' spin systems. The spin-spin coupling constants J were obtained by triple resonance experiments (¹⁹F decoupling, ³¹P tickling, ¹H resonance). The following chemical shifts (δ in ppm, positive sign lowfield to the standards (CH₃)₄Si and 85% H_3PO_4) and coupling constants J (in Hz) have been evaluated [22]:

Temperature	lsomer	δ(¹ Η)	δ(³¹ Ρ)	J(P-P)	J(P-H)	J(P-PH)	J(HP-PH)
35 °C	а	3.68	-90.3	- 135.2	+205.6	+ 3.2	+9.2
	b	3.82	-92.0	— 183.7	+213.9	+ 15.2	+3.0
100 °C	а	_	-91.5	- 114.8	+213.7	+ 1.8	+7.4
	b	_	-95.1	-203.4	+223.2	+ 15.5	±0.5

5.2.2.3 Chemical Reactions

5.2.2.3.1 Pyrolysis

On the pyrolysis of CF₃PH₂ at 1000 °C, F₂C=PH is detected by MW spectroscopy [3]. On passing gaseous CF₃PH₂ slowly at 20 °C over solid KOH two HF units are eliminated to give FC=P. Increasing the rate of the CF₃PH₂ stream or lowering the quantity of reacting KOH gives $F_2C=PH$ [4, 5, 23]. The pyrolysis of (CF₃)₂PH on flowing over KOH pellets gives the compound CF₃P=CF₂ [18].

5.2.2.3.2 Reactions of CF₃PH₂ and (CF₃)₂PH

 CF_3PH_2 reacts at 20°C with a deficiency of iodine forming CF_3PHI which reacts further with iodine to give CF_3PI_2 [7]. Equimolar mixtures of CF_3PH_2 and CF_3PI_2 react with sizeable rates above 40 °C or on irradiation by an Hg lamp forming CF_3PHI . The same reaction is observed for CF_3PD_2 . Reactions with CF_3PBr_2 and with CF_3PCI_2 forming CF_3PHX , X = Br, CI, occur only on irradiation, no reaction is found for CF_3PF_2 . A mixture of CF_3PH_2 and CI_2 on standing for 7 d at 20 °C yields CF_3PHCI , CF_3PCI_2 and HCL. Subsequent reaction of CF_3PHCI with CF_3PH_2 yields $CF_3PHPHCF_3$. Smaller amounts of the diphosphine are formed in the reaction of CF_3PH_2 with CF_3PHBr , no reaction occurs between CF_3PH_2 and CF_3PHI to form the diphosphine. At room temperature, CF_3PH_2 forms with $CF_3P(CN)_2$, after some weeks, CF_3PHCN , which reacts with excess CF_3PH_2 to give $CF_3PHPHCF_3$, $(CF_3P)_4$ and HCN. These products are also found on heating the reaction mixture for 14 d at 50 °C [7].

The reaction of the phosphine with $Fe_2(CO)_9$ (6 d, 21°C, sealed tube) gives $Fe(CO)_4[CF_3PH_2]$, which is an orange-brown liquid with a vapor pressure of about 1 Torr at 20°C [24].

 $(CF_3)_2$ PH. On warming a mixture of $(CF_3)_2$ PH and NH₃ in a glass tube (sealed by a stopcock) from -196 or -130 °C to -50 or 0 or 25 °C, a reaction mixture forms in which $(CF_3)_2$ PNH₂, CH₂F(CF₃)PNH₂, CHF₂(CF₃)PNH₂ and HN[P(CF₃)₂]₂ are detected by NMR spectroscopy. The yield of the products depends on the manner of raising the temperature [25].

On elevation of the temperature from -78 to 0°C (CH₃)₃N dehydrofluorinates (CF₃)₂PH forming (CH₃)₃NH₂F₂ and presumably CF₃P=CF₂ as primary compounds and initiating a series of further reactions yielding (CF₃)₂P4, R(CF₃)PP(CF₃)₂ (R = CHF₂, CH₂F or CH₃), (CF₃)₂PCH₂P(CF₃)P(CF₃)₂ and less volatile products. With (CH₃)₃SiCl as a further added reactant leading to the formation of (CH₃)₃NHCl and (CH₃)₃SiF, the same volatile phosphines as above are formed, but the yields are higher. (CH₃)₃SiP(CF₃)₂ is also found. For (CF₃)₂PCH₂P(CF₃)P(CF₃)₂, the vapor pressure p (in Torr) is given by log p = 6.627 + 1.75 T - 0.005 T - 2546/T, boiling point 164°C, Trouton constant 27.7 cal·mol⁻¹·K⁻¹ [12]. In the presence of (CH₃)₃N the phosphine (CF₃)₂PH reacts with CH₃(CF₃)PCl (sealed tube, warming to -78°C, then to 25°C) yielding the chiral diphosphine CH₃(CF₃)PP(CF₃)₂, which is characterized by NMR data [29]. (CF₃)₂PH reacts with IM(CO)₅ in C₆H₆ at 25°C to give (CF₃)₂PM(CO)₅, for M = Mn (30 h) and for M = Re (8 h) [26].

Under UV irradiation (240 h, in vacuo), $(CF_3)_2PH$ reacts with $F_2C=CCl_2$ to form CF_3H , $(CF_3)_3P$, $(CF_3)_4P_2$ and, along with other compounds, $HCCl_2CF_2P(CF_3)_2$, melting point 115 to 118 °C/731 Torr, ¹⁹F NMR (external standard CF_3COOH) : $\delta(CF_3) = 27.8$ ppm (doublet of triplets), $\delta(CF_2) = -21.2$ ppm (doublet of octets). The irradiation of the phosphine and HClC=CFH gives a complex product mixture, from which two compounds could be isolated and tentatively characterized by their ¹⁹F NMR spectra to be H₂CClCFHP(CF₃)₂ and HCFClCH₂P(CF₃)₂. The phosphine underwent no reaction with $F_2C=CCl_2$ at 50 °C (120 °C), with FHC=CHCl at 100 °C (120 h), with hexafluoropropene on UV irradiation (20 °C, 22 h) or on heating for 120 h at 100 °C [27].

Condensation Reactions of CF₃PH₂ and of (CF₃)₂PH

Both phosphines react with $[(CH_3)_3M]_3P$ and $(CH_3)_3MPH_2$ (M = Si, Ge, Sn) at room temperature to form mixtures of products, whose composition depends on the ratio of the starting compounds, see **Table 19**. The rate of formation is greater for $[(CH_3)_3M]_3P$ than for $(CH_3)_3MPH_2$ and decreases in the order Sn > Ge > Si [10].

Gmelin Handbook CF Comp. Suppl. 1

References p. 86

Reaction components (quantities in mmol), conditions		Products (yields)				
(CF ₃) ₂ PH	1					
(15)	[(CH ₃) ₃ Si] ₃ P	(CH ₃) ₃ SiP(CF ₃) ₂	(CH ₃) ₃ SiF			
	(1.0) 20 °C, 16 d	(77%)	(23%)			
(15)	[(CH₃)₃Sn]₃P	(CH ₃) ₃ SnP(CF ₃) ₂	(CH ₃) ₃ SnF			
	(1.0) 20 °C, 0.4 d	(12%)	(88%)			
CF₃PH₂						
(8.5)	[(CH₃)₃Si]₃P (2.0) 20 °C, 21 d	_	_			
(16.8)	[(CH ₃) ₃ Ge] ₃ P	(CH ₃) ₃ GeP(H)CF ₃	[(CH₃)₃Ge]₂PCF₃			
	(2.5) 20 °C, 63 d	(80%)	(15%)			
(8.0)	[(CH₃)₃Sn]₃P	(CH ₃) ₃ SnP(H)CF ₃	[(CH ₃) ₃ Sn] ₂ PCF ₃			
	(2.0) 20 °C, 7 d	(30%)	(10%)			
(6.0)	(CH ₃) ₃ SiPH₂ (3.0) 50 °C, 35 d	no reaction				
(2.0)	(CH ₃) ₃ SiPH ₂ (2.0) 50 °C, 21 d	no reaction				
(3.5)	(CH ₃) ₃ GePH ₂	(CH ₃) ₃ GeP(H)CF ₃	[(CH ₃) ₃ Ge] ₂ PCF ₃			
	(2.0) 20 °C, 150 d	(2 to 3%	as mixture)			
(7.0)	(CH ₃) ₃ SnPH₂	(CH ₃) ₃ SnP(H)CF ₃	[(CH ₃) ₃ Sn] ₂ PCF ₃			
	(7.0) 20 °C, 7 d	(20% a	s mixture)			

Condensation Reactions of CF₃PH₂ and (CF₃)₂PH₂ [10].

5.2.2.3.3 Reactions of CF₃PHPHCF₃

Excess HI cleaves the P-P bond in the diphosphine [6, 7] according to the reactions $CF_3PHPHCF_3 + HI \rightarrow CF_3PH_2 + CF_3PHI \rightarrow CF_3PH_2 + CF_3PI_2$.

5.2.2.3.4 Reactions of (C₆F₅)₂PH

The phosphine reacts in organic solvents with the stable radicals diphenylpicrylhydrazyl, triphenylverdazyl, indophenoxyl and their leuco compounds. The phosphorus-containing nitroxide $(C_6F_5)_2PN(O')C(CH_3)_3$ which is relatively stable (the ESR spectrum is observable for several days) is obtained in the reaction of the diphenylpycrylhydrazyl radical with the phosphine in benzene in air in presence of 2-methyl-2-nitrosopropane [28].

References:

[1] G. M. Burch, H. Goldwhite, R. N. Haszeldine (J. Chem. Soc. **1964** 572/7). – [2] R. G. Cavell, R. C. Dobbie (Inorg. Chem. **7** [1968] 101/4). – [3] M. J. Hopkinson, H. W. Kroto, J. F. Nixon, N. P. C. Simmons (J. Chem. Soc. Chem. Commun. **1976** 513/5). – [4] H. W. Kroto, J.

Gmelin Handbook CF Comp. Suppl. 1

86

Table 19

F. Nixon, N. P. C. Simmons, N. P. C. Westwood (J. Am. Chem. Soc. 100 [1978] 446/8). - [5]
H. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon (J. Chem. Soc. Chem. Commun. 1979 653/4).
[6] R. C. Dobbie, P. D. Gosling (J. Chem. Soc. Chem. Commun. 1975 585/6). - [7] R. C.

[6] H. C. Dobble, P. D. Gosting (J. Chem. Soc. Chem. Commun. **1975** 383(3). – [7] H. C. Dobbie, P. D. Gosling, B. P. Straughan (J. Chem. Soc. Dalton Trans. **1975** 2368/73). – [8] S. Ansari, J. Grobe (Z. Naturforsch. **30 b** [1975] 531/4). – [9] S. Ansari, J. Grobe (Z. Naturforsch. **30 b** [1975] 523/30).

[11] A. Breckner, J. Grobe (Z. Anorg. Allgem. Chem. **414** [1975] 269/76). – [12] A. B. Burg (Inorg. Chem. **20** [1981] 3734/40). – [13] P. Dehnert, J. Grobe, Duc Le Van (Z. Naturforsch. **36b** [1981] 48/54). – [14] Duc Le Van (Z. Naturforsch. **36b** [1981] 666/71). – [15] R. C. Dobbie, J. Hopkinson (J. Fluorine Chem. **3** [1973/74] 367/74).

[16] G. Fritz, H. Schäfer, R. Demuth, J. Grobe (Z. Anorg. Allgem. Chem. 407 [1974] 287/
94). - [17] C. Thomson (J. Chem. Soc. Chem. Commun. 1977 322/3). - [18] H. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon, O. Ohashi (J. Organometal. Chem. 181 [1979] C1/C3). [19] A. H. Cowley, M. J. S. Dewar, D. W. Goodman (J. Am. Chem. Soc. 97 [1975] 3653/5). [20] R. C. Dobbie, B. P. Straughan (J. Chem. Soc. Dalton Trans. 1973 2754/6).

[21] A. B. Burg (Inorg. Nucl. Chem. Letters **13** [1977] 199/203). – [22] J.-P. Albrand, J. B. Robert, H. Goldwhite (Tetrahedron Letters **1976** 949/52). – [23] H. W. Kroto, J. F. Nixon, N. P. C. Simmons (J. Mol. Spectrosc. **82** [1980] 185/92). – [24] W. Clegg, S. Morton (Inorg. Chem. **18** [1979] 1189/98). – [25] A. B. Burg (Inorg. Chem. **20** [1981] 2739/41).

[26] J. Grobe, R. Rau (J. Organometal. Chem. **157** [1978] 281/97). – [27] P. Cooper, R. Fields, R. N. Haszeldine (J. Chem. Soc. Perkin Trans. I **1975** 702/7). – [28] Yu. G. Shermolovich, A. V. Misyura, O. M. Polumbrik, L. N. Markovskii (Zh. Obshch. Khim. **49** [1979] 232; J. Gen. Chem. [USSR] **49** [1979] 207; C.A. **90** [1977] No. 187052). – [29] A. B. Burg (Inorg. Chem. **20** [1981] 3731/3). – [30] J.-P. Albrand, S. P. Anderson, H. Goldwhite, L. Huff (Inorg. Chem. **14** [1975] 570/3).

5.2.3 Perfluorohalogenoorganophosphorus Oxygen Compounds

5.2.3.1 Preparation and Formation

Tris(perfluoroalkyl)phosphine oxides (R_i)₃PO

 $\mathsf{R}_{\mathsf{f}} \ = \ \mathsf{CF}_3, \ \mathsf{C}_2\mathsf{F}_5, \ \mathsf{n}-\mathsf{C}_3\mathsf{F}_7, \ \mathsf{n}-\mathsf{C}_4\mathsf{F}_9, \ \mathsf{n}-\mathsf{C}_5\mathsf{F}_{11}, \ \mathsf{i}-\mathsf{C}_5\mathsf{F}_{11}, \ \mathsf{n}-\mathsf{C}_6\mathsf{F}_{13}, \ \mathsf{n}-\mathsf{C}_7\mathsf{F}_{15}, \ \mathsf{n}-\mathsf{C}_8\mathsf{F}_{17}, \ \mathsf{C}_9\mathsf{F}_{19}$

Tris(pentafluorophenyl)phosphine oxide (C₆F₅)₃PO

Pentafluorophenylbis(pentafluorophenylethynyl)phosphine oxide $C_6F_5(C_6F_5C=C)_2PO$

 $(CF_3)_3PO$ (see Part 3, p. 31) forms on the decomposition of $(CF_3)_3P(F)OSi(CH_3)_3$ at room temperature in 4 h in quantitative yield [1].

The phosphine oxides (R_f)₃PO, $R_f = C_2F_5$ to C_8F_{17} , have been prepared from the corresponding alkylphosphine oxides R_3 PO by the electrochemical fluorination of a 10 to 25% alkylphosphine oxide solution in anhydrous HF. The preferable conditions for the electrolysis are current densities from 0.02 to 0.05 A/cm² and voltages across the electrodes of 5.0 to 6.0 V. In order to obtain oxides of higher tris(perfluoroalkyl)phosphines ($\geq C_5$) their hydrocarbon analogues are first brominated to avoid the cleavage of the C-P bond on electrolysis. The bromination is carried out on introducing bromine into a mixture consisting of 15 to 20% hydrogen fluoride and 85 to 75% trialkylphosphine oxide and stirring the mixture for 3 to 4 h at room temperature [2]. For (C_9F_{19})₃PO no details for preparation are given.

Compounds of Main Group 5 Elements

 $(C_6F_5)_3$ PO is prepared in 93% yield by the reaction of $(C_6F_5)_3$ P with $(CF_3)_2$ NO in Cl_2CFCF_2Cl as solvent (sealed tube, -70 °C for one day, shaking at room temperature for 20 min, left standing for another day). The recrystallization from petroleum ether gives white needles [3]. The oxide forms on dissolving $(C_6F_5)_3$ P in a SbF₅-HSO₃F mixture (1:1) or in pure HSO₃F followed by addition of H₂O [20].

 $C_6F_5(C_6F_5C=C)_2PO$ (yield 67%) is obtained by dissolving $C_6F_5(C_6F_5C=C)_2P$ in HSO₃F followed by addition of H₂O [20].

Bis(trifluoromethyl)phosphinous trifluoroacetic anhydride (CF₃)₂POC(O)CF₃

Bis(trifluoromethyl)phosphinous pentafluoropropionic anhydride (CF₃)₂POC(O)C₂F₅

Bis(trifluoromethyl)phosphinous heptafluorobutyric anhydride (CF₃)₂POC(O)C₃F₇

The compounds have been obtained by the reaction of the silver salts $AgOC(O)R_f$ ($R_f = CF_3$, C_2F_5 , C_3F_7) with (CF_3)₂PCl or (CF_3)₂PI. The reaction components are mixed at low temperature and then brought to room temperature within 10 min. After fractional condensation the yields are as follows [4].

	(CF ₃) ₂ PCl	(CF ₃) ₂ PI
(CF ₃) ₂ POC(O)CF ₃	43.6%	82.1%
$(CF_3)_2 POC(O)C_2F_5$	60.5%	80.0%
$(CF_3)_2 POC(O)C_3F_7$	18.6%	92.9%

2-Cyano-2(η -oxo-bis(trifluoromethyl)phosphine)hexafluoropropane (CF₃)₂POC(CF₃)₂CN

Tetrakis(trifluoromethyl)phosphinous acid anhydride (CF₃)₂POP(CF₃)₂

Tetrakis(trifluoromethyl)phosphinic acid anhydride (CF₃)₂P(O)OP(O)(CF₃)₂

Bis(trifluoromethyl)phosphoryl- μ -oxo-bis(trifluoromethyl)phosphine (CF₃)₂POP(O)(CF₃)₂

 $(CF_3)_2POC(CF_3)_2CN$ forms in 97% yield when $(CF_3)_2PI$ is frozen into a reactor containing NaOC(CF₃)₂CN at - 196°C and allowed to warm to room temperature over a period of 30 min. After trap-to-trap rectification the compound is held in the -95°C trap. The results were unchanged when $(CF_3)_2PCI$ was substituted for the iodo derivative [4].

 $(CF_3)_2POP(CF_3)_2$ (see Part 3, p. 32) is obtained by the decomposition of the compounds $(CF_3)_2POC(O)R_f$ with $R_f = CF_3$, C_2F_5 , C_3F_7 [4].

A new route for preparing $(CF_3)_2P(O)OP(O)(CF_3)_2$ (see Part 3, p. 32) is the reaction of $(CF_3)_2POP(CF_3)_2$ with $(CF_3)_2P(O)Cl$ at 25 °C (18 h). One other way is the oxidation of $(CF_3)_2POP(CF_3)_2$ with NO to give the compound in high yield (83%, 113 °C, 65 h, sealed tube). The oxidation of $(CF_3)_4P_2$ with NO by raising the temperature from -78 to +25 °C within 5 min yields the compound in 90% yield [5].

 $(CF_3)_2POP(O)(CF_3)_2$ has been obtained by the reaction of $(CF_3)_2POP(CF_3)_2$ with $(CF_3)_2P(O)Cl$ (sealed glass tube, 25 °C, 11 d), or with $(CF_3)_2P(O)OP(O)(CF_3)_2$ (yield 94%, 25 °C, 26 h) and by oxidation of $(CF_3)_2PP(CF_3)_2$ with NO (sealed bulb, 50 °C, 84% yield) [5].

Bis(trifluoromethyl)aminooxy-bis(trifluoromethyl)phosphine $(CF_3)_2 PON(CF_3)_2$

Bis[bis(trifluoromethyl)aminooxy]-tris(trifluoromethyl)phosphorane $(CF_3)_3P[ON(CF_3)_2]_2$

Bis[bis(trifluoromethyl)aminooxy]-bis(trifluoromethyl)fluorophosphorane $F(CF_3)_2P[ON(CF_3)_2]_2$

 $Bis[bis(trifluoromethyl)aminooxy]-bis(trifluoromethyl)chlorophosphorane Cl(CF_3)_2P[ON(CF_3)_2]_2$

Bis[bis(trifluoromethyl)aminooxy]-bis(trifluoromethyl)bromophosphorane $Br(CF_3)_2P[ON(CF_3)_2]_2$

Bis[bis(trifluoromethyl)aminooxy]-bis(trifluoromethyl)cyanophosphorane CN(CF₃)₂P[ON(CF₃)₂]₂

Tetrakis[bis(trifluoromethyl)aminooxy]-trifluoromethylphosphorane $CF_3P[ON(CF_3)_2]_4$

The preparation of $(CF_3)_2PON(CF_3)_2$, $Cl(CF_3)_2P[ON(CF_3)_2]_2$ and $(CF_3)_3P[ON(CF_3)_2]_2$ is mentioned in Part 7, p. 100.

 $(CF_3)_2PON(CF_3)_2$ is obtained in 74% yield on reacting $(CF_3)_2PI$ and CF_3NO for 3 d at -74 °C in a sealed glass ampule. Traces of iodine formed in the reaction are removed by shaking the mixture with mercury. The compound is purified by fractional condensation [6]. The reaction of $(CF_3)_2NON(CF_3)_2$ with $(CF_3)_3P$ (molar ratio 1:1) in a sealed tube (15 h at -78 °C, then 3 to 4 h at room temperature) followed by fractionational trapping at -88 °C gives the compound in about 100% yield [7]. With a molar ratio of 2:1 $CF_3P[ON(CF_3)_2]_2$ was obtained in a yield of about 61% (70 °C, 46 h, trapping at -60 °C) [7].

On reacting $(CF_3)_2PON(CF_3)_2$ with $(CF_3)_2PF$, $(CF_3)_2PCl$, $(CF_3)_2PBr$ or $(CF_3)_2PCN$ one obtains $F(CF_3)_2P[ON(CF_3)_2]_2$ (24 h, 20 °C, 93.5% yield), $Cl(CF_3)_2P[ON(CF_3)_2]_2$ (24 h, 20 °C, 93.5% yield), $Br(CF_3)_2P[ON(CF_3)_2]_2$ (3 d, 20 °C, 76.8% yield) and $CN(CF_3)_2P[ON(CF_3)_2]_2$ (16 h, -74 °C, 98% yield) [6].

The reaction of $(CF_3)_3P$ with $(CF_3)_2NO$ in a Pyrex tube on standing overnight at room temperature followed by fractional condensation gives at -20 °C $(CF_3)_3P(ON(CF_3)_2)_2$ in 96.1% yield. The pyrolysis of the phosphorane at 80 °C for 30 h in a closed vessel yields after vacuum distillation $CF_3P[ON(CF_3)_2]_4$ in 67% yield [8].

5.2.3.2 Physical Properties

Phosphine Oxides

(C_6F_5)₃PO melts at 168 to 169°C. The P-O stretching vibration is observed at 1230 cm⁻¹ [3]. The ³¹P and ¹⁹F NMR spectra of (C_6F_5)₃PO in acetonitrile (standards 85% H₃PO₄ and C_6F_6) show the chemical shifts $\delta(P) = -7.2$ ppm, $\delta(F^2, F^6) = 33.8$, $\delta(F^3, F^5) = 2.4$, $\delta(F^4) = 15.6$ ppm [20].

 $C_6F_5(C_6F_5C=C)_2PO$ melts at 125 to 127 °C. The ³¹P and ¹⁹F NMR spectra (standards 85% H₃PO₄ and C₆F₆) show the chemical shifts $\delta(P) = -11.7$ ppm, $\delta(F^2,F^6) = 32.2$ and 29.8 ppm, $\delta(F^3,F^5) = 3.7$ and 0.5 ppm, $\delta(F^4) = 17.2$ and 19.4 ppm. The UV maxima (molar absorptivity ϵ) are observed at 219 (log $\epsilon = 4.25$) and 260 nm (log $\epsilon = 4.49$) [20].

 $(CF_3)_3$ PO. Density $D_4^{-5} = 1.66_1$ g/cm³, $D = 1.649 - 2.7 \times 10^{-3}$ ($-10^{\circ}C < t > 20^{\circ}C$) [9]. ¹³C NMR (internal standard CDCl₃, converted to $(CH_3)_4$ Si): $\delta = 119.50 \pm 0.003$ ppm [quartet of doublets of septets, J(C-P) = 163.3 ± 0.7 Hz, J(C-F) = 316.9 ± 0.7 Hz, J(C-P-C-F) = 3 ± 0.7 Hz] [10]. ³¹P NMR (external standard P₄O₆, CDCl₃ solution): $\delta = -110$ ppm. Faraday effect P_M = 316 (-5 and 0 °C), 317 (10 °C), 314 µr (14 and 20 °C) [11].

Gmelin Handbook CF Comp. Suppl. 1

References p. 95

Compounds of Main Group 5 Elements

Boiling points, densities, refractive indices as well as dielectric constants and dipole moments of the tris(perfluoroalkyl)phosphine oxides (C_nF_{2n+1})₃PO, n > 1 are given in **Table 20**. The dipole moments are directed toward the perfluoroalkyl groups. In the solid phase at -190 °C the limiting values for the dielectric constant (ε_{∞}), polarization (P_{∞}) and the density D (in g/cm³) for (C_4F_9)₃PO and for (i- C_5F_{11})₃PO has been found to be $\varepsilon_{\infty} = 2.12$ and 2.09, $P_{\infty} = 102$ and 119, D = 2.11 and 2.16, respectively [12].

Table 20

Physical Properties of Tris(perfluoroalkyl)phosphine Oxides $(C_n F_{2n+1})_3 PO, n > 1$. Boiling point (b.p.) in °C/pressure in Torr, density D, refractive index, dielectric constant ϵ , dipole moment μ .

Com po und	b.p./Torr in °C [2]	D ₄ ²⁰ (g/cm ³) [2]	n ²⁰ [2]	ε [12]	μ in D [12]
(C ₂ F ₅) ₃ PO	96 to 98/760	1.774	1.2859	2.34 (at 40 °C) 2.20 (at 80 °C)	0.86
$(n-C_3F_7)_3PO$	150 to 151/760	1.8598	1.2948		
(n-C ₄ F ₉) ₃ PO	185 to 187/760 82 to 84/18	1.8930	1.3038	2.21 (at 20 °C)	0.86
(i-C ₅ F ₁₁) ₃ PO	120 to 122/18 107 to 109/14	1.9052	1.3102	2.12 (at 20°C)	0.86
(n-C ₅ F ₁₁) ₃ PO	102 to 104/14	1.9050	1.3080	_	_
(n-C ₆ F ₁₃) ₃ PO	142 to 144/14	1.9240	1.3126	_	
(n-C ₇ F ₁₅) ₃ PO	121 to 123/0.4	1.9450	1.3146	_	_
(n-C ₈ F ₁₇) ₃ PO	138 to 140/0.3	1.948	1.3184	_	-

 $(CF_3)_2POC(O)R_f$ $(R_f = CF_3, C_2F_5, C_3F_7)$ and $(CF_3)_2POC(CF_3)_2CN$

Melting points and NMR data are covered in **Table 21**, a presentation of IR data is given in **Table 22**. The mass spectra of the compounds are characterized by the molecule-ion peak (M^+) , by the fragments $M^+ - F$ and $M^+ - CF_3$ as well as by fluorocarbon and fluorophosphorus fragments [4].

Table 21

Melting Point (m.p.) in °C and ¹⁹F NMR¹⁾ Spectra of $(CF_3)_2POC(O)R_f$ ($R_f = CF_3$, C_2F_5 , C_3F_7) and $(CF_3)_2POC(CF_3)_2CN$ [4].

Chemical shift δ in ppm (negative values means highfield from the standard), spin-spin coupling constant in Hz.

Compound	m.p.	¹⁹ F NMR ¹⁾	
(CF ₃ ^a) ₂ POC(O)CF ₃ ^{b)}	- 56.1	$\delta(CF_3^{a}) \;=\; -60.8, \; \delta(CF_3^{b}) \;=\; -74.7, \; .$	J(P-F) = 87.5
$(CF_3^a)_2 POC(O)CF_2 CF_3^b$	- 89.1	$\begin{array}{lll} \delta(CF_3^{a}) \;=\; -58.2, \; \delta(CF_3^{b}) \;=\; -79.4, \\ \delta(CF_2) \;=\; -115.0, \; J(P\text{-}F) \;=\; 90.0 \end{array}$	
	R	eferences p. 95	Gmelin Handbook CF Comp. Suppl. 1

90

Table	21 (conti	nued)
-------	------	-------	-------

Compound	m.p.	¹⁹ F NMR ¹⁾
$(CF_3^a)_2$ POC(O)CF $_2^{\alpha}CF_2^{\beta}CF_3^{b}$	- 117.3	$\begin{array}{l} \delta(CF_3^a) = -61.5, \ \delta(CF_3^b) = -81.3, \\ \delta(CF_2) = -118.3 \ (\alpha), \ 126.2 \ (\beta), \ J(P\text{-}F) = 92.0, \\ J(CF_3\text{-}CF_2^{\alpha,\beta}) = 8.8 \ (\alpha), \ 8.8 \ (\beta) \end{array}$
(CF ₃ ^a) ₂ POC(CN)(CF ₃ ^b) ₂ ²⁾	-84.0	$\delta(\text{CF}_3^{a}) \;=\; -66.5,\; \delta(\text{CF}_3^{b}) \;=\; -79.0,\; \text{J(P-F)} \;=\; 96.8$
$^{1)}$ Internal standard CFCl_3. $-$ H_3PO_4), J(P-F) $=$ 91.7 Hz.	^{2) 31} P NMR s	spectrum: $\delta = 78.60 \text{ ppm}$ (internal standard 40%

Table 22 IR Spectra (in cm⁻¹) and Tentative Assignments for $(CF_3)_2POC(O)R_f (R_f = CF_3, C_2F_5, C_3F_7)$ and $(CF_3)_2POC(CF_3)_2CN$ [4]. (v, δ are stretching or deformation vibrations, s or as means symmetric or antisymmetric.)

(CF ₃) ₂ POC(O)CF ₃	(CF ₃) ₂ POC(O)C ₂ F ₅	(CF ₃) ₂ POC(O)C ₃ F ₇	(CF ₃) ₂ POC(CF ₃) ₂ CN	2v(C=O)	
3573 (w)	3568 (w)	3567 (w)			
_	_	_	2260 (w)	v(C≡N)	
1815 (s) 1774 (m)	1 800 (s) —	1808 (s) 1776 (w)	_ }	ν(C=O)	
1341 (m)	1 346 (m) 1 287 (vs)	1 350 (m) 1 293 (m)	1 307 (s)		
1246 (vs) 1225 (vs)	1223 (vs)	1 247 (vs) 1 223 (vs)	1 255 (vs) 1 225 (vs)	v_{as} and v_{s}	
1 196 (sh) 1 176 (vs)	1172 (vs)	1 206 (vs) 1 176 (vs)	1 203 (sh) 1 179 (vs)	of the CF ₃ group	
1 133 (vs) 1 103 (vs)	1 129 (vs) 1 015 (vs)	1 135 (vs) 1 069 (m) 962 (m)	1 132 (s) 1 073 (s) 980 (ms)		
850 (vs)	825 (m)		836 (m)	ν(Ρ-Ο - Ϲ)	
779 (m), 764 (sh)	778 (m)	776 (m)			
749 (sh)	748 (sh)	748 (m)	748 (w)	$\delta(CF_3)$	
726 (w)	732 (w)	716 (w)	733 (w)	$v_{as}(P-C)$	

Phosphorus Acid Anhydrides

 $(CF_3)_2POP(CF_3)_2$. Density D = 1.608₂ g/cm³ [11]. ¹⁹F NMR (standard CFCl₃): $\delta = -66.5$ ppm, J(F-P) = 98.8 Hz (second-order spectra), ³¹P NMR (standard H₃PO₄): $\delta = 99.3$ (complex F-P coupling) [5], (standard P₄O₆): $\delta = -13$ ppm [9]. The Raman spectrum of the liquid and the IR spectrum of the gaseous compound have been recorded and analyzed under the

Compounds of Main Group 5 Elements

assumption of the highest possible symmetry for a nonlinear bridged structure resulting in point group C_{2v}, see **Table 23** [13]. Though strong p-d interactions could lead to a linear or nearly linear P-O-P bridge, the occurrence of two IR active v(P-O-P) vibrations shows that the skeleton is bent. No evidence is given for the existence of more than one rotamer [13]. The unassigned IR spectrum is also given in [5]. The magnetooptical rotation of $(CF_3)_2POP(CF_3)_2$ has been determined: $|P|_M(exp.) = 626$ and compared with the value calculated from additivity band rotations $|P_M|(cal.) = 688$ [11, 14].

Table 23

Vibrational Frequencies v (in cm⁻¹) and Assignments for $(CF_3)_2POP(CF_3)_2$ from the Analysis of the IR and Raman Spectrum¹¹ [13].

w = weak; m = medium; s = strong; sh = shoulder; p = polarized; dp = depolarized; v = very.

Raman (liquid)	IR (gas)	Assignment	Raman (liquid)	IR (gas)	Assignment
94 m dp)	PC ₂ twisting	566 w dp	563 m s	POP sym-
120 w sh	J	+ scissoring	716 m s p	712 m s	metric stretching
158 w sh	}	PC ₂ deforma-	748 vs p	748 m	CF ₃ sym-
164 w)	tion			metric deformation
200 s p		POP bending	930 vw	923 vs	POP asym-
238 m dp		CF ₃ wagging;			metric
	,	PC ₂ wagging)	stretching
263 m sh dp			1 142 vw	1 1 40 v vs	
279 vs p	276 w	CF ₃ rocking	1 171 w	1 177 v vs 🛛 🗍	CF ₃
301 w sh	J		1 229 vw	1221 v vs sh (stretching
				1 230 vs	
452 s p ?		PC ₂)	
458 s sh	458 vs	stretching			
468 m p	466 s sh	+ POP			
	,	stretching			
529 w sh)	CF₂ anti-			
538 m dp	540 m	svmmetric			
		deformation			

¹⁾ Overtone and combination bands 372 m, 380 m (s), 639 (w), 854 (w, s), 884 (s), 944 (s), 961 (ms, s), 987 (m, s), 1278 (w), 1292 (w, s) cm⁻¹.

 $(CF_3)_2P(O)OP(O)(CF_3)_2$. White crystals, melting point $-42 \,^{\circ}C$. ¹⁹F NMR (standard CFCl₃): $\delta = -72.03 \text{ ppm}$ [doublet, J(F-P) = 137.5 Hz]. ³¹P NMR (standard H₃PO₄): $\delta = -5.4 \text{ ppm}$ [septet, J(F-P) = 137.5 Hz]. IR (in cm⁻¹; relative intensities in parentheses): 1 360 (14), 1 342 (24), 1 204 (164), 1 161 (11), 993 sh (9), 965 (39), 769 (1.4), 752 (1.6), 584 (30), 555 (5), 508 (7), 454 (7), 385 (4) [5].

 $(CF_3)_2$ POP(O)(CF₃)₂. Crystalline at -60°C, melting point at -41.7 to -41.4°C, vapor pressure p (in Torr) fits the equation log p = 7.7805 + 1.75 log T -0.007 T - 2518/T, boiling

92

point 97 °C, Trouton constant 22.7 cal \cdot mol⁻¹ \cdot K⁻¹. ¹⁹F NMR (standard CFCl₃): $\delta = -65.6$ ppm [J(F-P) = 93.1 Hz], 72.5 ppm [J(F-P) = 131.9 Hz]. ³¹P NMR (standard H₃PO₄): $\delta = 91.4$ ppm [J(P-F) = 92.9 Hz], -0.3 ppm [J(P-F) = 131.8 Hz]. IR (in cm⁻¹, relative intensities in parentheses): 1340 (13), 1221 (63), 1202 (73), 1182 (95), 1154 (25), 1138 (46), 959 (44), 921 (7), 764 (0.3), 750 (1.7), 697 (0.9), 582 (13), 503 (6), 443 (5), 380 (6) [5].

Aminooxy Derivatives of Phosphorus

The physical properties of $(CF_3)_2PON(CF_3)_2$, $(CF_3)_3P[ON(CF_3)_2]_2$ and of $X(CF_3)_2P[ON-(CF_3)_2]_2$, X = F, Cl, Br, CN are covered in **Table 24** and **25**.

Table 24

Vapor Pressure p (in Torr), Extrapolated Boiling Points (b.p.), Enthalpy of Vaporization ΔH_{ν} (in kcal/mol) and ¹⁹F NMR Data (δ in ppm, standard CFCl₃, upfield shifts have negative sign) of the Compounds X(CF₃)₂P[ON(CF₃)₂]₂ (X = F, Cl, Br, CN), (CF₃)₂PON(CF₃)₂ [6] and (CF₃)₃P[ON(CF₃)₂]₂ [8].

Compound	log p =		Temperature	b.p.	ΔH_{v}	¹⁹ F NMR	
	A A	B/T B	range (in °C)	in °C		$\delta(CF_3N)$	$\delta(CF_3P)$
$(CF_3)_2 PON(CF_3)_2$	7.940	1 800	-7 to 40	83	8.250		_
(CF ₃) ₃ P[ON(CF ₃) ₂] ₂	7.44	1930	34 to 65	149	8.83	_	_
$F(CF_3)_2 P[ON(CF_3)_2]_2$	6.270	1 390	24 to 55	138	6.380	68.1	-55.4 (J _{PF} = 114 Hz)
$Cl(CF_3)_2P[ON(CF_3)_2]_2$	8.120	2 125	24 to 77	132	9.750	-68.2	59.0
$Br(CF_3)_2P[ON(CF_3)_2]_2$	6.340	1 600	26 to 53	190	7.350	_	_
$CN(CF_3)_2P[ON(CF_3)_2]_2$	7.600	1 950	26 to 68	140	8.940	_	_

Table 25 Vibrational Spectra (in cm⁻¹) and Tentative Assignment for $X(CF_3)_2P[ON(CF_3)_2]_2$ (X = F, Cl, Br, CN) and $(CF_3)_3P[ON(CF_3)_2]_2$ [6]. In the headings Y stands for $ON(CF_3)_2$.

(Y) ₂ (CF ₃) ₂ PF	(Y) ₂ (CF ₃) ₂ PCl	(Y) ₂ (CF ₃) ₂ PBr	(Y) ₂ (CF ₃) ₂ PCN	(Y) ₂ P(CF ₃) ₃	Tentative assignment
			2200 w		CN stretch
1314 vs	1310 vs	1319 vs	1320 vs	1324 vs	
1205 vs	1268 vs	1275 vs	1270 vs	1265 vs	C-F stretch
1235 vs	1234 vs	1235 s	1240 vs	1235 vs	(of CF₃N)
1215 vs	1215 vs	1220 s	1220 vs	1220 vs	· 57
1182 s	1 173 s	1 175 s	1 190 s	1209 vs	C-F stretch
1150 sh	1154 s	1151 sh	1 160 m	1150 m	(of CF ₂ P)
		1 134		1120 sh	(3.)

Gmelin Handbook CF Comp. Suppl. 1

References p. 95

(Y) ₂ (CF ₃) ₂ PF	(Y) ₂ (CF ₃) ₂ PCl	(Y) ₂ (CF ₃) ₂ PBr	(Y) ₂ (CF ₃) ₂ PCN	(Y) ₂ P(CF ₃) ₃	Tentative assignment
1030 s	1032 s	1025 m	1035 s	1026 m	N-O stretch
974 s 893 s	972 s	972 m	975 s	972 m	C-N stretch P-F stretch
850 s	858 s	853 m	865 s	860 m	P-ON stretch
832 sh	823 m	825 w	820 w	834 w	C-N-C
	815 sh		790 w	820 w	stretch
	786 w		760 w	800 w	
730 w			735 w		
716 s	717 s	718 m	716 s	715 m	
625 m	638 s	652 w	665 s	_	
	614 m	610 w	600 m	615 w	CF ₃
590 m	590 m				deformation
		575 w	555 w	580 m	
497 w	512 m	500 w	510 w	505 w	
473 m	408 m		470 w	490 w	

Table 25 (cont	inued)	
----------------	--------	--

5.2.3.3 Chemical Reactions

Phosphine Oxides

The decomposition of $(CF_3)_3PO$ in a sealed glass tube has been studied [15]:

On standing at 25°C for two years in an NMR tube the compound forms $(CF_3)_3PF_2$, CF_3PF_4 , $(CF_3)_3P$, $(CF_3)_2PF_3$, PF_5 , CO, COF₂. At 100°C after two hours 10% $(CF_3)_3PO$ had decomposed giving $(CF_3)_3P$, OCF_2 , $(CF_3)_2P(O)F$, after six hours 50% to $(CF_3)_3P$, $(CF_3)_2P(O)F$, $(CF_3)_2PF$, $CF_3P(O)F_2$, CF_3PF_2 , OPF_3 , PF_3 , OCF_2 , after 29 h the decomposition is complete giving OCF_2 , $(CF_3)_3P$, $(CF_3)_2PF$, CF_3PF_2 , OPF_3 , PF_3 , OCF_2 , after 29 h the decomposition is complete giving OCF_2 , $(CF_3)_3P$, $(CF_3)_2PF$, CF_3PF_2 , OPF_3 , PF_3 , CO, C_2F_4 . At 130°C after 20 h in presence of C_2F_4 , the compounds $(CF_3)_3P$ and OPF_3 are obtained [15].

Tris(perfluoroalkyl)phosphine oxides are proton acceptors. This property is investigated in a system of solvents consisting of perfluoroheptane (as solvent) and of n-decanol (proton donor). The formation of 1:1 associates of phosphine oxides and decanol is investigated by IR and NMR spectroscopy in order to obtain information on the thermodynamics of association. For details see the original paper [16].

Tris(perfluoroalkyl)phosphine oxides react with aliphatic alcohols ROH at room temperature to form adducts of the type $R_FPO \cdot 3$ ROH which are colorless oils and can be vacuum-distilled. One alcohol molecule is coordinated to each fluorocarbon group of the phosphine oxide, in which the OH group is the proton donor and the α dimethylene group is the proton acceptor. Boiling points, refractive indices and densities of the adducts with $R_f = C_3F_7$ and $R = CF_3$, C_2H_5 , C_3H_7 , C_4H_9 , C_5H_{11} as well as with $R_f = C_4H_9$ and $R = CH_3$, C_2H_5 , C_3H_7 , C_5H_{11} are given in the original paper [17]. The phosphine oxides also react with water (10 to 15 °C, 30 to 40 min) to give the adducts $R_fPO \cdot n H_2O$, n > 3. After vacuum distillation colorless oils are obtained with the following physical properties: for $(C_3F_7)_3PO$ an adduct with a boiling point of 33 to 34 °C (0.05 Torr), $n_D^{20} = 1.3200$, and for $(C_4F_9)_3PO$ an adduct with a boiling point of 44 °C (0.05 Torr), $n_D^{20} = 1.3062$, D = 1.8750 g/cm³ [17].

 $(C_6F_5)_3$ PO reacts with C_6F_5Li (6 h at 25°C) in an ether/hexane 1:1 solution to produce $C_{12}F_8$, $C_{6n}F_{4n+1}H$ (n = 1 to 4), $(C_6F_5)_3$ P and $C_{12}F_9(C_6F_5)_2$ P; and in the presence of BrC₆F₅, $C_{6n}F_{4n+1}Br$ (n = 1 to 4) and $C_{12}F_8$ HBr were also formed [19]. The NMR spectra of $(C_6F_5)_3$ PO in an SbF₅-HSO₃F mixture (1:1) and in pure HSO₃F are investigated in [20].

(CF3)2P(0)C(0)Rf

The compounds $(CF_3)_2POC(O)R_f$, $R_f = CF_3$, C_2F_5 and C_3F_7 , undergo a partial decomposition within 24 h according to :

2 (CF₃)₂POC(O)R_f
$$\rightarrow$$
 (CF₃)₂POP(CF₃)₂ + R_fC(O)OC(O)R_f

Under these conditions the compound $(CF_3)_2POC(CF_3)_2CN$ is thermally stable [4].

Phosphorus Acid Anhydrides

Reactions of $(CF_3)_2$ POP $(CF_3)_2$ yielding title compounds are given on p. 88.

 $(CF_3)_2$ POP(CF₃)₂ can be used as a monofunctional non-chelating ligand in the reaction with iron carbonyl compounds. ¹⁹F NMR investigations show that only one P atom goes into a donor bond to the iron. The reaction with Fe(CO)₂(NO)₂ (16 d, 20 °C, 64% yield) gives Fe(CO)(NO)₂[(CF₃)₂POP(CF₃)₂], with Fe₂(CO)₉ (19 d, 84% yield) Fe(CO)₄[(CF₃)₂POP(CF₃)₂] and with [(π -C₅H₅)₂Fe(CO)₂]₂ (1 d, 40 °C, 63% yield) (π -C₅H₅)₂Fe₂(CO)₃[(CF₃)₂PO(CF₃)₂], for ¹⁹F NMR and IR data see the original paper [18].

 $(CF_3)_2POP(O)(CF_3)_2$ disproportionates at 60 to 70 °C partially to $(CF_3)_2POP(CF_3)_2$ and $(CF_3)_2P(O)OP(O)(CF_3)_2$. The reaction with HCl at 25 °C gives $(CF_3)_2PCl$ and $(CF_3)_2P(O)OH$, with KCl at 25 °C $(CF_3)_2PCl$ and $(CF_3)_2P(O)OK$, with NO at 113 °C (65 h) $(CF_3)_2P(O)OP(O)(CF_3)_2$, and with Ni(CO)₄ at 25 °C after 16 h a colorless liquid, which is assumed to be $(CF_3)_2POP(O)(CF_3)_2Ni(CO)_3$ [18].

Aminooxy Derivatives of Phosphorus

Hydrolysis of $(CF_3)_2PON(CF_3)_2$ with 20% NaOH at 100 °C for 15 h gives fluoroform. On reacting $CF_3P[ON(CF_3)_2]_2$ with $(CF_3)_2NON(CF_3)_2$ no reaction occurs at 70 °C (70 h), but at 100 °C for another 70 h $[(CF_3)_2NO]_3P$ (colorless liquid in the -45 °C trap) was obtained [7].

On prolonged standing (three months) only the compounds $X(CF_3)_2P[ON(CF_3)_2]_2$ with X = Fand CN are stable. The least stable compound is that with X = Br which became yellow. The order of stability follows the sequence $F \sim CN > Cl > Br$. All four compounds as well as $(CF_3)_2PON(CF_3)_2$ hydrolyze in contact with moist air. The reaction with 20% NaOH for 30 to 96 h hydrolyzes the compounds almost completely forming CF_3SH [6]. The reaction of $(CF_3)_2P[ON(CF_3)_2]_2$ with 20% NaOH at 120°C yields fluoroform as a product [8].

References:

[1] K. J. The, R. G. Cavell (Inorg. Chem. 15 [1976] 2118/25). - [2] L. M. Yagupolsky, V. N. Zavatsky, V. N. Semeny, K. N. Bildinov, P. V. Serebrov, A. A. Goncharenko, A. V. Kirsanov, M. J. Lyapunov, N. G. Feschenko (Brit. 1498593 [1978]; C.A. 89 [1978] No. 43766). - [3] H. G. Ang, W. S. Lien (J. Fluorine Chem. 9 [1977] 73/80). - [4] D. W. McKennon, M. Lustig (J. Fluorine Chem. 7 [1976] 321/32). - [5] A. B. Burg (Inorg. Chem. 17 [1978] 2322/4).

[6] H. G. Ang, K. F. Ho (J. Fluorine Chem. 8 [1976] 497/504). - [7] H. G. Ang, W. S. Lien (J. Fluorine Chem. 11 [1978] 419/32). - [8] H. G. Ang, Y. C. Syn (J. Fluorine Chem. 8 [1976] Gmetin Handbook

CF Comp. Suppl. 1
481/96). — [9] J.-L. Virlichie, P. Dagnac (Rev. Chim. Minerale **14** [1977] 355/8). — [10] P. Dagnac, J.-L. Virlichie, G. Jugie (J. Chem. Soc. Dalton Trans. **1979** 155/8).

[11] P. Dagnac, R. Turpin, J.-L. Virlichie, D. Voigt (Rev. Chim. Minerale 14 [1977] 370/80).
[12] S. I. Vdovenko, V. Ya. Semenii, Yu. P. Egorov, Yu. Ya. Borovikov, V. N. Zavatskii (Zh. Obshch. Khim. 46 [1976] 2613/9; J. Gen. Chem. [USSR] 46 [1976] 2491/7; C.A. 86 [1977] No. 71753).
[13] R. C. Dobbie, M. J. Hopkinson, B. P. Straughan (J. Mol. Struct. 23 [1974] 141/3).
[14] R. Turpin, P. Dagnac, D. Voigt (Bull. Soc. Chim. France 1977 999/1003).
[15] W. Mahler (Inorg. Chem. 18 [1979] 352/4).

[16] E. V. Ryl'tsev, V. G. Koval, V. Ya. Semenii, V. A. Zavatskii, N. N. Kalibabchuk, D. J. Kurlyand, Yu. F. Egorov (Teor. Eksperim. Khim. 11 [1975] 770/80; Theor. Exptl. Chem. [USSR] 11 [1975] 639/48). - [17] V. Ya. Semenii, V. N. Zavatskii, N. N. Kalibabchuk, E. V. Ryl'tsev, V. V. Malovik (Zh. Obshch. Khim. 48 [1978] 1325/31; J. Gen. Chem. [USSR] 48 [1978] 1213/8; C.A. 89 [1978] No. 129597). - [18] R. C. Dobbie, M. J. Hopkinson (J. Chem. Soc. Dalton Trans. 1974 1290/3). - [19] S. Lin, J. M. Miller (J. Fluorine Chem. 9 [1977] 161/9). - [20] O. I. Andreevskaya, S. A. Krupoder, G. G. Furin, G. G. Yakobson (Izv. Sibirsk. Otd. Akad. Nauk Ser. Khim. Nauk 1980 97/104; C.A. 94 [1981] No. 191477).

5.2.4 Perfluoroorganophosphorus Acids, Their lons and Salts

Trifluoromethylphosphonic acid CF₃P(O)(OH)₂

Bis(trifluoromethyl)phosphinic acid (CF₃)₂P(O)OH

Trifluoromethylphosphonous acid CF₃P(OH)₂

Bis(trifluoromethyl)phosphinous acid (CF₃)₂POH

The hydrolysis of phosphoranes in 10% aqueous NaOH produces quantitatively $CF_3PO_3^{2-1}$ ions according the following equations [1]:

 $(CF_3)_3PXY + 3 H_2O \rightarrow CF_3PO_3^{-7} + 2 CF_3H + 2 H^+ + HX + HY,$ X = F, Y = OCH₃, SCH₃, N(CH₃)₂ [H₂N(CH₃)₂⁺ formation]; X = Y = OCH₃

Similarly these ions form in the alkaline hydrolysis (2 d, 20 °C) of the compounds $(CF_3)_2P(O)OCH_2CH_3$, $(CF_3)_2P(O)OCH(CH_3)_2$, $(CF_3)_2P(O)SCH_3$, $(CF_3)_2P(O)SCH_2CH_3$ [2], $CF_3PF_3(SCH_3)$ and $(CF_3)_2PF_2(SCH_3)$ [17]. Equations describing relationships between phosphonic acids and the corresponding carboxylic acids, among them $CF_3P(O)(OH)_2$ and CF_3COOH , are given in [3].

The hydrolysis of phosphoranes in water yields quantitatively $(CF_3)_2PO_2^-$ ions [1] according to :

 $(CF_3)_3PXY + 2 H_2O \rightarrow (CF_3)_2PO_2^- + CF_3H + H^+ + HX + HY$ X = F, Y = OCH₃, SCH₃, N(CH₃)₂ [H₂N(CH₃)₂⁺ formation]; X = Y = OCH₃

The anion also forms by neutral and by alkaline (NaOH) hydrolysis of $(CF_3)_2PFBr_2$ (5 d at room temperature) [4] and on reacting the esters $(CF_3)_2P(O)OCH_2CH_3$ or $(CF_3)_2P(O)OCH(CH_3)_2$ with $(CH_3)_3N$ at 20 °C (24 h) [2]. The cleavage of $(CF_3)_2POP(O)(CF_3)_2$ with HCl at 25 °C gives $(CF_3)_2P(O)OH$. The following signals (negative shifts δ to higher fields) are observed in the NMR spectra : ¹⁹F NMR (standard CFCl_3) : $\delta = -73.7$ ppm (doublet, J = 130.1 Hz), ³¹P NMR (standard H₃PO₄) : $\delta = 0.3$ ppm (septet, J = 129.8 Hz), ¹H NMR (standard (CH₃)_4Si) : $\delta = 13.63$ ppm [5].

 $CF_3P(OH)_2$ forms in the hydrolysis of $(CF_3)_2POH$ with water. ¹⁹F NMR (standard CF_3COOH): $\delta = 10.4 \text{ ppm}$ [doublet, J(F-P) = 83 Hz]. ¹H NMR [standard ($CH_3)_4Si$]: $\delta = 4.30 \text{ ppm}$ [6]. $(CF_3)_2$ POH is produced in the reaction of $(CF_3)_2$ POC(CH₃)₃ with HCl at 70 °C (20 h), on reacting $(CF_3)_2$ PCl with $(CH_3)_3$ COH (70 °C, 18 h), or with C_6H_5 CH₂OH (70 °C, 4 h), on reacting $(CF_3)_2$ POCH₃ with $(CH_3)_3$ N [2] and by hydrolysis of $(CF_3)_2$ POP(CF₃)₂ with water [6]. Physical properties: Density $D_{20}^4 = 1.568_2$ g/cm³. ¹⁹F NMR (standard CF₃COOH): $\delta = 10.4$ ppm (doublet, J(F-P) = 83 Hz), ¹H NMR [standard (CH₃)₄Si]: $\delta = 4.30$ ppm [6]. ³¹P NMR (external standard P₄O₆): $\delta = -35$ ppm. Faraday effect $|P|_M = 351 \,\mu$ r (at 20 °C) [7]. Heating of $(CF_3)_2$ POH with $(CH_3)_3$ CCl at 70 °C (64 d) yields $(CF_3)_2$ POC(CH₃)₃ [2].

Bis(heptafluoropropyl)phosphinic acid (C₃F₇)₂P(O)OH

Perfluoroalkylphosphonic acids $R_{f}P(O)(OH)_{2}$ and Salts ($R_{f} = C_{n}F_{2n+1}$, n = 4 to 24)

Bis(perfluoroalkyl)phosphinic acids (R_f)₂P(O)OH and Salts (R_f = C_n F_{2n+1}, n = 4 to 24)

 $(C_3F_7)_2P(O)OH$ (melting point 34°C) forms in 83% yield on heating a solution of $(C_3F_7)_3PO$ and C_2H_5OH (for preparation see [7]) for 5 h to 125°C, followed by treatment of the reaction mixture with SOCl₂ at 80°C (30 min) and subsequent distillation at 102 to 104°C (0.04 Torr) [8].

Explicit methods of preparation of the acids $R_f P(O)(OH)_2$ and $(R_f)_2 P(O)OH$, $R_f = C_n F_{2n+1}$, are only given for the compounds with n = 4, 6, 8 and 10 in Part 3, p. 43.

The formation of micelles is observed in aqueous solutions of ammonium salts of $C_3F_7P(O)(OH)_2$ [9] and $(C_3F_7)_2P(O)OH$ [10, 11], of sodium salts of $(C_3F_7)_2P(O)OH$ [10, 11, 12], of $(C_4F_9)_2P(O)OH$ and $(C_5F_{11})_2P(O)OH$ [9, 12], of $(C_6F_{13})_2P(O)OH$ [11] and of the calcium salt of $(C_3F_7)_2P(O)OH$ [10]. The ¹⁹F NMR spectra of the solutions at different concentrations of the acids and at different temperatures give information on the number of aggregated particles, the critical concentration of the micelle formation and the thermodynamics of this self-association which depend on the acid and on the chain length of the perfluorinated alkyl group, for details see the original papers [9 to 12]. For the investigation of the self-association of $(C_6F_{13})_2P(O)ON$ in acetonitrile and for the association reaction of the salt with substituted benzotrifluorides see [13].

The compounds $R_f P(O)(OH)_2$ and $(R_f)_2 P(O)OH$ with $R_f = C_n F_{2n+1}$ (n = 4 to 24) were used as antifoaming agents for detergent solutions and for solutions containing surfactants [14].

Pentafluorophenylphosphonic acid C₆F₅P(O)(OH)₂

Bis(pentafluorophenyl)phosphinic acid (C₆F₅)₂P(O)OH

The phosphonic acid forms in 88% yield by the hydrolysis of $C_6F_5PF_4$ in water at 20 °C [6], by the reaction of $C_6F_5PF_2$ with HSO₃F followed by addition of H₂O [9] and by the hydrolysis of $C_6F_5PF_4$ at 20 °C (10 h) (melting point of the acid : 141 to 142 °C) [16].

The separation of mixtures of organic phosphorus acids by paper chromatography, among them $C_6F_5P(O)(OH)_2$ and $(C_6F_5)_2P(O)OH$, is described in [15]. The best solvent systems for the separation of the phosphonic acids from each other and from other components are mixtures of acetone-pyridine-25% ammonia-H₂O and isoamyl alcohol-pyridine-25% ammonia-H₂O. The phosphinic acids are separated most effectively using an acetone-25% ammonia-H₂O mixture [15].

References:

[1] K. J. The, R. G. Cavell (Inorg. Chem. **15** [1976] 2518/25). - [2] R. G. Cavell, A. A. Pinkerton, W. Sim, A. J. Tomlinson (Inorg. Chem. **18** [1979] 2901/8). - [3] B. Istomin, V. A.

Gmelin Handbook CF Comp. Suppl. 1

7

Baransky, A. V. Kalabina (Org. Reactivity [USSR] **15** [1978] 275/85). - [4] R. G. Cavell, J. A. Gibson, K. I. The (J. Am. Chem. Soc. **99** [1977] 7841/7). - [5] A. B. Burg (Inorg. Chem. **17** [1978] 2322/4).

[6] J.-L. Virlichie, P. Dagnac (Rev. Chim. Minerale 14 [1977] 355/8). — [7] P. Dagnac, R. Turpin, J.-L. Virlichie, D. Voigt (Rev. Chim. Minerale 14 [1977] 370/80). — [8] V. Ya. Semenii, V. N. Zavatskii, N. N. Kalibabchuk, E. V. Ryl'tsev, V. V. Malovik (Zh. Obshch. Khim. 48 [1978] 1325/31; J. Gen. Chem. [USSR] 48 [1978] 1213/8; C.A. 89 [1978] No. 129597). — [9] N. N. Kalibabchuk, L. K. D'yachek, D. J. Kurlyand, V. Ya. Semenii (Teor. Eksperim. Khim. 11 [1975] 838/41; Theor. Exptl. Chem. [USSR] 11 [1975] 700/2). — [10] N. N. Kalibabchuk, L. K. D'yachek, V. Ya. Semenii (Ukr. Khim. Zh. 44 [1978] 67/70; C.A. 88 [1978] No. 126777).

[11] N. N. Kalibabchuk, V. Ya. Semenii, E. V. Ryl'tsev, V. A. Yushchenko, L. K. D'yachek (Tr. 7th Mezhdunar. Kongr. Poverkhn. Akt. Veshchestvam, Moscow 1976 [1978], Vol. 2, Pt. II, pp. 734/41; C.A. **91** [1979] No. 27738). – [12] N. N. Kalibabchuk, L. K. D'yachek, V. Ya. Semenii (Kolloidn. Zh. **38** [1976] 155/8). – [13] N. N. Kalibabchuk, V. Ya. Semenii, U. S. Kuts, L. K. D'yachek, V. N. Zavatskii (Teor. Eksperim. Khim. **13** [1977] 774/9; Theor. Exptl. Chem. [USSR] **13** [1978] 584/8; C.A. **88** [1978] No. 88 917). – [14] C. Heid, D. Hoffmann, J. Polster, Cassella Farbwerke Mainkur A.-G. (Ger. Offen. 2233 941 [1972/74] from C.A. **81** [1974] No. 79674). – [15] A. N. Bogushevskii, N. J. Gabov (Zh. Analit. Khim. **31** [1976] 582/5; J. Anal. Chem. [USSR] **31** [1976] **48**8/90).

[16] G. G. Furin, T. V. Terent'eva, A. J. Rezvukhin, G. G. Yakobson (Zh. Obshch. Khim. 45
 [1975] 1473/9; J. Gen. Chem. [USSR] 45 [1975] 1441/6). — [17] R. G. Cavell, K. I. The, N. T. Yap (Inorg. Chem. 18 [1970] 3400/7).

5.2.5 Perfluoroorganophosphonic and -phosphinic Halides

Trifluorovinylphosphonic difluoride F₂C=CFP(O)F₂

Routine handling of $F_2C=CFPF_4$ invariably generated small amounts of the difluoride. It is also formed on deliberate exposure of $F_2C=CFPF_4$ to small amounts of air or on attempts to chromatograph the compound. Table 26 gives the physical data of the difluoride [1].

IR (gas)	in cm ⁻¹	¹⁹ F NMR		
1745 s	1025 (?) w	$\delta(F^1) = -71.6$	$J(F^{1}-F^{2}) = 16.1$	$J(F^2-F^4) = 4.2$
1388 s	945 s	$\delta(F^2) = -92.9$	$J(F^{1}-F^{3}) = 29.5$	$J(F^2-P) = 20.1$
1348 m	888 s	. ,	$J(F^{1}-F^{4}) = 11.9$	$J(F^3-F^4) = 8.1$
1217 s	685 w	$\delta(F^3) = -199.8$	J(F ¹ -P) not determined	$J(F^{3}-P) = <1$
1170 w	545 s	$\delta(F^4) = -65.2$	$J(F^2-F^3) = 121.3$	$J(F^{4}-P) = 1090$

Pentafluorophenylphosphonic difluoride C₆F₅P(O)F₂

The difluoride (see Part 3, p. 52) forms on heating $C_6F_5PF_4$ with $(CH_3)_3SiOC_2H_5$ at 70 °C for one hour. The boiling point is 60 °C/8 Torr [10]. It is also obtained by the reaction of $C_6F_5PF_2$

with HSO₃F and converts on addition of water to $C_6F_5P(O)(OH)_2$ [12]. The fragmentation processes in the mass spectrum are investigated in [9].

The ³¹P and ¹⁹F NMR spectra of the liquid difluoride (see Part 3, p. 52) show the chemical shifts (external standards 85% H_3PO_4 and CFCl₃) $\delta(P) = -5.5$ ppm [J(P-F) = 1140 Hz], $\delta(PF_2) = 110$, $\delta(F^2, F^6) = 37.3$, $\delta(F^3, F^5) = 6.4$, $\delta(F^4) = 26.5$ ppm [J(F-P) = 1150 Hz]. The NMR spectra of a solution of the difluoride in SbF₅ indicate the formation of a donor-acceptor complex between the difluoride and SbF₅ [2]. The NMR data for a solution of the difluoride in HSO₃F and in SbF₅-HSO₃F are given in [12].

Bis(pentafluorophenyl)phosphinic fluoride (C₆F₅)₂P(O)F

The monofluoride (see Part 3, p. 52) is obtained by heating (C_6F_5)₂PF₃ with (CH₃)₃SiOC₂H₅ at 100 °C for 10 h (yield 75%), boiling point 100 to 105 °C/0.01 Torr, melting point 82 °C [10]. The fragmentation processes in the mass spectrum are investigated in [9].

Pentafluorophenylphosphonic dichloride C₆F₅P(O)Cl₂

The dichloride forms as by-product (10% yield) in the reaction of $C_6F_5PCl_2$ with SbF₃ at 150 °C (2 h) in an atmosphere of air; boiling point 195 °C, refractive index n_D = 1.6752, UV spectrum: $\lambda_{max} = 214$ (log $\epsilon = 3.52$), 264 nm (log $\epsilon = 2.83$) [11].

Trifluoromethylphosphonic difluoride CF₃P(O)F₂

A new preparation of the difluoride (see Part 3, p. 51) is the reaction of CF_3PF_2 with N_2O_4 [3]. $CF_3P(O)F_2$ is also formed by thermal decomposition of $(CF_3)_3PO$ (6 h, 100°C) and of $(CF_3)_2P(O)F$ (for 1 h at 125°C or more than 4 d at 25°C) [3].

The thermal decomposition of $CF_3P(O)F_2$ at 100 °C is completed after 16 h (50% decomposition in 3.5 h) and gives as products OPF_2 , OCF_2 , CO, PF_3 , CF_3PF_2 , CF_3PF_4 , PF_5 , $(CF_3)_3PF_2$, and $(CF_3)_2PF_3$ [3].

Trifluoromethylphosphonic dichloride CF₃P(O)Cl₂

For preparation and properties see Part 3, p. 51. ³¹P NMR (external standard P₄O₆, CDCl₃ solution): $\delta = -101$ ppm [7]. ¹³C NMR [internal standard CDCl₃, value converted to TMS by δ (TMS) = δ (CDCl₃) +77.06]: $\delta = 118.84 \pm 0.03$ ppm [quartet of doublets, J(C-P) = 272.1 \pm 0.7 Hz, J(C-F) = 314.7 ± 0.7 Hz]. The ³⁵Cl nuclear quadrupole resonance at 77 K was observed at 28.054 MHz. The temperature dependence of the spectrum is pictured in the original publication [8].

Bis(trifluoromethyl)phosphinic fluoride (CF₃)₂P(O)F

The best preparation (see also Part 3, p. 51) is very slow mixing (to avoid ignition) of 3 mmol $(CF_3)_2PF$ with ${}^{1}\!/_2$ atm of air in a 1-L flask. After 16 h at 25°C the reaction is complete [3]. The compound (boiling point 5°C/760 Torr, melting point -110°C) is also formed during the oxidation of $(CF_3)_3P$ with oxygen at 25°C and during the thermal decomposition of $(CF_3)_3PO$ (100°C, 2 to 6 h) [3]. Thermal decomposition of $(CF_3)_2P(O)F$ in a glass tube at 125°C for 1 h gave OCF₂, $(CF_3)_2PF$ (main products), CF_3PF_2 , OPF_3 , $CF_3P(O)F_2$, $(CF_3)_3PF_2$, and CO; on standing at 25°C for 4 d CF_3P(O)F_2 and $(CF_3)_2PF_3$ were formed, and after 10 d at 25°C the decomposition of $(CF_3)_2PF_2$, $(CF_3)_2PF_3$, CF_3PF_4 , CF_3PF_2 , $(CF_3)_3PF_2$, OPF_3 , and $(CF_3)_2PF$ [3].

Bis(trifluoromethyl)phosphinic chloride $(CF_3)_2P(O)Cl$

The compound is prepared in a yield of 70% by the oxidation of $(CF_3)_2PCl$ with NO₂ [6].

¹⁹F NMR (internal standard CFCl₃): $\delta = -72.3$ ppm [J(F-C-P) = 129.8 Hz]; ³¹P NMR (standard H₃PO₄): $\delta = 10.8$ ppm [J(P-C-F) = 129.4 Hz] [4]; ³¹P NMR (external standard P₄O₆, CDCl₃ solution): $\delta = -102$ ppm [7]. ¹³C NMR (internal standard CDCl₃, value converted to TMS by δ (TMS) = δ (CDCl₃) + 77.06): $\delta = 119.29 \pm 0.03$ ppm [quartet of doublets of quartets, J(C-P) = 205.2 \pm 0.7 Hz, J(C-F) = 316.2 ± 0.7 Hz, J(C-P-C-F) = 4 ± 0.7 Hz]. The ³⁵Cl nuclear quadrupole resonance was observed at 27.16 MHz at 77 K [8].

About the reaction of (CF₃)₂P(O)Cl with (CF₃)POP(CF₃)₂ [4], see p. 88.

The reaction of $(CF_3)_2P(O)Cl$ with $(CH_3)_3COH$ (sealed Pyrex tube, room temperature, 3 d) yields $(CH_3)_3CCl$ (39%) and unidentified products. Reacting $(CH_3)_3CH$ under the same conditions only involatile products are formed, which have not been characterized. The reaction of $(CH_3)_3CH$ with $(CF_3)_2P(O)Cl$ in the presence of $N(CH_3)_3$ results in the consumption of 2 mol $(CH_3)_3N$ but with the evolution of isobutene along with the formation of $[(CH_3)_3NH][(CF_3)_2PSO]$ (slowly warming from -78°C to room temperature within 2 d).

In the presence of $(CH_3)_2NH$, $(CH_3)_3CSH$ gave with $(CF_3)_2P(O)Cl$ only $(CF_3)_2P(O)N(CH_3)_2$ [5].

 $(CF_3)_2P(O)Cl$ reacts in the presence of an equal molar quantity of trimethylamine with ethanol, 2-propanol, ethylmercaptan, and 2-propylmercaptan to give $(CF_3)_2P(O)OC_2H_5$ (65%), $(CF_3)_2P(O)OCH(CH_3)_2$ (94%) (open vessel, warming from $-78\,^{\circ}C$ to room temperature), $(CF_3)_2P(O)SCH_3$ (55%), $(CF_3)_2P(O)SC_2H_5$ (86%), and $(CF_3)_2P(O)SCH(CH_3)_2$ (75%) (same conditions as before, but sealed Pyrex tube), respectively [5]. Physical properties of the phosphorus acid esters are given in **Table 27**, for ¹H NMR and IR data see the original publication [5].

Table 27

¹⁹F NMR and Thermal Data of Phosphorus Acid Esters [5].

Chemical shift δ relative to CFCl₃ as internal standard, negative values to high field, spin-spin coupling constants J, vapor pressure p in Torr, boiling point (b.p.), enthalpy of evaporization ΔH_v in kcal/mol, Trouton constant $\Delta H_v/T_b$ in cal \cdot mol⁻¹ \cdot K⁻¹.

Compound	¹⁹ F N	IMR	log p =	A-B/T	(range	b.p.	ΔH_v	$\Delta H_v/T_b$
	δ in ppm	J in Hz	Α	В	in °C)	in °C		
(CF ₃) ₂ P(O)OCH ₂ CH ₃	-73.5	121.8		_	_	_		
(CF ₃) ₂ P(O)OCH(CH ₃) ₂	-72.4	118.3	_		_	_	_	
(CF ₃) ₂ P(O)SCH ₃	-70.6	109.0	_	_	_	_	_	
(CF ₃) ₂ P(O)SCH ₂ CH ₃	-71.1	108.5	6.99	1767	(20 to 70 °C)	157	8.080	18.8
(CF ₃) ₂ P(O)SCH(CH ₃) ₂	-71.3	107.8	7.65	2 042	(15 to 70 °C)	155	9.340	21.8

References:

[1] K. G. Sharp, J. Schwager (Inorg. Chem. **15** [1976] 1697/701). - [2] G. G. Furin, T. V. Terent'eva, A. J. Rezvukhin, G. G. Yacobson (Zh. Obshch. Khim. **45** [1975] 1473/9; J. Gen.

Chem. [USSR] **45** [1975] 1441/6). - [3] W. Mahler (Inorg. Chem. **18** [1979] 352/4). - [4] A. B. Burg (Inorg. Chem. **17** [1978] 2322/4). - [5] R. G. Cavell, A. A. Pinkerton, W. Sim, A. J. Tomlinson (Inorg. Chem. **18** [1979] 2901/8).

[6] J.-L. Virlichie, P. Dagnac (Rev. Chim. Minerale 14 [1977] 355/8). — [7] P. Dagnac, R. Turpin, J.-L. Virlichie, D. Voigt (Rev. Chim. Minerale 14 [1977] 370/80). — [8] P. Dagnac, J.-L. Virlichie, G. Jugie (J. Chem. Dalton Trans. 1979 155/80). — [9] T. R. B. Jones, J. M. Miller, M. Fild (Org. Mass Spectrom. 12 [1977] 317/25). — [10] M. Fild, R. Kurpat, T. Stankiewiecz (Z. Anorg. Allgem. Chem. 439 [1978] 145/52).

[11] G. G. Yakobson, G. G. Furin, T. V. Terent'eva (Zh. Org. Khim. **9** [1973] 1707/13; J. Org. Chem. USSR **9** [1973] 1729/34). — [12] O. I. Andreevskaya, S. A. Krupoder, G. G. Furin, G. G. Yakobson (Izv. Sibirsk. Otd. Akad. Nauk Ser. Khim. Nauk **1980** 97/104; C.A. **94** [1981] No. 191477).

5.2.6 Perfluorohalogenoorganophosphorus Nitrogen Compounds

Bis(pentafluorophenyl)azidophosphine (C₆F₅)₂PN₃

The azide forms in the reaction of $(C_6F_5)_2PBr$ with NaN₃ at -2 to -10 °C within 12 to 36 h. It is a yellow oil which decomposes above -2 °C. The ³¹P NMR chemical shift (standard 85% H₃PO₄) is $\delta = 38.2$ ppm [J(P-F_{ortho}) = 44.6 Hz]. The symmetric and the antisymmetric stretching vibrations of the N-N-N group are found in the IR spectrum (liquid film) at 1254 and 2138 cm⁻¹, respectively. Mass spectrum (relative intensities in parentheses): M⁺ (30.4), (C₆F₅)₂PN⁺ (12.1), (C₆F₅)₂P⁺ (9.1), C₆F₅PN⁺ (100), C₆F₅P⁺ (8.1), C₆F⁺₅ (2.1), CF⁺₃ (74.2). The azide reacts with (C₆H₅)₃P forming the Kirsanov product (C₆F₅)₂PN=P(C₆H₅)₃, ³¹P NMR (external standard 85% H₃PO₄): $\delta = 31.8$ ppm [doublet of triplets (quintets)], J(P-P) = 120 Hz, J(P-F_{ortho}) = 36.0 Hz. Mass spectrum : M⁺(3), C₆F₅PNP(C₆H₅)₃⁺ (1), C₆F₅P(40), (C₆H₅)₂PN⁺ (9), (C₆H₅)₂PN⁺ (84), C₆H₅PNP⁺ (36), C₆H₅P⁺ (98), (C₆H₅)₃PN⁺ (91), (C₆H₅)₃P⁺ (98) [1].

Bis(trifluoromethyl)aminophosphine (CF₃)₂PNH₂

Bis[bis(trifluoromethyl)phosphino]amine [(CF₃)₂P]₂NH

Both compounds are formed in the reaction of $(CF_3)_2PH$ with NH₃, as shown by ¹⁹F NMR spectroscopy. $(CF_3)_2PNH_2$ is prepared on slow warming of the reaction mixture from -130to -110 °C during 60 min, then quickly to -70 °C, and to -50 °C in 5 min. The other compound is obtained on warming the mixture rapidly from -196 to -78 °C (5 s), then to 0 °C (15 s) and to 25 °C (10 s) [2]. $(CF_3)_2PNH_2$ (95% yield) also forms on reacting $(CF_3)_2PCI$ and NH₃ (standing overnight) [6]. The ¹⁹F NMR spectra (standard CFCl₃) show for $(CF_3)_2PNH_2$ the chemical shift $\delta = -66.87$ ppm [J(FC-P) = 81.1 Hz] and for [(CF₃)_2P]_2NH the shift $\delta = -65.5$ ppm (secondorder spectrum) with mutually symmetrical peaks separated by 90.4, 53.0, 37.4 and 14.0 Hz [2].

For a discussion of sign changes of ${}^{1}J({}^{15}N-{}^{31}P)$ coupling constants for three compounds, among them (CF₃)₂PNH₂, see [3], compare also Part 3, p. 63.

Bis(trifluoromethyl)aminobis(trifluoromethyl)phosphine (CF₃)₂PN(CF₃)₂

Bis[bis(trifluoromethyl)amino]trifluoromethylphosphine CF₃P[N(CF₃)₂]₂

The reaction of $(CF_3)_2NON(CF_3)_2$ with $(CF_3)_3P$ in 1:1 molar ratio at room temperature gives the first compound; with 2:1 molar ratio the reaction yields at 60°C the second compound [7].

Gmelin Handbook CF Comp. Suppl. 1

Perfluoroalkylbis(trifluoromethyl)amino-halogenophosphoranes

 $R_{f}PF_{2}XN(CF_{3})_{2}$, X = Cl, Br; $R_{f} = CF_{3}$, $CF_{3}CF_{2}$, $(CF_{3})_{2}CF$, $ClCF_{2}CF_{2}$, $CF_{3}CF_{2}CF_{2}$

The first compounds were prepared by the reaction of the difluorophosphine $R_f PF_2$ with a bis(trifluoromethyl)halogenoamine XN(CF₃)₂ [4]. For NMR data see **Tables 28** and **29**.

Table 28

¹⁹F and ³¹P NMR Chemical Shifts δ (in ppm) of Perfluoroalkylbis(trifluoromethyl)amino-halogenophosphoranes R_fPF₂^aXN(CF₃^b)₂.

The chemical shift of ³¹P is with respect to 85% H_3PO_4 solution, that of ¹⁹F with respect to CFCl₃ [4] or F₂ [5].

x	R,	δ(Ρ)	δ(F	^{-a})	δ(F ^b)	δ(CF ₃)	δ(F ^α)	δ(F ^β)
		[4]	[4]	[5]	[4]	[4]	[4]	[4]
Cl	CF₃CF⅔CF ^β	- 34.9	11.8	-418.3	- 52.4	- 82.5	111.9	- 124.6
Br	CF ₃ CF ₂ CF ₂	-56.4	25.4	-404.7	-52.5	-82.2	- 111.5	- 124.0
Cl	CIČF [®] ČF [®]	- 34.5	13.4	_	- 52.2	_	- 109.6	- 67.9
Br	CICF ² CF ³	- 56.6	27.6	-	-51.6		- 109.1	- 67.0
Cl	CF ₃ CF ₂	a)	11.1	-419.0	-52.8	-82.4	- 116.4	-
Br	CF_3CF_2	-57.2	25.4	-404.7	-52.2	-81.6	- 115.7	-
Cl	$(CF_3)_2 CF^{\alpha}$	-32.6	17.6	-412.5	-52.2	-71.5	170.6	_
Cl	CF ₃	- 38.0	7.3	-422.8	- 53.5	-70.0	_	_
Br	CF ₃	- 58.9	21.3	-408.8	-53.1	-70.2	—	_

^{a)} Sample so small that a ³¹P spectrum could not be obtained.

Table 29

Spin-Spin Coupling Constants J (in Hz) from the 19 F and 31 P NMR Spectra of Perfluoroalkylbis(trifluoromethyl)aminohalogenophosphoranes R_fPF ${}^{a}_{2}$ XN(CF ${}^{b}_{3}$)₂ [4].

Abb	reviations	: d, tr, qu,	qui, sept mea	n doublet	triplet,	quartet,	quintet	t, septet,	respective	ely.
-----	------------	--------------	---------------	-----------	----------	----------	---------	------------	------------	------

x	R _f	P-F ^a	P-F ^α	F ^a -P	F ^a -F _N	F ^a -CF ₃	F ^a -F ^α	F ^a -F ^β
CI	CE ₂ CE ^a CE ^b	1 007 tr	130 tr	1017 d	15.1 sent	1.0 gu	b)	b)
Br		1 026 tr	132 tr	1017 d	14.9 sept	0.9 gu	14.6 tr	13.4 tr
Cl	CICF ⁶ ₂ CF ⁶ ₂	1 005 tr	132 tr	1016 d	15.3 sept	_	15.3 tr	12.4 tr
Br	CICF ⁹ CF ⁹	1 029 tr	132 tr	1041 d	14.3 sept		b)	b)
Cl	CF ₃ CF ₂	a)	a)	1004 d	15.5 sept	9.75 qu	13.5 tr	_
Br	CF ₃ CF ₂	1014 tr	128 tr	1028 d	15.3 sept	9.4 qu	12.6 tr	
Cl	(CF ₃) ₂ CF ^α	991 tr	96 d	996 d	15.0 sept	7.4 sept	0	
Cl	CF ₃	992 tr	190 qu	990 d	14.8 sept	18.2 qu		
Br	CF ₃	1005 tr	186 qu	1013 d	14.5 sept	17.5 qu	_	-

Gmelin Handbook CF Comp. Suppl. 1

102

x	R _f	F ^b -P	F ^b -F ^a	F ^b -CF ₃	F ^b -F ^α	$F^{b}-F^{\beta}$	CF ₃ -P	CF ₃ -F _P
СІ	$CF_3CF_2^{\alpha}CF_2^{\beta}$	1.4 d	15.3 tr	0	3.4 tr	2.1 tr	6.2 d	1.0 tr
Br	CF ₃ CF ^α ₂ CF ^β ₂	1.3 d	15.2 tr	0	3.6 tr	2.4 tr	6.0 d	0.9 tr
Cl	$CICF_{2}^{\alpha}CF_{2}^{\beta}$	1.6 d	15.4 tr	—	3.5 tr	1.7 tr	_	_
Br	$CICF_2^{\alpha}CF_2^{\beta}$	b)	15.1 tr	_	b)	b)		_
Cl	CF ₃ CF ₂	0	15.6 tr	1.6 qu	1.6 tr	-	2.4 d	9.7 tr
Br	CF ₃ CF ₂	0	15.2 tr	1.6 qu	1.6 tr	—	2.4 d	9.5 tr
Cl	(CF ₃) ₂ CF ^α	1.1 d	15.4 tr	b)	7.6 d	-	_	7.2 tr
Cl	CF ₃	0	15.0 tr	1.8 qu	_	_	188 d	18.5 tr
Br	CF ₃	0	14.5 tr	1.8 qu	_	-	183 d	b)
x	R ^f	CF ₃ -F ^b	CF ₃ -F ^α	CF_3 - F^{β}	F ^α -Ρ	F ^α -F ^a	F ^α -F ^b	F ^α -CF ₃
Cl	CF ₃ CF ^a CF ^b	0	11.2 tr	0	132 d	b)	b)	b)
Br	CF ₃ CF ₂ CF	0	11.0 tr	0	134 d	14.6 tr	3.6 sept	11.0 qu
Cl	CIČF [®] ČF [®]	_	_		132.4 d	14.8 tr	3.6 sept	
Br	CICFSCFS		_		134 d	b)	a) .	_
Cl		1.5 sept	1.6 tr	_	131 d	13.4 tr	1.6 sept	1.6 qu
Br	CF ₃ CF ₂	1.6 sept	0	_	135 d	12.6 tr	1.8 sept	0
Cl	(CF ₃) ₂ CF ^α	b) .	b)	_	102 d	b)	b) .	b)
Cl	ĊF ₃	1.9 sept	_	_	_	_	_	_
Br	CF ₃	b) .	_	_	_	_	. —	_
x	R _f	F^{α} - F^{β}	F ^β -Ρ	F ^β -F ^b	F ^β -F ^b	F ^β -CF ₃	$F^{\beta}-F^{\alpha}$	
CL	CF ₂ CF ² CF ³	b)	b)	b)	b)	b)	b)	
Br	CF ₃ CF ⁵ CF ⁵	3.6 tr	4.8 d	13.4 tr	2.4	0	3.6 tr	
Cl	CICF [®] CF [®]	3.6 tr	0	12.3 tr	1.7	_	3.4 tr	
Br	CICFSCFS	b)	b)	11.4 tr	b)		b)	
Cl	CF ₃ CF ₂	_	_	_	_	_	_	
Br	CF ₃ CF ₂	_	_	_	_	_	_	
CL	(CF _a) ₂ CF ^α		_	_	_	_	_	
Cl	CF ₂	_	_	_		_	_	
Br	CF	_						
	5							

 $^{\rm a)}$ Sample so small that a $^{31}{\rm P}$ spectrum could not be obtained. - $^{\rm b)}$ Signal could not be resolved.

Silylaminobis(trifluoromethyl)phosphine (CF₃)₂PN(H)SiH₃

The compound forms in 89% yield on warming a mixture of H_3SiBr and $(CF_3)_2PNH_2$ from -196 °C to room temperature (standing overnight). It is a colorless liquid, ¹H NMR [external

Gmelin Handbook CF Comp. Suppl. 1

Table 29 (continued)

standard (CH₃)₄Si, solvent CHFCl₂]: δ = 4.30 ppm [doublet of doublets, J(P-N-Si-H) = 12.0 Hz, J(HN-SiH) = 3.0 Hz], δ (NH) = 2.1 ppm (broad peak), ¹⁹F NMR (external standard CFCl₃): δ = -66.5 ppm [doublet, J(P-F) = 80.5 Hz] [6].

References:

[1] H. G. Horn, M. Gersemann, U. Niemann (Chemiker-Ztg. 100 [1976] 197/8). - [2] A. B. Burg (Inorg. Chem. 20 [1981] 2739/41). - [3] J. R. Schweiger, A. H. Cowley, E. A. Cohen, P. A. Kroon, S. L. Mannatt (J. Am. Chem. Soc. 96 [1974] 7122/3). - [4] A. V. Fokin, M. A. Landau, G. I. Drozd, N. P. Yarmak (Izv. Akad. Nauk SSSR Ser. Khim. 1976 2210/7; Bull. Acad. Sci. USSR Div. Chem. Sci. 1976 2063/8). - [5] A. V. Fokin, M. A. Landau (Izv. Akad. Nauk SSSR Ser. Khim. 1976 2435/9; Bull. Acad. Sci. USSR Div. Chem. Sci. 1976 2435/9; Bull. Acad. Sci. USSR Div. Chem. Sci. 1976 2435/9; Bull. Acad. Sci. USSR Div. Chem. Sci. 1976 2271/4).

[6] R. H. Neilson, R. Chung-Li Lee, A. H. Cowley (Inorg. Chem. **16** [1977] 1455/9). – [7] H. G. Ang, W. S. Lin (J. Fluorine Chem. **11** [1978] 419/32).

5.2.7 Perfluorohalogenoorganophosphorus Halides and Their Anions

5.2.7.1 Perfluorohalogenoalkyl- and Perfluorovinylhalogenophosphines and -phosphoranes

5.2.7.1.1 Preparation

5.2.7.1.1.1 Perfluoroalkyl- and Perfluorovinylfluorophosphines and -phosphoranes

Trifluoromethyldifluorophosphine CF₃PF₂

Bis(trifluoromethyl)fluorophosphine (CF₃)₂PF

Pentafluoroethyldifluorophosphine C₂F₅PF₂

Trifluoromethylfluorophosphoranes $(CF_3)_n PF_{5-n}$ (n = 1 to 3)

 CF_3PF_2 is produced from CF_3PI_2 and AgF [1].

For preparation of $(CF_3)_2$ PF, see Part 3, p. 70.

 $C_2F_5PF_2$ is obtained by fluorination of $C_2F_5PI_2$ with excess SbF₃ at 58 °C overnight and subsequent fractional condensation of the product mixture. The estimated yield is 11% based on consumed C_2F_5I which along with red phosphorus and iodine was used to synthesize $C_2F_5PI_2$ [3].

For the formation of CF_3PF_2 , $(CF_3)_2PF$, $(CF_3)_3PF_2$, $(CF_3)_2PF_3$ and CF_3PF_4 during thermolysis of $(CF_3)_3PO$, $(CF_3)_2P(O)F$ and $CF_3P(O)F_2$, see pp. 94, 99/100 [34]. The formation of $(CF_3)_2PF$ during the reaction of $(CF_3)_2PI$ with F atoms in a fast-flow reactor is described in [63]; see also p. 120.

 CF_3PF_4 (among other products) forms in the reaction of CF_3PF_2 with Br_2 [45].

1,2-Bis(difluorophosphino)tetrafluoroethane F₂PCF₂CF₂PF₂

1,2-Bis(difluorophosphino)hexafluoropropane F₂PCF₂CF(CF₃)PF₂

The compounds are produced by irradiation ($\lambda = 300 \text{ nm}$) of a mixture of P_2F_4 and the appropriate olefin: C_2F_4 (4 to 6 h, ~10% yield) and C_3F_6 (7 h, ~6% yield). The products are purified by fractional condensation. With 2- C_4F_8 (cis, trans) or C_6F_{10} comparable products were not obtained [4].

Trifluorovinyltetrafluorophosphorane F₂C=CFPF₄

Pyrolysis of a mixture of $C_2F_5SiF_3$ and PF_3 at 200 °C and ca. 0.5 atm for 1 h and subsequent fractional condensation produce $F_2C=CFPF_4$ in 54% yield [3].

5.2.7.1.1.2 Perfluoroalkylchlorophosphines

Trifluoromethyldichlorophosphine CF₃PCl₂

Bis(trifluoromethyl)chlorophosphine (CF₃)₂PCl

 $\textbf{Pentafluoroethyldichlorophosphine} \ C_2F_5PCl_2$

Heptafluoropropyldichlorophosphine C₃F₇PCl₂

Heptafluoroisopropyldichlorophosphine i-C₃F₇PCl₂

Bis(heptafluoroisopropyl)chlorophosphine $(i-C_3F_7)_2PCl$

 CF_3PCl_2 has been prepared in high yield (80 to 90%) by reaction of CF_3Pl_2 with SbCl₃ and by condensing the product in a -65°C trap [39]. CF_3PH_2 and Cl_2 react in 7 d at room temperature in a sealed tube giving CF_3PCl_2 along with CF_3PHCl and HCl. When HCl is removed, the amount of CF_3PCl_2 increases over a period of several months. After 10 months 0.56 mmol CF_3PH_2 yields 0.21 mmol CF_3PCl_2 [5].

 $(CF_3)_2$ PCl is formed in the reaction of $(CF_3)_2$ PH with NH₃ (warming from -130 °C to +50 °C, treating the volatile product, among others $(CF_3)_2$ PNH₂, with excess HCl, see also p. 101) [35].

 $C_2F_5PCl_2$ and $C_3F_7PCl_2$ are produced in high yield (80 to 90%) by the reaction of the corresponding diiodophosphines with SbCl_3 and isolated by condensation in a $-65\,^{\circ}C$ trap [39].

 $i-C_3F_7PCl_2$ and $(i-C_3F_7)_2PCl$ are prepared in almost quantitative yield (99%) by reaction of the corresponding iodophosphines with AgCl in a sealed ampule kept in the dark for 7 d [38].

5.2.7.1.1.3 Perfluoroalkylbromophosphines and -phosphoranes

Trifluoromethyldibromophosphine CF₃PBr₂

Bis(trifluoromethyl)bromophosphine (CF₃)₂PBr

Trifluoromethyltetrabromophosphorane CF₃PBr₄

Bis(trifluoromethyl)tribromophosphorane (CF₃)₂PBr₃

Tris(trifluoromethyl)dibromophosphorane (CF₃)₃PBr₂

When BrCF₂CHFI and $(CF_3P)_4$ are heated at 106 to 110 °C for 25.5 h, CF_3PBr_2 is formed according to the scheme

4 BrCF₂CHFI +
$$(CF_3P)_4 \rightarrow 4 CF_2CHF + 2 CF_3PBr_2 + 2 CF_3PI_2$$

 CF_3PBr_2 can be collected in a trap at $-78 \,^{\circ}C$ [40]. CF_3PBr_2 forms along with other products when CF_3PIH is shaken with AgBr [5]. CF_3PBr_2 and $(CF_3)_2PBr_3$ (along with CF_3PF_4) are postulated to be the main products of the bromination of CF_3PF_2 [45].

Gmelin Handbook CF Comp. Suppl. 1

 $(CF_3)_2PBr$ along with $(CF_3)_2PH$ forms as volatile product in the reaction of $(CF_3)_2PAsH_2$ with the equimolar amount of Br₂. Excess Br₂ leads to the formation of $(CF_3)_2PBr_3$ [8].

For preparation of CF_3PBr_4 and $(CF_3)_2PBr_3$, see Part 3, p. 74.

 $(CF_3)_3PBr_2$ is formed via the equilibrium $(CF_3)_3P + Br_2 \rightleftharpoons (CF_3)_3PBr_2$ with K ~2 L⁻¹ at 260 K, but was not isolated [45].

5.2.7.1.1.4 Perfluorohalogenoalkyliodophosphines

Perfluorohalogenoalkyliodophosphoranes have not been described so far.

Trifluoromethyldiiodophosphine CF₃Pl₂

Bis(trifluoromethyl)iodophosphine (CF₃)₂Pl

Pentafluoroethyldiiodophosphine C₂F₅Pl₂

Heptafluoroisopropyldiiodophosphine i-C3F7Pl2

Bis(heptafluoroisopropyl)iodophosphine $(i-C_3F_7)_2PI$

When BrCF₂CHFI and (CF₃P)₄ are heated at 106 to 110 °C for 25.5 h, CF₃PI₂ (along with CF₃PBr₂ and CF₂CHF) is formed. For the reaction scheme, see the preparation of CF₃PBr₂. CF₃PI₂ remains in the still after separation of the other products by distillation [40].

Treatment of PI_3 with $(CF_3)_2Cd \cdot CH_3OCH_2CH_2OCH_3$ in 1,6-dibromohexane at room temperature yields $(CF_3)_2PI$ (up to 30% after 30 min) [43].

The preparation of $C_2F_5PI_2$ can be carried out by heating C_2F_5I , red phosphorus and I_2 in a sealed ampule at 220 °C for 70 h and subsequent fractional condensation where $C_2F_5PI_2$ is retained in the trap at -24 °C [3].

 $i-C_3F_7PI_2$ and $(i-C_3F_7)_2PI$ form in moderate yield in the reaction between $(CF_3)_2CFI$ and red phosphorous at 220°C for 8 h. The iodophosphines can be separated by slow trap-to-trap condensation. A mixture produced in a stainless steel autoclave gave 70% iodophosphine and 30% diiodophosphine [38].

 $\label{eq:constraint} Trifluoromethyl(pentafluoroethyl)iodophosphine \ CF_3(C_2F_5)Pl$

Trifluoromethyl(heptafluoro-n-propyl)iodophosphine $CF_3(n-C_3F_7)PI$

 $\label{eq:constraint} \textbf{Trifluoromethyl(heptafluoro-i-propyl)iodophosphine CF_3(i-C_3F_7)Pl}$

Pentafluoroethyl(heptafluoro-i-propyl)iodophosphine $C_2F_5(i-C_3F_7)PI$

 $\label{eq:constraint} \textbf{Trifluoromethyl}(\textbf{1-chlorotetrafluoroethyl}) iodophosphine \ CF_3(ClCF_2CF_2)PI$

Trifluoromethyl(1-bromotetrafluoroethyl)iodophosphine $CF_3(BrCF_2CF_2)PI$

The compounds are prepared in reactions of perfluoroalkyliodides with appropriately substituted cyclotetraphosphines in sealed tubes according:

$$\frac{1}{4}(RP)_4 + R'I \rightarrow R(R')PI$$

with R = CF₃, R' = n-C₃F₇, i-C₃F₇ [14], R = C₂F₅, R' = i-C₃F₇ [12] and R = CF₃, R' = C₂F₅, ClCF₂CF₂, BrCF₂CF₂ [40].

Phosphorus Compounds

CF₃(n-C₃F₇)PI was obtained in 4 h at 200 °C with a yield of 69% [13, 14]. CF₃(i-C₃F₇)PI was obtained in 6 h at 190 °C with a yield of 65% [14]. C₂F₅(i-C₃F₇)PI was obtained after 10 h at 160 °C with a yield of 59% [12]. The conversion curves of these cleavage reactions are represented by a first-order equation in the investigated temperature region 145 to 185 °C [14], and the reaction order with respect to $(CF_3P)_4$ has been proven to be 1 [42]. $(CF_3P)_5$ instead of $(CF_3P)_4$ does not react directly with C₃F₇I but at first rearranges to $(CF_3P)_4$. This rearrangement occurs in the presence of fluoroiodoalkanes below 200 °C [$(CF_3P)_5$ alone rearranges to $(CF_3P)_4$ at 255 °C; see Part 3, p. 6]. The reactivity of $(C_2F_5P)_5$ toward fluoroiodoalkanes is lower than that of $(CF_3P)_5$ [41].

The reactivity of fluoroiodoalkanes in the reaction with $(CF_3P)_4$ has been determined by measuring the rate constants for the reaction

$$XCF_2CF_2I + \frac{1}{4}(CF_3P)_4 \rightarrow XCF_2CF_2(CF_3P)I$$

with X = Br, Cl, F and CF₃. The rate constants (in $10^{-2} h^{-1}$) at 166 °C are: 49 ± 2, 26 ± 2, 21 ± 1, and 20.1 ± 0.3 for X = Br, Cl, F and CF₃, respectively. These data show that the rate of reaction decreases with increasing electronegativity of the substituents X [40].

5.2.7.1.1.5 Trifluoromethylhalogenophosphines (mixed halogens)

Trifluoromethylfluorochlorophosphine CF3PFCl

Trifluoromethylfluorobromophosphine CF₃PFBr

Trifluoromethylchlorophosphine CF₃PClH

Trifluoromethylchlorobromophosphine CF3PClBr

Trifluoromethylchloroiodophosphine CF3PCII

Trifluoromethylchlorocyanophosphine CF3PClCN

Trifluoromethylbromophosphine CF₃PBrH

Trifluoromethylbromodeuterophosphine CF₃PBrD

Trifluoromethylbromoiodophosphine CF3PBrl

Trifluoromethylbromocyanophosphine CF₃PBrCN

Trifluoromethyliodophosphine CF₃PIH

Trifluoromethyliododeuterophosphine CF₃PID

Trifluoromethyliodocyanophosphine CF3PICN

The mixed phosphines form when mixtures of CF_3PX_2 and CF_3PY_2 (X, Y = H, D, F, Cl, Br, I, CN) are heated to 70 °C for 10 d or are irradiated with a medium-pressure Hg lamp in a sealed tube. In the case of thermal reaction the equilibrium is reached after 10 d and does not shift during six months (one exception: half of CF_3PFBr has decomposed after 40 d). No exchange reaction could be detected in mixtures of CF_3PF_2 with CF_3PH_2 , CF_3PI_2 and $CF_3P(CN)_2$ under thermal or photochemical initiation [5].

CF₃PIH and CF₃PID can be prepared

(1) by shaking a mixture of CF_3PH_2 and I_2 for 1 h at 0 °C (yield 41%),

(2) by warming an equimolar mixture of CF_3Pl_2 and CF_3PH_2 (CF_3PD_2) in CCl_3F solution for 2 h at 40°C (yield 23%),

Gmelin Handbook CF Comp. Suppl. 1 (3) by photolysis (8 h) of excess of CF_3PH_2 (CF_3PD_2) with CF_3PI_2 in the liquid phase (yield 32%) [5].

 CF_3PIH also forms upon cleavage of $(CF_3PH)_2$ by HI [57].

 CF_3PClH forms along with HCl and CF_3PCl_2 in the reaction of CF_3PH_2 and Cl_2 (7 d at room temperature in an ampule). It also forms in small quantities by shaking CF_3PIH with AgCl or HgCl₂. (CF_3PH)₂ is cleaved by HCl to a small extent also giving CF_3PClH [5].

 CF_3PBrH and CF_3PBrD are obtained in 96% yield by shaking (45 min) CF_3PIH or CF_3PID with HgBr₂ at 20 °C. CF_3PBrH and CF_3PBrI (and other products) were identified when CF_3PIH was shaken with AgBr [5].

For the exchange reactions $CF_3PX_2 + CF_3PY_2 \rightleftharpoons 2 \ CF_3PXY$ the equilibrium constants $K = [CF_3PXY]^2/[CF_3PX_2][CF_3PY_2]$ have been approximately determined by means of ¹⁹F NMR spectroscopy [5]:

XY	FCl	ClBr	Cll	CICN	Brl	BrCN	IH	ICN
К	0.1	2.5	0.5	0.01	2.2	0.9	0.7	3.2

5.2.7.1.1.6 Perfluoroalkylhalogenophosphoranes (Halogen: F, Cl, Br)

 $\label{eq:constraint} Trifluoromethyldifluorodichlorophosphorane\ CF_3PF_2Cl_2$

 $\textbf{Pentafluoroethyldifluorodichlorophosphorane}\ C_2F_5PF_2Cl_2$

Heptafluoro-n-propyldifluorodichlorophosphorane $C_3F_7PF_2Cl_2$

Bis(trifluoromethyl)fluorodichlorophosphorane (CF₃)₂PFCl₂

Bis(trifluoromethyl)fluorodibromophosphorane (CF₃)₂PFBr₂

Since Part 3 (see p. 72) has been edited, no new methods of preparation for RPF_2Cl_2 (R = CF₃, C₂F₅, n-C₃F₇) and (CF₃)₂PFCl₂ have been published.

 $(CF_3)_2PF$, Br_2 and CH_3Cl in a sealed tube were allowed to warm slowly from -196 °C to -78 °C. At -78 °C the tube was shaken whereupon a dark transparent solution was produced which became colorless in 20 s. The crude product, $(CF_3)_2PFBr_2$, was trapped at -45 °C and -78 °C and purified by trap-to-trap condensation (93% yield) [45].

5.2.7.1.2 Physical Properties

Physical data especially NMR, IR and mass spectral data, are summarized in **Table 35**, p. 115. Additional data from structure determinations and spectra are given in the following sections.

5.2.7.1.2.1 Ground State Structures of Trifluoromethylhalogenophosphoranes by Means of NMR Spectroscopy and Theoretical Results

From ¹³C NMR spectra of a series of phosphoranes containing one or more CF₃ groups it was concluded that large values (>170 Hz) of the coupling constant J(P-C) are related to equatorial CF₃ groups and smaller values (<90 Hz) are associated with axial CF₃ groups.

Phosphorus Compounds

The J(P-CF) coupling constants show the same trend as well [45]. All trifluoromethylhalogenophosphoranes involving two or more halogen atoms that are listed in **Table 30** (from [45]) have large J(P-C) values suggesting exclusive equatorial CF₃ substitution. However, these predictions may be at variance with structures proposed by other spectroscopic methods; see also, for instance, Part 3, p. 79.

Table 30

NMR Parameters of Trifluoromethylhalogenophosphoranes. Measured in CD_2Cl_2 solution at 22.6 MHz unless otherwise specified.

Molecule	t in °C	δ(¹³ C) ^{a)} in ppm	J(P-C) in Hz	J(P-C-F) ^{b)} in Hz	
CF₃PF₄	-40	121.3	448	170	
CF ₃ PCl ₄	0	123.6	288	151	
CF ₃ PBr ₄	+ 10	116.7	138	142	
CF ₃ PF ₂ Cl ₂	0	123.5	327	155	
$(CF_3)_2 PF_3^{c}$	0	121.3	418	176	
(CF ₃) ₂ PFCl ₂	0	123.0	389	183	
(CF ₃) ₂ PCl ₃	0	122.3	379	190	
(CF ₃) ₂ PBr ₃	0	115.5	379	182	
(CF ₃) ₂ PFBr ₂	0	120.2	336	179	
$(CF_3)_3PF_2$	+ 31	120.8	315	167	
$(CF_3)_3PCl_2$	-20	122.6	232	139	
$(CF_3)_3PBr_2^{d)}$	<u> </u>	120.6	201	127	

^{a)} Positive values indicating shifts to low field of standard (CH₃)₄Si. - ^{b)} Obtained from ¹⁹F and ³¹P spectra. - ^{c)} 40% CFCl₃, 60% CD₂Cl₂. - ^{d)} 30% CDCl₃, 70% CD₂Cl₂; compound was immiscible in pure CD₂Cl₂.

To study the influence of fast intramolecular exchange processes involving F atoms on the value of the coupling constants the ¹⁹F NMR spectrum of CF_3PF_4 has been examined to temperatures as low as -150 °C ($CFCl_3/CF_2Cl_2$ solution) but no changes consistent with stopping of intramolecular F exchange have been observed. So Berry pseudorotation with an equatorial CF_3 pivot is compatible with the proposed ground state structure of this molecule. Also in (CF_3)₂PF₃ no distinct axial-equatorial environments have been found even when examined at very low temperatures (³¹P NMR to -160 °C, ¹⁹F NMR to -125 °C, ¹³C to -125 °C). This lack of axial-equatorial F atom distinction is thought to arise from "a fast permutational process with an undefined mechanism" [45].

In the series $(CH_3)_2PF_3$, $CF_3(CH_3)PF_3$, $(CF_3)_2PF_3$, extrapolation of the known barriers for permutational F atom exchange in the first two molecules (17.8 and 8.8 kcal/mol, respectively) predicts a barrier of approximately zero for the permutational exchange in $(CF_3)_2PF_3$. Extrapolation within the series H_2PF_3 , $CF_3(H)PF_3$, $(CF_3)_2PF_3$ yields a predicted barrier of ~2.4 kcal for $(CF_3)_2PF_3$. Thus, a barrier, ranging from 1 to 3 kcal has been proposed, which is unobservable by available NMR techniques [46].

An electron diffraction study of $(CF_3)_2PCl_3$ and $(CF_3)_3PCl_2$ in the gas phase suggests axial substitution of CF₃ groups [16]; also see pp. 110/1. To detect the different CF₃ environments in the case of $(CF_3)_3PCl_2$ (one equatorial, two axial CF₃ groups) ¹³C (to -130 °C), ¹⁹F (to -160 °C)

and ³¹P NMR (to -160 °C) experiments have been carried out, but without success. The resonance lines did not broaden significantly. If the structure in gas phase and solution is the same, the barrier to CF₃ permutational exchange must be unusually small or the solution structure may involve axial Cl atoms and equivalent equatorial CF₃ groups [45]. Previous vibrational spectra of (CF₃)₂PCl₃ were also interpreted in terms of axial CF₃ groups, see Part 3, pp. 79/80.

 $(CF_3)_3PBr_2$ shows a similar behavior as $(CF_3)_3PCl_2$; the ¹⁹F NMR spectrum was unchanged to -140 °C suggesting that the CF₃ groups are in equivalent equatorial positions [45]. For CF₃PBr₄ the J(P-C) value is unexpectedly small and does not correlate with J(P-CF), cf. Table 30, p. 109. This anomaly has been interpreted by assuming CF₃PBr₄ to be better described as a phosphonium salt CF₃PBr₃⁺Br⁻. This interpretation is supported by the low value of the phosphorus chemical shift which is consistent with a phosphonium salt formulation [45].

In a theoretical work the interconversion of the equatorial and the axial configurations of CF_3PF_4 due to various permutational (from axial to axial and from equatorial to equatorial) and polytopal (from axial to equatorial and vice versa) pathways have been studied. Theoretical modifications of the rotation-vibration spectra have been obtained which are characteristic of the pathways and could be used to discriminate between them [47].

5.2.7.1.2.2 Electron Diffraction

$(CF_3)_2 PCl_3$, $(CF_3)_3 PCl_2$

110

The structures of the molecules $(CF_3)_2PCl_3$ and $(CF_3)_3PCl_2$ have been determined by electron diffraction of the gases [16]. $(CF_3)_2PCl_3$ has the structure of a regular trigonal bipyramid with both CF_3 groups in axial positions (D_{3h} symmetry). The F atoms are staggered to the equatorial positions of the Cl atoms; see **Fig. 2**. The structure of $(CF_3)_3PCl_2$ is a distorted trigonal

Structure of $(CF_3)_2PCl_3$ and of $(CF_3)_3PCl_2$.

bipyramid with two CF_3 groups in axial and one CF_3 group in equatorial positions. The F atoms of the axial groups are staggered to the equatorial atoms. There is a high potential barrier in both molecules to internal rotation of CF_3 groups around the P-C bond direction. **Table 31** reproduces the interatomic distances and angles of both molecules; for the mean square amplitudes, see the original [16].

	(C	F ₃) ₂ PCl ₃		(CF ₃) ₃ PCl ₂		
C-F	1.331(2)	Cl1F1	4.063(7)	C-F	1.329(2)	
P-C	1.950(11)	CF	4.510(21)	(P-C) _{eq}	1.938(31)	
P-Cl	2.036(2)	$F_1 \cdots F'_1$	4.812(101)	(P-C) _{ax}	1.946(14)	
$F_1 \cdots F_2$	2.158(6)	$F_1 \cdots F_2$	5.272(20)	(P-C) _{av} ^{a)}	1.943(5)	
P···F	2.721(3)			P-Cl	2.053(6)	
C···Cl	2.836(8)	∢FC F	108.3(4)°	∢FCF	108.5(3)°	
$Cl_1 \cdots F_2$	3.001(6)	∢ PCF	110.7(6)°	∢CIPCI	133.0(17)°	
ເບົ່ິ	3.508(10)			¢C _{ax} PC _{eq}	95.5(19)°	
	. ,			τ ^{b)}	7.9(35)°	

Table 31 Interatomic Distances r_a (in Å) and Angles of $(CF_3)_2PCl_3$ and $(CF_3)_3PCl_2$ from Electron Diffraction Data.

 $^{a)}$ Average (P-C) bond distance. - $^{b)}$ Angle for rotation of the equatorial CF $_3$ group around the P-C axis.

5.2.7.1.2.3 ³⁵Cl Nuclear Quadrupole Resonance

 CF_3PCl_2 and $(CF_3)_2PCl$ show a single ³⁵Cl line at 27.650 and 30.090 MHz, respectively, in the quadrupole resonance spectrum at 77 K. It is concluded that the ionic character of the P-Cl bond decreases in the series PCl_3 , CF_3PCl_2 , and $(CF_3)_2PCl$ when the number of electronwithdrawing CF_3 groups increases [50].

5.2.7.1.2.4 Photoelectron Spectra

CF₃PCl₂, (CF₃)₂PCl

Assuming C_s skeletal symmetry of the molecules the He(I) photoelectron spectra are interpreted by assigning the observed bands to localized molecular orbitals [17], see **Table 32**.

Table 32

Ionization Potentials E_i (in eV) from Photoelectron Spectra and Assignments for CF_3PCl_2 and $(CF_3)_2PCl$.

	P lone pair	P-C σ bond	P-Cl σ bond	F nont orbital	oonding s ^{a)}		Cl nonbe orbitals	onding
	CF3PCl2							
Symmetry of orbitals	A′(n)	A′	Α″	A ₂	Е	Е	(2 A′ +)	2 A″)
Ei	10.70	13.88	12.21	15.13	15.91	16.96	12.21, 12	2.62, 14.18
	(CF ₃) ₂ PCl							
Symmetry of orbitals	A′(n)	Α″	A′	A ₂	Е	E	(A' + A	")
Ei	11.13	13.61	12.42	15.43	16.38	17.05	12.42	14.38
^{a)} CF ₃ groups	are conside	ered as is	olated spe	ecies of	C _{3v} sym	metry.		

CF_3PBr_2

112

The vertical ionization energies (in eV) due to an He(I) photoelectron spectrum are [51]:

10.23, 11.01, 11.52, 11.64, 12.81, 13.55, 14.07, 15.20, 15.90, 16.94

The first ionization energy is assigned to the phosphorus "lone pair" orbital. The energy region 15 to 17 eV is associated with fluorine nonbonding orbitals [51].

CF_3PI_2 , $(CF_3)_2PI$

The first vertical (P ''lone pair'') ionization energies of CF_3PI_2 and $(CF_3)_2PI$ are 9.50 and 10.10 eV, respectively [52].

5.2.7.1.2.5 Vibrational Spectra

 $\mathbf{CF}_{3}\mathbf{PX}_{2}, \mathbf{X} = \mathbf{F}, \mathbf{Cl}, \mathbf{Br}, \mathbf{I}$

The IR and Raman spectra and the normal coordinate analyses as well have been reported in Part 3, p. 80. In the meantime, these data (originally from a private communication) have been published, see [1]. In addition, internal force constants (in 10^2 N/m) for the molecules CF₃PX₂ are listed in the following table [1]:

	f(CF)	f(CF/CF')	f(CP)	f(PX)	f(PX/PX')	f(XPX)	f(CPX)	
CF ₃ PF ₂	5.96	0.86	2.68	4.99	0.33	0.55	0.36	
CF ₃ PCl ₂	5.87	0.85	2.35	2.53	0.19	0.29	0.30	
CF_3PBr_2 CF_3PI_2	5.77 5.64	0.85 0.82	2.17 2.06	1.87 1.49	0.07 0.10	0.22 0.17	0.29 0.27	

 $(CF_3)_2PX, X = F, Cl, Br, I$

IR spectra (400 to 4000 cm⁻¹) and Raman spectra reported in [9] have been described in Part 3, pp. 82/3. These data are completed by IR measurements in the region 200 to 400 cm⁻¹ [15]. The interpretation of the vibrational spectra is performed on the basis of a normal coordinate analysis using a transferred force field [15]. Point group C_s is assumed for the (CF₃)₂PX molecules; for the assignment of the 24 fundamentals on the classes A' and A", see Part 3, p. 17. **Table 33** (from [15]) gives the potential energy distribution and lists the calculated and observed frequencies (the torsional vibrations v₁₃ and v₂₄ are not included).

Table 33

Observed (obs.) and Calculated (cal.) Frequencies of the $(CF_3)_2PX$ Molecules and Their Potential Energy Distribution.

(CF ₃) ₂ PF obs. ^{a)} cal.	(CF ₃) ₂ PCl obs. ^{a)} cal.	(CF ₃) ₂ PBr obs. ^{a)} cal.	(CF ₃) ₂ PI obs. ^{a)} cal.	Potential energy distribution	
1 227 1 226 1 149 1 152	1215 1215 1160 1149	1209 1212 1156 1147	1200 1201 1150 1142	94(1), 22(5) 62(3), 50(4), 27(9)	

(CF ₃ obs. ^{a)})₂PF cal.	(CF ₃ obs. ^{a)}) ₂ PCl cal.	(CF ₃ obs. ^{a)}) ₂ PBr cal.	(CF ₃ obs. ^{a)}) ₂ PI ⁾ cal.	Potential energy distribution
749	744	746	743	743	742	745	740	38(4), 40(3), 14(9)
568	565			560	564	561	562	68(5), 12(1)
		570	571					46(5), 10(1), 20(11)
269	265							66(7), 35(10), 12(12)
		275	273					65(7), 20(10)
				282	283			55(7), 12(9), 16(10)
						242	244	69(7), 27(11)
465	458	443	441					50(9), 14(4), 12(12)
				441	439			22(9), 23(7), 21(11), 24(12)
						442	440	39(9), 21(7), 10(11), 23(12)
189	186							43(10), 12(7), 17(12)
		136	133					49(10), 45(12), 12(7)
				112	116			46(12), 41(10), 19(7)
						104	104	61(12), 59(10)
850	850							94(11)
		533	539					55(11), 25(5)
				467	457			37(11), 30(9), 15(10)
						419	419	31(11), 24(9), 16(10), 18(12)
350	350							53(12), 15(7), 14(10)
		136	134					45(12), 49(10), 11(7)
				112	116			46(12), 41(10), 19(7)
						104	104	61(12), 59(10)
1217	1 220	1 2 1 5	1210	1 206	1 204	1 200	1 204	96(14), 22(18)
1 125	1116	1 120	1 120	1 1 1 5	1 106	1 115	1 1 1 0	70(16), 50(17), 19(22)
733	733	719	722	727	728	725	725	50(17), 33(16), 12(22)
553	556	559	558	558	557	558	557	75(18), 12(14)
237	237							40(20), 19(22), 38(23)
		268	266	262	262	262	262	94(20)
455	465							53(22), 24(23)
		443	444	441	438	440	435	66(22)
275	275							36(23), 58(20)
		167	167	148	149	143	142	90(23)

Table 32 (continued)

^{a)} Due to measurements reported in [9, 15]; see also text.

Internal force constants (in 10² N/m) for the molecules (CF₃)₂PX are summarized in the following table [15]:

Compound	f(CF)	f(CF/CF')	f(CP)	f(CP/CP')	f(PX)	f(CPX)	$f(\delta_s CF_3)$	$f(\delta_{as}CF_3)$	f(ϱCF ₃)
(CF ₃) ₂ PF	6.07	0.72	2.55	0.45	4.79	0.37	1.73	1.75	0.84
(CF ₃) ₂ PCl	6.03	0.73	2.53	0.43	2.45	0.25	1.73	1.75	0.85
(CF ₃) ₂ PBr	6.02	0.74	2.48	0.43	1.95	0.23	1.73	1.75	0.83
(CF ₃) ₂ PI	6.00	0.73	2.45	0.40	1.70	0.22	1.73	1.75	0.81
Gmelin Handbo	ok			References	p. 130			8	

CF Comp. Suppl. 1

p

Compounds of Main Group 5 Elements

 CF_3PXH , CF_3PXD , X = Br, I

Gas-phase IR spectra and Raman spectra of the liquids have been measured [5]. The molecules have point group C_1 (no symmetry element) so all 15 fundamental modes will be IR and Raman active. **Table 34** lists the observed frequencies and an approximate description of the vibrations for the CF₃PXH molecules.

Table 34

Observed Frequencies (in cm⁻¹) and Proposed Assignment for CF_3PXH Molecules (X = Br, I). Relative Raman intensities in parentheses. IR bands: v = very, s = strong, w = weak, br = broad, and sh = shoulder.

CF ₃ PBrH		CF ₃	PIH	Approximate description	
Raman	IR	Raman	IR	description	
117 <i>(A</i>)		107(4)		CE. rock	
(,,,,		242(10)		CPI deformation	
260(10)				CPBr deformation	
275(0.5)		276(0.5)		PCF ₃ deformation	
		383(10)	394m	PI stretch	
416(10)	425m, br	414(3)	415m	PC stretch	
429(10)				PBr stretch	
	458vw (sh)	467(0.5)		2×242?	
539(0.5)	522vw	536(0.5)	532w	CF ₃ deformation	
740(6)	741mw	739(3)	739mw	CF ₃ deformation	
803(0.5)	804m	748(2)	754 (sh)	Br(I)PH deformation	
853(0.5)	851m	844(1)	844m	CPH deformation	
	1 010vw		1022vw		
	1103 (sh)		1 102w (sh)		
	1 132vs		1 124vs	CF ₃ stretch	
	1174vs		1 167vs	CF ₃ stretch	
	1 240vw		1 228vw		
	12/8VW		12/8VW	$2 \times CE$ stratab	
	2202VW		2242W	$2 \land OF_3$ Stretch	
	2300VW (SII)		2300VW (SII)	2 ^ OF3 SUCION	
2 320(4)	2318m	2317(1)	2 327 m	PH stretch	

Gmelin Handbook CF Comp. Suppl. 1

Phosphorus Compounds

Table 35

Physical Properties of Perfluoroalkylphosphines and -phosphoranes.

NMR spectra : coupling constants J in Hz; chemical shifts δ in ppm (positive values of δ indicate resonance to low field of the standard); ¹⁹F external standard CFCl₃ and ³¹P external standard 85% H₃PO₄, unless other specified; d = doublet, tr = triplet, qu = quartet, dec = decet.

IR spectra : v in cm^{-1} ; v = very, w = weak, s = strong, m = medium, br = broad, sh = shoulder.

Mass spectra : m/e (relative intensity) ion.

m. p. = melting point, b. p. = boiling point, D = density.

Compound	Physical properties
CF ₃ PF ₂	¹⁹ F NMR: $\delta^{a}(CF_3) = -84.3$, $\delta(PF) = -106.7$, $J(P-F) = 1240$, $J(P-CF_3) = 88.4$, $J(F_3C-PF) = 5.92$ [44]; $J(P-CF_3) = 87$ [45]. ³¹ P NMR : $\delta^{b} = 160$, $J(P-CF_3) = 88.6$, $J(P-F) = 1242$ [44]. ¹³ C NMR : $\delta^{c} = -5.23$, $J(C-F) = 318.4$, $J(C-P) = 42.8$, $J(C-PF) = 21.8$ [44]; $\delta^{d} = 123.2$, $J(C-P) = 48$ [45].
(CF₃)₂PF	
CF ₃ CF ₂ PF ₂	
F2PCF2CF2PF2 αβ	¹⁹ F NMR (-60 °C): doublet with a complex pattern, $\delta(PF_2) = -106$, $\delta(CF_2) = -132$, J(P-F) = 1252, J(P-F _α) = 86 [4]. ³¹ P NMR (-50 °C): $\delta = 227$ [tr of tr of tr], J(P-F) = 1258, J(P-F _α) = 91, J(P-F _β) = 20 [4]. IR (gas phase): 1710 (vw), 1225 (w, br), 1129 (s), 1106 (s), 844 (vvs, v(PF)), 778 (w), 660 (vvw), 570 (m), 527 (vvw), 462 (m), 450 (m); solid phase (-196 °C), 1300 (w), 1260 (vw), 985 (vw), 947 (vw), 904 (vw), 825 (w, sh), 798 (m), 785 (sh), 762 (w), 495 (w) [4]. Mass spectrum: m/e = 238 (16.4) M ⁺ ; 169 (5.9) C ₂ F ₄ PF ₂ ⁺ ; 150 (59) C ₂ F ₅ P ⁺ ; 138 (4.1) P ₂ F ₄ ⁺ ; 131 (26) C ₂ F ₄ P ⁺ ; 119 (4.7) P ₂ F ₃ ⁺ , C ₂ F ₃ ⁺ , C ₂ F ₄ P ⁺ ; 100 (10) C ₂ F ₄ ⁺ , P ₂ F ₂ ⁺ ; 88 (0.6) PF ₃ ⁺ , CF ₄ ; 81 (4.7) CF ₂ P ⁺ , C ₂ F ₃ ⁺ ; 69 (100) PF ₂ ⁺ , CF ₃ ⁺ [4].
Gmelin Handbook CF Comp. Suppl. 1	References p. 130 8*

Table 35 (continued)

Compound	Physical properties	
F ₂ PCF ₂ CF(CF ₃)PF ₂	IR (gas phase): 1635 (vw), 1350 (w), 1270 (w), 1240 (1100 (w), 1090 (w), 1015 (m), 915 (s), 830 (s, sh, v(PF)), (vw), 650 (vw), 475 (m) [4]. Mass spectrum: m/e = 288 (0.2) M ⁺ ; 231 (0.1) C ₃ F $C_2F_7P_2^+$; 200 (0.3) $C_3F_7P^+$, $C_2F_6P_2^+$; 193 (0.1) $C_3F_5P_2^+$; 181 169 (1.7) $C_2F_6P^+$; 150 (0.2) $C_3F_6^+$, $C_2F_5P^+$; 138 (2.3) P_2F (0.8) $C_2F_5^+$, CF_4P^+ ; 100 (0.8) $C_2F_4^+$, CF_3P^+ ; 93 (0.4) $C_3F_6^-$ (42.2) PF_3^+ , CF_4^+ ; 81 (3.0) $C_2F_3^+$, CF_2P^+ ; 69 (100) PF_2^+ , CF_3^+	(m), 1 195 (m), 820 (vvs), 720 $_7P_2^+$; 219 (0.7) (1.7) $C_3F_6P^+$; $_4^+$, CF_5P^+ ; 119 $_3^+$, $C_2F_2P^+$; 88 [4].
$(CF_3)_n PF_{5-n},$ (n = 1, 2, 3)	For NMR data see Table 30, p. 109.	
CF ₃ PCl ₂	$\begin{array}{l} D_4^{20} = 1.5351 \ g/cm^3 \ [55]. \\ {}^{19}F \ NMR: \delta^{a)} = -72.8, \ J(F\text{-}P) = 79.5 \ [44]. \\ {}^{31}P \ NMR: \delta^{b)} = 131 \ [44], \ \delta^{f)} = 133 \ [54], \ J(P\text{-}F) = 79.5 \ [44]. \\ {}^{13}C \ NMR: \ \delta^{c)} = -1.65 \ [44], \ \delta^{d)} = 126.1 \ [45], \ \delta^{g)} = \\ J(C\text{-}F) = 323.0 \ [44], \ 322.8 \ [50], \ J(C\text{-}P) = 60.5 \ [44], \ 75 \ [45] \\ Faraday effect: \ magnetic rotation \ \varrho _{M} = 568 \ \mu r \ at \ 20 \ ^{\circ}C \end{array}$	44], 75 [45]. = 126.49 [50],], 60.3 [50]. [54].
(CF ₃)₂PCl	$\begin{array}{l} D_4^{-5} = 1.610 \ \text{g/cm}^3; \ 1.599 - 2.1 \times 10^{-3} \ \text{t for} \ -15^\circ\text{C} < t < 8 \\ ^{19}\text{F} \ \text{NMR}: \delta^{a)} = \ -62 \ [44], \ \delta = \ -62 \ [35], \ -63.3 \ [37], \ \text{J}(\text{F}) \\ 85 \ [35, 45], \ 85.1 \ [37]. \\ ^{31}\text{P} \ \text{NMR}: \ \delta^{b)} = \ 51.2 \ [44], \ \delta^{f)} = \ 51 \ [54], \ \delta = \ 50.2 \ [37], \ \text{J}(\text{F}) \\ 85.0 \ [37]. \\ ^{13}\text{C} \ \text{NMR}: \ \delta^{c)} = \ -1.93 \ [44], \ \delta^{d)} = \ 126.3 \ [45], \ \delta^{g)} = \\ \text{J}(\text{C}-\text{F}) = \ 320.1 \ [44], \ 320.6 \ [50], \ \text{J}(\text{C}-\text{P}) = \ 35.5 \ [44], \ 38 \ \text{J} \\ \text{J}(\text{C}-\text{P}-\text{CF}) = \ 5.8 \ [44], \ 6 \ [50]. \\ \ \text{Faraday effect: magnetic rotation} \ \varrho _{M} = \ 421 \ \mu r \ \text{betw} \\ + 5^\circ\text{C} \ [54]. \end{array}$	5° C [55]. (-P) = 86 [44], (P-F) = 87 [44], (-126.25 [50], (45], 36.8 [50], (46) = -15 and
i-C ₃ F ₇ PCl ₂	b.p. 88 °C IR (gas phase): 1410 (w), 1285 (m), 1280 (vs), 1235 (1145 (w), 1090 (w), 980 (w), 955 (w), 930 (m), 810 (m), 75 [38].	vs), 1 170 (m), 50 (m), 720 (m)
(i-C ₃ F ₇) ₂ PCl	b.p. 116 °C IR (gas phase): 2360 (w), 1765 (w), 1390 (w), 1285 (v 1185 (w), 1160 (m), 1125 (m), 990 (m), 932 (w), 852 (w) (m), 710 (m) [38].	vs), 1240 (vs),), 815 (w), 745
$(CF_3)_n PCl_{5^-n},$ (n = 1, 2, 3)	For NMR data see Table 30, p. 109.	
CF ₃ PBr ₂	^{19}F NMR : $\delta^{a)}=-67.0$ [44], J(F-P) = 67.9 [44], 68 [45]. ^{31}P NMR : $\delta^{b)}=$ 118, J(P-F) = 68.3 [44]. ^{13}C NMR : $\delta^{c)}=-4.39$ [44], $\delta^{d)}=$ 122.9 [45], J(C-F) J(C-P) = 73.6 [44], 77 [45].	= 323.6 [44],
	References p. 130	Gmelin Handbook CF Comp. Suppl. 1

Table 35 (continued)

Compound	Physical properties
(CF₃)₂PBr	
CF ₃ PBr ₄ ^{h)}	m.p. 27 °C [45] ¹⁹ F NMR : $\delta = -66.8$ [45]. ³¹ P NMR : $\delta^{ij} = -86$, J(P-F) = 142 [45]. ¹³ C NMR : see Table 30, p. 109.
(CF ₃) ₂ PBr ₃	m.p. 7 °C ¹⁹ F NMR : $\delta = -81.4$ [45]. ³¹ P NMR : $\delta^{ij} = -163$, J(P-F) = 182 [45]. ¹³ C NMR : see Table 30, p. 109.
(CF ₃) ₃ PBr ₂	¹⁹ F NMR : $δ = -65.6$, J(F-P) = 127 (d) [45]. ³¹ P NMR : $δ^{11} = -177$, J(P-F) = 127 (dec) [45]. ¹³ C NMR : see Table 30, p. 109.
CF ₃ Pl ₂	$\begin{array}{l} D_4^{20} = 2.8075 \ \text{g/cm}^3 \ [55]. \\ {}^{19}F \ NMR: \delta^{a)} = -57.9 \ [44], \ J(F\text{-}P) = 48.4 \ [44], \ 52 \ [45]. \\ {}^{31}P \ NMR: \delta^{b)} = 61.7 \ [44], \ \delta^{\dagger j} = 61 \ [54], \ J(P\text{-}F) = 48.6 \ [44]. \\ {}^{13}C \ NMR: \ \delta^{c)} = -8.03 \ [44], \ \delta^{d)} = 118.7 \ [45], \ J(C\text{-}F) = 324.5 \ [44], \\ J(C\text{-}P) = 85.3 \ [44], \ 87 \ [45]. \\ Faraday effect: \ magnetic \ rotation \ \varrho _M = 2 \ 138 \ \mu r \ at \ 20 \ ^{\circ}C \ [54]. \end{array}$
(CF ₃) ₂ PI	$\begin{array}{l} D_4^{20} = 2.0433 \ \text{g/cm}^3 \ [55]. \\ {}^{19}F \ NMR: \delta^{a)} = -55.0 \ [44], \ \delta^{j)} = 22.9 \ [43], \ J(F\text{-}P) = 72 \ [44], \ 73 \ [45], \\ 76 \ [43]. \\ {}^{31}P \ NMR: \delta^{b)} = 0.4 \ [44], \ \delta^{\dagger)} = 0 \ [54], \ J(P\text{-}F) = 73.5 \ [44]. \\ {}^{13}C \ NMR: \delta^{c)} = -4.63 \ [44], \ \delta^{d)} = 122.6 \ [45], \ J(C\text{-}P) = 42.8 \ [44], \ 45 \ [45], \ J(C\text{-}F) = 320.5, \ J(C\text{-}P\text{-}CF) = 5.5 \ [44]. \\ \\ Mass spectrum: \ m/e = 296 \ (9\%) \ (CF_3)_2PI^+, \ 277 \ (5\%) \ (CF_3)CF_2PI^+ \ [43]. \\ \\ Faraday effect: \ magnetic rotation \ \varrho _{M} = 855 \ \mu r \ at \ 20^\circC \ [54]. \end{array}$
i-C ₃ F ₇ PI ₂	b.p. 195 °C [38], vapor pressure at 25 °C ~3 Torr [58], m.p. ~0 °C [58]. ³¹ P NMR: δ = 76.5, J(P-CF) = 58, J(P-C-CF) = 17 [58]. IR (gas phase): 1400 (w), 1290 (w), 1280 (vs), 1240 (vs), 1165 (w), 1148 (w), 1090 (w), 990 (w), 960 (m), 925 (m), 815 (w), 750 (m), 715 (w) [38].
(i-C ₃ F ₇) ₂ PI	b.p. 138 °C [38] IR (gas phase): 2370 (w), 1760 (w), 1390 (w), 1292 (vs), 1240 (vs), 1 190 (w), 985 (m), 932 (w), 852 (w), 820 (w), 755 (m), 702 (m) [38].
CF ₃ (n-C ₃ F ₇)PI Gmetin Handbook	b.p. 104 to 106 °C [13, 14] References p. 130

Table 35 (continued)

Compound	Physical properties	
C ₂ F ₅ (i-C ₃ F ₇)PI	b.p. 30 to 32 °C (12 Torr) [12].	
CF ₃ PF ₂ Cl ₂ (CF ₃) ₂ PFCl ₂	For NMR data see Table 30, p. 109.	
$CF_3CF_2PF_2Cl_2$ $\beta \alpha$		-80.4, J(P-F) = F_{β} -P) = 1.2 (d), J(F _{α} -PF) = 11.3
$CF_3CF_2CF_2PF_2Cl_2$ $\gamma \beta \alpha$	¹⁹ F NMR : $\delta(PF) = +37.8$, $\delta(F_{\alpha}) = -111.5$, $\delta(F_{\beta}) = -82.4$, J(P-F) = 1082 (d), J(PF-F_{\gamma}) = 1.0 (qu), J(PF-F_{\beta}) = 11.7 (tr), J(F_{\gamma}-P) = 5.5 (d), J(F_{\gamma}-PF) = 1.0 (10.6 (tr), J(F_{\gamma}-F_{\beta}) = 0, J(F_{\alpha}-P) = 131 (d), J(F_{\alpha}-PF) = 12.5 (0.4 (qu), J(F_{\alpha}-F_{\beta}) = 3.0 (tr), J(F_{\beta}-P) = 5.8 (d), J(F_{\beta}-F_{\beta}) = 0, J(F_{\beta}-F_{\alpha}) = 2.9 (tr) [48]; \delta^{k}(PF) = -392.3 (1P - F_{\alpha}) = 13.5, J(P-PF) = 1069 (tr), J(P-F_{\alpha}) = 129 (1P - F_{\alpha}) = 129 (1P - F	$\begin{array}{l} -123.3, \ \delta(F_{\gamma}) \ = \\ F_{\alpha}) \ = \ 12.4 \ (\mathrm{tr}), \\ (\mathrm{tr}), \ J(F_{\gamma}\text{-}F_{\alpha}) \ = \\ \mathfrak{f}(\mathrm{tr}), \ J(F_{\alpha}\text{-}F_{\gamma}) \ = \\ F(\mathrm{tr}), \ J(F_{\alpha}\text{-}F_{\gamma}) \ = \\ PF) \ = \ 11.6 \ (\mathrm{tr}), \\ [49]. \\ (\mathrm{tr}) \ [48]. \end{array}$
$CICF_2CF_2PF_2CI_2$ $\beta \alpha$	¹⁹ F NMR: $\delta(PF) = +51.5$, $\delta(F_{\alpha}) = -108.9$, $\delta(F_{\beta}) = -1073$ (d), $J(PF-F_{\alpha}) = 14.2$ (tr), $J(PF-F_{\beta}) = 10.7$ (tr), $J(F_{\alpha}-PF) = 14.2$ (tr), $J(F_{\alpha}-F_{\beta}) = 3.7$ (tr), $J(F_{\beta}-P) = 3.4$ (d), (tr), $J(F_{\beta}-F_{\alpha}) = 3.7$ (tr) [48]. ³¹ P NMR: $\delta = 11.5$, $J(P-PF) = 1060$ (tr), $J(P-F_{\alpha}) = 132$ (-66.8, J(P-F) = F_{α} -P) = 134 (d), $J(F_{\beta}$ -PF) = 10.6 (tr) [48].
CF₃PFCl	¹⁹ F NMR : $\delta^{l}(CF_3) = -76.1$, J(CF-P) = 84, J(F-F) = 0.6	ð [5].
CF₃PFBr	¹⁹ F NMR : δ^{l} (CF ₃) = -73.9, J(CF-P) = 80, J(F-F) = 1.8	B [5].
CF₃PClH	^{19}F NMR : $\delta^{1)}=$ $-58.6,$ J(F-P) $=$ 68, J(F-H) $=$ 10.4 [5]. ^{1}H NMR : $\delta^{\text{m})}$ $=$ 5.71, J(H-P) $=$ 190 [5].	
CF₃PClBr	¹⁹ F NMR : $\delta^{(l)} = -70.0$, J(F-P) = 75 [5].	
CF₃PCII	¹⁹ F NMR : δ^{I} = -66.3, J(F-P) = 66 [5].	
CF ₃ PCl(CN)	¹⁹ F NMR : δ^{1} = -62.4, J(F-P) = 85 [5].	
CF₃PBrH	$\label{eq:stars} {}^{19}\text{F} \ \text{NMR}: \delta^{1)} = -56.0, \ \text{J}(\text{F-P}) = 65, \ \text{J}(\text{F-H}) = 10.6 \ [5]. \\ {}^{1}\text{H} \ \text{NMR}: \delta^{m)} = 4.94, \ \text{J}(\text{H-P}) = 189 \ [5]. \\ \end{array}$	
CF₃PBrl	¹⁹ F NMR : δ^{1} = -64.5, J(F-P) = 62 [5].	
CF₃PBr(CN)	¹⁹ F NMR : $\delta^{ij} = -60.1$, J(F-P) = 81 [5].	
CF ₃ PIH	$^{19}\text{F}\ \text{NMR}: \delta^{1)} = -51.6, \ \text{J}(\text{F-P}) = 56, \ \text{J}(\text{F-H}) = 10.2 \ [5].$ $^{1}\text{H}\ \text{NMR}: \delta^{\text{m})} = 4.17, \ \text{J}(\text{H-P}) = 186 \ [5].$	
	References p. 130	Gmelin Handbook

Gmelin Handbook CF Comp. Suppl. 1

Table 35 ((continued)
------------	-------------

Compound	Physical properties
CF ₃ PI(CN)	¹⁹ F NMR : δ^{I} = -55.9, J(F-P) = 71 [5].
(CF ₃) ₂ PFBr ₂	$\begin{array}{l} \text{m.p.} -8 \pm 1^{\text{o}}\text{C} \\ ^{19}\text{F}\text{NMR}:\delta(\text{PF}) = -101.5,\delta(\text{CF}_3) = -78.6,\text{J}(\text{P-F}) = 1255,\text{J}(\text{P-CF}_3) = \\ 179,\text{J}(\text{PF-CF}_3) = 13.0[45]. \\ ^{31}\text{P}\text{NMR}:\delta^{(i)} = -153[45]. \\ ^{13}\text{C}\text{NMR}:\text{for data see Table 30, p. 109.} \\ \text{IR}(\text{gas phase}):1292(\text{vw}),1191(\text{vs}),1177(\text{vs}),1156(\text{vs}),1117(\text{vw}), \\ 828(\text{m}),581(\text{m}),565(\text{m}),547(\text{m}),515(\text{m}),396(\text{vw})[45]. \\ \text{Mass spectrum (intensity as \% of base peak}(\text{m/e}69) = 100):\text{m/e} = \\ 277,279,281(44.6)\text{CF}_4\text{PBr}_2^+;267,269(31.6)\text{C}_2\text{F}_7\text{PBr}^+;227,229,231\\ (3.1)\text{PF}_2\text{Br}_2^+;217,219(11.0)\text{CF}_5\text{PBr}^+;198,200(3.1)\text{CF}_4\text{PBr}^+;188\\ (2.3)\text{C}_2\text{F}_7\text{P}^+;179,181,(2.5)\text{CF}_3\text{PBr}^+;129,131(36.2)\text{CF}_2\text{Br}^+,\text{PFBr}^+; \\ 119(7.0)\text{CF}_3\text{PF}^+;100(3.1)\text{CF}_3\text{P}^+;79,81(22.0)\text{Br}^+[45]. \end{array}$

^{a)} External standard CF₃COOH, calibrated against CFCl₃. $^{b)}$ External standard 15% H₃PO₄, calibrated against 85% H₃PO₄. $^{c)}$ External standard C₆D₆. $^{d)}$ Internal standard (CH₃)₄Si in CD₂Cl₂ solution. $^{e)}$ External standard (CH₃O)₃P. $^{f)}$ External standard P₄O₆, calibrated against 85% H₃PO₄. $^{g)}$ Internal standard CDCl₃, calibrated against (CH₃)₄Si. $^{h)}$ Seems to be a phosphonium salt; also see p. 110. $^{i)}$ Standard P₄O₆. $^{i)}$ External standard CF₃COOH. $^{k)}$ External standard F₂. $^{l)}$ Internal standard CFCl₃. $^{m)}$ Internal standard (CH₃)₄Si.

5.2.7.1.3 Chemical Reactions

5.2.7.1.3.1 Thermolysis and Photolysis

 $C_2F_5PF_2$ can be heated to 200 °C for 1 h without decomposition as indicated by IR analysis [3].

On heating to 200 °C at 0.6 atm and for 2 h, $F_2C=CFPF_4$ partially decomposes into PF_5 , POF_3 and $F_2C=CFP(O)F_2$; 91 mol% of the product mixture is unreacted $F_2C=CFPF_4$ [3].

Less than 30% of $(CF_3)_2PFBr_2$ had decomposed mainly into $(CF_3)_2PF_2Br$ and $(CF_3)_2PBr_3$ after 40 h at 45 °C [45].

Various perfluoroalkyliodophosphines such as $(CF_3)_2PI$, $CF_3(C_2F_5)PI$, $CF_3(C_3F_7)PI$, $(C_2F_5)_2PI$, $(C_3F_7)_2PI$ have been investigated with respect to their ability to produce excited iodine atoms in photolysis processes. This property is of interest in connection with photodissociation iodide lasers, see, for instance [19, 53].

5.2.7.1.3.2 Hydrolysis

Partial hydrolysis of CF₃PF₄ leads to CF₃P(O)F₂ [34].

 $(i-C_3F_7)_2PI$ and $i-C_3F_7PI_2$ both give $(CF_3)_2CFH$ as the volatile product by hydrolysis with 15% aqueous NaOH (overnight at room temperature) [38].

Neutral (water) and alkaline hydrolysis (10% NaOH) of $(CF_3)_2PFBr_2$ for 5 d yields $(CF_3)_2PO_2^-$ (according to ¹⁹F NMR) and a little CF₃H [45].

5.2.7.1.3.3 Reactions with Halogens, HI, Hg, Air, N₂O₄, (CF₃)₂NO, NH₃, and B₄H₈CO

The reaction of $(CF_3)_2PI$ with atomic fluorine has been studied by fast flow ESR methods. The initial stage of the reaction is the abstraction of I by F, to form IF and $(CF_3)_2P$ with a bimolecular rate constant of $(1.0 \pm 0.3) \times 10^{14} \text{ cm}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$ at 297 K. In the presence of excess F, stepwise addition to the phosphoranes occurs. In the presence of excess $(CF_3)_2PI$ the reaction $(CF_3)_2P + \text{IF} \rightarrow (CF_3)_2PF + \text{I}$ appears to take place. This reaction rate is slow relative to $(CF_3)_2P + \text{F} \rightarrow (CF_3)_2PF$ [63].

 $(CF_3)_2PF$, $(CF_3)_2PBr$ and CF_3PBr_2 are oxidized by Br_2 to give the corresponding phosphoranes $(CF_3)_2PFBr_2$, $(CF_3)_2PBr_3$ and CF_3PBr_4 , respectively. The bromination of CF_3PF_2 yields CF_3PF_4 , CF_3PBr_2 , and $(CF_3)_2PBr_3$ as principal products [45].

 CF_3PI_2 reacts with an excess of anhydrous HI and Hg to give CF_3PH_2 in almost quantitative yield. However, with a deficiency of HI, CF_3PH_2 is formed along with $(CF_3P)_n$ (n = 4, 5) and $CF_3PHPHCF_3$ (20 to 40%) [7].

On shaking with Hg for 2 to 3 h, CF_3PI_2 reacts almost completely to $(CF_3P)_4$ [32]. Reaction of Hg with i- $C_3F_7PI_2$ gives (i- $C_3F_7PI_3$ in quantitative yield [58].

 $(CF_3)_2PF$ is oxidized by air to form $(CF_3)_2P(O)F$. During 30 min at 25 °C and 0.5 atm, there was a 5% conversion to $(CF_3)_2P(O)F$, after 16 h the reaction was essentially complete [34].

 N_2O_4 oxidizes CF_3PF_2 to give $CF_3P(O)F_2$ [34].

The phosphines $(CF_3)_2PX$ (X = F, Cl, and Br) react with bis(trifluoromethyl)nitroxyl, $(CF_3)_2NO$, at room temperature to give the oxidative addition products of the type $[(CF_3)_2NO]_2P(CF_3)_2X$. However, with $(CF_3)_2PI$ the substituted phosphine $(CF_3)_2NOP(CF_3)_2$ is formed [26]. For the properties of these products, see p. 93.

The reaction of $(CF_3)_2$ PCl with NH₃ at room temperature yields $(CF_3)_2$ PNH₂ (95% yield) [67]; see also p. 101.

In B_4H_8CO the CO group can be exchanged by CF_3PF_2 to give the complex CF_3PF_2 · B_4H_8 [59], see also p. 148.

5.2.7.1.3.4 Reactions with SbX₃, AgX (X = F, Cl), AgOC(O)R_f, NaOC(CF₃)₂CN, LiOCH(CF₃)₂, R(CF₃)PH, and Alkyl lodides

With SbF₃ and SbCl₃ perfluoroalkyldiiodophosphines are transformed into the corresponding difluoro- and dichlorophosphines. For the reactions between $C_2F_5Pl_2$ and SbF₃, see [3] and p. 104, for the reactions between RPl₂ (R = CF₃, C₂F₅, C₃F₇) and SbCl₃, see [39] and p. 105.

Perfluoroalkyliodophosphines and AgX salts (X = F, Cl) may react to give the corresponding perfluoroalkylhalogenophosphines; see for CF₃Pl₂ and AgF [1] and for i-C₃F₇Pl₂ and AgCl [38] and p. 105.

 $(CF_3)_2PCl$ and $(CF_3)_2Pl$ readily react with silver perfluorocarboxylato salts at room temperature to form the carboxylatobis(perfluoroalkyl)phosphine-mixed anhydrides, $(CF_3)_2PX + AgOC(O)R_f \rightarrow R_fC(O)OP(CF_3)_2 + AgX$, where X = Cl, I and $R_f = CF_3$, C_2F_5 , C_3F_7 [25]; see also p. 88. With sodium salts no reaction occurs [25].

 $(CF_3)_2PCl$ and $(CF_3)_2Pl$ react with the sodium cyanohydrin salt of hexafluoroacetone in high yield according to the following scheme,

 $(CF_3)_2PX + NaOC(CF_3)_2CN \rightarrow (CF_3)_2C(CN)OP(CF_3)_2 + NaX, X = Cl \text{ and } I \text{ [25]}; \text{ see also p. 88}.$

By reaction of $(CF_3)_2$ PI with LiOCH $(CF_3)_2$ the $(CF_3)_2$ CHO group can be linked to phosphorous yielding $(CF_3)_2$ POCH $(CF_3)_2$ (warming the mixture from $-196 \,^{\circ}$ C to room temperature over 1 h, yield 85%). Boiling point 71 $^{\circ}$ C; ¹⁹F NMR (internal standard CFCl₃): δ [OCH $(CF_3)_2$] = -78.8, δ (CF₃P) = 65.2 ppm, J(F-C-P) = 100 Hz; ³¹P NMR (external standard 85% H₃PO₄): δ = 107 ppm; ¹H NMR [internal standard (CH₃)₄Si]: δ = 4.4 ppm, J(P-H) = 10.5, J(FC-CH) = 4.5 Hz [61].

Chiral diphosphines $R(CF_3)PP(CF_3)_2$ have been made by reaction of $(CF_3)_2PCl$ with $R(CF_3)PH$ ($R = CH_2F$, CHF_2) in presence of $(CH_3)_3N$ to remove HCl (-110 to -78 °C, yield below 50% for $R = CH_2F$ and 83% for $R = CHF_2$) [56].

 $\begin{array}{l} {\sf CH}_2{\sf F}({\sf CF}_3){\sf PP}({\sf CF}_3)_2\colon {\sf vapor\ pressure\ equation\ log\ (p/Torr)\ =\ 6.9037\ +\ 1.75\ log\ T\ -0.005\ T\ -2734/T,\ boiling\ point\ (extrapolated)\ 111\ ^{\circ}{\sf C},\ Trouton\ constant\ 21.2\ cal\cdot mol^{-1}\cdot {\sf K}^{-1}. \end{array} \\ {}^{19}{\sf F\ NMR\ (standard\ CFCl_3)\colon AB\ pattern,\ \delta(CF_3-A)\ =\ -46.5\ ppm,\ J(F-C-P)\ =\ 67,\ J(F-C-P-P)\ =\ 9(?),\ J(F-C-P-C-F)\ =\ 8.0,\ J(F-C-P-P-C-F)\ =\ 2.0\ Hz;\ \delta(CF_3-B)\ =\ -49\ ppm,\ J(F-C-P)\ =\ 67\ Hz;\ C(CF_3)P\ group,\ \delta\ =\ -226\ ppm,\ J(F-C-P)\ =\ 67\ Hz;\ C(CF_3)P\ group,\ \delta\ =\ -226\ ppm,\ J(F-C-P)\ =\ 81\ Hz,\ J(F-C-P-C-F)\ =\ 64,\ J(F-C-P-P)\ =\ 18\ Hz;\ CH_2F\ group,\ \delta\ =\ -226\ ppm,\ J(F-C-P)\ =\ 81\ Hz,\ J(F-C-P)\ =\ 81\ Hz,\ J(F-C-P-C-F)\ =\ 2.1,\ J(F-C-P-P-C-F)\ =\ 6(?),\ J(F-C-H)\ =\ 47.7\ Hz.\ ^1H\ NMR\ [standard\ (CH_3)_4Si]\colon AB\ pattern,\ \delta_A\ =\ 4.945\ ppm,\ J(H-C-F)\ =\ 47.5,\ J(H-C-P)\ =\ 11.3\ Hz;\ \delta_B\ =\ 5.015\ ppm,\ J(H-C-F)\ =\ 47.7,\ J(H-C-P)\ =\ 10.8\ Hz. \end{array}$

CHF₂(CF₃)PP(CF₃)₂: p = 10 Torr at 0°C and 43 Torr at 26.2°C, boiling point (extrapolated) 100°C. ¹⁹F NMR (standard CFCl₃): AB pattern, δ (CF₃-A) = -46.2, δ (CF₃-B) = -48.1 ppm, J(F-C-P) = 71 Hz for both; C(CF₃)P group, $\delta = -51$ ppm, J(F-C-P) = 60 Hz; CHF₂ group, $\delta = -112$ ppm, J(F-C-P) = 117, J(F-C-H) = 52 Hz (by proton decoupling). ¹H NMR [standard (CH₃)₄Si]: $\delta = 3.58$ ppm, J(H-C-F) = 50.2, J(H-C-P) = 17.5, J(H-C-P) = 3.2 Hz [56].

 $(CF_3)_2$ PCl reacts with i-C₃F₇l in dry ether in the presence of Li metal (-78 °C for 0.5 h, then 2 h at -50 °C, finally stirring 2 h at room temperature) giving i-C₃F₇(CF₃)₂P in 60% yield [38].

The reaction of $(CF_3)_2PI$ with $(CF_3)_2CFI$ and Li metal dispersed in diglyme leads $(-45 \,^{\circ}C$ for 4 h, then keeping at room temperature overnight) to $(CF_3)_2PCF(CF_3)_2$ in 56.3% yield along with $[(CF_3)_2CF]_2$ and $[(CF_3)_2P]_2$ [3]. For properties of $(CF_3)_2PCF(CF_3)_2$, see p. 154.

5.2.7.1.3.5 Reactions with Alcohols and Mercaptans

The reaction of $(CF_3)_2PCI$ with alcohols and mercaptans in the presence of $(CH_3)_3N$ yields phosphinous esters, $(CF_3)_2POR$, and thioesters, $(CF_3)_2PSR$, with $R = CH_3$, C_2H_5 , $CH(CH_3)_2$ [36]. The general procedure is to slowly warm a mixture of equal molar quantities of the reactant and $(CH_3)_3N$ in a sealed ampule from -78 °C to room temperature. The yields are about 90%. In the absence of $(CH_3)_3N$, t-butyl alcohol gives $(CF_3)_2POH$, $(CF_3)_2P(O)C(CH_3)_3$ (1:1 molar ratio), $(CH_3)_3CCI$ and HCI. Separate reactions showed that the ester reacted with HCl to yield $(CF_3)_2POH$ and $(CH_3)_3CCI$. With benzylalcohol, $(CF_3)_2PCI$ gives after 4 h at 70 °C $(CF_3)_2POH$ and unidentified products [36]. Vapor pressure measurements (p in Torr) yield for $(CF_3)_2POCH(CH_3)_2$ log p = 7.98 – 1840/T in the range 0 to 50 °C with a boiling point of 8 °C; for $(CF_3)_2PSCH(CH_3)_2$ log p = 8.10–2079/T in the range 15 to 60 °C with a boiling point of 125 °C. NMR data of the synthesized esters and thioesters are summarized in **Table 36**, p. 122. For IR spectral data, see the original [36].

Gmelin Handbook CF Comp. Suppl. 1

Table 36

Table 37

NMR Data of Phosphinous Esters and Thioesters [36].

The chemical shifts δ (in ppm) are relative to internal CFCl₃ or relative to (CH₃)₄Si; positive values denote resonance to low field of standard. Coupling constants J in Hz.

Compound	δ(F)	J(F-P)	δ(CH ₃)	δ (other protons)	J(P-CH _x)	J(HC-CH)	J(F-H)
(CF ₃) ₂ POCH ₃	-64.4	86.1	3.92		12.4		0.5
$(CF_3)_2 POC_2 H_5$	-65.0	87.2	1.44	4.15 (CH ₂)	9.8 ^{a)}	7.0	0.3
$(CF_3)_2 POCH(CH_3)_2$	-65.6	88.0	1.43	4.36 (CH)	7.8 ^{b)}	6.2	0.2
$(CF_3)_2 POC(CH_3)_3$	-65.9	88.3	1.36				0.2
(CF ₃) ₂ PSCH ₂ CH ₃	- 57.1	79.4	1.50	2.97 (CH ₂)	14.6 ^{a)} , 0.5	7.3	
(CF ₃) ₂ PSCH(CH ₃) ₂	- 57.0	80.3	1.49	3.39 (CH)	6.7 ^{b)}	6.7	
(CF ₃) ₂ PSC(CH ₃) ₃	- 56.7	81.2	1.59	ζ, γ	1.1		
^{a)} J(P-CH ₂) ^{b)} J(P-CH).						

With ClCH₂CH₂OH, (CF₃)₂PCl reacts (21°C, 25 h) giving (CF₃)₂POCH₂CH₂Cl in 91% yield. Colorless liquid, vapor pressure ca. 11 Torr at 21°C. ¹⁹F NMR (internal standard CFCl₃): $\delta = -64.6$ ppm, J(F-P) = 86 Hz; ¹H NMR [standard (CH₃)₄Si]: $\delta = 4.25$ and 3.70 ppm, J(P-O-C-H) = 9 Hz, J(H-H) = 6 Hz; IR spectrum (gas phase): P-O stretch at 1.042 cm⁻¹ [64].

The treatment of diiodophosphines with alcohols gives the phosphinous esters only with 35 to 40% yield. More convenient is the use of dichlorophosphines (adding alcohol at -10 °C to CF₃PCl₂, slowly warming to room temperature with shaking and then leaving the mixture for 20 h):

$$R_fPCl_2 + 2 ROH \rightarrow R_fP(OR)_2 + 2 HCl$$

Under these conditions, with isopropylalcohol, mainly perfluoroalkylphosphonites $R_fPH(O)OC_3H_7$ -iso ($R_f = CF_3$, C_2F_5 , C_3F_7) were obtained [39]. Some data of compounds with various substituents are given in **Table 37**.

R _f	R	Yield in %	Boiling point in °C (pressure in Torr)	δ(Ρ) ^{a)} in ppm	J(P-CF) in Hz	J(P-H) in Hz
R _f P(OF	R) ₂					
CF ₃	C ₂ H ₅	63	23 to 25 (10)	133.0	84	
CF ₃	C_3H_7	82	42 to 44 (10)	133.4	80	
CF ₃	iso-C₄H ₉	84	60 to 63 (10)	132.7	79	
C_2F_5	CH ₃	79	40 to 42 (75)	145.3	86	
C_2F_5	$C_2 H_5$	59	24 (8)		_	
C_2F_5	C₄H ₉	68	74 to 76 (8)		_	
C_2F_5	iso-Č₄H ₉	90	64 (8)	143.9	96	
C_3F_7	iso-C ₄ H ₉	91	85 (12)	143.9	89	
			. .			

Some Data of R_fP(OR)₂ and R_fPH(O)OR Compounds [39].

122

R _f	R	Yield in %	Boiling point in °C (pressure in Torr)	δ(Ρ) ^{a)} in ppm	J(P-CF) in Hz	J(P-H) in Hz
R _f PH(0	D)OR					
CF ₃	iso-C ₃ H ₇	62	43 to 45 (12)	5.4	116	642
C_2F_5	iso-C ₃ H ₇	83	43 to 44 (10)	8.9	89	638
C ₂ F ₇	iso-C ₂ H ₇	61	57 to 59 (11)	9.2	88	636

Table 37 (continued)

^{a) 31}P NMR, external standard 85% H_3PO_4 ; positive δ values indicate resonance downfield of standard.

The reaction of CF₃PCl₂ with deficient CH₃OH and frequent removal of the HCl during the reaction time of 2 d at 25°C yields CH₃O(CF₃)PCl along with (CH₃O)₂PCF₃ [66]. CH₃O(CF₃)PCl is also obtained from the reaction of CF₃PCl₂ with (CH₃O)₂PCF₃ in the presence of (CH₃)₃N (50% yield after 21 h at 25°C, 91% yield after brief heating to 100°C in a sealed tube) [66]. CH₃O(CF₃)PCl: vapor pressure 52 Torr at 0°C; ¹⁹F NMR (external standard CFCl₃): $\delta = -72.3$ ppm, J(F-P) = 73.3, J(F-H) = 1 Hz; ³¹P NMR (external standard H₃PO₄): $\delta = 133$ ppm, J(P-F) = 75, J(P-H) = 10.3 Hz; ¹³C NMR (external standard C₆D₆): δ (CF₃) = -1.15, δ (CH₃) = -72.2 ppm, J(C-F) = 325.6, J(C-P) = 66.0, J(CH) = 148.7 Hz; ¹H NMR [external standard (CH₃)₄Si]: $\delta = 3.53$ ppm, J(H-P) = 11.0, J(H-F) = 0.9 Hz; for the infrared spectrum, see the original [66].

5.2.7.1.3.6 Reactions with Metal Alkyls

Perfluoromethylfluorophosphoranes and -chlorophosphoranes are methylated with $(CH_3)_4$ Sn or $(CH_3)_4$ Pb [46] according to the reaction scheme

$$(CF_3)_n PX_{5-n} + (CH_3)_4 Y \rightarrow CH_3(CF_3)_n PX_{4-n} + (CH_3)_3 YX$$

n = 1, 2, 3, X = F, Cl and Y = Sn or Pb.

With $(CH_3)_4Pb$ in toluene, CF_3PCl_4 gives $CH_3(CF_3)PCl_3$ as a white solid in ~30% yield (sealed vessel, agitation at room temperature for several days). In the same manner $(CH_3)_4Sn$ and CF_3PF_4 gave $CH_3(CF_3)PF_3$ (in 17 h 18% yield) as a white solid. Both compounds were characterized by ¹H, ¹⁹F, ³¹P NMR (see **Table 38**, p. 124) and IR spectra (see the original) [46].

Methylation of $(CF_3)_2PF_3$ is achieved with $(CH_3)_4Sn$ (sealed tube, room temperature, 18 h) giving $CH_3(CF_3)_2PF_2$ with a yield of 85%. As a by-product $[(CH_3)_3Sn][(CF_3)_2PF_4]$ was formed. For NMR data of $CH_3(CF_3)_2PF_2$, see Table 38; for infrared and mass spectral data, see the original [68].

 $(CF_3)_2PCl_3$ and $(CH_3)_4Pb$ in toluene react (shaking for two days at room temperature) to give $(CH_3)_2(CF_3)_2PCl$ (yield 47%) along with $CH_3(CF_3)_2PCl_2$. For NMR data, see Table 38; for infrared and mass spectral data, see the original [11].

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₃ (CF ₃)PF ₃	CH ₃ (C	F ₃)PCI ₃	CH ₃ (($CF_3)_2PF_2$	ЧŜ	(CF ₃) ₃ PF	CH ₃ (CF ₃) ₃ PCI	(CH ₃) ₂ (CF ₃) ₂ PCI	
Chemical shifts in ppm ^m) $\delta(H)^{a}$ 1.70 1.9^{a} 3.04 1.94 2.11 2.52 2.54 $\delta(PF)^{b}$ -46.2 -2.9^{a} 3.04 1.94 2.11 2.52 2.54 $\delta(PF)^{b}$ -46.2 -2.9^{a} -74.1 76.7 -66.9 -66.4 -62.3 -63.3 -63.0 -65.0 $\delta(PF)^{b}$ -124.2 -124.2 -124.2 -124.2 -166.1 -66.3 -65.0 -66.0 $\delta(^{a}P)^{a}$ -124.2 -120 -148.4 -151.7 -148.3 -148.3 -168.1 -162.1 -162.1 -63.0 -65.0 -65.0 $\delta(^{a}P)^{a}$ -124.2 -126.2 -148.3 -148.3 -168.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1 -162.1			0°C	100 °C	+ 30 °C	80 °C	+ 30 °C	— 100 °C	+ 33 °C	℃ 06	+ 30 °C	+33°C –90°C	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							Chemica	al shifts in	ppm ^{m)}				
		δ(Η) ^{a)}	1.70	1.9 ^{d)}	3.04		1.94	_	2.11		2.52	2.54	
		δ(PF) ^{υ)}	- 46.2	- 25.9 ^{e)} - 86.5 ^{f)}			- 44.6		- 13.3 (1) ⁹⁾				
$g(^{31}p)^{0}$ -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -162.1 -162.1 $J(P-F)$ 955 909 °) Coupling constants in Hz Coupling constants in Hz -1026^{0} -148.4 -151.7 -148.3 -162.1 -162.1 $J(P-F)$ 955 909 °) 840 840 843 827 -162.1 -162.1 $J(P-C_{1})$ 152.0 151.4 85.0 76.2 134.1 154 101.0 79.0 78.5 $J(P-C_{1})$ 17.5 18.0 72.2 135.5 101.0 79.0 78.5 $J(P-C_{1})$ 17.5 18.0 17.3 16.5 17.3 16.0 % $J(P-C_{1})$ 17.5 18.4 19.3 8.7 35.5 % 101.0 78.5 $J(P-C_{1})$ 17.5 18.4 154 12.3 16.0 % 16.2 17.3 16.0 % $J(P-C_{1})$ 2.0 17.3 16.5 17.3 16.0 % 78.5 16.2 17.3 16.0 % 16.2 <td></td> <td>δ(CF₃) ^{b)}</td> <td>- 69.6</td> <td>- 69.0</td> <td>- 74.1</td> <td>- 76.7</td> <td>- 60.9</td> <td>- 66.4</td> <td>- 62.3</td> <td>$-59.7^{(i)}(2)^{9}$</td> <td>- 63.3</td> <td>- 63.0 - 65.0</td> <td></td>		δ(CF ₃) ^{b)}	- 69.6	- 69.0	- 74.1	- 76.7	- 60.9	- 66.4	- 62.3	$-59.7^{(i)}(2)^{9}$	- 63.3	- 63.0 - 65.0	
Coupling constants in Hz J(P-F) 955 909 ^{e)} Coupling constants in Hz J(P-C ₁) 152.0 1226 ⁱ⁾ 840 843 827 J(P-C ₁) 152.0 151.4 85.0 76.2 140.6 J(P-C ₁) 155.0 151.4 85.0 76.2 135.5 ⁱ⁾ 101.0 79.0 J(P-C ₁) 17.5 114.6 90.5 154 152.4 102.6 35.5 ⁱ⁾ 101.0 79.0 78.5 J(P-CH) 17.5 18.4 19.3 15.4 15.4 15.4 16.0 ^k 16.2 ^k		δ(³¹ Ρ) ^{c)}	- 124.2	- 120	— 148.4	- 151.7	- 148.3	— 148.9	(o) 164.1	- 00.2 " (1) " - 166.4	- 165.8	- 162.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Refe						Couplin	g constants	s in Hz				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	erence	J(P-F)	955	909 ^{e)} 1 026 ^{f)}			849	840	843	827			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	es p.	J(P-CF)	332.0	333.9	184.2 or o	140.6 76.0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130	J(P-C-F)	156 156	157.5	80.0 114.6	/ 0.2 90.5	154	154	102.6	135.5 ⁱ⁾ 35 5 j)	101.0	79.0 78.5	
J(FP-CH) 8.4 9.0 ^{d)} 0.7 12.3 8.7 J(FP-CF) 12.0 17.0, 17.5 16.5 17.3 16.0 ^k) J(FP-CH) 2.2 0.4 0.6 0.8 J(FC-P-CF) 50.8 ^l) 0.4 0.6 12.5 J(F-P-F) 50.8 ^l) [46] [46] [22, 62] [71]		J(P-C-H)	17.5	18.0	12.4		19.3		15.4	0.00	12.8	16.2	
J(FP-CF) 12.0 17.0, 17.5 16.5 17.3 16.0 ^k) 2.2 2.2 0.4 0.6 0.8 J(FC-P-CF) 50.8 ^l) 0.4 0.6 12.5 J(F-P-F) 50.8 ^l) [46] [68] [22, 62] [11]		J(FP-CH)	8.4	9.0 ^{d)}	0.7		12.3		8.7				
J(FC-P-CH) 2.2 0.4 0.6 0.8 J(FC-P-CF) 50.8 ¹⁾ 12.5 0.8 J(F-P-F) 50.8 ¹⁾ [46] [68] [22, 62] [21, 62] [11]		J(FP-CF)	12.0	17.0,			17.5	16.5	17.3	16.0 ^{k)}			
J(FC-P-CF) 12.5 J(F-P-F) 50.8 ¹⁾ Ref. [46] [68] [22, 62] [22, 62] [11]		J(FC-P-CH)		7.7			0.4		0.6		0.8		
J(F-P-F) 50.8 ¹⁾ Ref. [46] [46] [68] [22, 62] [22, 62] [11]		J(FC-P-CF)								12.5			
Ref. [46] [46] [68] [22, 62] [22, 62] [11]		J(F-P-F)		50.8 ¹⁾									
	ç	Ref.		46]	7	[9]	<u> </u>	68]	2	2, 62]	[22, 62]	[11]	
	ndboc	standard.	1011 62244		2000								2

124

Compounds of Main Group 5 Elements

Gmelin Handbook CF Comp. Suppl. 1

Phosphorus Compounds

 $(CF_3)_3PF_2$ reacts with $(CH_3)_4Sn$ or $(CH_3)_4Pb$ (sealed tube, gradually warming to room temperature and shaking at room temperature for 2 days) giving $CH_3(CF_3)_3PF$ [in 82% yield for $(CH_3)_4Sn$]. $(CF_3)_3PCl_2$ reacts only with $(CH_3)_4Pb$ (sealed tube, immediately on warming to room temperature a white solid is formed, further agitation for 1.5 h) to form $CH_3(CF_3)_3PCl$ in 72% yield. With $(CH_3)_nSn$ no reaction had occurred after one week at room temperature. $CH_3(CF_3)_3PF$ (melting point 20 to 21°C) and $CH_3(CF_3)_3PCl$ (melting point 56 to 57°C) were characterized by their NMR spectra (see Table 38); for infrared and mass spectral data, see the original [22, 62].

With $(CH_3)_4Pb$ at room temperature in a sealed tube $(CF_3)_3PCl_2$ and $(CF_3)_2PCl_3$ yield $(CH_3)_2P(CF_3)_3$ (yield 75%, melting point 64 to 65°C) and $(CH_3)_3P(CF_3)_2$ (yield 44%, melting point 44 to 46°C), respectively. According to NMR data (given in **Table 39**) these pentaalkylphosphoranes have a trigonal bipyramidal structure in which CF_3 groups are preferentially located in the axial positions [23].

Table 39

¹⁹F, ¹H and ¹³C NMR Data of $(CF_3)_3P(CH_3)_2$ and $(CF_3)_2P(CH_3)_3$ at 33 °C [23].

Chemical shifts δ in ppm and coupling constants J in Hz. Positive δ values indicate resonance downfield of standard.

Compound	Group	Ch δ(F) ^{a)}	emical s δ(H) ^{b)}	hifts δ(C) ^{c)}	J(P-C)	Couplii J(P-H)	ng const J(P-F)	ants J J(F-F) ^{d)}	J(F-H)
(CF ₃) ₃ P(CH ₃) ₂	CF ₃ (eq)	- 59.6	_	127	206	_	114.0	14.0	_
0,0 0,2	CF ₃ (ax)	-70.7	_	132	≤8		23.5	14.0	_
	CH ₃	_	1.93	7	88	13.4	_	_	_
$(CF_{3})_{2}P(CH_{3})_{3}$	CF ₃ (ax)	-74.4	_	131	29	_	6.3	_	0.7
	CH ₃		1.66	8	102	14.0	_	-	

^{a)} Relative to CFCl₃. $-^{b)}$ Relative to (CH₃)₄Si. $-^{c)}$ Measured relative to CD₂Cl₂, converted to (CH₃)₄Si reference scale. $-^{d)}$ Coupling between axial and equatorial CF₃ groups.

 CF_3Pl_2 and $(CF_3)_2Pl$ readily react with an excess of $(CH_3)_3SnH$ at room temperature to form CF_3PH_2 and $(CF_3)_2PH$ in almost quantitative yield [6]. For the properties of these phosphines, see Part 3, p. 14 ff.

The reaction of CF_3PI_2 with R_4Pb ($R = CH_3$, C_2H_5) at 100 to 120 °C yields (CF_3P)₄ along with RI and R_3PbI within 3 to 8 h [33].

5.2.7.1.3.7 Reactions with Trimethylsilyl Compounds, F_3SiPH_2 and $(CH_3)_3EAsH_2$ (E = Si,Sn)

 $(CF_3)_2$ PI reacts with ISiH₃ and ISi(CH₃)₃ in the presence of Hg at room temperature to form $(CF_3)_2$ PSiH₃ and $(CF_3)_2$ PSi(CH₃)₃, respectively [31].

Properties of both compounds are described on p. 126 and in Part 3, p. 24, respectively.

Gmelin Handbook CF Comp. Suppl. 1

Compounds of Main Group 5 Elements

 $(CF_3)_3PF_2$ reacts with trimethylmethoxysilane and -methylthiosilane, $(CH_3)_3SiOCH_3$ and $(CH_3)_3SiSCH_3$, under mild reaction conditions (e.g., room temperature or below) to give the corresponding methoxy or methylthio derivatives of tris(perfluoromethyl)phosphorane [2]. With excess $(CH_3)_3SiOCH_3$, $(CF_3)_3P(OCH_3)_2$ and $(CH_3)_3SiF$ form; deficient $(CH_3)_3SiOCH_3$ gives $(CF_3)_3P(F)OCH_3$ and $(CH_3)_3SiF$. In a similar reaction, deficient $(CH_3)_3SiOCH_3$ plus a trace of iodine produce $(CF_3)_3P(OCH_3)_2$ and $(CF_3)_3P(F)OCH_3$ along with $(CH_3)_3SiF$. The reaction of $(CF_3)_3PF_2$ with $[(CH_3)_3Si]_2O$ yields $(CF_3)_3P(F)OSi(CH_3)_3$ as was followed by NMR spectroscopy. The product decomposes after 4 h.

The reaction of $(CF_3)_3PCl_2$ with $(CH_3)_3SiOCH_3$ (excess or deficient) leads to $(CF_3)_3P(OCH_3)_2$. The methoxy- and siloxyphosphoranes were characterized by their NMR, IR and mass spectra. For NMR data, see **Table 40**; for the other spectra, see the original [2].

Table 40

¹H, ¹⁹F and ³¹P NMR Data of Tris(trifluoromethyl)phosphoranes with OCH₃ or OSi(CH₃)₃ Substituents [2].

Compound	t in °C	δ(Η) ^{b)}	Chemica δ(F) ^{c)}	l shifts in ppm ^{a)} δ(CF ₃) ^{c)} (rel. intens.)	δ(Ρ) ^{d)}
(CF ₃) ₃ P(OCH ₃) ₂	+ 30 80	3.81		−63.4 −61.7 (1) ^{e)} −63.6 (2) ^{f)}	- 187.0
(CF ₃) ₃ P(F)OCH ₃	+ 30 - 80	3.97	50.2 51.4	-64.4 -63.0 (2) ^{e)} -67.0 (1) ^{f)}	— 169.0 — 170.9
(CF ₃) ₃ P(F)OSi- (CH ₃) ₃	+ 30	0.44	- 45.5	-66.7	

Compound	t in °C			Coupling	, constants i	n Hz	
		J(P-F)	J(P-CF)	J(P-H)	J(FP-CH)	J(FP-CF)	J(FC-CF)
(CF ₃) ₃ P(OCH ₃) ₂	+ 30 - 80		96.0 108.0 ^{e)} 88 ^{f)}	13.6	0.8		13.5
(CF ₃) ₃ P(F)OCH ₃	+ 30 - 80	912 909	112.5 133.0 ^{e)} 72.0 ^{f)}	13.9	1.2	14.0 15.5	12.0
(CF ₃) ₃ P(F)OSi- (CH ₃) ₃	+ 30	979	120.5			13.5	

^{a)} Positive values indicate resonance downfield of standard.

^{b)} Relative to internal (CH₃)₄Si.

^{c)} Relative to internal (solvent) CFCl₃.

^{d)} Versus P_4O_6 as external standard.

^{e)} CF₃ equatorial.

^{f)} CF₃ axial.

126

Та	hlo	11
Ia	DLE	41

¹H, ¹⁹F and ³¹P NMR Data for (Trifluoromethyl)fluoro(methylthio)phosphoranes [57].

Compound	t in °C		Chemical s	hifts in ppm ^r)	
		δ(Η) ^{a)}	$\delta(F)^{b)}$	$\delta(CF_3)^{b)}$	δ(P) ^{c)}	
CF ₃ PF ₃ (SCH ₃)	0	2.35	— 16.1 ^{e)}	-69.2	- 140.0	
	- 90	{	24.8 ^{f)} 76.2 ^{g)}			
(CF ₃) ₂ PF ₂ (SCH ₃)	+ 33 100	2.28	41.0 38.7 45.1	-67.4	- 142.4	
(CF ₃) ₃ PF(SCH ₃)	+ 30 - 70	2.08	- 1.0	—61.7 —60.3 ^{p)} —59.9 ^{q)}	— 161.5 — 161.5	

Compound	t in	Coupling constants in Hz			ants in Hz			
	°C	J(P-F _{eq})	J(P-F _{ax})	J(P-CF)	J(P-H)	J(FP-CH)	$J(F_{ax}-F_{eq})$	J(FP-CF)
CF ₃ PF ₃ (SCH ₃)	0 - 90	1028.8^{d}	927 ^{h)} 1 057 ⁱ⁾	168.0 168.8	23.2	1.8	82.0 ^{j)} 71.0 ^{k)} 41.0 ^{l)}	12.0 ^{d)} 16.0 ^{m)} 4.0 ⁿ⁾ 16.0 ^{o)}
(CF ₃) ₂ PF ₂ (SCH ₃)	+ 33 - 100	{	924 ^{d)} 867 ^{h)} 986 ⁱ⁾	130.5	22.2	1.7		16.5
(CF ₃) ₃ PF(SCH ₃)	+ 30 - 6	ſ	980 975	103.7 107.5 ^{d)} 33.8 ^{p)}	19.2	2.5		16.5
	- 70	ł		134 ^{q)}				13

^{a)} Relative to internal (CH₃)₄Si.

^{b)} Relative to internal CFCl₃.

- ^{c)} Relative to external P_4O_6 .
- d) Average value.
- e) Unique axial environment of one F (type A), designated Fax.
- ^{f)} Unique axial environment of one F (type B), designated F'_{ax}.
- ^{g)} Equatorial fluorine atom environments.
- ^{h)} Phosphorus coupling with type A axial fluorine.
- ⁱ⁾ Phosphorus coupling with type B axial fluorine.
- $^{j)}$ F'_{ax} - F_{eq} coupling constant.
- ^{k)} F_{ax}^{a} - F_{eq}^{a} coupling constant.
- ¹⁾ Trans F_{ax} - F'_{ax} coupling constant.
- ^{m)} Coupling between CF_3 group and the type A axial fluorines.
- ⁿ⁾ Coupling between the CF_3 group and the equatorial fluorine.
- ^{o)} Coupling between the CF_3 group and the type B axial fluorine.
- ^{p)} Axial CF₃ group.
- ^{q)} Equatorial CF_3 group.
- r) Positive values indicate resonance downfield of standard.

Gmelin Handbook CF Comp. Suppl. 1

 CF_3PF_4 and $(CH_3)_3SiSCH_3$ (1:1 molar ratio, sealed tube, -23 °C for 1 h) reacts to yield $CF_3PF_3(SCH_3)$. With $(CF_3)_2PF_3$, $(CH_3)_3SiSCH_3$ gives $(CF_3)_2PF_2(SCH_3)$ (sealed tube, 1 h at room temperature) in 80% yield, and with $(CF_3)_3PF_2$ (sealed tube, warming from -78 °C to -15 °C over a one day period) $(CF_3)_3PF(SCH_3)$ in 82% yield is obtained. The products were characterized by their NMR spectra [57]; see **Table 41**, p. 127.

The cleavage of the Si-P bond in F_3SiPH_2 by $(CF_3)_2PI$ requires 5 d at room temperature yielding F_3SiI and $(CF_3)_2PPH_2$ [30].

The cleavage of the Si-As and Sn-As bonds in $(CH_3)_3SiAsH_2$ and $(CH_3)_3SnAsH_2$ by $(CF_3)_2PI$ occurs near -78 °C giving $(CH_3)_3SiI$ and $(CH_3)_3SnI$, respectively, and $(CF_3)_2PAsH_2$. The latter one (for properties, see p. 161) decomposes when the temperature is higher than -40 °C [8].

5.2.7.1.3.8 Reactions with Amines

The reaction of dimethylamine with $(CF_3)_3PF_2$ in the gas phase at room temperature readily proceeds giving $(CF_3)_3P(F)N(CH_3)_2$ [2]. For NMR data, see **Table 42**; for infrared and mass spectral data, see the original [2].

 $(CF_3)_2 PF$ cleaves the Si-N bond in silylamines such as $(CH_3)_3 SiNR_2$ (R = CH_3, C_2H_5, n-C_3H_7), forming aminophosphines,

$$(CH_3)_3SiNR_2 + (CF_3)_2PF \rightarrow (CH_3)_3SiF + (CF_3)_2PNR_2$$

The reaction occurs in benzene solution at 80 °C for 30 h [20].

 $(CF_3)_3PCl_2$ and $(CH_3)_3SiN(CH_3)_2$ react to give only the monosubstituted chlorophosphorane $(CF_3)_3P(Cl)N(CH_3)_2$ regardless of ratio of reactants (warming slowly from -196 °C to -10 °C). The product is not stable at room temperature [2]. For NMR data, see Table 42.

Table 42

¹H, ¹⁹F and ³¹P NMR Data of Tris(trifluoromethyl)aminophosphoranes [2].

Compound	t in	°C {	δ(H) ^{b)}	Chemi δ(F) ^{c)}	cal shifts in $\delta(\text{CF}_3)^{\text{c})}$ (rel. inte	ppm ^{a)} ns.)	δ(³¹ Ρ) ^{d)}
(CF ₃) ₃ P(F)N(CH ₃) ₂	+ 30 40) ()	3.00	30.5 32.3	-61.1 -62.3 (1 -59.6 (1	2) ^{f)} 1) ^{g)}	— 174.7 — 175.9
(CF ₃) ₃ P(Cl)N(CH ₃) ₂	+30) 2	2.80		- 59.0	•,	- 156.5
Compound	t in ℃	J(P-F)	(J(P-CF)	Coupling J(P-H)	constants in J(FP-CH)	Hz J(FP-CF)	J(FC-CF)
(CF ₃) ₃ P(F)N(CH ₃) ₂	+ 30 40	857 849	109.0 130.0 ^{f)} 54.0 ^{g)}	10.6	2.8 (0.4) ^{e)}	16.0 16.0	16.0
$(CF_3)_3P(Cl)N(CH_3)_2$	+ 30		107.0	14.0	0.7		

^{a)} Positive values indicate resonance downfield of standard. $-^{b)}$ Relative to internal (CH₃)₄Si. $-^{c)}$ Relative to internal CFCl₃ as solvent. $-^{d)}$ Versus P₄O₆ as external standard. $-^{e)}$ J(FC-CH). $-^{f)}$ CF₃ equatorial. $-^{g)}$ CF₃ axial.

 $(CH_3)_2NH$ reacts with $(CF_3)_2PCl_3$ to form in a stepwise process $(CF_3)_2PCl_2[N(CH_3)_2]$ and the salt $CF_3P[N(CH_3)_2]_3^+Cl^-$. The reaction proceeds in the fast initial displacement of one Cl substituted by $(CH_3)_2NH$ followed by slower replacement of Cl and one CF_3 group by $(CH_3)_2NH$. Different ratios of reactants (0.8 to 12.4) and reaction times (30 min, 4 d) at room temperature yield similar results. With CF_3PCl_4 and gaseous $(CH_3)_2NH$ in large excess, $CF_3P[N(CH_3)_2]_3^+Cl^-$ is easily obtained at room temperature within 24 h. By-products are mainly CF_3H and $(CH_3)_2NH_2^+Cl^-$ and isolation of the phosphonium ion occurs as PF_6^- salt by precipitation with aqueous KPF_6 solution.

 $CF_3P[N(CH_3)_2]_3^+$ in CD_3CN solution. ¹⁹F NMR (external standard $CFCl_3$): $\delta = -59.8$ ppm, J(P-F) = 108 Hz. ³¹P NMR (external standard P_4O_6): $\delta = -69$ ppm, J(P-F) = 107.5, J(P-H) = 10.3 Hz. ¹H NMR [external standard $(CH_3)_4Si$]: $\delta = 2.76$ ppm, J(P-H) = 10.5, J(F-H) = 0.75 Hz. For an infrared spectrum, see the original [18].

 $(C_3F_7)_2PCl_3$ reacts with p-phenylenediamine and 1,1-diamino-3,3,5,5-tetrakis(heptafluoro-butoxy)cyclotriphosphazine in the presence of $(C_2H_5)_3N$ at -30 to 20 °C in tetrahydrofuran [21] according to:

 $p-H_2NC_6H_4NH_2 + 2 R_2PCl_3 \rightarrow R_2(Cl)PNC_6H_4NP(Cl)R_2 + 4 HCl$

 $R = C_3F_7$; yield 45%, boiling point 93 to 95°C (0.01 Torr)

and

Yield 57%, boiling point 141 to 143 °C (0.05 Torr).

 $(CF_3)_2$ PCl reacts readily with lithium trimethylsilylamides, $(CH_3)_3$ SiN(R)Li, to give the N-trimethylsilyl substituted aminophosphines $(CH_3)_3$ Si(R)NP($CF_3)_2$ with R = $(CH_3)_3$ Si (yield 91%), R = $(CH_3)_3$ C (yield 37%) and R = CH_3 (yield 73%). The lithium trimethylsilylamides were prepared from n-C₄H₉Li and [(CH_3)_3Si]_2NH in hexane by warming the mixture to room temperature. After cooling to -196 °C, $(CF_3)_2$ PCl was condensed into the bulb and the mixture was allowed to warm slowly to room temperature with occasional shaking [67].

 $[(CH_3)_3Si]_2NP(CF_3)_2$: colorless liquid, boiling point 56 to 57 °C (4 Torr). ¹H NMR [external standard (CH₃)₄Si]: $\delta = 0.18$ ppm; ¹⁹F NMR (external standard CFCl₃): $\delta = -59.2$ ppm, J(P-F) = 93.1 Hz.

[(CH₃)₃Si][(CH₃)₃C]NP(CF₃)₂: colorless liquid; ¹H NMR [external standard (CH₃)₄Si]: δ = 1.51 ppm, J(P-N-C-C-H) = 1.2 Hz; δ = 1.44 ppm (t-C₄H₉), δ = 0.46 ppm [(CH₃)₃Si], J(P-N-Si-C-H) = 3.2 Hz, δ = 0.39 ppm [(CH₃)₃Si], J(FC-P-N-Si-C-H) = 0.7 Hz. ¹⁹F NMR (external standard CFCl₃): δ = -54.9 ppm, J(P-F) = 100.0 Hz, δ = -55.4 ppm, J(P-F) = 101.0 Hz; ³¹P NMR (external standard 85% H₃PO₄): δ = 49.7, 34.7 ppm.

CH₃[(CH₃)₃Si]NP(CF₃)₂: colorless liquid; ¹H NMR [external standard (CH₃)₄Si]: δ = 0.05 ppm [(CH₃)₃Si], J(P-N-Si-C-H] = 1.5 Hz, δ = 2.6 ppm (CH₃N), J(P-N-C-H) = 5.6, J(F-C-P-N-C-H) = 1.0 Hz. ¹⁹F NMR (external standard CFCl₃): δ = -65.2 ppm, J(P-F) = 83.8, J(F-C-P-N-C-H) = 1.0 Hz [24, 67].

Gmelin Handbook CF Comp. Suppl. 1

Compounds of Main Group 5 Elements

No reaction was observed between $(H_3Si)_3N$ and $(CF_3)_2PCl$ even at 100 °C for 1 h [67].

The reaction between the urea derivative $[(CH_3)_3Si](3-CF_3-C_6H_4)NC(O)N(CH_3)[Si(CH_3)_3]$ and $C_2F_5PCl_2$ (CCl₄ solution, stirring for 2 d at room temperature) leads to the four-membered heterocycle

in 72% yield. Boiling point 106 to 107 °C at 12 Torr. ¹⁹F NMR (internal standard CFCl₃): $\delta(CF_3) = -81.1$, $\delta(CF_2) = -126.3$, -126.9, $\delta(CF_3C_6H_4) = -63.4$ ppm, J(F-P) = 9, 69, 74 Hz. ³¹P NMR (external standard 85% H₃PO₄): $\delta = 84.6$ ppm, J(P-F) = 69 and 74 Hz. ¹H NMR [internal standard (CH₃)₄Si]: $\delta(CH_3) = 3.18$, $\delta(C_6H_4) = 7.4$ to 7.8 ppm, J(H-P) = 8 Hz. The CO stretching vibration is assigned to 1790 cm⁻¹. Additional infrared and mass spectral data are given in the original [65].

5.2.7.1.3.9 Reactions of Perfluoroalkylhalogenophosphines with Transition Metal Complexes

Reaction of $(CF_3)_2$ PI with MnCo(CO)₉ in pentane solution (20 °C, 24 h, sealed NMR tube) gives Mn(CO)₅I and $[Co(CO)_3$ P(CF₃)₂]₂. On heating to 110 °C for 72 h, MnCo(CO)₇[P(CF₃)₂]₂ was obtained in 75% yield. IR and NMR data are given in the original [60].

 $(CF_3)_n PX_{3-n}$ molecules as ligands L (n = 1 or 2, X = F, Cl, Br or I) can partly or completely substitute the CO molecules in the tricarbonylnitrosylcobalt complex $[Co(CO)_3(NO)]$. The main product in the reaction at room temperature is $[Co(CO)_2(NO)L]$ for all ligands $(CF_3)_2PX$ and CF_3PX_2 with the exception of CF_3PI_2 . $(CF_3)_2PX$ and CF_3PX_2 (X = F or Cl) additionally form $[Co(CO)(NO)L_2]$, and $(CF_3)_2PF$ and CF_3PF_2 give additionally $[Co(NO)L_3]$ at 60 and 120°C, respectively. An approximately equimolar mixture of CF_3PCl_2 and CF_3PBr_2 reacts with $[Co(CO)_3(NO)]$ to give $[Co(CO)_2(NO)(CF_3P(Cl)Br)]$ as well. IR and NMR data are given in the original [27].

Dichloro(2,7-dimethylocta-2,6-diene-1,8-diyl)ruthenium(IV), $[RuCl_2C_{10}H_{16}]_2$, reacts with CF₃PCl₂ at room temperature to give the orange-brown solid complex RuCl₂(C₁₀H₁₆)CF₃PCl₂ (yield 76%). Melting point 92 to 98 °C, NMR data see [28].

 $\text{Re}_2(\text{CO})_{10}$ and $(\text{CF}_3)_2\text{PI}$ form at 120 °C after 139 h or at 130 °C after 48 h the complex $\text{Re}_2(\text{CO})_8(\text{CF}_3)_2\text{PI}$ (yield 66%), NMR data see [29].

References:

[1] H. Bürger, R. Eujen, R. Demuth (Spectrochim. Acta A **31** [1975] 1955/63). - [2] K. J. The, R. G. Cavell (Inorg. Chem. **15** [1976] 2518/25). - [3] K. G. Sharp, I. Schwager (Inorg. Chem. **15** [1976] 1697/701). - [4] J. G. Morse, K. W. Morse (Inorg. Chem. **14** [1975] 565/9). - [5] R. C. Dobbie, P. D. Gosling, B. P. Straughan (J. Chem. Soc. Dalton Trans. **1975** 2368/73).

130

[6] S. Ansari, J. Grobe (Z. Naturforsch. **30b** [1975] 651/2). – [7] R. C. Dobbie, P. D. Gosling (J. Chem. Soc. Chem. Commun. **1975** 585/6). – [8] A. Breckner, J. Grobe (Z. Anorg. Allgem. Chem. **414** [1975] 269/76). – [9] R. C. Dobbie, B. P. Straughan (J. Chem. Soc. Dalton Trans. **1973** 2754/6). – [10] K. J. Packer (J. Chem. Soc. **1963** 960/6).

[11] R. G. Cavell, K. I. The (Inorg. Chem. 17 [1978] 355/62). - [12] I. G. Maslennikov, A. N. Lavrent'ev, V. I. Shibaev, E. G. Sochilin (Zh. Obshch. Khim. 46 [1976] 1904/5; J. Gen. Chem. [USSR] 46 [1976] 1841/2). - [13] E. G. Sochilin, A. N. Lavrent'ev, I. G. Maslennikov (U.S.S.R. 423788 [1974]; C.A. 81 [1974] No. 4064). - [14] A. N. Lavrent'ev, I. G. Maslennikov, E. G. Sochilin (Zh. Obshch. Khim. 45 [1975] 1702/4; J. Gen. Chem. [USSR] 45 [1975] 1668/9). - [15] R. Demuth (Z. Anorg. Allgem. Chem. 418 [1975] 149/57).

[16] H. Oberhammer, J. Grobe (Z. Naturforsch. 30b [1975] 506/12). - [17] A. H. Cowley,
M. J. S. Dewar, D. W. Goodman (J. Am. Chem. Soc. 97 [1975] 3653/5), A. H. Cowley, M. J. S.
Dewar, J. W. Gilje, D. W. Goodman, J. R. Schweiger (J. Chem. Soc. Chem. Commun. 1974 340/1). - [18] D. D. Poulin, A. J. Tomlinson, R. G. Cavell (Inorg. Chem. 16 [1977] 24/7). - [19] G. N. Birich, G. J. Drozd, V. N. Sorokin, J. J. Struk (Pis'ma Zh. Experim. Teor. Fiz. 19 [1974] 44/7; JETP Letters 19 [1974] 27/9). - [20] F. Kober (Chemiker-Ztg. 100 [1976] 197).

[21] E. I. Sokolov, V. N. Sharov, A. L. Klebanskii, V. V. Korol'ko, V. N. Prons (Zh. Obshch. Khim. **45** [1975] 2346/7; J. Gen. Chem. [USSR] **45** [1975] 2305). – [22] K. I. The, R. G. Cavell (J. Chem. Soc. Chem. Commun. **1975** 279/80). – [23] K. I. The, R. G. Cavell (J. Chem. Soc. Chem. Commun. **1975** 716/7). – [24] R. H. Neilson, R. Chung-Yi Lee, A. H. Cowley (J. Am. Chem. Soc. **97** [1975] 5302/3). – [25] D. W. McKennon, M. Lustig (J. Fluorine Chem. **7** [1976] 321/32).

[26] H. G. Ang, K. F. Ho (J. Fluorine Chem. 8 [1976] 497/504). - [27] R. C. Dobbie, S. Morton (J. Chem. Soc. Dalton Trans. 1976 1421/3). - [28] R. A. Head, J. F. Nixon, J. R. Swain, C. M. Woodard (J. Organometal. Chem. 76 [1974] 393/400). - [29] J. Grobe, W. Mohr (J. Fluorine Chem. 8 [1976] 145/64). - [30] G. Fritz, H. Schäfer, R. Demuth, J. Grobe (Z. Anorg. Allgem. Chem. 407 [1974] 287/94).

[31] L. Maya, A. B. Burg (Inorg. Chem. **14** [1975] 698/700). - [32] S. Ansari, J. Grobe (Z. Naturforsch. **30 b** [1975] 531/4). - [33] E. G. Sochilin, A. N. Lavrent'ev, I. G. Maslennikov (U.S.S.R. 435 249 [1974]). - [34] W. Mahler (Inorg. Chem. **18** [1979] 352/4). - [35] A. B. Burg (Inorg. Chem. **20** [1981] 2739/41).

[36] R. G. Cavell, A. A. Pinkerton, W. Sim, A. J. Tomlinson (Inorg. Chem. **18** [1979] 2901/8). – [37] A. B. Burg (Inorg. Chem. **17** [1978] 2322/4). – [38] B. N. Ghose (J. Indian Chem. Soc. **55** [1978] 1254/9). – [39] I. G. Maslennikov, A. N. Lavrent'ev, N. V. Khovanskaya, V. B. Lebedev, E. G. Sochilin (Zh. Obshch. Khim. **49** [1979] 1498/501; J. Gen. Chem. [USSR] **49** [1979] 1307/9). – [40] A. N. Lavrent'ev, I. G. Maslennikov, L. N. Kirichenko, E. G. Sochilin (Zh. Obshch. Khim. **47** [1977] 2788/90; J. Gen. Chem. [USSR] **47** [1977] 2533/5).

[41] I. G. Maslennikov, A. N. Lavrent'ev, E. G. Sochilin (Zh. Obshch. Khim. **49** [1979] 2387/ 8; J. Gen. Chem. [USSR] **49** [1979] 2107/8). - [42] A. N. Lavrent'ev, I. G. Maslennikov, E. G. Sochilin (Zh. Obshch. Khim. **48** [1978] 942/3; J. Gen. Chem. [USSR] **48** [1978] 863). - [43] L. J. Krause, J. A. Morrison (J. Am. Chem. Soc. **103** [1981] 2995/3001). - [44] A. B. Burg (Inorg. Nucl. Chem. Letters **13** [1977] 199/203). - [45] R. G. Cavell, J. A. Gibson, K. I. The (J. Am. Chem. Soc. **99** [1977] 7841/7).

[46] N. T. Yap, R. G. Cavell (Inorg. Chem. 18 [1979] 1301/5). - [47] J. Brocas, D. Fastenakel,
J. Buschen (Mol. Phys. 41 [1980] 1163/76). - [48] A. V. Fokin, M. A. Landau, G. J. Drozd, N.
P. Yarmak (Izv. Akad. Nauk SSSR Ser. Khim. 1976 2210/7; Bull. Acad. Sci. USSR Div. Chem.
Sci. 1976 2063/8). - [49] A. V. Fokin, M. A. Landau (Izv. Akad. Nauk SSSR Ser. Khim. 1976 2435/9; Bull. Acad. Sci. USSR Div. Chem. Sci. 1976 2271/4). - [50] P. Dagnac, J.-L. Virlichie,
G. Jugin (J. Chem. Soc. Dalton Trans. 1979 155/8).

[51] S. Elbel, H. tom Dieck (Z. Naturforsch. **31 b** [1976] 178/89). - [52] S. Elbel (Diss. Univ. Frankfurt/M. 1974 from [51]). - [53] B. P. Dymov, G. A. Skorobogatov (Zh. Tekhn. Fiz. **48**
[1978] 124/8; Soviet Phys.-Tech. Phys. **23** [1978] 73/5). — [54] P. Dagnac, R. Turpin, J.-L. Virlichie, D. Voigt (Rev. Chim. Minerale **14** [1977] 370/80). — [55] J.-L. Virlichie, P. Dagnac (Rev. Chim. Minerale **14** [1977] 355/8).

[56] A. B. Burg (Inorg. Chem. **20** [1981] 3731/3). - [57] R. G. Cavell, K. I. The, J. A. Gibson, N. T. Yap (Inorg. Chem. **18** [1979] 3400/7). - [58] R. A. Wolcott, J. L. Mills (Inorg. Chim. Acta **30** [1978] L 331/L 333). - [59] J. D. Odom, A. J. Zozulin (Inorg. Chem. **20** [1981] 3740/5). - [60] G. Beysel, J. Grobe, W. Mohr (J. Organometal. Chem. **170** [1979] 319/36).

[61] D. Dakternieks, G.-V. Röschenthaler, R. Schmutzler (Z. Naturforsch. **33 b** [1978] 507/ 10). – [62] K. I. The, R. G. Cavell (Inorg. Chem. **16** [1977] 2887/94). – [63] I. B. Goldberg, H. R. Crowe, D. Pilipovich, G. R. Schneider, C. J. Schack (Chem. Phys. Letters **50** [1977] 301/4). – [64] W. Clegg, S. Morton (J. Chem. Soc. Dalton Trans. **1978** 1452/4). – [65] H. W. Roesky, K. Ambrosius, H. Banek, W. S. Sheldrick (Chem. Ber. **113** [1980] 1847/54).

[66] A. B. Burg (Inorg. Chem. **16** [1977] 379/84). – [67] R. H. Neilson, R. Chung-Yi Lee, A. H. Cowley (Inorg. Chem. **16** [1977] 1455/9). – [68] K. I. The, R. G. Cavell (Inorg. Chem. **16** [1977] 1463/70).

5.2.7.2 Perfluorohalogenophenylhalogenophosphines and -phosphoranes

5.2.7.2.1 Formation and Preparation

Pentafluorophenyldifluorophosphine C₆F₅PF₂

Perfluoro(4-methylphenyl)difluorophosphine 4-CF₃-C₆F₄PF₂

Bis(pentafluorophenyl)fluorophosphine (C₆F₅)₂PF

Pentafluorophenyldichlorophosphine C₆F₅PCl₂

Perfluoro(4-methylphenyl)dichlorophosphine 4-CF₃-C₆F₄PCl₂

4-Chlorotetrafluorophenyldichlorophosphine $4-Cl-C_6F_4PCl_2$

 $\label{eq:perturbative} \textbf{Pentafluorophenyldibromophosphine} \ C_6 F_5 PBr_2$

Bis(pentafluorophenyl)bromophosphine $(C_6F_5)_2PBr$

No new method of preparation is reported for the compounds $C_6F_5PF_2$, $(C_6F_5)_2PF$, and $(C_6F_5)_2PBr$ (see Part 3, pp. 123/4); new physical data and chemical reactions are given in the following sections.

 $C_6F_5PCl_2$ (53% yield) is obtained on heating a mixture of C_6F_5H , PCl₃ and AlCl₃ at 80 °C for 3 h, then at 50 °C for 1 h, followed by addition of POCl₃, extraction with petroleum ether and distillation. Replacing C_6F_5H by 4-CF₃- C_6F_4H , the analogous reaction gives 4-CF₃- $C_6F_4PCl_2$ (37% yield). A higher yield of 59% results on heating 4-CF₃- C_6F_4MgBr and SbF₃ at 150 °C (2 h) in an atmosphere of dry nitrogen. The phosphine 4-Cl- $C_6F_4PCl_2$ (63% yield) is prepared by adding 4-Cl- C_6F_4MgBr in ether to PCl₃ in ether at -25 °C and keeping the mixture for 1 h at this temperature. 4-CF₃- $C_6F_4PF_2$ is obtained by heating a mixture of 4-CF₃- $C_6F_4PCl_2$ and SbF₃ at 150 °C (2 h, N₂ atmosphere) [1].

Pentafluorophenyltetrafluorophosphorane C₆F₅PF₄

 $\textbf{Perfluoro(4-methylphenyl)} tetrafluorophosphorane \ 4-CF_{3}-C_{6}F_{4}PF_{4}$

 $\label{eq:perturbative} Pentafluorophenyl(pentafluorophenoxy) trifluorophosphorane \ C_6F_5(C_6F_5O)PF_3$

Pentafluorophenyltrifluorochlorophosphorane C₆F₅PF₃Cl

Pentafluorophenyldifluorodichlorophosphorane C₆F₅PF₂Cl₂

Pentafluorophenylfluorotrichlorophosphorane C₆F₅PFCl₃

 $\textbf{Pentafluorophenyltetrachlorophosphorane}\ C_6F_5PCl_4$

Bis(pentafluorophenyl)trifluorophosphorane (C₆F₅)₂PF₃

Bis(pentafluorophenyl)difluorochlorophosphorane (C₆F₅)₂PF₂Cl

Bis(pentafluorophenyl)fluorodichlorophosphorane (C₆F₅)₂PFCl₂

Bis(pentafluorophenyl)trichlorophosphorane (C₆F₅)₂PCl₃

Tris(pentafluorophenyl)difluorophosphorane (C₆F₅)₃PF₂

No new method of preparation is reported for $(C_6F_5)_2PF_3$, $(C_6F_5)_2PCl_3$, and $(C_6F_5)_3PF_2$ (see Part 3, pp. 123/4), for new physical data and chemical reactions see the following sections.

 $C_6F_5PF_4$ has been obtained by fluorination of $C_6F_5PF_2$ with SbF₅ (1 h, 130 °C; 57% yield). Higher yields (75%) are obtained by fluorination of $C_6F_5PF_2$ with SbF₃ in presence of Cl_2 (shaking the mixture 4 h at room temperature, then heating it at 80 °C for 2 h) [2]. The latter method is also reported in [1]. In the same way, on replacing $C_6F_5PF_2$ by 4-CF₃- $C_6F_4PF_2$, the tetrafluorophosphorane 4-CF₃- $C_6F_4PF_4$ is formed (82% yield) [1]. $C_6F_5PF_4$ is obtained in 10% yield in the reaction of C_6F_5MgBr with PF_5 in ether at -130 °C (2 h), followed by warming to 20 °C and adding PCl₃ [1]. Heating a solution of $C_6F_5PF_4$ and $C_6F_5OSi(CH_3)_3$ in CCl₄ at 50 °C for 1 h results in the formation of $C_6F_5(C_6F_5O)PF_3$ (73% yield) [3].

 $C_6F_5PF_3Cl$ and $(C_6F_5)_2PF_2Cl$ have been synthesized by the reaction of hydrogen chloride with an ether solution of $C_6F_5PF_3N(C_2H_5)_2$ and $(C_6F_5)_2PF_2N(C_2H_5)_2$, respectively. $C_6F_5PF_2Cl_2$ is formed in the reaction of liquid Cl_2 and $C_6F_5PF_2$ in a sealed tube at room temperature (with short cooling periods during the reaction). Also, $C_6F_5PCl_4$ has been obtained by the reaction of Cl_2 with $C_6F_5PCl_2$ (solvent CDCl_3, sealed tube, -40 °C), further $(C_6F_5)_2PFCl_2$ by the reaction of $(C_6F_5)_2PF$ in toluene/ C_6F_6 (50/50) with Cl_2 , warming immediately to 50 °C, followed by cooling to -30 °C. $C_6F_5PFCl_3$ forms along with $C_6F_5PF_3Cl$ on heating $C_6F_5PF_2Cl_2$ above room temperature. The instable phosphoranes are characterized by ¹⁹F NMR spectroscopy (see p. 134) [2].

5.2.7.2.2 Physical Properties

Phosphines

Boiling points (b.p.) in °C/pressure in Torr, refractive indices n, UV spectrum.

 $\begin{array}{l} \text{4-CF}_3\text{-}C_6F_4\text{PF}_2\text{: b.p. 144 to 146 °C, } n_D^{20} = 1.4052 \ [1] \\ \text{4-CF}_3\text{-}C_6F_4\text{PF}_2\text{: b.p. 132 to 134 °C [3]} \\ \text{C}_6F_5\text{PCl}_2\text{: b.p. 118 to 122 °C/18 Torr [1]} \\ \text{4-CF}_3\text{-}C_6F_4\text{PCl}_2\text{: b.p. 125 to 127 °C/18 Torr, } n_D^{20} = 1.4915 \ [1] \\ \text{4-CI-}C_6F_4\text{PCl}_2\text{: b.p. 99 to 101 °C, } n_D^{20} = 1.4975 \ [1] \end{array}$

Gmelin Handbook CF Comp. Suppl. 1

References p. 137

NMR data (positive sign of the shifts δ in ppm mean lowfield from the external standards 85% H₃PO₄ and C₆F₆) [3]:

Compound	³¹ P	NMR		¹⁹ F NMR				
	δ(Ρ)	J(P-F)	$\delta(PF_2)$	δ(F²)	$\delta(F^3)$	δ(F ⁴)	J(F-P)	
C ₆ F ₅ PF ₂ 4-CF ₃ -C ₆ F₄PF ₂	193.0 189.5	1 210 Hz 1 220 Hz	70.8 70.8	26.0 25.0	2.7 27.7	17.3 107.3	1 220 Hz 1 220 Hz	

The mass spectrum of $C_6F_5PF_2$ shows a very intense peak at m/e = 69 which is analyzed to be PF_2^+ (90%) and CF_3^+ (10%). The fragmentation of the compound occurs by loss of an F atom, but mainly by loss of PF₃. Both $C_6F_5PBr_2$ and $(C_6F_5)_2PBr$ undergo rearrangement and gave peaks corresponding to $(C_6F_5)_2PBr^+$ and $(C_6F_5)_3P^+$ [4].

Phosphoranes

C₆F₅PF₄: boiling point 67 °C (100 Torr), 124 °C/760 Torr [2].

 $C_6F_5(C_6F_5O)PF_3$: boiling point 90 to 91 °C/10 Torr, wavelengths of the UV maxima in heptane (molar absorptivity ϵ) $\lambda_{max} = 218$ (log $\epsilon = 2.57$), 268 nm (log $\epsilon = 2.19$) [3].

NMR Data

The ¹⁹F NMR and ³¹P NMR data of the phosphoranes are covered in **Table 43**.

Table 43

NMR Data of the Phosphoranes.

³¹P and ¹⁹F NMR chemical shifts δ (in ppm) and spin-spin coupling constants J in Hz (85% H₃PO₄ as external standard, CFCl₃ as internal standard, positive shifts lowfield), spectra recorded with neat substances or diluted with toluene, if not otherwise stated.

Compound	δ(Ρ)	$\delta(F_{ax})^{a)}$	$\delta(F_{eq})^{a)}$	J(F _{ax} -P)	J(F _{eq} -P)	Ref.
C ₆ F₅PF₄	-51.0	-3	8.5		958	[2]
	- 51.4			d), e)		[3]
4-CF ₃ -C ₆ F₄PF₄	- 52.2			d), e)		[3]
$C_6F_5(C_6F_5O)PF_3$	- 57.1			d), e)		[3]
C ₆ F ₅ PF ₃ Cl	-27.0		6.0		981	[2]
C ₆ F ₅ PF ₂ Cl ₂	- 14.3	80.0		960		[2]
C _e F ₅ PFCl ₃	-37.5	90.2		892		[2]
C ₆ F ₅ PCl₄ ^{d)}	- 70.9	_	_	_	_	[2]
$(\tilde{C}_{6}\tilde{F}_{5})_{2}\tilde{PF}_{3}$	- 30.0		7.0		912	[2]
		6.7	-77.5	844	1011 ^{c)}	[5]
(C ₆ F ₅) ₂ PF ₂ Cl	-25.0	50.2		835		[2]
(C ₆ F ₅) ₂ PFCl ₂	- 49.0	56.0		794		[2]
$(C_6F_5)_2PCl_3$	- 80.0					

^{a)} ax = axial, eq = equatorial. $^{b)}$ Spectrum recorded at -80° C, $J(F_{ax}-F_{eq}) = 79$ Hz. $^{c)}$ Spectrum recorded at -10° C, $J(F_{ax}-F_{eq}) = 46$ Hz, $J(F_{ax}-F_{ortho}) = 15$ Hz. $^{d)}$ Solvent not provided. $^{e)}$ ¹⁹F NMR (external standard C₆F₆): For C₆F₅PF₄ δ (PF) = 126.5, δ (F²) = 32.6, δ (F³) = 4.1, δ (F⁴) = 20.0, J(F-P) = 1000, J(P-F) = 990. For 4-CF₃-C₆F₄PF₄ δ (PF) = 127.5, δ (F²) = 38.2, δ (F³) = 32.2, δ (F⁴) = 108.4, J(F-P) = 1000, J(P-F) = 980. For C₆F₅(C₆F₅O)PF₂ δ (PF) = 130.0, δ (F²) = 32.4, δ (F³) = 8.1, δ (F⁴) = 17.7, J(F-P) = 920, J(P-F) = 925.

Phosphorus Compounds

In the temperature range -150 and $+30^{\circ}$ C, $C_6F_5PF_4$ shows a doublet in the ¹⁹F NMR spectrum and a quintet in the ³¹P NMR spectrum. These facts are interpreted by equilibration of fluorine atoms in axial and equatorial positions. In contrast, the ¹⁹F NMR doublet of $C_6F_5PF_3Cl$ disappears on cooling the solution from room temperature to 0°C. At -80° C the splitting pattern of a trifluorophosphorane with one equatorial and two axial F atoms is observed [2]. This pattern is also found for $(C_6F_5)_2PF_3$ at -10° C and is assigned to a structure with a trigonalpyramidal arrangement of the ligands [5]. $C_6F_5PF_2Cl_2$ shows a doublet in the ¹⁹F NMR spectrum and a triplet in the ³¹P NMR spectrum. While the analysis of the NMR data of the fluorophosphoranes definitely gives the evidence for the preference of F atoms for axial positions, additional investigations are necessary to find the positions of the Cl atoms for the chlorophosphoranes. By measurements of the intensity of the ³⁵Cl nuclear quadrupole resonance it is shown that in $C_6F_5PCl_4$ three Cl atoms are in equatorial positions and one is in an axial position. So the C_6F_5 group is axially bonded. This agrees with the result that, in $C_6F_5PF_2Cl_2$ and $(C_6F_5)_2PCl_3$, the Cl atoms are in equatorial positions [2].

In a saturated solution of $(C_6F_5)_3PF_2$ in hexane (toluene) the ¹J(P-F) coupling constants are 702 (697) Hz, the constants J(F-F)_{ortho} = 16 Hz (for both solvents) [6].

IR Data and Crystal Structure

 $(C_6F_5)_3PF_2$: The antisymmetric PF_2 valence vibration is found at 765 cm⁻¹ in nujol and at 773 cm⁻¹ in cyclohexane [6]. The phosphorane crystallizes in the orthorhombic system with a = 8.903(1), b = 11.152(1), c = 11.269(2) Å. There are four molecules per unit cell, density 2.08 g/cm³. The space group is Pbcn-D¹⁴_{2h} (No. 60). Trigonal-pyramidal geometry is observed for the molecule, in which the F atoms occupy the axial positions and the C_6F_5 groups lie in a "propeller-like" arrangement about the equatorial plane. A crystallographic diad axis passes through the P atom and one of the C_6F_5 groups. The two independent benzene rings make dihedral angles of 33.5° and 36.5° with the equatorial plane. The bond lengths (librationally corrected) are r(P-F) = 1.638(2), r(P-C) = 1.823(4) and 1.815 Å [7].

Mass Spectra

In the mass spectra of $(C_6F_5)_2PCl_3$ and $(C_6F_5)_3PCl_2$ no parent ion was observed. The lost of a chlorine molecule gives the highest mass peaks $(C_6F_5)_2PCl^+$ and $(C_6F_5)_3P^+$ [4]. Contrary to this fact the spectra of the phosphoranes $(C_6F_5)_nPF_{5-n}$ (n = 1, 2, 3) show the molecular ion peak and only one (n = 2) was of very low abundance. The breakdown process appears to favor stepwise loss of fluorine atoms. For further details see the original paper [8].

5.2.7.2.3 Chemical Reactions

Phosphines

 $C_6F_5PF_2$ reacts in HSO₃F on warming from -60 to -20 °C to give the protonated cation $[C_6F_5PF_2H]^+$, which reacts to $C_6F_5P(O)F_2$ and after addition of H₂O to $C_6F_5P(O)(OH)_2$ [9]. In SbF₅-SO₂ at -80 to -40 °C the difluoride forms compounds of a donor-acceptor type, as shown by NMR spectroscopy. At 20 °C or higher an oxidative fluorination is indicated forming fluorophosphonium ions, which are also observed in the reaction of 4-CF₃-C₆F₄PF₂ with SbF₅ at 20 °C [3].

Gmelin Handbook CF Comp. Suppl. 1

References p. 137

 $C_6F_5PCl_2$ in CCl₄ reacts at room temperature with $[Si(CH_3)_3](3-CF_3C_6H_4)NC(O)NCH_3-[Si(CH_3)_3]$ to yield the $\lambda^3 P-\lambda^5 P$ -coordinated compound (87%), which is obtained as colorless

crystals, melting point 153 °C, ¹H NMR [external standard (CH₃)₄Si]: δ (CH₃) = 3.35 and 3.52 ppm [J(H-P) = 6.4 Hz], δ (C₆H₄) = 7.73 and 8.07 ppm, [J(H-P) = 16 Hz], ³¹P NMR (external standard 85% H₃PO₄): δ = -8.6 and -72.6 ppm [J(P-P) = 184.5 Hz, J(P-F) = 87 and 68 Hz]. For IR, mass spectrum and X ray analysis see the original paper [10]. C₆F₅PCl₂ reacts with Li[OCH(CF₃)₂] under nitrogen to give C₆F₅P[OCH(CF₃)₂]₂ (60 °C, 2 h, 60% yield). The colorless liquid boils at 48 °C/10⁻³ Torr. ¹H NMR [internal standard (CH₃)₄Si]: δ = 4.8 ppm [J(P-H) = 6.5 Hz, J(CF₃-H) = 6.0 Hz]. ¹⁹F NMR (internal standard CFCl₃): δ (CF₃) = -78.3 ppm, δ (F²,F⁶) = -139 ppm, δ (F³,F⁵) = 167 ppm, δ (F⁴) = -153 ppm. ³¹P NMR (external standard 85% H₃PO₄): δ = 185 ppm [11].

 $(C_6F_5)_2PF$ and Cl_2 (molar ratio 1:1) react to yield $(C_6F_5)_2PF_2Cl$ and $(C_6F_5)_2PCl_3$. The difluorochloro compound decomposes forming $(C_6F_5)_2PF_3$ and $(C_6F_5)_2PFCl_2$ [2].

 $(C_6F_5)_2$ PBr reacts with NaN₃ at -2 to -10 °C (2 to 36 h) to give $(C_6F_5)_2$ PN₃ (see p. 101) [12]. On stirring an ether solution of C_6F_5 PBr₂ and pyrocatechol for 2 h at room temperature 2-pentafluorophenyl-1,3,2-benzodioxaphosphole forms in 59% yield. The compound boils at 117 to 119 °C/0.1 Torr and melts at 86 °C. ¹H NMR [internal standard (CH₃)₄Si, solvent CS₂]: $\delta(C_6H_4) = 6.9$ ppm. ³¹P NMR (internal standard C_6H_6 as solvent): $\delta = 162.0$ ppm [triplet of triplets, J(P-F²) = 21.0 Hz, J(P-F³) = 5.6 Hz] [13].

Phosphoranes

 $C_6F_5PF_4$ reacts with $(CH_3)_3SiNR_2$ ($R = CH_3$, C_2H_5) at 60 °C (10 h) yielding $C_6F_5PF_3NR_2$, $R = CH_3$, 88% yield, boiling point (b.p.) 51 °C/1 Torr, $R = C_2H_5$, 67% yield, b.p. 65 °C/1 Torr [6]. Heating of $(C_6F_5)_2PF_3$ with $(CH_3)_3SiN(C_2H_5)_2$ at 100 °C (12 h) results in the formation of $(C_6F_5)_2PF_2N(C_2H_5)_2$, 73% yield, melting point 75 °C [2]. The diazadiphosphetidine $[C_6F_5PF_2NCH_3]_2$ is obtained by the reaction of $C_6F_5PF_4$ with $[(CH_3)_3Si]_2NCH_3$ at 90 °C (2 h), 93% yield, melting point 168 °C, for crystal structure see [14]. The analogous reaction of $(C_6F_5)_2PF_3$ (90 °C, 0.5 h, then 130 °C, 4 h) gives the diazaphosphetidine $[(C_6F_5)_2PFNCH_3]_2$, 50% yield, melting point 199 to 201 °C. Heating $C_6F_5PF_4$ and $(CH_3)_3SiSC_2H_5$ at 80 °C (2 h) yields $C_6F_5PF_3SC_2H_5$, 63% yield, b.p. 70 to 72 °C/1.5 Torr. The analogous reaction of $(C_6F_5)_2PF_3$ (140 °C, 25 h) gives $(C_6F_5)_2PF_2SC_2H_5$, yield 90%, b.p. 90 °C/0.05 Torr, melting point 85 to 86 °C [2]. In **Table 44** the NMR data of these substituted fluorophosphoranes are gathered.

 $C_6F_5PF_2Cl_2$ is stable at room temperature for several hours. It decomposes on heating to 50 °C forming $C_6F_5PF_3Cl$ and $C_6F_5PFCl_3$. These two compounds are also unstable. $C_6F_5PF_3Cl$ decomposes yielding $C_6F_5PF_4$ and $C_6F_5PF_2Cl_2$, $C_6F_5PFCl_3$ gives $C_6F_5PCl_4$ and $C_6F_5PF_2Cl_2$ [2].

 $C_6F_5PF_4$, 4- CF_3 - $C_6F_4PF_4$ and $C_6F_5(C_6F_5O)PF_3$ form cations in SbF₅ or SbF₅-SO₂ solutions (see p. 138). The formation of cations is indicated by changes of the electrical conductivity and in the ¹⁹F and ³¹P NMR spectra observed on dissolving the compounds in the solvents. For details see the original paper [3].

Table 44

NMR Data of Substituted Fluorophosphoranes.

³¹P and ¹⁹F NMR chemical shifts δ in ppm, positive sign means downfield from the external standard 85% H₃PO₄ and from the internal standard CFCl₃, spin-spin coupling constant J in Hz. ax and eq mean axial and equatorial positions of the F atoms.

Compound	δ(Ρ)	$\delta(F_{ax})$	$\delta(F_{eq})$	J(F _{ax} -P)	J(F _{ax} -P)	J(F _{ax} -F _{eq})	Ref.
C ₆ F ₅ PF ₃ N(CH ₃) ₂	-57.4	- 26.1	-61.5	805	966	64	[2]
$C_6F_5PF_3N(C_2H_5)_2$	- 57.3	-28.3	- 59.0	808	970	63	[2]
$(C_6F_5)_2PF_2N(C_2H_5)_2$	-60.3	— 16.0		720			[2]
$[C_6F_5PF_2NCH_3]_2$	-65.5	- 54	,5	891	a)		[14]
$[(\tilde{C}_6\tilde{F}_5)_2\tilde{P}FNC\tilde{H}_3]_2$	-80.0	- 6.8		772 ^{a)}			[2]
C ₆ F ₅ PF ₃ SC ₂ H ₅	- 18.0	+ 3.1	-66.0	909	1046	63	[2]
		+ 3.0, +0.2	b)	845, 971			
(C ₆ F ₅) ₂ PF ₂ SC ₂ H ₅	-35.8	+ 1.0		760			[2]
		+ 2.5, -4.1	2)	695, 808			
^{a)} In CDCl ₃ , ¹ J(F-P) + ³ J(F-P) ^{b)} At -10 °C ^{c)} At 0 °C.							

References:

[1] G. G. Yakobson, G. G. Furin, T. V. Terent'eva (Zh. Org. Khim. 9 [1973] 1707/13; J. Org. Chem. [USSR] 9 [1973] 1729/34). — [2] M. Fild, R. Kurpat, T. Stankiewicz (Z. Anorg. Allgem. Chem. 439 [1978] 145/52). — [3] G. G. Furin, T. V. Terent'eva, A. I. Rezvukhin, G. G. Yakobson (Zh. Obshch. Khim. 45 [1975] 1473/9; J. Gen. Chem. [USSR] 45 [1979] 1441/6). — [4] J. M. Miller (J. Chem. Soc. 1967 828/34). — [5] M. Fild, T. Stankiewicz (Z. Anorg. Allgem. Chem. 406 [1974] 115/23).

[6] J. Grosse, R. Schmutzler (Phosphorus 4 [1974] 49/56). - [7] W. S. Sheldrick (Acta Cryst. B 31 [1975] 1176/8). - [8] T. R. B. Jones, J. M. Miller, M. Fild (Org. Mass Spectrom. 12 [1977] 317/25). - [9] O. I. Andreevskaya, S. A. Krupoder, G. G. Furin, G. G. Yakobson (Izv. Sibirsk. Otd. Akad. Nauk SSSR Ser. Khim. Nauk 1980 No. 6, pp. 97/104; C.A. 94 [1981] No. 191447). - [10] H. W. Roesky, K. Ambrosius, W. S. Sheldrick (Chem. Ber. 112 [1979] 1365/71).

[11] D. Dakternieks, G.-V. Röschenthaler, R. Schmutzler (Z. Naturforsch. **33 b** [1978] 507/
10). - [12] H. G. Horn, M. Gersemann, U. Niemann (Chemiker-Ztg. **100** [1976] 197/8). - [13]
M. Wieber, K. Foroughi, H. Klingl (Chem. Ber. **107** [1974] 639/43). - [14] M. Fild, W. S. Sheldrick, T. Stankiewicz (Z. Anorg. Allgem. Chem. **415** [1975] 43/50).

5.2.7.3 Partially Protonated and Unprotonated Perfluoroorganophosphorus Halide Ions

 $[(CF_3)_3PF_3]^-$. On admitting gaseous $(CH_3)_2NH$ to gaseous $(CF_3)_3PF_2$ at room temperature a white solid forms along with $(CF_3)_3PFN(CH_3)_2$. The ¹⁹F NMR spectrum of a solution of this solid in acetonitrile shows four multiplets, three of which are centered at -67.0, -90.8 and -99.9 ppm (negative sign means highfield from the external standard CFCl₃). The coupling constant J(P-F) is found to be 860 Hz. The spectrum is assigned to the anion $[(CF_3)_3PF_3]^-$ [1], see also Part 3, p. 137. $[C_6F_5PF_5]^{-}$. ¹⁹F NMR investigations show that the reaction of $C_6F_5PF_4$ with CsF in sulfolane (50°C, 1 h) yields the salt $[Cs]^+[C_6F_5PF_5]^-$. The spectrum taken in acetonitrile (C_6F_6 as internal standard) shows five signals: $\delta(F^e) = 119$ ppm [doublet of triplets of quartets, J(P-F^e) = 800 Hz, J(F^e-F²) = 20 Hz, J(F^e-F^a) = 20 Hz], $\delta(F^a) = 101.1$ ppm [doublet of multiplets, J(P-F^a) = 710 Hz, J(F^a-F^e) = 43 Hz], $\delta(F^2) = 30.2$ ppm [doublet of multiplets, J(F²-F^e) = 20 Hz, J(F²-F³) = 13 Hz], $\delta(F^4) = 4.4$ ppm [triplet, J(F⁴-F³) = 20 Hz], $\delta(F^3) = -1.8$ ppm [doublet of doublets, J(F³-F²) = 13 Hz, J(F³-F⁴) = 20 Hz] [2].

The cations $[C_6F_5PF_3]^+$, $[4-CF_3-C_6F_4PF_3]^+$ and $[C_6F_5(C_6F_5O)PF_2]^+$ form in SbF₅ solutions of the parent compounds $C_6F_5PF_4$, $4-CF_3-C_6F_4PF_4$ and $C_6F_5(C_6F_5O)PF_3$, respectively. The ions are characterized by their NMR spectra (positive shifts δ in ppm lowfield from the external standards 85% H_3PO_4 and CFCl₃) [5]:

		³¹ P			¹⁹ F		
lon	δ(Ρ)	J(P-F)	$\delta(PF_2)$	δ(F²)	δ(F ³)	δ(F ⁴)	J(P-F)
[C ₆ F ₅ PF ₃] ⁺	25.9	1 240 Hz	105.0	47.8	16.8	52.5	1 250 Hz
$[4-CF_3-C_6F_4PF_3]^+$	23.5	1 260 Hz	101.5	48.8	37.8	107.5	1 250 Hz
$[C_6F_5(C_6F_5O)PF_2]^+$	20.9	1 210 Hz	102.0	45.0	13.8	49.0	1220 Hz

The cations $(C_6F_5)_2PF_2H^+$ and $(C_6F_5)_2PF_2OH^+$ (as well as $(C_6F_5)_3PH^+$) which are formed in SbF₅-HSO₃F solutions of $C_6F_5PF_2$ and $C_6F_5P(O)F_2$ (as well as $(C_6F_5)_3P$), respectively, are investigated by NMR spectroscopy, for details see the original paper [4].

References:

[1] K. J. The, R. G. Cavell (Inorg. Chem. 15 [1976] 2518/25). - [2] G. G. Yakobson, G. G. Furin, T. V. Terent'eva (Zh. Org. Khim. 9 [1973] 1707/13; J. Org. Chem. [USSR] 9 [1973] 1729/34). - [3] G. G. Furin, T. V. Terent'eva, A. I. Rezvukhin, G. G. Yakobson (Zh. Obshch. Khim. 45 [1975] 1473/9; J. Gen. Chem. [USSR] 45 [1975] 1441/6). - [4] O. I. Andreevskaya, S. A. Krupoder, G. G. Furin, G. G. Yakobson (Izv. Sibirsk. Otd. Akad. Nauk SSSR Ser. Khim. Nauk 1980 97/104; C.A. 94 [1981] No. 191447).

5.2.8 Perfluoroalkyl- and Perfluorophenylphosphorus Sulfur Compounds

5.2.8.1 Preparation and Formation

Tris(trifluoromethyl)phosphine sulfide (CF₃)₃PS

Bis[bis(trifluoromethyl)phosphoryl]disulfane (CF₃)₂P(S)SSP(S)(CF₃)₂

Bis[bis(trifluoromethyl)phosphino]sulfane $(CF_3)_2 PSP(CF_3)_2$

 $[Bis(trifluoromethyl) thiophosphoryl] thio-bis(trifluoromethyl) phosphine (CF_3)_2 P(S) SP(CF_3)_2 P(S) SP(SF_3)_2 P(S) SP(S$

Mercury-bis[bis(trifluoromethyl)dithiophosphinate] $Hg[SP(S)(CF_3)_2]_2$

 $(CF_3)_3PS$ (see Part 3, p. 137) forms in the thermal decomposition of $(CF_3)_3P(F)SCH_3$ along with other compounds [1]. The reaction of $(CF_3)_2P(S)SPF_2$ with chlorine for 24 h at room temperature gives a product mixture containing 28 mol% $(CF_3)_2P(S)SSP(S)(CF_3)_2$ (see Part 3, p. 137) [2]. On heating $(CF_3)_2PSeP(CF_3)_2$ with excess of flowers of sulfur for 2 d at 100 °C, $(CF_3)_2PSP(CF_3)_2$ (see Part 3, p. 137) is obtained as the main product. This compound is converted to $(CF_3)_2P(S)SP(CF_3)_2$ on heating for 6 d at 150 °C (see Part 3, p. 137) [5]. Hg[SP(S)(CF_3)_2]_2 (see Part 3, p. 138) is obtained in low yield on shaking $(CF_3)_2P(S)SPF_2$ with metallic Hg for several days at room temperature [2].

 $[Fluoro(trifluoromethyl)thiophosphoryl]thio-bis(trisfluoromethyl)phosphine F(CF_3)P(S)SP(CF_3)_2 (CF_3)_2 (CF$

[Fluoro(trifluoromethyl)thiophosphoryl]thio-difluorophosphine $F(CF_3)P(S)SPF_2$

 $[Bis(trifluoromethyl)thiophosphoryl]thio-fluoro(trifluoromethyl)phosphine (CF_3)_2 P(S)SP(CF_3)F(S)) = (CF_3)_2 P(S) SP(CF_3) + (CF_3)_2 P(S) SP(S) + (CF_3)_2 P(S) + (CF_3)_$

(Difluorothiophosphoryl)thio-fluoro(trifluoromethyl)phosphine $F_2P(S)SP(CF_3)F$

[Bis(trifluoromethyl)thiophosphoryl]thio-difluorophosphine $(CF_3)_2P(S)SPF_2$

(Difluorothiophosphoryl)thio-bis(trifluoromethyl)phosphine $F_2P(S)SP(CF_3)_2$

The preparation of the compounds is performed by reactions in sealed Pyrex tubes at 20 to 25 °C [2, 6]. A sample of $F(CF_3)P(S)SH$, contaminated with $F_2P(S)SH$, was reacted with $(CF_3)_2PN(CH_3)_2$. The fractionation of the product mixture yielded $F(CF_3)P(S)SP(CF_3)_2$ along with other products. $F(CF_3)_2P(S)SH$, contaminated with a small amount of $F_2P(S)SH$ and a trace of SiF₄, reacts with $F_2PN(CH_3)_2$ yielding $F(CF_3)P(S)SPF_2$. The reaction of $F(CF_3)PN(CH_3)_2$ and $(CF_3)_2P(S)SH$ gives $(CF_3)_2P(S)SP(CF_3)F$, a volatile liquid, which decomposes slowly at room temperature (yield after purification 42%) [6]. On reacting $F_2P(S)SH$ and $F(CF_3)PN(CH_3)_2$, pure $F_2P(S)SP(CF_3)F$ is formed. $F(CF_3)P(S)SH$ and $F(CF_3)PN(CH_3)_2$ yield an undetermined amount of $F(CF_3)P(S)SP(CF_3)F$ as the major volatile product (identified by its NMR spectrum), a viscous oil of the composition $[(CH_3)_2NH_2][CF_3PS_2]$, and a small amount of $[(CH_3)_2NH_2][F_2PS_2]$ [6]. $F_2P(S)SH$ and $(CF_3)_2PN(CH_3)_2$ give 99% yield of $F_2P(S)SP(CF_3)_2$; $F_2PN(CH_3)_2$ and $(CF_3)_2P(S)SH$ form $(CF_3)_2P(S)SPF_2$ only in low yield [2]. All compounds can be purified by fractional condensation [2, 6].

Trifluoromethylthiophosphonic difluoride $CF_3P(S)F_2$

 $\label{eq:Fluoro} Fluoro(trifluoromethyl) dithiophosphonic acid \ F(CF_3)P(S)SH$

Bis(trifluoromethyl)dithiophosphinic acid (CF₃)₂P(S)SH

Gmelin Handbook CF Comp. Suppl. 1 References p. 145

 $\textbf{Bis(trifluoromethyl)thiophosphinic acid (CF_3)_2P(S)OH}$

Trifluoromethylthiophosphonate Ion $CF_3P(S)O_2^{2-}$

Trifluoromethyldithiophosphonate Ion CF₃P(S)SO²⁻

Bis(trifLuoromethyL)thiophosphinic chloride (CF₃)₂P(S)Cl

Bis(trifluoromethyl)thiophosphinic iodide (CF₃)₂P(S)I

 $CF_3P(S)F_2$ is prepared by the reaction of $CF_3PFN(CH_3)_2$ with excess sulfur at 150 °C (3 d) in a sealed tube. The pure compound is obtained by fractional condensation (-196 °C fraction) of the reaction mixture [6]. $F(CF_3)P(S)SH$ (72%) along with $F_2P(S)SH$ (28%) forms on adding a great excess of concentrated H_2SO_4 to $[(CH_3)_2NH_2][F(CF_3)PS_2]$ in vacuo. The mixture was found to be unseparable by fractional distillation [6].

The anions of the thioacids and of the oxothioacids are detected on hydrolyzing the corresponding ester or reacting the esters with $(CH_3)_3N$:

 $(CF_3)_2PS_2^-$ is found in the reaction of $(CF_3)_2P(S)SCH_3$, $(CF_3)_2P(S)SC_2H_5$, $(CF_3)P(S)SCH(CH_3)_2$, $(CF_3)_2P(S)C(CH_3)_3$ with excess of $(CH_3)_3N$ in a sealed tube at 24 h [7].

 $(CF_3)PSO_2^{2^-}$ is detected in the alkaline hydrolysis (10% NaOH, sealed tube, room temperature, 2 d) of $(CF_3)_2P(S)SCH(CH_3)_2$, $(CF_3)_2P(S)SC_2H_5$, $(CF_3)_2P(S)SCH_3$, $(CF_3)_2P(S)OCH_3$, $(CF_3)_2P(S)OC_2H_5$, and $(CF_3)_2P(S)OCH_3$ [7]. Similarly $CF_3PS_2O^{2^-}$ forms from $(CF_3)_2P(S)-SC(CH_3)_3$ [7].

 $(CF_3)_2PSO^-$ is formed on hydrolyzing the esters $(CF_3)_2P(O)SCH_3$, $(CF_3)_2P(O)SC_2H_5$, $(CF_3)_2P(O)SCH(CH_3)_2$, $(CF_3)_2P(S)OCH_3$, $(CF_3)_2P(S)OC_2H_5$, and $(CF_3)_2P(S)OCH(CH_3)_2$ with $(CH_3)_3N$ under the same conditions like above. The ion also results from the alkaline hydrolysis of $(CF_3)_2P(S)OCH(CH_3)_2$ (10% NaOH, sealed tube, room temperature, 2 d) [7].

The thiophosphinic halides $(CF_3)_2P(S)X$ (X = Cl, I) are described in Part 3, p. 140. For new chemical reactions see p. 145.

Pentafluorophenylthiophosphonic halides $C_6F_5P(S)X_2$ (X = F, Cl, Br)

Bis(pentafluorophenyl)thiophosphinic halides $(C_6F_5)_2P(S)X$ (X = F, Cl, Br)

The compounds are covered in Part 3, p. 141. In addition, mass spectral fragmentation processes are investigated and discussed in [8].

5.2.8.2 Physical Properties

 $(CF_3)_2 PSP(CF_3)_2$

The IR spectra have been recorded for gaseous and solid samples and the Raman spectra for the liquid and solid phases. Detailed assignments have been proposed in terms of a nonlinear P-S-P skeleton. The positions and intensities of the skeletal modes discount the possibility of a linear bridge P-S-P bridge. No evidence is found for the existence of more than one conformer [3]. The results of the vibrational analysis are given in **Table 45**.

140

Table 45

Vibrational Frequencies ¹⁾ and Assignments for $(CF_3)_2PSP(CF_3)_2$ from the Analysis of the IR and Raman Spectrum [3].

w = weak, m = medium, s = strong, sh = shoulder, pol = polarized, dp = depolarized, v = very.

Raman (liquid)	IR (gas)	Assignment	Raman (liquid)	IR (gas)	Assignment
91 m dp		PC_2 twisting	547 w 564 w sh	543 mw	CF ₃ antisym-
			577 m pol	576 mw	deformation
			520 m pol?	524 m w sh	PSP symmetric stretching
160 vs pol 244 m dp		PSP bending CF ₃ wagging; PC ₂ wagging	726 vw 748 vs pol	721 w 750 m 753 m sh	CF ₃ symmetric deformation
268 m dp 283 s pol 293 m sh		CF ₃ rocking	507 m dp?	509 s	PSP anti- symmetric stretching
446 m dp 461 m pol	444 s 462 m	PC ₂ stretch- ing + PSP stretching		1 111 s sh 1 131 vs 1 142 vvs 1 173 vvs 1 202 vs	CF ₃ stretching

¹⁾ Overtone and combination bands: 341 mw, 825 w, 1028 w, 1272 w, 1289 w.

F(CF₃)P(S)SH

¹⁹F NMR (internal standard CFCl₃): δ = -75.0 ppm [doublet of doublets, J(F-P) = 132 Hz, J(F-F) = 3.1 Hz, CF₃], δ = -54.1 ppm [doublet of quartets, J(F-P) = 1 169 Hz, J(F-F) = 3.1 Hz, F], ¹H NMR [standard (CH₃)₄Si]: δ = 3.33 ppm, IR (in cm⁻¹): 2600 (w), 2580 (vw) (v_{SH}); 1190 (vs, br) (v_{CF}); 910 (s), 830 (m, br) (v_{PF}, δ _{SH}); 765 (m), 725 (s) (δ _{sym CF₃}, v_{P=S}); 570 (s), 535 (m), 415 (m) (δ _{antisym CF₃}, v_{P=S}), v_{PC}), mass spectrum: M⁺ = 183.9 [6].

Thiophosphorylthiophosphines

Table 46 covers the NMR spectra. The data show that P^{III} as well as P^{V} are found in these compounds. The variation of the NMR spectra with temperature shows the different extent of exchange processes in these compounds which have chiral phosphorus centers leading to magnetic nonequivalence in the molecules. For details see the original papers [2, 6].

Gmelin Handbook CF Comp. Suppl. 1 References p. 145

Table 4	6	· · · ·						
NMR P	arameters	for the I	hiophospho	orylthiophos	sphines.			-
Numbe	sing schen	le	$\mathbf{R} \cdot \mathbf{E} \mathbf{P}(\mathbf{S})$: (CF3)2P(3 : E D(9)9D		•
X1_	ĭ ∕X₃		$C = E(CE_{a})P$	(S)SP(CE_)	. ($F_2^{(3)}F$	$(OF_3)_2$ S)P(CF_)F	
P₅-	-S−P ₆ ($D: F(CE{a})P$	(S)SPF	2			
X2	X4		2 (0. 3).	(0)01 2				
	Α							
	A [2]	B [2]	C [6]	D [6]	E [6]	F [6]	G ^{g)}	[6]
							65%	35%
			Position I	number of t	he substitu	uent		
CF3	1, 2	3, 4	1, 2, 3	3	1, 3, 4	2	1. 3	2.3
F	3, 4	1, 2	4	1, 2, 4	2	1, 3, 4	2, 4	1, 4
¹⁹ F and ³¹ P chemical shifts ^{a) b)}								
δ1	-55.0	-61.2	-54.2	- 59.3	-62.0	- 167.1	-63.6	- 166.4
δ2			- 54.5	-63.7	- 164.7	-64.1	- 164.8	-63.6
δ3	- 17.9	-71. 2	-74.0	-80.1	-68.5	— 16.1	-74.1	-74.5
δ4			- 59.2	-56.3	-68.7	— 18.0	- 59.1	- 58.9
δ_5	- 107.2	+ 81.4	- 100.5	+76.5	+34.6	+37.2	+ 38.0	+ 38
δ ₆	- 42.1	- 80.5	- 34.8	-39.0	-67.3	-31.3	-28.6	- 30.6
			Major	r coupling c	onstants J			
1-5	78 ^{d)}	1 331 ^{e)}	78.5 ^{d)}	1 370.0 ^{e)}	77.8 ^{d)}	1 154.0 ^{e)}	74 ^{d)}	1 148 ^{e)}
2-5			78.5 ^{d)}	1 291.0 ^{e)}	1 161.2 ^{e)}	72.6 ^{d)}	1 156 ^{e)}	75 ^{d)}
3-6	1 223 ^{e)}	113 ^d	134.5 ^{d)}	136.0 ^{d)}	112.5 ^{d)}	1 224.0 ^{e)}	134 ^{d)}	134 ^{d)}
4-6			1 173.4 ^{e)}	1 174.0 ^{e)}	112.5 ^{d)}	1 203.0 ^{e)}	1 165 ^{e)}	1 180 ^{e)}
5-6	96.5 ^{f)}	73 ^{f)}	100.0 ^{f)}	63.0 ^{f)}	92.4 ^{f)}	104.7 ^{f)}	86 ^{f)}	103 ^{f)}
			Minor	· coupling c	onstants J			
1-2			9.0	92.5	3.4	4.2	5.0	4.3
1-3			0.0	0.0	0.0	8.8	0	< 0.5
1-4			1.2	6.0	0.0	1.3	0	c)
1-6		18	0.0	9.0	0.0	1.2	0	< 0.5
2-3			0.0	0.0	1.4	0.0	1.2	0
2-4			0.0	7.0	0.0	1.3	c)	0
2-6			0.0	23.0	3.8	0.0	5	0
3-4			0.0	2.6	7.2	82.5	2.8	2.8
3-5	>2 ^{c)}	1.8 ^{c)}	7.0	0.0	6.0	0.5	5.2	2.8
4-5			10.5	22.0	2.5	16.3	c)	c)

^{a) 19}F chemical shifts (δ_1 to δ_4) are given in ppm relative to CFCl₃. Except for compound A, B, and C which were measured directly against CFCl₃, all values were measured with respect to CF₂Cl₂ and converted to the CFCl₃ scale by the addition of the measured difference between the two scales (5.9 ppm). Negative values indicate resonance to high field of standard. $-^{b)31}P$ chemical shifts (δ_5 , δ_6) measured in ppm from P₄O₆ at 36.4 MHz. Negative values indicate resonance to high field of standard. The chemical shift of H₃PO₄ is +112 ppm on the P₄O₆ scale. $-^{c)}$ Not resolved. $-^{d)2}J_{PF}$ in Hz. $-^{e)1}J_{PH}$ in Hz. $-^{1)2}J_{PP}$ in Hz. $-^{g)}$ Mixture of two racemates.

5.2.8.3 Chemical Reactions

The reactions of the phosphorus-sulfur compounds are covered in **Table 47**. Additional investigations are reported below.

 $(CF_3)_2PSP(CF_3)_2$ acts as non-chelating bifunctional ligand towards iron carbonyl compounds. ¹⁹F NMR investigations show that only one P atom forms a donor bond with the iron. $(CF_3)_2PSP(CF_3)_2$ reacts with $Fe(CO)_2(NO)_2$ (16 d, 20 °C, 51% yield) forming $Fe(CO)(NO)_2$ -[$(CF_3)_2PSP(CF_3)_2$], with $Fe_2(CO)_9$ (19 d, 93% yield) forming $Fe(CO)_4[(CF_3)_2PSP(CF_3)_2]$ and with $[Fe(CO)_2(\pi-C_5H_5)]_2$ (6 d, 20 °C, CFCl₃ as solvent, 96% yield) forming $Fe(CO)_2(\pi-C_5H_5)[P(S)(CF_3)_2]$ [4].

Thiophosphorylthiophosphines

The reaction of these mixed-valence compounds with protic species appears to proceed generally with the cleavage of the P-S bond on the trivalent P atom to form phosphines and dithiophosphinic acids or their salts. The reaction with $(CH_3)_2NH$ often yields the ammonium salts of the dithiophosphinic acid [2, 6], see Table 47.

On heating $F_2P(S)SP(CF_3)_2$ at 200°C for 3 d, only 1% of the compound is found to be decomposed. Much less thermally stable is $(CF_3)_2P(S)SPF_2$, which decomposes on heating at 70°C (24 h) and then at 100°C (2 h) forming PF_3 , further a mixture of $(CF_3)_2P(S)SP(CF_3)_2$ (38%), $F_2P(S)SP(CF_3)_2(51\%)$ and $(CF_3)_2P(S)SP(CF_3)_2$ (11%) as well as a white solid residue. For the investigation of the possibility of exchange of trivalent P and pentavalent P fragments with unique substituents, the equilibrium

$$\begin{array}{ccc} \mathsf{F_2P}(S)\mathsf{SP}(\mathsf{CF}_3)_2 \ + \ (\mathsf{CF}_3)_2\mathsf{P}(S)\mathsf{SPF}_2 \ \rightleftharpoons \ \mathsf{F_2P}(S)\mathsf{SPF}_2 \ + \ (\mathsf{CF}_3)_2\mathsf{P}(S)\mathsf{SP}(\mathsf{CF}_3)_2 \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \end{array}$$

was investigated by ¹⁹F NMR spectroscopy. On mixing A and B in CFCl₃ at room temperature all four compounds are observed. The equilibrium constant is found to be $K = c_C \cdot c_D/c_A \cdot c_B = 1.6 \pm 0.7$ (40°C), 2.1 ± 0.7 (-80°C). The reaction is exothermic by no more than 500 cal/mol. The reverse reaction by mixing equal proportions of C and D which equilibrated at room temperature gives K = 1.1 at 40°C. This labile equilibration shows no change in the valence of the P atom associated with a particular substituent [2].

Table 47
Reactions of Perfluoroalkylphosphorus Sulfur Compounds.
If not otherwise stated, the reactions are investigated at room temperature.

Compound	Reactant (conditions of reaction)	Main products (yield in %)
F ₂ P(S)SP(CF ₃) ₂ [2]	10% aqueous NaOH (3 h) anhydrous HCl (10 d) anhydrous (CH ₃) ₂ NH (2 d) CH ₃ SH (about 12 h) Hg (7 d) anhydrous CH ₃ OH ($-$) Cl ₂ ($-$)	$\begin{array}{l} CF_{3H} \\ SPF_{2SH, (CF_{3})_{2}PCl} \\ (CF_{3)_{2}PN(CH_{3})_{2}, [(CH_{3})_{2}NH_{2}][F_{2}PS_{2}]} \\ (CF_{3})_{2}PSCH_{3}, SPF_{2SH} \\ (CF_{3})_{2}PP(CF_{3})_{2} (10\%), Hg(S_{2}PF_{2})_{2} \\ (CF_{3})_{2}PSH, (CF_{3})_{2}POCH_{3}, SPF_{2SH} \\ (CF_{3})_{2}PCl (25\%), (CF_{3})_{2}PCl_{3} (27.5\%), \\ (SPF_{2})_{2}S_{2} (45\%), SPF_{2Cl} (1.5\%) \end{array}$

Table 47 (continued)

Compound	Reactant (conditions of reaction)	Main products (yield ir	1 %)
(CF ₃) ₂ P(S)SPF ₂ [2]	10% aqueous NaOH (12 h) anhydrous HCl (6 d) anhydrous (CH ₃) ₂ NH CH ₃ SH (30 min) Hg (some days) anhydrous CH ₃ OH (6 d) Cl ₂ (1 d)	CF ₃ H (CF ₃) ₂ P(S)SH, PF ₂ Cl, PI PF ₂ N(CH ₃) ₂ , PF ₃ , [(CH ₃) ₂ NH ₂][(CF ₃) ₂ PS ₂] (CF ₃) ₂ P(S)SH, (CF ₃) ₂ PS (CF ₃) ₄ P ₂ S, (CF ₃) ₄ P ₂ , PF Hg[S ₂ P(CF ₃) ₂] ₂ (CF ₃) ₂ P(S)SCH ₃ , (CF ₃) ₂ (CF ₃) ₂ P(S)SSP(S)(CF ₃) ₂ (CF ₃) ₂ P(S)Cl (15%), PF SPF ₂ Cl (4%)	F ₃ H, PF ₃ ^{3,} P(S)SH, PF ₃ , (28%), ₂ Cl (52%),
(CF ₃) ₂ P(S)SP(CF ₃) ₂ [2]	anhydrous (CH_3) ₂ NH ($-$)	[H ₂ N(CH ₃) ₂][(CF ₃) ₂ PS ₂] (CF ₃) ₂ PN(CH ₃) ₂	
F(CF ₃)P(S)SP(CF ₃) ₂ [6]	(CH₃)NH 20% aqueous NaOH	(CF ₃) ₂ PN(CH ₃) ₂ CF ₃ H	
F(CF ₃)P(S)SPF ₂ [6]	(CH ₃) ₂ NH 20% aqueous NaOH	PF ₂ N(CH ₃) ₂ , PF ₃ no volatile products	
(CF ₃) ₂ P(S)SP(CF ₃)F [6]	(CH ₃₎₂ NH 20% aqueous NaOH	[(CH ₃) ₂ NH ₂][(CF ₃) ₂ PS ₂] F(CF ₃)PN(CH ₃) ₂ CF ₃ H	,
F ₂ P(S)SP(CF ₃)F [6]	(CH ₃₎₂ NH 20% aqueous NaOH	[(CH ₃) ₂ NH ₂][F ₂ PS ₂], F(0 CF ₃ H, F	CF ₃)PN(CH ₃) ₂
F(CF ₃)P(S)SH [6]	$(CF_3)_2 PN(CH_3)_2$	F(CF ₃)P(S)SP(CF ₃) ₂ , [(CH ₃) ₂ NH ₂][F(CF ₃)PS ₂]	I
F(CF ₃)P(S)S ⁻ [6] (as dimethyl ammonium salt)	H₂SO₄	F ₂ P(S)SH, F(CF ₃)P(S)S	н
(CF ₃) ₂ P(S)SH	CH ₃ ONa, (CH ₃) ₃ Cl [6] (18 h) [7] F(CF ₃)PN(CH ₃) ₂ [6] anhydrous CH ₃ OH (12 h) [2]	(CF ₃) ₂ P(S)SC(CH ₃) ₃ [(CH ₃) ₂ NH ₂][(CF ₃) ₂ PS ₂] (CF ₃) ₂ P(S)SP(CF ₃)F (CF ₃) ₂ P(S)SCH ₃	,
(CF ₃) ₂ P(S)SH [6]	CH ₃ ONa, (CH ₃) ₃ Cl (18 h) [7] F(CF ₃)PN(CH ₃) ₂ [6] anhydrous CH ₃ OH (12 h) [2]	(CF ₃) ₂ P(S)C(CH ₃) ₃ [(CH ₃) ₂ NH ₂][(CF ₃) ₂ PS ₂] (CF ₃) ₂ P(S)SP(CF ₃)F (CF ₃) ₂ P(S)SCH ₃	,
	References p. 14	Gmelin Handbook CF Comp. Suppl. 1	

144

Compound	Reactant (conditions of reaction)	Main products (yield in %)
(CF₃)₂P(S)Cl [7]	СН₃СН₂ОН, (СН₃)₃N (СН₃)₂СНОН, (СН₃)₃N СН₃СН₂SH, (СН₃)₃N	$(CF_3)_2P(S)OCH_2CH_3 (80\%)$ $(CF_3)_2P(S)OCH(CH_3)_2 (88\%)$ $(CF_3)_2P(S)SCH_2CH_3 (66\%),$
	(CH ₃) ₂ CHSH, (CH ₃) ₃ N CH ₃ OH (CH ₃) ₃ COH, (CH ₃) ₃ N	$(CF_3)_2$ PSCH ₂ CH ₃ $(CF_3)P(S)SCH(CH_3)_2$ (76%) $(CF_3)_2P(S)OCH_3$ $(CH_3)_3$ NH(CF ₃) ₂ PSO, $(CF_3)_2P(S)N(CH_3)_2$
(CF ₃) ₂ P(S)I [5]	(CF ₃) ₂ PSeP(CF ₃) ₂	Se, $(CF_3)_2PI$, $(CF_3)_2PSP(CF_3)_2$
(CF ₃) ₂ P(S)ONa [7]	(CH ₃) ₃ Cl (pentane)	(CF ₃) ₂ P(S)OC(CH ₃) ₃ (66%)
(CF ₃) ₂ P(S)OH [7]	NaOCH ₃ (pentane) (20 h)	(CF ₃)PSONa

Table 47 (continued)

References:

[1] K. J. The, R. G. Cavell (Inorg. Chem. **15** [1976] 2518/25). – [2] L. F. Doty, R. G. Cavell (Inorg. Chem. **13** [1974] 2722/9). – [3] R. C. Dobbie, M. J. Hopkinson, B. P. Straughan (J. Mol. Struct. **23** [1974] 141/3). – [4] R. C. Dobbie, M. J. Hopkinson (J. Chem. Soc. Dalton Trans. **1974** 1290/3). – [5] R. C. Dobbie, M. J. Hopkinson (J. Fluorine Chem. **3** [1973] 367/74).

[6] R. G. Cavell, L. F. Doty (Inorg. Chem. **17** [1978] 3086/93). — [7] R. G. Cavell, A. A. Pinkerton, W. Sim, A. J. Tomlinson (Inorg. Chem. **18** [1979] 2901/8). — [8] T. R. B. Jones, J. M. Miller, M. Fild (Org. Mass Spectrom. **12** [1977] 317/25).

5.2.9 Perfluoroalkylphosphorus Selenium Compounds

Trifluoromethylselenobis(trifluoromethyl)phosphine (CF₃)₂PSeCF₃

Bis[bis(trifluoromethyl)phosphino]selane (CF₃)₂PSeP(CF₃)₂

The first compound will be incorporated into the Chapter on Perfluoroorganoselenium Compounds, see Suppl. Vol. 2 and the remark in Part 3, p. 160.

For preparation and chemical reactions of $(CF_3)_2PSeP(CF_3)_2$ see Part 3, p. 160. The IR spectra have been recorded for gaseous and solid samples and Raman spectra for the liquid solid phases. Detailed assignments have been proposed in terms of a nonlinear P-Se-P skeleton. The positions and intensities of the skeletal modes discount the possibility of a linear bridge P-Se-P bridge. No evidence is found for the existence of more than one conformer [1]. The results of the vibrational analysis are given in **Table 48**, p. 146.

Table 48

Vibrational Frequencies¹⁾ (in cm⁻¹) and Assignments for $(CF_3)_2PSeP(CF_3)_2$ from the Analysis of the IR and the Raman Spectrum [1].

w = weak, m = medium, s = strong, sh = shoulder, pol = polarized, dp = depolarized, v = very.

Raman (liquid)	IR (gas)	Assignment	Raman (liquid)	IR (gas)	Assignment
91 m dp 118 w sh		PC ₂ twisting + scissoring	553 w dp 563 w dp	545 w sh 556 m	CF ₃ anti- symmetric deformation
153 s pol		PSeP bending		724 w	CF ₃ sym-
246 w sh dp		CF ₃ wagging; PC ₂ wagging	750 s pol	747 s	metric deformation
260 s pol 269 m dp 288 m dp?		CF ₃ rocking		1 110 s sh 1 127 vs	
424 w dp 446 m dp 456 m pol	422 m 445 vs 456 m sh	PC ₂ stretching + PSeP stretching	1 122 vw	1 140 vvs 1 150 vs sh 1 170 vvs 1 195 vs	CF ₃ stretching

¹⁾ Overtone and combination bands: 1010 vw, 1026 vw, 1095 w sh, 1278 w, 1290 w.

The compound reacts with $Fe(CO)_2(NO)_2$ (16 d at 20°C) to form $Fe(CO)(NO)_2$ -[(CF₃)₂PSeP(CF₃)₂]. By ¹⁹F NMR spectroscopy, it is shown, that one P atom is coordinated directly to the Fe atom. The reaction with $Fe_2(CO)_9$ gave $Fe_2(CO)_6P_2(CF_3)_4$ Se (black crystals, melting point 139°C) for which spectroscopic investigations indicate a cyclic structure with Fe-Fe- and P-Se-Fe bonding. The reaction with $[\pi-(C_5H_5)Fe(CO)_2]_2$ (in CFCl₃, 6 d, 20°C) gave orange-colored crystals of the composition $(\pi-C_5H_5)Fe(CO)_2P(Se)(CF_3)_2$ [2], for spectroscopic data of the compounds see the original paper.

Reference:

[1] R. C. Dobbie, M. J. Hopkinson, B. P. Straughan (J. Mol. Struct. **23** [1974] 141/3). - [2] R. C. Dobbie, M. J. Hopkinson (J. Chem. Soc. Dalton Trans. **1974** 1290/3).

5.2.10 Perfluoroalkylphosphorus Boron Compounds

1- and 2-Bis(trifluoromethyl)phosphinopentaborane(9) 1-(CF₃)₂PB₅H₈ and 2-(CF₃)₂PB₅H₈

On repeating the synthesis of $1-(CF_3)_2PB_5H_8$ (described in Part 3, p. 161, cited there as preparation of $(CF_3)_2PB_5H_8$), now the 2-isomer has been isolated. The best yield has been obtained using fairly pure LiC₂H₅ and B₅H₉. After standing for 2 h at -50° C (formation of C₂H₆), $(CF_3)_2PCl$ is added at -125° C and is reacted during a 12 h warming period to -78° C. The

146

ether and the excess B_5H_9 were distilled off and the phosphinoboranes were delivered during slow warming, finally to 50 °C. The isomers were separated by repeated fractional condensation at -20 to -30 °C. The yields are 30% and 15% for the 1- and 2-isomer, respectively (the report of 57% yield of the 1-isomer in Part 3, p. 161, is based on the consumption of LiB₅H₈; when based on consumed (CF₃)₂PCl, the original yield is only 36%) [1].

The equilibrium pressures p (in Torr) of the 2-isomer fit the equation log p = $6.312 + 1.75 \times \log T - 0.005 T - 2486/T$ (T in K), yielding the extrapolated boiling point 147°C and the Trouton constant of 21 cal \cdot mol⁻¹ \cdot K⁻¹. The ¹H NMR spectrum [standard (CH₃)₄Si] shows the chemical shifts δ = 1.33 ppm (quartet, J = 178 Hz, 3-BH, 5-BH units) and δ = -3.18 ppm (spectrum pictured in [1]). ¹¹B NMR (negative values upfield from methylborate): δ = -29.6 ppm (doublet, J = 178 Hz; 3,4,5-BH units), δ = -34 ppm (singlet, since coupling B-P is not resolved), -71.0 ppm (doublet, J = 182 Hz, 1 B) [1]. ³¹P NMR (negative values upfield from the standard H₃PO₄): δ = -36 ppm (ragged peak); ¹⁹F NMR (negative values upfield from CFCl₃): δ = -48.6 ppm (doublet, J = 68 Hz) [1].

IR spectrum (in cm⁻¹, relative intensities in parentheses) [1]:

 $1-(CF_3)_2PB_5H_8: 2626 \ (6.7), \ 1865 \ (2.5), \ 1470 \ (2.5), \ 1434 \ (2.8), \ 1395? \ (1.7), \ 1292? \ (0.4), \ 1189 \ (28), \ 1153 \ (40), \ 1141 \ (42), \ 1105 \ (22), \ 1060 \ (0.2), \ 1033? \ (0.2), \ 993? \ (0.1), \ 903? \ (2.3), \ 883 \ (2.9), \ 805 \ (0.3), \ 741 \ (0.6), \ 678 \ (2.7), \ 558 \ (0.6), \ 458 \ (4.5), \ 435 \ (1.1).$

 $2-(CF_3)_2PB_5H_8$: 2627 (14), 2618 (12), 1930? (0.1), 1882 (0.3), 1842 (1.3), 1500? (0.5), 1455 (2.3), 1403 (8), 1319 (0.4), 1288 (0.7), 1190 (48), 1158 (53), 1136 (54), 1109 (25), 1038 (1.6), 976 (0.5), 923 (3.4), 888 (4.6), 847 (1.3), 747 (1.2), 697 (1.0), 670 (3.4), 612 (1.7), 570 (1.4), 545 (0.5), 498? (0.4), 453 (7), 419 (1.4).

Pure 2-(CF₃)₂PB₅H₈ remains stable for at least 24 h in a sealed tube at 25°C. In presence of a catalytic trace of hexamethylenetetramine a complete isomerization is observed on standing at 25 h after 36 h [1]. With Ni(CO)₄ in a sealed tube at 0°C (1 h) the complex 2-(CF₃)₂PB₅H₈Ni(CO)₃ is formed, which is characterized by ¹¹B, ³¹P and ¹⁹F NMR data [1].

Tris[bis(trifluoromethyl)phosphinoborane] [(CF₃)₂PBH₂]₃

Boraniumbis(phosphinide) Anion $[(CF_3)_2PBH_2P(CF_3)_2]^{-1}$

Boraniumtris(phosphinide) Anion [(CF₃)₂PBH₂P(CF₃)₂BH₂P(CF₃)₂]⁻

The synthesis of the phosphinoborane is described in Part 3, p. 161. A more direct procedure is to heat a mixture of diborane and $(CF_3)_2PI$ in a sealed tube at 100°C and to remove the Bl₃ by action of water or by brief treatment with $(CH_3)_3N$ at 25°C. However, this method could be hazardous, when one attempts to sublime out the last traces of the desired trimer by heating the residue in vacuo, a very shattering detonation can occur. ¹¹B NMR (in C₆D₆, standard B(OCH₃)₃, positive value upfield) $\delta = 60.1$ ppm [triplet (J = 105 Hz, BH₂) of triplets (J = 52 Hz, BP₂)] [2].

Chemical Reactions, Formation and Properties of the Anions

The ring trimer $[(CF_3)_2PBH_2]_3$ is easily cleaved by excess trimethylamine to give nearly equal yields of the sublimable monomer complex $(CH_3)_3N \cdot BH_2P(CF_3)_2$ (melting point 81°C) and the ionic oil $[(CH_3)_3N]_2BH_2^+(CF_3)_2PBH_2P(CF_3)_2^-$. The similar but faster trimethylphosphine reaction yields a more volatile monomer complex (melting point 48°C) and an analogous ionic

Compounds of Main Group 5 Elements

oil. With deficient base, the ion $(CF_3)_2PBH_2P(CF_3)_2BH_2P(CF_3)_2^-$ persists as major product; less persistent, especially in the amine reaction, is the dimer complex base $BH_2P(CF_3)_2 \cdot BH_2P(CF_3)_2$. Yet longer chains are obscure but seem to be favored in the phosphine reaction. In all of these ring-cleavage products, any three-bonded P atom easily forms a BH₃ complex of the nonpolar, nonhydridic type, which HCl attacks at a central BH₂ group rather than at an end BH₃ group. **Table 49** gives the boron and fluorine NMR spectra of the anions and their BH₃ complexes; for further details of reaction and for physical data of the base complexes see [2].

Table 49

¹¹B and ¹⁹F NMR Spectra of the Phosphinide Anions and Their BH₃ Complexes [2]. Chemical shifts δ are negative upfield from the standards B(OCH₃)₃ and CFCl₃, respectively.

Compound	¹¹ B NMR	¹⁹ F NMR
[(CF ₃) ₂ P] ₂ BH ₂ ⁻	$\delta(BH_2) = -51.4$ (J = 104 Hz)	$\delta = -52.7 (J = 65 Hz)$
$[(CF_3)_2PBH_3]_2BH_2^-$	$\delta(BH_2) = -55.0,$ $\delta(BH_3) = -58.7$	$\delta = -62.8 (J = 58.5 Hz)$
$[(CF_3)_2PBH_2]_2P(CF_3)_2^-$	$\delta(BH_2) = -55.0$	δ = -53.5 (J = 64.5 Hz), $δ = -60.0^{a}$ (J = 57.0, 11.0 Hz)
$[(CF_3)_2P(BH_3)BH_2]_2P(CF_3)_2^-$	$\delta(BH_2) = -55.4, \\ \delta(BH_3) = -59.0$	$\begin{split} \delta &= -59.2^{\text{ b)}} \text{ (J} = 67 \text{ Hz)}, \\ \delta &= -62.5^{\text{ c)}} \text{ (J} = 59 \text{ Hz)} \end{split}$

^{a)} Doublet of triplets, of total intensity half that of the $\delta = -53.3$ doublet. $-^{b)}$ Doublet for central P(CF₃)₂ unit; half-height width 18 Hz. $-^{c)}$ Doublet for end (CF₃)₂PBH₃ units; half-height width 16 Hz.

$\textbf{Trifluoromethyldifluorophosphinetetraborane}~CF_3PF_2\cdot B_4H_8~\textbf{Adduct}$

 $CF_3PF_2 \cdot B_4H_8$ has been obtained by the reaction of B_4H_8CO and CF_3PF_2 at 0°C until CO evolution ceased. (For removing CO the reaction tube was several times frozen at $-196^{\circ}C$.) The volatile reaction products were purified on a low temperature distillation column. Physical data: Melting point -153 to $-149^{\circ}C$; ¹¹B NMR [external standard $BF_3 \cdot O(C_2H_5)_2$]: $\delta = -58.0$ ppm [doublet, J(P-B) = 125 Hz, B₁]; +0.2 ppm (singlet, B₃), -5.6 ppm (singlet, B₂, B₄): ³¹P NMR (external standard 85% H₃PO₄) at $-27^{\circ}C$: $\delta = 125.1$ ppm [triplet of septets, J(P-F) = 1177 Hz, J(P-B) = 125 Hz, J(F-C-P) = 108 Hz, the septet results from the overlapping of two quartets]; ¹⁹F NMR (external standard CF₃COOH) at $-21^{\circ}C$: $\delta = -6.3$ ppm [doublet, J(P-F) = 1177 Hz, PF₂], 10.2 ppm [doublet, J(F-C-P) = 108 Hz, CF₃].

At -125 °C two new doublets have appeared beside the CF₃ resonance. The two new doublets are attributed to the presence of two nonequivalent fluorine atoms, each of which is spin-spin coupled to a phosphorous atom, $\delta = -24.6$ ppm [doublet, J(P-F) = 1170 Hz], 5.1 ppm [doublet, J(P-F) = 1180 Hz]. For the CF₃ resonance at -135 °C $\delta = 8.2$ ppm [doublet, J(F-C-P) = 110 Hz] is found. Based on the low temperature spectrum it is concluded that the CF₃PF₂·B₄H₈ molecule exists only in one geometrical isomer (in contrast to other molecules of the type P₂FX·B₄H₈, X = OCH₃, SCH₃, CH₃, t-C₄H₉). The low temperature spectrum arises from one rotational isomer at low temperature [3].

References:

[1] A. B. Burg (Inorg. Chem. **12** [1973] 3017/9). - [2] A. B. Burg (Inorg. Chem. **17** [1978] 593/9). - [3] J. D. Odom, A. J. Zozulin (Inorg. Chem. **20** [1981] 3740/5).

5.2.11 Tris(perfluorohalogenoorgano)phosphines. Perfluorophosphapropene. Fluorophosphaethyne

5.2.11.1 Preparation and Formation

1,1,3,3,3-Pentafluoro-2-phospha-1-propene CF₃P=CF₂

 $CF_3P=CF_2$ was postulated as an intermediate in the basic hydrolysis of $(CF_3)_2PH$ at room temperature [1], in the reaction of $(CF_3)_2PH$ with ammonia [2], in the conversion of $(CF_3)_2PH$ with dimethylzinc to the ring dimer $(CF_3PCF_2)_2$ [3], and in the reaction of $(CF_3)_2PH$ with trimethylamine [4]. The compound was detected by its ³¹P and ¹⁹F NMR spectrum when gaseous $(CF_3)_2PH$ passes in a vacuum line several times in a U trap, containing KOH pellets [5].

Fluorophosphaethyne FC≡P

The compound was first detected by MW spectroscopy during the flow pyrolysis of CF₃PH₂. In this system it appears to be unstable [6]. The compound is produced in a very high yield by passing CF₃PH₂ slowly at room temperature and low pressure (about 30 μ m Hg) over solid KOH pellets [7], see also [8, 9]. The compound obtained in this way seems quite stable (1 h or more) at low pressures (<50 μ m Hg) and at room temperature [4].

Tris(trifluoromethyl)phosphine (CF₃)₃P

The phosphine (see Part 3, p. 163) forms in the photolysis of a mixture of $(CF_3)_2PH$ and $Cl_2C=CF_2$ (240 h, mercury medium pressure lamp) [10], in a low-pressure silent discharge of CF_3PH_2 and of $(CF_3)_2PH$ [45], by ligand exchange between Pl_3 and $(CF_3)_2Cd \cdot CH_3CH_2CH_2OCH_3$ (room temperature, 30 min, 20% yield) [11] and in the pyrolysis of $(CF_3)_3PO$ (see p. 94) [12].

Bis(trifluoromethyl)heptafluoro-n-propylphosphine (CF₃)₂PC₃F₇

Trifluoromethylbis(heptafluoro-n-propyl)phosphine $CF_3P(C_3F_7)_2$

Tris(heptafluoro-n-propyl)phosphine $(C_3F_7)_3P$

The propyl compounds can be prepared by the reaction of C_3F_7I with the corresponding diphosphine according to:

 $\begin{array}{l} \mathsf{RR'PPR'R} + \mathsf{C}_3\mathsf{F}_7\mathsf{I} \to \mathsf{RR'PC}_3\mathsf{F}_7 + \mathsf{RR'PI} \\ (\mathsf{R} = \mathsf{R'} = \mathsf{CF}_3; \mathsf{R} = \mathsf{CF}_3, \mathsf{R'} = \mathsf{C}_3\mathsf{F}_7; \mathsf{R} = \mathsf{R'} = \mathsf{C}_3\mathsf{F}_7) \end{array}$

Detailed conditions for these reactions are not given. Photolysis of the mixture accelerates the reaction giving higher yields. For example, $CF_3P(C_3F_7)_2$ is obtained in 93% yield at 16°C within 1 h on irradiation, while the same mixture on heating at 167°C in the dark only gives a yield of 50% [13].

Bis(trifluoromethyl)hexafluoroisopropylphosphine $(CF_3)_2PCF(CF_3)_2$

On heating a mixture of $(CF_3)_3P$ and $C_2F_5SiF_5$ at 0.5 atm for 1 h at 200°C, the reaction of the carbene CF_3CF (formed from $C_2F_5SiF_5$) with the phosphine gives the isopropylphosphine. The compound is obtained in 44% yield after fractional condensation and gas chromatographic separation [14].

Gmelin Handbook CF Comp. Suppl. 1

Compounds of Main Group 5 Elements

Tris(trifluorovinyl)phosphine (F₂C=CF)₃P

Bis(trifluorovinyl)pentafluorobutadienylphosphine (F₂C=CF)₂P(FC=CFCF=CF₂)

Both compounds are prepared in a yield of 7% [15] and 2.5% [16], respectively, in the reaction of F_2C =CFLi (obtained from F_2C =CFBr and CH₃Li in situ) with PCl₃ in ether at -78° C followed by gas chromatographic separation [15, 16], for the first compound see also Part 3, p. 163.

Tris(1,1,1-trifLuoropropynyL)phosphine (CF₃C≡C)₃P

The compound is formed in 50% yield (as already described according a private communication in Part 3, p. 163) in a two-step process via the preparation of $CF_3C=CL$ followed by the reaction of the lithium compound with PCl_3 in $(C_2H_5)_2O$ [17]. Lower yields are obtained by the reaction of $CF_3C=CZnCl$ with PCl_3 in dimethylformamide or pyridine [17].

Trifluoromethyldicyanophosphine CF₃P(CN)₂

Bis(trifLuoromethyL)cyanophosphine (CF₃)₂PCN

The cyanophosphine (see Part 3, p. 164) and the dicyanophosphine are prepared by condensing $(CF_3)_2$ Pl and CF_3 Pl, respectively, on excess Hg $(CN)_2$ in a high vacuum [18]. CF_3 P $(CN)_2$ also forms in the reaction of CF_3 PHI with Hg $(CN)_2$ at 110 to 120 °C in 24 h [19].

Tris(pentafluorophenyl)phosphine (C₆F₅)₃P

 $\label{eq:perturbative} Pentafluorophenylethynyl) phosphine \ C_6F_5(C_6F_5C=C)_2P$

Nonafluorobiphenylylbis(pentafluorophenyl)phosphine $C_{12}F_9(C_6F_5)_2P$

Bis(nonafluorobiphenylyl)pentafluorophenylphosphine $(C_{12}F_9)_2C_6F_5P$

For $(C_6F_5)_3P$ (see Part 3, p. 164) only new chemical reactions (see p. 157) are reported.

 $C_6F_5(C_6F_5C=C)_2P$ forms on reacting $C_6F_5C=CH$ with pentafluorophenylchlorophosphine, yield 50% [44].

The other two compounds form in the reactions of C_6F_5Li (from C_6F_5H and $n-C_4H_9Li$ in hexane/ether at -78 °C in 2 h) with $(C_6F_5)_3P$ or $(C_6F_5)_3PO$ at 25 °C (6 h, molar ratio 1:1) as well in the reaction of C_6F_5Li (from C_6F_5Br and $n-C_4F_9Li$ in hexane/ether at -78 °C in 1 h) with $(C_6H_5)_3P$ [20].

$\label{eq:rescaled} \textbf{Tris(4-perfluorooxaalkylphenyl)phosphines} ~ [4-(R_fOR_fCF_2)-C_6F_4]_3P$

In the following are given the synthesized compounds, characterized by the groups $R_fOR_{f^-}$, the yields and the boiling points [21]:

R _f OR _f -	Yield	b.p. in °C/Torr	R _í OR _í -	Yield	b.p. in °C/Torr
$CF(CF_3)OC_3F_7$ $CF(CF_3)OCF_2CF_2$	78% 70%	189/0.01	$CF(CF_3)[OCF_2CF(CF_3)]_4OC_3F_7$ $CF_2(OC_2F_4)_2OC_2F_5$	30% 69%	178/0.003 157/0.005
(CF ₃)OC ₃ F ₇		201701000	$CF_2(OCF_2)_3OCF_3$	59%	157/0.005
		ł	References p. 158		Gmelin Handbook CF Comp. Suppl. 1

Phosphorus Compounds

These compounds have been synthesized by the reaction of PCl_3 with the corresponding lithium compounds of the 4-perfluoroalkylphenylether. To $4-BrC_6F_4CF_2R_1OR_1'$ in an anhydrous tetrahydrofuran-diethylether solution at -78 °C a hexane solution of n-butyllithium was added. After 1 h the solution of PCl₃ in diethylether at -78 °C was added. After warming the solution to room temperature (15 h), it is stirred for 15 h, then hydrolyzed with 6 N HCl and the products are separated by distillation. The compounds are viscous liquids at room temperature, have a low volatility, soluble in fluorinated solvents, and are resistant to oxidation, much like (C_6F_5)₃P [21]. They are used as protecting agents in the oxidative high-temperature treatment of perfluoroalkyl-terminated perfluoropolymethylenepolyethylene glycols (contained in vessels of various alloys) [22].

5.2.11.2 Physical Properties

 $C_6F_6(C_6F_5C=C)_2P$ melts at 127 to 128 °C. The ³¹P and ¹⁹F NMR spectra (standard 85% H₃PO₄ and C_6F_6) show the chemical shifts $\delta(P) = -93.7$ ppm, $\delta(F^2,F^6) = 34.7$ and 27.0 ppm, $\delta(F^3,F^5) = 2.6$ and 1.4 ppm, $\delta(F^4) = 15.4$ and 13.0 ppm [44].

The melting points of the compounds $[4-(R'_{f}OR_{f}CF_{2})-C_{6}F_{4}]_{3}P$ are given in context with the preparation of the compounds.

CF₃P=CF₂

The ³¹P spectrum (recorded at -78 °C) consists of an overlapping doublet of doublets of quartets from spin coupling to F^a, F^b, and the CF₃ group.

The chemical shifts [positive shifts are lowfield relative to the standards $P(OCH_3)_3$ and $CFCl_3$] are $\delta(P) = -121.4$, $\delta(F^a) = 3.9$, $\delta(F^b) = -38.7$ ppm, $J(P-F^a) = 213.6$, $J(P-F^b) = 82.3$, $J(F^a-F^b) = 29.3$ Hz [5].

FC₌P

The linear molecule has 16 valence electrons and is expected to have the ground state electron configuration $(6\sigma)^2(7\sigma)^2(8\sigma)^2(2\pi)^4(9\sigma)^2(3\pi)^4$. The photoelectron spectrum shows three bands, see **Table 50**. The first band at 10.75 eV is assigned to the ionization from the 3π orbital, the second band at 13.55 eV to the ionization from the 9σ orbital localized mainly at the phosphorus atom. The third band corresponds to the ionization of the fluorine lone pair electrons (2π) . Calculations are performed to minimum energy assuming Koopmans theorem, r(C-F) = 1.2995, r(C=P) = 1.5365 Å, total energy $E_T = 12988.748$ eV. The calculation indicates that the π orbital has a small amount of C-F antibonding character, whereas the σ orbital is slightly C-F bonding, as expected, though it consists mainly of a phosphorus σ lone pair atomic orbital. The charge distribution indicates a large positive charge on the P atom (+0.48), a small negative charge on the C atom (-0.09), and a large negative charge on the F atom (-0.39) [7].

Gmelin Handbook CF Comp. Suppl. 1

References p. 158

Table 50

Experimental and Calculated Ionization	⊢Energies E _i of FC≡F	P and Vibrations	of the FC≡P ⁺	lon
[7].				

E _i (exp.)	E _i (calc.)	Vibrational structure	
(in eV)	(in eV)	(in cm ⁻¹)	
10.57 ± 0.01	10.53	1725 ± 30 [v(C≡P)] 760 ± 40 [v(C-F)]	
13.55 ± 0.01	13.94	860	
17.63 ± 0.03	20.08	—	
-	22.31	—	
	$E_{i}(exp.)$ (in eV) 10.57 ± 0.01 13.55 ± 0.01 17.63 ± 0.03 -	$\begin{array}{c} E_i(exp.) & E_i(calc.) \\ (in \ eV) & (in \ eV) \end{array}$ $10.57 \pm 0.01 & 10.53 \\ 13.55 \pm 0.01 & 13.94 \\ 17.63 \pm 0.03 & 20.08 \\ - & 22.31 \end{array}$	$\begin{array}{c} E_i(exp.) \\ (in \ eV) \end{array} \begin{array}{c} E_i(calc.) \\ (in \ eV) \end{array} \begin{array}{c} Vibrational \ structure \\ (in \ cm^{-1}) \end{array} \\ \\ 10.57 \pm 0.01 \\ 10.53 \\ 1725 \pm 30 \ [v(C \equiv P)] \\ 760 \pm 40 \ [v(C - F)] \end{array} \\ \\ 13.55 \pm 0.01 \\ 17.63 \pm 0.03 \\ 20.08 \\ - \\ - \\ 22.31 \\ - \end{array}$

The ³¹P and the ¹⁹F NMR spectrum show the chemical shifts $\delta(^{31}P) = -346.4$ ppm and $\delta(^{19}F) = -96.6$ ppm [negative shifts are highfield from the standards P(OCH₃)₃ and CFCl₃]; the spin-spin coupling constant is J = 182.0 Hz. In the IR spectrum the C=P stretching vibration is observed at 1660 cm⁻¹ [8]. In the microwave spectrum, transitions belonging to the two isotopic species ¹⁹F¹²C³¹P and ¹⁹F¹³C³¹P have been observed and analyzed. The resulting structural parameters are r(C-F) = 1.285 ± 0.005 and r(C=P) = 1.541 ± 0.005 Å. For ¹⁹F¹²C³¹P the rotational constants B₀ = 5257.80 MHz and D_J = 1.0 ± 1.7 kHz are evaluated. The analysis of the vibrational satellites of the J = 3 \leftarrow 2 ground-state transition yields the bending vibration v₂ = 390 ± 10 cm⁻¹ and the antisymmetric stretching vibration v₃ = 790 ± 60 cm⁻¹. From the Stark effect the dipole moment $\mu = 0.279 \pm 0.001$ D was obtained. The comparison with the dipole moment of HC=P indicates that the F-C bond moment opposes that of the C=P group [9].

(CF₃)₃P

The structure of the phosphine has been reinvestigated (see Part 3, p. 165) by gas-phase electron diffraction and liquid-phase Raman spectroscopy assuming C_{3v} symmetry for the PC₃ skeleton and also for the CF₃ groups. The principal structural parameters are $r_a = 1.904(7)$ Å, $r_{n}(C-F) = 1.340(3)$ Å, $\alpha(C-P-C) = 97.2(0.7)^{\circ}$, $\alpha(F-C-F) = 107.5(0.3)^{\circ}$. A striking result is that the P-C bond is 0.058 Å longer than in (CH₃)₃P. Trifluoromethyl groups, in or close to staggered conformations, are tilted by $5.3(0.9)^{\circ}$. This indicates that the threefold axes of the CF₃ groups are not collinear with the P-C bonds but lie in planes defined by P, C and Faxial, so that a positive value the P-C-F_{axial} angles increases by the amount of the angle of tilt. The angle of twist 5.5(6.0)° for a given CF₃ group implies that the group is twisted about its threefold axis away from the all-staggered conformation. The Raman spectrum of liquid (CF₃)₃P is given in Table 51 together with the IR gas-phase spectrum (from [24], see Part 3, p. 165). In comparison to [24] a revised assignment of the skeletal PC_3 bending modes was found to be necessary (for distribution to the symmetry of the fundamental vibrations to the symmetry groups see Part 3, p. 165). Shrinkage corrections and amplitudes of vibration, which agree well with the measured vibrational amplitudes, were calculated from a plausible set of valence force constants constructed to reproduce the vibrational frequencies. From the estimated barrier to rotation (2.8 kcal/mol), the torsional frequencies $v_{22} = 43$ and $v_{11} = 40$ cm⁻¹ have been calculated. An indirect evidence of these torsional modes τ is given as combination bands (see Table 51) [23].

Table 51
Liquid-phase Raman Spectra [23], Gas-phase IR Spectra [24].
For the numbering of the vibrations v, see the Part 3, p. 165, I = relative intensities,
s, m, w = strong, medium, weak, $v = very$, $br = broad$, $sh = shoulder$, $p = polarized$, dp
= depolarized.

Raman [23] (in cm ⁻¹)	I	IR [24] (in cm ⁻¹)	Calculated frequencies (in cm^{-1})	Assignment and symmetry
	1	1235 yrve	1210	N. (e)
1215 hr sh	۱ 1	1200 003	1213	$v_{12}(e)$
1 180 dn	2	1 189 vvs	1 172	$v_1(a_1)$ $v_2(e)$
1158 sh	∠ ≪1	1 157 vvs	1 158	$v_{13}(0)$
1 1 1 0 dn	3	1 120 1 134 yvs	1 131	$v_2(\alpha_1)$
786 n	6	1123, 1104 443	1101	$v_{14}(c)$
747 n	73	757 s	747	$v_4 + t$ $v_2(a_1)$
609 p	<1		141	$v_4 (\alpha_1)$ $v_5 \pm \tau$
571 n	5	573 m	587	$v_3 + \tau$ $v_2 + \tau$
562 sh	< 1	559 s	552	v ₃ (e)
532 dn	1	535 w	535	v ₁₅ (e)
503 dp	< 1		000	$v_{16}(0)$
489 n	2			$v_{20} + \tau$
465 dp	20	464 vs	481	
451 n	38	455 s	464	$v_{20}(0)$
324 dn	1	100 0	101	$V_6(\alpha_1)$
308 p	8			$v_{18} + \tau$
286 dn	20	280 vvw	274	v ₁₀ (e)
270 p	100	269 vw	274	$v_{18}(c)$
250 dp	9	250 w	259	$v_{10}(e)$
190	_ ≪1			$v_{19}(-)$
151 p	4		151	v ₇ (a ₁)
110 dp	7		110	v ₂₁ (e)
····P	•		43	$v_{20}(e)$
			40	$v_{11}(a_2)$

The investigation of the He(I) photoelectron spectrum of $(CF_3)_3P$ gives the following vertical ionization potentials E_i which are assigned to localized molecular orbitals assuming C_{3v} skeletal symmetry [25]:

Assignment	Lone electron pair on phosphorus	P-C bond	F nonbonding orbitals on CF_3 groups			
Symmetry	A ₁	E	A ₂	Е	E	
E _i in eV	11.70	13.52	15.63	16.54	17.18	

For a correlation between the phosphorus core binding energies and the phosphorus lonepair ionization energies of trivalent phosphorus compounds, among them $(CF_3)_3P$, see [26].

Gmelin Handbook CF Comp. Suppl. 1 NMR spectra (positive shifts downfield from the standards):

¹⁹F NMR (external standard CF₃COOH, shifts converted to CFCl₃): $\delta = -50.7$ ppm [J(P-F) = 85.7 Hz] [27]; ¹⁹F NMR (external standard CF₃COOH): $\delta = 24.4$ ppm [J(F-P) = 83 Hz] [11].

³¹P NMR (external standard 15% H₃PO₄ in D₂O, converted to 85% H₃PO₄): $\delta = -2.5$ ppm [J(P-F) = 85 Hz] [27]; ³¹P NMR (external standard P₄O₆, hexane solution): $\delta = -117$ ppm [28].

¹³C NMR (external standard C₆D₆): $\delta = -2.16$ ppm [J(C-F) = 318 Hz, J(C-P) = 10.7 Hz, J(C-P-C-F) = 5.35 Hz] [27]. ¹³C {¹⁹F} NMR [internal standard (CH₃)₄Si, solvent CDCl₃, at 31 °C]: $\delta = 126.4$ ppm [J(P-C) = 14 Hz] [29]. ¹³C NMR [converted to δ (CH₃)₃Si = δ (CDCl₃) + 77.06 ppm]: $\delta = 125.97 \pm 0.03$ ppm [quartet of doublets of septets, J(C-P) = 11.5 ± 0.7 Hz, J(C-F) = 318.0 ± 0.7 Hz, J(C-P-C-F) = 5 ± 0.7 Hz] [30].

The Faraday effect has been studied between -10 and +10 °C to give a mean value of 350 µr. The density is found to be $D_4^{-5} = 1.675$ g/cm³, between -20 and +5 °C the density is represented by D = $1.646 - 2.4 \times 10^{-3}$ t. The boiling point is 17 °C [31].

(n-C₃F₇)₃P

³¹P NMR: low-field shift $\delta = 20.6$ ppm (standard 85% H₃PO₄) [32].

$(CF_3)_2 PCF(CF_3)_2$

IR gas-phase spectrum (in cm⁻¹): 1285 (s), 1255 (sh), 1245 (s), 1172 (s), 1145 (s), 1102 (m), 1085 (sh), 963 (w), 950 (w), 930 (m), 750 (m), 712 (m), 618 (vw), 555 (vw), 535 (w), 480 (vw), 448 (m), 413 (w) [1].

NMR spectra of $(CF_{3}^{a})_{2}PCF^{b}(CF_{3}^{c})_{2}$ (negative shifts δ mean upfield from the standard).

³¹P NMR [external standard P(OCH₃)₃]: $\delta = -129.1$ ppm, coupling constants J(P-F_a) = 88.8, J(P-F_b) = 56.0, J(P-F_c) = 15.8 Hz. ¹⁹F NMR (external standard CFCl₃): $\delta = -49.2$ (F^a), -187.2 (F^b), -75.0 (F^c) ppm, J(F^a-F^c) = 6.1, J(F^a-F^b) = 8.7, J(F^b-F^c) = 10.1 Hz [14].

Mass spectrum (fragment, m/e, intensities in parentheses, w: intensity <12%, m: 12 to 50%, s: >50%, referred to the peak m/e = 69): M⁺, 338 (w); $C_4F_{12}P^+$, 319 (w); $C_3F_{10}P^+$, 269 (w); $C_3F_9P^+$, 250 (w); $C_3F_8P^+$, 231 (w); $C_3F_6P^+$, 181 (w); $C_2F_6P^+$, $C_3F_7^+$, 169 (w); $C_3F_5P^+$, 162 (w); $C_2F_5P^+$, $C_3F_6^+$, 150 (w); $C_3F_4P^+$, 143 (m); $C_2F_4P^+$, $C_3F_5^+$, 131 (m); CF_4P^+ , 119 (m); $C_2F_3P^+$, 112 (m); F_4P^+ , 107 (w); CF_3P^+ , $C_2F_4^+$, 100 (s); $C_2F_2P^+$, $C_3F_3^+$, 93 (m); CF_2P^+ , $C_2F_3^+$, 81 (m); C_2FP^+ , 74 (m); F_2P^+ , CF_3^+ , 69 (100%); CFP^+ , $C_2F_2^+$, 62 (m); FP⁺, CF_2^+, 50 (m); C_2F^+ , CP⁺, 43 (w); CF⁺, P⁺, 31 (s) [14].

(F₂C=CF)₃P

NMR (positive sign of δ means downfield) according to the designation of the nuclei given below (A):

References p. 158

Gmelin Handbook CF Comp. Suppl. 1 ³¹P NMR (standard 85% H_3PO_4): $\delta = -76.9 \pm 0.9$ ppm.

¹⁹F NMR (standard CFCl₃): $\delta(F_a) = -81.9 \text{ ppm} [J(F_a-P) = 13.6 \text{ Hz}, J(F_a-F_c) = 34.6 \text{ Hz}, J(F_a-F_b) = 43.0 \text{ Hz}], \delta(F_b) = 105.4 \text{ ppm} [J(F_b-P) = 55 \text{ Hz}, J(F_b-F_c) = 120.5 \text{ Hz}], \delta(F_c) = 175.0 \text{ ppm} [J(F_c-P) = 10 \text{ to } 13 \text{ Hz}].$

¹³C NMR [standard (CH₃)₄Si]: δ (C₁) = 124.6 ppm [J(C₁-F_c) = 292 Hz, J(C₁-F_a) = 8.5 Hz, J(C₁-P) = 49 Hz], δ (C₂) = 160.2 ppm [J(C₂-F_a) = 288.1 Hz, J(C₂-F_b) = 207.6 Hz, J(C₂-F_c) = 40 Hz, J(C₂-P) = 40 Hz] [15].

IR: 1725 (vs) ($v_{C=C}$), 1330 (vs) (v_{C-F}), 1180 (vs) (v_{C-F}), 1040 (vs) (v_{C-F}).

Mass spectrum: 274, M⁺ (59.4); 131, $FPC_2F_3^+$ (34.4); 124, $CPC_2F_3^+$ (30.4); 112, $PC_2F_3^+$ (79.2); 105, $PC_3F_2^+$ (52.8); 93, $PC_2F_2^+$ (83.3); 69, PF_2^+ , CF_3^+ (100%) [18].

(F₂C=CF)₂ (F₂C=CF-CF=CF)P

Colorless oil. ³¹P NMR (external standard 85% H₃PO₄): $\delta = -71.3$ ppm (multiplet). ¹⁹F NMR (external standard CFCl₃, designation of the atoms see compound B, above: $\delta(F_a) = -80.4$, $\delta(F'_a) = -92.5$, $\delta(F_b) = -104.9$, $\delta(F'_b) = -104.9$, $\delta(F_c) = -174.3$, $\delta(F'_c) = -148.8$, $\delta(F'_d) = -135.0$, $\delta(F'_e) = -183.9$ ppm. IR (film): 1778 (vs) (v_{C:C}), 1750 (vs) (v_{C:C}), 1725 (vs) (v_{C:C}), 1330 (vs) (v_{C-F}), 1180 (vs) (v_{C-F}); 1070 (vs) (v_{C-F}), 1043 (v_{C-F}).

Mass spectrum: m/e = 336, M⁺ (21.5); 117, PC₄F₂⁺ (28.1); 112, PC₂F₃⁺ (81.1); 93, PC₂F₂⁺ (4.6); 69, PF₂⁺, CF₃⁺ (100%) [16].

(CF₃C=C)₃P

The mass spectrum which is already covered in Part 3, p. 167, according to a private communication, has now been published; for the fragmentation scheme see the original [17].

CF₃P(CN)₂ and (CF₃)₂PCN

From He(I) photoelectron spectra the following ionization energies (in eV) result:

CF ₃ P(CN) ₂	11.81	13.43	13.53	14.05	14.25?	14.48	15.30	15.98	16.62	17.68
(CF ₃) ₂ PCN	11.72	13.1	13.59	14.02	15.8	17.48				

For interpretation by an MO model see [18].

5.2.11.3 Chemical Reactions

The chemical properties of the compounds $[4-(R'_fOR_fCF_2)-C_6F_4]_3P$ are covered in the section on preparation, see p. 150.

Reaction of CF₃P=CF₂

Addition of water to the double bond of the phosphaalkene followed by alkali cleavage of the fluorocarbon substituents of the resulting phosphine, gives CF_3H and CF_2H_2 which are identified by NMR spectroscopy [5].

Reactions of (CF₃)₃P

On heating $(CF_3)_3P$ to 320°C for 20 h (sealed glass tube, 1 atm), 70% of the phosphine decomposed yielding PF₃, SiF₄, and C₂F₆. On heating for 16 h at 320°C, the phosphine was recovered essentially unchanged (only 2% PF₃ were found) [12].

Oxygen reacts with $(CF_3)_3P$ in a chain reaction involving the trifluoromethyl radical and its autooxidation. Under the conditions of spontaneous ignition (0.5 atm O₂, 25°C) a yellow flame front passes the gas mixture. OCF₂, OPF₃, CF₄, C₂F₆, (CF₃O)₃PO, CO₂ and PF₃ are the products. Higher concentrations of (CF₃O)₃PO beside the other products, OCF₂, OPF₃, CF₄, C₂F₆, PF₃, CO₂, and a trace of CF₃P(O)(OH)₂, are obtained by warming the reaction mixture in a sealed glass tube from -196 °C to room temperature. The presence of toluene inhibits this reaction. Without ignition the oxidation of (CF₃O)₃P yields (CF₃O)₃PO as the main product besides OCF₂ and (CF₃O)₂P(O)F; for details, especially the reaction mechanism, see the original paper [12]. Physical properties of (CF₃O)₂PO: boiling point 52°C (extrapolated), melting point -86°C, vapor pressure p (in Torr): log p = 7330 - 1445/T, ¹⁹F NMR (standard CFCl₃): $\delta = -55.6$ ppm [doublet, J(P-F) = 6 Hz]; IR: (strong absorption bands only are given): 1390, 1380, 1280, 1260, 1250, 1163, 1036, 815 cm⁻¹ [12].

 $(CF_3)_3P$ reacts with bromine in $CD_2Cl_2/CFCl_3$ solution forming an oxidation equilibrium (equilibrium constant K = $2 l^{-1}$ at 260 K) $(CF_3)_3P + Br_2 \rightleftharpoons (CF_3)_3PBr_2$ (see p. 105) which was investigated by ¹⁹F, ³¹P and ¹³C NMR spectroscopy [29].

With the carbene-precursor $CHF_2CF_2SiF_3$ (giving the carbene CHF_2CF), the phosphine (1:10 molar ratio) reacts at 150°C (5 h) giving unchanged $(CF_3)_3PSiF_4$ (95%), trifluoroethylene (15%), 1,2,2-trifluoroethylidenetris(trifluoromethyl)phosphorane $(CF_3)_3PCFCHF_2$, a high-boiling unidentified yellow oil and tar. The physical properties of $(CF_3)_3PCFCHF_2$ are: IR: $v_{max} = 1661 \text{ cm}^{-1}$; ¹H NMR (external standard benzene): $\delta = -0.46 \text{ ppm}$; mass spectrum: m/e = 263, M⁺ - CF₄ (5); 262, M⁺ - CHF₄ (4); 69, CF_3⁺ (100) [33]. With the carbene CF_3CF at 200°C (CF_3)_2PCF(CF_3)_2 is formed [14].

No reaction occurs with HM(CH₃)₃ (M = Si, Ge, Sn) below 200 °C [34]. The reaction of $(CF_3)_3P$ with CF_3NO at room temperature yields $(CF_3)_3P[ON(CF_3)_2]_2$ (see p. 89) [35]. The reaction with $(CF_3)_2NON(CF_3)_2$ gives $(CF_3)_{3-n}P[N(CF_3)_2]_n$ (see p. 101) and $(CF_3)_2NOCF_3$ [43].

In contrast to $(CH_3)_n P(CF_3)_{3-n}$ (n = 1 to 3) the reactions of $(CF_3)_3 P$ with the Lewis acids BX_3 (X = H, CH₃, F, Cl, Br) form no donor-acceptor compounds [36]. But this compound acts as a good ligand yielding the transition-metal complexes $M(CO)_5 P(CF_3)_3$ and *cis*- $M(CO)_4 [P(CF_3)_3]_2$ (M = Cr, Mo, W) [37], see **Table 52**. From this it is concluded that $(CF_3)_3 P$ is the weakest donor within the series $(CH_3)_n P(CF_3)_{3-n}$ (n = 0 to 3). On the other hand, the increase of the wave number of the CO stretching bands of the complexes from $(CH_3)_3 P$ to $(CF_3)_3 P$ shows that $(CF_3)_3 P$ has the strongest acceptor strength [38].

Reactions of (CF₃)₂PCF(CF₃)₂

The pyrolysis at 420 Torr and 200°C (1 h) in presence of $C_2F_5SiF_3$ yields $(CF_3)_2CFCF(CF_3)_2$, *cis*- and *trans*-CF₃CF=CFCF₃, $(CF_3)_3P$ and SiF₄. The hydrolysis with 5% aqueous NaOH at 24°C (2 h) forms almost quantitatively CF₃H and $(CF_3)_2CFH$ (molar ratio 2:1) [14].

Reactions of CF₃P(CN)₂ and (CF₃)₂PCN

 $CF_3P(CN)_2$ reacts with CF_3PH_2 at 50 °C (14 d) in a sealed tube via the non-isolated compound $CF_3PH(CN)$ to form $(CF_3P)_4$, HCN and $(CF_3PH)_2$ [19].

Compound	Conditions	Product
Cr(CO) ₆ ^{a)}	25°C (15 h)	$Cr(CO)_5P(CF_3)_3$
Mo(CO) ₆ ^{a)}	25°C (24 h)	$Mo(CO)_5P(CF_3)_3$
W(CO) ₆ ^{a)}	25°C (20 h)	$W(CO)_5 P(CF_3)_3$
Cr(CO) ₆	110 to 180°C	$Cr(CO)_5P(CF_3)_3$
-	(1 to 135 h)	trans-Cr(CO) ₄ [P(CF ₃) ₃] ₂
Mo(CO) ₆	70 to 140°C	$Mo(CO)_5P(CF_3)_3$,
	(72 to 160 h)	trans-Mo(CO) ₄ [P(CF ₃) ₃] ₂
W(CO) ₆	85 to 80°C	$W(CO)_5 P(CF_3)_3$
	(2 to 18 h)	
C ₇ H ₈ Cr(CO)₄ ^{b)}	50°C (11 d)	$C_7H_8Cr(CO)_3P(CF_3)_3$
		trans-Cr(CO) ₄ [P(CF ₃) ₃] ₂
C ₇ H ₈ Mo(CO) ₄ ^{b)}	25°C (14 d)	cis-Mo(CO) ₄ [P(CF ₃) ₃] ₂
$C_7 H_8 W(CO)_4^{b)}$	50°C (15 h)	cis-W(CO) ₄ [P(CF ₃) ₃] ₂
$C_7 H_8 Cr(CO)_3^{c)}$	60 to 80°C/3 d	$Cr(CO)_5P(CF_3)_9$,
		trans-Cr(CO) ₄ [P(CF ₃) ₂] ₂
C ₇ H ₈ Mo(CO) ₃ ^{c)}	5 to 40°C/4 to 1 d	$Mo(CO)_5P(CF_3)_3$,
		trans-Mo(CO) ₄ [P(CF ₃) ₃] ₂

Table 52 Reactions of $(CF_3)_3P$ with Metal Carbonyls [37].

^{a)} The products are formed by UV irradiation of $M(CO)_6$ in tetrahydrofuran (THF) forming the $M(CO)_5$ (THF) complexes, followed by an exchange reaction with $(CF_3)_3P$. $-^{b)}C_7H_8$: norbornadiene. $-^{c)}C_7H_8$: cycloheptatriene.

 $(CF_3)_2PCN$ reacts with $(CF_3)_2NO$ at $-74^{\circ}C$ in 16 h to give $[(CF_3)_2NO]_2P(CF_3)_2CN$ (see p. 89) [39]. On standing at 25°C for 28 h, $(CF_3)_2PCN$ reacts with $(CF_3)_2PSiH_3$ forming $(CF_3)_4P_4$, SiH₃CN and $(CF_3)_2PH$ [40].

Reactions of (C₆F₅)₃P

In solution (Cl₂CFCF₂Cl as solvent) (C₆F₅)₃P is oxidized by (CF₃)₂NO (sealed ampule at -70 °C for one day, shaking at room temperature for 20 min and left standing for another day) to form (C₆F₅)₃PO (see p. 87) and (CF₃)₂NON(CF₃)₂ [41].

With C_6F_5Li (from C_6F_5H and $n-C_4H_9Li$ in a solution of hexane and ether at $-78\,^{\circ}C$, 2 h), $(C_6F_5)_3P$ reacts at 25°C (6 h, 1:1 mole equivalents) yielding $C_{6n}F_{4n}H_2$ (n = 2, 3), $C_{6n}F_{4n+1}H$ (n = 1 to 4), $(C_{12}F_9)(C_6F_5)_2P$, and $(C_{12}F_9)_2(C_6F_5)P$. If C_6F_5Li is prepared from C_6F_5Br and C_4F_9Li in hexane/ether at $-78\,^{\circ}C$ (1 h) additionally $C_{6n}F_{4n}$ (n = 2, 3), $C_{6n}F_{4n}Br_2$ (n = 1 to 3), $C_{6n}F_{4n+1}Br$ (n = 1 to 4), and $C_{12}F_8HBr$ are found [20].

 $(C_6F_5)_3P$ reacts with the 7-norbornadienyl and AgBF₄ in liquid SO₂ to yield the substituted norbornadienylphosphonium compound, for ¹H NMR see the original publication [42].

Gmelin Handbook CF Comp. Suppl. 1

References p. 158

References:

[1] H. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon (J. Chem. Soc. Chem. Commun. 1979 653/4). - [2] H. Goldwhite, R. N. Haszeldine, D. G. Roswell (J. Chem. Soc. 1965 6875/9, 6878). - [3] D.-K. Kang, A. B. Burg (J. Chem. Soc. Chem. Commun. 1972 763/4). - [4] A. T. Burg (Inorg. Chem. 20 [1981] 3734/40). - [5] H. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon, O. Ohashi (J. Organometal. Chem. 181 [1979] C1/C3).

[6] M. J. Hopkins, H. W. Kroto, J. F. Nixon, N. P. C. Simmons (J. Chem. Soc. Chem. Commun. **1976** 513/5). - [7] H. W. Kroto, J. F. Nixon, N. P. C. Simmons (J. Am. Chem. Soc. **100** [1978]
446/8). - [8] H. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon (J. Chem. Soc. Chem. Commun. **1979** 653/4). - [9] H. W. Kroto, J. F. Nixon, N. P. C. Simmons (J. Mol. Spectrosc. **82** [1980]
185/92). - [10] P. Cooper, R. Fields, R. N. Haszeldine (J. Chem. Soc. Perkin Trans. I **1975** 702/7).

[11] L. J. Krause, J. A. Morrison (J. Am. Chem. Soc. **103** [1981] 2995/3001). - [12] W. Mahler (Inorg. Chem. **18** [1979] 352/4). - [13] I. G. Maslennikov, V. I. Shibaev, A. N. Lavrent'ev, E. G. Sochilin (Zh. Obshch. Khim. **46** [1976] 940/1; J. Gen. Chem. [USSR] **46** [1976] 943). - [14] K. G. Sharp, J. Schwager (Inorg. Chem. **15** [1976] 1697/701). - [15] H.-G. Horn, R. Köntges, F. Kolkmann, H. Ch. Marsmann (Z. Naturforsch. **33b** [1978] 1422/6).

[16] H.-G. Horn, F. Kolkmann (Z. Naturforsch. **33b** [1978] 1427/9). – [17] D. H. Lemmon, J. A. Jackson (J. Fluorine Chem. **8** [1976] 23/42). – [18] S. Elbel, H. tom Dieck, R. Demuth (Z. Naturforsch. **31b** [1976] 1472/9). – [19] R. C. Dobbie, P. D. Gosling, B. P. Straughan (J. Chem. Soc. Dalton Trans. **1975** 2368/73). – [20] S. Lin, J. Miller (J. Fluorine Chem. **9** [1977] 161/9).

[21] H. Gopal, C. E. Snyder, J. R. Tamborski, C. Tamborski (J. Fluorine Chem. 14 [1979]
511/8). - [22] C. E. Snyder, C. Tamborski, United States Dept. of the Air Force (U.S. 4043926
[1977]; U.S. Appl. 681871 [1975]; C.A. 86 [1977] No. 158161; U.S. 4097388 [1976/78]; C.A. 89
[1978] No. 182232), C. E. Snyder (U.S. Appl. 731483 [1976]; C.A. 88 [1978] No. 9569). - [23]
C. J. Marsden, L. S. Bartell (Inorg. Chem. 15 [1976] 2713/7). - [24] H. Bürger, J. Cichon, J. Grobe, F. Höfler (Spectrochim. Acta A 28 [1972] 1275/86). - [25] A. H. Cowley, M. J. S. Dewar, D. W. Goodman (J. Am. Chem. Soc. 97 [1975] 3653/5).

[26] T. H. Lee, W. L. Jolly, A. A. Bakke, R. Weiss, J. G. Verkade (J. Am. Chem. Soc. 102
[1980] 2631/6). - [27] A. B. Burg (Inorg. Nucl. Chem. Letters 13 [1977] 199/203). - [28] P. Dagnac, R. Turpin, J.-L. Virlichie, D. Voigt (Rev. Chim. Minerale 14 [1977] 370/80). - [29] R. G. Cavell, J. A. Gibson, K. I. The (J. Am. Chem. Soc. 99 [1977] 7841/7). - [30] P. Dagnac, J.-L. Virlichie, G. Jugie (J. Chem. Soc. Dalton Trans. 1979 155/8).

[31] J.-L. Virlichie, P. Dagnac (Rev. Chim. Minerale **14** [1977] 355/8). – [32] A. V. Fokin, M. A. Landau (Izv. Akad. Nauk SSSR Ser. Khim. **1976** 2435/9; Bull. Acad. Sci. USSR Div. Chem. Sci. **1976** 2271/4). – [33] R. N. Haszeldine, R. Rowland, J. G. Speight, A. E. Tipping (J. Chem. Soc. Perkin Trans. I **1980** 314/24). – [34] S. Ansari, J. Grobe (Z. Naturforsch. **30b** [1975] 531/4). – [35] H. G. Ang, Y. C. Syn (J. Fluorine Chem. **8** [1976] 481/96).

[36] J. Apel, J. Grobe (Z. Anorg. Allgem. Chem. **453** [1979] 28/38). — [37] J. Apel, R. Bacher, J. Grobe, D. Le Van (Z. Anorg. Allgem. Chem. **453** [1979] 39/52). — [38] J. Apel, J. Grobe (Z. Anorg. Allgem. Chem. **453** [1979] 53/67). — [39] H. G. Ang, K. F. Ho (J. Fluorine Chem. **8** [1976] 497/504). — [40] L. Maya, A. B. Burg (Inorg. Chem. **14** [1975] 698/700).

[41] H. G. Ang, W. S. Lien (J. Fluorine Chem. 9 [1977] 73/80). - [42] P. Schipper, H. M. Buck (Phosphorus 3 [1973] 133/5). - [43] H. G. Ang, W. S. Lien (J. Fluorine Chem. 11 [1978] 419/32). - [44] O. I. Andreevskaya, S. A. Krupoder, G. G. Furin, G. G. Yakobson (Izv. Sibirsk. Otd. Akad. Nauk Ser. Khim. Nauk 1980 97/104; C.A. 94 [1981] No. 191477). - [45] J. P. Albrand, S. P. Anderson, H. Goldwhite, L. Huff (Inorg. Chem. 14 [1975] 570/3).

5.2.12 Bis(trifluoromethyl)phosphinosilane (CF₃)₂PSiH₃

The compound forms on shaking (CF₃)₂PI and ISiH₃ with Hg at 25°C (ISiH₃ has been produced in the reaction vessel from $C_6H_5SiH_3$ and HI).

The vapor-pressure equation is represented by $\log p = 7.767 - 1532/T$ (p in Torr, T in K), evaluated from the experimental equilibrium pressures p = 3.0 at $-63^{\circ}C$, 44 at $-23^{\circ}C$ and 144 Torr at 0°C. The ¹H NMR spectrum shows a doublet of septets, centered 3.76 ppm downfield from (CH₃)₄Si, coupling constants J(P-H) = 19.5 Hz, J(H-F) = 1.35 Hz, J(²⁹Si-H) = 229 Hz. The ¹⁹F NMR spectrum shows a doublet of quartets at $\delta = -46.7$ ppm (standard CFCl₃), J(F-P) = 68.5 Hz, J(F-H) = 1.35 Hz. The ³¹P NMR spectrum shows a septet of quartets, centered at $\delta = -42.4$ ppm (upfield from H₃PO₄) and confirms the coupling constants 68.5 and 19.5 Hz. IR (in cm^{-1} , relative intensities in parentheses): 2203 (6.3), 1192 (19), 1157 (21), 1118 (21), 930 (2.6), 896 (9), 745 (1.2), 595 (0.3), 417 (2.5).

The reactions of the silane are summarized in Table 53. In almost all reactions a cleavage of the P-Si bond occurs.

Table 53 Reactions of $(CF_3)_2 PSiH_3$. - - 1 /!...

Equimolar	mixtures,	quantities	in mmol ((in paren	tneses).	

Reactant	Conditions	Products
BF ₃ (0.85)	64 h/25°C, 26 h/60°C	$(CF_3PCF_2)_2$ (0.20), BF ₃ , H ₂ SiF ₂ , B ₂ H ₆ , HSiF ₃ (1.37), H ₂ , (CF ₃) ₂ PH, P ₂ (CF ₃) ₄
BCl ₃ (0.75)	20 h/25°C	BF_3 (0.4), SiH ₃ Cl (0.02), H ₂ SiCl ₂ (0.73), (CF ₃) ₂ PH (0.13), P ₂ (CF ₃) ₄ (0.125), (H ₂ PBF ₂) _x (empirical formula of the residue)
B(OCH ₃) ₃ (0.15 used of 0.50)	24 h/50°C	$SiH_4^{(0.2)}$, (CF ₃) ₂ PH (0.24), (CF ₃) ₂ PCH ₃ (0.26), nonvolatile products
CH ₃ OBCl ₂ (0.45)	rapid/<25°C	(CF ₃) ₂ PCH ₃ (0.36), SiH ₃ Cl (0.3), H ₂ SiCl ₂ (0.2), (CF ₃) ₂ PH (<0.05)
(CH ₃) ₂ PCl (0.46)	rapid/<25°C	$(CH_3)_2PP(CF_3)_2$ (0.12), H_2SiCl_2 (0.45), $(CF_3)_2PH$ (0.07), $(CF_3)_4P_2$ (0.02)
(CF ₃) ₂ PCN (0.5) PF ₃	28 h/25°C 1 h/105°C	P ₂ (ČF ₃) ¹ (0.22), SiH ₃ CN (0.34), (CF ₃) ₂ PH (0.17) no reaction
PF₅	rapid/<25°C	(CF ₃) ₂ PH, (CF ₃) ₂ PF, H ₂ SiF ₂
CH ₃ CN (0.5)	3 h/65°C	$P_2(CF_3)_4$, SiH ₄
CH ₃ NC (0.45)	rapid/<25°C	SiH ₄ (0.1), (CF ₃) ₂ PH (0.03), P ₂ (CF ₃) ₄ (0.06), brown solids
BrSiF ₃ (0.07	16 h/50°C,	BrSiH ₃ , (CF ₃) ₂ PH, SiF ₄ (total 0.13)
used of 0.5)	24 h/120°C	

Reference:

L. Maya, A. B. Burg (Inorg. Chem. 14 [1975] 698/700).

Gmelin Handbook CF Comp. Suppl. 1

5.2.13 Perfluoroalkyldiphosphines. Bis(trifluoromethyl)phosphinoarsine

The diphosphines $(CF_3)_2PH_2$ and $CF_3PHPHCF_3$ are covered on p. 82.

Tetrakis(trifluoromethyl)diphosphine (CF₃)₂PP(CF₃)₂

1,1-Bis(heptafluoropropyl)-2,2-bis(trifluoromethyl)diphosphine (C₃F₇)₂PP(CF₃)₂

1,2-Bis(heptafluoropropyl)-1,2-bis(trifluoromethyl)diphosphine (C₃F₇)CF₃PPCF₃(C₃F₇)

Preparation and Formation, Physical Properties

 $(CF_3)_2PP(CF_3)_2$ (see Part 3, p. 127) forms by dehydrofluorination of $(CF_3)_2PH$ with $(CH_3)_3N$. The highest yield (46%) is obtained when, in presence of $(CH_3)_3SiCl$, the reaction mixture is stored at $-78\,^{\circ}C$ for 18 h, then for many hours at -60 to $-70\,^{\circ}C$, followed by rapid warming with subsequent standing at 0°C for 16 h or at 40°C for 5 min [1]. The diphosphine is also formed by decomposition (25°C, 6 weeks) and by acidolysis (with hydrochloric acid) of $(CF_3)_2PCH_2P(CF_3)P(CF_3)_2$ [1], by the reaction of $(CF_3)_2PSP(CF_3)_2$ with Hg (shaking for 7 d, 10% yield) [2], in a low-pressure silent discharge of CF_3PH_2 [18], and as a by-product during the preparation of $R(CF_3)PP(CF_3)_2$ ($R = CH_3$, CHF_2 , CH_2F) from $R(CF_3)PH$ and $(CF_3)_2PCl$ in the presence of $(CH_3)_3N$ [3]. ¹⁹F NMR: $\delta = -47$ ppm (standard $CFCl_3)$, J(P-F) = 84.9 Hz [4], see also [3, 5]. The IR spectrum is given in [4], for assignment see Part 3, p. 177. The ³¹P NMR chemical shift is $\delta = -127$ ppm (upfield from P_4O_6 as external standard) [6]. Faraday effect $|P|_M = 697 \,\mu$ r at 20°C [6]. Density $D_4^{20} = 1.665_9 \,g/cm^3$ [7].

 $(C_3F_7)_2PP(CF_3)_2$ (yield 48%, boiling point 40 to 42°C) and $(C_3F_7)CF_3PPCF_3(C_3F_7)_2$ (yield 66%, 95 to 100°C/12 Torr) form on reacting the corresponding iodophosphines with antimony at 150 to 200°C [8].

Chemical Reactions

All three diphosphines are cleaved in the reaction with C_3F_7I yielding the mixed trissubstituted phosphines according:

 $R_1R_2PPR_2R_1 + C_3F_7I \rightarrow R_1R_2PC_3F_7 + R_1R_2PI$ (R₁, R₂ = CF₃, C₃F₇)

The reactivity decreases in the order $(CF_3)_4P_2 > (C_3F_7)_2(CF_3)_2P_2 > (C_3F_7)_4P_2$, the activation energy (first order) is 17, 26, and 40 kcal/mol, respectively. Visible light accelerates the reaction [8].

 $(CF_3)_2PP(CF_3)_2$ reacts with selenium at 100°C (4 d) almost quantitatively forming $(CF_3)_2PSeP(CF_3)_2$ [9]. About the vapor-phase oxidation of the diphosphine by NO yielding $(CF_3)_2POP(O)(CF_3)_2$ and $[(CF_3)_2PO]_2O$ [4] see Chapter 5.2.3. The diphosphine reacts with trimethylstannane and a number of metal carbonyls under cleavage of the P-P bond. These reactions are surveyed in **Table 54**, for ¹⁹F NMR and IR data see the original papers. The reaction with $(CH_3)_2CHOH$ (room temperature for 4 d, then 70°C for 7 h) gives $(CF_3)_2POCH(CH_3)_2$ and, among the volatile products, $(CF_3)_2PH$ [16]. In the presence of $R(CF_3)_2PC(F_3)_2$ (R = CH₃, CHF₂, CH₂F) the diphosphine is cleaved by HCl at 65°C giving $(CF_3)_2PH$ and $(CF_3)_2PCI$ (if the phosphine is pure, it resists toward HCl even at 300°C) [1].

Bis(trifLuoromethyL)phosphinoarsine (CF₃)₂PAsH₂

The compounds forms in yields between 30 and 60% by reacting $(CH_3)_3SnAsH_2$ and $(CF_3)_2PI$ at $-78^{\circ}C$ for 24 h [solvent $(CH_3)_4Si$, sealed and evacuated tube]. It is purified by fractional

160

Conditions	Products (yield in %)
20°C/1 h	$Sn(CH_3)_3P(CF_3)_2$ (quantitatively)
20°C/1 h [11] 35°C/2.5 min [12]	$Mn(CO)_5P(CF_3)_2$ (85%) yellow oil
120/150/175/ 190°C 115/25/20/32 h	Re ₂ (CO) ₈ [P(CF ₃) ₂] ₂ (64%)
70°C/82 h	Re ₂ (CO) ₈ P(CF ₃) ₂ Cl (65%)
70°C/85 h	$Re_{2}(CO)_{8}P(CF_{3})_{2}Br(70\%)$
90°C/40 h	$Re_{2}(CO)_{8}P(CF_{3})_{2}I(75\%)$
70°C/40 h	Mn ₂ (CO) ₈ P(CF ₃) ₂ Cl (89%)
60°C/40 h	Mn ₂ (CO) ₈ P(CF ₃) ₂ Br (82%)
60°C/104 h	Mn ₂ (CO) ₈ P(CF ₃) ₂ I (73%)
35°C/2.5 min	$Re(CO)_5P(CF_3)_2$ (82%)
35°C/2.5 min	(CF ₃) ₂ PMn(CO) ₄ P(CH ₃) ₃ (74%)
35°C/2.5 min	(CF ₃) ₂ PMn(CO) ₄ As(CH ₃) ₃ (70%)
90°C/20 h	MnCo(CO) ₇ [P(CF ₃) ₃] ₂ (90%)
	Conditions 20°C/1 h 20°C/1 h [11] 35°C/2.5 min [12] 120/150/175/ 190°C 115/25/20/32 h 70°C/82 h 70°C/82 h 70°C/85 h 90°C/40 h 60°C/40 h 60°C/40 h 60°C/104 h 35°C/2.5 min 35°C/2.5 min 90°C/20 h

Table 54 Reactions of $(CF_3)_2 PP(CF_3)_2$ with $HSn(CH_3)_3$ and with Metal Carbonyls.

condensation and is found in the -63 °C-trap. The pure compound decomposes at room temperature within several minutes. A 10% solution of the arsinophosphine in toluene is at -40 °C stable enough to allow the investigation of reactions without noticeable decomposition of the compound. At temperatures above -40 °C a slow decomposition starts [15] according

$$n (CF_3)_2 AsH_2 \rightarrow n (CF_3)_2 PH + (AsH)_n$$

r

yielding dark brown solids. ¹H NMR [external standard (CH₃)₄Si]: $\delta = 2.42$ ppm [doublet (J_{PH} = 10 Hz) of septets (F-H coupling not resolvable)], ¹⁹F NMR (external standard CFCl₃): δ = -50.4 ppm [doublet (J_{PF} = 65.0 Hz) of triplets (J_{HF} = 0.5 Hz)], ³¹P NMR (external standard 85% H_3PO_4): $\delta = -16.0$ ppm [septet ($J_{PF} = 65$ Hz) of triplets ($J_{PH} = 9.9$ Hz)].

The reactions with polar and nonpolar reagents which proceed by cleavage of the P-As bond are described in Table 55 [15].

Equimolar reaction mixtures if not otherwise stated, solvent:toluene.				
Compound	Conditions	Main products		
HBr (small excess)	—78°C/4 h	(CF ₃) ₂ PH, AsH ₃ , (CF ₃) ₂ PBr		
(CH ₃) ₂ AsH	_	(CF ₃) ₂ PH, (CH ₃) ₂ AsH		
(CH ₃) ₃ SiH	-40°C	$(CF_3)_2PH$		
$(CH_3)_4As_2$	_	(CF ₃) ₂ PAs(CH ₃) ₂ , (CF ₃) ₂ PH, (CH ₃) ₂ AsH		

Table 55 Cleavage Reactions of (CE) PAsH [15]

20°C/5 min

20°C

Gmelin Handbook CF Comp. Suppl. 1

 $(CH_3)_2 PN(CH_3)_2$ (small excess)

Br₂

(CF₃)₂PN(CH₃)₂, (CF₃)₂PP(CH₃)₂, (CH₃)₂NH

(CF₃)₂PBr, (CF₃)₂PH, (CF₃)₂PBr₃

References:

[1] A. B. Burg (Inorg. Chem. **20** [1981] 3734/40). – [2] L. F. Doty, R. G. Cavell (Inorg. Chem. **13** [1974] 2722/9). – [3] A. B. Burg (Inorg. Chem. **20** [1981] 3731/3). – [4] A. B. Burg (Inorg. Chem. **17** [1978] 2322/4). – [5] D.-K. Kang, K. L. Servis, A. B. Burg (Org. Magn. Resonance **3** [1971] 101/12).

[6] P. Dagnac, R. Turpin, J.-L. Virlichie, D. Voigt (Rev. Chim. Minerale 14 [1977] 370/80). –
[7] J.-L. Virlichie, P. Dagnac (Rev. Chim. Minerale 14 [1977] 355/8). – [8] I. G. Maslennikov,
V. J. Shibaev, A. N. Lavrent'ev, E. G. Sochilin (Zh. Obshch. Khim. 46 [1976] 940/1; J. Gen.
Chem. [USSR] 46 [1976] 943). – [9] R. C. Dobbie, M. J. Hopkinson (J. Fluorine Chem. 3 [1973/74] 367/74). – [10] S. Ansari, J. Grobe (Z. Naturforsch. 30b [1975] 531/4).

[11] J. Grobe, R. Rau (Z. Anorg. Allgem. Chem. **414** [1975] 19/29). – [12] J. Grobe, R. Rau (J. Fluorine Chem. **11** [1978] 265/90). – [13] J. Grobe, W. Mohr (J. Fluorine Chem. **8** [1976] 145/64). – [14] J. Grobe, W. Mohr (J. Fluorine Chem. **8** [1976] 341/52). – [15] A. Breckner, J. Grobe (Z. Anorg. Allgem. Chem. **414** [1975] 269/76).

[16] R. G. Cavell, A. A. Pinkerton, W. Sim, A. J. Tomlinson (Inorg. Chem. **18** [1979] 2901/8). – [17] G. Beysel, J. Grobe, W. Mohr (J. Organometal. Chem. **170** [1979] 319/36). – [18] J. P. Albrand, S. P. Anderson, H. Goldwhite, L. Huff (Inorg. Chem. **14** [1975] 570/3).

5.3 Perfluorohalogenoorgano Compounds of Arsenic

5.3.1 Homocyclic and Heterocyclic Perfluoroorgano Compounds of Arsenic

Tetrakis(trifluoromethyl)cyclotetraarsine (CF₃As)₄

Pentakis(trifluoromethyl)cyclopentaarsine (CF₃As)₅

A mixture of $(CF_3As)_n$ (n = 4, 5) is formed along with CF_3AsH_2 by decomposition of $CF_3AsHAsHCF_3$ in the liquid phase at room temperature, and along with CF_3AsH_2 and $CF_3AsHAsHCF_3$ in the reaction of CF_3AsI_2 with Hg and anhydrous HI (in less than stoichiometric quantity) [1]. A mixture of the cycloarsines reacts with $(CF_3)_3SnH$ at room temperature (19 d) forming $(CH_3)_3SnAsHCF_3$ (95%) and $[(CH_3)_3Sn]_2AsCF_3$ [2].

Tetrakis(pentafluorophenyl)cyclotetraarsine $(C_6F_5As)_4$

The tetraarsine (see Part 3, p. 187) reacts with $Pt(PC_6H_5)_3$ in benzene (reflux, 4 h) to yield the platinum compound $Pt[P(C_6H_5)_3]_2[As(C_6F_5)]_2$ [3]. With $Fe(CO)_5$ (in benzene, 120°C/15 h or UV irridiation at 60°C/4 h), $Fe(CO)_4(AsC_6F_5)_2$ is formed [4].

Dodecafluoro-13,14-diarsatriptycene

The compound is obtained in 13% yield from elemental arsine and 1,2-diiodotetrafluorobenzene when the reactants are heated at 300°C (3 d) in an evacuated bomb. The colorless compound is purified by vacuum sublimation [5]. The triptycene is formed in 70% yield by the reaction of 1,2-dilithiumtetrafluorobenzene and AsCl₃ at -78°C in tetrahydrofuran. Upon completion of the reaction the mixture was allowed to warm to room temperature. The obtained white solid was recrystallized from hexane [7]. Another way to prepare the triptycene is

Arsenic Compounds

the reaction of arsenic powder with dodecafluorotribenzo[b,e,h][1.4.7]-trimercuronin [6]. $(C_6F_4)_3As_2$ melts at 210 to 211°C [5] or 200°C [7]. The ¹⁹F NMR spectrum (AA'XX', negative shifts upfield from the internal standard CFCl₃) shows two signals, at -122.8 [6] (corrected value of [5]) or -122.4 [7] (F^3 , F^6) and at -152.6 [6] or -153.0 ppm [7] (F^4 , F^4). The parent ion in the mass spectrum occurs at m/e = 594. Strong peaks were observed for the ions AsC₁₈F₁₀, C₁₈F₁₂⁺, As(C₆F₄)₂⁺, C₁₂F₈⁺, C₁₂F₆⁺, AsC₆F₄⁺, and AsF₂⁺. Principal IR peaks (nujol mull) were 1296 (m), 1260 (m), 1101 (s), 1026 (s), 830 (m), 771 (m), 730 (m), and 389 (m) cm⁻¹ [6].

Octafluoro-5,10-epoxy-5,10-dihydroarsanthrene

The compound is obtained by heating partially oxidized arsenic powder and 1,2diiodotetrafluorobenzene at 250 °C for 18 h in a sealed evacuated tube, followed by extraction with 60 to 80 ° petroleum ether and fractional crystallization. The colorless compound is soluble in all common organic solvents but is insoluble in water. The mass spectrum shows the parent ion at m/e = 462; further significant ions are $C_{12}F_8^+$, $C_{12}F_6^+$, $AsC_6F_4^+$, AsF_2^+ , AsO^+ . A peak in the IR spectrum at about 950 cm⁻¹ is assigned to the ortho-linked C_6F_4 groups. An X-ray study of single crystals shows that the molecule has a butterfly conformation. The compound forms monoclinic crystals, space group P2₁/2 (standard setting P2₁/c)- C_{2h}^5 (No. 14) with a = 26.660(5), b = 19.220(5), c = 4.990(5) Å, β = 90.3(1) °, Z = 8, D = 2.04 g/cm³. The unit cell contains two types of crystallographically nonequivalent molecules. The average of the eight measured As-C bond lengths is 1.97 ± 0.002 Å, and the average of the four As-O bonds is 1.81 ± 0.01 Å. As-As intramolecular distances are 2.973(3) and 2.979(3) Å. Bond angles involving As are close to 90° [8].

References:

[1] R. C. Dobbie, P. D. Gosling (J. Chem. Soc. Chem. Commun. **1975** 585/6). – [2] S. Ansari, J. Grobe (Z. Naturforsch. **30b** [1975] 531/4). – [3] P. S. Elmes, M. L. Scudder, B. O. West (J. Organometal. Chem. **122** [1976] 281/8). – [4] P. S. Elmes, P. Leverrett, B. O. West (Chem. Commun. **1971** 747/8). – [5] C. M. Woodard, G. Hughes, A. G. Massey (J. Organometal. Chem. **112** [1976] 9/19).

[6] T. K. Mistry, A. G. Massey (J. Organometal. Chem. **209** [1981] 45/7). – [7] W. R. Cullen, A. W. Wu (J. Fluorine Chem. **8** [1976] 183/7). – [8] D. S. Brown, A. G. Massey, T. K. Mistry (J. Fluorine Chem. **16** [1980] 483/7).

5.3.2 Perfluoroalkylarsines

Trifluoromethylarsine CF₃AsH₂

Bis(trifluoromethyl)arsine (CF₃)₂AsH

The synthesis of the two arsines by reaction of CF_3Asl_2 or $(CF_3)_2Asl$, respectively, with Hg and anhydrous HI is described in Part 3, p. 191. It is useful for the preparation of small quantities (1 to 2 mmol). On a larger scale (10 mmol), the arsines are prepared in almost quantitative yield at room temperature in few minutes by the reaction of CF_3Asl_2 or $(CF_3)_2Asl$

with $(CH_3)_3SnH$. The $(CH_3)_3SnI$ also formed in the reaction can be returned to the process after reduction with LiAlH₄. Thus the net reaction is the conversion of the iodine compounds into the hydrogen compounds by LiAlH₄. The direct reaction with LiAlH₄ gives only small yields since LiAlH₄ also attacks the CF₃ groups [1]. CF₃AsH₂ is formed by decomposition of CF₃AsHAsHCF₃ at room temperature, in the reaction of CF₃AsI₂ with Hg and anhydrous HI (in less than stoichiometric quantity) [2], and by decomposition of (CF₃)₂AsAsH₂ above -78 °C [3].

In the following reactions (CF₃)₂AsH is formed:

 $(CF_3)_2AsTeCH_3 + HBr \text{ or HI at } 20^{\circ}C;$ $(CF_3)_2AsSn(CH_3)_3 + CH_3SH \text{ or } CH_3SeH \text{ at } 0^{\circ}C (24 \text{ h});$ $(CF_3)_2AsAs(CF_3)_2 + (CH_3)_3MH (M = Sn, Ge) \text{ at } 20^{\circ}C;$ $(CF_3)_2AsXCF_3 (X = S, Se) + (CH_3)_3GeH \text{ at } 80^{\circ}C;$ $(CF_3)_2AsXCF_3 + (CH_3)_3SnH, \text{ for } X = S \text{ at } -20^{\circ}C, \text{ for } X = Se \text{ at } -10^{\circ}C; \text{ in both cases the formation of } (CF_3)_2AsH \text{ is guantitative } [8].$

In benzene, (CF₃)₂AsMn(CO)₅ reacts with HI at 25°C (600 h) to form (CF₃)₂AsH [9].

Chemical Reactions

 CF_3AsH_2 reacts with $(CF_3As)_n$ (n = 4 and 5) to form $(CF_3AsH)_2$ [2]. The reaction with compounds of the types $[(CH_3)_3M]_3P$ and $(CH_3)_3MPH_2$ (M = Si, Ge, Sn) at room temperature forms $(CH_3)_3MAs(CF_3)_2$, $(CH_3)_3MAsHCF_3$, and $[(CH_3)_3M]_2AsCF_3$, see **Table 56**. Within these reaction systems two trends concerning the reactivity are observed [4]:

a) Si < Ge < Sn and b) $(CH_3)_3MPH_2 < [(CH_3)_3M]_2PH < [(CH_3)_3M]_3P$ CF₃AsH₂ can be used to replace the $(CF_3)_2P$ group in compounds of the type $(CH_3)_3MP(CF_3)_2$ [4]:

 $(CH_3)_3MP(CF_3)_2 + CF_3AsH_2 \rightarrow (CH_3)_3MAsHCF_3 + (CF_3)_2PH$ $(CH_3)_2MP(CF_3)_2 + (CH_3)_3MAsHCF_3 \rightarrow [(CH_3)_3M]_2AsCF_3 + (CF_3)_2PH$

Table 56 Reactions of CF_3AsH_2 with [(CH_3)₃M]₃P and (CH_3)₃MPH₂ [4].

Compound	Molar ratio of phosphine to arsine	Reaction time in weeks	Product	Yield in %
Me ₃ SiPH ₂	2:2.5	6	Me ₃ SiAsHCF ₃	40
0 L			(Me ₃ Si) ₂ AsCF ₃	25
(Me ₃ Si) ₃ P	2:8.5	3	Me ₃ SiAsHCF ₃	50
			(Me ₃ Si) ₂ AsCF ₃	35
Me ₃ GePH ₂	4:7.2	8	Me ₃ GeAsHCF ₃	80
			(Me ₃ Ge) ₂ AsCF ₃	20
Me ₃ SnPH ₂	2:6.0	3	Me ₃ SnAsHCF ₃	70
			(Me ₃ Sn) ₂ AsCF ₃	20
(Me ₃ Sn) ₃ P	2:10.0	3	Me ₃ SnAsHCF ₃	60
			(Me ₃ Sn) ₂ AsCF ₃	30

Similarly, the $CF_{3}P$ group and the $(CH_{3})_{3}Sn$ group can be replaced as follows [4]:

 $(CH_3)_3GePHCF_3 + CF_3AsH_2 \rightarrow (CH_3)_3GeAsHCF_3 + CF_3PH_2$ $[(CH_3)_3Sn]_2AsCF_3 + CF_3AsH_2 \rightarrow 2(CH_3)_3SnAsHCF_3$

The mixture of $(CF_3)_2AsH$ and $(CH_3)_3SnAs(CF_3)_2$ formed from $(CF_3)_4As_2$ and $(CH_3)_3SnH$ at 20 °C (1 h) reacts with excess $(CH_3)_3SnH$ on standing for four weeks at room temperature to yield CF_3AsH_2 , $(CH_3)_3SnAsHCF_3$, $[(CH_3)_3Sn]_2AsCF_3$, $(CH_3)_3SnAs(CF_3)_2$, and CF_3H [5].

(CF₃)₂AsH reacts with Co₂(CO)₈ in pentane at 100°C in two days [6] according:

 $\begin{array}{l} \text{Co}_2(\text{CO})_8 \,+\, (\text{CF}_3)_2\text{AsH} \rightarrow \text{HCo}(\text{CO})_4 \,+\, (\text{CF}_3)_2\text{AsCo}(\text{CO})_4 \\ \text{HCo}(\text{CO})_4 \,+\, (\text{CF}_3)_2\text{AsH} \rightarrow (\text{CF}_3)_2\text{AsCo}(\text{CO})_4 \,+\, \text{H}_2 \end{array}$

The reaction with $MnCo(CO)_9$ starts above 80°C producing $Mn(CO)_5As(CF_3)_2$ and $[Co(CO)_2As(CF_3)_2]_n$. On raising the temperature to 100°C, $MnCo(CO)_7[As(CF_3)_2]_2$ is formed [7].

References:

[1] S. Ansari, J. Grobe (Z. Naturforsch. **30b** [1975] 651/2). – [2] R. C. Dobbie, P. O. Gosling (J. Chem. Soc. Chem. Commun. **1975** 585/6). – [3] A. Breckner, J. Grobe (Z. Anorg. Allgem. Chem. **414** [1975] 269/76). – [4] S. Ansari, J. Grobe (Z. Naturforsch. **30b** [1975] 523/30). – [5] S. Ansari, J. Grobe (Z. Naturforsch. **30b** [1975] 523/30). – [5]

[6] G. Beysel, J. Grobe, W. Mohr (Z. Anorg. Allgem. Chem. 418 [1975] 121/31). - [7]
G. Beysel, J. Grobe, W. Mohr (J. Organometal. Chem. 170 [1979] 319/36). - [8] P. Dehnert,
J. Grobe, D. LeVan (Z. Naturforsch. 36b [1981] 48/54). - [9] J. Grobe, R. Rau (J. Organometal.
Chem. 157 [1978] 281/97).

5.3.3 Perfluoroorganoarsenic Oxygen Compounds

Tris[bis(trifluoromethyl)aminooxy]arsine As[ON(CF₃)₂]₃

 $\label{eq:Bis} \textbf{Bis}[bis(trifluoromethyl)aminooxy]trifluoromethylarsine CF_3As[ON(CF_3)_2]_2$

 $\textbf{Bis(trifluoromethyl)aminooxy-bis(trifluoromethyl)arsine} (CF_3)_2 AsON(CF_3)_2 AsON(CF_3)_3 AsON(CF_3)_3$

As $[ON(CF_3)_2]_3$ was prepared in about 75% yield by the reaction of Hg $[ON(CF_3)_2]_2$ with AsCl₃ in ClCF₂CFCl₂ at room temperature in two days (sealed ampule, occasional shaking). The compound is a colorless crystalline solid, which melts at 29.5°C. The yield of the arsine resulting from the reaction of (CF₃)₂NO with (CF₃)₃As or As or from the interaction of Hg $[ON(CF_3)_2]_2$ with As is usually low [1]. For the other two compounds no new preparation is given (see Part 3, p. 197).

All three compounds remained unchanged on heating for two days at 120°C. They are sensitive to moisture. They react at 100°C (1 d) in a sealed tube with anhydrous HCl, whereby the As-O bond is cleaved [1]:

 $[(CF_3)_2NO]_nAs(CF_3)_{3-n} + nHCl \rightarrow (CF_3)_{3-n}AsCl_n + n(CF_3)_2NOH \qquad (n = 1, 2, 3)$

Hydrolysis of the mono- and disubstituted compounds gives fluoroform. $[(CF_3)_2NO]_3As$ reacts with $(CH_3)_3SiH$ at 80°C (7 d) to form small amounts of $(CF_3)_2NOH$; the reaction with methanol gives $[(CF_3)_2NO]_2AsOCH_3$ and $(CF_3)_2NOH$ [1].

Tetrakis(pentafluoroethyl)arsinous anhydride (C₂F₅)₂AsOAs(C₂F₅)₂

The ¹⁹F NMR of the compound (see Part 3, p. 197) shows two signals, $\delta(CF_3) = -4.83$ ppm and $\delta(CF_2) = -40.30$ ppm, highfield from CF₃COOH as external standard [2].

Gmelin Handbook CF Comp. Suppl. 1

166 Compounds of Main Group 5 Elements

$\textbf{Bis[bis(trifluoromethyl)aminooxy]-tris(pentafluorophenyl)arsine} \ [(CF_3)_2NO]_2As(C_6F_5)_3$

The compound is formed by the reaction of $(CF_3)_2NO$ and $(C_6F_5)_3As$ in a sealed ampule containing Cl_2CFCF_2Cl as solvent at room temperature within seven days. The arsenic derivative, when freshly prepared, is a nonvolatile, colorless, highly viscous liquid, which is stable in air. Upon standing in air over a period of half an hour it slowly converts to a white paste. The IR spectrum shows strong absorptions at 1640, 1515, 1380, 1285, 1085, and 966 cm⁻¹, which are characteristic of the C_6F_5 groups, further bands at 1310, 1255, and 1205 cm⁻¹ (C-F stretching vibrations of the CF_3 groups) and at 1030 and 980 cm⁻¹ (N-O and C-N stretching, respectively) [2].

References:

[1] H. G. Ang, Y. C. Syn (J. Fluorine Chem. **8** [1976] 481/96). – [2] H. G. Ang, W. S. Lien (J. Fluorine Chem. **9** [1979] 73/80). – [3] Yu. L. Kopaevich, Z. A. Stumbrevichute, L. A. Fedorov, L. S. German (Zh. Obshch. Khim. **43** [1973] 1140/7; J. Gen. Chem. [USSR] **43** [1973] 1132/7).

5.3.4 Perfluoroalkylarsenic Nitrogen Compounds

Bis(trifluoromethyl)aminobis(trifluoromethyl)arsine (CF₃)₂AsN(CF₃)₂

$\textbf{Bis[bis(trifluoromethyl)amino]trifluoromethylarsine CF_{3}As[N(CF_{3})_{2}]_{2}}$

The reaction of $(CF_3)_2NON(CF_3)_2$ with $(CF_3)_3As$ in 1:1 molar ratio in a sealed evacuated ampule gives on heating at 98°C (60 h, then trapped at -89°C) $(CF_3)_2AsN(CF_3)_2$ in a yield of 82.5%, based on $(CF_3)_2NON(CF_3)_2$ consumed. Similarly, in a molar ratio of 2:1, the reaction at 70°C (42 h, then trapped at -60°C) yields $CF_3As[N(CF_3)_2]_2$ (89.5%). On heating $CF_3As[N(CF_3)_2]$ with $(CF_3)_2NON(CF_3)_2$ at 100°C for 72 h only $(CF_3)_2NOCF_3$, and no $[(CF_3)_2N]_3As$ is formed. It is also a by-product in the other two reactions.

Reference:

H. G. Ang, W. S. Lien (J. Fluorine Chem. 11 [1978] 419/32).

5.3.5 Perfluorohalogenoorganohalogenoarsines

5.3.5.1 Preparation and Physical Properties

Trifluoromethyldihalogenoarsines CF_3AsX_2 (X = F, Cl, Br, I)

Bis(trifluoromethyl)halogenoarsines $(CF_3)_2AsX (X = F, Cl, Br, I)$

Trifluoromethyliodoarsine CF3AsHI

 CF_3AsF_2 is obtained by the reaction of CF_3AsI_2 with AgF [1]. CF_3AsHI is formed from $CF_3AsHAsHCF_3$ and HI [2]. New methods of preparation for some of the other compounds (see Part 3, p. 203) are given in the following. The reaction of $CF_3As[ON(CF_3)_2]_2$ or $(CF_3)_2AsON(CF_3)_2$ with hydrogen chloride at 100°C (1 d, then trapped at -60°C) gives CF_3AsCI_2 and $(CF_3)_2AsCI_1$, respectively [3]. CF_3AsBr_2 is obtained from CF_3AsI_2 and $HgBr_2$ [1], $(CF_3)_2AsBr$ from $(CF_3)_2AsI_3$ and $HgBr_2$ [4].

Molecules and Vibrational Spectra

$\mathbf{CF}_{3}\mathbf{AsX}_{2}$ (X = F, Cl, Br, I)

Assuming a symmetrically staggered conformation with respect to the AsX_2 groups, the molecules belong to the C_s point group. The 15 fundamental modes comprise nine vibrations of the species A' and six vibrations of the species A". The fundamental modes obtained from the analysis of the IR spectra of the gases (and partially of the liquids) and of the Raman spectra of the liquids are given in **Table 57**. A normal coordinate analysis was performed to support the assignment and to limit the force constants (see **Table 58**). An extensive discussion of the assignment and of the potential energy distribution is given in the original paper [1].

Table 57

Fundamental Vibrations of the Molecules CF_3AsX_2 from the Analysis of the Vibrational Spectra and Approximate Assignment to Vibrations [1].

*) Values from liquid-phase spectra. v, δ , ϱ , τ : valence, deformation, rocking, torsion vibration; s, as: symmetric, antisymmetric.

ν _i in cm ^{−1}	ν ₁	v ₂	ν ₃	ν_4		ν ₅	ν ₆	ν ₇
X = F	1207	1146	532	737		246 * ⁾	343	714
X = Cl	1197	1135	534	734		254 * ⁾	316	417 * ⁾
X = Br	1185	1126	528	733		238 * ⁾	312	295* ⁾
X = 1	1174	1117	530* ⁾	729	*)	270 * ⁾	302 * ⁾	207 * ⁾
species	A′	A′	A′	Α′		A′	A′	A′
assignment	$v_{as}(CF_3)$	$v_{s}(CF_{3})$	δ _{as} (Cl	= ₃) δ _s (C	°F ₃)	ϱ(CF ₃)	v(AsC)	ν(AsX)
v_i in cm ⁻¹	ν ₈	ν ₉	ν ₁₀	ν ₁₁	ν ₁₂	ν ₁₃	ν ₁₄	v ₁₅
X = F	286 * ⁾			523	273* ⁾	698	175* ⁾	
X = Cl	167 * ⁾	136 * ⁾	1145	527		412	117 * ⁾	
X = Br	99 * ⁾	124 * ⁾	1141	526 * ⁾	243	305	_	_
X = I	76 * ⁾	107 * ⁾	1139	526* ⁾	279* ⁾	213 * ⁾	_	_
species	A′	A′	Α″	Α″	Α″	Α″	Α″	Α″
assignment	δ(XAsX)	δ (CAsX)	$v_{as}(CF_3)$	$\delta_{as}(CF_3)$	ϱ(CF ₃)) v(AsX)	δ(CAsX)	τ

Table 58 Internal Force Constants of CF_3AsX_2 (X = F, Cl, Br, I). Values in 10² N/m. ^a) Normalized to r_{AsX}^2 . ^{b)} Normalized to $r_{AsX} \cdot r_{AsC}$.

	f _{CF}	f _{CF/CF} ′	f _{CAs}	f _{AsX}	f _{AsX/AsX′}	f ^{a)} XAsX	f ^{b)} CAsX
CF ₃ AsF ₂	6.03	0.88	2.42	4.47	0.23	0.33	0.32
CF ₃ AsCl ₂	5.88	0.88	2.20	2.40	0.16	0.23	0.24
CF ₃ AsBr ₂	5.79	0.84	2.13	1.77	0.09	0.19	0.23
CF ₃ Asl ₂	5.71	0.83	1.97	1.45	0.07	0.15	0.22

Gmelin Handbook CF Comp. Suppl. 1

References p. 173
$(CF_3)_2AsX (X = F, Cl, Br, I)$

The molecules belong to the C_s point group on the assumption of a symmetric orientation of the CF₃ groups. The fundamental modes of vibration comprise 13 vibration of the species A' and 11 of the species A", see **Table 59**. The vibrational spectra are given in **Table 60**. A normal coordinate analysis was performed to support the assignment and to limit the force constants, see Table 61. For details see the original paper [4].

Table 59

Fundamental Vibrations of v_i (i = 1 to 24) (CF₃)₂AsX (X = F, Cl, Br, I) [4].

 $\nu,\,\delta,\,\varrho,\,\tau$ mean valence, deformation, rocking and torsion vibration, A' and A'' are symmetry classes.

A′	Α″	Assignment	A′	Α″	Assignment	
ν ₁ , ν ₂	ν ₁₄ , ν ₁₅	$v_{as}(CF_3)$	v ₉	v ₂₂	v(AsC ₂)	
v_3	v ₁₆	v _s (CF ₃)	v_{10}		$\delta(AsC_2)$	
v_4	v ₁₇	$\delta_{s}(CF_{3})$	v_{11}		v(AsX)	
v ₅ , v ₆	v ₁₈ , v ₁₉	$\delta_{as}(CF_3)$	v_{12}	v ₂₃	δ(CAsX)	
v_7, v_8	v_{20}, v_{21}	ջ(CF ₃)	v_{13}	v ₂₄	τ	

Table 60

IR Spectra (Gas Phase) and Raman Spectra (Liquid Phase) of $(CF_3)_2ASX$ (X = F, Cl, Br, I). For overtone and combination bands see the original paper [4].

(CF ₃) ₂ AsF		$(CF_3)_{2}$	AsCl	Assianment
IR	Raman	IR	Raman	0
293	290 w(p)		103 w(dp?)	V ₁₂
216 w	219 w(dp)		120 vw	V ₂₃
	149 w	232 w	230 m	V ₁₀
253 w	250 vs(p)	248 w	249 vs(p)	v_7, v_{20}
325 s	321 m(dp)	337 s	334 m(dp)	V22
347 s	343 m(p)	348 s	347 m(p)	Vg
693 s	679 m(p)	428 m	424 vw	v ₁₁
535 w	535 w(dp?)	523 w	528 vw	V5, V18
		530 m		3. 10
736 s	734 s(p)	737 s	736 s(p)	V_{4}, V_{17}
1 137 vs	1120 vw	1110 vs	1 100 vw(dp)	V ₁₆
1 158 vs		1152 vs		V ₃
1 186 vs	1 195 vw	1179 vs	1 162 vw	V14
1233 vs		1219 vs	1210 vw	v_1
(CF ₃)	⊳AsBr		3)2Asl	Assignment
R	Raman	IR	Raman	Ū
	94 w(dp?)	·····	86 m(p)	V ₁₂
	124 w(p)		118 vw(dp?)	V23
225 w	222 w	256 w	254 w(p)	V ₁₀
243 w	243 vs(p)	243 w	242 w	v_7, v_{20}
		- <i>i</i>	170	

References p. 173

Gmelin Handbook CF Comp. Suppl. 1

168

(CF ₃) ₂ AsBr		(CF	₃) ₂ Asl	Assignment
IR	Raman	IR	Raman	-
260 m	260 m(dp)	305 m	301 m	
312 ms	312 m(dp)	311 s	310 w(dp?)	V ₂₂
333 s	333 m(p)	332 s	330 w(p)	v ₉
325 s	324 m(p)	216 w	215 vs(p)	v ₁₁
521 w	522 vw	523 vw	530 vw(dp?)	ν ₅ , ν ₁₈
533 m	533 vw	534 w		
734 s	732 s(p)	734 s	730 s(p)	v ₄ , v ₁₇
1104 vs	1095 vw	1104 vs	1094 vw(dp)	V ₁₆
1137 vs	1139 vw	1135 vs	1136 vw	v ₃
1160 vs		1159 vs		V ₁₄
1203 vs	1 195 vw	1197 vs		v ₁

Table 60 (continued)

Table 61

Internal Force Constants of $(CF_3)_2AsX$ (X = F, Cl, Br, I). Values in 10^2 N/m^2 . ^{a)} Normalized to $r_{AsX} \cdot r_{AsC}$ [4].

Molecule	f(CF)	f(CF/CF')	f(CAs)	f(CAs/CAs')	f(AsX)	f(CAsX) ^{a)}
(CF ₃) ₂ AsF	6.22	0.86	2.34	0.46	4.27	0.29
(CF ₃) ₂ AsCl	6.11	0.80	2.32	0.43	2.45	0.16
(CF ₃) ₂ AsBr	5.95	0.80	2.25	0.45	1.85	0.15
(CF ₃) ₂ Asl	5.90	0.79	2.23	0.43	1.65	0.14
Molecule	$f(\delta_s(CF_3))$	$f(\delta_{as}(CF_3))$	f(ϱ(CF ₃))			
(CF ₃) ₂ AsF	1.70	1.54	0.80			
(CF ₃) ₂ AsCl	1.69	1.53	0.77			
(CF ₃) ₂ AsBr	1.70	1.55	0.77			
(CF ₃) ₂ Asl	1.72	1.56	0.77			

Bis(pentafluoroethyl)halogenoarsines (C_2F_5)₂AsX (X = F, Cl, Br, I)

$\label{eq:perturbative} \textbf{Pentafluoroethyltrifluoromethyliodoarsine} \ \ C_2F_5(CF_3)Asl$

For the last compound no preparation is given. For photolysis of the iodide see p. 172. The preparation of the other compounds, $(C_2F_5)_2ASX$, is described in Part 3, p. 204.

The ⁷⁵As, ⁷⁹Br, and ⁸¹Br nuclear quadrupole resonance spectra of $(C_2F_5)_2AsF$ and of $(C_2F_5)_2AsBr$ at 77 K showed following frequencies [5]:

	(C ₂ F ₅) ₂ AsF	(C ₂ F ₅) ₂ AsBr	
Nucleus ⁷⁵ As	148.77 MHz	170.06 MHz	
Nucleus ⁸¹ Br		200.12 MHz	
Nucleus ⁷⁹ Br		239.55 MHz	
Gmelin Handbook CF Comp. Suppl. 1		References p. 173	

Compounds of Main Group 5 Elements

The ⁷⁵As frequencies are substantially higher than those for symmetrically substituted As compounds as $(C_2F_5)_3As$ (see p. 174). This shows a remarkable distortion of the trigonal pyramid around the trivalent As atom. Also, the ⁸¹Br signal is at higher frequencies than that of AsBr₃. Evidently, a rearrangement of the electron system of the molecule during the unsymmetric substitution leads to an increase in the covalent nature of the As-Br bond [5].

The chemical shifts δ (in ppm) in the ¹⁹F NMR spectra (negative shifts mean highfield from the external standard CF₃COOH) are given in the following [6]:

(C ₂ F ₅) ₂ AsF		(C ₂ F ₅) ₂ AsCl	$(C_2F_5)_2AsBr$	(C ₂ F ₅) ₂ Asl
δ(CF3) $ δ(CF2) $ $ δ(AsF)$	5.58 42.47 150.47	-4.16 -36.32	-3.47 -32.0, -34.5	-2.76 -24.7, -31.2

The chemical shifts and the multiplicities of the CF₂ signals depend considerably on X. When X = Br or I the spectrum consists of an AB quartet with the parameters $\Delta \delta_{AB} = 6.5$ ppm for X = I and 2.5 ppm for X = Br. The spin-spin coupling constant J(F-F) is found to be 283 Hz (I) and 287 Hz (Br). In the other compounds there are only weak signs of a fine structure of

the CF₂ signals. In the bromine and iodine compounds, the F nuclei of the CF₂ groups are diastereotopic. The cause of this lies in the different configurational environment of the F_a and F_b nuclei on averaging over the three rotational isomers A, B, and C under condition of rapid rotation around the As-C bond (structure I) [6].

Bis(1-chlorotetrafluoroethyl)halogenoarsines $(CF_3CFCl)_2AsX$, X = F, Cl, Br, I

 $(CF_3CFCl)_2AsCl$ is formed in 14% yield as a by-product when $(CF_3CFCl)_2AsF$ (58% yield) is prepared by reaction of AsF₃ with F₂C=CFCl in presence of SbF₅ at 20°C (6 h) [7], see also Part 3, p. 204. The compounds $(CF_3CFCl)_2AsX$ are formed by nucleophilic replacement reactions of the fluoride according to [6]:

$$(CF_3CFCl)_2AsF \xrightarrow{X^-} (CF_3CFCl)_2AsX$$

References p. 173

Gmelin Handbook CF Comp. Suppl. 1

170

Physical properties:

 $\begin{array}{l} (CF_3CFCl)_2AsF: Boiling point 117\,^{\circ}C. \ Mass spectrum: m/e = 344, 366, 368, M^+ \ (0.25); 229, 231, \\ CF_3CFClAsF^+; 135, 137, C_2F_4Cl^+; 116, 118, C_2F_3Cl^+ \ (100) \ [7]. \\ (CF_3CFCl)_2AsCl: Boiling point 142\,^{\circ}C. \ Mass spectrum: m/e = 380, 382, 384, 386, M^+ \ (0.15); \\ 245, 247, 249, \ CF_3CFClAsCl^+; \ 135, \ 137, \ C_2F_4Cl^+ \ (31.3); \ 129, \ 131, \ AsFCl^+ \ (100); \ 116, \ 118, \\ C_2F_3Cl^+ \ (67.8) \ [7]. \end{array}$

The compounds $(CF_3CFCl)_2AsX$ have two chiral and one prochiral centers. As a result, they may exist as three diastereoisomeric forms, the symmetric forms A and B and the unsymmetrical form C, see below [6].

In the isomers A and B both CFCl groups, as well as both CF₃ groups are enantiotopic. In form C, both CFCl and both CF₃ groups are diastereotopic. This is shown by the investigation of ¹⁹F NMR spectra. The resulting four signals of the CFCl groups as well as the CF₃ signal for the three compounds with X = F, Cl, I are given below (δ in ppm, external standard CF₃COOH) [6]:

Х	δ(CF ₃)	δ(CF0	CI)	
		forms A and B	form C	
F*)	0.3	-58.83, -63.6	-60.7, -62.3	
Cl	1.6	-52.55, -56.3	-54.2, -55.2	
I	3.0	-44.0, -49.0	-45.4, -46.9	
*) δ(As	sF) = 108.78			

Bis(heptafluoropropyl)iodoarsine (C₃F₇)₂Asl

Heptafluoropropyltrifluoromethyliodoarsine (C3F7)(CF3)Asl

No preparation is given in the literature. For chemical reactions see p. 172.

Tris(pentafluorophenyl)dichloroarsorane (C₆F₅)₃AsCl₂

Tris(pentafluorophenyl)chloronitratoarsorane (C₆F₅)₃AsCl(NO₃)

Tris(pentafluorophenyl)chloroperchloratoarsorane (C₆F₅)₃AsCl(ClO₄)

Dropwise addition of a solution of Cl_2 in CCl_4 to a solution of $(C_6F_5)_3As$ in chloroform and stirring for 5 h at room temperature produces $(C_6F_5)_3AsCl_2$ (yield 92%). The compound can also be obtained, in 80% yield, by adding diethyl ether to a mixture of $(C_6F_5)_3As$ and TlCl₃ and stirring at room temperature for 12 h under nitrogen. The nitrato and perchlorato compounds are formed by addition of the corresponding silver salts (AgNO₃ or AgClO₄ in benzene) to $(C_6F_5)_3AsCl_2$ in benzene. The yield is about 50 to 60% [8]. Physical Properties [8].

 $(C_6F_5)_3AsCl_2$: Melting point 190°C. Conductivity (in $\Omega^{-1} \cdot cm^2 \cdot mol^{-1}$, $5 \times 10^4 M$ acetone solutions) $\Lambda = 1.64$.

 $(C_6F_5)_3AsCl (NO_3)$: melting point 205°C; $\Lambda = 5.12$; IR: v(As-Cl) = 300 (s), $v_{as}(NO_2) = 1450$ to 1500 (vs), $v_s(NO_2) = 1260$ (s), $\delta(NO_3) = 800$ cm⁻¹ (s).

 $(C_6F_5)_3$ AsCl (ClO₄): melting point 225°C; $\Lambda = 160.08$; IR: v (As-Cl) = 300 (s), ClO₄ vibrations $v_1 = 1150$ (vs), $v_3 = 625$ (m), $v_5 = 635$ cm⁻¹ (m).

5.3.5.2 Chemical Reactions

 $(CF_3)_2AsF_2$ reacts in benzene with $(CH_3)_3SiNR_2$ ($R = CH_3$, C_2H_5 , $n-C_3H_7$) at 80°C (30 h, sealed ampule) forming $(CF_3)_2AsNR_2$ and $(CH_3)_3SIF$ [9]. The reaction of $(CF_3)_2AsCl_2$ with $Re_2(CO)_{10}$ at 130°C (18 h) or at 185°C (10 h) yields $Re_2(CO)_8[As(CF_3)_2]_2$, $Re_2(CO)_8As(CF_3)_2Cl_3$ and an unidentified polynuclear complex [10]. Heating of $(CF_3CFCl)_2AsF$ with a 50% solution of $(C_2H_5)_3N$ in methanol gives only CF_3CFClH in quantitative yield [7].

Reactions of Perfluoroalkyliodoarsines

The photolysis of the iodides $(CF_3)_2Asl$, $C_2F_5(CF_3)Asl$, $C_3F_7(CF_3)Asl$, $(C_2F_5)_2Asl$, and $(C_3F_7)_2Asl$ was investigated in view of the iodine photodissociation laser. The absorption band near 290 nm (for all compounds) is responsible for the laser action of the iodine atoms according to the transition $5^2P_{1/2}$ - $5^2P_{3/2}$. Above a certain pumping energy the compounds decompose thermally, for details see [11, 12]. Kinetic investigations of the quenching of the excited I atoms ($5^2P_{1/2}$) according

gave $k_2 = 1.7 \times 10^{-13} \text{ cm}^3 \cdot \text{molecule} \cdot \text{s}^{-1}$ and $k_1 \ll k_2$ [13]. The recombination of $I({}^2P_{3/2})$ atoms in presence of $(CF_3)_2$ Asl has been investigated by [14].

The iodides CF_3Asl_2 and $(CF_3)_2Asl$ are excellent starting compounds for the synthesis of CF_3AsH_2 and $(CF_3)_2AsH$, respectively. The reaction, especially with $(CH_3)_3SnH$ [15] is described on p. 163. The reaction of CF_3Asl_2 with Hg and HI gives $CF_3AsHAsHCF_3$ (p. 176), CF_3AsH_2 (p. 163) and $(CF_3As)_n$, n = 4, 5 (p. 162). $(CF_3)_2Asl$ reacts with $(CH_3)_3SnAsH_2$ at -78 °C in toluene forming $(CF_3)_2AsAsH_2$ [16] (p. 176) and with F_3SiPH_2 at room temperature in 5d forming $(CF_3)_2AsPH_2$ (p. 177) and SiF_3 [17].

The reaction of $(CF_3)_2Asl$ with $CoMn(CO)_9$ proceeds at 0 °C (24 h, sealed ampule, with or without pentane as solvent) according to [18]:

$$CoMn(CO)_9 + (CF_3)_2Asl \rightarrow Mn(CO)_5l + (CF_3)_2AsCo(CO)_4$$

The latter compound decomposes according [18]:

$$n(CF_3)_2AsCo(CO)_4 \rightarrow [Co(CO)_3As(CF_3)_2]_n + nCO$$

On raising the temperature to 110° C Mn₂(CO)₈As(CF₃)₂, (CF₃)₂AsI, and As₂(CF₃)₄ are formed. Heating for several days at 100°C produces the heteronuclear compound MnCo(CO)₇[As(CF₃)₂]₂ [19]. Heating of (CF₃)₂AsI with Re₂(CO)₁₀ at 120°C to 170°C for 27 to 57 h in a sealed ampule results in the formation of a mixture of Re₂(CO)₈As(CF₃)₂], Re₂(CO)₈[As(CF₃)₂]₂, Re(CO)₅I and an unidentified polynuclear complex [10].

References p. 173

Reactions of (C₆F₅)₃AsCl₂

Refluxing (5 h) a solution of $(C_6F_5)_3AsCl_2$ and CH_3COOAg in acetone containing a few drops of anhydrous acetic acid gives $(C_6F_5)_3AsClOCOCH_3$. Stirring of $(C_6F_5)_3AsCl_2$ in methanol or in ethanol at room temperature for 12 h results in the formation of $(C_6F_6)_3AsClOR$ (R = CH₃, C_2H_5). With phenol, using acetone as solvent, $(C_6F_5)_3AsClOC_6H_5$ is obtained. The physical properties of the compounds are given in **Table 62** [8].

Table 62 Physical Properties of the Products of Reactions of $(C_6F_5)_3AsCl_2$ [8].

Compound	Melting point in °C	$\begin{array}{l} \text{Conductivity}^{a)} \\ \text{in } \Omega^{-1} \cdot \text{cm}^{2} \cdot \\ \text{mol}^{-1} \end{array}$	IR in cm ⁻¹
(C ₆ F ₆) ₃ AsClOCOCH ₃	210	5.74	$v(\text{As-Cl}) = 300, v_{as}(\text{OCO}) = 2635 \text{ (s)}, v_{s}(\text{OCO}) = 1290 \text{ (s)}$
$(C_6F_5)_3AsClOCH_3$ $(C_6H_5)_3AsClOC_2H_5$ $(C_6F_5)_3AsClOC_6H_5$	215 210 220	2.81 2.52 0.54	v(As-Cl) = 300, v(C-H) = 2920 (m) v(As-Cl) = 300

^{a)} Measured in 5×10^{-4} M solution, solvent acetone.

 $(C_6F_5)_3AsCl_2$ oxidizes $ClAuP(C_6H_5)_3$ to $Cl_3AuP(C_6H_5)_3$ and is reduced to $(C_6F_5)_3As$. On heating $(C_6F_5)_3AsCl_2$ with a suspension of an excess of LiBr or Nal in acetone the following reaction takes place [8]:

 $(C_6F_5)_3AsCl_2 + 2X^- \rightarrow (C_6F_5)_3As + 2Cl^- + X_2$ (X = Br, I)

References:

[1] H. Bürger, R. Eujen, R. Demuth (Spectrochim. Acta A **31** [1975] 1955/63). – [2] R. C. Dobbie, P. D. Gosling (J. Chem. Soc. Chem. Commun. **1975** 585/6). – [3] H. G. Ang, Y. C. Syn (J. Fluorine Chem. **8** [1976] 481/6). – [4] R. Demuth (Z. Anorg. Allgem. Chem. **418** [1975] 149/57). – [5] E. V. Bryukhova, Yu. L. Kopaevich (Izv. Akad. Nauk SSSR Ser. Khim. **1973** 1891/2; Bull. Acad. Sci. USSR Div. Chem. Sci. **1973** 1839/40).

[6] Yu. L. Kopaevich, Z. A. Stumbrevichute, L. A. Fedorov, L. S. German (Zh. Obshch. Khim. 43 [1973] 1140/7; J. Gen. Chem. [USSR] 43 [1973] 1132/7). – [7] Yu. L. Kopaevich, G. G. Belen'kii, L. S. German (Izv. Akad. Nauk SSSR Ser. Khim. 1973 646/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1973 619/20). – [8] A. Otero, P. Royo (J. Organometal. Chem. 149 [1978] 315/20). – [9] F. Kober (Chemiker-Ztg. 100 [1976] 197). – [10] J. Grobe, W. Mohr (J. Fluorine Chem. 8 [1976] 145/64).

[11] T. L. Andreeva, G. N. Birich, V. N. Sorokin, I. I. Struck (Kvantovaja Elektron. [Kiev] No. 3 [1976] 1442/56). – [12] G. N. Birich, G. J. Drodz, V. N. Sorokin, J. J. Struck (Pis'ma Zh. Eksperim. Teor. Fiz. **19** [1974] 44/7; C.A. **80** [1974] No. 102117). – [13] T. D. Padrick, R. Palmer (Electron. Transition Lasers Proc. 2nd Summer Colloq., Woods Hole, Mass., 1975 [1976], pp. 116/8; C.A. **87** [1977] No. 76306). – [14] V. E. Khomenko, G. A. Skorobogatov, B. P. Dymov (Zh. Obshch. Khim. **47** [1977] 2646/9; J. Gen. Chem. [USSR] **47** [1977] 2417/20). – [15] S. Ansari, J. Grobe (Z. Naturforsch. **30b** [1975] 651/2).

Compounds of Main Group 5 Elements

[16] A. Breckner, J. Grobe (Z. Anorg. Allgem. Chem. **414** [1975] 269/76). — [17] G. Fritz, H. Schäfer (Z. Anorg. Allgem. Chem. **407** [1974] 287/94). — [18] G. Beysel, J. Grobe, W. Mohr (Z. Anorg. Allgem. Chem. **418** [1975] 121/31). — [19] G. Beysel, J. Grobe, W. Mohr (J. Organometal. Chem. **170** [1979] 319/36).

5.3.6 Tris(perfluorohalogenoorgano)arsines

Tris(trifluoromethyl)arsine (CF3)3As

Tris(pentafluoroethyl)arsine (C₂F₅)₃As

Tris(pentafluorophenyl)arsine (C₆F₅)₃As

The compounds have been already described in Part 3, p. 213.

The vibrational spectra of gaseous, liquid and solid $(CF_3)_3As$ were recorded and assigned to the molecular vibrations [1]. The result is in fair agreement with the investigation reported in Part 3, p. 214. The arsine reacts with $(CH_3)_3SnH$ at room temperature forming $(CH_3)_3SnAs(CF_3)_2$ and CF_3H . No reactions occur with $(CH_3)_3SiH$ and $(CH_3)_3GeH$. The reason is the H-M bond strength which increases with decreasing H-M distance (M = Sn, Ge, Si) [2]. Unlike $(CH_3)_3As$, $(CF_3)_3As$ forms no addition compounds with B_2H_6 [3].

The ¹⁹F NMR spectrum of $(C_2F_5)_3$ As shows the chemical shifts $\delta = -5.85$ (CF₃) and -27.46 ppm (CF₂) with reference to the external standard CF₃COOH. The haloform decomposition reaction (with a 50% solution of $(C_2H_5)_3$ N in CH₃OH) leads to CF₃CF₂H [4]. The ⁷⁵As signal in the NQR spectrum is found to be at 108.92 MHz [5].

 $(C_6F_5)_3As$ reacts with AgClO₄ in benzene producing $(C_6F_5)_3AsAgOClO_3$ (p. 177) and Ag⁺[As $(C_6F_5)_3]_2ClO_4^-$ (p. 177). The reduction of ethanol solutions of NiCl₂ with a stoichiometric amount of NaBH₄ in the presence of the arsine gives metallic nickel, indicating that the arsine is unable to stabilize nickel(I) under these conditions [6]. For the reaction of $(CF_3)_3As$ with $(CF_3)_2NON(CF_3)_2$ see p. 166.

Bis(pentafluoroethyl) (1-chlorotetrafluoroethyl)arsine (C2F5)2AsCFClCF3

Bis(pentafluoroethyl) (2-chlorotetrafluoroethyl)arsine (C2F5)2AsCF2CF2Cl

A mixture of the isomers $(C_2F_5)_2AsCFClCF_3$ (70%) and $(C_2F_5)_2AsCF_2CF_2Cl$ (30%) is obtained in an overall yield of 63% by reacting $(C_2F_5)AsF$ with F_2C =CFCl in presence of SbF₅ for 6 h at 20°C in a steel ampule, followed by fractional distillation. The mixture boils at 115 to 116°C. The mass spectrum shows peaks at m/e = 448/450, M⁺ (13); 329/331, M⁺ - C_2F_5 (13.0); 135, 137, $C_2F_4Cl^+$ (100); 119, $C_2F_5^+$ (50) [7]. The ¹⁹F NMR spectrum (negative shifts upfield from external standard CF₃COOH) shows the shifts $\delta = -5.31$ (CF₃) and -27.10 (CF₂) for the C_2F_5 groups and $\delta = -1.10$ (CF₃) and -46.35 (CF₂) for the first and -21.06 (CF₂) and 9.56 (CF₂Cl) for the second compound [4]. The treatment of the mixture with a 50% solution of (C_2H_5)₃N in CH₃OH gave CF₃CF₂H, CF₃CFClH, and F₂C=CF₂ in quantitative yields [7].

Tris(3,3,3-trifLuoro-1-propynyL)arsine (CF₃C≡C)₃As

The preparation of the compound by the reaction of $CF_3C=CLi$ and $AsCl_3$ as already described on the basis of a private communication, see Part 3, p. 214, has now been published [8]. The mass spectrum and the fragmentation scheme are also given in [8].

174

Arsenic Compounds

References:

[1] J. W. Thompson, J. D. Witt, J. R. Durig (Inorg. Chem. **12** [1973] 2124/8). – [2] S. Ansari, J. Grobe (Z. Naturforsch. **30b** [1975] 531/4). – [3] J. Apel, J. Grobe (Z. Anorg. Allgem. Chem. **453** [1979] 28/38). – [4] Yu. L. Kopaevich, Z. A. Stumbrevichute, L. A. Fedorov, L. S. German (Zh. Obshch. Khim. **43** [1973] 1140/7; J. Gen. Chem. [USSR] **43** [1973] 1132/7). – [5] E. V. Bryukhova, Yu. L. Kopaevich (Izv. Akad. Nauk SSSR Ser. Khim. **1973** 1891/2; Bull. Acad. Sci. USSR Div. Chem. Sci. **1973** 1839/40).

[6] A. Otero, P. Royo (J. Organometal. Chem. **149** [1978] 315/20). — [7] Yu. L. Kopaevich, G. G. Belen'kii, L. S. German (Izv. Akad. Nauk SSSR Ser. Khim. **1973** 646/8; Bull. Acad. Sci. USSR Div. Chem. Sci. **1973** 619/20). — [8] D. H. Lemmon, J. A. Jackson (J. Fluorine Chem. **8** [1976] 23/42).

5.3.7 Perfluoroorganodiarsines, Bis(trifluoromethyl)phosphinoarsine, (C₆F₅)₃As-Ag Complexes

Tetrakis(trifluoromethyl)diarsine $(CF_3)_2AsAs(CF_3)_2$

For preparation and properties see Part 3, p. 222. — The IR spectra of the gaseous and solid compound between 1400 and 33 cm⁻¹ and the Raman spectra of the liquid and the solid arsine have been recorded and analyzed [1]. A comparison of the IR and Raman bands shows that the mutual exclusion principle is operative, and it is concluded that $(CF_3)_4As_2$ exists in only the *trans*-structure(C_{2h}) in all three physical states. The molecule has 48 fundamental vibrations; 36 of these are motions due to the CF₃ groups. The remaining 12 skeletal vibrations are represented under C_{2h} symmetry by $4A_g + 3A_u + 2B_g + 3B_u$ and are assigned as follows from the Raman (Ra) and IR spectra of the solid, see **Table 63** [1]. The twelve CF₃ stretching modes give rise to extremely intensive IR absorption and rather weak Raman scattering between 1075 and 1175 cm⁻¹. The in-phase (A_g) component of the CF₃ symmetric deformation is a strong polarized Raman band at 733 cm⁻¹, the out-of-phase component (A_u or B_u) appears as an intense IR band at 733 cm⁻¹. The antisymmetric deformations are located at 533 (Ra), 536, 527 (IR), the rocking vibrations at 258, 226 (Ra), 277, 257, 246, and 227 (IR) cm⁻¹ [1].

Sym- metry	Approximate description	v (in cm ⁻¹)	Sym- metry	Approximate description	v (in cm ⁻¹)
A _a	AsC ₂ stretching	337 (Ra)	Ba	AsC ₂ stretching	324 (Ra)
y	AsAs stretching 203 (Ra)		5	AsC ₂ twisting	99 (Ra)
	AsC ₂ wagging	124 (Ra)	В,,	AsC ₂ stretching	335 (IR)
	AsC ₂ deformation	99 (Ra)	-	AsC ₂ wagging	_
A _u	AsC ₂ stretching	313 (IR)		AsC ₂ deformation	86 (IR)
· ·u	AsC ₂ twisting	105 (IR)		-	
	torsion				

Table 63 Skeletal Vibrations of (CF₃)₂AsAs(CF₃)₂ [1].

 $(CF_3)_4As_2$ reacts with metal carbonyls and with compounds of the type HMR₃ (M = element of the main group 4, R = alkyl group). **Table 64**, p. 176, gives a survey of these reactions.

Compounds of Main Group 5 Elements

Starting compound	Conditions	Product	Ref.
HGe(CH ₃) ₃	20°C (98d)	Ge(CH ₃) ₃ As(CF ₃) ₃ , (CF ₃) ₂ AsH	[2]
HSn(CH ₃) ₃	20°C (1 h)	Sn(CH ₃) ₃ As(CF ₃), (CF ₃) ₂ AsH	[2]
HMn(CO) ₅	20°C (10 min)	Mn(CO) ₅ As(CF ₃) ₂	[3, 4]
HRe(CO) ₅	20°C	$Re(CO)_5As(CF_3)_2$	[4]
CoMn(CO) ₉	0°C (4 d)	$Mn(CO)_5As(CF_3)_2$,	[5]
		$[Co(CO)_3As(CF_3)_2]_n$	
	100°C (4d)	$MnCo(CO)_7[As(CF_3)_2]_2$,	[6]
		$[Co(CO)_3As(CF_3)_2]_n$	
MnRe(CO) ₁₀	160 to 190°C	$Mn_2(CO)_8[As(CF_3)_2]_2$,	[6]
		$\operatorname{Re}_{2}(\operatorname{CO})_{8}[\operatorname{As}(\operatorname{CF}_{3})_{2}]_{2},$	
		MnRe(CO) ₈ [As(CF ₃) ₂] ₂	
Co ₂ (CO) ₈	_	$Co(CO)_4As(CF_3)_2$	[5]
Re ₂ (CO) ₁₀	120/150/175/190°C (90/25/20/45 b)	$\text{Re}_2(\text{CO})_8[\text{As}(\text{CF}_3)_2]_2$	[7]
Re(CO)₅Cl	90°C (62 h)	Re ₂ (CO) ₂ As(CF ₂) ₂ Cl	[8]
Re(CO)₅Br	90°C (88 h)	Re ₂ (CO) ₂ As(CF ₂) ₂ Br	[8]
Re(CO)₅I	90°C (108 h)	$\operatorname{Re}_{2}(\operatorname{CO})_{*}\operatorname{As}(\operatorname{CF}_{2})_{*}$	[8]
Mn(CO)₅Cl	70°C (60 h)	$Mn_2(CO)_{\bullet}As(CF_2)_{\bullet}Cl.$	[8]
		$Mn_2(CO)_0[As(CE_0)_0]_0$	[0]
		$Mn(CO)_{\epsilon}As(CE_{\epsilon})_{\epsilon}$	
Mn(CO)₅Br	60°C (108 h)	Mn _o (CO) _o As(CE _o) _o Br	[8]
		$Mn_2(CO)_0[As(CE_0)_0]_0$	[0]
Mn(CO)₌l	50°C (110 h)	Mn _o (CO) _o As(CE ₀) _o l	[8]
		2(/0(3)2	[3]

Reactions of $(CF_3)_4As_2$ with $HM(CH_3)_3$ (M = Ge, Sn) and Metal Carbonyls.

1,1-Bis(trifluoromethyl)diarsine (CF₃)₂AsAsH₂

1,2-Bis(trifluoromethyl)diarsine CF₃AsHAsHCF₃

On slowly warming (from - 198 to -78°C) a mixture of $(CF_3)_2Asl$ and $(CH_3)_3SnAsH_2$ in a sealed glas ampule under nitrogen, a broad ^{19}F NMR signal with a chemical shift δ = -48.5 ppm (standard CFCl₃) is observed, which is assigned to (CF₃)₂AsAsH₂. The isolation of the compound was not successful [9].

CF₃AsHAsHCF₃ forms in 20 to 40% yield by the reaction of CF₃AsI₂ with Hg in presence of HI (molar ratio of 1:1 for CF_3Asl_2 to HI). The ¹⁹F NMR spectrum of the diarsine in CH_3CN (negative shifts upfield from the internal standard CFCl₃) shows two $(AX_3)_2$ systems (A = ¹H, X = ¹⁹F) of unequal intensity with δ = -39.26 (J = 11 Hz) and -39.45 ppm (J = 10.5 Hz), which are assigned to the two diastereomers shown below in eclipsed configuration [10].

meso form

 \pm form

Gmelin Handbook CF Comp. Suppl. 1

Table 64

The arsine decomposes in the liquid phase below room temperature to give CF_3AsH_2 and $(CF_3As)_n$, n = 4 and 5. The reaction with HI yields CF_3AsH_2 and CF_3AsI_2 [10].

Bis(trifluoromethyl)phosphinoarsine (CF₃)₂AsPH₂

The compound (Part 3, p. 222) forms quantitatively by the reaction of $(CF_3)_2ASH$ and F_3SiPH_2 at room temperature in 5d in a sealed ampule [11].

The Complexes $(C_6F_5)_3AsAgOClO_3$ and $Ag^+[As(C_6F_5)_3]_2ClO_4^-$

Addition of $(C_6F_5)_3As$ to a benzene solution of $AgClO_4$ (molar ratio 1:1) under nitrogen at room temperature results after 2 h in the formation of the neutral complex, electric conductivity (in $\Omega^{-1} \cdot cm^2 \cdot mol^{-1}) \Lambda = 175.59$ in acetone, 0.14 in benzene. On changing the molar ratio to 1:2 the cationic complex forms in 75% yield, melting point 213°C, $\Lambda = 187.4$ in acetone [12].

References:

[1] J. W. Thompson, J. D. Witt, J. R. Durig (Inorg. Chem. 12 [1973] 2124/8). - [2] S. Ansari,
J. Grobe (Z. Naturforsch. 30b [1975] 531/4). - [3] J. Grobe, R. Rau (Z. Anorg. Allgem. Chem.
414 [1975] 19/29). - [4] J. Grobe, R. Rau (J. Fluorine Chem. 11 [1978] 265/90). - [5] G. Beysel,
J. Grobe, W. Mohr (Z. Anorg. Allgem. Chem. 418 [1975] 121/31).

[6] G. Beysel, J. Grobe, W. Mohr (J. Organometal. Chem. **170** [1979] 319/36). - [7] J. Grobe,
W. Mohr (J. Fluorine Chem. **8** [1976] 145/64). - [8] J. Grobe, W. Mohr (J. Fluorine Chem. **8** [1976] 341/52). - [9] A. Breckner, J. Grobe (Z. Anorg. Allgem. Chem. **414** [1975] 269/76). - [10] R. C. Dobbie, P. O. Gosling (J. Chem. Soc. Chem. Commun. **1975** 585/6).

[11] G. Fritz, H. Schäfer, R. Demuth, J. Grobe (Z. Anorg. Allgem. Chem. **407** [1974] 287/94). - [12] A. Otero, P. Royo (J. Organometal. Chem. **149** [1978] 315/20).

5.4 Perfluorohalogenoorgano Compounds of Antimony

5.4.1 Preparation and Physical Properties

Dodecafluoro-13,14-distibatriptycene

The triptycene forms in 12% yield on heating antimony powder with 1,2-diiodotetrafluorobenzene in an evacuated sealed tube at 300°C for three days [1] or at 250°C overnight; it can also be made by heating (HgC₆F₄)₃ and Sb [2]. The compound was recrystallized from 60 to 80 petroleum ether. The melting point is 258 to 259°C [2] (245 to 246°C is given in [1]). The ¹⁹F NMR spectrum shows signals at δ (F³,F⁶) = -114.5 and δ (F⁴,F⁵) = -153.8 ppm (internal standard CFCl₃, THF solution) [2] (corrected values compared with those in [1]). The mass spectrum shows the parent peak at m/e = 685.7890; further main peaks due to the ions

 $SbC_{12}F_8^+$, $SbC_6F_4^+$, SbF_2^+ , SbF_2^+ , and Sb^+ are observed [1, 2]. X-ray powder diffraction studies show that the distibatriptycene is isostructural with the diarsatriptycene [1]. IR spectra confirm this structure [1, 2].

The reaction of 1,2-dilithiumtetrafluorobenzene of SbCl₃ in THF at -78 °C, followed by warming to 20 °C after reaction had ceased, gives a product which is regarded to be the triptycene, melting point 155 °C, ¹⁹F NMR: $\delta = -112.8$ and -150.0 ppm [3]. The difference of these values from those in [2] is considered as an indication, that the compound prepared in [3] is not the triptycene [2].

Bis(trifluoromethyl)stibine (CF₃)₂SbH

Bis(trifluoromethyl)chlorostibine (CF3)2SbCl

Bis(trifluoromethyl)bromostibine (CF₃)₂SbBr

Bis(trifluoromethyl)iodostibine (CF3)2Sbl

 $(CF_3)_2SbH$ is formed by reaction of $(CF_3)_4Sb_2$ with $(CH_3)_3SnH$ [4]. Excess anhydrous HCl was reacted with $(CF_3)_2SbON(CF_3)_2$ yielding crude $(CF_3)_2SbCl$. Attempts to purify the compound were unsuccessful, since it disproportionated rapidly to $(CF_3)_3Sb$ and $SbCl_3$ at room temperature [5], for further details see Part 3, p. 226. $(CF_3)_2SbBr$ is formed by reacting $(CF_3)_2Sbl$ with HgCl [4]. Beside chemical reactions, no new preparative and physical investigations on $(CF_3)_2Sbl$, see Part 3, p. 226, are known.

Molecules and Spectra

The molecules $(CF_3)_2SbX$, X = H, Cl, Br, I belong to the C_s point group on the assumption of a symmetric orientation of the CF_3 groups. The fundamental modes of vibration comprise 13 vibrations of the species A' and 11 of the species A'', see Table 59 (p. 168) for the analogous arsenic compounds. The vibrational spectra of the stibines are given in **Table 65**. A normal coordinate analysis was performed to support the assignment and to limit the force constants (see **Table 66**). For details see the original paper [6].

Table 65

Observed Vibrational Frequences and Approximate Assignment for $(CF_3)_2SbX$, X = H, Cl, Br, I [6].

The values (in cm⁻¹) are averages of IR and Raman measurements. The first quotation within the parentheses gives the IR intensity, the second one the Raman intensity (for abbreviations see p. 153). v, δ , ρ : valence, deformation, rocking vibration; s, as: symmetric, antisymmetric.

	(CF ₃) ₂ SbH	(CF ₃) ₂ SbCl	(CF ₃) ₂ SbBr	(CF ₃) ₂ Sbl	Assignment
A′	1154 (vs, vw) 1094 (vs, vw)	1175 (vs, vw) 1093 (vs, vw)	1177 (vs, vw) 1089 (vs, vw)	1170 (vs, vw) 1087 (vs, vw)	v _{as} (CF ₃) v _s (CF ₃)
	714 (s, s, p)	719 (s, s, p)	719 (s, s, p)	717 (s, s, p)	$\delta_{s}(CF_{3})$
					• •• •• •• •

	(CF₃)₂SbH	(CF ₃) ₂ SbCl	(CF ₃) ₂ SbBr	(CF ₃) ₂ Sbl	Assignment
•	E1E (500 (E00 (E04 (w. w. do)	S (CE)
A'	515 (w, w, ap)	523 (w, w, ap)	528 (w, w, ap)	524 (w, w, ap)	$o_{as}(UF_3)$
	245 (m, ms, p?)	226 (w, vs, p)	255 (w, s, p)	241 (w, ms, p)	$\varrho(\mathbf{CF}_3)$
	273 (ms, m, p)	274 (ms, s, p)	276 (s, s, p)	272 (s, ms, p)	v(SbC ₂)
	?	192 (-, w, p?)	195 (<i>—</i> , w)	182 (<i>—</i> , w)	$\delta(SbC_2)$
	1845 (s, s, p)	380 (s, s, p)	217 (m, vs, p)	189 (<i>−</i> , vs, p)	v(SbX)
	532 (m, w)	97 (-, w)	80 (-, w)	70 (<i>—</i> , w)	δ(CSbX)
Α″	1145 (vs, vw)	1111 (vs, vw)	1112 (vs, vw)	1112 (vs, vw)	$v_{as}(CF_3)$
	1083 (vs, vw)	1093 (vs, vw)	1089 (vs, vw)	1087 (vs, vw)	$v_{s}(CF_{3})$
	714 (s, s, p)	719 (s, s, p)	719 (s, s, p)	717 (s, s, p)	$\delta_{s}(CF_{3})$
	515 (w, w, dp)	523 (w, w, dp)	528 (w, w, dp)	524 (w, w, dp)	$\delta_{as}(CF_3)$
	221 (w, w, dp)	226 (w, vs, p)	217 (m, vs, p)	226 (m, w, dp)	ջ(CF ₃)
	253 (m, w)	256 (m, m, dp)	250 (m, m)	252 (m, m, dp)	$v(SbC_2)$
	617 (m, b, w)	113 (-, m, dp)	99 (-, w, dp)	81 (<i>—</i> , w)	δ(CSbX)

Table 65 (continued)

Table 66 Internal Force Constants of $(CF_3)_2SbX$, X = H, Cl, Br, I [6]. Values in 10^2 N/m. ^* Normalized to $r_{SbX} \cdot r_{SbC}$.

Molecule	f _{CF}	f _{CF/CF'}	f _{CSb}	f _{CSb/CSb'}	f _{SbX}	$f_{CSbX}^{\star)}$
(CF ₃) ₂ SbH	5.76	0.76	1.84	0.24	2.10	0.15
(CF ₂) ₂ SbCl	5.82	0.87	1.80	0.25	2.30	0.11
(CF ₃) ₂ SbBr	5.82	0.87	1.67	0.22	1.55	0.09
(CF ₃) ₂ Sbl	5.80	0.90	1.60	0.25	1.00	0.07

Bis(trifluoroaminooxy)bis(trifluoromethyl)stibine (CF₃)₂SbON(CF₃)₂

Bis[bis(pentafLuorophenyL)stibine]oxide (C₆F₅)₂SbOSb(C₆F₅)₂

Tris(trifluoromethyl)stibine (CF₃)₃Sb

Tris(3,3,3-trifluoro-1-propynyl)stibine (CF₃C≡C)₃Sb

Tris(pentafluorophenyl)stibine (C₆F₅)₃Sb

 $(CF_3)_2SbON(CF_3)_2$ was prepared by the reaction of $(CF_3)_3Sb$ with $(CF_3)_2NO$ (molar ratio 1:2) at $-74^{\circ}C$ (1 h) and trapped at $-30^{\circ}C$. The vapor IR spectrum shows bands characteristic of the CF₃ and $(CF_3)_2NO$ groups at 1885 (w), 1808 (s), 1466 (w), 1370 (s), 1325 (vs), 1280 (vs), 1240 (vs), 1190 (vs), 1145 (vs), 1125 (vs), 1095 (vs), 1070 (s), 970 (s), 800 (m), 710 (s) cm⁻¹ [5].

Gmelin Handbook CF Comp. Suppl. 1

Compounds of Main Group 5 Elements

 $[(C_6F_5)_2Sb]_2O$ is formed by addition of small amounts of H₂O to a solution of $(C_6F_5)_3Sb$ in petroleum ether. After stirring at room temperature for a few minutes, evaporation of the solvent gives the compound as a crystalline solid in 80% yield, melting point 142°C, electrical conductivity $1.26 \,\Omega^{-1} \cdot cm^2 \cdot mol^{-1}$ for a 5×10^{-4} M solution in acetone [7]. The compound shows IR absorptions found for $(C_6F_5)_3Sb$ by [8] and an additional absorption at 870 to 790 cm⁻¹ which is assigned as Sb-O-Sb vibration [7].

The preparation and the properties of the stibines $(CF_3)_3Sb$ and $(C_6F_5)_3Sb$ are described in Part 3, p. 227. The preparation of $(CF_3C=C)_3Sb$ given in Part 3, p. 227, as private communication has now been published [9]. The mass spectrum of the propynyl compound together with its fragmentation scheme is given in [9]. Solid-state IR and Raman spectra (400 to 40 cm⁻¹), including a discussion of the vibrational assignments, are given in [8]. For reactions of $(CF_3)_3Sb$ see p. 181.

Tris(pentafluorophenyl)dichlorostiborane (C₆F₅)₃SbCl₂

Tris(pentafluorophenyl)dibromostiborane (C₆F₅)₃SbBr₂

Tris(pentafluorophenyl)-bis[bis(trifluoromethyl)aminooxy]stiborane (C₆F₅)₃Sb[ON(CF₃)₂]₂

Tris(pentafluorophenyl)dinitratostiborane (C₆F₅)₃Sb(NO₃)₂

 $\label{eq:constant} Tris(pentafluorophenyl) diperchloratostiborane (C_6F_5)_3Sb(ClO_4)_2$

Bis[tris(pentafluorophenyl)chlorostiborane]oxide $Cl(C_6F_5)_3SbOSb(C_6F_5)_3Cl$

Bis[tris(pentafluorophenyl)nitratostiborane]oxide $NO_3(C_6F_5)_3SbOSb(C_6F_5)_3NO_3$

 $\textbf{Bis[tris(pentafluorophenyl)perchloratostiborane]oxide} ClO_4(C_6F_5)_3SbOSb(C_6F_5)_3ClO_4$

 $(C_6F_5)_3SbCl_2$ forms by direct chlorination of $(C_6F_5)_3Sb$ in ethanol [8] or by slowly adding a solution of Cl_2 in CCl_4 to a solution of $(C_6F_5)_3Sb$ in petroleum ether and stirring at room temperature for a few minutes [7]. The white crystals which precipitated were recrystallized from light petroleum ether, yield 78%. The dichloride is also formed on adding diethyl ether to a solid mixture of $(C_6F_5)_3Sb$ and TlCl_3 and stirring at 20°C for 48 h (yield 70%) or on adding $(C_6F_5)_3Sb$ to a solution of $CuCl_2 \cdot 2H_2O$ in acetone and stirring at 20°C for 1 h (80% yield) [7]. The melting point (m.p.) is 255 [7] or 255 to 257°C [8], the electrical conductivity of the dichloride $(5 \times 10^{-4} \text{ M solution})$ is found to be $\Lambda = 40.08$ in acetone and 16.06 $\Omega^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1}$ in nitromethane [7]. Direct bromination of $(C_6F_5)_3Sb$ in CCl_4 solution leads to the precipitation of $(C_6F_5)_3SbBr_2$, m.p. 207 to 209°C [8]. The solid-state IR and Raman spectra, including a discussion of the vibrational assignments, are given for the dichloride and for the dibromide [8].

 $(C_6F_5)_3Sb[ON(CF_3)_2]_2$ is prepared by reaction of $(CF_3)_2NO$ and $(C_6F_5)_3Sb$ in Cl_2CFCF_2Cl as solvent in a sealed ampule within a few minutes at room temperature, yield 87%, m.p. 143 to 144°C, IR: 1643 (s), 1515 (s), 1495 (vs), 1395 (s), 1290 (vs), 1250 (vs), 1220 (s), 1205 (vs), 1192 (s), 1150 (vw), 1095 (vs), 1040 (vs), 980 (vs), 965 (vs), 801 (m), 735 (vw), 722 (vw), 710 (s), 680 (vw), 619 (vw), 540 (w) cm⁻¹ [10].

Adding a solution of $(C_6F_5)_3SbCl_2$ in benzene to a solution of $AgNO_3$ in benzene and stirring under reflux for 2 h yield $(C_6F_5)_3Sb(NO_3)_2$, yield 40%, $\Lambda = 0.09 \ \Omega^{-1} \cdot cm^2 \cdot mol^{-1}$ in benzene, IR: v_{as} (NO₂) = 1450 to 1500 cm⁻¹, v_s (NO) = 1010 to 1040 cm⁻¹ [7]. The same procedure using AgClO₄ gives ($C_6F_5)_3Sb(ClO_4$), m.p. 95°C, $\Lambda = 260.43$ in acetone, and 178.35 in nitromethane, IR: 1140 (s), 925 (vw), 625 (m), 1010 to 1020 (vs), 635 (m) cm⁻¹ (ClO₄ modes) [7].

180

 $[(C_6F_5)_3SbCl]_2O$ forms on stirring $(C_6F_5)_3SbCl_2$, dissolved in hot aqueous ethanol, at 20°C for 1 h, yield 42%, m.p. 105°C, $\Lambda = 38.32 \ \Omega^{-1} \cdot cm^2 \cdot mol^{-1}$ in acetone, IR: v (Cl-Sb) = 330 cm⁻¹ [7].

 $[(C_6F_5)_3Sb(NO_3)]_2O$ is obtained in 43% yield on stirring a suspension of $(C_6F_5)_3Sb(NO_3)_2$ in water for 1 h at room temperature, m.p. 130°C, $\Lambda = 30.21$ in acetone and 12.86 $\Omega^{-1} \cdot cm^2 \cdot mol^{-1}$ in nitromethane.

The compound $[(C_6F_5)_3Sb]_2O(ClO_4)_2$ in 58% yield forms on adding dropwise a solution of $[(C_6F_5)_3SbCl]_2O$ in ethanol to a solution of $AgClO_4$ in benzene and stirring at 20°C for 2 h. Another procedure is to stir a solution of $(C_6F_5)_3Sb(ClO_4)_2$ in aqueous acetone for 1 h at 20°C, yield 76%, m.p. 110°C, $\Lambda = 257.34$ in acetone, 167.89 $\Omega^{-1} \cdot cm^2 \cdot mol^{-1}$ in nitromethane, IR (Sb-O-Sb) = 730 to 650 cm⁻¹ [7].

5.4.2 Chemical Reactions

The distibutriptycene $(C_6F_4)_3Sb_2$ decomposes slowly at 400 °C. After 15 h more than half of the compound is recovered [2].

The photolysis of $(CF_3)_2$ Sbl with a xenon flash lamp yields excited iodine atoms. Thus this compound is discussed for use as photodissociation-iodine laser [11].

 $(CF_3)_2$ SbON $(CF_3)_2$ is thermally stable up to -30 °C. At higher temperatures it decomposes forming perfluoroazapropene, trifluoromethylisocyanate and a white unidentified substance. The reaction with a 20% NaOH forms 2 mol CHF₃; with anhydrous HCl the reaction yields $(CF_3)_2$ NOH quantitatively [5].

 $(CF_3)_3Sb$ reacts at -74 °C with $(CF_3)_2NO$ in a molar ratio 1:2 forming $(CF_3)_2SbON(CF_3)_2$. Molar ratios of 1:4 and 1:6 yield perfluoro-2-azapropene, trifluoromethylisocyanate and white unidentified solids [5]. $(CF_3)_3Sb$ reacts with $(CF_3)_2NON(CF_3)_2$ on warming from -60 °C to room temperature within 10 h forming SbF₃, $CF_3N=CF_2$ and $(CF_3)_2NOCF_3$ quantitatively [12]. Contrary to $(CF_3)_3P$, the stibine does not react in benzene with B_2H_6 forming an donor-acceptor complex [13].

 $(C_6F_5)_3Sb[ON(CF_3)_2]_2$ is thermally stable up to 120°C. Heating at 160°C (18 h) leads to decomposition forming $(C_6F_5)_3Sb$, $(CF_3)_2NO$ and $F_2C=NCF_3$. It is not hydrolyzed by moist air and not decomposed at room temperature by anhydrous HCl. The reaction with HCl at 100°C (6d) leads to the decomposition of the compound giving $(CF_3)_2NOH$ and $(C_6F_5)_3SbCl_2$ [10].

 $(C_5F_5)_3SbCl_2$ behaves as a halogenating agent. Thus, on reaction with $(C_6H_5)_3PAuCl$ both chlorine atoms are transfixed forming $(C_6H_5)_3PAuCl_3$ and $(C_6F_5)_3Sb$. It also oxidizes bromide and iodide ions in acetone to give free halogen. The dichloride reacts with NaOCH₃ at 20°C (4 h) forming $(C_6F_5)_3Sb(OCH_3)_2$, melting point 60°C. In chloroform the reaction with sodium acetylacetonate (acac) and sodium 8-hydroxyquinolinate (L) yields the monosubstituted octahedral compounds $(C_6F_5)_3SbCl$ (acac) and $(C_6F_5)_3SbCl$ (L), melting points 160 and 200°C, respectively [7].

References:

[1] C. M. Woodard, G. Hughes, A. G. Massey (J. Organometal. Chem. **112** [1976] 9/19). –
[2] T. K. Mistry, A. G. Massey (J. Organometal. Chem. **209** [1981] 45/7). – [3] W. R. Cullen, A. W. Wu (J. Fluorine Chem. **8** [1976] 183/7). – [4] P. Dehnert, J. Grobe (private communication in [6]). – [5] H. G. Ang, Y. C. Syn (J. Fluorine Chem. **8** [1976] 481/96).

Gmelin Handbook CF Comp. Suppl. 1 [6] P. Dehnert, R. Demuth, J.Grobe (Spectrochim. Acta A 34 [1978] 857/62). - [7] A. Otero,
P. Royo (J. Organometal. Chem. 154 [1978] 13/9). - [8] B. A. Nevett, A. Perry (Spectrochim. Acta A 31 [1975] 101/6). - [9] D. H. Lemmon, J. A. Jackson (J. Fluorine Chem. 8 [1976] 23/42).
- [10] H. G. Ang, W. S. Lien (J. Fluorine Chem. 9 [1977] 73/80).

[11] G. N. Birich, G. J. Drozd, V. N. Sorokin, J. J. Struck (Pis'ma Zh. Experim. Teor. Fis. **19** [1974] 44/7; C.A. **80** [1974] No. 102117). – [12] H. G. Ang, W. S. Lien (J. Fluorine Chem. **11** [1978] 419/32). – [13] J. Apel, J. Grobe (Z. Anorg. Allgem. Chem. **453** [1979] 28/38).

5.5 Perfluoroorgano Compounds of Bismuth

Dodecafluoro-13,14-dibismatriptycene

The triptycene is formed in 65% yield by the reaction of 1,1-dilithiumtetrafluorobenzene and BiCl₃ at -78 °C in tetrahydrofuran. After reaction had ceased, the mixture was allowed to warm to room temperature. The obtained white solid was recrystallized from hexane. The compound decomposes above 300°C without melting. The ¹⁹F NMR spectrum shows two signals at $\delta = -109.4$ and -154.0 ppm (negative shift upfield from the internal standard CFCl₃) [1].

Tris(trifluoromethyl)bismuthine (CF₃)₃Bi

The unsuccessful attempts to synthesize this bismuthine are reported in Part 3, p. 233. A successful route of preparation is the reaction of Bil₃ and C₂F₆ using the plasma technique. For this purpose, Bil₃ is converted by a radio frequency generator at 1 Torr into a plasma and then C₂F₆ is admitted continuously. After 100 h the contents of the -78 °C trap and of the -196 °C trap, in which the products are collected, are combined and the bismuthine purified by distillation at -55 °C (yield 32%). The bismuthine is a colorless liquid, which fumes when exposed to air. At room temperature, it is hydrolyzed by base with the evolution of three equivalents of fluoroform. In sealed tubes, decomposition to metallic Bi occurs at 100°C with a half life of about 15 min, at 180°C in seconds. The ¹⁹F NMR spectrum shows a singlet at $\delta = -45.9$ ppm (external standard CF₃COOH). The IR spectrum contains absorptions at 2135 (vw), 1235 (m), 1180 (vs), 1140 (s), 1120 (s), 1060 (vs), 1032 (w), and 718 (m). Peaks in the mass spectrum occur at m/e = 416, M⁺ (6.8); 397, Bi(CF₃)₂CF⁺₂ (1.6); 347, Bi(CF₃)₂⁺ (62.0); 328, Bi(CF₃)CF⁺₂ (0.7); 297, BiCF⁺₄ (17.1); 278, BiCF⁺₃ (14.5); 259, BiCF⁺₂ (4.8); 247, BiF⁺₂ (28.5); 228, BiF⁺ (11.6); 209, Bi⁺ (100); 69, CF⁺₃ (32.5); 50, CF⁺₂ (2.7) [2].

Tris(pentafluorophenyl)bismuthine $(C_6F_5)_3Bi$

In the presence of ytterbium, the bismuthine (see Part 3, p. 233) decomposes in tetrahydro-furan at 55 °C (168 h) to low percentage yields of Bi and C_6F_5H [3].

References:

[1] W. R. Cullen, A. W. Wu (J. Fluorine Chem. 8 [1976] 183/7). - [2] J. A. Morrison, R. J. Lagow (Inorg. Chem. 16 [1977] 1823/4). - [3] G. B. Deacon, A. J. Koplick, W. D. Raverty, D. G. Vince (J. Organometal. Chem. 182 [1979] 121/41).

6 Perfluorohalogenoorgano Compounds of Main Group 6 Elements

6.1 Preliminary Remarks

This chapter begins the treatment of the compounds of the Main Group 6 elements (without oxygen) and will be continued in the Supplement Volume 2. Up to the end of 1971, these compounds were covered in "Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente", Part 1 and 2, 1973. For further details see the preface of this Supplement Volume.

6.2 Perfluorohalogenoorgano Compounds of Sulfur

6.2.1 Perfluorohalogenosulfur(II) Compounds

- 6.2.1.1 Fluorothiocarbonyl Halides, Isothyocyanate and Amide FC(S)X (X = F, Cl, Br, NCS, NH₂)
- 6.2.1.1.1 Thiocarbonyl difluoride F₂CS

General Reference:

W. H. Sharkey, H. W. Jacobson, Preparation and Polymerization of Thiocarbonyl Fluoride, Macromol. Syn. 5 [1974] 25/33.

6.2.1.1.1.1 Preparation and Formation. Toxicity

The compound is prepared, as already described in Part 1, p. 1, in good yield by pyrolysis of tetrafluorothiirane or tetrafluoro-1,2,3-trithiolane at about 600 °C. It is also formed as the only by-product in the preparation of the cyclic polysulfane [1]. The reaction of sulfur with tetrafluoroethylene at higher temperatures [1] as well as heating CS_2 with C_2F_4 at 700 to 900 °C gives the thiocarbonyl fluoride [2]. Details for the preparation of F_2CS on a preparative scale from tetrafluoro-1,2-dithietane are described in [3].

 F_2CS is formed on reacting $C_6H_5C(Cl)=NC_6H_5$ with AgSCF₃ at 50°C (5 h) [4] and in the reaction of SF₆ with carbon in a Knudsen cell at 1500 K [5]. It is also presumably formed as an intermediate in the reaction of SF₆ with CS₂ [6, 7].

The enthalpy of formation of F_2CS has been determined by mass-spectrometric investigations of the reactions of gaseous SF_6 with carbon in a heated Knudsen cell to be $\Delta H_{f,298K} = -75.0 \pm 3.0$ kcal/mol [5].

Toxicity. Thiophosgene is very toxic. Since it can cause permanent injury by contact, ingestion, or inhalation, it should be used only in a forced-draft hood. If it comes into contact with skin, it should be immediately neutralized with ammonia, and affected areas washed with soap and water. If eyes are affected, they should be washed with sodium bicarbonate solution [3]. The acute toxicity on inhalation for 240 min is characterized by the value $LC_{50} = 2.5$ ppm V/V. F₂CS is three times as toxic as F₂CO [41].

6.2.1.1.1.2 The Molecule. Spectra

In the electronic ground state (\tilde{X}^1A_1) , F₂CS is planar and has C_{2v} symmetry. From photoelectron spectra the following adiabatic and (in parentheses) vertical ionization energies E_i (in eV) are evaluated [8, 9]:

MO		4b ₂	2b ₁	5a ₁	$3b_2$	1a ₂	Ref.
Ei		10.52(10.69)	11.39(11.72)	14.91(15.06)	(16.48)	17.67(17.85)	[8]
Ei		10.45	11.34	14.87		17.65	[9]

For assignments see Part 1, p. 2. The lowest ionization energy (10.53 eV) has been found in a mass spectrometric investigation of the reaction of SF₆ with C atoms which shows the appearance of F_2CS^+ [5]. Most of the photoelectron bands show a vibrational fine structure which enables one to identify the frequencies of the C=S stretch, C-F stretch and CF₂ deformation vibrations of F_2CS^+ ions [8, 9]. Calculations and the analysis of the spectra show that the F_2CS^+ ion has a greater C-S distance and F-C-F angle compared with the neutral molecule, independent from which orbital ionization occurs [9]. New investigations which confirm the earlier results permit comparisons between F_2CS and other thioketones which demonstrate the pronounced perfluoro effect of F_2CS . Fluorine acts as a σ acceptor and π donator (σ/π polarization) [10]. For CNDO/2 calculations of net charges see [38].

The value for the dipole moment, $\mu = 0.080 \pm 0.001$ D, results from the measurements of the Stark effect on two rotational lines of F₂CS [11]. Ab initio MO-SCF calculations give $\mu = +0.09$ D (S atom on the positive end of the dipole). Also reported are gross atomic charges, as well as σ , π , and overall electron densities [12]. CNDO calculations gave $\mu \approx -0.95$ D (S on the negative end of the dipole) [13]. Infrared intensity analysis reveals the dipole moment of the C-S and the C-F bond separately: $\mu_{C-S} = 0.2473$, $\mu_{C-F} = 0.2669$ D [14]. Using measured IR intensities, derivatives of the dipole moment with respect to the internal coordinates and bond moments have been calculated by CNDO calculations [13] and by a modified first-order approximation [15]. For the interpretation of IR intensities by polar tensors and on the resulting effective charges, mean dipole moment derivatives, and anisotropies see [16, 17, 18]. The rotational contributions to the dipole moment derivatives are computed in [19].

The ¹³C NMR chemical shift has been determined to be $\delta = 170.2 \text{ ppm} (-50 \text{ °C}; \text{ CFCl}_3 \text{ as}$ an internal standard, values recalculated to $(\text{CH}_3)_4\text{Si}$). The ¹³C-¹⁹F coupling constant was found to be 367 Hz [21]. The ¹⁹F NMR chemical shift is 107.8 ppm (positive sign downfield from the standard CFCl₃) [22]. This value is not in line with previously published results (cf. Part 1, p. 3).

The analysis of the MW spectrum of F_2CS (11 rotational transitions of ${}^{19}F_2{}^{12}C{}^{32}S$, 6 of ${}^{19}F_2{}^{12}C{}^{34}S$) using the model of the rigid rotator yields the following constants [11] given in **Table 67**.

Molecule		F ₂ ¹² C ³² S		¹⁹ F ₂ ¹² C ³⁴ S	
Rotational	A ₀ (MHz)	11892.57	± 0.5	11891.94	± 1.0
constants	B ₀ (MHz) C ₀ (MHz)	5133.034 3580.316	± 0.03 ± 0.03	4959.011 3494.899	土 0.05 土 0.05
Asymmetry parameter	ĸ	-0.62640	\pm 0.00003	-0.65128	\pm 0.00008

Table 67 Rotational Constants and Moments of Inertia of F₂CS [11].

Table 67 (continued)

Molecule		F ₂ ¹² C ³² S		¹⁹ F ₂ ¹² C ³⁴ S	
Moments of	Ι <mark>0</mark> (μ·Å²)	42.4950	+ 0.002	42.4973	+ 0.004
inertia	l ⁰ _β (μ·Å²)	98.4554	± 0.0006	101.9104	
	Ι _C ⁰ (μ Å ²)	141.1537	± 0.0012	144.6036	<u>+</u> 0.0021
Defect of inertia	Δ^0 ($\mu \cdot Å^2$)	0.203	\pm 0.004	0.196	± 0.007

Table 68 summarizes the geometric parameters (r and α) and the vibrational amplitudes (l) from microwave spectroscopy [11] and from an investigation of electron diffraction [23]. The last column shows the values of a joint analysis for both methods [23].

Table 68

Geometric Parameters (r, α) and Vibrational Amplitudes (l) of F₂CS obtained from MW Spectrum [11], from Electron Diffraction [23] and from a Joint Analysis of both Methods [23]. Error limits in columns 2 and 3 are three times the standard deviations.

Method	Microwave	Electron	Joint analysis	
	spectrum	diffraction	for both methods	
r(C-F)	1.315 (10) Å	1.315 ₅ (2 ₇) Å	1.316 ₅ (1₁) Å	
r(C=S)	1.589 (10) Å	1.585 ₈ (4 ₈) Å	1.5894 (1 ₇) Å	
α(FCF)	107.1 (1.0)°	106.9 ₄ (0.5 ₅) °	$107.0_5 (0.1_6)^{\circ}$	
l(C-F)		0.047 (5) Å	0.049 (2) Å	
l(C=S)		0.043 (6) Å	0.040 (3) Å	
l(FF)		0.054 (8) Å	0.057 (4) Å	
l(SF)		0.056 (5) Å	0.059 (2) Å	

Ab initio MO-SCF calculations of the geometric parameters are given in [12, 24], results of calculations by semiempirical methods are presented in [25, 26].

 F_2CS has six fundamental vibrations, the symmetric C-F stretching $v_1(a_1)$, the C-S stretching $v_2(a_1)$, the symmetric CF₂ deformation $v_3(a_1)$, the antisymmetric C-F stretching $v_4(b_1)$, the antisymmetric SCF deformation $v_5(b_1)$ and the out-of-plane deformation $v_6(b_2)$. The analysis of the liquid-phase Raman spectrum and of the IR spectrum of a thin film at 77 K confirms the assignment of the molecular vibrations already reported in Part 1, p. 2 [27]. The gas-phase IR and liquid-phase Raman spectra have been reinvestigated in order to obtain exact gas frequencies for the fundamentals, the overtones, and the combination bands. Also matrix IR spectra in Ne and Ar at 4 and 15 K have been recorded and ¹³C and ¹⁴S satellites at natural abundance have been observed. Additionally a normal coordinate analysis has been performed [28]. In the following the fundamental vibrations v_i and the anharmonicity constants x_{ij} (in cm⁻¹) are given [28] (*) = disturbed by Fermi resonance, not corrected):

Gmelin Handbook CF Comp. Suppl. 1 CNDO/2 calculations give $v_2 = 1418 \text{ cm}^{-1}$ [40].

The symmetry force constants (in 10^{-2} N/m) [28] are given together with those of [29] in the following:

F ₁₁	F ₂₂	F ₃₃	F ₄₄	F ₅₅	F ₆₆	F ₁₂	F ₁₃	F ₂₃	F ₄₅	
6.625	7.332	1.408	5.750	0.868	0.637	1.225	-0.315	+0.430	0.650	[28]
6.085	8.489	1.393	6.896	0.910	0.575	1.131	-0.318	+0.325	1.269	[29]

Experimentally determined Urey-Bradley force constants $K_{C-F} = 5.93$ and $K_{C-S} = 7.82$ have been evaluated, and these values were compared with $K_{C-F} = 5.93$ and $K_{C-S} = 7.93$, calculated by CNDO/2 methods. It is shown that this method does not reproduce quantitatively the experimental values but realizes the qualitative trend within the series of the homologous molecules $X_2C=Y$ (X = H, F, Cl, Y = O, S) [25]. Using the concept of kinetic constants, the potential constants for the general quadratic valence force field have been evaluated. From these constants vibrational mean amplitudes, Coriolis coupling constants, and centrifugal distortion constants have been calculated [30, 31]. Force constants and mean vibrational amplitudes calculated by use of the valence coordinate method are given in [32]. Mean amplitudes of vibration for molecules of the type ZXY₂, among them F₂CS, have been calculated by the method of characteristic vibrations [33].

Calculation of bond asymmetry parameters η connecting force constants along and perpendicular to a bond within a molecule for F₂CS leads to $\eta_{C-F} = 0.7529$ and $\eta_{C-S} = 0.3357$ [20].

Electronically Excited States. Electronic Spectra

The weak absorption which extends from about 4500 Å to shorter wavelengths in a series of well-defined bands has been assigned as $\pi^* \leftarrow n$ excitation of F₂CS from the ground state \tilde{X}^1A_1 to the \tilde{A}^1A_2 and \tilde{a}^3A_2 excited states, see Part 1, p. 3.

A new electronic transition in the near UV region has been photographed in the vapor phase at 25 and $-78\,^{\circ}$ C. The spectrum has a maximum at 49020 cm⁻¹ and an oscillator strength of f = 0.24. Progressions of several intervals in the vibrations $v_1 = 729 [v_s(C-F)]$, $v_3 = 400 [\delta_s(FCF)]$ and $v_6 = 544 \, \text{cm}^{-1}$ (out-of-plane wagging mode) were identified in the vibrational fine structure. The electronic transition is identified as a transition between the planar ground state \tilde{X}^1A_1 to the nonplanar excited state \tilde{B}^1A_1 [34].

The intensities of low-energy electronic transitions for some carbonyls and thiocarbonyls, among them F_2CS , has been calculated from CNDO wave functions [35].

Experimental values for the geometry of the F_2CS molecule in the lowest excited triplet state \tilde{a}^3A_2 are not available. Ab initio SCF-MO calculations (STO-3G basis) of the equilibrium geometry and of portions of the potential energy surface for the triplet state yield r(C-F) = 1.355 Å, r(C-S) = 1.28 Å, $\alpha(FCF) = 109.1^{\circ}$. The deviation of the S atom from the F-C-F plane amounts to 42°. The height of the barrier for the inversion is predicted to be $E = 2707 \text{ cm}^{-1}$ in reasonable agreement with the experimental value of more than 3100 cm⁻¹ (see Part 1, p. 3) [24, 36]. E = 7.74 kcal/mol is cited in [37]. A comparative study on the suitability of the CNDO/2 method for the calculation of geometries, planar inversion barriers, excitation energies, electron densities of singlet and triplet excited states demonstrate pronounced deviations from the few experimental results [38]. Some photophysical parameters of small thioketones pertaining to excited singlet states are presented in [38].

186

6.2.1.1.1.3 Chemical Reactions

 F_2CS adds HF forming CF₃SH [42]. Gaseous F_2CS reacts with sulfur atoms according to $F_2CS + S \rightleftharpoons CF_2 + S_2$. The third-law heat is found to be -4.0 kcal/mol [5].

The Diels-Alder reaction of the thiophosgene with cyclopentadiene was already described in Part 1, p. 5. Recently, the ¹H NMR spectrum of the reaction product has been published [43].

Irradiation of a liquid mixture of F_2CS and CF_3OF (volume ratio 1:10) with a 100 W-Hg/Xe lamp at $-96\,^{\circ}C$ shows the occurrence of the radical $(CF_3O)_2SF$ which is identified by its ESR spectrum. Similarly, the reaction of F_2CS and SF_5OF gives the radical $(SF_5O)_2SF$ (ESR values see the original literature) [44]. The reaction of F_2CS with $(CF_3S)_2CFSCI$ [45], FC(S)NCS [46] and XC(O)SCI (X = F, Cl) [47] gives by addition to the C-S double bond the title compounds $(CF_3S)_2CFSSCF_2CI, CF_3SC(S)NCS$ and XC(O)SSCF_2CI (X = F, Cl).

Polymerization processes. Instructions for handling F_2CS in these reactions are reported in [3]. $-F_2CS$ polymerizes in pentane at $-78^{\circ}C$ in presence of catalysts consisting of mixtures of Ti(OR₄) and AlR₂X with R = iso-C₄H₉, X = Cl, H or iso-C₄H₉ [48]. The yield and the viscosity of the polymer can be influenced by varying the ligands on the Al atom and the ratio of the components of the catalyst. The polymer (CF₂S)_x is characterized by the ¹⁹F NMR signal at -38.6 ppm (standard CF₃COOH, 30% solution in CCl₄) and the nonresolved C-F IR absorptions at 1000 to 1300 cm⁻¹ and the C-S stretching vibration at 849 cm⁻¹. Viscosity measurements on the material, which is soluble in chloroform and tetrahydrofuran, yield an average mole mass of 500000 to 1000 000. For differential thermoanalysis, elasticity curves and X-ray analysis see the original paper [3]. The polymer is resistant against acids, but it is degraded on contact with amines [1]. Tris(N-methyl-N-octadecylamino)sulfonium-difluorotrimethylsilicate can be used also as a catalyst. After 2 h at -78° C the yield of the polymer amounts to 95% [32].

The radical-induced polymerization of F_2CS by UV irradiation in presence of C_2F_5I , CF_3OOCF_3 or CF_3SSCF_3 gives on addition of C_2F_4 colorless solid copolymers [50, 51]. They are insoluble in all usual solvents except hot Kel-F oil and perfluorokerosine and melt in the range between 240 and 325°C. They are used for coating razor blades [50, 52, 53]. The thermolysis gives the starting compounds and perfluorinated cyclic sulfanes [51]. The polymerization of F_2CS in an inert solvent at -78°C in the presence of perfluoroacetaldehyde or perfluoropropionalaldehyde forms an acid-resistant, low-molecular weight copolymer. A mixture of organoaluminiumhydride and complexes of phosphorous with rhodium and platinum is used as catalyst [28].

References:

[1] C. G. Krespan, W. R. Brasen, H. N. Cripps (Advan. Chem. Ser. No. 110 [1972] 179/89, 181).
[2] I. L. Knunyants, S. R. Sterlin (U.S.S.R. 697504 [1978/79] from C.A. 92 [1980] No. 75885).
[3] W. H. Sharkey, H. W. Jacobson (Macromol. Syn. 5 [1974] 25/33).
[4] Yu. L. Yagupol'skii, N. V. Kondratenko, L. M. Yagupol'skii (Zh. Org. Khim. 8 [1972] 1253/6; J. Org. Chem. [USSR] 8 [1972] 1268/71).
[5] D. L. Hildenbrand (J. Phys. Chem. 77 [1973] 897/908).

[6] A. P. Hagen, B. W. Callaway (Inorg. Chem. **14** [1975] 2825/7). – [7] J. Pola, H. Horák, P. Engst (J. Fluorine Chem. **18** [1981] 37/44). – [8] H. W. Kroto, R. J. Suffolk (Chem. Phys. Letters **17** [1972] 213/6). – [9] G. W. Mines, R. K. Thomas, H. Thompson (Proc. Roy. Soc. [London] A **333** [1973] 171/81). – [10] H. Bock, K. Wittel, A. Haas (Z. Anorg. Allgem. Chem. **408** [1974] 107/14).

[11] A. J. Careless, H. W. Kroto, B. M. Landsberg (Chem. Phys. **1** [1973] 371/5). – [12] H. Oberhammer, J. E. Boggs (J. Mol. Struct. **55** [1979] 283/94). – [13] R. E. Bruns (J. Chem. Phys.

Gmelin Handbook CF Comp. Suppl. 1 **58** [1973] 1855/60). — [14] P. Naik, N. R. Rao (Pramana **10** [1978] 207/12; C.A. **89** [1978] No. 33637). — [15] P. L. Prasad, S. Singh (Can. J. Chem. **54** [1976] 1550/7).

[16] A. B. M. S. Bassi, R. E. Bruns (J. Chem. Phys. 62 [1975] 3235/9). - [17] R. E. Bruns (J. Chem. Phys. 64 [1976] 3084/5). - [18] A. B. M. S. Bassi, R. E. Bruns (J. Phys. Chem. 79 [1975] 1880/2). - [19] A. J. van Straten, W. M. A. Smit (J. Mol. Spectrosc. 56 [1975] 484/93). - [20] J. S. P. Ebenezer, R. Srinivasamoorthy, G. A. Savariraj (Indian J. Pure Appl. Phys. 19 [1981] 249/53).

[21] W. Gombler (Spectrochim. Acta A 37 [1981] 57/61). - [22] K. Barlos, J. Kroner, H. Nöth, B. Wrackmeyer (Chem. Ber. 110 [1977] 2774/82). - [23] D. Christen, H. Oberhammer, W. Zeil, A. Haas, A. Darmadi (J. Mol. Struct. 66 [1980] 203/10). - [24] A. Kapur, R. P. Steer, P. G. Mezey (J. Chem. Phys. 69 [1978] 968/75). - [25] J. L. Brema, D. C. Moule (Spectrochim. Acta A 28 [1972] 809/16).

[26] F. J. Marsh, M. S. Gordon (J. Mol. Struct. **31** [1976] 345/57). — [27] A. Haas, B. Koch,
N. Welcman, H. Willner (Spectrochim. Acta A **32** [1976] 497/500). — [28] A. Haas, H. Willner, H.
Bürger, G. Pawelke (Spectrochim. Acta A **33** [1977] 937/45). — [29] M. J. Hopper, J. W. Russell,
J. W. Overend (Spectrochim. Acta A **28** [1972] 1215/24). — [30] P. Thirugnanasambandam, N.
Karunanidhi (Indian J. Phys. **49** [1975] 658/67).

[31] S. Mohan (Acta Phys. Polon. A **57** [1980] 433/9). - [32] C. R. Gopinath, K. S. R. Rao (Vignana Bharathi **1** [1975] 80/5; C.A. **85** [1976] No. 11713). - [33] E. J. Baran (Z. Naturforsch. **25a** [1970] 1292/5). - [34] C. R. Lassard, D. C. Moule (Spectrochim. Acta A **29** [1973] 1085/9). - [35] E. R. Farnworth, G. W. King, D. C. Moule (Chem. Phys. **1** [1973] 82/8).

[36] A. Kapur, R. P. Steer, P. G. Mezey (J. Chem. Phys. **70** [1979] 745/8). – [37] P. G. Mezey, R. P. Steer, A. Kapur (J. Photochem. **9** [1978] 130/1). – [38] M. Banerjee, S. P. Bhattacharyya (J. Phys. Chem. **84** [1980] 2843/7). – [39] D. J. Clouthier, A. R. Knight, R. P. Steer, P. A. Hackett (J. Chem. Phys. **71** [1979] 5022/9). – [40] H. S. Randhawa (J. Mol. Struct. **56** [1979] 143/6).

[41] H. Liebig, K. Ulm (Chemiker-Ztg. 100 [1976] 3/14). - [42] W. A. Sheppard, C. M. Sharts (Organic Fluorine Chemistry, Benjamin, New York 1969, p. 389). - [43] M. S. Raasch (J. Org. Chem. 40 [1975] 161/72). - [44] J. R. Morton, K. F. Preston (J. Phys. Chem. 77 [1973] 2645/8). - [45] A. Haas, M. Yazdanbakhch (Chem. Ber. 109 [1976] 1976/83).

[46] G. Diderrich, A. Haas (Chem. Ber. **109** [1976] 3432/40). - [47] A. Haas, J. Helmbrecht, W. Klug, B. Koch, H. Reinke, J. Sommerhoff (J. Fluorine Chem. **3** [1973/74] 383/95). - [48] V. A. Gubanov, I. M. Dolgopol'skii, I. D. A. Afanas'ev, L. B. Brettske, L. Parshina (Vysokomol. Soedin. A **15** [1973] 1191/6; C.A. **79** [1973] No. 92634). - [49] W. J. Middleton, E. I. du Pont de Nemours & Co. (U.S. 3940402 [1974/76]; C.A. **85** [1976] No. 6388). - [50] H. R. Watson, Wilkinson Sword Ltd. (S. African 70-0307 [1970]; C.A. **76** [1972] No. 5025).

[51] H. R. Watson, Wilkinson Sword Ltd. (Brit. 1257 161 [1967/71]; C.A. **76** [1972] No. 100329).
- [52] F. O. Jones, Wilkinson Sword Ltd. (Can. 989690 [1976]; C.A. **85** [1976] No. 147227).
- [53] W. L. Cole, Wilkinson Sword Ltd. (U.S. 3960608 [1975/76]; C.A. **85** [1976] No. 164775).
- [54] V. A. Gubanov, I. M. Dolgopol'skii, E. B. Brettske, Yu. S. Varshavskii, N. N. Kiseleva (U.S.S.R. 304270 [1970/71]; C.A. **76** [1972] No. 15168).

6.2.1.1.2 Fluorothiocarbonyl chloride FC(S)Cl

6.2.1.1.2.1 Preparation

Since Part 1 (see p. 8) has been edited, no new methods of preparation have been published.

6.2.1.1.2.2 Molecule and Spectra

In the electronic ground state ($\tilde{X}^{1}A'$) the molecule is planar, symmetry group C_s as revealed from spectroscopic investigations (also see Part 1, p. 8) and from the electron diffraction measurements.

The NMR spectrum shows the chemical shifts (positive sign means downfield from the standard) $\delta(^{19}\text{F}) = 98.8 \text{ ppm}$ (internal standard CFCl₃) and $\delta(^{13}\text{C}) = 174.4 \text{ ppm}$ [internal standard (CH₃)₄Si)], coupling constant J($^{13}\text{C}-^{19}\text{F}$) = 389 Hz [1].

The analysis of the MW spectrum gives for $F^{12}C^{32}S^{35}Cl$ (for constants of the other isotopic molecules see [2]) the following rotational constants A, B, C, moments of inertia I (in $u \cdot Å^2$), centrifugal distortion constants Δ and δ (in MHz), Cl quadrupole coupling constants χ (in Mz) [2], for coordinate system see **Fig. 3**:

A = 7984.462(2)	$I_A = 63.29484(1)$	$\Delta_{J} = 0.6924$	$\chi_{aa} = -51.298(42)$
B = 3437.61(1)	I _B = 147.02413(3)	$\Delta_{\rm JK} = -0.5933(58)$	$\chi_{bb} = 23.587(58)$
C = 2400.047(1)	$I_{\rm C}^{-} = 210.56879(6)$	$\Delta_{\rm K} = 10.991(6)$	$\chi_{cc} = 27.711(52)$
	-	$\delta_{1} = 0.2641(3)$	
		$\delta_{\rm K} = 1.6766(4)$	

Fig. 3

The asymmetry parameter, a quantity for the deviation of the charge distribution around the C-Cl axis from cylinder symmetry, is $\eta = 0.24$, this is interpreted in terms of a C-Cl double bond character of 10.8% [2]. For CNDO calculations of net charges see [3]. For the analysis of the MW spectrum in terms of the Watson's formula for the rotational energy, see [4].

The analysis of the MW spectrum of vibrationally excited $F^{12}C^{32}S^{35}Cl$ yields rotational constants and centrifugal distortion constants, for details see [5].

Gmelin Handbook CF Comp. Suppl. 1

The following internuclear distances r (in Å) and angles are determined from MW measurements (r_o and r_e structures) [2, 6] and from electron diffraction measurements (r_g structures) [7], the average values (r_{av}) obtained from both methods are included [7].

	r(C-S)	r(C-Cl)	r(C-F)	r(S-Cl)	α(SCCl)	α(SCF)
r _o structure	1.5951(11)	1.7156(11)	1.3267(8)	2.9650	127.13°	123.84°
r _e structure	1.5927(11)	1.7133(11)	1.3216(11)		127.00°	123.99°
r _a structure	1.5940(12)	1.7162(15)	1.3385(19)			
r _{av} structure	1.5915(7)	1.7159(8)	1.3357(13)		127.50°	123.85°

An ab initio MO-SCF calculation of the equilibrium geometry is given in [8].

Reinvestigation of the gas-phase IR spectrum revealed the missing fundamental vibration v_6 (see Part 1, p. 8) to be at 538.4 cm⁻¹. It was possible to obtain a full set of anharmonicity constants by exploring combination and overtone bands. In the following, data are given the measured fundamental vibrations v_i (in cm⁻¹) and the harmonic frequencies ω_i (in cm⁻¹), calculated by use of the anharmonicity constants [9].

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6
v _i	1257.4	1014.9	612.4	472.2	323.1	538.4
ω _i	1293.4	1049.4	632.7	419.4	323.1	570.4
assignment	v(C-S)	ν(C-F)	v(C-Cl)	δ(SCF)	δ(SCCl)	δ (out-of-plane)

CNDO/2 calculations give 1301 cm^{-1} for the C-S stretching vibration [10]. Vibrational amplitudes are obtained by spectroscopic [9] and electron diffraction measurements [7].

The calculation of the general valence force field (in internal displacement coordinates) with the harmonic frequencies (see above) gives the following force constants (in mdyn/Å, mdyn \cdot Å/rad² and mdyn/rad, respectively) [9], see also [5]:

	CS	CF	CCI	SCF	SCCI	out-of-plane
CS	6.838	0.845	0.197	0.726	0.365	0
CF		6.082	0.429	0.513	-0.378	0
CCI			4.141	-0.701	-0.250	0
SCF				2.136	1.144	0
SCCI					1.976	0
out-of-plane	a)					0.632

^{a)} Out-of-plane is characterized by the angle between r(C-Cl) and the plane SCF.

The diagonal elements of a force field given in [7] are (in mdyn/Å, fout-of-plane in mdyn/rad):

f _{cs}	f _{CF} 1	l _{CCI} 1	SCF	f _{scci} 1	f _{out-of-plane}
7.064	5.642	3.612 (0.610	0.272	0.441

Electronically Excited States. Electronic Spectra

The visible and UV spectra of the molecule show three band systems: A band between 5000 and 4300 Å of weak intensity assigned to the forbidden transition $\tilde{A} {}^{1}A''$ (n, π^{*}) $\leftarrow \tilde{X} {}^{1}A'$. The origin of the system is determined to be at $v_{00} = 21657.4 \text{ cm}^{-1}$ [11] (in correction of the

190

Fluorothiocarbonyl Chloride

older value of 21096 cm⁻¹, quoted in Part 1, p. 8). The fundamental vibrations in this state are given in **Table 69**. The molecule is nonplanar, from the splitting of the out-of-plane vibration an inversion barrier of 1556.0 ± 45 cm⁻¹ and an out-of-plane angle of 37° [11, 14], 38° [14] are determined. A comparative study of molecular properties of some carbonyls, among them FC(S)Cl, in excited singlet (and triplet) states by CNDO/2 calculations gives molecular geometries, inversion barriers, net charges and term energies [3].

Term	v ₁ (a′)	v ₂ (a')	v ₃ (a')	v ₄ (a')	v ₅ (a')	v ₆ (a″)	Ref.	
Ã	745(913)	960	578	346	_	426	[12]	
ã B	877.3 566	964.0 —	583.0 590	348.3 311	233.8 —	409.3 448	[11] [13]	

Table 69 Fundamental Vibrations of FC(S)Cl in Electronically Excited States.

The absorption band system in the 495 nm region is assigned to the \tilde{a} ³A" (n, π^*) $\leftarrow \tilde{X}$ ¹A' electronic transition with a band origin $v_{00} = 20191 \text{ cm}^{-1}$ [14]. The fundamentals are given in Table 69. The inversion barrier is estimated to be 1622 cm⁻¹ [14], respectively, 5.80 kcal/ mol [15]. An experimental value of 2675 cm⁻¹ is given by [16]. Ab initio SCF-MO calculations result in a barrier height of 2041 cm⁻¹ and in $v_6 = 466.8 \text{ cm}^{-1}$; the geometry parameters are calculated to be r(C-S) = 1.7805, r(C-F) = 1.3481, r(C-Cl) = 1.8126 Å, α (FCCl) = 112.1°, α (FCS) = 124.5°, and α (out-of-plane) = 38.4° [8]. For the results of CNDO/2 calculations see [3].

A third intensive absorption system starts at about 220 nm via longer wavelengths. It is assigned to the transition $\tilde{B} \, {}^{1}A' (\pi, \pi^{*}) \leftarrow \tilde{X} \, {}^{1}A' [11, 14, 26]$. The origin is $v_{00} = 35277 \text{ cm}^{-1}$, the inversion barrier for the nonplanar molecule in the \tilde{B} state is about 2000 cm⁻¹ or more [13]. Along with the reduction of the C-S bond order from 2 (in the ground state) to 1 in the \tilde{B} state [17] an increase of the C-S bond length of 0.60 \pm 0.05 Å is predicted from the Franck-Condon profiles on $\pi \rightarrow \pi^{*}$ electron promotion [16]. Using the frequencies of v_{1} in the \tilde{X} and \tilde{B} states a value of 0.48 Å is obtained from Clark's empirical relationship [13, 18].

The molecule in the \tilde{B} state shows appreciable fluorescence. Pumping single vibronic levels of this state with a tunable dye laser of narrow bandwidth, four well-resolved bands are observed and documented [18]. Life-times of excited states are measured [17, 19]. Excitation of low-lying vibrational levels of the \tilde{B} state leads to fluorescent emission with high quantum yield ($\phi \rightarrow 1$), whereas at higher energies of the levels a nonradiative decay, probably followed by dissociation, is the predominantly observed process [20].

6.2.1.1.2.3 Chemical Reactions

The reactivity of fluorothiocarbonylchloride is characterized by addition to the C-S double bond. The reactions of $Cl_2C=NSCl$ [21], $(CF_3S)_2CFSCl$ [22] and XC(O)SCl (X = F, Cl) [23] forming the title compounds $Cl_2C=NSSR_f$, $(CF=S)_2CFSSR_f$ and $X(CO)SR_f$ (X = F, Cl; $R_f = CF_2Cl$) are described in Supplement Volume 2.

For the Cl \rightarrow Br metathesis on FC(S)Cl with PBr₃ resulting in the formation of FC(S)Br [24], see p. 192.

Gmelin Handbook CF Comp. Suppl. 1

References:

[1] W. Gombler (Spectrochim. Acta A **37** [1981] 57/61). – [2] H. J. Kohrmann, W. Zeil (Z. Naturforsch. **30a** [1975] 183/94). – [3] M. Banerjee, S. P. Bhattacharyya (J. Phys. Chem. **84** [1980] 2843/7). – [4] R. Hamm, H. Günther, W. Zeil (Z. Naturforsch. **32a** [1977] 754/60). – [5] R. Hamm (Z. Naturforsch. **33a** [1978] 571/80).

[6] R. Hamm, H. J. Kohrmann, H. Günther, W. Zeil (Z. Naturforsch. **31a** [1976] 594/601). – [7] F. Gleisberg, A. Haberl, W. Zeil (Z. Naturforsch. **30a** [1975] 549/53). – [8] A. Kapur, R. P. Steer, P. G. Mezey (J. Chem. Phys. **70** [1979] 745/8). – [9] R. Hamm (Z. Naturforsch. **34a** [1979] 325/32). – [10] H. S. Randhawa (J. Mol. Struct. **56** [1979] 143/6).

[11] C. R. Subramaniam, D. C. Moule (J. Mol. Spectrosc. **53** [1974] 443/54). – [12] C. R. Subramaniam (Diss. MacMaster Univ. 1972 from [13]). – [13] D. J. Clouthier, A. R. Knight, R. P. Steer, R. H. Judge, D. C. Moule (J. Mol. Spectrosc. **83** [1980] 148/60). – [14] D. C. Moule, C. R. Subramaniam (J. Mol. Struct. **38** [1977] 135/40). – [15] P. G. Mezey, R. P. Steer, A. Kapur (J. Photochem. **9** [1978] 130/1).

[16] D. C. Moule (private communication from [20]). - [17] R. P. Steer, A. R. Knight, D. J. Clouthier, D. C. Moule (J. Photochem. 9 [1978] 157/8). - [18] D. J. Clouthier, A. R. Knight, R. P. Steer (Chem. Phys. 48 [1980] 13/20). - [19] D. J. Clouthier, A. R. Knight, R. P. Steer, P. A. Hackett (J. Chem. Phys. 71 [1979] 5022/9). - [20] D. J. Clouthier, P. A. Hackett, A. R. Knight, R. P. Steer (J. Photochem. 17 [1981] 319/26).

[21] P. Gielow, A. Haas (Z. Anorg. Allgem. Chem. **394** [1972] 53/66). – [22] A. Haas, M. Yazdenbakhsch (Chem. Ber. **109** [1976] 976/83). – [23] A. Haas, J. Helmbrecht, W. Klug, B. Koch, H. Reinker, J. Sommerhoff (J. Fluorine Chem. **3** [1973/74] 383/95). – [24] A. Haas, J. Mikolajczak (Chem. Ber. **114** [1981] 829/31). – [25] C. H. D. Clark (Phil. Mag. [7] **18** [1934] 459/70).

[26] D. J. Clouthier, A. R. Knight, R. P. Steer (Chem. Phys. Letters 59 [1978] 62/5).

6.2.1.1.3 Fluorothiocarbonyl bromide FC(S)Br

The reaction of FC(S)Cl with PBr₃ at 125 to 130 °C (26 h) leads to a product which condenses at -90 °C. Fractional distillation gives 34% of a yellow liquid boiling at 4 to 8 °C/100 Torr which is 90% pure FC(S)Br. ¹⁹F NMR (internal standard C₆F₅, value recalculated to CFCl₃, positive sign means lowfield): $\delta = 119.2$ ppm, mass spectrum m/e = 142, M⁺, 123, BrCS⁺, 91, CBr⁺, 63, FCS⁺, A. Haas, J. Mikolajczak (Chem. Ber. **114** [1981] 829/31).

6.2.1.1.4 Fluorothiocarbonyl isocyanate FC(S)NCS, Fluorothiocarbonyl amide FC(S)NH₂

For preparation and physical properties of the isocyanate see Part 1, p. 9. – In the presence of catalytic amounts of CsF the compound reacts with F_2CS forming $CF_3SC(S)NCS$ (see p. 198) [1, 2].

The amide is postulated as intermediate in the reaction

The formation is explained as HF addition to the C-N bond. But no direct proof is given [3].

References:

[1] G. Diderich, A. Haas (Chem. Ber. 109 [1976] 3432/40). - [2] G. Dahms, G. Diderich, A. Haas, M. Yazdanbakhsch (Chemiker-Ztg. 98 [1974] 109/10). - [3] A. E. Feiring (J. Org. Chem. 41 [1946] 148/9).

6.2.1.2 Perfluorohalogenoorganothiocarbonyl Compounds

The compounds $CF_3SC(S)X$, X = F, Cl, SCF_3 , are described on p. 198.

6.2.1.2.1 Preparation and Physical Properties

Trifluoromethylthiocarbonyl amide CF₃C(S)NH₂

The in-situ preparation is described in context with the reaction of the compound on p. 194.

Trifluoromethylthiocarbonyl fluoride CF₃C(S)F

Pentafluoroethylthiocarbonyl fluoride C₂F₅C(S)F

For preparation and properties see Part 1, p. 10. Chemical reactions are covered on p. 194.

Tetrafluorodithiosuccinyl difluoride FC(S)CF₂CF₂C(S)F

The compound forms on reaction of $F_2C=CFI$ with sulfur at 45°C in the gas phase. The yield is 60%. The following intermediate steps are postulated [1, 2]:

The compound is a red-brown liquid, boiling point 84 to 85.5°C. The ¹⁹F NMR spectrum in CFCl₃ shows the chemical shifts δ (CF) = 66.2 and δ (CF₂) = -109.1 ppm (both multiplets). UV maxima are observed at 428 ($\epsilon = 46.5$), 294 ($\epsilon = 171$) and 220 nm ($\epsilon = 11300$) [1].

HexafLuorothioacetone (CF₃)₂CS, Radical Anion

Hexafluorocyclobutanethione $F_2 \xrightarrow{F_2} F_2$ $F_2 \xrightarrow{F_2} S$

 $(CF_3)_2CS$ is formed in the reaction of $(CF_3)_2C(OH)SH$ or of $(CF_3)_2C(OH)S_nC(OH)(CF_3)_2$ (n = 2, 3) with SF₄ at -78° C. In case of the polysulfanes as reactants this formation is accompanied by precipitation of sulfur [3]. The compound is also formed in a side reaction on reacting CF₃Re(CO)₅ with CS₂ at 130°C according to [4]:

$$\begin{array}{l} \mathsf{CF}_{3}\mathsf{Re}(\mathsf{CO})_{5} \leftrightarrows \mathsf{CF}_{3}^{-} + \mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{4}\,\mathsf{CF}_{3}^{-} + 2\,\mathsf{CS}_{2} \rightarrow 2\;(\mathsf{CF}_{3})_{2}\mathsf{CS} + 2\,\mathsf{S}^{2-} \\ \mathsf{Re}(\mathsf{CO})_{5} & \mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5} & \mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{CO})_{5} & \mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{CO})_{5} & \mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{Re}(\mathsf{Re}(\mathsf{CO})_{5}^{+} \\ \mathsf{Re}(\mathsf{$$

Gmelin Handboo CF Comp. Suppl. 1 References p. 19/

The reaction of perfluoropropene with sulfur and KF in tetramethylenesulfone at 120 °C in an autoclave yields as intermediate (CF_3)₂CS [5] according to:

 $CF_{3}CF = CF_{2} \underset{-F^{-}}{\overset{+F^{-}}{\underset{F_{3}C}{\overset{F_{3}C}{\longrightarrow}}}} \xrightarrow{F_{3}C} CF \xrightarrow{F_{3}C} \underset{F_{3}C}{\overset{S^{-}}{\underset{F_{3}}{\xleftarrow}}} \xrightarrow{F_{-}}{\underset{F_{3}C}{\overset{F_{3}C}{\longrightarrow}}} \xrightarrow{F_{3}C} \xrightarrow{C} S \underset{F_{3}C}{\overset{CF_{3}}{\underset{F_{3}C}{\longrightarrow}}} \xrightarrow{CF_{3}} \xrightarrow{CF_{3}} \xrightarrow{CF_{3}} \xrightarrow{CF_{3}} \xrightarrow{CF_{3}} \xrightarrow{CF_{3}} \xrightarrow{F_{3}C} \xrightarrow{F_{3}C$

The catalytic effect of F^- ions on the equilibrium between $(CF_3)_2CS$ and its dimer, the tetrakis(trifluoromethyl)-1,3-dithietane, is used for the in-situ generation of the instable monomer from the stable dimer. Since unsolvated fluoride is useful for the reaction, aprotic, polar solvents like dimethylformamide are recommended [6 to 12]. The mechanism of the reaction is described by a nucleophilic attack of the fluoride anion on a sulfur atom of the dithietane followed by ionic fragmentation [6].

¹³C NMR of $(CF_3)_2CS$ [standard $(CH_3)_4Si$]: $\delta = 194.4$ ppm [14].

The radical anion forms from $(CF_3)_2CS$ and lithium in a 1:3 mixture of hexamethyphosphoric amide and tetrahydrofuran at -95 °C. The ESR spectrum shows the hyperfine coupling constants (in G) $a^F = 22.56$, $a^C_{CS} = 18.6$ and $a^C_{CF_3} = 8.9$ [13].

A similar role, like $(CF_3)_2CS$ in the reaction system $CF_3CF=CF_2/KF$ and sulfur, is found for hexafluorocyclobutanethione as an intermediate in the reaction of perfluorocyclobutene with KF and sulfur [5].

6.2.1.2.2 Chemical Reactions

Trifluoromethylthiocarbonylamide reacts with hexamethyldisilazene according to [14]:

 $2 \text{ CF}_3\text{C}(\text{S})\text{NH}_2 + [(\text{CH}_3)_3\text{Si}]_2\text{NH} \rightarrow 2 \text{ CF}_3\text{C}(\text{S})\text{NHSi}(\text{CH}_3)_3 + \text{NH}_3$

The product is characterized by IR and ¹H NMR data [14]. Several 2-bromo-1,2-diphenylethanone derivatives are reacted with $CF_3C(S)NH_2$ in CH_3CN as a solvent (reflux, 20 h) to form thiazole compounds [15, 16]:

$$4-R-C_{6}H_{4}-CHBrC(O)-C_{6}H_{4}-4-R + CF_{3}C(S)NH_{2} \rightarrow 4-R-C_{6}H_{4}-C_{6}H_{4}-R-4$$

 $R = H (28\% \text{ yield after chromatography on silica gel, melting point (m.p.) 94 to 97 °C) [15, 16];$ $<math>R = Cl (m.p. 101 to 104 °C) [15], (m.p. 101 to 102 °C) [16], R = CH_3O (m.p. 51 to 54 °C) [15, 16].$ Further derivatives (R = F, Br, (CH₃)₂CHO) are claimed but no characterization is reported [16]. Alternatively the thiazole ($R = CH_3O$) has been prepared by generating CF₃C(S)NH₂ "in situ" from CF₃C(O)NH₂ and freshly pulverized P₄S₁₀ in benzene solution (reflux, 96 h) and adding the respective diphenylethanone (yield: 34%) [15, 16]. This method is extended to several other substituents R without presentation of any experimental details [16]. The resulting thiazole derivatives exhibit considerable activity as inhibitors of blood platelet aggregation [15, 16].

CF₃C(S)F reacts with the following hydrazone compound according [17]:

Similarly the reaction with $(C_6H_5)_2$ C=NNH₂ gives $(C_6H_5)_2$ C=CFCF₃, boiling point 80°C/1.7 mmHg, ¹⁹F NMR (negative sign means upfield from the standard CFCl₃): $\delta = -67.3$ (quartet, J = 10 Hz), and -64.4 ppm (doublet, J = 64.7 Hz), ¹H NMR see original [18].

CF₃CF₂C(S)F reacts with (C₆H₅)₂CN₂ [18] forming a mixture of

$$(C_6H_5)_2C=C(CF_2CF_3)F$$
 and $(C_6H_5)_2 \bigvee_S F_F$
A B

¹⁹F NMR (standard CFCl₃) [18]:

For compound A: $\delta(CF_3) = -83.6$ ppm [doublet of triplets (J = 9 Hz) of multiplets (J = 2.5 Hz) of quartets], $\delta(CF_2) = -113$ ppm [doublet of quartets (J = 13 Hz) of multiplets], $\delta(CF) = -127$ ppm (multiplet). For compound B: $\delta(CF_3) = -8.1$ ppm [doublet (J = 13 Hz) of multiplets], $\delta(CF_2) = -117$ ppm [ABX pattern: $\delta(F^A) = -114$, $\delta(F^B) = -119$ ppm, J_{AX} = 9.5 Hz, J_{BX} = 12.5 Hz, J_{AB} = 277 Hz], $\delta(CF) = -148$ ppm (multiplet).

Tetrafluorodithiosuccinyldifluoride reacts with CH₃OH like an organic acid fluoride forming the diester and the dithiolactone [1] according:

$$\mathsf{FC}(\mathsf{S}) - (\mathsf{CF}_2)_2 - \mathsf{C}(\mathsf{S})\mathsf{F} \xrightarrow{\mathsf{CH}_3\mathsf{OH}} \mathsf{CH}_3\mathsf{OC}(\mathsf{S})\mathsf{CF}_2\mathsf{CF}_2\mathsf{C}(\mathsf{S})\mathsf{OCH}_3 + \mathsf{F}_2 \xrightarrow{\mathsf{S}} \mathsf{F}_2 \mathsf{OCH}_3$$

The lactone which is formed by elimination of HF from an intermediate can only be isolated at low temperatures (-20 °C). The reaction of the succinyldifluoride with ethanol or isopropanol gives only the corresponding diester. With CH₃SH the compound reacts as follows [1]:

$$FC(S) - (CF_2)_n - C(S)F + 2 CH_3SH \rightarrow F_2 \xrightarrow{S} F_2 \xrightarrow{S} F_2$$

The conditions of the reactions and the physical properties of the products are gathered in **Table 70**, p. 196.

 $FC(S)(CF_2)_2C(S)F$ can be polymerized in wide ranges of pressure and temperature (-120°C to 0°C [2], for instance, by warming up from -78°C to 0°C [1]). Preferred conditions are temperatures between -50°C and -100°C and atmospheric pressure. In ethereal solvents with ionic initiators (amines, amides, quaternary ammonium salts, phosphines, CsF or metalalkyls) a pink polymer forms with the structure

Gmelin Handbook CF Comp. Suppl. 1

References p. 197

Table 70 Reactions of FC Refractive inde CFCl ₃ and (CH ₃ (wavelength λ,	(S)CF ₂ CF ₂ CF ₂ C(S)F and Phys x n ²⁵ , boiling point (b.p.) i J _s Si, solvent CFCl ₃), s = molar absorptivity ε).	ical Properties of th n ℃/pressure in To singlet, d = double	le Reaction Products [1]. rr, NMR spectrum (chemic st, tr = triplet, qu = quar	cal shift ô, spin-spin couplin tet, sept = septet, m = m	ng constant J, standard nultiplet, UV absorption
Reactant (conditions)	Product (yield in %, color, n ²⁵)	b.p./Torr in °C	¹⁹ F NMR	¹ H NMR	UV λ _{max} in nm (ε)
СН ₃ ОН (10 to 20°С)	CF ₂ C(S)OCH ₃ CF ₂ C(S)OCH ₃ (75%, orange-red, 1.4606)	97 to 98/96	δ = -109.2 (s)	δ = 4.18 (s)	λ _{max} = 243 (14 000), 399 (31)
СН₃ОН (— 20°С)	S S OCH3 F b F F G (19%, purple)	50 to 51/5.0	$\begin{split} \delta(F^a) &= -97.4 \ (m), \\ \delta(F^b) &= -110.0 \ (m), \\ 110.9 \ (m) \\ (AB \ spectrum), \\ \delta(F^c) &= -131.3 \ (m) \end{split}$	δ = 3.78 [d (J = 1.2 Hz) of tr (0.4 Hz)]	λ _{max} = 520 (17), 302 (7500)
С ₂ н ₅ ОН (15°С)	CF ₂ C(S)OC ₂ H ₅ CF ₂ C(S)OC ₂ H ₅ (74%, orange, 1.4545)	76/0.55	$\delta = -109.7$ (s)	δ = 1.48 (tr, J = 7 Hz, 6 H), δ = 4.68 (qu, J = 7 Hz, 4 H)	λ _{max} = 400 (38.6), 308 (292), 244 (14100)
(СН ₃) ₂ СНОН (15°С)	CF ₂ C(S)CH(CH ₃) ₂ CF ₂ C(S)CH(CH ₃) ₂ (orange)	77 to 80/0.75	$\delta = -107.2$ (s)	δ = 1.42 (d, J = 6 Hz, 12 H), δ = 5.67 (sept, J = 6 Hz, 2 H)	λ _{max} = 400 (54.8), 302 (410), 248 (13200)
CF ₃ SH (0°C, NaF)	SSS (SCH ₃)2 F2 F2 (21%, deep purple, 1.5896)	100 to 103/0.75	δ = -103.3 (tr, J = 9.5 Hz, 2 F), δ = -116.8 [tr (J = 9.5 Hz) of sept (J = 0.8 Hz) 2 F]	δ = 2.35 (tr, J = 0.8 Hz)	λ _{max} = 513 (13.5), 320 (7300)

Gmelin Handbook CF Comp. Suppl. 1

196

Sulfur(II) Compounds

The polymer is insoluble in all common solvents and resistant against acids. At 242 to 267 °C the solid melts forming a viscous liquid [1, 2].

Hexafluorothioacetone reacts with olefins in an Ene fashion yielding exclusively products with C-S bonds.

This stereospecific reaction, which is in contrast to the behavior of the normal ketones (formation of an O-H bond), is interpreted on the basis of the HOMO-LUMO theory under consideration of the participation of the sulfur d orbitals [19].

(CF₃)₂CS reacts with phenyl-4-methoxyphenyldiazomethane in CH₂Cl₂ according

The product (purity 87% after distillation) boils at 102 to 103°C/0.2 Torr. It is used as antifertility drug [20, 21].

To avoid the quite difficult handling of $(CF_3)_2CS$ (tendency for dimerization, toxicity) preparative work performed with this compound is facilitated by capitalizing on the "in situ" generation from the cyclic dimer tetrakis(trifluoromethyl)-1,3-dithietane via fluoride ion catalysis. For such kinds of reactions therefore refer to the latter compound, see Suppl. Vol. 2.

Hexafluorothioacetone generated from its cyclic dimer by thermolysis (600 °C) has been reacted with diketene at 500 ± 10 °C to yield hexafluoroisobutylene (48%). Similar results, but varying yields, are obtained by substituting diketene by its monomer or by generating (CF₃)₂CS from CF₃CF=CF₂ and sulfur at 380 to 425 °C and feeding it directly together with ketene or a ketene generating compound (diketene, acetone, acetic acid, isopropenyl acetate, or acetyl acetone) to a second reactor (reaction temperatures ranging from 300 to 800 °C) [22].

The ¹H NMR spectrum of thianorbornene, the product of the Diels-Alder reaction of $(CF_3)_2CS$ with cyclopentadiene (see the third compound in Table 4 in Part 1, p. 18) is given in [18].

The addition of CLF to $(CF_3)_2CS$ forming $(CF_3)_2CFSCL$ and the reaction of perfluorodialkylthiocarbonyls with HN₃ are covered in Suppl. Vol. 2.

References:

[1] W. J. Middleton (J. Org. Chem. **40** [1975] 129/30). - [2] W. J. Middleton, E. I. Du Pont de Nemours & Co. (U.S. 3907885 [1975]; C.A. **83** [1975] No. 207024). - [3] Q.-C. Mir, J. M. Shreeve (Inorg. Chem. **19** [1980] 1510/4). - [4] G. Thiele, G. Liehr, E. Lindner (J. Organometal.

Gmelin Handbook CF Comp. Suppl. 1 Chem. **70** [1974] 427/35). – [5] B. L. Dyatkin, S. R. Sterlin, L. G. Zhuravkova, B. I. Martynov, E. I. Mysov, I. L. Knunyants (Tetrahedron **29** [1973] 2759/67).

[6] N. Ishikawa, T. Kitazume (Chem. Letters **1972** 947/8). – [7] T. Kitazume, N. Ishikawa (Chem. Letters **1973** 267/8). – [8] N. Ishikawa, T. Kitazume, T. Mizuno, Shin Nitto Chemical Co., Ltd. (Japan. Kokai 75-123609 [1975]; C.A. **85** [1976] No. 20593). – [9] T. Kitazume, N. Ishikawa (Bull. Chem. Soc. Japan **48** [1975] 361/2). – [10] T. Kitazume, T. Otaka, R. Takei, N. Ishikawa (Bull. Chem. Soc. Japan **49** [1976] 2491/4).

[11] Z. Zubovics, N. Ishikawa (J. Fluorine Chem. 8 [1976] 43/54). - [12] T. Kitazume, N. Ishikawa (Bull. Chem. Soc. Japan 46 [1973] 3285/8). - [13] G. A. Russell, J. L. Gerlock, G. R. Underwood (J. Am. Chem. Soc. 94 [1972] 5209/11). - [14] W. Walter, H.-W. Lüke, J. Voß (Liebigs Ann. Chem. 1975 1808/21). - [15] R. H. Rynbrandt, E.- E. Nishizawa, D. P. Balogoyen, A. R. Mendoza, U. A. Annis (J. Med. Chem. 24 [1981] 1507/10).

[16] E. E. Nishizawa, The Upjohn Co., R. H. Rynbrandt (Ger. Offen. 2836742 [1978/79]; C.A. 91 [1979] No. 20490). - [17] D. F. Morrow, D. Williams, W. E. Kreighbaum, Bristol-Myers Co. (Ger. Offen. 2514809 [1975]; C.A. 84 [1976] No. 73854). - [18] W. J. Middleton, E. I. Du Pont de Nemours & Co. (U.S. 3712929 [1973]; C.A. 78 [1973] No. 124246). - [19] S. Inagaki, H. Fujimoto, K. Fukui (J. Am. Chem. Soc. 98 [1976] 4054/61). - [20] W. J. Middleton, E. I. Du Pont de Nemours & Co. (U.S. 3751485 [1973]; C.A. 79 [1973] No. 91770).

[21] W. J. Middleton, E. I. Du Pont de Nemours & Co. (U.S. 3678117 [1972]; C.A. **77** [1972] No. 101125). — [22] M. van der Puy, L. G. Anello, B. Sukornick, R. F. Sweeney, R. A. Wiles, Allied Chem. Corp. (U.S. 4244891 [1979/81]; C.A. **94** [1981] No. 208337). — [23] M. S. Raasch (J. Org. Chem. **40** [1975] 161/72). — [24] W. Gombler (Spectrochim. Acta A **37** [1981] 57/61).

6.2.1.3 Trifluoromethylmercaptothiocarbonyl Compounds CF₃SC(S)X

 $(X = NH_2, NCS, F, Cl, Br, SCF_3)$

6.2.1.3.1 Preparation and Formation

Trifluoromethylmercaptothiocarbonyl amide CF3SC(S)NH2

CF₃SCN reacts with excess H₂S at 30 to 35°C (24 h) in a sealed tube forming CF₃SC(S)NH₂ (20% yield). The compound is thermally stable at 20°C only for about 24 h. The formation of the compound in the reaction of CF₃SH and NH₃ [1] could not be verified [2].

Trifluoromethylmercaptothiocarbonyl isothiocyanate CF₃SC(S)NCS

The compound (in 28% yield) forms by reacting F_2CS and FC(S)NCS in the presence of catalytic amounts of CsF at 20°C (shaking for 2 to 3 h). It is obtained as a by-product in the preparation of FC(S)NCS from FC(S)Cl and KSCN [2].

$\label{eq:constraint} Trifluoromethy \mbox{lmercaptothiocarbonyl fluoride } CF_3 SC(S)F$

The linear dimer of F_2CS is formed in small amounts during the addition of ClF to $(CF_3)_2CS$ [3].

Difluoro(isothiocyanato)methyLmercaptothiocarbonyL fluoride $CF_2(NCS)C(S)F$

The compound is formed as by-product on reacting FC(S)Cl with KSCN at -25 °C. It has been isolated as pure substance from some distillation residues [2].

Thiocarbonyl Compounds

Trifluoromethylmercaptothiocarbonyl chloride and bromide $CF_3SC(S)X$, X = Cl, Br

The chloride is obtained in 87% yield by reacting $CF_3SC(S)F$ with BCl_3 at 20°C for 20 h in a bomb tube [3]. The bromide (83% yield) forms similarly by F-Br exchange from $CF_3SC(S)F$ and BBr_3 at 35 to 40°C (0.5 h, open system), followed by warming to 60°C for some minutes [2].

Bis(trifluoromethylmercapto)thiocarbonyl CF₃SC(S)SCF₃

The compound forms as a by-product on reacting $FC(O)SCF_3$ with CsF, presumably according [4]:

 $\mathsf{FC}(\mathsf{O})\mathsf{SCF} \rightleftharpoons (\mathsf{CF}_3\mathsf{SCF}_2\mathsf{O})^-\mathsf{Cs}^+ \xrightarrow{-\mathsf{F}_2\mathsf{CO}} (\mathsf{F}_3\mathsf{CS})^-\mathsf{Cs}^+ \rightleftharpoons \mathsf{F}_2\mathsf{CS} + \mathsf{CsF}_2 \xrightarrow{+2\mathsf{F}_2\mathsf{CS}} (\mathsf{CF}_3\mathsf{S})_2\mathsf{CS}$

Small amounts of $(CF_3S)_2CS$ are obtained in the reaction of $(CF_3S)_3CSN(C_2H_5)_2$ with HCl [3].

Bis(trifluoromethyl)pentathiodiperoxycarbonate $(CF_3SS)_2CS$

On slowly introducing CF₃SCl into a rapidly stirred suspension of Na₂CS₃ · 3 H₂O in petroleum ether at -30° C, 15% (CF₃S)₂CS are formed [2, 5]. On replacing Na₂CS₃ by Tl₂CS₃ the yield is lowered to 10% [5].

1,2,3,4-Tetrakis(trifluoromethylmercapto)-2-butene-1,4-dithione

CF₃SC(S)C(SCF₃)=C(SCF₃)C(S)SCF₃

For details of this compound see Suppl. Vol. 2.

6.2.1.3.2 Physical Properties

Physical data of the compounds are compiled in **Table 71**. Additional information is presented below.

Table 71

Physical Data of Trifluoromethylmercaptothiocarbonyl Compounds, of $CF_2(NCS)C(S)F$ and of $(CF_3SS)_2CS$.

Boiling point (b.p.) in °C/pressure in Torr, melting point (m.p.) in °C (in parentheses), ¹⁹F NMR spectrum (chemical shift δ in ppm, spin-spin coupling constant J in Hz, s, d, tr = singlet, doublet, triplet, internal standard C₆F₆, values refer to CFCl₃). UV spectrum (wavelength λ , molar absorptivity ϵ).

Compound	b.p./Torr (m.p.) in °C	¹⁹ F NMR (δ in ppm), IR spectrum (in cm ⁻¹), UV spectrum (λ in nm)
CF ₃ SC(S)NH ₂ colorless needles [2]	(63, decomposition)	$\label{eq:states} \begin{array}{l} {}^{19}F\;NMR\colon\delta=-43.1\;(s)\\ IR\colon3400\;(s),\;3260\;(m),\;3150\;(s),\;1604\;(vs),\;1417\\ (vs),\;1218\;(vs),\;1177\;(vs),\;1166\;(vs),\;1138\;(vs),\;1098\\ (vs),\;824\;(vs),\;751\;(s) \end{array}$
Gmelin Handbook		

Compound	b.p./Torr	¹⁹ F NMR (δ in ppm), IR spectrum (in cm ⁻¹),
CF ₃ SC(S)NCS red [2]	45/10	¹⁹ F NMR: $δ = -44.5$ (s) IR: 1928 (vs, br), 1250 (s), 1220 (s), 1160 (s), 1105 (s), 1030 (s), 753 (m)
CF ₂ (NCS)C(S)F orange [2]	40/10	^{19}F NMR: $\delta(\text{CF}_2)=-45$ (d), $\delta(\text{CF})=-88.7$ (tr), J(F-F) = 19 Hz IR: 1964 (vs, br), 1228 (vs), 1210 (vs), 1181 (vs), 1105 (vs), 1074 (s)
CF ₃ SC(S)Cl [3]	87	¹⁹ F NMR: $\delta = -47.7$ (s) IR: 1061 (s), 1038 (s), 1007 (s), 983 (s), 865 (s, br), 625 (m) UV (in isooctane): $\lambda_{max} = 212$ (ε = 8750), 237.5 (ε = 10250), 269 (ε = 5250), 288 (ε = 5560)
CF ₃ SC(S)Br red [2]	67/150	^{19}F NMR: $\delta=-47.7$ (s) IR: 1181 (vs), 1131 (vs), 1082 (vs), 757 (s), 752 (m), 716 (s), 700 (s)
(CF ₃ SS) ₂ CS [2, 5]	44/1	¹⁹ F NMR: $\delta = -44.7$ (s) IR: 1176 (vs), 1166 (vs), 1108 (vs), 1098 (vs), 1082 (vs), 815 (m), 755 (s) UV (in isooctane): $\lambda_{max} = 203$ (ε = 14130), 215 (ε = 12870), 258 (ε = 12200), 317 (ε = 3800)

Table 71 (continued)

The analysis of the photoelectron spectra of $CF_3SC(S)X$ (X = F, Cl, SCF_3) resulted in the following vertical ionization energies (in eV) and assignments [6]:

Peak	1	2	3	4	5	6	7	8	9
CF ₃ SC(S)F	10.12	10.45	12.45	13.3	13.8	15.8	17.3	-	_
	n _s	π1	π2	σ_{CS}					
CF ₃ SC(S)Cl	9.57	10.25	11.45	10.03	12.95	13.8	14.9	15.3	17.2
	n _s	π1	n _{Cl}	$\pi_{2(Cl)}$	σ_{CS}				
(CF ₃ S)CS	9.25	10.00	10.50	12.7	13.2	14.6	15.4	16.4	17.2
	n _s (b ₂)	π ₁ (b ₁)	π ₂ (a ₂)	σ _{cs} (a ₁)					

The assignments are based on comparisons with other sulfur compounds and on the order of the orbitals calculated by the CNDO method.

A population analysis for the C=S group in $(CF_3S)_2CS$ shows no polarization [6].

6.2.1.3.3 Chemical Reactions

The chemical behavior of the CF_3S -thiocarbonyl compounds is characterized by the reaction of the C=S group. Electrophilic additions of halogens give sulfenyl chlorides. These

chlorides react with the thiocarbonyl compounds on UV irradiation forming disulfanes; the reaction rate increases with the degree of the fluorination of the reaction components. For details see the Chapters on the sulfenyl chlorides and on the disulfanes in Suppl. Vol. 2.

The oxidation of the thiocarbonyl compounds by 3-chloroperbenzoic acid in absolute ether at 0°C yields the corresponding S oxides [2]:

XYC=S + 3-ClC₆H₄C(O)OOH \rightarrow XYC=SO + 3-Cl-C₆H₄COOH

In the following it is given for the investigated reactions the molar ratio perbenzoic acid/ thiocarbonyl and the yield of the products [2]:

Χ			CF₃S	CF₃S	CF₃S	CF₃SS
Υ			Cl	Br	CF ₃ S	CF ₃ SS
Molar ratio			1:1	2:1	1:1	1:1
Yield			64%	20%	76%	37%

In this reaction completely fluorine-substituted thiocarbonyls could not be oxidized, brominefluorine derivatives reacted only partially. The photochemically induced dimerization of the thiocarbonyls forming dithietanes is treated in Suppl. Vol. 2.

The compounds $CF_3SC(S)NH_2$ and $CF_3SC(S)Br$ hydrolyze on contact with water [2]. $(CF_3S)_2CS$ reacts with HgO forming $(CF_3S)_2CO$ and HgS, see Suppl. Vol. 2.

References:

[1] R. N. Haszeldine, J. M. Kidd (J. Chem. Soc. **1955** 3871/80). – [2] G. Diderrich, A. Haas (Chem. Ber. **109** [1976] 3432/40). – [3] A. Haas, M. Yazdanbakhsch (Chem. Ber. **109** [1976] 1976/83). – [4] A. Haas, J. Helmbrecht, E. Klug, B. Koch, H. Reinke, J. Sommerhoff (J. Fluorine Chem. **3** [1973/74] 383/95). – [5] F. Bur-Bur (Diss. Univ. Bochum 1973).

[6] H. Bock, K. Wittel, A. Haas (Z. Anorg. Allgem. Chem. 408 [1974] 107/14).

6.2.1.4 Bis(trifluoromethyl)thioketene (CF₃)₂C=C=S

6.2.1.4.1 Preparation and Physical Properties

The ketene forms presumably as intermediate in the reaction of imidazolidinethiones with $(CF_3)_2CS$, which results by O-S exchange in the formation of the cyclic dimer of the ketene [1, 7], for preparation by pyrolysis of the dimer (1,3-dithietane) and for physical properties see Part 1, p. 30.

6.2.1.4.2 Chemical Reactions

Bis(trifluoromethyl)thioketene yields both mono- and diadducts as a result of cycloaddition with Schiff bases depending on the type of the latter [6] (see **Table 72**, p. 203).

$$(CF_{3})_{2}C=C=S + C_{6}F_{5}CH=NCH_{3} \rightarrow \underset{C_{6}F_{5}}{H} \xrightarrow{S} C(CF_{3})_{2}$$

Gmelin Handbook CF Comp. Suppl. 1

References p. 210

 $\begin{array}{l} {\sf R} \,=\, {\sf H}, \, {\sf R}' \,=\, {\sf CH}_3; \, {\sf R} \,=\, {\sf H}, \, {\sf R}' \,=\, {\sf CH}({\sf CH}_3)_2, \\ {\sf R} \,=\, {\sf Cl}, \, {\sf R}' \,=\, {\sf CH}_3; \, {\sf R} \,=\, {\sf NO}_2, \, {\sf R}' \,=\, {\sf CH}_3, \\ {\sf R} \,=\, {\sf CH}_3{\sf O}, \, {\sf R}' \,=\, {\sf 4}\text{-}{\sf CH}_3{\sf O}\text{-}{\sf C}_6{\sf H}_4 \\ \end{array}$

With CH_3NCS the result of the reaction is a triadduct [6] (see Table 72).

Aryl azides add to $(CF_3)_2C=C=S$ forming $\Delta^3-1,2,3,4$ -thiatriazolines [6] (see Table 72).

Performing the same reaction with 2,4,6-trimethylphenylazide a similar product results [6]:

Beside these 1:1 (CF_3)₂C=C=S/azide adducts the formation of orange 2:1 adducts is observed, also accessible by adding excess thioketene to the 1:1 adducts. The structure of these compounds has not been established [6].

With $(CH_3O)_3P$, two molecules of thioketene react to form a water-sensitive product with structure (A). With $(C_6H_5O)_3P$ the reaction takes a similar course, but due to hydrolysis a different product (B) is isolated [6]:

202

Table 72

Physical Data¹⁾ for the Products of the Reaction of $(CF_3)_2C=C=S$ with Schiff Bases, Methyl Isocyanate, Aryl Azides, Phosphite Esters, Methylbenzenes and Thiothiophthene [6].

Yield in %, boiling point (b.p.) in °C/pressure in Torr, melting point (m.p.) in °C, ¹⁹F NMR (positive values of the chemical shift δ mean downfield from the standard, spin-spin coupling constant J), s, d, tr, qu, m = singlet, doublet, triplet, quartet, multiplet.

Compound (yield) reaction conditions	b.p./Torr (m.p.) in °C	¹⁹ F NMR ³⁾ (δ in ppm, J in Hz)
$C_{6}F_{5} \xrightarrow[]{H} \\ N \\ I \\ CH_{3} \\ CH_{3} \\ CH_{3} $	(66.7 to 67.5) ²⁾	$\begin{split} \delta &= 11.54 \; (\text{qu of d of qu}), \; 17.90 \\ (\text{qu of qu of d}), \; J(\text{CF}_3\text{-}\text{CF}_3) \; = \; 9.1, \\ J(\text{CF}_3^1\text{-}\text{CH}) \; = \; 1.2, \; J(\text{CF}_3^1\text{-}\text{CH}_3) \; = \; 0.5, \\ J(\text{CF}_3^2\text{-}\text{CH}) \; = \; 1.3, \; J(\text{CF}_3^2\text{-}\text{CH}_3) \; = \; 2.6 \end{split}$
(79%), in hexane		
4-R-C ₆ H ₄ K' $F_3C-C-CF_3^1$ R = H, R' = CH ₃ (78%), petroleum ether, 0°C	(162 to 162.8) ⁴⁾	$\begin{split} \delta &= 9.30 \; (qu, \; CF_3^1), \; 10.3 \; (qu, \; CF_3^2), \\ 11.4 \; (qu, \; CF_3^3), \; 13.5 \; (qu, \; CF_3^4), \\ J(CF_3^1\text{-}CF_3^4) &= 8, \; J(CF_3^2\text{-}CF_3^3) = 9, \\ J(CF_3^2\text{-}CF_3^{1.4}) &= 4.5, \; J(CF_3^2\text{-}CH_3) = \\ 1.3 \; (x \; = \; 1, \; 2, \; 3 \; \text{or} \; 4) \end{split}$
$R = H, R' = CH(CH_3)_2$ (52%), petroleum ether, 0°C	(138 to 139)	$\begin{split} \delta = 10.13 \; (\text{qu}, 1 \; \text{CF}_3), 10.88 \; (\text{qu}, 1 \; \text{CF}_3), \\ 11.47 \; (\text{m}, 1 \; \text{CF}_3), 14.44 \; (\text{m}, 1 \; \text{CF}_3) \end{split}$
$R = Cl, R' = CH_3$ (60%), petroleum ether, 0°C	(143 to 144)	_
$R = NO_2, R' = CH_3$ $CH_2Cl_2, 0^{\circ}C$	(150 to 151)	_
$\label{eq:R} \begin{split} {\sf R} &= {\sf CH}_3{\sf O}, {\sf R}' = {\sf 4}{\sf -}{\sf CH}_3{\sf O}{\sf -}{\sf C}_6{\sf H}_4 \\ (62\%), {\sf CH}_2{\sf Cl}_2 \end{split}$	(122 to 123) ⁶⁾	$ \delta = 8.50 \; (qu, 1\; CF_3), \; 10.7 \; (qu, 1\; CF_3), \\ 11.9 \; (m, 1\; CF_3), \; 13.1 \; (m, 1\; CF_3) $
$(CF_3)_2C \xrightarrow{S} \xrightarrow{S} \xrightarrow{C(CF_3)_2}_{H_3C}$	(121.5 to 122.5)	$\begin{array}{l} \delta = \ 7.94 \ ({\rm qu} \ {\rm of} \ {\rm qu}, \ {\rm CF}_3^1), \ 8.92 \ ({\rm s}, \\ ({\rm CF}_3)_2{\rm C}^{=}), \ 9.79 \ ({\rm qu}, \ {\rm CF}_3^2), \ 11.1 \ ({\rm CF}_3^3)^{7)}, \\ 12.5 \ ({\rm CF}_3^4)^{7)}, \ {\rm J}({\rm CF}_3^1{\rm -CF}_3^4) = \ 8.7, \\ {\rm J}({\rm CF}_3^2{\rm -CF}_3^3) = \ 9.3, \ {\rm J}({\rm CF}_3^1{\rm -CH}_3) = \ 1.2 \end{array}$
(52%), occasional cooling		
$(CF_3)_2C \xrightarrow{S_N}_N \xrightarrow{R_1}_R$		
$R_1, R_2 = H$ (26.5%), petroleum ether, 6 d	(125 to 125.5) ^{8),9)}	$\delta = 10.20 \text{ (qu, 1 CF}_3\text{), 11.08 (qu, 1 CF}_3\text{)}$
adduct thioketene/azide (2:1), $R_1, R_2 = H$ (22%) ¹²⁾	(80 to 81) ^{9), 10)}	δ = 0.21 (s, 2 CF_3), 9.54 and 9.98 (qu, (CF_3)_2C=)
Gmelin Handbook CF Comp. Suppl. 1		
Table 72 (continued)

Compound (yield) reaction conditions	b.p./Torr (m.p.) in °C	¹⁹ F NMR ³⁾ (δ in ppm, J in Hz)
$R_1 = CH_3, R_2 = H$ (35%), petroleum ether, 6 d	(124.5 to 125) ⁸⁾	$\delta=9.66~({\rm qu},1~{\rm CF_3}),10.57~({\rm qu},1~{\rm CF_3})$
adduct thioketene/azide (2:1), $R_1 = CH_3$, $R_2 = H$ (6%)	(77.5 to 78.5) ¹⁰⁾	_
$R_1 = OCH_3, R_2 = H$ (56%), hexane, 16 h	(113 to 113.7) ^{8),9)}	$\delta = 10.21, 10.92 (A_3 B_3 \text{ type})^{11}$
adduct thioketene/azide (2:1), $R_1 = OCH_3$, $R_2 = H$, (55%) ¹²⁾	(117.5 to 118) ⁹⁾	δ = 0.25 (s, 2 CF_3), 8.42 and 8.63 (qu, (CF_3)_2C=)
$R_1 = Cl, R_2 = H$ (14.4%), hexene, 4 d	(119 to 119.5) ^{6),8)}	$\delta ~=~ 10.25~(qu,~1~CF_3),~10.57~(qu,~1~CF_3)$
adduct thioketene/azide (2:1), $R_1 = CL$, $R_2 = H$ (25%) ¹²⁾	(102.5 to 103) ^{9), 10)}	$\delta=$ 0.39 (s, 2 CF_3) $^{11)}\!\!\!\!\!\!$ 9.52, and 9.89 (qu, (CF_3)_2C=)
$R_1, R_2 = Cl$ (4), hexane, 4 d	(116.5 to 117) ^{8),9)}	$\begin{array}{l} \delta = 10.25 \; (A_3B_3 \; type, 2\; CF_3)^{5),13)}, \; 10.76 \\ (qu, \; 1\; CF_3)^{14)}, \; 11.65 \; (qu, \; 1\; CF_3)^{14)} \end{array}$
adduct thioketene/azide (2:1), $R_1, R_2 = Cl$ (29%) ¹²⁾	(96.5 to 97) ^{9), 10)}	δ = 0.62 (s, 2 CF_3) $^{11)}\!\!\!\!,$ 9.75, and 10.07 (qu's, (CF_3)_2C=)
$(CF_3)_2C \xrightarrow{S} N \xrightarrow{CH_3} CH_3$	(126.7 to 127.2) ^{8).9)}	$\delta~=~$ 10.28 (qu, 1 $\text{CF}_3)^{11)}\!$
(41%), hexane, 1 d		
(CF ₃) ₂ S C(CF ₃) ₂ ¹⁵⁾ (CH ₃ 0) ₃ P S	_	$\begin{split} \delta &= \ 0.89 \ [\text{d}, \ 5\text{-}(\text{CF}_3)_2, \ \text{J}(\text{F-P}) \ = \ 1.3], \\ 9.68 \ (\text{m}, \ 2\text{-}(\text{CF}_3)_2) \end{split}$
(59%), CH ₂ Cl ₂ , 0°C		
$(CF_3)_2 \xrightarrow{C(CF_3)_2} (C_6H_5O)_2 \xrightarrow{P}_{H} \xrightarrow{S}_{S} \xrightarrow{C(CF_3)_2} \xrightarrow{S}_{H}$	(98 to 98.5) ⁶⁾	$\delta=$ 2.56 and 4.47 (qu, 5-(CF_3)_2), 9.95 (A_3B_3 type, 2-(CF_3)_2C=)
(62%), <30°C, moist air		

204

Table	72	(continued)	
-------	----	-------------	--

Compound (yield) reaction conditions	b.p./Torr (m.p.) in °C	¹⁹ F NMR ³⁾ (δ in ppm, J in Hz)
R_{4} R_{5} R_{4} R_{5} R_{1} R_{1} R_{1} R_{1} R_{1} R_{2} R_{1} R_{1} R_{2} R_{2} R_{1} R_{2} R_{2} R_{1} R_{2} R_{2} R_{1} R_{2} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{2} R_{2} R_{2} R_{2} R_{1} R_{2} R_{2		
R_1 to $R_5 = CH_3$ (45%), benzene, 100°C ¹⁶⁾ , 15 h	(120 to 120.2) ⁹⁾	δ = 2.73 (s, 2 CF ₃), 9.26 (s, (CF ₃) ₂ C=)
$R_2, R_5 = H; R_1, R_3, R_4 = CH_3$ (54%), 150°C ¹⁶⁾ , 6 h	(67 to 68) ⁹⁾	δ = 2.39 (s, 2 CF ₃), 9.57 (s, (CF ₃) ₂ C=)
$R_1, R_2, R_4, R_5 = H; R_3 = OCH_3$ (20%), 150°C ¹⁶⁾ , 8 h	(31.2 to 31.8) ⁹⁾	δ = 2.54 (s, 2 CF ₃), 9.72 ((CF ₃) ₂ C=)
$R_1, R_2, R_4, R_5 = H; R_3 = OH$ (1.7%), 100°C ¹⁶⁾ , 15 h (by-product)	(102 to 104) ⁶⁾	δ = 2.66 (s, 2 CF ₃), 9.61 (s, (CF ₃) ₂ C=)
4-CH ₃ C ₆ H ₄ OC(S)CH(CF ₃) ₂ (35%), see above (main product)	(80 to 81) ⁷⁾	δ = 1.29 (d, J = 6)
$\begin{array}{c} 4-CH_3-C_6H_40 \\ (CF_3)_2HC \\ S \\ (18\%), see above \\ (main product) \\ \end{array}$	(76 to 77) ⁶⁾	δ = 6.27 [d, (CF ₃) ₂ CH, J(F,H) = 7], 8.87 (s, (CF ₃) ₂ C=)
$H_{3}C \xrightarrow{S} S \xrightarrow{CH_{3}}$ $H_{1} \xrightarrow{I} S \xrightarrow{C(CF_{3})_{2}} C(CF_{3})_{2}$	(151 to 152) ^{6), 17)}	$δ = 4.49 [d, (CF_3)_2CH, J(F,H) = 7], 9.84 (s, (CF_3)_2C=)$
(58%), CH ₂ Cl ₂ , 22 h		
CF_3 $C=$ S CH_3 S CH_3 CH_3 CF_3 CH_3 C	$(134 \text{ to } 135)^{18})$	$\begin{split} &\delta=3.03~[d,(CF_3)_2CH),J(F,H)=6],9.73\\ &(s,~(CF_3)_2C\text{=}CS_2),~9.84~(s,~(CF_3)_2C\text{=}CS_2),\\ &9.66~(A_3B_3,~(CF_3)_2C\text{=}) \end{split}$

∕s∖ `s`

(CF3)2C-↓ H

Gmelin Handbook CF Comp. Suppl. 1

(77%), CH₂Cl₂, 40 h

CF3

Table 72 (continued)

Compound (yield)	b.p./Torr	¹⁹ F NMR ³⁾	
reaction conditions	(m.p.) in °C	(δ in ppm, J in Hz)	
	(101 to 103) ⁶⁾	δ = 2.30 [d, J(F,H) = 6]	

(39%), CH₂Cl₂

¹⁾ For further data (n_D, ¹H NMR, IR, mass spectrum) refer to the original publication [6]. – ²⁾ Recrystallized from hexane/CCl₄. – ³⁾ External standard CFCl₂CFCl₂. – ⁴⁾ From CCl₄. – ⁵⁾ In DCl₃. – ⁶⁾ From hexane. – ⁷⁾ Ten-line pattern. – ⁸⁾ Yellow crystals. – ⁹⁾ Recrystallized. – ¹⁰⁾ Orange crystals. – ¹¹⁾ In CCl₄. – ¹²⁾ Isolated from the filtrate of the 1:1 adduct. – ¹³⁾ Room temperature. – ¹⁴⁾ 0°C. – ¹⁵⁾ Pale yellow oil. – ¹⁶⁾ Sealed tube. – ¹⁷⁾ Deep orange. – ¹⁸⁾ White product from CH₃NO₂.

Hexamethylbenzene reacts with (CF₃)₂C=C=S to form the following dithietane [6]:

 $H_{3C} \xrightarrow{CH_{3}} CF_{3} \xrightarrow{CF_{3}} S \xrightarrow{CF_{3}} CF_{2}$ $H_{3C} \xrightarrow{CH_{3}} CF_{2} \xrightarrow{CF_{3}} S \xrightarrow{C=C} CF_{3}$ $H_{3C} \xrightarrow{CH_{3}} CF_{3}$

With 1,2,4,5-tetramethylbenzene and 4-methylanisole the analogous products are isolated. The same type of compound results from the reaction with 4-methylphenol; the yield is very small. Dominant are two other products, the ester $4-CH_3-C_6H_4OC(S)CH(CF_3)_2$ and another dithietane [6].

With toluene or xylene no reaction occurs. $(CF_3)_2C=C=S$ and thiothiophthene (A) yield in a reaction sequence first the 2:1 adduct (B), which can be isolated as an orange substance, and as a result of further thioketene addition the white 4:1 adduct (C). With 2-aminobenzenethiol the benzothiazole derivative (D) is formed [6].

206

Bis(trifluoromethyl)thioketene reacts as dienophile in Diels-Alder reactions. The products with some of their physical properties are covered in **Table 73** [2, 5, 6]. It is remarkable that the reaction with 1,3-cyclohexadiene gives the Diels-Alder product and also the product of the Ene reaction (ratio 54.5:45.5). Many other compounds are formed in the reaction with cyclopentadiene derivatives (no physical properties are given) according [5]

$$R_{x} + (CF_{3})_{2}C = C = S \xrightarrow{R_{x}} F_{x} C(CF_{3})_{2}$$

Several cyclohexadiene adducts are produced from the thioketene and 1,3-cyclohexadiene [5]:

Dialkylsulfur diimides react with the thioketene forming N-alkylbis(trifluoromethyl)-keteneimines [3]:

2 (CF₃)₂C=C=S + RN-S-NR
$$\rightarrow$$
 2 (CF₃)₂C=C=NR + 3 S

This procedure is applied to compounds with R = alkyl (C_1 to C_{18} , also branched) and with R = cycloalkyl (C_4 to C_7), see Part 1, p. 44. A characterization is given only for the keteneimines with $R = CH_3$, $n-C_4H_9$, $t-C_4H_9$. The reaction with diphenylsulfur diimide gives a compound, which is sensitive to UV irradiation. All substances can be used as antistatic agents for wool [3].

Table 73

Diels-Alder Reaction Products of (CF₃)₂C=C=S.

Yield in %, boiling point (b.p.) in °C/pressure in Torr, melting point (m.p.) in °C, ¹⁹F NMR (values of the chemical shift δ are downfield from the external standard CFCl₂CFCl₂), spin-spin coupling constant J, (d, tr, qu mean doublet, triplet, quartet); for further properties (n_D, IR, ¹H NMR) see the original publications.

Reactant (conditions)	Product yield in %	b.p./Torr (m.p.) in °C	¹⁹ F NMR (δ in ppm)
	C(CF ₃) ₂	69.7/7 [5], 196/760 (10) [2]	7.64 (qu) ¹⁾ , 11.6 (q of d) [2, 5]
(15 to 20°C, CH ₂ Cl ₂) [2, 5]	96% [2], 89% [5]		
Gmelin Handbook CF Comp. Suppl. 1			

Table 73 (continued)

Reactant (conditions)	Product yield in %	b.p./Torr (m.p.) in °C	¹⁹ F NMR (δ in ppm)
	91% [2]	45/0.4 [2], 45/0.05 [5]	11.75 (qu), 15.9 (qu of d, J = 1.8 Hz) [2]
CH3 [5]	H ₃ C 2) S C(CF ₃) ₂	60 to 67/5	_
$H_{3C} \xrightarrow{CH_{3}} H_{3C} \xrightarrow{CH_{3}} H_{3C} \xrightarrow{CH_{3}} H_{3C} \xrightarrow{CH_{2}} H_{2C}$	H ₃ C CH=CH ₂ H ₃ C CH ₃ H ₃ C CH ₃ CH ₃ C(CF ₃) 2 isomers, 81%	76/0.5 [6], 74/0.5 [5] (mixture of isomers) (50 to 52) for pure isomer ³⁾ [5, 6]	9.65 (qu), 17.9 [qu of tr, J(F-H) = 2.6 Hz], pure isomer [6]
	S C(CF ₃) ₂	60/0.2 [5, 6]	8.13 (qu), 12.4 (qu) [6]
$(0^{\circ}C, CH_2Cl_2)$	72% [5], 83% [6]		
[5] (0°C, 16 h)	C(CF3)2	79 to 80/1.4	10.4 (qu), 14.1 (qu)
\bigcirc	C(CF3)2	78/5	9.65 (qu), 13.2 (qu)
	+ (CF ₃) ₂ =CHS	⁴⁾ _	3.41 (qu of d), 6.33 (qu), J(F-F) = 6.4 Hz, J(F-H) = 1.5 Hz
H_5C_6 (hexane, refluxing for 16 h)	C ₆ H ₅ C ₆ H ₅ C(CF ₃) ₂ 86%	(101, decomposition) ⁵⁾	7.91 (qu) ⁶⁾ , 13.6 (qu)

Gmelin Handbook CF Comp. Suppl. 1

Reactant (conditions)	Product yield in %	b.p./Torr (m.p.) in °C	¹⁹ F NMR (δ in ppm)
[5, 6]	S C(CF3)2	(49 to 50)	10.3 (qu), 13.8 (qu)
(100 °C, bomb tube, 16 h) [5] (CH ₃) ₂ CH ₃	78% $(CH_3)_2$ $(CH_3)^{\alpha}$ $(CH_3)^{b}$ C (CF isomers a) or b)	55/1.8	_
[6]	S C(CF ₃) ₂	72 to 73/8	9.79 (qu), 12.5 (qu)
CI CI [6]	$Cl \qquad S \\ Cl \qquad C(CF_3)_2$	64/0.25	9.70 (qu of tr), 12.60 (qu)
(100°C, 2 h, bomb tube)	72%		
[6] C(C ₆ H ₅) ₂	C(C6H5)2	(118.3 to 119) ⁷⁾	8.70 (qu), 12.6 (qu)
(hexane)	73%		
[6]	(CF3)2C S	(118.5 to 119) ⁸⁾	9.79 (qu), 14.9 (qu)
(18 h, 20%, C ₆ H ₆ , reflux)	59%		
C ₆ H ₅ ^[6]	C(CF ₃) ₂	(123)	6.84 (qu) ¹⁾ , 13.9 (qu)
(0°C, CH ₂ Cl ₂)	83% [6]		
Gmelin Handbook CF Comp. Suppl. 1	Refe	rences p. 210	14

Table 73 (continued)

Table 73 (continued)

Reactant	Product	b.p./Torr	¹⁹ F NMR
(conditions)	yield in %	(m.p.) in °C	(δ in ppm)
[6]	S S C C	88/0.025 CF ₃) ₂	10.3 (qu), 13.5 [qu, J(F-F) = 11 Hz]

¹⁾ Neat substance. $-^{2)}$ CH₃ groups in position 1, 4, 5, 6 or 7. $-^{3)}$ Fractional crystallization from CH₃OH gives a pure isomer. $-^{4)}$ Not isolated, spectra from the mixture with the Diels-Alder product. $-^{5)}$ Decomposition on reversal of the formation reaction. $-^{6)}$ In CDCl₃. $-^{7)}$ From hexane. $-^{8)}$ From CH₃OH.

References

[1] H. Kohn, Y. Gopichand (Tetrahedron Letters 1976 3093/6). - [2] M. S. Raasch (J. Org. Chem. 40 [1975] 161/72). - [3] E. I. Du Pont de Nemours & Co., M. S. Raasch (U.S. 3462489 [1969]; C.A. 71 [1969] No. 90831). - [4] M. S. Raasch (J. Org. Chem. 37 [1972] 1347/56). - [5] E. I. Du Pont de Nemours & Co., M. S. Raasch (Ger. Offen. 2118975 [1971]; U.S. 3752827 [1973]; C.A. 76 [1972] No. 59456).

[6] M. S. Raasch (J. Org. Chem. **43** [1978] 2500/8). - [7] H. Kohn, Y. Gopichand, P. Charumilind (J. Org. Chem. **43** [1978] 4955/61).

Force	z	dyn	kр				
1 N (Newton) 1 dyn 1 kp	1 10 ⁻⁵ 9.8066 5	10 ⁵ 1 9.8066 5 × 10 ⁵	0.1019716 1.019716×10 ⁻⁶ 1				
Pressure	Pa	bar	kp/m²	at	atm	Torr	lb/in²
1 Pa (Pascal)=1N/m ²	-	10 ⁻⁵	1.019716×10 ⁻¹	1.019716×10 ⁻⁵	0.986923 × 10 ⁻⁵	0.750062 × 10 ⁻²	145.0378 ×10 ⁻⁶
$1 \text{ bar} = 10^6 \text{ dyn/cm}^2$	105	-	10.19716×10^3	1.019716	0.986923	750.062	14.50378
$1 \text{ kp/m}^2 = 1 \text{ mm H}_2 \text{ O}$	9.8066 5	0.980665×10 ⁻⁴	-	10 ⁻⁴	0.967841×10 ⁻⁴	0.735559×10 ⁻¹	1.422335×10^{-3}
1 at =1 kp/cm ²	0.980665×10^{5}	0.980665	104	-	0.967841	735.559	14.22335
1 atm = 760 Torr	1.01325×10^{5}	1.0132 5	1.033227×10^{4}	1.033227	Ŧ	760	14.69595
1 Torr = 1 mm Hg	133.3224	1.333224×10^{-3}	13.59510	1.359510×10^{-3}	1.315789×10^{-3}	-	19.33678×10^{-3}
$1 \text{ lb/in}^2 = 1 \text{ psi}$	6.89476×10^{3}	68.9476×10^{-3}	703.069	70.3069×10^{-3}	68.0460×10^{-3}	51.7149	-

Work, Energy, Heat	7	кWh	kcal	Btu	MeV
1 J (Joule) = 1 Ws =	-	2.778×10 ⁻⁷	2.39006 × 10 ⁻⁴	9.4781×10 ⁻⁴	6.242×10^{12}
1 Nm = 10° erg 1 kWh 1 kcal	3. 6 × 10 ⁶ 4184.0 1055.06	1 1.1622 ×10 ^{−3} 2.93071×10 ^{−4}	860.4 1 0.25164	3412.14 3.96566 1	2.247×10 ¹⁹ 2.6117×10 ¹⁶ 6.5858×10 ¹⁶
(British thermal unit) 1 MeV	1.602×10^{-13}	4.450×10^{-20}	3.8289×10^{-17}	1.51840 ×10 ⁻¹⁶	-
1 eV/mol =	23.0578 kcal/mol = 96.	.473 kJ/mol			
Power	κw	PS	kp m/s	kcal/s	
l kW =10 ¹⁰ erg/s	+	1.35962	101.972	0.239006	
I PS	0.73550	.	75	0.17579	
lkpm/s	9.80665×10 ⁻³	0.01333		2.34384×10^{-3}	
kcal/s	4.1840	5.6886	426.650	-	
References: 1] A. Sacklowski, Die n. 2] International Union o	euen SI-Einheiten, Go f Pure and Applied Cl	Idmann, München 197 hemistry, Manual of Syr	 Conversion tables in nbols and Terminology f 	an appendix.) or Physicochemical Qua	Intities and Units
Pergamon, London 1 3] The International Sys 4] H. Ebert, Physikalisci 5] Kraftwerk Union Infoi 6] E. Padelt, H. Laporte, 71 Endorte, Bizmeric,	979; Pure Appl. Chen teem of Units (SI), Nat nes Taschenbuch, 5th rmation, Technical an Einheiten und Größe b Ed Vol in B+ 4 4	n. 51 [19/9] 1/41. tional Bureau of Stand; Ed., Vieweg, Wiesbad d Economic Data on P snatten der Naturwisse.	ards Specl. Publ. 330 [15 en 1976. ower Engineering, Mülh nschaften, 3rd Ed., VEB	372]. eim/Ruhr 1978. Fachbuchverlag, Leipzi	g 1976.

Gmelin Handbook CF Comp. Suppl. 1

212

System Symbol Symbol Flement Element System Number Number In Indium 1 Noble Gases 37 2 38 ΤI Thallium н Hydrogen Sc. Y 3 39 Rare Earth 0 Oxygen La-Lu HCI 4 Ν Nitrogen Elements 5 F Fluorine 40 Ac Actinium 41 Ti Titanium 6 CI Chlorine 42 Zr Zirconium 7 Br Bromine 43 Hf Hafnium 8 lodine I. 44 Th Thorium At Astatine 45 Ge Germanium 9 Sulfur S ZnCrO₄ 46 Sn Tin 10 Se Selenium 47 Pb Lead 11 Те Tellurium 48 v Vanadium 12 Po Polonium 49 Nb Niobium 13 в Boron 50 Та Tantalum 14 С Carbon 51 Pa Protactinium Si Silicon 15 Ρ 52 Cr Chromium 16 Phosphorus 17 As Arsenic 53 Mo Molvbdenum Antimony 18 Sb 54 w Tungsten Bi 19 Bismuth 55 U Uranium 20 Li Lithium 56 Mn Manganese 21 Na Sodium 57 Nickel Ni 22 κ Potassium 58 Со Cobalt NH₄ 23 Ammonium 59 Fe Iron 24 Rb Rubidium 60 Cu Copper Caesium 25 Cs Silver 61 Ag Francium Fr Gold 62 Au 26 Be Bervllium 63 Ru Ruthenium Magnesium 27 Ma 64 Rh Rhodium 28 Ca Calcium 65 Pd Palladium 29 Sr Strontium Osmium 66 0s Barium 30 Ba Ir Iridium 67 Radium 31 Ra Platinum 68 Pt 32 Zn Zinc Technetium¹ 69 Тс 33 Cd Cadmium 70 Re Rhenium 71 Np,Pu... Transuranium 34 Hg Mercury Elements 35 AL Aluminium 36 Ga Gallium

Key to the Gmelin System of Elements and Compounds

Material presented under each Gmelin System Number includes all information concerning the element(s) listed for that number plus the compounds with elements of lower System Number.

For example, zinc (System Number 32) as well as all zinc compounds with elements numbered from 1 to 31 are classified under number 32.

¹ A Gmelin volume titled "Masurium" was published with this System Number in 1941.

A Periodic Table of the Elements with the Gmelin System Numbers is given on the Inside Front Cover