Periodic Table of the Elements with the Gmelin System Numbers

スコ	$\begin{gathered} \bar{\sim} \\ 2 \end{gathered}$
옹	$\begin{gathered} \text { ন } \\ \text { 을 } \end{gathered}$
욭틀	「
© เ	드읓
¢ 오	$\begin{gathered} \text { ন } \\ 8 \text { ガロ } \end{gathered}$
8	$$
요	
む ¢	¢ ${ }_{6}^{\text {® }}$
ஜெ	$\stackrel{N}{\infty}$
® E	$\begin{gathered} \text { ন } \\ \text { के ב } \end{gathered}$
$\overline{\mathrm{C}} \mathrm{E}$	$\underset{N}{N}$
웅까	$\stackrel{\sim}{\circ}$
앙한	ご
®ั ¢ٌ	

A Key to the Gmelin System is given on the Inside Back Cover

Gmelin Handbook of Inorganic Chemistry

8th Edition

Gmelin Handbook of Inorganic Chemistry

8th Edition

Gmelin Handbuch der Anorganischen Chemie

Achte, völlig neu bearbeitete Auflage

Prepared Gmelin-Institut für Anorganische Chemie and issued by der Max-Planck-Gesellschaft zur Förderung der Wissenschaften
Director: Ekkehard Fluck

Founded by
8th Edition

Continued by

Leopold Gmelin

8th Edition begun under the auspices of the Deutsche Chemische Gesellschaft by R. J. Meyer
E.H.E. Pietsch and A. Kotowski, and by Margot Becke-Goehring

Gmelin-Institut für Anorganische Chemie
der Max-Planck-Gesellschaft zur Förderung der Wissenschaften

ADVISORY BOARD

Dr. G. Breil, Chairman (Ruhrchemie AG, Oberhausen-Holten), Prof. Dr. K. Dehnicke (PhilippsUniversität Marburg), Prof. Dr. N. N. Greenwood (University of Leeds), Prof. Dr. H. Grünewald (Bayer AG, Leverkusen), Prof. Dr. H. Harnisch (Hoechst AG, Frankfurt/Main-Höchst), Prof. Dr. H. Nöth (Universität München), Prof. Dr. H. Offermanns (Degussa AG, Frankfurt/Main), Prof. Dr. G. zu Putlitz (Universität Heidelberg), Prof. Dr. A. Rabenau (Max-Planck-Institut für Festkörperforschung, Stuttgart), Prof. Dr. A. Simon (Max-Planck-Institut für Festkörperforschung, Stuttgart), Prof. Dr. Dr. A. H. Staab (Präsident der Max-Planck-Gesellschaft, München), Prof. Dr. Dr. h.c. mult. G. Wilke (Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr)

DIRECTOR

Prof. Dr. Dr. h.c. Ekkehard Fluck

DEPUTY DIRECTOR
Dr. W. Lippert

CHIEF EDITORS

Dr. K.-C. Buschbeck - Dr. H. Bergmann, J. Füssel, B. Heibel, Dr. H. Katscher, Dr. R. Keim, Dr. E. Koch, Dipl.-Phys. D. Koschel, Dr. U. Krüerke, Dr. H. K. Kugler, Dr. P. Merlet, Dr. E. SchleitzerRust, Dr. F. Schröder, Dr. A. Slawisch, Dr. B. v. Tschirschnitz-Geibler, Dr. R. Warncke

CORRESPONDENT MEMBERS OF THE SCIENTIFIC STAFF	Dr. H. C. Andersen, Dr. J. R. Clark,			
	Dr. J. L. Grant, Dr. V. Haase,			
	Dipl.-Ing. G. Kirschstein, Dr. K. Rumpf,			
	Dr. U. Trobisch, Dr. B. Vance	\quad		
:---	:---			
EMERITUS MEMBER OF THE INSTITUTE	Prof. Dr. Dr. E.h. Margot Becke			
CORRESPONDENT MEMBERS OF THE INSTITUTE				
	Prof. Dr. Hans Bock			
	Prof. Dr. Dr. Alois Haas, Sc. D. (Cantab.)			

STAFF GMELIN HANDBOOK

D. Barthel, Dr. N. Baumann, Dr. W. Behrendt, Dr. L. Berg, Dipl.-Chem. E. Best, K. D. Bonn, Dipl.-Ing. V. A. Chavizon, E. Cloos, Dipl.-Phys. G. Czack, I. Deim, Dipl.-Chem. H. Demmer, R. Dowideit, Dipl.-Chem. M. Drößmar, U. Duggen, M. Engels, Dr. H.-J. Fachmann, Dr. J. Faust, Dr. Chr. Fianda, Dr. W.-D. Fleischmann, V. Frick, G. Funk, Dipl.-Ing. N. Gagel, E. Gerhardt, Dr. U. W. Gerwarth, C. Gorr, Dipl.-Phys. D. Gras, Dipl.-Bibl. W. Grieser, H. Hartwig, Dr. R. Haubold, Dipl.-Min. H. Hein, G. Heinrich-Sterzel, H.-P. Hente, H. W. Herold, U. Hettwer, Dr. I. Hinz, Dr. W. Hoffmann, Dipl.-Chem. K. Holzapfel, Dipl.-Chem. E.-M. Horn, Dr. W. Huisl, Dr. S. Jäger, Dr. R. Jotter, Dr. J. von Jouanne, Dr. B. Kalbskopf, Dipl.-Chem. W. Karl, H.-G. Karrenberg, Dipl.-Phys. H. Keller-Rudek, A. Klusch, Dipl.-Phys. E. Koch, Dipl.-Chem. K. Koeber, Dipl.-Chem. H. Köttelwesch, R. Kolb, E. Kranz, Dipl.-Chem. I. Kreuzbichler, Dr. A. Kubny, Dr. P. Kuhn, Dr. W. Kurtz, M. Langer, Dr. B. Leduc, Dr. A. Leonard, Dipl.-Chem. H. List, H. Mathis, E. Meinhard, K. Meyer, Dr. M. Mirbach, Dr. U. Neu-Becker, K. Nöring, Dipl.-Chem. R. Nohl, Dipl.-Min. U. Nohl, Dr. W. Petz, Dr. L. Psotta, I. Rangnow, Dipl.-Phys. H.-J. Richter-Ditten, Dipl.-Chem. H. Rieger, B. Riegert, E. Rieth, A. Rosenberger, E. Rudolph, G. Rudolph, Dipl.-Chem. S. Ruprecht, Dr. B. Sarbas, V. Schlicht, Dipl.-Chem. D. Schneider, Dipl.-Min. P. Schubert, Dr. B. Schwager, A. Schwärzel, Dipl.-Ing. H.M. Somer, E. Sommer, M. Teichmann, Dr. W. Töpper, Dipl.-Ing. H. Vanecek, Dipl.-Chem. P. Velić, Dipl.-Ing. U. Vetter, H.-M. Wagner, Dipl.-Phys. J. Wagner, R. Wagner, Dr. E. Warkentin, Dr. C. Weber, Dr. B. Wöbke, K. Wolff, U. Ziegler

STAFF GMELIN ONLINE DATA SYSTEM
Dr. L. Kießling - Dr. R. Froböse, Dr. B. Roth
Dipl.-Min. M.-B. Cinarz, Dr. J. Fippinger, Dr. G. Friedrich, Dr. B. Fröhlich, I. Güllich, M. Klöffler, R. Lohmeyer, Dr. M. Pauluth, Dr. H.-J. Schröder, Dr. K. Schücke

Organometallic Compounds in the Gmelin Handbook

The following listing indicates in which volumes theses compounds are discussed or are referred to:

Ag Silber B 5 (1975)
$\mathrm{Au} \quad$ Organogold Compounds (1980)
$\mathrm{Bi} \quad$ Bismut-Organische Verbindungen (1977)
Co Kobalt-Organische Verbindungen 1 (1973), 2 (1973), Kobalt Erg.-Bd. A (1961), B 1 (1963), B 2 (1964)
$\mathrm{Cr} \quad$ Chrom-Organische Verbindungen (1971)
$\mathrm{Cu} \quad$ Organocopper Compounds 1 (1985), 2 (1983), 3 (1986) present volume
Fe Eisen-Organische Verbindungen A 1 (1974), A 2 (1977), A 3 (1978), A 4 (1980), A 5 (1981), A 6 (1977), A 7 (1980), A 8 (1985), B 1 (partly in English; 1976), Organoiron Compounds B 2 (1978), Eisen-Organische Verbindungen B 3 (partly in English; 1979), B 4 (1978), B 5 (1978), Organoiron Compounds B 6 (1981), B 7 (1981), B 8 to B 10 (1985), B 11 (1983), B 12 (1984), Eisen-Organische Verbindungen C 1 (1979), C 2 (1979), Organoiron Compounds C 3 (1980), C 4 (1981), C 5 (1981), C 7 (1985), and Eisen B (1929-1932)

Hf Organohafnium Compounds (1973)
Nb Niob B 4 (1973)
Ni Nickel-Organische Verbindungen 1 (1975), 2 (1974), Register (1975), Nickel B 3 (1966), and C 1 (1968), C 2 (1969)

Np, Pu Transurance C (partly in English; 1972)
Pt Platin C (1939) and D (1957)
Ru Ruthenium Erg.-Bd. (1970)
Sb Organoantimony Compounds 1 (1981), 2 (1981), 3 (1982), 4 (1986)
Sc, Y, D 6 (1983)
La to Lu
Sn Zinn-Organische Verbindungen 1 (1975), 2 (1975), 3 (1976), 4 (1976), 5 (1978), 6 (1979), Organotin Compounds 7 (1980), 8 (1981), 9 (1982), 10 (1983), 11 (1984), 12 (1985), 13 (1986)

Ta Tantal B 2 (1971)
Ti Titan-Organische Verbindungen 1 (1977), 2 (1980), 3 (1984), 4 and Register (1984)
U Uranium Suppl. Vol. E 2 (1980)
V Vanadium-Organische Verbindungen (1971), Vanadium B (1967)
Zr Organozirconium Compounds (1973)

Gmelin Handbook of Inorganic Chemistry

8th Edition

Cu

Organocopper Compounds

Part 3

With 18 illustrations

AUTHORS

EDITOR

CHIEF EDITOR
Johannes Füssel

System Number 60

LITERATURE CLOSING DATE: 1985
IN SOME CASES MORE RECENT DATA HAVE BEEN CONSIDERED

Library of Congress Catalog Card Number: Agr 25-1383

ISBN 978-3-662-06441-2 ISBN 978-3-662-06439-9 (eBook)

DOI 10.1007/978-3-662-06439-9

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under $\S 54$ of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.
© by Springer-Verlag Berlin Heidelberg 1986
Originally published by Springer-Verlag Berlin Heidelberg New York Tokyo in 1986
Softcover reprint of the hardcover 8th edition 1986
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Preface

The present volume finalizes the coverage of mononuclear organocopper compounds with ligands bonded by one carbon atom. As structural elucidation has not yet received much attention in organocopper chemistry and the aggregation of most products is unknown, the term "mononuclear" has been used as explained in "Organocopper Compounds" 1, pp. 3/4.

Compounds with alkyl, alkenyl, and aryl ligands have already been described in Volumes 1 (published in 1985) and 2 (published in 1983).

The present Volume 3 contains all compounds with alkynyl, carbonyl, isocyanide, and additional ligands bonded by one carbon atom. The largest part of this volume deals with copper acetylides which are widely used as reagents in organic syntheses although many of them are only poorly characterized.

For abbreviations and dimensions used throughout this volume, see p. X.
Frankfurt, September 1986
Johannes Füssel

Remarks on Abbreviations and Dimensions

Most compounds and reagents in this volume are presented in tables. Unless otherwise stated, they are arranged in the tables according to the numbers of C atoms in the empirical formula. For the sake of conciseness, some abbreviations are used and some dimensions are omitted in the tables. This necessitates the following clarification.

Geometric isomers are designated according to the IUPAC rules. Structural labels are missing when authors fail to report structural details.

Temperatures are given in ${ }^{\circ} \mathrm{C}$, otherwise K stands for Kelvin. Abbreviations used with temperatures are m.p. for melting point, b.p. for boiling point, and dec. for decomposition.

Nuclear magnetic resonance is abbreviated by NMR. Chemical shifts are given as δ values in ppm with the positive sign for downfield shifts. Reference substances are $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, CFCl_{3} for ${ }^{19} \mathrm{~F}$ NMR, and $\mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ NMR.

Multiplicities of the signals are abbreviated as s, d, t, q (singlet to quartet), quint, sext, sept (quintet to septet), and m (multiplet); terms like dd (double doublet) and t's (triplets) are also used. Assignments referring to labelled structural formulas are given in the form C-4, $H-3,5$. Coupling constants ${ }^{n} J$ in Hz are given as $J(A, B)$ or as $J(1,3)$ referring to tabelled structural formulas, n is the number of bonds between the coupled nuclei.

Optical spectra are labelled as IR (infrared), Raman, and UV (electronic spectrum including the visible region). IR bands and Raman lines are given in cm^{-1}, the assigned bands are usually labelled with the symbols v for stretching vibration and δ for deformation vibration. Intensities are indicated by the common qualitative terms (vs, s, m, w, vw) or as numerical relative intensities in parentheses. The UV absorption maxima, $\lambda_{\text {max }}$, are given in nm followed by the extinction coefficient $\varepsilon\left(\mathrm{L} \cdot \mathrm{cm}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ or $\log \varepsilon$ in parentheses; sh means shoulder, br means broad. If reported, solvents or the physical state are given in parentheses immediately after the spectral symbol.

Electron spin resonance is abbreviated as ESR, hyperfine coupling constants are given as $\mathrm{a}(\mathrm{X})$.

Further abbreviations:

$d_{c} \quad$ calculated density
$\mathrm{d}_{\mathrm{m}} \quad$ experimental density
[M] ${ }^{+}$molecular ion in mass spectroscopy
aq. aqueous
conc. concentrated
emf electromotive force
soln. solution
THF tetrahydrofuran
i- $\mathrm{C}_{3} \mathrm{H}_{7}$ isopropyl $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
s- $\mathrm{C}_{4} \mathrm{H}_{9}$ sec-butyl $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{5}$
t-C $4_{4} \mathrm{H}_{9}$ tert-butyl $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$

Table of Contents

Page
1.1.2 Acetylides 1
1.1.2.1 Compounds of the Type RCCCu 2
Preparation, Properties, and Selected Reactions 2
General Remarks about Reactions of RC三CCu with Proton Donors, Oxidants, Halo- gens, and CO_{2} 68
General Remarks about Reactions of $\mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{R}^{\prime} X$ to Form RCミCR' and Its Ring Closure Products 71
Reactions with $\mathrm{R}^{\prime} \mathrm{X}$ to Form $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ 75
Reactions with $R^{\prime} X$ where X is Bonded to a sp ${ }^{3}$ Carbon 75
Reactions with Acyl Halides 79
Reactions with Haloalkenes, Haloallenes, and Allenylesters 82
Reactions with Haloalkynes 85
Reactions with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$ 88
Reactions with Monosubstituted Halobenzenes 89
Reactions with Di - and Polysubstituted Halobenzenes 96
Reactions with Compounds Containing More than One lodobenzene Moiety 100
Reactions with lodonaphthalenes 102
Reactions with Other Carbocycles R'X 105
Reactions with 5-Membered Heterocycles R'X 106
Reactions with 6-Membered Heterocycles R'X 114
Reactions with Condensed Heterocycles R'X 115
Reactions with $R^{\prime} X$, where X is Bonded to $S, P, S i$, or $S n$ 116
Reactions with $R^{\prime} X$ to Form Ring Closure Products of $R C \equiv C R^{\prime}$ 117
Ring Closure Giving Furans 117
Ring Closure Giving Pyrroles or Thiophenes 125
Ring Closure Giving Other Heterocycles 128
Ring Closure Giving Carbocycles 131
Reactions with $R^{\prime} X$ to Form the Hydrocarbons $R^{\prime} H$ 135
Mannich Type Reactions 135
Reactions with $\mathrm{R}^{\prime} \mathrm{Cu}$ 137
Reactions with Nitrones to Form β-Lactames 139
Reactions with Other Transition Metal Compounds 142
1.1.2.2 "Mixed Acetylides" of the Type $\mathrm{R}_{n}^{1} \mathrm{R}_{1-n}^{2} \mathrm{C} \equiv \mathrm{CCu}$ 150
1.1.2.3 Complexes of RCCCu with Alkali and Mg Halides 151
1.1.2.4 Complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ with Compounds of Further Main Group Elements 156
1.1.2.5 Complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{Cu}, \mathrm{Au}, \mathrm{Zn}$, or Hg Compounds 175
1.1.2.6 Compounds of the Type $[\mathrm{RC} \equiv \mathrm{CCuH}] \mathrm{Li}$ 179
1.1.2.7 Salts of the Anions $\left[(R C \equiv C)_{2} \mathrm{Cu}^{1}\right]^{-}$and $\left[\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CCu}{ }^{\prime} \mathrm{C} \equiv \mathrm{CR}^{2}\right]^{-}$ 181
1.1.2.8 Salts of the Anions $\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}^{\prime}\right]^{2-}$ 184
1.1.2.9 Salts of the Anion $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{0}\right]^{3-}$ 187
1.1.3 Carbonyls 188
1.1.3.1 Compounds with One CO Ligand 188
1.1.3.2 Compounds with More Than One CO Ligand 211
1.1.4 Isocyanide Compounds 214
1.1.4.1 Compounds Containing One Isocyanide Ligand 216
Compounds of the Type RNCCuX 216
Compounds of the Type RNCCunD $\mathrm{m}_{\mathrm{m}} \mathrm{X}$ Including Ionic Compounds 220Page
Compounds of the Type RNCCuR' and RNCCuC $\equiv \mathrm{CR}^{\prime}\left({ }^{4} \mathrm{D}\right)$ 223
1.1.4.2 Compounds Containing Two Isocyanide Ligands 224
Compounds of the Type (RNC) $)_{2} \mathrm{CuX}$ and $\left[(\mathrm{RNC})_{2} \mathrm{Cu}^{\mathrm{n}} \mathrm{D}_{\mathrm{m}}\right] \mathrm{X}$ 224
Compounds of the Type (RNC) $2 \mathrm{Cu}\left(\mathrm{X}^{2} \mathrm{D}\right)$ or $(\mathrm{RNC})_{2} \mathrm{CuR}^{\prime}$ 228
1.1.4.3 Compounds Containing Three Isocyanide Ligands 231
1.1.4.4 Compounds Containing Four Isocyanide Ligands 233
Compounds of the Type [(RNC) $\left.{ }_{4} \mathrm{Cu}\right] \mathrm{X}$ 233
Compounds of the Type $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{X}_{2}$ 239
1.1.5 Compounds with Carbenes and Other Ligands Bonded by One C Atom 240
Table of Conversion Factors 248

Organocopper Compounds

Part 3

1.1.2 Acetylides

For acetylides of the types $(R C \equiv C) R^{\prime} \mathrm{CuLi}$ and $(R C \equiv C) R^{\prime} \mathrm{CuMgX}$ where R^{\prime} are alkyl, alkenyl, and aryl the $R C \equiv C$ group is less reactive than R^{\prime}. The transfer of the group R^{\prime} is an important reaction and for practical reasons these compounds are described in "Organocopper Compounds'" 2, 1983, Sections 1.1.1.2.4 and 1.1.1.2.6 (pp. 174 ff . and 227 ff .).

General References:

A. M. Sladkov, I. R. Gol'ding, Reactions of Copper and Silver Organoacetylenides, Usp. Khim. 48 [1979] 1625/83; Russ. Chem. Rev. 48 [1979] 868/96.
A. C. Hopkinson, Acidity, Hydrogen Bonding and Complex Formation, in: S. Patai, Chemistry of the Carbon-Carbon Triple Bond, Vol. 1, Wiley, Chichester 1978, pp. 75/136, 97/9, 117/9; C.A. 89 [1978] No. 196383.
A. E. Jukes, The Organic Chemistry of Copper, Advan. Organometal. Chem. 12 [1974] 215/322.
W. Ziegenbein, P. Cadiot, W. Chodkiewicz, in: H. G. Viehe, Chemistry of Acetylenes, Dekker, New York 1969, pp. 169/263, 237, 597/647.
T. F. Rutledge, Acetylenic Compounds, Reinhold, New York 1968, pp. 84/95, 207/10, 240/68.
A. M. Sladkov, L. Yu. Ukhin, Copper and Silver Acetylides in Organic Synthesis, Usp. Khim. 37 [1968] 1750/81; Russ. Chem. Rev. 37 [1968] 748/63.

Semiconduction of $\mathrm{RC} \equiv \mathrm{CCu}$:

V. S. Myl'nikov, Photonics of Organometallic Semiconductors in the Form of Copper Organoacetylenides, Usp. Khim. 50 [1981] 1872/91; Russ. Chem. Rev. 50 [1981] 979/90.
V. S. Myl'nikov, Electrical and Photoelectric Properties of Organic Polymeric Semiconductors, Usp. Khim. 37 [1968] 78/103; Russ. Chem. Rev. 37 [1968] 25/38, 30.

Complex Acetylides:

G. W. Parshall, Homogeneous Catalysis: The Application and Chemistry of Catalysis by Soluble Transition Metal Complexes, Wiley, New York 1980, pp. 1/240.
B. L. Shaw, N. I. Tucker, Organotransition Metal Compounds and Related Aspects of Homogeneous Catalysis, Pergamon, Elmsford, N.Y., 1975, pp. 1/214.
R. Nast, Komplexe Acetylide von Übergangsmetallen, Angew. Chem. 72 [1960] 26/31.
G. E. Coates, Copper and Silver Acetylene Complexes, Organometallic Compounds, 2nd Ed., Methuen, London 1960, pp. 352/5.
R. Nast, Complex Acetylides of Transition Metals, Chem. Soc. [London] Spec. Publ. No. 13 [1959] 103/12.
J. W. Copenhaver, M. H. Bigelow, Acetylene and Carbon Monoxide Chemistry, Reinhold, New York 1949, pp. 1/373.

Further:

K. Müller, Functional Group Determination of Olefin and Acetylene Unsaturation [copper acetylides in the analysis], Academic, London 1975, pp. 1/283.
M. Tramontini, Advances in the Chemistry of Mannich Bases [copper acetylides in Mannich reactions], Synthesis 1973 703/75.
M. L. H. Green, Organometallic Compounds II: The Transition Elements [structural problems of copper acetylides], 3rd Ed., Methuen, London 1968, pp. 271/6.
G. Eglinton, W. McCrae, The Coupling of Acetylenic Compounds [copper acetylides in Grignard reactions], Advan. Org. Chem. 4 [1963] 225/328.

1.1.2.1 Compounds of the Type $\mathrm{RC}_{\equiv} \mathrm{CCu}$

In the following sections, copper acetylides are formulated as $R C \equiv C C u$ even though highly polymeric structures must be assumed in most cases. Oligomers have been also found with certain R groups. The degree of association and its dependence on the solvent and on the preparation method has been determined in some cases (see Nos. 55 and 98 on pp. 45 and 54).

History

Böttger prepared the first copper acetylide in 1856 by passing illuminating gas through an ammoniacal solution of CuCl [1]. In 1860 Berthelot found that the true structure of the violet-brown substance obtained is $\mathrm{Cu}_{2} \mathrm{C}_{2}$ [2,3]. The first substituted ("organic') copper acetylide was $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}$, prepared by Berthelot in 1866 [4]. Nevertheless, the acetylides $\mathrm{RC} \equiv \mathrm{CCu}$ obtained their present high importance in organic synthesis only in the last 30 years. By now they have come to be regarded as common reagents in organic synthesis, the use of which is in many cases more advantageous than that of the usual organometallic compounds. Their application in preparative chemistry is often based on empirical facts, and the reaction mechanism have hitherto been relatively little studied.

1.1.2.1.1 Preparation, Properties, and Selected Reactions

Preparation

The compounds listed in Table 1, pp. 17/41, can be prepared by the following methods. la is the standard procedure.
Method I: $\quad \mathrm{RC} \equiv \mathrm{CH}$ is reacted with Cu^{\prime}.
a. An aqueous solution of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{n}\right]^{+}$, called "Ilosvay's Reagent" [19, 20], reacts with $\mathrm{RC} \equiv \mathrm{CH}$ directly or with solutions thereof in solvents like $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, $\mathrm{CH}_{3} \mathrm{OH}$, acetone, dimethylformamide, dioxane, etc. [121]. Two-phase solvent systems with ether [217] and toluene [164] have also been used.

The water-insoluble RCECu precipitates in most cases immediately. Sometimes it is precipitated by addition of water [350]. After filtration it is usually washed successively by water, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and ether, and then thoroughly dried in vacuum at moderate temperatures (but see under explosiveness, pp. 11/2).

The purity of the acetylide depends much on the counter ion in "llosvay's Reagent". Often $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{n}\right]^{+}$is produced from $\mathrm{Cu}{ }^{\prime \prime}$ salts and $\left[\mathrm{NH}_{3} \mathrm{OH}\right] \mathrm{Cl}$. A small excess of $\left[\mathrm{NH}_{3} \mathrm{OH}\right] \mathrm{Cl}$ prevents air oxidation and thus formation of oxidative byproducts. A recommended method starts with CuSO_{4} and is said to give very pure acetylides [123]. Starting with CuCl [150] also yields pure acetylides, Cul $[123,134]$ gives less pure products.

The ammonia has the function of making the Cu^{\prime} soluble in aqueous media and of neutralizing the H^{+}ions produced in the course of the reaction. Some RC $\equiv \mathrm{CCu}$ compounds show a considerable solubility in aqueous ammonia. In these cases, freshly prepared CuCl is dissolved in aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture is made weakly alkaline with $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$ [133].

If the substituent R contains hydrolyzable groups like $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}$ (No. 30) or $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$ (No .93), adjusting the pH to 7.5 to 8 or adding excess $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is necessary [163]. The preparation of $\mathrm{RC} \equiv \mathrm{CCu}$ compounds which contain the tetrahydropyranyloxy group (e.g., Nos. 68, 101, 139) should be carried out under ice cooling to prevent hydrolysis. If R contains double and triple bonds (Nos. 24, 25, 43), ice cooling is necessary to prevent polymerization. Preparation method la is often used for purification purposes. Nos. 127, 153, 154, and 167 were reprecipitated from ethereal solutions [205, 221].
Some RC=CCu are not precipitated by method Ia, if an excess of "Ilosvay's Reagent" is present [4].
b. An ammine complex $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{n}\right]^{+}$is generated in an anhydrous medium. The Cu^{\prime} salt ($\mathrm{Cul}, \mathrm{CuCl}$) is suspended in a solvent like $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ or dimethylformamide, a solution of $\mathrm{RC} \equiv \mathrm{CH}$ is added, and gaseous NH_{3} is introduced.
c. The reaction is carried out in liquid ammonia. Cul is used because of its satisfactory solubility in NH_{3}.
d. The reaction is carried out in the presence of proton acceptors like $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$, pyridine, dimethylformamide, hexamethylphosphoric triamide, dimethylsulfoxide, or $\mathrm{K}_{2} \mathrm{CO}_{3}$.
A recommendable method is the conversion of $\mathrm{RC} \equiv \mathrm{CH}$ to $\mathrm{RC} \equiv \mathrm{CCu}$ by the so-called "complex CuCl- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}-\mathrm{HCl}$ ". This reagent is soluble in $\mathrm{CH}_{3} \mathrm{OH}$ or in $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ and the usual purification problems of heterogenic preparations do not occur.

The so-called "acid preparation method" is useful for preparing $\mathrm{RC} \equiv \mathrm{CCu}$ compounds which are sensitive to bases (cf. Nos. 35 and 119). It can be understood as a special method Id in which $\mathrm{H}_{2} \mathrm{O}$ acts as a proton acceptor. CuCl is suspended in $\mathrm{H}_{2} \mathrm{O}$ and the acetylene is added. Quantitative conversion is achieved after prolonged stirring [27]. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ can be used as a solubilizer [60]. The products are said to be very pure.
e. The acetylene $\mathrm{RC} \equiv \mathrm{CH}$ is reacted with a solution of $\mathrm{CuOC}\left(\mathrm{CH}_{3}\right)_{3}$ in an organic solvent.
f. $\mathrm{RC} \equiv \mathrm{CCu}$ is prepared according to the equation $\mathrm{RC} \equiv \mathrm{CH}+\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P} \cdot \mathrm{CuCl} \rightarrow$ $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HPO}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}$ with or without a solvent, with heating. Only $\mathrm{C}_{2} \mathrm{H}_{2}$ reacts at room temperature. In general, the $\mathrm{RC} \equiv \mathrm{CCu}$ compounds formed are soluble in excess $\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P} \cdot \mathrm{CuCl}$ is also claimed to be effective for the transformation of $\mathrm{RC} \equiv \mathrm{CH}$ to $\mathrm{RC} \equiv \mathrm{CCu}$, but no experimental data are given [131].
g. With copper alkyls according to the equation $\mathrm{R}^{1} \mathrm{Cu}+\mathrm{RC} \equiv \mathrm{CH} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}+$ $\mathrm{R}^{1} \mathrm{H}$, usually in ether or in dimethylsulfoxide.

Method II: Salts like RC $\equiv C L i$ or $R C \equiv C K$ are reacted with salts of monovalent copper:
a. in liquid ammonia,
b. in an ether or in ether/alcohol mixtures.

Complexes $\mathrm{M}\left[\mathrm{B}(\mathrm{C} \equiv \mathrm{CR})_{4}\right]$ (M is a metal ion or NH_{4}) are also able to react in high yield to form $\mathrm{RC} \equiv \mathrm{CCu}$ (see No. 90) [85].

Method III: RC $\equiv C H$ is reacted with a bivalent copper salt. The reaction product is a mixture of $\mathrm{RC} \equiv \mathrm{CCu}$ and $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$, which are readily separated due to their very different solubilities. $\mathrm{RC} \equiv \mathrm{CCu}$ is said to be formed from Cu^{1} and $\mathrm{RC} \equiv \mathrm{CH} . \mathrm{Cu}^{1}$ is the reaction product of $\mathrm{Cu}^{\prime \prime}$ and $\mathrm{RC} \equiv \mathrm{CH}$ or $\mathrm{RC} \equiv \mathrm{CCu}$. $\mathrm{RC} \equiv \mathrm{CH}$ can also be converted with Fehlings solution to a mixture containing $\mathrm{RC} \equiv \mathrm{CCu}$. This case was hypothesized to involve an unstable Cull acetylide which decomposes to the radical $R C \equiv C$. This could be the source of the $R(C \equiv C)_{2} R$ also formed [106].
Method IV: Haloacetylenes and monovalent copper react according to the equation $\mathrm{RC} \equiv \mathrm{CX}+3 \mathrm{Cu}^{+} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}^{\prime}+\left[\mathrm{Cu}^{\prime \prime} \mathrm{X}\right]^{+}+\mathrm{Cu}^{++}$($\mathrm{X}=$ halogen).
Method V: Decarboxylation reactions of (substituted) Cu^{\prime} alk-2-ynoates.
The reaction $\mathrm{RC} \equiv \mathrm{CCO}_{2} \mathrm{Cu}^{1} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}+\mathrm{CO}_{2}$ corresponds to the inverse of Reaction Type 6 (reversible binding of CO_{2}, see Section 1.1.2.1.2) and is sometimes a balanced reaction. Proper conditions for the (not balanced) reaction are, for example, in dimethylformamide at $35^{\circ} \mathrm{C}$.

A similar reaction leads to the formation of $\mathrm{RC} \equiv \mathrm{CCu}$ from $\left(\mathrm{RC} \equiv \mathrm{CCO}_{2}\right)_{2} \mathrm{Cu}^{\prime \prime}$. This reaction is more complex and involves redox processes. It can be accomplished with steam at $100^{\circ} \mathrm{C}$.
Method VI: Decomposition of complexes of $\mathrm{RC} \equiv \mathrm{CCu}$. Adducts of NH_{3}, or amines, or PR_{3} (see Section 1.1.2.4) can be cleaved with formation of $\mathrm{RC} \equiv \mathrm{CCu}$. The reaction can occur simply on standing in air or in N_{2} at room temperature. More stable adducts must be heated in vacuum (see Section 1.1.2.4, Table 23). Adducts of heavy metal salts like HgBr_{2} (see Section 1.1.2.5) are broken down by addition of suitable reagents, in this case of aqueous KI (see Section 1.1.2.5, Table 24).
Method VII: From complexes $\mathrm{RC} \equiv \mathrm{CHCuCl}$ of the acetylenes.
The colorless compounds $\mathrm{RC} \equiv \mathrm{CHCuCl}$ are very sensitive to solvents and bases. Their reaction with $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, or $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}$ causes a yellow coloration with subsequent formation of $\mathrm{RC} \equiv \mathrm{CCu}$.
Method VIII: Decomposition of cuprates of the $\left[(\mathrm{RC} \equiv \mathrm{C})_{n} \mathrm{Cu}\right]^{m-}$ type (zerovalent or monovalent copper) and of their complexes, e.g., with NH_{3} or ethylene diamine.
The principal reactions are

$$
\begin{aligned}
& {\left[(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Cu}^{\prime}\right]^{-}+\mathrm{CuI} \rightarrow 2 \mathrm{RC} \equiv \mathrm{CCu}+\mathrm{I}^{-}} \\
& {\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}^{\prime}\right]^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}+\text { further products }} \\
& {\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}^{\prime}\right]^{2-}+2 \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}+2 \mathrm{RC} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}+2 \mathrm{CH}_{3} \mathrm{SO}_{2}^{-}} \\
& {\left[\left(\mathrm{RC} \equiv \mathrm{C}_{3} \mathrm{Cu}^{\prime}\right]^{2-}+2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}+2 \mathrm{RC} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}+\right.} \\
& 2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PO}_{2}^{-} \\
& {\left[(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cu}^{\prime \prime} \mathrm{D}_{n}\right]+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}+\text { further products }} \\
& {\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}^{\circ}\right]^{3-}+\mathrm{O}_{2} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}+\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}^{\prime}\right]^{2-}+\text { further products }}
\end{aligned}
$$

Other preparation methods are the hydrolytic decomposition of cuprates of the type $\left[R C \equiv C C u^{\prime} R^{1}\right]^{-} M^{+}\left(R^{1}=\right.$ alkyl or aryl, $M=\mathrm{Li}$ or MgBr ; see "Organocopper Compounds" 2 , 1983, Sections 1.1.1.2.4 and 1.1.1.2.6 on pp. 174 ff . and 227 ff .), the synthesis of the acetylides of diynes according to the equation $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{BrC} \equiv \mathrm{CH} \rightarrow \mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Cu}+\mathrm{HBr}$, and the reaction
of acetylenes with copper from copper electrodes. The production of copper acetylides on the surface of copper metal, which can cause severe explosions in the manufacturing of $\mathrm{C}_{2} \mathrm{H}_{2}$, has not yet been reported for $\mathrm{RC} \equiv \mathrm{CH}$.

Supposedly some $\mathrm{RC} \equiv \mathrm{CCu}$ is formed according to method Id in the systems $\mathrm{CuCl} /$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} / \mathrm{HCl} / \mathrm{CH}_{3} \mathrm{OH}$ [115] or $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH} /$ pyridine/Cul/Pd $\left[\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right] \mathrm{Cl}_{2} \text { [269, 284], which are }}\right.$ used to perform catalytic reactions according to Reaction Type 2 (see Section 1.1.2.1.3).

Gaseous $\mathrm{RC} \equiv \mathrm{CH}$ are shaken in a sealed tube [65] or bubbled into the reaction medium. In this way acetylenes like but-1-yne can be quantitatively washed out from gas mixtures. The non-acetylenic components are not precipitated [28]. Similar separations with liquid mixtures containing $\mathrm{RC} \equiv \mathrm{CH}$ are described for Nos. 46 and 48.

The production of protons in the reaction of $\mathrm{RC} \equiv \mathrm{CH}$ and Cu^{+}has been used to determine $\mathrm{RC} \equiv \mathrm{CH}$ quantitatively. The pyridinium ions formed according to the equation $\mathrm{RC} \equiv \mathrm{CH}+\mathrm{CuCl}+$ $\mathrm{py} \rightarrow \mathrm{RC} \equiv \mathrm{CCu}+[\mathrm{pyH}]^{+}+\mathrm{Cl}^{\ominus}$ ($\mathrm{py}=$ pyridine) are titrated by NaOH . The mixture is colored and inhomogenous; thus, the end point determination is done by a glass electrode. This procedure can be used for samples containing groups like CHO that interfere with the usual silver method [39, 109].

Thermochemical Data of Formation are available only for Nos. 54 ($R=n-C_{4} H_{9}$) and 90 ($R=\mathrm{C}_{6} \mathrm{H}_{5}$), see pp. 44 and 48.

Structural Properties

Most RC $\equiv \mathrm{CCu}$ prepared are described as "microcrystalline" or "amorphous". X-ray examinations prove that "amorphous" $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ powder consists of microcrystals [155]. Two coarsely crystalline $\mathrm{RC} \equiv \mathrm{CCu}$ compounds (Nos. 44 and 90) were obtained for X-ray analyses by crystallization from liquid NH_{3}. Other $\mathrm{RC} \equiv \mathrm{CCu}$ are known as oils (Nos. 55 , 57,141).

In general, $\mathrm{RC} \equiv \mathrm{CCu}$ show a certain heterogeneity which is caused by surface oxidation and aggregation into small lumps [63]. The crystalline regions are of limited size [274].

Most copper acetylides are polymers consisting of a very high number of $\mathrm{RC} \equiv \mathrm{CCu}$ units. They could be better written as $(R C \equiv C C u)_{n}$. Very little is known concerning the value of n. At any rate, these polymers are totally insoluble in most solvents. On the other hand, some copper acetylides are soluble in ethers and CCl_{4}; even 1% solutions (of No. $55, \mathrm{R}=$ $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$) in pentane have been obtained [218]. In these rare cases oligomeric or even monomeric structures must be assumed. Cryoscopic, ebullioscopic, and osmometric measurements have been done only for Nos. 55 and $98\left(R=\right.$ cyclo $\left.-\mathrm{C}_{6} \mathrm{H}_{11}\right)$, where the degree of association obviously depends on the preparation method, see pp. 45 and 54.

The smallness of the particles of most $R C \equiv C C u$ compounds prevented detailed X-ray diffraction studies. The only $\mathrm{RC} \equiv \mathrm{CCu}$ for which a complete X -ray structural determination has been performed is No. $90\left(R=\mathrm{C}_{6} \mathrm{H}_{5}\right)$. This compound could be crystallized as fine needles by extraction with dry diethylamine in the absence of air. Details regarding the X-ray data are given under additional information for No. 90 on p. 51. The general structure is believed to be the same for No. 90 and other highly polymeric $\mathrm{RC} \equiv \mathrm{CCu}$.

Each ethynyl group lies roughly in the plane of the copper atom chain, and is "sideon''bonded to one of the copper atoms, with the bond to the phenyl group distorted away from this atom. The terminal carbon atom of the phenylethynyl group forms a bridge bond with two adjacent copper atoms so that each ethynyl group is bonded to three copper atoms, see Fig. 1, p. 6 [114].

Fig. 1. Polymeric structure of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CCu}$.

The polymeric structure indicated in Fig. 1 may be substituted by different R groups in the same polymeric unit. In the literature, "compounds" of this type are called "mixed acetylides" (see Section 1.1.2.2).

X-ray data indicate an average transfer of a charge 0.4 e from the copper atoms in copper acetylides [227].

Thermal Behavior

Some thermal analyses have been done with copper acetylides. Nos. 90, 98, 102, 127, 167 , and 181 show one exothermic peak. With Nos. $98\left(R=\right.$ cyclo $\left.-C_{6} H_{11}\right)$ and $102\left(R=n-C_{6} H_{13}\right)$ transformation to a different solid phase (IR spectrum unchanged) was observed in addition. No. $188\left(R=\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{CN}) \mathrm{CH}_{2}\right)$ shows some exothermic peaks. Nos. $54\left(R=n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ and 90 ($R=\mathrm{C}_{6} \mathrm{H}_{5}$) are reported to decompose with considerable liberation of heat [261]. No. 54 first melts, than it sets to a solid, then it melts again [83]. Most $\mathrm{RC} \equiv \mathrm{CCu}$ compounds melt with decomposition.

Electrical Properties

There are general contradictions between the work of Mylnikov et al. [107, 120, 155] and that of Okamoto et al. [191, 220, 221]. For instance the first postulate photocurrents on surface cells which are lower in dry air than under vacuum. The latter reports higher values and explains it by electron trapping by oxygen.

Obviously both intrinsic and extrinsic photoconductivity is involved in the electrical conduction behavior of $\mathrm{RC} \equiv \mathrm{CCu}$ compounds (see also conflicting results after ultraviolet preirradiation and long relaxation times [155]). A significant contribution by the surface states is indicated by the long wave shift of the photoconductivity spectrum compared with the UV and photo-emf spectra [126, 147].

In many cases the band gaps from absorption and photoconductivity spectra agree (intrinsic photoconductors) [231, 278]. On the other hand, it has been stated that the sign of the photocurrent carriers in all RC $\equiv C C u$ examined is positive. After the primary act (excitation of a molecule by absorption of a photon), the exciton migrates until it collides with a structural or chemical defect and forms a pair of free photocurrent carriers. In $\mathrm{RC} \equiv \mathrm{CCu}$, pair formation does not require an activation energy, as shown by the temperature dependence of the photoconductivity at very high frequencies [119].

The acetylides RC三CCu Nos. 11, 20, 22, 54, 55, 59, 60, 81, 86, 89, 90, 91, 94, 116, 117, $118,127,131,140,145,153,154,158,171,172,173,174,183,184$, and 190 have been examined for photosensitivity. All except Nos. 22, 55, 140, and 158 showed a significant photoconduction effect. Substantially no work has been done to explain these exceptions. For Nos. $22\left(R=1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}\right), 55\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, and $140\left(\mathrm{R}=2-\mathrm{C}_{6} \mathrm{H}_{5}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right)$ the absent photoeffect could result from the fact that they are not high polymers (deduced only from solubility data). But $\mathrm{Cu}_{2} \mathrm{C}_{2}$ (see Section 2.2.1.1) is a high polymer and also shows no inner photoeffect. No. 55 is octameric in benzene solution according to cryoscopical and ebullioscopical measurements [102, 103]. However, data about the "degree of polymerization" of $\mathrm{RC} \equiv \mathrm{CCu}$ are often inconsistent, and the values depend much on the preparation and purification methods. At any rate, the compounds No. 22, 55, 140, and $158\left(R=C_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4}\right)$ have a bulky substituent R; thus steric hindrance is probably present too. The borane units in Nos. 22 and 140 (all Table 1, pp. 17/41) are powerful electron acceptors and might therefore prevent the formation of the usual polymeric structure of the copper acetylides.

The shift to lower frequencies in absorption, photoconductivity, and photovoltaic spectral maxima follows the series R (in $\mathrm{RC} \equiv \mathrm{CCu}$ compounds): $\mathrm{C}_{6} \mathrm{H}_{5}<$ naphth-1-yl<naphth-2-yl< anthr-9-yl and R^{1} (in 4- $\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$): $\mathrm{CH}_{3}<\mathrm{H}<\mathrm{Cl}<\mathrm{I}<\mathrm{CH}_{3} \mathrm{CO}<\mathrm{NO}_{2}$ [256].

The slopes in dry air and in vacuum of the plots of photocurrent I vs. light intensity L were determined using an equation of the form $I=k \cdot L^{s}$ [220]. For still other values no conditions are given [257, 278]. In [257], a 1060 mm Nd laser was used.

No.	R in $R C \equiv C C u$	s in dry air	s in vacuum	s (no condi- tions given)
20	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}$	-	-	$0.55[278]$
90	$\mathrm{C}_{6} \mathrm{H}_{5}$	$1.18[220], 1.0[221]$	$0.503[220], \sim 0.5[221]$	$0.7[257]$
91	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$	-	-	$0.65[278]$
94	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$	-	-	$1.00[278]$
116	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$0.9[220,221]$	$0.65[220,221]$	-
117	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	-	-	$1.05[278]$
153	naphth $-1-\mathrm{yl}$	$0.97[220], 1.02[221]$	$0.67[220], 0.66[221]$	-
154	naphth-2-yl	$1.12[220]$	$0.64[220]$	-

The visible/UV absorption, photoconduction, photovoltage, and photoluminescence are obviously based upon the same band-band junctions in the $\mathrm{RC} \equiv \mathrm{CCu}$ polymer. This follows especially from comparisons of preirradiated and non preirradiated polymeric acetylides. The high intensity of the absorption clearly proves that these bands result from characteristic electronic transitions in the polymer [125]. They are not caused by optically active impurities, as previously had been suggested in [107]. The similarity between the absorption and the photoeffect spectra clearly supports the conclusion that the first phase of photon absorption involves the formation of excitons, just as in other organic semiconductors. The competition between their dissociation and their deexcitation determines the photoelectric and luminescent properties. Decay of the excitons leads to the formation of free carriers, but the electrons are captured immediately by traps, which might for example be associated with structural defects in the polymer. The migration of the charge carriers (holes) is facilitated in the polymeric acetylide because the potential barriers between molecules are lowered as a result of π-complex bridges between electron-acceptor copper atoms and acetylene bonds. The luminescence of the copper acetylides probably results from deexcitation of the excitons. Preliminary irradition of $\mathrm{RC} \equiv \mathrm{CCu}$ by ultraviolet light in air leads to a decrease in the inte-
grated luminescence yield and a simultaneous increase in the photoeffect. Luminescence peaks decrease rapidly and photo-emf peaks increase (e.g., in [125]).

The changes in the luminescence and photoeffect spectra which occur when the samples are irradiated by UV light are clearly caused by the disruption of weak coordination bonds in the polymer, as a result of which the ratio of polymer homologs in the material changes. When the bonds are broken, dissociation of the excitons can occur more rapidly at the defects which have thus been formed, and this leads to an increase in the photoeffect and a decrease in the luminescence yield. The low temperature experiments support this model. Water vapor reversibly suppresses the electrical conductivity and the photoconductance and increases the photovoltage [126]. The quotient of light current to dark current ('"photocurrent response'") is increased in vacuum [221]. The complex behavior of the conductivity of $\mathrm{RC} \equiv \mathrm{CCu}$ compounds in the dark and under illumination after freezing out water vapor, evacuation of air, and admitting of oxygen is treated by [120, 126, 155].

Photoconductivity is found at energies 5000 times lower than the threshold value. The nonlinearity exponent $s=0.8$ excludes manyphoton processes. A relationship between forbidden band width and damage threshold is given [257]. An electron energy level scheme has been used to compare qualitatively the different $R C \equiv C C u[248,283]$.
$\mathrm{RC} \equiv \mathrm{CCu}$ compounds can be made sensitive outside the range of their normal photoresponse by several cationic, anionic, and neutral organic dyes [116, 117, 154]. The sensitized photoconductivity and photo-emf spectra are similar to the absorption spectrum of the dye in solution ($10^{-3} \mathrm{M}$), which suggests that the monomeric form of the dye takes part in the sensitizing act. From the view point of applying the concepts of semiconductor physics to biological polymers, some curious results have been obtained regarding the effect of nucleic acids and amino acids on the photosemiconducting properties. For instance DNA and RNA increase the photoconductivity of $\mathrm{RC} \equiv \mathrm{CCu}$ compounds by 2 to 3 orders of magnitude. Regarding further purine and pyrimidine bases see [143, 174]. The photo-emf spectra of $\mathrm{RC} \equiv \mathrm{CCu}$ compounds were found to be similar to the absorption spectra [125, 174]. A surge of the photo-emf is observed in the first moment of illumination [174]. The photo-emf is increased several-fold after sensitization of $\mathrm{RC} \equiv \mathrm{CCu}$ by purine and pyrimidine bases or nucleic acids [143, 174]. RC $\equiv \mathrm{CCu}$ compounds have been found useful for preparation of electrophotographic layers. Nos. $86\left(R=4-I C_{6} H_{4}\right)$ and $90\left(R=C_{6} H_{5}\right)$ gave films which charge well both positively and negatively (see pp. 45/6 and 48/50) [130, 141, 324].

Magnetic Properties

There have been no detailed investigations of the magnetic properties of $\mathrm{RC} \equiv \mathrm{CCu}$ compounds. Nos. $98\left(R=\right.$ cyclo $\left.-\mathrm{C}_{6} \mathrm{H}_{11}\right), 102\left(R=\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right)$, and $188\left(\mathrm{R}=\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{CN}) \mathrm{CH}_{2}\right)$ are reported to be diamagnetic [238, 288]. No. $90\left(R=C_{6} H_{5}\right)$ shows no ESR signal [297].

Color

Most RC $\equiv C C$ compounds are yellow. Green or greenish shades are often reported too. Probably this is the result of some NH_{3} content (cf. Nos. 2, 3, 5, 10, 64, 102). Some become clear yellow after proper purification. In the case of No. $90\left(R=C_{6} H_{5}\right)$ it was specifically proved that the "greenish yellow" color is caused "by traces of NH_{3} " [111].

Substituents R like $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}$, fur-2-yl, and especially 2- and 3-nitrophenyl have a bathochromic effect (orange to deep red acetylides). Some are reported to show varying colors (cf. No. 98 with $R=$ cyclo $-\mathrm{C}_{6} \mathrm{H}_{11}$). Others change their color on storage. (No. 11 "darkening"; No. 5 green to brown; No. 2 khaki to brown; No. 8, "if wet in air", yellow to brown.)

Nuclear Magnetic Resonance Spectra

Because of the insolubility of the $\mathrm{RC} \equiv \mathrm{CCu}$ compounds, NMR techniques are not usual means for characterization. The only $\mathrm{RC} \equiv \mathrm{CCu}$ measured by NMR are Nos. $55\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ and $140\left(R=2-\mathrm{C}_{6} \mathrm{H}_{5}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right)$.

IR and Raman Spectra

The electronic effects discussed at p .7 decrease the order of the $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathrm{RC} \equiv \mathrm{CCu}$ vs. $\mathrm{RC} \equiv \mathrm{CH}$ and lead to a decrease in its frequency. This is in most cases between 1920 and $1960 \mathrm{~cm}^{-1}$ and thus 270 to $300 \mathrm{~cm}^{-1}$ lower than in RC $\equiv \mathrm{CH}$. At approximately $450 \mathrm{~cm}^{-1}$ a band is found in ring substituted copper phenylacetylides. This frequency is believed to arise from the $\equiv \mathrm{C}$-Cu vibration [243].

Visible/UV Spectra

A great number of visible/UV data is known for $\mathrm{RC} \equiv \mathrm{CCu}$ compounds. In most cases a diffuse reflectance spectrum of the insoluble acetylide is reported. The usual diluent is MgO (e.g., $5 \times 10^{-4} \mathrm{M} \mathrm{RC} \equiv \mathrm{CCu}$ in MgO), but also spectra have been obtained without dilution by a nonabsorbing standard. The $\mathrm{RC} \equiv \mathrm{CCu}: \mathrm{MgO}$ ratio is 1:100 in Fig. 2a [256]. In Fig. 2 b the concentration is $5 \times 10^{-4} \mathrm{M}$ [231].

Fig. 2. Visible/UV spectra of various $\mathrm{RC} \equiv \mathrm{CCu}$ (Nos. as in Table 1, pp. 17/41). $\mathrm{F}\left(\mathrm{R}_{\infty}\right)=$ $\left(1-R_{\infty}\right)^{2} / 2 R_{\infty}$, where R_{∞} is the reflectance of the layer relative to MgO .

Molecular Properties

Most copper acetylides are coordination polymers in which each Cu atom is π-bonded with at least 2 acetylenic groups. The electrons are drawn from the π_{u}-bonding acetylenic orbitals to the metal and from filled d-orbitals of the metal to the unoccupied π_{g}-antibonding orbitals of the acetylene. So the structure of the acetylides involves a transition term between σ - and π-bonding. The consequences of the decrease in bond order are discussed under IR spectra. The breakdown of the polymeric structure by $\mathrm{PR}_{3}, \mathrm{SbR}_{3}$, and AsR_{3} is treated in Section 1.1.2.4. Electron energy levels have been calculated for some $\mathrm{RC} \equiv \mathrm{CCu}$ compounds, see Fig. 3, p. 10, in which φ is the photoelectric work function and χ the electron affinity [248].

Solubility

In general, the $\mathrm{RC} \equiv \mathrm{CCu}$ compounds are insoluble in $\mathrm{H}_{2} \mathrm{O}$ and in nonpolar organic solvents like hexane. Most acetylides are also insoluble in common organic solvents.

Fig. 3. Electron energy level scheme of $\mathrm{RC} \equiv \mathrm{CCu}$ (Nos. as in Table 1, pp. 17/41).

Some $\mathrm{RC} \equiv \mathrm{CCu}$ surprisingly show a considerable solubility in ammoniacal CuCl solution (e.g., Nos. $7\left(\mathrm{R}=\mathrm{CH}_{3}\right), 17\left(\mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})\right)$, especially if excess KCl or $\mathrm{NH}_{4} \mathrm{Cl}$ is present (No. 7). No explanation is given. Nos. $35\left(\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH})\right.$) and 44 ($\mathrm{R}=$ fur-2-yl) are soluble in aqueous $\mathrm{NH}_{3} . \mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{R}=$ alkyl are more soluble in hexamethylphosphoric triamide than the aryl-substituted compounds [204]. Ethers have also been used to dissolve RCCCu compounds. No. $57\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)\right)$, which contains an ether group, gives in ether a 0.1 M solution at $0^{\circ} \mathrm{C}$. No. $33\left(\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ is "slightly" soluble in ether, No. $55\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ can be crystallized from ether. No. 44 ($R=$ fur $-2-y l$) is reported to be insoluble in ether. Tetrahydrofuran dissolves Nos. 33 ("slightly"), 40, 55, 57 ("readily"), and 74. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ dissolves readily some $\mathrm{RC} \equiv \mathrm{CCu}$ compounds containing alcoholic groups like Nos. 17 and 35 . In contrast, No. 44 is insoluble in that solvent. No. 45 ($\mathrm{R}=$ thien $-2-\mathrm{yl}$) is dissolved by boiling $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$. The $\mathrm{P}(\mathrm{OR})_{3}\left(\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}\right.$ or $\left.\mathrm{CH}_{3}\right)$ are reported to be suitable solvents for Nos. 40 , 78, 90, 91, and 120. Pyridine has also been used as a solvent for $\mathrm{RC} \equiv \mathrm{CCu}$ compounds. Nos. $16\left(\mathrm{R}=\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right)$ and $33\left(\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ give a solubility of $10^{-5} \mathrm{M}$, No. $8\left(\mathrm{R}=\mathrm{HOCH}_{2}\right)$ of $7.5 \times 10^{-3} \mathrm{M}\left(25^{\circ} \mathrm{C}\right)$. No. 74 is "soluble"' in pyridine. Aliphatic amines were used to extract $\mathrm{RC} \equiv \mathrm{CCu}$ from mixtures and to obtain larger crystals from a microcrystalline powder. The extraction of Nos. $55\left(R=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ and $90\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ was done with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$ in a Soxhlet extractor [102, 114]. Nos. $11\left(\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CH}\right)$ and 90 are soluble in tetramethylethylenediamine [280].

In contrast to the common solubility pattern the carbaborane-containing acetylides Nos. 22, 140, and 193 are quite soluble in organic solvents like ether, benzene, and $\mathrm{CH}_{3} \mathrm{OH}$. No. $193\left(\mathrm{R}=1,7-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}\right)$ is even soluble in CCl_{4}, whereas the highly chlorinated acetylide No. 9 is totally insoluble in this solvent [193, 235]. No. 193 can be recrystallized from benzene. Also a higher solubility than common $\mathrm{RC} \equiv \mathrm{CCu}$ compounds is shown by Nos. $55\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ and $40\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$ with a "spherical" substituent R. No. 55 is even soluble in CHCl_{3} and in $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$ [218].

Thermal Stability, Stability in Air, and Explosiveness

The stability of $\mathrm{RC} \equiv \mathrm{CCu}$ compounds in the absence of oxygen depends much upon the group R. No. $1(\mathrm{R}=\mathrm{H})$ decomposes above $-50^{\circ} \mathrm{C}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{Cu}_{2} \mathrm{C}_{2}$ [91], No. $40\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$ decomposes at about $-20^{\circ} \mathrm{C}$ [245], but Nos. $90\left(R=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $116\left(\mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ are stable up to $200^{\circ} \mathrm{C}$ [286]. Several $\mathrm{RC} \equiv \mathrm{CCu}$ compounds do not melt when heated but decompose.

In some cases thermal decomposition forms finely divided metallic copper (Nos. 98, $R=$ cyclo $\left.-\mathrm{C}_{6} \mathrm{H}_{11} ; 102, R=n-\mathrm{C}_{6} \mathrm{H}_{13} ; 188, R=\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{CN}) \mathrm{CH}_{2}\right)$ or a copper mirror, with No. 55 $\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ even at $150^{\circ} \mathrm{C}$. With certain $\mathrm{RC} \equiv \mathrm{CCu}$ on heating in air, an increase of weight is observed due to CuCO_{3} formation (Nos.98, 102). There exist acetylides stable in air at room temperature, but others are very air-sensitive like No. 28 ($\mathrm{R}=(\mathrm{Z})-\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CH}$). No. $30\left(R=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}\right)$ can be air dried [188], Nos. 98 and 102 are stable in air too. Nevertheless $\mathrm{RC} \equiv \mathrm{CCu}$ compounds should, as a norm, be stored in tightly stoppered brown bottles. No. 90 $\left(R=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ has proved to be stable for years under these conditions [207]. Nos. 16 ($\mathrm{R}=$ $\left.\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right), 33\left(\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 54\left(\mathrm{R}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$, and $102\left(\mathrm{R}=\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right)$ were thus stored "for a long time" without remarkable change [222]. No. $90\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}\right)$ was found to be more stable than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CAg}$ and No. $54\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}\right)$ [261]. If R is basically a hydrocarbon unit, the stability is decreased by substituent OH groups [183].

The information given in the literature about explosiveness seems to be based on experience with accidental explosions and with safe handling. No systematic work has been done in this field. Multiple bonds in the R group seem to enhance the tendency toward severe explosions. No. $43\left(\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{C}\right)$ and $\mathrm{No} .9\left(\mathrm{R}=\mathrm{CCl}_{2}=\mathrm{CCl}\right)$ are reported to be "highly explosive". No. 43 should only be handled when wet with ether. On the other hand, No. 74 ($\mathrm{R}=\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CH}$) is also found to be "highly explosive". With respect to Nos. 7, 8, 74, and 117 storage under $\mathrm{H}_{2} \mathrm{O}$ and drying before use is recommended [133]. Mixing in the dry state sometimes has been found to be dangerous. Wetting with dry acetone and the use of bone spatulas were suggested [63]. Other $\mathrm{RC} \equiv \mathrm{CCu}$ compounds show only a firework-like sparking, microexplosion behavior (e.g., No. 6, $\mathrm{R}=\mathrm{NH}_{2} \mathrm{CO}$) or an ignition (e.g., No. $8, \mathrm{R}=$ $\left.\mathrm{HOCH}_{2}\right)$. No. $2\left(\mathrm{R}=\mathrm{CF}_{3}\right.$) decomposes slowly on gentle heating, but gives a vigorous explosion on rapid heating [127].

A lot of copper acetylides are reported to be "nonexplosive" or the "handling was found to be quite safe" [277]. Nevertheless, the real danger cannot be estimated reliably. Curtis et al. report a severe detonation in the course of their work with a dry RCECCu (R was not specified in the paper) [183]. In general, copper acetylides containing the carborane unit (Nos. 22, 140, 193), P or As functions (Nos. 145, 173, 174), and certain ether links (Nos. 101, 111, 118) are reported to be nonexplosive. They even show no deflagration on heating. Nos. $98\left(R=\right.$ cyclo $\left.-\mathrm{C}_{6} \mathrm{H}_{11}\right), 102\left(R=n-\mathrm{C}_{6} \mathrm{H}_{13}\right)$, and $188\left(R=\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{CN}) \mathrm{CH}_{2}\right)$ are " not sensitive against shocks or percussion'".

The situation is somewhat curious. No. 111 (a methylene ether) is reported to be "nonexplosive", No. $116\left(\mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ to be "very explosive" [30], and with No. 114 $\left(\mathrm{R}=2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ a 78 g synthesis batch was processed [178]. In addition, several individual
$\mathrm{RC} \equiv \mathrm{CCu}$ compounds seem to be variable in their ease of detonation. The preparation method is an especially significant source of such variability. The $\mathrm{RC} \equiv \mathrm{CCu}$ compounds precipitated from an acid solution (e.g., by Preparation Method Id with $\mathrm{H}_{2} \mathrm{O}$ as a proton acceptor) and from solutions which do not contain $\mathrm{HCHO}, \mathrm{NH}_{2} \mathrm{NH}_{2}$, or $\mathrm{NH}_{2} \mathrm{OH}$ are more explosive than those prepared by Method Ia, for example. The reasons are not clear. Hindrance of complex formation on the surface or the change of the crystal structure have been conjestured. $\mathrm{RC} \equiv \mathrm{CCu}$ compounds which have a metallic lustre are believed to be more explosive [156].

Chemical Reactions

The feasible reactions are listed in Table 1, pp. 17/41. They are described in Sections 1.1.2.1.2 to 1.1.2.1.25. For the simpler Reaction Types 1 to 6 (reactions with proton donors, oxidants, halogens, and CO_{2} where there is no variation of groups within these reactants) the literature and the yield are given in Table 1. For some general remarks see Section 1.1.2.1.2.

The more complex reactions of Type 7 to 12 and 18 (variation of groups within the reactant) are listed in Table 1 without literature citations; for data and references see Sections 1.1.2.1.4 to 1.1.2.1.10. For Reaction Type 13 (catalysis by $\mathrm{RC} \equiv \mathrm{CCu}$) see Nos. 33, 40, and 90 on pp. 44 and 53/4. For the Reaction Types 14 to 17 see Sections 1.1.2.3 to 1.1.2.8, where the products of these reactions are described.

Examples of reactions which are standard procedures in organic chemistry (e.g., Reaction Type 7, see p.13) are often hidden in the literature. Therefore, possibly not all reactions which have been reported are tabulated here. Except for Reaction Types 2, 5, and 13 thorough oxygen exclusion is of high importance. Otherwise $\mathrm{RC} \equiv \mathrm{CCu}$ is consumed in the course of a reaction of Type 2 and the reaction products are contaminated with $R(C \equiv C)_{2} R$. Some reactions even require the removal of dissolved air in solvents like pyridine.

To understand the principle reactions of $\mathrm{RC} \equiv \mathrm{CCu}$, a brief analysis of the feasible reactions is given. For reactions of Type 1 to 6 see also Section 1.1.2.1.2 and for the other reaction types see Section 1.1.2.1.3.

Reaction Type 1: Reactions with proton donors:
$R C \equiv C C u \xrightarrow{H X}$ RC $\equiv C H$, see Section 1.1.2.1.2.
a: with HCl ,
b: with HNO_{3},
c: with CN^{-}ions in aqueous solution,
d : with further reagents, which are listed in Table 1 in parentheses.
Reaction Type 2: Oxidation : $\mathrm{RC} \equiv \mathrm{CCu} \xrightarrow{\text { oxidant }} \mathrm{R}\left(\mathrm{C} \equiv \mathrm{C}_{2} \mathrm{R}\right.$, see Section 1.1.2.1.2.
a: with O_{2} or air,
b: with Cull compounds,
c: with $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$,
d: with further reagents, which are listed in Table 1 in parentheses.
Reaction Type 3: $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{X}_{2} \rightarrow \mathrm{RC} \equiv \mathrm{CX}+\mathrm{CuX}$, see Section 1.1.2.1.2.
a: $X=I$,
b: $X=B r$.
Reaction Type 4: $\mathrm{RC} \equiv \mathrm{CCu}+2 \mathrm{X}_{2} \rightarrow \mathrm{RCX}=\mathrm{CX}_{2}+\mathrm{CuX}$, see Section 1.1.2.1.2.
a: $X=I$,
b: $X=B r$.
Reaction Type 5: "Straus Reaction":
$\mathrm{RC} \equiv \mathrm{CCu} \frac{\text { air }}{\text { anhydrous } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}-\mathrm{RCH}=\mathrm{CHC} \equiv \mathrm{CR}$, see Section 1.1.2.1.2.
References on pp. 57/67
Gmelin Handbook Cu-Org. Comp. 3

Reaction Type 6 (reversal of the Preparation Method V): $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{CO}_{2} \rightarrow \mathrm{RC} \equiv \mathrm{CCO}_{2} \mathrm{Cu}$, see Section 1.1.2.1.2.
Reaction Type 7: $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{R}^{\prime} \mathrm{X} \rightarrow \mathrm{RC} \equiv \mathrm{CR}^{\prime}+\mathrm{CuX}$.
This is one of the most important reactions in organic chemistry for preparation of substituted acetylenes; thus, the examples are very numerous and must be formally classified into several groups. The hybridization type of the C atom bound to the departing X group is the primary factor in the classification scheme (in the order $\mathrm{sp}^{3}-\mathrm{sp}^{2}-\mathrm{sp}$). The heterocycles are dealt with after the carbocycles, and finally compounds with the departing group X bound to an atom other than C are described:
a: reactions with $R^{\prime} X$ where X is bonded to a s^{3} carbon, see Section 1.1.2.1.4.1,
b: reactions with acyl halides, see Section 1.1.2.1.4.2,
c: reactions with haloalkenes, haloallenes, and allenyl esters, see Section 1.1.2.1.4.3,
d: reactions with haloalkynes, see Section 1.1.2.1.4.4,
e: reactions with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$, see Section 1.1.2.1.4.5,
f : reactions with 2 -substituted halobenzenes, see Section 1.1.2.1.4.6,
$\mathrm{g}: \quad$ reactions with 3 -substituted halobenzenes, see Section 1.1.2.1.4.6,
h : reactions with 4-substituted halobenzenes, see Section 1.1.2.1.4.6,
i: reactions with di- and polysubstituted halobenzenes, see Section 1.1.2.1.4.7,
j : reactions with compounds containing more than one iodobenzene moiety, see Section 1.1.2.1.4.8,
k : reactions with iodonaphthalenes, see Section 1.1.2.1.4.9,
I: reactions with other carbocycles $R^{\prime} X$, see Section 1.1.2.1.4.10,
m : reactions with 5 -membered heterocycles $\mathrm{R}^{\prime} \mathrm{X}$, see Section 1.1.2.1.4.11, n : reactions with 6-membered heterocycles $R^{\prime} X$, see Section 1.1.2.1.4.12,
o : reactions with condensed heterocycles $R^{\prime} X$, see Section 1.1.2.1.4.13,
p : reactions with $\mathrm{R}^{\prime} \mathrm{X}$ where X is bonded to $\mathrm{S}, \mathrm{P}, \mathrm{Si}$ or Sn , see Section 1.1.2.1.4.14.

Reaction Type 8: $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{R}^{\prime} \mathrm{X} \rightarrow$ ring closure product of $\mathrm{RC} \equiv \mathrm{CR}^{\prime}+\mathrm{CuX}$
The first step corresponds to Reaction Type 7, but R'X contains a structural element $C(Z H)=C X\left(Z=N R^{\prime}, O\right.$ or S and $X=$ halogen $)$ in a suitable position, which in a second step adds to the triple bond to form a new heterocyclic ring.
a: ring closure giving furans, see Section 1.1.2.1.5.1,
b: ring closure giving pyrroles or thiophenes, see Section 1.1.2.1.5.2,
c: ring closure giving other heterocycles, see Section 1.1.2.1.5.3,
$\mathrm{d}:$ ring closure giving carbocycles, see Section 1.1.2.1.5.4.

Reaction Type 9: $R^{\prime} X \xrightarrow{R C \equiv C C u} R^{\prime} H \quad X=I$ or Br
The halogen of the substrate is replaced by H . Usually there is no information about the destiny of the $\mathrm{RC} \equiv \mathrm{C}$ unit. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is able to cause a replacement of iodine in fluoroaromatic compounds [240], of iodine in naphthalenes, and of bromine in phenacyl bromides [123] by H , if a proper solvent is used. Probably the H is abstracted from this solvent, but no investigations about its origin have been conducted, see Section 1.1.2.1.6.
Reaction Type 10: Mannich type reactions: $\mathrm{RC} \equiv \mathrm{CCu}+\left[\mathrm{CH}_{2}-\mathrm{NR}_{2}^{1}\right]^{+} \longrightarrow \mathrm{RC} \equiv \mathrm{CCH}_{2} \mathrm{NR}_{2}^{1}+\mathrm{Cu}^{+}$, see Section 1.1.2.1.7.
Reaction Type 11: Reaction with copper alkyls and copper aryls, see Section 1.1.2.1.8.
Reaction Type 12: Reaction with nitrones to form β-lactams:

The primary product seems to be the cis- β-lactam, which is partially rearranged to the trans- β-lactam, see Section 1.1.2.1.9.
Reaction Type 13: RC \equiv CCu as a catalyst (see Nos. 33,40 , and 90 on pp. 44 and 53/4).
Reaction Type 14: Adduct formation with compounds of main group IV and V elements (see Section 1.1.2.4) and with compounds of subgroup elements (see Section 1.1.2.5).
Reaction Type 15: Heterocuprate formation according to the equation
$R C \equiv C C u+M X \rightarrow[R C \equiv C C u X] M$ (or $R C \equiv C C u \cdot M X ; M=$ alkali metal or MgX; $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$; see Section 1.1.2.3).
Reaction Type 16: Homocuprate formation according to the equation
$R C \equiv C C u+R^{\prime} M \rightarrow\left[R C \equiv C C u R^{\prime}\right] M$ ($M=$ alkali metal or $M g X$).
a: $\mathrm{R}^{\prime}=$ organic group other than $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{C}$, see "Organocopper Compounds' 2 , 1983, pp. 174/87 and 225/37,
b: $R^{\prime}=R^{1} C \equiv C$, see Section 1.1.2.7.
To prepare [RC $\left.\equiv C C u R^{\prime}\right] M$ ("Gilman's Reagent'") according to Reaction Type 16 a soluble acetylide is advantageous. This can be selected freely, for the acetylene moiety is not of importance in the course of so-called "Gilman Reactions". The quite soluble but very expensive No. 55 ($\mathrm{R}=$ $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ [308] and the soluble No. $57\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)\right)$ [271, 310, 314] have been suggested. But most reactions are performed with No. 33 $\left(R=n-C_{3} H_{7}\right)$ [301, 303 to $307,309,311$ to 313$]$.
Reaction Type 17: Homocuprate formation according to the equation
$R C \equiv C C u+2 R^{\prime} M \rightarrow\left[R C \equiv C C u R_{2}^{\prime}\right] M_{2}(M=L i$ or $K)$.
a: $R^{\prime}=$ organic group other than $R^{1} \mathrm{C} \equiv \mathrm{C}$, see "Organocopper Compounds" 2, 1983, p. 241,
$b: R^{\prime}=R^{1} C \equiv C$, see Section 1.1.2.8.
See also the remarks under Reaction Type 16.
Reaction Type 18: Reactions with other transition metal compounds, see Section 1.1.2.1.10.
"In situ" Reactions. There exist some reactions in which $\mathrm{RC} \equiv \mathrm{CCu}$ seems to be an intermediate, e.g., in the so-called "Glaser coupling"

$$
2 \mathrm{RC} \equiv \mathrm{CH}+\mathrm{O}_{2} \xrightarrow{\mathrm{Cu}} \mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}+\mathrm{H}_{2} \mathrm{O}
$$

and in the so-called "Cadiot-Chodkiewicz coupling"

The first reaction corresponds to our Reaction Type 2 and the second to our Reaction Type 7d.

Bourgain et al. have shown in a detailed investigation that with solid $\mathrm{RC} \equiv \mathrm{CC}$ w with either catalytic (10 g CuCl per mole $\mathrm{RC} \equiv \mathrm{CH}$) or stoichiometric amounts of Cu^{\prime} salt the reaction $\mathrm{RC} \equiv \mathrm{CH}+\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br} \rightarrow \mathrm{RC} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ proceeds in the same way. The yields are more strongly influenced by the solvent and by basic additives than by the general method [164]. On the other hand, the activation of the $\mathrm{R}^{1} \mathrm{Br}$ bond by Cu^{+}in the alkynyl Grignard reaction

$$
\mathrm{RC} \equiv \mathrm{CMgBr}+\mathrm{R}^{\prime} \mathrm{Br} \xrightarrow{\mathrm{Cu}^{+}} \mathrm{RC} \equiv \mathrm{CR}^{\prime}+\mathrm{MgBr}_{2}
$$

was also postulated, a simultaneous $\mathrm{RC} \equiv \mathrm{CCu}$ formation not excluded [64].
The reaction

$$
\mathrm{R}^{1}(\mathrm{C} \equiv \mathrm{C})_{m} H+\mathrm{Br}(\mathrm{C} \equiv \mathrm{C})_{n} \mathrm{R}^{2} \xrightarrow{C u^{+}}-\mathrm{R}^{1}(\mathrm{C} \equiv \mathrm{C})_{m+n} \mathrm{R}^{2}
$$

shows a maximum yield with ca. $2 \mathrm{~mol} \% \mathrm{Cu}^{+}$. The yields are lower with pure $\mathrm{R}^{1}(\mathrm{C} \equiv \mathrm{C})_{\mathrm{m}} \mathrm{Cu}$ instead of $\mathrm{R}^{1}(\mathrm{C} \equiv \mathrm{C})_{m} \mathrm{H} / \mathrm{Cu}{ }^{+}$due to the fact that the reaction

$$
\mathrm{R}^{1}(\mathrm{C} \equiv \mathrm{C})_{\mathrm{m}} \mathrm{Cu}+\mathrm{Br}(\mathrm{C} \equiv \mathrm{C})_{\mathrm{n}} \mathrm{R}^{2} \rightarrow \mathrm{R}^{1}(\mathrm{C} \equiv \mathrm{C})_{m+n} \mathrm{R}^{2}
$$

produces large amounts of Cu^{+}, which causes side reactions with $\mathrm{Br}(\mathrm{C} \equiv \mathrm{C})_{n} \mathrm{R}^{2}$. That means, though catalytic amounts of Cu^{+}are preferable, the reaction could nevertheless have $\mathrm{RC} \equiv$ CCu as an intermediate.

The "in situ" reactions listed above are dealt with in the following sections only for acetylides already listed in Table 1, and when also the reaction is of special importance.

Remarks Concerning Table 1 on pp. 17/41
In principle Table 1 contains only characterized $\mathrm{RC} \equiv \mathrm{CCu}$ compounds, but there are borderline cases. Literature data are often so vague that it is hardly possible to decide whether the compound was prepared or not. In many cases the only further characterization is by the reaction products of the compounds. It is often very difficult to determine from the papers just what was actually done. Further, there are often reaction conditions in which it is known that $\mathrm{RC} \equiv \mathrm{CCu}$ must be precipitated; the article, however, contains no remark about its formation or isolation and the characterization is only in terms of consecutive reactions. In all these cases the preparation method is listed in Table 1 with an asterisk (e.g., *la).

The compounds $\mathrm{ClC} \equiv \mathrm{CCu}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ exist only as "Lil or Nal adducts" (see Section 1.1.2.3, Table 21), and $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ exists only as $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{CuCl}$ (see Section 1.1.2.5, Table 24). They are therefore not included into Table 1.

All hydrates are listed in this table.
Acetylenes with a second acid proton are reported to form "copper acetylides", too. In most cases there was no decision about where the copper atom is bound. This case refers for example to acetylides with $\mathrm{CO}_{2} \mathrm{H}$ groups (Nos. 5 and 31), but probably not to $\mathrm{CH}_{2} \mathrm{OH}$ (e.g., No. 8). A similar problem arises with the $\mathrm{CO}_{2} \mathrm{Na}$ group. Na and Cu here could be in interchanged locations (Nos. 4, 23).
Table 1
Compounds of the Type $\mathrm{RC} \equiv \mathrm{CCu}$.
The listing sequence is according to Hill's system applied to the molecular formula (C first, H second, then the other elements in alphabetical order), not to the individual R groups. Further information for compound numbers preceded by an asterisk is given at the end of the table, pp. 42/57. In situ preparations are marked by an asterisk at the method number (see "Remarks Concerning
For abbreviations and dimensions see $p . X$.

No.	R in $\mathrm{RC} \equiv \mathrm{CCu}$	preparation method (yield in \%)	properties and remarks	Ref.	feasible reactions (see pp. 12/4)
*1	H	la?, Ila, V?	Method II a from Cul and $\mathrm{CH} \equiv \mathrm{CK}$ at -78° flocculent orange, later referred to as vermilion stable up to -50°, above -45° dec. into $\mathrm{Cu}_{2} \mathrm{C}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction Type 17 b with $\mathrm{CH} \equiv \mathrm{CK}$ in liquid NH_{3} to give $\left[(\mathrm{CH} \equiv \mathrm{C})_{3} \mathrm{Cu}\right] \mathrm{K}_{2}$	$\begin{aligned} & {[36,55} \\ & 72,91 \\ & 95,104 \\ & 260,317] \end{aligned}$	17 b
*2	CF_{3}	1 a	khaki-colored, becomes brown and darkens on standing in air dec. on heating or explosion, soluble in ether, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	[65]	1 b [65]
3	$\mathrm{N} \equiv \mathrm{C}-$	Ia (100)	olive-green; ignites on heating or rubbing see Section 1.1.2.2 for " mixed acetylide" with $\mathrm{HOCH}_{2} \mathrm{CH}=\mathrm{CHC} \equiv \mathrm{CCu}$	$\begin{aligned} & {[35,79,} \\ & 90] \end{aligned}$	$\begin{aligned} & \text { 2c (30\%) } \\ & {[79,90]} \end{aligned}$
4	$\mathrm{NaO}_{2} \mathrm{C}($? $)$	11 b	```alternative structure \(\mathrm{CuO}_{2} \mathrm{CC} \equiv \mathrm{CNa}\) not strictly excluded preparation from \(\mathrm{CuOH}+\) monosodium salt of \(\mathrm{HO}_{2} \mathrm{CC} \equiv \mathrm{CH}\) in \(\mathrm{H}_{2} \mathrm{O}\) at \(\sim 25^{\circ}\) yellow \(\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\) in \(\mathrm{H}_{2} \mathrm{O}\) yields \(60 \% \mathrm{NaO}_{2} \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2}{ }^{-}\) \(\mathrm{CO}_{2} \mathrm{Na}\)```	[13]	2c (60\%) [13]

Table 1 [continued]

Table 1 [continued]

	No.	R in $\mathrm{RC} \equiv \mathrm{CCu}$	preparation method (yield in \%)	properties and remarks	Ref.	feasible reactions (see pp. 12/4)
		$\mathrm{CH}_{3} \mathrm{SCH}_{2}$ see No. 199 (supplement)				
	*20	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}$	la	IR: 1890 ($\mathrm{C} \equiv \mathrm{C}$) visible/UV: 485 (2.32 eV band gap) photoconductivity maximum $530 \mathrm{~nm}(2.20 \mathrm{eV}$ band gap)	$\begin{aligned} & {[246,278,} \\ & 283] \end{aligned}$	-
	21	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	Ia, Id	not isolated as a pure substance	[49]	2b [49]
D D D D 0 D 0 0 0 0	22	$\begin{aligned} & 1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \\ & \text { (1,2-dicarba-closo- } \\ & \text { dodecarboran(12)-1-yl) } \end{aligned}$	Ia (100)	yellow, does not melt when heated degree of association in benzene : 4.15 no photosensitivity in visible/UV and near IR IR (KBr) : 1900, 2075 ($\mathrm{C}=\mathrm{C}$) non explosive; soluble in organic solvents no reaction with $\mathrm{HgCl}_{2}, \mathrm{HgBr}_{2}, \mathrm{TICl}_{3}$	$\begin{aligned} & {[197,202,} \\ & 203] \end{aligned}$	$\begin{aligned} & \text { 1d }\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)[197], \\ & \text { 3a }(68 \%)[197], \\ & 18 \end{aligned}$
$\stackrel{\square}{2}$		1,7- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$ see No. 193 (supplement)				
$\stackrel{\text { ® }}{ }$	23	$\mathrm{NaO}_{2} \mathrm{CC} \equiv \mathrm{C}(?)$	II b	$\begin{aligned} & \text { structure } \mathrm{CuO}_{2} \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Na} \text { not excluded } \\ & \text { preparation from monosodium salt of } \\ & \mathrm{HO}_{2} \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{H}+\mathrm{CuOH} \text { in aqueous } \\ & \text { medium at } 80 \text { to } 90^{\circ} \\ & \text { dark red } \\ & \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \text { in } \mathrm{H}_{2} \mathrm{O} \text { yields } \mathrm{NaO}_{2} \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{4} \mathrm{CO}_{2} \mathrm{Na} \end{aligned}$	[13]	2c [13]
	24	$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}$	Ia (70 to 80)	preparation under ice cooling; Preparation Method Ia can be used to isolate $\mathrm{CH}_{3}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{H}$ from mixtures with triynes yellow	$\begin{aligned} & {[57,61,} \\ & 150] \end{aligned}$	7d, 7 n
	25	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$	Ia (70 to 80)	preparation under ice cooling dark yellow ; very explosive (E)/(Z)-mixture from reaction of Type 7 n	[150]	7 n

1 a	bright yellow IR（liquid）：169， 438 （ $\equiv \mathrm{C}-\mathrm{Cu}$ ），525，550，635，905， 1011，1218，1240，1262，1370，1427，1440，1615， 1720，1818，2865，2926，2961，2982，3102， 3305 ； similar in KBr Raman（liquid）：185，260，390，525，626，765，950， 1010，1370，1385，1613， 2100	$\begin{aligned} & {[186,236,} \\ & 242,268, \\ & 355] \end{aligned}$	$\begin{aligned} & 7 \mathrm{i}, 70,8 \mathrm{a}, \\ & 9,14 \end{aligned}$
Ia（41）	yellow	［201］	7h， 15
la（75）	yellow，air－sensitive slightly soluble in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ yields with o－bromoanilines no pyrroles，but only tarry products；for in situ reactions see［179］	［276］	$\begin{aligned} & 7 \mathrm{a}, 7 \mathrm{~b}, 7 \mathrm{c}, 7 \mathrm{e}, \\ & 7 \mathrm{f}, 7 \mathrm{~h}, 7 \mathrm{i}, 8 \mathrm{a} \end{aligned}$
1 a	for＂mixed acetylide＂with NCC $=\mathrm{CCu}$（No．3）and its oxidation according to Reaction Type 2c see Section 1．1．2．2	［93］	$\begin{aligned} & \text { 2a }[54], 2 \mathrm{a}(84 \%) \\ & {[77], 2 \mathrm{~d}\left(\mathrm{FeCl}_{3} /\right.} \\ & \left.\mathrm{O}_{2}\right)[56] \end{aligned}$
Ia（35）， ＊Id（dimethyl－ formamide／Cul）	in Method la pH control at 7.5 needed or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ must be added canary yellow or orange IR（mineral oil）：1681，1706， 1923 （ $\mathrm{C}=\mathrm{C}$ ）	$\begin{aligned} & {[12,142,} \\ & 153,181, \\ & 188] \end{aligned}$	$\begin{aligned} & 7 \mathrm{i}, 7 \mathrm{j}, 7 \mathrm{n}, \\ & 8 \mathrm{~b}, 8 \mathrm{c}, 12 \end{aligned}$
1 a	yellow，gelatinous	［22］	－
Ia，＊ld	oil	［92，326］	5 （75\％）［92］，7c
la（88）， III，VIII	yellow；slightly soluble in tetrahydrofuran，ether； solubility in pyridine at $25^{\circ} 10^{-5} \mathrm{M}$ ，insoluble in dimethylformamide IR（KBr）： 1942 （ $\mathrm{C} \equiv \mathrm{C}$ ）	$\begin{aligned} & {[25,102,} \\ & 103,111, \\ & 165,271, \\ & 289,316, \\ & 331] \end{aligned}$	2d $\left(\mathrm{FeCl}_{3} / \mathrm{O}_{2}\right)$ ［56］，7b，7c， 7d，7f，7i，7o， $7 \mathrm{p}, 8 \mathrm{a}, 8 \mathrm{~b}, 8 \mathrm{c}$ ， 13，14，16a
1 a	yellow	［201］	7h， 7 i
la（low yield）， Id（CuCl／ $\left.\mathrm{H}_{2} \mathrm{O}\right)$	yellow；readily soluble in aqueous NH_{3} and in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	［27，28］	4a［27，28］
＊Ia	not isolated as a pure substance	［77］	$\begin{aligned} & \text { 2a }(98 \%) \text { [77], } \\ & \text { cf. }[53,78] \end{aligned}$

$\begin{aligned} & \text { लि } \\ & \text { U } \\ & 0 \\ & \text { MN } \\ & \text { T } \end{aligned}$	$\begin{aligned} & I_{0}^{\infty} \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { II } \\ & \hline 0 \\ & 0 \\ & \mathbb{I} \\ & \frac{1}{N} \end{aligned}$		$\begin{aligned} & 0_{N} \\ & 0_{0}^{2} \\ & \mathbf{N}^{N} \end{aligned}$				I	T O T I T	
$\stackrel{\sim}{\sim}$	へ	$\stackrel{\sim}{\sim}$	～	－	$\overline{\text { m }}$	ल゙		あ	セ0	¢
Gmelin Handbook Cu－Org．Comp． 3			References on pp．57／67							

Table 1 [continued]

No.	R in $\mathrm{RC} \equiv \mathrm{CCu}$	preparation method (yield in \%)	properties and remarks	Ref.	feasible reactions (see pp. 12/4)
37	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})$	la	also formed by anodic oxidation of Cu in alkaline $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{C} \equiv \mathrm{CH}$	[50,82$]$	$\begin{aligned} & \text { 2a [50], } \\ & 7 \mathrm{a}, 7 \mathrm{~d}, 7 \mathrm{f} \end{aligned}$
38	$\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}$	Ia	-	[28]	4a [28]
39	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{CH}$	la (60 to 80)	in Method Ia undiluted acetal $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{CHC} \equiv \mathrm{CH}$ is treated with a solution of CuCl in aqueous $\mathrm{NH}_{3} /$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(5: 1)$; careful stirring causes solidification, the crystalline mass is successively washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}$, and ether yellow crystals	[150, 212]	7 n
*40	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$	$\begin{aligned} & \text { If (} 80 \text { to } 90 \text {), } \\ & \text { IIb, VIII } \end{aligned}$	orange-red, unstable, dec. even at -20° solutions in tetrahydrofuran stable for some time at 0°; soluble in $\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ IR (Nujol): $855\left(\mathrm{CH}_{3}\right), 1250,1890(\mathrm{C} \equiv \mathrm{C})$	$\begin{aligned} & {[131,245,} \\ & 266,316, \\ & 325,334] \end{aligned}$	$\begin{aligned} & 7 a, 7 b, 7 c, 7 d, \\ & 13 \end{aligned}$
41		la	in Preparation Method Ia the solution buffered with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ yellow, voluminous solid	[75, 76]	$\begin{aligned} & \text { 2b [76], } \\ & \text { 2c [76] } \end{aligned}$
42		1 a	in Preparation Method Ia the solution buffered with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	[75]	-
43	$\mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{C}$	Ia (70 to 80)	preparation under ice cooling very explosive, handle only wet with ether	[150]	7 n

Table 1 [continued]

Gmelin Handbook
Cu-Org. Comp. 3

yellow, voluminous yellow-green
IR: 1930 ($\mathrm{C}=\mathrm{C}$)
preparation from $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{CN}) \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCu} \cdot 1 / 2 \mathrm{NH}_{3}$

by heating \begin{tabular}{ll}
[200] \& 10

\&

[161] \&

\&

\&

\&

{$[\mathrm{e}, 7 \mathrm{k}, 7 \mathrm{n}$}

[25, 42, \&

\hline 164,326$]$ \& $1 \mathrm{c}(56 \%)[42]$,

\& $5[92], 7 \mathrm{a}, 7 \mathrm{~b}$,

\& $7 \mathrm{c}, 7 \mathrm{e}, 8 \mathrm{c}, 14$,

\& $15,16 \mathrm{a}$

[200] \& 10

\&

[161] \&

\&

\&

\&

{$[\mathrm{e}, 7 \mathrm{k}, 7 \mathrm{n}$}

[25, 42, \&

\hline 164,326$]$ \& $1 \mathrm{c}(56 \%)[42]$,

\& $5[92], 7 \mathrm{a}, 7 \mathrm{~b}$,

\& $7 \mathrm{c}, 7 \mathrm{e}, 8 \mathrm{c}, 14$,

\& $15,16 \mathrm{a}$

[200] \& 10

\&

[161] \&

\&

\&

\&

{$[\mathrm{e}, 7 \mathrm{k}, 7 \mathrm{n}$}

[25, 42, \&

\hline 164,326$]$ \& $1 \mathrm{c}(56 \%)[42]$,

\& $5[92], 7 \mathrm{a}, 7 \mathrm{~b}$,

\& $7 \mathrm{c}, 7 \mathrm{e}, 8 \mathrm{c}, 14$,

\& $15,16 \mathrm{a}$

[200] \& 10

\&

[161] \&

\&

\&

\&

{$[\mathrm{e}, 7 \mathrm{k}, 7 \mathrm{n}$}

[25, 42, \&

\hline 164,326$]$ \& $1 \mathrm{c}(56 \%)[42]$,

\& $5[92], 7 \mathrm{a}, 7 \mathrm{~b}$,

\& $7 \mathrm{c}, 7 \mathrm{e}, 8 \mathrm{c}, 14$,

\& $15,16 \mathrm{a}$

[200] \& 10

\&

[161] \&

\&

\&

\&

{$[\mathrm{e}, 7 \mathrm{k}, 7 \mathrm{n}$}

[25, 42, \&

\hline 164,326$]$ \& $1 \mathrm{c}(56 \%)[42]$,

\& $5[92], 7 \mathrm{a}, 7 \mathrm{~b}$,

\& $7 \mathrm{c}, 7 \mathrm{e}, 8 \mathrm{c}, 14$,

\& $15,16 \mathrm{a}$
\end{tabular}

[192, 265] 8b | [200] | 10 |
| :--- | :--- |
| | |
| [161] | |
| | |
| | |
| | |
| $[\mathrm{e}, 7 \mathrm{k}, 7 \mathrm{n}$ | |
| [25, 42, | |
| 164,326$]$ | $1 \mathrm{c}(56 \%)[42]$, |
| | $5[92], 7 \mathrm{a}, 7 \mathrm{~b}$, |
| | $7 \mathrm{c}, 7 \mathrm{e}, 8 \mathrm{c}, 14$, |
| | $15,16 \mathrm{a}$ |

$\stackrel{\sim}{\sim}$
yellow
। -
yellow
yellow, voluminous
[75, 76] 2b [76],
$\stackrel{\circ}{+}$
$\stackrel{0}{0}$
$\stackrel{1}{*}$
14

্ㅡㅓ
$\begin{array}{ll}\text { [200] } & 10 \\ & \\ & \\ \text { [161] } & 7 \mathrm{e}, 7 \mathrm{k}, 7 \mathrm{n} \\ & \\ & \\ {[25,42,} & 1 \mathrm{a}(56 \%)[42], \\ 164,326] & 1 \mathrm{c}[175], \\ & 5[92], 7 \mathrm{a}, 7 \mathrm{~b}, \\ & 7 \mathrm{c}, 7 \mathrm{e}, 8 \mathrm{c}, 14, \\ & 15,16 \mathrm{a}\end{array}$

1 y
Table 1 [continued]
$\left.\begin{array}{llllll}\hline \text { No. } & \text { R in } \mathrm{RC}=\mathrm{CCu} & & \begin{array}{c}\text { preparation } \\ \text { method } \\ \text { (yield in } \% \text {) }\end{array} & \text { properties and remarks } & \text { feasible } \\ \text { reactions } \\ \text { (see pp. 12/4) }\end{array}\right]$

not given
Ia (39)
๒
Ia (99)
$\begin{array}{ll}{[46,148,} & 7 c, 7 d, 7 h \\ 228,229, & 11,14,18 \\ 236,242] & \end{array}$

pyridine like No. 84 to give $\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)_{n}, n \geqq 4$ red; ignites on heating
does not react with $\mathrm{O}_{3}, \mathrm{KMnO}_{4}$, or I_{2} per Reaction
does not react with $\mathrm{O}_{3}, \mathrm{KMnO}_{4}$, or I_{2} per Reaction
Type 2d
for "mixed acetylide" with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ see Section 1.1.2.2 Section 1.1.2.2

$$
\begin{array}{ll}
{[121,182,} & 2 \mathrm{~d}\left((\mathrm{CN})_{2} \mathrm{C}=\right. \\
228,256] & \left.\mathrm{C}(\mathrm{CN})_{2}\right)[170], \\
& 3 \mathrm{a}(50 \text { to } 80 \%) \\
& {[121], 3 \mathrm{~b}(70 \%)} \\
& {[121], 7 \mathrm{a}, 7 \mathrm{c}} \\
{[8,9,162]} & 2 \mathrm{c}[9], 7 \mathrm{f}, \\
& 7 \mathrm{k}, 7 \mathrm{~m}
\end{array}
$$

T_{0}^{+}
0
0
0
1

~
毋 あ
Table 1 [continued]

No.	R in $\mathrm{RC} \equiv \mathrm{CCu}$	preparation method (yield in \%)	properties and remarks	Ref.	feasible reactions (see pp. 12/4)
88	$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	1 a	brick red	[33]	2c [9]
89	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	la	```formed from \(4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}^{+}\)and \(\mathrm{Cu}_{2} \mathrm{C}_{2}\) in a \(14 \%\) yield m.p. \(301^{\circ}\) (dec.) resistivity \(6.2 \times 10^{14} \Omega \cdot \mathrm{~cm}\) at \(25^{\circ}\) IR (KBr): 667, 742, 850, 1103, 1173, 1308, 1340, 1515, 1587, 1925 or 1929 or 1940 (СЕС), 3105, 3255 diffuse visible/UV reflectance plateau 410 to 480 reaction with \(\mathrm{I}_{2}\) said to give only \(4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{Cl}\) (Reaction Type 3a) [110, 121] or only \(4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4\) (Reaction Type 2d) [51]```	$\begin{aligned} & {[46,102,} \\ & 103,121, \\ & 191,220, \\ & 221,236, \\ & 256,302] \end{aligned}$	2a [46], 2d (I_{2}) [51], 3a (70\%) [110, 121], 3b (70\%) [121], 7 d , $7 \mathrm{~h}, 7 \mathrm{~m}, 7 \mathrm{p}, 11$, 14
*90	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & \text { Ia, Ib, Id, } \\ & \text { Ie, If, II, } \\ & \text { IV, V, VI, } \\ & \text { VII, VIII } \end{aligned}$	preparation methods and feasible reactions show great variety and complexity; this compound has been extensively studied and many findings are reported under "further information" including comments and references, see pp. 46/54 yellow "amorphous" powder, yellow microcrystals, or golden coarse crystals	$\begin{aligned} & {[101,103,} \\ & 207] \end{aligned}$	$1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{~d}, 2 \mathrm{a}$, 2b, 2c, 2d, 3a, 3b, 5, 6, 7 a , $7 \mathrm{~b}, 7 \mathrm{c}, 7 \mathrm{~d}, 7 \mathrm{e}$, $7 \mathrm{f}, 7 \mathrm{~g}, 7 \mathrm{~h}, 7 \mathrm{i}$, 7j, 7k, 7l, 7 m , $7 \mathrm{n}, 7 \mathrm{o}, 7 \mathrm{p}, 8 \mathrm{a}$, 8b, 8c, 8d, 9, 10, 11, 12, 13, $14,15,16 a, 18$

Table 1 [continued]

| No. | R in $\mathrm{RC} \equiv \mathrm{CCu}$
 preparation
 (yiethod in \%) | properties and remarks | Ref. | feasible
 reactions
 (see pp. 12/4) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

dark yellow，nonexplosive	$\begin{aligned} & {[29,247,} \\ & 258] \\ & \end{aligned}$	8a
－	［198，199］	8 a
－	［198，199］	8 a
IR（polyethylene）：133，144，151， 167 （all 三CCu）， 207，268， 305	［132，228］	7f，7j，7k，8d
IR（polyethylene）：133，144，151， 167 （all 三CCu）， 207，268， 305	［228］	11
```yellow; m.p. 215 to 2190}\mathrm{ (dec.) [251], 236 (dec.) [191, 220, 221] very explosive```	$\begin{aligned} & {[30,191,} \\ & 220,221, \\ & 228,229, \end{aligned}$	$\begin{aligned} & \text { 2a }[46], \\ & \text { 2c [30], } \\ & 7 \mathrm{~h}, 7 \mathrm{k}, 7 \mathrm{p}, 8 \mathrm{~d}, \end{aligned}$
IR（KBr）： 450 or $451(=\mathrm{C}-\mathrm{Cu}), 525,806,1503,1932$ $\quad$ or $1935,3020,3080$	$\begin{aligned} & 236,242, \\ & 243,251] \end{aligned}$	11，12，14， 18
IR（polyethylene）：133，144，151， 167 （all＝CCu）， 207，268， 305		
Raman（solid）：154，286，451，540，702，721，824， 1174，1191， 1931 visible／UV（without dilution by a nonabsorbing standard）： 430		
$\begin{aligned} & \text { photoconduction spectrum: } \lambda_{\max }=445 \mathrm{~nm} \text {, gap } \\ & \text { width }=2.65 \mathrm{eV} \end{aligned}$	$\begin{aligned} & {[133,242,} \\ & 246,278, \end{aligned}$	7 n
IR： 572 （ $=\mathrm{CCu}$ ）and 1946 （ $\mathrm{C} \equiv \mathrm{C}$ ）	283］	


๙์戸			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		
	\％	$\stackrel{\circ}{2}$			
	2	¢			
			$\begin{aligned} & \mathbf{s}_{0}^{0} \\ & \text { I } \\ & \text { IU } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathbb{I}_{0}^{*} \\ & 0 \\ & \mathbf{N}_{0}^{0} \\ & \dot{F} \end{aligned}$	
$\bar{F}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { I }}{+}$	$\stackrel{\varrho}{\rightleftharpoons}$	$\stackrel{\square}{\square}$	$\stackrel{\text { F }}{ }$
9 Gmelin		Refe	ences	on pp．	

Table 1 [continued]


Table 1 [continued]

No.	R in $\mathrm{RC} \equiv \mathrm{CCu}$	preparation method (yield in \%)	properties and remarks	Ref.	feasible reactions (see pp. 12/4)
134	4- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	la	yellow	[30]	2c [30]
135	2,4-( $\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	la	-	[259]	7i, $7 \mathrm{k}, 8 \mathrm{~d}, 11$
	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$ see No. 204 (supplement)				
	2,4-( $\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ see No. 196 (supplement)				
136	3,4-( $\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	la	bright yellow	[258]	8 a
137	4- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$	1 a	contradictory results in the reaction with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$ (same solvent) : either Reaction Type 2a [339] or 7b [241]	[241, 339]	$\begin{aligned} & \text { 2a (72\%) [339], } \\ & 7 \mathrm{~b} \end{aligned}$
138	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$	la	-	[255]	12
139		la (62)	for preparation CuCl is suspended in a mixture of concentrated ammonia and ice and the alkyne is added as an alcoholic solution; isolation after standing for 10 h at $4^{\circ}$	[211, 262]	$\begin{aligned} & \text { 2a (in situ) } \\ & \text { [70], } 7 \mathrm{n} \end{aligned}$
140	$\begin{aligned} & 2-\mathrm{C}_{6} \mathrm{H}_{5}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10} \\ & \text { (2-phenyl-1,2-dicarba-closo- } \\ & \text { dodecaboran(12)-1-yl) } \end{aligned}$	Ia (100)	yellow   no photosensitivity in UV/visible and near IR NMR, compared with $\mathrm{RC} \equiv \mathrm{CH}$ : diminution in the internal shift between signals of the ring protons (no values given) $\text { IR (KBr) : 1900, } 2050(\mathrm{C} \equiv \mathrm{C})$   nonexplosive, does not melt when heated; soluble in organic solvents	[197]	-
141		Ia	sticky, rather unstable viscous oil; freeze dried before use	$\begin{aligned} & {[272,332,} \\ & 355] \end{aligned}$	7o,8a


Table 1 [continued]


Table 1 [continued]

No.	R in $\mathrm{RC} \equiv \mathrm{CCu}$	preparation method (yield in \%)	properties and remarks	Ref.	feasible reactions (see pp. 12/4)
171		not given	```m.p. \(272^{\circ}\) (dec.) resistivity at \(25^{\circ} 6.7 \times 10^{7} \Omega \cdot \mathrm{~cm}\); photoconducting IR (KBr): 1985, 2010sh (both \(\mathrm{C} \equiv \mathrm{C}\) )```	$\begin{aligned} & {[191,220,} \\ & 221] \end{aligned}$	-
172	4- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	not given	visible/UV: 468 (band gap $=2.37 \mathrm{eV}$ ) diagram of photoconduction kinetics given IR (KBr): 1940 ( $\mathrm{C} \equiv \mathrm{C}$ )	$\begin{aligned} & {[246,278,} \\ & 283] \end{aligned}$	7 m
*173	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{As}$	Id (60)	Preparation Method Id with CuCl in dimethylsulfoxide; preparation by Method Ia is not possible colored, does not melt IR (no media given): 1950 or 1999 (both for $\mathrm{C} \equiv \mathrm{C}$ ) nonexplosive, insoluble in organic solvents	$\begin{aligned} & {[166,195,} \\ & 283] \end{aligned}$	-
*174	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}$	not given	colored, does not melt when heated   IR (KBr) : 1999 ( $\mathrm{C} \equiv \mathrm{C}$ )   nonexplosive, insoluble in organic solvents	[195, 283]	-
175		la (72)	yellowish orange	[223]	8d
176	$\mathrm{n}-\mathrm{C}_{12} \mathrm{H}_{25}$ (?)	*llb	possibly only the Lil adduct is prepared and reacted yellow	[229]	11 (35\%)


yellowish orange


ㅅ $\quad \stackrel{\infty}{\sim} \stackrel{\text { ® }}{\sim}$
 -
$1804-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{2}$
la

preparation also from No. 167 and $\mathrm{BrC} \equiv \mathrm{CH}$ at $0^{\circ}$ in dimethylformamide m.p. $165^{\circ}$ (dec.)
thermal analysis shows one exothermic peak at $165^{\circ}$
IR $(\mathrm{KBr})$ IR (KBr) : $2180(\mathrm{C} \equiv \mathrm{C})$
-
IR (KBr) : 1930, 2220 (both $\mathrm{C} \equiv \mathrm{C}$ )
IR (polyethylene; measured 100 to 400 ) : $\sim 150$
(Cu-Cu), 195, 214, 273, 293, 308, 368 m.p. $322^{\circ}$ (dec.)

IR (polyethylene; measured 100 to 400) : 123, 170
(Cu-Cu), 210, 276, 304, 357
visible/UV (1:100 in MgO) : 530
1

	177		Ia
$\omega$ ¢	178	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{OH})$	Ia
	179		la
$\begin{aligned} & \text { D} \\ & \stackrel{\oplus}{\stackrel{\rightharpoonup}{\oplus}} \end{aligned}$	180	4-( $\left.\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}\right.$	$\begin{gathered} \mathrm{CH}_{2} \\ \mathrm{la} \end{gathered}$
	181		la
$\begin{aligned} & \text { 긍 } \end{aligned}$	182	4- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}$	$\mathrm{la}(?)$
	*183	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}$	$\mathrm{la}($ ? $)$
	*184	anthr-9-yl	not given
	185	4- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHCOCH}_{2}$	Ia
	186	$2-\mathrm{CH}_{3} \mathrm{O}\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{3}$	la (88)

Table 1 [continued]


[295]	14
[198, 339]	$\begin{aligned} & \text { 2a ( } 40 \% \text { ) [339], } \\ & 8 \mathrm{a} \end{aligned}$
[198, 339]	7b, 8a
[299]	7 i
[301]	7d
[ 001 ]	7 d
[326]	7 c
[342]	-
[341]	-
[327]	1 [327]
[339]	7b
[339]	7b
[339]	7 b
[335]	8a
[351]	7 b
[350]	-

    \(94 \%\) total yield from sequence: Preparation
    Method *Ia-Reaction Type 14-Preparation
Method VI
yellow, darkening at 108 to $110^{\circ}$ (dec.?); does
not melt on heating up to $350^{\circ}$
nonexplosive on heating or shock
soluble in ether, benzene, $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CCl}_{4}$
IR: 2020 (C引C), 2590 to $2640(\mathrm{BH}), 3080$ (CH)
Reaction Type 7 b with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$ not possible,
only oxidation (Type 2a)
bright yellow-orange
preparation with $2 \mathrm{CuO}_{3} \mathrm{SCF}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ in $\mathrm{CD}_{3} \mathrm{NO}_{2} /$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
no details about Preparation Method I and
Reaction Type 1 given


*Further information:
$\mathbf{H C} \equiv \mathbf{C C u}$ (Table 1, No. 1) is postulated as an intermediate in the formation of $\mathrm{Cu}_{2} \mathrm{C}_{2}$ from $\mathrm{Cu}^{+}$and $\mathrm{C}_{2} \mathrm{H}_{2}$ in aqueous media. Various equilibria were assumed, e.g., $\mathrm{HC} \equiv \mathrm{CH}+\mathrm{Cu}^{+} \rightleftharpoons$ $\mathrm{HC} \equiv \mathrm{CCu}+\mathrm{H}^{+}[55,104,260] . \mathrm{HC} \equiv \mathrm{CCu}$ in these solutions is even supposed to be catalytically active in the dimerization and for similar reactions of $\mathrm{C}_{2} \mathrm{H}_{2}[177]$.

Earlier reports on use of Preparation Method la give no definitive proof of the formation of $\mathrm{HC} \equiv \mathrm{CCu}[17,55]$. Its aqueous solutions are claimed to be yellow or colorless [55, 104]. High dilution conditions with a high $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{Cu}^{+}$ratio were also used [61]. An " $\mathrm{HC} \equiv \mathrm{CCu}$ " is reported to give on reaction with HCl at room temperature $\mathrm{C}_{2} \mathrm{H}_{2}$ and under certain conditions under cooling $2 \mathrm{CuCl} \cdot \mathrm{C}_{2} \mathrm{H}_{2}$; but there are no details of its preparation [17]. The equilibrium data of [17] tateron were not confirmed [48]. Conditions for preparing a "red $\mathrm{HC} \equiv \mathrm{CCu}$ " resemble those for $\mathrm{Cu}_{2} \mathrm{C}_{2}$ synthesis; no proof of structure is given [95]. In the decomposition reaction of $\mathrm{HO}_{2} \mathrm{CC} \equiv \mathrm{CCu}$ to yield $\mathrm{Cu}_{2} \mathrm{C}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$, and $\mathrm{CO}_{2}$ the compound $\mathrm{HC} \equiv \mathrm{CCu}$ could be an intermediate (see also No. 5) [36].
$\mathbf{C F}_{3} \mathbf{C}=\mathbf{C C u}$ (Table 1, No. 2). On fusion with metallic sodium the fluorine is quantitatively converted to NaF [65]. $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCu}$ is thought to be an intermediate in the reaction of $\mathrm{CF}_{3} \mathrm{C} \equiv$ CZnCl and $\mathrm{CuCl}_{2}$ to form $\mathrm{CF}_{3}\left(\mathrm{C} \equiv \mathrm{C}_{2} \mathrm{CF}_{3}[127]\right.$.
$\mathrm{CH}_{3} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 7) is also formed by hydrolysis of $\left[\left(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{K}_{2}$ (see Section 1.1.2.8) and from $\left[\left(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{K}$ (see Section 1.1.2.7) and Cul in liquid ammonia [84].

Depending on the preparation and purification methods, the compound varies much in these ease of detonation. Storage under water is recommended [133]. IR and Raman band positions are listed in the table; the spectra are reproduced in Fig. 4.
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}$ is not affected by pyridine, bipyridyl, o-phenanthroline, and pure $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$ [98]. The formation of a CO adduct from $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}$ and CO in liquid ammonia is conjectured [101]. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}$ does not undergo the so-called "Straus Reaction" (Reaction Type 5) to give $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHCH}_{3}$. The only product was $\mathrm{CH}_{3}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{CH}_{3}[51]$.
$\mathrm{HOCH}_{2} \mathrm{C}_{\mathrm{E}} \mathbf{C C u}$ (Table 1, No. 8). When Cu , in the presence of air, is immersed in an aqueous solution of $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$ (both 0.2 M ), a visible yellow film of $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ is formed within 2 min . After 10 min a thick film is obtained which is smooth


Fig. 4. The Raman and infrared absorption spectra of $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}$ [236].
and fairly adherent. When cyclic voltammetry is carried out using an aqueous solution of $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CH}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$ and KOH (all 0.1 M ), the formation of $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ at anodic potentials is so rapid, that it is deposited as a nonadhering yellow powder [343].

The IR spectrum in polyethylene was measured from 100 to $400 \mathrm{~cm}^{-1}$. The $\mathrm{Cu}-\mathrm{Cu}$ frequencies are given as 135 and $168 \mathrm{~cm}^{-1}$ [228]. Electrochemically grown layers of $\mathrm{HOCH}_{2} \mathrm{C} \equiv$ CCu on metallic Cu give the following Raman reflections ( Ar or Kr laser): 244, 312 ( $\mathrm{C} \equiv \mathrm{C}-\mathrm{C}$ ), 401, 443 (Cu-C), 588 ( $\equiv \mathrm{C}-\mathrm{C}-\mathrm{O}), 931$ ( $\equiv \mathrm{C}-\mathrm{C}$ ), 1920 (C $\equiv \mathrm{C}$ ), all in $\mathrm{cm}^{-1}$ [343].

Certain reactions attack the molecule at the oxygen atom. I reacts with $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ to form $21 \%$ II with $5 \%$ III admixed [252, 275]. A quantitative analysis of the alkyne content in impure $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ is possible by reaction with $\mathrm{CuCl} /$ pyridine (Preparation Method Id) and subsequent titration of the resulting pyridinium ions; see p. 5. The reproducibility is $\pm 2 \%$ [109].




II

1


III
$\mathbf{C C l}_{2}=\mathbf{C C I C} \equiv \mathbf{C C u}$ (Table 1, No. 9). The reaction of $\mathrm{CCl}_{2}=\mathrm{CClC} \equiv \mathrm{CCu}$ and $\mathrm{Br}_{2}$ in $\mathrm{CCl}_{4}$ at $-10^{\circ} \mathrm{C}$ yields besides $\mathrm{CuBr} 37 \% \mathrm{CCl}_{2}=\mathrm{CCIC} \equiv \mathrm{CBr}$ [193,235], $20 \% \mathrm{CCl}_{2}=\mathrm{CCICBr}=\mathrm{CBr}_{2}$, and $20 \%\left(\mathrm{CCl}_{2}=\mathrm{CClC} \equiv \mathrm{C}\right)_{2}$. The analogous reaction with $\mathrm{I}_{2}$ in $\mathrm{CCl}_{4}$ ether gives only $82 \% \mathrm{CCl}_{2}=$ $\mathrm{CCIC} \equiv \mathrm{Cl} .\left(\mathrm{CCl}_{2}=\mathrm{CCIC} \equiv \mathrm{C}\right)_{2}$ can also be obtained in $40 \%$ yield by oxidation with $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$. The reaction with 3 N HCl at $50^{\circ} \mathrm{C}$ yields $26 \% \mathrm{CCl}_{2}=\mathrm{CCIC} \equiv \mathrm{CH}$ [235].
$\mathbf{C H}_{2}=\mathbf{C H C} \equiv \mathbf{C C u}$ (Table 1, No. 11). In preparation by Method Id $\mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{CCu}$ precipitates over the range of 0.005 to $0.3 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ [296]. Photoconductivity spectra were measured between 410 and 590 nm [202], 400 and 700 nm [203]. The long wave maximum was found at 465 nm [203, 231, 283]. These spectra give a forbidden band gap of 2.41 eV [203, 231, 283], the visible/UV data one of 2.5 eV [231, 283]; the direct transition energy is 2.53 eV [231].

The electronic spectra yield the following values for the $\mathrm{Cu}_{2} \mathrm{p}_{3 / 2}$ level and (in parentheses) the C1s level (relative to Fermi levels in Cu or in "free hydrocarbons", respectively): Binding energy $934.4 \mathrm{eV}(286.7 \mathrm{eV})$; half-width of the electron lines $2.2 \mathrm{eV}(3.1 \mathrm{eV})$, chemical shift $2.2 \mathrm{eV}(1.7 \mathrm{eV})$. The charge distribution is discussed [227]. For "mixed acetylides" with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ see Section 1.1.2.2.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathbf{S C} \equiv \mathbf{C C u}$ (Table 1, No. 20). The photoconductivity spectrum was measured from 390 to 650 nm . Because of the presence of sulfur in the molecule a supplemental "intermolecular $\mathrm{p}_{\pi}-\mathrm{d}_{\pi}$ interaction" was hypothesized. A photoconductivity spectrum of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SC} \equiv \mathrm{CCu}$ in the
presence of kryptocyanine and the illuminance/electrical current characteristics were also measured [278].
n- $\mathbf{C}_{3} \mathbf{H}_{7} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 33). The reaction of $2-\mathrm{IC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{ZOH}$ to give IV is strongly catalyzed by the $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}$ polymer (Reaction Type 13). Monomeric Cu' or low molecular weight aggregates of $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}$ in solution are not capable of rapid catalysis. The polymerically bound Cu seems to bridge the overly long distances between I and OH in $2-\mathrm{IC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{ZOH}$ to form IV. Formally this reaction can be understood as a hydrolysis of $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}$ to $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CH}$ by HI [165].

$\mathrm{C}_{2} \mathrm{H}_{5} \mathbf{C H}(\mathrm{OH}) \mathrm{C} \equiv \mathrm{CCu}$ (Table 1, No. 35). Like some other OH -containing copper acetylides, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{C} \equiv \mathrm{CCu}$ is readily soluble in aqueous $\mathrm{NH}_{3}$ and cannot be precipitated in the manner usual for Preparation Method Ia. When $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{C} \equiv \mathrm{CH}$ is added to a suspension of CuCl in $\mathrm{H}_{2} \mathrm{O}$, "pure" acetylide can be isolated [27].
$\left(\mathbf{C H}_{3}\right)_{3} \mathbf{S i C} \equiv \mathbf{C C u}$ (Table 1, No. 40) is formed from $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CLi}$ and CuBr or Cul, but only if the $\mathrm{Li}: \mathrm{Cu}$ ratio $=1$; a $\mathrm{Li}: \mathrm{Cu}$ ratio $=2$ gives a complex acetylide; see Section 1.1.2.7 [325].

The acetylide does not react with aryl halides (cf. Reaction Types 7 and 8) or with 2-(prop-1-ynyl)-2-methyloxirane, even in the presence of $\operatorname{Pd}\left[P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$; in some cases its instability could be the reason [245, 266, 325]. It is thought to be an intermediate in the reaction of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CLi}$ with $\mathrm{Cu}^{\prime}$ halides to give complex acetylides [206].

A conjugate addition of Mg or Li homoenolates to enones is possible in the presence of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CCu}$ in ether. Most Cu compounds examined are not, some (including $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv$ CCu ) are only slightly effective. The resulting 1,6-diones or their enolic ethers are postulated to be formed in a transmetallation reaction involving the copper acetylide, but no further copper species are mentioned [347]. Possibly the active species is the complex $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \equiv$ $\mathrm{CCu} \cdot \mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}$; see Section 1.1.2.4 [358].
$\mathbf{n - C} \mathbf{C}_{4} \mathbf{H}_{9} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 54). For the reaction Cu (cryst) +6 C (graphite) $+4.5 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow$ $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}$ (cryst) thermodynamic parameters are calculated from calorimetric measurements ( $\mathrm{T}=298.15 \mathrm{~K}$ and $\mathrm{p}=101.325 \mathrm{kPa}$ ): $\Delta \mathrm{H}_{\mathrm{f} 298}=73.2 \pm 3.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}, \Delta \mathrm{G}_{\mathrm{f} 298}=214.6$ $\pm 3.7 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, and $\Delta \mathrm{S}_{\mathrm{t} 298}=-474.3 \pm 0.7 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$. The specific heat $\mathrm{C}_{\mathrm{p}}$ of the crystalline material in the range from 14 to 330 K was measured with an adiabatic vacuum calorimeter [287]; values (partly extrapolated) are:

temperature   in K	$\mathrm{C}_{\mathrm{p}}$   in $\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$	temperature   in K	$\mathrm{C}_{\mathrm{p}}$   in $\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$
5	0.1920	100	72.66
10	1.554	150	100.0
15	4.032	200	121.8
25	10.89	273.15	150.9
40	24.26	298.15	160.6
60	42.77	330	175.8

From electronic spectra the following values were obtained for the $\mathrm{Cu}^{2} \mathrm{p}_{3 / 2}$ level and (in parentheses) the C 1 s level (relative to Fermi levels in Cu or in "free hydrocarbons", respectively): binding energy $934.3 \mathrm{eV}(286.2 \mathrm{eV})$; half width of the electron lines 2.6 eV $(3.3 \mathrm{eV})$; chemical shift $2.1 \mathrm{eV}(1.2 \mathrm{eV})$. The charge distribution is discussed in the paper [227].

The photoconductivity spectrum ( 400 to 1000 nm ) is known [202], $\lambda_{\max }=440$ [231]. The band gap is 2.72 eV . The relative positions of the energy levels are given [248, 283]. Photoconductivity spectra are also known with sensitization by cationic dyestuffs like pinacyanol, kryptocyanine, or methylene blue or by anionic dyestuffs. Maximum sensitization (conductivity increased by $65 \%$ ) has been obtained with erythrosine [283].

The visible/UV spectrum ( 348 to $800 \mathrm{~nm}, \mathrm{MgO}$ ) [231] has a maximum at 420 nm [231, 283]. The band gap is 2.73 eV , the direct transition energy 2.75 eV [231, 248], the photoelectric work function 5.25 eV [248, 257]. Relations between decomposition threshold and band gap [257] are discussed on pp. 6/8.
$n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}$ is less stable than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$, but more stable than $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CAg}$. Thermal decomposition involves a considerable liberation of heat. The products evidently result from secondary reactions of the hex-1-ynyl radical. At $200^{\circ} \mathrm{C}$ the gaseous decomposition products contain $6 \% \mathrm{CH}_{4}, 7 \% \mathrm{C}_{2} \mathrm{H}_{6}, 17 \% \mathrm{C}_{2} \mathrm{H}_{4}$, traces of propane, $10 \%$ propene, $27 \%$ butane, and $33 \%$ butenes [261]. The compound can be incinerated without explosion for Cu determination [83].

The thermogram (one endo effect above $140^{\circ} \mathrm{C}$, one exo effect above $160^{\circ} \mathrm{C}$ ) indicates the one-stage decomposition of the aggregated oligomeric product [261]. The reaction with $2,4,6-\left(\mathrm{O}_{2} \mathrm{~N}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ in pyridine at room temperature yields a red solution with a visible spectrum very similar to that of the Meisenheimer complex formed from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ (see p. 54), but after treatment with acids no solid products have been isolated [196].
$\left(\mathrm{CH}_{3}\right)_{3} \mathbf{C C}=\mathbf{C C u}$ (Table 1, No. 55). The yellow or red (or orange [185, 218]) color variations could be a consequence of aggregation-disaggregation processes, which have not been studied subsequently and about which contradictory data were published. At $80^{\circ} \mathrm{C}$ [51] or on crystallization from benzene the yellow acetylide converts into a red form. Crystallization of this red form from $\mathrm{CHCl}_{3}$ gives the yellow species again. The data about the dependence of color on the degree of association differ: The yellow form is said to have a higher molecular weight than the red form (cryoscopically in $\mathrm{CHCl}_{3}$ ) [34]. The color is said to become deeper with higher association; the monomer is colorless, the dimer yellow-green, and the octamer orange-red. The benzene solution contains $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCu}\right]_{8}$ from cryoscopic and ebullioscopic measurements [102, 103]. The ether solution shows a reversible color change from red to yellow on cooling to $-78^{\circ} \mathrm{C}$ [237]. Evaporation of the orange pentane solution yields a liquid, which crystallizes from ether at $-49^{\circ} \mathrm{C}$ to give an orange precipitate [34, 218]. On storing solutions, the molecular weights fall gradually until they nearly reach the unimolecular value; some decomposition occurs to a gummy solid (finely divided copper?) [34]. Preparation according to Method la yields the two forms as a conglomerate, m.p. $\sim 140^{\circ} \mathrm{C}$ [135], with nonexplosive decomposition between 80 and $150^{\circ} \mathrm{C}$ to form a copper mirror and a sublimate [34,51]. The compound is soluble in ether, pentane [218], and tetrahydrofuran [271], less soluble in benzene than in ether (both forms) [34]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right): \delta=1.37 \mathrm{ppm}(\mathrm{s})$ [218]. Visible/UV (heptane): points of inflection at $235(\varepsilon=5350)$ and 316 nm (2680) with gradually diminishing absorption out to ca. 600 nm [218]. IR ( $\mathrm{KBr} ; \mathrm{C}_{2} \mathrm{Cl}_{4}$ ): $2000(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1}$ [203, 218]. " $\mathrm{C} \equiv \mathrm{C}$ absent" is stated in [102, 103].

4-IC $\mathbf{C}_{6} \mathbf{C}_{4}=\mathbf{C C u}$ (Table 1, No. 86) is used for electrophotographic layers (sensitivity from UV to 600 nm , enhanced after sensitization with dyes) [130]. A comparison of photoconduc-
tivity and photovoltage with those of other $\mathrm{RC} \equiv \mathrm{CCu}$ has been published, but no quantitative values are given [256].
$4-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ reacts with $(\mathrm{CN})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ in tetrahydrofuran at $55^{\circ} \mathrm{C}$ to form polymers (probably resulting from $(\mathrm{CN})_{2} \mathrm{C}=\mathrm{CCN}$ radicals) and $4-\mathrm{IC}_{6} \mathrm{H}_{4}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}-4$ [170].
$\mathbf{2 - 0} \mathbf{O}_{2} \mathbf{N C}_{6} \mathbf{H}_{4} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 87). On refluxing with 5-iodouracil or 2-iodo-3-hydroxypyridine in dry pyridine the indogenide $V$ is formed. Both of the added compounds seem to be only catalysts. The same reaction with 2-bromopyridine yields the anhydroisatin $\alpha$ anthranilide VI . With $2-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$ a mixture of V and VI is produced. Proposals for the mechanisms of the formation of V and VI are given. The reaction with $2-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{CONH}_{2}$ gives a mixture of V, VII (yield $6 \%$ ), and VIII (yield $66 \%$ ). The intermediate in the formation of VII and VIII is obviously the expected $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CONH}_{2}-2$. The hydration of its triple bond can result in two different products. If the intermediate species $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}-$ $\mathrm{CH}_{2} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{CONH}_{2}-2$ is formed, a subsequent condensation yields VIII; if $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONH}_{2}-2$ is formed, a subsequent condensation gives VII. The reaction of No. 87 with 2-phenylisatogen (IXa) in boiling pyridine yields $55 \% \mathrm{Xa}$. The analogous reaction with $2-(4-$ nitrophenyl)isatogen (IXb) gives $93 \% \mathrm{Xb}$. The cinnoline structure of Xa and Xb is derived from spectroscopic data [162].


V



VI



IX


VII

$$
a: R^{1}=H
$$

$\mathrm{b}: \mathrm{R}^{1}=\mathrm{NO}_{2}$

VIII

$\mathrm{a}: \mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}$
b: $R^{1}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

X
$\mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 90). Preparation. Best method is Ia in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ with $99 \%$ yield from Cul prepared by preceding reaction of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}+\left[\mathrm{NH}_{3} \mathrm{OH}\right] \mathrm{Cl}$ [207], quantitative from Cul [123], $85 \%$ from CuCl [184]. The analytical use of this reaction is treated on p. 5.

For " mixed acetylides" with $\mathrm{Cu}_{2} \mathrm{C}_{2}, \mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{CCu}$, or $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cu}$, prepared according to Method Ia, see Section 1.1.2.2.

Further feasible preparation methods are Ib (in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ [224] or in a mixture of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and dimethylformamide, yield $92 \%$ [173]) and Id (in hexamethylphosphoric triamide in the presence of a little $\mathrm{Na}_{2} \mathrm{SO}_{3}$ [164]). The $\mathrm{H}^{+}$ions formed cannot only be bonded by the triamide but also by $\mathrm{K}_{2} \mathrm{CO}_{3}$ and pyridine. This is a very simple preparation method, but the product is contaminated by inorganic salts (yield $30 \%$ ). Nevertheless, this mixture can be advantageously used for certain further reactions [279]. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ and Cul in $\mathrm{HN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ in the presence of $\mathrm{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \mathrm{Cl}_{2}$ yields a slurry of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$, which is without isolation further reacted [284]. In the course of the oxidative coupling reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ to $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ with $\mathrm{O}_{2} / \mathrm{i}$-propanol/tetramethylenediamine/CuCl some $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is precipitated [105]. Method le [210, 234] and Method If [131] afford a 97 or 80 to $90 \%$ yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$.

Method II has not been used to prepare $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$, but the similar reaction of the boron complex $\mathrm{NH}_{4}\left[\mathrm{~B}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{4}\right]$ and ammoniacal Cu' solution $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ yields within a few minutes $98 \%$ of the acetylide [85].

Method IV: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CBr}$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and an ammoniacal solution of $\mathrm{Cu}^{\prime}$ salt react to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in good yield [18].

Method V using $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{Cu}^{\prime}$ goes well at $35^{\circ} \mathrm{C}$ in dimethylformamide [249] and as an in situ preparation [229]. $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCO}_{2}\right)_{2} \mathrm{Cu}^{\prime \prime}$ is converted to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ by water vapor at $100^{\circ} \mathrm{C}$ [21].

Method VI: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{NH}_{3}$ decomposes to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in a $\mathrm{N}_{2}$ stream at room temperature [84]. An analogous decomposition occurs when $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$ stands for 1 to 2 d in air [102, 103]. $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{HgBr}_{2}$ and KI react in $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ [158]. $\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{3} \mathrm{CuC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ (see Section 1.1.4.3) decomposes to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ on prolonged washing with ether. The same product is obtained by treatment of this complex with pyridine/water (evolution of CO ) or with di-p-tolylformamidine [68].

Method VII: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is isolated from the yellow decomposition product of $\mathrm{C}_{6} \mathrm{H}_{5}$ $\mathrm{C} \equiv \mathrm{CHCuCl}$ [29]. In contrast to other complexes of its type the paramagnetic complex XI is not very stable and a transformation occurs to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ [273].


XI
Method VIII: $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{\circ}\right]_{2} \mathrm{Ba}_{3}$ reacts with even traces of $\mathrm{O}_{2}$ to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Ba}$ [108]. Also $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{Na} \cdot 2 \mathrm{NH}_{3}$ and Cul in liquid ammonia react to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{NH}_{3}$; and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cu}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{4}\right] \cdot x \mathrm{NH}_{3}$ in liquid ammonia yields on evaporation $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5} .\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right]\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]$ reacts with $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P} \cdot \mathrm{AuCl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu},\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Au}\right]\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$. $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$. With $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CAuCl}\right]\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]$ only $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Au}\right]$ $\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]$ are formed. The reaction of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right]\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CAu}$ gives $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Au}\right]\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right][336]$. The compounds $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$
and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NX}\left(\mathrm{X}=\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PO}\right.$ or $\left.\mathrm{CH}_{3} \mathrm{SO}_{3}\right)$ give at $-20^{\circ} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ [316]. The complex $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cu}^{11}\left(\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}\right)_{2}\right] \cdot 2 \mathrm{NH}_{3}$ yields with water $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CCu , on prolonged evacuation in high vacuum a mixture of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$. Water also hydrolyzes $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cu}^{11}\left(\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}\right)_{2}\right] \cdot 12 \mathrm{NH}_{3}$ to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ [84]. Further methods: The hydrolysis of $n-\mathrm{C}_{4} \mathrm{H}_{9}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right) \mathrm{CuLi}$ (see "Organocopper Compounds" 2, 1983, pp. 178 and 185) with water yields (with gas evolution) up to $90 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$. The corresponding magnesium compounds $\mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right) \mathrm{CuMgBr}$ and $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)$ CuMgBr react with water in tetrahydrofuran to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ plus a gaseous and a liquid byproduct, whereas with $\mathrm{CH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right) \mathrm{CuMgCl}$ and with $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right) \mathrm{CuMgBr}$ no $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ was isolated [180].
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can also be produced from copper metal by electrochemical corrosion in the presence of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$. In dry acetone or acetonitrile containing ca. $\left.0.05 \%\left[\mathrm{~N}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right] \mathrm{ClO}_{4}$ and $4 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ using a platinum cathode ( 20 V and up to 20 mA for 1 h ) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can be collected as a powdery yellow solid and is pure after washing with acetone and petroleum ether. Based on the loss of Cu from the anode the chemical yield is quantitative and per Faraday 1.06 mol of dissolved Cu was determined [345].

Smooth, well-adhering films of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can be obtained on Cu surfaces using the electrochemical corrosion method. This is of interest for photocurrent spectroscopic investigations. There are different ways to grow adherent films. The copper potential in a $\mathrm{H}_{2} \mathrm{O}$ / $\mathrm{CH}_{3} \mathrm{OH}$ (1:1) solution of $0.1 \mathrm{M} \mathrm{KF}, 0.44 \mathrm{M} \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$, and $9 \times 10^{-3} \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ can be cycled between -0.9 and +0.1 V (versus saturated calomel electrode). The thickness of the golden films of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can be varied by removing the electrode from the growth medium after a different number of cycles in each case. Open circuit corrosion of a Cu electrode using the same, but air-saturated solution, also gives well-adhering films. In this case, some control of the film thickness can be achieved by varying the immersion time. With both methods, the film thicknesses were typically in the range of 0.1 to $1.0 \mu \mathrm{~m}$ [343, 344].

A linear relationship between the net anodic charge consumed and the yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CCu (coulombic yield of 50 to $65 \%$ ) was observed [343]. $\mathrm{NH}_{3}$ instead of $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$ leads to a rapid corrosion of Cu and to powdery, poorly adhering $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}[343,344]$. Addition of KOH to the solution makes oxide formation predominant [343].

Thermochemical Data of Formation. From calorimetric measurements the functions $\mathrm{H}_{\mathrm{T}}^{\circ}-\mathrm{H}_{0}^{\circ}$, $\mathrm{S}_{\mathrm{T}}^{\circ}$, and $\mathrm{G}_{\mathrm{T}}^{\circ}-\mathrm{H}_{0}^{\circ}$ were calculated for the range 0 to 330 K . The standard thermodynamic parameters of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ are $\Delta \mathrm{H}_{\mathrm{f} 298}^{\circ}=296 \pm 2.1 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{G}_{\mathrm{i} 298}^{\circ}=365 \pm 2.3 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{S}_{\mathrm{i} 298}^{\circ}=$ $-231 \pm 0.7 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$, defined for the reaction

$$
\mathrm{Cu} \text { (cryst) }+8 \mathrm{C} \text { (graphite) }+2.5 \mathrm{H}_{2} \text { (gas) } \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \text { (cryst) [281]. }
$$

The motar heat capacity at constant pressure $\mathrm{C}_{\mathrm{p}}$ of crystalline $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ increases smoothly from 11 to 330 K , measured with an adiabatic vacuum calorimeter. A table of the values between 5 K (extrapolated) and 330 K is given. At 298.15 K and $1 \mathrm{~atm} \mathrm{C}_{\mathrm{p}}^{\circ}=$ $154.0 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$ [281].

Photoelectric Properties, Conductivity (see also pp. 6/8). The dark resistivity at $25^{\circ} \mathrm{C}$ is reported as $2.3 \times 10^{11} \Omega \cdot \mathrm{~cm}$ (in air?) [220, 221] and as $10^{9}$ to $10^{10} \Omega \cdot \mathrm{~cm}$ in air with an increase up to 1.5 -fold in vacuum [107].

Of all $\mathrm{RC} \equiv \mathrm{CCu}$ examined (see pp. $6 / 8$ ), No. 90 was the acetylide with the highest photosensitivity [141]. The dependence on donor and acceptor properties of substituents introduced into the phenyl ring is treated by [221,248]. The photosensitivity of No. 90 is generally lower than that of compounds with $2 \mathrm{C} \equiv \mathrm{CCu}$ groups in the monomeric molecule, e.g., of
$4-\mathrm{CuC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ [141]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is claimed to be an intrinsic semiconductor with a positive dominant photocarrier [107, 155, 256]. On the other hand, the photocurrent response and the decay in the dark are found to be very slow (photocarriers deeply trapped in the polymer) [191].

After irradiation in $\mathrm{O}_{2}$ or in air with 500 nm light $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ shows after 2 min a resistivity stationary at $10^{7}$ to $10^{8} \Omega \cdot \mathrm{~cm}$. In $\mathrm{O}_{2}$ the resistivity is lower and it increases more slowly than in vacuum [221].

Contradictory results for photoconductivity spectra are obtained when measured in dry air or in vacuum [107, 202, 220, 221, 256, 278, 319]. Okamoto et al. [220, 221] give quite different curves ( $\lambda_{\text {max }}$ in dry air 432 and 525 nm , in vacuum 520 nm ). Myl'nikov et al. [107] have found in air and in vacuum identical values ( 430 and 500 nm ). Experimental conditions are not adequately specified for many reported maxima mentioned: 500 nm [231, 246, 283], 430 and 500 nm [107, 256, 278], and 450, 495, and 510 nm [202]; the presumption is that these were determined in air.

The high frequency photoconductivity was measured at 9.6 GHz (klystron) under visible/ UV illumination (W-lamp; modulated at 150 Hz ). In contrast to most organic dye stuffs the photoconductivity decreases continuously with a deactivation energy of 0.06 eV when the temperature rises from -90 to $+20^{\circ} \mathrm{C}$ [119].

In vacuum and in air the maxima of the photo-emf excitation are at 385 and 460 nm [107], 390 and 455 nm [155]. The photo-emf itself is in vacuum 3 to 5 times higher than in air. The explanation of this fact refers to the pumping off of traces of water [107], but this is doubtful, for dry $\mathrm{O}_{2}$ also reversibly depresses the photovoltage [155]. Water vapor is reported to increase the photo-emf of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ (oxygen excluded?) [120]. Photovoltaic excitation spectra are also given for samples with preirradiation, e.g., constant irradiation with 365 nm light. The results are inconsistent [107, 125, 155]. The Dember effect was estimated with light chopped at 300 Hz [174].

The photodielectric effect in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ was studied at 10 GHz using hermetically sealed water-free samples. In contrast to most other semiconductors no illumination-induced change in the permittivity was found [321]. The photoelectric work function is reported as $\varphi=4.9 \mathrm{eV}[140,155], 5.24 \mathrm{eV}[248,257]$. The direct transition energy of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is $2.5 \pm 0.03 \mathrm{eV}$ [231]. The forbidden band width was determined from the photoconductivity spectra as $E_{g}=2.38 \pm 0.02[187,203,221,231,246,283]$ and 2.39 [257], and from the absorption spectra as $\mathrm{E}_{\mathrm{g}}=2.4 \pm 0.05$ [231,248] and 2.45 eV [246, 278, 283]. The electronic spectrum of $\mathrm{Cu}-2 \mathrm{p}_{3 / 2}$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ excited by $\mathrm{MgK} \alpha$ radiation yields a binding energy $\mathrm{E}_{\mathrm{b}}=934.2$, an electronic line half-width of $\Delta \mathrm{E}_{1 / 2}=2.3$, and a chemical shift $\Delta \mathrm{E}_{\mathrm{b}}=2.0 \mathrm{eV}$, i.e., the binding energy is higher in the molecule than in Cu metal. The chemical shift is defined as the difference of the binding energies of the electrons between the molecule and the Fermi levels of Cu metal or of $C$ in "hydrocarbons", respectively. The values for $C-1 \mathrm{~s}$ (no fine structure) are $\mathrm{E}_{\mathrm{b}}=286.1, \Delta \mathrm{E}_{1 / 2}=3.0$, and $\Delta \mathrm{E}_{\mathrm{b}}=1.1 \mathrm{eV}$ vs. the hydrocarbon. The width of the $\mathrm{Cu}-2 \mathrm{p}_{3 / 2}$ lines confirms the existence in the crystal of copper atoms with different effective charges [227].

The inner photoeffect of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can be spectrally sensitized up to the near-infrared by absorption of cyanines [117, 154, 174, 283] or of dyes of the triphenylmethane [116, $126,154,283$ ] or porphine [116, 117, 155] types. The photoconductivity and the photo-emf can be either decreased or increased [116, 117]. The resulting photo-emf often resemble the dye spectra [117, 154]. The effects of quinone, chloranile, Hg vapor [155], nitrocellulose [221], polyvinylcarbazole [130, 141, 319], RNA, DNA, alanine, adenine, thiamine [143, 174], and quinine [154] on the photoconductivity (and its relaxation time) and on the photovoltage
have also been studied and discussed. No charge-transfer effects between $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and polyvinylcarbazole have been detected [319].

Photocurrent spectra of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ films on Cu in aqueous 0.1 M solutions of either $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ or LiOH in the absence of $\mathrm{O}_{2}$ were also measured. The monochromatic photocurrent conversion efficiency at 460 nm exceeds $10^{-2}$. The cathodic photocurrents are increased by the presence of $\mathrm{O}_{2}$. Possible mechanisms for energy and charge transfer in the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CCu films are discussed [344].
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is useful in preparation of electrophotographic layers which charge well both positively and negatively [130, 141]. The insolubility of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ permits preparation of high quality films with polyvinylbutyral and polyvinylcarbazole (sensitivity up to 600 nm ) [130, 322, 323]. The light sensitivity of $1: 1$ mixtures has been measured [323]. Printing carriers have been prepared with $5 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in poly-N-vinylcarbazole [322]. Embedding of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in polyethylene and in methyl methacrylate is treated by [141]. The inherent sensitivity of the copper phenylacetylide layers is to be sure only $1 / 5$ of that of the selenium layers, but the acetylide layers work at higher temperatures. At the photosensitivity maxima the two layers are comparable [130].

Optical and Spectroscopic Properties. IR bands in KBr of more than $20 \%$ absorbance are: $266 \mathrm{~s}, 366 \mathrm{~s}(\mathrm{C}-\mathrm{H}), 515 \mathrm{~s}(\mathrm{C}-\mathrm{C} \equiv \mathrm{C}), 525 \mathrm{~s}$, 685 s (both C-C), $745 \mathrm{vs}, 915 \mathrm{~m}, 1026 \mathrm{~m}, 1070 \mathrm{~m}$ (all C-H), $1440 \mathrm{~s}, 1481 \mathrm{~s}, 1594 \mathrm{~m}$ (all C-C), 1930 ( $\mathrm{C} \equiv \mathrm{C}$ ), all in $\mathrm{cm}^{-1}$ [216]. A very simitar spectrum in KBr , reported later, does not show the band at $1440 \mathrm{~cm}^{-1}$ [236]. In KBr [102, 103, 203] the $C \equiv C$ vibration was found at $1933 \mathrm{~cm}^{-1}$, in Nujol at 1930 [171] and $1933 \mathrm{~cm}^{-1}$ [221]. Several further authors [158, 221, 246, 256, 278] found also $1933 \mathrm{~cm}^{-1}$ for $\mathrm{C} \equiv \mathrm{C}$, others gave 1926 [243] and $1953 \mathrm{~cm}^{-1}$ [191] (no experimental conditions given). Certain solvents cause a breakdown of the polymeric structure of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$, therefore the wavenumber is enhanced: from 1923 in KBr to 2075 in $\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ and $2083 \mathrm{~cm}^{-1}$ in hexamethylphosphoric triamide [164]. The C-Cu vibration (in the solid state?) is found to belong to the absorption at 450 [243] or $422 \mathrm{~cm}^{-1}$ [242]. Broad asymmetric bands (140, 153, and $187 \mathrm{~cm}^{-1}$ in polyethylene) were classified as $\mathrm{Cu}-\mathrm{Cu}$ vibrations [228]. Spectra measured in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ contain bands which belong to $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ [125]. The shift of approximately $180 \mathrm{~cm}^{-1}$ of the $\mathrm{C} \equiv \mathrm{C}$ frequency compared with that of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ is related to the polymeric structure [242].

The Raman spectrum (He-Ne taser) of solid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ shows bands at $200 \mathrm{~m}, 308 \mathrm{~m}$, $422 \mathrm{vs}, 515 \mathrm{~m}(\mathrm{C}-\mathrm{C} \equiv \mathrm{C}$ ), 529 vs (C-C), 749 m (C-H), 999 m (ring breathing), 1172 w and 1192 m (both C-H), $1594 \mathrm{~m}(\mathrm{C}-\mathrm{C}), 1926 \mathrm{~s}(\mathrm{C} \equiv \mathrm{C}), 3060 \mathrm{vw}(\mathrm{C}-\mathrm{H})$, all in $\mathrm{cm}^{-1}$ [216]. Very similar spectra are given in $[236,274]$. The bands at 308 and at 750 to $780 \mathrm{~cm}^{-1}$ are believed to result from $\pi-\mathrm{Cu}-\mathrm{C} \equiv \mathrm{C}$ vibrations [236]. Electrochemically grown layers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ on metallic Cu give the following Raman reflections ( Ar or Kr laser): 148 ( $\pi-\mathrm{Cu}-\mathrm{C} \equiv \mathrm{C}$ vibration), 201 ( $\mathrm{C} \equiv \mathrm{C}-\mathrm{Cu}$ ), 310 ( $\mathrm{C} \equiv \mathrm{C}-\mathrm{C}$ ), 423 (Cu-C), 530 (ring-C-C), 747 (C-H), 782 (ring-C-C-C), 1928 ( $\mathrm{C} \equiv \mathrm{C}$ ), all in $\mathrm{cm}^{-1}$ [343].

Visible/UV spectra: The absorption maxima in mineral oil are at 400 and 477 nm [274]. Maxima at 395 [231], 455 [125, 231], 465 [246, 278, 283], and 500 nm [203] were also found. The diffuse reflectance spectrum of pure $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is reported to have a broad maximum between 420 and 470 nm [256]. Spectra in MgO were recorded with acetylide concentrations of $5 \times 10^{-4}$ (maxima at 390 and 455 nm ) [125,231] and $1 \%$ (maximum at 465 nm ) [256]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ photoluminesces on UV excitation. The positions of the sharp maxima do not depend on the wavelength of the exciting light between 313 and 416 nm . The luminescence spectra in air and in vacuum show differences. At 77 K the maxima in air are at 568 and 630 nm , in vacuum at 610 and 680 nm [231]. At 296 K 516 and 583 nm have been found in air [125, 231].
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is characterized by X-ray photoelectron spectroscopy (XPES) and by Auger spectroscopy. The core level photoelectron spectra (Cu2p $p_{3 / 2}=932.5 \mathrm{eV}$ ), the Cu( $\mathrm{L}_{3} \mathrm{VV}$ ) Auger line (a kinetic energy of 915.9 eV corresponds to that line) and the Auger parameters are discussed in terms of both the different coordination and the polarizability of the ligands [346].

Crystallographic Properties. With CuK $\alpha$ radiation the reflections of highest intensity are at 15.0, 9.8, and $5.1 \AA$. The chain diameter is approximately $18 \AA$ [274]. An X-ray analysis was carried out using a coarsely crystalline specimen [101]. Most of the crystals exhibit twinning on the (100) plane. The structure is monoclinic, with $a=30.89, b=3.89, c=20.36 \AA$, $\beta=109.8^{\circ}, Z=16$, space group $C 2 / c-C_{2 n}^{6}$ (No. 15). Reflections with $k+l$ odd are diffuse with streaking in the direction of $c^{*}$. The copper atoms are arranged in infinite zig-zag chains parallel to the $b$ axis, and these are related in pairs by the twofold axes. $\mathrm{Cu} \cdots \mathrm{Cu}$ distances along the chains are 2.42 and $2.47 \AA$, and between the chains 3.06 and $3.20 \AA$. The bonding between the copper atoms and the ethynyl groups is shown in Fig. 5. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ consists of a rectangular tube of copper atoms with the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$ groups on the outside. Each $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$ seems to be $\sigma$-bonded to one copper atom, symmetrically $\pi$-bonded to another, and asymmetrically $\pi$-bonded to a third copper atom. Each ethynyl group lies roughly in the plane of the copper atom chain, and is "side-on" bonded to one of the copper atoms, with the bond to the phenyl group distorted away from this atom. The terminal carbon atom of the phenylethynyl group forms a bridge bond with two adjacent copper atoms, so that each ethynyl group is bonded to three copper atoms. Neglecting the very short $\mathrm{Cu}-\mathrm{Cu}$ distances, the coordination around each copper atom is roughly trigonal [114, 151].

The two different types of $\mathrm{C} \equiv \mathrm{C}$ bonds were not confirmed by $\mathbb{I R}$ and laser Raman data [216].

Chemical Behavior. After careful washing and drying, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can be stored in tightly stoppered bottles for a long time [222]. Stored under $\mathrm{N}_{2}$ at room temperature in a brown bottle it is stable for years [207]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is stable to air up to $200^{\circ} \mathrm{C}$ [191, 286] but ignites on further heating [6]. The melting point (with decomposition) is $229^{\circ} \mathrm{C}$ [191, 221]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is more stable than $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}$ [261]. An exothermic peak was found at $171^{\circ} \mathrm{C}$ [221]. One endothermic effect at $205^{\circ} \mathrm{C}$ indicates decomposition in the solid state. Above $220^{\circ} \mathrm{C}$ a considerable liberation of heat has been observed. The decomposition yields a copper mirror and mainly $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ plus a polymer $\left(\mathrm{C}_{8} \mathrm{H}_{5}\right)_{n}$ [261]. UV irradiation


Fig. 5. Structure of polymeric $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}(\mathrm{No.90}$ ) with selected bond lengths (in $\AA$ ).
of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ powder [155] or solutions in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}[125]$ is reported to form $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, but in both cases no specifications about oxygen exclusion are given.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is insoluble in water and benzene [274]. The solubility in pyridine at $25^{\circ} \mathrm{C}$ is $7.5 \times 10^{-3} \mathrm{M}$ [165]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can be extracted by $\mathrm{HN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ [114] or $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{2}$ [102] and is also slightly soluble in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ [105]. It is soluble in $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ [234], $\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ [131, 144, 164], $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ [280], and in liquid ammonia as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{NH}_{3}$ (see Section 1.1.2.4) [101]. It is readily soluble in $\mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$ [164], a few percent can be dissolved in N -vinylcarbazole (for thermal polymerization to electrophotographic layers, see p. 50) [130]. Known reaction media for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ also include $\mathrm{CH}_{3} \mathrm{CN}$ [165], dimethylformamide [165], and N -methylpyrrolidone [87, 137]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ and 1-methylnaphthalene are used as diluents [137].

The following Reaction Types 1 to 13 are explained on pp. 12/4.
Reaction Type 1 is carried out with diluted HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$ [6] and with gaseous HCl in absolute ether [21]. Concentrated HCl or $\mathrm{HNO}_{3}$ (no exact concentrations given) cause deflagration [6]. The reaction with o-bromothiophenol to give thianthrene and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ can also be understood as solvolysis by $\mathrm{HBr}[123] . \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{R}^{1} \mathrm{OH}\left(\mathrm{R}^{1}=\right.$ aryl) give in pyridine a dark violet solution of supposedly $\mathrm{R}^{1} \mathrm{OCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ [337].

The reaction $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}+\mathrm{Fe}^{3+}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}+\mathrm{Cu}^{2+}+\mathrm{Fe}^{2+}$ is used for quantitative determination of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$. No oxidation according to Reaction Type 2 was observed [39]. A quantitative reaction with isopropylbenzene to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ is described (no further information) [89].

Reaction Type 2a: According to photo-emf measurements (see p. 49), dry $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is not oxidized by $\mathrm{O}_{2}$ at room temperature [120]. Under all other conditions it reacts readily to give $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$. Even prolonged washing in air forms considerable amounts of the butadiyne [128]. In some cases it is not clear whether insufficient oxygen exclusion or a reagent (polyhalogenophenols, iodoketones) causes the formation of $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ [123, 165]. Regarding the effects of UV irradiation in air see [155]. The preparation of $\mathrm{C}_{6} \mathrm{H}_{5}$ ( $\mathrm{C} \equiv$ $\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ by oxidation with air is accomplished by shaking $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ with aqueous [5,51] or ethanolic [6] ammonia at room temperature. Heating in water in the presence of air gives a mixture of $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ with its CuCl complex [44]. The diphenyl butadiyne is preferably prepared from a mixture of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}, \mathrm{CuCl}$, tetramethylethylenediamine, and isopropanol by oxidation at $28^{\circ} \mathrm{C}$ with air. Some $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is deposited and dissolves in the course of the reaction. The rate of this exothermic and almost quantitative reaction has been determined [105].

Reaction Type 2b: Aqueous $\mathrm{CuCl}_{2}$ gives $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ at room temperature [62] and at $100{ }^{\circ} \mathrm{C}$ (yield $88 \%$ ) [37]. $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in tetrahydrofuran, acetone, or dioxane (yield $45 \%$ ) gives the same product. A mechanism is proposed [194]. Analogous reactions are described with cupric acetate in hexamethylphosphoric triamide [165] or in hot pyridine [99] and with $\mathrm{Cu}\left(\mathrm{OC}_{4} \mathrm{H}_{9}-\mathrm{t}\right)_{2}$ at room temperature [210]. The reaction of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right][\mathrm{SCN}]_{2}$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CNa}$ in liquid ammonia yields $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, the latter obviously from $\mathrm{Cu}^{2+}$ oxidation of a part of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ formed [72]. Analogous reactions with other counter ions and intramolecular oxidation reactions of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cul}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{4}\right] \cdot x \mathrm{NH}_{3}$ and of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cu}^{\prime \prime}\left(\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}\right)_{2}\right] \cdot 2 \mathrm{NH}_{3}$ to give $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ have also been published [84].

Reaction Type 2c: $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ can be obtained in good yields with aqueous $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] / \mathrm{KOH}$ at room temperature [10]. This reaction also proceeds without KOH ; the copper acetylide should be wet with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ [21].

Reaction Type 2d is performed with $\mathrm{SiCl}_{4},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SiCl}_{2}$, or $\mathrm{SnCl}_{4}$ in tetrahydrofuran (a mechanism is proposed) [208] and with $\mathrm{SOCl}_{2}$ [204]. Mixing with $\mathrm{TLCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ causes ignition. On the other hand, with $\mathrm{TICl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ or tetrahydrofuran up to $75 \% \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ is formed via a white, insoluble substance of unknown structure [158]. $\mathrm{KMnO}_{4}$ [21] and $\mathrm{Fe}^{3+}$ [39] are not suitable.

For reactions with halogens $X_{2}$ or interhalogen compounds via $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CX}$ to form $\mathrm{C}_{6} \mathrm{H}_{5}$ ( $\mathrm{C} \equiv$ $\mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ see Reaction Types 3 and 4. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ reacts with acetyl bromide or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{POCl}$ in pyridine to give $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$. A mechanism is proposed [208]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and p $(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}$ yield in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ the radical anion $\left[\mathrm{p}-(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{C}(\mathrm{CN})_{2}\right.$ ] ${ }^{-}$ and $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, the latter obviously formed from $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$ radicals [170]. N -bromosuccinimide [165], BrCN [254], and $\mathrm{BrC} \equiv \mathrm{CH}$ oxidize it to $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$. Iodine vapor or a solution of iodine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $n$-hexane converts solid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ into a mixture of the butadiyne and Cul [285]. Earlier an incorrect explanation and product analysis of this reaction was given [286]. Quinone and chloranil vapors have some unexpected effects on the photoemf and photoconductivity of dry $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$; the visible/UV spectra show the formation of $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ [120]. The reaction with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is claimed to yield $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, but this result is possibly due to incomplete air exclusion [125].

Reaction Type 3: $\mathrm{I}_{2}$ in ether yields $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{Cl}$ [110]. Bromination of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}(25 \%$ excess) in ether at 2 to $5^{\circ} \mathrm{C}$ forms $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CBr}, \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, and CuBr [118]. With no excess of the copper compound $\mathrm{CuBr}_{2}$ is formed [285]. The butadiyne should result from the reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CBr}$ with excessive $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$.

No formation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CX}=\mathrm{CX}_{2}(\mathrm{X}=\mathrm{Br}$ or I) according to Reaction Type 4 has been observed.
Reaction Type 5 [21, 51, 123]: The adduct $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Cu}$ (see Section 1.1.2.5) is supposed to be an intermediate, for it gives $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHC}_{6} \mathrm{H}_{5}$ under the same conditions [21, 51].

Reaction Type 6: The insertion of $\mathrm{CO}_{2}$ at $80^{\circ} \mathrm{C}$ in tetrahydrofuran/pyridine gives lower yields than with certain P -complexes of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ (see Section 1.1.2.4) [234]. An analogous reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{CS}_{2}$ to give $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCS}_{2} \mathrm{Cu}$ is not feasible [320].

Reaction Type 7: For heat-resistant polymers from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and diiododiphenyldicarbonic acid dichlorides [333] see Section 1.1.2.1.4.2.

Reaction Type 10: The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ with 1 -amino-benzimidazolium iodide is treated in Section 1.1.2.1.7 on p. 136 because of the Mannich cation type structure of the reacting heterocyclic salt [354].

Reaction Type 13: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ catalyzes air oxidation of $\mathrm{Fe}^{2+}$, of hydroquinone, and of the leuco forms of dyes. The mechanism of the catalytic action of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is probably associated with its strongly developed surface states (cf. [120]) [124]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ catalyzes the cyclization of alkynylpyrazol carbonic acids containing the structural unit $\mathrm{HO}_{2} \mathrm{CC}=\mathrm{CC} \equiv \mathrm{C}$ to give pyranopyrazoles. A benzo[c]furan derivative has been obtained from 2-ethynyl benzoic acid [318]. The cyclization of $2-\mathrm{IC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OH}$ to give XII ( $\mathrm{n}=2$ or 3 ), formally a hydrolysis of the acetylide by HI , is strongly catalyzed only by high molecular weight aggregates of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$. This effect is related to bridging the excessively long distance between


XII

I and OH in $2-\mathrm{IC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OH}$ on the surface of the polymeric structure. Consequently, monomeric $\mathrm{Cu}^{\prime}$ or low molecular weight aggregates of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in solution are not capable of rapid catalysis [165].

Equimolar $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ proved to be highly effective in preparation of XIII from XIV and $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$ by suppressing reduction to XV . The suppressing mechanism obviously involves the complexation of a Li carbenoid by $\mathrm{Cu}^{\prime}$ to achieve a decrease in the basicity of the carbanion [244].


XIII


XIV


XV

Other reactions: The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $2-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{CONH}_{2}$ in boiling pyridine gives $74 \%$ XVI. Obviously the expected primary product $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CONH}_{2}-2$ is hydrated to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONH}_{2}-2$, which undergoes a reaction of the Knoevenagel type. The course of the reaction with XVII depends on the solvent used. In boiling pyridine the indolone XVIII (yield $62 \%$ ) is formed, whereas in boiling xylene a $34 \%$ yield of the quinolone XIX has been isolated [162]. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $2,4,6-\left(\mathrm{O}_{2} \mathrm{~N}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ at room temperature in pyridine yields first the red complex XX of the Meisenheimer type. After treatment with acids $5 \%$ 2,4,6- $\left(\mathrm{O}_{2} \mathrm{~N}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ and $6 \%$ XXI can be isolated. If the red Meisenheimer complex is exposed to air and daylight, a red precipitate of unknown structure is observed. Treatment with acids yields the isatogen XXII [196]. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CAu and $\left[\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Au}\right]$ gives $\left[\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{6} \mathrm{Cu}_{2} \mathrm{Au} \mathrm{H}_{3}\right.$ [349].


XVI


XVII


XVIII


XIX


$X X I: R^{1}=\mathrm{NO}_{2}$
$X X I I: R^{1}=O H$
XX
cyclo- $\mathbf{C}_{6} \mathbf{H}_{11} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 98). The degree of association $n$ has been estimated osmometrically in $\mathrm{CHCl}_{3}$. It depends on the preparation method. The product obtained by Method la could not be measured because of its insolubility; $n$ is believed to be very high. Preparation Method II produces oligomers ( $n=4.5$ to 8.5 ). With Method IIa $n$ depends on the Cu' concentration in the reaction batch ( 0.02 M Cul gives $n=8.5$ and 0.04 M gives $n=5.4$ ). In Method IIb cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CNa}$ is suspended in ether and stirred with a suspension of

CuCl in ammonia. The separation of the acetylide is possible after addition of $\mathrm{CH}_{3} \mathrm{OH}$. The high $C \equiv C$ frequency ( $2176 \mathrm{~cm}^{-1}$ ) is said to result from the absence of $d_{\pi}-p_{\pi}^{*}$ intermolecular interaction. Differential thermal analysis shows an endothermic peak below $125^{\circ} \mathrm{C}$ (transformation to a different solid phase, IR spectrum unchanged). Thermogravimetric analysis in air shows $\mathrm{CuCO}_{3}$ formation at $200^{\circ} \mathrm{C}$. Up to $550^{\circ} \mathrm{C}$ an appreciable amount of metallic copper is formed [288].
$\mathbf{n}-\mathbf{C}_{6} \mathbf{H}_{13} \mathbf{C}=\mathbf{C C u}$ (Table 1, No. 102). Differential thermal analysis shows an endothermic peak below $125^{\circ} \mathrm{C}$ and a transformation to a different solid phase (IR spectrum unchanged). At $300^{\circ} \mathrm{C}$ an appreciable amount of metallic copper is formed. The thermogravimetric analysis in air shows $\mathrm{CuCO}_{3}$ formation beginning at $200^{\circ} \mathrm{C}$ [288].

IR (Nujol or KBr): 1922 (C引C) [288]. IR (KBr): 717, 1429, 1460, 1472 (all s), 1930 (m, C C) [236]. Raman (solid): 450 (vs, $\equiv \mathrm{C}-\mathrm{Cu}$ ) [236, 242], 945 (vs), 1875 (C引C), 1929 (vs, C $\equiv \mathrm{C}$ ), 1955 ( $\mathrm{C} \equiv \mathrm{C}$ ), all wave numbers in $\mathrm{cm}^{-1}$. The relative intensities of the last three bands are 0.6:10:1.2 [236].
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 116). The resistivity at $25^{\circ} \mathrm{C}$ is $1.6 \times 10^{11} \Omega \cdot \mathrm{~cm}[191,220]$. Dark- and photoconductivities in polyethylene films [221] and in nitrocellulose were also measured. The electrical resistivity of mixtures of the acetylide and nitrocellulose has a minimum at approximately $20 \%$ nitrocellulose [190, 221]. The photocurrent decays very slowly. The effect of oxygen on photoconduction [191, 220] and the dependence of the photocurrent on the light intensity $[220,221]$ were measured in vacuum and in dry air. For the formation of a mixed Au -Cu complex upon reaction with $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Au}_{2}\right]^{-}$see Section 1.1.2.5 [348]. In contrast to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$, No. 116 does not react with $\left.\left[\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Au}\right.$ ] [349].
$\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{C H}(\mathrm{OH}) \mathrm{C} \equiv \mathbf{C C u}$ (Table 1, No. 119) is soluble in aqueous $\mathrm{NH}_{3}$ and cannot be precipitated in the usual manner with llosvay's reagent by Preparation Method la. Method Id: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{C} \equiv \mathrm{CH}$ is dissolved in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and mixed with a suspension of CuCl in $\mathrm{H}_{2} \mathrm{O}$. The pH value is maintained at 7 . After 3 h the conversion is complete [60,66].
n- $\mathbf{C}_{4} \mathbf{H}_{9} \mathbf{C} \equiv \mathbf{C C H}_{2} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 122). Because of the solubility conditions no quantitative conversion is possible by Method la. The mixture of acetylide and alkyne obtained by stirring $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and CuCl in $\mathrm{H}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{NH}_{3}$ is washed successively with $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and ether and then extracted with ether until no more yellow $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ dissolves [94].
$\mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{C} \equiv \mathbf{C})_{2} \mathbf{C u}$ (Table 1, No. 127). The photoconductivity spectrum [203] has the longwave maximum at 500 nm [203, 231, 283]. The band gap is $2.24 \pm 0.05$ (from absorption spectra) [231, 283] or $2.22 \pm 0.02 \mathrm{eV}$ (from photoconductivity spectra) [203, 231, 248]. The direct transition energy is $2.48 \pm 0.03 \mathrm{eV}$ and the electron affinity 3.17 or 3.19 eV , respectively [231, 248]. The vibrational structure of the photoconductivity spectrum ( $\lambda_{\max }=450,480$, and 500 nm ) and of the absorption spectrum ( $\lambda_{\max }=415$ and 455 nm [231] or 465 nm [283]), an electron energy scheme, and the photoelectric work function ( 5.41 eV ) have been reported [248]. The differential thermal analysis shows one exothermic peak at $240^{\circ} \mathrm{C}$ [221].
$\left(\mathbf{n}-\mathbf{C}_{4} \mathbf{H}_{9}\right)_{2} \mathbf{P C} \equiv \mathbf{C C u}$. (Table 1, No. 145). The conductance of photoresistors made from this compound was at 50 to 180 V in the range of $10^{-12}$ to $10^{-13} \Omega^{-1} \mathrm{~cm}^{-1}(?)$ [166]. The photoconductivity spectrum maxima are at 440 nm [283], 470 nm [166], 390, 440 nm [195]. The photocurrent carriers are positively charged [195]. The gap width from the photoconductivity spectrum is 2.78 eV [195, 283]. A kinetic photoconductivity curve is given [166].
$1-\mathrm{C}_{10} \mathrm{H}_{7} \mathbf{C}=\mathbf{C C u}$ (Table 1, No. 153). The resistivity at $25^{\circ} \mathrm{C}$ is $2.1 \times 10^{11} \Omega \cdot \mathrm{~cm}$. Dark and light currents are determined in polyethylene films and in nitrocellulose. The resistivity
shows a minimum at ca. $20 \mathrm{wt} \%$ nitrocellulose [190, 221]. The spectral dependence of the photocurrent has been measured in vacuum ( $\lambda_{\max }=546 \mathrm{~nm}$ ) and in dry air ( $\lambda_{\max }=553 \mathrm{~nm}$, more intense) [221]. The kinetics of the photoconductivity in air and in vacuum are given [220, 221]. The photoconductivity spectrum [256] shows a maximum at 507 nm [256, 283], the band gap is 2.22 eV . From the absorption spectrum a value of 2.30 eV has been obtained [248, 283]. The photovoltaic spectrum has a maximum at 465 nm [256].

The photoelectric work function is 5.22 , and the electron affinity is 2.92 (absorption) or 3.00 eV (photoemission), respectively. An electron energy level scheme is given [248].

2- $\mathbf{C}_{10} \mathbf{H}_{7} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 154). The resistivity at $25^{\circ} \mathrm{C}$ is $6.0 \times 10^{10} \Omega \cdot \mathrm{~cm}$ [191, 220, 221]. The photocurrent varies linearly with the light intensity in vacuum or dry air [220]. The photoconductivity spectrum [256] shows a maximum at 512 nm [256, 283], and the band gap is 2.22 eV . The value from the absorption spectrum is 2.30 eV [283]. The photo-emf spectrum has a maximum at 470 nm [256].

1- $\mathbf{C}_{10} \mathbf{H}_{7}(\mathbf{C}=\mathbf{C})_{2} \mathbf{C u}$ (Table 1, No. 167 ; see XXIII). Following Preparation Method Ia an ethereal solution of impure XXIV is shaken with CuCl in aqueous ammonia. This procedure is very useful for purification of XXIV. The compound is also prepared from No. 153 and $\mathrm{BrC} \equiv \mathrm{CH}$ at $0^{\circ} \mathrm{C}$ in dimethylformamide [205, 221].


XXIII


XXIV
$\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)_{2} \mathbf{A s C} \equiv \mathbf{C C u}$ (Table 1, No. 173). Visible/UV absorption maxima have been found at 570 nm in MgO [283], and at 490 nm in $\mathrm{MgO}_{3} \mathrm{BaSO}_{4}$ (concentrations between 0.1 and 10\%) [195]; the band gap is 1.88 eV [195, 283]. Broad overlapping maxima of the photoconductivity spectrum are reported at 440,500 , and 620 nm . The low photosensitivity tail extends to $1.2 \mu \mathrm{~m}$, which may explain the presence of a quasicontinuous distribution of vacancies in the forbidden band. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{AsC} \equiv \mathrm{CCu}$ has an appreciably greater growth and decay time for photoconductivity than other copper acetylides [195]. The gap width from photoconductivity measurements is 1.75 eV [195, 283]. Photoresistors with a conductivity of $10^{-12}$ to $10^{-13} \Omega^{-1} \mathrm{~cm}^{-1}(?)$ at 50 to 180 V were made from the acetylide [166].
$\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)_{2} \mathbf{P C} \equiv \mathbf{C C u}$ (Table 1, No. 174). Two photoconductivity maxima at 375 and 430 nm [195] as well as one maximum at 450 nm [283] are reported; the band gap is $2.78 \pm 0.02 \mathrm{eV}$ [195], but cf. [283]. The visible/UV maximum has been found at 370 nm [283]; the gap width (from UV ) is 2.74 eV [195, 283]. For these measurements an optimum concentration in MgO and $\mathrm{BaSO}_{4}$ of 1:100 was determined [195].

4- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{\equiv} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ (Table 1, No. 183). The joint analysis of the photoconductivity and the stretching frequencies of the ethynyl groups has shown that coordination bonds are created by the ethynyl group nearest to the copper atom [202].

The photoconductivity spectrum [202, 203] shows maxima at 440, 490, and 510 nm [231]; the band gap from photoconductivity is 2.26 eV [231, 248, 283]. The photoelectric work function is 5.24 , and the electron affinity is 2.94 eV (from UV absorption) or 2.98 eV (from photoconductivity). An electron energy level scheme is given [248].

UV spectrum in $\mathrm{MgO}: \lambda_{\max }=465 \mathrm{~nm}$ [231] or 475 nm , the band gap (from UV) is 2.3 eV [283].
$\mathbf{C}_{14} \mathbf{H}_{9} \mathbf{C} \equiv \mathbf{C C u}$ (Table 1, No. 184). The resistivity at $25^{\circ} \mathrm{C}$ is $5.0 \times 10^{9} \Omega \cdot \mathrm{~cm}$ [191, 220, 221]. The photoconductivity spectrum [256] shows a maximum at 550 nm [283]; the band gap is 2.14 eV [248, 257, 283]. The photo-emf spectrum has a broad plateau between 400 and 520 nm and the maximum value is at $\sim 510 \mathrm{~nm}$ [256]. The photoelectric work function is 5.03 eV ; an electron energy level scheme is given [248].
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathbf{C}(\mathbf{C N}) \mathrm{CH}_{2} \mathrm{C}_{\equiv} \mathbf{C C u}$ (Table 1, No. 188) is stable in air and insoluble in $\mathrm{H}_{2} \mathrm{O}$ and in organic solvents. It is not sensitive to acids and decomposes to a dark matter at 215 to $230^{\circ} \mathrm{C}$ without melting. At $500^{\circ} \mathrm{C}$ in vacuum elemental copper is formed. The differential thermal analysis shows exothermic peaks at $200^{\circ} \mathrm{C}\left(\mathrm{Cu}-\mathrm{C}\right.$ cleavage) and at 240 and $260^{\circ} \mathrm{C}$ (both C-C cleavage) [238].
$\mathrm{H}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Cu}$ (Table 1, No. 200). $\mathrm{H}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{H}$ is bubbled into a solution of CuCl in $\mathrm{CH}_{3} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$. The electrical conductivity is in the range of insulators but upon doping with $\mathrm{I}_{2}$ it is increased by 10 orders of magnitude to a metallic conductor level. The temperature dependence of the conductivity is discussed in detail. After doping, the $I_{2}$ is removed under reduced pressure resulting in a conductivity decrease by 1 to 2 orders of magnitude [342]. The doping can also be accomplished with different electron acceptors and/or donors [356, 357]. The actual semiconductor can be prepared by sealing the polymer in an ampule and then heating [357].

Fourier transform IR spectroscopy gives very weak, diffuse peaks between 1900 and $2200 \mathrm{~cm}^{-1}$.

According to X-ray powder diffraction measurements the black acetylide is nearly amorphous [342]. It is insoluble in organic solvents, even in strong acids and bases and not fusible. The acetylide decomposes explosively by heat or mechanical shock, therefore elemental analyses are not possible. It is gradually degraded in air at room temperature. According to IR spectroscopy compounds containing aromatic rings and quinone carbonyl are formed [342].
$\mathbf{t}-\mathbf{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2} \mathbf{C C} \equiv \mathbf{C C u}$ (Table 1, No. 208) is prepared, according to Method Ia, in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ (1:3) and precipitated with $\mathrm{H}_{2} \mathrm{O}$. The reaction with XXV in hexamethylphosphoric triamide, dimethylformamide, or $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature gives $10 \%$ XXVI, but no trace of the expected product from the iodine substitution. At $0^{\circ} \mathrm{C}$ with $\mathrm{O}_{2}$ bubbling, the yield is enhanced to $40 \%$; under $N_{2}$ no acetylide is consumed. The reaction does not involve radicals, but no meachanism is known. It can also be performed with in situ produced acetylide. 4-Ace-toxy-, 4-phenylsulfonyl-, or 4-allylazetidin-2-ones do not react with $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCu}$ [350].

The IR spectrum in Nujol shows maxima at $1674(\mathrm{C}=\mathrm{O})$ and $1925(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1}$ [350].


## References:

[1] R. Böttger (Jahresber. Physik. Ver. Frankfurt 1856/57 37/44; Dinglers Polytech. J. 152 [1859] 22/9).
[2] M. P. Berthelot (Compt. Rend. 50 [1860] 805/8).
[3] M. P. Berthelot (Ann. Chim. Phys. [3] 67 [1863] 52/77).
[4] M. P. Berthelot (Ann. Chim. Phys. [4] 9 [1866] 421/5).
[5] C. Glaser (Ber. Deut. Chem. Ges. 2 [1869] 422/4).
[6] C. Glaser (Liebigs Ann. Chem. 154 [1870] 137/71).
[7] L. Henry (Ber. Deut. Chem. Ges. 5 [1872] 569/72).
[8] A. Baeyer (Ber. Deut. Chem. Ges. 13 [1880] 2254/63).
[9] A. Baeyer (Ber. Deut. Chem. Ges. 15 [1882] 50/6).
[10] A. Baeyer, L. Landsberg (Ber. Deut. Chem. Ges. 15 [1882] 57/61).
[11] E. Bandrowsky (Ber. Deut. Chem. Ges. 15 [1882] 2698/704).
[12] A. Baeyer (Ber. Deut. Chem. Ges. 18 [1885] 674/81).
[13] A. Baeyer (Ber. Deut. Chem. Ges. 18 [1885] 2269/81).
[14] G. Griner (Ann. Chim. Phys. [6] 26 [1892] 305/94).
[15] R. Lespieau (Compt. Rend. 123 [1896] 1295/6).
[16] R. Lespieau (Ann. Chim. Phys. [7] 11 [1897] 232/88).
[17] R. Chavastelon (Compt. Rend. 126 [1898] 1810/2).
[18] J. V. Nef (Liebigs Ann. Chem. 308 [1899] 264/328, 316).
[19] L. Ilosvay von Nagyilosva (Ber. Deut. Chem. Ges. 32 [1899] 2697/9).
[20] L. Ilosvay von Nagyilosva (Z. Anal. Chem. 40 [1901] 123/4).
[21] F. Straus (Liebigs Ann. Chem. 342 [1905] 190/265).
[22] W. H. Perkin, J. L. Simonsen (J. Chem. Soc. 91 [1907] 816/40).
[23] R. Lespieau (Bull. Soc. Chim. France [4] 3 [1908] 638/40).
[24] R. Lespieau, M. Pariselle (Compt. Rend. 146 [1908] 1035/7).
[25] R. M. Schierl (Ztg. Calciumcarbid 10 [1909] 93/5).
[26] R. Lespieau (Compt. Rend. 150 [1910] 113/4).
[27] R. Lespieau (Compt. Rend. 152 [1911] 879/81).
[28] R. Lespieau (Ann. Chim. Phys. [8] 27 [1912] 137/89).
[29] W. Manchot (Liebigs Ann. Chem. 387 [1912] 257/93).
[30] F. Kunckell (Ber. Deut. Pharm. Ges. 23 [1913] 188/227).
[31] R. Willstätter, T. Wirth (Ber. Deut. Chem. Ges. 46 [1913] 535/8).
[32] M. Picon (Compt. Rend. 158 [1914] 1184/7).
[33] S. Reich (Arch. Sci. Phys. Nat. [4] 45 [1918] 259/76).
[34] A. E. Favorskii, L. Morev (Zh. Russ. Fiz. Khim. Obshchestva 50 [1920] 571/88; C.A. 1924 2496).
[35] C. Moureu, J. C. Bongrand (Ann. Chim. [Paris] [9] 14 [1920] 47/58).
[36] F. Straus, W. Voss (Ber. Deut. Chem. Ges. 59 [1926] 1681/91).
[37] F. Straus (Ber. Deut. Chem. Ges. 59 [1926] 1664/81).
[38] H. van Risseghem (Bull. Soc. Chim. Belges 35 [1926] 328/64).
[39] F. Hein, A. Meyer (Z. Anal. Chem. 72 [1927] 30/1).
[40] C. Moureu, C. Dufraisse, J. R. Johnson (Ann. Chim. [Paris] [10] 7 [1927] 14/42, 34).
[41] F. Straus, W. Heyn, E. Schwemer (Ber. Deut. Chem. Ges. 63 [1930] 1086/92).
[42] R. Truchet (Ann. Chim. [Paris] [10] 16 [1931] 309/419, 346).
[43] A. L. Klebanskii, U. A. Dranitsyna, I. M. Dobromil'skaya (Dokl. Akad. Nauk SSSR 1935 II 229/32; C 1936 I 2528).
[44] Yu. S. Zal'kind, B. M. Fundyler (Zh. Obshch. Khim. 6 [1936] 530/3).
[45] L. Pauling, H. D. Springall, K. J. Palmer (J. Am. Chem. Soc. 61 [1939] 927/37).
[46] Yu. S. Zal'kind, B. M. Fundyler (Zh. Obshch. Khim. 9 [1939] 1725/8).
[47] A. S. Carter, Du Pont Co. (U.S. 2228752 [1939/41]; C.A. 1941 2908).
[48] E. R. Gillitand, H. L. Bliss, C. E. Kip (J. Am. Chem. Soc. 63 [1941] 2088/90).
[49] D. Kästner, Badische Anilin- \& Soda-Fabrik A.-G. (Ger. 871004 [1942/53]; C.A. 1956 8712).
[50] A. I. Lebedeva (Dokl. Akad. Nauk SSSR 42 [1944] 71/5; Compt. Rend. Acad. Sci. USSR 42 [1944] 70/3; C.A. 1945 4287).
[51] P. Piganiol (Acétylène Homologues et Dérivés, Masson, Paris 1945, p. 263).
[52] G. E. Coates (J. Chem. Soc. 1946 838/9).
[53] K. Bowden, I. Heilbron, E. R. H. Jones, K. H. Sargent (J. Chem. Soc. 1947 1579/83).
[54] I. Heilbron, E. R. H. Jones, F. Sondheimer (J. Chem. Soc. 1947 1586/90).
[55] O. A. Chaltykyan (Zh. Obshch. Khim. 18 [1948] 1626/38).
[56] T. Bruun, C. Haug, N. A. Sörensen (Acta Chem. Scand. 4 [1950] 850/5).
[57.] W. Hunsmann (Chem. Ber. 83 [1950] 213/7).
[58] M. Nakagawa (Kagaku No Ryoiki [J. Japan. Chem.] 4 [1950] 564/5; C.A. 1951 7081).
[59] M. Nakagawa (Proc. Japan Acad. 26 No. 10 [1950] 38/42; C.A. 1951 7081).
[60] M. Nakagawa (Proc. Japan Acad. 26 No. 10 [1950] 43/7; C.A. 19518486 ).
[61] H. H. Schlubach, V. Wolf (Liebigs Ann. Chem. 568 [1950] 141/59).
[62] F. Bohlmann (Chem. Ber. 84 [1951] 545/56).
[63] W. C. Easterbrook, J. W. B. Erskine (J. Appl. Chem. [London] 1 [1951] Suppl. No. 1, pp. 53/61).
[64] W. J. Gensler, G. R. Thomas (J. Am. Chem. Soc. 73 [1951] 4601/4).
[65] R. N. Haszeldine (J. Chem. Soc. 1951 588/91).
[66] M. Nakagawa (Nippon Kagaku Zasshi 72 [1951] 561/6; C.A. 19516602 ).
[67] R. N. Haszeldine, K. Leedham (J. Chem. Soc. 1952 3483/90).
[68] F. Klages, K. Mönkemeyer (Chem. Ber. 85 [1952] 109/22).
[69] D. Kästner, Badische Anilin- \& Soda-Fabrik A.-G. (Ger. 870845 [1952/53]; C.A. 1956 4200).
[70] R. Ahmad, B. C. L. Weedon (J. Chem. Soc. 1953 3286/94).
[71] G. M. Mkryan, N. A. Papazyan (Dokl. Akad. Nauk Arm. SSR 16 [1953] 17/26).
[72] R. Nast (Z. Naturforsch. 8b [1953] 381/3).
[73] J. P. Riley (J. Chem. Soc. 1953 2193/8).
[74] J. B. Armitage, N. Entwistle, E. R. H. Jones, M. C. Whiting (J. Chem. Soc. 1954 147/54).
[75] A. Vaitiekunas, F. F. Nord (J. Org. Chem. 19 [1954] 902/6).
[76] A. Vaitiekunas, F. F. Nord (J. Am. Chem. Soc. 76 [1954] 2733/6).
[77] J. B. Armitage, C. L. Cook, N. Entwistle, E. R. H. Jones, M. C. Whiting (J. Chem. Soc. 1952 1998/2005).
[78] F. Bohlmann, H. G. Viehe, H. J. Mannhardt (Chem. Ber. 88 [1955] 361/70).
[79] F. J. Brockman (Can. J. Chem. 33 [1955] 507/10).
[80] W. Chodkiewicz, P. Cadiot (Compt. Rend. 241 [1955] 1055/7).
[81] P. Kurtz, Bayer A.-G. (Brit. 775723 [1955/57]; C.A. 1957 16511).
[82] J. Colonge, R. Falcotet (Compt. Rend. 242 [1956] 1484/6).
[83] J. W. Genster, A. P. Mahadevan (J. Org. Chem. 21 [1956] 180/2).
[84] R. Nast, W. Pfab (Chem. Ber. 89 [1956] 415/21).
[85] V. A. Sazonova, N. Ya. Kronrod (Zh. Obshch. Khim. 26 [1956] 1876/81; J. Gen. Chem. [USSR] 26 [1956] 2093/9).
[86] A. Chicoisne, G. Dupont, R. Dulou (Bull. Soc. Chim. France 1957 1232/7).
[87] W. Chodkiewicz (Ann. Chim. [Paris] [13] 2 [1957] 819/69).
[88] J. Colonge, R. Falcotet (Bull. Soc. Chim. France 1957 1166/9).
[89] A. L. Klebanskii, I. V. Grachev, O. M. Kuznetsova (Zh. Obshch. Khim. 27 [1957] 2977/83; J. Gen. Chem. [USSR] 27 [1957] 3008/13).
[90] A. J. Saggiomo (J. Org. Chem. 22 [1957] 1171/5).

[^0][91] R. Nast, W. Pfab (Z. Anorg. Allgem. Chem. 292 [1957] 287/92).
[92] M. Akhtar, B. C. L. Weedon (Proc. Chem. Soc. 1958 303).
[93] P. J. Ashworth, E. R. H. Jones (J. Chem. Soc. 1958 950/4).
[94] W. J. Gensler, J. Casella Jr. (J. Am. Chem. Soc. 80 [1958] 1376/80).
[95] F. Wessely, E. Zbiral, E. Lahrmann (Chem. Ber. 92 [1959] 2141/51).
[96] L. P. Ellinger, British Oxygen Co., Ltd. (Brit. 784638 [1957]; C.A. 1958 4068).
[97] M. Akhtar, T. A. Richards, B. C. L. Weedon (J. Chem. Soc. 1959 933/40).
[98] D. Blake, G. Calvin, G. E. Coates (Proc. Chem. Soc. 1959 396/7).
[99] G. Eglinton, A. R. Galbraith (J. Chem. Soc. 1959 889/96).
[100] J. F. Arens (Advan. Org. Chem. 2 [1960] 117/212).
[101] R. Nast, C. Schultze (Z. Anorg. Allgem. Chem. 307 [1960] 15/21).
[102] G. E. Coates, C. Parkin (J. Inorg. Nucl. Chem. 22 [1961] 59/67).
[103] G. E. Coates, C. Parkin (in: S. Kirschner, Advances in the Chemistry of the Coordination Compounds, Plenum, New York 1961, pp. 173/9; Proc. 6th Intern. Conf. Coord. Chem., Detroit 1961, pp. 173/9).
[104] O. M. Temkin, R. M. Flid, E. D. German, T. A. Onishchenko (Kinetika Kataliz 2 [1961] 205/13; Kinet. Catal. [USSR] 2 [1961] 190/8).
[105] A. S. Hay (J. Org. Chem. 27 [1962] 3320/1).
[106] A. A. Clifford, W. A. Waters (J. Chem. Soc. 1963 3056/62).
[107] V. S. Myl'nikov, A. N. Terenin (Dokl. Akad. Nauk SSSR 153 [1963] 1381/4; C.A. 60 [1964] 11480).
[108] R. Nast, P.-G. Kirst, G. Beck, J. Gremm (Chem. Ber. 96 [1963] 3302/5).
[109] S. Siggia (Quantitative Organic Analysis Via Functional Groups, 3rd Ed., Wiley, New York 1963, pp. 395/6).
[110] A. M. Sladkov, L. Y. Ukhin, V. V. Korshak (Izv. Akad. Nauk SSSR Ser. Khim. 1963 2213/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1963 2043/5).
[111] R. D. Stevens, C. E. Castro (J. Org. Chem. 28 [1963] 3313/5).
[112] R. E. Atkinson, R. F. Curtis, G. T. Phillips (Chem. Ind. [London] 1964 2101/2).
[113] F. Bohlmann, H. Schönowsky, E. Inhoffen, G. Gran (Chem. Ber. 97 [1964] 794/800).
[114] P. W. R. Corfield, H. M. M. Shearer (Abstr. Am. Cryst. Assoc. Meeting, Bozeman, Mont., 1964, pp. 96/7).
[115] M. Gaudemar (Compt. Rend. 258 [1964] 4803/4).
[116] V. S. Myl'nikov, A. N. Terenin (Mol. Phys. 8 [1964] 387/99).
[117] V. S. Myl'nikov, A. N. Terenin (Dokl. Akad. Nauk SSSR 155 [1964] 1167/70; Dokl. Chem. Proc. Acad. Sci. USSR 154/159 [1964] 397/9).
[118] A. M. Sladkov, L. Yu. Ukhin (Izv. Akad. Nauk SSSR Ser. Khim. 1964 392/3; Bull. Acad. Sci. USSR Div. Chem. Sci. 1964 370).
[119] L. N. Ionov, I. A. Akimov, A. N. Terenin (Dokl. Akad. Nauk SSSR 169 [1966] 550/3; C.A. 65 [1966] 11508).
[120] V. S. Myl'nikov (Dokl. Akad. Nauk SSSR 164 [1965] 622/5; C.A. 63 [1965] 17258).
[121] A. M. Sladkov, L. Yu. Ukhin, G. N. Gorshkova, M. A. Chubarova, A. G. Makhsumov, V. I. Kasatochkin (Zh. Org. Khim. 1 [1965] 415/21; J. Org. Chem. [USSR] 1 [1965] 406/11).
[122] R. E. Atkinson, R. F. Curtis, G. T. Phillips (J. Chem. Soc. C 1966 1101/3).
[123] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[124] V. S. Myl'nikov, Kh. L. Arvan (Zh. Fiz. Khim. 40 [1966] 2653/4; Russ. J. Phys. Chem. 40 [1966] 1426/7).
[125] G. I. Lashkov, V. S. Myl'nikov (Opt. Spektrosk. 20 [1966] 86/91; Opt. Spectrosc. [USSR] 20 [1966] 44/7; C.A. 65 [1966] 6534).
[126] V. S. Myl'nikov (Zh. Fiz. Khim. 40 [1966] 979/84; Russ. J. Phys. Chem. 40 [1966] 527/30).
[127] W. P. Norris, W. G. Finnegan (J. Org. Chem. 31 [1966] 3292/5).
[128] M. D. Rausch, A. Siegel, L. P. Klemann (J. Org. Chem. 31 [1966] 2703/4).
[129] M. Rosenblum, N. Brawn, J. Papenmeier, M. Applebaum (J. Organometal. Chem. 6 [1966] 173/80).
[130] I. Sidaravichius, F. A. Lavina, G. Rybalko, A. M. Sladkov, V. S. Myl'nikov, Yu. P. Kudryavzev, L. Ukhin (Opt. Mekhan. Prom. 33 No. 5 [1966] 27/30; Soviet J. Opt. Technol. 33 [1966] 228/31).
[131] M. F. Shostakovskii, L. A. Polyakova, L. A. Vasil'eva, A. I. Polyakov (Zh. Org. Khim. 2 [1966] 1899; J. Org. Chem. [USSR] 2 [1966] 1865).
[132] H. Staab, F. Graf (Tetrahedron Letters 1966 751/7).
[133] R. E. Atkinson, R. F. Curtis, J. A. Taylor (J. Chem. Soc. C 1967 578/82).
[134] R. E. Atkinson, R. F. Curtis, G. T. Phillips (J. Chem. Soc. C 1967 2011/5).
[135] F. Bohlmann, C. Zdero, W. Gordon (Chem. Ber. 100 [1967] 1193/9).
[136] F. Bohlmann, P.-H. Bonnet, H. Hofmeister (Chem. Ber. 100 [1967] 1200/5).
[137] K. Gump, S. W. Moje, C. E. Castro (J. Am. Chem. Soc. 89 [1967] 6770/1).
[138] E. R. H. Jones, S. Safe, V. Thaller (J. Chem. Soc. C 1967 1038/44).
[139] I. L. Kotlyarevskii, V. N. Andrievskii, M. S. Shvartsberg (Khim. Geterotsikl. Soedin. 3 [1967] 308/9; Chem. Heterocycl. Compounds [USSR] 3 [1967] 236/7).
[140] V. M. Bentsa, F. L. Vilesov, Yu. A. Aleksandrov (Pribory Tekhn. Eksperim. 1967 No. 6, pp. 147/51; Inst. Exptl. Tech. [USSR] 1967 1402/6).
[141] F. A. Levina, G. Rybalko, J. Sidaravicius (Reprogr. Ber. 2nd Intern. Kongr., Cologne, FRG, 1967 [1969], pp. 196/9).
[142] A. M. Malte, C. E. Castro (J. Am. Chem. Soc. 89 [1967] 6770).
[143] V. S. Myl'nikov (Dokl. Akad. Nauk SSSR 175 [1967] 726/9; C.A. 68 [1968] No. 54760).
[144] I. M. Dolgopol'skii, A. L. Klebanskii, Z. F. Dobler (Zh. Prikl. Khim. 33 [1960] 209/12).
[145] M. S. Shvartsberg, A. N. Kozhevnikova, I. L. Kotlyarevskii (Izv. Akad. Nauk SSSR Ser. Khim. 1967 466/7; Bull. Acad. Sci. USSR Div. Chem. Sci. 1967 460/1).
[146] A. M. Sladkov (Diss. INEOS Akad. Nauk SSSR, Moscow 1967).
[147] V. S. Myl'nikov (Usp. Khim. 37 [1968] 78/103; Russ. Chem. Rev. 37 [1968] 25/38, 30).
[148] H. Veschambre, G. Dauphin, A. Kergomard (Bull. Soc. Chim. France 1967 2846/54).
[149] P. Cadiot, W. Chodkiewicz (in: H. G. Viehe, Chemistry of Acetylenes, Dekker, New York 1969, pp. 597/647).
[150] F. Bohlmann, P. Blaszkiewicz, E. Bresinsky (Chem. Ber. 101 [1968] 4163/9).
[151] M. L. H. Green (Organometallic Compounds II: The Transition Elements 3rd Ed., Methuen, London 1968, pp. 271/6).
[152] S. P. Korshunov, R. I. Katkevich, O. T. Shashlova, L. I. Vereshchagin (Zh. Org. Khim. 4 [1968] 676/80; J. Org. Chem. [USSR] 4 [1968] 659/62).
[153] S. A. Mladenović, C. E. Castro (J. Heterocycl. Chem. 5 [1968] 227/30).
[154] V. S. Myl'nikov (Zh. Fiz. Khim. 42 [1968] 2168/73; Russ. J. Phys. Chem. 42 [1968] 1150/3).
[155] V. S. Myl'nikov, A. N. Terenin (J. Polym. Sci. Polym. Symp. No. 16 [1967] 3655/65; C.A. 70 [1969] No. 38243).
[156] T. F. Rutledge (Acetylenic Compounds, Reinhold, New York 1968, pp. 84/95, 207/10, 240/68).
[157] M. F. Shostakovskii, A. N. Volkov, A. N. Khudyankova, Yu. M. Skvortsov, I. I. Danda (Khim. Atsetilena Tr. 3rd Vses. Konf., Dushanbe 1968 [1972], pp. 94/7; C.A. 79 [1973] No. 18257).
[158] A. M. Sladkov, L. Yu. Ukhin, Zh. I. Orlova (Izv. Akad. Nauk SSSR Ser. Khim. 1968 2586/90; Bull. Acad. Sci. USSR Div. Chem. Sci. 1968 2446/9).
[159] H. A. Staab, A. Nissen, J. Ipaktschi (Angew. Chem. 80 [1968] 241; Angew. Chem. Intern. Ed. Engl. 7 [1968] 226).
[160] H. A. Staab, H. Mack, E. Wehinger (Tetrahedron Letters 1968 1465/9).
[161] R. E. Atkinson, R. F. Curtis, D. M. Jones, J. A. Taylor (J. Chem. Soc. C 1969 2173/6).
[162] C. Bond, M. Hooper (J. Chem. Soc. C 1969 2453/60).
[163] B. Bossenbroek, D. C. Sanders, H. M. Curry, H. Shechter (J. Am. Chem. Soc. 91 [1969] 371/9).
[164] M. Bourgain, J. F. Normant (Bull. Soc. Chim. France 1969 2477/81).
[165] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).
[166] I. R. Gol'ding, A. M. Sladkov, V. S. Myl'nikov (Izv. Akad. Nauk SSSR Ser. Khim. 1969 2062; Bull. Acad. Sci. USSR Div. Chem. Sci. 1969 1918/9).
[167] M. D. Rausch, A. Siegel, L. P. Klemann (J. Org. Chem. 34 [1969] 468/70).
[168] M. D. Rausch, A. Siegel (J. Org. Chem. 34 [1969] 1974/6).
[169] M. D. Rausch, A. Siegel (J. Organometal. Chem. 17 [1969] 117/25).
[170] L. Yu. Ukhin, A. M. Sladkov, Zh. I. Orlova (Izv. Akad. Nauk SSSR Ser. Khim. 1969 705/6; Bull. Acad. Sci. USSR Div. Chem. Sci. 1969 637/8).
[171] A. Camus, N. Marsich (J. Organometal. Chem. 21 [1970] 249/58).
[172] K. Endo, Y. Sakata, S. Misumi (Tetrahedron Letters 1970 2557/60).
[173] R. H. Mitchell, F. Sondheimer (Tetrahedron 26 [1970] 2141/50).
[174] V. S. Myl'nikov (J. Polym. Sci. Polym. Symp. No. 30 [1970] 673/81).
[175] J. F. Normant, M. Bourgain, A.-M. Rone (Compt. Rend. C 270 [1970] 354/7).
[176] M. Rosenblum, N. M. Brawn, D. Ciappenelli, J. Tancrede (J. Organometal. Chem. 24 [1970] 469/77).
[177] D. V. Sokol'skii, Ya. A. Dorfman, S. S. Segizbaeva (Zh. Prikl. Khim. 43 [1970] 502/7; J. Appl. Chem. [USSR] 43 [1970] 511/5).
[178] H. A. Staab, F. Graf (Chem. Ber. 103 [1970] 1107/17).
[179] A. N. Volkov, Yu. M. Skvortsov, I. I. Danda, M. F. Shostakovskii (Zh. Org. Khim. 6 [1970] 897/902; J. Org. Chem. [USSR] 6 [1970] 903/7).
[180] L. I. Zakharkin, L. P. Sorokina (Zh. Org. Khim. 6 [1970] 2470/3; J. Org. Chem. [USSR] 6 [1970] 2482/4).
[181] H. E. Zimmerman, J. R. Dodd (J. Am. Chem. Soc. 92 [1970] 6507/14).
[182] R. D. Stephens, W. C. Kray, Shell Oil Co. (U.S. 3749700 [1970/73]; C.A. 79 [1973] No. 146990).
[183] R. F. Curtis, J. A. Taylor (J. Chem. Soc. C 1971 186/8).
[184] J. J. Eisch, C. K. Hordis (J. Am. Chem. Soc. 93 [1971] 2974/80).
[185] J. J. Eisch, M. W. Foxton (J. Org. Chem. 36 [1971] 3520/6).
[186] H. Franke (Diss. Berlin T.U. 1971).
[187] C. C. Leznoff, R. J. Hayward (Can. J. Chem. 49 [1971] 3596/601).
[188] M. S. Newman, M. W. Logue (J. Org. Chem. 36 [1971] 1398/401).
[189] J. F. Normant, M. Bourgain (Tetrahedron Letters 1971 2583/6).
[190] Y. Okamoto, M. Mincer, A. Golubovic, N. Dimond (Nature Phys. Sci. 229 [1971] 157/8).
[191] Y. Okamoto, S. K. Kundu, A. Golubovic, N. Dimond (Am. Chem. Soc. Div. Org. Coatings Plastics Chem. Papers 31 [1971] 312/6; C.A. 78 [1973] No. 160226).
[192] H. Plieninger, J. Sirowej (Chem. Ber. 104 [1971] 2027/9).
[193] A. Roedig, V. Kimmel, W. Lippert (Tetrahedron Letters 1971 1219/20).
[194] A. M. Sladkov, I. R. Gol'ding (Dokl. Akad. Nauk SSSR 200 [1971] 132/3; Dokl. Chem. Proc. Acad. Sci. USSR 196/201 [1971] 756/7).
[195] V. S. Myl'nikov, A. N. Dune (Opt. Spektrosk. 31 [1971] 405/9; Opt. Spectrosc. [USSR] 31 [1971] 217/9).
[196] O. Wennerström (Acta Chem. Scand. 25 [1971] 789/94).
[197] L. I. Zakharkin, V. N. Kalinin, I. R. Gol’ding, A. M. Sladkov, A. V. Grebennikov (Zh. Obshch. Khim. 41 [1971] 823/8; J. Gen. Chem. [USSR] 41 [1971] 830/3).
[198] A. G. Makhsumov, O. V. Afanas'eva, Sh. U. Abdullaev, U. A. Abidov (U.S.S.R. 389090 [1971/73]; C.A. 79 [1973] No. 136978).
[199] O. V. Afanas'eva, A. G. Makshumov, Sh. U. Abdullaev (Dokl. 4th Vses. Konf. Khim. Atsetilena, Alma-Ata 1972, Vol. 1, pp. 244/7; C.A. 79 [1973] No. 31756).
[200] I. N. Azerbaev, I. A. Poblavskaya, G. N. Kondaurov (Dokl. 4th Vses. Konf. Khim. Atsetilena, Alma-Ata 1972, Vol. 1, pp. 353/8; C.A. 79 [1973] No. 77998).
[201] C. E. Hudson, N. L. Bauld (J. Am. Chem. Soc. 94 [1972] 1158/63).
[202] V. S. Myl'nikov, A. N. Dun'e, I. R. Gol'ding, A. M. Sladkov (Tezisy Dokl. 5th Vses. Conf. Org. Metal. Soedin., Moscow 1972, Vol. 1, pp. 468/9; Summaries 5th Intern. Conf. Organometal. Compounds, Moscow 1972, pp. 470/1, Ref. No. 180).
[203] V. S. Myl'nikov, A. N. Dun'e, I. R. Gol'ding, A. M. Sladkov (Zh. Obshch. Khim. 42 [1972] 2543/6; J. Gen. Chem. [USSR] 42 [1972] 2532/5).
[204] J. F. Normant (Synthesis 1972 63/80, 70ff.).
[205] Y. Okamoto, K. L. Chellappa, S. K. Kundu (J. Org. Chem. 37 [1972] 3185/7).
[206] R. Oliver, D. R. M. Walton (Tetrahedron Letters 1972 5209/12).
[207] D. C. Owsley, C. E. Castro (Org. Syn. 52 [1972] 128/31).
[208] A. M. Sladkov, I. R. Gol'ding (Dokl. 4th Vses. Konf. Khim. Atsetilena, Alma-Ata 1972, Vol. 1, pp. 59/64; C.A. 79 [1973] No. 78253).
[209] H. A. Staab, E. Wehinger, W. Thorwart (Chem. Ber. 105 [1972] 2290/309).
[210] T. Tsuda, T. Hashimoto, T. Saegusa (J. Am. Chem. Soc. 94 [1972] 658/9).
[211] F. Bohlmann, P.-D. Hopf (Chem. Ber. 106 [1973] 3621/5).
[212] F. Bohlmann, W. Skuballa (Chem. Ber. 106 [1973] 497/504).
[213] M. Bourgain, J. F. Normant (Bull. Soc. Chim. France 1973 1777/9).
[214] M. Bourgain, J. F. Normant (Bull. Soc. Chim. France 1973 2137/42).
[215] E. J. Corey, G. W. I. Fleet, M. Kato (Tetrahedron Letters 1973 3963/6).
[216] I. A. Garbusova, V. T. Alexanjan, L. A. Leites, I. R. Gol'ding, A. M. Sladkov (J. Organometal. Chem. 54 [1973] 341/4).
[217] H. Hopf, F. T. Lenich (Chem. Ber. 106 [1973] 3461/2).
[218] H. O. House, M. Umen (J. Org. Chem. 38 [1973] 3893/901).
[219] A. G. Makhsumov, I. R. Askarov, A. M. Sladkov (Vopr. Farm. Farmakol. [Tashkent] 1973 316/8; C.A. 84 [1976] No. 121354).
[220] Y. Okamoto, S. K. Kundu (J. Phys. Chem. 77 [1973] 2677/80).
[221] Y. Okamoto (AD-760772 [1973] 1/84; C.A. 80 [1974] No. 37 537).
[222] M. Stefanovič, L. Krstič, S. Mladenovič (Glasnik Hem. Drustva Beograd 38 [1973] 463/8; C.A. 82 [1975] No. 43645).
[223] A. Tozuka, T. Otsubo, Y. Sakata, S. Misumi (Mem. Inst. Sci. Ind. Res. Osaka Univ. 30 [1973] 83/9; C.A. 79 [1973] No. 66092).
[224] O. M. Abu Salah, M. I. Bruce (J. Chem. Soc. Dalton Trans. 1974 2302/4).
[225] F. Bohlmann, J. Kocur (Chem. Ber. 107 [1974] 2115/9).
[226] P. L. Coe, N. E. Milner (J. Organometal. Chem. 70 [1974] 147/52).
[227] E. P. Denisov, K. K. Smirnov, V. S. Myl'nikov (Fiz. Tverd. Tela [Leningrad] 16 [1974] 1782/4; Soviet Phys.-Solid State 16 [1974] 1157/8).
[228] L. V. Konovalov, V. S. Myl'nikov (Zh. Strukt. Khim. 15 [1974] 709/11; J. Struct. Chem. [USSR] 15 [1974] 612/3).
[229] R. Levene, J. Y. Becker, J. Klein (J. Organometal. Chem. 67 [1974] 467/71).
[230] J. P. Marino, D. M. Floyd (J. Am. Chem. Soc. 96 [1974] 7138/40).
[231] V. S. Myl’nikov (Zh. Strukt. Khim. 15 [1974] 244/9; J. Struct. Chem. [USSR] 15 [1974] 224/8).
[232] S. Sh. Rashidova, V. A. Barabanov, D. D. Il'yasova (Uzb. Khim. Zh. 18 [1974] 63/6; C.A. 82 [1975] No. 17434).
[233] H. A. Staab, K. Neunhoeffer (Synthesis 1974 424).
[234] T. Tsuda, K. Ueda, T. Saegusa (J. Chem. Soc. Chem. Commun. 1974 380/1).
[235] A. Roedig, V. Kimmel, W. Lippert, B. Heinrich (Liebigs Ann. Chem. 755 [1972] 106/21).
[236] V. T. Aleksanyan, I. A. Garbuzova, I. R. Gol'ding, A. M. Sladkov (Spectrochim. Acta A 31 [1975] 517/24).
[237] D. E. Bergbreiter, G. M. Whitesides (J. Org. Chem. 40 [1975] 779/82).
[238] M. C. Barral, V. Moreno, A. Santos (Anales Quim. 71 [1975] 770/4; C.A. 84 [1976] No. 180367).
[239] M. T. Cox, J. J. Holohan (Tetrahedron 31 [1975] 633/5).
[240] R. S. Dickson, L. J. Michel (Australian J. Chem. 28 [1975] 1943/55).
[241] A. Kh. Filippova, G. S. Lyashenko, N. S. Vyazankin (Tezisy Dokl. 5th Vses. Konf. Khim. Atsetilena, Tiflis 1975, p. 104; C.A. 88 [1978] No. 190287).
[242] I. A. Garbusova, V. T. Aleksanyan, I. R. Gol'ding, A. M. Sladkov (Tezisy Dokl. 5th Vses. Konf. Khim. Atsetilena, Tiflis 1975, pp. 457/8; C.A. 88 [1978] No. 189456).
[243] I. R. Gol'ding, I. A. Garbusova, A. M. Sladkov, V. T. Aleksanyan (Tezisy Dokl. 5th Vses. Konf. Khim. Atsetilena, Tiflis 1975, p. 455; C.A. 88 [1978] No. 189798).
[244] K. Kitatani, T. Hiyama, H. Nozaki (J. Am. Chem. Soc. 97 [1975] 949/51).
[245] M. W. Logue, G. L. Moore (J. Org. Chem. 40 [1975] 131/2).
[246] V. S. Myl'nikov, A. A. Kharchenko, I. R. Gol'ding, A. M. Sladkov (Tezisy Dokl. 5th Vses. Konf. Khim. Atsetilena, Tiflis 1975, p. 456; C.A. 88 [1978] No. 189799).
[247] F. G. Schreiber, R. Stevenson (Chem. Letters 1975 1257/8).
[248] D. A. Sukhov, V. S. Myl'nikov (Fiz. Tverd. Tela [Leningrad] 17 [1975] 923/5; Soviet Phys.-Solid State 17 [1975] 589/90).
[249] T. Tsuda, Y. Chujo, T. Saegusa (J. Chem. Soc. Chem. Commun. 1975 963/4).
[250] O. M. Abu Salah, M. I. Bruce (Australian J. Chem. 29 [1975] 73/7).
[251] O. M. Abu Salah, M. I. Bruce (Australian J. Chem. 29 [1975] 531/41).
[252] K. Arakawa, T. Miyasaka, N. Hamamichi (4th Symp. Chem. Nucleic Acids. Res., Kyoto 1976, Vol. 2, pp. 1/4; C.A. 86 [1977] No. 140379).
[253] I. Barrow, A. E. Pedler (Tetrahedron 32 [1976] 1829/34).
[254] P.-L. Compagnon, B. Grosjean (Synthesis 1976 448/9).
[255] L. K. Ding, W. J. Irwin (J. Chem. Soc. Perkin Trans. I 1976 2382/6).
[256] V. S. Myl'nikov, I. R. Gol'ding, A. M. Sladkov (lzv. Akad. Nauk SSSR Ser. Khim. 1976 330/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1976 311/5).
[257] V. S. Myl'nikov, A. A. Kharchenko, M. M. Sobolev (Kvantovaya Elektronika [Moscow] 3 [1976] 288/92; Soviet J. Quant. Electron. 6 [1976] 151/3).
[258] F. G. Schreiber, R. Stevenson (J. Chem. Soc. Perkin Trans. I 1976 1514/8).
[259] S. Staicu, I. G. Dinulescu, F. Chiraleu, M. Avram (J. Organometal. Chem. 117 [1976] 385/94).
[260] G. S. Natarajan, K. A. Venkatachalam (J. Appl. Chem. Biotechnol. 22 [1972] 1019/25; C.A. 77 [1972] No. 169523).
[261] N. N. Travkin, I. R. Gol'ding, T. A. Sladkova, B. G. Gribov, A. M. Sladkov, N. F. Konovalov (Zh. Obshch. Khim. 46 [1976] 1088/91; J. Gen. Chem. [USSR] 46 [1976] 1081/3).
[262] F. Bohlmann, C. Hühn (Chem. Ber. 110 [1977] 1183/5).
[263] M. Brenner, C. Brush (Tetrahedron Letters 1977 419/22).
[264] R. P. Duffley, R. Stevenson (J. Chem. Soc. Perkin Trans. I 1977 802/4).
[265] S. Inoue, N. Takamatsu, Y. Kishi (Yakugaku Zasshi [J. Pharm. Soc. Japan] 97 [1977] 564/8; C.A. 87 [1977] No. 184744).
[266] J. S. Kiely, P. Boudjouk, L. L. Nelson (J. Org. Chem. 42 [1977] 2626/9).
[267] R. F. Kovar, G. F. L. Ehlers, F. E. Arnold (J. Polym. Sci. Polym. Chem. Ed. 15 [1977] 1081/95).
[268] F. G. Schreiber, R. Stevenson (J. Chem. Soc. Perkin Trans. I 1977 90/2).
[269] K. Sonogashira, T. Yatake, Y. Tohda, S. Takahashi, N. Hagihara (J. Chem. Soc. Chem. Commun. 1977 291/2).
[270] E. J. Corey, M. G. Bock, A. P. Kozikowski, A. V. Rama Rao, D. Floyd, B. H. Lipshutz (Tetrahedron Letters 1978 1051/4).
[271] E. J. Corey, D. Floyd, B. H. Lipshutz (J. Org. Chem. 43 [1978] 3418/20).
[272] R. P. Duffley, R. Stevenson (Syn. Commun. 1978 175/80).
[273] G. A. Razuvaev, V. K. Cherkasov, G. A. Abakumov (J. Organometal. Chem. 160 [1978] 361/71).
[274] I. A. Garbuzova, I. R. Gol'ding, A. M. Sladkov, Ya. V. Genin, D. Ya. Tsvankin, V. T. Aleksanyan (lzv. Akad. Nauk SSSR Ser. Khim. 1978 1328/31; Bull. Acad. Sci. USSR Div. Chem. Sci. 1978 1154/6).
[275] N. Hamamichi, T. Miyasaka, K. Arakawa (Chem. Pharm. Bull. 26 [1978] 898/907).
[276] G. A. Kraus, K. Frazier (Tetrahedron Letters 1978 3195/8).
[277] M. M. Kwatra, D. Z. Simon, R. L. Salvador, P. D. Cooper (J. Med. Chem. 21 [1978] 253/7).
[278] V. S. Myl'nikov, A. A. Kharchenko, I. R. Gol'ding, A. M. Sladkov (Izv. Akad. Nauk SSSR Ser. Khim. 1978 822/4; Bull. Acad. Sci. USSR Div. Chem. Sci. 1978 708/11).
[279] M. S. Shvartsberg, A. A. Moroz, A. N. Kozhevnikova (Izv. Akad. Nauk SSSR Ser. Khim. 1978 875/9; Bull. Acad. Sci. USSR Div. Chem. Sci. 1978 756/60).
[280] K. Sonogashira, Y. Fujikura, T. Yatake, N. Toyoshima, S. Takahashi, N. Hagihara (J. Organometal. Chem. 145 [1978] 101/8).
[281] B. V. Lebedev, T. Bykova, E. G. Kiparisova, N. N. Mukhina, A. M. Sladkov, I. R. Gol'ding (lzv. Akad. Nauk SSSR Ser. Khim. 1979 1880/2; Bull. Acad. Sci. USSR Div. Chem. Sci. 1979 1743/5).
[282] D. B. Ledlie, G. Miller (J. Org. Chem. 44 [1979] 1006/7).
[283] V. S. Myl’nikov (Zh. Nauchn. Prikl. Fotogr. Kinematogr. 24 [1979] 25/8; C.A. 91 [1979] No. 66221).
[284] A. N. Sinyakov, M. S. Shvartsberg (Izv. Akad. Nauk SSSR Ser. Khim. 1979 1126/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1979 1053/4).
[285] J. S. Miller, S. T. Matsuo (J. Polym. Sci. Polym. Letters 18 [1980] 809/10).
[286] Y. Okamoto, M. C. Wang (J. Polym. Sci. Polym. Letters 18 [1980] 249/51).
[287] B. V. Lebedev, T. A. Bykova, A. M. Sladkov, E. G. Kiparisova, I. R. Gol’ding (Zh. Obshch. Khim. 51 [1981] 724/7; J. Gen. Chem. [USSR] 51 [1981] 590/2).
[288] E. C. Royer, M. C. Barral, V. Moreno, A. Santos (J. Inorg. Nucl. Chem. 43 [1981] 705/9).
[289] C. R. Johnson, D. S. Dhanoa (J. Chem. Soc. Chem. Commun. 1982 358/9).
[290] B. H. Lipshutz, R. S. Wilhelm, D. M. Floyd (J. Am. Chem. Soc. 103 [1981] 7672/4).
[291] G. Struve, S. Seltzer (J. Org. Chem. 47 [1982] 2109/13).
[292] R. H. Bradbury, T. L. Gilchrist, C. W. Rees (J. Chem. Soc. Perkin Trans. I 1981 3234/8).
[293] L. Scatteböl (Acta Chem. Scand. 13 [1959] 198).
[294] E. T. Bogoradovskii, V. S. Zavgorodskii, K. S. Mingaleva, A. A. Petrov (Zh. Obshch. Khim. 44 [1974] 142/5; J. Gen. Chem. [USSR] 44 [1974] 139/41).
[295] L. I. Zakharkin, A. I. Kovredov, V. A. Ol’shevskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1982 673/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1982 599/602).
[296] N. G. Karapetyan, A. S. Tarkhanyan, A. N. Lyubimova (Izv. Akad. Nauk Arm. SSR Ser. Khim. Nauk 18 [1965] 360/5; C.A. 63 [1965] 17883).
[297] V. V. Korshak, A. M. Sladkov, Yu. Kudryavtsev (Vysokomol. Soedin. 2 [1960] 1824/7; C.A. 1961 26522).
[298] N. A. Bumagin, I. O. Kalinovskii, A. B. Ponomarev, I. P. Beletskaya (Dokl. Akad. Nauk SSSR 265 [1982] 1138/43; Dokl. Chem. Proc. Acad. Sci. USSR 262/267 [1982] 262/6).
[299] R. T. Scannel, R. Stevenson (J. Heterocycl. Chem. 17 [1980] 1727/8).
[300] N. A. Bumagin, I. O. Kalinovskii, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1981 2836; Bull. Acad. Sci. USSR Div. Chem. Sci. 1981 2366).
[301] E. J. Corey, R. H. Wollenberg (J. Am. Chem. Soc. 96 [1974] 5581/3).
[302] D. B. Sokol’skii, L. N. Nikolenko (Dokl. Akad. Nauk SSSR 82 [1952] 923/5; C.A. 1953 2723).
[303] E. J. Corey, R. H. Wollenberg (J. Org. Chem. 40 [1975] 2265/6).
[304] E. J. Corey, R. H. Wollenberg (Tetrahedron Letters 1976 4705/8).
[305] B. F. Middleton, M. J. Weiss, C. V. Grudzinskas, S.-M. L. Chen, American Cyanamid Co. (Brit. 2006186 [1977]; Ger. 2837530 [1977/79]; C.A. 91 [1979] No. 38996).
[306] H. C. Kluender, Miles Labs. Inc. (U.S. 4065493 [1977]; U.S. 4100356 [1977]; U.S. 4100357 [1977]; U.S. 4127727 [1977/78]; C.A. 88 [1978] No. 190216).
[307] M. B. Floyd, M. J. Weiss, C. V. Grudzinskas, S.-M. L. Chen, American Cyanamid Co. (Brit. 2009173 [1978/79] ; C.A. 92 [1980] No. 214968).
[308] M. F. Semmelhack, A. Yamashita, J. C. Tomesch, K. Hirotsu (J. Am. Chem. Soc. 100 [1978] 5565/7).
[309] W. D. Woessner, Miles Labs. Inc. (Brit. 2009148 [1978]; Ger. 2850465 [1978/79]; C.A. 91 [1979] No. 91249).
[310] E. J. Corey, P. B. Hopkins, S. Kim, S. Yoo, K. P. Nambiar, J. R. Falck (J. Am. Chem. Soc. 101 [1979] 7131/4).
[311] G. H. Posner, M. J. Chapdelaine, C. M. Lentz (J. Org. Chem. 44 [1979] 3661/5).
[312] J. Davies, S. M. Roberts, D. P. Reynolds, R. F. Newton (J. Chem. Soc. Perkin Trans. I 1981 1317/20).
[313] A. J. Dixon, R. J. Taylor (J. Chem. Soc. Perkin Trans. I 1981 1407/10).
[314] E. Piers, J. M. Chong, H. E. Morton (Tetrahedron Letters 22 [1981] 4905/8).
[315] J. A. Miller, G. Zweifel (Synthesis 1983 128/30).
[316] G. Boche, M. Bernheim, M. Nießner (Angew. Chem. Suppl. 1982 34/8; Angew. Chem. 95 [1983] 48).
[317] O. N. Temkin, R. M. Flid (Kataliticheskie Prevrashcheniya Atsetilenovykh Soedinenii v Rastvorakh Kompleksov Metallov [Catalytic Conversion of Acetylene Compounds in Solutions of Metal Complexes], Nauka, Moscow 1968, pp. 1/213).
[318] M. S. Shvartsberg, S. F. Vasilevskii, T. V. Anisimova, V. A. Gerasimov (Izv. Akad. Nauk SSSR Ser. Khim. 1981 1342/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1981 1071/6).
[319] N. A. Agal'tsova, V. S. Myl'nikov, A. M. Sladkov (Izv. Akad. Nauk SSSR Ser. Khim. 1972 203/4; Bull. Acad. Sci. USSR Div. Chem. Sci. 1972 199/200).
[320] A. Camus, N. Marsich, G. Nardin (J. Organometal. Chem. 188 [1980] 389/99).
[321] L. N. Ionov, I. A. Akimov (Fiz. Tekhn. Poluprov. 5 [1971] 2017/20; Soviet Phys.-Semicond. 5 [1971] 1756/8).
[322] I. I. Zhilevich, D.-I. B. Sidaravichyus (U.S.S.R. 176620 [1965]).
[323] F. A. Levina, V. S. Myl'nikov, G. I. Rybalko, D.-I. B. Sidaravichyus, A. M. Sladkov, A. N. Terenin (U.S.S.R. 169395 [1965]; C.A. 64 [1966] 16889).
[324] F. A. Levina, G. I. Rybalko, D.-I. B. Sidaravichyus, A. M. Sladkov (U.S.S.R. 165970 [1965]).
[325] H. Kleijn, J. Meijer, G. C. Overbeek, P. Vermeer (Rec. J. Roy. Neth. Chem. Soc. 101 [1982] 97/101).
[326] V. Ratovelomanana, G. Linstrumelle (Tetrahedron Letters 22 [1981] 315/8).
[327] J. F. Normant, G. Cahiez, C. Chuit, J. Villieras (J. Organometal. Chem. 77 [1974] 281/7).
[328] B. Župančić, B. Jenko, LEK Tovarna Farmacevtskih Kemičnih Izdelkov (Austrian 351511 [1979]; C.A. 91 [1979] 175017).
[329] R. A. Amos, J. A. Katzenellenbogen (J. Org. Chem. 42 [1977] 2537/45).
[330] C. G. Gordon-Gray, C. G. Whiteley (J. Chem. Soc. Perkin Trans. I 1977 2040/6).
[331] R. J. Batten, J. D. Coyle, R. J. K. Taylor (Synthesis 1980 910/1).
[332] G. E. Schneiders, R. Stevenson (Syn. Commun. 10 [1980] 699/705).
[333] S. Venkateso, U.S. Dept. of the Air Force (U.S. Appl. 219396 [1981]; C.A. 96 [1982] No. 7629).
[334] K. Ruitenberg, H. Kleijn, H. Westmijze, J. Meijer, P. Vermeer (Rec. Trav. Chim. 101 [1982] 405/9).
[335] G. E. Schneiders, R. Stevenson (J. Chem. Res. S 1982 182).
[336] O. M. Abu-Salah, A. R. Al-Ohaly (J. Organometal. Chem. 255 [1983] C39/C 40).
[337] A. Afzali, H. Firouzabadi, A. Khalafi-nejad (Syn. Commun. 13 [1983] 335/9).
[338] R. Baudouy, J. Sartoretti, F. Choplin (Tetrahedron 39 [1983] 3293/305).
[339] A. Kh. Filippova, G. S. Lyashenko, I. D. Kalikhman, V. Yu. Vitkovskii, G. G. Naumova, N. S. Vyazankin (Izv. Akad. Nauk SSSR Ser. Khim. 1983 950/3; Bull. Acad. Sci. USSR Div. Chem. Sci. 1983 861/3).
[340] A. T. Hutton, P. G. Pringle, B. L. Shaw (Organometallics 2 [1983] 1889/91).
[341] J. G. Hefner, P. M. Zizelman, L. D. Durfee, G. S. Lewandos (J. Organometal. Chem. 260 [1984] 369/80).
[342] H. Matsuda, H. Nakanishi, M. Kato (J. Polym. Sci. Polym. Letters Ed. 22 [1984] 107/11).
[343] L. M. Abrantes, M. Fleischmann, I. R. Hill, L. M. Peter, M. Mengoli, G. Zotti (J. Electroanal. Chem. 164 [1984] 177/87).
[344] L. M. Abrantes, L. M. Castillo, M. Fleischmann, I. R. Hill, L. M. Peter, G. Mengoli, G. Zotti (J. Electroanal. Chem. 177 [1984] 129/37).
[345] R. Kumar, D. G. Tuck (J. Organometal. Chem. 281 [1985] C47/C 48).
[346] C. Battistoni, G. Mattogno, E. Paparazzo, L. Naldini (Inorg. Chim. Acta 102 [1985] 1/3).
[347] J. Enda, I. Kuwajima (J. Am. Chem. Soc. 107 [1985] 5495/501).
[348] O. M. Abu-Salah (J. Organometal. Chem. 270 [1984] C26/C 28).
[349] O. M. Abu-Salah, A.-R. A. Al-Ohaly, C. B. Knobler (J. Chem. Soc. Chem. Commun. 1985 1502/3).
[350] A. Balsamo, B. Macchia, F. Macchia, A. Rossello, P. Domiano (Tetrahedron Letters 26 [1985] 4141/4).
[351] L. V. Tumasheva, A. Kh. Filippova, G. S. Lyashenko, N. S. Vyazankin (Izv. Akad. Nauk SSSR Ser. Khim. 1984 2797/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1984 2563/4).
[352] R. T. Scannel, R. Stevenson (J. Chem. Soc. Perkin Trans. I 1983 2927/31).
[353] E. C. Royer, M. C. Barral (Inorg. Chim. Acta 90 [1984] L47/L 49).
[354] L. Yu. Ukhin, V. N. Komissarov, Zh. I. Orlova, N. A. Dolgopolova (Zh. Obshch. Khim. 54 [1984] 1676/8; J. Gen. Chem. [USSR] 54 [1984] 1493/4).
[355] J. L. Gaston, R. J. Greer, M. F. Grundon (J. Chem. Res. S 1985 135).
[356] Agency of Industrial Sciences and Technology (Japan. Kokai Tokkyo Koho 59-202206 [84-202206] [1983/84]; C.A. 102 [1985] No. 158993).
[357] Agency of Industrial Sciences and Technology (Japan. Kokai Tokkyo Koho 59-202207 [84-202207] [1983/84]; C.A. 102 [1985] No. 158994).
[358] J. Enda, T. Matsutani, I. Kuwajima (Tetrahedron Letters 25 [1984] 5307/10).
[359] R. F. Curtis, J. A. Taylor (Tetrahedron Letters 1968 2919/20).

### 1.1.2.1.2 General Remarks about Reactions of $\mathrm{RC} \equiv \mathrm{CCu}$ with Proton Donors, Oxidants, Halogens, and $\mathrm{CO}_{2}$

In each of these reactions the products vary only according to R in $\mathrm{RC} \equiv \mathrm{CCu}$. Therefore, they are included in detail in Table 1 (see pp. 17/41) with yields and references as Reaction Types 1 to 6 . On the following pages, only some general remarks about these reactions are given. However, reactions differing from this simple pattern (containing a variety of further groups like $R^{1}, R^{2}$ etc.) need more information than can be included in Table 1 and they are therefore discussed in Sections 1.1.2.1.3 to 1.1.2.1.10.

## Reactions with Proton Donors

Reaction Type 1 in Table 1 is the formation of $\mathrm{RC} \equiv \mathrm{CH}$ from $\mathrm{RC} \equiv \mathrm{CCu}$. The most common reagents are HCl (Type 1a), $\mathrm{HNO}_{3}$ (Type 1b), and $\mathrm{CN}^{-} / \mathrm{H}_{2} \mathrm{O}$ with formation of $\left[\mathrm{Cu}(\mathrm{CN})_{3}\right]^{2-}$ (Type 1c). Further reagents like $\mathrm{NH}_{3}, \mathrm{Fe}^{3+} / \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{~K} 3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] / \mathrm{H}_{2} \mathrm{O}$, and $2-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{SH}$ are summarized under Reaction Type 1d.

The sequence $\mathrm{RC} \equiv \mathrm{CH} \rightarrow \mathrm{RC} \equiv \mathrm{CCu} \rightarrow \mathrm{RC} \equiv \mathrm{CH}$ has especially been used for purification purposes [5,50]. Sensitive $R C \equiv C H$ are often treated in aqueous two-phase systems (ether [42], benzene [26, 39], $\mathrm{CCl}_{4}$ [44]) to avoid side reaction by rapid extraction of $\mathrm{RC} \equiv \mathrm{CH}$ into the organic phase. The contact of the $\mathrm{RC} \equiv \mathrm{CH}$ product with the aggressive aqueous solution can also be shortened by continuously distilling the $\mathrm{RC} \equiv \mathrm{CH}$ with water vapor [15]. $\mathrm{RC} \equiv \mathrm{CCu}$ can also be converted to $\mathrm{RC} \equiv \mathrm{CH}$ with HCl in absolute ether [5]. A very mild method is stirring $\mathrm{RC} \equiv \mathrm{CCu}$ with saturated, slightly acidified aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ether [26]. $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OC} \equiv$ $\mathrm{CCu}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}=\right.$ fur- $\left.2-\mathrm{yl}\right)$ could only be transformed to $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OC} \equiv \mathrm{CH}$ by aqueous NaCN ; the ring may be opened upon addition of aqueous HCl [13].

Based upon the dark violet color generated during the reaction and the reactivity of the solutions of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and some phenols in pyridine, a partial hydrolysis $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}+$ $\mathrm{ArOH} \rightarrow \mathrm{ArOCu}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ has been postulated [51].

## Oxidation

The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ with oxygen (Reaction Type 2a in Table 1), with Cull compounds (Type 2 b ), $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (Type 2c), or other oxidants (Type 2d) is a useful method to prepare diynes $R(C \equiv C)_{2} R$. For the preparation of $R^{1}(C \equiv C)_{2} R^{2}$ see under "Mixed Acetylides", Section 1.1.2.2.

Oxidation by air or oxygen (Reaction Type 2a) is frequently an undesired acetylideconsuming side reaction. To avoid it, a thorough $\mathrm{O}_{2}$ exclusion is necessary. Air dissolved in solvents like pyridine must be removed. Nevertheless, almost all reaction products of $R C \equiv C C u$ seem to be accompanied by at least traces of $R(C \equiv C)_{2} R$ and with long-time reactions in boiling solvents the amounts are said to be high. Sometimes it is doubtful whether the formation of $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$ results from inadequate handling of the reaction mixture or whether a special reaction type leads only to the diyne [52]. In some cases there has been no conclusion as to whether $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$ is formed from $\mathrm{O}_{2}$ or from other oxidants [25,34,35, 40, 46]. Air oxidation also causes contamination of $R C \equiv C C u$ by $R(C \equiv C)_{2} R$ etc. on storage and drying, but air-stable RC $\equiv C C u$ seem to exist too [33, 41]. The air oxidation is enhanced by UV irradiation [36]. Reaction Type 2a as a preparative method for $R(C \equiv C)_{2} R$ is usually carried out in alcoholic aqueous solutions or suspensions of $\mathrm{RC} \equiv \mathrm{CCu}$ and $\mathrm{NH}_{3}$ with aeration [2, 16 to 18,28$]$. The oxygen demand is much higher than calculated. Obviously $\mathrm{NH}_{3}$ is oxidized too [18].

The so-called "Glaser Coupling" is the corresponding in situ reaction. Oxidation of $\mathrm{RC} \equiv \mathrm{CH}$ in the presence of $\mathrm{Cu}^{1}$ compounds, normally in weakly acidic or neutral solutions, gives $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$. Discovered in 1869 by Glaser, it is a simple and safe method to prepare $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$. There exist contradictory opinions as to whether the catalytic cycle begins with the $\mathrm{RC} \equiv \mathrm{CCu}$ formation or not. Probably the answer to this question depends on the nature of $R$ and of the reaction conditions. In some cases a certain amount of $R C \equiv C C u$ is precipitated and can be filtered off $[20,30]$. In other cases, $\mathrm{RC} \equiv \mathrm{CCu}$ could not be detected in the reaction batch by polarography [37]. From the reaction rate law, it follows that $\mathrm{RC} \equiv \mathrm{CCu}$ cannot be the only intermediate [32]. Terminal acetylenes like 1-ethynylcyclohexanol are oxidized with up to $93 \%$ yields by bubbling $\mathrm{O}_{2}$ through an acetone solution in the presence of a Cu' complex [49].

Oxidation by Cull compounds (Reaction Type 2b). Not only salts like $\mathrm{Cu}\left[\mathrm{O}_{2} \mathrm{CCH}_{3}\right]_{2}$ can be used, but also Cu" complexes [19], and organic Cu" compounds like $\mathrm{Cu}\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}$ [43]. In most cases the $\mathrm{RC} \equiv \mathrm{CCu}$ is formed in situ during the oxidation reaction from $\mathrm{RC} \equiv \mathrm{CH}$ with Cu". This reaction is called "Eglinton Coupling". In contrast to the "Glaser Coupling", $\mathrm{RC} \equiv \mathrm{CCu}$ as an intermediate seems to be doubtless. As found in [28], with $\mathrm{R}=\mathrm{CR}_{2}^{10 H}$, the $\mathrm{Cu}^{\prime}$ formed during the reaction is not sufficient for $\mathrm{RC} \equiv \mathrm{CCu}$ formation, and additional copper salt must be fed to the reaction mixture. The reaction velocity depends on the rate of the $\mathrm{RC} \equiv \mathrm{CCu}$ formation and on the basicity of the solution (amines, mostly pyridine). The oxidation involves one-electron transfer [31]. An unstable dimeric Cull acetylide is obviously formed from $\mathrm{RC} \equiv \mathrm{CCu}$, which decomposes to give $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$ and completes the catalytic cycle by regeneration of $\mathrm{Cu}^{+}$. This is oxidized to $\mathrm{Cu}^{\prime \prime}$ again. The reaction of CuCl with $\mathrm{O}_{2}$ in pyridine has been shown to form $\mathrm{CuCl}_{2}(\text { pyridine })_{2}$ and a soluble $\mathrm{Cull}^{11}$ compound. For the mechanism of the "Eglinton Coupling" see [28,32]. The precipitation of RC $\equiv \mathrm{CCu}$ during the reactions has been observed [22], but is not desirable, for it seems to reduce the reaction rate [23].

The oxidative preparation of $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$ from $\mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (Reaction Type 2c) has been widely used. In part, this reaction is performed in strongly alkaline ( KOH ) aqueous solution [10, 11, 21].

A great number of further oxidation reactions giving $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$ is summarized under Reaction Type 2d in Table 1. Oxidizing agents like concentrated $\mathrm{HNO}_{3}$ are too aggressive to give $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$ and cause further oxidation or even explosions [3, 13 to 15].

## Halogenation

The halogenation with retention of the $\mathrm{C} \equiv \mathrm{C}$ bond (Reaction Type 3) can be achieved with $\mathrm{X}_{2}(\mathrm{X}=\mathrm{Br}$ or I$)$ in organic solvents like $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $n$-hexane; $\mathrm{RC} \equiv \mathrm{CX}$ is the product. $\mathrm{Cl}_{2}$ is not suitable; it leads to decomposition of the initial alkyne. In the reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{Br}_{2}$ the copper can be oxidized to $\mathrm{Cu}^{\prime \prime}$ and $\mathrm{CuBr}_{2}$ is isolated [48]. Detonations and inflammations have been observed not only with $\mathrm{Cl}_{2}$, but sometimes also at contacting of $\mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{Br}_{2}$ vapors diluted by air admixture and on mixing with elemental $\mathrm{I}_{2}$ [1]. $\mathrm{KI}_{3}$ is effective in the preparation of $\mathrm{IC} \equiv \mathrm{CR}$ in aqueous solutions. It is added until a consistent brown color of the solution is maintained with stirring [4, 6]. Interhalogens can also be reacted [12, 47]. $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{I}_{2}$ do not give $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{Cl}$, but only $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4$ [17]. Halogenation of Reaction Type 3 generally occurs along with oxidation and halogen addition (Reaction Types 2d and 4).

Halogenation followed by halogen addition (Reaction Type 4) gives RCX=CX ${ }_{2}$. There exists no detailed investigation about the scope and the limitation of Type 3 and 4 reactions. $\mathrm{KI}_{3}$ is a useful reagent too [6 to 8]; $\mathrm{I}_{2}$ can be used in warm water [9].

## "Straus Reaction"

$\mathrm{RC} \equiv \mathrm{CCu}$ gives $\mathrm{RCH}=\mathrm{CHC} \equiv \mathrm{CR}$ in anhydrous boiling $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ with admission of air; afterwards one molecule $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ may add to the $\mathrm{C} \equiv \mathrm{C}$ bond (Reaction Type 5). For example, $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCu}$ does not give the expected $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$, but the acetoxy muconate $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHC}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)=\mathrm{CHCO}_{2} \mathrm{CH}_{3}[24]$. A complex $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Cu}$ (see Section 1.1.2.5) has been isolated and is supposed to be an intermediate of the "Straus Reaction'" [17]. This reaction can also be carried out with $\mathrm{RC} \equiv \mathrm{CCu}$ formed in situ from $\mathrm{RC} \equiv \mathrm{CH}$ and CuCl [29].

The geometry of the product $\mathrm{RCH}=\mathrm{CHC} \equiv \mathrm{CR}$ has not been studied in detail. There have been reported isolated $(E)$-compounds [24, 29]; an $(E) /(Z)$-mixture is presumed [27]. From acetylides $C u C \equiv C Z C \equiv C C u$ the resulting cyclic enynes do not permit an ( $E$ )-structure. Therefore only ( Z )-"Straus products" are observed. If substitution reactions with $\mathrm{RC} \equiv \mathrm{CCu}$ are carried out in $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a solvent, oxygen must be excluded. Otherwise, the "Straus Reaction'" product can be formed, cf. the reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and 4,6-diiodoresorcinol [34].

## Insertion of $\mathrm{CO}_{2}$

$\mathrm{RC} \equiv \mathrm{CCu}$ and $\mathrm{CO}_{2}$ give $\mathrm{RC} \equiv \mathrm{CCO}_{2} \mathrm{Cu}$ (Reaction Type 6). This is the reverse of the Preparation Method V (see p. 4) [45].

## References:

[1] R. Böttger (Jahresber. Physik. Ver. Frankfurt 1856/57 37/4; Dinglers Polytech. J. 152 [1859] 22/9).
[2] C. Glaser (Ber. Deut. Chem.Ges. 2 [1869] 422/4).
[3] C. Glaser (Liebigs Ann. Chem. 154 [1870] 137/71).
[4] R. Lespieau (Ann. Chim. [Paris] [7] 11 [1897] 232/88).
[5] F. Straus (Liebigs Ann. Chem. 342 [1905] 190/265).
[6] R. Lespieau (Bull. Soc. Chim. France [4] 3 [1908] 638/40).
[7] R. Lespieau, M. Pariselle (Compt. Rend. 146 [1908] 1035/7).
[8] M. Lespieau (Compt. Rend. 150 [1910] 113/4).
[9] M. Lespieau (Ann. Chim. [Paris] [8] 27 [1912] 137/89).
[10] F. Kunckell (Ber. Deut. Pharm. Ges. 23 [1913] 188/227).
[11] S. Reich (Arch. Sci. Phys. Nat. [4] 45 [1918] 259/76).
[12] L. B. Howell, W. A. Noyes (J. Am. Chem. Soc. 42 [1920] 991/1010).
[13] C. Moureu, C. Dufraisse, J. R. Johnson (Ann. Chim. [Paris] [10] 7 [1927] 14/42, 34).
[14] A. B. Garcia (9th Congr. Intern. Quim. Pura Aplicada, Madrid 1934, Vol. 6, pp. 310/20; C. 1936 II 2411).
[15] A. L. Klebanskii, U. A. Dranitsyna, I. M. Dobromil’skaya (Dokl. Akad. Nauk SSSR 1935 II 229/32; C. 1936 I 2528).
[16] Yu. S. Zal'kind, B. M. Fundyler (Zh. Obshch. Khim. 6 [1936] 530/3).
[17] P. Piganiol (Acétylène, Homologues et Dérivés, Massan, Paris 1945, p. 263).
[18] H. H. Schlubach, V. Wolf (Liebigs Ann. Chem. 568 [1950] 141/59).
[19] R. Nast (Z. Naturforsch. 8 b [1953] 381/3).
[20] J. P. Riley (J. Chem. Soc. 1953 2193/8).
[21] A. Vaitiekunas, F. F. Nord (J. Am. Chem. Soc. 76 [1954] 2733/6).
[22] J. H. Baxendale, D. T. Westcott (private communication from [23]).
[23] G. Eglinton, A. R. Galbraith (Chem. Ind. [London] 1956 737/8).
[24] M. Akhtar, C. L. Weedon (Proc. Chem. Soc. 1958 303).
[25] Nippon Kagaku Kai Hen, "Jikken Kagaku Koza, Kikagobutsu no Gosei to Seisei", Ganzen 9 [1958] 391; Communications of the Chemical Society of Japan, "Experimental Chemical Correspondence, Synthesis and Purification of Compounds'", Complete Ed. 9 [1958] 391.
[26] W. J. Gensler, J. Casella Jr. (J. Am. Chem. Soc. 80 [1958] 1376/80).
[27] M. Akhtar, T. A. Richards, B. C. L. Weedon (J. Chem. Soc. 1959 933/40).
[28] G. Eglinton, A. R. Galbraith (J. Chem. Soc. 1959 889/96).
[29] L. Scatteböl (Acta Chem. Scand. 13 [1959] 198).
[30] A. S. Hay (J. Org. Chem. 27 [1962] 3320/1).
[31] A. A. Clifford, W. A. Waters (J. Chem. Soc. 1963 3056/62).
[32] F. Bohlmann, H. Schönowsky, E. Inhoffen, G. Gran (Chem. Ber. 97 [1964] 794/800).
[33] V. S. Myl'nikov (Dokl. Akad. Nauk SSSR 164 [1965] 622/5; Dokl. Phys. Chem. Proc. Acad. Sci. USSR 160/165 [1965] 693/5; C.A. 63 [1965] 17258).
[34] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[35] F. W. Hill (Metall 22 [1968] 135/40).
[36] V. S. Myl'nikov, A. N. Terenin (J. Polym. Sci. Polym. Symp. No. 16 [1965/68] 3655/65; C.A. 70 [1969] No. 38243).
[37] T. F. Rutledge (Acetylenic Compounds, Reinhold, New York - Amsterdam - London 1968, pp. 84/95, 207/10, 240/68).
[38] M. D. Rausch, A. Siegel, L. P. Klemann (J. Org. Chem. 34 [1969] 468/70).
[39] R. H. Mitchell, F. Sondheimer (Tetrahedron 26 [1970] 2141/50).
[40] M. Rosenblum, N. M. Brawn, D. Ciappenelli, J. Tancrede (J. Organometal. Chem. 24 [1970] 469/77).
[41] M. S. Newman, M. W. Logue (J. Org. Chem. 36 [1971] 1398/401).
[42] Y. Okamoto, K. L. Chellappa, S. K. Kundu (J. Org. Chem. 37 [1972] 3185/7).
[43] T. Tsuda, T. Hashimoto, T. Saegusa (J. Am. Chem. Soc. 94 [1972] 658/9).
[44] Y. Okamoto (AD-760772 [1973] 1/84; C.A. 80 [1974] No. 37537).
[45] T. Tsuda, K. Ueda, T. Saegusa (J. Chem. Soc. Chem. Commun. 1974 380/1).
[46] O. M. Abu Salah, M. I. Bruce (Australian J. Chem. 29 [1975] 531/41).
[47] P.-L. Compagnon, B. Grosjean (Synthesis 1976 448/9).
[48] J. S. Miller, S. T. Matsuo (J. Polym. Sci. Polym. Letters Ed. 128 [1980] 809/10).
[49] K. Bowden, I. Heilbron, E. R. H. Jones, K. H. Sargent (J. Chem. Soc. 1947 1579/83).
[50] J. F. Normant, G. Cahiez, C. Chuit, J. Villieras (J. Organometal. Chem. 77 [1974] 281/7).
[51] A. Afzali, H. Firouzabadi, A. Khalafinejad (Syn. Commun. 13 [1983] 335/9).
[52] A. K. Filippova, G. S. Lyashenko, I. D. Kalikhman, V. Y. Vitkovskii, G. G. Naumova, N. S. Vyazankin (Izv. Akad. Nauk SSSR Ser. Khim. 1983 950/3; Bull. Acad. Sci. USSR Div. Chem. Sci. 32 [1983] 861/3).

### 1.1.2.1.3 General Remarks about Reactions of $R C \equiv C C u$ with $R^{\prime} X$ to Form $R C=\mathbf{C R}^{\prime}$ and Its Ring Closure Products

Within the least twenty years, the reaction $R C \equiv C C u+X R^{\prime} \rightarrow R C \equiv C R^{\prime}+C u X(X=1, B r$ etc.) has become the most important means in organic chemistry to introduce alkynyl groups into various molecules. The number of known examples is very large, and the group $\mathrm{R}^{\prime}$ shows a wide variation. Different reaction paths including subsequent reactions of $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ were observed. The reaction is therefore described under different "Reaction Types" (7a to 7 p with formation of $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ and 8 a to 8 d with formation of ring closure products of $\left.R C \equiv C R^{\prime}\right)$ :

Reaction Type 7: $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{R}^{\prime} \mathrm{X} \rightarrow \mathrm{RC} \equiv \mathrm{CR}^{\prime}+\mathrm{CuX}$
: reactions with $R^{\prime} X$ where $X$ is bonded to an $s p^{3}$ carbon, see Section 1.1.2.1.4.1,
b: reactions with acyl halides, see Section 1.1.2.1.4.2,
c: reactions with haloalkenes, haloallenes, and allenyl esters, see Section 1.1.2.1.4.3,
reactions with haloalkynes, see Section 1.1.2.1.4.4,
: reactions with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$, see Section 1.1.2.1.4.5,
reactions with 2 -substituted halobenzenes, see Section 1.1.2.1.4.6, reactions with 3 -substituted halobenzenes, see Section 1.1.2.1.4.6, reactions with 4 -substituted halobenzenes, see Section 1.1.2.1.4.6, reactions with di- and polysubstituted halobenzenes, see Section 1.1.2.1.4.7,
$\mathrm{j}:$ reactions with compounds containing more than one iodobenzene moiety, see Section 1.1.2.1.4.8,
k: reactions with iodonaphthalenes, see Section 1.1.2.1.4.9,
I: reactions with other carbocycles $R^{\prime} X$, see Section 1.1.2.1.4.10,
m : reactions with 5 -membered heterocycles $R^{\prime} X$, see Section 1.1.2.1.4.11,
n : reactions with 6 -membered heterocycles $\mathrm{R}^{\prime} X$, see Section 1.1.2.1.4.12,
0 : reactions with condensed heterocycles $R^{\prime} X$, see Section 1.1.2.1.4.13,
$p$ : reactions with $R^{\prime} X$ where $X$ is bonded to $S, P, S i$, or $S n$, see Section 1.1.2.1.4.14.

Reaction Type 8: $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{R}^{\prime} \mathrm{X} \rightarrow$ ring closure product of $R \mathrm{C} \equiv \mathrm{CR}^{\prime}+\mathrm{CuX}$
$a$ : ring closure giving furans, see Section 1.1.2.1.5.1,
b: ring closure giving pyrroles or thiophenes, see Section 1.1.2.1.5.2,
c: ring closure giving other heterocycles, see Section 1.1.2.1.5.3,
d : ring closure giving carbocycles, see Section 1.1.2.1.5.4.
The molecules $R^{\prime} X$, into which the alkynyl group is introduced, must have a suitable leaving group $X$. In most cases $X$ is iodine. Bromine is less reactive or unreactive [8]; only bromoalkynes ( $\mathrm{R}^{\prime} X$ is $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CBr}$ ) are used on a broader scale. Chlorine is not a useful leaving group in this reaction, except at highly activated sites like in $2,4,6-\left(\mathrm{O}_{2} \mathrm{~N}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{Cl}$ and in $\mathrm{R}^{1} \mathrm{COCl}$. Further leaving groups are benzothiazol-2-yloxy and CN . For polyhalo compounds, one or more halogen atoms can be substituted by $R C \equiv C$ and often side reactions are observed.

The leaving group $X$ can be bonded to an $s p^{3}-$, $s p^{2}$-, or $s p$-hybridized carbon or to another atom like $\mathrm{Si}, \mathrm{P}, \mathrm{S}, \mathrm{Sn}, \mathrm{Pt}, \mathrm{Hg}, \mathrm{Ru}, \mathrm{Rh}, \mathrm{Re}$, or Ir. With $\mathrm{sp}^{3}$-hybridized carbon the reaction is restricted to certain structures like the allyl-, benzyl-, or phenacyl-type. $\mathrm{CH}_{3} \mathrm{l}$, for instance, can only be reacted with $\mathrm{RC} \equiv \mathrm{CCu}$ in the presence of a special catalytic system.

Bromo-ribofuranosides are understood as heterocycles (Reaction Type 7 m ), not as alkyl bromides.

The most common $R^{\prime} X$ within these Reaction Types 7 and 8 are halobenzenes and 2-iodothiophenes. But the range is very wide and even haloporphines were reacted.

In most cases the reaction is accomplished by refluxing the mixture of the reactants for 5 to 120 h in solvents like pyridine or dimethylformamide. Far milder conditions than usual are sufficient if the reaction is catalyzed by Pd compounds. This reaction has been studied in detail with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5}$ l and is therefore described more in detail in Section 1.1.2.1.4.5. It should be noted that there are also a few substrates that permit reaction times in the range of minutes without catalysis. Besides pyridine and dimethylformamide, many other solvents were used, including even aqueous systems [9]. Auxiliary bases are normally not necessary except for Reaction Type 7b and sometimes 7 a . If highly insoluble products are formed, the $\mathrm{RC} \equiv \mathrm{CCu}$ is better added in more than one portion to the reaction mixture [7]. $\mathrm{RC} \equiv \mathrm{CCu}$ is not introduced into the reaction as a pure substance in all cases. To avoid oxidative side reactions it is often better to use less than the equimolar amount of $\mathrm{Cu}^{1}$. Often a few mol \% of a $\mathrm{Cu}^{l}$ salt is sufficient for the reaction of $\mathrm{RC} \equiv \mathrm{CH}$ with $\mathrm{R}^{\prime} \mathrm{X}$. The reason for this is that $\mathrm{Cu}^{+}$, set free during the substitution reaction, can react to form additional $\mathrm{RC} \equiv \mathrm{CCu}$. Finally, $\mathrm{RC} \equiv \mathrm{CH}$ is totally converted to the acetylide. In other cases there is no exact proof for the formation of $\mathrm{RC} \equiv \mathrm{CCu}$ as an intermediate but it is presumed. For instance, $\mathrm{RC} \equiv \mathrm{CH}$, activated copper powder, $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $\mathrm{R}^{\prime} \mathrm{X}(\mathrm{X}=\mathrm{I}$ or Br ) in pyridine or dimethylformamide give in a 70 to $80 \%$ yield the same $R C \equiv C R^{\prime}$ as is formed from $R C \equiv C C u$ and $R^{\prime} X$ [4 to 6].
$\mathrm{Cu}^{\prime}$-catalyzed Grignard reactions of the type $\mathrm{RC} \equiv \mathrm{CMgBr}+\mathrm{XR}^{\prime} \rightarrow \mathrm{RC} \equiv \mathrm{CR}^{\prime}+\mathrm{MgBrX}(\mathrm{X}=$ halogen) have only been entered into the tables exceptionally, though they were believed to be formally reactions of Type 7. It is an open question whether the reaction of $\mathrm{RC} \equiv \mathrm{CMgBr}$ and $R^{\prime} X$ in the presence of copper salts involves $R C \equiv C C u$ as an intermediate [1 to 3]. In some cases at the end of the coupling processes yellow precipitates of $\mathrm{RC} \equiv \mathrm{CCu}$ have been observed [2]. But the Cul-catalyzed Grignard reactions seem to be more complex. The anions of the added $\mathrm{Cu}^{1}$ salts also play a role [2], and the activation of the C-halogen bond in XR', without RC $\equiv \mathrm{CCu}$ formation, has been formulated [1].

In many cases, reactions of $R C \equiv C C u$ and $R^{\prime} X$ do not yield $R C \equiv C^{\prime}$, but a different product is isolated. This can be the consequence of the work-up conditions (e.g., the saponification of the tetrahydropyran-2-ylmethyl group to $\mathrm{HOCH}_{2}$ ). 1,8-( $\mathrm{RC} \equiv \mathrm{C}_{2} \mathrm{C}_{10} \mathrm{H}_{6}$ (from 1,8-diiodonaphthalene and $2 \mathrm{RC} \equiv \mathrm{CCu}$ ) rearranges to benzo[k]fluoranthenes, and the relative yield of the two products is a function of the heating time (see Section 1.1.2.1.4.9). In some cases there is definite proof that $R C \equiv C R^{\prime}$ is formed during the reaction as a real species.

If $R^{\prime} X$ contains a suitable structural unit, in most cases $-C X=C(Z H)-\left(Z=N H, N R^{\prime \prime}\right.$, $\mathrm{O}, \mathrm{S}, \mathrm{CO}_{2}$ ), ring closure reactions are observed (Reaction Types 8 a to 8 c ); see Scheme I . Usually A means an anellated ring system and the product is a bi- or polycyclic compound.


For instance, the reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and 2-iodophenol $(X=I, Z=O$ and $\mathrm{A}=\mathrm{CH}=\mathrm{CH}$ $\mathrm{CH}=\mathrm{CH}$ ) gives a 2 -substituted benzo[b]furan; see Scheme II, p. 74. The probable intermediate 2-hydroxytolane has never been isolated; see Section 1.1.2.1.5.1.


II

With $Z=N H$ or $N R^{\prime \prime}$, in heterogeneous reaction systems the reaction runs analogously. From $\mathrm{RC} \equiv \mathrm{CCu}$ and 2-iodoanilines indoles are formed. In contrast, with $Z=N H$ or $N R^{\prime \prime}$ in homogeneous reaction systems, a mixture of $R C \equiv C R^{\prime}$ and the cyclization product (e.g., the indole) is formed; see Scheme III and Section 1.1.2.1.5.2.


III
In Section 1.1.2.1.5.3 the formation of additional heterocyclic ring systems from $\mathrm{RC} \equiv \mathrm{CCu}$ and $\mathrm{R}^{\prime} \mathrm{X}$ is listed as Reaction Type 8c. In almost all examples, A means an anellated benzene ring. The reaction is more important for $\mathrm{Z}=\mathrm{CO}_{2}$; phthalides and/or isocoumarines are thus produced; see Schemes IV to VI.


The synthesis of carbocyclic ring systems from $R C \equiv C C u$ is listed under Reaction Type 8 d in Section 1.1.2.1.5.4. Such rings can be formed intramolecularly, if $R$ contains a leaving group like iodine. An intermolecular head-to-tail-substitution (2 to 4, or 6 molecules RC $\equiv \mathrm{CCu}$ per formed ring system) gives carbocycles. The tarry substances, that are normally the main products, should result from repeated intermolecular combination.

A further source of carbocycles from $\mathrm{RC} \equiv \mathrm{CCu}$ are rearrangement reactions. Electrocyclic reactions starting from aromatic systems which are substituted by $2 \mathrm{C} \equiv \mathrm{C}$ groups are an important example. Reactions via arynes and dimerizations or trimerizations of unstable carbenes were also formulated (see Section 1.1.2.1.5.4).

## References:

[1] W. J. Gensler, G. R. Thomas (J. Am. Chem. Soc. 73 [1951] 4601/4).
[2] W. J. Gensler, A. P. Mahadevan (J. Am. Chem. Soc. 77 [1955] 3076/9).
[3] G. Eglinton, W. McCrae (Advan. Org. Chem. 4 [1963] 225/328).
[4] M. S. Shvartsberg (Izv. Akad. Nauk SSSR Ser. Khim. 1970 1144/9; Bull. Acad. Sci. USSR Div. Chem. Sci. 1970 1079/82).
[5] M. S. Shvartsberg, A. A. Moroz, I. L. Kotlyarevskii (Izv. Akad. Nauk SSSR Ser. Khim. 1971 1306/10; Bull. Acad. Sci. USSR Div. Chem. Sci. 1971 1209/12).
[6] M. S. Shvartsberg, A. A. Moroz (Izv. Akad. Nauk SSSR Ser. Khim. 1971 1582/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1971 1488/90).
[7] A. Kasahara, T. Izumi, M. Maemura (Bull. Chem. Soc. Japan 50 [1977] 1021/2).
[8] J. S. Kiely, P. Boudjouk, L. L. Nelson (J. Org. Chem. 42 [1977] 2626/9).
[9] R. P. Duffley, R. Stevenson (J. Chem. Res. S 1978468 ).

### 1.1.2.1.4 Reactions with $R^{\prime} X$ to Form $R C=C R^{\prime}$

### 1.1.2.1.4.1 Reactions with $R^{\prime} X$ where $X$ is Bonded to a sp ${ }^{3}$ Carbon

This reaction is referred to as "Reaction Type 7 a " in Table 1 on $\mathrm{pp} .17 / 41$; X is usually halogen, sometimes benzothiazol-2-yloxy, $\mathrm{CH}_{3} \mathrm{CO}_{2}$, or $\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O}) \mathrm{O}$.

Simple primary, secondary, and tertiary alkyl halides do not react with $\mathrm{RC} \equiv \mathrm{CCu}$, but there exists one example of a catalyzed conversion. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{CH}_{3} \mathrm{I}$ in tetrahydrofuran in the presence of $\mathrm{PdCl}_{2}$ and $\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]$ yields $46 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{3}$ [18]. The same product has been obtained, when the complex " $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot 3 \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-n\right)_{3}$ " (see Section 1.1.2.4) and $\mathrm{CH}_{3} \mathrm{I}$ were reacted [14].

In contrast to the simple alkyl compounds, halides of the allyl, benzyl, and phenacyl type react with $R C \equiv C C u$ following the equation $R C \equiv C C u+X R^{\prime} \rightarrow R C \equiv C R^{\prime}+C u X$; see Table 2, pp. 76/8. A catalyst is not necessary.

In many cases $\mathrm{RC} \equiv \mathrm{CCu}$ is not added to the reaction mixture as a substance, but is formed in the batch from $\mathrm{RC} \equiv \mathrm{CH}$ and $\mathrm{Cu}^{\prime}$ compounds. The precipitation of $\mathrm{RC} \equiv \mathrm{CCu}$ occurs immediately. It is later consumed during the much slower substitution reaction. As discussed in Section 1.1.2.1.3, some mol \% $\mathrm{Cu}^{1}$, instead of the preformed $\mathrm{RC} \equiv \mathrm{CCu}$, is often sufficient to perform substitution reactions and sometimes even problems with side reactions can be cancelled. Nevertheless there are cases, where molar amounts of Cul are necessary [1]. Some reactions using in situ (visibly) formed $\mathrm{RC} \equiv \mathrm{CCu}$ and even some "catalytic" reactions (with very low copper rates) are listed in Table 2. This has been exceptionally done, for they have in the case of Reaction Type 7a a high preparative value.

A detailed study and comparison using dry solid $R C \equiv C C u$, or stoichiometric amounts of $\mathrm{Cu}^{\prime}, \mathrm{RC} \equiv \mathrm{CH}$, and $\mathrm{R}^{\prime} \mathrm{X}$, or catalytic amounts of $\mathrm{Cu}^{\prime}, 1 \mathrm{~mol} R \mathrm{C} \equiv \mathrm{CH}$, and $1 \mathrm{~mol} \mathrm{R}^{\prime} X$ is given in [11] for the compounds No. 8, 18, 69, and 90 (as in Table 1). Sometimes the yields depend more upon the nature of the auxiliary base than upon the method used. The following yields are reported, as shown for the reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}(0.1 \mathrm{~mol}) / \mathrm{CuBr}(1 \mathrm{~g})$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ : tertiary amines $0 \%$, $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2} 32 \%, \mathrm{~K}_{2} \mathrm{CO}_{3} 68 \%$. CuCl instead of CuBr is
not recommended. Halogen exchange leads to the less reactive allyl chloride. Cupric acetate oxidizes $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ to $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ [11].

The usual solvents are dimethylformamide, hexamethylphosphoric triamide, and tetrahydrofuran. N -methylpyrrolid-2-one, nitrobenzene, and mixtures of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ were also used. Some reactions have been carried out by mixing the components without solvent.

The yields depend on the method of preparation of $R C \equiv C C u$. For instance, if $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is prepared in hexamethylphosphoric triamide, the yield of the reaction with allyl bromide is $16 \%$. When prepared in toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ does not react [11].

If the leaving group $X$ is benzothiazol-2-yloxy, the enhanced reactivity of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and the high stereospecifity can be ascribed to the coordination of the organometallic species to the nitrogen atom in the heterocycle. A suitable solvent is tetrahydrofuran [16].

The reaction of $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ or $4-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{CH}_{2} \mathrm{I}_{2}$ produces polymeric products, whose structures have not been reported [7].

Table 2
Reaction Type 7 a (explanation see pp. 12/4):
$R C \equiv C C u+R^{\prime} X \rightarrow R C \equiv C R^{\prime}+C u X$ where $X$ is Bonded to a $s p^{3}$ Carbon.

R in $\mathrm{RC} \equiv \mathrm{CCu}$	$R^{\prime} X$	remarks (yield of $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ in \%)   ${ }^{\text {a) }}$ and ${ }^{\text {b) }}$ : explanation see p .78	Ref.
$\mathrm{HOCH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	(13) ${ }^{\text {a }},(42)^{\text {b }}$	[ $5,7,11$ ]
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	(12), (65) ${ }^{\text {b }}$	[4, 6]
	(E) $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}$	$(65)^{\text {b }}$ and rearrangement product	[6]
	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Cl}$	(13), (13) ${ }^{\text {a) }},(65)^{\text {b }}$	[4, 5, 6]
	(E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$	$(8)^{\text {a }}$	[5]
$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	$(85)^{\text {b }}$	[6]
	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Cl}$	(67) ${ }^{\text {b) }}$	[6]
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	isolation as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}(39)^{\text {b }}$ )	[11]
(Z) $-\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CH}$			
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	no yield given	[15]
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$	no yield given	[15]
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})$	$\mathrm{CH} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$	(32) ${ }^{\text {a }}$	[4,5]
	$\mathrm{CH}_{2}=\mathrm{CBrCH}_{2} \mathrm{Br}$	only $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CBr}=\mathrm{CH}_{2}(50)^{\text {a }}$	[5]
	$\mathrm{ClCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}$	$(28)^{\text {a) }}$ monosubstituted and a few disubstituted product	[5]
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	(53) ${ }^{\text {a }}$	[5]
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	(53) ${ }^{\text {a) }}$, (59) ${ }^{\text {b }}$	[4,6]
	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Cl}$	(50) ${ }^{\text {a }}$, (50) ${ }^{\text {b) }}$	[4, 5, 6]
	(E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$	(38), (45) ${ }^{\text {a }}$	[4,5]
	References on p. $78 \quad \begin{gathered}\text { Gmelin } \\ \mathrm{Cu} \text { - }\end{gathered}$		in Handbook g. Comp. 3

Table 2 [continued]

$R$ in $R C \equiv C C u$	$R^{\prime} X$	remarks (yield of $R C \equiv C R^{\prime}$ in $\%$ )   a) and ${ }^{b)}$ : explanation see $p .78$	Ref.


$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CHBr}$	(33) with $4 \mathrm{~mol} \%\left[\mathrm{Pd}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{4}\right]$ at $45^{\circ}$	[19]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$	(4) with $4 \mathrm{~mol} \%\left[\mathrm{Pd}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{4}\right]$ at $45^{\circ}$	[19]
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{Br}$	part of the $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{C}$ moiety is introduced as $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CMgBr}$	[2]
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$	$\mathrm{CH} \equiv \mathrm{CCH}_{2} \mathrm{Br}$	(88) and $\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{C}=\mathrm{CH}_{2}$ (12)	[13]
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	( 13 to 96 , strongly dependent on the auxiliary base and the solvent), (44 ${ }^{\text {a }}$, (70) ${ }^{\text {b) }}$	[11, 13]
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	(60)	[13]
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{I}$	(74)	[13]
	$\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{OC}_{7} \mathrm{H}_{4} \mathrm{NS}$	rearrangement to   (E) $-\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$ (40)	[16]
	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$	$\begin{aligned} & \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3} \text { and } \\ & \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{CH}_{2}, \\ & \text { total yield } 76 \% \end{aligned}$	[13]
	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$	(80)	[13]
	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Cl}$	(63)	[13]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Br}$	(50)	[13]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Cl}$	(60)	[13]
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{OH})$	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	$(30)^{\text {a) }}$	[5]
$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	(16) in hexamethylphosphoric triamide,   (94) in the same solvent +1 mol   $\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right] \mathrm{I}+0.01 \mathrm{~mol}$   $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PdI}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$,   (83) in nitrobenzene at $240^{\circ}$	$\begin{aligned} & {[7,9,10} \\ & 17,18] \end{aligned}$
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	$\begin{aligned} & \text { (12, excess } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \text { necessary), } \\ & (30)^{\mathrm{a})} \end{aligned}$	$[3,6]$
	$\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{OC}_{7} \mathrm{H}_{4} \mathrm{NS}$	rearrangement to   (E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}(70)$	[16]
	$\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{OC}_{7} \mathrm{H}_{4} \mathrm{NS}$	rearrangement to   (E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CHC}_{2} \mathrm{H}_{5}$ (68)	[16]
	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl},$   ( E )/(Z)-mixture	(E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$ (73) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}$ (27), no   (Z)-compound	[12]
	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Cl}$	(20) ${ }^{\text {b }}$	[6]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Br}$	$(<5)$	[11]
Gmelin Handbook Cu-Org. Comp. 3	Refere	nces on p. 78	

Table 2 [continued]

$R$ in $R C \equiv C C u \quad R^{\prime} X \quad$| remarks (yield of $R C \equiv C R^{\prime}$ in $\%$ ) |
| :--- |
| a) and ${ }^{b}$ : explanation see below |$\quad$ Ref.


$\mathrm{C}_{6} \mathrm{H}_{5}$   [continued]	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$   $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{Br}$	(90) at $245^{\circ}$ in N -methylpyrrolidine   at $240^{\circ}$ in nitrobenzene only 2,5-di-   phenylfuran (54), at $140^{\circ}$ in glycol   only $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$ and tars
[8, 9]		

Explanations for Table 2:
a) $\mathrm{RC} \equiv \mathrm{CCu}$ is formed in the reaction mixture without isolation from equimolar amounts $\mathrm{RC} \equiv$ CH and $\mathrm{Cu}^{1}$.
b) $\mathrm{RC} \equiv \mathrm{CCu}$ is formed in the reaction mixture without isolation from $\mathrm{RC} \equiv \mathrm{CH}$ and less than equimolar amounts of $\mathrm{Cu}^{1}$.
Yields not marked by ${ }^{\text {a) }}$ or ${ }^{\text {b) }}$ are obtained with pure $\mathrm{RC} \equiv \mathrm{CCu}$.
$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}=$ benzothiazol-2-yl.

## References:

[1] P. Kurtz, Bayer A.-G. (Ger. 1007767 [1954/57]; C.A. 1959 14936).
[2] W. J. Gensler, A. P. Mahadevan (J. Am. Chem. Soc. 77 [1955] 3076/9).
[3] P. Kurtz, Bayer A.-G. (Brit. 775723 [1955/57]; C.A. 1957 16511).
[4] J. Colonge, R. Falcotet (Compt. Rend. 242 [1956] 1484/6).
[5] J. Colonge, R. Falcotet (Bull. Soc. Chim. France 1957 1166/9).
[6] P. Kurtz (Liebigs Ann. Chem. 658 [1962] 6/20).
[7] A. M. Sladkov, L. Y. Ukhin, V. V. Korshak (Izv. Akad. Nauk SSSR Ser. Khim. 1963 2213/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1963 2043/5).
[8] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[9] K. Gump, S. W. Moje, C. E. Castro (J. Am. Chem. Soc. 89 [1967] 6770/1).
[10] J. Ipaktschi, H. A. Staab (Tetrahedron Letters 1967 4403/8).
[11] M. Bourgain, J. F. Normant (Bull. Soc. Chim. France 1969 2477/81).
[12] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).
[13] J. F. Normant, M. Bourgain, A.-M. Rone (Compt. Rend. C 270 [1970] 354/7).
[14] T. Tsuda, Y. Chujo, T. Saegusa (J. Chem. Soc. Chem. Commun. 1975 963/4).
[15] G. A. Kraus, K. Frazier (Tetrahedron Letters 1978 3195/8).
[16] V. Calò, L. Lopez, G. Marchese, G. Pesce (Tetrahedron Letters 1979 3873/4).
[17] N. A. Bumagin, I. O. Kalinovskii, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1981 2836 ; Bull. Acad. Sci. USSR Div. Chem. Sci. 30 [1981] 2366).
[18] N. A. Bumagin, I. O. Kalinovskii, A. B. Ponomarev, I. P. Beletskaya (Dokl. Akad. Nauk SSSR 265 [1982] 1138/43; Dokl. Chem. Proc. Acad. Sci. USSR 262/267 [1982] 262/6).
[19] K. Ruitenberg, H. Kleijn, H. Westmijze, J. Meijer, P. Vermeer (Rec. Trav. Chim. 101 [1982] 405/9).

### 1.1.2.1.4.2 Reactions with Acyl Halides

This reaction, a valuable source in the preparation of ynones, is referred to as "Reaction Type 7b" in Table 1 on pp. 17/41:

$$
\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{XCOR}^{1} \rightarrow \mathrm{RC} \equiv \mathrm{CCOR}^{1}+\mathrm{CuX}
$$

X is in most cases Cl , sometimes Br . Aryloxymethyl substituted Cu acetylides tend to undergo rearrangement and substitution at oxygen. From $\mathrm{ArOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{R}^{1} \mathrm{COX}$ the following products can be expected: $\mathrm{ArOCH}=\mathrm{C}=\mathrm{CHCOR}^{1}, \mathrm{ArO}_{2} \mathrm{CR}^{1}$, and $\left(\mathrm{ArOCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)_{2}$ [15, 16]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OC} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$ give only $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ [15].

The reaction is usually carried out in solvent mixtures containing pyridine, dioxane, or $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$ and is catalyzed by tertiary amines like $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$. It is often sufficient to run the reaction at room temperature. Dimethylformamide is not a suitable solvent except in mixtures. In pure pyridine (no addition of a further amine) the reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and acid chlorides gives only a complex from which the initial products can be recovered. No reaction takes place in anisole [2].

The yields depend on the order of the charging of the reactants too. The addition of first 2 mol triethylamine and then of 2 mol pyridine to a suspension or solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{R}^{1} \mathrm{COCl}\left(\mathrm{R}^{1}=\right.$ aryl) in benzene, dioxane, or $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$ gives better yields (up to $55 \%$ ) than a simultaneous addition of both amines. Using only one amine, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ does not react at a molar ratio of acid chloride to amine of $1: 2$ or 1:4 [2]. Advantageously, the reaction is carried out with more than equimolar amounts $\mathrm{RC} \equiv \mathrm{CCu}$. In this way the $\mathrm{R}^{1} \mathrm{COX}$ is quantitatively converted and the excess of insoluble $\mathrm{RC} \equiv \mathrm{CCu}$ can be easily filtered. Often the same reaction is carried out with and without addition of $\mathrm{Li}, \mathrm{Mg}$, or similar salts. The presence of $\mathrm{LiX}, \mathrm{MgX}_{2}$, etc., implies the formation of heterocuprates (see Section 1.1.2.3) and is normally faster than the reaction with pure $\mathrm{RC} \equiv \mathrm{CCu}$ [10]. Acetyl chloride and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CCu do not react to form methyl phenylethynylketone [2, 3]. This compound is only produced after addition of Lil [5].

To avoid the "troublesome preparation" of $\mathrm{RC} \equiv \mathrm{CCu}$, a method has been proposed reacting $\mathrm{RC} \equiv \mathrm{CH}, \mathrm{R}^{1} \mathrm{COCl}, \mathrm{CuI},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$, and $\left[\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \mathrm{PdCl}_{2} . \mathrm{RC} \equiv \mathrm{CCu} \text { is supposed to be the }}\right.$ intermediate, but a catalytic reaction has not been excluded. Therefore, the examples are not entered into Table 3 [11]. This reaction has also been used to prepare macrocyclic ketones [13].

Whereas the reaction to ynones has a wide scope, an analogous reaction with sulfonyl halides to give $\mathrm{RC} \equiv \mathrm{CSO}_{2} \mathrm{R}^{1}$ is not feasible [2, 3].

Table 3
Reaction Type 7b (explanation see pp. 12/4):
$R C \equiv C C u+R^{\prime} X \rightarrow R C \equiv C R^{\prime}+C u X\left(R^{\prime} X=\right.$ acyl halide $)$.

R in $\mathrm{RC} \equiv \mathrm{CCu}$	$R^{\prime} X$	remarks (yield in \%; refers to $R C \equiv C R^{\prime}$, if not otherwise stated)	Ref.
( Z ) $-\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CH}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	no yield given	[12]
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{3} \mathrm{COCl}$	(75), protect from light	[4, 7]
	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COCl}$	(81)	[4]
Gmelin Handbook Cu-Org. Comp. 3	References on pp. 81/2		

Table 3 [continued]
$\left.\begin{array}{llll}\hline R \text { in } \mathrm{RC} \equiv \mathrm{CCu} & R^{\prime} \mathrm{X} & \begin{array}{l}\text { remarks (yield in \% ; refers to } \\ \text { RC }\end{array} & \text { Rer', if not otherwise stated) }\end{array}\right]$

Table 3 [continued]

R in $\mathrm{RC} \equiv \mathrm{CCu}$	$R^{\prime} \mathrm{X}$	remarks (yield in \%; refers to $R C \equiv C R^{\prime}$, if not otherwise stated)	Ref.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	yields only $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	[15]
$2,4,6-\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	yields only $2,4,6-\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}$   (88)	[15]
2,4,6-Cl $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	yields only $2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}$ (68)	[15]
2- $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	yields only (2- $\left.\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)_{2}$ (40)	[15]
4- $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	yields only $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OCH}=\mathrm{C}=\mathrm{CHCO}$ $\mathrm{C}_{6} \mathrm{H}_{5}$ (39)	[15]
4- $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	gives in benzene/ $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} /$ pyridine at $60^{\circ} 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OCH}=\mathrm{C}=\mathrm{CHCOC}_{6} \mathrm{H}_{5}$ (52), $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}$ (20), and $\left(4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)_{2}$ (28)	[16]
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	$\begin{aligned} & \text { yields only } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{C}=\mathrm{CHCOC}_{6} \mathrm{H}_{5} \\ & (30[15], 81[8]) \end{aligned}$	[8, 15]
4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	yields only $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}=\mathrm{C}=$ $\mathrm{CHCOC}_{6} \mathrm{H}_{5}$ (37)	[15]
4- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	reported to give $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OCH}=\mathrm{C}=$ $\mathrm{CHCOC}_{6} \mathrm{H}_{5}(30)$ [8] or $\left(4-\mathrm{CH}_{3} \mathrm{O}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)_{2}(72)$ [15] under similar conditions	[8, 15]
2,4,6-( $\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	(41)	[2]
$2,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OCH}$	$\begin{aligned} & \mathrm{H}_{2} \\ & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} \end{aligned}$	$\begin{aligned} & \text { yields only } 2,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OCH}=\mathrm{C}= \\ & \quad \mathrm{CHCOC}_{6} \mathrm{H}_{5}(89) \end{aligned}$	[15]

## References:

[1] A. M. Sladkov, I. R. Gol'ding (Zh. Org. Khim. 3 [1967] 1338; J. Org. Chem. [USSR] 3 [1967] 1298).
[2] A. M. Sladkov, I. R. Gol’ding (Khim. Atsetilena Tr. 3rd Vses. Konf., Dushanbe 1968 [1972], pp. 45/7; C.A. 79 [1973] No. 5431).
[3] M. Bourgain, J. F. Normant (Bull. Soc. Chim. France 1969 2477/81).
[4] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).
[5] J. F. Normant, M. Bourgain (Tetrahedron Letters 1970 2659/62).
[6] J. F. Normant, M. Bourgain, A.-M. Rone (Compt. Rend. C 270 [1970] 354/7).
[7] H. O. House, L. E. Huber, M. J. Umen (J. Am. Chem. Soc. 94 [1972] 8471/5).
[8] A. Kh. Filippova, G. S. Lyashenko, N. S. Vyazankin (Khim. Atsetilena Tr. 5th Vses. Konf., Tbilisi 1975, p. 104; C.A. 88 [1978] No. 190287).
[9] M. W. Logue, G. L. Moore (J. Org. Chem. 40 [1975] 131/2).
[10] R. Robin (Compt. Rend. C 282 [1976] 281/2).
[11] Y. Tohda, K. Sonogashira, N. Hagihara (Synthesis 1977 777/8).
[12] G. A. Kraus, K. Frazier (Tetrahedron Letters 1978 3195/8).
[13] Y. Onishi, M. Iyoda, M. Nakagawa (Tetrahedron Letters 22 [1981] 3641/4).
[14] S. Venkateso, U.S. Dept. of the Air Force (U.S. Appl. 219396 [1981]; C.A. 96 [1982] No. 7629).
[15] A. Kh. Filippova, G. S. Lyashenko, I. D. Kalikhman, V. Yu. Vitkovskii, G. G. Naumova, N. S. Vyazankin (Izv. Akad. Nauk SSSR Ser. Khim. 1983 950/3; Bull. Acad. Sci. USSR Div. Chem. Sci. 1983 861/3).
[16] L. V. Tumasheva, A. Kh. Filippova, G. S. Lyashenko, N. S. Vyazankin (Izv. Akad. Nauk SSSR Ser. Khim. 1984 2797/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1984 2563/4).

### 1.1.2.1.4.3 Reactions with Haloalkenes, Haloallenes, and Allenylesters

This reaction is referred to as Reaction Type 7c in Table 1 on pp. 17/41.
In contrast to halogen at $\mathrm{sp}^{3}$-hybridized carbon, halogen in haloalkenes is readily substituted by an alkynyl group from $\mathrm{RC} \equiv \mathrm{CCu}$ forming the corresponding enynes and a cuprous halide. Depending on the reaction conditions, mono- and disubstitution is possible with 1,2-diiodoalkenes. Tetraiodoethene gives a tetrasubstituted product.

The reactions are normally carried out in pyridine (sometimes in dimethylformamide) at 40 to $130^{\circ} \mathrm{C}$, the reaction times are between a few minutes and 24 hours. They can be strongly catalyzed by $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PdI}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ (see Section 1.1.2.1.4.5) [12]. Analogous reactions using $R C \equiv C H, R^{\prime} X$, and catalytic amounts of both the Pd catalyst and Cul are also known [16]. The ease of replacement of the halogen follows the order $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$. Fluorides do not react [1]. In the presence of $\operatorname{Pd}\left[P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$ and $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}, \mathrm{RC} \equiv \mathrm{CCu}$ formed in situ from $\mathrm{RC} \equiv \mathrm{CH}$ and $5 \% \mathrm{Cul}$ reacts with both $(\mathrm{E})$ - and $(Z)-\mathrm{ClCH}=\mathrm{CHCl}$ at room temperature to give $\mathrm{RC} \equiv \mathrm{CCH}=\mathrm{CHCl}$ in more than $99 \%$ isomeric purity. The yields are almost quantitative ( $\mathrm{R}=\mathrm{CH}_{3} \mathrm{SCH}_{2}, \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$, pyran-2-yloxymethyl) except for $\mathrm{R}=\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2}$ ( $(\mathrm{E})$-form $65 \%$ and (Z)-form 72\%) [14].

An analogous reaction is possible with the pseudo-halogen CN . The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CCu and tetracyanoethylene gives after 1 h in tetrahydrofuran $(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN}) \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ and resinous products [3].

The first reports about the straight forward reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and $(\mathrm{E})-\mathrm{R}^{\prime} \mathrm{C}(\mathrm{I})=\mathrm{CHSO}_{2} \mathrm{R}^{\prime \prime}$ give no data about a possible change of the configuration at the double bond [4] or claim the retention of the $(E)$-structure without giving the molar ratio of the reactants [7]. Later the stereochemistry of the substitution reaction was studied in detail. The (E)-2-iodo-1sulfonylalkenes on coupling with cuprous phenylacetylide gave the (E)-1-sulfonylbut-1-en-$3-$ ynes in good yields, when a $1: 1$ ratio of reactants was used. However, when an excess of cuprous phenylacetylide was used, the reaction time doubled or quadrupled, and mixtures of the two 1-sulfonylbut-1-en-3-yne isomers were isolated with the thermodynamically more stable product, the $(Z)$-isomer, predominating. The $(Z)-2$-iodo-1-sulfonylalkenes were also coupled with cuprous phenylacetylide to give the $(Z)-1$-sulfonylbut-1-en-3-ynes in fair yields. The assignment of configuration to the 1 -sulfonylbut-1-en-3-ynes was based upon NMR coupling constants and chemical shift data. In this work, however, no substituents are given [8]. The products from [4] should have the (E)-configuration for the molar ratio (as far as mentioned) is $1: 1$.

Table 4
Reaction Type 7c (explanation see pp. 12/4):
Reactions of RC $\equiv \mathrm{CCu}$ with Haloalkenes, Haloallenes, and Allenylesters.
If not otherwise stated, halogen has been substituted by $R C \equiv C$, and the reaction products are formed with a retention of configuration.

R in $\mathrm{RC} \equiv \mathrm{CCu}$	haloalkene, haloallene, or allenylester	remarks (yield in \%)	Ref.
$\mathrm{CH}_{3}$	(Z) $-\mathrm{ICH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$	isolated after hydrolysis to the carbonic acid (16)	[13]
$\mathrm{C}_{2} \mathrm{H}_{5}$	(E) $-\mathrm{ICH}=\mathrm{CHI}$	only (E) $-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHC} \equiv \mathrm{CC}_{2} \mathrm{H}_{5}$ (71)	[11]
$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$	(Z) $-\mathrm{ICH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$	(57)	[13]
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)$	(Z) $-\mathrm{ICH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$	(34)	[13]
(Z) $-\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CH}$	(E) $-\mathrm{ICH}=\mathrm{CHC}_{4} \mathrm{H}_{9}-\mathrm{n}$	$\begin{aligned} & (1 \mathrm{Z}, 5 \mathrm{E})-\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CHC} \equiv \mathrm{CCH}=\mathrm{CH}- \\ & \mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n} \end{aligned}$	[9]
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	(E) $-\mathrm{ICH}=\mathrm{CHI}$	only (E) $-\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHC} \equiv \mathrm{CC}_{3} \mathrm{H}_{7}-\mathrm{n}$   (75)	[11]
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CHBr}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CHC} \equiv \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}$ (33) in presence of $\left[\mathrm{Pd}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{4}\right]$	[15]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CHO}_{2} \mathrm{CCH}_{3}$	$\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CHC} \equiv \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}(4) \\ & \text { in presence of }\left[\mathrm{Pd}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{4}\right] \end{aligned}$	[15]
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	(Z) $-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHI}$	(70)	[6]
	(E) $-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{CHI}$	(85)	[6]
	(E) $-\mathrm{ICH}=\mathrm{CHI}$	in boiling pyridine after $10 \mathrm{~min} 40 \%$   (E) $-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHI}$; after $2 \mathrm{~h} 60 \%$   (E) $-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHC} \equiv \mathrm{CC}_{4} \mathrm{H}_{9}-\mathrm{n}$, no monosubstituted product	[2]
4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	(E) $-\mathrm{ICH}=\mathrm{CHI}$	mixture of the mono- and disubstituted products, no determination of the configuration	[2]
4-IC $\mathrm{C}_{6} \mathrm{H}_{4}$	(E) $-\mathrm{ICH}=\mathrm{CHI}$	mixture of the mono- and disubstituted products, no determination of the configuration	[2]
$\mathrm{C}_{6} \mathrm{H}_{5}$	(E) $-\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{CH}_{3}$	(53)	[7]
	(E) $-\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{C}_{6} \mathrm{H}_{5}$		[7]
	(E) $-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{CH}_{3}$		[7]
	(E) $-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{C}_{6} \mathrm{H}_{5}$		[4, 7]
	(E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHBr}$	(94) at $20 \% 0.4 \mathrm{~h}$ in hexamethylphosphoric triamide, catalyzed by $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PdI}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ and $\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]!$	[12]
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHBr}$	(75)	[1]
Gmelin Handbook Cu-Org. Comp. 3	Refere	nces on p. 85	

Table 4 [continued]

R in $\mathrm{RC} \equiv \mathrm{CCu}$	haloalkene, haloallene, remarks (yield in \%) or allenylester	Ref.
$\mathrm{C}_{6} \mathrm{H}_{5}$   [continued]	(E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{CHI}$	[7]
	(E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{CH}_{3}$ (62)	[7]
	(E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{C}_{6} \mathrm{H}_{5}$ (68)	[7]
	$\begin{equation*} \text { (E) }-4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{CHI} \tag{76} \end{equation*}$	[7]
	(E) $-4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{CH}_{3}$   (76)	[7]
	(E) $-4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}$   (72)	[7]
	(E) $-4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{C}_{6} \mathrm{H}_{5}$   (58)	[4, 7]
	(E) $-4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{C}_{6} \mathrm{H}_{11}$-cyclo   (80), geometry not given	[4]
	(E) $-4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{I}) \mathrm{C}_{6} \mathrm{H}_{13}-\mathrm{n}$   (60)	[7]
	(E) $-\mathrm{ClCH}=\mathrm{CHI} \quad 60$ to $90 \%$ (E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHCl}$	[1, 5]
	(E) $-\mathrm{ICH}=\mathrm{CHI}$   in boiling pyridine after $10 \mathrm{~min} 30 \%$   (E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHI}$; after 2 h in boiling pyridine or dimethylformamide 55 or $65 \%(E)-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$, no monosubstituted product	[2, 5]
	$\mathrm{ICH}=\mathrm{CHI} \quad$ only $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ (90)	[1]
	$\begin{array}{rl} \mathrm{I}_{2} \mathrm{C}=\mathrm{Cl}_{2} & 40 \text { to } 90 \%\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2} \\ \text { best yields after } 2 \mathrm{~h} \text { at } 80^{\circ} \text { in pyridine } \end{array}$	[1, 5]
	  isolated as   after treatment with toluenesulfonic acid (72)	[10]
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2}$	(E) $-\mathrm{ClCH}=\mathrm{CHI} \quad$ (E) $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHCl}$ (60 to 90)	[5]
	$\mathrm{ClCH}=\mathrm{CHI} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHCl}$ (70)	[1]
	$\mathrm{ICH}=\mathrm{CH}$   only $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHC} \equiv \mathrm{CCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{5}$   (40)	[1]

## References:

[1] J. Burdon, P. L. Coe, C. R. Marsh, J. C. Tatlow (J. Chem. Soc. Chem. Commun. 1967 1259/60).
[2] L. Yu. Ukhin, A. M. Sladkov, V. I. Gorshkov (Zh. Org. Khim. 4 [1968] 25/7; J. Org. Chem. [USSR] 4 [1968] 21/3).
[3] L. Yu. Ukhin, A. M. Sladkov, Zh. I. Orlova (Izv. Akad. Nauk SSSR Ser. Khim. 1969 705/6; Bull. Acad. Sci. USSR Div. Chem. Sci. 1969 637/8).
[4] W. E. Truce, G. C. Wolf (J. Org. Chem. 36 [1971] 1727/32).
[5] J. Burdon,P. L. Coe, C. R. Marsh, J. C. Tatlow (J. Chem. Soc. Perkin Trans. I 1972 639/41).
[6] A. Commercon, J. F. Normant, J. Villiéras (J. Organometal. Chem. 93 [1975] 415/21).
[7] W. E. Truce, A. W. Borel, P. J. Marek (J. Org. Chem. 41 [1976] 401/2).
[8] A. W. Borel (Diss. Purdue Univ. 1976, pp. 1/366; Diss. Abstr. Intern. B 37 [1977] 5079; C.A. 87 [1977] No. 38724).
[9] G. A. Kraus, K. Frazier (Tetrahedron Letters 1978 3195/8).
[10] R. H. Bradbury, T. L. Gilchrist, C. W. Rees (J. Chem. Soc. Perkin Trans I 1981 3234/8).
[11] T. P. Lockhart, P. B. Comita, R. G. Bergman (J. Am. Chem. Soc. 103 [1981] 4082/90).
[12] N. A. Bumagin, I. O. Kalinovskii, A. B. Ponomarev, I. P. Beletskaya (Dokl. Akad. Nauk SSSR 265 [1982] 1138/43).
[13] G. Struve, S. Seltzer (J. Org. Chem. 47 [1982] 2109/13).
[14] V. Ratovelomanana, G. Linstrumelle (Tetrahedron Letters 22 [1981] 315/8).
[15] K. Ruitenberg, H. Kleijn, H. Westmijze, J. Meijer, P. Vermeer (Rec. Trav. Chim. 101 [1982] 405/9).
[16] N. A. Bumagin, A. B. Ponomarev, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1984 1561/6; Bull. Acad. Sci. USSR Div. Chem. Sci. 1984 1433/8).

### 1.1.2.1.4.4 Reactions with Haloalkynes

This reaction is referred to as Reaction Type 7 d in Table 1 on pp. 17/41. The reaction $R C \equiv C C u+X C \equiv C R^{1} \rightarrow R(C \equiv C)_{2} R^{1}(X=B r, I)$ is very useful to prepare asymmetric diynes. Symmetric diynes $R(C \equiv C)_{2} R$ can be prepared more easily by oxidation of $R C \equiv C C u$ (see Reaction Type 2, Section 1.1.2.1.2).

Chloroalkynes do not react; in most cases, bromoalkynes are used. lodoalkynes give principally the same results. The reaction conditions are very different. Dimethylformamide at $0^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and pyridine at room temperature as well as $n$-hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and boiling dimethylformamide are possible. The reaction has also been conducted without any solvent.

Formation of $R(C \equiv C)_{2} R$ as a side reaction is often observed. The also possible product $R^{1}(C \equiv C)_{2} R^{1}$ has rarely been reported. As outlined under "Preparation Method IV'" in Section 1.1.2.1.2 (see p. 4), the $\mathrm{Cu}^{+}$liberated in the course of the reaction forms with $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CBr}$ the corresponding $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{Cu}^{2+}$. This for its part causes a side reaction to give $R(C \equiv C)_{2} R$ (see Reaction Type $2 b$, Section 1.1.2.1.2). To suppress this reaction, the amount of $\mathrm{Cu}^{+}$present must be reduced. This corresponds to the so-called "Chodkiewicz-Cadiot Coupling", which uses instead of $\mathrm{RC} \equiv \mathrm{CCu}$ a mixture of $\mathrm{RC} \equiv \mathrm{CH}$ and approximately $2 \mathrm{~mol} \% \mathrm{Cu}^{+}$. With this method, the addition of a base to neutralize the protons formed during the reaction is necessary and the formation of $\mathrm{Cu}^{+}$from $\mathrm{Cu}^{2+}$ by reduction with $\left[\mathrm{NH}_{3} \mathrm{OH}\right] \mathrm{Cl}$ to limit side reactions is preferable. The amine concentration should not be too high, for too much amine favors the formation of $R(C \equiv C)_{2} R$. During the ChodkiewiczCadiot coupling, $\mathrm{RC} \equiv \mathrm{CCu}$ is formed in a fast reaction between $\mathrm{RC} \equiv \mathrm{CH}$ and $\mathrm{Cu}+/ a m i n e$,
whereas the substitution reaction with $R^{1} C \equiv C B r$ to give $R(C \equiv C)_{2} R^{1}$ proceeds more slowly [7, 13]. However, a clear proof of the reaction path has not yet been furnished. For this reason examples of this intensively studied catalytic reaction have not been entered in Table 5 [2, 3].

Table 5
Reaction Type 7d (explanation see pp. 12/4):
$R C \equiv C C u+X C \equiv C R^{1} \rightarrow R(C \equiv C)_{2} R^{1}+C u X$.
a) The acetylide is generated as a slurry in the reaction mixture and not isolated.
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}=$ tetrahydropyran-2-yloxy.

R in $\mathrm{RC} \equiv \mathrm{CCu}$	XC $\equiv C R^{1}$		remarks   (yield of $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}^{1}$ in \%)	Ref.
	$\mathrm{R}^{1}$	X		
$\mathrm{CH}_{3}$	$\mathrm{HOCH}_{2}$	Br	(60)	[5, 7]
$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$	$\mathrm{HOCH}_{2}$	Br	no yield given	[7]
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}$	$\mathrm{HOCH}_{2}$	Br	(66)	[5, 7]
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$	Br	in pyridine at $25^{\circ}(96)$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}(1)$, no reaction in $\mathrm{THF} /$ hexane	[12]
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})$	$\mathrm{HOCH}_{2}$	Br	(56) ${ }^{\text {a) }}$	[1]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	Br	(73) ${ }^{\text {a }}$	[1, 3]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})(\mathrm{C}$		$\mathrm{n}=0(95)^{\mathrm{a}}, \mathrm{n}=1(66)^{\mathrm{a}}$	[1]
		Br	(58) ${ }^{\text {a }}$	[1]
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	Br	low yield, mixture with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}(\mathrm{C} \equiv \mathrm{C})_{2}$ $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ and $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{n}$	[12]
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$	Br	(93) ${ }^{\text {a) }}$	[12]
$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CH}$	$\mathrm{HOCH}_{2}$	Br	no yield given	[7]
$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	Br	excess acetylide, no yield given	[4]
$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	I	$\begin{aligned} & \mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}^{1}: \mathrm{R}^{1}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}^{1}: \mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}= \\ & 4: 1: 2 \end{aligned}$	[9]
$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	Br	excess acetylide, no yield given	[4]
$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{HOCH}_{2}$	Br	(65)	$[5,7]$
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})$	Br	(87) ${ }^{\text {a }}$	[3]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	1	(96), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{Cl}$ can be formed in situ from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{I}_{2}$	$[5,11]$
	$4-\mathrm{CH} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}$	Br	large excess of acetylide, no yield given	[4]
	H	Br	isolated as the copper salt	[8, 10]
				Gmelin Handbook Cu-Org. Comp. 3

Table 5 [continued]


## References:

[1] W. Chodkiewicz, P. Cadiot (Compt. Rend. 241 [1955] 1055/7).
[2] W. Chodkiewicz, J. S. Alhuwalia, P. Cadiot, A. Willemart (Compt. Rend. 245 [1957] 322/4).
[3] W. Chodkiewicz (Ann. Chim. [Paris] [13] 2 [1957] 819/69).
[4] G. N. Gorshkova, M. A. Chubarova, A. M. Sladkov, L. Yu. Ukhin, V. I. Kasatochkin (Zh. Fiz. Khim. 38 [1964] 2516/20; Russ. J. Phys. Chem. 38 [1964] 1367/9).
[5] R. F. Curtis, J. A. Taylor (Tetrahedron Letters 1968 2919/20).
[6] A. N. Volkov, Yu. M. Skvortsov, I. I. Danda, M. F. Shostakovskii (Zh. Org. Khim. 6 [1970] 897/902; J. Org. Chem. [USSR] 6 [1970] 903/7).
[7] R. F. Curtis, J. A. Taylor (J. Chem. Soc. C 1971 186/8).
[8] Y. Okamoto, K. L. Chellappa, S. K. Kundu (J. Org. Chem. 37 [1972] 3185/7).
[9] A. M. Sladkov, I. R. Gol'ding (Dokl. 4th Vses. Konf. Khim. Atsetilena, Alma-Ata 1972, Vol. 1, pp. 59/64; C.A. 79 [1973] No. 78253).
[10] Y. Okamoto (AD-760772) [1973] 1/84; C.A. 80 [1974] No. 37537 ).
Gmelin Handbook
Cu-Org. Comp. 3
[11] J. S. Miller, S. T. Matsuo (J. Polym. Sci. Polym. Letters Ed. 18 [1980] 809/10).
[12] J. A. Miller, G. Zweifel (Synthesis 1983 128/30).
[13] G. Eglinton, W. McCrae (Advan. Organic Chem. 4 [1963] 225/328).

### 1.1.2.1.4.5 Reactions with $\mathrm{C}_{6} \mathrm{H}_{5}$ I

This reaction (called Reaction Type 7e in Table 1, pp. 17/41) is a very useful method to prepare $\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$. Sensitive tolanes can best be prepared by this mild conversion:

$$
\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{IC}_{6} \mathrm{H}_{5} \rightarrow \mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}+\mathrm{Cul}
$$

The reaction is in most cases accomplished by refluxing the components for 5 to 48 h in pyridine. These long reaction times demand a particularly careful exclusion of air to avoid the formation of $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}$ (see Section 1.1.2.1.2).

Recently a catalysis by $1 \mathrm{~mol}\left[\mathrm{~N}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{4}\right] \mathrm{l}$ and $0.01 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pdl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ has been suggested. Under these conditions yields up to $95 \%$ at room temperature are reported $[15,16]$. This reaction is also possible with $\mathrm{RC} \equiv \mathrm{CH}, \mathrm{R}^{\prime} \mathrm{X}, 1 \mathrm{~mol} \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pdl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}, 1 \mathrm{~mol} \%$ Cul, and 2 equivalents $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$ [17].

The following $\mathrm{RC} \equiv \mathrm{CCu}$ were reacted with $\mathrm{C}_{6} \mathrm{H}_{5}$ I to give $\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ (yields in parentheses):
$\mathrm{R}=(\mathrm{Z})-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{CH}$ (15 to 20\% (Z)-product) [6]; $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ (84\%) [12]; (E) $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-$ $\mathrm{C} \equiv \mathrm{C}$ yields a (Z)/(E)-mixture at a 7:3 ratio [4]; tetrahydropyran-2-yloxy [7]; $n-\mathrm{C}_{5} \mathrm{H}_{11}$ ( $36 \%$ ) in hexamethylphosphoric triamide at $100^{\circ} \mathrm{C}$ [11]; $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CH}(71 \%)$ [7, 11]; $\mathrm{C}_{6} \mathrm{~F}_{5}$ (74\%) [9]; $\mathrm{C}_{6} \mathrm{H}_{5}$ ( 85 to $90 \%$ ) in pyridine [1, 2], ( $65 \%$ ) in hexamethylphosphoric triamide at $100^{\circ} \mathrm{C}$ [11], ( $90 \%$ ) for the catalyzed reaction (see above) in pyridine [16]; (Z) $-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCH}=\mathrm{CH}$ (15 to $20 \%$ (Z)-product) [6]; tetrahydropyran-2-yloxymethyl [3]; $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}(90 \%)$ in dimethylformamide at $160{ }^{\circ} \mathrm{C}$ [5]; $2,5-\mathrm{d}_{2}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{2} \mathrm{D}_{2}(77 \%)$ [10]; $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4}$ (84\%) [14].

For $R=\mathrm{C}_{6} \mathrm{H}_{5}$, the rate constant $\mathrm{k}_{2}=8 \times 10^{-6} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$ in pyridine at $100^{\circ} \mathrm{C}, \Delta \mathrm{G}_{298}^{7}=$ $26 \mathrm{kcal} \cdot \mathrm{mol}^{-1}, \Delta \mathrm{H}_{298}^{\ddagger}=7.2 \mathrm{kcal} \cdot \mathrm{mol}^{-1}, \Delta \mathrm{~S}^{\neq}=-63 \mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$, has been determined [8].

## References:

[1] C. E. Castro, R. D. Stevens (J. Org. Chem. 28 [1963] 2163).
[2] R. D. Stevens, C. E. Castro (J. Org. Chem. 28 [1963] 3313/5).
[3] R. E. Atkinson, R. F. Curtis, D. M. Jones, J. A. Taylor (J. Chem. Soc. Chem. Commun. 1967 718/9).
[4] E. R. H. Jones, S. Safe, V. Thaller (J. Chem. Soc. C 1967 1038/44).
[5] M. S. Shvartsberg, A. N. Kozhevnikova, I. L. Kotlyarevskii (Izv. Akad. Nauk SSSR Ser. Khim. 1967 466/7; Bull. Acad. Sci. USSR Div. Chem. Sci. 1967 460/1).
[6] M. F. Shostakovskii, A. N. Volkov, A. N. Khudyakova, Yu. M. Skvortsov, I. I. Danda (Khim. Atsetilena Tr. 3rd Vses. Konf., Dushanbe 1968 [1972], pp. 94/7; C.A. 79 [1973] No. 18257).
[7] R. E. Atkinson, R. F. Curtis, D. M. Jones, J. A. Taylor (J. Chem. Soc. C 1969 2173/6).
[8] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).
[9] M. D. Rausch, A. Siegel, L. P. Klemann (J. Org. Chem. 34 [1969] 468/70).
[10] M. D. Rausch, A. Siegel (J. Organometal. Chem. 17 [1969] 117/25).
[11] J. F. Normant, M. Bourgain, A.-M. Rone (Compt. Rend. C 270 [1970] 354/7).
[12] J. J. Eisch, M. W. Foxton (J. Org. Chem. 36 [1971] 3520/6).
[13] J. S. Kiely, P. Boudjouk, L. L. Nelson (J. Org. Chem. 42 [1977] 2626/9).
[14] D. W. Slocum, M. D. Rausch, A. Siegel (Organometal. Polym. Symp. $1977 / 78$ 39/51, 49).
[15] N. A. Bumagin, I. O. Kalinovskii, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1981 2836 ; Bull. Acad. Sci. USSR Div. Chem. Sci. 30 [1981] 2366).
[16] N. A. Bumagin, I. O. Kalinovskii, A. B. Ponomarev, I. P. Beletskaya (Dokl. Akad. Nauk SSSR 265 [1982] 1138/43; Dokl. Chem. Proc. Acad. Sci. USSR 262/267 [1982] 262/6).
[17] N. A. Bumagin, A. B. Ponomarev, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1984 1561/6; Bull. Acad. Sci. USSR Div. Chem. Sci. 1984 1433/8).

### 1.1.2.1.4.6 Reactions with Monosubstituted Halobenzenes

This reaction is the most important method to synthesize compounds of the type RCझ $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}$, especially substituted tolanes. The reaction is in most cases accomplished by refluxing the reactants for 5 to 48 h in solvents like pyridine or dimethylformamide. Far milder conditions are sufficient, if the reaction is catalyzed by Pd compounds (see Section 1.1.2.1.4.5) [37]. For the analogous reaction using $\mathrm{RC} \equiv \mathrm{CH}$ and catalytic amounts of Cul, see [38].

Bromobenzene was not reacted with $\mathrm{RC} \equiv \mathrm{CCu}$; a few $\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ gave the corresponding tolanes. If the ortho-position in $\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$ bears a group containing active hydrogen (e.g., $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{NHR}^{2}, \mathrm{CO}_{2} \mathrm{H}$, etc.), a cyclization of the initially formed $\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}-2$ is possible.The course of this reaction (formation of the alkyne or of the cyclization product, respecitvely, e.g., of a pyrrol) can depend on the solvent. Often mixtures of $\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}-2$ and of a cyclic product are obtained. For these cyclization reactions, see Sections 1.1.2.1.3 (general remarks) and 1.1.2.1.5.1 to 1.1.2.1.5.4 (single reactions). For the reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ with 2-substituted halobenzenes ("Reaction Type 7 f ") see Table 6, with 3-substituted halobenzenes ("Reaction Type 7 g ") see Table 7, and with 4 -substituted halobenzenes ("Reaction Type 7h") see Table 8.

Table 6
Reaction Type 7f (explanation see pp. 12/4):
$\mathrm{RC} \equiv \mathrm{CCu}+2-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{R}^{1} \rightarrow 2-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}+\mathrm{CuX}(\mathrm{X}=\mathrm{I}$ or Br$)$.
The yield of the cyclization product is only given if a mixture with $R C \equiv C_{6} H_{4} R^{1}$ is obtained or if the reaction is kinetically characterized. For all other cyclizations, see Sections 1.1.2.1.5.1 to 1.1.2.1.5.4.
Rate constant $\mathrm{k}_{2}$ in pyridine at $100^{\circ} \mathrm{C}$ in $\mathrm{M}^{-1} \cdot \mathrm{~s}^{-1} . \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}=$ tetrahydropyran-2-yloxy.

R in $\mathrm{RC} \equiv \mathrm{CCu}$	$2-\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}$		remarks (yield of $2-R C=C_{6} \mathrm{H}_{4} \mathrm{R}^{1}$ in \%)	Ref.
	R1	X		
$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{NH}_{2}$	1	in pyridine ( $28+12$ cyclization product)	[5]
(Z) $-\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CH}$	$\mathrm{NO}_{2}$	Br	(87)	[32]
	$\mathrm{NH}_{2}$	Br	tarry products only	[32]
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{NH}_{2} \mathrm{CO}$	1	(50)	[5]
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}$	1	in pyridine ( $5+50$ cyclization product)	[5]
	$\mathrm{NH}_{2}$	1	in pyridine ( $17+70$ cyclization product)	[5]
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})$	$\mathrm{CH}_{3} \mathrm{O}$	1	(50), acetylide prepared in situ	[34]
	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$	1	(90), acetylide prepared in situ	[34]
Gmelin Handbook Cu-Org. Comp. 3		Ref	rences on pp. 95/6	

Table 6 [continued]

R in $\mathrm{RC} \equiv \mathrm{CCu}$	$2-\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}$		remarks	Ref.
	$\mathrm{R}^{1}$	X	(yield of 2-RC $\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}$ in \%)	
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{NH}_{2}$	I	in pyridine ( $20+35$ cyclization product)	[5]
pyrid-2-yl	$\mathrm{NH}_{2}$	I	in refluxing pyridine (50), at $125^{\circ}$ in dimethylformamide no reaction	[5]
$2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	$\mathrm{NH}_{2} \mathrm{CO}$	1	yields a mixture of	[10]

$66 \%$

6\%




Table 6 [continued]

$R$ in $\mathrm{RC} \equiv \mathrm{CCu}$	$\mathrm{R}^{1}$	$2-\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}$	X	remarks   (yield of $2-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}$ in $\%$ )
	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	I	(70 to 80)	Ref.
	$2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	1	2-nitro-2'-(phenylethynyl)biphenyl and	$[18]$


$\mathrm{C}_{6} \mathrm{H}_{5} \quad$ I (56)
[6]
$2-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}$
2,2'-bis(phenylethynyl)biphenyl (65) and

$\begin{array}{lll}\mathrm{Cl} & \mathrm{I} & \text { in } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(52) \\ \mathrm{F} & \mathrm{I} & (70 \text { to } 80)\end{array}$ [6]
1
$\mathrm{NH}_{2}$
I 1,2-bis(phenylethynyl)benzene (61)
I (59) in pyridine (homogeneous solution)
with $\mathrm{k}_{2}=3.4 \times 10^{-5}$
in dimethylformamide (heterogeneous mixture) only cyclization
$\mathrm{NO}_{2} \quad \mathrm{I} \quad(84), \mathrm{k}_{2}=2.0 \times 10^{-3} ; \Delta \mathrm{G}_{298}^{E}=26 \mathrm{kcal} \cdot \mathrm{mol}^{-1}, \quad[1,3$, $\Delta \mathrm{H}^{\mp}=16 \mathrm{kcal} \cdot \mathrm{mol}^{-1}, \Delta \mathrm{~S}_{298}^{\neq}=-29$ 11, 12] $\mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ in pyridine
HO I only cyclization, see Table 14, Section 1.1.2.1.5.1; $k_{2}=8.6 \times 10^{-3}$

$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}_{2}$	$\mathrm{CF}_{3}$	I	no yield given	$[29]$
	$\mathrm{CH}_{3} \mathrm{O}$	I	no yield given	$[29]$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$	$\mathrm{CH}_{3}$	I	$(82)$	$[8]$
$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{3}$	I	$(90)$	$[7,15]$
$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	$\mathrm{NH}_{2} \mathrm{CO}$	I	no yield given	$[10]$
naphth-1-yl	$\mathrm{NH}_{2} \mathrm{CO}$	I	no yield given	$[10]$

Table 7
Reaction Type 7 g (explanation see pp. 12/4):
$\mathrm{RC} \equiv \mathrm{CCu}+3-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{R}^{1} \rightarrow 3-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}+\mathrm{CuX}(\mathrm{X}=\mathrm{I}$ or Br$)$.
Rate constant $\mathrm{k}_{2}$ in pyridine at $100^{\circ} \mathrm{C}$ in $\mathrm{M}^{-1} \cdot \mathrm{~s}^{-1} \cdot \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}=$ tetrahydropyran-2-yloxy.

$R$ in $\mathrm{RC} \equiv \mathrm{CCu}$	$R^{1} \quad 3-R^{1} C_{6} H_{4} X$	X	remarks (yield of $3-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}$ in \%)	Ref.
$\mathrm{CH}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$	1	(84)	[31]
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$	Br	at $240^{\circ}$ (80)	
pyrid-3-yl	$\mathrm{OCHNHC}\left(\mathrm{CH}_{3}\right)_{2}$	1	no yield given	[25]
$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right){ }_{2} \mathrm{CH}$	$\mathrm{CH}_{3}$	1	(50)	[30]
$\mathrm{C}_{6} \mathrm{H}_{5}$	Br	1	(70 to 80)	[14]
	$\mathrm{HO}_{2} \mathrm{C}$	1	$\mathrm{k}_{2}=2.9 \times 10^{-5}$	[11]
	$\mathrm{CH}_{3}$	I	(37)	[27]
	$\mathrm{CH}_{3} \mathrm{O}$	1	(80), $\mathrm{k}_{2}=1.4 \times 10^{-5}$	$[1,11]$
	$\mathrm{C}_{2} \mathrm{H}_{5}$	I	(70 to 80)	[14]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	I	(70 to 80)	[14]
	$\mathrm{OCHNHC}\left(\mathrm{CH}_{3}\right)_{2}$	I	no yield given	[25]
	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	I	( 70 to 80)	[14]
	Cl	I	(53)	[27]
	F	1	(70 to 80)	[14]
	1	1	1,3-bis(phenylethynyl)benzene (42)	[5]
	$\mathrm{NH}_{2}$	I	(70), $\mathrm{k}_{2}=1.0 \times 10^{-5}$	[11, 24]
	$\mathrm{NO}_{2}$	I	$\begin{aligned} & \mathrm{k}_{2}=9.1 \times 10^{-5} ; \Delta \mathrm{G}_{298}^{ \pm}=27 \mathrm{kcal} \cdot \mathrm{~mol}^{-1}, \Delta \mathrm{H}_{298}^{ \pm}= \\ & 15 \mathrm{kcal} \cdot \mathrm{~mol}^{-1}, \Delta \mathrm{~S}_{298}^{ \pm}=-36 \mathrm{cal} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\ & \text { in pyridine } \end{aligned}$	[11, 13]
	HO	1	$\mathrm{k}_{2}=1.3 \times 10^{-5}$	[11]
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}_{2}$	$\mathrm{CF}_{3}$	I	( 75 to 80)	[33]
	$\mathrm{CH}_{3} \mathrm{O}$	I	no yield given	[29]
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$	$\mathrm{CH}_{3}$	1	(81)	[8]

## Table 8

Reaction Type 7 h (explanation see pp. 12/4):
$\mathrm{RC} \equiv \mathrm{CCu}+4-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{R}^{1} \rightarrow 4-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}+\mathrm{CuX}(\mathrm{X}=\mathrm{I}$ or Br ).
a) The reaction is carried out in hexamethylphosphoric triamide at room temperature in the presence of $1 \mathrm{~mol}\left[\mathrm{~N}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{4}\right]$ and $0.01 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PdI}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$.
Rate constant $\mathrm{k}_{2}$ in pyridine at $100^{\circ} \mathrm{C}$ in $\mathrm{M}^{-1} \cdot \mathrm{~s}^{-1} \cdot \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}=$ tetrahydropyran-2-yloxy.

R in $\mathrm{RC} \equiv \mathrm{CCu}$	$R^{1} \quad 4-R^{1} C_{6} H_{4} X$	X	remarks (yield of $4-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}$ in \%)	Ref.
$\mathrm{CH}_{3}$	$\mathrm{NO}_{2}$	1	$(<1)$	[20]
cyclo- $\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathrm{NO}_{2}$	1	(33)	[20]
(Z) $-\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CH}$	$\mathrm{CH}_{3}$	1	(65)	[32]
	Cl	1	(79)	[32]
	$\mathrm{NO}_{2}$	1	(87)	[32]
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	$\mathrm{NO}_{2}$	I	$(1,4)$	[20]
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	OCHNHC( $\left.\mathrm{CH}_{3}\right)_{2}$	1	no yield given	[25]
pyrid-3-yl	$\mathrm{OCHNHC}\left(\mathrm{CH}_{3}\right)_{2}$	1	(86)	[25]
$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CH}$	$\mathrm{CH}_{3}$	I	$(<57)$	[30]
	$\mathrm{CH}_{3} \mathrm{O}$	I	(<55)	[30]
	$\mathrm{NO}_{2}$	1	no reaction after 48 h reflux in pyridine	[30]
$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	HO	1	no yield given	[9]
$4-\mathrm{ClC}_{4} \mathrm{H}_{4}$	HO	1	no yield given	[9]
$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{OCHNHC}\left(\mathrm{CH}_{3}\right)_{2}$	I	no yield given	[25]
$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	$\mathrm{HO}_{2} \mathrm{CCH}_{2}$	1	(38)	[16]
$\mathrm{C}_{6} \mathrm{H}_{5}$	Br	I	(70 to 80)	[14]
	NC-	1	(96)	[36, 37]
	$\mathrm{HO}_{2} \mathrm{C}$	1	(85), $\mathrm{k}_{2}=4.6 \times 10^{-5}$	[3, 11, 14]
	$\mathrm{HO}_{2} \mathrm{C}$	Br	no reaction	[11]
	$\mathrm{CH}_{3} \mathrm{O}$	1	(94) ${ }^{\text {a) }}$, 6 h (83) or 10 h (99) in refluxing pyridine, $\mathrm{k}_{2}=8.5 \times 10^{-6}$	[1, 3, 11, 36]
	$\mathrm{CH}_{3} \mathrm{~S}$	1	(62)	[17]
	$\mathrm{CH}_{3} \mathrm{~S}\left(\mathrm{O}_{2}\right)$	1	(56)	[17]
	$\mathrm{CH}_{3} \mathrm{CO}$	1	(20 to 70), (94) ${ }^{\text {a }}$	[2, 36, 37]
	$\mathrm{CH}_{3} \mathrm{CO}$	Br	(89) ${ }^{\text {a }}$	[36, 37]
	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$	1	(94) ${ }^{\text {a }}$	[36, 37]
Gmelin Handbook Cu-Org. Comp. 3		ere	ces on pp. 95/6	

Table 8 [continued]

R in $\mathrm{RC} \equiv \mathrm{CCu}$	$R^{1} \quad 4-R^{1} C_{6} H_{4} X$	X	remarks   (yield of $4-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}$ in \%)	Ref.
$\mathrm{C}_{6} \mathrm{H}_{5}$   [continued]	$\mathrm{HO}_{2} \mathrm{CCH}_{2}$	1	in dimethylformamide (67) or pyridine (60)	[16]
	$\mathrm{CH}_{3} \mathrm{CONH}$	1	no yield given	[26]
	$\mathrm{C}_{2} \mathrm{H}_{5}$	1	(70 to 80)	[14]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	1	(90)	[17]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	1	(70 to 80)	[14]
	$\mathrm{OCHNHC}\left(\mathrm{CH}_{3}\right)_{2}$	1	(86)	[25]
	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	1	no yield given	[14]
	F	I	(70 to 80)	[14]
	1	I	16 h at $120^{\circ}$ in pyridine (45) or at $125^{\circ}$ in hexamethylphosphoric triamide (73), only $1,4-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ is formed at 8 to 16 h refluxing in dimethylformamide also forms $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}$ I	[2, 5, 22]
	$\mathrm{NH}_{2}$	1	(76), $\mathrm{k}_{2}=1.4 \times 10^{-5}$	[2, 3, 11, 24]
	$\mathrm{NO}_{2}$	I	6 h in boiling pyridine (74) or 20 to 60 min at $20^{\circ}$ in presence of NaI and Pd compounds like $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pdl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}, \\ & {\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PdCl}_{2},} \\ & {\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sb}\right]_{2} \mathrm{PdCl}_{2}, \mathrm{LiPdCl}_{3},} \\ & \left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}, \\ & \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{PdCl}_{2} \end{aligned}$   (98), or less effective $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{NiCl}_{2}\right.$ $\mathrm{k}_{2}=1.4 \times 10^{4} ; \Delta \mathrm{G}_{298}^{=}=26 \mathrm{kcal} \cdot \mathrm{~mol}^{-1},$   $\Delta \mathrm{H}_{298}^{ \pm}=13 \mathrm{kcal} \cdot \mathrm{mol}^{-1}, \Delta \mathrm{~S}_{298}^{ \pm}=$   $-41 \mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ in pyridine	$\begin{aligned} & {[1 \text { to } 3,11 \text {, }} \\ & 36,37] \end{aligned}$
	OH	1	(82), $\mathrm{k}_{2}=2.0 \times 10^{-5}$	[2, 3, 9, 11]
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$	1	no yield given	[28]
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NS}\left(\mathrm{O}_{2}\right)$	1	no yield given	[29]
	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}$		(74)	[29]
	$\mathrm{NO}_{2}$	1	no yield given	[28]
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$	$\mathrm{CH}_{3}$	1	(77)	[8]
4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{OCHNHC}\left(\mathrm{CH}_{3}\right)_{2}$	I	no yield given	[25]

Table 8 [continued]

$R$ in $\mathrm{RC} \equiv \mathrm{CCu}$	$R^{1}$	$4-\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}$	X	remarks   (yield of 4-RC $\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{R}^{1}$ in \%)
4-CH3C. $\mathrm{C}_{4}$	I	I	1,4-bis(4-tolylethynyl)benzene (35)	$[23]$
[continued]	HO	I	no yield given	$[9]$
$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	$\mathrm{OCHNHC}\left(\mathrm{CH}_{3}\right)_{2}$	I	no yield given	$[25]$
	HO	I	no yield given	$[9]$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4}$	$\mathrm{CH}_{3} \mathrm{O}$	I	$(62)$	$[35]$

## References:

[1] C. E. Castro, R. D. Stevens (J. Org. Chem. 28 [1963] 2163).
[2] A. M. Sladkov, L. Y. Ukhin, V. V. Korshak (Izv. Akad. Nauk SSSR Ser. Khim. 1963 2213/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1963 2043/5).
[3] R. D. Stevens, C. E. Castro (J. Org. Chem. 28 [1963] 3313/5).
[4] C. E. Castro, R. D. Stevens (J. Am. Chem. Soc. 86 [1964] 4358/63).
[5] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[6] S. A. Kandil, R. E. Dessy (J. Am. Chem. Soc. 88 [1966] 3027/34).
[7] H. Staab, F. Graf (Tetrahedron Letters 1966 751/7).
[8] M. S. Shvartsberg, A. N. Kozhevnikova, I. L. Kotlyarevskii (Izv. Akad. Nauk SSSR Ser. Khim. 1967 466/7; Bull. Acad. Sci. USSR Div. Chem. Sci. 1967 460/1).
[9] H. Veschambre, G. Dauphin, A. Kergomard (Bull. Soc. Chim. France 1967 2846/54).
[10] C. Bond, M. Hooper (J. Chem. Soc. C 1969 2453/60).
[11] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).
[12] J. M. Appleton, B. D. Andrews, I. D. Rae, B. E. Reichert (Australian J. Chem. 23 [1970] 1667/77).
[13] C. W. Bird, A. F. Harmer (Org. Prep. Proced. 2 [1970] 79/81).
[14] G. Martelli, P. Spagnole, M. Tiecco (J. Chem. Soc. B 1970 1413/8).
[15] H. A. Staab, F. Graf (Chem. Ber. 103 [1970] 1107/17).
[16] M. P. Briede, O. Neilands (U.S.S.R. 424856 [1970/74]; C.A. 81 [1974] No. 37397).
[17] J. J. Eisch, C. K. Hordis (J. Am. Chem. Soc. 93 [1971] 2974/80).
[18] C. C. Leznoff, R. J. Hayward (Can. J. Chem. 49 [1971] 3596/601).
[19] M. S. Shvartsberg, A. A. Moroz (Izv. Akad. Nauk SSSR Ser. Khim. 1971 1582/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1971 1488/90).
[20] C. E. Hudson, N. L. Bauld (J. Am. Chem. Soc. 94 [1972] 1158/63).
[21] M. S. Shvartsberg, A. A. Moroz, I. L. Kotlyarevskii (Izv. Akad. Nauk SSSR Ser. Khim. 1972 981; Bull. Acad. Sci. USSR Div. Chem. Sci. 1972 946).
[22] S. E. Wentworth (AD-757601 [1973] 1/8; C.A. 79 [1973] No. 18285).
[23] S. E. Wentworth, G. D. Mulligan (Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 15 [1974] 697/700).
[24] G. G. I. Moore, J. K. Harrington, K. F. Swingle (J. Med. Chem. 18 [1975] 386/91).
[25] D. C. Remy, W. A. van Saun, E. L. Engelhardt, M. L. Torchiana, C. A. Stone (J. Med. Pharm. Chem. 18 [1975] 142/8).
[26] T. D. Roberts, L. Munchausen, H. Schechter (J. Am. Chem. Soc. 97 [1975] 3112/7).
[27] D. Seyferth, M. O. Nestle, A. T. Wehman (J. Am. Chem. Soc. 97 [1975] 7417/26).
[28] M. A. Harris, I. McMillan, J. H. C. Nayler, N. F. Osborne, M. J. Pearson, R. Southgate (J. Chem. Soc. Perkin Trans. I 1976 1612/5).
[29] E. G. Brain, A. J. Eglington, B. G. James, J. H. C. Nayler, N. F. Osborne, M. J. Pearson, T. C. Smale, R. Southgate, P. Tolliday, M. J. Basker, L. W. Mizen, R. Sutherland (J. Med. Chem. 20 [1977] 1086/90).
[30] J. S. Kiely, P. Boudjouk, L. L. Nelson (J. Org. Chem. 42 [1977] 2626/9).
[31] B. Župančić, B. Jenko, LEK Tovarna Farmacevtskih in Kemičnih Izdelkov (Austrian 351511 [1979] ; Brit. 1591426 [1978]; Yugosl. Appl. 76-2549 [1976] ; Pol. 106809 [1976/78]; C.A. 91 [1979] No. 175017).
[32] G. A. Kraus, K. Frazier (Tetrahedron Letters 1978 3195/8).
[33] M. M. Kwatra, D. Z. Simon, R. L. Salvador, P. D. Cooper (J. Med. Chem. 21 [1978] 253/7).
[34] M. S. Shvartsberg, A. A. Moroz, A. N. Kozhevnikova (Izv. Akad. Nauk SSSR Ser. Khim. 1978 875/9; Bull. Acad. Sci. USSR Div. Chem. Sci. 1978 756/60).
[35] D. Kaufmann, R. Kupper, T. Neal (J. Org. Chem. 44 [1979] 3076/7).
[36] N. A. Bumagin, I. O. Kalinovskii, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1981 2836; Bull. Acad. Sci. USSR Div. Chem. Sci. 1981 2366).
[37] N. A. Bumagin, I. O. Kalinovskii, A. B. Ponomarev, I. P. Beletskaya (Dokl. Akad. Nauk SSSR 265 [1982] 1138/43; Dokl. Chem. Proc. Acad. Sci. USSR 262/267 [1982] 262/6).
[38] N. A. Bumagin, A. B. Ponomarev, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1984 1561/6; Bull. Acad. Sci. USSR Div. Chem. Sci. 1984 1433/8).

### 1.1.2.1.4.7 Reactions with Di- and Polysubstituted Halobenzenes

This reaction is referred to as "Reaction Type 7 i " in Table 1 on pp. 17/41 and reveals no general difference from the reactions of $\mathrm{RC} \equiv \mathrm{CCu}$ and monosubstituted halobenzenes. If the di- or polysubstituted halobenzene contains acceptor groups, the reaction proceeds more easily; in contrast to monosubstituted benzenes, Br and Cl are also typical leaving groups. With 2,4,6-( $\left.\mathrm{O}_{2} \mathrm{~N}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ even H can be substituted by $\mathrm{RC} \equiv \mathrm{C}$; see Section 1.1.2.1.1, under No. 90. However, whereas $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ reacts with $\mathrm{C}_{6} \mathrm{Cl}_{5} \mathrm{I}, \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{I}$, or $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Br}$ to give $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{X}_{5}(\mathrm{X}=\mathrm{Cl}$ or $F)$, it does not react with $\mathrm{C}_{6} \mathrm{Cl}_{6}$ [5].

Table 9
Reaction Type 7 i (explanation see pp. 12/4):
$\mathrm{RC} \equiv \mathrm{CCu}$


Gmelin Handbook Cu-Org. Comp. 3
a) The product is obtained as a mixture with the corresponding biphenyl. $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}=$ tetrahydropyran-2-yloxy.

Table 9 [continued]

$[10,12]$
$[1]$
$[19,20]$
$[1]$
$[8]$
$[13]$
$[13]$
$[13]$
$[13]$
$[13]$
$[13]$
$[13]$
$[13]$
$[4]$
$[14]$
$[18]$
$1,2-\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{~F}_{4}(25)+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{4} \mathrm{H}-2\right.$
$(40)+\left(2-\mathrm{HC}_{6} \mathrm{~F}_{4}\right)_{2}(2)$
－－$\overline{\text { м }}$

แ エ I
－ $\mathrm{T}^{\infty}$
レ ${ }^{\text {T゙ }} ェ$
in hexamethylphosphoric triamide at $25^{\circ}$ in
presence of $1 \mathrm{~mol}\left[\mathrm{~N}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{4}\right] \mathrm{I}$ and presence of $1 \mathrm{~mol}\left[\mathrm{~N}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{4}\right] \mathrm{l}$ and
$0.01 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PdII}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}(84)$
in dimethylformamide at $100^{\circ}(34)$
no yield given
a）

Ј＿
－
＿＿＿＿＿－亠幺＿
a），together with much ${ }_{1,4-\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{~F}_{4}}$
후 우
 ゅ̀－＿＿－

レ エ
ェ 0 4

ェ エ゙ェ
$\div エ 0^{N}$

$\perp$ レ 4
エ エ


ப エエエエ
－ $\mathrm{T}^{N} \mathrm{O}^{N} \mathrm{O}^{\mathrm{N}} \mathrm{U}^{\text {N }}$


4－ $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$



## References:

[1] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[2] R. Filler, E W. Heffern (J. Org. Chem. 32 [1967] 3249/51).
[3] E. R. H. Jones, S. Safe, V. Thaller (J. Chem. Soc. C 1967 1038/44).
[4] C. Bond, M. Hooper (J. Chem. Soc. C 1969 2453/60).
[5] M. D. Rausch, A. Siegel, L. P. Klemann (J. Org. Chem. 34 [1969] 468/70).
[6] G. Martelli, P. Spagnole, M. Tiecco (J. Chem. Soc. B 1970 1413/8).
[7] H. E. Zimmerman, J. R. Dodd (J. Am. Chem. Soc. 92 [1970] 6507/14).
[8] A. Banihashemi, C. S. Marvel (J. Polym. Sci. Polym. Chem. Ed. 15 [1977] 2653/65).
[9] F. Bohlmann, U. Bühmann (Chem. Ber. 105 [1972] 863/73).
[10] J. Burdon, P. L. Coe, C. R. Marsh, J. C. Tatlow (J. Chem. Soc. Perkin Trans. I 1972 763/9).
[11] J. I. DeGraw, V. H. Brown, W. T. Colwell, N. E. Morrison (J. Med. Chem. 17 [1974] 762/4).
[12] R. S. Dickson, L. J. Michel (Australian J. Chem. 28 [1975] 1943/55).
[13] I. Barrow, A. E. Pedler (Tetrahedron 32 [1976] 1829/34).
[14] S. Staicu, I. G. Dinulescu, F. Chiraleu, M. Avram (J. Organometal. Chem. 117 [1976] 385/94).
[15] G. A. Kraus, K. Frazier (Tetrahedron Letters 1978 3195/8).
[16] F. G. Schreiber, R. Stevenson (Org. Prep. Proced. Intern. 10 [1978] 137/42).
[17] R. C. Ronald, J. M. Lansinger (J. Chem. Soc. Chem. Commun. 1979 124/5).
[18] R. T. Scannel, R. Stevenson (J. Heterocycl. Chem. 17 [1980] 1727/8).
[19] N. A. Bumagin, I. O. Kalinovskii, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1981 2836 ; Bull. Acad. Sci. USSR Div. Chem. Sci. 1981 2366).
[20] N. A. Bumagin, I. O. Kalinovskii, A. B. Ponomarev, I. P. Beletskaya (Dokl. Akad. Nauk SSSR 265 [1982] 1138/43; Dokl. Chem. Proc. Acad. Sci. USSR 262/267 [1982] 262/6).

### 1.1.2.1.4.8 Reactions with Compounds Containing More than One lodobenzene Moiety

This reaction is referred to as "Reaction Type 7 j " in Table 1 on pp. 17/41. The group RC $\equiv$ C can be easily introduced not only into more simple benzene derivatives, but also into complex carbocyclic systems. The products are valuable intermediates in organic chemistry. This method has been applied especially to $2,2^{\prime}$ - and $4,4^{\prime}$-diiodo biphenyls, diphenylmethanes, and stilbenes. In most cases all iodine atoms are substituted by $R \mathrm{C} \equiv \mathrm{C}$. Only the reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $2,2^{\prime}$-diodobiphenyl in boiling pyridine yields 2-phenyl-
ethynyl-2'-iodobiphenyl [1]. The only $3,3^{\prime}$-substituted compound reacted is $3,3^{\prime}$-diiodobenzophenone, which gives $86 \% 3,3^{\prime}$-bis(phenylethynyl)benzophenone with excess $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ [8]. The compounds I and III ( $n$ not given) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ react in boiling pyridine (reaction time up to 72 h ) to form the corresponding $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$ substituted products II or IV, respectively, in yields between 95 and 100\% [10].



Reactions of the Type

(belongs to Reaction Type 7 j , see explanation on pp. 12/4; $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}=$ tetrahydropyran-2yloxy) :

R	Z	R ${ }^{1}$	$\mathrm{R}^{2}$	$\mathrm{R}^{3}$	remarks (yield in \%)	Ref.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}$	-	H	H	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$	(5) and $16 \% \mathrm{~V}$	[4]
$\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$	H	H	(58)	[10]
	-	$\mathrm{NH}_{2}$	$\mathrm{NO}_{2}$	H	(57)	[9]
	-	COCl	H	H	see Section 1.1.2.1.5	[12]
	$\mathrm{C} \equiv \mathrm{C}$	H	H	H	(61)	[5]
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}_{2}$	$\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}$   (E)-compound	H	H	H	isolated as VI (57)	[11]
$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}=\mathrm{CH}$   (E)-compound	H	H	H	no yield given	[3]



V


VI

Reactions of the type $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}+4-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{ZC}_{6} \mathrm{H}_{4} \mathrm{I}-4^{\prime} \rightarrow 4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{ZC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}-4^{\prime}$ (belongs to Reaction Type 7 j , see explanation on pp. 12/4):

Z	remarks (yield in \%)	Ref.
-	$(96)$	$[8]$
CO	$(81)$	$[8]$
$\mathrm{CH}_{2}$	$(71)$	$[6]$
$\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$	$(54)$	$[7]$
$1,4-\mathrm{C}_{6} \mathrm{H}_{4}$	$(72)$	$[8]$
$\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{l} 4\right)$	mixture of $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} l-4^{\prime}\right)_{2}$,	$[2]$
	$\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CHC}_{6} \mathrm{H}_{4} 1-4^{\prime}$, and $\left(4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{CH}(41)$	

## References:

[1] S. A. Kandil, R. E. Dessy (J. Am. Chem. Soc. 88 [1966] 3027/34).
[2] N. I. Popova, G. I. Skubnevskaya, Yu. N. Molin, I. L. Kotlyarevskii (Izv. Akad. Nauk SSSR Ser. Khim. 1969 2424/30; Bull. Acad. Sci. USSR Div. Chem. Sci. 1969 2271/5).
[3] H. A. Staab, R. Bader (Chem. Ber. 103 [1970] 1157/67).
[4] M. S. Newman, M. W. Logue (J. Org. Chem. 36 [1971] 1398/401).
[5] B. J. Whitlock, H. W. Whitlock (J. Org. Chem. 37 [1972] 3559/61).
[6] N. I. Myakina, I. L. Kotlyarevskii (Izv. Akad. Nauk SSSR Ser. Khim. 1973 1368/70; Bull. Acad. Sci. USSR Div. Chem. Sci. 1973 1405/7).
[7] V. V. Korshak, E. S. Krongauz, A. M. Berlin, B. R. Livshits, T. Kh. Dymshits, Institute of Heteroorganic Compounds, Academy of Sciences, USSR/State Scientific Research Institute of the Paint and Varnish Industry (U.S.S.R. 457689 [1973/75]; C.A. 82 [1975] No. 139702).
[8] A. M. Berlin, N. M. Kofman, E. S. Krongauz, A. N. Novikov, I. R. Gol'ding (Izv. Akad. Nauk SSSR Ser. Khim. 1975 441/2; Bull. Acad. Sci. USSR Div. Chem. Sci. 1975 369/70).
[9] F. L. Hedberg, F. E. Arnold (J. Polym. Sci. Polym. Chem. Ed. 14 [1976] 2607/19).
[10] A. Banihashemi, C. S. Marvel (J. Polym. Sci. Polym. Chem. Ed. 15 [1977] 2653/65).
[11] H. A. Staab, P. Günthert (Chem. Ber. 110 [1977] 619/30).
[12] S. Venkateso, U.S. Dept. of the Air Force (U.S. Appl. 219396 [1981]; C.A. 96 [1982] No. 7629).

### 1.1.2.1.4.9 Reactions with lodonaphthalenes

This reaction is referred to as "Reaction Type 7 k " in Table 1 on pp. 17/41.
Monoiodonaphthalenes. $\mathrm{RC} \equiv \mathrm{CCu}$ and 1-iodonaphthalene in refluxing pyridine give $1-\mathrm{RC} \equiv$ $\mathrm{CC}_{10} \mathrm{H}_{7}$ in good yields (yields in parentheses): $R=$ tetrahydropyran-2-yloxy [6], $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CH}$ [6], $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(88 \%)$ [7], $\mathrm{C}_{6} \mathrm{H}_{5}$ (65 to 75\%) [1, 12], tetrahydropyran-2-yloxymethyl [3], $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4}$ ( $83 \%$ ) [9, 14].

Bromine in this position seems to be unreactive. $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CHC} \equiv \mathrm{CCu}$ and 1-bromonaphthalene give after 12 h in refluxing tetrahydrofuran no substitution product, with 1-iodo-8bromonaphthalene 98\% 1-(3,3-diethoxyprop-1-ynyl)-8-bromonaphthalene are formed [13]. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and 1-iodo-8-bromonaphthalene in boiling pyridine gives only 1-phenylethynyl-8-bromonaphthalene in a $75 \%$ yield [1].

The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and 1-iodo-8-nitronaphthalene affords a $17 \%$ yield of 1-phenylethynyl-8-nitronaphthalene [8, 11], whereas 1-iodonaphth-2-ole in dimethylformamide at $152^{\circ} \mathrm{C}$ is dehalogenated to naphth-2-ole [2].

Diiodonaphthatenes. $\mathrm{RC} \equiv \mathrm{CCu}$ and 1,5-diiodonaphthalenes react in boiling pyridine to form $1,5-(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{C}_{10} \mathrm{H}_{6}$, where $\mathrm{R}=\mathrm{CH}_{3}$ (yield $36 \%$ ) [8] or $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$ (yield 10\%) [4, 8].

In contrast to this simple course, the reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and 1,8 -diiodonaphthalenes usually gives mixtures of mono- and disubstitution products I and II. If $R=$ aryl, 7 -arylbenzo[k]fluoranthenes III can also be formed, probably by thermal rearrangement of the disubstitution product IV. This reaction can be understood as an intramolecular [ $2+2+2$ ]-cycloaddition. The yield of III increases with increasing reaction time and is sensitive to electronic and steric effects. With $\mathrm{R}^{2}=\mathrm{CH}_{3} \mathrm{O}$ as a donor the yield is considerably enhanced. It is reduced, however, if $\mathrm{R}^{1}, \mathrm{R}^{2}$, and/or $\mathrm{R}^{3}$ indicate $\mathrm{CH}_{3}$ instead of H . Surprisingly, III also forms from $2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C} \equiv \mathrm{CCu}$. No information is given about the fate of the lost $\mathrm{CH}_{3}$ group [5, 12].


1


III


II


IV

Table 10
Reactions of $R C \equiv C C u$ and 1,8-Diiodonaphthalene (belongs to Reaction Type 7 k , see explanation on pp. 12/4).
For abbreviations and dimensions, see $p$. $X$.

R	products (see above, yields in \%)			molar ratio acetylide: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{I}_{2}$, conditions, remarks	Ref.
$\mathrm{CH}_{3}$	-	62	-	-	[8]
$\mathrm{C}_{2} \mathrm{H}_{5}$	24	13	-	2:1, pyridine, $80 \% / 12 \mathrm{~h}$	[8]
	12	63	-	6:1, pyridine, 70 to $80 \% 72 \mathrm{~h}$	[8]
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	formed	-	-	2:1, pyridine, $25^{\circ}$	[8]
	formed	39	-	5:2, pyridine, $80 \% / 24 \mathrm{~h}$	[8]
$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CH}$	91	-	-	-	[13]
Gmelin Handbook Cu-Org. Comp. 3	References on pp. 104/5				

Table 10 [continued]

R	products (see p. 103, yield in \%)			molar ratio acetylide: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{I}_{2}$, conditions, remarks	Ref.
	1	II	III		
$\mathrm{C}_{6} \mathrm{H}_{5}$	-	formed	-	-	[4]
	-	72	-	pyridine, $20^{\circ} / 72 \mathrm{~h}$	[8]
	-	57	18	pyridine, reflux/5 h	[5, 12]
	-	40	35	pyridine, reflux/10 h	$[5,12]$
	-	16	59	pyridine, reflux/25 h	$[5,12]$
$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	-	48	23	pyridine, reflux/10 h	[5, 12]
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	-	41	17	pyridine, reflux/10 h	[5, 12]
4- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	-	-	65	pyridine, reflux/10 h	[5, 12]
2,4-( $\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	-	51	21	pyridine, reflux/10 h	[5, 12]
2,4,6-( $\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	-	80	5	loses one $\mathrm{CH}_{3}$ group upon rearrangement	[5, 12]

naphth-1-yl $\quad-\quad-\quad$ formed the product is
[5]




26

- $\quad$ pyridine, $90^{\circ} / 2 \mathrm{~h}$


## References:

[1] R. E. Dessy, S. A. Kandil (J. Org. Chem. 30 [1965] 3857/60).
[2] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[3] R. E. Atkinson, R. F. Curtis, D. M. Jones, J. A. Taylor (J. Chem. Soc. Chem. Commun. 1967 718/9).
[4] B. Bossenbroek, H. Shechter (J. Am. Chem. Soc. 89 [1967] 7111/2).
[5] J. Ipaktschi, H. A. Staab (Tetrahedron Letters 1967 4403/8).
[6] R. E. Atkinson, R. F. Curtis, D. M. Jones, J. A. Taylor (J. Chem. Soc. 1969 2173/6).
[7] C. Bond, M. Hooper (J. Chem. Soc. C 1969 2453/60).
[8] B. Bossenbroek, D. C. Sanders, H. M. Curry, H. Shechter (J. Am. Chem. Soc. 91 [1969] 371/9).
[9] M. D. Rausch, A. Siegel (J. Org. Chem. 34 [1969] 1974/6).
[10] R. H. Mitchell, F. Sondheimer (Tetrahedron 26 [1970] 2141/50).
[11] C. C. Leznoff, R. J. Hayward (Can. J. Chem. 49 [1971] 3596/601).
[12] H. A. Staab, J. Ipaktschi (Chem. Ber. 104 [1971] 1170/81).
[13] J. S. Kiely, P. Boudjouk, L. L. Nelson (J. Org. Chem. 42 [1977] 2626/9).
[14] D. W. Slocum, M. D. Rausch, A. Siegel (Organometal. Polym. Symp., New Orleans 1977 [1978], pp. 39/51, 49).

### 1.1.2.1.4.10 Reactions with Other Carbocycles $R^{\prime} X$

This reaction is referred to as "Reaction Type 7 l " in Table 1 on pp. 17/41.
Azulenes. The reaction of 1,3 -diodoazulene (la) with a tenfold excess of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in boiling dimethylformamide produces $15 \% \mathrm{Ib}$ and $81 \% \mathrm{Ic}$ [7]. The reaction of the dirhodanoazulene Id and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ affords upon cleavage of the $\mathrm{S}-\mathrm{C}$ bond $2.5 \%$ Ie ( 3 min in boiling dimethylacetamide). Under the same conditions the monorhodanoazulene If with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ gives Ig [8].


1

	$R^{1}$	$R^{2}$	$R^{3}$
Ia	I	$I$	H
Ib	I	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$	H
Ic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$	H
Id	$\mathrm{NCS}-$	$\mathrm{NCS}^{2}$	$\mathrm{CH}_{3}$
Ie	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CS}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CS}$	$\mathrm{CH}_{3}$
If	$\mathrm{NCS}^{2}$	H	$\mathrm{CH}_{3}$
Ig	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CS}$	H	$\mathrm{CH}_{3}$

Phenanthrenes. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and II $(\mathrm{R}=\mathrm{I})(30 \mathrm{~h}$ in boiling pyridine or 14 h in boiling dimethylformamide) gives $65 \%$ [5] II $\left(R=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)$ [5, 6].


II


III

Fluorenes. The reactions of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ with III $\left(X=\mathrm{H}_{2}\right.$ or $\left.\mathrm{O}, \mathrm{R}=\mathrm{I}\right)$ give $39 \%$ III $\left(X=\mathrm{H}_{2}\right.$, $R=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$ ) [5] or $93 \%$ III ( $\mathrm{X}=\mathrm{O}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$ ) [5, 6].

Ferrocenes and Ruthenocenes. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and bromoferrocene react in dimethylformamide to form $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ in a $48 \%$ yield [1]. The analogous reaction with iodoferrocene in pyridine yields $84 \%$ of the same product [2,3]. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ and iodoferrocene react to form $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{FeC}_{5} \mathrm{H}_{5}$ (yield $84 \%$ ) [2, 10]. The reaction of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{RuC}_{5} \mathrm{H}_{4} \mathrm{C} \equiv$ CCu and iodoferrocene gives $60 \% \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{RuC}_{5} \mathrm{H}_{4} \mathrm{C}_{\mathrm{C}} \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{FeC}_{5} \mathrm{H}_{5}$ [4].
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{I}\right)_{2}$ react in boiling pyridine to form $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2}$; the yield is $40 \%$ after 30 min [3] and $57 \%$ after 8 h [2]. The formation of $46 \% \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2}$ from $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{I}\right)_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$, Cul, and $\mathrm{Pd}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2} \mathrm{Cl}_{2}$ in $\mathrm{HN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ at $80^{\circ} \mathrm{C} / 6 \mathrm{~h}$ can be explained as a reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ formed in situ [9]. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{I}\right)_{2}$ react to form $55 \% \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{FeC}_{5} \mathrm{H}_{5}\right)_{2}$ [3].

## References:

[1] A. N. Nesmeyanov, V. A. Sazonova, V. N. Drozd (Dokl. Akad. Nauk SSSR 154 [1964] 158/9; Dokl. Chem. Proc. Acad.Sci. USSR 154/159 [1964] 30/2).
[2] M. D. Rausch, A. Siegel, L. P. Klemann (J. Org. Chem. 31 [1966] 2703/4).
[3] M. Rosenblum, N. Brawn, J. Papenmeier, M. Applebaum (J. Organometal. Chem. 6 [1966] 173/80).
[4] M. D. Rausch, A. Siegel (J. Org. Chem. 34 [1969] 1974/6).
[5] A. M. Berlin, N. M. Kofman, E. S. Krongauz, A. N. Novikov, I. R. Gol'ding (Izv. Akad. Nauk SSSR Ser. Khim. 1975 441/2; Bull. Acad. Sci. USSR Div. Chem. Sci. 1975 369/70).
[6] V. V. Korshak, E. S. Krongauz, A. M. Berlin, N. M. Kofman, A. P. Travnikova (Khim. Dikarbonil'nykh Soedin. Tezisy Dokl. 4th Vses. Konf., Riga 1975 [1976], pp. 76/7; C.A. 87 [1977] No. 39874).
[7] V. A. Nefedov, I. K. Tarygina (Zh. Org. Khim. 12 [1976] 1763/9; J. Org. Chem. [USSR] 12 [1976] 1730/5).
[8] Yu. N. Porshnev, T. N. Dvornikova, V. B. Mochalin (Zh. Org. Khim. 12 [1976] 2019/21; J. Org. Chem. [USSR] 12 [1976] 1966/7).
[9] A. Kasahara, T. Izumi, M. Maemura (Bull. Chem. Soc. Japan 50 [1977] 1021/2).
[10] D. W. Slocum, M. D. Rausch, A. Siegel (Organometal. Polym. Symp., New Orleans 1977 [1978], pp. 39/51, 49).

### 1.1.2.1.4.11 Reactions with 5-Membered Heterocycles $R^{\prime} X$

This reaction is referred to as "Reaction Type 7 m " in Table 1 on pp. 17/41.
Ribofuranosides. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and I ( 5 d in benzene at room temperature) gives $8 \%$ of the ribofuranoside II and $32 \%$ of the ribofuranose III [26, 29, 32]. Unexpectedly, I attacks $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ (or $\mathrm{CuOCH}_{2} \mathrm{C} \equiv \mathrm{CH}$, bonding unclear) at the oxygen. After 2 d in benzene at room temperature $21 \%$ of the ribofuranoside IV and $5 \%$ of the ribose V are formed [29, 32].

Furans and Thiophenes. The introduction of the group $R C \equiv C$ into a thiophene ring has been widely used because of the importance of alkynylthiophenes as natural products and as precursors in synthesis. Certain (polyalkynyl)thiophenes are also used to prepare bior polythiophenes, which are plant metabolites, too. The synthesis using $\mathrm{RC} \equiv \mathrm{CCu}$ is generally applicable to 2 -iodofurans and 2-iodothiophenes (Tables 11 and 12).

This reaction is sometimes catalyzed by Cu powder (mechanism unknown). In many cases the iodine in 2-position is partly substituted by $H$ and a mixture of $R C=C R^{\prime}$ and $R^{\prime} H$ is formed. The product pattern of the reaction of $R C \equiv C C u$ with diiodothiophenes depends on the molar ratio of the reactants [ $3,9,10,13,16,20,21,27$ ]. In the synthesis of monosubstituted species sometimes an excess of the diiodothiophene is used [3, 9]. In the presence



1


III


$+\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$
$\longrightarrow+$
IV

V
of Pd compounds in dimethylformamide the reaction seems to proceed almost quantitatively even under very mild conditions, but until now only one example of this reaction has been published [35]. Usually the reaction is run in boiling pyridine (4 to 8 h ); slowly heating to the reflux temperature enhances the yield [13, 16]. This reaction can be strongly catalyzed by Pd compounds [35] and an analogous reaction using $\mathrm{RC} \equiv \mathrm{CH}, \mathrm{R}^{\prime} \mathrm{X}$, and catalytic amounts of both the Pd catalyst and Cul is also known [36].

3-lodothiophene and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ react to form the expected 3-phenylethynylthiophene [22]. The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and 3-iodo-4-carboxythiophenes yields only thieno[3,4-c]-pyran-4-ones after ring closure; see Section 1.1.2.1.5.3 [19]. The attempts to react RCCCu and 2-bromothiophenes were not successful (e.g., $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}$ with 5 -bromothiophene-2carboxaldehyde) or gave low yields (e.g., $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ with 2-bromothiophene, $14 \%$ yield in boiling pyridine) [9].

## Table 11

Reactions of $\mathrm{RC} \equiv \mathrm{CCu}$ with 2-lodofurans according to

(belongs to Reaction Type 7 m , explanation see pp. 12/4).
$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}=$ fur- $2-\mathrm{yl}$.

R	$\mathrm{R}^{1}$	remarks, products, yields	Ref.
$\mathrm{CH}_{3}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}$	60\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$	[1, 9]
$\mathrm{HOCH}_{2}$	H	$67 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$	[1, 9]
	$\mathrm{CH}_{3}$	65\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$	[1, 9]
	(E) $-\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CCH}=\mathrm{CH}$	$60 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$ in presence of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$	[17]
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	CHO	$74 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$, catalyzed by Cu powder	[14]
$\mathrm{C}_{6} \mathrm{H}_{5}$	H	82\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$	[23]
	CHO	65\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$, catalyzed by Cu powder	[7, 14, 18]
	$\mathrm{CH}_{3} \mathrm{CO}$	$72 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$, catalyzed by Cu powder	[7, 14, 18]
	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CCH}=\mathrm{CH}$	after saponification 64\%	[14]
	$\mathrm{NO}_{2}$	48\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$, catalyzed by Cu powder	[14]
	$\mathrm{CHO}$	$70 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$, catalyzed by Cu powder	[18]
$\mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CO}$	70\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$, catalyzed by Cu powder	[18]
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	H	$58 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$	[1, 9]
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$	CHO	69\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$, catalyzed by Cu powder	[14]
	$\mathrm{CH}_{3} \mathrm{CO}$	$71 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{OR}^{1}$, catalyzed by Cu powder	[14]

Table 12
Reactions of RC=CCu with 2-lodothiophenes according to

(belongs to Reaction Type 7 m , explanation see pp. 12/4).
$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}=$ thien-2-yl, $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}$ = tetrahydrodropyran-2-yloxy.

R	R ${ }^{1}$	remarks, products, yields	Ref.
$\mathrm{CH}_{3}$	CHO	$61 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[1, 9]
	(E) $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[21]
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[21]
	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[11]
	$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CH}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[21]
	(E) $-\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CHC} \equiv \mathrm{C}$		[3]
		$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	
	$\mathrm{C}_{6} \mathrm{H}_{5}$	$51 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[1]
	$5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{CHC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{~S}$		[28]
		$\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$ the only product	
	1	$\begin{aligned} & 18 \% \mathrm{RC}_{\mathrm{Cl}} \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1} \text { after } 6 \mathrm{~h} \text { in } \\ & \text { pyridine at } 120^{\circ}[13] \\ & 20 \text { to } 60 \% \mathrm{RC}_{\mathrm{Cl}} \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1} \text { after } 4 \mathrm{~h} \\ & \text { reflux in pyridine }[16] \end{aligned}$	[13, 16, 21]
		"heated" in pyridine for 7.5 h gives $13 \% R^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$,   5,5'-diiodo-2,2'-bithienyl and $\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$ [21]   (in all cases with a molar ratio $R C \equiv C C u:$ thiophene $=1: 1$ )	
$\mathrm{HOCH}_{2}$	H	$\begin{aligned} & 67 \text { to } 79 \% \mathrm{RC}_{\mathrm{E}} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+ \\ & \mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S} \end{aligned}$	[1, 9]
	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[11]
$\mathrm{CH}_{2}=\mathrm{CH}$	H	$48 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$ $32 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$ with acetylide prepared in situ from $\mathrm{CH}_{2}=\mathrm{CHC} \equiv$ CMgBr and CuCl	$[1,6]$
	$\mathrm{CH}_{3}$	$53 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[1]
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}$	$43 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[1]
	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	$32 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$ with acetylide prepared in situ from $\mathrm{CH}_{2}=\mathrm{CHC} \equiv$ CMgBr and CuCl	[2, 6, 11]
Gmelin Handbook Cu-Org. Comp. 3	Refe	en on pp. 113/4	

Table 12 [continued]

R	$\mathrm{R}^{1}$	remarks, products, yields	Ref.
$\mathrm{CH}_{2}=\mathrm{CH}$   [continued]	$\mathrm{CH}_{3}(\mathrm{C} \equiv \mathrm{C})_{2}$	$<24 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$, excess $\mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{CCu}$ necessary	[16]
	(E) $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHC} \equiv \mathrm{C}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[3]
	$5-\mathrm{CH}_{3} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~S}$	$R C \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[11]
	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{CHC} \equiv \mathrm{C}$	  after saponification, excess $\mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{CCu}$ necessary	[16]
	5- $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{~S}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[11]
	1	$29 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$   $120 \%$ h in pyridine, molar ratio $1: 1$, the acetylide is not totally converted	[13]
$\mathrm{CH}_{3} \mathrm{CO}$	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[11]
$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$	$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}$	$35 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[13]
$\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})$	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	the active Cl causes side reactions, no product identified	[4]
$\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2}$	H	$51 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}+\mathrm{R}^{1} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[1]
	1	$<15 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}, 4 \mathrm{~h}$ reflux in pyridine, molar ratio $=1: 1$	[16]
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}$	$5-\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{~S}<15 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$		[16]
	$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}\right) \mathrm{C} \equiv \mathrm{C}$		[16]
	1	$<24 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$, 4 h reflux in pyridine, molar ratio $=1: 1$	[16]
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$	$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$	(E)/(Z)-mixture of	[16]
		  after saponification	
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}$	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[20]
$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{CH}$	$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}$	68\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[25]
	1	$72 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$, 7 h reflux in pyridine, molar ratio $\mathrm{RC} \equiv \mathrm{CCu}$ : thiophene $=2: 1$	[27]
	References on pp. 113/4		$\begin{aligned} & \text { Gmelin } \\ & \text { Cu-Org } \end{aligned}$

Table 12 [continued]


Table 12 [continued]

R	$\mathrm{R}^{1}$	remarks, products, yields	Ref.
$4-\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{~S}$	$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}$	46\% RC $\equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[25]
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}_{2}$	H	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[9, 10]
	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	$\mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[10]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	$60 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[15]
	1	20 to $60 \% \mathrm{RC}_{\mathrm{C}} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}, 4 \mathrm{~h}$ reflux in pyridine, molar ratio $=$ 1:1	[10, 16]
(E) $-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{CH}$	H	17\%	[5, 30]
		after saponification; $58 \%$ of the corresponding aldehyde after saponification and $\mathrm{MnO}_{2}$ oxidation	
	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2}$	$54 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[24]
	$\mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{C}$	$57 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[13]
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right.$	$\left.\mathrm{H}_{3}\right) \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	$54 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[12]
	1	$<33 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}, 4 \mathrm{~h}$ reflux in pyridine	[16]
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4}$	H	$80 \% \mathrm{RC} \equiv \mathrm{CC}_{4} \mathrm{H}_{2} \mathrm{SR}^{1}$	[8, 31]

Pyrazoles. The halogen of 4-iodopyrazoles $R^{\prime} I$ can be substituted by $R C \equiv C$, using $R C \equiv C C u$ as a reagent; see Table 13. For reactions involving a ring closure, see Reaction Type 8, Section 1.1.2.1.5.3.

Table 13
Reactions of the Type RC三CCu +

(belongs to Reaction Type 7 m , explanation see pp. 12/4).

$R$	$R^{1}$	$R^{2}$	yield	Ref.
$\mathrm{CH}_{3} \mathrm{OCH}_{2}$	$\mathrm{CH}_{3}$	$\mathrm{HO}_{2} \mathrm{C}$	$59 \%$	[33]
	$\mathrm{HO}_{2} \mathrm{C}$	H	$60 \%$	[33]
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{3}$	$\mathrm{HO}_{2} \mathrm{C}$	$53 \%$	$[33]$
	$\mathrm{HO}_{2} \mathrm{C}$	H	$62 \%$	
				Gmelin Handbook   Cu-Org. Comp. 3

Table 13 [continued]

R	$\mathrm{R}^{1}$	$\mathrm{R}^{2}$	yield	Ref.
$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CH}_{3}$	$\mathrm{HO}_{2} \mathrm{C}$	62\%	[33]
	$\mathrm{HO}_{2} \mathrm{C}$	H	58\%	[33]
	H	$\mathrm{CH}_{3}$	80\%   $84 \%$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in situ prepared from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$, Cul, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ and catalyzed by $\mathrm{Pd}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2} \mathrm{Cl}_{2}$	[34]

Thiazoles. The reaction of 2-iodothiazole and $\mathrm{C}_{6} \mathrm{H}_{5} \equiv \mathrm{CCu}$ affords a $58 \%$ yield of 2-phenylethynylthiazole [23].

## References:

[1] R. Atkinson, R. F. Curtis, G. T. Phillips (Chem. Ind. [London] 1964 2101/2).
[2] R. E. Atkinson, R. F. Curtis, G. T. Phillips (Tetrahedron Letters 1964 3159/62).
[3] R. E. Atkinson, R. F. Curtis (Tetrahedron Letters 1965 297/300).
[4] R. E. Atkinson, R. F. Curtis, G. T. Phillips (J. Chem. Soc. C 1966 1101/3).
[5] F. Bohlmann, K.-M. Kleine, C. Arndt (Chem. Ber. 99 [1966] 1642/7).
[6] D. Brown, J. Cymerman-Craig, N. H. Dyson, J. W. Westley (J. Chem. Soc. C 1966 89/91).
[7] R. I. Katkevich, S. P. Korshunov, L. I. Vereshchagin (Zh. Vses. Khim. Obshchestva 11 [1966] 705/6; C.A. 66 [1967] No. 55300).
[8] M. D. Rausch, A. Siegel, L. P. Klemann (J. Org. Chem. 31 [1966] 2703/4).
[9] R. E. Atkinson, R. F. Curtis, J. A. Taylor (J. Chem. Soc. C 1967 578/82).
[10] R. E. Atkinson, R. F. Curtis, D. M. Jones, J. A. Taylor (J. Chem. Soc. Chem. Commun. 1967 718/9).
[11] R. E. Atkinson, R. F. Curtis, G. T. Phillips (J. Chem. Soc. C 1967 2011/5).
[12] F. Bohlmann, C. Zdero, W. Gordon (Chem. Ber. 100 [1967] 1193/9).
[13] F. Bohlmann, P.-H. Bonnet, H. Hofmeister (Chem. Ber. 100 [1967] 1200/5).
[14] S. P. Korshunov, R. I. Katkevich, L. I. Vereshchagin (Zh. Org. Khim. 3 [1967] 1327/31; J. Org. Chem. [USSR] 3 [1967] 1288/91).
[15] F. Bohlmann, C. Zdero (Chem. Ber. 101 [1968] 3243/54).
[16] F. Bohlmann, P. Blaszkiewicz, E. Bresinsky (Chem. Ber. 101 [1968] 4163/9).
[17] C. H. Fawcett, D. M. Spencer, R. L. Wain, A. G. Fallis, E. R. H. Jones, M. Le Quan, C. B. Page, V. Thaller, D. C. Shubrook, P. M. Whitham (J. Chem. Soc. C 1968 2455/62).
[18] S. P. Korshunov, R. I. Katkevich, O. T. Shashlova, L. I. Vereshchagin (Zh. Org. Khim. 4 [1968] 676/80; J. Org. Chem. [USSR] 4 [1968] 659/62).
[19] S. A. Mladenović, C. E. Castro (J. Heterocycl. Chem. 5 [1968] 227/30).
[20] R. E. Atkinson, R. F. Curtis, D. M. Jones, J. A. Taylor (J. Chem. Soc. C 1969 2173/6).
[21] R. F. Curtis, J. A. Taylor (J. Chem. Soc. C 1969 1813/8).
[22] G. Martelli, P. Spagnole, M. Tiecco (J. Chem. Soc. B 1970 1413/8).
[23] T. Teitei, P. J. Collin, W. H. F. Sasse (Australian J. Chem. 25 [1972] 171/82).
[24] F. Bohlmann, P.-D. Hopf (Chem. Ber. 106 [1973] 3621/5).
[25] F. Bohlmann, W. Skuballa (Chem. Ber. 106 [1973] 497/504).
[26] K. Arakawa, T. Miyasaka, N. Hamamichi (Chem. Letters 1974 1305/8; C.A. 82 [1975] No. 73382).
[27] F. Bohlmann, J. Kocur (Chem. Ber. 107 [1974] 2115/9).
[28] F. Bohlmann, J. Kocur (Chem. Ber. 108 [1975] 2149/52).
[29] K. Arakawa, T. Miyasaka, N. Hamamichi (Nucl. Acids Spec. Publ. No. 2 [1976] 1/4; C.A. 86 [1977] No. 140379).
[30] F. Bohlmann, C. Hühn (Chem. Ber. 110 [1977] 1183/5).
[31] D. W. Slocum, M. D. Rausch, A. Siegel (Organometal. Polym. Symp., New Orleans 1977 [1978], pp. 39/51, 49).
[32] N. Hamamichi, T. Miyasaka, K. Arakawa (Chem. Pharm. Bull. [Tokyo] 26 [1978] 898/907).
[33] S. F. Vasilevskii, E. M. Rubinshtein, M. S. Shvartsberg (Izv. Akad. Nauk SSSR Ser. Khim. 1978 1175/7; Bull. Acad. Sci. USSR Div. Chem. Sci. 1978 1021/3).
[34] A. N. Sinyakov, M. S. Shvartsberg (Izv. Akad. Nauk SSSR Ser. Khim. 1979 1126/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1979 1053/4).
[35] N. A. Bumagin, I. O. Kalinovskii, A. B. Ponomarov, I. P. Beletskaya (Dokl. Akad. Nauk SSSR 265 [1982] 1138/43; Dokl. Chem. Proc. Acad. Sci. USSR 262/267 [1982] 262/6).
[36] N. A. Bumagin, A. B. Ponomarev, I. B. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1984 1561/6; Bull. Acad. Sci. USSR Div. Chem. Sci. 1984 1433/8).

### 1.1.2.1.4.12 Reactions with 6-Membered Heterocycles R'X

This reaction is referred to as "Reaction Type 7 n " in Table 1 on pp. 17/41.
Pyridines. The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and 2-iodopyridine in boiling pyridine gives 2-alkinytpyridines. This reaction is much faster than the reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ with iodobenzenes. For instance, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and 2-iodopyridine give $86 \%$ substitution product after 1 h [3], whereas under the same conditions with 2 -iodobenzene a yield of $87 \%$ is obtained only after 10 h [1]. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and 2-iodopyridine can be catalyzed by $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)_{2} \cdot \mathrm{PdCl}_{2}$ and $\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{4}\right]$ In hexamethylphosphoric triamide. After 2 h at $20^{\circ} \mathrm{C}, \quad 67 \% \quad \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5} \quad\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}=\right.$ pyrid- $\left.2-\mathrm{yl}\right)$ is obtained. The catalysis by $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PdI}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ needs 5 h at $50^{\circ} \mathrm{C}$ to give a yield of $81 \%$ [ 8$]$.

In boiling pyridine the following $\mathrm{RC} \equiv \mathrm{CCu}$ were reacted with 2 -iodopyridine to give $2-\mathrm{RC} \equiv$ $\mathrm{CC}_{5} \mathrm{H}_{4} \mathrm{~N}$ (yields in parentheses): $\mathrm{R}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$ (95\%) [3]; $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$ (52\%) [3]; $\mathrm{C}_{6} \mathrm{H}_{5}$ (25 to $86 \%$ ) [2, 3], with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ formed in situ yields up to $92 \%$ are obtained [5]; tetrahydro-pyran-2-yloxymethyl [6]; $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ (68\%) [3]; $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$ (54\%) [3]; $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}$ $(7 \%)$ at $120^{\circ} \mathrm{C}$, unstable product [3].

The reaction of 2-iodo-3-hydroxypyridines and $\mathrm{RC} \equiv \mathrm{CCu}$, in most cases, gives under ring closure furo [3,2-b]pyridines and is described in Section 1.1.2.1.5.1. Only $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv$ CCu and 2-iodo-3-hydroxypyridine are said to give $6.5 \%$ 2-(2-nitrophenylethynyl)-3-hydroxypyridine [4]. This reaction product shows no $\mathrm{C} \equiv \mathrm{C}$ band in the IR spectrum and the correct structure is possibly l .


1


II


III

3-lodopyridine and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ react in boiling pyridine to give 47\% 3-phenylethynylpyridine [2]. The reaction of 3-iodo-4-methylpyridine and II gives III [6].

4-lodopyridine is reacted with in situ formed $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ using a mixture of equimolar amounts of $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and 4-iodopyridine, $1 \mathrm{~mol} \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PdI}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}, 1 \mathrm{~mol} \% \mathrm{Cul}$, and

2 equivalents $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$ in pyridine. The yield of 4-(3-hydroxyprop-1-ynyl)pyridine is $83 \%$ [9].

Pyrimidines. The reaction of II and IVa yields Va. An attempted analogous reaction of II and IVb failed, supposedly because of the steric hindrance by the $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$ group [7].


## References:

[1] R. D. Stevens, C. E. Castro (J. Org. Chem. 28 [1963] 3313/5).
[2] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[3] I. L. Kotlyarevskii, V. N. Andrievskii, M. S. Shvartsberg (Khim. Geterotsikl. Soedin. 1967 308/9; Chem. Heterocycl. Compounds [USSR] 1967 236/7).
[4] C. Bond, M. Hooper (J. Chem. Soc. C 1969 2453/60).
[5] M. S. Shvartsberg (Izv. Akad. Nauk SSSR Ser. Khim. 1970 1144/9; Bull. Acad. Sci. USSR Div. Chem. Sci. 1970 1079/82).
[6] E. G. Brain, A. J. Eglington, B. G. James, J. H. C. Nayler, N. F. Osborne, M. J. Pearson, T. C. Smale, R. Southgate, P. Tolliday, M. J. Basker, L. W. Mizen, R. Sutherland (J. Med. Chem. 20 [1977] 1086/90).
[7] R. S. Bhatt, N. G. Kundu, T. L. Chwang, C. Heidelberger (J. Heterocycl. Chem. 18 [1981] 771/4).
[8] N. A. Bumagin, I. O. Kalinovskii, A. B. Ponomarev, I. P. Beletskaya (Dokl. Akad. Nauk SSSR 265 [1982] 1138/43; Dokl. Chem. Proc. Acad. Sci. USSR 262/267 [1982] 262/6).
[9] N. A. Bumagin, A. B. Ponomarev, I. P. Beletskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1984 1561/6; Bull. Acad. Sci. USSR Div. Chem. Sci. 1984 1433/8).

### 1.1.2.1.4.13 Reactions with Condensed Heterocycles R'X

This reaction is referred to as "Reaction Type 7o" in Table 1 on pp. 17/41.
Benzimidazolium Salts. These compounds represent a Mannich cation type structure and their reactions with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ are therefore treated in Section 1.1.2.1.7.

Phthatides. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and 6-iodophthalide (Ia) gives Ib in a $61 \%$ yield [1, 2].


1

Gmelin Handbook
Cu-Org. Comp. 3
$a: R^{1}=I$
b: $\mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$


11
References on p. 116

Coumarines II react with $\mathrm{RC} \equiv \mathrm{CCu}$ to give III (figures see p. 115) : $\mathrm{R}=1$-methyl-1-(tetrahy-dropyran-2-yloxy)ethyl, $\mathrm{R}^{1}=\mathrm{CH}_{3}$ [7]; $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right), \mathrm{R}^{1}=\mathrm{CH}_{3} \mathrm{OCH}_{2}$, yield $65 \%$ [3].

The reaction of 7-hydroxy-8-iodocoumarines and $\mathrm{RC} \equiv \mathrm{CCu}$ yields 2 H -furo[2,3-h]-1-ben-zopyran-2-ones under cyclization and is described in Section 1.1.2.1.5.1.

Dibenzofuranes and -phenazines. The reaction of 3,6-diiododibenzofuran (IV a) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CCu gives IVb in a $94 \%$ yield $[5,6]$. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and Va produces $91 \% \mathrm{Vb}$ [5].


Porphines. 8-Bromo-5,10,15,20-tetraphenylporphine nickel (VIa) and $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}$ in refluxing pyridine yield VIb [4].

## References:

[1] O. Ya. Neiland, M. P. Briede (Khim. Atsetilena Tr. 3rd Vses. Konf., Dushanbe 1968 [1972], pp. 160/3; C.A. 79 [1973] No. 18464).
[2] M. P. Briede, Ya. O. Neiland (Zh. Org. Khim. 6 [1970] 1701/6; J. Org. Chem. [USSR] 6 [1970] 1706/10).
[3] H. Franke (Diss. T.U. Berlin 1971).
[4] H. J. Callot (Tetrahedron Letters 1973 4987/90).
[5] A. M. Berlin, N. M. Kofman, E. S. Krongauz, A. N. Novikov, I. R. Gol’ding (Izv. Akad. Nauk SSSR Ser. Khim. 1975 441/2; Bull. Acad. Sci. USSR Div. Chem. Sci. 1975 369/70).
[6] V. V. Korshak, E. S. Krongauz, A. M. Berlin, N. M. Kofman, A. P. Travnikova (Khim. Dikarbonil'nykh Soedin. Tezisy Dokl. 4th Vses. Konf., Riga 1975 [1976], pp. 76/7; C.A. 87 [1977] No. 39874).
[7] R. D. H. Murray, I. T. Forbes (Tetrahedron Letters 1977 3077/8).

### 1.1.2.1.4.14 Reactions with $R^{\prime} X$, where $X$ is Bonded to $S, P, S i$, or $\mathbf{S n}$

This reaction is referred to as "Reaction Type 7p" in Table 1 on pp. 17/41.
The reactions of $\mathrm{RC} \equiv \mathrm{CCu}$ with compounds containing groups like SCl or PCl follow the simple scheme known from the previous sections and yield structures like $R C \equiv C S$ or $R C \equiv C P$, which are difficult to synthesize by other methods. From polyhalogenated compounds, one halogen, as with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnBr}_{2}$, or all halogens, as with $\mathrm{PCl}_{3}$, can be substituted in this way.

If X is bonded to transition metals, the simple substitution of X by $\mathrm{RC} \equiv \mathrm{C}$ has only been occasionally observed. However, in most cases the reaction is much more complicated. Usually mixtures containing one or more transition metal complexes are formed. The reaction product pattern depends on the reaction conditions and on the ratio of the reactants, and redox reactions occur. In most cases there is no information about the reaction path. Therefore, all reactions of compounds containing groups $\mathrm{M}-\mathrm{X}$ ( $\mathrm{M}=$ transition metal) are treated separately in Section 1.1.2.1.10.

Sulfur Compounds. $\mathrm{RC} \equiv \mathrm{CCu}$ and $2,4-\left(\mathrm{O}_{2} \mathrm{~N}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SCl}$ react in $\mathrm{CH}_{3} \mathrm{CN}$ to form 2,4$\left(\mathrm{O}_{2} \mathrm{~N}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SC} \equiv \mathrm{CR}$. The yields are $70 \%$ with $\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$ and $80 \%$ with $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$ [2].

Phosphorus Compounds. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CCu}$ and an excess of $\mathrm{PCl}_{3}$ yields the white $\mathrm{P}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{3}$ [1]. The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and compound I in tetrahydrofuran/ether/dimethylsulfide gives $60 \% \mathrm{II}$, isolated as a Cul complex. With $\mathrm{R}=\mathrm{CH}_{3} \mathrm{OCH}_{2}$ the asymmetric induction is $31 \%$, with $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} 30 \%$ [5].


I: $\mathrm{R}^{1}=\mathrm{Cl}$
iI: $R^{1}=R C \equiv C$

Silicon Compounds. The reactions of $\mathrm{RC} \equiv \mathrm{CCu}\left(\mathrm{R}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right.$ or $\mathrm{C}_{6} \mathrm{H}_{5}$ ) with chlorosilanes $\left(\mathrm{CH}_{3}\right)_{n} \mathrm{SiCl}_{4-n}\left(\mathrm{n}=1,2\right.$, or 3 ) afford a 60 to $80 \%$ yield of $\mathrm{RC} \equiv \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{n} \mathrm{Cl}_{3-\mathrm{n}}$. The acetylides $R C \equiv C C u$ are best prepared in situ. The components are heated 120 h at $150^{\circ} \mathrm{C}$ [3].

Tin Compounds. $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnBr}_{2}$ give after 17 d in ether $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv$ $\mathrm{CSn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Br}$ in a $22 \%$ yield [4].

## References:

[1] A. M. Sladkov, L. Y. Ukhin, V. V. Korshak (Izv. Akad. Nauk SSSR Ser. Khim. 1963 2213/5; Bull. Acad.Sci. USSR Div. Chem. Sci. 1963 2043/5).
[2] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).
[3] G. Derleis, J. Dunogues, R. Calas, P. Lapouyade (J. Organometal. Chem. 80 [1974] C45/ C46).
[4] G. Van Koten, C. A. Schaap, J. G. Noltes (J. Organometal. Chem. 99 [1975] 157/70).
[5] W. Chodkiewicz (J. Organometal. Chem. 194 [1980] C25/C28).

### 1.1.2.1.5 Reactions with $\mathbf{R}^{\prime} \mathbf{X}$ to Form Ring Closure Products of $\mathbf{R C} \equiv \mathbf{C R}^{\prime}$

### 1.1.2.1.5.1 Ring Closure Giving Furans

This reaction of $R C \equiv C C u$ with $R^{\prime} X$ is referred to as "Reaction Type 8a" in Table 1 on pp. 17/41. The formation of phthalides, which have a benzo[c]furan skeleton, is treated in Section 1.1.2.1.5.3 (Reaction Type 8c).

If $\mathrm{R}^{\prime} \mathrm{X}$ contains a structural element $-\mathrm{CX}=\mathrm{C}(\mathrm{OH})$ - with $\mathrm{X}=1$ or Br , its reaction with $\mathrm{RC} \equiv \mathrm{CCu}$ gives a furan instead of an enynol, which might be expected according to the reaction path outlined in Section 1.1.2.1.4.3. However, the addition of the OH group of the structural
element $-(\mathrm{RC} \equiv \mathrm{C}) \mathrm{C}=\mathrm{C}(\mathrm{OH})-$ to the $\mathrm{C} \equiv \mathrm{C}$ bond to yield a furan ring is favored. The only exception is said to be the formation of 2-(2-nitrophenylethynyl)-3-hydroxypyridine [6]. This claim is doubtful. The compound shows no $\mathrm{C} \equiv \mathrm{C}$ band in the IR spectrum, thus the furan structure is more probable here too.

Simple furans are formed from phenacylbromides and $\mathrm{RC} \equiv \mathrm{CCu}$ according to Scheme I:


I
The reaction conditions are important. By heating the components 5 min at $140^{\circ} \mathrm{C}$ with $R=n-C_{3} H_{7}$ the yield is $29 \%$; with $R=C_{6} H_{5} 54 \%$ yield of the furan is obtained after 5 min in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ at $240^{\circ} \mathrm{C}$ [4]. Upon heating $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{Br} 16 \mathrm{~h}$ in glycol at $140{ }^{\circ} \mathrm{C}$ only $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}(47 \%)$ and tars were obtained [3].

More important is the synthesis of benzo[b]furans (in many cases plant products), see Table 14. The nature of the solvent is not of great importance. The OH group is sometimes formed in the reaction mixture, e.g., by deacetylation from $\mathrm{CH}_{3} \mathrm{CO}_{2}$.
Table 14
Formation of Benzo[b]furans from Halophenols according to
(belongs to Reaction Type 8a, explanation see pp. 12/4).

R	$\mathrm{R}^{1}$	$\mathrm{R}^{2}$		$\mathrm{R}^{3}$	$\mathrm{R}^{4}$	X	remarks (yield in \%)	Ref.
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)$	H	H	$\mathrm{OCH}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{O}$	H	Br	(26)	[31]
	H	H		$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$	H	1	(18)	[31]
	H				H	1	OH group by deacetylation	[24]
	H	$\mathrm{CH}_{3} \mathrm{O}$		$\mathrm{CH}_{3} \mathrm{O}$	H	1	OH group by deacetylation	[24]
	H	$\mathrm{CH}_{3} \mathrm{CO}$		H	H	1	dehydrotremetone	[19]
	H	$\mathrm{CH}_{3} \mathrm{CO}$		OH	H	Br	euparin	[19]
	H	$\mathrm{CH}_{3} \mathrm{CO}$		OH	H	1	euparin (32)	[31]
	H	$\mathrm{CH}_{3} \mathrm{CO}$		OH	$\mathrm{CH}_{3} \mathrm{O}$	Br	methoxyeuparin	[19]
	OH	$\mathrm{CH}_{3} \mathrm{CO}$		H	H	1		[26]
	OH	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$		H	H	1	(42)	[26]
	$\mathrm{CH}_{3} \mathrm{CO}_{2}$	H		$n-\mathrm{C}_{5} \mathrm{H}_{11}$	H	1	OH group by deacetylation	[27]
(Z) $-\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CH}$	H	H		H	H	1	gives an (E)/(Z)-mixture (35:65)	[23]
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	H	H		H	H	1	(60)	[3]
	H	Br		H	H	Br	(40)	[3]
pyrid-2-yl	H	H		H	H	Br	(50)	[3]
	H	Br		H	H	Br	(38)	[3]
$\mathrm{C}_{6} \mathrm{H}_{5}$	H	H		H	H	Br	(53)	[3]
	H	H		H	H	1	in pyridine (85); in dimethylformamide (88); in dimethylformamide/ N -methylpiperidine (41); with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CCu}$ prepared in situ in dimethylformamide (16)	[1 to 3 , 33]

References on p. 125
Table 14 [continued]



－－－－－㐫


For the synthesis of furo[3,2-b]pyridines from 2-iodo-3-hydroxypyridines, see Table 15. A typical run is carried out by heating the components 9 to 14 h in pyridine or dimethylformamide at $120^{\circ} \mathrm{C}$.

Table 15
Formation of Furo[3,2-b]pyridines from 2-lodo-3-hydroxypyridines according to

(belongs to Reaction Type 8a, explanation see pp. 12/4).

$R$	$R^{1}$	$R^{2}$	yield in \%	Ref.
$\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2}$	H	H	61	$[5]$
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	H	H	82	$[5]$
	H	$\mathrm{CH}_{3}$	-	$[10]$
	$\mathrm{CH}_{3}$	H	-	$[10]$
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	H	H	88	$[5]$
	H	$\mathrm{CH}_{3}$	-	$[10]$
	CH	H	-	$[10]$
$\mathrm{C}_{6} \mathrm{H}_{5}$	H	H	84	$[5,12]$
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}$	H	H	92	$[5]$

Analogously the reaction of 3,5-diiodo-4-hydroxypyridines II and RCCCu yields 7-iodo-furo[3,2-c]pyridines III. The reaction was carried out with the following $R$ (yields in parentheses): $R=\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2}$ (49\%), $n-\mathrm{C}_{3} \mathrm{H}_{7}(24 \%)$, pyrid-2-yl (37\%) [5], $\mathrm{C}_{6} \mathrm{H}_{5}$ ( $86 \%$ ) [3, 5], $n-\mathrm{C}_{6} \mathrm{H}_{13}$ (37\%) [5].


The reactions of $\mathrm{RC} \equiv \mathrm{CCu}$ and halogenated hydroxycoumarines have also been used to synthesize natural products. From 7-hydroxy-8-iodocoumarine and $\mathrm{RC} \equiv \mathrm{CCu}$ the 2 H -furo[2,3-h]-1-benzopyran-2-one IV is produced, $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)$ (" oroselone") [20, 25] or 1-methyl-1-(tetrahydropyran-2-yloxy)ethyl, isolated after hydrolysis with $R=H O C\left(\mathrm{CH}_{3}\right)_{2}$ (" oroselol'") [21].
 IV

References on p. 125

The reaction of 6-bromo-7-hydroxycoumarine and $\mathrm{RC} \equiv \mathrm{CCu}$ in hot pyridine gives psoralenes $V$, which also are natural products. The yield is $65 \%$ with $R=\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)$ [25] and not given with $\mathrm{R}=\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)_{2} \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{2}$ [30].


V

The reaction of 2-iodoestrone VI and $\mathrm{RC} \equiv \mathrm{CCu}$ did not yield the expected ethynylestrones VII, but after cyclization $5^{\prime}$-substituted 17-keto-estra-1(10),4-dieno[3,2-b]furanes VIII were obtained [8, 13]. The following VIII were prepared (yields in parentheses): $\mathrm{R}=\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2}$ ( $60 \%$ ), $n-C_{3} H_{7}(69 \%), n-C_{4} H_{9}(66 \%), C_{6} H_{5}(71 \%), n-C_{6} H_{13}(63 \%)$ [13]. The O-acylated 2-iodoestrone $X$ reacts with $\mathrm{RC} \equiv \mathrm{CCu}$ more slowly to form the same heterocycle, whereas the O-methylated estrone IX is inert towards $\mathrm{RC} \equiv \mathrm{CCu}$ [13].


The estradiole XI or the monoacetylated estradiole XII and $n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}$ react to form the estra-1(10),4-dieno[3,2-b]furan XIII in a 61\% yield [8, 13].
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}+$


$$
\begin{aligned}
& X I: R^{1}=H \\
& X I I: R^{1}=\mathrm{CH}_{3} \mathrm{CO}
\end{aligned}
$$

The acetoxyiodoazulene XIV and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ give XV in a $69 \%$ yield [28].


XIV

$X V$

Benzo[c]furans are byproducts of the synthesis of coumarines and similar heterocycles from $\mathrm{RC} \equiv \mathrm{CCu}$ and aromatic 2-halobenzoic acids or 2-halobenzyl alcohols. These reactions are described in Section 1.1.2.1.5.3 (Reaction Type 8c), see pp. 128/9.

The reaction of 3-halo-4-hydroxyquinolin-2-ones XVI $\left(\mathrm{R}^{2}=\mathrm{H}\right)$ and $\mathrm{RC} \equiv \mathrm{CCu}$ in boiling pyridine gives 2 -substituted 4 -oxofuro[3,2-c]quinolines XVII. Surprisingly, the methoxy compound XVI ( $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{3}$ ) also undergoes ring closure. Obviously, the demethylation by the pyridine solvent is fast enough [32]:


From 3-halo-4-methoxyquinolin-2-ones $\mathrm{XVI}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{X}=\mathrm{Br}\right.$ or I) and $\mathrm{CH}_{2}=$ $\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{CCu}$ the furo[2,3-b]quinoline XIX could be synthesized. This reaction has been explained by the formation of XVIII which is tautomeric to XVI. The ring closure reaction involving the 2-hydroxy group is obviously much faster than the demethylation reaction of the ether group as shown above [32].


## References:

[1] C. E. Castro, R. D. Stevens (J. Org. Chem. 28 [1963] 2163).
[2] R. D. Stevens, C. E. Castro (J. Org. Chem. 28 [1963] 3313/5).
[3] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[4] K. Gump, S. W. Moje, C. E. Castro (J. Am. Chem. Soc. 89 [1967] 6770/1).
[5] S. A. Mladenović, C. E. Castro (J. Heterocycl. Chem. 5 [1968] 227/30).
[6] C. Bond, M. Hooper (J. Chem. Soc. C 1969 2453/60).
[7] M. D. Rausch, A. Siegel (J. Org. Chem. 34 [1969] 1974/6).
[8] M. Stefanović, L. Krstić, S. Mladenović (Tetrahedron Letters 1971 3311/2).
[9] A. G. Makhsumov, O. V. Afanas'eva, Sh. U. Abdullaev, U. A. Abidov (U.S.S.R. 389090 [1971/73]; C.A. 79 [1973] No. 136978).
[10] P. I. Abramenko, V. G. Zhiryakov (Zh. Vses. Khim. Obshchestva 17 [1972] 695/6).
[11] O. V. Afanas'eva, A. G. Makhsumov, Sh. U. Abdullaev (Dokl. 4th Vses. Konf. Khim. Atsetilena, Alma-Ata 1972, Vol. 1, pp. 244/7; C.A. 79 [1973] No. 31756).
[12] D. C. Owsley, C. E. Castro (Org. Syn. 52 [1972] 128/31).
[13] M. Stefanović, L. Krstić, S. Mladenović (Glasnik Hem. Društva [Beograd] 38 [1973] 463/8; C.A. 82 [1975] No. 43645).
[14] M. T. Cox, J. J. Holohan (Tetrahedron 31 [1975] 633/5).
[15] F. G. Schreiber, R. Stevenson (Chem. Letters 1975 1257/8).
[16] F. G. Schreiber, R. Stevenson (J. Chem. Soc. Perkin Trans. I 1976 1514/8).
[17] M. Brenner, C. Brush (Tetrahedron Letters 1977 419/22).
[18] R. P. Duffley, R. Stevenson (J. Chem. Soc. Perkin Trans. I 1977 802/4).
[19] F. G. Schreiber, R. Stevenson (J. Chem. Soc. Perkin Trans. I 1977 90/2).
[20] F. G. Schreiber (Diss. Brandeis Univ. from [21]).
[21] R. P. Duffley, R. Stevenson (Syn. Commun. 8 [1978] 175/80).
[22] R. P. Duffley, R. Stevenson (J. Chem. Res. S 1978 468).
[23] G. A. Kraus, K. Frazier (Tetrahedron Letters 1978 3195/8).
[24] F. G. Schreiber, R. Stevenson (Org. Prep. Proced. Intern. 10 [1978] 137/42).
[25] F. G. Schreiber, R. Stevenson (J. Chem. Res. S 1978 92).
[26] G. Batu, R. Stevenson (J. Org. Chem. 44 [1979] 3948/9).
[27] R. T. Scannel, R. Stevenson (J. Chem. Res. S 1983 36).
[28] T. Morita, T. Nakadate, K. Takase (Heterocycles 15 [1981] 835/8).
[29] G. E. Schneiders, R. Stevenson (Syn. Commun. 10 [1980] 699/705).
[30] G. E. Schneiders, R. Stevenson (J. Chem. Res. S 1982 182).
[31] R. T. Scannel, R. Stevenson (J. Chem. Soc. Perkin Trans. I 1983 2927/31).
[32] J. L. Gaston, R. J. Greer, M. F. Grundon (J. Chem. Res. S 1985 135).
[33] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).

### 1.1.2.1.5.2 Ring Closure Giving Pyrroles or Thiophenes

This reaction of $R C \equiv C C u$ with $R^{\prime} X$ is referred to as "Reaction Type $8 b$ " in Table 1 on pp. 17/41.

If $R^{\prime} X$ contains a structural element $-C(I)=C\left(N H R^{1}\right)$ - or $-\mathrm{CBr}=\mathrm{C}(\mathrm{SH})-$, respectively, the expected $R C \equiv C R^{\prime}$ with the structural elements $-(R C \equiv C) C=C\left(N H R^{1}\right)-$ or $-(R C \equiv C) C=C(S H)-$ are not generally obtained. The proton at $N$ or $S$ can add to the $C \equiv C$ bond and a pyrrol or a thiophene ring is formed. $R^{\prime} X$ is in most cases a 2-iodoaniline or 2-bromothiophenol and the formed heterocycle is then an indole or a benzo[b]thiophene, respectively.

Formation of Indoles. In homogeneous reaction systems, usually with pyridine as a solvent, the reaction of $R C \equiv C C u$ with halo-aminophenols $R^{\prime} X(X=$ halogen $)$ yields $R C \equiv C R^{\prime}$ or a mixture of $R C \equiv C R^{\prime}$ and the cyclization product [3], see Sections 1.1.2.1.3 and 1.1.2.1.4.6. In heterogeneous reaction systems, however, only indoles can be isolated, see Table 16. Best yields are obtained by allowing $\mathrm{RC} \equiv \mathrm{CCu}$ and $\mathrm{R}^{\prime} \mathrm{X}$ to stand in a suitable solvent such as dimethylformamide, especially in the presence of certain copper salts. Obviously, a $\mathrm{Cu}^{\prime}$ polymer is essential for catalysis. Monomeric or low molecular weight aggregates of Cul compounds, which are obtained in warm pyridine or upon prolonged warming in dimethylformamide, are not capable of rapid catalysis. For further explanation of this fact and for a suggested mechanism, see [1, 5].

Table 16
Formation of Indoles from lodoanilines according to

(Reaction Type 8 b , explanation see pp. 12/4). For abbreviations and dimensions see $\mathrm{p} . \mathrm{X}$.

R	$\mathrm{R}^{1}$	$\mathrm{R}^{2}$	$\mathrm{R}^{3}$	yield   of I   in \%	yield   of II   in \%	remarks	Ref.
$\mathrm{C}_{2} \mathrm{H}_{5}$	H	H	H	12	28	pyridine, $120 \%$ h	[3]
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	H	H	H	89	-	pyridine, $120 \%$ h	[3]
	H	H	H	70	17	pyridine, $120 \%$ h	[3]
	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	H	50	5	pyridine	[3]
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	H	H	H	35	20	pyridine, $120 \%$ h	[3]
$\mathrm{CH}_{2}=\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	H	36	-	dimethylformamide, $140 \% 12 \mathrm{~h}$	
	H	Br	H	100	-	dimethylformamide, $130 \% 10 \mathrm{~h}, \mathrm{Br}$ partially exchanged against I (Br:I= 5:4)	[7]
	H	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2}$	H	94	-	dimethylformamide, $125 \%$ h	
	H	I	H	42	-	dimethylformamide, $125 \%$ h, gives a mixture of I and $37 \%$	

Table 16 [continued]

R	R ${ }^{1}$	$\mathrm{R}^{2}$	$\mathrm{R}^{3}$	yield   of I   in \%	yield   of II   in \%	remarks	Ref.
$\mathrm{C}_{6} \mathrm{H}_{5}$	H	H	H	$>80$	-	dimethylformamide/ $175^{\circ}$, pyridine/ 6 h reflux, dimethylsulfoxide or $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	[1 to 3]
	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	H	50	-	dimethylformamide, $120^{\circ} / 22 \mathrm{~h}$	[3]
	H	H	$\mathrm{CH}_{3}$	90	-	dimethylformamide, $120^{\circ} / 22 \mathrm{~h}$	[3]
	H	H	OH	57	-	dimethylformamide, $120^{\circ}$ /2 h	[3]

The acetylamino-iodo-azulene III and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ give the condensed pyrrole IV in a $54 \%$ yield in boiling pyridine (which probably first causes the deacetylation) [8].


III


IV

Formation of Benzo[b]thiophenes. Cyclization $V$ is carried out by adding a very dilute pyridine solution of the thiophenol into a suspension or solution of the acetylide in pyridine. With concentrated solutions, however, Cyclization VI takes place. The following benzo[b]thiophenes were prepared in this way (yields in parentheses): $R=n-C_{3} H_{7}(80 \%), n-C_{4} H_{9}(80 \%)$, and $\mathrm{C}_{6} \mathrm{H}_{5}(90 \%)$. Some acetylides are less stable under the reaction conditions and therefore are generated in situ from $\mathrm{RC} \equiv \mathrm{CH}$, Cul, and N -ethylpiperidine. The following benzo[b]thiophenes were prepared in this way: $R=\mathrm{HOCH}_{2}$ (10\%) and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}(35 \%)$ [4].



## References:

[1] C. E. Castro, R. D. Stevens (J. Org. Chem. 28 [1963] 2163).
[2] R. D. Stevens, C. E. Castro (J. Org. Chem. 28 [1963] 3313/5).
[3] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[4] A. M. Malte, C. E. Castro (J. Am. Chem. Soc. 89 [1967] 6770).
[5] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).
[6] H. Plieninger, H. Sirowej (Chem. Ber. 104 [1971] 2027/9).
[7] S. Inoue, N. Takamatsu, Y. Kishi (Yakugaku Zasshi 97 [1977] 564/8; C.A. 87 [1977] No. 184744).
[8] T. Morita, T. Nakadate, K. Takase (Heterocycles 15 [1981] 835/8).

### 1.1.2.1.5.3 Ring Closure Giving Other Heterocycles

This reaction is referred to as "Reaction Type 8c" in Table 1 on pp. 17/41.
Phthatides and Isocoumarines. The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and $2-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}(X=\mathrm{Cl}$, Br , or I) gives phthalides I or isocoumarines II, or mixtures thereof; in no case was $2-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$ observed. For examples, see Table 17. The components are heated in a suitable solvent, such as pyridine or dimethylformamide. No work was done about the dependence of the I:ll ratio on the substitution type and the reaction conditions.

Table 17
Formation of Phthalides and Isocoumarines according to


1
II
(belongs to "Reaction Type 8c", explanation see p. 12/4).

R	R ${ }^{1}$	X	yield of I in \%	yield of II in \%	remarks	Ref.
$\mathrm{HOCH}_{2}$	H	1	6	-	acetylide prepared in situ in dimethylformamide	[3]
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}$	H	Br	15	-	acetylide prepared in situ in dimethylformamide	[3]
	H	1	39	-	acetylide prepared in situ in dimethylformamide	[3]
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	H	1	22	40	inseparable mixture in pyridine	[3, 8]
	H	1	-	formed	dimethylformamide/4d reflux	[8]
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	H	1	-	formed	dimethylformamide/4d reflux	[8]
			References on pp. 130/1			Handbook

Table 17 [continued]

R	$\mathrm{R}^{1}$	X	yield of 1 in \%	$\begin{aligned} & \text { yield of II } \\ & \text { in \% } \end{aligned}$	remarks	Ref.
$\mathrm{C}_{6} \mathrm{H}_{5}$	H	Br	53	-	acetylide prepared in situ in dimethylformamide	[3]
	H	Cl	65	-	pyridine	[3]
	H	Cl	39	-	dimethylformamide	[3]
	H	I	14	-	pyridine   in previous papers [1, 2] wrong structure and different yield ( $94 \%$ ) given	[3]
	H	I	90	-	acetylide prepared in situ in dimethylformamide	[3]
	Cl	Cl	69	-	pyridine	[3]

1H-2-Benzopyrans and $\mathbf{1 H}, \mathbf{3 H}$-Benzo[c]furans. The type of the reaction product from $\mathrm{RC} \equiv \mathrm{CCu}$ and $2-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$ depends on the group R .

In boiling pyridine with $R=n-C_{3} \mathrm{H}_{7} 50 \%$ IV is formed, whereas with $R=C_{6} H_{5} 80 \%$ V can be isolated. Possibly $2-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$ (III) is the intermediate [5].


Benzoxepines. The reaction of $n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}$ and $2-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ affords a $60 \%$ yield of VI [5].


VI
Thieno[3,4-c]pyrans. The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and VII in dimethylformamide at $125{ }^{\circ} \mathrm{C}$ yields 4 H -thieno[3,4-c]pyran-4-ones VIII, $R=n-C_{3} H_{7}$ ( $85 \%$ ), $n-C_{4} H_{9}$ ( $78 \%$ ), $C_{6} H_{5}$ (57\%), $n-\mathrm{C}_{6} \mathrm{H}_{13}$ (30\%) [4].


VII
VIII
Pyrano[4,3-c]pyrazoles. The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and 5-iodo-1,3-dimethylpyrazole-4carboxylic acid IX in boiling pyridine yields $X$. The yields are $66 \%$ with $R=n-C_{3} H_{7}$ and $79 \%$ with $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$ [9].


IX
X
The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and 3-iodo-1,5-dimethylpyrazole-4-carboxylic acid XI gives XII, $R=n-C_{5} H_{11}(67 \%)$ and $\mathrm{C}_{6} \mathrm{H}_{5}$ (67\%) [9].


XI
XII

Pyrano[3,4-c]pyrazoles. The pyrazole XIII and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ give XIV in a $75 \%$ yield [10].


XIII
XIV
Additional ring systems are byproducts of substitution reactions and are described in Section 1.1.2.1.4.6 (Table 6, reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $2-\left(2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ [6]) and Section 1.1.2.1.4.7 (reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $2,4,6-\left(\mathrm{O}_{2} \mathrm{~N}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$, see also Section 1.1.2.1.1, Table 1, No. 90) [7].

## References:

[1] C. E. Castro, R. D. Stevens (J. Org. Chem. 28 [1963] 2163).
[2] R. D. Stevens, C. E. Castro (J. Org. Chem. 28 [1963] 3313/5).
[3] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[4] S. A. Mladenović, C. E. Castro (J. Heterocycl. Chem. 5 [1968] 227/30).
[5] C. E. Castro, R. Havlin, U. K. Honvad, A. Malte, S. Moje (J. Am. Chem. Soc. 91 [1969] 6464/70).
[6] C. C. Leznoff, R. J. Hayward (Can. J. Chem. 49 [1971] 3596/601).
[7] O. Wennerström (Acta Chem. Scand. 25 [1971] 789/94).
[8] G. Batu, R. Stevenson (J. Org. Chem. 45 [1980] 1532/4).
[9] S. F. Vasilevskii, V. A. Gerasimov, M. S. Shvartsberg (Izv. Akad. Nauk SSSR Ser. Khim. 1981 902/4; Bull. Acad. Sci. USSR Div. Chem. Sci. 1981 683/5).
[10] M. S. Shvartsberg, S. F. Vasilevskii, T. V. Anisimova, V. A. Gerasimov (Izv. Akad. Nauk SSSR Ser. Khim. 1981 1342/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1981 1071/6).

### 1.1.2.1.5.4 Ring Closure Giving Carbocycles

This reaction is referred to as "Reaction Type 8d" in Table 1 on pp. 17/41.
Inter- and Intramolecular Cyclization of lodine-containing RC $\equiv \mathbf{C C u}$. In most cases 2 to 6 molecules of $\mathrm{RC} \equiv \mathrm{CCu}$ form the carbocycle in a "head-to-tail"-type intermolecular substitution reaction. Intramolecular substitutions are also known. The following examples are arranged by the number of the starting compound $\mathrm{RC} \equiv \mathrm{CCu}$ as in Section 1.1.2.1.1, Table 1.

If $2-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{CCu}$ is heated in pyridine (no temperature given) a $26 \%$ yield of I and a little II was isolated [1]. On the other hand, only some "crystallizable cyclic trimer" (presumably I) was obtained by heating $2-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu} 6 \mathrm{~h}$ at $110^{\circ} \mathrm{C}$ in dimethylformamide or in pyridine. The main product is a linear polymer of the structure III containing some iodine. The yield of this compound was $90 \%$ in dimethylformamide and $83 \%$ in pyridine [8].
$3-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ gives a $4.6 \%$ yield of IV after boiling 24 h in pyridine [13].


1


III


II


Well-dried (E)-2-IC $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHC} \equiv \mathrm{CCu}$ in boiling pyridine yields a mixture of V ( $14 \%$ yield) and VI ( $2.4 \%$ yield), which can be separated chromatographically on alumina [6].

v


VI

The Cu salt of 1-ethynyl-8-iodonaphthalene VII in boiling pyridine is reported to yield $50 \%$ zethrene (VIII) [4, 7] or a mixture of VIII ( $52 \%$ yield) and IX ( $5 \%$ yield) [10]. The origin of the H atoms marked in formula VIII has not been studied. The way of the formation of compound IX is not clear. A Diels-Alder type reaction of X is improbable. An attempted trapping of $X$ by boiling VII in the presence of 1,3-diphenylbenzo[c]furane in dimethylformamide gave no Diels-Alder adduct [10].


The well-dried Cu salt of 1-ethynyl-7-iodonaphthalene (XI) in boiling pyridine gives a complex mixture, from which as the only product $8 \%$ yield of XII could be isolated chromatographically on alumina [6].


The previously described "head-to-tail reaction" of three or more molecules of a compound containing both the groups $\mathrm{RC} \equiv \mathrm{C}$ and I is not the only possibility for producing carbocyclic ring systems from these bifunctional starting materials. 2-(2-IC $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ (XIII) undergoes an intramolecular reaction in boiling pyridine. The first product is possibly the unstable carbene XIV, which dimerizes to the cumulene XV [5, 11].


If the distance between I and Cu is wide enough, two molecules can undergo the above mentioned "head-to-tail reaction". The Cu salts of the dienynes XVI in boiling pyridine with $\mathrm{R}^{1}=\mathrm{CH}_{3}(\mathrm{XVI})$ ) yield after $48 \mathrm{~h} 8.4 \%$ XVIIa, with $\mathrm{R}^{1}=\mathrm{CH}_{3} \mathrm{OCH}_{2}$ (XVIb) after $14 \mathrm{~h} 14.6 \%$ XVIIb [12].


XVI

$$
\begin{aligned}
& a: R^{1}=\mathrm{CH}_{3} \\
& b:
\end{aligned} \mathrm{R}^{1}=\mathrm{CH}_{3} \mathrm{OCH}_{2}
$$

The reaction products of XVIII in pyridine depend on the reaction conditions. After 90 min boiling a $22 \%$ yield of zethrene VIII (see p. 132) is formed. After 30 min at $80^{\circ} \mathrm{C}$ a mixture of VIII ( $10 \%$ yield) and 7 -iodozethrene XIX ( $11 \%$ yield) is formed. At $35^{\circ} \mathrm{C}$ no VIII was
obtained, but 6\% XIX could be isolated. In all cases VIII and XIX were accompanied by unidentified byproducts. In dimethylformamide and in hexamethylphosphoric triamide similar results have been observed. The diradical XXI is supposed to be formed by an electrocyclic reaction from the expected, but not proved, XX. Again there is no evidence of the origin of additional H atoms in VIII and XIX. XIX could result from XXI by addition of Cul and subsequent hydrolysis [7].

XVIII

XIX

XX

XXI

Cycloadditions after Substitution. The formation of a 4-membered ring from two $\mathrm{C} \equiv \mathrm{C}$ units has been observed at the reaction of 2-iodo-2'-phenylethynylbiphenyl (XXII) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ (see also Section 1.1.2.1.4.6, Table 6). A mixture of XXIII ( $65 \%$ yield) and XIV ( $10 \%$ yield) is obtained after 10 h reflux in pyridine. The structure of XXIII resembles that of XX and should cause the formation of XXIV by a [2+2]-cycloaddition [2].

XXII: $R^{1}=1$
XXIII: $R^{1}=C \equiv C C_{6} H_{5}$


XXIV

A $[2+2+2]$-cycloaddition with intramolecular hydrogen displacement is involved in the formation of 7 -arylbenzo[k]fluoranthenes from 1,8-diiodonaphthalene and $\mathrm{RC} \equiv \mathrm{CCu}[3,9]$. This reaction is dealt with in Section 1.1.2.1.4.9 (see Table 10), for the typical reaction path is the formation of the regular mono- and/or disubstitution products.

## References:

[1] J. D. Campbell, G. Eglinton, W. Henderson, R. A. Raphael (J. Chem. Soc. Chem. Commun. 1966 87/9).
[2] S. A. Kandil, R. E. Dessy (J. Am. Chem. Soc. 88 [1966] 3027/34).
[3] J. Ipaktschi, H. A. Staab (Tetrahedron Letters 1967 4403/8).
[4] H. A. Staab, A. Nissen, J. Ipaktschi (Angew. Chem. 80 [1968] 241; Angew. Chem. Intern. Ed. Engl. 7 [1968] 226).
[5] H. A. Staab, H. Mack, E. Wehinger (Tetrahedron Letters 1968 1465/9).
[6] K. Endo, Y. Sakata, S. Misumi (Tetrahedron Letters 1970 2557/60).
[7] R. H. Mitchell, F. Sondheimer (Tetrahedron 26 [1970] 2141/50).
[8] R. D. Stephens, W. C. Kray, Shell Oil Co. (U.S. 3749700 [1970/73]; C.A. 79 [1973] No. 146990).
[9] H. A. Staab, J. Ipaktschi (Chem. Ber. 104 [1971] 1170/81).
[10] H. A. Staab, J. Ipaktschi, A. Nissen (Chem. Ber. 104 [1971] 1182/90).
[11] H. A. Staab, E. Wehinger, W. Thorwart (Chem. Ber. 105 [1972] 2290/309).
[12] A. Tozuka, T. Otsubo, Y. Sakata, S. Misumi (Mem. Inst. Sci. Ind. Res. Osaka Univ. 30 [1973] 83/9; C.A. 79 [1973] No. 66092).
[13] H. A. Staab, K. Neunhoeffer (Synthesis 1974 424).

### 1.1.2.1.6 Reactions with $R^{\prime} X$ to Form the Hydrocarbons $R^{\prime} H$

This reaction is referred to as "Reaction Type 9" in Table 1 on pp. 17/41.
In certain cases the reaction of $R C \equiv C C u$ and $R^{\prime} I$ or $R^{\prime} B r$ yields $R^{\prime} H$, either as the sole product or in addition to the substitution product $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ (Reaction Type 7). The origin of the hydrogen in the course of this "reductive elimination of halogen" was not investigated. The yields of $\mathrm{R}^{\prime} \mathrm{H}$ come up to over $50 \%$. The H therefore could not originate from traces of water or from impurities, but could come from the solvents pyridine [ 1,3 to 5 ], dimethylformamide, or glycol [2].

The conversion of $R^{\prime} X(X=1$ or $B r)$ to $R^{\prime} H$ is especially favored in the bithienyl series. The reaction of $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}$ and la in pyridine at $105^{\circ} \mathrm{C}$ gives lb as the only product in a $52 \%$ yield. The expected product Ic is not formed [4].


$$
\begin{aligned}
& \text { Ia: } R^{1}=1 \\
& \text { Ib: } R^{1}=H \\
& \text { Ic: } R^{1}=\mathrm{CH}_{3} C \equiv C
\end{aligned}
$$

In many cases a mixture of the "normal" substitution product $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ (Reaction Type 7) and of the "reduction product" R'H (Reaction Type 9) is obtained. Most examples belong to the reactions of $\mathrm{RC} \equiv \mathrm{CCu}$ with 2 -iodothiophenes and with 2-iodofurans [1, 3]. They are listed in Section 1.1.2.1.4.11, Tables 11 and 12.

In the course of the reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and diiodinated aromatic compounds one iodine can be selectively substituted by hydrogen and the second one by $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$. For the reaction of $1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{~F}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ see Section 1.1.2.1.4.7 [5].

Proceeding from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{Br}$ in glycol at $140{ }^{\circ} \mathrm{C}$, the only product besides tars is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}(47 \%)$. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and 1-iodonaphth-2-ol react in dimethylformamide at $152^{\circ} \mathrm{C}$ to form naphth-2-ol, but only in a yield of $2 \%$ [2].

## References:

[1] R. E. Atkinson, R. F. Curtis, G. T. Phillips (Chem. Ind. [London] 1964 2101/2).
[2] C. E. Castro, E. J. Gaughan, D. C. Owsley (J. Org. Chem. 31 [1966] 4071/8).
[3] R. E. Atkinson, R. F. Curtis, G. T. Phillips (J. Chem. Soc. C 1967 2011/5).
[4] F. Bohlmann, J. Kocur (Chem. Ber. 108 [1975] 2149/52).
[5] R. S. Dickson, L. J. Michel (Australian J. Chem. 28 [1975] 1943/55).

### 1.1.2.1.7 Mannich Type Reactions

This reaction is referred to as "Reaction Type 10" in Table 1 on pp. 17/41.
The Mannich reaction of alkynes in the presence of copper ions can be understood as a substitution of Cu in $\mathrm{RC} \equiv \mathrm{CCu}$ by the Mannich cation I to form the alk-2-ynylamine II.

$$
\mathrm{HCHO}+\mathrm{HNR}_{2}^{1}+\mathrm{H}^{+} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\longrightarrow} \mathrm{CH}_{2} \xrightarrow{\oplus} \mathrm{NR}_{2}^{1} \xrightarrow{\mathrm{RC} \equiv \mathrm{CCU}} \mathrm{RC} \equiv \mathrm{CCH}_{2} \mathrm{NR}_{2}^{1}
$$

1
II
To run Mannich reactions $\mathrm{RC} \equiv \mathrm{CCu}$ is not brought into the reaction batch as a pure substance, but formed there from alkynes and copper salts. Its presence is said to be observed in the reactions of $\mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ with $\mathrm{HN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ [7] and of $\mathrm{HOCR}^{2} \mathrm{R}^{3} \mathrm{C} \equiv \mathrm{CCu}$ or $\mathrm{R}^{4} \mathrm{OCR}^{2} \mathrm{R}^{3} \mathrm{C} \equiv \mathrm{CCu}$ compounds with $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ [6, 13]. It is first precipitated because of its insolubility and then consumed in the course of the reaction.

The intermediate formation of $\mathrm{RC} \equiv \mathrm{CCu}$ is also supported by the influence of the Cu on the reaction path of compounds, which contain not only the acetylenic $H$, but also a second active hydrogen able to undergo Mannich reactions. Compounds of the type $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{C} \equiv \mathrm{CH}$ react in the course of the Mannich reaction in the presence of $\mathrm{Cu}^{\prime}$ at the alkynyl carbon, but in the absence of copper at the $\mathrm{COCH}_{2}$ position [10]. At any rate $\mathrm{Cu}^{\prime}$ salts increase the nucleophility of the acetylenic substrate towards the Mannich reagents [14]. The addition of $1 \% \mathrm{CuCl}$ can enhance the reaction rate up to 30 -fold and the yield is much higher [5]. Alkynes with donors in the 3-position undergo the Mannich reaction only in the presence of $\mathrm{Cu}^{\prime}$ [12].

A high number of publications deal with Cu -catalyzed Mannich reactions. In many cases the intermediate formation of $\mathrm{RC} \equiv \mathrm{CCu}$ and its reaction with the Mannich cation I to form the amine II can be strongly supposed [1 to 5,8 to 12, 15]. If the Mannich reaction is catalyzed by $\mathrm{Cu}^{\prime \prime}$, the reduction of $\mathrm{Cu}^{\prime \prime}$ to $\mathrm{Cu}^{\prime}$ by $\mathrm{CH}_{2} \mathrm{O}$ must be assumed [6, 13].

The reaction of 1-aminobenzimidazolium salts with preformed $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can be understood as a Mannich reaction, if the salt is written as a cyclic Mannich cation III: $\mathrm{R}^{1}=\mathrm{CH}_{3}$, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{CCH}_{2}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$. The expected 2-alkynylbenzimidazoline IV corresponds to II at simple acyclic systems. It rearranges to form the pyrazole $V$, which crystallizes from the reaction batch. The corresponding chloride (III, Cl as the anion) does not react with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ or with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ [16].


## References:

[1] L. B. Fisher (Usp. Khim. 27 [1958] 589/621).
[2] J.-A. Gautier, I. Marszak, M. Miocque (Bull. Soc. Chim. France 1958 415/8).
[3] N. M. Libman, S. G. Kusnetsov (Zh. Obshch. Khim. 30 [1960] 1197/202; J. Gen. Chem. [USSR] 30 [1960] 1218/22).
[4] J.-A. Gautier, M. Miocque, N. M. Húng (Bull. Soc. Chim. France 1961 2098/109).
[5] L. B. Fisher, I. L. Kotlyarevskii, E. K. Andrievskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1964 1543/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1964 1455/7).
[6] R. I. Krugilikova, V. E. Pikalov (Izv. Vysshikh Uchebn. Zavedenii Khim. Khim. Tekhnol. 8 [1965] 349/51; C.A. 63 [1965] 11333).
[7] R. L. Salvador, D. Simon (Can. J. Chem. 44 [1966] 2570/5).
[8] M. I. Bardamova, R. N. Myasnikova, I. L. Kotlyarevskii (Izv. Akad. Nauk SSSR Ser. Khim. Nauk 1967 443/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1967 429/31).
[9] J.-A. Gautier, M. Miocque, L. Mascrier-Demagny (Compt. Rend. C 264 [1967] 778/81).
[10] J.-A. Gautier, M. Miocque, L. Mascrier-Demagny (Bull. Soc. Chim. France 1967 1560/8).
[11] I. L. Kotlyarevskii, E. K. Andrievskaya, L. B. Fisher (Izv. Akad. Nauk SSSR Ser. Khim. Nauk 1967 397/404; Bull. Acad. Sci. USSR Div. Chem. Sci. 1967 373/7).
[12] G. R. Pettit, B. J. Danley (Can. J. Chem. 46 [1968] 792/5).
[13] I. N. Azerbaev, I. A. Poblavskaya, G. N. Kondaurov (Dokl. 4th Konf. Khim. Atsetilena, Alma-Ata 1972, Vol. 1, pp. 353/8; C.A. 79 [1973] No. 77998).
[14] M. Tramontini (Synthesis 1973 703/75).
[15] M. M. Kwatra, D. Z. Simon, R. L. Salvador, P. D. Cooper (J. Med. Chem. 21 [1978] 253/7).
[16] L. Yu. Ukhin, V. N. Komissarov, Zh. I. Orlova, N. A. Dolgopolova (Zh. Obshch. Khim. 54 [1984] 1676/8); J. Gen. Chem. [USSR] 54 [1984] 1493/4).

### 1.1.2.1.8 Reactions with $R^{\prime} \mathrm{Cu}$

This reaction is referred to as "Reaction Type 11" in Table 1 on pp. 17/41.
The main product formed from $R C \equiv C C u$ and $R^{\prime} C u$ generally is $R C \equiv C R^{\prime}$. If $R$ and $R^{\prime}$ are aryl groups, heating is necessary and the reaction proceeds in several discrete steps involving the formation of $\mathrm{Cu}_{6}$ and $\mathrm{Cu}_{4}$ clusters.

Reactions of $\mathbf{R C} \equiv \mathbf{C C u}$ with $\mathbf{C H}_{3} \mathbf{C u}$ give $\mathrm{RC} \equiv \mathrm{CCH}_{3}$ and metallic Cu , if it is run at room temperature in ether. The $\mathrm{RC} \equiv \mathrm{CCu}$ compounds are prepared in situ from $\mathrm{RC} \equiv \mathrm{CCO}_{2} \mathrm{Cu}$ (see Section 1.1.2.1.1, Preparation Method Va, p. 4). An addition of $\mathrm{CH}_{3} \mathrm{Cu}$ to the $\mathrm{C} \equiv \mathrm{C}$ bond of $\mathrm{RC} \equiv \mathrm{CCu}$, as it is known from $\mathrm{RC} \equiv \mathrm{CCH}_{3}$, was not observed. The following $\mathrm{RC} \equiv \mathrm{CCH}_{3}$ have been prepared (yields in parentheses): $\mathrm{R}=3-\mathrm{ClC}_{6} \mathrm{H}_{4}(50 \%), 4-\mathrm{CIC}_{6} \mathrm{H}_{4}$ ( $55 \%$ ), $3-\mathrm{FC}_{6} \mathrm{H}_{4}(45 \%)$, $3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}(55 \%)$. With $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}(75 \%)$ and with $\mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$ it is not clear whether $\mathrm{RC} \equiv \mathrm{CCu}$ or its Lil aduct (see Section 1.1.2.3) is reacted [1].

Reactions of $\mathbf{R C} \equiv \mathbf{C C u}$ with $2-\left(\mathrm{CH}_{3}\right)_{2} \mathbf{N C}_{6} \mathbf{H}_{4} \mathbf{C u}$ in dimethylformamide at $65{ }^{\circ} \mathrm{C}$ give the yellow clusters $(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Cu}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2\right)_{4}$ (decomposition temperatures in parentheses): $R=\mathrm{C}_{6} \mathrm{H}_{5}\left(128^{\circ} \mathrm{C}\right), 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\left(138^{\circ} \mathrm{C}\right), 4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\left(165^{\circ} \mathrm{C}\right), 2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\left(189{ }^{\circ} \mathrm{C}\right)$. If the reaction is carried out in dimethylformamide at $125^{\circ} \mathrm{C}$ (heating for 2.5 h and workup with aqueous $\mathrm{NH}_{3}$ is typical for these reactions), a mixture of $\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2$, 2- $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$, and metallic Cu is obtained; see Table 18. The decomposition products of $\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2\right)_{4}$ in benzene at $80^{\circ} \mathrm{C}$ correspond to this pattern; only the symmetric coupling product $2-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2$ could not be detected [2]. So the reactions at both temperatures are treated with the implicit understanding that in benzene and in dimethylformamide the same reactions occur and that the compounds listed in Table 18 are decomposition products of $(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Cu}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2\right)_{4}[2,3]$.

## Table 18

Reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and $2-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cu}$ according to

(belongs to Reaction Type 11, explanation see pp. 12/4) in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}$ at $125^{\circ} \mathrm{C} / 2.5 \mathrm{~h}$ (last reaction $125^{\circ} \mathrm{C} / 4 \mathrm{~h}$, then $150^{\circ} \mathrm{C} / 1 \mathrm{~h}$ ).

$\mathrm{R}^{1}$	$\mathrm{R}^{2}$	$\mathrm{R}^{3}$	yield of I   in $\%$	yield of II   in $\%$	yield of III   in $\%$
H	Cl	H	92	-	
H	$\mathrm{NO}_{2}$	H	76	10	12
H	H	H	90	0.5	6
H	$\mathrm{CH}_{3}$	H	90	0.5	7
H	$\mathrm{CH}_{3} \mathrm{O}$	H	89	0.5	4
$\mathrm{CH}_{3}$	$\mathrm{CH}_{3}$	H	79	-	17
$\mathrm{CH}_{3}$	$\mathrm{CH}_{3}$	$\mathrm{CH}_{3}$	29	1.2	65
$\mathrm{CH}_{3}$	$\mathrm{CH}_{3}$	$\mathrm{CH}_{3}$	84	-	16

If the $\mathrm{RC} \equiv \mathrm{CCu}$ reacted with $2-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cu}$ at $125^{\circ} \mathrm{C}$ is prepared in situ from $\mathrm{RC} \equiv \mathrm{CH}$ and $\mathrm{Cu}^{1}$, the yields drop considerably. Without solvent the yields are almost the same. The formation of the Cu can be well understood from the opposite polarization of the $\mathrm{Cu}-\mathrm{C}$ bonds in the starting materials [2].

In order to understand the high temperature reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ and 2-( $\left.\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cu}$, the decomposition of $\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2\right)_{4}$ in benzene at $80^{\circ} \mathrm{C}$ has been studied in detail. First a dark red substance, which is soluble in benzene, insoluble in pentane, and highly oxygen-sensitive, is formed [2]. From NMR data and from the reaction products the structure $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}_{2}^{1} \mathrm{Cu}_{2}^{0} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2$ was claimed. $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv$ $\mathrm{CCu}_{4}^{1} \mathrm{Cu}_{2}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2\right)_{3}$ is supposed to be its precursor [2,3]. Prolonged heating of the $\mathrm{Cu}_{6}$-compound at $80^{\circ} \mathrm{C}$ causes a slow decomposition to give $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2$, 2- $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cu}$, and dimethylaniline. As mentioned before, there is no distinct proof that with $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ and $2-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cu}$ instead of $\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2\right)_{4}$ the reaction path is the same [2].

The yield pattern of the decomposition reaction can be partly explained by comparison of the reaction temperature of the mixture $\left(125^{\circ} \mathrm{C}\right)$ and the decomposition temperature of the cluster. If the latter is relatively high (e.g., $189{ }^{\circ} \mathrm{C}$ at $\mathrm{R}=2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}$ ), the side reaction product dimethylaniline is favored against the alkyne ( $65 \%$ ); with $R=C_{6} H_{5}$ (decomposition temperature $=128^{\circ} \mathrm{C}$ ) only $6 \%$ dimethylaniline are formed [2].

An intra-aggregate valence disproportionation of $\left(\mathrm{RC} \equiv \mathrm{C}_{2} \mathrm{Cu}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2\right)_{4}\right.$ with the formation of asymmetric $\mathrm{R}^{\prime}(\mathrm{RC} \equiv \mathrm{C}) \mathrm{Cul}$ centers to give $\mathrm{RC} \equiv \mathrm{CCu}_{4}^{1} \mathrm{Cu}_{2}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2\right)_{3}$ and one mole of $\mathrm{RC}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2$ was claimed in a later publication. Cluster reorganization and a reductive coupling step lead to metallic Cu and to a second mole of $\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2$ [3].

Reactions of $\mathrm{RC} \equiv \mathbf{C C u}$ with $\left.\mathbf{4 - (} \mathbf{C H}_{3}\right)_{2} \mathbf{N C}_{6} \mathbf{H}_{4} \mathbf{C u}$ at $120^{\circ} \mathrm{C}$ in dimethylformamide follow a pattern similar to that of the 2-substituted compounds, but are only described with the aryl copper prepared in situ. With $\mathrm{R}=4-\mathrm{CIC}_{6} \mathrm{H}_{4}$ the yield of $4-\mathrm{CIC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-4$ is $81 \%$, and $12 \%$ dimethylaniline are admixed. With $\mathrm{R}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$ a mixture of $17 \%$ 4$\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-4,42 \% 4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-4,20 \%$ dimethylaniline, and $7 \% 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CH}$ is obtained. The high amount of the biphenyl is probably due to a oxidative coupling process by the presence of nitrosubstituted compounds. With $\mathrm{R}=4$ $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, 48 \% 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-4,26 \% 4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-4$, and $11 \%$ dimethylaniline are isolated. With $\mathrm{R}=4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ a mixture of $83 \% 4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv$ $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-4$ and $12 \%$ dimethylaniline is formed [2].

## References:

[1] R. Levene, J. Y. Becker, J. Klein (J. Organometal. Chem. 67 [1974] 467/71).
[2] G. Van Koten, R. M. W. Ten Hoedt, J. G. Noltes (J. Org. Chem. 42 [1977] 2705/11).
[3] J. G. Noltes (Phil. Trans. Roy. Soc. [London] A 308 [1982] 35/45).

### 1.1.2.1.9 Reactions with Nitrones to Form $\boldsymbol{\beta}$-Lactames

This reaction is referred to as "Reaction Type 12" in Table 1 on pp. $17 / 41$.
The reaction of $\mathrm{RC} \equiv \mathrm{CCu}$ with nitrones $\mathrm{R}^{2} \mathrm{CH}=\mathrm{NR}^{1} \mathrm{O}$ to yield $\beta$-tactames is a useful method to prepare these heterocycles; see Table 19. There is a discrepancy in the literature concerning the geometry of the $\beta$-lactames formed. At room temperature in pyridine ( 0.5 to 4 h ) cis- $\beta$-lactames [1] or a mixture of cis- and trans- $\beta$-lactames [2] have been found. At any rate, the primary product seems to be the cis compound. The rate of the rearrangement reaction obviously depends much on the substitution type. Generally the yields do not differ considerably whether pure $\mathrm{RC} \equiv \mathrm{CCu}$ is reacted or whether it is formed in situ from $\mathrm{RC} \equiv \mathrm{CH} / \mathrm{CuCl} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} /$ pyridine in the reaction batch [2].

Table 19
Reaction of RC $\equiv \mathrm{CCu}$ with Nitrones according to

$$
\mathrm{RC} \equiv \mathrm{CCu}
$$



1

(Reaction Type 12, explanation see pp. 12/4).


Table 19 [continued]

R	$\mathrm{R}^{1}$	$\mathrm{R}^{2}$	yield   of II   in \%	yield   of III   in \%	only   yield of   II + III   given   in \%	remarks, product	Ref.
$\mathrm{C}_{6} \mathrm{H}_{5}$	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	60	-	-	-	[1]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	51	-	-	-	[1]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	55	-	-	-	[1]
			20	12	-	-	[2]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	51	-	-	-	[1]
			23	2	-	-	[2]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	$3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	14	11	-	-	[2]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	32	8	-	-	[2]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	4- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	-	-	28	$-$	[2]
	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	8	7	-	$-$	[2]
	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	14	-	$-$	[2]
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	-	-	45	the position of $\mathrm{C}_{6} \mathrm{H}_{5}$ in $R^{1}$ is not given	[2]
	$\left(\mathrm{CH}_{2}\right.$	$\mathrm{OCH}_{2}$	54	-	-		[2]
		$\left.\mathrm{H}_{2}\right)_{4}$	40	-	-		[2]
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{H}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$	-	40			[2]
Gmelin Handbook Cu-Org. Comp. 3	References on p. 142						

Table 19 [continued]


## References:

[1] M. Kinugasa, S. Hashimoto (J. Chem. Soc. Chem. Commun. 1972 466/7).
[2] L. K. Ding, W. J. Irwin (J. Chem. Soc. Perkin Trans. I 1976 2382/6).

### 1.1.2.1.10 Reactions with Other Transition Metal Compounds

This reaction is referred to as "Reaction Type 18" in Table 1 on pp. 17/41.
Reactions of $R C \equiv C C u$ with compounds containing groups $\cdots M-X$ ( $M=$ transition metal) generally give transition metal complexes, and the reaction path usually seems to be very complicated. The simple reaction pattern $R C \equiv C C u+\cdots M-X \rightarrow R C \equiv C M \cdots+C u X$ is more or less restricted to $\mathrm{M}=\mathrm{Hg}$ and Pt ; in one case it also refers to a Ru compound. With other transition metal compounds the formation of $R C \equiv C M \cdots$ as a first step is supposed, but there exists no definite proof. Examples are listed in Table 20.

In contrast, compounds containing $\mathrm{SX}, \mathrm{PX}, \mathrm{SiX}$, or SnX groups generally give $\mathrm{RC} \equiv \mathrm{CS}$, $R C \equiv C P$ etc. structures and are therefore treated in Section 1.1.2.1.4.14.

With mercury compounds the products depend strongly on the reaction conditions and different paths for the reactions have been suggested. Depending on the reaction time
$\mathrm{RC} \equiv \mathrm{CCu}$ and $\mathrm{HgCl}_{2}$ give ( $\left.\mathrm{RC} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$ or $\mathrm{RC} \equiv \mathrm{CHgCl}$ (see Table 20). It is not clear whether the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CHgCl}$ formed on long refluxing of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{HgCl}_{2}$ in dioxane is produced by a direct substitution or from $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$ and $\mathrm{HgCl}_{2}$. The compounds $(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Hg}$ are possibly produced via $2 \mathrm{RC} \equiv \mathrm{CCu} \cdot \mathrm{HgCl}_{2}$, which is known to be formed from the components in tetrahydrofuran (see Section 1.1.2.5). Reactions starting with $\mathrm{RC} \equiv \mathrm{CCu}$ are the most important way to synthesize $\mathrm{RC} \equiv \mathrm{CHg}$ structures [1].

With $\mathrm{M}=\mathrm{Re}, \mathrm{Fe}, \mathrm{Ru}$, and Rh , mixtures are generally produced and both the solvent and the molar ratio of the reactants are of importance. The reaction times are up to 65 h in refluxing toluene. In most cases the mixtures require separation by chromatographic methods. If $\mathrm{RC} \equiv \mathrm{CCu}$ is reacted with phosphine complexes, the oxidation of a part of the phosphine unit to give $\mathrm{OPR}_{3}^{\prime}$ is typical and a copper mirror at the vessel wall is then observed.
Table 20
Reactions of RC $\equiv \mathrm{CCu}$ with Transition Metal Compounds
(Reaction Type 18, explanation see pp. 12/4).

metal compound	products (yield in \%), figures see pp. 148/9	molar ratio $\mathrm{RC} \equiv \mathrm{CCu}$ : metal compound; solvent; remarks	Ref.
mercury compounds			
$\mathrm{HgCl}_{2}$	$\left(\mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}(40)$	2:1; 15 min reflux in dioxan and workup with aqueous $\mathrm{NH}_{3}$	[1]
$\mathrm{CH}_{3} \mathrm{HgBr}$	$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CHgCH}_{3}(47)$	1:1; heptane/THF	[2]
$\mathrm{HgCl}_{2}$	$\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$ (47)	2:1; 15 min reflux in dioxan and workup with aqueous $\mathrm{NH}_{3}$	[1]
$\mathrm{HgCl}_{2}$	$\left(4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}(78)$	2:1; 15 min reflux in dioxan and workup with aqueous $\mathrm{NH}_{3}$	[1]
$\mathrm{HgCl}_{2}$	$\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$ (64)	2:1; 15 min reflux in dioxan and workup with aqueous $\mathrm{NH}_{3}$	[1]
$\mathrm{HgBr}_{2}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$	2:1; at room temperature in THF ( $40 \%$ ) or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(66 \%)$	[1]
$\mathrm{HgCl}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CHgCl}$	"long time refluxing" with excess $\mathrm{HgCl}_{2}$	[1]
	$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$	2:1; 15 min reflux in dioxan and workup with aqueous $\mathrm{NH}_{3}$	[1]
(E) $-\mathrm{ClCH}=\mathrm{CHHgCl}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg} \cdot \mathrm{CuCl}$	2:1; 2 h at $40^{\circ}$ in $\mathrm{CH}_{3} \mathrm{CN}$ or THF	[13]
$\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}(6)$	2:1; 2 h at $25^{\circ}$ in THF, workup with aqueous $\mathrm{NH}_{3}$	[1]



$\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}(58)$	2:1; 15 min reflux in dioxan and workup with aqueous $\mathrm{NH}_{3}$
$\mathrm{X}(21)+\mathrm{XI}(6)+\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCuCl}\right]_{4}$	2.4:1; 20 h in THF
1 (65)	5:1; 6.5 h reflux in benzene
III, $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}=\mathrm{Cl}$ (20)	1:1; 2 h reflux in THF
$\begin{aligned} & \text { III, } \mathrm{R}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{Cl}(16) \\ & \text { +ferrocene }(34) \end{aligned}$	1:1; 4 h reflux in THF
III, $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{X}=\mathrm{Br}$ (10)	1:1; 24 h reflux in THF
$\begin{gathered} \text { III, } \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{X}=\mathrm{Cl}(42) \\ \text { +ferrocene (10) } \end{gathered}$	1:1; 6 h reflux in acetone
$\begin{aligned} & \text { III, } \mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{Cl}(27) \\ & \text { +ferrocene (9) } \end{aligned}$	1:1; 6 h reflux in THF
IV (55)	2:1; 20 h reflux in benzene
VI (33) $+\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCuCl}\right]_{4}$	2:1;7 h reflux in benzene
VII	1:1.75; 13 h reflux in benzene
VII (5) + XIII, R $=4-\mathrm{FC}_{6} \mathrm{H}_{4}(56)$	2:1; 6 h reflux in benzene
IV + V (together 82\%)	2:1; 20 h reflux in benzene
IV (7) + XIII, $\mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}(62)$	2:1; 18 h reflux in benzene
IX, $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{M}=\mathrm{Rh}(26)+\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	4:1; 22 h reflux in benzene
VIII, $R=C_{6} F_{5}, M=R h(48)$	1:1; 23 h reflux in benzene


4-CH3 $\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{HgCl}_{2}$
rhenium compounds	
$\mathrm{C}_{6} \mathrm{~F}_{5}$	cis-(CO) ${ }_{3} \mathrm{ReCl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
$\mathrm{C}_{6} \mathrm{H}_{5}$	cis-(CO) ${ }_{3} \mathrm{ReCl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
iron compounds	
$\mathrm{C}_{6} \mathrm{~F}_{5}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}$
$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}$
$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Br}$
	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}$
4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}$
ruthenium compounds	
$\mathrm{CH}_{3}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{RuCl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
$\mathrm{C}_{6} \mathrm{~F}_{5}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{RuCl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
4- $\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{RuCl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{RuCl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{RuCl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
rhodium compounds	
$\mathrm{C}_{6} \mathrm{~F}_{5}$	$\operatorname{RhCl}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}$
	trans-CORhCl[ $\mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}}$

Table 20 [continued]

R	metal compound	products (yield in \%), figures see pp. 148/9	molar ratio $\mathrm{RC} \equiv \mathrm{CCu}$ : metal compound; solvent; remarks	Ref.
4- $\mathrm{FC}_{6} \mathrm{H}_{4}$	trans-CORhCL[P(C66 $\left.\left.\mathrm{H}_{5}\right)_{3}\right]_{2}$	$\begin{aligned} & \text { IX, } R=C_{6} F_{5}, M=R h(40) \\ & +\left[\left(C_{6} H_{5}\right)_{3} \mathrm{PJ}_{3} \mathrm{Cu}_{2} \mathrm{Cl}_{2}(12)\right. \end{aligned}$	1:1; 23 h reflux in toluene	[10]
		VIII, $\mathrm{R}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{M}=\mathrm{Rh}$ (16)	4:1;36 h reflux in benzene	[10]
	trans-CORhCl[P( $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$	$\begin{aligned} & \text { IX, } \mathrm{R}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{M}=\mathrm{Rh}(17) \\ & \quad+\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PI}_{3} \mathrm{Cu}_{2} \mathrm{Cl}_{2}(18)\right. \\ & \quad+\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \end{aligned}$	1:1; 21 h reflux in dimethoxyethane	[10]
$\mathrm{C}_{6} \mathrm{H}_{5}$		VIII, $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{M}=\mathrm{Rh}$ (29)	4:1; 4 h reflux in dimethoxyethane	[10]
	trans-CORhCl[P( $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$	$\begin{aligned} & \text { IX, } \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{M}=\mathrm{Rh}(7) \\ & \quad+\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PJ}_{3} \mathrm{Cu}_{2} \mathrm{Cl}_{2}+\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right. \end{aligned}$	4:1; 6 h reflux in THF	[10]
		IX, $R=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{M}=\mathrm{Rh}(3)+\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	4:1; 24 h reflux in benzene	[10]
4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\begin{aligned} & \text { trans-CORhCl[ }\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{3}\right]_{2} \\ & \text { trans-CORhCl}\left[P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \end{aligned}$	VIII, $\mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{M}=\mathrm{Rh}$ (25)	4:1; 4 h reflux in dimethoxyethane	[10]
		$\begin{aligned} & \text { IX, } \mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{M}=\mathrm{Rh} \\ & \quad+[(4) \\ & \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{3} \mathrm{Cu}_{2} \mathrm{Cl}_{2}(11)\right. \end{aligned}$	4:1; 11 h reflux in THF	[10]
		IX, R = 4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{M}=\mathrm{Rh}$ (traces)	4:1; 21 h reflux in benzene	[10]
iridium compounds				
$\mathrm{C}_{6} \mathrm{~F}_{5}$	trans-COIrCl[ $\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{3}\right]_{2} \text { }}$	VIII, $\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{M}=\operatorname{lr}$ (9)	4:1;3 h reflux in dimethoxyethane	[10]
	trans-COIrCl[P( $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$	$\begin{aligned} & \text { IX, } \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{M}=\operatorname{Ir}(63)+\mathrm{XII}(9) \\ & \quad+\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PI}_{3} \mathrm{Cu}_{2} \mathrm{Cl}_{2}(2)\right. \\ & \quad+\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}+\mathrm{Cu} \text { mirror } \end{aligned}$	$4: 1 ; 65 \mathrm{~h}$ reflux in toluene	[10]
4- $\mathrm{FC}_{6} \mathrm{H}_{4}$		$\begin{aligned} & \mathrm{IX}, \mathrm{R}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{M}=\operatorname{Ir}(65) \\ & \quad+\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Pl}_{3} \mathrm{Cu}_{2} \mathrm{Cl}_{2}(5)\right. \\ & \quad+\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}+\mathrm{Cu} \text { mirror } \end{aligned}$	4:1; 50 h reflux in benzene	[10]

$[10]$
$[3,10]$
$[14]$
$[10]$
$[12]$
$[12]$
$[9]$
$[9]$
$[9]$
$[9]$
$[12]$
$[12]$

VIII, $R=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{M}=\operatorname{lr}(90)$	4:1; 16 h reflux in benzene
$\begin{aligned} & \text { II }(4)+\text { IX, } M=\operatorname{Ir}(61) \\ & \quad+\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{3} \mathrm{Cu}_{2} \mathrm{Cl}_{2}(9)\right. \\ & \\ & \quad+\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}+\mathrm{Cu} \text { mirror } \end{aligned}$	4:1;36 h reflux in benzene
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{Clr}(\mathrm{CO})\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{2} \mathrm{CuCl}$	
$\begin{aligned} & \text { IX, } \mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{M}=\operatorname{Ir}(73) \\ & \quad+\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right] \mathrm{Cu}_{2} \mathrm{Cl}_{2}(12) \\ & \quad+\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}+\mathrm{Cu} \text { mirror } \end{aligned}$	4:1;36 h reflux in benzene
cis $-\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CCH}=\mathrm{CH}_{2}\right)_{2}$   (78)	2:1; 1 h in tetramethylethylene diamine/acetone at $25^{\circ}$
trans- $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CCH}=\mathrm{CH}_{2}\right)_{2}$   (78)	2:1; 1 h in tetramethylethylene diamine/acetone at $25^{\circ}$
cis-[( $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}\right)_{2}(56)$	5:1; 4 h reflux in benzene
cis- $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}\right)_{2}$ (25)	2:1; 12 h reflux in benzene
$\begin{aligned} & \operatorname{trans}(?)- \\ & \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~F}-4\right)_{2}(12) \end{aligned}$	2.1:1; 11 h reflux in THF
trans-[( $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2}(15)$	2.4:1; 6 h reflux in benzene
cis-[( $\left.\left.\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2}$	2:1; 1 h in tetramethylethylene diamine/acetone at $25^{\circ}$
trans-[(C) $\left.\left.\mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2}$	2:1; 1 h in tetramethylethylene diamine/acetone at $25^{\circ}$
trans(?)-[( $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-4\right)_{2}(11)$	

trans-COIrCl[ $\left.\left[\mathrm{P}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{3}\right]_{2}$
trans-COIrCl[ $\left.\left[\mathrm{P}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
COIrCl$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{2}$
trans-COIrCl[ $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
platinum compounds
cis- $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}\right.$
trans- $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}\right.$
cis- $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}\right.$ $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ cis- $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}\right.$
trans- $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}\right.$
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$
4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
References on pp. 149/50



II


v


vi


VIII : $\mathrm{R}^{1}=\mathrm{CH}_{3}$
IX: $R^{1}=\mathrm{C}_{6} \mathrm{H}_{5}$


XII


X


XI


XIII

## References:

[1] A. M. Sladkov, L. Yu. Ukhin, Zh. I. Orlova (Izv. Akad. Nauk SSSR Ser. Khim 1968 2586/90; Bull. Acad. Sci. USSR Div. Chem. Sci. 1968 2446/9).
[2] L. I. Zakharkin, V. N. Kalinin, I. R. Gol'ding, A. M. Sladkov, A. V. Grebennikov (Zh. Obshch. Khim. 41 [1971] 823/8; J. Gen. Chem. [USSR] 41 [1971] 830/3).
[3] O. M. Abu Salah, M. I. Bruce, M. R. Churchill, S. A. Bezman (J. Chem. Soc. Chem. Commun. 1972 858/9).
[4] M. I. Bruce, R. Clarke, J. Howard, P. Woodward (J. Organometal. Chem. 42 [1972] C107/ C109).
[5] O. M. Abu Salah, M. I. Bruce (J. Chem. Soc. Dalton Trans. 1974 2302/4).
[6] O. M. Abu Salah, M. I. Bruce, A. D. Redhouse (J. Chem. Soc. Chem. Commun. 1974 855).
[7] M. I. Bruce, O. M. Abu Salah, R. E. Davis, N. V. Raghavan (J. Organometal. Chem. 64 [1974] C48/C50).
[8] O. M. Abu Salah, I. M. Bruce (J. Chem. Soc. Dalton Trans. 1975 2311/5).
[9] O. M. Abu Salah, M. I. Bruce (Australian J. Chem. 29 [1975] 73/7).
[10] O. M. Abu Salah, M. I. Bruce (Australian J. Chem. 29 [1975] 531/41).
[11] V. N. Narasimhachari (Diss. Univ. Texas 1975, pp. 1/215; Diss. Abstr. Intern. B 36 [1975] 745; C.A. 83 [1975] No. 171 198).
[12] K. Sonogashira, Y. Fujikura, T. Yatake, N. Toyoshima, S. Takahashi, N. Hagihara (J. Organometal. Chem. 145 [1978] 101/8).
[13] I. A. Garbuzova, I. R. Gol'ding, N. N. Travkin, V. T. Aleksanyan, A. M. Sladkov (Koord. Khim. 5 [1979] 345/50; Soviet J. Coord. Chem. 5 [1979] 261/5; C.A. 90 [1979] No. 187079).
[14] A. T. Hutton, P. G. Pringle, B. L. Shaw (Organometallics 2 [1983] 1889/91).

### 1.1.2.2 "Mixed Acetylides" of the Type $\mathrm{R}_{\mathrm{n}}^{1} \mathrm{R}_{1-n}^{2} \mathrm{C}_{\equiv} \mathrm{CCu}$

The simultaneous reaction of two different alkynes (usually 1:1) with Cul compounds in aqueous-ammoniacal solutions (Preparation Method Ia in Section 1.1.2.1.1, see pp. 2/3) yields substances which are called "mixed copper acetylides". Usually the alkyne mixture is stirred into the copper solution. Though it is ostensibly an $R^{1} C \equiv C C u / R^{2} C \equiv C C u$ mixture, their UV maxima may differ considerably from those of the individual acetylides. This is the reason why they are usually treated like compounds. They are useful because of their photoelectric properties. From joint analysis of the photoconductivity spectra and of the $\mathrm{C} \equiv \mathrm{C}$ stretching frequencies a " block copolymer structure" can be attributed to these "mixed acetylides". This structure involves intermolecular coordinations of Cu to $\mathrm{C} \equiv \mathrm{C}$, not a polymerization of $\mathrm{C} \equiv \mathrm{C}$ groups [3].

Consequently the oxidation of a "mixed acetylide" $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CCu} / \mathrm{R}^{2} \mathrm{C} \equiv \mathrm{CCu}$ with $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (cf. Reaction Type 2c in Section 1.1.2.1.1, p. 12) yields predominantly asymmetrically substituted diynes $R^{1}(C \equiv C)_{2} R^{2}$ and very little $R^{1}(C \equiv C)_{2} R^{1}$ and $R^{2}(C \equiv C)_{2} R^{2}[1]$. Apparently the $R^{1} C \equiv C$ and $R^{2} C \equiv C$ units are in an advantageous position in this "block copolymer" in respect to the oxidation process. In contrast, even a very thorough mechanical mixture of two acetylides does not predominantly yield $R^{1}(C \equiv C)_{2} R^{2}$.

A "block copolymer" (see above) resembling the "mixed acetylides" is also obtained by simultaneous precipitation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SCu}$ in aqueous solution from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ $\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$, and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{n}\right]^{+}$. It has a photoconductivity like the "mixed acetylides". The photoconductivity maximum was found at 465 nm ; the forbidden band width is 2.42 eV [6].
$\mathbf{N C C} \equiv \mathbf{C C u} / \mathrm{HOCH}_{2} \mathbf{C H}=\mathbf{C H C} \equiv \mathbf{C C u}$ is oxidized by $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ to give $\mathrm{HOCH}_{2} \mathrm{CH}=\mathrm{CH}(\mathrm{C} \equiv$ C) ${ }_{2} \mathrm{CN}$ [2].
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} / 2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathbf{C} \equiv \mathbf{C C u}$, oxidation in dilute aqueous $\mathrm{KOH} / \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ to give $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ [1].
$\mathbf{C H}_{2}=\mathbf{C H C} \equiv \mathbf{C C u} / \mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C} \equiv \mathbf{C C u}$ [3]. The $\mathrm{C} \equiv \mathrm{C}$ band of this "mixed acetylide" was found at $1935 \mathrm{~cm}^{-1}$ (KBr) [4], and the photoconductivity maximum at $\sim 520 \mathrm{~nm}$ [4, 6]. A discrepancy between the forbidden band widths from the photoconductivity data ( $1.92 \pm 0.04 \mathrm{eV}$ [4] vs. 2.24 eV [6]) may possibly be attributed to a confusion of the data of the "mixed acetylides" $\mathrm{CH}_{2}=\mathrm{CHC} \equiv \mathrm{CCu} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{Cu}_{2} \mathrm{C}_{2} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in [4].
$\mathrm{Cu}_{2} \mathbf{C}_{2} / \mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C} \equiv \mathbf{C C u}$ [3]. The (molar?) ratio of $\mathrm{Cu}_{2} \mathrm{C}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ was given as 1:2.16. In $\mathrm{KBr}, \mathrm{C} \equiv \mathrm{C}$ bands at $1938 \mathrm{~cm}^{-1}, 1966 \mathrm{~cm}^{-1}$, and $2037 \mathrm{~cm}^{-1}$ were measured [4]. The photoconductivity maximum was found at $\sim 620 \mathrm{~nm}[4,6]$, and a UV maximum at 540 nm [6]. From the UV data a forbidden band width of 1.88 eV results. Again, the values from photoconductivity data differ (see above) : 1.9 [5], 1.92 [6], $2.24 \pm 0.04 \mathrm{eV}$ [4]. The laser-induced photodecomposition threshold is three orders of magnitude higher than the photoconductivity threshold; it is $16 \mathrm{~kW} \cdot \mathrm{~cm}^{-2}$ under free-oscillation conditions and $0.5 \mathrm{MW} \cdot \mathrm{cm}^{-2}$ under Qswitching conditions [5].

## References:

[1] A. Baeyer, L. Landsberg (Ber. Deut. Chem. Ges. 15 [1882] 57/61).
[2] P. J. Ashworth, E. R. H. Jones, G. H. Mansfield, K. Schlögl, J. M. Thompson, M. C. Whiting (J. Chem. Soc. 1958 950/4).
[3] V. S. Myl'nikov, A. N. Dune, I. R. Gol'ding, A. M. Sladkov (Tr. 5th Mezhdunar. Konf. Organometallov. Soedin., Moscow 1972, Vol. 1, pp. 468/9; Summaries 5th Organometal. Compounds, Moscow 1972, pp. 470/1, Ref. No. 180).
[4] V. S. Myl'nikov, A. N. Dun'e, I. R. Gol'ding, A. M. Sladkov (Zh. Obshch. Khim. 42 [1972] 2543/6; J. Gen. Chem. [USSR] 42 [1972] 2532/5).
[5] V. S. Myl'nikov, A. A. Kharchenko, M. M. Sobolev (Kvantovaya Elektronika [Moscow] 3 [1976] 288/92; Soviet J. Quant. Electron. 6 [1976] 151/3).
[6] V. S. Myl'nikov (Zh. Nauchn. Prikl. Fotogr. Kinematogr. 24 [1979] 25/8; C.A. 91 [1979] No. 66221).

### 1.1.2.3 Complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ with Alkali and Mg Halides

A 1:1 complex of $\mathrm{CH}_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{LiSn}\left(\mathrm{CH}_{3}\right)_{3}$ is described in Section 1.1.2.4. "Mixed homocuprates" of the type [ $\mathrm{RC} \equiv \mathrm{CCuR}$ ']M ( $\mathrm{M}=\mathrm{Li}, \mathrm{MgCl}, \mathrm{MgBr}$ ) have been described in "Organocopper Compounds" 2, 1983, pp. 174/211 ( $\mathrm{M}=\mathrm{Li}$ ) and 227/35 ( $\mathrm{M}=\mathrm{MgCl}$ or MgBr ), as $R^{\prime}$ groups such as alkyl, alkenyl, or aryl generally are more reactive than the alkynyl groups $R C \equiv C$.

The generally highly insoluble, mostly deep red or brown $\mathrm{RC} \equiv \mathrm{CCu}$ compounds can be dissolved in solvents such as ether, $\mathrm{CH}_{3} \mathrm{CN}$, tetrahydrofuran, or hexamethylphosphoric triamide in the presence of $\mathrm{Li}, \mathrm{Na}$, or Mg halides, and this even at temperatures of $-40^{\circ} \mathrm{C}$. The resulting yellow or colorless solutions obviously contain complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ with the halides and are much more reactive than solutions of $\mathrm{RC} \equiv \mathrm{CCu}$, which can be obtained only for certain $R$ and certain solvents; see Section 1.1.2.1.1. It is not clear whether all $\mathrm{RC} \equiv \mathrm{CCu}$ compounds form reagents of this type with Lil. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCu}$ could be an exception, see No. 12 in Table 21 [8]. In the case of $\mathrm{NaCl}, \mathrm{NaI}$, and LiF the complex reagent formation is very doubtful.

Obviously the type of the solvents is of high importance for the formation of the reagents. As their structure and, in some cases, even their stoichiometry are not known, they are formulated in this section as $\mathrm{RC} \equiv \mathrm{CCu}, \mathrm{MX}$ (cf. the remarks in "Organocopper Compounds" 1, pp. 4 and 6/7).

The reagents given in Table 21 are prepared by the following methods:
Method I: RCCCu + MX $\rightarrow \mathrm{RC} \equiv \mathrm{CCu}, \mathrm{MX}$.
The reaction is carried out at $-40^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$. The end point of the addition can easily be observed, for the insoluble red acetylide is then consumed.

Method II: RC $\equiv C M+C u X \rightarrow R C \equiv C C u, M X$.

Table 21
Complexes $\mathrm{RC} \equiv \mathrm{CCu}, \mathrm{MX}$ ( $\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{MgX}$; $\mathrm{X}=$ halogen).
For abbreviations and dimensions see $p$. $X$.
No. reagent
Lithium reagents
$1 \mathrm{CIC} \equiv \mathrm{CCu}$, Lil
method of preparation (solvent)
Ref.
properties, reactions, and further remarks

## thium reagents

II $\left(\mathrm{CH}_{3} \mathrm{CN} /\right.$ ether, $\left.\mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$
no information about a possible halogen interchange given
yields $84 \% \mathrm{ClC} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ for reactions with $\mathrm{R}^{1} \mathrm{COCl}$ see Table 22, p. 155
$2 \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiBr}$
$3 \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC} \equiv \mathrm{CCu}$, Lil
I $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$
[3]
gives 7 -(prop-1-inyl)cyclohepta-1,3,5-triene with tropylium salts in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ}$, isolated after precipitation of $\mathrm{Cu}^{+}$by $\mathrm{Na}_{2} \mathrm{~S}$

II ( $\mathrm{CH}_{3} \mathrm{CN}$ /ether, ether)
gives $55 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$
for reaction with $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COCl}$ see Table 22, p. 155
$4 \quad \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiBr}$
II $\left(\mathrm{C}_{6} \mathrm{H}_{14} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO} / \mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$
gives $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C} \equiv \mathrm{COCH}_{3}$ with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{I}) \mathrm{OCH}_{3}$

5 cyclo- $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiBr} \quad \mathrm{I}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$
reacts analogously to No. 2 (55\% yield)
6 $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}$,Lil

II (ether)
gives about $65 \%\left[n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCuCR}^{1}=\mathrm{CH}_{2}\right]$ Li with $\mathrm{CH}_{2}=\mathrm{CR}^{1} \mathrm{Li}$ in ether at 15 to $20^{\circ} ; \mathrm{R}^{1}=\mathrm{CH}_{3}$, $\mathrm{CH}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$
$7\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$, Lil
II (ether)
gives $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{C} \equiv \mathrm{CCuR}^{1}\right] \mathrm{Li}$ with $\mathrm{R}^{1} \mathrm{Li}$ in ether at $0^{\circ} ; \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{CH}_{2}=\mathrm{CH}$
$8\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CCu}, \mathrm{LiBr}$
II $\left(\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{THF} / \mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$
gives $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{C} \equiv \mathrm{COCH}_{3}$ with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{I}) \mathrm{OCH}_{3}$
$9\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CCu}, \mathrm{Lil}$
II (THF)
[14, 20]
orange-red
gives $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CCuR}^{1}\right] \mathrm{MgCl}$ with $\mathrm{R}^{1} \mathrm{MgCl}$ in ether or ether/THF

10 $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiBr}$

II $\left(\mathrm{C}_{6} \mathrm{H}_{14} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO} / \mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$
gives $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C} \equiv \mathrm{COCH}_{3}$ with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{I}) \mathrm{OCH}_{3}$

Table 21 [continued]

	reagent	method of preparation (solvent) properties, reagents, and further remarks	Ref.
11	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{Lil}$	I (ether, $\left.\operatorname{OP}\left(\mathrm{N}_{( }\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$, II (ether)   also from $\left[\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCuR}^{1}\right] \mathrm{Li} \cdot$ Lil and $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br} ; \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{15}$   canary yellow solution in ether   in part unclear whether No. 11 or $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}$ is reacted   in ether at $0^{\circ}$ equilibrium No. $11+\mathrm{R}^{1} \mathrm{Li} \rightleftharpoons$ [ $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCuR}{ }^{1}$ ]Li (see "Organocopper Compounds" 2 , Section 1.1.1.2.4); $\mathrm{R}^{1}=\mathrm{CH}_{3}$, $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{15}$   for reactions with $\mathrm{R}^{1} \mathrm{COCl}$ see Table 22, p. 155 gives $70 \% n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCOC}_{6} \mathrm{H}_{5}$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCN}$ in ether	$\begin{aligned} & {[1,6,7} \\ & 11,16] \end{aligned}$
12	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCu}, \mathrm{Lil}$	II (THF, ether)   orange solution in ether, at $-49^{\circ}$ crystallizes $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCu}$   gives $65 \%\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ with BrCN the reaction with $\mathrm{R}^{1} \mathrm{Li}$ in ether or THF gives $\begin{aligned} & {\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCuR}^{1}\right] \mathrm{Li} ; \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{CH}_{2}=\mathrm{CH},} \\ & \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right),\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC}\left(=\mathrm{CH}_{2}\right), \\ & \left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & {[8,12,} \\ & 13,15, \\ & 17] \end{aligned}$
13	$\begin{aligned} & \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NC} \equiv \mathrm{CCu}, \mathrm{Lil} \\ & \quad\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=\text { pyrid }-2-\mathrm{yl}\right) \end{aligned}$	II ( $\mathrm{CH}_{3} \mathrm{CN}$ /ether)   gives an unidentifiable product with BrCN	[15]
14	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiBr}$	$\begin{aligned} & \text { I }\left(\mathrm{OP}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \\ & \text { gives } 83 \%{\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \text { with }}_{\quad \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}} \end{aligned}$	[2]
15	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiCl}$	I (dimethylformamide, ether, $\mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$ ) gives $89 \% n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$   for reaction with $\mathrm{CH}_{3} \mathrm{COCl}$ see Table 22, p. 155	[1, 2]
16	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiF}$	$\begin{aligned} & \text { I }\left(\mathrm{OP}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) \\ & \text { gives } 45 \% \mathrm{n}_{3} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \text { with } \\ & \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br} \end{aligned}$	[2]
17	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{Lil}$	I (ether, $\left.\mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$   gives $83 \%$ n $-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$   for reaction with $\mathrm{CH}_{3} \mathrm{COCl}$ see Table 22, p. 155	$[1,2]$
18	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiCl}$	$\begin{aligned} & \text { I (THF) } \\ & \text { gives } \mathrm{P}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4\right)_{3} \text { with } \mathrm{PCl}_{3} \text { in } \mathrm{THF} \text { and } \\ & 4-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{P}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4\right)_{2} \text { with } 4-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{PCl}_{2} ; \\ & \mathrm{X}=\mathrm{Cl}, \mathrm{H}, \mathrm{CH}_{3} \mathrm{O},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \end{aligned}$	[9]
$\underset{\text { Cu-Org }}{\text { Gmelin }}$	in Handbook   g. Comp.	References on p. 156	

Table 21 [continued]

No.	reagent	method of preparation (solvent) properties, reagents, and further remarks	Ref.
19	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiBr}$	I (THF) reacts with $4-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{PCl}_{2}$ as No. 18; the $15 \%$ yield with $X=H$ is enhanced to $35 \%$, if one more mole LiBr is added	[9]
20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiBr}$	I (THF) gives $64 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2}$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PCl}_{2}$ in THF	[9]
21	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{Lil}$	I (ether, ether/OP( $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$ ), II (ether)   in part unclear whether No. 21 or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ is reacted   gives $60 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCN}$ and $26 \% \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ with BrCN , and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{3}$ with $\mathrm{CuCH}_{3}$ at $0^{\circ}$ in ether   gives $50 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)=\mathrm{NC}_{6} \mathrm{H}_{5}$ with   $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{Cl})=\mathrm{NC}_{6} \mathrm{H}_{5}$ in ether at $25^{\circ}$   reactions with $\mathrm{R}^{1} \mathrm{COCl}$ see Table 22, p. 155	$\begin{aligned} & {[1,4,6} \\ & 10,15 \\ & 16] \end{aligned}$
22	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NC} \equiv \mathrm{CCu}, \mathrm{Lil}$	II ( $\mathrm{CH}_{3} \mathrm{CN}$, ether) gives $20 \%\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NC} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	[5]
23	$\mathrm{n}-\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{C} \equiv \mathrm{CCu}$, Lil um reagents	II (ether)   gives $\mathrm{n}-\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{C} \equiv \mathrm{CCH}_{3}$ with $\mathrm{CuCH}_{3}$ in ether at $0^{\circ}$	[10]
24	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{NaI}$	II (THF, OP $\left.\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$   gives $25 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	[5]
25	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{NaCl}$	II (THF, OP $\left.\left(\mathrm{N}_{( }\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$   different halogen anions from added salts present, therefore mixtures possible gives $54 \%$ n $-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	[5]
26	$n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{NaI}$ nesium reagents	II (THF) different halogen anions from added salts present, therefore mixtures possible gives $75 \% \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	[5]
27	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{MgBr}_{2}$	II (ether, $\mathrm{CH}_{3} \mathrm{CN} /$ ether) for reaction with $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COCl}$ see Table 22, p. 155	[6]
28	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{MgCl}_{2}$	$\mathrm{I}\left(\mathrm{OP}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$   gives $41 \% \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	[2]
29	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{MgBr} 2$	$\mathrm{I}\left(\mathrm{OP}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$   gives $73 \% \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	[2]
		References on p. 156	in Handbook rg. Comp. 3

The reaction $\mathrm{RC} \equiv \mathrm{CCu}, \mathrm{MX}+\mathrm{R}^{1} \mathrm{COCl} \rightarrow \mathrm{RC} \equiv \mathrm{CCOR}^{1}+\mathrm{CuCl}+\mathrm{MX}$ is a very useful method to prepare ynones; see Table 22. With $\mathrm{RC} \equiv \mathrm{CCu}, \mathrm{Lil}$ in ether the yield depends on the order of the addition of reactant and solvent. Adding an acid halide first and hexamethylphosphoric triamide (tetramethylethylenediamine or triethylamine) afterwards gives higher yields than the reverse order [1].

Table 22
Preparation of Ynones according to $\mathrm{RC} \equiv \mathrm{CCu}, \mathrm{MX}+\mathrm{R}^{1} \mathrm{COCl} \rightarrow \mathrm{RC} \equiv \mathrm{CCOR}^{1}+\mathrm{MX}+\mathrm{CuCl}(\mathrm{M}=\mathrm{Li}$ or MgX; X=halogen).
Typically the reaction is carried out in ether or ether/hexamethylphosphoric triamide at $20^{\circ} \mathrm{C}$ for 1 to 15 h .

$\mathrm{RC} \equiv \mathrm{CCu}, \mathrm{MX}$	R ${ }^{1}$	remarks (yield of $\mathrm{RC} \equiv \mathrm{CCOR}^{1}$ in \%)	Ref.
$\mathrm{CIC} \equiv \mathrm{CCu}, \mathrm{Lil}$	$\mathrm{CH}_{3}$	$(<5)$	[6]
	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	high yield, the product polymerizes easily	[6]
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC} \equiv \mathrm{CCu}$, Lil	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	(50)	[6]
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}$, Lil	$\mathrm{CCl}_{3}$	(36)	[6]
	$\mathrm{ClCH}_{2}$	(9)	[6]
	$\mathrm{CH}_{3}$	in ether ( 25 to 53 ), diglyme (10), hexamethylphosphoric triamide (2), or in ether followed by hexamethylphosphoric triamide (73) no reaction in $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$	[1, 6]
	$\mathrm{CH}_{2}=\mathrm{CH}$	(80)	[6]
	$\mathrm{CICO}\left(\mathrm{CH}_{2}\right)_{2}$	gives $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COC} \equiv \mathrm{CC}_{4} \mathrm{H}_{9}-\mathrm{n}(10)$	[6]
	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$	(80)	[6]
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2}$	(73)	[6]
	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	(53 to 96)	[1, 6]
	$\mathrm{CICO}\left(\mathrm{CH}_{2}\right)_{4}$	gives $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COC} \equiv \mathrm{CC}_{4} \mathrm{H}_{9}-\mathrm{n}(26)$	[6]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	(86)	[6]
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$	(40)	[6]
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{MgBr}_{2}$	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	(36)	[6]
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{LiCl}$	$\mathrm{CH}_{3}$	(65)	[1]
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}$, Lil	$\mathrm{CH}_{3}$	(82)	[1]
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$, Lil	$\mathrm{CH}_{3}$	(82)	[1, 6]
	$\mathrm{C}_{6} \mathrm{H}_{5}$	(90)	$[1,6]$
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}$	(50)	[6]
Gmelin Handbook Cu-Org. Comp. 3		References on p. 156	

## References:

[1] J. F. Normant, M. Bourgain (Tetrahedron Letters 1970 2659/62).
[2] J. F. Normant, M. Bourgain, A.-M. Rone (Compt. Rend. C 270 [1970] 354/7).
[3] C. E. Hudson, N. L. Bauld (J. Am. Chem. Soc. 94 [1972] 1158/63).
[4] J. F. Normant (Synthesis 1972 63/80, 70/80).
[5] M. Bourgain, J. F. Normant (Bull. Soc. Chim. France 1973 1777/9).
[6] M. Bourgain, J. F. Normant (Bull. Soc. Chim. France 1973 2137/42).
[7] M. Bourgain, J. Villieras, J. F. Normant (Compt. Rend. C 276 [1973] 1477/80).
[8] H. O. House, M. Umen (J. Org. Chem. 38 [1973] 3893/901).
[9] B. I. Stepanov, L. I. Chekunina, A. I. Bokanov (Zh. Org. Khim. 43 [1973] 2648/54; J. Org. Chem. [USSR] 43 [1973] 2627/31).
[10] R. Levene, J. Y. Becker, J. Klein (J. Organometal. Chem. 67 [1974] 467/71).
[11] J. P. Marino, D. M. Floyd (J. Am. Chem. Soc. 96 [1974] 7138/40).
[12] H. O. House, C.-Y. Chu, J. M. Wilkins, M. J. Umen (J. Org. Chem. 40 [1975] 1460/9).
[13] J. P. Marino, J. S. Farino (Tetrahedron Letters 1975 3901/4).
[14] M. W. Logue, G. L. Moore (J. Org. Chem. 40 [1975] 131/2).
[15] P.-L. Compagnon, B. Grosjean (Synthesis 1976 448/9).
[16] R. Robin (Compt. Rend. C 282 [1976] 281/2).
[17] R. K. Boeckman, M. Ramaiah (J. Org. Chem. 42 [1977] 1581/6).
[18] D. B. Ledlie, G. Miller (J. Org. Chem. 44 [1979] 1006/7).
[19] J. M. Oostveen, H. Westmijze, P. Vermeer (J. Org. Chem. 45 [1980] 1158/60).
[20] J. Drouin, G. Rousseau (J. Organometal. Chem. 289 [1985] 223/30).

### 1.1.2.4 Complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ with Compounds of Further Main Group Elements

The polymeric structure of $\mathrm{RC} \equiv \mathrm{CCu}$ is broken down in suitable solvents by $\mathrm{S}, \mathrm{N}, \mathrm{P}$, As, and Sb donor compounds by complex formation. Most of the complexes have been isolated as crystalline solids, others are not as well characterized or even exist only in solution. With stibines, no complex has been isolated. In most cases only the stoichiometry of the complexes is known, but not their aggregation. Only in the cases of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CCu}$. $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ (Nos. 23 and 32) have tetrameric structures been proved by X-ray analysis. For No. 32, however, insoluble, probably polymeric isomers exist too (structures unknown). For other 1:1 complexes, tetrameric solid state structures have also been assumed. Molecular weight determinations generally show lower aggregation in solution dependent on the type of acetylide, ligand, solvent, and sometimes the concentration. For complexes with a ligand: Cu ratio $>1$, generally lower aggregation is assumed than for 1:1 complexes.

All cases where complexes are proved or can be expected are listed in Table 23. Isolated compounds with known stoichiometry are formulated with a point (like $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{NH}_{3}$ ); a probable complex formation with unknown stoichiometry is symbolized by a comma (like $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{PCl}_{3}$ ) as explained in "Organocopper Compounds" 1, 1985, p. 6. Supposed complex formation with $\mathrm{S}_{-}, \mathrm{N}-$, and P -donor compounds is discussed in the following.

Sulfur Complexes. The reaction of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CLi}$ with $\mathrm{CuBr} \cdot \mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}$ in ether at $-20^{\circ} \mathrm{C}$ has been said to give $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CCu}$ (see Section 1.1.2.1.1) [51]. The same authors formulate the structure $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CCuS}\left(\mathrm{CH}_{3}\right)_{2}$ in a further publication without any explanation [50].

Amine Complexes. The compounds $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$, and $4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ are soluble in cyclic amines like pyrrolidine, piperidine, azepane, and morpholine. The IR frequency of the $\mathrm{C} \equiv \mathrm{C}$ bond is found in the region of $2030 \mathrm{~cm}^{-1}$, which led these authors
to claim the formation of dissolved amine complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ although an isolation was not possible [21]. On the other hand, no complex has been obtained from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $4,4^{\prime}$-bipyridine in toluene or ether [13]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$, electrochemically formed in $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ containing [ $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$ ]CIO ${ }_{4}$, gives a dark red solution with 2,2'-bipyridine [49], whereas $2,2^{\prime}$-bipyridine and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ prepared as usual give no product in toluene or ether [13]. Solutions of $\mathrm{RC} \equiv \mathrm{CCu}$ in pyridine are supposed to contain at least traces of a RC $\equiv C C u$-pyridine complex [19]. From solubility phenomena the formation of similar complexes with dimethylformamide and hexamethylphosphoric triamide has been supposed, but no reliable work is done about this question. The in situ preparation of $\mathrm{RC} \equiv \mathrm{CCu}$ from $\mathrm{RC} \equiv \mathrm{CH}$, activated Cu , and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in pyridine is believed to be favored by a pyridine complex formation [15]. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ can be extracted by $\mathrm{HN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, to give a coarse crystalline product, no complex formation with the amine occurs [8]. For better characterized complexes see Table 23.

Phosphorus Complexes are in general well characterized and crystallized compounds. Often the ratio $\mathrm{RC} \equiv \mathrm{CCu}$ to $\mathrm{PR}_{3}^{1}$ varies and sometimes it depends on the $\mathrm{P}: \mathrm{Cu}$ ratio in the reaction batch.

Complexes with $\mathrm{P}: \mathrm{Cu}$ ratios of $4: 1$ seem to exist too, although no solid compounds have been isolated from the corresponding solutions. The IR spectra of solutions of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CCu or $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ in benzene at P to Cu ratios of $1,2,3$ or 4 show similar bands. The complexes $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{nP}\left(\mathrm{CH}_{3}\right)_{3}(\mathrm{n}=1$ to 3$)$ are known as pure substances; see Table 23 [5]. From $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{CuCl} \cdot \mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ no products could be obtained in organic solvents, even after heating [10]. For better characterized complexes see Table 23.
$\left[\mathrm{CH}_{3} \mathbf{O C}\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C} \equiv \mathbf{C C u S n}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{Li}$. This 1:1 complex of $\mathrm{CH}_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{LiSn}\left(\mathrm{CH}_{3}\right)_{3}$ is formulated in its ionic form, but no structural proof is given. It is prepared by addition of solid $\mathrm{CH}_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \equiv \mathrm{CCu}$ to a solution of $\mathrm{LiSn}\left(\mathrm{CH}_{3}\right)_{3}$ in tetrahydrofuran at $-48^{\circ} \mathrm{C}$ [35]. The reaction of this solution ( 4 h at $-48{ }^{\circ} \mathrm{C}$ ) with $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ yields ( E )- and ( Z )$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnCR}^{1}=\mathrm{CHCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$. With $\mathrm{R}^{1}=\mathrm{CH}_{3}$ (yield $82 \%$ ), only the ( E )-compound is formed [35, 38], with $\mathrm{R}^{1}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$, the $(\mathrm{E}):(\mathrm{Z})$ ratio is $8: 62$ (yield $76 \%$ ), and with $\mathrm{R}^{1}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OCH}_{2}$ this ratio is about $96: 4$ (total yield $82 \%$ ) [35]. The reaction with $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{R}^{2}$ in tetrahydrofuran ( 30 min at $-48^{\circ} \mathrm{C}$ and 3 h at $0^{\circ} \mathrm{C}$ ) yields ( E ) $-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnCR}^{1}=\mathrm{C}_{\left(\mathrm{CO}_{2} \mathrm{R}^{2}\right) \text { - }}$ $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}$. The following compounds were reacted ( $\mathrm{R}^{1}$, $\mathrm{R}^{2}$, yield): $\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, 74 \% ; \mathrm{C}_{2} \mathrm{H}_{5}$, $\mathrm{C}_{2} \mathrm{H}_{5}, 76 \%$; $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, \mathrm{CH}_{3}, 74 \%$; $\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{CH}_{3}, 86 \%$; cyclo- $\mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{CH}_{3}, 73 \%$; 2-(cyclopent-1-enyl)ethyl, $\mathrm{CH}_{3}, 71 \%$; cyclohex-2-enylmethyl, $\mathrm{CH}_{3}, 82 \%$; $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}^{( } \mathrm{CH}_{3}\right)_{2} \mathrm{OCH}_{2}, \mathrm{C}_{2} \mathrm{H}_{5}$, $70 \%$; $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}, \mathrm{CH}_{3}, 69 \%$ [38].

The reaction of $\left[\mathrm{CH}_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \equiv \mathrm{CCuSn}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{Li}$ and $\mathrm{R}^{1} \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$ at $-30^{\circ} \mathrm{C}$ in tetrahydrofuran gives mixtures of $\mathrm{R}^{1} \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}$ and $\mathrm{R}^{1} \mathrm{OCH}_{2} \mathrm{CH}=$ $\mathrm{CHCH}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}$. The configuration at the double bond is not changed during reaction (isomeric purity $>99 \%$ ). The following $\mathrm{R}^{1} \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$ were reacted ( $\mathrm{R}^{1}, \mathrm{E}$ or Z , yield of $\mathrm{R}^{1} \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3} / \mathrm{y}$ ield of $\left.\mathrm{R}^{1} \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\right)$ : $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{Z}, 8 \% / 39 \%$; $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{E}, 47 \% / 25 \% ; \mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{Z}, 31 \% / 39 \% ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{Z}, 4 \% / 38 \% ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{E}, 16 \% / 8 \%$; and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right), \mathrm{Z}, 8 \% / 68 \%$ [42].

Explanation for Table 23. The compounds are in most cases prepared by the following methods:

> Method I: Formation of the complexes $\mathrm{mRC} \equiv \mathrm{CCu} \cdot \mathrm{nD}$ from $\mathrm{RC} \equiv \mathrm{CCu}$ and the ligand D . The type of the solvent or the absence of any solvent is indicated in parentheses because it is very important in this formation reaction.

Method II: Formation of the complexes by ligand exchange, for instance

$$
\begin{gathered}
\mathrm{RC} \equiv \mathrm{CCu} \cdot \mathrm{D}^{1} \xrightarrow{\mathrm{D}^{2}} \mathrm{RC} \equiv \mathrm{CCu} \cdot \mathrm{D}^{2} \text { or } \\
\mathrm{RC} \equiv \mathrm{CCu} \cdot \mathrm{D}^{1} \cdot \mathrm{D}^{2} \xrightarrow{\mathrm{D}^{3}} \mathrm{RC} \equiv \mathrm{CCu} \cdot \mathrm{D}^{1} \cdot \mathrm{D}^{3}
\end{gathered}
$$

or by addition of a second ligand, for instance


Method III: Formation of the complexes $m R C \equiv C C u \cdot n D$ from $R C \equiv C M$ and mixtures or complexes of CuX and D , where $\mathrm{M}=\mathrm{H}, \mathrm{Li}, \mathrm{K}$ and $\mathrm{X}=\mathrm{Cl}, \mathrm{I}, \mathrm{N}_{3}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}$. If azide complexes like $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \cdot \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{CuN}_{3}$ are reacted with very acid acetylenes, $N_{2}$ is liberated.
Table 23

Complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{N}, \mathrm{P}$, and As Co ( $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}=1,10$-phenanthroline, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}=3$ Further information on compound numbers For abbreviations and dimensions see p . X .	ramethyl-1,10-phenanthroline).   by an asterisk is given at the end of the table on pp. 170/4.	
No. complex	method of preparation (solvent, yield), properties, remarks and reactions	Ref.
complexes with N compounds		
$1 \quad 1,7-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{NH}_{3}$ (1,7-C $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}=1,7$-dicarba-closo-dodecaboran(12)-1-yl)	$\mathrm{I}\left(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}\right)$   colorless, insoluble in hexane and in $\mathrm{CH}_{3} \mathrm{OH} / 25 \%$ aqueous $\mathrm{NH}_{3}(1: 1)$ gives $1,7-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}$ after 16 h at 1 Torr and $20^{\circ}$	[39]
$22 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCu} \cdot \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$	```III (benzene/ethanol): from excess }\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{5}{}\mp@subsup{\textrm{O}}{2}{}\textrm{CC}\equiv\textrm{CH}\mathrm{ and CuN C}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{8}{}\mp@subsup{\textrm{N}}{2}{}\mathrm{ at 25%/15 min pale yellow, m.p. 158% (dec.) sparingly soluble in benzene and hexane IR (Nujol): 1685 (d, C=O), 1935+2100 (C\equivC)```	[44]
$3 \quad 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCu} \cdot \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}$	```III (benzene/ethanol): from excess \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CH}\) and \(\mathrm{CuN}_{3} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\). \(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}\) at \(25 \% / 15\) min white, m.p. \(160^{\circ}\) (dec.) sparingly soluble in benzene and hexane IR (Nujol): 1675 (C=O), 1920 + 2090 ( \(\mathrm{C} \equiv \mathrm{C}\) )```	[44]
$4 \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCu} \cdot \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	II: from No. $9, \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CH}$ in wet benzene, more slowly in dry benzene; or from No. 54 and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CH}$ in benzene salmon pink after washing with ether the $\mathrm{H}_{2} \mathrm{O}$ content inferred only from the thermogravimetric analysis reacts easily with $\mathrm{H}_{2}, \mathrm{O}_{2}$, and $\mathrm{CO}_{2}$ (no products given) gives with cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$ in benzene cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NCCuC} \equiv \mathrm{CCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}\right)$ (see Section 1.1.4.1.3) gives with $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ in benzene No. 54   IR (Nujol): 1660 ( $\mathrm{C}=\mathrm{O}$ ), 2060 ( $\mathrm{C} \equiv \mathrm{C}$ )	[44]

Table 23 [continued]

$[5,6]$

$[27,32]$
$[17,25$,
26,29
to 31,
$37,40]$
$[27,36]$
$[18]$
$[14]$
$[5,6]$
IR (Nujol): 1690 (d, $\mathrm{C}=\mathrm{O}), 2050(\mathrm{C}=\mathrm{C})$
gives in benzene with cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$
[cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NCCuC} \equiv \mathrm{CCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{P}\left(\mathrm{C}_{6}\right.$
[cyclo- $\left.\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NCCuC} \equiv \mathrm{CCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$
gives with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CH}$ and $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{No}$.4
a little $\mathrm{H}_{2} \mathrm{O}$ ), with $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$ in benzene slowly, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ rapidly No. 53,
with $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}$ in cyclohexane No. 54
gives with anhydrous HCl in benzene $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CH}$ and
$2 \mathrm{CuCl} \cdot 3 \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$
$2 \mathrm{CuCl} \cdot 3 \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$
yellow, m.p. 82 to $82.5^{\circ}$
degree of association cryoscopically measured in benzene is 3.3 to 3.4, in nitrobenzene 2.0 to 2.2 IR (KBr) : 2031, 2065 (C $=\mathrm{C}$ )
I (hexamethylphosphoric triamide)
$I$ (ether, ether/THF, THF)
in [31] for a "hexamethyl phosphorous triamide complex of
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu} \ldots$ satisfactory elemental analyses were obtained '",
but no stoichiometry of the compound is given I (ether), obviously only obtained in solution
formulated in [36] as a 1:2 compound without any proof
I (dimethylformamide)
IR: no $\mathrm{C} \equiv \mathrm{C}$ band
IR: compared with $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}$, the $\mathrm{C} \equiv \mathrm{C}$ frequency is increased by $40 \mathrm{~cm}^{-1}$
1 (benzene)
yellow-green, m.p. 105 to $106^{\circ}$
degree of association cryoscopically measured in benzene is 2.6 to
2.8, in nitrobenzene 2.0
$\operatorname{IR}(\mathrm{KBr}): 2050(\mathrm{C} \equiv \mathrm{C})$
$10 \quad \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$

$* 11$	$n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{3}$
$* 12$	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$
$* 13$	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$
14	$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}}$
15	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{PCl}_{3}$
16	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$

Table 23 [continued]

No.	complex	method of preparation (solvent, yield), properties, remarks and reactions	Ref.
17	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCu} \cdot 2 \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$	```I (benzene) colorless, m.p. 95 to \(98^{\circ}\) degree of association cryoscopically measured in benzene is 1.0 , in nitrobenzene 0.4 to 0.9 IR (KBr, Nujol): no \(\mathrm{C} \equiv \mathrm{C}\) band```	[5, 6]
18	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	```III (methanol): from \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CH}\) and \(\mathrm{CuCl} \cdot 4 \mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \text { (molar ratio }=}\) \(30: 7\) ), catalyzed by \(\mathrm{CH}_{3} \mathrm{ONa}\) ( \(62 \%\) ) yellow solid IR (Nujol): 2055 ( \(\mathrm{C}=\mathrm{C}\) )```	[43]
19	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	I (dimethylformamide) IR: no $\mathrm{C} \equiv \mathrm{C}$ band	[18]
20	$\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C}=\mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	III (methanol) : from $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{CuCl} \cdot 4 \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}($ molar ratio $=$ 70: 17), catalyzed by $\mathrm{CH}_{3} \mathrm{ONa}$ ( $87 \%$ ) yellow solid   IR (Nujol): 2064 ( $\mathrm{C} \equiv \mathrm{C}$ )   gives with $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ at $-23^{\circ}$ in toluene after $2 \mathrm{~h} \mathrm{98} \mathrm{\%}$	[43, 48]


6


${ }^{6}$	$\bullet^{\circ}$	¢
${ }^{\circ}$	ベの	$\bigcirc$

6
6
6
［19，22］
，
（benzene）
unstable，deep red，m．p． $75^{\circ}$
IR $(\mathrm{KBr}): 2025(\mathrm{C} \equiv \mathrm{C})$ （benzene）
unstable，deep red，m．p． $75^{\circ}$
IR $(\mathrm{KBr}): 2025(\mathrm{C} \equiv \mathrm{C})$ I（benzene）
unstable，deep red，m．p． $75^{\circ}$
IR $(\mathrm{KBr}): 2025(\mathrm{C} \equiv \mathrm{C})$
proved to be a tetramer by X－ray analysis，see Section＂Tetranuclear Compounds＂＂
$I$（benzene）
yellow－green，m．p． 94 to $96^{\circ}$
in benzene and in nitrobenzene monomeric
IR（KBr）： $2035+2048(\mathrm{C} \equiv \mathrm{C})$ Compounds＂，
$I$（benzene）
yellow－green，m．p． 94 to $96^{\circ}$
in benzene and in nitrobenzene monomeric
$I R(\mathrm{KBr}): 2035+2048(\mathrm{C} \equiv \mathrm{C})$ Compounds＂
I（benzene）
yellow－green，m．p． 94 to $96^{\circ}$
in benzene and in nitrobenzene monomeric
IR（KBr）： $2035+2048(\mathrm{C} \equiv \mathrm{C})$ Compounds＂
I（benzene）
yellow－green，m．p． 94 to $96^{\circ}$
in benzene and in nitrobenzene monomeric
IR（KBr）： $2035+2048(\mathrm{C} \equiv \mathrm{C})$ Compounds＂
I（benzene）
yellow－green，m．p． 94 to $96^{\circ}$
in benzene and in nitrobenzene monomeric
IR（KBr）： $2035+2048(\mathrm{C} \equiv \mathrm{C})$ Compounds＂
$I$（benzene）
yellow－green，m．p． 94 to $96^{\circ}$
in benzene and in nitrobenzene monomeric
$I R(K B r): 2035+2048(\mathrm{C} \equiv \mathrm{C})$ I（benzene）
unstable，pale cream，m．p． 88 to $93^{\circ}$
IR $(\mathrm{KBr}): 2034+2051(\mathrm{C} \equiv \mathrm{C})$ I（benzene）
unstable，pale cream，m．p． 88 to $93^{\circ}$
IR $(\mathrm{KBr}): 2034+2051(\mathrm{C} \equiv \mathrm{C})$
I（benzene） I（benzene） I（THF） not isolated，stoichiometry not estimated in dimethylformamide at $35^{\circ}$ under $\mathrm{CO}_{2}$ equilibrium with
 in THF at $80^{\circ}$ only 4\％）

$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu} \cdot 2 \mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$
$\stackrel{\leftrightarrow}{\sim}$
Table 23 [continued]

	complex	method of preparation (solvent, yield), properties, remarks and reactions	Ref.
27	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$	1 (benzene)   yellow, m.p. $139.5^{\circ}$   degree of association cryoscopically measured in benzene is 2.5 to   2.9, in nitrobenzene 2; earlier published data ( 3.3 to 3.8 and 3 , respec-   tively) have been corrected   IR ( KBr ) : $2018+2048$ ( $\mathrm{C} \equiv \mathrm{C}$ )   gives $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ after standing in air for 1 to 2 d	$\begin{aligned} & {[3,5,} \\ & 6] \end{aligned}$
28	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{i}\right)_{3}$	```III (benzene) : from \(\mathrm{CuCl} \cdot 2 \mathrm{P}\left(\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{i}\right)_{3}\) and \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CLi}(1: 1), 3 \mathrm{~h} / 25^{\circ}\) (33\%) III (toluene) : from \(\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5} \mathrm{Cu} \cdot \mathrm{P}\left(\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{i}\right)_{3}\) and \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}(1: 1)\) at \(-78^{\circ}\) yellow-green solid, m.p. \(76^{\circ}\) can be precipitated with pentane from benzene and toluene solutions monomeric in benzene according to osmometric measurements \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.29\left(\mathrm{dd}, \mathrm{CH}_{3}, \mathrm{~J}_{\mathrm{PH}}=12.8, \mathrm{~J}_{\mathrm{HH}}=6.4\right), 2.0(\mathrm{~m}, \mathrm{CH}), 7.6\) (m, \(\mathrm{C}_{6} \mathrm{H}_{5}\) ) \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 20.32,22.84\) (both d, \(\mathrm{PR}_{3}^{\prime}, \mathrm{J}_{\mathrm{PC}}=5.2,10.3\) ), 125.46, 128.19, 128.84, 131.02 (all s, \(\mathrm{C}_{6} \mathrm{H}_{5}\) ) \({ }^{31} \mathrm{P}\) NMR \(\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 18.0(\mathrm{br})\) IR (KBr) : 2030 ( \(\mathrm{C} \equiv \mathrm{C}\) )```	[46]
29	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	no preparation method given gives with 4-CICOC $6_{6} \mathrm{H}_{4} \mathrm{COCl}$ in THF $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCOC}_{6} \mathrm{H}_{4} \mathrm{COC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ in high yield	[11]
30	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{3}$	1 (THF)   not isolated, stoichiometry not estimated   1:3 acetylide-phosphine mixtures are sometimes formulated as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot 3 \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{3}$   in dimethylformamide at $35^{\circ}$ under $\mathrm{CO}_{2}$ equilibrium with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$   $\mathrm{CCO}_{2} \mathrm{Cu} \cdot \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{3}$ (at least $33 \%$ carboxylated; in THF at $80^{\circ}, 50 \%$ )   can be used for reversible $\mathrm{CO}_{2}$ fixation, diagrams given   reacts with $\mathrm{CH}_{3} \mathrm{I}$ to give $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{3}$	[19, 22]

$\underset{\sim}{\text { N }}$
1 ल্ల్ర
no preparation method given
the reaction with trans- $\left.\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{P}_{\left(\mathrm{C}_{6}\right.} \mathrm{H}_{5}\right)_{3}\right)_{2}$ in THF gives $11 \%$

I (benzene, $60^{\circ}$, molar ratio $0.77: 1$ )
also from the mother liquor of the preparation of No. 32 ("Form D"')
according to [ 33 ]
bright yellow, moderately soluble in benzene
IR ( KBr ) : $1890,1960,2020,2050$
Raman: $998,1173,1200,1592,2050$
UV (mineral oil): 380
with CuK
$4.91,10.6$, and $10.8 \AA$
equilibrium reaction with $\mathrm{CO}_{2}$ and conversion to special forms of
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ see under $\mathrm{No}$.32
$31 \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{3}$
Gmelin Handbook Cu-Org. Comp. 3

$$
\begin{array}{ll}
* 32 & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \\
33 & 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot 3 \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}
\end{array}
$$

Table 23 [continued]

No.	complex	method of preparation (solvent, yield), properties, remarks and reactions	Ref.
34	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{PCl}_{3}$	I (no solvent)   IR: compared with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ the $\mathrm{C} \equiv \mathrm{C}$ frequency is increased by $40 \mathrm{~cm}^{-1}$ conversion to $\mathrm{P}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{3}$ possible, no details given	[7, 14]
35	$4 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot 3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$	I (toluene, at $60^{\circ}$, molar ratio 1.5:1)   pale yellow, becomes deeper yellow at $154^{\circ}$, m.p. 161 to $163^{\circ}$ (recrystallized from toluene)   stable in air at room temperature, fairly stable to heat and hydrolysis, slightly soluble in organic solvents	[13]
36	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$	I (toluene)   almost white, becomes yellow at $215^{\circ}$, m.p. 219 to $221^{\circ}$ (recrystallized from toluene)   slightly soluble in organic solvents, stable in air at room temperature, fairly stable to heat and hydrolysis	[13]
37	$4 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot 3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$	1 (refluxing toluene, molar ratio 2:1) lemon yellow, m.p. 229 to $233^{\circ}$ (recrystallized from toluene) stable in air at room temperature, slightly soluble in organic solvents	[13]
38	$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$	I (benzene)   II (benzene) : from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, 18 h reflux ( $70 \%$ ) pale yellow, m.p. $212^{\circ}$ (dec.) after reprecipitation with light petroleum ether from a benzene solution   IR (Nujol): 692, 740, 870, 1025, 1100, 1200, 1466, 1495, 1540, 2020	[43]
39	$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot 3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$	$I$ (refluxing toluene, molar ratio $0.66: 1$ )   white, becomes yellow at $201^{\circ}$, m.p. 205 to $208^{\circ}$ (recrystallized from toluene)   stable in air at room temperature, slightly soluble in organic solvents	[13]


I (benzene, $84 \%$; or without solvent, $25^{\circ}, 24 \mathrm{~h}$ ) stable in air, soluble in organic solvents, monomeric in benzene IR: 2030 ( $\mathrm{C} \equiv \mathrm{C}$ ) conductivity in acetone $5.75 \Omega^{-1} \cdot \mathrm{~cm}^{2} \cdot \mathrm{~mol}^{-1}$	[34]
I (benzene)   green-yellow oil, soluble in ether, $\mathrm{CHCl}_{3}$, and $\mathrm{CCl}_{4}$   good stability in $\mathrm{N}_{2}$ atmosphere, but loses $\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$ by exposure to air, air-stable in solutions for several weeks $\text { IR: } 2020+2046(\mathrm{C} \equiv \mathrm{C})$	[45]
I (benzene)   green-yellow oil, soluble in ether, $\mathrm{CHCl}_{3}$, and $\mathrm{CCl}_{4}$   stability as No. 41   IR: $2020+2040(C \equiv C)$	[45]
$\begin{aligned} & \text { I }\left(\mathrm{CCl}_{4}, 85 \%\right) \\ & \text { green-yellow solid } \\ & \text { soluble in } \mathrm{CHCl}_{3} \text { and } \mathrm{CCl}_{4} \text {, less soluble in ether, insoluble in } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\ & \text { monomeric according to osmometric measurements in } \mathrm{CHCl}_{3} \\ & \text { IR: } 2020(\mathrm{C} \equiv \mathrm{C}) \end{aligned}$	[45]
$\mathrm{I}\left(\mathrm{CCl}_{4}, 80 \%\right)$   light yellow solid   soluble in $\mathrm{CHCl}_{3}$ and $\mathrm{CCl}_{4}$, less soluble in ether, insoluble in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ monomeric according to osmometric measurements in $\mathrm{CHCl}_{3}$ $\text { IR: } 2025+2040(\mathrm{C} \equiv \mathrm{C})$	[45]
I (benzene)   brown-gray oil, soluble in ether, $\mathrm{CHCl}_{3}$, and $\mathrm{CCl}_{4}$   stability as No. 41   IR: 2050 ( $\mathrm{C} \equiv \mathrm{C}$ )	[45]



Gmelin Handbook Cu-Org. Comp. 3

\%

## ษ

References on pp. 174/5

Table 23 [continued]

No.	complex	method of preparation (solvent, yield), properties, remarks and reactions	Ref.
46	$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{3}$	$\begin{aligned} & \text { I (benzene) } \\ & \text { brown-gray oil, soluble in ether, } \mathrm{CHCl}_{3} \text {, and } \mathrm{CCl}_{4} \\ & \text { stability as No. } 41 \\ & \text { IR: } 2025+2045+2065(\mathrm{C} \equiv \mathrm{C}) \end{aligned}$	[45]
47	$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	$\begin{aligned} & \mathrm{I}\left(\mathrm{CCl}_{4}\right) \\ & \text { green solid, insoluble in } \mathrm{CHCl}_{3} \end{aligned}$	[45]
48	$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C} \equiv \mathrm{CCu} \cdot 2 \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	$\begin{aligned} & \mathrm{I}\left(\mathrm{CCl}_{4}, 80 \%\right) \\ & \text { white solid } \\ & \text { soluble in } \mathrm{CHCl}_{3} \text { and } \mathrm{CCl}_{4} \text {, less soluble in ether, insoluble in } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\ & \text { monomeric according to osmometric measurements in } \mathrm{CHCl}_{3} \\ & \text { Raman: } 2116(\mathrm{C} \equiv \mathrm{C}) \end{aligned}$	[45]
49	$\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Cu} \cdot \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$	```I (benzene) yellow, dec. > 140 sparingly soluble in benzene and nitrobenzene IR (KBr): 1981+2161 (C\equivC)```	[5, 6]
50	$\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Cu} \cdot \mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$	```I (benzene) yellow, m.p. 155 to 156 (dec.), stable to air degree of association in benzene ~3, in nitrobenzene ~2 (cryoscopi- cally) IR (KBr): 1988+2159 (C\equivC) IR (C2CI4):1988+2167(C\equivC)```	[5, 6]
51	$2 \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Cu} \cdot 3 \mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$	```l (benzene) pale yellow, m.p. }95\mathrm{ to }9\mp@subsup{6}{}{\circ degree of association in benzene 0.5 to 0.7, in nitrobenzene 0.9 to 1.0 (cryoscopically) IR (KBr): 2008+2165 (C\equivC)```	$\begin{aligned} & {[5,6,} \\ & 54] \end{aligned}$


IR (benzene): $2009+2171(\mathrm{C} \equiv \mathrm{C})$
space group Pbca $-\mathrm{D}_{2 \mathrm{~h}}^{15}(\mathrm{No} 61),. \mathrm{a}=14.85, \mathrm{~b}=20.8, \mathrm{c}=26.7 \AA, \mathrm{~d}_{\mathrm{m}}=$
$\quad 1.182 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mathrm{Z}=8$; tetrameric structure " similar to No. 23 ""
(no further details)
on standing in air or on heating in propanol No. 50 is formed
1 (benzene)
yellow, m.p. $87^{\circ}$
degree of association in benzene 3.0 to 3.4, in nitrobenzene 2.0 (cryoscopically)
IR $(\mathrm{KBr}): 198$
IR ( KBr ): $1984+2164(\mathrm{C} \equiv \mathrm{C})$
IR $\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right): 1986+2166(\mathrm{C} \equiv \mathrm{C})$
II: rapidly formed from No. 9 and $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution or more slowly in suspension in benzene yellow, m.p. $150^{\circ}$ (dec.)
insoluble in toluene
molecular weight $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=523$ (theoretical 603), slightly dependent on concentration
IR (Nujol): 1660 (clos does not react with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CH}$ even at $50^{\circ}$
II (cyclohexane) : from No. 9 and $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}$ in suspension
II (benzene): from No. 4 and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$
yellow, m.p. $160^{\circ}$ (dec.)
insoluble in benzene
IR (Nujol): 1665 (C=O), 2045 (C©C)
gives with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CH}$ in benzene No. 4
IR: compared with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ the $\mathrm{C} \equiv \mathrm{C}$ frequency is increased by
$40 \mathrm{~cm}^{-1}$


岕
complexes with As compounds
$\begin{array}{ll}55 & \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C}=\mathrm{CCu}, \mathrm{AsCl}_{3} \\ 56 & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{AsCl}_{3}\end{array}$
References on pp. 174/5
*Further information:
$\mathbf{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathbf{C}=\mathbf{C C u} \cdot \mathbf{C}_{12} \mathrm{H}_{8} \mathbf{N}_{2}$ (Table 23, No. 7; $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}=1,10$-phenanthroline). It can also be prepared by electrochemical oxidation of a copper foil in dry $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ containing $\left.4 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}, 0.05 \%\left[\mathrm{~N}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right] \mathrm{ClO}_{4}$, and 1,10-phenanthroline [49].

Crystallizes from pyridine/ether and is stable in air at room temperature. It is fairly stable to heat and hydrolysis, readily soluble in organic solvents [13].

On standing for weeks, or at reflux for a longer period in $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$, a reaction was observed to give $\mathrm{CH}_{2}=\mathrm{CHCl}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$, and a complex of $\mathrm{CuCl}, \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}$, and $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$. Neither structural nor stoichiometric data for the complex are given [13].
n- $\mathbf{C}_{3} \mathbf{H}_{7} \mathbf{C}=\mathbf{C C u}, \mathbf{D}\left(\mathrm{D}=\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{3}, \mathrm{P}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}, \mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right.$; Table 23, Nos. 11, 12, 13) react with $\mathrm{R}^{1} \mathrm{Li}$ compounds to give reagents of the type $\left[\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCuR}^{1}\right] \mathrm{Li}$; see Section 1.1.1.2.4 in "Organocopper Compounds" 2, 1983, pp. 174/211.

	solvent	$\mathrm{R}^{1}$ (yields of subsequent products of [ $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCuR}^{1}$ ]Li in \%)	Ref.
11	$\mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$	(E)- or (Z)-CH=CHCR ${ }^{2} \mathrm{R}^{3} \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{R}^{2}=$ alkenyl and $\mathrm{R}^{3}=$ alkyl	[27, 32]
12	ether or ether $/ \mathrm{C}_{6} \mathrm{H}_{14}$	$\begin{gathered} \mathrm{CH}_{3}(37), \mathrm{C}_{2} \mathrm{H}_{5}, \quad(\mathrm{E})-\mathrm{CH}=\mathrm{CHOC} \mathrm{CH}_{2} \mathrm{H}_{5}, \quad \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}(52), \quad \mathrm{t}_{2}-\mathrm{C}_{4} \mathrm{H}_{9}(70), \\ \mathrm{C}_{6} \mathrm{H}_{5}(44),(\mathrm{E})-\mathrm{CH}=\mathrm{CHCH}\left(\mathrm{C}_{5} \mathrm{H}_{11}-\mathrm{n}\right) \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}(28) \end{gathered}$	[40]
12	ether	$\begin{aligned} & \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right) \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \\ & \text { (E) }) \mathrm{CH}=\mathrm{CHCH}\left(\mathrm{C}_{5} \mathrm{H}_{11}-\mathrm{n}\right) \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}(>86), \\ & (\mathrm{E})-\mathrm{CH}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{11}-\mathrm{n}\right) \mathrm{OC}_{5} \mathrm{H}_{9} \mathrm{O} ; \\ & \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}=\text { tetrahydropyran-2-yl } \end{aligned}$	$\begin{aligned} & {[26,29,} \\ & 31] \end{aligned}$
12	THF	$\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9},(\mathrm{Z})-\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OC}_{5} \mathrm{H}_{9} \mathrm{O}$	[17, 25]
13	ether	$\mathrm{C}_{2} \mathrm{H}_{5}$	[36]
13	$\mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$	(E)- or (Z)-CH=CHCR ${ }^{2} \mathrm{R}^{3} \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{R}^{2}=$ alkenyl and $\mathrm{R}^{3}=$ alkyl	[27, 32]

Analogously $\left[\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCuR}{ }^{1}\right] \mathrm{Li}$ can be prepared and reacted in $\mathrm{OP}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$ in situ using $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CH}, \mathrm{Li}$, Cul, and $\mathrm{R}^{1} \mathrm{Br}$ instead of $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCu}$ under ultrasonic treatment [37]. No. 13 gives with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$ in ether $\left[\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CCuC}_{2} \mathrm{H}_{5}\right] \mathrm{MgBr}$ [36].
$\mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C} \equiv \mathbf{C C u} \cdot \mathbf{P}\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)_{3}$ (Table 23, No. 32). Different products are claimed to have this formula. The best characterized is $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \operatorname{CCuP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$, in the following called Form A . The lack of data and the contradictory results do not permit a reliable estimation of further products. Tentatively, a classification into the "Forms" $B$ to $E$ is undertaken; two more products are too poorly characterized to be evaluated. The basic data used for this classification are compared in the following tables.


forms			Raman $\left(\mathrm{cm}^{-1}\right)$	Ref.	
C		1583		2018   $(\mathrm{vs})$	$[33]$
D	538	1190		1594   (vs)	1914

The Forms C and D also show identical or almost identical strong Raman bands at 252/3, $525,780 / 2,998(\mathrm{vs}), 1027,1097 / 8,1175 / 6,1198 / 201$, and $3056 \mathrm{~cm}^{-1}$ [33].
forms interplanar spacing d $\left(\AA \AA^{\prime} \mathrm{CuK}_{\alpha}\right) \quad \mathrm{UV}(\mathrm{nm}$; mineral oil suspension) Ref.

C	$4.48,4.82,11.6,11.8$	380	[33]
D	$4.32,4.62,10.4,11.5,12.4$	380,435	[33]

Form $\mathrm{A},\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \operatorname{CCuP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$, is obtained by treatment of $\mathrm{Cu}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \mathrm{BH}_{4}$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv$ CH and KOH in the molar ratio 1:1:1 in a benzene/benzyl alcohol (1:1) solution. Yellow crystals suitable for X-ray analysis were obtained by slow diffusion of hexane into the solution. It is the first known metal complex containing $\mu_{3}-\eta^{1}$ bridging alkynyls and can also be obtained by refluxing Form E in $\mathrm{CH}_{3} \mathrm{CN}$. Form A and Form E have the same melting point (value not given) [52].

The compound is monoclinic with the space group $C 2 / c-C_{2 h}^{4}$ (No. 13), $Z=4, a=14.866$ (4), $b=24.552(4), c=23.345(9) \AA, \beta=95.89(2)^{\circ}, d_{m}=1.338 \mathrm{~g} / \mathrm{cm}^{3}$. The final anisotropic refinement led to the conventional $R$ value of 0.054 . The structure (see Fig. 5, p. 172) consists of a tetrahedral skeleton of metal atoms bonded to four terminal phosphine molecules and to four $\mu_{3}$-bridging phenylacetylide ligands (which behave essentially as 2 e donors). Average distances (in $\AA$ ) and bond angles are:

$\mathrm{Cu}-\mathrm{Cu}$	2.603	$\mathrm{Cu}-\mathrm{P}$	2.228	$\mathrm{Cu}-\mathrm{C}$	2.185	$\mathrm{C} \equiv \mathrm{C}$
$\mathrm{P}-\mathrm{Cu}-\mathrm{C}$	$113.7^{\circ}$	$\mathrm{C}-\mathrm{Cu}-\mathrm{C}$	$104.6^{\circ}$			

The copper-alkynyl triple bridges are markedly asymmetric, with $\mathrm{Cu}-\mathrm{C}$ contacts in the range $2.072(4)$ to $2.380(4) \AA$. The observed very short $\mathrm{C} \equiv \mathrm{C}$ distances are indicative of a triple bond (cf. $1.20 \AA$ in $\mathrm{C}_{2} \mathrm{H}_{2}$ ) and for the absence of $\pi$-back-donation from the metal to the ligand $\pi^{*}$ orbitals. The $C(1)-C(2)-C(3)$ and $C(9)-C(10)-C(11)$ fragments are strictly linear (average angle $178^{\circ}$ ), and the interactions of atoms $C(2)$ and $C(10)$ with metal triangles $\mathrm{Cu}(1)-\mathrm{Cu}\left(1^{\prime}\right)-\mathrm{Cu}\left(2^{\prime}\right)$ and $\mathrm{Cu}(1)-\mathrm{Cu}(2)-\mathrm{Cu}\left(2^{\prime}\right)$, respectively, are negligible (average $\mathrm{C} \cdot \mathrm{Cu}$ distance $3.104 \AA$ ): both these features are inconsistent with a substantial ligand-to-metal $\pi$-donation [52].

Form B is prepared by the following methods:
a) By shaking the components (molar ratio $1: 1$ ) in benzene until all $\mathrm{RC} \equiv \mathrm{CCu}$ is dissolved [5, 6, 12, 41].
b) From $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{CuSC}_{6} \mathrm{H}_{5}\right.$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$, no conditions given [12].
c) From $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right]\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CAu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (yield $95 \%$ ), besides $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Au}\right]-$ [41].
d) From $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right]^{-}$and $\mathrm{AuCl} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, besides $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ [41].
e) From $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$ and $\left[\mathrm{CuCl} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$ (molar ratio $=7: 29$ ) in $\mathrm{CH}_{3} \mathrm{OH}$ with catalysis by a little $\mathrm{CH}_{3} \mathrm{ONa}$, yield $90 \%$ [43].
f) From $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, yield $80 \%$ (no further data are given) [43].


Fig. 5. Structure of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCuP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$-(No. 32, Form A).

Form $B$ is yellow-green after recrystallization from toluene [5, 6] and pale yellow after recrystallization from benzene [43]. Its melting point is at 212 to $214{ }^{\circ} \mathrm{C}$ (dec.). It is too sparingly soluble in benzene or nitrobenzene to estimate the degree of association by osmometric methods [5,6]. It shows an IR band at $2043 \mathrm{~cm}^{-1}$ in Nujol [43] and in KBr [5, 6].

Form C. The yellow form has been prepared by boiling Form D in benzene or from concentrated solutions of the $2: 3$ complex No. 33 in benzene simply upon standing or by shaking the components in benzene [33]. However, this last method is similar to that used in [5] to prepare Form B. From the only IR band given in [5] no conclusion about the identity of the product is possible. The products from the preparation methods used in [33] may not be identical, and it is not mentioned, from which product the IR data are recorded. This fact must be also taken into account in the further data given.

Form C is slightly soluble in benzene and decomposes upon standing in air with appearance of a new Raman band at $1926 \mathrm{~cm}^{-1}$ [33].

Form D. The yellowish green form [33] is prepared by the following methods:
a) By boiling $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ (molar ratio $=10: 23$ ) in benzene: $\mathrm{H}_{2} \mathrm{O}=19: 1$ for 1 h . A residue is filtered off; at $15^{\circ} \mathrm{C}$, Form D crystallizes ( $44 \%$ ). The mother liquor gives $59 \%$ of No. 33 after half of the solvent is evaporated [33].
b) On long standing of concentrated solutions of Form C or of the $2: 3$ complex No. 33 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CHCl}_{3}$ [33].

Form $D$ is very slightly soluble in benzene. It decomposes on standing in air with appearance of a new Raman band at $1926 \mathrm{~cm}^{-1}$ [33].

A substance, which is similarly prepared as under a), by addition of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ to a suspension of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ in benzene (molar ratio not given) at $50^{\circ} \mathrm{C}$ and then boiling for 1 min [48,55], may be identical with Form D. It reacts with $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ in toluene in 19 h at room temperature to give after chromatography on Kieselgel $\mathrm{GF}_{254}$ (development with ether/cyclohexane $=1: 4$ ) a mixture of $41 \%$ yellow $\mathrm{I}, 3 \%$ orange-red II, $3 \%$ yellow III, $8 \% \mathrm{HOs}_{3} \mathrm{Cu}(\mathrm{CH}=$ $\left.\mathrm{CC}_{6} \mathrm{H}_{5}\right)(\mathrm{CO})_{8}$, and four other unidentified products. The reaction gives after 3.5 h at $-30^{\circ} \mathrm{C}$ $69 \%$ I and $13 \%$ III [48].


1


II


III

Form E is prepared when a "solution of Form A is stirred for several days". An "insoluble fluorescent yellow-green compound ... separates (melting point and analysis unchanged) '". It is not clear whether it is a solution in benzene:benzyl alcohol=1:1 or a benzene/benzyl alcohol/hexane solution. The melting point is not given for Form E or for Form A [52].

No structural data are said to be available, but it is believed to be polymeric. It is supposed that the compound may contain differently bonded phenylacetylide ligands (i.e., $\pi$ - and $\sigma$-bonded) with substantial ligand-to-metal $\pi$-donation (which has been excluded for Form A), possibly similar to the situation found in [53] for $\left[\left(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{BeN}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$ [47, 52].

Form E was characterized by X-ray photoelectron spectroscopy (XPES) and by Auger spectroscopy. The core level photoelectron spectra (Cu2p ${ }_{3 / 2}=933.0 \mathrm{eV}$; P2p $=131.5 \mathrm{eV}$ ), the $\mathrm{Cu}\left(\mathrm{L}_{3} \mathrm{VV}\right)$ Auger line (a kinetic energy of 915.7 eV corresponds to that line), and the Auger parameters are discussed in terms of both the different coordination environments and of the polarizability of the ligands [47].

On refluxing in $\mathrm{CH}_{3} \mathrm{CN}$ it gives Form A [52].
Two further products cannot be assigned to any of the forms mentioned before. From $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{Pt}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{4}$ a compound " $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ " and further tertiary
phosphine-copper complexes are formed (no conditions given) [23]. " $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, can also be formed by decarboxylation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{Cu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, but only in equilibrium. At ordinary pressure and $35^{\circ} \mathrm{C}$ in dimethylformamide under $\mathrm{CO}_{2}$ at least $17 \%$ can be recarboxylated [22].
$\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{CuP}_{3}$ (Table 23, No. 40). The reaction with $\mathrm{R}^{1} \mathrm{H}$ in tetrahydrofuran gives $\mathrm{R}^{1} \mathrm{Cu}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2}\right\}_{3} \mathrm{CCH}_{3}$, where $\mathrm{R}^{1} \mathrm{H}$ is $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$ ( $40 \%$ at room temperature), $4-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\left(46 \%\right.$ at $0^{\circ} \mathrm{C}$ ), and $4-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$ ( $33 \%$ at $0{ }^{\circ} \mathrm{C}$ ) [34].

The reaction with $\mathrm{CH}_{2}(\mathrm{CN})_{2}$ yields a yellow powder (structure not revealed). No reaction occurs with $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, or $\mathrm{CH}_{3} \mathrm{NO}_{2}$ in boiling tetrahydrofuran [34].

## References:

[1] F. Klages, K. Mönkemeyer (Chem. Ber. 85 [1952] 109/22).
[2] R. Nast, W. Pfab (Chem. Ber. 89 [1956] 415/21).
[3] D. Blake, G. Calvin, G. E. Coates (Proc. Chem. Soc. 1959 396/7).
[4] R. Nast, C. Schultze (Z. Anorg. Allgem. Chem. 307 [1960] 15/21).
[5] G. E. Coates, C. Parkin (J. Inorg. Nucl. Chem. 22 [1961] 59/67).
[6] G. E. Coates, C. Parkin (in: S. Kirschner, Advances in the Chemistry of the Coordination Compounds, Plenum, New York 1961, pp. 173/9).
[7] A. M. Sladkov, L. Y. Ukhin, V. V. Korshak (Izv. Akad. Nauk SSSR Ser. Khim. 1963 2213/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1963 2043/5).
[8] P. W. R. Corfield, H. M. M. Shearer (Abstracts of the American Crystallographic Association, Bozeman, Montana 1964, pp. 96/7).
[9] P. W. R. Corfield, H. M. M. Shearer (Acta Cryst. 21 [1966] 957/65).
[10] M. F. Shostakovskii, I. A. Polyakova, L. A. Vasil'eva, A. I. Polyakov (Zh. Org. Khim. 2 [1966] 1899 ; J. Org. Chem. [USSR] 2 [1966] 1865).
[11] A. M. Sladkov, I. R. Gol'ding (Khim. Atsetilena Tr. 3rd Vses. Konf., Dushanbe, Tadzh. SSR, 1968 [1972], pp. 45/7; C.A. 79 [1973] No. 5431).
[12] W. T. Reichle (Inorg. Nucl. Chem. Letters 1969 981/4).
[13] A. Camus, N. Marsich (J. Organometal. Chem. 21 [1970] 249/58).
[14] A. M. Sladkov, I. R. Gol’ding (Izv. Akad. Nauk SSSR Ser. Khim. 19702644 ; Bull. Acad. Sci. USSR Div. Chem. Sci. 1970 2495).
[15] M. S. Shvartsberg, A. A. Moroz (Izv. Akad. Nauk SSSR Ser. Khim. 1971 1582/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1971 1488/90).
[16] L. I. Zakharkin, V. N. Kalinin, I. R. Gol'ding, A. M. Sladkov, A. V. Grebennikov (Zh. Obshch. Khim. 41 [1971] 823/8; J. Gen. Chem. [USSR] 41 [1971] 830/3).
[17] E. J. Corey, D. J. Beames (J. Am. Chem. Soc. 94 [1972] 7210/1).
[18] S. Sh. Rashidova, V. A. Barabanov, D. D. Il'yasova (Uzb. Khim. Zh. 18 [1974] 63/6; C.A. 82 [1975] No. 17434).
[19] T. Tsuda, K. Ueda, T. Saegusa (J. Chem. Soc. Chem. Commun. 1974 380/1).
[20] M. C. Barral, V. Moreno, A. Santos (Anales Quim. 71 [1975] 770/4; C.A. 84 [1976] No. 180367).
[21] I. R. Gol'ding, I. A. Garbusova, A. M. Sladkov, V. T. Aleksanyan (Khim. Atsetilena Tr. 5th Vses. Konf., Tbilisi 1975, p. 455; C.A. 88 [1978] No. 189798).
[22] T. Tsuda, Y. Chujo, T. Saegusa (J. Chem. Soc. Chem. Commun. 1975 963/4).
[23] O. M. Abu Salah, M. I. Bruce (Australian J. Chem. 29 [1975] 73/7).
[24] O. M. Abu Salah, M. I. Bruce (Australian J. Chem. 29 [1975] 531/41).
[25] E. J. Corey, P. Ulrich, J. M. Fitzpatrick (J. Am. Chem. Soc. 98 [1976] 222/4).
[26] E. J. Corey, M. Shibasaki, K. C. Nicolaou, C. L. Malmsten, B. Samuelsson (Tetrahedron Letters 1976 737/40).
[27] B. F. Middleton, M. J. Weiss, C. V. Grudzinskas, S.-M. L. Chen, American Cyanamid Co. (Brit. 2006186 [1979]; Ger. Offen. 2837530 [1979]; C.A. 91 [1979] No. 38996).
[28] A. Camus, N. Marisch, G. Nardin, L. Randaccio (Inorg. Chim. Acta 23 [1977] 131/44).
[29] P. W. Collins, E. Z. Dajani, D. R. Driskill, M. S. Bruhn, C. J. Jung, R. Pappo (J. Med. Chem. 20 [1977] 1152/9).
[30] H. C. Kluender, Miles Laboratories Inc. (U.S. 4065493 [1977/78]; U.S. 4100356 [1977/78]; U.S. 4100357 [1977/78]; U.S. 4127727 [1977/78]; C.A. 88 [1978] No. 190216).
[31] R. T. Buckler, D. L. Garling (Tetrahedron Letters 1978 2257/60).
[32] M. B. Floyd, M. J. Weiss, C. V. Grudzinskas, S.-M. L. Chen, American Cyanamid Co. (Brit. 2009173 [1978/79]; C.A. 92 [1980] No. 214968).
[33] I. A. Garbuzova, I. R. Gol'ding, A. M. Sladkov, Ya. V. Genin, D. Ya. Tsvankin, V. T. Aleksanyan (Izv. Akad. Nauk SSSR Ser. Khim. 1978 1328/31; Bull. Acad. Sci. USSR Div. Chem. Sci. 1978 1154/6).
[34] K. Hiraki, Y. Fuchita, Y. Morita (Bull. Chem. Soc. Japan 51 [1978] 2012/4; C.A. 89 [1978] No. 129631).
[35] E. Piers, J. M. Chong, H. E. Morton (Tetrahedron Letters 22 [1981] 4905/8).
[36] M. Lopp, A. Pals, U. Lille (Eesti NSV Tead. Akad. Toimetised Keem. 29 [1980] 191/5).
[37] J. L. Luche, C. Pétrier, A. L. Gemal, N. Zikra (J. Org. Chem. 47 [1982] 3805/6).
[38] E. Piers, J. M. Chong (J. Org. Chem. 47 [1982] 1602/4).
[39] L. I. Zakharkin, A. I. Kovredov, V. A. Ol'shevskaya (Izv. Akad. Nauk SSSR Ser. Khim. 1982 673/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1982 599/602).
[40] R. J. Batten, J. D. Coyle, R. J. K. Taylor (Synthesis 1980 910/1).
[41] O. M. Abu-Salah, A. R. Al-Ohaly (J. Organometal. Chem. 255 [1983] C39/C40).
[42] Y. Naruta, K. Maruyama (J. Chem. Soc. Chem. Commun. 1983 1264/5).
[43] M. I. Bruce, M. G. Humphrey, J. G. Matisons, S. K. Roy, A. G. Swincer (Australian J. Chem. 37 [1984] 1955/61).
[44] G. La Monica, G. Ardizzoia, S. Cenini, F. Porta (J. Organometal. Chem. 273 [1984] 263/73).
[45] E. C. Royer, M. C. Barral (Inorg. Chim. Acta 90 [1984] L47/L 49).
[46] H. Werner, H. Otto, T. Ngo-Khac, C. Burschka (J. Organometal. Chem. 262 [1984] 123/36).
[47] C. Battistoni, G. Mattogno, E. Paparazzo, L. Naldini (Inorg. Chim. Acta 102 [1985] 1/3).
[48] M. I. Bruce, E. Horn, J. G. Matisons, M. R. Snow (J. Organometal. Chem. 286 [1985] 271/87).
[49] R. Kumar, D. G. Tuck (J. Organometal. Chem. 281 [1985] C47/C 48).
[50] J. Enda, T. Matsutani, I. Kuwajima (Tetrahedron Letters 25 [1984] 5307/10).
[51] J. Enda, I. Kuwajima (J. Am. Chem. Soc. 107 [1985] 5495/501).
[52] L. Naldini, F. Demartin, M. Manassero, M. Sansoni, G. Rassu, A. Zoroddu (J. Organometal. Chem. 279 [1985] C42/C 44).
[53] N. A. Bell, I. W. Nowell, H. M. M. Shearer (J. Chem. Soc. Chem. Commun. 1982 147/8).
[54] H. M. M. Shearer, P. W. R. Corfield (unpublished from [5]).
[55] M. I. Bruce, E. Horn, J. G. Matisons, M. R. Snow (Australian J. Chem. 37 [1984] 1163/70).

### 1.1.2.5 Complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{Cu}, \mathrm{Au}, \mathrm{Zn}$, or Hg Compounds

The complexes are given in Table 24. Some of the products are very poorly characterized. Compounds with known stoichiometry are formulated with a point (like $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Cu}$ ); a probable complex formation with unknown stoichiometry is indicated by a
comma (like $\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{ZnCl}_{2}$ ) as explained in "Organocopper Compounds" 1, 1985, p. 6.
$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}\left(\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}=1\right.$, 2-dicarba-closo-dodecaboran(12)-1-yl) and HgX ( $\mathrm{X}=$ halogen) do not form complexes. This is possibly a question of a polarization of the $\mathrm{C} \equiv \mathrm{C}$ bond different from that of the typical $\mathrm{RC} \equiv \mathrm{CCu}$ for electronic and steric reasons [8].

Table 24
Complexes of $\mathrm{RC} \equiv \mathrm{CCu}$ with $\mathrm{Cu}, \mathrm{Au}, \mathrm{Zn}$, or Hg Compounds.
For abbreviations and dimensions see p. X.

	compound	preparation, properties, and remarks	Ref.
complexes with Cu or Au compounds			
1	$\mathrm{CH} \equiv \mathrm{CCu} \cdot \mathrm{CuCl}$	at certain acidities intermediate formation assumed from $\mathrm{C}_{2} \mathrm{H}_{2}$ in $\mathrm{CuCl} / \mathrm{HCl} / \mathrm{NH}_{4} \mathrm{Cl} / \mathrm{H}_{2} \mathrm{O}$ from emf measurements [12]; also without $\mathrm{NH}_{4} \mathrm{Cl}$ [11], and similarly in $\mathrm{Cu}^{\prime} / \mathrm{Cu}^{\prime \prime} / \mathrm{Cl}_{2}$ (green solution) [13] dissociates in weakly acidic solutions to give " $\left[\mathrm{ClCu}_{2} \mathrm{C} \equiv \mathrm{C}\right]$-"   gives $\mathrm{Cu}_{2} \mathrm{C}_{2}$ in neutral or alkaline solutions	[11 to 13]
2	$\mathrm{CH} \equiv \mathrm{CCu} \cdot \mathrm{CuOH}$	from dilute aqueous solutions of $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{Cu}^{\prime}$ salt, neutralized by $\mathrm{NH}_{3}$ or NaOH ; precipitates from more conc. solutions or after drying in air contain more $C$ than corresponds to the formula   white or red-brownish, explosive after drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ in vacuum   soluble in cold dilute HCl or $\mathrm{HNO}_{3}$ and in warm conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$   gives $\mathrm{C}_{2} \mathrm{H}_{2}$ with $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, or $\mathrm{H}_{2} \mathrm{~S}$	[2]
3	$\begin{gathered} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{SC} \equiv \mathrm{CCu} \cdot \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Cu} \\ \left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}=\text { thien }-2-\mathrm{yl}\right) \end{gathered}$	structure derived only from analogy from solutions of $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{SC} \equiv \mathrm{CCu}$ in boiling $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, precipitation with ice-water "amorphous", oxidation gives $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$	[4]
4	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C}=\mathrm{CCu}$	Cl   from $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and a   $\mathrm{CuCl}-\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}\right] \mathrm{Cl}$ complex in $\mathrm{CH}_{3} \mathrm{OH} /$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$   can be converted to $n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$ in a $97 \%$ yield (no details)	[5]
5	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Cu}$	from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$; crystallizes from concentrated solutions after boiling under $\mathrm{CO}_{2}$, precipitation with ice-water also possible	$[1,3]$

Table 24 [continued]

No. compound	preparation, properties, and remarks	Ref.
$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Cu} \\ & \text { [continued] } \end{aligned}$	orange-yellow, soluble in organic solvents except petroleum ether gives on boiling in $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in presence of air $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CHC}_{6} \mathrm{H}_{5}$ (cf. the so-called "Straus reaction", Section 1.1.2.1.2; the title compound is possibly an intermediate of this reaction)	
$6 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{CuBr}$	from $\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{NCH}_{2} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ and 2 mol CuBr in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ}$, then $65^{\circ} / 30 \mathrm{~min}$, $\left[\mathrm{CH}_{2}=\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{i}\right)_{2}\right] \mathrm{Br}$ also obtained yellow after washing with dilute HCl and then $\mathrm{H}_{2} \mathrm{O}$   m.p. $270^{\circ}$ (dec.)   IR ( KBr ) : $1930(\mathrm{C} \equiv \mathrm{C})$   gives $25 \%\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2}$ with excess $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ after 20 h stirring at room temperature	[10]
7 $\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]^{+}$		[14]
$\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]^{+}[$		

from excess 4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu}$ in acetone and

in moderate yields
stable yellow solid IR: 2070+2110 ( $\mathrm{C} \equiv \mathrm{C}$ )
from the molecular weight of 854 (theor. 1413)
the $1: 1$ electrolytic character is supported
References on p. 178

Table 24 [continued]
No. compound preparation, properties, and remarks Ref.

## complexes with Zn or $\mathbf{H g}$ compounds

$8 \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{ZnCl}_{2}$
$9 \quad 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{HgBr}_{2}$
$10 \quad 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{HgCl}_{2}$
$112 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot\left[\mathrm{CH}_{3} \mathrm{CO}_{2}\right]_{2} \mathrm{Hg}$
$12 \quad 2 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{HgCl}_{2}$
the formation of a complex from $\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11^{-}}$ $\mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{ZnCl}_{2}$ in hexamethylphosphoric triamide is supposed from the enhanced reactivity towards $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$, compared with $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCu}$; $\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}{ }^{-}$ $\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ is formed in a $32 \%$ yield
from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{HgBr}_{2}$ in THF, dioxane, or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ at $25^{\circ}$; lower yields in water yellow, insoluble in organic solvents and in $\mathrm{H}_{2} \mathrm{O}$, dissolves in pyridine with decomposition
gives $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ with KI in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$ with aqueous $\mathrm{NH}_{3}$
preparation like No. 9 from $\mathrm{HgCl}_{2}$
colorless
IR: 2000, 2040
gives $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$ with aqueous $\mathrm{NH}_{3}$
in boiling dioxane slowly forms $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Hg}$
preparation like No. 9 from $\left[\mathrm{CH}_{3} \mathrm{CO}_{2}\right]_{2} \mathrm{Hg}$, low yield
preparation not given decomposes in $\mathrm{H}_{2} \mathrm{SO}_{4} / 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$

## References:

[1] F. Straus (Liebigs Ann. Chem. 342 [1905] 190/265, 193/4).
[2] R. M. Schierl (Z. Calciumcarbid 10 [1909] 93/5).
[3] P. Piganiol (Acétylène: Homologues et Dérivés, Masson, Paris 1945, p. 263).
[4] A. Vaitiekunas, F. F. Nord (J. Org. Chem. 19 [1954] 902/6).
[5] M. Gaudemar (Compt. Rend. 258 [1964] 4803/4).
[6] A. M. Sladkov, L. Yu. Ukhin, Z. I. Orlova (Izv. Akad. Nauk SSSR Ser. Khim. 1968 2586/90; Bull. Acad. Sci. USSR Div. Chem. Sci. 1968 2446/9).
[7] J. F. Normant, M. Bourgain, A.-M. Rone (Compt. Rend. C 270 [1970] 354/7).
[8] L. I. Zakharkin, V. N. Kalinin, I. R. Gol'ding, A. M. Sladkov, A. V. Grebennikov (Zh. Obshch. Khim. 41 [1971] 823/8; J. Gen. Chem. [USSR] 41 [1971] 830/3).
[9] E. H. Terent'eva, N. N. Smirnova, I. M. Pruslina (Zavodsk. Lab. 40 [1974] 143/5; Ind. Lab. [USSR] 40 [1974] 175/7).
[10] S. Searles, Y. Li, B. Nassim, M.-T. R. Lopes, P. T. Tran, P. Crabbé (J. Chem. Soc. Perkin Trans. I 1984 747/51).
[11] O. M. Temkin, R. M. Flid, E. D. German, T. A. Onishchenko (Kinetika Kataliz 2 [1961] 205/13; Kinet. Catal. [USSR] 2 1961] 190/8).
[12] O. A. Chaltykyan (Zh. Obshch. Khim. 18 [1948] 1626/38).
[13] R. Ohlson (Acta Chem. Scand. 20 [1966] 585/6).
[14] O. M. Abu-Salah (J. Organometal. Chem. 270 [1984] C26/C28).

### 1.1.2.6 Compounds of the Type [RC $\equiv \mathbf{C C u H}]$ Li

The structure of these reagents has not yet been determined exactly. In this section the formulation $[\mathrm{RC} \equiv \mathrm{CCuH}] \mathrm{Li}$ is preferred, but in the literature " $\mathrm{RC} \equiv \mathrm{CLi} \cdot \mathrm{CuH}$ " and " $\mathrm{HLiCuC} \equiv \mathrm{CR}$ " are also common. A similar product with a $\mathrm{Cu}: \mathrm{Li}$ ratio of about 3 exists too [2, 3].
$[R C \equiv C C u H] L i$ has only been prepared in solution from $R C \equiv C L i$ and $(\mathrm{CuH})_{n}$ in ether or tetrahydrofuran at -40 to $-78^{\circ} \mathrm{C}$. This red or brown solution is a useful means for reducing the structural unit $\mathrm{C}=\mathrm{CC}=\mathrm{O}$ to give $\mathrm{CHCHC}=\mathrm{O}$ with high regiospecifity and high functional selectivity (comparable to that of the hydrogenation). The reaction is usually applied to cyclic enones. In cases where the $\beta$-carbon is highly substituted, added hexamethylphosphoric triamide appears to facilitate somewhat the reduction of the double bond. Other normally reducible functionalities are unaffected. Usually the molar ratio of substrate to complex is $1: 6$ [1 to 3].
[ $\left.\mathbf{n}-\mathbf{C}_{3} \mathbf{H}_{7} \mathbf{C} \equiv \mathbf{C C u H}\right] L i$ is formed from $n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CLi}$ and $(\mathrm{CuH})_{\mathrm{n}}$ at $-40^{\circ} \mathrm{C}$ in ether or in tetrahydrofuran [1, 2]. The ethereal solution and 2-bromononane react to form $40 \%$ (at $25^{\circ} \mathrm{C}$ ) or $5 \%$ (at $0^{\circ} \mathrm{C}$ ) n -nonane and $4 \%$ nonene with second-order kinetics. This reaction does not occur in tetrahydrofuran [2].

The following enones were selectively hydrogenated at the $C=C$ double bond; generally an antiparallel entry of the hydride is observed.

enone	yield, temperature (in $\left.{ }^{\circ} \mathrm{C}\right)$	Ref.

reactions in THF

$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COC}_{2} \mathrm{H}_{5}$	$85 \%$ at $-20^{\circ}$
$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}$	$42 \%$ at $-120^{\circ}$
0	$70 \%$ at $-20^{\circ}$



$86 \%$ at $-78^{\circ}$

$90 \%$ at $-20^{\circ}$ (cis:trans $=9: 1$ )


enone	yield, temperature (in ${ }^{\circ} \mathrm{C}$ )
	$47 \%$ at $-20^{\circ}$

reactions in THF in the presence of $\mathbf{1 0 \%} \operatorname{OP}\left(\mathbf{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$



$$
\begin{equation*}
85 \% \text { at }-20^{\circ} \tag{1}
\end{equation*}
$$

$22 \%$ at $-20^{\circ}$


$67 \%$ at $-20^{\circ}$ (cis:trans $\left.=7: 3\right)$
$\left[\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathbf{C} \equiv \mathbf{C C u H}\right] \mathrm{Li}$ is formed from $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CLi}$ and $(\mathrm{CuH})_{n}$ in tetrahydrofuran at $0^{\circ} \mathrm{C}$; no further conditions or subsequent reactions are reported [3].
$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathbf{C C} \equiv \mathbf{C C u H}\right] \mathrm{Li}$. The literature data are contradictory. There has been reported, $(\mathrm{CuH})_{n}$ "does not dissolve, when treated in ether with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CLi}$ " [3]; otherwise was stated, "diethylether is definitely superior to tetrahydrofuran" [2]. When $(\mathrm{CuH})_{n}$ is treated in tetrahydrofuran with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CLi}$, it dissolves at a Cu : Li ratio of $3: 1$. The analysis of the brown solution gives 2.6:1, which is probably due to the pyridine content of the $(\mathrm{CuH})_{n}$ prepared according to [4]. With an excess of this solution (corresponding to $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv$ $\mathrm{CLi} \cdot 3 \mathrm{CuH}) 3,5,5$-trimethylcyclohex-2-enone is reduced at $-27^{\circ} \mathrm{C}$ in a $48 \%$ yield to give $3,5,5$-trimethylcyclohexanone. Under the same conditions I ( $\mathrm{R}^{1}=\mathrm{H}$ or $\mathrm{CH}_{3}$ ) gives a mixture of II and III, where the cis isomer is predominant (77:23 with $R^{1}=H$ ) [3].


1


II


III

With a $\mathrm{Cu}: \mathrm{Li}$ ratio of $1: 1$ (corresponding to $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCuH}\right] \mathrm{Li}$ ) in tetrahydrofuran the yield is lowered and higher boiling byproducts are formed [3]. From $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCuH}\right] \mathrm{Li}$ or " $\mathrm{LiCuHC} \equiv \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}$ " and cyclohex-2-enone after 1 h in ether (reagent:substrate ratio =
$6: 1$ ) at $-40^{\circ} \mathrm{C} 50 \%$ and at $0^{\circ} \mathrm{C} 90 \%$ cyclohexanone is formed. At a reagent:substrate ratio of $4: 1$ the yields are somewhat lower. Using tetrahydrofuran instead of ether retards the reaction and causes more byproducts. Hexamethylphosphoric triamide does not influence the reaction. The reactivity of $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CCuH}\right] \mathrm{Li}$ is higher than that of $\left[\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv\right.$ CCuHJLi [2].

## References:

[1] R. K. Boeckman Jr., R. Michalak (J. Am. Chem. Soc. 96 [1974] 1623/5).
[2] S. Masamune, G. S. Bates, P. E. Georghiou (J. Am. Chem. Soc. 96 [1974] 3686/8).
[3] H. O. House, J. C. DuBose (J. Org. Chem. 40 [1975] 788/90).
[4] G. M. Whitesides, J. S. Filippo Jr., E. R. Stredronsky, C. P. Casey (J. Am. Chem. Soc. 91 [1969] 6542/4).

### 1.1.2.7 Salts of the Anions $\left[(R C \equiv C)_{2} C u^{\prime}\right]^{-}$and $\left[R^{1} C_{\equiv}=C u^{\prime} C_{\equiv} \equiv \mathbf{C R}^{2}\right]^{-}$

The bonding schema resembles that of the complex anion $\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}\right]^{2-}$; see Section 1.1.2.8. The cations in these salts are often complexes, e.g., $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$. Depending on the preparation method, these compounds sometimes contain stoichiometric amounts of $\mathrm{NH}_{3}$. For examples see Table 25.

The asymmetric complexes $\left[(\mathrm{RC} \equiv \mathrm{C}) \mathrm{R}^{\prime} \mathrm{Cu}\right] \mathrm{M}\left(\mathrm{R}^{\prime}=\right.$ alkyl, alkenyl, aryl) transfer the group $R^{\prime}$ more easily, whereas $R C \equiv C$ is strongly bonded. They are dealt with therefore in "Organocopper Compounds' 2 , 1983, in Sections 1.1.1.2.4 ( $\mathrm{M}=\mathrm{Li}$ ) and 1.1.1.2.6 ( $\mathrm{M}=\mathrm{MgX}$ ') with examples in Tables 12 on p. 175 ff . and 17 on p. 228 ff .

The symmetric complexes in Table 25 are prepared by the following methods. If not stated otherwise, they have not been isolated from the preparation mixture.

Method I: $\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{RC} \equiv \mathrm{CM} \rightarrow\left[(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Cu}\right] \mathrm{M}, \mathrm{M}=\mathrm{Li}$ or K , in liquid $\mathrm{NH}_{3}$ or in an ether.
Method II: $2 R C \equiv C M+C u I \rightarrow\left[(R C \equiv C)_{2} C u\right] M+M I, M=L i$ or $N a$, in liquid $\mathrm{NH}_{3}$ or in an ether. In liquid $\mathrm{NH}_{3}$ complexes of $\mathrm{NH}_{3}$ can be formed.
Method III: $\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}\right] \mathrm{K}_{2}+\mathrm{CuI} \rightarrow\left[(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Cu}\right] \mathrm{K}+\mathrm{RC} \equiv \mathrm{CCu}+\mathrm{KI}$ in liquid $\mathrm{NH}_{3}$.
Method IV: $4 R C \equiv C M+2 \mathrm{Cu}^{2+} \rightarrow\left[(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Cu}\right]^{-}+\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{R}+\mathrm{Cu}^{+}+4 \mathrm{M}^{+}, \mathrm{M}=$ alkali metal, in liquid $\mathrm{NH}_{3} . \mathrm{Cu}^{2+}$ is probably first reduced by $\mathrm{RC} \equiv \mathrm{CM}$.
$\left[(\mathrm{RC} \equiv \mathrm{C})_{2} \mathrm{Cu}\right] \mathrm{Li}$ and bicyclic enones yield bicyclic or tricyclic products, respectively, dependent on the substitution type of the enone. $\left[\left(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{Li}$ (No. 3 in Table 25) reacts with I ( $\mathrm{R}^{1}=\mathrm{CH}_{3} \mathrm{SO}_{3}$ or $\left.4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ in ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $83 \%$ II (1RS, 5 RS, 6 RS compound). Under the same conditions $\left[\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{C}\right\}_{2} \mathrm{Cu}\right] \mathrm{Li}$ (No. 6 in Table 25) gives with I ( $\mathrm{R}^{1}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}$ ) no II, but $50 \%$ III $\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right.$ and $\mathrm{R}^{1}=4$ $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}$ ). This structure is only "tentatively assigned" to the reaction product. In ether at $-78{ }^{\circ} \mathrm{C}\left[\left(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{Li}$ and IV give $38 \%$ III ( $\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$ and $\mathrm{R}^{1}=\mathrm{H}$ ). In both cases the stereochemistry of III is unclear. All reactions are complete after 1 h [9].


I
Gmelin Handbook Cu-Org. Comp. 3


II


III


IV

References on p. 184

## Table 25

Salts of the Anions $\left[(R C \equiv C)_{2} C u\right]$.
For abbreviations and dimensions see p. X.

No.	salt	method of preparation (solvent, yield) properties, remarks, reactions	Ref.
	$\left[(\mathrm{CH} \equiv \mathrm{C})_{2} \mathrm{Cu}\right] \mathrm{K}$	```III (liquid NH3} yields metallic Cu with K, see also "Kupfer" B3, 1965, p. }104```	[2, 3]
2	$\left[\left(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{K}$	$\begin{aligned} & \text { I, III }(100 \%) \\ & \text { yellow solid, very slightly soluble in liquid } \mathrm{NH}_{3} \\ & \text { reacts with } \mathrm{K} \text { like No. 1, yields with Cul } \\ & \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu} \end{aligned}$	[2, 3]
3	$\left[\left(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{Li}$	II (ether) gives $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{n}$ with $\text { (E) }-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCOC}_{6} \mathrm{H}_{5}$   for the reaction with bicyclic enones see p. 181	[9]
4	$\left[\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{C}\right\}_{2} \mathrm{Cu}\right] \mathrm{Li}$	II (THF/C $\mathrm{C}_{6} \mathrm{H}_{14}$, with CuBr instead of CuI ) gives $70 \%\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CC}\left(\mathrm{CH}_{3}\right)=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-$ $\mathrm{CH}_{2} \mathrm{OH}$ with 2-(prop-1-ynyl)-2-methyloxirane at $25^{\circ}$ in THF, but only in presence of $\operatorname{Pd}\left[P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$	[11]
5	$\left[\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{Li}$	II (ether/THF) reacts with (E) $-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$ to give $\text { (E) }-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{C} \equiv \mathrm{CC}_{4} \mathrm{H}_{9}-\mathrm{n}$	[8]
6	$\left[\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{C}\right\}_{2} \mathrm{Cu}\right] \mathrm{Li}$	II (ether) for the reaction with bicyclic enones see p. 181	[9]
7	$\left[\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{Li}$	$\begin{aligned} & \text { I (ether) } \\ & \text { reacts with } \mathrm{CH}_{3} \mathrm{COCl} \text { to give } 33 \% \\ & \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CCOCH}_{3} \end{aligned}$	[5]
8	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{Li}$	II (ether or THF with $\left[\operatorname{ICuP}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{3}\right]_{4}$ instead of Cul)   yields $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ with $\mathrm{O}_{2}$ at $-78^{\circ}$ and $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-4$ with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-4$   yields $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}$, obviously via $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CNH}_{2}$, with $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{ONH}_{2}$ at $-20^{\circ}$ in THF	$\begin{aligned} & {[4,7} \\ & 10] \end{aligned}$
9	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{Na} \cdot 2 \mathrm{NH}_{3}$	II (25\%) colorless crystals, stable under $\mathrm{NH}_{3}$ atmosphere reacts with Cul in liquid $\mathrm{NH}_{3}$ to give $80 \%$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu} \cdot \mathrm{NH}_{3}$ (see Section 1.1.2.4) and with $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right](\mathrm{SCN})_{2}$ in liquid $\mathrm{NH}_{3}$ to give No. 11	[1, 2]
10	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{K}$	III (liquid $\mathrm{NH}_{3}$ ) yields metallic Cu with K	[2, 3]
		References on p. $184 \sim \begin{gathered}\text { Gmelin } \\ \text { Cu-O }\end{gathered}$	Handbook   Comp. 3

Table 25 [continued]
No. salt
method of preparation (solvent, yield) Ref. properties, remarks, reactions
$11\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right]_{2}\left[\mathrm{Ni}^{( }\left(\mathrm{NH}_{3}\right)_{6}\right] \cdot 2 \mathrm{NH}_{3}$
for preparation see under No. 9
brownish violet solid, yields after 3 h at room temperature in high vacuum $60 \%$ of No. 12
$12\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right]_{2} \mathrm{Ni} \cdot 4 \mathrm{NH}_{3} \quad$ for preparation see under No. 11
formulated as " $\mathrm{NiCu}_{2}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{4} \cdot 4 \mathrm{NH}_{3}$ " black solid, soluble in benzene
$13 \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cu}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{4}\right] \cdot x \mathrm{NH}_{3}$
IV (liquid $\mathrm{NH}_{3}$ )
x not estimated, upon evaporation of all $\mathrm{NH}_{3}$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ are formed
$14\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cu}^{\prime \prime}\left(\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}\right)_{2}\right] \cdot 2 \mathrm{NH}_{3}$
for preparation see under No. 15
green-yellow solid
yields $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ on exposure to high vacuum
$15\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]_{2}\left[\mathrm{Cu}^{\prime \prime}\left(\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}\right)_{2}\right] \cdot 12 \mathrm{NH}_{3}$
IV (in presence of $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$ )
violet crystals after drying in high vacuum at $-78^{\circ}$
yields No. 14 at $-30^{\circ}$ in high vacuum
$16\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{C}\right)_{2} \mathrm{Cu}^{\prime}\right]\left[\mathrm{N}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right] \quad$ prepared from Nos. 9 or 10 (?)
more stable than Nos. 9 and 10
gives $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Au}\right]^{-}$and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$
$\cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CAu} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (see Section 1.1.2.4)
gives besides $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ - $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ (see Section 1.1.2.4) also $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.\right.$ $\left.\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Au}\right]^{-}$with $\mathrm{AuCl} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Au}\right]^{-}$and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CAu}$ or $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CAuCl}\right]^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

## [4- $\mathrm{C}_{6} \mathbf{H}_{5} \mathbf{C}_{6} \mathbf{H}_{4} \mathrm{NHCOCH}_{2} \mathrm{C} \equiv \mathbf{C C u C} \equiv \mathbf{C C H}=\mathrm{CHC}_{2} \mathbf{H}_{2} \mathrm{OC}_{5} \mathrm{H}_{11}$ ] Li (see IV)

The asymmetric complex acetylide is obtained from $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHCOCH}_{2} \mathrm{C} \equiv \mathrm{CCu}$ and V in tetrahydrofuran/hexamethylphosphoric triamide. Oxidation with iodine in the same solvent mixture gives VI in a $44 \%$ yield [6].



V


VI

## References:

[1] R. Nast (Z. Naturforsch. 8b [1953] 381/3).
[2] R. Nast, W. Pfab (Chem. Ber. 89 [1956] 415/21).
[3] R. Nast, P.-G. Kirst, G. Beck, J. Gremm (Chem. Ber. 96 [1963] 3302/5).
[4] M. L. H. Green (Organometallic Compounds II: The Transition Elements, 3rd Ed., Methuen, London 1968, pp. 271/6).
[5] M. Bourgain, J. F. Normant (Bull. Soc. Chim. France 1973 2137/42).
[6] E. J. Corey, G. W. J. Fleet, M. Karo (Tetrahedron Letters 1973 3963/6).
[7] K. Koosha, J. Berlan, M.-L. Capmau (Compt. Rend. C 276 [1973] 1633/6).
[8] C. Chuit, J. P. Foulon, J. F. Normant (Tetrahedron 37 [1980] 1385/9).
[9] D. J. Hannah, R. A. J. Smith, I. Teoh, R. T. Weavers (Australian J. Chem. 34 [1981] 181/8).
[10] G. Boche, M. Bernheim, W. Schrott (Tetrahedron Letters 1982 5399/402).
[11] H. Kleijn, J. Meijer, G. C. Overbeek, P. Vermeer (Recueil J. Roy. Neth. Chem. Soc. 101 [1982] 97/101).
[12] O. M. Abu-Salah, A. R. Al-Ohaly (J. Organometal. Chem. 255 [1983] C39/C 40).

### 1.1.2.8 Salts of the Anions $\left[(R C=C)_{3} C u^{\prime}\right]^{2-}$

The small volume taken up by the acetylide group in the region of the valence orbitals of copper makes anions $\left[(R C \equiv C)_{n} C u^{l}\right]^{(n-1)-}$ possible. Probably a considerable back-donation occurs from the filled d-orbitals on the metal into antibonding $\pi^{*}$-orbitals of the acetylide. The bonding scheme is like that for $\mathrm{N}_{2}$ complexes, but the anionic acetylide ligands seem to be better $\sigma$-donors than $\mathrm{N}_{2}$. In this respect acetylides resemble cyanide ion.

Salts of the anions $\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}\right]^{2-}$ can be prepared from copper acetylides and alkali metal acetylides, or from alkali metal acetylides and copper halides or complexes thereof. Ethers and liquid $\mathrm{NH}_{3}$ are suitable solvents. With the latter, $\mathrm{NH}_{3}$ complexes can be formed. In Table 26 the preparation procedure is indicated by the following methods:

Method I: $\quad \mathrm{RC} \equiv \mathrm{CCu}+2 \mathrm{RC} \equiv \mathrm{CM} \rightarrow\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu} \mathrm{M}_{2}, \mathrm{M}=\mathrm{Li}\right.$ or K (cf. Method I in Section 1.1.2.7).

Method II: $3 R \mathrm{RC} \equiv \mathrm{CM}+\mathrm{CuX} \rightarrow\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}\right] \mathrm{M}_{2}+\mathrm{MX}, \mathrm{M}=\mathrm{Li}$ or $\mathrm{K} ; \mathrm{X}=\mathrm{Br}$, I , or CN (cf. Method II in Section 1.1.2.7).
Method III: $3 \mathrm{RC} \equiv \mathrm{CLi}+\mathrm{CuBr} \cdot \mathrm{S}\left(\mathrm{CH}_{3}\right)_{2} \rightarrow\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}+\mathrm{LiBr}+\mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}$.
$\left[(R C \equiv C)_{3} C u\right] \mathrm{Li}_{2}$ have become interesting for the preparation of alkynylamines according to the equation $\left[(R C \equiv C)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}+2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NX} \rightarrow 2 \mathrm{RC} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{RC} \equiv \mathrm{CCu}+2 \mathrm{LiX}$, where $\mathrm{X}=$ $\mathrm{PO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ or $\mathrm{SO}_{2} \mathrm{CH}_{3}$ [9].
$\left[\left(n-C_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$ reacts with $\mathrm{Ia}, \mathrm{Ib}$, or Ic in ether in the presence of hexamethylphosphoric triamide to give IIa, IIb, or IIC $\left(R=n-C_{3} H_{7}\right)$, respectively. Analogously, [( $n-C_{4} H_{9}-$ $\mathrm{C} \equiv \mathrm{C})_{3} \mathrm{Cu} \mathrm{Li}_{2}$ and la or IC give IIa or IIC under the same conditions. In all cases, the regiospecificity is high and the yields are between 85 and $95 \%$ [7].


I


II
$a: R^{1}=R^{2}=R^{3}=H$
b: $R^{1}=R^{3}=H ; R^{2}=\mathrm{CH}_{3}$
c: $R^{1}=R^{3}=\mathrm{CH}_{3} ; R^{2}=\mathrm{H}$
$\left[\left(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$ and III give under the conditions outlined before IV (yields $85 \%$ at $R^{1}=\mathrm{H}, 95 \%$ at $\mathrm{R}^{1}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ) [7].
$\left[\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$ and V in dioxane (only partly dissolved) at $30^{\circ} \mathrm{C}$ give $62 \% \mathrm{VI}$. $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$ and V in ethereal solution at $30^{\circ} \mathrm{C}$ also yield VI (no yield given), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$, and two higher molecular products of unknown structure [5].


III


IV


V


VI

Table 26
Salts of the Anions $\left[(\mathrm{RC} \equiv \mathrm{C})_{3} \mathrm{Cu}\right]^{2-}$.
For abbreviations and dimensions see $p . X$.

No. compound	method of preparation (solvent) properties, reactions	Ref.
$1 \quad\left[(\mathrm{CH} \equiv \mathrm{C})_{3} \mathrm{Cu}\right] \mathrm{K}_{2}$	I, II $\left(X=I\right.$, yield $75 \%$; both in $\left.\mathrm{NH}_{3}\right)$   white, diamagnetic, not shock-sensitive, sparingly soluble in liquid $\mathrm{NH}_{3}$   susceptibility $\chi_{\mathrm{g}}=-0.7 \times 10^{-6} \mathrm{~cm}^{3} \cdot \mathrm{~g}^{-1}$ (cylinder method)   reacts with $\mathrm{H}_{2} \mathrm{O}$ to give $\mathrm{Cu}_{2} \mathrm{C}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$, with K in liquid $\mathrm{NH}_{3}$ to give metallic Cu   see also "Kupfer" B3, 1965, p. 1044	[1 to 3]
$2 \quad\left[\left(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{K}_{2}$	I, II ( $\mathrm{X}=\mathrm{I}$; both in $\mathrm{NH}_{3}$ )   white, diamagnetic, not shock-sensitive, sparingly   soluble in liquid $\mathrm{NH}_{3}$   reacts with $\mathrm{H}_{2} \mathrm{O}$ to give $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCu}$, with K in liquid   $\mathrm{NH}_{3}$ to give metallic Cu   gives $\left[\left(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{Cu}\right] \mathrm{K}$ (see Section 1.1.2.7) with Cul in liquid $\mathrm{NH}_{3}$	[1 to 3]
$3 \quad\left[\left(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$	only prepared in solution: I, III (both in ether),   II ( $\mathrm{X}=\mathrm{I}$; ether: hexamethylphosphoric   triamide $=4: 1$ )   for reactions with cyclic enones see above   reacts with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NX}\left(\mathrm{X}=\mathrm{PO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right.$ or $\left.\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$ to give 69 to $87 \% n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{C} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$	[7, 9]
Gmelin Handbook Cu-Org. Comp. 3	References on p. 187	

Table 26 [continued]

	compound	method of preparation (solvent) properties, reactions	Ref.
4	$\left[\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{C}\right\}_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$	only prepared in ethereal solution : II $(\mathrm{X}=\mathrm{Br})$, III gives $67 \%\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$ with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NPO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \text { at }-20^{\circ}$	[9]
5	$\left[\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$	only prepared in solution: I (ether), II ( $X=I$; dioxane), II ( $\mathrm{X}=\mathrm{CN}$; ether), III (ether) for reactions with cyclic enones see p. 185 reacts with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NX}\left(\mathrm{X}=\mathrm{PO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right.$ or $\left.\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$ to give $78 \% \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$	$\begin{aligned} & {[5,7,} \\ & 9] \end{aligned}$
6	$\left[\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{C}\right\}_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$	only prepared in ethereal solution: II ( $\mathrm{X}=\mathrm{CN}$ ), III reacts with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NPO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ at $-20^{\circ}$ to give $71 \%$ $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$	[9]
7	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$	only prepared in solution: I (ether), II $(X=B r$; ether), II ( $X=I$; ether or dioxane), II ( $X=C N$; ether), III (ether)   reacts with $n-\mathrm{C}_{5} \mathrm{H}_{11}$ I to give $<1 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{5} \mathrm{H}_{11}-\mathrm{n}$ gives $79 \%(E)-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}\left(\mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ with (E) $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$ reacts with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NX}\left(\mathrm{X}=\mathrm{PO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right.$ or $\left.\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$ to give up to $83 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$	$\begin{aligned} & {[5,6} \\ & 8,9] \end{aligned}$
8	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{K}_{2}$	for preparation see under No. 9 yellowish powder reacts with $\mathrm{Ba}(\mathrm{SCN})_{2}$ in liquid $\mathrm{NH}_{3}$ to give No. 10 yields with K or Li in liquid $\mathrm{NH}_{3}$ a red solution containing $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{0}\right]^{3-}$ with precipitation of $\mathrm{LiNH}_{2}$; in presence of $\mathrm{Ba}^{2+}$ the $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv\right.\right.$ $\left.\mathrm{C})_{3} \mathrm{Cu}^{0}\right]_{2} \mathrm{Ba}_{3}$ is precipitated (see Section 1.1.2.9)	[2 to 4]
9	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{K}_{2} \cdot 2 \mathrm{NH}_{3}$	II ( $\mathrm{X}=\mathrm{I}$; liquid $\mathrm{NH}_{3}$ ) yellowish needles, stable in an $\mathrm{NH}_{3}$ atmosphere yields No. 8 after 3 h at room temperature in high vacuum	[2]
10	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Ba}$	from $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{0}\right]_{2} \mathrm{Ba}_{3}$ (see Section 1.1.2.9) and $\mathrm{O}_{2}$; see also No. 8 yellowish crystals   IR (KBr) : 690, 750 (both CH ), 900 to 1200 (CH aromatic), 1440, 1480, 1575, 1592 (all C-C), 2045 ( $\mathrm{C} \equiv$ C), 3030 ( CH aromatic)	[3]
11	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SC} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$	only prepared in ethereal solution : II $(\mathrm{X}=\mathrm{CN})$, III gives 17 to $45 \% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SC} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$ with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NPO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \text { at }-20^{\circ}$	[9]

Table 26 [continued]

No. compound	method of preparation (solvent)   properties, reactions	Ref.
$12 \quad\left[\left(\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$	only prepared in ethereal solution: II $(X=\mathrm{CN})$, III   gives cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$ with   $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NPO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ at $-20^{\circ}$	[9]
$13 \quad\left[\left(n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}\right] \mathrm{Li}_{2}$	only prepared in ethereal solution: I, II $(\mathrm{X}=\mathrm{CN})$   gives $n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C} \equiv \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$ with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NPO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$   at $-20^{\circ}$	

## References:

[1] R. Nast (Z. Naturforsch. 8b [1953] 381/3).
[2] R. Nast, W. Pfab (Chem. Ber. 89 [1956] 415/21).
[3] R. Nast, P.-G. Kirst, G. Beck, J. Gremm (Chem. Ber. 96 [1963] 3302/5).
[4] R. Nast (Angew. Chem. 77 [1965] 352).
[5] H. O. House, W. F. Fischer Jr. (J. Org. Chem. 34 [1969] 3615/8).
[6] G. M. Whitesides, W. F. Fischer Jr., J. S. Filippo Jr., R. W. Brashe, H. O. House (J. Am. Chem. Soc. 91 [1969] 4871/82).
[7] G. Palmisano, R. Pellegata (J. Chem. Soc. Chem. Commun. 1975 892/3).
[8] C. Chuit, J. P. Foulon, J. F. Normant (Tetrahedron 37 [1980] 1385/9).
[9] G. Boche, M. Bernheim, M. Nießner (Angew. Chem. Suppl. 1983 34/8; Angew. Chem. 95 [1983] 48).

### 1.1.2.9 Salts of the Anion $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathbf{C}\right)_{3} \mathrm{Cu}^{0}\right]^{3-}$

Compounds containing the anion $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{0}\right]^{3-}$ are very strong reductants and extremely sensitive towards air and humidity. Ignition, fog formation, and carbonization have been observed upon sudden contact with air. Ignition occurs also upon contact with NO.
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{C} \equiv \mathbf{C}\right)_{3} \mathrm{Cu}^{0}\right] \mathrm{K}_{3}$ is prepared as a red solution on the treatment of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{1}\right] \mathrm{K}_{2}$ (see Section 1.1.2.8) with metallic K or Li in liquid $\mathrm{NH}_{3}$. Li is preferable because after reduction the insoluble $\mathrm{LiNH}_{2}$ can be removed [1].
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{C} \equiv \mathbf{C}\right)_{3} \mathrm{Cu}^{0}\right]_{2} \mathrm{Ba}_{3}$ is prepared from a solution of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{0}\right] \mathrm{K}_{3}$ (see above) in liquid $\mathrm{NH}_{3}$ with $\mathrm{Ba}^{2+}$ [1] or from $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{\prime}\right] \mathrm{K}_{2}$, metallic Li , and $\mathrm{Ba}^{2+}$ in liquid $\mathrm{NH}_{3}$ [2]. It is orange-brown and forms chocolate-colored crystals after drying in high vacuum. It is sparingly soluble in liquid $\mathrm{NH}_{3}$, but soluble in absolute tetrahydrofuran. It is not explosive [1, 2].

Possibly the actual structure of this compound is $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}-\mathrm{Cu}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{3}\right] \mathrm{Ba}_{3}$ because of its diamagnetic character [1, 2]. The IR spectrum in a Nujol mull under nitrogen shows the bands 690, 750 (both CH), 900 to 1200 (aromatic CH), 1440, 1480, 1575, 1590 (all C-C), 2045 (CC), 3030 (aromatic CH) cm ${ }^{-1}$ [1]. "Handling" for more than two or three minutes (air contact?) produces decomposition products, which show IR bands at $1390 \mathrm{~cm}^{-1}$ and at $3450 \mathrm{~cm}^{-1}(\mathrm{OH})$. The reaction with traces of oxygen produces $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}$ and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{Cu}^{\prime}\right] \mathrm{Ba}[1,2]$.

## References:

[1] R. Nast, P.-G. Kirst, G. Beck, J. Gremm (Chem. Ber. 96 [1963] 3302/5).
[2] R. Nast (Angew. Chem. 77 [1965] 352).

### 1.1.3 Carbonyls

### 1.1.3.1 Compounds with One CO Ligand

The literature up to 1949 is described in "Kupfer" B1, 1958, on pp. 240/1, 362, 410, and B2, 1961, on p. 678.

The following Table 27 contains compounds with one CO group. Those with an uncertain composition, like (CO)CuX $\mathrm{y} \mathrm{NH}_{3}$ where $\mathrm{X}=\mathrm{ClO}_{4}^{-}, \mathrm{NO}_{3}^{-}$, and $\mathrm{IO}_{3}^{-}$and $\mathrm{y}=2.8$ to 3.6 [5], or postulated intermediates, like $\left[(\mathrm{CO}) \mathrm{CuD}_{\mathrm{x}}\right]^{+}$( D can be several amines) [22] and [(CO)Cu $\left.\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}\right)_{2}\right] \mathrm{Cl}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}=\right.$ piperidine) [11], are not included. Compounds of formula (CO) $\mathrm{CuX}\left(\mathrm{X}=\mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{O}_{2} \mathrm{CH}^{-}\right.$, and $\mathrm{O}_{2} \mathrm{CCH}_{3}^{-}$, Table 27, Nos. 10, 13, 15, and 16) are formulated in [29]. CO stabilizes Cu' phenoxides by formation of carbonyl complexes [96].

The penta-coordinate complexes [(CO)Cu'D] ${ }^{n+}$ (Nos. 55 to 63) with tetradentate ligands $D$ are accessible from the [Cu'D] ${ }^{n+}$ complexes and CO in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}$. The equilibrium constants $\mathrm{K}=\left[(\mathrm{CO}) \mathrm{Cu}^{\prime} \mathrm{D}^{\mathrm{n}+}\right] /\left[\mathrm{Cu}^{\prime} \mathrm{D}^{\mathrm{n}+}\right] \cdot[\mathrm{CO}]$ given in the Table 27 can be calculated from the influence of CO on the redox potential [Cu'D] ${ }^{n+} /\left[\mathrm{Cu}^{\prime \prime} \mathrm{D}\right]^{(n+1)+}[57]$.

In $\mathrm{CH}_{3} \mathrm{CN}$ solution, Cu' complexes with tri- and tetradentate Schiff bases $\mathrm{D}=\{\mathrm{RN}=$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)\right\}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$ derived from 2,6-diacetylpyridine and amines $\mathrm{RNH}_{2}$ absorb CO reversibly with a color change from red or brown to yellow or yellow-brown, $R=n-C_{3} H_{7}, n-C_{4} H_{9}$, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SCH}_{2} \mathrm{CH}_{2}$. The IR spectra of the solutions indicate that the CO is terminally bonded to the Cu atom. At $0^{\circ} \mathrm{C}$ the molar ratio $\mathrm{CO}: \mathrm{Cu}$ never exceeded $0.6: 1$, being largest for $R=n-\mathrm{C}_{3} \mathrm{H}_{7}$ and smallest for $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SCH}_{2} \mathrm{CH}_{2}$. The variation of the stability constants $\mathrm{K}=\left[(\mathrm{CO}) \mathrm{CuD}^{+}\right] /\left[\mathrm{CuD}^{+}\right] \cdot[\mathrm{CO}]$ for the different complexes can be related to the degree of competition between CO and the side-arm donor groups in R for the fourth coordination site on the $\mathrm{Cu}^{1}$ according to Scheme I. For complexes with $\mathrm{R}=$ alkyl there is, of course, no competition. The difference in $K$ between $R=n-C_{3} H_{7}$ and $n-C_{4} H_{9}$ probably lies in the greater steric effect of the longer side chain. The K value with $\mathrm{R}=\mathrm{CH}_{2}=$ $\mathrm{CHCH}_{2}$ indicates only a minor degree of competition from the pendant alkenyl group. With $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$, the competition is much greater, as also concluded from both ${ }^{1} \mathrm{H}$ NMR and UV spectra in solution and consistent with the solid state structure of dimeric $\left[\mathrm{Cu}_{2} \mathrm{D}_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}$ which reveals the attachment of one alkenyl group per Cu'. Stability constants K of $\left[(\mathrm{CO}) \mathrm{Cu}\left\{\mathrm{RN}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right\}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right]^{+}[90]$ are as follows:


As in the dinuclear complexes $\left[(\mathrm{CO}) \mathrm{Cu}_{2} \mathrm{Z}_{2} \mathrm{D}\right]^{n+}$ (Nos. 65 to 74) only one Cu atom is coordinated by CO; they are also treated in this section. The most likely geometries around the $\mathrm{Cul}^{\prime}$ atoms are square pyramidal and tetrahedral. The equilibrium constants $\mathrm{K}=\left[(\mathrm{CO}) \mathrm{Cu}_{2} \mathrm{Z}_{2} \mathrm{D}_{2}\right] /\left[\mathrm{Cu}_{2} \mathrm{Z}_{2} \mathrm{D}_{2}\right] \cdot[\mathrm{CO}]$ have been determined spectrophotometrically at 440 nm [70, 87].

For luminescing tripod Cu carbonyls (not in Table 27), see [95].
Table 27
Compounds Containing One CO Group.
Further information on compounds preceded by an asterisk is given at the end of the table.

Table 27 [continued]

No.	compound	preparation (yield)	spectra and further remarks	Ref.
8	(CO)CuCN	$\mathrm{CuCN}+\mathrm{CO}$ in $\mathrm{NH}_{3}$ at $-79^{\circ}$	contains possibly $2 \mathrm{NH}_{3}$ dec. at $-33.5^{\circ}$	[2]
9	$[(\mathrm{CO}) \mathrm{Cu}] \mathrm{AsF}_{6}$	$\mathrm{CuAsF}_{6}+\mathrm{CO}$ in $\mathrm{SO}_{2}$ soln.	yellow solid   IR (Nujol): $2180 \pm 5$	[58]
10	$[(\mathrm{CO}) \mathrm{Cu}] \mathrm{HSO}_{4}(?)$	$\mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}$	not isolated   IR (50 to $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ ) : 2128 to 2136	[29]
11	$\left[(\mathrm{CO}) \mathrm{Cu} \mathrm{O}_{3} \mathrm{SCH}_{3}\right.$	$\mathrm{Cu}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}+\mathrm{CO}$ in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	IR (solid): 2130 CO is replaced by alkenes	[78]
12	$\left[(\mathrm{CO}) \mathrm{Cu} \mathrm{O}_{3} \mathrm{SCF}_{3}\right.$	$\mathrm{Cu}_{2} \mathrm{O}+\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}+\mathrm{CO}$ in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	pale pink solid   IR: 2128 (solid) [78], 2143 [53]	[53, 78]
	$[(\mathrm{CO}) \mathrm{Cu}] \mathrm{O}_{3} \mathrm{SC}_{2} \mathrm{H}_{5}$	according to an X-ray analysis polymeric, see the corresponding section		
13	$[(\mathrm{CO}) \mathrm{Cu}] \mathrm{ClO}_{4}(?)$	$\mathrm{Cu}_{2} \mathrm{O}+\mathrm{HClO}_{4} / \mathrm{H}_{2} \mathrm{O}$	```not isolated adducts are formed with chelating amines IR ( \(60 \% \mathrm{HClO}_{4}\) ) : 2130```	[29]
14	$\left[(\mathrm{CO}) \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{\mathrm{ClO}}^{4}$	$\mathrm{CuClO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}+\mathrm{CO}$ in $\mathrm{CH}_{3} \mathrm{OH}$	explosive, colorless crystals, m.p. $10^{\circ}$ IR ( NaCl , polyethylene): 2130 dec. at $70^{\circ}$ with formation of $(\mathrm{CO})_{2} \mathrm{Cu}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{ClO}_{4}\right)_{2}$	[30]
15	$(\mathrm{CO}) \mathrm{CuO}_{2} \mathrm{CH}$ (?)	$\mathrm{Cu}_{2} \mathrm{O}+\mathrm{HCO}_{2} \mathrm{H} / \mathrm{H}_{2} \mathrm{O}$	not isolated IR ( $95 \% \mathrm{HCO}_{2} \mathrm{H}$ ) : 2119	[29]
16	(CO) $\mathrm{CuO}_{2} \mathrm{CCH}_{3}$	see "Kupfer" B2, p. 678	$\begin{aligned} & \text { not isolated } \\ & \text { IR }\left(95 \% \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right): 2109 \\ & \text { acts as intermediate in the } \\ & \quad \text { carbonylation of } \mathrm{Cu}\left(\mathrm{OCH}_{3}\right) \mathrm{O}_{2} \mathrm{CCH}_{3} \end{aligned}$	[25, 29]


	（ $\mathrm{CO} \mathrm{CuO}_{2} \mathrm{CCF}_{3}$	pumping off $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ from No． 18	colorless crystals   IR（Nujol）： 2155   prolonged pumping leaves $\mathrm{CuO}_{2} \mathrm{CCF}_{3}$	［12］
${ }_{\text {⿳亠丷厂犬灬旁 }} 18$	（ CO ） $\mathrm{CuO}_{2} \mathrm{CCF}_{3} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\begin{aligned} & \mathrm{Cu}_{2} \mathrm{O}+\mathrm{CO}_{3} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(35.3 \%) \text { or } \\ & \left.\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2} \mathrm{O}(54.2 \%)\right) \end{aligned}$	colorless crystals   IR（Nujol）： 2155	［12］
19	（CO）CuOC ${ }_{4} \mathrm{H}_{9}-\mathrm{t}$		pale yellow，sublimes at 60\％1 Torr， dec．at $150^{\circ}$   IR（Nujol）： 2062   ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right): 1.41\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$   CO is replaced by $\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{n}\right)_{3}$ ，   $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$	［23］
	（CO）CuF ${ }_{2}$	from $\mathrm{CuF}_{2}$ in Ar／CO matrix	IR（Ar／CO）： 704.2 （CuF）， 2210.4 （CO）， isotopic IR data are given force constant $\mathrm{f}(\mathrm{CuF})=4.53 \mathrm{mdyn} \cdot \AA^{-1}$ indicates a $100 \%$ ionic character of the Cu－F bond	［24，49］
	$\left[(\mathrm{CO}) \mathrm{CuCl}_{2}\right]^{-}$	from $\mathrm{CuCl}+\mathrm{CO}$ in $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \text { IR }(7 \text { or } 36 \% \mathrm{HCl}): 2103 \\ & \text { Raman: } 2100 \end{aligned}$	［29，47］
－${ }_{-}^{*}$	$\left[(\mathrm{CO}) \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$	$\mathrm{Cu}^{\prime}+\mathrm{CO}+\mathrm{NH}_{3}$ in weak aqueous acids	－	［8，34］
＊23	$\left[(\mathrm{CO}) \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}\right]^{+}$	$\mathrm{Cu}^{\prime}+\mathrm{CO}$ in $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}$ solutions	－	［1，6，8，34］
24		$\begin{aligned} & \mathrm{CuCl}+\mathrm{CO}+\mathrm{Na} \text { or } \mathrm{TI} \\ & \mathrm{o} \text {-semiquinolate in THF } \end{aligned}$	ESR（THF）： $\mathrm{g}=2.0032, \mathrm{a}(\mathrm{Cu})=6.1 \mathrm{G}$	［39］
25	see No． $24\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$	see No． 24	ESR（THF）： $\mathrm{g}=2.0034, \mathrm{a}(\mathrm{Cu})=5.4 \mathrm{G}$	［39］
＊26	$\left[(\mathrm{CO}) \mathrm{CuH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right] \mathrm{Cl}$	$\begin{aligned} & \text { from (CO)CuCl }+\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2} \text { in } \mathrm{CH}_{3} \mathrm{OH} \text { at } \\ & -30^{\circ} \end{aligned}$	white solid   IR（Nujol）： 2080   1：1 electrolyte in $\mathrm{CH}_{3} \mathrm{OH}$ at $-25^{\circ}$	［17］

Table 27 [continued]


Table 27 [continued]

No.	compound		preparation (yield)	spectra and further remarks	Ref.
43	see No. $42\left(\mathrm{R}=\mathrm{CH}_{3}\right)$		see No. 42 (32 to 78\%)	white crystals, dec. 185 to $190^{\circ}$   ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 6.17(\mathrm{~m}), 7.70(\mathrm{~m})$   IR: 2060 to 2066 ( $\mathrm{s}, \mathrm{vCO}$ ), 2500 ( $\mathrm{m}, \mathrm{vBH}$ ) with $\mathrm{D}=\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ or   $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2}\right]_{3} \mathrm{CCH}_{3}$ formation of $\mathrm{DCu}\left[\mathrm{HB}\left(\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right]$	$\begin{aligned} & {[20,21,} \\ & 32,59] \end{aligned}$
*44		$10_{4}^{-}$	$\mathrm{CuClO}_{4}+\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}+\mathrm{CO}$ in $\mathrm{CH}_{3} \mathrm{OH}$	crystals are stable under $\mathrm{N}_{2}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 7.23(\mathrm{q}, 4 \mathrm{H}), 7.98$ (t, 2H), $8.50(\mathrm{~d}, 2 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H})$	[81]
45		( $\mathrm{BF}_{4}^{-}$ $(X=N H)$	$\begin{aligned} & \text { from }\left[\mathrm{CuC}_{14} \mathrm{H}_{22} \mathrm{~N}_{5}\right] \mathrm{BF}_{4}+\mathrm{CO} \text { in } \mathrm{CH}_{3} \mathrm{NO}_{2}, \\ & \text { not isolated } \end{aligned}$	IR $\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right): 2082$   $50 \%$ formed/decomposed in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at an equilibrium CO pressure $\mathrm{p}_{1 / 2}=$ 120 Torr	[79]
46	see No. $45(\mathrm{X}=0)$		from $\left[\mathrm{CuC}_{14} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right] \mathrm{BF}_{4}+\mathrm{CO}$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, not isolated	$\begin{aligned} & \text { IR }\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right): 2106 \\ & \left.\mathrm{p}_{1 / 2} \text { (see No. } 45\right)>1600 \text { Torr } \\ & \text { X-ray structure given in [79] } \end{aligned}$	[79]
47	see No. $45(\mathrm{X}=\mathrm{S}$ )		from $\left[\mathrm{CuC}_{14} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{~S}\right] \mathrm{BF}_{4}+\mathrm{CO}$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$, not isolated	$\begin{aligned} & \text { IR }\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right): 2123 \\ & \mathrm{p}_{1 / 2} \text { (see No. } 45 \text { ) }=730 \text { Torr } \end{aligned}$	[79]

[28,59]

©
※
$\mathrm{CuCl}+\mathrm{CO}+\mathrm{KB}\left(\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}_{3}\right)_{4}$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
(64\%)

$$
\mathrm{CuCl}+\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{5}+\mathrm{CO}+\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \text { in }
$$

IR: 2068
slightly soluble in organic solvents
with $\mathrm{O}_{2}$ in benzene or toluene
formation of Cu " complexes with $\mathrm{CO}_{3}$
and OH bridges
IR: 2067
slightly soluble in organic solvents
green solid
magnetic moment (solid, 295 K ):
$\quad 1.98 \mu_{\mathrm{B}}$
ESR $($ solid) $: \mathrm{g}=2.0067$
$\quad\left(\mathrm{CHCl}_{3}\right): \mathrm{g}=2.0065, \mathrm{a}_{\mathrm{N}}=7.5 \mathrm{G}$
$\underset{\text { © }}{\text { © }}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 8.30(\mathrm{q}, 4 \mathrm{H}), 8.93$
(d, 2H), $9.52(\mathrm{~d}, 2 \mathrm{H})$
IR (Nujol) $: 2115$
$\mathrm{CuClO}_{4}+\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}+\mathrm{CO}$ in $\mathrm{CH}_{3} \mathrm{OH}$

กิ

$(\mathrm{CO}) \mathrm{CuB}\left(\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}_{3}\right)_{4}$
$\left(\mathrm{~N}_{2} \mathrm{C}_{3} \mathrm{H}_{3}=\right.$ pyrazol-1-yl)
${ }_{*}^{\infty}$


9
-
$(\mathrm{CO}) \mathrm{CuCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}(1: 1)$ in
$\mathrm{C}_{6} \mathrm{H}_{6}$


우 ${ }^{\circ}$

Table 27 [continued]


Table 27 [continued]

	compound	preparation (yield)	spectra and further remarks	Ref.
63		not isolated	$\begin{aligned} & \mathrm{K}=8.8(9) \times 10^{5} \mathrm{M}^{-1} \text { in }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO} \text { at } \\ & 22^{\circ}(\text { see p. } 188) \end{aligned}$	[57]

[^1][70, 87]
Table 27 [continued]



* Further information:
(CO)Cu (Table 27, No. 1) is obtained by cocondensation of $\mathrm{Cu}, \mathrm{CO}$, and $\operatorname{Ar}(\leqq 1: 2: 1000)$ at 10 to 15 K and identified by its IR isotopic spectra. Upon warming to 35 K it produces IR absorptions of $(\mathrm{CO})_{2} \mathrm{Cu}$ and $(\mathrm{CO})_{3} \mathrm{Cu}$ (see Section 1.1.3.2) [26, 91]. From the $v(\mathrm{CO})$ of the ${ }^{63} \mathrm{Cu},{ }^{65} \mathrm{Cu},{ }^{12} \mathrm{C}{ }^{16} \mathrm{O},{ }^{13} \mathrm{C}{ }^{16} \mathrm{O}$, and ${ }^{12} \mathrm{C}^{18} \mathrm{O}$ isotopic species the Cotton-Kraihanzel force constant $f(C O)=16.33$ mdyn $\cdot \AA^{-1}$ has been derived [26].

In contrast, cocondensation of Cu atoms from a Knudsen cell with $1 / 600$ of $\mathrm{CO} / \mathrm{Ar}$ onto a CsI plate cooled to 10 K yields Cu cluster monocarbonyls (CO) $\mathrm{Cu}_{\mathrm{n}}$ with $\mathrm{n}=1$ to 4 [31].

Earlier results from cocondensation of Cu atoms from a Knudsen cell with a large excess of pure CO onto a Csl plate cooled to 20 K are given in [20]. But no evidence for the composition of the reported "copper carbonyl" is given. The reported IR data are very similar to those of $(\mathrm{CO})_{3} \mathrm{Cu}$, as given in [26].

An analysis of the ESR data for (CO)Cu indicates that the odd electron is almost entirely localized in a pure 4 s orbital [33]. g and hfc tensors of $\left.(\mathrm{CO})^{63} \mathrm{Cu}: \mathrm{g}_{\|}=1.998(1), \mathrm{A}_{\|}{ }^{(63} \mathrm{Cu}\right)=$ $4174(2) \mathrm{MHz}, \mathrm{g}_{\perp}=1.995(1), \mathrm{A}_{\perp}\left({ }^{63} \mathrm{Cu}\right)=4126$ (2) MHz [92], see also [91].

From ab initio restricted Hartree-Fock MO calculations of linear ( CO ) Cu a binding energy between Cu and CO of -1.64 eV is derived [50, 76].

The interaction of the Cu atom with CO was investigated by MO calculations. Coupling occurs mainly through the HOMO $5 \sigma$ level of CO with the 4 s and $3 \mathrm{~d}_{\mathrm{z}^{2}}$ orbital of the metal atom. The HOMO level is lowered in energy due to donor-type interaction with the metal [55, 73].

From detailed SCF-X ${ }_{\alpha}-$ SW calculations a satisfactory interpretation for the thermal lability of the complex in terms of predominant $\sigma$-bonding $\mathrm{Cu}-\mathrm{C}$ interaction with some $\mathrm{p} \pi-\mathrm{p} \pi^{*}$ and minimal $d \pi-d \pi^{*}$ charge transfer from the metal to the CO ligand is possible [72].

The nature of the $\mathrm{Cu}-\mathrm{CO}$ bonding in $(\mathrm{CO}) \mathrm{Cu}$ has also been analyzed by the constrained-space-orbital-variation technique [88, 89, 93].
[(CO)Cu] ${ }^{+}$(Table 27, No. 2) is formed by absorption of CO in mixtures of $\mathrm{Cu}_{2} \mathrm{O}$ and strong acids like $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{BF}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{FSO}_{3} \mathrm{H}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, and $\mathrm{HF} .\left[(\mathrm{CO})_{3} \mathrm{Cu}\right]^{+}$and $\left[(\mathrm{CO})_{4} \mathrm{Cu}\right]^{+}$ (see Section 1.1.3.2) exist in equilibrium with [(CO)Cu]+ [29]. In dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, the monocarbonyl cation is comparatively stable [14, 15].

Carbonyl stretching frequencies and ${ }^{13} \mathrm{C}$ NMR chemical shifts in acid solvents [29]:

solvent	IR   $v(\mathrm{CO})$ in $\mathrm{cm}^{-1}$	13 C NMR   $\delta$ in ppm at $30^{\circ} \mathrm{C}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	2140	168.5
$\mathrm{FSO}_{3} \mathrm{H} / \mathrm{H}_{2} \mathrm{SO}_{4}(1 / 0.3)$	2150	-
$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	2150	168.3
$\mathrm{FSO}_{3} \mathrm{H}$	2152	169.2
HF	2156	-
$\mathrm{BF}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	2160	169.0
$\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{FSO} \mathrm{SO}_{3} \mathrm{H}(1 / 0.3)$	-	169.0
$\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(36 \%)$	-	170.7

For the significance of $[(\mathrm{CO}) \mathrm{Cu}]^{+}$as an intermediate in the $\mathrm{Cu}^{\prime \prime}$ catalyzed oxidation of CO by $\mathrm{O}_{2}$, see $[9,10,13,18$ ].
(CO)CuCl (Table 27, No. 3). IR absorptions at 2112 and $2069 \mathrm{~cm}^{-1}$ were obtained from aqueous or pyridine solutions. But the composition of these compounds is not clear [16]. At $25.0^{\circ} \mathrm{C}$ the equilibrium pressure $\mathrm{p}_{\mathrm{E}}$ of CO over solid (CO)CuCl/CuCl is $436.6 \pm 1$ Torr. Thermodynamic data for the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{CuCl}(\mathrm{s}) \rightleftharpoons(\mathrm{CO}) \mathrm{CuCl}(\mathrm{s})$ are obtained from the temperature dependence $\ln p_{0}=\ln (436.6 / 760.0)-5481.2(1 / T-1 / 298.15)$ of $p_{0}$, the standard equilibrium pressure of CO in Torr: $\Delta \mathrm{G}_{298}^{\circ}=-1.374 \pm 0.006, \Delta \mathrm{H}_{298}^{\circ}=-45.58 \pm 0.11 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, $\Delta \mathrm{S}_{298}^{\circ}=-148.3 \pm 0.4 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}[46]$.

Furthermore, $(\mathrm{CO}) \mathrm{CuCl}$ is an intermediate in the carbonylation of $\left[\mathrm{Cu}\left(\mathrm{OCH}_{3}\right) \mathrm{Cl}\right]$ to give dimethyl carbonate [25]. For the chemical behavior of ( CO ) CuCl, see Table 27, Nos. 26, 27, 29, 51. With $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}=\mathrm{CH}_{2} \mathrm{CuCl}\right] \mathrm{Br}$ (see Section 1.1.5) in THF above $15^{\circ} \mathrm{C}(\mathrm{CO}) \mathrm{Cu}_{2}\left(\mathrm{CH}_{2}=\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{Cl}_{2} \mathrm{Br}$ is assumed to be formed [19]. With Na phenoxides, labile dinuclear complexes are formed [96].
(CO)CuCl $\cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Table 27, No. 4) has been postulated as an intermediate in the carbonylation of aryldiazonium compounds to give the corresponding carboxylic acids [7].
[(CO) $\left.\mathrm{CuCl}_{2}\right]^{-}$(Table 27, No. 21). Further investigations have been made by gas solubility measurements [3]. The stability constant $\beta=2 \times 10^{6} \mathrm{M}^{-2} \cdot \mathrm{~atm}^{-1}$ is estimated from potentiometric measurements in aqueous solutions under the assumption that no other carbonyl complex is formed [44].
$\left[(\mathrm{CO}) \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+},\left[(\mathrm{CO}) \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}\right]^{+}$(Table 27, Nos. 22, 23). At a CO pressure of 0.02 to 0.9 atm below $11^{\circ} \mathrm{C}$, No. 23 is more stable than No. 22. The converse is true above $11^{\circ} \mathrm{C}$. For the formation of No. $22 \Delta \mathrm{H}=8.7 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ and $\Delta \mathrm{S}=-16.4 \mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$, for No . 23 $\Delta \mathrm{H}=15.3 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ and $\Delta \mathrm{S}=-38.4 \mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}[34]$.

Nonempirical LCAO-MO-SCF computations were carried out on the ground and core hole states of Nos. 22 and 23. For No. 22, the computations show that a linear Cu-C-O


Fig. 7. Molecular structure of $\left[(\mathrm{CO}) \mathrm{CuC}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]$ (No. 27) with selected bond lengths (in $\AA$ ) and angles.
arrangement is preferred, the computed coordination energy for CO being $-8.1 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$. The bond overlap populations showed that for Nos. 22 and 23 the CO bond length should be somewhat shorter than for the free ligand [71].
[(CO)CuC $\left.\mathbf{2}_{2} \mathrm{~N}_{2}\right] \mathbf{C l}$ (Table 27, No. 26). When the methanolic solution is evaporated to dryness at $-20^{\circ} \mathrm{C}\left[\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Cu}(\mathrm{CO})_{2} \mathrm{CuC}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right] \mathrm{Cl}_{2}$ is obtained. It has been shown that both complexes exist in $\mathrm{CH}_{3} \mathrm{OH}$ in a temperature dependent equilibrium [17].
$\left[(\mathbf{C O}) \mathrm{CuC}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]$ (Table 27, No. 27) crystallizes in the monoclinic space group $\mathrm{P}_{2} / \mathrm{c}-\mathrm{C}_{2 \mathrm{~h}}$ (No. 14) with $\mathrm{a}=10.301(1), \mathrm{b}=12.234(1), \mathrm{c}=18.390(2) \AA$, and $\beta=91.11(1)^{\circ} ; \mathrm{Z}=4$, $d_{c}=1.350 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The structure is shown in Fig. 7, p. 203. A rather distant but significant interaction with two carbon atoms of one of the phenyl rings completes the pseudo-trigonal pyramidal coordination around the Cu atom. It is displaced by $0.26 \AA$ from the plane defined by the two N atoms and the C atom of CO toward the coordinated $\mathrm{C}_{6} \mathrm{H}_{5}[40,64]$.

The CO can be replaced by $\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$. With $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ compound No. 27 yields $\left[(\mathrm{CO})_{2} \mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}[40]$.
$\left[(\mathrm{CO}) \mathrm{CuC}_{5} \mathrm{H}_{9} \mathrm{~N}_{3}\right]\left[\mathbf{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right] \quad$ (Table 27, No. 29). A mixture with $\left[\left(\mathrm{CO}_{2} \mathrm{Cu}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{3}\right]\right.$ $\left[B\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}$ is obtained after CO absorption of a methanolic suspension of Cul with histamine (molar ratio $<1.0$ ) and $\mathrm{NaB}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ [45]. The polymeric structure II has been proposed. CO was displaced by $\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ [63].


II
[(CO)CuC $\left.{ }_{4} \mathbf{H}_{13} \mathbf{N}_{3}\right]\left[\mathbf{B}\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)_{4}\right]$ (Table 27, No. 30) crystallizes in the monoclinic space group $\mathrm{P}_{2} / \mathrm{n}\left(\mathrm{P} 2_{1} / \mathrm{c}\right)-\mathrm{C}_{2 \mathrm{5}}$ (No. 14) with $\mathrm{a}=14.832(1), \mathrm{b}=18.737(3), \mathrm{c}=9.599(1) \AA, \beta=90.07(2)^{\circ} ; \mathrm{Z}=4$, $\mathrm{d}_{\mathrm{c}}=1.280 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$.

As Fig. 8 shows, Cu is coordinated by the tridentate diethylene triamine and CO. The bond from Cu to the central N is significantly longer than those to the terminal nitrogens. Two intramolecular $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angles are considerably less than the ideal tetrahedral angle.


Fig. 8. Molecular structure of the cation in $\left[(\mathrm{CO}) \mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]$ (No. 30) with selected bond lengths (in $\AA$ ) and angles.

This is due to a combination of the constraints within the ligand and the requirements for normal Cu-N bond distances [42].

The electrochemical behavior has been studied in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ solution at Pt electrodes by voltammetry and controlled potential coulometry. The Cul center undergoes one-electron charge transfers in both anodic and cathodic processes. Anodic oxidation leads to decarbonylated $\mathrm{Cu}^{11}$ species [86].

The compound is quite stable in air. It is slightly soluble in THF or acetone without decomposition. The solid does not lose CO in vacuum or by heating to $100^{\circ} \mathrm{C}$, but it is easily hydrolyzed when $\left[B\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]^{-}$is replaced by Cl- [42].
(CO)CuHB $\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3}$ (Table 27, No. 42) crystallizes in the space group R3c-C $\mathrm{C}_{3 \mathrm{v}}^{6}$ (No. 161) with $\mathrm{a}=13.8616(21) \AA, \alpha=91.37(1)^{\circ}, Z=8, d_{c}=1.520$, and $d_{m}=1.45(5) \mathrm{g} \cdot \mathrm{cm}^{-3}$.

The structure is shown in Fig. 9. There are two crystallographically distinct types of molecule within the unit cell. Two molecules of Type 1 (Fig. 5a) have precise $\mathrm{C}_{3}$ symmetry with $\mathrm{O}, \mathrm{C}, \mathrm{Cu}, \mathrm{B}$, and H atoms lying along the [111] directions. Six molecules of Type 2 (Fig. 5b) are in a distorted $\mathrm{C}_{3 \mathrm{v}}$ symmetry [27].

The air-stable complex is very soluble in light petroleum ether. It reacts with many ligands, e.g., $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{CH}_{3} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, \mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{3},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{MCH}_{2} \mathrm{CH}_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}(\mathrm{M}=\mathrm{P}$, As), $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, with evolution of CO to give the derivatives [20, 21, 59].

The reaction with pure norbornadiene yields $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{CuHB}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3}$ [61, 62]. It also reacts with $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ to give the Cu-Mo cluster $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{H}_{2}\right) \mathrm{CuHB}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3}$ [37].

As (CO)CuHB $\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3}$ is effective in sensitizing the light-induced quadricyclene production from dilute norbornadiene solutions ( 0.1 M in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, quantum yield $\sim 0.2$ ) a solar energy storage system has been proposed [52,54,60].



Fig. 9. Molecular structure of (CO)CuHB $\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3}(\mathrm{No.42)}$ with selected bond lengths (in $\AA$ ) and angles.
$\left[(\mathrm{CO}) \mathrm{CuC}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right] \mathrm{ClO}_{4}$ (Table 27, No. 44) crystallizes in the triclinic space group $\mathrm{Pi}_{1}-\mathrm{C}_{\mathrm{i}}^{1}$ (No. 2) with $\mathrm{a}=8.922(1), \mathrm{b}=10.755(1), \mathrm{c}=7.379(1) \AA, \alpha=91.51(1)^{\circ}, \beta=99.24(1)^{\circ}, \gamma=81.25(1)^{\circ}$, $Z=2$. The molecular structure is shown in Fig. 10, p. 206 [81].


Fig. 10. Molecular structure of $\left[(\mathrm{CO}) \mathrm{CuC}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right] \mathrm{ClO}_{4}$ (No. 44) with selected bond lengths (in $\AA$ ) and angles.
(CO)CuB( $\left.\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{4}$ (Table 27, No. 48). It is not possible for all pyrazolyl groups in the ligand to coordinate to one Cu atom. In conjunction with the monomeric osmometric molecular weight and low temperature NMR studies, the authors suggest that the complex is fluxional in solution [28].
$\left[(C O) C u C_{16} \mathbf{H}_{16} \mathrm{~N}_{2}\right]$ (Table 27, No. 54) crystallizes in the monoclinic space group $\mathrm{P}_{1} / \mathrm{n}$ $\left(P 2_{1} / \mathrm{c}\right)-\mathrm{C}_{2 \mathrm{~h}}^{5}$ (No. 14) with $\mathrm{a}=7.113(2), \mathrm{b}=17.204(4), \mathrm{c}=14.794(4) \AA$, and $\beta=97.87(3)^{\circ} ; Z=4$, $d_{c}=1.68 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The structure is given in Fig. 11 [85].


Fig. 11. Molecular structure of $\left[(\mathrm{CO}) \mathrm{CuC}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}\right]$ (No.54) with selected bond lengths (in $\AA$ ) and angles.
(CO) $\mathrm{CuC}_{11} \mathrm{H}_{18} \mathbf{B F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Table 27, No. 60) crystallizes in the space group Pbca-D $\mathrm{D}_{2} \mathrm{~h}$ (No. 61) with $a=13.926(1), b=14.209(1), c=16.297(1) \AA, Z=8, d_{c}=1.56$, and $d_{m}=1.55(3) \mathrm{g} \cdot \mathrm{cm}^{-3}$.

The molecular structure is shown in Fig. 12. The Cu atom is situated in an asymmetrical square pyramid and is displaced $0.96 \AA$ from the basal plane of the four $N$ atoms. Two significantly different sets of $\mathrm{Cu}-\mathrm{N}$ bond lengths, 2.164 and $2.104 \AA$, characterize the equatorial asymmetry. The carbonyl ligand coordinates at the apex of the square pyramid with a Cu-CO distance of $1.780(3) \AA$ and a Cu-C-O angle of $177.5(3)^{\circ}[36]$.

From molecular orbital calculations it is found that upon CO coordination, the $x^{2}-y^{2}$ metal orbital has lower energy than the ligand $\pi^{*}$ orbitals. CO is attached to the metal largely by interactions between ligand $\sigma$ orbitals and metal 4 s and 4 p orbitals, augmented by stabilization via unoccupied $\mathrm{CO} \pi^{*}$ orbitals of two metal d orbitals. The contribution of the metal d orbitals to the $\mathrm{Cu}-\mathrm{CO} \sigma$ linkage is zero [67].


Fig. 12. Molecular structure of $(\mathrm{CO}) \mathrm{CuC}_{11} \mathrm{H}_{18} \mathrm{BF}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$ (No. 60) with selected bond lengths (in $\AA$ ) and angles.
$\left.\left.\left[N_{( }\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right)_{4}\right](\mathbf{C O}) \mathrm{CuC}_{8} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}\right]$ (Table 27, No. 64) crystallizes in the monoclinic space group $\mathrm{P}_{1} / \mathrm{c}-\mathrm{C}_{2 \mathrm{~h}}^{5}$ (No. 14) with $\mathrm{a}=13.681(1), \mathrm{b}=25.634$ (3), $\mathrm{c}=15.687$ (2) $\AA, \beta=115.35(3)^{\circ}, \mathrm{Z}=8$, and $d=1.463 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The structure of the anion is shown in Fig. 13 [69].


Fig. 13. Structure of the $\left[(\mathrm{CO}) \mathrm{CuC}_{8} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{-}$anion of No .64 with selected bond lengths (in $\AA$ ) and angles.
[(CO)Cu'Cul' $\left.{ }_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}\right] \mathrm{ClO}_{4}$ (Table 27, No. 77). The unusual coordination number of 5 is expected for $\mathrm{Cu}^{\prime}$. The four line ESR spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ indicates the localization of the odd electron on a single Cu , at least on the ESR time scale. The electronic absorption spectrum shows a weak band at $\sim 600 \mathrm{~mm}$, which is assigned to a ligand field $\rightarrow \mathrm{Cu}$ " transition [51].
$\mathbf{C u}(\mu-\mathbf{C O})(\mu-\mathbf{C l})\left(\boldsymbol{\mu}-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2} \mathbf{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)_{2} \mathbf{W}(\mathbf{C O})_{2}$ (Table 27, No. 82) shows an AA'XX' type ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR pattern for the P nuclei bonded to $W$. Eight of the ten lines possible have been observed. For the $P$ nuclei bonded to Cu the resonance is broad at $20^{\circ} \mathrm{C}$ but sharpens when the temperature is lowered and is of the $A A^{\prime} X X^{\prime}$ type below $-60^{\circ} \mathrm{C}$ [82].

The compound crystallizes in the monoclinic space group $P 2_{1} / c-C_{2 h}^{5}$ (No. 14) with $a=10.760(2), b=25.132(4), c=20.675(3) \AA$ and $\beta=112.62(1)^{\circ}, Z=4, d_{c}=1.57 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ [82]. The molecular structure is shown in Fig. 14.


Fig. 14. Molecular structure of $\mathrm{Cu}(\mu-\mathrm{CO})(\mu-\mathrm{Cl})\left(\mu-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)_{2} \mathrm{~W}(\mathrm{CO})_{2}$ (No. 82) with selected bond lengths (in $\AA$ ) and angles.

## References:

[1] D. W. van Krevelen, C. M. E. Baans (J. Phys. Chem. 54 [1950] 370/90).
[2] H. Weiss (Z. Anorg. Allgem. Chem. 280 [1955] 284/93).
[3] W. D. Bond (Diss. Vanderbilt Univ. 1957 from Diss. Abstr. 17 [1957] 1671).
[4] M. Peter (Schweiz. Ver. Gas-Wasserfachmännern Monats-BI. 36 [1956] 58/63; C.A. 1958 8814).
[5] R. Nast, C. Schultze (Z. Anorg. Allgem. Chem. 307 [1960] 15/21).
[6] C. Balarew (Compt. Rend. Acad. Bulgare Sci. 14 [1961] 803/6; C.A. 56 [1962] 14987).
[7] G. N. Schrauzer (Chem. Ber. 94 [1961] 1891/8).
[8] G. Toselli (Calore 33 [1962] 499/511; C.A. 59 [1963] 238/9).
[9] R. T. McAndrew, E. Peters (unpublished from [10]).
[10] J. J. Byerley, J. Y. H. Lee (Can. J. Chem. 45 [1967] 3025/30).
[11] W. Brackman (Discussions Faraday Soc. No. 46 [1968] 122/6).
[12] A. F. Scott, L. L. Wilkening, B. Rubin (Inorg. Chem. 8 [1969] 2533/4).
[13] J. J. Byerley, E. Peters (Can. J. Chem. 47 [1969] 313/21).
[14] Y. Souma, H. Sano (Nippon Kagaku Zasshi 91 [1970] 625/30; C.A. 73 [1970] No. 94 192).
[15] H. Sano (Nippon Kagaku Zasshi 91 [1970] 630/6; C.A. 73 [1970] No. 94 193).
[16] J. O. Alben, L. Yen, N. J. Farrier (J. Am. Chem. Soc. 92 [1970] 4475/6).
[17] G. Rucci, C. Zanzottera, M. P. Lachi, M. Camia (Chem. Commun. 1971 652).
[18] J. S. Ogden (Chem. Commun. 1971 978/9).
[19] R. Mason, G. Rucci (Chem. Commun. 1971 1132).
[20] M. I. Bruce, A. P. P. Ostazewski (J. Chem. Soc. Chem. Commun. 1972 1124/5).
[21] M. I. Bruce, A. P. P. Ostazewski (J. Chem. Soc. Dalton Trans. 1973 2433/6).
[22] J. F. Knifton (J. Org. Chem. 38 [1973] 3296/301).
[23] T. Tsuda, H. Habu, S. Horiguchi, T. Saegusa (J. Am. Chem. Soc. 96 [1974] 5930/1).
[24] D. A. van Leirsburg, C. W. De Kock (J. Phys. Chem. 78 [1974] 134/42).
[25] P. Koch, G. Cipriani, E. Perrotti (Gazz. Chim. Ital. 104 [1974] 599/605).
[26] H. Huber, E. P. Kuendig, M. Moskovits, G. A. Ozin (J. Am. Chem. Soc. 97 [1975] 2097/106).
[27] M. R. Churchill, B. G. DeBoer, F. J. Rotella, O. M. Abu Salah, M. I. Bruce (Inorg. Chem. 14 [1975] 2051/6).
[28] O. M. Abu Salah, M. I. Bruce (J. Organometal. Chem. 87 [1975] C15/C18).
[29] Y. Souma, J. Iyoda, H. Sano (Inorg. Chem. 15 [1976] 968/70).
[30] T. Ogura (Inorg. Chem. 15 [1976] 2301/3).
[31] M. Moskovits, J. E. Hulse (Surface Sci. 61 [1976] 302/5; C. A. 86 [1977] No. 79168).
[32] C. Mealli, C. S. Arcus, J. L. Wilkinson, T. J. Marks, J. A. Ibers (J. Am. Chem. Soc. 98 [1976] 711/8).
[33] E. P. Kündig, D. McIntosh, B. McGarvey, G. A. Ozin (unpublished from D. Mclntosh, G. A. Ozin, J. Am. Chem. Soc. 98 [1976] 3167/75, ref. 6).
[34] N. V. Ksandrov, N. V. Fedorova (Izv. Vysshikh Uchebn. Zavedenii Khim. Khim. Tekhnol. 19 [1976] 1147 from C.A. 85 [1976] No. 167455).
[35] R. R. Gagné (J. Am. Chem. Soc. 98 [1976] 6709/10).
[36] R. R. Gagné, J. L. Allison, R. S. Gall, C. A. Koval (J. Am. Chem. Soc. 99 [1977] 7170/8).
[37] O. M. Abu Salah, M. I. Bruce (Australian J. Chem. 30 [1977] 2293/5).
[38] V. A. Golodov, Yu. L. Sheludyakov, R. I. Di, V. K. Fokanov (Kinetika Kataliz 18 [1977] 234/7; Kinet. Catal. [USSR] 18 [1977] 193/6).
[39] G. A. Razuvaev, V. K. Cherkasov, G. A. Abakumov (J. Organometal. Chem. 160 [1978] 361/71).
[40] M. Pasquali, C. Floriani, A. G. Manfredotti (J. Chem. Soc. Chem. Commun. 1978 921/2).
[41] M. Bigorgne (J. Organometal. Chem. 160 [1978] 345/52).
[42] M. Pasquali, F. Marchetti, C. Floriani (Inorg. Chem. 17 [1978] 1684/8).
[43] R. R. Gagné, J. L. Allison, G. C. Lisensky (Inorg. Chem. 17 [1978] 3563/71).
[44] M. A. Busch, T. C. Franklin (Inorg. Chem. 18 [1979] 521/4).
[45] M. Pasquali, C. Floriani, A. Gaetani-Manfredotti, C. Guastini (J. Chem. Soc. Chem. Commun. 1979 197/9).
[46] W. Backén, R. Vestin (Acta Chem. Scand. A 33 [1979] 85/91).
[47] J. J. Rafalko (unpublished from [44]).
[48] R. R. Gagné, R. S. Gall, G. C. Lisensky, R. E. Marsh, L. M. Speltz (Inorg. Chem. 18 [1979] 771/81).
[49] R. H. Hange, S. E. Gransden, J. L. Margrave (J. Chem. Soc. Dalton Trans. 1979 745/8).
[50] H. Itoh, A. B. Kunz (Z. Naturforsch. 34 a [1979] 114/6).
[51] R. R. Gagné, C. A. Koval, T. J. Smith (J. Am. Chem. Soc. 99 [1977] 8367/8).
[52] C. Kutal, D. P. Schwendiman, P. Grutsch (Sol. Energy 19 [1977] 651/5).
[53] M. B. Dines (unpublished from P. F. Rodesiter, E. L. Amma, J. Inorg. Nucl. Chem. 39 [1977] 1227/9).
[54] R. Sterling, C. Kutal (unpublished from C. Kutal, Advan. Chem. Ser. No. 168 [1978] 158/73, ref. 33).
[55] H. Itoh (Fundam. Res. Homogeneous Catal. 3 [1979] 73/82; C.A. 92 [1980] No. 65105).
[56] R. R. Gagné, C. A. Koval, T. J. Smith, M. C. Cimolino (J. Am. Chem. Soc. 101 [1979] 4571/80).
[57] R. R. Gagné, J. L. Allison, M. D. Ingle (Inorg. Chem. 18 [1979] 2767/74).
[58] C. D. Desjardins, D. B. Edwards, J. Passmore (Can. J. Chem. 57 [1979] 2714/5).
[59] O. M. Abu Salah, M. I. Bruce, J. D. Walsh (Australian J. Chem. 32 [1979] 1209/18).
[60] R. F. Sterling (Abstr. Papers 179th Natl. Meeting Am. Chem. Soc., Houston, Texas, 1980, Abstr. No. INOR 47).
[61] R. F. Sterling (Diss. Univ. Georgia 1979; Diss. Abstr. Intern. B 40 [1980] 3160/1).
[62] R. F. Sterling, C. Kutal (Inorg. Chem. 19 [1980] 1502/5).
[63] M. Pasquali, G. Marini, C. Floriani, A. Gaetani-Manfredotti, C. Guastini (Inorg. Chem. 19 [1980] 2525/31).
[64] M. Pasquali, C. Floriani, A. Gaetani-Manfredotti (Inorg. Chem. 19 [1980] 1191/7).
[65] J. J. Grzybowski, F. L. Urbach (Inorg. Chem. 19 [1980] 2604/8).
[66] R. R. Gagné, J. L. Allison, C. A. Koval, W. S. Mialki, T. J. Smith, R. A. Walton (J. Am. Chem. Soc. 102 [1980] 1905/9).
[67] J. K. Burdett, W. P. Douglas (Inorg. Chem. 19 [1980] 2779/84).
[68] M. Pasquali, C. Floriani, A. Gaetani-Manfredotti (Inorg. Chem. 20 [1981] 3382/8).
[69] M. W. McCool, R. E. Marsh, D. M. Ingle, R. R. Gagné (Acta Cryst. B 37 [1981] 935/7).
[70] S. Kitagawa, M. Munakata (Inorg. Chem. 20 [1981] 2261/7).
[71] D. T. Clark, A. Sgamellotti, F. Tarantelli (Inorg. Chem. 20 [1981] 2602/7).
[72] D. F. McIntosh, G. A. Ozin, R. P. Messmer (Inorg. Chem. 20 [1981] 3640/50).
[73] H. Itoh, G. Ertl (Z. Naturforsch. 37a [1982] 346/52).
[74] M. Pasquali, C. Floriani, G. Venturi, A. Gaetani-Manfredotti, A. Chiesi-Villa (J. Am. Chem. Soc. 104 [1982] 4092/9).
[75] A. Neppel, J. P. Hickey, I. S. Butler (J. Raman Spectrosc. 8 [1979] 57/9).
[76] H. Itoh, A. B. Kunz (Fundam. Res. Homogenous Catal. 3 [1979] 73/82).
[77] A. Dorfer, K. E. Schwarzhans (Z. Naturforsch. 38b [1983] 265/7).
[78] G. Doyle, K. A. Eriksen, D. van Engen (Inorg. Chem. 22 [1983] 2892/5).
[79] T. M. Sorrell, M. R. Malachowski (Inorg. Chem. 22 [1983] 1883/7).
[80] D. T. Clark, W. J. Brennan, R. S. Allaker, M. Pasquali, A. Sgamellotti, F. Tarantelli (Inorg. Chim. Acta 87 [1984] 67/9).
[81] J. S. Thompson, J. F. Whitney (Inorg. Chem. 23 [1984] 2813/9).
[82] A. Blagg, A. T. Hutton, B. L. Slaw, M. Thornton-Pett (Inorg. Chim. Acta 100 [1985] L33/L34).
[83] G. Doyle, K. A. Eriksen, D. van Engen (Organometallics 4 [1985] 830/5).
[84] J. S. Thompson, R. M. Swiatek (Inorg. Chem. 24 [1985] 110/3).
[85] A. Toth, C. Floriani, M. Pasquali, A. Chiesi-Villa, A. Gaetani-Manfredotti, C. Guastini (Inorg. Chem. 24 [1985] 648/53).
[86] P. Zanello, P. Leoni (Can. J. Chem. 63 [1985] 922/7).
[87] S. Kitagawa, M. Munakata, N. Miyaji (Bull. Chem. Soc. Japan 56 [1983] 2258/62).
[88] P. S. Bagus, K. Hermann, C. W. Bauschlicher Jr. (J. Chem. Phys. 81 [1984] 1966/74).
[89] C. W. Bauschlicher Jr. (J. Chem. Phys. 84 [1986] 260/7).
[90]S.M. Nelson, A. Lavery, M.G.B. Drew (J. Chem. Soc. Dalton Trans. 1986 911/20).
[91] G. A. Ozin (Appl. Spectrosc. 30 [1976] 573/85).
[92] P. H. Kasai, P. M. Jones (J. Am. Chem. Soc. 107 [1985] 813/8).
[93] C. W. Bauschlicher Jr., P. S. Bagus, C. J. Nelin, B. O. Roos (J. Chem. Phys. 85 [1986] 354/64).
[94] H. Hirai, K. Wada, M. Komiyama (Bull. Chem. Soc. Japan 59 [1986] 2217/23).
[95] T. N. Sorrell, A. S. Borovik, C. C. Shen (Inorg. Chem. 25 [1986] 589/90).
[96] P. Fiaschi, C. Floriani, M. Pasquali, A. Chiesi-Villa, C. Guastini (Inorg. Chem. 25 [1986] 462/9).

### 1.1.3.2 Compounds with More Than One CO Ligand

Only a few unstable compounds are known for this group.
$(\mathrm{CO})_{2} \mathrm{Cu}$ is prepared by cocondensation of $\mathrm{Cu}, \mathrm{CO}$, and $\operatorname{Ar}(\leqq 1: 12.5: 1000)$ at 10 to 15 K . The existence of $(\mathrm{CO})_{2} \mathrm{Cu}$ in addition to that of $(\mathrm{CO}) \mathrm{Cu}$ and $(\mathrm{CO})_{3} \mathrm{Cu}$ is shown by IR spectroscopy together with CO mixed isotope experiments. The $v(\mathrm{CO})$ of $\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right) n_{n}\left({ }^{13} \mathrm{C}^{16} \mathrm{O}\right)_{2-n} \mathrm{Cu}(\mathrm{n}=0$ to 2) are given for two different matrix sites, $v(\mathrm{CO})=1891.5$ and $1976.1 \mathrm{~cm}^{-1}$ for $\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right){ }_{2} \mathrm{Cu}$. The Cotton-Kraihanzel force constants are $f(C O)=15.41$ and $15.29, f(C O, C O)=0.97$ and $1.08 \mathrm{mdyn} / \AA \AA$ for the two sites [17, 38].

MO calculations by the self-consistent-field $\mathrm{X}_{\alpha}$ scattered-wave method have been carried out for $(\mathrm{CO})_{2} \mathrm{Cu}$. As for $(\mathrm{CO}) \mathrm{Cu}$, major bonding interaction arise from $\sigma$ donation of charge density from the $3 \sigma$ orbital of the CO ligands to the metal [31]. For extended Hückel MO calculations see [28].
$\left[(\mathrm{CO})_{2} \mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}_{2}\right] \mathrm{Cl}_{2}\right.$ is believed to be an intermediate in the carbonylation of piperidine with CO in the presence of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [15].
$\left[(\mathrm{CO})_{2} \mathrm{CuC}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right] \mathrm{ClO}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}=2,2^{\prime}\right.$-bipyridine) is formed from [ $\left(\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}$ and $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ under CO atmosphere at $25^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (acetone- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right): 7.89(\mathrm{H}-5)$, $8.35(\mathrm{H}-4), 8.67(\mathrm{H}-3), 9.13(\mathrm{H}-6) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (acetone $-\mathrm{d}_{6}, 31^{\circ} \mathrm{C}$ ) : $123.31(\mathrm{C}-5), 127.89(\mathrm{C}-3)$, 141.47 (C-4), 151.66 (C-6), $152.65(\mathrm{C}-2) \mathrm{ppm}$ [33].
$(\mathrm{CO})_{3} \mathrm{Cu}$ is prepared by cocondensation of Cu with $\mathrm{CO}(1: 1000$ to 100000$)$ at 10 to 15 K [17]; see also [3]. It is also formed when Cu atoms and CO are allowed to react on adamantane or cyclohexane at 77 K in a rotating cryostat. The compound is remarkably stable, surviving up to 253 K in adamantane [34, 37, 40].

The IR spectrum shows two CO stretching modes of approximately equal intensity at 1976.8 and $1990.0 \mathrm{~cm}^{-1}$ together with two modes at 323 and $376 \mathrm{~cm}^{-1}$. From IR frequencies of $\left.\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right)\right)_{n}\left({ }^{13} \mathrm{C}{ }^{16} \mathrm{O}\right)_{3-n} \mathrm{Cu}(\mathrm{n}=0$ to 3 ) in Ar matrices the force constants $\mathrm{f}(\mathrm{CO})=16.51$ and $16.43, f(C O, C O)=0.59$ and $0.66 \mathrm{mdyn} / \AA$ are calculated for two different matrix sites. The electronic spectrum shows absorptions at 375 and 562 nm assigned to ${ }^{2} \mathrm{~A}_{2}^{\prime \prime} \rightarrow{ }^{2} \mathrm{E}^{\prime \prime}$ and ${ }^{2} \mathrm{~A}_{2}^{\prime \prime} \rightarrow$ ${ }^{2} \mathrm{~A}_{1}^{\prime}$, weak shoulders at 344 and 495 nm , as well as a weak feature at 262 nm . A qualitative molecular orbital energy level scheme for $(\mathrm{CO})_{3} \mathrm{Cu}$ has been given for $\mathrm{D}_{3 \mathrm{~h}}$ symmetry [17, 38]. The mean metal-carbon bond dissociation energy has been estimated from the CottonKraihanzel force constants to be $36 \mathrm{kcal} \cdot(\mathrm{mol} \mathrm{CO})^{-1}$ [25].

At 4 to 100 K the EPR spectrum of $\left({ }^{12} \mathrm{CO}\right)_{3}{ }^{63} \mathrm{Cu}$ in cyclo $-\mathrm{C}_{6} \mathrm{D}_{12}$ or adamantane consisted of four equally spaced ( 80 G ) lines centered at $\mathrm{g}=2.0010$. The hyperfine structure was that of ${ }^{63} \mathrm{Cu}(\mathrm{l}=3 / 2)$. In addition there was a central asymmetric triplet at $\mathrm{g}=2.0028$ to 2.0029 which carried no ${ }^{63} \mathrm{Cu}$ hyperfine structure. On warming a ${ }^{13} \mathrm{C}$ containing sample to 250 K , a dramatic change occurred which revealed immediately the number of carbon atoms in the molecule, the spectrum consisted of four 1:3:3:1 quartets. On recooling to 77 K the main features were regenerated, proving that the two spectra are associated with the same molecule. EPR parameters [37, 40], see also [34]:

matrix	temperature   $(\mathrm{K})$	axis	g	$\mathrm{a}\left({ }^{63} \mathrm{Cu}\right)$   $(\mathrm{MHz})$	$\mathrm{a}\left({ }^{13} \mathrm{C}\right)$   $(\mathrm{MHz})$
cyclo- $\mathrm{C}_{6} \mathrm{D}_{12}$	100	$\mathrm{x}, \mathrm{y}$	$2.0028(2)$	$0(10)$	$29(2)$   adamantane
250	z (threefold)	$2.0010(2)$	$225(5)$   $93.9(5)$	$8(2)$   $22.0(5)$	

The low isotropic ${ }^{63} \mathrm{Cu}$ hyperfine interaction seems to indicate a planar, trigonal $\pi$ radical whose ground state is ${ }^{2} \mathrm{~A}_{2}^{\prime \prime}$ in $\mathrm{D}_{3 \mathrm{~h}}$ symmetry. The unpaired electron occupies an orbital which is largely $\mathrm{Cu} 4 \mathrm{p}_{\mathrm{z}}$ ( $\mathrm{z}=$ threefold axis) and which is bonding in each $\mathrm{Cu}-\mathrm{C}$ distance [19, 34, 37, 40]. Other authors [17, 39] regard the unpaired electron as residing mostly at the $C$ atoms.

SCF $-\mathrm{X}_{a}-\mathrm{SW}$ calculations indicate that, as for $(\mathrm{CO}) \mathrm{Cu}$ and $(\mathrm{CO})_{2} \mathrm{Cu}$, the major interaction arises from the $3 \sigma$ orbital of the CO ligand with the metal [31]. For extended Hückel MO calculations see [28].
$\left[(\mathrm{CO})_{3} \mathrm{Cu}\right]^{+}$. For formation see $[(\mathrm{CO}) \mathrm{Cu}]^{+}$in Section 1.1.3.2. The equilibrium between $\left[(\mathrm{CO})_{3} \mathrm{Cu}\right]^{+}$and $[(\mathrm{CO}) \mathrm{Cu}]^{+}$depends on the concentration of acid, the temperature, and the CO pressure. The $\left[(\mathrm{CO})_{3} \mathrm{Cu}\right]^{+} /[(\mathrm{CO}) \mathrm{Cu}]^{+}$ratio gradually increases with an increase in the $\mathrm{H}_{2} \mathrm{SO}_{4}$ concentration above $80 \%$. [ $\left.(\mathrm{CO})_{3} \mathrm{Cu}\right]+$ ist not formed in $\mathrm{H}_{2} \mathrm{SO}_{4}$ concentrations below $80 \%$ [7,91]. At $-10^{\circ} \mathrm{C}$ and a CO pressure of 7 atm the mole ratio of $\mathrm{CO} / \mathrm{Cu}^{+}$reaches 3 in $100 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ [1, 7]. By addition of a small amount of another solvent, such as $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, acetic anhydride, or ether, the ratio rapidly becomes 1 [2].

The carbonyl stretching frequency appears at $2175 \mathrm{~cm}^{-1}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$. A ${ }^{13} \mathrm{C}$ NMR chemical shift of 169.2 ppm is obtained from $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{FSO}_{3} \mathrm{H}(1.0 / 0.3)$ solutions [18].
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathbf{P C u}(\mathrm{CO})_{3} \mathbf{M o}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3} \mathrm{GaCH}_{3}, \quad\left[\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3} \mathrm{GaCH}_{3}\right]^{-}=$tridentate methyltris(pyrazol1 -yl)gallate, has been prepared from $\left[\mathrm{CuP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Cl}\right]_{4}$ and $\mathrm{Na}{ }^{+}\left[(\mathrm{CO})_{3} \mathrm{Mo}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3} \mathrm{GaCH}_{3}\right]^{-}$ (1:4) in THF in form of golden-yellow air-stable crystals ( $\sim 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (acetone $-d_{6}$ ): 0,58 (s, $\mathrm{CH}_{3}$ ), 6.31 (t, $\mathrm{H}-4$ in $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$ ), $7.55\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ ), 7.81 (d, $\mathrm{H}-5$ in $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$ ), 7.98 (d, H-3 in $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$ ) ppm. IR: $v(\mathrm{CO})=1798,1898$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 1780,1805,1890$ in Nujol. The X-ray crystallographic analysis shows semibridging CO groups with mean bond angles Mo-C-O of $170.1(5)^{\circ}, 170.7(1)^{\circ}$, and $172.1(6)^{\circ}, \mathrm{Cu}-\mathrm{C}-\mathrm{O}$ of $117.0(1)^{\circ}, 117.5(3)^{\circ}$, and $118.5(1)^{\circ}$, and mean bond lengths Mo-C of 1.973(7), 1.964(6), and 1.966(6) $\AA$, Cu-C of 2.247(13), 2.298(23), and $2.415(5) \AA$ for two crystallographically independent molecules. The exact nature of the $\mathrm{Cu}-\mathrm{CO}$ interaction is not clear [36].
[ $\left.(\mathrm{CO})_{4} \mathrm{Cu}\right]^{+}$has been formed by CO absorption of $\mathrm{Cu}_{2} \mathrm{O}$ in $\mathrm{BF}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ [10, 18], $\mathrm{FSO}_{3} \mathrm{H}$ [18], $\mathrm{FSO}_{3} \mathrm{H} \cdot \mathrm{SbF}_{5}$ [23], $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ [18], and HF [18] solutions.

IR and ${ }^{13} \mathrm{C}$ NMR spectra in strong acids:

solvent	$I R$    $v(C O) ~ i n ~$ $\mathrm{~cm}^{-1}$	${ }^{13} \mathrm{C}$ NMR   $\delta$ in ppm at -30 to $-60{ }^{\circ} \mathrm{C}$	Ref.
$\mathrm{BF}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	2186	169.5	$[18]$
	2190	-	$[10]$
$\mathrm{FSO}_{3} \mathrm{H}$	2183	171.1	$[18]$
$\mathrm{FSO}_{3} \mathrm{H} / \mathrm{SbF}_{5}$	2183	-	$[23]$
$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	2180	168.4	$[18]$
HF	2184	-	$[18]$

Raman $\left(\mathrm{FSO}_{3} \mathrm{H},-50{ }^{\circ} \mathrm{C}\right): 2181 \mathrm{~cm}^{-1}\left(\mathrm{t}_{2}\right)$ [30].
$\left[(\mathrm{CO})_{6} \mathrm{Cu}\right]^{2+}$. The Hartree-Fock-Roothan method in the CNDO/2 approximation has been used to carry out calculations for the octahedral complexes of the ions $\mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}$, $\mathrm{Cu}^{2+}$, and $\mathrm{Zn}^{2+}$ with the ligands $\mathrm{F}^{-}, \mathrm{H}_{2} \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, and CO [35].

Catalytical Use of $\left[(C O)_{n} C u\right]^{+}(n=3,4)$. The $\left[(C O)_{n} C u\right]^{+}$are active intermediates for carboxylation of alcohols [5, 9, 11, 16, 22, 26, 27], olefins [4, 6, 7, 11, 13, 14, 22, 24, 26, 29], $\mathrm{C}_{6}$ to $\mathrm{C}_{12}$ dienes and diols [21], and saturated hydrocarbons without [23] or with alcohols or olefins [8] as sources of alkyl cations in strong acids like $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{BF}_{3} / \mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3} / \mathrm{H}_{3} \mathrm{PO}_{4}$, $\mathrm{BF}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HF} / \mathrm{H}_{2} \mathrm{O}, \mathrm{HF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{BF}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HSO}_{3} \mathrm{~F}$, and $\mathrm{HSO}_{3} \mathrm{~F} / \mathrm{SbF}_{5}$. The rate constant for the carbonylation of $\mathrm{CH}_{2} \mathrm{O}$ by CO was increased 30 times by [ $\left.(\mathrm{CO})_{n} \mathrm{Cu}\right]^{+}$[32]. The reuse of the catalytic solutions has been tested [20]. They are stabilized by metallic Cu [12].

## References:

[1] Y. Souma, H. Sano (Nippon Kagaku Zasshi 91 [1970] 625/30; C.A. 73 [1970] No. 94 192).
[2] H. Sano (Nippon Kagaku Zasshi 91 [1970] 630/6; C.A. 73 [1970] No. 94 193).
[3] J. S. Ogden (Chem. Commun. 1971 978/9).
[4] Y. Souma, H. Sano (Japan. Kokai 74-61092 [1974] from C.A. 83 [1975] No. 137525).
[5] Y. Souma, H. Sano (Nikkakyo Geppo 26 [1973] 220/4 from C.A. 80 [1974] No. 14510).
[6] Y. Souma, H. Sano (Kagaku Kogyo 24 [1973] 1342/7 from C.A. 79 [1973] No. 125765).
[7] Y. Souma, H. Sano, J. lyoda (J. Org. Chem. 38 [1973] 2016/20).
[8] Y. Souma, H. Sano (J. Org. Chem. 38 [1973] 3633/5).
[9] Y. Souma, H. Sano (Bull. Chem. Soc. Japan 46 [1973] 3237/40).
[10] Y. Matsushima,T. Koyano, T. Kitamura, S. Wada (Chem. Letters 1973 433/4).
[11] T. Koyano, Y. Matsushima, T. Kitamura (Ger. Offen. 2339947 [1974] from C.A. 81 [1974] No. 54838).
[12] Y. Matsushima, T. Koyano, K. Shiozawa, S. Tomita (Japan. Kokai 75-134992 [1975] from C. A. 84 [1976] No. 121162 ).
[13] H. Sano, Y. Souma (Japan. 74-03511 [1974] from C.A. 81 [1974] No. 151548).
[14] N. Yoneda, T. Fukuhara, Y. Takahashi, A. Suzuki (Chem. Letters 1974 607/10).
[15] B. K. Nefedov, A. A. Slinkin, A. V. Kucherov, Ya. T. Eidus (Izv. Akad. Nauk SSSR Ser. Khim. 1974 2044/8; Bull. Acad. Sci. USSR Div. Chem. Sci. 1974 1962/5).
[16] K. V. Puzitskii, S. D. Pirozhkov, T. N. Myshenkova, K. G. Ryabova, Ya. T. Eidus (Izv. Akad. Nauk SSSR Ser. Khim. 1975 443/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1975 371/3).
[17] H. Huber, E. P. Kündig, M. Moskovits, G. A. Ozin (J. Am. Chem. Soc. 97 [1975] 2097/106).
[18] Y. Souma, J. lyoda, H. Sano (Inorg. Chem. 15 [1976] 968/70).
[19] E. P. Kündig, D. McIntosh, B. McGarvey, G. A. Ozin (unpublished from D. McIntosh, G. A. Ozin, J. Am. Chem. Soc. 98 [1976] 3167/75, ref. 6).
[20] Y. Souma, H. Sano (Osaka Kogyo Gijutsu Shikensho Kiho 27 [1976] 52/6; C.A. 85 [1976] No. 142559).
[21] Y. Souma, J. lyoda, H. Sano (Bull. Chem. Soc. Japan 49 [1976] 3291/5).
[22] Y. Souma, H. Sano (Bull. Chem. Soc. Japan 49 [1976] 3296/9).
[23] Y. Souma, H. Sano (Bull. Chem. Soc. Japan 49 [1976] 3335/6).
[24] N. Yoneda, T. Fukuhara, Y. Takahashi, A. Suzuki (Bull. Chem. Soc. Japan 51 [1978] 2347/53).
[25] R. G. Behrens (J. Less-Common Metals 58 [1978] 47/54).
[26] Y. Souma, H. Sano (Osaka Kogyo Gijutsu Shikensho Kiho 29 [1978] 106/9; C.A. 89 [1978] No. 108019).
[27] J. M. Bregeault, C. Jarjour, S. Yolou (J. Mol. Catal. 4 [1978] 225/9).
[28] H. Itoh, A. B. Kunz (Fundam. Res. Homogeneous Catal. 3 [1979] 73/82).
[29] S. Yolou, J. M. Bregeault (Bull. Soc. Chim. France 1979 485/95).
[30] A. Neppel, J. P. Hickey, I. S. Butler (J. Raman. Spectrosc. 8 [1979] 57/9).
[31] D. F. McIntosh, G. A. Ozin, R. P. Messmer (Inorg. Chem. 20 [1981] 3640/50).
[32] Y. Souma, H. Sano (Nippon Kagaku Kaishi 1982 263/7).
[33] S. Kitagawa, M. Munakata, N. Miyaji (Inorg. Chem. 21 [1982] 3842/3).
[34] J. A. Howard, B. Mile, J. R. Morton, K. F. Preston, R. Sutcliffe (Chem. Phys. Letters 117 [1985] 115/7).
[35] V.M. Pinchuk, V.A. Korobskii, L.B. Shevardina (Zh. Neorg. Khim. 29 [1984] 1111/3; Russ. J. Inorg. Chem. 29 [1984]
[36] G.A. Banta, B.M. Louie, E. Onyiriuka, S.J. Rettig, A. Storr (Can J. Chem. 64 [1986] 373/86).
[37] J.A. Howard, B. Mile, J.R. Morton, K.F. Preston (J. Phys. Chem. 90 [1986] 2027/9).
[38] G. A. Ozin (Appl. Spectrosc. 30 [1976] 573/85).
[39] P. H. Kasai, P. M. Jones (J. Am. Chem. Soc. 107 [1985] 813/8).
[40] J. A. Howard, B. Mile, J. R. Morton, K. F. Preston, R. Sutcliffe (J. Phys. Chem. 90 [1986] 1033/6).

### 1.1.4 Isocyanide Compounds

## General Literature:

E. Singleton, H. E. Oosthuizen, Metal Isocyanide Complexes, Advan. Organometal. Chem. 22 [1983] 209/310.
L. P. Yur'eva, Isocyanide Complexes of Transition Metals, Metody Elementoorg. Khim. Tipy Metalloorg. Soedin. Perekhodnykh Metal. 1 [1975] 162/216; C.A. 84 [1976] No. 11597.
L. Malatesta, F. Bonati, Isocyanide Complexes of Metals, London - New York - Sydney - Toronto 1969, pp. 37/42, 54.
L. Malatesta, Isocyanide Complexes of Metals, Progr. Inorg. Chem. 1 [1959] 283/379, 291/7.

The literature before 1949 is also reviewed in "Kupfer" B2, 1961, p. 855.
Most of the copper isocyanide compounds contain one, two, three, or four isocyanides and ligands like halogens or pseudohalogens. Others contain $\mathrm{N}, \mathrm{P}$, or As donor ligands. Some have halides, $\mathrm{BF}_{4}, \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$, or $\mathrm{PF}_{6}$ as counterions. The number of the isocyanide ligands depends on the nature of the additional ligands or counterions, X , and for a particular $X$ two or more complexes with different numbers of isocyanides can often be synthesized. While complexes of the $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\right] \mathrm{X}$ type are readily formed from $\mathrm{Cu}^{\prime}$ halides and excess isocyanide, they have not been isolated for $X=C N$. And although $\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuBr}$ has been isolated, $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuCN}$ has not [2].

The compounds RNCCuX most likely are polymeric; see Chapter 1.1.4.1.1.
Copper isocyanides ( RNC$)_{n} \mathrm{Cu}$ have not yet been isolated. However, their existence is indicated by IR and ESR data. Metallic copper dissolves in cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$. The solution has an IR band at $2180 \mathrm{~cm}^{-1}$, which can be assigned to a coordinated isocyanide, in addition to the band at $2140 \mathrm{~cm}^{-1}$ for the free ligand [4,5]. Its ESR spectrum exhibits a g value of 2.0041 , which was tentatively assigned to a zero valent copper isocyanide complex [ 6 , 7, 9]. A soluble complex of unknown composition which forms from $\mathrm{Cu}_{2} \mathrm{O}$ and cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$ also has an IR band at $2181 \mathrm{~cm}^{-1}$ [5].

Complexes of metallic Cu or $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, not fully characterized, show $\Delta v(\mathrm{NC})=$ $+40 \mathrm{~cm}^{-1}$ from free $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$. They react in $\mathrm{C}_{6} \mathrm{H}_{6}$ with $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{3}$ to give unstable crystalline products with the molar proportions $\mathrm{Cu}:{\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}: \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{3}\right)_{3}: \mathrm{C}_{6} \mathrm{H}_{6}=1: 5: 1: 0.33}^{\text {a }}$ and $\mathrm{Cu}_{2} \mathrm{O}: \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}: \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{3}: \mathrm{C}_{6} \mathrm{H}_{6}=1: 8: 2: 0.66$ [15]. Solutions of 2,3,4,6-tetra-O-acetyl-$\beta$-D-glucopyranos-1-ylisocyanide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{3} \mathrm{CN}$ show $\Delta v(\mathrm{NC})=+46$ to $47 \mathrm{~cm}^{-1}$ after addition of $\mathrm{Cu}, \mathrm{CuO}, \mathrm{Cu}_{2} \mathrm{O}$, or CuCl [19].

Catalytic systems like $\mathrm{RNC} / \mathrm{Cu}, \mathrm{RNC} / \mathrm{Cu}_{2} \mathrm{O}$, and $\mathrm{RNC} / \mathrm{CuCl}$ are frequently used very efficiently for the syntheses of a great variety of organic compounds because the copper isocyanide complexes so prepared are soluble in organic solvents. Reactions occur with activated $\mathrm{C}-\mathrm{H}$ bonds or alkyl halides followed by additions to $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ double bonds and concomitant cyclizations as well as insertions of the isocyanide ligand into the heteroatom H -bond of amines, alcohols, thiols, phosphanes, and silanes. In all these reactions Cu isocyanide complexes are formed as byproducts [8]. The system cyclo $-\mathrm{C}_{6} \mathrm{H}_{11} / \mathrm{Cu}$ exhibits mono-electronic reducing character and catalyzes the dimerization of alkyl halides with excellent yields [13], cf. [14]. The formation of radical anions by electron transfer from the systems $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC} / \mathrm{Cu}$ or $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC} / \mathrm{Cu}_{2} \mathrm{O}$ to $\pi$ substrates such as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}, \mathrm{~m}$ - and p $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}$, benzoquinone, fluorenone, and $(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ is shown by ESR spectroscopy [18].

Nonstoichiometric ( $\left.\mathbf{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{n} \mathrm{Cu}_{2} \mathrm{CO}_{3}$ is prepared by hydrolysis of $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuO}$ $\mathrm{CO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$-t (see 1.1.4.3) with $\mathrm{H}_{2} \mathrm{O}$ (mole ratio 2:1) in THF at $0^{\circ} \mathrm{C}$ ( $94 \%$ yield) or from $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuOCO}_{2} \mathrm{H}$ (see 1.1.4.3) with proton abstractors such as $\mathrm{CuOC}_{4} \mathrm{H}_{9}$-t in THF at $0^{\circ} \mathrm{C}$. It is colorless and extremely sensitive to $\mathrm{H}_{2} \mathrm{O}$. IR (Nujol): 1511 (CO), $2164+2189$ (NC). The reaction with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}$ at room temperature yields $57 \%\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CO}, 12 \%$ $\mathrm{CO}_{2}$, and $5 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Treatment with $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ (mole ratio 1:3:1.5:1.2) gives $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuOCO}_{2} \mathrm{H}$ [16].

The nonstoichiometric product ( $\left.\mathbf{( - \mathbf { C } _ { 4 }} \mathbf{H}_{9} \mathbf{N C}\right)_{n} \mathbf{C u N C O}(\mathrm{n} \approx 2.5$ by iodometry, 2.7 from NMR), possibly a mixture of different isocyanide complexes, is prepared either from $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, $\mathrm{Cu}_{2} \mathrm{O}$, and $\mathrm{RNHCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ in $93 \%(\mathrm{R}=\mathrm{H})$ and $90 \%\left(\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$ yield [10], or from $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right]_{2} \mathrm{NCu}$, and $\mathrm{CO}_{2}$ with $91 \%$ yield of the additionally formed $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right]_{2} \mathrm{O}$ in toluene at $0^{\circ} \mathrm{C}$ [11]. The product forms colorless crystals, m.p. $103^{\circ} \mathrm{C}$ [10]. IR: $610(\delta, \gamma \mathrm{NCO}), 1350$ ( $v_{\mathrm{s}} \mathrm{NCO}$ ), 2175 ( $\mathrm{v}_{\mathrm{as}} \mathrm{NCO}$ ), and 2225 ( NC ) $\mathrm{cm}^{-1}$, suggesting that the NCO group may be coordinated to Cu through N [11], cf. [10]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.20 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$ [10]. It is soluble in most organic solvents, not very sensitive to air in solid state, but readily oxidized in solution [10]. In benzene its degree of association of 1.3 was measured by cryoscopy [11]. When treated with aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$, it evolves $\mathrm{CO}_{2}$ [11]. With $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{HCl}$ it yields $\mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ [10]; with alkyl bromides in the presence of alcohol it produces N -alkylcarbamates [10, 11]. However, with $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}$ [11] or with acyl chlorides [10] the corresponding isocyanides are formed. Addition of $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$ to the reaction mixture with $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{l}$ yields ( n $\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}\right)_{2} \mathrm{CO}$ [11].
 $\mathrm{C}_{2} \mathrm{H}_{5} ; n=1.6$ for $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$ ) were isolated by evaporation of the $\mathrm{C}_{6} \mathrm{H}_{6}$ solution of $\mathrm{CuOC}_{4} \mathrm{H}_{9}-\mathrm{t}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}(1: 3), \mathrm{HNRR}^{\prime}$, and $\mathrm{CO}_{2}$ under reduced pressure and identified by their Cu content, $\mathrm{CO}_{2}$ evolution on acidolysis, and IR spectra (not given). Complexes of this type are the key intermediates in the copper/isocyanide-promoted formation of urethanes from $\mathrm{CO}_{2}$, amines, and alkyl halides [12], cf. [17].

A complex of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NC}$ with the copper protein hemocyanin, obtained from the hemolymph of the whelk Murex trunculus, seems to be formed by the reversible displacement of $\mathrm{O}_{2}$ in oxyhemocyanin, as was indicated by UV spectroscopy [3].

## References:

[1] F. Klages, K. Mönkemeyer, R. Heinle (Chem. Ber. 85 [1952] 109/22).
[2] S. Otsuka, K. Mori, K. Yamagami (J. Org. Chem. 31 [1966] 4170/4).
[3] E. J. Wood, W. H. Bannister (Nature 215 [1967] 1091).
[4] T. Saegusa, Y. Ito, S. Kobayashi, K. Hirota, H. Yoshioka (Bull. Chem. Soc. Japan 42 [1969] 3310/3).
[5] T. Saegusa, Y. Ito, S. Kobayashi, K. Hirota, N. Takeda (Can. J. Chem. 47 [1969] 1217/22).
[6] T. Saegusa, K. Yonezawa, Y. Ito (Syn. Commun. 2 [1972] 431/9).
[7] T. Saegusa, K. Yonezawa, I. Murase, T. Konoike, S. Tomita, Y. Ito (J. Org. Chem. 38 [1973] 2319/28).
[8] T. Saegusa, Y. Ito (Synthesis 1975 291/300).
[9] Y. Ito, T. Saegusa (Organotransition Met. Chem. Proc. 1st Japan Am. Semin., Honolulu 1974 [1975], pp. 49/55; C.A. 85 [1976] No. 160272).
[10] Y. Ito, Y. Inubushi, S. Matsumura, T. Saegusa (Bull. Chem. Soc. Japan 49 [1976] 573/4).
[11] T. Tsuda, H. Washita, T. Saegusa (J. Chem. Soc. Chem. Commun. 1977 468/9).
[12] T. Tsuda, H. Washita, K. Watanabe, M. Miwa, T. Saegusa (J. Chem. Soc. Chem. Commun. 1978 815/6).
[13] A. Ballatore, M. P. Crozet, J.-M. Surzur (Tetrahedron Letters 1979 3073/6).
[14] M. P. Crozet, J.-M. Surzur, R. Jauffred, C. Ghiglione (Tetrahedron Letters 1979 3077/8).
[15] A.-T. Hansson, M. Nilsson (Acta Chem. Scand. B 34 [1980] 119/23).
[16] T. Tsuda, Y. Chujo, T. Saegusa (J. Am. Chem. Soc. 102 [1980] 431/3).
[17] T. Tsuda, K. Watanabe, K. Miyata, H. Yamamoto, T. Saegusa (Inorg. Chem. 20 [1981] 2728/30).
[18] Y. Ito, T. Konoike, T. Saegusa (Tetrahedron Letters 1974 1287/90).
[19] D. Marmet, P. Boullanger, G. Descotes (Tetrahedron Letters 21 [1980] 1459/62).

### 1.1.4.1 Compounds Containing One Isocyanide Ligand

Cu' semiquinolato complexes of the type $R N C C u O_{2} C_{6} H_{3} R^{\prime}\left(R=t-\mathrm{C}_{4} H_{9}\right.$; nature and position of $R^{\prime}$ not given) have been found in equilibrium with ( RNC$)_{2} \mathrm{CuO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} R^{\prime}$ and $\mathrm{CuO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} R^{\prime}$ on dilution of $(\mathrm{RNC})_{2} \mathrm{CuO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{R}^{\prime}$ solutions.

## Reference:

G. A. Abakumov, A. V. Lobanov, K. K. Cherkasov (Abstr. 2nd All-Union Conf. Organometal. Chem., Gorkii 1982, p. 168) from E. A. Kashtanov, V. K. Cherkasov, L. V. Gorbunova, G. A. Abakumov (Izv. Akad. Nauk SSSR Ser. Khim. 1983 2121/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1983 1917/20).

### 1.1.4.1.1 Compounds of the Type RNCCuX

In this chapter the compounds RNCCuX are described for $\mathrm{R}=$ alkyl or aryl and $\mathrm{X}=\mathrm{Cl}$, $\mathrm{Br}, \mathrm{I}, \mathrm{CN}$, alkoxy, or acyloxy. Most of the compounds in Table 28 are prepared from CuX and the corresponding isocyanide.
Method I: In an exothermic reaction without solvent.
Method II: In $\mathrm{CH}_{3} \mathrm{CN}$ (boiling or at room temperature) or at room temperature in $\mathrm{C}_{6} \mathrm{H}_{6}$, $\mathrm{CHCl}_{3}$, or aqueous $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.

Another method is the alkylation of HCN with olefins like isobutene in the presence of CuBr . Although $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuCN}$ was obtained in this manner, no $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuBr}$ could be detected in the reaction products. Because the isocyanide is easily liberated from RNCCuX with KCN, this method can be used for preparing t-alkyl isocyanides from olefins [6]. An X-ray crystallographic study of $\mathrm{CH}_{3} \mathrm{NCCul}$ (Table 28, No. 2) revealed a polymeric structure, and it is very likely that other compounds are also polymeric in the solid state. However, for compounds No. 17 and 18 a monomeric structure in solution was inferred from the osmometric molecular mass in dimethylformamide. Since only one $v(N C)$ was observed in the solid state IR spectra for Nos. 17 to 19, they are assumed to be two-coordinate [9].

Table 28
Compounds of the Type RNCCuX.
Further information on compounds preceded by an asterisk is given at the end of the table. For abbreviations and dimensions see p. X.

	RNCCuX		method of preparation (solvent, yield) remarks	Ref.
	R	X		
1	$\mathrm{CH}_{3}$	Br	II $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ colorless crystals	[4]
2	$\mathrm{CH}_{3}$	1	according to X-ray studies polymeric, therefore reported in the corresponding chapter	[2, 4, 5]
*3	$\mathrm{CH}_{3}$	CN	light gray solid	[4]
4	$\mathrm{C}_{2} \mathrm{H}_{5}$	1	II $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$   colorless needles	[4]
5	$\mathrm{C}_{2} \mathrm{H}_{5}$	CN	I colorless prisms from ethanol loss of isocyanide at room temperature	[1]
6	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	1	II $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, low) dirty white needles	[4]
7	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	I colorless rhombic plates from ethanol loss of isocyanide at room temperature	[1]
8	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}$	CN	I colorless rhombic prisms from ethanol loss of isocyanide at room temperature	[1]
9	${ }_{\text {t- }} \mathrm{C}_{4} \mathrm{H}_{9}$	Cl	preparation not given IR: 2189	[11, 13]
*10	$\mathrm{t}_{-\mathrm{C}_{4} \mathrm{H}_{9}}$	CN	colorless prisms from $\mathrm{CH}_{3} \mathrm{CN}$, m.p. 196 to $198^{\circ}$ IR (Nujol) : 2140 (CN, cyanide), 2182 ( NC , isocyanide)	[6]
*11	$\mathrm{t}_{-\mathrm{C}}^{4} \mathrm{H}_{9}$	$\mathrm{OC}_{4} \mathrm{H}_{9}-\mathrm{t}$	$\begin{aligned} & \text { II }\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \\ & \text { yellow crystals, sublimes at } 90 \% / 1 \text { Torr } \\ & \text { 1H NMR }\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 0.99\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}\right), 1.90\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right) \\ & \text { IR (Nujol):945(t-C. } \left.\mathrm{H}_{9} \mathrm{O}\right), 1195+1220\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}\right), \\ & \quad 2102(\mathrm{NC}) \end{aligned}$	[11, 13]
*12	$\mathrm{t}_{-\mathrm{C}_{4} \mathrm{H}_{9}}$	$\mathrm{O}_{2} \mathrm{CCH}_{3}$	$\begin{aligned} & \text { colorless crystals from benzene } \\ & { }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): 1.49\left(\mathrm{O}_{2} \mathrm{CCH}_{3}+\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right) \\ & \text { IR }(\mathrm{KBr}): 1210+1235\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 1410+1560+1585 \\ & \left(\mathrm{O}_{2} \mathrm{C}\right), 2169(\mathrm{NC}) \end{aligned}$	[10]
13	t-C $\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & \text { preparation similar to No. } 12 \\ & { }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CD}_{3} \mathrm{CN}\right): 1.45\left(\mathrm{CH}_{3}\right), 7.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & \text { IR (KBr): } 1570+1600\left(\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2} \mathrm{C}\right), 2168(\mathrm{NC}), 3060 \\ & \quad\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \end{aligned}$	[10]
Gmelin Handbook Cu-Org. Comp. 3			References on p. 219	

Table 28 [continued]

No.	$\mathrm{R}^{\mathrm{RNCCuX}}$	X	method of preparation (solvent, yield) remarks	Ref.
14	$t-\mathrm{C}_{4} \mathrm{H}_{9}$		from No. $11+\mathrm{CO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$   exists according to IR studies in $\mathrm{C}_{6} \mathrm{H}_{6}$ at room temperature in equilibrium with No. 11 and $\mathrm{CO}_{2}$; attempted isolation even at $0^{\circ}$ gives only No. 11	[13]
15	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cl	II (ether, almost quantitative) ; or from $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{2} \mathrm{CuCl}$ (boiling $\mathrm{CH}_{3} \mathrm{OH}, 96 \%$ ) colorless needles, m.p. 184 to $185^{\circ}$ insoluble in ordinary solvents	[3]
16	cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	Cl	I   colorless crystals from $\mathrm{CHCl}_{3}$ /ether, m.p. 95 to $96^{\circ}$ IR: 2192 (NC)	[7, 8]
17	4- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	Cl	$\text { II }\left(\mathrm{CHCl}_{3}, 85 \%\right)$   colorless crystals from $\mathrm{CHCl}_{3}$, m.p. 188 to $190^{\circ}$ stable in air, even in solution   IR (Nujol): 2155 (NC)	[9]
18	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	Br	$\text { II }\left(\mathrm{CHCl}_{3}\right)$   colorless crystals from $\mathrm{CHCl}_{3}$, m.p. 190 to $193^{\circ}$ stable in air, even in solution $\text { IR (Nujol) : } 2173 \text { (NC) }$	[9]
19	4- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	I	$\text { II }\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 40 \%\right)$   colorless crystals from $\mathrm{CHCl}_{3}$, m.p. 148 to $150^{\circ}$ stable in air, even in solution   IR (Nujol): 2158 (NC)	[9]
20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{2}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & \text { II }\left(\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ}, 41 \%\right) \\ & \text { m.p. } 147 \text { to } 148^{\circ}(\text { dec. }) \\ & \left.{ }^{1} \mathrm{H} \text { NMR (acetone- } \mathrm{d}_{6}\right): 6.02\left(\mathrm{CH}_{2}\right) \end{aligned}$	[14]

*Further information:
$\mathrm{CH}_{3} \mathbf{N C C u C N}$ (Table 28, No. 3) is probably obtained as a noncrystalline solid if $\mathrm{CH}_{3} \mathrm{I}$ and CuCN in $\mathrm{CH}_{3} \mathrm{CN}$ are heated at $100^{\circ} \mathrm{C}$ for less than 12 h . It is insoluble in water and all common solvents. According to the elemental analysis it seemed to be contaminated with CuCN . When warmed with aqueous KCN , it releases $\mathrm{CH}_{3} \mathrm{NC}$ [4].
$\mathbf{t}-\mathbf{C}_{4} \mathrm{H}_{9} \mathbf{N C C u C N}$ (Table 28, No. 10) is prepared from ( $\left.\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuBr}$ (Table 32, No. 2) in boiling water in $84 \%$ yield; in benzene the yield is very low. It is also formed by repeated recrystallization of $\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathrm{CuCN}$ (Table 30, No. 2) from $\mathrm{CHCl}_{3}$ /ether and by reaction of $\mathrm{CuX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}), \mathrm{HCN}$, and isobutene either without a solvent or in water, tetrahydrofuran, and benzene. It is insoluble in hydrocarbons, alcohols, and ether, and only slightly soluble in hot acetonitrile. The $v(N C)$ of the isocyanide ligand is $39 \mathrm{~cm}^{-1}$ higher than that of the free ligand; the $v(C N)$ of the cyano group is $32 \mathrm{~cm}^{-1}$ lower than for CuCN . On treatment with aqueous KCN the isocyanide is liberated [6].
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuOC}_{4} \mathrm{H}_{9}-\mathbf{t}$ (Table 28, No. 11) is also prepared from $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ and $\mathrm{Cu}\left(\mathrm{OC}_{4} \mathrm{H}_{9}-\mathrm{t}\right)_{2}$ $(33 \%)$ or $(\mathrm{CO}) \mathrm{CuOC}_{4} \mathrm{H}_{9}-\mathrm{t}$ (Table 27, No. 19) [11]. It is soluble in most organic solvents. In
cyclohexane it has a degree of association of about 4 or 5 [13]. That the $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ ligand functions as a good $\pi$ acceptor is inferred from the $36 \mathrm{~cm}^{-1}$ lowering of $v(N C)$ upon complexation [11, 13].

Reaction with cyclopentadiene gives $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CuCNC}_{4} \mathrm{H}_{9}-\mathrm{t}$ in good yield. For the reaction with fluorene followed by treatment with $\mathrm{CH}_{3} \mathrm{I}$ in tetrahydrofuran at $90^{\circ} \mathrm{C}$ the proposed mechanism is shown in Scheme I [11]. The compound is further assumed to be an intermediate in the formation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ in the presence of $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ and $\mathrm{CuOC}_{4} \mathrm{H}_{9}$-t [12].



1
$\mathrm{t}^{-\mathrm{C}_{4}} \mathrm{H}_{9} \mathrm{NCCuO}_{2} \mathrm{CCH}_{3}$ (Table 28, No. 12) is obtained by heating $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (1:2:2 mole ratio) in benzene in $53 \%$ yield. It is air-sensitive, especially in benzene solution. In the presence of $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ it is readily soluble in benzene even at room temperature. The compound reacts with alkyl halides such as $(+)-(\mathrm{R})-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCH}_{3}$, to give the corresponding acetates. The reaction proceeds quantitatively with $75 \%$ inversion of configuration. The isocyanide ligand greatly influences the stereochemistry because with $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Cu}$, subjected to the same conditions, racemization takes place [10].

## References:

[1] H. Guillemard (Ann. Chim. Phys. [8] 14 [1908] 311/432, 429/30).
[2] E. G. J. Hartley (J. Chem. Soc. 1928 780/1).
[3] F. Klages, K. Mönkemeyer, R. Heinle (Chem. Ber. 85 [1952] 109/22).
[4] H. Irving, M. Jonason (J. Chem. Soc. 1960 2095/7).
[5] P. J. Fisher, N. E. Taylor, M. M. Harding (J. Chem. Soc. 1960 2303/9).
[6] S. Otsuka, K. Mori, K. Yamagami (J. Org. Chem. 31 [1966] 4170/4).
[7] T. Saegusa, Y. Ito, S. Kobayashi, K. Hirota, H. Yoshioka (Bull. Chem. Soc. Japan 42 [1969] 3310/3).
[8] T. Saegusa, Y. Ito, S. Kobayashi, K. Hirota, N. Takeda (Can. J. Chem. 47 [1969] 1217/22).
[9] J. Bailey, M. J. Mays (J. Organometal. Chem. 47 [1973] 217/24).
[10] T. Saegusa, J. Murare, Y. Ito (J. Org. Chem. 38 [1973] 1753/5).
[11] T. Tsuda, H. Habu, S. Horiguchi, T. Saegusa (J. Am. Chem. Soc. 96 [1974] 5930/1).
[12] T. Tsuda, H. Habu, T. Saegusa (J. Chem. Soc. Chem. Commun. 1974 620).
[13] T. Tsuda, S. Sanada, K. Meda, T. Saegusa (Inorg. Chem. 15 [1976] 2329/32).
[14] W. P. Fehlhammer, K. Bartel, B. Weinberger, U. Plaia (Chem. Ber. 118 [1985] 2220/34).

### 1.1.4.1.2 Compounds of the Type RNCCund ${ }_{m} X$ Including Ionic Compounds

Complexes of the Type [RNCCul $\left.{ }^{18} D\right]^{n+}$. Binding constants $K=\left[R N C C u^{18} D^{n+}\right] /[R N C]$. [ $\mathrm{Cu}^{18} \mathrm{D}^{n+}$ ] in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}$ at $22 \pm 1^{\circ} \mathrm{C}$ are calculated from the influence of RNC on the polarographic half-wave potentials of the redox couples $\left[\mathrm{Ci}^{18} \mathrm{D}\right]^{\mathrm{n}+} /\left[\mathrm{Cu}{ }^{118} \mathrm{D}\right]^{(n+1)+}[6]$ :

RNC	${ }^{8} \mathrm{D}$		n	$K\left[M^{-1}\right]$
$\begin{aligned} & \text { p-NCC } \mathrm{H}_{4} \mathrm{NC} \\ & \text { p-O} \mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NC} \\ & \mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NC} \\ & \mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NC} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BF}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \\ & \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BF}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \\ & \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \\ & \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4} \end{aligned}$	$\begin{aligned} & \text { (see I) } \\ & \text { (see I) } \\ & \text { (see II) } \\ & \text { (see III) } \end{aligned}$	0 0 0 1	$\begin{aligned} & 1.9(4) \times 10^{7} \\ & 1.7(2) \times 10^{7} \\ & 8.2(8) \times 10^{3} \\ & 7.6(7) \times 10^{4} \end{aligned}$
	$\left.\mathrm{CH}_{3}\right]^{-}\left[\begin{array}{l} \\ \mathrm{CH}_{3} \\ \mathrm{CH}\end{array}\right.$			

Most of the compounds in Table 29 are prepared by the following methods:
Method I: From $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCuCl}$ and RNC ( $1: 1$ mole ratio) in $\mathrm{CHCl}_{3}$. After precipitation with light petroleum, the compound is recrystallized from $\mathrm{CHCl}_{3}$.

Method II: From RNCCuX and D (1:1 mole ratio, 1:3 for No. 5) in $\mathrm{CHCl}_{3}$ or/and dimethylformamide.

All compounds except for No. 8 are crystalline materials. The complexes No. 1, 2, and 9 to 16 are air-stable in the solid state and in solution, soluble to some extent in $\mathrm{CHCl}_{3}$, and apparently stable with respect to disproportionation [1].

The solid state structures for Nos. 9 to 12 are assumed to be dimeric halogen-bridged cis structures in accordance with the two $v(N C)$ bands in the IR spectra. For Nos. 2 and 13 to 16 four-coordinate Cu atoms are presumed. Osmometric molecular weights for Nos. 9, 11 , and 15 in $\mathrm{CHCl}_{3}$ correspond to the monomeric formulations, whereas No. 2 in $\mathrm{CHCl}_{3}$ and No. 16 in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ are ionized. Conductivity data in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ indicate Nos. 9 and 12 to be only slightly ionized, Nos. 13 to 15 to be partly ionized, and Nos. 2 and 16 to be extensively ionized [1].

In Table 29 all IR data except those for Nos. 10, 11, and 12 (no details given) are measured in Nujol, $v(N C)=2094$ to $2184 \mathrm{~cm}^{-1}$.

## Table 29

Compounds of the Type RNCCunD ${ }_{m} X$ Including Ionic Compounds.
Further information on compounds preceded by an asterisk is given at the end of the table.
For abbreviations and dimensions see $p$. $X$.

No.	compound	method of preparation (yield) remarks   IR: $v(N C)$	Ref.
1	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NCCuP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Cl}$	$\begin{aligned} & \mathrm{I}(90 \%) \\ & \text { colorless, m.p. } 191 \text { to } 195^{\circ} \\ & \text { IR: } 2168,2184 \\ & \text { reacts with } \mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}+\text { AgPF }_{6} \text { to give }}^{\text {No. } 2} \end{aligned}$	[1]
2	$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NCCu}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{3}\right] \mathrm{PF}_{6}$	$\begin{aligned} & \text { see No. } 1(89 \%) \\ & \text { m.p. } 161 \text { to } 165^{\circ} \\ & \text { IR: } 2193 \end{aligned}$	[1]
*3	$\begin{aligned} & \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCu}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \\ & \left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}=2-\eta-\text { pyrazol }-1-\mathrm{yl}\right) \end{aligned}$	$\begin{aligned} & \text { colorless, m.p. }>280^{\circ} \\ & \text { IR: } 2180 \\ & { }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CDCl}_{3}\right): 1.46\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right) \text {, } \\ & \quad 6.97+7.50+7.70(2 \mathrm{H} \text { each, pyrazol- } \\ & \text { yl), } 7.27\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \end{aligned}$	[5]
	$\begin{aligned} & \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCu}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3} \mathrm{BC}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \\ & \left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}=\right.\text { pyrazol-1-yl-, } \\ & \text { three of them } 2-\eta \text {-coordinated to } \mathrm{Cu}) \end{aligned}$	```colorless, m.p. 137 to 138 IR:2140 'H NMR (CDCl }):1.57(t-\mp@subsup{C}{4}{}\mp@subsup{\textrm{H}}{9}{})\mathrm{ , 6.34+7.34+7.80 (4H each, pyrazolyl)```	[5]
*5	$\begin{aligned} & t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCu}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3} \mathrm{BH} \\ & \left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}=2-\eta\right. \text {-pyrazol-1-yl) } \end{aligned}$	$\begin{aligned} & \text { colorless, m.p. } 156 \text { to } 158^{\circ} \\ & \text { IR: } 2155(\mathrm{NC}), 2480(\mathrm{BH}) \\ & { }^{1} \mathrm{H} \text { NMR: } 1.60\left(\mathrm{~s}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right), \\ & \quad 5.94+7.31+7.38\left(\mathrm{t}, \mathrm{~d}, \mathrm{~d}, \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right) \end{aligned}$	[2]
*6 [cyclo- $\left.\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NCCu}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}\right] \mathrm{B}(\mathrm{C}$$\text { *7 } 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCCu}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NCH}_{2}\right)_{2} \mathrm{I}$			[3]
		yellow crystals   IR: 1630 (C=N), 2135 (NC of isocyanide)	[7]
*8		not isolated	[4]
9	$\begin{aligned} & 4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NCCu}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{Cl} \\ & \left(\mathrm{NC}_{5} \mathrm{H}_{5}=\text { pyridine }\right) \end{aligned}$	```II (95%) colorless, m.p. 131 to 137 IR: 2098, 2133```	[1]
Gmelin HandbookCu-Org. Comp. 3			

Table 29 [continued]
$\left.\begin{array}{llll}\hline \text { No. compound } & \begin{array}{l}\text { method of preparation (yield) } \\ \text { remarks }\end{array} & \text { Ref. } \\ & & \text { IR: v(NC) }\end{array}\right] \quad$ [1]
*Further information:
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCu}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{2} \mathbf{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ (Table 29, No. 3) is prepared from $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, CuCl , and $\mathrm{Na}\left[\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$ (2:1:1 mole ratio) in ether with $36 \%$ yield [5].
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCu}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3} \mathrm{BC}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$ (Table 29, No. 4) is prepared from $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, CuCl , and $\mathrm{K}\left[\mathrm{B}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{4}\right]$ in an aqueous 2 M KI solution with $47 \%$ yield [5].
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCu}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{3} \mathbf{B H}$ (Table 29, No. 5) is prepared by the reaction of $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ either with $\mathrm{OCCu}\left(\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}_{3}\right) \mathrm{BH}$ in benzene in $85 \%$ yield or with $\left[\mathrm{Cu}\left(\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}_{3}\right)_{3} \mathrm{BH}\right]_{2}$ in $66 \%$ yield. It is recrystallized from petroleum ether [2].
[cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NCCu}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ ]B( $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ (Table 29, No. 6) is prepared from [OC$\left.\mathrm{Cu}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}\right] \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ and cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$ in THF [3].

4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCCu}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{C H}=\mathrm{NCH}_{2}\right)_{2} \mathrm{I}$ (Table 29, No. 7). A THF solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{~N}=\mathrm{CHC}_{6} \mathrm{H}_{5}$ was reacted with nearly equimolar amounts of Cul and $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}$. After 10 h , the title compound precipitated in a $37 \%$ yield. Triclinic, space group $\mathrm{P} \overline{1}-\mathrm{C}_{1}^{1}$ (No. 2); $a=10.139(7), b=13.427(9), c=9.830(4) \AA, \alpha=91.56(5)^{\circ}, \beta=111.31(5)^{\circ}, \gamma=108.54(5)^{\circ} ; Z=4$, $d_{c}=1.55 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The structure with selected bond lengths and angles is given in Fig. 15 [7].


Fig. 15. Molecular structure of $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCCu}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NCH}_{2}\right)_{2} \mathrm{I}$ ( $\mathrm{No}$. . 9) with selected bond lengths (in $\AA$ ) and angles.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NCCu}^{\prime} \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{BF}_{2}$ (Table 29, No. 8) seems to be formed from [Cul'C $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ $\mathrm{BF}_{2} \mathrm{CClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and an excess of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NC}$ by electrochemical reduction in $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ at $25^{\circ} \mathrm{C}$. The formation constant $\mathrm{K}=[\mathrm{RNCCu}(\mathrm{D}-\mathrm{X})] /[\mathrm{RNC}] \cdot[\mathrm{Cu}(\mathrm{D}-\mathrm{X})]$ is estimated to be $3 \times 10^{6} \mathrm{M}^{-1}$ and to be much greater than the K of the corresponding Cull species [4].

## References:

[1] J. Bailey, M. J. Mays (J. Organometal. Chem. 47 [1973] 217/24).
[2] M. I. Bruce, A. P. P. Ostazewski (J. Chem. Soc. Dalton Trans. 1973 2433/6; see also J. Chem. Soc. Chem. Commun. 1972 1124/5).
[3] M. Pasquali, F. Marchetti, C. Floriani (Inorg. Chem. 17 [1978] 1684/8).
[4] A. W. Addison, M. Carpenter, L. K.-M. Lau, M. Wicholas (Inorg. Chem. 17 [1978] 1545/52).
[5] O. M. Abu Salah, M. I. Bruce, J. D. Walsh (Australian J. Chem. 32 [1979] 1209/18).
[6] R. R. Gagné, J. L. Allison, D. M. Ingle (Inorg. Chem. 18 [1979] 2767/74).
[7] A. Toth, C. Floriani, M. Pasquali, A. Chiesi-Villa, A. Gaetani-Manfredotti, C. Guastini (Inorg. Chem. 24 [1985] 648/53).

### 1.1.4.1.3 Compounds of the Types RNCCuR' and $\mathrm{RNCCuC}^{2}=\mathrm{CR}^{\prime}\left({ }^{4} \mathrm{D}\right)$

Two compounds have been described:
cyclo- $\mathbf{C}_{6} \mathbf{H}_{11} \mathbf{N C C u C}\left(=\mathrm{NC}_{6} \mathrm{H}_{11}\right.$-cyclo) $\mathrm{C}_{6} \mathbf{H}_{3}\left(\mathrm{CH}_{3}-5\right) \mathrm{CH}_{2} \mathbf{N}\left(\mathrm{CH}_{3}\right)_{2}-2$ (see Formula I). The redbrown solid is formed by a $1: 1$ reaction of $\mathrm{CuC}\left(=\mathrm{NC}_{6} \mathrm{H}_{11}-\mathrm{Cyclo}\right) \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}-5\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}-2$ with cyclo $-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ at $60^{\circ} \mathrm{C}$ in $75 \%$ yield. IR (Nujol): $2146 \mathrm{~cm}^{-1}$ (NC) [1].


I
cyclo- $\mathbf{C}_{6} \mathrm{H}_{11} \mathrm{NCCuC}_{=1} \mathrm{CCO}_{2} \mathrm{C}_{2} \mathbf{H}_{5}\left(\mathrm{~N}_{2} \mathrm{C}_{12} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{4}\right)\left(\mathrm{N}_{2} \mathrm{C}_{12} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{4}=3,4,7,8\right.$-tetramethyl-1,10phenanthroline) has been prepared from $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCuN}_{2} \mathrm{C}_{12} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{4}\right]_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (see Section 1.1.2.4) and cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ as well as from [cyclo- $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NCCuC} \equiv$
$\left.\mathrm{CCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)\right]_{2}$ and $\mathrm{N}_{2} \mathrm{C}_{12} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{4}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$. The pale yellow solid melts at $130^{\circ} \mathrm{C}$. IR (Nujol): 1670 ( $\mathrm{C}=\mathrm{O}$ ), 2055 ( $\mathrm{C} \equiv \mathrm{C}$ ), 2145 ( NC of isocyanide) $\mathrm{cm}^{-1}$ [2].

## References:

[1] G. van Koten, J. G. Noltes (J. Chem. Soc. Chem. Commun. 1972 59).
[2] G. la Monica, G. Ardizzoia, S. Cenini, F. Porta (J. Organometal. Chem. 273 [1984] 263/73).

### 1.1.4.2 Compounds Containing Two Isocyanide Ligands

### 1.1.4.2.1 Compounds of the Types (RNC) ${ }_{2} \mathrm{CuX}$ and $\left[(\mathrm{RNC})_{2} \mathrm{Cu}^{n} \mathrm{D}_{\mathrm{m}}\right] \mathrm{X}$

In Table 30 the compounds $(R N C)_{2} \mathrm{CuX},\left[(R N C)_{2} \mathrm{Cu}^{2} \mathrm{D}_{2}\right] \mathrm{X}$, and $\left[(\mathrm{RNC})_{2} \mathrm{Cu}^{4} \mathrm{D}\right] \mathrm{X}$ are described. Most of them are prepared by the following methods:
Method I: From CuX or $\mathrm{CuX}_{2}$ and an excess of RNC (usually 1:3 mole ratio). The solvents are given in parentheses in the table.

Method II: A suspension of $(\mathrm{RNC})_{2} \mathrm{CuX}$, such as Nos. 7 or 8 , and $\mathrm{AgPF}_{6}$ in acetone is treated with the equivalent amount of D . The compound is isolated by adding ether or petroleum ether [4].

Method III: A suspension of Cul in $\mathrm{CH}_{3} \mathrm{OH} /\left(\mathrm{CH}_{2} \mathrm{NR}_{2}\right)_{2}$ is reacted first with CO , then with RNC and $\mathrm{Na}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]$.
Method IV: From [(RNC) $\left.)_{4} \mathrm{Cu}\right] \mathrm{X}$ and an excess of ${ }^{4} \mathrm{D}$ by refluxing in $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ for 2 to 5 d . After cooling to $0^{\circ} \mathrm{C},\left[(\mathrm{RNC})_{2} \mathrm{Cu}^{4} \mathrm{D}\right] \mathrm{X}$ precipitates in good yields. Even with a large excess of ${ }^{4} \mathrm{D}$, only two isocyanides are replaced.

Method V: From $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right] \mathrm{X},{ }^{4} \mathrm{D}$, and RNC (1:1:2) in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Because good yields have been obtained after only 30 min at room temperature, this method is superior to Method IV.

The ( RNC$)_{2} \mathrm{CuX}$ compounds No. 7 and 8 are probably dimeric and halogen-bridged in the solid state as there are two $v(\mathrm{NC})$ bands in the IR spectrum. In $\mathrm{CHCl}_{3}$, their osmometric molecular masses are very close to those required for the monomer. However, in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ conductivity measurements show some ionization [4].

The $\left[(\mathrm{RNC})_{2} \mathrm{Cu}^{n} \mathrm{D}_{\mathrm{m}}\right] \mathrm{PF}_{6}$ compounds No. 9 to 13 and 17 to 19 are stable against air [4, 9]. Nos. 9 to 13 and 20 are not affected by moisture and light [9]. Nos. 18 and 19 exist in $\mathrm{CHCl}_{3}$ as ion pairs, but in acetone they are fully ionized according to osmometric measurements. Also conductivity data on Nos. 17 to 19 in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ indicate extensive ionization [4].

Table 30
Compounds of the Types $(R N C)_{2} \mathrm{CuX},\left[(\mathrm{RNC})_{2} \mathrm{Cu}^{2} \mathrm{D}_{2}\right] \mathrm{X}$, or $\left[(\mathrm{RNC})_{2} \mathrm{Cu}^{4} \mathrm{D}\right] \mathrm{X}$.
Further information on compounds preceded by an asterisk is given at the end of the table. For abbreviations and dimensions see p. X.

No. compound	method of preparation (yield) remarks $\text { IR: } v(N C)$	Ref.
compounds of the type (RNC) ${ }_{2} \mathrm{CuX}$ :		
$1\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NC}\right)_{2} \mathrm{CuCN}$	I (ether) unstable, gradual loss of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NC}$	[1]
*2 (t-C $\left.{ }_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathrm{CuCN}$	$\begin{aligned} & \text { I } \\ & \text { m.p. } 173 \text { to } 175^{\circ} \end{aligned}$	[3]
*3 (t-C $\left.4_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathrm{CuOCO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}$	exists only in benzene solution	[5]
*4 ( $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{2} \mathrm{CuCl}$	I ( $\mathrm{CHCl}_{3}$ /ether, $92 \%$ ) colorless needles, m.p. $128^{\circ}$	[2]
$5\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{2} \mathrm{CuCN}$	$\begin{aligned} & \text { addition of ether to }\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}_{3}\right)_{3} \mathrm{CuCN} \text { in } \\ & \mathrm{CHCl}_{3}(74 \%) \\ & \text { colorless flakes from } \mathrm{CHCl}_{3} \text { /ether, m.p. } \\ & 158 \text { to } 162^{\circ} \end{aligned}$	[2]
*6 (4-CH3 $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2} \mathrm{CuOC}_{6} \mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}\right)_{2}-2,6$	$\begin{aligned} & \mathrm{CuCl}+\mathrm{RNC}+\mathrm{NaX} \text { in THF ( } \sim 40 \% \text { ) } \\ & \text { IR (Nujol) : } 2145,2170 \end{aligned}$	$\begin{aligned} & {[8,} \\ & 10] \end{aligned}$
$7\left(4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2} \mathrm{CuCl}$	```I (ether, 72%) colorless, m.p. 139 to 142* IR (Nujol): 2141, }216```	[4]
$8\left(4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2} \mathrm{CuBr}$	$\begin{aligned} & \text { I } \\ & \text { m.p. } 129 \text { to } 131^{\circ} \\ & \text { IR (Nujol) : } 2143,2161 \end{aligned}$	[4]

compounds of the type $\left[(\mathrm{RNC})_{2} \mathrm{Cu}^{\mathrm{n}} \mathrm{D}_{\mathrm{m}}\right] \mathrm{X}$ :

$$
\begin{aligned}
9 & {\left[\left(\mathrm{CH}_{3} \mathrm{NC}_{2}\right)_{2} \mathrm{CuN}_{2} \mathrm{C}_{10} \mathrm{H}_{8}\right] \mathrm{PF}_{6} } \\
& \left(\mathrm{~N}_{2} \mathrm{C}_{10} \mathrm{H}_{8}=2,2^{\prime}-\text { bipyridyl }\right)
\end{aligned}
$$

> IV $(86 \%), \mathrm{V}(91 \%)$
> pale yellow needles
> ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ acetone $\left.-\mathrm{d}_{6}\right): 3.40\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $\quad 7.80(\mathrm{td})+8.21(\mathrm{td})+8.54(\mathrm{~d})$
> $\quad+8.96\left(\mathrm{~d} ;\right.$ each 2 H of $\left.\mathrm{N}_{2} \mathrm{C}_{10} \mathrm{H}_{8}\right)$
> IR (Nujol): $2164(\mathrm{sh}), 2193,2213$
$10\left[\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathrm{Cu}\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}=\mathrm{CHCH}=\mathrm{NC}_{4} \mathrm{H}_{9}-\mathrm{t}\right)\right] \mathrm{PF}_{6}$
IV (80\%)
orange-yellow
${ }^{1} \mathrm{H}$ NMR (acetone $-\mathrm{d}_{6}$ ) : 1.42 ( $\mathrm{s}, \mathrm{CH}_{3}$ of
RNC), 1.49 (s, $\mathrm{CH}_{3}$ of ${ }^{4} \mathrm{D}$ ), 8.30 (" $\mathrm{NH}^{\prime \prime}$ )
IR (Nujol): 2176, 2197
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2168,2190$

Table 30 [continued]

No.	compound	method of preparation (yield) remarks $\text { IR: } v(N C)$	Ref.
	$\begin{aligned} & {\left[\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathrm{CuN}_{2} \mathrm{C}_{10} \mathrm{H}_{8}\right] \mathrm{PF}_{6}} \\ & \left(\mathrm{~N}_{2} \mathrm{C}_{10} \mathrm{H}_{8}=2,2^{\prime}\right. \text {-bipyridyl) } \end{aligned}$	$\begin{aligned} & \text { IV }(82 \%) \\ & \text { yellow } \\ & \left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(acetone-d}{ }_{6}\right): 1.40\left(\mathrm{~s}, \mathrm{CH}_{3}\right) \text {, } \\ & \quad 7.70(\mathrm{td})+8.15(\mathrm{td})+8.50(\mathrm{~d}) \\ & \quad+8.88\left(\mathrm{~d} ; \text { each } 2 \mathrm{H} \text { of }{ }^{4} \mathrm{D}\right) \\ & \text { IR (Nujol) : } 2138,2168,2188 \\ & \text { UV }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 383(\mathrm{sh}) \end{aligned}$	[9]
	$\begin{aligned} & {\left[\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathrm{CuN}_{2} \mathrm{C}_{12} \mathrm{H}_{8}\right] \mathrm{PF}_{6}} \\ & \left(\mathrm{~N}_{2} \mathrm{C}_{12} \mathrm{H}_{8}=1,10 \text {-phenanthroline }\right) \end{aligned}$	```IV (85\%) pale yellow \({ }^{1} \mathrm{H}\) NMR (acetone- \(\mathrm{d}_{6}\) ): 1.48 ( \(\mathrm{s}, \mathrm{CH}_{3}\) ), 8.12 (m) +8.17 (s) +8.78 (dd) +9.32 (dd; each 2 H of \({ }^{4} \mathrm{D}\) ) IR (Nujol): 2170, 2189```	[9]
13	$\left[\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathrm{Cu}\left(\mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)_{2}\right] \mathrm{PF}_{6}$	IV ( $75 \%$ in presence of $K F_{6}$ ) colorless $\text { IR (Nujol) : } 2188$	[9]
	$\left[\left(\text { cyclo }-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}\right)_{2} \mathrm{Cu}\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]$	III (52\%) colorless solid, sensitive to $\mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ IR (Nujol): 2143, 2177 suggests pseudotetrahedral coordination around Cu	[6]
	$\left[\left(\text { cyclo }-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}\right)_{2} \mathrm{Cu}\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6}\right.\right.$	$\begin{aligned} & \left.\left.{ }_{5} \mathrm{H}_{5}\right)_{4}\right] \\ & \text { III (53\%) } \\ & \text { IR (Nujol) : } 2160,2180 \end{aligned}$	[6]
	$\begin{aligned} & {\left[\left(\text { cyclo }-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}\right)_{2} \mathrm{CuN}_{2} \mathrm{C}_{10} \mathrm{H}_{8}\right] \mathrm{ClO}_{4}} \\ & \left(\mathrm{~N}_{2} \mathrm{C}_{10} \mathrm{H}_{8}=2,2^{\prime} \text { bipyridyl }\right) \end{aligned}$	not isolated	[7]
17	$\left[\left(4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2} \mathrm{Cu}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right] \mathrm{PF}_{6}$	```II (65%) colorless, m.p. 93 to 95* IR: 2156, 2168```	[4]
18	$\left[\left(4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2} \mathrm{Cu}\left(\mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)_{2}\right] \mathrm{PF}_{6}$	II colorless, m.p. 176 to $179^{\circ}$ IR: 2152, 2162	[4]
	$\begin{aligned} & {\left[\left(4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}_{2} \mathrm{CuN}_{2} \mathrm{C}_{10} \mathrm{H}_{8}\right] \mathrm{PF}_{6}\right.} \\ & \left(\mathrm{N}_{2} \mathrm{C}_{10} \mathrm{H}_{8}=2,2^{\prime}\right. \text {-bipyridyl) } \end{aligned}$	$\begin{aligned} & \text { II }(93 \%) \\ & \text { yellow, m.p. } 131 \text { to } 138^{\circ} \\ & \text { IR: } 2142,2166 \end{aligned}$	[4]
	$\begin{aligned} & {\left[\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)_{2} \mathrm{CuN}_{2} \mathrm{C}_{12} \mathrm{H}_{6}\left(\mathrm{CH}_{3}\right)_{2}\right] \mathrm{PF}} \\ & \left(\mathrm{~N}_{2} \mathrm{C}_{12} \mathrm{H}_{6}\left(\mathrm{CH}_{3}\right)_{2}=2,9-\text { dimethy }-1,10-\right. \\ & \text { phenanthroline }) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{6} \\ & \text { IV }(78 \%) \\ & \text { off-white } \\ & \left.{ }^{1} \mathrm{H} \text { NMR (acetone }-\mathrm{d}_{6}\right): 2.39\left(\mathrm{~s}, \mathrm{CH}_{3}\right. \text { of } \\ & \text { RNC), } 3.32\left(\mathrm{~s}, \mathrm{CH}_{3} \text { of }{ }^{4} \mathrm{D}\right) \\ & \text { IR (Nujol) : } 2135,2147\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2143 \end{aligned}$	[9]
		es on p. 228 (imelin	andbook omp. 3

*Further information:
$\left(\mathbf{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathbf{C u C N}$ (Table 30, No. 2) is also formed in low yield from CuCl, HCN , and isobutene ( $1: 20: 5$ mole ratio) at $100^{\circ} \mathrm{C}$, if the ethanol soluble products of the reaction are repeatedly recrystallized from $\mathrm{CH}_{3} \mathrm{CN} /$ ether. Upon treatment with hot $\mathrm{CHCl}_{3}$ /ether or water, the compound is readily transformed into the more stable complex $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuCN}$ (see 1.1.4.1.1) [3].
$\left(\mathbf{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{2} \mathrm{CuOCO}_{2} \mathrm{C}_{4} \mathbf{H}_{9}-\mathbf{t}$ (Table 30, No. 3) is formed by treating $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuOC}_{4} \mathrm{H}_{9}-\mathbf{t}$ (see 1.1.4.1.1) with $1 \mathrm{molt}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ and $\mathrm{CO}_{2}$ or by treating $\mathrm{CuOC}_{4} \mathrm{H}_{9}-\mathrm{t}$ with $2 \mathrm{~mol} \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ and $\mathrm{CO}_{2}$ in benzene. The presence of the compound is suggested from IR studies. Although No. 3 is stable in benzene at room temperature, removal of the solvent causes partial decarboxylation and disproportionation to produce an equimolar mixture of $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuOC}_{4} \mathrm{H}_{9}-t$ (see 1.1.4.1.1) and $\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuOCO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}$ (see 1.1.4.3), from which it can be regenerated by carboxylation in benzene [5].
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{2} \mathrm{CuCl}$ (Table 30, No. 4) is also formed by treating $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{Cl}$ (see 1.1.4.4.1) with boiling water or by the disproportionation of $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{3} \mathrm{CuCl}$ (see 1.1.4.3) in hot water. In boiling methanol the compound is transformed to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NCCuCl}$ (see 1.1.4.1.1) [2].
$\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2} \mathrm{CuOC}_{6} \mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}\right) \mathbf{2}_{2}-\mathbf{2 , 6}$ (Table 30, No. 6) is monoclinic, space group $\mathrm{P}_{1} / \mathrm{n}$ $\left(P_{1} / \mathrm{c}\right)-\mathrm{C}_{2 \mathrm{~h}}^{5}$ (No. 14); $a=23.179(4), \quad b=9.456(1), c=12.509(2) \AA \AA, \beta=94.02(2)^{\circ} ; \quad Z=4, d_{c}=$ $1.22 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The structure is shown in Fig. 16. The complex is monomeric with $\mathrm{Cu}^{1}$ in a trigonal planar coordination [8, 10].


Fig. 16. Molecular structure of $\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2} \mathrm{CuOC}_{6} \mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}\right)_{2}-2,6$ (No. 6) with selected bond lengths (in $\AA$ ) and angles.
[(cyclo- $\left.\left.\mathbf{C}_{6} \mathbf{H}_{11} \mathbf{N C}\right)_{2} \mathbf{C u}\left(\mathrm{CH}_{2} \mathbf{N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right]\left[B\left(\mathrm{C}_{6} \mathbf{H}_{5}\right)_{4}\right]$ (Table 30, No . 15). Monoclinic, space group $P 2_{1} / \mathrm{n}\left(\mathrm{P}_{1} / \mathrm{c}\right)-\mathrm{C}_{2 \mathrm{~h}}^{5}$ (No.14); $\mathrm{a}=15.626(2), \mathrm{b}=14.753(3), \mathrm{c}=18.024(4) \AA, \beta=97.47(2)^{\circ} ; \quad \mathrm{Z}=4$, $d_{c}=1.157 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The crystals show discrete cations and anions; the structure of the cation is shown in Fig. 17, p. 228. A pseudotetrahedral Cu coordination is provided by the two C-bonded isocyanides and the chelating diamine. The $\mathrm{C}_{6} \mathrm{H}_{11}$ ring of one isocyanide shows
statistical distribution between two conformations. The five-membered $\mathrm{CuN}_{2} \mathrm{C}_{2}$ ring with the diamine has practically a gauche conformation [6].


Fig. 17. Cation structure of $\left[\left(\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}\right)_{2} \mathrm{Cu}\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]$ (No. 7) with selected bond length (in $\AA$ ) and angles.
[(cyclo- $\left.\mathbf{C}_{6} \mathrm{H}_{11} \mathbf{N C}\right)_{2} \mathrm{CuN}_{2} \mathrm{C}_{10} \mathbf{H}_{8}$ ]ClO $\mathbf{C l}_{4}$ (Table 16, No. 16). Formation in (CD) ${ }_{3} \mathrm{CO}$ solution from cyclo $-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC},\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}$, and 2,2'-bipyridyl (2:1:1) is indicated by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the $\mathrm{N}_{2} \mathrm{C}_{10} \mathrm{H}_{8}$ group. ${ }^{1} \mathrm{H}$ NMR (acetone $-\mathrm{d}_{6}$ ): $\delta=7.81\left(\mathrm{H}-5,5^{\prime}\right), 8.27\left(\mathrm{H}-4,4^{\prime}\right), 8.63\left(\mathrm{H}-3,3^{\prime}\right)$, $8.98\left(\mathrm{H}-6,6^{\prime}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}$ ) : $\delta=122.99$ (C-5, $5^{\prime}$ ), 127.04 (C-3, $3^{\prime}$ ), 139.72 (C-4, $4^{\prime}$ ), 150.64 (C-6, $6^{\prime}$ ) ppm, signals of $C-2,2^{\prime}$ were hardly detected due to low signal/noise ratio [7].

## References:

[1] K. A. Hofmann, G. Bugge (Ber. Deut. Chem. Ges. 40 [1907] 1772/8, 1777).
[2] F. Klages, K. Mönkemeyer, R. Heinle (Chem. Ber. 85 [1952] 109/22).
[3] S. Otsuka, K. Mori, K. Yamagami (J. Org. Chem. 31 [1966] 4170/4).
[4] J. Bailey, M. J. Mays (J. Organometal. Chem. 47 [1973] 217/24).
[5] T. Tsuda, S. Sanada, K. Ueda, T. Saegusa (Inorg. Chem. 15 [1976] 2329/32).
[6] M. Pasquali, C. Floriani, A. Gaetani-Manfredotti, A. Chiesi-Villa (Inorg. Chem. 18 [1979] $3535 / 42$ ), cf. M. Pasquali, C. Floriani, A. Gaetani-Manfredotti (9th Intern. Conf. Organometal. Chem., Dijon 1979, Abstr. D42).
[7] S. Kitagawa, M. Munakata, N. Miyaji (Inorg. Chem. 21 [1982] 3842/3).
[8] P. Fiaschi, C. Floriani, M. Pasquali, A. Chiesi-Villa, C. Guastini (J. Chem. Soc. Chem. Commun. 1984 888/90).
[9] A. Bell, R. A. Walton, D. E. Edwards, M. A. Poulter (Inorg. Chim. Acta 104 [1985] 171/8).
[10] P. Fiaschi, C. Floriani, M. Pasquali, A. Chiesi-Villa, C. Guastini (Inorg. Chem. 25 [1986] 462/9).

### 1.1.4.2.2 Compounds of the Type (RNC) $)_{2} \mathrm{Cu}\left(\mathrm{X}^{2}{ }^{2} \mathrm{D}\right)$ or (RNC) $\mathbf{C u R}^{\prime}$

The compounds in Table 31 are mainly prepared by the following methods:
Method I: By reaction of $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{RNC}$, and the neutral ligand (1:4:2 mole ratio) in benzene at $50^{\circ} \mathrm{C}$ and precipitation with ether in almost quantitative yield. Use of metallic Cu instead of $\mathrm{Cu}_{2} \mathrm{O}$ decreases the yield.

Method II: From $\mathrm{Cu}_{2} \mathrm{O}$, RNC, and $\mathrm{R}^{\prime} \mathrm{CONHX}$ (1:8:2 mole ratio) in refluxing $\mathrm{C}_{6} \mathrm{H}_{6}$ according to reaction Scheme I,
a: with $X=H$ and removal of $\mathrm{H}_{2} \mathrm{O}$ by azeotropic distillation,
b: with $\mathrm{X}=\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$, which results in a shorter reaction time than with $\mathrm{X}=\mathrm{H}$ and avoids any hydrolysis.


I
For o-semiquinolato $\mathrm{Cu}^{\prime}$ complexes of the type $(\mathrm{RNC})_{2} \mathrm{CuO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{R}^{\prime}\left(\mathrm{R}=\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right.$; nature and position of $R^{\prime}$ not given), the dissociation equilibria ( RNC$)_{2} \mathrm{CuO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{R}^{\prime} \rightleftharpoons$ $\mathrm{RNCCuO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{R}^{\prime}+\mathrm{RNC} \rightleftharpoons \mathrm{CuO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{R}^{\prime}+2 \mathrm{RNC}$ have been observed on dilution of solutions [4].

For most compounds in Table 31 coordination by a chelating $\mathrm{X}-{ }^{2} \mathrm{D}$ ligand via O and N atoms is possible as is a direct metal-C bond by substitution of the acidic H . The tatter has been demonstrated for Aul acetylacetonates, see "Organogold Compounds", 1980, Section 1.1.1.4. On the basis of the IR and ${ }^{1} \mathrm{H}$ NMR data for compounds Nos. 1 and 6 to 10 chelate structures are assumed [1 to 3].

All compounds are sensitive to air, but stable under $\mathrm{N}_{2}$ [1 to 3]. Compounds No. 1 to 5 are colorless crystalline solids, which decompose at about $150^{\circ} \mathrm{C}$ to deposit metallic Cu [2]. They are soluble in most organic solvents [2], as is No. 10 [1]. Nos. 1 to 4 react with excess RNC to give enamines via insertion, ( RNC$)_{2} \mathrm{CuCHR}^{1} \mathrm{R}^{2}+\mathrm{nRNC} \rightarrow\left[(\mathrm{RNC})_{\mathrm{n}+1} \mathrm{CuC}(=\mathrm{NR})-\right.$ $\left.\mathrm{CHR}^{1} \mathrm{R}^{2}\right] \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{RNHCH}=\mathrm{CR}^{1} \mathrm{R}^{2}$ [2]. $\mathrm{I}_{2}$ causes oxidative coupling of Nos. 1 and 2, $(\mathrm{RNC})_{2} \mathrm{CuCHR}_{2}^{1}+\mathrm{I}_{2} \rightarrow \mathrm{R}_{2}^{1} \mathrm{CHCHR}_{2}^{1}+2(\mathrm{RNC})_{2} \mathrm{CuI}$ [2]. Treatment of No .7 with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{HCl}$ gives $\mathrm{CH}_{3} \mathrm{CONHCH}=\mathrm{NC}_{4} \mathrm{H}_{9}$-t in $43 \%$ yield. Compounds No. 6 to 9 react with alkylating agents $\mathrm{R}^{1} \mathrm{X}$ to furnish $\mathrm{RCONR}{ }^{1} \mathrm{CH}=\mathrm{NC}_{4} \mathrm{H}_{9}$-t and isomeric N -alkyl products. For the alkylation it is not necessary to isolate the complexes. They can be generated in situ [3].

Table 31
Compounds of the Type $\left(\mathrm{RNC}_{2} \mathrm{Cu}\left(\mathrm{X}-{ }^{2} \mathrm{D}\right)\right.$ or $(\mathrm{RNC})_{2} \mathrm{CuR}^{\prime}$.
For abbreviations and dimensions see p . X .


Table 31 [continued]

No.	R	$X-{ }^{2} \mathrm{D} \text { or } \mathrm{R}^{\prime}$   method of preparation (\% yield)	remarks	Ref.
3	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{CH}_{3} \mathrm{COCHCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\begin{aligned} & \text { IR (Nujol): 1520, 1580, 1655, 1690, 2144, } 2167 \\ & { }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CDCl}_{3}\right): 1.21(\mathrm{t}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 18 \mathrm{H}), \\ & \quad 1.87(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{q}, 2 \mathrm{H}) \end{aligned}$	[2]
4	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{NCCHCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	IR (Nujol): 1620, 1640, 2175 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.20(\mathrm{~s}, 18 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H})$	[2]
5	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$\begin{aligned} & \text { IR (Nujol) : 1585, 1690, } 2172 \\ & { }^{1} \mathrm{H} \text { NMR }\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 0.94(\mathrm{~s}, 18 \mathrm{H}), 1.21(\mathrm{t}, 6 \mathrm{H}) \\ & \quad 1.40(\mathrm{t}, 3 \mathrm{H}), 1.60 / 1.80(2 \mathrm{H}), 4.30(\mathrm{q}, 4 \mathrm{H}) \end{aligned}$	[2]
6	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\begin{aligned} & \mathrm{OCHNCHNC}_{4} \mathrm{H}_{9}-\mathrm{t} \\ & \text { (see reaction Ila (70) } \\ & \text { Scheme I) } \end{aligned}$	$\begin{aligned} & \text { IR (KBr): 1200, 1270, 1595, } 2150 \\ & { }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.10(\mathrm{~s}, 18 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), \\ & 8.30(\mathrm{~s}, 1 \mathrm{H}), 9.30(\mathrm{~s}, 1 \mathrm{H}, \text { not exchangeable } \\ & \text { in } \left.\mathrm{D}_{2} \mathrm{O}\right) \end{aligned}$	[3]
7	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CONCHNC}_{4} \mathrm{H}_{9}-\mathrm{t} \\ & \text { (see reaction } \quad \mathrm{IIb}(90) \\ & \text { Scheme I) } \end{aligned}$	$\begin{aligned} & \text { IR (KBr): 1295, 1362, 1590, 1630, } 2150 \\ & { }^{1} \mathrm{H} \text { NMR }\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.78(\mathrm{~s}, 18 \mathrm{H}) \text {, } \\ & \quad 2.48(\mathrm{~s}, 3 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	[3]
8	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\begin{array}{ll} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONCHNC}_{4} \mathrm{H}_{9}-\mathrm{t} \\ \text { (see reaction } & \text { II a (80), } \\ \text { Scheme I) } & \text { IIb (83) } \end{array}$	```IR (KBr): 1200, 1550, 1590, 1640, 2150 1'H NMR (CD }\mp@subsup{}{3}{}\textrm{CN}\mathrm{ ) : }7.20\mathrm{ to }7.57(\textrm{m},3\textrm{H}),8.0 to 8.30(m, 2H), 8.52(s, 18H), 8.70(s, 9H), 8.78 (s,1H)```	[3]
9	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OCONCHNC} \mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}$   (see reaction IIb Scheme I, $\left.\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}=\text { fur }-2-\mathrm{yl}\right)$	not isolated	[3]
10	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CH}\left(\mathrm{COCH}_{3}\right)_{2} \quad-$	```from \(\mathrm{CuC}_{5} \mathrm{H}_{7} \mathrm{O}_{2} \cdot 2.5 \mathrm{NH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\) in THF (40\%) slightly yellow, sinters at \(107^{\circ}\), m.p. \(132^{\circ}\) (dec.) IR (CsI) : 1535 (CO), 1600 (CC), \(2120+2150\) (NC) ; \(\mathrm{C}_{2 \mathrm{v}}\) symmetry proposed \(\chi_{\text {mol }}=-92.0 \times 10^{-6} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}\)```	[1]

## References:

[1] R. Wast, W. H. Lepel (Chem. Ber. 102 [1969] 3224/8).
[2] Y. Ito, T. Konoike, T. Saegusa (J. Organometal. Chem. 85 [1975] 395/401), see also Y. Ito, T. Saegusa (Organotransition Met. Chem. Proc. 1st Japan. Am. Semin., Honolulu 1974 [1975], pp. $49 / 55$ from C.A. 85 [1976] No. 160272).
[3] Y. Ito, Y. Inobushi, T. Sugaya, T. Saegusa (J. Organometal. Chem. 137 [1977] 1/9).
[4] G. A. Abakumov, A. V. Lobanov, V. K. Cherkasov (Abstr. 2nd All-Union Conf. Organometal. Chem., Gorkii 1982, p. 168) from E. A. Kashtanov, V. K. Cherkasov, L. V. Gorbunova, G. A. Abakumov (lzv. Akad. Nauk SSSR Ser. Khim. 1983 2121/5; Bull. Acad. Sci. USSR Div. Chem. Sci. 1983 1917/20).

### 1.1.4.3 Compounds Containing Three Isocyanide Ligands

Most of the compounds in Table 32 are prepared by the following methods:
Method I: From CuX or CuR' and RNC
a: without a solvent [1, 2]; in [2] cooling is recommended,
b: in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{3}$ [2],
c: in pyridine/ether at $-10^{\circ} \mathrm{C}$ [2].
Method II: A solution of $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\right] \mathrm{X}$ (see 1.1.4.4.1) in $\mathrm{CHCl}_{3}$ is treated with ether to give (RNC) ${ }_{3} \mathrm{CuX}$ in good yield [2].
$(\mathrm{RNC})_{3} \mathrm{CuX}$ is also formed by alkylation of HCN with olefins like $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ in the presence of CuX , cf. compound No. 2. This reaction can be used for preparing t-alkyl isocyanides from olefins and HCN because of the easy elimination in aqueous KCN of the isocyanide from the complex, which can be regenerated in situ [3].

Table 32
Compounds Containing Three Isocyanide Ligands.
Further information on compounds preceded by an asterisk is given at the end of the table.
For abbreviations and dimensions see $p . X$.

No. compound	method of preparation (\% yield)	remarks   IR (Nujol) : $v(N C)$	Ref.
compounds of the (RNC) ${ }_{3} \mathrm{CuX}$ type			
$1\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NC}\right)_{3} \mathrm{CuCN}$	1 a	brown crystals; air-sensitive; soluble in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, low solubility in other common solvents	[1]
*2 (t-C $\left.4_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuBr}$	I	colorless needles, m.p. 151 to $153^{\circ}$ IR: 2182	[3]
*3 (t-C $\left.4_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuOCO}_{2} \mathrm{H}$	see No. 4	$\begin{aligned} & \text { colorless, soluble in } \mathrm{H}_{2} \mathrm{O} \text { and organic } \\ & \text { solvents } \\ & \text { IR (Nujol): } 1618 \text { (CO), } 2162 \text { (NC), } 2602 \\ & \text { (OH) } \end{aligned}$	[8]
*4 (t-C $\left.4_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuOCO}_{2} \mathrm{C}_{4}$		$\begin{aligned} & \text { colorless solid } \\ & \text { IR: } 2160 \\ & { }^{1} \mathrm{H} N R\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 0.95\left(\mathrm{~s}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right), 1.75 \\ & \quad\left(\mathrm{CO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}\right) \end{aligned}$	[6, 7]
$5\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NC}\right)_{3} \mathrm{CuCN}$	1 a	properties similar to No. 1	[1]
$6\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NC}\right\}_{3} \mathrm{CuCN}$			
	la	properties similar to No. 1	[1]
$7\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{3} \mathrm{CuCl}$	II (96)	colorless, m.p. $156^{\circ}$   ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CHCl}_{3}\right): 125.9+129.1+129.5$   $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 148.0(\mathrm{NC}), \mathrm{J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}\right)=12.9$   disproportionates in hot $\mathrm{H}_{2} \mathrm{O}$ into   $(\mathrm{RNC})_{2} \mathrm{CuCl}$ and $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\right] \mathrm{Cl}$	[2, 5]
Gmelin Handbook Cu-Org. Comp. 3	References on p. 233		

Table 32 [continued]

$\left(\mathbf{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuBr}$ (Table 32, No. 2) is also synthesized from $\mathrm{CuBr}, \mathrm{HCN}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ in moderate yield in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and in lower yields in other solvents or without a solvent. It is soluble in most organic solvents and is monomeric in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ according to cryoscopic measurements. Upon treatment with aqueous KCN the isocyanide ligand is easily released. The reaction with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ and HBr gives $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NHCOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$ [3].

The reaction with $\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Mo}\left(\mathrm{SC}_{4} \mathrm{H}_{9}-\mathrm{t}\right)_{2}$ or with $\mathrm{Mo}\left(\mathrm{SC}_{4} \mathrm{H}_{9}-\mathrm{t}\right)_{4}$ in acetone gives $\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Mo}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{9}-\mathrm{t}\right)_{2} \mathrm{CuBr}$, in which $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Mo}\left(\mathrm{SC}_{4} \mathrm{H}_{9}-\mathrm{t}\right)_{2}$ acts as a bidentate tigand through bridging $S$ atoms [9, 10]. It exists in two conformational isomers in the solid state [10].
$\left(\mathbf{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuOCO}_{2} \mathrm{H}$ (Table 32, No. 3) is also formed in the reaction of $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ and $\mathrm{CO}_{2}$ at room temperature, either with CuOH in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}$ (mole ratio 3:1:1) or with " $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{n} \mathrm{Cu}_{2} \mathrm{CO}_{3}$ " (see 1.1.4, p. 215) and $\mathrm{H}_{2} \mathrm{O}$ in THF (mole ratio 3:1.5:1:1.2). Its thermal decarboxylation yields $\mathrm{Cu}, \mathrm{CO}_{2}$, and CO . The last is formed by Cu -induced reaction of $\mathrm{CO}_{2}$ with $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$. At $120^{\circ} \mathrm{C}$ in mesitylene formation of CO is quantitative. Acidolysis gives quantitative amounts of $\mathrm{CO}_{2}$. It reacts with equimolar amounts of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}$ at room temperature to give $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ( $57 \%$ yield), $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{CO}(16 \%)$, and $\mathrm{CO}_{2}(80 \%)$. The title compound is suitable for carboxylation reactions such as reaction I ( $82 \%$ yield at $130^{\circ} \mathrm{C}$ ). Proton abstraction by $\mathrm{CuOC}_{4} \mathrm{H}_{9}-\mathrm{t}$ in THF at $0^{\circ} \mathrm{C}$ gives the " $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{n} \mathrm{Cu}_{2} \mathrm{CO}_{3}$ " mentioned above and $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$; with $\mathrm{LiC}_{4} \mathrm{H}_{9}-\mathrm{n}$ in THF n-butane is formed [8].

$\left(\mathbf{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{3} \mathrm{CuOCO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}-\mathbf{t}$ (Table 32, No. 4) is synthesized by treating $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuOC}_{4} \mathrm{H}_{9}-\mathrm{t}$ (see 1.1.4.1.1) or $\mathrm{CuOC}_{4} \mathrm{H}_{9}-\mathrm{t}$ and $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ with an excess of $\mathrm{CO}_{2}$ at $10^{\circ} \mathrm{C}$. The complex is soluble in common organic solvents; in $\mathrm{C}_{6} \mathrm{H}_{6}$ the cryoscopic degree of association is 0.90 . It is air-sensitive but stable under $\mathrm{N}_{2}$ at $10^{\circ} \mathrm{C}$. At $30^{\circ} \mathrm{C}$ slight decarboxylation occurs. Acidolysis in $18 \mathrm{NH}_{2} \mathrm{SO}_{4}$ releases $\mathrm{CO}_{2}$ completely. In boiling $\mathrm{C}_{6} \mathrm{H}_{6}$ decomposition into t$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuOC}_{4} \mathrm{H}_{9}$-t (see 1.1.4.1.1) takes place [6]. By heating in mesitylene or tetraline to $130^{\circ} \mathrm{Ct}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCO}$ and CO are slowly produced, representing a deoxygenation of $\mathrm{CO}_{2}$ by $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, whereas at $150^{\circ} \mathrm{C}$ metallic $\mathrm{Cu}, \mathrm{CO}$, and $\mathrm{CO}_{2}$ are formed [7]. Hydrolysis with $\mathrm{H}_{2} \mathrm{O}$ in THF at $0^{\circ} \mathrm{C}$ produces a $94 \%$ yield of " $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{n} \mathrm{Cu}_{2} \mathrm{CO}_{3}$ " (see 1.1.4, p.215) and $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ at mole ratio 2:1, but quantitative amounts of $\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}_{3} \mathrm{CuOCO}_{2} \mathrm{H}\right.$ (Table 32, No. 3) at mole ratio 1:1 [8]. Reaction with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$ yields $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OCO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}$ [6]. The $v(N C)$ indicates that the RNC ligand acts as a $\sigma$-donor in the title compound, unlike in $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NCCuOC} 4_{4}-\mathrm{t}$ (see 1.1.4.1.1) where its $\pi$-acceptor character is dominating [6].
$\left(\mathbf{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right) \mathbf{C u C}_{9} \mathrm{H}_{7}$ (Table 32, No. 10) is synthesized in $30 \%$ yield from $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}$, and indene (1:10:10 mole ratio). It is sensitive to air and heat and decomposes in polar solvents. Compared with $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CuCNC}_{4} \mathrm{H}_{9}-\mathrm{t}$ its instability is notable. A $\sigma$-bond structure with rapid interconversion between bonding through $\mathrm{C}-1$ and $\mathrm{C}-3$ of indenyl is assumed on the basis of the ${ }^{1} \mathrm{H}$ NMR spectrum and a $\mathrm{D}_{2} \mathrm{O}$ quenching experiment. The compound loses indene upon treatment with dilute acids. It catalyzes the reaction of indene with acetone to give 1 -isopropylidene indene [4].
$\left(4-\mathbf{C H}_{3} \mathbf{C}_{6} \mathbf{H}_{4} \mathbf{N C}\right)_{3} \mathbf{C u C}_{\equiv} \mathbf{C C}_{6} \mathbf{H}_{5}$ (Table 32, No. 11) reacts with $\mathrm{CHCl}_{3}$ in ether to give $\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{3} \mathrm{CuCl}$ (Table 32, No. 9). If washed several times with ether, it dissociates into the initial reactants. If treated with aqueous pyridine, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCu}, \mathrm{CO}$, and $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ $\mathrm{N}=\mathrm{CHNHC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-4 \cdot \mathrm{HCl}$ are formed [2].

## References:

[1] L. Malatesta (Gazz. Chim. Ital. 77 [1947] 240/7).
[2] F. Klages, K. Mönkemeyer, R. Heinle (Chem. Ber. 85 [1952] 109/22).
[3] S. Otsuka, K. Mori, K. Yamagami (J. Org. Chem. 31 [1966] 4170/4).
[4] T. Saegusa, Y. Ito, S. Tomita (J. Am. Chem. Soc. 93 [1971] 5656/61).
[5] D. L. Cronin, J. R. Wilkinson, L. J. Todd (J. Magn. Resonance 17 [1975] 353/61).
[6] T. Tsuda, S. Sanada, K. Ueda, T. Saegusa (Inorg. Chem. 15 [1976] 2329/32).
[7] T. Tsuda, S. Sanada, T. Saegusa (J. Organometal. Chem. 116 [1976] C 10/C 12).
[8] T. Tsuda, Y. Chujo, T. Saegusa (J. Am. Chem. Soc. 102 [1980] 431/3).
[9] S. Otsuka, N. Okura, N. C. Payne (J. Chem. Soc. Chem. Commun. 1982 531/2).
[10] N. C. Payne, N. Okura, S. Otsuka (J. Am. Chem. Soc. 105 [1983] 245/51).

### 1.1.4.4 Compounds Containing Four Isocyanide Ligands

### 1.1.4.4.1 Compounds of the Type $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\right] X$

Most compounds described in this section have been formed only for ${ }^{13} \mathrm{C}$ or ${ }^{63} \mathrm{Cu}$ NMR investigations, but not isolated.

The compounds listed in Table 33 are obtained by the following two methods:
Method I: An excess [10, 14, 15] or exactly 4 equivalents [6] of RNC are added to $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{Cu}\right] \mathrm{X}$; without a solvent yields are up to $60 \%$, but in a solvent (not reported) quantitative yields are obtained [6]. $\mathrm{CH}_{3} \mathrm{OH}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ are suitable solvents [15].

Method II: RNC in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is added to an ammoniacal solution of CuCl containing $\mathrm{NH}_{4} \mathrm{Cl}$ to give the compounds in almost quantitative yield [1].
The compounds No. 2, 3, 17, and 30 are stable with respect to oxidation and decomposition in light and air at room temperature. With an excess of chelating ligands ${ }^{4} \mathrm{D}$ such as 2,2'-bipyridyl, $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}=\mathrm{CHCH}=\mathrm{NC}_{4} \mathrm{H}_{9}-\mathrm{t}$, 1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline, and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ even in refluxing $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ only two isocyanides are replaced in Nos. 3, 17, and 30, giving [(RNC) $\left.{ }_{2} \mathrm{Cu}^{4} \mathrm{D}\right] \mathrm{PF}_{6}$ complexes; see 1.1.4.2.1 [15].

The aryl isocyanide compounds No. 18, 20, 24, and 28 catalyze the insertion of RNC into $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to give $\mathrm{RN}=\mathrm{CHOC}_{2} \mathrm{H}_{5}$. A reaction mechanism was proposed from kinetic data. Aliphatic isocyanides do not react [8].
${ }^{13}$ C NMR Spectra. At room temperature the resonance of the NC group is extremely weak and broad [7, 10]. For some complexes, however, the 1:1:1 triplet from N coupling can be obtained either by adding small amounts of $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$ or by running the spectra in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ (= DMSO in Table 33) at higher temperatures. No fine structure from $\mathrm{Cu}-\mathrm{C}$ coupling could be observed at any temperature [10].

The spectra of the alkenyl and aryl isocyanide complexes are measured at lower temperatures to avoid decomposition [10].

On coordination of the RNC ligands, the NC resonances shifts upfield 15 to 20 ppm and $J\left({ }^{14} \mathrm{~N}^{13} \mathrm{C}\right)$ shows an almost threefold increase. The linewidth of the NC resonance is found to be mainly due to ligand exchange and possibly in terms of quadrupole N and Cu relaxation [10]. In Table 33 counting of the C atoms of R begins at the N -bonded C ; the isocyanide C is designed by $\mathrm{C}-0$. On coordination $\mathrm{C}-1$ shows a 1 to 3 ppm shift to lower fields for saturated isocyanides, but a 0.3 to 3 ppm upfield shift for unsaturated isocyanides, probably due to conjugation effects. The linewidth of C-1 is found to be controlled by the N relaxation [10].
${ }^{63} \mathrm{Cu}$ NMR spectra at $25^{\circ} \mathrm{C}$ exhibit a single resonance line with shifts of 450 to 550 ppm downfield from a $0.05 \mathrm{M} \mathrm{CH}_{3} \mathrm{CN}$ solution of $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right] \mathrm{ClO}_{4}$; see Table 33. The linewidth $\Delta v_{1 / 2}$ ranges from 230 to 320 Hz for the complexes No. 19, 22, and 26 with aryl isocyanides. For $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$ ( No .14 ), however, it amounts to 4000 Hz . Compared with other tetrahedral $\mathrm{Cu}^{1}$ complexes, the ${ }^{63} \mathrm{Cu}$ downfield shift increases in the order of ligands RCN < pyridine $<\mathrm{CN}^{-} \approx \mathrm{RNC}$. This order corresponds well with that in $\pi$-acceptor capability, which is obtained from IR spectra of mixed-ligand metal complexes [14].

Secondary ion mass spectra of $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\right] \mathrm{PF}_{6}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right.$, cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$; Table 33, Nos. 3, 17, 23). The absence of $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\right]^{+}$and $\left[(\mathrm{RNC})_{3} \mathrm{Cu}\right]^{+}$- except for the $\mathrm{CH}_{3} \mathrm{NC}$ complex No. 3 - and the presence of [(RNC) $\left.)_{2} \mathrm{Cu}\right]^{+}$ions attest to the gas phase stability of two-coordinate $\mathrm{Cu}^{\prime}$. Cluster ion formation as well as $\alpha$-cleavage have been observed. Ligand exchange occurs when mixtures are examined. Cross labeling and isotopic labeling studies have provided insights into the fragmentation mechanisms [16].

Table 33
Compounds of the Type [(RNC) $\left.{ }_{4} \mathrm{Cu}\right] \mathrm{X}$.
Further information on compounds preceded by an asterisk is given at the end of the table.
For abbreviations and dimensions see p. X.

No. compound	method of preparation (yield) remarks (for NMR see p. 234)	Ref.
${ }^{*} 1\left[\left(\mathrm{CH}_{3} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	$\begin{aligned} & \text { I } \\ & \left.{ }^{13} \mathrm{C} \text { NMR (DMSO, } 125^{\circ}\right): 28.5(\mathrm{C}-1), 140.7 \text { (NC), } \\ & \mathrm{J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-1\right)=7.3, \mathrm{~J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-0\right)=15.5, \\ & { }^{1} \mathrm{~J}\left({ }^{13} \mathrm{C}-1,{ }^{1} \mathrm{H}\right)=146.8 \end{aligned}$	[10]
*2 [( $\left.\left.\mathrm{CH}_{3} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	```I (85\%) colorless needles slightly soluble in polar solvents such as \(\mathrm{CHCl}_{3}\), \(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}\right): 3.35\) (s) IR (Nujol): 2181 (sh) + 2212 (NC) \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2210(\mathrm{NC})\)```	[15]
$3\left[\left(\mathrm{CH}_{3} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{PF}_{6}$	```I (90 to 95%) colorless crystals 1'H NMR (acetone-d IR (Nujol): 2176+2213 (NC) (CH2Cl}\mp@subsup{)}{2}{\prime}:2176+2211(NC```	[15]
$4\left[\left(\mathrm{CH}_{2}=\mathrm{CHNC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	```I 13}\mp@subsup{}{}{13}\textrm{NMR}(\mp@subsup{\textrm{CDCl}}{3}{}):119.0 (C-1), 124.2 (C-2), 145.6 (NC) J ( }\mp@subsup{}{}{14}\textrm{N},\mp@subsup{}{}{13}\textrm{C}-1)=12.4, J ( '14N, 13C-0) = 16.5 upo addition of [(CH3CN)```	[10]
$5\left[\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	$\begin{aligned} & \text { I } \\ & \left.{ }^{13} \mathrm{C} \text { NMR (DMSO, } 125^{\circ}\right): 14.2(\mathrm{C}-2), 38.1(\mathrm{C}-1), \\ & \quad 140.4(\mathrm{NC}), \mathrm{J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-1\right)=5.9, \mathrm{~J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-0\right)=14.4 \end{aligned}$	[10]
*6 [( $\left.\left.\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CHNC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	$\begin{aligned} & \text { I } \\ & \text { m.p. } 58 \text { to } 61^{\circ}(\text { dec. }) \\ & { }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): 5.67\left(\text { d, } \mathrm{CH}_{2}\right), 6.33(\mathrm{t}, \mathrm{CH}) \text {, } \\ & \quad \quad \mathrm{J}(\mathrm{H}, \mathrm{H})=6.5 \\ & \text { IR (Nujol) }: 1975(\mathrm{C}=\mathrm{C}=\mathrm{C}), 2170(\mathrm{NC}), 3045\left(\mathrm{CH}_{2}\right) \end{aligned}$	[6]
*7 [( $\left.\left.\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CHNC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	$\begin{aligned} & \text { I } \\ & \text { m.p. } 79 \text { to } 82^{\circ}(\text { dec. }) \\ & { }^{13} \mathrm{C} \text { NMR }\left(\mathrm{CCl}_{4} / \mathrm{CD}_{3} \mathrm{CN}\right): 86.4(\mathrm{C}-1), 87.3(\mathrm{C}-3) \text {, } \\ & \quad 210.7(\mathrm{C}-2) \\ & { }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CD}_{3} \mathrm{CN}\right): 5.65\left(\mathrm{~d}, \mathrm{CH}_{2}\right), 6.32(\mathrm{t}, \mathrm{CH}) \text {, } \\ & \quad{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.5 \\ & \text { IR (Nujol) : } 1975(\mathrm{C}=\mathrm{C}=\mathrm{C}), 2167.8(\mathrm{NC}), 3040\left(\mathrm{CH}_{2}\right) \end{aligned}$	[6, 7]
*8 [(CHI $\left.\left.\mathrm{CCH}_{2} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	```I m.p. }83\mathrm{ to }8\mp@subsup{6}{}{\circ}\mathrm{ (dec.) 1H NMR (CD }\mp@subsup{}{3}{\prime}\textrm{CN}):2.88(t,CH), 4.55 (d, CH2) 4J (H,H)=2.5 IR (Nujol): 2140 (C\equivC), 2202.3 (NC), 3260 (HC\equiv)```	[6]
Gmelin Handbook Cu-Org. Comp. 3	References on p. 239	

Table 33 [continued]

No.	compound	method of preparation (yield) remarks (for NMR see p. 234)	Ref.
	$\left[\left(\mathrm{CH} \equiv \mathrm{CCH}_{2} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	$\begin{aligned} & \text { I } \\ & \text { m.p. } 91 \text { to } 97^{\circ} \text { (dec.) } \\ & { }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): 2.87(\mathrm{t}, \mathrm{CH}), 4.55\left(\mathrm{~d}, \mathrm{CH}_{2}\right) \text {, } \\ & \quad{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.5 \\ & \text { IR (Nujol) : } 2140(\mathrm{C} \equiv \mathrm{C}), 2199.7(\mathrm{NC}), 3260(\mathrm{HC} \equiv) \end{aligned}$	[6]
	$\left[\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	$\begin{aligned} & \left.{ }^{13} \mathrm{C} \text { NMR (DMSO, } 125^{\circ}\right): 45.0(\mathrm{C}-1), 117.8(\mathrm{C}-3), \\ & 128.7(\mathrm{C}-2), 141.8(\mathrm{NC}), \mathrm{J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-1\right)=6.5, \\ & \mathrm{~J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-0\right)=14.4 \end{aligned}$	[10]
11	$\left[\left\{(\mathrm{Z})-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHNC}\right\}_{4} \mathrm{Cu}\right]$	```\| \mp@subsup{}{}{13}\textrm{C}\mathrm{ NMR (DMSO, 90}): 12.9 (C-3), 112.9 (C-1), 135.7 (C-2), 148.3 (NC), J( }\mp@subsup{}{}{14}\textrm{N},\mp@subsup{}{}{13}\textrm{C}-1)=11.7 J (14N, 13C-0) = 16.5```	[10]
	$\left[\left(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	$1$   ${ }^{13} \mathrm{C}$ NMR (DMSO, $125^{\circ}$ ): 10.2 (C-3), 21.6 (C-2), 44.5 $\begin{aligned} & (\mathrm{C}-1), 140.6(\mathrm{NC}), \mathrm{J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-1\right)=5.2, \\ & \mathrm{~J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-0\right)=14.3 \end{aligned}$	[10]
	$\left[\left(\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	$\begin{aligned} & \text { I } \\ & \left.{ }^{13} \mathrm{C} \text { NMR (DMSO, } 125^{\circ}\right): 22.8(\mathrm{C}-2), 47.4(\mathrm{C}-1) \text {, } \\ & \quad 139.5(\mathrm{NC}), \mathrm{J}\left({ }^{14} \mathrm{~N},{ }^{13} \mathrm{C}-0\right)=12.5 \end{aligned}$	[10]
	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	I   ${ }^{63} \mathrm{Cu}$ NMR $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right): 451\left(\Delta v_{1 / 2}=4000\right)$	[14]
	$\left[\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	```I3}\mp@subsup{}{}{13}\textrm{C NMR (DMSO, 125}) : 29.7 (C-2), 57.1 (C-1) 139.2 (NC) IR (CCl4}/\mp@subsup{\textrm{CD}}{3}{}\textrm{CN}):2177.```	$\begin{aligned} & {[7,9} \\ & 10] \end{aligned}$
16	$\left[\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	```from \(\left[\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}\) in \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) at \(45^{\circ}\) (79\%) colorless crystals, m.p. \(129^{\circ}\) (dec.), insoluble in water \({ }^{1} \mathrm{H}\) NMR (acetone- \(\mathrm{d}_{6}\) ) : 1.54 IR (Nujol): 2180.6 (NC)```	[4]
	$\left[\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{PF}_{6}$	```I (90 to 95%) colorless crystals 1H NMR (acetone-d IR (Nujol): 2147(sh)+2182 (NC) (CH2Cl}):2144(sh)+2180(NC```	[15]
18	$\left[\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	```I \mp@subsup{}{}{13}\textrm{C NMR (DMSO) : 123.9 (C-1), 128.9 (C-2,6), 130.1} (C-3,5), 135.8 (C-4), 147.6 (NC)```	[10]
		References on p. 239 Gme	Handbook Comp. 3

Table 33 [continued]

No. compound	method of preparation (yield) remarks (for NMR see p. 234)	Ref.
$19\left[\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	$\begin{aligned} & { }^{\text {I }}{ }^{63} \mathrm{Cu} \mathrm{NMR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / 4 \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NC}\right): 553\left(\Delta v_{1 / 2}=\right. \\ & 230 \mathrm{~Hz}) \end{aligned}$	[14]
$20\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	```I \mp@subsup{}{}{13}\textrm{C NMR: 126.7 (C-2,6), 129.8 (C-3,5), 130.8 (C-4),} 146.1 (NC) in DMSO at 105', similar with 125.4 (C-1) in CDCl ionization constant }\mp@subsup{K}{c}{}=(2.8\pm0.5)\times1\mp@subsup{0}{}{-2}\textrm{M}\mathrm{ (con- ductometrically)```	[8, 10]
*21 [( $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{Cl} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	II   needles, m.p. $102^{\circ}$   ${ }^{14} \mathrm{~N} \mathrm{NMR}\left(\mathrm{CHCl}_{3}\right)$ : 198 (aqueous $\mathrm{NaNO}_{3}$ as external standard)   IR: 2170   ionized according to conductivity in $\mathrm{H}_{2} \mathrm{O}$	[1, 3]
$22\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	1 ${ }^{63} \mathrm{Cu}$ NMR $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right): 549\left(\Delta v_{1 / 2}=300 \mathrm{~Hz}\right)$	[14]
23 [(cyclo- $\left.\left.\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	I ${ }^{63} \mathrm{Cu}$ NMR $\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}\right): 468\left(\Delta v_{1 / 2}=880 \mathrm{~Hz}\right)$	[14]
$24\left[\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	$\begin{aligned} & \text { I } \\ & { }^{13} \mathrm{C} \text { NMR (DMSO) : } 21.0\left(\mathrm{CH}_{3}\right), 122.5(\mathrm{C}-1), 126.7 \\ & (\mathrm{C}-2,6), 130.5(\mathrm{C}-3,5), 141.4(\mathrm{C}-4), 146.5(\mathrm{NC}) \end{aligned}$	[10]
$25\left[\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$	II	[1]
*26 [(4-CH3 $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{ClO}_{4}$	I [14]; from No. $25+\mathrm{HClO}_{4}$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ [2] colorless needles, m.p. $175^{\circ}$ [2] soluble in $\mathrm{CHCl}_{3}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$, insoluble in $\mathrm{C}_{6} \mathrm{H}_{6}$ [2]   ${ }^{63} \mathrm{Cu}$ NMR $\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}\right): 547\left(\Delta v_{1 / 2}=320 \mathrm{~Hz}\right)$ [14]	[2, 14]
$27\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{Cl}$	from $\mathrm{CuCl}+\mathrm{RNC}$ (1:7) in pyridine/24 h refluxing in piperidine yields $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N}=$ $\mathrm{CHNC}_{5} \mathrm{H}_{10}$; tetrahydropterines give no analogous reactions	[13]
$28\left[\left(4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$	$\begin{aligned} & \text { I } \\ & { }^{13} \mathrm{C} \text { NMR (DMSO) : } 55.8\left(\mathrm{CH}_{3}\right), 115.2(\mathrm{C}-3,5), 117.5 \\ & (\mathrm{C}-1), 128.6(\mathrm{C}-2,6), 145.9(\mathrm{NC}), 160.7(\mathrm{C}-4) \end{aligned}$	[10]
*29 [(4-CH3 $\left.\left.{ }_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{PF}_{6}$	$\text { m.p. } 183 \text { to } 184^{\circ}$   IR (Nujol): 2144, 2169   fully ionized according to conductivity in $\mathrm{CH}_{3} \mathrm{NO}_{2}$	[5]
Gmelin Handbook Cu-Org. Comp. 3	References on p. 239	

Table 33 [continued]

No. compound	method of preparation (yield)   remarks (for NMR see p. 234)	Ref.
$30\left[\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{PF}_{6}$	I	
	colorless crystals	
	1 H NMR $\left(\right.$ acetone $\left.-\mathrm{d}_{6}\right): 2.56\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 7.40\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{3}\right)$	
	IR (Nujol):2157(NC)( $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2163(\mathrm{NC})$	

*Further information:
$\left[\left(\mathrm{CH}_{3} \mathbf{N C}\right)_{4} \mathrm{Cu}^{2} \mathrm{BF}_{4}\right.$ (Table 33, No. 1). Orthorhombic, space group Pna2 ${ }_{1}-\mathrm{C}_{2 \mathrm{v}}^{9}$ (No. 33); $\mathrm{a}=$ $24.05(1), b=8.401(5), c=20.72(1) \AA ; Z=12, d_{c}=1.497 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The Cu atom is tetrahedrally coordinated by four almost linear $\mathrm{CH}_{3} \mathrm{NC}$ molecules via C atoms; bond distances $\mathrm{Cu} \leftrightarrow \mathrm{C}$ are 1.94 to $2.01 \AA$. A comparison of the bond distances and angles with corresponding values of the acetonitrile complex $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{Cu}\right] \mathrm{BF}_{4}$ did not reveal significant differences between the two essentially isomorphous structures [12].
$\left[\left(\mathrm{CH}_{3} \mathbf{N C}\right)_{4} \mathbf{C u}\right] \mathrm{ClO}_{4}$ (Table 33, No. 2). Solid state IR and Raman spectra have been assigned by comparison with those of the analogous $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CD}_{3} \mathrm{CN}$ complexes [15]:

class description	IR   $\left(\mathrm{cm}^{-1}\right)$	Raman   $\left(\mathrm{cm}^{-1}\right)$	class description	IR   $\left(\mathrm{cm}^{-1}\right)$	Raman   $\left(\mathrm{cm}^{-1}\right)$


$\mathrm{ClO}_{4}^{-}$fundamentals ( $\mathrm{T}_{\mathrm{d}}$ ) :				(C-N $\equiv \mathrm{C})_{4} \mathrm{Cu}$ fundamentals $\left(\mathrm{T}_{\mathrm{d}}\right)$ :			
$\mathrm{A}_{1}$	ClO sym. str.	inactive	928 (38)	$\mathrm{A}_{1}$	$N \equiv C$ str.	inactive	2205(100)
E	OClO deg. def.	inactive	452 (7)	$\mathrm{A}_{1}$	CCu str.	inactive	236 (2)
$\mathrm{T}_{2}$	CIO deg. str.	1089 vs, br	1091 (3)	$\mathrm{A}_{1}$	C-N str.	inactive	906(5)
$\mathrm{T}_{2}$	OClO deg. def.	622 vs	619 (9)	E	NCCu def.	inactive	377 (2)
$\mathrm{CH}_{3}$ fundamentals ( $\mathrm{C}_{3 \mathrm{v}}$ ) :				E	CCuC def.	inactive	not observed
$\mathrm{A}_{1}$	$\mathrm{CH}_{3}$ sym. str.	2950 s	2948 (52)	$\mathrm{T}_{2}$	$\mathrm{N} \equiv \mathrm{C}$ str.	$\begin{aligned} & 2213 \text { vs } \\ & 2182 \text { sh } \end{aligned}$	2224 (6)
$\mathrm{A}_{1}$	$\mathrm{CH}_{3}$ sym. bend	1402 m	1398(19)				
E	$\mathrm{CH}_{3}$ asym. str.	3010 s	3014 (5)	$\mathrm{T}_{2}$	CCu str.	258 m	257 (12)
E	$\mathrm{CH}_{3}$ asym. bend	$\begin{aligned} & 1430 \mathrm{~m} \\ & 1415 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1431(3) \\ & 1408(20) \end{aligned}$	$\mathrm{T}_{2}$	NCCu def.	$\begin{aligned} & 367 \text { w } \\ & 325 \mathrm{w} \end{aligned}$	not observed
E	$\mathrm{CH}_{3}$ rock	hidden by $\mathrm{A}_{1} \mathrm{CIO}$ str.		$\mathrm{T}_{2}$	CCuC def.	not observed	
				$\mathrm{T}_{2}$	$C-N \equiv C$ def.	200 s	not observed
				$\mathrm{T}_{2}$	C-N str.	948 sh   934 m	hidden by $\mathrm{A}_{1}$ CIO str.
				E	$\mathrm{C}-\mathrm{N} \equiv \mathrm{C}$ def.	inactive	not observed
							Gmelin Handbook Cu-Org. Comp. 3

$\left[\left(\mathrm{CH}_{2}=\mathbf{C}=\mathbf{C H N C}\right)_{4} \mathrm{Cu}\right] \mathrm{X}$ and $\left[\left(\mathrm{CH} \equiv \mathrm{CCH}_{2} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{ClO}_{4}\right.$; Table 33, Nos. 6 to 9) are odorless, cream white microcrystalline compounds, soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ but insoluble in most other organic solvents. The propargyl compounds No. 8 and 9 are air-stable at room temperature, whereas the allenyl compounds No. 6 and 7 decompose slowly at room temperature but are stable at $-40^{\circ} \mathrm{C}$. The perchlorates No. 7 and 9 detonate violently when exposed to a heavy shock. Nos. 8 and 9 are readily isomerized to Nos. 6 and 7 in the presence of a base like 1,5-diazabicyclo[4.3.0]non-5-en in $\mathrm{CH}_{3} \mathrm{CN}$. If treated with aqueous NaCN , Nos. 6 to 9 release the corresponding isocyanides quantitatively [6].
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{4} \mathrm{Cu}\right] \mathrm{Cl} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Table 33, No. 21) is transformed by boiling water into $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{2} \mathrm{CuCl}$. Treating a chloroform solution of No .21 with dry ether produces $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}\right)_{3} \mathrm{CuCl}$ [1].
[(4-CH $\left.\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{N C}\right)_{4} \mathbf{C u} \mathrm{ClO}_{4}$ (Table 33, No. 26) is also prepared from bis(2-nitropropandio-lato-O, $\mathrm{O}^{\prime}$ )copper by treatment first with $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, then with $\mathrm{LiClO}_{4}$, and recrystallization from water-free $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ( $70 \%$ yield). IR (solid): $2168 \mathrm{~cm}^{-1}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $2156,2172 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta=2.42$ and 2.17 ppm , the latter supposedly due to decomposition products [11].
[(4-CH $\mathbf{O C}_{6} \mathbf{H}_{4} \mathbf{N C}_{4} \mathbf{C u} \mathbf{C u P F}_{6}$ (Table 33, No. 29) is prepared by treating a suspension of $\left(4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)_{2} \mathrm{CuBr}$ and $\mathrm{AgPF}_{6}$ ( $1: 1$ mole ratio) in acetone with two moles of 4 $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NC}$. It is air-stable in the solid state and in solution. The IR spectrum reveals two bands in the $v(N \equiv C)$ region rather than the one band expected for $T_{d}$ symmetry. Therefore, the isocyanide ligands are assumed to be bent at the N atom [5].

## References:

[1] F. Klages, K. Mönkemeyer, R. Heinle (Chem. Ber. 85 [1952] 109/22).
[2] A. Sacco (Gazz. Chim. Ital. 85 [1955] 989/92).
[3] W. Becker, W. Beck, R. Rieck (Z. Naturforsch. 25b [1970] 1332/7).
[4] R. W. Stephany, W. Drenth (Rec. Trav. Chim. 89 [1970] 305/12).
[5] J. Bailey, M. J. Mays (J. Organometal. Chem. 47 [1973] 217/24).
[6] J. W. Zwikker, R. W. Stephany (Syn. Commun. 3 [1973] 19/23).
[7] R. W. Stephany, M. J. A. de Bie, W. Drenth (Org. Magn. Resonance 6 [1974] 45/7).
[8] D. Knol, C. P. A. van Os, W. Drenth (Rec. Trav. Chim. 93 [1974] 314/6).
[9] D. L. Cronin, J. R. Wilkinson, L. J. Todd (J. Magn. Resonance 17 [1975] 353/61).
[10] D. Knol, N. J. Koole, M. J. A. de Bie (Org. Magn. Resonance 8 [1976] 213/8).
[11] G. Albertin, E. Bordignon, A. Orio, G. Pelizzi, P. Tarasconi (Inorg. Chem. 20 [1981] 2862/8).
[12] A. L. Spek (Cryst. Struct. Commun. 11 [1982] 413/6).
[13] S. N. Ganguly, M. Viscontini (Helv. Chim. Acta 67 [1984] 166/9).
[14] S. Kitagawa, M. Munakata (Inorg. Chem. 23 [1984] 4388/90).
[15] A. Bell, R. A. Walton, D. A. Edwards, M. A. Poulter (Inorg. Chim. Acta 104 [1985] 171/8).
[16] L. D. Detter, R. G. Cooks, R. A. Walton (Inorg. Chim. Acta 115 [1986] 55/63).

### 1.1.4.4.2 Compounds of the Type $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{X}_{2}$

The compounds in Table 34 are prepared from $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and aqueous $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$, preferably in ethanol/ether at -15 to $0^{\circ} \mathrm{C}$, and must be separated immediately. Compounds No. 1 and 2 decompose on standing at room temperature, but they can be stored at $-40^{\circ} \mathrm{C}$ for several months. Compounds No. 3 and 4 liquefy to a brown syrup within a few hours at room temperature. All are insoluble in nonpolar organic solvents and decompose rapidly in polar solvents. Upon aging, they are transformed into Cu' derivatives, as indicated from

[^2]the change in the IR and ESR spectra. An X-ray powder pattern of compound No. 1, which is isomorphous with No. 2, revealed a tetragonal or pseudotetragonal unit cell with $a=15.9$, $\mathrm{c}=23.6 \AA ; \mathrm{d}_{\mathrm{m}}=1.30 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, Z=8$. The ESR spectra indicate a complex structure for Nos. 3 and 4. This is also supported by their lower stability in the solid state. There is only one $v(N C)$ frequency in the IR spectrum for each compound. This suggests an octahedral structure with 4 equivalent RNC in the $x-y$ plane and $2 \mathrm{H}_{2} \mathrm{O}$ along the $z$ axis. Compounds No. 1 and 2 have differing $g$ values and $v(\mathrm{OH})$, which suggests some interaction between the Cull orbitals and the anions through the $\mathrm{H}_{2} \mathrm{O}$ ligand.

Table 34
Compounds of the Type $\left[(\mathrm{RNC})_{4} \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{X}_{2}$.
For abbreviations and dimensions see p . X .

No.	R	$X$	yield; remarks
1	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{ClO}_{4}$	$93 \%$; pink-purple, m.p. 79 to $80^{\circ}$ (dec.)   IR (Nujol): 2233.2 (NC), $3480+3560(\mathrm{OH})$   ESR: $\mathrm{g}=2.074$
2	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{BF}_{4}$	$87 \%$; pink-purple, m.p. 77 to $78^{\circ}$ (dec.)   IR (Nujol): 2234.8 (NC), $3520+3610(\mathrm{OH})$ ESR: $\mathrm{g}=2.040$
3	$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{ClO}_{4}$	$80 \%$; brown-purple, m.p. 52 to $53^{\circ}$ (dec.) IR (Nujol): 2244.7 (NC), ca. 3400 (OH) ESR: $\mathrm{g} \approx 2.04$
4	$\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{BF}_{4}$	$39 \%$; brown-purple, m.p. 57 to $59^{\circ}$ (dec.)   IR (Nujol): 2237.2 (NC), $3500+3580$ (OH)   ESR: $\mathrm{g} \approx 2.04$

## Reference:

R. W. Stephany, W. Drenth (Rec. Trav. Chim. 89 [1970] 305/12).

### 1.1.5 Compounds with Carbenes and Other Ligands Bonded by One C Atom

## Carbene and Vinylidene Complexes

Complexes of the types $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PCH}_{2} \mathrm{CuR}$ and I with phosphane-stabilized carbenes are treated in "Organocopper Compounds" 2, 1983, p. 3 (type $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PCH}_{2} \mathrm{CuR}$ ), or will be treated in "Organocopper Compounds" 4 (type I, $\mathrm{M}=\mathrm{Ag}$ or Cu ).


Other stable copper carbene complexes are not known. However, Cu' and/or Cull based carbenoids are generally assumed as crucial intermediates in the copper-catalyzed decomposition and carbene transfer reactions involving diazo compounds, e.g., of the types $\mathrm{R}_{2} \mathrm{CN}_{2}$ [1, 4, 21, 29], $\mathrm{RO}_{2} \mathrm{CCHN}_{2}$ [2, 19, 22, 52], $\mathrm{RO}_{2} \mathrm{CCOCHN}{ }_{2}$ [52], $\mathrm{RO}_{2} \mathrm{CC}\left(\mathrm{N}_{2}\right) \mathrm{COR}^{\prime}$ [52], $\left(\mathrm{RO}_{2} \mathrm{C}\right)_{2} \mathrm{CN}_{2}$ [10, 52], or $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{COCHN}_{2}$ [3, 5 to $7,14,19$ ]. In most cases, bis(acetylacetonato)copper has been used as the Cu component giving intermediate carbene complexes of the $R^{\prime} R^{\prime \prime} \mathrm{CCu}\left(\mathrm{CH}_{3} \mathrm{COCHCOCH}_{3}\right)_{2}$ type. However, other soluble Cu complexes [2, 4, 10] including
undefined isocyanide complexes [9,11] and salts such as CuCl or $\mathrm{CuSO}_{4}$ [19] have been used as well. The reactions have been critically reviewed by Wulfman et al. [30 to 33]. For details see the references cites there and [1 to 7, 10, 14, 19, 21, 29].

Similar transient carbene complexes are assumed in the copper-catalyzed biosynthesis of cyclopropane rings by methylene transfer from the methyl group of S-adenosylmethionine to an unactivated alkene such as oleic esters [20]. They may also play a role in the catalysis of cyclopropyl $\rightarrow$ vinylcarbene isomerization by $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{PCuCl}$ or CuCl [41].

The isomerization of benzvalene II, benzobenzvalene III, and their deuterated analogues in the presence of $\mathrm{Cu}^{0}$ indicates intermediate formation of carbenoids such as IV and $V$ [26].

II

III

IV

V

The energy of the vinylidene complex $\left[\mathrm{CH}_{2}=\mathbf{C C u}\right]^{+}$has been calculated by the MO LCAO SCF method and compared to the isomeric ethyne $\pi$-complex [ $\mathrm{CH} \equiv \mathrm{CHCu}{ }^{+}$. The latter is more stable. The $\left[\mathrm{CH}_{2}=\mathrm{CCu}\right]^{+} \rightarrow[\mathrm{CH} \equiv \mathrm{CHCu}]^{+}$isomerization barrier is $89.9 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ [47].

## Carbon Dioxide Complexes

The ion $\left[\mathrm{CuCO}_{2}\right]^{+}$forms under electron impact from $\mathrm{Cu}^{\prime}$ or $\mathrm{Cu}^{\prime \prime}$ carboxylates in the gas phase. Mass spectrometric data in combination with calculations by the virial statistic method indicate the existence of a $\mathrm{Cu}-\mathrm{C}$ bond. Based on these calculations, the structural stability decreases according to Scheme VI [45].


VI
For the ion $\left[\mathrm{CuCO}_{2}\left(\mathrm{PH}_{3}\right)_{2}\right]^{+}$, however, side-on or C coordination of $\mathrm{CO}_{2}$ is excluded from ab initio MO calculations and energy decomposition analyses. End-on coordination should be favorable because of the strong electrostatic interaction between Cu and the negatively charged O of $\mathrm{CO}_{2}$ [40].

A side-on coordination of bent $\mathrm{CO}_{2}$ to Cu had been proposed [35] for complexes formed from $\mathrm{CO}_{2}$ and $\mathrm{Cu}^{\prime \prime}$ chelates with ephedrine and similar ligands [15, 24, 35]. Later investigations, however, indicated that unstable carbamato structures are formed in these reactions [23, 37].

The $\mathrm{CO}_{2}$ fixation of RCu in the presence of phosphines D has been explained by intermediate formation of $\mathrm{CO}_{2}$ complexes of the type $\mathrm{RCO}_{2} \mathrm{Cu}\left(\mathrm{CO}_{2}\right) \mathrm{D}_{\mathrm{n}}$ (no further data given) [12, 13, 16 to 18, 25, 27, 28].

## Alkenyl and Allyl Radicals

$\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{C H}=\mathrm{CHCu}$ radicals form by cocondensation of Cu atoms, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$, and cyclohexane at 77 K in a rotating cryostat. There is no evidence for the formation of an alkyne complex. In contrast, from similar reactions of Cu and $\mathrm{C}_{2} \mathrm{H}_{2}$ only the complexes $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cu}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2} \mathrm{Cu}$ have been obtained. The ESR spectrum of $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{a} \mathrm{CH}={ }^{\beta} \mathrm{CH}^{63} \mathrm{Cu}$ gives the expected quartet
of doublets with $a(C u)=133.7 \mathrm{G}, \mathrm{a}(\mathrm{H})=45.1 \mathrm{G}$, and $\mathrm{g}=2.0019$. This is very similar to $\mathrm{a}(\mathrm{H})=$ 41.5 G of the $\beta$-hydrogen coupling constant for $\alpha$-styryl and indicates that Cu adds to the unsubstituted end of the alkyne. Therefore a planar structure is assumed with the unpaired electron located in the $p_{y}$ orbital on the $\alpha$-carbon. By comparison with the value found for free Cu atoms in an inert hydrocarbon matrix, a 6 to $7 \% 4 \mathrm{~s}$ spin density has been estimated for the Cu atom in the title product [42].
$\mathbf{C H}_{2} \mathbf{C}(\mathrm{Cu}) \mathrm{CH}_{2}$ radicals (see VII). Bombardment of $\mathrm{CH}_{2}=\mathbf{C =} \mathrm{CH}_{2}$ onto isolated Cu atoms trapped on the surface of an inert matrix in a rotating cryostat at 77 K gives Cu -substituted allyl radicals, but not the substituted vinyls $\mathrm{CH}_{2}=\mathrm{CCH}_{2} \mathrm{Cu}$. The main ESR absorptions are in the accordance with the proposed allyl structure: $\mathrm{g}=2.0020$, $\mathrm{a}\left({ }^{63} \mathrm{Cu}\right)=13 \pm 0.5 \mathrm{G}$ and two $\mathrm{a}(\mathrm{H})$ values of $14 \pm 0.5$ and $15 \pm 0.5 \mathrm{G}$. Less intense residual lines fit reasonably well with the same $g$ and $a(H)$ values, but $a\left({ }^{63} \mathrm{Cu}\right)=8 \pm 0.5 \mathrm{G}$. The latter are interpreted by another trapping site of the same radical [48].


VII


VIII


IX


X

## Iminyt Radicals $\cdot \mathbf{N}=\mathbf{C R C u}$ and $\eta^{2}$-Complexes $\mathbf{R C} \equiv \mathbf{N C u}$

$\cdot \mathbf{N}=\mathbf{C R C u}\left(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $\eta^{2}-\mathbf{R C}=\mathbf{N C u}\left(\mathrm{R}=\mathrm{H}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Cu atoms are condensed in an adamantane matrix at 77 K and bombarded with $\mathrm{RCN}\left(\mathrm{R}=\mathrm{H}, \mathrm{D}, \mathrm{CH}_{3}\right.$, $\mathrm{CH}_{2}=\mathrm{CH}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{6} \mathrm{H}_{5}$ ). The ESR spectra show the existence of three types of Cu -containing species. They have been assigned, by comparison with the analogous species obtained with Ag and Au , to the iminyl radicals $\cdot \mathrm{N}=\mathrm{CRCu}$ (cis and trans isomers VIII and IX presumed, but not assigned) and to the $\eta^{2}$-complexes $X$. End-on coordinated radicals or complexes with more than one ligand could not be detected. The types of species formed depend on $R$ :

R	cis-iminyl VIII	trans-iminyl IX	$\eta^{2}$-complex $X$	Ref.
$\mathrm{H}, \mathrm{D}$	+	+	+	$[43,44]$
$\mathrm{CH}_{3}$	+	+	-	$[49]$
$\mathrm{CH}_{2}=\mathrm{CH}$	-	-	-	$[49]$
$\mathbf{t - C _ { 4 } \mathrm { H } _ { 9 }}$	+	+	+	$[49]$
$\mathrm{C}_{6} \mathrm{H}_{5}$	possibly (poorly resolved)	+	$[49]$	

ESR parameters of the species formed (a values in $G, a(N)$ and $a(C)$ not resolved) :

	$g$ factor	$a(\mathrm{Cu})$	$\mathrm{Q}(\mathrm{Cu})$	Ref.
$\cdot \mathrm{N}=\mathrm{CHCu}$	2.001	479	0.22	$[43,44,49]$
(one of the three species	2.001	280	0.13	$[43,44,49]$
not identified [44])	1.998	372	0.17	$[43,44,49]$
$\mathrm{HC} \equiv \mathrm{NCu}$	2.01 to 2.02	1386 to 1505	0.68	$[44,49]$
$\cdot \mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Cu}$	2.0044	350.2	0.16	$[49]$
	2.0025	293.2	0.14	$[49]$
$\cdot \mathrm{N}=\mathrm{C}\left(\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{t}\right) \mathrm{Cu}$	2.0022	419.5	0.2	$[49]$
	1.9984	339.4	0.16	$[49]$

The species $\cdot \mathrm{N}=\mathrm{CHCu}$ and $\mathrm{HC} \equiv \mathrm{NCu}$ decompose slowly at 77 and rapidly at $100 \mathrm{~K}[43,44]$.

## Intermediates Formed from $\mathrm{Cu}^{2+}$ and Radicals

The reaction of $\cdot \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$radicals with $\mathrm{Cu}^{2+}(\mathrm{aq})$ has been studied by pulse radiolysis of NO -saturated aqueous $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} / \mathrm{CuSO}_{4}$ solutions at $\mathrm{pH}=6.0$. The effect of $\mathrm{Cu}^{2+}$ on the kinetics of disappearance of the $\cdot \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$radicals indicates the intermediate formation of $\left[\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Cu}\right]^{+}$and $\mathrm{O}_{2} \mathbf{C C H}_{2} \mathrm{CuO}_{2} \mathrm{CCH}_{3}$, which decompose in first-order reactions according to $\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CuO}_{2} \mathrm{CCH}_{3} \rightarrow\left[\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Cu}\right]^{+}+\mathrm{CO}_{2}+\cdot \mathrm{CH}_{3} \quad\left(\mathrm{k}=90 \mathrm{~s}^{-1}\right)$ and $\left[\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Cu}\right]^{+}$ $\xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{HOCH}_{2} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{k}=2.8 \mathrm{~s}^{-1}\right)$ [34]. The formation of similar intermediates is indicated in the reactions of $\mathrm{Cu}^{2+}(\mathrm{aq})$ with $\cdot \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$or $\cdot \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$ in the presence of triglycine $\mathrm{NH}_{2}\left(\mathrm{CH}_{2} \mathrm{CONH}\right)_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ [36] and, according to preliminary results, with $\mathrm{CH}_{3} \mathrm{CHCO}_{2}^{-}, \cdot \mathrm{CHCl}_{2}$, or $\cdot \mathrm{CCl}_{3}$, but not with $\mathrm{R}_{2} \mathrm{COH}$ or $\cdot \mathrm{CO}_{2}^{-}$radicals [34].

## Azaalkene $\eta^{2}$-Complexes

[ $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}=\mathrm{CH}_{2} \mathrm{Cu}(\mathrm{CO}) \mathrm{Cl}\right] \mathrm{Br}$ is formed from $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}=\mathrm{CH}_{2}\right]+\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2} \mathrm{Br}\right]^{-}$and CO in THF at $-40^{\circ} \mathrm{C}$. IR spectrum (THF, $-60^{\circ} \mathrm{C}$ ): $2080(\mathrm{CO}), 1610$ and $1640(\mathrm{NC}) \mathrm{cm}^{-1}$. At $-15^{\circ} \mathrm{C}$ the pale yellow solid releases CO quantitatively to give $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathbf{N}=\mathbf{C H}_{2} \mathbf{C u C l}\right] \mathrm{Br}$. In both compounds the Cu atom is assumed to be $\pi$-bonded to the $\mathrm{N}=\mathrm{C}$ double bond. An equimolar amount of CO is evolved above $-15^{\circ} \mathrm{C}$ from (CO)CuCl in the presence of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}=\mathrm{CH}_{2} \mathrm{CuCl}\right] \mathrm{Br}$; the dinuclear $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}=\mathrm{CH}_{2} \mathrm{Cu}_{2}(\mathrm{CO}) \mathrm{Cl}_{2} \mathrm{Br}$ is formed [8].

## Bimetallic Clusters

$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathbf{P}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \mathbf{C u}\left(\boldsymbol{\mu}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathbf{C H}_{3}-\mathbf{4}\right) \mathbf{W}\left(\mathrm{CO}_{2} \mathbf{C}_{5} \mathrm{H}_{5}\right.$ (see XI) has been prepared by successive 1:1:1 addition of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Cu} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ and $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv W(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a $73 \%$ yield in the form of orange microcrystals, m.p. 113 to $115^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} N \mathrm{NR}$ $\left(\mathrm{CDCl}_{3}\right): 2.21\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 5.77\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 7.00$ to $7.43\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ : $22.0\left(\mathrm{CH}_{3}\right), 93.0\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 120.2\left(\mathrm{q}, \mathrm{CF}_{3}, \mathrm{~J}(\mathrm{FC})=319 \mathrm{~Hz}\right), 128.9$ to $149.8\left(\mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{C}_{6} \mathrm{H}_{5}\right), 215.5$ (CO), $292.3(\mu-\mathrm{C}) \mathrm{ppm}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1941$ and 2016 (both CO$) \mathrm{cm}^{-1}$. From the NMR and IR spectra structure XI has been proposed [51].


XI
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Cu}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-\mathbf{4}\right) \mathbf{W}\left(\mathrm{CO}_{2} \mathbf{C}_{5} \mathrm{H}_{5}\right] \mathrm{PF}_{6}\right.$ has been prepared by successive 1:1:1 addition of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ and $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{W}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to a suspension of [ $\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}$ ] $\mathrm{PF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a $83 \%$ yield. In the presence of two equivalents of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, or of one equivalent of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$, no reaction occurred with the W carbyne. Not surprisingly, the W carbyne is regenerated by treatment of the title compound with $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$. Evidently, only $\left[\mathrm{CH}_{3} \mathrm{CNCuP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]^{+}$is able to give a stable adduct with the carbyne [51].

Orange microcrystals, m.p. 100 to $102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.11$ (s, $\mathrm{CH}_{3} \mathrm{CN}$ ), 2.28 (s, 4$\mathrm{CH}_{3}$ ), 5.71 (s, $\mathrm{C}_{5} \mathrm{H}_{5}$ ), 7.17 to $7.49\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.2\left(\mathrm{CH}_{3}\right.$ of
$\mathrm{CH}_{3} \mathrm{CN}$ ), $22.1\left(4-\mathrm{CH}_{3}\right), 92.7\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 119.8(\mathrm{CN}), 129.1$ to $149.8\left(\mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{C}_{6} \mathrm{H}_{5}\right), 213.6(\mathrm{CO}), 294.9$ $(\mu-\mathrm{C}) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right):-144.2$ (sept, $\left.\mathrm{PF}_{6}, J(\mathrm{PF})=713 \mathrm{~Hz}\right),+0.2\left(\mathrm{P}_{\mathrm{C}}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right) \mathrm{ppm}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1946$ and 2014 (both CO) $\mathrm{cm}^{-1}$. Based upon the NMR and IR spectra, a cationic structure analogous to XI (see p. 243) with $\mathrm{CH}_{3} \mathrm{CN}$ instead of $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$has been proposed. The absence of a ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling on the bridging carbyne resonance suggests that $\mathrm{CH}_{3} \mathrm{CN}$ is transoid and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ is cisoid to the $\mu-\mathrm{C}$ atom [51].

Treatment with $\mathrm{Cl}^{-}, \mathrm{I}^{-}$, or $\mathrm{CN}^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the release of $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{W}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$. Similar decompositions occurred with $\mathrm{SR}^{-}, \mathrm{BH}_{4}^{-}$, or $\mathrm{H}^{-}$, or with Na naphthalenide in the presence of CO [51].
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCu}\left(\mu_{3}-\mathrm{CC}_{6} \mathbf{H}_{4} \mathbf{C H}_{3}-4\right)\left(\mathbf{W}(\mathbf{C O})_{2} \mathbf{C}_{5} \mathbf{H}_{5}\right)_{2} \cdot \mathbf{C H}_{2} \mathrm{Cl}_{2}$. Treatment of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCuH}\right]_{6}$ with 4$\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{W}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}(1: 5)$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ at room temperature affords a mixture of the title compound ( $55 \%$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and $27 \% \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~W}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-4\right)(\mathrm{CO})_{2}$ [51].

Purple crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 2.12\left(\mathrm{~s}, 4-\mathrm{CH}_{3}\right), 5.23\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.80\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.29$ $\left(\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 22.1\left(4-\mathrm{CH}_{3}\right), 90.7\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 123.2$ to $135.8\left(\mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $168.4\left(\mathrm{C}-1\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 222.1(\mathrm{CO}, \mathrm{J}(\mathrm{WC})=171 \mathrm{~Hz}), 235.9(\mathrm{CO}, \mathrm{J}(\mathrm{WC})=181 \mathrm{~Hz}), 339.6\left(\mathrm{~d}, \mu_{3}-\mathrm{C}\right.$, $J(P C)=7 \mathrm{~Hz}, \mathrm{~J}(\mathrm{WC})=94 \mathrm{~Hz})$ ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 23.3 \mathrm{ppm}$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra show one $\mathrm{C}_{5} \mathrm{H}_{5}$ environment and two CO sites present in solution. In view of the X-ray diffraction results (see below) this implies that the title compound is fluxional in solution, undergoing a rearrangement which brings about time-averaged $C_{s}$ symmetry on the NMR timescale and racemizing the chiral structure in the solid state [51].

Monoclinic, space group $P 2_{1} / c-C_{2 h}^{5}$ (No. 14), $a=10.034$ (4), $b=21.514$ (8), $c=17.964$ (6) $\AA$, $\beta=91.73(3)^{\circ} ; Z=4, d_{c}=1.93, d_{m}=1.94 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The structure is given in Fig. $18\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$,


Fig. 18. Molecular structure of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCu}_{\AA}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-4\right)\left(\mathrm{W}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with selected bond lengths (in $\AA$ ) and angles ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ omitted).
isolated by normal van der Waals distances, is omitted). The compound contains one Cu and two W atoms arranged nearly in an isosceles triangle, which is asymmetrically capped by the $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-4$ ligand. The Cu is also weakly coordinated by two of the CO groups in a semi-bridging manner, and very weakly attached to a third. The coordination of the CO ligands to W is nonlinear; the degree of nonlinearity correlates with the $\mathrm{Cu}-\mathrm{C}$ distances [51].
[ $\left.\mathbf{C u}\left\{\left(\mu-\mathbf{C C}_{6} \mathbf{H}_{4} \mathbf{C H}_{3}-\mathbf{4}\right) \mathbf{W}(\mathbf{C O})_{2} \mathbf{C}_{5} \mathbf{H}_{5}\right\}_{2}\right] \mathrm{PF}_{6}$ (see XII) has been prepared from $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right] \mathrm{PF}_{6}$ and $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{W}(\mathrm{CO})_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After addition of light petroleum ether, orange crystals are formed in a $82 \%$ yield. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : 1942 and 2021 (both CO ) $\mathrm{cm}^{-1}$ [51].

$\left[\mathbf{N}\left\{=\mathbf{P}\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)_{3}\right\}_{2}\right]^{+}\left[(\mathbf{C O})_{12} \mathrm{Fe}_{4} \mathbf{C u C}\left(\mathrm{NCCH}_{3}\right)\right]^{-}[39]$ and $\left[\mathrm{N}_{\left.\left(\mathrm{C}_{2} \mathbf{H}_{5}\right)_{4}\right]^{+}\left[(\mathbf{C O})_{14} \mathrm{Fe}_{5} \mathbf{C u C}\left(\mathrm{NCCH}_{3}\right)\right] \text { [39, }}^{\text {, }}\right.$ 50] with the anion skeletons (CO omitted) XIII and XIV have been described in "Organoiron Compounds' C7, 1986, pp. 261 and 360.


XIII

$\mathbf{C H}_{2}=\mathbf{C C u}(\mathbf{C l}) \mathbf{R h}\left(\mathbf{C}_{5} \mathbf{H}_{5}\right) \mathbf{P}\left(\mathbf{C}_{3} \mathbf{H}_{7}-\mathrm{i}\right)_{3}$ (see XV) has been prepared from the vinylidene complex $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{Rh}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{P}\left(\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{i}\right)_{3}$ and CuCl at room temperature with a yield of $71 \%$. The orangered crystals are air-stable for a short time. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): 1.26(\mathrm{dd}, \mathrm{J}(\mathrm{PH})=14.6 \mathrm{~Hz}$, $J(\mathrm{HH})=7.0 \mathrm{~Hz}$ ) and $1.31\left(\mathrm{dd}, \mathrm{J}(\mathrm{PH})=13.9 \mathrm{~Hz}, \mathrm{~J}(\mathrm{HH})=7.0 \mathrm{~Hz}\right.$; both for $\left.\mathrm{CH}_{3}\right), 2.21(\mathrm{~m}, \mathrm{PCH})$, $4.10\left(\mathrm{dd}, \mathrm{CH}_{2}=, \mathrm{J}(\mathrm{PH})=2.3 \mathrm{~Hz}, \mathrm{~J}(\mathrm{RhH})=2.3 \mathrm{~Hz}\right), 5.32\left(\mathrm{dd}, \mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{~J}(\mathrm{PH})=1.1 \mathrm{~Hz}, \mathrm{~J}(\mathrm{RhH})=\right.$ 0.6 Hz ) ppm [46].


XV


XVI
 plex $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{Os}(\mathrm{CO})\left(\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2} \mathrm{Cl} \text { and } \mathrm{Cul} \text { in } \mathrm{C}_{6} \mathrm{H}_{6} \text { at room temperature as a green }}\right.$ solid. IR (Nujol): $255(\mathrm{OsCl}), 1912\left(\mathrm{CO} \mathrm{cm}^{-1}\right.$. The proposed structure is based on the X-ray
structure determination of the analogous AgCl complex which has a very similar IR spectrum [38].

## References:

[1] H. Nozaki, S. Moriuti, M. Yamabe, R. Noyori (Tetrahedron Letters 1966 59/63).
[2] H. Nozaki, S. Moriuti, H. Takaya, R. Noyori (Tetrahedron Letters 1966 5239/44).
[3] M. Takebayashi, T. Ibata, H. Kohara, B. H. Kim (Bull. Chem. Soc. Japan 40 [1967] 2392/7).
[4] R. Noyori, H. Takaya, Y. Nakanisi, H. Nozaki (Can. J. Chem. 47 [1969] 1242/5).
[5] M. Takebayashi, T. Ibata, H. Kohara, K. Ueda (Bull. Chem. Soc. Japan 42 [1969] 2938/44).
[6] M. Takebayashi, T. Ibata, K. Ueda (Bull. Chem. Soc. Japan 43 [1970] 1500/5).
[7] M. Takebayashi, T. Ibata, K. Ueda, T. Ohashi (Bull. Chem. Soc. Japan 43 [1970] 3964).
[8] R. Mason, G. Rucci (J. Chem. Soc. Chem. Commun. 1971 1132).
[9] T. Saegusa, Y. Ito, K. Yonezawa, Y. Inubushi, S. Tomita (J. Am. Chem. Soc. 93 [1971] 4049/51).
[10] I. Zugrăvescu, E. Rucinschi, G. Surpǎteanu (Rev. Roumaine Chim. 16 [1971] 1099/105).
[11] T. Saegusa, K. Yonezawa, Y. Ito (Syn. Commun. 2 [1972] 431/9).
[12] A. Miyashita, A. Yamamoto (Kenkyu Hokoku Asahi Garasu Kogyo Gijutsu Shoreikai 23 [1973] 423/7; C.A. 82 [1975] No. 67594).
[13] A. Miyashita, A. Yamamoto (J. Organometal. Chem. 49 [1973] C57/C58).
[14] M. Takebayashi, T. Kashiwada, M. Hamaguchi, T. Ibata (Chem. Letters 1973 809/12).
[15] J. Vičková, J. Bartoň (J. Chem. Soc. Chem. Commun. 1973 306/7).
[16] A. Yamamoto (6th Intern. Conf. Organometal. Chem., Amherst, Mass., 1973, Abstr. P4).
[17] E. M. Cernia, M. Graziani (J. Appl. Polym. Sci. 18 [1974] 2725/46).
[18] T. Ikariya, A. Yamamoto (J. Organometal. Chem. 72 [1974] 145/51).
[19] L. T. Scott, G. J. Decicco (J. Am. Chem. Soc. 96 [1974] 322/3).
[20] T. Cohen, G. Herman, T. M. Chapman, D. Kuhn (J. Am. Chem. Soc. 96 [1974] 5627/8).
[21] Y. Kawai, M. Takebayashi (Kinki Daigaku Rikogakubu Kenkyu Hokoku No. 10 [1975] 31/4; C.A. 84 [1976] No. 4081).
[22] T. Aratani, Y. Yoneyoshi, T. Nagase (Tetrahedron Letters 1975 1707/10).
[23] M. T. Beck, F. Joó (J. Chem. Soc. Chem. Commun. 1975 230).
[24] M. M. Savel'ev, I. S. Kolomnikov, S. V. Vitt, M. E. Vol'pin (Izv. Akad. Nauk SSSR Ser. Khim. 1975 486/7; Bull. Acad. Sci. USSR Div. Chem. Sci. 1975 422).
[25] A. Yamamoto, T. Ito, T. Yamamoto, A. Miyashita, S. Komiya, T. Ikariya (Kenkyu Hokoku Asahi Garasu Kogyo Gijutsu Shoreikai 27 [1975/76] 55/66; C.A. 86 [1977] No. 5600).
[26] U. Burger, F. Mazenod (Tetrahedron Letters 1976 2885/8).
[27] T. Ito, A. Yamamoto (Yuki Gosei Kagaku Kyokaishi 34 [1976] 308/18; C.A. 85 [1976] No. 136305 ).
[28] A. Miyashita, A. Yamamoto (J. Organometal. Chem. 113 [1976] 187/200).
[29] H. Sano, M. Takebayashi (Kinki Daigaku Rikoagakubu Kenkyu Hokoku No. 11 [1976] 49/52).
[30] D. S. Wulfman (Tetrahedron 32 [1976] 1231/40).
[31] D. S. Wulfman, R. S. McDaniel, B. W. Peace (Tetrahedron 32 [1976] 1241/9).
[32] D. S. Wulfman, B. W. Peace, R. S. McDaniel (Tetrahedron 32 [1976] 1251/5).
[33] D. S. Wulfman, B. G. McGibboney, E. K. Steffen, N. V. Thinh, R. S. McDaniel, B. W. Peace (Tetrahedron 32 [1976] 1257/65).
[34] M. Freiberg, D. Meyerstein (J. Chem. Soc. Chem. Commun. 1977 127/8).
[35] L. M. Kachapina, Yu. M. Shul'ga, S. B. Echmaev, I. S. Kolomnikov, S. M. Vinogradova, Yu. G. Borod'ko (Koord. Khim. 3 [1977] 435/9; Soviet J. Coord. Chem. 3 [1977] 327/31).
[36] W. A. Mulac, D. Meyerstein (J. Chem. Soc. Chem. Commun. 1979 893/5).
[37] E. G. Boguslavskii, A. A. Shklyaev, N. G. Malesimov, Z. M. Alaudinova, I. S. Kolomnikov, V. F. Anufrenko (Izv. Akad. Nauk SSSR Ser. Khim. 1980 1231/4; Bull. Acad. Sci. USSR Div. Chem. Sci. 1980 857/9).
[38] G. R. Clark, C. M. Cochrane, W. R. Roper, L. J. Wright (J. Organometal. Chem. 199 [1980] C35/C38).
[39] M. Tachikawa, R. L. Geerts, E. L. Muetterties (J. Organometal. Chem. 213 [1981] 11/24).
[40] S. Sakaki, K. Kitaura, K. Morokuma (Inorg. Chem. 21 [1982] 760/5).
[41] Yu. V. Tomilov, V. G. Bordakov, N. M. Tsvetkova, A. Ya. Shteinshneider, I. E. Dolgii, O. M. Nefedov (Izv. Akad. Nauk SSSR Ser. Khim. 1983 336/43; Bull. Acad. Sci. USSR Div. Chem. Sci. 1983 300/6).
[42] J. H. B. Chenier, J. A. Howard, B. Mile, R. Sutcliffe (J. Am. Chem. Soc. 105 [1983] 788/91).
[43] J. A. Howard, R. Sutcliffe, B. Mile (J. Phys. Chem. 88 [1984] 171/4).
[44] J. A. Howard, R. Sutcliffe, B. Mile (J. Phys. Chem. 88 [1984] 5155/7).
[45] Yu. S. Nekrasov, Yu. A. Borisov, S. Yu. Silvestrova, T. V. Lysyak, Ya. Ya. Kharitonov, I. S. Kolomnikov (J. Organometal. Chem. 269 [1984] 323/6).
[46] H. Werner, J. Wolf, G. Müller, C. Krüger (Angew. Chem. 96 [1984] 421/2; Angew. Chem. Intern. Ed. Engl. 23 [1984] 431/2).
[47] N. M. Vitkovskaya, V. G. Bernshtein, F. K. Shmidt (Kinetika Kataliz 25 [1984] 1000/3; Kinet. Catal. [USSR] 25 [1984] 855/8).
[48] J. H. B. Chenier, J. A. Howard, B. Mile (J. Am. Chem. Soc. 107 [1985] 4190/1).
[49] J. A. Howard, R. Sutcliffe, H. Dahmane, B. Mile (Organometallics 4 [1985] 697/701).
[50] M. Tachikawa, A. C. Sievert, E. L. Muetterties, M. R. Thompson, C. S. Day, V. W. Day (J. Am. Chem. Soc. 102 [1980] 1725/7).
[51] M. Müller-Gliemann, S. V. Hoskins, A. G. Orpen, A. L. Ratermann, F. G. A. Stone (Polyhedron 5 [1986] 791/8).
[52] M. E. Alonso, M. I. Hernandez, M. Gomez, P. Jano, S. Pekerar (Tetrahedron 41 [1985] 2347/54).

## Table of Conversion Factors

Following the notation in Landolt-Börnstein [7], values which have been fixed by convention are indicated by a bold-face last digit. The conversion factor between calorie and Joule that is given here is based on the thermochemical calorie, cal theh , and is defined as $4.1840 \mathrm{~J} / \mathrm{cal}$. However, for the conversion of the "Internationale Tafelkalorie", cal ${ }_{\mid T}$, into Joule, the factor $4.1868 \mathrm{~J} / \mathrm{cal}$ is to be used [1, p. 147]. For the conversion factor for the British thermal unit, the Steam Table Btu, Btu ${ }_{S T}$, is used [1, p. 95].

Work, Energy, Heat	J	kWh	kcal	Btu	MeV
$1 \mathrm{~J}($ Joule $)=1 \mathrm{Ws}=$ $1 \mathrm{Nm}=10^{7} \mathrm{erg}$	1	$2.778 \times 10^{-7}$	$2.39006 \times 10^{-4}$	$9.4781 \times 10^{-4}$	$6.242 \times 10^{12}$
1 kWh	$3.6 \times 10^{6}$	1	860.4	3412.14	$2.247 \times 10^{19}$
1 kcal	4184.0	$1.1622 \times 10^{-3}$	1	3.96566	$2.6117 \times 10^{16}$
1 Btu   (British thermal unit)	1055.06	$2.93071 \times 10^{-4}$	0.25164	1	$6.5858 \times 10^{15}$
1 MeV	$1.602 \times 10^{-13}$	$4.450 \times 10^{-20}$	$3.8289 \times 10^{-17}$	$1.51840 \times 10^{-16}$	1


Power	kW	PS	$\mathrm{kp} \mathrm{m} / \mathrm{s}$	$\mathrm{kcal} / \mathrm{s}$
$1 \mathrm{~kW}=10^{10} \mathrm{erg} / \mathrm{s}$	1	1.35962	101.972	0.239006
1 PS	0.73550	1	75	0.17579
$1 \mathrm{kp} \mathrm{m} / \mathrm{s}$	$9.80665 \times 10^{-3}$	0.01333	1	$2.34384 \times 10^{-3}$
$1 \mathrm{kcal} / \mathrm{s}$	4.1840	5.6886	426.650	1

[1] A. Sacklowski, Die neuen SI-Einheiten, Goldmann, München 1979. (Conversion tables in an appendix.) [2] International Union of Pure and Applied Chemistry, Manual of Symbols and Terminology for Physicochemical Quantities and
Units, Pergamon, London 1979; Pure Appl. Chem. 51 [1979] 1/41.
[7] Landolt-Börnstein, 6th Ed., Vol. II, Pt. 1, 1971, pp. 1/14.
[8] ISO Standards Handbook 2, Units of Measurement, 2nd Ed., Geneva 1982.

## Key to the Gmelin System of Elements and Compounds

System   Number	Symbol	Element	
	1		


	System   Number	Symbol	Element
	37	In	Indium
	38	TI	Thallium
	39	Sc, Y $\mathrm{La}-\mathrm{Lu}$	Rare Earth Elements
	40	Ac	Actinium
	41	Ti	Titanium
$\mathrm{CrCl}_{2}$        	42	Zr	Zirconium
	43	Hf	Hafnium
	44	Th	Thorium
	45	Ge	Germanium
[ $\mathrm{ZnCrO}_{4}$	46	Sn	
	47	Pb	Lead
	48	V	Vanadium
	49	Nb	Niobium
	50	Ta	Tantalum
	51	Pa	Protactinium
	52	Cr	Chromium
	53	Mo	Molybdenum
	54	W	Tungsten
	55	U	Uranium
	56	Mn	Manganese
	57	Ni	Nickel
	58	Co	Cobalt
	59	Fe	Iron
	60	Cu	Copper
	61	Ag	Silver
	62	Au	Gold
	63	Ru	Ruthenium
	64	Rh	Rhodium
	65	Pd	Palladium
	66	Os	Osmium
	67	Ir	Iridium
	68	Pt	Platinum
	69	Tc	Technetium ${ }^{1}$
	70	Re	Rhenium
	71	Np, Pu . .	Transuranium Elements

Material presented under each Gmelin System Number includes all information concerning the element(s) listed for that number plus the compounds with elements of lower System Number.

For example, zinc (System Number 32) as well as all zinc compounds with elements numbered from 1 to 31 are classified under number 32.
' A Gmelin volume titled "Masurium" was published with this System Number in 1941.
A Periodic Table of the Elements with the Gmelin System Numbers is given on the Inside Front Cover


[^0]:    Gmelin Handbook
    Cu-Org. Comp. 3

[^1]:    | - | [69] |
    | :---: | :---: |
    | pale yellow crystals, dec. at $25^{\circ}$ | [70, 87] |
    | ${ }^{1} \mathrm{H}$ NMR (acetone): 7.76 (br, H-5), 8.22 (H-4), 8.98 (broad, $\mathrm{H}-6$ ) |  |
    | $\begin{aligned} & \text { IR (solid): } 2066 \\ & \text { (acetone): } 2075 \end{aligned}$ |  |
    | $\begin{aligned} & \mathrm{K}=1.2 \text { to } 1.3( \pm 0.1) \mathrm{atm}^{-1} \text { in }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}, \\ & 1.7( \pm 0.1) \mathrm{atm}^{-1} \mathrm{in}_{2} \mathrm{H}_{5} \mathrm{COCH}_{3}, \text { and } \\ & 3.8( \pm 0.1) \mathrm{atm}^{-1} \text { in } \\ & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COCH}_{3} \text { at } 25^{\circ} \text { (see p. 188) } \end{aligned}$ |  |
    | $\begin{aligned} \mathrm{K} & =3.5( \pm 0.3) \mathrm{atm}^{-1} \text { in }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \text { at } 25^{\circ} \\ & \text { (see p. 188) } \end{aligned}$ | [70] |
    | $\begin{aligned} & \mathrm{K}=6.4( \pm 0.3) \mathrm{atm}^{-1} \text { in }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \text { at } 25^{\circ} \\ & \text { (see p. 188) } \end{aligned}$ | [70] |
    | pale yellow crystals, stable at low | [87] |

    $\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]+\mathrm{CO}$ in
    $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
    $\mathrm{Cu}_{2}\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4}\right)+\mathrm{CO}$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
    
    not isolated
    not isolated
    
    \& !
    ( $\mathrm{n}=0$ )
    *64 see No. 63
    $\mathrm{Cu}_{2}\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4}\right)+\mathrm{CO}$ in $\left(\mathrm{CH}_{3}\right)_{2}$
    $(X=Y=H, Z=C l)$
    ( $1 \mathrm{~g}=\mathrm{Z} \times \mathrm{H}=\lambda=\mathrm{X}$ ) 99 'ON әәs 99
    67 see No. $65(X=Y=H, Z=1)$

    | 67 see No. $65(X=Y=H, Z=I)$ | not isolated |
    | :--- | :--- |
    | 68 see No. $65\left(X=\mathrm{CH}_{3}, Y=H, Z=\mathrm{Cl}\right)$ | $\mathrm{Cu}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4}\right)+\mathrm{CO}$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ |

[^2]:    Gmelin Handbook
    Cu-Org. Comp. 3

