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1 Introduction

1.1 Basic Concepts

The mass density of a substance is an intensive quantity defined by:
p=m/v (1.1)

where m is the mass and v is the volume of the sample. Both these quantities are extensive quantities.
Other densities often referred to in the literature are the relative density and the molar density. Relative
density, also called specific gravity, is:

p,=plp, (1.2)

where py is the density of a standard substance. It is necessary to specify the conditions of temperature
and pressure for the standard substance. The most common reference material is water often at the
temperature of its maximum density, 4 °C, at atmospheric pressure. The molar density is defined as

p, =11V (1.3)

where V is the volume occupied by one mole of the substance. The only densities reported in this volume
are the mass densities; relative and molar densities have been converted to mass densities, and all
densities have been reported in SI units. If the mass, m, in equation (1.1) has not been corrected for air
bouancy it gives the apparent density in air. The API specific gravity is: p (API) = 141.5/p, — 131.5, in
which p; is p(288.68 K)/p,(288.68 K), and the standard substance is water at 288.68 K (60 °F).

The density of a material is a function of temperature and pressure but its value at some standard
condition (for example, 293.15 K or 298.15 K at either atmospheric pressure or at the vapor pressure of
the compound) often is used to characterize a compound and to ascertain its purity. Accurate density
measurements as a function of temperature are important for custody transfer of materials when the
volume of the material transferred at a specific temperature is known but contracts specify the mass of
material transferred. Engineering applications utilize the density of a substance widely, frequently for the
efficient design and safe operation of chemical plants and equipment. The density and the vapor pressure
are the most often-quoted properties of a substance, and the properties most often required for prediction
of other properties of the substance. In this volume, we do not report the density of gases, but rather the
densities of solids as a function of temperature at atmospheric pressure and the densities of liquids either
at atmospheric pressure or along the saturation line up to the critical temperature.

The purpose of this compilation is to tabulate the densities of compounds, hence only minimal
description of experimental methods used to measure the density of liquids or solids appears. Detailed
descriptions of methods for density determination of solids, liquids and gases, along with appropriate
density reference standards, appear in a chapter by Davis and Koch in Physical Methods of Chemistry,
Volume VI, Determination of Thermodynamic Properties [86-ros/bae].

The two principal experimental apparatuses used to determine the density of a liquid are: the
pycnometer and the vibrating tube densimeter. The pycnometer method involves measuring the mass of
a liquid in a vessel of known volume. The volume of the pycnometer, either at the temperature of
measurement or at some reference temperature, is determined using a density standard, usually water or
mercury. Using considerable care and a precision analytical balance accurate to £107 g, it is possible to
achieve densities accurate to a few parts in 10° with a pycnometer having a volume of 25 cm’ to 50 cm’.
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2 1.1 Basic Concepts - 1.2 Scope of the Compilation

It is common to achieve accuracies of 1 part in 10° in using equation (1.1) with pycnometers as small as
5 cm’ and routine measurements can achieve 1 part in 10", However the main sources of error in
assigning density to a particular compound in a particular state arise from factors other than the
measurment of mass and volume. See Section 1.4.1

The vibrating tube densimeter relies upon the fact that the frequency f of vibration for a U or V
shaped tube depends upon the mass of material in the tube:

p=Alf*+B (1.4)

Calibration of the apparatus is necessary; usually water and air or nitrogen are the reference materials.
Vibrating tube densimeters designed to operate close to atmospheric pressure can achieve repeatability of
parts in 10°. If the reciprocal of the frequency is linear in density, accuracies of 1 part in 10° are readily
achievable.

The principal experimental method used to measure the density of a solid is determination of the mass
of liquid displaced by a known mass of solid. It is essential that the solid have no appreciable solubility
in the liquid, that all occluded air be removed from the solid and that the density of the displacement fluid
be less than that of the solid lest the solid float. Densities of crystalline solids also can be determined
from the dimensions of the unit cell. Davis and Koch discuss other methods for measuring the density of
liquids and solids such as: hydrostatic weighing of a buoy and flotation methods.

1.2 Scope of the Compilation

Volume IV/8G presents observed values for the densities of non-cyclic alcohols. These values represent
a compilation and evaluation of data from the scientific literature covering approximately the past 100
years. The values presented come from the TRC Source Database. The Thermodynamics Research
Center has assembled these data over a period of years and has used them to provide the evaluated
density values listed in the TRC Thermodynamic Tables - Non-Hydrocarbons. An additional literature
search has been performed immediately before producing this compilation to locate new or missing data
and to bring the collection up-to-date. This compilation should include at least 90% of the pertinent data
reported in the literature. The usual experimental conditions are in contact with air at one atmosphere
below the normal boiling point, and in equilibrium with the vapor phase above the normal boiling point.
In the summary tables, temperatures reported on the Kelvin scale have been obtained by adding 273.15 to
temperatures originally given on the Celsius scale.

Densities have units of kilograms per cubic meter (kg-m™). Values reported in units of grams per
milliliter, where the liter is “the volume of one kilogram of water at its temperature of maximum density”
convert to kg-m® when multiplied by 999.972 (as defined by the 12th General Conference of the
International Committee on Weights and Measure, 1964). Values of specific gravity relative to water at a
stated reference temperature become density upon multiplication by the accepted density of water at the
reference temperature. Most reported densities for liquids below the boiling point apply to the air-
saturated liquid.

Compounds are identified by an IUPAC approved name [93-ano-1], the empirical molecular formula,
and the Chemical Abstracts Service Registry Number. A summary table is available for each compound
which includes the reported temperature and density values, an assigned uncertainty for the density, the
difference between the observed and smoothed density values and an index key to the source of the data.
A complete list of references, identified by the index keys, appears at the end of the volume.

Where appropriate, tables of smoothed, recommended values are given at integral multiples of 10 K
over the experimental range of temperatures. Values at 293.15 K and 298.15 K are included when they
are in the range of the original data set. The recommended values also have assigned uncertainties.
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1.3 Description of Data Tables

Data for a particular compound are selected, evaluated and smoothed in one of four ways, depending
upon the number and accuracy of the reported values and upon their distribution over the temperature
range.

Case 1. When the data set consists of at least four acceptable, effectively distinct values (see
section 1.5.3), the densities in selected subsets are fit to a function of temperature using the least
squares criterion. A summary table for the selected set gives the densities, their estimated
uncertainties, the deviations between observed and calculated values, an index key to the list of
references and a plotting symbol. If sufficient space remains, some data outside the selected set
also are included in the summary table along with reference keys to any remaining data. A plot of
the deviations between observed and calculated values is shown for the selected subset. Error bars
indicate the size of the estimated uncertainties for the data. Distinct plotting symbols identify the
five data sources that have the smallest average estimated uncertainties. A single symbol
represents all remaining data in the selected set. A table consisting of smoothed, recommended
values (calculated from the fitted functions) is also given. Estimated uncertainties are given for
the recommended values which also appear as a continuous line on the deviation plot. Densities of
crystal phases are in a separate section of the table. In most cases, these densities have not been fit
as a function of temperature. Values of parameters, statistical measures of the fit, and references
to sources of critical constants appear at the beginning of these sections.

Case 2. For data sets that do not meet the criteria of Case 1, but contain acceptable values over a
temperature range of at least two degrees, the results are smoothed using a linear function of
temperature with an estimated coefficient of thermal expansion. A table of smoothed
recommended values is presented.

Case 3. For data sets that do not meet the criteria of either Case 1 or 2 but contain two or more
values at a single temperature, a recommended value is given for this temperature by taking a
weighted average of the observed values.

Case 4. For data sets that contain only single values at one or two temperatures, the reported values
are given rather than recommended values.

1.4 Evaluation, Selection and Smoothing of Data

1.4.1 Assignment of Uncertainties

The Thermodynamics Research Center staff have assigned an uncertainty value to each observed and
recommended density value listed in the tables. The true value of the property has a 95% probability of
being in the range covered by + or — the uncertainty about the reported value. Assignment of uncertainty
is a subjective evaluation based upon what is known about the measurement when the value is entered
into the database, and includes the effects of all sources of experimental error. The errors have been
propagated to the listed density at the reported temperature. Uncertainties reported by the investigators
are considered but not necessarily adopted. Often, investigators report repeatability, but they usually do
not provide uncertainty.

Errors in density result from errors in temperature measurement or control; calibration of instruments;
transfer, handling and weighing of samples; and impurities in the samples. At temperatures well below
the critical temperature and near room temperature, standard techniques easily achieve accuracies of
+0.05%. For the compounds in this compilation, that level corresponds to about 0.4 kg-m™. Under these
conditions, errors in temperature are not very significant. This level of accuracy only requires
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4 1.4 Evaluation, Selection, and Smoothing of Data

temperatures to be known within £ 0.5 K. At temperatures approaching the critical temperature,
measurements become more demanding because of the rapid increase in the magnitude of the coefficient
of thermal expansion. Greater accuracy, in general, requires careful attention to calibration, mass
determination and sample handling techniques. It is assumed that values obtained by pycnometers have
been corrected for buoyancy of air, unless the author specifically says otherwise. This correction
increases the apparent density by 0.05 - 0.1%. When this correction has not been made, the estimated
uncertainty is greater.

Most measurements of densities of liquids below their normal boiling points are made in the presence
of air. Densities reported here refer to liquids in equilibrium with a gas phase consisting of a mixture or
air and vapor at a total pressure of one atmosphere below the normal boiling point and of vapor at the
equilibrium vapor pressure above the boiling point. Thus air is not regarded as an impurity.

A major source of error in most measurements is the presence of impurities in the sample. The effect
of an impurity depends upon its amount in the sample and upon the difference between its density and the
density of the principal constituent. Even when the sample purity is provided quantitatively, the
impurities often are not identified individually. Nevertheless, a report of sample purity reduces the
estimated uncertainty because it can be taken as evidence that the investigator has considered sample
purity. The most ubiquitous impurity in liquids is water, and, because its density differs significantly
from those of hydrocarbons, it is a common source of error. Exclusion of water requires that the sample
be protected from the atmosphere during transfer, and that special precautions be taken to remove the
sample from containers.

1.4.2 Quantitative Effect of Impurity on Density of Liquids

The molar volume of a mixture of components, V, in terms of the mole fractions x; and partial molar
volumes of the components V; is:

M-

V=SuxV (1.5)

1

i=1

For an ideal solution, the partial molal volumes equal the molar volumes of the pure liquid components.
Denoting component the main components as 1 and the impurities as > 1, the volume becomes:

V=xV,+3 1V (1.6)
i=2
Then using,
p=MIV (1.7)
and the molar mass of the mixture:
M=YxM, (1.8)

and assuming that the x; are small for i > 1, then

p:ﬁ(l—plzmvij (1.9)
w i=2

where v; = V;/M; are partial specific volumes of the impurities and w; is the mass fraction of component i.
Finally, the density of the mixture is related to the density of the main component and the impurities i by:

p=%[1—p12ﬁ) (1.10)

1 i=2 Mi
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1.4 Evaluation, Selection, and Smoothing of Data 5

The observed value of the density of a sample is sometimes presented as evidence of its purity.
Assuming the sample contains a single impurity, equation (1.10) can be solved for p - p::

p_Plzpl(l_Wl_plwz/pz)/Wl (1.1T)

1.4.3 Procedure for Selection and Smoothing of Density Values - Case 1

A selected subset of the reported densities is fit to functions of temperature using the least squares
criterion. Up to a boundary temperature T}, (approximately 0.87;), the calculated density p, is represented
by a polynomial in temperature with coefficients a; of order p,

L k
p,=2aT". (1.12)
k=0
Above T, the smoothed values are given by a modification of the Guggenheim equation [67-gug]

.= (1+l.750+0.7593)[pc +b,(T, =T)+b, (T, = T) +b,(T, = T) +b,(T, —T)4] (1.13)
where T, is the critical temperature and 0 = (1—T/Tc)” 3. Selected values of critical constants are constant.
Continuity with equation (1.12) results from forcing the two functions and their first derivatives with
respect to temperature to be equal at the boundary. = When no values are available above this
temperature, only the polynomial is used.

The following steps, implemented by a computer program written in C, generate the smoothed,

recommended values. Input to the program consists of the set of observed density values, temperatures,
estimated uncertainties, critical constants and values of certain parameters used by the program.

Step 1. Separate the initial data into two sets, corresponding to temperatures above and below Ty,

Step 2. Make an initial selection from the low temperature set by rejecting all points with zero
uncertainty and all points with uncertainties above a limit determined by the data selection
algorithm described in section 1.5.2. Zero uncertainties are assigned to values that are not
experimental and are included for comparison only (these are most often values recommended in
other compilations).

Step 3. Determine the effective number of data values, n., as described in 1.5.3. If the effective
number of values is less than four, terminate the calculation. If the total number of values is more
than eight and the effective number is greater than or equal to four but less than eight, make
another initial data selection with relaxed selection criteria.

Step 4. For the j-th value in the set calculate normalized values, p,; and 7,; and weighting
factors, w;, =1/ u? where u; is the uncertainty assigned to the j-th observed density and

P =P, —p where p is the mean value of the observed density in the set. and
T, =T“—T* where T* isthe mean value of the T/ value in the set..

Step 5. Using p, = a,T,, fit the data subject to least squares with points weighted by w;.

Step 6. Calculate the standard deviation o for this fit. Eliminate any points from this set for
which | §;1>3.50, where 6, =p, —p, ;.
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6 1.4 Evaluation, Selection, and Smoothing of Data

Step 7. Fit the remaining normalized values to a series of polynomials, p, = ZakT" , starting

with order 1 and increasing in order. Use w; as weighting factors and stop increasing the order
when satisfying one of the following conditions:

1. A value of p given as an input parameter to the program is reached, or

2. x2 <LI[1+1/(n—k)] xi_, (see glossary of symbols) and the deviations pass the random
deviation test (see 1.5.4).

Step 8. If any points have | §; | > 2.2 for the final polynomial, eliminate these points and repeat
step 7.

Step 9. Calculate parameter ;.
Step 10. Apply the initial data selection described in step 2 to the high temperature data set.

Step 11. Fit the selected high temperature data with the modified Guggenheim equation using
least squares with weighting factors w;.

Step 12. The following procedure provides continuity at the boundary. Set equation (1.13) and
its first derivative at Ty, equal to the corresponding values from equation (1.12) at 7. Eliminate
parameters b; and b, from these two simultaneous equations to obtain a function containing
parameters b, and b, which can be evaluated for the high temperature range using least squares.
Do not use densities at temperatures within 2 K of the critical temperature.

Step 13. Generate the output table of temperature, observed densities, estimated uncertainties,
and difference between observed and calculated densities and arrange it in order of year of
publication with authors. For data from a particular source, arrange in order of temperature.

Step 14. Calculate the table of smoothed and recommended values with their corresponding

estimated uncertainties.

Coefficients A, B, C, D and E listed in the heading of Table 1 for each compound correspond to ay, a;, a,,
as and a4 in equation (1.12) for temperatures below 7,. o) is the weighted standard deviation for
individual points in this region (see the glossary). If the data set includes values above T, the
coefficients A, B, C and D correspond to by, by, b; and b, in equation (1.13) for this range. The weighted
standard deviation, o, and the unweighted standard deviation for the fit, oy, include both ranges. If
the data set covers only values below Ty then o, and o, represent that range only.

The uncertainty in the smoothed values depends upon the uncertainties in the original observed values
and upon the magnitude of deviations between observed and calculated values. To approximate the
contribution of these two effects at the temperature 7, the uncertainties u,(7) for the low temperature
range are calculated from:

- 2
u (T)= |:M(T)2 + 3 Cu(TF =T Y(T' - T’)} ) (1.14)
ko1

In this equation, u(T) represents the uncertainty of the observed data in the vicinity of 7 and is
approximated by fitting a polynomial of order 1-3 to the estimated uncertainties as a function of
temperature (other symbols appear in the glossary). Uncertainties in the smoothed data for the high
temperature range are calculated using:

172

u (T) =[u (1) +(1)7] (1.15)

where u,(Ty) is the uncertainty calculated using equation (1.14) for the low temperature range at the
boundary temperature Ty, and A(T) is a polynomial in temperature fit to the reciprocals of the estimated
uncertainties in the high temperature region.

The uncertainties in extrapolated data should increase as the extent of extrapolation increases. Since
equation (1.15) does not always give this result, manual adjustment is sometime required in this range.
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1.4.4 Procedure for Selection and Smoothing of Density Values - Case 2

When the data set for a particular compound satisfies the criteria for Case 2, it is smoothed by a linear
function of temperature,

p,=a,+aT. (1.16)

The coefficient a; is either calculated from two densities of sufficient accuracy reported at different
temperatures, preferably by the same investigator, or estimated by examination of the coefficient of
expansion of similar compounds obtained from a least squares calculation. The constant term then
results from equation (1.17) after eliminating values with large uncertainties

a0=2wj(pj—a17})/2wj. 1.17)
The uncertainties for the smoothed values are:
u (1) =[oy+01(T-T)T, (1.18)

where T is the weighted mean temperature for the accepted set, o = (2wj5§) /Zw; and oy is the

estimated standard deviation of a; .

1.4.5 Procedure for Selection and Smoothing of Density Values - Case 3

The recommended density at a particular temperature is the weighted mean observed density for that
temperature. The corresponding uncertainty is the standard deviation from the mean for each value.

1.5 Calculation Procedures

1.5.1 Least Squares Calculation

Parameters of all the smoothing functions are adjusted to minimize the function
x :ij5§ (1.19)

by the singular value decomposition of the matrix of independent variables of the function. The
parameters are calculated by functions svdemp and svbksb described in [88-pre/fla] modified to accept
weighting factors. The covariance matrix used in equation (1.14) is calculated by the function covar
from the same book.

1.5.2 Selection of Data Based upon Estimated Uncertainties

The selection procedure is:
Step 1. Obtain AT, the range of temperatures covered by the data set.

Step 2. For each density value, p;, in the set, calculate,

x, =exp(q|T; - ) (1.20)

4= x, (1.21)

1#j
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8 1.5 Calculation Procedures

%= ux, (1.22)

1#j
y:MjZILSZ;l (123)

Accept point j if y < d; reject it otherwise.
Step 3. Repeat steps 1 and 2 with points accepted in the first pass.

The accepted points are those that remain from Step 3. The constants g and d are:

g =-2628g |1+ (AT /30)°|/ AT

d=g, /10g10(1+n).

The number z, / z; is a weighted mean of all points in the set other than the j-th point. The weighting
factor decreases exponentially with the difference in temperature of the /-th point from the j-th point.
The parameter g; determines the rate of decrease. This procedure compares the uncertainty of the j-th
point to the weighted mean of other points. The parameter g, determines the rejection level from this
comparison for the j-th point. Larger values of g, are less selective. Values for g; and g, are supplied to
the algorithm. For all cases g, is in the range of 1 to 2 (usually 1.8). The value of g, is in the range of 2
to 3 (kg-m™) (usually 2.5).

1.5.3 Count the Effective Number of Density Values in a Set

The number of degrees of freedom in a least squares fit is the number of distinct data values minus the
number of adjustable parameters. To obtain a meaningful smoothing of data, the order of the polynomial
function is limited to values which gives three or more degrees of freedom. However, if two or more
density values in the set are at the same (or nearly the same) temperature, they should count as only one
point in calculating the degrees of freedom. In general, the effective number of density values minus the
number of fitting parameters is used as the degrees of freedom. Effective data values are those that are
separated by at least 1.2 K.

1.5.4 Testing a Set of Deviations between Observed and Calculated Density Values
for a Random Distribution

One of the criteria for acceptance of the order of a polynomial least squares fit is that the deviations

between calculated and random values be distributed “randomly” over the range of conditions covered by

the data. The concept of randomness for this purpose probably cannot be defined rigorously. However,
the following test for randomness is used whenever the original data set contains seven or more values.

Step 1. Sort the values in order of increasing temperature

Step 2. Separate the total range of temperature, A7, into s subranges each of size AT/s. Form s
subsets of data corresponding to these temperature subranges.

Step 3. Make the following comparison for each subset j which has at least four members.

001< % and 02< @ .
n, Z|5j|

If both comparisons are true for any subset, the test for randomness fails.
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Step 4. Apply steps 2 and 3 to the data for s from 2 to an upper limit. The upper limit is
determined by the number of values in the original set according to the following table.

n, number of values in original set maximum number of subsets
7to 10 2
11to 20 3
21 to 33 4
>33 5

1.6 Glossary of Symbols

ay parameters in the polynomial function for densities at temperatures < T,

by k-th parameter in modified Guggenheim equation for density at temperatures >T},
g1, &  parameters used in the data selection algorithm

n number of accepted values of density in a set

e effective number of accepted values of density in a set

n number of density values in subset s

)4 order of the polynomial for density values at temperatures < Tj,

s number of subsets in the random deviation algorithm

u; uncertainty assigned to the j-th observed density value in a set

w; weighting factor for the j-th density value in a set

Cri Element k,/ of the variance-covariance matrix for the polynomial parameters

T absolute temperature

Ty boundary temperature

T. critical temperature

T; temperature for the j-th observed density

T mean value of the T_/k values in a set

T,; Tjk - F , normalized value of the j-th temperature raised to the k power
% Pi= Pri 1/3

6  (1-TT

P density

P(API) API specific gravity

o mean value of observed densities in a set

Po density of a standard substance

Pe critical density

P observed value of j-th density in a data set

Pm molar density

Pnj p;- E , normalized density for the j-th value

Pr relative density

Pxj calculated value of the j-th density in a data set

(o (Xz/n)m, standard deviation for density values in a set
)(z Do) 2/ for all values in a set fit to a polynomial of order &
AT T, - T\, range of temperatures for data in a set
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The following symbols refer to components in a mixture at a fixed temperature

c number of components in the mixture

i component number

Vi partial specific volume of component i in the mixture
w; mass fraction of component i in the mixture

X; mole fraction of component i in the mixture

M, molar mass (molecular weight) of component i

1% molar volume of a mixture

V. partial molal volume of component i in the mixture
P density of a mixture of components

P density of pure component i

Symbols used in the tables:

A,B,C,D,E coefficients in function for density (see section 1.4.3)

Peale calculated density, p,

Pexp observed value of j-th density in a data set, p;

o, (Ew,8% / Zw;)""?, for low temperature range only

O (Ew,6% / Zw;)""?, for low and high temperature range combined

Ocuw [Z6 5 / n(n— p —2)]"?, for low and high temperature range combined
20y estimated uncertainty, u;

1.7  Order of Compounds in the Tables

The density tables are organized into 2 main classes of compounds as described in the Table of Contents:
esters and ethers. Within each main class there are several subclasses. They start with fully saturated
compounds and proceed with increasing extents of unsaturation. Within each subclass the compounds are
arranged in formula order. First with increasing number of carbon atoms in the empirical formula and
then with increasing number of hydrogen atoms. Compounds with the same formula are sorted
alphabetically by the name used in the tables.
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