Aromatic Hydroxyketones:

 Preparation and Physical Properties 1 3rd Edition

Robert Martin

Hydroxybenzophenones

Aromatic Hydroxyketones: Preparation and Physical Properties

Aromatic Hydroxyketones: Preparation and Physical Properties

Robert Martin
Emeritus Professor
Formerly Curie Institute
Paris, France
robert.f.martin@wanadoo.fr

ISBN 978-1-4020-9786-7 e-ISBN 978-1-4020-9787-4
DOI 10.1007/978-1-4020-9787-4
Springer Dordrecht Heidelberg London New York
© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to Canon Joseph Clerc priest at Montmorot (Jura, France, 1899-1985) who in 1944 gave a home to the Martin brothers, young Parisians refugees.

Robert Martin

Foreword

It is my great pleasure to write a foreword for Dr. R. Martin's handbook on Fries rearrangement and their aromatic hydroxyketones products. The present work is the result of numerous years of experience in compiling and editing data.

I have known Dr. Martin since my arrival at the Curie Institute in the 1990s and his enthusiasm was most encouraging, setting a good example of passion for chemistry. Although being retired from industry, he deliberately came to work in our team, not only for bibliographical work but also for working at the bench.

In this work, special effort has been made to select material suitable to meet the needs of chemists who do not benefit from unlimited time for specialized research in the field of hydroxyacetophenones and hydroxybenzophenones. These compounds are precursors of substituted aromatic derivatives which are often not straightforwardly obtained but have many potential applications in fine and medicinal chemistry.

I recognize that it represented a huge effort for Dr. Martin to produce such an exhaustive compilation within the limits set to him by the economy of space. This work will primarily be of great value to professional chemists, from physicists to pharmacists, who are often called upon to solve problems about the synthesis of this kind of aromatic compounds.

In this handbook set, the reader will find four independent parts which successively cover the topics of monoaroyl and polyaroylphenols in Volume 1, hydroxyacetophenones in Volume 2, substituted hydroxyacetophenones in Volume 3 and hydroxypropiophenones, hydroxyisobutyrophenones and hydroxypivalophenones in Volume 4.

For such needs as described above, this compilation will supply helpful and easy-to-read information, even in our computerized era.

Dr. Jean-Claude Florent Director of the CNRS/Institut Curie Research Unit "Conception, Synthesis and Targeting of Biomolecules"

Institut Curie, Paris

Preface

Aromatic hydroxyketones are widely used as starting materials in organic synthesis to obtain medicines, dyes, perfumes, plastics, explosives, preservatives, etc. and, what is more, many of them also offer very specific uses.

This Handbook contains information on Hydroxybenzophenones, Hydroxyacetophenones, Hydroxypropiophenones, Hydroxyisobutyrophenones, Hydroxypivalophenones and numerous methylethers, collecting more than 6,000 ketones of which an indicated preparation as well as their physico-chemical and spectrochemical data are presented. This updated study now also covers the literature from 1890 until December 2008, including circa 8,500 references.

Aromatic Hydroxyketones: Preparation and Physical Properties is presented in dictionary style, with a logical classification of the ketones, which makes the information easily available for consultation. Ketones are classified methodically. As a result, they are easily accessible to the reader from three tables provided at the end of Volume 4: the molecular formula index, the Chemical Abstracts Registry Numbers and the usual names index.

This is the reason why it seemed interesting to update the contents of the four previous volumes and regroup them into one big handbook set. In this format, it will be more convenient for its main users, academics and industrial chemists.

Robert Martin
Institute Curie, France

Acknowledgements

I wish to express my heartfelt thanks to Dr. Pierre Demerseman who accepted me in his Laboratory at Institut Curie in 1987, and kindly revised my manuscript.

I am also grateful to Dr. Jean-Pierre Buisson, always so amiable and efficient, whose knowledge of word-processing largely contributed to the final page-setting of this work.

My thanks are also directed to Prof. Claude Monneret, formerly Head of the Chemical Department at Institut Curie, who has always been so benevolent to me.

I acknowledge as well his successor to the management of the laboratory, Dr. Jean-Claude Florent, who maintains the tradition and always welcomes me with much kindness, and all his collaborators for their warm welcome at each of my visits. The foreword of this Handbook was also written by Dr. Jean-Claude Florent. I most appreciate this mark of kindness.

I thank my son Serge Martin for friendly advice on the English edition of this book. Moreover, Mr. Serge Martin was a constant aid to me as regards data processing.

Various friends who readily agreed to translate foreign publications are also to be acknowledged here, in particular Dr. Jean Burkhard who has been of invaluable help for translating German papers over the last 30 years. The diverse abbreviations used in ancient reviews - particularly Chemisches Zentralblatt - had no secrets for him. Unfortunately, he left us in 2001 at the age of 91.

In this connection, thanks are due to Mrs. Feiga Weisbuch for her precious assistance as regards Rumanian and Russian texts, Mrs. Elisabeth MatarassoTchiroukhine as regards German and Russian texts as well as to Miss Marie-Françoise Liachenko, Drs. Daniel Dauzonne and Frédéric Schmidt. I wish to express my thanks to Mrs. Mireille Guyonneau, Mrs. Françoise Boucheron and my grandson Julien Martin for their contribution to my bibliographic research.

Before closing, I would like to remember my dear departed. My affectionate thoughts are turned towards Prof. Léon Denivelle who transmitted to me his passion for aromatic organic chemistry in 1945, and Prof. Albert Kirrmann who accepted me among his students in 1961 and was always so amiable and welldisposed whenever I went to him. I cannot mention without emotion Prof. Albert Saint-Maixen who largely communicated to me his knowledge of analytical chemistry.

I also have a personal thought towards my friends from the industry who left us too soon. I am particularly thankful to Drs. Henri Barbier, Félix Lepors and Henri Ruelleux (SPCA, Ltd.) who gave me the practical means to carry out my work on aromatic hydroxyketones. In this firm, I started my research on the Fries reaction. I also wish to acknowledge the late Dr. François Krausz who, at that time, made me benefit from his precious advice.

Last but not least, I am in debt beyond words to Angèle, my life for almost 60 years. Without her unfailing affection, support and understanding, nothing had been possible.

Short Biography

Robert Martin graduated as engineer from CNAM, then as doctor-engineer and doctor es sciences (Ph.D.) from Paris University. He studied with professors Léon Denivelle and Albert Kirrmann.

After having worked in the pharmaceutical industry, Robert Martin completed his career of organic chemist at a Research Laboratory of the French CNRS, located in the Curie Institute in Paris.

He has been studying the Fries reaction since 1956 without interruption. He has prepared a considerable number of aromatic hydroxyketones. A large part of these are included in the reference NMR and IR spectra collection of Sadtler (Philadelphia, USA).

His research on aromatic hydroxyketones gave rise to about 40 publications between 1963 and 1992, some of them in collaboration with Mainz University (Germany) and others with Institut Curie (Paris).

In 1992, he published a review on the Fries reaction in Organic preparations and Procedures International. This was followed by two books dealing with aromatic hydroxyketones, published by Kluwer in 1997 and 2000, then a third book by Springer in 2005.

For his various works concerning aromatic hydroxyketones he received the silver gilt medal from the Société d'Encouragement à l'Industrie Nationale in 1985.

Contents

Volume 1

Part I Monoaroylphenols
1 Unsubstituted Hydroxybenzophenones (Class of METHANONES) 3
1.1 Monohydroxybenzophenones 3
1.2 Dihydroxybenzophenones 11
1.2.1 Hydroxy Groups Located on One Ring 11
1.2.2 Hydroxy Groups Located on Both Rings 17
Symmetrical ketones 17
Asymmetric ketones 19
1.3 Trihydroxybenzophenones 22
1.3.1 Hydroxy Groups Located on One Ring 22
1.3.2 Hydroxy Groups Located on Both Rings 24
1.4 Tetrahydroxybenzophenones 28
1.4.1 Hydroxy Groups Located on One Ring 28
1.4.2 Hydroxy Groups Located on Both Rings 28
Symmetrical ketones 28
Asymmetric ketones 30
1.5 Pentahydroxybenzophenones 35
1.5.1 Hydroxy Groups Located on One Ring 35
1.5.2 Hydroxy Groups Located on Both Rings. 35
1.6 Hexahydroxybenzophenones 39
Symmetrical ketones 39
Asymmetric ketones. 40
2 Substituted Hydroxybenzophenones (Class of METHANONES) 43
2.1 Monohydroxybenzophenones 43
2.1.1 Substituents Located on the Hydroxylated Ring 43
2.1.2 Substituents Located on the Other Ring 143
2.1.3 Substituents Located on Both Rings 190
2.2 Dihydroxybenzophenones 364
2.2.1 Hydroxy Groups Located on the Same Ring 364
2.2.1.1 Substituents Located on the Hydroxylated Ring 364
2.2.1.2 Substituents Located on the Other Ring 392
2.2.1.3 Substituents Located on Both Rings 409
2.2.2 Hydroxy Groups Located on Both Rings. 423
2.2.2.1 Substituents Located on One Ring 423
2.2.2.2 Substituents Located on Both Rings 441
Symmetrical ketones 441
Asymmetric ketones 452
2.3 Trihydroxybenzophenones 464
2.3.1 Hydroxy Groups Located on the Same Ring 464
2.3.1.1 Substituents Located on the Hydroxylated Ring 464
2.3.1.2 Substituents Located on the Other Ring 466
2.3.2 Hydroxy Groups Located on Both Rings. 471
2.3.2.1 Substituents Located on One Ring 471
2.3.2.2 Substituents Located on Both Rings 480
2.4 Tetrahydroxybenzophenones 489
2.4.1 Hydroxy Groups Located on One Ring 489
2.4.2 Hydroxy Groups Located on Both Rings 489
2.4.2.1 Substituents Located on One Ring 489
2.4.2.2 Substituents Located on Both Rings 494
Symmetrical ketones 494
Asymmetric ketones 494
2.5 Pentahydroxybenzophenones 496
2.5.1 Hydroxy Groups Located on One Ring 496
2.5.2 Hydroxy Groups Located on Both Rings. 496
2.5.2.1 Substituents Located on One Ring 496
2.5.2.2 Substituents Located on Both Rings 499
2.6 Hexahydroxybenzophenone 500
3 Polyphenyl Phenyl Methanones (Class of METHANONES) 501
3.1 Biphenyl Phenyl Methanones 501
3.1.1 Monohydroxylated Ketones 501
3.1.2 Dihydroxylated Ketones 508
3.2 Terphenyl Phenyl Methanones 511
4 Cyclohexyl Phenyl Methanones (Class of METHANONES) 513
4.1 Monohydroxylated Ketones 513
4.2 Dihydroxylated Ketones 519
4.3 Trihydroxylated Ketones 520
Part II Diaroylphenols and Polyaroylphenols
5 Phenols with One Benzoyl Group and One or Several Acetyl Groups (Class of ETHANONES) 523
5.1 Monohydroxylated Ketones 523
5.2 Dihydroxylated Ketones 525
5.2.1 Symmetrical Ketones 525
5.2.2 Asymmetric Ketones 525
5.3 Trihydroxylated Ketone 528
5.4 Tetrahydroxalated Ketone 528
6 Phenols with Two or Several Benzoyl Groups
(Class of METHANONES) 529
6.1 Monohydroxylated Ketones 529
6.1.1 Symmetrical Ketones 529
6.1.2 Asymmetric Ketones 532
6.2 Di- and Polyhydroxylated Ketones 534
6.2.1 Symmetrical Ketones 534
6.2.2 Asymmetric Ketones 543
Part III Miscellaneous Related Compounds (Class OF METHANONES)
7 Miscellaneous Related Compounds 549
7.1 Diphenyl Derivatives 549
7.2 Diphenylmethane Derivatives 551
7.3 Diphenylethane Derivative 553
7.4 Diphenylpropane Derivatives 554
7.5 Diphenyl Oxide Derivatives 554
7.6 Diphenyl Sulfoxide Derivatives 556
7.7 Diphenyl Sulfone Derivatives 557
7.8 Other Acylated Compounds 559
Part IV Addendum to Volume 1
8 Addendum 2000-2008 563
Volume 2
Part V Monoketones Unsubstituted on the Acetyl Groups
9 Compounds Derived from Acetic Acid 659
Part VI Addendum to Volume 2
10 Addendum 2005-2008 1095
Volume 3
Part VII Monoketones Substituted on the Acetyl Groups
11 Compounds Derived from Halogenoacetic Acids 1201
11.1 Compounds Derived from Bromoacetic Acids 1201
11.1.1 From Monobromoacetic Acid 1201
11.1.2 From Dibromoacetic Acid 1224
11.1.3 From Tribromoacetic Acid 1228
11.2 Compounds Derived from Chloroacetic Acids 1229
11.2.1 From Monochloroacetic Acid 1229
11.2.2 From Dichloroacetic Acid. 1254
11.2.3 From Trichloroacetic Acid 1259
11.3 Compounds Derived from Fluoroacetic Acids 1264
11.3.1 From Monofluoroacetic Acid 1264
11.3.2 From Difluoroacetic Acid 1265
11.3.3 From Trifluoroacetic Acid 1266
11.4 Compounds Derived from Iodoacetic Acids 1288
11.4.1 From Monoiodoacetic Acid 1288
11.4.2 From Diiodoacetic Acid 1291
11.4.3 From Triiodoacetic Acid 1291
12 Compounds Derived from Aminoacetic Acids 1293
12.1 Compounds Derived from Aminoacetic Acid 1293
12.2 Compounds Derived from Substituted Aminoacetic Acids 1298
13 Compounds Derived from Alkoxyacetic Acids 1321
13.1 Compounds Derived from Methoxyacetic Acids 1321
13.2 Compounds Derived from Phenylmethoxyacetic Acids 1345
13.3 Compounds Derived from Ethoxyacetic Acids 1346
13.4 Miscellaneous 1351
14 Compounds Derived from Aryloxyacetic Acids 1353
14.1 Compounds Derived from Phenoxyacetic Acid. 1353
14.2 Compounds Derived from Substituted Phenoxyacetic Acids 1355
15 Compounds Derived from Hydroxyacetic Acids 1369
16 Compounds Derived from Acyloxy- and Aroyloxyacetic Acids 1383
16.1 Compounds Derived from Acetoxyacetic Acids 1383
16.2 Compounds Derived from Other Acyloxy- and Phenacyloxyacetic Acids 1386
16.3 Compounds Derived from Benzoyloxyacetic Acids 1389
17 Compounds Derived from Nitroacetic Acids 1395
18 Compounds Derived from Arylacetic Acids 1399
18.1 Compounds Derived from Phenylacetic Acid 1399
18.2 Compounds Derived from Substituted Phenylacetic Acids 1449
18.3 Compounds Derived from Di- and Triphenylacetic Acids 1538
18.4 Compounds Derived from Cycloalkylacetic Acids 1541
19 Compounds Derived from S-Substituted Mercaptoacetic Acids 1543
Part VIII Di- and Polyketones
20 Aromatic Ketones Containing Only Acetyl Groups 1559
20.1 Acetyl Groups Located on One Ring 1559
20.1.1 Unsubstituted Acetyl Groups and Homologues 1559
20.1.2 Diversely Substituted Acetyl Groups. 1590
20.2 Acetyl Groups Located on Different Rings 1590
20.2.1 Diphenyl Derivatives. 1590
Symmetrical ketones 1590
Asymmetrical ketones. 1595
20.2.2 Diphenylmethane Derivatives 1598
20.2.2.1 Unsubstituted Acetyl Groups 1598
20.2.2.2 Halogenated Acetyl Groups 1606
20.2.3 Diphenylalkanes Derivatives and Homologues 1610
20.2.4 Diphenyl Ethers and Related Compounds 1614
20.2.5 Diphenyl Sulfide Derivatives and Related Compounds 1620
20.2.5.1 Diphenyl Sulfide Derivatives 1620
20.2.5.2 Diphenyl Sulfone Derivatives 1623
21 Aromatic Ketones Containing At Least One Acetyl Group and One Other Acyl Group 1627
21.1 Acyl Groups Located on One Ring 1627
21.1.1 Diphenyl Ketone Derivatives 1627
21.1.2 Miscellaneous 1631
21.2 Acyl Groups Located on Different Rings 1636
21.2.1 Diphenyl Ketone Derivatives 1636
Symmetrical ketones 1636
Asymmetrical ketones. 1638
21.2.2 Miscellaneous 1641
Part IX Addendum to Volume 3
22 Addendum 2005-2008 1649
Volume 4
Part X Hydroxypropiophenones, Hydroxyisobutyrophenones, Hydroxypivalophenones and Derivatives
23 Aromatic Ketones Containing One Propionyl Group 1737
23.1 Benzene Derivatives 1737
23.2 Naphthalene Derivatives 1962
23.3 Heterocyclic Derivatives 1988
24 Aromatic Ketones Containing One Isobutyryl Group. 2011
24.1 Benzene Derivatives 2011
24.2 Naphthalene Derivatives 2062
24.3 Heterocyclic Derivatives 2067
25 Aromatic Ketones Containing One Pivaloyl Group. 2083
25.1 Benzene Derivatives 2083
25.2 Naphthalene Derivatives 2100
25.3 Heterocyclic Derivatives 2103
Part XI Di- and Polyketones
26 Aromatic Polyketones Containing Only Propionyl Groups 2107
26.1 Propionyl Groups Located on the Same Ring 2107
26.2 Propionyl Groups Located on Different Rings 2117
27 Aromatic Polyketones Containing At Least One Propionyl Group 2131
27.1 Carbonyl Groups Located on the Same Ring 2131
27.2 Carbonyl Groups Located on Different Rings 2142
28 Aromatic Polyketones Containing Only Isobutyryl Groups 2147
28.1 Isobutyryl Groups Located on the Same Ring 2147
28.2 Isobutyryl Groups Located on Different Rings 2148
29 Aromatic Polyketones Containing At Least One Isobutyryl Group 2159
29.1 Carbonyl Groups Located on the Same Ring. 2159
29.2 Carbonyl Groups Located on Different Rings 2160
30 Aromatic Polyketones Containing Only Pivaloyl Groups 2169
30.1 Pivaloyl Groups Located on the Same Ring 2169
30.2 Pivaloyl Groups Located on Different Rings 2170
31 Aromatic Polyketones Containing At Least One Pivaloyl Group 2171
31.1 Carbonyl Groups Located on the Same Ring. 2171
References 2173
Molecular Formula Index 2421
Chemical Abstracts Registry Numbers 2687
Usual Names Index 2881
Common Abbreviations 2907

Part I Monoaroylphenols

Chapter 1
 Unsubstituted Hydroxybenzophenones (Class of METHANONES)

1.1 Monohydroxybenzophenones

(2-Hydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 198.22
Syntheses

- Preparation by Friedel-Crafts acylation of benzene in the presence of aluminium chloride,
- with 2-hydroxybenzoyl chloride (salicylic acid chloride) [1], (52\%) [2], (39\%) [3], at temperature $<60^{\circ}$ [4];
- with o-anisoyl chloride [5-12], (65\%) [13], (57\%) [14], (53\%) [15], (37\%) [16], (30%) [17]. Demethylation occurred during the Friedel-Crafts acylation, especially in the presence of ferric chloride at $130-140^{\circ}$ [5];
- with 2-ethoxybenzoyl chloride in a boiling water bath (42\%) [13].
- Preparation by dealkylation,
- of 2-methoxybenzophenone, with aluminium bromide in refluxing benzene for 4 h (96\%) [18]; with 48% hydrobromic acid in boiling acetic acid for 2 h [19]; with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21];
- of 5-tert-butyl-2-methoxybenzophenone with aluminium chloride in benzene at $65-70^{\circ}$ for $45 \mathrm{~h}(79 \%)[9,22]$. The starting keto ether was obtained by reaction of benzoyl chloride with 4-tert-butylanisole in the presence of zinc chloride in refluxing tetrachloroethane for 40 h [22];
- of 5-tert-butyl-2-hydroxybenzophenone with aluminium chloride in benzene at $65-70^{\circ}$ for 45 h (63\%) [9].
- Preparation by Fries rearrangement of phenyl benzoate,
- with aluminium chloride [23],
without solvent
at 200° for $20 \min [20]$ or for $15 \min (26 \%)$ [24], at 190° for $7 \mathrm{~h}(26 \%)$
[25], at $140^{\circ}(24 \%)$ [26] or at 140° for $15 \mathrm{~min}(27 \%)$ [27], at 130° for 1 h ,
then at 160° for $1 \mathrm{~h}(30 \%)$ [28], between 100° and 150° for 3 h (minor
product) [29], or at 63° for $4 \mathrm{~h}(<2 \%)$ [30],
with solvent
in nitrobenzene at 98° for $5 \mathrm{~h}(<9 \%)$ or at 120° for $2 \mathrm{~h}(15 \%)$ [31];
- with an aluminium chloride and sodium chloride mixture at $140-200^{\circ}(37 \%)$ [26];
- with aluminium bromide in chlorobenzene at 110° for $15 \mathrm{~min}(2 \%)$ or for 4 h (20\%) [32];
- with aluminium iodide in refluxing acetonitrile $\left(82^{\circ}\right)$ for $10 \mathrm{~h}(23 \%)$ [33];
- with boron trifluoride-etherate in the presence of phenol in refluxing benzene for 3 h (68\%) [34];
- with ferric chloride in a boiling water bath for 6 h [35];
- with titanium tetrachloride in nitrobenzene at 60° for 18 h (7\%) [27] or in refluxing nitromethane for 30 min (15\%) [36];
- with TFMS (trifluoromethanesulfonic acid) in tetrachloroethane at 170° for 24 h in a sealed tube (39\%) [37];
- with Nafion-H, a polymeric perfluorinated resin sulfonic acid, in refluxing nitrobenzene for 12 h (24\%) [38];
- with Nafion-XR, a H^{+}-form ion exchange resin, at 150° for $4 \mathrm{~h}(23 \%)$ [39];
- with polyphosphoric acid at $100^{\circ}(1 \%)$ [40];
- with K10 montmorillonite, in refluxing N,N-dimethylformamide for 8 h (17%) [41] or in the presence of Na-exchanged montmorillonite clay as catalyst for 5 h at 140° (24\%) [42].
- Preparation by saponification of 2-(benzoyloxy)benzophenone [43], with sodium hydroxide in refluxing dilute ethanol for $1 \mathrm{~h}[44]$ or for $10-15 \mathrm{~min}(45 \%)$ [45] or with potassium hydroxide [46] in methanol at 15° for $24 \mathrm{~h}(70 \%)$ [47]. The starting keto ester was obtained by oxidation of 2-benzylphenyl benzoate with chromium trioxide in boiling acetic acid [43], of 2,3-diphenyl-benzofuran [44,45] and of 2-(4-methylphenyl)-3-phenylbenzofuran or 2-(4-methoxyphenyl)-3-phenylbenzofuran [46]. The starting keto ester can be also obtained by photooxidation of 2,3-diphenylbenzofuran in chloroform in the presence of methylene blue as initiator [47].
- Also obtained by reaction of benzotrichloride with phenol in the presence of aqueous sodium hydroxide in a water bath (14\%) [48], (1\%) [49].
- Preparation by reaction between phenyloxymagnesium bromide complexed with HMPT and benzaldehyde in refluxing benzene for 48 h (30\%) [50].
- Also obtained by reaction of salicylaldehyde with iodobenzene by using a catalyst system of palladium chloride/lithium chloride in the presence of sodium carbonate in N,N-dimethyl-formamide at 100° for $3.5 \mathrm{~h}(91 \%)$ [51].
- Also obtained by reduction of o-hydroxybenzophenone 2,4-dinitrophenylhydrazone with stannous chloride dihydrate in the presence of concentrated hydrochloric acid in boiling dilute acetic acid for $1 \mathrm{~h}(73 \%)$ [52].
- Also obtained (poor yields) by action of benzoic acid with phenol,
- in the presence of polyphosphoric acid at $100^{\circ}(1 \%)$ [40];
- in the presence of Amberlyst-15 in refluxing chlorobenzene for $48 \mathrm{~h}(10 \%)$ [53].
- Also obtained by action of benzoyl chloride,
- with phenol in the presence of aluminium chloride or titanium tetrachloride in nitrobenzene at 60° for $18 \mathrm{~h}(6-7 \%)$ [54];
- with phenyl borate in the presence of aluminium chloride in refluxing carbon disulfide for $2 \mathrm{~h}(6 \%)$ [55].
- Also obtained (poor yield) by diazotization of 2-aminobenzophenone, followed by hydrolysis of the diazonium salt formed ${ }^{\mathrm{T}}$ [7,56], (6\%) [57] or by thermal decomposition of 2-benzoyl-benzenediazonium fluoborate in dilute sulfuric acid between 25° and $50^{\circ}(37 \%)$ [17]; ${ }^{\text {T I In these conditions, the fluorenone was the }}$ major compound formed [7].
- Also obtained (poor yield) from o-bromophenyl benzoate on treatment with n-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , followed by treatment with saturated aqueous ammonium chloride (7\%) [58,59].
- Also obtained (poor yield) by pyrolysis of o-(allyloxy)benzophenone at 750°, under pressure of 1×10^{-3} Torr, for $2 \mathrm{~h}(8 \%)$ [60].
- Also obtained by cleavage of phenylindoxazene with fuming hydriodic acid $(\mathrm{d}=1.70)$ in the presence of red phosphorous at $140-160^{\circ}$ for $6-7 \mathrm{~h}$. The intermediate compound formed (2-hydroxybenzophenone imine), unstable, gave by hydrolysis the expected ketone [61].
- Preparation from thioxanthen-9-one 10,10-dioxide (SM) by a three-steps synthesis: refluxing SM in 2% sodium hydroxide-65\% dioxane-water solution for 4 h gave the 2-(2-hydroxybenzoyl)-phenylsulfinic acid (25\%). The former, by reaction with mercuric chloride in refluxing aqueous acetic acid for 4 h , led to the 2-chloromercuri-2'-hydroxybenzophenone (69\%). Removal of the chloromercury group was achieved with concentrated hydrochloric acid in refluxing ethanol for 2 h (91\%) [62].
- Also obtained by heating xanthone with lead monoxide [7].
- Also obtained by action of an alkaline solution of sulfur on 4-nitrodiphenylmethane [63].
- Also obtained by photo-Fries rearrangement of phenyl benzoate,
- in methanol (3\%) [64], (48\%) [65], using 3000 Å lamp (35\%) or using 2537 Å lamp (41\%) [66];
- in isopropanol (35\%) [66], (<4\%) [64];
- in butanol (48\%) [66];
- in ethanol at 30° for 3 days (20\%) [67] or at r.t. for $70 \mathrm{~h}(18 \%)$ [68];
- in water (50%) [69]. Adding amylose, α-cyclodextrin or β-cyclodextrin does not improve the yield ($45 \%, 34 \%$ and 18% yields, respectively) [69], although in the presence of β-cyclodextrin, a 99% yield has been obtained [65]; in water
in the presence of soluble starch (67\%) [69] or in the presence of SDS (sodium dodecyl sulfate), a micelle, was obtained a 74% yield [70];
- in hexane in the presence of zeolites for $1 \mathrm{~h}(92-98 \%)$ [71];
- in benzene for $12-24 \mathrm{~h}(55 \%)$ [65] or at 52° for 8 h (13\%) [72];
- in cyclohexane at 55° for $24 \mathrm{~h}(11 \%)$ [72];
- in pentane (14\%) [64]. Adding silica gel does not improve the yield (12\%);
- in dioxane at 61° for 24 h (13\%) [72];
- in ethyl ether (11\%) [66];
- without solvent on K10 montmorillonite using microwave radiations (640 W , 10 min) (25%) [41].
- Also obtained by photo-Fries rearrangement of phenyl salicylate in ethanol for 76 h (19\%) [68].
- Also refer to: [58,60,73-87].
N.B.: Na salt [88].
oil [18];

```
m.p. }4\mp@subsup{1}{}{\circ}[19,25,44,49],40-4\mp@subsup{1}{}{\circ} [14,57], 39-41 [2]
    39-40 [7,10,47], 39 [6,13,15,27,52,89],
    38}8\mathrm{ [90], 38'5-39}\mp@subsup{}{}{\circ}[17,91],38-3\mp@subsup{9}{}{\circ} [9,22,41,62,70]
    38}\mp@subsup{}{\circ}{\circ}[26,46,50],3\mp@subsup{7}{}{\circ}5-3\mp@subsup{8}{}{\circ} [3],37-3\mp@subsup{9}{}{\circ} [92],37`` [24,93-95],
    36}
b.p.0.2 124-126 [60], b.p. .1.5 (127-133 [12], b.p. .1.9 136-1380 [62],
b.p.12 170-185 [9], b.p. }14.17\mp@subsup{5}{}{\circ}[16],\mathrm{ b.p. }\mp@subsup{}{15}{}\quad17\mp@subsup{7}{}{\circ}\mathrm{ [48],
b.p. }\mp@subsup{}{10}{}20\mp@subsup{0}{}{\circ}[35],\mathrm{ b.p.560 }25\mp@subsup{0}{}{\circ}[61]
' H NMR [41,47,50,60,94,95,97-102];
 13C NMR [60,97,101];
IR [10,41,44,47,50,91,94,95,97,100,103-108]; UV [10,91,93,99,109-113]; MS
[50,114];
p}\mp@subsup{K}{\textrm{a}}{[}[93,96,104,115]; TLC [116];'
polarographic study [117]; thermal behaviour [94,95].
```


(3-Hydroxyphenyl)phenylmethanone

[13020-57-0] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 198.22

OH	Syntheses
	- Preparation by aromatization of 5-benzoyl-2 cyclohexenone,

- in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in refluxing xylene for 6 h (60\%) [118];
- in the presence of lithium bromide and cupric bromide in refluxing acetonitrile for 1 h (75\%) [118].
- Preparation by reaction of m-anisoyl chloride with benzene in the presence of excess aluminium chloride first at 20°, then at reflux for 2 h (95\%) [119].
- Preparation by demethylation of m-methoxybenzophenone (SM),
- with boron tribromide in methylene chloride (55-60\%). SM was obtained by condensation of m-methoxybenzoyl chloride with benzene in the presence of aluminium chloride [3];
- with aluminium bromide in refluxing benzene for 2 h (89%) [18];
- with 48% hydrobromic acid [13] in refluxing acetic acid [19], for 6 h (60\%) [120]. SM was prepared by a two-steps synthesis: first, formation of 3-methoxybenzhydrol (SM1) by condensation of a Grignard reagent (prepared from m-iodoanisole) with benzaldehyde. Then, oxidation of SM1 by adding a solution of potassium dichromate in dilute sulfuric acid in an hot solution of SM1 in acetic acid and heating for 15 min in a water bath (60\%) [120].
- Preparation by reductive deamination of 2-amino-5-hydroxybenzophenone [121].
- Preparation by diazotization of m -aminobenzophenone, itself obtained by reduction of m-nitro-benzophenone [11,122].
- Also obtained by treatment of m-bromophenol in tetrahydrofuran with tertbutyllithium in pentane for 15 min at -78° under argon, after which a solution of phenyl-N,O-dimethylhydroxamide in tetrahydrofuran was slowly added (68\%). - Refer to: Chem. Abstr., 119, 49010t (1993) ${ }^{\text {T }}$.
- Also refer to: [123].
m.p. 118° [119], 117° [120], 116° [13, 18, 19, 121,122], 115° [3], 114- 116°;
b.p. ${ }_{20-30} \quad 285-295^{\circ}$ [120];

IR [124].

(4-Hydroxyphenyl)phenylmethanone

[1137-42-4]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 198.22
Syntheses

- Preparation by condensation of benzotrichloride,
- with phenol in the presence of aluminium chloride in carbon disulfide at 0° (90%) [125] or in the presence of zinc oxide in a water bath [126];
- with p-bromophenol in 30% sodium hydroxide solution at $80-85^{\circ}$ (81%) [127]. There is substitution of the bromine atom by the benzoyl group.
- Preparation by Fries rearrangement of phenyl benzoate,
- with aluminium chloride [128], (55\%) [129],
without solvent
at 140° (usually for 15 min), (quantitative yield) [130], 88-91\% [131,132], (69\%) [26], (65\%) [24], at 63° for $4 \mathrm{~h}(19 \%)$ [30], at 130° for 1 h and at 160° for $1 \mathrm{~h}(9 \%)$ [28],
with solvent
in nitrobenzene at 98° for $5 \mathrm{~h}(64 \%)$ [31], at 120° for $2 \mathrm{~h}(54 \%)$ [31] or at 45° for 3 h (4\%) [133];
in refluxing ethylene dichloride (84°) for $1.5 \mathrm{~h}(37 \%)$ [134];
- with an aluminium chloride and sodium chloride mixture, at $140-200^{\circ}(50 \%)$ [26];
- with aluminium iodide in refluxing acetonitrile $\left(82^{\circ}\right)$ for $10 \mathrm{~h}(46 \%)$ [33];
- with aluminium bromide in chlorobenzene at 110° for $4 \mathrm{~h}(17 \%)$ [32];
- with ferric chloride in a boiling water bath for $6 \mathrm{~h}(28 \%)$ [35];
- with titanium tetrachloride at 60° for 18 h (83\%) [27] or in refluxing nitromethane for $30 \mathrm{~min}(36 \%)$ [36];
- with stannic chloride at 120° for $18 \mathrm{~h}(7 \%)$ [14];
- with hydrofluoric acid at 55° for 4 h (70\%) [135];
- with polyphosphoric acid at 80° for $2.5 \mathrm{~h}(25 \%)$ [136], at 100° (6\%) [40] or in a boiling water bath for $30 \mathrm{~min}(6 \%)$ [137];
- with Nafion-H, a polymeric perfluorinated resin sulfonic acid, in refluxing nitrobenzene for 12 h (48\%) [38];
- with Nafion-XR, a H^{+}-form ion exchange resin, at 150° for 4 h under nitrogen (33\%) [39];
- with ion-exchanged stratified clay catalyst, in the presence of phenol, at 180° for 4 h (45\%) [138];
- with K 10 Montmorillonite as catalyst for 5 h at 140° (80\%) [42].
- Preparation by dealkylation,
- of p-methoxybenzophenone,
with aluminium bromide in refluxing benzene for $4 \mathrm{~h}(95 \%)$ [18];
with aluminium chloride at $200-210^{\circ}$ for 1.5 h [139];
with 48% hydrobromic acid in refluxing acetic acid (good yield) [19], for 12 h [140];
with hydrochloric acid by heating between 145° and 150° during $3-4 \mathrm{~h}$ [122]. There is elimination of methyl chloride;
- of p-ethoxybenzophenone,
with aluminium bromide in refluxing benzene for 4 h [18];
with aluminium chloride [141]. The starting keto ether [141] was obtained by Friedel-Crafts acylation of phenetole with benzoyl chloride in the presence of aluminium chloride according to [139];
with hydrobromic acid in boiling acetic acid for 2 days [142];
- of 3-tert-butyl-4-hydroxybenzophenone with aluminium chloride in refluxing benzene [143].
- Preparation by reaction of benzoyl chloride,
- with phenol,
in the presence of aluminium chloride at $100-130^{\circ}$ (77\%) [26] or at 75° (19\%) [144];
in the presence of aluminium chloride in nitrobenzene at 60° (92\%) [26], at 60° for $18 \mathrm{~h}(88 \%)$ [54] or at 45° for $3 \mathrm{~h}(22 \%)$ [133];
in the presence of aluminium chloride in ethylene dichloride at $85^{\circ}(5 \%)$ [26]; in the presence of aluminium chloride in boiling carbon disulfide [145], (10\%) [122];
in the presence of titanium tetrachloride in nitrobenzene at $60^{\circ}(76 \%)$ [26] or at 60° for $18 \mathrm{~h}(87 \%)$ [54];
in the presence of zinc chloride (10\%) [122] according to [146];
- with phenyl borate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h (45\%) [55];
- with p-nonylphenol in the presence of aluminium chloride at 160° for 30 min (57\%) [147].
- Also obtained by reaction of benzoic acid with phenol, in the presence of polyphosphoric acid at 75° (91\%) [26], at 75° for $3 \mathrm{~h}(51 \%)$ [148] or at 75° for $20 \mathrm{~h}(46 \%)$ [148]; in a boiling water bath for $10 \mathrm{~min}(<4 \%)$ [137]; at $100^{\circ}(9 \%)$ [40] or at 100° for $20 \mathrm{~min}(16 \%)$ [149]; at 160° for 30 min (30\%) [148];
in the presence of boron trifluoride at 100° for $1 \mathrm{~h}(52 \%)$ [150];
in the presence of stannic chloride at 120° for $18 \mathrm{~h}(20 \%)$ [14];
in the presence of trifluoromethanesulfonic acid, in a tube stoppered, at r.t. for 1 h [151];
in the presence of sulfophenyl group-containing polysiloxanes at 180° for 20 h (52\%) [152];
in the presence of Amberlyst-15 in refluxing chlorobenzene for 48 h (9\%) [53].
- Also obtained by reaction of p-(benzoyloxy)benzophenone with phenol in the presence of aluminium chloride in refluxing ethylene dichloride for 4 h (91\%) [134].
- Preparation by diazotization of p-aminobenzophenone, followed by hydrolysis of the diazonium salt obtained [6,61,122,142], (54\%) [15].
- Also obtained by oxidation of p-hydroxydiphenylcarbinol with DDQ (2,3-dichloro-5, 6-dicyano-benzoquinone) in dioxane at r.t. for $15 \mathrm{~min}(82 \%)$ [153].
- Also obtained by reduction of p-hydroxybenzophenone 2,4-dinitrophenylhydrazone with stannous chloride dihydrate in the presence of concentrated hydrochloric acid in boiling acetic acid for $1 \mathrm{~h}(93 \%)$ [52].
- Also obtained during the particular Fries rearrangements of some aryl esters during which there is usually an elimination of alkyl group,
- Also obtained by Fries rearrangement of p-nonylphenyl benzoate with aluminium chloride at $130-135^{\circ}$ for $4 \mathrm{~h}(51 \%)$ [147];
- Also obtained by Fries rearrangement of p-tert-butylphenyl benzoate with hydrofluoric acid at 55° for $1 \mathrm{~h}(26 \%)$ and at 25° for 2 h (15\%) [135] or with aluminium chloride at 140° (major product) [154];
- Also obtained (by-product) by Fries rearrangement of phenyl o-benzoyloxybenzoate with aluminium chloride at 180° for $3 \mathrm{~h}(26 \%)$ [155].
- Preparation by heating at $120-130^{\circ}$ during 12 h a mixture of phenol, benzanilide imidochloride and aluminium chloride. The keto anil obtained was hydrolyzed with ice-cold hydrochloric acid (21\%) [156]. The same reaction using anisole gave a 43\% yield [156].
- Preparation by saponification,
- of p-(benzoyloxy)benzophenone,
with 10% sodium hydroxide at reflux for 3 h (good yield) [134];
with potassium hydroxide in ethanol [146,157,158], (51%) [128,159].
The starting keto ester was obtained by reaction of benzoyl chloride with phenyl benzoate in the presence of zinc chloride at $175-180^{\circ}[128,157,159]$ or by reaction of benzotrichloride with the same ester in the presence of zinc oxide [157]. This same keto ester (m.p. 112 ${ }^{\circ} 5$) can be also prepared by heating a benzoyl chloride/phenol mixture in the presence of zinc powder [158];
- of p-(carbomethoxyoxy)benzophenone with N sodium hydroxide solution at reflux for 15 min [160].
- Also obtained by hydrolysis of,
- p-(chloroacetoxy)benzophenone with fuming nitric acid at r.t. for several days (27\%) [161];
- p-benzoylphenyl 5-benzoylsalicylate [155].
- Also obtained by cleavage of benzaurine on heating its dilute aqueous sodium hydroxide solution (1\%) in a water bath with bubbling air (44\%) [162].
- Also obtained by photo-Fries rearrangement of phenyl benzoate,
- in isopropanol (41-42\%) [64,66];
- in methanol (40\%) [66], irradiation for 1 h (37-43\%) [71] or for 12-24 h (30\%) [65];
- in butanol (36\%) [66];
- in ethanol, at 30° for 3 days (28\%) [67] or at r.t. for $70 \mathrm{~h}(16 \%)$ [68];
- in water for $24 \mathrm{~h}(16 \%)$ [69]; adding soluble starch, amylose or α or β-cyclodextrin does not improve the yield (18-20\%) [69]; in water, in the presence of SDS (sodium dodecyl sulfate), a micelle, one obtains a 23% yield [70];
- in benzene for $12-24 \mathrm{~h}(30 \%)$ [65], $1 \mathrm{~h}(37-43 \%)$ [71] or at 52° for $8 \mathrm{~h}(20 \%)$ [72];
- in hexane for 1 h (37-43\%) [71];
- in pentane (13\%) [64]; adding silica gel does not improve the yield (10\%) [64];
- in cyclohexane at 55° for $24 \mathrm{~h}(29 \%)$ [72];
- in dioxane at 61° for 24 h (23\%) [72];
- in ethyl ether (22\%) [66].
- Also refer to: [79,84,163-168].
N.B.: K salt [169,170].

Isolation from natural sources

- From leaves of Talauma mexicana (Magnoliceae) [171];
- From leaves of Yoloxochitl (Talauma mexicana) [172].

$$
\begin{array}{ll}
\text { m.p. } & 135-136^{\circ}[14,130,133], 135^{\circ}[19,27,52,93,140,160], \\
& 134-135^{\circ}[148,156,162], \\
& 134^{\circ}[3,24,26,35,113,126,139,146,150,157,172], \\
& 133^{\circ} 8-133^{\circ} 9[159], 133^{\circ} 7[142], 133^{\circ} 5-134^{\circ} 5[125],
\end{array}
$$

```
        133-134* [70,155], 133-133 5 [15],
        133}\mp@subsup{}{}{\circ}[6,18,137,145,170],132`5 [173], 132-135 [ [174,175]
        132-134 [136], 132-133`5 [134,135], 132-132`5 [91],
        132\circ}[72,149],130-132` [67,161], 115-120` [131]
    b.p.24 261 [142], b.p.0.45 168-170 [170];
    ' H NMR [38,147,151], '13C NMR [38],
    IR [91,104,124,147,174,175], UV [91,93,110,113,176], MS [114,177];
    p}\mp@subsup{K}{\textrm{a}}{[}[93,104,115]; TLC [116]; cryoscopic study [141].
```


1.2 Dihydroxybenzophenones

1.2.1 Hydroxy Groups Located on One Ring

(2,3-Dihydroxyphenyl)phenylmethanone
[52870-68-5]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22

Syntheses

- Preparation by hydrolytic rearrangement of 2-benzo-ylacetyl-2,5-dimethoxytetrahydrofuran
with refluxing 0.1 N hydrochloric acid in aqueous dioxane (95\%) [178].
- Preparation by reaction of benzoic acid with pyrocatechol in the presence of Amberlyst-15 in refluxing chlorobenzene for 9 h (68\%) [53].
- Preparation by refluxing 2,3-dimethoxybenzophenone with hydrobromic acid $(\mathrm{d}=1.5)$ and acetic acid for 8 h [179].
- Also refer to: [180-182].
m.p. 65° [179], $64-65^{\circ}$ [178]; Spectra (NA).

(2,4-Dihydroxyphenyl)phenylmethanone

(Resbenzophenone, Benzoresorcinol, Uvinul 400)
[131-56-6] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22
 Syntheses

- Obtained by condensation of benzanilide with resorcinol in the presence of zinc chloride and phosphorous oxychloride at $130-140^{\circ}$ for 1 h (25\%) [183].
- Also obtained by condensation of benzamide with resorcinol in the presence of zinc chloride and phosphorous oxychloride at $100-140^{\circ}$ for $1 \mathrm{~h}(22 \%)$ [183].
- The condensation of benzanilide imidochloride with resorcinol in the presence of aluminium chloride in ethyl ether gave a keto anil (92\%). Which, by hydrolysis
with concentrated hydrochloric acid in refluxing ethanol for 3 h yielded the expected ketone (89\%) [156].
- Also obtained by condensation of benzoic acid with resorcinol,
- in the presence of hydrofluoric acid at 75° for 4 h in an autoclave (99%) [184];
- in the presence of boron trifluoride at 160° for 2 h in a sealed tube (69%) [185] or in nitrobenzene at 80° for $30 \mathrm{~min}(96 \%)$ [186];
- in the presence of stannic chloride at $140-150^{\circ}$ for $30 \mathrm{~min}(30 \%)$ [183];
- in the presence of zinc chloride (Nencki reaction), between 150° and 170° (for usually $15-30 \mathrm{~min}$) [187-191], (20\%) [192], (5\%) [183];
- in the presence of zinc chloride and phosphorous oxychloride at 65° for 3 h [193];
- in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid (60:40) at 40°. Then, during 1.5 h , phosphorous trichloride was added and the mixture heated at 60° for $16 \mathrm{~h}(91 \%)$ [194];
- in the presence of phosphorous pentoxide at $120-130^{\circ}$ for 15 min (poor yield) [183];
- in the presence of Amberlite IR-120 at 160° for $2-3 \mathrm{~h}$ (25\%) [195];

Always by condensation of benzoic acid with resorcinol, but with stirring and azeotropic removal of water, in refluxing chlorobenzene (130°);

- in the presence of ion exchange resins,
- Dowex-50W-X-8 for 53 h (69\%) [53];
- Amberlyst-15 for $6 \mathrm{~h}(67 \%)$ [53], for $24 \mathrm{~h}(62 \%)$ [196]; the same reaction carried out in refluxing p-chlorotoluene (162°) for 2 h gave 59% yield [53];
- Nafion-117 for 6 h (46\%) [53] or for 24 h (45\%) [196];
- in the presence of Zeolite-H-beta for $72 \mathrm{~h} \mathrm{(42} \mathrm{\%)} \mathrm{[53]} \mathrm{or} \mathrm{for} 24 \mathrm{~h}$ (20\%) [196]; the same reaction carried out in refluxing p-chlorotoluene (162°) for $16-18 \mathrm{~h}$ gave 70% yield [53] or in refluxing n-butylbenzene for 3 h under nitrogen gave 88% yield [53] and 40% yield [196];
- in the presence of polyphosphoric acid or silicotungstic acid for 23 h (19\%) [53];
- in the presence of methanesulfonic acid for $23 \mathrm{~h}(17 \%)$ [53,196];
- in the presence of phosphoric acid for $24 \mathrm{~h}(9 \%)[53,196]$.
- Also obtained by reaction of benzoyl chloride with resorcinol [197],
- in the presence of zinc chloride and hydrochloric acid gas in chlorobenzene at 120° for $7 \mathrm{~h}(86 \%)$ [198] or without hydrochloric acid (72\%) [198];
- in the presence of aluminium chloride in ethylene dichloride at 65° for 5 h (75\%) [199];
- in the presence of aluminium chloride in nitrobenzene at r.t. for $48 \mathrm{~h}(70 \%)$ [200] or first at r.t., then at 70° for $5 \mathrm{~h}(83 \%)$ [201,202];
- in the presence of aluminium chloride in refluxing carbon disulfide [145], for 4 h [203];
- in the presence of Nafion-XR, a H^{+}-form ion exchange resin, for 4 h under nitrogen at 160° [204] or at $150^{\circ}(70 \%)$ [39].
- Preparation by demethylation of 2,4-dimethoxybenzophenone with aluminium bromide in refluxing benzene for $4 \mathrm{~h}(98 \%)$ [18]. Also obtained by using aluminium chloride in refluxing carbon disulfide for $30 \mathrm{~min}(3 \%)$ [205].
- Preparation by Fries rearrangement of,
- resorcinol monobenzoate,
with zinc chloride in the presence of hydrochloric acid gas in chlorobenzene at 120° for 7 h (88\%) [198];
with aluminium chloride at 180° for 2 h (68\%) [155];
with Nafion-XR, a H^{+}-form ion exchange resin, at $150-160^{\circ}$ for 4 h under nitrogen (72\%) [39,204];
- resorcinol dibenzoate with aluminium chloride between 100° and 150° [145].
- Preparation by condensation of benzoic anhydride with resorcinol,
- in the presence of a few drops of concentrated sulfuric acid at 130° for some $\min (60 \%)$ [206];
- in the presence of Amberlite IR-120, a cation exchange resin (sulfonic acid type), at 160° for 2-3 h (30\%) [195];
- in the presence of Zeokarb 225 at 160° for 2-3 h (30\%) [195].
- Also obtained by decarboxylation,
- of 5-benzoyl-2,4-dihydroxybenzoic acid with dilute hydrochloric acid at 160$170^{\circ}$ in a sealed tube [207] or by heating in a sealed tube [208];
- of 3-benzoyl-2,6-dihydroxybenzoic acid with a few drops of concentrated hydrochloric acid in boiling dilute acetic acid for 15-18 h [209].
- Also obtained by saponification of 2,4-di(benzoyloxy)benzophenone with 10% sodium hydroxide in refluxing ethanol for 2 h [203] or with potassium hydroxide in ethanol [210]. The starting diester was prepared by Fries rearrangement of resorcinol dibenzoate with zinc chloride at $100-120^{\circ}$ [210].
- Also obtained by condensation of benzotrichloride with resorcinol,
- in hot water [188] or in water at 65° for $4 \mathrm{~h}(42 \%)$ [202];
- in 50% aqueous methanol at $70-80^{\circ}(90 \%)$ [211] or in dilute methanol at 50° for $3 \mathrm{~h}(87 \%)$ [201,202];
- in 50% aqueous isopropanol at $70-80^{\circ}(90 \%)$ [211] or in dilute isopropanol between 30° and 80° for $2-4 \mathrm{~h}(80-84 \%)$ [202];
- in 50% aqueous acetic acid solution (89%) [211] or in dilute acetic acid between 30° and 80° for $2-4 \mathrm{~h}(80-84 \%)$ [202];
- in 50% aqueous dioxane solution (82%) [211] or in dilute dioxane between 30° and 80° for $2-4 \mathrm{~h}(80-84 \%)$ [202];
- in ethanol [212] or in dilute ethanol between 30° and 80° for $2-4 \mathrm{~h}(80-84 \%)$ [202];
- in dilute ethylcellosolve between 30° and 80° for $2-4 \mathrm{~h}$ (80-84\%) [202];
- in hydrofluoric acid in the presence of water at -10° for 4 h , then at r.t. overnight (96%) [213]. The same reaction carried out in the presence of methanol or octanol at -10°, then at r.t. for 4 h yielded 96% and 93%, respectively [213].
- Preparation by reaction of benzonitrile with resorcinol (Hoesch reaction) in the presence of zinc chloride and hydrochloric gas at 50° for 8 h (93\%) [214] or during 12 days (89%) [215-217], or in ethyl ether at $<5^{\circ}$ for 3 h , then at 5° for $20 \mathrm{~h}(35 \%)$ [201,202].
- Also obtained by treatment of resorcinol with phenyl benzoate in the presence of boron trifluoride-etherate in refluxing benzene for $3 \mathrm{~h}(40 \%)$ [34].
- Also obtained from β-(4-benzoyl-3-hydroxyphenoxy)propionic acid by boiling for 5 min with 10% aqueous sodium hydroxide [218].
- Also obtained by photo-Fries rearrangement of resorcinol monobenzoate [219].
- Preparation by reaction of di(carbomethoxy)- β-resorcylic acid chloride with benzene in the presence of aluminium chloride at $60-70^{\circ}$ for 1 h , then at 80° for $1 \mathrm{~h}(70 \%)$ [220].
- Also refer to: [78,84,146,168,221-233].
m.p. 148° [155], 146° [203], 145° [190,200,234-237],

144-146 [195,238], 144-145 ${ }^{\circ}$ [53,183,192,196,209],
$144^{\circ}[96,205,206,210,213,215], 143^{\circ} 5-144^{\circ}$ [91],
$143-144^{\circ}$ [156,185,188,198,207,211,214], 143° [18,145,218],
$142^{\circ} 6-144^{\circ} 2$ [194], $142^{\circ} 5-143^{\circ}$ [239], $142-144^{\circ}$ [212], $141-143^{\circ}$ [201,202];
${ }^{1}$ H NMR [98], IR [91,201,202], UV [91,109-111,113,201,202,215,219,224,233, 235,236,240-243];
TLC [116,244]; HPLC [186,245]; $\mathrm{p} K_{\mathrm{a}}$ [96,115];
polarographic study [117]; gel permeation chromatography [246,247];
vapour pressure [236,248].

(2,5-Dihydroxyphenyl)phenylmethanone (Quinbenzophenone)

[2050-37-5] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22
 Syntheses

- Preparation by Fries rearrangement of hydroquinone dibenzoate with aluminium chloride [249,250], (good yield) [251], at 140° for $1 \mathrm{~h}(33 \%)$ [252], at $190-200^{\circ}$ for $1 \mathrm{~h} 30 \mathrm{~min}(50 \%)$ [253] or at 200° for 20 min [20].
- Preparation by oxidation of 5-(benzoyloxy)-2,3-diphenyl-benzofuran with chromium trioxide in boiling acetic acid for 2 h , followed by saponification of the keto ester formed with boiling 8% sodium hydroxide in ethanol [254].
- Also obtained by hydrolysis of quinbenzophenone monobenzoate-5-(benzoyloxy)-2-hydroxy-benzophenone-(easily obtained by Fries rearrangement of hydroquinone mono or dibenzoate), with concentrated sulfuric acid at r.t. for overnight [252] or with 85% sulfuric acid [253].
- Also obtained by saponification of 2,5-di(benzoyloxy)benzophenone with alcoholic potassium hydroxide [255].
- Also obtained by reaction of benzoic acid with hydroquinone in the presence of boron trifluoride at 160° for 1 h in a sealed tube (61\%) [185].
- Preparation by demethylation,
- of 2-hydroxy-5-methoxybenzophenone with hydriodic acid in refluxing acetic acid and acetic anhydride mixture for 1.5 h (87\%) [256];
- of 2,5-dimethoxybenzophenone (SM), with boiling hydriodic acid [257];
with an excess of hydrobromic acid [173];
with boron tribromide in methylene chloride at $22^{\circ}(78 \%)$ [258] or at r.t. for 12 h [20], according to [21]. SM was obtained by acylation of hydroquinone dimethyl ether with benzoyl chloride in methylene chloride in the presence of aluminium chloride at 0° (85%) [258].
- Preparation by reaction of phenyl benzoate with hydroquinone in the presence of boron trifluoride-etherate in refluxing benzene for $3 \mathrm{~h}(60 \%)$ [34].
- Also obtained by daylight irradiation of a 1,4-benzoquinone/benzaldehyde mixture [255] in benzene under nitrogen for 5 days (60\%) [259].
- Also obtained by irradiation of α-hydroxybenzyl-1,4-benzoquinone in benzene for 4 days (65\%) [260].
- Also refer to: [115,260-267].
m.p. $125-126^{\circ} 1$ [256], 125° [249,250,253,255], 124-126 ${ }^{\circ}$ [257], 124-125 ${ }^{\circ}$ [252,254], 124° [185], 123-124 ${ }^{\circ}$ [260], 122° [173], 121-123 ${ }^{\circ}$ [259];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 30288$ M) [260],
IR (Sadtler: standard n ${ }^{\circ}$ 57333) [260], UV [109-111];
TLC [116,259]; $\mathrm{p} K_{\mathrm{a}}$ [115].

(2,6-Dihydroxyphenyl)phenylmethanone

[63411-81-4] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22

Synthesis

- Preparation by treatment of 8-benzoyl-7-hydroxy-4-methyl-coumarin (8-benzoyl-4-methylumbelliferone) [268,269] or of 8-benzoyl-7-hy droxy-4-phenylcoumarin (8-benzoyl-4-phenylumbelliferone) [192] with refluxing aqueous sodium hydroxide (64-78\%) [268], (48\%) [192].
- Also refer to: [270].
m.p. 135° [113,192,268]; ${ }^{1} \mathrm{H}$ NMR [98], UV [113].

(3,4-Dihydroxyphenyl)phenylmethanone

[^0]- in the presence of aluminium chloride in nitrobenzene at 100° for 4 h (quantitative yield) [271] or heated on a steam bath for 6 h [272];
- in the presence of Nafion-XR, a H^{+}-form ion exchange resin, at 175° for 4 h under nitrogen (38\%) [39].
- Preparation in two steps by condensation of pyrocatechol with benzanilide imidochloride after acidic hydrolysis of the intermediate keto anil (30\%) [156].
- Also obtained by demethylation,
- of 3-hydroxy-4-methoxybenzophenone with boiling hydriodic acid (90\%) [273];
- of 3,4-dimethoxybenzophenone with boiling hydriodic acid [273] or with aluminium chloride in refluxing benzene for 6 h (64\%) [274].
- Also obtained by reaction of benzoyl chloride with pyrocatechol dibenzoate in the presence of zinc chloride, followed by saponification of the 3,4-di(benzoyloxy) benzophenone formed with a boiling ethanolic sodium hydroxide solution [146].
- Also obtained by reaction of benzoyl chloride with pyrocatechol in the presence of phosphorous trichloride [275].
- Preparation by condensation of benzoic anhydride with pyrocatechol in the presence of zinc chloride at 180° for 5-6 h [276].
- Preparation by adding 30% hydrogen peroxide solution to the solution of 3-formyl-4-hydroxy-benzophenone in 10% sodium hydroxide and stirring the mixture at r.t. for 2 h (Dakin oxidation) (42\%) [277].
- Also obtained by hydrolysis of 3-(benzoyloxy)-4-hydroxybenzophenone by heating gently with 50% sulfuric acid for $2 \mathrm{~h}(74 \%)$ [278].
- Also refer to: [232,279-283].

m.p.	$148-149^{\circ}[274], 147-148^{\circ}[272], 145^{\circ}$ [146],
	$134^{\circ}[156,271,273,276,278], 133-134^{\circ}[277] ;$

hemihydrate [146], monohydrate [273,278];
Spectra (NA); $\mathrm{p} K_{\mathrm{a}}$ [272]; molecular orbital studies [284].

(3,5-Dihydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22
Syntheses

- Preparation by reaction of diphenylcadmium with 3,5-di-acetoxybenzoyl chloride in refluxing benzene for 1 h . The keto ester obtained (66%) by saponification with refluxing 5% sodium hydroxide for $4-5 \mathrm{~h}$ gave the expected ketone (53\%) [285].
- Also obtained by heating a mixture of 3,5-dicarbomethoxybenzoyl chloride and benzene in the presence of aluminium chloride, first at $70-75^{\circ}$ for 1 h and at $75-80^{\circ}$ for $45 \mathrm{~min}(37 \%)$. -Refer to: Chem. Abstr., 7, 2563^{2} (1913). .
m.p. $160-162^{\circ}, 148^{\circ}$ (anhydrous) [285], 84° (monohydrate) [285];

Spectra (NA).

1.2.2 Hydroxy Groups Located on Both Rings

Symmetrical ketones

Bis(2-hydroxyphenyl)methanone

[835-11-0] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22
 Syntheses

- Preparation by diazotization of 4,4'-diamino-2, 2^{\prime} -di-hydroxybenzophenone in diluted hydrochloric acid, followed by treatment with 50% phosphorous acid at 0° for 1 h , then at r.t. for $24 \mathrm{~h}(34 \%)$ [286].
- Also obtained by Fries rearrangement of phenyl o-hydroxybenzoate with aluminium chloride at 200° for 20 min [20].
- Also obtained from xanthone,
- by heating with potassium hydroxide in ethanol at 180° for 4 h in a sealed tube [287,288];
- by fusion with anhydrous potassium hydroxide [173,289], at $205-210^{\circ}$ for 20 \min [74], (64\%) [290] or by heating at $200^{\circ}(45 \%)$ [291].
- Also obtained by photo-Fries rearrangement of phenyl salicylate (salol) [219] or of phenyl carbonate in ethanol for $150 \mathrm{~h} \mathrm{(4} \mathrm{\%)} \mathrm{[68]}$.
- Also obtained by demethylation of 2,2'-dimethoxybenzophenone,
- with boron trichloride in methylene chloride first at -70°, then at r.t. for 8 h (97\%) [292];
- with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21].
- Also obtained by hydrolysis of 2,2'-dihydroxybenzophenone ditosylate by treatment with 0.5 N sodium hydroxide in dilute methanol at r.t. for 8 days (98\%) [293].
- Also refer to: [84,93,294-302].
N.B.: $\mathrm{Ba}, \mathrm{NH}_{4}[289]$ and K salts $[288,289]$.
m.p. $62-63^{\circ}$ [290], $59^{\circ} 5$ [173], 59- 60° [287,289,300,301], $55-57^{\circ}$ [291], $54-56^{\circ}$ [286]; b.p. ${ }_{0.15} 128-132^{\circ}$ [291];
${ }^{1} \mathrm{H}$ NMR [98,303], EPR [98], IR [291], UV [219,291], MS [114];
$\mathrm{p} K_{\mathrm{a}}$ [115]; polarographic analysis [304]; HPLC [245].

Bis(3-hydroxyphenyl)methanone

[611-80-3] \begin{tabular}{l}
Preparation from 3, 3^{\prime}-dinitrobenzophenone by

reduction, diazotization of 3,
phenone obtained ($\mathrm{m} . \mathrm{p}$ - 17aminobenzo- 173-174
lowed by hydrolysis of the diazonium salt obtained
$[288,301,305,306,307]$.

\end{tabular}

- Also refer to: $[308,309]$.
m.p. $163-164^{\circ}$ [305], $162-163^{\circ}$ [300,301]; IR [124].

Bis(4-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22
Syntheses

- Preparation by demethylation of 4,4'-dimethoxy-benzophenone with aluminium bromide in refluxing benzene for 4 h (88%) [18].
- Also obtained by complete dealkylation of 4,4'-diethoxybenzophenone with hydrobromic acid in boiling acetic acid for 2 days [142].
- Preparation by hydrolysis of 4,4'-dichlorobenzophenone with aqueous sodium hydroxide in the presence of cuprous chloride or cupric chloride in an autoclave at $230-240^{\circ}$ for $2 \mathrm{~h}(95-98 \%)$. The same reaction using cuprous oxide at 200° for 2 h gave a 82% yield [310,311]. Other methods using copper compounds for hydrolysis of the 4,4'-dichlorobenzophenone in the presence of sodium hydroxide [312,313], for 1 h at 270° in a steel autoclave (98-99\%) [314].
- Preparation by Fries rearrangement of phenyl p-anisate (phenyl p-methoxybenzoate) with aluminium chloride at $140^{\circ}(80 \%)$ [132] or at 160° [315].
- Also obtained by reaction of p-hydroxybenzoic acid with phenol,
- in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid (60:40) at 40°. Then, during 1.5 h , phosphorous trichloride was added and the mixture heated at 60° for $16 \mathrm{~h}(90 \%)$ [194];
- in the presence of hydrofluoric acid at 75° in an autoclave (88\%) [184];
- in the presence of boron trifluoride in hydrofluoric acid (84\%) [316] or in nitrobenzene at 80° for $30 \mathrm{~min}(67 \%)$ [186];
- in the presence of polyphosphoric acid in a boiling water bath for 30 min (20\%) [137] or at 100° for $20 \mathrm{~min}(47 \%)$ [149];
- in the presence of trifluoromethanesulfonic acid at r.t. for overnight (93\%) [151];
- by heating in the presence of stannic chloride for 10 h [317].
- Also obtained by treatment of $4,4^{\prime}$-diphenoxybenzophenone with 16.7% sodium hydroxide at 300° for 30 min (57\%) [318].
- Also obtained (poor yield) by Fries rearrangement of oxalic acid diphenyl ester with hydrofluoric acid in carbon tetrachloride at 80° for 4 h in an autoclave ($<7 \%$) [319].
- Also obtained by reaction of salicylic acid with phenol in the presence of stannic chloride (by-product) [317,320].
N.B.: According to Michael [317], the formation of this ketone was due to the presence of a small amount of p-hydroxybenzoic in the commercial salicylic acid used [321]. In contrast, Baeyer [320] claimed that this reaction proceeds via a transposition.
- Also obtained by oxidation of 4,4'-di-(benzoyloxy)diphenylmethane with chromium trioxide in refluxing acetic acid for 8 h , followed by saponification of the 4,4'-di-(benzoyloxy)benzophenone formed with potassium hydroxide in refluxing ethanol [301,322-324].
- Preparation by acylation of phenol with p-(trichloromethyl)phenyl p-(trichloromethyl)benzoate in methylene chloride in the presence of aluminium chloride at $0-5^{\circ}$ over 1 h , then at r.t. for 1 h (yield 83%), followed by alkaline hydrolysis of the resulting keto ester (93-95\%) [325].
- Also obtained by melting phenolphthalein,
- with potassium hydroxide (75\%) [326], according to [327];
- with sodium hydroxide [190,328], (quantitative yield) [329].
- Also obtained by reduction of 4-hydroxy-4'-nitrobenzophenone with stannous chloride in the presence of hydrochloric acid, followed by diazotization of the 4-amino-4'-hydroxybenzophenone formed and hydrolysis of the diazonium salt obtained [322].
- Also obtained on treatment of aurin (p-rosolic acid) with water at high temperature, between 220° and 250° [163] or at $>270^{\circ}$ [330].
- Also obtained by treatment of rosaniline with water at high temperature ($>270^{\circ}$) [330,331].
- Also obtained by reaction of carbon tetrachloride with phenol in the presence of zinc chloride at 120° (36\%) [332].
- Also obtained by hydrogenation of 4,4'-dihydroxy-3,3',5,5'-tetraiodobenzophenone in ethanol in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ and sodium acetate (66\%) [333].
- Also refer to: [84,334-336].
N.B.: $\quad \mathrm{Na}[88,314]$ and K salts [337].

$$
\begin{array}{ll}
\text { m.p. } & 218^{\circ}[151], 213^{\circ} 5[142], 213-214^{\circ}[18,333], 210^{\circ} 4-212^{\circ}[194], \\
& 210-213^{\circ}[316], 210-212^{\circ}[338], \\
210^{\circ}[163,190,237,300,301,311,323,324], 209-214^{\circ}[184], \\
208-210^{\circ}[322], 207^{\circ}[137,149], 206^{\circ}[113,315,319,328,329], \\
& 205^{\circ} 5-206^{\circ} 5[317], 205-207^{\circ}[330], 200^{\circ}[331] ; \\
{ }^{1} \text { H NMR }[151,316], \text { IR }[124,151,316,339], \text { UV }[113,333] ; \\
\text { GLC [316]; HPLC }[186,245] ; \text { polarographic study [304]; } \\
\text { gel permeation chromatography [247]. }
\end{array}
$$

Asymmetric ketones

(2-Hydroxyphenyl)(3-hydroxyphenyl)methanone
mol.wt. 214.22

- Also obtained by Fries rearrangement of phenyl m-methoxy-benzoate (phenyl m -anisate) with aluminium chloride at 120° or 160° for 2 h [340].
- Also obtained (poor yield) by reaction of m-methoxybenzoyl chloride with phenol in the presence of aluminium chloride in nitrobenzene at 160° for 45 min (4\%) [341].
- Preparation by demethylation of 2,3'-dimethoxybenzophenone in the presence of aluminium chloride in refluxing chlorobenzene for 1 h (86\%) [341].
- Also refer to: $[342,343]$.
m.p. 127° [340], 126° [301], 124- 127° [341], 121- 122° [300];
${ }^{1} \mathrm{H}$ NMR [341], IR [341], UV [341].

(2-Hydroxyphenyl)(4-hydroxyphenyl)methanone

[606-12-2]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22
Syntheses

- Preparation by diazotization of 2,4'-diamino-2',4-di-hydroxybenzophenone, followed by decomposition of the diazonium salt obtained in the presence of 50% hypo-phosphorous acid (57\%) [286].
- Preparation from 2-hydroxy-4'-nitrobenzophenone by reduction with stannous chloride and hydrochloric acid, followed by diazotization of the 4 -amino-2'hydroxybenzophenone formed and hydrolysis of the diazonium salt obtained [322].
- Preparation by hydrolysis of 2,4'-dichlorobenzophenone with sodium hydroxide for 1 h at 270° in a steel autoclave (98-99\%) [314].
- Preparation by diazotization of $2,4^{\prime}$-diaminobenzophenone, followed by hydrolysis of the diazonium salt obtained [301].
- Also obtained by condensation of salicylic acid with phenol,
- in the presence of stannic chloride at $115-125^{\circ}$ (major product) [9,190,212,3 17,320,322,336,344];
- in the presence of zinc chloride (poor yield) [317];
- in the presence of hydrofluoric acid at 75° in an autoclave [184];
- in the presence of boron trifluoride in nitrobenzene at 80° for $30 \mathrm{~min}(83 \%)$ [186];
- in the presence of polyphosphoric acid at 100° for $20 \mathrm{~min}(2 \%)$ [149].
- Also obtained by Fries rearrangement,
- of phenyl o-methoxybenzoate with aluminium chloride at $120-160^{\circ}$ for 2 h [340], with aluminium chloride in the presence of phenol at 180° for 3 h (44\%) [155];
- of phenyl salicylate (salol), with aluminium chloride at $120-160^{\circ}$ for 2 h [340], at 140° for $3 \mathrm{~h}(75 \%)$ [345] or at $180-182^{\circ}$ for $3 \mathrm{~h}(53 \%)$ [155]; with stannic chloride at $115-120^{\circ}$ for 18 h (54\%) [14];
- of phenyl o-(benzoyloxy)benzoate with aluminium chloride in the presence of phenol at 180° for $3 \mathrm{~h}(36 \%)$ [155];
- of o-(nicotinyloxy)phenyl benzoate with aluminium chloride at $140-145^{\circ}$ for 2 h (by-product) (9\%) [346].
- Preparation by dealkylation of 5-tert-butyl-2,4'-dimethoxybenzophenone with aluminium chloride in benzene at $65-70^{\circ}$ for $45 \mathrm{~h}(75 \%)$ [9].
- Preparation by reaction of hydrobromic acid $(\mathrm{d}=1.49)$ with $2,4^{\prime}$-di(4 -methoxy-benzoyloxy)-benzophenone in refluxing acetic acid for 2 h (86\%) [19].
- Also obtained by hydrolysis of p-(salicyloyl)phenyl salicylate [346].
- Also obtained by treatment of 4-acetoxy-2'-methoxybenzophenone with aluminium chloride at $153-155^{\circ}$ for $2 \mathrm{~h}(19 \%)$ [155]. There is simultaneously demethylation and hydrolysis of the acetoxy group.
- Also obtained by decarboxylation of 2-hydroxy-5-(salicyloyl)benzophenone by melting with potassium hydroxide (63\%) [14].
- Also obtained by photo-Fries rearrangement,
- of phenyl salicylate (salol) [219], in ethanol for $76 \mathrm{~h} \mathrm{(22} \mathrm{\%)} \mathrm{[68];}$
- of phenyl carbonate in ethanol for $150 \mathrm{~h}(11 \%)$ [68].
- Also refer to: [84,347-349].
N.B.: Na salt [88,314].
m.p. $150-151^{\circ}$ [320], 150° [340], 148° [155,344,346], $147-149^{\circ}$ [14], $147-148^{\circ}$ [212], $146-147^{\circ}$ [9,184], 145° [345], 144° [322],
$143-145^{\circ}$ [286], $143-144^{\circ}$ [317,336], 142° [190,237,300,301], 141° [149], $138-141^{\circ}$ [19];
${ }^{1} H$ NMR (Sadtler: standard n 38497 M),
IR (Sadtler: standard n ${ }^{\circ} 65535 \mathrm{~K}$), UV [219], MS [114]; gel permeation chromatography [302]; HPLC [186].

(3-Hydroxyphenyl)(4-hydroxyphenyl)methanone

[611-81-4]

$$
\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad \text { mol.wt. } 214.22
$$

Syntheses

- Obtained by Fries rearrangement of phenyl m -anisate without solvent in the presence of aluminium chloride for 2 h between 120° and 160° [340].
- Also obtained by reaction of m-hydroxybenzoic acid with phenol,
- in the presence of polyphosphoric acid for 20 min at 100° (7\%) [149];
- in hydrofluoric acid at 30° under a pressure of 30 psi boron trifluoride in an autoclave for 4 h [350], (89\%) [351].
- Also obtained by reaction of m-methoxybenzoyl chloride with phenol in the presence of aluminium chloride in nitrobenzene at 160° for 45 min (12\%) [341].
- Preparation by diazotization of 3,4'-diaminobenzophenone (m.p. 121-122 ${ }^{\circ}$) [305], followed by hydrolysis of the diazonium salt obtained [301,305].
- Preparation by demethylation of 3,4'-dimethoxybenzophenone with 48% hydrobromic acid in a acetic anhydride/acetic acid mixture (1:1) for 15 h at reflux (quantitative yield) [352].
- Also refer to: [353-355].
m.p. 203° [351], 200° [305], 198° [300], 197° [301], 196-197$~[340], ~$ 195-200 [341], 195° [149], 193-194$~[352] ; ~$
Spectra (NA).

1.3 Trihydroxybenzophenones

1.3.1 Hydroxy Groups Located on One Ring

Phenyl(2,3,4-trihydroxyphenyl)methanone (Alizarine Yellow A)

[1143-72-2] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22

Syntheses

- Preparation by reaction of benzoic acid with pyrogallol,
- in the presence of zinc chloride during 3 h at 145° [190,344,356];
- in the presence of Amberlyst-15 (a strongly acid ion exchanger) in chlorobenzene during 10 h at $131-132^{\circ}$ (60\%) [357];
- in the presence of Amberlite IR-120 or Zeokarb 225 (cation exchange resins, sulfonic acid type) during 3 h at 160° (14\%) [195];
- in the presence of boron trifluoride in ethyl ether at $0^{\circ}(44 \%)[358,359]$.
- Preparation by reaction of benzoic anhydride with pyrogallol [195,344,356],
- in the presence of concentrated sulfuric acid or polyphosphoric acid during 15 min at reflux (14\%) [195];
- in the presence of zinc chloride at 145° [344,356];
- in the presence of Amberlite IR 120 or Zeokarb 225 during 3 h at 160° (16\%) [195].
- Preparation by reaction of benzoyl chloride with pyrogallol [39,344,356],
- in the presence of Nafion-XR, a H^{+}-form ion exchange resin, during 4 h at 150° under nitrogen (78\%) [39];
- in the presence of zinc chloride at $145^{\circ}[344,356]$.
- Preparation by reaction of benzotrichloride with pyrogallol [360], in the presence of zinc chloride at 145° [344,361].
- Preparation by reaction of 2,3,4-triacetoxybenzoyl chloride with benzene in the presence of aluminium chloride at 40° for $4 \mathrm{~h}(55 \%)$ [362].
- Preparation in two steps by condensation of pyrogallol with benzanilide imidochloride after acidic hydrolysis of the intermediate keto anil (31\%) [156].
- Also obtained by hydrolysis of gallacetophenone monobenzoate in the presence of concentrated sulfuric acid during 4 h into a cooling system (10\%) [363].
- Preparation by Fries rearrangement of,
- 2,3-dihydroxyphenyl benzoate with Nafion-XR during 4 h at 150° under nitrogen (81\%) [39];
- pyrogallol tribenzoate with aluminium chloride during 2 h at $160-170^{\circ}$ (15\%) [363].
- Also refer to: [267,280,281,364-368].
N.B.: K, Pb and Na salts are obtained according to [344].
m.p. $146^{\circ}[358,359], 141-143^{\circ}$ [195], $140-141^{\circ}[156,344], 140^{\circ}$ [363],
$139-140^{\circ}$ [190,237], $138-139^{\circ}$ [362];
UV [190,359,369]; $\mathrm{p} K_{\mathrm{a}}[369]$.

Phenyl(2,3,5-trihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22

m.p. and Spectra (NA).

Phenyl(2,4,5-trihydroxyphenyl)methanone

- Preparation by reaction of benzonitrile with phloroglucinol in the presence of zinc chloride and hydrochloric acid in ethyl ether at r.t. for overnight, followed by hydrolysis of the ketimine salt formed with dilute sulfuric acid [370], (65\%) [371] (Hoesch reaction).
- Preparation in two steps by condensation of phloroglucinol with benzanilide imidochloride after acidic hydrolysis of the intermediate keto anil (39\%) [156].
- Preparation by reaction of benzoyl chloride with phloroglucinol in the presence of aluminium chloride in a ethyl ether/nitrobenzene mixture [372].
- Preparation by condensation of benzoyl chloride with 1,3,5-trimethoxybenzene, followed by demethylation [373].
- Also obtained by reaction of phenyl benzoate with phloroglucinol in the presence of boron trifluoride-etherate in refluxing benzene for 3 h (25\%) [34].
- Preparation by demethylation of 2,4,6-trimethoxybenzophenone with hydriodic acid $(\mathrm{d}=1.7)$ in acetic anhydride at $115-120^{\circ}$ for $4 \mathrm{~h}(83 \%)$ [374].
- Also refer to: [166,167,375,376].

Isolation from natural sources

- From Helichrysum triplinerve (Asteraceae) [377];
- From genus Leontonyx [378].
m.p. $170-171^{\circ}[374], 165^{\circ}[34,156,363,371], 164-165^{\circ}[372], 164^{\circ}[370] ;$
${ }^{1} H$ NMR [374], UV [370].
Phenyl(3,4,5-trihydroxyphenyl)methanone
[60487-86-7] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22

Synthesis

- Preparation by reaction of tri(carbomethoxy) galloyl chloride with benzene in the presence of aluminium chloride at $70-80^{\circ}$ for 1.5 h , followed by saponification of the keto ester formed with N sodium hydroxide in a water bath for 15 min (65\%) [160].
- Also refer to: [220,379]. m.p. $\quad 177-178^{\circ}[160] ; \quad \operatorname{Spectra}(N A)$.

1.3.2 Hydroxy Groups Located on Both Rings

(2,3-Dihydroxyphenyl)(4-hydroxyphenyl)methanone

[129726-78-9]	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22 Synthesis
	- Preparation by total demethylation of 2,3,4'-trimethoxy-benzophenone with hydrobromic acid $(\mathrm{d}=1.5)$ in refluxing acetic acid [179].
m.p. 169° [179]; Spectr	

(2,4-Dihydroxyphenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22 Syntheses

- Preparation by diazotization of 4,4'-diamino-2,2'-di-hydroxybenzophenone, followed by treatment of the diazonium salt formed with 50% hypophosphorous acid (26\%) [286].
- Also obtained (poor yield) by action of salicylic acid on resorcinol at 195-200 ${ }^{\circ}$ for 15 h , without a dehydrating agent $[190,317,336,344]$ or in the presence of zinc chloride and phosphorous oxychloride (40\%) [380].
- Also obtained (poor yield) by condensation of o-acetoxybenzonitrile with resorcinol in the presence of zinc chloride and hydrochloric acid in ethyl ether at 0° (Hoesch reaction), followed by hydrolysis of the intermediate compound obtained with boiling 0.5 N sodium hydroxide ($<5 \%$) [381]. In this reaction, the major compound was 3-hydroxyxanthone (18\%).
- Also refer to: [84,226] and [382] (Japanese patent).
m.p. $134-135^{\circ}$ [380], $133-134^{\circ}$ [317,336,381], 132-133 ${ }^{\circ}$ [286], $130-132^{\circ}$ [190,237];
UV [190,303,380], MS [114]; TLC [116];
paper chromatography [383].

(2,4-Dihydroxyphenyl)(3-hydroxyphenyl)methanone

[837-60-5]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22 Synthesis

- Preparation by total demethylation of $2,3^{\prime}, 4$ -trimethoxy-benzophenone,
- with 60% hydrobromic acid in refluxing acetic acid for $6 \mathrm{~h}[341,343]$, (87\%) [291];
- with aluminium chloride in boiling chloroform for 2.5 h [291].
- Also refer to: [293,384,385].
m.p. $178-182^{\circ}$ [291], $178-180^{\circ}$ [385];
${ }^{1} \mathrm{H}$ NMR [341], IR [291,385], UV [291,385], MS [385].
(2,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone

[1470-79-7] \quad\begin{tabular}{l}
Syntheses

- Preparation by reaction of 4-hydroxyben-

zoic acid with resorcinol,
\end{tabular}
- in the presence of zinc chloride at 160° (Nencki reaction) [188,190];
- in the presence of zinc chloride and phosphorous oxychloride for 4 days at r.t. (78\%) [191];
- in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid $(60: 40)$ at 27°. Then, during 2 h , phosphorous trichloride was added between 27° and 37° and the mixture heated at 60° for 16 h (quantitative yield) [194];
- in the presence of hydrofluoric acid at 75° in an autoclave [184].
- Preparation by reaction of β-resorcylic acid with phenol in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid (60:40) at 27° [194], (40\%) [380]. Then, during 2 h , phosphorous trichloride was added between 27° and 37° and the mixture heated at 60° for 16 h [194].
- Also refer to: [298,386-393].
m.p. $203^{\circ} 4-204^{\circ}$ [194], 200-201 ${ }^{\circ}$ [188,191], 200° [190,237], 199-200 ${ }^{\circ}$ [380];
dihydrate [188]; IR [394], UV [190,380,394], MS [114];
TLC [116], paper chromatography [383].

(2,5-Dihydroxyphenyl)(2-hydroxyphenyl)methanone

[183106-13-0]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22
Syntheses

- Preparation by total demethylation of 2,2',5-tri-methoxy-benzophenone with boron tribromide in methylene chloride at 0° under nitrogen atmosphere for 3 h (85\%) [395].
- Preparation by condensation of salicylic acid with hydroquinone in the presence of zinc chloride for 45 min at $125-140^{\circ}$ (Nencki reaction). - Refer to: Chem. Abstr., 44, 1271f (1950) ${ }^{\mathrm{T}}$.
m.p. $149-150^{\circ}$ [395], 98°. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [395], IR [395], UV [395], MS [395]; TLC [395].

(2,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone

[120506-56-1]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22
Syntheses

- Preparation by heating a mixture of 4-hydroxybenzoic acid and hydroquinone in nitrobenzene in the presence of boron triflu
oride at 80° for $30 \mathrm{~min}(64 \%)$ [186]. N.B.: In the patent, this compound was erroneously called $3^{\prime}, 4,5^{\prime}$-tri-hydroxybenzophenone (assay 5, table page 3) [186].
- Preparation by Friedel-Crafts acylation of hydroquinone dimethyl ether with p-anisoyl chloride $\left(\mathrm{AlCl}_{3} / \mathrm{CS}_{2} / 3 \mathrm{~h}\right.$ at r.t.), followed by demethylation ($\mathrm{AlCl}_{3} /$ Toluene/ 1 h at 120°) (65\%). -Refer to: Chem. Abstr., 44, 1271f (1950) ${ }^{\mathrm{T}}$.
m.p. 162°; \quad Spectra (NA).

(2,6-Dihydroxyphenyl)(2-hydroxyphenyl)methanone

[82-69-9] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22

Synthesis

- Preparation by hydrolysis of 7-hydroxy-8-(o-hydroxy-benzoyl)-4-methylcoumarin with sodium hydroxide in dilute ethanol (52\%).
- Refer to: Chem. Abstr., 114, 42490n (1991) ${ }^{\mathrm{T}}$.
m.p. $\quad 155^{\circ}$; $\quad \mathrm{IR}^{\mathrm{T}}$.
(2,6-Dihydroxyphenyl)(3-hydroxyphenyl)methanone
mol.wt. 230.22
m.p. $124-125^{\circ}$ [341]; \quad IR [341], UV [341].

(2,6-Dihydroxyphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22 Synthesis

- Preparation by hydrolysis of 7-hydroxy-8-(p-hydroxy-benzoyl)-4-methylcoumarin (SM) with sodium hydroxide in refluxing dilute ethanol (57\%). SM was obtained by Fries rearrangement of 7-(p-methoxybenzoyloxy)-4-methylcoumarin with aluminium chloride, first at 190°, then at 200° for $1.5 \mathrm{~h}\left(52 \%\right.$, m.p. $\left.181^{\circ}\right)$.
- Refer to: Chem. Abstr., 114, 42490n (11991) ${ }^{\mathrm{T}}$.
m.p. $\quad 170^{\circ}$; $\quad \mathrm{IR}^{\mathrm{T}}$.
(3,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22

Synthesis

- Preparation by Friedel-Crafts acylation of pyrocatechol dimethyl ether with p-anisoyl-chloride ($\mathrm{AlCl}_{3} / \mathrm{CS}_{2} / 3 \mathrm{~h}$ at r.t.), followed by demethylation $\left(\mathrm{AlCl}_{3}\right.$ /toluene/ 1 h at 120°) (65%).
- Refer to: Chem. Abstr., 44, 1271f (1950) ${ }^{\mathrm{T}}$.
m.p. 205°; $\quad \operatorname{Spectra}(\mathrm{NA})$.

(3,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone

[129020-58-2]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22

m.p. and Spectra (NA).

1.4 Tetrahydroxybenzophenones

1.4.1 Hydroxy Groups Located on One Ring

Phenyl(2,3,4,6-tetrahydroxyphenyl)methanone
[198879-06-0]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22
Synthesis

- Preparation by Friedel-Crafts acylation of 1,2,3,5-tetra-hydroxybenzene with benzoyl chloride (46\%).
- Refer to: Chem. Abstr., 128, 3540y (1998) ${ }^{\mathrm{T}}$.
m.p. (NA); ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}^{\mathrm{T}},{ }^{13} \mathrm{C}^{\mathrm{NMR}}{ }^{\mathrm{T}}, \mathrm{MS}^{\mathrm{T}}$.

1.4.2 Hydroxy Groups Located on Both Rings

Symmetrical ketones
Bis(2,3-dihydroxyphenyl)methanone
[35042-50-3]
m.p. $121-122^{\circ}$ [397,398]; IR [397], UV [397].

Bis(2,4-dihydroxyphenyl)methanone (Uvinul-D-50)

[131-55-5] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Syntheses

- Obtained (small amount) by melting a fluorescin chloride/sodium hydroxide mixture in the presence of a very few water at $230-240^{\circ}$ for $2-3 \mathrm{~h}[399,400]$.
- Preparation by reaction of phosgene with resorcinol in the
- Presence of zirconium chloride in nitrobenzene at 70° (74\%) [401].
- Preparation by Fries rearrangement of 3-hydroxyphenyl 2,4-dihydroxybenzoate with zirconium chloride in nitrobenzene at 70° (94\%) [401].
- Preparation by reaction of β-resorcylic acid with resorcinol,
- in the presence of zinc chloride and phosphorous oxychloride at $80-90^{\circ}$ for 45 min , or at r.t. for $48 \mathrm{~h}(75 \%)$ [402], in sulfolane for 2 h at $50^{\circ}(92 \%)$ [403];
- in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid ($60: 40$) at 60° for 1 h . Then, during 1.5 h , phosphorous trichloride was added and the mixture heated at 60° for 8.5 h (85%) [194];
- in the presence of boron trifluoride in nitrobenzene at 80° for $30 \mathrm{~min}(59 \%)$ [186].
- Preparation by condensation of 2,4-diacetoxybenzonitrile with resorcinol in the presence of zinc chloride and hydrochloric acid in ethyl ether (Hoesch reaction). The 2,4-diacetoxy-2', 4^{\prime}-di-hydroxybenzophenone imine hydrochloride thus formed (m.p. 195° (d)) was hydrolyzed with boiling 25% aqueous sulfuric acid for 15 min [381], (33\%) [404].
- Also refer to: [78,79,84,225,227,228,235,387,405-408].
m.p. 201° [235], 200-201 ${ }^{\circ}$ [194], 198° [236], $196-198^{\circ}$ [402,404], 193-195 ${ }^{\circ}$ [113,399];
UV [113,235,236,240-242];
TLC [116]; HPLC [186]; vapour pressure [236];
gel permeation chromatography [247].
Bis(2,5-dihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22
Syntheses
- Obtained by gently heating b-isoeuxanthone (2,7-di-hydroxyxanthone) with anhydrous potassium hydroxide [287].
- This benzophenone can be obtained by total dealkylation of its tetramethyl ether by the usual methods. This one (m.p. 109°) was prepared by reaction of dimethylgentisic acid chloride (2,5-dimethoxybenzoyl chloride) with hydroquinone dimethyl ether (2,5-dimethoxybenzene) in the presence of aluminium chloride in carbon disulfide [409].
N.B.: Pb salt [287].
m.p. and Spectra (NA).

Bis(3,4-dihydroxyphenyl)methanone

Asymmetric ketones
(2,3-Dihydroxyphenyl)(2,4-dihydroxyphenyl)methanone
[37728-10-2] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Synthesis

- Preparation by reaction of 2,3-dihydroxybenzoic acid with resorcinol in the presence of freshly fused zinc chloride and phosphorous oxychloride at $65-70^{\circ}$ for 3 h (31\%) [398].
- Also refer to: [79,280,411]. m.p. 160-161 ${ }^{\circ}$ [398]; IR [398], UV [398].
(2,3-Dihydroxyphenyl)(2,5-dihydroxyphenyl)methanone
[35040-37-0] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Synthesis

- Preparation by demethylation of 2-hydroxy$2^{\prime}, 3^{\prime}, 5$-tri-methoxybenzophenone with 48% hydrobromic acid in refluxing acetic acid for 4 h (64\%) [397].
m.p. $190-191^{\circ}$ [397]; ${ }^{1} \mathrm{H}$ NMR [397], IR [397].
(2,3-Dihydroxyphenyl)(2,6-dihydroxyphenyl)methanone
[25577-01-9] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Syntheses

- Preparation by reaction of boron tribromide with 2,2', 3'-tris[(ethoxycarbonyl)oxy]-6-methoxybenzophenone (SM) in methylene chloride at r.t. for 5 h under nitrogen (61\%) [412]. SM was obtained by
reaction of ethyl chloroformate with $2,2^{\prime}, 3^{\prime}$-trihydroxy-6-methoxybenzophenone in the presence of potassium carbonate in refluxing acetone for $5-6 \mathrm{~h}(91 \%)$.
- Also obtained (by-product) by demethylation of 2,2', $3^{\prime}, 6$-tetramethoxybenzophenone with boron tribromide in benzene at r.t. for $5 \mathrm{~h}(16 \%)$ [412].

$$
\text { m.p. } \quad 173-174^{\circ} \text { [412]; }{ }^{1} \mathrm{H} \text { NMR [412], IR [412], UV [412], MS [412]. }
$$

(2,3-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone

[37728-15-7] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Syntheses

- Preparation by reaction of 2,3-dihydroxybenzoic acid with pyrocatechol in the presence of freshly fused zinc chloride and phosphorous oxychloride at $65-70^{\circ}$ for $3 \mathrm{~h}(32 \%)$ [398].
- Preparation by Friedel-Crafts acylation of veratrole with 2,3-dimethoxybenzoyl chloride in the presence of aluminium chloride at $30-40^{\circ}$ for 16 h . The $2,3,3^{\prime}, 4^{\prime}$-tetramethoxybenzophenone formed was demethylated by heating with pyridinium chloride [281].
- Also refer to: [79,280,411].
m.p. 200° [281], 141- 142° [398]. One of the reported melting points is obviously wrong. UV [398].

(2,4-Dihydroxyphenyl)(2,5-dihydroxyphenyl)methanone

[61234-44-4]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5}$
mol.wt. 246.22
Syntheses

- Preparation by demethylation of 2,4,5'-trihy-droxy-2'-methoxybenzophenone with hydrobromic acid in boiling acetic acid for $2 \mathrm{~h}(79 \%)$ [413].
- Preparation [414] according to [415].
- Also refer to: [343].
m.p. 237° [413]; Spectra (NA).

(2,4-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone

[61445-50-9]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22
Synthesis

- Preparation by reaction of protocatechuic acid with resorcinol,
- in the presence of zinc chloride at 160° [188,190] (Nencki reaction);
- in the presence of zinc chloride and phosphorous oxychloride for 4 days at r.t. (69\%) [191].
- Also refer to: [280,281].
m.p. $201-202^{\circ}$ [188,191], 199-200 ${ }^{\circ}$ [190,237]; dihydrate [188]; UV [190].

(2,5-Dihydroxyphenyl)(2,6-dihydroxyphenyl)methanone

[88331-62-8]

(2,6-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22
Synthesis

- Preparation by demethylation of $2,3^{\prime}, 4^{\prime}, 6$-tetram-ethoxy-benzophenone with boron tribromide in methylene chloride at r.t. for $24 \mathrm{~h}(51 \%)$ [412].
- Also refer to: [416].

```
m.p. 113-119`}\mathrm{ (d) [412];
'1H NMR [412], IR [412], UV [412], MS [412].
```


(2-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone

[42204-63-7]

$$
\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5}
$$

mol.wt. 246.22

Syntheses

- Preparation by condensation of salicylic acid with pyrogallol,
- in the presence of zinc chloride at 145° for 3 h (Nencki reaction) [190,344];
- in the presence of zinc chloride and phosphorous oxychloride at $60-70^{\circ}$ for $2 \mathrm{~h}(50 \%)$ [402].
- Also obtained by condensation of o-acetoxybenzonitrile with pyrogallol in the presence of zinc chloride and hydrochloric acid in ethyl ether at 0° (Hoesch reaction). The intermediate compound obtained was hydrolyzed in boiling water for $1 \mathrm{~h}(19 \%)$ [381].
- Also refer to: [79,411].
N.B.: Na salt [344].
m.p. (sesquihydrate) $103-104^{\circ}$ [402], 102° [344], 100° [381];
(anhydrous) 149° [344,381,402], 145- 147° [190];
UV [190].
(2-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Synthesis

- Obtained by reaction of salicylonitrile with phloroglucinol (Hoesch reaction) Karrer [417]. N.B.: Nevertheless, Nishikawa and Robinson [418] were unable to confirm Karrer's view of the structure of the isolated product.
- Also refer to: [87]. m.p. and Spectra (NA).

(3-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone

[105443-53-6]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22
Synthesis

- Preparation by benzoylation of pyrogallol with m-hydroxy-benzoic acid,
- in the presence of Amberlyst-15 in refluxing toluene under azeotropical removal of water [419];
- in the presence of boron trifluoride or its complexes [420].
- Also refer to: [419-421] (Japanese patents). m.p. and Spectra (NA).
(3-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone
[26271-33-0]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22
Syntheses
- Preparationbydemethylationof2,4,6-trihydroxy-3'-methoxybenzophenone with aluminium chloride in refluxing chlorobenzene for 1 h (95\%) [341,343,422].
- Preparation from phloroglucinol [414] according to [415].
- Also obtained (small quantities) by degradation of Gentisein in the presence of sodium hydroxide and potassium hydroxide (1 g each) at $300-310^{\circ}$ under nitrogen for 3 h [296].
- Preparation by reaction of m-hydroxybenzonitrile with phloroglucinol (38\%) (Hoesch reaction) [418].
- Also refer to: [342,413].

Isolation from natural source

- From fresh Gentiana lutea rhizome (Gentianaceae) [296,422,423].
m.p. 246° (d) [418], 235-238 ${ }^{\circ}$ [296,341,422];
${ }^{1} \mathrm{H}$ NMR [341,422], IR [341,422], UV [341,422];
TLC [422]; GC [422].

(4-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone

[31127-54-5]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22
Syntheses

- Preparation by benzoylation of pyrogallol with p-hydroxybenzoic acid in the presence of Amberlyst-15 in refluxing toluene for 21 h under azeotropical removal of water (86\%) [419].
- Preparation by Friedel-Crafts acylation of pyrogallol trimethyl ether with p-anisoyl chloride $\left(\mathrm{AlCl}_{3} / \mathrm{CS}_{2} / 3 \mathrm{~h}\right.$ at r.t.), followed by demethylation ($\mathrm{AlCl}_{3} /$ toluene/ 1 h at 120°) (65%).
- Refer to: Chem. Abstr., 44, 1271f (1950) ${ }^{\mathrm{T}}$.
- Also refer to: [424-427] and Chem. Abstr., 129, 88025c, 129007u, 142608k, 237674t, 237675u, 237676v (1998).
m.p. 219°; $\quad \operatorname{Spectra}(N A)$.

(4-Hydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone

[58115-12-1] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Synthesis

- Obtained by total demethylation of 2-hydroxy-4,4',5-tri-methoxybenzophenone with hydriodic acid in acetic anhydride [428].
unstable compound [428]; m.p. and Spectra (NA). m.p. (of tetraacetate) $132-134^{\circ}$ [428].

(4-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone (Iriflophenone)

[52591-10-3]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Synthesis

- Preparation by reaction of p-hydroxybenzonitrile with phloroglucinol [429], (15\%) [418] (Hoesch reaction).

Isolation from natural sources

- From branchwood of Morus alba (Moraceae) [171,430,431];
- From rhizomes of Iris Germanica Linn (white flowered variety) [432];
- From rhizoma of Iris florentina (Iridaceae) [433].
N.B.: Dihydrate [418,431].
m.p. 210° [418,431], 208-210 ${ }^{\circ}$ [432], 207-208 ${ }^{\circ}$ [433];
${ }^{1} \mathrm{H}$ NMR [433], IR [433], UV [433], MS [432,433].

1.5 Pentahydroxybenzophenones

1.5.1 Hydroxy Groups Located on One Ring

Only one ketone possible, not yet described.

1.5.2 Hydroxy Groups Located on Both Rings

(2,3-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad \text { mol.wt. } 262.22
$$

Synthesis

- Preparation by reaction of gallic acid with pyrocatechol in chlorobenzene in the presence of methanesulfonic acid for 6 h between 65° and $75^{\circ}(90 \%)$ or by using boron trifluorideetherate instead of methanesulfonic acid as catalyst (10%).
- Refer to: Chem. Abstr., 108, 204327v (1988).
m.p. and Spectra (NA).
(2,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone
[92379-42-5] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22
 Syntheses
- Preparation by reaction of 2,3,4-trihydroxybenzoic acid with resorcinol,
- in the presence of zinc chloride and phosphorous oxychloride at $70-80^{\circ}$ for 1.5 h (65\%) [402];
- in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid $(60: 40)$ at 27°. Then, during 2 h , phosphorous trichloride was added between 27° and 37° and the mixture heated at 60° for 16 h [194].
- Preparation by reaction of β-resorcylic acid with pyrogallol,
- in the presence of zinc chloride and phosphorous oxychloride at $70-80^{\circ}$ for 1 h [402], in sulfolane at 50° for 2 h [403];
- in the presence of zinc chloride and a mixture of polyphosphoric acid/ 85% phosphoric acid (60:40) at 27°. Then, during 2 h , phosphorous trichloride was added between 27° and 37° and the mixture heated at 60° for 16 h [194];
- in the presence of boron trifluoride in tetrachloroethane at 110° for 1 h [420].
- Also obtained by condensation of 2,4-diacetoxybenzonitrile with pyrogallol in the presence of zinc chloride and hydrochloric acid in ethyl ether (Hoesch reaction).

The intermediate compound obtained was hydrolyzed in boiling water for 2 h (22\%) [381].

- Also refer to: [298,391,425,426,434-437].
m.p. $187-188^{\circ}$ [402], 187° [381]; dihydrate [381];

Spectra (NA); TLC [116].

(2,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone

[10425-09-9]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22
Syntheses

- Preparation by reaction of gallic acid with resorcinol in the presence of zinc chloride at 145° for 3 h [190] (Nencki reaction).
- Preparation by condensation of 2,4-dihydroxybenzoic acid with pyrogallol in the presence of zinc chloride for 45 min at $125-140^{\circ}$ (Nencki reaction).
- Refer to: Chem. Abstr., 44, 1271f (1950) ${ }^{\mathrm{T}}$.
- Also refer to: [280,281]. m.p. $253^{\circ \mathrm{T}}, 243-245^{\circ}$ [190,237]; UV [190]; TLC [116].
(2,5-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22

Synthesis

- Preparation by the Friedel-Crafts reaction.
- Refer to: Chem. Abstr., 65, 18519h (1966) ${ }^{\mathrm{T}}$.
m.p. (NA); UV ${ }^{\mathrm{T}}$.
(2,6-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone
[112232-16-3] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22

Synthesis

- Refer to: [438] (Japanese patent).
m.p. and Spectra (NA).

(2,6-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22

Synthesis

- Obtained (poor yield) by treatment of 1,3,8-trihy-droxy-xanthone (m.p. 265°) with aqueous potassium hydroxide for 30 min at $240-250^{\circ}$ (6%).
- Refer to: Chem. Abstr., 50, $15523^{\text {b }}$ (1956) ${ }^{\mathrm{T}}$.
m.p. $162^{\circ}{ }^{\circ} ; \quad \operatorname{Spectra}(N A)$.

(3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone

[61445-51-0]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$
mol.wt. 262.22

Synthesis

- Refer to: [280,281].
m.p. and Spectra (NA).
(3,4-Dihydroxyphenyl)(2,3,6-trihydroxyphenyl)methanone
[25577-03-1] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22

Synthesis

- Preparation by demethylation of 2,3,3', $4^{\prime}, 6$-pentamethoxy-benzophenone with boron tribromide in methylene chloride at r.t. for 8 h (70\%) [412].
m.p. $131-135^{\circ}$ [412];
${ }^{1} \mathrm{H}$ NMR [412], IR [412], UV [412], MS [412].

(3,4-Dihydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone

[61445-52-1]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22
Synthesis

- Preparation by reaction of 3,4-(diacetoxy) benzonitrile with hydroxyhydroquinone in the presence of zinc chloride and hydrochloric acid in a chloroform and ethyl ether mixture, treatment with 10% sulfuric acid, followed by hydrolysis of the ketimine sulfate formed with boiling water for 1 h (21\%) [439] and Chem. Abstr., 22, 4519^{7} (1928).
- Also refer to: [280,281].
m.p. 242° [439] and Chem. Abstr., 22, 4519^{7} (1928);

Spectra (NA).
(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone
(Maclurin, Morin)
[519-34-6]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22
Syntheses

- Preparation by reaction of 3,4-dihydroxybenzonitrile with phloroglucinol in the presence of zinc chloride and hydrochloric acid in ethyl ether (Hoesch reaction), first at r.t. for 1 h , then at $50-60^{\circ}$ for $4 \mathrm{~h}(37 \%)$ [440].
- Also obtained by condensation of protocatechuic acid with phloroglucinol [441].
- Also refer to: [166,167,341-343,423,442-444].

Isolation from natural sources

- From heartwood of Symphonia globulifera L. (Guttiferae) [445];
- From yellow wood of Maclura tinctoria L. D. Don (Moraceae) [171,446], so called Morus tinctoria L. (Maclura aurantiaca Nutt.) [447,448] or Chlorophora tinctoria L. Gaud [430], (major product) [431,447];
- From bark of Laguncularia racemosa Garten (Moraceae) [171];
- From yellow sapwood of Acacia catechu and Acacia catechuoides (Moraceae) [171,449];
- From yellow sapwood of Acacia sundra (Moraceae) [171,449];
- From branches [171] or sawdust (small amounts) [431] of Morus Alba Linn. (Moraceae);
- From bark of Coto (Lauraceae) (main component) [450].
N.B.: $\mathrm{Ba}[446,451], \mathrm{Ca}[446]$ and Pb salts [444,446]. monohydrate [440,442], (Wagner) [446]; sesquihydrate (Delffs) [446]; m.p. $226-230^{\circ}$ [341], 222-224ํ [430], 220-222 ${ }^{\circ}$ [449], 220-221 [431], 220° [440]; ${ }^{1} \mathrm{H}$ NMR [341], IR [341], UV [341]; TLC [341].
(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl-1,3,5- ${ }^{14} \mathrm{C}_{3}$)methanone (Maclurin-1,3,5- ${ }^{14} \mathrm{C}_{3}$)

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 268.22
Synthesis
- Preparation by reaction of protocatechuonitrile (3,4-di-hydroxybenzonitrile) with phlorogluci-nol-2,4,6- ${ }^{14} \mathrm{C}$ (Hoesch reaction).
- Refer to: Chem. Abstr., 93, 217975 b (1980) ${ }^{\mathrm{T}}$.
m.p. $\quad 199-200^{\circ}{ }^{\top} ; \quad$ Sp. act. $3.05 \times 10^{7} \mathrm{dpm} / \mathrm{mM}^{\mathrm{T}}$.
(3,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$
mol.wt. 262.22
Synthesis
- Preparation by reaction of gallic acid with pyrocatechol in the presence of zinc chloride for 1 h at $140-145^{\circ}$ [452] (Nencki reaction).
- Also refer to: [280,281,453,454].
m.p. 266° [452]; UV [452].
(3,5-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone

Isolation from natural source

- From the heartwood of Garcinia pedunculata (Guttiferae) [167,443].
m.p. 258-260 [167]; MS [167].
(2-Hydroxyphenyl)(2,3,5,6-tetrahydroxyphenyl)methanone $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22

Synthesis

- Refer to: [87].
m.p. and Spectra (NA).
(4-Hydroxyphenyl)(2,3,4,5-tetrahydroxyphenyl)methanone

1.6 Hexahydroxybenzophenones

Symmetrical ketones

Bis(2,3,4-trihydroxyphenyl)methanone

[75440-84-5]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7} \quad$ mol.wt. 278.22
Syntheses

- Preparation by reaction of 2,3,4-trihydroxybenzoic acid with pyrogallol in the presence of zinc chloride for 45 min at 125-140 ${ }^{\circ}$ (Nencki reaction).
- Refer to: Chem. Abstr., 44, 1271f (1950) ${ }^{\mathrm{T}}$.
- Preparation by heating a mixture of 2,3,4-trihydroxybenzoic acid, pyrogallol and excess of phosphorous oxychloride with zinc chloride for 2 h at $70-80^{\circ}$ (73\%). -Refer to: Chem. Abstr., 50, 1787g (1956); 51, 8736a (1957) ${ }^{\mathrm{TT}}$.
- Also refer to: Chem. Abstr., 102, 73168v (1985) and 118, 90911e (1993). m.p. $244-245^{\circ \mathrm{TT}}, 240^{\circ}$; $\quad \operatorname{Spectra}(\mathrm{NA})$.

Bis(3,4,5-trihydroxyphenyl)methanone

[111621-53-5]

Asymmetric ketones

(2,3,4-Trihydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone

[153812-71-6] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7} \quad$ mol.wt. 278.22

Synthesis

- Refer to: Chem. Abstr., 120, 204680c (1994).
m.p. and Spectra (NA).

(2,3,4-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone (Exifone, Adlone)

[52479-85-3]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7} \quad$ mol.wt. 278.22
Synthesis

- Preparation by condensation of gallic acid with pyrogallol,
- in the presence of zinc chloride at 120° (good yield) [455] or at 145° for 3 h [190] (Nencki reaction);
- in the presence of zinc chloride and phosphorous oxychloride at 80° for 2 h , via Fries rearrangement [281].
- Also refer to: [280,365,454,456] and Chem. Abstr., 80, 103486u (1974); 89, 186079y (1978); 106, 207622g (1987); 107, 109260p (1987); 109, 86223d (1988); 112, 104863f (1990); 125, 5333v (1996); 129, 88025c (1998).
m.p. $275-280^{\circ}$ [190,237], 272-273 ${ }^{\circ}$ [455], 270° [281];
${ }^{1}$ H NMR -Refer to: Chem. Abstr., 115, 196535p (1991), UV [190,237];
$\mathrm{p} K_{\mathrm{a}}$ [369]; HPLC -Refer to: Chem. Abstr., 112, 48178x (1990).

(2,4,5-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone

(2,4,6-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone

[112005-19-3]

m.p. and Spectra (NA).
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7} \quad$ mol.wt. 278.22
Synthesis

- Refer to: [438,457] (Japanese patent).

Chapter 2
 Substituted Hydroxybenzophenones (Class of METHANONES)

2.1 Monohydroxybenzophenones

2.1.1 Substituents Located on the Hydroxylated Ring

Phenyl(2,3,5-trichloro-6-hydroxyphenyl)methanone
[7396-96-5] $\quad \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 301.56

Synthesis

- Preparation by Fries rearrangement of 2,4,5-trichlorophenyl benzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 143-144^{\circ}[458] ; \quad$ Spectra (NA).
(3-Hydroxy-2,4,6-triiodophenyl)phenylmethanone
[91692-34-1]
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{I}_{3} \mathrm{O}_{2}$
mol.wt. 575.91

Syntheses

- Preparation by treating a solution of 3-hydroxy-benzo-phenone in methanolic sodium hydroxide with iodine mono-chloride in aqueous sodium chloride (75\%) [120,459].
- Also obtained by iodination of 3-hydroxybenzophenone with iodine monochloride [460].
m.p. $\quad 190^{\circ}[120,459] ; \quad$ Spectra (NA).
(3-Bromo-5-fluoro-4-hydroxyphenyl)phenylmethanone
[579-15-7]
m.p. $\quad 187^{\circ}[461] ; \quad$ Spectra (NA).

(3,5-Dibromo-2-hydroxyphenyl)phenylmethanone

[111277-24-8] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 356.01
 Syntheses

- Preparation by adding a solution of bromine in chloroform to a solution of 2-hydroxybenzophenone in ethanol [35,61,127,462].
- Preparation by Friedel-Crafts acylation of benzene with 3,5-dibromo-2hydroxybenzoyl chloride in the presence of aluminium chloride in a steam bath for $1 \mathrm{~h}(70 \%)$ [462] or at $80^{\circ}(>80 \%)$ [463].
- Also obtained (poor yield) by alkaline condensation of benzotrichloride with 2,4-dibromophenol in 30% aqueous sodium hydroxide solution at $80-85^{\circ}$ (8\%) [127].
- Also refer to: $[73,464,465]$.

$$
\text { m.p. } \quad 129-130^{\circ}[463], 128-129^{\circ}[127], 126^{\circ}[35,61], 121-122^{\circ}[462] ;
$$ Spectra (NA).

(3,5-Dibromo-4-hydroxyphenyl)phenylmethanone

[26733-16-4]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 356.01
Syntheses

- Preparation by reaction of bromine with 4-hydroxy-benzo-phenone in acetic acid [140,169,466], in chloroform [127] or in water [140].
- Preparation by adding a 5\% solution of bromine in potassium bromide to a solution of 4-hydroxybenzophenone in dilute aqueous potassium hydroxide at 5° [140].
- Also obtained by treatment of a mixture of sodium acetate and 4-methoxybenzophenone with bromine in a sealed tube at 140° [140].
- Preparation by Fries rearrangement of 2,6-dibromophenyl benzoate with aluminium chloride without solvent at 120° for $3 \mathrm{~h}(40 \%)$ [467].
- Also obtained (poor yield) by alkaline condensation of benzotrichloride with 2,4,6-tribromophenol in 30% aqueous sodium hydroxide solution at $90-95^{\circ}(2 \%)$ [127].
- Also refer to: [468].
N.B.: K salt [169].
m.p. 178° [467], 155° [140], $152-153^{\circ}$ [466], $151-152^{\circ}$ [169], $150-152^{\circ}$ [127];

MS [177]; voltammetric studies [469].

(2-Chloro-4-fluoro-6-hydroxyphenyl)phenylmethanone

[169781-84-4]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2}$
mol.wt. 250.66
Syntheses

- Obtained by Fries rearrangement of 3-chloro-5fluorophenyl benzoate with aluminium chloride at 200° for 20 min [20].
- Also obtained by demethylation of 2-chloro-4-fluoro-6-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21]. m.p. and Spectra (NA).

(5-Chloro-2-hydroxy-3-nitrophenyl)phenylmethanone

[85052-26-2] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4} \quad$ mol.wt. 277.66

Synthesis

- Preparation by nitration of 5-chloro-2-hydroxy-benzo-phenone,
- with 26% nitric acid in acetic acid at r.t. for 12 h (50\%) [470];
- with nitric acid $(\mathrm{d}=1.38)$ in acetic acid and methylene chloride at r.t. for overnight [471];
- with 60% nitric acid in the presence of one drop of concentrated sulfuric acid at r.t. for $25 \mathrm{~min}(89 \%)$ [472].
- Also refer to: [473].
m.p. $70^{\circ} 5-71^{\circ}$ [470], 68-70 ${ }^{\circ}$ [471], $56-58^{\circ}$ [472];
${ }^{1} \mathrm{H}$ NMR [472], IR [470,472], MS [472].
(5-Chloro-2-hydroxy-4-nitrophenyl)phenylmethanone

m.p. and Spectra (NA).

(2,3-Dichloro-4-hydroxyphenyl)phenylmethanone

[62967-12-8]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11
Synthesis

- Preparation by demethylation of 2,3-dichloro-4-methoxy-benzophenone (SM),
- with aluminium chloride, in refluxing methylene chloride overnight [475] or in refluxing benzene for 5 h [476];
- with pyridinium chloride at 180° for 2 h (99\%) [477].

SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with benzoyl chloride in the presence of aluminium chloride in methylene chloride [475], first at 0° for 30 min , then at r.t. for $6 \mathrm{~h}(42 \%)$ [477] or in ethylene dichloride for 2 h [476].
m.p. $\quad 123-126^{\circ}[475] ; \quad$ Spectra (NA).

(2,4-Dichloro-6-hydroxyphenyl)phenylmethanone

[34199-75-2] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Synthesis

- Preparation by Fries rearrangement of 3,5-dichlorophenyl benzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 156-157^{\circ}[458] ; \quad$ Spectra (NA).

(2,5-Dichloro-4-hydroxyphenyl)phenylmethanone

[123574-94-7] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Synthesis

- Preparation by Friedel-Crafts acylation of 2,5-dichloro-phenol with benzoyl chloride in the presence of aluminium chloride in refluxing ethylene dichloride for 33 h (61\%) [478].
- Also refer to: [479].
m.p. $161-163^{\circ}$ [478]; ${ }^{1} \mathrm{H}$ NMR [478], IR [478], MS [478].

(2,6-Dichloro-4-hydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Synthesis

- Obtained by Fries rearrangement of 3,5-dichlorophenyl benzoate with aluminium chloride in chlorobenzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].
m.p. $\quad 135-136^{\circ}$ [480]; \quad Spectra (NA).

(3,4-Dichloro-2-hydroxyphenyl)phenylmethanone

[54923-64-7]

(3,4-Dichloro-5-hydroxyphenyl)phenylmethanone

[113730-38-4]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 267.11
Synthesis

- Preparation by demethylation of 3,4-dichloro-5-methoxy-benzophenone with boron tribromide in methylene chloride at 5° for 1 h , then at r.t. for 20 $\min (98 \%)$ [482].
m.p. $\quad 177^{\circ}$ [482]; hemihydrate [482]; ${ }^{1} \mathrm{H}$ NMR [482].

(3,5-Dichloro-2-hydroxyphenyl)phenylmethanone

[7396-92-1] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Syntheses

- Preparation by adding aluminium chloride into a solution of 3,5-dichloro-2-hydroxybenzoyl chloride in benzene and heating at 60° for $3-4 \mathrm{~h}(60-70 \%)$ [483].
- Also obtained by chromic oxidation $\left(\mathrm{CrO}_{3}\right)$ of 5,7-dichloro-3-phenylbenzofuran, followed by saponification of the obtained keto ester [481].
- Preparation by reaction of benzoyl chloride with 2,4-dichlorophenol in the presence of aluminium chloride at 180° for $23 \mathrm{~min}(46 \%)$ [484].
- Preparation by Fries rearrangement of 2,4-dichlorophenyl benzoate (SM) with aluminium chloride at 140° for 30 min (quantitative yield). SM was obtained by heating benzoyl chloride with aluminium tris(2,4-dichlorophenoxide) in a water bath for 30 min [485].
- Also refer to: [464,486-488].
m.p. 116° [483], 115° [481], $114-115^{\circ}$ [485], $113-114^{\circ}$ [484]; IR [481], UV [241].

(3,5-Dichloro-4-hydroxyphenyl)phenylmethanone

[34183-06-7]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11
Syntheses

- Preparation by Fries rearrangement of 2,6-dichlorophenyl benzoate with aluminium chloride,
- without solvent at 154° for $2.5 \mathrm{~h}(71 \%)$ [489];
- in chlorobenzene at $140-150^{\circ}$ for 20 min [480];
- in nitrobenzene at 75° for 24 h [480].
- Preparation by demethylation of 3,5-dichloro-4-methoxybenzophenone with 48% hydrobromic acid in refluxing acetic acid [140].
- Preparation by passing chlorine into a solution of p-hydroxybenzophenone and sodium acetate in acetic acid during some hours [140].
- Also obtained by Fries rearrangement of 4-tert-butyl-2,6-dichlorophenyl benzoate with aluminium chloride at 140° (sole isolated reaction product). There is a total dealkylation [154].
- Also refer to: [298]. m.p. $149-150^{\circ}$ [480], 148° [140], $145-146^{\circ}$ [489]; $\operatorname{Spectra}(N A)$.
(4,5-Dichloro-2-hydroxyphenyl)phenylmethanone
[58430-25-4]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11
Synthesis
- Preparation by Friedel-Crafts acylation of 3,4-dichloro-phenol with benzoyl chloride in the presence of aluminium chloride at 180° for 35 \min [75].
m.p. $\quad 115-116^{\circ}[75] ; \quad \operatorname{Spectra}(N A)$.
(2,5-Difluoro-4-hydroxyphenyl)phenylmethanone
[179018-49-6]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad \mathrm{~mol}$. wt. 234.20
Synthesis

- Preparation by Fries rearrangement of 2,5-difluorophenyl benzoate with aluminium chloride at 160° for 2 h [490,491].
m.p. (NA); MS [490,491].

(3,5-Difluoro-2-hydroxyphenyl)phenylmethanone

[183280-20-8] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 234.20
 Synthesis

- Preparation by Fries rearrangement of 2,4-difluorophenyl benzoate with aluminium chloride at $150-180^{\circ}$ for 20 min (35\%) [492].
m.p. $83^{\circ} 5$ [492]; ${ }^{1} \mathrm{H}$ NMR [492], UV [492], MS [492].

(3,5-Difluoro-4-hydroxyphenyl)phenylmethanone

[179018-48-5]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$
mol.wt. 234.20

Synthesis

- Preparation by Fries rearrangement of 2,6-difluorophenyl benzoate with aluminium chloride at 160° for 2 h [490,491].
m.p. (NA); MS [490,491].

(2-Hydroxy-3,5-diiodophenyl)phenylmethanone

$$
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 450.01
$$

Synthesis

- Preparation by reaction of 3,5-diiodosalicylic acid chloride with benzene in the presence of aluminium chloride in carbon disulfide at 50° [493].
- Also refer to: [464,494].
m.p. 116° [493]; $\operatorname{Spectra}(N A)$.

(4-Hydroxy-3,5-diiodophenyl)phenylmethanone

[70036-74-7]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{2}$
mol.wt. 450.01
Synthesis

- Preparation by treatment of 4-hydroxybenzophenone with iodine monochloride,
- in the presence of sodium acetate in acetic acid [140];
- at steam bath temperature $[460,495]$.
m.p. 145° [140]; Spectra (NA).
(2-Hydroxy-3,5-dinitrophenyl)phenylmethanone

$$
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \quad \text { mol.wt. } 288.22
$$

Synthesis

- Obtained by action of potassium hydroxide with 2-bromo-3,5-dinitrobenzophenone (SM) in ethanol. SM was prepared by Friedel-Crafts acylation of benzene with 2-bromo-3,5-dinitrobenzoyl chloride in the presence of aluminium chloride (97%, m.p. $153-154^{\circ}$). Refer to: Chem. Abstr., 20, 1229^{8} (1926) ${ }^{\mathrm{T}}$.
- N.B.: K salt, m.p. $180-200^{\circ}$ (d) ${ }^{\mathrm{T}}$. m.p. and Spectra (NA).
(4-Hydroxy-3,5-dinitrophenyl)phenylmethanone
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 288.22

Syntheses

- Preparation by heating a solution of 4-hydroxy-benzo-phenone in nitric acid $(\mathrm{d}=1.4)$ at 40° for 30 min [140].
- Preparation by reaction of 10% aqueous sodium hydroxide with 4-chloro-3,5-dinitrobenzophenone
(SM) in refluxingethanol for $20 \mathrm{~min}(75 \%)$. SM was prepared from p-chlorobenzoic acid by a three-step synthesis: at first, nitration of this acid with nitric acid/concentrated sulfuric acid at 140° for 1.5 h . The 4-chloro-3,5-dinitrobenzoic acid formed $\left(95 \%\right.$, m.p. 159°), on treatment with phosphorous pentachloride in refluxing benzene gave the 4 -chloro-3,5-dinitrobenzoyl chloride. Then, by adding aluminium chloride to the reaction mixture and heating this one in a water bath for 30 min , SM was obtained (90%, m.p. 118°) [496].
m.p. 138° [140], 136° [496]; Spectra (NA).

(3-Bromo-2-hydroxyphenyl)phenylmethanone

[147321-82-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Synthesis

- Refer to: [497].
m.p. and Spectra (NA); TLC [497]; HPLC [497].

(3-Bromo-4-hydroxyphenyl)phenylmethanone

[89899-44-5] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11
 Syntheses

- Preparation by bromination of p-hydroxybenzophenone with bromine [466], in acetic acid [140,169] or in chloroform [127].
- Preparation by demethylation of 3-bromo-4-methoxy-benzophenone (SM) with 48% hydrobromic acid in refluxing acetic acid. SM was prepared by reaction of bromine with 4-methoxybenzophenone in the presence of sodium acetate in acetic acid at 100° for 6 h [140].
- Also obtained (poor yield) by aqueous alkaline condensation of benzotrichloride with 4-bromo-phenol or 2,4-dibromophenol in 30% sodium hydroxide solution at $80-85^{\circ}(<3 \%)$ [127].
- Also obtained (poor yield) by reaction of benzoyl chloride with o-bromophenol in the presence of ferric chloride [466].
- Also refer to: [429,498].
N.B.: K salt [169].
m.p. 183° [140], $182-183^{\circ}$ [127], $180-181^{\circ}[169,466] ; \quad \operatorname{Spectra}(N A) ;$ polarographic study [499]; voltammetric study [500]; TLC [497]; HPLC [497].

(4-Bromo-2-hydroxyphenyl)phenylmethanone

[6723-04-2]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11
Syntheses

- Preparation by oxidation of 6-bromo-2,3-diphenyl-benzo-furan with chromium trioxide in boiling
acetic acid, followed by saponification of the obtained keto ester-(2-benzoyloxy)-4-bromobenzophenone-with sodium hydroxide in refluxing ethanol [44,501], (70\%) [502].
- Also obtained by Fries rearrangement of m-bromophenyl benzoate with aluminium chloride [23], at 200° for 20 min [20].
- Also obtained by demethylation of 4-bromo-2-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21]. m.p. 83° [501,502], 79° [44]; $\operatorname{IR}[44,103,501]$, UV [503].

(5-Bromo-2-hydroxyphenyl)phenylmethanone

$$
\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad \text { mol.wt. } 277.11
$$

Syntheses

- Preparation by Fries rearrangement of p-bromophenyl benzoate with aluminium chloride without solvent at 150° for $15 \mathrm{~min}(42 \%)$ [462].
- Preparation by oxidation of 5-bromo-2,3-diphenylbenzo-furan with chromium trioxide in boiling acetic acid, followed by saponification of the obtained keto ester-2-(benzoyloxy)-5-bromobenzophenone-with sodium hydroxide [44] with potassium hydroxide in refluxing ethanol (65\%) [504].
- Also obtained (poor yield) by alkaline condensation of benzotrichloride with p-bromophenol or 2,4-dibromophenol in 30% aqueous sodium hydroxide solution at $80-85^{\circ}$ (2\%) [127].
- Also refer to: [505].

```
m.p. 111-1120 [462], 110 [504], 109 [44]; IR [44].
```


(2-Chloro-4-hydroxyphenyl)phenylmethanone

[81375-00-0] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
 Syntheses

- Preparation by Fries rearrangement of 3-chlorophenyl benzoate without solvent,
- with aluminium chloride for 2 h at $150^{\circ}(25 \%)$ [506] or at $160^{\circ}[490,491]$ or for 15 min at $175^{\circ}(8 \%)$ [36];
- with titanium tetrachloride for 15 min at $175^{\circ}(17 \%)$ [36].
- Preparation by diazotization of 4-amino-2-chlorobenzophenone, followed by hydrolysis of the diazonium salt so obtained (66\%) [6].
m.p. $118-119^{\circ}[506], 115^{\circ}$ [6]; $\operatorname{MS}[490,491]$.

(2-Chloro-6-hydroxyphenyl)phenylmethanone

[81374-99-4] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
 Synthesis

- Obtained by reaction of sodium iodide with 2-chloro-6-methoxybenzophenone (SM) in the presence of trimethyl-silyl chloride in acetonitrile into an autoclave at 130° for $24 \mathrm{~h}(36 \%)$. SM was prepared from 2-amino-6-chlorotoluene by a five-step synthesis [6].
m.p. $\quad 105^{\circ}$ [6]; ${ }^{13} \mathrm{C}$ NMR [6].

(3-Chloro-2-hydroxyphenyl)phenylmethanone

[35582-86-6] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67

- Preparation by decarboxylation of 2-(3-chloro-2-hydroxy-benzoyl)benzoic acid in quinoline at 250° during 15 min in the presence of silver carbonate (80\%) [507,508].
- Also obtained from o-chlorophenol,
- by reaction with benzoyl chloride in the presence of aluminium chloride in tetrachloroethane for 3 h at $120-130^{\circ}$ (17%) [508];
- by reaction with benzoic acid in the presence of Amberlyst-15 in refluxing chlorobenzene during 70 h (18\%) [53].
- Also obtained by chromic oxidation $\left(\mathrm{CrO}_{3}\right)$ of 7-chloro-3-phenylbenzofuran, followed by saponification of the obtained keto ester [481].
- Also obtained (by-product) by Fries rearrangement of 2-chlorophenyl benzoate with aluminium chloride without solvent at $152-155^{\circ}$ for $2 \mathrm{~h}(6 \%)$ [506].
- Also refer to: [82,83,509,510]. m.p. 95° [506], 93° [481], $92^{\circ} 5-93^{\circ}$ [508], $91^{\circ} 7-92^{\circ} 5$ [507]; IR [481,507], UV [507].
(3-Chloro-4-hydroxyphenyl)phenylmethanone
[55191-20-3]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
Syntheses

- Preparation by Fries rearrangement of o-chlorophenyl benzoate with aluminium chloride without solvent for 2 h at $152-155^{\circ}(88 \%)$ [506] or at 160° [490,491].
- Also obtained by Fries rearrangement of 4-tert-butyl-2-chlorophenyl benzoate with aluminium chloride without solvent for 10 min at 140° (28\%) [154].
- Preparation by condensation of benzoyl chloride,
- with 2 -chlorophenol in the presence of aluminium chloride in tetrachloroethane for 3 h at $120-130^{\circ}$ [507,508], (46%) [508] or by heating in the presence of ferric chloride without solvent [511];
- with 2-chloroanisole in the presence of aluminium chloride in tetrachloroethane for 3 h at $120-130^{\circ}$ (48\%) [508].
- Preparation by heating 3-chloro-4-methoxybenzophenone in the presence of aluminium chloride in tetrachloroethane for 1 h at $100-110^{\circ}(98 \%)$ [508].
- Also obtained by reaction of benzotrichloride (1 mol) with o-chlorophenol (1 mol) in the presence of water (1 mol) in solution of hydrofluoric acid (85\%) [213].
- Also refer to: $[512,513]$.
m.p. 182° [506], 181° [213], $180-181^{\circ}$ [508], $179^{\circ} 6-181^{\circ} 3$ [507], $179-180^{\circ}$ [154], 176° [511]; IR [507], MS [490,491,514].

(4-Chloro-2-hydroxyphenyl)phenylmethanone

[2985-80-0] \quad| Syntheses |
| :--- |

- with aluminium chloride [23,117], without solvent, at 140° for $1 \mathrm{~h}(54 \%)$ [96], at 150° for $2 \mathrm{~h}(58 \%)$ [506], at 175° for $15 \mathrm{~min}(80 \%)$ [36] or at 200° for 20 min [20];
- with titanium tetrachloride for 15 min at 175° (67\%) [36].
- Also obtained by degradation of 6-chloro-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid during 40 min or 2 h , followed by saponification of the 2-benzoyloxy-4-chloro-benzophenone so formed with 2 N or 4 N sodium hydroxide in refluxing aqueous ethanol for 1 h or 15 min [44,515].
- Preparation by reaction of 4-chloro-2-methoxybenzoyl chloride (SM) with benzene in the presence of aluminium chloride at r.t. [6] according to [14]. SM was obtained from 2-amino-4-chlorotoluene by a four-step synthesis.
- Also obtained by demethylation of 4-chloro-2-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21].
- Also refer to: [84,481,516].
m.p. 77° [506], $76-77^{\circ}$ [515], $74^{\circ} 5$ [44], 74° [6,96];
${ }^{1} \mathrm{H}$ NMR [99], IR [44,106,107,515], UV [99,109-111];
$\mathrm{p} K_{\mathrm{a}}[96,115] ;$ polarographic study [117]; TLC [116].

(5-Chloro-2-hydroxyphenyl)phenylmethanone (Light Absorber HCB)

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
Syntheses

- Preparation by Fries rearrangement of p-chlorophenyl benzoate with aluminium chloride [23],
- without solvent [517], at 180° for $10 \mathrm{~min}(85 \%)$ [518], at $155-157^{\circ}$ for $2 \mathrm{~h}(90 \%)$ [506], at 130$140^{\circ}$ for 1 h [8], (72%) [519] or at $100-150^{\circ}$ for 0.5-3 h (68\%) [29];
- in refluxing chlorobenzene for $4 \mathrm{~h}(14 \%)$ [520].
- Preparation by photo-Fries rearrangement of p-chlorophenyl benzoate in benzene, in cyclohexane or in isopropanol at $53-54^{\circ}$ for $19 \mathrm{~h}(51 \%, 37 \%$ and 29% yields, respectively) [72].
- Preparation from p-chlorophenol,
- by reaction with benzoyl chloride in the presence of aluminium chloride without solvent at $180-195^{\circ}$ for $35 \mathrm{~min}(87 \%)$ [484], in boiling carbon disulfide [145] or in tetrachloroethane at $120-130^{\circ}$ for $3 \mathrm{~h}(10 \%)$ [508];
- by reaction with benzoic acid in the presence of boron trifluoride at 180° for 4 h , in a sealed tube (70\%) [521].
- Preparation by reaction of benzoyl chloride with p-chloroanisole in the presence of aluminium chloride in tetrachloroethane at $120-130^{\circ}$ for $3 \mathrm{~h}(60 \%)$ [508].
- Preparation by reaction of chromium trioxide with 5-chloro-2,3-diphenylbenzofuran in refluxing acetic acid, followed by alkaline hydrolysis of the keto ester so obtained [44], (quantitative yield) [45,522].
- Preparation from 2-chlorothioxanthen-9-one 10,10-dioxide (SM) by a threestep synthesis: SM by refluxing in a solution of 2% sodium hydroxide in dioxane/water mixture (65:35) for 4 h gave the 2-(2-hydroxy-5-chlorobenzoyl) phenylsulfinic acid (37\%). The former, by reaction with mercuric chloride in refluxing aqueous acetic acid for 4 h , led to the 2 -chloromercuri-2'-hydroxy-5^{\prime}-chloro-benzophenone (74%). Removal of the chloromercury group was achieved with concentrated hydrochloric acid in refluxing ethanol for 2 h (84\%) [62].
- Also obtained by reaction of 5-chloro-2-hydroxybenzaldehyde with iodobenzene by using a catalyst system of palladium chloride/lithium chloride in the presence of sodium carbonate in N, N-dimethylformamide at 100° for $6 \mathrm{~h}(51 \%)$ [51].
- Also refer to: [8,73,75,77,82,83,89,225,472,523-530].
m.p. 97° [506], $96-97^{\circ}$ [519], 96° [518], $95^{\circ} 5-96^{\circ}$ [96], 95-95 5 [508], 95° [44], $94-95^{\circ}$ [45,520,522], 94° [145,236,521], $93^{\circ} 7-95^{\circ}[72], 93-94^{\circ}$ [62,517], 93° [89], $82-85^{\circ}$ [29];
b.p. ${ }_{0.3} 147-149^{\circ}$ [521];
${ }^{1} \mathrm{H}$ NMR [51,99], EPR [98], IR [44,62,72,89, 106,107],
UV [99,109-111,236,240,241], MS [51]; $\mathrm{p} K_{\mathrm{a}}$ [96,115,531]; TLC [116]; polarographic study [117]; vapour pressure [236].
(2-Fluoro-4-hydroxyphenyl)phenylmethanone

[179018-47-4] | Synthesis |
| :--- |
| m.p. (NA); MS [490,491]. |

(2-Fluoro-5-hydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$ mol.wt. 216.21

Synthesis

- Preparation by aromatization of 5-benzoyl-4-fluoro-3-cyclo-hexenone in the presence of cupric bromide and lithium bromide in refluxing acetonitrile during $1 \mathrm{~h}(70 \%)$ [118].
m.p. $\quad 102^{\circ}$ [118]; ${ }^{1} \mathrm{H}$ NMR [118], IR [118].
(3-Fluoro-2-hydroxyphenyl)phenylmethanone
[183280-19-5] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21

(3-Fluoro-4-hydroxyphenyl)phenylmethanone
[365-14-0]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21
 Syntheses
- Preparation by demethylation of 3-fluoro-4-methoxy-benzophenone with refluxing pyridinium chloride for 30 min [461].
- Preparation by Fries rearrangement of o-fluorophenyl benzoate with aluminium chloride at 160° for $2 \mathrm{~h}[490,491]$.
m.p. 123° [461]; $\operatorname{MS}[490,491]$.

(4-Fluoro-2-hydroxyphenyl)phenylmethanone

[169781-83-3]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$
Syntheses

- Obtained by Fries rearrangement of m-fluorophenyl benzoate with aluminium chloride at 200° for 20 min [20].
- Also obtained by demethylation of 4-fluoro-2-methoxy-benzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21]. m.p. and Spectra (NA).

(5-Fluoro-2-hydroxyphenyl)phenylmethanone

[362-47-0] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21

Syntheses

- Preparation by demethylation of 5-fluoro-2-methoxybenzophenone with refluxing pyridinium chloride [532].
- Preparation by Fries rearrangement of p-fluorophenyl benzoate with aluminium chloride [23].
- Also refer to: [525].
m.p. $\quad 77^{\circ}$ [532]; \quad Spectra (NA).
(4-Hydroxy-3-iodophenyl)phenylmethanone
[170744-87-3]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 324.12
Syntheses
- Preparation by demethylation of 3-iodo-4-meth-oxybenzo-phenone with 48% hydrobromic acid in refluxing acetic acid [140].
- Preparation by treating an alkaline solution of 4-hydroxy-benzophenone with 5% iodine in aqueous solution of potassium bromide [140].
- Preparation by reaction of iodine monochloride with 4-hydroxybenzophenone in acetic acid solution at r.t. [495].
- Also refer to: [533].
m.p. $\quad 184^{\circ}$ [140]; $\operatorname{Spectra}(N A)$.

(2-Hydroxy-3-nitrophenyl)phenylmethanone

[182499-95-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22

- Also refer to: [534].
m.p. $88^{\circ} 5$ [492]; ${ }^{1} \mathrm{H}$ NMR [492], UV [492], MS [492].

(2-Hydroxy-4-nitrophenyl)phenylmethanone

[1834-88-4]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22
Syntheses

- Preparation by oxidation of 6-nitro-2,3-diphenylbenzofuran with chromium trioxide in acetic acid, followed by saponification of the keto
ester so obtained (2-benzoyloxy-4-nitrobenzophenone) in the presence of 2 N sodium hydroxide in refluxing ethanol for $15 \mathrm{~min}(60 \%)$ [535].
- Preparation by reaction of 2-hydroxy-4-nitrobenzoyl chloride with benzene in the presence of aluminium chloride in nitrobenzene at $100-110^{\circ}$ for $2.5 \mathrm{~h}(60 \%)$ [536].
- Also obtained (poor yield) by Fries rearrangement of m-nitrophenyl benzoate with aluminium chloride at 170° for $2 \mathrm{~h}(11 \%)$ [536].
- Also obtained (poor yield) by reaction of benzoyl chloride with m-nitrophenol in the presence of aluminium chloride at 170° for $2 \mathrm{~h}(10 \%)$ [537].
m.p. 115° [89], $114-115^{\circ}$ [535], $112-113^{\circ}$ [96,536], 108° [537];
${ }^{1} \mathrm{H}$ NMR [99], IR [103,104], UV [99,109-111];
$\mathrm{p} K_{\mathrm{a}}[96,104,115,538] ;$ TLC [116].

(2-Hydroxy-5-nitrophenyl)phenylmethanone

 $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22 Syntheses

- Preparation by nitration of o-hydroxybenzophenone,
- with 65% nitric acid in acetic acid at r.t. for 24 h (32\%) [96];
- with a 68% nitric acid $/ 96 \%$ sulfuric acid mixture first at $<10^{\circ}$, then at r.t. for 2 h (32\%) [492].
- Preparation by reaction of potassium hydroxide with 2-chloro-5-nitrobenzophenone,
- in the presence of a few water at $150-160^{\circ}$ for $5-6 \mathrm{~h}$ (quantitative yield) [539], (56\%) [8];
- in refluxing aqueous ethylene glycol (135°) for 6 h (17\%) (by-product) [523].
- Preparation by oxidation of 5-nitro-2,3-diphenylbenzofuran with chromium trioxide in acetic acid, followed by saponification of the keto ester obtained-2-(benzoyloxy)-5-nitrobenzophenone-with 2 N sodium hydroxide in refluxing ethanol [535].
- Also obtained (by-product) by diazotization of 2-amino-5-nitrobenzophenone (4\%). The 2-nitrofluorenone was the major compound obtained (75\%) [539].
- Also obtained (poor yield) by Fries rearrangement of p-nitrophenyl benzoate with aluminium chloride in nitrobenzene at 170° for $1 \mathrm{~h}(4 \%)$ [540].
- Preparation from 2-nitrothioxanthen-9-one 10,10-dioxide (SM) by a three-step synthesis: SM by refluxing in a solution of 2% sodium hydroxide in dioxane/ water mixture ($65: 35$) for 2 h , gave the 2-(2-hydroxy-5-nitrobenzoyl)phenylsulfinic acid (89%). The former by reaction with mercuric chloride in refluxing aqueous acetic acid for 4 h led to the 2-chloromercuri-2'-hydroxy-5'-nitrobenzophenone (82%). Removal of the chloromercury group was achieved with concentrated hydrochloric acid in refluxing ethanol for 2 h (84\%) [62].
- Also obtained by reaction of 2-hydroxy-5-nitrobenzaldehyde with iodobenzene by using a catalyst system of palladium chloride/lithium chloride in the presence of sodium carbonate in N,N-di-methylformamide at 120° for 22 h (58\%) [51].
- Preparation by dealkylation of 2-(2-hydroxyethoxy)-5-nitrobenzophenone (SM) in methylene chloride with boron tribromide at r.t. for $18 \mathrm{~h}(94 \%)$ [523]. SM was obtained by reaction of potassium hydroxide with 2-chloro-5-nitrobenzophenone in refluxing aqueous ethylene glycol (135°) for 6 h (65%).
- Also refer to: [429,541-547].
m.p. $128-129^{\circ}$ [523], $126^{\circ} 5$ [492], $124-124^{\circ} 5$ [539], 124° [96,535],
$123-124^{\circ}$ [62], $122-124^{\circ}$ [540], $122-123^{\circ}$ [8];
${ }^{1} \mathrm{H}$ NMR [51,98,99], UV [99,109-111], MS [51];
$\mathrm{p} K_{\mathrm{a}}$ [96,115,538]; TLC [116].

(3-Hydroxy-4-nitrophenyl)phenylmethanone

[182499-94-1]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22

Synthesis

- Refer to: [534].
m.p. and Spectra (NA).

(4-Hydroxy-2-nitrophenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22

Synthesis

- Obtained (poor yield) by Fries rearrangement of m-nitro-phenyl benzoate with titanium tetrachloride in benzene or in nitromethane at 40° for 25 h (3\%) [36].
m.p. and Spectra (NA).
(4-Hydroxy-3-nitrophenyl)phenylmethanone
[5464-98-2]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22
 Syntheses
- Preparation by treatment of 4-methylamino-3-nitrobenzo-phenone with boiling 10% aqueous sodium hydroxide for 48 h (52\%) [548].
- Preparation by demethylation of 4-methoxy-3-nitrobenzo-phenone with 48% hydrobromic acid in refluxing acetic acid [140].
- Preparation by nitration of 4-hydroxybenzophenone with nitric acid ($\mathrm{d}=1.5$) in an acetic acid and anhydride acetic mixture at $50-60^{\circ}$ [140] or with nitric acid $(\mathrm{d}=1.4)$ at 0° for 2 h [140].
- Also obtained (poor yield) by Fries rearrangement of o-nitrophenyl benzoate with aluminium chloride in nitrobenzene at $165-175^{\circ}$ for $1 \mathrm{~h}(<4 \%)$ [540].
- Also obtained from 4-bromo-3-nitrobenzophenone (m.p. 124) by heating with a mixture of sodium acetate and acetamide at $175-200^{\circ}$ for 2 h (good yield) [549].
- Also refer to: $[36,550,551]$.
m.p. $120-121^{\circ}$ [549], 94° [140], $91-92^{\circ}$ [540], 90° [548]. One of the reported melting points is obviously wrong. Spectra (NA).

(2-Amino-4-chloro-5-hydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2}$
mol.wt. 247.68
 Synthesis

- Preparation by demethylation of 2-amino-4-chloro-5-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for $4 \mathrm{~h}(86 \%)$ [552].
m.p. $1^{165-167^{\circ}}$ [552]; ${ }^{1} \mathrm{H}$ NMR [552].

(2-Amino-5-chloro-3-hydroxyphenyl)phenylmethanone

[28363-58-8]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 247.68

Synthesis

- Obtained by hydrolysis of 2-benzoyl-4-chloro-6-hydroxy-benzanilide with refluxing 2 N aqueous sodium hydroxide for $5 \mathrm{~h}(80-82 \%)[552,553]$.
- Also refer to: [554].
m.p. $\quad 166-168^{\circ}$ [553], $166-167^{\circ}$ [552]; ${ }^{1} \mathrm{H}$ NMR [553].

(2-Amino-5-chloro-4-hydroxyphenyl)phenylmethanone

[62492-60-8]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2}$
mol.wt. 247.68

Synthesis

- Preparation by adding acetic anhydride to an ice cooled solution of 2-amino-5-chloro-4-methoxybenzophenone in 57% aqueous hydriodic acid and heating the resulting mixture at reflux for 12 h (75\%) [552].
m.p. $151-153^{\circ}$ [552]; ${ }^{1} \mathrm{H}$ NMR [552]; TLC [552].
(3-Amino-5-chloro-2-hydroxyphenyl)phenylmethanone
[85052-43-3]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 247.68

Synthesis
- Obtained from 5-chloro-2-hydroxy-3-nitrobenzophenone,
- by reduction with stannous chloride and hydrochloric acid in refluxing methanol for 6 h [471];
- by hydrogenation in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in a chloroform/ethanol mixture for 2 h [472].
m.p. $94-95^{\circ}$ [471], $93-95^{\circ}$ [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].

```
(3-Amino-5-chloro-2-hydroxyphenyl)phenylmethanone (Hydrochloride)
[85052-44-4] \(\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2}, \mathrm{HCl} \quad\) mol.wt. 284.15
```



```
Synthesis
- Obtained by treatment of 3-amino-5-chloro-2-hydroxy-benzophenone with 2 N hydrochloric acid (27\%) [472].
m.p. and Spectra (NA).
```

(3-Amino-5-fluoro-2-hydroxyphenyl)phenylmethanone
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}_{2} \quad$ mol.wt. 231.23

Synthesis

- Refer to: [472].
m.p. and Spectra (NA).
(2-Amino-3-hydroxy-5-nitrophenyl)phenylmethanone
[60302-91-2] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 258.23

Synthesis

- Not yet described.

Isolation from natural source

- Major metabolite appearing mainly as conjugated compound, in the urine of rabbits fed nitrazepam. It was isolated after enzymatic hydrolysis with β-glucuro-nidase. -Refer to: Chem. Abstr., 85, 116484v (1976) ${ }^{\mathrm{T}}$, 90, 197343b (1979) .
m.p. (NA); $\quad{ }^{1} H N^{2} R^{T}, I^{T}, U V^{T}, M S^{T}$.

(2-Amino-3-hydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24

Synthesis N -benzoyl-2,3-dihydrobenzoxazol-2-one in acetonitrile for 48 h (21\%) [555]. m.p. $129^{\circ} 5-130^{\circ} 5$ [555]; Spectra (NA).

(2-Amino-4-hydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24

Synthesis

- Refer to: [396].
m.p. and Spectra (NA).

(2-Amino-5-hydroxyphenyl)phenylmethanone

[17562-32-2]
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}$
mol.wt. 213.24

Syntheses

- Preparation by demethylation of 2-amino-5-meth-oxy-benzophenone with boiling 48% hydrobromic acid [556], for 8 h (85\%) [557].
- Also obtained by UV light irradiation of 3-phenyl-2,1-benz-isoxazole in 66% sulfuric acid at $80-90^{\circ}$ (88-95\%) [121].
- Also obtained by heating N-benzoyl-p-methoxyaniline with bismuth chloride (5 mol excess) at $200-230^{\circ}$ for 3 min (72%) [558].

$$
\text { m.p. } \quad 127-128^{\circ}[556,557], 127^{\circ}[121] ; \quad \text { UV [558], MS [558]; TLC [558]. }
$$

(3-Amino-4-hydroxyphenyl)phenylmethanone
[42404-41-1]
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24
 Syntheses

- Preparation by hydrolysis of 3-(acetylamino)-4-hydroxy-benzophenone with refluxing 10 N hydrochloric acid for $30 \mathrm{~min}(80 \%)$ [559].
- Preparation by hydrolysis of 3-benzamido-4-hydroxy-benzophenone (SM) with concentrated hydrochloric acid in refluxing acetic acid for $16 \mathrm{~h}(50 \%)$. SM was obtained by Fries rearrangement of 2-benzamidophenyl benzoate with aluminium chloride for 3 h at 160° under nitrogen (20%, m.p. 210 ${ }^{\circ}$) [560]. m.p. $164-165^{\circ}$ [559], 154° [560]; ${ }^{1} \mathrm{H}$ NMR [559], IR [559].
(3-Amino-4-hydroxyphenyl)phenylmethanone (Hydrochloride)
[87855-75-2]
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 249.70

Synthesis

- Refer to: [555,561] (Japanese patents).
m.p. and Spectra (NA).

(4-Amino-2-hydroxyphenyl)phenylmethanone

[3333-96-8]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24
Syntheses

- Obtained by hydrolysis of 4-acetamido-2-hy-droxybenzo-phenone,
- with boiling 5 N hydrochloric acid [562];
- with refluxing 48% hydrobromic acid [557].
- Preparation by hydrolysis of 4-benzamido-2-hydroxybenzophenone (SM) with concentrated hydrochloric acid in refluxing acetic acid for 16 h (61\%). SM was obtained by Fries rearrangement of 3-benzamidophenyl benzoate with aluminium chloride for 3 h at $160^{\circ}\left(27 \%\right.$, m.p. $\left.155^{\circ}\right)$ [560].
- Also refer to: [563]. m.p. $\quad 127-128^{\circ}$ [557], 125° [560,562]; Spectra (NA).

(4-Amino-3-hydroxyphenyl)phenylmethanone

[31684-63-6]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24
Synthesis

- Preparation from 6-benzoyl-2(3H)-benzoxazolinone,
- by alkaline hydrolysis with boiling 10% aqueous sodium hydroxide solution for 4 h (90-100\%) [559,564,565], (80\%) [566];
- by treatment with refluxing 20% hydrochloric acid during 40 h (88\%) [555]. m.p. $164^{\circ}[559,565,566], 134-135^{\circ}$ [555]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [559], IR [559], MS [564].

(5-Amino-2-hydroxyphenyl)phenylmethanone

[119798-76-4]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24
Syntheses

- Preparation by hydrolysis of 5-benzamido-2-hy-droxy-benzophenone (SM) with concentrated hydrochloric acid in refluxing acetic acid for 16 h (71\%). SM was obtained by Fries rearrangement of 4-benzamidophenyl benzoate with aluminium chloride for 3 h at 160° under nitrogen (40\%, m.p. 168°) [560].
- Also obtained from the corresponding hydrochloride by treatment with sodium carbonate in aqueous solution [567].
m.p. $107^{\circ}[560,567] ; \quad$ Spectra (NA).
(5-Amino-2-hydroxyphenyl)phenylmethanone (Hydrochloride)
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 249.70

Synthesis

- Obtained by electrolytic reduction of m-nitrobenzophenone in concentrated sulfuric acid for 30 h , followed by action of hydrochloric acid gas in ethyl ether on the amino ketone so obtained [567].
m.p. and Spectra (NA).

[2-Hydroxy-5-(trifluoromethyl)phenyl]phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 266.22
Syntheses

- Preparation by adding phenylmagnesium bromide to 2-methoxy-5-(trifluoromethyl)benzonitrile,followed by hydrolysis of the intermediate imino compound formed, then demethylation of 2-methoxy-5-(trifluoromethyl)-benzophenone so obtained [568].
- Preparation by demethylation of 2-methoxy-5-(trifluoromethyl)benzophenone with boron trichloride in methylene chloride at -60° for 1 h , then at r.t. [569]. m.p. $84-85^{\circ}$ [569]; \quad Spectra (NA).

Phenyl(3,5,6-trifluoro-2-hydroxy-4-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \quad \mathrm{~mol} . w t .282 .22$
Synthesis

- Preparation by partial demethylation of 2,4-dimethoxy-3,5,6-trifluorobenzophenone in methylene chloride in the presence of aluminium chloride at 20° for 3-6 h (94\%) [570].
m.p. $56-58^{\circ}$ [570]; ${ }^{1} \mathrm{H}$ NMR [570], IR [570], UV [570].

(2-Bromo-6-hydroxy-3-methoxy-4-nitrophenyl)phenylmethanone

[40990-74-7]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNO}_{5} \quad$ mol.wt. 352.14
Syntheses

- Preparation by saponification of 2-(benzoyloxy)-6-bromo-5-methoxy-4-nitrobenzophenone (SM) with potassium hydroxide in ethanol (71\%). SM was obtained by oxidation of 4-bromo-5-methoxy-6-nitro-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid for 30 min [571].
- Also obtained by hydrolysis of 6-bromo-5-methoxy-4-nitro-2-(4-nitrobenzoyloxy)benzophenone [571].
m.p. $126^{\circ}[571] ; \quad \operatorname{Spectra}(N A)$.

(2,4-Dibromo-6-hydroxy-3-methoxyphenyl)phenylmethanone

[40990-66-7]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$
Synthesis

- Preparation by saponification of 2-(benzoyloxy)-4,6-di-bromo-5-methoxybenzophenone (SM) with potassium hydroxide in ethanol (65\%). SM was obtained by oxidation of 4,6-dibromo-5-methoxy-2,3-diphenylbenzofuran with chromium trioxide in refluxing acetic acid for 30 min [571].
m.p. $138^{\circ}[571] ; \quad \operatorname{Spectra}(N A)$.

(3,5-Dichloro-2-hydroxy-4-methoxyphenyl)phenylmethanone

[158547-83-2]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 297.14

> Synthesis

- Formation (trace) by 30 min UV light irradiation of oxybenzone in chlorinated water containing 5 ppm Cl [572].
m.p. (NA); MS [572]; GC [572].
(3-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone
[6723-09-7] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

Synthesis

- Preparation by bromination of 2-hydroxy-5-methylbenzophenone [502], in aqueous acetic acid (86%) [573].
- Also refer to: [574-577].
m.p. 82° [501], $80-82^{\circ}$ [502], $77-78^{\circ}$ [573]; IR [103].

(3-Bromo-4-hydroxy-5-methylphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

Synthesis

- Preparation by action of bromine on 4-hydroxy-3-methyl-benzophenone in acetic acid [578].
m.p. $\quad 130-131^{\circ}[578] ; \quad$ Spectra (NA).

(4-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone

[6758-89-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

Synthesis

- Obtained by chromic oxidation $\left(\mathrm{CrO}_{3}\right)$ of 6-bromo-7-methyl-2,3-diphenylbenzofuran, followed by alkaline hydrolysis of keto ester so obtained [501,502].
m.p. $\quad 96^{\circ}$ [501,502]; IR [103,501], UV [503].
(4-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$
mol.wt. 291.14

Synthesis

- Preparation by reaction of chromium trioxide with 6-bromo-5-methyl-2,3-diphenylbenzofuran in acetic acid, followed by saponification of the keto ester formed (2-benzoyloxy-4-bromo-5-methylbenzophenone) with sodium hydroxide in ethanol [501], (73\%) [502].
m.p. 122° [501,502]; ${ }^{1} \mathrm{H}$ NMR [100], IR [100], UV [503].
(5-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone

[6723-13-3] \quad| mol.wt. 291.14 |
| :--- |
| m.p. |
| 83° [501,502]; |
| IR [103, Preparation by bromination of 2-hydroxy-3-methyl- |
| benzophenone [501], in chloroform [502]. |

(4-Bromo-2-hydroxy-3-methoxyphenyl)phenylmethanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$ mol.wt. 307.14

Synthesis

- Preparation by saponification of 2-(benzoyloxy)-4-bromo-3-methoxybenzophenone (SM) with potassium hydroxide in boiling ethanol (70%). SM was obtained by oxidation of 6-bromo-7-methoxy-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid (65\%) [579].
m.p. $240-243^{\circ}[579] ; \quad \operatorname{Spectra}(N A)$.

(5-Bromo-2-hydroxy-4-methoxyphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
mol.wt. 307.14
Synthesis

- Preparation from 2-(benzoyloxy)-5-bromo-4-methoxy-benzophenone (SM) by treatment with potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(68 \%)$. SM was obtained by oxidation of 5-bromo-6-methoxy-2,3-di-phenylbenzofuran with chromium trioxide in refluxing acetic acid for 30 min [571].
m.p. $\quad 125^{\circ}$ [571]; $\quad \operatorname{Spectra}(N A)$.
(3-Chloro-2-hydroxy-5-methylphenyl)phenylmethanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Syntheses

- Preparation by Fries rearrangement of 2-chloro-4-methyl-phenyl benzoate with aluminium chloride without solvent,
- at 140° for $10 \mathrm{~min}(92 \%)$ [132];
- at $120-130^{\circ}$ for $1 \mathrm{~h}(67 \%)$ [519];
- at 160° for 15 min (14\%) [580] (here, by using an old aluminium chloride).
- Also obtained by action of aluminium chloride with esters mixtures ${ }^{\mathrm{T}}$ without solvent at 150° for 15 min [580],
${ }^{\mathrm{T}} 2$-chloro-4-methylphenyl benzoate and p-tolyl acetate (50% yield);
${ }^{T}$ p-tolyl benzoate and 2-chloro-4-methylphenyl acetate (40% yield);
${ }^{\mathrm{T}} 2$-chloro-4-methylphenyl benzoate and mesityl acetate (14% yield).
m.p. 81° [519], $71^{\circ}[132,580] ; \quad$ Spectra (NA).

(3-Chloro-4-hydroxy-5-methylphenyl)phenylmethanone

[34183-08-9]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Synthesis

- Preparation by Fries rearrangement of 2-chloro-6-methyl-phenyl benzoate with aluminium chloride,
- in chlorobenzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480];
- without solvent at 160° for $45 \mathrm{~min}(45 \%)$ [581].
m.p. $\quad 126-127^{\circ}[480] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(4-Chloro-2-hydroxy-5-methylphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Obtained by Fries rearrangement of 3-chloro-4-methyl-phenyl benzoate with aluminium chloride at 200° for 20 min [20].
- Also obtained by demethylation of 4-chloro-2-meth-oxy-5-methylbenzophenone with borontribromide in methylene chloride at r.t. for 12 h [20], according to [21].
- Also obtained by oxidation of 6-chloro-5-methyl-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid for 2 h , followed by saponification of the 2-(benzoyloxy)-4-chloro-5-methyl-benzophenone formed with 2 N sodium hydroxide in boiling ethanol for 15 min [515].
- Also refer to: [107,582].
m.p. $108-109^{\circ}$ [515]; $\operatorname{IR}[107,515,582]$.

(5-Chloro-2-hydroxy-3-methylphenyl)phenylmethanone

[53347-30-1] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Synthesis

- Refer to: [83] (compound 7e) and [82,583].
m.p. and Spectra (NA).

(5-Chloro-2-hydroxy-4-methylphenyl)phenylmethanone

[68751-90-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Preparation by Fries rearrangement of 4-chloro-3-methyl-phenyl benzoate in the presence of,
- aluminium chloride [23] without solvent at 140° for 10 min (quantitative yield) [132];
- Nafion-XR, a H^{+}-form ion exchange resin, at 175° for $4 \mathrm{~h}(37 \%)[39,204]$.
- Preparation by oxidation of 5-chloro-6-methyl-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid for 40 min , followed by saponification of the keto ester so obtained with 4 N sodium hydroxide in refluxing ethanol for 1 h [44].
- Also obtained by reaction of benzoyl chloride with 4-chloro-3-methylphenol in the presence of Nafion-XR at 175° for $4 \mathrm{~h}(28 \%)$ [39].
- Also refer to: [77,584,585].
m.p. 142° [132], 140° [44]; IR [44].

[3-(Chloromethyl)-4-hydroxyphenyl]phenylmethanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 246.69
$$

Syntheses

- Preparation by passing hydrogen chloride through a mixture of 40% formaldehyde solution, concentrated hydrochloric acid and p-hydroxybenzophenone in acetic acid at r.t. for 2 h (64\%) [277].
- Other chloromethylation process [586], (73\%) [164].
- Also refer to: [587].
m.p. 156° (d) [277]; \quad Spectra (NA).

[5-(Chloromethyl)-2-hydroxyphenyl]phenylmethanone

[120973-82-2]

m.p. and Spectra (NA).
(2-Chloro-6-hydroxy-4-methoxyphenyl)phenylmethanone
[136741-50-9]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
mol.wt. 246.69
Synthesis

- Refer to: [588]. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69
Synthesis
- Preparation by reaction of benzoyl chloride with 5-chlororesorcinol dimethyl ether in the presence of aluminium chloride in ethylene dichloride (72\%) [589].
m.p. $\quad 96-98^{\circ}$ [589]; $\quad \operatorname{Spectra}(N A)$.
(3-Chloro-2-hydroxy-4-methoxyphenyl)phenylmethanone
[158547-82-1]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$
mol.wt. 262.69
Synthesis
- Formation (trace) by 30 min UV light irradiation of oxybenzone in chlorinated water containing 5 ppm Cl [572].
m.p. (NA); MS [572]; GC [572].

(5-Chloro-2-hydroxy-4-methoxyphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$
mol.wt. 262.69

Syntheses

- Preparation by reaction of benzoyl chloride with 4-chlororesorcinol dimethyl ether in the presence of aluminium chloride in ethylene dichloride (66\%) [589].
- Formation (trace) by 30 min UV light irradiation of oxybenzone in chlorinated water containing 5 ppm Cl [572].
m.p. $118-119^{\circ}$ [589]; ${ }^{1} \mathrm{H}$ NMR [589], IR [589], MS [572,589];

GC [572].
(2-Hydroxy-3-methyl-4-nitrophenyl)phenylmethanone

[4072-22-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
Synthesis

- Preparation by oxidation of 7-methyl-6-nitro-2,3-diphenyl-benzofuran with chromium trioxidein acetic acid, followed by saponification of the keto ester so formed-the 2-(benzoyloxy)-3-methyl-4-nitrobenzophenonewith sodium hydroxide in boiling dilute ethanol (70\%) [590].
m.p. 98° [590], 97° [89]; ${ }^{1} \mathrm{H}$ NMR [100], IR [100,103,107,582], UV [503].

(2-Hydroxy-3-methyl-5-nitrophenyl)phenylmethanone

[18619-93-7] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25

Synthesis

- Preparation by reaction of nitric acid $(\mathrm{d}=1.42)$ with 2-hydroxy-3-methylbenzophenone in acetic acid under stirring overnight at r.t. (70\%) [590].
m.p. 122° [590]; IR [103].
(2-Hydroxy-4-methyl-5-nitrophenyl)phenylmethanone

m.p. and Spectra (NA).

(2-Hydroxy-5-methyl-3-nitrophenyl)phenylmethanone

[4072-26-8]
m.p. 68° [89], $67-68^{\circ}$ [590]; IR [103].
(2-Hydroxy-5-methyl-4-nitrophenyl)phenylmethanone
[4072-24-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25
Synthesis

- Preparation by oxidation of 5-methyl-6-nitro-2,3-diphenyl-benzofuran with chromium trioxide in acetic acid, followed by saponification of the keto ester so formed-the 2-(benzoyloxy)-5-methyl-4-nitrobenzophenone-with sodium hydroxide in boiling dilute ethanol (86\%) [590].
m.p. $\quad 92^{\circ}[89,590] ; \quad \operatorname{IR}[103,107,582]$.
(4-Hydroxy-3-methyl-5-nitrophenyl)phenylmethanone
[103555-87-9]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
mol.wt. 257.25

Synthesis

- Preparation from o-methylanisole in three steps: at first, acylation of o-methylanisole with benzoyl chloride in the presence of ferric chloride during 3 h at 20°. Then, demethylation of the 4-methoxy-3-methylbenzophenone so formed by treatment with refluxing 55\% hydriodic acid for 10 h and subsequent nitration of the 4-hydroxy-3-methylbenzophenone so obtained with a concentrated nitric acid/concentrated sulfuric acid mixture with ice cooling (57\%) [594].
m.p. and Spectra (NA).

(2-Hydroxy-3-methoxy-6-nitrophenyl)phenylmethanone

(2-Hydroxy-4-methoxy-5-nitrophenyl)phenylmethanone

[41123-21-1]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
Synthesis

- Preparationby saponificationof 2-(benzoyloxy)-4-methoxy-5-nitrobenzophenone (SM) with potassium hydroxide in ethanol (67%). SM was obtained by oxidation of 6-methoxy-5-nitro-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid for 30 min [571]. m.p. $\quad 132^{\circ}$ [571]; ${ }^{1} \mathrm{H}$ NMR [98].

(2-Hydroxy-5-methoxy-4-nitrophenyl)phenylmethanone

[40990-72-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25
Synthesis

- Preparation by saponification of 2-(benzoyloxy)-5-methoxy-4-nitrobenzophenone (SM) with potassium hydroxide in ethanol (78%). SM was obtained by oxidation of 5-methoxy-6-nitro-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid for 30 min [571].
m.p. $\quad 102^{\circ}$ [571]; \quad Spectra (NA).

(2-Hydroxy-3-methylphenyl)phenylmethanone

[4072-08-6] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

Syntheses

- Preparation by reaction of 2-hydroxy-3-methylbenzoyl chloride with benzene in the presence of aluminium chloride at $40-50^{\circ}$ for $4 \mathrm{~h}(72 \%)$ [595], (23\%) [92].
- Preparation by oxidation of 7-methyl-2,3-diphenylbenzofuran with chromium trioxide in refluxing acetic acid for 40 min , followed by hydrolysis of the keto ester so obtained (2-benzoyloxy-3-methylbenzophenone) with 4 N sodium hydroxide in refluxing ethanol for 1 h [44], (50\%) [590].
- Preparation by reaction of benzoic acid with o-cresol in the presence of Amberlyst-15 in refluxing chlorobenzene for 47 h (50\%) [53].
- Also obtained (by-product) by Fries rearrangement of o-tolyl benzoate in the presence of aluminium chloride in refluxing chlorobenzene for $4 \mathrm{~h}(<6 \%)$ [596].
- Also obtained (poor yield) by reaction of benzoyl chloride with o-tolyl borate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h (2\%) [55].
- Preparation by reaction between (o-tolyloxy)magnesium bromide complexed with HMPT and benzaldehyde in refluxing benzene for 48 h (54\%) [50].
- Also refer to: [597].
yellow oil [50];
m.p. 48° [89], 47-48 ${ }^{\circ}$ [590], 47° [44];
b.p. $152-155^{\circ}$ [595], b.p. ${ }_{0.1} 114-117^{\circ}$ [92];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 57894$ M) [50,100],
IR (Sadtler: standard $\mathrm{n}^{\circ} 84942 \mathrm{~K}$) [50,89,100,103], UV [597], MS [50].

(2-Hydroxy-4-methylphenyl)phenylmethanone

[3098-18-8]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Syntheses

- Preparation by Friedel-Crafts acylation of m-cresol,
- with benzoic acid in the presence of boron trifluoride at 160° for 2 h (94%) [150] or in the presence of Amberlyst-15 in refluxing chlorobenzene for 65 h (37\%) [53];
- with benzoyl chloride in the presence of aluminium chloride at 75° [144], in nitrobenzene at 60° for $18 \mathrm{~h}(8 \%)$ [54] or with titanium tetrachloride in the same conditions (17\%) [54].
- Preparation by Fries rearrangement of m-tolyl benzoate,
- in the presence of aluminium chloride,
without solvent
at 200° for $5 \mathrm{~min}(81 \%)$ [598] or 20 min [20], at 175° for $15 \mathrm{~min}(95 \%)$ [132], (82%) [36], (31\%) [599], at $140-150^{\circ}$ [600], at 140° for 15 min (89%) [27], at $130-134^{\circ}$ for $24 \mathrm{~h}(18 \%)$ [4] at 90° for a short time (50%) [601], at $60-70^{\circ}$ for $1 \mathrm{~h}(40 \%)$ [602], with solvent
in nitrobenzene, at $60-63^{\circ}$ for $13-18 \mathrm{~h}(15 \%)$ [27,31,603];
- in the presence of titanium tetrachloride,
without solvent
at 175° for $15 \mathrm{~min}(75 \%)$ [36], at 140° for $15 \mathrm{~min}(82 \%)$ [27],
with solvent
in nitrobenzene at 60° for $18 \mathrm{~h}(27 \%)$ [27].
- Preparation from 2-methoxy-4-methylbenzophenone by demethylation,
- with refluxing pyridinium chloride for $1 \mathrm{~h}(74 \%)$ [604];
- with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21].
- Preparation by dehydrogenation of 6-benzoyl-3-methyl-2-cyclohexen-1-one by heating at reflux for 30 min in the presence of $5 \% \mathrm{Pd} / \mathrm{BaSO}_{4}$ catalyst [605].
- Preparation by oxidation of various substituted benzofurans ${ }^{\mathrm{T}}$ with chromium trioxide in boiling acetic acid, followed by saponification of the keto ester so formed (good yields), ${ }^{\text {T }} 6$-methyl-2,3-diphenylbenzofuran [44,606], 6-methyl-

3-phenyl-2-(4-methoxyphenyl)-benzofuran or 6-methyl-3-phenyl-2-(4-methylphenyl) benzofuran [46].

- Also obtained by isomerization of 4-hydroxy-2-methylbenzophenone with aluminium chloride at $180-190^{\circ}$ for $20 \mathrm{~min}(92 \%)$ [132].
- Also obtained by condensation of m -cresol with benzotrichloride in the presence of aqueous sodium hydroxide in a water bath for $4 \mathrm{~h}(7 \%)$ [48].
- Also obtained (poor yield) by diazotization of 2-amino-4-methylbenzophenone, followed by hydrolysis of the diazonium salt so obtained (18\%) [607].
- Also obtained by reaction of benzoyl chloride with m-tolyl borate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h (19\%) [55].
- Also obtained by photo-Fries rearrangement of m-tolyl benzoate,
- in water in the presence of sodium dodecyl sulfate (a micelle) for 7 h under nitrogen (73\%) [70];
- in ethanol or in the presence of β-cyclodextrin solid for $12-24 \mathrm{~h}$ (29% and 96% yields, respectively) [65].
- Preparation by reaction of 2-methoxy-4-methylbenzoyl chloride with benzene in the presence of aluminium chloride in tetrachloroethane [6], according to [14].
- Also refer to: [76,226,608]. yellow oil [598];
m.p. 65° [89,609], 64° [600], 63° [27,144,599,601,603,606], $62^{\circ} 5$ [150],
$61-63^{\circ}$ [70], $61-62^{\circ}$ [604], 61° [6,602], 60-61$~[96], ~$ 60° [46,48,607], 59-60 [605], 59° [44], 58° [4];
b.p. ${ }_{15} 233-234^{\circ}$ [602], b.p. ${ }_{17} 230-240^{\circ}$ [604], b.p. ${ }_{14} 195-215^{\circ}$ [599,601];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard ${ }^{\circ} 20031$ M) $[98,99,598]$,
IR (Sadtler: standard n° 47040) [44,70,103,609], UV [31,99,109-111,609];
TLC [116]; $\mathrm{p} K_{\mathrm{a}}[96,115] ;$ polarographic study [117].
(2-Hydroxy-5-methylphenyl)phenylmethanone
[1470-57-1]
without solvent
at 180° for $10 \mathrm{~min}(80 \%)$ [518], at $<150^{\circ}$ for 8 min (94%) [132], at $140^{\circ}(71 \%)$
[97], according to [462], at 140° for $10-15 \mathrm{~min}$ (quantitative yield) [132], (88%)
[27], (80%) [599], at 140° for 20 min, then for a short time at $200^{\circ}(94 \%)$ [601,610],
at 140° for $1 \mathrm{~h}[96]$, at $130-140^{\circ}$ for $1 \mathrm{~h}(88 \%)$ [519] or at 130° for $30 \mathrm{~min}(55 \%)$
[611],
with solvent
in refluxing o-dichlorobenzene for 3 h or in refluxing p -chlorotoluene for 1 h (89\%) [520];
in refluxing 1,2,4-trichlorobenzene for $1 \mathrm{~h}(85 \%)$ [520];
in refluxing chlorobenzene for $1 \mathrm{~h}(63 \%)$ [520] or for $4 \mathrm{~h}(82 \%)$ [520], (37\%) [596];
in refluxing nitromethane for 30 min (12\%) [36];
- with titanium tetrachloride,
without solvent
at 140° for $15 \mathrm{~min}(78 \%)$ [27],
with solvent
in refluxing nitromethane for $10 \mathrm{~min}(41 \%)$ [36];
- with beryllium chloride at $145-150^{\circ}$ for 30 min , then at 160° for a short time (69\%) [612,613];
- with Nafion-XR, a H^{+}-form ion exchange resin, at 150° for 4 h under nitrogen (52\%) [39];
- with Nafion-H, a polymeric perfluorinated resin sulfonic acid in refluxing nitrobenzene for 12 h (70\%) [38];
- with hydrofluoric acid at 55° for 4 h or 6 h (52% and 76% yields, respectively) [135].
- Preparation by photo-Fries rearrangement of p-tolyl benzoate,
- in water in the presence of sodium dodecyl sulfate (a micelle) for 7 h under nitrogen (95\%) [70];
- in benzene at 55° for 19 h (53\%) [72];
- in pentane (37%) or in the presence of silica gel (42%) [64];
- in isopropanol at 57° for $20 \mathrm{~h}(34 \%)$ [72];
- in cyclohexane at 52° for $23 \mathrm{~h}(25 \%)$ [72];
- in dioxane at 63° for 24 h (20\%) [72];
- in ethanol in the presence of sulfuric acid for 70 h [614].
- Preparation by condensation of benzotrichloride with p-cresol,
- in the presence of aluminium chloride in carbon disulfide for $2 \mathrm{~h}(75 \%)$ [125]. The 6,12-diphenyl-2,8-dimethyl-6,12-epoxy- $6 H, 12 H$-dibenzo[b,f][1,5] dioxocin, an intermediate compound, was also formed under these conditions (29\%). This "dioxocin", by hydrolysis with concentrated sulfuric acid at r.t., gave the expected ketone (91\%) [125];
- in the presence of aqueous sodium hydroxide in a water bath for $4 \mathrm{~h} \mathrm{(33} \mathrm{\%)}$ [48] or in $32-40 \%$ aqueous sodium hydroxide at $70-80^{\circ}$ (67\%) [615].
- Preparation by Friedel-Crafts acylation of p-cresol with benzoyl chloride,
- in the presence of aluminium chloride, without solvent
at 180° for $30 \mathrm{~min}(64-72 \%)$ [616],
with solvent
in tetrachloroethane at $100-110^{\circ}$ for $4 \mathrm{~h}(80 \%)$ [15,617];
in nitrobenzene at 60° for 18 h (33\%) [54];
in carbon disulfide, in addition with ethyl iodide, by heating in a water bath [190]. An intermediate compound develops at the start of reaction (4-methylphenetole);
- in the presence of titanium tetrachloride, in nitrobenzene at 60° for 18 h (51\%) [54].
- Preparation by reaction of chromium trioxide with 2,3-diphenyl-5-methylbenzofuran in acetic acid at 60° for 2.5 h [43], at 80° for 3 h [606] or at reflux for 40 \min [44], followed by saponification of the keto ester formed with sodium hydroxide [43,44], (74\%) [606].

The same ketone was also obtained by chromic oxidation of 5-methyl-2-(4-methylphenyl)-3-phenylbenzofuran or of 5-methyl-2-(4-methoxyphenyl)-3phenylbenzofuran, followed by saponification of the keto ester so formed with potassium hydroxide [46].

- Preparation by diazotization of 2-amino-5-methylbenzophenone, followed by hydrolysis of the diazonium salt so obtained (25\%) [607].
- Also obtained by reaction of benzoyl chloride,
- with p-methylanisole in the presence of aluminium chloride in carbon disulfide [618];
- with p-methylphenetole in the presence of aluminium chloride, followed by treatment of the 2-ethoxy-5-methylbenzophenone so formed with aluminium chloride in carbon disulfide at $60-70^{\circ}$ for $8 \mathrm{~h}[141,619]$, according to [139];
- with p-tolyl borate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h (15\%) [55].
- Also obtained (poor yield) by photo-Fries rearrangement of 2-methoxy-4-methylphenyl benzoate (creosol benzoate) in benzene or ethanol for 4 h (6-7\%) [620].
- As an historical curiosity, this compound has also been obtained by Fries rearrangement of p-tolyl benzoate with aluminium chloride in the presence of another aromatic compounds, at 150° for 15 min [580]: mesitol (83%); 2,6-dimethylphenyl acetate (53\%); 2-chloro-4-methylphenyl acetate (20-34\%); mesityl acetate (18%).
- Also refer to: $[36,38,73,77,78,82,83,530,574,592,615,621-628]$.

```
m.p. }8\mp@subsup{7}{}{\circ}[519,601],8\mp@subsup{5}{}{\circ}[27,169],84\circ5 [617], 84-85 [70]
        84` [15,48,89,96,132,580,599,607,609,613,619,629], 83``6-84* [125],
        83`5-85` [97,135], 83 5-84` [520,611], 83-83`5 [618], 83 [ [518],
```



```
        [44,46],79-82 [72], 70-72 [610];
b.p.1.5
'H NMR [97,99,100,610,615,629], '3C NMR [97],
IR [44,97,100,103,104,106,107,610,615,629],
```

UV [99,100,109-111,615,629,630], MS [615];
$\mathrm{p} K_{\mathrm{a}}[96,104,115,531,629] ;$
TLC [116,278]; gas chromatography study [631];
polarographic study [117]; cryoscopic study [141].

(2-Hydroxy-6-methylphenyl)phenylmethanone

[50597-28-9]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Syntheses

- Preparation from 4-methyl-2,3-diphenylbenzofuran by oxidation with chromium trioxide in acetic acid at 60° for 3 h , followed by saponification of the keto ester so formed with 10% sodium hydroxide in boiling ethanol [632,633].
- Preparation by Fries rearrangement of m-cresyl benzoate with trifluoromethanesulfonic acid in a sealed tube at 170° for $24 \mathrm{~h}(49 \%)$ [37].
- Also obtained from 2-methyl-6-nitroaniline by a eight-step synthesis. The final step consists in making to react sodium iodide and trimethylsilyl chloride with 2-methoxy-6-methylbenzophenone in acetonitrile at 130° for 24 h into an autoclave (15\%) [6].
- Also obtained by photo-Fries rearrangement of m-cresyl benzoate in ethanol for $24 \mathrm{~h}(25 \%)$ and in the presence of β-cyclodextrin (34\%) [65].
m.p. 73° [6], 57-63 ${ }^{\circ}$ [632]; ${ }^{13} \mathrm{C}$ NMR [6], MS [6].
(3-Hydroxy-2-methylphenyl)phenylmethanone

$$
\begin{equation*}
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad \text { mol.wt. } 212.25 \tag{74167-87-6}
\end{equation*}
$$

 Synthesis

- Preparation by diazotization of 3-amino-2-methylbenzophenone, followed by hydrolysis of the diazonium salt obtained (56\%) [119], according to [634].
m.p. 123° [119]; \quad Spectra (NA).

(3-Hydroxy-4-methylphenyl)phenylmethanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad \text { mol.wt. } 212.25
$$

Synthesis

- Preparation by diazotization of 3-amino-4-methylbenzo-phenone, followed by hydrolysis of the diazonium salt obtained (76\%) [635].
m.p. $132-133^{\circ}[635] ; \quad$ Spectra (NA).

(4-Hydroxy-2-methylphenyl)phenylmethanone

[10425-07-7]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Syntheses

- Preparation by Fries rearrangement of m-tolyl benzoate,
- in the presence of aluminium chloride,
without solvent
at $60-70^{\circ}$ for 1 h , then at r.t. for $24 \mathrm{~h}(62 \%)$ [602]; at 90° for a short time (32\%) [601]; at 120° for $80 \mathrm{~min}(40 \%)$ [132]; at $130-134^{\circ}$ for $24 \mathrm{~h}(21 \%)$ [4] or at 160° for $2 \mathrm{~h}[490,491]$,
with solvent
in nitrobenzene at $25-30^{\circ}$ for $90 \mathrm{~h} \mathrm{(45} \mathrm{\%)} \mathrm{[31];} \mathrm{at} 60^{\circ}$ for 5 h (60\%) [132], (47%) [603], for $13 \mathrm{~h}(51 \%)$ [603] or for $18 \mathrm{~h}(67 \%)$ [27]; or at $62-63^{\circ}$ for 18 h (42\%) [31];
in chlorobenzene at reflux for $4 \mathrm{~h}(46 \%)$ [596];
in nitromethane at reflux for $30 \mathrm{~min}(33 \%)$ [36];
- in the presence of titanium tetrachloride, in refluxing nitromethane for 30 min (44\%) [36];
- in the presence of Nafion-XR, a H^{+}-form ion exchange resin, at 150° for 4 h (67\%) [39].
- Also obtained from p-benzoylthymol by elimination of isopropyl group with aluminium chloride in chlorobenzene at r.t. for 20 h , then at 50° for $4 \mathrm{~h}(80 \%)$ [636].
- Preparation by demethylation of 4-methoxy-2-methylbenzophenone with refluxing pyridinium chloride for 1 h (74\%) [604].
- Also obtained by condensation of benzotrichloride with m-cresol in the presence of aqueous sodium hydroxide in a water bath for $4 \mathrm{~h}(6 \%)$ [48].
- Preparation by reaction of benzoyl chloride with m-cresol in the presence of aluminium chloride or titanium tetrachloride in nitrobenzene at 60° for 18 h (67% and 61% yields, respectively) [54]. The same reaction with aluminium chloride without solvent at 75° gave a 10% yield [144].
- Also obtained (poor yield) by reaction of benzoyl chloride with m-tolyl borate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h (5\%) [55].
- Preparation by acylation of m-tolyl benzoate with benzoyl chloride in the presence of zinc chloride at 130° for 1 h , followed by saponification of the p-keto ester so formed with sodium hydroxide in boiling ethanol [637].
- Also obtained by photo-Fries rearrangement of m-tolyl benzoate in ethanol during 24 h (30\%) [65].
m.p. $135-136^{\circ}[4], 130^{\circ}$ [6], 129° [27,144,601-604],
128° [48,636,637]; b.p. ${ }_{15} 235-240^{\circ}$ [602], b.p. ${ }_{13} 220-240^{\circ}$ [601], b.p. ${ }_{17}$ 230-240 ${ }^{\circ}$ [604];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 20030 \mathrm{M}$), ${ }^{13} \mathrm{C}$ NMR [6],
IR (Sadtler: standard ${ }^{\circ}$ 47039), UV [31,602], MS [490,491].

(4-Hydroxy-3-methylphenyl)phenylmethanone

[5326-42-1]

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad \text { mol.wt. } 212.25
$$

Syntheses

- Preparation by Fries rearrangement of o-tolyl benzoate,
- with aluminium chloride,
without solvent
at 160° for $1 \mathrm{~h}[164]$, ($90-91 \%$) [601,638] or $2 \mathrm{~h}[490,491] ;$ at 140° for 15 \min (quantitative yield) [132], (86\%) [27], (70\%) [639], (10\%) [599] and for 4 h [573],
with solvent
in nitrobenzene at 60° for $18 \mathrm{~h}(91 \%)$ [27], in phenyl ether at 170° for 30 $\mathrm{min}(68 \%)$ [640], in refluxing nitromethane for $30 \mathrm{~min}(60 \%)$ [36] or in refluxing chlorobenzene for $4 \mathrm{~h}(45 \%)$ [596];
- with titanium tetrachloride, in nitrobenzene at 60° for 18 h (89%) [27] or in refluxing nitromethane for $30 \mathrm{~min}(86 \%)$ [36];
- with Nafion-XR, a H^{+}-form ion exchange resin, at 175° for 4 h under nitrogen (45\%) [39].
- Also obtained by photo-Fries rearrangement of o-tolyl benzoate in ethanol between 60 and 75 h (20\%) [641].
- Preparation by Friedel-Crafts acylation of o-cresol with benzoyl chloride,
- in the presence of aluminium chloride in nitrobenzene at 60° for $18 \mathrm{~h}(90 \%)$ [54] or without solvent [642], at 75° (31\%) [144];
- in the presence of titanium tetrachloride in nitrobenzene at 60° for $18 \mathrm{~h}(87 \%)$ [54].
- Also obtained by reaction of benzoyl chloride,
- with o-bromotoluene in the presence of aluminium chloride at 75° for 5 h (38\%) [144];
- with o-tolyl borate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h (51\%) [55];
- with o-tolyl benzoate in the presence of zinc chloride at 130° for 1 h , followed by saponification of the p-keto ester formed with sodium hydroxide in boiling ethanol [643].
- Also obtained by treatment of p-benzoylcarvacrol with aluminium chloride in chlorobenzene, first at r.t. for 20 h , then at 50° for 4 h (68\%) [636].
- Also obtained by reaction of benzotrichloride with o-cresol in the presence of aqueous sodium hydroxide at 80° several hours [644] or in a water bath for 4 h (22\%) [48].
- Also obtained by heating a mixture of benzoic acid and o-cresol in the presence of Tonsil [645].
- Preparation by diazotization of 4-amino-3-methylbenzophenone, followed by hydrolysis of the resulting diazonium salt (76\%) [635].
- Also refer to: $[646,647]$.
m.p. $174-175^{\circ}$ [635], $173-175^{\circ}$ [490,491], 173-174 ${ }^{\circ}$ [599,601,641], 173° [27,144,636,640], $172-173^{\circ}$ [48], 172-172ㅇ [643], 172° [132,573,645], 170-171 ${ }^{\circ}$ [644], 169° [639], 163° [642];
b.p. ${ }_{12-15} 240-260^{\circ}$ [599,601,638]; Spectra (NA).
(2-Hydroxy-3-methoxyphenyl)phenylmethanone
[65202-31-5]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses
- Preparation by saponification of 2-benzoyloxy-3-methoxy-benzophenone (SM) with potassium hydroxide in refluxing ethanol for 1 h (73\%) [579]. SM was obtained by oxidation of 7-methoxy-2,3-diphenylbenzofuran with chromium trioxide in refluxing acetic acid for $30 \mathrm{~min}(78 \%)$.
- Preparation by reaction of phenylmagnesium bromide with 2-hydroxy-3-methoxybenzonitrile in ethyl ether in a water bath for $2.5 \mathrm{~h}(88 \%)$ [648].
- Also obtained by reaction of 2-hydroxy-3-methoxybenzaldehyde with iodobenzene by using a catalyst system of palladium chloride/lithium chloride in the presence of sodium carbonate in
N, N-dimethylformamide at 100° for 8 h (70\%) [51].
b.p. $220-225^{\circ}$ [648]; m.p. 59° [648]; ${ }^{1} \mathrm{H}$ NMR [51], MS [51].
(2-Hydroxy-4-methoxyphenyl)phenylmethanone (Cyasorb UV-9, Oxybenzone, Sumisorb 110)
[131-57-7]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses
- Preparation by partial methylation of 2,4-dihydroxy-benzophenone [649,650],
- with methyl iodide in the presence of sodium hydroxide [189];
- with a methyl halide [651];
- with dimethyl sulfate in the presence of sodium hydroxide [189] or alkaline solution [212,652].
- Also obtained by partial demethylation of 2,4-dimethoxybenzophenone (SM),
- with aluminium chloride in refluxing carbon disulfide for 30 min [85,146,188,653], (42\%) [205]. SM was prepared by reaction of benzoyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride (good yield) [205];
- with aluminium chloride in nitrobenzene [85,654];
- with aluminium chloride or aluminium bromide in chlorobenzene at $90-95^{\circ}$ (good yield) [655];
- with excess beryllium chloride in refluxing toluene for $3 \mathrm{~h}(90 \%)$ [395];
- in refluxing 40% hydrobromic acid for 5 h [85].
- Preparation by Friedel-Crafts acylation of resorcinol dimethyl ether with benzoyl chloride,
- in the presence of aluminium chloride in ethylene dichloride (85\%) [589] or in ethyl ether [656];
- in the presence of aluminium chloride in a chlorobenzene/ N,Ndimethylformamide mixture (22:1) at 115° [235,657], (74\%) [215];
- in the presence of a zinc chloride/aluminium chloride mixture in ethylene dichloride, first between 0° and 5°, then at 10° for 1 h and at 65° for $6 \mathrm{~h}(71 \%)$ [658].
- Preparation by saponification of 2-(benzoyloxy)-4-methoxybenzophenone (SM) with sodium hydroxide [44] or potassium hydroxide [238] in refluxing ethanol for 1 h . SM was obtained by oxidation of 6 methoxy-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid for 30-40 min [44].
- Preparation by Fries rearrangement of m-methoxyphenyl benzoate,
- in the presence of aluminium chloride [23];
- in the presence of hydrochloric acid and a small amount of ferric chloride (60\%) [659].
- Preparation by reaction of benzotrichloride with resorcinol monomethyl ether in hydrofluoric acid in the presence of water at 0°, then at r.t. for $7 \mathrm{~h}(55 \%)$ [213].
- Preparation by Friedel-Crafts acylation of resorcinol monomethyl ether with benzoyl chloride,
- in the presence of boron trichloride in benzene, first at -10°, then at reflux for 10 h (85\%) [660];
- in the presence of titanium tetrachloride in benzene, first at -10°, then at reflux for 14 h (77\%) [660];
- in the presence of iron powder at $240-260^{\circ}$ for $2 \mathrm{~h}(50 \%)$ [661];
- in the presence of ferric chloride-nitromethane complex at $185-195^{\circ}$ for 20 $\min (51 \%)$ [661].
- Preparation by reaction of benzoyl chloride with resorcinol dimethyl ether,
- in chlorobenzene in the presence of titanium tetrachloride for 1 h at 120° (78\%) [662];
- without solvent or in o-dichlorobenzene, in the presence of ferric chloride, at $160-200^{\circ}$ for $7-11 \mathrm{~h}$ (by-product) [663].
- Also obtained from β-(2-benzoyl-5-methoxyphenoxy)propionic acid by heating on a steam bath with a 10% aqueous sodium hydroxide solution for some minutes [218].
- Preparation from 2-iodo-5-methoxyphenyl benzoate by rearrangement on treatment with n-butyl-lithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , then treatment with saturated aqueous ammonium chloride solution ($<16 \%$) [58].
- Also obtained by reaction of benzoic acid with resorcinol monomethyl ether,
- in the presence of polyphosphoric acid on a water bath for $20 \mathrm{~min}(27 \%)$ [626];
- in the presence of boron trifluoride at 80° for $30 \mathrm{~min}(59 \%)$ [186].
- Also refer to: [73,75,77,84,87,194,221,222,225,226,228,231,233,530,572,598, 625,664-673].
N.B.: Na [589,674], Sn salts [212].
oil [626];
m.p. $\quad 69^{\circ}[662], 66^{\circ}[113,652], 65^{\circ}[215,660,661], 64-66^{\circ}[589], 64^{\circ}[212,236,650]$, $63-65^{\circ}$ [395], $63-64^{\circ}[238,658], 63^{\circ}[218], 62-63^{\circ}[239], 62^{\circ}[96,205], 61^{\circ}$ [44,93], 55 [213];
b.p.359-361${ }^{\circ}$ [239]; ${ }^{1}$ HNMR [58,98,99,303,395,675], IR [44,85,394,395,650], UV [93,99,109-111,113,233,235,236,240-243,394,395,650]; GC [631]; HPLC [245]; TLC [116,244,395]; polarographic study [117]; $\mathrm{p} K_{\mathrm{a}}[93,96,115,531] ;$ vapour pressure [236,248]; gel permeation chromatography [247].

(2-Hydroxy-4-methoxyphenyl)phenylmethanone- ${ }^{14} \mathrm{C}$

[17655-53-7]	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 230.25 Synthesis
- Refer to: [676].	

m.p. and Spectra (NA).
(2-Hydroxy-5-methoxyphenyl)phenylmethanone (UV 9)

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by Friedel-Crafts acylation of hydroquinone dimethyl ether with benzoyl chloride in the presence of aluminium chloride [173], in carbon disulfide first at 25° for 48 h , then at 50° for $30 \mathrm{~min}(55 \%)$ [256] or at r.t. for 48 h (by-product) [409], (10\%) [677].
- Also obtained by selective demethylation of 2,5-dimethoxybenzophenone (SM),
- with hydriodic acid [257,409];
- with excess beryllium chloride in refluxing toluene for 3 h (90\%) [395];
- with aluminium chloride [678], in nitromethane at 20° for 24 h (65\%) [679] or in benzene under nitrogen at 80° for $12 \mathrm{~h}(90 \%)$ [258,680].
N.B.: SM was prepared by reaction of benzoyl chloride with hydroquinone dimethyl ether, either in the presence of stannic chloride in nitromethane at 20° for $1 \mathrm{~h}(78-94 \%)$ [679] or in the presence of aluminium chloride in carbon disulfide at r.t. for $48 \mathrm{~h}(78 \%)$ [677], (74-82\%) [409].
- Preparation by partial methylation of 2,5-dihydroxybenzophenone with dimethyl sulfate in the presence of sodium hydroxide in dilute ethanol at $80-90^{\circ}$ for 30 min (33\%) [681].
- Also obtained by Fries rearrangement of p-methoxyphenyl benzoate with titanium tetrachloride without solvent at 120° for $1 \mathrm{~h}(20-35 \%)$ [679].
- Preparation by oxidation of 5-methoxy-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid for 30-40 min, followed by saponification of the keto ester formed, the 2-(benzoyloxy)-5-methoxybenzophenone with sodium hydroxide in refluxing ethanol for $1 \mathrm{~h}[44,682]$. The same result was obtained by using 5-methoxy-2-(4-methoxyphenyl)-3-phenylbenzofuran or 5-methoxy-2-(4-methylphenyl)-3-phenylbenzofuran [46].
- Also obtained (poor yield) by UV light irradiation of 2,5-dimethoxybenzophenone in carbon tetrachloride for $400 \mathrm{~h}(3 \%)$ [678].
- Also refer to: [20,530,671,683,684].
m.p. $84-85^{\circ} 5$ [256], 84° [173,679], $83^{\circ} 5$ [680], $83-84^{\circ}$ [205], $82-85^{\circ}$ [257], $82-84^{\circ}$ [395], $82-83^{\circ}$ [96], $81^{\circ} 5-82^{\circ}$ [681], $81-82^{\circ}$ [678], 81° [44,46,682], 78° [409,677];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 30289$ M) [98,99,395,678],
EPR [98], IR (Sadtler: standard n° 57334) [44,395,678,679],
UV [99,109-111,395,679];
$\mathrm{p} K_{\mathrm{a}}[96,115] ; \quad$ TLC [116,395,678]; polarographic study [117].
(2-Hydroxy-6-methoxyphenyl)phenylmethanone
[20034-63-3] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad m o l . w t .228 .25$

Syntheses

- Preparation from 2-iodo-3-methoxyphenyl benzoate by rearrangement on treatment with n-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , followed by treatment with saturated aqueous ammonium chloride (51\%) [58].
- Also obtained by Fries rearrangement of m-methoxyphenyl benzoate in the presence of trifluoro-methanesulfonic acid in tetrachloroethane at 170° for 24 h in a sealed tube (78\%) [37].
- Preparation by partial methylation of 2,6-dihydroxybenzophenone with dimethyl sulfate,
- in the presence of potassium carbonate in refluxing acetone for 7 h [270];
- in the presence of potassium hydroxide in benzene in a water bath for 1 h (61\%) [269].
- Preparation by partial demethylation of 2,6-dimethoxybenzophenone with aluminium chloride in benzene at 0° for $2 \mathrm{~h}(43 \%)$ [269].
- Also refer to: [171,685].
m.p. $140-141^{\circ}$ [269], 140° [270], 106-107 ${ }^{\circ}$ [58]. There is discrepancy between the two melting points.
${ }^{1} \mathrm{H}$ NMR [58], IR [58], MS [58]; TLC [269].

(3-Hydroxy-4-methoxyphenyl)phenylmethanone

[66476-03-7]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation from 3-(benzoyloxy)-4-methoxybenzophenone (SM) (m.p. 95 ${ }^{\circ} 5-96^{\circ} 5$) [686] by saponification [162] with sodium hydroxide in refluxing ethanol (good yield) [273,686] or with potassium hydroxide in refluxing methanol (98\%) [687]. SM was obtained by Friedel-Crafts acylation of guaiacol benzoate with benzoyl chloride in the presence of zinc chloride [162,273,686] or in the presence of stannic chloride in nitromethane for 1 h at 20° (82\%) [687].
- Preparation by partial methylation of 3,4-dihydroxybenzophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for $90 \mathrm{~min}(70 \%)$ [274].
- Also refer to: $[688,689]$.
m.p. $132^{\circ} 5-133^{\circ}$ [274], $131-132^{\circ}[162,273,686], 117^{\circ}$ [687];
${ }^{1} H$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 28215$ M) [274],
IR (Sadtler: standard n° 55287) [687], UV [274,687].
(4-Hydroxy-2-methoxyphenyl)phenylmethanone
[21112-64-1]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses
- Preparation by saponification of 4-(benzoyloxy)-2-methoxy-benzophenone (SM) with potassium hydroxide in refluxing aqueous ethanol for 1 h (95\%) [238]. SM was obtained from resbenzophenone by a two-step synthesis (4-O-benzoylation and 2-O-methylation).
- Also obtained from β-(4-benzoyl-3-methoxyphenoxy)propionic acid by heating with 10% aqueous sodium hydroxide [189,218].
m.p. 124° [189,218], $123^{\circ} 5-124^{\circ} 5$ [238]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 28221 M), IR (Sadtler: standard n° 55293) [238], UV [238].
(4-Hydroxy-3-methoxyphenyl)phenylmethanone

Syntheses

- Preparation by decarboxylation of 2-(4-hydroxy-3-methoxy-benzoyl)benzoic acid in the presence of cupric acetate mono-hydrate in quinoline at $250-254^{\circ}$ for 35 min (72%) [690].
- Also obtained by Friedel-Crafts acylation,
- of veratrole with benzoyl chloride in the presence of aluminium chloride in carbon disulfide overnight at r.t. [691];
- of guaiacol with benzoic acid in the presence of polyphosphoric acid at 120° for $1 \mathrm{~h}[490,491]$.
- Also obtained by cleavage of 3,3'-dimethoxybenzaurine ${ }^{\mathrm{T}}$ on heating its dilute aqueous sodium hydroxide solution (1\%) in a water bath with air bubbling [162].
N.B.: ${ }^{\text {T}}$ Synonyms: 4-hydroxy-3,3'-dimethoxyfuchsone and 4-[(4-hydroxy-3-methoxyphenyl)-phenylmethylene]-3-methoxy-2,5-cyclohexadien-1-one.
- Also refer to: $[688,689]$.
m.p. 100-101 5 [690], $97-98^{\circ}$ [162,691]; IR [690,692], UV [690], MS [490,491].

(5-Hydroxy-2-methoxyphenyl)phenylmethanone

[80427-34-5]

Synthesis

- Preparation by acylation of p-methoxyphenyl benzoate with benzoyl chloride in the presence of stannic chloride in nitromethane at 20° for 2 days, followed by saponification of the resulting keto ester-5-(benzoyloxy)-2-methoxy-benzophenone-with sodium hydroxide in refluxing methanol for 1 h (90\%) [679].
- Also claimed to be obtained by partial demethylation of 2,5-dimethoxybenzophenone with hydriodic acid [409]. Nevertheless, the structure of this compound was erroneous. In that case, it probably was its isomer the 2-hydroxy-5-methoxybenzophenone [257].
m.p. 111° [679], 78° [409]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 30290$ M), IR (Sadtler: standard n ${ }^{\circ}$ 57335) [679], UV [679].
(2-Amino-4-hydroxy-6-methylphenyl)phenylmethanone
[54439-89-3]
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26

Synthesis

- Preparation from 3'-methyl-5-phenyl-3,5'-diisoxazolyl-methane by performing hydrogenolysis and subsequent hydrolysis with hydrochloric acid (86\%) [693].
m.p. 162° [693]; ${ }^{1} \mathrm{H}$ NMR [693], MS [693].
(3-Amino-2-hydroxy-5-methylphenyl)phenylmethanone
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26

Synthesis

- Refer to: [472].
m.p. and Spectra (NA).

(4-Amino-2-hydroxy-6-methylphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26
Synthesis

- Obtained (trace) from 5-methyl-3'-phenyl-3,5'-diisoxazolyl-methane by performing hydrogenolysis and subsequent hydrolysis with hydrochloric acid [693].
m.p. 125° [693]; ${ }^{1} \mathrm{H}$ NMR [693], MS [693].

[3-Hydroxy-4-(methylamino)phenyl]phenylmethanone

[54903-59-2]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26
Synthesis

- Preparation from 6-benzoyl-3-methylbenzoxazolinone by alkaline hydrolysis with boiling 10% aqueous sodium hydroxide solution [564], (90-100\%) [565], 85\% [566].
m.p. $165^{\circ}[565,566] ; \quad$ Spectra (NA).
(3-Ethynyl-4-hydroxyphenyl)phenylmethanone
[183589-15-3] $\quad \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 222.24

(3,5-Dibromo-2-hydroxy-4,6-dimethoxyphenyl)phenylmethanone

$$
\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{4} \quad \text { mol.wt. } 416.07
$$

Synthesis

- Preparation by reaction of bromine with monobromo-hydrocotoin in chloroform [694].

[2-(Acetyloxy)-4-hydroxyphenyl]phenylmethanone

$$
\begin{aligned}
& \text { [145747-24-6] }
\end{aligned} \begin{aligned}
& \text { Synthesis } \\
& \text { - Obtained by enzymatic deacetylation of 2,4- } \\
& \text { diacetoxy-benzophenone in the presence of porcine } \\
& \text { pancreas lipase in atetrahydrofuran/n-butanol mixture } \\
& \text { at } 40-45^{\circ}(70 \%) \text { [695]. }
\end{aligned}
$$

m.p. and Spectra (NA).

[4-(Acetyloxy)-2-hydroxyphenyl]phenylmethanone

[18803-24-2] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26

Syntheses

- Preparation by partial hydrolysis of 2,4-diacetoxy-benzophenone in the presence of trifluoroacetic acid containing 5\% of water at 65° for $5 \mathrm{~min}(98 \%)$ [696].
- Preparation by reaction of acetyl chloride (1 equiv) with resbenzophenone [697].
- Also refer to: [96,99,109,116].
m.p. $93^{\circ} 6-94^{\circ}$ [697], $92-93^{\circ}$ [96]; ${ }^{1} \mathrm{H}$ NMR [99], UV [99,109]; TLC [116]; $\mathrm{p} K_{\mathrm{a}}$ [96].
(3-Bromo-2-hydroxy-4,5-dimethylphenyl)phenylmethanone
[143815-12-7]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}$
Syntheses
- Preparation by Fries rearrangement of 2-bromo-4,5-di-methylphenyl benzoate with aluminium chloride without solvent at 140° for $2 \mathrm{~h}(24 \%)$ [698].
- Preparation by reaction of bromine with 2-hydroxy-4,5-di-methylbenzophenone in boiling acetic acid [578].
m.p. $\quad 134-135^{\circ}$ [578,698]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 59390$ M) [698], IR (Sadtler: standard n ${ }^{\circ} 86546$ K) [698], UV [698], MS [698].
(3-Bromo-2-hydroxy-5,6-dimethylphenyl)phenylmethanone

[143815-11-6]	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 305.17
HO Br	Syntheses
	- Preparation by Fries rearrangement of 2-bromo-4,5-di-methylphenyl benzoate with titanium tetrachloride without solvent at 140° for 2 h (60%) [698].

- Also obtained (by-product) by Fries rearrangement of 2-bromo-4,5-dimethylphenyl benzoate with aluminium chloride without solvent at 140° for $2 \mathrm{~h}(10 \%)$ [698]. m.p. $157-158^{\circ}$ [698]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 59392 \mathrm{M}$) [698], IR (Sadtler: standard n ${ }^{\circ} 86548$ K) [698], UV [698], MS [698].
(3-Bromo-4-hydroxy-2,5-dimethylphenyl)phenylmethanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 305.17
 Synthesis
- Preparation by reaction of bromine with 4-hydroxy-2,5-di-methylbenzophenone in acetic acid [578].
m.p. $\quad 115-116^{\circ}[578] ; \quad \operatorname{Spectra}(\mathrm{NA})$.
(3-Bromo-6-hydroxy-2,5-dimethylphenyl)phenylmethanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 305.17

m.p. 133° [501,502]; $\operatorname{IR}[103,501]$.
(4-Bromo-2-hydroxy-3,6-dimethylphenyl)phenylmethanone
[6721-06-8]
m.p. 117° [501,502]; $\operatorname{IR}[103,501]$, UV [503].
(4-Bromo-6-hydroxy-2,3-dimethylphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}$ Synthesis
- Obtained (by-product) by Fries rearrangement of 2-bromo-4,5-dimethylphenyl benzoate with aluminium chloride without solvent at 140° for 2 h (22\%) [698].
m.p. 194-195 [698]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 59394$ M) [698],
IR (Sadtler: standard n ${ }^{\circ} 86550 \mathrm{~K}$) [698], UV [698], MS [698].

[4-(2-Bromoethoxy)-2-hydroxyphenyl]phenylmethanone

[18902-63-1]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
Synthesis

- Preparation by reaction of ethylene dibromide with resbenzophenone,
- in the presence of sodium hydroxide in refluxing dilute ethanol for 15 h (47\%) [238,699];
- in the presence of sodium methoxide in diisobutylketone between 130° and 140° (78\%) [700].
- Also refer to: [701-703].
m.p. $90-95^{\circ}$ [700], $87-88^{\circ}$ and $97-98^{\circ}$ [238,699]; double melting point (two allotropic forms); Spectra (NA).
(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)phenylmethanone

$$
\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{4} \quad \text { mol.wt. } 337.17
$$

Synthesis

- Preparation by reaction of bromine with hydrocotoin in chloroform [694].
m.p. $\quad 147^{\circ}$ [694]; \quad Spectra (NA).
(3-Chloro-6-hydroxy-2,4-dimethylphenyl)phenylmethanone
[34174-02-2] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72

Synthesis

- Preparation by Fries rearrangement of 4-chloro-3,5-di-methylphenyl benzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 203-204^{\circ}[458] ; \quad$ Spectra (NA).
(4-Chloro-2-hydroxy-3,6-dimethylphenyl)phenylmethanone
[33561-94-3]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2}$
mol.wt. 260.72
 Synthesis
- Obtained by oxidation of 6-chloro-4,7-dimethyl-2,3-di-phenylbenzofuran with chromium trioxide in boiling acetic acid for 2 h , followed by saponification of the resulting 2 -(benzoyloxy)-4-chloro-3,6-dimethylbenzophenone with 2 N sodium hydroxide in boiling ethanol for 15 min [515].
m.p. $\quad 102^{\circ}$ [515]; IR [515].
(5-Chloro-2-hydroxy-3,4-dimethoxyphenyl)phenylmethanone
m.p. $84-85^{\circ}$ [704]; ${ }^{1} \mathrm{H}$ NMR [704], IR [704], MS [704].
(2-Hydroxy-3,6-dimethyl-4-nitrophenyl)phenylmethanone
[18619-94-8] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 271.27

Synthesis

- Refer to: [103,107,108,582].
m.p. (NA); IR [103,107,108,582].

(2-Hydroxy-3,6-dimethyl-5-nitrophenyl)phenylmethanone

m.p. (NA); IR [103].
(3-Hydroxy-4,6-dimethyl-2-nitrophenyl)phenylmethanone

(4-Hydroxy-2,6-dimethyl-3-nitrophenyl)phenylmethanone

m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [706,707], ${ }^{13} \mathrm{C}$ NMR [708], IR [706].
(3-Ethyl-2-hydroxyphenyl)phenylmethanone
[56394-91-3]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis

- Preparation by reaction of 3-ethylsalicylic acid chloride (3-ethyl-2-hydroxybenzoyl chloride) with benzene in the presence of aluminium chloride overnight at 100° (58\%) [92,709-711].
- Preparation by Fries rearrangement of o-ethylphenyl benzoate (SM) with aluminium chloride at $160-170^{\circ}$ for $30 \mathrm{~min}(61 \%)$. SM was obtained by reaction of benzoyl chloride with aluminium tris(o-ethylphenoxide) [485].
b.p. ${ }_{0.14} 123-126^{\circ}$ [709,710], b.p. ${ }_{0.4} 123-126^{\circ}$ [92,711],
b.p. ${ }_{3} 165-167$ [485]; $\mathrm{n}_{\mathrm{D}}^{22}=1.6081$ [709,710]; \quad IR [709,710].
(3-Ethyl-4-hydroxyphenyl)phenylmethanone
[67217-94-1]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Syntheses

- Preparation by decarboxylation of 2-(3'-ethyl-4'-hydroxy-benzoyl)benzoic acid in the presence of cupric acetate in refluxing quinoline (254°) for 40 min (98\%) [712].
- Also obtained (by-product) by Fries rearrangement of o-ethylphenyl benzoate with aluminium chloride at $160-170^{\circ}$ for $30 \mathrm{~min}(12 \%)$ [485].
m.p. $138-140^{\circ} 2$ [712], 136° [485]; Spectra (NA).
(4-Ethyl-2-hydroxyphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis
- Preparation by Fries rearrangement of methylphenyl benzoate in the presence of aluminium chloride without solvent at 140° for 4 h [713].
- Also refer to: [714]. oil [713]; b.p. and Spectra (NA).

(5-Ethyl-2-hydroxyphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses

- Preparation by Fries rearrangement of p-ethylphenyl benzoate with aluminium chloride at 140° for 4 h [713].
- Preparation by reaction of benzoyl chloride with p-ethyl-phenol in the presence of aluminium chloride in tetra-chloroethane at 105° for 22 h (60\%) [92].
- Preparation by condensation of benzotrichloride with p-ethylphenol in the presence of $32-40 \%$ aqueous sodium hydroxide at $70-80^{\circ}$ (70\%) [615].
- Also refer to: [715,716].
m.p. 74° [713], $69^{\circ} 5-70^{\circ}$ [615], 69-72 ${ }^{\circ}$ [92];
${ }^{1} H$ NMR [615], IR [615], UV [615], MS [615];
gas chromatography study [631].
(2-Hydroxy-3,4-dimethylphenyl)phenylmethanone

[14770-98-0] \begin{tabular}{l}
Syntheses

Preparation by Fries rearrangement of 2,3-dim-
ethylphenyl benzoate in the presence of alu-
minium chloride at 180° for 10 min (60%)
[518].

\end{tabular}

- Preparation by oxidation of 6,7-dimethyl-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid, followed by saponification of the keto ester so obtained (2-benzoyloxy-3,4-di-methylbenzophenone) [44,682,717].
- Also refer to: [76].
m.p. 45° [717], 42° [44,518,682,718]; IR [44,717].

(2-Hydroxy-3,5-dimethylphenyl)phenylmethanone

[16762-34-8]	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
HO	Syntheses
	- Preparation by Fries rearrangement of 2,4-dimeth ylphenyl benzoate in the presence of aluminium chloride (major product) [719], at $130-140^{\circ}$ for 4 h (50\%) [720], at $140-160^{\circ}$ for 20 min (83%) [721] or at 180° for $10 \mathrm{~min}(75 \%)$ [518].

- Preparation by chromic oxidation of various substituted 5,7-dimethylbenzofurans (5,7-dimethyl-2,3-diphenylbenzofuran [44]; 5,7-dimethyl-2-(4-methylphenyl)-3phenylbenzofuran [46] and 2-(4-methoxyphenyl)-5,7-dimethyl-3-phenylbenzofuran [46]), followed by saponification of the resulting keto esters.
- Preparation by Friedel-Crafts acylation of 2,4-dimethylanisole or of 2,4-dimethylphenetole with benzoyl chloride in the presence of aluminium chloride in refluxing carbon disulfide (10% and 30% yields, respectively) [719].
- Preparation by reaction of benzoyl chloride with 2,4-dimethylphenol in the presence of aluminium chloride in nitrobenzene at $50-60^{\circ}$ for $18 \mathrm{~h}(27 \%)$ [721].
- Also refer to: [4].
oil [44,46]; m.p. $40-41^{\circ}$ [720,722];
b.p. ${ }_{20} 202^{\circ}$ [719], b.p. $._{12} 198-200^{\circ}$ [518], b.p. ${ }_{17} 192-194^{\circ}$ [720]; IR [44].

(2-Hydroxy-3,6-dimethylphenyl)phenylmethanone

$$
\begin{equation*}
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad \text { mol.wt. } 226.27 \tag{4072-17-7}
\end{equation*}
$$

 Synthesis

- Preparation by oxidation of 4,7-dimethyl-2,3-diphe-nyl-benzofuran with chromium trioxide in acetic acid at 60°, followed by hydrolysis of the keto ester so obtained (2-benzoyloxy-3,6-dimethylbenzophenone) with 10% sodium hydroxide [632,723].
- Also refer to: $[76,633]$.
m.p. 104° [89,609,723], $103-104^{\circ}$ [632];

IR [89, 103,723], UV [609].
(2-Hydroxy-4,5-dimethylphenyl)phenylmethanone
 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27 Syntheses

- Preparation by reaction of chromium trioxide with 5,6-dimethyl-2,3-diphenylbenzofuran [44,606] or 5,6-di-methyl-2-(4-methylphenyl)-3-phenylbenzofuran [46] in acetic acid, followed by saponification of the keto ester so formed (2-benzoyloxy-4,5-dimethylbenzophenone).
- Preparation by Fries rearrangement of 3,4-dimethylphenyl benzoate without solvent, in the presence of,
- aluminium chloride between 120° and 150° (quantitative yield) [724] or at 140° for $20 \mathrm{~min}(66 \%)$ [462];
- titanium tetrachloride at 140° for $2 \mathrm{~h}(75 \%)$ [698].
- Also obtained by isomerization of 2-hydroxy-4,6-dimethylbenzophenone in the presence of aluminium chloride between 140° and 180° for several hours (quantitative yield) [724]. There is a methyl group migration.
- Preparation by reaction of benzoyl chloride with 3,4-dimethylphenyl benzoate in the presence of zinc chloride at 110°, followed by saponification of the keto ester formed (2-benzoyloxy-4,5-di-methylbenzophenone) with sodium hydroxide in boiling ethanol [725].
- Preparation by reaction of pyridinium chloride with 2-methoxy-4,5-dimethylbenzophenone by boiling for 50 min [726].
- Also obtained by reaction of benzoyl chloride with 4-methylthymol methyl ether (4,5-dimethyl-2-isopropylanisole) in the presence of aluminium chloride in carbon disulfide at r.t. for 23 h [726].
- Preparation by saponification of 2-benzoyloxy-4,5-dimethylbenzophenone with potassium hydroxide in refluxing ethanol for 1 h (64\%) [504].
- Also obtained from 3,4-dimethylbenzophenone by nitration with nitric acid in acetic anhydride at 70°, then at 5° overnight. The diene obtained (2-benzoyl-4,5-dimethyl-4-nitro-1,4-dihydrophenyl acetate as cis and trans mixture) was added to a concentrated solution of sodium methoxide in methanol [727].
- Also obtained (by-product) by reaction of aluminium chloride with 2-bromo-4,5-dimethylphenyl benzoate without solvent at 140° for $2 \mathrm{~h}(7 \%)$ [698].
- Also obtained (by-product) by treatment of 2-bromo-4,5-dimethylbenzophenone with 25% aqueous ammonium hydroxide in ethanol into an autoclave at 180$190^{\circ}$ for 5 h under 40 atmospheres (15\%) [728].
- Preparation by reaction of 3,4-xylenol with benzoic acid in the presence of boron trifluoride-ethyl ether complex, at $128-129^{\circ}$ for 7 min , followed by treatment of the difluoroboroxy chelate formed with boiling aqueous ethanol for 15 $\min (63 \%)$ [729].
- Also refer to: [504,730,731].
m.p. $112-113^{\circ} 5$ [727], $111^{\circ}[89,724], 110-111^{\circ}[462,606,698,725,728,729]$, 110° [726], 108° [44,46];
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ} 59389$ M) [698,727,729],
IR (Sadtler: standard $n^{\circ} 86545$ K) [44,46,89,103,698,726,727,729],
UV [698,729], MS [698,727].

(2-Hydroxy-4,6-dimethylphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses

- Preparation by reaction of benzoyl chloride with 3,5-di-methylphenol in the presence of aluminium chloride in nitromethane at 25° for 3 h , then at reflux for 1 h [102], (45\%) [732].
- Preparation by Fries rearrangement of 3,5-dimethylphenyl benzoate with aluminium chloride $[6,632,733]$, without solvent between 120° and 150° (quantitative yield) [724], (55\%) [733] or in nitrobenzene at $62-63^{\circ}$ for $18 \mathrm{~h}(80 \%)$ [31].
- Preparation by oxidation of 4,6-dimethyl-2,3-diphenylbenzofuran with chromium trioxide in acetic acid at 60°, followed by saponification of the keto ester so obtained (2-(benzoyloxy)-4,6-di-methylbenzophenone) with 10% sodium hydroxide in boiling ethanol [632].
- Also obtained by reaction of benzoic acid with 3,5-dimethylphenol in the presence of boron trifluoride in a sealed tube at 160° for 2 h (58\%) [150].
- Also obtained (by-product) by treatment of 2-bromo-4,5-dimethylphenyl benzoate with aluminium chloride at 140° for $2 \mathrm{~h}(8 \%)$ [698].
- Also refer to: [4,37,76,633,734].
m.p. $143-143^{\circ} 5$ [31], 143° [724], $142-143^{\circ}$ [732], $142^{\circ}[150,632], 141-142^{\circ}$ [698],
140° [6,89,609,735], $139-140^{\circ}$ [733], 134° [94,95];
${ }^{1} H$ NMR [94,95,101,102,698,707,735], ${ }^{13}$ C NMR [101], IR [94,95,103,698,735,736], UV [698,735,737], MS [698];
$\mathrm{p} K_{\mathrm{a}}$ [735]; polarographic study [117]; thermal behaviour [94,95].

(4-Hydroxy-2,3-dimethylphenyl)phenylmethanone

[107931-09-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis

- Preparation by demethylation of 2,3-dimethyl-4-methoxy-benzophenone (SM) with pyridinium chloride at 180° for 2 h . SM was prepared by reaction of phenylmagnesium bromide with 2,3-dimethyl-4-methoxybenzaldehyde in ethyl ether at 0° for 30 min [477].
m.p. and Spectra (NA).

(4-Hydroxy-2,5-dimethylphenyl)phenylmethanone

[62262-03-7]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27 Syntheses

- Preparation by Friedel-Crafts acylation of 2,5-dimethyl-phenyl benzoate with benzoyl chloride in the presence of zinc chloride, followed by saponification of the p-keto ester so obtained with sodium hydroxide in boiling ethanol (quantitative yield) [725].
- Preparation by reaction of hydriodic acid with 4-methoxy-2,5-dimethylbenzophenone in boiling acetic acid (56\%) [719].
- Also obtained (by-product) by Fries rearrangement of 2,5-dimethylphenyl benzoate with aluminium chloride at $130-140^{\circ}$ for 4 h [719].
- Also refer to: [734].
m.p. $\quad 166-167^{\circ}[719,738] ; \quad$ Spectra (NA).

(4-Hydroxy-2,6-dimethylphenyl)phenylmethanone

[81375-01-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses

- Preparation by reaction of sodium iodide with 4-benzyloxy-2,6-dimethylbenzophenone (SM) in the presence of trimethylsilyl chloride in acetonitrile into an autoclave at 130° for $24 \mathrm{~h}(60 \%)$.
SM was prepared from 4-bromo-3,5-di-methylphenol by a four-step synthesis [6].
- Preparation by diazotization of 4-amino-2,6-dimethylbenzophenone, followed by hydrolysis of the diazonium salt obtained (34\%) [732].
- Also refer to [706,739].
m.p. $115^{\circ}[6,732] ;$ b.p. $._{0.01} 153-155^{\circ}[6]$;
${ }^{1} \mathrm{H}$ NMR [706,707,732], ${ }^{13} \mathrm{C}$ NMR [6,708], IR [706,732].

(4-Hydroxy-3,5-dimethylphenyl)phenylmethanone

[5336-56-1]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
 Syntheses

- Preparation by decarboxylation of 2-(4-hydroxy-3,5-di-methylbenzoyl)benzoic acid in the presence of cupric acetate monohydrate in refluxing quinoline for $30 \mathrm{~min}(98 \%)$ [740].
- Preparation by demethylation of 4-methoxy-3,5-dimethyl-benzophenone (SM) with aluminium chloride without solvent at $100-110^{\circ}$ for 3 h [741]. SM was obtained by Friedel-Crafts acylation of 2,6-dimethylanisole with benzoyl chloride according to usual method.
- Preparation by Fries rearrangement of 2,6-dimethylphenyl benzoate with aluminium chloride without solvent [742], at 130-140 (46\%) [743].
- Also obtained by photo-Fries rearrangement of 2,6-dimethylphenyl benzoate in isopropanol at 26° for $24 \mathrm{~h}(33 \%)$ [64,72] or in pentane in the presence of silica gel (23\%) [64].
- Also obtained (poor yield) by reaction of cumene hydroperoxide with 4-benzyl-2,6-dimethyl-phenol and air bubbling in the presence of cobalt phthalate in cumene at $80-100^{\circ}$ for $100 \mathrm{~h}(6 \%)$ [744].
- Also refer to: [4,429,745-747].
m.p. 145° [742], $143^{\circ} 3-144^{\circ} 5$ [740], 143° [744], 142-142 5 [743], 141- 142° [741], 139-141́6 [72];
${ }^{1} \mathrm{H}$ NMR [742].

(5-Hydroxy-2,4-dimethylphenyl)phenylmethanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad \text { mol.wt. } 226.27
$$

Syntheses

- Preparation by Friedel-Crafts acylation of 2,4-dimethyl-phenyl benzoate with benzoyl chloride in the presence of zinc chloride in boiling chloroform, followed by saponification of
the 5-(benzoyloxy)-2,4-dimethyl-benzophenone so obtained with sodium hydroxide in refluxing ethanol (45\%) [748].
- Also obtained (poor yield) by Fries rearrangement of 2,4-dimethylphenyl benzoate with aluminium chloride without solvent at $130-140^{\circ}$ for $4 \mathrm{~h}(4 \%)$ [720].
- Obtained (by-product) by Friedel-Crafts acylation,
- of 2,4-dimethylanisole with benzoyl chloride in the presence of aluminium chloride in refluxing carbon disulfide for $3-5 \mathrm{~h}(8 \%)$ [719];
- of 2,4-dimethylphenetole with benzoyl chloride in the presence of aluminium chloride in boiling carbon disulfide [719].
- Preparation by demethylation of 2,4-dimethyl-5-methoxybenzophenone,
- with hydriodic acid $(\mathrm{d}=1.7)$ in boiling acetic acid at $130-140^{\circ}$ for $2 \mathrm{~h}(70 \%)$ [719];
- with aluminium chloride in boiling carbon disulfide for 8 h (32\%) [719].
m.p. $145-146^{\circ}$ [748], $140-141^{\circ}[719,720] ; \quad$ Spectra (NA).
(6-Hydroxy-2,3-dimethylphenyl)phenylmethanone
[108478-10-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Syntheses

- Preparation by oxidation of 4,5-dimethyl-2,3-diphenyl-benzofuran with chromium trioxide in acetic acid, followed by alkaline hydrolysis of the resulting keto ester with refluxing 10% sodium hydroxide in ethanol for 2 h [632].
- Also obtained by saponification of 2,3-dimethyl-6-benzoyl-oxybenzophenone with refluxing 10% sodium hydroxide for 30 min [632].
- Preparation by debromination of 3-bromo-2-hydroxy-5,6-dimethylbenzophenone in the presence of copper powder in caproic acid at 220° for $15 \mathrm{~min}(82 \%)$ [698].
- Also obtained (poor yield) by Fries rearrangement of 3,4-dimethylphenyl benzoate with titanium tetrachloride without solvent at 140° for $2 \mathrm{~h}(5 \%)$ [698].
- Also refer to: [633].
m.p. $124-125^{\circ}$ [698], $114-115^{\circ}$ [632];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ} 59393$ M) [698],
IR (Sadtler: standard $n^{\circ} 86549$ K) [698], UV [698], MS [698].

(4-Ethoxy-2-hydroxyphenyl)phenylmethanone

[15889-70-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by reaction of ethyl bromide with resbenzo-phenone, in the presence of sodium hydroxide in dilute ethanol, first at $30-40^{\circ}$ for 1 h , then at $65-75^{\circ}$ for $16 \mathrm{~h}(35 \%)$ [189].
- Preparation by reaction of ethyl p-toluenesulfonate with resbenzophenone in the presence of potassium carbonate in boiling water for $8 \mathrm{~h}(75 \%)[201,202]$.
- Preparation by Friedel-Crafts acylation of 1,3-diethoxybenzene with benzoyl chloride in the presence of a zinc chloride/aluminium chloride mixture, first between 0° and 5°, then at 10° for 1 h and finally at 65° for 6 h [658].
- Also refer to: [222,655,667].

```
m.p. 54*5 [189], 50-52` [201,202]; Spectra (NA).
```

(2-Hydroxy-3-methoxy-5-methylphenyl)phenylmethanone
[17603-92-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Synthesis

- Preparation by photo-Fries rearrangement of 2-methoxy-4-methylphenyl benzoate in benzene or in ethanol during 4 h (40% and 63% yields, respectively) [620].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [620], IR [620].
(2-Hydroxy-3-methoxy-6-methylphenyl)phenylmethanone
[129103-91-9]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27

Synthesis

- Preparation from 2-iodo-6-methoxy-3-methylphenyl benzoate by rearrangement on treatment with n-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , then treatment with saturated aqueous ammonium chloride (55\%) [58].
m.p. $128-129^{\circ} 5$ [58]; ${ }^{1} \mathrm{H}$ NMR [58], IR [58].
(2-Hydroxy-4-methoxy-3-methylphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses
- Preparation by methylation of 2,4-dihydroxy-3-methyl-benzophenone with methyl iodide in the presence of potassium carbonate in refluxing acetone for 2 h [749].
- Also obtained by methylation of resbenzophenone with methyl iodide in the presence of potassium hydroxide in methanol at 0° (26\%) [750]. There is an introduction of one methyl group on the nucleus.
- Also obtained by methylation of resbenzophenone [649] according to the method [751].
- Also refer to: [221].
m.p. $125^{\circ}[649,749,750], 124-125^{\circ}$ [113];

UV [113].

(2-Hydroxy-4-methoxy-5-methylphenyl)phenylmethanone

[59954-97-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
Syntheses

- Preparation by reaction of benzoyl chloride with 4-methyl-resorcinol dimethyl ether in the presence of aluminium chloride in ethylene dichloride (97\%) [589].
- Preparation by oxidation of 6-methoxy-5-methyl-2,3-di-phenylbenzofuran with chromium trioxide in refluxing acetic acid, followed by alkaline hydrolysis of the keto ester so obtained (2-benzoyloxy-4-methoxy-5-methylbenzophenone) with potassium hydroxide in refluxing ethanol (73\%) [752].
m.p. 188° [752], $88-89^{\circ}$ [589]. One of the reported melting points is obviously wrong. Spectra (NA).
(2-Hydroxy-4-methoxy-6-methylphenyl)phenylmethanone
[23573-43-5]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Syntheses
- Preparation by partial methylation of 2,4-dihy-droxy-6-methylbenzophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 4 h (74\%) [753].
- Also obtained by UV light irradiation of 3-methoxy-5-methyl-phenyl benzoate in ethanol at 20° for $70 \mathrm{~h}(21 \%)$ [754].
m.p. $93-94^{\circ}$ [753], $87-88^{\circ}$ [754]; ${ }^{1} \mathrm{H}$ NMR [643,754], IR [754], UV [754].
(2-Hydroxy-5-methoxy-4-methylphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27
Synthesis
- Preparation by oxidation of 5-methoxy-6-methyl-2,3-di-phenylbenzofuran with chromium trioxide in refluxing acetic acid for 30 min , followed by alkaline hydrolysis of the resulting keto ester (2-benzoyloxy-5-methoxy-4-methyl-benzophenone) with potassium hydroxide in refluxing ethanol (75\%) [752].
m.p. $\quad 114^{\circ}[752] ; \quad \operatorname{Spectra}(N A)$.

(2-Hydroxy-6-methoxy-4-methylphenyl)phenylmethanone

[23565-66-4]

m.p. $\quad 70-71^{\circ}$ [754]; ${ }^{1} \mathrm{H}$ NMR [754], IR [754], UV [754].
(4-Hydroxy-2-methoxy-6-methylphenyl)phenylmethanone
[23565-67-5]

m.p. $1^{123-124^{\circ}}$ [754]; ${ }^{1} \mathrm{H}$ NMR [754], IR [754], UV [754].
(5-Hydroxy-4-methoxy-2-methylphenyl)phenylmethanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Synthesis

- Preparationby saponification of 5-(benzoyloxy)-4-methoxy-2-methylbenzophenone (SM) (m.p. $95-96^{\circ}$) with sodium hydroxide in boiling dilute ethanol (quantitative yield). SM was obtained by condensation of benzoyl chloride with creosol benzoate in the presence of zinc chloride [755].
m.p. 150° [755]; \quad Spectra (NA).

(2-Hydroxy-3,4-dimethoxyphenyl)phenylmethanone

[7508-32-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation by reaction of benzoyl chloride with pyrogallol trimethyl ether,
- in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 3 h and finally at reflux for $1 \mathrm{~h}(96 \%)$ [704] or for $2 \mathrm{~h}(47 \%)$ [598] and also in refluxing methylene chloride for $2 \mathrm{~h}(22 \%)$ [756].
N.B.: This benzophenone is, by mistake, named, 2-hydroxy-3,4-dimethoxybenzaldehyde (synthetic example 20, compound a, page 39), in the patent PCT Int. Appl. WO 96 05,188 of 22 February 1996 [598].
- in the presence of zinc chloride (good yield) [686], at 100° for 1 h [757];
- in the presence of mercuric chloride instead of aluminium chloride without solvent at 115° (reflux) for $1-3 \mathrm{~h}(40 \%)$ [758,759].
- Preparation by reaction of methyl iodide with 2,3,4-trihydroxybenzophenone monosodium salt in the presence of sodium carbonate at 160° for 6 h [344]. By using lead salt instead of sodium salt in the same conditions, the yield was decreased.
- Also obtained by reaction of methyl iodide with 2,3,4-trihydroxybenzophenone in the presence of lithium carbonate in N,N-dimethylformamide at 30° for 15 h under nitrogen (17\%) [369].
- Also obtained by reaction of dimethyl sulfate with 2,3-dihydroxy-4-methoxybenzophenone or with 2,4-dihydroxy-3-methoxybenzophenone in the presence of alkali [379].
m.p. $185-187^{\circ}$ [369]. This melting point is obviously wrong. 132-134 ${ }^{\circ}$ [704], 131° [344,756], $130-131^{\circ}$ [686,757], 127-128ㅇ [598], 120-121 ${ }^{\circ}$ [379]; ${ }^{1} \mathrm{H}$ NMR [369,598,704], ${ }^{13} \mathrm{C}$ NMR [369], IR [704], UV [369], MS [369,704]; $\mathrm{p} K_{\mathrm{a}}$ [369].

(2-Hydroxy-4,5-dimethoxyphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27 Syntheses

- Preparation by partial methylation of 2,5-dihy-droxy-4-methoxybenzophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone $[656,760]$.
- Preparation by partial demethylation of 2,4,5-trimethoxy-benzophenone with aluminium chloride in boiling carbon disulfide for 1 h [761,762].
- Also obtained by Friedel-Crafts acylation of 1,2,4-trimethoxybenzene with benzoyl chloride in the presence of aluminium chloride,
- in carbon disulfide (by-product) [763], (15\%) [761,762];
- in ethylene dichloride between 0° and 5°, then at r.t. for 4 h and finally at reflux for 2 h (97\%) [704].
- Preparation by reaction of benzoyl chloride with 3,4-dimethoxyphenol in the presence of boron trichloride in methylene chloride at r.t. for $2.5 \mathrm{~h}(51 \%)$ [598].
N.B.: This benzophenone is, by mistake named, 2-hydroxy-4,5-dimethoxybenzaldehyde (synthetic example 1, compound \mathbf{h}, page 21), in the patent PCT Int. Appl. WO 96 05,188 of 22 February 1996 [598].
- Also obtained from O-methyldalbergin (6,7-dimethoxy-4-phenylcoumarin) (SM) by oxidation with neutral permanganate. SM was prepared by methylation of dalbergin (6-hydroxy-7-methoxy-4-phenylcoumarin), itself isolated from Dalbergia sissoo [764].
- Also refer to: [530,670].
m.p. $109-110^{\circ}$ [656,704], $106-107^{\circ}$ [760-762], 104-105 ${ }^{\circ}$ [598];
${ }^{1} \mathrm{H}$ NMR [598,704,760], IR [704], MS [704].

(2-Hydroxy-4,6-dimethoxyphenyl)phenylmethanone (Hydrocotoin)

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation from 2-bromo-3,5-dimethoxyphenyl benzoate on treatment with sec-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , followed by treatment with saturated aqueous ammonium chloride (47\%) [58].
- Preparation by Friedel-Crafts acylation of phloroglucinol trimethyl ether with benzoyl chloride in the presence of aluminium chloride [753], in ethyl ether for 8 h [416].
- Preparation by action of boron trichloride with 2,4,6-trimethoxybenzophenone in methylene chloride for 30 min at r.t. under nitrogen (92\%) [171].
- Preparation by heating a mixture of benzoyl chloride and 3,5-dimethoxyphenyl benzoate in the presence of zinc chloride in benzene, followed by saponification of the keto ester so formed $[220,765]$.
- Also obtained (poor yield) by reaction of benzonitrile with phloroglucinol dimethyl ether in the presence of zinc chloride and hydrochloric acid in ethyl ether (Hoesch reaction) [653], (3\%) [766].
- Also obtained from 5,7-dimethoxy-4-phenylcoumarin,
- by oxidation with potassium permanganate in acetone for $30 \mathrm{~min}(<5 \%)$ [767];
- by ozonolysis in a mixture of carbon tetrachloride and chloroform (25\%) [767].
- Also obtained (poor yield) by UV light irradiation of 2,4,6-trimethoxybenzophenone in carbon tetrachloride for $500 \mathrm{~h}(3 \%)$ [678].
- Also refer to: [379,686,768-770].

Isolation from natural sources

- From the heartwood of Allanblackia fluoribunda Oliver (Guttiferae; subfamily Clusioideae) [171];
- From the Paracotobark or Aniba pseudocoto Rusby (Kostermans) (Lauraceae) [694,771];
- From the Coto bark (Lauraceae) [772].
m.p. $99-100^{\circ}$ [753], 98° [447,694,766,773,774], $97-98^{\circ}$ [678], $96-98^{\circ}$ [171], 96-97 [58], $95-96^{\circ}$ [767], 93-95${ }^{\circ}$ [765]; ${ }^{1} \mathrm{H}$ NMR [58,171,416,678], IR [171], UV [171,767], MS [58,171]; GLC [678].

(4-Hydroxy-2,6-dimethoxyphenyl)phenylmethanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 258.27
$$

Syntheses

- Preparation by saponification of 4-(benzoyloxy)-2,6-di-methoxybenzophenone with 10% potassium hydroxide in methanol at r.t. for 2 h [775].
- Also obtained by reaction of benzonitrile with phloroglucinol dimethyl ether in the presence of zinc chloride and hydrochloric acid (14\%) (Hoesch reaction) [766].
- Also refer to: [379].
m.p. $\quad 178-179^{\circ}[775], 177^{\circ}$ [766]; \quad Spectra (NA).

[2-Hydroxy-4-(2-hydroxyethoxy)phenyl]phenylmethanone

[16909-78-7]	Syntheses
	Preparation by reaction of ethylene chlorohydrin (2-chloroethanol) with

- in the presence of sodium hydroxide, in boiling water for $6 \mathrm{~h}(40 \%)$ [238] or in water at 70° for 18 h (91\%) [776];
- in the presence of sodium carbonate in refluxing dilute ethanol for $16 \mathrm{~h}(58 \%)$ [777].
- Preparation by reaction of ethylene carbonate with resbenzophenone,
- in the presence of a quaternary ammonium salt (for example benzyltriethylammonium chloride) at $140-150^{\circ}$ [778], for 11 h (93\%) [779];
- in the presence of an alkaline metal or alkaline earth metal salt as catalyst (sodium ethylenediamine tetraacetate (0.02 mol); calcium citrate monohydrate (0.02 mol); sodium nitriloacetate (0.02 mol); sodium oleate (0.05 mol); sodium stearate (0.05 mol)), for $7-8 \mathrm{~h}$ at 155° ($92-93 \%$ yields) [780];
- in the presence of sodium methoxide in diisobutylketone for 50 min at 140° [700].
- Preparation by treatment of resbenzophenone with ethylene oxide,
- in methanol in the presence of sodium methoxide in autoclave at 150°, under 16.4 atmospheres, for 6 h (54\%) [777];
- in the presence of aqueous potassium hydroxide at $105-110^{\circ}$ into an autoclave ($<90 \mathrm{psig}$) under nitrogen (99%) [781].
- Also refer to: [782-788] and also [789-793] (Japanese patents).
m.p. $93^{\circ} 5-95^{\circ} 5$ [794], $92-93^{\circ}$ [777], $91^{\circ} 5-97^{\circ} 5$, this gap of $6^{\circ} \mathrm{C}$ appears in the patent U.S. US 4,978,797 [781], $91-92^{\circ}$ [238], $89-90^{\circ}$ [93];
UV [93]; gel chromatography [247]; $\mathrm{p} K_{\mathrm{a}}$ [93]; TLC [116].

[2-Hydroxy-3-(hydroxymethyl)-4-methoxyphenyl]phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Synthesis

- Obtained by adding a 27% solution of formaldehyde to a solution of 2-hydroxy-4-methoxybenzophenone in aqueous sodium hydroxide and tetrahydrofuran then stirring the mixture at r.t. for $5.5 \mathrm{~h}(31 \%)$ [795,796].
- Also refer to: [665].
m.p. and Spectra (NA).

[2-Hydroxy-5-(hydroxymethyl)-4-methoxyphenyl]phenylmethanone

[80501-48-0]
 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27 Synthesis

- Preparation by adding a 37% solution of formaldehyde to a solution of 2-hydroxy-4methoxybenzophenone in aqueous sodium hydroxide and tetrahydrofuran then stirring
the mixture at r.t. for $24 \mathrm{~h}(75 \%)$ [795]. In the same conditions, but using a 27% solution of formaldehyde and stirring the mixture at r.t. for 5.5 h , the keto alcohol was obtained in a yield of only 47% [795,796].
- Also refer to: [665,797].
m.p. and Spectra (NA).
(2-Amino-3-hydroxy-4,6-dimethylphenyl)phenylmethanone $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 241.29

Synthesis

- Preparation by reduction of 2-nitro-3-hydroxy-4,6-dimethyl-benzophenone with sodium hydrosulfite in dilute ethanol (67\%) [705].
m.p. $\quad 125^{\circ}[705] ; \quad \operatorname{Spectra}(N A)$.

[4,5-Dichloro-3-hydroxy-2-(2-propenyl)phenyl]phenylmethanone

[113730-42-0]

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.18
Synthesis

- Obtained by heating 5-(allyloxy)-3,4-dichlo-robenzo-phenone at 235° for 8 min (67\%) (Claisen rearrangement) [482].
m.p. 105° [482]; ${ }^{1} \mathrm{H}$ NMR [482].

[4-Hydroxy-3-(2-propenyl)phenyl]phenylmethanone

[73720-75-9] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 238.29

Synthesis

- Preparation by Claisen rearrangement of 4-(allyloxy)-benzophenone in refluxing phenyl ether for 1 h (73\%) [798] or in diethylaniline at $207-218^{\circ}$ for $3.5 \mathrm{~h}(47 \%)$ [799].
- Also refer to: [429].
m.p. $129-130^{\circ} 6$ [798]; UV [798].

[2-Hydroxy-4-(1-propenyloxy)phenyl]phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29

Synthesis

- Obtained (poor yield) by reaction of epichlorohydrin with resbenzophenone in the presence of aqueous potassium hydroxide at r.t. for 18 h (<6\%) [800].
m.p. $97-98^{\circ} 5$ [800]; \quad Spectra (NA).

[2-Hydroxy-4-(2-propenyloxy)phenyl]phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
Synthesis

- Preparation by reaction of allyl chloride (3-chloro-propene) with resbenzophenone (90%), according to [801].
m.p. $65-68^{\circ}$ [801]; Spectra (NA); TLC [116].
[2-Hydroxy-4-(oxiranylmethoxy)phenyl]phenylmethanone
[19389-82-3]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28
Synthesis
- Preparation by reaction of epichlorohydrin with 2,4-dihydroxybenzophenone in the presence of an aqueous potassium hydroxide solution at 88° for 2 h [802].
m.p. $99-100^{\circ}$ [803], $98^{\circ} 5-99^{\circ}$ [802]; IR [802], UV [802]; TLC [116].

[2-Hydroxy-3-(1-methylethyl)phenyl]phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Synthesis

- Preparation by oxidation of 7-isopropyl-2,3-diphenyl-benzofuran with chromium trioxide in acetic acid at 70° for 2 h , followed by alkaline hydrolysis of the resulting keto ester (2-benzoyloxy-3-isopropylbenzophenone) in boiling dilute ethanol for 15 min [717].
Yellow liquid [717]; b.p.3-5 170-175 ${ }^{\circ}$ [717]; IR [717].

[2-Hydroxy-5-(1-methylethyl)phenyl]phenylmethanone

| [20401-89-2] | $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ | mol.wt. 240.30 |
| ---: | :--- | :--- | :--- |
| HO | Syntheses | |

Syntheses

- Preparation by Fries rearrangement of p-isopropylphenyl benzoate with aluminium chloride [117].
- Also obtained by photo-Fries rearrangement of p-isopropyl-phenyl benzoate in pentane, with or without silica gel (32-35\%) [64].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [99], IR [99]; TLC [116]; polarographic study [117].

[4-Hydroxy-3-(1-methylethyl)phenyl]phenylmethanone

[83938-73-2] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Synthesis

- Preparation by decarboxylation of 2-(4-hydr-oxy-3-iso-propylbenzoyl)benzoic acid in the presence of cupric acetate monohydrate in refluxing quinoline for 45 min (97%) [804].
m.p. $134^{\circ} 1-135^{\circ} 2$ [804]; ${ }^{1} \mathrm{H}$ NMR [804], IR [804], UV [804].

(2-Hydroxy-3-propylphenyl)phenylmethanone

[108294-70-8] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Synthesis

- Preparation by reaction of 2-hydroxy-3-propylbenzoyl chloride with benzene in the presence of aluminium chloride in refluxing carbon disulfide (42\%) [92].
m.p. $\quad 34-35^{\circ}[92] ; \quad \operatorname{Spectra}(N A)$.

(4-Hydroxy-3-propylphenyl)phenylmethanone

[183013-50-5] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Synthesis

- Preparation by catalytic hydrogenation of 3-allyl-4-hydroxy-benzophenone (SM). SM was obtained by reaction of allyl bromide with 4-hydroxybenzophenone in the presence of potassium carbonate, followed by Claisen rearrangement of the 4-(allyloxy)benzophenone so formed [168]. m.p. and Spectra (NA).
(2-Hydroxy-3,4,6-trimethylphenyl)phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Synthesis
- Obtained by oxidation of 2,3-diphenyl-4,6,7-trim-ethyl-benzofuran with chromium trioxide in acetic acid at 65° for 1.5 h , then saponification of the resulting keto ester, the 2 -(benzoyloxy)-3,4,6trimethylbenzophenone, with 10% sodium hydroxide in boiling dilute ethanol for 30 min [723].
- Also refer to: [76].
m.p. $\quad 102^{\circ}$ [723]; IR [723].
(2-Hydroxy-3,5,6-trimethylphenyl)phenylmethanone
[33634-16-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
 Synthesis
- Obtained by oxidation of 2,3-diphenyl-4,5,7-trim-ethyl-benzofuran with chromium trioxide in acetic acid at 65° for 1.5 h , then saponification of the resulting keto ester, the 2-(benzoyloxy)-3,5,6trimethylbenzophenone, with 10% sodium hydroxide in boiling dilute ethanol for 30 min [723].
m.p. $\quad 127^{\circ}$ [723]; IR [723].
(4-Ethyl-2-hydroxy-5-methoxyphenyl)phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis
- Preparation by saponification of 2-(benzoyl-oxy)-4-ethyl-5-methoxybenzophenone (SM) with potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(73 \%)$. SM was obtained by oxidation of 6-ethyl-5-methoxy-2,3-diphenylbenzofuran with chromium trioxide in refluxing acetic acid for $30 \mathrm{~min}\left(80 \%\right.$, m.p. 140°) [370].
m.p. $124^{\circ}[370] ; \quad \operatorname{Spectra}(N A)$.

(5-Ethyl-2-hydroxy-4-methoxyphenyl)phenylmethanone

[59623-21-1]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Preparation by saponification of 2-(benzo-yloxy)-5-ethyl-4-methoxybenzophenone (SM) with potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(67 \%)$. SM was obtained by oxidation of 5-ethyl-6-methoxy-2,3-diphenylbenzofuran with chromium trioxide in refluxing acetic acid for $30 \mathrm{~min}\left(64 \%\right.$, m.p. 181°) [370].
m.p. 170° [370]; Spectra (NA).

[2-Hydroxy-4-(1-methylethoxy)phenyl]phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Syntheses

- Preparation by reaction of isopropyl bromide with resbenzophenone in the presence of potassium hydroxide in dilute ethanol at $75-80^{\circ}$ for $15 \mathrm{~h}(38 \%)$ [800].
- Preparation by Friedel-Crafts acylation of 1,3-diisopropoxybenzene with benzoyl chloride in the presence of a zinc chloride/aluminium chloride mixture, first between 0° and 5°, then at 10° for 1 h and finally at 65° for 6 h [658].
m.p. $42-42^{\circ} 5[800] ; \quad$ Spectra (NA).
(2-Hydroxy-4-propoxyphenyl)phenylmethanone
[3088-11-7]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis
- Preparation by reaction of n-propyl bromide with resbenzophenone in the presence of sodium hydroxide in dilute ethanol at $70-80^{\circ}$ for $13 \mathrm{~h}(30 \%)$ [189].
- Also refer to: [222].
m.p. $\quad 67^{\circ}$ [189]; $\quad \operatorname{Spectra}(N A)$.
(2-Hydroxy-5-propoxyphenyl)phenylmethanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
 Synthesis
- Preparation by reaction of n-propyl bromide with 2,5-di-hydroxybenzophenone in the presence of sodium hydroxide in dilute ethanol at 70-80 for 28 h (25\%) [681].
m.p. and Spectra (NA).

(5-Ethoxy-2-hydroxy-4-methoxyphenyl)phenylmethanone

 $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
 Synthesis
 - Preparation by partial ethylation of 2,5-dihy-droxy-4-methoxybenzophenone with diethyl sulfate in the presence of potassium carbonate in refluxing acetone for $5 \mathrm{~h}(75 \%)$ [763].

m.p. $\quad 100-102^{\circ}$ [763]; ${ }^{1} \mathrm{H}$ NMR [763], IR [763], UV [763].
(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)phenylmethanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

Syntheses

- Preparation by reaction of methyl iodide with 2,4,6-tri-hydroxy-3-methylbenzophenone or with 2,6-dihydroxy-4-methoxy-3-methylbenzophenone in the presence of potassium carbonate in boiling acetone for $8 \mathrm{~h}[805,806]$.
- Preparation by reaction of diazomethane with 2,4,6-trihydroxy-3-methylbenzophenone in ethyl ether (86\%) [806].
- Also refer to: $[807,808]$.

Isolation from natural source

- From the leaves of Leptospermum luehmannii (F. M. Bailey) (Myrtaceae) (minor product) [171,449,806,809].
m.p. 137° [806,809], $136-137^{\circ}$ [805]; ${ }^{1} \mathrm{H}$ NMR [806], UV [806].
(2-Hydroxy-4,6-dimethoxy-5-methylphenyl)phenylmethanone

	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
HO	Synthesis
	- Not yet described.
	Isolation from natural source
	- From the leaves or rhizomes of Agonis luehmannii (now Leptospermum luehmannii) (F. M. Bailey) (Myrtaceae) (major product) [171,449,806,809].
m.p. 110° [806], 104° [809]	
${ }^{1} \mathrm{H}$ NMR [806], IR [806], UV	06]; GC [806].

[2-Hydroxy-4-(2-hydroxypropoxy)phenyl]phenylmethanone

[22546-86-7] \quad| Synthesis |
| :--- |

in the presence of aqueous potassium hydroxide into an autoclave $\left(140^{\circ}\right)$ under nitrogen (66\%) [781].
m.p. $\quad 78-80^{\circ}[781] ; \quad$ Spectra (NA).

[2-Hydroxy-4-(2-methoxyethoxy)phenyl]phenylmethanone

[27992-95-6]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Syntheses

- Preparation by reaction of 2-methoxyethyl chloride (2-chloroethyl methyl ether) with resbenzophenone (91%), according to [801].
- Preparation by reaction of 2-methoxyethylene bromide with 2,4-dihydroxybenzophenone in the presence of sodium carbonate in acetone at $50-55^{\circ}$ (74%) [810].
m.p. $40-41^{\circ}$ [801]; \quad Spectra (NA).
[2-Hydroxy-3,5-di(hydroxymethyl)-4-methoxyphenyl]phenylmethanone
[80501-47-9] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Obtained (poor yield) by adding a 27% solution of formaldehyde to a solution of 2-hydroxy-4-methoxy-benzophenone in aqueous sodium hydroxide and tetrahydrofuran then stirring the mixture at r.t. for $5.5 \mathrm{~h}(3 \%)$ [795,796].
m.p. and Spectra (NA).

(2-Hydroxy-3,4,5-trimethoxyphenyl)phenylmethanone

[42833-88-5] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Preparation by reaction of benzoyl chloride with 1,2,3,4-tetramethoxybenzene in the presence of aluminium chloride in ethyl ether for 22 h [416].
m.p. (NA); ${ }^{1} H$ NMR [416].
[3-[(Dimethylamino)methyl]-4-hydroxyphenyl]phenylmethanone (Hydrochloride)
[82506-20-5] $\quad \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 291.78

Synthesis

- Preparation by aminomethylation of p-hydroxy-benzophenone with dimethylamine and formaline in water at $35-40^{\circ}$ for 4 h (52\%) [811].
m.p. $\quad 77^{\circ}$ [811]; ${ }^{1} \mathrm{H}$ NMR [811], IR [811].

[2,3-Bis(acetyloxy)-4-hydroxyphenyl]phenylmethanone

[177703-36-5]

Ontained by action of acetic anhydride with
2,3,4-tri-hydroxybenzophenone in the presence
of lithium carbonate in N, N-dimethylformamide
at r.t. for 15 h under nitrogen (12\%) [369].

m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [369].

[3,4-Bis(acetyloxy)-2-hydroxyphenyl]phenylmethanone

Synthesis

Obtained by action of acetic anhydride
with 2,3,4-tri-hydroxybenzophenone in
the presence of lithium carbonate in $\mathrm{N}, \mathrm{N}-$
dimethylformamide at r.t. for 15 h under
nitrogen (28\%) [369].

m.p. (NA); ${ }^{1} H$ NMR [369].

[3-(2-Butenyl)-4-hydroxyphenyl]phenylmethanone

[96825-03-5] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 252.31

Synthesis

- Preparation by condensation of p-hydroxybenzo-phenone with 1,3-butadiene in the presence of orthophosphoric acid in petroleum ether at $30-35^{\circ}$ for 24 h (77\%) [769].
m.p. $\quad 104-106^{\circ}$ [769]; ${ }^{1} \mathrm{H}$ NMR [769].

[4-Hydroxy-3-(1-methyl-2-propenyl)phenyl]phenylmethanone

[73720-57-7]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 252.31
Synthesis

- Preparation by Claisen rearrangement of 4-(γ-methallyloxy)benzophenone [799].
- Also refer to: [457].
m.p. and Spectra (NA).

[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 252.31

Synthesis

- Preparation by heating 4-(β-methally-loxy)-benzophenone in diethylaniline for 3.5 h between 207° and 218° (73\%) (Claisen rearrangement) [799].
- Also refer to: [457].
m.p. $131-133^{\circ}$ [799]; ${ }^{1} \mathrm{H}$ NMR [799].
[2-Hydroxy-6-methoxy-3-(2-propenyl)phenyl]phenylmethanone
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31

Syntheses

- Preparation by Claisen rearrangement of 2-allyloxy-6-methoxybenzophenone in boiling diethylaniline for $40 \mathrm{~min}(40 \%)$ [269].
- Also obtained (by-product) by partial methylation of 3-allyl-2,6-dihydroxybenzophenone with dimethyl sulfate in boiling benzene in the presence of potassium hydroxide for $10 \mathrm{~h}(16 \%)$ [269].
b.p. ${ }_{3} 192-194^{\circ}[269] ; \quad \mathrm{d}_{4}^{20}=0.888[269] ; \quad \mathrm{n}_{\mathrm{D}}^{20}=1.5960$ [269]; \quad TLC [269]; Spectra (NA).
[6-Hydroxy-2-methoxy-3-(2-propenyl)phenyl]phenylmethanone
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31

Syntheses

- Preparation by partial methylation of 3-allyl-2,6-di-hydroxybenzophenone with dimethyl sulfate in boiling benzene in the presence of potassium hydroxide for 10 h (50\%) [269].
- Obtained (by-product) by Claisen rearrangement of 2-allyloxy-6-methoxybenzophenone in boiling diethylaniline for 40 min (10\%) [269].
yellow oil [269]; b.p. and Spectra (NA); TLC [269].

[3-Bromo-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2}$
mol.wt. 333.22
Synthesis

- Preparation by Fries rearrangement of 2-bromo-5-methyl-4-isopropylphenyl benzoate with titanium tetrachloride without solvent at 140° for 2 h (62\%) [698].
m.p. 119-120 [698]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard ${ }^{\circ}{ }^{\circ} 59400$ M) [698], IR (Sadtler: standard n ${ }^{\circ} 86556$ K) [698], UV [698], MS [698].

[3-Bromo-6-hydroxy-2-methyl-5-(1-methylethyl)phenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 333.22
Synthesis

- Preparation by bromination of 2-hydroxy-6-methyl-3-iso-propylbenzophenone [501], with bromine in chloroform at r.t. for 6 h [812].
m.p. 129° [501], $128-129^{\circ}$ [812], 74° [735]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [735], IR [103,501,735], UV [735]; $\mathrm{p} K_{\mathrm{a}}$ [735]; polarographic study [117].
[4-Bromo-2-hydroxy-6-methyl-3-(1-methylethyl)phenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 333.22
Synthesis
- Preparation by reaction of chromium trioxide with 6-bromo-4-methyl-2,3-diphenyl-7-isopropylbenzofuran in boiling acetic acid, followed by saponification of the keto ester so formed [501], by action of potassium hydroxide in ethanol in a water bath for 1 h [812].
m.p. $\quad 91^{\circ}[501,812] ; \quad \operatorname{IR}[103,813]$.
[3-Chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 288.77

Synthesis

- Obtained (poor yields) by photo-Fries rearrangement of two substituted phenyl esters ${ }^{\mathrm{T}}$ in benzene [154], ${ }^{\text {T }} 4$-tert-butyl-2-chlorophenyl benzoate (7%);
${ }^{\mathrm{T}} 4$-tert-butyl-2,6-dichlorophenyl benzoate (11\%). In this case, one chlorine atom was eliminated.
m.p. $55-59^{\circ}$ [154]; b.p. ${ }_{0.2} 150^{\circ}$ [154]; Spectra (NA).

[5-Chloro-3-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone

[52196-47-1] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 288.77

Synthesis

- Refer to: [531].
m.p. and Spectra (NA); $\quad \mathrm{p} K_{\mathrm{a}}$ [531].
[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]phenylmethanone
[97582-40-6]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 288.77
Synthesis
- Preparation by reaction of ethyl chloroformate with 4-(dimethylamino)methyl-2-hydroxy-3-propylbenzo-phenone in toluene cooled with an ice water bath for 2 h , then at r.t. for 16 h (55\%) [814].
- Also refer to: [168,815]. m.p. $47-49^{\circ}$ [814]; Spectra (NA); HPLC [814].

[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl]phenylmethanone

[85052-33-1]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 299.33
Synthesis

- Preparation by reaction of a concentrated nitric acid/concentrated sulfuric acid mixture with 5-tert-butyl-2-hydroxybenzophenone in methylene chloride at 5° for $30 \mathrm{~min}(42 \%)$ [472].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [472], MS [472].
[2-Hydroxy-6-methyl-3-(1-methylethyl)-4-nitrophenyl]phenylmethanone

$$
\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \quad \text { mol.wt. } 299.33
$$

Synthesis

- Refer to: [103,503].
m.p. (NA); IR [103], UV [503].
[2-Hydroxy-6-methyl-3-(1-methylethyl)-5-nitrophenyl]phenylmethanone
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 299.33

Synthesis

- Refer to: [103].
m.p. (NA); IR [103].

[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone

[24248-99-5] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33

Syntheses

- Preparation by oxidation of 7-tert-butyl-2,3-diphenyl-benzofuran with chromium trioxide in acetic acid at 70° for 2 h , followed by alkaline hydrolysis of the keto ester obtained (2-benzoyloxy-3-tert-butylbenzophenone) in boiling diluted ethanol for 15 min [717].
- Also obtained by photo-Fries rearrangement of 2-tert-butylphenyl benzoate in benzene (35\%) [143].
- Also obtained by reaction between (o-tert-butylphenoxy)magnesium bromide complexed with HMPT and benzaldehyde in refluxing benzene for 48 h (18\%) [50].
- Also refer to: [597].
pale yellow viscous oil [143], m.p. 55° [717], 53° [50]; b.p. ${ }_{0.01} 92^{\circ}$ [143]; ${ }^{1} \mathrm{H}$ NMR [50,143], IR [50,143,717], MS [50].

[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]phenylmethanone

[16928-03-3] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33

Syntheses

- Obtained by partial dealkylation of 3,5-di-tert-butyl-4-hydroxybenzophenone by UV light irradiation in cyclohexane (50\%) [143].
- Also obtained by photo-Fries rearrangement of 2-tert-butylphenyl benzoate in benzene (20\%) [143].
- Preparation by Friedel-Crafts acylation of o-tert-butylphenol with benzoyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first with ice cooling, then for 5 h at r.t. (44%) [816].
m.p. $\quad 179-180^{\circ}$ [143]; ${ }^{1} \mathrm{H}$ NMR [143], IR [143].

[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone

[39000-51-6]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
Syntheses

- Obtained by Fries rearrangement in hydrofluoric acid,
- of m-tert-butylphenyl benzoate at 25° for $2 \mathrm{~h}(37 \%)$ [135];
- of 3,5-di-tert-butylphenyl benzoate at 55° for $4 \mathrm{~h}(10 \%)$ [135].
m.p. $81-82^{\circ}$ [135]; $\quad \operatorname{Spectra}(N A)$.

[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone

[10425-05-5] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33

Syntheses

- Preparation by Fries rearrangement of p-tertbutylphenyl benzoate with,
- titanium tetrachloride without solvent at 140° for $15 \mathrm{~min}(47 \%)$ [24] or in nitromethane at r.t. for 7 days (29%) [24];
- aluminium chloride without solvent at 180° for $15 \mathrm{~min}(35 \%)$ [24].
- Preparation by demethylation of 5-tert-butyl-2-methoxybenzophenone in the presence of,
- in a refluxing mixture of 47% hydrobromic acid (2 vol) and 57% hydriodic acid (1 vol) in acetic acid (10 vol) (89%) [817];
- aluminium chloride in benzene at $50-60^{\circ}$ for 5 h (63\%) [9].
- Also obtained by UV light irradiation of two substituted phenyl esters in benzene: p-tert-butylphenyl benzoate (45\%) [154], 2-chloro-4-tert-butylphenyl benzoate. In this last case, there is an elimination of chlorine atom (21\%) [154].
- Also obtained by photo-Fries rearrangement of p-tert-butylphenyl benzoate in ethanol for 10 h or in ethyl ether [818].
- Preparation by reaction of benzotrichloride with p-tert-butylphenol in the presence of 30% aqueous sodium hydroxide at $75-80^{\circ}$ for 30 min , and hydrolysis of the resulting ester as a side product by steam distillation (56-65\%) [97,615].
- Preparation by treatment of o-hydroxybenzophenone at 120° with a mixture of isobutylene/nitrogen (1:1) or with tert-butyl chloride in the presence a macroreticular acid ion exchanger as catalyst (Wofatit OK 80) for 1 h (52\%) [819].
- Also refer to: [79,87,472,597,820].
m.p. $67-68^{\circ}$ [9], 67° [24,154], 63-65 [97], 52-53$~[615] ; ~ ;$
b.p. ${ }_{12} 195-197^{\circ}$ [9], b.p. ${ }_{2} 164-166^{\circ}$ [97], b.p. $._{0.15} 125-130^{\circ}$ [819];
${ }^{1} \mathrm{H}$ NMR [97,615], ${ }^{13} \mathrm{C}$ NMR [97], IR [24,97,154,615], UV [24,615], MS [615]; gas chromatography study [631]; TLC [116].

[2-Hydroxy-3-methyl-6-(1-methylethyl)phenyl]phenylmethanone

m.p. (NA); ${ }^{1} H$ NMR [100], IR [100], UV [100].

[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
Syntheses

- Preparation by Fries rearrangement of p-thymyl benzoate with titanium tetrachloride at 140° for 2 h (82\%) [698].
- Claimed to be prepared by two methods:
- by reaction of 2-methoxy-4-methyl-5-isopropyl-benzoyl chloride (SM1) with benzene in the presence of aluminium chloride at 80° for 3 h , then at r.t. for 20 h (33\%) [821];
- from 2-methoxy-4-methyl-5-isopropylbenzophenone (SM2) by heating with pyridinium chloride for 1 h [821].

However, the structures of SM1 and SM2 were incorrect.
N.B.: All the results of reference [821] were erroneous. Only the first route was correct. The ${ }^{1} \mathrm{H}$ NMR spectra confirms the above structure [698].
m.p. $152^{\circ} 5$ [821] (this melting point is incompatible with a non-vicinal orthoacylphenol structure), $48-49^{\circ}$ [698]; b.p. ${ }_{20} 282-287^{\circ}$ [821];
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ} 59398$ M) [698], IR (Sadtler: standard n ${ }^{\circ} 86554$ K) [698], UV [698], MS [698].

[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]phenylmethanone

[4072-16-6]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
Syntheses

- Obtained by oxidation of 4-methyl-7-isopro-pyl-2,3-di-phenylbenzofuran with chromium trioxide in refluxing acetic acid (82\%) [43,812], followed by saponification of the keto ester so formed [43,632,812].
- Obtained by refluxing mixture of benzoic acid/thymol/aluminium chloride for $12 \mathrm{~h}(76 \%)$ [822] (no reproductive reaction).
- Also refer to: [633].
m.p. 104° [735], 97° [89,501,609,632,812], 44° [822]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [100,735], IR [100,103,107,108,582,735,813],
UV [100,735]; polarographic study [117]; $\mathrm{p} K_{\mathrm{a}}$ [735].

[2-Hydroxy-6-methyl-4-(1-methylethyl)phenyl]phenylmethanone

$$
\begin{array}{ll}
\text { m.p. } 80-83^{\circ} \text { [633]; IR [633]. } & \begin{array}{l}
\text { Synthesis }
\end{array} \\
\begin{array}{l}
\text { Preparation (compound II-f) by saponifi- } \\
\text { isopropylbenzophenone, itself obtained } \\
\text { by chromic oxidation of 4-methyl-6-iso- } \\
\text { propyl-2,3-diphenylbenzofuran [633]. }
\end{array}
\end{array}
$$

[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl]phenylmethanone

[28178-94-1]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
Syntheses

- Preparation by reaction of benzoyl chloride with thymol in the presence of aluminium chloride [812], (98\%) [823], in nitrobenzene at r.t. overnight (good yield) [372].
- Preparation by demethylation of 4-methoxy-2-methyl-5-isopropylbenzophenone with pyridinium chloride at $205-215^{\circ}$ for $1.5 \mathrm{~h}(95 \%)$ [824] or 15 min [825].
- Preparation by Fries rearrangement of thymyl benzoate with aluminium chloride in nitrobenzene at 60° for $5 \mathrm{~h}(70 \%)$ [132] or at 50° in the same conditions (21\%) [131].
- Also obtained by reaction of benzotrichloride with thymol in the presence of stannic chloride at $60-65^{\circ}$ for $15 \mathrm{~h}(20 \%)$ [823].
- Also obtained by saponification of 4-(benzoyloxy)-2-methyl-5-isopropylbenzophenone (SM) with sodium hydroxide in boiling ethanol [812]. SM was obtained by oxidation of 4-desylthymyl benzoate with chromium trioxide in boiling acetic acid.
- Also obtained (by-product) from p-thymyl benzoate by heating with aluminium chloride [826].
- Also refer to: [204,827] (Japanese patent).
m.p. 154° [824], 153° [132,372,812,825], $152^{\circ} 5$ [826], $150-150^{\circ} 5$ [823], $138-144^{\circ}$ [131]; Spectra (NA).

[4-Hydroxy-5-methyl-2-(1-methylethyl)phenyl]phenylmethanone

[99821-75-7]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
 Syntheses

- Preparation by Fries rearrangement of 2-methyl-5-isopropyl-phenyl benzoate,
- in the presence of aluminium chloride in nitrobenzene at 60° for 5 h (60\%) [132];
- in the presence of Nafion-XR, a H^{+}-form ion exchange resin, at 150° for 4 h under nitrogen (31\%) [39].
- Also obtained by reaction of benzoyl chloride with carvacrol,
- in the presence of Nafion-XR at 150° for 4 h under nitrogen (20\%) [39];
- in the presence of aluminium chloride in nitrobenzene at r.t. for $48 \mathrm{~h} \mathrm{(4} \mathrm{\%)}$ [828].
- Also refer to: [204] (Japanese patent).
m.p. $\quad 172-173^{\circ}$ [132], 126° [828]. One of the reported melting points is obviously wrong. Spectra (NA).

[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]phenylmethanone

[108974-21-6]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
Syntheses

- Preparation from 3-bromo-2-hydroxy-6-methyl-5-iso-propylbenzophenone (SM1) by reductive removal of bromine with copper powder in caproic acid at 220° for 15 min
(83\%) [698]. SM1 was obtained from p-thymol by a three-step synthesis (bromination, esterification and Fries rearrangement with titanium tetrachloride).
- Also obtained (by-product) by Fries rearrangement of p-thymyl benzoate with titanium tetrachloride at 140° for $2 \mathrm{~h}(10 \%)$ [698].
- Claimed to be prepared by heating 6-methoxy-2-methyl-3-isopropylbenzophenone (SM2) with pyridinium chloride at reflux for $1.5 \mathrm{~h}(85 \%)$ [821]. SM2 was obtained by Friedel-Crafts acylation of 3-methyl-4-isopropylanisole with benzoyl chloride in the presence of aluminium chloride in carbon disulfide at r.t. The structure of SM2 was erroneous. The true structure of SM2 must be the 2-methoxy-4-methyl-5-isopropylbenzophenone.
N.B.: All the results of reference [821] were erroneous. Only the first route was correct. The ${ }^{1} \mathrm{H}$ NMR spectra confirms the above structure [698].
m.p. $142-143^{\circ}$ [698]; yellow viscous oil [821]; b.p. ${ }_{14} 207^{\circ}$ [821]; $\mathrm{n}_{\mathrm{D}}^{25.5}=1.5950$ [821]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 59401 \mathrm{M}$) [698], IR (Sadtler: standard n° 86557 K) [698], UV [698], MS [698].
[2-Hydroxy-5-(1-methylpropyl)phenyl]phenylmethanone

[59746-97-3] | - Preparation by reaction of benzotrichlo- |
| :--- |
| ride with 4-sec-butylphenol in hydroflu- |
| oric acid in the presence of water at -10°, |
| then between 0° and -10° for 2 h , at r.t. |
| for 7 h and at 80° for 30 min into an auto- |
| clave (60%) [213] |

yellow oil [213]; b.p. $150-155^{\circ}$ [213]; Spectra (NA).

[4-Hydroxy-3-(1-methylpropyl)phenyl]phenylmethanone

[124979-07-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
Synthesis

- Preparation by Friedel-Crafts acylation of 2-sec-butylphenol-2-(1-methylpro-pyl)phenol-with benzoyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first at 0°, then at r.t. [816].
m.p. $95-96^{\circ}[816] ; \quad \operatorname{Spectra}(N A)$.

(4-Butoxy-2-hydroxyphenyl)phenylmethanone

[15131-43-8]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Syntheses

- Preparation by reaction of n-butyl bromide with resbenzophenone,
- in the presence of sodium hydroxide in dilute ethanol in a water bath (40%) [189];
- in the presence of potassium carbonate in cyclohexanone at 145° for 6 h (72\%) [202], (48\%) [201].
- Preparation by alkylation of resbenzophenone with a butyl halide [651].
- Preparation by Friedel-Crafts acylation of 1,3-di-n-butoxybenzene with benzoyl chloride,
- in the presence of a zinc chloride/aluminium chloride mixture, first between 0° and 5°, then at 10° for 1 h and at 65° for 6 h [658];
- in the presence of aluminium chloride in chlorobenzene at 90° [222].
- Preparation by partial dealkylation of 4-butoxy-2-methoxybenzophenone or 2,4-dib-utoxy-benzophenone with aluminium chloride in chlorobenzene at $80-100^{\circ}$ [655].
- Also refer to: $[78,231,235,667,829]$.
m.p. $56-57^{\circ}$ [189], $52-53^{\circ}$ [201], $50-53^{\circ}$ [202]; UV [235]; TLC [116]; $\mathrm{p} K_{\mathrm{a}}$ [531].
(5-Butoxy-2-hydroxyphenyl)phenylmethanone

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 270.33 \\
& \text { Synthesis } \\
& \text { - Obtained by reaction of n-butyl bromide with } \\
& \text { 2,5-di-hydroxybenzophenone in the presence of } \\
& \text { sodium hydroxide in dilute ethanol at } 80-85^{\circ} \\
& \text { for } 35 \mathrm{~h}(21 \%) \text { [681]. } \\
& \text { m.p. } 42^{\circ} \text { [681]; } \quad \operatorname{Spectra}(N A) .
\end{aligned}
$$

(2-Hydroxy-3-methyl-4-propoxyphenyl)phenylmethanone

[172479-20-8]

m.p. (NA); UV [830].
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Synthesis

- Prepared by standard techniques [830].
(2-Hydroxy-6-methyl-4-propoxyphenyl)phenylmethanone

m.p. (NA); UV [830].
[2-Hydroxy-4-(1-methylpropoxy)phenyl]phenylmethanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Preparation by reaction of secbutyl bromide with resbenzophenone in the presence of potassium hydroxide in dilute ethanol at $80-90^{\circ}$ for 20 h (29\%) [800].
m.p. $41^{\circ}[800] ; \quad$ Spectra (NA).

[2-Hydroxy-4-(2-methylpropoxy)phenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Preparation by reaction of isobutyl bromide with resbenzophenone in the presence of potassium hydroxide in dilute ethanol at $80-92^{\circ}$ for 18 h (23\%) [800].
m.p. $100-100^{\circ} 5[800] ; \quad$ Spectra (NA).

[3-Amino-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \quad$ mol.wt. 269.34
Synthesis

- Preparation by reduction of 5-tert-butyl-2-hy-droxy-3-nitro-benzophenone with titanium trichloride in a benzene/tetrahydrofuran mixture for 2 h at r.t. (34\%) [472].
m.p. $\quad 123-124^{\circ}$ [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].

[3-Amino-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone (Hydrochloride)

[85069-31-4] \quad\begin{tabular}{l}
Ond.wt. 305.81

Obtained by treatment of 3-amino-5-tert-
butyl-2-hydroxy-benzophenone with 2 N
hydrochloric acid [472]

\end{tabular}

m.p. and Spectra (NA).

[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]phenylmethanone

[63565-02-6]

$$
\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \quad \text { mol.wt. } 266.34
$$

Synthesis

- Obtained (poor yield) by reaction of prenyl bromide with p-hydroxybenzophenone,
- in the presence of sodium methoxide in refluxing methanol for 4 h (8%) [831];
- in the presence of silver oxide in dioxane at r.t. for 2 h (13\%) [832].
m.p. 77° [831], $76-77^{\circ}$ [832]; ${ }^{1} \mathrm{H}$ NMR [831], IR [831], UV [831].

[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]phenylmethanone

[63564-99-8]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 282.34
Synthesis

- Obtained by reaction of prenyl bromide with resbenzophenone,
- in the presence of potassium carbonate in refluxing acetone for 4 h (30%) [831];
- in the presence of sodium methoxide in refluxing methanol for 4 h [831].
m.p. 82° [831]; ${ }^{1} \mathrm{H}$ NMR [831], IR [831], UV [831].

[2-(1,1-Dimethylethyl)-4-hydroxy-6-methylphenyl]phenylmethanone

[133721-73-0] | Synthesis |
| :--- |
| - Obtained by treating a solution of 2-(tert-butyl)- |
| 4-[[(tert-butyl)dimethylsilyl]oxy]-6-methylben- |
| zophenone in ethanol with 268 aqueous |
| hydrochloric acid for 1 h at 75° in a sealed tube |
| (94\%) [833]. |

m.p. $\quad 150-152^{\circ}$ [833]; ${ }^{1} \mathrm{H}$ NMR [833], IR [833], MS [833].

[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]phenylmethanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 268.36
Synthesis

- The reaction of benzoyl chloride with a pentane solution of $\left[\mathrm{AlMe}(\mathrm{dbmp})_{2}\right]$ leads to acylation of one of the dbmp ligands and affords [AlMe(dbmp) (bhmbp)]. Hydrolysis of this complex with a saturated solution of ammonium chloride gave the attempted ketone (75\%) [834].
N.B.: Hdbmp = 2,6-di-tert-butyl-4-methylphenol;

Hbhmbp = 3-tert-butyl-2-hydroxy-5-methylbenzophenone. m.p. >240 ${ }^{\circ}$ [834]; ${ }^{1} \mathrm{H}$ NMR [834], ${ }^{13} \mathrm{C}$ NMR [834]; IR [834], MS [834]; $\mathrm{p} K_{\mathrm{a}}$ [531].

[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl]phenylmethanone

[14963-84-9]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 268.36
Synthesis

- Preparation by saponification of 2-(benzo-yloxy)-3-tert-butyl-6-methylbenzophenone (SM) with sodium hydroxide in boiling ethanol for 2 h . SM was obtained by oxidation of 7-tert-butyl-4-methyl-2,3-diphenylbenzofuran with chromium trioxide in acetic acid at 60° (m.p. 127°) [633].
- Also refer to: [117,609].
m.p. $125-126^{\circ}$ [735], 77° [633]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [735], IR [735,813], UV [735]; $\mathrm{p} K_{\mathrm{a}}$ [735]; polarographic study [117].

[5-(1,1-dimethylpropyl)-2-hydroxyphenyl]phenylmethanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 268.36
Synthesis

- Preparation by reaction of benzotrichloride with p-tert-pentylphenol in the presence of 30% aqueous sodium hydroxide at $75-80^{\circ}$ for 30 min , and hydrolysis of the resulting ester as a side product (43\%) [97].
m.p. $37-38^{\circ} 5$ [97]; b.p. $164-167^{\circ}$ [97]; ${ }^{1} \mathrm{H}$ NMR [97], ${ }^{13} \mathrm{C}$ NMR [97], IR [97].

[2-Hydroxy-5,6-dimethyl-3-(1-methylethyl)phenyl]phenylmethanone

[109252-33-7]
[5-(1,1-Dimethylethyl)-2-hydroxy-4-methoxyphenyl]phenylmethanone

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad \text { mol.wt. } 284.36
$$

Synthesis

- Preparation by selective methylation of 5-tert-butyl-2,4-di-hydroxybenzophenone with dimethyl sulfate in refluxing methyl ethyl ketone for 7 h in the presence of potassium carbonate (81\%) [835].
m.p. $\quad 93^{\circ}[835,836] ; \quad$ Spectra (NA).
[2-Hydroxy-4-(1-methylbutoxy)phenyl]phenylmethanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36

Synthesis

- Obtained by reaction of secamyl bromide with resbenzophenone in the presence of potassium hydroxide in dilute ethanol at $80-90^{\circ}$ for 16 h (17\%) [800].
m.p. $\quad 70-72^{\circ}[800] ; \quad \operatorname{Spectra}(N A)$.

[2-Hydroxy-4-(3-methylbutoxy)phenyl]phenylmethanone

[36130-62-8]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Syntheses

- Preparation by Friedel-Crafts acylation of 1,3-diisoamyloxybenzene with benzoyl chloride in the presence of a zinc chloride/aluminium chloride mixture, first between 0° and 5°, then at 10° for 1 h and at 65° for 6 h [658].
- Preparation by reaction of isoamyl chloride (1-chloro-3-methylbutane) with resbenzophenone (90\%) [801].
m.p. $\quad 38-40^{\circ}$ [801]; $\quad \operatorname{Spectra}(\mathrm{NA})$.

[2-Hydroxy-4-(pentyloxy)phenyl]phenylmethanone

[83937-21-7]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Synthesis

- Preparation by reaction of n -amyl bromide with resbenzophenone,
- in the presence of potassium hydroxide in dilute ethanol at $80-90^{\circ}$ for 18 h (25\%) [800];
- in the presence of potassium carbonate in refluxing acetone for 20 h [738].
- Also refer to: [837] (Japanese patent).
m.p. 49° [800], 45° [738]; $\quad \operatorname{Spectra}(\mathrm{NA})$.
[2-Hydroxy-4,6-bis(methoxymethoxy)-3-methylphenyl]phenylmethanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis
- Preparation by alkylation of 2,4,6-tri-hydroxy-3-methylbenzophenone with chloromethyl methyl ether in acetone in the presence of potassium carbonate for 1 h (55\%) [838].
yellow oil [838]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [838], MS [838]; TLC [838].
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone
[75060-99-0] $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \quad$ mol.wt. 283.37

m.p. and Spectra (NA).

[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone

 (Hydrochloride)
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 319.83
Synthesis

- Preparation by reaction of concentrated hydrochloric acid with 2-benzoyl-4-tert-butyl-6-(N-chloroacetyl-aminomethyl) phenol in refluxing ethanol for 20 h (92\%) [817].
m.p. $227-228^{\circ}$ [817]; $\quad \operatorname{Spectra}(N A)$.

[4-(3-Bromophenoxy)-2-hydroxyphenyl]phenylmethanone

[35698-51-2]
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrO}$
mol.wt. 369.21

Synthesis

- Refer to: [839] (compound 9).
m.p. (NA); UV [839].

(2-Hydroxy-4-phenoxyphenyl)phenylmethanone

[35698-39-6]

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32
Synthesis

- Preparation by reaction of benzoyl chloride with 3-methoxydiphenyl ether in chlorobenzene in the presence of aluminium chloride, first at r.t., then at $90-95^{\circ}$ for $4 \mathrm{~h}(75 \%)$ [839].
m.p. $64-65^{\circ}$ [839]; UV [839].

[3-(1-Hexynyl)-4-hydroxyphenyl]phenylmethanone

[183589-20-0] $\quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$ mol.wt. 278.35

Synthesis

- Obtained by treatment of p-benzoyl-o-(hex-1-ynyl)phenyl acetate in acetone in the presence of 2 N hydrochloric acid at 60° for $20 \mathrm{~h}(30 \%)$ [533].
oil [533]; b.p. (NA); Spectra (NA).

(3-Cyclohexyl-4-hydroxyphenyl)phenylmethanone

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$
mol.wt. 280.37
Synthesis

- Preparation by Friedel-Crafts acylation of 2-cyclohexyl-phenol with benzoyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first at 0°, then at r.t. [816].
m.p. $\quad 199-200^{\circ}$ [816]; \quad Spectra (NA).

(5-Cyclohexyl-2-hydroxyphenyl)phenylmethanone

[3097-56-1] | - Preparation by reaction of benzotrichloride with |
| :--- |
| 4-cyclo-hexylphenol in hydrofluoric acid in the |
| presence of water at -10°, then between 0° and |
| -10° for 2 h , at r.t. for 7 h and at 80° for 30 min |
| into an autoclave (50\%) [213]. |

yellow oil [213]; b.p. $175-180^{\circ}$ [213]; Spectra (NA).

[3-(2-Butenyl)-2-hydroxy-4,6-dimethoxyphenyl]phenylmethanone

[96836-14-5] $\quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37

Synthesis

- Preparation by reaction of 2-hydroxy-4,6-di-methoxybenzophenone with 1,3-butadiene in the presence of orthophosphoric acid (70\%) [769].
m.p. $\quad 93-95^{\circ}$ [769]; ${ }^{1} \mathrm{H}$ NMR [769], IR [769].

[3-(1,1-Dimethylethyl)-2-hydroxy-5,6-dimethylphenyl]phenylmethanone

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 282.38
Synthesis

- Preparationby saponificationof2-(benzoyloxy)-3-tert-butyl-5,6-dimethylbenzophenone (SM) with sodium hydroxide in boiling ethanol for 2 h . SM was obtained by oxidation of 7-tert-butyl-4,5-dimethyl-2,3-diphenyl-benzofuran with chromium trioxide in acetic acid at 60° (m.p. 156-157º) [633].
- Also refer to: [813].
m.p. $\quad 91-92^{\circ}$ [633], 89-90́ [735]; ${ }^{1} \mathrm{H}$ NMR [735], IR [813], UV [735];
$\mathrm{p} K_{\mathrm{a}}$ [735]; polarographic study [117].

(2-Hydroxy-6-methyl-3-pentylphenyl)phenylmethanone

[26940-71-6] $\quad \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 282.38

Synthesis

- Refer to: [117,609].
m.p. 74° [735]; ${ }^{1} \mathrm{H}$ NMR [735], IR [735], UV [735]; $\mathrm{p} K_{\mathrm{a}}$ [735]; polarographic study [117].

[4-Hydroxy-3,5-bis(1-methylethyl)phenyl]phenylmethanone

[738-15-8]
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 282.38
 Synthesis

- Obtained by photo-Fries rearrangement of 2,6-di-isopropylphenyl benzoate (SM) in isopropyl alcohol (56\%) [64,72], of SM absorbed on a silica gel-pentane (40%) or on dry silica gel (70%) [64].
m.p. $113^{\circ} 5-114^{\circ}[72]$ (a phase change occurred at $98^{\circ} 5$); \quad Spectra (NA).

[4-(Hexyloxy)-2-hydroxyphenyl]phenylmethanone

[3293-97-8]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 298.38
Synthesis

- Obtained by reaction of n-hexyl bromide with resbenzo-phenone,
- in the presence of sodium hydroxide in dilute ethanol in a water bath for 18-23 h (15\%) [189];
- in the presence of potassium carbonate in refluxing acetone for 20 h [738]. m.p. $55^{\circ} 5$ [189], 52° [738]; UV [243].
[5-(Benzoyloxy)-3,4-dichloro-2-hydroxyphenyl]phenylmethanone $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 387.22

Synthesis

- Obtained by reaction of 2,3-dichloro-1,4benzoquinone with benzaldehyde in the presence of benzoyl peroxide at 80° or in the absence of benzoyl peroxide at 155° [840].
m.p. and Spectra (NA).

[2,3-Dichloro-4-hydroxy-5-(phenylmethoxy)phenyl]phenylmethanone

[103843-60-3]

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$ mol.wt. 373.23
Synthesis

- Preparation by reaction of benzyl bromide with 2,3-di-chloro-4,5-dihydroxybenzophenone in the presence of sodium hydride in N, N-dimethylformamide at r.t. for $10-15$ min (77\%) [841,842].
m.p. $\quad 171-173^{\circ}$ [841,842]; ${ }^{1} \mathrm{H}$ NMR [841,842], IR [841,842].

[2,3-Dichloro-5-hydroxy-4-(phenylmethoxy)phenyl]phenylmethanone

[103843-65-8] $\quad \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$ mol.wt. 373.23

Synthesis

- Obtained by reaction of benzyl bromide with 2,3-di-chloro-4,5-dihydroxybenzophenone in the presence of sodium hydride in N, N-dimethylformamide at 100° for 2 h (34\%) [841].
- Also refer to: [842].
m.p. $\quad 111-112^{\circ}$ [841]; ${ }^{1} \mathrm{H}$ NMR [841], IR [841].
[2-(Benzoyloxy)-4-hydroxyphenyl]phenylmethanone

$$
\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 318.33
$$

Synthesis

- Preparation from 2,4-dihydroxybenzophenone as starting material via the 2-hydroxy-4-meth-oxymethoxy-benzophenone and 2-benzoyloxy-4-methoxymethoxy-benzophenone [429].
m.p. and Spectra (NA).

[3-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone

[97971-72-7]

$$
\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 318.33
$$

Synthesis

- Obtained by photo-Fries rearrangement of 1,2-di-(benzoyloxy)benzene in benzene for 8 h under nitrogen (15\%) [843].
m.p. $\quad 74^{\circ}$ [843]; ${ }^{1} \mathrm{H}$ NMR [843].

[3-(Benzoyloxy)-4-hydroxyphenyl]phenylmethanone

[76346-15-1] $\quad \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33

Synthesis

- Obtained (poor yield) by reaction of benzoyl peroxide with p-hydroxybenzophenone [144] in refluxing chloroform for $16 \mathrm{~h}(9 \%)$ [278].
m.p. $\quad 109-110^{\circ}$ [278]; \quad Spectra (NA); TLC [278].

[4-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone

[18803-25-3] $\quad \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33

Syntheses

- Preparation by photo-Fries rearrangement of resorcinol dibenzoate in benzene for 8 h under nitrogen (35\%) [843].
- Also obtained by reaction of benzoyl chloride,
- with resbenzophenone [697], in the presence of sodium hydroxide in refluxing ethanol/ethyl ether mixture for $6 \mathrm{~h}(22 \%)$ [238];
- with resorcinol [197].
m.p. $94^{\circ} 5-95^{\circ} 5$ [844], $93^{\circ} 5-94^{\circ} 5$ [238], 90° [697], 84° [96], $77-80^{\circ}$ [843];
${ }^{1} \mathrm{H}$ NMR [99], UV [99]; $\mathrm{p} K_{\mathrm{a}}$ [96]; TLC [116].

[5-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone

[97971-74-9]

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33 Syntheses

- Obtained by Fries rearrangement,
- of quinol monobenzoate in the presence of aluminium chloride (3.3 mol) at 140° for 1 h (14\%) [252];
- of quinol dibenzoate in the presence of aluminium chloride (2 mol) at 190$200^{\circ}$ for 1.5 h [253] or (3.3 mol or 5.5 mol of catalyst) at 140° for $1 \mathrm{~h} \mathrm{(33} \mathrm{\%)}$ [252];
- of p-methoxyphenyl benzoate in the presence of aluminium chloride (3.3 $\mathrm{mol})$ at $130-132^{\circ}$ for 1 h or at $150-155^{\circ}$ for $1 \mathrm{~h}(<9 \%)$ [845].
- Preparation by photo-Fries rearrangement of quinol dibenzoate in benzene for 8 h under nitrogen (30\%) [843].
m.p. $213-214^{\circ}$ [843], 96° [253], $94-95^{\circ}$ [252]. There is a discrepancy between the different melting points indicated in literature. $94-96^{\circ}$ are more likely, due to chelation.
${ }^{1} H$ NMR [843].

Phenyl 5-benzoyl-2-hydroxybenzoate 5-Benzoyl-2-hydroxybenzoic acid phenyl ester

$$
\begin{aligned}
& \text { Synthesis } \\
& \text { Obtained by Fries rearrangement of phe- } \\
& \text { nyl 2-benzoyl-oxybenzoate with alumin- } \\
& \text { ium chloride without solvent at } 142-145^{\circ} \\
& \text { for } 2 \mathrm{~h}(31 \%) \text { or in nitrobenzene as a sol- } \\
& \text { vent at r.t. for } 2 \text { days }(17 \%) \text { [155]. }
\end{aligned}
$$

m.p. $\quad 82-84^{\circ}$ [155]; \quad Spectra (NA).

[2-Hydroxy-4-[(4-nitrophenyl)methoxy]phenyl]phenylmethanone

[36419-36-0]

m.p. 172° [235]; UV [235].

[2-Hydroxy-4-(methylphenoxy)phenyl]phenylmethanone

[35698-46-5]

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 304.35
Synthesis

- Preparation by reaction of benzotrichloride with 3-hydroxy-4'methyldiphenyl ether in solution of 2.5 N sodium hydroxide in the presence of potassium iodide at 80° [839].
m.p. $82-85^{\circ}$ [839]; UV [839].

[2-Hydroxy-4-(phenylmethoxy)phenyl]phenylmethanone

[6079-76-1]

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 304.35
Synthesis

- Preparation by reaction of benzyl chloride with 2,4-dihydroxybenzophenone (resbenzophenone),
- in the presence of potassium carbonate in refluxing acetone [738], (34\%) [846];
- in the presence of potassium carbonate and potassium iodide in N, N dimethylformamide at 100° for $1.5 \mathrm{~h}(95 \%)$ [801].
- Also refer to: [228,847,848].
m.p. $121-122^{\circ}$ [801], $120-121^{\circ}[738,846,849] ; \quad$ Spectra (NA).

(2-Hydroxy-5,6-dimethyl-3-pentylphenyl)phenylmethanone

[26881-03-8] $\quad \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 296.41

Synthesis

- Refer to: [117,609].
m.p. 85° [735]; ${ }^{1} \mathrm{H}$ NMR [735], IR [735], UV [735]; $\mathrm{p} K_{\mathrm{a}}$ [735]; polarographic study [117].
[4-(Heptyloxy)-2-hydroxyphenyl]phenylmethanone (Uvistat 247)
[3550-43-4] $\quad \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 312.41

Synthesis

- Obtained by reaction of n-heptyl bromide with resbenzophenone,
- in the presence of potassium hydroxide in dilute ethanol at $85-95^{\circ}$ for 22 h (13\%) [800];
- in the presence of potassium carbonate in refluxing acetone for 20 h [738].
- Also refer to: [850-853].
m.p. $\quad 40^{\circ}[738,800] ; \quad$ Spectra (NA); gel permeation chromatography [247].

[4-Hydroxy-3-(phenylethynyl)phenyl]phenylmethanone

[183589-17-5] $\quad \mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 298.34

Synthesis

- Obtained by treatment of p-ben-zoyl-o-(phenyl-ethynyl)phenyl acetate in acetone in the presence of 2 N hydrochloric acid at 60° for 16 h (40\%) [533].
m.p. ${ }^{139-140}{ }^{\circ}$ [533]; ${ }^{1} \mathrm{H}$ NMR [533], ${ }^{13} \mathrm{C}$ NMR [533], IR [533], MS [533].

[2-Hydroxy-5-(1-phenylethyl)phenyl]phenylmethanone

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 302.37
Synthesis

- Preparation by treatment of o-hydroxybenzophenone at 120° with styrene under nitrogen in the presence of a macroreticular acid ion exchanger as catalyst (Wofatit OK 80) for $1-2 \mathrm{~h}$ (90\%) [819].
b.p. $._{0.15} 200-210^{\circ}[819] ; \quad \operatorname{Spectra}(N A)$.

[2-Hydroxy-3-nitro-5-(1,1,3,3-tetramethylbutyl)phenyl]phenylmethanone

$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \quad$ mol.wt. 355.44

Synthesis

- Obtained by reaction of 65% nitric acid with 2-hydroxy-5-tert-octylbenzophenone in acetic acid at 20° [854].
oil [854]; b.p. and Spectra (NA).

[2,4-Bis(1,1-dimethylethyl)-6-hydroxyphenyl]phenylmethanone

[13113-73-0] \quad\begin{tabular}{l}
Synthesis

- Obtained by photo-Fries rearrangement of

3,5-di-tert-butylphenyl benzoate,
\end{tabular}
- in ethanol for 3 h (48\%) [818];
- in isopropanol for $3 \mathrm{~h}(37 \%)$ and 52% after 6 h ; after 17 h , it had decreased to 16% [818];
- in a mixture of ethanol/ethyl ether (9:1) for 3 h (34\%) [818];
- in N,N-dimethylformamide for $3 \mathrm{~h}(9 \%)$; (16%) after 1 h [818];
- in n-hexane and tetrahydrofuran for $3 \mathrm{~h}(8 \%$ and 12% yields, respectively) [818];
- in dioxane and glyme (1,2-dimethoxyethane) for 3 h (2% and 5% yields, respectively) [818].
- Also refer to: [79].
m.p. $202^{\circ} 5$ [855]; ${ }^{1} \mathrm{H}$ NMR [105], IR [105].

[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone

[24242-58-8]

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 310.44
Syntheses

- Obtained from (3,5-di-tert-butyl-2-hydroxyphenyl)-phenylcarbinol by oxidation with DDQ (2,3-dichloro-5,6-dicyanobenzoquinone) in dioxane at r.t. for $16 \mathrm{~h}(71 \%)$ [153].
- Also obtained by photo-Fries rearrangement of 2,4-di-tert-butylphenyl benzoate in benzene under nitrogen (32\%) [143].
- Preparation by treatment of o-hydroxybenzophenone at 120° with a mixture of isobutylene/nitrogen (1:1) or with tert-butyl chloride in the presence of a macroreticular acid ion exchanger as catalyst (Wofatit OK 80) for 10 h (80\%) [819].
b.p. $._{0.15} 140-145^{\circ}$ [819]; m.p. $61-62^{\circ}$ [143], $60-62^{\circ}$ [153];
${ }^{1} \mathrm{H}$ NMR [143], IR [143].

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]phenylmethanone

[7175-89-5]

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 310.44
Syntheses

- Preparation by reaction of benzoyl chloride with 2,6-di-tert-butylphenol in the presence of aluminium chloride [856], (93\%) [857], 70% [858], (50-55\%) [859,860].
- Preparation by reaction of benzoic acid with 2,6-di-tert-butylphenol in the presence of trifluoroacetic anhydride at r.t. [861], for 3 h (65\%) [862].
- Preparation by oxidation of (3,5-di-tert-butyl-4-hydroxyphenyl)phenylcarbinol with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in dioxane at r.t. for 15 min (95\%) [153].
- Preparation by reaction of benzoyl chloride with sodium 2,6-di-tert-butylphenoxide (SM) in dioxane between 60° and $80^{\circ}(24 \%)$ [863]. SM was obtained by reaction of sodium with 2,6-di-tert-butylphenol in methanol, then solvent elimination at 80°.
- Also obtained by basic hydrolysis of α (3,5-di-tert-butyl-4-hydroxyphenyl)benzyl benzoate with potassium hydroxide in refluxing dilute ethanol for 30 min (90\%) [863].
- Also refer to: [143].
m.p. $132-134^{\circ}$ [861,862], $125^{\circ} 5-126^{\circ} 5$ [858], $125-126^{\circ}$ [863], $124-125^{\circ}$ [859,860], 123-124ㅇ [857]; ${ }^{1} \mathrm{H}$ NMR [858,862], IR [858,860].

[2-Hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]phenylmethanone

[4090-99-7]

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 310.44
Syntheses

- Preparation by photo-Fries rearrangement of p-tert-octyl-phenyl benzoate (45\%) [854] according to [154].
- Preparation by reaction of benzotrichloride with p-tert-octylphenol in the presence of 30% aqueous sodium hydroxide at $75-80^{\circ}$ for 30 min , and hydrolysis of the resulting ester as a side product (61\%) [615], (44\%) [97]. The same reaction was carried out in the presence of sodium iodide, during 2.5 h at 80° (39\%) [864].
- Preparation by reaction between (p-octylphenoxy)magnesium bromide complexed with HMPT and benzaldehyde in refluxing benzene for $48 \mathrm{~h}(36 \%)$ [50].
yellow oil [50]; m.p. $34-35^{\circ}$ [615]; b.p. ${ }_{2.5} 176-179^{\circ}$ [97], b.p. 140° [864]; ${ }^{1} \mathrm{H}$ NMR [50,97,615], ${ }^{13} \mathrm{C}$ NMR [97], IR [50,97,615], UV [615,864], MS [50,615]; gas chromatography study [631].

[2-Hydroxy-4-(isooctyloxy)phenyl]phenylmethanone

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$
mol.wt. 326.44
Synthesis

- Preparation by reaction of isooctyl chloride with resbenzophenone in the presence of sodium carbonate and sodium iodide in acetone for 4 h at $150^{\circ}(97 \%)$ [865].
m.p. and Spectra (NA).
[2-Hydroxy-4-(octyloxy)phenyl]phenylmethanone (Octabenzone, Cyasorb UV 531)
[1843-05-6] $\quad \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad \mathrm{~mol} . w t .326 .44$

Syntheses

- Preparation by reaction of n-octyl chloride with 2,4-di-hydroxybenzophenone,
- in the presence of a mixture of sodium carbonate, triethylamine and potassium iodide in refluxing butanol for $15 \mathrm{~h}(90 \%)$ [866];
- in the presence of potassium carbonate in cyclohexanone at 145° for 5 h (66\%) [201,202];
- in the presence of potassium hydroxide and antimony triiodide in diethylene glycol at 150° for 1 h (93\%) [801];
- in the presence of sodium bicarbonate and potassium iodide in 1-methylpyrrolidone for 2 h at $150^{\circ}(96 \%)$ [867].
- Preparation by reaction of n-octyl bromide with 2,4-dihydroxybenzophenone,
- in the presence of potassium carbonate,
in water at $110-115^{\circ}$ for 4 h (84\%) [868];
in cyclohexanone at 110° for $6 \mathrm{~h}(75 \%)$ [202];
in methyl isobutyl ketone at 110° for $10 \mathrm{~h}(70 \%)$ [202];
in methyl n-hexyl ketone at 161° for $4 \mathrm{~h}(71 \%)$ [202];
in acetone at 58° for $20 \mathrm{~h}(54 \%)$ [202] or in refluxing acetone for 16 h [869].
- in the presence of sodium hydroxide,
in dilute ethanol in a water bath for 18-23 h (13-15\%) [189];
in cyclohexanone at 145° for $5 \mathrm{~h}(51 \%)$ [202].
- Preparation by alkylation of resbenzophenone with an octyl halide [651].
- Preparation by reaction of n-octyl p-toluenesulfonate with 2,4-dihydroxybenzophenone,
- in the presence of potassium carbonate in boiling water for 5 h (74\%) [201,202];
- in the presence of sodium carbonate in boiling water for 8 h (63\%) [202];
- in the presence of potassium hydroxide in boiling water for 8 h (61\%) [202].
- Preparation by reaction of n-octyl benzenesulfonate with 2,4-dihydroxybenzophenone in the presence of potassium carbonate in boiling water for 8 h (66\%) [202].
- Preparation by reaction of benzoyl chloride with resorcinol dioctyl ether in chlorobenzene in the presence of titanium tetrachloride for 1 h at 120° (69\%) [662].
- Also refer to: [77,224,226,228,231,235,667-669,802,837,852,870-880]. m.p. 50° [235], $48-50^{\circ}$ [801], 48-49 ${ }^{\circ}$ [662], 47-48 ${ }^{\circ}$ [201,202], 45- 46° [189,869,881]; ${ }^{1} \mathrm{H}$ NMR [99], IR [201,202], UV [99,201,202,235,243]; TLC [116,244]; gel permeation chromatography [247].

[2-Hydroxy-5-(octyloxy)phenyl]phenylmethanone

[4998-51-0]

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad \mathrm{~mol}$. wt. 326.44
Synthesis

- Obtained (poor yield) by reaction of n-octyl bromide with 2,5-dihydroxybenzophenone in the presence of sodium hydroxide in dilute ethanol at $90-95^{\circ}$ for $50 \mathrm{~h}(7 \%)$ [681].
m.p. $\quad 26-27^{\circ}[681] ; \quad \operatorname{Spectra}(\mathrm{NA})$.
[4-[(2-Ethylhexyl)oxy]-2-hydroxyphenyl]phenylmethanone (Dastib 242)
[2549-90-8]

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 326.44
Synthesis
- Preparation by reaction of 1-chloro-2-ethylhexane with resbenzophenone in the presence of barium hydroxide and arsenic tribromide in dimethyl sulfoxide at 80° for 3 h (93\%) [801].
b.p. $213-216^{\circ}$ [801]; ${ }^{1} \mathrm{H}$ NMR [99], UV [99]; gel permeation chromatography [246,247].
[6-Hydroxy-4-methoxy-3-methyl-2-(phenylmethoxy)phenyl]phenylmethanone
[74627-93-3]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 348.40
Synthesis
- Preparation by partial methylation of 2-ben-zyloxy-3-methyl-4,6-dihydroxybenzophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 10 min (96\%) [838].
colourless oil [838]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [838]; TLC [838].

(2-Hydroxy-5-isononylphenyl)phenylmethanone

[59802-03-8] $\quad \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \quad$ mol.wt. 324.46

Synthesis

- Preparation by reaction of benzotrichloride with 4-iso-nonylphenol in hydrofluoric acid in the presence of water at -10°, then between -10° and 0° for 2 h , at r.t. for 7 h and at 80° for 30 min into an autoclave [213].
yellow oil [213]; b.p. 190° [213]; Spectra (NA).

(2-Hydroxy-5-nonylphenyl)phenylmethanone

[58085-73-7]

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \quad$ mol.wt. 324.46 Syntheses

- Preparation by Fries rearrangement of p-nonylphenyl benzoate with aluminium chloride [882], without solvent at $140-145^{\circ}$ for $30-50 \mathrm{~min}(52 \%)$ [147].
- Preparation by Friedel-Crafts acylation of p-nonylphenol with benzoyl chloride in the presence of aluminium chloride in ethylene dichloride at 160° for $30-60$ $\min (37 \%)$ [147].
- Preparation by reaction of benzotrichloride with p-nonylphenol in the presence of 30% aqueous sodium hydroxide (60-70\%) [883], at $75-80^{\circ}$ for 30 min , and hydrolysis of the ester formed as a side product (42\%) [97].
- Also refer to: [884,885].
m.p. $35-36^{\circ}$ [97]; b.p. $205-208^{\circ}$ [97]; TLC [886], GC [886], HPLC [886]. ${ }^{1} \mathrm{H}$ NMR [97,147], ${ }^{13} \mathrm{C}$ NMR [97], IR [97,147].

(2-Hydroxy-5-tert-nonylphenyl)phenylmethanone

[111547-84-3]

m.p. and Spectra (NA); gas chromatography study [631].

[2-Hydroxy-3-methyl-4-(octyloxy)phenyl]phenylmethanone

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$
mol.wt. 340.46

Synthesis

- Preparation by partial alkylation of 2,4-dihy-droxy-3-methylbenzophenone with octyl chloride in the presence of sodium bicarbonate and potassium iodide in 1-methyl-pyrrolidone for 2 h at 150° (92\%) [867].
m.p. and Spectra (NA).

[2-Hydroxy-5-methyl-4-(octyloxy)phenyl]phenylmethanone

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \quad$ mol.wt. 340.46
Synthesis

- Preparation by partial alkylation of 2,4-dihy-droxy-5-methylbenzophenone with octyl chloride in the presence of sodium bicarbonate and potassium iodide in 1-methylpyrrolidone for 2 h at 150° (91\%) [867] or in refluxing methyl cellosolve [887].
m.p. and Spectra (NA).
[2-Hydroxy-4-(nonyloxy)phenyl]phenylmethanone
- Obtained by reaction of n-nonyl bromide
with resbenzo-phenone in the presence of
sodium hydroxide in dilute ethanol in a
water bath for 18-23 $\mathrm{h}(28-30 \%)$ [189].
- Also refer to: [852].
m.p. $\quad 50^{\circ} 5[189] ; \quad$ Spectra (NA).

[4-(4-Butylphenoxy)-2-hydroxyphenyl]phenylmethanone

[35698-49-8]

m.p. (NA); UV [839].
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 346.94
Synthesis

- Refer to: [839] (compound 7).

[4-(Decyloxy)-2-hydroxyphenyl]phenylmethanone

[2162-63-2]

$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3}$
mol.wt. 354.49
Synthesis

- Obtained by reaction of n-decyl bromide with resbenzo-phenone,
- in the presence of sodium hydroxide in dilute ethanol at $110-115^{\circ}$ for 15 h (18\%) [189];
- in the presence of potassium carbonate in refluxing acetone for 20 h [738].
- Also refer to: [226,228]. m.p. 50° [189], 47-50́ [738]; IR [394], UV [394].

[2-Hydroxy-4-(isodecyloxy)phenyl]phenylmethanone

[55909-78-9]

$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \quad$ mol.wt. 354.49
Synthesis

- Refer to: [247].
m.p. and Spectra (NA); gel permeation chromatography [247].

[2-Hydroxy-4-[2-(octylthio)ethoxy]phenyl]phenylmethanone

[36130-66-2]

$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 386.56
Synthesis

- Preparation by reaction of 2-chloroethyl octyl sulfide (1-(2-chloroethylsulfanyl)octane) with resbenzophenone (82\%), according to [801].
b.p. ${ }_{0.2} 253-258^{\circ}$ [801]; Spectra (NA).
[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2-hydroxy-6-methoxyphenyl] phenyl-methanone (E)
[140158-57-2] $\quad \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}$ mol.wt. 380.48

Synthesis

- Not yet described.

Isolation from natural sources

- From Helichrysum triplinerve (Asteraceae) [377];
- From genus Leontonyx [378]. m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [377], MS [377].

[2-Hydroxy-4-(undecyloxy)phenyl]phenylmethanone

$$
\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3} \quad \text { mol.wt. } 368.52
$$

Synthesis

- Refer to: [888].
m.p. and Spectra (NA).
(5-Dodecyl-2-hydroxy-3-nitrophenyl)phenylmethanone

[35698-17-0]	$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4} \quad$ mol.wt. 411.54
$\mathrm{HO} \quad \mathrm{NO}_{2}$	Synthesis
	- Preparation by reaction of fuming nitric acid with 5-dodecyl-2-hydroxybenzophenone in acetic acid/acetic anhydride solution for 40 min at $15-22^{\circ}$ (92%) [889-891].
b.p. ${ }_{08} 210^{\circ}$ [889,890, 891$] ;$	Spectra (NA).

(5-Dodecyl-2-hydroxyphenyl)phenylmethanone

[35698-16-9]
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2}$
mol.wt. 366.54

Synthesis

- Preparation by reaction of benzenyl trichloride (benzo-trichloride) with p-dodecylphenol in carbon disulfide inthe presence of aluminium chloride, first between -20° and -15°, then at $0-5^{\circ}$ for 1 h (38\%) [889-891].
m.p. and Spectra (NA).

[5-(1,1-Dimethylethyl)-2-hydroxy-4-(octyloxy)phenyl]phenylmethanone

[55913-02-5]

m.p. and Spectra (NA); gel permeation chromatography [247].

[4-(Dodecyloxy)-2-hydroxyphenyl]phenylmethanone

$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3} \quad$ mol.wt. 382.54
Syntheses

- Preparation by reaction of 1-bromododecane (dodecyl bromide or lauryl bromide) with resbenzophenone in the presence of potassium carbonate in refluxing acetone for 16 h [869] or for 20 h [738].
- Preparation by alkylation of resbenzophenone with a dodecyl halide [651].
- Also refer to: [78,228,667,829,892-894]. m.p. $49-50^{\circ}$ [869] 48° [738]; EPR [98], IR [394], UV [394]; TLC [116]; gel permeation chromatography [247].
[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]phenylmethanone

Synthesis | - Preparation by reaction of benzyl chloride |
| :--- |
| with 3-benzyl-2,4-dihydroxybenzophenone |
| in the presence of potassium carbonate in |
| refluxing acetone for $8 \mathrm{~h}(31 \%)$ [846]. |

m.p. $\quad 92-93^{\circ}[846] ; \quad \operatorname{Spectra}(N A)$.

[2-Hydroxy-4-(4-nonylphenoxy)phenyl]phenylmethanone

[35698-50-1]	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \quad$ mol.wt. 416.56
HO	Synthesis
	- Refer to: [839] (compound 8).
m.p. (NA); UV [839].	

[2-Hydroxy-3,5-bis(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl]phenylmethanone

$$
\begin{aligned}
& \text { [63565-03-7] } \\
& \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3} \quad \text { mol.wt. } 418.58 \\
& \text { Synthesis } \\
& \text { - Obtained (poor yield) by reac- } \\
& \text { tion of prenyl bromide with res- } \\
& \text { benzophenone in the presence of } \\
& \text { sodium methoxide in refluxing } \\
& \text { methanol for } 4 \mathrm{~h}(<2 \%) \text { [831]. } \\
& \text { m.p. } \quad 98^{\circ} \text { [831]; }{ }^{1} \mathrm{H} \text { NMR [831], IR [831], UV [831]. }
\end{aligned}
$$

[2-Hydroxy-3-(3-methyl-2-butenyl)-4,6-bis[(3-methyl-2-butenyl)oxy] phenyl]phenylmethanone
[63565-08-2]

$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{4} \quad$ mol.wt. 434.58
Synthesis

- Obtained by reaction of prenyl bromide with 2,4,6-trihydroxybenzophenone in the presence of potassium carbonate in refluxing acetone for $4 \mathrm{~h}(21 \%)$ [831].
m.p. 112° [831]; ${ }^{1} \mathrm{H}$ NMR [831], IR [831], UV [831].

[2-Hydroxy-3,5-bis(1-phenylethyl)phenyl]phenylmethanone

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 406.52
Synthesis

- Preparation by treatment of o-hydroxybenzophenone at 120° with styrene under nitrogen in the presence of a macroreticular acid ion exchanger as catalyst(Wofatit OK 80) for 3-4 h (80\%) [819].
b.p. $._{0.15} 220-225^{\circ}$ [819]; \quad Spectra (NA).
[5-(1,1-Dimethylethyl)-4-(dodecyloxy)-2-hydroxyphenyl]phenylmethanone
$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{3} \quad$ mol.wt. 438.65

Synthesis

- Preparation by selective alkylation of 5-tert-butyl-2,4-dihydroxybenzophenone with dodecyl bromide in refluxing methyl ethyl ketone in the presence of potassium carbonate [835].
m.p. $\quad 74^{\circ} 5-75^{\circ} 5[835,836] ; \quad \operatorname{Spectra}(N A)$.

[4-(Hexadecyloxy)-2-hydroxyphenyl]phenylmethanone

[3457-17-8] $\quad \mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{3} \quad$ mol.wt. 438.65

Synthesis

- Obtained by partial alkylation of resbenzophenone with hexadecyl bromide (cetyl bromide) in the presence of potassium carbonate in refluxing acetone for 20 h [738].
- Also refer to: [405] and [895] (Japanese patent).
m.p. 50° [738]; \quad Spectra (NA).
[5-(Hexadecyloxy)-2-hydroxyphenyl]phenylmethanone

m.p. and Spectra (NA).

[2-Hydroxy-4-(octadecanoyloxy)phenyl]phenylmethanone
 Octadecanoic acid, 4-benzoyl-3-hydroxyphenyl ester

[65953-50-6] $\quad \mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{4} \quad$ mol.wt. 480.69

Synthesis

- Refer to: [243].
m.p. (NA); UV [243].

[2-Hydroxy-4-(octadecyloxy)phenyl]phenylmethanone

[3457-13-4]

$\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{3} \quad$ mol.wt. 466.70
Syntheses

- Preparation by reaction of stearyl chloride (octadecyl chloride or 1-chlorooctadecane) with resbenzophenone in the presence of sodium hydroxide and phosphorous triiodide in aqueous diethylene glycol at 175° for 1.5 h (94\%) [801].
- Preparation by alkylation of resbenzophenone with an octadecyl halide [651].
- Also refer to: [667].
m.p. $\quad 55-56^{\circ}$ [801]; Spectra (NA); TLC [116].
[2-Hydroxy-4-(nonadecyloxy)phenyl]phenylmethanone
$\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{3} \quad$ mol.wt. 480.73

Synthesis

- Obtained by partial alkylation of resbenzophenone with nonadecyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [738].
m.p. 53° [738]; \quad Spectra (NA).

[2-Hydroxy-3,5-bis(3-methyl-2-butenyl)-4,6-bis[[(4-methylphenyl)sulfonyl] oxy]phenyl]phenylmethanone

[83611-03-4]

m.p. 57° [373]; ${ }^{1} \mathrm{H}$ NMR [373].
$\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{~S}_{2} \quad$ mol.wt. 674.84
Synthesis

- Obtained by ditosylation of 2,4,6-trihydroxy-3,5-diprenylbenzophenone with p-toluenesulfonyl chloride in the presence of potassium carbonate in refluxing acetone for $8 \mathrm{~h}(39 \%)$ [373].

2.1.2 Substituents Located on the Other Ring

(2-Hydroxyphenyl)(2,3,4,5,6-pentafluorophenyl)methanone

[32541-24-5]

$\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~F}_{5} \mathrm{O}_{2} \quad$ mol.wt. 288.17
Synthesis

- Preparation by demethylation of 2,3,4,5,6-penta-fluoro- 2^{\prime}-methoxybenzophenone (SM) in methylene chloride in the presence of aluminium chloride at 20° for 3-6 $\mathrm{h}(68 \%)$ [570]. SM was obtained in two steps: first, preparation of 2^{\prime}-methoxy-2,3,4,5,6-pentafluorobenzhydrol by condensation of o-methoxybenzaldehyde with pentafluorophenylmagnesium bromide in boiling ethyl ether for $2 \mathrm{~h}(96 \%)$. Then, this "benzhydrol" was oxidized with chromium trioxide in acetic acid at 20° for 20 h (95\%) [570].
m.p. $\quad 78-79^{\circ}$ [570]; ${ }^{1} \mathrm{H}$ NMR [570], IR [570], UV [570].
(3-Bromo-4-chlorophenyl)(4-hydroxyphenyl)methanone
[78930-23-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{2}$
mol.wt. 311.56
Synthesis
- Preparation by reaction of 3-bromo-4-chlorobenzoyl chloride with phenol in the presence of aluminium chloride [165].
m.p. $193-194^{\circ}$ [165]; \quad Spectra (NA).
(4-Bromo-2-fluorophenyl)(4-hydroxyphenyl)methanone
[192443-11-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrFO}_{2} \quad$ mol.wt. 295.11 Synthesis
- Preparation by demethylation of 4-bromo-2-fluoro-4'-methoxybenzophenone (SM) with 62% aqueous hydrobromic acid in refluxing acetic acid (98%). SM was obtained by Friedel-Crafts acylation of anisole with 4-bromo-2-fluorobenzoyl chloride in nitrobenzene in the presence of aluminium chloride, first at temperature $<6^{\circ}$, then at r.t. overnight $(88 \%$, m.p. $\quad 93-94^{\circ}$). -Refer to: Chem. Abstr., 127, 108921f (1997) ${ }^{\mathrm{T}}$.
m.p. (NA); MS ${ }^{T}$.
(2,4-Dibromophenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 356.01

Synthesis

- Refer to: [87].
m.p. and Spectra (NA).

(4-Chloro-3-iodophenyl)(4-hydroxyphenyl)methanone

[83888-75-9]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClIO}_{2}$
mol.wt. 358.56
Synthesis

- Preparation by reaction of 4-chloro-3-iodobenzoyl chloride with phenol in the presence of aluminium chloride [165].
m.p. $\quad 191-192^{\circ}[165] ; \quad$ Spectra (NA).

(2-Chloro-4-nitrophenyl)(2-hydroxyphenyl)methanone

[72090-64-3]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$
mol.wt. 277.66

Synthesis

- Obtained by Fries rearrangement of phenyl 2-chloro-4-nitro-benzoate with aluminium chloride without solvent at 120° or at 160° [897].
m.p. and Spectra (NA).

(2-Chloro-4-nitrophenyl)(4-hydroxyphenyl)methanone

[72103-42-5]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$
mol.wt. 277.66
Synthesis

- Obtained by Fries rearrangement of phenyl 2-chloro-4-nitrobenzoate with aluminium chloride without solvent at 120° or at 160° [897].
m.p. and Spectra (NA).

(2-Chloro-5-nitrophenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$ mol.wt. 277.66
Synthesis

- Obtained by Fries rearrangement of phenyl 2-chloro-5-nitro-benzoate with aluminium chloride without solvent at 120° or at 160° [897].
m.p. and Spectra (NA).

(2-Chloro-5-nitrophenyl)(4-hydroxyphenyl)methanone

[72090-66-5]

m.p. and Spectra (NA).
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$
mol.wt. 277.66
Synthesis

- Obtained by Fries rearrangement of phenyl 2-chloro-5-nitro-benzoate with aluminium chloride without solvent at 120° or at 160° [897].

(4-Chloro-3-nitrophenyl)(4-hydroxyphenyl)methanone

[93958-85-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$
mol.wt. 277.66
Synthesis

- Preparation by demethylation of 4-chloro-4'-methoxy-3-nitrobenzophenone with pyridinium chloride at $220-230^{\circ}$ for $30 \mathrm{~min}(55 \%)$ [898].
m.p. $\quad 185^{\circ}$ [898]; IR [898].

(2,4-Dichlorophenyl)(2-hydroxyphenyl)methanone

Synthesis

- Refer to: [87] (compound VI-A).
m.p. and Spectra (NA).

(2,4-Dichlorophenyl)(3-hydroxyphenyl)methanone

[62810-56-4] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Syntheses

- Preparation by reaction of m -anisoyl chloride with m-di-chlorobenzene in the presence of excess aluminium chloride first at 20°, then at reflux for $2 \mathrm{~h}(71 \%)$ [119,899].
- Preparation by demethylation of 2,4-dichloro-3'-methoxybenzophenone with aluminium chloride in refluxing chlorobenzene [900].
- Also obtained by diazotization of 3'-amino-2,4-dichlorobenzophenone followed by hydrolysis of the diazonium salt so obtained [900].
m.p. $\quad 135^{\circ}$ [119,899], 70° [900]. One of the reported melting points is obviously wrong.
Spectra (NA).
(2,4-Dichlorophenyl)(4-hydroxyphenyl)methanone
[34183-01-2]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11
Syntheses
- Preparation by reaction of 2,4-dichlorobenzoyl chloride with phenol in the presence of aluminium chloride [165].
- Preparation by reaction of 2,4-dichlorobenzotrichloride with phenol,
- in hydrofluoric acid in the presence of water at -10°, then at 15° overnight and at 80° for 30 min [213];
- in methylene chloride in the presence of aluminium chloride, first at $0-3^{\circ}$ for 30 min , then at 20° for $3 \mathrm{~h}(52 \%)$ [901].
- Preparation by Fries rearrangement of phenyl 2,4-dichlorobenzoate with aluminium chloride in chlorobenzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].

$$
\text { m.p. } \quad 140-141^{\circ}[480], 134-135^{\circ}[165], 132-135^{\circ} 5[901] ; \quad \text { Spectra (NA). }
$$

(2,6-Dichlorophenyl)(4-hydroxyphenyl)methanone

[61002-53-7]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11
Synthesis

- Refer to: [902].
m.p. and Spectra (NA).
(3,4-Dichlorophenyl)(3-hydroxyphenyl)methanone
[62810-54-2] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad m o l . w t .267 .11$

Syntheses

- Preparation by reaction of m-anisoyl chloride with o-di-chlorobenzene in the presence of excess aluminium chloride first at 20°, then at reflux for $2 \mathrm{~h}(41 \%)$ [119,899].
- Preparation by demethylation of 3,4-dichloro-3'-methoxybenzophenone with aluminium chloride in refluxing chlorobenzene [900].
m.p. 140° [900], 130° [119,899]; Spectra (NA).
(3,4-Dichlorophenyl)(4-hydroxyphenyl)methanone
[60013-02-7] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \mathrm{~mol} . w t .267 .11$

Syntheses

- Preparation by reaction of 3,4-dichlorobenzoyl chloride,
- with phenol in the presence of aluminium chloride [165];
- with phenetole in the presence of aluminium chloride in carbon disulfide at r.t. overnight (40\%) [903];
- with anisole in the presence of aluminium chloride at 70° for 4 h , followed by demethylation of the obtained ketone with 48% hydrobromic acid in refluxing acetic acid for 47 h [904].
- Preparation by dealkylation of 3,4-dichloro-4'-ethoxybenzophenone with aluminium chloride in refluxing carbon disulfide [903].
m.p. $\quad 172-174^{\circ}$ [903], $158^{\circ} 5-170^{\circ}$ [165]. A typing error probably occurred in the published data.
Spectra (NA).

(3,5-Dichlorophenyl)(4-hydroxyphenyl)methanone

 m.p. and Spectra (NA).

(2,4-Difluorophenyl)(2-hydroxyphenyl)methanone

[46795-44-2]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 234.20

m.p. and Spectra (NA).

(3,5-Difluorophenyl)(4-hydroxyphenyl)methanone

[148253-49-0] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 234.20

Synthesis

- Preparation by demethylation of 3,5-difluoro-4'-methoxy-benzophenone (SM) with 48% hydrobromic acid in refluxing acetic acid for 4 h (91%) [905,906]. SM was obtained by Friedel-Crafts acylation of anisole with 3,5-di-fluorobenzoyl chloride in ethylene dichloride in the presence of aluminium chloride at r.t. under nitrogen for 3 h (88\%) [905].
m.p. $134-135^{\circ}$ [905,906];
${ }^{1} \mathrm{H}$ NMR [905,906], ${ }^{13} \mathrm{C}$ NMR [905,906], IR [905,906], MS [905,906].

(3,5-Dinitrophenyl)(4-hydroxyphenyl)methanone

[51339-44-7]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 288.22

Syntheses

- Preparation by reaction of 3,5-dinitrobenzoyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide, first between 0° and 5° for 8.5 h , then at r.t. overnight (60\%) [903].
- Obtained (by-product) by reaction of 3,5-dinitrobenzoyl chloride with anisole in the presence of aluminium chloride [907].

$$
\text { m.p. } \quad 196-197^{\circ} \text { (d) [903], } 176-177^{\circ}[907] ; \quad \operatorname{Spectra}(\mathrm{NA}) .
$$

(2-Bromophenyl)(2-hydroxyphenyl)methanone

$$
\begin{aligned}
& \text { [99515-47-6] } \\
& \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \\
& \text { mol.wt. } 277.11 \\
& \text { Synthesis } \\
& \text { - Preparation from 2'-bromo-5-tert-butyl-2-methoxy- } \\
& \text { benzophenone by total dealkylation with aluminium } \\
& \text { chloride in benzene at } 65-70^{\circ} \text { for } 45 \mathrm{~h} \text { (75\%) [9], } \\
& \text { (60-80\%) [22]. } \\
& \text { - Also refer to: [908]. } \\
& \text { m.p. } \quad 76-77^{\circ}[9,22] ; \quad \text { Spectra (NA). }
\end{aligned}
$$

(2-Bromophenyl)(4-hydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Synthesis

- Preparation by dealkylation of 2-bromo-4'-ethoxy-benzophenone with hydrobromic acid $(\mathrm{d}=1.49)$ in boiling acetic acid for 2 days.
- Refer to: Chem. Abstr., 17, 3497^{5} (1923) ${ }^{\mathrm{T}}$.
b.p. ${ }_{10} 260^{\circ}$; m.p. 114°; $\operatorname{Spectra}(\mathrm{NA})$.
(3-Bromophenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Synthesis

- Preparation by total dealkylation of 5-tert-butyl-3'-bromo-2-methoxybenzophenone with aluminium chloride in benzene at $65-70^{\circ}$ for 45 h (60\%) [9], 60-80\% [22].
m.p. $\quad 77-78^{\circ}[9,22] ; \quad$ Spectra (NA).

(3-Bromophenyl)(3-hydroxyphenyl)methanone

[62810-50-8]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Synthesis

- Preparation by demethylation of 3-bromo-3'-methoxy-benzophenone with aluminium chloride in refluxing chlorobenzene [900].
m.p. 110° [900]; $\operatorname{Spectra}(\mathrm{NA})$.

(3-Bromophenyl)(4-hydroxyphenyl)methanone

 $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11 Synthesis

- Preparation by dealkylation of 3-bromo-4'-ethoxy-benzophenone (SM) with hydrobromic acid $(\mathrm{d}=1.49)$ in boiling acetic acid for 2 days. SM was obtained by action of m-bromobenzoyl chloride with phenetole in carbon disulfide in the presence of aluminium chloride at 55° (80%, m.p. $79^{\circ} 5$). -Refer to: Chem. Abstr., 17, 3497^{5} (1923) ${ }^{\mathrm{T}}$.
m.p. $171^{\circ \mathrm{T}} ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(4-Bromophenyl)(2-hydroxyphenyl)methanone

[2038-92-8]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11
Br - Preparation by Fries rearrangement of phenyl p-bromo-benzoate [909], with aluminium chloride at 140° for $30 \mathrm{~min}(23 \%)$ [485].

- Preparation by reaction of o-methoxybenzoyl chloride with bromobenzene in the presence of aluminium chloride (Friedel-Crafts) [910].
- Preparation by diazotization of 2-amino-4'-bromobenzophenone, followed by hydrolysis of the diazonium salt so obtained (28\%) [911]. The 3-bromofluorenone was the major compound obtained.
m.p. 98° [910,911], $90-92^{\circ}$ [485]; ${ }^{1} \mathrm{H}$ NMR [910], IR [910].
(4-Bromophenyl)(3-hydroxyphenyl)methanone
[62810-46-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Syntheses

- Preparation by reaction of m-anisoyl chloride with bromo-benzene in the presence of an excess of aluminium chloride: first at 20°, then at reflux for $2 \mathrm{~h}(65 \%)$ [119,899].
- Preparation by Friedel-Crafts acylation of bromobenzene with m-nitrobenzoyl chloride, reduction of the obtained 4-bromo-3'-nitrobenzophenone and diazotization of the resulting 3-amino-4'-bromobenzophenone, followed by hydrolysis of the diazonium salt [900].
- Preparation by demethylation of 4-bromo-3'-methoxybenzophenone with aluminium chloride in refluxing chlorobenzene [900].
- Also refer to: [912].

```
m.p. }17\mp@subsup{0}{}{\circ}[900],16\mp@subsup{7}{}{\circ}[119,899]; Spectra (NA).
```


(4-Bromophenyl)(4-hydroxyphenyl)methanone

[4369-50-0]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11
Syntheses

- Preparation by reaction of p-bromobenzoyl chloride with phenol in the presence of aluminium chloride [165].
- Preparation by isomerization of 2-hydroxy-4'-bromobenzophenone with trifluoromethanesulfonic acid at 110° for 3 h (42\%) [909].
- Preparation by Fries rearrangement of phenyl p-bromobenzoate with aluminium chloride without solvent at 140° for $30 \mathrm{~min}(47 \%)$ [485] or in nitrobenzene at 60° for 40 h (67\%) [913-915].
- Also obtained by reaction of hydrobromic acid with 4-bromo-4'-ethoxybenzophenone in refluxing acetic acid [142].
- Also obtained by diazotization of 4-amino-4'-bromobenzophenone, followed by hydrolysis of the obtained diazonium salt [916].
- Preparation by demethylation of 4-bromo-4'-methoxybenzophenone (SM) with aluminium chloride in refluxing benzene for 8 h . SM was obtained by FriedelCrafts acylation of anisole with p-bromobenzoyl chloride [917].
- Also refer to: [512,513,902,918].
m.p. 192-193 ${ }^{\circ}$ [913-915], 191° [142,485,916], $187^{\circ} 5-191^{\circ}$ [165]; IR [917]; TLC [917].

(2-Chlorophenyl)(2-hydroxyphenyl)methanone

[70288-96-9]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
Syntheses

- Obtained by total dealkylation of 5-tert-butyl-2'-chloro-2-methoxybenzophenone with aluminium chloride in benzene at $65-70^{\circ}$ for $45 \mathrm{~h}(60-80 \%)$ [22], (73\%) [9].
- Also obtained by Fries rearrangement of phenyl o-chlorobenzoate (SM) with aluminium chloride [23,897], at 140° for $30 \mathrm{~min}(32 \%)$ [485]. SM was prepared by heating o-chlorobenzoyl chloride with aluminium tris(phenoxide) in a water bath for 30 min [485].
- Also obtained (poor yield) by reaction of o-chlorobenzoyl chloride with phenyl borate in the presence of aluminium chloride in tetrachloroethane at $100^{\circ}(3 \%)$ [55].
- Also refer to: $[29,850]$.
m.p. 92° [485], $58-59^{\circ}$ [9,22]. There is a discrepancy between the two melting points. Spectra (NA).

(2-Chlorophenyl)(3-hydroxyphenyl)methanone

[62810-53-1] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67

Synthesis

- Preparation by demethylation of 2-chloro-3'-methoxy-benzophenone with aluminium chloride in refluxing chlorobenzene [900].
m.p. 126° [900]; \quad Spectra (NA).

(2-Chlorophenyl)(4-hydroxyphenyl)methanone

[55270-71-8]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
Syntheses

- Preparation by Fries rearrangement of phenyl o-chloro-benzoate in the presence of aluminium chloride [897,919,920], without solvent for 2 h at 160° [920] or in nitrobenzene at $60^{\circ}(31 \%)$ [919].
- Preparation by Fries rearrangement of phenyl o-chlorobenzoate (SM) with aluminium chloride at 140° for $30 \mathrm{~min}(56 \%)$. SM was obtained by heating o-chlorobenzoyl chloride with aluminium tris(phenoxide) in a water bath for 30 min [485].
- Preparation by reaction of o-chlorobenzoyl chloride,
- with phenyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (57\%) [55];
- with phenol trimethylsilyl ether in the presence of aluminium chloride in refluxing methylene chloride for 2 h (54\%) [921].
- Also obtained by reaction of o-chlorobenzoic acid with phenol in the presence of polyphosphoric acid for 20 min at 100° (13\%) [149].
- Also obtained (trace) by reaction of EKONOL ${ }^{(\mathrm{TM})}$, an aromatic polyester, behaves as a Friedel-Crafts acylating reagent, with chlorobenzene in triflic acid solution at 25° for $18 \mathrm{~h}(1 \%)$ [922].
- Also refer to: [542,902].
m.p. 165° [920], 128° [55], $119-121^{\circ}$ [919], 118° [149], 112° [485], 102- 104° [921];
There is a discrepancy between the various melting points.
Spectra (NA); HPLC [922].
(3-Chlorophenyl)(2-hydroxyphenyl)methanone
[72090-60-9]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2}$
mol.wt. 232.67

Syntheses

- Preparationbyheatingamixtureof3-(3-chlorobenzoyl)-4-methoxybenzoic acid and pyridinium chloride at 200° for 20 h (65\%) [923]. There are simultaneous demethylation and decarboxylation.
- Also obtained by Fries rearrangement of phenyl m-chlorobenzoate,
- with aluminium chloride between 120° and 160° [924];
- in the presence of Nafion-H, a polymeric perfluorinated resin sulfonic acid, in refluxing nitrobenzene for $12 \mathrm{~h}(21 \%)$ [38].
m.p. 89° [924], 87° [923]; ${ }^{1} \mathrm{H}$ NMR [38], ${ }^{13} \mathrm{C}$ NMR [38], IR [923].

(3-Chlorophenyl)(3-hydroxyphenyl)methanone

$$
[62810-42-8] \quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad \text { mol.wt. } 232.67
$$

Synthesis

- Preparation by demethylation of 3-chloro-3'-methoxy-benzophenone with aluminium chloride in refluxing chlorobenzene (81\%) [900].
m.p. $\quad 104^{\circ}$ [900]; \quad Spectra (NA).
(3-Chlorophenyl)(4-hydroxyphenyl)methanone
[61002-52-6] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
 Syntheses
- Preparation by Fries rearrangement of phenyl m-chloro-benzoate,
- in the presence of aluminium chloride without solvent at 120° or at 160° [924];
- in the presence of Nafion-H, a polymeric perfluorinated resin sulfonic acid, in refluxing nitrobenzene for 12 h (54\%) [38].
- Also obtained (poor yield) by reaction of m-chlorobenzoic acid with phenol in the presence of polyphosphoric acid at 100° for $20 \mathrm{~min}(5 \%)$ [149].
- Also obtained by reaction of ethyl nitrite with 2-amino-5-chloro-4'hydroxybenzophenone in refluxing ethanol (elimination of amino group) [925].
- Also refer to: [542,897,902].
m.p. 172° [924], 169° [149], 161° [925]; ${ }^{1} \mathrm{H}$ NMR [38], ${ }^{13} \mathrm{C}$ NMR [38].

(4-Chlorophenyl)(2-hydroxyphenyl)methanone

[2985-79-7]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
Clas

- with aluminium chloride without solvent between 120° and 160° [28,926], (29\%) [28], at 200° for 20 min [20] or in refluxing chlorobenzene for 10 h (53\%) [28];
- with trifluoromethanesulfonic acid at 45-55 ${ }^{\circ}$ (6\%) [927].
- Preparation by reaction of 2-hydroxybenzoyl chloride with chlorobenzene in the presence of aluminium chloride in refluxing carbon disulfide (72\%) [92].
- Also obtained by photo-Fries rearrangement of phenyl p-chlorobenzoate in cyclohexane or in benzene between 46° and 52° (42-49\%) [72].
- Also obtained by reaction of p-chlorobenzoyl chloride with phenyl borate in the presence of aluminium chloride in tetrachloroethane at $100^{\circ}(18 \%)$ [55].
- Preparation by treatment of 5-tert-butyl-4'-chloro-2-methoxybenzophenone with aluminium chloride in benzene at $65-70^{\circ}$ during $45 \mathrm{~h}(60-80 \%)$ [9,927].
- Also obtained by reaction of salicylaldehyde with p-iodochlorobenzene by using a catalyst system of palladium chloride/lithium chloride in the presence of sodium carbonate in N, N-dimethyl-formamide at 100° for $2 \mathrm{~h}(57 \%)$ [51].
- Also obtained by demethylation of 4-chloro-2'-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21].
- Also refer to: [77].
m.p. $77-78^{\circ}$ [926], $75-76^{\circ}[72], 74-75^{\circ}[9,22], 70-72^{\circ}[92], 68-71^{\circ} 5[28] ;{ }^{1} \mathrm{H}$ NMR [51], MS [51].

(4-Chlorophenyl)(3-hydroxyphenyl)methanone

[62810-39-3] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
 Synthesis

- Preparation by diazotization of 3-amino-4'-chlorobenzo-phenone (SM), followed by hydrolysis of the diazonium salt obtained (81%) [900], (84\%) [634]. SM was obtained by Friedel-Crafts acylation of chlorobenzene with m-nitro-benzoyl chloride, followed by reduction of the resulting 4-chloro-3'-nitrobenzophenone [900].
- Also refer to: [928].
m.p. $\quad 154-155^{\circ}$ [634], 154° [900]; \quad Spectra (NA).

(4-Chlorophenyl)(4-hydroxyphenyl)methanone

[42019-78-3]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2}$
mol.wt. 232.67
Syntheses

- Preparation by Fries rearrangement of phenyl p-chloro-benzoate,
- in the presence of aluminium chloride, without solvent, at 160° for 5 min [490,491], between 120° and 160° (good yield) [926] or at 130° for 1 h , then at 160° for $1 \mathrm{~h}(10 \%)$ [28] or in refluxing chlorobenzene for $10 \mathrm{~h}(52 \%)$ [28];
- in the presence of trifluoromethanesulfonic acid at 45-55 (94\%) [927].
- Preparation by reaction of p-chlorobenzotrichloride with phenol in hydrofluoric acid in the presence of water at 0°, then at r.t. overnight (91\%) [213].
- Also obtained by reaction of p-chlorobenzoyl chloride,
- with phenol in the presence of aluminium chloride [165];
- with anisole in the presence of aluminium chloride [929], at 70° for 4 h [904]. The 4'-chloro-4-methoxybenzophenone so formed [929], (67\%) [904], gave
the expected ketone by demethylation with 48% hydrobromic acid in refluxing acetic acid for 47 h [904] or with aluminium chloride in refluxing chlorobenzene for 1.5 h [929];
- with phenyl borate in the presence of aluminium chloride in tetrachloroethane at $100^{\circ}(32 \%)$ [55].
- Also obtained by reaction of p-chlorobenzoic acid with phenol,
- in the presence of hydrofluoric acid for 6 h at 75° in an autoclave under pressure (74\%) [930];
- in the presence of polyphosphoric acid at 100° for $20 \mathrm{~min}(2 \%)$ [149];
- in the presence of a trifluoromethanesulfonic acid at r.t. for one day [151].
- Also obtained by reaction of p-hydroxybenzoic acid with chlorobenzene in the presence of trifluoromethanesulfonic acid at 100° for 5 days (50\%) [151].
- Preparation by Friedel-Crafts acylation of chlorobenzene with p-anisoyl chloride in the presence of aluminium chloride at 120° for $3 \mathrm{~h}(50-70 \%)$ [931].
- Preparation by diazotization of 4-amino-4'-chlorobenzophenone [932], followed by hydrolysis of the diazonium salt so obtained [142].
- Also obtained by reaction of EKONOL ${ }^{(\mathrm{TM})}$, an aromatic polyester as FriedelCrafts reagent, with chlorobenzene in triflic acid solution at 25° for $18 \mathrm{~h}(28 \%)$ [922]. Similar results can be obtained using hydrofluoric acid/boron trifluoride or aluminium chloride in place of triflic acid [922].
- Also obtained (poor yield) by photo-Fries rearrangement of phenyl p-chlorobenzoate in benzene at 52° for $19 \mathrm{~h}(14 \%)$ or in cyclohexane at 46° for $19 \mathrm{~h}(6 \%)$ [72].
- Also obtained from 4-chloro-4'-fluorobenzophenone by reaction under nitrogen with potassium hydroxide in aqueous dimethyl sulfoxide at 60° for 18 h [170].
- Also refer to: [366,902,933-943].
N.B.: K salt [170].
m.p. $179-181^{\circ}$ [165], $179^{\circ} 5$ [170], $179^{\circ} 2$ [142], 179° [149,213], $178^{\circ} 5-180^{\circ} 5$ [930], 175-176 [926], 173-175 ${ }^{\circ}$ [931], $172^{\circ} 5-173^{\circ} 8$ [72], 170-171 ${ }^{\circ}$ [28];
b.p. ${ }_{13} 257^{\circ}$ [142]; TLC [931]; HPLC [922];
${ }^{1} \mathrm{H}$ NMR [151,931], ${ }^{13} \mathrm{C}$ NMR [922], MS [922,931].

(4-Chlorophenyl)(4-hydroxyphenyl)methanone- ${ }^{14} \mathrm{C}$

[60044-21-5]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 234.67
Synthesis

- Preparation by demethylation of ${ }^{14} \mathrm{C}-4^{\prime}$ -chloro-4-methoxybenzophenone (SM) with 48% hydrobromic acid in refluxing acetic acid for $48 \mathrm{~h}(74 \%)$. SM was obtained by reaction of ${ }^{14} \mathrm{C}$-p-chlorobenzoyl chloride with anisole in the presence of aluminium chloride at 50° for $3 \mathrm{~h}(82 \%)$ [944].
m.p. and Spectra (NA).
(2-Fluorophenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21

Synthesis

- Preparation by Fries rearrangement of phenyl o-flu-oro-benzoate with aluminium chloride [23].
m.p. and Spectra (NA).
(2-Fluorophenyl)(4-hydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21
Synthesis
- Obtained (trace) by reaction of EKONOL ${ }^{(\mathrm{TM})}$, an aromatic polyester as Friedel-Crafts reagent, with fluorobenzene in triflic acid solution at 75° for 2 h or at 25° for $18 \mathrm{~h}(1 \%)$ [922].
m.p. and Spectra (NA); HPLC [922].

(3-Fluorophenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$
mol.wt. 216.21

Synthesis

- Preparation by demethylation of 3-fluoro-3'-methoxy-benzophenone with aluminium chloride in refluxing chlorobenzene [900].
m.p. 64° [900]; $\quad \operatorname{Spectra}(N A)$.
(3-Fluorophenyl)(4-hydroxyphenyl)methanone
[190728-34-8]

m.p. and Spectra (NA).
(4-Fluorophenyl)(2-hydroxyphenyl)methanone
[62666-37-9]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21
Syntheses
- Preparation by Fries rearrangement of phenyl p-fluoro-benzoate with aluminium chloride,
- without solvent at 200° for 20 min [20];
- in nitrobenzene at $140-145^{\circ}$ for $3 \mathrm{~h}(35 \%)$ [909].
- Also obtained by demethylation of 4-fluoro-2'-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21].
- Also obtained (by-product) by reaction of p-fluorobenzoic acid with phenol in the presence of hydrofluoric acid for 6 h at 75° in an autoclave under pressure (5\%) [930].
- Also refer to: [945].
m.p. and Spectra (NA).

(4-Fluorophenyl)(3-hydroxyphenyl)methanone

[62810-47-3]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21
Syntheses

- Preparation by reaction of m-anisoyl chloride with fluoro-benzene in the presence of an excess of aluminium chloride: first at 20°, then at reflux for $2 \mathrm{~h}(43 \%)$ [119].
- Preparation by reaction of m-hydroxybenzoic acid with fluorobenzene in the presence of a hydrofluoric acid/boron trifluoride mixture at r.t. for 6 h into an autoclave under 30 psig of boron trifluoride (61\%) [350].
- Preparation by diazotization of 3-amino-4'-fluorobenzophenone followed by hydrolysis of the obtained diazonium salt [900].
- Preparation by demethylation of 4-fluoro-3'-methoxybenzophenone with aluminium chloride in refluxing chlorobenzene [900].
- Also refer to: [899,946,947].
m.p. 105° [900,947], 103° [119,899], 102° [946], $99-99^{\circ} 5$ [350];
${ }^{1} \mathrm{H}$ NMR [350], ${ }^{13} \mathrm{C}$ NMR [350], ${ }^{19}$ F NMR [350].
(4-Fluorophenyl)(4-hydroxyphenyl)methanone
[25913-05-7] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21

Syntheses

- Preparation by reaction of p-fluorobenzoyl chloride with phenol,
- in the presence of aluminium chloride [165];
- in the presence of boron trifluoride in hydrofluoric acid (83\%) [316].
- Preparation by isomerization of 4-fluoro-2'-hydroxybenzophenone,
- with trifluoromethanesulfonic acid at 120° for $5 \mathrm{~h}(75 \%)$ or with perfluoroethanesulfonic acid at 120° for $3 \mathrm{~h}(53 \%)$ [909];
- by dissolution in toluene at 110° and the resultant solution cooled to $3^{\circ}(97 \%)$ [945].
- Preparation by Fries rearrangement of phenyl p-fluorobenzoate,
- with hydrofluoric acid between -10° and 0° (63\%) [948];
- with aluminium chloride without solvent at 160° for $5 \mathrm{~min}[490,491]$ or in nitrobenzene at $140-145^{\circ}$ for $3 \mathrm{~h}(65 \%)$ [909].
- Preparation by reaction of p-fluorobenzoic acid with phenol,
- in the presence of hydrofluoric acid for 6 h at 75° in an autoclave under pressure (90\%) [930];
- in the presence of boron trifluoride in hydrofluoric acid (64\%) [316];
- in the presence of trifluoromethanesulfonic acid overnight at r.t. (77\%) [151].
- Also obtained by reaction of EKONOL ${ }^{(\mathrm{TM})}$, an aromatic polyester, behaves as a Friedel-Crafts acylating reagent, with fluorobenzene in triflic acid solution at 75° for $2 \mathrm{~h}(74 \%)$ or at 25° for $18 \mathrm{~h}(67 \%)$ [922]. Similar results can be obtained using hydrofluoric acid/boron trifluoride or aluminium chloride in place of triflic acid [922].
- Preparation by reaction of 4,4'-difluorobenzophenone (1 mol) with potassium hydroxide (2 mol) in aqueous dimethyl sulfoxide at 60° for $18 \mathrm{~h}(81 \%)$ [170].
- Also refer to: [350,512,935,943,945,949-956].
N.B.: Na [949] and K salts [170,337].
m.p. $170^{\circ} 6-172^{\circ}$ [316], $169^{\circ} 5-171^{\circ} 5$ [165], $169-171^{\circ}$ [957], 168° [170], $166^{\circ} 5-168^{\circ} 5$ [151];
${ }^{1} \mathrm{H}$ NMR [151,316], ${ }^{13} \mathrm{C}$ NMR [922], IR [151,316], MS [922,930];
GLC [316]; HPLC [922].

(4-Hydroxyphenyl)(4-iodophenyl)methanone

$[113275-52-8]$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{2}$ Synthesis - Refer to: [512].
m.p. and Spectra (NA).	

(2-Hydroxyphenyl)(2-nitrophenyl)methanone

[22293-32-9] \quad\begin{tabular}{l}
Synthesis

- Obtained by photo-Fries rearrangement of phenyl

o- Also refer to: [897].
\end{tabular}

m.p. 104° [641]; IR [641], UV [641].

(2-Hydroxyphenyl)(3-nitrophenyl)methanone

[36412-61-0] \begin{tabular}{l}
Pyntheses

Phenone followed by thermal decomposition of the
2-(3'-nitrobenzoyl) benzenediazonium fluoborate
formed with 0.05 M sulfuric acid at 45° or $65^{\circ}(67 \%)$
[17].

\end{tabular}

- Also obtained (poor yield) by Fries rearrangement of phenyl m-nitrobenzoate with aluminium chloride at 120° or 160° for $2 \mathrm{~h}(5 \%)$ [897,958].
- Also obtained by reaction of m-nitrobenzoyl chloride with anisole in the presence of aluminium chloride in refluxing carbon disulfide for 2 h (16\%) [959]. In this reaction, 4-methoxy-3'-nitrobenzophenone was the major product.
- Also refer to: [960].
m.p. 101° [958], $96-97^{\circ}$ [17], $93^{\circ} 5-94^{\circ} 5$ [959]; IR [959], UV [959].

(2-Hydroxyphenyl)(4-nitrophenyl)methanone

[68223-20-1]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22 Syntheses

- Obtained by Fries rearrangement of phenyl p-nitrobenzoate with aluminium chloride [897],
- without solvent at 160° (26\%) [28], (15\%) [961];
- in refluxing chlorobenzene (8\%) [28].
- Also obtained (by-product) by Fries rearrangement of phenyl p-nitrobenzoate (SM) with aluminium chloride at 140° for $30 \mathrm{~min}(16 \%)$. SM was obtained by heating p-nitrobenzoyl chloride with aluminium tris(phenoxide) in a water bath for 30 min [485].
- Also obtained by photo-Fries rearrangement of phenyl p-nitrobenzoate in ethanol during 60-75 h (19\%) [641].
- Also obtained (by-product) by reaction of p-nitrobenzoyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide [322,683,962].
- Also refer to: [963].
m.p. 114° [961], 112° [641], $111-113^{\circ}$ [322], 111° [485], $108-110^{\circ}[28]$;

IR [641], UV [641].
(3-Hydroxyphenyl)(4-nitrophenyl)methanone
[147029-77-4]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4}$
mol.wt. 243.22
Synthesis

- Preparation by demethylation of 3-methoxy-4'-nitro-benzophenone with 62% hydrobromic acid in refluxing acetic acid for $4 \mathrm{~h}(70 \%)$ [964].
m.p. $\quad 117^{\circ}[964] ; \quad$ Spectra (NA).

(4-Hydroxyphenyl)(2-nitrophenyl)methanone

[61101-88-0] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22

Syntheses

- Preparation by reaction of o-nitrobenzoyl chloride with (trimethylsilyl)phenol in the presence of stannic chloride in refluxing methylene chloride for 2 h (56\%) [921].
- Also obtained (trace) by reaction of o-nitrobenzoic acid in the presence of polyphosphoric acid at 100° for $20 \mathrm{~min}(0.1 \%)$ [149].
- Also refer to: [897].
m.p. $165-167^{\circ}$ [921], 122° [149]. There is a discrepancy between the two melting points.
Spectra (NA).

(4-Hydroxyphenyl)(3-nitrophenyl)methanone

[72090-63-2]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4}$ Syntheses

- Preparation by acylation of phenetole with m-nitrobenzoyl chloride in ethyl ether in the presence of aluminium chloride, then dealkylation of the 4-ethoxy-3'-nitrobenzophenone so formed with the same catalyst [141], in boiling carbon disulfide ($60-70^{\circ}$) for 8 h [619] according to [139].
- Preparation by Fries rearrangement of phenyl m-nitrobenzoate with aluminium chloride [897] without solvent at 120° or at 160° for $2 \mathrm{~h}(32 \%)$ [958].
- Also obtained (poor yield) by reaction of m-nitrobenzoyl chloride with phenyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (9\%) [55].
- Also obtained (trace) by reaction of m-nitrobenzoic acid with phenol in the presence of polyphosphoric acid at 100° for 20 min (1\%) [149].
- Also refer to: [366,965,966].
m.p. $173^{\circ}[619,958], 171^{\circ}[149] ;$ Spectra (NA); cryoscopic study [141].

(4-Hydroxyphenyl)(4-nitrophenyl)methanone

[18920-70-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22

Syntheses

- Obtained by Fries rearrangement of phenyl p-nitro-benzoate with aluminium chloride [897],
- without solvent at 140° for $30 \mathrm{~min}(52 \%)$ [485], at 120° for $2 \mathrm{~h} \mathrm{(21} \mathrm{\%)} \mathrm{[961]}$ or first at 130° for 1 h , then at 160° for $1 \mathrm{~h}(2 \%)$ [28];
- in refluxing chlorobenzene for $5 \mathrm{~h}(24 \%)$ [28].
N.B.: Phenyl p-nitrobenzoate failed to undergo the Fries rearrangement in the presence of aluminium chloride [74].
- Preparation by dealkylation,
- of 4-methoxy-4'-nitrobenzophenone with aluminium chloride in boiling carbon disulfide or without solvent at $100-120^{\circ}$ [322];
- of 4-ethoxy-4'-nitrobenzophenone with aluminium chloride [141], in boiling carbon disulfide or without solvent at $100-120^{\circ}$ [322].
- Preparation by reaction of p-nitrobenzoyl chloride with phenetole in the presence of aluminium chloride in ethyl ether [141] or in carbon disulfide. Simultaneous deethylation take place during the reaction [322].
- Also obtained (trace) by reaction of p-nitrobenzoic acid with phenol in the presence of polyphosphoric acid at 100° for 20 min [149].
- Also refer to: [366,902,967].
N.B.: Na salt [963].
m.p. $193-195^{\circ}$ [28], 192° [961], $190-192^{\circ}$ [322], 190° [149,485];

IR [124]; cryoscopic study [141].
(2-Amino-5-chlorophenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 247.68
Synthesis

- Preparation by demethylation of 2-amino-5-chloro-2^{\prime}-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 4 h (88\%) [552].
m.p. $\quad 74-76^{\circ}$ [552]; ${ }^{1} \mathrm{H}$ NMR [552].

(2-Amino-5-chlorophenyl)(3-hydroxyphenyl)methanone

[62492-58-4] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 247.68

Synthesis

- Preparation by demethylation of 2-amino-5-chloro-3'-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 4 h (84\%) [552].
m.p. $\quad 190-192^{\circ}$ [552]; ${ }^{1} \mathrm{H}$ NMR [552].

(2-Amino-5-chlorophenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 247.68
Syntheses

- Preparation by cleavage of 5-chloro-3-(p-hydroxyphenyl)-2,1-benzisoxazole (other name: 5-chloro-3-(p-hydroxy-phenyl)anthranil) (SM),
- by heating at reflux with aluminium iodide for $50 \mathrm{~min}(87 \%)$ [968];
- by reaction with concentrated hydrochloric acid and an excess of tin in boiling ethanol or acetic acid. SM (m.p. 241°) was prepared by condensation of o-nitrobenzaldehyde with phenol in the presence of hydrogen chloride or phosphorous oxychloride in cold acetic acid [925];
- by hydrogenation in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate between 40° and 60° at a pressure of 3 atmospheres (quantitative yield) [969].
- Preparation by demethylation of 2-amino-5-chloro-4'-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for $4 \mathrm{~h}(80 \%)$ [552].

$$
\text { m.p. } 174^{\circ}[925], 173-175^{\circ}[969], 172-173^{\circ}[968], 166-168^{\circ}[552] ;
$$

${ }^{1} \mathrm{H}$ NMR [552].

(4-Amino-3-nitrophenyl)(4-hydroxyphenyl)methanone

[60014-09-7]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$
mol.wt. 258.23
Synthesis

- Preparation by reaction of ammonia with 4-chloro-4'-hydroxy-3-nitrobenzophenone in dimethyl sulfoxide at 100° for $6 \mathrm{~h}(72 \%)$ [898].
- Also refer to: [970]. m.p. 218° [898]; IR [898], MS [898].

(2-Aminophenyl)(2-hydroxyphenyl)methanone

[13134-93-5]

 $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24 Syntheses

- Preparation by demethylation of 2-amino-2'-methoxybenzophenone (SM),
- with concentrated hydrobromic acid in refluxing acetic acid for 24 h (85%) [971];
- with aluminium chloride in refluxing benzene for 1 h (94\%) [972]. SM was obtained according to [973].
- Also obtained by action of an excess ammonia on the 2,2'-dihydroxybenzophenone in ethanol [344].
m.p. 222° [344]; red oil [971], yellow [972];
${ }^{1} \mathrm{H}$ NMR [972], IR [972], MS [972]; TLC [972].
(2-Aminophenyl)(2-hydroxyphenyl)methanone (Hydrochloride)
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 249.70

Synthesis

- Obtained from the corresponding amine [344].
m.p. $\quad 242^{\circ}$ [344]; \quad Spectra (NA).

(2-Aminophenyl)(3-hydroxyphenyl)methanone

[38824-12-3]
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}$
mol.wt. 213.24

Synthesis

- Refer to: [974].
m.p. and Spectra (NA).
(3-Aminophenyl)(2-hydroxyphenyl)methanone
[35486-64-7] $\quad \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24

Synthesis

- Preparation by reduction of 2-hydroxy-3'-nitrobenzophenone with ammonium ferrous sulfate (86\%) [959].
- Also refer to: $[974,975]$.
m.p. $119-120^{\circ}$ [959]; IR [959], UV [959].
(4-Aminophenyl)(2-hydroxyphenyl)methanone

[13134-94-6] \quad\begin{tabular}{l}
Synthesis

- Preparation by hydrogenation of 2-hydroxy-4'-

nitro-benzophenone in the presence of Raney
nickel in methanol (89\%) [962].
- Also refer to: [563].

\end{tabular}

m.p. $138-139^{\circ}$ [962]; \quad Spectra (NA).

(4-Aminophenyl)(4-hydroxyphenyl)methanone

[14963-34-9]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24
Synthesis

- Obtained by heating 4-hydroxy-4'-nitrodiphenylmethane (SM), sulfur and sodium hydroxide in 50% ethanol in a boiling water bath for 7 h (60\%) [112]. In this reaction, oxidation of the methylene group to a carbonyl group occurred together
with reduction of the nitro group. The oxidizing agent for the methylene group was the tetrasulfide [63]. SM was obtained by diazotization of 4 -amino-4'nitrodiphenylmethane (83\%), according to [976].
- Also refer to: [176].
m.p. 184° [112]; UV [112,176].

(3,4-Diaminophenyl)(4-hydroxyphenyl)methanone

[93958-45-3]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \quad$ mol.wt. 228.25
Synthesis

- Preparation by catalytic hydrogenation of 4-amino-4'-hydroxy-3-nitrobenzophenone in the presence of Raney nickel in ethanol in a Paar hydrogenator at $3 \mathrm{~kg} / \mathrm{cm}^{2}$ pressure for 4 h [898].
solid mass [898]; m.p. and Spectra (NA).

(2-Hydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone

[205319-41-1] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 266.22

Synthesis

- Refer to: Chem. Abstr., 128, 257232e (1998).
m.p. and Spectra (NA).
(3-Hydroxyphenyl)[3-(trifluoromethyl)phenyl]methanone
[62810-48-4] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 266.22

m.p. 78° [900]; \quad Spectra (NA).
(3-Hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone
[21084-29-7]

Syntheses

- Preparation by demethylation of 3-methoxy-4'-(trifluoro-methyl)benzophenone with refluxing pyridinium chloride for 90 min (72\%) or with 48% hydrobromic acid [900].
- Preparation by dealkylation of 4-(trifluoromethyl)-3'-ethoxybenzophenone with pyridinium bromide at 210° for 0.5 h [977]. m.p. 130° [900], $127-128^{\circ}$ [977]; \quad Spectra (NA).

(4-Hydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad \mathrm{~mol}$. wt. 266.22
Synthesis

- Refer to: Chem. Abstr., 127, 34137 f (1997).
m.p. and Spectra (NA).
(4-Hydroxyphenyl)[3-(trifluoromethyl)phenyl]methanone
[732-55-8]

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad \mathrm{~mol}$.wt. 266.22
Syntheses
- Preparation by reaction of m-(trifluoromethyl) benzoyl fluoride with phenol in hydrofluoric acid at 100° for 6 h under 5 atmospheres (92%) [978].
- Preparation by reaction of m-(trifluoromethyl)benzoyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide between 0° and 5°, then at r.t. for overnight (21%) [903].
m.p. $144-145^{\circ}$ [903]; \quad Spectra (NA).
(4-Hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone
[21084-27-5]

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$
Syntheses
- Preparation by reaction of p-(trifluoromethyl)benzoyl chloride with phenol in the presence of aluminium chloride [165].
- Also obtained from 4-fluoro-4'-(trifluoromethyl)benzophenone by reaction under nitrogen with potassium hydroxide in aqueous dimethyl sulfoxide at 60° for 18 h [170].
- Preparation by dealkylation of 4-(trifluoromethyl)-4'-ethoxybenzophenone with pyridinium bromide at 210° for $0.5 \mathrm{~h}(77 \%)$ [977].
- Also refer to: [512,943].
N.B.: K salt [170].
m.p. 147° [170], $144-145^{\circ}$ [977], $142-143^{\circ}$ [165]; \quad Spectra (NA).

(2,3-Dichloro-4-methoxyphenyl)(4-hydroxyphenyl)methanone

[92285-27-3]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
Synthesis

- Preparation by adding 2,3-dichloro-4-methoxy-4'-nitrobenzophenone in a mixture of acetaldoxime and sodium
hydroxide in N, N-dimethylformamide cooled in an ice bath, and the mixture stirred overnight at r.t. (75\%) [979].
m.p. $215-217^{\circ}[979] ; \quad$ Spectra (NA).
(3,5-Dichloro-2-methoxyphenyl)(2-hydroxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad \text { mol.wt. } 297.14
$$

Synthesis

- Preparation from 2-iodophenyl 3,5-dichloro-2-meth-oxy-benzoate on treatment with n-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , followed by treatment with saturated aqueous ammonium chloride (68\%) [58].
pale yellow oil [58]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [58], IR [58], MS [58].

(3,5-Dichloro-4-methoxyphenyl)(2-hydroxyphenyl)methanone

[129103-88-4]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$ mol.wt. 297.14
Synthesis
N.B.: This benzophenone was mentioned in the [Chem. Abstr., 113, 131832x (1990)]. It has never been prepared by authors [58]. The paper actually concerns the 3,5-di-chloro-2'-hydroxy-2-methoxybenzophenone or(3,5-dichloro-2-methoxyphe-nyl)(2-hydroxyphenyl)-methanone. In entry 6 (table 1) of the paper [58], $\mathrm{R}_{3}=\mathrm{H}$, but this information was not indicated in this one [980].
m.p. and Spectra (NA).

(2-Chloro-4-methylphenyl)(4-hydroxyphenyl)methanone

[98155-82-9]

m.p. and Spectra (NA).
(3-Chloro-4-methylphenyl)(4-hydroxyphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Synthesis

- Refer to: [901] (compound 33).
[83885-15-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Synthesis
- Preparation by reaction of 3-chloro-4methylbenzoyl chloride with phenol in the presence of aluminium chloride [165].
m.p. $\quad 153-154^{\circ}[165] ; \quad$ Spectra (NA).

(4-Chloro-2-methylphenyl)(4-hydroxyphenyl)methanone

[98155-76-1]

m.p. and Spectra (NA).
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Synthesis

- Refer to: [901] (compound 9).

(4-Chloro-3-methylphenyl)(4-hydroxyphenyl)methanone

[83885-20-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Synthesis

- Preparation by reaction of 4-chloro-3-methylbenzoyl chloride with phenol in the presence of aluminium chloride [165].
m.p. $\quad 154-156^{\circ}$ [165]; \quad Spectra (NA).
(3-Chloro-4-methoxyphenyl)(4-hydroxyphenyl)methanone
[83885-14-7]

 mol.wt. 262.69

> Synthesis

- Preparation by reaction of 3-chloro-4methoxybenzoyl chloride with phenol in the presence of aluminium chloride [165].
m.p. $\quad 167-168^{\circ}$ [165]; $\quad \operatorname{Spectra}(N A)$.
(3-Fluoro-4-methylphenyl)(3-hydroxyphenyl)methanone
[62810-52-0]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2}$
mol.wt. 230.24

Synthesis

- Preparation by diazotization of 3'-amino-3-fluoro-4-methyl-benzophenone followed by hydrolysis of the diazonium salt obtained [900].
m.p. 120° [900]; \quad Spectra (NA).
(2-Hydroxyphenyl)(2-methylphenyl)methanone
[51974-19-7]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
mol.wt. 212.25
Syntheses
- Preparation by hydrogenation of 5-chloro-2-hydroxy-2'-methylbenzophenone in ethanolic solution in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ and potassium acetate at r.t. under atmosphere pressure (98\%) [29].
- Also obtained by photo-Fries rearrangement of phenyl o-toluate in methanol or isopropanol (36-39\%) and in benzene or ethyl ether (22\%) [66].
- Also obtained (by-product) by diazotization of 2-amino-2'-methylbenzophenone with sodium nitrite in 5 N hydrochloric acid (3\%). 1-methylfluorenone was the major product obtained in this reaction [981].
oil [29]; m.p. 65-67 [981]; ${ }^{1} \mathrm{H}$ NMR [29].

(2-Hydroxyphenyl)(3-methylphenyl)methanone

[33785-66-9]
 $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Syntheses

- Preparation from 2-methylthioxanthen-9-one 10,10-dioxide (SM) by a three-step synthesis: SM, by refluxing in 2% sodium hydroxide- 65% dioxane-water solution for 18 h gave the 2-(2-hydroxybenzoyl)-4-methylphenylsulfinic acid (72\%). The former, by reaction with mercuric chloride in refluxing acetic acid for 4 h led to the
- 2-chloromercuri-2'-hydroxy-5-methylbenzophenone (74\%). Removal of the chloromercury group was achieved with concentrated hydrochloric acid in refluxing ethanol for 2 h (82\%) [62].
- Also obtained by Fries rearrangement of phenyl m-toluate in the presence of aluminium chloride in refluxing carbon disulfide, then elimination of the solvent and heating at 150° for 3 h (20\%) [62].
- Also obtained by reaction of m-toluoyl chloride with phenyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (13\%) [55].
oil [62]; b.p. ${ }_{0.9} 140-141^{\circ}$ [62]; ${ }^{1} \mathrm{H}$ NMR [62], IR [62].
(2-Hydroxyphenyl)(4-methylphenyl)methanone
[19434-30-1]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Syntheses
- Preparation by reaction of pyridinium chloride on the 2-methoxy-4'-methylbenzophenone (SM) at reflux (33\%). SM was obtained by reaction of p-tolunitrile on the o-methoxyphenylmagnesium bromide in ethyl ether (44\%) [982].
- Preparation by Fries rearrangement of phenyl p-methylbenzoate,
- with aluminium chloride in refluxing chlorobenzene for $10 \mathrm{~h}(40 \%)$ or without solvent, at $160^{\circ}(22 \%)$ [28] or at 180° for 10 min (15\%) [518];
- with Nafion-H, a polymeric perfluorinated resin sulfonic acid, in refluxing nitrobenzene for 12 h (18\%) [38].
- Also obtained by reaction of aluminium chloride with 5-tert-butyl-2-methoxy-4^{\prime}-methyl-benzophenone in benzene at $65-70^{\circ}$ for $45 \mathrm{~h}(60-80 \%)[9,22]$.
- Also obtained by reaction of 2-methoxybenzoyl chloride with toluene in the presence of aluminium chloride [5,9], (72\%) [13], (47\%) [17].
- Demethylation occurred during the Friedel-Crafts acylation, especially in the presence of ferric chloride at $130-140^{\circ}$ [5].
- Also obtained by thermal decomposition of 2-(4'-methylbenzoyl)benzenediazonium fluoborate in 0.05 M sulfuric acid at 25° (36\%) [17].
- Also refer to: [60].
m.p. $61^{\circ} 5$ [13], $61-63^{\circ}$ [982], 61-62 [17], 58-60 ${ }^{\circ}$ [28], 40° [518], 39- 40° [9,22]. There is a discrepancy between the various melting points.
${ }^{1} \mathrm{H}$ NMR [38], ${ }^{13} \mathrm{C}$ NMR [38].

(3-Hydroxyphenyl)(2-methylphenyl)methanone

[147029-78-5]

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad \text { mol.wt. } 212.25
$$

Synthesis

- Preparation by condensation of the Grignard reagent of anisole with o-toluoyl chloride, followed by demethylation of the resulting methyl ether (excellent yield) [964].
m.p. 112° [964]; Spectra (NA).
(3-Hydroxyphenyl)(4-methylphenyl)methanone
[62810-49-5]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
 Syntheses
- Preparation by reaction of m-anisoyl chloride with toluene in the presence of an excess of aluminium chloride: first at 20°, then at reflux for $2 \mathrm{~h}(78 \%)$ [119,899].
- Preparation by diazotization of 3-amino-4'-methyl-benzophenone followed by hydrolysis of the diazonium salt obtained [900].
- Also obtained by demethylation of 3-methoxy-4'-methylbenzophenone with aluminium chloride in refluxing chlorobenzene [900]. m.p. $126^{\circ}[119,899], 121^{\circ}[900] ; \quad$ Spectra (NA).

(4-Hydroxyphenyl)(2-methylphenyl)methanone

[52981-01-8]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Syntheses

- Preparation by reaction of o-toluic acid with phenol in the presence of polyphosphoric acid at 100° for $20 \mathrm{~min}(47 \%)$ [149].
- Also obtained by photo-Fries rearrangement of phenyl o-toluate in methanol or isopropanol (21%) and in ethyl ether or benzene (6-8\%) [66].
m.p. $\quad 96^{\circ}$ [149]; Spectra (NA).

(4-Hydroxyphenyl)(3-methylphenyl)methanone

[71372-37-7]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
Syntheses

- Preparation by Fries rearrangement of phenyl m -toluate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h , then elimination of the solvent and heating at 150° for 3 h (major product) [62].
- Preparation by reaction of m-toluoyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide between 0° and 5° for 8 h , then at r.t. overnight (50\%) [903].
- Also obtained by reaction of m-toluic acid with phenol in the presence of polyphosphoric acid at 100° for 20 min (19\%) [149].
- Also obtained (poor yield) by reaction of m-toluoyl chloride with phenyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (5\%) [55].
m.p. 166° [149], $165-166^{\circ}$ [62], $163-164^{\circ}$ [903]; Spectra (NA).
(4-Hydroxyphenyl)(4-methylphenyl)methanone
[134-92-9]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25 Syntheses
- Preparation by reaction of p-methylbenzoyl chloride with phenol in the presence of aluminium chloride [165].
- Preparation by reaction of p-toluic acid with phenol in the presence of polyphosphoric acid at 100° for $20 \mathrm{~min}(24 \%)$ [149].
- Preparation by Fries rearrangement of phenyl p-toluate,
- with aluminium chloride without solvent at 130° for 1 h , then 160° for 1 h (20%) or in refluxing chlorobenzene for 7.5 h (57\%) [28];
- with Nafion-H, a polymeric perfluorinated resin sulfonic acid, in refluxing nitrobenzene for 12 h (45\%) [38].
- Preparation by diazotization of 4-amino-4'-methylbenzophenone, followed by hydrolysis of the diazonium salt obtained (50\%) [983].
- Also refer to: [984-988].
m.p. $171-173^{\circ}$ [165], 170° [149], $166-167^{\circ}$ [983], $161-162^{\circ}[28]$;
${ }^{1} \mathrm{H}$ NMR [38], ${ }^{13} \mathrm{C}$ NMR [38].
(4-Hydroxyphenyl)[4-(methylthio)phenyl]methanone
[83888-61-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 244.31
Synthesis
- Preparation by reaction of p-(methylthio) benzoyl chloride with phenol in the presence of aluminium chloride [165].
m.p. $\quad 133-134^{\circ}[165] ; \quad \operatorname{Spectra}(N A)$.

(2-Hydroxyphenyl)(2-methoxyphenyl)methanone

 Syntheses

- Preparation from 2-iodophenyl 2-methoxybenzoate by treatment with n-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , followed by treatment with saturated aqueous ammonium chloride (93%) [58].
- Preparation by hydrogenolysis of 2-(benzyloxy)-2'-methoxybenzophenone (SM) in ethyl acetate in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at r.t. under atmospheric pressure (91%). SM was obtained by reaction of 2-(benzyloxy)benzaldehyde with 2-methoxyphenylmagnesium bromide in tetrahydrofuran [29].
- Also obtained by partial demethylation of $2,2^{\prime}$-dimethoxybenzophenone with boron trichloride in methylene chloride: first at -70°, then at r.t. for 30 min . From 2,2'-dimethoxybenzophenone, one methyl group is lost rapidly and a second somewhat more slowly [292].
- Also obtained (poor yield) by Fries rearrangement of phenyl o-anisate with aluminium chloride at 160° [897].
- Preparation by partial methylation of $2,2^{\prime}$-dihydroxybenzophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 5 h [989].
- Also refer to: [287].
oil [29,58]; m.p. 77° [989]; ${ }^{1} \mathrm{H}$ NMR [29,58], IR [58], MS [58,114].

(2-Hydroxyphenyl)(3-methoxyphenyl)methanone

[21554-73-4] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Syntheses

- Preparation from 2-methoxythioxanthen-9-one 10,10-dioxide (SM) by a three-step synthesis: SM by refluxing in 2% sodium hydroxide- 65% dioxane-water solution for 18 h gave the 2-(2-hydroxybenzoyl)-4-methoxyphenylsulfinic acid (68\%). The former by reaction with mercuric chloride in refluxing aqueous acetic acid for 4 h led to the 2-chloromercuri-2'-hydroxy-5-methoxybenzophenone (68\%). Removal of the chloromercury group was achieved with concentrated hydrochloric acid in refluxing ethanol for 2 h (83\%) [62].
- Also obtained by Fries rearrangement of phenyl m-anisate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h , then elimination of the solvent and heating at 150° for 3 h (34\%) [62].
- Also obtained by selective demethylation of 2,3'-dimethoxybenzophenone in the presence of boron trichloride in methylene chloride at r.t. for 30 min [341,343].
- Also obtained (poor yield) by reaction of 3-methoxybenzoyl chloride with anisole in the presence of aluminium chloride in refluxing carbon disulfide for 2 h [341].
- Also refer to: [897].
light yellow oil [62]; m.p. 40-42 [341]; b.p. . $_{0.5} 148-149^{\circ}$ [62];
${ }^{1} \mathrm{H}$ NMR [62,341], IR [62,341], UV [341].

(2-Hydroxyphenyl)(4-methoxyphenyl)methanone

[18733-07-8] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
 Syntheses

- Preparation from 2-iodophenyl p-anisate on treatment with n-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , followed by treatment with saturated aqueous ammonium chloride ($<18 \%$) [58].
- Preparation by Fries rearrangement of phenyl p-anisate in the presence of aluminium chloride [897].
- Also obtained by reaction of salicylaldehyde with p-iodoanisole by using a catalyst system of palladium chloride/lithium chloride in the presence of sodium carbonate in N,N-dimethyl-formamide at 100° for $6 \mathrm{~h}(81 \%)$ [51].
- Preparation by partial demethylation of $2,4^{\prime}$-dimethoxybenzophenone with aluminium chloride in chlorobenzene at $80-100^{\circ}$ [655].
- Also refer to: [626]. m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [51], UV [235], MS [51].

(3-Hydroxyphenyl)(4-methoxyphenyl)methanone

[103203-53-8] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Syntheses

- Obtained by saponification of 3-acetoxy-4'-methoxy-benzophenone with 2 N sodium hydroxide in refluxing dilute ethanol for $30 \mathrm{~min}(98 \%)$. The starting material was obtained by Friedel-Crafts acylation of anisole with m-acetoxybenzoyl chloride in the presence of aluminium chloride in carbon disulfide at 5° for $20 \mathrm{~h}(15 \%)$ [990].
- Also obtained by selective demethylation of 3,4'-dimethoxybenzophenone in the presence of boron trichloride in methylene chloride at r.t. for 30 min [341]. m.p. 133° [990], $130-133^{\circ}$ [341]; Spectra (NA).
(4-Hydroxyphenyl)(2-methoxyphenyl)methanone

[72090-61-0] \quad\begin{tabular}{l}
Syntheses

- Preparation by reaction of o-methoxybenzoic

acid with phenol in the presence of polyphos-

phoric acid at 100° for 20 min (61\%) [149] or at

$75-85^{\circ}$ for $3 \mathrm{~h}(56 \%)$ [346].
\end{tabular}
- Preparation by Fries rearrangement of phenyl o-methoxy-benzoate with polyphosphoric acid at 100° for $20 \mathrm{~min}(43 \%)$ [991].
- Also refer to: [155,897,992,993].
N.B.: Na salt [88].
m.p. $152-153^{\circ}$ [991], 149° [149], 147-149 ${ }^{\circ}$ [346];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 38490 \mathrm{M}$),
IR (Sadtler: standard n ${ }^{\circ} 65528$ K), UV [991].

(4-Hydroxyphenyl)(3-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by Fries rearrangement of phenyl m-anisate in the presence of aluminium chloride in refluxing carbon disulfide for 2 h , then elimination of the solvent and heating at 150° for 3 h (major product) [62].
- Preparation by reaction of m-methoxybenzoyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide between 0° and 5°, then at r.t. overnight (51\%) [903].
- Also obtained by reaction of m-methoxybenzoic acid with phenol in the presence of polyphosphoric acid at 100° for 20 min (15\%) [149].
- Also refer to: [897]. m.p. $141-142^{\circ}$ [903], 138° [149], 137-138 ${ }^{\circ}$ [62]; Spectra (NA).

(4-Hydroxyphenyl)(4-methoxyphenyl)methanone

[61002-54-8]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by reduction of 4-methoxy-4'-nitro-benzophenone with stannous chloride and hydrochloric acid, followed by diazotization of the resulting 4-amino-4'-methoxybenzophenone and hydrolysis of the diazonium salt [322].
- Preparation by Fries rearrangement of phenyl p-anisate,
- with aluminium chloride,
without solvent at 120° or at 160° [315];
in nitromethane at 20° for $170 \mathrm{~h}(35 \%)$ [991];
in nitrobenzene at 75° for $6 \mathrm{~h}(49 \%)$ [991] or at 80° for $1 \mathrm{~h}(21 \%)$ [994];
- with titanium tetrachloride,
without solvent at $95-100^{\circ}$ for 30 min (11\%) [991];
in nitromethane at 20° for $170 \mathrm{~h}(76 \%)$ [991];
- with stannic chloride in nitromethane at 20° for 170 h (14%) [991];
- with polyphosphoric acid in a water bath for $30 \mathrm{~min}(43 \%)$ [137].
- Also obtained by reaction of p-anisic acid with phenol in the presence of polyphosphoric acid by heating in a water bath for $30 \mathrm{~min}(34 \%)$ [137] or at 100° for 20 min (75\%) [149].
- Also obtained by reaction of p-hydroxybenzoic acid with anisole,
- in the presence of polyphosphoric acid in a boiling water bath for 20 min (25\%) [137];
- in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid (60:40) at 40°. Then, during 1.5 h , phosphorous trichloride was added and the mixture heated at 60° for $16 \mathrm{~h}(91 \%)$ [194];
- in the presence of boron trifluoride in nitrobenzene at 80° for $30 \mathrm{~min}(74 \%)$ [186].
- Preparation by Friedel-Crafts acylation,
- of phenol with p-methoxybenzoyl chloride in the presence of aluminium chloride [165];
- of anisole with p-(acetoxy)benzoyl chloride in the presence of aluminium chloride in carbon disulfide at 15° for 1 h . The saponification of the 4-(acetoxy)-4'-methoxybenzophenone formed with sodium hydroxide in refluxing dilute ethanol for 30 min gave the expected ketone (95%) [990].
- Preparation by hydrolysis of 4-(4-anisoyloxy)-4'-methoxybenzophenone with concentrated sulfuric acid on standing for $10 \mathrm{~min}(79 \%)$ [137].
- Preparation from 4-fluoro-4'-methoxybenzophenone by reaction under nitrogen with potassium hydroxide in aqueous dimethyl sulfoxide at 60° for 18 h [170].
- Also refer to: [309,897,902,918,943,992,993,995-999].
N.B.: Na [88] and K salts [170].
m.p. 155° [170], 154° [990], 153-154 ${ }^{\circ}$ [994], 151-152 ${ }^{\circ}$ [322], 151° [137,149,991], $150^{\circ} 6-151^{\circ} 8$ [194], $150-151^{\circ}$ [315], $114^{\circ} 5-145^{\circ} 5$ [165]. A typing error probably occurred in the published data.
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 38498$ M), IR (Sadtler: standard $\mathrm{n}^{\circ} 65536 \mathrm{~K}$), UV [991].

[2-(Acetyloxy)phenyl](4-hydroxyphenyl)methanone

[145723-29-1]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26
Synthesis

- Obtained by photooxygenation of 3-(4-hydroxyphenyl)-2-methylbenzofuran in methylene chloride at 5° (60%) [1000].
m.p. $\quad 125-126^{\circ}$ [1000]; ${ }^{1} \mathrm{H}$ NMR [1000], ${ }^{13} \mathrm{C}$ NMR [1000], IR [1000], UV [1000].

[4-(2-Bromoethoxy)phenyl](4-hydroxyphenyl)methanone

[79578-62-4]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
Synthesis

- Preparation by reaction of 4-hydroxybenzoic acid with β-bromophenetole [1001], in solution of a polyphosphoric acid $/ 85 \%$ phosphoric $\mathrm{acid} /$ zinc chloride mixture. The solution was heated to $50-60^{\circ}$, phosphorous trichloride was added during 1 h and the mixture heated for 20 h at $70^{\circ}(74 \%)$ [1002].
m.p. $\quad 139-142^{\circ}$ [1002], $136-138^{\circ}$ [1001]; ${ }^{1} \mathrm{H}$ NMR [1002], IR [1002], MS [1002].

(2,3-Dimethyl-5-nitrophenyl)(2-hydroxyphenyl)methanone

[110969-51-2] \quad\begin{tabular}{l}
Synthesis

- Obtained by Fries rearrangement of phenyl 2,3-dime-

thyl-5-nitrobenzoate with aluminium chloride without

solvent at 160° for $2 \mathrm{~h}(17 \%)$ [1003].
\end{tabular}

m.p. 126° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxyphenyl)methanone
[110969-52-3]

 $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 271.27
Synthesis

- Preparation by Fries rearrangement of phenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride without solvent at 160° for $2 \mathrm{~h}(55 \%)$ [1003].
m.p. 212° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].

(2,3-Dimethylphenyl)(4-hydroxyphenyl)methanone

[134994-27-7]

m.p. and Spectra (NA).
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis

- Refer to: [513].

(2,4-Dimethylphenyl)(2-hydroxyphenyl)methanone

[143824-87-7]

m.p. and Spectra (NA).
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis

- Preparation by reaction of salicylic acid with m -xylene in hydrofluoric acid at 60° for 4 h in an autoclave (79\%) [1004].

(2,4-Dimethylphenyl)(3-hydroxyphenyl)methanone

[74167-90-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses

- Preparation by reaction of m-anisoyl chloride with m -xylene in the presence of excess aluminium chloride at first at 20°, then at reflux for $2 \mathrm{~h}(79 \%)$ [119,899].
- Preparation by Friedel-Crafts acylation of m-xylene with m-nitrobenzoyl chloride, reduction of the 2,4-dimethyl-3'-nitrobenzophenone so obtained and diazotization of the 3^{\prime}-amino-2,4-dimethylbenzophenone formed, followed by hydrolysis of the diazonium salt [900].
- Also refer to: [912].
m.p. $116^{\circ}[119,899] ; \quad$ Spectra (NA).
(2,4-Dimethylphenyl)(4-hydroxyphenyl)methanone
[116173-30-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis
- Obtained by reaction of EKONOL ${ }^{(\mathrm{TM})}$, an aromatic polyester as Friedel-Crafts reagent, with m-xylene in triflic acid solution at 25° for 18 h (90\%) [922]. Similar results can be obtained using hydrofluoric acid/boron trifluoride or aluminium chloride in place of triflic acid [922].
- Also refer to: [997] (Japanese patent).
m.p. (NA); ${ }^{13} \mathrm{C}$ NMR [922], MS [922]; HPLC [922].
(2,5-Dimethylphenyl)(2-hydroxyphenyl)methanone $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Synthesis

- Obtained by reaction of salicylic acid with p-xylene in hydrofluoric acid at 60° for 4 h in an autoclave (18\%) [1004].
m.p. and Spectra (NA).

(2,6-Dimethylphenyl)(4-hydroxyphenyl)methanone

[61002-55-9]
m.p. 155° [902]; \quad Spectra (NA).

(3,4-Dimethylphenyl)(3-hydroxyphenyl)methanone

[62810-57-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Synthesis

- Preparation by diazotization of 3^{\prime}-amino-3,4-dimethyl-benzophenone followed by hydrolysis of the diazonium salt so obtained [900].
m.p. 116° [900]; \quad Spectra (NA).

(3,4-Dimethylphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Syntheses

- Preparation by reaction of 3,4-dimethylbenzoyl chloride with phenol in the presence of aluminium chloride [165].
- Preparation by Friedel-Crafts acylation of o-xylene with p-anisoyl chloride in the presence of aluminium chloride in a boiling water bath for 1 h (major product, 40% yield) [1005].
- Preparation by demethylation of 3,4-dimethyl-4'-methoxybenzophenone with boiling pyridinium chloride (80\%) [1005].
m.p. 131° [1005]; b.p. ${ }_{17} 265-266^{\circ}$ [1005]; Spectra (NA).
(3,5-Dimethylphenyl)(4-hydroxyphenyl)methanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
 Synthesis
- Preparation by Friedel-Crafts acylation of anisole with 3,5-dimethylbenzoyl chloride, followed by demethylation of the resulting 4'-methoxy-3,5-dimethylbenzophenone with pyridinium bromide [429].
m.p. and Spectra (NA).

(4-Ethylphenyl)(2-hydroxyphenyl)methanone

[82520-51-2] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

- in the presence of aluminium chloride between 25° and 60° for 2 h ;
- in the presence of ferric chloride at $130-140^{\circ}$ for 5 h .
b.p. $165-167^{\circ}[5] ; \quad d_{4}^{20}=1.1203[5] ; \quad n_{D}^{20}=1.6072[5] ; \quad \operatorname{Spectra}(N A)$.

(4-Ethylphenyl)(4-hydroxyphenyl)methanone

[83888-76-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Synthesis

- Preparation by reaction of p-ethylbenzoyl chloride with phenol in the presence of aluminium chloride [165].
m.p. $\quad 99-100^{\circ}[165] ; \quad$ Spectra (NA).

(4-Ethoxyphenyl)(4-hydroxyphenyl)methanone

[13380-65-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis

- Obtained (by-product) by action of ethyl iodide with 4,4'-dihydroxybenzophenone in the presence of potassium hydroxide in refluxing ethanol for 3 h [323].
- Also refer to: [1006-1009]. m.p. $146-147^{\circ}[323] ; \quad$ Spectra (NA).
(4-Hydroxyphenyl)(2-methoxy-5-methylphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 242.27
$$

 Synthesis

- Refer to: [683].
m.p. $\quad 160^{\circ}[683] ; \quad \operatorname{Spectra}(N A)$.
(2,3-Dimethoxyphenyl)(2-hydroxyphenyl)methanone
[129103-87-3]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Synthesis
- Preparation from 2-iodophenyl 2,3-dimethoxybenzoate by rearrangement with n-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , then treatment with saturated aqueous ammonium chloride (quantitative yield) [58].
m.p. $\quad 75-77^{\circ}$ [58]; ${ }^{1} \mathrm{H}$ NMR [58], MS [58].
(2,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone
[108475-95-2] $\quad \begin{aligned} & \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 258.27 \\ & \text { Synthesis }\end{aligned}$

2-methoxybenzoyl chloride with resorcinol dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 65\%) [1010,1011].

- Also refer to: [684].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010,1011].

(2,4-Dimethoxyphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Synthesis

- Preparation by saponification of 3'-(acetyloxy)-2,4-di-methoxybenzophenone (SM) with sodium hydroxide in refluxing dilute ethanol for 30 min [990]. SM was obtained by Friedel-Crafts acylation of resorcinol dimethyl ether with m-acetoxybenzoyl chloride in the presence of aluminium chloride in carbon disulfide at 0° for $20 \mathrm{~h}(10 \%)$.
m.p. 163° [990]; $\operatorname{Spectra}(N A)$.

(2,4-Dimethoxyphenyl)(4-hydroxyphenyl)methanone

[41351-30-8]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation by Friedel-Crafts acylation of resorcinol dimethyl ether with p-hydroxybenzoic acid,
- in the presence of zinc chloride and phosphorous oxychloride at $60-65^{\circ}$ for $1.5 \mathrm{~h}(71 \%)$ [1012] or in nitrobenzene at 60° for $2-3 \mathrm{~h}$ [1013], (64\%) [1014], according to the method [626];
- in the presence of polyphosphoric acid [429].
- Also obtained [610] according to the method of [1015].
- Also refer to: [592,625,1016,1017].
N.B.: Cs salt $[1013,1017]$.
m.p. $138-139^{\circ}$ [1014], $135-137^{\circ}$ [1013], $134-136^{\circ}$ [1012];
${ }^{1} \mathrm{H}$ NMR [1012-1014], ${ }^{13} \mathrm{C}$ NMR [1014],
IR [1012-1014]; TLC [1012].
(2,5-Dimethoxyphenyl)(2-hydroxyphenyl)methanone

[183106-14-1] \quad\begin{tabular}{l}
Synthesis

- Obtained by partial demethylation of 2, 2', 5-trimethoxy-

benzophenone,

- with boron tribromide in methylene chloride at 0°

for $1.5 \mathrm{~h}(50 \%)$ [395];
\end{tabular}
- with boron trichloride in methylene chloride at 0° for $3 \mathrm{~h}(50 \%)$ [395];
- with boron trifluoride-etherate in refluxing benzene for 6 h (40%) or in refluxing toluene for 4 h (40\%) [395];
- with beryllium chloride in refluxing benzene for $8-10 \mathrm{~h}(60 \%)$ or in refluxing toluene for 5 h (60\%) [395].
N.B.: In these experiments, only the reactions using boron halides were carried out under nitrogen atmosphere.

$$
\text { m.p. } \quad 98-100^{\circ} \text { [395]; }{ }^{1} \mathrm{H} \text { NMR [395], IR [395], UV [395], MS [395]. }
$$

(2,6-Dimethoxyphenyl)(2-hydroxyphenyl)methanone

m.p. $120^{\circ} 5-121^{\circ} 5$ [58]; ${ }^{1} \mathrm{H}$ NMR [58], IR [58], MS [58]. 258.27

(3,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone

(3,4-Dimethoxyphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Synthesis

- Obtained by condensation of veratric acid with phenol [1018].
- Also refer to: [1019].
m.p. $\quad 166-167^{\circ}[1018] ; \quad$ Spectra (NA).

(3,5-Dimethoxyphenyl)(4-hydroxyphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 258.27
$$

Synthesis

- Preparation by Friedel-Crafts acylation of phenol with 3,5-dimethoxybenzoyl chloride [429].
m.p. and Spectra (NA).

(2-Hydroxyphenyl)[2-(methoxymethoxy)phenyl]methanone

[59410-99-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Synthesis

- Preparation by reaction of dimethoxymethane with $2,2^{\prime}$-di-hydroxybenzophenone in the presence of p-toluenesulfonic acid and a "Linde" type $3 \AA$ molecular sieve in refluxing methylene chloride overnight under nitrogen (69\%) [1020].
m.p. $43^{\circ} 5$ [1020]; ${ }^{1} \mathrm{H}$ NMR [1020].

(2-Hydroxyphenyl)[4-(methoxymethoxy)phenyl]methanone

[31772-30-2]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27

Synthesis

- Preparation by reaction of chloromethyl methyl ether with $2,4^{\prime}$-dihydroxybenzophenone monosodium salt (4') in toluene at r.t. overnight (64\%) [1021].
oil [1021]; b.p. (NA); IR [1021].

[4-(Dimethylamino)phenyl](3-hydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 241.29

Synthesis

- Preparation by heating 3-methoxycarbonyloxybenzoic acid anilide and N, N dimethylaniline in the presence of phosphorous oxychloride on a water bath for $4 \mathrm{~h}(50 \%)$ [1022].
m.p. $\quad 185-187^{\circ}[1022] ; \quad$ Spectra (NA).

[4-(Dimethylamino)phenyl](4-hydroxyphenyl)methanone

Syntheses

- Preparation by demethylation of 4-(dimethylamino)-4'-methoxybenzophenone (SM) with aluminiumbromide
in refluxing benzene for 4 h (95\%) [18]. SM was obtained by condensation of
N -(p-anisoyl)aniline with dimethylaniline [1023].
- Preparation by heating p-methylcarbonatobenzanilide and N,N-dimethylaniline in the presence of phosphorous oxychloride on a water bath for 4 h (60\%) [1022].
- Also obtained by treating benzophenone-4,4'-bis(trimethylammonium chloride) with sodium methoxide in refluxing methanol for 3 h [1024].
m.p. 200° [18], $199-200^{\circ}$ [1022,1023], $198-200^{\circ}$ [1024]; \quad Spectra (NA).

[2-(Acetyloxy)-5-methoxyphenyl](2-hydroxyphenyl)methanone

[83570-59-6] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28
 Synthesis

- Obtained by adding silica gel to a solution of 2'-acetoxy-2-hydroxy-5-methoxybenzophenone in ethyl ether, then elimination of the solvent, and the resulting powder allowed to stand at r.t. during $42 \mathrm{~h}(75 \%)$ [1025]. There is a transacylation on silica gel.
m.p. $\quad 70-73^{\circ}$ [1025]; ${ }^{1} \mathrm{H}$ NMR [1025], IR [1025].
(2-Hydroxyphenyl)[4-(1-methylethyl)phenyl]methanone
[35839-45-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Synthesis
- Preparation by reaction of salicyloyl chloride with cumene in nitrobenzene in the presence of aluminium chloride, first between 4° and 8° for 50 min , then at 40° for 3 h and at r.t. overnight (60\%) [889,891].
- Also refer to: [890].
b.p. ${ }_{2.25} 165-167^{\circ}[889,891] ; \quad$ Spectra (NA).

(4-Hydroxyphenyl)(4-propylphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Synthesis

- Preparation by Friedel-Crafts acylation of phenol with p-propylbenzoyl chloride [175].
m.p. (NA); IR [174,175].

(2-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone

[46863-20-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
 Syntheses

- Obtained by photo-Fries rearrangement of phenyl mesitoate(phenyl 2,4,6-trimethylbenzoate),
- in methanol (39%) or in methanol in the presence of β-cyclodextrin (99\%) [65];
- in pentane (19\%) [64];
- in benzene at 40° for $332 \mathrm{~h}(9 \%)$ or in hexane at 40° for $109 \mathrm{~h}(6 \%)$ [72].
- Also obtained from mesityl o-methoxyphenyl ketone (2 '-methoxy-2,4,6-trimethylbenzophenone) by cleavage of methoxy group with hydriodic acid or with a binary mixture prepared from magnesium and iodine in refluxing toluene/butyl ether solution (poor yield) [1026].
- Preparation by reaction of 2-methoxybenzoyl chloride with mesitylene in the presence of aluminium chloride in benzene (65\%) [102].
m.p. $\quad 94-95^{\circ}[102], 82^{\circ}[94,95], 81-83^{\circ}[72], 81-82^{\circ}[1026]$;
${ }^{1} \mathrm{H}$ NMR [94,95,101,102], ${ }^{13} \mathrm{C}$ NMR [101],
IR [94,95,102,1026]; thermal behaviour [94,95].

(3-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone

[76981-50-5]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Syntheses

- Preparation by reaction of m-anisoyl chloride with mesitylene (1,3,5-trimethylbenzene) in the presence of an excess of aluminium chloride: first at 20°, then at reflux for $2 \mathrm{~h}(82 \%)$ [119].
- Preparation by Friedel-Crafts acylation of mesitylene with m-anisoyl chloride, followed by demethylation of the 3 '-methoxy-2,4,6-trimethylbenzophenone so obtained with pyridinium bromide [429].
m.p. 130° [119]; $\operatorname{Spectra}(\mathrm{NA})$.

(4-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone

[2004-55-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Syntheses

- Preparation by Friedel-Crafts acylation of phenol with mesitoyl chloride in the presence of aluminium chloride in carbon disulfide [174,175].
- Also obtained by photo-Fries rearrangement of phenyl mesitoate (phenyl 2,4,6-trimethylbenzoate),
- in methanol (46\%) [65];
- in pentane (24\%) [64];
- in benzene at 40° for $332 \mathrm{~h}(12 \%)$ [72];
- in hexane at 40° for $109 \mathrm{~h}(11 \%)$ [72].
m.p. $\quad 167-168^{\circ}$ [72]; ${ }^{1} \mathrm{H}$ NMR [72], IR [72,174,175], UV [72].
(2-Hydroxyphenyl)(2,3,4-trimethoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis
- Obtained, in mixture with 2-hydroxy-2',3,4-trimethoxy-benzophenone, by reaction of 2-methoxybenzoyl chloride with pyrogallol trimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 56-59\%) [1010,1011].
- Also refer to: [1027].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].
(2-Hydroxyphenyl)(2,4,5-trimethoxyphenyl)methanone
[147188-07-6]

 $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis
- Obtained, in mixture with 2-hydroxy-2',4,5-trimethoxy-benzophenone, by reaction of 2-methoxybenzoyl chloride with 1,2,4-trimethoxybenzene in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 56\%) [1010].
- Also refer to: [1011].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].

(2-Hydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone

[147188-05-4]	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
3	Synthesis
	- Obtained, in mixture with 2-hydroxy-2',4,6-trimethoxy-benzophenone, by reaction of 2-methoxybenzoyl chloride with phloroglucinol trimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 59\%) [1010]. - Also refer to: [1011].

m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].
(3-Hydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Preparation by reaction of m-hydroxybenzonitrile with phloroglucinol trimethyl ether (Hoesch reaction) [429].
m.p. and Spectra (NA).
(4-Hydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone
[41351-32-0] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$ mol.wt. 288.30

Synthesis

- Refer to: [429].
m.p. and Spectra (NA).
(4-Hydroxyphenyl)(3,4,5-trimethoxyphenyl)methanone

[14938-63-7] | Synthesis |
| :--- |
| - Preparation by Friedel-Crafts acylation |
| of phenol with 3,4,5-trimethoxybenzoyl |
| chloride in nitrobenzene in the presence |
| of aluminium chloride, first at 10°, then |
| for 24 h at r.t. (45%) [1028]. |

(4-Butylphenyl)(4-hydroxyphenyl)methanone

m.p. and Spectra (NA).

[4-(1,1-Dimethylethyl)phenyl](2-hydroxyphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
Synthesis

- Refer to: [84].
m.p. and Spectra (NA).

[4-(1,1-Dimethylethyl)phenyl](4-hydroxyphenyl)methanone

[55044-96-7]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 254.33

Synthesis

- Preparation by reaction of p-tert-butylbenzoyl chloride with phenol in the presence of aluminium chloride [165].
m.p. $130-131^{\circ}$ [165]; Spectra (NA).
[4-(1,1-Dimethylethoxy)phenyl](4-hydroxyphenyl)methanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Obtained by decomposition of the benzophenone-4,4'-bis(trimethylammonium chloride) with sodium tert-butoxide in refluxing alcohol for 3 h [1024].
m.p. 85° [1024]; \quad Spectra (NA).
(4-Hydroxyphenyl)(4-pentylphenyl)methanone
[64357-91-1] $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ mol.wt. 268.36

Synthesis

- Preparation by reaction of 4-pentylbenzoyl chloride with phenol in the presence of aluminium chloride in carbon disulfide $[174,175]$.
m.p. (NA); IR [174,175].

(3-Hydroxyphenyl)[4-methoxy-2-methyl-5-(1-methylethyl)phenyl]methanone

$$
[109250-48-8] \quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad \text { mol.wt. } 284.36
$$

Synthesis

- Obtained by saponification of 3^{\prime}-acetoxy-4-methoxy-2-methyl-5-isopropylbenzophenone (SM) with sodium hydroxide in dilute ethanol at reflux for $30 \mathrm{~min}(73 \%)$. SM was prepared by Friedel-Crafts acylation of thymol methyl ether with m -acetoxybenzoyl chloride in the presence of aluminium chloride in carbon disulfide at 0° for 20 h (12\%) [990].
m.p. $\quad 106^{\circ}$ [990]; $\operatorname{Spectra}(N A)$.
(4-Hydroxyphenyl)[4-methoxy-2-methyl-5-(1-methylethyl)phenyl]methanone
[109250-49-9]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$
Synthesis
- Obtained by saponification of 4^{\prime}-ace-toxy-4-methoxy-2-methyl-5-isopropylbenzophenone (SM) with sodium hydroxide in dilute ethanol at reflux for $30 \mathrm{~min}(80 \%)$. SM was prepared by Friedel-Crafts acylation of thymol methyl ether with p-acetoxy-benzoyl chloride in the presence of aluminium chloride in carbon disulfide at 15° for $3 \mathrm{~h}(17 \%)$ [990].
b.p. ${ }_{16} 265-268^{\circ}$ [990]; m.p. 65° [990]; Spectra (NA).
(4-Hydroxyphenyl)[6-methoxy-2-methyl-3-(1-methylethyl)phenyl]methanone
[109250-50-2]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Synthesis
- Obtained by saponification of 4^{\prime}-ace-toxy-6-methoxy-2-methyl-3-isopropylbenzophenone (SM) with sodium hydroxide in dilute ethanol at reflux for $30 \mathrm{~min}(79 \%)$. SM was prepared by Friedel-Crafts acylation of p-thymol methyl ether (3-methyl-4-isopropylanisole) with p-acetoxybenzoyl chloride in the presence of aluminium chloride in carbon disulfide at 15° for $3 \mathrm{~h}(7 \%)$ [990].
b.p. ${ }_{0.3} 212-213^{\circ}$ [990]; Spectra (NA).
(2,4-Dimethoxy-3-propylphenyl)(2-hydroxyphenyl)methanone

[115296-03-2] \quad\begin{tabular}{l}
Synthesis

- Obtained (poor yield) by reaction of o-anisoyl

chloride with 1,3-dimethoxy-2-propylbenzene
\end{tabular}

in methylene chloride in the presence of aluminium chloride, first at 0° for 2 h then at r.t. for $1 \mathrm{~h}(13 \%)$ [1029].
oil [1029]; b.p. and Spectra (NA).

(2-Hydroxyphenyl)(2-phenoxyphenyl)methanone

m.p. and Spectra (NA).
(3-Hydroxyphenyl)(4-phenoxyphenyl)methanone
[76981-53-8] $\quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32

- Preparation by reaction of m-anisoyl chloride with diphenyl oxide in the presence of an excess of aluminium chloride: first at 20°, then at reflux for $2 \mathrm{~h}(46 \%)$ [119].
m.p. $\quad 142^{\circ}$ [119]; \quad Spectra (NA).
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32
Synthesis
- Refer to: Chem. Abstr., 127, 205428h (1997).

H Synthesis

(4-Hydroxyphenyl)(4-phenoxyphenyl)methanone

[78930-16-2]

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32 Synthesis

- Preparation from 4-fluoro-4'-phenoxy-benzophenone by reaction under nitrogen with potassium hydroxide in aqueous dimethyl sulfoxide at 60° for 18 h [170].
- Also refer to: [943].
N.B.: K salt [170].
m.p. $143^{\circ}[170] ; \quad \operatorname{Spectra}(N A)$.

[2-[(6-Bromohexyl)oxy]phenyl](4-hydroxyphenyl)methanone

[31772-32-4] $\quad \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrO}_{3} \quad$ mol.wt. 377.28
 Synthesis

- Preparation by heating 2-(6-bromohexyloxy)-4'-methoxy-benzophenone in refluxing aqueous acetic acid in the presence of a few concentrated sulfuric acid for $15 \mathrm{~min}(95 \%)$ [1021].
oil [1021]; b.p. (NA); IR [1021].

[4-[(6-Bromohexyl)oxy]phenyl](2-hydroxyphenyl)methanone

$$
\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrO}_{3} \quad \text { mol.wt. } 377.28
$$

Synthesis

- Preparation by reaction of 1,6-dibromohexane with 2,4 '-dihydroxybenzophenone in ethanol in the presence of potassium hydroxide, first at r.t. for 1 h then at reflux for 40 min (63\%) [1021].
yellow oil [1021]; b.p. (NA); IR [1021].
[4-[(7-Bromoheptyl)oxy]phenyl](2-hydroxyphenyl)methanone

$$
\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrO}_{3} \quad \text { mol.wt. } 391.30
$$

Synthesis

- Preparation by reaction of 1,7-dibromoheptane with 2,4'-dihydroxybenzophenone in ethanol in the presence of potassium hydroxide, first at r.t. for 1 h then at reflux for 40 min [1021].
yellow oil [1021]; b.p. (NA); IR [1021].

[4-(Heptyloxy)phenyl](2-hydroxyphenyl)methanone

[4-[(8-Bromooctyl)oxy]phenyl](2-hydroxyphenyl)methanone

$\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{O}$
yellow oil [1021]; b.p. (NA); IR [1021].
[4-[(9-Bromononyl)oxy]phenyl](2-hydroxyphenyl)methanone

yellow oil [1021]; b.p. (NA); IR [1021].

[4-[(10-Bromodecyl)oxy]phenyl](2-hydroxyphenyl)methanone

$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrO}_{3} \quad$ mol.wt. 433.39

Synthesis

- Preparation by reaction of 1,10 -dibromodecane with $2,4^{\prime}$-dihydroxybenzophenone in ethanol in the presence of potassium hydroxide, first at r.t. for 1 h , then at reflux for 40 min (68\%) [1021].

[4-[(11-Bromoundecyl)oxy]phenyl](2-hydroxyphenyl)methanone
$\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{O}$
yellow oil [1021]; b.p. (NA); IR [1021].
[4-[(12-Bromododecyl)oxy]phenyl](2-hydroxyphenyl)methanone
yellow crystals [1021]; m.p. (NA); IR [1021].

(4-Dodecylphenyl)(2-hydroxyphenyl)methanone

[35698-22-7]

$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2} \quad$ mol.wt. 366.54
Synthesis

- Obtained by reaction of 2-hydroxybenzoyl chloride with dodecylbenzene in nitrobenzene in the presence of aluminium chloride for 4 h at 40° then 16 h at r.t. (16%) [889,891].
b.p. . $_{0.1} 175-195^{\circ}$ [889,891]; Spectra (NA).

[4-(Hexadecyloxy)phenyl](4-hydroxyphenyl)methanone

m.p. and Spectra (NA).

2.1.3 Substituents Located on Both Rings

(2,4-Dichlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone
[34171-61-4] $\quad \mathrm{C}_{13} \mathrm{H}_{5} \mathrm{Cl}_{5} \mathrm{O}_{2} \quad$ mol.wt. 370.45

Synthesis

- Preparation by Fries rearrangement of 2,4,5-trichlorophenyl 2,4-dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 81-82^{\circ}[458] ; \quad$ Spectra (NA).
(3,4-Dichlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone
[34171-60-3] $\quad \mathrm{C}_{13} \mathrm{H}_{5} \mathrm{Cl}_{5} \mathrm{O}_{2} \quad$ mol.wt. 370.45

Synthesis

- Preparation by Fries rearrangement of 2,4,5-trichlorophenyl 3,4-dichlorobenzoate with aluminium chloride for
- 30 min at $150-160^{\circ}$ [458].
m.p. $217-218^{\circ}[458] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(4-Bromophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone

m.p. $\quad 185-186^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.
(2-Chlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone
[34174-12-4] $\quad \mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 336.00

Synthesis

- Preparation by Fries rearrangement of 2,4,5-trichlorophenyl o-chlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 94-95^{\circ}$ [458]; $\quad \operatorname{Spectra}(N A)$.
(4-Chlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone
[34171-59-0]
m.p. $\quad 176-177^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.

(2,3-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}$
mol.wt. 336.00
Synthesis

- Obtained by Fries rearrangement of 2,3-dichlorophenyl 2,4-dichlorobenzoate with aluminium chloride in chlorobenzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $164-165^{\circ}$ [480]; $\operatorname{Spectra}(\mathrm{NA})$.

(2,3-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone

[72482-75-8]

$$
\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad \text { mol.wt. } 336.00
$$

Synthesis

- Preparation by demethylation of $2,3,3^{\prime}, 4^{\prime}$-tet-rachloro-4-methoxybenzophenone (SM) with aluminium chloride,
- in refluxing methylene chloride for overnight [475];
- in refluxing benzene for 5 h , then at r.t. for 18 h [476].

SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with 3,4-dichlorobenzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475] or in ethylene dichloride at 60° for 1 h [476].
m.p. $179-180^{\circ}[476] ; \quad$ Spectra (NA).
(2,4-Dichloro-6-hydroxyphenyl)(2,4-dichlorophenyl)methanone
[34174-05-5]

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 336.00
Synthesis

- Preparation by Fries rearrangement of 3,5-dichlorophenyl 2,4-dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 105-106^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.

(2,4-Dichloro-6-hydroxyphenyl)(2,5-dichlorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 336.00
Synthesis

- Preparation by Fries rearrangement of 3,5-dichlorophenyl 2,5 -dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 107-108^{\circ}$ [458]; \quad Spectra (NA).
(2,4-Dichloro-6-hydroxyphenyl)(2,6-dichlorophenyl)methanone
[34786-96-4]

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 336.00
Synthesis
- Preparation by Fries rearrangement of 3,5-dichlorophenyl 2,6-dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 110-111^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.
(2,4-Dichloro-6-hydroxyphenyl)(3,4-dichlorophenyl)methanone
[31656-23-2]

3,5-dichlorophenyl 3,4-dichlorobenzoate
with aluminium chloride first 10 min at
$140-150^{\circ}$, then for 30 min at $150-160^{\circ}$
(80\%) [458].

m.p. $138-139^{\circ}[458] ; \quad$ Spectra (NA).

(2,5-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 336.00
Synthesis

- Obtained by Fries rearrangement of 2,5-dichlorophenyl 2,4-dichlorobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $\quad 147-148^{\circ}$ [480]; \quad Spectra (NA).

(2,5-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone

[34183-03-4]
m.p. $\quad 160-161^{\circ}[480] ; \quad$ Spectra (NA).

(2,6-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone

[34183-00-1]

- in chlorobenzene for 20 min at $140-150^{\circ}$ or in nitro-benzene for 24 h at 75° [480];
- without solvent, first for 10 min at $140-150^{\circ}$, then for 30 min at $150-160^{\circ}$ (by-product) [458].
m.p. $\quad 180-181^{\circ}[458,480] ; \quad$ Spectra (NA).

(3,5-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone

[34182-98-4]
$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 336.00

Synthesis

- Preparation by Fries rearrangement of 2,6-dichlorophenyl 2,4-dichlorobenzoate with aluminium chloride in chloro-benzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].
- Also refer to: [468] (Japanese patent).
m.p. $183^{\circ} 5-184^{\circ} 5$ [480]; Spectra (NA).

(3,5-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone

[34189-57-6]

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 336.00
Synthesis

- Preparation by Fries rearrangement of 2,6-dichlorophenyl 3,4-dichlorobenzoate with aluminium chloride,
- in chlorobenzene for 20 min at $140-150^{\circ}$ (89\%) [480];
- in nitrobenzene for 24 h at $75^{\circ}(89 \%)$ [480].
m.p. $202-203^{\circ}[480] ; \quad \operatorname{Spectra}(\mathrm{NA})$.
(3,6-Dichloro-2-hydroxyphenyl)(2,4-dichlorophenyl)methanone
[34171-57-8] $\quad \mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 336.00

Synthesis

- Preparation by Fries rearrangement of 2,5-dichlorophenyl 2,4-dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $115-116^{\circ}$ [458]; $\quad \operatorname{Spectra}(N A)$.
(4-Bromophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone
[34174-06-6] $\quad \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}_{2} \quad \mathrm{~mol} . w t .346 .01$

Synthesis

- Preparation by Fries rearrangement of 3,5-dichlorophenyl p-bromobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 157-158^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.

(4-Bromophenyl)(2,6-dichloro-4-hydroxyphenyl)methanone

[34183-12-5]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 346.01
Synthesis

- Obtained by Fries rearrangement of 3,5-dichlorophenyl p-bromobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $147-148^{\circ}$ [480]; $\operatorname{Spectra}(N A)$.
(4-Bromophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 346.01
Synthesis
- Preparation by Fries rearrangement of 2,6-dichlorophenyl p-bromobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $\quad 173-174^{\circ}$ [480]; \quad Spectra (NA).
(4-Bromophenyl)(2,5-difluoro-4-hydroxyphenyl)methanone
[192437-36-8]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrF}_{2} \mathrm{O}_{2} \quad$ mol.wt. 313.10
Synthesis
- Preparation by demethylation of 4'-bromo-2,5-difluoro-4-methoxybenzophenone (SM) with 62% aqueous hydrobromic acid in refluxing acetic acid for 13 h (95%). SM was obtained by Friedel-Crafts acylation of 2,5-di-fluoroanisole with 4-bromobenzoyl chloride in nitrobenzene in the presence of aluminium chloride, first at temperature $<6^{\circ}$, then at r.t. overnight (80%).
- Refer to: Chem. Abstr., 127, 108766j (1997).
- Also refer to: Chem. Abstr., 127, 108921f (1997). m.p. and Spectra (NA).
(4-Chlorophenyl)(5-fluoro-2-hydroxy-3-nitrophenyl)methanone
[85052-27-3]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClFNO}_{4} \quad$ mol.wt. 295.65
Synthesis
- Preparation by reaction of 60% nitric acid with 4'-chloro-5-fluoro-2-hydroxybenzophenone in acetic acid at r.t. for $30 \mathrm{~min}(84 \%)$ [472].
m.p. (NA); yellow crystals [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472];

TLC [472].

(2,3-Dichloro-4-hydroxyphenyl)(2-fluorophenyl)methanone

[72498-54-5]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FO}_{2} \quad$ mol.wt. 285.10
Synthesis

- Preparation by demethylation of 2,3-dichloro-2'-fluoro-4-methoxybenzophenone (SM) with aluminium chloride in refluxing benzene for 5 h [476], (89\%) [1031] or in refluxing methylene chloride overnight [475]. SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with o-fluorobenzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475] or in ethylene dichloride for 2 h [476].
- Also refer to: [1032].
m.p. $128-131^{\circ}[476,1031] ; \quad$ Spectra (NA).

(2,3-Dichloro-4-hydroxyphenyl)(3-fluorophenyl)methanone

[72482-40-7]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FO}_{2} \quad$ mol.wt. 285.10
Syntheses

- Preparation by demethylation of 2,3-dichloro-3'-fluoro-4-methoxybenzophenone (SM) with aluminium chloride in refluxing methylene chloride overnight. SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with m-fluorobenzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475].
- Preparation by reaction of m-fluorobenzoyl chloride with 2,3-dichloroanisole in the presence of aluminium chloride [476]. Here, in this process, their is simultaneously acylation and demethylation in one step. m.p. and Spectra (NA).

(2,3-Dichloro-4-hydroxyphenyl)(4-fluorophenyl)methanone

[62967-10-6]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FO}_{2} \quad$ mol.wt. 285.10
Synthesis

- Preparation by demethylation of 2,3-dichloro-4'-fluoro-4-methoxybenzophenone (SM),
- with aluminium chloride in refluxing methylene chloride overnight (72\%) [475];
- with pyridinium chloride at 200° for 1 h [476].

SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with p-fluorobenzoyl chloride in the presence of aluminium chloride in methylene chloride first at 5°, then at reflux for $2 \mathrm{~h}(50 \%)$ [475] or in ethylene dichloride at 60° for 1 h [476].

- Also refer to: [1031].
m.p. $\quad 155-159^{\circ}[475] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(5-Chloro-2-hydroxy-3-nitrophenyl)(4-chlorophenyl)methanone

 $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{4}-$ mol.w. 312.1

Synthesis

- Preparation by reaction of 60% nitric acid with 4 ',5-di-chloro-2-hydroxybenzophenone in the presence of one drop of concentrated sulfuric acid at r.t. for $25 \mathrm{~min}(92 \%)$ [472].
m.p. (NA); crystals [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].

(2,3-Dichloro-4-hydroxyphenyl)(4-nitrophenyl)methanone

[92285-28-4]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{4} \quad$ mol.wt. 312.11
Synthesis

- Preparation by demethylation of 2,3-dichloro-4-methoxy-4'-nitrobenzophenone (SM) with aluminium
chloride in refluxing ethylene dichloride for 1.5 h (95\%) [979] or in refluxing methylene chloride overnight [475]. SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with p-nitrobenzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475].

m.p. 201-204 ${ }^{\circ}$ [979]; $\operatorname{Spectra}(N A)$.

(2-Chloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone
[34294-62-7]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 301.56
Synthesis

- Obtained by Fries rearrangement of m-chlorophenyl 2,4-dichlorobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $\quad 163-164^{\circ}[480] ; \quad \operatorname{Spectra}(N A)$.
(3-Chloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone
[34182-96-2]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 301.56
Synthesis
- Preparation by Fries rearrangement of o-chlorophenyl 2,4-dichlorobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $\quad 144-145^{\circ}[480] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(5-Chloro-2-hydroxyphenyl)(2,4-dichlorophenyl)methanone

[72089-86-2]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$
mol.wt. 301.56
Synthesis

- Preparation by Fries rearrangement of p-chlorophenyl 2,4-dichlorobenzoate with aluminium chloride at 190° for 15 min [569].
m.p. $\quad 96-97^{\circ}[569] ; \quad \operatorname{Spectra}(N A)$.
(5-Chloro-2-hydroxyphenyl)(3,4-dichlorophenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 301.56
$$

Synthesis

- Preparation by reaction of 3,4-dichlorobenzoyl chloride with p-chlorophenol in the presence of aluminium chloride, first at 100° for 3 min , then at $178-180^{\circ}$ for 23 min (53\%) [484].
m.p. $\quad 92-92^{\circ} 5[484] ; \quad$ Spectra (NA).
(2-Chlorophenyl)(2,3-dichloro-4-hydroxyphenyl)methanone
[72482-80-5]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 301.56
Synthesis
- Preparation by demethylation of 2,2',3-trichloro-4-methoxybenzophenone (SM) with aluminium chloride in refluxing benzene for 5 h , then at r.t. for 18 h .
- SM was obtained by reaction of o-chlorobenzoyl chloride with 2,3-dichloroanisole in ethylene dichloride in the presence of aluminium chloride at 60° for 1 h [476]. m.p. $74-77^{\circ}$ [476]; Spectra (NA).

(2-Chlorophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone

[34174-11-3]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$
Synthesis

- Preparation by Fries rearrangement of 3,5-dichlorophenyl o-chlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 72-73^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.

(2-Chlorophenyl)(3,5-dichloro-2-hydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 301.56
$$

Synthesis

- Preparation by reaction of o-chlorobenzoyl chloride with 2,4-dichlorophenol in the presence of aluminium chloride at 180° [484].
m.p. $\quad 92^{\circ}$ [484]; \quad Spectra (NA).

(2-Chlorophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone

[34183-18-1] $\quad \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 301.56
 Synthesis

- Preparation by Fries rearrangement of 2,6-dichlorophenyl o-chlorobenzoate with aluminium chloride in chlorobenzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $\quad 162-163^{\circ}[480] ; \quad$ Spectra (NA).

(3-Chlorophenyl)(2,3-dichloro-4-hydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 301.56
$$

 Synthesis

- Preparation by demethylation of 2,3,3'-trichloro-4-methoxy-benzophenone (SM) with aluminium chloride in refluxing methylene chloride overnight. SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with m-chloro-benzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475].
m.p. and Spectra (NA).

(4-Chlorophenyl)(2,3-dichloro-4-hydroxyphenyl)methanone

[72498-76-1] $\quad \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 301.56

Synthesis

- Preparation by demethylation of 2,3,4'-tri-chloro-4-methoxybenzophenone (SM) with aluminium chloride in refluxing methylene chloride overnight. SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with p-chlorobenzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475].
- Also refer to: [476]. m.p. and Spectra (NA).

(4-Chlorophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone

[34171-58-9]
m.p. $\quad 161-162^{\circ}[458] ; \quad$ Spectra (NA).

(4-Chlorophenyl)(2,6-dichloro-4-hydroxyphenyl)methanone

$$
[34183-11-4] \quad \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 301.56
$$

Synthesis

- Obtained by Fries rearrangement of 3,5-dichlorophenyl p-chlorobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $137^{\circ} 5-138^{\circ}$ [480]; Spectra (NA).

(4-Chlorophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone

[34182-97-3] $\quad \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$ mol.wt. 301.56

Synthesis

- Preparation by Fries rearrangement of 2,6-dichlorophenyl p-chlorobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $179-180^{\circ}$ [480]; Spectra (NA).

(2,6-Difluorophenyl)(3-fluoro-4-hydroxyphenyl)methanone

m.p. (NA); MS [512].

(2-Bromophenyl)(5-chloro-2-hydroxyphenyl)methanone

[92739-90-7] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{2} \quad$ mol.wt. 311.56

Synthesis

- Refer to: [1033].
m.p. and Spectra (NA).
(4-Bromophenyl)(3-chloro-4-hydroxyphenyl)methanone
[161582-04-3]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{2}$
mol.wt. 311.56
Synthesis
- Refer to: [512].
m.p. and Spectra (NA).

(3-Bromophenyl)(5-fluoro-2-hydroxyphenyl)methanone

[62433-28-7] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrFO}_{2} \quad$ mol.wt. 295.11

Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl m-bromobenzoate with aluminium chloride at 130° for 2 h (91\%) [1034].
m.p. $\quad 159-160^{\circ}[1034] ; \quad$ Spectra (NA).
(4-Bromophenyl)(2-fluoro-4-hydroxyphenyl)methanone
[161581-99-3] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrFO}_{2}$ mol.wt. 295.11

Synthesis

- Preparation by demethylation of 4^{\prime}-bromo-2-fluoro-4-methoxybenzophenone (SM) with 62% aqueous hydrobromic acid in acetic acid at 125°. SM was obtained by Friedel-Crafts acylation of m-fluoroanisole with p-bromobenzoyl chloride in nitrobenzene in the presence of aluminium chloride [512].
- Also refer to: [1035] and Chem. Abstr., 127, 108766j (1997).
m.p. (NA); MS [512].

(4-Bromophenyl)(3-fluoro-4-hydroxyphenyl)methanone

[161581-98-2]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrFO}_{2} \quad$ mol.wt. 295.11

Synthesis

- Preparation by demethylation of 4^{\prime}-bromo-3-fluoro-4-methoxybenzophenone (SM) with 62% aqueous hydrobromic acid in acetic acid at 125°. SM was obtained by Friedel-Crafts acylation of o-fluoroanisole with p-bromobenzoyl chloride in nitrobenzene in the presence of aluminium chloride [512].
- Also refer to: Chem. Abstr., 127, 108766j (1997). m.p. $\quad 183-184^{\circ}$ [512]; \quad Spectra (NA).

(3-Bromo-4-hydroxyphenyl)(4-bromophenyl)methanone

[161582-02-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$
Synthesis

- Refer to: [512]. m.p. and Spectra (NA).
(4-Chloro-2-hydroxyphenyl)(4-fluorophenyl)methanone
[169781-85-5] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2} \quad$ mol.wt. 250.66

Syntheses

- Obtained by Fries rearrangement of m-chlorophenyl p-fluorobenzoate with aluminium chloride at 200° for 20 min [20].
- Also obtained by demethylation of 4-chloro-4'-fluoro-2-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21]. m.p. and Spectra (NA).
(5-Chloro-2-hydroxyphenyl)(2-fluorophenyl)methanone
[65185-33-3]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2}$
mol.wt. 250.66
Syntheses
- Preparation by Friedel-Crafts acylation of p-chlorophenol with o-fluorobenzoyl chloride in the presence of aluminium chloride at 195° for 25 min (70\%) [523].
- Preparation by Fries rearrangement of p-chlorophenyl o-fluorobenzoate with aluminium chloride [23].
- Also refer to: [1036]. m.p. $\quad 76-80^{\circ} 5$ [523]; \quad Spectra (NA).

(5-Chloro-2-hydroxyphenyl)(3-fluorophenyl)methanone

 $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2} \quad$ mol.wt. 250.66 Synthesis

- Preparation by Fries rearrangement of p-chlorophenyl m -fluorobenzoate with aluminium chloride at 130° for $2 \mathrm{~h}(88 \%)$ [1034].
m.p. $\quad 153^{\circ}$ [1034]; \quad Spectra (NA).
(2-Chlorophenyl)(2-fluoro-4-hydroxyphenyl)methanone
[87750-64-9]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2} \quad$ mol.wt. 250.66
Synthesis
- Preparation by reaction of o-chlorobenzoyl chloride with m-fluorophenol in an hydrofluoric acid solution in the presence of boron trifluoride at 0° for 1 h [1037].
m.p. and Spectra (NA).
(2-Chlorophenyl)(4-fluoro-2-hydroxyphenyl)methanone

m.p. and Spectra (NA).
(2-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone
[2341-94-8] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2} \quad$ mol.wt. 250.66

Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl o-chlorobenzoate with aluminium chloride [23], at 130° for $2 \mathrm{~h}(95 \%)$ [1038].
- Also refer to: [1039].
m.p. 65° [1038]; \quad Spectra (NA).

(3-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone

[62666-38-0] \quad\begin{tabular}{l}
Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl

m-chlorobenzoate with aluminium chloride [23].
\end{tabular}

m.p. and Spectra (NA).

(4-Chlorophenyl)(3-fluoro-4-hydroxyphenyl)methanone

[83885-18-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2}$
mol.wt. 250.66
Synthesis

- Preparation by reaction of p -chlorobenzoyl chloride with o-fluorophenol in the presence of aluminium chloride [165].
m.p. $173-176^{\circ} 5[165] ; \quad$ Spectra (NA).

(4-Chlorophenyl)(4-fluoro-2-hydroxyphenyl)methanone

[169781-86-6]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2} \quad$ mol.wt. 250.66
Syntheses

- Obtained by Fries rearrangement of m-fluorophenyl p-chlorobenzoate with aluminium chloride at 200° for 20 min [20].
- Also obtained by demethylation of 4'-chloro-4-fluoro-2-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21]. m.p. and Spectra (NA).
(4-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone [62433-26-5]

$$
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2} \quad \text { mol.wt. } 250.66
$$

Syntheses

- Preparation by Fries rearrangement of p-fluorophenyl p-chlorobenzoate,
- with titanium tetrachloride at 150° for 18 h (81\%) [472];
- with aluminium chloride [23,1040], at 130° for $2 \mathrm{~h}(98 \%)$ [1034] or at 200° for 5 min [1041] or for $15 \mathrm{~min}(65 \%)$ [1042].
- Preparation by reaction of p-chlorobenzoyl chloride with p-fluorophenol in hydrofluoric acid in the presence of boron trifluoride at 80° for 20 h (74\%) [1037].
N.B.: In the patent, this compound was erroneously named 3-fluoro-4'-chloro-2-hydroxybenzophenone (assay 21, page 13) [1037].
- Also refer to: [1033,1039,1043-1055].
m.p. 174° [1034], $67^{\circ} 6$ [1042]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [472], ${ }^{13} \mathrm{C}$ NMR [1042], IR [472,1042], MS [472]; TLC [472];
HPLC [1056]; $\mathrm{p} K_{\mathrm{a}}$ [1046].

(4-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone-- ${ }^{14} \mathrm{C}$

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2}$
mol.wt. 252.66
 Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl p-chloro-[carboxyl- ${ }^{14} \mathrm{C}$]benzoate with aluminium chloride at 200° for $5 \mathrm{~min}(76 \%)$ ($51.8 \mathrm{mCi} / \mathrm{mmol}$) [1041].
m.p. and Spectra (NA).
(3-Chloro-4-hydroxyphenyl)(4-iodophenyl)methanone
[161582-03-2] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClIO}_{2} \quad$ mol.wt. 358.56

Synthesis

- Refer to: [512]. m.p. and Spectra (NA).
(3-Chloro-4-hydroxyphenyl)(4-nitrophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4} \quad$ mol.wt. 277.66

Synthesis

- Obtained by Fries rearrangement of o-chlorophenyl p-nitrobenzoate with aluminium chloride at 120° for 2 h [1057].
m.p. 196° [1057]; $\operatorname{Spectra}(N A)$.
(4-Chloro-2-hydroxyphenyl)(3-nitrophenyl)methanone
[22293-33-0]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4} \quad$ mol.wt. 277.66
Synthesis
- Obtained by photo-Fries rearrangement of m -chlorophenyl m-nitrobenzoate in ethanol for 60-75 h (35\%) [641].
m.p. 126° [641]; IR [641], UV [641].
(4-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone
[22359-51-9]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4} \quad$ mol.wt. 277.66
Syntheses
- Preparation by Fries rearrangement of m-chlorophenyl p-nitrobenzoate with aluminium chloride at 120° for 2 h [1057].
- Also obtained by photo-Fries rearrangement of m-chlorophenyl p-nitrobenzoate in ethanol for 60-75 h (13\%) [641].

```
m.p. 160}\mp@subsup{}{}{\circ}[1057],11\mp@subsup{7}{}{\circ}[641]; IR [641], UV [641]
```


(5-Chloro-2-hydroxyphenyl)(3-nitrophenyl)methanone

[126260-47-7] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4} \quad$ mol.wt. 277.66

Syntheses

- Obtained (poor yield) by Fries rearrangement of p-chloro-phenyl m-nitrobenzoate with aluminium chloride in refluxing chlorobenzene for $4 \mathrm{~h}(11 \%)$ [520].
- Obtained by photo-Fries rearrangement of p-chlorophenyl m-nitrobenzoate in ethanol for $60-75 \mathrm{~h}$ (35\%) [641].
m.p. 126° [641], $125-126^{\circ}$ [520]; IR [641], UV [641].
(5-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$ mol.wt. 277.66

Syntheses

- Obtained by Fries rearrangement of p-chlorophenyl p-nitrobenzoate,
- with aluminium chloride at 120° for 2 h [1057];
- with UV light irradiation in ethanol during 60-75 h (13\%) [641].
- Also refer to: [1058].
m.p. 120° [1057], 117° [641]; Spectra (NA).

(2-Chlorophenyl)(2-hydroxy-5-nitrophenyl)methanone

[95263-98-2] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4} \quad$ mol.wt. 277.66

Synthesis

- Obtained by alkaline degradation of nizofenone fumarate [1059].
- Also refer to: [545].
m.p. and Spectra (NA).

(4-Chlorophenyl)(2-hydroxy-5-nitrophenyl)methanone

[124071-26-7]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$
mol.wt. 277.66

Synthesis

- Preparation according to the method [539], (23\%) [1060].
m.p. $\quad 170-172^{\circ}[1060] ; \quad$ Spectra (NA).

(2-Chloro-5-hydroxyphenyl)(4-chlorophenyl)methanone

[62810-45-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11
Syntheses

- Preparation by diazotization of 5-amino-2,4'-dichloro-benzophenone followed by hydrolysis of the diazonium salt so obtained [900].
- Also obtained by demethylation of 2,4'-dichloro-5-methoxy-benzophenone with aluminium chloride in refluxing chlorobenzene [900].
m.p. $172^{\circ}[900] ; \quad$ Spectra (NA).
(3-Chloro-2-hydroxyphenyl)(3-chlorophenyl)methanone
[41796-26-3] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Synthesis

- Refer to: [1061].
m.p. and Spectra (NA).
(3-Chloro-4-hydroxyphenyl)(2-chlorophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Synthesis

- Preparation by demethylation of $2^{\prime}, 3$-dichloro-4-methoxy-benzophenone with pyridinium chloride at reflux for 30 min [461].
m.p. 156° [461]; \quad Spectra (NA).

(3-Chloro-4-hydroxyphenyl)(4-chlorophenyl)methanone

[34189-58-7]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 267.11

Syntheses

- Preparation by reaction of p-chlorobenzoyl chloride with o-chlorophenol in the presence of aluminium chloride [165].
- Preparation by demethylation of 3,4'-dichloro-4-methoxybenzophenone in refluxing pyridinium chloride for 30 min [461].
- Preparation by Friedel-Crafts acylation of chlorobenzene with 3-chloro-4-methoxybenzoyl chloride in the presence of aluminium chloride at 120° for $3 \mathrm{~h}(50-70 \%)$ [931].
- Preparation by Fries rearrangement of o-chlorophenyl p-chlorobenzoate with aluminium chloride in chlorobenzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].
m.p. $178-179^{\circ}$ [931], $176-177^{\circ} 5$ [480], 168° [461], $52^{\circ} 5-53^{\circ} 5$ [165]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [931], MS [931]; TLC [931].

(4-Chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11
Syntheses

- Preparation by Friedel-Crafts acylation of chlorobenzene with 4-chloro-2-methoxybenzoyl chloride in the presence of aluminium chloride at 120° for $3 \mathrm{~h}(50-70 \%)$ [931].
- Also obtained by Fries rearrangement of m-chlorophenyl p-chlorobenzoate with aluminium chloride at 200° for 20 min [20].
- Also obtained by demethylation of 4,4'-dichloro-2-methoxybenzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21].
m.p. $\quad 78-79^{\circ}$ [931]; ${ }^{1} \mathrm{H}$ NMR [931], MS [931]; TLC [931].

(4-Chloro-3-hydroxyphenyl)(4-chlorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11 Synthesis

- Preparation by Friedel-Crafts acylation of chlorobenzene with 4-chloro-3-methoxybenzoyl chloride in the presence of aluminium chloride at 120° for $3 \mathrm{~h}(50-70 \%)$ [931].
m.p. $\quad 160-162^{\circ}$ [931]; ${ }^{1} \mathrm{H}$ NMR [931], MS [931]; TLC [931].
(5-Chloro-2-hydroxyphenyl)(2-chlorophenyl)methanone
[61785-35-1] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Syntheses

- Preparation by reaction of o-chlorobenzoyl chloride with p-chlorophenol in the presence of aluminium chloride at 180° [484].
- Preparation by Fries rearrangement of p-chlorophenyl o-chlorobenzoate with aluminium chloride [1062].
- Also refer to: [1033,1036,1063-1065].
m.p. $107^{\circ} 9$ [1062], $106^{\circ} 5-107^{\circ} 5$ [484]; Spectra (NA).
(5-Chloro-2-hydroxyphenyl)(3-chlorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 267.11

Synthesis

- Preparation by Fries rearrangement of p-chlorophenyl m -chlorobenzoate with aluminium chloride for 30 \min at 160° (64\%) [528].
m.p. $\quad 72^{\circ}[528] ; \quad \operatorname{Spectra}(N A)$.

(5-Chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone

[61785-37-3] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 267.11

Synthesis

- Obtained by Fries rearrangement of p-chlorophenyl p-chlorobenzoate with titanium tetrachloride at 150° for $18 \mathrm{~h}(23 \%)$ [472].
- Also refer to: $[484,523,1066]$.
m.p. (NA); yellow crystals [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472];

TLC [472]; HPLC [1056].
(2-Fluoro-4-hydroxyphenyl)(3-nitrophenyl)methanone

m.p. and Spectra (NA).
(2-Fluoro-5-hydroxyphenyl)(3-nitrophenyl)methanone

[194290-73-8]	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{4} \quad$ mol.wt. 247.20
$\mathrm{NO}_{2} \quad \mathrm{~F}$	Synthesis
	- Obtained by Friedel-Crafts acylation of p-fluorophenol with m-nitrobenzoyl chloride in ethylene dichloride in the presence of aluminium chloride at r.t. for 4 h (General Procedure C; compound $\mathbf{3 3} \mathbf{h}$). - Refer to: Chem. Abstr., 127, 190681j (1997).

(5-Fluoro-2-hydroxyphenyl)(2-nitrophenyl)methanone
[62433-27-6]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{4}$
mol.wt. 247.20
Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl o-nitrobenzoate with aluminium chloride at 130° for 2 h (86\%) [1034].
m.p. $\quad 123^{\circ}$ [1034]; $\quad \operatorname{Spectra}(N A)$.

(5-Fluoro-2-hydroxyphenyl)(4-nitrophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{4}$
mol.wt. 247.20
Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl p-nitrobenzoate with aluminium chloride at 130° for 2 h (93\%) [1034].
m.p. $\quad 141^{\circ}$ [1034]; \quad IR [1034].
(4-Fluoro-2-hydroxyphenyl)(4-fluorophenyl)methanone
[153411-29-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 234.20
Syntheses
- Obtained by Fries rearrangement of m-fluorophenyl p-fluorobenzoate with aluminium chloride at 200° for 20 min [20].
- Also obtained by demethylation of 4,4'-difluoro-2-methoxy benzophenone with boron tribromide in methylene chloride at r.t. for 12 h [20], according to [21].
- Also refer to: [1067]. m.p. and Spectra (NA).
(5-Fluoro-2-hydroxyphenyl)(2-fluorophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 234.20

Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl o-fluorobenzoate with aluminium chloride [23].
m.p. and Spectra (NA).
(5-Fluoro-2-hydroxyphenyl)(3-fluorophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 234.20

Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl m-fluorobenzoate with aluminium chloride [23].

[^1]
(5-Fluoro-2-hydroxyphenyl)(4-fluorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 234.20
Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl p-fluorobenzoate with aluminium chloride [23], without solvent at 130° for $2 \mathrm{~h}(83 \%)$ [1038].
- Also refer to: $[1068,1069]$.
b.p. . $_{30} 205^{\circ}$ [1038]; Spectra (NA).
(2-Hydroxy-4-nitrophenyl)(3-nitrophenyl)methanone
[1834-89-5]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 288.22
Syntheses
- Obtained (trace) by reaction of m-nitrobenzoyl chloride with m-nitrophenol in the presence of aluminium chloride without solvent at 175$180^{\circ}$ for $2.5 \mathrm{~h}(0.5 \%)$ [537].
- Also obtained (poor yield) by Fries rearrangement of m-nitrophenyl m-nitrobenzoate with aluminium chloride without solvent at 175° for $2 \mathrm{~h}(2 \%)$ [1070].
m.p. $158-159^{\circ}$ [1070], $157-158^{\circ}$ [537]; Spectra (NA).
(2-Hydroxy-5-nitrophenyl)(4-nitrophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 288.22

Synthesis

- Obtained by photo-Fries rearrangement of p-nitrophenyl p-nitrobenzoate in benzene at 50° for $35 \mathrm{~h}(11 \%)$ [72].
m.p. $\quad 189^{\circ}$ [72]; \quad Spectra (NA).
(4-Hydroxy-3-nitrophenyl)(3-nitrophenyl)methanone
[37567-45-6] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \quad \mathrm{~mol} . w t .288 .22$

Syntheses

- Preparation by reaction of 48% hydrobromic acid with 3,3'-dinitro-4-methoxybenzophenone (SM) in refluxing acetic acid. SM was obtained from 3'-nitro-4-methoxy-benzophenone by a two-step synthesis [140].
- Preparation by hydrolysis of 4-chloro-3,3'-dinitrobenzophenone with 5-15\% sodium hydroxide at $155-160^{\circ}$ for $1-1.5 \mathrm{~h}$ (97-98\%) [1071].
m.p. 165° [140], $149^{\circ} 8-150^{\circ} 6$ [1071]; Spectra (NA).

(4-Hydroxy-3-nitrophenyl)(4-nitrophenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6}
$$

mol.wt. 288.22
Synthesis

- Preparation by hydrolysis of 4-chloro-3,4'-dinitro-benzophenone with 5-15\% aqueous sodium hydroxide at $155-160^{\circ}$ for $1-1.5 \mathrm{~h}$ (97-98\%) [1071].
m.p. $\quad 154^{\circ} 5-154^{\circ} 8$ [1071]; \quad Spectra (NA).

(3-Amino-5-chloro-2-hydroxyphenyl)(4-fluorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFNO}_{2} \quad$ mol.wt. 265.67

m.p. and Spectra (NA).
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-chlorophenyl)methanone
[85052-42-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFNO}_{2}$ mol.wt. 265.67

Synthesis

- Preparation by hydrogenation of 4^{\prime}-chloro-5-fluoro-2-hydroxy-3-nitrobenzophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in a chloroform/ethanol mixture for 2 h (82\%) [472].
m.p. $\quad 124-127^{\circ}$ [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-chlorophenyl)methanone (Hydrochloride)
[85052-69-3]

m.p. and Spectra (NA).
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFNO}_{2}, \mathrm{HCl} \quad$ mol.wt. 302.14
Synthesis
- Obtained by reaction of hydrochloric acid with 3-amino-4'-chloro-5-fluoro-2hydroxybenzophenone [472].

(3-Amino-5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone

[85052-41-1] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2} \quad$ mol.wt. 282.13

Synthesis

- Preparation by hydrogenation of 4',5-dichloro-2-hydroxy-3-nitrobenzophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in a chloroform/ethanol mixture for $2 \mathrm{~h}(21 \%)$ [472].
m.p. $91-94^{\circ}$ (d) [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].
(3-Amino-5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone (Hydrochloride)

[85052-68-2]

m.p. and Spectra (NA).
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-fluorophenyl)methanone

m.p. and Spectra (NA).
(2-Amino-5-hydroxyphenyl)(2-chlorophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 247.68

Synthesis

- Obtained by heating N -(o-chlorobenzoyl)-pmethoxyaniline with bismuth chloride (5 mol excess) at $180-200^{\circ}$ for $3 \min (80 \%)$ [558].
m.p. (NA); UV [558], MS [558]; TLC [558].

(4-Amino-3-hydroxyphenyl)(4-chlorophenyl)methanone

[123172-45-2]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 247.68
Synthesis

- Preparation from 6-(p-chlorobenzoyl)benzoxazolinone by heating with sodium hydroxide (80\%) [566].
m.p. $196-198^{\circ}$ [566]; \quad Spectra (NA).
(4-Amino-2-hydroxyphenyl)(4-nitrophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 258.23

Synthesis

- Preparation by hydrolysis of 4-acetamido-2-hydroxy-4'-nitrobenzophenone with boiling 50\% hydrochloric acid [562].
m.p. $\quad 228^{\circ}$ [562]; \quad Spectra (NA).
(3-Amino-4-hydroxyphenyl)(3-aminophenyl)methanone

[37567-47-8]	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \quad$ mol.wt. 228.25
$\mathrm{NH}_{2} \quad \mathrm{NH}_{2}$	Synthesis
	- Preparation by hydrogenation of 4-hydroxy-3,3'-dinitro-benzophenone in the presence of Raney nickel in water at 90° for 1 h under 90 atmospheres (70\%) [1071].
m.p. $>178^{\circ}$ (d) [1071];	ectra (NA).

(3-Amino-4-hydroxyphenyl)(4-aminophenyl)methanone
[37567-42-3]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \quad$ mol.wt. 228.25
Synthesis

- Preparationbyhydrogenationof4-hydroxy-3,4'-di-nitrobenzophenone in the presence of Raney nickel in water at 90° for 1 h under 100 atmospheres (71\%) [1071].
m.p. $191^{\circ} 5-191^{\circ} 8[1071] ; \quad$ Spectra (NA).

(2,3,4,5,6-Pentafluorophenyl)(2,3,5-trifluoro-6-hydroxy-4-methoxyphenyl) methanone

[32541-22-3]

$\mathrm{C}_{14} \mathrm{H}_{4} \mathrm{~F}_{8} \mathrm{O}_{3} \quad$ mol.wt. 372.17
Syntheses

- Preparation by partial demethylation of 2,4-dimethoxy-2', $3,3^{\prime}, 4^{\prime}, 5,5^{\prime}, 6,6^{\prime}$-octafluorobenzophenone (SM) in methylene chloride in the presence of aluminium chloride at $0-5^{\circ}$ for $3-6 \mathrm{~h}(63 \%)$ [570]. SM was obtained by condensation of methyl 2,4-dimethoxy-3,5,6-trifluorobenzoate with pentafluorophenylmagnesium bromide in ethyl ether at 20° for $2 \mathrm{~h}(28 \%)$.
- Preparation by partial methylation of 2,4 -dihydroxy- $2^{\prime}, 3,3^{\prime}, 4^{\prime}, 5,5^{\prime}, 6,6^{\prime}-$ octafluorobenzophenone with diazomethane in ethyl ether between -10° and 0° (70\%) [570].
m.p. $68-69^{\circ}$ [570]; ${ }^{1} \mathrm{H}$ NMR [570], IR [570], UV [570].

(2-Hydroxy-4-methoxyphenyl)(2,3,4,5,6-pentafluorophenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~F}_{5} \mathrm{O}_{3} \quad \text { mol.wt. } 318.20
$$

Synthesis

- Preparation by partial demethylation of 2',4'-dimethoxy-2,3,4,5,6-pentafluorobenzophenone (SM) in methylene chloride in the presence of aluminium chloride at $0-5^{\circ}$ for $3-6 \mathrm{~h}(69 \%)$ [570]. SM was obtained in two steps: first, preparation of 2,4-dimethoxy-phenylbis(pentafluorophenyl)carbinol by condensation of methyl 2,4-dimethoxybenzoate with pentafluorophenylmagnesium bromide in ethyl ether at 20° for $2 \mathrm{~h}(37 \%)$. Then, this carbinol was treated with potassium fluoride in boiling acetone for 4 h (98\%) [570].
m.p. $152^{\circ} 5-154^{\circ}$ [570]; ${ }^{1} \mathrm{H}$ NMR [570], IR [570], UV [570].
(5-Chloro-2-hydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{O}_{2} \quad$ mol.wt. 300.66
 Synthesis
- Preparation from 2-bromo-4-chloro-(2-methoxy-ethoxy)-methoxybenzene and o-(trifluoromethyl)benzaldehyde as the starting materials [624].
m.p. $\quad 71-72^{\circ}$ [624]; \quad Spectra (NA).
(5-Fluoro-2-hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone
[183280-21-9]
$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{O}_{2} \quad$ mol.wt. 284.21
Synthesis
- Preparation by demethylation of 5-fluoro-2-methoxy-4'-(trifluoromethyl)benzophenone with boron tribromide in methylene chloride under argon: first at 0°, then at r.t. for $12 \mathrm{~h}(98 \%)$ [492].
m.p. $58^{\circ} 5$ [492]; ${ }^{1} \mathrm{H}$ NMR [492], UV [492], MS [492].
(4-Bromophenyl)[2-(dibromomethyl)-4-hydroxyphenyl]methanone

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{2} \quad$ mol.wt. 448.94
Synthesis
- Preparation by demethylation of 4'-bromo-2-dibromo-methyl-4-methoxybenzophenone (SM) with boron tribromide in methylene chloride at $-78^{\circ}(91 \%)$. SM was obtained by bromination of 4^{\prime}-bromo-4-methoxy-2methylbenzophenone with N -bromosuccinimide in carbon tetrachloride in the presence of few dibenzoyl peroxide under irradiation at r.t. (90%; MS).
- Refer to: Chem. Abstr., 127, 108921 f (1997) ${ }^{\mathrm{T}}$.
m.p. (NA); MS ${ }^{T}$.

(3-Chloro-2-hydroxy-4-methoxyphenyl)(2,3-difluorophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClF}_{2} \mathrm{O}_{3} \quad$ mol.wt. 298.67
Synthesis

- Preparation by reaction of 2,3-difluorobenzoyl chloride with 2-chlororesorcinol dimethyl ether in ethylene dichloride in the presence of aluminium chloride: first at 5°, then at r.t. and at reflux for 30 min [476].
m.p. $\quad 161-162^{\circ}[476] ; \quad \operatorname{Spectra}(N A)$.
(3-Chloro-2-hydroxy-4-methoxyphenyl)(2,5-difluorophenyl)methanone
[72482-10-1] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClF}_{2} \mathrm{O}_{3} \quad$ mol.wt. 298.67

Synthesis

- Preparation by reaction of 2,5-difluorobenzoyl chloride with 2-chlororesorcinol dimethyl ether in ethylene dichloride in the presence of aluminium chloride: first at $5-10^{\circ}$, then at r.t. and at reflux for 30 min [476].
m.p. $178-180^{\circ}[476] ; \quad \operatorname{Spectra}(N A)$.
(5-Chloro-2-hydroxy-4-methoxyphenyl)(2,4-difluorophenyl)methanone
[136741-46-3]
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClF}_{2} \mathrm{O}_{3} \quad$ mol.wt. 298.67

Synthesis
- Preparation by reaction of 2,4-difluorobenzoyl chloride with 4-chlororesorcinol dimethyl ether in the presence of aluminium chloride in ethylene dichloride (99\%) [589].
m.p. $\quad 136-137^{\circ}[589] ; \quad \operatorname{Spectra}(N A)$.
(5-Chloro-2-hydroxy-4-methoxyphenyl)(2,6-difluorophenyl)methanone
mol.wt. 298.67
m.p. $132-133^{\circ}$ [589];
Spectra (NA).

(2,6-Dichlorophenyl)(4-hydroxy-2-methyl-5-nitrophenyl)methanone

[183725-86-2]
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{4} \quad$ mol.wt. 326.14

Synthesis

- Preparation by demethylation of $2^{\prime}, 6^{\prime}$-dichloro-4-methoxy-2-methyl-5-nitrobenzophenone with aluminium chloride in methylene chloride, first for 30 \min at 20° and then for 1 h at $45^{\circ}(73 \%)$ [1072].
m.p. $\quad 170^{\circ}$ [1072]; \quad Spectra (NA).

$$
\begin{aligned}
& \text { (3-Chloro-4-hydroxy-5-methylphenyl)(2,4-dichlorophenyl)methanone } \\
& \text { [34182-99-5] }
\end{aligned} \begin{aligned}
& \text { Synthesis } \\
& \text { 2-chloro-6-methyl-phenyl } \\
& \text { robenzoate with aluminium chloride in } \\
& \text { chlorobenzene for } 20 \text { min at } 140-150^{\circ} \text { or } \\
& \text { in nitrobenzene for } 24 \mathrm{~h} \text { at } 75^{\circ} \text { [480]. }
\end{aligned}
$$

m.p. $\quad 168-170^{\circ}$ [480]; $\quad \operatorname{Spectra}(N A)$.
(3-Chloro-6-hydroxy-2-methylphenyl)(2,5-dichlorophenyl)methanone
[34174-13-5]

m.p. $\quad 122-123^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.
(2-Methylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone
[34171-64-7] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 315.58

Synthesis

- Preparation by Fries rearrangement of 2,4,5-trichlorophenyl o-toluate with aluminium chloride for 30 \min at $150-160^{\circ}$ [458].
m.p. $125-126^{\circ}$ [458]; Spectra (NA).
(4-Methylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone
[34171-62-5] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 315.58

Synthesis

- Preparation by Fries rearrangement of 2,4,5-trichlorophenyl p-toluate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $141-142^{\circ} 5[458] ; \quad$ Spectra (NA).

(2,6-Difluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone

[134612-75-2] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{NO}_{5} \quad$ mol.wt. 309.23

Synthesis

- Preparation by nitration of $2^{\prime}, 6^{\prime}$-difluoro-4-hy-droxy-3-methoxybenzophenone with 65% nitric acid in acetic acid at 20° [1019].
m.p. $\quad 147-149^{\circ}[1019] ; \quad$ Spectra (NA).
(3-Bromo-2-hydroxy-5-methylphenyl)(3-fluorophenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrFO}_{2} \quad$ mol.wt. 309.13

Synthesis

- Preparation by treatment of 3'-fluoro-2-hydroxy-5-methyl-benzophenone sodium salt with bromine in aqueous potassium bromide solution [919].
m.p. $\quad 130-131^{\circ}[919] ; \quad$ Spectra (NA).
(3-Bromophenyl)(3-fluoro-2-hydroxy-5-methylphenyl)methanone
[55270-81-0]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrFO}_{2} \quad$ mol.wt. 309.13

Synthesis

- Not yet described. This compound was mentioned in the Chem. Abstr., 82, 170585e (1975). Nevertheless, it is not described in the original paper [919].
m.p. and Spectra (NA).
(2-Bromo-5-nitrophenyl)(2-hydroxy-5-methylphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNO}_{4} \quad$ mol.wt. 336.14
 Synthesis
- Preparation by reaction of 2-bromo-5-nitrobenzoyl chloride with p-cresol methyl ether in the presence of aluminium chloride in carbon disulfide at r.t. for 1 h , then in a boiling water bath for $2-4 \mathrm{~h}(78 \%)$ [719].
m.p. $151-152^{\circ}[719] ; \quad \operatorname{Spectra}(N A)$.

(3,5-Dibromo-2-hydroxyphenyl)(4-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 370.04
$$

Synthesis

- Preparation by reaction of bromine with 2-hydroxy-4'-methylbenzophenone in chloroform [13].
m.p. $132^{\circ} 5$ [13]; Spectra (NA).
(2-Chloro-6-hydroxy-4-methoxyphenyl)(2-fluorophenyl)methanone
[72482-27-0]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{3} \quad$ mol.wt. 280.68
Syntheses
- Preparation by reaction of 2-fluorobenzoyl chloride with 5-chlororesorcinol dimethyl ether in the presence of aluminium chloride in refluxing ethylene dichloride (70\%) [589], 96\% [1031].
- Preparation by partial demethylation of 2-chloro-2'-fluoro-4,6-dimethoxybenzophenone (SM) in ethylene dichloride in the presence of aluminium chloride at reflux $\left(90^{\circ}\right)$ for 3 h [476]. SM was obtained by reaction of o-fluorobenzoyl chloride with 5-chlororesorcinol dimethyl ether in methylene chloride in the presence of aluminium chloride at r.t. for 4 h [476].
m.p. $111-113^{\circ}$ [589], $108-110^{\circ}$ [1031], 85-90 ${ }^{\circ}$ [476]; $\quad \operatorname{Spectra}(N A)$.
(3-Chloro-2-hydroxy-4-methoxyphenyl)(2-fluorophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{3} \quad$ mol.wt. 280.68
Synthesis
- Preparation by reaction of o-fluorobenzoyl chloride with 2-chlororesorcinol dimethyl ether in the presence of aluminium chloride in refluxing ethylene dichloride for 30 min [476], (67\%) [1031].
m.p. $132-133^{\circ}[476,1031] ; \quad$ Spectra (NA).
(5-Chloro-2-hydroxy-4-methoxyphenyl)(2-fluorophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{3} \quad$ mol.wt. 280.68
Synthesis
- Preparation by reaction of 2-fluorobenzoyl chloride with the 4-chlororesorcinol dimethyl ether in the presence of aluminium chloride in ethylene dichloride (64\%) [589].
m.p. $133-134^{\circ}$ [589]; $\quad \operatorname{Spectra}(N A)$.

(2-Chloro-4-nitrophenyl)(2-hydroxy-5-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{4} \quad \text { mol.wt. } 291.69
$$

Synthesis

- Preparation by demethylation of 2-chloro-2'-methoxy-5'-methyl-4-nitrobenzophenone with excess boiling pyridinium chloride for $30 \mathrm{~min}(57 \%)$ [1073].
m.p. 130° [1073]; \quad Spectra (NA).
(2-Chloro-5-nitrophenyl)(2-hydroxy-5-methylphenyl)methanone
[37883-98-0]

m.p. and Spectra (NA).
(5-Chloro-2-hydroxy-3-nitrophenyl)(4-methoxyphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{4}$
Synthesis
- Refer to: [1073].
[85052-28-4]

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{5}
$$

mol.wt. 307.69
Synthesis

- Preparation by reaction of 60% nitric acid with5-chloro-2-hydroxy-4'-methoxybenzophenone in acetic acid at r.t. for 30 min (79\%) [472].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].
(2-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{5} \quad$ mol.wt. 307.69
Synthesis
- Preparation by nitration of 2^{\prime}-chloro-4-hydroxy-3-methoxy-benzophenone with 65% nitric acid in acetic acid at 20° [1019].
m.p. $\quad 123-125^{\circ}[1019] ; \quad$ Spectra (NA).
(3-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone
[134612-77-4]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{5}$
mol.wt. 307.69

Synthesis

- Preparation by nitration of 3'-chloro-4-hydroxy-3-methoxy-benzophenone with 65% nitric acid in acetic acid at 20° [1019].
m.p. $\quad 152-154^{\circ}[1019] ; \quad$ Spectra (NA).

(4-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{5}$
mol.wt. 307.69

Synthesis

- Preparation by nitration of 4^{\prime}-chloro-4-hy-droxy-3-methoxybenzophenone with 65% nitric acid in acetic acid at 20° [1019].
m.p. $\quad 129-131^{\circ}[1019] ; \quad$ Spectra (NA).
(3-Chloro-4-hydroxy-5-methylphenyl)(2-chlorophenyl)methanone
[34183-19-2]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 281.14

Synthesis
- Preparation by Fries rearrangement of 2-chloro-6-methyl-phenyl o-chlorobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $\quad 164-165^{\circ}[480] ; \quad$ Spectra (NA).
(3-Chloro-4-hydroxy-5-methylphenyl)(4-chlorophenyl)methanone
[34183-09-0]

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 281.14
$$

Synthesis

- Preparation by Fries rearrangement of 2-chloro-6-methyl-phenyl p-chlorobenzoate with aluminium chloride in chlorobenzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $138-139^{\circ}[480] ; \quad \operatorname{Spectra}(N A)$.
(5-Chloro-2-hydroxy-3-methylphenyl)(2-chlorophenyl)methanone
[86914-82-1]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 281.14

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl o-chlorobenzoate with aluminium chloride at 180° for 10 min [1074].
m.p. $87-88^{\circ}[1074] ; \quad$ Spectra (NA).
(5-Chloro-2-hydroxy-3-methylphenyl)(3-chlorophenyl)methanone
[86914-87-6]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 281.14

Synthesis
- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl m-chlorobenzoate with aluminium chloride at 180° for 10 min [1074].
m.p. $\quad 130-131^{\circ}[1074] ; \quad$ Spectra (NA).

(5-Chloro-2-hydroxy-3-methylphenyl)(4-chlorophenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 281.14
$$

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl p-chlorobenzoate with aluminium chloride at 160° [1074].
- Also refer to: [1033,1075-1077].
m.p. $41-42^{\circ}[1074] ; \quad$ Spectra (NA).
(5-Chloro-2-hydroxy-4-methylphenyl)(2-chlorophenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 281.14
$$

Synthesis

- Refer to: [461].
m.p. $\quad 105^{\circ}[461] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(2,3-Dichloro-4-hydroxyphenyl)(2-methylphenyl)methanone

[72482-84-9]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14
Synthesis

- Preparation by demethylation of 2,3-dichloro-4-methoxy-2'-methylbenzophenone (SM) with aluminium chloride in refluxing benzene for 5 h , then at r.t. for 18 h . SM was obtained by reaction of o-toluoyl chloride with 2,3-di-chloroanisole in ethylene dichloride in the presence of aluminium chloride at 60° for 1 h [476].
m.p. and Spectra (NA).
(2,3-Dichloro-4-hydroxyphenyl)(3-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 281.14
$$

Synthesis

- Preparation by demethylation of 2,3-dichloro-4-methoxy-3'-methylbenzophenone (SM) with aluminium chloride in refluxing methylene chloride overnight. SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with m-toluoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475].
m.p. and Spectra (NA).

(2,3-Dichloro-4-hydroxyphenyl)(4-methylphenyl)methanone

[72498-72-7]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 281.14
Synthesis

- Preparation by demethylation of 2, 3-dichloro-4-methoxy-4'-methylbenzophenone (SM) with aluminium chloride in refluxing methylene chloride overnight. SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with p-methylbenzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475].
- Also refer to: [476].
m.p. and Spectra (NA).
(2,4-Dichloro-6-hydroxyphenyl)(2-methylphenyl)methanone
[34174-08-8] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14

Synthesis

- Preparation by Fries rearrangement of 3,5-dichlorophenyl o-toluate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 117-118^{\circ}$ [458]; $\quad \operatorname{Spectra}(N A)$.
(2,4-Dichloro-6-hydroxyphenyl)(4-methylphenyl)methanone

[34174-07-7] \quad\begin{tabular}{l}
Synthesis

- Preparation by Fries rearrangement of

3,5-dichloro-phenyl p-toluate with alumin-
ium chloride for 30 min at $150-160^{\circ}$ [458].

\end{tabular}

m.p. $\quad 177-178^{\circ}$ [458]; \quad Spectra (NA).

(2,6-Dichloro-4-hydroxyphenyl)(4-methylphenyl)methanone

[34183-14-7]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14
Synthesis

- Obtained by Fries rearrangement of 3,5-dichlorophenyl p-toluate with aluminium chloride in chlorobenzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $165-166^{\circ}$ [480]; $\operatorname{Spectra}(N A)$.

(3,5-Dichloro-4-hydroxyphenyl)(2-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14

Synthesis

- Preparation by Fries rearrangement of 2,6-dichlorophenyl o-toluate with aluminium chloride in chlorobenzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].
m.p. $\quad 163-164^{\circ}[480] ; \quad \operatorname{Spectra}(N A)$.
(3,5-Dichloro-4-hydroxyphenyl)(3-methylphenyl)methanone
[70036-75-8]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14
Synthesis
- Refer to: [468] (Japanese patent).
m.p. and Spectra (NA).
(3,5-Dichloro-4-hydroxyphenyl)(4-methylphenyl)methanone
[34183-10-3]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14 Synthesis
- Preparation by Fries rearrangement of 2,6-dichloro-phenyl p-toluate with aluminium chloride in chloro-benzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].
m.p. $\quad 163-164^{\circ}[480] ; \quad$ Spectra (NA).
(2,3-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone
[77151-84-9]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14
Synthesis
- Preparation by reaction of 2,3-dichlorobenzoyl chloride with p-cresol in the presence of aluminium chloride for 8 h at 190° [77].
m.p. and Spectra (NA).

(2,4-Dichlorophenyl)(2-hydroxy-4-methylphenyl)methanone

[59746-93-9]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14
Synthesis

- Preparation by reaction of 2,4-dichlorobenzotrichloride with m-cresol in hydrofluoric acid in the presence of water at -10°, then at 15° overnight and at 80° for $30 \mathrm{~min}(87 \%)$ [213].
m.p. 83° [213]; \quad Spectra (NA).
(2,4-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14

Syntheses

- Preparation by demethylation of 2,4-dichloro-2'-methoxy-5'-methylbenzophenone with excess boiling pyridinium chloride for 30 min (72\%) [1073].
- Preparation by Fries rearrangement of p-cresyl 2,4-dichloro-benzoate with aluminium chloride without solvent at 120° for 2 h [1078].
- Preparation by reaction of 2,4-dichlorobenzotrichloride with p-cresol in the presence of aluminium chloride in carbon disulfide at 0° (22-32\% yields) [1079].
- Also obtained by sulfuric acid hydrolysis of 6,12-di(2,4-dichlorophenyl)-2,8-dimethyl-6,12-epoxy-6H,12H-dibenzo[b,f][1,5]dioxocin (56\%) [1079].
m.p. $92^{\circ} 1-92^{\circ} 8$ [1079], $92-93^{\circ}$ [1078], $91-92^{\circ}$ [1073]; Spectra (NA).

(2,4-Dichlorophenyl)(3-hydroxy-2-methylphenyl)methanone

[74167-88-7] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad m o l . w t .281 .14$

Synthesis

- Preparation by diazotization of 3-amino-2', 4'-dichloro-2-methylbenzophenone, followed by hydrolysis of the resulting diazonium salt (70\%) [119], according to [634].
m.p. $\quad 98^{\circ}$ [119]; \quad Spectra (NA).
(2,4-Dichlorophenyl)(4-hydroxy-2-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14

Synthesis

- Obtained by Fries rearrangement of m-cresyl 2,4-di-chlorobenzoate with aluminium chloride without solvent at 120° for 2 h [1078].
- Also refer to: [901] (compound 11).
m.p. $\quad 155^{\circ}[1078] ; \quad \operatorname{Spectra}(N A)$.

(2,4-Dichlorophenyl)(4-hydroxy-3-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 281.14
$$

Synthesis

- Preparation by Fries rearrangement of o-cresyl 2,4-di-chlorobenzoate with aluminium chloride without solvent at 120° for 2 h [1078].
m.p. $\quad 165^{\circ}$ [1078]; Spectra (NA).

(2,6-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone

[174186-21-1]
 $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14
Syntheses

- Preparation by reaction of 2,6-dichlorobenzoyl chloride with p-cresol in the presence of aluminium chloride for 8 h at 190° [77].
- Preparation by Fries rearrangement of 4-methylphenyl 2,6-dichlorobenzoate with aluminium chloride in refluxing ethylene dichloride for 3 h (68\%) [1080].
m.p. $\quad 139-141^{\circ}$ [1080]; ${ }^{1} \mathrm{H}$ NMR [1080].
(3,4-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14

Syntheses

- Preparation by Fries rearrangement of p-cresyl 3,4-dichloro-benzoate with aluminium chloride without solvent at 120° for 2 h [1078].
- Preparation by reaction of 3,4-dichlorobenzotrichloride in the presence of aluminium chloride in carbon disulfide at $0^{\circ}(56 \%)$ [1079].
- Also obtained by sulfuric acid hydrolysis of the 6,12-di(3,4-dichlorophenyl)-2,8-dimethyl-6,12-epoxy- $6 H, 12 H$-dibenzo[b,f][1,5]dioxocin (76\%) [1079].
m.p. $90^{\circ} 2-90^{\circ} 6$ [1079], $90-91^{\circ}$ [1078]; Spectra (NA).

(3,4-Dichlorophenyl)(3-hydroxy-2-methylphenyl)methanone

[76981-65-2]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14
Synthesis

- Preparation by diazotization of 3-amino-3', 4^{\prime} -dichloro-2-methylbenzophenone, followed by hydrolysis of the resulting diazonium salt (48\%) [119], according to [634].
m.p. 140° [119]; $\quad \operatorname{Spectra}(N A)$.

(3,4-Dichlorophenyl)(4-hydroxy-2-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 281.14
$$

Synthesis

- Obtained by Fries rearrangement of m-cresyl 3,4-dichloro-benzoate with aluminium chloride without solvent at 120° for 2 h [1078].
m.p. $\quad 95^{\circ}$ [1078]; \quad Spectra (NA).
(3,4-Dichlorophenyl)(4-hydroxy-3-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 281.14

Synthesis

- Preparation by Fries rearrangement of o-cresyl 3,4-dichlorobenzoate with aluminium chloride without solvent at 120° for 2 h [1078].
m.p. $\quad 209^{\circ}$ [1078]; \quad Spectra (NA).
[5-Chloro-2-hydroxy-3-(hydroxymethyl)phenyl](4-chlorophenyl)methanone
[95304-56-6]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 297.14

Synthesis

- Refer to: [1081].
m.p. and Spectra (NA).
(5-Chloro-2-hydroxy-3-methoxyphenyl)(4-chlorophenyl)methanone
[95304-54-4]

m.p. and Spectra (NA).
(5-Chloro-2-hydroxy-4-methoxyphenyl)(2-chlorophenyl)methanone
[136741-43-0]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 297.14

Synthesis

- Preparation by reaction of 2-chlorobenzoyl chloride with 1-chloro-2,4-dimethoxybenzene in the presence of aluminium chloride in ethylene dichloride (77\%) [589].
m.p. $\quad 98-99^{\circ}$ [589]; \quad Spectra (NA).

(5-Chloro-2-hydroxy-4-methoxyphenyl)(4-chlorophenyl)methanone

[87118-99-8]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 297.14
Synthesis

- Preparation by reaction of p-chlorobenzoyl chloride with 1-chloro-2,4-dimethoxybenzene in the presence of aluminium chloride in methylene chloride at r.t. for 20 h (66\%) [1082].
crystals [1082]; m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1082], IR [1082], MS [1082];
TLC [1082].

(2,3-Dichloro-4-hydroxyphenyl)(4-methoxyphenyl)methanone

[78235-18-4]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 297.14

Synthesis

- Preparation by selective demethylation of 2,3-di-chloro-4,4'-dimethoxybenzophenone (SM) with aluminium chloride in refluxing methylene chloride overnight. SM was obtained by Friedel-Crafts acylation of 2,3-dichloroanisole with p-methoxybenzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475,979].
- Also refer to: [967,1083].
m.p. and Spectra (NA).
(3,5-Dichloro-4-hydroxyphenyl)(4-methoxyphenyl)methanone
[34183-20-5]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 297.14
Synthesis
- Preparation by Fries rearrangement of 2,6-dichloro-phenyl p-anisate with aluminium chloride in chloro-benzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].
m.p. $239-240^{\circ}$ [480]; Spectra (NA).
(2,3-Dichlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 297.14

Synthesis

- Preparation by reaction of 2,3-dichlorobenzoyl chloride with m-methoxyphenol in the presence of aluminium chloride for 8 h at 190° [77].
m.p. and Spectra (NA).
(2,4-Dichlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad \text { mol.wt. } 297.14
$$

Synthesis

- Preparation by partial demethylation of 2',4'-dichloro-2,4-dimethoxybenzophenone with aluminium chloride (or aluminium bromide) in chlorobenzene at $90-95^{\circ}$ (good yields) [655].
m.p. and Spectra (NA).
(2,6-Dichlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone

[77156-44-6]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 297.14
Synthesis
- Preparation by reaction of 2,6-dichlorobenzoyl chloride with m-methoxyphenol in the presence of aluminium chloride for 8 h at 190° [77].
m.p. and Spectra (NA).
(2-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone
[125629-31-4]

$$
\text { m.p. } \quad 150-152^{\circ} \text { [1084], } 127-129^{\circ} \text { [1019]; }{ }^{1} \mathrm{H} \text { NMR [1084], MS [1084]. }
$$

[2-(Fluoro- ${ }^{18}$ F)phenyl](4-hydroxy-3-methoxy-5-nitrophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FNO}_{5} \quad$ mol.wt. 290.24
Synthesis

- Obtained by adding methyl iodide to a solution of $2^{\prime}-\left[{ }^{18} \mathrm{~F}\right]$ fluoro-3,4-dihydroxy-5-nitrobenzophenone in N, N-di-methylformamide first treated with sodium hydride at 0° (90%). -Refer to: Chem. Abstr., 127, 17465u (1997).
m.p. and Spectra (NA).

(3-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone

[134612-73-0]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FNO}_{5}$
mol.wt. 291.24

Synthesis

- Preparation by nitration of 3'-fluoro-4-hydroxy-3-methoxy-benzophenone with 65% nitric acid in acetic acid at 20° [1019].
m.p. $168-170^{\circ}[1019] ; \quad$ Spectra (NA).
(4-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone
[134612-74-1]

m.p. $126-128^{\circ}$ [1019]; \quad Spectra (NA).
(2,6-Difluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone
[134612-34-3]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{3}$
mol.wt. 264.23

Synthesis
- Preparation by reaction of 33% hydrobromic acid in acetic acid with 4-(benzyloxy)- $2^{\prime}, 6^{\prime}$ -difluoro-3-methoxy-benzophenone in methylene chloride at $20-25^{\circ}$ [1019].
m.p. $\quad 130-132^{\circ}[1019] ; \quad$ Spectra (NA).

(2-Hydroxy-5-methyl-3-nitrophenyl)(3-nitrophenyl)methanone

m.p. 118° [592]; ${ }^{1} \mathrm{H}$ NMR [592].

(4-Hydroxy-3-methoxy-5-nitrophenyl)(2-nitrophenyl)methanone

$$
\text { [190522-98-6] } \quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{7} \quad \text { mol.wt. } 318.24
$$

Synthesis

- Preparation by reaction of 85% nitric acid with 4-hydroxy-3-methoxy-2'-nitrobenzophenone in acetic acid, first 15 min at 0°, then 1.5 h at $20^{\circ}(77 \%)$.
- Refer to: Chem. Abstr., 127, 17465u (1997) ${ }^{\mathrm{T}}$.
m.p. (NA); ${ }^{1} H N^{2} R^{T}, M S^{T}$.

(2-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone

[55270-73-0]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14
Syntheses

- Preparation by reaction of 2-bromobenzoyl chloride with 4-methoxytoluene in the presence of aluminium chloride,
- in refluxing carbon disulfide for 3 h (80\%) [719];
- without solvent for 1 h at 150° (68%) [919].
- Preparation by Fries rearrangement of 4-methylphenyl 2-bromobenzoate with aluminium chloride without solvent for 10 min at 140° (quantitative yield) [132].
- Preparation by demethylation of 2^{\prime}-bromo-2-methoxy-5-methylbenzophenone with excess boiling pyridinium chloride for $1 \mathrm{~h}(87 \%)$ [1073].
m.p. $78^{\circ} 5$ [719], $76-77^{\circ}$ [132], 76° [1073], $75^{\circ} 5$ [919]; Spectra (NA).
(3-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

Syntheses

- Preparation by reaction of m-bromobenzoic acid with m -cresol in the presence of alumina in methanesulfonic acid for 1 h at $140^{\circ}(85 \%)$.
- Preparation by Fries rearrangement of m-cresyl m-bromo-benzoate with alumina in methanesulfonic acid for 2 h at 160° (70\%). -Refer to: Chem. Abstr., 130, 81248q (1999) .
m.p. $\quad 88^{\circ \mathrm{T}}, \quad{ }^{\mathrm{l}} \mathrm{H} \mathrm{NMR}^{\mathrm{T}}, \mathrm{IR}^{\mathrm{T}}, \mathrm{UV}^{\mathrm{T}}, \mathrm{MS}^{\mathrm{T}}$.
(3-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone
[55270-77-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14
Synthesis
- Preparation by reaction of 3-bromobenzoyl chloride with 4-methoxytoluene in the presence of aluminium chloride without solvent for 1 h at 150° (20\%) [919].
m.p. $88-89^{\circ}[919] ; \quad \operatorname{Spectra}(N A)$.

(3-Bromophenyl)(4-hydroxy-2-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad \text { mol.wt. } 291.14
$$

Synthesis

- Obtained by reaction of m-bromobenzoic acid with m-cresol in methanesulfonic acid with or without phosphorous pentoxide, for 12 h at 100° (30\%).
- Refer to: Chem. Abstr., 130, 81248 q (1999).
m.p. and Spectra (NA).
(4-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14
 Syntheses
- Preparation by acylation of m-cresol with p-bromo-benzoic acid in methanesulfonic acid in the presence of alumina for 40 min at $140^{\circ}(80 \%)$.
- Preparation by Fries rearrangement of m-cresyl p-bromobenzoate with alumina in methanesulfonic acid for 2 h at $160^{\circ}(83 \%)$. -Refer to: Chem. Abstr., 130, $81248 \mathrm{q}(1999)^{\mathrm{T}}$.

(4-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone

(2-Bromophenyl)(2-hydroxy-4-methoxyphenyl)methanone
[183106-15-2]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
mol.wt. 307.14
Synthesis
- Preparation by selective demethylation of 2'-bromo-2,4-di-methoxybenzophenone with excess beryllium chloride in refluxing toluene for 3.5 h (90\%) [395].
m.p. $96-98^{\circ}$ [395]; ${ }^{1} \mathrm{H}$ NMR [395], IR [395], UV [395], MS [395]; TLC [395].

(2-Bromophenyl)(2-hydroxy-5-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
mol.wt. 307.14
 Synthesis

- Preparation by selective demethylation of 2^{\prime}-bromo-2,5-di-methoxybenzophenone with excess beryllium chloride in refluxing toluene for $3.5 \mathrm{~h}(90 \%)$ [395].
pale yellow oil [395]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [395], IR [395], UV [395], MS [395]; TLC [395].
(4-Bromophenyl)(2-hydroxy-4-methoxyphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 307.14
 Synthesis
- Refer to: [222,655].
m.p. and Spectra (NA).
(3-Chloro-4-hydroxyphenyl)(2-methylphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Synthesis

- Obtained by Friedel-Crafts acylation of o-chloroanisole with o-toluoyl chloride in the presence of aluminium chloride in tetrachloroethane at $120-130^{\circ}$ for 3 h (25\%) [508].
m.p. $128-129^{\circ}[508] ; \quad \operatorname{Spectra}(N A)$.
(3-Chloro-4-hydroxyphenyl)(3-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Syntheses

- Obtained (poor yield) by Friedel-Crafts acylation of o-chloroanisole with m-toluoyl chloride in the presence of aluminium chloride in tetrachloroethane at $120-130^{\circ}$ for $1 \mathrm{~h}(14 \%)$ [508].
- Preparation by demethylation of 3-chloro-4-methoxy-3'-methylbenzophenone with aluminium chloride in tetrachloroethane at $100-110^{\circ}$ for 1 h (quantitative yield) [508].
m.p. $\quad 145-146^{\circ}[508] ; \quad \operatorname{Spectra}(N A)$.

(5-Chloro-2-hydroxyphenyl)(2-methylphenyl)methanone

[52980-94-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Preparation by Friedel-Crafts acylation of p-chloroanisole with o-toluoyl chloride in the presence of aluminium chloride in tetrachloroethane at $120-130^{\circ}$ for $1 \mathrm{~h}(49 \%)$ [508] or at 150° for 7 h [624].
- Also obtained by reaction of o-toluoyl chloride with p-chlorophenol in the presence of aluminium chloride in tetrachloroethane at $120-130^{\circ}$ for $2 \mathrm{~h}(19 \%)$ [508].
- Preparation by Fries rearrangement of p-chlorophenyl o-toluate with aluminium chloride at $100-150^{\circ}$ for $0.5-3 \mathrm{~h} \mathrm{(71} \mathrm{\%)} \mathrm{[29]}$.
- Also refer to: [1085,1086].

(5-Chloro-2-hydroxyphenyl)(3-methylphenyl)methanone

[52980-95-7]	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \mathrm{~mol}$.wt. 246.69
$\mathrm{CH}_{3} \quad \mathrm{HO}$	Synthesis
	- Preparation by Friedel-Crafts acylation of p-chloroanisole with m-toluoyl chloride in the presence of aluminium chloride in tetrachloroethane at $120-130^{\circ}$ for 1 h (63\%) [508]. - Also refer to: [1086].
m.p. 106-106 ${ }^{\circ}$ [50	Spectra (NA).

(5-Chloro-2-hydroxyphenyl)(4-methylphenyl)methanone
[116544-78-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Synthesis

- Preparation by Fries rearrangement of p-chlorophenyl p-toluate with aluminium chloride at 180° for $10 \mathrm{~min}(75 \%)$ [518].
m.p. $\quad 90^{\circ}$ [518]; ${ }^{1} \mathrm{H}$ NMR [518], IR [518].

(2-Chlorophenyl)(2-hydroxy-3-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 246.69
$$

Synthesis

- Obtained (by-product) by Fries rearrangement of o-cresyl o-chlorobenzoate in the presence of aluminium chloride without solvent according to [722], (12\%) [1087].
m.p. $72^{\circ} 3-72^{\circ} 8[1087] ; \quad$ Spectra (NA).

(2-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone

[107623-97-2]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Preparation by Fries rearrangement of m-cresyl o-chloro-benzoate,
- with polyphosphoric acid at 130° for $40 \mathrm{~min}(87 \%)$ [1088];
- with aluminium chloride between 120° and 160° for 2 h [920].
- Preparation by Friedel-Crafts acylation of m-cresol with o-chlorobenzoic acid in the presence of polyphosphoric acid at 110° for $4 \mathrm{~h}(77 \%)$ [1088].
- Also obtained by isomerization of 2^{\prime}-chloro-4-hydroxy-2-methylbenzophenone (para isomer) with polyphosphoric acid at 130° for $4 \mathrm{~h}(60 \%)$ [1088].
m.p. 106° [920,1088]; ${ }^{1} H$ NMR [1088], IR [1088], UV [1088].

(2-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone

[6280-52-0]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Preparation by Fries rearrangement of p-cresyl o-chloro-benzoate in the presence of aluminium chloride [23] without solvent at 120° and 160° [132,919,920], (71\%) [1087].
- Preparation by reaction of 2-chlorobenzotrichloride with p-cresol in the presence of aluminium chloride in carbon disulfide at 0° (57\%) [1079].
- Also obtained by sulfuric acid hydrolysis of 6,12-di(2-chlorophenyl)-2,8-dimethyl-6,12-epoxy- $6 H, 12 H$-dibenzo[b,f][1,5]dioxocin (74\%) [1079].
- Preparation by reaction of o-chlorobenzoyl chloride with p-cresol in the presence of aluminium chloride at 100° for 4 min , then at 175° for $6 \mathrm{~min}(61 \%)$ [484].
- Preparation by reaction of o-chlorobenzoic acid with p-cresol in the presence of 80% polyphosphoric acid at 190° for $3 \mathrm{~h}(46 \%)$ [923].
- Preparation by demethylation of 2^{\prime}-chloro-2-methoxy-5-methylbenzophenone with excess boiling pyridinium chloride for $1 \mathrm{~h}(91 \%)$ [1073].
- Also refer to: [1063].
m.p. 80° [920], 78° [132,923], 77-78 ${ }^{\circ}$ [484], 77° [1073], $76^{\circ} 3-77^{\circ} 2$ [1087], 76-77 [1079], $75-77^{\circ}$ [919]; b.p..$_{15} 195^{\circ}$ [132], b.p. ${ }_{1-2} 141-145^{\circ}$ [1079]; IR [923].

(2-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Preparation by Fries rearrangement of m-cresyl o-chloro-benzoate without solvent in the presence of,
- aluminium chloride at 160° for 2 h [920];
- polyphosphoric acid at 70° for $6 \mathrm{~h}(42 \%)$ [1089].
- Also obtained by Friedel-Crafts acylation of m-cresol with o-chlorobenzoic acid in the presence of polyphosphoric acid at 90° for $1 \mathrm{~h}(31 \%)$ [1089].
- Preparation by reaction of o-chlorobenzoyl chloride with m -tolyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (31\%) [55].
m.p. $159-160^{\circ}$ [920], 153° [55,1089]; ${ }^{1} \mathrm{H}$ NMR [1089], IR [1089], UV [1089].
(2-Chlorophenyl)(4-hydroxy-3-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Syntheses

- Preparation by action of o-chlorobenzoyl chloride with o-tolyl borate in the presence of aluminium chloride in tetrachloroethane at $100^{\circ}(72 \%)$ [55].
- Preparation by Fries rearrangement of o-cresyl o-chloro-benzoate in the presence of aluminium chloride without solvent (35%) [1087], at 120° or 160° for 2 h [920]. m.p. $167^{\circ} 9-168^{\circ} 6$ [1087], 167° [55], 162° [920]; Spectra (NA).
(3-Chlorophenyl)(2-hydroxy-3-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Synthesis

- Obtained (by-product) by Fries rearrangement of o-cresyl m-chlorobenzoate in the presence of aluminium chloride without solvent according to [722], (17\%) [1087].
m.p. $\quad 69^{\circ} 5-70^{\circ} 3$ [1087]; Spectra (NA).
(3-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone
[67548-59-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Synthesis
- Preparation by Fries rearrangement of m-cresyl m -chloro-benzoate in the presence of aluminium chloride,
- without solvent at 120° and 160° [924];
- in nitrobenzene at $62-63^{\circ}$ for $72 \mathrm{~h}(28 \%)$ [31].
- Also refer to: [1090].
m.p. $89^{\circ} 5-90^{\circ} 5$ [31], 89° [924]; \quad Spectra (NA).

(3-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
mol.wt. 246.69

Synthesis

- Preparation by Fries rearrangement of p-cresyl m -chloro-benzoate in the presence of,
- aluminium chloride without solvent at 120° and 160° [919,924], (45\%) [1087];
- Nafion-H, a polymeric perfluorinated resin sulfonic acid, in refluxing nitrobenzene for $12 \mathrm{~h}(71 \%)$ [38].
m.p. 72° [924], $70^{\circ} 5-71^{\circ} 5$ [1087], $70-71^{\circ} 5$ [919], 69-70ํ [629];
${ }^{1} \mathrm{H}$ NMR [629], IR [629], UV [629]; $\mathrm{p} K_{\mathrm{a}}$ [104,629]; polarographic study [117].

(3-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 246.69
$$

Synthesis

- Obtained by Fries rearrangement of m-cresyl m -chloro-benzoate with aluminium chloride in nitrobenzene at $62-63^{\circ}$ for $72 \mathrm{~h}(40 \%)$ [31] or without solvent at 120° or 160° [924].
m.p. $125-125^{\circ} 5$ [31], 108° [924]. One of the reported melting points is obviously wrong.
Spectra (NA).
(3-Chlorophenyl)(4-hydroxy-3-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 246.69
$$

Synthesis

- Preparation by Fries rearrangement of o-cresyl m -chloro-benzoate with aluminium chloride without solvent according to [722], (55\%) [1087] and at 120° or 160° [924].
m.p. $151^{\circ} 2-151^{\circ} 8$ [1087], 149- 150° [924]; Spectra (NA).
(4-Chlorophenyl)(2-hydroxy-3-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
mol.wt. 246.69
Syntheses
- Obtained (by-product) by Fries rearrangement of o-cresyl p-chlorobenzoate in the presence of aluminium chloride without solvent (12%) [1087].
- Preparation by reaction of 3-methylsalicylic acid chloride (2-hydroxy-3-methylbenzoyl chloride) with chlorobenzene in the presence of aluminium chloride at 100° overnight (47\%) [92,709-711,1091].
- Also refer to: [1092,1093].
m.p. $61^{\circ} 5-62^{\circ}$ [1087], $61-63^{\circ}$ [92,711], 55-58 ${ }^{\circ}$ [709,710,1091];
b.p. ${ }_{0.5} 148-152^{\circ}[709,710,711,1091] ;$ Spectra (NA).

(4-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone

[107622-28-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Preparation by Fries rearrangement of m-cresyl p-chloro-benzoate with aluminium chloride between 120° and 160° (good yield) [926].
- Preparation by reaction of p-chlorobenzoic acid with m-cresol in the presence of boron trifluoride at 160° for $2 \mathrm{~h}(70 \%)$ [150].
- Also obtained by reaction of p-chlorobenzoyl chloride,
- with m-tolyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (26\%) [55];
- with m -cresol in the presence of aluminium chloride at 105° for $22 \mathrm{~h}(22 \%)$ [92].
m.p. $83-84^{\circ}$ [926], $81^{\circ} 5$ [150], $80-81^{\circ}$ [92]; \quad Spectra (NA).

(4-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone

[6279-05-6]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
 Syntheses

- Preparation by Friedel-Crafts acylation of p-cresol,
- with p-chlorobenzoic acid in the presence of boron trifluoride at 160° for $5 \mathrm{~h}(89 \%)$ [150];
- with p-chlorobenzoyl chloride in the presence of aluminium chloride without solvent (78%) [92,711], or in o-dichlorobenzene at 135° for 2 h (quantitative yield) [1094].
- Preparation by Fries rearrangement of p-cresyl p-chlorobenzoate with aluminium chloride without solvent at 120° and 160° [926], (51\%) [1087].
- Also obtained by reaction of 4-chlorobenzotrichloride with p-cresol in the presence of aluminium chloride in carbon disulfide at 0° (28\%) [1079].
- Also obtained by photo-Fries rearrangement of p-cresyl p-chlorobenzoate in methylene chloride (major product) [1095].
- Also obtained by sulfuric acid hydrolysis of 6,12-di(4-chlorophenyl)-2,8-dime-thyl-6,12-epoxy-6H,12H-dibenzo[b,f][1,5]dioxocin (93\%) [1079].
- Also obtained (poor yield) by diazotization of 2-amino-4'-chloro-5-methylbenzophenone and decomposition of the resulting diazonium salt in 0.1 M sulfuric acid at 60° (10\%) [1096].
- Also refer to: [709,710,1091,1093,1097,1098].
m.p. 71° [926], 69° [629], 68° [92], $66^{\circ} 9-67^{\circ} 6$ [1087], $66^{\circ} 4-67^{\circ} 2$ [1079], $66-67^{\circ}$ [150]; b.p. ${ }_{0.1} 168-174^{\circ}$ [711], b.p. ${ }_{0.25} 160-170^{\circ}$ [150], b.p. ${ }_{1-2}$ 143-145 ${ }^{\circ}$ [1079]; ${ }^{1} \mathrm{H}$ NMR [629,1094], IR [104,629,1094], UV [629]; $\mathrm{p} K_{\mathrm{a}}[104,629] ;$ polarographic study [117].
(4-Chlorophenyl)(3-hydroxy-2-methylphenyl)methanone
[74167-86-5] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Synthesis

- Preparation by diazotization of 3-amino-4'-chloro-2-methylbenzophenone, followed by hydrolysis of the diazonium salt so obtained (66\%) [119], according to [634].
- Also refer to: [123,912]. m.p. 100° [119]; Spectra (NA).
(4-Chlorophenyl)(3-hydroxy-4-methylphenyl)methanone
[74177-55-2]

m.p. and Spectra (NA).
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Synthesis
- Refer to: [119,912].

(4-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone

[61002-51-5]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
mol.wt. 246.69

Syntheses

- Preparation by Fries rearrangement of m -cresyl p-chloro-benzoate in the presence of aluminium chloride without solvent at 120° and 160° (good yield) [926].
- Also obtained by reaction of p-chlorobenzoyl chloride,
- with m-tolyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (11\%) [55];
- with m-cresol in the presence of aluminium chloride in nitrobenzene, first at 15° and at r.t. for 28 h [904].
- Also refer to: $[902,1099]$. m.p. $116-117^{\circ}[926] ; \quad$ Spectra (NA).

(4-Chlorophenyl)(4-hydroxy-3-methylphenyl)methanone

[6279-06-7]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Preparation by Fries rearrangement of o-cresyl p-chloro-benzoate with aluminium chloride without solvent at 120° and 160° (good yield) [926], (52\%) [1087].
- Preparation by reaction of p-chlorobenzoyl chloride with o-tolyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (47\%) [55].
- Preparation by reaction of p-chlorobenzoyl chloride with o-cresol in the presence of aluminium chloride [165].

(4-Chlorophenyl)(5-hydroxy-2-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 246.69
$$

Synthesis

- Preparation by diazotization of 5-amino-4'-chloro-2-methyl-benzophenone, followed by hydrolysis of the resulting diazonium salt (82\%) [119], according to [634].
m.p. 188° [119]; \quad Spectra (NA).
(5-Chloro-2-hydroxyphenyl)(2-methoxyphenyl)methanone
[159819-70-2] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69

Synthesis

- Preparationfrom2-bromo-4-chloro-(2-methoxyethoxy)methoxybenzene and o-anisaldehyde as the starting materials [624].
m.p. $\quad 94-95^{\circ}[624] ; \quad \operatorname{Spectra}(N A)$.

(5-Chloro-2-hydroxyphenyl)(4-methoxyphenyl)methanone

[85052-20-6]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$
mol.wt. 262.69

Synthesis

- Preparation by reaction of p-anisoyl chloride with p-chloro-anisole in the presence of aluminium chloride in methylene chloride at r.t. for 18 h under nitrogen (41\%) [472].
m.p. (NA); crystals [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].

(2-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone

[107517-49-7] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69

Syntheses

- Preparation by selective demethylation of 2'-chloro-2,4-di-methoxybenzophenone with excess beryllium chloride in refluxing toluene for 3 h (90%) [395].
- Preparation by reaction of o-chlorobenzoyl chloride with resorcinol dimethyl ether in tetrachloroethane in the presence of aluminium chloride at 90° [222].
- Also refer to: $[78,666]$.
m.p. $85-88^{\circ}$ [222], $74-75^{\circ}$ [395]; ${ }^{1} \mathrm{H}$ NMR [395], IR [395], UV [235,395]; TLC [395].
(2-Chlorophenyl)(2-hydroxy-5-methoxyphenyl)methanone
[183106-21-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69

Synthesis

- Preparation by selective demethylation of 2'-chloro-2,5-di-methoxybenzophenone with excess beryllium chloride in refluxing toluene for $3 \mathrm{~h}(90 \%)$ [395].
pale yellow oil [395]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [395], IR [395], UV [395], MS [395]; TLC [395].
(2-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone
[134612-35-4] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69

Synthesis

- Preparation by debenzylation of 4-(benzyloxy)-2'-chloro-3-methoxybenzophenone with 33\% hydrobromic acid/acetic acid in methylene chloride at $20-25^{\circ}$ [1019].
m.p. and Spectra (NA).

(3-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone

 $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69 Synthesis

- Preparation by reaction of m-chlorobenzonitrile with m-methoxyphenol in the presence of aluminium chloride for 8 h at 190°, followed by hydrolysis of the ketimine formed [77].
- Also refer to: [1100-1103] (Japanese patents).
m.p. and Spectra (NA).

(3-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone

[134612-36-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69
Synthesis

- Preparation by debenzylation of 4-(benzyloxy)-3'-chloro-3-methoxybenzophenone with 33\% hydrobromic acid/acetic acid in methylene chloride at $20-25^{\circ}$ [1019].
m.p. $136-138^{\circ}[1019] ; \quad$ Spectra (NA).

(4-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone

[85-28-9]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69
Syntheses

- Preparation by oxidation of 6-methoxy-2-phenyl-3-(4-chlorophenyl)benzofuran with chromium trioxide in boiling acetic acid for 40 min , followed by saponification of the resulting keto ester-2-(benzoyloxy)-4'-chloro-4-methoxybenzophenone-with 4 N sodium hydroxide in refluxing ethanol for 1 h [44].
- Preparation by reaction of p-chlorobenzoyl chloride with resorcinol dimethyl ether,
- in the presence of aluminium chloride;
in a chlorobenzene/N,N-dimethylformamide mixture (22:1) at 115° [235,657];
in tetrachloroethane first at r.t., then at 90° [222];
- in the presence of titanium tetrachloride in chlorobenzene for 1 h at 120° (74\%) [662];
- in the presence of ferric chloride, without solvent or in o-dichlorobenzene, at $180-200^{\circ}$ for 6-7 h (by-product) [663].
- Preparation by partial demethylation of 4'-chloro-2,4-dimethoxybenzophenone with aluminium chloride or aluminium bromide in chlorobenzene at $90-95^{\circ}$ (good yield) [655].
- Preparation by Fries rearrangement of m-methoxyphenyl p-chlorobenzoate with aluminium chloride [23].
- Also refer to: [837] (Japanese patent) and [75,77,666,668,669,1104]. m.p. 115° [662], 113° [663], 111° [44], 109-112${ }^{\circ}$ [222]; IR [44], UV [235].

(4-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone

[134612-37-6]

 $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69 Synthesis

- Preparation by debenzylation of 4-(benzyloxy)-4'-chloro-3-methoxybenzophenone with 33% hydrobromic acid/acetic acid in methylene chloride at $20-25^{\circ}$ [1019].
m.p. $\quad 114-116^{\circ}[1019] ; \quad$ Spectra (NA).
(5-Fluoro-2-hydroxyphenyl)(2-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24

Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl o-toluate with aluminium chloride [23].
m.p. and Spectra (NA).
(5-Fluoro-2-hydroxyphenyl)(3-methylphenyl)methanone
[342-18-7] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24

Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl m-toluate with aluminium chloride [23] without solvent at 130° for 2 h (92\%) [1038].
b.p. ${ }_{15} 185^{\circ}$ [1038]; Spectra (NA).
(5-Fluoro-2-hydroxyphenyl)(4-methylphenyl)methanone
[62433-29-8] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24
 Synthesis
- Preparation by Fries rearrangement of p-fluorophenyl p-toluate with aluminium chloride at $150-180^{\circ}$ for $20 \mathrm{~min}(92 \%)$ [492] or at 130° for 2 h (82\%) [1034].
m.p. 89° [1034], $75-76^{\circ}$ [492]; $\quad \operatorname{Spectra}(N A)$.

(2-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24
Synthesis

- Preparation by Fries rearrangement of p-cresyl 2-fluoro-benzoate with aluminium chloride [23] without solvent at 160° (36\%) [919].
m.p. $\quad 72-73^{\circ}$ [919]; $\quad \operatorname{Spectra}(N A)$.

(3-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2}$
mol.wt. 230.24
Synthesis

- Preparation by reaction of 3-fluorobenzoyl chloride with 4-methoxytoluene in the presence of aluminium chloride at 150° for $1.5 \mathrm{~h}(21 \%)$ [919].
m.p. $\quad 31-34^{\circ}[919] ; \quad$ b.p. ${ }_{15} 70-74^{\circ}[919] ; \quad n_{\mathrm{D}}^{27.4}=1.5946$ [919]; \quad Spectra (NA).

(4-Fluorophenyl)(2-hydroxy-4-methylphenyl)methanone

 $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2}$
mol.wt. 230.24
Synthesis

- Obtained (poor yield) by reaction of p-fluorobenzoyl chloride with m -cresol in the presence of aluminium chloride in tetrachloroethane at 105° for $22 \mathrm{~h}(9 \%)$ [92].
m.p. 78° [92]; \quad Spectra (NA).
(4-Fluorophenyl)(4-hydroxy-2-methylphenyl)methanone
[32192-52-2]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24
Synthesis
- Preparation by reaction of p-fluorobenzoyl chloride with m -cresol in nitrobenzene in the presence of aluminium chloride first at 0°, then at 60° for $20 \mathrm{~h}(33 \%)$ [1105].
m.p. $\quad 110-112^{\circ}$ [1105]; ${ }^{1} \mathrm{H}$ NMR [1105].
(5-Fluoro-2-hydroxyphenyl)(4-methoxyphenyl)methanone
[727-93-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 246.24
Synthesis
- Preparation by Fries rearrangement of p-fluorophenyl p-anisate without solvent,
- with aluminium chloride at 130° for 2 h (60\%) [1038];
- with titanium tetrachloride at 160° for 20 $\min (49 \%)$ [1106], according to [1107].
m.p. $79^{\circ} 5$ [1106]; b.p. ${ }_{30} 260^{\circ}$ [1038]; ${ }^{1} \mathrm{H}$ NMR [1106,1108], MS [1106,1108]; HPLC [1108].
(5-Fluoro-2-hydroxyphenyl)[4-(methoxy- ${ }^{11}$ C)phenyl]methanone
[161585-22-4] $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 245.24
 Synthesis
- Preparation by partial methylation of 2,4'-dihydroxy-5-fluorobenzophenone with [$\left.{ }^{11} \mathrm{C}\right]$ methyliodideinN,N-dimethylformamide at -45° [1106].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1106,1108], MS [1106,1108]; HPLC [1108].

(2-Fluorophenyl)(2-hydroxy-4-methoxyphenyl)methanone

[3119-88-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 246.24
Syntheses

- Preparation by reaction of 2-fluorobenzoyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride in refluxing ethylene dichloride for $30 \mathrm{~min}(78 \%)$ [1031] or refluxing hexane for 8 h [239]. Titanium tetrachloride can also be used instead of aluminium chloride [239].
- Preparation by selective demethylation of 2 '-fluoro-2,4-dimethoxybenzophenone with excess beryllium chloride in refluxing toluene for 3 h (92\%) [395].
m.p. $149-150^{\circ}$ (d) [395], $53-54^{\circ}$ [1031], 49-50 ${ }^{\circ}$ [239]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [395], IR [395], UV [395]; TLC [395]; vapour pressure [248].
(2-Fluorophenyl)(2-hydroxy-5-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 246.24
Synthesis
- Preparation by selective demethylation of 2'-flu-oro-2,5-di-methoxybenzophenone with excess beryllium chloride in refluxing toluene for 3.5 h (90\%) [395].
pale yellow oil [395]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [395], IR [395], UV [395], MS [395]; TLC [395].
(2-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone
[125629-30-3] $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 246.24
 Synthesis
- Preparation by debenzylation of 4-(benzyloxy)-2'-fluoro-3-methoxybenzophenone with 33\% hydrobromic acid/acetic acid in methylene chloride at r.t. for 2 h [1019], (92\%) [1084].
m.p. $84-86^{\circ}$ [1084]; ${ }^{1} \mathrm{H}$ NMR [1084], MS [1084].
(3-Fluorophenyl)(2-hydroxy-4-methoxyphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 246.24

Synthesis

- Preparation by reaction of m-fluorobenzoyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride or titanium tetrachloride in refluxing n-hexane for 8 h [239].
m.p. $88^{\circ} 5-89^{\circ} 5$ [239]; Spectra (NA); vapour pressure [248].

(3-Fluorophenyl)(2-hydroxy-5-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 246.24

Synthesis

- Obtained by partial demethylation of 3'-fluoro-2,5-di-methoxybenzophenone with aluminium chloride in benzene at 80° [258].
m.p. and Spectra (NA).
(3-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone

[134612-32-1]	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 246.24
$\mathrm{F} \quad \mathrm{OCH}_{3}$	Synthesis
	- Preparation by debenzylation of 4-(benzyloxy) 3'-fluoro-3-methoxybenzophenone with 33\% hydrobromic acid/acetic acid in methylene chloride at r.t. [1019].
m.p. $133-135^{\circ}$ [1019];	Spectra (NA).

(4-Fluorophenyl)(2-hydroxy-4-methoxyphenyl)methanone

[3602-47-9]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad \mathrm{~mol}$. wt. 246.24
Syntheses

- Preparation by reaction of p-fluorobenzoyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride or titanium tetrachloride in refluxing hexane for 8 h [239].
- Preparation by reaction of dimethyl sulfate with 4'-fluoro-2,4-dihydroxybenzophenone in the presence of 10% potassium hydroxide first at 35°, then at reflux for $30 \mathrm{~min}(79 \%)$ [1109].
m.p. $88-89^{\circ}$ [239], $86-88^{\circ}$ [1109]; Spectra (NA); vapour pressure [248].
(4-Fluorophenyl)(2-hydroxy-5-methoxyphenyl)methanone
[162657-93-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
Synthesis
- Preparation by partial demethylation of 4'-fluoro-2,5-di-methoxybenzophenone with aluminium chloride in benzene under nitrogen at 80° for $12 \mathrm{~h}(66 \%)$ [258,680].

```
m.p. 93 [680]; '1H NMR [680], '13C NMR [680], MS [680].
```


(4-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone

[134612-33-2]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
mol.wt. 246.24

Synthesis

- Preparation by debenzylation of 4-(benzyloxy)-4'-fluoro-3-methoxybenzophenone with 33% hydrobromic acid/acetic acid in methylene chloride at r.t. [1019].
m.p. $\quad 139-141^{\circ}[1019] ;$ Spectra (NA).
(2-Hydroxy-3-methylphenyl)(3-nitrophenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25

Syntheses

- Obtained (poor yield) by Fries rearrangement of o-tolyl m-nitrobenzoate with aluminium chloride at 120 or at 160° for $2 \mathrm{~h}(<8 \%)$ [958].
- Also obtained (poor yield) by reaction of m-nitrobenzoyl chloride with o-tolyl borate in the presence of aluminium chloride in tetrachloroethane at 100° (3\%) [55].
m.p. 115° [958]; Spectra (NA).

(2-Hydroxy-3-methylphenyl)(4-nitrophenyl)methanone

[65611-78-1]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25
Syntheses

- Preparation by Fries rearrangement of o-tolyl p-nitro-benzoate with aluminium chloride at 120° [961].
- Preparation by reaction between (o-tolyloxy)magnesium bromide complexed with HMPT and p-nitrobenzaldehyde in refluxing benzene for 48 h (68\%) [50].
m.p. 118° [961], 113° [50];
${ }^{1} \mathrm{H}$ NMR [50], IR [50], MS [50].

(2-Hydroxy-4-methylphenyl)(3-nitrophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25

Syntheses

- Obtained by reaction of m-nitrobenzoyl chloride with m-tolyl borate in the presence of aluminium chloride in tetrachloro-ethane at $100^{\circ}(25 \%)$ [55].
- Also obtained by Fries rearrangement of m-tolyl m-nitro-benzoate with aluminium chloride at 120° or at 160° for 2 h (15%) [958].
m.p. 132° [958]; Spectra (NA).

(2-Hydroxy-4-methylphenyl)(4-nitrophenyl)methanone

$$
\begin{aligned}
& \text { Synt.w. } 257.25 \\
& \begin{array}{l}
\text { Preparation by Fries rearrangement of } \\
\text { m-tolyl p-nitro-benzoate with aluminium } 120^{\circ} \text { for } 2 \mathrm{~h} \text { (major product) } \\
(<26 \%)[961] .
\end{array}
\end{aligned}
$$

m.p. $\quad 134^{\circ}$ [961]; \quad Spectra (NA).
(2-Hydroxy-5-methylphenyl)(3-nitrophenyl)methanone
[53669-31-1] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25

Syntheses

- Preparation by Fries rearrangement of p-cresyl m-nitro-benzoate with aluminium chloride without solvent at $120-160^{\circ}$ for 2 h [629], (62\%) [958] or in refluxing o-dichlorobenzene for $2 \mathrm{~h}(30 \%)$ [520] or in refluxing chlorobenzene for $3 \mathrm{~h}(22 \%)$ [520].
- Also obtained (by-product) by reaction of m-nitrobenzoyl chloride with p-methylanisole in the presence of aluminium chloride without solvent at 140° for 30 $\min (11 \%)$ [919] or in refluxing carbon disulfide [959].
m.p. $104-105^{\circ}$ [958], $102-103^{\circ}$ [629], 102° [959], 99-100$~[520], ~ 98-100^{\circ} ~[919] ; ~ ;$
${ }^{1} H$ NMR [629], IR [104,629,959], UV [629,959]; $\quad \mathrm{p} K_{\mathrm{a}}[104,629]$.
(2-Hydroxy-5-methylphenyl)(4-nitrophenyl)methanone
[53669-32-2]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25
Syntheses
- Preparation by deethylation of 2-ethoxy-5-methyl-4'-nitrobenzophenone (SM) in the presence of aluminium chloride in carbon disulfide at $60-70^{\circ}$ for $8 \mathrm{~h}[141,619]$ according to [139]. SM was obtained by reaction of p-nitrobenzoyl chloride with p-methylphenetole in the presence of aluminium chloride.
- Preparation by Fries rearrangement of p-cresyl p-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(60 \%)$ [961] or at 140° for $30 \mathrm{~min}(52 \%)$ [485]. In this case, the starting ester was obtained by heating p-nitrobenzoyl chloride with aluminium tris(p-methylphenoxide) in a boiling water bath for 30 min [485].
- Also obtained by reaction of p-nitrobenzoyl chloride with p-methylanisole in the presence of aluminium chloride in boiling carbon disulfide during several hours (byproduct) [683] or in ethylene dichloride first at $0-5^{\circ}$, then at 50° for 1 h [471].
- Also refer to: [471]. m.p. $149-150^{\circ}$ [471], 143° [961], $142-143^{\circ}$ [619,683], 142° [485];

IR [104]; $\quad \mathrm{p} K_{\mathrm{a}}$ [104]; cryoscopic study [141].

(2-Hydroxy-6-methylphenyl)(4-nitrophenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad \text { mol.wt. } 257.25
$$

Synthesis

- Obtained (by-product) by Fries rearrangement of m-tolyl p-nitrobenzoate with aluminium chloride at 120° for 2 h (poor yield) [961].
m.p. $\quad 143^{\circ}$ [961]; \quad Spectra (NA).
(4-Hydroxy-2-methylphenyl)(3-nitrophenyl)methanone

[107558-23-6]	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$	mol.wt. 257.25
	Syntheses	

- Obtained by reaction of m-nitrobenzoyl chloride with m -tolyl borate in the presence of aluminium chloride in tetrachloroethane at $100^{\circ}(17 \%)$ [55].
- Also obtained by Fries rearrangement of m-tolyl m-nitro-benzoate with aluminium chloride at 120 or at 160° for 2 h (10\%) [958].
m.p. 200° [958]; Spectra (NA).

(4-Hydroxy-2-methylphenyl)(4-nitrophenyl)methanone

[203060-34-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25
Syntheses

- Preparation by Fries rearrangement of m-tolyl p-nitro-benzoate with aluminiumchloride at 120° or at 160° for $2 \mathrm{~h}(21 \%)$ [961].
- Preparation by reaction of p-nitrobenzoyl chloride with m-methylanisole in the presence of aluminium chloride in carbon disulfide at 25° for 4 h , followed by demethylation of the keto ether so formed, that is to say 4-methoxy-2-methyl-4'-nitro-benzophenone (68\%) [1110].
m.p. 194° [961], $191-192^{\circ}$ [1110]; Spectra (NA).

(4-Hydroxy-3-methylphenyl)(3-nitrophenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad \text { mol.wt. } 257.25
$$

Syntheses

- Preparation by reaction of m-nitrobenzoyl chloride with o-tolyl borate in the presence of aluminium chloride in tetrachloroethane at $100^{\circ}(41 \%)$ [55].
- Also obtained by Fries rearrangement of o-tolyl m-nitro-benzoate with aluminium chloride at 120° or at 160° for $2 \mathrm{~h}(15 \%)$ [958].

$$
\text { m.p. } \quad 182-183^{\circ}[958] ; \quad \operatorname{Spectra}(\mathrm{NA}) .
$$

(4-Hydroxy-3-methylphenyl)(4-nitrophenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad \text { mol.wt. } 257.25
$$

Syntheses

- Preparation by Fries rearrangement of o-tolyl p-nitro-benzoate with aluminium chloride at 120° (25\%) [961].
- Preparation by reaction of p-nitrobenzoyl chloride with o-methylanisole in the presence of aluminium chloride in carbon disulfide at 25° for 4 h , followed by demethylation of the resulting keto ether, that is to say 4-methoxy-3-methyl-4'-nitro-benzophenone (66\%) [1110]. m.p. $215-216^{\circ}$ [1110], 215° [961]; $\operatorname{Spectra}(N A)$.
(2-Hydroxy-4-methoxyphenyl)(3-nitrophenyl)methanone

m.p. and Spectra (NA).
(2-Hydroxy-4-methoxyphenyl)(4-nitrophenyl)methanone
[6994-36-1]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25
Synthesis
- Preparation by reaction of p-nitrobenzoyl chloride with m-methoxyphenol in the presence of aluminium chloride in carbon disulfide at 25° for 4 h (55\%) [1110].
- Also refer to: [627].
m.p. $\quad 149^{\circ}$ [1110]; \quad Spectra (NA).
(2-Hydroxy-5-methoxyphenyl)(4-nitrophenyl)methanone
[80427-39-0]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
Syntheses
- Preparation by Friedel-Crafts acylation of hydroquinone dimethyl ether with p-nitrobenzoyl chloride in the presence of stannic chloride in nitromethane at 20° for 1 h , followed by demethylation of the resulting ketone (75%) with aluminium chloride in nitromethane at 20° for 24 h (64\%) [679].
- Also obtained by Fries rearrangement of p-methoxyphenyl p-nitrobenzoate with titanium tetrachloride without solvent at 120° for $1 \mathrm{~h}(20-35 \%)$ [679]. m.p. 127° [679]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 35276$ M) [679], IR (Sadtler: standard n ${ }^{\circ} 62644 \mathrm{~K}$) [679], UV [679].

(4-Hydroxy-3-methoxyphenyl)(2-nitrophenyl)methanone

[190522-97-5] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

Synthesis

- Preparation by adding a solution of 30% hydrobromic acid to a solution of 4-(benzyloxy)-3-methoxy-2'-nitro-benzophenone in acetic acid, within 10 \min at 0° and stirring for 1 h at $20^{\circ}(98 \%)$. -Refer to: Chem. Abstr., 127, 17465u (1997) ${ }^{\mathrm{T}}$.
m.p. (NA); ${ }^{1} H N^{2}{ }^{\mathrm{T}}, \mathrm{MS}^{\mathrm{T}}$.
(5-Hydroxy-2-methoxyphenyl)(4-nitrophenyl)methanone
[80427-35-6]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
mol.wt. 273.25
 Syntheses
- Preparation by reaction of p-nitrobenzoyl chloride with hydroquinone monomethyl ether in the presence of aluminium chloride in carbon disulfide at 25° for 4 h (50\%) [1110].
- Preparation by reaction of p-nitrobenzoyl chloride with p-methoxyphenyl p-nitrobenzoate in the presence of stannic chloride in nitromethane at 20° for 2 days (49%). The m-keto ester formed, the 4-methoxy-3-(4-nitrobenzoyl)phenyl 4-nitrobenzoate, (49\%), gave the expected ketone by saponification with sodium hydroxide in refluxing methanol for 1 h (quantitative yield) [679]. m.p. 129° [679], 117° [1110]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 35277$ M) [679], IR (Sadtler: standard n ${ }^{\circ} 62645 \mathrm{~K}$) [679], UV [679].
(3-Amino-5-chloro-2-hydroxyphenyl)(4-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{2} \quad \text { mol.wt. } 261.71
$$

Synthesis

- Refer to: [472].
m.p. and Spectra (NA).
(2-Amino-5-chlorophenyl)(2-hydroxy-5-methylphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{2} \quad$ mol.wt. 261.71

Synthesis

- Obtained from 5-chloro-3-(2-hydroxy-5-methy-lphenyl)-anthranil (other name: 5-chloro-3-(2-hydroxy-5-methyl-phenyl)-2,1-benzisoxazole) (SM) by reaction with concentrated hydrochloric
acid and an excess of tin in boiling acetic acid. SM (m.p. 210°) was prepared by condensation of o-nitrobenzaldehyde with p-cresol in the presence of hydrogen chloride and phosphorous oxychloride in acetic acid [925].
N.B.: Na salt [925].
m.p. 115° [925]; \quad Spectra (NA).
(3-Amino-2-hydroxy-5-methylphenyl)(4-chlorophenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{2} \quad$ mol.wt. 261.71
 Synthesis - Refer to: [472].
m.p. and Spectra (NA).

(4-Chlorophenyl)[3-hydroxy-4-(methylamino)phenyl]methanone

[123172-46-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{2}$
mol.wt. 261.71
Synthesis

- Preparation by alkaline degradation of 6-(4-chloro-benzoyl)-3-methylbenzoxazolinone (85\%) [566].
m.p. $\quad 144^{\circ}$ [566]; \quad Spectra (NA).
(3-Amino-5-chloro-2-hydroxyphenyl)(4-methoxyphenyl)methanone
[85052-70-6]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3}$
mol.wt. 277.71

Synthesis

- Preparation by reduction of 5-chloro-2-hydroxy-4'-methoxy-3-nitrobenzophenone with sodium hydrosulfite in a aqueous ammonia/tetrahydrofuran mixture for 15 $\min (71 \%)$ [472].
m.p. $125-135^{\circ}$ [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].
(3-Amino-5-chloro-2-hydroxyphenyl)(4-methoxyphenyl)methanone (Hydrochloride)
[85052-38-6]

m.p. and Spectra (NA).
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3}, \mathrm{HCl}$
mol.wt. 314.18
Synthesis
- Obtained by treatment of 3-amino-5-chloro-2-hydroxy-4'-methoxybenzophenone with concentrated hydrochloric acid [472].

(3-Amino-5-fluoro-2-hydroxyphenyl)(4-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}_{2} \quad$ mol.wt. 245.25

Synthesis

- Refer to: [472].
m.p. and Spectra (NA).
(3-Amino-2-hydroxy-5-methylphenyl)(4-fluorophenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}_{2} \quad$ mol.wt. 245.25

m.p. and Spectra (NA).
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-methoxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}_{3} \quad \text { mol.wt. } 261.25
$$

Synthesis

- Refer to: [472].
m.p. and Spectra (NA).
(2-Amino-4-methoxyphenyl)(2-hydroxy-4-nitrophenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5} \quad$ mol.wt. 288.26
 Synthesis
- Preparation by treatment of 2-aceta-mido-2'-hydroxy-4-methoxy-4'-nitrobenzophenone with refluxing 20% hydrochloric acid for 3 h (91\%) [286].
m.p. $224-226^{\circ}[286] ; \quad$ Spectra (NA).
(4-Amino-2-methoxyphenyl)(2-hydroxy-4-nitrophenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5} \quad$ mol.wt. 288.26

Synthesis

- Preparation by treatment of 4-acetamido-2'-hydroxy-2-methoxy-4'-nitrobenzophenone with refluxing 20% hydrochloric acid for 3 h (78\%) [286].
m.p. $\quad 176-178^{\circ}[286] ; \quad \operatorname{Spectra}(N A)$.

(2-Hydroxy-5-methylphenyl)(2-mercaptophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
mol.wt. 244.31

Synthesis

- Obtained by reduction of 2-(2-hydroxy-5-methyl-benzoyl)-phenyl disulfide (SM) in the presence of zinc powder in refluxing acetic acid for $2 \mathrm{~h}(40 \%)$ [1114]. SM was obtained (poor yields) by UV light irradiation of p-cresyl 2-mercaptobenzoate or of p-cresyl 2-(acetylthio)benzoate in benzene for 1 h (14% and 7% yields, respectively).
m.p. $\quad 164-167^{\circ}$ [1114];
${ }^{1} \mathrm{H}$ NMR [1114], IR [1114], MS [1114].
(2-Hydroxy-5-methoxyphenyl)(2-mercaptophenyl)methanone
2-hydroxy-5-methoxybenzophenone (SM) in

methanol with potassium carbonate at r.t. for 70
min (33\%) [1114]. SM was prepared by UV light
irradiation of p-methoxyphenyl 2-(ethoxycarbo-
nylthio)benzoate in benzene for 2 $2 \mathrm{~h} \mathrm{(39} \mathrm{\%)}$.

m.p. (NA);
${ }^{1} H$ NMR [1114], IR [1114], UV [1114], MS [1114].
(5-Amino-2-hydroxyphenyl)(4-methylphenyl)methanone
 $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26 Synthesis

- Obtained by electrolytic reduction of 4-methyl-3'-nitro-benzophenone in concentrated sulfuric acid [567].
m.p. 93° [567]; Spectra (NA).
(5-Amino-2-hydroxyphenyl)(4-methylphenyl)methanone (Hydrochloride) $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 263.72

Synthesis

- Preparation from the corresponding amino ketone (see above) [567].
m.p. and Spectra (NA).

(2-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone

[131946-77-5] $\quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26

Synthesis

- Obtained (poor yield) by photo-Fries rearrangement of p-cresyl anthranilate (p-cresyl 2-aminobenzoate) in benzene for $10 \mathrm{~h}(4 \%)$ [1115].
m.p. and Spectra (NA).
(2-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone (Hydrochloride)
mol.wt. 263.72
m.p.
(3-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone (Hydrochloride)
[55270-78-5]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 263.72
Syntheses
- Obtained by adding 3'-chloro-2-hydroxy-5-methyl-benzophenone to a solution of potassium amide in liquid ammonia, isolation of the amino compound, then treatment with 2 N hydrochloric acid (20\%) [919].
- Also obtained by adding aqueous ammonia to a mixture of 2-hydroxy-5-methyl-3^{\prime}-nitrobenzophenone and ferrous sulfate in aqueous ethanol at $80-85^{\circ}$, isolation of the amino compound, then treatment with 2 N hydrochloric acid (33\%) [919]. m.p. $165-167^{\circ}$ [919]; \quad Spectra (NA).

(4-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone

[106612-60-6]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26
Syntheses

- Preparation by hydrogenation of 2-hydroxy-5-methyl-4'-nitrobenzophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ as a catalyst in ethanol under pressure (0.14 MPa) for 1 h [471].
- Also obtained by reduction of 2-methoxy-5-methyl-4'-nitrobenzophenone (m.p. 101-102ㅇ) [683],
- with stannous chloride/hydrochloric acid (poor yield);
- with ammonium sulfide in refluxing ethanol (good yield).
m.p. $137-138^{\circ}$ [471], 137° [683]; $\operatorname{Spectra}(N A)$.
(4-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone (Hydrochloride) $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 263.72

Synthesis

- Preparation by action of hydrochloric acid with the corresponding amino ketone (see above) in ethyl ether [683].
m.p. and Spectra (NA).
(2-Aminophenyl)(2-hydroxy-5-methoxyphenyl)methanone
[131946-76-4]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 243.26
Syntheses
- Preparation by saponification of 2^{\prime}-acetylamino-2-hydroxy-5-methoxybenzophenone with 10% sodium hydroxide (25\%) [1115].
- Also obtained (poor yield) by photo-Fries rearrangement of p-methoxyphenyl o-aminobenzoate in benzene for $5 \mathrm{~h}(7 \%)$ [1115].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1115], IR [1115], UV [1115], MS [1115].

(4-Aminophenyl)(2-hydroxy-4-methoxyphenyl)methanone

[6994-37-2]

m.p. and Spectra (NA).
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 243.26
Synthesis

- Refer to: [228].
(2,4-Diaminophenyl)(2-hydroxy-6-methylphenyl)methanone

m.p. and Spectra (NA).

(3-Chloro-2-hydroxy-4-methoxyphenyl)[2-(trifluoromethyl)phenyl] methanone

[72482-16-7] $\quad \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{O}_{3} \quad$ mol.wt. 330.69
 Synthesis

- Preparation by reaction of o-(trifluoromethyl) benzoyl chloride with 2-chlororesorcinol dimethyl ether in ethylene dichloride in the presence of ferric chloride first at $5-7^{\circ}$, then at r.t. for 18 h and at reflux for 30 min [476].
m.p. $\quad 101-102^{\circ}[476] ; \quad \operatorname{Spectra}(N A)$.
(3,5-Dichloro-2-hydroxy-4,6-dimethylphenyl)(2,4-dichlorophenyl)methanone
[34174-15-7] $\quad \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 364.05
 Synthesis
- Preparation by Fries rearrangement of 2, 4-dichloro-3,5-dimethylphenyl2,4-dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $129-130^{\circ}$ [458]; Spectra (NA).
(3,5-Dichloro-2-hydroxy-4,6-dimethylphenyl)(3,4-dichlorophenyl)methanone
[34174-14-6]

$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 364.05
Synthesis
- Preparation by Fries rearrangement of 2, 4-dichloro-3,5-dimethylphenyl 3,4-dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 136-137^{\circ}[458] ; \quad$ Spectra (NA).
(4-Hydroxy-3-methoxy-5-nitrophenyl)[2-(trifluoromethyl)phenyl]methanone [134612-82-1] $\quad \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{5} \quad$ mol.wt. 341.24

Synthesis

- Preparation by nitration of 4-hydroxy-3-methoxy-2'-(tri-fluoromethyl)benzophenone with 65\% nitric acid in acetic acid at 20° [1019].
m.p. $138-140^{\circ}$ [1019]; \quad Spectra (NA).
(4-Hydroxy-3-methoxy-5-nitrophenyl)[4-(trifluoromethyl)phenyl]methanone
[134611-75-9]

$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{5}$
Synthesis
- Preparation by nitration of 4-hydroxy-3-methoxy-4'-(trifluoromethyl)benzophenone with 65% nitric acid in acetic acid at 20° for 90 min [1019].
m.p. $\quad 172^{\circ}[1019] ; \quad \operatorname{Spectra}(N A)$.
(3-Chloro-6-hydroxy-2,4-dimethylphenyl)(2,4-dichlorophenyl)methanone
[34171-56-7]

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 329.61
Synthesis
- Preparation by Fries rearrangement of 4-chloro-3,5-di-methylphenyl 2,4-dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 103-104^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.
(2-Chlorophenyl)(3,5-dichloro-2-hydroxy-4,6-dimethylphenyl)methanone
[34174-16-8]

Synthesis
- Preparation by Fries rearrangement of 2,4-dichloro-3,5-di-methylphenyl o-chlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 96-97^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.
(2,4-Dimethylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone

| [34174-01-1] | | | $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{2}$ | mol.wt. 329.61 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathrm{CH}_{3} \quad \mathrm{HO} \quad \mathrm{Cl}$ | Synthesis | | |

- Preparation by Fries rearrangement of 2,4, 5-trichlorophenyl 2,4-dimethylbenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 103-104^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.
(3,4-Dimethylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone

m.p. $\quad 163-164^{\circ}[458] ; \quad$ Spectra (NA).
(2-Hydroxy-5-methylphenyl)[3-(trifluoromethyl)phenyl]methanone

$$
\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 280.25
$$

Synthesis

- Preparation by reaction of m-(trifluoromethyl) benzoyl chloride with p-cresol in the presence of aluminium chloride for 8 h at 190° [77].
m.p. and Spectra (NA).

(2-Hydroxy-4-methoxyphenyl)[2-(trifluoromethyl)phenyl]methanone

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 296.21
Synthesis

- Preparation by reaction of o-(trifluoromethyl) benzoyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride or titanium tetrachloride in refluxing n-hexane for 8 h [239].
- Also refer to: [248].
m.p. $95-95^{\circ} 5$ [239]; b.p. $358-362^{\circ}$ [239];

Spectra (NA); vapour pressure [248].
(2-Hydroxy-4-methoxyphenyl)[3-(trifluoromethyl)phenyl]methanone

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 296.21
Syntheses

- Preparation by reaction of m-(trifluoromethyl) benzoyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride or titanium tetrachloride in refluxing n-hexane for 8 h [239].
- Preparation by reaction of m-(trifluoromethyl)benzonitrile with m-methoxyphenol in the presence of aluminium chloride for 8 h at 190°, followed by hydrolysis of the ketimine so formed [77].
m.p. $65^{\circ} 5-66^{\circ}[239] ;$ b.p. $360-362^{\circ}$ [239];

Spectra (NA); vapour pressure [248].

(2-Hydroxy-4-methoxyphenyl)[4-(trifluoromethyl)phenyl]methanone

[7396-90-9]

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 296.21
Synthesis

- Preparation by reaction of p -(trifluoromethyl)benzoyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride or titanium tetrachloride in refluxing n-hexane for 8 h [239].
- Also refer to: [248].
m.p. $66^{\circ} 5-67^{\circ}$ [239]; b.p. 380-385 [239]; Spectra (NA); vapour pressure [248].
(4-Hydroxy-3-methoxyphenyl)[2-(trifluoromethyl)phenyl]methanone
[134612-41-2]
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 296.21

Synthesis

- Preparation by reaction of 33% hydrobromic acid in acetic acid with 4-(benzyloxy)-3-methoxy-2'-(trifluoromethyl)- benzophenone in methylene chloride at $20-25^{\circ}$ [1019].
m.p. $\quad 115-117^{\circ}$ [1019]; Spectra (NA).
(4-Hydroxy-3-methoxyphenyl)[4-(trifluoromethyl)phenyl]methanone
[134611-74-8]
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 296.21
 Synthesis
- Preparation by reaction of 33% hydrobromic acid in acetic acid with 4-(benzyloxy)-3-methoxy-4'-(trifluoromethyl)-benzophenone in methylene chloride at 20° for 90 \min [1019].
m.p. $\quad 97^{\circ}$ [1019]; \quad Spectra (NA).

[4-(2-Bromoethoxy)phenyl](4-hydroxy-3-iodophenyl)methanone

[79578-67-9]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrIO}_{3} \quad$ mol.wt. 447.07 Synthesis

- Obtained (poor yield) by reaction of 3-iodo-4-hydroxybenzoic acid with β-bromophenetole in solution of a polyphosphoric
acid $/ 85 \%$ phosphoric acid/zinc chloride mixture. The solution was heated at 50°, phosphorous trichloride was added during 1 h and the mixture was heated for 2.5 h at 70° (11\%) [1002].
m.p. 175-1765 [1002]; ${ }^{1} \mathrm{H}$ NMR [1002], IR [1002], MS [1002].

(3,5-Dibromo-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone

[66666-25-9]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{4} \quad$ mol.wt. 416.07
Synthesis

- Preparation by saponification of 2-(p-anisoyloxy)-3,5-dibromo-4,4'dimethoxybenzophenone (SM) with potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(66 \%)$. SM was obtained by oxidation of 5,7-dibromo-6-methoxy-2,3-bis(p-methoxyphenyl)-benzofuran with chromium trioxide in refluxing acetic acid for 45 min (70\%) [1116].
m.p. 200° [1116]; Spectra (NA).
(5-Chloro-2-hydroxy-3,4-dimethoxyphenyl)(4-fluorophenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClFO}_{4}$
mol.wt. 310.71
Synthesis
- Preparation by reaction of sulfuryl chloride with 4'-fluoro-2-hydroxy-3,4-dimethoxybenzophenone in methylene chloride at r.t. overnight (69%) [704].
m.p. $\quad 130-131^{\circ}$ [704]; \quad Spectra (NA).

(2-Chloro-4-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone

[110969-66-9]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{4} \quad$ mol.wt. 305.72
Synthesis

- Obtained (by-product) by Fries rearrangement of m-chlorophenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for 2 h (11\%) [1003].
(3-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone

[110969-62-5]	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{4} \quad$ mol.wt. 305.72
$\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{HO} \mathrm{Cl}$	Synthesis
	- Obtained (by-product) by Fries rearrangement of o-chlorophenyl 2,3-dimethyl-5-nitrobenzoate with
NO_{2}	aluminium chloride at 160° for $2 \mathrm{~h} \mathrm{(6} \mathrm{\%)} \mathrm{[1003]}$.
m.p. 130° [1003];	NMR [1003], IR [1003], UV [1003].

(3-Chloro-4-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{4}$
mol.wt. 305.72

Synthesis

- Preparation by Fries rearrangement of o-chlorophenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(60 \%)$ [1003].
m.p. 195° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(4-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{4}$
mol.wt. 305.72

Synthesis
- Preparation by Fries rearrangement of m-chlorophenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(40 \%)$ [1003].
m.p. $\quad 154^{\circ}$ [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV[1003].
(5-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone

[110969-68-1]	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{4} \quad$ mol.wt. 305.72
$\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{HO}$	Synthesis
	- Preparation by Fries rearrangement of p-chlorophenyl 2,3-dimethyl-5-nitrobenzoate with aluminium
$\mathrm{NO}_{2} \quad \mathrm{Cl}$	chloride at 160° for $2 \mathrm{~h}(70 \%)$ [1003].

m.p. 147° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-chlorophenyl)methanone
[93575-71-4]
m.p. $47-49^{\circ}$ [1107]; \quad Spectra (NA).
(3-Chloro-6-hydroxy-2,4-dimethylphenyl)(2-chlorophenyl)methanone
 $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 295.16 Synthesis

- Preparation by Fries rearrangement of 4-chloro-3,5-di-methylphenyl o-chlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 91-92^{\circ}$ [458]; \quad Spectra (NA).

(5-Chloro-2-hydroxy-3-methylphenyl)(4-chloro-2-methylphenyl)methanone

[86914-83-2] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 295.16

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl 4-chloro-2-methylbenzoate with aluminium chloride at 180° for 10 min [1074].
m.p. $\quad 53-54^{\circ}[1074] ; \quad$ Spectra (NA).
(2,3-Dichloro-4-hydroxyphenyl)(2,3-dimethylphenyl)methanone
[72482-89-4]

mol.wt. 295.16
Synthesis
- Preparation by demethylation of 2,3-dichloro-4-methoxy-2', 3'-dimethylbenzophenone (SM) with aluminium chloride in refluxing benzene for 5 h , then at r.t. for 18 h . SM was obtained by reaction of 2,3-dimethylbenzoyl chloride with 2,3-dichloroanisole in ethylene dichloride in the presence of aluminium chloride at 60° for 1 h [476].
m.p. and Spectra (NA).
(2,4-Dichlorophenyl)(3-ethyl-2-hydroxyphenyl)methanone
[61466-78-2] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 295.16

Synthesis

- Obtained by reaction of 2,4-dichlorobenzoyl chloride with o-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 21-22 h (86-91\%) [710,1091], (6\%) [92].
oil [92]; b.p. $._{0.06} 156-172^{\circ}$ [710,1091]. A typing error probably occurred in the published data.
$\mathrm{n}_{\mathrm{D}}^{22}=1.6163[710,1091] ; \quad$ Spectra (NA).
(2,4-Dichlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone
[61466-83-9] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 295.16

Synthesis

- Preparation by reaction of 2,4-dichlorobenzoyl chloride with p-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for $22 \mathrm{~h}(34 \%)$ [92,1091].
m.p. $44^{\circ} 6$ [1091], $44-46^{\circ}$ [92]; b.p. ${ }_{0.45} 148-151^{\circ}$ [1091]; Spectra (NA).

(3,4-Dichlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 295.16
$$

Synthesis

- Preparation by reaction of 3,4-dichlorobenzoyl chloride with p-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h (30\%) [92], (17\%) [1091].
m.p. 50° [1091]; b.p. ${ }_{0.35} 175-177^{\circ}$ [92,1091]; Spectra (NA).
(2,4-Dichlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone
[34203-52-6]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 295.16
Synthesis
- Preparation by Fries rearrangement of 3,5-dimethyl-phenyl 2,4-dichlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $\quad 94-95^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.
(3,4-Dichlorophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone
[34183-02-3]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$
Synthesis
- Obtained by Fries rearrangement of 3,5-dimethylphenyl 3,4-dichlorobenzoate with aluminium chloride in chloro-benzene for 20 min at $140-150^{\circ}$ or in nitrobenzene for 24 h at 75° [480].
m.p. $138-139^{\circ}[480] ; \quad \operatorname{Spectra}(N A)$.

(2,6-Dichlorophenyl)(2-hydroxy-4-methoxy-6-methylphenyl)methanone

[183726-73-0]
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 311.16

m.p. and Spectra (NA).

Synthesis

- Refer to: [1072].

(2,6-Dichlorophenyl)(5-hydroxy-4-methoxy-2-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 311.16
Synthesis

- Preparation by partial demethylation of 2',6'-dichloro-4,5-dimethoxy-2-methylbenzophenone with 33% hydrobromic acid in acetic acid for 1.5 h at 75° (45%) [1072].
m.p. 152° [1072]; \quad Spectra (NA).

(2,6-Dichlorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone

[183725-20-4]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 327.16
Syntheses

- Preparation by Friedel-Crafts acylation of 3,4-dimethoxy-phenol with 2,6-dichlorobenzoyl chloride [1072].
- Preparation by partial demethylation of 2',6'-dichloro-2,4,5-trimethoxybenzophenone [1072].
- Preparation by diazotization of 2-amino- $2^{\prime}, 6^{\prime}$-dichloro-4,5-dimethoxybenzophenone (compound 3) [1072].
m.p. 80° [1072]; \quad Spectra (NA).
[4-Hydroxy-3-(methoxymethyl)-5-nitrophenyl](2-nitrophenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{7} \quad \text { mol.wt. } 332.27
$$

Synthesis

- Obtained by reaction of chloromethyl methyl etherinmethylenechloride with3,4-dihydroxy$2{ }^{\prime}, 5$-dinitro-benzophenone in tetrahydrofuran in the presence of N, N-diisopropylethylamine (Huenig's base) for 40 min at $0^{\circ}(41 \%)$. -Refer to: Chem. Abstr., 127, 17465u (1997).
m.p. (NA); ${ }^{1} H N^{2}{ }^{\mathrm{T}}$.

(2,4-Dimethoxyphenyl)(4-hydroxy-3,5-dinitrophenyl)methanone

[67246-02-0]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8} \quad$ mol.wt. 348.27
Synthesis

- Obtained by reaction of nitric acid ($\mathrm{d}=$ 1.42) with 4-hydroxy-2', 4^{\prime}-dimethoxybenzophenone in acetic acid at 32° [592].
m.p. 157° [592]; ${ }^{1} \mathrm{H}$ NMR [592].

(2-Hydroxy-4-methoxy-3,5-dinitrophenyl)(2-methoxyphenyl)methanone

[79204-71-0]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8} \quad$ mol.wt. 348.27
Synthesis

- Preparation by oxidation of 2,3-bis(2-methoxyphenyl)-5,7-dinitro-6-methoxybenzofuran with chromium trioxide in acetic acid, followed by saponification of the keto ester so formed with potassium hydroxide in ethanol (60\%) [1117].
m.p. 120° [1117]; IR [1117].

(2-Hydroxy-4-methoxy-3,5-dinitrophenyl)(4-methoxyphenyl)methanone

[66666-08-8]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8} \quad$ mol.wt. 348.27
Synthesis

- Preparation by saponification of 2-(p-anisoyloxy)-4,4'-dimethoxy-3,5dinitrobenzophenone (SM) with potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(70 \%)$. SM was obtained by oxidation of 5,7-di-nitro-6-methoxy-2,3-bis(p-methoxyphenyl)-benzofuran with chromium trioxide in refluxing acetic acid for 45 min (72\%) [1116].
m.p. 140° [1116]; Spectra (NA).
(4-Bromophenyl)(5-ethyl-2-hydroxyphenyl)methanone

[108294-74-2] \quad\begin{tabular}{l}

- Preparation by reaction of p-bromobenzoyl

chloride with p-ethylphenol in the presence of

aluminium chloride in tetrachloroethane at

105° for $22 \mathrm{~h} \mathrm{(45} \mathrm{\%)}$ [92]. 186° [92]; Spectra (NA).
\end{tabular}

(2-Bromophenyl)(2-hydroxy-3,5-dimethylphenyl)methanone
[86914-81-0]
m.p. $\quad 86-89^{\circ}[1074] ; \quad$ Spectra (NA).

(4-Bromophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone

m.p. $\quad 147-148^{\circ}[458] ; \quad$ Spectra (NA).

(4-Bromophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone

[34183-16-9]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 305.17
Synthesis

- Obtained by Fries rearrangement of 3,5-dimethylphenyl p-bromobenzoate with aluminium chloride in chloro-benzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].
m.p. $125-126^{\circ}$ [480]; $\quad \operatorname{Spectra}(N A)$.
(4-Chloro-2-hydroxy-5-methylphenyl)(2-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Synthesis
- Preparation by Fries rearrangement of 3-chloro-4-methyl-phenyl o-toluate with aluminium chloride at $100-150^{\circ}$ for $0.5-3 \mathrm{~h} \mathrm{(31} \mathrm{\%)}$ [29].
m.p. $\quad 72-73^{\circ}[29] ; \quad \operatorname{Spectra}(N A)$.
(5-Chloro-2-hydroxy-3-methylphenyl)(2-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Synthesis
- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl o-toluate with aluminium chloride at 180° for 10 min [1074].
m.p. $\quad 38^{\circ}$ [1074]; \quad Spectra (NA).

(5-Chloro-2-hydroxy-3-methylphenyl)(3-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl m-toluate with aluminium chloride at 180° for 10 min [1074].
m.p. $108-109^{\circ}[1074] ; \quad$ Spectra (NA).

(5-Chloro-2-hydroxy-3-methylphenyl)(4-methylphenyl)methanone

[86914-86-5] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl p-toluate with aluminium chloride at 180° for 10 min [1074].
m.p. $\quad 76-77^{\circ}$ [1074]; \quad Spectra (NA).
(5-Chloro-2-hydroxy-4-methylphenyl)(2-methylphenyl)methanone
[170799-04-9]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Synthesis
- Preparation by Fries rearrangement of 4-chloro-3-methyl-phenyl o-toluate with aluminium chloride at $100-150^{\circ}$ for $0.5-3 \mathrm{~h} \mathrm{(76} \mathrm{\%)} \mathrm{[29]}$.
m.p. $57-58^{\circ}[29] ; \quad$ Spectra (NA).
(3-Chloro-2-methylphenyl)(2-hydroxy-5-methylphenyl)methanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72

Synthesis

- Preparation by reaction of 3-chloro-2-methylbenzoyl chloride with p-cresol in the presence of aluminium chloride for 8 h at 190° [77].
m.p. and Spectra (NA).
(2-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone
[108294-72-0]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Synthesis
- Preparation by reaction of o-chlorobenzoyl chloride with p-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h (60\%) [92].
b.p. ${ }_{0.45} 138-140^{\circ}[92] ; \quad \operatorname{Spectra}(N A)$.

(3-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone

[61466-85-1]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2}$
mol.wt. 260.72
Synthesis

- Preparation by reaction of m-chlorobenzoyl chloride with p-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h (66\%) [92,1091].
b.p. ${ }_{0.25} 153-156^{\circ}[92,1091] ; \quad \operatorname{Spectra}(N A)$.

(4-Chlorophenyl)(2-ethyl-4-hydroxyphenyl)methanone

[61466-73-7]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Synthesis

- Obtained (by-product) by reaction of p-chlorobenzoyl chloride with m-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for $22 \mathrm{~h}(12 \%)$ [1091].
- Also refer to: [1093].
m.p. and Spectra (NA).

(4-Chlorophenyl)(3-ethyl-2-hydroxyphenyl)methanone

[61466-80-6]

mol.wt. 260.72
Synthesis

- Preparation by reaction of 3-ethylsalicylic acid chloride (3-ethyl-2-hydroxybenzoyl chloride) with chlorobenzene in the presence of aluminium chloride at 100° overnight (31\%) [92,711], (23\%) [1091].
m.p. $72-73^{\circ}[92,711,1091] ; \quad$ Spectra (NA).
(4-Chlorophenyl)(4-ethyl-2-hydroxyphenyl)methanone
[56394-72-0]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72 Syntheses
- Preparation by reaction of p-chlorobenzoyl chloride with m-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h (83%) [92,711], (48\%) [709,1091].
- Obtained from the corresponding oxime (m.p. $159-161^{\circ}$) by treatment with sodium metabisulfite in refluxing ethanol for 40 h [1091]. m.p. $52^{\circ}[92,711,1091] ;$ b.p. ${ }_{0.09} 155-160^{\circ}[709] ; \quad \operatorname{Spectra}(N A)$.

(4-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone

[56394-67-3]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Syntheses

- Preparation by reaction of p-chlorobenzoyl chloride with p-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h (72\%) [92,711], (43-49\%) [709,710,1091].
- Preparation by Fries rearrangement of p-ethylphenyl p-chlorobenzoate with aluminium chloride in tetrachloroethane at 125° for 6 h [710].
- Also refer to: [714].
m.p. $41^{\circ} 5-43^{\circ} 5$ [92,711], 35-38 ${ }^{\circ}$ [710,1091];
b.p. . $_{0.09} 147-150^{\circ} \quad$ [711], b.p. $3_{3} \quad 150-160^{\circ} \quad[92]$, b.p. ${ }_{0.3} \quad 160-168^{\circ}$ [709,710,1091]; Spectra (NA).
(2-Chlorophenyl)(2-hydroxy-4,5-dimethylphenyl)methanone
[170799-17-4]
 $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Synthesis
- Preparation by Fries rearrangement of 3,4dimethylphenyl o-chlorobenzoate with aluminium chloride at $100-150^{\circ}$ for $0.5-3 \mathrm{~h}$ (58\%) [29].
m.p. $\quad 81-82^{\circ}[29] ; \quad$ Spectra (NA).
(4-Chlorophenyl)(2-hydroxy-3,5-dimethylphenyl)methanone
[86914-84-3]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72

Synthesis

- Preparation by Fries rearrangement of 2,4-dimethylphenyl p-chlorobenzoate with aluminium chloride at 180° for 10 min [1074].
m.p. $\quad 45-46^{\circ}$ [1074]; \quad Spectra (NA).

(4-Chlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone

[34199-74-1] \quad\begin{tabular}{l}
Syntheses

Preparation by reaction of p-chlorobenzoyl
chloride with 3,5-dimethylanisole in the
presence of stannic chloride in benzene,
first between 0° and 5°, then at r.t. for 3 h.

\end{tabular}

The 4'-chloro-4,6-dimethyl-2-methoxybenzophenone obtained (27\%) by demethylation with 48% hydrobromic acid gave the expected ketone [904].

- Preparation by Fries rearrangement of 3,5-dimethylphenyl p-chlorobenzoate with aluminium chloride for 30 min at $150-160^{\circ}$ [458].
m.p. $132-133^{\circ}[458] ; \quad \operatorname{Spectra}(N A)$.
(4-Chlorophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone
[34183-15-8]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Syntheses
- Preparation by reaction of p-chlorobenzoyl chloride with 3,5-dimethylanisole in the presence of stannic chloride in benzene, first between 0° and -5°, then at r.t. for 3 h .

The 4-(p-chlorobenzoyl)-3,5-dimethylanisole obtained (40\%) by demethylation with 48% hydrobromic acid gave the expected ketone [904].

- Also obtained by Fries rearrangement of 3,5-dimethylphenyl p-chlorobenzoate with aluminium chloride in chlorobenzene at $140-150^{\circ}$ for 20 min or in nitrobenzene at 75° for 24 h [480].
m.p. $139-140^{\circ}$ [480]; $\operatorname{Spectra}(N A)$.

(4-Chlorophenyl)(4-hydroxy-3,5-dimethylphenyl)methanone

[61002-59-3] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2}$ mol.wt. 260.72

Synthesis

- Preparation by Friedel-Crafts acylation of 2,6-dimethyl-anisole with p-chlorobenzoyl chloride in the presence of aluminium chloride [902].
N.B.: Na and K salts [1118].
m.p. $\quad 98^{\circ}$ [902]; \quad Spectra (NA).
(5-Chloro-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone
[136741-44-1]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4}$
mol.wt. 292.72
Synthesis
- Preparation by reaction of 4-methoxybenzoyl chloride with 4-chlororesorcinol dimethyl ether in the presence of aluminium chloride in ethylene dichloride (85\%) [589].
m.p. $\quad 130-132^{\circ}[589] ; \quad$ Spectra (NA).

(2-Chlorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone

 $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4} \quad$ mol.wt. 292.72
Synthesis

- Preparation by reaction of o-chlorobenzoyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 3 h and at reflux for $1 \mathrm{~h}(86 \%)$ [704].
m.p. $\quad 115-117^{\circ}[704] ; \quad \operatorname{Spectra}(N A)$.

(2-Chlorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4}$
mol.wt. 292.72
Synthesis

- Preparation by reaction of o-chlorobenzoyl chloride with 1,2,4-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 4 h and at reflux for $2 \mathrm{~h}(60 \%)$ [704].
m.p. $\quad 75-77^{\circ}[704] ; \quad$ Spectra (NA).

(4-Chlorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone

[7508-29-4]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4} \quad$ mol.wt. 292.72
Synthesis

- Preparation by reaction of p-chlorobenzoyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 3 h and at reflux for $1 \mathrm{~h}(54 \%)$ [704].
m.p. $\quad 148-149^{\circ}[704] ; \quad \operatorname{Spectra}(N A)$.
(4-Ethyl-2-hydroxyphenyl)(3-fluorophenyl)methanone
[61466-88-4]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2} \quad$ mol.wt. 244.27
Synthesis
- Obtained (poor yield) by reaction of m-fluorobenzoyl chloride with m-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h [710,1091], (5\%) [92].
oil [92]; m.p. $<20^{\circ}[710,1091] ; \quad \mathrm{n}_{\mathrm{D}}^{22}=1.5962$ [710,1091]; b.p. and Spectra (NA).

(4-Ethyl-2-hydroxyphenyl)(4-fluorophenyl)methanone

[56394-78-6] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2} \quad$ mol.wt. 244.27

Synthesis

- Obtained by reaction of p-fluorobenzoyl chloride with m-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h (64\%) [709], (41\%) [710,1091], (5\%) [92,711].
- Also refer to: [714].

```
m.p. 44-48` [92,709-711,1091];
b.p. }\mp@subsup{0}{0.06}{}129-13\mp@subsup{2}{}{\circ}[709,710,1091]; Spectra (NA).
```

(5-Ethyl-2-hydroxyphenyl)(4-fluorophenyl)methanone

[108294-75-3] \quad\begin{tabular}{l}

- Preparation by reaction of p-fluorobenzoyl

chloride with p-ethylphenol in the presence of

aluminium chloride in tetrachloroethane at

105° for $22 \mathrm{~h} \mathrm{(38} \mathrm{\%)} \mathrm{[92]}$.
\end{tabular}

(4-Fluorophenyl)(4-hydroxy-2,3-dimethylphenyl)methanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2} \quad$ mol.wt. 244.27

Synthesis

- Preparation by demethylation of 4'-fluoro-4-methoxy-2,3-dimethylbenzophenone (SM) with aluminium chloride in refluxing methylene chloride overnight. SM was obtained by Friedel-Crafts acylation of 2,3-dimethylanisole with p-fluorobenzoyl chloride in the presence of aluminium chloride in refluxing methylene chloride [475].
m.p. and Spectra (NA).
(4-Fluorophenyl)(4-hydroxy-3,5-dimethylphenyl)methanone
[102331-06-6]
 m.p. and Spectra (NA).
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2} \quad$ mol.wt. 244.27
Synthesis
- Preparation by Fries rearrangement of 2,6-dimethylphenyl p-fluorobenzoate in the presence of aluminium chloride in o-dichlorobenzene at $150^{\circ}(93 \%)$ [1119].

(2-Fluorophenyl)(2-hydroxy-4-methoxy-3-methylphenyl)methanone

(2-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4} \quad$ mol.wt. 276.26
Synthesis

- Preparation by reaction of o-fluorobenzoyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 3 h and at reflux for $1 \mathrm{~h}(95 \%)$ [704].
m.p. $\quad 97-99^{\circ}[704] ; \quad \operatorname{Spectra}(N A)$.
(2-Fluorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone
[140665-23-2]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4}$
mol.wt. 276.26
Synthesis
- Preparation by reaction of o-fluorobenzoyl chloride with 1,2,4-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 4 h and at reflux for 2 h (95\%) [704].
m.p. $\quad 89-90^{\circ}[704] ; \quad \operatorname{Spectra}(N A)$.

(3-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone

[140665-38-9] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4} \quad$ mol.wt. 276.26

Synthesis

- Preparation by reaction of m-fluorobenzoyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 3 h and at reflux for $1 \mathrm{~h}(80 \%)$ [704].
m.p. $\quad 84-85^{\circ}[704] ; \quad \operatorname{Spectra}(N A)$.
(4-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone
[140665-39-0]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4} \quad$ mol.wt. 276.26
Synthesis
- Preparation by reaction of p-fluorobenzoyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 3 h and at reflux for $1 \mathrm{~h}(79 \%)$ [704].
m.p. $144-146^{\circ}$ [704]; $\operatorname{Spectra}(N A)$.
(4-Fluorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4} \quad$ mol.wt. 276.26

Synthesis

- Preparation by reaction of p-fluorobenzoyl chloride with 3,4-dimethoxyphenol in the presence of boron trichloride in a benzene/ methylene chloride mixture at r.t. for 2 h [598].
m.p. (NA); orange solid [598]; ${ }^{1} \mathrm{H}$ NMR [598].
(4-Ethyl-2-hydroxyphenyl)(4-nitrophenyl)methanone
[78473-49-1]

m.p. and Spectra (NA).
(5-Ethyl-2-hydroxyphenyl)(4-nitrophenyl)methanone
[108294-76-4] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 271.27

Synthesis

- Preparation by reaction of p-nitrobenzoyl chloride with p-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h (63\%) [92].
m.p. $100-101^{\circ} 5[92] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(4-Hydroxy-3,5-dimethylphenyl)(4-nitrophenyl)methanone

[85916-09-2]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$
mol.wt. 271.27

Synthesis

- Refer to: [1120].
m.p. and Spectra (NA).
(2-Hydroxy-4-methyl-5-nitrophenyl)(4-methylphenyl)methanone
m.p. 144° [1121]; Spectra (NA).
(4-Hydroxy-3-methyl-5-nitrophenyl)(2-methylphenyl)methanone
[103555-90-4] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 271.27

Synthesis

- Preparation from o-methylanisole in three steps: first, acylation of o-methylanisole with o-toluoyl chloride in the presence of ferric chloride during 3 h at 20°. Then, demethylation of 4-methoxy- 2^{\prime}, 3-dimethylbenzophenone so formed by treatment with refluxing 55\% hydriodic acid for 10 h and subsequent nitration of the obtained 4-hydroxy-2',3dimethylbenzophenone with a concentrated nitric acid/concentrated sulfuric acid mixture under cooling [594].
m.p. and Spectra (NA).
(4-Hydroxy-3-methoxy-5-nitrophenyl)(2-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 287.27
Synthesis
- Preparation by nitration of 4-hydroxy-3-methoxy-2'-methyl-benzophenone with 65\% nitric acid in acetic acid at 20° [1019].
m.p. $\quad 125-127^{\circ}[1019] ; \quad$ Spectra (NA).

(4-Hydroxy-3-methoxy-5-nitrophenyl)(4-methylphenyl)methanone

[134612-80-9]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$
mol.wt. 287.27

Synthesis

- Preparation by nitration of 4-hydroxy-3-methoxy-4'-methylbenzophenone with 65% nitric acid in acetic acid at 20° [1019].
m.p. $\quad 137-139^{\circ}$ [1019]; Spectra (NA).
(2,4-Dimethoxyphenyl)(4-hydroxy-3-nitrophenyl)methanone
[67286-44-6]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6}$
mol.wt. 303.27

Synthesis

- Obtained by reaction of nitric acid ($\mathrm{d}=$ 1.42) with 4-hydroxy- $2^{\prime}, 4^{\prime}$-dimethoxybenzophenone in acetic acid at 12° (major product) [592].
m.p. 105° [592]; ${ }^{1} \mathrm{H}$ NMR [592].

(3,4-Dimethoxyphenyl)(4-hydroxy-3-nitrophenyl)methanone

[134612-83-2] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6}$ mol.wt. 303.27

Synthesis

- Refer to: [1019].
m.p. and Spectra (NA).
(2-Hydroxy-4,6-dimethoxyphenyl)(2-nitrophenyl)methanone
[61736-75-2]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 303.27
Syntheses
- Obtained by partial demethylation of 2,4,6-trimethoxy-2'-nitrobenzophenone with boron tribromide in methylene chloride at 0° for 10 min and at r.t. overnight (97\%) [1122].
- Also obtained (poor yield) by reaction of o-nitrobenzoyl
- chloride with 3,5-dimethoxyphenol in the presence of aluminium chloride in ethyl ether, first at 0° for 3 h , then at 20° for $3 \mathrm{~h}(15 \%)$ [1123].
- Preparation by photo-Fries rearrangement of 3,5-dimethoxyphenyl o-nitrobenzoate in benzene for 1.5 h (quantitative yield) [1123].
m.p. $198-199^{\circ}$ [1123], $133-135^{\circ}$ [1122]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [1122,1123], IR [1122,1123], UV [1122,1123], MS [1122,1123].

(4-Hydroxy-2,6-dimethoxyphenyl)(2-nitrophenyl)methanone

[59190-66-8] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 303.27

Synthesis

- Obtained (poor yield) by reaction of o-nitrobenzoyl chloride with 3,5-dimethoxyphenol in the presence of aluminium chloride in ethyl ether, first at 0° for 3 h , then at 20° for $3 \mathrm{~h}(5 \%)$ [1123].
m.p. $\quad 175-177^{\circ}$ [1123]; ${ }^{1} \mathrm{H}$ NMR [1123], IR [1123], UV [1123], MS [1123].
(2-Hydroxy-4-methoxy-5-nitrophenyl)(2-methoxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 303.27
Syntheses
- Obtained by oxidation of 6-methoxy-2-(2-methoxy-4-nitrophenyl)-3-(2-methoxy-phenyl)-5-nitrobenzofuran with chromium trioxide in acetic acid, followed by saponification of the keto ester so formed (70\%) with potassium hydroxide in boiling ethanol (75\%) [1117].
- Also obtained by oxidation of 2,3-bis(2-methoxyphenyl)-6-methoxy-5-nitrobenzofuran with chromium trioxide in acetic acid, followed by saponification of the keto ester so formed (65\%) with potassium hydroxide in boiling ethanol (60%) [1117].
m.p. 155° [1117]; IR [1117], MS [1117].
(2-Hydroxy-4-methoxy-5-nitrophenyl)(4-methoxyphenyl)methanone
[66666-07-7]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6}$
mol.wt. 303.27
Syntheses
- Obtained by reaction of nitric acid (d = 1.42) with 2-hydroxy-4,4'dimethoxybenzophenone in acetic acid at 24° (major product) [592].
- Preparation by saponification of 2-(4-anisoyloxy)-4,4'-dimethoxy-5-nitrobenzophenone (SM) with potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(70 \%)$. SM was obtained by oxidation of 2,3-bis(4-methoxyphenyl)-6-methoxy-5-nitrobenzofuran with chromium trioxide in refluxing acetic acid for $45 \mathrm{~min}(75 \%)$ [1116].
m.p. $\quad 162^{\circ}$ [592], 140° [1116]. One of the reported melting points is obviously wrong. Spectra (NA).

(4-Hydroxy-3-methoxy-5-nitrophenyl)(4-methoxyphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6} \quad \text { mol.wt. } 303.27
$$

Synthesis

- Obtained by reaction of 65% nitric acid with 3,4'-di-methoxy-4-hydroxybenzophenone in acetic acid at 20° [1019].
m.p. $\quad 134-136^{\circ}[1019] ; \quad$ Spectra (NA).
(5-Hydroxy-4-methoxy-2-nitrophenyl)(4-methoxyphenyl)methanone
[2898-51-3]

m.p. $\quad 178^{\circ}[1124] ; \quad \operatorname{Spectra}(N A)$.
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 303.27
Synthesis
- Obtained by heating 2-nitro-4,4',5-trimethoxy-benzophenone with potassium hydroxide and dilute methanol in an autoclave at 140° for 8 h [1124].
(2-Hydroxy-3-methylphenyl)(3-methylphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad \text { mol.wt. } 226.27
$$

Synthesis

- Preparation (poor yield) by action of m-toluoyl chloride with o-tolyl borate in the presence of aluminium chloride in tetrachloroethane at $100^{\circ}(8 \%)$ [55].
m.p. $42^{\circ}[55] ; \quad$ Spectra (NA).
(2-Hydroxy-4-methylphenyl)(3-methylphenyl)methanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Synthesis

- Preparation by reaction of m-toluoyl chloride with m-tolyl borate in the presence of aluminium chloride in tetrachloro-ethane at $100^{\circ}(37 \%)$ [55].
b.p. ${ }_{8} 194-195^{\circ}$ [55]; \quad Spectra (NA).
(2-Hydroxy-4-methylphenyl)(4-methylphenyl)methanone
[81652-53-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses
- Obtained (by-product) by Fries rearrangement of m-cresyl p-toluate in the presence of aluminium chloride in nitrobenzene at $62-63^{\circ}$ for 18 h (16\%) [31].
- Also obtained (poor yield) by diazotization of 2-amino-4,4'-dimethylbenzophenone, followed by hydrolysis of the diazonium salt so obtained (9\%) [1121]. In this reaction, the major product was 3,6-dimethylfluorenone (70\%).
- Also refer to: [1125].

```
m.p. 73-74 [1121]; Spectra (NA).
```

(2-Hydroxy-5-methylphenyl)(2-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 226.27
Syntheses

- Preparation by Fries rearrangement of p-tolyl o-toluate with aluminium chloride at $100-150^{\circ}$ for 0.5-3 h (73\%) [29].
- Preparation by condensation of the Grignard reagent of p-methylanisole with o-toluoyl chloride, followed by demethylation in acid medium of the resultant methyl ether (excellent yield) [964].
m.p. 95° [964], 94-95 [29]; Spectra (NA).

(2-Hydroxy-5-methylphenyl)(3-methylphenyl)methanone

[26880-98-8] \quad| Synthesis |
| :--- |
| $\left.\begin{array}{l}\text { Preparation by Fries rearrangement of p-tolyl } \\ \text { m-toluate with aluminium chloride at } 130^{\circ} \text { for } 5 \mathrm{~h}\end{array}\right)$ |

m.p. $54-55^{\circ}$ [629];
${ }^{1}$ H NMR [629], IR [104,629], UV [629];
$\mathrm{p} K_{\mathrm{a}}$ [104,629]; polarographic study [117].

(2-Hydroxy-5-methylphenyl)(4-methylphenyl)methanone

[26880-95-5]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis

- Preparation by Fries rearrangement of p-tolyl p-toluate in the presence of,
- aluminium chloride [117], (64\%) [97], at $120^{\circ}(82 \%)$ [1126] or at 180° for 10 min (85\%) [518];
- Nafion-H, a polymeric perfluorinated resin sulfonic acid, in refluxing nitrobenzene for 12 h (72\%) [38].
- Also refer to: [1127].
m.p. $89^{\circ} 5-90^{\circ}$ [1126], $88-88^{\circ} 5$ [629], 88° [518], $63^{\circ} 5-65^{\circ}$ [97]; ${ }^{1} \mathrm{H}$ NMR [38,97,629], ${ }^{13}$ C NMR [38,97],
IR [97,104,629], UV [629];
$\mathrm{p} K_{\mathrm{a}}$ [104,629]; polarographic study [117].

(3-Hydroxy-2-methylphenyl)(2-methylphenyl)methanone

[50454-58-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

(3-Hydroxy-2-methylphenyl)(4-methylphenyl)methanone
[74167-89-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

m.p. $\quad 102^{\circ}$ [119]; \quad Spectra (NA).
(4-Hydroxy-2-methylphenyl)(3-methylphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad \text { mol.wt. } 226.27
$$

Synthesis

- Obtained by action of m-toluoyl chloride with m-tolyl borate in the presence of aluminium chloride in tetrachloroethane at $100^{\circ}(30 \%)$ [55].
m.p. $\quad 110^{\circ}[55] ; \quad$ Spectra (NA).
(4-Hydroxy-2-methylphenyl)(4-methylphenyl)methanone $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
 Synthesis
- Preparation by Fries rearrangement of m-cresyl p-toluate with aluminium chloride in nitrobenzene at $62-63^{\circ}$ for 18 h (50\%) [31].
m.p. $\quad 108-109^{\circ}$ [31]; \quad Spectra (NA).
(4-Hydroxy-3-methylphenyl)(2-methylphenyl)methanone
[147029-76-3]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis
- Preparation by condensation of the Grignard reagent of o-methylanisole with o-toluoyl chloride, followed by demethylation in acid medium of the resultant methyl ether (excellent yield) [964].
m.p. 142° [964]; \quad Spectra (NA).

(4-Hydroxy-3-methylphenyl)(3-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis

- Obtained by reaction of m-toluoyl chloride with o-cresyl borate in the presence of aluminium chloride in tetra-chloroethane at $100^{\circ}(21 \%)$ [55].
m.p. $\quad 158^{\circ}$ [55]; \quad Spectra (NA).

[4-Hydroxy-3-(hydroxymethyl)phenyl](3-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Synthesis

- Not yet described.
- N.B.: A metabolite of 3,3'-dimethyl-4-methoxy benzophenone (NK-049) in the rat [1129] (Japanese paper).
m.p. and Spectra (NA).
(2-Hydroxy-4-methoxyphenyl)(2-methylphenyl)methanone
[27847-83-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis
- Refer to: [405].
m.p. and Spectra (NA).
(2-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone (Mexenone)
[1641-17-4]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
Syntheses
- Preparation by Friedel-Crafts acylation of m-methoxy-phenol with p-toluoyl chloride,
- in the presence of boron trichloride in benzene first at -10°, then at reflux for 10 h under nitrogen (80%) [660];
- in the presence of titanium tetrachloride in benzene first at -10°, then at reflux for 14 h under nitrogen (73\%) [660] or in chlorobenzene for 1 h at 120° (79\%) [662].
- Preparation by reaction of p-toluoyl chloride with 1,3-dimethoxybenzene in the presence of aluminium chloride in a chlorobenzene/ N, N-dimethylformamide mixture (22:1) at 115° [235,657].
- Also obtained by oxidation of 6-methoxy-3-(4-methylphenyl)-2-phenylbenzofuran with chromium trioxide in boiling acetic acid for $30-40 \mathrm{~min}$, followed by saponification of the keto ester so formed $[44,46]$.
- Also refer to: [77,222,241,655].
m.p. 98° [44,46], $95-96^{\circ}$ [662], 95° [660]; IR [44], UV [235,240,241].
(4-Hydroxy-3-methoxyphenyl)(2-methylphenyl)methanone
[134612-38-7] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Synthesis

- Preparation by reaction of 33% hydrobromic acid in acetic acid with 4-(benzyloxy)-3-methoxy-2'methylbenzophenone in methylene chloride at $20-25^{\circ}$ [1019].
m.p. $\quad 103-105^{\circ}$ [1019]; Spectra (NA).
(4-Hydroxy-3-methoxyphenyl)(4-methylphenyl)methanone
[134612-39-8]

 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis
- Preparation by reaction of 33% hydrobromic acid in acetic acid with 4-(benzyloxy)-3-methoxy-4'-methyl-benzophenone in methylene chloride at $20-25^{\circ}$ [1019].
m.p. $\quad 103-105^{\circ}$ [1019]; \quad Spectra (NA).
(2-Hydroxy-3-methylphenyl)(4-methoxyphenyl)methanone
[65611-79-2]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis
- Preparation by reaction between (o-tolyloxy)magnesium bromide complexed with HMPT and p-methoxy-benzaldehyde in refluxing benzene for $48 \mathrm{~h}(47 \%)$ [50].
m.p. 52° [50]; ${ }^{1} \mathrm{H}$ NMR [50], IR [50], MS [50].
(2-Hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone
[108478-27-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27
Syntheses
- Preparation by reaction of p -anisic acid with m -cresol in the presence of boron trifluoride at 160° for $1 \mathrm{~h}(81 \%)$ [150].
- Obtained by Fries rearrangement of m-cresyl p-anisate with aluminium chloride without solvent at 120° or at 160° [315]. m.p. $\quad 96-97^{\circ}[150,315] ; \quad$ Spectra (NA).

(2-Hydroxy-5-methylphenyl)(2-methoxyphenyl)methanone

[53271-51-5]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Obtained (poor yield) by Fries rearrangement of p-cresyl o-anisate with polyphosphoric acid at 100° for $20 \mathrm{~min}(4 \%)$ [991].
- Also obtained (poor yield) by Friedel-Crafts acylation of p-cresol with o-anisic acid in the presence of methane-sulfonic acid at 120° for 20 min (5\%) [991].
- Also obtained by photo-Fries rearrangement of p-cresyl o-anisate in benzene during 72 h (53\%) [1130].
yellow oil, very viscous [1130]; m.p. 60° [991];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 38494$ M) [1130],
IR (Sadtler: standard ${ }^{\circ} 65532 \mathrm{~K}$) [991,1130], UV [991], MS [1130,1131].
(2-Hydroxy-5-methylphenyl)(3-methoxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses
- Preparation by photo-Fries rearrangement of p-tolyl m-anisate in methanol at 20° for 10 h (34\%) [629].
- Preparation by acylating p-methylanisole with m -anisoyl chloride in the presence of aluminium chloride in carbon disulfide [1132].
m.p. $\quad 130-132^{\circ}$ [629]; ${ }^{1} \mathrm{H}$ NMR [629], IR [104,629], UV [629]; $\mathrm{p} K_{\mathrm{a}}$ [104,629]; polarographic study [117].

(2-Hydroxy-5-methylphenyl)(4-methoxyphenyl)methanone

[26880-96-6]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by Fries rearrangement of p-tolyl p-anisate (without solvent),
- with aluminium chloride at 120° for 1 h (26\%) [991], at 120° or at 160° [315,629];
- with titanium tetrachloride at 120° for $1 \mathrm{~h}(89 \%)$ [991].
- Preparation by oxidation of 2-phenyl-3-(4-methoxyphenyl)-5-methylbenzofuran with chromium trioxide in boiling acetic acid for 2 h , followed by saponification of the keto ester so formed with 10% sodium hydroxide in boiling ethanol for 15 min [1133].
- Obtained (by-product) by reaction of p-anisoyl chloride with p-methylanisole in the presence of aluminium chloride in boiling carbon disulfide [683].
m.p. $108-109^{\circ}[315,629,683,1133], 107^{\circ}$ [991];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 38493$ M) [629,1133],
IR (Sadtler: standard n ${ }^{\circ} 65531 \mathrm{~K}$) [104,629,991,1133],
UV [629,991], MS [1131]; $\mathrm{p} K_{\mathrm{a}}[104,629] ;$ polarographic study [117].
(4-Hydroxy-3-methylphenyl)(2-methoxyphenyl)methanone
[72324-24-4] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Syntheses

- Obtained by Fries rearrangement of o-cresyl o-anisate with polyphosphoric acid at 100° for 20 min (20\%) [991].
- Preparation by reaction of o-anisic acid with o-cresol in the presence of methanesulfonic acid at 120° for $20 \mathrm{~min}(48 \%)$ [991].
m.p. 137° [991]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard ${ }^{\circ} 38491 \mathrm{M}$),

IR (Sadtler: standard n ${ }^{\circ} 65529$ K) [991], UV [991], MS [1131].
(4-Hydroxy-3-methylphenyl)(4-methoxyphenyl)methanone
[72324-23-3]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by Fries rearrangement of o-cresyl p-anisate,
- with titanium tetrachloride in nitromethane at 20° for 170 h (84\%) [991];
- with aluminium chloride in nitromethane at 20° for 170 h (42\%) [991] or at 75° for 6 h (60\%) [991]. The same reaction carried out without solvent at 120° or at 160° gave the same product [315].
- Also obtained (via o-cresyl p-anisate) by heating a mixture of p -anisic acid and o-cresol in the presence of Tonsil [645].
- Also refer to: [995,996,999].
m.p. 188° [991], 186° [315], 143° [645]. One of the reported melting points is obviously wrong. 1H NMR (Sadtler: standard n ${ }^{\circ} 38499$ M),
IR (Sadtler: standard n ${ }^{\circ} 65537 \mathrm{~K}$) [991], UV [991], MS [1131].

[3-(Hydroxymethyl)phenyl](4-Hydroxy-3-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis

- Not yet described.
- N.B.: A metabolite of 3,3'-dimethyl-4-methoxy-benzophenone (NK-049) in the rat [1129] (Japanese paper).
m.p. and Spectra (NA).

(2-Hydroxy-3-methoxyphenyl)(4-methoxyphenyl)methanone

[155645-18-4] \quad\begin{tabular}{l}

- Preparation by reaction of 2,3-dime-

thoxybenzoyl chloride with anisole (74\%)

[1134], according to the method [756].
\end{tabular}

(2-Hydroxy-4-methoxyphenyl)(2-methoxyphenyl)methanone
[62495-36-7]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation by reaction of o-anisic acid with m-methoxy-phenol [1135] in the presence of zinc chloride and phosphorous oxychloride at $65-70^{\circ}$ for 2 h (68\%) [1136].
- Preparation by oxidation of 2,3-bis(2-methoxyphenyl)-6-methoxybenzofuran with chromium trioxide in refluxing acetic acid for 30 min , followed by saponification of the keto ester so formed (55\%) with potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(50 \%)$ [1117].
- Preparation by selective demethylation of 2,2',4-trimethoxybenzophenone with excess beryllium chloride in refluxing toluene for 3 h (90\%) [395].
- Also obtained, in mixture with 2,4-dimethoxy-2'-hydroxybenzophenone, by reaction of 2-methoxybenzoyl chloride with resorcinol dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 65%) [1010,1011].
m.p. $92-93^{\circ}$ [395], 91° [1135], $88^{\circ} 5-89^{\circ}$ [1136], 80° [1117]; ${ }^{1} \mathrm{H}$ NMR [395,1010,1011,1135,1136],
IR [395,1117,1136], UV [395,1136], MS [1135]; TLC [395].

(2-Hydroxy-4-methoxyphenyl)(3-methoxyphenyl)methanone

[62495-37-8]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27 Syntheses

- Preparation by reaction of m -anisic acid with 3-methoxyphenol in the presence of zinc chloride and phosphorous oxychloride at $65-70^{\circ}$ for 2 h (54\%) [1136].
- Preparation by partial methylation of 2,4-dihydroxy-3'-methoxybenzophenone with methyl iodide in the presence of potassium carbonate in boiling acetone (69\%) [1137].
- Preparation by selective demethylation of 2,3',4-trimethoxybenzophenone with excess beryllium chloride in refluxing toluene for 3 h (92\%) [395].
clear oil [395]; b.p. ${ }_{0.3} 165-170^{\circ}$ [1136]; m.p. 66° [1137]; ${ }^{1} \mathrm{H}$ NMR [395, 1136], IR [395,1136], UV [395,1136]; TLC [395].

(2-Hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone

[6131-38-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation by reaction of p-methoxybenzoic acid (p-anisic acid) with resorcinol monomethyl ether in the presence of boron trifluoride [650].
- Preparation by reaction of 2-hydroxy-4-methoxy-benzoic acid with anisole in the presence of stannic chloride at $115-120^{\circ}$ for $3-4 \mathrm{~h}[190,237,671]$.
- Preparation by oxidation of 6-methoxy-3-(4-methoxyphenyl)-2-phenylbenzofuran with chromium trioxide, followed by saponification of the keto ester so formed-the 2-(benzoyloxy)-4,4'-di-methoxybenzophenone-with potassium hydroxide [44,46].
- Preparation by partial methylation,
- of 2,4-dihydroxy-4'-methoxybenzophenone;
with methyl iodide in the presence of potassium carbonate in boiling acetone (88\%) [1137];
with methyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [738];
- of 2,4'-dihydroxy-4-methoxybenzophenone [610], with methyl iodide in the presence of potassium carbonate in acetone at r.t. [592];
- of 2,4,4'-trihydroxybenzophenone with dimethyl sulfate in alkaline solution (40\%) [380].
- Preparation by selective demethylation of 2,4,4'-trimethoxybenzophenone with excess beryllium chloride in refluxing toluene for $3 \mathrm{~h}(90 \%)$ [395].
- Preparation by reaction of p-anisoyl chloride with resorcinol dimethyl ether,
- in chlorobenzene in the presence of titanium tetrachloride for 1 h at 120° (86\%) [662];
- in o-dichlorobenzene or without solvent, in the presence of ferric chloride between 180° and 200° for 6-7 h (by-product) [663].
- Also refer to: $[78,194,222,223,625,655,657,668,1016,1125,1138-1144]$.

$$
\begin{array}{ll}
\text { m.p. } & 144^{\circ}[1139], 130^{\circ}[113], 129-131^{\circ}[190,237], 118^{\circ}[592,610,1137], \\
& 117-118^{\circ}[380,650], 115^{\circ}[44,46], 111-112^{\circ}[662], 110-112^{\circ}[738],
\end{array}
$$

110° [395]. There is a discrepancy between the various melting points.
${ }^{1} H$ NMR [98,395,610], IR [44,395,610,650],
UV [113,190,237,380,395,650,830], EPR [98];
TLC [395]; paper chromatography [383].

(2-Hydroxy-5-methoxyphenyl)(2-methoxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Obtained by reaction of o-anisoyl chloride with hydroquinone dimethyl ether in the presence of aluminium chloride in ethyl ether for 19 h [416].
- Obtained by partial demethylation of 2,2',5-trimethoxy-benzophenone,
- with boron tribromide in methylene chloride at 0° for $1.5 \mathrm{~h}(50 \%)$ [395];
- with boron trichloride in methylene chloride at 0° for $3 \mathrm{~h}(50 \%)$ [395];
- with boron trifluoride-etherate in refluxing benzene for 6 h (60%) or in refluxing toluene for $4 \mathrm{~h}(60 \%)$ [395];
- with beryllium chloride in refluxing benzene for $8-10 \mathrm{~h}(40 \%)$ or in refluxing toluene for 5 h (40\%) [395].
N.B.: In these experiments, only the reactions using boron halides were carried out under nitrogen atmosphere.
m.p. $100-101^{\circ}$ [395]; ${ }^{1} \mathrm{H}$ NMR [395,416], IR [395]; TLC [395].
(2-Hydroxy-5-methoxyphenyl)(3-methoxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27

Synthesis
- Preparation by selective demethylation of 2,3',5-tri-methoxybenzophenone with excess beryllium chloride in refluxing toluene for 4 h (90\%) [395].
pale yellow oil [395]; b.p. (NA);
${ }^{1} H$ NMR [395], IR [395], UV [395], MS [395]; TLC [395].
(2-Hydroxy-5-methoxyphenyl)(4-methoxyphenyl)methanone
[16762-04-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses
- Obtained by Fries rearrangement of p-methoxyphenyl p-anisate with titanium tetrachloride without solvent at 120° for 1 h (20-35\% yields) [679].
- Also obtained by partial demethylation of 2,4',5-tri-methoxybenzophenone (SM),
- with aluminium chloride in nitromethane at 20° for $24 \mathrm{~h}(27 \%)$. SM was prepared by Friedel-Crafts acylation of 1,4-dimethoxybenzene with p-anisoyl chloride in the presence of stannic chloride in nitromethane at 20° for $1 \mathrm{~h}(78-94 \%)$ [679];
- with excess beryllium chloride in refluxing toluene for 3 h (95\%) [395].
- Also refer to: $[46,1145]$.
m.p. 71° [679], 66-68ํ [395]; ${ }^{1} \mathrm{H}$ NMR [395], IR [395,679], UV [395,679], MS [395]; TLC [395].

(2-Hydroxy-6-methoxyphenyl)(2-methoxyphenyl)methanone

$$
\begin{aligned}
& \text { [129103-90-8] } \quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 258.27 \\
& \text { Synthesis } \\
& \text { - Preparation from 2-iodo-3-methoxyphenyl 2-methoxy- } \\
& \text { benzoate by rearrangement on treatment with n-butyl- } \\
& \text { lithium in a mixture of ethyl ether, hexane and } \\
& \text { tetrahydrofuran at }-70^{\circ} \text { for } 2 \mathrm{~h} \text {, then treatment with satu- } \\
& \text { rated aqueous ammonium chloride (81\%) [58]. } \\
& \text { m.p. } 83-83^{\circ} 5 \text { [58]; }{ }^{1} \mathrm{H} \text { NMR [58], IR [58], MS [58]. }
\end{aligned}
$$

(5-Hydroxy-2-methoxyphenyl)(4-methoxyphenyl)methanone
[80427-36-7]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Synthesis

- Preparation by reaction of p-methoxybenzoyl chloride with p-methoxyphenyl benzoate in the presence of stannic chloride in nitromethane at 20° for 2 days, followed by saponification of the m-keto ester so obtained-the 2,4'-dimethoxy-5-(4-methoxybenzoyloxy)benzophenone (73%)—with sodium hydroxide in refluxing methanol for 1 h (quantitative yield) [679]. oil [679]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [679], IR [679], UV [679].

[3-Hydroxy-4-(methylamino)phenyl](4-methoxyphenyl)methanone

[136134-37-7]

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 257.29
Synthesis

- Preparation from 6-(4-methoxy-benzoyl)-3-methyl-benzoxazolinone by hydrolysis with 10% aqueous sodium hydroxide solution [564].
m.p. and Spectra (NA).
(2-Aminophenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone
[61736-72-9]

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 273.29
Syntheses
- Preparation by treatment of 2-hydroxy-4,6-dimethoxy-2'-nitrobenzophenone with a mixture of ammonium chloride and zinc moss in dilute ethanol at r.t. for 8 h (quantitative yield) [1123], (77\%) [1122].
- Preparation by photo-Fries rearrangement of 3,5-dimethoxyphenyl 2-aminobenzoate in benzene for $12.5 \mathrm{~h}(45 \%)$ [1123].

```
m.p. 71-75 [ [1123], 61-63` [1122]; 'H NMR [1122,1123], IR [1122,1123], UV [1122,1123], MS [1122,1123].
```


(2-Bromophenyl)[5-chloro-2-hydroxy-3-(2-propenyl)phenyl]methanone

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrClO}_{2}$
mol.wt. 351.63

Synthesis

- Preparation by Fries rearrangement of 2-allyl-4-chloro-phenyl o-bromobenzoate with aluminium chloride at 160° for 15 min [1107].
oil [1107]; b.p. and Spectra (NA).
(4-Chlorophenyl)[5-fluoro-2-hydroxy-3-(2-propenyl)phenyl]methanone
[93575-77-0]
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFO}_{2} \quad$ mol.wt. 290.72

Synthesis
- Preparation by Fries rearrangement of 2-allyl-4-fluorophenyl 4-chlorobenzoate with aluminium chloride at 160° for 15 min [1107].
m.p. $\quad 44-46^{\circ}$ [1107]; \quad Spectra (NA).
(5-Ethyl-2-hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone
[61750-29-6]

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 294.27
Synthesis
- Preparation by demethylation of 5-ethyl-2-methoxy-4'-(trifluoromethyl)benzophenone (SM) by heating with 55% hydrobromic acid at $110-120^{\circ}$ for 5 h . SM was obtained by reaction of p-(trifluoromethyl)benzoyl chloride with p-ethylanisole in the presence of aluminium chloride in methylene chloride at r.t. overnight (92%) [710].
m.p. and Spectra (NA).
(2-Hydroxy-3,4-dimethoxyphenyl)[3-(trifluoromethyl)phenyl]methanone
[140665-42-5]

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 326.27
Synthesis
- Obtained by reaction of m-(trifluoromethyl) benzoyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 3 h and at reflux for 1 h (33\%) [704].
m.p. $\quad 124-126^{\circ}[704] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

[5-Chloro-2-hydroxy-3-(1-methylethyl)phenyl](4-chlorophenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 309.19
Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-isopropylphenyl 4-chlorobenzoate with aluminium chloride at 160° for 15 min [1107].
m.p. $\quad 54-55^{\circ}$ [1107]; \quad Spectra (NA).
(5-Chloro-2-hydroxy-3-propylphenyl)(4-chlorophenyl)methanone
[93575-68-9] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 309.19

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-propyl-phenyl p-chlorobenzoate with aluminium chloride at 160° for 15 min [1107].
- Also refer to: [1146].
m.p. $\quad 55-56^{\circ}$ [1107]; \quad Spectra (NA).
(3,5-Dichloro-4-hydroxyphenyl)(2,4,6-trimethylphenyl)methanone

$$
\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 309.19
$$

Synthesis

- Preparation by Fries rearrangement of 2,6-dichloro-phenyl mesitylenecarboxylate (2,6-dichlorophenyl 2,4,6-trimethylbenzoate) with aluminium chloride at 155° for $1 \mathrm{~h}(79 \%)$ [489].
m.p. $201^{\circ} 5-203^{\circ}$ [489]; Spectra (NA).
(2,6-Dichlorophenyl)(4-hydroxy-2,3,6-trimethylphenyl)methanone
[183724-89-2]
m.p. $\quad 122^{\circ}[1072] ; \quad \operatorname{Spectra}(N A)$.

(2,6-Dichlorophenyl)(2-hydroxy-3,4-dimethoxy-6-methylphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 341.19
Syntheses

- Preparation by acylation of 3,4,5-trimethoxytoluene with 2,6-dichlorobenzoyl chloride in methylene chloride in the presence of aluminium chloride for 1 h at 0° and for 16 h at r.t. (30\%) [1072].
- Also obtained by partial demethylation of $2^{\prime}, 6^{\prime}$-dichloro-6-methyl-2,3,4trimethoxybenzophenone with hydrobromic acid in acetic acid for 1.5 h at 75° [1072].
N.B.: K salt [1072]. m.p. 161° [1072]; Spectra (NA).
(4-Ethenylphenyl)(2-hydroxy-4-methoxyphenyl)methanone
[48177-42-0]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 254.29
Synthesis
- Preparation by reaction of aqueous potassium hydroxide with 2-hydroxy-4-methoxy-4'-(2-bromoethyl)benzophenone in the presence of hydroquinone in refluxing methanol for 1.5 h under nitrogen bubbling (30\%) [1147].
- Also refer to: [85].
m.p. $69-71^{\circ}$ [1147]; ${ }^{1} \mathrm{H}$ NMR [1147], IR [1147], UV [1147], MS [1147].
[2-(Acetyloxy)phenyl](2-hydroxy-5-methoxyphenyl)methanone
[83570-58-5]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28

Synthesis

- Obtained by UV light irradiation of p-methoxyphenyl o-acetoxybenzoate (p-methoxyphenyl acetylsalicylate) in benzene [1148], for 11 h (40\%) [1025].
yellow oil [1025]; b.p. (NA); ¹H NMR [1025], IR [1025], UV [1025], MS [1025].
(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-methylphenyl)methanone
[93575-40-7] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 274.75

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-ethyl-phenyl p-toluate with aluminium chloride at 160° for 15 min [1107].
m.p. $\quad 53-55^{\circ}[1107] ; \quad$ Spectra (NA).

(5-Chloro-2-hydroxy-3-methylphenyl)(3,4-dimethylphenyl)methanone

[86914-89-8]
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2}$
mol.wt. 274.75

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl 3,4-dimethylbenzoate with aluminium chloride at 180° for 10 min [1074].
m.p. $\quad 108^{\circ}[1074] ; \quad \operatorname{Spectra}(N A)$.
(5-Chloro-2-hydroxy-3-methylphenyl)(4-ethylphenyl)methanone
[86914-74-1]
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2}$
mol.wt. 274.75

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl 4-ethylbenzoate with aluminium chloride at $180-185^{\circ}$ for 10 min [1074,1149].
m.p. $152-155^{\circ}[1074,1149] ; \quad \operatorname{Spectra}(N A)$.
(4-Chlorophenyl)(2-hydroxy-3-propylphenyl)methanone
[108294-79-7] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 274.75

Synthesis

- Preparation by reaction of 2-hydroxy-3-propylbenzoyl chloride with chlorobenzene in the presence of aluminium chloride in refluxing carbon disulfide (35\%) [92].
m.p. $\quad 68-70^{\circ}$ [92]; \quad Spectra (NA).
(4-Chlorophenyl)(2-hydroxy-5-propylphenyl)methanone
[61466-81-7]

b.p. ${ }_{0.02} 151-153^{\circ}[92,1091] ; \quad \operatorname{Spectra}(N A)$.

(4-Fluorophenyl)(2-hydroxy-4-propoxyphenyl)methanone

 $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{3} \quad$ mol.wt. 274.29

Synthesis

- Preparation by partial alkylation of 4'-fluoro-2,4-di-hydroxybenzophenone with a propyl halide in the presence of an alkali [1109].
m.p. and Spectra (NA).
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3-methylphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 285.30

Synthesis

- Obtained (by-product) by Fries rearrangement of o-cresyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(<4 \%)$ [1003].
m.p. 104° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4-methylphenyl)methanone
 $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 285.30 Synthesis
- Preparation by Fries rearrangement of m-cresyl 2,3-di-methyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(43 \%)$ [1003].
m.p. 158° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-5-methylphenyl)methanone
2
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2-methylphenyl)methanone
[110969-58-9]

(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-3-methylphenyl)methanone

 $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 285.30
Synthesis

- Preparation by Fries rearrangement of o-cresyl 2,3-di-methyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(56 \%)$ [1003].
m.p. 210° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2-Hydroxy-3-nitrophenyl)[4-(1-methylethyl)phenyl]methanone
[35698-18-1] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 285.30

Synthesis

- Obtained by reaction of fuming nitric acid with 2-hydroxy-4'-isopropylben zophenone in an acetic
acid/acetic anhydride mixture (4:3), first at 10° for 50 min , then at 20° for 40 min (19\%) [889,891].
m.p. and Spectra (NA).
(2-Hydroxy-5-nitrophenyl)[4-(1-methylethyl)phenyl]methanone
[35698-19-2]

mol.wt. 285.30
Synthesis
- Obtained by reaction of fuming nitric acid with 2-hydroxy-4'-isopropylbenzophenone in an acetic acid/acetic anhydride mixture (4:3), first at 10° for 50 min , then at 20° for 40 min (10\%) [889,891].
m.p. and Spectra (NA).
(4,5-Dimethoxy-2-nitrophenyl)(2-hydroxy-4-methoxyphenyl)methanone $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{7} \quad$ mol.wt. 333.30
 Synthesis
- Obtained by action of a mixture of nitric acid $(\mathrm{d}=1.42) /$ concentrated sulfuric acid with 2 -hydroxy- $3^{\prime}, 4,4^{\prime}$ trimethoxybenzophenone in acetic acid at $48-52^{\circ}$ for 16 min [1150].
m.p. $\quad 211^{\circ}$ [1150]; \quad Spectra (NA).

(3,4-Dimethoxyphenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone

[134612-42-3]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{7} \quad$ mol.wt. 333.30
Synthesis

- Preparation by reaction of 65% nitric acid with 4-hydroxy- $3,3^{\prime}, 4^{\prime}$-trimethoxybenzophenone in acetic acid at 20° [1019].
m.p. $\quad 170-180^{\circ}$ [1019]; \quad Spectra (NA).
(2,4-Dimethylphenyl)(2-hydroxy-5-methylphenyl)methanone
[80018-48-0]

m.p. and Spectra (NA).
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Synthesis
- Preparation by Fries rearrangement of p-cresyl 2,4-di-methylbenzoate with aluminium chloride [1062].
(2,4-Dimethylphenyl)(3-hydroxy-2-methylphenyl)methanone
[76981-57-2]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Synthesis
- Preparation by diazotization of 3-amino$2,2^{\prime}, 4^{\prime}$-trimethyl-benzophenone, followed by hydrolysis of the diazonium salt so obtained (54\%) [119], according to [634].
m.p. 124° [119]; $\quad \operatorname{Spectra}(N A)$.
(2,6-Dimethylphenyl)(2-hydroxy-5-methylphenyl)methanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Synthesis

- Obtained by Fries rearrangement of p-cresyl 2,6-dimethyl-benzoate in the presence of aluminium chloride, first in refluxing carbon disulfide for 2 h , then at 150° for 1 h after elimination of solvent (22\%) [1151].
m.p. $89^{\circ} 7-90^{\circ} 7[1151] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(5-Ethyl-2-hydroxyphenyl)(2-methylphenyl)methanone

$$
\begin{aligned}
& \text { Synthesis } \\
& \text { - Preparation by Fries rearrangement of p-ethylphe- } \\
& \text { nyl o-toluate with aluminium chloride at } 100-150^{\circ} \\
& \text { for 0.5-3 } \mathrm{h}(95 \%) \text { [29]. }
\end{aligned}
$$

oil [29]; b.p. and Spectra (NA).
(5-Ethyl-2-hydroxyphenyl)(4-methylphenyl)methanone
[61750-25-2]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Syntheses

- Preparation by reaction of p-methylbenzoyl chloride with p-ethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for $22 \mathrm{~h}(38 \%)$ [92].
- Preparation by Fries rearrangement of p-ethylphenyl p-toluate with aluminium chloride in tetrachloroethane at 125° for 6 h [710].
m.p. $\quad 49-51^{\circ}[92,710] ; \quad$ Spectra (NA).

(2-Hydroxy-3,4-dimethylphenyl)(4-methylphenyl)methanone

[16762-05-3] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Syntheses

- Preparation by Fries rearrangement of 2,3-dimethyl-phenyl p-toluate with aluminium chloride at 180° for $10 \mathrm{~min}(55 \%)$ [518].
- Also obtained by degradation of 6,7-dimethyl-3-(4-methylphenyl)-2-phenylb enzofuran with chromium trioxide in boiling acetic acid, followed by saponification of the keto ester so obtained (2-benzoyloxy-3,4-dimethyl-4'-methyl benzophenone) $[44,46]$.
m.p. $84^{\circ}[44,46,518,718] ; \quad$ IR [44].
(2-Hydroxy-3,5-dimethylphenyl)(2-methylphenyl)methanone

oil [1074]; b.p. and Spectra (NA).

(2-Hydroxy-3,5-dimethylphenyl)(4-methylphenyl)methanone

[86914-85-4] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Syntheses

- Preparation by Fries rearrangement of 2,4-dimethylphenyl p-toluate with aluminium chloride at 180° for 10 min [1074], (60\%) [518].
- Obtained by degradation of 5,7-dimethyl-3-(4-methyl-phenyl)-2-phenylbenzofuran in boiling acetic acid, followed by saponification of the keto ester so obtained (2-benzoyloxy-3,4',5-trimethyl-benzophenone) [44].
oil [44]; m.p. 55-56 ${ }^{\circ}$ [1074], 54° [518]; ${ }^{1} \mathrm{H}$ NMR [518], IR [44,518].
(2-Hydroxy-4,5-dimethylphenyl)(2-methylphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Synthesis
- Preparation by Fries rearrangement of 3,4-dimethylphenyl o-toluate with aluminium chloride at $100-150^{\circ}$ for $0.5-3 \mathrm{~h}(80 \%)$ [29].
m.p. $\quad 56-57^{\circ}[29] ; \quad$ Spectra (NA).
(2-Hydroxy-4,6-dimethylphenyl)(2-methylphenyl)methanone
[62261-96-5] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Synthesis

- Refer to: [734].
m.p. and Spectra (NA).
(2-Hydroxy-4,6-dimethylphenyl)(4-methylphenyl)methanone
[62261-95-4]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Synthesis
- Refer to: [734].
m.p. and Spectra (NA).

(4-Ethylphenyl)(2-hydroxy-4-methoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Preparation by partial demethylation of 2,4-di-methoxy-4'-ethylbenzophenone with aluminium chloride in chlorobenzene at $80-100^{\circ}$ [655].
- Also refer to: [222]. m.p. and Spectra (NA).
(2-Hydroxy-3,4-dimethylphenyl)(4-methoxyphenyl)methanone
[16762-06-4]

- Preparation by oxidation of 6,7-dime-
thyl-2-phenyl-3-(4-methoxyphenyl)
benzofuran with chromium trioxide in
boiling acetic acid, followed by saponi-
fication of the keto ester so formed with
sodium hydroxide [44] or potassium
hydroxide [46] in refluxing ethanol.

m.p. $86^{\circ}[44], 85^{\circ}[46] ; \quad \operatorname{IR}[44,46]$.

(2-Hydroxy-3,5-dimethylphenyl)(2-methoxyphenyl)methanone

[72324-22-2]

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 256.30
$$

Synthesis

- Obtained (poor yields) by reaction of o-anisic acid with 2,4-dimethylphenol,
- in the presence of methanesulfonic acid at 100° for $1 \mathrm{~h}(6 \%)$ [991];
- in the presence of butanesulfonic acid at 140° for $1 \mathrm{~h}(4 \%)$ [991].
m.p. 75° [991]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 38495 \mathrm{M}$), IR (Sadtler: standard n ${ }^{\circ} 65533$ K) [991], UV [991], MS [1131].

(2-Hydroxy-3,5-dimethylphenyl)(4-methoxyphenyl)methanone

[72324-20-0]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Preparation by Fries rearrangement of 2,4-dimethylphenyl p-anisate with titanium tetrachloride at 120° for $1 \mathrm{~h}(82 \%)$ [991].
m.p. 66° [991]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 38496$ M),

IR (Sadtler: standard n ${ }^{\circ} 65534 \mathrm{~K}$) [991], UV [991], MS [1131].

(2-Hydroxy-4,5-dimethylphenyl)(4-methoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Preparation by oxidation of 2-phenyl-3-(4-methoxy-phenyl)-5,6-dimethylbenzofuran with chromium trioxide in boiling acetic acid for 2 h , followed by saponification of the keto ester so formed with 10% sodium hydroxide in boiling ethanol for 15 min [1133].
m.p. $\quad 92-93^{\circ}$ [1133]; ${ }^{1} \mathrm{H}$ NMR [1133], IR [1133].
(4-Hydroxy-3,5-dimethylphenyl)(2-methoxyphenyl)methanone
[72324-21-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Preparation by reaction of o-anisic acid with 2,6-dimethyl-phenol in the presence of methanesulfonic acid at 120° for $20 \mathrm{~min}(46 \%)$ [991].
m.p. 145° [991]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 38492 \mathrm{M}$), IR (Sadtler: standard $\mathrm{n}^{\circ} 65530 \mathrm{~K}$) [991], UV [991], MS [1131].
(4-Hydroxy-3,5-dimethylphenyl)(4-methoxyphenyl)methanone
[72324-19-7]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Preparation by Fries rearrangement of 2,6-dimethyl-phenyl p-anisate in nitromethane,
- in the presence of titanium tetrachloride at 20° for 170 h (82\%) [991];
- in the presence of antimony pentachloride at 20° for $25 \mathrm{~h}(40 \%)$ [991].
- Also refer to: [996].
m.p. 125° [991]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard ${ }^{\circ} 38500 \mathrm{M}$),

IR (Sadtler: standard n ${ }^{\circ} 65538$ K) [991], UV [991], MS [1131].

(2-Hydroxy-4-methylphenyl)(2-methoxy-4-methylphenyl)methanone

[54468-79-0]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Obtained by oxidation of 6-methyl-2-phenyl-3-(2-methoxy-4-methylphenyl) benzofuran with chromium trioxide, then saponification of the keto ester so formed, the 2-(benzoyloxy)-2'-methoxy-4,4'-dimethylbenzophenone [1152].
oil [1152]; b.p. (NA); IR [1152].

(2-Hydroxy-5-methylphenyl)(2-methoxy-5-methylphenyl)methanone

[32229-35-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Syntheses

- Obtained by Friedel-Crafts acylation of excess p-methoxy-toluene with 2-methoxy-5-methylbenzoyl chloride in the presence of aluminium chloride, first at 0° for 2 h , then at r.t. overnight and at reflux for $3 \mathrm{~h}(23 \%)$ [1153].
- Also obtained (by-product) by Friedel-Crafts acylation of p-methoxytoluene with 2-methoxy-5-methylbenzoyl chloride in carbon disulfide in the presence of aluminium chloride, first at 0° for 5 h , then at r.t. overnight and at reflux for 2 h (10\%) [1153].
- Also refer to: [1154].
m.p. $68-69^{\circ}$ [1153,1154]; IR [1154], UV [1154].
(4-Hydroxy-3-methylphenyl)(4-methoxy-3-methylphenyl)methanone
[79002-05-4]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 256.30
Synthesis
- Obtained by rapid degradation of 4-methoxy-3,3'-di-methylbenzophenone [41295-28-7] (an herbicide) in reductive flooded soils (main metabolite) [1155].
m.p. and Spectra (NA).

(4-Ethoxy-2-hydroxyphenyl)(4-methoxyphenyl)methanone

- Also refer to: [222].
m.p. and Spectra (NA).

(4-Ethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 272.30
$$

Syntheses

- Preparation by reaction of 2,4-dimethoxybenzoyl chloride with phenetole in the presence of aluminium
chloride in a chlorobenzene/ N, N-di-methylformamide mixture (22:1) at 115° [235,657].
- Preparation by partial demethylation of 4'-ethoxy-2,4-dimethoxybenzophenone with aluminium chloride or aluminium bromide in chlorobenzene at $90-95^{\circ}$ (good yield) [655].
m.p. (NA); UV [235].
(2-Hydroxy-3,4-dimethoxyphenyl)(2-methylphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Synthesis
- Preparation by reaction of o-toluoyl chloride with 1,2,3-tri-methoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 3 h and at reflux for 1 h (63\%) [704].
m.p. $\quad 93-95^{\circ}$ [704]; Spectra (NA).
(2-Hydroxy-4-methoxy-3-methylphenyl)(2-methoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Synthesis
- Preparation by reaction of o-anisoyl chloride with 3-methoxy-2-methylphenol in methylene chloride in the presence of aluminium chloride first at 0° for 2 h and at r.t. for $1 \mathrm{~h}(31 \%)$ [1029].
m.p. $\quad 111-115^{\circ}$ [1029]; Spectra (NA).
(2-Hydroxy-4-methoxy-3-methylphenyl)(4-methoxyphenyl)methanone $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

Synthesis

- Preparation by partial demethylation of 2,4,4'-tri-methoxy-3-methylbenzophenone with aluminium chloride in chlorobenzene at $80-100^{\circ}$ [655].
- Also refer to: [222].
m.p. and Spectra (NA).

(2,3-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone

[35040-42-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
 Synthesis

- Obtained by photo-Fries rearrangement of o-methoxy-phenyl 2,3-dimethoxybenzoate in ethanol at r.t. for $22 \mathrm{~h}(16 \%)$ [397].
m.p. 110-1105 [397]; ${ }^{1} \mathrm{H}$ NMR [397], IR [397], UV [397].

(2,3-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone

[147188-10-1]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Obtained, in mixture with 2^{\prime}-hydroxy-2,3',4-tri-methoxybenzophenone, by reaction of 2,3-di-methoxybenzoyl chloride with resorcinol dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 54\%) [1010].
- Also refer to: [1011,1027].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].

(2,3-Dimethoxyphenyl)(2-hydroxy-5-methoxyphenyl)methanone

[35040-36-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$ Synthesis

- Obtained by photo-Fries rearrangement of p-methoxy-phenyl 2,3-dimethoxybenzoate in ethanol at $30-40^{\circ}$ for $9 \mathrm{~h}(42 \%)$ [397].
m.p. 74-760 [397]; ${ }^{1} \mathrm{H}$ NMR [397], IR [397], UV [397].

(2,3-Dimethoxyphenyl)(4-hydroxy-3-methoxyphenyl)methanone

[35042-49-0] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Obtained (poor yield) by photo-Fries rearrangement of o-methoxyphenyl 2,3-dimethoxybenzoate in ethanol at r.t. for 22 h (<7\%) [397].
m.p. $143-143^{\circ} 5$ [397]; ${ }^{1} \mathrm{H}$ NMR [397], IR [397], UV [397].

(2,4-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Obtained, in mixture with 2-hydroxy$2^{\prime}, 3^{\prime}, 4$-tri-methoxybenzophenone, by reaction of 2,3-di-methoxybenzoyl chloride with resorcinol dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 54\%) [1010].
- Also refer to: [1011].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].

(2,4-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone

[4142-51-2] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Syntheses

- Preparation by reaction of 2,4-dimethoxybenzoic acid with m-methoxyphenol in the presence of boron trifluoride [650].
- Preparation by partial methylation of 2,2'-di-hydroxy-4,4'-dimethoxybenzophenone with methyl iodide in the presence of potassium carbonate in refluxing acetone for 12 h (68\%) [1156].
- Preparation by treatment of a difluoroboron chelate (SM) in methanol at 50° for 10 $\min (95 \%)$ [1157,1158]. SM was obtained by reaction of $2,2^{\prime}, 4,4^{\prime}$-tetramethoxybenzophenone with boron trifluoride-etherate in refluxing toluene (86\%, m.p. $\quad 160-$ 161°) [1157,1158].
N.B.: A mixture of products is obtained from aluminium chloride, induced cleavage of $2,2^{\prime}, 4,4^{\prime}$-tetramethoxy-benzophenone [1159].
- Also obtained by reaction of 2,4-dimethoxybenzoyl chloride with resorcinol dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (52\%) [1010].
- Also refer to: [222,1011,1136].
m.p. $\quad 110-111^{\circ} 5$ [1156], $108-109^{\circ}$ [1157,1158], $104-105^{\circ}$ [650];
${ }^{1} \mathrm{H}$ NMR [1156,1158], IR [650,1010,1156,1158], UV [650], MS [1156].
(2,4-Dimethoxyphenyl)(2-hydroxy-5-methoxyphenyl)methanone
[169455-12-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis
- Obtained, in mixture with 2^{\prime}-hydroxy-2,4',5-trimethoxybenzophenone, by reaction of 2,4-dimethoxybenzoyl chloride with hydroquinone dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 54\%) [1010].
- Also refer to: [1011,1027].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].

(2,4-Dimethoxyphenyl)(2-hydroxy-6-methoxyphenyl)methanone

[147188-11-2]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Obtained, in mixture with 2^{\prime}-hydroxy-2,4',6-trimethoxybenzophenone, by reaction of 2,4-dime-thoxy-benzoyl chloride with resorcinol dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 52\%) [1010].
- Also refer to: [1011,1027].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].
(2,5-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone
[129168-52-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Preparation by Friedel-Crafts acylation of hydroquinone dimethyl ether with 2,3-dimethoxybenzoyl chloride in ethyl ether in the presence of aluminium chloride for 1 h at $45-50^{\circ}(72 \%)$ [1160].
m.p. $100-100^{\circ} 5$ [1160]; $\operatorname{Spectra}(N A)$.
(2,5-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone
[62495-96-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses
- Preparation by reaction of 2,5-dimethoxybenzoic acid with 3-methoxyphenol in the presence of zinc chloride and phosphorous oxychloride at $65-70^{\circ}$ for 2 h (21\%) [1136].
- Also obtained, in mixture with 2-hydroxy-2',4',5-trimethoxybenzophenone, by reaction of 2,4-dimethoxybenzoyl chloride with hydroquinone dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 54\%) [1010].
- Also refer to: [1011].
m.p. $\quad 110^{\circ}$ [1136]; ${ }^{1} \mathrm{H}$ NMR [1010,1136], IR [1136], UV [1136].

(2,6-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone

[37570-57-3] | - Obtained by demethylation of $2,2^{\prime}, 3,6^{\prime}$-tetrame- |
| :--- |
| thoxy-benzophenone, |
| enloride for 30 min (88%) (high selectivity) |
| [1161]; |

- in the presence of 40% aqueous hydrobromic acid in refluxing acetic acid for 2 h (17\%) [1161].
m.p. $146-148^{\circ}$ [1161]; ${ }^{1} \mathrm{H}$ NMR [1161], IR [1161], MS [1161].

(2,6-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone

[147188-12-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Obtained, in mixture with 2-hydroxy-2', $4^{\prime}, 6-$ trimethoxy-benzophenone, by reaction of 2,4-dimethoxybenzoyl chloride with resorcinol dimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 52\%) [1010].
- Also refer to: [1011].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].
(2,6-Dimethoxyphenyl)(2-hydroxy-6-methoxyphenyl)methanone
2903-93-1]

Obtained from 2-iodo-3-methoxyphenyl 2,6-dime-
with n-butyllithium in a mixture of ethyl ether,
hexane and tetrahydrofuran at -100° followed by
heating to -70°, then treatment with saturated
aqueous ammonium chloride (9%) [58].

m.p. and Spectra (NA).
(3,4-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone
[42045-60-3]

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 288.30
$$ Syntheses

- Obtained by reaction of methyl iodide with 2,4-di-hydroxy-3',4'-dimethoxybenzophenone in the presence of potassium carbonate in refluxing acetone [218], (89\%) [1137].
- Also obtained from β-(5-methoxy-2-veratroylphenoxy)propionic acid by heating with aqueous sodium hydroxide solution [218].
- Preparation by reaction of 3,4-dimethoxybenzoic acid with m-methoxyphenol in the presence of boron trifluoride [650].
- Preparation by reaction of veratroyl chloride,
- with resorcinol monomethyl ether in the presence of aluminium chloride in nitrobenzene, first at 0° for 3 h , then at $10-16^{\circ}$ for 18 h [1150];
- with resorcinol dimethyl ether in the presence of aluminium chloride in refluxing carbon disulfide for 1 h (61\%) [1162].
- Also obtained by condensation of ethyl m-methoxyphenoxypropionate with veratroyl chloride in the presence of aluminium chloride in nitrobenzene at 0° for 12 h [1150].
- Also refer to: [193,222,235,1136].
m.p. $141^{\circ}[218,1150], 140-141^{\circ}$ [1162], 140° [1137], $135-136^{\circ}$ [650];

IR [650], UV [650].

(3,4-Dimethoxyphenyl)(4-hydroxy-2-methoxyphenyl)methanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 288.30
$$

Syntheses

- Obtained by reaction of veratroyl chloride with resorcinol monomethyl ether in the presence of aluminium chloride in nitrobenzene, first at 0° for 3 h , then at $10-16^{\circ}$ for 18 h [1150].
- Also obtained from β-(3-methoxy-4-veratroylphenoxy)propionic acid on heating with an aqueous sodium hydroxide solution [218].
m.p. $\quad 179^{\circ}$ [218], 175° [1150]; Spectra (NA).

(2-Hydroxy-3,4-dimethoxyphenyl)(2-methoxyphenyl)methanone

[147188-08-7]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Obtained, in mixture with 2^{\prime}-hydroxy-2,3,4-trimethoxy-benzophenone, by reaction of 2-methoxybenzoyl chloride with pyrogallol trimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 56-59\%) [1010,1011].
- Also refer to: [1027].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].

(2-Hydroxy-4,5-dimethoxyphenyl)(2-methoxyphenyl)methanone

[42833-48-7]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Obtained, in mixture with 2,4,5-trimethoxy-2^{\prime}-hydroxy-benzophenone, by reaction of o-anisoyl chloride with 1,2,4-trimethoxybenzene in ethyl ether in the presence of aluminium chloride for 20 h at r.t. (total yield: 56%) [416,1010] or for 48 h at r.t. [1163].
- Also obtained from 2,5-dihydroxy-2',4-dimethoxybenzophenone on treatment with ethereal methanolic diazomethane for 4.5 h [416].
- Also refer to: [1011].
m.p. $\quad 104-105^{\circ}$ [416], 98° [1163]; ${ }^{1} \mathrm{H}$ NMR [416,1010,1163], UV [416], MS [416].
(2-Hydroxy-4,5-dimethoxyphenyl)(3-methoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis
- Preparation by acylation of 1,2,4-trimethoxybenzene with m-anisoyl chloride in ethyl ether in the presence of aluminium chloride at r.t. for 48 h (35\%) [1163].
m.p. $\quad 94^{\circ}$ [1163]; ${ }^{1} \mathrm{H}$ NMR [1163].

(2-Hydroxy-4,5-dimethoxyphenyl)(4-methoxyphenyl)methanone

[58115-11-0]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30 Synthesis

- Obtained (by-product) by condensation of p-anisoyl chloride with 1,2,4-trimethoxybenzene in the presence of aluminium chloride in refluxing carbon disulfide for $6 \mathrm{~h}[428,761]$ or at r.t. several days [762].
m.p. $\quad 127-128^{\circ}[761,762], 124-125^{\circ}$ [428]; Spectra (NA).

(2-Hydroxy-4,6-dimethoxyphenyl)(2-methoxyphenyl)methanone

[147188-04-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Obtained, in mixture with 2^{\prime}-hydroxy-2,4,6-trimethoxy-benzophenone, by reaction of 2-methoxybenzoyl chloride with phloroglucinol trimethyl ether in ethyl ether in the presence of aluminium chloride for 8 h at r.t. (total yield: 59\%) [1010].
- Also refer to: [1011,1027]. m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1010].
(2-Hydroxy-4,6-dimethoxyphenyl)(3-methoxyphenyl)methanone
[21382-23-0]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis
- Preparation by partial methylation of 2,3',4,6-tetra-hydroxybenzophenone or of 2,4,6-trihydroxy-3'-methoxybenzophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 6 h (45-50\%) [422].

Isolation from natural source

- From fresh Gentiana lutea rhizome (Gentianaceae) [423].
m.p. $\quad 123-125^{\circ}$ [422]; b.p. ${ }_{0.1} 180-188^{\circ}$ [422]; ${ }^{1} \mathrm{H}$ NMR [422], IR [422], UV [422].

(2-Hydroxy-4,6-dimethoxyphenyl)(4-methoxyphenyl)methanone

[97746-14-0]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
mol.wt. 288.30
Synthesis

- Preparation by Friedel-Crafts acylation of 1,3,5-tri-methoxybenzene with p-methoxybenzoyl chloride in the presence of aluminium chloride in ethyl ether for 4 h (70\%) [653].
m.p. $\quad 150-151^{\circ}$ [653]; ${ }^{1} \mathrm{H}$ NMR [653].
(4-Hydroxy-3,5-dimethoxyphenyl)(4-methoxyphenyl)methanone
[54808-44-5]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Refer to: [334].
m.p. and Spectra (NA).

(2-Amino-4,5-dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone

 (Hydrochloride)$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}, \mathrm{HCl} \quad$ mol.wt. 339.78

Synthesis

- Preparation by reduction of 2-hydroxy-2^{\prime}-nitro-4,4',5'-trimethoxybenzophenone in ethanol with stannous chloride, tin foil and concentrated hydrochloric acid on a steam bath for 15 min [1150].
m.p. $\quad 240^{\circ}$ [1150]; \quad Spectra (NA).

[5-Chloro-2-hydroxy-3-(1-methyl-2-propenyl)phenyl](4-chlorophenyl) methanone
 [93575-41-8]

[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl](4-chlorophenyl)methanone

$$
\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}_{4} \quad \text { mol.wt. } 333.77
$$

Synthesis

- Preparation by reaction of a concentrated nitric acid/concentrated sulfuric acid mixture with 5-tert-butyl-4'-chloro-2-hydroxybenzophenone in methylene chloride at 5° for $30 \mathrm{~min}(43 \%)$ [472].
m.p. $\quad 96-98^{\circ}$ [472]; ${ }^{1} \mathrm{H}$ NMR [472]; TLC [472].
(3-Butyl-5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone
[93575-74-7]
m.p. $86^{\circ} 5-87^{\circ}$ [1107]; Spectra (NA).

[5-Chloro-2-hydroxy-3-(2-methylpropyl)phenyl](4-chlorophenyl)methanone

 [93575-75-8]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 323.22
Synthesis

- Preparation by Fries rearrangement of 2-iso-butyl-4-chlorophenyl 4-chlorobenzoate with aluminium chloride at 160° for 15 min [1107].
m.p. $65-66^{\circ}$ [1107]; \quad Spectra (NA).
(2,4-Dichlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone
[61709-37-3]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 323.22
Synthesis
- Preparation by demethylation of 5-tert-butyl-2', 4'-di-chloro-2-methoxybenzophenone (SM) with aluminium chloride in methylene chloride at 10°. SM was obtained by Friedel-Crafts acylation of p-tert-butylanisole with 2,4-dichlorobenzoyl chloride in methylene chloride in the presence of aluminium chloride at 10° [1164].
- Also refer to: [1165].
m.p. $42-43^{\circ}$ [1164]; Spectra (NA).
(2,6-Dichlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl]methanone
[124979-18-6] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 323.22

Synthesis

- Preparation by Friedel-Crafts acylation of o-tert-butyl-phenol with 2,6-dichlorobenzoyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first at 0°, then at r.t. [816].
m.p. $229-230^{\circ}[816] ; \quad \operatorname{Spectra}(\mathrm{NA})$.
(3,4-Dichlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone

$$
\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 323.22
$$

Synthesis

- Obtained by photo-Fries rearrangement of p-tert-butylphenyl 3,4-dichlorobenzoate in benzene (37\%) [154].
m.p. $\quad 110-111^{\circ}[154] ; \quad \operatorname{Spectra}(\mathrm{NA})$.
(2,4-Dichlorophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 323.22
Synthesis
- Preparation by Fries rearrangement of the intermediate 5-methyl-2-isopropylphenyl 2,4-dichlorobenzoate formed in situ by reaction of 2,4-dichlorobenzoyl chloride with thymol in the presence of aluminium chloride in nitrobenzene at r.t. for $24 \mathrm{~h}(70 \%)$ [1166].
m.p. 132° [1166]; ${ }^{1} \mathrm{H}$ NMR [1166].
(3,4-Dichlorophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone
[72236-99-8]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 323.22
Synthesis
- Preparation by demethylation of 4-(3,4-dichloro-benzoyl)-5-methyl-2-isopropylanisole with boiling pyridinium chloride for $15 \mathrm{~min}(80 \%)$ [1166].
m.p. 133° [1166]; ${ }^{1} \mathrm{H}$ NMR [1166].
(2,4-Dichlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone

[59746-94-0]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 323.22
Synthesis
- Preparation by reaction of 2,4-dichlorobenzotrichloride with 4-sec-butylphenol in hydrofluoric acid in the presence of water at -10°, then between 0° and -10° for 2 h , at r.t. for 7 h and at 80° for 30 min into an autoclave (68\%) [213].
- Also refer to: [1165].
yellow oil [213]; b.p. ${ }_{0.05} 170^{\circ}$ [213]; Spectra (NA).
(2,5-Dichlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 323.22

Synthesis

- Preparation by reaction of 2,5-dichlorobenzotrichloride with 4-sec-butylphenol in hydrofluoric acid in the presence of water at -10°, then between 0° and -10° for 2 h , at r.t. for 7 h and at 80° for 30 min into an autoclave [213].
m.p. and Spectra (NA).

(3,4-Dichlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone

$$
\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 323.22
$$

Synthesis

- Preparation by reaction of 3,4-dichlo-robenzo-trichloride with 4-sec-butylphenol in hydrofluoric acid in the presence of water at -10°, then between 0° and -10° for 2 h , at r.t. for 7 h and at 80° for 30 min into an autoclave [213].
m.p. and Spectra (NA).
(3,5-Dinitrophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone
[93332-04-8]

m.p. $\quad 133-134^{\circ}$ [154]; $\quad \operatorname{Spectra}(N A)$.
(4-Ethenylphenyl)(4-ethoxy-2-hydroxyphenyl)methanone
[80167-00-6]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31 Synthesis
- Preparation by reaction of aqueous potassium hydroxide with 4'-(2-bromo-ethyl)-4-ethoxy-2-hydroxybenzophenone in the presence of hydro quinone in refluxing methanol for 1.5 h with nitrogen bubbling (51\%) [1147].
m.p. 76-79ํ [1147]; ${ }^{1} \mathrm{H}$ NMR [1147], IR [1147], UV [1147], MS [1147].
(2-Bromophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 333.22

Synthesis

- Preparation by demethylation of 2^{\prime}-bromo-5-tert-butyl-2-methoxybenzophenone with aluminium chloride in benzene at $50-60^{\circ}$ for 5 h (80\%) [9].
b.p. ${ }_{12} 208-212^{\circ}[9] ; \quad$ Spectra (NA).

(3-Bromophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 333.22

Synthesis

- Preparation by demethylation of 5-tert-butyl-3'-bromo-2-methoxybenzophenone with aluminium chloride in benzene at $50-60^{\circ}$ for 5 h (75\%) [9].
b.p. ${ }_{12} 225-227^{\circ}[9] ; \quad \operatorname{Spectra}(N A)$.
(4-Bromophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone
[75060-50-3]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 333.22
Synthesis
- Preparation by demethylation of 2-(4-bro mobenzoyl)-4-tert-butylanisole with a mixture of 57% hydriodic acid and 47% hydrobromic acid in refluxing acetic acid (87\%) [817].
m.p. $\quad 83-85^{\circ}$ [817]; \quad Spectra (NA).
(2-Bromophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 333.22
Synthesis
- Preparation by demethylation of 4-(2-bro mobenzoyl)-5-methyl-2-isopropylanisole with boiling pyridinium chloride for 15 min (85\%) [1166].
m.p. 126° [1166]; ${ }^{1} \mathrm{H}$ NMR [1166].
(4-Bromophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone
[72237-03-7]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 333.22
Synthesis
- Preparation by demethylation of 4-(4-bromobenzoyl)-5-methyl-2-isopropylanisole with boiling pyridinium chloride for 15 min (85\%) [1166].
m.p. 150° [1166]; ${ }^{1} \mathrm{H}$ NMR [1166].

(5-Butyl-2-hydroxyphenyl)(4-chlorophenyl)methanone

[108294-80-0]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2}$
Synthesis

- Preparation by reaction of p-chlorobenzoyl chloride with p-butylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for 22 h (54\%) [92].
b.p. ${ }_{0.75} 174^{\circ}$ [92]; Spectra (NA).
(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-ethylphenyl)methanone
[93575-37-2]
 $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 288.77 Synthesis
- Preparation by Fries rearrangement of 4-chloro-2-ethylphenyl 4-ethylbenzoate with aluminium chloride at 160° for 15 \min [1107].
oil [1107]; b.p. (NA); $n_{\mathrm{D}}^{21}=1.6060$ [1107]; Spectra (NA).
(5-Chloro-2-hydroxy-3-methylphenyl)[4-(1-methylethyl)phenyl]methanone
[86914-75-2] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad \mathrm{~mol} . w t .288 .77$

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-methylphenyl 4-isopropylbenzoate with aluminium chloride at 180° for 10 min [1074,1149].
yellow oil [1074,1149]; b.p. (NA); $\quad n_{D}^{22}=1.619[1074,1149] ;$
Spectra (NA).
(5-Chloro-2-hydroxy-3-propylphenyl)(4-methylphenyl)methanone
[92739-94-1]
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 288.77

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-propyl-phenyl p-toluate with aluminium chloride at 160° for 15 min [1107].
m.p. $\quad 63-64^{\circ}$ [1107]; \quad Spectra (NA).

(4-Chlorophenyl)(3,5-diethyl-2-hydroxyphenyl)methanone

[108294-82-2]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2}$
mol.wt. 288.77
Synthesis

- Preparation by reaction of p-chlorobenzoyl chloride with 2,4-diethylphenol in the presence of aluminium chloride in tetrachloroethane at 105° for $22 \mathrm{~h}(53 \%)$ [92].
b.p. 1.48° [92]; Spectra (NA).
(4-Chlorophenyl)(4,5-diethyl-2-hydroxyphenyl)methanone
[61750-26-3]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2}$
mol.wt. 288.77
Synthesis
- Preparation by Fries rearrangement of 3,4-diethyl-phenyl p-chlorobenzoate with aluminium chloride in tetrachloroethane at 125° for 6 h [710].
b.p. ${ }_{1.4} 188^{\circ}$ [710]; $\quad \operatorname{Spectra}(N A)$.
(2-Chlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone

$$
\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad \text { mol.wt. } 288.77
$$

Synthesis

- Preparation by demethylation of 5-tert-butyl-2'-chloro-2-methoxybenzophenone with aluminium chloride in benzene at $50-60^{\circ}$ for 5 h (70\%) [9].
b.p. ${ }_{12} 200-205^{\circ}$ [9]; Spectra (NA).
(3-Chlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl]methanone
[124979-06-2] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 288.77

Synthesis

- Preparation by Friedel-Crafts acylation of o-tert-butyl-phenol with m-chlorobenzoyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first at 0°, then at r.t. [816].
m.p. $\quad 173-174^{\circ}[816] ; \quad$ Spectra (NA).

(4-Chlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl]methanone

[124979-05-1]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2}$
mol.wt. 288.77
Synthesis

- Preparation by Friedel-Crafts acylation of o-tert-butyl-phenol with p-chlorobenzoyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first at 0°, then at r.t. [816].
m.p. $205-206^{\circ}$ [816]; \quad Spectra (NA).
(4-Chlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone
[72083-19-3]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2}$
Syntheses
- Preparation by demethylation of 5-tert-butyl-4'-chloro-2-methoxybenzophenone with aluminium chloride in benzene at $50-60^{\circ}$ for $5 \mathrm{~h}(68 \%)$ [9] or at 70° for 12 h [569].
- Obtained by photo-Fries rearrangement of p-tert-butylphenyl p-chlorobenzoate in benzene or in ethanol (55% and 48% yields, respectively) [154].
- Also refer to: $[472,568]$.
m.p. $94-95^{\circ}$ [9], $92-94^{\circ}$ [154], $64-65^{\circ}$ [569]. One of the reported melting points is obviously wrong. b.p. ${ }_{12} 218-220^{\circ}[9] ; \quad \operatorname{Spectra}(N A)$.
(4-Chlorophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone

$$
\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad \text { mol.wt. } 288.77
$$

Synthesis

- Preparation by demethylation of 4^{\prime}-chloro-4-methoxy-2-methyl-5-isopropylbenzophenone with boiling pyridinium chloride for $15 \mathrm{~min}(85 \%)$ [1166].
m.p. $\quad 156^{\circ}$ [1166]; \quad Spectra (NA).
(2-Chlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone
[59746-95-1]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 288.77 Synthesis
- Preparation by reaction of 2-chlorobenzotrichloride with 4-sec-butylphenol in hydrofluoric acid in the presence of water at -10°, then between 0° and -10° for 2 h , at r.t. for 7 h and at 80° for 30 min into an autoclave (72\%) [213].
- Also refer to: [1165].
yellow oil [213]; b.p..$_{0.2} 152^{\circ}$ [213]; Spectra (NA).

(4-Chlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone

[59746-96-2]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2}$
mol.wt. 288.77
Synthesis

- Preparation by reaction of 4-chlorobenzotrichloride with 4-sec-butylphenol in hydrofluoric acid in the presence of water at -10°, then between 0° and -10° for 2 h , at r.t. for 7 h and at 80° for 30 min into an autoclave (51\%) [213].
- Also refer to: [1165].
yellow oil [213]; b.p. $175-177^{\circ}$ [213]; Spectra (NA).

[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](2-fluorophenyl)methanone

24979-11-9]
m.p. $152-153^{\circ}$ [816]; \quad Spectra (NA).

[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](4-fluorophenyl)methanone

[124979-09-5]
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}$
mol.wt. 272.32

Synthesis

- Preparation by Friedel-Crafts acylation of o-tert-butylphenol with p-fluorobenzoyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first at 0°, then at r.t. [816].
m.p. $203-204^{\circ}$ [816]; Spectra (NA).
(4-Butoxy-2-hydroxyphenyl)(4-fluorophenyl)methanone $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3} \quad$ mol.wt. 288.32
 Synthesis
- Preparation by partial alkylation of 4'-fluoro-2,4-di-hydroxybenzophenone with a butyl halide in the presence of an alkali [1109].
m.p. and Spectra (NA).
(2-Fluoro-4,6-dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone

[129103-95-3] $\begin{array}{lll} & \\ & \text { F } & \text { HO }\end{array}$	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{6} \quad$ mol.wt. 336.32 Synthesis
	- Preparation from 2-iodo-4,5-dimethoxyphenyl 2-fluoro-4,6-dimethoxybenzoate by rearrangement on treatment with sec-butyllithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -100° followed by heating to -70° for 2 h , then treatment with saturated aqueous ammonium chloride (89\%) [58].
m.p. 133-134 ${ }^{\circ}$ [58];	
${ }^{1} \mathrm{H}$ NMR [58], IR [58], MS [58].	

(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,4-dimethylphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$
mol.wt. 299.33
 Synthesis

- Preparation by Fries rearrangement of 2,3-dimethylphenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(56 \%)$ [1003].
m.p. 165° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,5-dimethylphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 299.33
Synthesis
- Preparation by Fries rearrangement of 2,4-dimethylphenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(56 \%)$ [1003].
m.p. 133° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,6-dimethylphenyl)methanone

(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4,5-dimethylphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$ mol.wt. 299.33

Synthesis

- Preparation by Fries rearrangement of 3,4-dimethylphenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(60 \%)$ [1003].
m.p. 169° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$
mol.wt. 299.33

Synthesis
- Preparation by Fries rearrangement of 3,5-dimethylphenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for 2 h (70\%) [1003].
m.p. 121° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2,3-dimethylphenyl)methanone
[110969-71-6] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 299.33

Synthesis

- Obtained by Fries rearrangement of 2,3-dimethylphenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for 2 h (12\%) [1003].
m.p. $\quad 212^{\circ}$ [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2,5-dimethylphenyl)methanone
[110969-76-1]
m.p. 232° [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].

(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-3,5-dimethylphenyl)methanone

[110969-78-3] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 299.33

Synthesis

- Preparation by Fries rearrangement of 2,6-dimethylphenyl 2,3-dimethyl-5-nitrobenzoate with aluminium chloride at 160° for $2 \mathrm{~h}(55 \%)$ [1003].
m.p. $\quad 214^{\circ}$ [1003]; ${ }^{1} \mathrm{H}$ NMR [1003], IR [1003], UV [1003].
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-nitrophenyl)methanone
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 299.33

Synthesis

- Obtained (poor yield) by photo-Fries rearrangement of p-tert-butylphenyl p-nitrobenzoate in benzene (10\%) [154].
m.p. $\quad 102-103^{\circ}[154] ; \quad$ Spectra (NA).
[3-Amino-4-(1,1-dimethylethyl)-2-hydroxyphenyl](4-chlorophenyl)methanone $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{2} \quad$ mol.wt. 303.79

Synthesis

- Preparation by reduction of 4-tert-butyl-4'-chloro-2-hydroxy-3-nitrobenzophenone with titanium trichloride in a benzene/tetrahydrofuran mixture for 20 h at r.t. [472].
m.p. (NA); red oil [472]; ${ }^{1} \mathrm{H}$ NMR [472], IR [472], MS [472]; TLC [472].
[3-Amino-4-(1,1-dimethylethyl)-2-hydroxyphenyl](4-chlorophenyl)methanone (Hydrochloride)
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{2}, \mathrm{HCl} \quad$ mol.wt. 340.25

Synthesis

- Obtained by reaction of concentrated hydrochloric acid with 3-amino-4-tert-butyl-4'-chloro-2-hydroxy-benzophenone (52\%) [472].
m.p. $\quad 153-158^{\circ}$ [472]; Spectra: see the corresponding amino base.

(2,4-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl)methanone

[86914-80-9]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 254.33

Synthesis

- Preparation by Fries rearrangement of 2,4-dimethylphenyl 2,4-dimethylbenzoate with aluminium chloride at 180° for 10 min [1074].
oil [1074]; b.p. and Spectra (NA).
(2,5-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl)methanone
[86914-78-5] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33

Synthesis

- Preparation by Fries rearrangement of 2,4-dimethylphenyl 2,5-dimethylbenzoate with aluminium chloride at 180° for 10 min [1074].
oil [1074]; b.p. and Spectra (NA).

(3,4-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl)methanone

[86914-88-7]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 254.33

Synthesis

- Preparation by Fries rearrangement of 2,4-dimethyl-phenyl 3,4-dimethylbenzoate with aluminium chloride at 180° for 10 min [1074].
m.p. $\quad 68^{\circ}$ [1074]; \quad Spectra (NA).
(3-Ethyl-2-hydroxy-5-methylphenyl)(4-methylphenyl)methanone
[92739-95-2]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33

Synthesis

- Preparation by Fries rearrangement of 2-ethyl-4-methyl-phenyl p-toluate with aluminium chloride at 160° for 15 min [1107].
- Also refer to: [1076].
m.p. $\quad 38-39^{\circ}$ [1107]; \quad Spectra (NA).

[2-Hydroxy-5-(1-methylethyl)phenyl](2-methylphenyl)methanone

[170799-16-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33
Synthesis

- Preparation by Fries rearrangement of p-isopropylphenyl o-toluate with aluminium chloride at $100-150^{\circ}$ for $0.5-3 \mathrm{~h}(98 \%)$ [29].
oil [29]; b.p. and Spectra (NA).
(2-Hydroxy-5-methylphenyl)(2,4,6-trimethylphenyl)methanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad \text { mol.wt. } 254.33
$$

Synthesis

- Preparation by Fries rearrangement of p-cresyl 2,4,6-tri-methylbenzoate with aluminium chloride at 150° for 2 h (63\%) [1151].
m.p. 86° [1151]; \quad Spectra (NA).
(2,6-Dimethylphenyl)(5-hydroxy-4-methoxy-2-methylphenyl)methanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 270.33
$$

Synthesis

- Obtained by partial demethylation of 4,5-dime-thoxy-2,2', 6^{\prime}-trimethylbenzophenone [1072].
m.p. and Spectra (NA).
(2-Hydroxy-4-propoxyphenyl)(2-methylphenyl)methanone

[172479-21-9]	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
$\mathrm{CH}_{3} \mathrm{HO}$	Synthesis
	- Prepared by standard techniques [830].
m.p. (NA); UV [830].	

(2,4-Dimethylphenyl)(4-hydroxy-3,5-dimethoxyphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33

Synthesis

- Preparation by Friedel-Crafts acylation of m-xylene with 3,4,5-trimethoxybenzoyl chloride [429].
m.p. and Spectra (NA).

(5-Ethyl-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone

[66666-17-9]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Synthesis

- Preparation by saponification of 2-(p-anisoyloxy)-4,4'-dimethoxy-5ethylbenzophenone (SM) with potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(81 \%)$. SM was obtained by oxidation of 5-ethyl-6-methoxy-2,3-bis(pmethoxyphenyl)benzofuran with chromium trioxide in refluxing acetic acid for 45 min [1116].
oil [1116]; b.p. and Spectra (NA).
(2,4-Dimethoxy-6-methylphenyl)(2-hydroxy-5-methoxyphenyl)methanone
[78044-92-5]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis
- Obtained by photo-Fries rearrangement of p-methoxy-phenyl 2,4-dime-thoxy-6-methylbenzoate in benzene for 4 h under nitrogen (37\%) [1167].
m.p. 120-123 ${ }^{\circ}$ [1167]; ${ }^{1} \mathrm{H}$ NMR [1167], IR [1167], UV [1167], MS [1167].
(4-Ethoxyphenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone
[69471-31-4]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis
- Preparation by selective demethylation of 4'-ethoxy-2,3,4-trimethoxybenzophenone with aluminium chloride in nitrobenzene at 100° for $1 \mathrm{~h}(70 \%)$ [1168].
m.p. $\quad 113-114^{\circ}$ [1168]; ${ }^{1} \mathrm{H}$ NMR [1168], IR [1168].
(2-Hydroxy-3,4-dimethoxyphenyl)(3-methoxy-4-methylphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis
- Obtained by Friedel-Crafts acylation of pyrogallol trimethyl ether with 3-methoxy-4-methylbenzoyl chloride in the presence of aluminium chloride in boiling carbon disulfide for 4 h (22\%) [1169,1170].
m.p. $\quad 109^{\circ}[1169,1170] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

[3-Hydroxy-2-methoxy-6-(methoxymethyl)phenyl](2-methoxyphenyl) methanone

$$
\begin{aligned}
& \text { [133386-99-9] } \\
& \text { o-anisaldehyde. Then, oxidation of the 8-(2-methoxyphenyl)-2,7-dimethoxybi- } \\
& \text { cyclo[4.2.0]octa-1,3,5-triene-3,8-diol so formed (good yield) [1171]. } \\
& \text { m.p. and Spectra (NA). }
\end{aligned}
$$

(2,3-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone

[151417-67-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis

- Obtained, in mixture with 2^{\prime}-hydroxy-2,3',4,6-tetra-methoxybenzophenone, by reaction of 2,3-dimethoxy-benzoyl chloride with 1,3,5-trimethoxybenzene in ethyl ether in the presence of aluminium chloride for 15 h at r.t. (total yield: 92\%) [1011].
- Also refer to: [1027].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1011].
(2,5-Dimethoxyphenyl)(2-hydroxy-3,6-dimethoxyphenyl)methanone
[109092-84-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis
- Obtained by reaction of 2,3,6-trimethoxybenzoyl chloride with hydroquinone dimethyl ether in the presence of aluminium chloride in ethyl ether at r.t. for 2 days (17%) [1172] or for 1 h at $45-50^{\circ}$, then 20 h at r.t. (69\%) [1160].
m.p. $\quad 115-116^{\circ}[1172], 115^{\circ}[1160] ; \quad \operatorname{Spectra}(N A)$.
(2,5-Dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone
[88133-95-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$
Synthesis
- Obtained by reaction of 2,5-dimethoxybenzoyl chloride with 1,2,4-trimethoxybenzene in the presence of aluminium chloride in ethyl ether for 30 h [1173], or for 1 h at $45-50^{\circ}$, then 20 h at r.t. (65-70\%) [1160].

(2,5-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone

$$
\begin{aligned}
& \text { [42833-59-0] }
\end{aligned} \begin{aligned}
& \text { Synthesis } \\
& \text { Reparation by reaction of 2,5-dimethoxyben- } \\
& \text { zoyl chloride with 1,3,5-trimethoxybenzene } \\
& \text { in the presence of aluminium chloride in } \\
& \text { ethyl ether for } 28 \mathrm{~h} \text { (minor product) [416] } \\
& \text { (52\%, estimated, not isolated) [1160]. }
\end{aligned}
$$

m.p. (NA); ${ }^{1} H$ NMR [416], MS [416].
(2,6-Dimethoxyphenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis

- Obtained by reaction of 2,6-dimethoxybenzoyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in ethyl ether for 20 h [416].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [416], MS [416].
(2,6-Dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone
[42833-53-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$
mol.wt. 318.33
Synthesis
- Obtained by reaction of 2,6-dimethoxybenzoyl chloride with 1,2,4-trimethoxybenzene in the presence of aluminium chloride in ethyl ether at r.t. for 40 h [416].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [416], UV [416], MS [416].

(3,4-Dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad \text { mol.wt. } 318.33
$$

Synthesis

- Preparation by reaction of veratroyl chloride (3,4-dimethoxybenzoyl chloride) with hydroxy-hydroquinone trimethyl ether (1,2,4-trimethoxybenzene) in the presence of aluminium chloride,
- in ethyl ether at r.t. for 48 h [1136], (47\%) [1174];
- in refluxing carbon disulfide for 8 h , then at r.t. for $12 \mathrm{~h}(37 \%)$ [1175].
m.p. $148-149^{\circ}$ [1175], $145-146^{\circ}$ [1174]; UV [1175].

(3,4-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone

[62495-41-4] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33

Syntheses

- Preparation by reaction of 3,4-dimethoxybenzoyl chloride with 1,3, 5-trimethoxybenzene in the presence of aluminium chloride in ethyl ether for 4 h (50\%) [653].
- Preparation by reaction of 3,4-dimethoxybenzoyl chloride with 3,5-dimethoxyphenol in the presence of aluminium chloride in ethyl ether at r.t. for $48 \mathrm{~h}(49 \%)$ [1136].
m.p. $\quad 135-136^{\circ}$ [653], 134° [1136]; ${ }^{1} \mathrm{H}$ NMR [653,1136], IR [1136], UV [1136].
(3,5-Dimethoxyphenyl)(2-hydroxy-3,5-dimethoxyphenyl)methanone

m.p. $\quad 123-124^{\circ}[1176] ; \quad$ Spectra (NA).
(3,5-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone
[53250-54-7] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33

Synthesis

- Obtained by reaction of 3,5-dimethoxybenzoyl chloride with phloroglucinol trimethyl ether in ethyl ether in the presence of aluminium chloride at 25° for 48 h (16\%) [167].
m.p. $\quad 118^{\circ}$ [167]; \quad Spectra (NA).
[2-Hydroxy-4-(2-hydroxyethoxy)phenyl][4-(2-hydroxyethoxy)phenyl] methanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33

Synthesis

- Refer to: $[93,116]$.

```
m.p. 128` [93]; UV [93]; p K [93]; TLC [116].
```


(2-Hydroxy-3-methoxyphenyl)(2,4,6-trimethoxyphenyl)methanone

[6343-00-6]

- Also refer to: [1027].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1011].
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis
- Obtained, in mixture with 2-hydroxy$2^{\prime}, 3^{\prime}, 4,6$-tetra-methoxybenzophenone, by reaction of 2,3-dimethoxy- benzoyl chloride with 1,3,5-trimethoxybenzene in ethyl ether in the presence of aluminium chloride for 15 h at r.t. (total yield: 92\%) [1011].
(2-Hydroxy-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone
[62495-39-0] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$ mol.wt. 318.33

Synthesis

- Preparation by reaction of dimethyl sulfate with $2,4^{\prime}$-dihydroxy- $3^{\prime}, 4,5^{\prime}$ trimethoxybenzophenone in the presence of potassium carbonate in refluxing acetone for $30 \mathrm{~min}(57 \%)$ [1136].
m.p. $106-107^{\circ}$ [1136]; ${ }^{1} \mathrm{H}$ NMR [1136], IR [1136], UV [1136].
(2-Hydroxy-5-methoxyphenyl)(2,4,6-trimethoxyphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis
- Obtained by reaction of 2,5-dimethoxybenzoyl chloride with 1,3,5-trimethoxybenzene in the presence of aluminium chloride in ethyl ether for 28 h (major product) [416], (30\%, estimated, not isolated) [1160].
- Also refer to: [1072].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [416], MS [416].
(3-Hydroxy-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (Phenstatin)

[203448-32-2]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis
- Obtained by deprotection of 3-[(tert-butyldimethyl-silyl)oxy]-3',4,4',5'tetramethoxybenzophenone (SM) in
tetrahydrofuran with 1 M tetrabutyl-ammonium fluoride for 15 min under argon (83%), but only 30% overall yield [1177].
- SM was prepared in two steps: first, formation of N-[3-[(tert-butyldimethylsilyl) oxy]-4-methoxybenzoyl]morpholine (SM1) by action of 3-[(tert-butyldimethyl-silyl)oxy]-4-methoxy-benzoyl chloride with morpholine in toluene for 4 h at r.t. under argon. Then, the amide SM1 was allowed to react with the lithium derivative prepared from 3,4,5-trimethoxybromobenzene [1178] and tert-butyllithium in tetrahydrofuran at -78° to give SM [1177].
m.p. $149-150^{\circ}$ [1177]; ${ }^{1} \mathrm{H}$ NMR [1177], ${ }^{13} \mathrm{C}$ NMR [1177], IR [1177], MS [1177]; crystal data [1177]; TLC [1177].
(4-Hydroxy-3-methoxyphenyl)(2,4,6-trimethoxyphenyl)methanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33

Synthesis

- Obtained by reaction of veratronitrile with phloroglucinol trimethyl ether (Hoesch reaction) (15\%) [439].
m.p. $\quad 242^{\circ}$ [439]; \quad Spectra (NA).
(2-Hydroxy-3,4,5-trimethoxyphenyl)(2-methoxyphenyl)methanone
ment. 318.33
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [416], UV [416].
(4-Aminophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone
[98031-50-6]

$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \quad$ mol.wt. 269.34
Synthesis
- Obtained by photo-Fries rearrangement of p-tert-butylphenyl p-aminobenzoate in benzene (12\%) [154].
m.p. $\quad 98-100^{\circ}[154] ; \quad$ Spectra (NA).

[3-(1,1-Dimethylethyl)-4-hydroxyphenyl][2-(trifluoromethyl)phenyl] methanone

$$
\begin{aligned}
& \text { [124979-17-5] } \quad \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 322.33 \\
& \text { Synthesis } \\
& \text { - Preparation by Friedel-Crafts acylation of } \\
& \text { o-tert-butylphenol with o-(trifluoromethyl) } \\
& \text { benzoyl chloride in ethylene dichloride in the } \\
& \text { presence of titanium tetrachloride, first at } 0^{\circ} \text {, } \\
& \text { then at r.t. [816]. } \\
& \text { m.p. } \quad 160-161^{\circ}[816] ; \quad \text { Spectra (NA). }
\end{aligned}
$$

(3-Chloro-4,6-dimethoxy-2-methylphenyl) (3-chloro-6-hydroxy-2,4-dimethoxyphenyl) methanone
[68048-21-5]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{6} \quad$ mol.wt. 401.24
Synthesis

- Preparation by hydrogenolysis of 6-(benzyloxy)-3,3'-dichloro-2,4,4', 6^{\prime}-tetramethoxy-2'-methyl-benzophenone (SM) under hydrogen in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 25°. SM was obtained by condensation of 3-chloro-4,6-dimethoxy-2-methyl-benzoic acid with 4-chloro-3, 5-dimethoxyphenol benzyl ether in the presence of trifluoroacetic anhydride in methylene under nitrogen for $80 \mathrm{~min}(50 \%)$ [1179]. m.p. 196-197 [1179]; ${ }^{1} \mathrm{H}$ NMR [1179], IR [1179], MS [1179].
[2-Hydroxy-4-methoxy-3-(2-propenyl)phenyl](4-methoxyphenyl)methanone
[74079-07-5]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34
Synthesis
- Obtainedbyheating2-(allyloxy)-4,4'-di-methoxybenzophenone (SM) to 240° that which initiates exothermic heating to 290°
(60\%) (Claisen rearrangement). SM was obtained by reaction of allyl bromide with resbenzophenone (90%) [1140].
m.p. and Spectra (NA).
[4-(Acetyloxy)-3,5-dimethoxyphenyl](2-hydroxy-4-methoxyphenyl)methanone
[62495-40-3]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 346.34 Synthesis
- Preparation by reaction of acetic anhydride with $2,4^{\prime}$-dihydroxy-3',4,5'-trimethoxybenzophenone in the presence of pyridine at r.t. for 24 h (80\%) [1136].
m.p. $\quad 124-125^{\circ}$ [1136]; ${ }^{1} \mathrm{H}$ NMR [1136], IR [1136], UV [1136].

(3-Butyl-5-chloro-2-hydroxyphenyl)(4-methylphenyl)methanone

[92739-93-0] $\quad \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{2}$ mol.wt. 302.80

Synthesis

- Preparation by Fries rearrangement of 2-n-butyl-4-chlorophenyl p-toluate with aluminium chloride at 160° for 15 min [1107].
oil [1107]; b.p. ${ }_{0.108} 148-150^{\circ}$ [1107]; Spectra (NA).
(5-Chloro-3-ethyl-2-hydroxyphenyl)[4-(1-methylethyl)phenyl]methanone
[93575-43-0]
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{2}$
mol.wt. 302.80

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-ethylphenyl 4-isopropylbenzoate with aluminium chloride at 160° for 15 min [1107].
m.p. $42-43^{\circ}$ [1107]; \quad Spectra (NA).

[5-Chloro-2-hydroxy-3-(2-methylpropyl)phenyl](4-methylphenyl)methanone

[93575-76-9] $\quad \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{2} \quad$ mol.wt. 302.80

Synthesis

- Preparation by Fries rearrangement of 2-iso-butyl-4-chlorophenyl p-toluate with aluminium chloride at 160° for 15 min [1107].
m.p. $\quad 71-72^{\circ}[1107] ; \quad$ Spectra (NA).

(3-Chloro-6-hydroxy-2,4-dimethoxyphenyl)(2,4-dimethoxy-6-methylphenyl) methanone

[68048-15-7]

$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{6} \quad$ mol.wt. 366.80
Synthesis

- Preparation by hydrogenolysis of 6-(benzyloxy)-3-chloro-2, 2', 4,4'-tetramethoxy-6'-methyl-benzophenone (SM) with hydrogen in ethyl acetate/tetrahydrofuran in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 25°. SM was obtained by condensation of 2,4-dime-thoxy-6-methylbenzoic anhydride with 4-chloro-3,5-dimethoxyphenol benzyl ether in the presence of trifluoroacetic anhydride in methylene chloride under nitrogen for $10 \mathrm{~min}(47 \%)$ [1179].
m.p. $140^{\circ} 5-142^{\circ}$ [1179]; ${ }^{1} \mathrm{H}$ NMR [1179], IR [1179], MS [1179].

[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl](4-bromophenyl) methanone

m.p. and Spectra (NA).

[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl](4-bromophenyl) methanone (Hydrochloride)

[75060-65-0] $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{2}, \mathrm{HCl}$ mol.wt. 398.73

Synthesis

- Preparation by reaction of concentrated hydrochloric acid with 2-(4-bromo benzoyl)-4-tert-butyl-6-(N-chloroacetylaminomethyl)phenol in refluxing ethanol for 20 h (89\%) [817].
m.p. $240-245^{\circ}$ [817]; \quad Spectra (NA).

[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](4-methylphenyl)methanone

[124979-04-4] $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 268.36 Synthesis
	- Preparation by Friedel-Crafts acylation of o-tert-butylphenol with p-toluoyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first at 0°, then at r.t. [816].

m.p. 209-210 ${ }^{\circ}$ [816]; \quad Spectra (NA).

[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-methylphenyl)methanone

[75919-94-7]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 268.36
Synthesis

- Preparation by demethylation of 5-tert-butyl-2-methoxy-4'-methylbenzophenone with aluminium chloride in benzene between 50° and 60° for 5 h (85\%) [9].
b.p. ${ }_{12} 210-212^{\circ}[9] ; \quad$ m.p. $94-95^{\circ}[9] ; \quad \operatorname{Spectra}(N A)$.

(2-Hydroxy-4,6-dimethylphenyl)(2,4,6-trimethylphenyl)methanone

[100923-74-8]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 268.36
Synthesis

- Preparation by reaction of mesitoyl chloride with 3,5-dimethylphenol in the presence of aluminium chloride in refluxing nitromethane for 90 min (39\%) [102].
m.p. $116-117^{\circ} \quad[102], 116^{\circ} \quad[94,95] ;{ }^{1} \mathrm{H}$ NMR [94,95,101,102], ${ }^{13} \mathrm{C}$ NMR [101], IR [94,95,102]; thermal behaviour [94,95].
(4-Hydroxy-3,5-dimethylphenyl)(2,4,6-trimethylphenyl)methanone
[69795-00-2]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 268.36
Synthesis
- Obtained by photo-Fries rearrangement of 2,6-di-methylphenyl mesitoate in pentane (5\%), absorbed on a silica gel-pentane (18\%) or on dry silica gel (37\%) [64].
m.p. and Spectra (NA).
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](4-methylphenyl)methanone

[109250-36-4]	Synthesis - Obtained by demethylation of 4-methoxy-2,4'-di-methyl-5-isopro- pylbenzophenone with refluxing pyri- dinium chloride [825].
m.p. 176° [825];	Spectra (NA).

[5-(1,1-Dimethylethyl)-2-hydroxyphenyl][4-(methylthio)phenyl]methanone

[75060-57-0]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 300.42
Synthesis

- Preparation by reaction of 30% methyl mercaptan with 2-(p-bromo benzoyl)-4-tert-butylphenol in the presence of sodium methoxide in refluxing methanol for 4 days (34\%) [817].
m.p. $130-104^{\circ}$ [817]. A typing error probably occurred in the published data. Spectra (NA).

(4-Butylphenyl)(2-hydroxy-4-methoxyphenyl)methanone

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad \text { mol.wt. } 284.36 \\
& \text { Synthesis } \\
& -\quad \text { Preparation by partial demethylation } \\
& \text { of } 4^{\prime} \text {-butyl-2,4-dimethoxybenzophe- } \\
& \text { none with aluminium chloride or alu- } \\
& \text { minium bromide in chlorobenzene at } \\
& 90-95^{\circ} \text { (good yield) [655]. }
\end{aligned}
$$

m.p. and Spectra (NA).
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-methoxyphenyl)methanone
[116496-22-1]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Syntheses

- Preparation by partial demethylation of 5-tert-butyl-2,4'-dimethoxybenzophenone with aluminium chloride in benzene at $50-60^{\circ}$ for $5 \mathrm{~h}(76 \%)$ [9].
- Preparation by treatment of 2-hydroxy-4'-methoxy-benzophenone at 120° with a mixture of isobutylene/nitrogen (1:1) in the presence of a macroreticular acid ion exchanger (Wofatit OK 80) as catalyst, for $3 \mathrm{~h}(60 \%)$ [819].
b.p. ${ }_{12} 235^{\circ}$ [9], b.p. ${ }_{0.15} 180-190^{\circ}$ [819];
m.p. $93-94^{\circ}[9] ; \quad \operatorname{Spectra}(N A)$.

[4-(1,1-Dimethylethyl)phenyl](2-hydroxy-4-methoxyphenyl)methanone

[50739-53-2]
$\left(\mathrm{CH}_{3}\right)_{3}$

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Synthesis

- Preparation by reaction of p-tertbutylbenzoyl chloride with resorcinol dimethyl ether,
- in tetrachloroethane in the presence of aluminium chloride at 90° [222];
- in chlorobenzene in the presence of titanium tetrachloride for 1 h at 120° (75\%) [662].
- Also refer to: $[78,684]$.
m.p. $75-77^{\circ}$ [222], $73-75^{\circ}$ [662]; UV [235].

[4-(1,1-Dimethylethyl)phenyl](2-hydroxy-5-methoxyphenyl)methanone

[162657-94-5] \begin{tabular}{l}
Synthesis

Preparation by partial demethylation
of 4'-tert-butyl-2,5-dimethoxybenzo-
phenone with aluminium chloride in
benzene under nitrogen at 80° for 12 h
$(83 \%)[258,680]$.

\end{tabular}

viscous oil [680]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [680], ${ }^{13} \mathrm{C}$ NMR [680], MS [680].

(4-Ethoxy-2-hydroxyphenyl)(4-propylphenyl)methanone

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad \text { mol.wt. } 284.36
$$

Synthesis

- Preparation by partial deethylation of 2,4-diethoxy-4'-propylbenzophenone with aluminium chloride in chlorobenzene at $80-100^{\circ}$ [655].
- Also refer to: [78,222]. m.p. (NA); UV [235].
(2-Hydroxy-3,4-dimethylphenyl)(2-methoxy-3,4-dimethylphenyl)methanone
[54468-80-3]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Synthesis
- Obtained by oxidation of 6,7-dimethyl-2-phenyl-3-(2-methoxy-3,4-dimethylphenyl)benzofuran with chromium trioxide, then saponification of the keto ester so formed, the 2-(benzoyloxy)-2'-methoxy-3,3',4,4'-tetramethylbenzophenone [1152].
oil [1152]; b.p. (NA); IR [1152].
(2-Hydroxy-4,5-dimethylphenyl)(2-methoxy-4,5-dimethylphenyl)methanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Synthesis
- Obtained by oxidation of 5,6-dimethyl-2-phenyl-3-(2-methoxy-4,5-dimethylphenyl)benzofuran with chromium trioxide, then saponification of the obtained keto ester, the 2-(benzoyloxy)-2'-methoxy-4,4',5,5'-tetramethylbenzophenone [1152].
oil [1152]; b.p. (NA); IR [1152].
[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl](4-methoxyphenyl)methanone

[129375-12-8]	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad \mathrm{~mol}$. wt. 284.36
HO	Synthesis
	- Preparation by Fries rearrangement of 3-methyl-4-isopropylphenyl p-methoxybenzoate with titanium tetrachloride in nitromethane at 20° for 170 h (66\%) [1180].
m.p. 100° [1180];	

${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 52709 \mathrm{M}$) [1180],
IR (Sadtler: standard ${ }^{\circ} 79766$ K) [1180], UV [1180], MS [1180].

(2,6-Dimethoxyphenyl)(3-hydroxy-6-methoxy-2,4-dimethylphenyl)methanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35
Synthesis

- Preparation by hydrogenolysis of 3-(ben zyloxy)-2',6,6'-tri-methoxy-2,4-dime thylbenzophenone with hydrogen in the presence of Pd / C in an ethyl acetate/methanol solution containing 70% perchloric acid (four drops) (96\%) [1181].
m.p. $\quad 185-186^{\circ}$ [1181];
${ }^{1} \mathrm{H}$ NMR [1181], IR [1181], UV [1181], MS [1181].
(5-Ethoxy-2-hydroxy-4-methoxyphenyl)(3-ethoxyphenyl)methanone
[51106-93-5]

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad \text { mol.wt. } 316.35
$$

Synthesis

- Obtained (by-product) by acylation of 2,5-diethoxy-anisole with m-ethoxybenzoyl chloride in ethyl ether in the presence of aluminium chloride at r.t. for 48 h (<2\%) [1163].
m.p. $\quad 79-80^{\circ}$ [1163]; ${ }^{1} \mathrm{H}$ NMR [1163].
(2,4-Dimethoxy-6-methylphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone
[93904-08-6]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis
- Obtained by partial methylation of griseophenone C ,
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 24 h (45\%) [1182];
- with diazomethane in an ethyl ether/tetrahydrofuran mixture at 0° during 40 h (quantitative yield) [1182].
m.p. $\quad 124-125^{\circ}$ [1182]; IR [1182], UV [1182].

(4,5-Dimethoxy-2-methylphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone

[101744-11-0]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Preparation by reaction of 2,4,5-trimethoxybenzoyl chloride with 4-methylveratrole in the presence of aluminium chloride in refluxing carbon disulfide for 8 h , then at r.t. for 12 h [1175].
- Preparation by reaction of 4,5-dimethoxy-2-methyl-benzoyl chloride with hydroxyhydroquinone trimethyl ether in the same conditions that previously [1175].
m.p. 138-139 ${ }^{\circ}$ [1175]; UV [1175].
(2,3-Dimethoxyphenyl)[3-hydroxy-2-methoxy-6-(methoxymethyl)phenyl] methanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis
- Preparation from 4-hydroxy-3-methoxybenzyl methyl ether (SM) in two steps: first, direct lithiation of SM with n-butyl lithium in tetrahydrofuran at r.t., followed by quenching with 2,3-dimethoxybenzaldehyde. Then, oxidation of the 8-(2,3-dimetho xyphenyl)-2,7-di-methoxybicyclo[4.2.0] octa-1,3,5-triene-3,8-diol formed (good yield) [1171].
m.p. and Spectra (NA).

(2,4-Dimethoxyphenyl)[3-hydroxy-2-methoxy-6-(methoxymethyl)phenyl] methanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis

- Preparation from 4-hydroxy-3-methoxybenzyl methyl ether (SM1) in two steps: first, direct lithiation of SM1 with n-butyl lithium in tetrahydrofuran at r.t., followed by quenching with
2,4-dimethoxybenzaldehyde. Then, oxidation of the 8-(2,4-dimethoxyphenyl)-2,7-dimethoxybicyclo[4.2.0]octa-1,3,5-triene-3,8-diol formed (SM2) (good yield) [1171]. Actually, SM2 was quantitatively converted back into the expected ketone by heating a toluene solution to reflux for 14 h [1171].
m.p. and Spectra (NA).

(2-Hydroxy-3-methoxy-6-methylphenyl)(2,4,5-trimethoxyphenyl)methanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}$
mol.wt. 332.35

Synthesis

- Preparation from 2-iodo-6-methoxy-3methylphenyl $2,4,5$-trimethoxybenzoate on treatment with n-butyl-lithium in a mixture of ethyl ether, hexane and tetrahydrofuran at -70° for 2 h , followed by treatment with saturated aqueous ammonium chloride (40\%) [58].
m.p. $\quad 160-162^{\circ}$ [58]; ${ }^{1} \mathrm{H}$ NMR [58], IR [58], MS [58].
(2-Hydroxy-4-methoxy-6-methylphenyl)(2,4,6-trimethoxyphenyl)methanone
[74628-37-8]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis
- Preparation by selective methylation of $2,4^{\prime}$-di-hydroxy- $2^{\prime}, 4,6^{\prime}$ 'trimethoxy-6-methylbenzo-phenone [1183], with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 23 h (85\%) [1184].
m.p. $\quad 161-162^{\circ}$ [1184]; ${ }^{1} \mathrm{H}$ NMR [1184], MS [1184].
(2,3-Dimethoxyphenyl)(2-hydroxy-3,4,5-trimethoxyphenyl)methanone

[42833-83-0] \begin{tabular}{l}
Obtained by reaction of 2,3-dimethoxy-

benzoyl chloride with 1,2,3,4-tetrame-
thoxybenzene in the presence of aluminium
chloride in ethyl ether for 42 h [416].

\end{tabular}

m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [416], UV [416], MS [416].
(2,3-Dimethoxyphenyl)(2-hydroxy-3,4,6-trimethoxyphenyl)methanone
Synthesis
m.p. and Spectra (NA); TLC [1185].
(2,3-Dimethoxyphenyl)(6-hydroxy-2,3,4-trimethoxyphenyl)methanone

[22804-59-7] | Synthesis |
| :--- |
| Obtained by condensation of 2,3-dime- |
| thoxybenzoic acid with 1-acetoxy-3,4,5- |
| trimethoxybenzene in trifluoroacetic |
| anhydride, followed by hydrolysis of the |
| reaction mixture (26\%) [1186]. |

m.p. $110^{\circ} 8-111^{\circ} 2$ [1186]; ${ }^{1} \mathrm{H}$ NMR [1186], UV [1186].

(2,5-Dimethoxyphenyl)(2-hydroxy-3,4,5-trimethoxyphenyl)methanone

[129168-53-2]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35
Syntheses

- Preparation by reaction of 2,5-dimethoxybenzoyl chloride with 1,2,3,4-tetramethoxybenzene in benzene in the presence of aluminium chloride at $50^{\circ}(60 \%)$. The same result was obtained in ethyl ether at r.t. [1160].
- Also obtained (poor yield) by reaction of 2,3,4,5-tetra-methoxybenzoyl chloride with hydroquinone dimethyl ether in benzene in the presence of aluminium chloride (11\%) [1160].
m.p. $74-74^{\circ} 5$ [1160]; Spectra (NA).

(2,5-Dimethoxyphenyl)(2-hydroxy-3,4,6-trimethoxyphenyl)methanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35
Syntheses

- Obtained by reaction of 2,5-dimethoxybenzoyl chloride with 1,2,3,5-tetramethoxybenzene in the presence of aluminium chloride in ethyl ether at r.t. for 18 h [416], (75\%) [1160].
- Also obtained by selective demethylation of $2,2^{\prime}, 3,4,5^{\prime}, 6$-hexamethoxybenzophenone with aluminium chloride in ethyl ether (30\%) [1185].
m.p. $\quad 128-130^{\circ}$ [1160,1185]; ${ }^{1} \mathrm{H}$ NMR [416,1185], UV [1185], MS [416].
(2,5-Dimethoxyphenyl)(6-hydroxy-2,3,4-trimethoxyphenyl)methanone
[22804-57-5]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35
Synthesis
- Preparation by reaction of 2,5-dimethoxybenzoic acid with 1 -acetoxy-3,4,5-trimethoxybenzene in the presence of trifluoroacetic anhydride for two weeks at r.t., followed by hydrolysis of the reaction mixture (52\%) [1186], (45\%) [1160].
yellow oil [1186]; m.p. $65-66^{\circ}$ [1160]; ${ }^{1} \mathrm{H}$ NMR [1186], UV [1186].

(2,6-Dimethoxyphenyl)(2-hydroxy-3,4,6-trimethoxyphenyl)methanone

[22804-60-0]
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7}$
mol.wt. 348.35

Synthesis

- Preparation by selective demethylation of 2, $2^{\prime}, 3,4,6,6^{\prime}$-hexamethoxybenzophenone (SM) with aluminium chloride in refluxing ethyl ether (60%). SM was obtained by
condensation of 2,6-dimethoxybenzoyl chloride with 1,2,3,5-tetramethoxybenzene in nitrobenzene with aluminium chloride for two days at r.t. (27%, m.p. 136-136 5) [1186].
m.p. $\quad 167-168^{\circ}$ [1186]; ${ }^{1} \mathrm{H}$ NMR [1186], UV [1186].
(2-Hydroxy-3,4-dimethoxyphenyl)(2,4,5-trimethoxyphenyl)methanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35

Synthesis

- Refer to: [1011] (compound 42).
m.p. and Spectra (NA).
(2-Hydroxy-3,4-dimethoxyphenyl)(2,4,6-trimethoxyphenyl)methanone
[42833-67-0]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35
Synthesis
- Obtained by reaction of 2,3,4-tri methoxybenzoyl chloride with $1,3,5-$ trimethoxybenzene in the presence of aluminium chloride in ethyl ether for 15 h [416].
m.p. (NA); ${ }^{1} H$ NMR [416].
(2-Hydroxy-3,4-dimethoxyphenyl)(3,4,5-trimethoxyphenyl)methanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35

Synthesis

- Preparation by Friedel-Crafts acylation of pyrogallol trimethyl ether with 3,4,5-trimethoxybenzoyl chloride in carbon disulfide in the presence of aluminium chloride in a water bath [1169,1170].
m.p. $\quad 133-134^{\circ}[1169,1170] ; \quad \operatorname{Spectra}(N A)$.
(2-Hydroxy-4,5-dimethoxyphenyl)(2,3,4-trimethoxyphenyl)methanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35

Synthesis

- Refer to: [1011] (compound 43).
m.p. and Spectra (NA).
(2-Hydroxy-4,5-dimethoxyphenyl)(2,4,6-trimethoxyphenyl)methanone
[42833-68-1]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35
Syntheses
- Obtained (by-product) by partial demethylation of $2,2^{\prime}, 4,4^{\prime}, 5^{\prime}, 6$-hexamethoxybenzophenone with boron trichloride in methylene chloride at 18° for $20 \mathrm{~min}(26 \%)$ [1187].
- Also obtained by Friedel-Crafts acylation of 1,3,5-trimethoxybenzene with 2,4,5-trimethoxybenzoyl chloride in the presence of aluminium chloride in ethyl ether for 21 h [416] or in boiling ethyl ether for 48 h (12\%) [1187].
m.p. $171-173^{\circ}$ [1188], $165-166^{\circ}$ [1187]; ${ }^{1} \mathrm{H}$ NMR [416,1187], IR [1187], MS [1187].
(2-Hydroxy-4,6-dimethoxyphenyl)(2,4,5-trimethoxyphenyl)methanone
[76013-33-7]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35
Synthesis
- Preparation by partial demethylation of $2,2^{\prime}, 4,4^{\prime}, 5^{\prime}, 6$-hexamethoxybenzophenone with boron trichloride in methylene chloride at 18° for 20 $\min (57 \%)$ [1187].
m.p. $\quad 129-130^{\circ}$ [1187]; ${ }^{1} \mathrm{H}$ NMR [1187], IR [1187], MS [1187].
(2-Hydroxy-3-methoxyphenyl)(2,3,4,6-tetramethoxyphenyl)methanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35

Synthesis

- Obtained by reaction of 2,3-dimethoxybenzoic acid with 1,2,3,5-tetramethoxybenzene in trifluoroacetic acid for 23 days at r.t. [1185].
m.p. and Spectra (NA); TLC [1185].

[4-(4-Bromophenoxy)-2-hydroxyphenyl](3,4-dichlorophenyl)methanone

[35698-03-4]

m.p. (NA); UV [839].
$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{BrCl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 438.10
Synthesis

- Refer to: [839] (compound 33).
(4-Chlorophenyl)(2-hydroxy-4-phenoxyphenyl)methanone
[35698-40-9]

$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 324.76
Synthesis
- Preparation by reaction of p-chlorobenzoyl chloride with 3-methoxydiphenyl ether in chloro-benzene in the presence of aluminium chloride: first at r.t., then for 4 h at $90-95^{\circ}$ [839].
m.p. $125-127^{\circ}$ [839]; UV [839].
[3-(Cyclohexyloxy)-4-hydroxy-5-nitrophenyl](2-nitrophenyl)methanone
[190585-64-9] $\quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 386.36

Synthesis

- Preparation by reaction of cyclohexene with 3,4-di-hydroxy-2',5-dinitrobenzophenone in the presence of boron trifluoride ethyl ether complex for 12 h at reflux (24\%). -Refer to: Chem. Abstr., 127, 17465u (1997).
m.p. and Spectra (NA).

[4-(Acetyloxy)-2-methoxy-6-methylphenyl]

(3-chloro-2-hydroxy-4,6-dimethoxyphenyl)-methanone
[95276-66-7]

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClO}_{7} \quad$ mol.wt. 394.81
Synthesis

- Obtained by reaction of 4 -ace-toxy-2-methoxy-6-methylbenzoic acid with 2-chloro-3,5-di-methoxyphenol in the presence of trifluoroacetic anhydride at 20° for $18 \mathrm{~h}(17 \%)$ [1189] or at $25^{\circ}(50 \%)$ [1190,1191].
- Also refer to: [1192].
m.p. $\quad 199-203^{\circ}$ [1189]; \quad Spectra (NA).

[4-(Acetyloxy)-2-methoxy-6-methylphenyl](3-fluoro-2-hydroxy-4, 6-dimethoxyphenyl)-methanone

$$
\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FO}_{7} \quad \text { mol.wt. } 378.35
$$

Synthesis

- Preparation by addition of 4-acetoxy-2-methoxy-6-methylbenzoic acid to 2 -fluoro-3,5-dimethoxyphenol in the presence of trifluoroacetic anhydride (60\%) [1190], first at 0°, then at $20-25^{\circ}$ for $20 \mathrm{~h}(40 \%)$ [1191].
m.p. $\quad 195-200^{\circ}$ [1190,1191]; IR [1191], UV [1190,1191].

(5-Chloro-3-hexyl-2-hydroxyphenyl)(4-chlorophenyl)methanone

[92739-91-8] $\quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$ mol.wt. 351.27

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-hexyl-phenyl p-chlorobenzoate with aluminium chloride at 160° for 15 min [1107].
oil [1107]; b.p. ${ }_{0.133} 204^{\circ}$ [1107]; Spectra (NA).
(4-Butoxy-2-hydroxyphenyl)(4-ethenylphenyl)methanone
[80167-01-7]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 296.37
Synthesis
- Obtained by reaction of aqueous potassium hydroxide with 2-hydroxy-4-butoxy-4'-(2- bromoethyl)benzophenone in the presence of hydroquinone in refluxing methanol for 1.5 h with nitrogen bubbling (24%) [1147].
m.p. $78-80^{\circ}$ [1147]; ${ }^{1} \mathrm{H}$ NMR [1147], ${ }^{13} \mathrm{C}$ NMR [1147], IR [1147], UV [1147], MS [1147].

[3-(Acetyloxy)-6-hydroxy-2,4-dimethoxyphenyl](2,5-dimethoxyphenyl) methanone

[^2]
(4-Fluorophenyl)[4-(hexyloxy)-2-hydroxyphenyl]methanone

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}_{3} \quad$ mol.wt. 316.37

Synthesis

- Preparation by partial alkylation of 4'-fluoro-2,4-di-hydroxybenzophenone with an hexyl halide in the presence of an alkali [1109].
m.p. and Spectra (NA).

[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl](4-methylphenyl) methanone

[93575-42-9]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 282.38
Synthesis

- Preparation by photo-Fries rearrangement of 2-tert-butyl-4-methylphenyl p-toluate in benzene under nitrogen for 32 h [1107].
m.p. $\quad 110-111^{\circ}$ [1107]; \quad Spectra (NA).
[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](2,4-dimethylphenyl)methanone
[203786-32-7] $\quad \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 282.38

Synthesis

- Refer to: Chem. Abstr., 128, 210826m (1998) (Japanese patent).
m.p. and Spectra (NA).
(3-Ethyl-2-hydroxy-5-methylphenyl)(4-propylphenyl)methanone

oil [1107]; b.p. (NA); $\quad n_{D}^{21}=1.5861$ [1107]; \quad Spectra (NA).

(2-Hydroxy-4-propoxyphenyl)(4-propoxyphenyl)methanone

[6131-39-1]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$
mol.wt. 314.38
Synthesis

- Preparation by reaction of propyl bromide with 2,4,4'-trihydroxybenzophenone in the presence of potassium carbonate (50\%) [380].
m.p. 60-605 [380]; IR [394], UV [380,394].
(3,6-Diethoxy-2-hydroxyphenyl)(2,5-dimethoxyphenyl)methanone
[110047-51-3] $\quad \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 346.38

Synthesis

- Obtained (poor yield) by reaction of 3,6-diethoxy-2-methoxybenzoyl chloride with hydroquinone dimethyl ether in ethyl ether in the presence of aluminium chloride at r.t. for 2 days (4\%) [1172].
m.p. $102-103^{\circ}[1172] ; \quad$ Spectra (NA).

(2,5-Diethoxyphenyl)(2-hydroxy-3,6-dimethoxyphenyl)methanone

[110049-41-7]
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$
mol.wt. 346.38

Synthesis

- Obtained (poor yield) by reaction of 2,3,6-trimethoxy-benzoyl chloride with hydroquinone diethyl ether in ethyl ether in the presence of aluminium chloride at r.t. for 2 days (7\%) [1172].
m.p. $\quad 100-101^{\circ}[1172] ; \quad$ Spectra (NA).

(3,4-Dimethoxy-2,6-dimethylphenyl)(2-hydroxy-4,5-dimethoxyphenyl)

 methanone
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 346.38
Synthesis

- Preparation by reaction of 2,4, 5-trimethoxybenzoyl chloride with 3,5-dimethylveratrole in the presence of aluminium chloride in refluxing carbon disulfide for 8 h , then at r.t. for 12 h [1175].
m.p. $138-139^{\circ}$ [1175]; UV [1175].

$$
\begin{aligned}
& \text { (5-Ethoxy-2-hydroxy-3,4-dimethoxyphenyl)(4-ethoxyphenyl)methanone } \\
& \text { [69471-33-6] }
\end{aligned}
$$

m.p. $60-61^{\circ} 5$ [1168]; ${ }^{1} \mathrm{H}$ NMR [1168], IR [1168].
(4-Ethoxy-2-hydroxy-5-methoxyphenyl)(3-ethoxy-4-methoxyphenyl)methanone
[18008-38-3]
(5-Ethoxy-2-hydroxy-4-methoxyphenyl)(3-ethoxy-4-methoxyphenyl)methanone

[17892-44-3]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 346.38
Syntheses

- Obtained by action of diethyl sulfate with 2,3',5-tri-hydroxy-4,4'-dimethoxybenzophenone in the presence of potassium carbonate in refluxing acetone for 6 h (46\%) [428].
- Preparation by reaction of 3-ethoxy-4-methoxy-benzoyl chloride with 2,4-dimethoxyphenetole in the presence of aluminium chloride in ethyl ether at r.t. for 48 h (26\%) [1174].
m.p. $121-122^{\circ}$ [1174], 121° [428]; ${ }^{1} \mathrm{H}$ NMR [1174], IR [1174], UV [1174].
(2-Ethyl-4,5-dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 346.38
 Synthesis
- Preparation by reaction of 2,4 , 5-trimethoxybenzoyl chloride with 4-ethylveratrole in the presence of aluminium chloride in refluxing carbon disulfide for 8 h , then at r.t. for 12 h [1175].
(2,3-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl)methanone
Synthesis

Obtained by condensation of 2,3-dime-
thoxybenzoyl chloride with pentame-
thoxybenzene in the presence of
aluminium chloride in refluxing ethyl
ether for 1 h, then overnight at r.t. (19\%)

[1186].
m.p. $116^{\circ} 5-117^{\circ} 5$ [1186]; ${ }^{1} \mathrm{H}$ NMR [1186], UV [1186].
(2,5-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl)methanone

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{8}$
mol.wt. 378.38
Syntheses

- Preparation by reaction of 2,5-dimethoxybenzoyl chloride with pentamethoxybenzene in nitrobenzene in the presence of aluminium chloride for 6 h at r.t. (38%) [1160], (13%) [1186].
- Preparation by selective demethylation of $2,2^{\prime}, 3,4,5,5^{\prime}, 6$-heptamethoxybenzophenone with aluminium chloride in ethyl ether for 1.5 h at r.t. (42\%) [1186]. yellow oil [1186]; m.p. 59° [1160]; ${ }^{1} \mathrm{H}$ NMR [1186], UV [1186].

(2,6-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl)methanone

[22804-62-2]
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{8}$
mol.wt. 378.38

Synthesis

- Obtained (trace) by condensation of 2,6-dime-thoxy-benzoyl chloride with pentamethoxybenzene in nitro-benzene with aluminium chloride for 4 h at r.t. ($<1 \%$) [1186].
oil [1186]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1186], UV [1186].
(2-Hydroxy-3,4,5-trimethoxyphenyl)(2,3,4-trimethoxyphenyl)methanone

[197355-26-3]
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{8}$
mol.wt. 378.38
Synthesis
- Refer to: Chem. Abstr., 127, 303322p (1997).
m.p. and Spectra (NA).
(2-Hydroxy-3,4,5-trimethoxyphenyl)(2,4,6-trimethoxyphenyl)methanone

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{8} \quad$ mol.wt. 378.38
Synthesis
- Obtained by reaction of 2,4,6-trimethoxybenzoyl chloride with 1,2,3,4-tetramethoxybenzene in the presence of aluminium chloride in ethyl ether for 18 h [416].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [416].

[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl][4-(methylthio) phenyl]-methanone

m.p. and Spectra (NA).
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl][4-(methylthio) phenyl]-methanone (Hydrochloride)
[75060-69-4] $\quad \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}, \mathrm{HCl} \quad$ mol.wt. 365.92

Synthesis

- Preparation by reaction of concentrated hydrochloric acid with 4-tert-butyl-6-(N-chloroacetyl-aminomethyl)-2-(4-methyl-thio benzoyl)phenol in refluxing ethanol for 20 h (86\%) [817].
m.p. $205-208^{\circ}$ [817]; \quad Spectra (NA).
[3-[(2,6-Dichlorophenyl)methoxy]-4-hydroxy-5-nitrophenyl](2-nitrophenyl) methanone

$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 463.03 Synthesis
- Obtained by adding 2,6-dichlorobenzyl bromide to a solution of 3,4-dihydroxy$2^{\prime}, 5$-dinitrobenzo-phenone in N, N dimethylformamide, first treated with sodium hydride, then stirring for 2 h at 35° (66\%). -Refer to: Chem. Abstr., 127, 17465u (1997).
m.p. and Spectra (NA).

[2,3-Dichloro-4-hydroxy-5-(phenylmethoxy)phenyl](2-fluorophenyl) methanone

[103843-59-0]	$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{FO}_{3} \quad$ mol.wt. 391.23
F $\quad \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Synthesis
	- Preparation by reaction of benzyl bromide with 2,3-dichloro-4,5-dihydroxy-2'-fluorobenzophenone in the presence of sodium hydride in N, N-dimethyl-formamide at r.t. for $15 \min (71 \%)$ [841,842].
$\begin{array}{ll} \text { m.p. } & 156-157^{\circ}[841,842] ; \\ {[841] .} \end{array}$	${ }^{1} \mathrm{H}$ NMR [841,842], IR [841,842]; X-ray analysis

[2,3-Dichloro-5-hydroxy-4-(phenylmethoxy)phenyl](2-fluorophenyl) methanone

$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{FO}_{3} \quad$ mol.wt. 391.23
Synthesis

- Preparation by reaction of benzyl bromide with 2,3-dichloro-3,4-dihydroxy-2^{\prime}-fluorobenzophenone in the presence of sodium hydride in N, N-dimethylformamide at 100° for 2 h (52\%) [841].
m.p. $109-110^{\circ}$ [841]; ${ }^{1} \mathrm{H}$ NMR [841], IR [841].
[4-Hydroxy-3-nitro-5-(phenylmethoxy)phenyl](2-nitrophenyl)methanone

- then stirring for 2 h at 35° (66%);
- or then refluxing for 1 h and stirring for 12 h at 25° (75\%). -Refer to: Chem. Abstr., 127, 17465u (1997) ${ }^{\mathrm{T}}$.
m.p. (NA); ${ }^{1} H N^{2}{ }^{\mathrm{T}}$.

(4-Chlorophenyl)[2-hydroxy-4-(4-methylphenoxy)phenyl]methanone

[35698-48-7]

$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClO}_{3}$
mol.wt. 338.79
Synthesis

- Preparation by Fries rearrangement of 3-(p-chloroben-zoyloxy)-4'-methyldiphenyl
ether in 1,2,4-trichlorobenzene in the presence of aluminium chloride at first for 30 \min at 140°, then for 2 h at 200° [839].
m.p. $166-169^{\circ}$ [839]; UV [839].
(2-Hydroxy-4-methoxyphenyl)(4-phenoxyphenyl)methanone

m.p. and Spectra (NA).

(5-Chloro-3-hexyl-2-hydroxyphenyl)(4-methylphenyl)methanone

[93739-92-9]
$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClO}_{2}$
mol.wt. 330.86

Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-hexylphenyl p-toluate with aluminium chloride at 160° for 15 min [1107].
oil [1107]; b.p. ${ }_{0.133} 192^{\circ}$ [1107]; $\operatorname{Spectra}(\mathrm{NA})$.

(2,4-Dimethylphenyl)[2-hydroxy-4-(pentyloxy)phenyl]methanone

[36130-60-6]

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 312.41
Synthesis

- Preparation by reaction of n-amyl chloride (1-chloropentane) with 2,4-dihydroxy-2', 4^{\prime}-di-methylbenzo- phenone in the presence of potassium hydroxide and antimony triiodide in diethylene glycol at 140° for $1.5 \mathrm{~h}(85 \%)$ [801].

$$
\text { b.p. } \cdot_{0.4} 218-222^{\circ}[801] ; \quad \operatorname{Spectra}(\mathrm{NA}) .
$$

(2-Hydroxy-3,4-dimethoxy-6-methyl)(2,3,5,6-tetramethylphenyl)methanone
[183725-95-3]

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$
mol.wt. 328.41
Syntheses

- Preparation by Friedel-Crafts acylation of 3,4,5-trimethoxy-toluene with 2,3,5,6-tetramethylbenzoyl chloride [1072].
- Also obtained by partial demethylation of 2,3,5,6,6'-penta-methyl-2', 3',4'-trimethoxybenzophenone [1072].
m.p. $\quad 137^{\circ}$ [1072]; \quad Spectra (NA).
(4,5-Dimethoxy-2-propylphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 360.41

Synthesis

- Preparation by reaction of 2,4,5-trimethoxybenzoyl chloride with 4-propylveratrole in the presence of aluminium chloride in refluxing carbon disulfide for 8 h , then at r.t. for 12 h [1175].
m.p. $108-109^{\circ}$ [1175]; UV [1175].
(2,4-Dichlorophenyl)[2-hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]methanone
[93885-04-2] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 379.36

Synthesis

- Preparation by demethylation of 2-(2,4-di-chlorobenzoyl)-4-(1,1,3,3-tetramethyl-butyl) anisole (SM) with aluminium chloride in methylene chloride for 1 h at $10-12^{\circ}(55 \%)$. SM was obtained by Friedel-Crafts acylation of 4-(1,1,3,3-tetramethylbutyl)-anisole with 2,4-dichlorobenzoyl chloride in methylene chloride in the presence of aluminium chloride for 30 min at $10^{\circ}(74 \%)$ [1164].
m.p. $89-90^{\circ}$ [1164]; Spectra (NA); GC [1164].
(3,4-Dichlorophenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone
[36414-88-7]

m.p. 51° [235]; UV [235].

[2-Hydroxy-4,5-dimethoxy-3-(2-propenyl)phenyl](2,4,6-trimethoxyphenyl) methanone

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{7} \quad$ mol.wt. 388.42
Synthesis

- Obtained by Claisen rearrangement of 2-(allyloxy)-2', 4, $4^{\prime}, 5,6^{\prime}-$ pentamethoxy-benzophenone in refluxing N, N-dimethyl-aniline for 4 h (62\%) [416].
pale yellow oil [416]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [416].
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-bromophenyl)methanone
[84700-54-9] $\quad \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrO}_{2} \quad$ mol.wt. 389.33

Synthesis

- Preparation by acylation of 2,6-di-tertbutylphenol with o-bromobenzoyl chloride in the presence of aluminium chloride (31%) [860], according to [857].
m.p. $74-75^{\circ}$ [860]; IR [860].

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-chlorophenyl)methanone

[84700-53-8]

$$
\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClO}_{2} \quad \text { mol.wt. } 344.88
$$

Synthesis

- Preparation by acylation of 2,6-di-tertbutylphenol with p-chlorobenzoyl chloride in the presence of aluminium chloride (41\%) [860], according to [857].
m.p. $162-163^{\circ}$ [860]; IR [860].

(4-Chlorophenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone

[18190-30-2]

m.p. 60° [235]; UV [235].
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClO}_{3}$
mol.wt. 360.88
Synthesis

- Refer to: [235].

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-fluorophenyl)methanone

[69451-08-7]
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FO}_{2}$
mol.wt. 328.43

Synthesis

- Preparation by acylation of 2,6-di-tertbutylphenol with p-fluorobenzoyl chloride in the presence of aluminium chloride (35\%) [860], according to [857].
m.p. $133-134^{\circ}$ [860]; IR [860].
(4-Fluorophenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone
[84794-99-0]

$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FO}_{3} \quad$ mol.wt. 344.43
Synthesis
- Preparation by reaction of 1-bromooctane with 4'-fluoro-2,4-dihydroxybenzophenone in the presence of sodium bicarbonate in cyclohexanone for 5 h at $150^{\circ}(72 \%)$ [1109].
m.p. $\quad 48-49^{\circ}$ [1109]; \quad Spectra (NA).

[5-(1,1-Dimethylethyl)-2-hydroxyphenyl][4-(1,1-dimethylethyl)phenyl] methanone

yellow oil [154]; b.p. ${ }_{0.02} 150^{\circ}$ [154]; Spectra (NA).
(4-Butoxy-2-hydroxyphenyl)(4-butoxyphenyl)methanone $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 342.44

Synthesis

- Preparation by reaction of butyl bromide with 2,4,4'-trihydroxybenzophenone in the presence of potassium carbonate (50\%) [380].
m.p. $95-96^{\circ}$ [380]; UV [380].

$$
\begin{aligned}
& \text { [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](3-methylphenyl)methanone } \\
& \text { [84700-50-5] }
\end{aligned} \begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \quad \text { mol.wt. } 324.46 \\
& \text { Synthesis }
\end{aligned}
$$

m.p. $99-100^{\circ}$ [860]; IR [860].
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-methylphenyl)methanone

[84700-49-2]	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \quad \mathrm{~mol}$. wt. 324.46
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	Synthesis
	- Preparation by acylation of 2,6-di-tert butylphenol with p-methylbenzoyl chloride in the presence of aluminium chloride (40\%) [860], according to [857].

m.p. $131-132^{\circ}$ [860]; IR [860].

[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl](4-methoxyphenyl)methanone

[80078-54-2]

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \quad$ mol.wt. 340.46
Syntheses

- Preparation by oxidation of 2,4-di-tert-butyl-6-(p-methoxybenzyl)phenol with silver oxide in boiling acetone for 40 min (24\%) [1193].
- Preparation by treatment of 2-hydroxy-4'-methoxy-benzophenone at 120° with a mixture of isobutylene/nitrogen (1:1) in the presence of a macroreticular acid ion exchanger (Wofatit OK 80) as catalyst for 10 h (85\%) [819].
b.p. ${ }_{0.15} 200-205^{\circ}$ [819]; m.p. $116-117^{\circ}$ [1193]; ${ }^{1} \mathrm{H}$ NMR [1193], IR [1193], UV [1193], MS [1193].

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-methoxyphenyl)methanone

m.p. $87-88^{\circ}$ [860]; IR [860].

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-methoxyphenyl)methanone

[28440-99-5]
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$
mol.wt. 340.46

Synthesis

- Preparation by acylation of 2,6-di-tertbutylphenol with p-methoxybenzoyl chloride in the presence of aluminium chloride (61\%) [860], according to [857].
m.p. $143-144^{\circ}$ [860]; IR [860].

[2-Hydroxy-4-(octyloxy)phenyl](4-methoxyphenyl)methanone

[36469-90-6] $\quad \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \quad \mathrm{~mol} . w t .356 .46$

Synthesis

- Refer to: [235].
m.p. 55° [235]; UV [235].
(3,4-Dichlorophenyl)[4-[4-(1,1-dimethylethyl)phenoxy]-2-hydroxyphenyl] methanone
[35698-02-3]

m.p. (NA); UV [839].

[4-(1,1-Dimethylethyl)phenyl](2-hydroxy-4-phenoxyphenyl)methanone

[35698-42-1]

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 346.94
Synthesis

- Preparation by reaction of p-tert-butyl-benzoyl chloride with 3-methoxydiphenyl ether in chlorobenzene in the presence of aluminium chloride first at r.t., then for 4 h at $90-95^{\circ}$ [839].
m.p. $88-90^{\circ}$ [839]; UV [839].
(3-Butoxyphenyl)(2-hydroxy-4-phenoxyphenyl)methanone
[35698-55-6]

m.p. (NA); UV [839].
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 362.43
Synthesis
- Refer to: [839] (compound 13).

(4-Butoxyphenyl)(2-hydroxy-4-phenoxyphenyl)methanone

[35698-52-3]

m.p. (NA); UV [839].

[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl][4-[(3-methyl-2-butenyl)oxy] phenyl]-methanone

[63565-01-5]
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 366.46

Synthesis

- Obtained (poor yield) by reaction of prenyl bromide with 2,4,4'-tri-hydroxybenzophenone,
- in the presence of potassium carbonate in refluxing acetone for 3 h (6%) [831];
- in the presence of boron trifluoride-etherate in dioxane at $50-60^{\circ}$ for 3 h ($<1 \%$) [832].
m.p. 74° [831], $73-74^{\circ}$ [832]; ${ }^{1} \mathrm{H}$ NMR [831], IR [831], UV [831].
(4-Ethenylphenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone
[80167-02-3] $\quad \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3} \quad \mathrm{~mol} . w t .352 .47$

Synthesis

- Preparation by reaction of aqueous potassium hydroxide with 2-hydroxy-4-(octyloxy)-
4'-(2-bromoethyl)-benzophenone in the presence of hydroquinone in refluxing methanol for 1.5 h with nitrogen bubbling (41\%) [1147].
m.p. $57-59^{\circ}$ [1147]; ${ }^{1} \mathrm{H}$ NMR [1147], IR [1147], UV [1147], MS [1147].

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](3-ethylphenyl)methanone

$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \quad$ mol.wt. 338.49
Synthesis

- Preparation by Friedel-Crafts acylation of 2,6-di-tert-butylphenol with 3-ethylbenzoyl chloride in the presence of aluminium chloride at $-10^{\circ}(50 \%)$ [860], according to [857].
m.p. $\quad 69-70^{\circ}[860] ; \quad \operatorname{Spectra}(N A)$.

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-ethylphenyl)methanone

$$
\text { [84700-51-6] } \begin{aligned}
& \text { Ont. } \begin{array}{l}
\text { Preparation by Friedel-Crafts acyla- } \\
\text { tion of 2,6-di-tert-butylphenol with } \\
\text { p-ethylbenzoyl chloride in the presence } \\
\text { of aluminium chloride at }-10^{\circ} \quad(35 \%) \\
\text { [860] according to [857]. }
\end{array}
\end{aligned}
$$

m.p. $\quad 136-137^{\circ}$ [860]; \quad Spectra (NA).

[3-Chloro-4,6-dimethoxy-2-(phenylmethoxy)phenyl] (4-hydroxy-2-methoxy-6-methyl-phenyl)methanone

 $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClO}_{6} \quad$ mol.wt. 442.90

Synthesis

- Preparation by reaction of 2-(benzyloxy)-3-chloro-4,6-dimethoxybenzoyl chloride with mono(trimethylsilyl)derivative
of 3-methoxy-5-methylphenol in the presence of stannic chloride (or titanium tetrachloride or aluminium chloride) in refluxing methylene chloride for 2 h [921]. m.p. and Spectra (NA).

[4-(4-Butylphenoxy)-2-hydroxyphenyl](3-methylphenyl)methanone

[35698-58-9]

m.p. (NA); UV [839].
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 360.45
Synthesis

- Refer to: [839] (compound 16).

[4-(4-Butoxyphenoxy)-2-hydroxyphenyl](3-methylphenyl)methanone

[35697-96-2]

m.p. (NA); UV [839].
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 376.45 Synthesis

- Refer to: [839] (compound 25).
(4-Butoxyphenyl)[2-hydroxy-4-(3-methylphenoxy)phenyl]methanone
[35698-62-5] $\quad \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 376.45

Synthesis

- Refer to: [839] (compound 20).
m.p. (NA); UV [839].

(4-Butoxyphenyl)[2-hydroxy-4-(4-methylphenoxy)phenyl]methanone

[35698-59-0]
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4}$
mol.wt. 376.45

Synthesis

- Refer to: [839] (compound 17).
m.p. (NA); UV [839].

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](3,4,5-trimethoxyphenyl) methanone

[54808-42-3]

$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \quad$ mol.wt. 400.52
Synthesis

- Preparation by Friedel-Crafts acylation of 2,6-di-tert-butylphenol with 3,4,5-trimethoxybenzoyl chloride in the presence of stannic chloride in refluxing methylene chloride for 19 h (58\%) [334].
m.p. 138-1385 [334]; ${ }^{1} \mathrm{H}$ NMR [334], IR [334].
[3-Hydroxy-5-(phenoxy-d5)phenyl][4-(phenoxy-3,5-d2)phenyl]methanone
[176738-22-0]
$\mathrm{C}_{25} \mathrm{H}_{11} \mathrm{D}_{7} \mathrm{O}_{4} \quad$ mol.wt. 389.46

Synthesis

- Preparation by adding 3, 5-dihydroxy-4'-(phe noxy- $d 2$)benzophenone, potassium carbonate and copper powder to a solution of N-methyl-pyrrolidone/toluene. The obtained mixture was refluxed for 1 h , with removal of water.
- Then, adding bromobenzene- $d 5$ and heating at reflux again for 2 h (22\%) (compound 22) [906].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [906], ${ }^{13} \mathrm{C}$ NMR [906].

[4-(1,1-Dimethylethyl)phenyl][4-(3,4-dimethylphenoxy)-2-hydroxyphenyl] methanone

[35697-99-5]

$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 374.48
Synthesis

- Refer to: [839] (compound 28).
m.p. (NA); UV [839].

(4-Dodecylphenyl)(2-hydroxy-3-nitrophenyl)methanone

[35698-24-9] $\quad \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4}$ mol.wt. 411.54

Synthesis

- Obtained by reaction of fuming nitric acid with 2-hydroxy-4'-dodecylbenzophenone in an acetic acid/acetic anhydride mixture (4:3) at $5-7^{\circ}$ for $1 \mathrm{~h}(27 \%)$ [889,891]. m.p. and Spectra (NA).
(4-Dodecylphenyl)(2-hydroxy-5-nitrophenyl)methanone
[35698-23-8]

$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4} \quad$ mol.wt. 411.54
Synthesis
- Obtained by reaction of fuming nitric acid with 2-hydroxy-4'-dodecylbenzophenone in an acetic acid/acetic anhydride mixture (4:3) at $5-7^{\circ}$ for $1 \mathrm{~h}(54 \%)$ [889,891].
m.p. and Spectra (NA).
[4-(1,1-Dimethylethyl)phenyl][2-hydroxy-4-(octyloxy)phenyl]methanone
[36419-37-1]

oil [235]; b.p. (NA); UV [235].
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3} \quad$ mol.wt. 382.54
Synthesis
- Refer to: [235].

[4-(Dodecyloxy)-2-hydroxyphenyl](4-methylphenyl)methanone

[36130-67-3]

$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 386.49
Synthesis

- Preparation by reaction of dodecyl chloride with 2,4-dihydroxy-4'methylbenzophenone (92%), according to [801].
m.p. $\quad 50-51^{\circ}[801] ; \quad \operatorname{Spectra}(N A)$.
(4-Dodecylphenyl)(2-hydroxy-3-methyl-5-nitrophenyl)methanone
[35698-29-4]
$\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{4}$
mol.wt. 425.57

Synthesis
- Preparation by reaction of fuming nitric acid with 4'-dodecyl-2-hydroxy-3-methylbenzophenone in acetic acid/ acetic anhydride (95\%) [889,891].
m.p. and Spectra (NA).

(4-Dodecylphenyl)(2-hydroxy-3-methylphenyl)methanone

$$
\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2} \quad \text { mol.wt. } 380.57
$$

Synthesis

- Obtained (poor yield) by reaction of 2-hydroxy-3-methylbenzoyl chloride
with dodecylbenzene in nitrobenzene in the presence of aluminium chloride for 6 h at 40° and at r.t. overnight (8%) [889,891].
b.p. ${ }_{0.45-0.7} 210-217^{\circ}[889,891] ; \quad$ Spectra (NA).

[[4-(1,1-Dimethylethyl)phenoxy]-2-hydroxyphenyl][4-(1,1-dimethylethyl) phenyl]-methanone

[35698-44-3] $\quad \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}$ mol.wt. 402.53
Synthesis

- Preparation by reaction of p-tert-butylbenzoyl chloride with 4-tert-butyl-3'-methoxydiphenyl ether in chlorobenzene in the presence of aluminium chloride first at r.t., then at $90-95^{\circ}$ for 4 h [839].
m.p. 134-136 ${ }^{\circ}$ [839]; UV [839].
(2-Hydroxy-4-phenoxyphenyl)[3-(octyloxy)phenyl]methanone
[35698-56-7]

m.p. (NA); UV [839].

(2-Hydroxy-4-phenoxyphenyl)[4-(octyloxy)phenyl]methanone

[35698-53-4] $\quad \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{4}$ mol.wt. 418.53
 Synthesis

- Refer to: [839] (compound 11).
m.p. (NA); UV [839].

[4-(4-Butoxyphenoxy)-2-hydroxyphenyl](4-butoxyphenyl)methanone

[35697-93-9]
$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{5} \quad$ mol.wt. 434.68
Synthesis

- Refer to: [839] (compound 22).
m.p. (NA); UV [839].

[4-(Dodecyloxy)-2-hydroxyphenyl](4-ethenylphenyl)methanone

[80167-03-9]
$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{3} \quad$ mol.wt. 408.58
Synthesis

- Obtained by reaction of aqueous potassium hydroxide with 2-hydroxy-4-(dodecyloxy)- 4'-(2-bromoethyl)benzophenone in the presence of hydroquinone in refluxing methanol for 1.5 h with nitrogen bubbling (18\%) [1147].
m.p. $49-50^{\circ}$ [1147]; ${ }^{1} \mathrm{H}$ NMR [1147], IR [1147], UV [1147], MS [1147].

[2-Hydroxy-4-(3-methylphenoxy)phenyl][4-(octyloxy)phenyl]methanone

 [35697-92-8]$$
\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{4} \quad \text { mol.wt. } 432.56
$$

Synthesis

- Refer to: [839] (compound 21).
m.p. (NA); UV [839].

[2-Hydroxy-4-(4-methylphenoxy)phenyl][4-(octyloxy)phenyl]methanone

[35698-60-3]

$$
\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{4} \quad \text { mol.wt. } 432.56
$$

Synthesis

- Refer to: [839] (compound 18).
m.p. (NA); UV [839].
[2-Hydroxy-4-[4-(octyloxy)phenoxy]phenyl](3-methylphenyl)methanone
[35697-97-3]

m.p. (NA); UV [839].
[2-Hydroxy-4-(octyloxy)phenyl][4-(octyloxy)phenyl]methanone
$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{4} \quad$ mol.wt. 454.65

Synthesis

- Preparation by reaction of octyl bromide with 2,4,4'-trihydroxybenzophenone in the presence of potassium carbonate (60%) [380].
m.p. $\quad 60^{\circ} 5-61^{\circ}$ [380]; UV [380].

(3,4-Dimethylphenyl)[2-hydroxy-4-(4-nonylphenoxy)phenyl]methanone

$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{3} \quad$ mol.wt. 444.61

Synthesis

- Refer to: [839] (compound 31).
m.p. (NA); UV [839].

[3-(Dodecyloxy)phenyl](2-hydroxy-4-phenoxyphenyl)methanone

[35698-57-8]

m.p. (NA); UV [839].

[4-(Dodecyloxy)phenyl](2-hydroxy-4-phenoxyphenyl)methanone

[35698-54-5]

m.p. (NA); UV [839].
[2-Hydroxy-4-(2,4,6-trimethylphenoxy)phenyl][4-(isononyloxy)phenyl] methanone
[36118-66-8] $\quad \mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{4} \quad$ mol.wt. 474.64
 Synthesis

- Refer to: [839] (compound 29).
m.p. (NA); UV [839].
[4-(4-Dodecylphenoxy)-2-hydroxyphenyl](3-methylphenyl)methanone
[35697-98-4]

m.p. (NA); UV [839].
$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{3} \quad$ mol.wt. 472.67
Synthesis
- Refer to: [839] (compound 27).
[4-(Dodecyloxy)phenyl][2-hydroxy-4-(4-methylphenoxy)phenyl]methanone
[35698-61-4] $\quad \mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{4} \quad$ mol.wt. 488.67

Synthesis

- Refer to: [839] (compound 19).
m.p. (NA); UV [839].

[2-Hydroxy-4-(octadecyloxy)phenyl](4-methoxyphenyl)methanone

[36130-68-4]

$\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{4} \quad$ mol.wt. 496.73 Synthesis

- Preparation by reaction of octadecyl chloride (1-chlorooctadecane) with 2,4-dihydroxy-4'-methoxybenzophenone (81%), according to [801].
m.p. $\quad 73-75^{\circ}$ [801]; $\quad \operatorname{Spectra}(N A)$.

[4-[4-(1,1-Dimethylethyl)-2,6-dimethylphenoxy]-2-hydroxyphenyl]

[4-(1,1,3,3-tetra-methylbutyl)phenyl]methanone

[35698-00-1] $\quad \mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{3} \quad$ mol.wt. 486.69

Synthesis

- Refer to: [839] (compound 30). m.p. (NA); UV [839].

[2-Hydroxy-4-[4-(octyloxy)phenoxy]phenyl][4-(octyloxy)phenyl]methanone

[35697-94-0]
$\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{5} \quad$ mol.wt. 546.75
 Synthesis

- Refer to: [839] (compound 23).
m.p. (NA); UV [839].
[4-(Dodecyloxy)-2-hydroxyphenyl][4-(dodecyloxy)phenyl]methanone
$\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{O}_{4} \quad$ mol.wt. 566.87

Synthesis

- Refer to: [98].
m.p. (NA); EPR [98].

[4-(4-Dodecylphenoxy)-2-hydroxyphenyl](4-dodecylphenyl)methanone

2.2 Dihydroxybenzophenones

2.2.1 Hydroxy Groups Located on the Same Ring

2.2.1.1 Substituents Located on the Hydroxylated Ring

Phenyl(2,3,5-trifluoro-4,6-dihydroxyphenyl)methanone

$$
\begin{aligned}
& \text { [32541-14-3] } \\
& \mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \quad \mathrm{~mol} \text {.wt. } 268.19 \\
& \text { Synthesis } \\
& \text { - Preparation by demethylation of 2,4-dimethoxy- } \\
& \text { 3,5,6-trifluorobenzophenone (SM1) or of } \\
& \text { 2-hydroxy-4-methoxy-3,5,6-trifluorobenzophe- } \\
& \text { none (SM2) with aluminium chloride in meth- } \\
& \text { ylene chloride at } 20^{\circ} \text { for } 6 \mathrm{~h}(97 \% \text { and } 60 \% \\
& \text { yields, respectively) [570]. SM1 was obtained in two steps: first, preparation of } \\
& \text { 4-methoxy-2,3,5,6-tetrafluorobenzophenone by treatment of 2,3,4,5,6-pentaflu- } \\
& \text { orobenzophenone with sodium methoxide in methanol at } 20^{\circ} \text { for } 3 \text { days (} 91 \% \text {). } \\
& \text { Then, this new ketone, by reaction with sodium methoxide in boiling methanol } \\
& \text { for } 15 \mathrm{~h} \text { gave SM1 (82\%) [570]. The preparation of SM2 was also described in } \\
& \text { this book (94\%) [570]. }
\end{aligned}
$$

m.p. $\quad 173-176^{\circ}$ [570]; IR [570], UV [570].
(3-Bromo-4-chloro-2,5-dihydroxyphenyl)phenylmethanone
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1194].
(3-Bromo-2,4-dihydroxy-5-nitrophenyl)phenylmethanone

$$
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrNO}_{5} \quad \text { mol.wt. } 338.11
$$

Syntheses

- Preparation by reaction of bromine with 2,4-dihydroxy-5-nitrobenzophenone in acetic acid at r.t. for 2 h [1195] or in hot acetic acid for 1 h [1196].
- Also obtained by reaction of nitric acid $(\mathrm{d}=1.4)$ with $3,3^{\prime}$-dibenzoyl-5,5'-dibromo-2, $2^{\prime}, 6,6^{\prime}$-tetrahydroxy-diphenyl thioether in acetic acid at r.t. for 1 h . The same result was obtained from 3,3'-dibenzoyl-5,5'-dibromo-4, $4^{\prime}, 6,6^{\prime}$ tetrahydroxydiphenyl thioether [1195].
- Also obtained by action of nitric acid ($\mathrm{d}=1.4$) with 5-bromo-2,4-dihydroxybenzophenone in acetic acid, first at low temperature, then at r.t. According to the authors, there is a migration of the bromine atom during nitration [1196].
m.p. $208-209^{\circ}[1195,1196] ; \quad$ Spectra (NA).
(5-Bromo-2,4-dihydroxy-3-nitrophenyl)phenylmethanone
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrNO}_{5} \quad$ mol.wt. 338.11

Synthesis

- Obtained by reaction of bromine with 2,4-dihy-droxy-3-nitrobenzophenone in hot acetic acid solution then at r.t. for overnight [1196].
m.p. $\quad 110-111^{\circ}[1196] ; \quad$ Spectra (NA).
(2,4-Dibromo-3,6-dihydroxyphenyl)phenylmethanone
[27065-46-9]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 372.01
Syntheses
- Preparation by demethylation of 4,6-dibromo-2-hydroxy-5-methoxybenzophenone with aluminium chloride in boiling benzene for 10 min (72\%) [571].
- Also obtained by saponification of 5-acetoxy-2-benzoyloxy- 4,6-dibromobenzophenone (SM) with potassium hydroxide in boiling ethanol for 1 h (72%) [1197]. SM was prepared in three steps: first, bromination of 5-hydroxy-2,3diphenylbenzofuran (bromine/carbon tetrachloride), followed by acetylation of the 4,6-dibromo-5-hydroxy-2,3-diphenylbenzofuran so obtained (acetic anhydride/sodium acetate) and oxidation of the resulting 5-acetoxy-4,6-dibromo-2,3diphenylbenzofuran (chromium trioxide/acetic acid).

$$
\text { m.p. } \quad 170-171^{\circ}[1197], 170^{\circ}[571] ; \quad \text { Spectra (NA). }
$$

(3,4-Dibromo-2,5-dihydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$
mol.wt. 372.01
Synthesis

- Obtained by $10 \% \mathrm{Pd} / \mathrm{C}-$ catalyzed hydrogenolysis of gem-diphenylcyclopropane fused with 3,4 , 6-tribromo-benzoquinone in 1,4-dioxane in the presence of water (1%) for 6 h under atmospheric pressure at r.t. (33\%) [1194].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1194].

(3,5-Dibromo-2,4-dihydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 372.01
Syntheses

- Preparation by reaction of bromine with resbenzophenone in acetic acid [1195,1196], (44\%) [1198].
- Also obtained by reaction of bromine with $3,3^{\prime}$-dibenzoyl-2, $2^{\prime}, 6,6^{\prime}$ tetrahydroxydiphenyl thioether in acetic acid in a boiling water bath for 4 h . The same result was obtained from 3,3'-dibenzoyl-4,4',6,6'-tetrahydroxydiphenyl thioether [1195].
- Also obtained by saponification of 4-acetoxy-2-benzoyloxy-3,5-dibromobenzophenone (SM) with potassium hydroxide in boiling ethanol for 1 h (73\%). SM was prepared in three steps: first, bromination of 6-hydroxy-2,3-diphenylbenzofuran (bromine/carbon tetrachloride), followed by acetylation of the 5,7-dibromo-6-hydroxybenzofuran so obtained (acetic anhydride/sodium acetate) and oxidation of the resulting 6-acetoxy-5,7-dibromo-2,3-diphenylbenzofuran (chromium trioxide/acetic acid) [1197].
m.p. $151-152^{\circ}$ [1198], $150-151^{\circ}$ [1195,1196], $148-149^{\circ}$ [1197];

Spectra (NA).
(4,6-Dibromo-2,3-dihydroxyphenyl)phenylmethanone
[65202-42-8] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 372.01

Synthesis

- Preparation by saponification of 3-acetoxy-2-(benzoyloxy)-4,6-dibromobenzophenone (SM) with potassium hydroxide in boiling ethanol (72%). SM was obtained by oxidation of 7 -acetoxy-4, 6-dibromo-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid (70\%) [579].
m.p. $205^{\circ}[579] ; \quad \operatorname{Spectra}(N A)$.

(2,3-Dichloro-4,5-dihydroxyphenyl)phenylmethanone

Synthesis

- Preparation by Friedel-Crafts acylation of 1,2-dichloro-3,4-dihydroxybenzene with benzoyl chloride in the presence of aluminium chloride in refluxing ethylene dichloride for 24 h (83%) [841,842].
m.p. $\quad 178-180^{\circ}$ [841,842]; ${ }^{1} \mathrm{H}$ NMR [841], IR [841].

(3,4-Dichloro-2,5-dihydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11
Syntheses

- Obtained by reaction of 2,3-dichloro-1,4-benzoquinone with benzaldehyde, either in the presence of benzoyl peroxide at 80° or in the absence of this one at 155° [840].
- Also obtained by $10 \% \mathrm{Pd} / \mathrm{C}$-catalyzed hydrogenolysis of gem-diphenylcyclopropane fused with 3,4,6-trichloro-benzoquinone or with 6-bromo-3, 4-dichlorobenzoquinone in 1,4-dioxane in the presence of water (2\%) for 2 h under atmospheric pressure at r.t. (59% and 75% yields, respectively) [1194].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1194].

(2,4-Dihydroxy-3,5-diiodophenyl)phenylmethanone

[33427-67-7]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{3} \quad$ mol.wt. 466.01 Syntheses

- Preparation by iodination of resbenzophenone,
- with iodine and iodic acid in dilute ethanol for $1 \mathrm{~h}(62 \%)$ [460];
- with iodine and potassium iodide in aqueous ammonia for 15 min [460];
- with iodine monochloride in acetic acid for 2 h at r.t. [460].
- Also obtained from 2,4-dihydroxy-3,5-dinitrobenzophenone by methylation, reduction to 3,5-di-amino-2,4-dimethoxybenzophenone, subsequent diazotization and heating of the diazonium salt with potassium iodide, then demethylation of the 3,5-diiodo-2,4-dimethoxybenzophenone so formed [460].
m.p. $184-185^{\circ}$ [460]; $\quad \operatorname{Spectra}(N A)$.

(2,3-Dihydroxy-4,6-dinitrophenyl)phenylmethanone

[65202-37-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 304.22
Synthesis

- Preparation by saponification of 3-acetoxy-2-(benzoyloxy)-4,6-dinitrobenzophenone (SM) with potassium hydroxide in refluxing ethanol (68%). SM was obtained by oxidation of 7-acetoxy-4,6-dinitro-2,3-diphenylbenzofuran with chromium trioxide in boiling acetic acid (81\%) [579].
m.p. $264-265^{\circ}[579] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(2,4-Dihydroxy-3,5-dinitrophenyl)phenylmethanone

[27065-50-5]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}$
Syntheses

- Obtained by saponification of 4-acetoxy-2-benzoyloxy-3,5-dinitrobenzophenone (SM) with potassium hydroxide in boiling ethanol for $1 \mathrm{~h}(76 \%)$. SM was prepared in three
steps: first, nitration of 6-hydroxy-2,3-diphenylbenzofuran (concentrated nitric acid/acetic acid), followed by acetylation of the 6-hydroxy-5,7-dinitro-2, 3-diphenylbenzofuran so obtained (acetic anhydride/sodium acetate) and oxidation of the resulting 6-acetoxy-5,7-dinitro-2,3-diphenylbenzofuran (chromium trioxide/acetic acid) [1197].
- Preparation by nitration of resbenzophenone with 4 N nitric acid in the presence of sodium nitrite at r.t. for 8 days [460,1197], (60\%) [227].
m.p. $187-188^{\circ}$ [227], 185° [1197]; ${ }^{1} \mathrm{H}$ NMR [1197].
(2-Bromo-4,5-dihydroxyphenyl)phenylmethanone
[91197-10-3]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 293.12
Synthesis
- Preparation by demethylation of 2-bromo-4,5-dimethoxy-benzophenone(SM)(m.p. 71-72 ${ }^{\circ}$) with pyridinium chloride for 2 h at $180-200^{\circ}$. SM was obtained by reaction of benzoic acid with 1-bromo-3,4-dimethoxybenzene in the presence of phosphorous pentoxide in methanesulfonic acid for 30 min at 70° [1199].
- Also refer to: [1200].
brown oil [1199]; b.p. (NA); Spectra (NA).

(3-Bromo-2,5-dihydroxyphenyl)phenylmethanone

[112932-43-1]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3}$
mol.wt. 293.12

Synthesis

- Refer to: [1201,1202].
m.p. and Spectra (NA).
(3-Bromo-2,6-dihydroxyphenyl)phenylmethanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 293.12

Syntheses

- Preparation by decarboxylation of 3-benzoyl-5-bromo-2,4-dihydroxybenzoic acid [1203], in the presence of concentrated hydrochloric acid in refluxing dilute acetic acid for 24 h (34\%) [1204].
- Preparation by hydrolysis of 8-benzoyl-6-bromo-7-hydroxy-4-methylcoumarin [1204], in refluxing 10% sodium hydroxide for 2.5 h (49\%) [1203].
m.p. $\quad 122-123^{\circ}$ [1204], 122° [1203]; \quad Spectra (NA).

(5-Bromo-2,4-dihydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3}$ mol.wt. 293.12
Syntheses

- Obtained by demethylation of 5-bromo-2-hydroxy-4-methoxybenzophenone with aluminium chloride in boiling benzene for $10 \mathrm{~min}(72 \%)$ [571].
- Preparation by reaction of bromine with 2,4-dihy-droxy-benzophenone in acetic acid at r.t. overnight [1195,1196].
- Also refer to: [1198]. m.p. $\quad 148-149^{\circ}[1195,1196], 148^{\circ}[571] ;$ Spectra (NA).
(2-Chloro-4,5-dihydroxyphenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67 Syntheses
- Preparation by reaction of benzoyl chloride with 4-chloro-1,2-benzenediol in the presence of aluminium chloride at 140° for 4.5 h [1205].
- Preparation by total demethylation of 2-chloro-4,5-di-methoxybenzophenone (SM) with 48\% hydrobromic acid in refluxing acetic acid for 17 h [1205]. SM was obtained by benzoylation of 4-chloro-1,2-dimethoxybenzene,
- with benzoyl chloride in the presence of iodine;
- with 2-pyridinyl benzoate in the presence of trifluoroacetic acid at 150° for 2 h in a sealed tube.
- Also refer to: [1199,1200].

```
m.p. 130-135 [1205]; Spectra (NA).
```


(3-Chloro-2,6-dihydroxyphenyl)phenylmethanone

$$
\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad \text { mol.wt. } 248.67
$$

Syntheses

- Preparation by decarboxylation of 3-benzoyl-5-chloro-2,4-dihydroxybenzoic acid with concentrated hydrochloric acid in refluxing dilute acetic acid for 24 h [1203], (30\%) [1204].
- Preparation by hydrolysis of 8-benzoyl-6-chloro-7-hydroxy-4-methylcoumarin with refluxing 10% aqueous sodium hydroxide or potassium hydroxide solution for 2.5 h [1204], (40\%) [1203].
m.p. $\quad 119-120^{\circ}[1203,1204] ; \quad \operatorname{Spectra}(N A)$.

(5-Chloro-2,4-dihydroxyphenyl)phenylmethanone

[3286-95-1]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Syntheses

- Preparation by reaction of benzotrichloride with 4-chloro-resorcinol in 40% aqueous isopropanol solution at $70-80^{\circ}(89 \%)$ [211].
- Preparation in two steps: first, chlorination of resorcinol dimethyl ether with sulfuryl chloride in chloroform, then Friedel-Crafts acylation of the 2,4-dimethoxychlorobenzene so obtained with benzoyl chloride in ethylene dichloride in the presence of aluminium chloride at r.t. for $3 \mathrm{~h}(81 \%)$ [478].
m.p. $142-143^{\circ} 5$ [478], $142-143^{\circ}$ [211]; ${ }^{1} H$ NMR [478], IR [478], MS [478].

(2-Fluoro-4,5-dihydroxyphenyl)phenylmethanone

[85525-20-8]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 232.21
Synthesis

- Preparation by total demethylation of 2-fluoro-4,5-di-methoxybenzophenone (SM) with 48% hydrobromic acid in refluxing acetic acid for 17 h . SM was obtained on heating a mixture of 4-fluoro-1,2-dimethoxybenzene ${ }^{\mathrm{T}}$, 2-pyridinyl benzoate and trifluoroacetic acid at 100° for 4.5 h in a sealed tube [1205]. The starting dimethyl ether ${ }^{\mathrm{T}}$ was prepared from 3,4-dimethoxyaniline by a Balz-Schiemann reaction [1206].
- Also refer to: [1200].

```
m.p. 169 5-171 [1205]; Spectra (NA).
```


(2,4-Dihydroxy-3-iodophenyl)phenylmethanone

[33427-62-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{3} \quad$ mol.wt. 340.12

Synthesis

- Obtained by iodination of resbenzophenone with iodine and iodic acid in dilute ethanol for 30 min at r.t. (78\%) [460].
m.p. $150-151^{\circ}[460] ; \quad$ Spectra (NA).

(2,4-Dihydroxy-5-iodophenyl)phenylmethanone

[33427-72-4]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{3} \quad$ mol.wt. 340.12
Synthesis

- Obtained from 2,4-dihydroxy-3,5-diiodobenzophenone in refluxing acetic acid for 8 h . There is an elimination of one iodine atom [460].
m.p. 151° [460]; \quad Spectra (NA).

(2,4-Dihydroxy-3-nitrophenyl)phenylmethanone

[59746-91-7]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5}$
mol.wt. 259.22
Syntheses

- Preparation by reaction of benzotrichloride with 2-nitro-resorcinol in hydrofluoric acid in the presence of water at -10° for 4 h , then at r.t. overnight (98\%) [213].
- Preparation by Fries rearrangement of 2-nitroresorcinol dibenzoate with aluminium chloride [1207],
- in nitrobenzene at $100-110^{\circ}$ for 3 h or at $25-28^{\circ}$ for $70 \mathrm{~h}(42 \%)$;
- without solvent, at 140° for $2 \mathrm{~h}(23 \%)$.
- Also obtained (poor yield) by reaction of concentrated nitric acid with resbenzophenone in acetic acid at r.t. for $1-2 \mathrm{~h}(6 \%)$ [1082].
- Also obtained (by-product) by reaction of benzoyl chloride with 2-nitroresorcinol in the presence of aluminium chloride in nitrobenzene in a boiling water bath for 1 h [1196].
m.p. 145° [1207], $144-145^{\circ}$ [1196], 142° [213]; ${ }^{1} \mathrm{H}$ NMR [1082], IR [1082], MS [1082]; TLC [1082].

(2,4-Dihydroxy-5-nitrophenyl)phenylmethanone

[40990-79-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22
 Syntheses

- Obtained by nitration of resbenzophenone,
- with concentrated nitric acid in acetic acid at r.t. for $1-2 \mathrm{~h}(38 \%)$ [1082] or first at r.t., then at 60° [1195];
- with 4 N nitric acid in the presence of sodium nitrite (trace) at r.t. for 8 days [1197];
- also obtained by adding nitric acid $(\mathrm{d}=1.4)$ to an ice cooled solution of resbenzophenone in acetic acid. Then, the ice bath was removed and the reaction stopped when the temperature reached 45° [1196].
- Preparation by refluxing hydrobromic acid with 2-hydroxy-4-methoxy-5-nitrobenzophenone for 3 h (61\%) [571].
- Also obtained by reaction of nitric acid $(\mathrm{d}=1.4)$ with $3,3^{\prime}$-dibenzoyl-4,4',6,6'tetrahydroxydiphenyl thioether in acetic acid at r.t. for 1 h [1195].
m.p. $144-145^{\circ}$ [1195,1196], 143° [571]; ${ }^{1} \mathrm{H}$ NMR [1082], IR [1082], MS [1082]; TLC [1082].
(2,5-Dihydroxy-4-nitrophenyl)phenylmethanone
[40990-70-3]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22
Syntheses
- Preparation by saponification of 5-(acetyloxy)-4-nitro-2-(p-nitrobenzoyloxy)benzophenone (SM) with potassium hydroxide in ethanol for 1 h (81%). SM was obtained by oxidation of
5-(acetyloxy)-6-nitro-2-(p-nitrophenyl)-3-phenylbenzofuran with chromium trioxide in refluxing acetic acid for 30 min [571].
- Preparation by demethylation of 2-hydroxy-5-methoxy-4-nitrobenzophenone with aluminium chloride in boiling benzene (62\%) [571].
m.p. $\quad 167^{\circ}[571] ; \quad$ Spectra (NA).

(2,6-Dihydroxy-3-nitrophenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22

Syntheses

- Preparation by reaction of benzoic anhydride with 4-nitro-resorcinol in the presence of aluminium chloride in nitro-benzene on a steam bath for 3 h [1208].
- Preparation by nitration of 2,6-dihydroxybenzophenone with nitric acid $(\mathrm{d}=1.42)$ at 0° for 10 min [1208].
- Preparation by Fries rearrangement,
- of 4-nitroresorcinol 1-monobenzoate with aluminium chloride without solvent at $130-140^{\circ}$ for $2 \mathrm{~h}(16 \%)$ or in nitrobenzene at 100° for $2 \mathrm{~h}(43 \%)$ [1209];
- of 4-nitroresorcinol 3-monobenzoate that, under the above conditions, afforded the same mono-ketone [1209];
- of 4-nitroresorcinol dibenzoate with aluminium chloride without solvent at 140° for 3 h or in nitrobenzene at 100° or 140° for 2 h [1209].
m.p. $\quad 159-160^{\circ}$ [1209], 158° [1208]; $\operatorname{Spectra}(N A)$.

(3,4-Dihydroxy-5-nitrophenyl)phenylmethanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22
Synthesis

- Preparation by total demethylation of 3,4-dimethoxy-5-nitro-benzophenone with 48% hydrobromic acid in acetic acid at 110° for 30 h [1019].
- Also refer to: [1084,1210,1211].
m.p. $\quad 132^{\circ}$ [1019]; Spectra (NA); $\quad \mathrm{p} K_{\mathrm{a}}[1084]$.
(3,5-Dihydroxy-4-nitrophenyl)phenylmethanone
[51787-06-5]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22

Synthesis

- Preparation from 3,5-dihydroxybenzophenone (and not from resorcinol 3-benzoate, as indicated in the paper) by nitration with aluminium nitrate in acetic acid for 4 h at r.t. (83\%) [1212].
N.B.: This ketone was called 2-nitro-5-benzoyl resorcinol in the paper (table 1, compound 4) [1212].
m.p. $\quad 121^{\circ}$ [1212]; \quad Spectra (NA).

(3-Amino-2,4-dihydroxyphenyl)phenylmethanone

[87119-03-7]

m.p. and Spectra (NA).
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$
Synthesis

- Obtained from the corresponding hydrochloride described below [1082].
(3-Amino-2,4-dihydroxyphenyl)phenylmethanone (Hydrochloride)
[87119-04-8] $\begin{aligned} & \text { - } \begin{array}{l}\text { Preparation by hydrogenation of 2,4-dihy- } \\ \text { droxy-3-nitro-benzophenone in chloroform/ } \\ \text { ethanol solution in the presence of } 10 \% \mathrm{Pd} / \mathrm{C}, \\ \text { followed by treatment of the amino com- } \\ \text { pound formed with concentrated hydrochloric } \\ \text { acid in ethanol (61\%) [1082]. }\end{array} \\ & \text { m.p. } 175-185^{\circ} \text { (d) [1082]; }{ }^{1} \mathrm{H} \text { NMR [1082], IR [1082], MS [1082]; TLC [1082]. }\end{aligned}$
(5-Amino-2,4-dihydroxyphenyl)phenylmethanone
[87119-01-5]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$ Synthesis
- Obtained from the corresponding hydrochloride described below [1082].
m.p. and Spectra (NA).
(5-Amino-2,4-dihydroxyphenyl)phenylmethanone (Hydrochloride)

[87119-02-6]	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}, \mathrm{HCl}$ mol.wt. 265.70
HO	Synthesis
	- Preparation by hydrogenation of 2,4-dihy-droxy-5-nitro-benzophenone in chloroform/ ethanol solution in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$, followed by treatment of the amino compound formed with concentrated hydrochloric acid in ethanol (85\%) [1082].
$\begin{array}{lll} \text { m.p. } & 155-160^{\circ} \quad \text { (d) } \\ & \text { TLC [1082] }[1082] . \end{array}$	${ }^{1} \mathrm{H}$ NMR [1082], IR [1082], MS [1082];

(3,5-Dibromo-2,6-dihydroxy-4-methoxyphenyl)phenylmethanone

N.B.: The formula proposed is the more likely.
m.p. 116° [807]; Spectra (NA).
[3-Chloro-2,4 (or 2,5)-dihydroxy-5 (or 4)-methoxyphenyl]phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 278.69
Synthesis

- Obtained by reaction of benzoyl chloride with 3-chloro-1,2,4-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 8 h and at reflux for $1.5 \mathrm{~h}(58 \%)$ [704].
m.p. $181-182^{\circ}$ [704]; ${ }^{1} \mathrm{H}$ NMR [704], IR [704], MS [704].
(2,6-Dihydroxy-4-methoxy-3-nitrosophenyl)phenylmethanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

Synthesis

- Preparation by adding an aqueous solution of potassium nitrite to a solution of 2,6-dihydroxy-4-methoxy-benzophenone (so called Cotoin) in an acetic acid/ethanol mixture [808].
m.p. $\quad 153-154^{\circ}$ [808]; \quad Spectra (NA).
(2,4-Dihydroxy-3-methylphenyl)phenylmethanone
[52117-23-4]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses
- Preparation by reaction of benzonitrile with 2,6-dihydroxy-toluene in the presence of zinc chloride and hydrochloric acid, followed by hydrolysis of the ketimine hydrochloride so formed with boiling water for 1 h (68%) (Hoesch reaction) [749].
- Preparation by Friedel-Crafts acylation of 3-methoxy-2-methylphenol with benzoyl chloride in the presence of aluminium chloride in boiling carbon disulfide for 1 h [749].
- Preparation by demethylation of 2-hydroxy-4-methoxy-3-methylbenzophenone with hydriodic acid in refluxing acetic anhydride (125-135) for 2 h (63\%) [750].
- Also obtained by methylation of resbenzophenone with methyl iodide in the presence of potassium hydroxide in refluxing methanol for 6 h [649] according to [751]. In this case, there is introduction of one methyl group on the benzene nucleus [649].
- Preparation by reaction of benzoic acid with 2-methylresorcinol in tetrachloroethane in the presence of boron trifluoride at 80° for $4 \mathrm{~h}(70 \%)$ [224].
- Also refer to: [221,597,805,867,1213-1217].
m.p. $\quad 177^{\circ}$ [749,750], 176° [649], 173-174우224]; ${ }^{1} \mathrm{H}$ NMR [224], UV [224].

(2,4-Dihydroxy-5-methylphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by demethylation of 2-hydroxy-4-methoxy-5-methylbenzophenone with aluminium chloride in boiling benzene (62\%) [752].
- Preparation by reaction of benzonitrile with 2,4-dihydroxy-toluene in the presence of zinc chloride and hydrochloric acid in ethyl ether, followed by hydrolysis of the ketimine hydrochloride so formed (65\%) (Hoesch reaction) [805].
- Preparation by reaction of benzoyl chloride with 4-methylresorcinol in the presence of aluminium chloride [887].
N.B.: In the paper [234], the formula of the 2,4-dihydroxy-6-methylbenzophenone reported in the discussion (page 392, formula II) is correct since this product is prepared starting from orcinol. It must be pointed out that in the same communication, this compound has been erroneously named as the 2,4-dihydroxy-5-methylbenzophenone in the experimental part (page 394). The obtained compound is actually the 2,4-dihydroxy-6-methylbenzophenone already prepared by an other procedure [371].

```
m.p. 13705-1380 [805], 137}[752]; Spectra (NA).
```

(2,4-Dihydroxy-6-methylphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by Hoesch condensation of orcinol with benzonitrile (90\%) [753], (50\%) [371].
- Preparation by reaction of benzoyl chloride with orcinol in the presence of aluminium chloride in nitrobenzene at r.t. overnight, then heated in a water bath (temperature not quoted) for 1 h [234].
N.B.: In the paper [234], the formula of the 2,4-dihydroxy-6-methylbenzophenone reported in the discussion (page 392, formula II) is correct since this product is prepared starting from orcinol. It must be pointed out that in the same communication, this compound has been erroneously named as the 2 , 4-di-hydroxy-5-methylbenzophenone in the experimental part (page 394). The obtained compound is actually the 2,4-dihydroxy-6-methylbenzophenone already prepared by an other procedure [371].
- Preparation from 3-methyl-3'-phenyl-5,5'-diisoxazolylmethane by performing hydrogenolysis and subsequent hydrolysis with hydrochloric acid (48\%) [693].
- Orcinol by condensation with benzanilide imidochloride in the presence of aluminium chloride in ethyl ether gave a keto anil. This one was hydrolyzed by refluxing with ethanolic hydrochloric acid yielded the expected ketone (26\%) [156].
- Also refer to: [1218].
m.p. $145-146^{\circ}$ [753], 141° [156,371], 140° [693], $138^{\circ}{ }^{[234] ;}{ }^{1} \mathrm{H}$ NMR [693,753], MS [693].

(2,5-Dihydroxy-4-methylphenyl)phenylmethanone

[59954-93-7]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by demethylation of,
- 2,5-dimethoxy-4-methylbenzophenone on heating with pyridinium chloride for 20 min (95\%) [726];
- 2-hydroxy-5-methoxy-4-methylbenzophenone with aluminium chloride in boiling benzene for $10 \mathrm{~min}(65 \%)$ [752].
m.p. $152^{\circ} 5$ [726], 152° [752]; Spectra (NA).
(2,6-Dihydroxy-4-methylphenyl)phenylmethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses
- Obtained by Fries rearrangement of orcinol dibenzoate with aluminium chloride at $160-170^{\circ}$ for 90 min [253].
- Preparation by heating a mixture of benzoic acid, orcinol, zinc chloride and phosphorous oxychloride at 65° for 3 h [193].
- Also obtained by partial decarbonylation of 3-benzoyl-2,6-dihydroxy-4-methylbenzophenone by treatment with 85% sulfuric acid at r.t. for 4 h (quantitative yield) [253].
- Also obtained (poor yield) by Hoesch condensation of orcinol with benzonitrile (10\%) [753].
m.p. $\quad 153-154^{\circ}$ [753], 127° [253]; ${ }^{1} \mathrm{H}$ NMR [753].
(3,4-Dihydroxy-5-methylphenyl)phenylmethanone

(2,3-Dihydroxy-4-methoxyphenyl)phenylmethanone (Alizarine Yellow A, monomethyl ether)

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses

- Obtained by partial methylation of 2,3,4-trihydroxy-benzophenone,
- with methyl iodide in the presence of potassium hydroxide in methanol at 100° for several hours [344] or in the presence of lithium carbonate in N, N-dimethylformamide at 30° for 15 h under nitrogen (30\%) [369];
- with dimethyl sulfate in the presence of alkali [379].
- Also obtained by reaction of methyl iodide with monosodium salt of 2,3, 4-trihydroxy-benzophenone at 120° for several hours [344].
- Also obtained by adding a 5% sodium hydrogen carbonate solution to a 2,3-diacetoxy-4-methoxy-benzophenone solution in methanol and stirring at 30° for 2 h under nitrogen (25\%) [369].
- Also refer to: [1220].
m.p. $172-174^{\circ}$ [369], 165° [344], $164-165^{\circ}$ [379]; ${ }^{1} \mathrm{H}$ NMR [369], ${ }^{13} \mathrm{C}$ NMR [369], UV [369], MS [369].
(2,4-Dihydroxy-5-methoxyphenyl)phenylmethanone
Synthesis

Obtained by partial demethylation of 2,4,
5-trimethoxy-benzophenone or 2-hydroxy-4,5-
(dimethoxybenzophenone with hydrobromic acid

in acetic acid [761,762].
m.p. $\quad 183-185^{\circ}[761,762] ; \quad$ Spectra (NA).
(2,4-Dihydroxy-6-methoxyphenyl)phenylmethanone (Isocotoin)
[81525-12-4] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25

Syntheses

- Preparation by reaction of benzonitrile with phloroglucinol monomethyl ether in the presence of zinc chloride and hydrochloric acid in ethyl ether, followed by hydrolysis of the ketimine hydrochloride so formed with boiling water for 15 min (good yield) (Hoesch reaction) [376,766].
- Preparation in one step involving the reaction of phlorobenzophenone with two mol of p-toluene-sulfonyl chloride in acetone in the presence of potassium carbonate followed by methylation with dimethyl sulfate and subsequent detosylation with ethanolic potassium hydroxide [373,685].
- Also refer to: [375].

Isolation from natural sources

- From Helichrysum triplinerve (Asteraceae) [377].
- From genus Leontonyx [378]. m.p. $\quad 162^{\circ}$ [376]; Spectra (NA).
(2,5-Dihydroxy-4-methoxyphenyl)phenylmethanone (Cearoin)
[52811-37-7]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses
- Obtained (poor yield) by reaction of benzoic acid with 2-methoxyhydroquinone in the presence of boron trifluoride-etherate, on heating at 100° for $30-45 \mathrm{~min}(5 \%)$ [650].
- Also obtained (poor yield) by oxidation of 2-hydroxy-4-methoxybenzophenone (Elbs reaction),
- with lead tetraacetate in acetic acid at 100° for $5 \mathrm{~h}(3 \%)$ [650];
- with potassium persulfate in aqueous potassium hydroxide (22\%) [656].
- Preparation by oxidation of 2-hydroxy-4,5-dimethoxybenzophenone with nitric acid $(\mathrm{d}=1.2)$ for 30 min at $15-20^{\circ}$, followed by reduction of the 2-benzoyl-5-methoxy-1,4-benzoquinone formed (93%) with sulfur dioxide in warm ethanol containing a drop of acetic acid for $1 \mathrm{~h}(79 \%)$ [763].
- Also refer to: [1221].

Isolation from natural sources

- From Dalbergia cearensis (Leguminosae) [760,1222-1224] and Dalbergia miscolobium [1222-1224].
- From Dalbergia melanoxylon Guill. et Perr. heartwood (Leguminosae-Lotoideae) [428].
- From the stem/bark of Dalbergia volubilis (Leguminosae) [1225].
- From the heartwood of Dalbergia latifolia Roxb. [1173].
- From the heartwood of Dalbergia parviflora Roxb. (Leguminosae) [1226].
- From Dalbergia violacea (Leguminosae) [1222].
m.p. $188-189^{\circ}$ [763], 188° [656,1227], 187-188$~[760], ~ 187 ~[1225], ~$ $184^{\circ} 5-185^{\circ} 5$ [1226], $183-185^{\circ}$ [1228], $182-184^{\circ}$ [428,1173], 182- 183° [650];
${ }^{1} \mathrm{H}$ NMR [650,760,1225,1226], ${ }^{13}$ C NMR [1226], IR [650,760,1225,1226], UV [726 650], MS [760,1225,1226].
(2,6-Dihydroxy-4-methoxyphenyl)phenylmethanone (Cotoin)

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses
- Obtained by reaction of benzonitrile with phloroglucinol monomethyl ether (Hoesch reaction) $[376,685]$.

Also obtained by saponification of 2,6-diacetoxy-4-methoxybenzophenone with boiling aqueous potassium hydroxide solution for 15 min [807].

- Also refer to: [220,375,442,686,766,1229].

Isolation from natural sources

- From Coto bark (Lauraceae) [190,376,771,772,774,807,808,1230,1231];
- From the wood of Aniba dukei Kostermans (Lauraceae) [1232].
N.B.: In 1890 a careful quantitative analysis was kindly undertaken by Julius
B. Cohen [771].
m.p. $131-132^{\circ}$ [1232], 131° [376], $130-131^{\circ}$ [774,807], 130° [771];
${ }^{1} H$ NMR [675], IR [774,1232], UV [190].

(3,4-Dihydroxy-2-methoxyphenyl)phenylmethanone

(3,4-Dihydroxy-5-methoxyphenyl)phenylmethanone
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25

Synthesis

- Obtained by reaction of benzoyl chloride with 2,6-di-methoxyphenol in the presence of aluminium chloride in nitrobenzene, first at $2-3^{\circ}$, then at r.t. for 24 h (6-12\% yield) [1233].
m.p. $168-169^{\circ}[1233] ; \quad$ Spectra (NA).

(3,6-Dihydroxy-2-methoxyphenyl)phenylmethanone

[55137-06-9]	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
$\mathrm{CH}_{3} \mathrm{O} \quad \mathrm{OH}$	Synthesis
	- Obtained from 2-benzoyl-1,4-benzoquinone [1234], - in refluxing methanol for 48 h without catalyst (26\%); - in refluxing methanol for 12 h in the presence of zinc chloride (23%).
m.p. $141-143^{\circ}$ [1234];	${ }^{1} \mathrm{H}$ NMR [1234], IR [1234], UV [1234].

[2,4-Dihydroxy-3,5-bis[(trifluoromethyl)thio]phenyl]phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{O}_{3} \mathrm{~S}_{2} \quad$ mol.wt. 414.35
Synthesis

- Preparation by reaction of trifluoromethanesulfenyl chloride with 2,4-dihydroxybenzophenone in chloroform in the presence of a slight excess of pyridine, first at -40°, then 60° for 3 h (80\%) [1235].
m.p. $\quad 91-95^{\circ}$ [1235]; ${ }^{1} \mathrm{H}$ NMR [1235], IR [1235].
(2-Ethyl-4,5-dihydroxyphenyl)phenylmethanone
[91197-12-5]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27
Synthesis
- Preparation by demethylation of 2-ethyl-4, 5-dimethoxy-benzophenone (SM) with pyridinium chloride for 2 h at $180-200^{\circ}$. SM was obtained by reaction of benzoic acid with 1-ethyl-3,4-dimethoxybenzene in the presence of phosphorous pentoxide in methanesulfonic acid for 30 min at 70° [1199].
m.p. and Spectra (NA).
(3-Ethyl-2,6-dihydroxyphenyl)phenylmethanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Syntheses

- Preparation from 8-benzoyl-6-ethyl-7-hydroxy-4-methyl-coumarin by action of,
- a 20% aqueous sodium hydroxide solution at reflux for 2-2.5 h (51\%) [1236];
- a 10% aqueous sodium hydroxide solution at reflux for 4 h (40\%) [1237].
- Also obtained by decarboxylation of 3-benzoyl-2,4-dihydroxy-5-ethylbenzoic acid with dilute hydrochloric acid (1:1) in a sealed tube at $160-170^{\circ}$ [1238].
m.p. 128° [1237], $125-126^{\circ}$ [1236], 125° [1238]; Spectra (NA).
(4-Ethyl-2,5-dihydroxyphenyl)phenylmethanone

[59623-16-4] \quad\begin{tabular}{l}
Synthesis

- Preparation by demethylation of 4 -ethyl-

2-hydroxy-5-methoxybenzophenone with alu-

minium chloride in boiling benzene for 10

min $(55 \%)[370]$.
\end{tabular}

m.p. $86^{\circ}[370] ; \quad \operatorname{Spectra}(N A)$.

(5-Ethyl-2,4-dihydroxyphenyl)phenylmethanone

[50537-80-9] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Syntheses

- Preparation by reaction of benzotrichloride with 4-ethyl-resorcinol in a 40% aqueous acetic acid solution at $70-80^{\circ}(82 \%)$ [211].
- Preparation by Fries rearrangement of 4-ethylresorcinol dibenzoate with aluminium chloride in nitrobenzene at $50-60^{\circ}$ for $3-4 \mathrm{~h}$ [1239].
- Preparation by reaction of benzoic acid with 4-ethylresorcinol,
- in hydrofluoric acid at 100° in a stainless steel bomb (48\%) [113];
- in the presence of boron trifluoride in tetrachloroethane on a steam bath for 4 h [113].
- Preparation by demethylation of 5-ethyl-2-hydroxy-4-methoxybenzophenone with aluminium chloride in boiling benzene for 10 min (70\%) [370].
m.p. 109° [370], 104° [113], $99^{\circ} 5-100^{\circ} 5$ [211], 63-64 ${ }^{\circ}$ [1239]. One of the reported melting points is obviously wrong.
b.p. ${ }_{1} 240-250^{\circ}$ [113]; Spectra (NA).
(2,6-Dihydroxy-4-methoxy-3-methylphenyl)phenylmethanone

m.p. $143-144^{\circ}$ [805]; \quad| Spectra (NA). |
| :--- |

(2,3-Dihydroxy-4,5-dimethoxyphenyl)phenylmethanone

Isolation from natural source

- From Machaerium scleroxylon [1240].
- Also refer to: [416].
m.p. (NA) ${ }^{1} \mathrm{H}$ NMR [1240], IR [1240], UV [1240].

(2,4-Dihydroxy-3,5-dimethoxyphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis

- Obtained by selective demethylation of 2-hydroxy-3,4,5-tri-methoxybenzophenone with refluxing aqueous piperidine for $45-65 \mathrm{~h}$ [416].
m.p. $182-184^{\circ}$ [416]; UV [416], MS [416].
(2,5-Dihydroxy-3,4-dimethoxyphenyl)phenylmethanone (Scleroin)
 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27 Synthesis
- Obtained (poor yield) by action of potassium persulfate with 2-hydroxy-3,4-dimethoxybenzophenone in the presence of ferrous sulfate in aqueous potassium hydroxide at r.t. for 3-4 h (10\%) (Elbs reaction) [757].

Isolation from natural source

- From Machaerium scleroxylon (Leguminosae) [675,1222,1224,1240].
- Also refer to: $[416,1221,1241]$.
m.p. $143^{\circ} 5-144^{\circ} 5$ [675], $140-142^{\circ}$ [757]; ${ }^{1} \mathrm{H}$ NMR [675], IR [675], UV [675].

[2,4-Dihydroxy-5-(2-propenyl)phenyl]phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29

Synthesis

- Preparation by reaction of benzotrichloride with 4-allylresorcinol [211].
m.p. and Spectra (NA).

[2,6-Dihydroxy-3-(2-propenyl)phenyl]phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29

> Synthesis

- Preparation from 6-allyl-8-benzoyl-4-methyl-umbelliferone (6-allyl-8-benzoyl-7-hydroxy-4-methyl-coumarin), by cleavage with boiling aqueous sodium hydroxide in the presence of sodium hydrosulfite under nitrogen for $3 \mathrm{~h}(90 \%)$ [269].
m.p. $\quad 80-81^{\circ}[269] ; \quad$ Spectra (NA); TLC [269].

(2,4-Dihydroxy-3-propylphenyl)phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Preparation by reaction of benzoic acid with 2-propyl-resorcinol in the presence of zinc chloride at 150° for 2.5 h (62\%) [1242] (Nencki reaction).
- Also refer to: [168,597,1243].
m.p. $\quad 152-153^{\circ}[1242] ; \quad$ Spectra (NA).

(2,4-Dihydroxy-5-propylphenyl)phenylmethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Obtained by Fries rearrangement of 4-propylresorcinol dibenzoate with aluminium chloride in nitrobenzene at 50° for 4 h [1239].
m.p. $138-140^{\circ}$ [1239]; b.p. $240-245^{\circ}$ [1239]; Spectra (NA).

[3-(2-Butenyl)-2,4-dihydroxyphenyl]phenylmethanone

[96836-08-7] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$ mol.wt. 268.31
 Synthesis

- Preparation by condensation of 2,4-dihydroxy-benzophenone with 1,3-butadiene in the presence of orthophosphoric acid in petroleum ether at $30-35^{\circ}$ for $24 \mathrm{~h}(40 \%)$ [769].
m.p. $\quad 144-146^{\circ}$ [769]; ${ }^{1} \mathrm{H}$ NMR [769].

[5-(2-Butenyl)-2,4-dihydroxyphenyl]phenylmethanone

[96859-90-4] | - Preparation by condensation of |
| :--- |
| 2,4-dihydroxy-benzophenone with |
| 1,3-butadiene in the presence of ortho- |
| phosphoric acid in petroleum ether at |
| $30-35^{\circ}$ for $24 \mathrm{~h}(35 \%)$ [769]. |

m.p. $\quad 119-121^{\circ}$ [769]; ${ }^{1} \mathrm{H}$ NMR [769].

[2,4-Dihydroxy-3-(1-methyl-2-propenyl)phenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 268.31

Synthesis

- Obtained (poor yield) by condensation of 2,4-di-hydroxybenzophenone with 1,3-butadiene in the presence of orthophosphoric acid in petroleum ether at $30-35^{\circ}$ for 24 h (15\%) [769].
m.p. $153-155^{\circ}$ [769]; ${ }^{1} \mathrm{H}$ NMR [769].

[2,5-Dihydroxy-6-methyl-3-(1-methylethyl)phenyl]phenylmethanone

[101594-97-2]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Obtained by demethylation of 2-hydroxy-5-methoxy-6-methyl-3-isopropylbenzophenone or 3-hydroxy-6-methoxy-2-methyl-5-isopropylbenzophenone in refluxing pyridinium chloride for 20 min [726].
m.p. $\quad 147-147^{\circ} 5[726] ; \quad$ Spectra (NA).

[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]phenylmethanone

[4211-67-0]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 270.33
Synthesis

- Preparation by alkylation of resbenzophenone with isobutylene in benzene in the presence of p-toluenesulfonic acid [835].
- Also refer to: [1244-1246].
m.p. $141^{\circ}[835,836]$;

Spectra (NA); gel chromatography [247].

[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]phenylmethanone

[63565-04-8]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 282.34
Synthesis

- Obtained (poor yield) by reaction of prenyl bromide with resbenzophenone,
- in the presence of sodium methoxide in refluxing methanol for $4 \mathrm{~h}(10 \%)$ [831];
- in the presence of boron trifluoride-etherate in dioxane at $60-70^{\circ}$ for 2 h (<3\%) [832].
m.p. 121° [831], 120° [832]; ${ }^{1} \mathrm{H}$ NMR [831], IR [831], UV [831].

[3-(2-Butenyl)-2,4-dihydroxy-6-methoxyphenyl]phenylmethanone

[96836-12-3] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34

Synthesis

- Obtained by condensation of 2 , 4-dihydroxy-6-methoxybenzophenone with 1,3-butadiene in the presence of orthophosphoric acid in petroleum ether at $30-35^{\circ}$ for $24 \mathrm{~h}(35 \%)$ [769].
m.p. $\quad 165-167^{\circ}$ [769]; ${ }^{1} \mathrm{H}$ NMR [769].

[3-(2-Butenyl)-4,6-dihydroxy-2-methoxyphenyl]phenylmethanone

[96836-13-4] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34
 Synthesis

- Obtained by condensation of 2, 4-dihydroxy-6-methoxybenzophenone with 1,3-butadiene in the presence of orthophosphoric acid in petroleum ether at $30-35^{\circ}$ for $24 \mathrm{~h}(35 \%)$ [769].
m.p. $\quad 116-118^{\circ}$ [769]; ${ }^{1} \mathrm{H}$ NMR [769].

[2,4-Dihydroxy-6-methoxy-3-(1-methyl-2-propenyl)phenyl]phenylmethanone

[96836-11-2]
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34
Synthesis

- Obtained (poor yield) by condensation of 2,4-di-hydroxy-6-methoxybenzophenone with 1,3-butadiene in the presence of orthophosphoric acid in petroleum ether at $30-35^{\circ}$ for $24 \mathrm{~h}(15 \%)$ [769].
m.p. $\quad 117-119^{\circ}$ [769]; ${ }^{1} \mathrm{H}$ NMR [769].

[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]phenylmethanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34
Syntheses

- Obtained (trace) by reaction of 2-methyl-3-buten-2-ol with 2,4, 6-trihydroxy-benzophenone in the presence of boron trifluorideetherate in dioxane at $25-30^{\circ}$ ($<1 \%$) [373].
- Also obtained (trace) by reaction of prenyl bromide with 2,4,6-trihydroxybenzophenone in the presence of sodium methoxide in refluxing methanol for 3 h ($<1 \%$) [374].

Isolation from natural source

- From Leontonyx squarrosus DC (Compositae) [378]. colourless oil [378]. This product is impure or in a metastable state.
m.p. 121° [373], $120-121^{\circ}$ [374]; ${ }^{1} \mathrm{H}$ NMR [373,374,378], IR [373,374,378], UV [373,374], MS [378].
[2,4-Dihydroxy-5-(1,1-dimethylpropyl)phenyl]phenylmethanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Synthesis
- Preparation by alkylation of resbenzophenone with 2-methylbutene in benzene in the presence of p-toluene-sulfonic acid [835].
m.p. $116^{\circ}[835,836] ; \quad$ Spectra (NA).

[3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]phenylmethanone

[145746-55-0] $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 354.38

Synthesis

- Preparation by shaking an aqueous solution of sodium benzenesulfinate with a solution of ben-zoyl-1,4-benzo-quinone and trifluoroacetic acid in methylene chloride for 4 h at r.t. (85\%) [1247].
m.p. 207-210º [1247]; ${ }^{1} \mathrm{H}$ NMR [1247], IR [1247], MS [1247].
(5-Cyclohexyl-2,4-dihydroxyphenyl)phenylmethanone
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 296.37

Synthesis

- Preparation by reaction of benzoic acid with 4-cyclohexyl-resorcinol in hydrofluoric acid at 100° in a stainless steel bomb [113].
m.p. $\quad 164^{\circ}$ [113]; \quad Spectra (NA).
[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]phenylmethanone
[81490-45-1]

Synthesis
- Obtained by prenylation of 2,
none (Isocotoin) with 2-methyl-3-
buten-2-ol in the presence of boron
trifluoride-etherate [685].

m.p. $\quad 160-161^{\circ}$ [685]; ${ }^{1} \mathrm{H}$ NMR [685].

[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]phenylmethanone

[81490-46-2]

Synthesis
(Isocotoin) with 2-methyl-3-buten-2-ol
in the presence of boron trifluoride-
etherate [685].

m.p. $\quad 104-105^{\circ}$ [685]; ${ }^{1} \mathrm{H}$ NMR [685].
(5-Hexyl-2,4-dihydroxyphenyl)phenylmethanone
[59746-92-8] $\quad \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 298.38
 Syntheses

- Preparation by reaction of benzotrichloride with 4-hexyl-resorcinol in hydrofluoric acid in the presence of water at -10° for 4 h , then at r.t. overnight (80\%) [213].
- Preparation by reaction of benzoic acid with 4-hexyl-resorcinol in the presence of boron trifluoride in tetrachloroethane on a steam bath for 4 h [113].
- Also refer to: [78]. m.p. $81-82^{\circ}[113] ; \quad \operatorname{Spectra}(N A)$.

[4-(Benzoyloxy)-2,6-dihydroxyphenyl]phenylmethanone

$$
\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{5} \quad \text { mol.wt. } 334.33
$$

Synthesis

- Obtained by action of benzoyl chloride with phloro-benzophenone (2,4,6-trihydroxybenzophenone) in the presence of 1% potassium hydroxide aqueous solution at 0° (14\%) [775].
m.p. $\quad 186^{\circ}[775] ; \quad$ Spectra (NA).

[2,4-Dihydroxy-3-(phenylmethyl)phenyl]phenylmethanone

$$
\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 304.35
$$

Syntheses

- Obtained (poor yield) by reaction of benzonitrile with 2-benzylresorcinol (8\%) (Hoesch reaction) [846].
- Also obtained (poor yield) by hydrolysis of 3-benzyl-4-(benzyloxy)-2-hydroxybenzophenone (SM) with concentrated hydrochloric acid in boiling acetic acid for
$2 \mathrm{~h}(2 \%)$. SM was obtained by reaction of benzyl chloride with resbenzophenone in the presence of potassium hydroxide in refluxing methanol for 5 h [846].
- Preparation by Friedel-Crafts acylation of 2-benzylresorcinol with benzoyl chloride in methylene chloride in the presence of aluminium chloride [168].
m.p. $\quad 159-160^{\circ}$ [846]; \quad Spectra (NA).

[2,4-Dihydroxy-5-(phenylmethyl)phenyl]phenylmethanone

 $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 304.35
 Synthesis

- Preparation by reaction of benzotrichloride with 4-benzyl-resorcinol [211].
m.p. and Spectra (NA).

[2,4-Dihydroxy-3-(1-phenylethyl)phenyl]phenylmethanone

[65221-07-0]

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 318.37
Synthesis

- Refer to: [233].
m.p. (NA); UV [233].

[2,4-Dihydroxy-5-(1-phenylethyl)phenyl]phenylmethanone

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 318.37
Synthesis

- Refer to: [233].
m.p. and Spectra (NA).
[4,6-Dihydroxy-3-methyl-2-(phenylmethoxy)phenyl]phenylmethanone

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 334.37
Synthesis
- Preparation from 2-(benzyloxy)-4,6-dimethoxy-3-methyl-benzophenone by treatment with 10% hydrochloric acid in refluxing methanol for 40 min (89\%) [838].
m.p. $\quad 155^{\circ}$ [838]; ${ }^{1} \mathrm{H}$ NMR [838], MS [838].

[5-(2-Ethylhexyl)-2,4-dihydroxyphenyl]phenylmethanone

$$
\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad \text { mol.wt. } 326.44
$$

Synthesis

- Preparation by reaction of benzo-trichloride with 4-(2-ethylhexyl)-resorcinol [211].
m.p. and Spectra (NA).

[2,4-Dihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]phenylmethanone

[69443-76-1] $\quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 350.46

Synthesis

- Obtained (poor yield) by reaction of 2-methyl-3-buten-2-ol with resbenzophenone in the presence of boron trifluoride-etherate in dioxane at $60-70^{\circ}$ for $2 \mathrm{~h}(3 \%)$ [832].
m.p. $\quad 74-75^{\circ}$ [832]; ${ }^{1} \mathrm{H}$ NMR [832], IR [832], UV [832].

[2,6-Dihydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl]phenylmethanone

[83611-01-2]

$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 366.46 Synthesis

- Obtained (trace) by reaction of 2-methyl-3-buten-2-ol with 2,4, 6-trihydroxy-benzophenone in the presence of boron trifluorideetherate in dioxane at $25-30^{\circ}$ (<1\%) [373].
brown oil [373]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [373], IR [373], UV [373].
[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl]phenylmethanone (E)
[70219-85-1] $\quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 366.46

Synthesis

- Not yet described.

Isolation from natural source

- From Leontonyx spathulatus Less. (Compositae) [377,378]. colourless oil [378]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [378], IR [378].

[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl] phenylmethanone

(Vismiaphenone A)
[76444-61-6]

$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 380.48
Syntheses

- Obtained by prenylation of 2,4-dihy-droxy-6-methoxybenzophenone (Isocotoin) with 2-methyl-3-buten-2-ol in the presence of boron trifluorideetherate [373,685].
- Also obtained first by methylation of 6-hydroxy-3,5-diprenyl-2,4-ditosyloxybenzophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 12 h . Then, the resulting compound was treated with 10% ethanolic potassium hydroxide for 2 h at $50-55^{\circ}$ (17\%) [373].

Isolation from natural source

- From the berries of Vismia decipiens Schlecht-Cham. (Guttiferae) [1248]. oil [373,685,1248]; b.p. (NA); ${ }^{1} H$ NMR [373,685,1248], IR [373,685,1248], UV [373,685,1248], MS [1248].
[2,4-Dihydroxy-5-(dodecyloxy)phenyl]phenylmethanone

$$
\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4} \quad \text { mol.wt. } 398.54
$$

Synthesis

- Refer to: [78].
m.p. and Spectra (NA).
(2,4-Dihydroxy-5-octadecylphenyl)phenylmethanone
$\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{3} \quad$ mol.wt. 466.70

Synthesis

- Preparation by reaction of benzotrichloride with 4-stearyl-resorcinol [211].
m.p. and Spectra (NA).

2.2.1.2 Substituents Located on the Other Ring

(2,4-Dihydroxyphenyl)(2,4,6-trinitrophenyl)methanone

[188347-38-8]

m.p. and Spectra (NA).

(4-Bromo-3-chlorophenyl)(2,5-dihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{3}$ mol.wt. 327.56

Synthesis

- Preparation by demethylation of 4-bromo-3-chloro-2',5'-di-methoxybenzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}(70-95 \%)$. SM was prepared by reaction of 4-bromo-3-chlorobenzoic acid with 1,4-dimethoxybenzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for $6-7 \mathrm{~h}(40-$ 83\%) [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].

(2-Chloro-4-nitrophenyl)(2,5-dihydroxyphenyl)methanone

[37884-01-8] \begin{tabular}{l}
Synthesis

Preparation by demethylation of 2-chloro-
$2^{\prime}, 5^{\prime}$-di-methoxy-4-nitrobenzophenone with
an excess of boiling pyridinium chloride for
$6 \mathrm{~h}(40 \%)$ [1073].

\end{tabular}

m.p. 265° [1073]; \quad Spectra (NA).

(2,4-Dichlorophenyl)(2,4-dihydroxyphenyl)methanone

$$
\begin{aligned}
& \text { Synthesis } \\
& \text { - Preparation by reaction of 2,4-dichloroben- } \\
& \text { zotrichloride with resorcinol [211], in } \\
& \text { hydrofluoric acid in the presence of water } \\
& \text { at }-10^{\circ} \text {, then at } 15^{\circ} \text { overnight and at } 80^{\circ} \text { for } \\
& 30 \mathrm{~min}[213] .
\end{aligned}
$$

m.p. and Spectra (NA).

(2,4-Dichlorophenyl)(2,5-dihydroxyphenyl)methanone

[37884-00-7]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 283.11

Syntheses

- Preparation by reaction of 2,4-dichlorobenzotrichloride with hydroquinone in hydrofluoric acid in the presence of water at -10°, then at 15° overnight and at 80° for 30 min [213].
- Also obtained by condensation reaction of hydroquinone dimethyl ether with excess of 2,4-dichlorobenzoic acid in the presence of polyphosphoric acid [1251].
- Preparation by demethylation of 2,4-dichloro- $2^{\prime}, 5^{\prime}$-dimethoxybenzophenone,
- with boiling excess pyridinium chloride for $1 \mathrm{~h}(95 \%)$ [1073];
- with boron tribromide in methylene chloride at $0^{\circ}(77 \%)$ [1251].
m.p. 145° [1073], 126° [1251]; ${ }^{1} H$ NMR [1251], IR [1251].
(3,4-Dichlorophenyl)(2,4-dihydroxyphenyl)methanone

[36419-34-8]	Synthesis - Preparation by reaction of 3,4-dichloroben- zoic acid with resorcinol in the presence of boron trifluoride in tetrachloroethane on a steam bath for 4 h [113].
- Refer to: [235,1252].	

(2-Bromophenyl)(2,4-dihydroxyphenyl)methanone $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 293.12

Synthesis

- Preparation by reaction of o-bromobenzotrichloride with resorcinol [211].
m.p. and Spectra (NA).
(4-Bromophenyl)(2,4-dihydroxyphenyl)methanone
[3286-88-2]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 293.12
Synthesis
- Preparation by reaction of p-bromobenzonitrile with resorcinol in the presence of zinc chloride and hydrochloric acid in ethyl ether in an ice bath for 1 or 2 days, followed by hydrolysis of the ketimine hydrochloride so formed with boiling water (64\%) [1253], (50\%) [439].
- Also refer to: Chem. Abstr., 127, 108921f (1997).
m.p. 169° [1253], 164° [439]; Spectra (NA).

(4-Bromophenyl)(2,5-dihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 293.12

Synthesis

- Preparation by condensation of p-bromobenzoic acid with hydroquinone in the presence of aluminium chloride and sodium chloride at $180-200^{\circ}$ for $2 \min (32 \%)$ [129].
m.p. $\quad 153^{\circ}$ [129]; \quad Spectra (NA).

(2-Chlorophenyl)(2,4-dihydroxyphenyl)methanone

[50685-40-0] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67

Syntheses

- Preparation by reaction of o-chlorobenzoyl chloride with O, O-bis(trimethylsilyl)resorcinol in the presence of stannic chloride in refluxing methylene chloride for 2 h (80\%) [921].
- Preparation by Fries rearrangement of m-methoxyphenyl o-chlorobenzoate with aluminium chloride without solvent at $180^{\circ}(40 \%)$ [155].
- Preparation by reaction of o-chlorobenzotrichloride with resorcinol in dilute isopropanol at $70-80^{\circ}$ (85\%) [211].
- Preparation by condensation of resorcinol and o-chlorobenzoic acid with boron trifluoride-etherate in carbon tetrachloride [1254], according to [360]. m.p. 138° [155], $135^{\circ} 5-136^{\circ} 5$ [211], $131-132^{\circ}$ [921]; \quad Spectra (NA).

(2-Chlorophenyl)(2,5-dihydroxyphenyl)methanone

[37883-99-1]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Syntheses

- Preparation by reaction of o-chlorobenzoyl chloride with O,O-bis(trimethylsilyl)hydroquinone in the presence of stannic chloride in refluxing methylene chloride for 2 h (84\%) [921].
- Preparation by demethylation of 2^{\prime}-chloro-2,5-dimethoxy-benzophenone with an excess of boiling pyridinium chloride for 1 h (63\%) [1073].
- Also obtained by photochemical addition of o-chlorobenzaldehyde to 1,4-benzoquinone in benzene in the presence of benzophenone for 5 days (78%) [1255].
m.p. $\quad 160^{\circ}[1073] ; \quad \operatorname{Spectra}(N A)$.

(2-Chlorophenyl)(2,6-dihydroxyphenyl)methanone

[100334-93-8] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67

Synthesis

- Preparation by hydrolysis of 8-(o-chlorobenzoyl)-7-hydroxy-4-methylcoumarin (SM) with sodium hydroxide in refluxing dilute ethanol for $3 \mathrm{~h}(72 \%)$.SM was obtained by Fries rearrangement of 7 -(o-chloroben-zoyloxy)-4-methylcoumarin with aluminium chloride, first at 180°, then at $185-190^{\circ}$ for $1.5 \mathrm{~h}\left(65 \%\right.$, m.p. $\left.165^{\circ}\right)$. -Refer to: Chem. Abstr., 114, 42490n (1991) ${ }^{\mathrm{T}}$. m.p. $\quad 140^{\circ}$; \quad IR $^{\mathrm{T}}$.
(3-Chlorophenyl)(2,4-dihydroxyphenyl)methanone $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
 Synthesis
- Preparation by reaction of m-chlorobenzonitrile with resorcinol (52\%) (Hoesch reaction) [1256].
m.p. $197-197^{\circ} 5$ [1256]; Spectra (NA).

(3-Chlorophenyl)(2,5-dihydroxyphenyl)methanone

[161463-59-8] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67

Synthesis

- Preparation by demethylation of 3'-chloro-2,5-dime-thoxy-benzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}(70-95 \%)$. SM was prepared by reaction of m -chlorobenzoic acid with 1,4-dimethoxy-benzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for 6-7 h (40-83\%) [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].
(3-Chlorophenyl)(2,6-dihydroxyphenyl)methanone
[131425-89-3] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67

Synthesis

- Preparation by hydrolysis of 8-(m-chlorobenzoyl)-7-hydroxy-4-methylcoumarin (SM) with sodium hydroxide in refluxing dilute ethanol for 3 h (67%). SM was obtained by Fries rearrangement of 7-(m-chlorobenzoyloxy)-4-methylcoumarin with aluminium chloride, first at 185°,
- then at $190-195^{\circ}$ for $1 \mathrm{~h}\left(64 \%\right.$, m.p. $\left.245^{\circ}\right)$.
- Refer to: Chem. Abstr., 114, 42490n (1991) ${ }^{\mathrm{T}}$.
m.p. 150°; $\quad \mathrm{IR}^{\mathrm{T}}$.

(4-Chlorophenyl)(2,4-dihydroxyphenyl)methanone

[18239-10-6]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Syntheses

- Obtained by reaction of p-chlorobenzonitrile with resorcinol in the presence of zinc chloride and hydrochloric acid in ethyl ether (Hoesch reaction) in ice during 24 h and hydrolysis of 4^{\prime}-chloro-2, 4-dihydroxybenzophenone imide hydrochloride so formed (72\%) with boiling water for 30 min (46\%) [1253], (39\%) [1256].
- Also obtained by reaction of p-chlorobenzoic acid with resorcinol,
- in hydrofluoric acid at 100° in a stainless steel bomb [113];
- in the presence of Zeolite-H-beta in refluxing p-chlorotoluene (162°) for 7 h , with stirring and azeotropic removal of water (4\%) [53].
- Preparation by reaction of 4-chlorobenzotrichloride with resorcinol in 40% aqueous isopropanol solution at $70-80^{\circ}$ (95\%) [211].
- Also refer to: [235,778,1252,1257].

$$
\begin{array}{ll}
\text { m.p. } & 155^{\circ}[1253], 152^{\circ} \quad[235], 151-152^{\circ} \quad[1256], 151^{\circ} \quad[113], 150^{\circ} \quad[215] ; \\
& 149^{\circ} 5-150^{\circ} 5[211] ; \text { UV }[113,215,235] .
\end{array}
$$

(4-Chlorophenyl)(2,5-dihydroxyphenyl)methanone

[91290-75-4]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad \mathrm{~mol}$. wt. 248.67
Syntheses

- Preparation by demethylation of 4^{\prime}-chloro-2, 5-dimethoxy-benzophenone (SM) with boron tribromide in methylene chloride,
- at $0^{\circ}(95 \%)$ [1251];
- first at -30° for 30 min , then at 22° for 5 h . SM was obtained by FriedelCrafts acylation of hydroquinone dimethyl ether with p-chlorobenzoyl chloride in methylene chloride in the presence of aluminium chloride at 0° for $8 \mathrm{~h}(85 \%)$ [1258].
- Also obtained by photochemical addition of p-chlorobenzaldehyde to 1,4-benzoquinone in benzene in the presence of benzophenone for 5 days (73\%) [1255]. m.p. 132° [1251]; ${ }^{1} \mathrm{H}$ NMR [1251], IR [1251].
(4-Chlorophenyl)(2,6-dihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3}$
mol.wt. 248.67
Synthesis
- Preparation by hydrolysis of 8-(p-chlorobenzoyl)-7-hydroxy-4-methylcoumarin (SM) with sodium hydroxide in refluxing dilute ethanol for 3 h (71%). SM was obtained by Fries rearrangement
of 7-(p-chlorobenzoyloxy)-4-methylcoumarin with aluminium chloride, first at 180°, then at $185-190^{\circ}$ for $1.5 \mathrm{~h}\left(60 \%\right.$, m.p. $\left.214^{\circ}\right)$. -Refer to: Chem. Abstr., 114, 42490n (1991) ${ }^{\mathrm{T}}$.
m.p. $\quad 130^{\circ \mathrm{T}}$; $\quad \mathrm{IR}^{\mathrm{T}}$.
(4-Chlorophenyl)(3,4-dihydroxyphenyl)methanone
[134612-84-3] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67

Syntheses

- Preparation by demethylation of 4^{\prime}-chloro-4-hydroxy-3-methoxybenzophenone with hydrobromic acid in refluxing aqueous acetic acid [1019].
- Preparation by Friedel-Crafts reaction of p-chlorobenzoyl chloride with veratrole [900].
m.p. 190° [900], $174-176^{\circ}$ [1019]; Spectra (NA).
(2,4-Dihydroxyphenyl)(2-fluorophenyl)methanone
(19390-38-6]
m.p.
(2,4-Dihydroxyphenyl)(4-fluorophenyl)methanone
ride with resorcinol dimethyl ether in the pres-
ence of aluminium chloride in ethylene dichloride
at 60° for 90 min [476], (59\%) [1031].
(2,5-Dihydroxyphenyl)(2-fluorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 232.21
Synthesis
- Preparation by total demethylation of 2'-fluoro-2,5-di-methoxybenzophenone (SM) with boron tribromide in methylene chloride, first at -70°, then at 25° for $24 \mathrm{~h}(86 \%)$. SM was obtained by Friedel-Crafts
acylation of hydroquinone dimethyl ether with o-fluorobenzoyl chloride in methylene chloride in the presence of aluminium chloride at 0° for 4 h (79\%) [258].
m.p. 118-119 [258]; ${ }^{1} \mathrm{H}$ NMR [258].

(2,5-Dihydroxyphenyl)(3-fluorophenyl)methanone

[161463-61-2]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3}$ Synthesis

- Preparation by demethylation of 3'-fluoro-2,5-dimethoxy-benzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}$ (70-95\%) [1250] or at 22° [258]. SM was prepared from hydroquinone dimethyl ether,
- by reaction with m-fluorobenzoic acid in the presence of polyphosphoric acid at $60-70^{\circ}$ for $6-7 \mathrm{~h}(40-83 \%)$ [1250];
- by reaction with m-fluorobenzoyl chloride in methylene chloride in the presence of aluminium chloride at $0^{\circ}(78 \%)$ [258].
m.p. (NA); ${ }^{1} H$ NMR [1250], IR [1250].
(2,5-Dihydroxyphenyl)(4-fluorophenyl)methanone
[83235-21-6]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 232.21
Syntheses
- Preparation by total demethylation of 4'-fluoro-2,5-di-methoxybenzophenone (SM) with boron tribromide in methylene chloride, first at -30° for 30 min , then at 22° for $5 \mathrm{~h}(80 \%)$. SM was obtained by Friedel-Crafts acylation of hydroquinone dimethyl ether with p-fluorobenzoyl chloride in methylene chloride in the presence of aluminium chloride at 0° for $8 \mathrm{~h}(90 \%)$ [258,1258].
- Also obtained by photochemical addition of p-fluorobenzaldehyde to 1,4 -benzoquinone in benzene in the presence of benzophenone for 5 days (61\%) [1255].
- Also obtained by UV light irradiation of α-hydroxy(p-fluorobenzyl)-1,4-benzoquinone in benzene for $72 \mathrm{~h}(45 \%)$ [1260].
- Also refer to: [261].
m.p. $\quad 140-141^{\circ}$ [1258,1260]; ${ }^{1} \mathrm{H}$ NMR [1258,1260], IR [1260].

(3,5-Dihydroxyphenyl)(4-fluorophenyl)methanone

[148253-51-4] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 232.21

Synthesis

- Preparation by total demethylation of 3, 5-dimethoxy-4'-fluorobenzophenone (SM) with 48% hydrobromic acid in refluxing acetic acid under nitrogen for 20 h (91\%) [905,906].

SM was obtained by oxidation of 3,5-dimethoxy-4'-fluorobenzhydrol with pyridinium chlorochromate in the presence of sodium acetate in methylene chloride at r.t. under nitrogen for $30 \mathrm{~min}(84 \%)$ [905].
m.p. $\quad 142-143^{\circ} \quad[905,906] ;{ }^{1} \mathrm{H}$ NMR [905,906], ${ }^{13} \mathrm{C}$ NMR [905,906], IR [905,906], MS [905,906].

(2,4-Dihydroxyphenyl)(3-nitrophenyl)methanone

 $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22 Syntheses

- Obtained by reaction of m-nitrobenzonitrile with resorcinol in the presence of zinc chloride and hydrochloric acid in ethyl ether, followed by hydrolysis of the resulting ketimine hydrochloride in boiling water (73\%) [215], for 30 min [1261], (11\%) [1262] (Hoesch reaction).
- Preparation by reaction of m-nitrobenzotrichloride with resorcinol [211]. m.p. 228° [215,1261,1262]; Spectra (NA).

(2,4-Dihydroxyphenyl)(4-nitrophenyl)methanone

[6994-40-7]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22
Synthesis

- Preparation by reaction of p-nitrobenzonitrile with resorcinol in the presence of zinc chloride and hydrochloric acid in ethyl ether, followed by hydrolysis of the ketimine hydrochloride so formed with boiling water for 30 min [439,1110,1261], (17\%) [1262] (Hoesch reaction).
m.p. 203° [1261,1262], 200° [439]; Spectra (NA).
(3,4-Dihydroxyphenyl)(3-nitrophenyl)methanone
[203060-36-0]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5}$ mol.wt. 259.22

m.p. and Spectra (NA).

(3,4-Dihydroxyphenyl)(4-nitrophenyl)methanone

[203060-35-9] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22

Synthesis

- Refer to: Chem. Abstr., 128, 181082h (1998).
m.p. and Spectra (NA).

(2,4-Dihydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone

$$
\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \quad \text { mol.wt. } 282.22
$$

Synthesis

- Preparation by reaction of o-(trifluoromethyl) benzoyl chloride with resorcinol in the presence of aluminium chloride in refluxing carbon disulfide for 20 h [239].
m.p. $168-168^{\circ} 5$ [239]; Spectra (NA).

(2,4-Dihydroxyphenyl)[3-(trifluoromethyl)phenyl]methanone

$$
\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \quad \text { mol.wt. } 282.22
$$

Synthesis

- Preparation by reaction of m-(trifluoromethyl) benzoyl chloride with resorcinol in the presence of aluminium chloride in refluxing carbon disulfide for 20 h [239].
m.p. $175^{\circ} 5-176^{\circ}[239] ; \quad$ Spectra (NA).

(2,5-Dihydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone

[161463-62-3]

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 282.22
Synthesis

- Preparation by demethylation of 2,5-dimethoxy-2'-(tri-fluoromethyl)benzophenone (SM) with boron tribromide at 0° for $15-17 \mathrm{~h}$ (70-95\%). SM was prepared by reaction of 2-(trifluoromethyl)benzoic acid with 1,4-dimethoxybenzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for $6-7 \mathrm{~h}(40-83 \%)$ [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].
(3-Chloro-4-methylphenyl)(2,5-dihydroxyphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69

Synthesis

- Preparation by demethylation of 3'-chloro-2, 5-dimethoxy-4'-methylbenzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}(70-95 \%)$. SM was prepared by reaction of 3-chloro-4-methylbenzoic acid with 1,4-dimethoxybenzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for 6-7 h (40-83\%) [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].

(2,5-Dihydroxyphenyl)(3-fluoro-4-methylphenyl)methanone

[161463-63-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 246.24 Synthesis

- Preparationbydemethylationof2,5-dimethoxy-3'-fluoro-4'-methylbenzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}(70-95 \%)$. SM was prepared by
reaction of 3-fluoro-4-methylbenzoic acid with 1,4-dimethoxybenzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for 6-7 h (40-83\%) [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].

(2,5-Dihydroxyphenyl)(2-methyl-3-nitrophenyl)methanone

[161463-58-7]
 $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25 Synthesis

- Preparation by demethylation of 2,5-dimethoxy-2'-methyl-3'-nitrobenzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}$ (70-95\%). SM was prepared by reaction of 2-methyl-3-nitrobenzoic acid with 1,4-dimethoxybenzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for 6-7 h (40-83\%) [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].

(2,5-Dihydroxyphenyl)(3-methyl-4-nitrophenyl)methanone

[153907-08-5]

OH
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
mol.wt. 273.25
Synthesis

- Preparation by demethylation of 2,5-dimethoxy-3'-methyl-4'-nitrobenzophenone with boron tribromide in methylene chloride at 0° (81%) [1251].
m.p. $\quad 150^{\circ}$ [1251]; ${ }^{1} \mathrm{H}$ NMR [1251], IR [1251].

(2,4-Dihydroxyphenyl)(2-methylphenyl)methanone

[14446-07-2]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Synthesis

- Preparation by reaction of o-toluic acid (2-methylbenzoic acid) with resorcinol,
- in the presence of zinc chloride for 20 min at 160° (42%), (Nencki reaction) [1263];
- in the presence of Amberlyst-15 in refluxing 4-chlorotoluene (162°) for 2 h (91\%) [53];
- in the presence of Zeolite-H-beta (previously activated at 400°) in refluxing mesitylene or 4-chlorotoluene for 3 h (with removal of water) (76%) [53,196].
- Also refer to: [1264].
m.p. $\quad 126-127^{\circ}$ [1263], $121-123^{\circ}$ [53,196]; ${ }^{1} H$ NMR [53,196].

(2,4-Dihydroxyphenyl)(3-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 228.25
$$

Synthesis

- Preparation by reaction of m-toluic acid with resorcinol,
- in the presence of zinc chloride and phosphorous oxychloride at 65° for 3 h [193];
- in the presence of zinc chloride at 140° for 20 min (22\%) [1088] (Nencki reaction).
m.p. $\quad 168^{\circ}$ [1088]; \quad Spectra (NA).

(2,4-Dihydroxyphenyl)(4-methylphenyl)methanone

[40444-43-7] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Synthesis

- Preparation by reaction of p-toluic acid (4-methyl-benzoic acid) with resorcinol,
- in the presence of zinc chloride for 20 min at 165° (25%) (Nencki reaction) [1265];
- in the presence of Zeolite-H-beta in refluxing 4-chlorotoluene (162°) for 16-18 h (70\%) [53];
- in the presence of boron trifluoride in tetrachloroethane on a steam bath for 4 h [113].
- Also refer to: [298,391,435,778,779,1266-1269].
m.p. 139° [113], 138° [1265]; UV [113].

(2,5-Dihydroxyphenyl)(2-methylphenyl)methanone

[83235-18-1]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Obtained by photochemical addition of o-tolualdehyde to 1,4-benzoquinone in benzene in the presence of benzophenone for 5 days (65\%) [1255].
- Obtained by UV light irradiation of α-hydroxy (o-methyl-benzyl)-1,4-benzoquinone in benzene for $72 \mathrm{~h}(35 \%)$ [1260].
- Also refer to: [261].
m.p. $106-108^{\circ}$ [1260]; ${ }^{1} \mathrm{H}$ NMR [1260], IR [1260].

(2,5-Dihydroxyphenyl)(3-methylphenyl)methanone

Synthesis

- Obtained by UV light irradiation of α-hydroxy (m-methyl-benzyl)-1,4-benzoquinone in benzene for 72 h (37\%) [1260].
- Also refer to: [261].
m.p. $\quad 114-116^{\circ}$ [1260]; ${ }^{1} \mathrm{H}$ NMR [1260], IR [1260].
(2,5-Dihydroxyphenyl)(4-methylphenyl)methanone
[83235-20-5] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Syntheses

- Obtained by photochemical addition of p-tolualdehyde to 1,4-benzoquinone in benzene in the presence of benzophenone (79\%) [1255].
- Obtained by UV light irradiation of α-hydroxy(p-methyl-benzyl)-1,4-benzoquinone in benzene for 72 h (43\%) [1260].
m.p. $137-139^{\circ}$ [1260]; ${ }^{1} \mathrm{H}$ NMR [1260], IR [1260].
(2,6-Dihydroxyphenyl)(2-methylphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 228.25
$$

Synthesis

- Obtained from 8-(o-toluoyl)-4-methylumbelliferone by refluxing with N aqueous sodium hydroxide for 30 \min (54\%) [1263].
m.p. $\quad 140^{\circ}$ [1263]; \quad Spectra (NA).
(2,6-Dihydroxyphenyl)(3-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Synthesis
- Obtained from 8-(m-toluoyl)-4-methylumbelliferone by refluxing with N aqueous sodium hydroxide for 30 min (41\%) [1088].
m.p. 145° [1088]; Spectra (NA).

(2,6-Dihydroxyphenyl)(4-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
 Synthesis

- Obtained from 8-(p-toluoyl)-4-methylumbelliferone by refluxing with N aqueous sodium hydroxide for 30 min (45\%) [1265].
m.p. 125° [1265]; $\quad \operatorname{Spectra}(N A)$.

(2,4-Dihydroxyphenyl)(2-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses

- Preparation by oxidation of 6-acetoxy-2,3-bis (2-methoxy-phenyl)benzofuran with chromium trioxide in refluxing acetic acid for 30 min , followed by saponification of the resulting keto ester (65%) with potassium hydroxide in refluxing ethanol for 1 h (66\%) [1117].
- Preparation by condensation of resorcinol and o-anisic acid with boron trifluorideetherate in carbon tetrachloride [1254], according to [360].
- Also obtained by hydrolysis of various substituted keto anils ${ }^{\mathrm{T}}$ with potassium hydroxide in refluxing ethanol for 8 h [415],
${ }^{\mathrm{T}} 4$-(N-phenyl-o-anisimidoyl)resorcinol;
${ }^{\mathrm{T}} 4$-(N-o-tolyl-o-anisimidoyl)resorcinol;
${ }^{\mathrm{T}} 4$-[N -(p-methoxyphenyl)-o-anisimidoyl]resorcinol;
${ }^{\mathrm{T}} 4$-[N -(p-ethoxyphenyl)-o-anisimidoyl]resorcinol.
- Also refer to: [1259].
m.p. $247-248^{\circ}$ [415], 175° [1117]. One of the reported melting points is obviously wrong. IR [1117].

(2,4-Dihydroxyphenyl)(3-methoxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad \text { mol.wt. } 244.25
$$

Syntheses

- Preparation by reaction of m-anisoyl chloride with resorcinol in the presence of aluminium chloride in nitrobenzene at r.t. for $48 \mathrm{~h}(86 \%)$ [1137].
- Obtained (poor yield) by condensation of m -anisic acid with resorcinol in the presence of zinc chloride at 160° for 10 min (Nencki reaction) (4\%) [1137].
m.p. 176° [1137]; Spectra (NA).

(2,4-Dihydroxyphenyl)(4-methoxyphenyl)methanone

[5298-27-1]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses

- Preparation by reaction of p-methoxybenzoic acid (p -anisic acid) with resorcinol,
- in the presence of Zeolite-H-beta in refluxing p-chlorotoluene (162°) for 3 h , with stirring and azeotropic removal of water (55\%) [53];
- in the presence of zinc chloride at 160° (Nencki reaction) [188];
- in the presence of zinc chloride and phosphorous oxychloride during 3 h at 65° [193];
- in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid (60:40) at 40°. Then, during 1.5 h , phosphorous trichloride was added and the mixture heated at 60° for $16 \mathrm{~h}(98 \%)$ [194];
- in the presence of boron trifluoride without solvent at 160° for 2 h in a sealed tube (67\%) [185] or in tetrachloroethane on a steam bath for 4 h (81\%) [113];
- in hydrofluoric acid at 100° in a stainless steel bomb [113].
- Preparation by condensation of p-anisoyl chloride with resorcinol in the presence of aluminium chloride in nitrobenzene during 48 h at r.t. (73\%) [1137].
- Also obtained by hydrolysis of various substituted keto anils ${ }^{\mathrm{T}}$ with potassium hydroxide in refluxing ethanol for 8 h [415],
${ }^{\mathrm{T}} 4$-(N-phenyl-p-anisimidoyl)resorcinol;
${ }^{\mathrm{T}} 4$-(N-o-tolyl-p-anisimidoyl)resorcinol;
${ }^{\text {T }} 4$-[N-(p-methoxyphenyl)-p-anisimidoyl]resorcinol;
${ }^{\mathrm{T}} 4$-[N -(p-ethoxyphenyl)-p-anisimidoyl]resorcinol.
- Also refer to: [235,626].
m.p. 165° [113,188], 164° [185], $163^{\circ} 4-164^{\circ} 8$ [194], 163° [235], 160° [1137], 158-159 ${ }^{\circ}$ [415]; UV [113,235]; paper chromatography [383].

(2,5-Dihydroxyphenyl)(2-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses

- Obtained by photochemical addition of o-anisaldehyde to 1,4-benzoquinone in benzene in the presence of benzophenone for 5 days (72%) [1255].
- Preparation by irradiation of a solution of 1,4-benzo-quinone and salicylaldehyde in benzene under nitrogen for 5 days (62%) [259].
- Also refer to: [1270].
m.p. $\quad 145-148^{\circ}$ [259]; ${ }^{1} \mathrm{H}$ NMR [259], IR [259], MS [259]; TLC [259].

(2,5-Dihydroxyphenyl)(4-methoxyphenyl)methanone

[160720-40-1] \quad\begin{tabular}{l}
Synthesis

Obtained by photochemical addition of
p-anisaldehyde to 1,4-benzoquinone in
benzene in the presence of benzophenone
for 5 days (77\%) [1255].

\end{tabular}

m.p. and Spectra (NA).

(2,4-Dihydroxyphenyl)[4-(methylsulfonyl)phenyl]methanone

[36419-33-7]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$
mol.wt. 292.31

Synthesis

- Refer to: [235].
m.p. 202° [235]; UV [235].
(2,4-Dihydroxyphenyl)(4-ethenylphenyl)methanone
[66787-22-2]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 240.26 Syntheses
- Preparation by reaction of aqueous potassium hydroxide with 2 , 4-dihydroxy-4'-(2-bromo-ethyl)benzophenone in the presence of hydroquinone in refluxing methanol for 1.5 h with nitrogen bubbling (40\%) [1147].
- Preparation, first by dehydrobromination of 2,4-diacetoxy-4'-(1-bromoethyl)benzophenone with tri-n-butylamine in the presence of picric acid as polymerization inhibitor in refluxing N, N-di-methylacetamide (140°) for 80 min , under nitrogen, then hydrolysis of the resulting new keto ester (2,4-diacetoxy-4'-vinylbenzophenone) (42\%) with sodium bicarbonate in refluxing aqueous methanol for 1 h (33\%) [1271]. m.p. $\quad 96^{\circ}[1271,1272], 91-93^{\circ}[1147] ; \quad{ }^{1} \mathrm{H} N \mathrm{MR}[1147,1271]$, IR [1147,1271], UV[1147,1271], MS [1147].
[4-(2-Bromoethyl)phenyl](2,4-dihydroxyphenyl)methanone
[80167-04-0]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
 Synthesis
- Preparation by reaction of p-(2-bromoethyl)-benzonitrile with resorcinol (Hoesch reaction) (53\%) [1147].
m.p. $\quad 113-115^{\circ}$ [1147]; \quad Spectra (NA).

(3-Chloro-4,5-dimethylphenyl)(2,5-dihydroxyphenyl)methanone

N.B.: This compound is mentioned in [Chem. Abstr., 122, 187188v (1995)]. Nevertheless, the benzophenone in question is not described in the original paper [1250]. Actually, in this one, all substituted benzophenones without exception have the two ortho positions to the carbonyl group occupied.
m.p. and Spectra (NA).

(2,4-Dihydroxyphenyl)(2,4-dimethylphenyl)methanone

(2,4-Dihydroxyphenyl)(2,6-dimethylphenyl)methanone

[147809-19-6]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis

- Obtained by Friedel-Crafts acylation of resorcinol with 2,6-dimethylbenzoic acid in refluxing p-chlorotoluene (162°), with stirring and azeotropic removal of water,
- in the presence of Amberlyst-15 for 2 h (98\%) [53];
- in the presence of Zeolite-H-beta for $5 \mathrm{~h}(32 \%)$ [53].
- Also refer to: [1264].
m.p. and Spectra (NA).
(2,4-Dihydroxyphenyl)(3,5-dimethylphenyl)methanone

$$
\text { m.p. } \quad 158^{\circ}[235] ; \quad \mathrm{UV}[235] .
$$

(2,4-Dihydroxyphenyl)(4-ethylphenyl)methanone
[66802-91-3]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis

- Preparation by reaction of resorcinol with p-ethyl-benzoic acid in tetrachloroethane in the presence of boron trifluoride at 80° for 4 h (59\%) [1271].
- Also refer to: $[1273,1274]$.
m.p. $\quad 111-113^{\circ}[1271] ;$ b.p. ${ }_{0.1} 195-200^{\circ}$ [1271]; ${ }^{1} \mathrm{H}$ NMR [1271], IR [1271], UV [1271].

(2,4-Dihydroxyphenyl)(3,4-dimethoxyphenyl)methanone

[128996-02-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Syntheses

- Preparation by reaction of veratric acid with resorcinol in the presence of zinc chloride at 160° for $7 \mathrm{~min}(24 \%)$ (Nencki reaction) [1137].
- Preparation by reaction of veratroyl chloride with resorcinol in the presence of aluminium chloride in nitrobenzene during 3 days (60-64\%) [1137].
- Also obtained from β-(3-hydroxy-4-veratroylphenoxy)propionic acid with aqueous sodium hydroxide solution [218].
m.p. $\quad 177^{\circ}$ [1137], 149° [218]. One of the reported melting points is obviously wrong. Spectra (NA).
(2,5-Dihydroxyphenyl)(2,4-dimethoxy-6-methylphenyl)methanone
[78044-94-7]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis
- Obtained by photo-Fries rearrangement of 4-hydroxy-phenyl 2,4-dimethoxy-6-methylbenzoate in benzene under nitrogen for 4 h (33\%) [1167].
m.p. 228-2290 [1167]; ${ }^{1} \mathrm{H}$ NMR [1167], IR [1167], UV [1167], MS [1167].
(3,4-Dihydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone (Cotogenin)

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30
Synthesis
- Obtained by reaction of 3,4-(diacetoxy) benzonitrile with phloroglucinol trimethyl ether in the presence of zinc chloride and hydrochloric acid, followed by hydrolysis of the resulting ketimine hydrochloride (16\%) (Hoesch reaction) [1275].
- Also refer to: [450,772].
m.p. $219-220^{\circ}$ [1275], 217° [450], 210° [447]; $\operatorname{Spectra}(N A)$.

(2,4-Dihydroxyphenyl)[4-(1,1-dimethylethyl)phenyl]methanone

[21332-56-9]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 270.33

Synthesis

- Refer to: [235,1276].
m.p. 162° [235]; UV [235].
(2,5-Dihydroxyphenyl)[4-(1,1-dimethylethyl)phenyl]methanone
[169696-58-6]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Synthesis
- Preparation by total demethylation of 4'-tert-butyl-2,5-dimethoxybenzophenone (SM) with boron tribromide in methylene chloride, first at -30° for 30 min , then at 22° for $5 \mathrm{~h}(86 \%)$. SM was obtained by Friedel-Crafts acylation of hydroquinone dimethyl ether with p-tert-butylbenzoyl chloride in methylene chloride in the presence of aluminium chloride at 0° for 8 h (84\%) [1258]. m.p. $115-116^{\circ}$ [1258]; ${ }^{1} \mathrm{H}$ NMR [1258].
(2,4-Dihydroxyphenyl)[4-(1-methylbutyl)phenyl]methanone

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad \text { mol.wt. } 284.36
$$

Synthesis

- Preparation by reaction of p-sec-amyl-benzoic acid with resorcinol in the presence of boron trifluoride in tetra-chloroethane on a steam bath for 4 h [113].
b.p. $._{0.75} 235-240^{\circ}$ [113]; $\quad \operatorname{Spectra}(N A)$.

(3,5-Dihydroxyphenyl)(4-phenoxy-3,5- \boldsymbol{d}_{2}-phenyl)methanone

[176738-21-9]
$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{O}_{4} \quad$ mol.wt. 308.33

Synthesis

- Preparation by demethylation of 3,5-dimethoxy-4'-(phenoxy- d_{5})benzophenone with 48% hydrobromic acid in refluxing acetic acid for $16 \mathrm{~h}(92 \%)$ (compound 21). The acidic treatment exchanges exclusively the deuterium atoms in the 2 ", 4 " and 6 " positions, because of the mesomeric inductive effect of the exocyclic oxygen [906].
m.p. (NA), white solid [906]; ${ }^{1} \mathrm{H}$ NMR [906], ${ }^{13} \mathrm{C}$ NMR [906].

2.2.1.3 Substituents Located on Both Rings

(2,3,4,5,6-Pentafluorophenyl)(2,3,5-trifluoro-4,6-dihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{3}$
mol.wt. 358.14
Synthesis

- Preparation by total demethylation of 2, 4-dimethoxy- $2^{\prime}, 3,3^{\prime}, 4^{\prime}, 5,5^{\prime}, 6,6^{\prime}$-octafluorobenzophenone in methylene chloride with aluminium chloride (2 mol) at $20^{\circ}(73 \%)$ [570].
m.p. $118-120^{\circ}$ [570]; IR [570].
(2,3-Dichloro-4,5-dihydroxyphenyl)(2-fluorophenyl)methanone
[103843-57-8]

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FO}_{3} \quad$ mol.wt. 301.10
Synthesis
- Preparation by reaction of 2-fluorobenzoyl chloride with 3,4-dichloro-1,2-dihydroxybenzene in the presence of aluminium chloride in refluxing ethylene dichloride during 24 h (75\%) [841,842].
m.p. $\quad 164-165^{\circ}$ [841,842]; ${ }^{1} \mathrm{H}$ NMR [841,842], IR [841,842].
(5-Chloro-2,4-dihydroxy-3-nitrophenyl)(4-chlorophenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{5} \quad \text { mol.wt. } 328.11
$$

Synthesis

- Obtained by reaction of concentrated nitric acid with $4^{\prime}, 5$-dichloro-2,4-dihydroxybenzophenone (50\%) [1082].
m.p. $\quad 120^{\circ}$ [1082]; TLC [1082]; ${ }^{1} H$ NMR [1082], IR [1082], MS [1082].
(5-Chloro-2,4-dihydroxyphenyl)(2,4-dichlorophenyl)methanone $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad$ mol.wt. 317.55

Synthesis

- Preparation by reaction of 2,4-dichlorobenzotrichloride with 4-chlororesorcinol [211].
m.p. and Spectra (NA).
(2,6-Difluorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone

$$
\text { mol.wt. } 295.20
$$

(2,4-Dihydroxy-3,5-dinitrophenyl)(3-nitrophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{9} \quad$ mol.wt. 349.21

Synthesis

- Preparation by slowly adding (2 h) nitric acid ($\mathrm{d}=1.42$) to a solution of resbenzophenone in concentrated sulfuric acid $(\mathrm{d}=1.84)$ at $5-10^{\circ}$. The mixture was allowed to stand overnight, then
heated at 50° for 30 min (quantitative yield) [227].
N.B.: The first crop from 95% ethanol contained $12-14 \%$ of the 2,4-dihydroxy -3,5-dinitrobenzophenone.
m.p. $178-180^{\circ}$ [227]; \quad Spectra (NA).
(3-Bromo-2,5-dihydroxyphenyl)(2-chlorophenyl)methanone
m.p. mol.wt. 327.56
(4-Bromophenyl)(4-chloro-2,5-dihydroxyphenyl)methanone
[161463-53-2]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{3} \quad$ mol.wt. 327.56
Synthesis
- Preparation by demethylation of 4'-bromo-4-chloro-2,5-di-methoxybenzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}(70-95 \%)$. SM was prepared by reaction of 4-bromobenzoic acid with 2-chloro-1,4-dimethoxybenzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for 6-7 h (40-83\%) [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].

(4-Chlorophenyl)(5-fluoro-2,3-dihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{3} \quad$ mol.wt. 266.65 Synthesis

- Obtained by action of dilute hydrogen peroxide with 4'-chloro-5-fluoro-3-formyl-2-hydroxybenzophenone in refluxing aqueous sodium hydroxide under argon for 30 min [1077].
m.p. $\quad 124-126^{\circ}$ [1077]; ${ }^{1} \mathrm{H}$ NMR [1077], IR [1077].

(2-Chlorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone

$$
\begin{array}{ll}
\text { [134612-46-7] } & \begin{array}{l}
\text { Synthesis } \\
\text { - Preparation by demethylation of } 2^{\prime} \text {-chloro-4- } \\
\begin{array}{l}
\text { hydroxy-3-methoxy-5-nitrobenzophenone with } \\
\text { hydrobromic acid in refluxing aqueous acetic } \\
\text { acid [1019] }
\end{array} \\
\text { m.p. } \\
\text { Spectra (NA). }
\end{array}
\end{array}
$$

(3-Chlorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone

[134612-47-8]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{5}$
mol.wt. 293.66

Synthesis

- Preparation by demethylation of 3^{\prime}-chloro-4-hydroxy-3-methoxy-5-nitrobenzophenone with hydrobromic acid in refluxing aqueous acetic acid [1019].
m.p. $143-145^{\circ}[1019] ; \quad$ Spectra (NA).
(2-Chloro-4,5-dihydroxyphenyl)(3-chlorophenyl)methanone
[91197-11-4]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11
Synthesis
- Preparation by demethylation of 2,3'-dichloro-4,5-di-methoxybenzophenone (SM) with pyridinium chloride for 2 h at $180-200^{\circ}$. SM was obtained by reaction of m-chlorobenzoic acid with 1-chloro-3,4-dimethoxybenzene in the presence of phosphorous pentoxide in methanesulfonic acid for 30 min at 70° [1199].
m.p. and Spectra (NA).

(4-Chloro-2,5-dihydroxyphenyl)(3-chlorophenyl)methanone

[161463-60-1]
 $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11
Synthesis

- Preparation by demethylation of 3',4-dichloro-2,5-di-methoxybenzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}$ (70-95\%). SM was prepared by reaction of m -chlorobenzoic acid with 2 -chloro-1,4-dimethoxybenzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for 6-7 h (40-83\%) [1250].
m.p. (NA); ${ }^{1} H$ NMR [1250], IR [1250].

(5-Chloro-2,3-dihydroxyphenyl)(4-chlorophenyl)methanone

[92735-01-8] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11

Synthesis

- Obtained by action of dilute hydrogen peroxide with $4^{\prime}, 5$-di-chloro-3-formyl-2-hydroxybenzophenone in refluxing aqueous sodium hydroxide under argon for 30 min [1077].
m.p. $\quad 133-135^{\circ}$ [1077]; ${ }^{1} \mathrm{H}$ NMR [1077], IR [1077].
(5-Chloro-2,4-dihydroxyphenyl)(2-chlorophenyl)methanone
[50685-42-2] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11

Synthesis

- Preparation by reaction of 2-chlorobenzotrichloride with 4-chlororesorcinol in isopropanol at $70-80^{\circ}$ (81\%) [211].
m.p. $\quad 187-188^{\circ}$ [211]; \quad Spectra (NA).

(5-Chloro-2,4-dihydroxyphenyl)(4-chlorophenyl)methanone

[50685-41-1]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11
Syntheses

- Preparation by demethylation of $4^{\prime}, 5-$ dichloro-2-hydroxy-4-methoxybenzophenone with a 47% aqueous solution of hydrobromic acid in refluxing acetic acid for 18 h under nitrogen (22\%) [1082].
- Preparation by reaction of 4-chlorobenzotrichloride with 4-chlororesorcinol in 40% aqueous isopropanol solution at $70-80^{\circ}$ (85%) [211].
m.p. $\quad 188^{\circ} 5-189^{\circ} 5$ [211], $170-190^{\circ}$ [1082]. A typing error probably occurred in the published data. ${ }^{1} \mathrm{H}$ NMR [1082], IR [1082], MS [1082]; TLC [1082].
(3,4-Dihydroxy-5-nitrophenyl)(2-fluorophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{5} \quad$ mol.wt. 277.21
Synthesis
- Preparation by demethylation of 2'-fluoro-4-hydroxy-3-methoxy-5-nitrobenzophenone with 48% hydrobromic acid in refluxing acetic acid for $4 \mathrm{~h}(86 \%)$ [1019,1084].
- Also refer to: [1277-1281].
m.p. $\quad 169-171^{\circ}$ [1019,1084]; ${ }^{1} \mathrm{H}$ NMR [1084], MS [1084]; LD_{50} [1282].

(3,4-Dihydroxy-5-nitrophenyl)[2-(fluoro- ${ }^{18}$ F)phenyl]methanone

[172546-74-6]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{5} \quad$ mol.wt. 276.21
Synthesis

- Preparation by demethylation of $2^{\prime}-\left[{ }^{18} \mathrm{~F}\right]$ fluoro-3,4-di-methoxy-5-nitrobenzophenone (SM) in dimethyl sulfoxide with aqueous hydrobromic acid first at r.t. and at 140° for 30 min . SM was obtained by action of $\left[{ }^{18} \mathrm{~F}\right]$ cesium fluoride with 3,4 -dimethoxy- $2^{\prime}, 5$-dinitrobenzophenone in dimethyl sulfoxide for 10 min at 150° in a silicone-coated tube (Vacutainer).
- Refer to: Chem. Abstr., 127, 17465u (1997).
m.p. and Spectra (NA).
(3,4-Dihydroxy-5-nitrophenyl)(3-fluorophenyl)methanone
[134612-43-4]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{5}$
mol.wt. 277.21

Synthesis
- Preparation by demethylation of 3'-fluoro-4-hydroxy-3-methoxy-5-nitrobenzophenone with hydrobromic acid in refluxing aqueous acetic acid [1019].
m.p. $124-126^{\circ}[1019] ; \quad$ Spectra (NA).

(3,4-Dihydroxy-5-nitrophenyl)(4-fluorophenyl)methanone

[134612-44-5]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{5}$
Synthesis

- Preparation by demethylation of 4'-fluoro-4-hydroxy-3-methoxy-5-nitrobenzophenone with hydrobromic acid in refluxing aqueous acetic acid [1019].
m.p. $\quad 171-173^{\circ}[1019] ; \quad$ Spectra (NA).

(3,4-Dihydroxy-5-nitrophenyl)(2-nitrophenyl)methanone

[190523-00-3]
m.p. (NA); ${ }^{1} H N^{2}{ }^{\mathrm{T}}, \mathrm{MS}^{\mathrm{T}}$.

(3-Amino-5-chloro-2,4-dihydroxyphenyl)(4-chlorophenyl)methanone
 [87119-05-9] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3} \quad$ mol.wt. 298.12

 Synthesis
 - Obtained from the corresponding hydrochloride described below [1082].

m.p. and Spectra (NA).

(3-Amino-5-chloro-2,4-dihydroxyphenyl)(4-chlorophenyl)methanone (Hydrochloride)

[87119-06-0] \begin{tabular}{l}

- | Preparation by hydrogenation of 4',5-dich- |
| :--- |
| loro-2,4-di-hydroxy-3-nitrobenzophenone in |
| chloroform/ethanol solution in the presence |
| of $10 \% \mathrm{Pd} / \mathrm{C}$, followed by treatment of the |
| resulting amino compound with concen- |
| trated hydrochloric acid in ethanol (51\%) |

[1082].
\end{tabular}

m.p. $\quad 180^{\circ}$ [1082]; ${ }^{1} \mathrm{H}$ NMR [1082], IR [1082], MS [1082]; TLC [1082].

(3,4-Dihydroxy-5-nitrophenyl)[2-(trifluoromethyl)phenyl]methanone

[134612-50-3] $\quad \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{5} \quad$ mol.wt. 327.22

Synthesis

- Preparation by demethylation of 4-hydroxy-3-methoxy-5-nitro-2'-(trifluoromethyl)benzophenone with hydrobromic acid in refluxing aqueous acetic acid [1019].
m.p. $146-148^{\circ}[1019] ; \quad$ Spectra (NA).

(3,4-Dihydroxy-5-nitrophenyl)[4-(trifluoromethyl)phenyl]methanone

[134611-76-0]
$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{5}$ mol.wt. 327.22

Synthesis

- Preparation by demethylation of 4-hydroxy-3-methoxy-5-nitro-4'-(trifluoromethyl)benzophenone first with 33% hydrobromic acid in acetic acid at 90° for 18 h , then with 48% hydrobromic acid in aqueous acetic acid at 110° for 18 h [1019].
m.p. $\quad 116-118^{\circ}[1019] ; \quad$ Spectra (NA).
(2,4-Dihydroxy-3,5,6-trinitrophenyl)(4-methoxy-3-nitrophenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{12} \quad$ mol.wt. 424.24
Synthesis
- Obtained by partial methylation of 2,4,4'-trihydroxy-3,5,3',6-tetranitrobenzophenone with dimethyl sulfate in the presence of potassium carbonate in acetone [592].
m.p. 75° [592]; ${ }^{1} \mathrm{H}$ NMR [592].

[3-Chloro-2,4 (or 2,5)-dihydroxy-5 (or 4)-methoxyphenyl](2-fluorophenyl) methanone

[140708-53-8] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{4} \quad$ mol.wt. 296.68

or

Synthesis

- Obtained by reaction of o-fluorobenzoyl chloride with 3-chloro-1,2,4-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride between 0° and 5°, then at r.t. for 8 h and at reflux for $1.5 \mathrm{~h}(71 \%)$ [704].
m.p. $\quad 136-137^{\circ}[704] ; \quad$ Spectra (NA).

(4-Chloro-2,5-dihydroxyphenyl)(3-chloro-4-methylphenyl)methanone

[161463-56-5]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 297.14
Synthesis

- Preparationbydemethylationof3',4-dichloro-2,5-di-methoxy-4'-methylbenzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}(70-95 \%)$. SM was prepared by reaction of 3-chloro-4-methylbenzoic acid with 2-chloro-1,4-dime-thoxy-benzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for $6-7 \mathrm{~h}(40-83 \%)$ [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].
(2,4-Dichlorophenyl)(2,5-dihydroxy-3-methylphenyl)methanone
[153907-06-3]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 297.14

Synthesis
- Preparation by demethylation of $2^{\prime}, 4^{\prime}$-dichloro-2,5-di-methoxy-3-methylbenzophenone with boron tribromide in methylene chloride at 0° (77\%) [1251].
m.p. 150° [1251]; ${ }^{1} \mathrm{H}$ NMR [1251], IR [1251].

(2,6-Dichlorophenyl)(4,5-dihydroxy-2-methylphenyl)methanone

[91197-05-6]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 297.14
Syntheses

- Preparation by total demethylation of $2^{\prime}, 6^{\prime}-$ dichloro-4,5-di-methoxy-2-methylbenzophenone (SM) [1072], with pyridinium chloride for 2 h at $180-200^{\circ}$ [1199]. SM was obtained by reaction of 2,6-dichlorobenzoic acid with 1,2-dimethoxy-4-methylbenzene in the presence of phosphorous pentoxide in methanesulfonic acid for 30 min at 70° [1199].
- Preparation by Friedel-Crafts acylation of 4-methylpyrocatechol with 2,6-dichlorobenzoyl chloride [1072].
- Also refer to: [1200].
m.p. 206-207$~[1199], ~ 201-203^{\circ}$ [1072]; Spectra (NA).
(2,4-Dihydroxy-3,5-dinitrophenyl)(2-methoxyphenyl)methanone

$$
\begin{aligned}
& \text { [79204-68-5] } \\
& \begin{array}{l}
\text { Sistorent. } 334.24 \\
\text { with chromium trioxide in acetic acid, fol- } \\
\text { lowed by saponification of the keto ester so } \\
\text { formed with potassium hydroxide in ethanol } \\
(55 \%) \text { [1117]. }
\end{array}
\end{aligned}
$$

m.p. 280° [1117]; IR [1117].
(2-Bromophenyl)(4,5-dihydroxy-2-methylphenyl)methanone
[91197-04-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 307.14
Synthesis

- Preparation by demethylation of 2^{\prime}-bromo-4, 5-dimethoxy-2-methylbenzophenone (SM) with pyridinium chloride for 2 h at $180-200^{\circ}$. SM was obtained by reaction of o-bromo-benzoic acid with 1,2-dimethoxy-4-methylbenzene in the presence of phosphorous pentoxide in methanesulfonic acid for 30 min at 70° [1199].
m.p. $177-178^{\circ}$ [1199]; \quad Spectra (NA).
(4-Chloro-2,5-dihydroxyphenyl)(4-methylphenyl)methanone

[161463-55-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69
Synthesis
- Preparation by demethylation of 4-chloro-2,5-dimethoxy-4'-methylbenzophenone (SM) with boron tribromide in methylene chloride at 0° for $15-17 \mathrm{~h}$ (70-95\%).

SM was prepared by reaction of p-toluic acid with 2-chloro-1,4-di-methoxybenzene in the presence of polyphosphoric acid at $60-70^{\circ}$ for $6-7 \mathrm{~h}(40-83 \%)$ [1250].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1250], IR [1250].
(2-Chlorophenyl)(2,5-dihydroxy-3-methylphenyl)methanone
[153907-05-2] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69

Synthesis

- Preparation by demethylation of 2^{\prime}-chloro-2,5-dimethoxy-3-methylbenzophenone with boron tribromide in methylene chloride at $0^{\circ}(76 \%)$ [1251].
m.p. 140° [1251]; ${ }^{1} \mathrm{H}$ NMR [1251], IR [1251].
(4-Chlorophenyl)(2,5-dihydroxy-3-methylphenyl)methanone
[153907-07-4]
m.p. $\quad 190^{\circ}$ [1251]; ${ }^{1} \mathrm{H}$ NMR [1251], IR [1251].
(3,4-Dihydroxy-5-nitrophenyl)(2-methylphenyl)methanone
[134612-48-9] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

Synthesis

- Preparation by demethylation of 4-hydroxy-3-methoxy-2'-methyl-5-nitrobenzophenone with hydrobromic acid in refluxing aqueous acetic acid [1019].
m.p. $164-166^{\circ}$ [1019]; Spectra (NA).
(3,4-Dihydroxy-5-nitrophenyl)(4-methylphenyl)methanone

[134308-13-7]	
m.p. $146-148^{\circ}$ [1019];	Spectra (NA).

(2,6-Dichlorophenyl)(2,3-dihydroxy-4-methoxy-6-methylphenyl)methanone

[183725-80-6]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$
mol.wt. 327.16
Synthesis

- Preparation by partial demethylation of 2',6'-dichloro-2,3,4-trimethoxy-6-methylbenzophenone in acetic acid in the presence of 30% hydrobromic acid for 2 h at 75° (39\%) [1072].
m.p. $\quad 182^{\circ}$ [1072]; $\quad \operatorname{Spectra}(N A)$.
(2,4-Dihydroxy-3-methylphenyl)(2-methylphenyl)methanone

[147809-15-2]	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
$\mathrm{H}_{3} \mathrm{HO} \quad \mathrm{CH}_{3}$	Synthesis
	- Preparation by treating o-toluic acid with 2-methylresorcinol in the presence of Zeolite-H-beta (previously activated at 400°), in refluxing p-chlorotoluene or n -decane for $2-3 \mathrm{~h}$ (with water removal) (74\%) [53,196].

- Also refer to: [1264].
m.p. $187-188^{\circ} 5$ [53,196]; ${ }^{1} \mathrm{H}$ NMR [53,196].
(4,5-Dihydroxy-2-methylphenyl)(2-methylphenyl)methanone
[91197-07-8]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Synthesis
- Preparation by demethylation of 4,5-dimethoxy-2,2'-di-methylbenzophenone (SM) with pyridinium chloride for 2 h at $180-200^{\circ}$. SM was obtained by reaction of o-toluic acid with 1,2-dimethoxy-4-methylbenzene in the presence of phosphorous pentoxide in methanesulfonic acid for 20 min at 70° [1199].
- Also refer to: [1200]. m.p. $\quad 149-150^{\circ}$ [1199]; Spectra (NA).
(2,4-Dihydroxy-3-methylphenyl)(2-methoxyphenyl)methanone
[85636-84-6]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Synthesis

- Refer to: [193].
m.p. and Spectra (NA).

(2,4-Dihydroxy-3-methylphenyl)(4-methoxyphenyl)methanone

[79861-83-9] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Synthesis

- Preparation by reaction of p -anisic acid with 2-methyl-resorcinol in tetrachloroethane in the presence of boron trifluoride at 80° for $4 \mathrm{~h}(66 \%)$ [224].
m.p. $194-195^{\circ}$ [224]; ${ }^{1} \mathrm{H}$ NMR [224].
(2,5-Dihydroxy-4-methoxyphenyl)(2-methoxyphenyl)methanone
[42833-90-9] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27

Synthesis

- Preparation by reaction of 2-hydroxy-2', 4,5-trimethoxy-benzophenone with DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone) in refluxing benzene for 1.5 h , followed by complete evaporation of the solvent, then treatment of the resulting brown oil in boiling methanol (58\%) [416].
m.p. 195-196 ${ }^{\circ}$ [416]; UV [416], MS [416].
(2,5-Dihydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone

[42045-63-6]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Syntheses
- Preparation by reaction of p-anisic acid with 2-methoxyhydroquinone in the presence of boron trifluorideetherate, heating at 100° for $30-45 \mathrm{~min}$ (26\%) [650].
- Also obtained (poor yield) by reaction of 2-hydroxy-4,4'-dimethoxybenzo phenone with lead tetraacetate in acetic acid at 100° for $5 \mathrm{~h}(1 \%)$ [650].
m.p. $164-165^{\circ}$ [650]; ${ }^{1} \mathrm{H}$ NMR [650], IR [650], UV [650].

(2,6-Dihydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone

[55051-89-3]

m.p. (NA); ${ }^{1} H$ NMR [1286].
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27 Synthesis

- Obtained by partial methylation of 2,4',6-trihydroxy-4-methoxybenzphenone with diazomethane in ethyl ether [1286].

(2-Chlorophenyl)(2,4-dihydroxy-3-propylphenyl)methanone

$$
\begin{aligned}
& \text { [115296-10-1] } \\
& \text { oil [1029]; b.p. and Spectra (NA). }
\end{aligned}
$$

(4,5-Dihydroxy-2-methylphenyl)(2,6-dimethylphenyl)methanone
[91197-06-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Preparation by demethylation of 4,5-dimethoxy-2,2',6'-tri-methylbenzophenone (SM) with pyridinium chloride for 2 h at $180-200^{\circ}$. SM was obtained by reaction of 2,6 -di-methylbenzoic acid with 1,2-dimethoxy-4-methylbenzene in methanesulfonic acid in the presence of phosphorous pentoxide for 30 min at 70° [1199].
- Also refer to: [1200].
m.p. $193-195^{\circ}$ [1199]; Spectra (NA).
(2,5-Dihydroxy-4-methoxyphenyl)(3,4-dimethoxyphenyl)methanone
[62495-45-8] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6}$ mol.wt. 304.30

Synthesis

- Obtained (poor yield) by oxidation of 2-hydroxy-3',4,4',5-tetramethoxybenzophenone with manganese (III) acetate dihydrate in refluxing acetic acid for 2 h (9\%) [1136].
m.p. 208-209${ }^{\circ}$ [1136]; ${ }^{1} \mathrm{H}$ NMR [1136], IR [1136], UV [1136].
(3-Chloro-4,6-dihydroxy-2-methylphenyl)(2,4,6-trimethoxyphenyl)methanone
[68048-19-1]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{6} \quad$ mol.wt. 352.77
Synthesis
- Preparation by hydrogenolysis of 4,6-bis(benzyloxy)-3-chloro-2', $4^{\prime}, 6^{\prime}$ -trimethoxy-2-methylbenzophenone (SM) with hydrogen in ethyl acetate/
tetrahydrofuran in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 25°. SM was obtained by condensation of 4,6-bis(benzyloxy)-3-chloro-2-methylbenzoic acid with phloroglucinol trimethyl ether in the presence of trifluoroacetic anhydride in methylene chloride under nitrogen for 3 min (87%) [1179].
m.p. $132-133^{\circ}$ [1179]; ${ }^{1} \mathrm{H}$ NMR [1179], IR [1179], MS [1179].
(2,5-Dihydroxy-3,4-dimethoxyphenyl)(4-ethoxyphenyl)methanone
[69471-32-5]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis
- Preparation by oxidation of 4^{\prime}-ethoxy-2-hydroxy-3,4-dimethoxybenzophenone with potassium persulfate (24%) (Elbs reaction) [1168].
m.p. $140-142^{\circ}$ [1168]; ${ }^{1} \mathrm{H}$ NMR [1168], IR [1168].

(2,4-Dihydroxy-6-methylphenyl)(2,4,6-trimethoxyphenyl)methanone

[76631-09-9]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis

- Preparation by reaction of triethylamine with 1-(2,4,6-trimethoxyphenyl)-1,3,5,7octanetetraone (SM) in refluxing tetrahydrofuran in a nitrogen atmosphere for 38 h (quantitative yield) [1287]. SM can be obtained according to two methods:
- acylation of the trilithium salt of 2,4,6-heptanetrione (prepared with LDA in tetrahydrofuran at 0°) with methyl 2,4,6-trimethoxybenzoate in tetrahydrofuran for 17 h at r.t. (55%);
- acylation of the dilithium salt of 2,4-pentanedione with methyl 3-(2,4,6-trimethoxyphenyl)-3-oxopropanoate (sodium salt) (42\%).
m.p. $\quad 169-173^{\circ}$ [1287]; ${ }^{1} \mathrm{H}$ NMR [1287], IR [1287], MS [1287]; TLC [1287].

(2,4-Dihydroxy-3,5-dimethoxyphenyl)(2,5-dimethoxyphenyl)methanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7} \quad \text { mol.wt. } 334.33
$$

Synthesis

- Obtained (poor yield) by reaction of 2,3,4, 5-tetramethoxy-benzoyl chloride with hydroquinone dimethyl ether in benzene in the presence of aluminium chloride (16%) [1160].
m.p. and Spectra (NA).
(3,6-Dihydroxy-2,4-dimethoxyphenyl)(2,5-dimethoxyphenyl)methanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7} \quad \text { mol.wt. } 334.33
$$

Synthesis

- Preparation by reaction of 2,5-dimethoxybenzoic acid with 2,6 -dimethoxyhydroquinone in trifluoroacetic anhydride [1185].
m.p. and Spectra (NA).
(2-Chlorophenyl)(5-hexyl-2,4-dihydroxyphenyl)methanone

m.p. and Spectra (NA). | Synthesis |
| :--- |
| - $\left.\begin{array}{l}\text { Preparation by reaction of 2-chlorobenzotrichlo- } \\ \text { ride with 4-hexylresorcinol in dilute isobutanol } \\ \text { at } 70-80^{\circ}\end{array}\right)$ (77\%) [211]. |

(5-Hexyl-2,4-dihydroxyphenyl)(3-nitrophenyl)methanone
$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \quad$ mol.wt. 343.38

Synthesis

- Refer to: [113].
m.p. $85^{\circ}[113] ; \quad \operatorname{Spectra}(N A)$.

2.2.2 Hydroxy Groups Located on Both Rings

2.2.2.1 Substituents Located on One Ring

(2,3-Dichloro-4-hydroxyphenyl)(2-hydroxyphenyl)methanone
[72482-30-5]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11
Synthesis

- Preparation by total demethylation of 2,3-dichloro-2',4-dimethoxybenzophenone (SM) with pyridinium chloride at 200° for 1 h . SM was obtained by reaction of o-anisoyl chloride with 2,3-dichloroanisole in ethylene dichloride in the presence of aluminium chloride first at -10° for 2.5 h , then at $+5^{\circ}$ [476].
- Also refer to: [967].
m.p. $\quad 197-201^{\circ}[476] ; \quad \operatorname{Spectra}(N A)$.

(2,3-Dichloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 283.11
Synthesis

- Obtained by Friedel-Crafts acylation of 2,3-dichloro-anisole with p-methoxybenzoyl chloride in the presence of aluminium chloride at r.t. [979] or in benzene at $75-80^{\circ}$ for $1 \mathrm{~h}(53 \%)$ [1288].
m.p. $208-210^{\circ}$ [1288]; \quad Spectra (NA).

(2,5-Dichloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone

m.p. and Spectra (NA).
(3,5-Dichloro-4-hydroxyphenyl)(3-hydroxyphenyl)methanone

[92005-28-2]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 283.11

Synthesis

- Refer to: [1289].
m.p. and Spectra (NA).
(3,5-Dichloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone
[92005-19-1]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 283.11

Synthesis
- Preparation by acylation of 2,6-dichlorophenol with p-(trichloromethyl)phenyl p-(trichloromethyl)benzoate in methylene chloride in the presence of aluminium chloride at $0-5^{\circ}$ over 1 h , then at r.t. for 1 h , followed by alkaline hydrolysis of the resulting keto ester [325] (Japanese patent).
m.p. and Spectra (NA).

(2-Chloro-4-hydroxyphenyl)(2-hydroxyphenyl)methanone

[126165-47-7]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Synthesis

- Preparation by Fries rearrangement of m-chlorophenyl salicylate with aluminium chloride without solvent at $180-182^{\circ}$ for 3 h (40\%) [506].
m.p. 130° [506]; \quad Spectra (NA).

(2-Chloro-4-hydroxyphenyl)(3-hydroxyphenyl)methanone

[126165-56-8]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Synthesis

- Obtained (by-product) by Fries rearrangement of m-chloro-phenyl m-methoxybenzoate with aluminium chloride at $182-184^{\circ}$ for 3 h (15%) [506].
m.p. 200° [506]; \quad Spectra (NA).
(2-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone
[98155-77-2]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Synthesis
- Preparation by reaction of bis(4-trichloro-methylphenoxy)-ketone with m-chlorophenol in methylene chloride in the presence of aluminium chloride, first at 0° for 1.5 h , then at 20° for 3 h , then hydrolysis of the intermediate product so obtained with 20% sodium hydroxide aqueous solution at 20° for $7 \mathrm{~h}(64 \%)$ [901]. m.p. $\quad 176-178^{\circ}$ (anhydrous) and 100-108 ${ }^{\circ}$ (hemihydrate) [901]; \quad Spectra (NA).

(3-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone

[126165-53-5] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67

Synthesis

- Obtained (by-product) by Fries rearrangement of o-chloro-phenyl m-methoxybenzoate with aluminium chloride at $182-184^{\circ}$ for $3 \mathrm{~h}(13 \%)$ [506].
m.p. $121^{\circ}[506] ; \quad \operatorname{Spectra}(N A)$.

(3-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone

[126165-62-6] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67

Synthesis

- Obtained (by-product) by Fries rearrangement of o-chloro-phenyl p-methoxybenzoate with aluminium chloride at 180° for $3 \mathrm{~h}(10 \%)$ [506].
m.p. 152° [506]; \quad Spectra (NA).
(3-Chloro-4-hydroxyphenyl)(2-hydroxyphenyl)methanone
[123861-94-9]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Syntheses
- Preparation by Fries rearrangement of o-chlorophenyl salicylate with aluminium chloride at $180-183^{\circ}$ for 3 h (35\%) [506].
- Preparation by hydrolysis of 2-chloro-4-salicyloylphenyl salicylate [346], a secondary product obtained by Fries rearrangement of o-chlorophenyl salicylate at $180-183^{\circ}$ for $3 \mathrm{~h}(20 \%)$ [506].
- Also obtained (by-product) by Fries rearrangement of o-chlorophenyl 2(nicotinoyloxy)benzoate with aluminium chloride at $150-152^{\circ}$ for 2 h (4\%) [346]. m.p. $113^{\circ}[346,506] ; \quad$ Spectra (NA).
(3-Chloro-4-hydroxyphenyl)(3-hydroxyphenyl)methanone

[92005-08-8]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Synthesis
- Preparation by Fries rearrangement of o-chlorophenyl m-methoxybenzoate with aluminium chloride at $182-184^{\circ}$ for $3 \mathrm{~h}(62 \%)$ [506].
m.p. $\quad 183^{\circ}$ [506]; \quad Spectra (NA).
(3-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone
[92005-17-9]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Synthesis
- Preparation by Fries rearrangement of o-chlorophenyl p-methoxybenzoate with aluminium chloride at 180° for $3 \mathrm{~h}(57 \%)$ [506].
m.p. 204° [506]; \quad Spectra (NA).

(4-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Synthesis

- Preparation by Fries rearrangement of m-chlorophenyl m-methoxybenzoate with aluminium chloride at $182-184^{\circ}$ for 3 h (55\%) [506].
m.p. 132° [506]; \quad Spectra (NA).
(4-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone

mol.wt. 248.67
Synthesis
- Preparation by Fries rearrangement of m-chlorophenyl p-methoxybenzoate with aluminium chloride without solvent at $182-$ 185° for 3 h (47\%) [506].
m.p. $\quad 170^{\circ}$ [506]; \quad Spectra (NA).
(5-Chloro-2-hydroxyphenyl)(2-hydroxyphenyl)methanone

$$
\begin{aligned}
& \text { [76237-02-0] } \\
& \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad \text { mol.wt. } 248.67 \\
& \text { Syntheses } \\
& \text { - Obtained by Fries rearrangement of p-chlorophenyl } \\
& \text { salicylate with aluminium chloride at } 208-210^{\circ} \text { for } \\
& 2.5 \text { h (20\%) [506]. } \\
& \text { - Also obtained by UV light irradiation of p-chloro- } \\
& \text { phenyl salicylate in methanol for } 8 \mathrm{~h} \text { [1290]. } \\
& \text { m.p. 68-69 }{ }^{\circ} \text { [1290], 59-60 }{ }^{\circ} \text { [506]; }{ }^{1} \mathrm{H} \text { NMR [1290], }{ }^{13} \mathrm{C} \text { NMR [1290], IR [1290], } \\
& \text { UV [1290], MS [1290]. }
\end{aligned}
$$

(5-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67
Synthesis

- Preparation by Fries rearrangement of p-chlorophenyl m-methoxybenzoate with aluminium chloride at $182-185^{\circ}$ for $3 \mathrm{~h}(60 \%)$ [506].
m.p. 148° [506]; $\operatorname{Spectra}(\mathrm{NA})$.

(5-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone

[126165-40-0]
m.p. 160° [506]; $\quad \operatorname{Spectra}(\mathrm{NA})$.
(2-Fluoro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone
[98155-81-8]

m.p. and Spectra (NA).
(5-Fluoro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone

[159300-38-6]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3}$
mol.wt. 232.21 Synthesis

- Obtained by demethylation of 5-fluoro-2-hydroxy-4'-methoxybenzophenone with an excess of boron tribromide under nitrogen first at -70° for 2 min , then at 0° for $1 \mathrm{~h}(47 \%)$ [1106].
m.p. $104-105^{\circ}$ [1106]; ${ }^{1} \mathrm{H}$ NMR [1106,1108], MS [1106,1108];

HPLC [1106, 1108].
(4-Hydroxy-3-nitrophenyl)(4-hydroxyphenyl)methanone
[94737-85-6]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22

Synthesis

- Refer to: [325] (Japanese patent).
m.p. and Spectra (NA).
(4-Amino-3-hydroxyphenyl)(4-hydroxyphenyl)methanone
[136134-35-5]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 229.24
Synthesis
- Preparation by hydrolysis of 6-(4-hydr-oxybenzoyl)-benzoxazolinone in aqueous sodium hydroxide [564], according to [565].
m.p. (NA); MS [564].
(2-Hydroxy-3-methylphenyl)(3-hydroxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 228.25
$$

Synthesis

- Obtained by Fries rearrangement of o-cresyl m -anisate with aluminium chloride without solvent at 120° or 160° for 2 h [340].
m.p. 144° [340]; $\operatorname{Spectra}(N A)$.

(2-Hydroxy-4-methylphenyl)(2-hydroxyphenyl)methanone

[86415-67-0]

m.p. and Spectra (NA).
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Synthesis

- Refer to: [294].

(2-Hydroxy-4-methylphenyl)(3-hydroxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 228.25
$$

Synthesis

- Obtained by Fries rearrangement of m-cresyl m -anisate with aluminium chloride without solvent at 120° or 160° for 2 h [340].
m.p. $\quad 105^{\circ}[340] ; \quad$ Spectra (NA).
(2-Hydroxy-4-methylphenyl)(4-hydroxyphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Synthesis

- Preparation by reaction of p-hydroxybenzoic acid with m -cresol in the presence of boron trifluoride at 150° for 3 h (68\%) [150].
m.p. $148-149^{\circ}[150] ; \quad \operatorname{Spectra}(N A)$.
(2-Hydroxy-5-methylphenyl)(2-hydroxyphenyl)methanone
[93097-75-7] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Syntheses

- Preparation by Fries rearrangement of p-tolyl salicylate with aluminium chloride at 140° for 3 h (70\%) [345].
- Also obtained by reaction of o-methoxybenzoyl chloride with p-cresol in the presence of aluminium chloride at 100° for 24 h [683].
- Also refer to: [1135].
m.p. $\quad 143-144^{\circ}[345] ; \quad \operatorname{Spectra}(N A)$.

(2-Hydroxy-5-methylphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by demethylation of 2-hydroxy-3'-methoxy-5-methylbenzophenone with hydrobromic acid in acetic acid [1132,1291].
- Also obtained by Fries rearrangement of p-tolyl m -anisate with aluminium chloride without solvent at 120° or 160° for $2 \mathrm{~h}(20-30 \%)$ [340].
- Also refer to: [1292].
m.p. 136° [340]; $\operatorname{Spectra}(N A)$.
(2-Hydroxy-5-methylphenyl)(4-hydroxyphenyl)methanone
[25148-21-4]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses
- Preparation by demethylation of 4^{\prime}-hydroxy-2-methoxy-5-methylbenzophenone (m.p. 160°) with aluminium chloride at 150° [683].
- Preparation by diazotization of 4'-amino-2-hydroxy-5-methylbenzophenone (m.p. 137°), followed by hydrolysis of the resulting diazonium salt [683].
m.p. $\quad 150-151^{\circ}[683] ; \quad$ Spectra (NA).

(3-Hydroxy-4-methylphenyl)(4-hydroxyphenyl)methanone

[75731-48-5]

m.p. and Spectra (NA).
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Synthesis

- Refer to: [352,355].
(4-Hydroxy-2-methylphenyl)(2-hydroxyphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Syntheses

- Obtained by Fries rearrangement,
- of m-cresyl salicylate (1 mol) with aluminium chloride (4 mol) at 140° for $3 \mathrm{~h}(80 \%)$ [345];
- of m-cresyl o-methoxybenzoate (1 mol) with aluminium chloride (2.6 mol) at 120° or 160° for 2 h (low yields) [340].
m.p. $146^{\circ}[340,345] ; \quad$ Spectra (NA).

(4-Hydroxy-2-methylphenyl)(3-hydroxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 228.25
$$

Synthesis

- Obtained by Fries rearrangement of m-cresyl m -anisate with aluminium chloride without solvent at 120° or 160° for 2 h [340].
m.p. 173° [340]; \quad Spectra (NA).

(4-Hydroxy-2-methylphenyl)(4-hydroxyphenyl)methanone

[98155-72-7]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Synthesis

- Preparation by adding m-cresol to a mixture of bis(4-tri-chloromethylphenoxy)ketone and aluminium chloride in methylene chloride at 0° for 1.5 h , then at 20° for 3 h . Then, hydrolysis of the intermediate product so obtained with 20% sodium hydroxide aqueous solution at 20° for $7 \mathrm{~h}(40 \%)$ [901].
m.p. $82-85^{\circ}[901] ; \quad \operatorname{Spectra}(N A)$.
(4-Hydroxy-3-methylphenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Synthesis

- Preparation by Fries rearrangement of o-cresyl salicylate with aluminium chloride without solvent at 140° for $3 \mathrm{~h}(80 \%)$ [345].
m.p. $\quad 112^{\circ}$ [345]; \quad Spectra (NA).

(4-Hydroxy-3-methylphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Obtained by Fries rearrangement of o-cresyl m-methoxy-benzoate with aluminium chloride between 120° and 160° for $2 \mathrm{~h}(20-30 \%)$ [340].
- Preparation by demethylation of 3,4'-dimethoxy-3'-methylbenzophenone with 48% hydrobromic acid in an acetic anhydride/acetic acid mixture (1:1) for 15 h at reflux (78\%) [352].
m.p. $\quad 174-175^{\circ}[352], 172^{\circ}$ [340]; \quad Spectra (NA).

(4-Hydroxy-3-methylphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 228.25
Synthesis

- Preparation by acylation of o-cresol with p-(trichloro-methyl)phenyl p-(trichloromethyl)benzoate in methylene chloride in the presence of aluminium chloride at $0-5^{\circ}$ over 1 h , then at r .t. for 1 h , followed by alkaline hydrolysis of the resulting keto ester [325] (Japanese patent).
m.p. and Spectra (NA).
(2-Hydroxy-3-methoxyphenyl)(2-hydroxyphenyl)methanone
[117574-12-6]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 244.25

Synthesis

- Refer to: [1293].
m.p. and Spectra (NA).
(2-Hydroxy-4-methoxyphenyl)(2-hydroxyphenyl)methanone
(Dioxybenzone, Cyasorb UV 24)
[131-53-3] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
 Syntheses
- Preparation by condensation of salicylic acid and m-methoxyphenol [1135].
- Preparation by reaction of o-anisoyl chloride with 1,3-di-methoxybenzene in the presence of aluminium chloride in chlorobenzene, first at 0°, then at $88^{\circ}(21 \%)$ [684,1294].
- Preparation by partial demethylation of 2-hydroxy-2', $\mathbf{4}^{\prime}$-dimethoxybenzophenone or $2,2^{\prime}, 4^{\prime}$-tri-methoxybenzophenone with aluminium chloride or aluminium bromide in chlorobenzene at $90-95^{\circ}$ (good yield) [655].
- Preparation by partial methylation of $2,2^{\prime}, 4$-trihydroxybenzophenone with dimethyl sulfate in alkaline solution (50\%) [380].
- Also refer to: [225,235,666,1293,1295].
b.p. $170-175^{\circ}$ [684,1294];
m.p. $71-72^{\circ}$ [1135], 70° [93], 69-70$~[380], ~ 69^{\circ} ~[236] ; ~{ }^{1} \mathrm{H}$ NMR [303], IR [1135],

UV [93,235,236,241,242,303,380,830], MS [1135];
$\mathrm{p} K_{\mathrm{a}}$ [93,115]; TLC [116,244];
gel permeation chromatography [246,247]; vapour pressure [236];
paper chromatography [383].
(2-Hydroxy-4-methoxyphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Synthesis

- Preparation by condensation of m-methoxyphenol with m-hydroxybenzoic acid in the presence of stannic chloride at reflux for $8 \mathrm{~h}(26 \%)$ [1296].
m.p. 113-114 ${ }^{\circ}$ [1296]; IR [1296].
(2-Hydroxy-4-methoxyphenyl)(4-hydroxyphenyl)methanone
[33257-86-2]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses
- Obtained by condensation of 2-hydroxy-4-methoxy-benzoic acid with phenol,
- in the presence of stannic chloride at $115-120^{\circ}$ for $3-4 \mathrm{~h}$ [190];
- in the presence of zinc chloride at $115-120^{\circ}$ for $3-4 \mathrm{~h}$ [237].
- Preparation by reaction of p-hydroxybenzoic acid with m-methoxyphenol in the presence of phosphorous oxychloride at $60-70^{\circ}$ for $1.5 \mathrm{~h}(36 \%)$ [626,1297], 1213].
- Also refer to: [592,627,1016,1017,1298,1299].
m.p. 200° [626], $136-138^{\circ}$ [190,237]. One of the reported melting points is obviously wrong.
IR [626], UV [190,237].

(2-Hydroxy-5-methoxyphenyl)(2-hydroxyphenyl)methanone

[83570-57-4]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses

- Preparation by saponification of 2^{\prime}-(acetylamino)-2-hydroxy-5-methoxybenzophenone (SM) with 10% sodium hydroxide (37%). SM was obtained by photo-Fries rearrangement of p-methoxyphenyl 2-(acetylamino)-benzoate in benzene for 2.5 h (40\%) [1115].
- Also obtained by photo-Fries rearrangement of p-methoxyphenyl salicylate in hexane for $4 \mathrm{~h}(8 \%)$ or in methanol for $11 \mathrm{~h}(23 \%)$ [1025].
- Also obtained by photo-Fries rearrangement of p-methoxyphenyl o-acetoxybenzoate in benzene, followed by saponification of the keto ester so formed [1148].
- Preparation by partial demethylation of $2,2^{\prime}, 5$-trimethoxybenzophenone with aluminium chloride in benzene at 50° under nitrogen atmosphere for 12 h (40\%) [395]. m.p. 93° [1025], $88-90^{\circ}$ [395];
${ }^{1}$ H NMR [98,395,1025], IR [395,1025], UV [395], MS [395]; TLC [395].

(2-Hydroxy-5-methoxyphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Synthesis

- Obtained by partial demethylation of 2,4',5-trimethoxy-benzophenone (SM) with aluminium chloride in nitro-methane at 20° for 24 h . SM was obtained by Friedel-Crafts acylation of 1,4-dimethoxybenzene with p -anisoyl chloride in the presence of stannic chloride in nitromethane at 20° for 1 h [679].
- Also refer to: [325] (Japanese patent).
m.p. 154° [679]; IR [679], UV [679].
(4-Hydroxy-3-methoxyphenyl)(4-hydroxyphenyl)methanone
[147904-63-0]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$ mol.wt. 244.25

Synthesis

- Refer to: [1300].

Isolation from natural source

- Identified from lignin dimers [1300].
m.p. (NA); GC-MS [1300].

[3-Hydroxy-4-(methylamino)phenyl](4-hydroxyphenyl)methanone

[136134-36-6]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$
Synthesis

- Preparation from 6-(4-hydroxy-benzoyl)-3-methyl-benzoxazolinone by alkaline hydrolysis with boiling 10% aqueous sodium hydroxide solution [564].
m.p. and Spectra (NA).
(4-Hydroxy-2,3-dimethylphenyl)(4-hydroxyphenyl)methanone
[98155-73-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

m.p. and Spectra (NA).

Synthesis

- Refer to: [901] (compound 2).

(4-Hydroxy-2,5-dimethylphenyl)(4-hydroxyphenyl)methanone

[98155-75-0]

m.p. and Spectra (NA).

(4-Hydroxy-2,6-dimethylphenyl)(4-hydroxyphenyl)methanone

[93899-05-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis

- Refer to: [901] (compound 5).

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 242.27
$$

Synthesis

- Preparation by reaction of p-hydroxybenzoic acid with 3,5-xylenol in the presence of zinc chloride and a mixture of polyphosphoric acid $/ 85 \%$ phosphoric acid (60:40) at 40°. Then, during 1.5 h , phosphorous trichloride was added and the mixture heated at 70° for $16 \mathrm{~h}(90 \%)$ [194].
- Also refer to: [901] (compound 3).
m.p. and Spectra (NA).
(4-Hydroxy-3,5-dimethylphenyl)(2-hydroxyphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 242.27
$$

Synthesis

- Obtained by photo-Fries rearrangement of 2,6-dimethyl-phenyl salicylate (by-product) [219].
(4-Hydroxy-3,5-dimethylphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis
- Preparation by acylation of 2,6-dimethylphenol with m-(tri-chloromethyl)phenyl m-(trichloromethyl)benzoate in methylene chloride in the presence of aluminium chloride at $0-5^{\circ}$ over 1 h , then at r.t. for 1 h , followed by alkaline hydrolysis of the resulting keto ester [325] (Japanese patent).
m.p. and Spectra (NA).

(4-Hydroxy-3,5-dimethylphenyl)(4-hydroxyphenyl)methanone

 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis

- Preparation by acylation of 2,6-dimethylphenol with p-(trichloromethyl)phenyl p-(trichloromethyl)benzoate in methylene chloride in the presence of aluminium chloride at $0-5^{\circ}$ over 1 h , then at r.t. for 1 h , followed by alkaline hydrolysis of the resulting keto ester [325] (Japanese patent).
m.p. and Spectra (NA).
(4-Ethoxy-2-hydroxyphenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Synthesis

- Preparation by partial deethylation of 2,4-diethoxy-2'-hydroxybenzophenone with aluminium chloride in chlorobenzene at $80-100^{\circ}$ [655].
m.p. and Spectra (NA).
(2-Hydroxy-3,4-dimethoxyphenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27

Synthesis

- Preparation by action of o-anisoyl chloride with pyrogallol trimethyl ether in the presence of aluminium chloride.
- Refer to: Chem. Abstr., 9, $609^{5-6}(1915)^{\mathrm{T}}$.
m.p. $\quad 127^{\circ}{ }^{\circ}$; $\quad \operatorname{Spectra}(\mathrm{NA})$.
(2-Hydroxy-4,6-dimethoxyphenyl)(3-hydroxyphenyl)methanone

[34425-65-5]	Synthesis - Not yet described. Isolation from natural source -
From the heartwood of Allanblackia flori-	
bunda Oliver (Guttiferae) [171].	

m.p. $\quad 105-107^{\circ}$ [171]; ${ }^{1} \mathrm{H}$ NMR [171], IR [171], UV [171], MS [171].

[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](2-hydroxyphenyl)methanone

[125182-25-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 270.33
Synthesis

- Obtained by treatment of 2,2'-dihydroxybenzophenone at 120° with a mixture of isobutylene/nitrogen (1:1) in the presence of a macroreticular acid ion exchanger (Wofatit OK 80) as catalyst for 1 h (40\%) [819].
b.p. $._{0.15} 180-185^{\circ}[819] ; \quad \operatorname{Spectra}(N A)$.
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](2-hydroxyphenyl)methanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Preparation by demethylation of $2^{\prime}, 4$-dime-thoxy-2-methyl-5-isopropylbenzophenone with refluxing pyridinium chloride at 205-215 ${ }^{\circ}$ for 2 h (61\%) [824].
b.p. ${ }_{0.6} 195-200^{\circ}$ [824]; m.p. $117-118^{\circ}$ [824]; Spectra (NA).
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](4-hydroxyphenyl)methanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 270.33
$$

 Synthesis

- Obtained by demethylation of 4,4'-dime-thoxy-2-methyl-5-isopropylbenzophenone in refluxing pyridinium chloride (205-215 $)$ for $2 \mathrm{~h}(20 \%)$ [824].
b.p. ${ }_{0.6} 200-210^{\circ}$ [824]; $\quad \operatorname{Spectra}(N A)$.
(4-Butoxy-2-hydroxyphenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33

Synthesis

- Refer to: [383].
m.p. and Spectra (NA); paper chromatography [383].

(2-Hydroxy-4-methoxy-3-propylphenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Syntheses

- Preparation by partial methylation of 2,2',4-trihydroxy-3-propylbenzophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing 2-butanone for overnight (93\%) [1029].
- Also obtained (trace) by reaction of o-anisoyl chloride with 1,3-dimethoxy-2propylbenzene in methylene chloride in the presence of aluminium chloride, first at 0° for 2 h and at r.t. for 1 h [1029].
oil [1029]; b.p. and Spectra (NA).

[5-(1,1-Dimethylethyl)-2-hydroxy-4-methoxyphenyl](2-hydroxyphenyl) methanone

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \quad \text { mol.wt. } 300.35
$$

 Synthesis

- Preparation by selective methylation of 5-tert-butyl-2,2',4-trihydroxybenzophenone with dimethyl sulfate in refluxing methyl ethyl ketone in the presence of potassium carbonate [835].
m.p. $116^{\circ} 5[835,836] ;$ Spectra (NA).
(2-Hydroxyphenyl)[2-hydroxy-4-(2-propenyloxy)-3-propylphenyl]methanone
[115308-88-8]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37 Synthesis
- Obtained by reaction of allyl bromide with 2, $2^{\prime}, 4$-trihydroxy-3-propylbenzophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone for 3 h (30\%) [1029].
oil [1029]; b.p. and Spectra (NA).

[4-(Hexyloxy)-2-hydroxyphenyl](2-hydroxyphenyl)methanone

[65221-06-9]

m.p. (NA); UV [233].
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 314.38
Synthesis

- Refer to: [233].

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxyphenyl)methanone

$$
\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad \text { mol.wt. } 326.44
$$

Synthesis

- Obtained by UV light irradiation of phenyl 3,5-di-tert-butyl-4-hydroxybenzoate in isooctane [1301].
m.p. $\quad 119^{\circ}$ [1301]; \quad Spectra (NA).

[4-(2-Ethylhexyl)-2-hydroxyphenyl](2-hydroxyphenyl)methanone

[84875-84-3]

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad \mathrm{~mol}$.wt. 326.44 Synthesis - Refer to: [1302].
m.p. and Spectra (NA).
(2-Hydroxy-3-octylphenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad \mathrm{~mol} . w \mathrm{t} .326 .44$

Synthesis

- Obtained by photo-Fries rearrangement of o-octylphenyl salicylate (major product) [219].
m.p. (NA); UV [219].
(2-Hydroxy-5-octylphenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 326.44

Synthesis

- Obtained by photo-Fries rearrangement of p-octylphenyl salicylate (major product) [219].
m.p. (NA); UV [219].
(4-Hydroxy-3-octylphenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$
mol.wt. 326.44

Synthesis

- Obtained by photo-Fries rearrangement of o-octylphenyl salicylate (by-product) [219].
m.p. (NA); UV [219].

[2-Hydroxy-4-(octyloxy)phenyl](2-hydroxyphenyl)methanone

[85-24-5]

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 342.44
Synthesis

- Preparation by reaction of octyl bromide with 2,2',4-tri-hydroxybenzophenone,
- in the presence of potassium carbonate (50\%) [380];
- in the presence of sodium carbonate in refluxing dilute ethanol [1303].
- Also refer to: [888,892,1104,1215,1295,1304-1313].
m.p. $90^{\circ} 5-91^{\circ}$ [380]; UV [380]; paper chromatography [383].

[2-Hydroxy-4-(octyloxy)phenyl](4-hydroxyphenyl)methanone

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 342.44

Synthesis

- Refer to: [1310] (Japanese patent).
m.p. and Spectra (NA).
[2-Hydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl]-
(4-hydroxyphenyl)methanone
[63565-06-0] $\quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 366.46

Synthesis

- Obtained (poor yield) by reaction of prenyl bromide with $2,4,4^{\prime}$-trihydroxy-ben zophenone in the presence of potassium carbonate in refluxing acetone for 3 h (7\%) [831].
m.p. 80° [831]; ${ }^{1} \mathrm{H}$ NMR [831], IR [831], UV [831].
(3-Dodecyl-2-hydroxy-5-methylphenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3} \quad$ mol.wt. 396.57

Synthesis

- Obtained by photo-Fries rearrangement of 2-dodecyl-4-methylphenyl salicylate (major product) [219].
m.p. (NA); UV [219].

[5-(1,1-Dimethylethyl)-4-(dodecyloxy)-2-hydroxyphenyl](2-hydroxyphenyl) methanone

$$
\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{4} \quad \text { mol.wt. } 454.65
$$

Synthesis

- Preparation by selective alkylation of 5-tert-butyl-2, 2^{\prime},4-trihydroxybenzophenone with lauryl bromide in refluxing methyl ethyl ketone in the presence of potassium carbonate [835].
m.p. $\quad 81^{\circ}[835,836] ; \quad$ Spectra (NA).

2.2.2.2 Substituents Located on Both Rings

Symmetrical ketones

Bis(2,3,5,6-tetrachloro-4-hydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{Cl}_{8} \mathrm{O}_{3} \quad \text { mol.wt. } 489.78
$$

Synthesis

- Refer to: [901] (compound 12).
m.p. and Spectra (NA).

Bis(3-bromo-4-hydroxy-5-nitrophenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{7} \quad \text { mol.wt. } 462.01
$$

Synthesis

- Preparation by adding sodium nitrite to an hot solution of $3,3^{\prime}, 5,5^{\prime}$-tetrabromo- $4,4^{\prime}$ dihydroxybenzophenone in acetic acid [326].
m.p. 246° [326]; \quad Spectra (NA).

Bis(3,5-dibromo-2-hydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{3} \quad \text { mol.wt. } 529.80
$$

Synthesis

- Obtained by treatment of $2,2^{\prime}$-dihydroxybenzophenone in hot acetic acid with bromine (60%) [1314].
- Also refer to: [297].
m.p. $178^{\circ} 5-180^{\circ} 5[1314] ; \quad \operatorname{Spectra}(N A)$.

Bis(3,5-dibromo-4-hydroxyphenyl)methanone

$$
\begin{aligned}
& \text { [28818-29-3] } \quad \mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{3} \text { mol.wt. } 529.80 \\
& \text { Syntheses } \\
& \text { - Obtained by action of bromine with } \\
& \text { 4,4'-dihydroxy-benzophenone [327,329], } \\
& \text { (86\%) [1314]. } \\
& \text { - Also obtained by oxidation of } \alpha, \alpha \text {-bis(3,5- } \\
& \text { dibromo-4-hydroxyphenyl)dichloroethyl- } \\
& \text { ene by heating with chromium trioxide } \\
& \text { (81\%) [1315]. } \\
& \text { m.p. } 230-232^{\circ} \text { [1314], 225-226 }{ }^{\circ} \text { [326,1315], 213-214 }{ }^{\circ} \text { [327,329]; } \\
& \text { Spectra (NA). }
\end{aligned}
$$

Bis(3,5-dichloro-4-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{3} \quad$ mol.wt. 352.00

Synthesis

- Preparation by reaction of chlorine with 4,4'-dihydroxy-benzophenone in acetic acid [326].
- Also refer to: [1316,1317] (Japanese papers).
m.p. $\quad 231-232^{\circ}[326] ; \quad \operatorname{Spectra}(N A)$.

Bis(2-hydroxy-3,5-diiodophenyl)methanone

[33417-57-1] $\quad \mathrm{C}_{13} \mathrm{H}_{6} \mathrm{I}_{4} \mathrm{O}_{3} \quad$ mol.wt. 717.80

- Preparation by iodination of 2,2'-dihydroxybenzophenone,
- with iodine and iodic acid in dilute ethanol for 20 min (77\%) [460];
- with iodine and potassium iodide in aqueous ammonia [460].
m.p. $225^{\circ}[460] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

Bis(4-hydroxy-3,5-diiodophenyl)methanone

- with iodine and iodic acid in dilute ethanol for 15 min [460];
- with iodine monochloride (Wijs'chloride) at r.t. [460].
- Also obtained (by-product) by reaction of 4-hydroxy-3,5-diiodophenylpyruvic acid with 4-hydroxy-3,5-diiodobenzoic acid (6\%) [333], according to the methods [1318,1319].
m.p. 255° (d) [333], 254° (d) [460]; IR [333], UV [333].

Bis(2-bromo-4-hydroxyphenyl)methanone

[98155-80-7] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$ mol.wt. 372.01

Synthesis

- Refer to: [901] (compound 29).
m.p. and Spectra (NA).

Bis(3-bromo-4-hydroxyphenyl)methanone
[5423-21-2]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$
mol.wt. 372.01

Synthesis

- Preparation by demethylation of 3,3'-dibromo-4,4'-di-methoxybenzophenone (SM) with pyridinium chloride at 210° for $20 \mathrm{~min}(85 \%)$ [313]. SM was obtained by action of bromine with $4,4^{\prime}$-dimethoxybenzophenone in acetic acid for 1 h in daylight (77\%).
m.p. 214-215 ${ }^{\circ}$ [313]; ${ }^{1} \mathrm{H}$ NMR [313], IR [313].

Bis(5-bromo-2-hydroxyphenyl)methanone

 $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 372.01

Synthesis

- Refer to: [297].
m.p. and Spectra (NA).

Bis(2-chloro-4-hydroxyphenyl)methanone
[94323-04-3] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11

Synthesis

- Refer to: [901] (compound 13).
m.p. and Spectra (NA); hemihydrate [901].

Bis(3-chloro-4-hydroxyphenyl)methanone

$$
[79616-16-3] \quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad \text { mol.wt. } 283.11
$$

Synthesis

- Preparation by demethylation of 3,3'-dich-loro-4,4'-di-methoxybenzophenone (SM) with pyridinium chloride at 210° for 20 min
(84%) [313]. SM was obtained by chlorination of $4,4^{\prime}$-dimethoxybenzophenone with sulfuryl chloride in methylene chloride at 45° for $5 \mathrm{~h}(74 \%)$.
m.p. 206-207 ${ }^{\circ}$ [313]; ${ }^{1} \mathrm{H}$ NMR [313], IR [313].

Bis(5-chloro-2-hydroxyphenyl)methanone

[6178-89-8] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 283.11

Synthesis

- Preparation by oxidation of $2,2^{\prime}$-methylenebis(4-chloro-anisole) with chromium trioxide in refluxing acetic acid, followed by demethylation of the 5,5'-dichloro-2,2'-di-methoxybenzophenone so obtained with aluminium chloride in chlorobenzene at 60° for 5.5 h [295], (92\%) [1320].
- Also refer to: [297,1321-1323]. m.p. $151-152^{\circ}[1320] ; \quad$ Spectra (NA).

Bis(2-fluoro-4-hydroxyphenyl)methanone

[98155-79-4] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{3}$ mol.wt. 250.20

Synthesis

- Refer to: [901] (compound 28).

> m.p. and Spectra (NA).

Bis(2-hydroxy-5-iodophenyl)methanone

[33417-58-2]	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{3} \quad \mathrm{~mol}$. wt. 466.01
OH HO	Synthesis
	- Obtained by iodination of 2,2'-dihydroxybenzophenone with iodine monochloride in acetic acid for 24 h at r.t. (23\%) [460].
m.p. 194-195 ${ }^{\circ}$ [460];	Spectra (NA).

Bis(2-hydroxy-5-nitrophenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7} \quad \text { mol.wt. } 304.22
$$

Synthesis
N.B.: The 2,7-dinitroxanthone was obtained on heating 2,2'-dimethoxy-5,5'-dinitrobenzophenone (m.p. 188°) with 75% sulfuric acid at 150° for 1 h via 2,2'-dihydroxy-5,5'-dinitrobenzophenone [288].

- Also refer to: [187,1324].
m.p. and Spectra (NA).

Bis(4-hydroxy-3-nitrophenyl)methanone
[37567-35-4] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 304.22

Synthesis

- Preparation by hydrolysis of 4,4'-dichloro-3,3'-dinitro-benzophenone with $5-15 \%$ sodium hydroxide at $155-160^{\circ}$ for $1-1.5 \mathrm{~h}$ (97-98\%) [1071].
m.p. $195^{\circ} 2-195^{\circ} 5[1071] ; \quad \operatorname{Spectra}(N A)$.

Bis(3-amino-4-hydroxyphenyl)methanone

[22445-98-3]
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
mol.wt. 244.25

Synthesis

- Preparation by hydrogenation of 4,4'-dihyd-roxy-3, 3^{\prime}-di-nitrobenzophenone in the presence of Raney nickel in water at $85-90^{\circ}$ for 1 h under 100 atmospheres (69\%) [1071].
m.p. $>220^{\circ}$ (d) [1071]; $\quad \operatorname{Spectra}(N A)$.

Bis(4-amino-2-hydroxyphenyl)methanone

[107516-91-6]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \quad$ mol.wt. 244.25
Synthesis

- Preparation from 4-amino-2'-hydroxy-2-methoxy-4'-nitrobenzophenone by refluxing with freshly distilled constantboiling hydriodic acid at 140° for 7 h (81\%) [286].
m.p. $247-248^{\circ}[286] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

Bis(4-amino-2-hydroxyphenyl)methanone (Dihydrochloride)

$$
\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}, 2 \mathrm{HCl}
$$

mol.wt. 317.17
 Synthesis

- Preparation from4,4'-diamino-2,2'-di-hydroxybenzophenone with hydrochloric acid in refluxing dilute ethanol (74\%) [286].
m.p. $\quad 208^{\circ}$ (d) [286]; \quad Spectra (NA).

Bis(2-chloro-4-hydroxy-6-methylphenyl)methanone $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 311.16

Synthesis

- Refer to: [901] (compound 35).
m.p. and Spectra (NA).

Bis(2-hydroxy-4-methylphenyl)methanone

[24018-76-6]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27

Synthesis

- Refer to: [668] and also [1325-1327] (Japanese papers).
m.p. and Spectra (NA).

Bis(2-hydroxy-5-methylphenyl)methanone

[27404-62-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by Friedel-Crafts acylation of p-methoxytoluene with 2-methoxy-5-methylbenzoyl chloride in carbon disulfide in the presence of aluminium chloride, first at 0° for 5 h , then at r.t. overnight and at reflux for 2 h (74\%) [1153].
- Also obtained by total demethylation of 2,2'-dimethoxy-5,5'-dimethylbenzophenone (m.p. 84°) with hydriodic acid in refluxing acetic acid for 7 h (83%) [1153].
- Also obtained (poor yield) by Fries rearrangement of p-cresyl 2-methoxy-5methylbenzoate in nitrobenzene with aluminium chloride for 20 min at 130° (9\%) [1153].
- Also obtained (poor yield) by alkaline melting of p-cresolphthalein at 200° with potassium hydroxide [1153,1328].
- Also obtained by fusion of 2,7-dimethylfluoran with potassium hydroxide at 220-240́ [617].
- Also refer to: [1154,1329,1330]. m.p. 107° [1154], $106-107^{\circ}$ [1153,1329], 104-106 ${ }^{\circ}$ [617], 104- 105° [1328]; IR [1154], UV [1154], MS [1329].

Bis(4-hydroxy-2-methylphenyl)methanone
[98155-74-9]

m.p. and Spectra (NA).
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis

- Refer to: [901] (compound 4).

Bis(4-hydroxy-3-methylphenyl)methanone
[94323-02-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27
Syntheses

- Obtained by condensation of o-cresol with carbon tetrachloride in the presence of metallic halides (zinc chloride, aluminium chloride or stannic chloride) at $100-130^{\circ}$ in an autoclave [642].
- Obtained by oxidation of o-cresaurin in 5% sodium hydroxide solution by passing a very slow stream of air during several days (41\%) [642].
m.p. 240° [642]; $\operatorname{Spectra}(\mathrm{NA})$.

Bis[4-hydroxy-3-(hydroxymethyl)phenyl]methanone

m.p. and Spectra (NA).

Bis(2-hydroxy-4-methoxyphenyl)methanone
(UV 12, Uvinul D-49, Uvinul 490, Uvinul 3049)
[131-54-4]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Syntheses

- Preparation by reaction of 2-hydroxy-4-methoxy-benzoic acid with resorcinol monomethyl ether in the presence of zinc chloride and phosphorous oxychloride at $70-75^{\circ}$ for $2 \mathrm{~h}(27 \%)$ [402].
- Preparation by reaction of 2,4-dimethoxybenzoyl chloride with 1,3-dimethoxy benzene in the presence of aluminium chloride,
- in a chlorobenzene/N,N-dimethylformamide mixture (22:1) at 115° (72\%) [235,657];
- in chlorobenzene at 90° [222].
- Preparation by partial demethylation of 2-hydroxy-2',4,4'-trimethoxybenzophenone or $2,2^{\prime}, 4,4^{\prime}$-tetramethoxybenzophenone with aluminium chloride or aluminium bromide in chlorobenzene at $90-95^{\circ}$ (good yield). The same result is obtained using ethylene dichloride or nitrobenzene as the solvent [655].
- Preparation by reaction of phosgene with resorcinol dimethyl ether in the presence of aluminium chloride [215].
- Also refer to: $[78,84,222,225,227,228,241,298,666,668,684]$.
m.p. $139-140^{\circ}$ [402], 137° [215], $136-137^{\circ}$ [650], 135° [236],

133-136 ${ }^{\circ}$ [93], $133-135^{\circ}$ [222];
EPR [98], IR [650], UV [93,215,235,236,240,241,650,684,830];
TLC [116]; vapour pressure [236]; $\mathrm{p} K_{\mathrm{a}}$ [93];
gel permeation chromatography [247].

Bis(4-hydroxy-3-methoxyphenyl)methanone

[5623-44-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Syntheses

- Obtained from 4-hydroxy-3,3', ${ }^{\prime}$ 'trim ethoxy-1,2-di-phenyl-1,2-ethanediol (Z configuration) after 3 h radiolysis of aqueous sodium hydroxide solution [1331].
- Also obtained by heating a mixture of the $4,4^{\prime}$-dihydroxy- $3,3^{\prime}$-dimethoxydiphenylmethane, 2 N sodium hydroxide and nitrobenzene for 2 h at 170° (21%) [1332,1333].
- Also obtained by mild oxidation of various materials ${ }^{\mathrm{T}}$ with cupric hydroxide in aqueous sodium hydroxide at 170° for 5 h in a stainless steal bomb,
${ }^{\mathrm{T}}$ three polymers prepared from isoeugenol by oxidative coupling with cuprous chloride in pyridine at 100° under oxygen [1334];
${ }^{\mathrm{T}}$ dehydrodiisoeugenol [1334];
${ }^{\mathrm{T}}$ milled wood lignin [1334];
${ }^{\mathrm{T}}$ lignin and related products [1335].
- Also refer to: [1336-1338].
N. B.: Na salt [215].
m.p. (NA); IR [215];

TLC [1334]; GLC [1334,1335]; GC and GC-MS [1332,1333].

Bis(4-hydroxy-3,5-dimethylphenyl)methanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Refer to: Chem. Abstr., 127, 109367s (1997).
m.p. and Spectra (NA).

Bis(4-ethoxy-2-hydroxyphenyl)methanone

[15889-67-5]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33 Synthesis

- Preparation by partial dealkylation of 2-hydroxy-2'-methoxy-4,4'diethoxybenzophenone, 2-hydroxy-2',4,4'-triethoxybenzophenone or 2, $2^{\prime}, 4,4^{\prime}$-tetraethoxybenzophenone with aluminium chloride in chlorobenzene at $80-100^{\circ}$ [655].
m.p. and Spectra (NA).

Bis(2-hydroxy-3-methoxy-5-methylphenyl)methanone

m.p. and Spectra (NA); GC and GC-MS [1332,1333].

Bis(2-hydroxy-4-methoxy-6-methylphenyl)methanone

[78135-60-1]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis

- Preparation by reduction of $4^{\prime}, 6$-dim ethoxy-4,6'-di-methylspiro[78135 $-60-1]-2^{\prime}, 3(2 H)$ dione with zinc dust in acetic acid at r.t. for $1 \mathrm{~h}(94 \%)$ [1339].
m.p. $\quad 159-160^{\circ}$ [1339]; ${ }^{1} \mathrm{H}$ NMR [1339], MS [1339].

Bis(4-hydroxy-3,5-dimethoxyphenyl)methanone

$$
\begin{aligned}
& \text { [34007-64-2] } \quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7} \quad \text { mol.wt. } 334.33 \\
& \text { Synthesis } \\
& \text { - Obtained by heating a mixture of the } \\
& \text { 4,4'-dihydroxy-3,3',5,5'-tetramethoxy- } \\
& \text { diphenylmethane (disyringyl-methane), } 2 \\
& \mathrm{~N} \text { sodium hydroxide and nitrobenzene for } \\
& 2 \mathrm{~h} \text { at } 170^{\circ}(18 \%) \text { [1332,1333]. }
\end{aligned}
$$

m.p. and Spectra (NA); GC and GC-MS [1332,1333].

Bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]methanone

[15577-13-6] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 334.33

Synthesis

- Preparation by bubbling ethylene oxide into a hot mixture of 2,2', 4,4'-tetrahydro xy-benzophenone and aqueous sodium hydroxide during 1 h at 55° (98\%) [1340].
- Also refer to: [93,116].
m.p. 152° [93]; UV [93]; $\mathrm{p} K_{\mathrm{a}}$ [93]; TLC [116].

Bis[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone

[25446-98-4]

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 326.44 Syntheses

- Obtained by photo-Fries rearrangement of p-tert-butylphenyl carbonate,
- in ethanol for 24 h (26\%) [68];
- in benzene for 24 h (36\%) [68];
- in ethylene dichloride [1341], where the rearrangement proceeds via the formation of an intermediate ester, the p-tert-butylphenyl 5-tert-butylsalicylate [1341].
- Also obtained by treatment of $2,2^{\prime}$-dihydroxybenzophenone at 120° with a mixture of isobutylene/nitrogen (1:1) in the presence of a macroreticular acid ion exchanger (Wofatit OK 80) as catalyst for $1 \mathrm{~h}(30 \%)$ [819].
b.p. $._{0.15} 200-205^{\circ}$ [819]; m.p. $104-106^{\circ}$ [68]; $\operatorname{IR}[68]$.

Bis[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone

$$
\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad \text { mol.wt. } 326.44
$$

Synthesis

- Obtained by total demethylation of 5,5'-di-isopropyl-4,4'-dimethoxy-2,2'-dimethyl-benzophenone with refluxing pyridinium chloride (205-215 $)$ for 3 h (26%) [824].
b.p. $0_{0.9} 215-225^{\circ}$ [824]; $\quad \operatorname{Spectra}(N A)$.

Bis[3,5-bis(1,1-dimethylethyl)-2-hydroxyphenyl]methanone

$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{3} \quad$ mol.wt. 438.65
Syntheses

- Preparation by oxidation of bis (2-hydroxy-3,5-di-tert-butylphenyl) methane (SM) with chromium trioxide in acetic anhydride. SM was obtained by condensation of 2,4-di-tert-butylphenol with formaldehyde under acidic condition [1342].
- Preparation by treatment of $2,2^{\prime}$-dihydroxybenzophenone at 120° with a mixture of isobutylene/nitrogen (1:1) in the presence of a macroreticular acid ion exchanger (Wofatit OK 80) as catalyst for 10 h (75\%) [819].
b.p. ${ }_{0.19} 230-240^{\circ}$ [819]; m.p. 202-204ㅇ [1342]; MS [1342].

Bis[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methanone

$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{3}$ mol.wt. 438.65
Synthesis

- Preparation by demethylation of $3,3^{\prime}$, 5,5'-tetra-tert-butyl-4,4'-dimethoxybenzophenone (SM) by means of sodium thioethoxide, under nitrogen, in refluxing
N, N-dimethylformamide for $15 \mathrm{~h}(95 \%)$. SM was obtained by a two-step synthesis: at first, total methylation of $3,3^{\prime}, 5,5^{\prime}$-tetra-tert-butyl-4,4'-dihydroxydiphenylmethane with methyl iodide in the presence of sodium hydride, under nitrogen, in refluxing tetrahydrofuran for 2 h . Then, by adding a solution of chromium trioxide in dilute sulfuric acid to an acetonic solution of the dimethyl ether previously formed (82%) and stirring at r.t. for 70 h , one obtains the expected ketone SM (86\%) [334].
m.p. $226^{\circ} 5-227^{\circ}$ [334]; ${ }^{1} \mathrm{H}$ NMR [334], IR [334].

Bis(2-hydroxy-5-octylphenyl)methanone

$$
\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{3} \quad \text { mol.wt. } 438.65
$$

Synthesis

- Obtained by photo-Fries rearrangement of p-octylphenyl 5-octylsalicylate (major product) [219].
m.p. (NA); UV [219].

Asymmetric ketones

(3,5-Dibromo-2-hydroxyphenyl)(3,5-dibromo-4-hydroxyphenyl)methanone $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{3} \quad$ mol.wt. 529.80

Synthesis

- Preparation by reaction of bromine with 2,4'-dihydroxy-benzophenone in acetic acid (84\%) [1314].
m.p. $193-195^{\circ} 5$ [1314]; \quad Spectra (NA).
(2-Chloro-4-hydroxyphenyl)(2-fluoro-4-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{3} \quad$ mol.wt. 266.65
Synthesis
- Refer to: [901] (compound 32).
m.p. and Spectra (NA).
(2-Chloro-3-hydroxyphenyl)(4-chloro-3-hydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad \text { mol.wt. } 283.11
$$

Synthesis

- Preparation by demethylation of 2,4'-dichloro-3,3'-di-methoxybenzophenone with aluminium chloride in chlorobenzene at 60° for 5.5 h (88\%) [1320].
m.p. $\quad 157-158^{\circ} 5$ [1320]; \quad Spectra (NA).
(2-Chloro-5-hydroxyphenyl)(4-chloro-3-hydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad \text { mol.wt. } 283.11
$$

Synthesis

- Preparation by diazotization of $3^{\prime}, 5$-diamino-2,4'-dichloro-benzophenone, followed by treatment of the diazonium salt obtained with boiling 70% sulfuric acid $\left(160^{\circ}\right)$ for 10 min (32\%) [1320].
m.p. 161° [1320]; $\quad \operatorname{Spectra}(N A)$.
(4-Amino-2-hydroxyphenyl)(2-hydroxy-4-nitrophenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \quad$ mol.wt. 274.23

Syntheses

- Preparation by hydrolysis of 4-aceta mido-2, 2^{\prime}-di-hydroxy-4'-nitrobenzophenone with refluxing 20% hydrochloric acid for 3 h [286].
- Preparation by demethylation of 4-amino-2'-hydroxy-2-methoxy-4'-nitrobenzophenone with 50% hydrobromic acid in refluxing acetic acid for 6 h (78\%) [286]. m.p. $224-226^{\circ}$ [286]; \quad Spectra (NA).
(2-Amino-4-hydroxyphenyl)(4-amino-2-hydroxyphenyl)methanone
[107518-30-9]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \quad$ mol.wt. 244.25
Synthesis
- Preparation from 2-amino-2'-hydroxy-4-methoxy-4'-nitrobenzophenone by refluxing with freshly distilled constant-boiling hydriodic acid at 140° for 7 h (63\%) [286].
m.p. $190-191^{\circ}[286] ; \quad$ Spectra (NA).
(2-Amino-4-hydroxyphenyl)(4-amino-2-hydroxyphenyl)methanone
(Dihydrochloride)
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}, 2 \mathrm{HCl}$ mol.wt. 317.17

Synthesis

- Preparation from 2,4'-diamino-2^{\prime},4-dihydroxy-benzophenone with hydrochloric acid in refluxing dilute ethanol (72\%) [286].

[^3]
(3-Bromo-2-hydroxy-5-methylphenyl)(3,5-dibromo-2-hydroxyphenyl) methanone

	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{3} \quad$ mol.wt. 464.94
$\mathrm{Br} \quad \mathrm{OH} \quad \mathrm{HO} \quad \mathrm{Br}$	Synthesis
- $\mathrm{CO}-1$	- Obtained by reaction of excess bromine with
	2,2'-di-hydroxy-5-methylbenzophenone in acetic
$\mathrm{Br} \quad \mathrm{CH}_{3}$	acid [683].
m.p. 190° [683]; Spe	ra (NA).

(3-Bromo-2-hydroxy-5-methylphenyl)(3,5-dibromo-4-hydroxyphenyl) methanone

$$
\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{3} \quad \text { mol.wt. } 464.94
$$

Synthesis

- Obtained by reaction of bromine with 2,4'-dihydroxy-5-methylbenzophenone in acetic acid [683].
m.p. $\quad 211^{\circ} 5-212^{\circ} 5[683] ; \quad$ Spectra (NA).
(2-Hydroxy-4-methoxy-5-nitrophenyl)(4-hydroxy-3-nitrophenyl)methanone
[67246-05-3]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{8} \quad$ mol.wt. 334.24
Synthesis
- Obtained by reaction of nitric acid (d = 1.42) with 2,4'-dihydroxy-4-methoxybenzophenone in acetic acid at 32° [592].
m.p. 185° [592]; ${ }^{1} \mathrm{H}$ NMR [592].
(2-Chloro-4-hydroxyphenyl)(4-hydroxy-2-methylphenyl)methanone
[98155-83-0]

m.p. and Spectra (NA).
(2-Chloro-4-hydroxyphenyl)(4-hydroxy-2-methoxyphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 278.69

Synthesis

- Refer to: [901] (compound 36).
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69
Synthesis
- Refer to: [901] (compound 34).
m.p. and Spectra (NA).
(4-Chloro-2-hydroxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 278.69

Synthesis

- Preparation by reaction of 2,4-dimethoxybenzoyl chloride with m-chloroanisole in chlorobenzene in the presence of aluminium chloride at 90° [222].
m.p. and Spectra (NA).
(2-Hydroxy-5-methylphenyl)(2-hydroxy-5-nitrophenyl)methanone
[145804-70-2] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

Synthesis

- Obtained by cleavage of 2-methyl-7-nitroxanthone with 10% potassium hydroxide in refluxing methanol for 12 h [719].
m.p. $146-148^{\circ}$ [719]; \quad Spectra (NA).
(3-Chloro-2-hydroxy-5-methylphenyl)(2-hydroxy-5-methylphenyl)methanone
[27404-63-3]

m.p. $146-147^{\circ}$ [1329]; MS [1329].

(2-Hydroxy-4-methoxyphenyl)(2-hydroxy-4-methylphenyl)methanone

[105515-30-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Synthesis

- Refer to: [1343] (Japanese patent).
m.p. and Spectra (NA).
(2-Ethyl-4-hydroxyphenyl)(4-hydroxy-2-methylphenyl)methanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Refer to: [901] (compound 6).
m.p. and Spectra (NA).

(4-Hydroxy-2,5-dimethylphenyl)(4-hydroxy-3-methylphenyl)methanone

m.p. and Spectra (NA).
(4-Ethoxy-2-hydroxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Preparation by reaction of 2,4-dimethoxybenzoyl chloride with 1,3-diethoxybenzene in the presence of aluminium chloride,
- in a chlorobenzene/N,N-dimethylformamide mixture (22:1) at 115° [657];
- in chlorobenzene at 90° [222].
- Preparation by partial demethylation of 4-ethoxy-2-hydroxy-2',4'-dimethoxybenzophenone or 4-ethoxy-2,2', 4^{\prime}-trimethoxybenzophenone with aluminium chloride or aluminium bromide in chlorobenzene at $90-95^{\circ}(\operatorname{good}$ yield) [655].
- Also refer to: [235].
m.p. (NA); UV [235].
(2-Hydroxy-4,6-dimethoxyphenyl)(4-hydroxy-2-methylphenyl)methanone

(2-Hydroxy-3-methoxy-5-methylphenyl)(4-hydroxy-3-methoxyphenyl) methanone

[^4](2-Hydroxy-4,5-dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30

Synthesis

- Preparation by reaction of 2-hydroxy-4-methoxy-benzoic acid with 3,4-dimethoxyphenol in the presence of zinc chloride and phosphorous oxychloride on heating at $65-70^{\circ}$ for 1 h [650].
- Also refer to: [649].
m.p. $147-148^{\circ}$ [650]; IR [650], UV [650].
(4-Hydroxy-3,5-dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone
[62495-38-9] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30

Synthesis

- Preparation by reaction of 3,4,5-trimethoxybenzoic acid with 3-methoxyphenol in the presence of phosphorous oxychloride and zinc chloride at $65-70^{\circ}$ for 2 h (32\%) [1136].
m.p. $\quad 142-143^{\circ}$ [1136]; ${ }^{1} \mathrm{H}$ NMR [1136], IR [1136], UV [1136].

(3-Chloro-6-hydroxy-4-methoxy-2-methylphenyl)
 (3,5-dichloro-2-hydroxy-4-methoxy-6-methylphenyl)methanone

[69709-92-8]

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{O}_{5} \quad$ mol.wt. 405.66
Synthesis

- Preparation by hydrogenolysis of 2, 2^{\prime}-bis (benzyloxy)-3,5,5'-trichloro-4, 4'-dimethoxy-6,6'-dimethylbenzophenone (SM) with hydrogen in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate containing concentrated hydrochloric acid (5 drops) ($>90 \%$) [1339]. SM was obtained by Friedel-Crafts acylation of 5-(benzyloxy)-2-chloro-3-methoxytoluene with 2-(benzyloxy)-3,5-dichloro-4-methoxy-6-methylbenzoic acid in the presence of trifluoroacetic anhydride in refluxing ethylene dichloride for 5 h (28\%).
- Also refer to: [1344].
m.p. $137-138^{\circ}$ [1339]; ${ }^{1} \mathrm{H}$ NMR [1339], MS [1339].

(3-Chloro-2-hydroxy-6-methoxy-4-methylphenyl)(4-hydroxy-2-methoxy-6-methyl-phenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{5} \quad$ mol.wt. 336.77

Synthesis

- Not yet described.

Isolation from natural source

- From cultures of Penicillium patulum [1345].
m.p. $181-182^{\circ}$ [1345]; IR [1345], UV [1345], MS [1345].
(3-Chloro-2-hydroxy-4,6-dimethoxyphenyl)(4-hydroxy-2-methoxy-6-methylphenyl)-methanone
(Griseophenone A)
[2151-17-9]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{6} \quad$ mol.wt. 352.77
Syntheses
- Obtained by acylation of 2-chloro-3-,5-dimethoxy-phenol,
- with 4-acetoxy-2-methoxy-6-methylbenzoyl chloride in the presence of aluminium chloride in nitrobenzene at r.t. for 20 h (35\%) [1189] (Friedel-Crafts reaction);
- with 4-acetoxy-2-methoxy-6-methylbenzoic acid in the presence of trifluoroacetic anhydride at 20° for 18 h (50\%) [1189];
- with 2-methoxy-4-methoxycarbonyl-6-methylbenzoyl chloride in the presence of aluminium chloride in nitrobenzene at r.t. [1346].
- Also obtained by hydrogenation of dehydrogriseofulvin,
- with hydrogen in the presence of Pd / C in ethanol [1347];
- over Rh / C containing 3% of selenium in ethanol (70\%) [1346].
- Also obtained by saponification of two intermediate esters ${ }^{\mathrm{T}}$ (formed in the above reactions) with 2.5% sodium hydroxide in dilute methanol at 25° (quantitative yields) [1189],
Tof 4'-acetoxy-3-chloro-2-hydroxy-2',4,6-trimethoxy-6'-methylbenzophenone; Tof 4'-acetoxy-3-chloro-2-(trifluoroacetoxy)-2',4,6-trimethoxybenzophenone.
- Also obtained from dehydrogriseofulvin by reductive scission with chromous chloride or with zinc in acetic acid [1192].
- Also obtained from 2-chloro-3,5-dimethoxyphenyl 4-hydroxy-2-methoxy-6-methylbenzoate,
- by Fries rearrangement in the presence of titanium tetrachloride in nitrobenzene at 20° for $18 \mathrm{~h}(65 \%)$ [1189];
- by light-catalyzed Fries rearrangement in ethanol (10-15\%) [1192], at 40° for 66 h (8\%) [1189].
- Also refer to: [1348,1349].

Isolation from natural source

- From cultures of Penicillium patulum [1182,1345,1346,1350].
m.p. $213-214^{\circ}$ [1182,1350], $212^{\circ} 5-215^{\circ}$ [1189], 212-214 ${ }^{\circ}$ [1345], 210-212${ }^{\circ}$ [1192]; IR [1182,1345,1346], UV [1192,1345,1346], MS [1345];
paper chromatography [1182].
(3-Fluoro-2-hydroxy-4,6-dimethoxyphenyl)(4-hydroxy-2-methoxy-6-methylphenyl)-methanone
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{6} \quad$ mol.wt. 336.32

Syntheses

- Obtained by addition of 4-acetoxy-2-methoxy-6-methylbenzoic acid to 2-fluoro-3,5-dimethoxy-phenol in the presence of trifluoroacetic anhydride, first at 0°, then at $20-25^{\circ}$ for 20 h (21\%) [1191].
- Preparation by saponification of the corresponding acetate [1190], with 5\% aqueous sodium hydroxide at 20° under nitrogen for 2 h (quantitative yield) [1191].
m.p. $200-203^{\circ}$ [1190], double melting point: $186-190^{\circ}$, then $200-203^{\circ}$ [1191]; IR [1191], UV [1190,1191].
(2-Hydroxy-4-methoxy-6-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl)-methanone
[81574-67-6]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis

- Preparation by reduction of the $2^{\prime}, 6-$ dimethoxy-4,6'-dimethylspiro[81574-67-6]-3(2H), 4^{\prime}-dione (SM) with zinc dust in acetic acid for 1 h (83\%). SM was obtained from methyl 4-methoxy-2-(2,4-dimethoxy-6-methyl-phenoxy)-6methylbenzoate by treatment with titanium tetrachloride and hydrogen chloride for $40 \mathrm{~h}\left(65 \%\right.$, m.p. $\left.190-192^{\circ}\right)$ [1184].
m.p. $\quad 176-177^{\circ}$ [1184]; ${ }^{1} \mathrm{H}$ NMR [1184], MS [1184].
(4-Hydroxy-2,6-dimethoxyphenyl)(2-hydroxy-4-methoxy-6-methylphenyl) methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis
- Preparation by reduction of the $2^{\prime}, 6$, 6'-trimethoxy-4-methylspiro[74628-36-7]-3(2 H), 4^{\prime}-dione (SM) with zinc dust in acetic acid [1183], for $1 \mathrm{~h}(82 \%)$.

SM was obtained from methyl 4-methoxy-2-(2,4,6-trimethoxy-phenoxy) -6-methylbenzoate by treatment with titanium tetrachloride and hydrogen chloride for $12 \mathrm{~h}(90 \%$, m.p. 273-274ㅇ) [1184].
m.p. $\quad 192-193^{\circ}$ [1184]; ${ }^{1} \mathrm{H}$ NMR [1184], MS [1184].
(4-Hydroxy-3,5-dimethoxyphenyl)(2-hydroxy-3-methoxy-5-methylphenyl) methanone

$$
\begin{aligned}
& \text { [25138-53-8] } \\
& \begin{array}{l}
\text { of 2,4'-di-hydroxy-3, } 3^{\prime}, 5^{\prime} \text {-trimethoxy- } 5- \\
\text { methyldiphenylmethane, } 2 \mathrm{~N} \text { sodium hydr- } \\
\text { oxide and nitrobenzene for } 2 \mathrm{~h} \text { at } 170^{\circ}(5 \%) \\
{[1332,1333] .}
\end{array}
\end{aligned}
$$

m.p. and Spectra (NA); GC and GC-MS [1332,1333].
(4-Hydroxy-3,5-dimethoxyphenyl)(5-hydroxy-4-methoxy-2-methylphenyl) methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis

- Obtained (poor yield) by heating a mixture of $4,5^{\prime}$-dihydroxy-3,4',5-trimeth-oxy-2-methyldiphenyl-methane, 2 N sodium hydroxide and nitrobenzene for 2 h at $170^{\circ}(4 \%)$ [1332,1333].
m.p. and Spectra (NA); GC and GC-MS [1332,1333].

[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](2-hydroxy-5-methylphenyl) methanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36

Synthesis

- Obtained by demethylation of $2^{\prime}, 4$-dime-thoxy-2,5'-di-methyl-5-isopropylbenzophenone with pyridinium chloride at reflux (205-215) for 1.5 h (30\%) [824].
b.p. ${ }_{0.7} 200-210^{\circ}$ [824]; \quad Spectra (NA).
(4-Butoxy-2-hydroxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35

Syntheses

- Preparation by partial demethylation of 4-butoxy-2-hydroxy-2', 4^{\prime}-dimethoxybenzophenone with aluminium chloride or aluminium bromide in chlorobenzene at $90-95^{\circ}(\operatorname{good}$ yield $)$ [655].
- Preparation by reaction of 2,4-dimethoxybenzoyl chloride with 1,3-dibutoxybenzene in the presence of aluminium chloride,
- in a chlorobenzene/N,N-dimethylformamide mixture (22:1) at 115° [657];
- in chlorobenzene at 90° [222].
- Also refer to: [235].
m.p. (NA); UV [235].

(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)(4-hydroxy-2,6-dimethoxyphenyl) methanone

[81574-66-5]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35
Synthesis

- Preparation by reduction of $2^{\prime}, 4$, 6,6'-tetramethoxy-5-methyl-spiro [81574-66-5]-3(2H), 4'-dione (SM) with zinc dust in acetic acid for 1 h
(85\%). SM was prepared from methyl 2,4-dimethoxy-6-(2,4,6-trimethoxy-phenoxy)-3-methylbenzoate by treatment with titanium tetrachloride and hydrogen chloride for $65 \mathrm{~h}(78 \%$, m.p. 265-267 $)$ [1184].
m.p. $239-241^{\circ}$ [1184]; ${ }^{1} \mathrm{H}$ NMR [1184], MS [1184].

[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-hydroxy-3,5-dimethylphenyl) methanone

 $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 298.38

Synthesis

- Obtained by photo-Fries rearrangement of 2,6-di-methylphenyl 5-tert-butylsalicylate (by-product) [219].
m.p. and Spectra (NA).

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-chloro-2-hydroxyphenyl) methanone

m.p. $\quad 162^{\circ} 3$ [1301]; Spectra (NA).

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](5-chloro-2-hydroxyphenyl)

 methanone$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClO}_{3} \quad$ mol.wt. 360.88

Synthesis

- Obtained by UV light irradiation of p-chlorophenyl 3,5-di-tert-butyl-4-hydroxybenzoate in isooctane [1301].
m.p. $\quad 164-165^{\circ}$ [1301]; \quad Spectra (NA).
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxy-4-methylphenyl) methanone
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \quad$ mol.wt. 340.46

Synthesis

- Obtained by UV light irradiation of m-cresyl 3,5-di-tert-butyl-4-hydroxybenzoate in isooctane [1301].
m.p. $\quad 126^{\circ}$ [1301]; \quad Spectra (NA).

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxy-5-methylphenyl)

 methanone$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \quad$ mol.wt. 340.46

Synthesis

- Obtained by UV light irradiation of p-cresyl 3,5-di-tert-butyl-4-hydroxybenzoate in isooctane [1301].
m.p. $148-149^{\circ}[1301] ; \quad$ Spectra (NA).

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxy-4-methoxyphenyl) methanone

m.p. $137-138^{\circ}$ [1301]; \quad Spectra (NA).
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxy-5-methoxyphenyl) methanone

m.p. $142-143^{\circ}$ [1301]; \quad Spectra (NA).

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-hydroxy-3,

 5-dimethoxyphenyl)-methanone(54808-43-4]

- with 45% anhydrous hydrobromic acid in acetic acid at r.t. for 48 h (49\%) [334];
- by adding a freshly prepared ethereal magnesium iodide solution to a solution of SM in toluene, elimination of ethyl ether by distillation, toluene being added to maintain the original volume. Then, heating at reflux for $10 \mathrm{~h}(68 \%)$ [334].
m.p. $181^{\circ} 5-182^{\circ} 5$ [334]; ${ }^{1} \mathrm{H}$ NMR [334], IR [334].

[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl][5-(1,1-dimethylethyl)-2-hy-droxy-phenyl]methanone

[125182-26-5]

$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3} \quad$ mol.wt. 382.54 Synthesis

- Obtained by treatment of 2,2'-dihy-droxy-benzophenone at 120° with a mixture of isobutylene/nitrogen (1:1) in the presence of a macroreticular acid ion exchanger (Wofatit OK 80) as catalyst for 5 h (40\%) [819].
b.p. $._{0.15} 215-220^{\circ}[819] ; \quad \operatorname{Spectra}(N A)$.

[4-(Dodecyloxy)-2-hydroxyphenyl](4-hydroxy-3,5-dimethylphenyl)methanone

$$
\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{4} \quad \text { mol.wt. } 426.60
$$

Synthesis

- Obtained by photo-Fries rearrangement of 2,6-di-methylphenyl 4-dodecyloxysalicylate (by-product) [219].
m.p. and Spectra (NA).
[4-(Dodecyloxy)-2-hydroxyphenyl][5-(1,1-dimethylethyl)-2-hydroxyphenyl] methanone

$$
\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{4} \quad \text { mol.wt. } 454.65
$$

Synthesis

- Obtained by photo-Fries rearrangement of p-tert-butylphenyl 4-dodecyloxysalicylate (major product) [219].
m.p. (NA); UV [219].
(2-Hydroxy-4-methoxy-6-methylphenyl)[2-hydroxy-4-(octadecyloxy)phenyl] methanone
[128464-15-3]

$\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{5} \quad$ mol.wt. 526.76
Synthesis
- Refer to: [1351] and [1352] (Japanese patent).
m.p. and Spectra (NA).

2.3 Trihydroxybenzophenones

2.3.1 Hydroxy Groups Located on the Same Ring

2.3.1.1 Substituents Located on the Hydroxylated Ring

Phenyl(2,4,6-trihydroxy-3-methylphenyl)methanone
[68223-56-3] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25

Synthesis

- Preparation by reaction of benzonitrile with 2-methyl-phloroglucinol in the presence of zinc chloride and hydrochloric acid in ethyl ether, followed by hydrolysis of the ketimine hydrochloride so formed (51\%) [805,806].
- Also refer to: [1353,1354] (Chinese papers). m.p. $146-147^{\circ}$ [806], $139-140^{\circ}$ [805]; Spectra (NA).

Phenyl[2,3,4-trihydroxy-5-(hydroxymethyl)phenyl]methanone

m.p. and Spectra (NA).

Phenyl(2,4,6-trihydroxy-3,5-dimethylphenyl)methanone
[22744-25-8]
m.p. 134° [1358]; \quad Spectra (NA).

[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone

[70219-87-3] (E)
[76015-48-0] (Z) $\quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 366.46

Synthesis

- Not yet described.

Isolation from natural sources

- From Leontonyx spathulatus Less. (Compositae) [378];
- From Leontonyx Squarrosus DC (Compositae) [378];
- From Helichrysum crispum Less. (Compositae) [1359];
- From Helichrysum monticola Hilliard (Compositae) [1360]. colourless oil [378,1360]; b.p. (NA);
${ }^{1} H$ NMR [378,1360], IR [378,1360], MS [378,1360].

Phenyl[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]methanone

$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 366.46
Syntheses

- Obtained (poor yield) by reaction of 2-methyl-3-buten-2-ol with 2,4,6-trihydroxybenzophenone in the presence of boron trifluoride-etherate in dioxane at $25-30^{\circ}(6 \%)$ [373].
- Also obtained (poor yield) by reaction of prenyl bromide with 2,4,6 trihydroxybenzophenone in the presence of sodium methoxide in refluxing methanol for 3 h [373], ($<1 \%$) [374].

Isolation from natural sources

- From Leontonyx spathulatus Less and from Leontonyx sqarrosus DC (Compositae) [378];
- From Helichrysum crispum Less (Compositae) [1359].

Colourless oil [378]. This product is impure or in a metastable state. m.p. 94-95 ${ }^{\circ}$ [373,374]; ${ }^{1} \mathrm{H}$ NMR [373,374,378], IR [373,374,378], UV [373,374], MS [378].

2.3.1.2 Substituents Located on the Other Ring

(2,4-Dichlorophenyl)(2,4,6-trihydroxyphenyl)methanone
[61101-87-9] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 299.11
 Synthesis

- Preparation by reaction of 2,4-dichlorobenzoyl chloride with O,O,O-tris(trimethylsilyl) phloroglucinol in the presence of stannic chloride in refluxing methylene chloride for 2 h (76\%) [921]. oily product, not distillable [921]; b.p. and Spectra (NA).
(2-Chlorophenyl)(2,4,6-trihydroxyphenyl)methanone

[^5]
(3-Chlorophenyl)(2,4,6-trihydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad \text { mol.wt. } 264.66
$$

Synthesis

- Preparation by reaction of m-chlorobenzonitrile with phloroglucinol (67\%) (Hoesch reaction) [1256].
m.p. $\quad 169^{\circ} 5-170^{\circ}$ [1256]; Spectra (NA).

(4-Chlorophenyl)(2,3,4-trihydroxyphenyl)methanone

$$
\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad \text { mol.wt. } 264.66
$$

Synthesis

- Preparation by reaction of p-chlorobenzonitrile with pyrogallol in the presence of zinc chloride and hydrochloric acid in ethyl ether, followed by hydrolysis of the resulting ketimine hydrochloride with boiling water for 10 min under carbon dioxide (25%) [439].
m.p. $157-158^{\circ}$ [439]; Spectra (NA).
(4-Chlorophenyl)(2,4,5-trihydroxyphenyl)methanone

HO	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 264.66 Synthesis
	- Preparation by reaction of p-chlorobenzonitrile with hydroxyhydroquinone in the presence of zinc chloride and hydrochloric acid in ethyl ether, followed by hydrolysis of the resulting ketimine hydrochloride with boiling water for 30 min under carbon dioxide (Hoesch reaction) (55\%) [439].

m.p. 260° [439]; $\operatorname{Spectra}(\mathrm{NA})$.
(4-Chlorophenyl)(2,4,6-trihydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 264.66

Synthesis

- Preparation by reaction of p-chlorobenzonitrile with phloroglucinol (43\%) (Hoesch reaction) [1256].
m.p. $169-169^{\circ} 5$ [1256]; \quad Spectra (NA).

(4-Fluorophenyl)(2,3,4-trihydroxyphenyl)methanone

$$
\text { [84795-00-6] } \quad \begin{aligned}
& \text { Synthesis } \\
& \text { - Preparation by reaction of p-fluorobenzo- } \\
& \text { trichloride with pyrogallol in ethanol at } 65^{\circ} \\
& \text { for } 30 \text { min }(80 \%) \text { [1109]. }
\end{aligned}
$$

(2-Nitrophenyl)(2,4,6-trihydroxyphenyl)methanone
[61736-69-4]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{6}$
mol.wt. 275.22

Synthesis

- Obtained by reaction of o-nitrobenzoyl chloride with phloroglucinol in the presence of aluminium chloride in ethyl ether at 0° for $3 \mathrm{~h}(20 \%)$ [1122].
- Also refer to: [974].
m.p. $\quad 182-184^{\circ}$ [1122]; ${ }^{1} \mathrm{H}$ NMR [1122], IR [1122], UV [1122], MS [1122].
(3-Nitrophenyl)(2,4,6-trihydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{6} \quad$ mol.wt. 275.22

Synthesis

- Preparation by reaction of m-nitrobenzonitrile with phloroglucinol in the presence of zinc chloride and hydrochloric acid in ethyl ether, followed by hydrolysis of the resulting ketimine hydrochloride with boiling water for 30 min (Hoesch reaction) [1261,1262].
m.p. $\quad 194^{\circ}$ [1261,1262]; \quad Spectra (NA).
(4-Nitrophenyl)(2,4,6-trihydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{6} \quad$ mol.wt. 275.22
Synthesis
- Preparation by reaction of p-nitrobenzonitrile with phloroglucinol in the presence of zinc chloride and hydrochloric acid, followed by hydrolysis of the resulting ketimine hydrochloride with boiling water for $10-30 \mathrm{~min}$ [1261,1262], (46%) [439] (Hoesch reaction).
m.p. $246-247^{\circ}[1261,1262], 244-245^{\circ}$ [439];
monohydrate [439,1262]; Spectra (NA).
(2-Aminophenyl)(2,3,4-trihydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 245.23

Synthesis

- Refer to: [974].
m.p. and Spectra (NA).
(2-Aminophenyl)(2,4,6-trihydroxyphenyl)methanone $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 245.23
 Synthesis
- Presumably obtained by treatment of 2-nitro$2^{\prime}, 4^{\prime}, 6^{\prime}$-tri-hydroxybenzophenone in the presence of tin and hydrochloric acid at r.t., before cyclodehydration and quantitative conversion into 1,3-dihydroxyacridan-9-one [974].
- Also refer to: [975,1122].
m.p. and Spectra (NA).
(2-Methylphenyl)(2,3,4-trihydroxyphenyl)methanone
[120506-54-9] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25

Synthesis

- Preparation by acylation of pyrogallol with o-toluic acid in the presence of Amberlyst-15 in refluxing toluene with azeotropical water removal [419].
- Also refer to: [1361-1363] (Japanese patents).
m.p. and Spectra (NA).
(4-Methylphenyl)(2,3,4-trihydroxyphenyl)methanone
[120506-55-0]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 244.25
Synthesis
- Preparation by acylation of pyrogallol with p-toluic acid in the presence of Amberlyst-15 in refluxing toluene with azeotropical water removal [419].
m.p. and Spectra (NA).

(2-Methoxyphenyl)(2,3,4-trihydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 260.25

Synthesis

- Preparation by condensation of pyrogallol and o-anisic acid with boron trifluoride-etherate in carbon tetrachloride [1254], according to [360].
m.p. and Spectra (NA).
(3-Methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone

(4-Methoxyphenyl)(2,3,4-trihydroxyphenyl)methanone
[105443-50-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
Synthesis
- Preparation by reaction of p -anisic acid with pyrogallol,
- in tetrachloroethane bubbling boron trifluoride at 110° for 1 h (84\%) [420];
- in the presence of Amberlyst-15 in refluxing toluene with azeotropical water removal [419].
- Also refer to: [1364].
m.p. and Spectra (NA).
(4-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis
- Preparation by reaction of p-ethoxybenzoic acid with pyrogallol in the presence of boron trifluoride-ethyl ether complex at 100° for $2 \mathrm{~h}(73 \%)$ [1168].
m.p. $104-105^{\circ}$ [1168]; ${ }^{1} \mathrm{H}$ NMR [1168], IR [1168], MS [1168].
(2,6-Dimethoxyphenyl)(2,4,6-trihydroxyphenyl)methanone
[61101-86-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 290.27

Syntheses

- Preparation by reaction of 2,6-dimethoxybenzoyl chloride with O,O,O-tris(trimethylsilyl) phloroglucinol in the presence of stannic chloride in refluxing methylene chloride for 2 h (64\%) [921].
- Also obtained (poor yield) by reaction of 2,6-dimethoxy-benzonitrile with phloroglucinol in the presence of zinc chloride and hydrochloric acid in ethyl ether at 0° for 5 days, followed by hydrolysis of the resulting ketimine with boiling water for 2 h (7\%) (Hoesch reaction) [439].
m.p. $216-218^{\circ}$ [439], 195-202 ${ }^{\circ}$ (d) [921]; Spectra (NA).

(2,4-Dimethoxy-6-methylphenyl)(2,4,6-trihydroxyphenyl)methanone

[38071-50-0]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30
Synthesis

- Obtained by treatment of methyl 7-(4-orcinyl)-3,5,7-trioxoheptanoate dimethyl ether with aqueous potassium hydroxide (25\%) [1365].
m.p. and Spectra (NA).

2.3.2 Hydroxy Groups Located on Both Rings

2.3.2.1 Substituents Located on One Ring

(2-Chloro-3-hydroxyphenyl)(2,6-dihydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 264.66

Synthesis

- Preparation by reaction of 2-chloro-3-hydroxybenzoyl chloride with bis(trimethylsilyl) derivative of resorcinol in the presence of stannic chloride (or titanium tetrachloride or aluminium chloride) in refluxing methylene chloride for 2 h [921].

[^6]
(4-Chloro-2-hydroxyphenyl)(2,4-dihydroxyphenyl)methanone

[95481-60-0]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 264.66 Synthesis

- Preparation by reaction of 4-chlorosalicylic acid with resorcinol in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid (60:40) at 27°. Then, during 2 h , phosphorous trichloride was added between 27° and 37° and the mixture heated at 60° for 16 h [194].
- Also refer to: [1366].
pale yellow crystals [194]; m.p. and Spectra (NA).
(2,4-Dihydroxy-3-nitrophenyl)(2-hydroxyphenyl)methanone
[69169-87-5] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{6} \quad$ mol.wt. 275.22

Synthesis

- Obtained (poor yield) by action of salicylic acid with 2-nitroresorcinol in the presence of zinc chloride and phosphorous oxychloride at $60-65^{\circ}$ for $3 \mathrm{~h}(10 \%)$ [406].
m.p. $\quad 118-120^{\circ}[406] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(3,4-Dihydroxy-5-nitrophenyl)(4-hydroxyphenyl)methanone

[134612-51-4]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{6} \quad$ mol.wt. 275.22
Synthesis

- Preparation by demethylation of 3,4'-dime-thoxy-4-hydroxy-5-nitrobenzophenone with hydrobromic acid in refluxing acetic acid [1019].
m.p. $212-214^{\circ}[1019] ; \quad$ Spectra (NA).

(2,6-Dihydroxyphenyl)(3-hydroxy-2-nitrophenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{6} \quad$ mol.wt. 275.22

Synthesis

- Preparation by reaction of 3-hydroxy-2-nitrobenzoyl chloride with bis(trimethylsilyl) derivative of resorcinol in the presence of stannic chloride (or titanium tetrachloride or aluminium chloride) in refluxing methylene chloride for 2 h [921].
m.p. and Spectra (NA).

(2,4-Dihydroxy-3-methylphenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Synthesis

- Preparation by reaction of salicylic acid with 2-methyl-resorcinol in the presence of zinc chloride and phosphorous oxychloride for 4 h at $60-65^{\circ}$ (55\%) [303].
m.p. $145^{\circ} 5-147^{\circ}$ [303]; ${ }^{1} \mathrm{H}$ NMR [303], IR [303], UV [303], MS [303].

(2,4-Dihydroxy-3-methylphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 244.25

Syntheses

- -Preparation by condensation of m-acetoxybenzonitrile with 2 -methylresorcinol in the presence of zinc chloride in ethyl ether (Hoesch reaction) (42\%) [413].
- -Also obtained by [414] according to the method [415].
m.p. $\quad 181^{\circ}$ [413]; \quad Spectra (NA).

(2,4-Dihydroxy-3-methylphenyl)(4-hydroxyphenyl)methanone

[79861-84-0]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 244.25

Synthesis

- Preparation by reaction of p-hydroxybenzoic acid with 2-methylresorcinol in tetrachloroethane in the presence of boron trifluoride at 80° for $4 \mathrm{~h}(79 \%)$ [224].
m.p. $227-228^{\circ}$ [224]; ${ }^{1} \mathrm{H}$ NMR [224].
(2,4-Dihydroxy-5-methylphenyl)(3-hydroxyphenyl)methanone
[61227-14-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses
- Preparation by condensation of m-acetoxybenzonitrile with 4-methylresorcinol (Hoesch reaction) (70\%) [413].
- Also obtained by [414] according to the method [415].
m.p. $\quad 180^{\circ}$ [413]; $\quad \operatorname{Spectra}(\mathrm{NA})$.

(2,6-Dihydroxy-4-methylphenyl)(4-hydroxyphenyl)methanone

[190728-23-5]

m.p. and Spectra (NA).

(2,4-Dihydroxyphenyl)(2-hydroxy-3-methylphenyl)methanone

[107412-87-3] $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25 Synthesis

- Preparation by heating o-cresotic acid (3-methylsalicylic acid or 2-hydroxy-3-methylbenzoic acid) and resorcinol with zinc chloride and phosphorous oxychloride [1367].
m.p. $116-117^{\circ}[1367] ; \quad$ Spectra (NA).
(2,4-Dihydroxyphenyl)(2-hydroxy-4-methylphenyl)methanone
[92254-59-6]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Synthesis
- Refer to: Chem. Abstr., 127, 34137f (1997).
 $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25 Synthesis
- Preparation by reaction of 4-methylsalicylic acid (m-cresotic acid or 2-hydroxy-4-methylbenzoic acid) with resorcinol,
- in the presence of zinc chloride and a mixture of polyphosphoric acid/85\% phosphoric acid ($60: 40$) at 27°. Then, during 2 h , phosphorous trichloride was added between 27° and 37° and the mixture heated at 60° for 16 h [194];
- in the presence of zinc chloride and phosphorous oxychloride [1367].
- Also refer to: [1368].
pale yellow crystals [194]; m.p. $153-154^{\circ}$ [1367]; Spectra (NA).

(2,4-Dihydroxyphenyl)(4-hydroxy-2-methylphenyl)methanone

[4520-99-4]

m.p. (NA); MS [114].
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Synthesis

- Refer to: [114].

(2,4-Dihydroxyphenyl)(5-hydroxy-2-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Synthesis

- Preparation by condensation of 5-hydroxy-2methylbenzoic acid with resorcinol in the presence of zinc chloride and phosphorous oxychloride at 75° for $1 \mathrm{~h}(78 \%)$ [1369].
m.p. $\quad 162^{\circ}$ [1369]; ${ }^{1} \mathrm{H}$ NMR [1369], IR [1369], UV [1369], MS [1369].
(2,4-Dihydroxy-6-methoxyphenyl)(3-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Syntheses
- Preparation by condensation of m-acetoxybenzonitrile with phloroglucinol monomethyl ether (Hoesch reaction) (33\%) [413].
- Also obtained by [414] according to the method [415].
m.p. $\quad 178^{\circ}[413] ; \quad \operatorname{Spectra}(N A)$.
(2,4-Dihydroxy-6-methoxyphenyl)(4-hydroxyphenyl)methanone
[56308-11-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 260.25
Synthesis
- Refer to: [1370].
m.p. and Spectra (NA).
(2,5-Dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl)methanone
[58115-06-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Synthesis
- Obtained by partial demethylation of 2-hydroxy-4,4',5-trimethoxybenzoenone with hydriodic acid in acetic anhydride [428].

Isolation from natural source

- From Dalbergia melanoxylon Guill. et Perr. heartwood (LeguminosaeLotoideae) [428].
m.p. 228-2295 [428]; ${ }^{1} \mathrm{H}$ NMR [428].

(2,6-Dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Synthesis

- Refer to: [1371].

Isolation from natural sources

- From Aniba duckei Kostern (Lauraceae) [1286];
- From rhizome of Anemarrhena asphodeloides [1372], according to [1371] or from Anemarrhena asphodeloides Bge [1373].
m.p. $179-181^{\circ}$ [1286], $146-150^{\circ}$ [1373]. There is discrepancy between the two melting points.
${ }^{1} \mathrm{H}$ NMR [1286,1373], ${ }^{13} \mathrm{C}$ NMR [1373], IR [1286],
UV [1286], MS [1286,1373]; TLC [1372].

(2,3-Dihydroxyphenyl)(2-hydroxy-6-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Synthesis

- Preparation by partial demethylation of $2,2^{\prime}, 3^{\prime}$, 6-tetra-methoxybenzophenone with boron tribromide in benzene at r.t. for $5 \mathrm{~h}(76 \%)$ [412].
m.p. $147-150^{\circ}$ [412]; ${ }^{1} \mathrm{H}$ NMR [412], IR [412], UV [412], MS [412].
(2,4-Dihydroxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone
[7392-62-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Synthesis
- Obtained by action of 2-hydroxy-4methoxybenzoic acid with resorcinol in the presence of zinc chloride and phosphorous oxychloride at $60-65^{\circ}$ for 3 h (30\%) [406].
- Also refer to: [405,1135,1374].
m.p. $\quad 101-102^{\circ}[406] ; \quad \operatorname{Spectra}(N A)$.

(2,4-Dihydroxyphenyl)(4-hydroxy-2-methoxyphenyl)methanone

[71655-03-3] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25

Synthesis

- Preparation by reaction of β-resorcylic acid with resorcinol monomethyl ether in the presence of zinc chloride and a mixture
of polyphosphoric acid $/ 85 \%$ phosphoric acid (60:40) at 27°. Then, during 2 h , phosphorous trichloride was added between 27° and 37° and the mixture heated at 60° for 16 h [194].
- Also refer to: [1375] (Japanese patent). yellow crystals [194]; m.p. and Spectra (NA).

(2,4-Dihydroxyphenyl)(4-hydroxy-3-methoxyphenyl)methanone

 $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25 Synthesis

- Preparation by reaction of vanillonitrile (4-hydroxy-3-methoxybenzonitrile) with resorcinol (Hoesch reaction) (20\%) [440].
m.p. 210° [440]; \quad Spectra (NA).

(2,4-Dihydroxyphenyl)(5-hydroxy-2-methoxyphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Synthesis

- Preparation by treatment of N -[5-acetoxy-α-(2,4-di-hydroxyphenyl)-2-methoxybenzylidene]aniline with 20% sulfuric acid at reflux for 5 h under nitrogen (92\%) [413].
m.p. $\quad 194^{\circ}$ [413]; IR [413].

(2,5-Dihydroxyphenyl)(2-hydroxy-4-methoxy-6-methylphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis

- Preparation by partial demethylation of $2^{\prime}, 5^{\prime}-$ dihydroxy-2,4-dimethoxy-6-methylbenzophenone with boron trichloride in methylene chloride at r.t. for 5 days (82%) [1167].
m.p. $176-179^{\circ}$ [1167]; ${ }^{1} \mathrm{H}$ NMR [1167], IR [1167], UV [1167].

(2,4-Dihydroxy-3-propylphenyl)(2-hydroxyphenyl)methanone

$$
\begin{aligned}
& \text { [115296-04-3] } \\
& \begin{array}{l}
\text { Oxy-3-propylbenzophenone or of 2,4-dimeth- } \\
\text { oxy-2'-hydroxy-3-propylbenzophenone with } \\
\text { pyridinium chloride at } 180^{\circ} \text { for } 3 \mathrm{~h} \text { [1029]. }
\end{array} \\
& \text { - Also refer to: [168]. }
\end{aligned}
$$

m.p. $\quad 110-113^{\circ}[1029] ; \quad$ Spectra (NA).

[2,4-Dihydroxy-5-(1,1-dimethylethyl)phenyl](2-hydroxyphenyl)methanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad \text { mol.wt. } 286.33
$$

Synthesis

- Preparation by alkylation of 2,2',4-trihydroxybenzophenone with isobutylene in benzene in the presence of p-toluenesulfonic acid for 2 h at $65-75^{\circ}(70 \%)[835,836]$.
m.p. $194-196^{\circ}$ [835,836]; UV [836].

(2,4-Dihydroxyphenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl] methanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33

Synthesis

- Obtained by demethylation of $2^{\prime}, 4,4^{\prime}$ -trimethoxy-2-methyl-5-isopropylbenzophenone in refluxing pyridinium chloride (205-215 $)$ for $1.3 \mathrm{~h}(34 \%)$ [824].
b.p. ${ }_{0.9} 220-230^{\circ}$ [824]; \quad Spectra (NA).
[2,4-Dihydroxy-5-(1,1-dimethylpropyl)phenyl](2-hydroxyphenyl)methanone

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \quad \text { mol.wt. } 300.35
$$

Synthesis

- Preparation by alkylation of 2,2',4-trihy-droxy-benzophenone with 2-methylbutene in benzene in the presence of concentrated sulfuric acid (82\%) [835].
m.p. $\quad 142-144^{\circ}[835,836] ; \quad$ Spectra (NA).
[2,4-Dihydroxy-5-(2-propenyl)-3-propylphenyl](2-hydroxyphenyl)methanone

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37
Synthesis
- Obtained (poor yield) by heating 4-allyloxy-2,2'-dihydroxy-3-propylbenzophenone at 180° for $6 \mathrm{~h}(19 \%)$ [1029] (Claisen rearrangement).
m.p. and Spectra (NA).
[5-(1,1-Dimethylbutyl)-2,4-dihydroxyphenyl](2-hydroxyphenyl)methanone

$$
\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \quad \text { mol.wt. } 314.38
$$

Synthesis

- Preparation by alkylation of $2,2^{\prime}, 4$-tri-hydroxy-benzophenone with 2-methylpentene in benzene in the presence of concentrated sulfuric acid [835].
m.p. $125^{\circ}[835,836] ; \quad$ Spectra (NA).
(2,4-Dihydroxy-3,5-dipropylphenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 314.38

Synthesis

- Preparation by catalytic hydrogenation of 5-allyl-3-propyl-2,2',4-trihydroxybenzophenone in ethyl acetate in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ (94\%) [1029].
m.p. $\quad 110-112^{\circ}[1029] ; \quad$ Spectra (NA).

[2,4-Dihydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl](2-hydroxyphenyl)

 methanone$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 342.44

Synthesis

- Preparation by alkylation of $2,2^{\prime}$, 4-trihydroxy-benzophenone with 2,2,4-trimethylpentene in benzene in the presence of concentrated sulfuric acid [835].
m.p. $\quad 165-168^{\circ}[835,836] ; \quad$ Spectra (NA).
(2,4-Dihydroxyphenyl)(2-hydroxy-5-nonylphenyl)methanone
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 356.46

Synthesis

- Preparation by reaction of β-resorcylic acid with p-nonyl-phenol in the presence of a mixture of polyphosphoric acid $/ 85 \%$ phosphoric acid (60:40) at $40-45^{\circ}$. Then, during 2 h , phosphorous trichloride was added and the mixture heated at 60° for $16 \mathrm{~h}(73 \%)$ [194].
m.p. and Spectra (NA).

2.3.2.2 Substituents Located on Both Rings

(2,4-Dihydroxy-3,5,6-trinitrophenyl)(4-hydroxy-3-nitrophenyl)methanone
[67246-03-1]

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{12} \quad$ mol.wt. 410.21
Synthesis

- Obtained by reaction of nitric acid $(\mathrm{d}=1.42)$ with 4-hydroxy- $2^{\prime}, 4^{\prime}$-dimethoxybenzop henone in acetic acid at 32° [592].
m.p. 110° [592]; ${ }^{1} \mathrm{H}$ NMR [592].
(2,4-Dihydroxy-3-methylphenyl)(5-hydroxy-2-methoxyphenyl)methanone
[61227-17-6]

 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27 Synthesis
- Preparation by hydrolysis of N-[5-acetoxy-α-(2,4-di-hydroxyphenyl)-2-methoxy-3-methylbenzylidene]aniline with refluxing 20% sulfuric acid under nitrogen during 2 h (90\%) [413].
m.p. 210° [413]; \quad Spectra (NA).
(2,4-Dihydroxy-5-methylphenyl)(5-hydroxy-2-methoxyphenyl)methanone $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
 Syntheses
- Preparation by hydrolysis of N -[5-acetoxy- α -(2,4-di-hydroxyphenyl)-2-methoxy-5-meth ylbenzylidene]-aniline with refluxing 20\% sulfuric acid during 5 h under nitrogen (90%) [413].
- Also obtained by [414] according to the method [415].
m.p. $\quad 199^{\circ}$ [413]; \quad Spectra (NA).
(2,4-Dihydroxy-6-methylphenyl)(5-hydroxy-2-methoxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis
N.B.: This compound, mentioned in [Chem. Abstr., 86, 16504d (1977)], is not described in the original paper [413], where the sole corresponding ketone indicated is the $2,4,5^{\prime}$ -trihydroxy-2'-methoxy-5-methylbenzophenone or (2,4-dihydroxy-5-methylphenyl) (5-hydroxy-2-methoxy-phenyl)methanone.
m.p. and Spectra (NA).

(2,5-Dihydroxy-4-methoxyphenyl)(3-hydroxy-4-methoxyphenyl)methanone (Melanoxoin)

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 290.27
Synthesis

- Not yet described.

Isolation from natural source

- From Dalbergia melanoxylon Guill. et Perr. heartwood (LeguminosaeLotoideae) [428].
m.p. $232-234^{\circ}$ [428]; IR [428], UV [428].
(2,6-Dihydroxy-4-methoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 290.27

Synthesis

- Obtained by condensation of 2,3-dimethoxybenzoic acid and 1,3,5-trimethoxybenzene in the presence of aluminium chloride, zinc chloride and phosphorous oxychloride, prior to cyclisation into 1-hydroxy-3,5-di-methoxyxanthone [1241].
m.p. and Spectra (NA).

(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3,5-dichloro-2-hydroxy-4-methoxy-6-methylphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{5} \quad$ mol.wt. 391.63
Synthesis

- Preparation by hydrogenolysis of 2,2', 4'-tris-(benzyloxy)-3,5,5'-trichloro-4-methoxy-6,6'-di-methylbenzophenone (SM) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate containing concentrated hydrochloric acid (5 drops) ($>90 \%$) [1339]. SM was obtained by Friedel-Crafts acylation of 3,5-bis(benzyloxy)-2-chlorotoluene with 2-(benzyloxy)-3,5-dichloro-4-methoxy-6-methylbenzoic acid in the presence of trifluoroacetic anhydride in refluxing ethylene dichloride for 5 h (42%).
- Also refer to: [1344].

$$
\text { m.p. } \quad 168^{\circ} 5-169^{\circ} 5 \text { [1339]; }{ }^{1} \mathrm{H} \text { NMR [1339], MS [1339]. }
$$

(3-Chloro-6-hydroxy-4-methoxy-2-methylphenyl)(3,5-dichloro-2,4-dihydroxy-6-methylphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{5} \quad$ mol.wt. 391.63

Synthesis

- Preparation by hydrogenolysis of 2,2',4-tris-(benzyloxy)-3,5,5'-trichloro-4^{\prime}-methoxy-6,6'-di-methylbenzophenone (SM) in the presence of 10% Pd / C in ethyl acetate containing concentrated hydrochloric acid (5 drops) ($>90 \%$) [1339]. SM was obtained by Friedel-Crafts acylation of 5-(benzyloxy)-2-chloro-3-methoxytoluene with 2,4-bis-(benzyloxy)-3,5-dichloro-6-methylbenzoic acid in the presence of trifluoroacetic anhydride in refluxing ethylene dichloride for $5 \mathrm{~h}(42 \%)$.
m.p. 174-1755 [1339]; ${ }^{1} \mathrm{H}$ NMR [1339], MS [1339].
(3,5-Dibromo-2-hydroxy-4-methoxy-6-methylphenyl)(2,4-dihydroxy-6-methylphenyl)-methanone
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{5} \quad$ mol.wt. 446.09

Synthesis

- Preparation by hydrogenolysis of 2,2', 4'-tris-(benzyloxy)-3,5-dibromo-4-methoxy-6,6'-dimethyl-benzophenone (SM) in the presence of 10%
Pd / C in ethanol/ethyl acetate mixture at r.t. and atmospheric pressure. SM was obtained by condensation of orcinol dibenzyl ether with 3,5-dibromoeverninic acid benzyl ether in the presence of a trifluoroacetic anhydride/trifluoroacetic acid mixture under nitrogen in refluxing chloroform for 5 h [1376].
m.p. and Spectra (NA).
(3,5-Dibromo-2-hydroxy-6-methoxy-4-methylphenyl)(2,4-dihydroxy-6-methylphenyl)-methanone
[39803-81-1]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{5} \quad$ mol.wt. 446.09
Synthesis
- Preparation by hydrogenolysis of 2, 2', 4^{\prime}-tris-(benzyloxy)-3,5-dibromo-6-methoxy-4,6'-dimethyl-benzophenone (SM) in ethanol/trifluoroacetic acid mixture in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at atmospheric pressure (quantitative yield). SM was obtained by condensation of O-benzyl-O-methyl-3,5-dibromo- γ-orsellinic acid-2-(benzyloxy)-3,5-dibromo-6-methoxy-4-methylbenzoic acid-with orcinol dibenzyl ether in the presence of trifluoroacetic anhydride/trifluoroacetic acid mixture under nitrogen in refluxing chloroform for 6.25 h [1376].
m.p. and Spectra (NA).

(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3-chloro-6-hydroxy-4-methoxy-2-methylphenyl)methanone

[78135-54-3]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{5} \quad$ mol.wt. 357.19
Synthesis

- Preparation by hydrogenolysis (4 bars) of 4,6,6'-tris(benzyloxy)-3,3'-dichloro-4'-methoxy-2,2'-dimethylbenzophenone (m.p. $168-169^{\circ}$) in ethyl acetate in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ and 5 drops of concentrated hydrochloric acid (75\%) [1377].
m.p. $\quad 180-182^{\circ}$ [1377]; ${ }^{1} \mathrm{H}$ NMR [1377], IR [1377].
(3,5-Dichloro-2,6-dihydroxy-4-methylphenyl)(2-hydroxy-4-methoxy-6-methylphenyl)-methanone
[23565-77-7]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{5} \quad$ mol.wt. 357.19
Synthesis
- Obtained (poor yield) by photo-Fries rearrangement of 2,4-dichloro-5-hy-droxy-3-methylphenyl 2-hydroxy-4-methoxy-6-methylbenzoate in ethanol at 20° for $75 \mathrm{~h}(3 \%)$ [754].
m.p. $142-144^{\circ}$ [754]; ${ }^{1} \mathrm{H}$ NMR [754], IR [754], UV [754].
(3,5-Dichloro-2-hydroxy-4-methoxy-6-methylphenyl)(2,4-dihydroxy-6-methylphenyl)-methanone
[39803-63-9]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{5} \quad$ mol.wt. 357.19
Synthesis
- Preparation by hydrogenolysis of 2, $2^{\prime}, 4^{\prime}$-tris-(benzyloxy)-3,5-dichloro-4-methoxy-6,6'-dimethyl-benzophenone (SM) in the presence of 10%
Pd / C in ethanol containing a few drops of trifluoroacetic acid for $3-4 \mathrm{~h}$. SM was obtained by condensation of orcinol dibenzyl ether with 3,5-dichloroeverninic acid benzyl ether in the presence of a trifluoroacetic anhydride/trifluoroacetic acid mixture in refluxing chloroform for 6 h [1376].
m.p. and Spectra (NA).

(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3-chloro-6-hydroxy-2, 4-dimethoxyphenyl)-methanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{6} \quad$ mol.wt. 373.19
Synthesis

- Preparation by hydrogenolysis of 4,6, 6'-tris-(benzyloxy)-3,3'-dichloro-2', $\mathbf{4}^{\prime}$ -dimethoxy-2-methyl-benzophenone (SM) in ethyl acetate/tetrahydrofuran in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at $25^{\circ}(29 \%)$. SM was obtained by condensation of 4,6-bis(benzyloxy)-3-chloro-2-methylbenzoic acid with 4-chloro-3,5-dimethoxyphenol benzyl ether in the presence of trifluoroacetic anhydride in methylene chloride under nitrogen for 20 min [1179].

(3-Chloro-2,6-dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methoxy -6-methylphenyl)-methanone
(Griseophenone B)
[3811-00-5] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{6}$ mol.wt. 338.74

Synthesis

- Not yet described.

Isolation from natural source

- From cultures of Penicillium patulum [1182,1350].
- Also refer to: [1348,1349,1378-1382].
m.p. $204^{\circ} 5-205^{\circ} 5$ [1182]; IR [1182], UV [1182].

(3-Chloro-6-hydroxy-2,4-dimethoxyphenyl)(2,4-dihydroxy-6-methylphenyl) methanone

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{6} \quad$ mol.wt. 338.74
Synthesis

- Preparation by hydrogenolysis of $2^{\prime}, 4^{\prime}$,6-tris-(benzyloxy)-3-chloro-2,4-dimethoxy-6'-methyl-benzophenone (SM) in ethyl acetate/tetrahydrofuran in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 25°. SM was obtained by condensation of 2,4-bis(benzyloxy)-6-methylbenzoic acid with 4-chloro-3,5-dimethoxyphenol benzyl ether in the presence of trifluoroacetic anhydride in methylene chloride under nitrogen for 15 min (61\%) [1179].
m.p. $181-182^{\circ}$ [1179]; ${ }^{1} \mathrm{H}$ NMR [1179], IR [1179], MS [1179].
(3,6-Dihydroxy-2,4-dimethylphenyl)(2-hydroxy-6-methoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis
- Preparation by partial demethylation of 3-hydroxy-2',6,6'-trimethoxy-2,4-dimethylbenzophenone with boron tribromide in methylene chloride (quantitative yield) [1181].
m.p. $\quad 188-191^{\circ}$ [1181]; ${ }^{1} \mathrm{H}$ NMR [1181], IR [1181], UV [1181], MS [1181].

(2,4-Dihydroxy-6-methylphenyl)(2-hydroxy-4-methoxy-6-methylphenyl) methanone

[21147-34-2]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Preparation by hydrogenolysis of 2 , 2',4'-tris-(benzyloxy)-4-methoxy-6,6'dimethylbenzophenone (SM) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate containing concentrated hydrochloric acid (5 drops) [1339]. SM was obtained by Friedel-Crafts acylation of 3,5-bis(benzyloxy)toluene with 2-(benzyloxy) -4- methoxy-6-methylbenzoic acid in the presence of trifluoroacetic anhydride in refluxing ethylene dichloride for 5 h (95\%).
- Also obtained by photo-Fries rearrangement of 5-hydroxy-3-methylphenyl 2-hydroxy-4-methoxy-6-methylbenzoate in ethanol at r.t. for $80 \mathrm{~h}(21 \%)$ [754]. m.p. $158-160^{\circ}$ [1339], $158-159^{\circ}$ [754];
${ }^{1} \mathrm{H}$ NMR [754,1339], IR [754], UV [754], MS [114,1339].

(2,4-Dihydroxy-6-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl) methanone

[^7]
(2,6-Dihydroxy-4-methylphenyl)(2-hydroxy-4-methoxy-6-methylphenyl) methanone

[21147-33-1]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Obtained (poor yields) by photo-Fries rearrangement of two esters in ethanol at r.t.,
- from 3-hydroxy-5-methylphenyl 2-hydroxy-4-methoxy-6-methylbenzoate during 80 h (5\%) [754];
- from 3-methoxy-5-methylphenyl 2,6-dihydroxy-4-methylbenzoate during 60 h (<2\%) [754].
- Preparation by hydrogenolysis of $3^{\prime}, 5^{\prime}$-dichloro-2,2',6'-trihydroxy-4-methoxy-4', 6-dimethyl-benzophenone in the presence of Pd / C in 1 N sodium hydroxide [754].
m.p. 56-58 ${ }^{\circ}$ [754]; ${ }^{1} \mathrm{H}$ NMR [754], IR [754], UV [754], MS [114].

(2,6-Dihydroxy-4-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl) methanone

[23565-89-1]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Obtained (by-product) by reaction of orcinol with 2-methoxy-4-O-methoxy-carbonyl-6-methylbenzoic acid in trifluoroacetic anhydride, first at 0° for 30 min , then at 20° for $15 \mathrm{~h}(11 \%)$ [754].
m.p. $\quad 139-140^{\circ}$ [754]; ${ }^{1} \mathrm{H}$ NMR [754], IR [754], UV [754].

(2,6-Dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methoxy-6-methylphenyl) methanone

(Griseophenone C)
[3733-72-0]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30
Synthesis

- Not yet described.

Isolation from natural source

- From cultures of Penicillium patulum [1182,1350,1383].
- Also refer to: [1349,1365,1378,1379,1382].
m.p. $183-185^{\circ}$ [1350], $183-184^{\circ}$ [1182], $175-178^{\circ}$ [1383];
${ }^{1} \mathrm{H}$ NMR [1383], IR [1182], UV [1182].

(3-Chloro-6-hydroxy-4-methoxy-2,5-dimethylphenyl)(2,4-dihydroxy-6-methylphenyl)-methanone

[60138-98-9] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{5} \quad$ mol.wt. 336.77

Synthesis

- Preparation by hydrogenolysis of $2,2^{\prime}, 4-$ tris-(benzyloxy)-5'-chloro-4'-methoxy$3^{\prime}, 6,6^{\prime}$-trimethyl-benzophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate containing a small quantity of concentrated hydrochloric acid (89\%) [1384].
m.p. $\quad 157-158^{\circ}$ [1384]; ${ }^{1} \mathrm{H}$ NMR [1384].
(3,5-Dichloro-2,6-dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methyl-6-propoxyphenyl)-methanone

[72614-88-1]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{6} \quad$ mol.wt. 401.24
Synthesis

- Obtained by transformation of the 2-propoxy analog of griseophenone B by Penicillium urticae [1379], (10\%) [1378].
m.p. (NA); MS [1378,1379].

(3-Chloro-6-hydroxy-4-methoxy-2,5-dimethylphenyl)(2,4-dihydroxy-3,6-dim-ethyl-phenyl)methanone

[61852-15-1]

$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{5} \quad$ mol.wt. 350,80
Synthesis

- Preparation by hydrogenolysis of $2,2^{\prime}$,-4'-tris-(benzyloxy)-5-chloro-4-methoxy3, $3^{\prime}, 6,6^{\prime}$-tetra-methylbenzophenone (SM) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate containing concentrated hydrochloric acid (3 drops) (quantitative yield) [1385], ($>90 \%$) [1339]. SM was obtained by Friedel-Crafts acylation of 1,3-bis(benzyloxy)-2,5-dimethylbenzene with 2-(benzyloxy)-5-chloro-4-meth-oxy-3,6-dimethylbenzoic acid in the presence of trifluoroacetic anhydride in methylene chloride at r.t. for $5.5 \mathrm{~h}(40 \%)$ [1339].
- Also refer to: [1344].
m.p. $\quad 176-177^{\circ}$ [1339,1385]; ${ }^{1} \mathrm{H}$ NMR [1385], IR [1385], MS [1385].

(3-Chloro-2,6-dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methyl -6-propoxyphenyl)-methanone

[69218-66-2] $\quad \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{6} \quad \mathrm{~mol}$.wt. 366.80

Synthesis

- Refer to: $[1378,1379]$ (this compound is a 2-propoxy analog of griseophenone B).
m.p. and Spectra (NA).

[3-Bromo-6-hydroxy-4-methoxy-5-methyl-2-(1-methylpropyl)phenyl] (2,4-dihydroxy-6-methylphenyl)methanone

[67097-17-0]

$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrO}_{5} \quad$ mol.wt. 423.30
Synthesis

- Preparation by hydrogenolysis of 2, 2',4'-tris-(benzyloxy)-5-bromo-4-methoxy-3,6'-dimethyl-6-sec-butylbenzophenone in the presence of 10% Pd / C in ethyl acetate containing a small quantity of concentrated hydrochloric acid (89\%) [1386].
- Also refer to: [1339,1344].
m.p. $185-188^{\circ}$ [1386], hydrate: $97-101^{\circ}$ [1386];
${ }^{1} \mathrm{H}$ NMR [1386], MS [1386].

[3-Chloro-6-hydroxy-4-methoxy-5-methyl-2-(1-methylpropyl)phenyl] (2,4-dihydroxy-6-methylphenyl)methanone

[78023-64-0]
m.p. $\quad 177-179^{\circ}$ [1387]; ${ }^{1} \mathrm{H}$ NMR [1387], MS [1387]. 378.85
(2,4-Dihydroxy-3-methylphenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 356.46

Synthesis

- Refer to: [224].

[^8]
2.4 Tetrahydroxybenzophenones

2.4.1 Hydroxy Groups Located on One Ring

Not described till December 1999.

2.4.2 Hydroxy Groups Located on Both Rings

2.4.2.1 Substituents Located on One Ring

(3,5-Dichloro-4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone
[105443-52-5]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{5}$
mol.wt. 315.11

Synthesis

- Preparation by action of 3,5-dichloro-4hydroxybenzoic acid on pyrogallol with boron trifluoride or its complexes [420].
m.p. and Spectra (NA).
(3,4-Dihydroxy-5-nitrophenyl)(3,4-dihydroxyphenyl)methanone
[134612-52-5]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{7} \quad$ mol.wt. 291.22
Synthesis
- Preparation by total demethylation of 4-hydroxy-5-nitro-3,3',4'-trimethoxybenzophenone with hydrobromic acid in refluxing dilute acetic acid [1019].
m.p. $222-224^{\circ}[1019] ; \quad$ Spectra (NA).
(5-Hydroxy-2-nitrophenyl)(2,4,6-trihydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{7} \quad$ mol.wt. 291.22

Synthesis

- Preparation by reaction of 5-hydroxy-2-nitrobenzoyl chloride with tris(trimethylsilyl) derivative of phloroglucinol in the presence of stannic chloride (or titanium tetrachloride or aluminium chloride) in refluxing methylene chloride for 2 h [921].
m.p. and Spectra (NA).

(2-Chloro-5-hydroxy-4-methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{6} \quad \text { mol.wt. } 310.69
$$

Synthesis

- Preparation by reaction of 2-chloro-5-hydroxy-4-methoxybenzoyl chloride with tris-(trimethylsilyl) derivative of phloroglucinol in the presence of stannic chloride (or titanium tetrachloride or aluminium chloride) in refluxing methylene chloride for 2 h [921].
m.p. and Spectra (NA).
(3-Hydroxy-6-methoxy-2-nitrophenyl)(2,4,6-trihydroxyphenyl)methanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{8} \quad$ mol.wt. 321.24

Synthesis

- Preparation by reaction of 3-hydroxy-6-meth-oxy-2-nitro-benzoyl chloride with tris-(trimethylsilyl) derivative of phloroglucinol in the presence of stannic chloride (or titanium tetrachloride or aluminium chloride) in refluxing methylene chloride for 2 h [921].
m.p. and Spectra (NA).
(2,4-Dihydroxy-3-methylphenyl)(2,5-dihydroxyphenyl)methanone

(2,4-Dihydroxy-5-methylphenyl)(2,5-dihydroxyphenyl)methanone
[61234-45-5]

m.p. $\quad 244^{\circ}$ [413]; \quad Spectra (NA).
(2,4-Dihydroxy-5-methylphenyl)(3,5-dihydroxyphenyl)methanone
[61234-68-2]
m.p. $263-265^{\circ}[413] ; \quad \operatorname{Spectra}(\mathrm{NA})$.
(2-Hydroxy-3-methylphenyl)(2,3,4-trihydroxyphenyl)methanone
 $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25 Synthesis
- Preparation by heating o-cresotic acid and pyrogallol with zinc chloride and phosphorous oxychloride (40\%) [1367].
m.p. $137-138^{\circ}$ [1367]; Spectra (NA).
(2-Hydroxy-4-methylphenyl)(2,3,4-trihydroxyphenyl)methanone
[109067-41-6] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25

Synthesis

- Preparation by heating m-cresotic acid and pyrogallol with zinc chloride and phosphorous oxychloride (40\%) [1367].
m.p. $122-123^{\circ}[1367] ; \quad$ Spectra (NA).
(2-Hydroxy-5-methylphenyl)(2,3,4-trihydroxyphenyl)methanone
[105443-51-4]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25

Synthesis

- Preparation by treatment of pyrogallol with 5-methylsalicylic acid,
- in tetrachloroethane bubbling boron trifluoride at 110° for 1 h [420];
- in the presence of Amberlyst-15 in refluxing toluene under azeotropical water removal for 21 h [419].
- Also refer to: [421].
m.p. and Spectra (NA).

(4-Hydroxy-3-methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6} \quad \text { mol.wt. } 276.25
$$

Synthesis

- Preparation by reaction of vanillonitrile with phloro-glucinol in the presence of zinc chloride and hydrochloric acid in ethyl ether, first at r.t. for 1 h , then at 50° for 4 h , followed by hydrolysis of the ketimine hydrochloride so obtained with boiling water for 1-2 h (38\%) [440].
monohydrate [440]; m.p. $>200^{\circ}$ (d) [440]; Spectra (NA).
(5-Hydroxy-2-methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone
- Preparation by reaction of 5-hydroxy-2-meth-

oxybenzoyl chloride with tris(trimethylsilyl)
derivative of phloroglucinol in the presence of
stannic chloride (or titanium tetrachloride or
aluminium chloride) in refluxing methylene
chloride for 2 2 h [921].

m.p. and Spectra (NA).
(3,6-Dihydroxy-2,4-dimethylphenyl)(2,4-dihydroxyphenyl)methanone
[42470-91-7]
m.p. 226° [1369]; ${ }^{1} \mathrm{H}$ NMR [1369], IR [1369], UV [1369], MS [1369].
(3,6-Dihydroxy-2,4-dimethylphenyl)(2,6-dihydroxyphenyl)methanone

[42594-60-5]	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
$\mathrm{H} \quad \mathrm{CH}_{3}$	Synthesis
	- Obtained by demethylation of 2',3,6-trihydroxy-6'-methoxy-2,4-dimethylbenzophenone with boron tribromide in refluxing methylene chloride for $90 \mathrm{~h}(58 \%)$ [1181].
m.p. $171-174^{\circ}$ [1181];	NMR [1181], IR [1181], UV [1181], MS [1181].

(2-Hydroxy-4-methoxy-6-methylphenyl)(2,4,6-trihydroxyphenyl)methanone
 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 290.27 Synthesis

- Preparation by hydrogenolysis of $2,2^{\prime}, 4$, 6-tetrakis-(benzyloxy)-4'-methoxy-6'methylbenzophenone (SM) in ethyl acetate/tetrahydrofuran mixture in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 25°. SM was obtained by condensation of 2-(benzyloxy)-4-methoxy-6-methyl-benzoic acid with phloroglucinol tribenzyl ether in the presence of trifluoroacetic anhydride in methylene chloride under nitrogen for 15 min (81%) [1179].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1179].
(4-Hydroxy-2-methoxy-6-methylphenyl)(2,4,6-trihydroxyphenyl)methanone
[60556-49-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 290.27
Synthesis
- Preparation by catalytic hydrogenolysis of 2,4,4',6-tetra-kis(benzyloxy)-2'-methoxy-6^{\prime}-methylbenzophenone (SM) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethanol (72%). SM was obtained by condensation of 4-(benzyloxy)-6-methoxy-o-toluic acid with phloroglucinol tribenzyl ether in the presence of trifluoroacetic anhydride in methylene chloride (88\%) [1349].
- Also refer to: [1348].
m.p. $177-178^{\circ}$ [1349]; ${ }^{1} \mathrm{H}$ NMR [1349], IR [1349], UV [1349], MS [1349].

(3-Hydroxy-2,6-dimethoxyphenyl)(2,4,6-trihydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{7} \quad$ mol.wt. 306.27

Synthesis

- Preparation by reaction of 3-hydroxy-2,6-dime-thoxy-benzoyl chloride with tris(trimethylsilyl) derivative of phloroglucinol in the presence of stannic chloride (or titanium tetrachloride or aluminium chloride) in refluxing methylene chloride for 2 h [921].

[^9]
2.4.2.2 Substituents Located on Both Rings

Symmetrical ketones

Bis(2,4-Dihydroxy-6-methylphenyl)methanone

[39803-53-7] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27

Synthesis

- Preparation by hydrogenolysis of $2,2^{\prime}$, 4,4'-tetrakis-(benzyloxy)-6,6'-dimethylbenzophenone (SM) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate (90\%) [1376].
SM was obtained by condensation of orcinol dibenzyl ether with orsellinic acid dibenzyl ether in methylene chloride in the presence of trifluoroacetic anhydride for 5 min (75%).
- Also refer to: [1388].
m.p. 195-198 [1376]; ${ }^{1} \mathrm{H}$ NMR [1376], IR [1376], UV [1376].

Bis(2,6-Dihydroxy-4-methoxyphenyl)methanone

m.p. and Spectra (NA).

Asymmetric ketones
(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3,5-dichloro-2,4-dihydroxy-6-methylphenyl)-methanone
[69709-91-7] $\quad \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{5} \quad$ mol.wt. 377.61

Synthesis

- Preparation by hydrogenolysis of $2,2^{\prime}, 4$, 4'-tetrakis-(benzyloxy)-3,5,5'-trichloro-6,6'-dimethylbenzophenone (SM) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate containing concentrated hydrochloric acid (5 drops) ($>90 \%$) [1339]. SM was obtained by Friedel-Crafts acylation of 3,5-bis(benzyloxy)-2-chlorotoluene with 2,4-bis(benzyloxy)-3,5-dichloro-6-methylbenzoic acid in the presence of trifluoroacetic anhydride in refluxing ethylene dichloride for 5 h (33\%).
- Also refer to: [1344].
m.p. 201-203 ${ }^{\circ}$ [1339]; ${ }^{1} \mathrm{H}$ NMR [1339], MS [1339].

(3,5-Dichloro-2,4-dihydroxy-6-methylphenyl)(2,4-dihydroxy-6-methylphenyl) methanone

[39803-58-2]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{5} \quad$ mol.wt. 343.16
Synthesis

- Preparation by hydrogenolysis of $2,2^{\prime}, 4$, 4'-tetrakis-(benzyloxy)-3,5-dichloro-6,6'dimethylbenzophenone (SM) in ethanol in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ for $3 \mathrm{~h}(51 \%)$. SM was obtained by condensation of 3,5-di-chloroorsellinic acid dibenzyl ether with orcinol dibenzyl ether in refluxing chloroform in the presence of trifluoroacetic anhydride/trifluoroacetic acid for 3 h [1376].
m.p. $213-216^{\circ}$ [1376]; ${ }^{1} \mathrm{H}$ NMR [1376], UV [1376].
(2,6-Dihydroxy-4-methoxyphenyl)(2,4-dihydroxy-6-methylphenyl)methanone
[60556-46-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 290.27
Synthesis
- Preparation by catalytic hydrogenolysis of 2,2',4',6-tetrakis(benzyloxy)-4-methoxy-6'-methyl-benzophenone (SM) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate at r.t. (71%). SM was obtained by condensation of 2,6-bis(benzyloxy)-4-methoxybenzoic acid with 3,5-bis(benzyloxy)toluene in the presence of trifluoroacetic anhydride in methylene chloride for 5 min at r.t. (69\%) [1349].
- Also refer to: [1378,1379].
m.p. $250-251^{\circ}$ (first melting point at 115°) [1349];
${ }^{1} H$ NMR [1349], IR [1349], UV [1349], MS [1349].

(2,3-Dihydroxy-4-methoxyphenyl)(3,5-dihydroxy-4-methoxyphenyl) methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{7} \quad$ mol.wt. 306.27
Synthesis

- Obtained by reaction of methyl iodide with exifone ($2,3,3^{\prime}, 4,4^{\prime}, 5^{\prime}$-hexahydroxybenzophenone) in the presence of lithium carbonate in N, N-dimethylformamide at 30° for 15 h under nitrogen (30\%) [369].
m.p. $216-218^{\circ}$ [369]; ${ }^{1} \mathrm{H}$ NMR [369], ${ }^{13} \mathrm{C}$ NMR [369], MS [369]; $\mathrm{p} K_{\mathrm{a}}$ [369].

[4-(Benzoylmethoxy)-3,5-dihydroxyphenyl](2,3-dihydroxy-4-methoxyphenyl) methanone

2-[4-(2,3-Dihydroxy-4-methoxybenzoyl)-2,6-dihydroxyphenoxy]-1phenylethanone

m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [369], ${ }^{13} \mathrm{C}$ NMR [369].

2.5 Pentahydroxybenzophenones

2.5.1 Hydroxy Groups Located on One Ring

Not described till December 1999

2.5.2 Hydroxy Groups Located on Both Rings

2.5.2.1 Substituents Located on One Ring

(3-Chloro-4,6-dihydroxy-2-methylphenyl)(2,4,6-trihydroxyphenyl)methanone
[68048-30-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{6} \quad$ mol.wt. 310.69
Synthesis

- Preparation by hydrogenolysis of $2^{\prime}, 4,4^{\prime}, 6,6^{\prime}$-pentakis-(benzyloxy)-3-chloro-2-methylbenzophenone (SM) in ethyl acetate/tetrahydrofuran in the presence of 10%
Pd / C at 25°. SM was obtained by condensation of 4,6-bis-(benzyloxy)-3-chloro-2methylbenzoic acid with phloroglucinol tribenzyl ether in the presence of trifluoroacetic anhydride in methylene chloride under nitrogen for $2 \mathrm{~min}(95 \%)$ [1179].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1179].

(2,4-Dihydroxy-6-methylphenyl)(2,4,6-trihydroxyphenyl)methanone

[55018-96-7]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 276.25
Syntheses

- Preparation by hydrogenolysis of $2,2^{\prime}, 4,4^{\prime}$, 6-pentakis-(benzyloxy)-6'-methylbenzophenone (SM), in the presence of 10% Pd / C in ethyl acetate or in a ethanol/ethyl acetate mixture at atmospheric pressure and r.t. (>95\%) $[1179,1349,1390]$. SM was obtained,
- by condensation of 4,6-bis(benzyloxy)-o-toluic acid with phloroglucinol tribenzyl ether in the presence of trifluoroacetic anhydride (TFAA) in a chloroform/methylene chloride mixture at r.t. for 5 min (61%, colourless oil) [1349];
- by condensation of 2,4,6-tris(benzyloxy)benzoic acid with orcinol dibenzyl ether in the presence of trifluoroacetic anhydride (TFAA) in methylene chloride for 10 min [1179], $\left(83 \%\right.$, m.p. 33°) [1390].
- Also obtained (poor yield) by demethylation of $2,2^{\prime}, 4,4^{\prime}, 6$-pentamethoxy- $6^{\prime}-$ methylbenzophenone (m.p. $126^{\circ} 5-127^{\circ}$) in methylene chloride in the presence of boron tribromide at r.t. for overnight (15\%) [1390].
- Also obtained by Friedel-Crafts acylation of phloroglucinol with o-orsellinic acid [1391].
- Also obtained by Fries rearrangement of phloroglucinyl o-orsellinate (m.p. 185-188º) [1391].
- Also refer to: [1345,1378,1379,1389,1392].
N.B.: Discussion on hypothetical formation from various polyketones [1287]. This ketone is the biosynthetic precursor of the antibiotic griseofulvin and the various fungal and lichen xanthones [1287]. It was very unstable and underwent facile cyclization to norlichexanthone (1,3,6-tri-hydroxy-8-methylxanthen-9one) [1179].
viscous, pale yellow oil [1349]; b.p. (NA);
pale yellow powder [1390]; m.p. (NA);
light yellow compound [1179];
N.B.: The description of the physical state of this ketone was imprecise.
${ }^{1} \mathrm{H}$ NMR [1349,1390], IR [1349,1390], UV [1349,1390],
MS [1349]; TLC [1390].

(2,3-Dihydroxy-4-methoxyphenyl)(3,4,5-trihydroxyphenyl)methanone

[177703-30-9]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{7} \quad$ mol.wt. 292.25
Synthesis

- Preparation from exifone ($2,3,3^{\prime}, 4$, $4^{\prime}, 5^{\prime}$-hexahydroxy-benzophenone) in three steps: at first, phenacylation of exifone at the 4 '-position, according to [365].

After, methylation of the 4^{\prime}-phenacyl ether of exifone at the 4 -position. Then, removal of the phenacyl protecting group of 4-methoxy-4'-phenacyl exifone derivative obtained in the presence of zinc dust in an acetic acid/methanol mixture at r.t. for $2 \mathrm{~min}(50 \%)$ [369].
m.p. 260-262 ${ }^{\circ}$ [369]; ${ }^{1} \mathrm{H}$ NMR [369], ${ }^{13} \mathrm{C}$ NMR [369], MS [369]; $\mathrm{p} K_{\mathrm{a}}$ [369].
(3,5-Dihydroxy-4-methoxyphenyl)(2,3,4-trihydroxyphenyl)methanone
[170630-11-2]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{7} \quad$ mol.wt. 292.25
Synthesis

- Obtained by reaction of methyl iodide withexifone ($2,3,3^{\prime}, 4,4^{\prime}, 5^{\prime}$-hexahydroxybenzophenone) in the presence of lithium carbonate in N, N-dimethyl-formamide at 30° for 15 h under nitrogen (15\%) [369].
- Also refer to: [1393].
m.p. 202-204 ${ }^{\circ}$ [369]; ${ }^{1} \mathrm{H}$ NMR [369], ${ }^{13} \mathrm{C}$ NMR [369], MS [369]; $\mathrm{p} K_{\mathrm{a}}$ [369].

[4-(Benzoylmethoxy)-3,5-dihydroxyphenyl](2,3,4-trihydroxyphenyl)

 methanone2-[2,6-Dihydroxy-4-(2,3,4-trihydroxybenzoyl)phenoxy]-1-phenylethanone
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{8} \quad$ mol.wt. 396.35

Synthesis

- Obtained by reaction of α bromoacetophenone with exifone ($2,3,3^{\prime}, 4,4^{\prime}, 5^{\prime}$-hexahy-droxy-benzophenone) in the presence of lithium carbonate in N, N-dimethylformamide at r.t. for 15 h under nitrogen (40\%) [365].
m.p. decomposes above 180° [365]; ${ }^{1} \mathrm{H}$ NMR [365], ${ }^{13} \mathrm{C}$ NMR [365], MS [365].

2.5.2.2 Substituents Located on Both Rings

(3-Bromo-4,5-dihydroxyphenyl)(3,5-dibromo-2,4,6-trihydroxyphenyl) methanone

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{6} \quad$ mol.wt. 498.91

Synthesis

- Obtained by reaction of maclurin with bromine in boiling water [451].
N.B.: The formula proposed is the more likely.
monohydrate [451]; m.p. and Spectra (NA).

(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3-chloro-2,4,6-trihydroxyphenyl) methanone

[68048-32-8] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{6} \quad$ mol.wt. 345.14

Synthesis

- Preparation by hydrogenolysis of $2,4,4^{\prime}, 6,6^{\prime}$-pentakis-(benzyloxy)-3, 3^{\prime} -dichloro- 2^{\prime}-methylbenzophenone (SM) in ethyl acetate/tetrahydrofuran mixture in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 25°. SM was obtained by condensation of 2,4,6-tris(benzyloxy)-3-chlorobenzoic acid with 3,5-bis (benzyloxy)-2-chlorotoluene in the presence of trifluoroacetic anhydride in methylene chloride under nitrogen for 20 min (18\%) [1179].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1179].
(3-Chloro-2,4,6-trihydroxyphenyl)(2,4-dihydroxy-6-methylphenyl)methanone
[68048-31-7]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{6}$
mol.wt. 310.69

Synthesis

- Preparation by hydrogenolysis of $2,2^{\prime}, 4$, 4',6-pentakis-(benzyloxy)-3-chloro-6'methylbenzophenone (SM) in ethyl acetate/ tetrahydrofuran mixture in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 25°. SM was obtained by condensation of 3 -chloro-2,4,6tris(benzyloxy)benzoic acid with orcinol dibenzyl ether in the presence of trifluoroacetic anhydride in methylene chloride under nitrogen for 15 min [1179].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1179].

2.6 Hexahydroxybenzophenone

(2,3,4-Trihydroxy-5-methylphenyl)(3,4,5-trihydroxyphenyl)methanone

Chapter 3
 Polyphenyl Phenyl Methanones
 (Class of METHANONES)

3.1 Biphenyl Phenyl Methanones

3.1.1 Monohydroxylated Ketones

(6-Bromo-5-hydroxy[1,1'-biphenyl]-2-yl)phenylmethanone

[133721-72-9]

$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 353.22 Synthesis

- Preparation by adding trimethylsilyl trifluorome-thane-sulfonate to a solution of 5-bromo-2, 3-dihydro-2,2-di-methyl-6-phenyl-4 H -pyran-4-one, di-(tert-butyl)pyridine and 1-benzoylacetylene in chloroform at -30°. Then, the mixture was stirred at 20° for $24 \mathrm{~h}(59 \%)$ [833].
m.p. $\quad 155-156^{\circ}$ [833]; ${ }^{1} \mathrm{H}$ NMR [833], IR [833], MS [833].
(4-Chlorophenyl)(4'-hydroxy[1,1'-biphenyl]-4-yl)methanone
[38304-24-4]

$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 308.76
Syntheses
- Preparation by reaction of p-chlorobenzoic acid with 4-hydroxybiphenyl in the presence of trifluoromethanesulfonic acid, first at 50° for 23 h , then at 70° for $4 \mathrm{~h}(97 \%)$ [151].
- Preparation by Friedel-Crafts acylation of p-acetoxybiphenyl with p-chlorobenzoyl chloride, followed by hydrolysis of the keto ester so obtained (74\%) [1394]. m.p. $196-197^{\circ}$ [151,1394]; ${ }^{1} \mathrm{H}$ NMR [151,1394], IR [151,1394].

(4-Fluorophenyl)(4'-hydroxy[1,1'-biphenyl]-4-yl)methanone

[112782-46-4]

$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{FO}_{2}$
mol.wt. 292.31
Synthesis

- Preparation by Fries rearrangement of 4-(4-fluorobenzoyloxy)biphenyl with aluminium chloride in o-dichlorobenzene at 120° for 8 h (good yield) [1395].
m.p. and Spectra (NA).

[1,1'-Biphenyl]-4-yl(4-hydroxyphenyl)methanone

[3558-83-6]

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}$ mol.wt. 274.32
Syntheses

- Preparation by demethylation of p-anisoylbiphenyl,
- with pyridinium chloride at reflux a few min [1396];
- with aluminium chloride in benzene [1141].
- Also obtained by reaction of EKONOL ${ }^{(\mathrm{RM})}$, an aromatic polyester as FriedelCrafts reagent, with biphenyl in triflic acid at 25° for 18 h (95\%) [922]. Similar results can be obtained using hydrofluoric acid/boron trifluoride or aluminium chloride in place of triflic acid [922].
- Also refer to: Chem. Abstr., 127, 34137f (1997). m.p. 186° [1396], $185-187^{\circ}$ [1141]; ${ }^{13} \mathrm{C}$ NMR [922], MS [922]; HPLC [922].
(2-Hydroxy[1,1'-biphenyl]-3-yl)phenylmethanone
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 274.32

Synthesis

- Obtained by irradiation of 2-biphenylyl benzoate with 254 nm light in benzene (23\%) [1397].
m.p. and Spectra (NA).

(4-Hydroxy[1,1'-biphenyl]-3-yl)phenylmethanone

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 274.32

Synthesis

- Obtained by irradiation of 4-biphenylyl benzoate with 254 nm light in benzene (54\%) [1397].
m.p. and Spectra (NA).

(4'-Hydroxy[1,1'-biphenyl]-4-yl)phenylmethanone

[5623-46-1]

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 274.32
Syntheses

- Obtained by Fries rearrangement of 4-benzoyloxy-biphenyl in the presence of aluminium chloride without solvent for 30 min at $160^{\circ}(22 \%)$ [1398] or in tetrachloroethane for 1 h at 140° [130]. There is an heteronuclear migration of the benzoyl group, since the Fries reaction catalysed by Lewis acids is not a true rearrangement, but more probably an intermolecular acylation [1399,1400].
- Preparation by Friedel-Crafts acylation of p-acetoxybiphenyl with benzoyl chloride, followed by hydrolysis of the resulting keto ester (94\%) [1394].
m.p. $194-195^{\circ} 5$ [1394], 193-195 ${ }^{\circ}$ [130,1398]; ${ }^{1} \mathrm{H}$ NMR [1394], IR [1394].
(5-Hydroxy[1,1'-biphenyl]-2-yl)phenylmethanone
[133721-67-2]
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 274.32

Syntheses

- Obtained by heating a solution of 5-[(triisopro-pylsilyl)oxy]-biphenyl-2-yl phenyl ketone in methanol with 2 N aqueous hydrochloric acid for 3 h at 80° in a sealed tube (93\%) [833].
- Preparation by adding trimethylsilyl trifluoromethane-sulfonate to a solution of 2,3-dihydro-2,2-dimethyl-6-phenyl-4H-pyran-4-one, di-(tert-butyl)pyridine and 1-benzoylacetylene in chloroform at -30°. Then, the mixture was stirred at 0° for 30 min and at 20° for 24 h (84\%) [833].
m.p. $\quad 179-180^{\circ}$ [833]; ${ }^{1} \mathrm{H}$ NMR [833], IR [833], MS [833].

(6-Hydroxy[1,1'-biphenyl]-3-yl)phenylmethanone

[84627-07-6]

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 274.32 Syntheses

- Preparation by decarboxylation of 2-[(2'-hydroxy-5'-bi-phenylyl)carbonyl]benzoic acid in the presence of cupric acetate in refluxing quinoline for $30 \mathrm{~min}(96 \%)$ [1401].
- Also obtained by irradiation of 2-biphenylyl benzoate with 254 nm light in benzene (27\%) [1397].
m.p. $195^{\circ} 2-197^{\circ}$ [1401];
${ }^{1} \mathrm{H}$ NMR [1401], IR [1401], UV [1401]; TLC [1401].

[1,1'-Biphenyl]-4-yl(2-Hydroxy-5-methylphenyl)methanone]

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ Syntheses
mol.wt. 288.35

- Preparation by reaction of 4-biphenylcarbonyl chloride with p-cresol in the presence of aluminium chloride in trichlorobenzene at $190-200^{\circ}$ for 2 h (64\%) [1402].
- Preparation by Fries rearrangement of p-cresyl 4-bi-phenylcarboxylate with aluminium chloride in trichlorobenzene, first at 140° for 30 min , then between 140° and 200° for 30 min and at 200° for $3 \mathrm{~h}(82 \%)$ [1402].
- Also refer to: [235].
m.p. $79-80^{\circ}$ [1402]; UV [1402].
(2'-Hydroxy-5'-methyl[1,1'-biphenyl]-3-yl)phenylmethanone

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2} \quad \mathrm{~mol}$. wt. 288.35
Synthesis
- Obtained by irradiation of a (Z)-(3benzoylphenyl)azo tert-butyl sulfide and p-cresol mixture in the presence of potassium tert-butoxide in dimethyl sulfoxide for 3.5 h (53\%) [1403].
glassy oil [1403]; b.p. (NA); ${ }^{1} \mathrm{H}$ NMR [1403].

(2'-Hydroxy-5'-methyl[1,1'-biphenyl]-4-yl)phenylmethanone

[132555-33-0]

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 288.35
Synthesis

- Obtained by irradiation of a (Z)-(4benzoylphenyl)azo tert-butyl sulfide and p-cresol mixture in the presence of potassium tert-butoxide in dimethyl sulfoxide for 2.5 h (54\%) [1403].
m.p. $144^{\circ} 5-145^{\circ} 9$ [1403]; ${ }^{1} \mathrm{H}$ NMR [1403], IR [1403].
(5-Hydroxy-3-methyl[1,1'-biphenyl]-2-yl)phenylmethanone

Synthesis

- Preparation by heating 3-methyl-5-[(triisopropylsilyl) oxy]-biphenyl-2-yl phenyl ketone in ethanol with 2 N aqueous hydrochloric acid for 4.5 h at 80° in a sealed tube (93%) [833].
m.p. $148-148^{\circ} 5$ [833]; ${ }^{1} \mathrm{H}$ NMR [833], IR [833], MS [833].

[1,1'-Biphenyl]-4-yl(2-hydroxy-4-methoxyphenyl)methanone

[90986-69-9]

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 304.35
Synthesis

- Preparation by reaction of 4biphenylcarbonyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride [408],
- in nitrobenzene, first between 25° and 30° for 2 h , then at 80° for $4 \mathrm{~h}(56 \%)$ [1402];
- in refluxing carbon disulfide for $4 \mathrm{~h}(20-30 \%)$ [1141].
- Also refer to: [235].
m.p. $105-106^{\circ}$ [1402], 104-105 ${ }^{\circ}$ [1141];
${ }^{1} \mathrm{H}$ NMR [1141], IR [1141], UV [1402], MS [1141].
(5-Hydroxy-2'-methoxy[1,1'-biphenyl]-2-yl)phenylmethanone
[133721-75-2]
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3}$ mol.wt. 304.35

Synthesis

- Obtained by heating a solution of 5-[[dimethyl (1,1,2-tri-methylpropyl)silyl]oxy]-2'-methoxy-biphenyl-2-yl phenyl ketone in ethanol with 2 N aqueous hydrochloric acid for 2.5 h at 80° in a sealed tube (93\%) [833]. m.p. $177^{\circ} 5-178^{\circ} 5$ [833]; ${ }^{1} \mathrm{H}$ NMR [833], IR [833], MS [833].

[4-(Acetyloxy)-2-hydroxyphenyl][1,1'-biphenyl]-4-ylmethanone

[36415-12-0]
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 332.36
Synthesis

- Refer to: [235].
m.p. 108° [235]; UV [235].
[1,1'-Biphenyl]-4-yl(4-ethoxy-2-hydroxyphenyl)methanone
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 318.37

Synthesis

- Preparation by reaction of 4-biphenylcarbonyl chloride with resorcinoldiethyl ether in the presence of aluminium chloride in nitrobenzene, first between 25° and 30° for 2 h , then at 80° for 4 h [1402].
- Also refer to: [235].
m.p. 114-115 ${ }^{\circ}$ [1402]; UV [1402].

(2-Hydroxy-4-methoxyphenyl)(5-methyl[1,1'-biphenyl]-2-yl)methanone

[80988-17-6]

m.p. and Spectra (NA).

[1,1'-Biphenyl]-4-yl[4-(2-butenyloxy)-2-hydroxyphenyl]methanone

$[36414-90-1]$	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{3}$	mol.wt.
344.41		

Synthesis

- Refer to: [235].
m.p. 117° [235]; UV [235].
[1,1'-Biphenyl]-4-yl[4-(1,1-dimethylethoxy)-2-hydroxyphenyl]methanone
[36488-90-1]

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 346.94
Synthesis
- Refer to: [235].
m.p. 80° [235]; UV [235].

[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(4-nitrophenoxy)phenyl]methanone

[36469-48-4]

m.p. 234° [235]; UV [235].

[1,1'-Biphenyl]-4-yl(4-hydroxy[1,1'-biphenyl]-3-yl)methanone

4',5-Diphenyl-2-hydroxybenzophenone
[95818-93-2] $\quad \mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{2} \quad m o l . w t . ~ 350.42$

Syntheses

- Preparation by reaction of 4-biphenylcarbonyl chloride with 4-phenylphenol in the presence of aluminium chloride in trichlorobenzene at $190-200^{\circ}$ for 2 h [1402].
- Also obtained by Fries rearrangement of 4-biphenylyl biphenyl-4-carboxylate, (4-biphenylyl 4-phenyl-benzoate), with aluminium bromide in chlorobenzene at 110° for 6 h [1406].
m.p. $135-136^{\circ}$ [1402], 135° [1406]; IR [1406], UV [1402,1406]; GLC [1406].
[4-(4-Aminophenoxy)-2-hydroxyphenyl][1,1'-biphenyl]-4-ylmethanone
[36414-91-2]
$\begin{array}{lr}\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{3} \quad \text { mol.wt. } \\ & 381.43\end{array}$

Synthesis

- Refer to: [235].
m.p. 163° [235]; UV [235].
[1,1'-Biphenyl]-4-yl[4-(cyclohexyloxy)-2-hydroxyphenyl]methanone
[36414-95-6]
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 372.46
Synthesis
- Refer to: [235].
m.p. 123° [235]; UV [235].
[1,1'-Biphenyl]-4-yl[4-(hexyloxy)-2-hydroxyphenyl]methanone
[36419-22-4]

m.p. 89° [235]; UV [235].
$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 374.48
Synthesis
- Refer to: [235].

[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(1-propylbutoxy)phenyl]methanone

[36414-89-8]

oil [235]; b.p. (NA); UV [235].

[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(octyloxy)phenyl]methanone

[36130-58-2]

$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3}$
mol.wt. 388.51
Synthesis

- Refer to: [235]. phenylbenzophenone in the presence of sodium in diethylene glycol (diglycol) at 140° for $1 \mathrm{~h}(90 \%)$ [801].
- Also refer to: [235].

$$
\text { m.p. } \quad 69-70^{\circ}[801], 67^{\circ}[235] ; \quad \mathrm{UV}[235] .
$$

[1,1'-Biphenyl]-4-yl[4-(decyloxy)-2-hydroxyphenyl]methanone

[36419-24-6]

m.p. 82° [235]; UV [235].
$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{3} \quad$ mol.wt. 430.59
Synthesis

- Refer to: [235].

[1,1'-Biphenyl]-4-yl[4-(hexadecyloxy)-2-hydroxyphenyl]methanone

[36419-25-7]
$\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{3}$
mol.wt. 514.75

Synthesis

- Refer to: [235].
m.p. 88° [235]; UV [235].

3.1.2 Dihydroxylated Ketones

(2,4-Dihydroxyphenyl)(4'-nitro[1,1'-biphenyl]-4-yl)methanone
[36414-94-5]
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 335.32

- Refer to: [235].
m.p. 299° [235]; UV [235].

[1,1'-Biphenyl]-4-yl(2,4-dihydroxyphenyl)methanone

[36130-57-1]

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32
Syntheses

- Preparation by reaction of 4-biphenylcarboxylic acid with resorcinol in the presence of boron trifluoride in tetrachloroethane at $<45^{\circ}$ for 5 h (67\%) [1402].
- Preparation by reaction of 4-biphenylcarbonyl chloride with resorcinol in the presence of aluminium chloride in nitrobenzene, first between 25° and 30° for 1 h , then at $55-60^{\circ}$ for 4 h (91\%) [1402].
- Also refer to: $[235,801]$.
m.p. 188° [235], $183-184^{\circ}$ [1402]; UV [235,1402].

(3,5-Dihydroxy[1,1'-biphenyl]-2-yl)phenylmethanone

 $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32
 Synthesis
 - Preparation from 3,3'-diphenyl-5,5'-diisoxazolylmethane by performing hydrogenolysis and subsequent hydrolysis with hydrochloric acid (55\%) [693].
 m.p. 148° [693]; ${ }^{1} \mathrm{H}$ NMR [693], MS [693].
 (4,4'-Dihydroxy[1,1'-biphenyl]-3-yl)phenylmethanone
 [52189-86-3]
 $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32
 Syntheses
 - Obtained by irradiation of [bi(cyclohexa-2, 5-dienylidene)-4,4'-dione], so called $4,4^{\prime}$-diphenoquinone, in benzaldehyde for 2 days (21%) [1407].
 - Also obtained by Fries rearrangement of 4,4'-biphenyldiyl dibenzoate with aluminium chloride in o-dichlorobenzene during 3 h at 180° (19\%) [1408].

m.p. $\quad 142-144^{\circ}$ [1408], 130° [1407];
${ }^{1} \mathrm{H}$ NMR [1407,1408], IR [1407,1408], UV [1408], MS [1407].
(2-Hydroxy[1,1'-biphenyl]-3-yl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32

Synthesis

- Obtained by photo-Fries rearrangement of phenyl m-phenyl-salicylate (major product) [219].
m.p. and Spectra (NA).
(4'-Hydroxy[1, $\mathbf{1}^{\prime}$-biphenyl]-4-yl)(3-hydroxyphenyl)methanone
[75731-50-9] $\quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32

Synthesis

- Preparation by acylation of 4-hydroxybiphenyl with 3-hydroxybenzoic acid in hydrofluoric acid in the presence of boron trifluoride (pressure: 207 KPa) in an autoclave for $6 \mathrm{hat} 0^{\circ}(94 \%)$ [352].
m.p. $\quad 213-219^{\circ}[352] ; \quad \operatorname{Spectra}(\mathrm{NA})$.

(4'-Hydroxy[1,1'-biphenyl]-4-yl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.32
Syntheses

- Preparation by reaction of 4-hydroxybenzoic acid with 4-hydroxybiphenyl in the presence of trifluoromethanesulfonic acid at r.t. for overnight, then at 50° for 3.5 h and at 65° for $1.5 \mathrm{~h}(95 \%)$ [151].
- Preparation by Friedel-Crafts acylation of p-acetoxybiphenyl with p-hydroxybenzoyl chloride, followed by hydrolysis of the keto ester so obtained (65\%) [1394].
- Preparation by heating a mixture of 4-hydroxybiphenyl-4'-carboxylic acid and phenol in nitrobenzene in the presence of boron trifluoride at 80° for 30 min (84\%) [186].
m.p. $230-232^{\circ}$ [1394], $190-198^{\circ}$ [151]. There is discrepancy between the two melting points.
${ }^{1} \mathrm{H}$ NMR [151,1394], IR [1394].

[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(2-hydroxyethoxy)phenyl]methanone

 $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 334.37 Synthesis

- Preparation by reaction of ethylene carbonate with 2, 4-dihydroxy-4'-phenylbenzophenone in the presence of sodium methoxide in diisobutyl ketone for 2 h at 130° (84\%) [700].
m.p. $157-158^{\circ}$ [700]; Spectra (NA).

[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(3-hydroxypropoxy)phenyl]methanone

m.p. 145° [235]; UV [235].

3.2 Terphenyl Phenyl Methanones

(2,4-Dihydroxyphenyl)[1,1';4',1"]terphenyl-4"-ylmethanone $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{3}$ mol.wt. 366.42
 Synthesis

- Preparation by Friedel-Crafts acylation of p-terphenyl with 2,4-dihydroxybenzoic acid or its derivatives [1409].
m.p. and Spectra (NA).
(2-Hydroxy-4-methoxyphenyl) [1, $\left.1^{\prime}, 4^{\prime}, 1^{\prime \prime}\right]$ terphenyl-4"-ylmethanone]
$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 380.44

Synthesis

- Preparation by FriedelCrafts acylation of p-terphenylwith2-hydroxy-4-methoxybenzoic acid or its derivatives [1409].
m.p. (NA); UV [1409].

Chapter 4
 Cyclohexyl Phenyl Methanones (Class of METHANONES)

4.1 Monohydroxylated Ketones

(3-Bromo-2-hydroxyphenyl)cyclohexylmethanone
[81066-14-0] $\quad \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{2} \quad$ mol.wt. 283.16

Syntheses

- Preparation by reaction of cyclohexanecarbonyl chloride with o-bromophenol in the presence of aluminium chloride without solvent at 140° for $1 \mathrm{~h}(48 \%)$ [1410].
- Preparation by Fries rearrangement of o-bromophenyl cyclohexanecarboxylate with aluminium chloride without solvent at 100° for $1 \mathrm{~h}(36 \%)$ [1411].
b.p. ${ }_{1} 140-145^{\circ}$ [1410]; m.p. $51-52^{\circ}$ [1410]; Spectra (NA).
(3-Bromo-4-hydroxyphenyl)cyclohexylmethanone
[81066-15-1]

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{2} \quad$ mol.wt. 283.16
Syntheses
- Obtained by reaction of cyclohexanecarbonyl chloride with o-bromophenol in the presence of aluminium chloride without solvent at 120° for 2 h (16\%) [1410].
- Also obtained by Fries rearrangement of o-bromophenyl cyclohexanecarboxylate with aluminium chloride without solvent at 120° for 1 h (19\%) [1411].
b.p. $160-170^{\circ}$ [1410]; m.p. $138-139^{\circ}$ [1410]; $\operatorname{Spectra}(N A)$.
(4-Bromo-2-hydroxyphenyl)cyclohexylmethanone
$\begin{array}{lll}\text { [81066-16-2] } & \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{2} & \text { mol.wt. } 283.16 \\ & \text { Syntheses } & \end{array}$

- Preparation by reaction of cyclohexanecarbonyl chloride with m-bromophenol in the presence of aluminium chloride without solvent at 120° for $1-2 \mathrm{~h}$ (57-64\%) [1410,1411].
- Preparation by Fries rearrangement of m-bromophenyl cyclohexanecarboxylate with aluminium chloride without solvent at 100° for $1 \mathrm{~h}(71 \%)$ [1411].
b.p. ${ }_{1} 165-175^{\circ}$ [1410]; m.p. $56^{\circ} 5-57^{\circ} 5$ [1410]; Spectra (NA).

(5-Bromo-2-hydroxyphenyl)cyclohexylmethanone

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{2}$
mol.wt. 283.16
Syntheses

- Preparation by Fries rearrangement of p-bromophenyl cyclohexanecarboxylate with aluminium chloride without solvent at 120° for $1 \mathrm{~h}(55 \%)$ [1411].
- Also obtained by reaction of cyclohexanecarbonyl chloride with p-bromophenol in the presence of aluminium chloride without solvent at 120° for $2 \mathrm{~h} \mathrm{(32} \mathrm{\%)}$ [1410] or between 100° and 140° for 1 h (12-22\% yields) [1411]. b.p. $150-170^{\circ}$ [1410]; m.p. $98^{\circ} 5-99^{\circ} 5$ [1410]; Spectra (NA).

Cyclohexyl(5-fluoro-2-hydroxyphenyl)methanone

[183280-18-4]
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}_{2} \quad$ mol.wt. 222.26
Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl cyclohexanecarboxylate with aluminium chloride at $150-180^{\circ}$ for $20 \mathrm{~min}(47 \%)$ [492].
m.p. $61^{\circ} 5$ [492]; ${ }^{1} \mathrm{H}$ NMR [492], MS [492].

Cyclohexyl(2-hydroxyphenyl)methanone

[18066-52-9]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
Syntheses

- Preparation by Fries rearrangement of phenyl cyclo-hexane-carboxylate with aluminium chloride,
- without solvent at 120° or at 160° for $2 \mathrm{~h}(45 \%$ and 27% yields, respectively) [1412] or at 150° for 3 h (70\%) [1413];
- in nitrobenzene at 70° for 2 h [1414].
- Preparation by oxidative cleavage of 3-cyclohexylbenzofuran in methylene chloride with ozone at
- 78° for 15 min , then at r.t. for 1 h and saponification of the cyclohexyl 2-(formyloxy)phenyl ketone so obtained in methanol with 1 N sodium hydroxide at r.t. for 12 h [1415].
m.p. $104-105^{\circ}$ [1412];
b.p. $2189-190^{\circ}$ [1412], b.p. ${ }_{4} \quad 127-129^{\circ}$ [1414]. There is discrepancy between the two boiling points.
${ }^{1} \mathrm{H}$ NMR [1415], IR [1415], MS [1415].

Cyclohexyl(3-hydroxyphenyl)methanone

Synthesis

- Preparation by treatment of m-bromophenol in tetrahydrofuran with tert-butyllithium in pentane for 15 min at -78° under argon, after which a solution of cyclohexyl-N,O-dimethylhydroxamide in tetrahydrofuran was slowly added (60\%). -Refer to: Chem. Abstr., 119, 49010t (1993).
m.p. $\quad 70-72^{\circ} ; \quad \operatorname{Spectra}(N A)$.

Cyclohexyl(4-hydroxyphenyl)methanone

[38459-58-4]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 204.27
Syntheses

- Obtained (by-product) by Fries rearrangement of phenyl cyclohexanecarboxylate with aluminium chloride at 120° for 2 h (1\%) [1412].
- Preparation by demethylation of 4-methoxyphenyl cyclohexyl ketone (SM) by treatment with boron tribromide in methylene chloride (76\%). SM was obtained by Friede-Crafts acylation of anisole with cyclohexanecarboxylic acid chloride [1416]. m.p. and Spectra (NA).

Cyclohexyl(4-hydroxy-3-methoxy-5-nitrophenyl)methanone
[125629-27-8] $\quad \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5} \quad$ mol.wt. 279.29

Synthesis

- Preparation by reaction of 65% nitric acid with cyclohexyl 4-hydroxy-3-methoxyphenyl ketone in acetic acid at r.t. (75\%) [1084].
m.p. $\quad 135-141^{\circ}$ [1084]; ${ }^{1} \mathrm{H}$ NMR [1084], MS [1084].

Cyclohexyl(2-hydroxy-3-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30

Synthesis

- Preparation by Fries rearrangement of o-cresyl cyclohexane-carboxylate with aluminium chloride at 120° for $2 \mathrm{~h}(56 \%)$ or at 160° for 2 h [1412].
m.p. 130° [1412]; $\quad \operatorname{Spectra}(N A)$.

Cyclohexyl(2-hydroxy-4-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30

Syntheses

- Obtained by Fries rearrangement of m-cresyl cyclohexane-carboxylate,
- with alumina in methanesulfonic acid for 25 min at 160° (86%). -Refer to: Chem. Abstr., 130, 81248q (1999);
- with aluminium chloride without solvent at 120° or 160° for 2 h (poor yield) [1412].
- Preparation by Friede-Crafts acylation of m-cresol with cyclohexanecarboxylic acid in the presence of alumina in methanesulfonic acid for 5 min at 120° (87\%).
- Refer to: Chem. Abstr., 130, 81248 q (1999).
b.p. $2_{2} \quad 115^{\circ}$ [1412]; Spectra (NA).

Cyclohexyl(2-hydroxy-5-methylphenyl)methanone

 $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30 Syntheses

- Preparation by reaction of cyclohexanecarboxylic acid with p-cresol in the presence of aluminium chloride and phosphorous trichloride at 160° for 2 h (77\%) [1417].
- Also obtained (poor yield) by Fries rearrangement of p-cresyl cyclohexanecarboxylate with aluminium chloride without solvent at 120° for $2 \mathrm{~h}(9 \%)$ or at 160° [1412].
m.p. 75-760 [1417];
b.p. 120° [1412], b.p. $160-170^{\circ}$ [1417]. There is discrepancy between the two boiling points. Spectra (NA).

Cyclohexyl(4-hydroxy-3-methylphenyl)methanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30

Synthesis

- Obtained (trace) by Fries rearrangement of o-cresyl cyclohexanecarboxylate with aluminium chloride at 120° or at 160° for $2 \mathrm{~h}(<1 \%)$ [1412].
m.p. $\quad 118-119^{\circ}[1412] ; \quad$ Spectra (NA).

Cyclohexyl(2-hydroxy-4-methoxyphenyl)methanone

[69210-88-4]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Syntheses

- Preparation by Fries rearrangement of m-methoxyphenyl cyclohexanecarboxylate in a nitromethane/toluene mixture in the presence of hafnium triflate/lithium perchlorate for 6 h at 50°.
- Preparation by Friede-Crafts acylation of m-methoxyphenol with cyclohexanecarbonyl chloride, cyclohexanecarboxylic acid or its anhydride in the same conditions.
- Refer to: Chem. Abstr., 127, 278063v (1997).
m.p. and Spectra (NA).

Cyclohexyl(4-hydroxy-3-methoxyphenyl)methanone
[125629-26-7] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30

Synthesis

- Preparation by adding a solution of 30% hydrobromic acid in acetic acid to a solution of 4-(benzyloxy)-3-methoxy-phenyl cyclohexyl ketone in methylene chloride with stirring 2 h at r.t. (77\%) [1084].
m.p. $113-115^{\circ}$ [1084]; ${ }^{1} \mathrm{H}$ NMR [1084], MS [1084].

Cyclohexyl(2-hydroxy-3,4-dimethoxyphenyl)methanone
[121638-96-8]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32
Synthesis

- Obtained (poor yield) by Friede-Crafts acylation of pyrogallol trimethyl ether with cyclo hexanecarbonyl chloride in the presence of aluminium chloride in refluxing methylene chloride for $2 \mathrm{~h}(7 \%)$ [756].

```
m.p. }8\mp@subsup{5}{}{\circ}[756]; Spectra (NA)
```

Cyclohexyl[3-(1,1-dimethylethyl)-4-hydroxyphenyl]methanone
[124979-10-8] $\quad \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 260.38
 Synthesis

- Preparation by Friede-Crafts acylation of o-tert-butyl-phenol with cyclohexanecarbonyl chloride in ethylene dichloride in the presence of titanium tetrachloride, first at 0°, then at r.t. [816].
m.p. $\quad 142-143^{\circ}[816] ; \quad \operatorname{Spectra}(N A)$.

Cyclohexyl[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone

[18738-74-4]

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 260.38
Syntheses

- Preparation by demethylation of 2-(cyclohexy lcarbonyl)-4-tert-butylanisole with a mixture of 47% hydrobromic acid and 57\% hydriodic acid in refluxing acetic acid for 2 h (95%) [817].
- Also obtained (poor yields) by Fries rearrangement of p-tert-butylphenyl cyclohexanecarboxylate with aluminium chloride at 120° for $2 \mathrm{~h}(5 \%)$ or at 160° for 2 h (8\%) [1412].
b.p. $\quad 219-220^{\circ}[1412] ; \quad$ Spectra (NA).

Cyclohexyl[2-hydroxy-5-(1,1-dimethylpropyl)phenyl]methanone

$$
\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \quad \text { mol.wt. } 274.40
$$

Synthesis

- Obtained (poor yields) by Fries rearrangement of p-tert-pentylphenyl cyclohexanecarboxylate with aluminium chloride at 120° for $2 \mathrm{~h}(16 \%)$ or at 160° for $2 \mathrm{~h}(7 \%)$ [1412]. oil [1412]; b.p. $219-220^{\circ}$ [1412]; Spectra (NA).
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]cyclohexylmethanone
[75060-98-9]

m.p. and Spectra (NA).
$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2} \quad$ mol.wt. 289.42
Synthesis
- Refer to: [817]; see the hydrochloride below.

[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]cyclohexylmethanone (Hydrochloride)

[75060-63-8]

$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2} \cdot \mathrm{HCl} \quad$ mol.wt. 325.89
Synthesis

- Preparation by reaction of concentrated hydrochloric acid with 2-(cyclohexyl-carbonyl)-4-tert-butyl-6(N -chloroacetylaminomethyl)phenol in refluxing ethanol for 30 h (67\%) [817].
m.p. $205-209^{\circ}$ [817]; $\quad \operatorname{Spectra}(N A)$.

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]cyclohexylmethanone

$$
[28440-98-4] \quad \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2} \quad \text { mol.wt. } 316.48
$$

 Synthesis

- Preparation by action of cyclohexanecarbonyl chloride with 2,6-di-tert-butylphenol in ethylene dichloride in the presence of titanium tetrachloride for $15-30 \mathrm{~min}$ at r.t.
- Refer to: Chem. Abstr., 90, 121219v (1979) ${ }^{\text {T }}$. m.p. $\quad 125-127^{\circ}{ }^{\circ} ; \quad \operatorname{Spectra}(N A)$.

4.2 Dihydroxylated Ketones

Cyclohexyl(3,4-dihydroxy-5-nitrophenyl)methanone

[125628-95-7] \begin{tabular}{l}

Synt. | Preparation by demethylation of cyclohexyl |
| :--- |
| (4-hydroxy-3-methoxy-5-nitrophenyl) ketone |
| acid for 20 h h (55\%) [1084]. |

\end{tabular}

m.p. $\quad 145-147^{\circ}$ [1084]; ${ }^{1} \mathrm{H}$ NMR [1084], MS [1084].

Cyclohexyl(2,4-dihydroxyphenyl)methanone
[97231-21-5] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27

Synthesis

- Preparation by reaction of cyclohexanecarboxylic acid with resorcinol in the presence of zinc chloride at $125-135^{\circ}$ (54%) (Nencki reaction) [1418].
- Also refer to: [298]. m.p. $115^{\circ} 5-116^{\circ}$ [1418]; b.p. $200-202^{\circ}$ [1418]; Spectra (NA).
(1-Hydroxycyclohexyl)(4-hydroxyphenyl)methanone
[200420-24-2]

m.p. and Spectra (NA).
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis
- Refer to: Chem. Abstr., 128, 68498k (1998).

(2-Hydroxycyclohexyl)(2-hydroxyphenyl)methanone

4.3 Trihydroxylated Ketones

Cyclohexyl(2,4,6-trihydroxyphenyl)methanone

[85602-45-5]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ Synthesis

- Preparation by action of cyclohexanecarbonyl chloride with phloroglucinol in the presence of aluminium chloride in refluxing carbon disulfide/ nitrobenzene mixture for 3 h .
- Refer to: Chem. Abstr., 99, 5339w (1983) ${ }^{\text {T }}$.
- Also refer to: Chem. Abstr., 101, 151650s (1984).

$$
\text { m.p. } \quad 110-113^{\circ} ; \quad \operatorname{Spectra}(\mathrm{NA}) .
$$

Cyclohexyl[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]methanone

[85602-18-2]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 304.39
Synthesis

- Preparation by reaction of prenyl chloride with cyclohexyl 2,4,6-trihydroxyphenyl ketone in ethyl ether in the presence of a saturated aqueous sodium carbonate solution and a catalytic amount of cuprous chloride for 3 h at r.t. (48\%).
- Refer to: Chem. Abstr., 101, 151650s (1984) ${ }^{\mathrm{T}}$.
- Also refer to: Chem. Abstr., 101, 221168s (1984) ${ }^{\mathrm{TT}}$.
m.p. $\quad 144-147^{\circ}$, ${ }^{13} \mathrm{C}^{\mathrm{NMR}}{ }^{\mathrm{T}},{ }^{\mathrm{TT}}, \mathrm{IR}^{\mathrm{T}}, \mathrm{MS}^{\mathrm{T}}$.

Part II
Diaroylphenols and Polyaroylphenols

Chapter 5
 Phenols with One Benzoyl Group and One or Several Acetyl Groups (Class of ETHANONES)

5.1 Monohydroxylated Ketones

1-[3-(4-Chlorobenzoyl)-4-hydroxyphenyl]ethanone

[108294-81-1]

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{3}$
Synthesis

- Obtained (poor yield) by reaction of 5-acetyl-2-hydroxy-benzoyl chloride with chlorobenzene in the presence of aluminium chloride at 100° for $24 \mathrm{~h}(7 \%)$ [92].
m.p. $\quad 127-130^{\circ}$ [92]; \quad Spectra (NA).

1-(3-Benzoyl-2-hydroxyphenyl)ethanone

[85558-60-7]	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 240.26
$\mathrm{HO} \mathrm{COCH}_{3}$	Synthesis
	- Obtained by hydrolysis of 2-acetoxy-3-benzoylacetophenone [1419].
m.p. $108-109^{\circ}$ [1419];	H NMR [1419], IR [1419] MS [1419].

1-(3-Benzoyl-4-hydroxyphenyl)ethanone

[13043-37-3]	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 240.26
HO	Synthesis
	- Preparation by Fries rearrangement of p-acetylphenyl benzoate with aluminium chloride at 153° for $8 \mathrm{~h}(24 \%)$ [96].
m.p. 95° [96]; ${ }^{1} \mathrm{H}$ NMR $\mathrm{p} K_{\mathrm{a}}$ [96,115]; polarograp	[99], UV [99,109-111]; ic study [117]; TLC [116].

1-(5-Benzoyl-2-hydroxyphenyl)ethanone

[2589-80-2]

m.p. and Spectra (NA).

1-[2-(2-Hydroxybenzoyl)phenyl]ethanone
[17526-21-5] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 240.26

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 240.26
Synthesis

Syntheses

- Refer to: Chem. Abstr., 113, 97396w (1990).
- Obtained by rearrangement of 10-methylanthronyl hydroperoxide (SM) with a mixture of acetic acid/4 N sulfuric acid (4:3). SM was obtained either by selfoxidation of 10-methylanthrone or by action of methylmagnesium iodide on 10-methylanthryl acetate [1420].
- Also obtained (poor yield) from meso-photoxide of 9-methylanthracene in refluxing o-dichloro-benzene for 3 h under nitrogen (3\%) [1421].
m.p. 108° [1420], $107-108^{\circ}$ [1421];

IR [1420], UV [1420], MS [1420].

(3-Benzoyl-2-hydroxy-5-methylphenyl)ethanone

[79877-07-9] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29

Syntheses

- Preparation by Fries rearrangement of 2-(benzoyloxy)-5-methylacetophenone with aluminium chloride at $130-140^{\circ}$ for 2 h (60-65\%) [616].
- Preparation by Fries rearrangement of 2-(acetyloxy)-5-methylbenzophenone with aluminium chloride at 140° for 1 h [573].
- Preparation by reaction of benzoyl chloride with 2-hydroxy-5-methylacetophenone in the presence of aluminium chloride in nitrobenzene at 80° for $8 \mathrm{~h}(40 \%)$ [1422].
- Also refer to: [1423].
m.p. $102-103^{\circ}$ [573], $101-102^{\circ}$ [1422];
${ }^{1} \mathrm{H}$ NMR [1422], IR [1422], UV [1422];
structural data [1424,1425].
1-(3-Benzoyl-2-hydroxy-4-methoxyphenyl)ethanone
[64857-84-7]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28
Syntheses
- Obtained by Friedel-Crafts acylation of paeonol with benzoyl chloride in the presence of aluminium chloride in nitrobenzene at r.t. or at 100° [270].
- Also obtained by Friedel-Crafts acylation of 2-hydroxy-6-methoxybenzophenone with acetic anhydride in the presence of aluminium chloride in nitrobenzene in a boiling water bath for 2 h [270].
m.p. $169^{\circ}[270] ; \quad \operatorname{Spectra}(N A)$.

5.2 Dihydroxylated Ketones

5.2.1 Symmetrical Ketones

Bis(5-Acetyl-2-hydroxyphenyl)methanone

$[33427-60-0]$		$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$	mol.wt. 298.30	
	OH	HO	Syntheses	

- Obtained (poor yield) by Fries rearrangement of 2,2'-diacetoxybenzophenone with aluminium chloride without solvent at $160-180^{\circ}$ for $20 \mathrm{~min}(10 \%)$ [1322].
- Also obtained by reaction of sodium hydroxide with 2,7-diacetylxanthone (94\%) [1426].
- Also refer to: [1427].
m.p. $>300^{\circ}$ [1322], $175-177^{\circ}$ [1426]. There is discrepancy between the two melting points.
${ }^{1}$ H NMR [1322,1426], IR [1322], MS [1322,1426].
Bis(3-Acetyl-2-hydroxy-5-methylphenyl)methanone
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 326.35

Synthesis

- Preparation by Fries rearrangement of 2,2'-diacetoxy-5,5'-dimethylbenzophenone with aluminium chloride without solvent, first at 120°, then at 170° for $20 \mathrm{~min}(80 \%)$ [1153].
m.p. $207-208^{\circ}[1153] ; \quad$ Spectra (NA).

5.2.2 Asymmetric Ketones

1-(3-Benzoyl-2,4-dihydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26
Syntheses

- Resacetophenone, by condensation with benzanilide imidochloride in the presence of aluminium chloride in nitrobenzene gave a keto anil.

This one was hydrolyzed with hydrochloric acid in refluxing ethanol and yielded the expected ketone (18\%) [156].

- Also obtained by Fries rearrangement of 4-(benzoyloxy)-2-hydroxyacetophenone in the presence of aluminium chloride without solvent at 140° for 1.5 h (15\%) [234].
- Also obtained (poor yield) by condensation of benzoyl chloride with resacetophenone in the presence of aluminium chloride in nitrobenzene in a water bath for $2 \mathrm{~h}(2 \%)$ [234].
- Also obtained by decarboxylation of 5-acetyl-3-benzoyl-2,4-dihydroxybenzoic acid on heating in a test-tube at $220-225^{\circ}$ for 1 h [234].
m.p. $\quad 167-168^{\circ}[156], 165^{\circ}$ [234]; $\quad \operatorname{Spectra}(N A)$.

1-(3-Benzoyl-2,6-dihydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26

Syntheses

- Obtained by Friedel-Crafts acylation of resbenzophenone,
- with acetic anhydride in the presence of aluminium chloride in nitrobenzene in a water bath for $6 \mathrm{~h}(30 \%)$ [234];
- with acetyl chloride in the presence of aluminium chloride in o-dichlorobenzene [1428].
- Also obtained by Friedel-Crafts acylation of 2,6-dihydroxyacetophenone with benzoyl chloride in the presence of aluminium chloride in nitrobenzene, first at r.t., then in a water bath for 1 h [234].
m.p. 108° [234], $99^{\circ} 5-100^{\circ}$ [1428]; Spectra (NA).

1-(5-Benzoyl-2,4-dihydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 256.26
Synthesis

- Obtained by Friedel-Crafts acylation of paeonol with benzoyl chloride in the presence of aluminium chloride in nitro-benzene at r.t. or at 100° [270].
m.p. 138° [270]; Spectra (NA).

1-[2-(2,4-Dihydroxybenzoyl)phenyl]ethanone

[36414-93-4]

m.p. 184° [235]; UV [235].

1-[2-Hydroxy-5-(2-hydroxybenzoyl)phenyl]ethanone

[124208-69-1]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 256.26
Syntheses

- Obtained by Fries rearrangement,
- of $2,4^{\prime}$-diacetoxybenzophenone with aluminium chloride at $158-160^{\circ}$ for 2 h (15\%) [155];
- of 4'-acetoxy-2-methoxybenzophenone with aluminium chloride at $153-155^{\circ}$ for $2 \mathrm{~h}(60 \%)$ [155].
m.p. $\quad 130-131^{\circ}[155] ; \quad$ Spectra (NA).

1-[4-Hydroxy-3-(4-hydroxybenzoyl)phenyl]ethanone

[124208-64-6] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26

Syntheses

- Obtained by Fries rearrangement,
- of phenyl 2-acetoxybenzoate with aluminium chloride at 180° for $3 \mathrm{~h}(38 \%)$ [155];
- of phenyl 5-acetyl-2-hydroxybenzoate with aluminium chloride at 180° for 3 h (38\%) [155].
m.p. $\quad 188^{\circ}[155] ; \quad \operatorname{Spectra}(N A)$.

1-(3-Acetyl-5-benzoyl-2,4-dihydroxyphenyl)ethanone

3,5-Diacetyl-2,4-dihydroxybenzophenone
[16832-72-7] $\quad \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 298.30

Syntheses

- Obtained by acetylation of 2,4-dihydroxybenzophenone,
- with acetyl chloride in the presence of aluminium chloride in o-dichlorobenzene [1428];
- with acetic anhydride in the presence of aluminium chloride in nitrobenzene in a water bath for 6 h (5\%) [234].
- Also obtained by condensation of 2-acetyl-4-benzoylresorcinol with acetic anhydride according to Friedel-Crafts [234].
m.p. $151-151^{\circ} 5$ [1428], 151° [234]; \quad Spectra (NA).

5.3 Trihydroxylated Ketone

1-(3-Benzoyl-2,4,6-trihydroxyphenyl)ethanone

[31188-65-5] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 272.26

Synthesis

- Preparation by two successive Friedel-Crafts acylations of phloroglucinol, first with acetic acid, then with benzoic acid, always in the presence of boron trifluoride-etherate (compound 17).
- Refer to: Chem. Abstr., 114, 94606j (1991).
m.p. and Spectra (NA).

5.4 Tetrahydroxalated Ketone

1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone

[115834-34-9]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$
mol.wt. 302.28

Synthesis

- Not yet described.

Isolation from natural source

- This ketone, named baishouwubenzophenone, is one of constituents of Baishouwu. The botanical source of this one is chiefly the tuber of Cynanchum auriculatum Royle ex Wight (Asclepiadaceae).
- Refer to: Chem. Abstr., 109, 79560h (1988) ${ }^{\mathrm{T}}$. m.p. (NA); ${ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{\mathrm{T}},{ }^{13} \mathrm{C} \mathrm{NMR}^{\mathrm{T}}, \mathrm{IR}^{\mathrm{T}}, \mathrm{UV}^{\mathrm{T}}, \mathrm{MS}^{\mathrm{T}}$.

Chapter 6
 Phenols with Two or Several Benzoyl Groups (Class of METHANONES)

6.1 Monohydroxylated Ketones

6.1.1 Symmetrical Ketones

(5-Hydroxy-1,3-phenylene)bis[phenylmethanone
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 302.33
 Synthesis

- Preparation by diazotization of 3,5-dibenzoylaniline, followed by hydrolysis of the resulting diazonium salt [1429].
m.p. 135° [1429]; Spectra (NA).
(2-Hydroxy-5-methyl-1,3-phenylene)bis[phenylmethanone
[77347-19-4]
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 316.36

Syntheses

- Preparation by Fries rearrangement of 2-(benzoyl-oxy)-5-methylbenzophenone with aluminium chloride at $130-140^{\circ}$ for 2 h (60-65\%) [616].
- Preparation by reaction of benzoyl chloride with p-cresol in the presence of aluminium chloride in nitrobenzene at 80° for $8 \mathrm{~h}(30 \%)$ [1422].
- Preparation by reaction of benzotrichloride,
- with 2-hydroxy-5-methylbenzophenone in the presence of aluminium chloride in nitrobenzene at 70° for 2 h [1430], (59\%) [1423], (54\%) [1431];
- with p -cresol in the presence of aluminium chloride in carbon disulfide at 0° for 2 h (4\%) [1423].
- Also refer to: [125,1432-1434].
m.p. $166-166^{\circ} 5$ [1423], $164^{\circ} 2-165^{\circ} 6$ [1431], $163-164^{\circ}$ [1430], 160° [1422];
${ }^{1} H$ NMR [1422], IR [1422], UV[1422].

(2-Hydroxy-4,6-dimethyl-5-nitro-1,3-phenylene)bis[phenylmethanone

[85450-69-7]
$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{5} \quad$ mol.wt. 375.38

Synthesis

- Preparation by reaction of nitromethane with 1,3-dibenzoyl-4,6-dimethylpyrone in the presence of potassium tert-butoxide in tert-butanol at 60° for $4 \mathrm{~h}(77 \%)$ [1435].
m.p. $208-210^{\circ}[1435] ; \quad$ Spectra (NA).
(5-Ethyl-2-hydroxy-1,3-phenylene)bis[phenylmethanone
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 330.38

Synthesis

- Preparation by reaction of benzotrichloride with 5-ethyl-2-hydroxybenzophenone in the presence of aluminium chloride in nitrobenzene at 70° for 2 h [1431].
- Also refer to: [1432].
m.p. and Spectra (NA).
(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis[phenylmethanone
[197169-08-7]

$$
\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{5} \quad \text { mol.wt. } 362.38
$$

Synthesis

- Preparation from 1,3,5-trimethoxybenzene and benzoyl chloride by Friedel-Crafts acylation reaction.
- Refer to: Chem. Abstr., 127, $292966 y$ (1997). m.p. and Spectra (NA).
(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis[phenylmethanone
or
(6-Hydroxy-2,4-dimethoxy-1,3-phenylene)bis[phenylmethanone $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 362.38

or
 Synthesis
- Preparation by saponification of 2,4- or 2,6-di-benzoyl- 3,5-dimethoxyphenyl benzoate (SM) with potassium hydroxide in ethanol for 3 h at 100° in a sealed tube (90%) [220]. SM was obtained by FriedelCrafts acylation of 3,5-dimethoxyphenyl benzoate with benzoyl chloride in the presence of zinc chloride in refluxing benzene for $45 \mathrm{~min}\left(70 \%\right.$, m.p. $\left.194^{\circ}\right)$. SM can
also be obtained by Friedel-Crafts acylation of hydrocotoin (2-hydroxy-4,6-dimethoxy-benzophenone) with benzoyl chloride in the presence of zinc chloride in refluxing benzene for $90 \mathrm{~min}\left(72 \%\right.$, m.p. $\left.194^{\circ}\right)$.
N.B.: K salt: [220].
m.p. $170^{\circ}[220] ; \quad$ Spectra (NA).
(5-Amino-2-hydroxy-4,6-dimethyl-1,3-phenylene)bis[phenylmethanone
[85450-78-8] $\quad \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}$ mol.wt. 345.40

Synthesis

- Obtained (poor yield) by catalytic hydrogenation of 3-benzoyl-2-hydroxy-4,6-dimethyl-5-nitro-benzophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 40° for 3 days (10\%) [1435].
m.p. $208-211^{\circ}[1435] ; \quad$ Spectra (NA).
(5-Butyl-2-hydroxy-1,3-phenylene)bis[phenylmethanone

$$
\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{3} \quad \text { mol.wt. } 344.41
$$

Synthesis

- Preparation by reaction of benzotrichloride with 5-butyl-2-hydroxybenzophenone in the presence of aluminium chloride in nitrobenzene at 70° for 2 h [1431].
m.p. and Spectra (NA).
(2,4-Diethoxy-6-hydroxy-1,3-phenylene)bis[phenylmethanone
or
(4,6-Diethoxy-2-hydroxy-1,3-phenylene)bis[phenylmethanone

[5-(Acetyloxy)-2-hydroxy-4,6-dimethoxy-1,3-phenylene]bis [(2,5-dimethoxyphenyl)methanone

[129168-55-4]

$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{11} \quad$ mol.wt. 492.53
Synthesis

- Obtained (poor yield) by reaction of 2,5-dimethoxybenzoic acid with 2,6 -di-methoxy-1,4-hydroquinone diacetate in the presence of trifluoroacetic anhydride for 2 weeks at r.t. (3\%) [1160].
m.p. $114-115^{\circ}$ [1160]; MS [1160].

6.1.2 Asymmetric Ketones

(2-Benzoylphenyl)(2-hydroxyphenyl)methanone

[14596-74-8]	$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 302.33
Syntheses	

- SM1 in dilute acetic acid under nitrogen during 3 h isomerises into 1-(2-hydroxyphenyl)-3-phenylisobenzofuran (SM2). In this mixture, SM2, by self-oxidation in the presence of air and sunlight during 3 days gave the 2-(2-hydroxybenzoyl)benzophenone (22\%) [1436].
- Also obtained (poor yield) by action of sulfuric acid with SM1 in acetic acid/ acetic anhydride at r.t. for 5 min (8\%) [1436].
- Also obtained (poor yield) from SM1 in refluxing toluene (at 110°) or in o-dichlorobenzene (at 180°) for 3 h under nitrogen ($2-5 \%$, yields respectively). The reaction carried out in the presence of N -maleimide in refluxing toluene in the same conditions gave a 3% yield [1421].
- From 1-(2-hydroxyphenyl)-3-phenylisobenzofuran (SM2):
- Obtained by self-oxidation of SM2 in chloroformic solution in the presence of air and sunlight during 3 days (quantitative yield) [1436].
- Also obtained by action of sulfuric acid with SM2 in acetic acid/acetic anhydride for $5 \min (51 \%)$ [1436].
- Also obtained by action of N-methylmaleimide with SM2 in methylene chloride at 0° (20\%) [1436].
- From photoxide of 9-methoxy-10-phenylanthracene (SM3): Obtained by action of concentrated sulfuric acid $(\mathrm{d}=1.83)$ with SM3 in acetone for 24 h at r.t. (25\%) [1437].
- From 3,3-diphenyl-1,2-indanedione (SM4): Obtained by irradiation of SM4 in the presence of air in benzene during 70 h at r.t. (10\%) [86,1438].
- From 10-phenylanthrone (SM5): Obtained by irradiation of SM5 in the presence of air in benzene for 2.5 h at r.t. (20\%) [1438], (30\%) [86].
- From 10-phenylanthronyl hydroperoxide (SM6): Obtained by photochemical degradation of SM6 in benzene for 5.5 h (29\%) [1438]. Also obtained by chemical degradation of SM6 with sulfuric acid in acetone for 1 to $1.5 \mathrm{~h}(21 \%)$ [1438].
- From photoxide of 1,3-diphenylisobenzofuran (SM7): Obtained by isomerization of SM7 in acetic acid solution [1439].
m.p. $139-140^{\circ}[86,1421,1436,1438], 138-139^{\circ}$ [1437];
${ }^{1} \mathrm{H}$ NMR [1437], IR [86,1437,1438], UV [1438].

(2-Benzoylphenyl)(3-hydroxyphenyl)methanone

[57436-75-6] $\quad \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 302.33

Synthesis

- Obtained by isomerization of photoxide of 1,3-diphenylisobenzofuran, via an arene oxide formation, in acetic acid solution [1439].
m.p. $135-137^{\circ}[1439] ; \quad$ Spectra (NA).
(4-Hydroxy-1,3-phenylene)bis[phenylmethanone
[2589-81-3]

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 302.33
Syntheses
- Preparation by Friedel-Crafts acylation, - of phenol with benzoyl chloride in the presence of aluminium chloride at 200° for $15 \mathrm{~min}(69 \%)$ [24];
- of 4-hydroxybenzophenone with benzoyl chloride in the presence of aluminium chloride from 100° up to 150° [145].
- Also obtained by Fries rearrangement of 4-benzoyloxybenzophenone with aluminium chloride at $160-165^{\circ}$ for 1 h [1440].
m.p. $105-106^{\circ}$ [1440], 105° [145], 101° [24], 98° [96];

1H NMR (Sadtler: standard n ${ }^{\circ} 20032$ M) [99],
IR (Sadtler: standard n ${ }^{\circ}$ 47041) [24], UV [24,99,109];
$\mathrm{p} K_{\mathrm{a}}$ [96]; TLC [116].
(4-Hydroxy-6-methyl-1,3-phenylene)bis[(2-chlorophenyl)methanone
[147167-72-4]

$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 385.25
Syntheses

- Preparation by reaction of o-chlorobenzoic with 2^{\prime}-chloro-2-hydroxy-4-methylbenzophenone in the presence of phosphoric acid and phosphorous pentoxide at 70° for 20 h (76\%) [1089].
- Also obtained by reaction of o-chlorobenzoic acid with m-cresol in the presence of phosphoric acid and phosphorous pentoxide at 130° for 2 h (15\%) [1089].
- Also obtained by Fries rearrangement of m-cresyl o-chlorobenzoate with phosphoric acid and phosphorous pentoxide at 130° for $1 \mathrm{~h}(16 \%)$ [1089].
- Also obtained by isomerization of 2^{\prime}-chloro-4-hydroxy-2-methylbenzophenone in the presence of phosphoric acid and phosphorous pentoxide at 130° for 4 h (15\%) [1089].
m.p. $105-107^{\circ}$ [1089]; ${ }^{1} \mathrm{H}$ NMR [1089], IR [1089].

6.2 Di- and Polyhydroxylated Ketones

6.2.1 Symmetrical Ketones

(4,6-Dihydroxy-1,3-phenylene)bis[(2,4-dichlorophenyl)methanone

[13340-61-9]

$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{O}_{4} \quad$ mol.wt. 456.11
Synthesis

- Preparation by Friedel-Crafts acylation of resorcinol with 2,4-dichlorobenzoyl chloride in the presence of trifluoromethanesulfonic acid and methanesulfonic acid, via a Fries rearrangement,
- without solvent, at 180° for $3 \mathrm{~h}(92 \%)$ [1441];
- in o-dichlorobenzene at 100° for $12 \mathrm{~h}(76 \%)$ [1441].
- Also refer to: [1442].
m.p. 209° [1441]; ${ }^{13} \mathrm{C}$ NMR [1441].

(5-Fluoro-2-hydroxy-1,3-phenylene)bis[(5-fluoro-2-hydroxyphenyl) methanone

$$
\text { [78563-16-3] } \quad \mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{5} \quad \text { mol.wt. } 388.30
$$

Synthesis

- Preparation by treatment of the corresponding triacetate (SM) with 15% aqueous sodium hydroxide solution (90%). SM was obtained by oxidation of
the methylene groups in 1-acetoxy-2,6-bis (2'-acetoxy-5'-fluoro- α-tolyl)-4fluorobenzene to carbonyl groups by means of chromium trioxide in acetic anhydride (97\%) [1443].
m.p. $154-155^{\circ}$ [1443]; IR [1443], MS [1443].

(4,6-Dihydroxy-1,3-phenylene)bis[(2-chlorophenyl)methanone

- Also refer to: [1442].
m.p. (NA); ${ }^{13} \mathrm{C}$ NMR [1441].
(4,6-Dihydroxy-5-nitro-1,3-phenylene)bis[phenylmethanone
$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 387.22
Synthesis
- Preparation by reaction of o-chlorobenzoic acid with resorcinol diacetate in the presence of hexafluoro-isopropylsulfonic acid in methanesulfonic acid first at 160° for 1 h , then at 180° for 12 h [1441].
[102160-16-7]

$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{NO}_{6}$
mol.wt. 363.33
Syntheses
- Obtained by condensation of benzoyl chloride with 2-nitroresorcinol in the presence of aluminium chloride in nitrobenzene at 100° [1196,1207].
- Preparation by Fries rearrangement of 2-nitro-resorcinol dibenzoate with aluminium chloride in nitrobenzene at $100-110^{\circ}$ for $3 \mathrm{~h}(40 \%)$ [1207].
- Preparation by nitration of 4,6-dibenzoylresorcinol with nitric acid in a sulfuric acid and acetic acid solution at 0° for 1 h [1207].
- Also refer to: [203].
m.p. $215-216^{\circ}$ [1196], 215° [1207]; $\operatorname{Spectra}(N A)$.

(2,3-Dihydroxy-1,4-phenylene)bis[phenylmethanone

[31709-42-9]

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33
Syntheses

- Obtained by hydrogenolysis of 3,6-diphe-nyl-benzo[1,2-d:4,3-d']diisoxazole (SM) (m.p. 206-207) in the presence of Raney nickel at r.t., and treating the intermediate with 20% sulfuric acid (21\%) [1444]. SM was prepared through a four-steps synthesis: first, reaction of benzonitrile oxide with 1,3-cyclohexadiene in boiling ethyl ether. Second, bromination of the 5,10-diphenyl-3,12-dioxa-4,11-diazatricyclo[7,3,0, $0^{2,6}$]dodeca- 4,10-diene (m.p. $186-187^{\circ}$) obtained with N -bromosuccinimide in carbon tetrachloride. After which, dehydrohalogenation of the intermediate compound in boiling triethylamine and aromatization with N -bromosuccinimide in carbon tetrachloride.
- Preparation by hydrolysis of 2,3-dibenzoyloxy-1,4-dibenzoylbenzene (SM) in concentrated sulfuric acid at r.t. for $15 \mathrm{~min}(75 \%)$ [1445]. SM (m.p. 144°) was obtained by oxidation of 2,3,6,7-tetraphenylbenzo[2,1-b:3,4-b']difuran (o-benzotetraphenyldifurfuran) with chromium trioxide in boiling acetic acid for 75 min .
m.p. $159^{\circ} 5$ [1445], $156-158^{\circ}$ [1444]; IR [1444].

(4,6-Dihydroxy-1,3-phenylene)bis[phenylmethanone

[3088-15-1]

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33
Syntheses

- Preparation by saponification of $4,6-\mathrm{di}-$ (benzoyloxy)-1,3-dibenzoylbenzene (SM) with potassium hydroxide in refluxing ethanol [203,210]. The keto ester SM was obtained by acylation of resorcinol dibenzoate with benzoyl chloride in the presence of zinc chloride at $100-120^{\circ}$ during several days [210].
- Preparation by Fries rearrangement of resorcinol dibenzoate,
- with aluminium chloride [1207];
- with zinc chloride (25\%) [1446].
- Also obtained by photo-Fries rearrangement of resorcinol dibenzoate in benzene for 8 h under nitrogen (15\%) [843].
- Also refer to: [226,230,1447].
oily liquid [843]; b.p. (NA). This product is impure or in a metastable state.
m.p. $149-150^{\circ}$ [203], 149° [210], 145° [113];
${ }^{1} \mathrm{H}$ NMR [843], UV [113].

1,2-Phenylenebis[(2-hydroxyphenyl)methanone

1,3-Phenylenebis[(4-hydroxyphenyl)methanone

Syntheses

- Preparation by demethylation of 1,3-di-(p-methoxy-benzoyl)- benzene (SM) with hydrobromic acid ($\mathrm{d}=$ 1.49) in refluxing acetic acid for 6 h (68\%) [1449] or for 10 h [1450]. SM was obtained by FriedelCrafts acylation of anisole with isophthaloyl chloride [1450].
- Preparation by Friedel-Crafts acylation of anisole with isophthaloyl chloride in the presence of aluminium chloride in boiling carbon disulfide (major product) [1449], (<75\%) [1451].
- Preparation by Fries rearrangement of diphenyl isophthalate with aluminium chloride at $185-195^{\circ}$ for 25 min [1451].
- Obtained by action of isophthalic acid with phenol in the presence of trifluoromethanesulfonic acid, first at 50° for 23 h , then at 70° for $4 \mathrm{~h}(50 \%)$ [151].
- Also refer to: [956,1452-1455]. m.p. 215° [1449], 207-209 ${ }^{\circ}$ [1451], 194° [151]. There is discrepancy between the melting points.
${ }^{1} \mathrm{H}$ NMR [151], IR [151].

1,4-Phenylenebis[(2-hydroxyphenyl)methanone

[66832-95-9]

 $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33 Synthesis

- Preparation by total demethylation of 1,4-bis (2-anisoyl)-benzene. This one was obtained by condensation of 2-anisoyl magnesium bromide with terephthalonitrile [1456].
- Also refer to: [1457].
m.p. and Spectra (NA).

1,4-Phenylenebis[(4-hydroxyphenyl)methanone

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33
Syntheses

- Obtained by Fries rearrangement of phenyl terephthalate (diester) with aluminium chloride at $185-195^{\circ}$ for 25 min [1451].
- Preparation by Friedel-Crafts acylation of anisole (2 mol) with terephthaloyl chloride (1 mol) in the presence of aluminium chloride in refluxing carbon disulfide for 1 h [1451].
- Preparation by reaction of terephthalic acid with phenol in the presence of trifluoromethanesulfonic acid at 50° for 23 h , then at 70° for $4 \mathrm{~h}(34 \%)$ [151].
- Also refer to: Chem. Abstr., 101, 15450z (1984).
m.p. 298-299 [1451], 292° [151];
${ }^{1} \mathrm{H}$ NMR [151], IR [151].

(2,5-Dihydroxy-1,3-phenylene)bis[(2,5-dihydroxyphenyl)methanone

[78563-18-5] $\quad \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{8} \quad$ mol.wt. 382.33

Synthesis

- Preparation by saponification of the corresponding hexaacetate (SM) with 6 N sodium hydroxide in methanol or with 1%
sodium hydroxide in aqueous solution (15% yield). SM was obtained by oxidation of the methylene groups of 1,4 -diacetoxy-2,6-bis ($2^{\prime}, 5^{\prime}$-diacetoxy- α-tolyl)benzene to carbonyl groups by means of chromium trioxide in acetic anhydride (80% yield) [1443].
m.p. $>300^{\circ}$ [1443]; \quad Spectra (NA).
(4,6-Dihydroxy-2-methyl-1,3-phenylene)bis[(2,6-dichlorophenyl)methanone
[152383-58-9]

m.p. and Spectra (NA).

$$
\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}_{4} \quad \text { mol.wt. } 470.13
$$

Synthesis

- Refer to: [1442] (compound 6).
(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis[(2,4-dichlorophenyl)methanone
[153167-54-5] $\quad \mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}_{4} \quad$ mol.wt. 470.13

m.p. (NA); ${ }^{13} \mathrm{C}$ NMR [1441].

Synthesis

- Preparation by Fries rearrangement of 2-methylresorcinol 2,4-dichlorobenzoate (diester) with fluoroalcanesulfonic acid and alcanesulfonic acid mixture [1441].
(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis[(2,6-dichlorophenyl)methanone
[153167-55-6]

m.p. (NA); ${ }^{13} \mathrm{C}$ NMR [1441].
$\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}_{4} \quad$ mol.wt. 470.13
Synthesis
- Preparation by Fries rearrangement of 2-methyl-resorcinol 2,6-dichlorobenzoate (diester) with trifluoromethanesulfonic acid or hexafluoro-isopropanesulfonic acid in methanesulfonic acid [1441].
(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis[(2-fluorophenyl)methanone

$$
\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{4} \quad \text { mol.wt. } 368.34
$$

Synthesis

- Refer to: [1442] (compound 3).
m.p. and Spectra (NA).

1,4-Phenylenebis[(2-hydroxy-5-methylphenyl)methanone

[4084-62-2]

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 346.38
Syntheses

- Preparation by Fries rearrangement of p-tolyl terephthalate (diester) in the presence of aluminium chloride,
- without solvent
at $210^{\circ}(90 \%)$ [1458] or at $220-230^{\circ}$ for 15 min , then a short time at 250° (27\%) [1459],
- with solvent
in chlorobenzene at 132° for $5 \mathrm{~h}(31 \%)$ [1460] or at reflux for $4 \mathrm{~h}(68 \%)$ [1457] or for $38 \mathrm{~h}(25 \%)$ [1461]. The diester was obtained by heating p-cresol and terephthaloyl chloride at 200° for 90 min [1457]. in nitrobenzene at 100° for 3 h [1462].
- Also obtained by photo-Fries rearrangement of p-tolyl terephthalate (diester) in benzene for 20 h under nitrogen (10\%) [1459].
- Preparation by reaction of 1,4-bis(trichloromethyl)benzene with p-cresol in the presence of 20% or 30% sodium hydroxide, first at 50°, then 95° for $1 \mathrm{~h}(69 \%$ and 77% yields, respectively) [1457].
m.p. $190-190^{\circ} 5$ [1461], $187-189^{\circ}$ [1459], $165-168^{\circ}$ [1457]. There is discrepancy between the melting points. IR [1457,1461], UV [1457].

1,4-Phenylenebis[(2-hydroxy-4-methoxyphenyl)methanone

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 378.38

Synthesis

- Preparation by reaction of 1,4-bis(trichloromethyl) benzene with resorcinol monomethyl ether in the presence of 30% sodium hydroxide, first at 70°, then at 95° for $1 \mathrm{~h}(71 \%)$ [1457].
glassy brown compound [1457];
m.p. (NA); IR [1457], UV [1457].

(2-Hydroxy-5-methyl-1,3-phenylene)bis[(2-hydroxy-5-methylphenyl) methanone

[27404-61-1]

$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 376.41
Synthesis

- Preparation by Friedel-Crafts acylation of 4-methoxytoluene with 2-methoxy-5-methyl-benzene-1,3-dicarbonyl dichloride in carbon disulfide in the presence
of aluminium chloride, first at r.t. for overnight, then at reflux for $4 \mathrm{~h}(40 \%)$. The same reaction, carried out in nitrobenzene at 120° for 2 h , gave a 37% yield [1153].
- Also refer to: [431] (compound VII).
m.p. 149° [1153], $122-123^{\circ}$ [1329]. There is discrepancy between the two melting points.
MS [1329].

Bis[5-chloro-3-(5-chloro-2-hydroxybenzoyl)-2-hydroxyphenyl]methanone

[78563-33-4] $\quad \mathrm{C}_{27} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{7} \quad$ mol.wt. 592.21

- Preparation by saponification of the corresponding tetraacetate with 15% aqueous sodium hydroxide solution at 40° for 1 h (90\%) [1443].
m.p. 224° [1443]; MS [1443].

Bis[5-fluoro-3-(5-fluoro-2-hydroxybenzoyl)-2-hydroxyphenyl]methanone
[78563-35-6] $\quad \mathrm{C}_{27} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{O}_{7} \quad$ mol.wt. 526.40

(2,4-Dihydroxy-1,3,5-benzenetriyl)tris[phenylmethanone

[82-67-7] $\quad \mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 422.44

Synthesis

- Obtained by action of benzoyl chloride with resorcinol dibenzoate in the presence of aluminium chloride at 100° for 8 h , then at 150° [145].
m.p. 185° [113,145]; UV [113].

(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris[phenylmethanone

[1818-24-2]

$\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 438.44
Syntheses

- Obtained by Fries rearrangement of phloroglucinol tribenzoate with aluminium chloride at $130-140^{\circ}$ for $30 \mathrm{~min}(30 \%)$ [271].
- Also obtained by action of benzoyl chloride with phloro-glucinol in the presence of boron trifluoride at 50° (72-78\%) [1463].
m.p. 185° [271], 134- 136° [1463]. There is discrepancy between the two melting points.
Spectra (NA).
Bis[3-(2-bromobenzoyl)-2-hydroxy-5-methylphenyl]methanone

$$
\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{5} \quad \text { mol.wt. } 608.28
$$

aluminium chloride without solvent for 30 min at 160° (50\%) [1153].
m.p. $\quad 170^{\circ}$ [1153]; \quad Spectra (NA).

Bis(3-benzoyl-2-hydroxy-5-methylphenyl)methanone
$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 450.49

Synthesis

- Preparation by Fries rearrangement of 2, 2'-di-(benzoyloxy)-5,5'-dimethylbenzophenone with aluminium chloride without solvent at 160° for 30 min (50\%) [1153].
m.p. 204° [1153]; \quad Spectra (NA).

Bis[3-(4-methylbenzoyl)-2-hydroxy-5-methylphenyl]methanone

$$
\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{5} \quad \text { mol.wt. } 478.54
$$

Synthesis

- Preparation by Fries rearrangement of

2,2'-di-(p-toluoyloxy)-5, 5'-dimethyl-benzophenone with aluminium chloride without solvent for 30 min at 160° (81\%) [1153].
m.p. $184-185^{\circ}[1153] ; \quad$ Spectra (NA).

1,4-Phenylenebis[2-hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]methanone

$$
\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{4} \quad \text { mol.wt. } 542.76
$$

Syntheses

- Preparation by reaction of 1,4-bis-(trichloromethyl)benzene with p-(1,1,3,3-tetramethylbutyl)phenol in the presence of 30% sodium hydroxide, first at 70°, then at 95° for $1 \mathrm{~h}(71 \%)$ [1457].
- Preparation by reaction of terephthaloyl chloride with p-(1,1,3,3-tetramethylbutyl)phenol in ethylene dichloride in the presence of aluminium chloride, first at 0°, then between 5° and 10° for $7 \mathrm{~h}(58 \%)$ [1457].
glassy brown compound [1457]; m.p. (NA);
IR [1457], UV [1457].

1,4-Phenylenebis[2-hydroxy-4-(octyloxy)phenyl]methanone

$$
\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{6} \quad \text { mol.wt. } 574.76
$$

Synthesis

- Preparation by reaction of 1,4-bis(trichloromethyl) benzene with resorcinol monooctyl ether in the presence of 30% sodium hydroxide, first at 70°, then at 95° for 1 h (74\%) [1457].
glassy light brown compound [1457]; m.p. (NA);
IR [1457], UV [1457].

1,4-Phenylenebis[(2-hydroxy-5-dodecylphenyl)methanone

$\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{O}_{4} \quad$ mol.wt. 654.97
Synthesis

- Preparation by reaction of 1,4-bis-(trichloromethyl) benzene with 4-do-decylphenol in the presence of 30% sodium hydroxide, first at 70°, then at 95° for 1 h (68\%) [1457].
glassy light brown compound [1457]; m.p. (NA);
IR [1457], UV [1457].

1,4-Phenylenebis[2-hydroxy-4-(dodecyloxy)phenyl]methanone

$$
\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{O}_{6} \quad \text { mol.wt. } 686.97
$$

Synthesis

- Preparation by reaction of 1,4-bis(trichloromethyl) benzene with resorcinol monododecyl ether in the presence of 30% sodium hydroxide, first at 70°, then at 95° for $1 \mathrm{~h}(69 \%)$ [1457].
glassy dark brown compound [1457];
m.p. (NA);

IR [1457], UV [1457].

6.2.2 Asymmetric Ketones

(2,4-Dihydroxy-1,3-phenylene)bis[(2,4-dichlorophenyl)methanone
[153167-57-8]

$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{O}_{4}$
mol.wt. 456.11
Synthesis

- Preparation by reaction of 2,4-dichloro-benzoyl chloride with resorcinol in the presence of trifluoromethanesulfonic acid in methanesulfonic acid, at 180° for 3 h (by-product) or in o-dichlorobenzene at 100° for 12 h (24\%) [1441].
- Also refer to: [1442] (compound 4). m.p. (NA); ${ }^{13} \mathrm{C}$ NMR [1441].
(3-Benzoyl-4-hydroxyphenyl)(2-hydroxyphenyl)methanone
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33

Synthesis

- Obtained (by-product) by heating a mixture of o-anisoyl chloride, benzene and aluminium chloride between 79° and 90° for 2.25 h (14\%) [12].
m.p. $127^{\circ} 9-130^{\circ} 1[12] ; \quad$ Spectra (NA).

(5-Benzoyl-2-hydroxyphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 318.33
Syntheses

- Obtained by Fries rearrangement of phenyl 5-benzoyl-2-hydroxybenzoate with aluminium chloride at 180° for 3 h (20%); the same reaction, in the presence of phenol, gave a 36% yield [155].
- Also obtained by Fries rearrangement of phenyl 2-benzoyloxybenzoate with aluminium chloride at 180° for $3 \mathrm{~h}(10 \%)$. The same reaction, in the presence of phenol, gave a 21% yield [155].
m.p. 162° [155]; $\operatorname{Spectra}(N A)$.

(2,4-Dihydroxy-1,3-phenylene)bis[phenylmethanone

[82-64-4]

 by saponification of the non-isolated keto ester formed with hydroxide in refluxing ethanol for 1.5 h [203].

- Also obtained on decarboxylation of 2,4-dihydroxy-3,5-dibenzoylbenzoic acid [208].
- Also obtained by photo-Fries rearrangement of resorcinol dibenzoate in benzene for 8 h under nitrogen (10\%) [843].
- Also refer to: [1464,1465] (Japanese patents).
oil [843]. This product is impure or in a metastable state.
m.p. 105° [113], $103-104^{\circ}$ [203], 102° [208];
${ }^{1} \mathrm{H}$ NMR $[98,843]$, UV [113,241,242].
(2,5-Dihydroxy-1,4-phenylene)bis[phenylmethanone

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 318.33
Syntheses
- Preparation from lin-parabenzotetraphenyldifurfuran by oxidation with chromium trioxide in refluxing acetic anhydride
for $>1 \mathrm{~h}$, followed by saponification of the 2,5-dibenzoylhydroquinone dibenzoate so formed with potassium hydroxide in ethanol in a water bath for 30 min (43\%) [254].
- Also obtained by reaction of benzoyl chloride with hydroquinone in the presence of aluminium chloride at $190-200^{\circ}[146,169,1466]$ or at $200-205^{\circ}$ [256]
for 2 days, followed by saponification of the keto ester so formed (2,5-dibenzoylhydroquinone dibenzoate) with potassium hydroxide in ethanol (2\%) [1466], (12-15\%) [256].
- Also obtained by photo-Fries rearrangement of hydroquinone dibenzoate in benzene for 8 h under nitrogen (10\%) [843].
m.p. $210^{\circ} 5-211^{\circ} 1$ [256], 207° [146,1466], 203° [254], $172-173^{\circ}$ [843]. There is discrepancy between the melting points.
${ }^{1} H$ NMR [843].

(3,4-Dihydroxy-1,2-phenylene)bis[phenylmethanone

$$
\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 318.33
$$

> Synthesis

- Obtained by photo-Fries rearrangement of 1,2-di(benzoyloxy)benzene in benzene for 8 h under nitrogen (28\%) [843].
m.p. $\quad 134-136^{\circ}$ [843]; ${ }^{1} \mathrm{H}$ NMR [843].

(2,4-Dihydroxy-5-hexyl-1,3-phenylene)bis[phenylmethanone

$$
\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4} \quad \text { mol.wt. } 402.49
$$

Synthesis

- Preparation by reaction of benzoyl chloride with 4-hexylresorcinol in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for 3 h (52\%) [113].
m.p. $\quad 68-69^{\circ}[113] ; \quad \operatorname{Spectra}(N A)$.

Miscellaneous Related Compounds (Class of METHANONES)

Chapter 7
 Miscellaneous Related Compounds

7.1 Diphenyl Derivatives

(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis[(2,4-dichorophenyl)methanone

[152383-57-8]

$\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{4} \quad$ mol.wt. 532.21
Synthesis

- Preparation by Fries rearrangement of 4,4'-dihydroxybiphe-nyldi-(2,4-di-chlorobenzoate) in the presence of tri-fluoromethanesulfonic acid and ethane-sulfonic acid in refluxing dichlorobenzene for 16 h (94\%) [1441].
N.B.: Di-Na salt [1442].
m.p. (NA); ${ }^{13} \mathrm{C}$ NMR [1441].
(4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[(3-fluorophenyl)methanone
[176548-03-1] $\quad \mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{4} \quad$ mol.wt. 430.41

Synthesis

- Preparation by demethylation of 2,2'-bis-(m-fluoro-benzoyl)-4,4'-dimethoxybiphenyl with boron tribromide in methylene chloride, first at -70°, then at 25° for $8 \mathrm{~h}(80 \%)$ [258].
m.p. $239-241^{\circ}$ [258]; ${ }^{1} \mathrm{H}$ NMR [258].
(4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[(4-fluorophenyl)methanone
[162658-02-8]

$\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{4}$
Synthesis
- Preparation by total demethylation of $2,2^{\prime}$-bis(p-fluorobenzoyl)-4, 4^{\prime} -di-methoxybiphenyl with boron
tribromide in methylene chloride under nitrogen first at -70°, then at 25° for 8 h (94\%) [258,680].
m.p. $256-258^{\circ}$ [680]; ${ }^{1} \mathrm{H}$ NMR [680], ${ }^{13} \mathrm{C}$ NMR [680], MS [680].

[1,1'-Biphenyl]-4,4'-diylbis[(4-hydroxyphenyl)methanone

[106647-50-1] $\quad \mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 394.43

Synthesis

- Preparation by Fries rearrangement of 4,4'-bis-(phenoxycarbonyl)diphenyl in hydrofluoric acid between -10° and 0° for 20 h (96\%) [1467].
m.p. and Spectra (NA).
(4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[phenylmethanone
[162658-01-7]

$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 394.43
Synthesis
- Preparation by total demethylation of 2,2'-dibenzoyl-4,4'-dimethoxybiphenyl with boron tribromide in methylene chloride under nitrogen first at -70°, then at 25° for 8 h (83\%) [258,680].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [680].

(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis[phenylmethanone

[71182-85-9]

$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 394.43
Synthesis

- Preparation by Fries rearrangement of 4,4'-bi-phenyldiyl dibenzoate,
- with aluminium chloride in o-dichlorobenzene during 3 h at 180° (70\%) [1408] or in refluxing chlorobenzene for 3 days (30\%) [1468];
- with aluminium chloride and sodium chloride mixture, first at 140°, then at 200° for $20 \min (51 \%)$ [1469].
m.p. $187^{\circ} 5-189^{\circ} 5$ [1408], $184-185^{\circ}$ [1468];
${ }^{1} \mathrm{H}$ NMR [1408], IR [1408], UV [1408].

(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis[phenylmethanone

[42045-62-5]

$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{6}$
mol.wt. 454.48
Synthesis

- Obtained by reaction of 2-hydroxy-4-methoxy-benzophenone with lead tetracetate in acetic acid at 100° for 5 h (15%). The same reaction using manganic acetate gave 7% yield [650].

```
m.p. 199-200 [650];
'1H NMR [650], IR [650], UV [650].
```


(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis[(4-methoxyphenyl)methanone

Synthesis

- Obtained by reaction of 2-hydroxy-4,4'-dimethoxybenzophenone with lead tetraacetate in acetic acid at 100° for 5 h (21\%) [1082].
m.p. $232-234^{\circ}$ [1082]; ${ }^{1} \mathrm{H}$ NMR [1082], IR [1082], UV [1082].
(4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[4-(1,1-dimethylethyl)phenyl] methanone
[162658-03-9] $\quad \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{4} \quad$ mol.wt. 506.64

Synthesis

- Preparation by total demethylation of $2,2^{\prime}$-bis(p-tert-butylbenzoyl)-4,
4^{\prime}-dimethoxybiphenyl with boron tribromide in methylene chloride under nitrogen first at -70°, then at 25° for $8 \mathrm{~h}(77 \%)$ [258,680].
m.p. $236-238^{\circ}$ [680]; ${ }^{1} \mathrm{H}$ NMR [680], ${ }^{13} \mathrm{C}$ NMR [680], MS [680].

7.2 Diphenylmethane Derivatives

Phenyl[2,3,4-trihydroxy-5-[(2,4,6-trihydroxyphenyl)methyl]phenyl]methanone

m.p. and Spectra (NA).

Phenyl[2,3,4-trihydroxy-5-[(2-hydroxy-4-methylphenyl)methyl]phenyl] methanone

m.p. and Spectra (NA).

Phenyl[2,3,4-trihydroxy-5-[(4-hydroxy-2-methylphenyl)methyl]phenyl]methanone

m.p. and Spectra (NA).
[Methylenebis(2,4-dihydroxy-5-methyl-3,1-phenylene)]bis[phenylmethanone

$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 468.51
Synthesis

- Preparation by reaction of 40% aqueous formaldehyde solution with 2,4-dihydroxy-5methylbenzophenone in ethanol in the presence of concentrated sulfuric acid for 24 h at r.t. (73\%) [805].
m.p. 240° [805]; $\operatorname{Spectra}(\mathrm{NA})$.

[Methylenebis(4,6-dihydroxy-5-methyl-3,1-phenylene)]bis[phenylmethanone

$$
\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6} \quad \text { mol.wt. } 468.51
$$

Synthesis

- Preparation by reaction of 40% aqueous formaldehyde solution with 2,4-dihydroxy-3-methylbenzophenone in ethanol in the presence of concentrated sulfuric acid for 3 days at r.t. (68\%) [805].
m.p. 207-208 ${ }^{\circ}$ [805]; \quad Spectra (NA).
[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)]tetrakis[phenylmethanone
[98149-22-5]

m.p. $\quad 215-217^{\circ}[1463] ; \quad$ Spectra (NA).
$\mathrm{C}_{41} \mathrm{H}_{28} \mathrm{O}_{10} \quad$ mol.wt. 680.67 Synthesis
- Preparation by condensation of 2,4-di-benzoylphloroglucinol with 40% aqueous formaldehyde solution (5864\%) [1463].

7.3 Diphenylethane Derivative

[1,2-Ethanediylbis(6-hydroxy-3,1-phenylene)]bis[phenylmethanone
[76346-16-2]

m.p. $172-173^{\circ}$ [278]; ${ }^{1} \mathrm{H}$ NMR [278], IR [278], UV [278].

7.4 Diphenylpropane Derivatives

3-Benzoyldiphenylolpropane $\mathbf{4}^{\prime}$-monobenzoate

b.p. ${ }_{0.15} 220^{\circ}$ [1470]; IR [1470], UV [1470].

2,2-Bis(3-benzoyl-4-hydroxyphenyl)propane

$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 436.51

Synthesis

- Obtained by reaction of benzoyl chloride with diphenylolpropane dimethyl ether in the presence of aluminium chloride in ethylene dichloride, first at 0° for 45 min , then at r.t. overnight and at 45° for 90 min (14\%) [1470].
m.p. $159^{\circ} 5-160^{\circ} 5$ [1470]; IR [1470], UV [1470].

7.5 Diphenyl Oxide Derivatives

(4-Chlorophenyl)[4-(4-hydroxyphenoxy)phenyl]methanone
[86405-16-5] $\quad \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 324.76

Synthesis

- Refer to: Chem. Abstr., 127, 278690x (1997).
m.p. and Spectra (NA).

[4-(4-Hydroxyphenoxy)phenyl]phenylmethanone

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 290.22

Synthesis

- Preparation by demethylation of 4-(4-methoxyphenoxy)benzophenone (m.p. 104-105 ${ }^{\circ}$) with aluminium chloride in boiling benzene during some hours [1471].
m.p. $\quad 109^{\circ}$ [1471]; \quad Spectra (NA).

2-(4-Benzoyl-3-hydroxyphenoxy)cyclohexanone

[125426-75-7]

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 310.35
Synthesis

- Preparation by reaction of α-bromocyclohexanone with resbenzophenone in the presence of potassium carbonate in refluxing acetone for 6 h (70\%) [221].
m.p. $\quad 132-133^{\circ}$ [221]; ${ }^{1} \mathrm{H}$ NMR [221].

2-(4-Benzoyl-3-hydroxy-2-methylphenoxy)cyclohexanone

[125426-85-9]

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 324.38
Synthesis

- Preparation by reaction of α-bromocyclohexanone with 2,4-dihydroxy-3-methylbenzophenone in the presence of potassium carbonate in refluxing acetone for 6 h [221].
m.p. $\quad 121-122^{\circ}$ [221]; ${ }^{1} \mathrm{H}$ NMR [221].

Bis[4-(4-hydroxyphenoxy)phenyl]methanone

Synthesis

- Preparation by demethylation of 4,4'-(4-methoxyphenoxy)benzophenone (m.p. $198-199^{\circ}$) with excess aluminium chloride in boiling benzene (30\%) [1471]. m.p. 214° [1471]; \quad Spectra (NA).

(Oxydi-4,1-phenylene)bis(4-hydroxyphenyl)methanone

[86432-12-4]

$$
\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{5} \quad \text { mol.wt. } 258.23
$$

Syntheses

- Obtained by reaction of 4,4'-Oxybis(benzoic acid) with phenol in the presence of trifluoromethanesulfonic acid at r.t. for 6 days [151].
- Preparation by Fries rearrangement of 4,4'-bis(phenoxycarbonyl)diphenyl ether,
- with methanesulfonic acid at 120° for 2 h (70\%) [1472];
- with trifluoromethanesulfonic acid (high yield) [922];
- with hydrofluoric acid at -10° to 0° for $20 \mathrm{~h}(96 \%)$ [1473].
- Also obtained by reaction of EKONOL ${ }^{(\mathrm{TM})}$, an aromatic polyester as Friedel-Crafts reagent, with diphenyl ether in triflic acid solution at 25° for 18 h (98\%) [922].

Similar results can be obtained using hydrofluoric acid/boron trifluoride or aluminium chloride in place of triflic acid [922].
m.p. (NA); ${ }^{1} \mathrm{H}$ NMR [151], ${ }^{13} \mathrm{C}$ NMR [922], MS [922]; HPLC [922].

7.6 Diphenyl Sulfoxide Derivatives

[Sulfinylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[phenylmethanone

$$
\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~S} \quad \text { mol.wt. } 502.54
$$

Synthesis

- Obtained by action of thionyl chloride with 2-hydroxy-4-methoxybenzophenone in the presence of aluminium chloride in nitrobenzene at r.t. for 24 h [1474].
m.p. $202-203^{\circ}[1474] ; \quad$ Spectra (NA).
[Sulfinylbis[4-(cyclohexyloxy)-6-hydroxy-3,1-phenylene]]bis[phenylmethanone $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{~S} \quad$ mol.wt. 638.79

Synthesis

- Obtained by action of thionyl chloride with 2-hydroxy-4-(cyclohexyloxy)benzophenone in the presence of aluminium chloride in nitrobenzene at r.t. for 24 h [1474].
m.p. and Spectra (NA).
[Sulfinylbis[4-(benzyloxy)-6-hydroxy-3,1-phenylene]]bis[phenylmethanone $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~S} \quad$ mol.wt. 654.74
 Synthesis
- Obtained by action of thionyl chloride with 2-hydroxy-4-(benzyloxy)benzophenone in the presence of aluminium chloride in nitrobenzene at r.t. for 24 h [1474].
m.p. and Spectra (NA).
[Sulfinylbis[6-hydroxy-4-(octyloxy)-3,1-phenylene]]bis[phenylmethanone
[35839-47-5] $\quad \mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{~S} \quad$ mol.wt. 698.92

m.p. $131^{\circ} 5-132^{\circ}$ [1474]; \quad Spectra (NA).

7.7 Diphenyl Sulfone Derivatives

[Sulfonylbis(6-hydroxy-3,1-phenylene)]bis[(2,4-dichlorophenyl)methanone

$\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 596.27

m.p. (NA); ${ }^{13} \mathrm{C}$ NMR [1441].
[Sulfonylbis(4,6-dihydroxy-3,1-phenylene)]bis[phenylmethanone

[35839-48-6]

$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 490.49
Synthesis

- Obtained by reaction of a 30% aqueous solution of hydrogen peroxide with 5,5'-thiobis(2,4-dihydroxy-benzophenone) in acetic acid. The mixture was then heated on a steam bath for 6 h [1474].
m.p. $\quad 217-219^{\circ}[1474] ; \quad$ Spectra (NA).

[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[phenylmethanone

[35698-04-5] $\quad \mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 518.54

Synthesis

- Obtained by reaction of a 30% aqueous solution of hydrogen peroxide with 5,5'-thiobis(2-hydroxy-4-methoxybenzophenone) in acetic acid. The mixture was then heated on a steam bath for 4 h [1474].
m.p $264-267^{\circ}$ [1474]; \quad Spectra (NA).
[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[(2-methylphenyl) methanone
[35698-06-7]

m.p. $268-269^{\circ}[1474] ; \quad$ Spectra (NA).
[Sulfonylbis[4-(cyclopentyloxy)-6-hydroxy-3,1-phenylene]]bis[phenylmethanone

$\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 626.73
Synthesis
- Obtained by reaction of a 30% aqueous solution of hydrogen peroxide with 5,5'-thiobis[2-hydroxy-4-(cyclopentyloxy) benzophenone] in acetic acid. The mixture was then heated on a steam bath for 6 h [1474].
m.p. and Spectra (NA).
[Sulfonylbis[4-(benzyloxy)-6-hydroxy-3,1-phenylene]]bis[phenylmethanone

$$
\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~S} \quad \text { mol.wt. } 670.74
$$

Synthesis

- Obtained by reaction of a 30% solution of hydrogen peroxide with $5,5^{\prime}$-sulfiny lbis(2-hydroxy-4-benzyloxybenzophenone) in acetic acid. The mixture was then heated on a water bath for 6 h [1474].
m.p. and Spectra (NA).
[Sulfonylbis[6-hydroxy-4-(octyloxy)-3,1-phenylene]]bis[phenylmethanone
[35698-05-6

m.p. and Spectra (NA).
$\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 714.92
Synthesis
- Obtained by reaction of a 30% solution of hydrogen peroxide with 5,5'-sulfinylbis(2-hydroxy-4-octyloxybenzophenone) in acetic acid. The mixture was then heated on a steam bath for 6 h [1474].

7.8 Other Acylated Compounds

2-Chloro-4-(2-hydroxybenzoyl)phenyl 2-hydroxybenzoate

2-Hydroxybenzoic acid, 2-chloro-4-(2-hydroxybenzoyl)phenyl ester
[123861-93-8]

$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClO}_{5} \quad$ mol.wt. 368.77
Syntheses

- Obtained by Fries rearrangement,
- of o-chlorophenyl 2-(nicotinoyloxy)benzoate in the presence of aluminium chloride without solvent at $150-152^{\circ}$ for 2 h (26\%) [346];
- of o-chlorophenyl salicylate in the presence of aluminium chloride without solvent at 180-183 ${ }^{\circ}$ for $3 \mathrm{~h}(20 \%)$ [506] according to [1475].
m.p. $\quad 151-152^{\circ}[346,506] ; \quad$ Spectra (NA).

4-(2-Hydroxybenzoyl)phenyl 2-hydroxybenzoate

2-Hydroxybenzoic acid 4-(2-hydroxybenzoyl)phenyl ester
[124011-55-8]
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{5}$ mol.wt. 334.33

Syntheses

- Preparation by total demethylation of 4-(2-methoxybenzoyl)phenyl 2-methoxybenzoate with aluminium chloride in refluxing benzene for $1 \mathrm{~h}(50 \%)$ [346].
- Also obtained by Fries rearrangement of phenyl salicylate (salol) with aluminium chloride [1475], without solvent at $180-182^{\circ}$ for $3 \mathrm{~h}(10 \%)$ [155].
- Also obtained (by-product) by Fries rearrangement of phenyl 2-(nicotinoyloxy) benzoate with aluminium chloride without solvent at $140-145^{\circ}$ for $2 \mathrm{~h}(16 \%)$ [346].
m.p. 110° [155], $109-110^{\circ}$ [346]; \quad Spectra (NA).

Addendum to Volume 1

Chapter 8
 Addendum 2000-2008

Part I Monoaroylphenols

Chapter 1. Unsubstituted Hydroxybenzophenones (Class of METHANONES)

1.1 Monohydroxybenzophenones [1476] p. 3

(2-Hydroxyphenyl)phenylmethanone
[117-99-7] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 198.22

Methyl ether [2553-04-0] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

- Obtained by action of etheral diazomethane on 2-hydroxybenzophenone in the presence of methanol [1477].
- Also obtained by reaction of bromoethane with 2-hydroxybenzophenone in the presence of sodium ethoxide in ethanol [1478].
- Also obtained by reaction of 2-methoxybenzoyl chloride with benzene in the presence of aluminium chloride [1479].
- Also obtained by reaction of benzonitrile with anisole (Hoesch reaction) (36\%) [1480].
- Also obtained by heating its oxime with pyridinium chloride containing 10% of water (72\%) [1481].
- Also obtained by reaction of 2-methoxyphenylmagnesium bromide,
- with benzonitrile (50\%) [1482];
- with benzaldehyde [1483].
- Also refer to: [1484-1488].
b.p. ${ }_{0.9} 126-128^{\circ}$ [1486], b.p..$_{0.8} 136^{\circ}$ [1489], b.p. ${ }_{10} 190^{\circ}$ [1481], b.p..$_{27} 210^{\circ}$ [1478];
m.p. 39° [1478,1481], $36-37^{\circ}$ [1483], 35.5-36.5 ${ }^{\circ}$ [1482];
${ }^{1} H$ NMR [1486,1487,1489,1490], ${ }^{13} \mathrm{C}$ NMR [1487-1489],
IR [1485,1487,1489,1490],
UV [1479,1487,1490,1491], MS [1486,1488].
(3-Hydroxyphenyl)phenylmethanone
[13020-57-0]

Methyl ether [6136-67-0] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

- Obtained by photolysis of 2-bromo-3'-methoxybenzophenone in acetonitrile under nitrogen at 350 nm for $36 \mathrm{~min}(18 \%)$ [1495].
(4-Hydroxyphenyl)phenylmethanone
[1137-42-4]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 198.22

Methyl ether [611-94-9] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

- Obtained by reaction of 4-methoxybenzoyl chloride with benzene in the presence of aluminium chloride [1496].
- Also obtained by reaction of benzoyl chloride with anisole [1497].
- Also obtained by photocatalytic oxidation of 4-methoxybenzhydrol using silicaencapsulated $\mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40}$ as photocatalyst in acetonitrile for 1.25 h at r.t. under oxygen gas as the sole reoxidant of the catalyst, (90\%) [1498].
- Also obtained by photolysis of 2-bromo-4'-methoxybenzophenone in acetonitrile under nitrogen at 350 nm for $14 \mathrm{~min}(39 \%)$ [1495].
- Also obtained by reaction of benzonitrile with anisole (Hoesch reaction) (34\%) [1480].
- Also refer to: [1482,1499,1500], (94\%) [1501].
m.p. $58-60^{\circ}$ [1501];
${ }^{1} \mathrm{H}$ NMR [1498], IR [1498], UV [1501], MS [1498]; TLC [1498].
Ethyl ether [27982-06-5] $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ mol.wt. 226.27 (m.p. 42-44 ${ }^{\circ}$) [1502]
- Refer to: [1502].

1.2 Dihydroxybenzophenones [1476] p. 11

1.2.1 Hydroxy Groups Located on One Ring [1476] p. 11

(2,4-Dihydroxyphenyl)phenylmethanone
[131-56-6]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}$ mol.wt. 214.22
Described [1476] p. 11

Dimethyl ether [3555-84-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

- Obtained by reaction of benzoic acid with 1,3-dimethoxybenzene in the presence of PPA at 90° for $8 \mathrm{~h}(90 \%)$ [1503].
- Also refer to: [1485,1504].
white solid [1503]; m.p. 87° [1503], $86-88^{\circ}$ [1504];
${ }^{1}$ HNMR [1503], IR [1485,1503].
(2,5-Dihydroxyphenyl)phenylmethanone
[2050-37-5]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22
Described [1476] p. 14

Dimethyl ether [4038-13-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

- Obtained by reaction of benzoyl chloride with 1,4-dimethoxybenzene in methylene chloride in the presence of stannic chloride at 0° (82\%) [1503].
- Also refer to: [1504].
m.p. 51° [1503], 49-50́ [1504];
${ }^{1} \mathrm{H}$ NMR [1503], IR [1485, 1503].

(3,4-Dihydroxyphenyl)phenylmethanone

[10425-11-3]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22
Described [1476] p. 15
Syntheses

- Also obtained by Friedel-Crafts reaction betweenbenzoyl chloride and pyrocatechol dimethyl ether, followed by demethylation of the product so obtained [1505].
- Also refer to: [1506-1508]. m.p. 132° [1505].

Dimethyl ether [4038-14-6] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 (4-Benzoylveratrole)

- Obtained by reaction of benzoyl chloride with veratrole,
- in the presence of aluminium chloride in carbon disulfide (68\%) [1509];
- in the presence of zinc chloride [1510].
- Also obtained by reaction of benzoic acid with veratrole in the presence of PPA at 90° for $8 \mathrm{~h}(90 \%)$ [1503].
- Also obtained by reaction of phenylcarbonyl benzoate with veratrole in the presence of $\mathrm{TiCl}(\mathrm{OTf})_{3}$ and TfOH in acetonitrile at r.t. for $12 \mathrm{~h}(94 \%)$ [1511].
- Also obtained by photolysis of 2-bromo-3',4'-dimethoxybenzophenone in acetonitrile under nitrogen at 350 nm for $72 \mathrm{~min}(2 \%)$ [1495].
- Also obtained by oxidation of (3,4-dimethoxyphenyl)phenylmethanol with chromic acid [1512].
- Also refer to: [1479,1504,1513-1518].
m.p. $103-104^{\circ}$ [1512], 102° [1503], 101-102 ${ }^{\circ}$ [1510], $99-100^{\circ}$ [1504], 99° [1513], 98-100 ${ }^{\circ}$ [1509];
${ }^{1} H$ NMR [1503,1515], IR [1503,1504,1518], UV [1479,1503,1515-1517], MS [1514].
(3,5-Dihydroxyphenyl)phenylmethanone

Dimethyl ether [628263-26-3] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

- Obtained by irradiation of 2-bromo-3',5'-dimethoxybenzophenone at 350 nm in acetonitrile under nitrogen atmosphere for 72 h at r.t. (3\%) [1495].

1.2.2 Hydroxy Groups Located on Both Rings [1476] p. 17

Symmetrical ketones [1476] p. 17

Bis(2-hydroxyphenyl)methanone

[835-11-0]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22

Described [1476] p. 17
Syntheses

- Also refer to: [1519-1521].
N.B.: Thermal and dielectric studies [1521].

Dimethyl ether [13102-33-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

- Obtained by reaction of anisole with N,N-dimethylamide chlorocarbonic acid (77\%) [1522].
- Refer to: [1485].
${ }^{1} \mathrm{H}$ NMR [1522], ${ }^{13} \mathrm{C}$ NMR [1522], IR [1485,1522].

Bis(3-hydroxyphenyl)methanone

[611-80-3]

Bis(4-hydroxyphenyl)methanone
[611-99-4]

Described [1476] p. 18
Synthesis

- Also obtained by Friedel-Crafts reaction between p-anisoyl chloride and anisole, followed by demethylation of the obtained product [1505]. m.p. 210° [1505].

Dimethyl ether [90-96-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

- Obtained by photocatalytic oxidation of 4,4'-dimethoxybenzhydrol (m.p. $69-71^{\circ}$) catalyzed by $\mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40} / \mathrm{SiO}_{2}$ in acetonitrile under oxygen atmosphere at r.t. for $1 \mathrm{~h}(90 \%)$ [1498].
- Also obtained by microwave irradiation of 4-iodoanisole in the presence of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ in acetonitrile under air in sealed vessel for 10 s (57\%) [1524].
- Also obtained by reaction of 4-methoxyphenylglyoxylonitrile with 4-methoxyphenylmagnesium bromide in the presence of $\mathrm{Fe}(\mathrm{acac})_{3}(5 \mathrm{~mol} \%)$ in THF at -10° for 30 min under argon (98%) [1525].
- Also obtained by reaction of p-anisoyl chloride with anisole [1526] in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$ at reflux for $20 \mathrm{~h}(81 \%)$ [1527].
- Obtained by photolysis of 2-bromo-4',4'-dimethoxybenzophenone in acetonitrile under nitrogen at 350 nm for $24 \mathrm{~min}(34 \%)$ [1495].
- Also refer to: [1501] (93\%).
m.p. $146-147.5^{\circ}$ [1501], 143° [1526];
${ }^{1} H$ NMR [1498], IR [1498], UV [1501], MS [1498];
TLC [1498]; GC-MS [1524].
Diethyl ether $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
- Preparation by reaction of 4-ethoxybenzoyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide at 55° (80%) [1497].
b.p. ${ }_{15} 258^{\circ}$ [1497]; m.p. 132° [1497].

Asymmetric ketones [1476] p. 19

(2-Hydroxyphenyl)(4-hydroxyphenyl)methanone

[606-12-2] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22

Dimethyl ether [5449-69-4] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

- Refer to: [1485]; IR [1485].
(3-Hydroxyphenyl)(4-hydroxyphenyl)methanone
[611-81-4] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 214.22

Described [1476] p. 20

Described [1476] p. 21
Synthesis

- Preparation by treatment of 3,4'-dimethoxybenzophenone with pyridinium chloride at reflux for $30 \mathrm{~min}(95 \%)$ [1528].
white solid; m.p. $188-189^{\circ}$ [1528]; ${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].

Dimethyl ether [75731-44-1] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

- Obtained by photolysis of 2-bromo-3',4-dimethoxybenzophenone in acetonitrile under nitrogen at 350 nm for $48 \mathrm{~min}(18 \%)$ [1495].

1.3 Trihydroxybenzophenones [1476] p. 22

1.3.1 Hydroxy Groups Located on One Ring [1476] p. 22

Phenyl(2,3,4-trihydroxyphenyl)methanone

[1143-72-2]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4}$
mol.wt. 230.22

Described [1476] p. 22
Syntheses

- Also obtained by Friedel-Crafts reaction between benzoyl chloride and pyrogallol trimethyl ether, followed by demethylation of the obtained product [1505].
- Also refer to: [1529,1530] (Japanese patent) [1531-1534] (Chinese patent). m.p. 118° [1505].

Phenyl(2,4,6-trihydroxyphenyl)methanone (Phlorbenzophenone)
[3555-86-0]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22
Described [1476] p. 23
Syntheses

- Also obtained by treatment of 2,4,6-trimethoxybenzophenone,
- with boron tribromide (5 equiv) in methylene chloride, first at -78°, then at r.t. (92\%) [1535] for 66 h (80\%) [1536];
- with aluminium chloride in methylene chloride at 20° for 12 h (96\%) [1535].
- Also refer to: [1537,1538].
m.p. $167-169^{\circ}$ [1535], $164-165^{\circ}$ [1537];
${ }^{1} \mathrm{H}$ NMR [1535,1539-1541], ${ }^{13} \mathrm{C}$ NMR [1541],
IR [1535,1540], MS [1541].
BIOLOGICAL ACTIVITY: Antimicrobial activity against Bacillus subtilis [1542]; activity against Escherichia coli [1542].

USE: Stabilization PVC [1543].
Trimethyl ether [3770-80-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30 (58\%) [1536]
(Methylhydrocotoin)

- Obtained by reaction of benzoyl chloride with 1,3,5-trimethoxybenzene in the presence of aluminium chloride in ethyl ether, first between 0° and 5° for 1 h , then at r.t. for $15 \mathrm{~h}(46 \%)$ [1544].
- Also obtained by reaction of benzoyl chloride with 2,4,6-trimethoxyphenyllithium in ethyl ether at 0° for 1 h under nitrogen (50\%) [1545].
- Also obtained by reaction of benzonitrile with phloroglucinol trimethyl ether (Hoesch reaction) (66\%) [1480].
m.p. $\quad 113-115^{\circ}[1535,1545], 113^{\circ}$ [1544];
${ }^{1} \mathrm{H}$ NMR [1535, 1544,1545], ${ }^{13} \mathrm{C}$ NMR [1535],
IR [1545], UV [1545].
Tribenzoate $\quad \mathrm{C}_{34} \mathrm{H}_{22} \mathrm{O}_{7} \quad$ mol.wt. 542.54 (m.p. 125-126 ${ }^{\circ}$) [1537].

1.3.2 Hydroxy Groups Located on Both Rings [1476] p. 24

(2,4-Dihydroxyphenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22
Described [1476] p. 25
Synthesis

- Also obtained by action of salicylic acid with resorcinol in the presence of zinc chloride for 45 \min at $125-140^{\circ}$ [1505].
m.p. 138° [1505].

Trimethyl ether [33077-87-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

- Obtained by reaction of 2-methoxybenzoic acid with 1,3-dimethoxybenzene in the presence of PPA at 90° for $8 \mathrm{~h}(85 \%)$ [1503].
- Also refer to: [1515,1546,1547].
m.p. $61-62^{\circ}$ [1515,1546,1547], 59-60 ${ }^{\circ}$ [1503];
${ }^{1} H$ NMR [1503], IR [1503].
(2,4-Dihydroxyphenyl)(3-hydroxyphenyl)methanone
[837-60-5] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22

Trimethyl ether [844-38-2] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

- Obtained by reaction of 3-methoxybenzoic acid with 1,3-dimethoxybenzene in the presence of PPA at 90° for $8 \mathrm{~h}(85 \%)$ [1503].
- Also refer to: [1548].
m.p. $\quad 79-80^{\circ}$ [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503].
(2,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone
[1470-79-7]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22
Described [1476] p. 25
Syntheses
- Obtained by treatment of its trimethyl ether with aluminium chloride in toluene at 120° [1505].
- Also obtained by Friedel-Crafts reaction between p-anisoyl chloride and resorcinol dimethyl ether, followed by demethylation of the obtained product [1505].
- Also refer to: [1531,1532].
m.p. 198° [1505].

Trimethyl ether [4038-15-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

- Obtained by heating of its oxime with pyridinium chloride containing 10% of water [1481].
- Also obtained by reaction of p-anisoyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride [1549].
- Also obtained by reaction of 2,4-dimethoxybenzoyl chloride with anisole in the presence of aluminium chloride [1550].
- Also obtained by reaction of 4-methoxybenzoic acid with 1,3-dimethoxybenzene in the presence of PPA at 90° for $8 \mathrm{~h}(85 \%)$ [1503].
- Also refer to: [1551-1556].
m.p. 145° [1503], $73-74^{\circ}$ [1481,1550], $70-71^{\circ}$ [1549], 67° [1557];

One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [1503,1556], IR [1503,1557], UV [1551].
(2,5-Dihydroxyphenyl)(2-hydroxyphenyl)methanone
[183106-13-0]

m.p. 98° [1505].
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22
Described [1476] p. 26
Synthesis

- Also obtained by action of salicylic acid with hydroquinone in the presence of zinc chloride for 45 min at $125-140^{\circ}$ [1505].

Trimethyl ether [32938-33-3] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

- Obtained by reaction of 2-methoxybenzoyl chloride with 1,4-dimethoxybenzene in methylene chloride in the presence of stannic chloride (82\%) [1503].
- Also refer to: [1558].
m.p. 48° [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503].
(2,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone
[120506-56-1]

m.p. 162° [1505].
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22
Described [1476] p. 26
Synthesis
- Also obtained by Friedel-Crafts reaction between p-anisoyl chloride and hydroquinone dimethyl ether, followed by demethylation of the obtained product [1505].

Trimethyl ether [80427-23-2] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

- Obtained by reaction of 4-methoxybenzoyl chloride with 1,4-dimethoxybenzene in methylene chloride in the presence of stannic chloride (80\%) [1503].
- Also refer to: [1559].
white solid; m.p. 70° [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503].
(3,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 230.22
Described [1476] p. 27
Syntheses
- Also obtained by Friedel-Crafts reaction between p-anisoyl chloride and pyrocatechol dimethyl ether, followed by demethylation of the obtained product [1505].
- Also obtained by reaction of 3,4-dimethoxybenzoyl chloride with anisole in the presence of aluminium chloride in carbon disulfide. The obtained trimethoxybenzophenone was converted to the trihydroxybenzophenone by heating with an equal weight of aluminium chloride in toluene for 1 h at 120° [1505].
m.p. 205° [1505].

Trimethyl ether [2898-54-6] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30.

- Obtained by reaction of 4-methoxybenzoic acid with veratrole in the presence of PPA at 90° for $8 \mathrm{~h}(80 \%)$ [1503].
- Also refer to: [1560].
white solid; m.p. $96-97^{\circ}$ [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503], UV [1503].

1.4 Tetrahydroxybenzophenones [1476] p. 28

1.4.1 Hydroxy Groups Located on One Ring [1476] p. 28

1.4.2 Hydroxy Groups Located on Both Rings [1476] p. 28

Symmetrical ketones [1476] p. 28

Bis(2,4-dihydroxyphenyl)methanone

[131-55-5]

 $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22
Described [1476] p. 29
Syntheses

- Also prepared from 2,4-dihydroxybenzoic acid and resorcinol in sulfolane using anhydrous zinc chloride and phosphorous oxychloride as catalysts for 2.2 h at 70° (87%) [1561].
- Also obtained by action of β-resorcylic acid with resorcinol in the presence of zinc chloride for 45 min at $125-140^{\circ}$ [1505].
- Also refer to: [1562] (THBP), [1534] (Chinese patent).
m.p. 180° [1505].

Tetramethyl ether [3555-85-9] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33.

- Refer to: [1562] (TMBP).

Bis(3,5-dihydroxyphenyl)methanone

New compound
Synthesis

- Preparation by treatment of its tetramethyl ether with boron tribromide in methylene chloride at 0° [1563].

Tetramethyl ether [184090-09-3] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33.

- Obtained by oxidation of 3,3',5,5'-tetramethoxybenzhydrol with manganese dioxide in methylene chloride at r.t. [1563].

Asymmetric ketones [1476] p. 30
(2-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone
[42204-63-7] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad \mathrm{~mol} . \mathrm{wt} 246.22$

Described [1476] p. 32
Synthesis

- Also refer to: [1534] (Chinese patent).
(4-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone
[31127-54-5] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Described [1476] p. 34
Syntheses

- Also obtained by Friedel-Crafts reaction between p-anisoyl chloride and pyrogallol trimethyl ether, followed by demethylation of the product obtained [1505].
- Also refer to: [1564,1565] (Japanese patent), [1534,1566,1567] (Chinese patents). m.p. 219° [1505].
(4-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone (Iriflophenone)
[52591-10-3]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 246.22

Monohydrate [880877-63-4] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5}, \mathrm{H}_{2} \mathrm{O} \quad$ mol.wt. 264.24
Isolation from natural sources

- From the rhizomes of Iris germanica Linn. [1568]. m.p. 209-210 ${ }^{\circ}$ [1568]; X-ray Data [1568].

1.5 Pentahydroxybenzophenones [1476] p. 35

1.5.1 Hydroxy Groups Located on One Ring [1476] p. 35

1.5.2 Hydroxy Groups Located on Both Rings [1476] p. 35

(2,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22
Described [1476] p. 35
Synthesis

- Also obtained by action of β-resorcylic acid with pyrogallol in the presence of zinc chloride for 45 min at $125-140^{\circ}$ [1505].
m.p. 200° [1505].
(2,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone

m.p. $\quad 253^{\circ}$ [1505].
(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone
[519-34-6] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22

Described [1476] p. 37
Syntheses

- Also obtained by Friedel-Crafts reaction between veratryl chloride and phlroglucinol dimethyl ether, followed by demethylation of the obtained product [1505].
- Also refer to: [1569].
m.p. 220° [1505].
(4-Hydroxyphenyl)(2,3,4,5-tetrahydroxyphenyl)methanone
[112232-17-4]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad$ mol.wt. 262.22
Described [1476] p. 39
Synthesis
- Also refer to: [1534] (Chinese patent).

1.6 Hexahydroxybenzophenones [1476] p. 39

Symmetrical ketones [1476] p. 39
Bis(2,3,4-trihydroxyphenyl)methanone (Exifone, Adlone)
[75440-84-5] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7} \quad$ mol.wt. 278.22

Described [1476] p. 39
Synthesis

- Also obtained by action of 2,3,4-trihydroxy-benzoic-acid with pyrogallol in the presence of zinc chloride for 45 min at $125-140^{\circ}$ [1505].
m.p. 240° [1505].

Asymmetric ketones [1476] p. 40
(2,3,4-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone (Exifone, Adlone)
[52479-85-3]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7} \quad$ mol.wt. 278.22
Described [1476] p. 40
Syntheses

- Also obtained by action of gallic acid with pyrogallol in the presence of zinc chloride for 45 min at $125-140^{\circ}$ [1505].
- Also refer to: [1529,1533,1570].
m.p. 276° [1505].

BIOLOGICAL ACTIVITY: Synergistic antimalarial activity of exifone and rufigallol. [1571]; synergistic antimalarial activity of exifone and vitamin C [1571]; pharmacology [1572]; animal studies in memory improvement [1573]; in antagonism of benzodiazepine-induced amnesia [1574]; clinical evaluation in senile dementia [1575]; in Parkinson's disease [1576].

(4-Hydroxyphenyl)(2,3,4,5,6-pentahydroxyphenyl)methanone

[960294-81-9]
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7} \quad$ mol.wt. 278.22

New compound
Synthesis

- Refer to: [1534] (Chinese patent).

Chapter 2. Substituted Hydroxybenzophenones (Class of METHANONES)

2.1 Monohydroxybenzophenones [1476] p. 43

2.1.1 Substituents Located on the Hydroxylated Ring [1476] p. 43

(3,5-Dibromo-4-hydroxyphenyl)phenylmethanone
[26733-16-4] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 356.01

Described [1476] p. 44
Syntheses

- Also obtained by adding HMTAB (hexamethylene tetramine-bromine complex) to 4-hydroxybenzophenone in methylene chloride at r.t. for 5 min (40\%) [1577].
- Also obtained by reaction of bromine with 4-hydroxybenzophenone in dilute acetic acid [1497].
m.p. 153.5° [1497], $148-150^{\circ}$ [1577].

Ethyl ether $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 384.07

- Obtained by reaction of ethyl iodide with 2-hydroxy-3,5-dibromobenzophenone in the presence of potassium hydroxide in boiling ethanol [1497].
b.p. ${ }_{11} 244^{\circ}$ [1497]; m.p. 83.5° [1497].

(3-Chloro-2-hydroxy-5-iodophenyl)phenylmethanone

[883566-15-2] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClIO}_{2} \quad$ mol.wt. 358.56

New compound
Synthesis

- Obtained by reaction of iodine and iodic acid with 3-chloro-2-hydroxybenzophenone at 35-40 in 95\% ethyl alcohol (82\%) [1578].
m.p. 172° [1578]; ${ }^{1} \mathrm{H}$ NMR [1578], IR [1578], MS [1578].
(5-Chloro-2-hydroxy-3-iodophenyl)phenylmethanone
[58878-51-6]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClIO}_{2} \quad$ mol.wt. 358.56

New compound

Syntheses

- Obtained by reaction of iodine and iodic acid with 5-chloro-2-hydroxybenzophenone at 35-40 in 95\% ethyl alcohol (80\%) [1578].
- Also refer to: [1579,1580].

```
m.p. 118 [1578], 110-111 [ [1579,1580];
'H NMR [1578], IR [1578], MS [1578].
```


(3-Bromo-4-hydroxyphenyl)phenylmethanone

[89899-44-5]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11
Described [1476] p. 50
Syntheses

- Also obtained by adding HMTAB (hexamethylene tetramine-bromine complex) to 4-hydroxybenzophenone in methylene chloride at -5° for 145 min (97%) [1577].
- Also obtained by reaction of bromine with 4-hydroxybenzophenone in anhydrous acetic acid [1497].
m.p. $\quad 183^{\circ}$ [1497], 181-183 ${ }^{\circ}$ [1577].

Methyl ether $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 294.14

- Refer to: [1514]; MS [1514].

Ethyl ether $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 305.17

- Obtained by reaction of ethyl iodide with 3-bromo-4-hydroxybenzophenone in the presence of potassium hydroxide in boiling ethanol for 3 h [1497].
- Also obtained by reaction of bromine with 4-ethoxybenzophenone in dilute acetic acid at r.t. for 1 h [1497].
m.p. 102° [1497].
(4-Bromo-2-hydroxyphenyl)phenylmethanone
[6723-04-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Described [1476] p. 50
Syntheses

- Obtained by treatment of 6-bromo-2,3-diphenylbenzofuran with chromium trioxide [1581].
- Also refer to: [1582-1584]. m.p. 83° [1582]; UV [1582].

Oxime (1E) [335195-33-0] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrNO}_{2} \quad$ mol.wt. 292.13 (75\%) [1581]
m.p. 115° [1581]; ${ }^{1} \mathrm{H}$ NMR [1581], IR [1581], MS [1581].

(2-Chloro-4-hydroxyphenyl)phenylmethanone

[81375-00-0]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad \mathrm{~mol} . w t .232 .67$

Methyl ether [67601-27-8] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

- Obtained by heating for 4 h a mixture of 3-chloroanisole and benzoyl chloride,
- in the presence of ferric chloride (75\%) [1585];
- in the presence of aluminium chloride (80%) [1585].
b.p. ${ }_{12} 183^{\circ}$ [1585].

(3-Chloro-2-hydroxyphenyl)phenylmethanone

[35582-86-6] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67

Described [1476] p. 52
Synthesis

- Also refer to: [1578].
(3-Chloro-4-hydroxyphenyl)phenylmethanone
[55191-20-3] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67

Described [1476] p. 52
Synthesis

- Also refer to: [1514]; MS [1514].

Methyl ether [10547-61-2] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

- Obtained by heating for 4 h a mixture of 2-chloroanisole and benzoyl chloride,
- in the presence of ferric chloride (70%) [1585];
- in the presence of aluminium chloride (81\%) [1585].
- Also refer to: [1514].
b.p. ${ }_{12} 181^{\circ}$ [1585]; m.p. 99° [1585]; MS [1514].

(4-Chloro-2-hydroxyphenyl)phenylmethanone

[2985-80-0] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67

Described [1476] p. 53
Synthesis

- Obtained by heating 4-chloro-2-hydroxybenzoyl chloride with benzene in the presence of aluminium chloride (81\%) [1586].
m.p. $\quad 70-71^{\circ}$ [1586]; ${ }^{1} \mathrm{H}$ NMR [1586].

Methyl ether [78589-12-5] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

- Obtained by treatment of 4-chloro-2-hydroxybenzophenone with methyl iodide in DMSO in the presence of potassium hydroxide at 40° (25\%) [1586].
m.p. $\quad 91-93^{\circ}$ [1586]; ${ }^{1} \mathrm{H}$ NMR [1586], ${ }^{13} \mathrm{C}$ NMR [1586], IR [1586].
(5-Chloro-2-hydroxyphenyl)phenylmethanone
[85-19-8]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67
Described [1476] p. 53
Synthesis
- Also refer to: [1584].

Methyl ether [4072-28-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

- Obtained by heating for 4 h a mixture of 4-chloroanisole and benzoyl chloride,
- in the presence of ferric chloride (70\%) [1585];
- in the presence of aluminium chloride (81\%) [1585].
- Obtained by reaction of dimethyl sulfate with 5-chloro-2-hydroxybenzophenone potassium salt in toluene [1587].
- Preparation from 1-(5-chloro-2-methoxyphenyl)-1-phenylethylene [1588].
- Preparation from 5-chloro-2-methoxyphenylboronic acid [1588].
- Also refer to: [1557,1589,1590].
b.p. 180° [1585]: m.p. 103-104 ${ }^{\circ}$ [1590], 101° [1585], $100.5-101^{\circ}$ [1587], 100° [1557];
${ }^{1} \mathrm{H}$ NMR [1588], ${ }^{13} \mathrm{C}$ NMR [1588], IR [1557,1588].
(2-Hydroxy-4-iodophenyl)phenylmethanone
[335195-30-7] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 324.12

New compound
Synthesis

- Obtained by treatment of 6-iodo-2,3-diphenylbenzofuran with chromium trioxide [1581].

Oxime (1E) [335195-36-3] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{INO}_{2} \quad$ mol.wt. 339.13 (82\%) [1581] m.p. $143-144^{\circ}$ [1581]; ${ }^{1} \mathrm{H}$ NMR [1581], IR [1581], MS [1581].
(3-Amino-4-hydroxyphenyl)phenylmethanone
[42404-41-1] $\quad \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24

Described [1476] p. 61
Syntheses

- Also obtained by treatment of 4-hydroxy-3-nitrobenzophenone with hydrazine hydrate in the presence of Raney nickel in methanol at 60-60 for 1.5 h [1591].
- Also refer to: [1533,1592-1595]. UV [1595].

Hydrochloride $\quad \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 249.70.

- Refer to: [1596] (91\%); (m.p. 185-196º [1596].

(2-Hydroxy-3,5-diiodo-4-methylphenyl)phenylmethanone

[883566-14-1]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{O}_{2}$
mol.wt. 464.04

New compound
Synthesis

- Obtained by reaction of iodine and iodic acid with 2-hydroxy-4-methylbenzophenone at $35-40^{\circ}$ in 95\% ethyl alcohol (84\%) [1578].
m.p. 121° [1578]; ${ }^{1} \mathrm{H}$ NMR [1578], IR [1578], MS [1578].

(4-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone

[6758-89-0]

Oxime (1E) [335195-35-2]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14
Described [1476] p. 65
Synthesis

- Obtained by treatment of 6-bromo-7-methyl-2,3-di-phenyl-benzofuran with chromium trioxide [1581].
m.p. $\quad 140-142^{\circ}$ [1581]; ${ }^{1} \mathrm{H}$ NMR [1581], IR [1581], MS [1581].
(4-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone
[6723-07-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$
mol.wt. 291.14
Described [1476] p. 65
Synthesis
- Obtained by treatment of 6-bromo-5-methyl-2,3-diphenyl-benzofuran with chromium trioxide [1581].
Oxime (1E) [335195-34-1] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrNO}_{2} \quad$ mol.wt. 306.16 (78\%) [1581], m.p. $\quad 135-137^{\circ}$ [1581]; ${ }^{1} \mathrm{H}$ NMR [1581], IR [1581], MS [1581].

(2-Hydroxy-3-iodo-5-methylphenyl)phenylmethanone

[883566-13-0]

m.p. 80° [1578];
${ }^{1} \mathrm{H}$ NMR [1578], ${ }^{13} \mathrm{C}$ NMR [1578], IR [1578], MS [1578].

(2-Hydroxy-4-iodo-3-methylphenyl)phenylmethanone

[194784-86-6]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{2}$
mol.wt. 338.14

New compound
Synthesis

- Obtained by treatment of 6-iodo-7-methyl-2,3-diphenylbenzofuran with chromium trioxide [1581].
Oxime (1E) [335195-38-5] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{INO}_{2} \quad$ mol.wt. 353.16 (83\%) [1581]. m.p. 161° [1581]; ${ }^{1} \mathrm{H}$ NMR [1581], IR [1581], MS [1581].

(2-Hydroxy-4-iodo-5-methylphenyl)phenylmethanone

[335195-31-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{2}$ mol.wt. 338.14
New compound
Synthesis

- Obtained by treatment of 6-iodo-5-methyl-2,3-diphenylbenzofuran with chromium trioxide [1581].

Oxime (1E) [335195-37-4] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{INO}_{2} \quad$ mol.wt. 353.16 (85\%) [1581]. m.p. $152-155^{\circ}$ [1581]; ${ }^{1} \mathrm{H}$ NMR [1581], IR [1581], MS [1581].
(4-Hydroxy-3-methoxy-2-nitrophenyl)phenylmethanone
[383382-98-7] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

New compound
Synthesis

- Obtained by hydrolysis of 4-acetoxy-3-methoxy-2-nitro-benzophenone with 3 N sodium hydroxide in dilute methanol at r.t. for $15 \mathrm{~min}(93 \%)$ [1597].
m.p. $\quad 168.9-170^{\circ}$ [1597]; ${ }^{1} \mathrm{H}$ NMR [1597], ${ }^{13} \mathrm{C}$ NMR [1597].

Acetate $\quad[383382-96-5] \quad \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 315.22

- Obtained by adding copper (II) nitrate trihydrate in one portion to a solution of 4-(acetyloxy)-3-methoxybenzophenone (m.p. 103-104 ${ }^{\circ}$) in acetic anhydride at r.t. (52\%) [1597].
m.p. $84.5-86^{\circ}$ [1597]; ${ }^{1} \mathrm{H}$ NMR [1597], ${ }^{13} \mathrm{C}$ NMR [1597].
(4-Hydroxy-3-methylphenyl)phenylmethanone
[5326-42-1]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

Described [1476] p. 78
Syntheses

- Also obtained by Friedel-Crafts acylation of o-cresol with benzoic acid in a mixture of graphite and methanesulfonic acid at 120° for $3 \mathrm{~h}(90 \%)$ [1598].
- Also refer to: $[1514,1599]$.
${ }^{1} \mathrm{H}$ NMR [1598], ${ }^{13} \mathrm{C}$ NMR [1598], MS [1514].
Methyl ether [30090-97-2] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
- Refer to: [1514]; MS [1514].
(4-Hydroxy-3-methoxyphenyl)phenylmethanone
[51439-89-5] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Acetate [383382-97-6] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28

- Preparation by reaction of acetic anhydride with 4-hydroxy-3-methoxybenzophenone in the presence of pyridine in methylene chloride at r.t. for 15 min (94\%) [1597].
m.p. $103-104^{\circ}$ [1597]; ${ }^{1} \mathrm{H}$ NMR [1597], ${ }^{13} \mathrm{C}$ NMR [1597].
(3-Amino-4-hydroxy-2-methylphenyl)phenylmethanone
[909255-30-7]
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26
New compound
Synthesis
- Obtained by treatment of (3-amino-4-methoxy-2-methyl-phenyl)phenylmethanone with aluminium chloride in toluene at 100° for $20 \mathrm{~min}(86 \%)$ [1595]. m.p. ${ }^{145-147^{\circ}}$ [1595]; ${ }^{1} \mathrm{H}$ NMR [1595], ${ }^{13} \mathrm{C}$ NMR [1595].

Methyl ether $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 241.29

- Obtained by reaction of benzoic acid with 2-methoxy-6-methylaniline in the presence of PPA at 100° for $3 \mathrm{~h}(40 \%)$ [1595].
(3-Amino-2-hydroxy-4-methoxyphenyl)phenylmethanone
[253681-30-0] $\quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 243.26

New compound
Synthesis

- Obtained by treatment of 3-amino-2,4-dime-thoxy-benzophenone with aluminium chloride in refluxing methylene chloride for $1 \mathrm{~h}(70-90 \%)$ [1529].

(2-Hydroxy-3,5-diiodo-4,6-dimethylphenyl)phenylmethanone

[883566-16-3] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{I}_{2} \mathrm{O}_{2} \quad$ mol.wt. 478.07

New compound

Synthesis

- Obtained by reaction of iodine and iodic acid with 2-hydroxy-4,6-dimethylbenzophenone at $35-40^{\circ}$ in 95% ethyl alcohol (75\%) [1578].
m.p. 133° [1578]; ${ }^{1} \mathrm{H}$ NMR [1578], IR [1578], MS [1578].
(3-Chloro-6-hydroxy-2,4-dimethylphenyl)phenylmethanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad \mathrm{~mol} . w t .260 .72$
Described [1476] p. 88
Synthesis
- Obtained by [3+3] cyclisation of 3-chloro-4-(tri-methylsilyloxy)-3-penten-2-one (3a) with 2,4-bis (trimethylsilyloxy)-2-phenyl-2-butene $(4 c)$ in the presence of titanium tetrachloride in methylene chloride, first at -78°, then to 20° for 20 h (44\%) [1600].
m.p. 199° [1600]; ${ }^{1} \mathrm{H}$ NMR [1600], ${ }^{13} \mathrm{C}$ NMR [1600], IR [1600], MS [1600].
(2-Hydroxy-4,6-dimethylphenyl)phenylmethanone
[2929-45-5]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 226.27

Described [1476] p. 93
Synthesis
- Also obtained by Fries rearrangement of 3,5dimethylphenyl benzoate in the presence of 1-butyl-3-methylimidazolium chloroaluminate [BMIm] ${ }^{+} \mathrm{Al}_{2} \mathrm{Cl}_{7}^{-}$melt at 120° for 2 h (94\%) [1601].

(4-Hydroxy-2,3-dimethoxyphenyl)phenylmethanone

[872881-75-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
New compound
Isolation from natural sources

- From the roots of Securidaca inappendiculata Hassk (Polygalaceae) [1602].

Colourless powder; m.p. $\quad 62.5^{\circ}[1602] ; \quad(\alpha)_{\mathrm{D}}^{20}=0\left(0.50 \mathrm{CHCl}_{3}\right)$ [1602]; ${ }^{1} \mathrm{H}$ NMR [1602], ${ }^{13} \mathrm{C}$ NMR [1602], MS [1602], IR [1602], UV [1602], MS [1602].
BIOLOGICAL ACTIVITY: Used as antiinflammatory, antibacterial and antirheumatism agent in China [1602].

[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone

[10425-05-5]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 254.33

Described [1476] p. 115
Synthesis

- Obtained by palladium diacetate catalyzed reaction of benzonitrile with p-tert-butylphenol in the presence of TFA in DMSO at 90° (71\%) [1480].
(4-Butoxy-2-hydroxyphenyl)phenylmethanone
[15131-43-8] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Described [1476] p. 119
Synthesis

- Also refer to: [1603].

[4-(1,1-Dimethylethoxy)-2-hydroxyphenyl]phenylmethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

New compound

- Polymer with 1,2-ethanediol [1020077-60-4].
- Refer to: [1603].
[2-Hydroxy-4-(pentyloxy)phenyl]phenylmethanone

[83937-21-7]	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36 Described [1476] p. 124
Synthesis	
- Also refer to: [1604].	

[3-(3,7-Dimethyl-2,6-octadienyl)-2-hydroxy-4,6-dimethoxyphenyl]phenylmethanone (E) (Marupone monomethyl ether)
[53948-16-6] $\quad \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \quad$ mol.wt. 394.51

New compound
Synthesis

- Obtained by treatment of marupone with diazomethane in ethyl ether at r.t. for 24 h [1605].
oil [1605]; ${ }^{1} \mathrm{H}$ NMR [1605], IR [1605], UV [1605].

Acetate (E) [53948-17-7] $\quad \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{5} \quad$ mol.wt. 436.55

- Obtained by treatment of marupone monomethyl ether with acetic anhydride in the presence of pyridine at r.t. for 24 h [1605].
oil [1605]; ${ }^{1} \mathrm{H}$ NMR [1605], IR [1605].

2.1.2 Substituents Located on the Other Ring [1476] p. 143

(2,6-Dichlorophenyl)(4-hydroxyphenyl)methanone
[61002-53-7]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 267.11

Described [1476] p. 146
Syntheses

- Obtained by reaction of 2,6-dichlorobenzoyl chloride with anisole in the presence of aluminium chloride [1606].
- Also refer to: [1607].
m.p. 208° [1606].
(2,4-Difluorophenyl)(2-hydroxyphenyl)methanone

[46795-44-2] \quad\begin{tabular}{l}
New compound

Synthesis

- Obtained by an intramolecular acyl radical i ipso

substitution (68%) [1608].
\end{tabular}

(3,5-Difluorophenyl)(4-hydroxyphenyl)methanone (Homopolymer)

[148253-50-3]	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad \mathrm{~mol} . w \mathrm{wt} 234.20$
F	New compound
	Synthesis
	- Refer to: [1609] (Japanese patent).
F	

(3,5-Dinitrophenyl)(4-hydroxyphenyl)methanone

(2-Bromophenyl)(4-hydroxyphenyl)methanone

 $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Described [1476] p. 148
Syntheses

- Also obtained by dealkylation of 2-bromo-4'-ethoxy-benzophenone by treatment with hydrobromic acid $(\mathrm{d}=1.49)$ in acetic acid [1611].
- Also obtained by Fries rearrangement of phenyl 2-bromobenzoate with aluminium chloride [1612].
b.p. ${ }_{10} 260^{\circ}$ [1611]; m.p. 114° [1611], 100-103 ${ }^{\circ}$ [1612].

Methyl ether [59142-63-1] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

- Obtained by reaction of p-anisoyl chloride with o-bromophenylzinc iodide in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at 20° for 1 h [1613].
- Also obtained by reaction of o-bromobenzoyl chloride with anisole in the presence of aluminium chloride in chloroform at 20° for $12 \mathrm{~h}(89 \%)$ [1614].
- Also obtained by treatment of 2-bromo- α-(4-methoxyphenyl)benzyl alcohol with PCC in methylene chloride at 20° for $2 \mathrm{~h}(90 \%)$ [1615].
- Preparation [1616] according to [1617].
- Also refer to: $[1495,1618,1619]$.
m.p. $90-92^{\circ}$ [1495];
${ }^{1} \mathrm{H}$ NMR [1495,1614,1615], ${ }^{13} \mathrm{C}$ NMR [1495,1614,1615], IR [1495].
(3-Bromophenyl)(3-hydroxyphenyl)methanone
[62810-50-8] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad \mathrm{~mol} . w t .277 .11$

Described [1476] p. 148

Methyl ether [750633-66-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

- Obtained by reaction of 3-bromobenzoyl chloride with 3-methoxyphenylmagnesium bromide [1620], (98\%) [1621].
- Also refer to: [1622].
colourless oil [1621]; ${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].
(3-Bromophenyl)(4-hydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Described [1476] p. 149
Synthesis

- Also obtained by dealkylation of its ethyl ether by treatment with hydrobromic acid $(\mathrm{d}=1.49)$ in boiling acetic acid for 2 days [1497].
m.p. 171° [1497].

Methyl ether [54118-76-2] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

- Refer to: [1501] (78\%).
m.p. $80-81^{\circ}$ [1501]; UV [1501].

Ethyl ether $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

- Preparation by reaction of 3-bromobenzoyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide at $55^{\circ}(80 \%)$ [1497].
b.p. ${ }_{11} 232^{\circ}$ [1497]; m.p. 79.5° [1497].
(4-Bromophenyl)(3-hydroxyphenyl)methanone
[62810-46-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 277.11

Described [1476] p. 149

Methyl ether [151239-47-3] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

- Obtained by reaction of 4-bromophenylmagnesium iodide with 3-methoxybenzoyl chloride in the presence of bis[2-(N,N-dimethylamino)ethyl] ether in THF at -5° to $0^{\circ}(80 \%)$ [1623].
(4-Bromophenyl)(4-hydroxyphenyl)methanone
[4369-50-0]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2}$
mol.wt. 277.11
Described [1476] p. 150
Syntheses
- Also refer to: [1624-1626]. m.p. 191° [1626]; ${ }^{1} \mathrm{H}$ NMR [1624,1625].

Methyl ether [54118-75-1] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

- Refer to: (79\%) [1627], (62\%) [1501]. m.p. $155-157^{\circ}$ [1501], 147-149 [1627]; ${ }^{1} \mathrm{H}$ NMR [1627], ${ }^{13} \mathrm{C}$ NMR [1627], IR [1627], UV [1501], MS [1627].
- Complex preparation: Tandem catalysis access to ketones from aldehydes and arylboronic acids via rhodium-catalyzed addition/oxidation, (52\%) [1628].
(2-Chlorophenyl)(4-hydroxyphenyl)methanone
[55270-71-8]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67

Methyl ether [54118-74-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

- Obtained by reaction of 4-methoxybenzoyl chloride with chlorobenzene in the presence of aluminium chloride in carbon disulfide at r.t. for $3 \mathrm{~h}(90 \%)$ [1501].
- Also refer to: [1629].
m.p. $79-80.5^{\circ}$ [1501]; UV [1501].
(3-Chlorophenyl)(4-hydroxyphenyl)methanone
[61002-52-6]

Methyl ether [13389-51-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

- Refer to: (96\%) [1501]. m.p. $\quad 71.5-72^{\circ}$ [1501]; UV [1501].
(4-Chlorophenyl)(2-hydroxyphenyl)methanone
[2985-79-7]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 232.67

Methyl ether [78589-10-3] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

- Obtained by reaction of 4-chlorobenzoyl chloride with anisole [1630] in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$ at reflux for $20 \mathrm{~h}(5 \%)$ [1527].
- Also obtained by reaction of 4-chlorobenzoic acid with anisole,
- in the presence of difluorophosphoric anhydride in methylene chloride at 20° for 4 h (46\%) [1631];
- in the presence of boron trifluoride etherate at 80° [1632].
- Also refer to: $[1557,1633]$. m.p. 78° [1557]; IR [1557].

(4-Chlorophenyl)(4-hydroxyphenyl)methanone

[42019-78-3]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2}$ mol.wt. 232.67

Described [1476] p. 153
Synthesis

- Also refer to: [1634].

Methyl ether [10547-60-1] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

- Obtained by reaction of 4-chlorobenzoyl chloride with anisole in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$ at reflux for $20 \mathrm{~h}(75 \%)$ [1527].
- Also obtained by reaction of 4-chlorophenylglyoxylonitrile with 4-methoxyphenylmagnesium bromide in the presence of $\mathrm{Fe}(\mathrm{acac})_{3}(5 \mathrm{~mol} \%)$ in THF at -10° for 30 min under argon (89\%) [1525].
- Also refer to: [1571], (90\%) [1627], (70\%) [1501].
m.p. $126-127.5^{\circ}$ [1501], $116-118^{\circ}$ [1627];
${ }^{1} \mathrm{H}$ NMR [1627], ${ }^{13} \mathrm{C}$ NMR [1627], IR [1627], UV [1501], MS [1627].

(2-Fluorophenyl)(2-hydroxyphenyl)methanone

[329235-41-8]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$
mol.wt. 216.21
New compound
Synthesis

- Obtained by an intramolecular acyl radical ipso substitution (57\%) [1608].
(2-Fluorophenyl)(4-hydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 216.21

Described [1476] p. 155

Methyl ether [66938-29-2] $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24

- Refer to: [1635].
(4-Fluorophenyl)(2-hydroxyphenyl)methanone
[62666-37-9]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$
mol.wt. 216.21
Described [1476] p. 155
Syntheses
- Also obtained by demethylation of 4-fluoro-2'-methoxy-benzophenone with boron tribromide in methylene chloride at 0° [1484].
- Also obtained by an intramolecular acyl radical ipso substitution (53\%) [1608]. ${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].

Methyl ether [750633-46-6] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24

- Obtained by reaction of 2-methoxyphenylmagnesium bromide with 4-fluorobenzaldehyde in THF at 0° for 3 h [1484].
${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].
(4-Fluorophenyl)(4-hydroxyphenyl)methanone
[25913-05-7]

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$
mol.wt. 216.21
Described [1476] p. 156
Synthesis
- Also refer to: [1636].

Methyl ether [345-89-1] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24

- Obtained by reaction of p-fluorobenzoyl chloride with anisole in the presence of aluminium chloride in carbon disulfide at r.t. for 1 h (75\%) [1637].
- Also refer to: (85\%) [1627]; (61\%) [1501].
m.p. 96° [1637], $95-96^{\circ}$ [1501], 89-91ㅇ [1627];
${ }^{1} \mathrm{H}$ NMR [1627,1637], ${ }^{13} \mathrm{C}$ NMR [1627], ${ }^{19} \mathrm{~F}$ NMR [1637],
IR [1627,1637], UV [1501,1637], MS [1627].
(4-Hydroxyphenyl)(4-iodophenyl)methanone
[113275-52-8] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 324.12

Described [1476] p. 157

Methyl ether [54118-73-9] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{2} \quad$ mol.wt. 338.14

- Obtained by reaction of 4-methoxybenzoyl chloride with iodoanisole in the presence of aluminium chloride in carbon disulfide at r.t. for $3 \mathrm{~h}(57 \%)$ [1501]. m.p. $187-189^{\circ}$ [1501]; UV [1501].
(2-Hydroxyphenyl)(2-nitrophenyl)methanone
[22293-32-9] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22

Described [1476] p. 157

Synthesis

- Also obtained by an intramolecular acyl radical ipso substitution (40\%) [1608].
(2-Hydroxyphenyl)(4-nitrophenyl)methanone
[68223-20-1]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22

Described [1476] p. 158
Syntheses

- Also obtained by demethylation of 2-methoxy-4'-nitro-benzophenone with boron tribromide in methylene chloride at 0° [1484].
- Also obtained by an intramolecular acyl radical ipso substitution (52\%) [1608]. ${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].

Methyl ether [42495-50-1] $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.24

- Obtained by reaction of p-nitrobenzoyl chloride with anisole,
- in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$ at reflux for $20 \mathrm{~h} \mathrm{(3} \mathrm{\%)} \mathrm{[1527];}$
- in the presence of perfluorobutane sulfonic acid [1630].
- Also obtained by reaction of 2-methoxyphenylmagnesium bromide with 4-nitrobenzaldehyde in THF at 0° for 3 h [1484].
- Also obtained by a Pd-catalyzed coupling-type reaction of 4-nitrobenzaldehyde and 2-methoxy-phenylboronic acid in the presence of $\mathrm{P}(1-n a p)_{3}$, using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in toluene with air (65\%) [1638].
- Also obtained by reaction of p-nitrobenzoic acid with anisole in the presence of TFAA at 80° [1632].
- Also refer to: [1639,1640].
m.p. $117-119^{\circ}[1639,1640]$;
${ }^{1} \mathrm{H}$ NMR [1484,1638,1640], ${ }^{13} \mathrm{C}$ NMR [1484,1638,1640], IR [1484], MS [1484].

(3-Hydroxyphenyl)(4-nitrophenyl)methanone

[147029-77-4]

Methyl ether [62507-47-5] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.24

- Also obtained by adding under an argon atmosphere, 60% sodium hydride in oil to a mixture of 4-nitrofluorobenzene, 3-methoxybenzaldehyde and 1,3,4,5-tetramethylimidazolium iodide in DMF. The mixture was stirred at -15° for 15 min ; then at -5° for $2 \mathrm{~h}(70 \%)$ [1641].
(4-Hydroxyphenyl)(4-nitrophenyl)methanone
[18920-70-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 243.22

Described [1476] p. 159

Methyl ether [1151-94-6] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.24

- Obtained by reaction of p-nitrobenzoyl chloride with anisole,
- in the presence of aluminium chloride in carbon disulfide for 1 h at r.t. (72\%) [1637];
- in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$ at reflux for $20 \mathrm{~h} \mathrm{(31} \mathrm{\%)} \mathrm{[1527]}$.
- Also obtained by adding under an argon atmosphere, 60% sodium hydride in oil to a mixture of 4-nitrofluorobenzene, 4-methoxybenzaldehyde and 1,3,4,5-tetramethylimidazolium iodide in DMF. The mixture was stirred at -15° for 15 min ; then at -5° for 2 h (85%) [1641].
- Alsoobtained by reaction of dimethyl sulfate with4-hydroxy-4'-nitrobenzophenone in the presence of aqueous sodium hydroxide [1642].
- Also refer to: [1643-1650], (73\%) [1501].
b.p. ${ }_{0.9} 192-194^{\circ}$ [1646];
m.p. $126-128^{\circ}$ [1646], 124° [1501], 123° [1637], $121-122^{\circ}$ [1642];
${ }^{1} \mathrm{H}$ NMR [1637,1643,1645], ${ }^{13} \mathrm{C}$ NMR [1647,1650], IR [1637,1642], UV [1501,1637,1642], MS [1648].

(4-Aminophenyl)(4-hydroxyphenyl)methanone

[14963-34-9] $\quad \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 213.24

Described [1476] p. 162

Methyl ether [4834-72-4] $\quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26

- Obtained by reduction of 4-nitro-4'-methoxybenzophenone with sodium hydrosulfite in refluxing ethanol overnight (62\%) [1637].
- Also obtained by treatment of its hydrochloride with 20% ammonia [1651].
- Also refer to: [1501] (92\%).
m.p. 110° [1637], $108-109.5^{\circ}$ [1501], 108° [1651];
${ }^{1} \mathrm{H}$ NMR [1637], IR [1637], UV [1501,1637].
Hydrochloride $\quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 263.72
- Obtained by heating 4-hydroxy-4'-nitrobenzophenone with stannous chloride in the presence of concentrated hydrochloric acid for 15 min [1651].
m.p. 193° [1651].

(2-Hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone

[34450-48-1]

 $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 266.22
New compound
Synthesis

- Obtained by demethylation of 2-methoxy-4-(trifluoro-methyl)benzophenone with boron tribromide in methylene chloride at 0° for 4 h [1484].
${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].
Methyl ether [256475-07-7] $\quad \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 280.25
- Obtained by reaction of 2-methoxyphenylmagnesium bromide with 4-(trifluoromethyl)-benzaldehyde in THF at 0° for 3 h [1484].
- Also refer to: [1485].
${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484,1485], MS [1484].

2-(2-Hydroxybenzoyl)benzonitrile

[131118-03-1]

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 223.23

New compound

Synthesis

- Obtained by an intramolecular acyl radical ipso substitution (30\%) [1608].

4-(2-Hydroxybenzoyl)benzonitrile

[131117-91-4]

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 223.23
New compound
Synthesis

- Obtained by demethylation of 4-(2-meth-oxybenzoyl)-benzonitrile with boron tribromide in methylene chloride at 0° [1484].
${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].
Methyl ether [131117-90-3] $\quad \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 237.26
- Obtained by reaction of 2-methoxyphenylmagnesium bromide with 4-cyanobenzaldehyde in THF at 0° for 3 h [1484].
${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].

4-(4-Hydroxybenzoyl)benzonitrile

[27645-61-0]

- Obtained by demethylation of 4-cyano-4'-methoxybenzophenone with aluminium chloride in boiling methylene chloride for 20 h [1652].
- Also obtained from 4-(4-methoxymethoxybenzoyl)benzonitrile by heating with aqueous hydrochloric acid in THF for 3 h [1625].
${ }^{1} \mathrm{H}$ NMR [1625].
Metthyl ether [27645-60-9] $\quad \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 237.26
- Obtained by reaction of 4-methoxybenzoyl chloride with acetonitrile in the presence of aluminium chloride in carbon disulfide at r.t. for 3 h (35\%) [1501].
- Also obtained by reaction of 4-methoxyphenylglyoxylonitrile with 4-cyanophenylmagnesium bromide in the presence of $\mathrm{Fe}(\mathrm{acac})_{3}(5 \mathrm{~mol} \%)$ in THF at -10° for 30 min under argon (84\%) [1525].
- Also obtained by reaction of p-cyanobenzoyl chloride with anisole in the presence of aluminium chloride in benzene [1653].
- Also obtained by treatment of (4-bromophenyl)(4-methoxyphenyl)methanone with copper (I) cyanide [1654].
m.p. $131-132^{\circ}$ [1654], $130-132^{\circ}$ [1525], $125-128^{\circ}$ [1501], $106-109^{\circ}$ [1653], 92-93 ${ }^{\circ}$ [1652];
${ }^{1} \mathrm{H}$ NMR [1525], ${ }^{13} \mathrm{C}$ NMR [1525], IR [1525], UV [1501], MS [1525].

(2-Hydroxyphenyl)(3-methyl-4-nitrophenyl)methanone

[1018668-99-9]

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad \text { mol.wt. } 257.25
$$

New compound

Synthesis

- Obtained by demethylation of 2^{\prime}-methoxy-3-methyl-4-nitrobenzophenone with boron tribromide in methylene chloride at 0° for 4 h [1484].
${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].
Methyl ether $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 271.27
- Obtained by reaction of 2-methoxyphenylmagnesium bromide with 3-methyl-4nitrobenzaldehyde in THF at 0° for 3 h [1484].
${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].

(2-Hydroxyphenyl)(2-methylphenyl)methanone

[51974-19-7]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
mol.wt. 212.25

Methyl ether [142256-62-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

- Obtained by reaction of pyridinium chlorochromate (PCC) with (2-methoxyphe-nyl)(2-methyl-phenyl)methanol in the presence of Celite in methylene chloride at r.t. (70\%) [1655].
- Also obtained by reaction of (2-methoxyphenyl)lithium with N-methoxy-2,Ndimethylbenzamide [1485].
- Also refer to: [1485].
m.p. $71-72^{\circ}$ [1655];
${ }^{1} H$ NMR [1655], IR [1485,1655], MS [1655].

(2-Hydroxyphenyl)(3-methylphenyl)methanone

[33785-66-9]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Described [1476] p. 167
Synthesis

- Also obtained by an intramolecular acyl radical ipso substitution (76\%) [1608].

(2-Hydroxyphenyl)(4-methylphenyl)methanone

[19434-30-1] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

Described [1476] p. 167
Syntheses

- Also obtained by demethylation of 4-methyl-2'-methoxy-benzophenone with boron tribromide in methylene chloride at 0° [1484].
- Also obtained by an intramolecular acyl radical ipso substitution (80\%) [1608].
${ }^{1} \mathrm{H}$ NMR [1484], ${ }^{13} \mathrm{C}$ NMR [1484], IR [1484], MS [1484].
Methyl ether [28137-36-2] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
- Obtained by reaction of p-toluoyl chloride with anisole in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$,
- in refluxing acetonitrile for 20 h (3\%) [1527];
- in refluxing methylene chloride for 20 h (1\%) [1527].
- Also obtained by reaction of 2-methoxybenzoyl chloride with toluene, in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$ at reflux for $20 \mathrm{~h}(3 \%)$ [1527].
- Also obtained by reaction of O-methylsalicylic acid with toluene in the presence of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in various solvents at 25° [1656].
- Also obtained by reaction of 2-methoxyphenylmagnesium bromide with 4-methylbenzaldehyde in THF at 0° for 3 h [1484].
- Also obtained by methylation of 2-hydroxy-4'-methylbenzophenone [1557].
- Also refer to: [1632,1640,1657].
m.p. $64-65^{\circ}$ [1657], 61° [1557];
${ }^{1} \mathrm{H} \quad$ NMR [1484,1640,1657], ${ }^{13} \mathrm{C}$ NMR [1484,1640,1657,1658], IR [1484,1557,1657], MS [1484].

(3-Hydroxyphenyl)(4-methylphenyl)methanone

[62810-49-5]

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad \text { mol.wt. } 212.25
$$

Methyl ether [82520-37-4] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

- Complex preparation: Tandem catalysis access to ketones from aldehydes and arylboronic acids via rhodium-catalyzed addition/oxidation, (64\%) [1628].

(4-Hydroxyphenyl)(2-methylphenyl)methanone

[52981-01-8]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Described [1476] p. 168

Methyl ether [41204-59-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

- Refer to: [1501] (94\%).
b.p. ${ }_{1.5} 147-148^{\circ}$ [1501]; UV [1501].
(4-Hydroxyphenyl)(3-methylphenyl)methanone
[71372-37-7]

Methyl ether [53039-63-7] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

- Refer to: [1501] (91\%).
m.p. $55-56^{\circ}$ [1501]; UV [1501].

(4-Hydroxyphenyl)(4-methylphenyl)methanone

[134-92-9]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

Methyl ether [23886-71-7] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

- Also obtained by reaction of p-toluoyl chloride with anisole in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$,
- in refluxing bromobenzene for $20 \mathrm{~h}(82 \%)$ [1527];
- in refluxing acetonitrile for $20 \mathrm{~h}(59 \%)$ [1527];
- in refluxing methylene chloride for $20 \mathrm{~h}(49 \%)$ [1527].
- Also obtained by reaction of 4-methoxybenzoyl chloride with toluene in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}$ (20 $\left.\mathrm{mol} \%\right)$ at reflux for $20 \mathrm{~h}(6 \%)$ [1527].
- Complex preparation: Tandem catalysis access to ketones from aldehydes and arylboronic acids via rhodium-catalyzed addition/oxidation, (74\%) [1628].
- Also refer to: [1632,1640,1659-1664], (93\%) [1665], (82\%) [1501], (81\%) [1627], (73\%) [1666,1667], (60\%) [1657].
m.p. $105-107^{\circ}$ [1663], $91-91.2^{\circ}$ [1661], $90-92^{\circ}$ [1668], $88.5-89^{\circ}$ [1665], 88-89ํ [1657], 87.5-88.5 ${ }^{\circ}$ [1501];
${ }^{1} H$ NMR [1627,1657,1659,1664,1667], ${ }^{13}$ C NMR [1627,1640,1657,1659,1664], IR [1627,1663,1664], UV [1501,1660,1662], MS [1666,1667].
(2-Hydroxyphenyl)[2-(methylthio)phenyl]methanone
[1004540-28-6] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 244.31
 New compound Synthesis - Refer to: [1669].

Methyl ether [746652-03-9] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 258.34

- Refer to: [1669].
(4-Hydroxyphenyl)[4-(methylthio)phenyl]methanone
(4-Hydroxyphenyl)(4-methylsulfanylphenyl)methanone
[83888-61-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 244.31
Described [1476] p. 169
Syntheses
- Obtained from its methyl ether [1670].
- Also obtained by reaction of p-methylthiobenzoyl chloride with phenol in 1,2-dichloroethane [1670].
- Also refer to: $[1671,1672]$.
m.p. $133-134^{\circ}$ [1671].

Methyl ether [54118-72-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 258.34

- Obtained by reaction of 4-methoxybenzoyl chloride with thioanisole in the presence of aluminium chloride in carbon disulfide at r.t. for 3 h (37%) [1501].
- Also obtained by reaction of 4-methylthiobenzoyl chloride with anisole in the presence of aluminium chloride in 1,2-dichloroethane [1670].
- Also obtained by reaction of 4-methylthiobenzoic acid with anisole in the presence of boron trifluoride etherate at 80° [1632].
- Obtained by reaction of 4-methoxybenzoyl chloride with thioanisole in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}$ (20 mol\%) at reflux for $20 \mathrm{~h}(56 \%)$ [1527].
m.p. $126-127^{\circ}$ [1501]; UV [1501].
(2-Hydroxyphenyl)(4-methoxyphenyl)methanone

[18733-07-8] \quad| mol.wt. 228.25 |
| :--- |
| Synthesis |

(4-Hydroxyphenyl)(4-methoxyphenyl)methanone

[61002-54-8] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Described [1476] p. 172
Synthesis

- Complex preparation: Tandem catalysis access to ketones from aldehydes and arylboronic acids via rhodium-catalyzed addition/oxidation, (82\%) [1628].

Ethyl ether [52886-92-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

- Obtained by reaction of p-anisoyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide [1673].
- Also obtained by reaction of ethyl iodide with 4-hydroxy-4'-methoxybenzophenone in the presence of sodium ethoxide [1674].
- Also refer to: (17%) [1526,1675,1676], (85\%) [1501].
m.p. $112-113^{\circ}[1501], 112^{\circ}$ [1674], 111° [1676], $106-107^{\circ}[1526,1673], 105^{\circ}$ [1675];
1H NMR [1675], IR [1675], UV [1501,1675], MS [1675].
BIOLOGICAL DATA: Radioprotective activity, intraperitoneally [1677]
(4-Methoxyphenyl)(4-methylphenyl)methanone ${ }^{13} \mathrm{C}$
[112379-67-6]

mol.wt. 227.26

New compound

Synthesis

- Obtained from (E)-2-anisyl-1,2-ditolyl ($2-{ }^{13} \mathrm{C}$) vinyl bromide and 1,1,1-trifluoroethanol [1678].
[3-(Acetyloxy)phenyl](4-hydroxyphenyl)methanone
[263395-60-4] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.07

New compound

Synthesis

- Obtained by adding acetic anhydride to a solution of the sodium salt of $3,4^{\prime}$-dihydroxybenzophenone in DMF at -10° (59\%) [1528].
white solid [1528]; m.p. 118-120 [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].

(3-Ethoxyphenyl)(4-hydroxyphenyl)methanone

[263395-63-7]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
Mol.wt. 242.27

New compound
Synthesis

- Obtained in two steps: first, treatment of $3,4^{\prime}$-dihydroxy-benzophenone with sodium hydride (2.2 equiv) in DMF, then reaction of ethyl iodide (1.1 equiv) with the sodium salt previously obtained, at -10° (50\%) [1528].
white solid; m.p. $98-100^{\circ}$ [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].
Ethyl ether $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
- Also obtained in the above reaction (25-30\%) [1528].
(3,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Described [1476] p. 179
Synthesis
- Also obtained by an intramolecular acyl radical ipso substitution (49\%) [1608].
(3-Hydroxyphenyl)[4-(methoxymethoxy)phenyl]methanone
[263395-55-7] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

New compound
Synthesis

- MOMCl was added to a solution of 3,4'-dihydroxybenzophenone and DIPEA in THF. After removing the cooling bath, the solution was stirred for $4 \mathrm{~h}(51 \%)$ [1528].
white solid; m.p. 94-95 [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].
Methoxymethyl ether $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
- The diprotected compound was isolated in this reaction (31\%) [1528]. yellow oil [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].

(4-Hydroxyphenyl)[3-(2-propenyloxy)phenyl]methanone

[263395-62-6]
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}$

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 254.29
New compound
Synthesis

- Obtained by adding allyl bromide to a solution of the sodium salt of $3,4^{\prime}$-dihydroxybenzophenone in DMF at -10° (52\%) [1528].
white solid [1528]; m.p. 63-65 ${ }^{\circ}$ [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].
4-(2-propenyl)ether $\quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 294.35
- Also obtained in the above reaction (25-30\%) [1528].
(2-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone
[46863-20-1]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Described [1476] p. 182
Synthesis

- Also obtained by an intramolecular acyl radical ipso substitution (38\%) [1608].

[4-[2-(Dimethylamino)ethoxy]phenyl](3-hydroxyphenyl)methanone

[263395-65-9]
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$
mol.wt. 285.33

New compound
Synthesis

- Obtained by treatment of its pivalic ester below with 2 N KOH in ethanol at r.t. for 5 h (86\%) [1528].
white solid; m.p. $96-98^{\circ}$ [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].
Pivalic ester $\quad \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \quad$ mol.wt. 369.19
- Obtained by treatment of 4'-hydroxy-3-(trimethylacetoxy)benzophenone with 2-(dimethylamino)-ethyl chloride in the presence of potassium carbonate in refluxing acetone-water (19:1) for 5 h in the dark (61\%) [1528].
yellow solid; m.p. $60-62^{\circ}$ [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].
(3-Hydroxyphenyl)[4-(trimethylacetoxy)phenyl]methanone
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34

New compound
Synthesis

- Obtained by adding pivaloyl chloride to a solution of the sodium salt of 3 , 4'-dihydroxybenzophenone in DMF at 0°. Then, the solution was stirred at r.t. for $2 \mathrm{~h}(47 \%)$ [1528].
white solid; m.p. $104-105^{\circ}$ [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].
(4-Hydroxyphenyl)[3-(trimethylacetoxy)phenyl]methanone $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34

New compound
Syntheses

- Obtained by heating a solution of 4^{\prime}-methoxy-methoxy-3-(trimethylacetoxy)benzophenone in 15% acetic acid at 80° for $20 \mathrm{~h}(76 \%)$ [1528].
- Also obtained by adding pivaloyl chloride to a solution of 3,4'-dihydroxybenzophenone sodium salt in DMF at $-10^{\circ}(85 \%)$ [1528].
white solid; m.p. $117-119^{\circ}$ [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].

Methoxymethyl ether $\quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 342.39

- Obtained by treatment of 3-hydroxy-4'-(methoxymethoxy)benzophenone in THF at 0° with triethylamine and pivaloyl chloride, then stirring the solution obtained at r.t. for 3 h (quantitative yield) [1528].
yellow oil [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].
[(3-tert-Butoxycarbonyloxy)phenyl](4-hydroxyphenyl)methanone
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 314.34
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCOO}$

New compound
Synthesis

- Obtained by adding $(\mathrm{BOC})_{2} \mathrm{O}$ to a solution of $3,4^{\prime}$-dihydroxybenzophenone sodium salt in DMF at -10° (62\%) [1528].
white solid; m.p. $\quad 142-144^{\circ}$ [1528];
${ }^{1} \mathrm{H}$ NMR [1528], ${ }^{13} \mathrm{C}$ NMR [1528], IR [1528], MS [1528].

[2-(3,7-Dimethyloctyl)phenyl](4-hydroxyphenyl)methanone

[908368-59-2]
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2}$ mol.wt. 338.49

New compound
Synthesis

- According to a procedure of [1679], a mixture of 2-(3,7-dimethyloctyl)-4'methoxybenzophenone, $57 \% \mathrm{HI}$ solution and acetic acid was heated at reflux for 5 h (84\%) [1621].
colourless oil; $\quad(\alpha)_{\mathrm{D}}^{28}=-4.29^{\circ}\left(\mathrm{CHCl}_{3}\right)$ [1621];
${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].
Methyl ether [908368-68-3] $\quad \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \quad$ mol.wt. 352.52
- Refer to: [1621].
[2-[(3R)-3,7-Dimethyloctyl]phenyl](4-hydroxyphenyl)methanone
[908368-61-6]

$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \quad$ mol.wt. 338.49
New compound
Synthesis
- According to a procedure of [1679], a mixture of 2-(3,7-dimethyloctyl)-4'-
methoxybenzophenone, $57 \% \mathrm{HI}$ solution and acetic acid was heated at reflux for 3.5 h (50\%) [1621].
clear oil [1621]; ${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].

Methyl ether [908368-60-5] $\quad \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \quad$ mol.wt. 352.52

- According to the procedure of [1680], to a solution of (R)-3,7-dimethyloctene (6.4 mmol) in THF was added dropwise $0.5 \mathrm{M} 9-\mathrm{BBN}(7.25 \mathrm{mmol}$) in THF. The resulting mixture was stirred at r.t. for 4 h , then transferred via a syringe to a mixture of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(1.60 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(24.1 \mathrm{mmol}), \mathrm{AsPh}_{3}(1.61 \mathrm{mmol})$ and 2-iodo-4'-methoxybenzophenone in a mixture of THF, DMF and $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was heated at reflux under N_{2} overnight (65\%) [1621].
colourless oil; $(\alpha)_{\mathrm{D}}^{28}=-5.03^{\circ}\left(\mathrm{CHCl}_{3}\right)$ [1621];
${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].

[3-[(3R)-3,7-Dimethyloctyl]phenyl](3-hydroxyphenyl)methanone

[908368-64-9]

$$
\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \quad \text { mol.wt. } 338.49
$$

New compound

Synthesis

- Refer to: [1621] (multi-step reaction).

Methyl ether [908368-75-2] $\quad \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \quad$ mol.wt. 352.52

- Refer to: [1621].
[3-[(3R)-3,7-Dimethyloctyl]phenyl](4-hydroxyphenyl)methanone $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \quad$ mol.wt. 338.49

New compound
Synthesis

- Obtained from its methyl ether (74\%) [1621].

Colourless oil [1621]; ${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].
Methyl ether $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2}$ mol.wt. 352.52

- Refer to: [1621] (69\%).

Colourless oil [1621]; ${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].
[3-[(4R)-4,8-Dimethylnonyl]phenyl](4-hydroxyphenyl)methanone
[908368-62-7]

$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2}$ mol.wt. 352.52
New compound
Synthesis

- Obtained by refluxing a mixture of 3-(4,8-dimethylnonyl)-4'-methoxybenzophenone, $57 \% \mathrm{HI}$ solution and acetic acid for $3.5 \mathrm{~h}(81 \%)$ [1621].
colourless oil [1621]; ${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].
Methyl ether [908368-70-7] $\quad \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2} \quad$ mol.wt. 366.54
- Obtained by reaction of (R)-4,8-dimethylnonene and 3-iodo-4'methoxybenzophenone (Multi-step reaction) (72\%) [1621]. colourless oil [1621]; ${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].
[4-[(4R)-4,8-Dimethylnonyl]phenyl](3-hydroxyphenyl)methanone
[908368-63-8] $\quad \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \quad$ mol.wt. 352.52

New compound
Synthesis

- Obtained by refluxing a mixture of (R)-4-(4,8-dimethylnonyl)-3'methoxybenzophenone, $57 \% \mathrm{HI}$ solution and acetic acid for 5 h (81\%) [1621]. colourless oil [1621]; ${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].

Methyl ether [908368-73-0] $\quad \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2} \quad$ mol.wt. 366.54

- According to the method [1681], it was obtained by Friedel-Crafts reaction of m -anisoyl chloride with (4,8-dimethylnonyl)phenyl in the presence of aluminium chloride in refluxing carbon disulfide for $5 \mathrm{~h}(94 \%)$ [1621].
golden oil [1621]; ${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].

2.1.3 Substituents Located on Both Rings [1476] p. 190

(3-Bromo-5-chlorophenyl)(5-chloro-2-hydroxyphenyl)methanone
 [1682].
yellow crystals [1682]; ${ }^{1} \mathrm{H}$ NMR [1682], ${ }^{13} \mathrm{C}$ NMR [1682].
Methyl ether [329944-59-4] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrCl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 360.03

- A solution of 1,3-dibromo-5-chlorobenzene (1 mmol) in ethyl ether was cooled to -78° and n-butyllithium in hexane $(1.1 \mathrm{mmol})$ was added over 2 min .

The reaction mixture was stirred at -78° for an additional 10 min , and then 5-chloro-N,2-dimethoxy-N-methylbenzamide (1 mmol) was added in small portions over 4 min . The reaction mixture was stirred at -78° for 1.25 h and then allowed to warm to r.t. and stirred for $14 \mathrm{~h}(97 \%)$ [1682].
${ }^{1} \mathrm{H}$ NMR [1682], ${ }^{13} \mathrm{C}$ NMR [1682], MS [1682].
(5-Chloro-2-hydroxyphenyl)(3,5-difluorophenyl)methanone
[329941-82-4]
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClF}_{2} \mathrm{O}_{2}$
mol.wt. 268.65
 New compound Synthesis

- Obtained by treatment of its methyl ether with boron tribromide in methylene chloride (98\%) [1682].
${ }^{1} H$ NMR [1682], MS [1682].
Methyl ether [874889-35-7] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClF}_{2} \mathrm{O}_{2} \quad$ mol.wt. 282.67
- A solution of n-butyllithium in hexanes (18.2 mmol) was added over 4 min to a solution of 2-bromo-4-chloroanisole (15.8 mmol) in ethyl ether cooled to -78°. The resulting mixture was stirred at -78° for 20 min , and then a solution of 3,5-difluoro-N-methoxy-N-methylbenzamide (17.3 mmol) in ethyl ether was added over 5 min . The reaction mixture was stirred at -78° for 1 h and then allowed to warm at r.t. over $3.25 \mathrm{~h}(42 \%)$ [1682].
white solid [1682]; ${ }^{1} \mathrm{H}$ NMR [1682], ${ }^{13} \mathrm{C}$ NMR [1682].
(5-Chloro-2-hydroxyphenyl)(2,3-dichlorophenyl)methanone
[842169-21-5]
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$
mol.wt. 301.56

New compound
Synthesis
- Preparation by Fries rearrangement of 4-chlorophenyl 2,3-dichlorobenzoate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for $45 \mathrm{~min}(85 \%)$ [1683].
m.p. $\quad 78-80^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].
(5-Bromo-2-hydroxyphenyl)(4-chlorophenyl)methanone
[939382-98-6]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{2}$ New compound
Synthesis
- Preparation by Fries rearrangement of 4-bromophenyl-p-chlorobenzoate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for $45 \mathrm{~min}(81 \%)$ [1683].
m.p. $82-84^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].
(2-Bromophenyl)(5-chloro-2-hydroxyphenyl)methanone
[92739-90-7] $\quad \mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{2} \quad$ mol.wt. 311.56

Described [1476] p. 201
Synthesis

- Preparation by reaction of 2-bromobenzoyl chloride with 4-chloroanisole in the presence of aluminium chloride in refluxing methylene chloride overnight (96\%) [1682].
tan solid [1682]; ${ }^{1} \mathrm{H}$ NMR [1682].

(3-Chloro-4-hydroxyphenyl)(4-nitrophenyl)methanone

[99768-27-1]

Described [1476] p. 205
Synthesis

- Also refer to: [1684].

Methyl ether [76442-91-6] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{4} \quad$ mol.wt. 291.69

- Obtained by reaction of p-nitrobenzoyl chloride with 2-chloroanisole in the presence of aluminium chloride in carbon disulfide [1684].
- Also obtained by reaction of dimethyl sulfate with 3-chloro-4-hydroxy-4'nitrobenzophenone [1684].
- Also obtained by heating for 4 h a mixture of 2-chloroanisole and 4-nitrobenzoyl chloride,
- in the presence of ferric chloride (89%) [1585];
- in the presence of aluminium chloride (85\%) [1585].
b.p. ${ }_{12} 263^{\circ}$ [1585]; m.p. 166° [1585,1684].

2,4-Dinitrophenylhydrazone (of the methyl ether)
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{7} \quad$ mol.wt. 471.81
m.p. 237° [1684].

(5-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone

[84443-36-7]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4} \quad$ mol.wt. 277.66
HO
Described [1476] p. 206

Methyl ether [76442-97-2] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{4} \quad$ mol.wt. 291.69

- Obtained by heating for 4 h a mixture of 4-chloroanisole and 4-nitrobenzoyl chloride,
- in the presence of ferric chloride (89\%) [1585];
- in the presence of aluminium chloride (85\%) [1585] and in carbon disulfide [1684].
- Also obtained by reaction of dimethyl sulfate with 5-chloro-2-hydroxy-4'nitrobenzophenone in the presence of aqueous sodium hydroxide [1684].
b.p. ${ }_{12} 265^{\circ}$ [1585]; m.p. 114° [1684, 1585].

(2-Chloro-4-hydroxyphenyl)(4-chlorophenyl)methanone

Methyl ether [76442-93-8]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 267.11

New compound

Synthesis

- Obtained by treatment of its methyl ether with aqueous hydrobromic acid in acetic acid [1685].
- Obtained by heating for 4 h a mixture of 3-chloroanisole and 4-chlorobenzoyl chloride,
- in the presence of ferric chloride (91\%) [1585];
- in the presence of aluminium chloride (89\%) [1585].
- Also obtained by reaction of 2-chloro-4-methoxyphenylmagnesium iodide with 4-chloro-benzaldehyde in refluxing ethyl ether for 50 min [1686].
- Also obtained by reaction of 2-chloro-4-methoxybenzoyl chloride with chlorobenzene in the presence of aluminium chloride in carbon disulfide [1589].
- Also refer to: [1687].
b.p. ${ }_{12} 251^{\circ}$ [1585]; m.p. 74° [1585], $73-74.5^{\circ}[1686], 68-70^{\circ}[1589]$.

2,4-Dinitrophenylhydrazone (of the methyl ether)
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \quad \mathrm{~mol}$. wt. 461.26
m.p. $213-217^{\circ}$ [1686].

(3-Chloro-4-hydroxyphenyl)(4-chlorophenyl)methanone

[34189-58-7]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 267.11

Methyl ether $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14

- Obtained by heating for 4 h a mixture of 2-chloroanisole and 4-chlorobenzoyl chloride,
- in the presence of ferric chloride (89%) [1585];
- in the presence of aluminium chloride (84\%) [1585].
b.p. 250° [1585]; m.p. 126° [1585].
(5-Chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone
[61785-37-3]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 267.11
Described [1476] p. 209
Synthesis
- Preparation by Fries rearrangement of 4-chlorophenyl 4-chlorobenzoate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for $45 \mathrm{~min}(94 \%)$ [1683].
m.p. $85-87^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].

Methyl ether [76442-96-1] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.14

- Obtained by heating for 4 h a mixture of 4-chloroanisole and 4-chlorobenzoyl chloride,
- in the presence of ferric chloride (89%) [1585];
- in the presence of aluminium chloride [1688], (84\%) [1585].
- Also refer to: [1557].
b.p. 12 $^{245^{\circ}}$ [1585]; m.p. 131° [1688, 1585], 90° [1557]; IR [1557].
(4-Hydroxy-3-nitrophenyl)(4-nitrophenyl)methanone
[37567-41-2]
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 288.22

Methyl ether [873987-05-4] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 302.24

- Obtained by Friedel-Crafts acylation of anisole with 4-nitrobenzoyl chloride and subsequent nitration of the obtained ketone [1649].
- Also obtained by nitration of 4-methoxy-4'-nitrobenzophenone with potassium nitrate in concentrated sulfuric acid at 20° for 5 h [1644].

3-Chloro-5-(5-chloro-2-hydroxybenzoyl)benzonitrile

[329944-65-2]

$\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2} \quad$ mol.wt. 292.07

New compound

Synthesis

- Obtained by treatment of its methyl ether with boron tribromide in methylene chloride, from -78° to r.t. (quantitative yield) [1682].
yellow solid [1682]; ${ }^{1} \mathrm{H}$ NMR [1682], ${ }^{13} \mathrm{C}$ NMR [1682].

Methyl ether [329944-63-0] $\quad \mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2} \quad$ mol.wt. 306.15

- Obtained by treatment of (3-bromo-5-chlorophenyl)(5-chloro-2-methoxyphenyl) methanone with sodium cyanide and cuprous iodide in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in refluxing acetonitrile for $45 \mathrm{~min}(56 \%)$ [1682].
${ }^{1} \mathrm{H}$ NMR [1682], ${ }^{13} \mathrm{C}$ NMR [1682].
(5-Bromo-2-hydroxyphenyl)(4-methylphenyl)methanone
[215380-62-4]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

New compound
Synthesis

- Obtained by reaction of 2-(1 H -benzotriazol-1-yl-carbonyl)-4-bromophenol with 4-methylphenylmagnesium bromide at 25° for 4 h (66\%) [1689].
white crystals; m.p. 85-87$~[1689] ;$
${ }^{1} \mathrm{H}$ NMR [1689], ${ }^{13} \mathrm{C}$ NMR [1689].
(2-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone
[1023758-43-1] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

New compound
Syntheses

- Obtained by Fries rearrangement of m-cresyl 2-bromobenzoate in the presence of PPA [1690].
- Also obtained by Friedel-Crafts acylation of m-cresol with o-bromobenzoic acid in the presence of PPA [1690].
(2-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone
[55270-73-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

Described [1476] p. 231
Synthesis

- Also refer to: [1691].
(3-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone
[218784-25-9]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14
Described [1476] p. 231
Syntheses
- Also obtained by Friedel-Crafts acylation of m -cresol with m-bromobenzoic acid in a mixture of graphite and methane sulfonic acid at 120° for $5.5 \mathrm{~h}(63 \%)$ [1598].
- Also refer to: [1692].
m.p. 88° [1598]; ${ }^{1} \mathrm{H}$ NMR [1598], ${ }^{13} \mathrm{C}$ NMR [1598].

(5-Chloro-2-hydroxyphenyl)(4-methylphenyl)methanone

[116544-78-6]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
mol.wt. 246.69

Described [1476] p. 234

Methyl ether [52980-99-1] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72

- Obtained by heating for 4 h a mixture of 4-chloroanisole and 4-methybenzoyl chloride,
- in the presence of ferric chloride (87\%) [1585];
- in the presence of aluminium chloride (81\%) [1585].
- Also obtained by methylation of 5-chloro-2-hydroxy-4'-methylbenzophenone [1557].
b.p. ${ }_{12} 215^{\circ}$ [1585]; m.p. 131° [1557], 103° [1585]; IR [1557].
(2-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone
[107623-97-2]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Described [1476] p. 235

Syntheses

- Obtained by Fries rearrangement of m-cresyl 2-chlorobenzoate in the presence of PPA [1690].
- Also obtained by Friedel-Crafts acylation of m-cresol with o-chlorobenzoic acid,
- in the presence of PPA [1690];
- in a mixture of graphite and methanesulfonic acid at 120° for $3.5 \mathrm{~h}(80 \%)$ [1598].
${ }^{1} \mathrm{H}$ NMR [1598], ${ }^{13} \mathrm{C}$ NMR [1598], IR [1598].

(2-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone

[6280-52-0]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Described [1476] p. 235
Synthesis

- Also refer to: [1691].

(2-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone

[92103-15-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Described [1476] p. 235
Syntheses

- Obtained by Fries rearrangement of m-cresyl 2-chlorobenzoate in the presence of PPA [1690].
- Also obtained by Friedel-Crafts acylation of m-cresol with o-chlorobenzoic acid in the presence of PPA [1690].
(3-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone
[6280-54-2]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Described [1476] p. 237
Syntheses
- Preparation by Fries rearrangement of p-cresyl m-chloro-benzoate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for $45 \mathrm{~min}(90 \%)$ [1683].
- Also refer to: $[1584,1691]$. m.p. $\quad 71-73^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].
(4-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone
[107622-28-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Described [1476] p. 238
Synthesis
- Also obtained by Friedel-Crafts acylation of m -cresol with p -toluic acid in a mixture of graphite and methanesulfonic acid at 120° for 4 h (66\%) [1598].
white crystals; m.p. 81° [1598];
${ }^{1} \mathrm{H}$ NMR [1598], ${ }^{13} \mathrm{C}$ NMR [1598], IR [1598].

(4-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone

[6279-05-6] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Described [1476] p. 238
Synthesis

- Preparation by Fries rearrangement of p-cresyl p-chlorobenzoate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for 45 $\min (87 \%)$ [1683].
m.p. $85-87^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].

(2-Chloro-6-hydroxyphenyl)(4-methoxyphenyl)methanone

[1005486-58-7] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69

New compound
Synthesis

- Refer to: [1693].
(4-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone
[85-28-9]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$
mol.wt. 262.69

Described [1476] p. 242
Synthesis

- Also refer to: [1694].
(5-Fluoro-2-hydroxyphenyl)(4-methylphenyl)methanone
[62433-29-8] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24

Described [1476] p. 243
Synthesis

- Preparation by Fries rearrangement of 4-fluorophenyl p-toluate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for $45 \mathrm{~min}(89 \%)$ [1683].
m.p. $80-82^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].
(3-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone
[55270-80-9]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2}$
mol.wt. 230.24

Described [1476] p. 243
Synthesis

- Preparation by Fries rearrangement of 4-methylphenyl 3-fluorobenzoate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for $45 \mathrm{~min}(85 \%)$ [1683].
m.p. $45-47^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].
(4-Fluorophenyl)(2-hydroxy-4-methylphenyl)methanone
[108294-71-9]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad \mathrm{~mol} . w t .230 .24$

Described [1476] p. 244
Synthesis

- Also refer to: [1695].

(5-Fluoro-2-hydroxyphenyl)[4-methoxy-(${ }^{11}$ C)phenyl]methanone

[161585-22-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 245.23
New compound
Synthesis

- Obtained by reaction of ${ }^{11} \mathrm{C}$ methyl iodide with 5-fluoro-2,4'-dihydroxybenzophenone in the presence of 0.8 M aqueous sodium hydroxide in DMF at 150° [1696].
(5-Fluoro-2-hydroxyphenyl)(4-methoxyphenyl)methanone
[727-93-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
mol.wt. 246.24
Described [1476] p. 244
Syntheses
- Obtained by Fries rearrangement of 4-fluorophenyl 4-methoxybenzoate with titanium tetrachloride, first at 120°, then at 160° for 20 min (46\%) [1696].
- Also refer to: [1697].
yellow powder; m.p. 79.5° [1696]; b.p. ${ }_{30} 260^{\circ}$ [1697];
${ }^{1} H$ NMR [1696], MS [1696].
(2-Hydroxy-4-methylphenyl)(2-nitrophenyl)methanone
[1023758-44-2]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$ mol.wt. 257.25

New compound

Syntheses

- Obtained by Fries rearrangement of m-cresyl 2-nitrobenzoate in the presence of PPA [1690].
- Also obtained by Friedel-Crafts acylation of m-cresol with o-nitrobenzoic acid in the presence of PPA [1690].
(2-Hydroxy-4-methoxyphenyl)(3-nitrophenyl)methanone
[126077-53-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$ mol.wt. 273.25
Described [1476] p. 250
Synthesis
- Also obtained by Friedel-Crafts acylation of 1,3-dimethoxybenzene with m-nitrobenzoyl chloride in the presence of aluminium chloride in methylene chloride at 40° for 3 h (72\%) [1698].
${ }^{1} \mathrm{H}$ NMR [1698], IR [1698], MS [1698].
(3-Aminophenyl)(2-hydroxy-4-methoxyphenyl)methanone
[126346-90-5]
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$
mol.wt. 243.26

New compound
Synthesis

- Obtained by catalytic hydrogenation of 2-hydroxy-4-methoxy-3'-nitrobenzophenone over 5\% Pd/C (90\%) [1698].
${ }^{1} \mathrm{H}$ NMR [1698], IR [1698], MS [1698].
[2-Fluoro-5-(trifluoromethyl)phenyl](2-hydroxy-4-methoxyphenyl)methanone
[885481-51-6]

 $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{O}_{3} \quad$ mol.wt. 314.24 New compound Synthesis - Refer to: [1699].
[2-Bromo-4-(bromomethyl)-6-hydroxyphenyl](4-methoxyphenyl)methanone
[1005488-92-5]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 400.07
New compound
Synthesis
- Refer to: [1693].
(2-Bromo-6-hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone
[1005488-89-0]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
New compound
Synthesis
- Refer to: [1693].
[2-Bromo-6-hydroxy-4-(hydroxymethyl)phenyl](4-methoxyphenyl)methanone
[1005488-91-4]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{4}$
mol.wt. 337.17

New compound

Synthesis

- Refer to: [1693].

(2-Chlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone

[1019637-56-9]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2}$
mol.wt. 260.72

New compound

Synthesis

- Obtained by Friedel-Crafts acylation of 3,5-dimethylphenol with 2-chlorobenzoyl chloride in the presence of aluminium chloride in chlorobenzene [1700].

Methyl ether [1019637-58-1] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 274.75

- Obtained by reaction of dimethyl sulfate with 2'-chloro-2-hydroxy-4,6-dimethylbenzophenone in the presence of potassium hydroxide in acetonitrile [1700].
(2-Chloro-6-hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone
[1005486-64-5]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$
New compound
Synthesis
- Refer to: [1693].
[2-Chloro-6-hydroxy-4-(hydroxymethyl)phenyl](4-methoxyphenyl)methanone

(5-Chloro-2-hydroxyphenyl)(3,5-dimethoxyphenyl)methanone
[329944-55-0]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4}$
mol.wt. 292.72

New compound

Synthesis

- A solution of 2-bromo-4-chlorophenol (4 mmol) in THF was cooled to -78°. A solution of n-butyllithium in hexanes (8.8 mmol) was added over 5 min , and the resulting mixture was stirred at -78° for 1 h . A solution of N-methyl-N-3,5-trimethoxybenzamide (4 mmol) in THF was added over 4 min and the resulting mixture was stirred at -78° for 1.25 h and then at r.t. for 14 h (20\%) [1682].
yellow crystals [1682]; ${ }^{1} \mathrm{H}$ NMR [1682], ${ }^{13} \mathrm{C}$ NMR [1682].
(2-Fluorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone
[1019637-57-0]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2}$
mol.wt. 244.27

New compound

Synthesis

- Obtained by Friedel-Crafts acylation of 3,5dimethylphenol with 2-fluorobenzoyl chloride in the presence of aluminium chloride in chlorobenzene [1700].

Methyl ether [1019637-59-2] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{2} \quad$ mol.wt. 258.29

- Obtained by reaction of dimethyl sulfate with 2'-fluoro-2-hydroxy-4,6-dimethylbenzophenone in the presence of potassium hydroxide in acetonitrile [1700].
(2-Fluoro-6-hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone
[1005488-56-1]

New compound
Synthesis

- Refer to: [1693].
[2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl](4-methoxyphenyl)methanone
[1005488-58-3]

 $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4} \quad$ mol.wt. 276.26
New compound
Synthesis
- Refer to: [1693].
(4-Hydroxy-3-methoxy-5-nitrophenyl)(4-methylphenyl)methanone
(Tolcapone, 3-O-methyltolcapone) (Ro 40-7591)
[134612-80-9]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 287.27
Described [1476] p. 277
Syntheses
- Also obtained by reaction of 70% nitric acid with (4-hydroxy-3-methoxyphenyl) (4-methylphenyl)-methanone in acetic acid at 0° for $30 \mathrm{~min}(88 \%)$ [1701].
- A plasma metabolite of tolcapone in human [1702].
N.B.: Conjugaison (O-methylation by COMT).
- Also refer to: [1703,1704].
white solid [1701];

$$
\begin{aligned}
& \text { m.p. } \quad 137-139^{\circ}[1703,1704], 135-137^{\circ}[1701] ; \\
& { }^{1} \mathrm{H} \text { NMR }[1701],{ }^{13} \mathrm{C} \text { NMR [1701], MS [1701]. }
\end{aligned}
$$

(2-Hydroxy-3-methylphenyl)(4-methylphenyl)methanone
[887344-78-7] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

New compound
Synthese

- Obtained by reaction of 2-(1 H -benzotriazol-1-ylcarbonyl)-6-methylphenol with 4-methylphenylmagnesium bromide at 25° for 4 h (74\%) [1689].
- Also refer to: [1705].
white crystals [1689]; m.p. $62-63^{\circ}[1689,1705]$;
${ }^{1} \mathrm{H}$ NMR [1689], ${ }^{13} \mathrm{C}$ NMR [1689].
(2-Hydroxy-4-methylphenyl)(2-methylphenyl)methanone
[1023758-42-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

New compound
Syntheses

- Obtained by Fries rearrangement of m-cresyl o-toluate in the presence of PPA [1690].
- Also obtained by Friedel-Crafts acylation of m-cresol with o-toluic acid in the presence of PPA [1690].
- Also refer to: [1695].

(2-Hydroxy-4-methylphenyl)(3-methylphenyl)methanone

[92548-90-8]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Described [1476] p. 279
Syntheses

- Also obtained by Friedel-Crafts acylation of m -cresol with m -toluic acid in a mixture of graphite and methanesulfonic acid at 120° for 2 h (86\%) [1598].
- Also refer to: [1692,1695].
${ }^{1} \mathrm{H}$ NMR [1598], ${ }^{13} \mathrm{C}$ NMR [1598], IR [1598].
(2-Hydroxy-4-methylphenyl)(4-methylphenyl)methanone
[81652-53-1] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Described [1476] p. 279
Syntheses

- Also obtained by Friedel-Crafts acylation of m-cresol with p-toluic acid in a mixture of graphite and methanesulfonic acid at 120° for 2 h (50\%) [1598].
- Also refer to: [1584,1692,1695].
white crystals; m.p. 72° [1598]; ${ }^{1} \mathrm{H}$ NMR [1598], ${ }^{13} \mathrm{C}$ NMR [1598].
(2-Hydroxy-5-methylphenyl)(2-methylphenyl)methanone
[147029-79-6] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Described [1476] p. 280
Synthesis

- Preparation by Fries rearrangement of 5-methylphenyl 2-methylbenzoate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for $45 \mathrm{~min}(90 \%)$ [1683].
m.p. $71-73^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].
(2-Hydroxy-5-methylphenyl)(4-methylphenyl)methanone
[26880-95-5]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Described [1476] p. 280
Syntheses
- Preparation by Fries rearrangement of p-tolyl p-toluate in the presence of aluminium chloride in nitrobenzene at $80-90^{\circ}$ for 45 min (92\%) [1683].
m.p. $\quad 75-77^{\circ}$ [1683]; ${ }^{1} \mathrm{H}$ NMR [1683], IR [1683], MS [1683].
(4-Hydroxy-2-methylphenyl)(2-methylphenyl)methanone
[1023758-40-8]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
New compound
Syntheses
- Obtained by Fries rearrangement of m-cresyl o-toluate in the presence of PPA [1690].
- Also obtained by Friedel-Crafts acylation of m-cresol with o-toluic acid in the presence of PPA [1690].
(4-Hydroxy-2-methylphenyl)(4-methylphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad \text { mol.wt. } 226.27
$$

Methyl ether [41295-26-5] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

- Refer to: [1706] (Japanese patent).
(4-Hydroxy-3-methylphenyl)(3-methylphenyl)methanone
[62064-85-1] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Methyl ether [41295-28-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

- Refer to: [1707,1708].

Described [1476] p. 282
(2-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone
[1641-17-4] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Described [1476] p. 282
Synthesis

- Also obtained by an intramolecular acyl radical ipso substitution (33\%) [1608].
(2-Hydroxy-5-methoxyphenyl)(4-methylphenyl)methanone
[4998-50-9]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

New compound
Synthesis

- Also obtained by an intramolecular acyl radical ipso substitution (28\%) [1608].
(2-Hydroxy-6-methoxyphenyl)(4-methylphenyl)methanone

New compound
Synthesis

- Also obtained by an intramolecular acyl radical ipso substitution (37\%) [1608].
(3-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone
[210704-43-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
New compound
Synthesis
- Obtained by reaction of p-methylbenzoyl chloride with veratrole in the presence of aluminium chloride in methylene chloride at $32-35^{\circ}$ [1709].

Li salt [210704-41-9] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Li} \quad$ mol.wt. 248.21
Na salt [210704-39-5] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Na} \quad$ mol.wt. 264.26
(4-Hydroxy-3-methoxyphenyl)(4-methylphenyl)methanone
[134612-39-8]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27

Described [1476] p. 283
Syntheses

- Also obtained by refluxing a mixture of its benzyl ether, $10 \% \mathrm{Pd} / \mathrm{C}$ and ammonium formate in methanol under nitrogen for $30 \mathrm{~min}(92 \%)$ [1701].
- Also obtained by reaction of p-methylbenzoyl chloride with veratrole in the presence of aluminium chloride in methylene chloride at $32-35^{\circ}$ [1709].
- Also refer to: $[1703,1704]$.
white solid [1701];
m.p. $103-105^{\circ}$ [1703,1704], $98-100^{\circ}$ [1701];
${ }^{1} \mathrm{H}$ NMR [1701], ${ }^{13} \mathrm{C}$ NMR [1701], MS [1701].
Benzyl ether [134612-29-6] $\quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 332.40
- Obtained by adding sodium tert-butoxide to a stirred suspension of (4-benzyloxy-3-methoxyphenyl)(4-methylphenyl)methanol in toluene at r.t. under nitrogen, followed by cyclohexanone. Then, the mixture was refluxed for $1 \mathrm{~h}(89 \%)$ [1701].
- Also refer to: [1703,1704].
white solid [1701];
m.p. $79-81^{\circ}$ [1703,1704], 70-72 ${ }^{\circ}$ [1701];
${ }^{1} \mathrm{H}$ NMR [1701], ${ }^{13} \mathrm{C}$ NMR [1701], MS [1701].
(2-Hydroxy-4-methylphenyl)(2-methoxyphenyl)methanone
[1023758-41-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
New compound
Synthesis
- Obtained by reaction of o-methoxybenzoic acid with m-cresol in the presence of PPA at 70° for $1 \mathrm{~h}(30 \%)$ [1690].
orange needles; m.p. 75-80 ${ }^{\circ}$ [1690];
${ }^{1} \mathrm{H}$ NMR [1690], IR [1690], UV [1690].

(2-Hydroxy-4-methylphenyl)(3-methoxyphenyl)methanone

[1023758-48-6]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

New compound

Synthesis

- Obtained by reaction of m-methoxybenzoic acid with m -cresol in the presence of PPA at 70° for 1 h [1690].

(2-Hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone

[108478-27-9]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27

Described [1476] p. 283
Syntheses

- Also obtained by reaction of p -methoxybenzoic acid with m-cresol,
- in the presence of methanesulfonic acid at $140^{\circ}(90 \%)$ [1692];
- in the presence of PPA at 70° for 1 h [1690];
- in a mixture of graphite and methanesulfonic acid at 120° for $2 \mathrm{~h}(51 \%)$ [1598].
- Also refer to: [1584].
white crystals; m.p. 97° [1598];
${ }^{1} \mathrm{H}$ NMR [1598], ${ }^{13} \mathrm{C}$ NMR [1598], IR [1598].

(2-Hydroxy-5-methylphenyl)(4-methoxyphenyl)methanone

[26880-96-6]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Described [1476] p. 284
Synthesis

- Also refer to: [1691].
(4-Hydroxy-2-methylphenyl)(2-methoxyphenyl)methanone
[1023758-39-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
 New compound
Synthesis
- Obtained by reaction of o-methoxybenzoic acid with m-cresol in the presence of PPA at 70° for $1 \mathrm{~h}(20 \%)$ or for $6 \mathrm{~h}(70 \%)$ [1690].
white crystals; m.p. $105-110^{\circ}$ [1690];
${ }^{1} \mathrm{H}$ NMR [1690], IR [1690], UV [1690].
(4-Hydroxy-2-methylphenyl)(3-methoxyphenyl)methanone
[1023758-47-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

New compound
Synthesis

- Obtained by reaction of m-methoxybenzoic acid with m -cresol in the presence of PPA at 70° for 1 h [1690].
(4-Hydroxy-2-methylphenyl)(4-methoxyphenyl)methanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 242.27
$$

New compound
Synthesis

- Obtained by partial demethylation of 4,4'-dimethoxy-2-methylbenzophenone by boiling for 15 min with pyridinium chloride (75\%) [1710].
(3-Fluoro-2,4-dimethoxyphenyl)(3-fluoro-2-hydroxy-4-methoxyphenyl)methanone [1018451-13-2] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{5} \quad$ mol.wt. 324.28

New compound
Synthesis

- Obtained by partial demethylation of $2,2^{\prime}, 4,4^{\prime}$-tetra-methoxy- $3,3^{\prime}$ difluorobenzophenone with boron trichloride in methylene chloride at 0° for 1 h [1711].
MS [1711].
Methyl ether [1018451-12-1] $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{5} \quad$ mol.wt. 338.31
- Obtained by heating a mixture of methyl 3-fluoro-2,4-dimethoxybenzoate (3 mmol), 2-fluoro-1,3-dimethoxybenzene (3 mmol) and Eaton's acid (a 9\% solution of $\mathrm{P}_{2} \mathrm{O}_{5}$ in methanesulfonic acid) $(20 \mathrm{ml})$ at 80° for $3 \mathrm{~h}(97 \%)$ [1711]. yellow orange liquid [1711]; ${ }^{1} \mathrm{H}$ NMR [1711], ${ }^{19} \mathrm{~F}$ NMR [1711], MS [1711].

(2-Chloro-6-hydroxy-4-methylphenyl)(4-ethoxyphenyl)methanone

[1005486-84-9]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3} \quad$ mol.wt. 290.75
New compound
Synthesis

- Refer to: [1693].
[2-Chloro-6-hydroxy-4-(hydroxymethyl)phenyl](4-ethoxyphenyl)methanone
[1005486-86-1] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{4} \quad$ mol.wt. 306.74

New compound
Synthesis

- Refer to: [1693].
(4-Ethoxyphenyl)(2-fluoro-6-hydroxy-4-methylphenyl)methanone
[1005486-93-0]
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{3}$
mol.wt. 274.29

New compound
Synthesis

- Refer to: [1693].
(2-Hydroxy-6-methoxy-4-methylphenyl)(4-methoxyphenyl)methanone
[1005488-48-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

New compound
Synthesis

- Refer to: [1693].

Acetate [1005488-49-2] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 314.34

- Refer to: [1693].
[2-Hydroxy-4-(hydroxymethyl)-6-methoxyphenyl](4-methoxyphenyl)methanone
[1005488-50-5]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
New compound
Synthesis
- Refer to: [1693].
(2-Fluoro-6-hydroxy-4-methylphenyl)[4-(1-methylethoxy)phenyl]methanone [1005488-15-2]
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3}$ mol.wt. 288.32

New compound
Synthesis

- Refer to: [1693].
(2-Fluoro-6-hydroxy-4-methylphenyl)(4-propoxyphenyl)methanone
[1005487-98-8]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3}$
mol.wt. 288.32
New compound
Synthesis
- Refer to: [1693].
[2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl][4-(1-methylethoxy)phenyl] methanone
[1005488-17-4]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{4} \quad$ mol.wt. 304.32
New compound
Synthesis
- Refer to: [1693].
[2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl](4-propoxyphenyl)methanone
[1005487-99-9] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{4} \quad$ mol.wt. 304.32

New compound
Synthesis

- Refer to: [1693].
[4-[(Acetyloxy)methyl]-2-hydroxy-6-methoxyphenyl](4-methoxyphenyl) methanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 330.34
New compound
Synthesis
- Refer to: [1693].
[2-Hydroxy-5-(4-methylbenzoyl)-3-nitrophenyl]- β-D-glucopyranosiduronic acid (Tolcapone, 3-O- β, D-glucuronide) (Ro 61-1448)
[204853-33-8]
Glucuronic acid-O

$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{11} \quad$ mol.wt. 449.37
New compound
Isolation from natural sources
- A plasma metabolite of tolcapone in human [1702].
N.B.: Conjugaison (glucuronidation by glucuronyltransferase).
[3-Amino-2-hydroxy-5-(4-methylbenzoyl)phenyl]- β-D-glucopyranosiduronic acid (Tolcapone, Amine glucuronide)

[254902-30-2]
Glucuronic acid - O

$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{9} \quad$ mol.wt. 419.39
New compound
Synthesis
- From Tolcapone via reductive metabolism in human [1702].
[3-Acetamido-5-(glucuronyloxy)-4-hydroxyphenyl](4-methylphenyl)methanone (Tolcaponne, N-acetylamino glucuronide)

Glucuronic acid-O \quad\begin{tabular}{l}
Synthesis

- From Tolcapone via reductive

metabolism in human [1702].
\end{tabular}

2.2 Dihydroxybenzophenones [1476] p. 364

2.2.1 Hydroxy Groups Located on the Same Ring [1476] p. 364

2.2.1.1 Substituents Located on the Hydroxylated Ring [1476] p. 364

(2,4-Dihydroxy-3-nitrophenyl)phenylmethanone
[59746-91-7] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22

Described [1476] p. 371
Synthesis

- Also refer to: [1543].
m.p. 228° [1543].

USE: Stabilization PVC [1543].
(3,4-Dihydroxy-2-nitrophenyl)phenylmethanone
[383382-84-1] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 259.22

New compound
Synthesis

- Obtained from 4-hydroxy-3-methoxy-2nitrobenzophenone by ether cleavage with aluminium chloride in a pyridine/1, 2-dichloroethane mixture at 100° for $30 \mathrm{~min}(81 \%)$ [1597].
orange crystals [1597]; ${ }^{1} \mathrm{H}$ NMR [1597], ${ }^{13} \mathrm{C}$ NMR [1597], IR [1597].
(3,4-Dihydroxy-5-nitrophenyl)phenylmethanone
[125628-96-8]

m.p. $\quad 134-136^{\circ}$ [1712]; ${ }^{1} \mathrm{H}$ NMR [1712], ${ }^{13} \mathrm{C}$ NMR [1712], IR [1712].

(3-Amino-2,4-dihydroxyphenyl)phenylmethanone

[87119-03-7]

Described [1476] p. 373
Syntheses

- Obtained by treatment of its dimethyl ether,
- with aluminium chloride in refluxing toluene for 2 h (45-60\%) [1529];
- with boron tribromide at r.t. for $3 \mathrm{~h}(60 \%)$ [1529].
- Also obtained by reaction of iso-amylamine with 2,3,4-trihydroxybenzophenone in the presence of lithium perchlorate in methanol (30%) or by electrochemical oxidation in acetic acid buffer (pH ca. 4.5) at r.t. [1713].
- Also obtained by reaction of 1-isopropyl-2-methylpropylamine with 2,3,4-trihy-droxy-benzophenone in the presence of lithium perchlorate in methanol (55\%) or by electrochemical oxidation in acetic acid buffer (pH ca. 4.5) at r.t. [1713].
- Also obtained by reaction of diisopropylamine with 2,3,4-trihydroxybenzophenone in the presence of lithium perchlorate in methanol or by electrochemical oxidation in acetic acid buffer (pH ca. 4.5) at r.t. [1713].
- Also obtained by reaction of 1,2-dimethylpropylamine with 2,3,4-trihydroxybenzophenone in the presence of lithium perchlorate in methanol (40\%) or by electrochemical oxidation in acetic acid buffer (pH ca. 4.5) at r.t. [1713].
- Also obtained by reaction of α-phenylbenzylamine with 2,3,4-trihydroxybenzophenone in the presence of lithium perchlorate in methanol at $25^{\circ}(72 \%)$ or by electrolysis [1714].
- Also obtained by reaction of phenylmethylamine with 2,3,4-trihydroxybenzophenone in the presence of lithium perchlorate in methanol at $20^{\circ}(62 \%)$ or by electrolysis [1715].
- Also refer to: [1533,1595,1716-1718].
m.p. $195-197^{\circ}$ [1714], 186-188 ${ }^{\circ}$ [1715];
${ }^{1} \mathrm{H}$ NMR [1713], ${ }^{13} \mathrm{C}$ NMR [1713].
BIOLOGICAL ACTIVITY: Toxicity [1529]; potent neuroprotective agent in vitro [1529].

Dimethyl ether [253681-20-8] $\quad \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 257.29

- Obtained by Friedel-Crafts acylation of 2,6-dimethoxyaniline with benzoic acid in the presence of PPA at 80° for $8 \mathrm{~h}(45-55 \%)$ [1529].

Cyclohexyl(2,4-dihydroxy-3-nitrophenyl)methanone

[909255-41-0]

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5} \quad$ mol.wt. 265.27

New compound

Synthesis

- Obtained by reaction of cyclohexanecarboxylic acid with 2-nitroresorcinol in the presence of PPA at $70-80^{\circ}$ for $5 \mathrm{~h}(60 \%)$ [1595].

(3-Amino-2,4-dihydroxyphenyl)cyclohexylmethanone

[909255-14-7]
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$
mol.wt. 235.28

New compound
Synthesis

- Obtained by treatment of cyclohexyl(2,4-dihy-droxy-3-nitrophenyl)methanone with zinc in acetic acid at $20^{\circ}(76 \%)$ [1595].
m.p. $\quad 124-126^{\circ}$ [1595]; ${ }^{1} \mathrm{H}$ NMR [1595], ${ }^{13} \mathrm{C}$ NMR [1595].

(3,4-Dihydroxy-2-methoxyphenyl)phenylmethanone

[177703-29-6]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Described [1476] p. 380
Synthesis

- Also refer to: [1719].

[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]phenylmethanone

[70219-83-9]

HO
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 298.34
Described [1476] p. 386
Synthesis

- Also obtained by treatment of 2,4,6-trihydroxy-benzophenone with prenyl di-n-cyclohexyl-sulfonium tetrafluoroborate salt (1 equiv) in the presence of Hünig's base (1.1 equiv) in methylene chloride at r.t. for $7 \mathrm{~h}(10 \%)$ [1536].

Isolation from natural sources

- From the aerial parts of Helichrysum asperum (Thunb.) Hilliard et Burtt. var. albidulum Hilliard (DC) [1720].
[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxy-6-methoxyphenyl]phenylmethanone (E) (Marupone)
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 380.48

Isolation from natural sources

- From Moronobea pulchra Ducke (Guttiferae) [1536,1605].

Yellow crystals; m.p. $125-127^{\circ}$ [1605]; ${ }^{1} \mathrm{H}$ NMR [1605], IR [1605], UV [1605], MS [1605].

Diacetate [53948-15-5] $\quad \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{6} \quad$ mol.wt. 464.56

- Obtained by treatment of marupone with acetic anhydride in the presence of pyridine at r.t. for 24 h [1605].
oil [1605]; ${ }^{1} \mathrm{H}$ NMR [1605], IR [1605].
Dimethyl ether (E) [53948-14-4] $\quad \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 408.54
- Obtained by treatment of marupone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 6 h [1605].
- Also obtained by reaction of 2,4,6-trimethoxybenzophenone with geranyl di-n-butyl-sulfonium tetrafluoroborate salt (2.5 equiv) in the presence of Hunig's base (5 equiv) in toluene at 80° for $16 \mathrm{~h}(15 \%)$ [1536]. oil [1605]; ${ }^{1} \mathrm{H}$ NMR [1605], IR [1605], UV [1605].
[3-(3,7-dimethyloctyl)-2,4-Dihydroxy-6-methoxyphenyl]phenylmethanone
[53948-13-3]
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}$
mol.wt. 384.52
New compound
Synthesis
- Obtained by catalytic hydrogenation of marupone with hydrogen
in the presence of Pd / C in ethanol at r.t. and pressure [1605].
m.p. $\quad 140-143^{\circ}$ [1605]; ${ }^{1} \mathrm{H}$ NMR [1605], IR [1605], UV [1605], MS [1605].

2.2.1.2 Substituents Located on the Other Ring [1476] p. 392

(2-Bromophenyl)(2,4-dihydroxyphenyl)methanone
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 293.12

Dimethyl ether [183106-10-7] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17

- Obtained by reaction of 2-bromobenzoic acid with 1,3-dimethoxybenzene in the presence of PPA at 90° for $8 \mathrm{~h}(80 \%)$ [1503].
m.p. 62° [1503];
${ }^{1} \mathrm{H}$ NMR [1503], IR [1503], UV [1503], MS [1503]; TLC [1503].

(2-Chlorophenyl)(2,4-dihydroxyphenyl)methanone

[50685-40-0]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3}$
mol.wt. 248.67

Described [1476] p. 394

Dimethyl ether [34702-01-7] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 276.72

- Obtained by reaction of 2-chlorobenzoic acid with 1,3-dimethoxybenzene in the presence of PPA at 90° for $8 \mathrm{~h}(90 \%)$ [1503].
- Also refer to: [1721]. m.p. 60° [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503].

(2-Chlorophenyl)(2,5-dihydroxyphenyl)methanone

[37883-99-1]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3}$
mol.wt. 248.67
Described [1476] p. 394

Dimethyl ether [37883-94-6] $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 276.72

- Obtained by reaction of 2-chlorobenzoyl chloride with 1,4-dimethoxybenzene in methylene chloride in the presence of stannic chloride (80\%) [1503].
- Also refer to: [1722].
m.p. 55° [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503].
(4-Chlorophenyl)(3,4-dihydroxyphenyl)methanone
[134612-84-3] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3}$ mol.wt. 248.67

Described [1476] p. 397
Synthesis

- Also refer to: [1534] (Chinese patent).

(2,4-Dihydroxyphenyl)(2-fluorophenyl)methanone

[19390-38-6]

Dimethyl ether [7396-80-7] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3} \quad$ mol.wt. 260.26

- Obtained by reaction of 2-fluorobenzoic acid with 1,3-dimethoxybenzene in the presence of PPA at 90° for $8 \mathrm{~h}(85 \%)$ [1503].
white solid; m.p. 70° [1503];
${ }^{1} \mathrm{H}$ NMR [1503], IR [1503], UV [1503], MS [1503]; TLC [1503].

(2,5-Dihydroxyphenyl)(2-fluorophenyl)methanone

[176547-98-1] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 232.21

Dimethyl ether [176547-97-0] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3} \quad$ mol.wt. 260.26

- Obtained by reaction of 2-fluorobenzoyl chloride with 1,4-dimethoxybenzene in methylene chloride in the presence of stannic chloride at 0° (83\%) [1503].
m.p. $50-51^{\circ}$ [1503];
${ }^{1} \mathrm{H}$ NMR [1503], IR [1503], UV [1503], MS [1503]; TLC [1503].
(3,5-Dihydroxyphenyl)(4-fluorophenyl)methanone
[148253-51-4] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 232.21
[148253-52-5] (Polymer)

2.2.1.3 Substituents Located on Both Rings [1476] p. 409

(3,4-Dihydroxy-5-nitrophenyl)(2-fluorophenyl)methanone
[125628-97-9]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{5} \quad$ mol.wt. 277.21
Described [1476] p. 413
Synthesis

- Also refer to: [1723].
- BIOLOGICAL ACTIVITY: Inhibition of dopamine uptake [1724]; cytotoxicity [1724].
- Also refer to: [1725,1726].

Dimethyl ether $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}_{5} \quad$ mol.wt. 305.26

- Obtained by reaction of dimethyl sulfate with 2^{\prime}-fluoro-3,4-dihydroxy-5nitrobenzophenone in the presence of dilute sodium hydroxide and tetrabutylammonium bromide in methylene chloride at r.t. for 17 h (91%) [1725].
- Also obtained by adding sodium hydride and dimethyl sulfate to a solution of 4-hydroxy-3-methoxy-5-nitro-2'-fluorobenzophenone in DMF, and refluxing 30 $\min (73 \%)$ [1727].
${ }^{1} \mathrm{H}$ NMR [1727].

(3-Amino-2,4-dihydroxyphenyl)(4-fluorophenyl)methanone

[909255-18-1] $\quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}_{3}$ mol.wt. 247.23

New compound
Syntheses

- Obtained by total demethylation of (3-amino-2,4-dimethoxyphenyl)(4-fluorophenyl)methanone in the presence of aluminium chloride (70\%) [1595].
- Also obtained from (p-fluorophenyl)benzoic acid [1595].
- Also obtained from 2,6-dimethoxyaniline [1595].
- Also refer to: [1728].
light-yellow crystals [1595], yellow crystals [1728];
m.p. $179-181^{\circ}$ [1595];
${ }^{1} \mathrm{H}$ NMR [1595], ${ }^{13} \mathrm{C}$ NMR [1595]; X-ray Data [1595,1728].
4-(3,4-Dihydroxy-5-nitrobenzoyl)benzoic acid (Tolcapone, carboxylic acid) (Ro 47-1669)
[212902-63-1]

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{7} \quad$ mol.wt. 303.23
New compound
Isolation from natural sources
- A plasma metabolite of tolcapone in human [1702].
(3,4-Dihydroxy-5-nitrophenyl)(4-methylphenyl)methanone (Tolcapone) (Ro-40-7592)
[134308-13-7]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

Described [1476] p. 418
Syntheses

- Also obtained by adding aluminium chloride to a stirred suspension of (4-hydroxy-3-methoxy-5-nitrophenyl) (4-methylphenyl)methanone in ethyl acetate at r.t. under nitrogen, followed by pyridine. The red solution obtained was refluxed for 2 h (91\%) [1701].
- Also refer to: [1702-1704,1712,1729-1735].
yellow solid [1701];
m.p. $\quad 146-148^{\circ}$ [1703,1704], $141-143^{\circ}$ [1701]; ${ }^{1} \mathrm{H}$ NMR [1701], ${ }^{13} \mathrm{C}$ NMR [1701], MS [1701].
BIOLOGICAL ACTIVITY: Hepatotoxicity [1712,1729,1731]; a novel inhibitor of catechol-O-methyltransferase [1702].

(3,4-Dihydroxy-5-nitrophenyl)[4-(hydroxymethyl)phenyl]methanone

(Tolcapone, primary alcohol metabolite) (Ro 47-1868)

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$ mol.wt. 289.25

New compound

Isolation from natural sources

- A plasma metabolite of tolcapone in human [1702].
N.B.: Oxidation CYP3A4.
(3-Amino-4,5-dihydroxyphenyl)(4-methylphenyl)methanone
(Tolcapone, amine derivative) (Ro 61-3662)
[254912-17-9]
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$
mol.wt. 243.26

New compound
Synthesis

- From Tolcapone via reductive metabolism in human [1702].
(3-Amino-2,4-dihydroxyphenyl)(2-methoxyphenyl)methanone
[909255-19-2]

3-nitrophenyl)-(2-methoxyphenyl)meth (76\%) [1595].
m.p. $\quad 153-155^{\circ}$ [1595]; ${ }^{1} \mathrm{H}$ NMR [1595], ${ }^{13} \mathrm{C}$ NMR [1595].
(3-Amino-2,4-dihydroxyphenyl)[(4-methylsulfonyl)phenyl]methanone
[909255-17-0]

$$
\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}
$$

mol.wt. 307.33

New compound
Synthesis

- Preparation by treatment of (3-amino-2,4-dimethoxyphenyl)(4-methylsulfonyl)methanone with aluminium chloride in toluene at 100° for $20 \mathrm{~min}(72 \%)$ [1595].
m.p. 233-235 ${ }^{\circ}$ [1595]; ${ }^{1} \mathrm{H}$ NMR [1595], ${ }^{13} \mathrm{C}$ NMR [1595].

Dimethyl ether $\quad \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S} \quad$ mol.wt. 335.38

- Obtained by reaction of p-(methylsulfonyl)benzoic acid with 2,6-dimethoxyaniline in the presence of PPA at 100° for $7 \mathrm{~h}(42 \%)$ [1595].
[3-Amino-4-hydroxy-5-(sulfooxy)phenyl](4-methylphenyl)methanone (Tolcapone, amine sulphate)

(3-Amino-2,4-dihydroxyphenyl)(2,6-dimethylphenyl)methanone
[909255-20-5] $\quad \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 257.29

New compound
Synthesis

- Obtained by treatment of (2,4-dihydroxy-3-nitrophenyl)-(2,6-dimethylphenyl)methanone with zinc in acetic acid at 20° (72\%) [1595].
m.p. 187-189 ${ }^{\circ}$ [1595]; ${ }^{1} \mathrm{H}$ NMR [1595], ${ }^{13} \mathrm{C}$ NMR [1595]; X-ray Data [1595,1728].
(3-Acetamido-4,5-dihydroxyphenyl)(4-methylphenyl)methanone (Tolcapone, N-acetylamino metabolite) (Ro 48-2485)
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 285.30

New compound
Synthesis

- From Tolcapone via reductive metabolism in human [1702].

2.2.2 Hydroxy Groups Located on Both Rings [1476] p. 423

2.2.2.1 Substituents Located on One Ring [1476] p. 423

(2-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone
[98155-77-2] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad \mathrm{~mol} . w t .248 .67$

Dimethyl ether [30457-41-1] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 276.72

- Obtained by heating for 4 h a mixture of 3-chloroanisole and 4-methoxybenzoyl chloride,
- in the presence of ferric chloride (92\%) [1585];
- in the presence of aluminium chloride (80\%) [1585].
b.p. ${ }_{12} 232^{\circ}$ [1585]; m.p. 81° [1585].

(3-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone

[92005-17-9]

Dimethyl ether [74697-33-9] $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 276.72

- Obtained by heating for 4 h a mixture of 2-chloroanisole and 4-methoxybenzoyl chloride,
- in the presence of ferric chloride (90%) [1585];
- in the presence of aluminium chloride (85\%) [1585].
b.p. ${ }_{12} 234^{\circ}$ [1585]; m.p. 121° [1585].
(5-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone
[126165-40-0] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 248.67

Dimethyl ether [76442-95-0] $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$ mol.wt. 276.72

- Obtained by heating for 4 h a mixture of 4-chloroanisole and 4-methoxybenzoyl chloride,
- in the presence of ferric chloride (90%) [1585];
- in the presence of aluminium chloride (85\%) [1585].
- Also refer to: [1557].
b.p. ${ }_{12} 231^{\circ}$ [1585]; m.p. 113° [1585], 77° [1557]; IR [1557].

(5-Fluoro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone

[159300-38-6]
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3}$
mol.wt. 232.21

Described [1476] p. 428

Dimethyl ether [60972-10-3] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3} \quad$ mol.wt. 260.27

- Refer to: [1736].
m.p. 135° [1736].

BIOLOGICAL DATA: Fungicide [1736].
(2-Hydroxy-5-methylphenyl)(4-hydroxyphenyl)methanone
[25148-21-4]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Described [1476] p. 430

Dimethyl ether [54118-71-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

- Refer to: (78\%) [1501].
m.p. $65-67^{\circ}$ [1501]; UV [1501].
(4-Hydroxy-2-methylphenyl)(4-hydroxyphenyl)methanone
[98155-72-7]

Dimethyl ether [51974-20-0]

- Obtained by reaction of 4-methoxybenzoyl chloride with 3-methylanisole in the presence of aluminium chloride in carbon disulfide at r.t. for $3 \mathrm{~h}(96 \%)$ [1501]. m.p. $82-83.5^{\circ}$ [1501]; UV [1501].
(4-Hydroxy-3-methylphenyl)(4-hydroxyphenyl)methanone
[92005-11-3]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Described [1476] p. 432

Dimethyl ether [54118-70-6] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

- Obtained by reaction of 4-methoxybenzoyl chloride with 2-methylanisole in the presence of aluminium chloride in carbon disulfide at r.t. for $3 \mathrm{~h}(97 \%)$ [1501]. m.p. 65-66º [1501]; UV [1501].

(2-Hydroxy-4-methoxyphenyl)(2-hydroxyphenyl)methanone

[131-53-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Described [1476] p. 432
Synthesis

- Also refer to: [1534] (Chinese patent).

2.2.2.2 Substituents Located on Both Rings [1476] p. 441

Symmetrical ketones [1476] p. 441
Bis(4-hydroxy-3,5-dinitrophenyl)methanone

m.p. $\quad 203^{\circ}$ [1737].

Bis(5-chloro-2-hydroxyphenyl)methanone

[6178-89-8]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$
mol.wt. 283.11
Described [1476] p. 444
Synthesis

- Also refer to: [1738].

Bis(4-hydroxy-3-nitrophenyl)methanone
[37567-35-4]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 304.22
Described [1476] p. 445
Syntheses

- Obtained by heating its dimethyl or diethyl ether with potassium hydroxide in dilute ethanol under pressure at $175^{\circ}(55-59 \%)$ [1737].
- Also obtained by heating at 135° during 5 h in a sealed tube, $4,4^{\prime}$-dichloro-3,3'-dinitro-benzophenone with an aqueous solution of sodium carbonate (67\%) [1737].
- Preparation by heating a solution of 1,1,1-trichloro-2,2-bis(4-chloro-3-nitrophenyl) ethane and potassium nitrite in DMAA (dimethylacetamide) at 100° for 4 h (95\%) [1739].
- Preparation by heating a solution of 1,1,1-trichloro-2,2-bis(4-hydroxy-3nitrophenyl)ethane and sodium nitrite in DMF between 120° and 130° for 10 h (93-95\%) [1740].
- Also refer to: [1741].
m.p. $197-198^{\circ}$ [1740], $196-198^{\circ}$ [1739], 175° [1737];

IR [1739,1740]; TLC [1739,1740].
$\begin{array}{lll}\text { Dimethyl ether } & \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{7} & \text { mol.wt. } 332.27 \text { [1737]. } \\ \text { Diethyl ether } & \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7} & \text { mol.wt. } 360.32 \text { [1737]. }\end{array}$

Bis(4-hydroxy-2-methylphenyl)methanone

[98155-74-9]

Dimethyl ether [5191-70-8] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

- Obtained by oxidation of bis(4-methoxy-2-methylphenyl)methane with chromic acid [1742].
- Also refer to: [1485]. m.p. 72° [1742]; IR [1485].

Bis(4-hydroxy-3,5-dimethoxyphenyl)methanone

[34007-64-2]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7}$
mol.wt. 334.33
Described [1476] p. 450
Synthesis

- Also refer to: [1743] (Chinese patent).

Bis[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone

[25446-98-4]

Dimethyl ether [98085-85-9] $\quad \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \quad$ mol.wt. 354.49

- Obtained by reaction of 4-tert-butylanisole with N,N-dimethylamide chlorocarbonic acid (60\%) [1522].
- Also refer to: [1485]; IR [1485].
${ }^{1} \mathrm{H}$ NMR [1522], ${ }^{13} \mathrm{C}$ NMR [1522], IR [1522].
Asymmetric ketones [1476] p. 452

2.3 Trihydroxybenzophenones [1476] p. 464

2.3.1 Hydroxy Groups Located on the Same Ring [1476] p. 464

2.3.1.1 Substituents Located on the Hydroxylated Ring [1476] p. 464

(5-Bromo-2,3,4-trihydroxyphenyl)phenylmethanone
[870652-41-8] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{4} \quad$ mol.wt. 309.12

New compound
Synthesis

- Refer to: [1719].

Phenyl[2,3,4-trihydroxy-5-(1-methylethyl)phenyl]methanone

Trimethyl ether [1011708-96-5] $\quad \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 314.38

- Obtained by Dess-Martin oxidation of 2,3,4-trimethoxy-5-isopropylbenzhydrol employing the triacetoxyperiodinane (the "Dess-Martin Periodinane" reagent) in methylene chloride at r.t. for $30 \mathrm{~min}(>76 \%)$ [1658].

Phenyl[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]methanone
[93796-20-4] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34

New compound
Syntheses

- Obtained by reaction of 2,4,6-tri-hydroxy-benzophenone with prenyl-di-n-hexylsulfonium tetrafluoroborate salt (1 equiv) in the presence of Hünig's base (1.1 equiv) in chloroform at r.t. for $7 \mathrm{~h}(42 \%)$ [1536].
- Also obtained (by-product) by reaction of α, α-dimethylallyl alcohol with 2,4,6-trihydroxy-benzophenone in the presence of boron trifluoride etherate in dioxane at 20° for $5.5 \mathrm{~h}(2 \%)$ [1744].
Isolation from natural sources
- From the aerial parts of Helichrysum asperum (Thunb.) Hilliard et Burtt var. albidulum (DC) Hilliard (Compositae) [1720].
m.p. $\quad 102-103^{\circ}$ [1720];
${ }^{1} \mathrm{H}$ NMR [1720,1744], IR [1720], UV [1744], MS [1720,1744].
Trimethyl ether $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 340.42 [1536].
- Obtained by reaction of 2,4,6-trimethoxybenzophenone with prenyl-di-n-hexylsulfonium tetrafluoroborate salt (2.5 equiv) in the presence of Hünig's base (5 equiv) in toluene at 100° for $16 \mathrm{~h}(51 \%)$ [1536].

Phenyl[2,4,6-trihydroxy-3-(3-methylbutyl)phenyl]methanone

[93796-23-7]
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 300.35

New compound

Synthesis

- Obtained by hydrogenation of 2,4,6-trihydroxy-3-(3-methyl-2-
butenyl)benzophenone with hydrogen in the presence of Pd / C in methanol at 20° for $4 \mathrm{~h}(59 \%)$ [1744].
m.p. $94-97^{\circ}$ [1744]; ${ }^{1} \mathrm{H}$ NMR [1744], UV [1744], MS [1744].

[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone

 [70219-87-3] (E) [76015-48-0] (Z) $\quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 366.46

Isolation from natural sources

- From Helichrysum monticola Hilliard (Compositae) [1720].

Phenyl[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]methanone (Clusiaphenone B)
[70219-84-0]
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 366.46
Described [1476] p. 466

Syntheses

- Preparation by C-prenylation of 2,4,6-trihydroxy-benzophenone,
- with prenyl bromide in the presence of aqueous potassium hydroxide at 0° (45\%) [1535,1538,1745];
- with 2-methyl-3-buten-2-ol in the presence of boron trifluoride etherate in dioxane at 20° for 5.5 h (11\%) [1744].

Isolation from natural sources

- From the fruits of Clusia sandiensis (Guttiferae) [1746].
oil [1746]; m.p. 93-94 [1744];
${ }^{1} \mathrm{H}$ NMR [1744,1746], ${ }^{13} \mathrm{C}$ NMR [1746], UV [1744], MS [1744,1746].

2.3.1.2 Substituents Located on the Other Ring [1476] p. 466

(4-Fluorophenyl)(2,3,4-trihydroxyphenyl)methanone
[84795-00-6] $\quad \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{4} \quad$ mol.wt. 248.21

Described [1476] p. 468
Synthesis

- Also refer to: [1719].
(3-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
New compound
Synthesis
- Refer to: [1747].
(4-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone
[69471-29-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27

New compound
Synthesis

- Refer to: [1747].

2.3.2 Hydroxy Groups Located on Both Rings [1476] p. 471

2.3.2.1 Substituents Located on One Ring [1476] p. 471

(3-Amino-2,4-dihydroxyphenyl)(2-hydroxyphenyl)methanone
[1021955-12-3] $\quad \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 245.23

New compound
Synthesis

- Obtained by demethylation of (3-amino-2, 4-dihydroxy-phenyl)(2-methoxyphenyl)methanone by heating at 50° for 1.5 h with aluminium chloride in toluene (50\%) [1728].
yellow solid; m.p. 176° [1728];
${ }^{1} H$ NMR [1728]; X-ray analysis [1728].
(2,4-Dihydroxy-6-methoxyphenyl)(4-hydroxyphenyl)methanone
[56308-11-3]

Isolation from natural sources

- Obtained by treatment of Mahkoside A (N.B.) with 30% aqueous hydrochloric acid in refluxing ethanol (95\%) [1748].
N.B.: Mahkoside A is the 2- β-D-galactopyranoside derivative of the title compound. It is isolated from Mahkota Dewa (Phaleria macrocarpa [Scheff.] Boerl) [1748].
- Also refer to: [1749-1751].
yellow solid; m.p. $83-85^{\circ}$ [1748];
${ }^{1} \mathrm{H}$ NMR [1748], ${ }^{13} \mathrm{C}$ NMR [1748], IR [1748], MS [1748].
BIOLOGICAL DATA: Cytotoxicity [1748,1749]; UV absorber, photo sensitizer and medical intermediate [1750].

(3,4-Dimethoxyphenyl)(3-methoxyphenyl)methanone

New compound
Syntheses

- Obtained by reaction of 3-methoxybenzoic acid with veratrole in the presence of PPA at 90° for $8 \mathrm{~h}(85 \%)$ [1503].
- Also refer to: [1560].
white solid; m.p. 79-80́ [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503], UV [1503].

2.3.2.2 Substituents Located on Both Rings [1476] p. 480

(4-Phenoxyphenyl)[2,3,4-trihydroxy-5-(1-methylethyl)phenyl]methanone
[1011708-92-1]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 364.40
New compound
Synthesis

- Obtained by treatment of its trimethyl ether with boron tribromide (6 equiv) in methylene chloride, first at -78°, then at $-20^{\circ}(>72 \%)$ [1658].

Trimethyl ether [1011708-90-9] $\quad \mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{5} \quad$ mol.wt. 406.48.

- Obtained by Dess-Martin oxidation of (2,3,4-trimethoxy-5-isopropyl)(4phenoxy)benzhydrol employing the triacetoxyperiodinane (the "Dess-Martin Periodinane" reagent) in methylene chloride at r.t. for $30 \mathrm{~min}(>76 \%)$ [1658].

2.4 Tetrahydroxybenzophenones [1476] p. 489

2.4.1 Hydroxy Groups Located on One Ring [1476] p. 489

2.4.2 Substituents Located on Both Rings [1476] p. 489

2.4.2.1 Substituents Located on One Ring [1476] p. 489

[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2,3,4-trihydroxyphenyl)methanone
[251562-02-4]

$$
\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5} \quad \text { mol.wt. } 358.43
$$

New compound
Synthesis

- Refer to: [1719].
[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)-5-[5-methyl-2-(1-methylethenyl)-5-hexenyl]phenyl](3-hydroxyphenyl)methanone (-) (Tovophenone A)
[91387-68-7]

$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{5}$
mol.wt. 464.60
New compound

Isolation from natural sources

- From Tovomita brevistaminea (Guttiferae) [1536,1752].
- From Tovomita mangle G. Maritz (Guttiferae - sub-family Clusioideae) [1753]. yellow oil [1752,1753];
$(\alpha)_{\mathrm{D}}=-20^{\circ}\left(\mathrm{CHCl}_{3}\right)$ [1753], $-18.4^{\circ}(\mathrm{MeOH})$ [1752];
${ }^{1} \mathrm{H}$ NMR [1752,1753], ${ }^{13} \mathrm{C}$ NMR [1752,1753], IR [1752,1753], UV [1752,1753], MS [1752,1753].
BIOLOGICAL ACTIVITY: Cytotoxicity [1752]; KB, human oral epidermoid carcinoma [1752].

Triacetate $\quad \mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{8} \quad$ mol.wt. 590.71

- Obtained by reaction of acetic anhydride with Tovophenone A in the presence of pyridine at r.t. overnight [1753].
oil [1753]; ${ }^{1} \mathrm{H}$ NMR [1753], IR [1753].
Trimethyl ether $\quad \mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{5} \quad$ mol.wt. 506.68
- Obtained by reaction of dimethyl sulfate with Tovophenone A in the presence of potassium carbonate in acetone (quantitative yield) [1753].
oil [1753]; $(\alpha)_{\mathrm{D}}=-14^{\circ}\left(\mathrm{CHCl}_{3}\right)$ [1753];
${ }^{1} \mathrm{H}$ NMR [1753], ${ }^{13} \mathrm{C}$ NMR [1753], IR [1753].

2.4.2.2 Substituents Located on Both Rings [1476] p. 494

Symmetrical ketones [1476] p. 494
Bis(5-fluoro-2,4-dihydroxyphenyl)methanone
[430459-44-2]

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{5} \quad$ mol.wt. 282.20
New compound
Syntheses

- Obtained by total demethylation of its tetramethyl ether with boron tribromide in methylene chloride at 40° (72\%) [1754].
- Also obtained via the Friedel-Crafts acylation of 1-fluoro-2,4-dimethoxybenzene with 5-fluoro- 2,4-dimethoxybenzoyl chloride in the presence of aluminium chloride (44\%) [1755].
yellow crystals [1755];
${ }^{1} \mathrm{H}$ NMR [1755], ${ }^{13} \mathrm{C}$ NMR [1755], ${ }^{19} \mathrm{~F}$ NMR [1755].
Tetramethyl ether [879288-16-1] $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{5} \quad$ mol.wt. 338.31
- The 4-fluoro-6-iodoresorcinol dimethyl ether was converted to the bis(5-fluoro-2,4-dimethoxyphenyl)methanone using Larhed's microwave and cobalt octacar-bonyl-mediated synthesis of diaryl ketones [1524], (96\%) [1754].
Asymmetric ketones [1476] p. 494
2.5 Pentahydroxybenzophenones [1476] p. 496
2.5.1 Hydroxy Groups Located on One Ring [1476] p. 496
2.5.2 Hydroxy Groups Located on Both Rings [1476] p. 496
2.5.2.1 Substituents Located on One Ring [1476] p. 496
2.5.2.2 Substituents Located on Both Rings [1476] p. 499
2.6 Hexahydroxybenzophenone [1476] p. 500
Chapter 3. Polyphenyl Phenyl Methanones (Class of METHANONES)
3.1 Biphenyl Phenyl Methanones [1476] p. 501
3.1.1 Monohydroxylated Ketones [1476] p. 501
3.1.2 Dihydroxylated Ketones [1476] p. 508
3.2 Terphenyl Phenyl Methanones [1476] p. 511
Chapter 4. Cyclohexyl Phenyl Methanones(Class of METHANONES)
4.1.1 Monohydroxylated Ketones [1476] p. 513
Cyclohexyl(4-hydroxyphenyl)methanone

[38459-58-4] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27

Methyl ether [7469-80-9] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30

- Obtained by Friedel-Crafts acylation of anisole with cyclohexanecarbonyl chloride on mesoporous silica catalyst MCM-41 (73\%) [1756].
- Also refer to: [1757,1758].

Described [1476] p. 515

Cyclohexyl(2-hydroxy-4-methylphenyl)methanone

[20112-74-7]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 218.30
Described [1476] p. 516
Syntheses

- Also obtained by Friedel-Crafts acylation of m -cresol with cyclohexanecarboxylic acid in a mixture of graphite and methanesulfonic acid at 120° for 2 h (90\%) [1598].
- Also obtained by treatment of 3-methylphenyl cyclohexanecarboxylate in the presence of alumina in methanesulfonic acid for 25 min at 160° (86%) [1692]. ${ }^{1} \mathrm{H}$ NMR [1598], ${ }^{13} \mathrm{C}$ NMR [1598], IR [1598].
(1-Hydroxycyclohexyl)(4-methoxyphenyl)methanone
[7469-82-1] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.20

New compound
Synthesis

- Refer to: [1758].

4.1.2 Dihydroxylated Ketones [1476] p. 519

4.1.3 Trihydroxylated Ketones [1476] p. 520

Cyclohexyl(2,4,6-trihydroxyphenyl)methanone
[85602-45-5]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Described [1476] p. 520
Syntheses

- Also refer to: [1759], (27\%) [1760].
oily solid [1760];
${ }^{1} \mathrm{H}$ NMR [1760], ${ }^{13} \mathrm{C}$ NMR [1760], IR [1760], UV [1760], MS [1760]; TLC [1760].

Chapter 4.2. Ketones Without Hydroxy Groups (Class of METHANONES)

(2,5-Difluoro-4-nitrophenyl)(2-fluoro-5-methoxyphenyl)methanone
[1015414-82-0]
$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{4} \quad$ mol.wt. 311.22

New compound
Synthesis

- Obtained by adding under an argon atmosphere, 60% sodium hydride in oil to a mixture of 2,4,5-trifluoro-nitrobenzene, 2-fluoro-5-methoxybenzaldehyde and 1,3-dimethylimidazolium iodide in DMF. The mixture was stirred at -15° for 10 min ; then at r.t. for $2 \mathrm{~h}(72 \%)$ [1641].

(2,6-Difluoro-4-nitrophenyl)(2-fluoro-5-methoxyphenyl)methanone

$$
[1015414-83-1] \quad \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{4} \quad \text { mol.wt. } 311.22
$$

New compound

Synthesis

- Obtained by adding under an argon atmosphere, 60% sodium hydride in oil to amixture of 3,4,5-trifluoro-nitrobenzene, 2-fluoro-5-methoxybenzaldehyde and 1,3-dimethylimidazolium iodide in DMF. The mixture was stirred at 0° for 50 $\min (89 \%)$ [1641].
(5-Chloro-2-methoxyphenyl)(3,5-dichlorophenyl)methanone
[872088-11-4] $\quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 315.58

New compound
Synthesis

- Obtained by reaction of 3,5-dichlorophenylmagnesium bromide with 5-chloro-2-methoxybenzoyl chloride in the presence of bis[2-(N,N-dimethylamino)ethyl] ether in THF at -5 to 0° (85%) [1623].
(3-Chloro-2-fluorophenyl)(4-methoxyphenyl)methanone
[680610-55-3] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{2} \quad$ mol.wt. 264.68

New compound

Syntheses

- Obtained by reaction of 4-methoxyphenylmagnesium bromide with 3-chloro-2-fluoro-N-methoxy-N-methylbenzamide [1761].
- Also refer to: [1699].

(2-Chloro-4-methoxyphenyl)(4-nitrophenyl)methanone

[76442-94-9]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{4}$
New compound
Syntheses

- Obtained by heating for 4 h a mixture of 3-chloroanisole and 4-nitrobenzoyl chloride,
- in the presence of ferric chloride (85\%) [1585];
- in the presence of aluminium chloride (83\%) [1585].
- Obtained by reaction of p-nitrobenzoyl chloride with 3-chloroanisole in the presence of aluminium chloride in carbon disulfide [1684].
b.p. 1264° [1585]; m.p. $84^{\circ}[1585,1684]$.

(2-Bromo-5-methoxyphenyl)phenylmethanone

[60080-98-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14

New compound
Syntheses

- Refer to: [1616,1762].
(2-Iodophenyl)(4-methoxyphenyl)methanone
[138504-32-2]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{2} \quad$ mol.wt. 338.14
New compound
Synthesis
- Obtained from 2-iodobenzoic acid [1621].
${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].
(3-Iodophenyl)(4-methoxyphenyl)methanone
[908368-69-4] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{2} \quad$ mol.wt. 338.14

New compound
Synthesis

- Obtained from 3-iodobenzoic acid [1621].
${ }^{1} \mathrm{H}$ NMR [1621], ${ }^{13} \mathrm{C}$ NMR [1621].
(4-Methoxyphenyl)(3-nitrophenyl)methanone
[54118-78-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
mol.wt. 257.24
New compound
Synthesis
- Refer to: (52\%) [1501].
m.p. $96.5-98.5^{\circ}$ [1501]; UV [1501].
[2-Fluoro-3-(trifluoromethyl)phenyl](4-methoxyphenyl)methanone
[680610-53-1] $\quad \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{O}_{2} \quad$ mol.wt. 298.24

New compound
Syntheses

- Obtained by reaction of 4-methoxyphenylmagnesium bromide with 2-fluoro-N-methoxy-N-methyl-3-trifluoromethylbenzamide [1761].
- Also refer to: [1699].

(3-Chloro-2-fluorophenyl)(2,4-dimethoxyphenyl)methanone

[680610-70-2]
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClFO}_{3} \quad$ mol.wt. 294.71

New compound
Synthesis

- Refer to: [1699].
(2,3-Difluorophenyl)(4-methoxy-3-methylphenyl)methanone
[680610-61-1]
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 262.26

New compound
Synthesis

- Refer to: [1699].

(2,3-Difluorophenyl)(2,4-dimethoxyphenyl)methanone

[680610-71-3]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3} \quad$ mol.wt. 278.26
New compound
Synthesis

- Refer to: [1699].
(4-Methoxy-1,3-benzodioxol-5-yl)phenylmethanone
[872881-74-8]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26
New compound
Isolation from natural sources
- From the roots of Securidaca inappendiculata Hassk (Polygalaceae) [1602].
Colourless crystals; m.p. $81.5^{\circ}[1602] ;(\alpha)_{\mathrm{D}}^{28}=0\left(0.50 \mathrm{CHCl}_{3}\right)$ [1602];
${ }^{1} \mathrm{H}$ NMR [1602], ${ }^{13} \mathrm{C}$ NMR [1602], UV [1602], MS [1602]; X ray data [1602].
BIOLOGICAL ACTIVITY: Used as antiinflammatory, antibacterial and antirheumatism agent in China [1602].

2-(4-Methoxybenzoyl)benzoic acid
[1151-15-1] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26

m.p. $144-145^{\circ}$ [1501]; UV [1501].

Na salt [54118-77-3] $\quad \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{Na} \quad$ mol.wt. 278.24

- Refer to: [1501] (65\%).
m.p. 260° [1501]; UV [1501].

(2-Bromo-3,5-dimethoxyphenyl)phenylmethanone

[1000990-08-8] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17

New compound
Synthesis

- Refer to: [1495].
(2-Bromo-4,5-dimethoxyphenyl)phenylmethanone
[59142-61-9]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
New compound
Synthesis
- Refer to: [1495].
(2-Bromo-4-methoxyphenyl)(3-methoxyphenyl)methanone
[1000990-04-4]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
New compound
Synthesis
- Refer to: [1495].
(2-Bromo-4-methoxyphenyl)(4-methoxyphenyl)methanone
[30457-39-7]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
New compound
Synthesis
- Refer to: [1495].
(2-Bromophenyl)(2,5-dimethoxyphenyl)methanone
[137327-31-2]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3}$ mol.wt. 321.17

New compound

Syntheses

- Obtained by reaction of 2-bromobenzoyl chloride with 1,4-dimethoxybenzene in methylene chloride in the presence of stannic chloride (80\%) [1503].
- Also refer to: [1763].
m.p. $\quad 54^{\circ}$ [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503].

(2-Bromophenyl)(3,4-dimethoxyphenyl)methanone

[23346-79-4]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3}$
mol.wt. 321.17
New compound
Syntheses

- Obtained by reaction of 2-bromobenzoic acid with veratrole in the presence of PPA at 90° for $8 \mathrm{~h}(80 \%)$ [1503].
- Also refer to: [1763].
m.p. 155° [1503];
${ }^{1} \mathrm{H}$ NMR [1503], IR [1503], UV [1503].
(2-Bromophenyl)(3,5-dimethoxyphenyl)methanone
[951892-04-9] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17

New compound
Synthesis

- Refer to: [1495].

(2-Chloro-4-methoxyphenyl)(4-methylphenyl)methanone

[76442-92-7]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
New compound
Syntheses

- Obtained by heating for 4 h a mixture of 3-chloroanisole and 4-methylbenzoyl chloride,
- in the presence of ferric chloride (90\%) [1585];
- in the presence of aluminium chloride (85\%) [1585].
b.p. ${ }_{12} 216^{\circ}$ [1585]; m.p. 63° [1585].

(3-Chloro-4-methoxyphenyl)(4-methylphenyl)methanone

[41295-44-7]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
New compound
Syntheses

- Obtained by heating for 4 h a mixture of 2-chloroanisole and 4-methylbenzoyl chloride,
- in the presence of ferric chloride (87\%) [1585];
- in the presence of aluminium chloride [1764], (91\%) [1585].
b.p. ${ }_{12} 214^{\circ}$ [1585]; m.p. $107-108^{\circ}$ [1764], 107° [1585].

(2-Chlorophenyl)(3,4-dimethoxyphenyl)methanone

[34702-00-6]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 276.72
New compound
Syntheses

- Obtained by reaction of 2-chlorobenzoic acid with veratrole in the presence of PPA at 90° for 8 h (82\%) [1503].
- Also refer to: [1721].
m.p. $\quad 141-142^{\circ}$ [1721], 140° [1503];
${ }^{1} H$ NMR [1503], IR [1503], UV [1503].
(4-Fluorophenyl)(2-methoxy-5-methylphenyl)methanone
[1000604-04-5] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2} \quad$ mol.wt. 244.27

New compound
Synthesis

- Refer to: [1765].
(3,4-Dimethoxyphenyl)(2-fluorophenyl)methanone
[116412-86-3]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3}$
mol.wt. 260.26

New compound
Syntheses

- Obtained by reaction of 2-fluorobenzoic acid with veratrole in the presence of PPA at 90° for 8 h (85\%) [1503].
- Also refer to: [1766].
m.p. 76° [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503]; TLC [1503].
(4-Methoxyphenyl)(2-methyl-5-nitrophenyl)methanone
[1022080-07-4] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 271.27

New compound

Synthesis

- Refer to: [1767].
(4-Methoxyphenyl)[2-(methylthio)phenyl]methanone
[760192-84-5]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 258.34

New compound

Synthesis

- Refer to: [1669].

[4-(Acetyloxy)-5-methoxy-2-nitrophenyl]phenylmethanone

[873296-36-7]

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 315.18
New compound
Synthesis

- Obtained by adding copper (II) nitrate trihydrate in one portion to a solution of 4-(acetyloxy)-3-methoxy-benzophenone (m.p. 103-104ㅇ) in acetic anhydride at r.t. (20\%) [1597].
m.p. 210.2-211.1 ${ }^{\circ}$ [1597]; ${ }^{1} \mathrm{H}$ NMR [1597], ${ }^{13} \mathrm{C}$ NMR [1597].
(2-Bromo-4-methoxyphenyl)(3,5-dimethoxyphenyl)methanone
[1000990-05-5]
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4}$
mol.wt. 351.20

New compound
Synthesis

- Refer to: [1495].
(2-Bromo-5-methoxyphenyl)(3,5-dimethoxyphenyl)methanone
[1000990-06-6] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4} \quad$ mol.wt. 351.20

New compound
Synthesis

- Refer to: [1495].
(4-Bromo-2-methoxyphenyl)(3,5-dimethoxyphenyl)methanone
[1000990-15-7]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4} \quad$ mol.wt. 351.20
New compound
Synthesis
- Refer to: [1495].

[4-(Acetylamino)phenyl](4-methoxyphenyl)methanone

[97732-63-3]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 269.30
New compound
Syntheses

- Obtained by reaction of acetic anhydride with (4-methoxyphenyl)(4-nitrophenyl)methanone in the presence of pyridine at 110° for $5 \mathrm{~min}(60 \%)$ [1637].
- Also obtained by reaction of acetic anhydride with 4-amino-4'-methoxybenzophenone in benzene [1768].
- Also refer to: [1769].
m.p. 172° [1637], $170-171^{\circ}$ [1768];
${ }^{1} H$ NMR [1637], IR [1637], UV [1637,1769], MS [1637].

(2,5-Dimethylphenyl)(4-methoxyphenyl)methanone

[22996-47-0]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
New compound
Syntheses

- Obtained by reaction of p-anisoyl chloride with p-xylene,
- in the presence of aluminium chloride in methylene chloride between 10° and 20° (83\%) [1770];
- in the presence of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mol} \%)$ at reflux for $20 \mathrm{~h} \mathrm{(31} \mathrm{\%)} \mathrm{[1527]}$.
- Also obtained by reaction of p-anisic anhydride with p-xylene [1631].
- Also obtained by reaction of 2,5-dimethylbenzoyl chloride with anisole in the presence of aluminium chloride in methylene chloride at 20° for 1 h [1771]. m.p. 88° [1631]; ${ }^{1} \mathrm{H}$ NMR [1770,1771], ${ }^{13} \mathrm{C}$ NMR [1771], IR [1770,1771].

(2,5-Dimethoxyphenyl)(3-methoxyphenyl)methanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
New compound
Synthesis

- Obtained by reaction of 3-methoxybenzoyl chloride with 1,4-dimethoxybenzene in methylene chloride in the presence of stannic chloride (80\%) [1503].
white needles; m.p. $71-72^{\circ}$ [1503];
${ }^{1} \mathrm{H}$ NMR [1503], IR [1503], UV [1503], MS [1503]; TLC [1503].

(3,4-Dimethoxyphenyl)(2-methoxyphenyl)methanone

[131252-46-5]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
New compound
Syntheses

- Obtained by reaction of 2-methoxybenzoic acid with veratrole in the presence of PPA at 90° for $8 \mathrm{~h}(82 \%)$ [1503].
- Also refer to: [1772].
m.p. $80-82^{\circ}$ [1560], 78° [1503]; ${ }^{1} \mathrm{H}$ NMR [1503], IR [1503], UV [1503].
(2-Amino-4,5-dimethoxyphenyl)(2-methoxyphenyl)methanone [882531-40-0]

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 287.32
New compound
Synthesis
- Refer to: [1773].
(2-Bromo-3,5-dimethylphenyl)(3,5-dimethoxyphenyl)methanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{3}$
mol.wt. 349.22

New compound
Synthesis

- Refer to: [1495].
(2-Bromo-3,5-dimethoxyphenyl)(3,5-dimethoxyphenyl)methanone
[1000990-09-9]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5} \quad$ mol.wt. 381.22
New compound
Synthesis
- Refer to: [1495].
(2-Bromo-4,5-dimethoxyphenyl)(3,5-dimethoxyphenyl)methanone
[1000990-07-7]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5}$
mol.wt. 381.22
New compound
Synthesis
- Refer to: [1495].
(2-Methoxy-4,6-dimethylphenyl)(2-methoxyphenyl)methanone
[1019637-60-5]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
New compound
Synthesis
- Refer to: [1700].
(4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone
[109091-08-9] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$ mol.wt. 302.33

New compound
Synthesis

- Refer to: [1774].

Phenyl[2,4,6-trimethoxy-3-[5-methyl-2-(1-methylethylidene)-4-hexen-1-yl] phenyl]-methanone
[950201-80-6]

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 408.54
New compound
Synthesis

- Obtained by reaction of 2,4,6-trimethoxy-benzophenone
with 2-(1-methyl-ethylidene)-4-hexenyl di-n-butyl-sulfonium tetrafluoroborate salt (2.5 equiv) in the presence of Hunig's base (5 equiv) in toluene at 80° for 16 h (30\%) [1536].

Part II Diarolyphenols, Polyaroylphenols

Chapter 5. Phenols with One Benzoyl Group and One or Several Acetyl Groups (Class of ETHANONES)

5.1 Monohydroxylated Ketones [1476] p. 523

5.2 Dihydroxylated Ketones [1476] p. 525

Symmetrical ketones [1476] p. 525
Asymmetric ketones [1476] p. 525

5.3 Trihydroxylated Ketone [1476] p. 528

5.4 Tetrahydroxylated Ketone [1476] p. 528

1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone (Baishouwubenzophenone)

$$
\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad \text { mol.wt. } 302.28
$$

Isolation from natural sources

- From the ethyl acetate extract of the rhizome of Cynanchum otophyllum (Schneid Asclepiadaceae) [1775].
- From Cynanchum auriculatum Royle ex Wight (Asclepiadaceae) [1776].
${ }^{1} \mathrm{H}$ NMR [1776], ${ }^{13} \mathrm{C}$ NMR [1776], IR [1776], UV [1776], MS [1776].

Chapter 6. Phenols with Two or Several Benzoyl Groups (Class of METHANONES)

6.1 Monohydroxylated Ketones [1476] p. 529

Symmetrical ketones [1476] p. 529
Asymmetric ketones [1476] p. 532

6.2 Di- and Polyhydroxylated Ketones [1476] p. 534

Symmetrical ketones [1476] p. 534
(5-Bromo-1,3-phenylene)bis[(3,5-dihydroxyphenyl)methanone
[873220-62-3]

 $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrO}_{6} \quad$ mol.wt. 429.22 New compound
Synthesis

- Obtained by total demethylation of its tetramethyl ether with boron tribromide in methylene chloride at 0° [1563].

Tetramethyl ether [873220-61-2] $\quad \mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrO}_{6} \quad$ mol.wt. 485.33

- Obtained by oxidation of 5-bromo- α, α^{\prime}-bis(3,5-dimethoxyphenyl)benzenedimethanol [873220-60-1] with manganese dioxide in methylene chloride at r.t., followed by demethylation of the obtained product with boron tribromide in methylene chloride at 0° [1563].

$\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 438.44
Described [1476] p. 541
Synthesis
- Obtained by Fries rearrangement of phloroglucinol tribenzoate [1777].

Asymmetric ketones [1476] p. 543

Part III Miscellaneous Related Compounds (Class of METHANONES)

Chapter 7. Miscellaneous Related Compounds
7.1 Diphenyl Derivatives [1476] p. 549
7.2 Diphenylmethane Derivatives [1476] p. 551
7.3 Diphenylethane Derivative [1476] p. 553
7.4 Diphenylpropane Derivatives [1476] p. 554
7.5 Diphenyl Oxide Derivatives [1476] p. 554
7.6 Diphenyl Sulfoxide Derivatives [1476] p. 556
7.7 Diphenyl Sulfone Derivatives [1476] p. 557
7.8 Others Acylated Compounds [1476] p. 559

Part V
 Monoketones Unsubstituted on the Acetyl Groups

Chapter 9
 Compounds Derived from Acetic Acid

1-(2,3,5,6-Tetrafluoro-4-hydroxyphenyl)ethanone

[145797-51-9] $\quad \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{4} \mathrm{O}_{2} \quad$ mol.wt. 208.11

m.p. $109-111^{\circ}$ [1779].

1-(3,5-Dibromo-2-hydroxy-4-nitrophenyl)ethanone

$$
\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}_{4} \quad \text { mol.wt. } 338.94
$$

 Synthesis

- Preparation by reaction of bromine on 2-hydroxy-4-nitro-acetophenone in refluxing acetic acid-sodium acetate mixture (68\%) [1780].
m.p. 157° [1780].

1-(2,4,6-Tribromo-3-hydroxyphenyl)ethanone

[49605-14-3]
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2}$
mol.wt. 372.84

Synthesis

- Preparation by bromination of 3-hydroxyacetophenone in water at $50^{\circ}(94 \%)$ [1781,1782].
m.p. $127^{\circ} 5[1781,1782]$.

1-(3,4,5-Tribromo-2-hydroxyphenyl)ethanone

[145666-19-9] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2} \quad$ mol.wt. 372.84

Synthesis not yet described.

- Refer to: [1783] (compound 1h).

1-(4-Chloro-2-hydroxy-3,5-dinitrophenyl)ethanone

Syntheses

- Preparation by nitration of 4-chloro-2-hydroxy-acetophenone (77\%) [1784].
- Also obtained (by-product) by nitration of 2-acetyl-5-chlorophenyl acetate in sulfuric acid solution at -10° (24\%) [1784].
m.p. $49-150^{\circ}$ [1784].

1-(4,6-Dichloro-2-hydroxy-3-nitrophenyl)ethanone

[81515-01-7]
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}_{4}$
mol.wt. 250.04
Synthesis

- Preparation by nitration of 2,4-dichloro-6-hydroxyacetophenone with potassium nitrate in concentrated sulfuric acid, first between -10° and 0°, then at r.t. [1785].
m.p. $62-64^{\circ}$ [1785].

1-(3,4,6-Trichloro-2-hydroxyphenyl)ethanone

m.p. \quad| $103-104^{\circ}$ [1786]; |
| :--- |

1-(Trichloro-4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 239.48
Synthesis not yet described.

- Identified in wheat and rye straw pulp bleaching and combined mill effluents [1787].
- Identified during control of effluent from the manufacturing of bleached pulp and paper from sugarcane bagasse [1788].

1-(2,3,6-Trichloro-4,5-dihydroxyphenyl)ethanone
[154638-87-6] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad$ mol.wt. 255.48

Synthesis

- Obtained (by-product) by chlorination of 4-hydroxy-3methoxyacetophenone in dioxane-water mixture at 40° (4\%) [1789].

MS [1789].
1-(2,4,5-Trichloro-3,6-dihydroxyphenyl)ethanone
[7714-14-9]
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{3}$
mol.wt. 255.48

Syntheses

- Preparation by reaction of chlorine on 2,5-dihydroxyacetophenone in chloroform solution containing a drop of triethylamine, under UV light, at 0° (50\%) [1790].
- Preparation by reaction of excess of chlorine on acetyl-1,4-benzoquinone in chloroform, followed by treatment of the adduct obtained with hydrochloric acid in ethyl ether (60\%) [1791].
m.p. $\quad 127^{\circ} 5-129^{\circ}$ [1791], 79-81 ${ }^{\circ}$ [1790]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [1791], IR [1791], MS [1791].

1-(2,3,5-Trifluoro-4,6-dihydroxyphenyl)ethanone
[182951-75-3] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 206.12

Syntheses

- Obtained by treatment of 2-amino-3-(2-hydroxy-3,4,5,6-tetrafluorobenzoyl)acrylic acid with boiling aqueous sodium hydroxide for $2 \mathrm{~h}(40 \%)$ [1778].
- Also obtained by treatment of 3-(2-hydroxy-3,4,5,6-tetra-fluorobenzoyl-methylene)piperazin-2-one with boiling aqueous sodium hydroxide for 2 h (30\%) [1778].
m.p. $146-147^{\circ}$ [1778]; ${ }^{1} \mathrm{H}$ NMR [1778], ${ }^{19} \mathrm{~F}$ NMR [1778], IR [1778].

1-(3-Bromo-5-chloro-2-hydroxyphenyl)ethanone

[59443-15-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49
Syntheses

- Preparation by bromination of 5-chloro-2-hydroxyacetophenone in acetic acid (65\%) [1792].
- Preparation by Fries rearrangement of 2-bromo-4chlorophenyl acetate with aluminium chloride without solvent at 140° [1793].
- Also refer to: [1794,1795] (compound 1b), [1783] (compound 1e) and [1796] (compound 1c). m.p. $104-105^{\circ}$ [1792].

1-(3-Bromo-5-chloro-4-hydroxyphenyl)ethanone
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49

Synthesis

- Preparation by bromination of 3-chloro-4-hydroxyacetophenone [1797,1798].
m.p. $170^{\circ}[1797,1798]$.

1-(3-Bromo-5-fluoro-2-hydroxyphenyl)ethanone
[393-62-4]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrFO}_{2} \quad$ mol.wt. 233.04 Syntheses

- Preparation by bromination of 5-fluoro-2-hydroxyacetophenone in acetic acid [1799].
- Preparation by Fries rearrangement of 2-bromo-4fluorophenyl acetate with aluminium chloride without solvent at 130° [1800].
m.p. $\quad 97^{\circ}[1799,1800]$.

1-(3-Bromo-5-fluoro-4-hydroxyphenyl)ethanone

```
[402-84-6] \(\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrFO}_{2} \quad\) mol.wt. 233.04
```



```
Synthesis
- Preparation by bromination of 3-fluoro-4-hydroxy-acetophenone in acetic acid [1801].
```


1-(5-Bromo-2-hydroxy-3-iodophenyl)ethanone

[28467-11-0]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrIO}_{2}$
mol.wt. 340.94

Synthesis

- Preparation by reaction of iodine-iodic acid mixture on 5-bromo-2-hydroxyacetophenone in ethanol (75-85\%) [1802], (68\%) [1803].
m.p. 116° [1803], 105° [1802]; ${ }^{1} H$ NMR [1802], IR [1802].

1-(3-Bromo-2-hydroxy-5-nitrophenyl)ethanone

[90004-97-0]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4} \quad \mathrm{~mol}$. wt. 260.04
	Syntheses
	- Preparation by reaction of bromine on 2-hydroxy-5-nitro-acetophenone in refluxing acetic acid-sodium acetate mixture (83\%) [1780]. - Also obtained by treatment of 2-hydroxy-5-nitroacetophenone with NBS in acetonitrile (56\%) (compound 31) [1804].
m.p. 132° [1780];	${ }^{1} \mathrm{H}$ NMR [1804], MS [1804].

1-(3-Bromo-4-hydroxy-5-nitrophenyl)ethanone

[90004-98-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4} \quad$ mol.wt. 260.04

Synthesis

- Preparation by reaction of bromine on 4-hydroxy-3-nitroacetophenone in refluxing acetic acid-sodium acetate mixture (83\%) [1780].
m.p. 136° [1780].

1-(5-Bromo-2-hydroxy-3-nitrophenyl)ethanone

[70978-54-0]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4} \quad \mathrm{~mol}$. .wt. 260.04
	Syntheses
	- Preparation by nitration of 5-bromo-2-hydroxyacetophenone in refluxing carbon tetrachloride (88\%) [1805].
Br	- Preparation by reaction of nitric acid on 5-bromo-2hydroxyacetophenone in concentrated sulfuric acid between -2° and $0^{\circ}(75 \%)$ [1806].
m.p. $99^{\circ} 5$	[1807]

1-(3-Bromo-2,4-dihydroxy-5-nitrophenyl)ethanone

[116465-22-6]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{5} \quad$ mol.wt. 276.04
Syntheses

- Preparation by bromination of 5-nitroresacetophenone in acetic acid at 90° [1808].
- Obtained by saponification of 8-bromo-7-hydroxy-2-methyl-6-nitrochromone with 10% aqueous sodium hydroxide [1809].
- Also obtained by reaction of nitric acid on 3,3'-diacetyl-5,5'-dibromo-4,4',6,6'-tetrahydroxy-diphenyl thioether in acetic acid at r.t. [1810].
m.p. $182-183^{\circ}$ [1808,1810], $181-182^{\circ}$ [1809].

1-(3-Bromo-2,6-dihydroxy-5-nitrophenyl)ethanone

$$
\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{5} \quad \text { mol.wt. } 276.04
$$

 Syntheses

- Preparation by bromination of 2,6-dihydroxy-3-nitroacetophenone in acetic acid [1809].
- Preparation by reaction of nitric acid on 3,5-dibromo-2,6-dihydroxyacetophenone in acetic acid at 0° [1809].
- Obtained by saponification of 6-bromo-5-hydroxy-2-methyl-8-nitrochromone or of 8-bromo-5-hydroxy-2-methyl-6-nitrochromone with 10% aqueous sodium hydroxide at reflux [1809].
m.p. $127-128^{\circ}$ [1809].

1-(2,4-Dibromo-6-hydroxyphenyl)ethanone

$$
\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 293.94
$$

Synthesis

- Preparation by reaction of acetyl chloride on 3,5-dibromo-anisole with aluminium chloride in refluxing carbon disulfide (33\%) [1811].
m.p. $\quad 96-97^{\circ}$ [1811].

1-(2,6-Dibromo-4-hydroxyphenyl)ethanone
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94

Synthesis

- Obtained by reaction of acetyl chloride on 3,5-dibromoanisole with aluminium chloride in refluxing carbon disulfide (10\%) [1811].
m.p. $\quad 141-142^{\circ}$ [1811].

1-(3,4-Dibromo-2-hydroxyphenyl)ethanone

[145666-18-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94

Synthesis

- Refer to: [1783] (compound 1f).

1-(3,5-Dibromo-2-hydroxyphenyl)ethanone

[22362-66-9] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94
 Syntheses

- Preparation by Fries rearrangement of 2,4-dibromophenyl acetate with aluminium chloride without solvent between 150° and 165° [1812-1814], (46\%) [1813], (51\%) [1812].
- Preparation by reaction of acetic anhydride on 2,4-dibromo-phenol with aluminium chloride in nitrobenzene at $120^{\circ}(41 \%)$ [1813,1814].
- Preparation by bromination of 2-hydroxyacetophenone [1815,1816], (61\%) [1815] or 5-bromo-2-hydroxyacetophenone in acetic acid (78\%) [1792].
- Preparation by reaction of bromine on 2-hydroxyacetophenone in acetic acidpotassium acetate mixture (55\%) [1816].
- Also obtained (by-product) by Fries rearrangement of 2-bromophenyl acetate with aluminium chloride without solvent at $180^{\circ}(2 \%)$ [1817].
- Also obtained by reaction of sodium iodide on 3,5-dibromo-2-hydroxy- $\alpha, \alpha, \alpha-$ tribromo-acetophenone in acetic acid-dioxane-hydrochloric acid mixture (50\%) [1818].
- Also obtained by action of hydriodic acid with 3,5-dibromo-2-hydroxy- $\alpha, \alpha, \alpha-$ tribromo-acetophenone [1818].
m.p. 111° [1815], 110° [1813], $109-110^{\circ}$ [1792,1812,1818], 108-109 ${ }^{\circ}$ [1816,1817], 108° [1819];
${ }^{1} \mathrm{H}$ NMR [1817,1820], ${ }^{13} \mathrm{C}$ NMR [1821], UV [1820,1822], fluorescence spectra [1820].

1-(3,5-Dibromo-4-hydroxyphenyl)ethanone

[2887-72-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94

Syntheses

- Preparation by bromination of 4-hydroxyacetophenone in dilute acetic acid [1797,1798,1823], (94\%) [1824], (80\%) [1816], (75\%) [1825], (62\%) [1801].
- Preparation by reaction of bromine on 4-hydroxy-acetophenone in acetic acid-potassium acetate mixture (91\%) [1825], (80\%) [1816].
- Preparation by bromination of 4-hydroxyacetophenone [1826].
- Preparation by Fries rearrangement of 2,6-dibromophenyl acetate with aluminium chloride without solvent at 120° (60\%) [1826].
- Also refer to: [1827] (compound 9) and [1828].
m.p. 187° [1797,1798], 184° [1826], 181° [1801,1816,1824], 180- 184° [1825]; UV [1829].

1-(4,5-Dibromo-2-hydroxyphenyl)ethanone

[30186-15-3]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94
OH	Syntheses
COCH_{3}	- Obtained (by-product) by Fries rearrangement of 2-bromophenyl acetate with aluminium chloride without solvent at $180^{\circ}(1 \%)$ [1817].
Br	- Also obtained (by-product) by Fries rearrangement of
	3-bromophenyl acetate with aluminium chloride with-
	out solvent at 175-180 ${ }^{\circ}$ [1830].

m.p. 136° [1830], $130-131^{\circ}$ [1817]; ${ }^{1} \mathrm{H}$ NMR [1817,1830].

1-(2,5-Dibromo-3,6-dihydroxyphenyl)ethanone

$$
\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{3} \quad \text { mol.wt. } 309.94
$$

Synthesis not yet described

- Obtained by alkaline hydrolysis of 5,8-dibromo-6-hy-droxy-2-methylchromone [1831].
- Also obtained by bromination of quinacetophenone [1831].
N.B.: The results of reference [1831] were erroneous [1832].
m.p. 86° [1831].

1-(3,5-Dibromo-2,4-dihydroxyphenyl)ethanone

[36772-98-2] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 309.94 Syntheses

- Preparation by bromination of resacetophenone in acetic acid [1833-1838].
- Preparation by saponification of 6,8-dibromo-7-hydroxy-2-methylchromone with 5% aqueous sodium hydroxide [1809,1839].
- Obtained by reaction of bromine on 3,3'-diacetyl-4,4',6,6'-tetrahydroxydiphenyl thioether in acetic acid at 50° [1810].
- Preparation by saponification of 6,8-dibromo-7-hydroxyflavone with refluxing 10% aqueous sodium hydroxide [1840].
- Preparation by saponification of 3-benzoyl-6,8-dibromo-7-hydroxyflavone with 10% ethanolic potassium hydroxide in a water bath [1840].
- Also obtained (by-product) by reaction of bromine with resacetophenone in ethanol at -78° [1841].
m.p. 174° [1839], $173-174^{\circ}$ [1810,1833,1834,1838], 173° [1835], $172-173^{\circ}$ [1809, 1840].

1-(3,5-Dibromo-2,6-dihydroxyphenyl)ethanone

[63411-84-7]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 309.94 Syntheses
	- Preparation by bromination of 2-acetylresorcinol in acetic acid [1809]. - Obtained by saponification of 6,8-dibromo-5-hydroxy-2-methylchromone with 10% aqueous sodium hydroxide at reflux [1809]. - Also refer to: [1840] (compound IVc).
m.p. 173° [1809].	

1-(2,3-Dibromo-4,5,6-trihydroxyphenyl)ethanone
[65883-24-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{4} \quad$ mol.wt. 325.94

Synthesis

- Preparation by reaction of bromine on gallacetophenone in chloroform at $10^{\circ}[1842,1843]$.

Pale yellow crystals [1842,1843].

1-(3,5-Dibromo-2,4,6-trihydroxyphenyl)ethanone

[63990-67-0]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{4} \quad$ mol.wt. 325.94 Syntheses

- Preparation by reaction of acetyl chloride or acetic anhydride on 2,4-dibromophloroglucinol with boron trifluoride (72-78\%) [1844].
- Preparation by bromination of phloroacetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture [1845].
m.p. $202-204^{\circ}$ [1844], 200-202 ${ }^{\circ}$ [1845]; ${ }^{1} \mathrm{H}$ NMR [1845], MS [1845].

1-(3-Chloro-4-fluoro-2-hydroxyphenyl)ethanone

[703-97-9] \quad\begin{tabular}{l}
Synthesis not yet described

- There is a single reference, erroneous, concerning the

3-chloro-5-fluoro-2-hydroxyacetophenone [1800].
\end{tabular}

1-(3-Chloro-5-fluoro-2-hydroxyphenyl)ethanone

[445-38-5]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2}$ mol.wt. 188.59

Syntheses

- Preparation by Fries rearrangement of 2-chloro-4-fluoro-phenyl acetate with aluminium chloride without solvent at 130° [1800].
- Preparation by reaction of chlorine on 5-fluoro-2hydroxyacetophenone in acetic acid solution [1799].
m.p. $84^{\circ}[1799,1800]$.

1-(4-Chloro-2-fluoro-5-hydroxyphenyl)ethanone

1-(4-Chloro-5-fluoro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2}$ mol.wt. 188.59

Synthesis

- Preparation by reaction of acetyl chloride on 3-chloro-4-fluorophenol with aluminium chloride at $95-100^{\circ}$ (86\%) [1847].
m.p. 72° [1847].

1-(3-Chloro-2-hydroxy-5-iodophenyl)ethanone

[^10]
1-(5-Chloro-2-hydroxy-3-iodophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClIO}_{2}$
mol.wt. 296.49

Synthesis
m.p. 89° [1802].

1-(5-Chloro-2,4-dihydroxy-3-iodophenyl)ethanone

[102297-89-2] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClIO}_{3} \quad$ mol.wt. 312.49
 Synthesis

- Preparation by reaction of a iodine-iodic acid mixture on 5-chloro-2,4-dihydroxyacetophenone in water (73\%) [1848].
m.p. $\quad 173-176^{\circ}$ [1848]; ${ }^{1} \mathrm{H}$ NMR [1848].

1-(3-Chloro-4-hydroxy-5-nitrophenyl)ethanone

[52129-62-1] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of potassium nitrate on 3-chloro-
4-hydroxyacetophenone in concentrated sulfuric acid
between 5° and 10° [1849, 1850].

\end{tabular}

1-(4-Chloro-2-hydroxy-3-nitrophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4} \quad$ mol.wt. 215.59

Synthesis

- Obtained (by-product) by nitration of 2-acetyl-5chlorophenyl acetate in sulfuric acid at -20° [1784].
m.p. 105-106 ${ }^{\circ}$ [1784]; IR [1784].

1-(4-Chloro-2-hydroxy-5-nitrophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4} \quad$ mol.wt. 215.59

Syntheses

- Obtained by Fries rearrangement of 3-chloro-4-nitrophenyl acetate with aluminium chloride in nitrobenzene at $120^{\circ}(18 \%)$ [1784].
- Preparation by nitration of 2-acetyl-5-chlorophenyl acetate in sulfuric acid solution at -10° (50\%) [1784].
- Preparation by hydrolysis of 2-acetyl-5-chloro-4-nitrophenyl 4-methyl-3nitrobenzenesulfonate with 2 N sodium hydroxide (86\%) [1784].
m.p. $104-105^{\circ}$ [1784]; IR [1784].

1-(5-Chloro-2-hydroxy-3-nitrophenyl)ethanone

[84942-40-5]

$$
\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4} \quad \text { mol.wt. } 215.59
$$

Syntheses

- Preparation by reaction of nitric acid on 5-chloro-2hydroxyacetophenone in acetic acid at r.t. [18511853], (98\%) [1852], (63\%) [1853].
- Preparation by reaction of nitric acid on 5-chloro-2hydroxyacetophenone in concentrated sulfuric acid between -2° and 0° (80\%) [1806].
- Preparation by reaction of copper nitrate on 5-chloro-2-hydroxyacetophenone in acetic anhydride [1851].
- Also refer to: [1854].
m.p. $135-136^{\circ}$ [1852], 132° [1806], $131-132^{\circ}$ [1853]; IR [1853].

1-(2,3-Dichloro-4-hydroxyphenyl)ethanone
[2977-53-9] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04 Syntheses

- Preparation by reaction of aluminium chloride on 2,3-dichloro-4-methoxyacetophenone in methylene chloride at 5° [1855].
- Preparation by reaction of aluminium chloride on 2,3-dichloro-4-methoxyacetophenone (or 2,3-dichloro-4-ethoxyacetophenone) in heptane [1856-1858].
m.p. $153-155^{\circ}$ [1858].

1-(2,4-Dichloro-3-hydroxyphenyl)ethanone
[92119-05-6]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04 Syntheses
 - Preparation from 3-hydroxyacetophenone by chlorination of its ethylene ketal using two equivalents of tert-butyl hypochlorite. Hydrolysis of the obtained dichloroketal with dilute hydrochloric acid in tetrahydrofuran gave essentially 2,4 -dichloro-3-hydroxyacetophenone [1859].

- Also obtained (by-product) by reaction of tert-butyl hypochlorite on 3-hydroxyacetophenone in chloroform at 15°, in subdued light (9\%) [1859]. Oil [1859].

1-(2,4-Dichloro-6-hydroxyphenyl)ethanone

[57051-50-0] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Syntheses

- Preparation by reaction of acetyl chloride on 3,5-di-chloroanisole with aluminium chloride in boiling carbon disulfide [1811,1814], (35-40\%) [1811].
- Preparation by Fries rearrangement of 3,5-dichlorophenyl acetate with aluminium chloride without solvent at 120° [1785,1811].
m.p. $49-50^{\circ}$ [1811], $48-49^{\circ}$ [1785].

1-(2,5-Dichloro-4-hydroxyphenyl)ethanone

[73239-04-0] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Syntheses

- Preparation by reaction of acetyl chloride on 2,5-di-chloroanisole with aluminium chloride at 110° (36\%) [1860].
- Preparation by Fries rearrangement of 2,5-dichlorophenyl acetate with aluminium chloride without solvent at $155-165^{\circ}$ (36\%) [1861].
m.p. $\quad 151-152^{\circ}$ [1860], 148-149 ${ }^{\circ}$ [1861]; ${ }^{1} \mathrm{H}$ NMR [1860], IR [1860], UV [1860].

1-(2,6-Dichloro-4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Synthesis

- Obtained by reaction of acetyl chloride on 3,5-dichloroanisole with aluminium chloride in refluxing carbon disulfide (30\%) [1811].
m.p. $\quad 117-119^{\circ}$ [1811]; b.p. ${ }_{14} 197^{\circ}$ [1811].

1-(3,4-Dichloro-2-hydroxyphenyl)ethanone

[55736-71-5]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04
Syntheses

- Preparation by Fries rearrangement of 2,3-dichlorophenyl acetate with aluminium chloride without solvent at 130$140^{\circ}$ [1786,1814,1862,1863], (75\%) [1786].
- Also obtained by reaction of 40% peracetic acid on 2-(benzyloxy)-3,4-dichloroacetophenone in acetic acid at 50° (40%) [1864].
- Preparation by reaction of aqueous sodium hydroxide solution on 7,8-dichloro-chromone-2-carboxylic acid at 95° (38\%) [1865]. m.p. $113-114^{\circ}$ [1864], $109-111^{\circ}$ [1865], 109- 110° [1786];
${ }^{1} \mathrm{H}$ NMR [1786], IR [1786], MS [1786].

1-(3,5-Dichloro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04 Syntheses

- Preparation by Fries rearrangement of 2,4-dichlorophenyl acetate with aluminium chloride in tetrachloroethane at $150-160^{\circ}$ [1866] and without solvent between 115° and 170° (43-75\%) [1867-1872].
- Preparation by reaction of chlorine on 2-hydroxy-acetophenone with ferric chloride in dilute acetic acid [1849,1850].
- Preparation by reaction of hydrated sodium sulfide (containing 7-9 mol of water) with 2-piperidino-4-[1873,5-dichloro-2-hydroxyphenyl]-1,3-dithiolane perchlorate in ethanol (63\%) [1874].
m.p. 100-101 ${ }^{\circ}$ [1874], 97° [1870], $95-96^{\circ}$ [1849,1850,1868,1869], $95^{\circ} 5$ [1866], $94-96^{\circ}$ [1872]; b.p. ${ }_{18} 132-134^{\circ}$ [1867,1871];
${ }^{1} \mathrm{H}$ NMR [1820,1869,1874], UV [1820], IR [1874], MS [1869], fluorescence spectra [1820].

1-(3,5-Dichloro-4-hydroxyphenyl)ethanone

[17044-70-1]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \mathrm{~mol}$.wt. 205.04
	Syntheses
	- Preparation by Fries rearrangement of 2,6-dichloropheny acetate with aluminium chloride without solvent 140-150 ${ }^{\circ}$ [1875,1876], (69\%) [1876]. - Preparation by chlorination of 4-hydroxyacetophenone in acetic acid [1849,1850,1877].

m.p. $164-165^{\circ} 5$ [1876], $164-165^{\circ}$ [1849], 160- $160^{\circ} 5$ [1877];
pK_{a} [1877].

1-(3,6-Dichloro-2-hydroxyphenyl)ethanone

[55736-72-6]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04
Syntheses

- Preparation by Fries rearrangement of 2,5-dichlorophenyl acetate with aluminium chloride,
- without solvent, at $155-165^{\circ}$ (57\%) [1861];
- in nitrobenzene, at 130° (42\%) [1878].
- Preparation by reaction of methyl 3,6-dichloro-2-methoxybenzoate with carbanion reagent (78% yield), followed by ether cleavage (95%) [1879].
- Preparation by reaction of aqueous sodium hydroxide solution on 5,8-dichloro-chromone-2-carboxylic acid on a steam bath (92\%) [1865].
- Preparation by hydrolysis of 5,8-dichlorochromone with 10% sodium hydroxide at 100° (80%) [1880].
- Also refer to: [1865,1881,1882], and [1883] (compound III); [1884] (compound VIIIk); [1885] (compound 11).
m.p. $55-56^{\circ}$ [1865].

1-(4,5-Dichloro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04
Syntheses

- Preparation by Fries rearrangement of 3,4-dichlorophenyl acetate with aluminium chloride without solvent between 120° and 140° [1786,1814,1862,1886,1887], (72-73\%) [1786,1887], (52\%) [1886] or at 200° [1888].
- Also obtained by cleavage of 5,6-dichloro-2,3-dimethyl-benzofuran with chromium trioxide in acetic acid at 50°, the keto ester formed was saponified with potassium hydroxide (70\%) [1887].
m.p. $104-105^{\circ}$ [1786], 102° [1887], $99-105^{\circ}$ [1886];
b.p. ${ }_{15} 151^{\circ}$ [1887]; ${ }^{1} \mathrm{H}$ NMR [1786], IR [1786], MS [1786].

1-(3,4-Dichloro-2,5-dihydroxyphenyl)ethanone

[79755-07-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 221.04
 Syntheses

- The preparation from acetylhydroquinone required conversion into its ethylene acetal, oxidation to the quinone with silver oxide, addition of chlorine in acetic acid and enolisation and cleavage of the acetal with, at first hydrogen chloride in ethyl ether, then sulfuric acid in aqueous ethanol (overall yield of 51\%) [1791].
- Also obtained by Fries rearrangement of 2,3-dichlorohydroquinone diacetate with aluminium chloride without solvent at 165° (poor yield) [1791].

1-(3,5-Dichloro-2,4-dihydroxyphenyl)ethanone
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 221.04

Syntheses

- Preparation by reaction of chlorine on resacetophenone in acetic acid solution [1889,1890].
- Also obtained by reaction of sulfuryl chloride on the 3,3'-di-acetyl-4,4',6,6'-tetrahydroxydiphenyl thioether with a crystal of bismuth chloride as a catalyst [1810].
m.p. $195-196^{\circ}$ [1810, 1889, 1890].

1-(3,5-Dichloro-2,6-dihydroxyphenyl)ethanone

[87953-95-5]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 221.04

Syntheses

- Preparation by reaction of chlorine on 2,6-dihydroxyacetophenone in ethanol at 0° (84\%) [1891].
- Also refer to: [1892] (compound 1d).
m.p. $\quad 174^{\circ} 5-175^{\circ}$ [1891]; IR [1891].

1-(4-Fluoro-2-hydroxy-5-nitrophenyl)ethanone

[119994-02-4]	Syntheses - Preparation by reaction of fuming nitric acid with 4-fluoro-2-hydroxyacetophenone, first between -5° and 0°, then at 0° for 30 min [1893].
- Also refer to: [1894-1896] (Japanese patents).	

1-(5-Fluoro-2-hydroxy-3-nitrophenyl)ethanone

[70978-39-1]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FNO}_{4}$
Synthesis

- Preparation by nitration of 5-fluoro-2-hydroxy-acetophenone with nitric acid $(\mathrm{d}=1.42)$ in concentrated sulfuric acid between -15° and -5° (46%) [1897,1898].
m.p. $87-90^{\circ}$ [1898], $87-89^{\circ}$ [1897].

1-(3,5-Difluoro-2-hydroxyphenyl)ethanone

[140675-42-9]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 172.13 Syntheses

- This compound can be easily obtained by Fries rearrangement of 2,4-difluorophenyl acetate with aluminium chloride without solvent at 150°, and purified by recrystallization from ethanol (80-90\%) [1899]; the 2,4-difluorophenyl acetate is prepared by reaction of acetic anhydride on 2,4-difluorophenol [1900,1901].
- Also refer to: [1902].
N.B.: This compound was purchased from Fluorochem Ltd., (Old Glossop, UK)
- Catalogue 1993-1994 page 48-reference F-02826 [1821].
m.p. $\quad 108-110^{\circ}$ [1821]; ${ }^{13} \mathrm{C}$ NMR [1821].

1-(3,5-Difluoro-4-hydroxyphenyl)ethanone

$$
[133186-55-7] \quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 172.13
$$

Syntheses

- Preparation by Fries rearrangement of 2,6-difluorophenyl acetate (b.p. $62-63^{\circ}$) with aluminium chloride at $140-150^{\circ}$ for 5 h under nitrogen atmosphere (56\%) [1903].
COCH_{3} - Also refer to: [1904].
N.B.: Refer to: [1905] (Japanese patent) and [1906]; there is one erroneous reference. It concerns the 2,6-difluorophenyl acetate (compound 11) [1906]. This ester, by Fries rearrangement with aluminium chloride, can easily give the aforesaid ketone.
Black solid [1903]; ${ }^{1} \mathrm{H}$ NMR [1903], IR [1903].

1-(4,5-Difluoro-2-hydroxyphenyl)ethanone

1-(4-Hydroxy-3-iodo-5-nitrophenyl)ethanone

[76748-71-5] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{INO}_{4} \quad$ mol.wt. 307.04

Synthesis

- Refer to: $[1908,1909]$ (compound NIP).

1-(2,4-Dihydroxy-3-iodo-5-nitrophenyl)ethanone
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{INO}_{5} \quad \mathrm{~mol}$. wt. 323.04

Syntheses

- Preparation by nitration of 2,4-dihydroxy-3-iodoacetophenone [1910].
- Preparation by iodination of 2,4-dihydroxy-5-nitroacetophenone [1910].
m.p. 189° [1910].

1-(2-Hydroxy-3,5-diiodophenyl)ethanone

$$
\begin{aligned}
& \text { [7191-46-0] } \quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 387.94 \\
& \text { Syntheses } \\
& \text { - Preparation by iodination of 2-hydroxyacetophenone, } \\
& \text { - with iodine in aqueous sodium carbonate at r.t. } \\
& \text { [1911-1915], (25\%) [1914], (42\%) [1915]; } \\
& \text { - with iodine and iodic acid in ethanol at } 35-40^{\circ} \text { for } \\
& 1.5 \mathrm{~h}(75-85 \%) \text { [1802] or at } 60^{\circ}[1837,1916],(75 \%) \\
& \text { [1916]. } \\
& \text { m.p. } 128^{\circ} \text { [1802], } 127^{\circ} \text { [1916], } 126^{\circ} \text { [1912], } 125^{\circ} 5-126^{\circ} \text { [1913,1914]; UV } \\
& \text { [1914]. }
\end{aligned}
$$

1-(4-Hydroxy-3,5-diiodophenyl)ethanone

[7191-55-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{2} \quad$ mol.wt. 387.94
 Syntheses

- Preparation by reaction of iodine on 4-hydroxy-acetophenone in aqueous sodium carbonate solution at r.t. [1913,1915,19171919], (75\%) [1915,1918].
- Preparation by iodination of 4-hydroxyacetophenone with iodine-iodic acid mixture in ethanol at $35-40^{\circ}$ for 1.5 h (75-85\%) [1802] or in 50% aqueous ethanol (61-69\%) [1837,1916,1920].
- Preparation by iodination of 4-hydroxyacetophenone by treatment with iodine monochloride (good yield) [1921,1922].
- Also obtained by Fries rearrangement of 2-iodophenyl acetate with aluminium chloride [1920].
m.p. $174-175^{\circ}$ [1918], $172-173^{\circ}$ [1921,1922], $171-172^{\circ}$ [1920], 162° [1802], 158° [1916]; UV [1918].

1-(2,4-Dihydroxy-3,5-diodophenyl)ethanone
[62069-34-5]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{3} \quad$ mol.wt. 403.94
Syntheses

- Preparation by addition of an aqueous iodine and potassium iodide solution on resacetophenone in 30% ammonium hydroxide solution at r.t. (93\%) [1923].
- Preparation by addition of an aqueous iodine and iodic acid solution on resacetophenone in ethanol at ambient temperature (86%) [1837,1924].
m.p. $189-190^{\circ}$ [1923], 180° [1924]; ${ }^{1} \mathrm{H}$ NMR [1923].

1-(2-Hydroxy-3,5-dinitrophenyl)ethanone
 [69027-37-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 226.15

 Syntheses
 - Preparation by nitration of 2-hydroxyacetophenone,
 - in acetic acid (27-36\%) [1925,1926];
 - without solvent (34\%) [1927].
 m.p. $123^{\circ} 5-124^{\circ} 5$ [1926], $123-124^{\circ}$ [1925]; IR [1928].

1-(2-Hydroxy-4,6-dinitrophenyl)ethanone

[13684-24-7] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 226.15

Synthesis not yet described

- Claimed to be prepared by reaction of boiling 50% nitric acid with 2-hydroxyacetophenone (34\%) [1927].
N.B.: No physical data is indicated in the patent for this compound. According to the rules dealing with aromatic substitution (Holleman rules) [1929] and electronic induction using the Hammett substituent constants [1930], the obtained product most likely is the 2-hydroxy-3,5-dinitroacetophenone.

1-(3-Hydroxy-2,6-dinitrophenyl)ethanone

[172669-49-7]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \quad \mathrm{~mol}$. wt. 226.15
OH	Syntheses
	- Obtained by action of concentrated nitric acid $(d=1.42)$ with 3-hydroxyacetophenone in concentrated sulfuric acid at -20° for $15 \min (25 \%)$ [1931]. - Also refer to: [1932].
m.p. 182-18	1931]; ${ }^{1} \mathrm{H}$ NMR [1931]; Crystal data [1931].

1-(4-Hydroxy-3,5-dinitrophenyl)ethanone

 $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$ mol.wt. 226.15
 Syntheses

- Preparation by nitration of 4-hydroxyacetophenone with potassium nitrate in concentrated sulfuric acid at $5-10^{\circ}$ [1849,1850].
- Preparation by nitration of 4-hydroxy-3-nitroacetophenone with potassium nitrate in sulfuric acid at $5-10^{\circ}$ (64-70\%) [1933,1934].
m.p. $123^{\circ} 2-123^{\circ} 5$ [1933], $119-121^{\circ}$ [1849], 119-120 5 [1934].

1-(5-Hydroxy-2,4-dinitrophenyl)ethanone

[22633-36-9] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 226.15

Synthesis not yet described

- There is a single reference, erroneous. It concerns the 2 -hydroxy-3,5-dinitroacetophenone or 6^{\prime}-hydroxy-2',4'-di-nitroacetophenone [1928].

1-(2,4-Dihydroxy-3,5-dinitrophenyl)ethanone
[54917-82-7]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 242.14
Syntheses

- Preparation by reaction of nitric acid on resacetophenone [1818,1935] or 4-acetoxy-2-hydroxyacetophenone in acetic acid [1818].
- Also obtained by reaction of nitric acid on 3-ben-zoyl-2,4-dihydroxyacetophenone 4 - β-glucopyranoside (35-36\%) [1936].
- Also obtained by reaction of nitric acid on $3,3^{\prime}$-diacetyl-4,4',6,6'tetrahydroxydiphenyl thioether in a water bath [1810].
- Resacetophenone by treatment with cerium (IV) ammonium nitrate in hot acetic acid yields 2,4-di-hydroxy-3,5-dinitroacetophenone (22\%) [1937].
- Preparation by reaction of an ammonia liquor on 7-hydroxy-4-methyl-3,6,8trinitrocoumarin in a boiling water bath [1938].
- Also obtained by hydrolysis of 7-hydroxy-2-methyl-6,8-dinitrochromone by heating its solution in sodium hydroxide (4\%) on a steam bath [1935].
- Also obtained by reaction of concentrated nitric acid $(\mathrm{d}=1.42)$ or fuming nitric acid on the 7-hydroxy-2-methylchromone in acetic acid, heated on a steam bath [1935].
- Also obtained by hydrolysis of 7-hydroxy-8-nitroflavone by refluxing with 10% sodium hydroxide solution [1935].
m.p. $168-169^{\circ}$ [1938], 168° [1937], 167° [1935,1939], 166-167$[1810,1818]$, 165-167 [1936].

1-(2,5-Dihydroxy-3,6-dinitrophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 242.14

Syntheses

- Obtained by alkaline hydrolysis of 6-hydroxy-2-methyl-5,8-dinitrochromone [1831].
- Also obtained by nitration of quinacetophenone [1831].
N.B.: The results of reference [1831] were erroneous [1832].
m.p. $69-70^{\circ}$ [1831].

1-(2,6-Dihydroxy-3,5-dinitrophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 242.14

Synthesis

- Preparation by nitration of 2,6-dihydroxyacetophenone (31\%) [1940].
m.p. $\quad 104^{\circ}$ [1940].

1-(3,6-Dihydroxy-2,4-dinitrophenyl)ethanone $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 242.14
 Synthesis

- Preparation by Fries rearrangement of 3,5-dinitro-4hydroxyphenyl acetate with aluminium chloride in nitrobenzene (61\%) [1941].
m.p. $133-134^{\circ}$ [1941].

1-(2-Bromo-4-hydroxyphenyl)ethanone
[61791-99-9] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05
 Syntheses

- Obtained (by-product) by Fries rearrangement of 3-bromophenyl acetate with aluminium chloride without solvent at 45° (10\%) [1942].
- Also refer to: [1943,1944] and [1945] (Japanese patent).
m.p. $85-89^{\circ}$ [1942].

1-(2-Bromo-6-hydroxyphenyl)ethanone

[55736-69-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05

Synthesis

- Preparation by diazotization of 2-amino-6-bromoacetophenone, followed by hydrolysis of the obtained diazonium salt (50\%) [1865].
m.p. $106-108^{\circ}$ [1865].

1-(3-Bromo-2-hydroxyphenyl)ethanone
[1836-05-1] $\quad \begin{aligned} & \text { Syntheses }\end{aligned} \begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \text { mol.wt. 215.05 } \\ & \begin{array}{l}\text { Preparation by diazotization of 5-amino-3-bromo-2- } \\ \text { hydroxyacetophenone, followed by hydrolysis of the } \\ \text { obtained diazonium salt }(49 \%) \text { [1817] }\end{array}\end{aligned}$ obtained diazonium salt (49\%) [1817].

- Also obtained (by-product) by Fries rearrangement of 2-bromophenyl acetate with aluminium chloride without solvent at $120-140^{\circ}$ (11-13\%) [1817,1946,1947].
- Also obtained by reaction of bromine on 2-hydroxyacetophenone with tertbutylamine in methylene chloride at $-70^{\circ}(12 \%)$ [1948] or in aqueous acetic acid [1821].
m.p. 33° [1817], $30^{\circ} 5-32^{\circ} 5$ [1949,1950]; b.p. ${ }_{6} 140-145^{\circ}$ [1946];
${ }^{1} \mathrm{H}$ NMR [1817], ${ }^{13} \mathrm{C}$ NMR [1821], UV [1946,1947].

1-(3-Bromo-4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2}$
mol.wt. 215.05
 Syntheses

- Preparation by reaction of acetyl chloride on 2-bromo-phenol with aluminium chloride in refluxing carbon disulfide (86%) [1951].
- Preparation by bromination of 4-hydroxyacetophenone (70\%) [1952].
- Preparation by diazotization of 3-amino-4-hydroxyacetophenone and replacement of the diazonium group by bromine (Sandmeyer reaction) (51\%) [1953].
- Preparation by Fries rearrangement of 2-bromophenyl acetate with aluminium chloride without solvent at $100-120^{\circ}$ [1817,1946,1947,1954], (68\%) [1817].
- Also obtained by reaction of ammonium tribromide on 4-hydroxyacetophenone in methylene chloride-methanol mixture [1955].
- Also refer to: [1828].
m.p. 129° [1817], $125-128^{\circ}$ [1951], 119-121 ${ }^{\circ}$ (anhydrous) [1952], 112° [1953], $97-99^{\circ}$ (hydrate) [1952], 95° [1946], $93-94^{\circ}$ [1955], $92-95^{\circ}$ [1954];
${ }^{1} \mathrm{H}$ NMR [1817], UV [1946,1947].

1-(4-Bromo-2-hydroxyphenyl)ethanone

[30186-18-6]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05
Syntheses

- Preparation by Fries rearrangement of 3-bromophenyl acetate with aluminium chloride [1942,1956-1959],
- without solvent, at $170-180^{\circ}$ (85-88\%) [1942,1956,1957];
- in chlorobenzene, heating in a water bath [1959].
- Also obtained (by-product) by Fries rearrangement of 2-bromophenyl acetate with aluminium chloride without solvent at 180° (6\%) [1817] (intermolecular bromine migration).
- Also refer to: [1960-1962].
m.p. 43° [1959], $42-43^{\circ}$ [1942,1956,1957]; ${ }^{1} \mathrm{H}$ NMR [1817], IR [1963].

1-(4-Bromo-3-hydroxyphenyl)ethanone

[73898-22-3] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05

Synthesis

- Preparation by diazotization of 4-amino-3-hydroxyacetophenone and replacement of the diazonium group by bromine (Sandmeyer reaction) (36\%) [1951].
m.p. $\quad 122-123^{\circ}$ [1951].

1-(5-Bromo-2-hydroxyphenyl)ethanone
[1450-75-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05

Syntheses

- Preparation by Fries rearrangement of 4-bromophenyl acetate with aluminium chloride without solvent between 110° and $160^{\circ} \quad[1805,1837,1946,1947,1964-1968], \quad(84-91 \%)$ [1805,1946,1964,1968].
- Preparation by reaction of acetic acid on 4-bromophenol with boron trifluoride in a sealed tube at 120° (44\%) [1969].
- Preparation by bromination of 2-hydroxyacetophenone in acetic acid [1792,1815,1821,1970], (63\%) [1815].
- Also obtained by reaction of bromine on 2-hydroxyacetophenone with tertbutylamine in methylene chloride at -70° (17\%) [1948].
- Also obtained by reaction of sodium ethoxide on 6-bromo-4-phenacylideneflavene in refluxing ethanol [1971,1972].
- Also obtained (by-product) by Fries rearrangement of 2-bromophenyl acetate with aluminium chloride without solvent at 180° (6\%) [1817].
- Also refer to: [1973,1974].
m.p. 62-63 ${ }^{\circ}$ [1946], 62° [1815], 61-62 ${ }^{\circ}$ [1792,1971,1972], 59-60 [1965,1975], 59° [1967], $57^{\circ} 4-59^{\circ} 2$ [1970], 57 $3 ~[1966], ~ 56 ํ ~[1969], ~$ 55-56º [1964], 43-44ํ [1968];
b.p. ${ }_{7} 110-115^{\circ}$ [1968], b.p. ${ }_{20} 143^{\circ}$ [1964], b.p. ${ }_{20} 145-148^{\circ}$ [1815];
${ }^{1} \mathrm{H}$ NMR [1817,1976], ${ }^{13} \mathrm{C}$ NMR [1821,1976], IR [1963,1964], UV [1946,1947,1964];
pK_{a} [1977].
1-(2-Bromo-3,6-dihydroxyphenyl)ethanone
[30095-76-2] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05

Synthesis

- Obtained from 5-bromo-6-hydroxy-2-methylchromone by alkaline degradation with 10% aqueous sodium hydroxide solution at reflux (22\%) [1832].

```
m.p. 143-144 [ [1832];
'1H NMR [1832], IR [1832], UV [1832].
```


1-(3-Bromo-2,4-dihydroxyphenyl)ethanone

[60990-39-8]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05
Syntheses

- Obtained by reaction of cupric bromide on resacetophenone in refluxing chloroform-ethyl acetate mixture (6\%) [1978].
- Also obtained by reaction of acetic acid on 2-bromo-resorcinol with zinc chloride (Nencki reaction) (26\%) [1840].
- Also obtained by saponification of 8-bromo-7-hydroxyflavone with 10% aqueous sodium hydroxide on a steam bath (14\%) [1840].
- Preparation by bromination of resacetophenone in acetic acid with bromine in the presence of quinoline sulfate while cooling (90\%) [1979] according to the method [1980] or in ethanol at $-78^{\circ}(43 \%)$ [1841].
m.p. 139° [1979], $134-135^{\circ}$ [1978], 133° [1840], $118-121^{\circ}$ [1841];
${ }^{1} \mathrm{H}$ NMR [1841,1978], IR [1841], MS [1841].

1-(3-Bromo-2,5-dihydroxyphenyl)ethanone

[33857-20-4] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05
 Syntheses

- Preparation from 3-bromo-2-hydroxyacetophenone by persulfate oxidation (Elbs reaction) [1949].
- Also obtained by hydrolysis of 8-bromo-6-hydroxy-2methylchromone with a 10% aqueous solution of sodium hydroxide, heated on a sand bath [1831].
- Also obtained by reaction of bromine on quinacetophenone in acetic acid at r.t. [1831].
- Also refer to: [1854,1981].
N.B.: All the results of reference [1831] were erroneous [1832].
m.p. $\quad 142-144^{\circ}$ [1949], 132° [1831].

1-(3-Bromo-2,6-dihydroxyphenyl)ethanone

[82320-47-6] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05
 Syntheses

- Obtained by saponification of 8-acetyl-6-bromo-7-hydroxy-4-methylcoumarin with 10% aqueous sodium hydroxide solution at reflux (64\%) [1982,1983].
- Also obtained by decarboxylation of 3-acetyl-5-bromo-2,4-dihydroxybenzoic acid with dilute acetic acid containing few drops of concentrated hydrochloric acid, at reflux (40\%) [1982,1983].
- Preparation by reaction of 2-carboxyethyltriphenylphosphonium perbromide on 2,6-dihydroxy-acetophenone in tetrahydrofuran at r.t. [1984].
m.p. 143° [1982,1983], $140-142^{\circ}$ [1984]; ${ }^{1} \mathrm{H}$ NMR [1984].

1-(4-Bromo-2,5-dihydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$
mol.wt. 231.05
Syntheses

- Preparation by reaction of boron tribromide on 4-bromo-2,5-dimethoxyacetophenone in methylene chloride at -70° (90\%) [1985].
- Preparation by Fries rearrangement of 2-bromo-hydroquinone diacetate with aluminium chloride without solvent between 160° and 180° (66\%) [1986], (25\%) [1987].
m.p. 152° [1985], $148-149^{\circ}$ [1986], 132° [1987].

1-(5-Bromo-2,4-dihydroxyphenyl)ethanone
[60965-25-5]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05
Syntheses

- Preparation by reaction of acetic acid on 4-bromoresorcinol with zinc chloride (Nencki reaction) [1890,1988].
- Preparation by bromination of resacetophenone in acetic acid at r.t. [1834].
- Preparation by bromination of resacetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture (26\%) [1978].
- Preparation by saponification of 4-acetoxy-5-bromo-2-hydroxyacetophenone with sodium hydroxide in dilute methanol at r.t. (76-83\%) [1836,1989].
- Also obtained by saponification of 3-benzoyl-6-bromo-7-hydroxyflavone with 10% ethanolic potassium hydroxide in a water bath [1840].
- Preparation by Fries rearrangement of 4-bromoresorcinol diacetate with aluminium chloride in boiling nitrobenzene [1836].
m.p. 171° [1836], $170-171^{\circ}$ [1978], 167° [1834,1840,1988], 165-170 [1989]; ${ }^{1} H$ NMR [1978,1989].

1-(3-Bromo-2,4,6-trihydroxyphenyl)ethanone

${ }^{1} \mathrm{H}$ NMR [1845].
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4} \quad$ mol.wt. 247.05
Synthesis

- Preparation by reaction of cupric bromide on phloroacetophenone in refluxing chloroform-ethyl acetate mixture [1845].

1-(5-Bromo-2,3,4-trihydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4} \quad$ mol.wt. 247.05

Syntheses

- Preparation by bromination of gallacetophenone in acetic acid with bromine in the presence of quinoline sulfate while cooling [1990], (95\%) [1979] according to the method [1980].
- Also obtained by reaction of acetyl chloride with 4-bromo-pyrogallol [1990].
m.p. 186° [1979], 183° [1990].

1-(2-Chloro-3-hydroxyphenyl)ethanone

[69240-96-6] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60

Syntheses

- Preparation by reaction of tert-butyl hypochlorite on 3-hydroxyacetophenone in chloroform at 15°, in subdued light (49\%) [1859].
- Also refer to: [1991] (compound XVIIa) and to [1992].
m.p. $\quad 61-63^{\circ}$ [1859]; ${ }^{1} \mathrm{H}$ NMR [1859], IR [1859].

1-(2-Chloro-4-hydroxyphenyl)ethanone

[68301-59-7] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60
 Syntheses

- Obtained (by-product) by Fries rearrangement of 3-chlorophenyl acetate with aluminium chloride [1958,1993,1994].
- Preparation by reaction of acetyl chloride on 3-chloro-phenol with aluminium chloride (Friedel-Crafts reaction) [1958].
- Also refer to: [1991] (compound XVIIb) and to [1992].
m.p. 110° [1994].

1-(2-Chloro-5-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60
Syntheses

- Obtained by reaction of tert-butyl hypochlorite on 3-hydroxyacetophenone in chloroform at 15°, in subdued light (24\%) [1859].
- Also refer to: [1995] (Japanese patent), [1991] (compound XVIIc) and to [1992].

1-(2-Chloro-6-hydroxyphenyl)ethanone

[55736-04-4] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60
 Synthesis

- Preparation by diazotization of 2-amino-6-chloro-acetophenone, followed by hydrolysis of the obtained diazonium salt (55\%) [1865].
- The reference [1996] is erroneous. The compound above mentioned is, in reality, the 5-chloro-2-hydroxyacetophenone.
Oil [1865], b.p. ${ }_{0.5} 78-80^{\circ}$ [1865].
1-(3-Chloro-2-hydroxyphenyl)ethanone
[3226-34-4] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60

Syntheses

- Preparation by Fries rearrangement of 2-chlorophenyl acetate with aluminium chloride,
- without solvent, between 110° and 180° (40-21\%) [1817,1837,1947,1994,1997];
- in tetrachloroethane at $70-80^{\circ}$ [1866].
- Preparation in two steps: At first, by reaction of acetyl chloride on 2-chlorophenol with aluminium chloride in refluxing petroleum ether, one obtains the 2-acetoxy-3-chloroacetophenone (83\%); the saponification of this keto ester leads to the 3-chloro-2-hydroxyacetophenone (93\%) [1867,1871].
- Obtained by reaction of acetyl chloride on 2-chlorophenol with ferric chloride at r.t. (22\%) [1998].
m.p. 84° [1997], 55° [1994], 49-50́ [1817], $48^{\circ} 5$ [1866]. One of the reported melting points is obviously wrong.
b.p. ${ }_{6} 66-67^{\circ}$ [1998], b.p. ${ }_{1} 87-89^{\circ}$ [1867,1871], b.p. ${ }_{20}$ 148-153 ${ }^{\circ}$ [1866]; UV [1947,1998].

1-(3-Chloro-4-hydroxyphenyl)ethanone

[2892-29-7] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60 Syntheses

- Preparation by reaction of acetyl chloride on 2-chloro-phenol with aluminium chloride in refluxing carbon disulfide (98%) [1951].
- Preparation by diazotization of 3-amino-4-hydroxy-acetophenone and replacement of diazonium group by chlorine (Sandmeyer reaction) [1953,1999], (84\%) [1953].
- Preparation by Fries rearrangement of 2-chlorophenyl acetate with aluminium chloride without solvent [1797,1817,1947,1954,1994,1998], (60-66\%) [1817,1998].
- Preparation by Fries rearrangement of 2-chlorophenyl acetate with aluminium chloride in nitrobenzene at 100° (30\%) [1994].
- Preparation by Fries rearrangement of 2-chlorophenyl acetate with aluminium chloride in tetrachloroethane at 70-80 ${ }^{\circ}$ [1866].
- Also obtained by reaction of acetyl chloride on 2-chlorophenol with ferric chloride [1823,1998,2000].
- Also obtained (by-product) by reaction of acetyl chloride on 2-chloroanisole or 2-chlorophenetole with aluminium chloride [2001].
m.p. $107-108^{\circ}$ [1866], 107° [2001], $100-100^{\circ} 5$ [1817], 96° [1823,1994,1999],
95° [1953], $94-95^{\circ}$ [1998], 93° [1797], $92-95^{\circ}$ [1951,1954];
${ }^{1} \mathrm{H}$ NMR [1817], IR [1866], UV [1947,1998]; pK_{a} [1977].

1-(3-Chloro-5-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60
Synthesis not yet described

- The reference [1947] is erroneous. In this one, the compound 4 is, in reality, the 5-chloro-2hydroxyacetophenone.
- Also refer to: [2002].

1-(4-Chloro-2-hydroxyphenyl)ethanone

- without solvent at $130-135^{\circ}$ (74-75\%) [2003,2004], between 135° and 200° [1784,1956,1993,1994,2003-2005], and 175-200 (85-89\%) [1784,1956];
- with solvent, at r.t., in nitrobenzene (88%) [2004], in tetrachloroethane (50\%) [1994] or in chlorobenzene [1959].
- Also obtained by treatment of 4-chloroacetophenone with sodium trifluoroacetate in nitromethane-trifluoroacetic acid-trifluoroacetic anhydride mixture in the presence of a platinum electrode followed by treatment of the intermediate trifluoroacetate ester with 10% potassium hydrogen carbonate solution (51\%) [2006] (hydroxylation of aromatic compounds).
- Preparation by reaction of methyl magnesium iodide on 4-chloro-2-hydroxybenzoyl chloride in ethyl ether, at -70°, followed by hydrolysis of the complex so obtained [2007].
m.p. $50-51^{\circ}$ [1993], 26° [2005]. One of the reported melting points is obviously wrong.
b.p. 96° [2004], b.p. ${ }_{14} 119-122^{\circ}$ [1784], b.p. ${ }_{10} 120-122^{\circ}$ [2003], b.p. ${ }_{15} 121-124^{\circ}$ [1956], b.p. ${ }_{16} 126^{\circ}$ [2005], b.p. 247° [1959]; IR [1784,1963], (Sadtler: standard n° 8980); pK_{a} [1977].

1-(4-Chloro-3-hydroxyphenyl)ethanone
[61124-56-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60

Syntheses

- Preparation by diazotization of 3-amino-4-chloro-acetophenone (quantitative yield) [2007], (16-18\%) [1951].
- Obtained by treatment of 4-chloroacetophenone with sodium trifluoroacetate in nitromethane-trifluoroacetic acid-trifluoroacetic anhydride mixture in the presence of a platinum electrode, followed by treatment of the intermediate trifluoroacetate ester with 10% potassium hydrogen carbonate solution (33\%) [2006] (hydroxylation of aromatic compound).
- Preparation by reaction of pyridinium chloride on 4-chloro-3-methoxyacetophenone between 170° and 200° (40\%) [1951].
- Preparation from 3-hydroxyacetophenone by chlorination of its 2,3-butylene ketal or its ethylene ketal using tert-butyl hypochlorite. The hydrolysis of these chloroketals with concentrated hydrochloric acid in tetrahydrofuran-water mixture gave 3-hydroxy-4-chloroacetophenone (94% and 48% yields, respectively) [1859].
- Also obtained by reaction of acetyl chloride on 2-chlorophenol with ferric chloride [1823].
- Also obtained (by-product) by reaction of tert-butyl hypochlorite on 3-hydroxyacetophenone in chloroform at 15° (6\%) [1859].
m.p. $106-107^{\circ}$ [1859], $103-104^{\circ}$ [1951], 96° [1823]; ${ }^{1} \mathrm{H}$ NMR [1859], IR [1859].

1-(5-Chloro-2-hydroxyphenyl)ethanone

[1450-74-4] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60

Syntheses

- Preparation by Fries rearrangement of 4-chlorophenyl acetate with aluminium chloride without solvent between 110° and 200° [1837,1851,1867,1871,1947,1965,1967, 1970,1994,1998,2008-2014], $\quad(90-100 \%$ yield $)$ [1970,1994,1998,2008-2010,2012-2014].
- Preparation by Fries rearrangement of 4-chlorophenyl acetate with aluminium chloride,
- in tetrachloroethane at $150-160^{\circ}$ [1866];
- in chlorobenzene, in a sealed tube and subjected to high power microwave irradiation for 2 min only (85\%) [2013].
- Preparation by Fries rearrangement of 4-chlorophenyl acetate with boron trifluoride in acetic acid at 125°, in a sealed tube (91\%) [1969].
- Preparation by photo-Fries rearrangement of 4-chlorophenyl acetate with potassium carbonate in hexane at r.t. (88\%) [2015].
- Preparation by reaction of acetyl chloride on 4-chlorophenol with ferric chloride [1823,2000,2008].
- Preparation by reaction of acetyl chloride on 4-chlorophenol with aluminium chloride in refluxing petroleum ether, and saponification of the obtained keto ester, the 2-acetoxy-5-chloroacetophenone (90\%) [1871].
- Preparation by reaction of acetic acid on 4-chlorophenol with boron trifluoride at 150°, in a sealed tube (94\%) [1969].
- Preparation by diazotization of 5-amino-2-hydroxyacetophenone and replacement of the diazonium group by chlorine (Sandmeyer reaction) [2016].
- Also obtained (by-product) by heating 4-chlorophenyl 3,3-dimethylacrylate at $255-260^{\circ}$, in a sealed tube (4\%) [2017].
- Also refer to: [1794] (compound 1b); [1795] (compound 1a); and to [1783] (compound 1d).
m.p. 72° [2010], 57° [2016], $56-57^{\circ}$ [1994], 55° [1823,1998], 54° [1969,2011],
 [1975], $52^{\circ} 2-53^{\circ} 6$ [1970], $52^{\circ} 5$ [1967], $52-53^{\circ}$ [2009], 52° [1851], 50-52 ${ }^{\circ}$ [2015];
b.p. $97-99^{\circ}$ [2011], b.p. ${ }_{12} 107-109^{\circ}$ [1867,1871], b.p. ${ }_{14} 125-126^{\circ}$ [1969],
b.p. ${ }_{28} 126-128^{\circ}$ [1871], b.p. ${ }_{26-27} 134-136^{\circ}$ [2009];
${ }^{1} \mathrm{H}$ NMR [1820,1976], ${ }^{13} \mathrm{C}$ NMR [1976], IR [1963,2010],
UV [1820,1947,1970,1998], fluorescence spectra [1820]; pK_{a} [1977].

1-(2-Chloro-3,4-dihydroxyphenyl)ethanone

[56961-48-9]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59
N.B.: The titled compound seems, to our knowledge, to have never been prepared so far [2018]. However, in the various considered publications which mentioned the usage of this compound, for example [2019], it is always another substance that is used as starting material, namely [99-40-1].

As far as the titled compound is concerned, the same confusion occurs when consulting the Chemical Abstracts Service, Registry Handbook, Number Section, (1975 supplement, p. 2202RD) and the Beilstein Institut zur Foerderung der Chemischen Wissenschaften (Copyright 1988-2001), Beilstein Registry Number 4921697.

Both above mentioned documents use the same Registry Number [56961-48-9], though both compounds are different even if have the same raw formula $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3}$.

1-(2-Chloro-3,6-dihydroxyphenyl)ethanone

[52095-12-2] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59

m.p. $94-96^{\circ}$ [2020]; ${ }^{1} \mathrm{H}$ NMR [2020], IR [2020].

1-(2-Chloro-4,5-dihydroxyphenyl)ethanone

[69240-97-7]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59
Synthesis

- Refer to: [1991] (compound XVIId).

1-(3-Chloro-2,6-dihydroxyphenyl)ethanone

[87953-93-3] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59

- Preparation by reaction of sulfuryl chloride on 2,6-dihydroxyacetophenone in refluxing ethyl ether (90\%) [2021].
- Preparation by hydrolysis of 8-acetyl-6-chloro-7-hydroxy-4-methylcoumarin with 10% aqueous sodium hydroxide solution at reflux [1982,1983].
- Obtained by decarboxylation of 3-acetyl-5-chloro-2,4-dihydroxybenzoic acid [1982,1983].
- Preparation by reaction of thionyl chloride on 2,6-dihydroxyacetophenone in refluxing acetic acid (77\%) [2022,2023].
m.p. 135° [2021], $134-135^{\circ}$ [1982,1983].

1-(3-Chloro-4,5-dihydroxyphenyl)ethanone

[154638-86-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59

Synthesis

- Obtained (by-product) by chlorination of 4-hydroxy-3-methoxyacetophenone (acetoguaiacone) in dioxanewater mixture at $40^{\circ}(8 \%)$ [1789].

MS [1789].

1-(4-Chloro-2,5-dihydroxyphenyl)ethanone

[90110-31-9]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59
Syntheses

- Preparation by Fries rearrangement of 2-chloro-1,4-di
hydroxyphenyl diacetate with aluminium chloride
without solvent [1987,2024], at $160^{\circ}(35 \%)$ [1987].
- Also refer to: [2025].
m.p. 145° [1987,2024].

1-(5-Chloro-2,4-dihydroxyphenyl)ethanone

[90110-32-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59

Syntheses

- Preparation by reaction of acetic acid on 4-chlororesorcinol with zinc chloride at 145° (Nencki reaction) (31\%) [1988].
- Preparation by reaction of acetic anhydride on 4-chlororesorcinol with polyphosphoric acid in the presence of one drop of concentrated sulfuric acid at reflux (12\%) [2026].
- Also obtained by reaction of cuprous cyanide on 5-chloro-2,4-dihydroxy-3iodoacetophenone in HMPT at 90° (conditions of the Rosenmund-von Braun reaction) (80\%) [1848].
m.p. $176-177^{\circ}$ [2026], 174° [1848], 171° [1988].

1-(3-Chloro-2,4,6-trihydroxyphenyl)ethanone

[130435-29-9]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{4}$
mol.wt. 202.59

m.p. $215-218^{\circ}$ [2027]; ${ }^{1} \mathrm{H}$ NMR [2027], MS [2027].

1-(2-Fluoro-4-hydroxyphenyl)ethanone

[98619-07-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14
 Synthesis

- Preparation by reaction of acetyl chloride on 3-fluorophenol with aluminium chloride in refluxing ethylene dichloride [2028].
${ }^{1} \mathrm{H}$ NMR [2028], IR [2028], MS [2028].

1-(2-Fluoro-5-hydroxyphenyl)ethanone

[145300-04-5]	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14
OH	Synthesis
	- Preparation by aromatization of 5-acetyl-4-fluoro-3-cyclohexenone promoted by cupric bromide-lithium bromide mixture in refluxing acetonitrile (70%) [2029,2030].
m.p. $97^{\circ}[20$	2030]; ${ }^{1} \mathrm{H}$ NMR [2030], IR [2030].

1-(2-Fluoro-6-hydroxyphenyl)ethanone

[93339-98-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14
 Syntheses

- Preparation by reaction of boron tribromide on 2-fluoro-6methoxyacetophenone (I) in methylene chloride at -65° to -80° [2031,2032], (56\%) [2032]. The precursor (I) was obtained by reaction of methyl magnesium iodide on 2-fluoro-6-methoxybenzonitrile in refluxing toluene (quantitative yield) [2031].
- Preparation from 2-fluoro-6-methoxybenzonitrile [2033] according to the procedure [2034].
oil [2031,2032]; b.p. ${ }_{0.2} 170-172^{\circ}$ [2031];
${ }^{1} \mathrm{H}$ NMR [2032,2033], ${ }^{13} \mathrm{C}$ NMR [2033], ${ }^{19}$ F NMR [2033], MS [2033].
1-(3-Fluoro-2-hydroxyphenyl)ethanone
[699-92-3]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14 Syntheses
- Obtained by Fries rearrangement of 2-fluorophenyl acetate with aluminium chloride without solvent at 115° [1869], 150° [2031] or at $180-190^{\circ}(16 \%)$ [2035,2036].
- Also obtained by Fries rearrangement of 2-fluorophenyl acetate with aluminium chloride in chlorobenzene at 100° for 24 h (38\%) [2037].
m.p. $75-77^{\circ}$ [2031], $75-76^{\circ}$ [1869], $72-73^{\circ}$ [2035,2036];
${ }^{1} \mathrm{H}$ NMR [1869,2037], MS [1869].

1-(3-Fluoro-4-hydroxyphenyl)ethanone

[403-14-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14
 Syntheses

- Preparation by reaction of pyridinium chloride on 3-fluoro-4methoxyacetophenone at reflux (78\%) [2038].
- Preparation by reaction of acetyl chloride on 2-fluorophenol with aluminium chloride in refluxing carbon disulfide (74\%) [1951].
- Preparation by Fries rearrangement of 2-fluorophenyl acetate with aluminium chloride without solvent at 115° [1869] or $140^{\circ}(51-52 \%)$ [2039-2042].
m.p. $128-128^{\circ} 5$ [1869], $127-129^{\circ}$ [1951], $126-127^{\circ}$ [2040], $125-126^{\circ} 6$ [2042], 125° [2038];
b.p. $125-135^{\circ}$ [2042];
${ }^{1} \mathrm{H}$ NMR [1869], IR [2040], MS [1869,2040].

1-(4-Fluoro-2-hydroxyphenyl)ethanone

[1481-27-2] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14
 Syntheses

- Preparation by Fries rearrangement of 3-fluorophenyl acetate with aluminium chloride without solvent at 160-180 ${ }^{\circ}$ [2043-2045], (75\%) [2045], (88-90\%) [2043,2044].
- Preparation by Fries rearrangement of 3-fluorophenyl acetate with alumina in methanesulfonic acid for 3 h at 160° (60\%) [2046].
- Preparation by Friedel-Crafts acylation of 3-fluorophenol with acetic acid in the presence of alumina in methanesulfonic acid for 2 h at 120° (63\%) [2046].
- Also refer to: [1893,2047,2048].
m.p. 24° [2043,2044].

1-(5-Fluoro-2-hydroxyphenyl)ethanone

[394-32-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14
 Syntheses

- Preparation by Fries rearrangement of 4-fluorophenyl acetate with aluminium chloride without solvent between 115° and $150^{\circ} \quad[1800,1869,1965,2044,2049-2051], \quad(88-89 \%)$ [1965,2044,2049], (62-63\%) [2050,2051].
- Preparation by reaction of acetic acid on 4-fluorophenol with boron trifluoride at 150°, in a sealed tube (89%) [1969].
- Preparation by reaction of pyridinium chloride on 5-fluoro-2-methoxyacetophenone at reflux (74\%) [1799], (59\%) [1970].
- Preparation by reaction of acetyl chloride on 4-fluoroanisole with aluminium chloride in carbon tetrachloride (44\%) [2052,2053].
- Also obtained (by-product) by reaction of acetyl chloride on 4-fluoroanisole with aluminium chloride in carbon disulfide [1799].
- Also refer to: [2025].
m.p. $57-58^{\circ}$ [1965,1975], 57° [1799,1969], $56^{\circ} 4-57^{\circ} 6$ [1970], $56^{\circ} 5-57^{\circ}$ [2049], 56-57$~[2052,2053], 56-56^{\circ} 5$ [2051], 56° [2044], 55° [1869];
b.p. ${ }_{8} 65-66^{\circ}$ [2050], b.p. ${ }_{12} 94-99^{\circ}$ [2051], b.p. ${ }_{13} 103-104^{\circ}$ [1799], b.p. ${ }_{16} 105^{\circ}$ [1969];
${ }^{1} \mathrm{H}$ NMR [1869,2052], ${ }^{13} \mathrm{C}$ NMR [1821], UV [1970], MS [1869,2052]; pK_{a} [1977].

1-(3-Fluoro-2,6-dihydroxyphenyl)ethanone

Synthesis

1-(4-Fluoro-2,5-dihydroxyphenyl)ethanone

$[88772-48-9]$	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{3}$	mol.wt. 170.14
OH	Synthesis	

 quinone diacetate with aluminium chloride in nitrobenzene at $140^{\circ}(66 \%)$ [1884].
m.p. 210° [1884]; ${ }^{1} \mathrm{H}$ NMR [1884], IR [1884].

1-(2-Hydroxy-3-iodophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05
Synthesis

- Preparation by diazotization of 3-amino-2-hydroxyacetophenone with sodium nitrite in dilute sulfuric acid at 0°, and replacement of the diazonium group by iodine with potassium iodide at 65° (Sandmeyer reaction) [1920,1965,2036], (50\%) [1965].
m.p. $59^{\circ} 5-60^{\circ} 5$ [1920], $58-59^{\circ}[1965,2036]$.

1-(2-Hydroxy-4-iodophenyl)ethanone

[39730-66-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05
 Syntheses

- Preparation by Fries rearrangement of 3-iodophenyl acetate with aluminium chloride [1942,1956-1959,2055],
- in chlorobenzene, at $125-135^{\circ}$ (64\%) [1956,1959];
- in nitrobenzene, at $110-140^{\circ}(40-45 \%)$ [1956,1957,2055].
- Preparation by diazotization of 4-amino-2-hydroxyacetophenone and replacement of the diazonium group by iodine (Sandmeyer reaction) (46\%) [1956].
- Preparation by reaction of acetyl chloride on 3-iodoanisole with aluminium chloride in refluxing carbon disulfide (14\%) [2055].
- Also refer to: [1848] (compound 6). m.p. 54° [1959], $53-54^{\circ}$ [1942,1956,1957], 52-54ํ [2055].

1-(2-Hydroxy-5-iodophenyl)ethanone

[7191-41-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Syntheses

- Preparation by saponification of ethyl 4-hydroxy-6-iodo-coumarin-3-carboxylate with boiling 10% aqueous potassium hydroxide solution (92\%) [1914,2056].
- Preparation by diazotization of 2-hydroxy-5-nitro-acetophenone and replacement of the diazonium group by iodine (Sandmeyer reaction) [1920,1965,1975,2057], (75-80\%) [1965,1975].
- Preparation by diazotization of 4-acetamido-2-methoxyacetophenone and replacement of the diazonium group by iodine (73\%) [1975].
- Also obtained by reaction of iodine on 2-hydroxyacetophenone in aqueous sodium carbonate solution (37\%) [1915], (14\%) [1913,1914].
- Also obtained by Fries rearrangement of 4-iodophenyl acetate with aluminium chloride in nitrobenzene at 25° (13%) [2058].
- Also refer to: [1961].
m.p $91-92^{\circ}$ [1965], $90-92^{\circ}$ [1920,1975], 90° [2057], 88-89${ }^{\circ}$ [1914,2056], $67-69^{\circ}$ [2058]. One of the reported melting points is obviously wrong. UV [1914].

1-(3-Hydroxy-2-iodophenyl)ethanone

[348616-32-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05
 Synthesis

- Obtained by debenzylation of 3-(benzyloxy)-2-iodo-acetophenone (m.p. 53-55 ${ }^{\circ}$) with boron tribromide in methylene chloride at -70° for $50 \mathrm{~min}(93 \%)$ [2059].
m.p. $\quad 93-97^{\circ}$ [2059]; ${ }^{1} \mathrm{H}$ NMR [2059], ${ }^{13} \mathrm{C}$ NMR [2059], IR [2059], MS [2059].

1-(3-Hydroxy-4-iodophenyl)ethanone

[73898-23-4]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2}$
mol.wt. 262.05
Synthesis

- Obtained by reaction of iodine-potassium iodide mixture in aqueous solution with 3-hydroxyacetophenone in concentrated aqueous ammonia at r.t. (15\%) [1951].
m.p. $134-135^{\circ}$ [1951].

1-(4-Hydroxy-2-iodophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Syntheses

- Preparation by reaction of 48% hydrobromic acid on 2-iodo-4-methoxyacetophenone in acetic acid at 100°, in a sealed tube (45\%) [2055].
- Also obtained (by-product) by reaction of acetyl chloride on 3-iodoanisole with aluminium chloride in refluxing carbon disulfide (9\%) [2055].
- Also obtained in very small quantities by Fries rearrangement of 3-iodophenyl acetate with aluminium chloride in nitrobenzene at $90-95^{\circ}$ [1942].
m.p. $131-132^{\circ}$ [2055], $128-136^{\circ}$ [1942].

1-(4-Hydroxy-3-iodophenyl)ethanone

[62615-24-1] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05
 Syntheses

- Preparation by reaction of iodine and potassium iodide on 4-hydroxyacetophenone in aqueous ammonium hydroxide at r.t. [1951,1989,2060], (54-57\%) [1951,1989].
- Preparation by adding an aqueous solution of potassium iodide to a solution of 4-hydroxyacetophenone in concentrated ammonium hydroxide at 35° (49\%) [2061].
- Preparation by adding a 5% aqueous solution of sodium hypochlorite to a solution of 4-hydroxyacetophenone and sodium iodide in methanol at 15° (60%) [2062].
- Also refer to: [2063].
m.p. $155-156^{\circ}$ [2062], 154-156 ${ }^{\circ}$ [1989], 153-155 ${ }^{\circ}$ [2061], 153-154ㅇ [1951]; ${ }^{1} \mathrm{H}$ NMR [1989,2061,2062], IR [2061].

1-(2,4-Dihydroxy-3-iodophenyl)ethanone

- with iodine and iodic acid in dilute ethanol at r.t. [1837,1910,1924,20642066], (82-84\%) [1924,2065];
- with iodine in the presence of diisopropylamine in methanol at r.t. (14\%) [2065];
- with potassium iodate and potassium iodide in dilute acetic acid [1890].
m.p. 164° [1924], $158-162^{\circ}$ [2065], 158- 159° [1890]; ${ }^{1} \mathrm{H}$ NMR [2065].

1-(2,4-Dihydroxy-5-iodophenyl)ethanone

[62069-33-4] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{3} \quad$ mol.wt. 278.05 Syntheses

- Preparation by selective deiodination of 2,4-dihy-droxy-3,5-diiodoacetophenone with stannous chloride in refluxing acetic acid (40\%) [1923].
- Also obtained by reaction of aqueous iodine-potassium iodide solution on resacetophenone in 22% aqueous ammonia at r.t. (15\%) [1924].
- Preparation by iodination of resacetophenone using iodine and iodic acid in dilute ethanol at r.t. [1837].
- Preparation by reaction of boron tribromide with 2,4-bis(benzyloxy)-5-iodoacetophenone (SM) in methylene chloride with stirring for 5 min at $-70^{\circ}(97 \%)$. SM was obtained from 2,4-bis-(benzyloxy)acetophenone with iodine in the presence of silver trifluoroacetate in chloroform (89\%) [2062].
m.p. $185-186^{\circ}$ [1923], 184° [1924], $180-181^{\circ}$ [2062]; ${ }^{1} \mathrm{H}$ NMR [1923,2062].

1-(2-Hydroxy-5-nitrosophenyl)ethanone

UV [2067].

1-(4-Hydroxy-3-nitrosophenyl)ethanone

[97871-70-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{3} \quad$ mol.wt. 165.15
 Synthesis

- Preparation by direct nitrosation [2068] of 4-hydroxy-acetophenone with aqueous sodium nitrite solution in dilute hydrochloric acid between 0° and 5° [2069].

UV [2069]; pK_{a} [2069].
1-(2-Hydroxy-3-nitrophenyl)ethanone
[28177-69-7]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$
Syntheses

- Preparation by reaction of boiling 5\% aqueous potassium hydroxide on 8-nitrochromone (78\%) [2070].
- Also obtained by reaction of nitric acid on 2-hydroxy-acetophenone in acetic acid [2071], (30\%) [2022,2023], (9-10\%) [1926,2072], (2\%) [1925,1965,2073].
- Preparation by diazotization of 5-amino-2-hydroxy-3-nitroacetophenone, followed by decomposition of the obtained diazonium salt (90\%) [2074], (56\%) [2075].
- Also obtained by reaction of boiling 20% aqueous hydrochloric acid on 2-hydroxy-3-nitro-acetophenone oxime [2076].
- Also obtained by nitration and hydroxylation of acetophenone with pernitrous acid (2\%) [2077].
- Also refer to: [2078-2081].
m.p. $103-104^{\circ}$ [2070], $99-101^{\circ}$ [1949], $98^{\circ} 5-99^{\circ} 5$ [2072], $97-98^{\circ}$ [2071], 90° [2077], 89-90 [2076], 84-85 ${ }^{\circ}$ [1965], 82-83 ${ }^{\circ}$ [1925,1926,20732075]; ${ }^{1} \mathrm{H}$ NMR [2074,2078], IR [2074]; pK_{a} [2078].

1-(2-Hydroxy-4-nitrophenyl)ethanone

[1834-91-9]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15
Syntheses

- Obtained by Fries rearrangement of 3-nitrophenyl acetate with aluminium chloride without solvent at 125° [2082-2084], (20\%) [2084], (32\%) [2082].
- Also obtained by reaction of acetyl chloride on 3-nitro-phenol with aluminium chloride at $125^{\circ}(16-18 \%)$ [2084].
- Claimed to be prepared by reaction of boiling 50% nitric acid on 2-hydroxy acetophenone (59\%) [1927].
N.B.: No physical data is indicated in the patent for this compound. According to the rules dealing with aromatic substitution (Holleman rules) [1929] and electronic induction using the Hammett substituent constants [1930], the obtained product most likely is the 2-hydroxy-5-nitro-acetophenone.
m.p. 67-68 [2082,2085,2086], 67° [2084]; ${ }^{1} \mathrm{H}$ NMR [1963], IR [1963].

1-(2-Hydroxy-5-nitrophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15
Syntheses

- Obtained by nitration of 2-hydroxyacetophenone oxime, followed by treatment of this oxime with boiling 20% hydrochloric acid (73\%) [2016,2076].
- Preparation by reaction of acetyl chloride on 4-nitrophenol with aluminium chloride in nitrobenzene at $130^{\circ}(44 \%)$ [1925].
- Preparation by Fries rearrangement of 4-nitrophenyl acetate with aluminium chloride,
- without solvent, at $140-150^{\circ}$ (28\%) [2087];
- with solvent, in nitrobenzene, at $120-130^{\circ} \quad(20-35 \%)$ [1925,2083,2085,2088,2089].
- Preparation by nitration of 2-hydroxyacetophenone,
- in acetic acid (20-30\%) [1925,1926,1965,2072,2073];
- without solvent (59\%) [1927].
- Also obtained by reaction of acetic anhydride on 4-nitrophenol with aluminium chloride [2088].
- Also obtained from mixture of 2-chloro-5-nitroacetophenone, sodium acetate and acetamide heated at $180-200^{\circ}(49 \%)$ [1806].
- Also refer to: [2090].
m.p. 111-112 ${ }^{\circ}$ [2076], 102-103 ${ }^{\circ}$ [1926,2083,2085,2088], 101-102 ${ }^{\circ}$ [1965,2087], $99^{\circ} 5$ [1806,1925], $98^{\circ} 5-99^{\circ} 5$ [2072], $98-99^{\circ}$ [2073]; ${ }^{1} \mathrm{H}$ NMR [1963,1976], ${ }^{13}$ C NMR [1976], IR [1963].

1-(3-Hydroxy-2-nitrophenyl)ethanone

[53967-72-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15

Syntheses

- Preparation by nitration of 3-hydroxyacetophenone,
- with concentrated nitric acid in concentrated sulfuric acid at -20° (35-45\%) [1932];
- with nitric acid $(\mathrm{d}=1.4)$ in acetic acid at $70^{\circ}(16 \%)$ [2091];
- with cupric nitrate in acetic acid-acetic anhydride mixture between 12° and 15° (18\%) [1932,2092].
- Preparation by demethylation of 3-methoxy-2-nitroacetophenone with pyridinium chloride at 200° [2093].
m.p. 138° [1932], 136° [2093], 135° [2091]; IR [2091], UV [1932,2091]; pK_{a} [2091].

1-(3-Hydroxy-4-nitrophenyl)ethanone

 $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15 Syntheses

- Obtained (poor yield) by nitration of 3-hydroxyacetophenone,
- with nitric acid $(\mathrm{d}=1.4)$ in acetic acid, at 70° (10\%) [2091];
- with cupric nitrate in acetic acid-acetic anhydride mixture, between 12° and 15° ($<1 \%$) [1932].

IR [2091], UV [1932,2091]; pK_{a} [2091].
N.B.: The melting point $131-132^{\circ}$ [2085] was erroneous. This melting point is the one of an isomer, the 3-nitro-4-hydroxyacetophenone (130-131²) [2094].

1-(3-Hydroxy-5-nitrophenyl)ethanone

[70284-07-0] \begin{tabular}{l}
Syntheses

Obtained in two steps: First, a mixture of 3-hydroxy-
acetophenone and dysprosium nitrate in ethyl acetate
were refluxed $\left(85-105^{\circ}\right)$ for 75 min. Then, the iso-
lated intermediate $\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{4}\right)_{3} \mathrm{Dy} \mathrm{(59} \mathrm{\%)} \mathrm{was} \mathrm{dis-}$
solved in 6 N hydrochloric acid (50\%) [2095].

\end{tabular}

- Also refer to: [2096] (compound NP), [2097].
N.B.: Dy (III) salt [193693-92-4] [2095].
m.p. 122-124 ${ }^{\circ}$ [2095]; MS [2095].

1-(4-Hydroxy-3-nitrophenyl)ethanone

[6322-56-1] | $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15 |
| :--- |
| Syntheses |

- using properties of dinitrogen tetroxide complexes of iron $-\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$. $1.5 \mathrm{~N}_{2} \mathrm{O}_{4}$ - and copper nitrates $-\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{~N}_{2} \mathrm{O}_{4}$ - in acetone for 5-10 min at r.t. (97-100\%) [2101];
- by reaction of ferric nitrate nonahydrate $-\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}$ - in ethanol for 24 h at 65° (91\%) [2102].
- Also obtained by reaction of peroxynitrite $\left(\mathrm{ONOO}^{-}\right)$with 4-hydroxyacetophenone in aqueous phosphate buffer and acetonitrile solution [2103].
- Also obtained from aromatic nucleophilic substitution of 3,4-dichloroacetophenone with sodium nitrite in DMSO (40\%) [2104].
- Preparation by reaction of acetyl chloride on 2-nitrophenol with aluminium chloride in nitrobenzene (46-47\%) [1925,2094,2105,2106].
- Also obtained by reaction of acetyl chloride on 2-nitroanisole with aluminium chloride (11\%) [2107].
- Preparation by Fries rearrangement of 2-nitrophenyl acetate with aluminium chloride in nitrobenzene (40-45\%) [1925,2082], (30\%) [2086,2094].
- Also obtained by Fries rearrangement of 2-nitrophenyl acetate [2108], which occurs under mild conditions on K 10 montmorillonite using microwave radiations [2109].
- Also obtained on heating 4-bromo-3-nitroacetophenone with acetamide-sodium acetate mixture between 175° and 200° (low yield) [2110].
- Also obtained by mononitration of 4-hydroxyacetophenone with a combination,
- trichloroisocyanuric acid, sodium nitrite and wet silicone dioxide ($50 \% \mathrm{w} / \mathrm{w}$) in methylene chloride at r.t. for $20 \mathrm{~min}(97 \%)$ [2111];
- magnesium bisulfate or sodium bisulfate monohydrate, sodium nitrite and wet silicone dioxide ($50 \% \mathrm{w} / \mathrm{w}$) in methylene chloride at r.t. for $3 \mathrm{~h}(80-82 \%)$ [2112].
- Also refer to: [2078,2113-2119].
N.B.: Na salt [42247-95-0] [2120].
m.p. $135-136^{\circ}$ [2091], 135° [2100], 133-134 ${ }^{\circ}$ [1933], 133° [2099], 132$132^{\circ} 5$ [2094], 132° [1925], $131-132^{\circ}$ [2106], $130^{\circ} 5$ [2107], 130° [1999,2110], $129^{\circ} 5$ [1953], 128-130 ${ }^{\circ}$ [2082], 123° [2102], 122- 124° [2111,2112]; pK_{a} [2078,2091,2106]; GC [2104]; ${ }^{1} \mathrm{H}$ NMR [2078,2102], ${ }^{17}$ O NMR [2121], IR [2091,2102], UV [2091,2106], MS [2104].

1-(5-Hydroxy-2-nitrophenyl)ethanone

[30879-49-3]

- Preparation by nitration of 3-hydroxyacetophenone,
- with nitric acid $(\mathrm{d}=1.4)$ in acetic acid, at $70^{\circ}(31 \%)$
[2091], $(15 \%)[2099] ;$
- with cupric nitrate in acetic acid-acetic anhydride mixture, between 12° and 15° (20\%) [1932,2092].
m.p. $148-149^{\circ}$ [1932,2091,2099]; IR [2091], UV [1932,2091,2122]; pK_{a} [2091].

1-(2,4-Dihydroxy-3-nitrophenyl)ethanone

[89684-58-2] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \quad$ mol.wt. 197.15
 Syntheses

- Resacetophenone by treatment with cerium (IV) ammonium nitrate in acetic acid at $50-60^{\circ}$ yields 2,4-dihydroxy-3-nitro-acetophenone (good yield) [2123], (23\%) [1937].
- Preparation by reaction of acetic anhydride on 2-nitro-resorcinol with aluminium chloride in nitrobenzene at 100° [2124,2125], (53\%) [2124].
- Also obtained by reaction of aqueous hydrochloric acid-acetic acid mixture on 5-acetyl-2,4-di-hydroxy-3-nitrobenzoic acid in a sealed tube at 140-145 ${ }^{\circ}$ [1938].
- Also refer to: [2126].
m.p. $\quad 103^{\circ}$ [2125], 102° [2124], $93^{\circ}[1938,1939,2127], 90-91^{\circ}[1937,2123] ;{ }^{1} \mathrm{H}$ NMR [2123], IR [2123].

1-(2,4-Dihydroxy-5-nitrophenyl)ethanone

[3328-77-6]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \quad$ mol.wt. 197.15 Syntheses

- Preparation by nitration of resacetophenone [2128,2129], (71\%) [2130], (54-50\%) [1836,2131], (44\%) [2074].
- Also obtained by reaction of nitric acid on 3,3'-diacetyl-4,4',6,6'-tetrahydroxydiphenyl thioether in acetic acid at r.t. [1810].
- Also obtained (by-product) by reaction of acetic anhydride on 4-nitroresorcinol with aluminium chloride in nitrobenzene (6\%) [1940].
- Also obtained by reaction of sodium hydroxide on 3-benzoyl-2,4-dihydroxy-5nitroacetophenone in boiling aqueous ethanol [1936].
- Resacetophenone by treatment with cerium (IV) ammonium nitrate in hot acetic acid yields 2,4-di-hydroxy-5-nitroacetophenone (31\%) [1937].

$$
\begin{array}{llllll}
\text { m.p. } \quad 145-147^{\circ} \quad[2074], \quad 145^{\circ} \quad[1836], \quad 143^{\circ} \quad[1937], \quad 142^{\circ} \\
\quad[1810,1936,1939,1940,2125,2128-2131] . \\
{ }^{1} \mathrm{H} \text { NMR }[2074], \text { IR }[2074] . & & &
\end{array}
$$

1-(2,5-Dihydroxy-3-nitrophenyl)ethanone

[30095-74-0]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \quad$ mol.wt. 197.15 Syntheses

- Preparation by nitration of 3-acetyl-4-hydroxyphenyl acetate, followed by hydrolysis of the obtained keto ester with hydrochloric acid in refluxing methanol (61\%) [1832].
- Also obtained by hydrolysis of 6-hydroxy-2-methyl-8-nitro-chromone with 10% aqueous sodium hydroxide [1831].
- Also obtained by nitration of quinacetophenone in acetic acid [1831].
- Also obtained by demethylation of 2-hydroxy-5-methoxy-3-nitroacetophenone with 48% hydrobromic acid in the presence of red phosphorous at $85-90^{\circ}$ for 16 h under argon atmosphere (90%) [2074].
N.B.: All the results of reference [1831] were erroneous [1832].
m.p. $141-142^{\circ}$ [1832], $136-138^{\circ}$ [2074], 58° [1831]. One of the reported melting points is obviously wrong.
${ }^{1}$ H NMR [1832,2074], IR [1832], UV [1832].

1-(2,6-Dihydroxy-3-nitrophenyl)ethanone

[25205-34-9]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \quad$ mol.wt. 197.15 Syntheses

- Preparation by reaction of acetic anhydride on 4-nitro-resorcinol with aluminium chloride in nitrobenzene [1940,2125], (37\%) [1940].
- Preparation by Fries rearrangement of 4-nitroresorcinol diacetate with aluminium chloride in nitrobenzene at $95-100^{\circ}$ (38\%) [2132].
- Also obtained by nitration of 2,6-dihydroxyacetophenone (77\%) [2074], (27\%) [1940].
- Also obtained by demethylation of 2,6-dimethoxy-3-nitroacetophenone with aluminium chloride or with boiling 10% aqueous sodium hydroxide (quantitative yield) [1940].
- Also obtained by reaction of 4-methoxy-2-methyl-8-nitrochromone or its 3-acetyl derivative with boiling 10% aqueous sodium carbonate (50% and 58% yields, respectively) [2133].
- Also refer to: [2134].
m.p. 119° [1940,2125], $116-117^{\circ}$ [2132], $114-115^{\circ}$ [2074]; ${ }^{1} \mathrm{H}$ NMR [2074], IR [2074].

1-(3,4-Dihydroxy-5-nitrophenyl)ethanone

[116313-84-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \quad$ mol.wt. 197.15

Syntheses

- Preparation from 4-hydroxy-3-methoxyacetophenone by nitration and subsequent demethylation of 4-hydroxy-3-methoxy-5-nitroacetophenone obtained,
- with boiling concentrated hydrobromic acid [2135];
- with concentrated hydrobromic acid in acetic acid (35\%) [2136].
- Preparation by demethylation of 3,4-dimethoxy-5-nitroacetophenone with concentrated hydrobromic acid at 140° [2135].
m.p. $161-169^{\circ}$ [2136], $159-160^{\circ}$ [2135]; pK_{a} [2137].

1-(2,4,6-Trihydroxy-3-nitrophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{6} \quad$ mol.wt. 213.15
Syntheses

- Preparation by addition of a mixture of concentrated sulfuric acid and fuming nitric acid into a solution of phloroaceto-phenone in concentrated sulfuric acid and hexane mixture under cooling with an ice bath (70-80\%) [2138].
- Also obtained by adding acetic anhydride to a mixture of 1,3,5-trihydroxy-2nitrobenzene and aluminium chloride in nitrobenzene and heating on a steam bath for 7 h (20\%) [2139].
m.p. $133-135^{\circ}$ [2138], 131-132 ${ }^{\circ}$ [2139]; ${ }^{1} \mathrm{H}$ NMR [2138,2139], IR [2138], MS [2138].

1-(3-Amino-5-bromo-2-hydroxyphenyl)ethanone

[70977-85-4]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$
Synthesis

- Preparation by reaction of 20% aqueous titanium trichloride solution on 5-bromo-2-hydroxy-3-nitroacetophenone in toluene, at r.t., in a sealed tube [1897,1898], (31\%) [1897].
m.p. $99-102^{\circ}[1897,1898]$.

1-(5-Amino-3-bromo-2-hydroxyphenyl)ethanone (Hydrochloride)

[30186-22-2]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{2}, \mathrm{HCl} \quad$ mol.wt. 266.52
Synthesis

- Preparation by reduction of 3-bromo-2-hydroxy-5-nitro-acetophenone with an excess of tin in concentrated hydrochloric acid at 100° (82%) [1817].
m.p. $200^{\circ}(\mathrm{d})$ [1817].

1-(3-Amino-5-chloro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2}$
mol.wt. 185.61
Syntheses

- Preparation by reaction of acetic anhydride on 2-amino-4-chlorophenol with aluminium chloride in 1,2,4-trichloro-benzene at 120° [2140].
- Preparation by reaction of 75% hydrochloric acid solution on 3-acetamido-5-chloro-2-hydroxyacetophenone; the mixture was heated on a steam bath (98\%) [2141].
m.p. $110-112^{\circ}$ [2141]; UV [2141].

1-(3-Amino-5-chloro-2-hydroxyphenyl)ethanone (Hydrochloride)

[153404-65-0]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2}, \mathrm{HCl}$
mol.wt. 222.07
Synthesis

- Preparation by reaction of acetic anhydride on 2-amino-4-chlorophenol hydrochloride with aluminium chloride in 1,2,4-trichlorobenzene at $120^{\circ}(79 \%)$ [2140].

1-(5-Amino-4-chloro-2-hydroxyphenyl)ethanone

$$
\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2} \quad \text { mol.wt. } 185.61
$$

Synthesis

- Preparation by reduction of 4-chloro-2-hydroxy-5-ni-tro-acetophenone with iron powder in dilute acetic acid at 95° (93%) [1784] (Béchamp reduction).
m.p. 117-118 ${ }^{\circ}$ [1784]; IR [1784].

1-[5-(Aminosulfonyl)-4-chloro-2-hydroxyphenyl]ethanone
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{4} \mathrm{~S} \quad$ mol.wt. 249.67

Synthesis

- Preparation by reaction of ammonia gas on 4-chloro-5-chlorosulfonyl-2-hydroxyacetophenone in tetrahydrofuran at r.t. (57\%) [1784].
m.p. $181-182^{\circ}$ [1784].

1-(3-Amino-5-fluoro-2-hydroxyphenyl)ethanone

[70977-84-3]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{FNO}_{2}$
mol.wt. 169.16
Synthesis

- Preparation by catalytic hydrogenation of 5-fluoro-2-hydroxy-3-nitroacetophenone in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in ethanol at 25° [1897,1898], (99\%) [1897].
m.p. $113-114^{\circ}$ [1897].

1-(5-Amino-4-fluoro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{FNO}_{2} \quad$ mol.wt. 169.16

Synthesis

- Refer to: [1893] (Japanese patent).

1-(3-Amino-2-hydroxy-5-nitrophenyl)ethanone

[70977-79-6] | Synthesis |
| :--- |
| - Preparation by reaction of sodium sulfide on |
| 2-hydroxy-3,5-dinitroacetophenone with ammonium |
| chloride in refluxing methanol [1897,1898], (55\%) |
| [1898], (72\%) [1897]. |

1-(5-Amino-2-hydroxy-3-nitrophenyl)ethanone

[108129-55-1]	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 196.16
OH	Synthesis
	- Preparation by hydrolysis of 5-acetamido-2-hy-droxy-3-nitroacetophenone (96\%) [2074], (82\%) [2075].
m.p. $141-142^{\circ}$ [2075	129-130 ${ }^{\circ}$ [2074]; ${ }^{1} \mathrm{H}$ NMR [2074], IR [2074].

1-(2-Hydroxyphenyl)ethanone

[118-93-4] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \quad$ mol.wt. 136.15

Syntheses

- Preparation by Fries rearrangement of phenyl acetate, with Lewis acids
- aluminium chloride,
with solvent:
- in petroleum ether at 25° (80%) [2142] (result not reproducible);
- in nitrobenzene [2143-2146] at 60° (26\%) [2145];
- in nitroethane at 60° (12\%) [2147];
- in chlorobenzene at $60-65^{\circ}(23 \%)$ [2148] or in a sealed tube and subjected to high power microwave irradiation for 2 min only (30\%) [2013].
without solvent:
- between 130° and 165° (63-82\%) [1967,2013,2149-2153];
- between 120° and $180^{\circ}(35-46 \%)$ [2143,2154-2159];
- between 90° and $200^{\circ}(25-31 \%)$ [1797,1888,1914,2150,2160-2165];
- at 60° (7\%) [2166];
- boron trifluoride etherate, in boiling benzene (70\%) [2167];
- aluminium chloride-sodium chloride mixture at 240-250 ${ }^{\circ}$ (47\%) [2168];
- boron trifluoride at 90° (43\%) [2164];
- titanium tetrachloride at 110° (22\%) [2169];
- scandium tris(trifluoromethanesulfonate), in nitromethane, at 50° (17\%) [2170];
- zinc chloride between 125° and $160^{\circ}(4-7 \%)$ [2164,2171];

with Protic acids

- p-Toluenesulfonic acid at 160° (25\%) [2164];
- methanesulfonic acid at $160^{\circ}(22 \%)$ [2164];
- polyphosphoric acid at 100° (20\%) [2172];
- monohydrated sulfuric acid at 190° (20\%) [2164];
- methanetrisulfonic acid at 160° (11\%) [2164];
- phosphoric acid at $190^{\circ}(8 \%)$ [2164];

with a cation exchange resin

- sulfonated polystyrene resin;
- (Dowex 50 X 8) at 150° (8\%) [2164];
- (Dowex 50 WX 8) at 115° (6\%) [2164];
- Nafion-XR 500 at 100° [2173];
with Zeolites molecular sieves
- Ga ZSM-5 at 250° (46\%) [2174];
- ZSM-5 ($\mathrm{Si} / \mathrm{Al}=20$) in sulfolane, at $180^{\circ}(34 \%)$ [2175];
- H-Nu-2 (unknown structure) at 170° (6\%) [2176];
- H-ZSM-5 (MFI structure) at 210° (4\%) [2176].
- $\mathrm{HY}(\mathrm{Si} / \mathrm{Al}=3)$ at $400^{\circ}(3 \%)$ [2177];
- fluorided alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{F} ; 3 \%\right.$ wt. F$)$ at $400^{\circ}(3 \%)$ [2177];
- H-ZSM-5 (Si/Al = 45) at $400^{\circ}(1 \%)$ [2177].
- Also obtained by Fries rearrangement of 4-trimethylsilylphenyl acetate with aluminium chloride without solvent at 140° (60\%) [2178].
- Also obtained by reaction of triethylamine hydrochloride on phenyl acetate at 260°, in a sealed tube [2179].
- Also obtained (by-product) by Fries rearrangement of 2-bromophenyl acetate with aluminium chloride without solvent, at 180° (15\%) [1817].
- Also obtained by reaction of acetic acid on phenol,
- with polyphosphoric acid at $100^{\circ}(20 \%)$ [2172];
- with zinc chloride (Nencki reaction) at reflux (2-5\%) [2165,2171,2180].
- Also obtained by reaction of acetyl chloride on phenol, in nitrobenzene, between 45° and 60°,
- with aluminium chloride (14-15\%) [2144,2181];
- with titanium tetrachloride (11\%) [2181].
- Also obtained by reaction of acetyl chloride on phenyl borate with aluminium chloride in refluxing carbon disulfide (54\%) [2182].
- Also obtained by reaction of acetic anhydride on phenol, using a steam bath,
- with $70 \% \mathrm{HClO}_{4}$ (51\%) [2183];
- with aluminium chloride (38\%) [2183];
- with zinc chloride at $145-150^{\circ}$ (36\%) [2184].
- Also obtained by reaction of acetylacetone on phenyl benzoate with aluminium chloride in nitrobenzene, at 45° (3\%) [2144].
- Preparation by diazotization of 2-aminoacetophenone and hydrolysis of the obtained diazonium salt [1819,2185,2186].
- Also obtained by demethylation of 2-methoxyacetophenone with hydrochloric acid, in a sealed tube (low yield) [2185] or at 130° [2187].
- Also obtained by hydroxylation of acetophenone,
- this reaction was accomplished by oxidation of acetophenone at platinum in methylene chloride-trifluoroacetic acid mixture containing tetraethylammonium fluoborate, at r.t. (85\% yield) [2188];
- this reaction was realized by treatment of acetophenone with sodium trifluoroacetate in nitromethane-trifluoroacetic acid-trifluoroacetic anhydride mixture in the presence of a platinum electrode, followed by treatment of the intermediate trifluoroester with 10% potassium hydrogen carbonate solution (50\% yield) [2006];
- the 2-hydroxyacetophenone was obtained by nitration and hydroxylation of acetophenone with pernitrous acid (2% yield) [2077].
- Also obtained by reaction of boiling dilute potassium hydroxide solution on flavone [2189].
- Also obtained by reaction of sodium ethoxide on chromone in refluxing ethanol [2190].
- Also obtained by reaction of aqueous potassium hydroxide on 4-hydroxycoumarin (benzotetronic acid) at 180° (80%) [2180].
- Also obtained by reaction of sodium ethoxide on 4-phenacylidenflaven in refluxing ethanol [1971].
- Also obtained by reaction of aqueous potassium hydroxide solution on methyl or ethyl 4-hydroxycoumarin-3-carboxylate at 180° (80\%) [2191].
- Also obtained by reaction of potassium hydroxide on the 2-hydroxyseneciophenone (2'-hydroxy-3,3-dimethylacrylophenone) in boiling ethanol (60\%) [2017].
- Also obtained by UV light irradiation of phenyl acetate (photo-Fries rearrangement),
- in hexane, at 25° (13\%) [2015];
- in the presence of potassium carbonate (78\%) [2015];
- in benzene (59\%) [2192];
- in cyclohexane, at $25^{\circ}(43 \%)$ [2193];
- in methanol (28\%) [2192];
- in water, at $25-30^{\circ}(25-28 \%)$ [2194,2195];
- in the presence of β-cyclodextrin (89\%) [2192], (35\%) [2195], (11\%) [2194];
- in the presence of methyl α-d-glucopyranoside (32\%) [2194];
- in ethyl ether, at 25° (24\%) [2193];
- in ethanol [2196,2197], at $30^{\circ}(19 \%)$ [2196];
- in isopropanol, at $25^{\circ}(9 \%)$ [2193].
- Also obtained by UV light irradiation of 2-methoxyphenyl acetate in benzene (14\%) [2198], in ethyl ether (4\%) [2193].
- Also obtained (by-product) on UV light irradiation of 2-hydroxy- α-chloroacetophenone in ethanol (3\%) [2199].

Isolation from natural sources

- From essential oil of Chione Glabra (Rubiaceae) [2200].
- From essential oil of Acacia farnesiana Willd [2201].
m.p. 28° [2171];
b.p. ${ }_{0.2} 56^{\circ}$ [1817], b.p. 73° [2142], b.p. 86° [2183], b.p. ${ }_{13} 91-92^{\circ}$ [2155], b.p. ${ }_{10} 92-94^{\circ}$ [2157], b.p. $93-94^{\circ}$ [2158], b.p. ${ }_{11} 95-100^{\circ}$ [2017], b.p. ${ }_{10} 96-97^{\circ}$ [2191], b.p. ${ }_{15} 96-98^{\circ}$ [2157], b.p. ${ }_{15} 97-98^{\circ}$ [1797], b.p. ${ }_{6} 98^{\circ}$ [2162], b.p. ${ }_{15}$ $99-100^{\circ}$ [2156], b.p. ${ }_{14} 100^{\circ}$ [2160], b.p. ${ }_{15} 101-101^{\circ} 5$ [2168], b.p. $._{17} 101-102^{\circ}$ [2150], b.p. ${ }_{20} 104-105^{\circ}$ [1914], b.p. ${ }_{20} 106^{\circ}$ [2159], b.p. ${ }_{17} 106^{\circ}$ [2153], b.p. ${ }_{17} 106-107^{\circ}$ [2160], b.p. ${ }_{17} 109^{\circ}$ [1967], b.p. ${ }_{32} 109-110^{\circ}$ [2202], b.p. ${ }_{15} 110^{\circ}$ [2171], b.p. . $_{33} 113^{\circ} 5-113^{\circ} 8$ [2203], b.p. ${ }_{30} 115-120^{\circ}$ [2178], b.p. 22 130-133 ${ }^{\circ}$
[2186,2204], b.p. ${ }_{34} 160-165^{\circ}$ [2200], b.p. ${ }_{717} 213^{\circ}$ [2015,2187], b.p. 213-214 ${ }^{\circ}$ [2180,2184], b.p. 215-218 ${ }^{\circ}$ [2148], b.p. $216-217^{\circ}$ [2165], b.p. 218° [1971,2161], b.p. ${ }_{744} 220^{\circ}$ [2015];
${ }^{1}$ H NMR [1817,1963,1976,2205-2209],
${ }^{13}$ C NMR [1821,1976,2206,2210,2211], IR [1797,1963,2091,2207,2209,2212],
UV [1822,2091,2213-2216],[2165,2186]; $\mathrm{pK}_{\mathrm{a}}[1949,1977,2091,2217]$.

1-(3-Hydroxyphenyl)ethanone

$[121-71-1]$	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$	mol.wt. 136.15
OH	Syntheses	

- Preparation by diazotization of 3-aminoacetophenone, followed by hydrolysis of the obtained diazonium salt [1782,1932,2145,2186,2218-2223], (78-82\%) [1782,1932].
- Synthesis of 3-hydroxyacetophenone by means of organocadmium derivatives (77\%) [2224].
- Preparation by reductive deamination of 2-amino-5-hydroxyacetophenone [2225].
- Preparation by aromatization of 5-acetyl-2-cyclohexenone [2030] promoted by, - cupric bromide and lithium bromide in refluxing acetonitrile (75%);
- Pd / C in refluxing xylene (40%).
- Also obtained by treatment of acetophenone with sodium trifluoroacetate in nitromethane-trifluoroacetic acid-trifluoroacetic anhydride mixture in the presence of a platinum electrode, followed by treatment of the intermediate trifluoroester with 10% potassium hydrogen carbonate solution (14\%) [2006], (hydroxylation of aromatic compounds).
- Also obtained (trace) by UV irradiation of phenyl acetate in ethanol at r.t. [2196].
- Also obtained from 3-(allyloxy)acetophenone by cleavage of allyl group with bis(benzonitrile)-palladium (II) chloride in refluxing benzene (90\%) [2226].
- Also refer to: [2227].

Isolation from natural sources

- From Propolis and Populus nigra bud exudate (compound 36) [2228].
- From commercial wood vinegar liquor (Cryptomeria japonica) [2229].
N.B.: Toxic action of 3-hydroxyacetophenone to the ciliate Tetrahymena pyriformis [2230,2231].

```
m.p. \(96^{\circ}[2145,2223,2224], 95-96^{\circ}[2221], 95^{\circ}[2222], 94-96^{\circ}[1859], 94-95^{\circ}\)
    [1782,2219,2225], \(94^{\circ}\) [2186,2204], \(92-93^{\circ}\) [2218], \(92^{\circ}\) [1932], \(86-88^{\circ}\)
    [2226];
b.p. \({ }_{0.01} 82^{\circ}\) [2226], b.p. \(153^{\circ}\) [2220], b.p. \({ }_{756} 296^{\circ}\) [2220];
HPLC [2228]; GC-MS [2228]; \(\mathrm{pK}_{\mathrm{a}}\) [1977,2091,2217];
\({ }^{13}\) C NMR [2219], IR [2091,2232], UV [1822,2091,2186,2223], MS [2229].
```


1-(4-Hydroxyphenyl)ethanone

[99-93-4]

Syntheses
- Preparation by Fries rearrangement of phenyl acetate
with Lewis acids

| $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \quad$ aluminium chloride, |
| :--- | :--- |

with solvent:

- in nitrobenzene at $20-25^{\circ} \quad[1914,2146,2151,2153]$ or at $50-60^{\circ}$ [2013,2143,2145,2146,2151], (75-76\%) [2013,2143,2151], (60-64\%) [2145,2146];
- in chlorobenzene between 45° and 65° [2144,2148], (69\%) [2148] or in a sealed tube and subjected to high power microwave irradiation for 2 min only (36\%) [2013];
- in nitroethane at 60° (44\%) [2147];
- in carbon disulfide at $45^{\circ}(40 \%)$ [1953];
- in petroleum ether at 50° (20\%) [2142];
without solvent:
- [1797,2143,2150,2152,2154,2157,2159,2162-2164,2166,2233,2234], but between 130° and $175^{\circ}(40-60 \%)$ [2143,2150,2154,2159,2164,2233];
- aluminium chloride-sodium chloride mixture at $240-250^{\circ}(10 \%)$ [2168];
- boron trifluoride at $90^{\circ}(56 \%)$ [2164];
- scandium tris(trifluoromethanesulfonate), in nitromethane, at 50° (39\%) [2170];
- titanium tetrachloride at $90-100^{\circ}(34 \%)$ [2162];
- ferric chloride at $65^{\circ}(25 \%)$ [2235];
- zinc chloride at 125° (8\%) [2171];

with Protic acids

- hydrofluoric acid [2236-2238], between 20° and 100° (94\%) [2237], (81\%) [2236];
- polyphosphoric acid, between 20° and 100° (69\%) [2239], (50-53\%) [2172,2240], (44\%) [2241];

with a cation exchange resin

- Nafion-XR 500 , sulfonic acid type at 100° [2173];

with Zeolites molecular sieves

- ZSM-5, in sulfolane, at 180° (28\%) [2175];
- H-ZSM-5 at 400° [2177] or at 210° (6\%) [2176];
- $\mathrm{H}-\mathrm{Nu}-2$ at 170° (15\%) [2176];
- $\mathrm{HY}(\mathrm{Si} / \mathrm{Al}=3)$ or fluorided alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{F} ; 3 \% \mathrm{wt} . \mathrm{F}\right)$, at 400° [2177].
- Also obtained by Fries rearrangement of 4-trimethylsilylphenyl acetate with aluminium chloride in refluxing carbon disulfide (55\%) [2178].
- Also obtained (by-product) by Fries rearrangement of 2-bromophenyl acetate with aluminium chloride without solvent at 180° (8\%) [1817].
- Preparation by reaction of acetic acid on phenol,
- with boron trifluoride, between 30° an 80° (95\%) [2242], (85\%) [2243], (77\%) [2244];
- with polyphosphoric acid [2239-2241], between 70° and 100° (65-67\%) [2239,2240];
- with hydrofluoric acid, at 100° (61\%) [2236];
- with zinc chloride (Nencki reaction) [2171,2180,2186,2245], (11\%) [2180];
- with Nafion-XR 500, sulfonic acid type, at 100° [2173].
- Preparation by reaction of acetyl chloride on phenol,
- with aluminium chloride, in nitrobenzene, between 45° and 60° (70-74\%) [2181,2233], (50-55\%) [2144,2246];
- with titanium tetrachloride, in nitrobenzene, at 60° (70\%) [2181];
- with butanesulfonic acid, at $85-90^{\circ}(23 \%)$ [2247];
- with ferric chloride, in carbon disulfide [1823,2221], (21\%) [1823];
- with zinc chloride [2220].
- Also obtained by reaction of acetyl chloride on phenyl borate with aluminium chloride in refluxing carbon disulfide (35\%) [2145].
- Preparation by reaction of acetic anhydride on phenol,
- with 70% perchloric acid (20\%) [2183];
- with aluminium chloride (48\%) [2248], (19\%) [2183];
- with zinc chloride at $145-150^{\circ}(40 \%)$ [2184].
- Also obtained by reaction of phenyl 2-acetoxybenzoate on phenol with aluminium chloride at 180° (18\%) [2249].
- Preparation by reaction of acetonitrile on phenol with triflic acid (trifluoromethanesulfonic acid) at r.t. (74\%) [2250].
- Preparation by dealkylation of 4-ethoxyacetophenone [2251,2252], (70\%) [2252] or 4-methoxy-acetophenone (70\%) [2252] with aluminium chloride between 140° and 180°.
- Also obtained by UV light irradiation of phenyl acetate (photo-Fries rearrangement),
- in water, at $25-30^{\circ}(24-25 \%)$ [2194,2195],
- in the presence of β-cyclodextrin [2192,2194], (69\%) [2194];
- in the presence of methyl α-D-glucopyranoside (32\%) [2194];
- in benzene or methanol, at r.t. (38-39\%) [2192],
- in cyclohexane, ethyl ether, ethanol or isopropanol, at $25-30^{\circ}$ (10-15\%) [2193,2196,2197],
- in hexane, at $25^{\circ}(4 \%)$ [2015],
- in the presence of potassium carbonate (10\%) [2015].
- Also obtained by UV light irradiation of 4-methoxyphenyl acetate in ethyl ether, at 25° (7\%) [2193].
- Also obtained by UV light irradiation of 4-hydroxy- α-chloroacetophenone in ethanol (26\%) [2199].
- Also obtained by reaction of acetylacetone on phenyl benzoate with aluminium chloride in nitrobenzene at 45° (12\%) [2144].
- Preparation by diazotization of 4-aminoacetophenone, followed by hydrolysis of the obtained diazonium salt [2253,2254].
- Also obtained by treatment of acetophenone with sodium trifluoroacetate in nitromethane-trifluoroacetic acid-trifluoroacetic anhydride mixture in the presence of a platinum electrode, followed by treatment of the intermediate trifluoroester with 10% potassium hydrogen carbonate solution (16\%) [2006], (hydroxylation of aromatic compounds).
- Also obtained by reaction of stannous chloride on 4-hydroxyacetophenone 2,4-dinitro-phenylhydrazone in refluxing aqueous acetic acid-hydrochloric acid mixture (66\%) [2255].

Isolation from natural sources:

- From the roots of Paeonia broteroi (Paeoniaceae) [2256].
- The Picein or 4-hydroxyacetophenone-D-glucoside has been isolated from leaves of Picea Glehnii Masters (Coniferae). This compound, by hydrolysis with dilute mineral acids or with emulsin leads to 4-hydroxyacetophenone [2257,2258].
- Hinokiflavone has been isolated from Chamaecyparis obtusa (Coniferae) [2259]. When treated with potassium hydroxide, Hinokiflavone produces 4-hydroxyacetophenone [2260].
- From spruce needles (Picea abies L. Karst) [2261].
- Also obtained by saponification of Apiin or Apigenin with boiling 25\% aqueous sodium hydroxide (87\%) [2262]. Apiin or 4',5,7-trihydroxyflavone-7-apiosylglucoside was isolated from parsley or from celery [2263,2264].

```
m.p. 115 [2168], 112 [2262], 110-111' [2144], 110 [1953,2142,2221],
        109-110` [1797], 109` [1914,2145,2186,2204,2239,2242,2249,2258],
        108-110 [2238], 108-109 [2148,2178,2183,2265], 108 [ [1823,2143,2
        150,2151,2153,2162,2180,2235,2245,2255], 107-109`
        [2157,2196,2236,2240], 107`5-108` [2244], 107-108` [1789,2257],
        107 [2220,2241,2250,2252,2253,2261,2266], 106 }2-10\mp@subsup{7}{}{\circ}8 [2162]
        106-107 [ [2154,2171,2246,2267], 105-108` [2243], 104-106 [2184];
b.p.3 147-148 [2180], b.p.20 170-194 [2240], b.p.4 175 [1914], b.p. .15 190
[2171];
'H NMR [1817,2250,2256,2261], '3}\textrm{C}\mathrm{ NMR [2219], IR [1797,2091,2261],
UV [1822,1829,2091,2165,2186,2216,2261,2268,2269];
pK [ [1977,2091,2217].
```


1-(2-Hydroxy-4-mercaptophenyl)ethanone

[35204-52-5]	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$ mol.wt. 168.22
OH	Syntheses
	- Preparation by reaction of stannous chloride with 2-acetyl-5-chlorosulfonylphenol in acetic acid previously saturated with gaseous hydrochloric acid (63\%) [2270]. - Also refer to: [2271].
m.p. $60-62^{\circ}$ [2270]	

1-(2-Hydroxy-5-mercaptophenyl)ethanone

1-(2-Hydroxy-6-mercaptophenyl)ethanone

$[83080-88-0]$	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$	mol.wt. 168.22
OH	Synthesis	

- Preparation by reaction of 2 N aqueous sodium hydroxide on 2-dimethylcarbamylthio-6-hydroxyacetophenone in refluxing methanol (65\%) [2273].

1-(4-Hydroxy-3-mercaptophenyl)ethanone

1-(2,3-Dihydroxyphenyl)ethanone

[13494-10-5] \quad\begin{tabular}{l}
Syntheses

- Preparation by reaction of acetic anhydride on pyro-
catechol with 70% perchloric acid on a steam bath
$(58 \%)[2183]$, at $100^{\circ}(4 \%)[2276]$.

\end{tabular}

- Preparation by demethylation of 2,3-dimethoxy-acetophenone [2277-2281], (73\%) [2278], (50\%) [2280], itself obtained by oxidation of 2,3-dimethoxyphenyl methyl carbinol [2277,2279-2281]. This "carbinol" was prepared either from 2,3-dimethoxybenzaldehyde by an organomagnesium synthesis [2277,2279,2280] or from 2,3-dimethoxycinnamic acid by Posner's method [2280,2281].
- Also obtained by acid hydrolysis of 8-hydroxyflavone [2280].
- Also obtained by UV light irradiation of pyrocatechol monoacetate in ethanol at 30° (19-22\%) [2196,2197,2282].
- Also obtained (low yield) by degradation of an aqueous solution (pH 4.5) of D-xylose at 96° (0.5\%) [2283].
- Also obtained (low yields) by degradation of aqueous solutions (pH 3.5 and 4.5) of D-glucuronic acid at 96° (0.3% and 0.2% yields, respectively) [2283].
- Also obtained from 3-acetyl-1-oxocyclohexane-2,3,6-triol, either on sublimation at 0.5 mm Hg (70% yield) or when heated in an aqueous solution (pH 4.5) and 96° (50% yield). The above triol was obtained in crystalline form (m.p. 149-150 ${ }^{\circ}$) by reaction of D-glucuronic acid in aqueous solutions (pH 3.5 and 4.5) at 96° [2283].
- Also obtained (by product) by UV light irradiation of 3-methyl-1,2-benzisoxazole in 96% sulfuric acid (10%) [2284,2285].
- Also obtained by hydrolytic rearrangement of 2-acetoacetyl-2,5-dimethoxytetrahydrofuran in refluxing 0.1 N hydrochloric acid (88\%) [2286], (52\%) [2287].
- Also obtained by hydrolysis of (2,2-dimethyl-1,3-benzodioxol-4-yl)acetone (m.p. $72-73^{\circ}$) with concentrated hydrochloric acid in refluxing ethanol under argon atmosphere (84\%) [2288].
m.p. 98-985 [2286], 98° [2196,2197,2278], 97-98 ${ }^{\circ}$ [2280,2282], 97° [2183], $96^{\circ} 5-97^{\circ} 5$ [2284], $96-98^{\circ}$ [2276,2283], $96-97^{\circ}$ [2288], 95-96 [2287];
${ }^{1} \mathrm{H}$ NMR [2282,2284,2287,2288], ${ }^{13} \mathrm{C}$ NMR [2288], IR [2284], UV [2284], MS [2284,2288].

1-(2,4-Dihydroxyphenyl)ethanone (Resacetophenone)

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15
Syntheses

- Preparation by reaction of acetic acid on resorcinol, - with zinc chloride (Nencki reaction) [1833,1835,1838,2129, 2289-2296], (94\%) [2294], (57-65\%) [2129,2291,2292];
- with boron trifluoride [2242,2297,2298], (85-94\%) [2242, 2298];
- with Amberlite IR-120 (a cation exchange resin, sulfonic acid type) (87\%) [2026];
- with polyphosphoric acid [2241,2299], (63\%) [2299];
- with 70\% perchloric acid (33\%) [2297].
- Preparation by reaction of acetonitrile on resorcinol,
- with triflic acid (trifluoromethanesulfonic acid) (87\%) [2250];
- with zinc chloride (Hoesch reaction) [2300-2304], (77\%) [2303], (70\%) [2301].
- Preparation by reaction of acetic anhydride on resorcinol,
- with boron trifluoride (91\%) [2305];
- with 70% perchloric acid (90\%) [2183], (70\%) [2306];
- with Amberlite IR-120 (83\%) [2026];
- with zinc chloride at $145-150^{\circ}(2 \%)$ [2184];
- with a trace of concentrated sulfuric acid at 130° (75\%) [2307].
- Preparation by reaction of acetyl chloride on resorcinol,
- with aluminium chloride in nitrobenzene at r.t. (65\%) [2308], (50\%) [2309];
- with Amberlite IR-120 (52\%) [2026];
- with zinc chloride [2310,2311].
- Preparation by Fries rearrangement of resorcinol monoacetate with 70% perchloric acid in acetic anhydride at r.t. (83\%) [2183].
- Preparation by Fries rearrangement of resorcinol diacetate,
- with Amberlite IR-120 (64\%) [2026];
- with aluminium chloride [2024,2312,2313], (63\%) [2313], (60\%) [2024];
- with boron trifluoride etherate in benzene at reflux (60\%) [2167];
- with zinc chloride [2129,2314], (52\%) [2314].
- Preparation by Fries rearrangement of 3-methoxyphenyl acetate with aluminium chloride without solvent at $180-185^{\circ}$ (60\%) [2024].
- Also obtained by UV light irradiation of resorcinol diacetate in methanol at 25° [2315].
- Also obtained by demethylation of 2-hydroxy-4-methoxyacetophenone,
- with potassium hydroxide [2316];
- with hydriodic acid [2316].
- Also obtained by reaction of concentrated sulfuric acid on resacetophenone diacetate [2312].
- Also obtained by reaction of potassium hydroxide on 4-methylumbelliferone [2317] or on 4-methylene-2-phenyl-4H-chromen-7-ol [2318].
- Also obtained by decarboxylation of 2-acetyl-3,5-dihydroxybenzoic acid with copper powder in quinoline at $220-230^{\circ}$ [2319].
- Also obtained by decarboxylation of 3-acetyl-2,6-dihydroxybenzoic acid with dilute hydrochloric acid at reflux [2320,2321].
- Also obtained by decarboxylation of 5-acetyl-2,4-dihydroxybenzoic acid with dilute hydrochloric acid at $160-170^{\circ}$, in a sealed tube [2322].

Isolation from natural sources

- From Chinese Moutan Cortex, the root of Paeonia suffruticosa Andrews (Paeoniaceae) [2323].
- Also obtained by thermal decomposition of the resin from Ferula pyramidata (Kar. et Kir.) eug. kor. [2293].

```
m.p. \(147^{\circ}\) [1833,2242,2298], \(146^{\circ}\) [2306-2308], 145-146 \({ }^{\circ}\) [2293], \(145^{\circ}\)
        [2026,2300], 144-145 \({ }^{\circ}\) [2301,2305], \(144^{\circ}\) [2184], \(143^{\circ}\) [2297,2322],
        \(142-144^{\circ}\) [2291], \(142-143^{\circ}\) [2320,2324], \(142^{\circ}\) [2266,2278,2289,2290,2
        313,2314,2316,2325] [2129,2186,2204,2241,2299,2309], 141-142ํ
        [2317,2319], \(141^{\circ}\) [1835], \(140-141^{\circ}\) [2292], 138- \(140^{\circ}\) [2250], 133- \(140^{\circ}\)
        [2294];
b.p. 303-305 \({ }^{\circ}\) (d) [2129];
    \(\mathrm{d}^{141^{1}{ }^{1}}=1.18\) [2220]; \(\quad \mathrm{n}_{\mathrm{D}}^{14{ }^{\circ} 1}=1.56467\) [2220];
    \({ }^{1} \mathrm{H}\) NMR [2205,2250,2326,2327], \({ }^{13} \mathrm{C}\) NMR [1821,2219,2328,2329],
    UV [2213,2296,2326,2330], MS [2331]; \(\mathrm{pK}_{\mathrm{a}}\) [1977].
```


1-(2,4-Dihydroxyphenyl)ethanone- ${ }^{13} \boldsymbol{C}_{2}$

[74291-78-4] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 154.13
 Synthesis

- Preparation by reaction of $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ acetyl chloride with resorcinol in nitrobenzene in the presence of aluminium chloride for 24 h at r.t. (65\%) [2332].

1-(2,5-Dihydroxyphenyl)ethanone (Quinacetophenone)

[490-78-8]	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15
OH	Syntheses
COCH_{3}	- Preparation by Fries rearrangement of hydroquinone diacetate,
OH	- with aluminium chloride [1970,2024,2072,2333-2341], (91\%) [2337], (76\%) [2072,2341], (63-77\%)

- with zinc chloride in refluxing acetic acid (quantitative yield) [2342];
- with boron trifluoride etherate in benzene at reflux (65\%) [2167].
- Preparation by Fries rearrangement of hydroquinone diacetate with aluminium chloride in the presence of hydroquinone (54\%) [2339].
- Also obtained by UV light irradiation of hydroquinone diacetate in methanol (35\%) [2343].
- Preparation by Fries rearrangement of 4-methoxyphenyl acetate with aluminium chloride without solvent at 130° (40\%) [2344].
- Preparation by Fries rearrangement of 4-(benzoyloxy)phenyl acetate with aluminium chloride without solvent at $125-130^{\circ}$ (22\%) [2344].
- Preparation by reaction of acetic acid on hydroquinone,
- with zinc chloride (Nencki reaction) [2000,2186,2289,2336,2342,23452347], (25-28\%) [2345,2347];
- with boron trifluoride [2242,2298,2348-2350], (95\%) [2350], (66-70\%) [2242,2298];
- with Amberlite IR-120 or Zeokarb 225 (22\%) [2026].
- Preparation by reaction of acetyl chloride on hydroquinone with aluminium chloride [2289,2336,2339], (35-40\%) [2336,2339].
- Also obtained by reaction of acetic anhydride on hydroquinone,
- with zinc chloride at $145-150^{\circ}$ (76\%) [2184];
- with Amberlite IR-120 (27\%) [2026].
- Also obtained (by-product) by reaction of acetic acid on 1,4-dimethoxybenzene with boron trifluoride at 70° [2298].
- Preparation by dealkylation of,
- 2,5-dimethoxyacetophenone with aluminium bromide in refluxing carbon disulfide (81\%) [2351];
- 2-hydroxy-5-methoxyacetophenone with hydriodic acid [2352];
- 2,5-diethoxyacetophenone or 5-ethoxy-2-hydroxyacetophenone with aluminium chloride [2289].
- Preparation by diazotization of 5-amino-2-hydroxyacetophenone, connected with hydrolysis of the obtained diazonium salt [2076,2353].
- Preparation by hydrolysis of keto esters further on,
- 5-(benzoyloxy)-2-hydroxyacetophenone with concentrated sulfuric acid at r.t. [2344];
- 5-acetoxy-2-hydroxyacetophenone,
- with 5\% aqueous sodium hydroxide (96\%) [2338];
- with a 5% solution of hydrogen chloride in methanol (75\%) [2354];
- with aluminium chloride in refluxing carbon disulfide (55\%) [2338].
- Also obtained by reduction of 2-acetyl-1,4-benzoquinone,
- with aqueous sodium hydrosulfite, in ethyl ether [2351];
- with allyltrimethylstannane, in benzene (36\%) [2355].
- Also obtained by reaction of acetaldehyde on 1,4-benzoquinone with sunlight, in a sealed tube (good yield) [2356].
- Also obtained (by-product) from 5-bromo-6-hydroxy-2-methylchromone by alkaline degradation with 10% aqueous sodium hydroxide solution at reflux (50\%) [1832].
- Also obtained (poor yield) by alkaline degradation of a solution of D-xylose or D-glucose in 0.63 M sodium hydroxide at 96° under nitrogen [2276].
- Also obtained by UV light irradiation of 3-methyl-1,2-benzisoxazole in 96-98\% sulfuric acid (52-57\%) [2284,2285].
- Also obtained by heating 5^{\prime}-cinnamyloxy-2'-hydroxyacetophenone at 220° (64\%) [2357].
- Also obtained from 5-(allyloxy)-2-hydroxyacetophenone by cleavage of allyl group with bis(benzonitrile)palladium (II) chloride in refluxing benzene (89%) [2226].

```
m.p. \(206^{\circ}\) [2336], 205-206 \({ }^{\circ}\) [2276,2354], 204 \(6-205^{\circ} 4\) [1970], \(204^{\circ}\) [2350],
        \(202^{\circ} 6-203^{\circ} 6\) [2284], 202-204 \({ }^{\circ}\) [2026], 202-203 \({ }^{\circ}\) [2334,2338,2340], \(202^{\circ}\)
        [2076,2242,2278,2289,2298,2337,2339,2346,2352,2356] [2341,2343],
        201-203 \({ }^{\circ}\) [2355], 201-202 \({ }^{\circ}\) [2266,2333,2342,2344,2345,2351], \(201^{\circ}\)
        [2186,2204], 200-201 [2347], \(200^{\circ}\) [2184], 198-200ํ [2358], 1975-
        \(198^{\circ} 5\) [2072], 196-198ㅇ [2226,2357];
b.p. \({ }_{0.01} 86^{\circ}\) [2226]; \(\mathrm{pK}_{\mathrm{a}}\) [1977];
\({ }^{1} \mathrm{H}\) NMR [2338,2348], (Sadtler: standard \(\mathrm{n}^{\circ}\) 4286); \({ }^{13} \mathrm{C}\) NMR [1821,2328],
IR [2284,2338,2355], (Sadtler: standard \({ }^{\circ}\) 10815);
UV [1779,2186,2284,2348], (Sadtler: standard n \({ }^{\circ}\) 6276); MS [2348,2355].
```


1-(2,6-Dihydroxyphenyl)ethanone (γ-Resacetophenone)

[699-83-2] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15

Syntheses

- Preparation by hydrolysis of 8-acetyl-4-methyl-umbelliferone (8-acetyl-7-hydroxy-4-methylcoumarin) with aqueous sodium hydroxide solution at reflux (56-73\%) [2213,2359-2361], (77-89\%) [2362-2367], (89-100\%) [2363,2368-2370].
- Preparation by hydrolysis of 8-acetyl-4-phenylumbelliferone with aqueous sodium hydroxide solution at reflux (33\%) [2371].
- Preparation by demethylation of 2,6-dimethoxyacetophenone with aluminium chloride in toluene at 120° (24\%) [2366,2367], (59\%) [2372]. The 2,6-dimethoxyacetophenone was obtained from 2,6-dimethoxybenzonitrile and methylmagnesium iodide.

From Microorganisms

- Isolation from Daldinia concentrica [2373].

$$
\begin{array}{lllll}
\text { m.p. } \quad 157-158^{\circ} \quad[2372], \quad 157^{\circ} \quad[2278,2369,2371], & 156-157^{\circ} \\
\quad[2359,2361,2366,2367], 155-156^{\circ} & {[2213],} & 154-157^{\circ} & {[2374],} & 154-156^{\circ} \\
\quad[2370], 154-155^{\circ} & {[2363-2365], 154^{\circ}} & {[2360], 152-154^{\circ}} & {[2368] ;} & \\
{ }^{1} \mathrm{H} \text { NMR }[2206,2374],{ }^{13} \mathrm{C} \text { NMR }[2206,2219], \text { UV }[2213,2375] .
\end{array}
$$

1-(3,4-Dihydroxyphenyl)ethanone

[1197-09-7]	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15
OH	Syntheses
	- Preparation by Fries rearrangement of pyrocatechol diacetate with aluminium chloride in nitrobenzene between 75° and 95° [2282,2339,2376], (80\%) [2339], (64\%) [2282], (43\%) [2376] or in chlorobenzene at $80^{\circ}(83 \%)$ [2377].

- Also obtained by Fries rearrangement of guaiacol acetate with aluminium chloride in nitrobenzene at r.t. (30%) [2339] or without solvent between 20° and 50° (6\%) [2378].
- Preparation by reaction of acetic acid on pyrocatechol,
- with boron trifluoride in a sealed tube at 150° (43\%) [2298];
- with zinc chloride (Nencki reaction) [2171,2379], (20\%) [2171];
- with polyphosphoric acid (10\%) [2299].
- Also obtained by reaction of acetic anhydride on pyrocatechol,
- with perchloric acid at $100^{\circ}(6 \%)$ [2276];
- with zinc chloride at $145-150^{\circ}$ (51\%) [2184].
- Preparation by reaction of acetyl chloride with pyrocatechol with aluminium chloride at 140° [2380].
- Also obtained by UV light irradiation of pyrocatechol monoacetate in ethanol at 30° (18\%) [2196,2197].
- Also obtained by reaction of 5\% aqueous potassium hydroxide on Luteolin, at reflux [2381].
- Preparation by demethylation of acetovanillone,
- with dilute hydrochloric acid in a sealed tube at $140-150^{\circ}$ [2379];
- using aluminium chloride and pyridine $[2331,2382]$.
- Also obtained by reaction of zinc powder [2266,2383-2386] or stannous chloride [2384] and hydrochloric acid on 3,4-dihydroxy- α-chloroacetophenone (quantitative yield) [2266,2384], (45-49\%) [2385].
- Also obtained by reaction of aluminium bromide on (3,4-methylenedioxy)acetophenone (acetopiperone) in nitrobenzene at r.t. (48\%) [2387].
- Also obtained from 3,4-diacetoxyacetophenone [2383],
- by heating with a concentrated solution of sodium carbonate;
- by refluxing with 5\% sulfuric acid;
- by treatment with porcine pancreatic lipase in diisopropyl ether and n-butanol at $42-45^{\circ}$ (80%) [2388,2389].
- Also obtained (by-product) by chlorination of acetoguaiacone in dioxane-water mixture at 40° (3\%) [1789].
- Also obtained (poor yield) by alkaline degradation of a solution of D-xylose or D-glucose in 0.63 M sodium hydroxide at 96° under nitrogen ($<1 \%$) [2276].
- Also obtained from neutral glucose and fructose solutions heated at 120° [2390].

Isolation from natural sources

- From the needles of Picea obovata Ledeb. and Picea koraiensis Nakai (Pinaceae) [2391].
- This ketone was shown to occur in natural humic acids* and fulvic acids by hydrolysis with 2 N sodium hydroxide at 170° [2392]. Allomelanins* found in soils, coals and peat, resulting from the decomposition of organic matter, particularly dead plants [2393].
- By hydrolysis of its 3-O- β-D-glucopyranoside (poungenoside) (m.p. 200-202) [2391].
N.B.: it was found to be an antimicrobial substance in coffee residue [2394].
m.p. 122° [2196,2197], 120° [2298], 119-121 ${ }^{\circ}$ [2385], $119^{\circ} 2-119^{\circ} 7$ [2380], $118-120^{\circ}$ [2276], $117-118^{\circ}$ [2387], 117° [2331], $116-117^{\circ}$ [2391], 116° [2 $171,2184,2299,2339,2376,2382,2384], 115-116^{\circ}$ [2266,2282], $114-116^{\circ}$ [2381], 114-115 ${ }^{\circ}$ [2383], 114° [2386], 110-112 ${ }^{\circ}$ [2377], $96-98^{\circ}$ [2379];
b.p. ${ }_{11} 127-133^{\circ}$ [2299]; pK_{a} [2091]; TLC [2391]; HPLC [2394];
${ }^{1} \mathrm{H}$ NMR [2276,2282,2391,2394], ${ }^{13}$ C NMR [2394], IR [2091,2276,2391,2392], UV [2091,2196,2282,2391], MS [1789,2276,2331,2392,2394].

1-(3,5-Dihydroxyphenyl)ethanone
[51863-60-6]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
Syntheses

- Preparation from 3,5-dimethoxyacetophenone (SM) by demethylation with aluminium chloride in refluxing chlorobenzene (71\%) [2395]. The starting material (SM) was prepared by a three-step procedure from 3,5-dimethoxy-benzoic acid.
- Preparation from 3,5-diacetoxyacetophenone by hydrolysis with 10% sulfuric acid at reflux (41\%) [2396]. The starting ketone was prepared by reaction of methyl bromide on 3,5-diacetoxybenzoyl chloride in the presence of dimethyl cadmium.
m.p. 148° [2396], 147-148 ${ }^{\circ}$ [2395].

1-(2,3,4-Trihydroxyphenyl)ethanone (Gallacetophenone)
[528-21-2] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15

Syntheses

- Preparation by Fries rearrangement of pyrogallol triacetate with aluminium chloride without solvent [2312,2335], (very good yield) [2335].
- Preparation by reaction of acetic anhydride on pyrogallol,
- with Amberlite IR-120 or Zeokarb 225, at 160° (84\%) [2026];
- with few drops sulfuric acid at 130° (65\%) [2307];
- with zinc chloride at $145-150^{\circ}$ (53%) [2184] or in the presence of acetic acid (58-63\%) [2397,2398];
- with sulfuric acid and benzene-1,3-disulfonic acid mixture at 135° (54\%) [2399];
- with 70% perchloric acid on a steam bath (44\%) [2183].
- Preparation by reaction of acetyl chloride on pyrogallol with aluminium chloride [2309,2400-2402].
- Preparation by reaction of acetic acid on pyrogallol,
- with boron trifluoride at $28-30^{\circ}(90 \%)$ [2242,2403] alone or in ethyl ether at 0° (90\%) [2268];
- with Amberlite IR-120 or Zeokarb 225 at 160° (75\%) [2026];
- with zinc chloride at $140-150^{\circ}$ (Nencki reaction) (good yield) [2129,2186,2290,2404], (58\%) [2405];
- with 70% perchloric acid, at reflux (30\%) [2297].
- Also obtained by dealkylation of 2,3-dihydroxy-4-methoxyacetophenone with aluminium chloride in refluxing chlorobenzene [2406].
- Also obtained by hydrolysis of 3,4-diacetoxy-2-hydroxyacetophenone [2343].
- By other method (90\%), also refer to: [2407].
- Preparation by reaction of hydrogen peroxide on 3-formylresacetophenone in 1 N aqueous sodium hydroxide (79\%) [2360].
- Also obtained by cleavage of 4-methylene-2-phenyl-4H-chromene-7,8-diol with boiling 10% potassium hydroxide [2318].

```
m.p. 186 [2312], 173 [ [2183,2242,2297,2401,2403,2404], 172 [ [2186,2204],
    171-173 [ [2184], 171-172 [2397,2398], 171' [2268,2400], 170 [2405],
    169-171` [2026], 169-170 [2307,2343], 168` [2129,2266,2290,2360,2402,24
        06], 167[2309];
IR [2403], UV [2186,2268].
```


1-(2,3,6-Trihydroxyphenyl)ethanone

[85918-30-5] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15

Syntheses

- Photolysis of 1,2,4-triacetoxybenzene gave a complex mixture from which 2-acetyl-3,6-diacetoxyphenol could be isolated. The triacetate of this one, by deacetylation afforded 3-acetyl-1,2,4-trihydroxybenzene [2343].
- Preparation by reaction of potassium persulfate on 2,6-dihydroxyacetophenone in aqueous sodium hydroxide solution at $15-20^{\circ}$ (29\%) [2408].
- Preparation by reaction of hydrogen peroxide on 3-formyl-2,6-dihydroxyacetophenone in 1 N aqueous sodium hydroxide (71-74\%) [2360,2409].
m.p. 160° [2343], 157° [2360],
230° (d) [2408], 96° [2409]. These reported melting points are obviously wrong.
(The triacetate melted to 155° [2408]).

1-(2,4,5-Trihydroxyphenyl)ethanone

[1818-27-5]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15
Syntheses

- Preparation by Fries rearrangement of 1,2,4-triace-toxy-benzene,
- with aluminium chloride in nitrobenzene [2312,2410-2413], (30-43\%) [2411-2413];
- with zinc chloride at $135-140^{\circ}$ [2399,2414-2416], (49-53\%) [2399,2414];
- with p-toluenesulfonic acid in refluxing tetrachloroethane or benzene or without solvent at $135-140^{\circ}$ (60\%) [2399].
- Also obtained by reaction of potassium persulfate on resacetophenone (Elbs reaction),
- in aqueous solution of potassium hydroxide at r.t. (24-30\%) [2417,2418];
- with ferrous sulfate in aqueous sodium hydroxide at r.t. (18\%) [2415].
- Preparation by reaction of acetonitrile on hydroxyquinol with zinc chloride (Hoesch reaction) [2411-2413,2419], (25\%) [2411].
- Also obtained by reaction of acetic acid-acetic anhydride mixture on hydroxyquinol with zinc chloride at $140-150^{\circ}$ (32\%) [2411].
- Also obtained by reaction of acetic anhydride on hydroxyquinol with concentrated sulfuric acid at 135° (61-81\%) [2399].
- Preparation by reaction of acetic anhydride on p-quinone with concentrated sulfuric acid alone or with benzenesulfonic acid, p-toluenesulfonic acid, dlcamphorsulfonic acid or benzene-m-disulfonic acid at 135° (53 to 70%) [2399].
- Also refer to: [2420].
m.p. 208° [2416], 206-207 ${ }^{\circ}$ [2312,2411-2413], 206° [2419], 202-204 ${ }^{\circ}$ [2417], 200-202́ [2414,2415];
${ }^{13} \mathrm{C}$ NMR [2421], MS [2331].

1-(2,4,6-Trihydroxyphenyl)ethanone (Phloroacetophenone)

[480-66-0]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15
Syntheses

- Preparation by reaction of acetic anhydride on phloroglucinol,
- with concentrated sulfuric acid at $130^{\circ}(70 \%)$ [2307];
- with boron trifluoride at 10° (62.5-68\%) [1844];
- with zinc chloride at $145-150^{\circ}$ (50\%) [2184];
- with Amberlite IR-120 or Zeokarb 225 (cation exchange resins, sulfonic acid type) at 160° (39\%) [2026].
- Preparation by reaction of acetonitrile on phloroglucinol,
- with zinc chloride (Hoesch reaction) [2268,2301,2422-2427], (93\%) [2425], (74-87\%) [2301,2422,2424,2426];
- with triflic acid, at r.t. (40\%) [2250].
- Preparation by reaction of acetyl chloride on phloroglucinol,
- with boron trifluoride, at 10° (62.5-68\%) [1844];
- with aluminium chloride, in nitrobenzene [2309,2312,2428], (25-30\%) [2312,2428];
- with ferric chloride, in a boiling water bath [2000].
- Preparation by reaction of acetic acid on phloroglucinol with zinc chloride (Nencki reaction), and then saponification of 5,7-dihydroxy-4-methylene-2-(2,4,6-trihydroxyphenyl)-4H-benzopyran first formed (76\%) [2429].
- Preparation by reaction of phenyl acetate on phloroglucinol with boron trifluoride etherate in refluxing benzene (30\%) [2167].
- Also obtained by Fries rearrangement of phloroglucinol triacetate with aluminium chloride in nitro-benzene at 27° (10\%) [2312].
- Also obtained by deacetylation of 4,6-diacetoxy-2-hydroxyacetophenone [2343].
- Also obtained (high yields) by hydrolysis of undermentioned compounds with water at $160-170^{\circ}$ [2430],
- ethyl 5,7-dihydroxy-2,4-dioxo-chroman-8-carboxylate;
- ethyl 3-ethoxycarbonylacetyl-2,4,6-trihydroxybenzoate;
- diethyl 5-ethoxycarbonylacetyl-2,4,6-trihydroxy-isophthalate.
- Also obtained by cleavage of 4-methylene-2-phenyl-4H-chromen-5,7-diol with boiling 10% potassium hydroxide (low yield) [2318,2431].
 [2423], $218^{\circ} 5$ [2425], 218-219ㅇ [2424,2426], 218° [2301,2309,2312,2430], $217-218^{\circ}$ [2422], 216-218 ${ }^{\circ}$ [2250], 214-216ํ [2184], 214-215 ${ }^{\circ}$ [2432], 213-214 ${ }^{\circ}$ [2307,2428], 209-210ㅇ [2431];
TLC [2433]; tautomerism [2434];
${ }^{1} \mathrm{H}$ NMR [2206,2250,2435], ${ }^{13} \mathrm{C}$ NMR [2206,2219,2328,2436], IR [2435],
UV [2268,2437], MS [2331].

1-(3,4,5-Trihydroxyphenyl)ethanone

[33709-29-4]	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15
OH	Syntheses
	- Preparation by reaction of aluminium chloride on gallacetophenone trimethyl ether in refluxing chlorobenzene (71\%) [2438].
COCH_{3}	- Preparation from diethyl 3,4,5-triacetoxybenzoylmalonate by hydrolysis and decarboxylation with 10% sulfuric acid in acetic acid at $80^{\circ}(92 \%)$ [2439].

- Also refer to: [2440,2441].

Isolation from natural sources

- This ketone was shown to occur in natural humic acids* and fulvic acids by hydrolysis with 2 N sodium hydroxide at 170° [2392]. Allomelanins* found in soils, coals and peat, resulting from the decomposition of organic matter, particularly dead plants [2393].
m.p. $187-188^{\circ}$ [2438]; $178-180^{\circ}$ [2439]; IR [2392], MS [2392,2439].

1-(2,3,4,6-Tetrahydroxyphenyl)ethanone

[63635-39-2] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5} \quad$ mol.wt. 184.15

Syntheses

- Preparation by reaction of acetic acid on 1,2,3,5-tetrahydroxybenzene by heating with zinc chloride (Nencki reaction) [2442,2443], (84-85\%) [2443].
- Preparation by reaction of acetonitrile on 1,2,3,5-tetra-hydroxybenzene (Hoesch reaction) [2444,2445], (65\%) [2445].
- Also obtained by demethylation of 3,6-dihydroxy-2,4-dimethoxyacetophenone with aluminium chloride in boiling chlorobenzene (42\%) [2446].
- Also refer to: [2442] (compound I); [2447] (compound 9); [2448] (compound 2); [2449] (compound 12).
m.p. 243-244 ${ }^{\circ}$ [2446], 236-238 ${ }^{\circ}$ [2444,2445], 204-205 ${ }^{\circ}$ [2443];
${ }^{1} \mathrm{H}$ NMR [2445], IR [2445], MS [2445].
1-(2,3,5,6-Tetrahydroxyphenyl)ethanone
mol.wt. 184.15
m.p. 134° [2450].

1-(2-Amino-3-hydroxyphenyl)ethanone
[4502-10-7] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17
 Syntheses

- Preparation from 3-hydroxy-2-nitroacetophenone,
- by catalytic hydrogenation in the presence of Raney nickel in ethanol (good yield) [2451] or in the presence of $5 \% \mathrm{Pt} / \mathrm{C}$ catalyst in THF under normal pressure at r.t. for 5 h [2452], (96\%) [2453];
- by reduction with iron filings in aqueous hydrochloric acid [2093] (Béchamp reduction).
- Preparation by reaction of hydriodic acid with 3-methoxy-2-nitroacetophenone in the presence of phosphorous. Simultaneous demethylation and reduction of the nitro group occur [2093].
- Also obtained as a side product by photolysis of 3-methylanthranil in 98% sulfuric acid (6\%) [2285,2454,2455].
- Also obtained from 2-azidoacetophenone, by thermal decomposition in 98% sulfuric acid (9\%) [2454,2455] or by photolysis in dioxane/water/sulfuric acid mixture (3\%) [2454,2455].
- Also refer to: [2456] (compound 8b) and [2457,2458].

Isolation from natural sources
By alkaline degradation,

- of 3-hydroxykynurenine [2459-2461], (13\%) [2462], itself obtained by gentle alkaline degradation of Xanthommatin [2461];
- of Ommin (SM) by heating with 2 N sodium hydroxide in a water bath for 4 h under oxygen atmosphere (53\%) [2460]. SM was isolated from the eyes of silkworms (Bombyx Mori) and prawns (Crangon vulgaris);
- of Ommatin D [2459] according to the method [2462];
- of Ommochromes (Xanthommatin, Rhodommatin, Ommatin D and Bombyx Ommin) with 2 N sodium hydroxide by heating in a water bath for 2 h [2459].

Also refer to: [2463].
m.p. $185-187^{\circ}$ [2453], 185° [2093], $184-185^{\circ}$ [2455], 183° [2462];
paper chromatography [2459,2460];
${ }^{1} \mathrm{H}$ NMR [2453,2455], ${ }^{13} \mathrm{C}$ NMR [2453], IR [2455,2462], UV [2122,2455,2459,2460], MS [2455].

1-(2-Amino-3-hydroxyphenyl)ethanone (Hydrochloride)

$$
\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl} \quad \text { mol.wt. } 187.63
$$

 Syntheses

- Obtained by reaction of gaseous hydrochloric acid on 2-amino-3-hydroxyacetophenone in ethanol-ethyl ether mixture (93\%) [2451].
- Also refer to: [2458].
m.p. 215° (d) [2451].

1-(2-Amino-4-hydroxyphenyl)ethanone

[90033-64-0]	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17
OH	Syntheses
	- Preparation by reaction of aluminium chloride with 2-amino-4-methoxyacetophenone in methylene chloride (63\%) [2464].
COCH_{3}	- Preparation from 3-hydroxyaniline using acetonitrile with boron trichloride as a catalyst [2465] or by classical FriedelCrafts techniques [2466].

${ }^{1} \mathrm{H}$ NMR [2464].

1-(2-Amino-5-hydroxyphenyl)ethanone

[30954-71-3] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17

Syntheses

- Preparation by catalytic hydrogenation of 5-hydroxy-2-nitroacetophenone in the presence of platinic oxide in methanol (quantitative yield) [2091].
- Also obtained by UV light irradiation of,
- 3-methyl-2,1-benzisoxazole (3-methylanthranil), in 98% sulfuric acid (83%) [2455], (87%) [2285,2454] or in 66% sulfuric acid at $80-90^{\circ}(88-95 \%)$ [2225];
- 3-methyl-1 H-indazole, at $11-15^{\circ}$, in dilute sulfuric acid (26-28\%) [2285,2467] or in methanol, water and sulfuric acid mixture (19\%) [2285].
- Also obtained from 2-azidoacetophenone,
- by thermal decomposition in 98% sulfuric acid (67\%) [2454,2455];
- by UV light irradiation in dioxane, water and sulfuric acid mixture (21\%) [2454,2455].
m.p. $178-179^{\circ}$ [2455,2467], $176-177^{\circ}$ [2091,2225];
${ }^{1} \mathrm{H}$ NMR [2455,2467], IR [2455,2467], UV [2455,2467], MS [2455,2467].

1-(3-Amino-2-hydroxyphenyl)ethanone

$[70977-72-9]$	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$	mol.wt. 151.17
OH	Syntheses	

 Syntheses

- Preparation by catalytic hydrogenation of 2-hydroxy-3-nitroacetophenone in the presence of Pt / C in ethanol at 25° (90\%) [1898].
- Preparation by reaction of stannous chloride on 2-hydroxy-3-nitroacetophenone with hydrochloric acid [1965].
- Preparation by hydrogenolysis of 3-amino-5-chloro-2-hydroxyacetophenone [2140].
- Preparation by reduction of 2-hydroxy-3-nitroacetophenone (65\%) [2075].
m.p. $95-97^{\circ}$ [1898], $95-96^{\circ}$ [2075], $93-94^{\circ}$ [1965,2036].

1-(3-Amino-2-hydroxyphenyl)ethanone (Hydrobromide)

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HBr} \quad$ mol.wt. 232.08
Synthesis

- Preparation by catalytic hydrogenation of 5-bromo-2-hydroxy-3-nitroacetophenone in presence of Pd / C in solution of methanol and methylene chloride mixture at r.t. (99\%) [1805].

1-(3-Amino-2-hydroxyphenyl)ethanone (Hydrochloride)
[90005-55-3]

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 187.63
Synthesis

- Preparation by catalytic hydrogenolysis of 3-amino-5-chloro-2-hydroxyacetophenone hydrochloride at 25° in the presence of Pd / C in isopropanol (94\%) [2140].

1-(3-Amino-4-hydroxyphenyl)ethanone

[54255-50-4] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17
 Syntheses

- Preparation by hydrolysis of 3-acetamido-4-hydroxy-acetophenone with boiling aqueous hydrochloric acid at $50 \% \mathrm{HCl}$ [2468] or 10 N HCl (78\%) [2469].
- Preparation from 4-hydroxy-3-nitroacetophenone,
- by catalytic hydrogenation in acetone [1999,2098], (67\%) [2098] or in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in methanol at r.t. (95\%) [2105];
- by reaction of tin in boiling concentrated hydrochloric acid [1953].
m.p. $127-128^{\circ}$ [2469], $98-99^{\circ}$ [2105], 98° [1999,2098,2468]. One of the reported melting points is obviously wrong.
oil [1953]; ${ }^{1} \mathrm{H}$ NMR [2469], IR [2469].
1-(3-Amino-4-hydroxyphenyl)ethanone (Hydrobromide)
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HBr} \quad$ mol.wt. 232.08

m.p. 250° (d) [2105].

1-(3-Amino-4-hydroxyphenyl)ethanone (Hydrochloride)

[14347-14-9]	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 187.63
OH	Synthesis
	- Obtained on saturating with dry hydrogen chloride gas an acetone-ethyl ether solution of the amine [2098].
COCH_{3}	
m.p. $>250^{\circ}$ (d)	(anhydrous) [2098],
232° (monohydra	e) [2105].

```
1-(4-Amino-2-hydroxyphenyl)ethanone
```


1-(4-Amino-2-hydroxyphenyl)ethanone (Hydrochloride)
[51410-07-2] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 187.63

1-(4-Amino-3-hydroxyphenyl)ethanone

1-(5-Amino-2-hydroxyphenyl)ethanone

[50-80-6] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17
 Syntheses

- Preparation by hydrolysis of 5-acetamido-2-methoxyacetophenone (80\%) [1975].
- Preparation by hydrolysis of 5-acetamido-2-hydroxyacetophenone with boiling aqueous hydrochloric acid solution [1965,2016,2057,2468,2470,2473,2474], (50\%) [2016,2473], (84\%) [1965].
- Preparation by reduction of 2-hydroxy-5-nitroacetophenone,
- with stannous chloride [1965,2016,2076], (53\%) [2076];
- by electrolytic way in concentrated sulfuric acid [2475].
- The 5-amino-2-hydroxyacetophenone hydrochloride, by treatment with ammonia gave the keto-base [2353].
- Also obtained by electrolytic reduction of 3-nitroacetophenone in concentrated sulfuric acid [2107].
m.p. $121-122^{\circ}$ [2076], 118° [2057,2353], 112-113 ${ }^{\circ}$ [1975], 112-113 ${ }^{\circ}$ [1965], 110° [2016,2107,2468,2475], 105° [2473,2474].

1-(5-Amino-2-hydroxyphenyl)ethanone (Hydrochloride)

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 187.63

Synthesis

- Obtained by reaction of gaseous hydrochloric acid on 5-amino-2-hydroxyacetophenone in ethanol [1965,2057] or in ethyl ether [2473,2474].
m.p. 230-240
(d) $[1965], 231^{\circ}[2353], 155^{\circ}$
(d) $[2473,2474]$.

1-(5-Amino-2-hydroxyphenyl)ethanone (Sulfate)
$2 \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4} \quad$ mol.wt. 400.41

Synthesis

- Easily obtained by reaction of sulfuric acid on $\mathrm{H}_{2} \mathrm{SO}_{4} \quad$ 5-amino-2-hydroxyacetophenone in ethyl ether [2474].
m.p. 150° [2474].

1-(5-Amino-2,4-dihydroxyphenyl)ethanone
[5528-13-2]

m.p. 137-142 ${ }^{\circ}$ (d) [2130].

1-(5-Amino-2,4-dihydroxyphenyl)ethanone (Hydrochloride)
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 203.61

Synthesis

- Prepared by passing dry hydrochloric acid in 2,4-dihy-droxy-5-aminoacetophenone in acetone solution, and adding ethyl ether when needed for precipitation [2130].
m.p. $>300^{\circ}$ [2130].

\section*{1-(2,3,6-Trichloro-4-hydroxy-5-methoxyphenyl)ethanone
 [94649-69-1] \quad| Synthesis not yet described |
| :--- |
| - Identified in wheat and rye straw pulp bleaching and |
| combined mill effluents [1787]. |}

1-[2-Hydroxy-5-(trifluoromethyl)phenyl]ethanone

[67589-15-5]	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 204.15
OH	Synthesis
	- Preparation by reaction of acetyl chloride with p-(trifluoromethyl)phenol in hydrofluoric acid for 6 h to 100° under 3 atm (88\%) [2476].
${ }^{1} \mathrm{H}$ NMR [2476]	IR [2476].

1-[4-Hydroxy-3-(trifluoromethyl)phenyl]ethanone

$[149105-11-3]$ | Synthesis |
| :--- |
| Obtained by heating to 180° under nitrogen a mixture of
 4-methoxy-3-(trifluoromethyl)acetophenone and pyridinium
 chloride (39\%) [2477]. |
| m.p. $168-170^{\circ}$ [2477]. |

1-[2-Hydroxy-5-(trifluoromethoxy)phenyl]ethanone

[146575-64-6] | 4-trifluoromethoxy-2-(α-hydroxyethyl)phenol in the pres- |
| :--- |
| ence of Celite in methylene chloride at |
| [2478,2479] |

1-[2,4,6-Trihydroxy-3-[(trifluoromethyl)thio]phenyl]ethanone

[66625-03-4]

m.p. $139-140^{\circ}$ [2480]; ${ }^{1} \mathrm{H}$ NMR [2480], IR [2480].

1-(3-Hydroxy-5-methyl-2,4,6-trinitrophenyl)ethanone

Synthesis

- Obtained by reaction of nitric acid on 3-hydroxy-5methylacetophenone in acetic anhydride at 10° (23\%) [2122].
m.p. $195-196^{\circ}$ [2122].

1-[3-Bromo-5-(chloromethyl)-4-hydroxyphenyl]ethanone

[107724-60-7] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2} \quad$ mol.wt. 263.52

Synthesis

- Preparation by adding a methylene chloride solution of bromine to a methanol/methylene chloride solution of 3-(chloromethyl)-4-hydroxyacetophenone at 0° (85\%) [2481].
m.p. $\quad 120-121^{\circ}$ [2481]; ${ }^{1} \mathrm{H}$ NMR [2481], IR [2481], MS [2481].

1-[3-(Bromomethyl)-5-chloro-2-hydroxyphenyl]ethanone

[50317-56-1]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2} \quad$ mol.wt. 263.52 Syntheses

- Preparation by heating 3,3'-diacetyl-5,5'-dichloro-$2,2^{\prime}$-di-hydroxydibenzyl ether with an 48% aqueous hydrobromic acid solution during 8 h (61\%) [2482].
- Preparation by [Quelet (bromomethylation) reaction] of 5-chloro-2-hydroxyacetophenone [2482] according to [2483].
m.p. $74-76^{\circ}$ [2482].

1-(3-Bromo-2-hydroxy-4-methoxy-5-nitrophenyl)ethanone

1-(3-Bromo-6-hydroxy-2-methoxy-5-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{5}$
mol.wt. 290.07

Syntheses

- Preparation by bromination of 2-hydroxy-6-meth-oxy-3-nitroacetophenone [1807,2485,2486], (44\%) [1807].
- Obtained by reaction of nitric acid $(d=1.4)$ on 2,2'-di-hydroxy-3,3'-diacetyl-4,4'-dimethoxy-5,5'dibromophenyl thioether, at 0° [2485].
m.p. $160-162^{\circ}$ [1807], $156-157^{\circ}$ [2485,2486]; IR [1807].

1-(5-Bromo-2-hydroxy-4-methoxy-3-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{5} \quad$ mol.wt. 290.07

Synthesis

- Preparation by reaction of nitric acid on 5-bromo-2-hydroxy-4-methoxyacetophenone in acetic acid at r.t. [1818].
m.p. $112-114^{\circ}$ [1818].

1-(2,4-Dibromo-6-hydroxy-3-methylphenyl)ethanone

1-(3,5-Dibromo-2-hydroxy-4-methylphenyl)ethanone
[145666-17-7]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$
mol.wt. 307.97
Syntheses

- Preparation by reaction of bromine with 2-hydroxy-4-methylacetophenone in aqueous acetic acid (68\%) [2488].
- Also refer to: [1783] (compound 1b).
m.p. $107-108^{\circ}$ [2488]; ${ }^{1} \mathrm{H}$ NMR [2488], IR [2488].

1-(3,5-Dibromo-2-hydroxy-6-methoxyphenyl)ethanone

[16290-04-3] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 323.97

Synthesis

- Preparation by reaction of bromine with 2-hydroxy-6methoxyacetophenone in acetic acid at 35° (62%) [2489].
m.p. $90-90^{\circ} 5$ [2489]; ${ }^{1} \mathrm{H}$ NMR [2489].

1-(5-Chloro-2-hydroxy-3-iodo-4-methylphenyl)ethanone

$[292144-86-6]$	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClIO}_{2}$	mol.wt. 310.52
OH	Synthesis	

m.p. 76° [1802].

Synthesis

- Preparation by iodination of 5-chloro-2-hydroxy-4-methyl-acetophenone with iodine (1 mol) and iodic acid (1 mol) in ethanol at $35-40^{\circ}$ for $1.5 \mathrm{~h}(75-85 \%)$ [1802].

1-[3-Chloro-5-(chloromethyl)-2-hydroxyphenyl]ethanone

[66883-87-2] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07

Syntheses

- Preparation from 3-chloro-2-hydroxyacetophenone in acetic acid solution by introduction of the chloromethyl group into aromatic ring by treatment with formaldehyde and hydrogen chloride in the presence of zinc chloride (44\%) [2490] (Blanc [2490] reaction).
- Also refer to: [2491,2492].
m.p. 145° [2490].

1-[5-Chloro-3-(chloromethyl)-2-hydroxyphenyl]ethanone

[34987-36-5]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07
Syntheses

- Preparation from 5-chloro-2-hydroxyacetophenone in ethylene dichloride solution by introduction of the chloromethyl group into aromatic ring by treatment with 37% formalin and hydrogen chloride in the presence of zinc chloride at $60-65^{\circ}$ (76-68\%) [2009,2493] [Blanc (Chloromethylation) reaction].
- Preparation by reaction of concentrated hydrochloric acid with 5-chloro-2-hy-droxy-3-hydroxy-methylacetophenone for 5 days at 20° (95\%) [2482].
- Also refer to: [2491,2492,2494].
m.p. $68^{\circ} 5-69^{\circ}$ [2009], 67-68ㅇ [2482];
b.p. $130-135^{\circ}$ [2009], b.p. $140-142^{\circ}$ [2482]; IR [2493].

1-(2,3-Dichloro-4-hydroxy-6-methylphenyl)ethanone

[21472-87-7]	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \mathrm{~mol}$. wt. 219.07
H	Synthesis
	- Obtained as a trace during the rearrangement of 1,2,3,3-tet-rachlorocyclopropane-cis-1,2-diacetone by heating with saturated solution of sodium bisulfate in acetic acid a $100^{\circ}(<1 \%)$ [2495].

m.p. $107-108^{\circ}$ [2495]; ${ }^{1} \mathrm{H}$ NMR [2495], IR [2495].

1-(3,5-Dichloro-2-hydroxy-6-methylphenyl)ethanone

 $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07 Syntheses

- Obtained by Fries rearrangement of 2,4-dichloro-5-methyl-phenyl acetate with aluminium chloride at 135° (21\%) [2496].
- Obtained by reaction of pyridinium chloride on 3,5-di-chloro-2-methoxy-6-methylacetophenone at 210° (21\%) [2496].
- Also obtained by reaction of levulinic acid on 3,5-dichloro-2-hydroxy-6-methylacetophenone hydrazone in 1 N hydrochloric acid using a steam bath (15\%) [2496].
- Also obtained by basic hydrolysis of 6,8-dichloro-2,5-dimethylchromone with 5% aqueous sodium hydroxide in refluxing methanol (4\%) [2496].
m.p. 104-105 5 [2496].

1-(3,5-Dichloro-2,6-dihydroxy-4-methylphenyl)ethanone
[3361-23-7]

m.p. $164-165^{\circ}$ [2497].

Synthesis

- Preparation by reaction of sulfuryl chloride with 2,6-di-hydroxy-4-methylacetophenone in ethyl ether (71\%) [2497].

1-(2,3-Dichloro-4-hydroxy-5-methoxyphenyl)ethanone

[154638-85-4] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 235.07

Synthesis

- Obtained by chlorination of acetoguaiacone in dioxanewater mixture at 40° (29\%) [1789].

MS [1789].
1-(3,5-Dichloro-2-hydroxy-6-methoxyphenyl)ethanone
[87953-94-4] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 235.07
Syntheses

- Preparation by reaction of chlorine on 2-hydroxy-6methoxyacetophenone in chloroform at r.t. (50\%) [1884].
- Preparation by reaction of sulfuryl chloride on 2-hydroxy-6-methoxyacetophenone in refluxing acetic acid [2021].
- Also obtained by reaction of dimethyl sulfate on 3,5-dichloro-2,6-dihydroxyacetophenone with potassium carbonate in refluxing benzene (very low yield) [2021].
m.p. 99° [1884], $97-98^{\circ}$ [2021].

1-(2,6-Dichloro-3,4-dihydroxy-5-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 251.07

Synthesis

- Preparation by chlorination of acetosyringone (main product) [2498].

Visible light absorption spectra [2498].
1-(2-Hydroxy-3,5-diiodo-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{3} \quad$ mol.wt. 417.97
Syntheses

- Obtained by reaction of an aqueous iodine-iodic acid solution on paeonol in ethanol at r.t. (8\%) [1924].
- Also obtained by hydrolysis of 6,8-diiodo-7-methoxy-2-methylchromone by boiling 10% aqueous sodium hydroxide solution [1924].
m.p. $98-99^{\circ}$ [1924].

1-(2-Hydroxy-3,5-diiodo-6-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{3} \quad$ mol.wt. 417.97

Syntheses

- Preparation by reaction of an aqueous iodine-iodic acid solution on 2-hydroxy-6-methoxyacetophenone in ethanol at r.t. (76\%) [1924].
- Also obtained by hydrolysis of 6,8-diiodo-5-methoxy-2-methylchromone by boiling 10% aqueous sodium hydroxide solution [1924].
m.p. $\quad 111^{\circ}$ [1924].

1-(3-Hydroxy-6-methoxy-2,4-dinitrophenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 256.17

Synthesis

- Preparation by reaction of dimethyl sulfate on 3,6-di-hydroxy-2,4-dinitroacetophenone with sodium hydroxide in water at $60-65^{\circ}(53 \%)$ [1941].
m.p. $\quad 94-96^{\circ}$ [1941]; IR [1941], UV [1941].

1-(4-Hydroxy-1,3-benzodioxol-5-yl)ethanone

1-(6-Hydroxy-1,3-benzodioxol-5-yl)ethanone
$\begin{array}{cll}{[66003-50-7]} & \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} & \text { mol.wt. } 180.16 \\ \mathrm{OH} & \text { Syntheses } & \end{array}$

- Obtained by refluxing methylene iodide and 2,4,5-trihydroxyacetophenone in acetone in the presence of potassium carbonate (56\%) [2501], (51\%) [2420].
- Also obtained by Fries rearrangement of 5-acetoxy-1,3benzodioxole with aluminium chloride in nitrobenzene at -10 to 7°, then 3 days at r.t. (5\%) [2502].
- Also obtained by Friedel-Crafts acylation of 5-hydroxy-1,3-benzodioxole (Sesamol) with acetic anhydride in the presence of boron trifluoride etherate for 1 h at $80-90^{\circ}$ (75\%) [2503].
- Also obtained by reaction of acetonitrile with 5-hydroxy-1,3-benzodioxole (Hoesch reaction) [2501], (35\%) [2504], (31\%) [2505].
- Also obtained by reaction of acetyl chloride with sesamol methyl ether (b.p. ${ }_{18}$ $110-114^{\circ}$) in the presence of aluminium chloride in ethyl ether at r.t. overnight (36\%) [2504].
- Also obtained (poor yield) by reaction of acetic acid with sesamol in the presence of boron trifluoride for 3 h , then heating at $80-90^{\circ}$ for 1.5 h (5\%) [2504].
- Also refer to: [2504,2505].
m.p. 114° [2502], $113-114^{\circ}$ [2504], 112° [2501], 111-112${ }^{\circ}$ [2503,2505];
${ }^{1} \mathrm{H}$ NMR [2501,2505], IR [2501,2504,2505], UV [2505], MS [2505].

1-(2-Bromo-6-hydroxy-4-methylphenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad \text { mol.wt. } 229.07
$$

Synthesis

- Obtained by reaction of acetyl chloride with 3-bromo-5-methylanisole in the presence of aluminium chloride in refluxing carbon disulfide [2506].
m.p. $50-52^{\circ}$ [2506].

1-(3-Bromo-2-hydroxy-5-methylphenyl)ethanone

[56609-15-5]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

Syntheses

- Preparation by Fries rearrangement of 2-bromo-4-methyl-phenyl acetate,
- with aluminium chloride without solvent at 110° or in refluxing nitrobenzene (90\%) [2507];
- with zinc chloride or boron trifluoride in nitrobenzene at 100° ($80-85 \%$) [2507];
- with ferric chloride or stannic chloride in nitrobenzene at 100° (55-70\%) [2507].
- Preparation by reaction of bromine on 2-hydroxy-5-methylacetophenone in acetic acid at r.t. (quantitative yield) [2508], (65-70\%) [1792,1815,2509,2510].
- Also refer to: [1783,1795,2511,2512].
- Preparation by reaction of N-bromosuccinimide with 2-hydroxy-5-methylacetophenone in DMF at r.t. (93-96\%) [2513,2514].
N.B.: It is mentioned in the patent [2515] (page 26) that this hydroxyketone, the 1-(3-bromo-2-hydroxy-5-methylphenyl)ethanone (I) has been prepared by Fries rearrangement $\left(\mathrm{AlCl}_{3} / 165^{\circ}\right)$ of 4-bromo-3-methylphenyl acetate, itself obtained
from the 4-bromo-3-methylphenol. This is impossible. The Fries rearrangement of the above ester always leads to 1-(5-bromo-2-hydroxy-4-methylphenyl)ethanone (II). There are two possibilities:
- Either the ester used for Fries rearrangement was the 2-bromo-4-methylphenyl acetate and provides (I).
- Or the obtained hydroxyketone should be (II). This appears confirmed later on by obtaining 6-bromo-3,4-dihydro-2,2,7-trimethyl-2H-1-benzopyran-4-one with this hydroxyketone [2515].
m.p. 95° [2509], $94-95^{\circ}$ [1792], 89° [1815], $88^{\circ} 5-89^{\circ} 5$ [2508], $88-89^{\circ}$ [2513,2514].
b.p. ${ }_{2} 126-127^{\circ}$ [2507]; pK_{a} [2516]; ${ }^{1} \mathrm{H}$ NMR [2513], MS [2513].

1-(3-Bromo-4-hydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07 Synthesis

- Preparation by reaction of bromine with 4-hydroxy-3-methyl-acetophenone in aqueous acetic acid, first at 5°, then at r.t. (89\%) [1825].
m.p. $145-146^{\circ}$ [1825].

1-(5-Bromo-2-hydroxy-3-methylphenyl)ethanone

1-(5-Bromo-2-hydroxy-4-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07 Syntheses

- Preparation by reaction of bromine on 2-hydroxy-4-methyl-acetophenone in chloroform at $<-10^{\circ}$ (74%) [2518] or in acetic acid at r.t. (38\%) [1792].
- Preparation by Fries rearrangement of 4-bromo-3-methyl-phenyl acetate with aluminium chloride without solvent at $165-180^{\circ}$ [2515,2518], (80\%) [2518].
- Also refer to: [1783].

1-(3-Bromo-2-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad \mathrm{~mol}$. wt. 245.07
Syntheses

- Preparation by reaction of bromine on 2-hydroxy-4-methoxyacetophenone with titanium tetrachloride in methylene chloride at r.t. (65\%) [2519].
- Also obtained (by-product) by reaction of cupric bromide with 2-hydroxy-4methoxyacetophenone in refluxing dioxane (3\%) [1978].
m.p. $130-131^{\circ}$ [2519], $120-122^{\circ}$ [1978]; ${ }^{1} \mathrm{H}$ NMR [1978,2519].

1-(3-Bromo-2-hydroxy-5-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07 Syntheses

- Preparation by reaction of bromine on 2-hydroxy-5methoxyacetophenone with aluminium chloride,
- in chloroform at 10° (80\%) [2520];
- in carbon disulfide at r.t. (65\%) [2521]. m.p. $78^{78}-79^{\circ}$ [2520], $76-76^{\circ} 5$ [2521]; ${ }^{1} \mathrm{H}$ NMR [2520], IR [2520].

1-(3-Bromo-2-hydroxy-6-methoxyphenyl)ethanone

[37113-62-5]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
Syntheses

- Preparation by diazotization of 3-amino-2-hydroxy-6methoxyacetophenone and replacement of the diazonium group by bromine (Sandmeyer reaction) (28\%) [2522], (19\%) [2523].
- Preparation by bromination of 2-hydroxy-6-methoxyacetophenone, with bromine[2522], in methylene chloride(76\%) [2524], in chloroform [2520,2523,2525], (68\%) [2523] or in acetic anhydride (44\%) [2526] or with N-bromosuccinimide (41\%) [2522].
m.p. $102-103^{\circ}$ [2525], $101-102^{\circ}$ [2526], 101° [2524], $100-101^{\circ}$ [2520,2522], 99-100 ${ }^{\circ}$ [2523]; ${ }^{1} \mathrm{H}$ NMR [2520,2525,2526], IR [2520].

1-(3-Bromo-4-hydroxy-5-methoxyphenyl)ethanone

[103653-14-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
 Syntheses

- Preparation by reaction of bromine with acetovanillone in aqueous acetic acid at 0°, then oil r.t. (54\%) [2527].
- Preparation by adding bromine to a solution of acetovanillone, sodium acetate and potassium bromide in aqueous methanol cooled to -60° [2528].
m.p. $\quad 156-157^{\circ}$ [2527], $155-157^{\circ}$ [2528].

1-(4-Bromo-2-hydroxy-5-methoxyphenyl)ethanone

$[90971-91-8]$	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$	mol.wt. 245.07
OH	Synthesis	

Synthesis

- Preparation by reaction of methyl iodide on 4-bromo-2,5-dihydroxyacetophenone with potassium carbonate in refluxing methyl ethyl ketone [1987].
m.p. 115° [1987].

1-(5-Bromo-2-hydroxy-3-methoxyphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
 Syntheses

- Preparation by reaction of bromine on 2-hydroxy-3-methoxyacetophenone in the presence of sodium bromide in 1:1 aqueous ethanol at 25° (48%) [2215].
- Preparation by reaction of hydrobromic acid on 5-bromo-2,3-dimethoxyacetophenone in acetic acid (36\%) [2215].
m.p. 108-109 ${ }^{\circ}$ [2215]; UV [2215].

1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone

[39503-61-2]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
Syntheses

- Preparation by reaction of bromine on paeonol (2-hydroxy-4-methoxyacetophenone),
- in methylene chloride at r.t. (quantitative yield) [2519];
- in acetic acid at r.t. [1818,1836,2293,2529,2530], (60\%) [1836];
- in acetic anhydride (48\%) [2526].
- Preparation by diazotization of 5-amino-2-hydroxy-4-methoxyacetophenone and replacement of the diazonium group by bromine (Sandmeyer reaction) [1836].
- Also obtained by reaction of dimethyl sulfate on 5-bromoresacetophenone in sodium hydroxide [1836].
- Also obtained as one of the products of bromination of paeonol acetate in carbon disulfide [2531].
- Also obtained as one of the products of reaction of cupric bromide on paeonol in refluxing dioxane (17\%) [1978].
- Also obtained (by-product) by reaction of acetic anhydride on 4-bromoresorcinol dimethyl ether with aluminium chloride in refluxing carbon disulfide [2532].
- Also obtained (by-product) by reaction of N-bromosuccinimide on 2,4-dimethoxyacetophenone with benzoyl peroxide in refluxing carbon tetrachloride [2532].
- Also refer to: [2533].

$$
\begin{aligned}
& \text { m.p. } 172-174^{\circ}[2530], 172-172^{\circ} 5[2519], 172^{\circ}[1836], 171-172^{\circ}[2532], \\
& 171^{\circ}[2531], 170-172^{\circ}[2526], 169-170^{\circ}[1978], 169^{\circ}[1818], 168-170^{\circ} \\
& \quad[2293] ;{ }^{\circ} \mathrm{H} \text { NMR }[1978,2519,2526] .
\end{aligned}
$$

1-(5-Bromo-4-hydroxy-2-methoxyphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07

Synthesis

- Preparation by bromination of isopaeonol (4-hydroxy-2-methoxyacetophenone) in chloroform [1836].
m.p. 198° [1836].

1-(5-Bromo-2,4-dihydroxy-3-methoxyphenyl)ethanone
[62615-25-2]

m.p. $110^{\circ} 5-112^{\circ} 5$ [1989]; ${ }^{1} \mathrm{H}$ NMR [1989].

1-(2-Chloro-6-hydroxy-4-methylphenyl)ethanone
[24490-25-3] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

- Refer to: [2534]; this sole reference mentioned for this compound (Chem. Abstr., 71, 86368b (1969)) is erroneous. Actually, the ketone described as being the 2^{\prime}-chloro- 6^{\prime}-hydroxy- 4^{\prime}-methylacetophenone is in fact the 5^{\prime}-chloro- 2^{\prime}-hydroxy-4'-methylacetophenone in original publication.

1-(3-Chloro-2-hydroxy-5-methylphenyl)ethanone

[7507-88-2]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
Syntheses

- Preparation by Fries rearrangement of 2-chloro-4-methyl-phenyl acetate with aluminium chloride without solvent at 120° (quantitative yield) [2151].
- Obtained by reaction of aluminium chloride on a mixture of 2-chloro-4-methylphenyl acetate and 4-methylphenyl benzoate without solvent at 150° (33-37\%) [2535].
- Obtained by reaction of aluminium chloride on a mixture of 2,4,6-trimethylphenyl acetate or 4-methylphenyl acetate and 2-chloro-4-methylphenyl benzoate without solvent at 150° (67% yield and small amounts, respectively) [2535]. m.p. 91° [2151,2535]; pK_{a} [2516].

1-(3-Chloro-2-hydroxy-6-methylphenyl)ethanone

1-(3-Chloro-4-hydroxy-5-methylphenyl)ethanone
[54556-95-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
 Syntheses

- Preparation by Fries rearrangement of 2-chloro-6-methylphenyl acetate in the presence of aluminium chloride without solvent at 140° (74\%) [2536].
- Preparation by chlorination of 4-hydroxy-3-methylacetophenone [2536].
- Also refer to: [2537].
m.p. $123^{\circ} 5-124^{\circ}$ [2536]; IR [2536].

1-(4-Chloro-2-hydroxy-3-methylphenyl)ethanone

1-(4-Chloro-2-hydroxy-5-methylphenyl)ethanone

[57051-51-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Synthesis

- Preparation by Fries rearrangement of 3-chloro-4-methyl-phenyl acetate with aluminium chloride without solvent at 125° [1814].

1-(4-Chloro-2-hydroxy-6-methylphenyl)ethanone

1-(5-Chloro-2-hydroxy-3-methylphenyl)ethanone

[50343-12-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Syntheses

- Preparation by Fries rearrangement of 4-chloro-2-methyl-phenyl acetate with aluminium chloride without solvent at 120° (97\%) [2482], (75\%) [2539].
- Preparation by adding zinc dust to an acetic acid solution of 5-chloro-3-(chloromethyl)-2-hydroxyacetophenone at 100° (82\%) [2482].
- Also obtained (by-product) by chloromethylation of 5-chloro-2-hydroxyacetophenone (5\%) [2493].
- Also obtained (poor yield) by treatment of 5-chloro-3-(chloromethyl)-2-hydroxyacetophenone with zinc chloride in methylene chloride in the presence of water for 45 h at $60^{\circ}(5 \%)$ [2493].

1-(5-Chloro-2-hydroxy-4-methylphenyl)ethanone

[28480-70-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Syntheses

- Preparation by reaction of acetic acid on 4-chloro-3methylphenol with boron trifluoride at $70-100^{\circ}$ (80-85\%) [1969].
- Preparation by Fries rearrangement of 4-chloro-3-methyl-phenyl acetate with aluminium chloride
without solvent between 110° and 155° [1867,1871,2011,2014,2151,2540,2541], (quantitative yield) [2014,2541], (64\%) [1867,1871].
- Also obtained by reaction of acetyl chloride on 4-chlorothymol methyl ether with aluminium chloride in carbon disulfide at r.t. (8\%) [2542].
- Also refer to: [2540] (compound CHMA).
m.p $75^{\circ} 5$ [2541], $71-72^{\circ}$ [2151], 71° [2011], $70^{\circ} 5$ [1969], 70° [2542], 69-70응 [2014];
b.p. ${ }_{15} 137^{\circ}$ [2151], b.p. ${ }_{21} 140-142^{\circ}$ [1867,1871];
${ }^{1} \mathrm{H}$ NMR [1820], UV [1820], fluorescence spectra [1820,2534].

1-[3-(Chloromethyl)-2-hydroxyphenyl]ethanone

[87165-49-9]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
Synthesis

- Preparation by reaction of polyoxymethylene with 2-hydroxyacetophenone in the presence of concentrated hydrochloric acid at 50-60 [2494].
m.p. 45° [2494]; ${ }^{1} \mathrm{H}$ NMR [2494], IR [2494].

1-[3-(Chloromethyl)-4-hydroxyphenyl]ethanone

[24085-05-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad m o l . w t .184 .62$
 Syntheses

- Preparation by introduction of the chloromethyl group into 4-hydroxyacetophenone by treatment with formaldehyde and hydrochloric acid [2543-2546], in the presence of zinc chloride [2547Blanc (Chloromethylation) reaction], (85$92 \%$) [2543,2545,2546].
- Also refer to: [2548,2549].
m.p. 160° (d) $[2543,2546]$.

1-[4-(Chloromethyl)-2-hydroxyphenyl]ethanone

[107223-42-7]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$
Synthesis

- Preparation by reaction of ethyl chloroformate with 4-(dimethylaminomethyl)-2-hydroxyacetophenone in toluene (22%) [2550].
m.p. $34-37^{\circ}$ [2550].

1-[5-(Chloromethyl)-2-hydroxyphenyl]ethanone
[30787-43-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
Syntheses

- Preparation by reaction of formaldehyde solution with hydrochloric acid on 2-hydroxyacetophenone at $25-30^{\circ}$ (57-61\%) [2551].
- Preparation by reaction of polyoxymethylene with 2-hydroxyacetophenone in the presence of hydrochloric acid at 50-60 [2494].
m.p. $\quad 94-95^{\circ}$ [2551].

1-(3-Chloro-2,6-dihydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
Synthesis

- Preparation by reaction of chlorine on 2,6-dihydroxy-3-methylacetophenone in acetic acid at r.t. [2552].
m.p. 152° [2552];
${ }^{1} \mathrm{H}$ NMR [2552], IR [2552], MS [2552].

1-[5-Chloro-2-hydroxy-3-(hydroxymethyl)phenyl]ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62 Syntheses

- Preparation by boiling an aqueous solution of 5-chloro-3-(chloromethyl)-2-hydroxyacetophenone for 6 h (73\%) [2482].
- Also obtained as a labile intermediate product during the chloromethylation of 5-chloro-2-hydroxyacetophenone (<5\%) [2493].
m.p. $82^{\circ} 5-84^{\circ}$ [2482]; b.p. 155° [2482].

1-(2-Chloro-4-hydroxy-3-methoxyphenyl)ethanone

1-(2-Chloro-4-hydroxy-5-methoxyphenyl)ethanone

[69240-98-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
-
m.p. $\quad 109-110^{\circ}$ [2555], $107-108^{\circ}$ [2553];
${ }^{1} H$ NMR [2553], ${ }^{13} \mathrm{C}$ NMR [2553], MS [2553].

1-(2-Chloro-6-hydroxy-4-methoxyphenyl)ethanone

[112954-19-5] \quad\begin{tabular}{l}
Syntheses

Preparation by reaction of acetyl chloride with
3,5-di-methoxy-1-chlorobenzene in the presence of aluminium chloride (Friedel-Crafts reaction) [2556]

\end{tabular}

- Also refer to: [2557,2558].
${ }^{1} \mathrm{H}$ NMR [2556].

1-(3-Chloro-2-hydroxy-5-methoxyphenyl)ethanone

[286931-53-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

Synthesis

- Preparation by chlorination of 2-hydroxy-5-methoxyacetophenone with N -chlorosuccinimide in acetic acid containing magnesium acetate at r.t. for 24 h under nitrogen atmosphere (80%) [2559,2560].
m.p. $\quad 78-79^{\circ}$ [2560]; ${ }^{1} \mathrm{H}$ NMR [2560], MS [2560].

1-(3-Chloro-2-hydroxy-6-methoxyphenyl)ethanone

[87953-91-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

Syntheses

- Preparation by reaction of dimethyl sulfate on 3-chloro-2,6-dihydroxyacetophenone with potassium carbonate in refluxing benzene (38\%) [2021].
- Preparation by diazotization of 3-amino-2-hydroxy-6-methoxyacetophenone with sodium nitrite in dilute sulfuric acid at 0°, and replacement of the diazonium group by chlorine with a solution of cuprous chloride in 2 N hydrochloric acid at 100° (Sandmeyer reaction) (37\%) [1884].
- Also obtained (by-product) by reaction of sulfuryl chloride on 2-hydroxy-6-methoxy-acetophenone in refluxing acetic acid [2021].
- Also obtained (crude product) by a one-pot acylation-deprotection of 4-methoxy-2-methoxy-methoxychlorobenzene (about 93\%). No physical data available [2561].
m.p. $88^{\circ} 5-89^{\circ}$ [2021], 82° [1884].

1-(3-Chloro-4-hydroxy-5-methoxyphenyl)ethanone

[116296-35-6] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62 Syntheses
 - Preparation from the acetate of 5-chlorovanillin by reaction with diazomethane and subsequent hydrolysis [2553-2555], (35\%) [2553], (23\%) [2555].

- Also obtained by chlorination of acetoguaiacone in dioxane-water mixture at 40° (21\%) [1789].
- Preparation by adding sodium hypochlorite solution to a solution of acetovanillone and sodium acetate in methanol cooled to -60° [2528].
- Also obtained (by-product) by chlorination of apocynol in dioxane-ethyl ether mixture at 40° (3\%) [1789].
m.p. $124-126^{\circ}$ [2528], $124-125^{\circ}$ [2555], $123-124^{\circ}$ [2553]; $\operatorname{MS}[1789,2553]$.

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
Syntheses
- Preparation by reaction of sulfuryl chloride on 2-hydroxy-6-methoxyacetophenone in refluxing ethyl ether (93\%) or in refluxing acetic acid (66\%) [2021].
- Preparation by reaction of chlorine on 2-hydroxy-6-methoxyacetophenone in carbon tetrachloride at -20° (62\%) [1884].
m.p. 31° [2021], $30-35^{\circ}$ [1884]; b.p. ${ }_{0.001} 40^{\circ}$ [2021], b.p. 120° [1884].

1-(4-Chloro-2-hydroxy-5-methoxyphenyl)ethanone

 $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

Synthesis

- Preparation by reaction of methyl iodide on 4-chloro-2,5-dihydroxyacetophenone with potassium carbonate in refluxing acetone [1987].
m.p. 130° [1987].

1-(4-Chloro-2-hydroxy-6-methoxyphenyl)ethanone

[140155-06-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
 Syntheses

- Preparation by reaction of acetyl chloride with 3,5-di-methoxy-1-chlorobenzene in the presence of aluminium chloride (Friedel-Crafts reaction) (38\%) [2556].
- Also refer to: [2557,2558].
'H NMR [2556].

1-(5-Chloro-2-hydroxy-4-methoxyphenyl)ethanone

[116265-99-7]
 $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62 Syntheses

- Preparation by diazotization of 5-amino-2-hydroxy-4methoxyacetophenone and replacement of diazonium group by chlorine (Sandmeyer reaction) [2530].
- Preparation by reaction of acetyl chloride with 4-chloro-resorcinol dimethyl ether in the presence of aluminium chloride in ethylene dichloride (79\%) [2562].
- Also refer to: [2563]. m.p. $154-155^{\circ}$ [2562], $153-155^{\circ}$ [2530].

1-(2-Chloro-3,6-dihydroxy-5-methoxyphenyl)ethanone

[34603-08-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 216.62

Synthesis

- Preparation by metallation of 2-chloro-5-methoxy-hydro-quinone-bis-[tetrahydropyranyl-(2)-ether], followed by treatment of the intermediate aryllithium compound with acetic anhydride in tetrahydrofuran at r.t. (56\%) [2564].
m.p. 100° [2564].

1-(3-Chloro-2,4-dihydroxy-6-methoxyphenyl)ethanone

[200878-65-5]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4}$
mol.wt. 216.62

Synthesis

- Refer to: [2565].

1-(3-Chloro-2,4,6-trihydroxy-5-methylphenyl)ethanone

(23053-47-6]

1-(3-Fluoro-6-hydroxy-2-methoxyphenyl)ethanone

[117902-12-2]	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{3}$	mol.wt. 184.17
$\mathrm{OH}^{\mathrm{OH}}$	Synthesis	

Obtained (by-product) by demethylation of 2,6-dimethoxy-3-fluoroacetophenone with boron tribromide (6\%) [2054].
${ }^{1} \mathrm{H}$ NMR [2054].

1-(2-Hydroxy-3-iodo-5-methylphenyl)ethanone

[175655-10-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07

m.p. 80° [1802]; ${ }^{1} \mathrm{H}$ NMR [1802].

1-(2-Hydroxy-4-iodo-3-methylphenyl)ethanone

[40591-02-4]	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07
OH	Synthesis
	- Obtained (by-product) by Fries rearrangement of 3-iodo-4-methylphenyl acetate with aluminium chloride without solvent at 120° [1830].
m.p. 80° [1830];	NMR [1830].

1-(4-Hydroxy-3-iodo-5-methylphenyl)ethanone

[292144-89-9] OH	$\begin{aligned} & \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \\ & \text { Synthesis } \end{aligned} \quad \text { mol.wt. } 276.07$
	- Preparation by iodination of 4-hydroxy-3-methyl-acetophenone with iodine (1 mol) and iodic acid (1 mol) in ethanol at $35-40^{\circ}$ for $1.5 \mathrm{~h}(75-85 \%)$ [1802].
m.p. 149° [1	2]; ${ }^{1} \mathrm{H}$ NMR [1802].

1-(2-Hydroxy-3-iodo-4-methoxyphenyl)ethanone

- Preparation by adding an aqueous solution of iodine and iodic acid to an ethanolic solution of 2-hydroxy-4-methoxy-acetophenone (15\%) [1924].
m.p. 152° [1924].

1-(2-Hydroxy-3-iodo-6-methoxyphenyl)ethanone
[103440-57-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3} \quad$ mol.wt. 292.07

Syntheses

- Preparation by reaction of iodine monochloride with 2-hydroxy-6-methoxyacetophenone in acetic acid at 17° (88\%) [2524].
- Also obtained from 8-iodo-5-methoxy-2-methylchromone by boiling 10% aqueous sodium hydroxide solution [1924].
- Preparation by adding an aqueous solution of iodic acid and iodine to an ethanolic solution of 2-hydroxy-6-methoxyacetophenone (85\%) [2569].
m.p. 115° [2524,2569], 57° [1924]; ${ }^{13} \mathrm{C}$ NMR [2524], IR [2524].

1-(2-Hydroxy-5-iodo-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3} \quad$ mol.wt. 292.07

Syntheses

- Obtained by reaction of an aqueous iodine-potassium iodide solution on paeonol in 22% aqueous ammonia; then, the mixture was poured into excess of dilute ice-cold sulfuric acid (13\%) [1924].
- Also obtained by hydrolysis of 6-iodo-7-methoxy-2-methyl-chromone by boiling 10% aqueous sodium hydroxide solution [1924].
m.p. 161° [1924].

1-(4-Hydroxy-3-iodo-5-methoxyphenyl)ethanone

[103440-59-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3} \quad$ mol.wt. 292.07
 Syntheses

- Preparation by reaction of iodine with acetovanillone in 0.8 N aqueous sodium hydroxide (94\%) [2527].
- Preparation by adding an aqueous solution of iodine and potassium iodide to and aqueous solution of acetovanillone and sodium bicarbonate at $80^{\circ}(82 \%)$ [2570].
- Preparation by adding potassium iodide and iodine to an aqueous solution of acetovanillone and sodium acetate at 90° [2528].
- Preparation by adding 0.1 M hydrogen peroxide to a solution of acetovanillone and potassium iodide in 0.025 M phosphate buffer (pH 3) (75%) [2571].

```
m.p. 179}\mp@subsup{}{}{\circ}[2527],178-1790 [2570,2572], 174-176 [2528]
\({ }^{1} \mathrm{H}\) NMR [2571], MS [2571].
```

1-(6-Hydroxy-3-iodo-2-methoxyphenyl)ethanone
mol.wt. 292.07
m.p. $\quad 116^{\circ}$ [1924].

1-(2,4-Dihydroxy-3-iodo-6-methoxyphenyl)ethanone
[74047-32-8]

1-(2,5-Dihydroxy-3-iodo-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{4} \quad$ mol.wt. 308.07

Synthesis

- Obtained from 2-hydroxy-3-iodo-4-methoxyacetophenone oxidised with potassium persulfate in aqueous sodium hydroxide solution (21\%) [1924] (Elbs persulfate oxidation).
m.p. 174° (d) [1924].

1-(2-Hydroxy-3-methyl-4-nitrophenyl)ethanone

[190730-40-6] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

Syntheses

- Preparation by reaction of acetyl chloride (1.3 mol) with 2-methyl-3-nitrophenol (1 mol) in nitrobenzene under nitrogen. The reaction mixture was warmed at 45°, a small amount of aluminium chloride was added and the reaction mixture was stirred at 45° for 1 h . After the addition of another portion of aluminium chloride (1 mol), the temperature rose to 60° and the reaction mixture was slowly heated at 120° and allowed to stirring for another 16 h (72\%) [2575].
- Also refer to: [2576,2577].
m.p. $40-41^{\circ}$ [2575]; ${ }^{1} \mathrm{H}$ NMR [2575], IR [2575], MS [2575].

1-(2-Hydroxy-3-methyl-5-nitrophenyl)ethanone

2-mol.wt. 195.17
m.p. $115-116^{\circ}$ [2578], 114-114 5 [1925].

1-(2-Hydroxy-4-methyl-5-nitrophenyl)ethanone

1-(2-Hydroxy-5-methyl-3-nitrophenyl)ethanone

[66108-30-3]

Syntheses

- Preparation by reaction of nitric acid on 2-hydroxy-5-methylacetophenone in acetic acid [1851,1852, 1925,2579], (90\%) [1852], (64\%) [1925].
- Preparation by reaction of potassium nitrate on 2-hydroxy-5-methylacetophenone in dilute sulfuric acid (77\%) [2072].
- Also obtained by reaction of copper nitrate on 2-hydroxy-5-methylacetophenone in ice-cooled acetic anhydride solution (80\%) [1851].
m.p. $135-136^{\circ}$ [1852], 135° [1851], 132° [1925,2579], 130-1305 [2072]; pK_{a} [2516].

1-(2-Hydroxy-5-methyl-4-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17
Synthesis not yet described

- There is a single reference, erroneous. It concerns the 2-hydroxy-5-methyl-3-nitroacetophenone [2516] (see above).

1-(3-Hydroxy-2-methyl-4-nitrophenyl)ethanone
[89877-53-2]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17
Synthesis

- Refer to: [2580].

1-(3-Hydroxy-4-methyl-5-nitrophenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

Synthesis

- Preparation by diazotization of 3-amino-4-methyl-5-ni-tro-acetophenone (m.p. 158-159 ${ }^{\circ}$), followed by hydrolysis of the diazonium salt so obtained (62\%) [2581].
m.p. $152^{\circ} 5-153^{\circ} 5$ [2581].

1-(3-Hydroxy-5-methyl-2-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

Synthesis

- Obtained (by-product) by reaction of fuming nitric acid on 3-hydroxy-5-methylacetophenone in ethyl ether between -20° and -10° (4\%) [2122].
m.p. $66-67^{\circ}$ [2122].

1-(3-Hydroxy-5-methyl-4-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

Synthesis

- Preparation by reaction of fuming nitric acid on 3-hydroxy-5-methylacetophenone in ethyl ether between -20° and $-10^{\circ}(23 \%)$ [2122].
m.p. $148-150^{\circ}$ [2122].

1-(4-Hydroxy-2-methyl-5-nitrophenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17
 Synthesis

- Preparation by reaction of nitric acid on 4-hydroxy-2methylacetophenone in acetic acid first at 0°, then 30° (61\%) [1925].
m.p. $125-126^{\circ}$ [1925].

1-(4-Hydroxy-3-methyl-5-nitrophenyl)ethanone

	$\begin{array}{ll} \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} & \text { mol.wt. } 195.17 \\ \text { Syntheses } & \end{array}$
	- Preparation by reaction of nitric acid on 4-hydroxy-3methylacetophenone in acetic acid first at 0°, then 30° (67\%) [1925]. - Preparation by reaction of acetyl chloride on 2-methyl-6-nitrophenol with aluminium chloride in nitrobenzene at $130^{\circ}(50 \%)$ [1925].

1-(5-Hydroxy-3-methyl-2-nitrophenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad \text { mol.wt. } 195.17
$$

Synthesis

- Preparation by reaction of fuming nitric acid on 3-hydroxy-5-methylacetophenone in ethyl ether between -20° and -10° (29\%) [2122].
m.p. $148-150^{\circ}$ [2122]; UV [2122].

1-(2,4-Dihydroxy-3-methyl-5-nitrophenyl)ethanone

[118824-94-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17

Synthesis

- Preparation by reaction of acetic anhydride on 2-methyl-4-nitroresorcinol with aluminium chloride in nitrobenzene at 80° (73\%) [2582].
m.p. $178-179^{\circ}$ [2582]; ${ }^{1} \mathrm{H}$ NMR [2582], IR [2582].

1-(2,5-Dihydroxy-4-methyl-3-nitrophenyl)ethanone

[43140-83-6]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17
Synthesis

- Preparation by demethylation of 2-hydroxy-5-meth-oxy-4-methyl-3-nitroacetophenone with aluminium bromide in carbon disulfide at r.t. (96\%) [2583].
m.p. 179° [2583]; ${ }^{1} \mathrm{H}$ NMR [2583], IR [2583].

1-(2-Hydroxy-4-methoxy-3-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17

Syntheses

- Preparation by reaction of dimethyl sulfate on 2,4-di-hydroxy-3-nitroacetophenone with potassium carbonate in refluxing acetone [2125].
- Also refer to: [2126].
m.p. $211-212^{\circ}$ [2125].

1-(2-Hydroxy-4-methoxy-5-nitrophenyl)ethanone

[102877-53-2]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}$ Syntheses

- Preparation by nitration of 2-hydroxy-4-methoxy-aceto-phenone (paeonol) with nitric acid $(\mathrm{d}=1.42)$ in acetic acid [1818,1836,2530,2584], (47\%) [1836].
- Also obtained by reaction of concentrated nitric acid with 3,3'-diacetyl-4,4'-dihydroxy-6,6'-dimethoxydiphenyl thioether at r.t. overnight [2585].
- Also refer to: [2484] (compound 1b).
m.p. $157-158^{\circ}$ [2530], 155° [1818,2585], 154° [1836], 153° [2584].

1-(2-Hydroxy-5-methoxy-3-nitrophenyl)ethanone

[90564-25-3] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17

Syntheses

- Preparation from 2-hydroxy-5-methoxyacetophenone by reaction,
- with nitric acid $(\mathrm{d}=1.2)$ in acetic acid at $<15^{\circ}$ (83\%) [2586];
- with nitric acid $(\mathrm{d}=1.5)$ in ice-cooled acetic acid and acetic anhydride mixture [1832,2587-2589], (57\%) [2588].
m.p. $113-114^{\circ}$ [2586], 112° [2588], $110-112^{\circ}$ [2587,2589]; IR [1807,1853].

1-(2-Hydroxy-6-methoxy-3-nitrophenyl)ethanone

[38226-01-6] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17
 Syntheses

- Obtained by reaction of acetic anhydride on 5-meth-oxy-2-nitrophenol with aluminium chloride in nitrobenzene at 135° [1940].
- Obtained by reaction of nitric acid $(\mathrm{d}=1.42)$ on 2-hydroxy-6-methoxyacetophenone in acetic acid at r.t. [1807,1940,2522,2523], (43\%) [2522], (26\%) [1807].
- Also obtained by reaction of fuming nitric acid with 2-hydroxy-6-methoxyacetophenone in acetic acid, first at r.t. for 40 min , then at $45-50^{\circ}$ for $16 \mathrm{~h}(30 \%)$ [2074].
- Also obtained (small quantity) by partial methylation of 2,6-dihydroxy-3-nitroacetophenone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [1940].
- Also obtained by partial demethylation of 2,6-dimethoxy-3-nitroacetophenone,
- with aluminium chloride in nitrobenzene, heated on a steam bath (by-product) [1940];
- with concentrated hydrochloric acid in boiling acetic acid [1940];
- with boiling concentrated hydrochloric acid [1940];
- with concentrated sulfuric acid at 30° [1940];
- with potassium hydroxide in boiling ethanol [1940].
- Also obtained by reaction of nitric acid $(\mathrm{d}=1.4)$ on $2,2^{\prime}$-dihydroxy- $3,3^{\prime}$ -diacetyl-4,4'-di-methoxyphenyl thioether at 0° [2485].
m.p. $104-105^{\circ}$ [2522], $102-103^{\circ}$ [1940,2485], $100^{\circ} 5-101^{\circ} 5$ [1807], $98-100^{\circ}$ [2074];
${ }^{1} \mathrm{H}$ NMR [2074], ${ }^{13} \mathrm{C}$ NMR [2590], IR [1807,2074].

1-(4-Hydroxy-2-methoxy-5-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17

Synthesis

- Obtained by reaction of fuming nitric acid on 4-hydroxy-2-methoxyacetophenone (isopaeonol) at 10° (24\%) [1836].
m.p. 95° [1836].

1-(4-Hydroxy-3-methoxy-5-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17
Synthesis

- Preparation by nitration of 4-hydroxy-3-methoxyace-to-phenone with 70% nitric acid in acetic acid, first at 10°, then at 25° (95\%) [2215].
m.p. $148^{\circ} 1-149^{\circ} 5$ [2215].

1-(4-Hydroxy-5-methoxy-2-nitrophenyl)ethanone

1-[2-Hydroxy-5-(methylsulfonyl)-3-nitrophenyl]ethanone

[70978-46-0]	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{6} \mathrm{~S} \quad$ mol.wt. 259.24
	Syntheses - Preparation by nitration of 2-hydroxy-5-(methylsulfonyl)-acetophenone in concentrated sulfuric acid, - with 100% nitric acid at r.t. (89%) [1852]; - with nitric acid $(\mathrm{d}=1.42)$ between -15° and -5° [1897,1898], (50\%) [1897].
m.p. $192-193^{\circ}$ [185	, 189-191 ${ }^{\circ}$ [1897,1898].

1-[3-(Azidomethyl)-4-hydroxyphenyl]ethanone

[154603-69-7]	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 191.19
OH	Synthesis
	- Preparation by action of sodium azide with 3-chlorom ethyl-4-hydroxyacetophenone in DMF at 30° for 4 (60\%) [2593].

1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]ethanone

[109314-52-5] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2} \quad$ mol.wt. 244.09

Synthesis

- Refer to: [2594] (Japanese patent).

1-(2-Hydroxy-3-methylphenyl)ethanone

[699-91-2]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18
Syntheses

- Preparation by reaction of acetic acid on o-cresol with zinc chloride at reflux (Nencki reaction) (20\%) [2595].
- Preparation by Fries rearrangement of o-tolyl acetate with aluminium chloride without solvent between 130° and 180° [2022,2023,2143,2151,2161,2203,2596 ,2597], (45-55\%) [2151,2596,2597], (18-26\%) [2022,2023,2143,2161].
- Also obtained (by-product) by Fries rearrangement of o-tolyl acetate with aluminium chloride, ferric chloride or titanium tetrachloride in nitrobenzene as solvent between 20° and 60° (3-5\%) [2143,2598-2600].
- Preparation by reaction of acetic anhydride on o-cresol without solvent, at 120°,
- with 70% perchloric acid (56\%) [2183];
- with aluminium chloride (27\%) [2578].
- Also obtained (by-product) by reaction of acetyl chloride on o-cresol with aluminium chloride or titanium tetrachloride in nitrobenzene at $30-60^{\circ}(3-6 \%)$ [2181,2600].
- Preparation by treatment of methyl 4-hydroxy-8-methylcoumarin-3-carboxylate with potassium hydroxide (69\%) [2191].
- Also obtained by reaction of stannous chloride on 2-hydroxy-3-methylacetophenone 2,4-dinitro-phenylhydrazone in refluxing aqueous acetone-hydrochloric acid mixture (81\%) [2255].
- Also obtained by UV light irradiation of o-tolyl acetate at 25° (photo-Fries rearrangement), in the presence of potassium carbonate in hexane (74\%) [2015] or without potassium carbonate in hexane (32\%) [2015] or in ethyl ether (16\%) [2193].
- Also refer to: [2494].
b.p. $62-63^{\circ}$ [2578], b.p. $91^{\circ} 7-91^{\circ} 9$ [2203], b.p. $103-104^{\circ}$ [2161], b.p. $103-105^{\circ}$ [2597], b.p. ${ }_{10} 105^{\circ}$ [2183], b.p. ${ }_{10-10.5} 106-107^{\circ}$ [2191,2595], b.p. 127° [2255], b.p. ${ }_{11} 108^{\circ}$ [2015], b.p. ${ }_{15} 111-112^{\circ}$ [2215], b.p. 235-237${ }^{\circ}$ [2161]; ${ }^{1} \mathrm{H}$ NMR [2203], UV [2203,2215].

1-(2-Hydroxy-4-methylphenyl)ethanone

[6921-64-8]	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$	mol.wt. 150.18
OH	Syntheses	
	- Prepar methyl hydrox	by treatment o marin-3-carboxy t 200° (87%) [21

- Preparation by Fries rearrangement of m-tolyl acetate [2596,2601-2603],
- with solvent:
- with aluminium chloride,
- in tetrachloroethane at $130-135^{\circ}$ (99\%) [2604];
- in nitrobenzene at $25-30^{\circ}$ or at $165^{\circ}(44-45 \%)$ [2143,2605];
- with titanium tetrachloride in nitrobenzene at $165^{\circ}(73 \%)$ [2143];
- without solvent:
- with aluminium chloride,
- at $165-170^{\circ}$ (88-95\%) [2143,2151,2606];
- between 120° and $165^{\circ}(70-90 \%)$ [2022,2023,2152,2161,2607,2608];
- between 60° and 165° (38-65\%) [2151,2597,2609];
- with titanium tetrachloride at $95^{\circ}(83 \%)$ [2606];
- with hydrofluoric acid at $100^{\circ}(80 \%)$ [2236];
- with zinc chloride at $140-160^{\circ}(20 \%)$ [2191,2610].
- Preparation by reaction of acetic acid on m-cresol,
- with boron trifluoride at 70° (65\%) [2611];
- with zinc chloride (Nencki reaction) (25\%) [2595].
- Preparation by reaction of acetic anhydride on m-cresol with 70% perchloric acid,
- at r.t. (63\%) [2183];
- at $125-135^{\circ}$ (30\%) [2306].
- Preparation by reaction of acetyl chloride on m-cresol,
- with titanium tetrachloride,
- in nitrobenzene at 60° (75\%) [2181];
- in ethylene dichloride at 25° (40\%) [2181];
- with aluminium chloride,
- in nitrobenzene at $60^{\circ}(48 \%)$ [2181];
- in ethylene dichloride at 25° (42\%) [2181];
- with zinc chloride at r.t. (11\%) [2610] or at $140-160^{\circ}$ [2311].
- Preparation by dehydrogenation of 6-acetyl-3-methyl-2-cyclohexen-1-one,
- with a 5\% palladium-barium sulfate catalyst at reflux (47\%) [2612];
- with refluxing 16% solution of bromine in acetic acid [2612].
- Also obtained by treatment of 4-methylacetophenone with sodium trifluoroacetate in nitromethane-trifluoroacetic acid-trifluoroacetic anhydride mixture in the presence of a platinum electrode, followed by treatment of the intermediate trifluoroester with 10% aqueous potassium carbonate solution (33\%) [2006], (hydroxylation of aromatic compound).
- Preparation by UV light irradiation of m-tolyl acetate, at r.t. (photo-Fries rearrangement) [2192], in ethanol (37\%), with aqueous β-cyclodextrin solution (54\%) or with β-cyclodextrin (solid) (95%).
Colourless oil [2607]; m.p. 21° [2151,2191,2306,2311], 20-21 ${ }^{\circ}$ [2236];
b.p. $._{0.6} 82-84^{\circ}$ [2608], b.p..$_{0.22} 87^{\circ}$ [2607], b.p. 8101° [2161,2597],
b.p. ${ }_{7.5} 102-104^{\circ}$ [2601], b.p. 103° [2183,2191,2311], b.p. $105-106^{\circ}$ [2191],
b.p. 107° [2306], b.p. ${ }_{15} 115^{\circ}$ [2236], b.p. ${ }_{14} 116-119^{\circ}$ [2611],
b.p. ${ }_{17} 123-125^{\circ}$ [2609], b.p. ${ }_{20} 126^{\circ}$ [2191,2311,2595], b.p. ${ }_{20} 126-127^{\circ}$ [2603], b.p. ${ }_{760} 245^{\circ}$ [2191,2311,2595,2606,2610];
${ }^{1} H$ NMR [1963,2607], IR [1963,2607], MS [2607].

1-(2-Hydroxy-5-methylphenyl)ethanone

[1450-72-2]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$
mol.wt. 150.18
Syntheses

- Obtained by treatment of methyl 4-hydroxy-6-methyl-cou-marin-3-carboxylate with potassium hydroxide at 200° (82\%) [2191].
- Preparation by Fries rearrangement of p-tolyl acetate [1851,2613],
- with solvent:
- with titanium tetrachloride in nitrobenzene at 50° (92\%) [2614,2615];
- with alumina in methanesulfonic acid for 5 min at 160° (92\%) [2046];
- with zirconium chloride in nitrobenzene at 60° (86\%) [2615];
- with zirconium chloride in methylene chloride at r.t. for $24 \mathrm{~h}(83 \%)$. The same reaction performed in a simple ultrasound cleaning bath at r.t. for 24 h also leads to 83% yield [2616];
- with stannic chloride in nitrobenzene at 60° (78\%) [2615];
- with aluminium chloride, (90\%) [2617], (86\%) [2071], at 130 (90\%) [2618] or at $160^{\circ}(70 \%)$ [2619];
- in nitrobenzene at 60° (92\%) [2598], (68\%) [2615], at 25° (84\%) [2143];
- in diphenyl ether at $160^{\circ}(30 \%)$ [2620];
- in chlorobenzene, in a sealed tube and subjected to high power microwave irradiation for 2 min only (85\%) [2013];
- in the presence of 4-ethyl-2,6-dimethylphenyl chloroacetate at $150^{\circ}(72 \%)$ [2535];
- in the presence of 2-chloro-4-methylphenyl benzoate at 150° (50\%) [2535];
- on K 10 montmorillonite using microwave radiations ($640 \mathrm{w}, 5 \mathrm{~min}$) (86%) or in refluxing DMF during 4 h (75\%) [2109];
- without solvent:
- with aluminium chloride,
- between 110° and 170° (85-99\%) [1852,2012,2014,2143,2151,2606,262 1];
- between 120° and 150° (60-74\%) [1967,2150,2622];
- at 120° (36-45\%) [2082,2597], (90\%) [2013];
- with titanium tetrachloride at 120° (70\%) [2606];
- with hydrofluoric acid at $120-125^{\circ}$ (63\%) [2236];
- with beryllium chloride at 150° (63%) [2579,2623].
- Preparation by reaction of acetyl chloride on p-cresol,
- with titanium tetrachloride in nitrobenzene at 60° (93\%) [2181];
- with aluminium chloride,
- in nitrobenzene at 60° (75-80\%) [2181,2624];
- in ethylene dichloride at $110-120^{\circ}$ (56\%) [2625];
- without solvent at 180° (64-72\%) [2626].
- Preparation by reaction of acetyl chloride with p-cresol in the presence of aluminium chloride during 30 min at 180°, via a Fries rearrangement (98%) [2627].
- Preparation by acylation of p-cresol with acetic acid in the presence of alumina in methanesulfonic acid for 5 min at $120^{\circ}(90 \%)$ [2046].
- Preparation by reaction of acetyl chloride on 4-methylanisole with aluminium chloride [2160,2161,2628].
- Also obtained by reaction of acetyl chloride on p-tolyl borate with aluminium chloride in refluxing carbon disulfide (15\%) [2182].
- Preparation by reaction of acetic anhydride on p-cresol with 70% perchloric acid at 100° (53\%) [2183], at $125-135^{\circ}$ (30\%) [2306].
- Preparation by reaction of acetic acid on p-cresol,
- with boron trifluoride at 70° (95%) [2611];
- with zinc chloride at reflux (14\%) [2595] (Nencki reaction).
- Preparation by dealkylation of,
- 2-methoxy-5-methylacetophenone,
- with pyridinium chloride at reflux (56\%) [2609];
- with hydrobromic acid in acetic acid (7\%) [2215];
- 2-ethoxy-5-methylacetophenone with aluminium chloride [2251].
- Also obtained from 2-hydroxy-5-methyl- α-chloroacetophenone by treatment with zinc powder in acetic acid [2628].
- Also obtained by treatment of 2-hydroxy-5-methyl- α, α, α-trifluoroacetoacetophenone with 2 N sodium hydroxide at r.t. (100\%) [2629].
- Also obtained by reaction of stannous chloride on 2-hydroxy-5-methylacetophenone 2,4-dinitro-phenylhydrazone in refluxing aqueous acetic acid-hydrochloric acid mixture (80%) [2255].
- Also obtained by reaction of mesityl acetate on p-cresol with aluminium chloride at 150° (72\%) [2535].
- Also obtained by reaction of various aryl acetates on p-tolyl benzoate with aluminium chloride at 150°, which produce the acetyl cation [2535],
- with mesityl acetate (77\%);
- with 2-chloro-4-methylphenyl acetate (57\%);
- with 2,6-dimethylphenyl acetate (33\%).
- Also obtained by degradation of 3-bromo-6-methylchromanone with alkali in boiling water [2630].
- Also obtained by hydrogenation of 2,4-dimethylindoxazen in acetic acid in the presence of $\mathrm{Pd} / \mathrm{BaSO}_{4}$ during $4-6 \mathrm{~h}$ [2631].
- Also obtained by hydrolysis of 2-(2-hydroxy-5-methylphenyl)-2-methyl-1,3-dioxolane by a catalytic amount of carbon tetrabromide (20\%) in acetonitrile/water
solvent mixture under sonication in a commercial ultrasonic cleaning bath for 2 h at 45° (98%) [2632].
- Also obtained by UV light irradiation of p-tolyl acetate at 25°,
- in hexane,
- in the presence of potassium carbonate (86\%) [2015];
- without potassium carbonate (35\%) [2015], (6\%) [2198];
- in ethyl ether (32\%) [2193], in ethanol [2198,2633], (8\%) [2198], in benzene (6\%) [2198] or in methanol [2633].
- Also refer to: [1794] (compound 1a), [1795,2634,2635] (compound 1c), [2567].
Isolation from natural sources
- From the coriander seed essential oil [2636].
- Detected in the sorghum malt beverage [2637].
- Identified in powdered turmeric (curcuminoids) [2638].
N.B.: Na salt [52166-70-8] [2617,2639].

```
m.p. 50} [1851,2012,2143,2151,2160,2161,2191,2236,2255,2306,2595,2597,
            2598,2606,2614,2619,2624,2628,2634],49`5 [2082],49-50[2109,2611],
            48-49}\mp@subsup{}{}{\circ}[2620,2625],4\mp@subsup{8}{}{\circ} [2631], 47-48` [1852,2579], 47` [2622], 46 5 5
            [1967], 46-48 [2535], 46-47`5 [2215], 45-46} [2014,2015], 45 [2071];
b.p.0.2}\mp@subsup{}{}{60-6\mp@subsup{2}{}{\circ}}\mathrm{ [2622], b.p.7 101-103 [2183], b.p.15
            [2611],
```



```
    [2071];
GC-MS [2636-2638]; pK [1977,2516];
'H NMR [1963,1976,2109,2622,2627,2633,2640], '3C NMR [1976],
IR [1963,2109,2622], UV [2215,2622,2640].
```


1-(2-Hydroxy-6-methylphenyl)ethanone

[41085-27-2]	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18
OH	Syntheses
	- Preparation from 2-hydroxy-6-methylbenzonitrile and methylmagnesium bromide in ethyl ether-tetrahydrofuran mixture at 50° (67\%) [2641].
	- Preparation by adding a solution of methyl lithium in ethyl ether to 6-methylsalicylic acid in tetrahydrofuran and maintain a gentle reflux for 8 h . Then, the solution was cooled and acidified with hydrochloric acid (62\%) [2642].

- Preparation by demethylation of 2-methoxy-6-methylacetophenone,
- with pyridinium chloride at $200-215^{\circ}$ (44%) [2496], (31\%) [2643];
- with boron tribromide in methylene chloride at r.t. [2644,2645], (70\%) [2644].
- Preparation by diazotization of 2-amino-6-methylacetophenone, connected with hydrolysis of the diazonium salt obtained [2646].
- Also obtained by a potassium fluoride catalyzed self-condensation of 2,4-pentanedione in DMF solution [2647,2648].
- Also obtained by UV light irradiation of 3-methylphenyl acetate, in ethanol (36\%) [2192] or in ethanol in the presence of β-cyclodextrin (42\%) [2192].
- Also obtained (poor yield) by irradiation of dehydroacetic acid and vinyl acetate in an ethyl acetate solution [2648,2649], (4\%) [2649].

Isolation from natural sources

- The 2-hydroxy-6-methylacetophenone was isolated as exocrine compound in several neotropical species of ants in the dolichoderine genus Hypoclinea (Hypoclinea analis, Hypoclinea abrupta, Hypoclinea bidens A). The ants were collected in Belem, Para, Brazil [2641,2650]. It was also isolated from the bodies of Rhytidoponera aciculata (Australian ponerine ant) [2651,2652].
- The hydrolytic cleavage of Peripentadenine gave the 2-hydroxy-6-methylacetophenone. The Peripentadenine was obtained from dried milled bark of Peripentadenia mearsii (Elaeocarpaceae), collected at Boonjie (North Queensland) [2653].
- From the essential oil of Cistus ladanifer L. (Cistaceae) [2654].
- From the aerial parts of Gerbera ambigua (Compositae), collected in Transvaal [2655].
Oil [2641-2644,2646,2649,2652,2655];
After two recrystallizations from water and two sublimations ($130^{\circ} / 0.09 \mathrm{~mm}$) gave a white powder, m.p. 93-98 ${ }^{\circ}$ [2643];
b.p. 100° [2642], b.p. ${ }_{18} 138-142^{\circ}$ [2644];
$\mathrm{n}=1.5612$ [2646], $\mathrm{n}=1.5600$ [2642];
${ }^{1}$ H NMR [2641,2642,2644,2648-2650,2654,2655], ${ }^{13}$ C NMR [2653],
IR [2496,2641,2642,2644,2653,2655], MS [2641,2650,2651,2654,2655].

1-(3-Hydroxy-2-methylphenyl)ethanone

[69976-81-4]	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18
	Syntheses
	- Preparation by diazotization of 6-amino-3-hydroxy-2methylacetophenone, followed by hydrolysis of the obtained diazonium salt in the presence of hypophosphorous acid at $0^{\circ}(42 \%)$ [2455].

- Preparation by passing a solution of 3-hydroxy-2-methylbenzoic acid in hot acetic acid over a pelleted thoria catalyst at 470-480 during 4 h (32\%) [2656]. m.p. 121° [2656], $120^{\circ} 8-121^{\circ} 7$ [2455]; ${ }^{1} \mathrm{H}$ NMR [2455].

1-(3-Hydroxy-4-methylphenyl)ethanone

[33414-49-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18

Syntheses

- Preparation by diazotization of 3-amino-4-methylac-eto-phenone, followed by hydrolysis of the obtained diazonium salt [1951,2294,2657], (75\%) [2294], (40\%) [1951].
- Obtained by treatment of 4-methylacetophenone with sodium trifluoroacetate in nitromethane-trifluoroacetic acid-trifluoroacetic anhydride mixture in the presence of a platinum electrode followed by treatment of the intermediate trifluoroacetate ester with 10% potassium hydrogen carbonate solution (40\%) [2006] (of aromatic compounds).

Isolation from natural sources

- From Laurencia chilensis De Toni, Forte and Howe (Rhodomelaceae) [2658]. m.p. $119-120^{\circ}$ [1951,2294], 105-107 [2658];
${ }^{1} \mathrm{H}$ NMR [2658], UV [2658], IR [2658] (Sadtler: standard $\mathrm{n}^{\circ} 8331$), MS [2658].

1-(3-Hydroxy-5-methylphenyl)ethanone

[43113-93-5]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18
Syntheses

- Preparation by diazotization of 3-amino-5-methylac-eto-phenone, followed by hydrolysis of the obtained diazonium salt (70%) [2122].
- Preparation by hydrolysis of diethyl 3-acetoxy-5-methyl-benzoylmalonate with concentrated sulfuric acid in boiling aqueous acetic acid (70\%) [2122].
- Also obtained by solvolysis of 3-acetyl-5-methylphenol tetrahydropyranyl ether with p-toluene-sulfonic acid in methanol at r.t. (73\%) [2659].
- Preparation by aromatization of 5-acetyl-3-methyl-2-cyclohexen-1-one with cupric bromide and lithium bromide in boiling acetonitrile (46\%) [2122].
- Also obtained by alkaline transformation of methyl, tert-butyl or benzyl esters of 4-acetonyl-5-hydroxy-2,5-dimethyl-3-furoic acid with 2 N sodium hydroxide in ethanol at r.t. (35-50\%) [2660].
- Preparation by oxidation of 5-acetyl-3-methyl-2-cyclohexen-1-one with air in alkaline medium or by catalytic hydrogenation of the latter in the presence of Pd / C in p-cymene [2660].
- Also obtained (poor yield) by alkaline degradation of a solution of D-xylose or D-glucose in 0.63 M sodium hydroxide at 96° under nitrogen [2276].
m.p. $122-123^{\circ}$ [2122,2276], $118-121^{\circ}$ [2660], 118-120 ${ }^{\circ} 5$ [2659];
${ }^{1}$ H NMR [2659,2660], IR [2659,2660], UV [2660], MS [2659,2660].

1-(4-Hydroxy-2-methylphenyl)ethanone

[875-59-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18 Syntheses

- Preparation by dealkylation of 4-hydroxy-2-methyl-5-iso-propylacetophenone with aluminium chloride in chlorobenzene at 50° (80\%) [2661].
- Also obtained by reaction of aluminium chloride on 4-acetoxy-2-methylacetophenone at 130° (51\%) or on 4-(benzoyloxy)-2methylacetophenone at 170° [2151].
- Preparation by Fries rearrangement of m-tolyl acetate,
- with aluminium chloride in nitrobenzene at r.t. (80-85\%) [2151], (60-66\%) [2143,2535,2605,2662,2663], (54\%) [2664];
- with aluminium chloride without solvent [2143,2152,2161,2606,2609], at $65^{\circ}(88 \%)$ [2606], at $60-70^{\circ}(28 \%)$ [2609], at $130^{\circ}(16 \%)$ [2152] and at 165° (7\%) [2143];
- with zinc chloride and hydrochloric acid at r.t. (30\%) [2610];
- with hydrofluoric acid at $20^{\circ}(17 \%)$ [2236];
- with titanium tetrachloride at 95° (7\%) [2606].
- Also obtained by reaction of acetyl chloride on m-cresol,
- with aluminium chloride in nitrobenzene at 25° (63\%) [2181];
- with titanium tetrachloride in nitrobenzene at 25° (25\%) [2181];
- with zinc chloride [2310,2311,2610], (14\%) [2610];
- with ferric chloride in carbon disulfide [1823].
- Also obtained by reaction of acetic acid on m-cresol,
- with boron trifluoride at 70° (16\%) [2611];
- by heating the mixture with phosphorous oxychloride (by-product) [2596].
- Also obtained by reaction of acetic anhydride on m-cresol with 70% perchloric acid at r.t. (6\%) [2183].
- Also obtained by UV light irradiation on p-tolyl acetate in methanol at 25° (26\%) [2315]. (There is a 1,2-migration of the methyl group).
- Also obtained by UV light irradiation of m-tolyl acetate in ethanol (13\%) [2192].
- Also obtained by reduction of 4-hydroxy-2-methyl- α-chloroacetophenone with zinc dust in aqueous ethanolic acetic acid [2665].

```
m.p. \(131^{\circ}\) [2611], \(129^{\circ}\) [2661], 128-130 \({ }^{\circ}\) [2315], 128-129ㅇ [2663], \(128^{\circ}\) [21
        61,2183,2311,2606,2609,2664,2665], \(127^{\circ}\) [2143,2151,2610,2662], \(126^{\circ}\)
        [1823], \(125^{\circ}\) [2236];
b.p. \({ }_{17} 158-160^{\circ}\) [2609], b.p. \(313^{\circ}\) [2311];
\({ }^{1} \mathrm{H}\) NMR [2315,2663], IR [2315], UV [2605].
```

1-(4-Hydroxy-3-methylphenyl)ethanone
[876-02-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18 Syntheses

- Preparation by dealkylation of 4-hydroxy-5-methyl-2-iso-propylacetophenone with aluminium chloride in chloro-benzene at 50° (53\%) [2661].
- Preparation by Fries rearrangement of o-tolyl acetate [2161,2171],
with solvent:
- with aluminium chloride in nitrobenzene at r.t. (83-85\%) [2151,2598], (41$49 \%$) [1825,2600,2666,2667] or at $60^{\circ}(82 \%)$ [2143];
- with aluminium chloride in diphenyl ether at 175° (54\%) [2620];
- with titanium tetrachloride in nitrobenzene at 30° (78\%) [2599,2600];
- with ferric chloride in nitrobenzene at 50° (60\%) [2600].
without solvent:
- with aluminium chloride at $160-180^{\circ}$ (61\%) [2143], (27\%) [2597];
- with ferric chloride (42\%) [2600].
- Preparation by reaction of acetyl chloride on o-cresol,
- with hydrofluoric acid at $50^{\circ}(98 \%)$ [2668];
- with aluminium chloride,
- in refluxing carbon disulfide (96\%) [1951];
- in nitrobenzene at $60^{\circ}(86 \%)$ [2181];
- with titanium tetrachloride in nitrobenzene at 30° (66\%) [2600] or at 60° (78\%) [2181];
- with ferric chloride in carbon disulfide [1823].
- Preparation by reaction of acetonitrile on o-cresol with triflic acid at r.t. (67\%) [2250].
- Also obtained by reaction of acetic anhydride with o-cresol in anhydrous hydrofluoric acid at 50° (quantitative yield) [1825] or in 70% perchloric acid at 120° (31\%) [2183].
- Also obtained by reaction of acetic acid on o-cresol with zinc chloride (Nencki reaction) (10\%) [2595].
- Preparation by diazotization of 4-amino-3-methylacetophenone with sodium nitrite in dilute hydrochloric acid and replacement of the diazonium group by hydroxyl group [2253].
- Also obtained by UV light irradiation of o-tolyl acetate, at 25°,
- in ethyl ether (10%) [2193];
- in hexane, in the presence of potassium carbonate (12\%) [2015] or without potassium carbonate (3\%) [2015].
- Also refer to: [1828].
m.p. 110° [2620,2661], 108-109 ${ }^{\circ}$ [1825], 108° [2598], 107-109 ${ }^{\circ}$ [1951], $106-108^{\circ}$ [2666],105 $5-106^{\circ} 5$ [2250], 104-105 ${ }^{\circ}$ [2266], 104° [1823,214 3,2161,2253,2595,2599,2600];
b.p. ${ }_{7.5} 166-167^{\circ}$ [2597], b.p. ${ }_{5} 170-175^{\circ}$ [2620]; pK_{a} [1977];
${ }^{1} \mathrm{H}$ NMR [2250], IR [2250], MS [2250].

1-(5-Hydroxy-2-methylphenyl)ethanone

[40180-70-9] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18

Syntheses

- Preparation from 5-acetyl-4-methyl-3-cyclohexenone by aromatization promoted,
- by cupric bromide with lithium bromide in refluxing acetonitrile (80\%) [2030];
- by $10 \% \mathrm{Pd} / \mathrm{C}$ in refluxing xylene (50\%) [2030].
m.p. $\quad 28^{\circ}$ [2030]; $\quad{ }^{1} \mathrm{H}$ NMR [2030], IR [2030].

1-[2-Hydroxy-5-(methylthio)phenyl]ethanone

[135936-88-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 182.24

1-[4-Hydroxy-3-(methylthio)phenyl]ethanone

[66264-56-0]	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$ Syntheses
	- Preparation by reaction of methyl iodide on 4-hydroxy-3mercaptoacetophenone with potassium carbonate in acetone at r.t. (83\%) [2274,2275]. - Preparation by reaction of acetyl chloride on 2-(methyl-thio) phenol with aluminium chloride in nitrobenzene at 65° (34\%) [2274,2275]. - Also refer to: [1828].
m.p. 117-1	[2274,2275].

1-(2,3-Dihydroxy-4-methylphenyl)ethanone

1-(2,3-Dihydroxy-5-methylphenyl)ethanone

[69751-80-0] \quad\begin{tabular}{l}
Syntheses

- Preparation by reaction of acetic acid on creosol with

boron trifluoride at $160^{\circ}(78 \%)$ [2670].
\end{tabular}
- Also obtained by UV light irradiation of 3,5-dime-thyl-1,2-benzisoxazole in 96% sulfuric acid (6\%) [2284].
m.p. $87^{\circ} 5-88^{\circ}$ [2284], $86-88^{\circ}$ [2670];
${ }^{1} H$ NMR [2284], IR [2284], UV [2284], MS [2284].

1-(2,3-Dihydroxy-6-methylphenyl)ethanone

m.p. \quad| $82-83^{\circ}$ [2276]; $;$ |
| :--- |

1-(2,4-Dihydroxy-3-methylphenyl)ethanone

[10139-84-1] \quad\begin{tabular}{l}
Syntheses

- Preparation by reaction of acetic anhydride on
2-methyl-resorcinol with boron trifluoride-ethyl ether
complex at $70-80^{\circ}(78 \%)$

$\mathrm{CH}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
\end{tabular}

- Preparation by reaction of acetic acid on 2-methyl-resorcinol with zinc chloride (Nencki reaction) (59\%) [2671].
- Preparation by reaction of acetonitrile on 2-methylresorcinol (Hoesch reaction) [2213,2672].
- Preparation by demethylation of 2-hydroxy-4-methoxy-3-methylacetophenone with hydriodic acid in a boiling mixture of phenol and acetic anhydride [2213,2672].
- Also obtained by catalytic reduction of $2^{\prime}, 4^{\prime}$-dihydroxy- 3^{\prime}-(1-piperidylmethyl) acetophenone in the presence of Pd / C [2673,2674], (65\%) [2674]. The starting material was obtained by treatment of resacetophenone in ethanol with methyl-ene-bis-piperidine.
- Also refer to: [2675].
m.p. $157-158^{\circ}$ [2582,2673,2674], $156-157^{\circ}$ [2672], $155-156^{\circ}$ [2213];
${ }^{1} \mathrm{H}$ NMR [2582,2674], ${ }^{13} \mathrm{C}$ NMR [1821], IR [2582,2674], UV [2213], MS [2582].

1-(2,4-Dihydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Syntheses

- Preparation by reaction of acetonitrile on 4-methylresorcinol (Hoesch reaction) (75\%) [2676], (50-59\%) [2302,2677].
- Preparation from 2,4-dimethoxy-5-methylacetophenone by reaction with boron tribromide in methylene chloride at r.t. (48\%) [2678,2679].
- Preparation by reaction of acetic acid on 4-methylresorcinol with zinc chloride (Nencki reaction) (46-60\%) [2330,2680-2682].
- Preparation by Fries rearrangement of 4-methylresorcinol diacetate with aluminium chloride in nitrobenzene (63\%) [2680].
m.p. $170-171^{\circ}$ [2330], 170° [2676,2682], 169° [2677], 168-169 ${ }^{\circ}$ [2680];
${ }^{1} \mathrm{H}$ NMR [2680], IR [2680], UV [2213].

1-(2,4-Dihydroxy-6-methylphenyl)ethanone

(Orcacetophenone; Orsacetophenone; β-Orcacetophenone)
[703-29-7]
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Syntheses

- Preparation by reaction of acetonitrile on orcinol (Hoesch reaction) [2301,2307,2683,2684], (75\%) [2330], (62\%) [2301].
- Preparation by reaction of acetyl chloride on orcinol with aluminium chloride in nitrobenzene (56\%) [2308].
- Preparation by reaction of acetic acid with orcinol in the presence of boron trifluoride etherate at $102-115^{\circ}$, then hydrolysis of complex obtained with boiling dilute ethanol (65\%) [2685].
- Preparation from 3,3'-dimethyl-5,5'-diisoxazolyl-methane by performing hydrogenolysis and subsequent hydrolysis with hydrochloric acid (80\%) [2686] or with 50% sulfuric acid [2687].
- Preparation by reaction of 50% sulfuric acid with nonan-2,4,6,8-tetraone diethylene ketal for 10 min (77\%) [2688].
- Preparation by hydrolysis of 2,8-di-(1-pyrrolidinyl)-2,7-nonanediene-4,6-dione (SM) $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} 4$ (m.p. 196-199) with refluxing 2 N sulfuric acid for 30 min (69\%) [2689]. SM was obtained by reaction of 3-acetoacetyl-4-hydroxy-6-methyl-2-pyrone with an excess of pyrrolidine.
- Preparation by hydrolysis of an ionic complex $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5} 10$ (m.p. 161-162 $)$ with refluxing 2 N sulfuric acid for 1 h (87\%) [2689].
- Also obtained from 7-hydroxy-4,5-dimethylcoumarin by heating in a boiling water bath with 10% aqueous sodium hydroxide [2683].
- Also obtained by degradation of 3,8-diacetyl-4,5-dihydroxy-7-methylcoumarin by heating with aqueous sodium hydroxide solution [2690].
- Also obtained by decarboxylation of 3-acetyl-p-orsellinic acid (3-acetyl-2,6-di-hydroxy-4-methyl-benzoic acid) with copper in boiling quinoline [2691].
- Also obtained (by-product) by reaction of trifluoroacetic anhydride on 2-ace-toxy-4-methoxy-6-methylbenzoic in the presence of orcinol at 25° (8%) [2692].
- Also obtained (by-product) by Fries rearrangement of orcinol diacetate in the presence of aluminium chloride in nitrobenzene at $75-80^{\circ}$ (5\%) [2693].
- Also obtained (by-product) by reaction of acetyl chloride on orcinol dimethyl ether with aluminium chloride in carbon disulfide (3\%) [2694].

Isolation from natural sources

- From Scolecotrichum graminis Fuckel [2695].
m.p. $160-161^{\circ}$ [2694], $159-160^{\circ}$ [2308], 159° [2301,2307,2688,2690], 158$160^{\circ}$ [2692], $158-159^{\circ}$ [2330,2689], 158° [2686,2691], 157-159ㅇ [2683], 140° [2685];
${ }^{1} \mathrm{H}$ NMR [2686,2695], IR [2685,2695], UV [2213,2685,2695], MS [2686,2695].

1-(2,5-Dihydroxy-3-methylphenyl)ethanone

[274259-41-5]

m.p. 111-113 ${ }^{\circ}$ [2696];
${ }^{1} \mathrm{H}$ NMR [2696], IR [2696], MS [2696].

1-(2,5-Dihydroxy-4-methylphenyl)ethanone

$[54698-17-8]$	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$	mol.wt. 166.18

Syntheses

- Preparation by Fries rearrangement of 2-methyl-hydro-quinone diacetate with aluminium chloride without solvent [2024,2697-2699], between 120° and 160° (53-54\%) [2698,2699].
- Preparation by reaction of acetic acid on 2-methylhydro-quinone with boron trifluoride [2349,2350,2700], (85\%) [2350].
- Also obtained by saponification of 2,5-diacetoxy-4-methylacetophenone with aqueous sodium hydroxide [2349].
- Also obtained by demethylation of 2-hydroxy-5-methoxy-4-methylacetophenone and 2,5-di-methoxy-4-methylacetophenone with boiling pyridinium chloride [2542].
- Also obtained by UV light irradiation of 3,6-dimethyl-1,2-benzisoxazole in 96-98\% sulfuric acid (44\%) [2284,2285].
- Also refer to: [2701-2703].

Isolation from natural sources

- From Chinese Moutan Cortex, the root of Paeonia suffruticosa Andrews (Paeoniaceae) [2323].
m.p. 148-149 ${ }^{\circ}$ [2699], 147-1475 [2284], 147° [2542], 145-146 [2698], 145° [2349], 141° [2024,2350];
${ }^{1} \mathrm{H}$ NMR [2284], IR [2284,2699], UV [2284], MS [2284].

1-(2,6-Dihydroxy-3-methylphenyl)ethanone

[29183-78-6]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18 Syntheses

- Obtained from 8-acetyl-4,6-dimethyl-7-hydroxycoumarin by alkaline degradation with 20% aqueous sodium hydroxide solution at reflux (42\%) [2213,2682].
- Obtained from 4-acetoxy-3-acetyl-2-hydroxy-5-methyl-benzoic acid by hydrolysis with 10% ethanolic potassium hydroxide, followed by decarboxylation [2704].

Isolation from natural sources

- From dihydrousnic acid [2552,2705] or from tetrahydrodeoxyusnic acid [2705] (from Lichens substances) by potassium permanganate oxidation in 10% aqueous potassium hydroxide at r.t., followed by distillation (5\%) [2552].
- From methyldihydrousnic acid [2704], either by potassium permanganate oxidation, followed by vacuum distillation [2706], or by vacuum distillation, followed by ozone oxidation [2706].

```
m.p. 138-139` [2213], 138}[2552,2682,2705], 136-137 [2706], 134-136 [2704];
'1H NMR [2704], UV [2213,2704,2706].
```


1-(2,6-Dihydroxy-4-methylphenyl)ethanone (γ - or p-orcacetophenone)

[1634-34-0]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
mol.wt. 166.18
Syntheses

- Preparation by reaction of acetic anhydride on orcinol,
- with concentrated sulfuric acid at 130° (65\%) [2307];
- with Amberlite IR-120 or Zeokarb-225, cation exchange resins (sulfonic acid type) at 160° (20\%) [2026].
- Preparation by reaction of acetyl chloride on orcinol with aluminium chloride in boiling nitrobenzene (50\%) [2213,2707].
- Preparation by reaction of acetic acid on orcinol,
- with zinc chloride (Nencki reaction) [2708];
- with phosphorous oxychloride at $100-110^{\circ}$ [2301,2709,2710].
- Also obtained by reaction of acetyl chloride on 2,5-dimethoxytoluene (?) with aluminium chloride in carbon disulfide (26\%) [2348].
- Also obtained by partial deacylation of 2,4-diacetylorcinol with 85% sulfuric acid at r.t. [2335,2337,2691], (39\%) [2337] or with boiling solution of 1 N sodium hydroxide [2691].
- Also obtained by decarboxylation of methyl 3-acetyl-2,4-dihydroxy-6methylbenzoate,
- by reaction of boiling solution of 1 N sodium hydroxide [2691];
- by heating at 180°, followed by distillation [2711].
- Also obtained by reaction of boiling solution of 1 N sodium hydroxide on methyl 3,5-diacetyl-2,4-dihydroxy-6-methylbenzoate, decarbonylation and decarboxylation occurring simultaneously [2691].
- Also obtained by reaction of 2-acetoxy-4-methoxy-6-methylbenzoic acid on orcinol with trifluoroacetic anhydride at 25° (5\%) [2692].
- Also obtained by degradation of 3,8-diacetyl-4,7-dihydroxy-5-methylcoumarin by heating with aqueous sodium hydroxide solution [2690].
- Also obtained by reaction of potassium hydroxide with 2-acetyl-3-dimethylam-ino-5-hydroxy-5-methyl-2-cyclohexenone in ethanol at 40° (48\%) [2712].
- Also refer to: [2713].

Isolation from natural sources

- From Rumex patientia (Polygonaceae) [2714].
- The occurrence of 2-acetylorcinol and its monoglucoside was established in Tissue Cultures from Rumex alpinus (Polygonaceae) [2715].
m.p. $147-149^{\circ}$ [2026], $146-147^{\circ}$ [2213,2348], 146° [2301,2307,2337,2691,2 $708,2710,2711], 144-146^{\circ}$ [2712], 142-144 ${ }^{\circ}$ [2707], 142-143 ${ }^{\circ}$ [2690,2692];
${ }^{1} \mathrm{H}$ NMR [2206,2348,2704,2712], ${ }^{13} \mathrm{C}$ NMR [2206], IR [2348,2690,2711,2712];
UV [2213,2711], MS [2348,2712].

1-(3,4-Dihydroxy-2-methylphenyl)ethanone
[66296-84-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
 Syntheses

- Obtained (poor yield) by treatment of dihydroxyacetone in aqueous solution (pH 4.5) at $96^{\circ}(2 \%)$ [2716].
- Also obtained (poor yield) by reaction of acetic anhydride on 3-methyl-1,2-benzenediol with perchloric acid [2717].
- Also obtained (poor yield) by Fries rearrangement of 3-methylpyrocatechol diacetate with aluminium chloride in nitrobenzene at $75-80^{\circ}(<19 \%)$ [2376].
m.p. $\quad 149-152^{\circ}$ [2716]; ${ }^{1} \mathrm{H}$ NMR [2716], MS [2716].

1-(3,4-Dihydroxy-5-methylphenyl)ethanone
[80547-86-0] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Syntheses

- Preparation by heating 3-methylpyrocatechol in boron trifluoride-acetic acid at 60-70 (62\%) [2669].
- Preparation by Fries rearrangement of 3-methylpyrocatechol diacetate,
- with aluminium chloride in chlorobenzene at 110° (71\%) [2718] or in nitrobenzene at $75-80^{\circ}(<19 \%)$ [2376];
- with a molten mixture of aluminium chloride and sodium chloride at 200° (40\%) [2669].
- Also obtained from neutral glucose and fructose solutions heated at 120° [2390]. m.p. $197-199^{\circ}$ [2669], 139-140² [2718]; ${ }^{1} \mathrm{H}$ NMR [2718], IR [2669,2718].

1-(3,5-Dihydroxy-2-methylphenyl)ethanone

m.p. $160^{\circ} 5-161^{\circ} 2$ [2581].

1-(3,5-Dihydroxy-4-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Synthesis

- Preparation by diazotization of 3-amino-5-hydroxy-4methylacetophenone hydrochloride, followed by hydrolysis of the diazonium salt so obtained (43\%) [2581].
m.p. $190-191^{\circ}$ [2581].

1-(3,6-Dihydroxy-2-methylphenyl)ethanone

$$
[176177-16-5] \quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad \text { mol.wt. } 166.18
$$

 Synthesis

- Preparation by total demethylation of 2,5-dimethoxy-6methylacetophenone (SM) with aluminium chloride in refluxing chlorobenzene for 4 h (74\%) [2719]. SM was obtained in three steps from 2,5-dimethoxy-6-methylaniline via the sequence: first, 6-bromo-2,5-dimethoxytoluene (m.p. 97-985), then 6-(1-hydroxyethyl)-2,5-dimethoxy-toluene (m.p. $40^{\circ} 5-42^{\circ} 5$) and finally SM (m.p 59-595).
m.p. $122^{\circ} 5-123^{\circ} 5$ [2719]; sublimation at $86-90^{\circ} / 0.1 \mathrm{~mm}[2719]$;
${ }^{1} H$ NMR [2719], IR [2719], MS [2719].

1-(4,5-Dihydroxy-2-methylphenyl)ethanone

$[18087-17-7]$	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$	mol.wt. 166.18
OH	Syntheses	

- Preparation by reaction of zinc powder on 4,5-dihydroxy-2-methyl- α-chloroacetophenone in dilute acetic acid between 40° and 70° [2280,2386], (good yield) [2280].
- Preparation by Fries rearrangement of 4-methylpyrocatechol diacetate with aluminium chloride in nitrobenzene at $75-85^{\circ}$ ($87-97 \%$) [2376,2720], (34\%) [2721].
- Also obtained (poor yield) by reaction of acetic anhydride with 3,4-dihydroxytoluene in the presence of 70% perchloric acid on a steam bath for $3 \mathrm{~h}(10 \%)$ [2722].
- Also obtained (by-product) by Fries rearrangement of creosol acetate with aluminium chloride in nitrobenzene at 80° for $1 \mathrm{~h}(6 \%)$ [2723].
- Also refer to: [2724].
m.p. $170^{\circ} 5-171^{\circ}[2722], 169^{\circ}[2723], 168-170^{\circ}[2721], 168-169^{\circ}[2280,2720]$, 164° [2386], 160° [2376];
${ }^{1} \mathrm{H}$ NMR [2722], MS [2722].

1-[2-Hydroxy-4-(hydroxymethyl)phenyl]ethanone

[22518-00-9]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Isolation from natural sources

- By acidic hydrolysis of two esters isolated from Gaillardia aristata, the 7-isobutyryloxy-8,9-epoxythymol and 7-(2-methylbutyryloxy)-8,9-epoxythymol isobutyrates [2725].
- From the aerial parts of Calea nelsonii Robinson and Greenman (Asteraceae) [2726].

```
m.p. 615-62 [2725]; '1H NMR [2725], IR [2725], UV [2725].
```


1-[2-Hydroxy-5-(hydroxymethyl)phenyl]ethanone

[31611-90-2] \quad\begin{tabular}{l}
Synthesis

- Obtained by hydrolysis of 2-hydroxy-5-chloromethyl-ace-

tophenone [2727].
\end{tabular}

1-(2-Hydroxy-3-methoxyphenyl)ethanone (ortho-Acetovanillone)

[703-98-0]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18 Syntheses

- Preparation from 2,3-dimethoxybenzonitrile and methyl-magnesium iodide in refluxing ethyl ether (Grignard reaction) [1821,2728], (75\%) [2728].
- Preparation by reaction of aluminium chloride on the 2,3-dimethoxyacetophenone, in boiling ethyl ether (96\%) [2408] or in boiling toluene (67\%) [2729].
- Also obtained by reaction of hydrobromic acid on 2,3-dimethoxyacetophenone in acetic acid at 25° [2215].
- The usual method of synthesis involves the successive conversion of o-veratraldehyde to the 2,3-dimethoxyphenyl methyl carbinol, 2,3-dimethoxyacetophenone and demethylation [2728].
- Preparation by UV light irradiation of guaiacol acetate, in benzene (48\%) [2198] or in ethyl ether (20\%) [2193].
- Also obtained (by-product) by Fries rearrangement of guaiacol acetate with zinc chloride at reflux [2729] or with aluminium chloride without solvent between 20° and $50^{\circ}(9-11 \%)$ [2378].
m.p. 54° [2408], $53-54^{\circ}$ [2729], $52-53^{\circ}$ [2215], $50-53^{\circ} 1$ [2728];
b.p. ${ }_{0.5} 110-120^{\circ}$ [2729];
${ }^{1} \mathrm{H}$ NMR [2198], ${ }^{13} \mathrm{C}$ NMR [1821], IR [2198], UV [2215].
1-(2-Hydroxy-4-methoxyphenyl)ethanone (Paeonol)
[552-41-0]
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Syntheses

- Preparation by reaction of methyl iodide [2220,2730,2731], or dimethyl sulfate [1818,2227,2301,2529,2732-2737] on resacetophe- none in sodium hydroxide or potassium hydroxide solution (quantitative yield) [2301], (70-75\%) [1818], (good yield) [2731], (60\%) [2735], (52\%) [2732].
- Preparation by reaction of methyl iodide on resacetophenone,
- with potassium carbonate in boiling acetone (92\%) [2738], (73\%) [2368], (55-64\%) [2739];
- with lithium carbonate in DMF at 55° (81\%) [2217].
- Preparation by reaction of dimethyl sulfate with resacetophenone in the presence of potassium carbonate in refluxing acetone (81\%) [2740].
- Also obtained by reaction of methyl iodide on resacetophenone silver salt in boiling acetone [2293].
- Preparation by reaction of diazomethane with resacetophenone in ethyl ether/ methanol solution (90\%) [2302].
- Preparation by reaction of acetic acid,
- on the resorcinol monomethyl ether, in the presence of polyphosphoric acid (25\%) [2299] or zinc chloride at reflux (Nencki reaction) (29\%) [2171];
- on the resorcinol dimethyl ether with boron trifluoride at 125° (42%) [2298].
- Preparation by reaction of acetonitrile on resorcinol monomethyl ether (Hoesch reaction) (27\%) [2301].
- Preparation by reaction of bromoacetyl bromide on resorcinol dimethyl ether with aluminium chloride [2741].
- Preparation by Fries rearrangement of 3-methoxyphenyl acetate with zirconium chloride in methylene chloride for 48 h at r.t. (85\%) [2616].
- Also obtained by Fries rearrangement of 3-methoxyphenyl acetate with aluminium chloride in nitrobenzene at r.t. (13\%) [2742,2743].
- Also obtained by reaction of zinc powder on 2,4-dimethoxy- α-bromoacetophenone in acetic acid in a water bath [2744].
- Also obtained (by-product) by reaction of zinc powder and silver chloride on 2-hydroxy-4-methoxy- α-chloroacetophenone in benzene and crotonaldehyde mixture at 60-70 ${ }^{\circ}$ [2745].
- Also obtained by reaction of 2 N sodium hydroxide on 2-hydroxy-4-methoxyα, α, α-trifluoro-acetoacetophenone at r.t. (quantitative yield) [2629].
- Also obtained by acetylation of resorcinol monomethyl ether by treatment with complex mixture (acetyl chloride/acetic anhydride/acetic acid/anisole/sodium perchlorate) at $60^{\circ}(8 \%)$ [2746].
- Also obtained by reaction of aluminium chloride on 2,4-dimethoxyacetophenone in benzene at $100-110^{\circ}$ [2530] or in acetonitrile for 6 h at $45^{\circ}(40 \%)$ [2747].
- Also obtained on treatment of ethyl 2-acetyl-5-methoxyphenoxyacetate with boron trichloride in methylene chloride, first at -70°, then at r.t. for $5 \mathrm{~min}(84 \%)$. The ethoxycarbonylmethyl group was selectively removed without difficulty [2748].

Isolation from natural sources

- From the root bark of Paeonia Moutan (Ranunculaceae) [2316,2331,2731,2749], of Paeonia broteroi [2256] and of Paeonia suffruticosa Andrews (mudanpi) (Paeoniaceae) [2323] or Paeania suffruticosa Anhr. (mudanpi) (Ranunculaceae) (major component) [2750].
- From paeonia radix (SM) [2751-2753]. SM is the dried roots of paeonia veitchii Lynch or paeonia lactiflora Pall, yet named paeonia albiflora Pall.
- From macadamia nuts and shells [2754].
- From the roots of Pentecost rose (paeonia arborea, also named paeonia Moutan in China or paeonia Botan in Japan) (Renonculaceae) by hydrolysis of its glucoside [2736,2749,2755].
- From the roots of cynanchum paniculatum [2756-2758].
- From the volatile oil of dioscorea japonica [2759].
- From the leaves of ficus krishnae [2760].
- As a major component in the steam distillates of the resins from various species of Xanthorrhoea (X.); X. tateana F. Muell. and X. preissi [2584], but also from X. arborea R. Br. and X. reflexa [2761].
- By thermal decomposition of the resin from Ferula pyramidata (Kar. et Kir.) eug. kor. [2293].

```
m.p. \(51^{\circ} 3\) [2762], \(51^{\circ}\) [2299,2745], 50-51 \({ }^{\circ}\) [2737], \(50^{\circ}\) [1818,2171,2220,273
        \(327342331230127632735274227432316229825302731]\), 49-50ㅇ
        [2368,2738], \(49^{\circ}\) [2293,2584,2730,2761], 48-50ํ [2739,2755], \(48^{\circ}\)
        [2740,2764], 47-49ํ [2217], 45 \({ }^{\circ}\) [2749];
    b.p. \({ }_{0.001} 90-100^{\circ}\) [2745], b.p. \(135-137^{\circ}\) [2293], b.p. \({ }_{20} 154^{\circ}\) [2732], b.p. \({ }_{18} 155-165^{\circ}\)
        [2761];
    b.p. \({ }_{20} 158^{\circ}\) [2584], b.p. \(180^{\circ}\) [2737], b.p. \({ }_{30} 210^{\circ}\) [2737];
    \(\mathrm{n}_{\mathrm{D}}^{15}=1.5745\) [2293]; \(\mathrm{d}_{20}^{40}=1.1604\) [2293];
TLC [2754,2765]; HPLC [2752,2766]; GC [2756,2759]; GC-MS [2759];
\({ }^{1}\) H NMR [1869,2256,2326,2327,2738], \({ }^{13}\) C NMR [1821,2210,2328,2329,2368,2
        767];
IR [1963,2256], UV [2256,2326], MS [2331,2765].
```


1-(2-Hydroxy-5-methoxyphenyl)ethanone

- with aqueous sodium hydroxide solution at reflux (35\%) [2345,2768].
- Preparation by reaction of aluminium chloride on 2,5-dimethoxyacetophenone in refluxing ethyl ether (53\%) [2408].
- Preparation by reaction of methyl iodide on 2,5-dihydroxyacetophenone with potassium carbonate in refluxing acetone [1984,2769], (55-64\%) [2769].
- Also obtained by reaction of acetic acid on hydroquinone dimethyl ether with boron trifluoride at 70° (26\%) [2298].
- Also obtained by Fries rearrangement of 4-methoxyphenyl acetate with aluminium chloride without solvent at $60-65^{\circ}$ (24\%) [2344].
- Also obtained by reaction of acetyl chloride on hydroquinone dimethyl ether with aluminium chloride,
- in boiling ethyl ether (57\%) [2770];
- in nitrobenzene, at r.t. (45\%) [2771];
- in methylene chloride, at r.t. (16\%) [2772];
- in carbon disulfide, at r.t. (7\%) [2773] or by heating at 95°, after elimination of the solvent (72\%) [2521].
- Preparation by UV light irradiation of 4-methoxyphenyl acetate at 25°,
- in hexane (75\%) [2015];
- in hexane with potassium carbonate, (89\%) [2015];
- in ethyl ether (38\%) [2193];
- in ethanol [2774,2775], (40-42\%) [2775].
- Also obtained by UV light irradiation of 4-methoxyphenyl 3-(ethylenedioxy)butanoate in hexane at r.t. (34\%) [2776].
- Also obtained by UV light irradiation of 2,4-dimethoxyphenyl acetate in benzene or ethanol (11-13\%) [2198].
- Also refer to: [2227,2494,2777].

Isolation from natural sources

- From the essential oil of the rhizomes of Primula acaulis, an European variety of stemless primrose [2352].
m.p. 52° [2012,2298,2768,2771], 51° [2770], $50-51^{\circ}$ [2344,2345,2408,2773], 50° [2015,2775], 49-495 [2772], 49° [2352,2521], 48-50́ [2769,2778], $48-49^{\circ}$ [1984,2215], 47-49 ${ }^{\circ}$ [2348], 46° [2774];
b.p. ${ }_{12} 138-142^{\circ}$ [2408], b.p. ${ }_{15} 146-150^{\circ}$ [2298];
${ }^{1} \mathrm{H}$ NMR [1976,2348], ${ }^{13} \mathrm{C}$ NMR [1821,1976,2328,2779], IR [1963,2348];
UV [2215,2348]; pK_{a} [1977].

1-(2-Hydroxy-6-methoxyphenyl)ethanone

[703-23-1] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
 Syntheses

- Preparation by reaction of methyl iodide on 2,6-dihydroxyacetophenone with potassium carbonate in boiling acetone [1821,1984,2780], (56\%) [2780].
- Preparation by reaction of dimethyl sulfate on 2,6-di-hydroxyacetophenone,
- with potassium carbonate in boiling benzene (71-73\%) [1891,2781];
- with potassium carbonate in boiling acetone [2219,2524] (quantitative yield) [2524];
- with potassium hydroxide in benzene, in a water bath (54\%) [2364];
- with 20% solution of sodium hydroxide (68\%) [2361];
- with 30% solution of sodium hydroxide (20\%) [2213,2369].
- Also obtained by partial demethylation of 2,6-dimethoxyacetophenone with aluminium chloride in acetonitrile for 6 h at 45° (30\%) [2747].
- Also obtained from 3-acetyl-5-methoxy-2-methylchromone by refluxing with 2% sodium carbonate solution [2131].

```
m.p. }6\mp@subsup{0}{}{\circ}[2131,2361,2369,2781],59-60` [2364],58`5 [2780],58-59` [2213],
    57-59` [1891], 57-58` [2219],55-56o [1984], 55} [2524]
    '1H NMR [2374], '3}\textrm{C}\mathrm{ NMR [1821,2219], UV [2213].
```


1-(3-Hydroxy-2-methoxyphenyl)ethanone

[204781-71-5] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
 pound 61) [2782].

GC [2782]; GC/MS [2782].
1-(3-Hydroxy-4-methoxyphenyl)ethanone (Isoacetovanillone)
[6100-74-9]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Syntheses

- Preparation by saponification of 3-acetoxy-4-meth-oxy-acetophenone [2783-2785], (90\%) [2785], (59\%) [2783].
- Preparation by hydrolysis of 3,4-dimethoxyacetophenone with concentrated sulfuric acid at 65° (58\%) [2786].
- Preparation by reaction of methyl iodide on 3,4-dihydroxyacetophenone with lithium carbonate in DMF at 55° (90\%) [2217].
- Preparation by reaction of activated zinc dust on 3-hydroxy-4-methoxy- α-chloroacetophenone with 10% acetic acid in refluxing ethanol (48\%) [2787].
- Preparation by Fries rearrangement of guaiacol acetate,
- with hydrofluoric acid at $0^{\circ}(28 \%)$ [2236];
- with zinc chloride at reflux (6\%) [2729].
- Preparation by reaction of acetic acid on guaiacol,
- with hydrofluoric acid at $0^{\circ}(25 \%)$ [2236];
- with phosphorous oxychloride on a steam bath (20\%) [2171].
- Preparation by reaction of acetic anhydride on guaiacol,
- with concentrated sulfuric acid at 80° (20-24\%) [2784] (The in situ formed sulfoacetic acid during the reaction was the actual acylating agent);
- with zinc chloride [2331].
- Obtained by reaction of sodium acetate on 3-chloroacetoxy-4-methoxyacetophenone in refluxing methanol [2788].
- Also refer to: [2789].

Isolation from natural sources

- From Chinese Moutan Cortex, the root of Paeonia suffruticosa Andrews or Anhr. (mudanpi) (minor component) (Paeoniaceae) [2323], (Ranunculaceae) [2750].
m.p. (anhydrous): 93° [2236], $92-93^{\circ}$ [2750,2786], 92° [2783], $91-92^{\circ}$ [2171,2785], 91° [2784], 89° [2217], $87-88^{\circ}$ [2787];
m.p. (hydrate): 67-68 ${ }^{\circ}$ [2729,2785], 66-69ํ [2784], 65-68 ${ }^{\circ}$ [2788], 64-65 ${ }^{\circ}$ [2331], 59-60́ [2171];
b.p. ${ }_{15} 180-200^{\circ}$ [2171], b.p. ${ }_{18} 195-200^{\circ}$ [2784];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ} 28211$ M);
IR [2783] and (Sadtler: standard n° 55283); UV [2783], MS [2331].

1-(3-Hydroxy-5-methoxyphenyl)ethanone

1-(4-Hydroxy-2-methoxyphenyl)ethanone (Isopaeonol)
[493-33-4] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Syntheses

- Preparation by reaction of acetonitrile on resorcinol monomethyl ether (Hoesch reaction) (27\%) [2301], (10\%) [2128].
- Preparation by reaction of acetic acid on resorcinol monomethyl ether,
- with polyphosphoric acid (27\%) [2299];
- using perchloric acid liberated in situ, at 60° (6\%) [2746].
- Preparation by hydrolysis of 4-acetyl-3-methoxyphenyl acetate with boiling 10% sodium hydroxide solution (58\%) [2791] or 4-acetyl-3-methoxyphenyl benzoate with potassium hydroxide in refluxing methanol (85\%) [2792].
- Also obtained (by-product) by Fries rearrangement of 3-methoxyphenyl acetate with aluminium chloride in nitrobenzene at r.t. (11\%) [2742,2743] or at 90° (4\%) [2128].
- Also refer to: [2777] and [2793] (compound 8).

Isolation from natural sources

- This ketone was identified in the extract from "Redgold" apple flowers [2794]. $\begin{array}{ll}\text { m.p. } & 139-140^{\circ} \text { [2791,2792], } 138^{\circ} \text { [2128,2301,2742,2743], } 137-138^{\circ} \text { [2746], } \\ & 134^{\circ} \text { [2299]; }{ }^{13} \mathrm{C} \text { NMR [2328]. }\end{array}$

1-(4-Hydroxy-3-methoxyphenyl)ethanone

(Apocynin; Acetovanillone; Acetoguaiacone)
[498-02-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
 Syntheses

- Preparation by reaction of acetyl chloride on guaiacol [2784].
- Preparation by reaction of acetic anhydride on guaiacol with polyphosphoric acid in a water bath (29\%) [2788].
- Preparation by Fries rearrangement of guaiacol acetate,
- with aluminium chloride in nitrobenzene at r.t. [2378,2795-2798], (49-51\%) [2378,2797] or at $80^{\circ}(40 \%)$ [2796];
- with hydrofluoric acid at 0° (50\%) [2236];
- with zinc chloride at $200^{\circ}(25-26 \%)$ [2171,2729].
- Preparation by reaction of acetic acid on guaiacol,
- with hydrofluoric acid at $0^{\circ}(38 \%)$ [2236];
- with polyphosphoric acid (36\%) [2299];
- with zinc chloride at reflux (4\%) [2171];
- with aluminium chloride-zinc chloride mixture at $140-150^{\circ}$ [2784,2799], (low yield) [2799].
- Also obtained by hydrolysis of 4-acetyl-2-methoxyphenyl acetate with boiling water [2784].
- Also obtained by saponification of 4-acetyl-2-methoxyphenyl benzoate with boiling aqueous sodium hydroxide (56\%) [2800].
- Also obtained (low yield) by treatment of 4-hydroxy-3-methoxybenzoic acid (vanillic acid) with calcium carbonate in boiling dilute acetic acid [2379].
- Also obtained from 4-hydroxy-3-methoxy- α-bromoacetophenone [2801] or 4-hydroxy-3-methoxy- α-chloroacetophenone [2802] by reductive removal of the halogen atom with iron filings and 10% sulfuric acid in aqueous ethanol at 60°.
- Also obtained by UV light irradiation,
- of guaiacol acetate in benzene (12-14\%) [2193,2198];
- of 2,4-dimethoxyphenyl acetate in benzene (8\%) [2198] or in ethanol (4\%) [2198].
- Also refer to: [1828,2227].

Isolation from natural sources

- From rhizomes of Canadian hemp, Apocynum cannabinum, of Apocynum androsaemifolium (Apocynaceae) [2803,2804], of several species of Apocynum [2331].
- From the essential oil of the rhizomes of Iris (Iridaceae) [2805].
- From the roots of Paeonia broteroi (Paeoniaceae) [2256].
- From the root of Paeonia suffruticosa Andrews (Paeoniaceae) [2323].
- From the bulbs of Buphane disticha, Herb. (Amaryllidaceae) [2806].
- From spruce lignin sulfonic acid by treatment with hot aqueous alkali (0.20.3\%) [2807].
- Described by Shimamoto as one of the fragrant components of Soy [2798]. m.p. 116° [2236], $115-116^{\circ}$ [2729,2796], 115-115 5 [2805], 115° [2331,2379,2797,2799,2800,2802-2804,2806], 114-115 ${ }^{\circ}$ [2788], 114° [2299], $113^{\circ} 5-114^{\circ} 5$ [2807], 113-114$~[2171,2801], 112-114^{\circ}$ [1789]; b.p. $._{13} 160-170^{\circ}$ [2797], b.p. ${ }_{15-20} 233-235^{\circ}$ [2379], b.p. ${ }_{760} 280-300^{\circ}$ [2799], b.p. 300° [2803];
${ }^{1} \mathrm{H}$ NMR [2256], IR [2256], UV [2256,2269], MS [1789,2331].

1-(4-Hydroxy-3-methoxyphenyl)ethanone-1- ${ }^{13}$ C

[199793-91-4] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 167.17

Synthesis

- Obtained by condenof $\left[1-{ }^{13} \mathrm{C}\right]$ acetic acid with guaiacol [2808].

1-(5-Hydroxy-2-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Syntheses

- Preparation by reaction of concentrated hydrochloric acid on 5-(benzyloxy)-2-methoxyacetophenone in acetic acid at $65-70^{\circ}$ (31\%) [2358].
- Also obtained (by-product) by reaction of dimethyl sulfate on 5-acetoxy-2-hydroxyacetophenone with potassium carbonate in acetone at r.t. (4\%) [2348].
- Preparation by reaction of methyl iodide on quinacetophenone with lithium carbonate in DMF at 60° (54\%) [2217].
- Preparation by partial demethylation of 2,5-dimethoxyacetophenone with sulfuric acid at $45-55^{\circ}(42 \%)$ [2809].
m.p. 83° [2358], $82-83^{\circ}$ [2809], $81-83^{\circ}$ [2217], $64-65^{\circ}$ [2810], $62-63^{\circ}$ [2348];
${ }^{1} \mathrm{H}$ NMR [2348], IR [2348], UV [2348,2810].

1-[2,4-Dihydroxy-5-(hydroxymethyl)phenyl]ethanone

m.p. \quad| 51-52 ${ }^{\circ}$ [2671] . |
| :--- |

1-(2,3-Dihydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18 Syntheses

- Preparation by reaction of acetic acid on pyrogallol 1-methyl ether,
- with zinc chloride at reflux ($155-160^{\circ}$) (Nencki reaction), (62\%) [2781], (46\%) [2811];
- with boron trifluoride on a steam bath (77\%) [2403].
- Preparation by reaction of methyl iodide on gallacetophenone monopotassium salt in boiling methanol [2812].
- Preparation by hydrolysis of 3-acetoxy-2-hydroxy-4-methoxyacetophenone with concentrated hydrochloric acid in refluxing aqueous ethanol (84\%) [2813].
- Also obtained by reaction of acetyl chloride on 2,6-dimethoxyphenol with zinc chloride at r.t. (8\%) [2406].
- Also obtained by Fries rearrangement of 2,6-dimethoxyphenyl acetate with zinc chloride at $120^{\circ}(6 \%)$ [2406].
- Also obtained by partial dealkylation of 2-hydroxy-3,4-dimethoxyacetophenone [2406,2814] with hydrobromic acid in acetic acid at r.t. (46\%) [2814] or by partial dealkylation of 3-ethoxy-2-hydroxy-4-methoxyacetophenone in the same conditions (22\%) [2814].

Isolation from natural sources

- From the roots of Paeonia broteroi Boiis \& Reuter (Paeoniaceae) [2256] or from the root cortex of Paeonia suffruticosa Anhr. [2256] (Ranunculaceae) (minor component) [2750].

```
m.p. 132-133 [ [2403,2406,2812,2815], 132 [ [2811], 131-132` [2750], 130-
    134}\mp@subsup{}{}{\circ}5 [2813], 130-132 [ [2814]
'1H NMR [2256,2403], IR [2256,2403], UV [2256], MS [2256,2331].
```


1-(2,3-Dihydroxy-5-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18

Synthesis

- Obtained by reaction of potassium persulfate on 2-hydroxy-5-methoxyacetophenone in aqueous sodium hydroxide solution (1\%) [2408].
m.p. 120° [2408].

1-(2,3-Dihydroxy-6-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Syntheses

- Preparation by reaction of 3% hydrogen peroxide on 3-acetyl-2-hydroxy-4-methoxybenzaldehyde into solution of 1 N sodium hydroxide (Dakin reaction) (62-65\%) [2358,2816].
- Preparation by reaction of 3% hydrogen peroxide on the 3-acetyl-2-hydroxy-6methoxyacetophenone into solution of 1 N sodium hydroxide at r.t. (33\%) [2358].
- Alsoobtained by reaction of concentratedhydrochloric acidon2,3-bis(benzyloxy)-6-methoxy-acetophenone in acetic acid at 60° [2358].
m.p. $148-149^{\circ}$ [2358], 147° [2816]; ${ }^{1} \mathrm{H}$ NMR [2374], MS [2374].

1-(2,4-Dihydroxy-3-methoxyphenyl)ethanone

[62615-26-3]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Syntheses

- Preparation by catalytic hydrogenolysis of 4-(benzyloxy)-2-hydroxy-3-methoxyacetophenone in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate [1989,2817], (90\%) [2817].
- Preparation by reaction of boron trifluoride-acetic acid complex with the pyrogallol 2-methyl ether at 100° (79-85\%) [2403,2818].
- Preparation by reaction of acetonitrile on pyrogallol 2-methyl ether with triflic acid at r.t. (60\%) [2819].
- Also obtained by reaction of aluminium chloride on gallacetophenone trimethyl ether in boiling ethyl ether (15\%) [2820].
- Also obtained by reaction of methyl iodide on gallacetophenone monopotassium salt in boiling methanol (10\%) [2812,2821].
- Also obtained by hydrolysis of 2,4-diacetoxy-3-methoxyacetophenone with boiling aqueous sodium carbonate solution [2822].
N.B.: The melting points of the 1-(2,4-dihydroxy-3-methoxyphenyl)ethanone are conflicting [2819]. One shall thus mention that the melting points of this product, that are in the range $130-135^{\circ}$, can be compared to those of the 1-(2,3-dihydroxy-4-methoxyphenyl)ethanone (132-133 $)$. However, ${ }^{1} \mathrm{H}$ NMR spectral data of this ketone of m.p. 68° [2819] is identical with those reported for the compound of m.p. 141-144 ${ }^{\circ}$ [1989].
m.p. $\quad 141-144^{\circ}$ [1989], $134-135^{\circ}$ [2822], 132- 133° [2812,2821], 130-131 ${ }^{\circ}$ [2820], 76° [2817,2818], 75-76$~[2403], ~ 68 º ~[2819] ; ~$
${ }^{1} \mathrm{H}$ NMR [1989,2819], IR [2403,2819], MS [2819].

1-(2,4-Dihydroxy-5-methoxyphenyl)ethanone

[7298-21-7]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$
Syntheses

- Preparation by debenzylation of 4-(benzyloxy)-2-hy-droxy-5-methoxyacetophenone,
- by catalytic hydrogenolysis with $5-10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate at r.t. (quantitative yield) [2823,2824];
- with concentrated hydrochloric acid in boiling acetic acid [2417].
- Preparation by partial demethylation of 2,4,5-trimethoxyacetophenone with hydrobromic acid in acetic acid [2733,2734].
- Preparation by Fries rearrangement of 2,4-diacetoxyanisole with aluminium chloride [2410].
m.p. $\quad 174^{\circ}$ [2417], $172-173^{\circ}$ [2824], $171-172^{\circ}$ [2410], $170-171^{\circ}$ [2823], 166° [2733,2734].

1-(2,4-Dihydroxy-6-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Syntheses

- Preparation by reaction of acetonitrile on phloroglucinol monomethyl ether (Hoesch reaction) [1821,28252828], (87\%) [2828], (73\%) [2825], (62\%) [2827].
- Preparation by catalytic hydrogenolysis of 2,4-bis-(benzyloxy)-6-methoxyacetophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(89 \%)$ [2829] in ethyl acetate (64\%) [2830].
- Preparation by reaction of aluminium chloride,
- on the $2,4,6$-trimethoxyacetophenone [2325,2826,2831-2833] in boiling chlorobenzene (29-35\%) [2831,2832];
- on the 2-hydroxy-4,6-dimethoxyacetophenone in boiling chlorobenzene [2432,2834-2836], (58\%) [2835] according to the method [2836], (58\%) [2432];
- on the 4-hydroxy-2,6-dimethoxyacetophenone in boiling benzene [2837].
- Preparation by partial demethylation of 4-hydroxy-2,6-dimethoxyacetophenone with boron trichloride in cooled methylene chloride (74\%) [2748].
- Also obtained by hydrolysis of 2,4-dihydroxy-6-methoxyacetophenone diacetate [2791].
- Also obtained by reaction of concentrated hydrochloric acid on 4-(benzyloxy)-2-hydroxy-6-methoxyacetophenone in acetic acid [2838].

Isolation from natural sources

- From the stem of Kniphofia fioliosa (Asphodelaceae) [2839].
- From the aerial parts of Tanacetum densum subsp. eginense [2840].
- From the roots of Sanguisorba officinalis [2841].
- From phloroacetophenone 2,4-di-O-(2,3,4,6-tetra-O-acetyl)- β-D-galactopyranoside. This one was methylated with methyl iodide in the presence of silver carbonate in refluxing acetone for 8 h . The obtained methyl ether was deacetylated, then hydrolyzed with 5% sulfuric acid [2842].
- By reductive cleavage of isofoliosone, itself isolated from Kniphofia foliosa Hochst [2839].
N.B.: Mg (II) salt [2843].
m.p. 207-209 ${ }^{\circ}$ [2837], 207° [2833], 205-207$~[2827,2842,2844,2845], ~ 205-~$
 [2828,2831,2834,2836], 201-202 ${ }^{\circ}$ [2829,2830], 195-198ํ [2839];
${ }^{1} \mathrm{H}$ NMR [2435,2830,2839], ${ }^{13} \mathrm{C}$ NMR [1821,2839,2846], IR [2435,2830],
UV [2847], MS [2830,2839].

1-(2,5-Dihydroxy-3-methoxyphenyl)ethanone

m.p. $\quad 172-174^{\circ}$ [2848], 172° [2408].

1-(2,5-Dihydroxy-4-methoxyphenyl)ethanone

- Preparation by reaction of dimethyl sulfate with 2,4,5-trihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (65\%) [2418].
- Preparation from paeonol by persulfate oxidation [2410,2733,2734,2740], (Elbs reaction) (18-22\%) [2733,2734,2740].
- Preparation by partial demethylation of 2-hydroxy-4,5-dimethoxyacetophenone with hydrobromic acid in refluxing acetic acid [2417].
- Preparation by diazotization of 5-amino-2-hydroxy-4-methoxyacetophenone, followed by decomposition of the diazonium salt obtained [2530].

Isolation from natural sources

- From Chinese Moutan Cortex, the root of Paeonia suffructicosa Andrews (Paeoniaceae) [2530] in Japanese [2323]. The root cortex of Paeonia suffruticosa Anhr. (Ranunculaceae) is also known as [2323] in Chinese. In this, the ketone is a minor component [2750].


```
    [2418],164-165 [ [2417,2530], 164 [ [2733,2734,2740];
'H NMR [2850], IR [2850], MS [2331].
```


1-(2,6-Dihydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Syntheses

- Obtained by reaction of boiling aqueous potassium hydroxide,
- on the Methyl 3-acetyl-2,4-dihydroxy-6-methoxybenzoate (quantitative yield) [2851,2852];
- on the 3-trichloroacetyl-2,6-dihydroxy-4-methoxyacetophenone [2368,2851,2852], (quantitative yield) [2851,2852].
- Preparation by adding a solution of 2,6-diacetoxy-4-hydroxyacetophenone in dioxane at r.t.. The residual pale yellow oil obtained after elimination of solvent was hydrolyzed with dilute hydrochloric acid in refluxing methanol (83\%) [2853].
- Preparation by selective deacetylation of 2,4-diacetyl-5-methoxyresorcinol with sodium methoxide in refluxing methanol [2826,2854,2855], (76\%) [2826] or with boiling 1 N sodium hydroxide (70\%) [2856].
- Preparation by reaction of diazomethane on phloroacetophenone in ethyl ether at r.t. [2434,2827,2857,2858], (37\%) [2857].
- Preparation by reaction of dimethyl sulfate on phloroacetophenone with potassium carbonate in refluxing acetone (62\%) [2859].

Isolation from natural sources

- From the root tissue of Sanguisorba minor (Rosaceae) [2859].
- As a decomposition product of sakuranin, a glucoside isolated from the bark of Prunus pseudocerasus Lindl. (Var. Sieboldi Maxim.), also called Prunus yedoensis Matsumura [2844].
- By alkaline hydrolysis of artocarpetin, a flavonoid pigment isolated from the heartwood of Artocarpus integrifolia [2860].
- Claimed to be obtained as a minor component in the steam distillates of the resins from various species of Xanthorrhoea (X.); X. tateana F. Muell. and X. preissi (m.p. 79°) [2584], but also from X. arborea R . Br. and X. reflexa. (m.p. 79°) [2761]. Thus, this compound, the 2,6-dihydroxy-4-methoxyacetophenone has a melting point of $136-137^{\circ}$ (see below). Two possibilities may then occur:
- either this compound is a monomethyl ether derived from phloroacetophenone, as the authors do pretend, and in this case, it would be at the time the 2,4-dihydroxy-6-methoxyacetophenone(m.p. 205-207) [2827,2844,2845]. It is not possible;
- or, it is a dimethyl ether [2845], and in this case, it would be the 2-hydroxy-4,6-dimethoxy-acetophenone (Xanthoxylin) (m.p. 78-79ㅇ) [2861], (80°) [2845], (82°) [2862], what is later confirmed [2862].
m.p. $139-140^{\circ}$ [2844], 139-139${ }^{\circ} 5$ [2853], 139° [2860], 138-140 ${ }^{\circ}$ [2857], $137-139^{\circ}$ [2856], $136-137^{\circ}[2826,2827,2833,2837,2845,2852], 134-136^{\circ}$ [2368];
b.p. ${ }_{0.5} 145-150^{\circ}$ [2860];
${ }^{1} \mathrm{H}$ NMR [2206,2368,2826,2853,2856], ${ }^{13} \mathrm{C}$ NMR [2206,2368];
IR [2826], UV [2859];
MS [2859].

1-(3,4-Dihydroxy-2-methoxyphenyl)ethanone

[27829-93-2]	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$	mol.wt. 182.18
OH	Syntheses	

- Obtained by debenzylation of 3,4-bis(benzyloxy)-2-methoxyacetophenone with 15% ethanolic hydrochloric acid, on a steam bath (22\%) [2403].
- Also refer to: [2863] (compound 5).
m.p. $\quad 84-85^{\circ}$ [2403]; ${ }^{1} \mathrm{H}$ NMR [2403], IR [2403].

1-(3,4-Dihydroxy-5-methoxyphenyl)ethanone

[3934-89-2] mol.wt. 182.18

- Also refer to: [1787,2865-2867].

1-(3,5-Dihydroxy-4-methoxyphenyl)ethanone

[148204-58-4] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18

Isolation from natural sources

- Characterization in liquid wastes from eucalyptus wood and kraft lignin charring by flame-ionization gas-chromatography and gas-chromatography/ mass-spectrometry [2868].

1-(3,6-Dihydroxy-2-methoxyphenyl)ethanone
[33539-20-7] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
 Syntheses

- Preparation from 2-hydroxy-6-methoxyacetophenone by persulfate oxidation (Elbs reaction) (26-33\%) [2361,2780, 2781].
- Preparation by reduction of 2-acetyl-3-methoxy-1,4-benzoquinone using conventional methods [2869].
- Also obtained (low yield) by reaction of 2-acetyl-1,4-benzoquinone with an excess of methanol at r.t., with exclusion of light [2869].
m.p. 91° [2780], 90° [2361,2781,2869]; ${ }^{1} \mathrm{H}$ NMR [2374,2869], IR [2869], MS [2374].

1-(4,5-Dihydroxy-2-methoxyphenyl)ethanone

	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18 Synthesis
	- Obtained by reaction of the Dakin solution on 2,4-diacetyl-5-methoxyphenol [2410].
m.p. $173-175^{\circ}$ [241	

1-(2,3,4-Trihydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Syntheses

- Preparation by reaction of acetic anhydride and acetic acid on 1,2,3-trihydroxy-4-methylbenzene with zinc chloride at $140-145^{\circ}$, then deacylation of keto esters mixture obtained with boron trifluoride etherate in methanol (25%) [2276].
- Also obtained (poor yield) by alkaline degradation of a solution of D-xylose or D-glucose in 0.63 M sodium hydroxide at 96° under nitrogen [2276].
m.p. $167-168^{\circ}$ [2276]; ${ }^{1} \mathrm{H}$ NMR [2276], IR [2276], MS [2276].

1-(2,4,6-Trihydroxy-3-methylphenyl)ethanone

[2657-28-5]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18 Syntheses

- Preparation by reaction of acetonitrile on 2-methyl-phloroglucinol (Hoesch reaction) [2027,2861,2870,2871], (83\%) [2027], (70\%) [2871], (33\%) [2861].
- Preparation by reduction of 3-formylphloroacetophenone with hydrochloric acid and amalgamated zinc in gently heated aqueous methanol (53\%) [2872].
- Preparation by demethylation of 2,4-dimethoxy-6-hydroxy-3methylacetophenone,
- with boron tribromide in methylene chloride at $0^{\circ}(77 \%)$ [2873];
- with aluminium chloride in refluxing benzene (87\%) [2874].
- Preparation by reaction of 2-methylphloroglucinol with boron trifluoride-acetic acid complex at $28-30^{\circ}$ (50\%) [2242].
- Also obtained from phloroacetophenone using methyl iodide and alkali in methanolic solution [2276,2875-2878], (50\%) [2876], (31\%) [2877].
m.p. $211-212^{\circ}[2861,2870,2873,2874], 211^{\circ}[2871], 210-211^{\circ}[2027,2872,2876]$, 210° [2242], 209-210ํ [2879], 205-206́ [2877];
${ }^{1}$ H NMR [2027,2873,2879], IR [2873], UV [2878], MS [2027].

1-[2-Hydroxy-5-(methylsulfonyl)phenyl]ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}$
mol.wt. 214.24

Synthesis

- Preparation by Fries rearrangement of 4-(methylsulfonyl)phenyl acetate with aluminium chloride without solvent at 120° (42\%) [1852].
m.p. $139-140^{\circ}$ [1852].

1-[4-Hydroxy-3-(methylsulfonyl)phenyl]ethanone

[56490-43-8] \begin{tabular}{l}
Synthesis

-

Preparation by Fries rearrangement of 2-(methylsulfonyl)-
phenyl acetate in the presence of aluminium chloride in
nitrobenzene at $50-60^{\circ}(75 \%)$

[2544].
\end{tabular}

1-(2,3,6-Trihydroxy-4-methoxyphenyl)ethanone

- with sodium hydrosulfite in boiling water (59\%) [2881].
m.p. $170-171^{\circ}[2880,2881]$.

1-(2,4,6-Trihydroxy-3-methoxyphenyl)ethanone

[16297-01-1]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 198.18
Syntheses

- Preparation by reaction of acetonitrile on 2-methoxy-1,3,5-trihydroxybenzene (2-methoxyphloroglucinol or iretol), (Hoesch reaction) [2882,2883], (71\%) [2883].
- Also obtained (poor yield) by partial demethylation of 2,4-di-hydroxy-3,6-dimethoxyacetophenone with aluminium chloride in nitrobenzene at 100° [2884]. m.p. 188° [2884], $169-170^{\circ}$ [2882], 168° [2883].

1-(3,4,6-Trihydroxy-2-methoxyphenyl)ethanone

TLC [2885].

1-(2,3,4,5-Tetrahydroxy-6-methylphenyl)ethanone

[66296-85-3]

m.p. $178-181^{\circ}$ [2716]; ${ }^{1} \mathrm{H}$ NMR [2716], MS [2716].

1-(2,3,4,6-Tetrahydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 198.18
 Syntheses

- Preparation by reaction of sulfur dioxide on 2-acetyl-3,5-dihydroxy-6-methyl-2,5-cyclohexadiene-1,4-dione in dilute methanol (92%) [2886].
- Preparation by hydrolysis of 3-amino-2,4,6-trihy-droxy-5-methylacetophenone hydrochloride (89\%) [2886].
- Preparation by reaction of aluminium bromide on 2,5-dihydroxy-4,6-dimethoxy-3-methyl-acetophenone in chlorobenzene at $80-85^{\circ}$ (61\%) [2886].
m.p. $191-192^{\circ}$ [2886].

1-(2-Amino-3-hydroxy-5-methylphenyl)ethanone (Hydrochloride) $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 201.65

Synthesis

- Preparation by reaction of hydrogen on 3-hydroxy-5-methyl-2-nitroacetophenone with Raney nickel in methanol (80\%) [2122].
m.p. $194-196^{\circ}$ (d) [2122]; UV [2122].

1-(2-Amino-3-hydroxy-6-methylphenyl)ethanone

[38968-45-5]	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19
OH	Syntheses
NH_{2}	- Obtained (trace) by photolysis of 3,4-dimethylanthranil in 98% sulfuric acid [2454].
	- Also obtained (trace) by thermal decomposition of 2-azido-6-methylacetophenone in 98% sulfuric acid [2454].

1-(2-Amino-5-hydroxy-3-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19

Synthesis

- Refer to: [2455] (compound 8e).

1-(2-Amino-6-hydroxy-4-methylphenyl)ethanone

[97066-15-4] \quad| Synthesis |
| :--- |

m.p. $91-92^{\circ}$ [2712]; IR [2712], UV [2712], MS [2712].

1-(3-Amino-2-hydroxy-5-methylphenyl)ethanone

[70977-71-8] \quad\begin{tabular}{l}
Syntheses

- Preparation by hydrogenation of 2-hydroxy-5-

methyl-3-nitroacetophenone using 5\% Pd/C catalyst

in ethanol (68\%) [1898], (48\%) [1897].

- Preparation by reduction of 2-hydroxy-5-methyl-3-

nitro-acetophenone with stannous chloride dihydrate

in hydro-chloric acid (50\%) [2586].
\end{tabular}

1-(4-Amino-3-hydroxy-5-methylphenyl)ethanone (Hydrochloride)
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 201.65

Synthesis

- Preparation by reaction of hydrogen on 3-hydroxy-5-methyl-4-nitroacetophenone with Raney nickel in methanol (92\%) [2122].
m.p. 195-198 ${ }^{\circ}$ [2122]; UV [2122].

1-(5-Amino-4-hydroxy-2-methylphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19
 Synthesis

- Obtained by reduction of 4-hydroxy-2-methyl-5-nitroacetophenone with sodium hydrosulfite in boiling alkaline solution (66\%) [2887].
m.p. 116° [2887].

1-(6-Amino-3-hydroxy-2-methylphenyl)ethanone

[69976-76-7] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19
 Synthesis

- Preparation by irradiation of 3,4-dimethyl-2,1-benzisoxazole in 96% sulfuric acid (91\%) [2455].

1-[3-Hydroxy-4-(methylamino)phenyl]ethanone

[54903-57-0]

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19 Syntheses

- Preparation from 6-acetyl-3-methylbenzoxazolinone by alkaline hydrolysis with boiling 10% aqueous sodium hydroxide solution (90-100\%) [2471], (60\%) [2888].
- Also refer to: [2472] (compound VII) and [2889]. m.p. $\quad 169-170^{\circ}[2471,2888]$.

1-[5-Hydroxy-2-(methylamino)phenyl]ethanone

[63609-52-9]	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19
H	Synthesis
	- Preparation by UV light irradiation of 1,3-dimethylindazole in aqueous sulfuric acid at $11-15^{\circ}$ (38-44\%) [2285,2467].
m.p. 142-143 ${ }^{1} \mathrm{H}$ NMR [2467]	$\begin{aligned} & \text { [2467]; } \\ & \text { IR [2467], UV [2467], MS [2467]. } \end{aligned}$

1-(2-Amino-5-hydroxy-3-methoxyphenyl)ethanone

[126893-27-4] | - Obtained (by-product) by reaction of stannous |
| :--- |
| chloride on 3,5-dimethoxy-2-nitroacetophenone in |
| concentrated hydrochloric acid at r.t. [2890]. |

1-(3-Amino-2-hydroxy-5-methoxyphenyl)ethanone

[55008-15-6]

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 181.19
Syntheses

- Preparation by reduction of 2-hydroxy-5-methoxy-3-nitro-acetophenone with stannous chloride dihydrate in hydrochloric acid (47\%) [2586].
- Preparation according to [2075] by [2778].
m.p. $\quad 107-108^{\circ}$ [2586].

1-(3-Amino-2-hydroxy-6-methoxyphenyl)ethanone

[75452-86-7]

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ Synthesis

- Preparation by reaction of stannous chloride on 2-hydroxy-6-methoxy-3-nitroacetophenone in refluxing concentratedhydrochloric acid[2522,2523], (51\%) [2523].
m.p. 66° [2523].

1-(5-Amino-2-hydroxy-3-methoxyphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 181.19

Synthesis

- Preparation from 2-hydroxy-3-methoxyacetophenone that was coupled with diazotized sulfanilic acid and the resulting azo dye reduced with sodium hydrosulfite to 5-amino-2-hydroxy-3-methoxyacetophenone (41\%) [2848].
m.p. $145^{\circ} 5-147^{\circ}$ [2848].

1-(5-Amino-2-hydroxy-4-methoxyphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 181.19

Synthesis

- Preparation by reduction of 2-hydroxy-4-methoxy-5-nitro-acetophenone [2530] with tin in concentrated hydrochloric acid heated in a water bath [1818,1836].
m.p. $\quad 113-114^{\circ}[2530], 113^{\circ}$ [1836], $112-113^{\circ}[1818]$.

1-(3-Amino-2,4,6-trihydroxy-5-methylphenyl)ethanone (Hydrochloride)
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4}, \mathrm{HCl} \quad$ mol.wt. 233.65

Synthesis

- Preparation by reaction of stannous chloride on 2,4,6-trihydroxy-3-methyl-5-phenylazoacetophenone in acetic acid at $85-90^{\circ}$, in the presence of concentrated hydrochloric acid [2886].
m.p. $210-211^{\circ}$ [2886].

1-[3-Amino-2-hydroxy-5-(methylsulfonyl)phenyl]ethanone

1-[2,4,6-Trihydroxy-3,5-bis[(trifluoromethyl)thio]phenyl]ethanone
[66625-04-5]

$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{~S}_{2} \quad$ mol.wt. 368.28
Synthesis

- Preparation by reaction of trifluoromethanesulfenyl chloride with phloroacetophenone in chloroform in the presence of a slight excess of pyridine and a small quantity of iron powder, first at -40°, then at 60° for 3 h (40\%) [2480].
m.p. $113-115^{\circ}$ [2480]; ${ }^{1} \mathrm{H}$ NMR [2480], IR [2480].

1-[4-(Acetyloxy)-2-hydroxy-3,5-dinitrophenyl]ethanone
m.p. $\quad 121-122^{\circ}$ [1818].

1-[4-(Acetyloxy)-5-bromo-2-hydroxyphenyl]ethanone

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{4}$
mol.wt. 273.08

Synthesis

- Preparation by reaction of bromine on 4-acetoxy-2-hydroxyacetophenone in 80% acetic acid at r.t. (34\%) [1836,1989].
m.p. 85° [1989], 84° [1836]; ${ }^{1} \mathrm{H}$ NMR [1989].

1-[5-(Acetyloxy)-4-chloro-2-hydroxyphenyl]ethanone

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 228.63

Syntheses

- Preparation by Fries rearrangement of 2-chlorohydroquinone diacetate with aluminium chloride [2024].
- Also obtained by partial acetylation of 4-chloro-2,5-di-hydroxyacetophenone [2024].
m.p. 129° [2024].

1-[4-(Acetyloxy)-2-hydroxy-3-iodophenyl]ethanone

[149810-09-3] | Synthesis |
| :--- |

1-[5-(Acetyloxy)-2-hydroxy-3-nitrophenyl]ethanone

[30095-73-9]

m.p. $\quad 112-113^{\circ}$ [1832];
${ }^{1} \mathrm{H}$ NMR [1832], IR [1832], UV [1832].

1-(3-Bromo-4-ethoxy-2-hydroxy-5-nitrophenyl)ethanone

1-(3,5-Dibromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone
[3410-83-1]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4} \quad$ mol.wt. 354.00
Syntheses

- Preparation by bromination of 2-hydroxy-4,6-di-methoxy-acetophenone (Xanthoxylin) in chloroform containing 6% of pyridine (96\%) [2892].
- Also refer to: [2893].
m.p. 111° [2892]; IR [2892].

1-(3,5-Dibromo-4-hydroxy-2,6-dimethoxyphenyl)ethanone

[57393-65-4]

m.p. $117-118^{\circ}$ [2894]; ${ }^{1} \mathrm{H}$ NMR [2894].

1-[3,5-Bis(chloromethyl)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 233.09

Synthesis

- Preparation by reaction of 37% formaldehyde solution on 2-hydroxyacetophenone with hydrochloric acid in a boiling water bath (81-87\%) [2551].
m.p. 83° [2551].
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4} \quad$ mol.wt. 354.00
Synthesis
- Obtained (by-product) by reaction of bromine on 4-hydroxy-2,6-dimethoxyacetophenone in chloroform in the presence of aqueous sodium acetate solution (5\%) [2894].
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 233.09

1-(2,6-Dichloro-4-hydroxy-3,5-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 265.09
Syntheses

- Preparation by chlorination of acetosyringone (4-hydroxy-3,5-dimethoxyacetophenone) in dioxane with $2.0-2.5$ mol. equiv. chlorine in acetic acid [2553,2554], (37\%) [2553].
- Identified in wheat and rye straw pulp bleaching and combined mill effluents [1787].
- Identified on control of effluent from the manufacturing of bleached pulp and paper from sugarcane bagasse [1788].
- Also refer to: [2895].
m.p. $114-115^{\circ}$ [2553,2554]; ${ }^{1} \mathrm{H}$ NMR [2553], ${ }^{13} \mathrm{C}$ NMR [2553], MS [2553].

1-(3,4-Dichloro-6-hydroxy-2,5-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}$ Synthesis

- Preparation by reaction of chlorine on 4-chloro-3,6-di-methoxy-2-hydroxyacetophenone in chloroform at r.t. (57\%) [1884].
m.p. 96° [1884].

1-[4-(Ethenyloxy)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$
mol.wt. 178.19
Synthesis

- Preparation by reaction of potassium tertbutoxide with 2-hydroxy-4-(2-chloroethoxy) acetophenone in refluxing tert-butanol (70\%) [2295].
${ }^{1} \mathrm{H}$ NMR [2295], IR [2295].

1-[2-(Acetyloxy)-3-hydroxyphenyl]ethanone

[145723-28-0] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Synthesis

- Obtained by photooxygenation of 2,3-dimethyl-7-hy-droxy-benzofuran in methylene chloride at -5° (13\%) [2896].
m.p. $53-55^{\circ}$ [2896];
${ }^{1} \mathrm{H}$ NMR [2896], ${ }^{13} \mathrm{C}$ NMR [2896], IR [2896], UV [2896].

1-[2-(Acetyloxy)-4-hydroxyphenyl]ethanone

[52751-42-5] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Syntheses

- Preparation by Fries rearrangement of resorcinol diacetate with ferric chloride in boiling acetic acid (46\%) [2314].
- Also obtained by enzymatic deacylation of 2,4-diacetoxy-acetophenone with porcine pancreas lipase in tetrahydrofuran at $42-45^{\circ}(80 \%)$ [2388,2897].
m.p. $119-120^{\circ}$ [2314], $87-88^{\circ}$ [2897]; ${ }^{1} \mathrm{H}$ NMR [2897].

1-[2-(Acetyloxy)-5-hydroxyphenyl]ethanone

[144152-29-4] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19 Syntheses

- Obtained by photooxygenation of 2,3-dimethyl-5-hydroxybenzofuran in methylene chloride at -5° (10\%) [2896].
- Also obtained by alcoholysis of 2,5-diacetoxyacetophenone with n-butanol mediated by Pseudomonas cepacia lipase in cyclohexane/tert-amyl alcohol at 40° (65\%) [2898].
- Also obtained by enzymatic deacylation of 2,5-diacetoxy-acetophenone with porcine pancreas lipase in tetrahydrofuran at $42-45^{\circ}$ (60%) [2388,2897].
m.p. 105-106 ${ }^{\circ}$ [2896], 93-95$~[2897] ; ~ ;$
${ }^{1} \mathrm{H}$ NMR [2896,2897], ${ }^{13} \mathrm{C}$ NMR [2896], IR [2896], UV [2896].

1-[2-(Acetyloxy)-6-hydroxyphenyl]ethanone

[26674-05-5] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19
 Syntheses

- Preparation by acylation of 2,6-dihydroxyacetophenone (compound 49) [2899].
- Refer to: [2900]; this reference indicated in Chem. Abstr., 89, 179792x (1978) for the monoacetate mentioned actually concerns the diacetate, that is to say the 1,3 -diace-toxy-2-acetylbenzene.

1-[3-(Acetyloxy)-2-hydroxyphenyl]ethanone

1-[3-(Acetyloxy)-4-hydroxyphenyl]ethanone
[115436-75-4] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

m.p. $74-76^{\circ}$ [2184].

1-[4-(Acetyloxy)-2-hydroxyphenyl]ethanone
[42059-48-3]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19
Syntheses

- Preparation by reaction of acetic anhydride on resaceto-phenone,
- at reflux [1838,2129,2245,2901];
- with sodium acetate [1833,2290,2613,2902], (78\%) [2613];
- with pyridine (95\%) [2358], (54-59\%) [1989,2901].
- Preparation by reaction of acetic acid on resacetophenone with polyphosphoric acid (39\%) [2241].
- Also obtained by reaction of acetyl chloride on resorcinol at reflux [1838,2903].
- Also obtained (by-product) by reaction of acetic acid on resorcinol with polyphosphoric acid (3\%) [2241].
- Also obtained by reaction of vinyl acetate on resacetophenone mediated by Pseudomonas cepacia lipase in cyclohexane/tert-amyl alcohol at 40° (55-65\%) [2898].
- Also refer to: [2675].
m.p. 76° [2241], 75-76 ${ }^{\circ}$ [2358,2613], 75° [2290], 74° [2245,2314], $72-73^{\circ}$ [1833,2901], 72° [2129,2902], 69-71ํ [1989];
b.p. 303° [2245,2901];
${ }^{1} \mathrm{H}$ NMR [1989,2898]; ${ }^{13} \mathrm{C}$ NMR [2898], IR [2898].

1-[5-(Acetyloxy)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19
Syntheses

- Preparation by reaction of boiling acetic anhydride on quinacetophenone [2356].
- Preparation by reaction of acetic anhydride and sodium acetate mixture on quinacetophenone at 50° [2359].
- Preparation by Fries rearrangement of hydroquinone diacetate,
- with boron trifluoride etherate at $120^{\circ}(90 \%)$ [2338];
- with aluminium chloride at $115-120^{\circ}$ [2338,2348,2354] (predominantly) [2354], (31\%) [2338].
- Also obtained by UV light irradiation of hydroquinone diacetate in methanol (15\%) [2343].
- Also obtained by reaction of vinyl acetate on quinacetophenone mediated by Pseudomonas cepacia lipase in cyclohexane/tert-amyl alcohol at 40° (97\%) [2898].
- Also obtained by alcoholysis of quinacetophenone diacetate with n-butanol mediated by Pseudomonas cepacia lipase in cyclohexane/tert-amyl alcohol at 40° (28\%) [2898].

```
m.p. 91 }\mp@subsup{}{}{\circ}[2356,2359],83-84* [2343], 81-82 [ [2338], 80-85' [2354]
' H NMR [2338,2343,2348,2898], '13C NMR [2898];
IR [2338,2343,2348,2898], UV [2348], MS [2348]; pK a [1977].
```


1-[2-(Acetyloxy)-4,6-dihydroxyphenyl]ethanone

1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]ethanone

[29376-65-6]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 210.19
Synthesis

- Preparation by reaction of acetic anhydride on phloro-acetophenone in pyridine at r.t. (17-20\%) [2368,2905].
m.p. $165-166^{\circ}$ [2905]; ${ }^{13} \mathrm{C}$ NMR [2368].

1-[5-(Acetyloxy)-2,4-dihydroxyphenyl]ethanone

1-(5-Bromo-3-ethyl-2-hydroxyphenyl)ethanone

[81591-17-5]

m.p. 42° [2907].
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10
Synthesis

- Preparation by Fries rearrangement of 4-bromo-2-ethyl-phenyl acetate with aluminium chloride without solvent in an oil bath (40\%) [2907].

1-(3-Bromo-2-hydroxy-4,5-dimethylphenyl)ethanone

[112747-62-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10
 Syntheses

- Preparation by reaction of hydrated sodium sulfide (containing 7-9 mol of water) with 2-dimethylam-ino-4-[3-bromo-2-hydroxy-4,5-dimethylphenyl]-1,3dithiole bisulfate in refluxing ethanol (85\%) [1874].
- Preparation by reaction of bromine with 2-hydroxy-4,5-di-methylacetophenone in chloroform (69\%) [2908].

```
m.p. 105-106 [ [1874], 100-101 [2908]; '1H NMR [1874,2908],
    IR [1874,2908].
```

1-(3-Bromo-6-hydroxy-2,4-dimethylphenyl)ethanone
 $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10
Syntheses

- Preparation by reaction of acetic acid on 4-bromo-3,5-di-methylphenol with boron trifluoride [2909].
- Preparation by Fries rearrangement of 4-bromo-3,5-di-methylphenyl acetate (b.p. ${ }_{15} 110^{\circ}$) with aluminium chloride at 120° [2910].
m.p. $99-103^{\circ}$ [2909], $95-97^{\circ}$ [2910]; ${ }^{1} \mathrm{H}$ NMR [2910], IR [2910].

1-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10
Synthesis

- Preparation by reaction of bromine with 2-hydroxy-3,4-di-methylacetophenone in methylene chloride (61\%) [2908].
m.p. 65-66 [2908]; ${ }^{1} \mathrm{H}$ NMR [2908], IR [2908].

1-(5-Bromo-4-ethoxy-2-hydroxyphenyl)ethanone

[131359-44-9]

m.p. $109-110^{\circ}$ [2293].
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10
Syntheses

- Preparation by reaction of bromine on 4-ethoxy-2hydroxyacetophenone in acetic acid [2293].
- Also refer to: [2484]-[2911] (compound 1g).

1-(3-Bromo-5-ethyl-2,4-dihydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10

Synthesis

- Preparation by bromination of 2,4-dihydroxy-5-ethy-laceto-phenone with bromine in acetic acid [1839,2912] or in chloroform [2913].
m.p. 131° [2912], $123-125^{\circ}$ [2913], 121° [1839].

1-(3-Bromo-4-hydroxy-5-methoxy-2-methylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10

Synthesis
m.p. 82° [2914].

- Preparation by reaction of acetyl chloride on 2-bromo-6-methoxy-3-methylphenol with aluminium chloride in carbon disulfide at $50^{\circ}(50 \%)$ [2914].

1-(5-Bromo-2-hydroxy-4-methoxy-3-methylphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad \text { mol.wt. } 259.10
$$

Synthesis

- Preparation by reaction of bromine on 2-hydroxy-4-methoxy-3-methylacetophenone in carbon disulfide [2915].
m.p. $63-64^{\circ}$ [2915].

1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone

[18064-89-6] \quad\begin{tabular}{l}
Syntheses

- Preparation by reaction of bromine on 2,4-dime-

thoxy-6-hydroxyacetophenone [2526,2916-2921],
\end{tabular}
- in acetic acid at r.t. (98\%) [2526], (43\%) [2916];
- in carbon tetrachloride (85\%) [2526];
- in acetic anhydride (50\%) [2526];
- in chloroform [2526,2918], (33\%) [2526].
- Preparation by bromination of 2,4-dimethoxy-6-hydroxyacetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture [1845,2922], (62\%) [2922].
- Preparation by reaction of cupric bromide on 2-acetoxy-4,6-dimethoxyacetophenone in refluxing chloroform-ethyl acetate mixture (76\%) [2922].
m.p. 188-189 [2919], 187-189 ${ }^{\circ}$ [2922], 187° [2918,2920,2921], 186-187 ${ }^{\circ}$ [2526,2916]; ${ }^{1} \mathrm{H}$ NMR [1845,2526,2922], MS [1845].

1-(3-Bromo-4-hydroxy-2,6-dimethoxyphenyl)ethanone

[57517-42-7]	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 275.10
OH	Synthesis
	- Preparation by reaction of bromine on 4-hydroxy-2,6-di-methoxyacetophenone in chloroform in the presence of aqueous sodium acetate solution (88%) [2894].
m.p. $156-157^{\circ}$ [289	${ }^{1} \mathrm{H}$ NMR [2894].

1-(3-Bromo-2,5-dihydroxy-4,6-dimethoxyphenyl)ethanone $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5} \quad$ mol.wt. 291.10
 Synthesis

- This compound is obtained by reaction of alkaline potassium persulfate on 3-bromo-2-hydroxy-4,6-dimethoxy-acetophenone [2917].
m.p. $147-149^{\circ}$ [2917].

1-(3-Chloro-5-ethyl-2-hydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
Synthesis

- Preparation by Fries rearrangement of 2-chloro-4-ethyl-phenyl acetate with aluminium chloride without solvent at $150^{\circ}(75 \%)$ [2923].
m.p. 74° [2923].

1-(5-Chloro-3-ethyl-2-hydroxyphenyl)ethanone

[53347-06-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
 Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-ethyl-phenyl acetate with aluminium chloride without solvent at 120° [2008] or by heating in an oil bath (50\%) [2907].
oil [2008]; b.p. ${ }_{12} 145-146^{\circ}$ [2008], b.p. 265° [2907].

1-(6-Chloro-3-ethyl-2-hydroxyphenyl)ethanone

[81591-14-2]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2}$
mol.wt. 198.65

Synthesis

- Preparation by Fries rearrangement of 5-chloro-2-ethyl-phenyl acetate with aluminium chloride without solvent by heating in an oil bath (40\%) [2907].
b.p. 258° [2907].

1-(3-Chloro-2-hydroxy-4,6-dimethylphenyl)ethanone

[71582-56-4]

m.p. $74-75^{\circ}$ [2909].

1-(3-Chloro-2-hydroxy-5,6-dimethylphenyl)ethanone

1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65 Syntheses

- Preparation by Fries rearrangement of 4-chloro-3,5-di-methylphenyl acetate with aluminium chloride without solvent between 120° and 155° [2011,2909, 2924], (90\%) [2924].
- Preparation by reaction of aluminium chloride on 3-chloro-6-methoxy-2,4-dimethylacetophenone without solvent at $140-150^{\circ}$ [1811].
- Also obtained by ozonization of 6-chloro-3,4,5,7-tetramethylcoumarin in ethyl acetate, followed first by hydrolysis of the ozonide so formed, then saponification of the resulting oil by sodium hydroxide in refluxing aqueous methanol for $1 \mathrm{~h}(59 \%)$ [2925].
m.p. $110-112^{\circ}$ [2925], $106-109^{\circ}$ [1811], 94° [2924], $89^{\circ} 7$ [2011].

1-[3-(Chloromethyl)-2-hydroxy-5-methylphenyl]ethanone

[87165-62-6]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
Syntheses

- Preparation from 2-hydroxy-5-methylacetophenone by introduction of the chloromethyl group into aromatic ring by treatment with formaldehyde and hydrogen chloride at 70° [2926] according to [2546].
- Also refer to: [2481] (compound 11).
m.p. $59-60^{\circ}$ [2926]; b.p. ${ }_{0.4} 110-116^{\circ}$ [2494]; ${ }^{1} \mathrm{H}$ NMR [2926].

1-[4-(Chloromethyl)-2-hydroxy-3-methylphenyl]ethanone

[97582-37-1]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Synthesis

- Preparation by reaction of ethyl chloroformate with 4-(dimethylaminomethyl)-2-hydroxy-3-methylacetophenone in toluene [2550,2927], (72\%) [2550].
m.p. $57-59^{\circ}$ [2550]; b.p. ${ }_{3} 190-200^{\circ}$ [2927]; ${ }^{1} \mathrm{H}$ NMR [2927], IR [2927].

1-[5-Chloro-2-hydroxy-3-(methoxymethyl)phenyl]ethanone

[87165-59-1]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
mol.wt. 214.65

Synthesis

- Obtained by reaction of sodium methoxide with 5-chloro-3-chloromethyl-2-hydroxyacetophenone in refluxing methanol for $2 \mathrm{~h}(28 \%)$ [2494].
b.p. ${ }_{0.6} 121-131^{\circ}$ [2494]; ${ }^{1} \mathrm{H}$ NMR [2494], IR [2494].

1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]ethanone

[109661-96-3]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 214.65
Synthesis

- Preparation by reaction of 1,2-ethylene dichloride with resacetophenone in the presence of n-tetrabutylammonium bromide and potassium hydroxide in water at $60^{\circ}(41 \%)$ [2295].
m.p. $\quad 98-100^{\circ}$ [2295]; ${ }^{1} \mathrm{H}$ NMR [2295].

1-[3-(Chloromethyl)-2-hydroxy-5-methoxyphenyl]ethanone

[87165-70-6] $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 214.65

Synthesis

- Preparation by reaction of polyoxymethylene with 2-hydroxy-5-methoxyacetophenone in the presence of concentrated hydrochloric acid at 50° (61\%) [2494].
m.p. $\quad 71^{\circ}$ [2494]; $\quad{ }^{1} \mathrm{H}$ NMR [2494], IR [2494].

1-(2-Chloro-4-hydroxy-3,5-dimethoxyphenyl)ethanone

[94649-70-4]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}$
Syntheses

- Identified in wheat and rye straw pulp bleaching and combined mill effluents [1787].
- Identified on control of effluent from the manufacturing of bleached pulp and paper from sugarcane bagasse [1788].
- Isolated from the pyrolysis products of beech wood [2928].
m.p. $\quad 93-94^{\circ}$ [2553,2554]; GC-MS [2928];
${ }^{1} H$ NMR [2553], ${ }^{13} \mathrm{C}$ NMR [2553], MS [2553].

1-(3-Chloro-2-hydroxy-4,6-dimethoxyphenyl)ethanone

[81325-85-1]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 230.65
Syntheses

- Preparation by Fries rearrangement of 2-chloro-3,5-di-methoxyphenyl acetate with aluminium chloride in chloro-benzene at reflux (94\%) [2929] or in nitrobenzene, from 90° to 130° (24\%) [2930].
- Preparation by reaction of acetyl chloride with 2-chloro-3,5-dimethoxyphenol in the presence of aluminium chloride in nitrobenzene at r.t. (87\%) [2858].
- Also obtained by reaction of chlorine with 2-hydroxy-4,6-dimethoxyacetophenone in carbon tetrachloride (15\%) [2139].
- Preparation by diazotization of 3-amino-2-hydroxy-4,6-dimethoxyacetophenone and treating with cuprous chloride (Sandmeyer reaction) [2139].
- Preparation by partial demethylation of 3-chloro-2,4,6-trimethoxyacetophenone with aluminium chloride in acetonitrile for 4 h at 30° (95\%) [2747].
- Also refer to: [2931].
m.p. 191-192 ${ }^{\circ}$ [2139,2858], 188° [2930]; ${ }^{1} \mathrm{H}$ NMR [2139,2930], IR [2858].

1-(3-Chloro-6-hydroxy-2,4-dimethoxyphenyl)ethanone
[81325-86-2] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 230.65

Syntheses

- Preparation by reaction of chlorine with 2-hydroxy-4,6-di-methoxyacetophenone in carbon tetrachloride (57\%) [2139].
- Also obtained (poor yield) by Fries rearrangement of 4-chloro-3,5-dimethoxyphenyl acetate with aluminium chloride in nitrobenzene at 90° and then $130^{\circ}(11 \%)$ [2932].
- Also refer to: [2931,2933].
m.p. $193-194^{\circ}$ [2932], 91° [2139]; ${ }^{1} \mathrm{H}$ NMR [2139,2932].

1-(3-Chloro-6-hydroxy-2,5-dimethoxyphenyl)ethanone
[88771-58-8] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 230.65

Synthesis

- Preparation by reaction of N -chlorosuccinimide on 3,6-dimethoxy-2-hydroxyacetophenone in refluxing carbon tetrachloride (59\%) [1884].
m.p. 108° [1884]; ${ }^{1} \mathrm{H}$ NMR [1884].

1-(4-Chloro-2-hydroxy-3,6-dimethoxyphenyl)ethanone

[88771-46-4]

1-(4-Fluoro-2-hydroxy-3,6-dimethoxyphenyl)ethanone
[88771-57-7]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{4}$
Synthesis

- Refer to: [1884].
mol.wt. 230.65
Synthesis
- Refer to: [1884].

Ref

1-(6-Ethoxy-2-hydroxy-3-iodophenyl)ethanone
m.p. $\quad 106^{\circ}$ [2569].

1-(2-Hydroxy-3-iodo-4,6-dimethoxyphenyl)ethanone

[59656-68-7] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{4} \quad$ mol.wt. 322.10

Syntheses

- Preparation by adding an ethanolic solution of iodine and phloroacetophenone dimethyl ether to an aqueous solution of iodic acid at r.t. (81\%) [2934].
- Preparation by adding an acetic acid solution of nitric acid to an acetonic solution of iodine and phloroacetophenone dimethyl ether at 0° [2066,2935,2936], (75\%) [2936].
- Preparation by reaction of iodine with phloroacetophenone dimethyl ether in methanol in the presence of potassium hydroxide [2937].
- Also refer to: [2931] (compound 23). m.p. 201° [2936], $199^{\circ} 5-200^{\circ} 5$ [2934].

1-(5-Ethyl-2-hydroxy-3-nitrophenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4}$ Syntheses

- Preparation by nitration of 5-ethyl-2hydroxyacetophenone,
- with 100% nitric acid in acetic acid at r.t. (85\%) [1852];
- with nitric acid $(\mathrm{d}=1.42)$ in concentrated sulfuric acid between -15° and -5° [1897,1898], (44\%) [1897].
m.p. $127-128^{\circ}$ [1852], $120-122^{\circ}$ [1898], 118- 120° [1897].

1-(2-Hydroxy-3,6-dimethyl-5-nitrophenyl)ethanone

[207281-53-6] \quad\begin{tabular}{l}
Cynthesis

- Refer to: [2938].
\end{tabular}

1-(2-Hydroxy-4,5-dimethyl-3-nitrophenyl)ethanone

	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20
OH	Synthesis
	- Preparation by reaction of nitric acid $(\mathrm{d}=1.42)$ on 2-hydroxy-4,5-dimethylacetophenone in acetic acid at r.t. (71\%) [2939].
m.p. $143-144^{\circ}$ [293	

1-(6-Hydroxy-2,4-dimethyl-3-nitrophenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4}$
mol.wt. 209.20

Synthesis

- Preparation is made by adding successively nitromethane, then 3-acetyl-2,6-dimethyl-4H-pyran4 -one in a suspension of potassium tert-butoxide in tert-butyl alcohol at 40° under nitrogen (40\%) [2940].
m.p. $112-114^{\circ}$ [2940]; ${ }^{1} \mathrm{H}$ NMR [2940], IR [2940], MS [2940].

1-(4-Ethoxy-2-hydroxy-5-nitrophenyl)ethanone
[76951-07-0]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5}$
mol.wt. 225.20

Syntheses

- Prepared by nitration of 2-hydroxy-4-ethoxyacetophenone in glacial acetic acid [2941].
- Also refer to: [2484,2911] (compound 1f).
m.p. 132° [2941].

1-(2-Hydroxy-5-methoxy-4-methyl-3-nitrophenyl)ethanone
[43140-82-5]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5}$
mol.wt. 225.20
Synthesis

- Preparation by reaction of 10% nitric acid with 2-hydroxy-5-methoxy-4-methylacetophenone at $17-20^{\circ}$ (40\%) [2583].
m.p. 132° [2583]; ${ }^{1} \mathrm{H}$ NMR [2583], IR [2583].

1-(4-Hydroxy-2-methoxy-3-methyl-5-nitrophenyl)ethanone

[118824-98-9] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of concentrated nitric acid on
4-hydroxy-2-methoxy-3-methylacetophenone in ace-
tic acid [2582,2942], (64\%) [2582].

\end{tabular}

m.p. 70° [2942], 69° [2582]; ${ }^{1} \mathrm{H}$ NMR [2582], IR [2582], MS [2582].

1-(2-Hydroxy-3,4-dimethoxy-5-nitrophenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{6} \quad$ mol.wt. 241.20

Synthesis

- Preparation by reaction of nitric acid with 3,4-dime-thoxy-2-hydroxyacetophenone in ethanol (33\%) [2814].
m.p. $83-83^{\circ} 8$ [2814].

1-(2-Hydroxy-3,6-dimethoxy-5-nitrophenyl)ethanone

[88771-59-9]	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{6}$	mol.wt. 241.20
OH	Synthesis	

- Preparation by reaction of nitric acid on 3,6-dime-thoxy-2-hydroxyacetophenone in acetic acid at 10° (52\%) [1884].
m.p. 120° [1884]; ${ }^{1} \mathrm{H}$ NMR [1884].

1-(2-Hydroxy-4,6-dimethoxy-3-nitrophenyl)ethanone

[81325-87-3]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{6}$
mol.wt. 241.20
Synthesis

- Obtained (poor yield) by adding nitric acid $(\mathrm{d}=1.42)$ in acetic acid to an ice-cold solution of 2-hydroxy-4,6-dimethoxyacetophenone in acetic anhydride (2\%) [2139].
m.p. $\quad 104-105^{\circ}$ [2139]; ${ }^{1} \mathrm{H}$ NMR [2139].

1-(2-Ethyl-4-hydroxyphenyl)ethanone

OH	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ Syntheses
	- Obtained by Fries rearrangement of 3-ethylphenyl acetate with aluminium chloride, - in nitrobenzene at 0° (varying yield, maximum 50\%) [2943]; - without solvent between 130° and 165° (4-7\%) [2152,2944].
.p. 102°	$3,2944] ;$ b.p. $._{0.45} 150-152^{\circ}$ [2943], b.p. 20 $^{195-200^{\circ}}$ [2944].

1-(3-Ethyl-2-hydroxyphenyl)ethanone

[103323-22-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

b.p. ${ }_{3} 90-95^{\circ}$ [2945], b.p. 213° [2233].

1-(3-Ethyl-4-hydroxyphenyl)ethanone

[22934-47-0] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
 Syntheses

- Preparation by reaction of acetyl chloride on 2-ethylphenol with aluminium chloride,
- in refluxing carbon disulfide (60\%) [1951];
- in nitrobenzene at $60^{\circ}(39 \%)$ [1964].
- Preparation by acetylation of 2-ethylphenol (60\%) [2946].
m.p. 95° [2946], $92-93^{\circ}$ [1964], 89-91$~[1951] ; ~ ;$
b.p. $170-180^{\circ}$ [2946], b.p. ${ }_{20} 190-195^{\circ}$ [1964]; UV [1964].

1-(4-Ethyl-2-hydroxyphenyl)ethanone

[5896-50-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by Fries rearrangement of 3-ethylphenyl acetate,
- with aluminium chloride, without solvent between 120° and 165° (80-88\%) [2152,2601,2944,29472949], in nitrobenzene at 25° ($84-89 \%$) [2948,2949] or at $60^{\circ}(65 \%)$ [2947], in toluene or in xylene at 100° (56-57\%) [2947];
- with titanium tetrachloride, without solvent at 120° (88%) [2948] or in nitrobenzene at 25° (66\%) [2948];
- with stannic chloride, without solvent at 120° (84\%) [2948] or in nitrobenzene at 25° (86%) [2948];
- with zinc chloride, without solvent at 120° (56\%) [2948] or in nitrobenzene at 25° (58\%) [2948].
b.p. ${ }_{2.5} 97^{\circ}$ [2601], b.p. 140° [2949], b.p. ${ }_{20} 142^{\circ}$ [2944].

1-(4-Ethyl-3-hydroxyphenyl)ethanone

[73898-20-1]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
Synthesis

- Preparation by diazotization of 3-amino-4-ethylacetophenone followed by hydrolysis of the diazonium salt obtained (46\%) [1951].
m.p. $\quad 94-95^{\circ}$ [1951].

1-(5-Ethyl-2-hydroxyphenyl)ethanone

[24539-92-2] $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20 Syntheses

- Preparation by Fries rearrangement of 4-ethylphenyl acetate with aluminium chloride without solvent at $115-120^{\circ}$ [1852,1869,2233], (96\%) [1852], (70\%) [2233].
- Preparation by reaction of acetyl chloride on 4-ethylphenol with aluminium chloride in ethylene dichloride at $110-120^{\circ}$ (71\%) [2625].
b.p. ${ }_{2.3} 94-96^{\circ}$ [1869], b.p. $102-104^{\circ}$ [2625], b.p. ${ }_{10} 114-116^{\circ}$ [1852],
b.p. ${ }_{12} 119-121^{\circ}$ [2233]; ${ }^{1} \mathrm{H}$ NMR [1869], MS [1869].

1-(2-Hydroxy-3,4-dimethylphenyl)ethanone

[5384-55-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by reaction of acetic anhydride on 2,3-di-methylphenol with 70% perchloric acid at $125-135^{\circ}$ (35\%) [2306].
- Preparation by Fries rearrangement of 2,3-dimethylphenyl acetate,
- with aluminium chloride, without solvent, between 100° and $165^{\circ}(85 \%)$ [2950], (70-80\%) [1814,2951,2952], (54-69\%) [2233,2953-2955] or in refluxing carbon disulfide (20\%) [2952];
- with titanium tetrachloride at $100^{\circ}(60 \%)$ [1814,2161,2951].
colourless oil [2950]; m.p. 6-8 [2951];
b.p. ${ }_{7} 105-110^{\circ}$ [2306], b.p. ${ }_{8} 120-124^{\circ}$ [2955], b.p. ${ }_{12} 122-124^{\circ}$ [2233];
b.p. ${ }_{10.5} 127-129^{\circ}$ [2955], b.p. ${ }_{15} 131-132^{\circ}$ [2951], b.p. ${ }_{12} 140^{\circ}$ [2953];
${ }^{1} \mathrm{H}$ NMR [2950], ${ }^{13} \mathrm{C}$ NMR [2950], IR [2950,2951], MS [2950].

1-(2-Hydroxy-3,5-dimethylphenyl)ethanone

[1198-66-9]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
Syntheses

- Preparation by reaction of acetyl chloride on 2,4-dimethylphenol with aluminium chloride in nitrobenzene at $50^{\circ}(80 \%)$ [2181].
- Preparation by Fries rearrangement of 2,4-dimethylphenyl acetate with aluminium chloride, in nitrobenzene at $50^{\circ}(80 \%)$ [2181] or in the presence of 2,4-dimethylanisole in refluxing carbon disulfide (50\%) [2535] or without solvent [1814,2161,2535,2596,2697] at 130-140 (good yield) [2535], (42\%) [2697].
- Also obtained by Fries rearrangement of 2,5-dimethylphenyl acetate with aluminium chloride without solvent [2596,2956], at 80-90ㅇ (25%) [2956].
- Also obtained (by-product) by Fries rearrangement of 2,6-dimethyl-4-ethylphenyl acetate with aluminium chloride without solvent (4\%) [2957].
- Also obtained by reaction of acetyl chloride on 2,4-dimethylanisole with aluminium chloride in refluxing carbon disulfide [2956].
- Also obtained by reaction of zinc powder on 3,5-bis(chloromethyl)-2-hydroxyacetophenone in aqueous acetic acid (8\%) [2551].
- Preparation by UV light irradiation of 2,4-dimethylphenyl acetate at 25°, in benzene (54\%) [2198] or in hexane, with potassium carbonate (90\%) [2015] or without potassium carbonate (34\%) [2015].
- Preparation by reaction of ethyl acetoacetate with 2-methyl-2-pentenal in the presence of pyridine and piperidine as catalysts, in refluxing benzene (49%). The 2-methyl-2-pentenal was first obtained by self-condensation of propionaldehyde in the presence of 15% potassium hydroxide solution [2958-2960].
- Also refer to: [2961,2962].
m.p. 55° [2015], 54° [2181,2535,2956], 53-54ํ [2161,2551,2596], 53-53ํ [2958-2960];
b.p. ${ }_{12} 106-135^{\circ}$ [2956], b.p. $124^{\circ} 5-126^{\circ}$ [2161], b.p. ${ }_{33} 126-140^{\circ}$ [2958,2959,2960];
${ }^{1} \mathrm{H}$ NMR [2198,2958-2960], IR [2198,2958-2960], UV [2958-2960].

1-(2-Hydroxy-3,6-dimethylphenyl)ethanone

viscous oil [2963]; ${ }^{1} \mathrm{H}$ NMR [2963], ${ }^{13} \mathrm{C}$ NMR [2963],
IR [2963], MS [2963].
1-(2-Hydroxy-4,5-dimethylphenyl)ethanone

[36436-65-4]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad \mathrm{~mol}$. wt. 164.20
H	Syntheses
	- Preparation by Fries rearrangement of 3,4-dimeth ylphenyl acetate with aluminium chloride without solvent between 110° and 150° [1814,2212,2596,2939 2952,2965-2967], (86-100\%) [2965-2967], (70-72\%) [2939,2952], (23\%) [2212].

- Preparation by isomerisation of 2-hydroxy-4,6-dimethylacetophenone with an excess of aluminium chloride without solvent at $140-180^{\circ}$ (quantitative yield) [2965].
- Preparation by reaction of acetic acid on 3,4-dimethylphenol,
- with boron trifluoride at $70^{\circ}(80 \%)$ [2611];
- with polyphosphoric acid (75\%) [2966].
- Preparation by demethylation of 2-methoxy-4,5-dimethylacetophenone with pyridinium chloride at reflux (81\%) [2542].
- Preparation by dehydrogenation of 6-acetyl-3,4-dimethyl-2-cyclohexen-1-one,
- with a 5\% palladium-barium sulfate catalyst at reflux [2612];
- with refluxing 16% solution of bromine in acetic acid [2612].
- Also obtained by reaction of sodium methoxide on 2-acetyl-4,5-dimethyl-4-ni-tro-1,4-dihydro-phenyl acetate in methanol [2968].
- Also obtained (by-product) by reaction of aluminium chloride on 2,4,5-trimethylphenyl acetate (pseudocumenol acetate) without solvent at $130-140^{\circ}$ [2596].
m.p. 74° [2965], $71^{\circ} 5-72^{\circ} 5[2612], 71-72^{\circ} 5[2968], 71^{\circ}[2596,2611,2952,2967]$, $70^{\circ} 9-71^{\circ} 7$ [2212], $70-71^{\circ}$ [2939], 70° [2542];
b.p. ${ }_{18} 143-144^{\circ}$ [2611];
${ }^{1} \mathrm{H}$ NMR [1820,2968], ${ }^{13} \mathrm{C}$ NMR [1821], IR [2212,2968], UV [1820], fluorescence spectra [1820], MS [2968].

1-(2-Hydroxy-4,6-dimethylphenyl)ethanone

[16108-50-2]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by reaction of acetic acid on 3,5-dimethylphenol with boron trifluoride at $60-70^{\circ}$ (93%) [2611].
- Preparation by Fries rearrangement of 3,5-dimethylphenyl acetate,
- with aluminium chloride,
- without solvent, between 100° and 150° [1814,2947,2948,2955,2965,29692973], (81-100\%) [2947,2948,2965], (67-75\%) [2955,2972];
- in nitrobenzene at $25^{\circ}(78 \%)$ [2948] or at 60° (67\%) [2947];
- in toluene or xylene at 100° (61-62\%) [2947];
- in refluxing carbon disulfide (60\%) [2969].
- with titanium tetrachloride,
- without solvent at 120° (82\%) [2948];
- in nitrobenzene at 25° (86\%) [2948].
- with stannic chloride,
- without solvent at 120° (78\%) [2948];
- in nitrobenzene at 25° (76\%) [2948].
- with zinc chloride,
- without solvent at 120° (54\%) [2948];
- in nitrobenzene at 25° (52\%) [2948].
- Also obtained by reaction of 2 N sodium hydroxide on 4,6-dimethyl-2-hydroxyα, α, α-trifluoro-acetoacetophenone at r.t. (quantitative yield) [2629].
- Also obtained by reaction of acetyl chloride,
- with 3,5-dimethylanisole with aluminium chloride (60-70\%) [2974];
- with 3,5-dimethylphenol in refluxing carbon disulfide (60\%) [2969].
- Also obtained by heating on a steam bath a mixture of 2-acetoxy-4,6-dimethylacetophenone and aluminium chloride (33\%) [2973].
- Also obtained by self-condensation of acetylacetone,
- with refluxing 2 N sodium hydroxide, then by heating the residue at 145° [2975];
- catalyzed with potassium fluoride in DMF solution [2648,2976], (64\%) [2976]; also refer to "erratum" [2647].
- Also obtained by reaction of acetic anhydride on 3,5-dimethylanisole with aluminium chloride in refluxing carbon disulfide (46\%) [2977].
- Preparation by dehydrogenation of 6-acetyl-3,5-dimethyl-2-cyclohexen-1-one with a 5\% palladium-barium sulfate catalyst at reflux [2612].
- Also obtained by photoreaction of dehydroacetic acid followed by hydrolysis of the obtained dimer (46\%) [2973].
- Also obtained by UV light irradiation of 3,5-dimethylphenyl acetate at 25°, in isopropanol or cyclohexane (32\%) [2193] or in ethyl ether (9\%) [2193].
- Also refer to: [2025].
m.p. 62° [2611], 60° [2965], 59-60́ [2971], 58-59́ [2612], 58° [2970,2975], $57-58^{\circ} 5$ [2955], 57-58 ${ }^{\circ}$ [2969,2974], 56-58ํ [2648,2973], 55-56ํ [2647,2976];
b.p. ${ }_{18} 140-141^{\circ}$ [2969,2974], b.p. ${ }_{15} 140^{\circ} 5-141^{\circ} 5$ [2611], b.p. ${ }_{13} 144^{\circ}$ [2955];
${ }^{1} \mathrm{H}$ NMR [2647,2648,2976], ${ }^{13} \mathrm{C}$ NMR [2647,2976,2978], IR [2647,2970,2976];
MS [2647,2976]; pK_{a} [2516].

1-(3-Hydroxy-2,4-dimethylphenyl)ethanone

[99892-63-4]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
Synthesis

- The $1 \alpha, 6 \alpha, 8 \alpha$-trimethyl- $2 \alpha-H, \quad 4 \alpha-H, \quad 5 \alpha-H$ -3,9-dioxa-tricyclo[3.3.1.0 ${ }^{2,4}$]nonan-7-one was rearranged by treatment with sodium ethoxide in ethanol to form 3-hydroxy-2,4-dimethylacetophenone in 11\% yield [2979].
m.p. 70° [2979]; ${ }^{1} \mathrm{H}$ NMR [2123], IR [2123], MS [2123].

1-(4-Hydroxy-2,3-dimethylphenyl)ethanone

[5384-57-6] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Obtained by Fries rearrangement of 2,3-dimethylphenyl acetate,
- with aluminium chloride, in nitrobenzene at r.t. (50-60\%) [2952,2953], in carbon disulfide at r.t. (10\%) [2952] or without solvent at $100^{\circ}(17 \%)$ [2951,2954];
- with titanium tetrachloride without solvent at 100° (6\%) [2951,2954].
m.p. 148° [2952], 145° [2953], 144° [2951].

1-(4-Hydroxy-2,5-dimethylphenyl)ethanone

[26216-10-4]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
	Syntheses
	- Preparation by reaction of acetic acid on 2,5-dimethylphenol with boron trifluoride at $70^{\circ}(95 \%)$ [2611]. - Preparation by Fries rearrangement of 2,5-dimethylphenyl acetate with aluminium chloride without solvent at $80-90^{\circ}(65-70 \%)$ [2596,2628], (49\%) [2980].
$\begin{array}{ll} \text { m.p. } & 131-132^{\circ} \\ & \text { MS [2980]. } \end{array}$	[2611,2980], 130-131 [2596,2628]; ${ }^{1} \mathrm{H}$ NMR [2980],

1-(4-Hydroxy-2,6-dimethylphenyl)ethanone

[91060-92-3]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
OH	Synthesis
	- Preparation by diazotization of 4-amino-2,6-dimethy-laceto-phenone, followed by hydrolysis of the obtained diazonium salt (68\%) [2981,2982].
m.p. $119-120^{\circ}$	78,2981-2983];
${ }^{1} \mathrm{H}$ NMR [2981], ${ }^{13}$	NMR [2978], IR [2981], MS [2981].

1-(4-Hydroxy-3,5-dimethylphenyl)ethanone

[5325-04-2] mol.wt. 164.20

- with aluminium chloride [2984], without solvent at
120-140
nitrobenzene at r.t. (75\%) [2535] or in nitromethane,
first at 0°, then at 50° for 48 h under argon atmo-
sphere $(61 \%)[2986] ;$

- with aluminium bromide without solvent at $130^{\circ}(71 \%)$ [2605].
- Preparation by reaction of 46% hydrobromic acid solution with 4-(benzyloxy)-3,5-dimethyl-acetophenone in the presence of tetrabutylammonium bromide in refluxing methylene chloride (53\%) [2987].
- Also obtained by heating various 2,6-dimethyl-4-alkylphenyl acetates** with aluminium chloride without solvent, the reaction being accompanied by an alkyl group elimination,
- **alkyl = benzyl (quantitative yield) [2957], ethyl (50\%) [2233], (39\%) [2957], dodecyl (38\%) [2957], propyl (31\%) [2957], butyl (27\%) [2957] and heptyl (12\%) [2957].
- Also refer to: [2988].
m.p. 162° [2987], 156-157 ${ }^{\circ}$ [2984], 151-152 ${ }^{\circ}$ [2605,2985,2986], $150-151^{\circ}$ [2233], 150° [2535];
${ }^{1} \mathrm{H}$ NMR [2984,2986,2987], ${ }^{13} \mathrm{C}$ NMR [2986], IR [2986,2987], MS [2986,2987].

1-(5-Hydroxy-2,3-dimethylphenyl)ethanone
[127701-70-6] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Synthesis

- Preparation by rearrangement of 3-acetyl-4,4-dime-thyl-cyclohexa-2,5-dienone with 49% sulfuric acid at 20° (quantitative yield) [2989].
${ }^{1} \mathrm{H}$ NMR [2989].

1-(5-Hydroxy-2,4-dimethylphenyl)ethanone

	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
	Syntheses
	- Preparation by demethylation of 5-methoxy-2,4-di methyl-acetophenone with aluminium chloride (50\%) [2956].
	- Also obtained by reaction of acetyl chloride on
	2,4-di-methylphenol with aluminium chloride in nitrobenzene at $50^{\circ}(9 \%)$ [2181].

- Also obtained (by-product) by Fries rearrangement of 2,4-dimethylphenyl acetate with aluminium chloride, without solvent [2697] or in nitrobenzene at 50° (9\%) [2181].
- Also obtained by reaction of zinc powder on 5-hydroxy-2,4-dimethyl- α-chloroacetophenone in acetic acid [2956].
m.p. 135° [2181], 130-1315 [2956].

1-(6-Hydroxy-2,3-dimethylphenyl)ethanone

Synthesis | Preparation by demethylation of 6-methoxy-2,3-dimethyl- |
| :--- |
| acetophenone with aluminium chloride in boiling benzene |
| (30\%) [2212]. The above keto anisole itself was obtained |
| by reaction of dimethylcadmium on 6-methoxy-2,3- |
| di-methylbenzoyl chloride in boiling benzene. |

m.p. $73^{\circ} 8-75^{\circ}$ [2212]; b.p. ${ }_{4.5} 126^{\circ}$ [2212]; IR [2212].

1-(2,4-Dihydroxy-3,5-dimethylphenyl)ethanone (Clavatol)
[577-45-7] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
 Syntheses

- Preparation by reaction of acetonitrile on 2,4-dimethylresorcinol (Hoesch reaction) (56-68\%) [2302,2990].
- Preparation by reaction of acetic acid on 2,4-dime-thyl-resorcinol with zinc chloride (Nencki reaction) [2373,2991].
- Also obtained by reaction of methyl iodide with 2,4-di-hydroxy-5-methylacetophenone in the presence of potassium hydroxide in methanol, in an ice-chest overnight (19\%) [2330].

From Microorganisms

- Also obtained by hydrolysis of Sorbicillin (a pigment produced by the mold Penicillium notatum) with refluxing 2 N sodium hydroxide solution (16\%) [2330].
- Also obtained by direct methylation of resacetophenone or 3-methylresacetophenone using washed cells of Streptomyces risomus [2373].
- Isolated in small quantities from cultures of Aspergillus clavatus grown in Czapek-Doz medium with molasses as an additional substrate [2373,2992].
m.p. 184-186 ${ }^{\circ}$ [2992], 183° [2990], 181-182́ [2330]; UV [2213,2330].

1-(2,4-Dihydroxy-3,6-dimethylphenyl)ethanone

[69082-35-5]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Obtained by reaction of methyl iodide with 2,4-dihy-droxy-6-methylacetophenone in the presence of potassium hydroxide in methanol in an ice-chest overnight (27\%) [2330].
- Preparation by reaction of acetonitrile on β-orcinol (1,3-dihydroxy-2,5-dimethylbenzene) (Hoesch reaction) [2693,2993], (70\%) [2993].
m.p. 153° [2693], $149-150^{\circ}$ [2330]; ${ }^{1} \mathrm{H}$ NMR [2993], IR [2993], UV [2213], MS [2993].

1-(2,5-Dihydroxy-3,4-dimethylphenyl)ethanone

[71582-59-7] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Synthesis
CH CHCH_{3} - Preparation by reaction of acetic acid on 2,3-dimethylhydroquinone with boron trifluoride, followed by saponification of the monoacetate [2909,2994] or diacetate [2349] obtained (84-91\%) [2349,2994].
m.p. 151° [2349], 150° [2994].

1-(2,5-Dihydroxy-3,6-dimethylphenyl)ethanone

1-(2,6-Dihydroxy-3,4-dimethylphenyl)ethanone

[7743-16-0]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Obtained from 4,5-dimethylresorcinol by reaction,
- with acetyl chloride in the presence of aluminium chloride in nitrobenzene, first at r.t., then at 60° (9\%) [2213];
- with acetic acid in the presence of boron trifluoride etherate at reflux [2995].
- Also obtained (by-product) by Fries rearrangement of 4,5-dimethylresorcinol diacetate in the presence of aluminium chloride at $115-120^{\circ}(10 \%)$ [2996].
- Preparation by heating a mixture of 2-acetyl-4,5-dihydroxy-4,5-dimethylcyclo-hexane-1,3-dione and zinc dust in 50% acetic acid at 65° (71\%) [2996]. The same reaction carried out with 2-acetyl-6-hydroxy-5,6-dimethylcyclohex-4-ene-1,3-dione leads to 82% yield [2996].
m.p. $125-127^{\circ}$ [2996], $122-124^{\circ}$ [2995] and $82-83^{\circ}$ [2213]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [2996], ${ }^{13} \mathrm{C}$ NMR [2996], IR [2996], UV [2213,2996].

1-(2,6-Dihydroxy-3,5-dimethylphenyl)ethanone

$$
\text { [37467-68-8] } \quad \begin{aligned}
& \text { Synthesis } \\
& \begin{array}{l}
\text { Obtained by reaction of acetic anhydride with } \\
\text { tion of boron trifluoride etherate at r.t. }(15 \%) \\
\text { or boron trifluoride-acetic acid complex for } 2213] \\
100^{\circ}[2997] .
\end{array}
\end{aligned}
$$

m.p. $144-146^{\circ} 5$ [2997], $139-140^{\circ}$ [2213]; UV [2213].

1-(3,6-Dihydroxy-2,4-dimethylphenyl)ethanone

[71582-58-6] | Syntheses |
| :--- |

1-(4,6-Dihydroxy-2,3-dimethylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Synthesis

- Preparation by reaction of acetonitrile on 3,5-dihy-droxy-o-xylene (Hoesch reaction) (69\%) [2330].

1-(2-Ethoxy-6-hydroxyphenyl)ethanone

[2750-25-6]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 180.20
 tone (64\%) [2999].

- Preparation by reaction of ethyl iodide on 2,6-dihydroxy acetophenone with potassium carbonate in refluxing ace-
m.p. $84-85^{\circ}$ [2999].

1-(3-Ethoxy-4-hydroxyphenyl)ethanone

[78268-45-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by Fries rearrangement of 2-ethoxyphenyl acetate with aluminium chloride in nitrobenzene at r.t. (50\%) [3000].
- Preparation by refluxing 4-(benzyloxy)-3-ethoxy-acetophenone in mixture of acetic acid and hydrochloric acid [2528] according to [3001].
m.p. 66° [3000], 59-60 ${ }^{\circ}$ [2528]; ${ }^{1} \mathrm{H}$ NMR [3000].

1-(4-Ethoxy-2-hydroxyphenyl)ethanone

[37470-42-1] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
 Syntheses

- Preparation by reaction of ethyl iodide on resacetophenone,
- with potassium hydroxide in refluxing ethanol [2186,2220,2289,2296,2730,3002,3003], (25\%) [3002] or boiling acetone [2293];
- with potassium carbonate in boiling acetone [3004,3005], (88\%) [3005].
- Also obtained by reaction of aluminium chloride on 2,4-diethoxyacetophenone [2289].
- Also refer to: [2484,2911] (compound 1e).
m.p. $50^{\circ}[2186,2204], 49-50^{\circ}[2293,3005], 49^{\circ}[3002,3003], 48^{\circ}[2220,2289,2730]$, 45-46 [3004]; UV [2186,2204].

1-(4-Ethoxy-3-hydroxyphenyl)ethanone

[78269-19-9]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 180.20
Synthesis

- Preparation by Fries rearrangement of 2-ethoxyphenyl acetate with aluminium chloride in nitrobenzene at r.t. (50\%) [3000].
m.p. 100° [3000]; ${ }^{1} \mathrm{H}$ NMR [3000].

1-(5-Ethoxy-2-hydroxyphenyl)ethanone

[56414-14-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Syntheses

- Preparation by reaction of ethyl bromide with quinacetophenone in the presence of potassium hydroxide in boiling ethanol [3006].
- Also obtained by condensation of hydroquinone diethyl ether with acetyl chloride according to the Friedel-Crafts method [3007,3008].
- Also obtained by reaction of aluminium chloride on quinacetophenone diethyl ether [3007,3008].
- Also obtained by alkaline degradation of 6,3'-diethoxyflavone* with sodium ethoxide in refluxing ethanol for some hours [3009].
N.B.: Former nomenclature ($2,3^{\prime}$-diethoxyflavone*).
- Refer to: [2227,3010,3011]. m.p. 57° [3006], 55° [3007,3008].

1-(3-Ethyl-2,4-dihydroxyphenyl)ethanone

[111224-13-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ mol.wt. 180.20 Syntheses

- Preparation by reaction of acetic acid on 2-ethylresorcinol with zinc chloride (Nencki reaction) at 140° [2681,3012,3013], (73\%) [3012].
- Preparation from 2-ethylresorcinol (SM) by reaction with acetyl chloride in the presence of aluminium chloride. The starting material (SM) was prepared by a three-step procedure from resorcinol dimethyl ether [3014].
- Also obtained by alkaline degradation of 8-acetyl-6-ethyl-4-methylumbelliferone (m.p. 137°) in refluxing N sodium hydroxide for $1 \mathrm{~h}(96 \%)$ [3015].
m.p. 137° [3012], 130° [3015]; ${ }^{1} \mathrm{H}$ NMR [3014], MS [3014].

1-(3-Ethyl-2,6-dihydroxyphenyl)ethanone

[54337-59-6]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

 Syntheses

- Preparation by degradation of 8-acetyl-6-ethyl-7-hydroxy-4-methylcoumarin with refluxing 2 N sodium hydroxide [2308].
- Preparation by decarboxylation of 3-acetyl-5-ethyl-2,4-dihydroxybenzoic acid,
- with refluxing aqueous hydrochloric acid (62\%) [3016];
- with 10% aqueous sodium hydroxide heated in a sand bath [2308].
- Also refer to: [2997].
m.p. 135° [2308], 130° [3016].

1-(4-Ethyl-2,5-dihydroxyphenyl)ethanone
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Synthesis

- Obtained (poor yield) by reaction of aqueous ammonium persulfate solution on 4-ethyl-2-hydroxyacetophenone with 10% potassium hydroxide, in aqueous pyridine solution at r.t. (3\%) [2944].
m.p. 100° [2944].

1-(4-Ethyl-2,6-dihydroxyphenyl)ethanone
[209746-96-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Synthesis

- Refer to: [3017].

1-(5-Ethyl-2,4-dihydroxyphenyl)ethanone

[4460-42-8]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol wt. 180.20
Syntheses

- Preparation by reaction of acetic acid on 4-ethylresorcinol with zinc chloride (Nencki reaction) [2671,2912, 2913,3018,3019], (67-77\%) [2671,2913,3019].
- Preparation by Fries rearrangement of 4-ethylresorcinol diacetate with aluminium chloride in nitrobenzene at $50-60^{\circ}$ (quantitative yield) [3020] or without solvent at $40-50^{\circ}$ (47\%) [3020].
- Preparation by reaction of acetonitrile on 4-ethylresorcinol (Hoesch reaction) [2912,2913].
- Preparation from 5-ethyl-2-hydroxy-4-methoxyacetophenone by demethylation with boiling pyridinium chloride (40\%) [3013].
- Preparation from 5-ethyl-2,4-dimethoxyacetophenone by demethylation with boron tribromide in methylene chloride at r.t. (36\%) [2678,2679].
- Also obtained by hydrolysis of 6-ethyl-7-hydroxy-2-methylchromone with refluxing aqueous 1 N sodium hydroxide solution [3021].
m.p. $118-119^{\circ}$ [2913], 118° [2912,3021], 117-118 ${ }^{\circ}$ [3020], 116° [3013], $115-116^{\circ}$ [2671], 115° [2676,3019].

1-(2-Hydroxy-3-methoxy-4-methylphenyl)ethanone

[77869-43-3]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20 Synthesis

- Isolated as a co-product from the preparation of 2,3-di-methoxy-4-methylacetophenone, obtained by conversion of 2,3-dimethoxy-4-methylbenzoyl chloride with methyl cadmium (10\%) [3022].

Crystalline compound [3022]; ${ }^{1} \mathrm{H}$ NMR [3022], MS [3022].

1-(2-Hydroxy-3-methoxy-5-methylphenyl)ethanone

[7452-85-9]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by reaction of methylmagnesium iodide on 2-acetoxy-3-methoxy-5-methylbenzonitrile in refluxing ethyl ether (72\%) [3023].
- Preparation by Fries rearrangement of 2-methoxy-4-methyl-phenyl acetate with aluminium chloride without solvent (24\%) [2697].
- Also obtained by reaction of dimethyl sulfate on 2,3-dihydroxy-5-methylacetophenone with potassium carbonate in acetone (18\%) [2670].
- Preparation by UV light irradiation (photo-Fries rearrangement) of 2-methoxy-4-methylphenyl acetate (creosol acetate) in ethanol (68\%), in benzene or in hexane (56-55\%) [2198].
m.p. $84-85^{\circ}$ [2670], $82-84^{\circ}$ [3023]; ${ }^{1} \mathrm{H}$ NMR [2198], IR [2198].

1-(2-Hydroxy-3-methoxy-6-methylphenyl)ethanone

[4223-86-3]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20 Syntheses

- Preparation by partial demethylation of 2,3-dime-thoxy-6-methylacetophenone with aluminium chloride in refluxing methylene chloride (77\%) [2524].
- Preparation by chromic acid degradation of 7-methoxy-2,3,4-trimethylbenzofuran (46\%) [3013].
- Also obtained (poor yield) by photo-Fries rearrangement of 2-methoxy-5-methylphenyl acetate in ethanol under nitrogen (2\%) [3024].
Pale yellow oil [2524,3013,3024]; b.p. ${ }_{12} 156-158^{\circ}$ [3013];
$\mathrm{n}_{\mathrm{D}}^{23}=1.5527$ [3013]; ${ }^{1} \mathrm{H}$ NMR [3024], ${ }^{13} \mathrm{C}$ NMR [2524], IR [2524,3024].
1-(2-Hydroxy-4-methoxy-3-methylphenyl)ethanone

[69469-91-6] \begin{tabular}{l}
Syntheses

-| Preparation by reaction of acetonitrile on 3-meth- |
| :--- |
| oxy-2-methylphenol (Hoesch reaction) |
| [3025]. |

Preparation by reaction of methyl iodide on
resacetophenone,

\end{tabular}

- with potassium hydroxide in refluxing methanol [2294,2730,3026], (19$25 \%)$ [2294,2672,3026];
- with sodium methoxide in boiling methanol [2915].
m.p. $83-84^{\circ}[2915,3026], 83^{\circ}$ [3025], $82-83^{\circ}$ [2672], $80-82^{\circ}$ [2294], $80-81^{\circ}$ [2730].

1-(2-Hydroxy-4-methoxy-5-methylphenyl)ethanone

[81511-52-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 180.20
Syntheses

- Preparation by partial methylation of 2,4-dihy-droxy-5-methylacetophenone,
- with methyl iodide in the presence of potassium carbonate in refluxing acetone (78\%) [2871];
- with diazomethane in solution of ethyl ether-methanol mixture (92%) [2302].
m.p. $\quad 94^{\circ}$ [2871].

1-(2-Hydroxy-4-methoxy-6-methylphenyl)ethanone (Acetoevernone)

[6540-66-5]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by partial methylation of 2,4-dihy-droxy-6-methylacetophenone (orcacetophenone or β-orcacetophenone), with diazomethane (78\%) [2694] or dimethyl sulfate [2301,2684].
- Preparation by Fries rearrangement of 3-methoxy-5-methylphenyl acetate with aluminium chloride in nitrobenzene at r.t. (52\%) [2742,2743].
- Preparation by reaction of acetonitrile on 3-methoxy-5-methylphenol with zinc chloride and hydrochloric acid in ethyl ether at r.t. (Hoesch reaction) [2301,2307], (28\%) [2301].
- Also obtained (by-product) by reaction of acetyl chloride on orcinol dimethyl ether with aluminium chloride in carbon disulfide at r.t. [2348,2694,3027,3028], (5-8\%) [2348,2694].
m.p. $79-80^{\circ}$ [2348], 79° [2301,2307,2742,2743,3028], 78-78 ${ }^{\circ} 5$ [2694];
${ }^{1}$ H NMR [2348,2694], IR [2348,2694], UV [2348,2694], MS [2348,2694].

1-(2-Hydroxy-5-methoxy-3-methylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by Fries rearrangement of 4-methoxy-2-methyl-phenyl acetate,
- with boron trifluoride in ethylene dichloride for 3 h (97\%) [2696];
- with aluminium chloride (11\%) [2697].
m.p. $\quad 52-53^{\circ}$ [2696]; sublimation $54-58^{\circ} / 0.2 \mathrm{~mm}[2696] ;$
${ }^{1} \mathrm{H}$ NMR [2696], IR [2696], MS [2696,3029].

1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethanone

[4223-84-1]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Obtained by reaction of acetyl chloride on 2,5-dime-thoxy-4-isopropyltoluene with aluminium chloride in boiling carbon disulfide (14\%) [2542].
- Also obtained by chromic acid degradation of 5-met hoxy-2,3,6-trimethylbenzofuran (10\%) [3013].
- Also obtained (by-product) by reaction of acetyl chloride with 2,5-dimethoxytoluene in the presence of aluminium chloride in carbon disulfide at $20-25^{\circ}$ (4\%) [2583].
- Also obtained by photo-Fries rearrangement of 4-methoxy-3-methylphenyl acetate in ethanol under nitrogen (19\%) [3024].
m.p. 114° [2583], 112° [2542], 111-112 ${ }^{\circ}$ [3013]; ${ }^{1} \mathrm{H}$ NMR [2583], IR [2583].

1-(2-Hydroxy-6-methoxy-3-methylphenyl)ethanone

[56504-43-9]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20 Syntheses

- Preparation by partial methylation of 2,6-dihydroxy-3-methylacetophenone,
- with methyl iodide in the presence of potassium carbonate in refluxing acetone (55\%) [2871];
- with diazomethane in ethyl ether at r.t. (16\%) [2552].
- Also obtained by reduction of 3-formyl-2-hydroxy-6-methoxyacetophenone with hydrochloric acid and amalgamated zinc in methanol at 50° (11\%) [2871].
m.p. 59° [2871], 58° [2552]; ${ }^{1} \mathrm{H}$ NMR [2552], IR [2552].

1-(2-Hydroxy-6-methoxy-4-methylphenyl)ethanone

[31405-63-7]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by reaction of acetic anhydride on orcinol monomethyl ether with concentrated sulfuric acid, at reflux (45\%) [2307].
- Also obtained by reaction of dimethyl sulfate on 2,6-dihydroxy-4-methylacetophenone (p-orcacetophenone) with sodium hydroxide [2307] or potassium hydroxide [2708].
- Also obtained by reaction of acetyl chloride on orcinol dimethyl ether with aluminium chloride in carbon disulfide at r.t. [2348,2694,3028], (11\%) [2348], (4\%) [2694].
m.p. 81° [2307], $80-81^{\circ}$ [2694], $76-77^{\circ}$ [2713], 74-75 ${ }^{\circ}$ [2348];
${ }^{1} H$ NMR [2348,2694], IR [2348,2694], UV [2348,2694], MS [2348,2694].

1-(4-Hydroxy-2-methoxy-3-methylphenyl)ethanone

[118824-97-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Synthesis

- Preparation by catalytic hydrogenolysis of 4-(benzyloxy)-2-methoxy-3-methylacetophenone at r.t. under pressure in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethanol (92\%) [2582], (84\%) [2942].
m.p. $130-132^{\circ}$ [2582], 130° [2942]; ${ }^{1} \mathrm{H}$ NMR [2582], IR [2582], MS [2582].

1-(4-Hydroxy-2-methoxy-6-methylphenyl)ethanone (Isoacetoevernone)

OH	$\begin{array}{ll} \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} & \text { mol.wt. } 180.20 \\ \text { Synthesis } & \end{array}$
	- Preparation by reaction of acetonitrile on orcinol monomethyl ether (Hoesch reaction) (32\%) [2301].
m.p. 150° [2301].	

1-(4-Hydroxy-3-methoxy-5-methylphenyl)ethanone
m.p. $94^{\circ}[3030]$.

1-(4-Hydroxy-5-methoxy-2-methylphenyl)ethanone

[162853-20-5]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by reaction of acetyl chloride on isocreosol (2-methoxy-5-methylphenol) with aluminium chloride in nitrobenzene at r.t. (87\%) [3031].
- Preparation by Fries rearrangement of isocreosol acetate with aluminium chloride in nitrobenzene at r.t. (75\%) [2914].
- Also obtained by photo-Fries rearrangement of 2-methoxy-5-methylphenyl acetate under nitrogen in ethanol (20\%) [3024] or in methanol at 254 nm at r.t. (21\%) [2963].
m.p. $167-168^{\circ}$ [2963], 124° [2914], 123° [3031];
${ }^{1} \mathrm{H}$ NMR [2963], ${ }^{13} \mathrm{C}$ NMR [2963], IR [2963], MS [2963].

1-(5-Hydroxy-4-methoxy-2-methylphenyl)ethanone

[6948-37-4]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by reaction of acetic acid on creosol (2-methoxy-4-methylphenol) with boron trifluoride at 25° [2198,2670], (88%) [2670].
- Preparation by Fries rearrangement of creosol acetate with aluminium chloride, in methylene chloride at 0° [3032] or at 20° (82\%) [3033], in nitrobenzene at $80^{\circ}(70 \%)$ [2723] or without solvent (8\%) [2697].
- Also obtained by reaction of acetyl chloride on homoveratrole (3,4-dimethoxytoluene) with aluminium chloride in carbon disulfide [3034].
m.p. $\quad 129-130^{\circ}$ [2670], 129° [2723,3033], $128-129^{\circ}$ [3032], $124-126^{\circ}$ [2198], 123° [3034];
${ }^{1}$ H NMR [2198,3033] (Sadtler: standard n ${ }^{\circ} 49332$ M);
IR [2198,3033] (Sadtler: standard n ${ }^{\circ} 76405 \mathrm{~K}$); UV [3033].

1-(6-Hydroxy-3-methoxy-2-methylphenyl)ethanone

[71452-36-3]

1-[2-Hydroxy-3-(methoxymethyl)phenyl]ethanone

[87165-50-2]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 180.20
Synthesis

- Preparation from 3-chloromethyl-2-hydroxyacetophenone (m.p. 45°) by reaction with methanol in the presence of concentrated hydrochloric acid and iron powder at reflux for 3.5-4 h (88\%) [2494].
b.p. ${ }_{0.3} 89-91^{\circ}$ [2494]; ${ }^{1} \mathrm{H}$ NMR [2494], IR [2494].

1-[2-Hydroxy-6-(methoxymethyl)phenyl]ethanone

[161358-64-1] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Synthesis

- Obtained by treatment of 2-(methoxymethoxy)-6-(methoxy-methyl)acetophenone with aqueous trifluoroacetic acid at r.t. for 16 h (93\%) [2645].
pale yellow oil [2645]; b.p. $165-170^{\circ}$ [2645];
${ }^{1} \mathrm{H}$ NMR [2645], IR [2645], MS [2645].

1-[2-Hydroxy-6-methoxy-3-(methylthio)phenyl]ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
mol.wt. 212.27

Synthesis

- Preparation by adding 2-hydroxy-3-iodo-6-meth-oxy-acetophenone and cuprous oxide to a solution of sodium methyl sulfhydrate, first prepared from methanethiol and sodium hydride in DMF [2524].
m.p. 83° [2524]; ${ }^{1} \mathrm{H}$ NMR [2524], IR [2524].

1-(2,3-Dihydroxy-4-methoxy-6-methylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20 Synthesis

- Preparation by reaction of acetyl chloride on 1,2,3-tri-methoxy-5-methylbenzene with aluminium chloride in refluxing methylene chloride (45\%) [3035].
m.p. $\quad 132^{\circ}$ [3035]; ${ }^{1} \mathrm{H}$ NMR [3035], ${ }^{13} \mathrm{C}$ NMR [3035], IR [3035], MS [3035].

1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)ethanone

[83459-37-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
 Syntheses

- Preparation by reduction of 3-formyl-2,4-dihydroxy-6-methoxyacetophenone with hydrochloric acid and amalgamated zinc in gently heated aqueous methanol (64\%) [3036].
- Also obtained by reaction of acetonitrile on 3,5-dihydroxy-4-methylanisole (Hoesch reaction) [3037].

Isolation from natural sources

- From Yuexiandaji (Euphorbia ebracteolata) [3038].
- From the roots of Euphorbia ebracteolata Hayata [3039,3040].
- From Pancratium maritimum (Amaryllidaceae) [3041].

```
m.p. 225* [3036], 224* [3037], 202-203 
(d) [3041]; HPLC [3038];
\({ }^{1} \mathrm{H}\) NMR [3041], \({ }^{13} \mathrm{C}\) NMR [3041], IR [3041], EIMS [3041], HRMS [3041].
```


1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)ethanone

[69480-06-4] \quad| Syntheses |
| :--- |

- Also obtained by reaction of 2 N aqueous sodium hydroxide on 2,4-diacetyl-3, 5-dihydoxy-6-methylanisole at 80° (decarbonylation reaction) [3042].
- Preparation by catalytic hydrogenolysis of 6-(benzyloxy)-2-hydroxy-4-meth-oxy-3-methyl-acetophenone in the presence of Pd / C in acetic acid (75\%) [3043].
- Also obtained (by-product) by reaction of acetic anhydride on 3,5-dihydroxy-2methylanisole with boron trifluoride in ethyl ether at 20° [3042].

Isolation from natural sources

- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [3044-3046].
- Also obtained by reductive alkaline cleavage of 3-(3,3-dimethylallyl)-5-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)phloroacetophenone (I) [3047], according to [3048]. The ketone (I) was isolated from Mallotus japonicus (Euphorbiaceae) [3047].
m.p. 200-201 ${ }^{\circ}$ [3046], 198° [3042], 197-200́ [3047], 197-198 ${ }^{\circ}$ [3037], 196-198ㅇ [3045], 196° [3043];
${ }^{1} \mathrm{H}$ NMR [3045-3047], UV [3045], MS [3045-3047].

1-(3,6-Dihydroxy-2-methoxy-4-methylphenyl)ethanone

[90377-24-5]
 $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20 Isolation from natural sources - From Trocholejeunea sandvicensis (Lejeuneaceae) [3049].

1-(3,6-Dihydroxy-4-methoxy-2-methylphenyl)ethanone
[68531-86-2]

m.p. $164-165^{\circ}$ [3050].

1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)ethanone (Pseudoaspidinol-A)

[52200-61-0] \quad\begin{tabular}{l}
Syntheses

Preparation by catalytic hydrogenolysis of 4,6-bis-
(benzyloxy)-2-methoxy-3-methylacetophenone in the
presence of Pd / C in acetic acid (quantitative yield)
[3051], (86\%) [3043].

\end{tabular}

- Preparation by reaction of dimethyl sulfate on 4,6-bis-(benzoyloxy)-2-hydroxy-3-methylacetophenone with potassium carbonate in boiling acetone (46%) [3051].
- Also obtained by heating methyl 5-acetyl-2,6-dihydroxy-4-methoxy-3-methylbenzoate in aqueous glycerol at $180-200^{\circ}$ for $30 \mathrm{~min}(29 \%)$ [3052].
- Also refer to: [3053,3054].

Isolation from natural sources

- From stereocaulon vesuvianum, a foliose lichen, abundantly growing over volcanic rocks [3055].
m.p. $143-144^{\circ}$ [3055], 142° [3043,3051], 138- 140° [3052]; TLC [3055];
${ }^{1} \mathrm{H}$ NMR [3052,3055], IR [3052,3055], UV [3055], MS [3055].

1-(2-Ethoxy-3,6-dihydroxyphenyl)ethanone

[33539-21-8]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
OH	Syntheses
	- Easy preparation by reduction of 2-acetyl-3-ethoxy-1,4benzoquinone using conventional methods [2869]. - Also obtained (low yield) by reaction of 2-acetyl-1,4-benzoquinone with an excess of ethanol at r.t., with exclusion of light [2869].
m.p. 102-103	[2869]; ${ }^{1} \mathrm{H}$ NMR [2869], IR [2869].

1-(2-Ethoxy-4,6-dihydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

m.p. 178° [2851].

1-(4-Ethoxy-2,3-dihydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

Syntheses

- Preparation by reaction of ethyl iodide on gallacetophenone monopotassium salt in boiling methanol [2812].
- Preparation by reaction of hydrobromic acid with 2,4-diethoxy-3-methoxyacetophenone (43\%) or 3,4-diethoxy-2-hydroxyacetophenone (20\%) in acetic acid at r.t. [2814].
m.p. $102^{\circ} 2-103^{\circ} 2$ [2814], $102^{\circ}[2812,2815]$.

1-(4-Ethoxy-2,5-dihydroxyphenyl)ethanone

[58084-93-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

Synthesis

- Preparation from 4-ethoxy-2-hydroxyacetophenone by persulfate oxidation (Elbs reaction) (quantitative yield) [3005], (24\%) [3056].
m.p. $129-130^{\circ}$ [3056], $125-126^{\circ}$ [3005]; ${ }^{1} \mathrm{H}$ NMR [3005].

1-(4-Ethoxy-2,6-dihydroxyphenyl)ethanone

[35028-01-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

m.p. $164-165^{\circ}$ [2856]; ${ }^{1} \mathrm{H}$ NMR [2856].

1-(3-Ethyl-2,4,6-trihydroxyphenyl)ethanone

1-(5-Ethyl-2,3,4-trihydroxyphenyl)ethanone

[86989-84-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by reaction of acetyl chloride on 4-ethylpyrogallol with aluminium chloride [2266].
- Preparation by reaction of acetic acid with 4-ethylpyrogallol in the presence of boron trifluoride in ethyl ether at 0° (78\%) [2268].
m.p. 141° [2266,2268]; UV [2268].

1-(2-Hydroxy-3,4-dimethoxyphenyl)ethanone

[5396-18-9]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 196.20

Syntheses

- Preparation by reaction of acetyl chloride on pyrogallol trimethyl ether,
- with aluminium chloride in carbon disulfide [3057-3061], (50\%) [3061], in boiling ethyl ether (77\%) [2770] or in benzene at 45-50 ${ }^{\circ}$ (77\%) [3062];
- with mercuric chloride without solvent at $100^{\circ}(40 \%)$ [3063,3064].
- Preparation by Fries rearrangement of 2,3-dimethoxyphenyl acetate with aluminium chloride in nitrobenzene at r.t. (61\%) [2742,2743].
- Preparation by partial methylation of gallacetophenone,
- with methyl iodide,
- in the presence of sodium methoxide in boiling methanol [2915,3065];
- in the presence of potassium carbonate in refluxing acetone (47\%) [3066] or in acetone-DMF mixture [3067].
- with dimethyl sulfate,
- in the presence of potassium carbonate in refluxing benzene (65\%) [2820], (51\%) [2811];
- in the presence of 40% potassium hydroxide [2406,3058,3068].
- Preparation by partial methylation of 2,3-dihydroxy-4-methoxyacetophenone with methyl iodide in the presence of potassium hydroxide in methanol [2812,2815].
- Also obtained by selective demethylation of 2,3,4-trimethoxyacetophenone,
- with boron trichloride in methylene chloride at $0^{\circ}(88 \%)$ [3069];
- with aluminium chloride in refluxing ethyl ether [1821] or in acetonitrile at 30° for 3 h (95\%) [2747];
- with aniline hydriodide in aniline for 7 h at 95° (54\%) [2693];
- with cupric bromide in refluxing chloroform-ethyl acetate mixture (4\%) [2922].
m.p. $83^{\circ}[2693,3057], 78-80^{\circ}$ [3058], $78-79^{\circ}[2406,2742,2743,3062,3066,30$

68], 78° [3067], $77-78^{\circ}$ [2812,2915,3065], 77° [2820,3059-3061], 75$77^{\circ}$ [2811], $72-76^{\circ}$ [3069], 68-72 ${ }^{\circ}$ [2922],
${ }^{1} \mathrm{H}$ NMR [2922,3062,3069], ${ }^{13} \mathrm{C}$ NMR [1821], IR [3062,3069].

1-(2-Hydroxy-3,5-dimethoxyphenyl)ethanone

[17605-00-4]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by reaction of dimethyl sulfate on 2,5-di-hydroxy-3-methoxyacetophenone with potassium carbonate in refluxing acetone (54\%) [2848].
- Preparation by photo-Fries rearrangement of 2,4-di-methoxyphenyl acetate in ethanol (61\%) or in benzene (55\%) [2198].
m.p. $84-86^{\circ}$ [2848]; ${ }^{1} \mathrm{H}$ NMR [2198], IR [2198].

1-(2-Hydroxy-3,6-dimethoxyphenyl)ethanone

[52099-27-1]

m.p. 61° [2408].
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Synthesis

- Preparation by reaction of concentrated hydrochloric acid on 2-(benzyloxy)-3,6-dimethoxyacetophenone in acetic acid at 60° (99\%) [2408].

1-(2-Hydroxy-4,5-dimethoxyphenyl)ethanone

[20628-06-2]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by partial methylation of 2,5-dihy-droxy-4-methoxyacetophenone,
- with methyl iodide in the presence of potassium carbonate in refluxing acetone (81\%) [2850];
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone (71%) [2418], in the presence of sodium methoxide in methanol (byproduct) $[2410,2733,2734,3070]$ or in the presence of sodium hydroxide in boiling aqueous ethanol (37\%) [2742,2743];
- with an excess of ethereal diazomethane in methanol (93\%) [2740].
- Preparation by reaction of acetonitrile on 3,4-dimethoxyphenol with zinc chloride (Hoesch reaction) (47\%) [3071].
- Also obtained (by-product) by reaction of acetyl chloride on 1,2,4-trimethoxybenzene with aluminium chloride in carbon disulfide at r.t. [2410,3070,3072].
- Also obtained by partial demethylation of 2,4,5-trimethoxyacetophenone with boiling aqueous hydrochloric acid $[2410,3070]$ or aluminium chloride in acetonitrile for 6 h at 45° (50\%) [2747].
- Preparation by reaction of boiling acetic acid on 3,4-dimethoxyphenyldiazonium borofluoride. The 3,4-dimethoxyphenyl acetate which was first formed was rearranged by the boron trifluoride produced during the reaction (62\%) [3073].
- Also refer to: [3074].

Isolation from natural sources

- From various plants belonging to the Polypodiaceae family, namely Inomotosou (Pteris multifide Poiret), Oobainomotosou (Pteris cretica L.) and Hitotsuba (Pyrrosia"ingua Farw.) [3075].
m.p. 115° [3070], $114-116^{\circ}$ [2418], $114-115^{\circ}$ [2733,2734], 112-114 ${ }^{\circ}$ [2740], 112° [2850,3071,3073], $111-112^{\circ}$ [2742,2743]; b.p. $0_{0.04} 125^{\circ}$ [3071];
GC [3075], GC-MS [3075];
${ }^{1} \mathrm{H}$ NMR [2850], ${ }^{13} \mathrm{C}$ NMR [2421], IR [2850,3075].

1-(2-Hydroxy-4,5-dimethoxyphenyl)ethanone-2- ${ }^{14} \mathrm{C}$

[77184-92-0]

m.p. $112-113^{\circ}$ [3076];
specific radioactivity $1.50 \mu \mathrm{Ci} / \mathrm{mmol}$ [3076].
1-(2-Hydroxy-4,6-dimethoxyphenyl)ethanone (Xanthoxylin; Brevifolin)
[90-24-4]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
Synthesis

- Preparation by heating a mixture of 3,4-dimethoxyphenol, boron trifluoride-acetic acid complex and sodium acetate-2- ${ }^{14} \mathrm{C}(250 \mu \mathrm{Ci})$ at 100° for 25 min (54\%) [3076]. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20 Syntheses
- Preparation by reaction of acetonitrile on phloroglucinol dimethyl ether (Hoesch reaction) [2837,3077].
- Also obtained by partial methylation of phloroacetophenone,
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone [2860,3078], (86\%) [2860] or in solution of acetone-benzene mixture at reflux (78-83\%) [2422,2936,3079], (65\%) [3080];
- with diazomethane in ethyl ether, at r.t. [2827,3081];
- with methyl iodide in the presence of potassium carbonate in boiling acetone (83\%) [2830], (6\%) [2861].
- Also obtained by partial methylation of 2,4-dihydroxy-6-methoxyacetophenone [2845] or 2,6-di-hydroxy-4-methoxyacetophenone with diazomethane [2844,2845], (quantitative yield) [2844].
- Preparation by acetylation of phloroglucinol dimethyl ether,
- with the boron trifluoride-acetic acid complex at 100° (24\%) [2242];
- with a mixture of acetic anhydride-acetic acid in the presence of boron trifluoride at 0° (54\%) [3082];
- with acetic anhydride in the presence of boron trifluoride in ethyl ether at 15° (49\%) [3042];
- with acetylating complex mixture at $60^{\circ}(17 \%)$ [2746].
- Preparation by partial demethylation of phloroacetophenone trimethyl ether,
- with hydriodic acid in acetic anhydride at r.t. (96\%) [3083];
- with aluminium chloride [2747,2832,2833,3084,3085], in nitrobenzene (sole product) [2832], in acetonitrile for 6 h at 45° (90\%) [2747], in boiling ethyl ether (79\%) [3084] or without solvent at 110° (30\%) [3085];
- with hydrobromic acid in acetic acid [3083].
- Also obtained by reaction of boron trifluoride etherate on 2,4-diacetyl-3,5-dimethoxyphenol in acetic acid (61\%) [3042].
- Also obtained (major product) by reaction of acetyl chloride on phloroglucinol trimethyl ether with aluminium chloride in boiling petroleum ether [3086].
- Preparation by UV light irradiation of 3,5-dimethoxyphenyl acetate at 25° [2193] (photo-Fries rearrangement), in cyclohexane (62\%), in isopropanol (45%) or in ethyl ether (32%).

Isolation from natural sources

- From the Bark of Phytophthora - and Hendersonula - infected Citrus limon [3087].
- From Xanthoxylum piperitum De Candolle [3088,3089], from the essential oils of Xanthoxylum aubertia (Evodia aubertia) (10\%) [2921] and of Xanthoxylum alatum Roxb. (Rutaceae) [2921].
- From the root bark of Fagara okinawaensis Nakai (0.5\%) [3081].
- From the leaves of Hippomane mancinella L. [2920].
- From the essential oil of Artemisia brevifolia Wallich [3090] or indigenous species of Artemisia gallica Willd. [3091].
- From the essential oil of Eucalyptus Bakeri Maiden [2919].
- From various species of Geijera [2919].
- From Blumea balsamifera DC [2918,3092].
- A new flavone, hinokiflavone was obtained from the leaves of Chamaecyparis obtusa Endlicher (Cupressaceae) [2259]. Hinokiflavone pentamethyl ether treated with alkali gave Xanthoxylin,
- with potassium hydroxide [2260];
- by boiling in methanolic barium hydroxide solution (77\%) [3093].
- A flavonoid, Sciadopitysin, was obtained from the leaves of Sciadopitys verticillata. Xanthoxylin was obtained in high yield by degradation of sciadopitysin trimethyl ether in boiling methanolic barium hydroxide solution [3093,3094].
- A flavonoid, Tricin, was obtained from the Khapli wheat leaves (Triticum Dicoccum).
- Xanthoxylin was obtained by degradation of tricin trimethyl ether in boiling 80% solution of potassium hydroxide in ethanol [3095].
- In the steam distillates of resins from Xanthorrhoea preissi, Xanthorrhoea reflexa, Xanthorrhoea tateana F. Muell. and Xanthorrhoea arborea R. Br. [2584,2761,2862,2876].
m.p. $87-88^{\circ}$ [2432], 86° [3078], $85-88^{\circ}$ [3086], 85° [2921], 84-85 ${ }^{\circ}$ [2746,2837],
 $3085,3096], 82^{\circ}$ [2214,2242,2860,2862,3082], $81^{\circ} 5$ [3042], 81° [3084], $80^{\circ} 5-81^{\circ}$ [3087], $80-85^{\circ}$ [3095], $80-81^{\circ}$ [2139,3077], 80° [3090], 79° [2584,2761], $78^{\circ} 5-79^{\circ} 5$ [2830], 78-80ํ [3089], 78-79ํ [2422,2861];
b.p. ${ }_{18} 175-185^{\circ}$ [2761], b.p. ${ }_{20} 185^{\circ}$ [2584];
${ }^{1} \mathrm{H}$ NMR [2205,2830,3087], ${ }^{13} \mathrm{C}$ NMR [1821], IR [2205,2830,3078,3081,3087]; UV [2214,2920,3087], MS [2830,3087].

1-(3-Hydroxy-2,4-dimethoxyphenyl)ethanone

[23133-83-7]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation from 2,6-dimethoxyphenol or its acetate by reaction of refluxing acetic anhydride in the presence of few drops of concentrated sulfuric acid, followed by saponification of 3-acetoxy-2,4-dimethoxyacetophenone formed with 2 N sodium hydroxide (good yield) [3058].
- Preparation from 3-acetoxy-2,4-dimethoxyacetophenone by hydrolysis with 2 N hydrochloric acid in refluxing methanol (78\%) [2403].
m.p. $\quad 79-80^{\circ}$ [2403,3058]; ${ }^{1} H$ NMR [2403], IR [2403].

1-(3-Hydroxy-2,6-dimethoxyphenyl)ethanone

[56358-74-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

Isolation from natural sources

- Identification in liquid wastes from eucalyptus wood and kraft lignin charring [2868].
From Microorganisms
- Ketone identified from metabolism of 2,6-dimethoxyacetophenone in the rat [2374].
${ }^{1} H$ NMR [2374], MS [2374].

1-(3-Hydroxy-4,5-dimethoxyphenyl)ethanone

[114012-82-7]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Isolation from natural sources

- Identified by flame-ionization gas-chromatography and gas chromatography-mass spectrometry into liquid wastes from eucalyptus wood and kraft lignin charring [2868].

1-(4-Hydroxy-2,5-dimethoxyphenyl)ethanone

[13909-71-2]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by Fries rearrangement of 2,5-dimethoxyphenyl acetate with aluminium chloride [2410].
- Preparation by nuclear oxidation of 2,5-dimethoxyacetophenone with peracetic acid [2410].
m.p. $117-118^{\circ}$ [2410].

1-(4-Hydroxy-2,6-dimethoxyphenyl)ethanone

[13246-14-5]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
Syntheses

- Preparation by reaction of acetic anhydride on phloroglucinol dimethyl ether with boron trifluoride,
- in ethyl ether at $15^{\circ}(49 \%)$ [3042];
- in acetic acid at $0^{\circ}(24 \%)$ [3082].
- Preparation by reaction of phloroglucinol dimethyl ether with boron trifluorideacetic acid complex at $100^{\circ}(40 \%)$ [2242].
- Preparation by reaction of acetonitrile on phloroglucinol dimethyl ether (Hoesch reaction) [2837,3077], (32\%) [3077].
- Preparation by reaction of aluminium chloride on phloroacetophenone trimethyl ether in refluxing chlorobenzene [2837].
- Also obtained from 4-(benzyloxy)-2,6-dimethoxyacetophenone by heating with concentrated hydrochloric acid in acetic acid [2838].
- Also obtained by saponification of 4-(benzoyloxy)-2,6-dimethoxyacetophenone with 8% methanolic potassium hydroxide at r.t. [3077].

Isolation from natural sources

- From Pancratium maritimum (Amaryllidaceae) [3041]. m.p. 186° [2837], $185^{\circ} 5$ [3077], 185° [2242], 184-185ํ [3082], 183- 184° [2838], $76-78^{\circ}$ [3041]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [3041], ${ }^{13} \mathrm{C}$ NMR [3041], IR [3041], EIMS [3041].

1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (Acetosyringone)

[2478-38-8]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
Syntheses

- Preparation by adding a solution of 4-hydroxy-3-iodo-5-methoxyacetophenone and cupric chloride in DMF to a solution of sodium methoxide in methanol and heating between 105° and $120^{\circ}(86 \%)$ [2527].
- Preparation by reaction of sodium methoxide with 5-iodo-acetovanillone in methanol in the presence of copper catalyst (53\%) [2570].
- Also obtained by debenzylation of 4-(benzyloxy)-3,5-dimethoxyacetophenone by means of a cold saturated solution of hydrogen bromide in acetic acid (52\%) [3097].
- Also obtained by Fries rearrangement of 2,6-dimethoxyphenyl acetate with aluminium chloride in nitrobenzene at r.t. (8-14\%) [2807,3098,3099].
- Also refer to: [1828].

Isolation from natural sources

- From hairy roots cultures of Nicotiana tabacum and of Atropa belladonna [3100].
- In cell suspension cultures of Hyoscyamus albus [3101].
- From birch lignin sulfonic acid by treatment with hot aqueous "alkali" (0.8%) [2807].
- Identified by flame-ionization gas chromatography and gas chromatographymass spectrometry into liquid wastes from eucalyptus wood and kraft lignin charring [2868].
m.p. 125° [2527], 123-124 ${ }^{\circ}$ [2570], 122- 123° [3098], 121- 122° [3099], $120^{\circ} 5-121^{\circ} 5$ [2807], $120-125^{\circ}$ [2572], 117° [3097];
${ }^{1} H$ NMR [3100], UV[2269,3100], MS [3100].

1-(5-Hydroxy-2,4-dimethoxyphenyl)ethanone

[91061-75-5]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by Fries rearrangement of 2,4-dimethoxyphenyl acetate,
- with aluminium chloride in nitrobenzene at 25° [2410,3102], (50\%) [3102];
- with 36.2% boron trifluoride in acetic acid, first at r.t. overnight, then at 70° for 2 h (81\%) [3103].
- Preparation by saponification of 5-acetyl-2,4-dimethoxyphenyl acetate with sodium hydroxide in dilute ethanol at $40^{\circ}(90 \%)$ [2849].
m.p. $155-156^{\circ}$ [3102,3103], 154° [2849].

1-(6-Hydroxy-2,3-dimethoxyphenyl)ethanone

[22248-13-1]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
OH	Syntheses
	- Preparation by reaction of dimethyl sulfate on 3,6-di-hydroxy-2-methoxyacetophenone with potassium carbonate in boiling benzene (67\%) [2781]. - Also refer to: [3104] (compound III).
b.p. ${ }_{22} 162-163^{\circ}$	81].

1-[3-Hydroxy-5-(2-hydroxyethoxy)phenyl]ethanone

[63437-86-5] \quad\begin{tabular}{l}
Synthesis

- Obtained by reaction of 2-chloroethanol

with 3,5-di-hydroxyacetophenone in refluxing

aqueous sodium hydroxide for 5 h under

nitrogen atmosphere (29\%) [3105].
\end{tabular}

1-[4-Hydroxy-3-(2-hydroxyethoxy)phenyl]ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad \text { mol.wt. } 196.20
$$

Synthesis

- Preparation by hydrogenolysis of 4-(benzyloxy)-3-(2-hydroxyethoxy)acetophenone in ethanol under hydrogen atmosphere in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ for 45 min (98\%) [3105].
m.p. $108-109^{\circ}$ [3105].

1-[2-Hydroxy-4-(methoxymethoxy)phenyl]ethanone

[65490-08-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by reaction of chloromethyl methyl ether,
- with resacetophenone in the presence of potassium carbonate in acetone at r.t. for 2.5 h (65\%) [3106], at 20° for $20 \mathrm{~h}(70-75 \%)$ [3107] or at reflux for 3-6 h [3108];
- with resacetophenone disodium salt in a methanol/toluene mixture (27\%) [3109].
N.B.: Preparation by selective methoxymethylation of resacetophenone (no accuracy) (91\%) [3110].
- Also refer to: [3111].
oily residue [3106], colourless oil [3110]; TLC [3107];
b.p. ${ }_{0.15} 110^{\circ}$ [3107], b.p. $._{0.2} 118-122^{\circ}$ [3109], b.p. 138° [3106].

CAUTION: Traces of acids or water in the residue may result in a violent decomposition of the material during distillation [3106]; m.p. 36° [3109];
${ }^{1} \mathrm{H}$ NMR [3106,3107,3110], ${ }^{13} \mathrm{C}$ NMR [3107], IR [3106,3107], MS [3107,3110].

1-[2-Hydroxy-6-(methoxymethoxy)phenyl]ethanone

[78646-28-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

Syntheses

- Obtained by treatment of 2,6-dihydroxyacetophenone with methoxymethyl chloride in the presence of potassium carbonate in refluxing acetone for 2 h (85%) [3112].
- Also obtained by adding methoxymethyl chloride to a solution of 2,6-dihydroxyacetophenone monosodium salt prepared by reaction of sodium hydride with the keto phenol in DMF at r.t. (60\%) [3113].
light yellow oil [3112]; ${ }^{1} \mathrm{H}$ NMR [3112], IR [3112], EIMS [3112].

1-(2,4,6-Trihydroxy-3,5-dimethylphenyl)ethanone

[13383-63-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by reaction of acetonitrile on 1,3-dime-thyl-phloroglucinol (Hoesch reaction) [3114,3115], (66\%) [3114].
- Preparation by Friedel-Crafts acylation of 1,3-dime-thyl-phloroglucinol with acetic acid in the presence of boron trifluoride (63\%) [3116].
- Also obtained by reaction of methyl iodide with phloroacetophenone in the presence of potassium hydroxide in 80% aqueous methanol (12\%) [3117], of potassium hydroxide in anhydrous methanol (5\%) [2437,2876] or sodium methoxide in methanol [2878].
- Also obtained by demethylation of 2-hydroxy-4,6-dimethoxy-3,5-dimethylacetophenone [3118].
- Also refer to: [3119-3121].
$\begin{array}{lll}\text { m.p. } & 226-229^{\circ} \text { [3116], 221-222 } \\ & 218^{\circ} \text { [3115], 220- } 222^{\circ}{ }^{\circ} \text { [2876], } 219^{\circ} \text { [3117], UV [2878, }\end{array}$ 218° [3114]; UV [2878,3117], MS [3114].

1-[4-Hydroxy-3-[(methylsulfonyl)methyl]phenyl]ethanone

[49640-12-2] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 228.27
 Syntheses

- Obtained by reaction of 3^{\prime}-chloromethyl-4'-hydroxyacetophenone with magnesium methylsulfinate in refluxing aqueous methanol for 18 h (52\%) [2544].
- Also refer to: [3122-3125].
m.p. $207-209^{\circ}$ [2544].

1-(2,3-Dihydroxy-4,5-dimethoxyphenyl)ethanone

1-(2,3-Dihydroxy-4,6-dimethoxyphenyl)ethanone

- with 6 N hydrochloric acid in refluxing ethanol (92\%) [3127];
- with 10% potassium hydroxide at r.t. [3128,3129], (90\%) [3128].
- Preparation by hydrolysis of 2-hydroxy-3,4,6-trimethoxyacetophenone with 30% hydrobromic acid in acetic acid at r.t. (42\%) [2814].
- Preparation by catalytic hydrogenolysis of 2,3-bis(benzyloxy)-4,6-dimethoxyacetophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate (89\%) [3130].
- Also obtained by reaction of hydrobromic acid with 3-ethoxy-2-hydroxy-4,6-dimethoxy-acetophenone in acetic acid at r.t. (major compound) [3131].
- Also obtained (by-product) by reaction of acetyl chloride with 1,2,3,5-tetramethoxybenzene in ethyl ether (3\%) [3131].
- Also refer to: [3132,3133].
m.p. $165^{\circ} 2-166^{\circ} 5$ [2814], $165-167^{\circ} 5$ [3131], 164- 165° [3128], $160-165^{\circ}$ [3127], 160-162 ${ }^{\circ}$ [3130];
${ }^{1} \mathrm{H}$ NMR [3131], IR [3130,3131], MS [3131].

1-(2,4-Dihydroxy-3,5-dimethoxyphenyl)ethanone

[198203-68-8]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20	
Synthesis	

- Obtained (poor yields) by treatment of 4-hydroxy-3,5-di-methoxyacetophenone or 3,4,5-trimethoxyacetophenone with alkaline hydrogen peroxide (pH 11) irradiating with UV light (254 nm) at 40° for $2 \mathrm{~h}(<1 \%)$ [3134].
N.B.: The silylated product was analyzed by gas chromatography-mass spectrometry (GC-MS).

1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20
Syntheses

- Preparation by reaction of acetonitrile, (Hoesch reaction),
- on 2,6-bis(benzyloxy)-1,4-dimethoxybenzene (47\%) [3135], (71\%) [3136];
- on 2,5-dimethoxyresorcinol [2884,3137,3138].
m.p. 129° [2884,3138], $128-129^{\circ}$ [3136], 125- 130° [3135].

1-(2,5-Dihydroxy-3,4-dimethoxyphenyl)ethanone

[69616-56-4]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20
OH	Synthesis
	- Obtained from 2-hydroxy-3,4-dimethoxyacetophenone by persulfate oxidation (Elbs reaction) (30\%) [2820], (10\%) [3057].
m.p. $119-121^{\circ}$ [3057],	119° [2820].

1-(2,5-Dihydroxy-3,6-dimethoxyphenyl)ethanone

[6212-45-9]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20
Syntheses

- Preparation by metallation of 2,5-dimethoxyhydro-quinone-bis-[tetrahydropyranyl-(2)-ether], followed by treatment of the intermediate aryllithium compound with acetic anhydride in tetrahydrofuran at r.t. (82\%) [2564].
- Preparation by reaction of acetic acid on 2,5-dimethoxy-hydroquinone diacetate with boron trifluoride etherate at 75° [2998,3139], (55\%) [3139].
- Preparation by catalytic hydrogenolysis of 2,5-bis(benzyloxy)-3,6-dimethoxyacetophenone in the presence of palladium oxide in ethanol (96\%) [2450].
m.p. 170° [3139], 94° [2450,2564].

1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$ Syntheses

- Preparation by reaction of dimethyl sulfate on 2,3,4,6-tetrahydroxyacetophenone with sodium hydroxide in boiling ethanol (94\%) [2443].
- Also obtained by reaction of acetyl chloride on 5-hydroxy-1,2,3-trimethoxybenzene (antiarol) with aluminium chloride in nitrobenzene [3140].
- Also obtained by reaction of acetyl chloride on 1,2,3,5-tetramethoxybenzene with aluminium chloride in nitrobenzene at r.t. [3140-3142].
- Preparation by cleavage of 2,6-dihydroxy-3,4-dimethoxyacetophenone mono-2,4-dinitrophenyl ether with piperidine by heating in a steam bath (76\%) [3127].
- Also obtained by cleavage of 2,3,4-trimethoxy-6-isopropoxyacetophenone or 6-hydroxy-2,3,4-trimethoxyacetophenone with hydrobromic acid in acetic acid (23\%) [3127].
m.p. $\quad 166-168^{\circ}[2443], 162-163^{\circ}[3141,3142], 160-161^{\circ}[3140], 135^{\circ} 6-135^{\circ} 9$ [3127].

1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)ethanone

[6962-57-8]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$
Syntheses
mol.wt. 212.20
 Syntheses

- Preparation by Fries rearrangement of 1,4-diacetoxy-2,6-di-methoxybenzene with aluminium chloride in nitrobenzene at r.t. [2446,3127,3143,3144], (57\%) [3144], (47-56\%) [3143] and (34\%) [2446].
- Preparation by reaction of 2,6-dimethoxyhydroquinone with boron trifluorideacetic acid complex at $28-30^{\circ}$ (60\%) [2242].
- Preparation from 2-hydroxy-4,6-dimethoxyacetophenone by persulfate oxidation (Elbs reaction) (36\%) [3080], (7\%) [2830].
- Also obtained (by-product) by reaction of acetyl chloride on 1,2,3,5-tetramethoxybenzene with aluminium chloride in carbon disulfide [3145].
- Preparation by hydrolysis of 3-acetoxy-6-hydroxy-2,4-dimethoxyacetophenone with refluxing 5\% methanolic hydrochloric acid (major product) [3146] or refluxing 10% ethanolic hydrochloric acid [3127].
- Also refer to: [2777,3147].
m.p. 164-165 [3080], $162-163^{\circ}$ [2446,3144-3146], 162-162 5 [3127], 162° [2242,3143], 161-162 ${ }^{\circ}$ [2830];
${ }^{1} \mathrm{H}$ NMR [2830,3146], ${ }^{13} \mathrm{C}$ NMR [2328], IR [2830,3146], UV [3146], MS [2830,3146].

1-(4,6-Dihydroxy-2,3-dimethoxyphenyl)ethanone

[103777-42-0]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20
OH	Synthesis
	- Preparation from 4-(benzyloxy)-6-hydroxy-2,3-di methoxyacetophenone by hydrogenolysis with hydro gen in the presence of Pd / C [3148].

1-(2-Ethoxy-3,4,6-trihydroxyphenyl)ethanone

[63635-41-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 212.20
Synthesis

- Preparation by hydrogenolysis of 2-ethoxy-3,4,6-tris(benzyloxy)acetophenone with $5 \% \mathrm{Pd} / \mathrm{C}$ in ethanol at r.t. (96\%) [2442,3149].
m.p. $\quad 169^{\circ}[2442,3149]$;
${ }^{1} H$ NMR [2442,3149], IR [2442,3149].

1-(2,4,5-Trihydroxy-3,6-dimethoxyphenyl)ethanone

[15994-32-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 228.20

Syntheses

- Obtained by hydrogenolysis of 4-benzyloxy-2,5-dihydroxy-3,6-dimethoxyacetophenone with hydrogen in the presence of $30 \% \mathrm{Pd} / \mathrm{C}$ [3150].
- Also obtained by persulfate oxidation of 2,4-dihy-droxy-3,6-dimethoxyacetophenone (Elbs reaction) [3151].
- Also refer to: [3152,3153].
m.p. $142-144^{\circ}$ [3152], $140-142^{\circ}$ [3154], $137^{\circ} 5-138^{\circ} 5$ [3150], $131-134^{\circ}$ [3155];
${ }^{1} \mathrm{H}$ NMR [3151], IR [3151,3154].

1-(3-Amino-5-ethyl-2-hydroxyphenyl)ethanone

m.p. $50-51^{\circ}$ [1898], $48-51^{\circ}$ [1897].

1-[4-(Dimethylamino)-2-hydroxyphenyl]ethanone

[107070-69-9]
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22
Syntheses

- Preparation by reaction of dimethyl sulfate with 4-amino-2-hydroxyacetophenone in the presence of sodium carbonate in boiling water for 40 min (49\%) [3156].
- Also refer to: [3157,3158].
m.p. $\quad 118^{\circ}$ [3156]; ${ }^{1} \mathrm{H}$ NMR [3156], ${ }^{13} \mathrm{C}$ NMR [3159], IR [3156].

1-[5-(Dimethylamino)-2-hydroxyphenyl]ethanone
[49619-68-3] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22

m.p. $\quad 76^{\circ} 5-77^{\circ} 5$ [2899]; ${ }^{1} \mathrm{H}$ NMR [2899], IR [2899].

1-(3-Amino-2-hydroxy-4,6-dimethoxyphenyl)ethanone
[81325-91-9]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 211.22
Synthesis

- Preparation by adding a hot solution of stannous chloride in hydrochloric acid to a solution of 2-acetoxy-4,6-dimethoxy-3-nitroacetophenone in ethanol containing zinc dust and heating the mixture in a steam bath (48\%) [2139].
m.p. $118-119^{\circ}$ [2139]; ${ }^{1} \mathrm{H}$ NMR [2139], IR [2139].

1-(3-Amino-2-hydroxy-4,6-dimethoxyphenyl)ethanone (Hydrochloride)

[81325-92-0]
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}, \mathrm{HCl}$
mol.wt. 247.68

Synthesis

- Preparation by treatment of a solution of 2-hydroxy-4,6-di-methoxy-3-nitroacetophenone in ethanol with zinc dust and a solution of stannous chloride in hydrochloric acid, and heating in a steam bath (50\%) [2139].
m.p. 171° [2139].

1-(3-Amino-6-hydroxy-2,4-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 211.22
Synthesis

- Preparation by adding a solution of stannous chloride in hydrochloric acid to a hot solution of 6-hydroxy-2,4-di-methoxy-3-phenylazoacetophenone in ethanol containing zinc dust, and heating the mixture in a steam bath (73\%) [2139].
m.p. 75° [2139]; ${ }^{1} \mathrm{H}$ NMR [2139].

1-[4-(Acryloyloxy)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 206.20

Synthesis

- Preparation by reaction of acryloyl chloride with resacetophenone in the presence of triethylamine in ethyl ether (25\%) [2295].
m.p. $55-57^{\circ}$ [2295]; ${ }^{1} \mathrm{H}$ NMR [2295], IR [2295].

1-[2,4-Dihydroxy-6-(2-propynyloxy)phenyl]ethanone

[53771-24-7]

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4}$
mol.wt. 206.20
Synthesis

- Obtained (poor yield) by reaction of 2-propynyl bromide with phloroacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (5\%) [3160].
m.p. $142-143^{\circ}$ [3160]; UV [3160].

1-[3-Chloro-4-hydroxy-5-(2-propenyl)phenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 210.66
Synthesis

- Preparation by Claisen rearrangement of 4-(allyloxy)-3-chloroacetophenone [3161,3162].

1-[5-Chloro-2-hydroxy-3-(2-propenyl)phenyl]ethanone

Colourless oil [3163]; b.p. ${ }_{0.1} 140^{\circ}$ [3163];
${ }^{1} \mathrm{H}$ NMR [3163], IR [3163].

1-[2-Hydroxy-3-iodo-4-(2-propenyloxy)phenyl]ethanone

[72511-76-3]

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{IO}_{3}$
Synthesis

- Obtained by partial allylation of 2,4-dihy-droxy-3-iodo-acetophenone with allyl bromide in the presence of potassium carbonate in refluxing acetone for $4-5 \mathrm{~h}$ (52\%) [3164].
m.p. $\quad 91-92^{\circ}$ [3164]; ${ }^{1} \mathrm{H}$ NMR [3164].

1-[2-Hydroxy-3-(1-propenyl)phenyl]ethanone

[67127-96-2]

b.p. ${ }_{18} 153-155^{\circ}$ [1897,3165].
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 176.22
Synthesis

- Preparation by isomerization of 3-allyl-2-hy-droxy-acetophenone using bis(benzonitrile)palladous chloride in refluxing toluene (90%) [1897,3165].

1-[2-Hydroxy-3-(2-propenyl)phenyl]ethanone

[58621-39-9]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 176.22
Syntheses

- Preparation by thermal Claisen rearrangement of 2-(allyl- oxy)acetophenone (m.p. $19-21^{\circ}$) [3166],
- in refluxing N, N-diethylaniline at 220° for 4 h [3163];
- in boiling dichlorobenzene (30%) [3167];
- without solvent at $260-270^{\circ}$ (85%) [3168];
- without solvent at reflux under nitrogen atmosphere for 5 h [3169], (66\%) [3166].
- Also obtained by photolysis of o-allylphenyl acetate in cyclohexane (major product) (photo-Fries rearrangement) [3170].
- Also refer to: [3171-3173].
light yellow liquid [3166], colourless oil [3163];
b.p. . $_{0.3} 110^{\circ}$ [3166], b.p. $._{20} 135-138^{\circ}$ [3168], b.p. ${ }_{0.1} 135-138^{\circ}$ [3163], b.p. 258° [3172]; ${ }^{1} \mathrm{H}$ NMR [3163,3166,3167], ${ }^{13} \mathrm{C}$ NMR [3166], IR [3163,3166,3167], MS [3166].

1-[3-Hydroxy-2-(2-propenyl)phenyl]ethanone

- in DMF at $220^{\circ}(53 \%)$ [2357];
- without solvent at 220° (43\%) [2357].
oil [2357]; ${ }^{1} \mathrm{H}$ NMR [2357,3167], IR [2357,3167], MS [2357].

1-[3-Hydroxy-4-(1E)-1-propenylphenyl]ethanone

[430474-15-0]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 176.22 Synthesis

- Obtained by isomerization of 1-[3-hydroxy-4-(2-propenyl)phenyl]ethanone in the presence of polymer-supported iridium catalyst in THF at r.t.
(92\% trans) [3174,3175].
${ }^{1} \mathrm{H}$ NMR [3175].

1-[3-Hydroxy-4-(2-propenyl)phenyl]ethanone

[58621-38-8] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 176.22

Syntheses

- Preparation by thermal Claisen rearrangement of 3-(allyloxy)acetophenone,
- in boiling dichlorobenzene (50\%) [3167];
- in DMF at 220° (27\%) [2357];
- without solvent at 220° (22\%) [2357].
- Also obtained by UV light irradiation of 3-(allyloxy)acetophenone in benzene or cyclohexane under nitrogen (8\%) [3167].
m.p. $75-76^{\circ}$ [3167], 62-64ํ [2357]; ${ }^{1} \mathrm{H}$ NMR [2357,3167], IR [2357,3167], MS [2357].

1-[4-Hydroxy-3-(1-propenyl)phenyl]ethanone

1-[4-Hydroxy-3-(2-propenyl)phenyl]ethanone
[1132-05-4] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 176.22

- without solvent at $200-210^{\circ}(78 \%)$ [3180], at $200-230^{\circ}(96 \%)$ [3181] or at 260-270́ (64\%) [3168].
- Also obtained by UV light irradiation of 4-(allyloxy)acetophenone in benzene or cyclohexane under nitrogen (13\%) [3167].

```
m.p. 115 9-116`7 [3179], 115-116 [3180], 115 [3177];
b.p.4}\mp@subsup{|}{4}{164-165
'1H NMR [3167], IR [3167], UV [3179], MS [3181].
```


1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]ethanone

[38987-00-7]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 192.21
Syntheses

- Preparation by thermal Claisen rearrangement of 4-(allyloxy)-2-hydroxyacetophenone without solvent at $200-210^{\circ}$ (85%) [3182].
- Also refer to: [3182-3184].
m.p. 133° [3182]; UV [3183].

1-[2,4-Dihydroxy-5-(2-propenyl)phenyl]ethanone

[38987-01-8] | Syntheses |
| :--- |
| - Preparation by demethylation of 5-allyl-4-hydroxy- |
| 2-methoxyacetophenone with aluminium chloride in |
| ethyl ether or acetonitrile [3183]. |

1-[2,5-Dihydroxy-4-(2-propenyl)phenyl]ethanone

[174901-51-0]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 192.21
Synthesis

- Refer to: [3185].

1-[2,6-Dihydroxy-3-(2-propenyl)phenyl]ethanone
[17488-71-0]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21
Syntheses

- Obtained from 8-acetyl-6-allyl-7-hydroxy-4-methyl-coumarin by alkaline degradation with 12% aqueous sodium hydroxide solution by heating in a water bath (80%) [3186].
- Also refer to: [2590,2997].
m.p. $\quad 63-65^{\circ}[3186] ;{ }^{13} \mathrm{C}$ NMR [2590].

1-[3,6-Dihydroxy-2-(2-propenyl)phenyl]ethanone

[40815-79-0] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21

Syntheses

- Preparation by thermal Claisen rearrangement of 5-(allyloxy)-2-hydroxyacetophenone without solvent at $200-220^{\circ}(36 \%)$ [3181] or at $220-230^{\circ}(74-75 \%)$ [2357,3187].
- Also obtained by thermal reaction of 2-acetyl-1,4-benzo-quinone,
- with allyltrimethylstannane in benzene (27\%) or acetonitrile (18\%) [2355];
- with allyltributylstannane in benzene (29\%) [2355].
m.p. $107^{\circ} 5$ [3187], $103-104^{\circ}$ [2357], 78-80ํ [2355];
${ }^{1} \mathrm{H}$ NMR [2355,2357,3181], IR [2355,2357], MS [2355,2357,3181].

1-[2-Hydroxy-4-(2-propenyloxy)phenyl]ethanone

[40815-74-5]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 192.21
Syntheses

- Preparation by reaction of allyl bromide on resacetophenone with potassium carbonate,
- in refluxing methyl ethyl ketone (90\%) [2671,2678,2679];
- in refluxing acetone (70\%) [3182].
oil [2671,2678,2679]; b.p., 156-157º [3182].

1-[2-Hydroxy-5-(2-propenyloxy)phenyl]ethanone

[40815-75-6] \begin{tabular}{l}
Synthesis

Preparation by reaction of allyl bromide on quinaceto-
phenone with potassium carbonate in refluxing acetone
(86\%) [2226,2357], (73\%) [3187] or in refluxing methyl
ethyl ketone (52\%) [3181].

\end{tabular}

m.p. $59-60^{\circ}$ [2226,2357,3187];
${ }^{1} \mathrm{H}$ NMR [2357,3181], IR [2357], MS [2357,3181].

1-[2-Hydroxy-6-(2-propenyloxy)phenyl]ethanone

[23226-84-8]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21

Synthesis

- Preparation by reaction of allyl bromide with 2,6-dihy-droxy-acetophenone in the presence of potassium carbonate in refluxing acetone (52\%) [2997].
m.p. $45^{\circ} 5-46^{\circ} 5$ [2997]; b.p. ${ }_{0.15} 128-132^{\circ}$ [2997].

1-[3-(Acetyloxy)-2-hydroxy-5-methylphenyl]ethanone

[77347-23-0]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
Synthesis

- Preparation by reaction of m-chloroperoxybenzoic acid with 2,6-diacetyl-4-methylphenol using chloroform and trifluoroacetic acid as solvent at r.t. (39\%) [3188].
m.p. $\quad 80-81^{\circ}$ [3188]; ${ }^{1} \mathrm{H}$ NMR [3188], MS [3188].

1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]ethanone

[144224-86-2]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
Syntheses

- Preparation by reaction of acetyl chloride with 2,4-di-hydroxy-3-methylacetophenone in the presence of triethylamine in methylene chloride at 0° for 2 h then at r.t. overnight (82%) [2891].
- Also refer to: [2675].
m.p. $\quad 71-73^{\circ}$ [2891]; ${ }^{1} \mathrm{H}$ NMR [2891], ${ }^{13} \mathrm{C}$ NMR [2891], IR [2891].

1-[4-(Acetyloxy)-2-hydroxy-6-methylphenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
Synthesis

- Preparation by treatment of a mixture of alkylated resorcinols with acetic anhydride and acetic acid in the presence of zinc chloride at $140-145^{\circ}$, followed by suitable separation [3189].

1-[5-(Acetyloxy)-2-hydroxy-4-methylphenyl]ethanone

[126570-32-9] \quad\begin{tabular}{l}
Syntheses

- Preparation by partial acetylation of 2,5-dihydroxy-

| 4-methylacetophenone [2024]. |
| :--- |

Also obtained (by-product) by Fries rearrangement
of 2-methylhydroquinone diacetate with aluminium
chloride [2024].

\end{tabular}

m.p. $\quad 109^{\circ}$ [2024].

1-[2,3-Dihydroxy-4-(2-propenyloxy)phenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Synthesis

- Obtained by reaction of allyl bromide on gallacetophenone with sodium bicarbonate in refluxing acetone-ethanol mixture (16\%) [2817].
m.p. 84° [2817].

1-[2,4-Dihydroxy-6-(2-propenyloxy)phenyl]ethanone

[76609-35-3]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
Synthesis

- Preparation by tosylation of phloroacetophenone with p-toluenesulfonyl chloride (2.2 mol) in acetone in the presence of potassium carbonate, followed by allylation with allyl bromide (1.2 mol) and final detosylation with methanolic potassium hydroxide [3190].
m.p. $144-145^{\circ}$ [3190].

1-[2,5-Dihydroxy-4-(2-propenyloxy)phenyl]ethanone

[92831-82-8]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 208.21

Synthesis

- Preparation from 4-(allyloxy)-2-hydroxyacetophenone by persulfate oxidation (Elbs reaction) (24\%) [3191].
m.p. $\quad 79-80^{\circ}$ [3191]; ${ }^{1} \mathrm{H}$ NMR [3191].

1-[2,6-Dihydroxy-4-(2-propenyloxy)phenyl]ethanone

[35028-03-6]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
Synthesis

- Preparation from 2,4-diacetyl-5-(allyloxy) resorcinol by selective deacetylation by refluxing in 1 N sodium hydroxide for 1 h [2856].
m.p. $145-146^{\circ}$ [2856]; ${ }^{1} \mathrm{H}$ NMR [2856].

1-[3,6-Dihydroxy-2-(2-propenyloxy)phenyl]ethanone

[33539-24-1] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Syntheses

- Easy preparation by reduction of 2-acetyl-3-(allyloxy)-1,4-benzoquinone using conventional methods [2869].
- Obtained (low yield) by reaction of 2-acetyl-1,4-benzo-quinone with an excess of allyl alcohol at r.t., with exclusion of light [2869].
m.p. $\quad 68-69^{\circ}$ [2869]; ${ }^{1} \mathrm{H}$ NMR [2869], IR [2869].

1-[2-Hydroxy-4-(oxiranylmethoxy)phenyl]ethanone

[61270-24-4]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ Synthesis

- Preparation by reaction of epichlorohydrin with resaceto-phenone in the presence of potassium hydroxide, in refluxing ethanol [2270] or in a concentrated aqueous solution at 120° [3192].
m.p. 78° [3192], $72-73^{\circ}$ [2270].

1-[2-Hydroxy-5-(oxiranylmethoxy)phenyl]ethanone

1-[2-Hydroxy-6-(oxiranylmethoxy)phenyl]ethanone

$[16130-28-2]$	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$	mol.wt. 208.21
OH	Synthesis	

- Preparation by reaction of epichlorohydrin with 2,6-dihydroxyacetophenone in the presence of potassium hydroxide in refluxing ethanol [2270].
m.p. $61-63^{\circ}$ [2270].

1-[2,4,6-Trihydroxy-3-(2-propenyl)phenyl]ethanone

[118062-86-5] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Synthesis

- Refer to: [3195] (Japanese patent).

1-[2-(Acetyloxy)-4,6-dihydroxy-3-methylphenyl]ethanone
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21

Synthesis

- Obtained (poor yield) by hydrolysis of the ozonide formed from 4,6-dihydroxy-2,3,7-trimethylbenzofuran (m.p. 178° (d)) with dilute ozone (7\%) [3196] in ethyl acetate at $-30^{\circ}(13 \%)$ [3197].
m.p. $161-164^{\circ}$ [3197].

1-[2-(Acetyloxy)-5-hydroxy-4-methoxyphenyl]ethanone
[144152-30-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21

Synthesis

- Obtained by enzymatic deacylation of 2,5-diace-toxy-4-methoxyacetophenone with Candida cylindracea lipase in diisopropyl ether at $42-45^{\circ}$ (65%) [2388,2897].

Pale yellow viscous oil [2897]; ${ }^{1} \mathrm{H}$ NMR [2897].
1-[2-(Acetyloxy)-6-hydroxy-4-methoxyphenyl]ethanone
[63013-36-5]

1-[3-(Acetyloxy)-2-hydroxy-4-methoxyphenyl]ethanone

$$
\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad \text { mol.wt. } 224.21
$$

Syntheses

- Preparation by reaction of a mixture of acetic anhydride and acetic acid with 2,6-dimethoxyphenol in the presence of boron trifluoride at 30° (67\%) [2813].
- Preparation by reaction of acetyl chloride with 2,3-di-hydroxy-4-methoxyacetophenone in pyridine at $0^{\circ}(52 \%)$ [2403].
m.p. $123^{\circ} 4-125^{\circ}$ [2813], $122-123^{\circ}$ [2403]; ${ }^{1} \mathrm{H}$ NMR [2403], IR [2403].

1-[4-(Acetyloxy)-2-hydroxy-6-methoxyphenyl]ethanone

[29376-66-7]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
Synthesis

- Preparation by reaction of diazomethane with 4-acetoxy-2,6-dihydroxyacetophenone in tetrahydrofuran at r.t. (55\%) [2905].
m.p. $86-89^{\circ}$ [2905].

1-[5-(Acetyloxy)-2-hydroxy-4-methoxyphenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
Syntheses

- Preparation by Fries rearrangement of 2-methoxyhydroquinone diacetate with boron trifluoride in acetic acid (90\%) [2849].
- Obtained by reaction of methyl iodide with 5-ace-toxy-2,4-di-hydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (19\%) [2906].
m.p. $104^{\circ}[2849,2906]$.

1-(3-Bromo-4-ethyl-2-hydroxy-5-methoxyphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 273.13

Synthesis

- Obtained by reaction of bromine on 4-ethyl-2-hydroxy-5-methoxyacetophenone in ethyl ether containing a trace of aluminium chloride [3199].
m.p. 83° [3199].

1-(5-Bromo-2-hydroxy-4-propoxyphenyl)ethanone

[57442-27-0]

m.p. 118° [3200].
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3}$
mol.wt. 273.13
Synthesis

- Preparation by bromination of 2-hydroxy-4-propoxy-acetophenone (1 mol) in 80% acetic acid with bromine (1 mol) at r.t. $\left(25-30^{\circ}\right)(90 \%)$ [3200].

\section*{1-(3-Bromo-2-hydroxy-4,6-dimethoxy-5-methylphenyl)ethanone
 | [39701-15-0] | $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4} \quad$ mol.wt. 289.13 |
| :---: | :---: |
| OH | Syntheses |
| | - Preparation by adding an aqueous solution of bromine and potassium bromide to an ethanolic solution of 2-hydroxy-4,6-dimethoxy-5-methylacetophenone (46\%) [2873]. |
| m.p. $75-76^{\circ}$ [2873]; | 1H NMR [2873], IR [2873]. |

1-(3-Bromo-2-hydroxy-4,5,6-trimethoxyphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{5} \quad$ mol.wt. 305.13

Syntheses

- Preparation by methylation of 3-bromo-2,5-dihy-droxy-4,6-dimethoxyacetophenone [2917].
- Preparation by bromination of 6-hydroxy-2,3,4-trimethoxy-acetophenone [2917].
m.p. $89-90^{\circ}$ [2917].

1-[4-(Chloromethyl)-3-ethyl-2-hydroxyphenyl]ethanone

[97582-38-2]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}$
mol.wt. 212.68
Synthesis

- Preparation by reaction of ethyl chloroformate with 4-(dimethylaminomethyl)-3-ethyl-2hydroxyacetophenone [2550,2927], (71\%) [2550].
m.p. $55-57^{\circ}$ [2550]; b.p. ${ }_{0.5} 120-130^{\circ}$ [2927];
${ }^{1} \mathrm{H}$ NMR [2927], IR [2927].

1-(3-Chloro-2,6-dihydroxy-5-propylphenyl)ethanone

[102624-59-9] \quad\begin{tabular}{l}
Syntheses

- Preparation according to literature procedures [1892]

| (compound 1c). |
| :--- |

- Also refer to: [3201]
\end{tabular}

1-[2-(3-Chloropropoxy)-6-hydroxyphenyl]ethanone

 $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3}$
mol.wt. 228.68
Synthesis

- Preparation by reaction of 1-bromo-3-chloropropane with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h (quantitative yield) [3202].
m.p. $60^{\circ} 5-62^{\circ} 5$ [3202]; ${ }^{1} \mathrm{H}$ NMR [3202], MS [3202].

1-[4-(3-Chloropropoxy)-2-hydroxyphenyl]ethanone

[172739-45-6]

- Also refer to: [3206].
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 228.68
Syntheses
- Preparation by reaction of 1-bromo-3-chloropropane with resacetophenone [3203], in the presence of potassium carbonate in refluxing acetone for $5 \mathrm{~h}(84 \%)$ [3204] or for $16 \mathrm{~h}(69 \%)$ [3205]. m.p. $73-74^{\circ}$ [3205], 73° [3204]; ${ }^{1} \mathrm{H}$ NMR [3205], IR [3205].

1-[4-(3-Chloropropoxy)-3-hydroxyphenyl]ethanone

[151719-65-2]
 $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 228.68 Syntheses

- Obtained by demethylation of 1-[4-(3-chloro-propoxy)-3-methoxyphenyl]ethanone in concentrated sulfuric acid at 65° for $23 \mathrm{~h}(22 \%)$ [3207].
- Also refer to: [3208].
m.p. 101-103 ${ }^{\circ}$ [3207]; ${ }^{1} \mathrm{H}$ NMR [3207], MS [3207].

1-(3-Chloro-2-hydroxy-4,6-dimethoxy-5-methylphenyl)ethanone

[31913-64-1]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{4} \quad$ mol.wt. 244.67
Synthesis

- Preparation by reaction of sulfuryl chloride with 6-hydroxy-2,4-dimethoxy-3-methylacetophenone in chloroform at -3° (59\%) [3209].
Isolation from natural sources
- Also obtained by alkaline hydrolysis of sordidone dimethyl ether (8-chloro-5,7-dimethoxy-2,6-di-methylchromone) $[3209,3210]$ with refluxing 5% aqueous potassium hydroxide under nitrogen (83\%) [3209]. Sordidone is a metabolite isolated from the lichen Lecanora rupicola (L) Zahlbr. (syn. Lecanora sordida Th. Fr.) [3209].
m.p. 94° [3209,3210]; ${ }^{1} \mathrm{H}$ NMR [3209], IR [3209], MS [3209].

1-(3-Chloro-6-hydroxy-2,4-dimethoxy-5-methylphenyl)ethanone
[23053-45-4]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{4} \quad$ mol.wt. 244.67
Syntheses

- Preparation by adding of ethereal solution of diazomethane to a solution of 3-chloro-2,4,6-trihy-droxy-5-methyl-acetophenone in a mixture of acetone-ethyl ether at r.t. (76\%) [2566].
- Preparation by reaction of sulfuryl chloride with 2-hydroxy-4,6-dimethoxy-3methylacetophenone in chloroform at -3° (43\%) [3209].
- Also obtained by alkaline hydrolysis of isosordidone dimethyl ether (6-chloro-5,7-dimethoxy-2,8-dimethylchromone) with refluxing 5\% aqueous potassium hydroxide under nitrogen (55\%) [3209].
m.p. $108-109^{\circ}$ [2566], 108° [3209]; ${ }^{1} \mathrm{H}$ NMR [3209], IR [3209], MS [3209].

1-[3-(Chloromethyl)-2-hydroxy-4,6-dimethoxyphenyl]ethanone

[40356-82-9]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{4} \quad$ mol.wt. 244.67 Synthesis

- Preparation by chloromethylation of 2-hydroxy-4,6-di-methoxyacetophenone with chloromethyl methyl ether in acetic acid for 1 h at r.t. (57\%) [3211,3212].
m.p. $133-135^{\circ}$ (d) $[3211,3212]$.

1-(3-Fluoro-2,6-dihydroxy-5-propylphenyl)ethanone

[102624-71-5] \quad\begin{tabular}{l}
Syntheses

-| Preparation according to literature procedures [1892] |
| :--- |
| (compound 1f). |

- Also refer to: [3201]
\end{tabular}

1-(5-Fluoro-2,4-dihydroxy-3-propylphenyl)ethanone

[119257-53-3]
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}_{3}$
mol.wt. 212.22
Synthesis

- Refer to: [3213].

1-[2-Amino-4-hydroxy-3-(2-propenyl)phenyl]ethanone

[118684-00-7]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol wt. 191.23
Synthesis

- Preparation by thermal Claisen rearrangement of 4-(allyloxy)-2-aminoacetophenone without solvent at 200° (54\%) [2464].

Colourless oil [2464]; ${ }^{1} \mathrm{H}$ NMR [2464].

1-(2-Hydroxy-3-nitro-5-propylphenyl)ethanone

[70978-38-0]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4}$
mol.wt. 223.23
Synthesis

- Preparation by reaction of nitric acid $(\mathrm{d}=1.42)$ on 2-hydroxy-5-propylacetophenone in concentrated sulfuric acid between -15° and -5° [1897,1898], (42\%) [1897].
m.p. $67-69^{\circ}$ [1898], $67-68^{\circ}$ [1897].

1-(3-Hydroxy-4,5,6-trimethyl-2-nitrophenyl)ethanone

[13667-21-5] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ molwt. 223.23

Synthesis

- Preparation by adding a solution of nitric acid $(\mathrm{d}=1.38)$ in concentrated sulfuric acid to a solution of 5-hydroxy-2,3,4-trimethylacetophenone in acetic acid and carbon tetrachloride mixture between -5° and $0^{\circ}(80 \%)$ [3214,3215].
m.p. $99-100^{\circ}$ [3214,3215]; IR [3215].

1-(2-Hydroxy-5-nitro-4-propoxyphenyl)ethanone

[70668-14-3]

m.p. 104° [3216].
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 239.23
Synthesis

- Preparation by nitration of 2-hydroxy-4-propoxy-aceto-phenone in acetic acid with concentrated nitric acid at 0° [3216].

1-(2-Ethoxy-3,6-dihydroxy-4-methyl-5-nitrophenyl)ethanone

[43140-85-8] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol wt. 255.23

Synthesis

- Preparation by adding to a solution of 5-acetyl-2-methyl-3-nitro-1,4-benzoquinone in ethanol, a solution of pyrrolidine in ethanol. After stirring for 3 min , the solvent was eliminated, excess sulfurous acid was added, and the mixture was allowed to stand overnight (31\%) [2583].
yellow viscous oil [2583]; ${ }^{1} \mathrm{H}$ NMR [2583], IR [2583].

1-[3-Chloro-4-hydroxy-5-[(dimethylamino)methyl]phenyl]ethanone

 $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{2} \quad$ mol.wt. 227.69 Synthesis

- Preparation by aminomethylation of 3-chloro-4-hydroxy-acetophenone with dimethylamine and formalin in water at $35-40^{\circ}$ for $4 \mathrm{~h}(60 \%)$ [3217].
m.p. 112° [3217]; ${ }^{1} \mathrm{H}$ NMR [3217], IR [3217].

1-(2-Ethyl-6-hydroxy-4-methylphenyl)ethanone

or

1-(4-Ethyl-2-hydroxy-6-methylphenyl)ethanone

 $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23 Syntheses

- Mixture obtained by Fries rearrangement of 3-ethyl-5methylphenyl acetate with aluminium chloride,
- at $160-170^{\circ}$ for 3 h . The two isomeric ketones were separated via their semicarbazide derivatives. However, the respective structures of the isolated ketones have not been attributed. The melting point of one of them (I) or (II) is $93^{\circ}\left(6 \%\right.$ yield) and the melting point of the other (II) or (I) is $18-19^{\circ}(30 \%$ yield) [3218];
- without solvent at 130° (80%) [2004];
- in nitrobenzene at 25° (85\%) [2004].
N.B.: The 4-ethyl-2-hydroxy-6-methylacetophenone (II) is the most likely formula. However, one does not exclude to deal with a mixture ($\mathbf{I}+\mathbf{I I}$), especially if working without solvent at 130° [2004].
b.p. 170° [2004].

1-(3-Ethyl-2-hydroxy-5-methylphenyl)ethanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad \text { mol.wt. } 178.23
$$

Syntheses

- Obtained by reaction of acetyl chloride on 2-ethyl-4-methylanisole with aluminium chloride in boiling carbon disulfide [2956].
- Also obtained by Fries rearrangement of 2-ethyl-4-methyl-phenyl acetate [2596,2907], (40\%) [2907] or 2-ethyl-5-methylphenyl acetate (41\%) [2596] with aluminium chloride at $130-140^{\circ}$.
b.p. ${ }_{25} 144-146^{\circ}$ [2956], b.p. ${ }_{30} 153^{\circ}$ [2596], b.p. 260° [2907].

1-(3-Ethyl-2-hydroxy-6-methylphenyl)ethanone

[81591-16-4] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Obtained (by-product) by reaction of acetyl chloride on 2-ethyl-5-methylanisole with aluminium chloride in carbon disulfide [2233].
- Preparation by Fries rearrangement of 2-ethyl-5-methyl-phenyl acetate by heating with aluminium chloride (30\%) [2907].
b.p. ${ }_{12} 137-138^{\circ}$ [2233], b.p. 270° [2907].

1-(3-Ethyl-4-hydroxy-5-methylphenyl)ethanone

	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
	Syntheses
	- Preparation by Fries rearrangement at high temperature of 2-ethyl-6-methylphenyl acetate with aluminium chloride (50\%) [2233]. - Also obtained (poor yield) by Fries rearrangement of 4-dodecyl-2-ethyl-6-methylphenyl acetate with aluminium chloride (13\%) [2957].
p. $101-102^{\circ}$	95 ${ }^{\circ} 5-96^{\circ} 5$ [2233]; b.p. ${ }_{12} 180-200^{\circ}$ [2957].

1-(4-Ethyl-2-hydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 178.23
Syntheses

- Obtained by oxidation of 6-ethyl-2,3,5-trimethylbenzofuran with chromium trioxide in acetic acid at 50° for 30 min , followed by saponification of the resulting keto ester with potassium hydroxide in boiling aqueous ethanol for 2 h (65\%) [3219].
- Also obtained by Friedel-Crafts acylation of 2,5-diethyl-4-methylanisole (SM) (1 mol) with acetyl chloride (1.5 mol) in the presence of aluminium chloride (1.5 $\mathrm{mol})$ in boiling carbon disulfide. There is elimination of the ortho ethyl group in SM during the reaction [2956].
- Also obtained by dehydrogenation of 6-acetyl-3-ethyl-4-methyl-2-cyclohexen-1-one,
- with a 5\% palladium-barium sulfate catalyst at reflux [2612];
- with a refluxing solution of bromine (16%) in acetic acid [2612,3220].
- Also refer to: [3221].

Yellow oil [2956]; m.p. 52° [2612,3219-3221];
b.p. ${ }_{15} 144-147^{\circ}$ [2956], b.p. ${ }_{18} 154-155^{\circ}$ [3219]; IR [3219].

1-(4-Ethyl-5-hydroxy-2-methylphenyl)ethanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad \text { mol.wt. } 178.23
$$

 Syntheses

- Preparation by reaction of acetyl chloride on 2-ethyl-4-methylanisole with aluminium chloride in boiling carbon disulfide [2956].
- Preparation by reaction of aluminium chloride on 4-ethyl-5-methoxy-2-methylacetophenone [2956].
m.p. $120-121^{\circ}$ [2956].

1-(5-Ethyl-2-hydroxy-3-methylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
 Syntheses

- Preparation by Fries rearrangement of 4-ethyl-2-methyl-phenyl acetate with aluminium chloride (77\%) [223].
- Also obtained by heating the following phenyl esters with aluminium chloride at high temperature (in these reactions, there is elimination or migration of the bulky alkyl or arylalkyl group located in ortho position of the ester group),
- from 2-allyl-4-ethyl-6-methylphenyl acetate (74\%) [2957];
- from 2-benzyl-4-ethyl-6-methylphenyl acetate (54\%) [2957];
- from 2-ethyl-6-methylphenyl acetate (noticeable quantity) [2233];
- from 4-ethyl-2-methyl-6-propylphenyl acetate (12\%) [2957].
b.p. $._{20} 120-136^{\circ}$ [2957], b.p. $._{11} 129-131^{\circ}$ [2233], b.p. $._{12} 130-132^{\circ}$ [2233],
b.p. $130-142^{\circ}$ [2957],
b.p. $142-150^{\circ}$ [2957].

1-(5-Ethyl-2-hydroxy-4-methylphenyl)ethanone

[27513-07-1]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 178.23
Syntheses

- Preparation by Fries rearrangement of 4-ethyl-3-methyl-phenyl acetate with aluminium chloride at 120° (quantitative yield) [2151], (70\%) [2233], (52\%) [3222].
- Also obtained (by-product) by reaction of acetyl chloride on 2,4-diethyl-5methylanisole with aluminium chloride in carbon disulfide [2233].
- Preparation by chromic acid degradation of 5-ethyl-2,3,6-trimethylbenzofuran (60\%) [3222].
- Preparation by dehydrogenation of 6-acetyl-4-ethyl-3-methyl-2-cyclohexen-1one,
- with a 5% palladium-barium sulfate catalyst at reflux [2612,3004];
- with a refluxing solution of bromine (16%) in acetic acid [2612,3004].
m.p. $96^{\circ} 5-97^{\circ}$ [2612], $96-97^{\circ}$ [2151], $94-95^{\circ}$ [2233], 94° [3222], $92-94^{\circ}$ [3004]; b.p. ${ }_{15} 142-143^{\circ}$ [2151].

1-(5-Ethyl-4-hydroxy-2-methylphenyl)ethanone

mol.wt. 178.23
m.p. $117-118^{\circ}$ [2596].

1-[2-Hydroxy-3-(1-methylethyl)phenyl]ethanone
[104175-18-0]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23 Synthesis

- Preparation by reaction of acetyl chloride with a suspension of aluminium tri-o-isopropylphenoxide in benzene in the presence of aluminium chloride, first at r.t. for 1 h , then on a water bath for $2 \mathrm{~h}(50 \%)$ [2945].
b.p. $3108-110^{\circ}$ [2945].

1-[2-Hydroxy-4-(1-methylethyl)phenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Synthesis

- Obtained by Fries rearrangement of 2-isopropylphenyl acetate with aluminium chloride without solvent at 140°, accompanied by an alkyl group migration (22\%) [3223].
b.p. ${ }_{12} 129-130^{\circ}$ [3223].

1-[2-Hydroxy-5-(1-methylethyl)phenyl]ethanone

[1634-36-2] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Preparation by reaction of acetyl chloride on 4-isopropylanisole with aluminium chloride in carbon disulfide at r.t. (48\%) [3224].
- Also refer to: [2227].
b.p. ${ }_{10} 130-132^{\circ}$ [3224].

1-[3-Hydroxy-4-(1-methylethyl)phenyl]ethanone
[1634-62-4]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Synthesis

- Preparation by diazotization of 3-amino-4-iso-propyl-acetophenone, followed by hydrolysis of the diazonium salt obtained (50\%) [1951], (26\%) [3224].
m.p. $\quad 100-101^{\circ}[3224], 97-100^{\circ}[1951]$.

1-[4-Hydroxy-3-(1-methylethyl)phenyl]ethanone

[1632-59-3] $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
 Syntheses

- Preparation by reaction of acetyl chloride on 2-isopro-pyl-phenol with aluminium chloride in boiling carbon disulfide (44\%) [1951].
- Preparation by demethylation of 4-methoxy-3-isopropylacetophenone with boiling pyridinium chloride (30\%) [3224].
- Also obtained (poor yield) by Fries rearrangement of 2-isopropylphenyl acetate with aluminium chloride, without solvent at $104^{\circ}(14 \%)$ [3223] or in nitrobenzene at r.t. (13\%) [3224].
m.p. 143° [3224], 140° [3223], 139- 140° [1951].

1-(2-Hydroxy-3-propylphenyl)ethanone

[93915-84-5]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Preparation by hydrogenation of 3-allyl-2-hydroxyacetophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ and sodium hypophosphite,
- in dilute ethanol at 20° (92\%) [3225];
- in aqueous sodium hydroxide at $50^{\circ}(88 \%)$ [3225].
- Refer to: [3226,3227] (Japanese patents).
${ }^{1} \mathrm{H}$ NMR [3225].

1-(2-Hydroxy-4-propylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Synthesis

- Preparation by reaction of acetic acid with 3-propylphenol in the presence of zinc chloride for 5 h at 180° (reflux) (Nencki reaction) (40\%) [3228].
b.p. ${ }_{0.7} 93^{\circ}$ [3228], b.p. $._{16} 128-131^{\circ}$ [3228].

1-(2-Hydroxy-5-propylphenyl)ethanone

[1990-24-5] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
 Syntheses

- Preparation by Fries rearrangement of 4-propylphenyl acetate with aluminium chloride [2957,3229] without solvent at 140° [3229].
- Preparation by reaction of acetyl chloride with 4-propylanisole in the presence of aluminium chloride in methylene chloride, first at 0°, then at reflux under nitrogen (86%) [3230].
Yellow liquid [3230];
b.p. ${ }_{0.25} 80-85^{\circ}$ [3229], b.p. ${ }_{1.2} 98-105^{\circ}$ [3230], b.p. . $_{20} 145-147^{\circ}$ [2957];
${ }^{1} \mathrm{H}$ NMR [3230]; $\quad \mathrm{n}_{\mathrm{D}}^{20}=1.5365$ [3229].

1-(4-Hydroxy-2-propylphenyl)ethanone

[104174-27-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Obtained by boiling 3-propylphenol with acetic anhydride in the presence of a little sulfuric acid [3228].
- Also refer to: [3231].
b.p. ${ }_{18} 121-123^{\circ}$ [3228].

1-(4-Hydroxy-3-propylphenyl)ethanone

[61270-28-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Preparation by reaction of acetyl chloride on 2-propyl-phenol with aluminium chloride in nitrobenzene at r.t. [2309].
- Also obtained by catalytic hydrogenation of 3-allyl-4-hydroxyacetophenone in the presence of Pd / C in ethanol [2270,2671,2946], (90-100\%) [2270,2946] or Raney nickel in ethyl acetate (80\%) [3181].
m.p. $90-91^{\circ}$ [2270], $89-90^{\circ}$ [2946], 87° [2309]; b.p. 210° [2309];

MS [3181]; pK_{a} [3181].
1-(2-Hydroxy-3,4,5-trimethylphenyl)ethanone
[58972-39-7]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Preparation by Fries rearrangement of 2,3,4-trimethylphenyl acetate with aluminium chloride at $130-140^{\circ}$ (good yield) [2596].
- Preparation by reaction of acetyl chloride on 2,3,4-tri-methylphenol with aluminium chloride in carbon disulfide at r.t. (55\%) [3232].
- Also obtained from various aryl esters by heating with aluminium chloride between 130° and 150°, the reaction being accompanied by a migration of methyl groups,
- 2,3,5-trimethylphenyl acetate [2596,2965], (86\%) [2596];
- 2,4,5-trimethylphenyl acetate (major compound) [2596];
- 2,4,6-trimethylphenyl acetate [2535,2596], (major compound) [2596].
- Also obtained (poor yield) by heating a mixture of 2,4,6-trimethylphenyl acetate and 4-methyl-phenyl chloroacetate with aluminium chloride (10\%) [2535].
- Also obtained by isomerization of 2-hydroxy-3,4,6-trimethylacetophenone by heating with aluminium chloride [2965].
m.p. $43-44^{\circ}$ [2596], 42° [2535,2965]; b.p. ${ }_{11} 142-144^{\circ}$ [2596], b.p. $275-276^{\circ}$ [2596];
${ }^{1} \mathrm{H}$ NMR [3232], IR [3232].

1-(2-Hydroxy-3,4,6-trimethylphenyl)ethanone

[163429-79-6]

- Also refer to: [3234].

1-(2-Hydroxy-3,5,6-trimethylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Synthesis
b.p. ${ }_{11} 145-146^{\circ}$ [2596].

1-(3-Hydroxy-2,4,5-trimethylphenyl)ethanone

[99892-62-3]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Synthesis

- Preparation by rearrangement of $1 \alpha, 5 \alpha, 6 \alpha, 8 \alpha$-tetra-methyl-2 $\alpha-H, 4 \alpha-H$-3,9-dioxatricyclo [3.3.1.0 ${ }^{2,4}$] nonan-7-one by treatment with sodium ethoxide in ethanol (81\%) [2979].
m.p. 115° [2979]; ${ }^{1} \mathrm{H}$ NMR [2979], IR [2979], MS [2979].

1-(3-Hydroxy-2,4,6-trimethylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Synthesis
m.p. $81-82^{\circ}$ [2956].

- Preparation by reaction of acetyl chloride on 2,4,6-trimethylanisole (mesitol methyl ether) with aluminium chloride in boiling carbon disulfide (20\%) [2956].

1-(4-Hydroxy-2,3,5-trimethylphenyl)ethanone

m.p. $132-133^{\circ}$ [2612,3220]; IR [3220], UV [3220].

1-(4-Hydroxy-2,3,6-trimethylphenyl)ethanone

1-(5-Hydroxy-2,3,4-trimethylphenyl)ethanone

[13667-28-2]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Preparation from 2,3,4-trimethyl-5-nitroacetophenone via reduction with stannous chloride and following diazotization of the resulting 5-amino-2,3,4-trimethylacetophenone (68\%) [3236], (53\%) [3214].
- Also obtained by rearrangement of 3-acetyl-4,4,5-trimethyl-2,5-cyclohexadiene-1-one in 68% sulfuric acid at 40° (29\%) [2989].
m.p. 168° [3214,3236]; ${ }^{1} \mathrm{H}$ NMR [2989], IR [2989,3236], MS [2989].

1-(6-Hydroxy-2,3,4-trimethylphenyl)ethanone

[27192-99-0]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Preparation by Fries rearrangement of 3,4,5-trimethylphenyl acetate with aluminium chloride without solvent at 130° [2596,3237], (50\%) [3237].
- Preparation by reaction of acetyl chloride on 3,4,5-trimethylanisole with aluminium chloride in boiling carbon disulfide (45\%) [1811].
- Also obtained via pyrolysis of 1,3,7,8-tetramethyl-2-oxabicyclo[4.2.0]octa-3,7-dien-5-one (2,6-dimethyl-4-pyrone-Butyne-2-Adduct) in refluxing o-dichlorobenzene [3237].
m.p. $83^{\circ} 5-84^{\circ} 5$ [1811], 83-84$~[2596], 58-60^{\circ} ~[3237] ; ~ b . p .{ }_{13} 163-166^{\circ}$ [2596]; ${ }^{1} H$ NMR [3237], IR [3237], UV [3237], MS [3237].

1-[2,4-Dihydroxy-3-(1-methylethyl)phenyl]ethanone
[118604-45-8]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 194.23

Synthesis

- Preparation by total demethylation of 2,4-dime-thoxy-3-iso-propylacetophenone with 48\% hydrobromic acid in refluxing acetic acid [3238].

1-(2,3-Dihydroxy-5-propylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Synthesis

- Preparation by reaction of acetic acid with 2-meth-oxy-4-propylphenol in the presence of boron trifluoride at $150-155^{\circ}$ (81%) [3230].
oil [3230].

1-(2,4-Dihydroxy-3-propylphenyl)ethanone

[40786-69-4]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23 Syntheses

- Preparation by reaction of acetonitrile on 2-propylresorcinol (Hoesch reaction) (86\%) [3182].
- Preparation by catalytic hydrogenation of 3-allyl-2,4-di-hydroxyacetophenone using palladium chloride as catalyst in ethanol (quantitative yield) [3182] or Raney nickel in ethyl acetate [2671].
- Preparation by total demethylation of 2,4-dimethoxy-3-propylacetophenone with 48% hydrobromic acid in refluxing acetic acid for 19 h (73\%) [3238].
- Also refer to: [2326,2327,3184].
N.B.: Pr indicates the propyl group $-\mathrm{C}_{3} \mathrm{H}_{7}$ in Chem. Abstr., 92, 6368x (1980) and 98, 54239b (1983), an usual abbreviation. However, in the two references [2326,2327], Pr represented the prenyl group $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$. Therefore they concern the 2,4-dihydroxy-3-prenylacetophenone and not the above mentioned 2,4-dihydroxy-3-propylacetophenone.
m.p. $127-128^{\circ}$ [3182].

1-(2,4-Dihydroxy-5-propylphenyl)ethanone

[63411-87-0]	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ molwt. 194.23 Syntheses
	- Preparation by reaction of acetic acid on 4-propylresorcinol with zinc chloride (Nencki reaction) [1839,3018]. - Preparation by reaction of acetonitrile on 4-propylresorcinol (Hoesch reaction) (75\%) [2676]. - Preparation by Fries rearrangement of 4-propylresorcinol diacetate in the presence of 4-propylresorcinol with aluminium chloride in nitrobenzene at 50° (quantitative yield) [3020].

- Also refer to: [2326,2327].
N.B.: Pr indicates the propyl group $-\mathrm{C}_{3} \mathrm{H}_{7}$ in Chem. Abstr., 92, 6368x (1980) and 98, 54239b (1983), an usual abbreviation. However, in the two references [2326,2327], Pr represented the prenyl group $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$. Therefore they concern the 2,4-dihydroxy-5-prenylacetophenone and not the above mentioned 2,4-dihydroxy-5-propylacetophenone.
m.p. $110-111^{\circ}$ [1839], 108-109 ${ }^{\circ}$ [3020], 108° [2676].

1-(2,5-Dihydroxy-3-propylphenyl)ethanone

1-(2,5-Dihydroxy-4-propylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Synthesis

- Obtained (by-product) by reaction of acetyl chloride on 2-propylhydroquinone dimethyl ether with aluminium chloride in boiling carbon disulfide (3\%) [3240].
m.p. 85° [3240].

1-(2,6-Dihydroxy-3-propylphenyl)ethanone

[53542-79-3]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Preparation from 2,6-dihydroxyacetophenone according to the method [3241], (64\%) [3242].
- Also refer to: [1892,3201,3243-3246].
m.p. $84-85^{\circ}$ [3242].

1-(3,6-Dihydroxy-2-propylphenyl)ethanone
[106627-41-2] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
 Synthesis

- Preparation by catalytic hydrogenation of 2-allyl-3,6-dihydroxyacetophenone using palladised strontium carbonate catalyst [3240] or Raney nickel (60\%) [3181] in ethyl acetate.
m.p. 88° [3240] (monohydrate); MS [3181].

1-(2,5-Dihydroxy-3,4,6-trimethylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Obtained by oxidation of 2,4,5,7,8-pentamethyl-4H-1,3-benzodioxin-6-ol (PBD)* in aqueous media via 2-(1-hydroxyethyl)-3,5,6-trimethylbenzo-1,4-quinone, without or with aldehyde trapping (method A or B, respectively) [3247].

Oxidant	Method	Yield (\%)
$\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$	A (B)	$38(85)$
$\mathrm{K}_{2} \mathrm{CrO}_{2}$	A (B)	$38(86)$
AgNO_{3}	A (B)	$44(83)$
$\mathrm{H}_{2} \mathrm{O}_{2}$	A (B)	$44(82)$
KMnO_{4}	A (B)	$32(68)$
$\mathrm{NMMO}^{* *}$	$-(B)$	$-(81)$

N.B.:

- PBD* is a novel 3-oxa-tocopherol-type stabilizer which is obtained as a mixture of two diastereoisomers by condensation of trimethylhydroquinone with acetaldehyde.
- NMMO** $=$ N-methylmorpholine-N-oxide.
- Preparation by Fries rearrangement of 2,3,5-trimethylhydroquinone diacetate,
- with aluminium chloride at 220° (51\%) [3248];
- with boron trifluoride-acetic acid complex, followed by saponification of the 3-acetoxy-6-hydroxy-2,4,5-trimethylacetophenone obtained [2909,2994,3249], (71\%) [3249], (65\%) [2994].
- Also obtained by hydrolysis of 3-(acetyloxy)-6-hydroxy-2,4,5-trimethylacetophenone with 5\% methanolic hydrogen chloride (50\%) [3250].
- Also refer to: [3251].
m.p. 152° [3248], 111° [2994], 110-113$~[3247], ~ 107-109 ํ ~[3250], ~ 107-108 ํ ~ 5 ~$ [3249];
${ }^{1} H$ NMR [3247,3249,3250], ${ }^{13}$ C NMR [3247,3250], IR [3247,3249]
UV [3248,3249], MS [3249].

1-(2,6-Dihydroxy-3,4,5-trimethylphenyl)ethanone

[66842-24-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Obtained by Fries rearrangement of trimethylhydroquinone diacetate with aluminium chloride at 220°, via a secondary rearrangement of the normal product (I) (50%) [3249].
- Also obtained by reaction of aluminium chloride on 5-acetoxy-2-hydroxy-3,4,6trimethylacetophenone at 220° (53-55\%) [3249].
- Also obtained by rearrangement of 2,5-dihydroxy-3,4,6-trimethylacetophenone (I) with aluminium chloride at $220^{\circ}(29-34 \%)$ [3249].
m.p. 136-145 [3249]; ${ }^{\circ} \mathrm{H}$ NMR [3249], IR [3249], UV [3249], MS [3249].

1-(2-Ethoxy-6-hydroxy-4-methylphenyl)ethanone

[78274-02-9]	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
OH	Syntheses
	- Obtained by reaction of sodium ethoxide with 3,5-diacetyl-2,6-dimethyl-4H-pyran-4-one in ethanol at r.t. (20\%) [3252].
	- Also obtained by heating 3-acetyl-2,6-dimethyl-4H-pyran-4-one with sodium ethoxide in ethanol (17\%) [2940].

m.p. $\quad 95^{\circ}$ [2940,3252,3253]; ${ }^{1} \mathrm{H}$ NMR [3252], IR [3252], MS [2940,3252].

1-(5-Ethyl-2,4-dihydroxy-3-methylphenyl)ethanone
[140660-34-0]

1-(4-Ethyl-2-hydroxy-5-methoxyphenyl)ethanone
 $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
 Syntheses

- Preparation from 2-ethylhydroquinone dimethyl ether,
- by reaction with acetic acid in the presence of boron trifluoride (55\%) [3199];
- by reaction with acetyl chloride in the presence of aluminium chloride in boiling ethyl ether (27\%) [2944].
- Preparation by partial methylation of 4-ethyl-2,5-hydroxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone (47\%) [2944].
- Also obtained (poor yield) by partial demethylation of 4-ethyl-2,5-dimethoxyacetophenone with 6% aqueous hydrobromic acid in acetic acid at r.t. (9\%) [3199].
m.p. $60^{\circ} 4-61^{\circ}$ [3199], 60° [2944]; UV [3199].

1-(4-Ethyl-2-hydroxy-6-methoxyphenyl)ethanone

[128546-82-7] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

Syntheses

- Refer to: [3254-3259] (Japanese papers) and [3260].

Isolation from natural sources

- From Juniperus semiglobosa Regel (Cupressaceae) [3261].
m.p. 85° [3261]; ${ }^{1} \mathrm{H}$ NMR [3261], IR [3261], UV [3261], MS [3261].

1-(5-Ethyl-2-hydroxy-4-methoxyphenyl)ethanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}
$$

mol.wt. 194.23
 Syntheses

- Preparation by reaction of dimethyl sulfate [3018] or methyl iodide [3004] on 5-ethyl-2,4-dihydroxyacetophenone with potassium carbonate in refluxing acetone.
- Preparation by chromic acid degradation of 5-ethyl-6-methoxy-2,3-dimethylbenzofuran (21%) [3013].
m.p. $49-50^{\circ}$ [3004], 48° [3013]; b.p. ${ }_{20} 165-167^{\circ}$ [3013].

1-(2-Hydroxy-4-methoxy-3,5-dimethylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Synthesis

- Preparation by treating 2,4-dihydroxy-3,5-dimethylacetophenone with diazomethane or with dimethyl sulfate and sodium hydroxide [2990].
m.p. $35-36^{\circ}$ [2990]; b.p. ${ }_{0.6} 90^{\circ}$ [2990].

1-(2-Hydroxy-4-methoxy-3,6-dimethylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Synthesis

- Obtained by reaction of methyl iodide with 2,4-dihydroxy-6-methylacetophenone in the presence of potassium hydroxide (15\%) [2330].
m.p. $90-91^{\circ}[2330]$.

1-(4-Hydroxy-2-methoxy-3,6-dimethylphenyl)ethanone

$$
\text { [97761-88-1] } \quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 194.23
$$

Synthesis

- N.B.: Mentioned in the Chem. Abstr. 103, 85031d (1985). However, this compound does not appear in the original paper [3052] which concerns only some ketones derived of phloroglucinol.

1-[2-Hydroxy-3-(methoxymethyl)-5-methylphenyl]ethanone
[87165-63-7]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Preparation from 3-chloromethyl-2-hydroxy-5-methyl-acetophenone (b.p. $._{0.4} 110-116^{\circ}$) [2494] by reaction with methanol in the presence of concentrated hydrochloric acid and
- Also refer to: [3263].
m.p. $36-38^{\circ}$ [3262]; b.p. $._{0.6} 95-103^{\circ}$ [2494], b.p. ${ }_{20} 160-165^{\circ}$ [3262];
${ }^{1} \mathrm{H}$ NMR [2494,3262], ${ }^{13} \mathrm{C}$ NMR [3262], IR [2494,3262].

1-[2-Hydroxy-4-(1-methylethoxy)phenyl]ethanone

[73473-62-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Synthesis

- Refer to: [3264] (Chinese reference) and [3265] (Japanese patent).

1-[2-Hydroxy-5-(1-methylethoxy)phenyl]ethanone

[152810-05-4] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad m o l . w t .194 .23$
 Syntheses

- Preparation by reaction of 2-bromopropane with quinacetophenone in the presence of sodium iodide and potassium carbonate in DMF at 60° for $24 \mathrm{~h}(51 \%)$ [3266].
- Also refer to: [2227,3267].

Oil [3266]; ${ }^{1} \mathrm{H}$ NMR [3266].

1-(2-Hydroxy-4-propoxyphenyl)ethanone

[55329-63-0]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Preparation by reaction of propyl iodide [2220,3002,3004] or propyl bromide [2220] on resacetophenone,
- with potassium hydroxide in boiling ethanol [2220,3002];
- with potassium carbonate in boiling acetone [3004].
- Also refer to: [2326,2327].
N.B.: Pr indicates the propyl group $-\mathrm{C}_{3} \mathrm{H}_{7}$ in Chem. Abstr., 92, 6368x (1980) and 98, 54239b (1983), an usual abbreviation. However, in the two references [2326,2327], Pr represented the prenyl group $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$. Therefore they concern the 2-hydroxy-4-prenyloxyacetophenone and not the above mentioned 2-hydroxy-4-propyloxyacetophenone.
m.p. 25° [2220]; b.p. . $_{3-4} 136^{\circ}$ [3002].

1-(2-Hydroxy-6-propoxyphenyl)ethanone

[14718-38-8]	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
OH	Synthesis
	- Preparation by reaction of propyl iodide on 2,6-di-hydroxyacetophenone with potassium carbonate in refluxing acetone (66\%) [2999].
m.p. $70-71^{\circ}$	$99]$.

1-[3-(Ethylthio)-2-hydroxy-6-methoxyphenyl]ethanone
[126405-82-1] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 226.30
 Synthesis

- Preparation by adding 2-hydroxy-3-iodo-6-meth-oxy-acetophenone and cuprous oxide to a solution of sodium ethyl sulfhydrate, previously prepared from ethanethiol and sodium hydride in DMF [2524].
m.p. $\quad 57^{\circ}$ [2524]; ${ }^{1} \mathrm{H}$ NMR [2524], IR [2524].

1-[2-Hydroxy-3-(2-hydroxypropyl)-4-mercaptophenyl]ethanone
[167211-59-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 226.30
Synthesis

- Preparation in six steps from 3-allyl-2,4-dihydroxy-acetophenone [3268](Japanese patent).

1-[2-Hydroxy-3-(3-hydroxypropyl)-4-mercaptophenyl]ethanone

[167211-71-4]

1-[2,4-Dihydroxy-3-(2-hydroxypropyl)phenyl]ethanone
[167211-56-5]

1-(2,6-Dihydroxy-4-methoxy-3,5-dimethylphenyl)ethanone (Mallophenone)
[129399-54-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 226.30
Synthesis

- Refer to: [3268] (Japanese patent).

Isolation from natural sources

- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [3044]. m.p. 132° [2437], 131-132 ${ }^{\circ}$ [3044];
${ }^{1}$ H NMR [2437,3044], ${ }^{13}$ C NMR [3044], IR [2437,3044], UV [2437,2847,3044], MS [3044].

1-[2,4-Dihydroxy-3-(methoxymethyl)-5-methylphenyl]ethanone
[333763-54-5]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Isolation from natural sources

- From the culture filtrate of chilean strain of Trichoderma pseudokoningii [3270].

1-[3,5-Dihydroxy-4-(1-methylethoxy)phenyl]ethanone

[192625-58-4]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Synthesis

- Preparation by total demethylation of $3^{\prime}, 5^{\prime}$-di-methoxy-4'-isopropoxyacetophenone in two steps via formation of dimethyl acetal (80%) [3271].

1-[3,6-Dihydroxy-2-(1-methylethoxy)phenyl]ethanone

[33539-22-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

Syntheses

- Easy preparation by reduction of 2-acetyl-3-iso-propoxy-1,4-benzoquinone using conventional methods [2869].
- Also obtained (low yield) by reaction of 2-acetyl-1,4benzoquinone with an excess of isopropanol at r.t., with exclusion of light [2869].
m.p. $\quad 90-92^{\circ}$ [2869]; ${ }^{1} \mathrm{H}$ NMR [2869], IR [2869].

1-(2-Ethoxy-6-hydroxy-4-methoxyphenyl)ethanone

[76554-79-5]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Preparation by reaction of dimethyl sulfate on 6-ethoxy-2,4-dihydroxyacetophenone with potassium carbonate in boiling acetone (81\%) [2851].
- Preparation by reaction of diethyl sulfate on 2,6-dihydroxy-4-methoxyacetophenone with potassium carbonate in boiling acetone [2851].
- Preparation by reaction of diazoethane on 2,6-dihydroxy-4-methoxyacetophenone [2845].
m.p. 134° [2851], $133-134^{\circ}$ [2845].

1-(3-Ethoxy-2-hydroxy-6-methoxyphenyl)ethanone

[126405-76-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

Synthesis

- Preparation by adding 2-hydroxy-3-iodo-6-meth-oxy-acetophenone and cuprous iodide to a solution of sodium ethoxide, previously prepared from ethyl alcohol and sodium hydride in DMF [2524].
m.p. $\quad 70^{\circ}$ [2524]; ${ }^{1} \mathrm{H}$ NMR [2524], IR [2524].

1-(4-Ethoxy-2-hydroxy-3-methoxyphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Synthesis

- Preparation by reaction of ethyl iodide with 2,4-dihy-droxy-3-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone (64\%) [2818].
m.p. $\quad 76-77^{\circ}$ [2818]; ${ }^{1} \mathrm{H}$ NMR [2818], IR [2818].

1-(4-Ethoxy-2-hydroxy-5-methoxyphenyl)ethanone

[75672-62-7] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

Synthesis

- Preparation by reaction of dimethyl sulfate with 4-ethoxy-2,5-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (82\%) [3056].
m.p. $94-95^{\circ}$ [3056].

1-(4-Ethoxy-2-hydroxy-6-methoxyphenyl)ethanone

[76554-80-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
 Syntheses

- Preparation by reaction of diazoethane on 2,4-dihy-droxy-6-methoxyacetophenone [2845].
- Also refer to: [3272].
m.p. $56-57^{\circ}$ [2845].

1-(5-Ethoxy-2-hydroxy-4-methoxyphenyl)ethanone

[75672-59-2]	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
OH	Synthesis
	- Preparation by reaction of diethyl sulfate with 2,5-di-hydroxy-4-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone (71\%) [3056].
m.p. $101-102^{\circ}$ [3056]	

1-(2-Hydroxy-3,4-dimethoxy-6-methylphenyl)ethanone

[63542-37-0]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Preparation by reaction of acetyl chloride on 3,4,5-trimethoxytoluene with aluminium chloride,
- in ethyl ether at r.t. [3273,3274], (50\%) [3273];
- in refluxing methylene chloride (67\%) [3035].
m.p. 94° [3274], 92° [3273], 77-78ㅇ [3035];
${ }^{1} \mathrm{H}$ NMR [3035], ${ }^{13} \mathrm{C}$ NMR [3035], IR [3035], MS [3035].

1-(2-Hydroxy-3,5-dimethoxy-4-methylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Synthesis

- Obtained by Fries rearrangement of 3-acetoxy-2,6-di-methoxytoluene (oil) with boron trifluoride etherate at 95° for 3 h (63\%) [3275].
m.p. $73^{\circ} 5-75^{\circ}$ [3275]; TLC [3275];
${ }^{1} \mathrm{H}$ NMR [3275], IR [3275], MS [3275].

1-(2-Hydroxy-4,5-dimethoxy-3-methylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Synthesis

- Obtained by selective demethylation of 3-methyl-2,4,5-tri-methoxyacetophenone (pale yellow oil) with boron tri-chloride in methylene chloride at 0° for 80 min (85\%) [3275].
m.p. $86-87^{\circ}$ [3275]; ${ }^{1} \mathrm{H}$ NMR [3275], MS [3275].

1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)ethanone

[23121-32-6]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Preparation by reaction of acetonitrile on 3,5-dime-thoxy-2-methylphenol (Hoesch reaction) (68\%) [2870].
- Preparation by reaction of methyl iodide, in the presence of potassium carbonate in boiling acetone,
- on 2,4-dihydroxy-6-methoxy-3-methylacetophenone [3036];
- on 2,6-dihydroxy-4-methoxy-3-methylacetophenone [3037];
- on phloroacetophenone [1821,2716,2861,2870,3276-3279], (37-42\%) [3277,3279], (21-28\%) [2861,2870,3278].
- Also obtained (by-product) by reaction of methyl iodide with phloroacetophenone in 10% methanolic potassium hydroxide (<3\%) [2876].
- Preparation by partial methylation of 2,4,6-trihydroxy-3-methylacetophenone,
- with diazomethane in ethyl ether-methanol mixture at 0° (good yield) [2861];
- with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [2877,3278], (71\%) [3278];
- with methyl iodide, in the presence of potassium carbonate in boiling acetone [2870,2886,3278].
- Preparation by partial demethylation of 2,4,6-trimethoxy-3-methylacetophenone with aluminium chloride in acetonitrile at 30° for $6 \mathrm{~h}(90 \%)$ [2747].
- Preparation by reaction of acetyl chloride,
- with 2,4,6-trimethoxytoluene in the presence of aluminium chloride in ethyl ether at r.t. (51\%) [2747];
- with 2-hydroxy-4,6-dimethoxytoluene in the presence of aluminium chloride in nitrobenzene at r.t. [3054] according to [3280].
- Preparation by reaction of acetic anhydride and acetic acid,
- on 3,5-dimethoxy-2-methylphenol with boron trifluoride at $20-30^{\circ}$ (60\%) [3042];
- on 2,4,6-trimethoxytoluene with boron trifluoride at $20-30^{\circ}$ or at 100° [3042].
- Also obtained on deacylation of 2,4-diacetyl-3,5-dimethoxy-6-methylphenol acetate with 10% hydrochloric acid in ethanol [3042].

Isolation from natural sources

- From the leaves and bark of Acradenia franklinii (Kippist) (Rutaceae) [3276].
- From the stem wood of Euphorbia quinquecostata Volk. (Euphorbiaceae) [3281].
- From Euphorbia portulacoides (Euphorbiaceae) [3282].
m.p. 145° [3042], 144-145 ${ }^{\circ}$ [2861], 144° [3278], 143-144 ${ }^{\circ}$ [2870], 143° [3276], 142-143 ${ }^{\circ}$ [3279], 142° [2886], $141^{\circ} 5-143^{\circ}$ [2747], 141-143${ }^{\circ}$ [3277], $141-142^{\circ}$ [1956,3036,3037], $140-141^{\circ}$ [2876], 130- 131° [3281];
${ }^{1} \mathrm{H}$ NMR [2877,3281,3282], ${ }^{13} \mathrm{C}$ NMR [1821,3281], IR [3276,3281], UV [3276,3281], MS [3281].

1-(4-Hydroxy-2,6-dimethoxy-3-methylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
 Synthesis

- Preparation by catalytic hydrogenolysis of 4-(be-nzyloxy)-2,6-dimethoxy-3-methylacetophenone with Pd / C in acetic acid (quantitative yield) [3051].
m.p. 121° [3051].

1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)ethanone (Bancroftinone)

[14964-98-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 210.23
Syntheses

- Preparation by hydrolysis of 6-(benzoyloxy)-2,4-di-methoxy-3-methylacetophenone with 3 N aque-ous-methanolic potassium hydroxide at r.t. (75\%) [3051].
- Preparation by Fries rearrangement of 3,5-dimethoxy-4-methylphenyl acetate with aluminium chloride in nitrobenzene (75-77\%) [3283,3284].
- Preparation by reaction of methyl iodide with 4,6-dihydroxy-2-methoxy-3methylacetophenone in the presence of potassium carbonate in refluxing acetone (93\%) [3043].
- Preparation by reaction of acetyl chloride on 3,5-dimethoxy-4-methylphenol with aluminium chloride in ethyl ether first at 0°, then at r.t. [2877,3285,3286], (40\%) [2877].
Isolation from natural sources
- From the leaf oils of Backhousia bancroftii F. M. Bailey and Muell. (Myrtaceae) as a major constituent [3287].
- The ketone was present to the extent of 35% in clove oil [2873].
- Swertisin was isolated from the whole herb of Swertia japonica Makino (Gentianaceae). Further, hydrolytic decomposition of its dimethyl ether with aqueous barium hydroxide gave a degradation product, the 3-C- $\beta-\mathrm{D}-$ glucopyranosyl-6-hydroxy-2,4-dimethoxyacetophenone. This one, by treatment with an excess of aqueous periodic acid followed by Clemmensen reduction gave 6-hydroxy-2,4-dimethoxy-3-methylacetophenone [3288].
m.p. $44-45^{\circ}$ [2873], $38-39^{\circ}$ [3284], 35° [3051];
oil [3043]; b.p. ${ }_{0.2} 110-112^{\circ}$ [3283], b.p. ${ }_{2} 120-122^{\circ}$ [2877], b.p. $128-131^{\circ}$ [3284]; GC [3287], GC/MS [3287];
${ }^{1} \mathrm{H}$ NMR [2873,3285,3287], ${ }^{13} \mathrm{C}$ NMR [3287], IR [2873], UV [2873], MS [2873,3287].

1-(6-Hydroxy-3,4-dimethoxy-2-methylphenyl)ethanone

[62615-64-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Obtained by partial methylation of 2,5-dihydroxy-4-methoxy-6-methylacetophenone with dimethyl sulfate in acetone, in the presence of potassium carbonate (20\%) [3050].
- Preparation by partial demethylation of 2,4,5-trimethoxy-6-methylacetophenone with boron trichloride in methylene chloride at 0° (85\%) [3274].
Isolation from natural sources
- By hydrolysis of 4,6,7-trimethoxy-5-methylcoumarin, isolated from Leonotis nepetaefolia [3274].
m.p. 77° [3274], $76-77^{\circ}$ [3050]; ${ }^{1} \mathrm{H}$ NMR [3274], IR [3274], UV [3274].

1-[2-Hydroxy-4-(2-hydroxypropoxy)phenyl]ethanone

[149454-57-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23 Synthesis

- Obtained by reaction of resacetophenone with propylene oxide in the presence of sodium hydroxide in ethanol [3289].
Isolation from natural sources
- From the aerial parts of Urolepis hecatantha, flowers and leaves of Chromolaena arnottiana (compound 11) [3290].
${ }^{1} \mathrm{H}$ NMR [3290], MS [3290].

1-[4-Hydroxy-3-(2-hydroxypropoxy)phenyl]ethanone
[63437-94-5] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

Synthesis

- Preparation by hydrogenolysis of 4-(benzyloxy)-3-(2-hydroxypropoxy)acetophenone in ethanol under hydrogen atmosphere in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ for 45 min (81\%) [3105].
m.p. 143° [3105].

1-[2-Hydroxy-5-methoxy-3-(methoxymethyl)phenyl]ethanone

[87165-71-7]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

Synthesis

- Preparation from 3-chloromethyl-2-hydroxy-5-methoxy-acetophenone (m.p. 71°) by reaction with methanol in the presence of concentrated hydrochloric acid and iron powder at reflux for 3.5-4 h (69\%) [2494].
b.p. ${ }_{0.3} 110-114^{\circ}$ [2494]; ${ }^{1} \mathrm{H}$ NMR [2494], IR [2494].

1-[3-[(Ethylsulfonyl)methyl]-4-hydroxyphenyl]ethanone

[56490-62-1] | Synthesis |
| :--- |
| - Obtained by reaction of 3'-chloromethyl-4'-hydroxy- |
| acetophenone with magnesium ethylsulfinate in |
| refluxing aqueous methanol for $18 \mathrm{~h}(30 \%)$ [2544]. |

1-[2-Hydroxy-4,6-dimethoxy-3-(methylthio)phenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 242.30
Syntheses

- Preparation by partial demethylation of 2,4,6-trim-ethoxy-3-methylthioacetophenone with aluminium chloride in acetonitrile for 1 h at 30° (95%) [2747].
- Also obtained by reaction of acetyl chloride with 2,4,6-tri-methoxy-1(methylthio)benzene in the presence of aluminium chloride in ethyl ether at 0° (24\%) [2747].
m.p. $143-145^{\circ}$ [2747].

1-[4-Hydroxy-3-[2-(methylsulfonyl)ethyl]phenyl]ethanone

[56490-44-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 242.30

Synthesis

- Obtained by Fries rearrangement of 2-(methy-lsulfonylethyl)-phenyl acetate (m.p. 80-82) with aluminium chloride in nitrobenzene, first at r.t. for 1 h , then at $50-60^{\circ}$ for $1.5 \mathrm{~h}(53 \%)$ [2544].
m.p. $176-178^{\circ}$ [2544].

1-[2,4-Dihydroxy-6-(2-hydroxyethyl)-3-methoxyphenyl]ethanone

[165186-29-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23 Isolation from natural sources

- One of seven metabolites produced by Ophiosphaerella herpotricha in liquid culture [3291].

1-(2,5-Dihydroxy-4,6-dimethoxy-3-methylphenyl)ethanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad \text { mol.wt. } 226.23
$$

Syntheses

- Preparation by reaction of potassium persulfate on 2-hydroxy-4,6-dimethoxy-3-methylacetophenone in aqueous pyridine solution in the presence of potassium hydroxide [3292] or sodium hydroxide [2716,2886], (27-35\%) [2886,3292], (10\%) [2716].
m.p. $122-123^{\circ}$ [2886], $121-122^{\circ}$ [2716], $119-120^{\circ}$ [3292];
${ }^{1} \mathrm{H}$ NMR [2716], UV [2886], MS [2716].

1-[3-(2,3-Dihydroxypropoxy)-4-hydroxyphenyl]ethanone

[70064-44-7]	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
H	Synthesis
	- Preparation by hydrogenolysis of 4-(benz-yloxy)-3-(2,3-dihydroxypropoxy)acetophenone in ethanol under hydrogen atmosphere in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ for $45 \mathrm{~min}(99 \%)$ [3105].
m.p. 136° [3105].	

1-(2-Ethoxy-3,6-dihydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23

Synthesis

- Preparation by reaction of potassium persulfate on 2-ethoxy-6-hydroxy-4-methoxyacetophenone in dilute aqueous sodium hydroxide solution at $15-20^{\circ}$ (25\%) [2851].
m.p. 145° [2851].

1-(3-Ethoxy-2,6-dihydroxy-4-methoxyphenyl)ethanone

1-(4-Ethoxy-2,5-dihydroxy-3-methoxyphenyl)ethanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad \text { mol.wt. } 226.23
$$

Synthesis

- Preparation from 4-ethoxy-2-hydroxy-3-methoxyacetophenone by persulfate oxidation in 10% aqueous sodium hydroxide (Elbs reaction) [2818].

1-[2-Hydroxy-3-methoxy-4-(methoxymethoxy)phenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23 Synthesis

- Preparation in two steps: first, reaction of acetic acid with a mixture (ca. 1:1) of 1-O- and 2-O-methylp-yrogallol in the presence of zinc chloride at reflux for 6 h (Nencki reaction); then, methoxymethylation of the obtained product (31\%) [3110].
${ }^{1} H$ NMR [3110]; MS [3110].

1-[2-Hydroxy-4-methoxy-6-(methoxymethoxy)phenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
Synthesis

- Obtained by treatment of 2,6-dihydroxy-4-methoxy-acetophenone with methoxymethyl chloride [3293] in the presence of potassium carbonate in refluxing acetone for 2 h (86%) [3112].
m.p. $59-61^{\circ} 5$ [3112]; ${ }^{1} \mathrm{H}$ NMR [3112], IR [3112], EIMS [3112].

1-[2-Hydroxy-6-methoxy-4-(methoxymethoxy)phenyl]ethanone

[404597-93-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
Synthesis

- Obtained by treatment of 2,4-di(methoxyme-thoxy)-6-methoxyacetophenone with silica gel in mild acetic medium (97\%) [3294].

1-(2-Hydroxy-3,4,5-trimethoxyphenyl)ethanone
[30225-96-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23

Syntheses

- Preparation by reaction of dimethyl sulfate on 2,5-di-hydroxy-3,4-dimethoxyacetophenone with potassium carbonate in refluxing benzene (73\%) [2820].
- Preparation by reaction of acetyl chloride on 1,2,3,4-tetramethoxybenzene with aluminium chloride in refluxing carbon disulfide (70%) [3067,3295,3296] or in boiling ethyl ether [2770,3296], (76\%) [2770].
m.p. 88° [2770,3295,3296], 86° [2820,3067]; ${ }^{1} \mathrm{H}$ NMR [3067].

1-(2-Hydroxy-3,4,6-trimethoxyphenyl)ethanone (Xanthoxylone)

[7507-98-4]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
Syntheses

- Preparation by reaction of diazomethane on 2,4-dihydroxy-3,6-dimethoxyacetophenone in ethyl ether [2442,3149].
- Preparation by reaction of dimethyl sulfate,
- on 2,6-dihydroxy-3,4-dimethoxyacetophenone disodium salt (95\%) [2443];
- on 2,4-dihydroxy-3,6-dimethoxyacetophenone with potassium carbonate in boiling acetone (75\%) [3136];
- on 2,3,6-trihydroxy-4-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone [2881];
- on 2,3,4,6-tetrahydroxyacetophenone [2443,3297].
- Also obtained by partial methylation of 2,4-dihydroxy-3,6-dimethoxyacetophenone [3298], according to [3136].
- Also obtained by Friedel-Crafts acylation of 1,2,3,5-tetramethoxybenzene [3299].
- Preparation by reaction of acetyl chloride on 1,2,3,5-tetramethoxybenzene with aluminium chloride,
- in ethyl ether [2770,2820,3096,3131,3135,3300-3302], (81\%) [2770], (64-70\%) [2820,3096,3302], (53\%) [3131], (35-36\%) [2857,3135];
- in carbon disulfide [3140,3141,3145,3297,3301,3303], (51\%) [3297];
- without solvent at $70^{\circ}(44 \%)$ [3304].
- Preparation by reaction of acetic acid with 1,2,3,5-tetramethoxybenzene in the presence of boron trifluoride at $30^{\circ}(81 \%)$ [3127].
- Also obtained by partial demethylation of 2,3,4,6-tetramethoxyacetophenone in the presence of aluminium chloride [2747,3305] in acetonitrile at 30° for 1 h (95\%) [2747].
- Also refer to: [3306-3309].

Isolation from natural sources

- From the New Zealand liverwort, Plagiochila fasciculata [3310].
- From Croton aff. nepetifolius Bail (Euphorbiaceae) [3311].
- From hydrolysis of Wogonin (5,7-dihydroxy-8-methoxyflavone). Wogonin was isolated in small amounts in the roots of Scutellaria baicalensis Georgi (Labiatae) [3305].
- From the fresh leaves of Fagara okinawensis Nakai (Rutaceae) [3096].
m.p. $125-126^{\circ}$ [2443], 113-115 ${ }^{\circ}$ [3135], 113-114 [3136], 113° [2881], $112-114^{\circ}$ [3131], $112-113^{\circ}$ [2770,3096,3297,3301,3303,3305], $111^{\circ} 5-$ $113^{\circ} 5$ [2857], $111-112^{\circ}$ [3140], 110-112$~[3298], ~ 110-111^{\circ} ~[2442,3149]$, $109-114^{\circ}$ [3127], $109^{\circ} 5-111^{\circ} 5$ [3302], 109-111$~[3304], ~ 105-107^{\circ}$ [3141,3145,3312], 103-105 ${ }^{\circ}$ [2820,3313];
${ }^{1} H$ NMR [2442,2857,3096,3131,3149,3298,3302,3310,3311], ${ }^{13}$ C NMR [3298]; IR [2442,2857,3096,3131,3149,3298,3302,3310,3311], UV [3096,3310]; MS [3298,3311].

1-(2-Hydroxy-3,5,6-trimethoxyphenyl)ethanone

[72424-28-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23

Synthesis

- Preparation by partial demethylation of 2,3,5,6-tetramethoxyacetophenone with aluminium chloride in ethyl ether in an ice bath (55\%) [3300] or in acetonitrile for 6 h at $45^{\circ}(25 \%)$ [2747].
m.p. $62-63^{\circ} 5$ [3300]; ${ }^{1} \mathrm{H}$ NMR [3300].

1-(3-Hydroxy-2,4,5-trimethoxyphenyl)ethanone

[97565-35-0]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23 Isolation from natural sources

- Obtained by alkaline degradation of two octasubstituted flavones with 50% potassium hydroxide in refluxing ethanol under nitrogen atmosphere for 15 h . These flavones were isolated from the aerial parts of Ageratum houstonianum Mill (Asteraceae) (Eupatorieae) [3314],
- From agehoustin C (3^{\prime}-hydroxy-5,6,7,8, $2^{\prime}, 4^{\prime}, 5^{\prime}$-heptamethoxyflavone) (m.p. 145°).
- From agehoustin D (5,3'-dihydroxy-6,7,8,2',4',5'-hexamethoxyflavone) (m.p. $168-169^{\circ}$).
m.p. $98-100^{\circ}$ [3314]; ${ }^{1} \mathrm{H}$ NMR [3314], IR [3314], UV [3314], MS [3314].

1-(3-Hydroxy-2,4,6-trimethoxyphenyl)ethanone

[103777-45-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
 Syntheses

- Obtained by treatment of polygoacetophenoside with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 24 h . Then, the formed oil was hydrolyzed with 10% sulfuric acid on a water bath for 3 h [3309].
- Also obtained (by-product) by reaction of dimethyl sulfate on 3,6-dihydroxy-2,4-dimethoxy-acetophenone in aqueous sodium hydroxide solution at r.t. (3\%) [3135].
m.p. $128-129^{\circ}$ [3309], 113-117 ${ }^{\circ}$ [3135];
${ }^{1} \mathrm{H}$ NMR [3309], ${ }^{13} \mathrm{C}$ NMR [3309], IR [3309], MS [3309].

1-(3-Hydroxy-2,5,6-trimethoxyphenyl)ethanone

[73034-32-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 226.23
Synthesis

- Preparation by hydrolysis of 3-acetoxy-2,5,6-trimethoxy-acetophenone with 10% sodium hydroxide in methanol [3131,3300$]$.
m.p. $\quad 71-72^{\circ}$ [3131]; b.p. ${ }_{0.1} 150-160^{\circ}$ [3131];
${ }^{1} \mathrm{H}$ NMR [3131], IR [3131].

1-(6-Hydroxy-2,3,4-trimethoxyphenyl)ethanone

[22248-14-2]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
Syntheses

- Preparation by Fries rearrangement of antiarol acetate (3,4,5-trimethoxyphenyl acetate) with aluminium chloride in nitrobenzene at r.t. (54\%) [3144], (45\%) [3135].
- Preparation by reaction of antiarol (3,4,5-trimethoxyphenol) with boron trifluo-ride-acetic acid complex at $28-30^{\circ}$ (50\%) [2242].
- Also obtained by reaction of acetyl chloride,
- on antiarol benzyl ether with aluminium chloride in ethyl ether, followed by subsequent debenzylation of the keto compound obtained (22\%) [3144];
- on 1,2,3,5-tetramethoxybenzene with aluminium chloride in carbon disulfide at r.t. (9\%) [3312].
- Also obtained by reaction of dimethyl sulfate,
- on 3,6-dihydroxy-2,4-dimethoxyacetophenone,
- with potassium carbonate in refluxing benzene [2820,3135,3144], (15-18\%) [2820,3135] or in refluxing acetone-benzene mixture [3080,3146,3300], (70\%) [3080], (36\%) [3146];
- with aqueous sodium hydroxide solution at r.t. (52\%) [3135].
- on 2,3,4,6-tetrahydroxyacetophenone [2443];
- on 2,6-dihydroxy-3,4-dimethoxyacetophenone disodium salt, followed by acidification (<5\%) [2443].
- Also obtained by alkaline degradation of $3^{\prime}, 4^{\prime}, 5,6,7$-pentamethoxyflavone with potassium hydroxide in refluxing aqueous ethanol [2851].
- Also refer to: [2777,3315].

Isolation from natural sources

- From 5,6,7-trimethoxyflavone by alkaline hydrolysis in refluxing 50\% methanolic potassium hydroxide. The 5,6,7-trimethoxyflavone is one of major constituents of the leaves of Zeyhera tuberculosa Bur. ex. Verlot (Bignoniaceae) [3146].
Yellow oil [2851,3080,3146];
m.p. $164-165^{\circ}$ [2443], $105-107^{\circ}$ [3312], $41-42^{\circ}$ [3144], 32° [2242], $30^{\circ} 5-31^{\circ} 5$ [3135].
There is a discrepancy between the different melting points indicated in literature.
b.p. ${ }_{0.35} 121-122^{\circ}$ [3135], b.p. 140° [2242], b.p. ${ }_{20} 180-185^{\circ}$ [3144], b.p. ${ }_{14} 182-185^{\circ}$ [3135], b.p. ${ }^{27}$ 184- 186° [2820];
${ }^{1} \mathrm{H}$ NMR [3146], ${ }^{13} \mathrm{C}$ NMR [2328], IR [3146], UV [3146], MS [3146].

1-[3,4,6-Trihydroxy-2-(1-methylethoxy)phenyl]ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
Synthesis

- Preparation by catalytic hydrogenolysis of3,4,6-tris-(benzyloxy)-2-isopropoxyacetophenone in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in ethanol at r.t. (94\%) [2442,3149].
m.p. 137° [2442,3149];
${ }^{1} \mathrm{H}$ NMR [2442,3149], IR [2442,3149], MS [2442,3149].

1-(2,4-Dihydroxy-3,5,6-trimethoxyphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 242.23

Synthesis

- Obtained by hydrolysis of 1-(2,4-diacetoxy-3,5,6-tri-methoxyphenyl)ethanone (SM) with aqueous 10% sodium hydroxide at r.t. for $10-15 \mathrm{~min}$. SM was obtained by Friedel-Crafts acylation of 2,3,5,6-tetramethoxyphenylacetate (m.p. 97-98º) with acetic anhydride/acetic acid in the presence of excess boron trifluoride at $50-60^{\circ}$ for $5 \mathrm{~h}(65 \%$, m.p. 82-84ㅇ) [3316].
N.B.: This ketone was not obtained by Friedel-Crafts reaction of 2,3,5,6-tetramethoxyphenol, and its acetate or benzyl ether with acetyl chloride and aluminium chloride in ethyl ether [3316,3317].

1-(2,5-Dihydroxy-3,4,6-trimethoxyphenyl)ethanone

[55742-65-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 242.23
Syntheses

- Obtained by persulfate oxidation of 2-hydroxy-3,4,6-tri-methoxyacetophenone (Elbs reaction) [3307], (33\%) [3299], (29\%) [2820], (9\%) [3318].
- Also obtained by reduction of 2-acetyl-3,5,6-trimethoxy-1,4-benzoquinone with zinc dust in acetic anhydride, followed by hydrolysis of the acetic ester formed with dilute sulfuric acid [2443].
- Also refer to: [3319-3322].
m.p. $174-176^{\circ}$ [2443], $116-117^{\circ}$ [2820], $115-117^{\circ}$ [3299,3307].

One of the reported melting points is obviously wrong.

1-(2,6-Dihydroxy-3,4,5-trimethoxyphenyl)ethanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \quad \text { mol.wt. } 242.23
$$

Synthesis

- Obtained by acylation of pentamethoxybenzene with acetyl chloride in the presence of aluminium chloride in ethyl ether, first for 14 h at r.t., then for 2 h at reflux (17\%) [3323].
m.p. $86-88^{\circ}$ [3323];
${ }^{1} \mathrm{H}$ NMR [3323], IR [3323], UV [3323].

1-(2-Amino-4-hydroxy-3-propylphenyl)ethanone

[87472-78-4] $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.25
 Synthesis

- Preparation by hydrogenation of 3-allyl-2-amino-4-hydroxyacetophenone in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in ethanol (quantitative yield) [2464].

Viscous oil [2464]; ${ }^{1} \mathrm{H}$ NMR [2464].

1-(3-Amino-2-hydroxy-5-propylphenyl)ethanone

[70978-22-2]

m.p. $43-45^{\circ}$ [1898], $42-43^{\circ}$ [1897].

1-(4-Amino-2-hydroxy-3-propylphenyl)ethanone
[75452-54-9]
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
molwt. 193.25
Synthesis

Yellow oil [2464]; b.p. ${ }_{0.15} 120-122^{\circ}$ [2464]; ${ }^{1} \mathrm{H}$ NMR [2464].
Preparation by hydrolysis of 4-acetamido-2-hy-droxy-3-propylacetophenone with 6 N hydrochloric acid in refluxing ethanol (95\%) [2464].

1-[2-(Dimethylamino)-6-hydroxy-4-methylphenyl]ethanone

[97066-06-3] $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ molwt. 193.25

Synthesis

- Preparation by reaction of potassium hydroxide with2-acetyl-3-dimethylamino-5-hydroxy-5-methyl-2-cyclo-hexenone in ethanol at 40° (41\%) [2712].

Yellow oil [2712]; m.p. -5° [2712];
${ }^{1} H$ NMR [2712], IR [2712], UV [2712], MS [2712].

1-[2-Hydroxy-4-(propylamino)phenyl]ethanone

[118684-26-7] $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.25
 Synthesis

- A solution of 4-amino-2-hydroxyacetophenone and propionaldehyde in methanol was stored over $3 \AA$ molecular sieves for 3 days. The solution of "2-hydroxy-4-propyl-iminoacetophenone" so obtained was then treated with hydrogen in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(50 \%)$ [2464].
m.p. $\quad 73-75^{\circ}$ [2464]; ${ }^{1} \mathrm{H}$ NMR [2464].

1-[2,3-Bis(acetyloxy)-4-hydroxyphenyl]ethanone

[144152-31-8] \begin{tabular}{l}
Synthesis

Obtained by enzymatic deacylation of 2,3,4-triacetoxy-
acetophenone with porcine pancreas lipase in tetrahydro-
furan at $42-45^{\circ}(55 \%)$
[2388,2897]

\end{tabular}

Pale yellow viscous oil [2897]; ${ }^{1} \mathrm{H}$ NMR [2897].

1-[2,4-Bis(acetyloxy)-6-hydroxyphenyl]ethanone

[17820-33-6]

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 252.22
Syntheses

- Obtained (by-product) by reaction of acetic anhydride on phloroacetophenone with pyridine at r.t. (7\%) [2368].
- Also obtained by photo-Fries rearrangement of 1,3,5-tri-acetoxybenzene in methanol (15\%) [2343].
m.p. $86-87^{\circ}$ [2853], 79-80́ [2343];
${ }^{1} \mathrm{H}$ NMR [2343,2853], ${ }^{13} \mathrm{C}$ NMR [2368], IR [2343].

1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]ethanone

[17820-32-5]

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \quad \mathrm{~mol} w \mathrm{t} .252 .22$
Syntheses

- Preparation by reaction of acetic anhydride with phloroacetophenone between 110° and 165° (40\%) [2853].
- Also obtained by enzymatic deacylation of 2,4,6-triacetoxy-acetophenone with porcine pancreatic lipase in tetrahydrofuran at $42-45^{\circ}$ (78\%) [2388,2389,2897].
m.p. $\quad 154-155^{\circ}$ [2853], 112° [2897]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [2853,2897].

1-[3,4-Bis(acetyloxy)-2-hydroxyphenyl]ethanone

[27865-58-3]

$$
\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \quad \text { mol.wt. } 252.22
$$ Syntheses

- Obtained by UV light irradiation of pyrogallol triacetate in methanol (15\%) [2343].
- Also obtained by partial Fries rearrangement of pyrogallol triacetate with zinc chloride at $130-135^{\circ}$ [3324].
- Also obtained by reaction of acetic anhydride on gallacetophenone with pyridine [2901].
- Also refer to: [2675].
m.p. 217-219우 [3324], 110-112 ${ }^{\circ}$ [2343], 78-81ํ [2901];
${ }^{1} \mathrm{H}$ NMR [2343], IR [2343].

1-[3,6-Bis(acetyloxy)-2-hydroxyphenyl]ethanone

[104654-33-3] $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 252.22

Synthesis

- Obtained by photo-Fries rearrangement of 1,2,4-triacetoxy-benzene in methanol (15\%) [2343].
m.p. $116-118^{\circ}$ [2343]; ${ }^{1} \mathrm{H}$ NMR [2343], IR [2343].

1-[4,5-Bis(acetyloxy)-2-hydroxyphenyl]ethanone

[42059-51-8] \quad| Syntheses |
| :--- |

- Preparation by reaction of acetic anhydride with 2,4,5-tri-hydroxyacetophenone in the presence of pyridine at 35° (52\%) [2899].
m.p. $165-166^{\circ}$ [2414,2415], $100-102^{\circ}$ [2899]; ${ }^{1} \mathrm{H}$ NMR [2899], IR [2899].

1-[3-(2-Butenyl)-5-chloro-4-hydroxyphenyl]ethanone

1-[5-(2-Butenyl)-2,4-dihydroxy-3-iodophenyl]ethanone

[91664-19-6]	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{3} \quad$ mol.wt. 332.14
OH	Synthesis
	- Preparation by condensation of 2,4-dihydroxy-3 iodo-acetophenone with 1,3-butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}(75 \%)$ [3325].
m.p. $100-101^{\circ}$ [3325];	${ }^{1} \mathrm{H}$ NMR [3325].

1-[2-Hydroxy-3-iodo-6-methoxy-4-(2-propenyloxy)phenyl]ethanone

[74047-33-9]

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{4} \quad$ mol.wt. 348.14 Synthesis

- Preparation by reaction of allyl bromide with 2,4-di-hydroxy-3-iodo-6-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone (58\%) [2064].
m.p. $\quad 162-164^{\circ}$ [2064]; ${ }^{1} \mathrm{H}$ NMR [2064].

1-(3,5-Dibromo-2,4-diethyl-6-hydroxyphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 350.05
$$

Synthesis

- Preparation by reaction of potassium bromate and bromide on 2,4-diethyl-6-hydroxyacetophenone in solution of acetic acid-carbon tetrachloride mixture (quantitative yield) [2965].
m.p. 81° [2965].

1-[2-Hydroxy-3-methyl-6-(1-methylethyl)-4,5-dinitrophenyl]ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \quad \text { mol.wt. } 282.26
$$

Synthesis

- Preparation by reaction of nitric acid $(\mathrm{d}=1.4)$ on 2-hydroxy-3-methyl-5-nitro-6-isopropylacetophenone in acetic acid, between -5° and 0° (53\%) [3326].
m.p. 119° [3326].

1-[4-Hydroxy-3-methyl-6-(1-methylethyl)-2,5-dinitrophenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 282.26

Synthesis
m.p. 55° [3327].

1-[2-Hydroxy-5-methyl-3-(2-propenyl)phenyl]ethanone

[108293-73-8]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 190.24
Synthesis

- Preparation by thermal Claisen rearrangement of 2-(allyloxy)-5-methylacetophenone without solvent at 190° (95%) [2513] or at $260-270^{\circ}(84 \%)$ [3168].

Yellow oil [2513];
b.p. ${ }_{0.15} 94-96^{\circ}$ [2513], b.p. ${ }_{5} 103-105^{\circ}$ [3168];
${ }^{1} \mathrm{H}$ NMR [2513], ${ }^{13} \mathrm{C}$ NMR [2513], IR [2513], MS [2513].
1-[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]ethanone
 $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 190.24 Synthesis

- Preparation by thermal Claisen rearrangement of 4-(β-methallyloxy)acetophenone in boiling N, N -di-methylaniline [3177].

1-[3-(2-Butenyl)-2,4-dihydroxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 206.24

Synthesis

- Preparation by condensation of resacetophenone with 1,3-butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}(38 \%)$ [3325].
m.p. $164-165^{\circ}$ [3325]; ${ }^{1} \mathrm{H}$ NMR [3325].

1-[5-(2-Butenyl)-2,4-dihydroxyphenyl]ethanone

[91664-17-4]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Syntheses

- Preparation by condensation of resacetophenone with 1,3-butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}$ (42\%) [3325].
- Also obtained from 5-(2-butenyl)-2,4-dihydroxy-3-iodo-acetophenone by heating with zinc dust and concentrated hydrochloric acid in refluxing ethanol (80\%) [3325].
m.p. 103-104 ${ }^{\circ}$ [3325]; ${ }^{1} \mathrm{H}$ NMR [3325], IR [3325].

1-[4-(2-Butenyloxy)-2-hydroxyphenyl]ethanone

[79557-72-5]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Synthesis

- Preparation by reaction of 3-chloro-1butene with resacetophenone in the presence of potassium carbonate and sodium iodide in refluxing butanone (44\%) [3184].

Oil [3184]; b.p. ${ }_{0.1} 162-175^{\circ}$ [3184].
1-[2,4-Dihydroxy-3-methyl-5-(2-propenyl)phenyl]ethanone
[77869-01-3]
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 206.24
Synthesis

- Preparation by thermal Claisen rearrangement of 4-(allyloxy)-2-hydroxy-3-methylacetophenone in boiling N, N-dimethylaniline [3328].
m.p. 139° [3328]; IR [3328].

1-[2,4-Dihydroxy-3-(1-methyl-2-propenyl)phenyl]ethanone

[79557-73-6]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Syntheses

- Preparation by thermal Claisen rearrangement of 4-(2-butenyloxy)-2-hydroxyacetophenone without solvent at $180-190^{\circ}$ under nitrogen (40\%) [3184].
- Also obtained (by-product) by condensation of resacetophenone with 1,3-butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}$ (3\%) [3325].
m.p. $147-149^{\circ}$ [3325], $146-147^{\circ}$ [3184]; ${ }^{1} \mathrm{H}$ NMR [3325].

1-[2,4-Dihydroxy-3-(2-methyl-2-propenyl)phenyl]ethanone
[118683-89-9]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 206.24
Synthesis

- Preparation by thermal Claisen rearrangement of 2-hydroxy-4-(2-methylprop-2-enoxy) acetophenone without solvent at $210^{\circ}(24 \%)$ [2464].

White solid [2464]; ${ }^{1} \mathrm{H}$ NMR [2464].
1-[3,6-Dihydroxy-2-(2-methyl-2-propenyl)phenyl]ethanone
[127870-07-9]

m.p. $\quad 78-80^{\circ}$ [2355]; ${ }^{1} \mathrm{H}$ NMR [2355], MS [2355].

1-[2-Hydroxy-3-methoxy-5-(2-propenyl)phenyl]ethanone

[^11]
1-[2-Hydroxy-4-methoxy-3-(2-propenyl)phenyl]ethanone

[117156-86-2]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Syntheses

- Preparation by thermal Claisen rearrangement of 2'-(allyloxy)-4'-methoxyacetophenone in boiling N, N-di-methylaniline (80%) [3331].
- Preparation by reaction of dimethyl sulfate on 3-allyl-resacetophenone in 10% aqueous potassium hydroxide at 30° [3182].
m.p. 61° [3182], 59ํ [3331]; ${ }^{1} \mathrm{H}$ NMR [3331], IR [3331], UV [3331].

1-[2-Hydroxy-4-methoxy-5-(2-propenyl)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 206.24
Synthesis

- Preparation by reaction of methyl bromide on 5-allyl-2,4-dihydroxyacetophenone with potassium carbonate and potassium iodide (41\%) [2678,2679].

1-[2-Hydroxy-5-methoxy-3-(2-propenyl)phenyl]ethanone

colourless oil [3163]; b.p. ${ }_{0.1} 145^{\circ}$ [3163];
${ }^{1} H$ NMR [3163], IR [3163].
1-[2-Hydroxy-6-methoxy-3-(2-propenyl)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 206.24
Syntheses

- Preparation by reaction of dimethyl sulfate on 3-allyl-2,6-dihydroxyacetophenone with potassium carbonate in benzene in a water bath (89\%) [3186].
- Also obtained by thermal Claisen rearrangement of 2-(allyloxy)-6-methoxyacetophenone at $215-220^{\circ}$, in a sealed tube (35\%) [3186].
b.p. $122-124^{\circ}$ [3186], b.p. $127^{\circ}[3186] ; \quad d^{20}=1.0283$ [3186];
$\mathrm{n}_{\mathrm{D}}^{20}=1.5602$ and 1.5598 [3186].

1-[3-Hydroxy-6-methoxy-2-(2-propenyl)phenyl]ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 206.24
$$

Synthesis

- Preparation by thermal Claisen rearrangement of 5-(allyloxy)-2-methoxyacetophenone at 230° (74\%) [3187].
m.p. 104° [3187].

1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]ethanone

[117705-59-6]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Synthesis

- Preparation by Claisen rearrangement of 4-(allyloxy)-2-methoxyacetophenone at 210-215 ${ }^{\circ}$ (60\%) [3182], (24\%) [2671,2678, 2679].
m.p. 136° [3182], $<25^{\circ}$ [2671]; ${ }^{1} \mathrm{H}$ NMR [2678,2679].

1-[2-Hydroxy-3-methyl-4-(2-propenyloxy)phenyl]ethanone

[77036-77-2]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Synthesis

- Preparation by reaction of allyl bromide on 2,4-di-hydroxy-3-methylacetophenone with potassium carbonate in refluxing acetone [3332].

1-[2-Hydroxy-4-methyl-5-(2-propenyloxy)phenyl]ethanone
[76267-82-8]

Greenish yellow liquid [2699].

1-[2-Hydroxy-4-[(2-methyl-2-propenyl)oxy]phenyl]ethanone

[118683-88-8]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Synthesis

- Preparation by reaction of 3-chloro-2methylpropene with resacetophenone in the presence of potassium carbonate in refluxing acetone (75\%) [2464].

White solid [2464]; ${ }^{1} \mathrm{H}$ NMR [2464].

1-[4-(Acetyloxy)-2-ethyl-6-hydroxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
Synthesis

- Preparation by treatment of a mixture of alkylated resorcinols with acetic anhydride and acetic acid in the presence of zinc chloride at $140-145^{\circ}$, followed by suitable separation [3189].

1-[4-(Acetyloxy)-2-hydroxy-3,5-dimethylphenyl]ethanone
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Synthesis

- Preparation by reaction of acetic anhydride with 2,4-di-hydroxy-3,5-dimethylacetophenone in the presence of pyridine [2990].
m.p. $95-96^{\circ}$ [2990].

1-[4-(Acetyloxy)-2-hydroxy-3,6-dimethylphenyl]ethanone
[57600-89-2] $\quad \mathrm{C}_{12} \mathrm{H}_{41} \mathrm{O} \quad$ mol.wt 22224

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Synthesis

- Preparation by treatment of a mixture of alkylated resorcinols with acetic anhydride and acetic acid in the presence of zinc chloride at $140-145^{\circ}$, followed by suitable separation [3189].

1-[4-(Acetyloxy)-6-hydroxy-2,3-dimethylpheny]ethanone
[57600-90-5] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Synthesis

- Preparation by treatment of a mixture of alkylated resorcinols with acetic anhydride and acetic acid in the presence of zinc chloride at $140-145^{\circ}$, followed by suitable separation [3189].

1-[5-(2-Butenyl)-2,3,4-trihydroxyphenyl]ethanone
[91664-14-1]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 222.24
Synthesis

- Preparation by condensation of gallacetophenone with 1,3-butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}$ (60%) [3325].
m.p. $93-94^{\circ}$ [3325]; ${ }^{1} \mathrm{H}$ NMR [3325].

1-[2,4-Dihydroxy-3-methoxy-5-(2-propenyl)phenyl]ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 222.24
$$

Synthesis

- Preparation by heating 4-(allyloxy)-2-hydroxy-3methoxyacetophenone at 220° under reduced pressure (Claisen rearrangement) (70\%) [2817].
m.p. 94° [2817].

1-[2,4-Dihydroxy-5-methoxy-3-(2-propenyl)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Synthesis

- Preparation by thermal Claisen rearrangement of 4-(allyloxy)-2-hydroxy-5-methoxyacetophenone without solvent at 180° (85\%) [2824].
m.p. 118° [2824].

1-[3,6-Dihydroxy-4-methoxy-2-(2-propenyl)phenyl]ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 222.24
$$

Synthesis

- Preparation by heating 5-(allyloxy)-2-hydroxy-4-methoxy-acetophenone in glycerol at 200° (Claisen rearrangement) (81\%) [2849].
m.p. 114° [2849].

1-[2-Hydroxy-3-methoxy-4-(2-propenyloxy)phenyl]ethanone

- Preparation by reaction of dimethyl sulfate on 4-(allyloxy)-2,3-dihydroxyacetophenone with potassium carbonate in boiling acetone (80%) [2817].
m.p. $63-64^{\circ}$ [2817].

1-[2-Hydroxy-4-methoxy-5-(2-propenyloxy)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Synthesis

- Preparation by reaction of allyl bromide on 2,5-dihydroxy-4-methoxyacetophenone with potassium carbonate in boiling acetone (82%) [2849].
m.p. 80° [2849].

1-[2-Hydroxy-5-methoxy-4-(2-propenyloxy)phenyl]ethanone
[91497-16-4]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Syntheses

- Preparation by partial methylation of 4-(allyloxy)-2,5-dihydroxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone (90\%) [3191].
- Preparation by reaction of allyl bromide with 2,4-di-hydroxy-5-methoxyacetophenone in the presence of potassium carbonate in boiling acetone (60%) [2824].
m.p. $50-51^{\circ}$ [3191], 50° [2824].

1-[2-Hydroxy-6-methoxy-3-(2-propenyloxy)phenyl]ethanone

[126405-78-5]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Synthesis

- Preparation by adding 2-hydroxy-3-iodo-6-methoxy-acetophenone and cuprous iodide to a solution of sodium allyloxide, previously prepared from allyl alcohol and sodium hydride in DMF (45\%) [2524].

Oil [2524]; ${ }^{1} \mathrm{H}$ NMR [2524], IR [2524].
1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]ethanone
[74047-37-3]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Syntheses

- Preparation by reaction of allyl bromide with 2,4-di-hydroxy-6-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone (61\%) [2573].
- Also refer to: [3333].
m.p. $\quad 74-76^{\circ}$ [2573]; ${ }^{1} \mathrm{H}$ NMR [2573].

1-[2-Hydroxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone

[103867-84-1]
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Syntheses

- Preparation by UV light irradiation of ethylene acetal of 2-acetoxyacetophenone in hexane,
- with potassium carbonate (76\%) [3334];
- without potassium carbonate (10\%) [3334,3335].

Oil [3335]; ${ }^{1} \mathrm{H}$ NMR [3335], IR [3335], UV [3335].
1-[2-Hydroxy-5-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Syntheses

- Preparation by UV light irradiation of ethylene acetal of the 4-acetoxyacetophenone in hexane,
- with potassium carbonate (82\%) [3334];
- without potassium carbonate (21%) [3334,3335].
m.p. $56-57^{\circ}$ [3335];
${ }^{1} \mathrm{H}$ NMR [3335], IR [3335], UV [3335].
1-[4-Hydroxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone
[103867-88-5]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Synthesis
- Obtained (by-product) by UV light irradiation of ethylene acetal of 2-acetoxyacetophenone in hexane, with or without potassium carbonate (8-9\%) [3334,3335].
m.p. $78-80^{\circ}$ [3335];
${ }^{1} \mathrm{H}$ NMR [3335], IR [3335], UV [3335].

1-[3-[2-(Acetyloxy)ethoxy]-4-hydroxyphenyl]ethanone

[63437-82-1]

- Also refer to: [3336].
m.p. $103-104^{\circ}$ [3105].
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24
Syntheses
- Preparation by Fries rearrangement of 2-(2-acetoxy-ethoxy)phenyl acetate (m.p. 142-146) with aluminium chloride in nitrobenzene for 48 h at 20° (55\%) [3105].

1-[3-(Acetyloxy)-2-hydroxy-4,6-dimethoxyphenyl]ethanone

[21919-65-3] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 254.24

Syntheses

- Preparation by reaction of acetic anhydride with 2,3-di-hydroxy-4,6-dimethoxyacetophenone in the presence of sodium acetate at 60° (80\%) [3128].
- Preparation by reaction of aluminium chloride with 3-acetoxy-2,4,6-trimethoxyacetophenone in nitrobenzene at 100° [3128,3129], (52\%) [3128].
m.p. 180° [3128].

1-[3-(Acetyloxy)-6-hydroxy-2,4-dimethoxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 254.24 Syntheses

- Preparation by reaction of acetic anhydride with 3,6-di-hydroxy-2,4-dimethoxyacetophenone in the presence of sodium acetate at 60° [3128,3129], (80\%) [3128].
- Preparation by Fries rearrangement of 2,6-dimethoxy-hydroquinone diacetate with aluminium chloride at $120-125^{\circ}(80 \%)$ [3146].

Isolation from natural sources

- From Euphorbia portulacoides (Euphorbiaceae) [3337].

```
m.p. 112 [ [3128], 109-110}\mp@subsup{}{}{\circ}[3146]
'1H NMR [3146], IR [3146], UV [3146], MS [3146].
```

1-(3-Bromo-4,5-diethyl-2-hydroxyphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{2} \quad \text { mol.wt. } 271.15
$$

Synthesis

- Preparation by reaction of potassium bromate and bromide on 4,5-diethyl-2-hydroxyacetophenone (quantitative yield) [2965].
m.p. 59° [2965].

1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

[105340-27-0]	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{2} \quad$ mol.wt. 271.15 Synthesis
	- Preparation by Fries rearrangement of 2-bromo-4-tert-butyl-phenyl acetate with aluminium chloride without solvent at $110^{\circ}(54 \%)$ [3338].
b.p. ${ }^{\text {d }} 142^{\circ}$ [3338].	

1-[3-Bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone

1-[4-(2-Bromoethoxy)-5-ethyl-2-hydroxyphenyl]ethanone
[117706-54-4]
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{3}$
mol.wt. 287.15

Synthesis

- Preparation by reaction of 2-bromoethyl bromide on 5-ethyl-2,4-dihydroxyacetophenone with potassium carbonate and potassium iodide at reflux (43\%) [2678,2679].
m.p. $58-59^{\circ}[2678,2679] ;{ }^{1} \mathrm{H}$ NMR $[2678,2679]$.

1-[3-Chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad \text { mol.wt. } 226.70
$$

Synthesis

- Preparation by Fries rearrangement of 4-tert-butyl-2-chloro-phenyl acetate with aluminium chloride at $110-130^{\circ}$ (82-85\%) [2152,3340].
b.p. 33142° [3340].

1-[3-Chloro-5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone
[153356-01-5]
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}$
mol.wt. 226.70

1-[3-Chloro-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl]ethanone
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70

Synthesis

- Preparation by reaction of acetyl chloride on 2-chloro-5-methyl-4-isopropylanisole with aluminium chloride in carbon disulfide at r.t. (35\%) [3341].

Colourless oil [3341]; b.p. ${ }_{12} 142^{\circ}$ [3341].

1-[3-Chloro-6-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone

 $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70

Syntheses

- Preparation by Fries rearrangement of 4-chloro-5-methyl-2-isopropylphenyl acetate with aluminium chloride at 155° [2011].
- Also obtained by reaction of acetyl chloride on 4-chloro-5-methyl-2-isopropylanisole with aluminium chloride in carbon disulfide at r.t. (17\%) [2542].
b.p. $3^{127-135^{\circ}}$ [2011], b.p. 21 151-152 ${ }^{\circ}$ [2542].

1-[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]ethanone
[97582-36-0]
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}$
mol.wt. 226.70
Syntheses

- Preparation by reaction of ethyl chloroformate with 4-(dimethylaminomethyl)-2-hydroxy-3propylacetophenone in toluene (68-82\%) [2550,2927].
- Also refer to: [3342,3343].
m.p. $55-57^{\circ}$ [2550]; b.p. ${ }_{0.2} 105-125^{\circ}$ [2927]; ${ }^{1} \mathrm{H}$ NMR [2927], IR [2927].

1-[3-Chloro-5-(1,1-dimethylethyl)-2,6-dihydroxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{3} \quad$ mol.wt. 242.70
Synthesis

- Preparation by reaction of tert-butyl chloride with 3-chloro-2,6-dihydroxyacetophenone in the presence of sulfuric acid [1892,3243].

1-[3-(1,1-Dimethylethyl)-5-fluoro-4-hydroxyphenyl]ethanone

1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-iodophenyl]ethanone

1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-nitrophenyl]ethanone

1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl]ethanone
[100245-06-5] $\quad \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 237.26

Synthesis

- Obtained (poor yield) by nitration of 5-tert-butyl-2-hydroxy-acetophenone at -20° using standard reagents (2\%) [1897].
m.p. $80-81^{\circ}$ [1897].

1-[2-Hydroxy-3-methyl-6-(1-methylethyl)-5-nitrophenyl]ethanone $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 237.26

Synthesis

- Preparation by reaction of nitric acid $(\mathrm{d}=1.4)$ on 2-hydroxy-3-methyl-6-isopropylacetophenone in acetic acid between -5° and 0° (67\%) [3326].
m.p. 151° [3326].

1-[4-Hydroxy-5-methyl-2-(1-methylethyl)-3-nitrophenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 237.26

Synthesis

- Preparation by reaction of nitric acid $(\mathrm{d}=1.4)$ on 4-hydroxy-5-methyl-2-isopropylacetophenone in acetic acid at -5° (69\%) [3327].
m.p. 157° [3327].

1-[2-Hydroxy-5-(1-methylpropyl)-3-nitrophenyl]ethanone

[84942-36-9] \quad\begin{tabular}{l}
Synthesis

- Preparation by reaction of 100% nitric acid on

5-sec-butyl-2-hydroxyacetophenone in acetic acid at

r.t. (89%) [1852]
\end{tabular}

1-[4-Hydroxy-3-(1-methylpropyl)-5-nitrophenyl]ethanone

1-[4-(2-Azidoethoxy)-5-ethyl-2-hydroxyphenyl]ethanone
[117706-27-1]

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$
Synthesis

- Preparation by reaction of sodium azide with 4-(2-bromo-ethoxy)-5-ethyl-2-hydroxyacetophenone in N,N-dimethyl-formamide at r.t. [2678,2679].
${ }^{1} \mathrm{H}$ NMR [2678,2679], MS [2678,2679].

1-(5-Butyl-2-hydroxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 192.26

Syntheses

- Preparation by Fries rearrangement of p-butylphenyl acetate with aluminium chloride at $130^{\circ}(80 \%)$ [2899].
- Preparation by reaction of acetyl chloride on 4-butylphenol with aluminium chloride in ethylene dichloride at $110-120^{\circ}$ (63\%) [2625].
Oil [2899]; b.p. $1.5105-109^{\circ}$ [2899], b.p. ${ }_{4} 119-123^{\circ}$ [2625].

1-(2,4-Diethyl-6-hydroxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Preparation by Fries rearrangement of 3,5-diethylphenyl acetate with aluminium chloride [2233], between 120° and 150° (quantitative yield) [2965].
b.p. ${ }_{12} 140^{\circ}$ [2233].

1-(3,5-Diethyl-2-hydroxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

b.p. ${ }_{12} 138-140^{\circ}$ [2233]. Synthesis

- Preparation by Fries rearrangement of 2,4-diethylphenyl acetate with aluminium chloride (67\%) [2233].

1-(3,5-Diethyl-4-hydroxyphenyl)ethanone

1-(4,5-Diethyl-2-hydroxyphenyl)ethanone

[56394-40-2]	Syntheses
- Preparation by Fries rearrangement of 3,4-dieth- ylphenyl acetate with aluminium chloride without solvent at $120-150^{\circ}(90-100 \%)$ [2943,2965].	
Also obtained by isomerization of 2,4-diethyl-6- hydroxy-acetophenone by heating with aluminium chloride without solvent between 140° and 180° (quantitative yield) [2965].	

1-[2-(1,1-Dimethylethyl)-4-hydroxyphenyl]ethanone

[155982-91-5] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
 Syntheses

- Preparation from 4-hydroxyacetophenone by reaction,
- with isobutylene in the presence of sulfuric acid in autoclave at 65° [3345];
- with tert-butyl chloride in the presence of aluminium chloride [3345].
Crystalline compound [3345].

1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone

[24242-55-5

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Syntheses

- Obtained by UV light irradiation of 2-tert-butylphenyl acetate in benzene (26%) [3346,3347].
- Also obtained (by-product) by reaction of acetyl chloride on bromomagnesium 2-tert-butylphenolate in toluene at r.t. ($<3 \%$) [3348].
pale yellow oil [3346-3348]; b.p. 87° [3347];
${ }^{1} \mathrm{H}$ NMR [3347,3348], IR [3347,3348], MS [3348].

-1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]ethanone

[16928-01-1] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Obtained by UV light irradiation of,
- 3,5-di-tert-butyl-4-hydroxyacetophenone in cyclohexane solution (photochemical partial dealkylation) (> 95\%) [3346,3347];
- 2-tert-butylphenyl acetate in benzene solution (photo-Fries rearrangement) (24\%) [3346,3347].
m.p. $175-176^{\circ}$ [3346,3347]; ${ }^{1} \mathrm{H}$ NMR [3346,3347], IR [3347].

1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone

[113027-08-0]

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Syntheses

- Obtained by Fries rearrangement of 3-tert-butylphenyl acetate,
- in the presence of hafnium triflate in 12 M lithium perchlorate in nitromethane at $50^{\circ}(60 \%)$ [3349];
- in the presence of aluminium chloride without solvent at 145° (68\%) [3350].
- Also obtained by Friedel-Crafts acylation of 3-tert-butylphenol with acetyl chloride in the presence of hafnium triflate in 12 M lithium perchlorate in nitromethane (76\%) [3349].
- Also obtained by acylation of 3-tert-butylphenol with acetic acid in the presence of hafnium triflate in 12 M lithium perchlorate in nitromethane at 50° (66\%) [3351].
- Also refer to: [3352] (Japanese patent).

1-[4-(1,1-Dimethylethyl)-3-hydroxyphenyl]ethanone

[18606-87-6]	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad \mathrm{~mol}$. wt. 192.26
OH	Synthesis
	- Preparation by diazotization of 3-amino-4-tert-butyl-acetophenone, followed by hydrolysis of the diazonium salt obtained [3353].
m.p. 127° [3353].	

1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone

[57373-81-6] $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Preparation by reaction of acetyl chloride on 4-tert-butylanisole with aluminium chloride,
- in methylene chloride, first at 0°, then at r.t. (55\%) [3354];
- in ethylene dichloride, followed by demethylation of the acylanisole obtained with 4% hydrobromic acid in refluxing acetic acid (47-52\%) [3355].
- Also obtained by Friedel-Crafts acylation of 4-tert-butylphenol with acetic anhydride in nitrobenzene in the presence of aluminium chloride at $60^{\circ}(30 \%)$ [2518].
- Preparation by Fries rearrangement of 4-tert-butylphenyl acetate with aluminium chloride [2164,3355-3357],
- without solvent at 120° (57\%) [3356];
- in $1,2,3$-trichloropropane at 120° (60\%) [3357] or in boiling nitroethane (22\%) [2164].
- Preparation by Fries rearrangement of 4-tert-butylphenyl acetate in methylene chloride in the presence of zirconium chloride at r.t. for $48 \mathrm{~h}(52 \%)$. The same reaction performed in a simple ultrasound cleaning bath at r.t. for 10 h leads to 78% yield [2616].
- Also obtained via an intermolecular photo-Fries rearrangement, by irradiation of a solution of pinacolone and 4-tert-butylphenol in benzene for 5 h (42%) [3358].
- Also obtained by reaction of aluminium chloride on 4-(1,1,3,3-tetramethylbutyl) phenyl acetate at 120°, in 1,2,3-trichloropropane (60\%) [3357] or in 1,1,2,2-tetrachloroethane (36\%) [3357].
m.p. $\quad 26^{\circ}$ [2518];
b.p. ${ }_{2} 105-106^{\circ}$ [2164], b.p. ${ }^{122}-123^{\circ}$ [2164], b.p. ${ }_{12} 130^{\circ}$ [3356];
${ }^{1} H$ NMR [3354], IR [3354].

1-(2-Ethyl-6-hydroxy-3,5-dimethylphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Obtained (by-product) by Fries rearrangement of 5-ethyl-2,4-dimethylphenyl acetate with aluminium chloride at $130-140^{\circ}$ [2233].

1-(3-Ethyl-2-hydroxy-4,5-dimethylphenyl)ethanone
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Obtained (by-product) by heating some esters with aluminium chloride. There is simultaneously displacement and rearrangement of alkyl groups during the Fries reaction from 2-ethyl-4,6-dimethyl-phenyl acetate or from 2-ethyl-4,5-dimethylphenyl acetate [2233].

1-(3-Ethyl-2-hydroxy-4,6-dimethylphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Synthesis

- Preparation by Fries rearrangement of 2-ethyl-3,5-dimethyl-phenyl acetate [3359].

1-(3-Ethyl-2-hydroxy-5,6-dimethylphenyl)ethanone
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Preparation by reaction of acetyl chloride on 2-ethyl-4,5-dimethylanisole with aluminium chloride in boiling carbon disulfide (50\%) [2233].
- Preparation by heating 2-ethyl-4,5-dimethylphenyl acetate with aluminium chloride (major product) [2233].
b.p. ${ }_{11} 143-145^{\circ}$ [2233], b.p. ${ }_{12} 145-147^{\circ}$ [2233].

1-(3-Ethyl-6-hydroxy-2,5-dimethylphenyl)ethanone

1-(4-Ethyl-2-hydroxy-3,5-dimethylphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Obtained by heating some esters* with aluminium chloride. There is simultaneously displacement and rearrangement of alkyl groups during the Fries reaction,
- 2-ethyl-4,6-dimethylphenyl acetate (major product) [2233];
- 4-ethyl-2,5-dimethylphenyl acetate (75\%) [2956];
- 4-ethyl-2,6-dimethylphenyl acetate (by-product) [2233];
- 5-ethyl-2,4-dimethylphenyl acetate (major product) [2233].
m.p. $52-53^{\circ}$ [2233];
b.p. ${ }_{12} 145-147^{\circ}$ [2233], b.p. ${ }_{12} 146-152^{\circ}$ [2956], b.p. ${ }_{11} 153-155^{\circ}$ [2233].

1-(4-Ethyl-2-hydroxy-3,6-dimethylphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad \text { mol.wt. } 192.26
$$

Synthesis

- Obtained by oxidation of 6-ethyl-2,3,4,7-tetrame-thyl-benzofuran with chromium trioxide in acetic acid at 50° for 30 min , followed by saponification of the resulting keto ester with potassium hydroxide in boiling aqueous ethanol for 2 h (40\%) [3219].
b.p. ${ }_{20} 165-167^{\circ}$ [3219];
$\mathrm{n}_{\mathrm{D}}^{22}=1.562$ [3219]; IR [3219].

1-(4-Ethyl-3-hydroxy-2,6-dimethylphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Obtained by reaction of acetyl chloride on 6-ethyl-2,4-dimethylanisole with aluminium chloride in boiling carbon disulfide [2233].
b.p. ${ }_{15} 178-182^{\circ}$ [2233].

1-[2-Hydroxy-3-methyl-6-(1-methylethyl)phenyl]ethanone

[162853-19-2]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Syntheses

- Preparation by Fries rearrangement of carvacryl acetate,
- without solvent at 120°, with aluminium chloride (80-86\%) [2947,2948], with titanium tetrachloride (86\%) [2948], with stannic chloride (80\%) [2948] or with zinc chloride (60\%) [2948];
- with aluminium chloride in nitrobenzene at $60^{\circ}(67 \%)$ [2947], in toluene or xylene at 100° (58-61\%) [2947].
- Preparation by reaction of acetyl chloride on carvacrol with aluminium chloride,
- in nitrobenzene at r.t. (49\%) [3326];
- in nitrobenzene in the presence of phosphorous oxychloride and magnesium chloride at r.t. (17\%) [3326].
- Also obtained by UV irradiation of a carvacryl acetate solution in methanol/ water (2:1) at 254 nm at r.t. under nitrogen atmosphere (51\%) [2963].
Viscous oil [2963]; m.p. $100-101^{\circ}$ [3326];
${ }^{1} \mathrm{H}$ NMR [2963], ${ }^{13} \mathrm{C}$ NMR [2963], IR [2963], MS [2963].

1-[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl]ethanone

[52774-08-0] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Preparation by Fries rearrangement of 3-methyl-4-isopropyl-phenyl acetate, with titanium tetrachloride in nitromethane at $20^{\circ}(95 \%)$ [3360] or with aluminium chloride at $125^{\circ}(11 \%)$ [3341,3361].
- Preparation by reaction of acetic anhydride on 3-methyl-4-isopropylphenol (p-thymol) with 70% perchloric acid at $125-135^{\circ}$ (32\%) [2306].
N.B.: All the results of references [2306,3341,3361] were erroneous. Only the Fries rearrangement using titanium tetrachloride leads to the expected ketone and with a good yield [3360]. The ${ }^{1} \mathrm{H}$ NMR spectra confirms the above structure [3360]. In addition, the reported melting point (29°) [3360] is in good agreement with those generally measured for o-hydroxy-ketones (below 80°) compared to those of p-hydroxyketones which are considerably higher (usually 120-200 ${ }^{\circ}$).
m.p. $122^{\circ} 5$ [3341,3361], 110-115 ${ }^{\circ}$ [2306], 29° [3360];
b.p. 153° [3360], b.p. ${ }_{15} 188-192^{\circ}$ [3341];
${ }^{1} H$ NMR [3360] (Sadtler: standard n ${ }^{\circ} 52738$ M);
IR [3341,3360] (Sadtler: standard n ${ }^{\circ} 79797$ K); UV [3360], MS [3360].

1-[2-Hydroxy-5-methyl-3-(1-methylethyl)phenyl]ethanone

[35158-31-7] \quad| (CH2 $)_{2} \mathrm{CH}$ |
| :--- |

yellow oil [2958-2960]; b.p. ${ }_{1-2}$ 70-80́ [2958-2960];
IR [2958-2960], UV [2958-2960], MS [2958-2960].

1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]ethanone

[105337-34-6]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26 Syntheses

- Preparation by reaction of acetic acid on thymol with aluminium chloride at reflux (80\%) [3362].
- Preparation by Fries rearrangement of thymyl acetate,
- without solvent at 120° with titanium tetrachloride (90%) [2948], with aluminium chloride (84-86\%) [2947,2948], with stannic chloride (84\%) [2948] or with zinc chloride (62\%) [2948];
- with aluminium chloride in nitrobenzene (68\%) [2947], in toluene or xylene (59-60\%) [2947].
- Also obtained by photo-Fries rearrangement of thymyl acetate in dilute methanol under nitrogen atmosphere at r.t. (48\%) [2963].

```
viscous oil [2963]; b.p. \(119^{\circ}\) [3362];
\({ }^{1} \mathrm{H}\) NMR [2963], \({ }^{13} \mathrm{C}\) NMR [2963], IR [2963], MS [2963].
```

1-[4-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]ethanone $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
 Syntheses

- Preparation by demethylation of 4-methoxy-2-methyl-3-iso-propylacetophenone with boiling pyridinium chloride (33\%) [3224].
- Also obtained by Fries rearrangement of 3-methyl-2-isopropylphenyl acetate with aluminium chloride in nitrobenzene at r.t. (10\%) [3224].
m.p. 128° [3224].

1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone

[37847-35-1]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26 Syntheses

- Preparation by reaction of acetyl chloride on thymol, with aluminium chloride, in nitrobenzene [2309,2662,3363-3366], (97-100\%) [2662,3363,3364], (75\%) [2151] or with zinc chloride [2310,2311].
- Preparation by Fries rearrangement of thymyl acetate in nitrobenzene,
- with aluminium chloride, at $40-47^{\circ}$ (87-95\%) [2082,2151,3367-3369], (65-75\%) [2086], (51-55\%) [3370] or at 20-25º (80-87\%) [2151,2948];
- at 25°, with titanium tetrachloride (88%), stannic chloride (78%) or zinc chloride (58\%) [2948].
- Preparation from 4-methoxy-2-methyl-5-isopropylacetophenone by demethylation with pyridinium chloride at reflux (73-75\%) [2542,3371,3372].
- Also obtained (by-product) by reaction of aluminium chloride on p-thymyl acetate without solvent at 140° (15\%) [3373].
- Also obtained by UV light irradiation of thymyl acetate in methanol at 25° (41\%) [2315].
- Also obtained (by-product) by reaction of acetyl chloride on 5-methyl-2-isopropylanisole with aluminium chloride in carbon disulfide at r.t. (6\%) [3372].
- Also obtained by irradiation of thymyl acetate in methanol at 254 nm under nitrogen atmosphere at r.t. (24\%) [2963].
m.p. 152-154 ${ }^{\circ}$ [2963], 135° [2315], 125° [2082,2151,2309,2662, 3370-3372],
$122^{\circ} 5-125^{\circ}$ [3367,3369], $122^{\circ} 5$ [3373], 122° [3368]. There is a discrepancy between the different melting points indicated in literature.
b.p. ${ }_{18} 204-207^{\circ}$ [3371], b.p. ${ }_{0.8} 204-207^{\circ}$ [3372];
${ }^{1}$ H NMR [2315,2963,3368],
${ }^{13}$ C NMR [2963], IR [2315,2963,3368], MS [2963,3368].

1-[4-Hydroxy-3-methyl-2-(1-methylethyl)phenyl]ethanone

[61405-65-0] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Refer to: [3374] (Japanese patent).

1-[4-Hydroxy-3-methyl-5-(1-methylethyl)phenyl]ethanone
[713-23-5]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Refer to: [3375] (Japanese patent).

1-[4-Hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone
[37847-37-3]

- at $50^{\circ}(80-90 \%)$ [3378].
- Preparation by Fries rearrangement of 2-methyl-5-isopropylphenyl acetate in nitrobenzene at r.t.,
- with aluminium chloride (84-90\%) [2151,2948], (20\%) [3327];
- with stannic chloride or titanium tetrachloride (86\%) [2948];
- with zinc chloride (58\%) [2948].
- Preparation by reaction of pyridinium chloride on 4-methoxy-5-methyl-2-isopropylacetophenone [3224].
- Also obtained by irradiation of carvacryl acetate in methanol at 254 nm under nitrogen atmosphere at r.t. (15\%) [2963].
m.p. 127° [3327], 120° [2151,3378], 101° [2662,3376], 86-88 ${ }^{\circ}$ [2963].

There is a discrepancy between the different melting points indicated in literature.
${ }^{1} \mathrm{H}$ NMR [2963], ${ }^{13} \mathrm{C}$ NMR [2963], IR [2963], MS [2963].

1-[5-Hydroxy-2-methyl-4-(1-methylethyl)phenyl]ethanone

[126570-37-4]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
Synthesis

- Preparation by reaction of acetyl chloride with isothymol methyl ether in the presence of aluminium chloride in nitrobenzene at r.t. [3368].
m.p. $1^{106-107^{\circ}}{ }^{[3368] ;}{ }^{1} \mathrm{H}$ NMR [3368], IR [3368].

1-[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]ethanone
[105337-35-7] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Preparation by reaction of aluminium chloride on 3-tert-butyl-2-hydroxy-6-methyl-5-isopropylacetophenone in nitromethane at $20^{\circ}(84 \%)$ [3360].
- Claimed to be prepared,
- by Fries rearrangement of 3-methyl-4-isopropylphenyl acetate with aluminium chloride, without solvent at $90^{\circ}(85 \%)$ [3373] or at 125° (43\%) [3341] and in nitrobenzene at $90^{\circ}(>50 \%)$ [3373];
- by reaction of acetyl chloride on 3-methyl-4-isopropylanisole with aluminium chloride in boiling carbon disulfide (41\%) [3361];
- by reaction of acetyl chloride on 3-methyl-4-isopropylphenetole with aluminium chloride in carbon disulfide at r.t. (37\%) [3341];
- by heating 6-methoxy-2-methyl-3-isopropylacetophenone with pyridinium chloride at reflux [3361].
N.B.: All the results of references [3341,3361,3373] were erroneous. Only the first route was correct. The ${ }^{1} \mathrm{H}$ NMR spectra confirms the above structure [3360].
m.p. 70° [3360]; amber-coloured liquid [3341,3361];
b.p. ${ }_{14} 150^{\circ}$ [3341], b.p. ${ }_{19} 153-154^{\circ}$ [3361]; $\mathrm{n}_{\mathrm{D}}^{20}=1.5410$ [3341,3361];
${ }^{1} \mathrm{H}$ NMR [3360] (Sadtler: standard n ${ }^{\circ} 52739$ M);
IR [3341,3360] (Sadtler: standard $\mathrm{n}^{\circ} 79798$ K);
UV [3360], MS [3360].

1-(2-Hydroxy-3-methyl-5-propylphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
 Syntheses

- Preparation by Fries rearrangement of 2-methyl-4-propyl-phenyl acetate with aluminium chloride without solvent at $100-110^{\circ}$ [2957].
- Also obtained by reaction of aluminium chloride on 2-ethyl-6-methyl-4-propylphenyl acetate, with elimination of ethyl group (8\%) [2957].
b.p. ${ }_{12} 136^{\circ}$ [2957].

1-(4-Hydroxy-2-methyl-5-propylphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad \text { mol.wt. } 192.26
$$

Synthesis

- Preparation by Fries rearrangement of 5-methyl-2-propyl-phenyl acetate with aluminium chloride in nitrobenzene at 20° (83\%) [2151].
m.p. 113° [2151]; b.p. ${ }_{18} 194^{\circ}$ [2151].

1-(4-Hydroxy-3-methyl-5-propylphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Syntheses

- Preparation by Fries rearrangement of 2-methyl-6-pro-pyl-phenyl acetate with aluminium chloride without solvent at 130-140 ${ }^{\circ}$ [2957].
- Also obtained by reaction of aluminium chloride on 4-ethyl-2-methyl-6-propylphenyl acetate, with elimination of ethyl group (12\%) [2957].
m.p. 101° [2957].

1-[2-Hydroxy-3-(1-methylpropyl)phenyl]ethanone
(2) mol.wt. 192.26
m.p. 121° [2945].
N.B.: This o-hydroxyketone should be liquid. The authors probably intended to write b.p. 121° instead of m.p. 121°. This b.p. would be in agreement with those of the other homologous o-hydroxyketones, that have been prepared by the authors [2945].

1-[2-Hydroxy-5-(1-methylpropyl)phenyl]ethanone

[84942-39-2] | Syntheses |
| :--- |

1-[4-Hydroxy-3-(1-methylpropyl)phenyl]ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad \text { mol.wt. } 192.26
$$

Synthesis

- Obtained (poor yield) by reaction of acetyl chloride with a suspension of aluminium o-sec-butylphenoxide in benzene in the presence of aluminium chloride, first at r.t. for 12 h , then on a water bath for $2 \mathrm{~h}(8 \%)$ [2945].
m.p. 123° [2945].

1-(2-Hydroxy-3,4,5,6-tetramethylphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Synthesis

- Preparation by acetylation of 2,3,4,5-tetramethylphenol [2025] according to [3379].

1-(2-Butoxy-6-hydroxyphenyl)ethanone

$[63438-68-6]$	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$	mol.wt. 208.26
OH	Synthesis	

- Obtained by reaction of n-butyl iodide with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (40\%) [3242].
m.p. $\quad 59-60^{\circ}$ [3242].

1-(4-Butoxy-2-hydroxyphenyl)ethanone

[57221-60-0] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of butyl iodide on resace-
tophenone with potassium hydroxide in boiling
ethanol [2220,3002], (14\%) [3002].

\end{tabular}

m.p. 43° [3002], 42° [2220].

1-(5-Butoxy-2-hydroxyphenyl)ethanone

1-(3-Butyl-2,6-dihydroxyphenyl)ethanone

[63411-82-5] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Preparation from 2,6-dihydroxyacetophenone according to the method [3241], (70\%) [3242].
m.p. $72-73^{\circ}$ [3242].

1-(5-Butyl-2,4-dihydroxyphenyl)ethanone
[81468-73-7] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Syntheses

- Preparation by reaction of acetonitrile on 4-n-butylresorcinol (Hoesch reaction) (80\%) [2676].
- Preparation from 5-n-butyl-2,4-dimethoxyacetophenone by demethylation with boron tribromide in methylene chloride at r.t. (64%) [2671,2678,2679].
- Preparation by reaction of acetic acid on 4-n-butylresorcinol with zinc chloride (Nencki reaction) [1839,3018].
m.p. $95-96^{\circ}$ [2676], 95° [1839].

1-(3,5-Diethyl-2,4-dihydroxyphenyl)ethanone

 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
 Synthesis

- Obtained by reaction of acetic acid with 2,4-diethylresorcinol in the presence of zinc chloride at 140° for 15 min (Nencki reaction) [3380].
m.p. 115° [3380].

1-(3,5-Diethyl-2,6-dihydroxyphenyl)ethanone

[37467-65-5]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Synthesis

- Preparation by reaction of acetic anhydride with 4,6-diethyl-resorcinol in the presence of boron trif-luoride-acetic acid complex for 2 h at 100° [2997].

1-[2,5-Dihydroxy-6-methyl-3-(1-methylethyl)phenyl]ethanone

 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Obtained by reaction of acetyl chloride on 2-methyl-5-isopropylhydroquinone dimethyl ether with aluminium chloride in carbon disulfide at $35-40^{\circ}$ (6\%) [2542].
b.p. ${ }_{17} 148-149^{\circ}$ [2542].

1-[2,4-Dihydroxy-3-(1-methylpropyl)phenyl]ethanone

[79557-74-7]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 208.26
Synthesis

- Preparation by hydrogenation of 2,4-dihy-droxy-3-(1-methyl-2-propenyl)acetophenone in ethanol using $5 \% \mathrm{Pd} / \mathrm{C}$ as catalyst [3184].
m.p. $\quad 174-175^{\circ}$ [3184].

1-[3-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]ethanone

[35205-23-3]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Synthesis

- Obtained (trace) by reaction of di-tert-butyl diperoxyoxalate with tert-butyl-1,4-benzoquinone in acetaldehyde; the solution was kept in the dark at r.t. ($<1 \%$) [3381].
m.p. $\quad 141-142^{\circ}$ [3381];
${ }^{1} \mathrm{H}$ NMR [3381], IR [3381], UV [3381].

1-[3-(1,1-Dimethylethyl)-2,6-dihydroxyphenyl]ethanone

[91124-33-3]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Synthesis

- Preparation by reaction of 2,6-dihydroxyacetophenone with tert-butanol in the presence of concentrated sulfuric acid in benzene at 55° in a sealed tube [3382].
m.p. $\quad 183-186^{\circ}$ [3382]; ${ }^{1} \mathrm{H}$ NMR [3382].

1-[4-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]ethanone

[35205-24-4]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by reaction of acetic acid with 2-tert-butyl-hydroquinone in the presence of boron trifluoride at $80-90^{\circ}$ (65\%) [3383].
- Preparation by demethylation of 4-tert-butyl-2,5-dimethoxy-acetophenone with boron tribromide in methylene chloride at r.t. (58\%) [3384].
- Also obtained (trace) by reaction of di-tert-butyl diperoxyoxalate with tert-butyl-1,4-benzoquinone in acetaldehyde; the solution was kept in the dark at r.t. ($<1 \%$) [3381].
- Also refer to: [3251,3385].
m.p. 195-1965 [3381], 1935-1955 [3384];
${ }^{1} \mathrm{H}$ NMR [3381,3384], IR [3381,3384], UV [3381], MS [3384].

1-[5-(1,1-Dimethylethyl)-2,3-dihydroxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Obtained by irradiation of a benzene solution of 4-tert-butyl-o-benzoquinone in the presence of a large excess of acetaldehyde (20\%) [3386].
- Also obtained by treatment of a benzene solution of 4-tert-butyl-o-benzoquinone and acetaldehyde in the presence of di-tert-butyl diperoxyoxalate at 38° (26\%) [3386].
m.p. $\quad 82-83^{\circ}$ [3386]; ${ }^{1} \mathrm{H}$ NMR [3386], IR [3386].

1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]ethanone

[140660-31-7] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Preparation by reaction of tert-butyl alcohol with resacetophenone in the presence of zinc chloride at 95° (53\%) [2671].

Oil [2671].

1-(6-Ethoxy-3-ethyl-2-hydroxyphenyl)ethanone

or

1-(2-Ethoxy-3-ethyl-6-hydroxyphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 208.26
$$

or

Syntheses

- Obtained by partial ethylation of 2-acetyl-4-ethylresorcinol with diethyl sulfate in refluxing 2 N sodium hydroxide for 30 min [3015].
- Also obtained by ethylation of 2-acetyl-resorcinol [3015].
m.p. 84° [3015].

1-(2-Ethyl-3,6-dihydroxy-4,5-dimethylphenyl)ethanone

[396639-83-1] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Obtained by diethylcadmium alkylation of 5-acetyl-2,3-di-methylbenzoquinone (71\%) [3387].
m.p. 76° [3387];
${ }^{1} \mathrm{H}$ NMR [3387], ${ }^{13} \mathrm{C}$ NMR [3387].

1-[4-Hydroxy-3-methoxy-5-(1-methylethyl)phenyl]ethanone

[133393-99-4]
 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26 Synthesis

- Preparation from guaiacol by acetylation and isopropylation [3388].

1-(2-Hydroxy-3-methoxy-5-propylphenyl)ethanone

[23343-03-5]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by partial demethylation of 2,3-dime-thoxy-5-propylacetophenone with aluminium chloride in refluxing methylene chloride (67\%) [3230].
- Preparation by catalytic hydrogenation of 5-allyl-2-hydroxy-3-methoxyacetophenone $[3329,3330]$ in the presence of 5% palladium on barium sulfate (97%) [3330].
m.p. $18-19^{\circ}$ [3330], $17-19^{\circ}$ [3329]; b.p. ${ }_{0.2} 105-120^{\circ}$ [3230];
${ }^{1} \mathrm{H}$ NMR [3230,3329], IR [3329], UV [3329].

1-(2-Hydroxy-4-methoxy-3-propylphenyl)ethanone

N.B.: Pr indicates the propyl group $-\mathrm{C}_{3} \mathrm{H}_{7}$ in Chem. Abstr., 92, 6368x (1980) and 98, 54239b (1983), an usual abbreviation. However, in the two references [2326,2327], Pr represented the prenyl group- $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$. Therefore they concern the 2-hydroxy-4-methoxy-3-prenylacetophenone and not the above mentioned 2-hydroxy-4-methoxy-3-propylacetophenone.

1-(2-Hydroxy-4-methoxy-5-propylphenyl)ethanone

[72018-35-0]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by reaction of dimethyl sulfate on 2,4-di-hydroxy-5-propylacetophenone with calcinated potassium carbonate in refluxing acetone [3018].
- Also refer to: [2326,2327].
N.B.: Pr indicates the propyl group- $\mathrm{C}_{3} \mathrm{H}_{7}$ in Chem. Abstr., 92, 6368x (1980) and 98, 54239b (1983), an usual abbreviation. However, in the two references [2326,2327], Pr represented the prenyl group- $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$. Therefore they concern the 2-hydroxy-4-methoxy-5-prenylacetophenone and not the above mentioned 2-hydroxy-4-methoxy-3-propylacetophenone.

1-(2-Hydroxy-5-methoxy-4-propylphenyl)ethanone

1-(4-Hydroxy-2-methoxy-3-propylphenyl)ethanone

1-(4-Hydroxy-3-methoxy-5-propylphenyl)ethanone

1-(5-Hydroxy-4-methoxy-2-propylphenyl)ethanone

[23343-08-0] \quad\begin{tabular}{l}
Syntheses

- Preparation by Fries rearrangement of dihydroengenol

acetate with aluminium chloride in nitrobenzene at

$5^{\circ}(13 \%)$ [3329].
\end{tabular}

1-(2-Butoxy-3,6-dihydroxyphenyl)ethanone

[33539-23-0]	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
OH	Syntheses
	- Easy preparation by reduction of 2-acetyl-3-butoxy-1,4benzoquinone using conventional methods [2869]. - Also obtained in low yield by reaction of 2-acetyl-1,4benzoquinone with an excess of butanol at r.t., with exclusion of light [2869].
m.p. $62^{\circ} 5-63$	2869]; ${ }^{1} \mathrm{H}$ NMR [2869], IR [2869].

1-(2,4-Diethoxy-6-hydroxyphenyl)ethanone

$\begin{array}{ll}\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} & \text { mol.wt. } 224.26 \\ \text { Syntheses } & \end{array}$

- Obtained from phloroacetophenone triethyl ether by heating with aluminium chloride [3085].
- Also obtained by reaction of acetonitrile on phloroglucinol diethyl ether (Hoesch reaction) (18\%) [3042].
- Also obtained by reaction of ethyl iodide [3394,3395] or diethyl sulfate [3396] on phloroacetophenone with potassium carbonate in refluxing acetone (18\%) [3394].
Isolation from natural sources
- By treatment of Sotetsuflavone pentaethyl ether with a methanolic barium hydroxide suspension [3396]. Sotetsuflavone was extracted of the plants of Coniferae and allied orders.
- By reaction of Kayaflavone triethyl ether with barium hydroxide octahydrate in refluxing methanol (55\%) [3397]. Kayaflavone was isolated from dried leaves of Torreya nucifera.
m.p. $86-87^{\circ}$ [3394], 85° [3042,3085], $83-84^{\circ}$ [3396], $81-83^{\circ}$ [3397].

1-(2,6-Diethoxy-4-hydroxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26

Synthesis

- Preparation by reaction of acetonitrile on phloroglucinol diethyl ether (Hoesch reaction) (29\%) [3042].
m.p. $186-187^{\circ}$ [3042].

1-(3,4-Diethoxy-2-hydroxyphenyl)ethanone

[6342-86-5] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26

Syntheses

- Refer to: [3398-3400].

1-(3,6-Diethoxy-2-hydroxyphenyl)ethanone

[88771-47-5] \quad\begin{tabular}{l}
Synthesis

- Preparation by hydrogenolysis procedure on

2-(benzyloxy)-3,6-diethoxyacetophenone with

10\% Pd/C as catalyst, and ethanol as solvent at
$40^{\circ}(99 \%)$ [1884]

\end{tabular}

m.p. 64° [1884]; ${ }^{1} \mathrm{H}$ NMR [1884], IR [1884].

1-(4,5-Diethoxy-2-hydroxyphenyl)ethanone

1-(3,5-Diethyl-2,4,6-trihydroxyphenyl)ethanone

- Preparation by reaction of acetyl chloride with 2,4-diethyl-phloroglucinol in the presence of aluminium chloride in nitrobenzene (28\%) [3401].
- Preparation by reaction of acetonitrile on 2,4-diethyl-phloroglucinol (Hoesch reaction) (39\%) [3402].

```
m.p. 106-109 [3401], 102-105 [3402];
'1H NMR [3401], UV [3401,3402], MS [3401].
```

1-[5-(1,1-Dimethylethyl)-2,3,4-trihydroxyphenyl]ethanone
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26

Synthesis

- Preparation by reaction of tert-butyl chloride with gallacetophenone in the presence of ferric chloride in acetic acid and heating on a steam bath (52\%) [2268].
m.p. 174° [2268]; UV [2268].

1-(3-Ethyl-2-hydroxy-4,6-dimethoxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Synthesis

- Preparation by reaction of acetonitrile on 2-ethyl-3,5-di-methoxyphenol (Hoesch reaction) [3277,3403], (55\%) [3277].
m.p. 111° [3403], 66-68 ${ }^{\circ}$ [3277].

1-(3-Ethyl-4-hydroxy-2,6-dimethoxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Synthesis

- Obtained (poor yield) by reaction of acetonitrile on 2-ethyl-3,5-dimethoxyphenol (Hoesch reaction) (7\%) [3277].
m.p. $184-186^{\circ}$ [3277].

1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)ethanone

[21722-31-6]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Syntheses

- Preparation by adding of an ethereal solution of diazomethane to a methanolic solution of phloroacetophenone (25\%) [2437]; this compound was obtained from 3,5-dimethylphloroacetophenone or from 2,6-dihydroxy-4-methoxy-3,5-dimethylacetophenone in the same conditions [2437].
- Also obtained (by-product) from phloroacetophenone by reaction with methyl iodide in the presence of potassium carbonate in refluxing acetone (6\%) [3279].

Isolation from natural sources

- By chromatography of Melaleuca cajeputi oil; this oil was obtained from the leaves of Melaleuca cajeputi Powell (Myrtaceae) (10\%) [3118].
Crystalline compound [3118]; m.p. 51-52́ [3279], 51 [2437];
${ }^{1} \mathrm{H}$ NMR [2437,3118], IR [2437,3118], UV [2437,3118], MS [3118].

1-[2-Hydroxy-4-(2-hydroxybutoxy)phenyl]ethanone

1-[2-Hydroxy-3-methoxy-5-(1-methylethoxy)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Synthesis

- Preparation by partial alkylation of 2,5-dihydroxy-3-methoxyacetophenone with isopropyl sulfate in alkaline medium (41\%) [2848].
m.p. $70-72^{\circ}$ [2848].

1-[2-Hydroxy-4-methoxy-6-(1-methylethoxy)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Syntheses

- Preparation by partial demethylation of 2,4-dimethoxy-6-isopropoxyacetophenone with aluminium bromide in acetonitrile at 0° (95\%) [2747].
- Also refer to: [3272].
m.p. 65-66 [2747].

1-[2-Hydroxy-6-methoxy-4-(1-methylethoxy)phenyl]ethanone

[119136-15-1] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
 Synthesis

- Preparation by action of 2-bromopropane with 2,4-di-hydroxy-6-methoxyacetophenone in the presence of potassium carbonate in DMF for 2 h at $100-110^{\circ}$ (87%) [2830].
m.p. $\quad 71-72^{\circ}$ [2830]; ${ }^{1} \mathrm{H}$ NMR [2830], IR [2830], MS [2830].

1-(2-Hydroxy-4-methoxy-6-propoxyphenyl)ethanone

1-(2-Hydroxy-6-methoxy-3-propoxyphenyl)ethanone

[126405-77-4]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Synthesis

- Preparation by adding 2-hydroxy-3-iodo-6-methoxyacetophenone and cuprous iodide to a solution of sodium propoxide, previously prepared from propyl alcohol and sodium hydride in DMF [2524].
m.p. $\quad 90^{\circ}$ [2524]; ${ }^{1} \mathrm{H}$ NMR [2524], IR [2524].

1-[4-Hydroxy-3-[[(1-methylethyl)sulfonyl]methyl]phenyl]ethanone
[56490-64-3]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 256.32
Synthesis

- Obtained by reaction of 3-chloromethyl-4-hydroxyacetophenone with magnesium isopropylsulfinate in refluxing dilute methanol for 18 h (83%) [2544].
m.p. $\quad 96^{\circ} 5-100^{\circ}$ [2544].

1-[4-Hydroxy-3-[3-(methylsulfonyl)propyl]phenyl]ethanone
[56490-61-0]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 256.32
Synthesis

- Obtained by Fries rearrangement of 2-(methylsul-fonyl-propyl)phenyl acetate with aluminium chloride in nitrobenzene, first at r.t. for 1 h , then at $50-60^{\circ}$ for 1.5 h (48\%) [2544].
m.p. $140-141^{\circ}$ [2544].

1-[4-Hydroxy-3-[(propylsulfonyl)methyl]phenyl]ethanone

[56490-63-2]	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ mol.wt. 256.32
H	Synthesis
	- Obtained by reaction of 3-chloromethyl-4-hydroxyacetophenone with magnesium propylsulfinate in refluxing aqueous methanol for $18 \mathrm{~h}(36 \%)$ [2544].
m.p. $73^{\circ} 5-76^{\circ}$ [254	

1-(2,4-Diethoxy-3,6-dihydroxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Synthesis

- Preparation from 2,4-diethoxy-6-hydroxyacetophenone by persulfate oxidation [2851,3394,3395], (Elbs reaction) (21\%) [3394].
m.p. $130-131^{\circ}$ [3394].

1-[2,4-Dihydroxy-6-(4-hydroxybutoxy)phenyl]ethanone

[121379-45-1]

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 240.26 \\
& \text { Isolation from natural sources }
\end{aligned}
$$

- From the bulbs of Dioscorea bulbifera [3404].

1-[3,6-Dihydroxy-2-methoxy-4-(1-methylethoxy)phenyl]ethanone
[119136-16-2]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26 Synthesis

- Preparation from 4-(allyloxy)-2-hydroxy-6-methoxy-acetophenone by persulfate oxidation (Elbs reaction) (20\%) [2830].
oil [2830]; ${ }^{1} \mathrm{H}$ NMR [2830], IR [2830], MS [2830].
1-[2,4-Dihydroxy-6-(methoxymethoxy)-3,5-dimethylphenyl]ethanone
[175465-97-1]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Synthesis
- Refer to: [3405] (Japanese patent).

1-(3-Ethoxy-2-hydroxy-4,6-dimethoxyphenyl)ethanone
[89880-47-7]
m.p. $74-75^{\circ}$ [3131], $71^{\circ} 5-72^{\circ} 5$ [3302];
${ }^{1} \mathrm{H}$ NMR [3131,3302], IR [3131,3302], MS [3131].

1-(4-Ethoxy-2-hydroxy-3,6-dimethoxyphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 240.26
$$

Synthesis

- Preparation by Friedel-Crafts acylation of 1,3-diethoxy-2,5-dimethoxybenzene with acetyl chloride in the presence of aluminium chloride in ether (81\%) [3313].
m.p. $106-107^{\circ}$ [3313].

1-(5-Ethoxy-2-hydroxy-3,4-dimethoxyphenyl)ethanone

[69616-62-2] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26

Synthesis

- Preparation by reaction of ethyl iodide with 2,5-dihydroxy-3,4-dimethoxyacetophenone in the presence of potassium carbonate in refluxing acetone (57\%) [2818].
oil [2818]; b.p. ${ }_{0.1} 120^{\circ}$ [2818];
${ }^{1} \mathrm{H}$ NMR [2818], IR [2818].

1-(6-Ethoxy-2-hydroxy-3,4-dimethoxyphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 240.26
$$

Synthesis

- Preparation by reaction of acetyl chloride on antiarol ethyl ether with aluminium chloride [3406].
m.p. $97-98^{\circ}$ [3406].

1-[6-Hydroxy-3-(2-hydroxyethyl)-2,4-dimethoxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Synthesis

- Obtained from 6-(2'-hydroxyethyl)-5,7-dimethoxy-2-methylchromanone by degradation with potassium hydroxide in refluxing ethanol under nitrogen (32\%) [3407].
m.p. 133-134 ${ }^{\circ}$ [3407]; ${ }^{1} \mathrm{H}$ NMR [3407], UV [3407].

1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]phenyl]ethanone

[123253-31-6]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
mol.wt. 240.26

Syntheses

- Preparation by reaction of 2-meth-oxyethoxy-methyl chloride with resacetophenone,
- in the presence of N, N-diisopropylethylamine,
in DMF at 0° for 1.5 h (83\%) [3408] or
in methylene chloride at r.t. for $20 \mathrm{~h}(48 \%)$ [3409];
- in the presence of potassium carbonate in acetone for 20 h at 20° (65-70\%) [3107];
- also obtained in two steps: first, by adding sodium hydride (11 mmol) to a solution of resacetophenone (10 mmol) in DMF during $15-30 \mathrm{~min}$ at 20°; then, addition of methoxyethoxymethyl chloride (10 mmol) to the mixture between 0° and $5^{\circ}(80-85 \%)$ [3107].
Pasty solid [3409]; TLC [3107];
${ }^{1} \mathrm{H}$ NMR [3107,3408,3409], ${ }^{13} \mathrm{C}$ NMR [3107,3408], IR [3107,3409], MS [3107,3408].

1-[3-Hydroxy-4-[(2-methoxyethoxy)methoxy]phenyl]ethanone

[101140-09-4]
 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Synthesis

- Preparation by action of sodium
methoxide with the crude 3-(benz-
oyloxy)-4-(2-methoxy-ethoxy)
methoxyacetophenone (SM) in THF at r.t. in a nitrogen atmosphere for 30 min (92%). SM was previously prepared from 3-(benzoyloxy)-4-hydroxyacetophenone by etherification with 2-methoxyethoxymethyl chloride in the presence of N, N diisopropylethylamine in methylene chloride at r.t. [3410].
colourless oil [3410]; ${ }^{1} \mathrm{H}$ NMR [3410], IR [3410], MS [3410].

1-(4-Ethoxy-2,5-dihydroxy-3,6-dimethoxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 256.26

Synthesis

- Preparation from 2-hydroxy-4-ethoxy-3,6-dime-thoxy-acetophenone by persulfate oxidation (Elbs reaction) (31\%) [3313].

1-[6-Hydroxy-2,4-dimethoxy-3-(methoxymethoxy)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 256.26
Synthesis

- Obtained from 3,6-dihydroxy-2,4-dimethoxyacetophenone by methoxymethylation with chloromethyl methyl ether in the presence of diisopropylamine in methylene chloride [3411,3412].

1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]ethanone

[65490-09-7]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 256.26
Syntheses

- Obtained by reaction of methoxymethyl chloride with phloroacetophenone in the presence of potassium carbonate,
- in acetone at r.t. for $2.5 \mathrm{~h}(47 \%)$ [3106];
- in refluxing acetone for $15 \mathrm{~min}(43 \%)$ [3413] or for 1 h (60\%) [3294].
- Also refer to: [3414-3420].
m.p. 52° [3413], 45-46 5 [3106]; ${ }^{1} \mathrm{H}$ NMR [3106,3413], IR [3106,3413], UV [3413].

1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$	mol.wt. 256.26
Syntheses	

- Obtained by partial demethylation of 2,3,4,5,6-pentamethoxyacetophenone (I),
- with boron trifluoride etherate in acetic acid at 80°. (I) was obtained by metallation of pentamethoxybenzene, followed by treatment of the intermediate aryllithium compound with acetic anhydride at r.t. (85\% yield) [2564];
- with aluminium chloride in ethyl ether at r.t. for 3 h (21\%) [3318];
- with aluminium chloride in acetonitrile for 6 h at 30° (75\%) [2747].
- Also obtained by acylation of pentamethoxybenzene with acetyl chloride in the presence of aluminium chloride in ethyl ether [2770,2820,3323,3421], (25-34\%) [2770,2820] or first for 14 h at r.t., then for 2 h at reflux (14%) [3323].
- Also obtained by adding a methanolic solution of 2,5-dihydroxy-3,4,6trimethoxyacetophenone to an ethereal solution of diazomethane and keeping the mixture overnight in a refrigerator [3299,3307], (80\%) [3299].
- Also refer to: [3422-3427].

Isolation from natural sources

- By alkaline degradation of two substituted flavones with potassium hydroxide in boiling aqueous ethanol for 17-20 h under nitrogen,
(a) From Lucidin dimethyl ether (5,6,7,8-tetramethoxy-3',4'-methylenedioxy flavone) (m.p. $171-172^{\circ}$) (SM) (60% yield) [3428]. SM was obtained from two origins:
- Isolation from ground root of Lindera lucida (Lauraceae).
- Also prepared by methylation of Lucidin (5,7-dihydroxy-6,8-dimethoxy-3',4'-methylenedioxy-flavone) (m.p. 255-257), itself isolated from ground root of Lindera lucida.
(b) From 5,6,7,8-tetramethoxyflavone (m.p. 112-113) (SM), [3429], (53\% yield) [3428]. SM was also isolated from the above mentioned plant.
Yellow oil [3323,3421], light orange oil [3428], oil [2564], liquid [3299,3307];
b.p. 115° [3299,3307], b.p. ${ }_{0.2} 130^{\circ}$ [3428], b.p. ${ }_{14} 183^{\circ}$ [2820], b.p. ${ }_{15} 183^{\circ}$ [3421];
${ }^{1} H$ NMR [3323,3429], IR [3323,3429], UV [3323,3428,3429].
1-[3-Amino-4-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27

Syntheses

- Preparation by reduction of 4-hydroxy-5-methyl-3-nitro-2-isopropylacetophenone,
- with sodium hydrosulfite in aqueous sodium hydroxide solution at $80-90^{\circ}$ (92\%) [3327];
- with tin in dilute hydrochloric acid (46\%) [3327].
m.p. 100° [3327].

1-[3-Amino-4-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone (Hydrochloride) $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 243.73

Synthesis

- Preparation by reaction of hydrochloric acid on 3-amino-4-hydroxy-5-methyl-2-isopropylacetophenone in ethyl ether [3327].
m.p. $199-200^{\circ}$ (d) [3327].

1-[3-Amino-6-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27
 Syntheses

- Preparation by reduction of 2-hydroxy-3-methyl-5-nitro-6-isopropylacetophenone,
- with sodium hydrosulfite in aqueous sodium hydroxide solution (87\%) [3326];
- with tin in dilute hydrochloric acid (50\%) [3326].
m.p. 117° [3326].

1-[3-[(Dimethylamino)methyl]-4-hydroxy-5-methylphenyl]ethanone

[82506-14-7]

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$
mol.wt. 207.27
Synthesis

- Preparation by aminomethylation of 4-hydroxy-3-methyl-acetophenone with dimethylamine and formalin in water at $35-40^{\circ}$ for 4 h (64\%) [3217].
m.p. 44° [3217]; ${ }^{1} \mathrm{H}$ NMR [3217], IR [3217].

1-[2-[(1,1-Dimethylethyl)amino]-5-hydroxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$
molwt. 207.27

Synthesis

- Obtained by UV irradiation of a solution of 3-methyl-N-tert-butylanthranilium perchlorate (SM) in 10% aqueous acetonitrile (64\%) [3430]. SM was prepared according to [3431].
yellow oil [3430]; TLC [3430];
${ }^{1} \mathrm{H}$ NMR [3430], ${ }^{13} \mathrm{C}$ NMR [3430], IR [3430], MS [3430].
1-[2,4-Dihydroxy-5-(3-methyl-3-buten-1-ynyl)phenyl]ethanone

[193333-25-4] \quad\begin{tabular}{l}
Synthesis

Obtained (by-product) by reaction of boron
tribromide (4 equiv.) with 2,4-bis(benzyloxy)-
5-(3-hydroxy-3-methyl-butynyl)acetophenone
in methylene chloride for 5 min at 0° (14\%)
[3432].

\end{tabular}

m.p. $\quad 110-112^{\circ}$ [3432]; ${ }^{1} \mathrm{H}$ NMR [3432].

1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-3-iodophenyl]ethanone
[82538-73-6]

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{IO}_{3} \quad$ mol.wt. 344.15
Synthesis

- Preparation by reaction of 3-chloro-3-methylbut-1-yne with 2,4-dihydroxy-3iodoacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (65\%) [2064].
m.p. $\quad 100-101^{\circ}$ [2064]; ${ }^{1} H$ NMR [2064].

1-[4-Hydroxy-3-(3-methyl-1,3-butadienyl)phenyl]ethanone
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 202.10

Isolation from natural sources

- From the roots of Helianthella uniflora (Heliantheae) [3433].
m.p. $137-138^{\circ}$ [3433];
${ }^{1} \mathrm{H}$ NMR [3433], IR [3433], UV [3433], MS [3433].

1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxyphenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 218.25

Synthesis

- Obtained by treatment of resacetophenone with 3-chloro-3-methylbutyne in DMF in the presence of potassium carbonate and potassium iodide for 12 h at 75° (29\%) [3434].
m.p. $62^{\circ} 5$ [3434]; ${ }^{1} \mathrm{H}$ NMR [3434], IR [3434].

1-[4-(Acetyloxy)-2-hydroxy-3-(2-propenyl)phenyl]ethanone

1-[2,4-Dihydroxy-5-(3-hydroxy-3-methyl-1-butynyl)phenyl]ethanone
[193333-24-3] $\quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 234.25

Synthesis

- Obtained (by-product) by reaction of boron tribromide (4 equiv.) with 2,4-bis(benzyloxy)-5-(3-hydroxy-3-methyl-butynyl)acetophenone in methylene chloride for 5 min at $0^{\circ}(18 \%)$ [3432].
m.p. $\quad 148-150^{\circ}$ [3432]; ${ }^{1} \mathrm{H}$ NMR [3432].

1-[2,4-Dihydroxy-3-iodo-5-(3-methyl-2-butenyl)phenyl]ethanone

[82538-74-7]	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{3} \quad$ mol.wt. 346.16
	Synthesis
	- Obtained by reaction of 2-methylbut-3-en-2-ol with 2,4-di-hydroxy-3-iodoacetophenone in the presence of boron trifluoride etherate in dioxane at $35-40^{\circ}$ (15\%) [2064].
m.p. $135-137^{\circ}$ [2064];	${ }^{1} \mathrm{H}$ NMR [2064].

1-[2-Hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[310402-63-2]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
Synthesis

- Refer to: [3435] (compound 76).

1-[3-Hydroxy-2-(3-methyl-2-butenyl)phenyl]ethanone

[154520-54-4]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
Isolation from natural sources

- From the aerial parts of Helichrysum stoechas (L.) grown in Libya [3436].

1-[4-Hydroxy-3-(3-methyl-1-butenyl)phenyl]ethanone

[35816-89-8]	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
OH	Synthesis
	- Preparation by migration of a $\mathrm{C}=\mathrm{C}$ double bond in 4-hydroxy-3-(2-isopentenyl) acetophenone by treatment with potassium hydroxide in triethylene glycol (Triglykol) at 150° (70\%) [3437] (allylic/propenylic rearrangement).
b.p. 120° [3437]; ${ }^{1} \mathrm{H}$ N	[3437].

1-[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone

26932-05-8]	Syntheses Obtained by reaction of 2-methyl-3-buten-2-ol with 4-hydroxyacetophenone in the presence of boron trifluoride etherate [2060,3438], (15\%) [3438].

- Preparation by thermal Claisen rearrangement of 4-(2,2-di-methylallyloxy)acetophenone in diethylaniline at 165° (79\%) [3437].

Isolation from natural sources

- From the aerial parts of Ophryosporus chilca (Compositae, tribe Eupatorieae) [3439].
- From the roots of Flourensia cernua DC (Compositae) [3440].
- From Artemis campestris silbsp. glutinosa (Compositae) [3441].
- From Senecio phylolleptus Cuatr., Senecio viridis Phil. and Senecio nutans sch. Bip. (Asteraceae) native of northern Chile [3442].
- From Senecio nutans sch. Bip. [3443].
- From the aerial parts of Stevia hyssopifolia Phil. var. hyssopifolia [3444].
- From the aerial parts of Baccharis santelicis Phil. (Compositae, tribe Cistereae, subtribe Baccharidinae) [3433].
- From sliced yacon tubers after inoculation with the bacterium Pseudomonas cichorii and incubation at 20° for 3 days, then extraction with acetone. Yacon (Polymnia sonchifolia) (Compositae) is cultivated in South America and has recently been introduced into Japan [3445].
- From the aerial parts of Helichrysum italicum (Compositae) (major compound) [3446].
- From the aerial parts of Helichrysum stoechas (Compositae) [3447] (trace amounts) [3446].
- From the aerial parts of Werneria poposa [3448].
- From the roots of Helianthella uniflora (Compositae) [3433,3449].
- From the leaves of Ageratina altissima (L) K \& K (Compositae) [3450].
- Also refer to: [3451].

Amorphous [3445]; TLC [3439];
m.p. $94-95^{\circ}$ [3438], $93-94^{\circ}$ [3433,3437], $92-93^{\circ}$ [3447], $90-91^{\circ}[3442], 90^{\circ}$ [3441];
${ }^{1}$ H NMR [3433,3438,3441,3442,3445-3448],
${ }^{13}$ C NMR [3442,3445,3446,3448], IR [3433,3438,3441,3442,3445-3447],
UV [3433,3438,3441,3445-3447],
MS [3433,3441,3442,3445-3448].

1-[3-(2-Butenyl)-2-hydroxy-4-methoxyphenyl]ethanone

[91664-24-3]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis
N.B.: In the paper [3325], the formula of the compound $\mathbf{1 3}$ displayed page 131, which is the formula of the titled compound $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$, is incomplete and erroneous. It actually deals with
another compound $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$, the 1-[3-(2-butenyl)-2-hydroxy-4,6-dimethoxyphenyl]ethanone, which is described in the experimental part. This is detailed just below the formula, page 131 .

1-[2,4-Dihydroxy-3-(3-methyl-1-butenyl)phenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 220.27
Syntheses

- Obtained by reaction of 2-methylbut3 -en-2-ol with resacetophenone in the presence of boron trifluoride etherate [3452] according to the method [3453].
- Also refer to: [3454] (Chinese paper).

1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone

[19825-40-2]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 220.27
Syntheses

- Preparation by reaction of prenyl bromide on resacetophenone with potassium hydroxide solution at r.t. [3455-3457], (21-25\%) [3455,3456].
- Preparation by reaction of 2-methylbut-3-en-2-ol with resacetophenone in the presence of boron trifluoride etherate in dioxane at r.t. [2326,3453,3458], (33\%) [3458], (13\%) [3453].
- Isoprenylation of resacetophenone with prenyl bromide by photochemical method in the presence of benzoyl peroxide in dry benzene for 8 h (40\%) [3455].
- Preparation from 6-acetyl-3-phenylthio-2,2-dimethylchroman-5-ol,
- by reaction with potassium naphthalenide in tetrahydrofuran at r.t. (59\%) [3459] or by reaction with lithium naphthalenide in tetrahydrofuran at -32° for $30 \mathrm{~min}(38 \%)$ [3459];
- by electrolysis using a mercury cathode, and acetonitrile-tetraethylammonium bromide electrolyte (49\%) [3459].
- Also obtained by reaction of potassium naphthalenide with 6-acetyl-2,2-dime-thyl-3-phenyl-sulfonylchroman-5-ol in tetrahydrofuran at r.t. (25\%) [3459].

Isolation from natural sources

- By cleavage of isobavachin with alkali. The isobavachin is a flavonoid compound obtained from Psoralea Corylifolia Linn. [3460].
m.p. 162° [3457], $157-158^{\circ}$ [3456], $155-156^{\circ}[3453,3460], 149-151^{\circ}$ [3459], 148° [3458];
${ }^{1}$ H NMR [2326,2327,3457-3460], IR [3456-3458,3460], UV [2326,3456], MS [3459].

1-[2,4-Dihydroxy-5-(3-methyl-1-butenyl)phenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27 Synthesis

- Obtained by reaction of 2-methylbut-3-en-2-ol with resacetophenone in the presence of boron trifluoride etherate [3452] according to the method [3453].

1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone

[28437-37-8]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Syntheses

- Preparation by reaction of 2-methylbut-3-en-2-ol with resacetophenone in the presence of boron trifluoride etherate [2326,3453,3458], (20-29\%) [3437,3453].
- Preparation from 2,4-dihydroxy-3-iodo-5-prenyl-acetophenone by elimination of iodine with zinc dust and concentrated hydrochloric acid in refluxing ethanol (79\%) [2064].
- Preparation by reaction of prenyl bromide with resacetophenone in potassium hydroxide solution at r.t. [3457].
m.p. 146° [3457], $144-145^{\circ}$ [2064,3453]; ${ }^{1} \mathrm{H}$ NMR [2326,2327,3457], IR [3457], UV [2326].

1-[3,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone

[186966-70-1]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis

- Obtained (poor yield) by rearrangement of 4-(dimethyl-allyloxy)-3-hydroxyacetophenone in the presence of montmorillonite KSF ($<10 \%$) [3461].

1-[4-Hydroxy-3-(3-hydroxy-3-methyl-1-butenyl)phenyl]ethanone
[35816-94-5]
[26931-61-3] (E) $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27

Isolation from natural sources

- From the aerial parts of Ophryosporus floribundus (Compositae, tribe Eupatorieae) [3462].
- From the leaves and the roots of Ageratina altissima (L.) K. et R. (Compositae) [3450].
- From the roots of Helianthella uniflora (tribe Heliantheae) [3433].
${ }^{1} H$ NMR [3433], IR [3433], UV [3433], MS [3433].

1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone

[68034-24-2]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27 Isolation from natural sources

- From the aerial parts of Artemisia campestris, L., subsp. glutinosa (Gay ex Besser), Batt (Compositae) [3463].

1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (E)
[73869-86-0]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis

- Obtained by alkaline hydrolysis of 3-[4-ace-toxyisopent-2(E)-enyl]-4-hydroxyacetophenone (SM) (viscous oil) with 10% potassium hydroxide in methanol (quantitative yield) [3464]. SM was isolated from the Artemisia campestris L., subsp. glutinosa (Gay ex Besser), Batt.

Isolation from natural sources

- From the aerial parts of Artemisia campestris L., subsp. glutinosa (Gay ex Besser), Batt (Compositae), (1.1\%) [3465], (11.2\%) [3441].
- From Artemisia monosperma [3466].
m.p. 84-85 ${ }^{\circ}$ [3465];
${ }^{1} \mathrm{H}$ NMR [3441,3465], IR [3465], UV [3465], MS [3441,3465].
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (Z)
[123614-13-1]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27

Synthesis

- Obtained by alkaline hydrolysis of 3-[4-ace-toxyisopent-2(Z)-enyl]-4-hydroxyacetophenone (SM) (viscous oil) with 10% potassium hydroxide in methanol (quantitative yield) [3464]. SM was isolated from the Artemisia campestris L., subsp. glutinosa (Gay ex Besser), Batt.

Isolation from natural sources

- From the aerial parts of Artemisia campestris L., subsp. glutinosa (Gay ex Besser), Batt (Compositae) [3463], (44.8\%) [3441].
- From Artemisia monosperma [3466].

Viscid oil [3441]; ${ }^{1} \mathrm{H}$ NMR [3441], IR [3441], UV [3441], MS [3441].
1-[2-Hydroxy-5-methoxy-4-methyl-3-(2-propenyl)phenyl]ethanone
[43037-66-7]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis

- Preparation by thermal Claisen rearrangement of 2-(allyloxy)-5-methoxy-4-methylacetophenone in N, N-dimethylaniline at $170^{\circ}(42 \%)$ [3467].

1-[2-Hydroxy-5-methoxy-6-methyl-3-(2-propenyl)phenyl]ethanone

[43037-68-9]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis

- Obtained by thermal Claisen rearrangement of 2-(allyloxy)-5-methoxy-4-methylacetophenone in N, N-dimethylaniline at 170°, with a [2368,,3466] shift of the aromatic acetyl substituent (22\%) [3467].

1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]ethanone

[24672-83-1]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Syntheses

- Preparation by reaction of prenyl bromide on resacetophenone [3468],
- in the presence of potassium carbonate in refluxing acetone [2326,3455,3456,3469], (69\%) [3456], (40\%) [3455];
- in the presence of potassium hydroxide in methanol, at $0^{\circ}(14 \%)$ or at r.t. (4\%) [3456];
- by photochemical method in the presence of benzoyl peroxide in dry benzene for 8 h (10\%) [3455].
m.p. $\quad 46-47^{\circ}$ [3456]; ${ }^{1} \mathrm{H}$ NMR [2326,2327,3456], IR [3456], UV [2326,3456].

1-[3-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]ethanone

[186966-69-8]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 220.27
Synthesis

- Preparation by reaction of 3,3-dimethylallyl chloride (2.5 equiv.) with 4-acetylcatechol in the presence of sodium carbonate and catalytic amounts of TBAI in DMF at r.t. (73\%) [3461].

1-[3-(Acetyloxy)-6-hydroxy-2,4,5-trimethylphenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Syntheses

- Preparation by reaction of boron trifluoride-acetic acid complex,
- with trimethylhydroquinone [2994,3249], (90\%) [3249];
- with trimethylhydroquinone diacetate in ethylene dichloride via a Fries rearrangement (99\%) [3250].
- Also refer to: [3251].
m.p. $\quad 75^{\circ}$ [2994]; ${ }^{13} \mathrm{C}$ NMR [3250].

1-[3-(2-Butenyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone

[91664-22-1]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
Synthesis

- Preparation by condensation of 2,4-dihy-droxy-6-methoxyacetophenone with 1, 3 -butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}$ (37\%) [3325].
m.p. $\quad 134-135^{\circ}$ [3325]; ${ }^{1} \mathrm{H}$ NMR [3325].

1-[3-(2-Butenyl)-4,6-dihydroxy-2-methoxyphenyl]ethanone
[91664-23-2] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Synthesis

- Preparation by condensation of 2,4-dihydroxy-6-methoxy-acetophenone with 1,3-butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}$ (41%) [3325].
m.p. $1^{128-129^{\circ}}$ [3325]; ${ }^{1} \mathrm{H}$ NMR [3325].

1-[2,4-Dihydroxy-6-methoxy-3-(1-methyl-2-propenyl)phenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Synthesis

- Obtained, or else its isomer (see below), (by-product) by condensation of 2,4-dihy-droxy-6-methoxyacetophenone with 1,3butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}(7 \%)$ [3325].
m.p. $\quad 130-140^{\circ}$ [3325]; ${ }^{1} \mathrm{H}$ NMR [3325].

1-[4,6-Dihydroxy-2-methoxy-3-(1-methyl-2-propenyl)phenyl]ethanone
[91664-21-0]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Synthesis

- Obtained, or else its isomer (see above), (by-product) by condensation of 2,4-dihydroxy-6-methoxyacetophenone with 1,3-butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}$ (7\%) [3325].
m.p. $130-140^{\circ}$ [3325]; ${ }^{1} \mathrm{H}$ NMR [3325].

1-[2-Hydroxy-3,4-dimethoxy-5-(2-propenyl)phenyl]ethanone

[75254-93-2] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Synthesis

- Preparation by thermal Claisen rearrangement of 2-(allyloxy)-3,4-dimethoxyacetophenone without solvent at 190-200 [3470].

1-[2-Hydroxy-4,6-dimethoxy-3-(2-propenyl)phenyl]ethanone

[35109-98-9]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Synthesis

- Preparation by thermal Claisen rearrangement of 2-(allyloxy)-4,6-dimethoxyacetophenone in refluxing N, N-dimethylaniline (90\%) [3078].
m.p. $85-87^{\circ}$ [3078]; ${ }^{1} \mathrm{H}$ NMR [3078], IR [3078].

1-[3-Hydroxy-4,6-dimethoxy-2-(2-propenyl)phenyl]ethanone

[100612-87-1]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Syntheses

- Preparation by thermal Claisen rearrangement of 5-(allyloxy)-2,4-dimethoxyacetophenone,
- in boiling quinoline (65\%) [2849];
- in glycerol at 200° (87\%) [2849];
- by pyrolysis at 160° for 2 h under nitrogen [3471].
- Preparation by reaction of methyl iodide on 2-allyl-3,6-dihydroxy-4-methoxyacetophenone with potassium carbonate in acetone (41\%) [2849].
m.p. 110° [2849].

1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone

[111841-07-7]

- Also refer to: [3473]. m.p. $76-78^{\circ}$ [3472].
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27 Syntheses
- Obtained by reaction of 2,3-dihydropyran with resaceto-phenone in the presence of concentrated hydrochloric acid (some drops) at r.t. overnight (33\%) [3472]. In later runs, p-toluenesulfonic acid was used as catalyst.

1-[2-Hydroxy-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone

[63854-17-1] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
 Syntheses

- Obtained by reaction of 2,3-dihydropyran with 2,6-dihydroxyacetophenone in the presence of p-toluenesulfonic acid in dioxane at r.t. for 3 h (64\%) [3474] or for 20 h (69\%) [2368].
- Also refer to: [3473].

Pale yellow crystals [3474];
${ }^{1} \mathrm{H}$ NMR [2368,3474], ${ }^{13} \mathrm{C}$ NMR [2368,3474], MS [3474].

1-[2,3,4-Trihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone

[35817-18-6]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Synthesis

- Obtained by reaction of 2-methyl-3-buten-2-ol with gallacetophenone in the presence of boron trifluoride etherate in dioxane $[3437,3438]$ at 50-60ํ (21\%) [3438].
m.p. $74-75^{\circ}$ [3438]; ${ }^{1} \mathrm{H}$ NMR [3438], IR [3438], UV [3438].

1-[2,3,4-Trihydroxy-6-(3-methyl-2-butenyl)phenyl]ethanone

[149876-26-6]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Synthesis

- N.B.: The titled ketone is mentioned in Chem. Abstr. Vol. 119, 1993-FORMULA INDEX, p. 1525F under the reference 172870a. However, the original publication [3475] obtained from this reference does not include the expected ketone. This publication [3475] concerns only an isomeric ketone, the 1-[2,3,4-tri-hydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone [35817-18-6] already described [2018], p. 240.

1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[27364-71-2]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Syntheses

- Preparation from 2,4-dihydroxy-6-methoxy-5-iso-pentenylacetophenone (Acronylin) by demethylation with aluminium chloride in refluxing benzene [3476].
- Also obtained by reaction of 2-methylbut-3-en-2-ol with phloroacetophenone in the presence of boron trifluoride etherate in dioxane at $20^{\circ}(10 \%)$ [3477].
- Also obtained by reaction of prenyl bromide with phloroacetophenone in solution of methanol in the presence of potassium hydroxide (26\%) [3117] or sodium methoxide at r.t. (5\%) [2878].
m.p. 182° [3476], 172° [2878,3117], $171-173^{\circ}$ [3477], $169-171^{\circ}$ [2879];
${ }^{1} \mathrm{H}$ NMR [2879,3476], UV [3477].

1-[2,4-Dihydroxy-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone

 $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27

Syntheses

- Preparation by reaction of 3,4-dihydro-2H-pyran,
- on phloroacetophenone with p-toluenesulfonic acid in dioxane at r.t. (10\%) [2368];
- on 4-acetoxy-2,6-dihydroxyacetophenone with p-toluenesulfonic acid in dioxane (32-49\%) [2368].
White solid [2368]; ${ }^{1} \mathrm{H}$ NMR [2368], ${ }^{13} \mathrm{C}$ NMR [2368].
1-[2,6-Dihydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone

[136257-85-7]	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27
OH	Syntheses
	- Obtained by reaction of 3,4-dihydro-2H-pyran,
	nic acid in dioxane at r.t. (20\%) [2368];
	- on 4-acetoxy-2,6-dihydroxyacetophenone with
	p-toluene sulfonic acid in dioxane (8-11\%)
	[2368].

White solid [2368]; ${ }^{1} \mathrm{H}$ NMR [2368], ${ }^{13} \mathrm{C}$ NMR [2368].

1-[2-Hydroxy-5-methoxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27

Synthesis

- Preparation by UV light irradiation of ethylene acetal of 2-acetoxy-5-methoxyacetophenone with potassium carbonate in hexane (85%) [3334].

1-[2-Hydroxy-6-methoxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone

[103867-86-3]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27
Synthesis

- Preparation by UV light irradiation of ethylene acetal of 2-acetoxy-4-methoxyacetophenone with potassium carbonate in hexane (52\%) [3334].
m.p. $120-123^{\circ}$ [3334]; ${ }^{1} \mathrm{H}$ NMR [3334], IR [3334].

1-[2,4,6-Trihydroxy-3-(tetrahydro-2H-pyran-2-yl)phenyl]ethanone $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27
 Synthesis

- Obtained by reaction of 3,4-dihydro-2H-pyran on phloroacetophenone with p-toluenesulfonic acid in dioxane at r.t. (21\%) [2368].
${ }^{1} \mathrm{H}$ NMR [2368], ${ }^{13} \mathrm{C}$ NMR [2368].

1-[2-Hydroxy-4-(β-D-xylopyranosyloxy)phenyl]ethanone

[54918-29-5]

$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{5}$
m.p. 204-205 ${ }^{\circ}$ [1936];
$(\alpha)_{\mathrm{D}}^{17}=-70^{\circ}(0.4 \%$, THF $)$ [1936].

1-[2-[(5-Bromopentyl)oxy]-6-hydroxyphenyl]ethanone

[28862-10-4]	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{3} \quad$ mol.wt. 301.18
	Synthesis
	- Preparation by reaction of 1,5-dibromopentane with 2,6-di-hydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone [2270].

m.p. $35-36^{\circ}$ [2270].

1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxy-4-methoxyphenyl]ethanone

1-[4-[(5-Bromopentyl)oxy]-2-hydroxyphenyl]ethanone
[40785-72-6]
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{3} \quad$ mol.wt. 301.18
 Synthesis

- Preparation by reaction of 1,5-dibromopentane with resacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (34\%) [2270].
m.p. $64-66^{\circ}$ [2270].

1-[4-(3-Bromopropoxy)-5-ethyl-2-hydroxyphenyl]ethanone

[117706-55-5]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{3} \quad$ mol.wt. 301.18
Synthesis

- Preparation by reaction of 3-bromopropyl bromide on 5-ethyl-2,4-dihydroxyacetophenone with potassium carbonate and potassium iodide, at reflux (80%) [2678,2679].
m.p. $\quad 126-127^{\circ}$ [2678,2679]; ${ }^{1} \mathrm{H}$ NMR [2678,2679].

1-[3-Butyl-4-(chloromethyl)-2-hydroxyphenyl]ethanone

[107223-43-8]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 240.73
Synthesis

- Preparation by reaction of ethyl chloroformate with 3-n-butyl-4-(dimethylaminomethyl)-2-hydroxyacetophenone in toluene (78\%) [2550].
m.p. $42-44^{\circ}$ [2550].

1-[4-(Chloromethyl)-2-hydroxy-3-(2-methylpropyl)phenyl]ethanone

[97582-41-7]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 240.73
Synthesis

- Preparation by reaction of ethyl chloroformate with 3-iso-butyl-4-(dimethylamino-methyl)-2-hydroxyacetophenone in toluene [2550,2927], (42\%) [2550].

Oil [2550]; ${ }^{1} \mathrm{H}$ NMR [2927], IR [2927].
1-[4-(2-Chloroethoxy)-2-hydroxy-3-propylphenyl]ethanone
[104074-07-9]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{3} \quad$ mol.wt. 256.73
Synthesis

- Preparation by action of 2-chloroethyl p-toluenesulfonate with 2,4-dihydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in boiling acetone for 16 h (36\%) [3479].
m.p. $72-73^{\circ} 5$ [3479]; ${ }^{1} \mathrm{H}$ NMR [3479].

1-[4-Hydroxy-3-(1-pyrrolidinylmethyl)phenyl]ethanone
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 219.28

Synthesis

- Preparation by reaction of 4-hydroxyacetophenone with formaldehyde and pyrrolidine in 75\% ethanol at r.t. (60\%) [3480] (Mannich reaction).
m.p. $97-98^{\circ}$ [3480].

1-[4-Hydroxy-3-(1-pyrrolidinylmethyl)phenyl]ethanone (Hydrochloride) $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 255.74
 Synthesis
HCl - Preparation from 4-hydroxy-3-(1-pyrrolidin-ylmethyl)-acetophenone [3480].
m.p. $202-203^{\circ}$ [3480].

1-[4-(3-Azidopropoxy)-5-ethyl-2-hydroxyphenyl]ethanone

[117706-26-0]

 $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \quad$ mol.wt. 263.30 Synthesis

- Preparation by reaction of sodium azide with 4-(3-bromo-propoxy)-5-ethyl-2-hydroxyacetophenone in DMF at r.t. [2678,2679].
${ }^{1} H$ NMR [2678,2679], MS [2678,2679].

1-(5-Butyl-2-hydroxy-3-methylphenyl)ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Preparation by Fries rearrangement of 4-butyl-2-methyl-phenyl acetate with aluminium chloride without solvent at $100-110^{\circ}$ (64\%) [2957].
b.p. ${ }_{12} 152-154^{\circ}$ [2957].

1-(2,3-Diethyl-6-hydroxy-4-methylphenyl)ethanone

[27193-00-6] \quad\begin{tabular}{l}
Synthesis

- Obtained via pyrolysis of 7,8-diethyl-1,3-dimethyl-

2-oxabicyclo [4.2.0] octa-3,7-dien-5-one (2,6-dime-
thyl-4-pyrone - Hexyne-3 - Adduct) in refluxing
o-dichloro-benzene [3237].

\end{tabular}

IR [3237], UV [3237], MS [3237].

1-(2,5-Diethyl-6-hydroxy-3-methylphenyl)ethanone

$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad \text { mol.wt. } 206.28
$$

Synthesis

- Obtained (small amounts) by Fries rearrangement of 2,5-diethyl-4-methylphenyl acetate with aluminium chloride without solvent at 130° [2956].

1-(3,4-Diethyl-2-hydroxy-5-methylphenyl)ethanone
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Syntheses

- Obtained by heating some esters with aluminium chloride. There is simultaneously displacement and rearrangement of alkyl groups during the Fries reaction,
- 2,4-diethyl-5-methylphenyl acetate (65\%) [2233];
- 2,5-diethyl-4-methylphenyl acetate (at 130°) (60\%) [2956];
- 2,6-diethyl-4-methylphenyl acetate (60%) [2233].
b.p. ${ }_{12} 136-137^{\circ}$ [2233], b.p. $._{11} 143-145^{\circ}$ [2233], b.p. ${ }_{15} 154-162^{\circ}$ [2956].

1-(4,5-Diethyl-2-hydroxy-3-methylphenyl)ethanone

$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad \text { mol.wt. } 206.28
$$

Synthesis

- Obtained by heating 2,4-diethyl-6-methylphenyl acetate with aluminium chloride at high temperature. In this reaction, a migration of an ethyl group occurs [2233].
m.p. $50-51^{\circ}$ [2233].

1-[3,4-Dimethyl-2-hydroxy-5-(1-methylethyl)phenyl]ethanone

1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]ethanone

[14813-18-4]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Syntheses

- Preparation by Fries rearrangement of 2-tert-butyl-4-methyl-phenyl acetate in the presence of aluminium chloride in cyclohexane at $<105^{\circ}$ (47\%) [3481].
- The reaction of acetyl chloride with a pentane solution of $\left[\mathrm{AlCH}_{3}(\mathrm{dbmp})_{2}\right]$ leads to acylation of one of the (dbmp) ligands and affords $\left[\mathrm{AlCH}_{3}(\mathrm{dbmp})(\mathrm{bhmap})\right]$. Hydrolysis of this aluminium complex with a saturated aqueous solution of ammonium chloride gives the ketone attempted (65\%) [3482].
N.B.: Hdbmp = 2,6-di-tert-butyl-4-methylphenol and Hbhmap = 3-tert-butyl-2-hydroxy-5-methylacetophenone.
- Also obtained by reaction of p-tert-butyl alcohol with 2-hydroxy-5-methylacetophenone in concentrated sulfuric acid at r.t. for $24 \mathrm{~h}(49 \%)$ [3483].
- Also refer to: [3484].
m.p. $97-98^{\circ}$ [3481], 58° [3482]. One of the reported melting points is obviously wrong.
X-ray crystallography [3482]; GC/MS [3483];
${ }^{1} \mathrm{H}$ NMR [3482,3483], ${ }^{13} \mathrm{C}$ NMR [3482], IR [3482], MS [3482].
1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl]ethanone
$\left(\mathrm{CH}_{3}\right)_{3} \underbrace{\text { [3485]. }}_{l}$
b.p. 92° [3485].

1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methylphenyl]ethanone

[18606-50-3]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Syntheses

- Preparation by reaction of acetyl chloride or acetic anhydride with 2-tert-butyl-6-methylphenol in the presence of aluminium chloride, and saponification of keto ester obtained [3353].
- Also obtained (poor yield) by oxidation of 2-tert-butyl-4-ethyl-6-methylphenol. The oxidation was carried out by bubbling air at $80-100^{\circ}$ into a solution of 2-tert-butyl-4-ethyl-6-methylphenol in cumene containing cobalt phthalate and cumene hydroperoxide as initiator (4\%) [3486].
m.p. 126° [3486], $123-125^{\circ}$ [3353].

1-[5-(1,1-Dimethylethyl)-4-hydroxy-2-methylphenyl]ethanone

 $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28 Synthesis

- Preparation by Fries rearrangement of 2-tert-butyl-5-methyl-phenyl acetate with aluminium chloride in nitrobenzene at $25^{\circ}(22 \%)$ [3485].
m.p. 124° [3485].

1-[5-(1,1-Dimethylpropyl)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Preparation by Fries rearrangement of 4-tert-pentylphenyl acetate with aluminium chloride at 120° (57\%) [3356].
b.p. ${ }_{12} 165^{\circ}$ [3356].

1-[3-Ethyl-2-hydroxy-5-(1-methylethyl)phenyl]ethanone
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis
b.p. ${ }_{10} 139-140^{\circ}$ [3224].

1-[4-Ethyl-2-hydroxy-5-(1-methylethyl)phenyl]ethanone
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

b.p. ${ }_{11} 152-153^{\circ}$ [3224].

Synthesis

- Preparation by chromic acid degradation of 6-ethyl-2,3-dimethyl-5-isopropylbenzofuran (44\%) [3224].

1-[4-Ethyl-2-hydroxy-6-(1-methylethyl)phenyl]ethanone

$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad \text { mol.wt. } 206.28
$$

Synthesis

- Preparation by chromic acid degradation of 6-ethyl-2,3-dimethyl-4-isopropylbenzofuran (60\%) [3224].
m.p. 113° [3224]; b.p. ${ }_{14} 167-168^{\circ}$ [3224].

1-[6-Ethyl-2-hydroxy-3-(1-methylethyl)phenyl]ethanone $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Preparation by chromic acid degradation of 4-ethyl-2,3-dimethyl-7-isopropylbenzofuran (60\%) [3224].
b.p. ${ }_{11} 145^{\circ}$ [3224].

1-(3-Ethyl-2-hydroxy-5-propylphenyl)ethanone

b.p. ${ }_{18}$ 140-141 ${ }^{\circ}$ [2957].

1-[4-Hydroxy-3-(3-methylbutyl)phenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Preparation by Fries rearrangement of 2-isopentylphenyl acetate [3449,3487].

Isolation from natural sources

- Also obtained by catalytic hydrogenation of Tremetone in the presence of Pd / C. Tremetone has been isolated from the White Snakeroot plant (Eupatorium urticaefolium) [3449,3487].

1-(2-Hydroxy-4-pentylphenyl)ethanone

[60441-58-9] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Syntheses

- Preparation by Fries rearrangement of 3-pentylphenyl acetate with aluminium chloride at 130° (50\%) [3488].
- Also obtained by demethylation of a mixture of 2-methoxy-4-pentylacetophenone and 4-methoxy-2-pentylaceto-phenone (I) with boron tribromide in methylene chloride at 0° and separation of isomers by chromatography (21%). The mixture of anisoles (I) was obtained by reaction of acetic anhydride with 3-pentylanisole in the presence of aluminium chloride in refluxing carbon disulfide [3489].
oil [3488,3489]; b.p. . $_{0.5} 130^{\circ}$ [3489]; ${ }^{1} \mathrm{H}$ NMR [3488,3489].

1-(2-Hydroxy-5-pentylphenyl)ethanone

Synthesis

Preparation by reaction of acetic acid on 4-pentylphenol
with boron trifluoride at $140-150^{\circ}(87 \%)$ [3490].

b.p. ${ }_{7} 145-148^{\circ}$ [3490]; $n_{D}^{25}=1.5249$ [3490].

1-(4-Hydroxy-2-pentylphenyl)ethanone

[60441-59-0] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Preparation by demethylation of a mixture of 2-methoxy-4pentylacetophenone and 4-methoxy-2-pentylacetophenone (I) with boron tribromide in methylene chloride at 0° and separation of isomers by chromatography (46%). The mixture of anisoles (I) was obtained by reaction of acetic anhydride with 3-pentylanisole in the presence of aluminium chloride in refluxing carbon disulfide [3489].
m.p. $\quad 58-59^{\circ}$ [3489]; ${ }^{1} \mathrm{H}$ NMR [3489].

1-(5-Butyl-2-hydroxy-4-methoxyphenyl)ethanone
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Synthesis

- Preparation by reaction of dimethyl sulfate on 5-butyl-2,4-dihydroxyacetophenone with potassium carbonate in boiling acetone [3018].

1-(3,5-Diethyl-2-hydroxy-6-methoxyphenyl)ethanone
[37467-70-2]
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 222.28

Synthesis

- Preparation by reaction of methyl iodide with 3,5-diethyl-2,6-dihydroxyacetophenone in the presence of potassium carbonate in boiling acetone (46\%) [2997].

Oil [2997]; MS [2997].

1-[2,4-Dihydroxy-3-(3-methylbutyl)phenyl]ethanone

[50773-37-0]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 222.28
Synthesis

- Preparation by catalytic hydrogenation of 3-(dimethyl-allyl)-2,4-dihydroxacetophenone with platinic oxide as a catalyst in ethanol [3457].
m.p. $\quad 115^{\circ}$ [3457]; ${ }^{1} \mathrm{H}$ NMR [3457], IR [3457].

1-[2,4-Dihydroxy-5-(3-methylbutyl)phenyl]ethanone

[56146-52-2]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
Syntheses

- Obtained by Fries rearrangement of 4-isoamylresorcinol diacetate with aluminium chloride in nitrobenzene at $50-55^{\circ}$ [3449,3487], (11\%) [3487].

Isolation from natural sources

- Also obtained by hydrogenolysis of 6-hydroxytremetone in the presence of 10% Pd/C in ethanol at r.t. [3449,3487], (62\%) [3487]. The 6-hydroxytremetone has been isolated from the Eupatorium urticaefolium Reichard (Compositae) (white snakeroot).

```
m.p. 93-95` [3487], 92`5-94} [3449]; IR [3487].
```


1-(2,4-Dihydroxy-3-pentylphenyl)ethanone

[111224-14-7]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
Synthesis

- Refer to: [3014].

1-(2,4-Dihydroxy-5-pentylphenyl)ethanone

[97304-17-1]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
OH	Syntheses
	- Preparation by reaction of acetonitrile on 4-n-amylresorcinol (Hoesch reaction) (76\%) [2676]. - Preparation from 2,4-dimethoxy-5-pentylacetophenone by demethylation with boron tribromide in methylene chloride at r.t. (53\%) [2678,2679].
m.p. $110-111^{\circ}[2676]$	

1-(2,6-Dihydroxy-4-pentylphenyl)ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
Synthesis

- Preparation by metallation of olivetol tetrahydropyranyl ether with n-butyllithium in tetrahydrofuran under nitrogen, followed by adding cuprous bromide in this solution. The condensation of 2,6-dihydroxy-4-pentylphenylcopper tetrahydropyranyl ether so obtained with acetyl chloride, connected with elimination of protective group under mild conditions gave the expected compound (80%) [3491].

1-[4-(1,1-Dimethylethyl)-2,3-dihydroxy-6-methylphenyl]ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
Synthesis

- Obtained by UV irradiation of a benzene solution of 3-tert-butyl-5-methyl-o-benzoquinone in the presence of a large excess of acetaldehyde (12\%) [3386].
m.p. $\quad 72-73^{\circ}$ [3386]; ${ }^{1} \mathrm{H}$ NMR [3386], IR [3386].

1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methoxyphenyl]ethanone

[153356-09-3]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
Syntheses

- Obtained by partial methylation of 3,4-dihydroxy-5-tert-butylacetophenone with diazomethane [1952].
- Also refer to: [3339].
N.B.: (Catechol O-methyltransferase test).
- Also obtained from 3,4-dihydroxy-5-tert-butylacetophenone in propylene glycol by incubation for 2 h at 37° with 0.5 M phosphate buffer ($\mathrm{pH}=7.9$), 0.5 M magnesium chloride, S-adenosylmethionine and catechol O-methyltransferase (enzyme). This enzyme solution was prepared from the blood of an adult male rat [1952].

1-[5-(1,1-Dimethylethyl)-2-hydroxy-4-methoxyphenyl]ethanone

1-[4-Hydroxy-3-(3-hydroxy-3-methylbutyl)phenyl]ethanone

[81944-40-3] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Isolation from natural sources

- From Senecio species of the North of Chile (Senecio phylolleptus Cuatr., Senecio viridis Phil., Senecio nutans Sch. Bip.) [3442].
- From the aerial parts of Werneria poposa [3448].
- Also refer to: [3492].
m.p. $\quad 100-101^{\circ}$ [3442]; ${ }^{1} \mathrm{H}$ NMR [3442,3448],
${ }^{13} \mathrm{C}$ NMR [3442,3448], IR [3442], MS [3442,3448].

1-(2-Hydroxy-5-methoxy-4-methyl-3-propylphenyl)ethanone

[43037-71-4] \quad\begin{tabular}{l}
Synthesis

- Preparation by catalytic hydrogenation of 3-allyl-2-
hydroxy-5-methoxy-4-methylacetophenone, previ-
ously obtained by thermal Claisen rearrangement of
2-(allyloxy)-5-methoxy-4-methylacetophenone in
N,N-dimethylaniline at $170^{\circ}(42 \%)$ [3467].

\end{tabular}

1-(2-Hydroxy-5-methoxy-6-methyl-3-propylphenyl)ethanone

[43037-72-5]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
OH	Synthesis
	- Preparation by catalytic hydrogenation of 3-allyl-2-hydroxy-5-methoxy-6-methylacetophenone, previously obtained by thermal Claisen rearrangement of 2-(allyloxy)-5-methoxy-4-methylacetophenonevia a [2368,3466] sigmatropic rearrangement-in N, N-dimethylaniline at $170^{\circ}(22 \%)$ [3467].

1-[2-Hydroxy-4-(pentyloxy)phenyl]ethanone

[101002-29-3] \quad\begin{tabular}{l}
Syntheses

Preparation by partial alkylation of resacetophe-
none with pentyl bromide in the presence of
potassium carbonate in refluxing acetone for 20 h
[3493].

\end{tabular}

- Also refer to: [3494].
m.p. 36° [3493].

1-(4,6-Diethoxy-2-hydroxy-3-methylphenyl)ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28

Synthesis

- Preparation by reaction of ethyl iodide or diethyl sulfate on 2,4,6-trihydroxy-3-methylacetophenone with potassium carbonate in boiling acetone (77%) [3051].
m.p. $\quad 147^{\circ}[3051]$.

1-(3,5-Diethyl-2,6-dihydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28
Synthesis

- Refer to: [3495] (Japanese patent).
N.B.: Di-Na salt [175785-89-4] [3495].

1-(3,4-Dimethoxy-6-hydroxy-2-propylphenyl)ethanone
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28

Syntheses

- Preparation by catalytic hydrogenation of 6-(benz-yloxy)-3,4-dimethoxy-2-propenylacetophenone in the presence of Pd / C in methanol [2849].
- Also obtained by addition of 6-(benzyloxy)-3,4-dimethoxy-2-propenylacetophenone in ethyl ether to calcium in liquid ammonia, and addition of ammonium chloride before evaporation of solvents [2849].
Yellow oil [2849]; b.p. . $_{0.2} 160^{\circ}$ [2849]; UV [2849].

1-[2-Hydroxy-3-methoxy-4-(1-methylpropoxy)phenyl]ethanone

[94245-10-0]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28
Synthesis

- Refer to: [3496] (Indian patent).

1-[2-Hydroxy-4-(methoxymethoxy)-3-propylphenyl]ethanone
[200355-19-7] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28

Synthesis

- Preparation by treatment of 2,4-dihydroxy-3-propyl-acetophenone according to the procedure [3106], (83\%) [3497].
b.p. $152-154^{\circ}$ [3497]; ${ }^{1} \mathrm{H}$ NMR [3497], IR [3497].

1-[2,4,6-Trihydroxy-3-(3-methylbutyl)phenyl]ethanone

[39652-85-2]

$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad \text { mol.wt. } 238.28
$$

Syntheses

- Preparation by reaction of acetonitrile on 2-isoamyl-phloroglucinol (Hoesch reaction) (93\%) [3498].
- Preparation by reaction of 2-isoamylphloroglucinol with boron trifluoride-acetic acid complex at $28-30^{\circ}$ (70\%) [2242].
- Preparation by catalytic hydrogenolysis of 2-acetyl-4,4-bis-(3-methylbut-2-enyl)cyclohexane-1,3,5-trione at r.t. and pressure in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethanol (93\%) [3477].
- Preparation by catalytic hydrogenation of $2^{\prime}, 4^{\prime}, 6^{\prime}$-trihydroxy-3'-(3-methylbut-2enyl)acetophenone [3477].
- Also obtained by catalytic hydrogenation of 7-acetyl-4,6-dihydroxy-2-isopropenylcoumaran in the presence of platinic oxide (Adams catalyst) in methanol (72\%) [2847].
- Also obtained by catalytic hydrogenation of 9-acetyl-2,5-dihydro-3-methyl-1-benzoxepin-6,8-diol in ethyl acetate in the presence of Adams catalyst (25\%) [3499].
- Also obtained (by-product) by reaction of isoamyl iodide with phloroacetophenone in the presence of sodium methoxide in methanol (6\%) [2878].
m.p. 190-192 ${ }^{\circ}$ [3499], 190° [2242], 188° [2878,3498], 185° [2847],184- $185^{\circ} 5$ [3477], 183-184 ${ }^{\circ}$ [3500], $130-131^{\circ}$ (compound VIII) [2879]. One of the reported melting points is obviously wrong.
b.p. ${ }_{0.01} 190^{\circ}$ [3498]; ${ }^{1} \mathrm{H}$ NMR [2879,3499], IR [3499], UV [3477].

1-(2,3-Diethoxy-6-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28

Synthesis

- Preparation by reaction of diethyl sulfate on 2-ethoxy-3,6-dihydroxy-4-methoxyacetophenone with potassium carbonate in boiling acetone [2851].
- oil [2851].

1-(2,4-Diethoxy-6-hydroxy-3-methoxyphenyl)ethanone

[18086-01-6]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
Syntheses

- Preparation by reaction of dimethyl sulfate on 2,4-diethoxy-3,6-dihydroxyacetophenone with potassium carbonate in refluxing acetone [2851,3394,3395], (47\%) [3394].
- The same ketone was also obtained by alkaline degradation of 4',5,7-triethoxy-3', 6-dimethoxyflavone with potassium hydroxide in refluxing dilute ethanol [2851]. Oil [2851,3394].

1-(3,6-Diethoxy-2-hydroxy-4-methoxyphenyl)ethanone

[105342-72-1]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
Syntheses

- Preparation from 1,4-diethoxy-2,6-dimethoxybenzene by reaction,
- with acetyl chloride in the presence of aluminium chloride in ethyl ether cooled in an ice bath (89\%) [3501];
- with acetic acid in the presence of boron trifluoride for 5 h at $80^{\circ}(50 \%)$ [3131].
m.p. $104-105^{\circ}$ [3501], 101-103 ${ }^{\circ}$ [3131].

1-(2,3-Dihydroxy-4,5-dimethoxy-6-propylphenyl)ethanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
Synthesis

- Preparation by treatment of acetyldihydrodillapiole with boron trifluoride (almost quantitative yield) [3502].
m.p. 110° [3502];
${ }^{1} \mathrm{H}$ NMR [3502], IR [3502], MS [3502].

1-(3-Ethyl-2-hydroxy-4,5,6-trimethoxyphenyl)ethanone

	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
OH	Synthesis
	- Preparation by Fries rearrangement of 2-ethyl-3,4,5-tri-methoxyphenyl acetate with aluminium chloride in nitrobenzene at r.t. (25\%) [3135].
$\begin{aligned} & \text { b.p. } ._{0.15} 98-102^{\circ} \text { [3135]; } \\ & \mathrm{n}_{\mathrm{D}}^{25}=1.5293[3135] . \end{aligned}$	

1-(3-Ethyl-6-hydroxy-2,4,5-trimethoxyphenyl)ethanone

$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad \text { mol.wt. } 254.28
$$

 Syntheses

- Preparation by Fries rearrangement of 4-ethyl-2,3,5-tri-methoxyphenyl acetate with aluminium chloride in nitrobenzene at r.t. (51\%) [3135].
- Preparation by reaction of acetyl chloride on 1-ethyl-2,3,4,6-tetramethoxybenzene with aluminium chloride in ethyl ether between -20° and -15°, followed by standing overnight at r.t. (46\%) [3135].
Clear, orange coloured oil [3135]; b.p. ${ }_{0.3} 117-118^{\circ} 5$ [3135];
$\mathrm{n}_{\mathrm{D}}^{25}=1.5421$ [3135].
1-[6-Hydroxy-2,4-dimethoxy-3-(2-methoxyethyl)phenyl]ethanone

1-[2-Hydroxy-3,6-dimethoxy-4-(1-methylethoxy)phenyl]ethanone
[93344-52-6]
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28

Syntheses

- Refer to: [3503] (compound 11) and [3504] (Japanese paper).

1-[6-Hydroxy-2,3-dimethoxy-4-(1-methylethoxy)phenyl]ethanone
[119136-17-3]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
Synthesis

- Preparation by reaction of dimethyl sulfate with 2,5-di-hydroxy-4-isopropoxy-6-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone (82%) [2830].
colourless oil [2830]; ${ }^{1} \mathrm{H}$ NMR [2830], IR [2830], MS [2830].

1-[6-Hydroxy-2,4-dimethoxy-3-(1-methylethoxy)phenyl]ethanone

[96501-84-7] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28

Synthesis

- Obtained by partial isopropylation of 2,5-dihy-droxy-4,6-di-methoxyacetophenone with isopropyl bromide, according to [3505], (compound 27) (44\%) [3506].

Brown oil [3506]; ${ }^{1} \mathrm{H}$ NMR [3506].

1-[6-Hydroxy-3,4-dimethoxy-2-(1-methylethoxy)phenyl]ethanone

[188927-29-9]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$
mol.wt. 254.28
Synthesis

- Preparation by treatment of 3,4,6-trimethoxy-2-isopropoxy-acetophenone (m.p. 69-71) with aluminium bromide in acetonitrile at 0° for $10-15 \mathrm{~min}(80 \%)$ [3507].
N.B.: The partial demethylation realized with aluminium bromide-sodium iodide system at 0° for 10 min gave a 94% yield.
m.p. $65-67^{\circ}$ [3507].

1-(3,6-Diethoxy-2,5-dihydroxy-4-methoxyphenyl)ethanone
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28

Synthesis

- Preparation from 3,6-diethoxy-2-hydroxy-4-meth-oxy-acetophenone by persulfate oxidation (Elbs reaction) (33\%) [3501].
m.p. $131-132^{\circ}$ [3501].

1-(4-Ethoxy-2-hydroxy-3,5,6-trimethoxyphenyl)ethanone
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28

Synthesis

- Preparation by Friedel-Crafts acylation of 1-ethoxy-2,3,5,6-tetramethoxybenzene with acetyl chloride in the presence of aluminium chloride (46\%) [3313].
b.p. ${ }_{0.1} 117-119^{\circ}$ [3313].

1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-methylphenyl]ethanone

[106929-57-1]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28
Synthesis

- Preparation by reaction of chloromethyl methyl ether with 2,4,6-trihydroxy-3methylacetophenone in cooled acetone in the presence of potassium carbonate for $1 \mathrm{~h} \mathrm{(34} \mathrm{\%)} \mathrm{[3508]}$.
m.p. $\quad 77-78^{\circ}$ [3508]; ${ }^{1} \mathrm{H}$ NMR [3508].

1-[2-Hydroxy-3,4,6-trimethoxy-5-(methoxymethoxy)phenyl]ethanone
(173217-34-0]

1-[2-Hydroxy-3,5,6-trimethoxy-4-(methoxymethoxy)phenyl]ethanone

[176662-07-0]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 286.28 Synthesis

- Obtained by stirring a solution of 2,4-dihy-droxy-3,5,6-tri-methoxyacetophenone, N,Ndiisopropylethylamine and chloromethyl methyl ether in methylene chloride at 5° for 40-50 min [3316].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone
[75060-91-2]

$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \quad$ mol.wt. 221.30
Synthesis

- Refer to: [3509].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone (Hydrochloride)

 $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 268.77

Synthesis

- Preparation by hydrolysis of 2-acetyl-4-tert-butyl-6-(N-chloroacetylaminomethyl) phenol with concentrated hydrochloric acid in refluxing ethanol (89\%) [3354].
m.p. $191-193^{\circ}$ [3354].

1-[2-(Diethylamino)-6-hydroxy-4-methylphenyl]ethanone

[97066-07-4]

Yellow oil [2712];
${ }^{1} \mathrm{H}$ NMR [2712], IR [2712], UV [2712], MS [2712].
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \quad$ mol.wt. 221.30
Synthesis

- Preparation by reaction of potassium hydroxide with 2-acetyl-3-diethylamino-5-hydroxy-5-methyl-2-cyclo-hexenone in ethanol at $40^{\circ}(75 \%)$ [2712].

1-[6-[(1,1-Dimethylethyl)amino]-3-hydroxy-2-methylphenyl]ethanone

[158013-69-5] $\quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \quad$ mol.wt. 221.30
 Synthesis

- Obtained from N-tert-butyl-2-acetyl-4-methyl quinol imine by refluxing overnight in trifluoroethanol (TFE) (quantitative yield) [3510].

Red oil [3510]; ${ }^{1} \mathrm{H}$ NMR [3510], ${ }^{13} \mathrm{C}$ NMR [3510], IR [3510], MS [3510].

1-(5-Bromo-2-hydroxy-3-iodo-4-phenoxyphenyl)ethanone

[145489-48-1]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrIO}_{3} \quad$ mol.wt. 433.04
Synthesis

- Preparation by hypervalent iodine oxidation of 5-bromo-resacetophenone with iodosobenzene diacetate in the presence of potassium hydroxide in methanol via the rearrangement of iodonium ylide previously formed (35\%) [3511].
m.p. $\quad 160-161^{\circ}$ [3511]; ${ }^{1} \mathrm{H}$ NMR [3511], MS [3511].

1-(2-Hydroxy-3-iodo-5-nitro-4-phenoxyphenyl)ethanone

[145489-93-6]

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{INO}_{5} \quad$ mol.wt. 399.14
Syntheses

- Preparation by hypervalent iodine oxidation of 5-nitro-resacetophenone with iodosobenzene diacetate in the presence of potassium hydroxide in methanol via the rearrangement of iodonium ylide previously formed (77\%) [3511].
- Preparation by thermal rearrangement of 4-acetyl-3-hydroxy-6-nitro-2-pheny-liodonio-phenolate (SM) in refluxing acetonitrile for 30 min (47\%) [3512]. SM was obtained by reaction of iodosobenzene diacetate with 5-nitroresacetophenone in methanol in the presence of potassium hydroxide at 0° for $30 \mathrm{~min}(45 \%$, m.p. $145-147^{\circ}$).
m.p. $\quad 190-191^{\circ}$ [3511], $180-185^{\circ}$ [3512];
${ }^{1} \mathrm{H}$ NMR [3511,3512], IR [3511,3512], MS [3512].

1-(5-Bromo-2-hydroxy[1,1'-biphenyl]-3-yl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad \text { mol.wt. } 291.14
$$

Synthesis

- Preparation by treatment of 1-(2-hydroxy[1, 1^{\prime} -biphenyl]-3-yl)ethanone in acetic acid with NBS at 85° for 2 h (quantitative yield) [1804].
'H NMR [1804].
1-(4'-Chloro-2-hydroxy[1,1'-biphenyl]-3-yl)ethanone
[77893-89-1] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Synthesis

- Obtained by Fries rearrangement of 2-acetoxy-4'-chloro-biphenyl with aluminium chloride at 150° for $30 \mathrm{~min}(26 \%)$ [3513].
m.p. $76-78^{\circ}$ [3513].

1-(4'-Chloro-4-hydroxy[1,1'-biphenyl]-3-yl)ethanone

[86608-89-1]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
mol.wt. 246.69
Synthesis

Sy
N.B.: It must be pointed out that in the referenced paper [3514], the described product [(chloro-4 phenyl)-5 hydroxy-2 phenyl]-1 ethanone is not consistent with the mentioned starting material, (chloro-4 phenoxy)-4 phenol.

In such a case, the obtained product should be the 1-[5-(4-chlorophenoxy)-2hydroxyphenyl]ethanone. One of the authors of this paper, Daniel Humbert, has confirmed this typing mistake [3515].

1-(4'-Chloro-6-hydroxy[1,1'-biphenyl]-3-yl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Synthesis

- Preparation by Fries rearrangement of 2-acetoxy-4'-chloro-biphenyl with aluminium chloride at 150° for $30 \mathrm{~min}(60 \%)$ [3513].
m.p. $165^{\circ} 5-167^{\circ} 5$ [3513].

1-(5-Chloro-2-hydroxy[1,1'-biphenyl]-3-yl)ethanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Synthesis

- Obtained by treatment of 1-(2-hydroxy[1,1'-biphenyl]-3-yl)ethanone in DMF solution with NCS at r.t. overnight (96%) (crude product) [1804].

1-(4-Chloro-3,5-dihydroxy[1,1'-biphenyl]-2-yl)ethanone

1-[5-(4-Chlorophenoxy)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69
Syntheses

- Preparation by acetylation of 4-phenoxyphenol with,
- $39.7 \% ~(\mathrm{w} / \mathrm{w})$ boron trifluoride in acetic acid at 75° for 24 h (71\%) [3514];
- 35-37\% boron trifluoride in acetic acid at 90° for 3 days (quantitative yield) [3515].
- Also refer to: [3517].
m.p. 88° [3514,3517].

1-(2-Hydroxy-3-iodo-4-phenoxyphenyl)ethanone

[144691-35-0]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{3}$
Syntheses

- Preparation by thermal rearrangement of 4-acetyl-3-hydroxy-2-phenyliodonio-phenolate (SM) in refluxing acetonitrile for $30 \mathrm{~min}(70 \%)$. SM was obtained by reaction of iodosobenzene diacetate with resacetophenone in methanol in the presence of potassium hydroxide at 0° for 30 min (40%, m.p. 81-85 ${ }^{\circ}$ [3512].
- Preparation by reaction of resacetophenone with iodosobenzene diacetate in refluxing methanol (55\%) [3518].
- Preparation by hypervalent iodine oxidation of resacetophenone with iodosobenzene diacetate in the presence of potassium hydroxide in methanol via the rearrangement of iodonium ylide previously formed (20\%) [3511].
m.p. $116-118^{\circ}$ [3511], $101-103^{\circ}$ [3518], 72° [3512]. There is a discrepancy between the different melting points indicated in literature.
${ }^{1} \mathrm{H}$ NMR [3511,3512,3518], IR [3518], MS [3512].

1-(2-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone

$$
\begin{aligned}
& \text { [360791-69-1] }
\end{aligned} \begin{aligned}
& \text { (0) and } 10 \% \text { aqueous sodium carbonate. The mix- } \\
& \text { in The was heated at } 80^{\circ} \text { for } 3 \mathrm{~h} . \text { Then, } 10 \% \mathrm{Pd} / \mathrm{C} \text { cata- } \\
& \text { inst was added and heating continued for } 1.5 \mathrm{~h} \\
& \text { ind } \\
& \text { (70\%) (compound 32) [1804]. }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR [1804], ${ }^{13} \mathrm{C}$ NMR [1804].

1-(4-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone

[84942-37-0]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 257.25

Synthesis

- Preparation by reaction of 100% nitric acid with 3-acetyl-4-hydroxybiphenyl in acetic acid at r.t. (90\%) [1852].
m.p. $113-114^{\circ}$ [1852].

1-(2,6-Dihydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone
 [160246-79-7] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

 Syntheses
 - Obtained by irradiation of 4-acetyl-3-hydroxy-6-nitro-2-phenyliodonio-phenolate (1 mmol),
 - in benzene suspension (65\%) [3512];
 - in the presence of cyclohexene ($3-5 \mathrm{mmol}$) in methylene chloride/acetonitrile solution (1:1) for 4 h (20-30\%) [3512].

N.B.: The irradiations were performed with a 250 W low pressure Hg lamp.
m.p. $160-161^{\circ}$ [3512]; ${ }^{1} \mathrm{H}$ NMR [3512], IR [3512], MS [3512].

1-(2-Hydroxy-3-nitro-5-phenoxyphenyl)ethanone

[84942-38-1]

m.p. $\quad 126-127^{\circ}$ [1852].

1-(2-Hydroxy[1,1'-biphenyl]-3-yl)ethanone

[21424-82-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
Synthesis

- Preparation by reaction of 100% nitric acid with 2-hydroxy-5-phenoxyacetophenone in acetic acid at r.t. (73\%) [1852].
- without solvent between 130° and 160° [3519-3522];
- in boiling o-dichlorobenzene for $30 \mathrm{~min}(15 \%)$ [3523].
- Also obtained by UV light irradiation (254 nm) of 2-acetoxybiphenylyl in benzene (11\%) [3524].
$3^{1} \mathrm{H}$ NMR [3523], IR [3523].

1-(3-Hydroxy[1,1'-biphenyl]-2-yl)ethanone

[136819-93-7]	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
H	Synthesis
	- Obtained by adding potassium fluoride to a solution of 1-phenyl-2-octene-1,5,7-trione in dry toluene and the whole refluxed overnight (32\%) [3525].

Colourless oil [3525];
${ }^{1} \mathrm{H}$ NMR [3525], IR [3525], MS [3525].

1-(3-Hydroxy[1,1'-biphenyl]-4-yl)ethanone

[32101-38-5] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

Syntheses

- Preparation by reaction of acetyl chloride with 3-methoxy-biphenyl in the presence of aluminium chloride in refluxing methylene chloride for 11 h (50\%) [3526].
- Preparation by aromatization of 2-acetyl-3-chloro-5-phenyl-2-cyclohexenone in the presence of Pd / C in refluxing cyclohexene for $4 \mathrm{~h}(70 \%)$ [3527].
- Preparation by dehydrogenation of 6-acetyl-3-phenyl-2-cyclohexen-1-one with refluxing 16% bromine solution in acetic acid [2612].
- Also refer to: [2018].
m.p. 91° [2612], $90^{\circ} 5-91^{\circ} 5$ [3526], $90-90^{\circ} 5$ [3527].

1-(4-Hydroxy[1,1'-biphenyl]-3-yl)ethanone

[14031-80-2]	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
	Syntheses
	- Preparation by Fries rearrangement of 4-acetoxybiphenyl, - with aluminium chloride without solvent at $120-140^{\circ}$ [1852,3528,3529], (48\%) [1852] or in tetrachloroethane at 140° [3521,3522,3530,3531], (46\%) [3531];

- with titanium tetrachloride in nitrobenzene at r.t. (6\%) [3379].
- Also obtained by photo-Fries rearrangement of 4-acetoxybiphenylyl with 254 nm light in benzene (61\%) [3524].
- Also obtained-via an intermolecular photo-Fries rearrangement-by irradiation of a solution of pinacolone and p-phenylphenol in benzene for $5 \mathrm{~h}(42 \%)$ [3358].
- Preparation by catalytic hydrogenation of 2-(benzyloxy)-5-phenylacetophenone in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in 95% ethanol at r.t. under 35 psi for 2 h (84%) [3379].
- Preparation by adding an ethereal solution of methyl lithium to a solution of 5-phenylsalicylic acid in 1,2-dimethoxyethane under nitrogen and maintained at $10-12^{\circ}$ (85\%) [3379].
- Preparation by reaction of acetic acid with 4-hydroxybiphenyl in the presence of boron trifluoride-acetic acid complex (good yield) [3521,3522].
- Also refer to: [3532-3535].
m.p. $61^{\circ} 5-62^{\circ}[3530], 61-62^{\circ}[1852,3528], 60-61^{\circ}[3379], 59-61^{\circ}[3531] ;$ IR [3379].

1-(6-Hydroxy[1,1'-biphenyl]-3-yl)ethanone

[20281-51-0] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
 Syntheses

- Preparation by Fries rearrangement of 2-acetoxybiphenyl with aluminium chloride,
- without solvent between 130° and 160° [3519,3520,3536], (60-62\%) [3519,3520];
- in nitrobenzene (58\%) [3537] according to [2151];
- in boiling o-dichlorobenzene for $30 \mathrm{~min}(80 \%)$ [3523].
- Also obtained by UV light irradiation (254 nm) of 2-acetoxybiphenyl in benzene (6\%) [3524].
- Preparation by direct condensation of 2-hydroxybiphenyl with acetic acid in the presence of boron trifluoride [3538].
- Also refer to: [2117].
m.p. $184^{\circ} 1-184^{\circ} 4$ [3523], 177° [3537], 173° [3538], 172- 173° [3519], 167- $168^{\circ} 5$ [3520];
${ }^{1} \mathrm{H}$ NMR [3523], IR [3523]; GC-MS [3523].

1-(3,5-Dihydroxy[1,1'-biphenyl]-2-yl)ethanone

[54439-83-7]

m.p. $\quad 139^{\circ}$ [2686]; ${ }^{1} \mathrm{H}$ NMR [2686], MS [2686].

1-(4,4'-Dihydroxy[1,1'-biphenyl]-3-yl)ethanone

[52189-90-9]	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
OH	Syntheses
COCH_{3}	- Preparation by Fries rearrangement,
$\mathrm{C}_{6} \mathrm{H}_{4}$-OH-p	- of 4-acetoxy-4'-hydroxybiphenyl with aluminium chloride without solvent for 6 h at $168-170^{\circ}$ (57%) [3539]; - of 4,4'-diacetoxybiphenyl with aluminium chloride in tetrachloroethane for 6 h at 160° (34\%) [3539].

- Alsoobtained by irradiation of4,4'-diphenoquinone[bi(cyclohexa-2,5-dienylidene)-4,4'-dione] in acetaldehyde for 2 days (28%) [3539]. m.p. 193° [3539]; ${ }^{1} \mathrm{H}$ NMR [3539], IR [3539], MS [3539].

1-(2-Hydroxy-5-phenoxyphenyl)ethanone

[56926-34-2] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
 Syntheses

- Preparation by Fries rearrangement of 4-acetoxydiphenyl oxide in the presence of aluminium chloride at $120^{\circ}(90 \%)$ [1852].
- Preparation by catalytic hydrogenolysis of 2-(benzyloxy)-5-phenoxyacetophenone at r.t. at 35 psi in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethanol (85\%) [3379].
- Preparation by adding an etheral solution of methyllithium to a solution of 5-phenoxysalicylic acid in 1,2-dimethoxyethane (79\%) [3379].
m.p. $160-161^{\circ}$ [1852], $71-73^{\circ}$ [3379].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [3379].

1-(3,6-Dihydroxy-2-phenoxyphenyl)ethanone

$[52095-10-0]$	Synthesis - Preparation by reaction of phenol on 2-acetylquinone with pyridine in benzene (40\%) [2020].

m.p. $\quad 68-70^{\circ}$ [2020]; ${ }^{1} \mathrm{H}$ NMR [2020], IR [2020].

1-[2-Hydroxy-4,6-bis(2-propynyloxy)phenyl]ethanone

[53771-23-6]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Synthesis

- Obtained by reaction of 2-propynyl bromide with phloroacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone in an atmosphere of nitrogen (12\%) [3160].
m.p. 111° [3160]; IR [3160], UV [3160].

1-[2-Hydroxy-5-(phenylsulfonyl)phenyl]ethanone

[146575-61-3] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 276.31

Synthesis

- Preparation by Fries rearrangement of 4-phenylsulfonylphenyl acetate with aluminium chloride at 190° (52\%) [2478,2479].

1-[3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$
mol.wt. 292.31

Synthesis

- Preparation by shaking an aqueous solution of sodium benzenesulfinate with a solution of 2-acetyl-1,4-benzoquinone and trifluoroacetic acid in methylene chloride for 4 h at r.t. (68\%) [3540].
m.p. 182-183º [3540]; ${ }^{1} \mathrm{H}$ NMR [3540], IR [3540], MS [3540].

1-[2-Hydroxy-5-[(4-hydroxyphenyl)sulfonyl]phenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 292.31
Syntheses

- Obtained by treatment of bisphenol-S diacetate (4,4'-diacetoxydiphenyl sulfone) with aluminium chloride (10 $\mathrm{mol})$ at $160^{\circ}(23 \%)$ [3541].
- Also obtained by UV light irradiation (254 nm) of bisphenol-S diacetate in acetonitrile for 5.5 h (18\%) [3541].

1-(3-Amino-5-hydroxy[1,1'-biphenyl]-2-yl)ethanone
[54439-91-7] $\quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26

Synthesis

- Preparationfrom5-methyl-3'"-phenyl-3,5'-diisoxazolylmethane by performing hydrogenolysis and subsequent hydrolysis with hydrochloric acid (major product) [2686].
m.p. $\quad 192^{\circ}$ [2686]; ${ }^{1} \mathrm{H}$ NMR [2686], MS [2686].

1-(5-Amino-3-hydroxy[1,1'-biphenyl]-2-yl)ethanone

[54439-90-6]	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26 Synthesis
	- Obtained (by-product) from 3'-methyl-5-phenyl-3,5'-di-isoxazolyl-methane by performing hydrogenolysis and subsequent hydrolysis with hydrochloric acid (4\%) [2686].
m.p. 118° [2686];	NMR [2686], MS [2686].

1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-3-iodo-6-methoxyphenyl] ethanone

[82538-75-8]

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{IO}_{4} \quad$ mol.wt. 374.17
Synthesis

- Preparation by reaction of 3-chloro-3-meth-ylbut-1-yne with 2,4-dihydroxy-3-iodo-6methoxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (56\%) [2064].
m.p. $\quad 110-111^{\circ}$ [2064]; ${ }^{1} \mathrm{H}$ NMR [2064].

1-[2-Hydroxy-3,5-bis(2-propenyl)phenyl]ethanone
[35158-35-1]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 216.28
Syntheses

- Preparation by thermal Claisen rearrangement of 3-allyl-2-(allyloxy)acetophenone in N, N-diethylaniline for 4 h at $220^{\circ}(93 \%)$ [2997].
- Preparation by reaction of ethyl acetoacetate with 2-allyl-2,6-heptadienal in the presence of pyridine and piperidine as catalysts, in benzene at $60-70^{\circ}$ (33\%). The 2-allyl-2,6-heptadienal was obtained by self condensation of 4-pentenal in the presence of 15% potassium hydroxide solution [2958-2960].
oil [2958-2960,2997];
b.p. ${ }_{1-2} 90-95^{\circ}$ [2958,2959,2960], b.p. ${ }_{1.2} 100-120^{\circ}$ [2997];

IR [2958-2960], UV [2958-2960].

1-[2,4-Dihydroxy-3,5-bis(2-propenyl)phenyl]ethanone

[40815-80-3]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 232.28
Syntheses

- Preparation by thermal Claisen rearrangement,
- of 3-allyl-4-(allyloxy)-2-hydroxyacetophenone without solvent at $210^{\circ}(20 \%)$ [3182];
- of 3^{\prime}-acetyl-4', 6^{\prime}-bis(allyloxy)acetophenone in refluxing N, N-dimethylaniline (33\%) [3331] or in refluxing phenyl ether (11\%) [3331];
- of 5^{\prime}-acetyl-2',4'-bis(allyloxy)-3'-bromoacetophenone in refluxing N, N dimethylaniline (16\%) [3331];
- of 3'-acetyl-2', 4'-bis(allyloxy)acetophenone in refluxing N,N-dimethylaniline (18\%) [3331];
- of $2^{\prime}, 4^{\prime}$-bis(allyloxy)acetophenone in refluxing N, N-dimethylaniline (40%) [3331].
m.p. 90° [3331], $89-90^{\circ}$ [3182]; ${ }^{1} \mathrm{H}$ NMR [3331], IR [3331], UV [3331], MS [3331].

1-[2,6-Dihydroxy-3,5-bis(2-propenyl)phenyl]ethanone

[37467-66-6]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 232.28
Syntheses

- Preparation by thermal Claisen rearrangement of,
- 2',6'-bis(allyloxy)acetophenone in refluxing N, N-dimethylaniline (45%) [3542] or in N,N-diethylaniline for 4 h at 220° [2997];
- 3^{\prime}-acetyl-4', 6^{\prime}-bis(allyloxy)acetophenone in refluxing N, N-dimethylaniline or in phenyl ether (6-7\%) [3331];
- 3'-acetyl-2',4'-bis(allyloxy)acetophenone in refluxing N, N-dimethylaniline (6\%) [3331].
m.p. $57^{\circ} 5-58^{\circ} 5$ [3542], $55-56^{\circ}$ [2997]; b.p. ${ }_{0.03} 150^{\circ}$ [3542];
${ }^{1} H$ NMR [3331], IR [3331], UV [3331], MS [3331].

1-[2-Hydroxy-6-methoxy-3-(3-methyl-1,3-butadienyl)phenyl]ethanone (Z)

[141215-43-2]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 232.28
Synthesis

- Preparation by reaction of methylmagnesium iodide with 8-acetyl-7-methoxycoumarin in refluxing tetrahydrofuran during 1 h under nitrogen atmosphere (40\%) [3543].
m.p. 112° [3543]; ${ }^{1} \mathrm{H}$ NMR [3543], IR [3543], UV [3543], MS [3543].

1-[2-Hydroxy-3-(2-propenyl)-4-(2-propenyloxy)phenyl]ethanone

[40903-02-4]

m.p. $34^{\circ} 5$ [3182].
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 232.28
Synthesis

- Preparation by reaction of allyl bromide with 3-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (62\%) [3182].

1-[2,6-Dihydroxy-3-(2-propenyl)-4-(2-propenyloxy)phenyl]ethanone
[53771-28-1]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 248.28
Synthesis

- Preparation by thermal Claisen rearrangement of 2,4-bis-(allyloxy)-6-hydroxyacetophenone in N -methylpiperazine at reflux in an atmosphere of nitrogen (53\%) [3160] or without solvent in a sealed vial at 130° (33\%) [3160].
m.p. $102-103^{\circ} 5$ [3160]; UV [3160].

1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-5-methoxyphenyl]ethanone

[70662-40-7]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$
Synthesis

- Obtained by treatment of 2,4-dihydroxy-5-methoxy-acetophenone with 3-chloro-3-methyl-1-butyne in the presence of potassium carbonate and potassium iodide in DMF for 40 h at $80-85^{\circ}$ (15%) [3544].

Yellow oil [3544]; TLC [3544]; ${ }^{1} H$ NMR [3544], UV [3544].
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-6-methoxyphenyl]ethanone
[31273-60-6]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 248.28
Synthesis

- Preparation by reaction of 2-methyl-2-chlo-robut-3-yne on 2,4-dihydroxy-6-methoxyacetophenone with potassium carbonate and potassium iodide in refluxing acetone (80%) [3545].
m.p. $\quad 107-108^{\circ}$ [3545].

1-[2-Hydroxy-4,6-bis(2-propenyloxy)phenyl]ethanone

[53771-27-0]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 248.28
Synthesis

- Obtained by reaction of allyl bromide with phloroacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (10\%) [3160].
m.p. $62^{\circ} 5$ [3160]; UV [3160].

1-[2-Hydroxy-4-(oxiranylmethoxy)-3-(2-propenyl)phenyl]ethanone

[40785-92-0]

m.p. $67^{\circ} 5-68^{\circ} 5$ [2270].
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 248.28
Synthesis

- Preparation by reaction of epichlorohydrin with 3-allyl-2,4-dihydroxyacetophenone in the presence of potassium hydroxide in refluxing ethanol [2270].

1-[2,4,6-Trihydroxy-3,5-bis(2-propenyl)phenyl]ethanone

[53771-29-2]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 248.28
Synthesis

- Preparation by thermal Claisen rearrangement of 2,4-bis-(allyloxy)-6-hydroxyacetophenone in N, N-diethylaniline at reflux (215°) under nitrogen (87%) [3160].
m.p. $67-68^{\circ}$ [3160]; UV [3160].

1-[2,6-Dihydroxy-3,5-bis(2-propenyloxy)phenyl]ethanone

[73331-27-8]

N.B.: In the paper [3542], the formula of the compound 59 displayed page 180, which is the formula of the titled compound $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$, does not fit at all with the one of the actually prepared compound. The Claisen rearrangement of 2,6-bis(allyloxy)acetophenone $\mathbf{5 8}$ leads to the formation of 3,5-diallyl-2,6-dihydroxyacetophenone $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$, page 183.

1-[2,4-Dihydroxy-3-iodo-6-methoxy-5-(3-methyl-2-butenyl)phenyl]ethanone

[82538-76-9] \quad\begin{tabular}{l}

- Obtained by reaction of 2-methylbut-3-en-2-ol

$\left.\begin{array}{l}\text { with 2,4-di-hydroxy-3-iodo-6-methoxyacetophe- } \\
\text { none in the presence of boron trifluoride etherate } \\
\text { in dioxane at 35-40 }\end{array}\right]$ (11\%) [2064].
\end{tabular}

m.p. $\mathbf{1 3 6}^{136} \mathbf{1 3}^{\circ}$ [2064]; ${ }^{1} \mathrm{H}$ NMR [2064].

1-(3-Cyclohexyl-4-hydroxyphenyl)ethanone

[23299-00-5] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30

Synthesis

- Preparation by Fries rearrangement of 2-cyclohexylphenyl acetate with aluminium chloride in nitrobenzene at 85° [1951,3546], (55\%) [1951].
m.p. $148-149^{\circ}$ [3546], 147-148 ${ }^{\circ}$ [1951].

1-(4-Cyclohexyl-3-hydroxyphenyl)ethanone

[73898-21-2] mol.wt. 218.30
m.p. 171° (Sadtler), $165-167^{\circ}$ [1951];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 44602 \mathrm{M}$); IR (Sadtler: standard n ${ }^{\circ} 71630 \mathrm{~K}$).

1-(5-Cyclohexyl-2-hydroxyphenyl)ethanone

[55168-33-7]	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$	mol.wt. 218.30
OH	Syntheses	

Syntheses

- Preparation by reaction of acetic acid with p-cyclohexylphenol in the presence of boron trifluoride at 75° for 24 h (91\%) [3514].
- Preparation by Fries rearrangement of p-cyclohexylphenyl acetate with aluminium chloride without solvent at 140° [2899] or at 170° [3547], (47\%) [2899].
Colourless oil [2899,3547]; m.p. $<50^{\circ}$ [3514];
${ }^{1} \mathrm{H}$ NMR [2899].

1-(5-Cyclohexyl-2,4-dihydroxyphenyl)ethanone

[159977-36-3]
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
Synthesis

- Preparation by reaction of acetic acid with 4-cyclohexylresorcinol in the presence of boron trifluoride etherate at $105-108^{\circ}$ for 15 min , followed by hydrolysis of the obtained boron difluoride chelate (m.p. 207-208 ${ }^{\circ}$) with boiling aqueous ethanol for $15-20 \mathrm{~min}$ (89%) [3548].
m.p. $145-146^{\circ}$ [3548]; IR [3548], UV [3548].

1-[3-(Cyclohexyloxy)-4-hydroxyphenyl]ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 234.30
$$

Syntheses

- Preparationbycatalytichydrogenolysisof4-(benzyloxy)-3-cyclohexyloxyacetophenone in the presence of Pd/C in ethanol at r.t. (82\%) [2248].
- Also obtained (poor yield) by reaction of cyclohexyl bromide with 3,4-dihydroxyacetophenone in the presence of sodium hydroxide in a refluxing mixture of ethanol and methanol (2\%) [2248].
m.p. 88° [2248].

1-[4-(Cyclohexyloxy)-3-hydroxyphenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
 Synthesis

- Obtained (poor yield) by reaction of cyclohexyl bromide with 3,4-dihydroxyacetophenone in the presence of sodium hydroxide in a refluxing mixture of ethanol and methanol (8\%) [2248].
m.p. $\quad 103^{\circ}$ [2248].

1-[2,4-Dihydroxy-3-methyl-5-(3-methyl-2-butenyl)phenyl]ethanone

[74727-08-5]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Synthesis

- Obtained by prenylation of 2,4-dihydroxy-3-methyl-acetophenone with 2-methyl-3-buten2 -ol in dioxane in the presence of boron trifluoride etherate for 1 h at r.t. (41\%) [3549].
m.p. $117-118^{\circ}$ [3549]; TLC [3549];
${ }^{1} \mathrm{H}$ NMR [3549], IR [3549].

1-[2,4-Dihydroxy-5-(2-propenyl)-3-propylphenyl]ethanone

[99370-48-6]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Synthesis

- Preparation by thermal Claisen rearrangement of 4-(allyloxy)-2-hydroxy-3-propylacetophenone without solvent at 210° (79\%) [2671].

1-[2-Hydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[52601-06-6]

${ }^{1} \mathrm{H}$ NMR [2326,2327], UV [2326].
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Synthesis

- Preparation by reaction of 2-methylbut-3-en-2-ol with 2-hydroxy-4-methoxyacetophenone in the presence of boron trifluoride etherate [2326].

1-[2-Hydroxy-4-methoxy-5-(3-methyl-2-butenyl)phenyl]ethanone

[28448-83-1]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Syntheses

- Preparation by reaction of dimethyl sulfate with 2,4-di-hydroxy-5-prenylacetophenone in the presence of potassium carbonate in refluxing acetone (89\%) [3453].
- Preparation by reaction of 2-methylbut-3-en-2-ol with 2-hydroxy-4-methoxyacetophenone in the presence of boron trifluoride etherate [2326].

Isolation from natural sources

- By treatment of bavachinin with 50% potassium hydroxide aqueous solution at $180-200^{\circ}(80 \%)$. The bavachinin is a flavonoid compound obtained from Psoralea Corylifolia Linn. [3460].
Oil [3453,3460]; ${ }^{1} \mathrm{H}$ NMR [2326,2327,3460], IR [3460], UV [2326,3460].
1-[4-Hydroxy-3-(3-methoxy-3-methyl-1-butenyl)phenyl]ethanone (E)

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Isolation from natural sources
- From the roots of Helianthella uniflora (tribe Heliantheae) [3433].
m.p. 124° [3433];
${ }^{1} \mathrm{H}$ NMR [3433], IR [3433], UV [3433], MS [3433].

1-[4-Hydroxy-3-methoxy-5-(3-methyl-2-butenyl)phenyl]ethanone

[73869-90-6] \quad\begin{tabular}{l}
Synthesis

- Obtained by Claisen rearrangement of

3-methoxy-4-(3-methyl-2-butenyloxy)

acetophenone (m.p. 41

niline for 5 h at $170^{\circ}(85 \%)$ in diethyla-
\end{tabular}

m.p. 65° [3434]; ${ }^{1} \mathrm{H}$ NMR [3434], IR [3434].

1-[2-Hydroxy-4-(2-propenyloxy)-3-propylphenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Synthesis

- Preparation by reaction of allyl bromide with 2,4-di-hydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone (78\%) [2671].

Crystalline compound [2671].

1-[3-(Acetyloxy)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

[84297-04-1] \quad\begin{tabular}{l}
2-tert-butyl-2,3-dihydroxyacetophenone and

acetaldehyde in the presence of di-tert-butyl

diperoxyoxalate at $38^{\circ}(25 \%)$ [3386].

- Also obtained by treatment of a benzene solution

of 4-tert-butyl-o-benzoquinone and acetaldehyde

in the presence of di-tert-butyl diperoxyoxalate

at $38^{\circ}(6 \%)$ [3386].
\end{tabular}

Pale yellow oil [3386]; ${ }^{1} \mathrm{H}$ NMR [3386], IR [3386].
1-[5-(Acetyloxy)-4-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone
[107188-26-1] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Synthesis

- Preparation by reaction of acetic anhydride with 2-tert-butylhydroquinone in the presence of boron trifluoride-acetic acid complex between 60° and 90° [3251].
m.p. $86^{\circ} 5-87^{\circ} 5$ [3251].

1-[3-(2-Butenyl)-2-hydroxy-4,6-dimethoxyphenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29
 Synthesis

- Preparation by condensation of 2-hydroxy-4,6-di-methoxyacetophenone with 1,3-butadiene in the presence of 85% orthophosphoric acid in xylene at $30-35^{\circ}$ (80\%) [3325].
m.p. $101-103^{\circ}$ [3325]; ${ }^{1} \mathrm{H}$ NMR [3325].

1-[2-(Cyclohexyloxy)-3,6-dihydroxyphenyl]ethanone

[33537-80-3] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Syntheses

- Easy preparation by reduction of 2-acetyl-3-cyclohexy-loxy-1,4-benzoquinone using conventional methods [2869].
- Also obtained (low yield) by reaction of 2-acetyl-1,4benzoquinone with an excess of cyclohexanol at r.t., with exclusion of light [2869].
m.p. $75-76^{\circ} 5$ [2869]; ${ }^{1} \mathrm{H}$ NMR [2869], IR [2869].

1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad \text { mol.wt. } 250.29
$$

Synthesis

- Preparation by reaction of prenyl bromide with 2,4-dihydroxy-6-methoxyacetophenone in the presence of methanolic potassium hydroxide (major product) [2834], (27\%) [2835].

Isolation from natural sources

- From the rhizomes of Remirea maritima Aubl. (Cyperaceae) [2834,3550]. m.p. $173^{\circ} 5-174^{\circ}$ [3550], $173-174^{\circ}$ [2834], $170-171^{\circ}$ [2835]; TLC [2835]; ${ }^{1} \mathrm{H}$ NMR [2834,2835], UV [2834,2835].

1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone

 (Acronylin)| [27364-64-3] | $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ | mol.wt. 250.29 |
| ---: | :--- | :--- |
| OH | Syntheses | |

- Preparation by prenylation of 2,4-dihydroxy-6-methoxy-acetophenone with 2-methyl-3-buten2 -ol in the presence of boron trifluoride etherate [2834].
- Preparation by dehalogenation of 2,4-dihydroxy-3-iodo-6-methoxy-5-prenylacetophenone in the presence of zinc dust and concentrated hydrochloric acid in refluxing ethanol (75\%) [2064].

Isolation from natural sources

- From the bark of Acronychia laurifolia BL (Rutaceae) [3476]. m.p. $128-129^{\circ}$ [3476,3550], 127-128 ${ }^{\circ}$ [2834];
${ }^{1} \mathrm{H}$ NMR [2834,3476], IR [3476], UV [2834,3476], MS [3476].

1-[2-Hydroxy-4-methoxy-5-[(3-methyl-2-butenyl)oxy]phenyl]ethanone

[142608-87-5]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29
Synthesis

- Preparation by prenylation of 2,5-dihy-droxy-4-methoxy-acetophenone [3551].

1-[2-Hydroxy-4-(oxiranylmethoxy)-3-propylphenyl]ethanone

[57161-85-0]
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Syntheses

- Preparation by reaction of epichlorohydrin with 2,4-di-hydroxy-3-propylacetophenone in the presence of,
- potassium hydroxide in refluxing ethanol (64\%) [2270];
- potassium carbonate in boiling 2-butanol for 10 h (62\%) [3479].
m.p. $54-55^{\circ}$ [2270], $52-56^{\circ} 5$ [3479]; b.p. ${ }_{0.5} 170-175^{\circ}$ [2270]; GLC [3479]; ${ }^{1} \mathrm{H}$ NMR [3479].

1-[2,4,6-Trihydroxy-3-methyl-5-(3-methyl-2-butenyl)phenyl]ethanone

1-[2,6-Dihydroxy-4-methoxy-3-(tetrahydro-2H-pyran-2-yl)phenyl]ethanone

[136258-10-1]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29 Synthesis

- Preparation by reaction of 3,4-dihydro-2H-pyran on 2,6-dihydroxy-4-methoxyacetophenone with p-toluene-sulfonic acid in dioxane, first at 0°, then at r.t. (29\%) [2368].
m.p. $\quad 71-76^{\circ}$ [2368]; ${ }^{1} \mathrm{H}$ NMR [2368], ${ }^{13} \mathrm{C}$ NMR [2368].

1-[2-Hydroxy-4-methoxy-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone

 $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29 Synthesis

- Preparation by reaction of 3,4-dihydro-2H-pyran on 2,6-dihydroxy-4-methoxyacetophenone with p-toluene-sulfonic acid in dioxane, first at 0°, then at r.t. (29\%) [2368].
m.p. $\quad 88-92^{\circ}$ [2368]; ${ }^{1} \mathrm{H}$ NMR [2368], ${ }^{13} \mathrm{C}$ NMR [2368].

1-[2-(β-D-Galactopyranosyloxy)-4-hydroxyphenyl]ethanone
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29

Synthesis

- Preparation from 2-(2,3,4,6-tetra-O-acetyl- β-D-galacto-pyranosyloxy)-4-hydroxyacetophenone by boiling in 0.2 N methanolic sodium methoxide solution for 3 min (45\%) [3552].
m.p. $114-115^{\circ}$ [3552]; monohydrate [3552];
$(\alpha)_{\mathrm{D}}^{20}=-73^{\circ}(\mathrm{c}=1$ in water $)$ [3552].
1-[2-(β-D-Galactopyranosyloxy)-6-hydroxyphenyl]ethanone

1-[3-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone
[88086-97-9]
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29
Synthesis

- Obtained from 3-(2,3,4,6-tetra-O-acetyl- β-D-galactopyrano-syloxy)-2-hydroxyacetophenone by treatment with 0.1 N methanolic sodium methoxide for 3 h at r.t. [2842].
m.p. $179-181^{\circ}$ [2842]; dihydrate [2842];
$(\alpha)_{\mathrm{D}}^{20}=-7^{\circ}(\mathrm{c}=1$ in pyridine $)$ [2842]; ${ }^{1} \mathrm{H}$ NMR [2842].

1-[4-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone

[54918-26-2] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29

Syntheses

- Obtained from 4-(2,3,4,6-tetra-O-acetyl- β-D-galactopyrano-syloxy)-2-hydroxyacetophenone by treatment with methanolic sodium methoxide at r.t. [1936,2842], (87\%) (monohydrate) [1936] or in boiling methanol for 3 min [3552].
m.p. 207° [2842], 205-207$~[3552], ~ 198 ~[~[1936] ; ~ ;$
$(\alpha)_{\mathrm{D}}^{18}=-62^{\circ}$ ($\mathrm{c}=2.3$ in pyridine) [1936];
$(\alpha)_{\mathrm{D}}^{22}=-68^{\circ} 3$ ($\mathrm{c}=1$ in water) (monohydrate) [3552];
$(\alpha)_{\mathrm{D}}^{22}=-73^{\circ}$ ($\mathrm{c}=1$ in water) (anhydrous) [3552].
1-[5-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8}$
mol.wt. 314.29

Synthesis

- Obtained from 5-(2,3,4,6-tetra-O-acetyl- β-D-galactopy-rano-syloxy)-2-hydroxyacetophenone by treatment with 0.1 N methanolic sodium hydroxide solution for 2 h (22\%) [2842].
m.p. $\quad 209-211^{\circ}$ [2842]; ${ }^{1} \mathrm{H}$ NMR [2842].

1-[2-(β-D-Glucopyranosyloxy)-4-hydroxyphenyl]ethanone
(Cynanoneside B; Bungeiside B)

[149561-88-6]	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29
	Synthesis
	- Preparation from 2-(2,3,4,6-tetra-O-acetyl- β-D-gluco-pyranosyloxy)-4-hydroxyacetophenone by boiling in 0.2 N methanolic sodium methoxide solution for 3 min (65\%) [3553].

Isolation from natural sources

- From the roots of Cynanchum bungei DECNE (Asclepiadaceae) [3554].
- From the roots of Cynanchum taiwanianum (Asclepiadaceae) [3555].

Amorphous white powder [3554], Amorphous solid [3555];
m.p. 178-180 [3553];
$(\alpha)_{\mathrm{D}}^{20}=-88^{\circ} 5(\mathrm{c}=1$ in water) [3553],
$(\alpha)_{\mathrm{D}}^{20}=-11^{\circ} 0(\mathrm{c}=1$ in ethanol) [3555],
$(\alpha)_{D}=-17^{\circ} 3(c=0.7$ in methanol) [3554]; TLC [3553];
${ }^{1} \mathrm{H}$ NMR [3554,3555], ${ }^{13} \mathrm{C}$ NMR [3554,3555], IR [3555], UV [3555],
MS [3554,3555].

1-[2-(β-D-Glucopyranosyloxy)-5-hydroxyphenyl]ethanone (Bungeiside A)
[149475-52-5] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29

Isolation from natural sources

- From the roots of Cynanchum bungei DECNE (Asclepiadaceae) [3554].
white amorphous powder [3554];
$(\alpha)_{\mathrm{D}}=-40^{\circ} 6(\mathrm{c}=5$ in methanol) [3554];
${ }^{1} \mathrm{H}$ NMR [3554], ${ }^{13} \mathrm{C}$ NMR [3554], IR [3554], MS [3554].
1-[2-(β-D-Glucopyranosyloxy)-6-hydroxyphenyl]ethanone
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29

Synthesis

- Refer to: [3556].

1-[3-(β-D-Glucopyranosyloxy)-4-hydroxyphenyl]ethanone
[55483-00-6] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29

Synthesis

- Preparation by bubbling dry ammonia into an ice cooled solution of 3-(tetra-O-acetyl- β-D-glucopyranosyloxy)-4-hydroxyacetophenone in methanol for 40 min . Then, the solution was set aside at r.t. for $15 \mathrm{~h}(72 \%)$ [3410].
Isolation from natural sources
- From the leaves of Picea pungens Engelm. (Colorado spruce) [3557,3558].
- From the leaves of Picea pungens Engelm. var. glauca Beiss. [3559].
- From shoots of Picea abies [3560].
- From white spruce of Picea glauca (Moench) Voss [3559].
- From galls and shoots of Picea glauca (Pinaceae) [3561]. m.p. 198-199 ${ }^{\circ}$ [3557], 190-195 ${ }^{\circ}$ [3410], 190- 191° [3559]; $(\alpha)_{\mathrm{D}}^{24}=-96^{\circ} 8\left(\mathrm{c}=0.53\right.$ in water) [3557], $(\alpha)_{\mathrm{D}}=-88^{\circ} 9(\mathrm{c}=0.53$ in water) [3410], $(\alpha)_{\mathrm{D}}^{30}=-85.47$ (c = 1.17 in water) [3559]; GC [3560], GC/MS [3560,3561]; ${ }^{1} \mathrm{H}$ NMR [3410,3562], IR [3410], MS [3410].

1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]ethanone
[54918-24-0]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29
Syntheses

- Preparation by deacetylation of 4-(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyloxy)-2-hydroxyacetophenone,
- with sodium methoxide in methanol (92\%) [3563], (70-80\%) [2528], (60-70\%) [3553];
- with barium hydroxide in aqueous solution for 16 h (84\%) [2736].
- Also refer to: [1936,3564].
m.p. 201-202 ${ }^{\circ}$ [2736,3553], 198-200́ [3563];
$(\alpha)_{\mathrm{D}}^{20}=-86^{\circ} 9(\mathrm{c}=50$ in acetone $)$ [3563]; TLC [3553].
1-[4-(β-D-Glucopyranosyloxy)-3-hydroxyphenyl]ethanone (Cynanoneside A)
[17063-43-3] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29

Isolation from natural sources

- From the shoots of Picea abies [3560].
- From the roots of Cynanchum taiwanianum (Asclepiadaceae) [3555].
- From galls and shoots of Picea glauca (Pinaceae) [3561].
Amorphous solid [3555];
$(\alpha)_{D}^{20}=-5^{\circ} 0(\mathrm{c}=1$ in ethanol) [3555];
GC [3560]; GC/MS [3560,3561];
${ }^{1} \mathrm{H}$ NMR [3555], ${ }^{13} \mathrm{C}$ NMR [3555], IR [3555], UV [3555], MS [3555].

1-[2-(β-D-Glucopyranosyloxy)-4,6-dihydroxyphenyl]ethanone

mol.wt. 330.29

1-[2-(β-D-Glucopyranosyloxy)-3,4,6-trihydroxyphenyl]ethanone (Lalioside)
[116964-03-5]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{10} \quad$ mol.wt. 346.29
Isolation from natural sources

- From Lawsonia inermis [3567].
spectroscopic data [3567].

1-[3-(β-D-Glucopyranosyloxy)-2,4,6-trihydroxyphenyl]ethanone (Polygoacetophenoside)

[110906-84-8]

m.p. 214-216 [3309];
${ }^{1} \mathrm{H}$ NMR [3309], ${ }^{13} \mathrm{C}$ NMR [3309], IR [3309];
UV [3309], MS [3309], HRMS [3309].

1-[4-[(3-Bromopropyl)thio]-2-hydroxy-3-propylphenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{~S} \quad$ mol.wt. 331.27
Synthesis

- Preparation by reaction of 1,3-dibromopropane with 2-hydroxy-4-mercapto-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone [2271].

Yellow oil [2271].
1-[4-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]ethanone

[40786-20-7]	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{3} \quad \mathrm{~mol}$.wt. 315.21
H	Synthesis
	- Preparation by reaction of 1,3-dibromopropane with 2,4-di-hydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone [2270].
b.p.0.02 ${ }^{172-180^{\circ}}$ [2270].	

1-[5-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{3} \quad$ mol.wt. 315.21
Synthesis

- Preparation by reaction of 1,3-dibromopropane with 2,5-di-hydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone [2271].
m.p. $69-70^{\circ}$ [2271].

1-[4-(3-Chloropropoxy)-2-hydroxy-3-propylphenyl]ethanone

[79558-02-4]

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}_{3}$
mol.wt. 270.76
Syntheses

- Preparation by reaction of 1-bromo-3-chloropropane with 2,4-dihydroxy-3-propylacetophenone in the presence of potassium carbonate in refluxing acetone for $5 \mathrm{~h}(80 \%)$ [3204], (67\%) [3479].
- Also refer to: [3568].
m.p. $39-41^{\circ}$ [3479], $37-38^{\circ}$ [3204]; GLC [3479]; ${ }^{1} \mathrm{H}$ NMR [3479].

1-[2-(Ethylamino)-5-[1-(ethylimino)ethyl]-4-hydroxyphenyl]ethanone

[115349-97-8]
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
mol.wt. 248.33

Synthesis

- Obtained by heating a mixture of 4,6-diacetylresorcinol, aqueous ethylamine and concentrated hydrochloric acid as catalyst, in an autoclave from 8 to 72 h [3569].
m.p. $153-154^{\circ}$ [3569]; ${ }^{1} \mathrm{H}$ NMR [3569], MS [3569].

1-[5-Ethyl-2-hydroxy-4-methyl-3-(1-methylethyl)phenyl]ethanone

1-[6-Ethyl-2-hydroxy-4-methyl-3-(1-methylethyl)phenyl]ethanone
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31

Synthesis

- Preparation by chromic degradation of 4-ethyl-2,3,6-tri-methyl-7-isopropylbenzofuran (46\%) [3224].
b.p. ${ }_{18} 165-166^{\circ}$ [3224].

1-(5-Hexyl-2-hydroxyphenyl)ethanone

[55168-32-6] $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31

Synthesis

- Preparation by Fries rearrangement of p-n-hexylphenyl acetate with aluminium chloride without solvent (15\%) [2899].
yellow oil [2899]; b.p..$_{0.7} 110^{\circ}$ [2899]; MS [2899].

1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]ethanone

[35158-23-7]
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31
Synthesis
 Synthesis

- Preparation by reaction of ethyl acetoacetate with 5-methyl-2-isopropyl-2-hexenal in the presence of pyridine and piperidine as catalysts in refluxing benzene (40%). The 5-methyl-2-isopropyl-2hexenal was obtained by self-condensation of isovaleraldehyde in the presence of 15% potassium hydroxide solution [2958-2960].
m.p. 37° [2958-2960]; b.p. ${ }_{0.05-0.10} 70-80^{\circ}$ [2958-2960];
${ }^{1}$ H NMR [2958-2960], IR [2958-2960], UV [2958-2960].

1-(2-Hydroxy-3,5-dipropylphenyl)ethanone

[35198-96-0]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31
Synthesis

- Preparation by reaction of ethyl acetoacetate with 2-n-propyl-2-heptenal in the presence of pyridine and piperidine as catalysts in refluxing benzene (42%).
- The 2-n-propyl-2-heptenal was obtained by self-condensation of n-valeraldehyde in the presence of 15% potassium hydroxide solution [2958-2960].
liquid [2958-2960]; b.p. .075 $80-90^{\circ}$ [2958-2960];
${ }^{1}$ H NMR [2958-2960], IR [2958-2960], UV [2958-2960].

1-(3,4,5-Triethyl-2-hydroxyphenyl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad \text { mol.wt. } 220.31
$$

b.p. ${ }_{12} 153-155^{\circ}$ [2233].

- Preparation by Fries rearrangement of 2,4,6-triethylphenyl acetate with aluminium chloride via a migration of two ethyl groups (65\%) [2233].

1-(2,4-Dihydroxy-3,5-dipropylphenyl)ethanone

[72018-36-1]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31
Syntheses

- Preparation by hydrogenation of 2,4-dihydroxy-3,5-di-propenylacetophenone in ethanol using 10% $\mathrm{PdO} / \mathrm{C}$ as catalyst (98\%) [3184].
- Also refer to: $[2326,2327]$.
N.B.: Pr indicates the propyl group $-\mathrm{C}_{3} \mathrm{H}_{7}$ in Chem. Abstr., 92, 6368x (1980) and 98, 54239b (1983), as usual abbreviation. However, in the two references [2326,2327], Pr represented the prenyl group $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$. Therefore they concern the 2,4-dihydroxy-3,5-diprenylacetophenone and not the above mentioned 2,4-dihydroxy-3,5-dipropylacetophenone.
m.p. $98-99^{\circ}$ [3184].

1-[4-Ethoxy-3-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31
 Synthesis

- Preparation by diazotization of 3-amino-4-ethoxy-5-methyl-2-isopropylacetophenone, followed by hydrolysis of the diazonium salt obtained (44\%) [3327].
m.p. 88° [3327].

1-(5-Hexyl-2,4-dihydroxyphenyl)ethanone

[63411-88-1]

m.p. $86-87^{\circ}$ [2676].
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31
Syntheses

- Preparation by reaction of acetonitrile on 4-n-hexylresorcinol (Hoesch reaction) (84\%) [2676].
- Preparation from 5-hexyl-2,4-dimethoxyacetophenone by demethylation with boron tribromide in methylene chloride at r.t. (70\%) [2678,2679].

1-[3-(Hexyloxy)-4-hydroxyphenyl]ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad \text { mol.wt. } 236.31
$$

Synthesis

- Preparation from 4-(benzyloxy)-3-hexyloxyacetophenone by catalytic debenzylation on $\mathrm{Pd} / \mathrm{C}(89 \%)$ [2946].
m.p. 48° [2946].

1-[4-(Hexyloxy)-2-hydroxyphenyl]ethanone

[143286-85-5] $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31

Synthesis

- Preparation by partial alkylation of resacetophenone with hexyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [3493].
m.p. 22° [3493].

1-[4,6-Dihydroxy-2-methoxy-3-(3-methylbutyl)phenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31
Synthesis

- Preparation from acronylin (4,6-dihydroxy-2-methoxy-3-isopentenylacetophenone) by catalytic reduction with Pd / C as catalyst in ethyl acetate [3476].
m.p. 143° [3476]; ${ }^{1} \mathrm{H}$ NMR [3476].

1-[2-Hydroxy-4,6-bis(1-methylethoxy)phenyl]ethanone

[93344-48-0]
 $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31
Synthesis

- Preparation by reaction of 2-bromopropane with phloroacetophenone in the presence of potassium carbonate in DMF at reflux (67\%) [2830].
dark red oil [2830]; ${ }^{1} \mathrm{H}$ NMR [2830], IR [2830], MS [2830].

1-[3-Hydroxy-4,6-dimethoxy-2-methyl-5-(1-methylethyl)phenyl]ethanone

[159848-01-8]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31
Synthesis

- Obtained by reaction of 3-chloroperbenzoic acid with 2,4-dimethoxy-6-methyl-3-isopropylacetophenone in refluxing ethylene dichloride for 48 h (34\%) [3570].
m.p. $\quad 98-100^{\circ}$ [3570]; ${ }^{1} \mathrm{H}$ NMR [3570].

1-[2-Hydroxy-4,6-bis(propyloxy)phenyl]ethanone

1-[3,5-Diethyl-2,4-dihydroxy-6-(methoxymethoxy)phenyl]ethanone
[175785-90-7]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 268.31
Synthesis

- Refer to: [3495] (Japanese patent).

1-[3,6-Dihydroxy-2,4-bis(1-methylethoxy)phenyl]ethanone
[93344-49-1]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$ mol.wt. 268.31
Synthesis

- Preparation from 2-hydroxy-4,6-diiso-propoxy-acetophenone by persulfate oxidation (Elbs reaction) (12\%) [2830].
oil [2830]; ${ }^{1} \mathrm{H}$ NMR [2830], IR [2830], MS [2830].
1-[4,6-Dihydroxy-3-(3-hydroxy-3-methylbutyl)-2-methoxyphenyl]ethanone
[153399-41-8]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 268.31
Synthesis
- Obtained by catalytic hydrogenation of 4,6-bis(benzyloxy)-3-(3-hydroxy-3-methy-lbutynyl)-2-methylacetophenone in methanol in the presence of Pd / C at 20° [3571].
m.p. $\quad 156-158^{\circ}$ [3571]; ${ }^{1} \mathrm{H}$ NMR [3571].

1-(2,4-Diethoxy-6-hydroxy-3,5-dimethoxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 284.31

Synthesis

- Preparation by Friedel-Crafts acylation of 1, 3-diethoxy-2,4,5-trimethoxybenzene with acetyl chloride in the presence of aluminium chloride (60\%) [3313].
b.p. $0_{0.2} 119-121^{\circ}$ [3313].

1-[2-Hydroxy-3,5,6-trimethoxy-4-(1-methylethoxy)phenyl]ethanone

[56002-87-0]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 284.31
Synthesis

- Obtained (poor yield) by Friedel-Crafts acylation of 3-iso-propyloxy-2,4,5-trimethoxyphenol with acetyl chloride in ethyl ether in the presence of aluminium chloride (9\%) [3317].
${ }^{1} \mathrm{H}$ NMR [3317].

1-[2-Hydroxy-3,4,6-tris(methoxymethoxy)phenyl]ethanone

[53000-17-2]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 316.31
Synthesis

- Obtained by reaction of chloromethyl methyl ether with 2,3,4,6-tetrahydroxyacetophenone in ethanol in the presence of sodium ethoxide under nitrogen, first at 0°, then at $40^{\circ}(13 \%)$ [2882].

Yellow oil [2882]; ${ }^{1} \mathrm{H}$ NMR [2882], IR [2882].

1-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2,6-dihydroxyphenyl]ethanone

[139140-13-9]

$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Si} \quad$ mol.wt. 282.41
Synthesis

- Obtained by sonication of $2^{\prime}, 4^{\prime}, 6^{\prime}$-(tri-tert-butyl-dimethylsilyloxy)acetophenone in solution of methanol and carbon tetrachloride (1:1) at $50-55^{\circ}$ for 12 h (85%) [3572].

Colourless oil [3572]; ${ }^{1} \mathrm{H}$ NMR [3572], ${ }^{13} \mathrm{C}$ NMR [3572], IR [3572], MS [3572].
1-[4-(Benzoyloxy)-2-hydroxy-3,5-dinitrophenyl]ethanone
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{8} \quad$ mol.wt. 346.25

Synthesis

- Preparation (by-product) by reaction of concentrated nitric acid on 4-(benzoyloxy)-2hydroxyacetophenone in acetic acid at r.t. [1808].
m.p. $\quad 171-172^{\circ}$ [1808].

1-[4-(Benzoyloxy)-5-bromo-2-hydroxyphenyl]ethanone

$$
\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad \text { mol.wt. } 335.15
$$

Synthesis

- Preparation by bromination of 4-(benzoyloxy)-2-hydroxy-acetophenone [1808,2707].
m.p. 176° [2707], $175-177^{\circ}$ [1808].

1-[4-(Benzoyloxy)-2-hydroxy-5-nitrophenyl]ethanone

$$
\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{6} \quad \text { mol.wt. } 301.26
$$

Synthesis

- Preparation by reaction of concentrated nitric acid on 4-(benzoyloxy)-2-hydroxyacetophenone in acetic acid at r.t. [1808].
m.p. $125-126^{\circ}$ [1808].

1-[3-Bromo-2-hydroxy-5-nitro-4-(phenylmethoxy)phenyl]ethanone
m.p. $\quad 150-151^{\circ}$ [1808].

1-[2-[(2,4-Dichlorophenyl)methoxy]-6-hydroxyphenyl]ethanone

[63411-86-9]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 311.16
Synthesis

- Obtained by reaction of 2,4-dichlorobenzyl chloride with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (62\%) [3242].
m.p. $126-127^{\circ}$ [3242].

1-[2-[(3,4-Dichlorophenyl)methoxy]-6-hydroxyphenyl]ethanone

[63411-85-8] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad \mathrm{~mol}$.wt. 311.16

Synthesis

- Obtained by reaction of 3,4-dichlorobenzyl bromide or chloride with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (52\%) [3242].
m.p. $175-176^{\circ}$ [3242].

1-[4-(2,6-Difluorophenyl)methoxy-3-hydroxyphenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3} \quad$ mol.wt. 278.26

Synthesis

- Obtained by stirring a mixture of 3,4-dihy-droxy-acetophenone, lithium carbonate and α-bromo-2,6-di-fluorotoluene in DMF for 2 days at r.t. (38\%) [3573].

Solid [3573]; ${ }^{1} \mathrm{H}$ NMR [3573].
1-[2-(Benzoyloxy)-4-hydroxyphenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26
Synthesis

- Obtained by conventional acylation of resacetophenone with benzoyl chloride [3574].

1-[2-(Benzoyloxy)-5-hydroxyphenyl]ethanone

[88087-03-0]	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26
OH	Synthesis
	- Preparation by hydrogenolysis of 5-(benzyloxy)-2(benzoyloxy)acetophenone in ethyl acetate using $10 \% \mathrm{Pd} / \mathrm{C}$ as catalyst, at r.t. for 5 h (78\%) [2842].
m.p. 168-169	[2842]; ${ }^{1} \mathrm{H}$ NMR [2842].

1-[2-(Benzoyloxy)-6-hydroxyphenyl]ethanone

[50634-01-0] \quad| Synthesis |
| :--- |

1-[3-(Benzoyloxy)-4-hydroxyphenyl]ethanone

[101140-07-2] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26

Synthesis

- Preparation by reaction of benzoyl chloride with 3,4-dihydroxyacetophenone in the presence of pyridine, first at 0° for 5 min , then at r.t. for 24 h under nitrogen atmosphere (77%) [3410].
m.p. $143-156^{\circ}$ [3410]. This gap of 13° appears in the publication.
${ }^{1} \mathrm{H}$ NMR [3410], IR [3410], MS [3410].

1-[4-(Benzoyloxy)-2-hydroxyphenyl]ethanone

[109311-05-9]

 Syntheses

- Preparation by reaction of benzoyl chloride on resacetophenone [2293,2613,2707,2792],
- with aqueous sodium hydroxide (68\%) [2613];
- with aqueous potassium hydroxide [2293];
- with potassium carbonate in toluene by heating on a steam bath (52\%) [2613];
- with aluminium chloride in nitrobenzene by heating in a water bath (21%) [2707].
- Also refer to: [3575].
m.p. 110° [2707], $107-108^{\circ}$ [2792], 106-107$~[2613], ~ 105-106 ~[2293] . ~$.

1-[5-(Benzoyloxy)-2-hydroxyphenyl]ethanone

	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26
OH	Synthesis
	- Obtained by reaction of aluminium chloride on 4-(benzoyloxy)phenyl acetate without solvent between 125° and 155° (13\%) [2344].
m.p. $77-78^{\circ}$	44].

1-[2-(Benzoyloxy)-4,6-dihydroxyphenyl]ethanone

[83332-29-0]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 272.26
Synthesis

- Obtained by reaction of benzoyl chloride on phloroacetophenone with 2% aqueous potassium hydroxide solution at $0^{\circ}(6 \%)$ [3077] or with dilute aqueous sodium hydroxide solution [2827].
m.p. 186° [3077], 177-178 ${ }^{\circ}$ [2827].

1-[4-(Benzoyloxy)-2,6-dihydroxyphenyl]ethanone
[130471-75-9]
-

1-[3-Bromo-2-hydroxy-6-(phenylmethoxy)phenyl]ethanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17

Synthesis

- Preparation by reaction of bromine on 2-(benzyloxy)-6-hydroxyacetophenone in methylene chloride (84\%) [2524] or in acetic acid at r.t. (58\%) [2523].
m.p. $125-126^{\circ}$ [2523], 124° [2524]; IR [2524].

1-[5-Bromo-2-hydroxy-4-(phenylmethoxy)phenyl]ethanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
 Syntheses

- Obtained from 3,3'-diacetyl-4,4'-dihydroxy-6,6'-dibenzyl-oxydiphenyl thioether by treatment with bromine in the presence of a crystal of iodine in boiling acetic acid for 8 h then at r.t. overnight [3576].
- Also obtained by bromination of 4-(benzyloxy)-2-hydroxy-acetophenone with bromine in carbon disulfide in the presence of a trace of iodine [3577].
m.p. $154-155^{\circ}[3576,3577]$.

1-[2-Hydroxy-3-iodo-4-(phenylmethoxy)phenyl]ethanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3} \quad$ mol.wt. 368.17

m.p. 165° [1910].

- Preparation by iodination of 4-(benzyloxy)-2-hydroxy-acetophenone [1910].

1-[2-Hydroxy-5-iodo-4-(phenylmethoxy)phenyl]ethanone

$$
\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3} \quad \text { mol.wt. } 368.17
$$

Synthesis

- Obtained (by-product) during the rearrangement of 2-(benzoyloxy)-4-(benzyloxy)-3-iodoacetophenone to give 7-(benzyloxy)-8-iodoflavone [1910].

1-[2-Hydroxy-5-nitro-4-(phenylmethoxy)phenyl]ethanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 287.27

Synthesis

- Preparation by nitration of 4-(benzyloxy)-2-hydroxy-acetophenone in acetic acid at r.t. [1808].
m.p. $140-141^{\circ}$ [1808].

1-(2-Hydroxy-5-methyl[1,1'-biphenyl]-3-yl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 226.27
Synthesis

- Obtained by successively adding an aqueous solution of sodium bicarbonate (6 mmol), then tetrakis(triphenyl-phosphine)palladium (0) (0.1 mmol) to a solution of 3-bromo-2-hydroxy-5-methylacetophenone (2 mmol) and phenylboronic acid (2 mmol) in ethylene glycol dimethyl ether (DME). After, the reaction mixture was refluxed for 10 min and then heated at 75° overnight (71%) (compound 26) [1804].
Yellow solid [1804]; ${ }^{1} \mathrm{H}$ NMR [1804], MS [1804].
1-(4-Hydroxy-4'-methyl[1,1'-biphenyl]-3-yl)ethanone
[229007-00-5]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 226.27

Synthesis
- Obtained by Fries rearrangement of 4'-methyl-4-biphenylyl acetate (1 mol) with aluminium chloride (1.1 mol) in refluxing o-dichlorobenzene for 3 h (67\%) [3578].
m.p. $82^{\circ} 5-83^{\circ} 3$ [3578]; ${ }^{1} \mathrm{H}$ NMR [3578], IR [3578], GC-MS [3578].

1-[2-Hydroxy-5-(phenylmethyl)phenyl]ethanone

[61300-15-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Synthesis

- Preparation by Fries rearrangement of 4-hydroxydiphenylmethane acetate with aluminium chloride in chlorobenzene at 130° [2270,3579], (85\%) [3579].
m.p. 56° [3579], $55-56^{\circ}$ [2270].

1-[4-Hydroxy-3-(phenylmethyl)phenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses

- Preparation by Fries rearrangement of 2-hydroxy-diphenylmethane acetate in the presence of aluminium chloride in nitrobenzene at $50-60^{\circ}(70 \%)$ [3579].
- Also refer to: [3580,3581]. m.p. $137-138^{\circ}$ [3579].

1-[3-Hydroxy-4-(phenylmethyl)thiophenyl]ethanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} \quad \text { mol.wt. } 258.34
$$

 Synthesis

- Obtained by reaction of benzyl bromide with 3-hydroxy-4-mercaptoacetophenone (SM) in the presence of potassium carbonate in refluxing acetone for $2 \mathrm{~h}(20 \%)$. SM was prepared by demethylation of 3-methoxy-4-mercapto-acetophenone with boron tribromide in methylene chloride for 2 h at -78° [3573].
${ }^{1} \mathrm{H}$ NMR [3573].

1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]ethanone

[67088-16-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
 Syntheses

- Preparation by reaction of boron tribromide with 3-benzyl-2,4-dimethoxyacetophenone in methylene chloride, first at -50°, then at r.t. (90\%) [2464].
- Preparation by reaction of concentrated hydrochloric acid with 3-benzyl-4-(benzyloxy)-2-hydroxyacetophenone in refluxing acetic acid (69\%) [3582].
- Also obtained by reacting 4-(benzyloxy)-2-hydroxyacetophenone with trifluoroacetic acid at r.t. for $70 \mathrm{~h}(17 \%)$ [2324].
- Also obtained by reaction of benzyl alcohol with resacetophenone in the presence of boron trifluoride etherate and dioxane at $60-70^{\circ}$ (16\%) [2324].
- Also obtained by reaction of acetonitrile on 2-benzylresorcinol (Hoesch reaction) (11\%) [3582].
- Also obtained by reaction of benzyl bromide with resacetophenone in the presence of methanolic potassium hydroxide at r.t. (18\%) [3583].
- Also obtained by catalytic reduction of 2',4'-dihydroxy-3'-[phenyl-(1-piperidyl) methyl]-acetophenone in the presence of Pd/C [2673,2674], (68\%) [2674]. An alternative route of reduction consisted in heating the starting material and Pd / C in tetralin between 140° and 150° for $8 \mathrm{~h}(57 \%)$ [2674]. The starting material was obtained by treatment of resacetophenone in ethanol or benzene with ben-zylidene-bis-piperidine.
- Also refer to: [3584].
m.p. 207-208 ${ }^{\circ}$ [2673,2674], 196-198 ${ }^{\circ}$ [3583], 195-197 ${ }^{\circ}$ [3582], 195-196 ${ }^{\circ}$ [2324];
${ }^{1} \mathrm{H}$ NMR [2324,2464,2674], IR [2324,2674], UV [2324].

1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]ethanone

[93898-99-8] \quad\begin{tabular}{l}
Syntheses

- Preparation by Fries rearrangement of 4-benzylresor-
cinol diacetate with aluminium chloride in the pres-
ence of 4-benzylresorcinol in nitrobenzene at 50°
(85%) [3579].

\end{tabular}

- Also obtained by reacting 2-hydroxy-4-(benzyloxy)acetophenone with trifluoroacetic acid at r.t. for 70 h (29\%) [2324].
- Also obtained by reaction of benzyl alcohol with resacetophenone in the presence of boron trifluoride etherate and dioxane at $60-70^{\circ}$ (24\%) [2324].
- Also obtained (poor yield) by reaction of benzyl bromide with resacetophenone in the presence of methanolic potassium hydroxide at r.t. ($<2 \%$) [3583].
m.p. 149° [3579], $140-142^{\circ}$ [3583], $140-141^{\circ}$ [2324]; ${ }^{1} \mathrm{H}$ NMR [2324], IR [2324], UV [2324].

1-(3-Hydroxy-5-methoxy[1,1'-biphenyl]-4-yl)ethanone

[32101-40-9]	Synthesis - Preparation by dehydrogenation of 2-acetyl-3-meth- oxy-5-phenyl-2-cyclohexenone in the presence of Pd black powder in refluxing cyclohexene for 6 h (70\%) [3527].
m.p. $96-97^{\circ}$ [3527];	IR [3527], UV [3527].

1-(4-Hydroxy-4'-methoxy[1,1'-biphenyl]-3-yl)ethanone

[114412-47-4]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
molwt. 242.27

Synthesis

- Obtained by Fries rearrangement of 4-acetoxy-4'-methoxydiphenyl with aluminium chloride in tetrachloroethane at 140° for 30 min [3585].

1-[2-Hydroxy-3-(phenylmethoxy)phenyl]ethanone

| [30992-64-4] | $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$ | mol.wt. 242.27 |
| :--- | :--- | :--- | :--- |

 with 2,3-di-hydroxyacetophenone in the presence of potassium iodide and potassium carbonate in refluxing acetone for 4 h (43\%) [3586] or for 18 h (40\%) [2287].
m.p. $55-56^{\circ}$ [2287]; b.p. ${ }_{0.05} 122-130^{\circ}$ [3586]; ${ }^{1} \mathrm{H}$ NMR [2287], IR [2287].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]ethanone

[29682-12-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by reaction of resacetophenone, with benzyl chloride,
- in the presence of potassium carbonate in refluxing acetone [2417,3493], (85\%) [3204], (50-52\%) [2423,2529,2823].
N.B.: The butanone can also be used instead of acetone [3204]. The addition of potassium iodide improved yields [2417],
- in the presence of potassium carbonate in DMF at $150-153^{\circ}$ (62\%) [3587];
- in the presence of potassium carbonate and potassium iodide in refluxing acetone for 4 h [3586] or for 18 h (67\%) [2287];
- in the presence of potassium hydroxide in refluxing methanol [3582].
- with benzyl bromide,
- in the presence of potassium carbonate in a methyl ethyl ketone and DMSO mixture (53\%) [3588];
- in the presence of methanolic potassium hydroxide at r.t. (10\%) [3583].
- Also obtained by hydrolysis of 2-(acetyloxy)-4-(benzyloxy)acetophenone (m.p.111-112 $)$ with 10% aqueous sodium hydroxide in boiling methanol for 5 min (76\%) [2763].
- Also obtained (trace) by heating 4-acetyloxy-2-hydroxyacetophenone with benzyl chloride (<1\%) [2904].
- Also refer to: [2777,3589-3596].

```
m.p. 1111' [2423], 110 [ [2324], 109-110 [3583], 106-107 [ [3582], 105-106 
    [3586], 104-1045 [2763], 104-105` [3204], 103-105` [3493], 103-104*
    [2823], 102-103} [2904], 101-102 [ [2287], 94-95 [3587];
'1H NMR [2287,2904,3587], '3}\textrm{C}\mathrm{ NMR [2328], UV [2763,2904].
```


1-[2-Hydroxy-4-(phenylmethoxy)phenyl]ethanone-1-14C

Syntheses

- Preparation by reaction of benzyl chloride with [carbonyl- ${ }^{14} \mathrm{C}$]resacetophenone in the presence of potassium carbonate and potassium iodide in DMF at 80° for 2 h [3597], (69\%) [3598] or at $50-55^{\circ}$ for $1 \mathrm{~h}(63 \%)$ [3599].
m.p. $105^{\circ} 5-106^{\circ} 5$ [3599], $103-105^{\circ}$ [3598];
sp. act. $6.09 \times 10^{7} \mathrm{dpm} / \mathrm{mM}[3598] ; \quad 0.316 \mathrm{mCi} / \mathrm{mM}$ [3597].
sp. act. $6.09 \times 10^{7} \mathrm{dpm} / \mathrm{mM}[3598] ; \quad 0.316 \mathrm{mCi} / \mathrm{mM}$ [3597].

1-[2-Hydroxy-5-(phenylmethoxy)phenyl]ethanone

[30992-63-3] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
 Syntheses

- Preparation by reaction of benzyl chloride with quinacetophenone [2226,2358,2529] in refluxing acetone in the presence of potassium carbonate,
- with potassium iodide (85%) [2226], (71\%) [3586], (55\%) [2287];
- without potassium iodide (31\%) [2358].
m.p. 100-102 ${ }^{\circ}$ [2226], 69-70 ${ }^{\circ}$ [2358,3586], 67-68 ${ }^{\circ}$ [2287]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [2226,2287], IR [2226], MS [2226].

1-[2-Hydroxy-6-(phenylmethoxy)phenyl]ethanone

[4047-24-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by reaction of benzyl chloride with 2,6-dihydroxyacetophenone,
- in the presence of potassium carbonate in refluxing acetone [1984,2408], (58\%) [2408];
- in the presence of potassium carbonate and potassium iodide in refluxing acetone for $18 \mathrm{~h}(40 \%)$ [2287];
- in the presence of 15% aqueous sodium hydroxide, by heating in a water bath (67\%) [2364].
- Preparation by reaction of benzyl bromide with 2,6-dihydroxyacetophenone monosodium salt (SM) in DMSO at r.t. for $1 \mathrm{~h}(76 \%)$. SM was prepared by reaction of sodium hydride (1 mol) with 2,6-dihydroxyacetophenone (1 mol) in DMSO at r.t. for 10 min [3600].
- Preparation by reaction of benzyl bromide with 2,6-dihydroxyacetophenone,
- in the presence of potassium carbonate in refluxing acetone (60\%) [2524];
- in the presence of potassium carbonate and potassium iodide in refluxing acetone (about 80°) for $12 \mathrm{~h}(72 \%)$ [3601].

Monohydrate [3601];
m.p. $110-111^{\circ}$ [3601], $109-110^{\circ}$ [2408,3600,3602], 109° [2524], 108-109 ${ }^{\circ}$ [2287]
106-109 ${ }^{\circ}$ [1984], 106-107$~[2364] ; ~$
${ }^{1} \mathrm{H}$ NMR [2287,3600,3601], ${ }^{13} \mathrm{C}$ NMR [3601], MS [3601].

1-[3-Hydroxy-4-(phenylmethoxy)phenyl]ethanone

[21092-94-4]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Syntheses

- Preparation by reaction of benzyl chloride with 3,4-di-hydroxyacetophenone in the presence of potassium hydroxide in a refluxing mixture of ethanol, methanol and water (53\%) [2248].
- Also refer to: [1828]. m.p. 118° [2248].

1-[3-Hydroxy-5-(phenylmethoxy)phenyl]ethanone

[81732-54-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Synthesis

- Preparation by partial catalytic hydrogenolysis of 3,5-bis (benzyloxy)acetophenone in acetone in the presence of $\mathrm{Pd} / \mathrm{C}(48 \%)$ [3603].
m.p. $126-128^{\circ}$ [3603]; ${ }^{1} \mathrm{H}$ NMR [3603].

1-[5-Hydroxy-2-(phenylmethoxy)phenyl]ethanone

[83069-04-9]
 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Synthesis

- Preparation by hydrolysis of 5-acetoxy-2-(benzyloxy)-acetophenone (m.p. 111-112 ${ }^{\circ}$) with 5% sodium hydroxide in boiling aqueous methanol (69\%) [2763].
m.p. 117° [2763]; UV [2763].

1-[2,4-Dihydroxy-3-[(2-hydroxyphenyl)methyl]phenyl]ethanone

[103633-38-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27
Synthesis

- Preparation by catalytic hydrogenolysis of3-(o-benzyl-oxybenzyl)-2,4-dihydroxyacetophenone at r.t. in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate (67\%) [2325].
m.p. 204-205 ${ }^{\circ}$ [2325]; ${ }^{1} \mathrm{H}$ NMR [2325], IR [2325], UV [2325].

1-[2,3-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone
[69114-99-4] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Synthesis

- Preparation by reaction of benzyl chloride on gallacetophenone with sodium bicarbonate and sodium iodide in refluxing acetone-ethanol mixture (33-37\%) [1989,2817].
m.p. $137-138^{\circ}$ [2817], 133-1335 [1989]; ${ }^{1} \mathrm{H}$ NMR [1989].

1-[2,4-Dihydroxy-6-(phenylmethoxy)phenyl]ethanone

[39548-86-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation from 2-(benzyloxy)-4,6-dihydroxyacetophenone ditosilate (SM) by hydrolysis with 5\% sodium hydroxide in ethanol (72\%). The starting ketone (SM) was prepared by a two-step procedure from phloroacetophenone [3604].
- Also obtained (poor yield) by reaction of benzyl chloride on phloroacetophenone with potassium carbonate in refluxing acetone (4\%) [3605].
m.p. 239-240 ${ }^{\circ}$ [3605], $233^{\circ} 5$ [3604]; ${ }^{1} H$ NMR [3605], UV [3605].

1-[2,5-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone

[34176-17-5]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Syntheses

- Preparation by reaction of benzyl halide with 2,4,5-tri-hydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (62\%) [2418].
- Preparation from 4-(benzyloxy)-2-hydroxyacetophenone by persulfate oxidation (Elbs reaction) (25\%) [2417,2823,2906].
m.p. $160-162^{\circ}$ [2417], $159-160^{\circ}$ [2823], $157-159^{\circ}$ [2418].

1-[2,6-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27
Syntheses

- Preparation from 2,4-diacetyl-5-(benzyloxy) resorcinol by selective deacetylation by refluxing in 1 N sodium hydroxide for 1 h [2856].
- Also obtained by reaction of benzyl chloride on phloroacetophenone with potassium carbonate in refluxing acetone (13\%) [2838].
m.p. 188-189 ${ }^{\circ}$ (compound VIII) [2838],

139-140 (compound II, R=H; $\mathrm{R}^{\prime}=\mathrm{PhCH}_{2}-$) [2856]; ${ }^{1} \mathrm{H}$ NMR [2856].
1-[3,6-Dihydroxy-2-(phenylmethoxy)phenyl]ethanone
[33537-81-4] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Syntheses

- Preparation from 2-(benzyloxy)-6-hydroxyacetophenone by persulfate oxidation (Elbs reaction) (49\%) [2408].
- Easy preparation by reduction of 2-acetyl-3-(benzyloxy)-1,4-benzoquinone using conventional methods [2869].
- Also obtained in low yield by reaction of 2-acetyl-1,4-benzo-quinone with an excess of benzyl alcohol at r.t., with exclusion of light [2869].
m.p. 94° [2408], $87^{\circ} 5-89^{\circ}$ [2869]; ${ }^{1} \mathrm{H}$ NMR [2869], IR [2869].

1-[2,3,4-Trihydroxy-5-(phenylmethyl)phenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation by reaction of benzyl alcohol with gallacetophenone in the presence of boron trifluoride etherate in dioxane at $60-70^{\circ}$ (49\%) [3583].
- Preparation by Claisen rearrangement of 3,4-bis-(benzyloxy)-2-hydroxyacetophenone in the presence of trifluoroacetic acid at r.t. (54\%) [3583].
m.p. $127-128^{\circ}$ [3583]; ${ }^{1} \mathrm{H}$ NMR [3583], IR [3583], UV [3583].

1-[2,4,6-Trihydroxy-3-(phenylmethyl)phenyl]ethanone

mol.wt. 258.27

- Also obtained from 3-benzyl-4,6-bis(benzyloxy)-2-hydroxyacetophenone by hydrogenolysis in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in ethanol [3606].
m.p. 208° [2878], 207-208́ [3606]; IR [3606], UV [3606].

1-(3,4',6-Trihydroxy-3'-methyl[1,1'-biphenyl]-2-yl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27

Synthesis

- Obtained by catalytic reduction of 2-acetyl-3-(4-hydroxy-3-methylphenyl)-1,4-benzoquinone (SM). SM was obtained by condensation of o-cresol with 2-acetyl-1,4-benzoquinone in ethyl ether in the presence of trifluoroacetic acid at 0° (12\%) [3607].
m.p. 194° [3607].

1-[2-Hydroxy-5-[(4-methylphenyl)sulfonyl]phenyl]ethanone

[147816-51-1]

mol.wt. 290.34
Syntheses

- PreparationbyFriesrearrangementof4-(p-tolylsulfonyl)phenyl acetate with aluminium chloride (5 mol) at 160° for 1 h (58\%) [3541].
- Also obtained by photo-Fries rearrangement of the same ester in acetonitrile (26%) or (40%) based on consumed starting material [3541].
m.p. 206-208 ${ }^{\circ}$ [3541]; ${ }^{1} \mathrm{H}$ NMR [3541], UV [3541].

1-[3,6-Dihydroxy-2-(4-methoxyphenoxy)phenyl]ethanone
[52095-11-1] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27

Synthesis

- Preparation by reaction of hydroquinone monomethyl ether on 2-acetylquinone with pyridine in benzene (43\%) [2020].
m.p. $\quad 74-77^{\circ}$ [2020]; ${ }^{1} \mathrm{H}$ NMR [2020], IR [2020].

1-(2',3,4',6-Tetrahydroxy-6'-methyl[1,1'-biphenyl]-2-yl)ethanone

[32546-66-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis

- Obtained by condensation of 2-acetyl-1,4benzoquinone with orcinol in a acetic acid/ ethyl ether solution at r.t. for $1 \mathrm{~h}(50 \%)$ [3607].
m.p. $\quad 185^{\circ}$ [3607]; IR [3607].

1-[2,4-Dihydroxy-6-[[(4-methylphenyl)sulfonyl]oxy]phenyl]ethanone
[225088-72-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 322.05
Synthesis

- Preparation by hydrogenolysis of 2-tolue-nesulfonyloxy-4,6-bis(benzyloxy)acetophenone (m.p. $122-123^{\circ}$) in methanol with hydrogen in the presence of 10% Pd / C at r.t. for 20 h (94\%) [3608].
m.p. $\quad 150-152^{\circ}$ [3608]; ${ }^{1} \mathrm{H}$ NMR [3608], IR [3608], MS [3608].

1-[2-Hydroxy-4-methyl-6-(phenylamino)phenyl]ethanone
[97066-04-1]
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 241.29
Synthesis

- Obtained by reaction of aniline with 2-acetyl-3-di-methyl-amino-5-hydroxy-5-methyl-2-cyclohexenone in refluxing ethanol (17\%) [2712].
m.p. $\quad 115-117^{\circ}$ [2712]; ${ }^{1} \mathrm{H}$ NMR [2712], IR [2712], UV [2712], MS [2712].

1-[4-(3-Butenyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone

[117690-53-6]	Synthesis - Preparation by reaction of 3-butenyl bromide with 5-allyl-2,4-dihydroxyace- tophenone in the presence of potassium carbonate and potassium iodide at reflux (26%)
m.p. $<2678,2679]$.	

1-[4-(Acetyloxy)-2-hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[95604-05-0]
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 262.31

Synthesis

- Preparation by acetylation of 3-pre-nylresaceto-phenone with acetic anhydride in the presence of boric acid, first under reflux for 5 min , then at r.t. for 24 h (60\%) [3609].
m.p. 66° [3609]; ${ }^{1} \mathrm{H}$ NMR [3609].

1-[4-(4-Bromobutoxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{3}$
mol.wt. 327.22
Synthesis

- Preparation by reaction of 4-bromobutyl bromide with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide at reflux (56%) [2678,2679].
m.p. $<25^{\circ}[2678,2679]$.

1-[4-(4-Azidobutoxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone

[140660-37-3]

$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \quad$ mol.wt. 289.33
Synthesis

- Preparation by reaction of sodium azide on 5-allyl-4-(4-bromobutoxy)-2-hydroxyacetophenone in DMF at r.t. [2671,2679].

1-[4-Butoxy-2-hydroxy-5-(2-propenyl)phenyl]ethanone

[117690-48-9] \begin{tabular}{l}
Synthesis

S-allyl-2,4-dihydroxyacetophenone in the pres-
ence of potassium carbonate and potassium iodide
in refluxing methyl ethyl ketone
[2671,2678,2679].

\end{tabular}

Oil [2671,2678,2679].
1-[3-(Cyclohexyloxy)-2-hydroxy-6-methoxyphenyl]ethanone
[126405-80-9] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32

Synthesis

- Preparation by adding 2-hydroxy-3-iodo-6-methoxy-acetophenone and cuprous iodide to a solution of sodium cyclohexanolate, previously prepared from cyclohexanol and sodium hydride in DMF [2524].
Oil [2524]; ${ }^{1} \mathrm{H}$ NMR [2524], IR [2524].

1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[33523-62-5]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ Synthesis

- Obtained by partial methylation of 2,4-dihydroxy-6-methoxy-3-prenylacetophenone [2834].
m.p. $113-114^{\circ}$ [2834].

1-[4-Hydroxy-2,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[18780-96-6] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad \mathrm{~mol} . w t .264 .32$

Syntheses

- Preparation: γ, γ-dimethylallyl bromide was added to the lithium salt of 4-acetyl-3,5-dimethoxyphenol, which is easily prepared in benzene by reaction with butyl lithium (6\%) [3610].
- Preparation by thermal Claisen rearrangement of 4-(γ, γ-dimethylallyoxy)-2,6-dimethoxyacetophenone in refluxing diethylaniline [3611,3612], (> 90\%) [3611].
m.p. 66-68 [3610]; ${ }^{1} \mathrm{H}$ NMR [3610], UV [3610], MS [3610].

1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone (Acronylin methyl ether)
[4683-33-4]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32
Synthesis

- Obtained by reaction of dimethyl sulfate with 4,6-di-hydroxy-2-methoxy-3-prenylacetophenone (m.p. 127-128 ${ }^{\circ}$) in the presence of potassium carbonate in refluxing acetone for 3 h (38\%) [2835].
m.p. $78-79^{\circ}$ [2835]; TLC [2835].

1-[2-Hydroxy-4-(4-hydroxybutoxy)-5-(2-propenyl)phenyl]ethanone

[117690-52-5]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32 Synthesis

- Obtained by reaction of 4-hydroxybutyl bromide on 5-allyl-2,4-dihydroxyacetophenone with potassium carbonate and potassium iodide in refluxing methyl ethyl ketone (5-12\%) [2671,2678,2679].
m.p. $117-119^{\circ}[2671,2678,2679]$.

1-[2-Hydroxy-4-(methoxymethoxy)-5-(3-methyl-2-butenyl)phenyl]ethanone

[99217-72-8]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
mol.wt. 264.32
Synthesis

- Preparation by treatment of 2,4-dihy-droxy-5-prenyl-acetophenone with methoxymethyl chloride in the presence of potassium carbonate in acetone [3613], (good yield) [3614].
${ }^{1} \mathrm{H}$ NMR [3613], IR [3613], UV [3613].

1-[2-(β-D-Glucopyranosyloxy)-6-hydroxy-4-methoxyphenyl]ethanone

[24587-97-1]

spectral data [3616]; TLC [3615].
1-[4-($\boldsymbol{\beta}$-D-Glucopyranosyloxy)-2-hydroxy-6-methoxyphenyl]ethanone (Annphenone)[61775-18-6]
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{9} \quad$ mol.wt. 344.32
Synthesis

- Preparation by reaction, first, of a saturated aqueous barium hydroxide solution on 2-hydroxy-6-methoxy-4-(tetraacetyl- β-D-glucoside) acetophenone, and then carbon dioxide (38\%) [2828].

Isolation from natural sources

- From the aerial parts of Artemisia iwayomogi (Compositae) [3617].
- From the aerial parts of Artemisia sacrorum [3618] and from Artemisia sacrorum Ledeb. (Compositae) [3619].
- From the aerial parts of Artemisia stolonifera (Max.) Kom (Compositae) [3565].
- From the rhizomes of Rhodiola linearifolia Boriss [3620].
- From the aerial parts of Artemisia anпиа [3621].
- From the leaves of Monochaetum multiflorum (Melastomataceae) [3622].
m.p. 215° [2828], $185-188^{\circ}$ [3619], $160-162^{\circ}$ [3621], $156-158^{\circ}$ [3565,3617];
$(\alpha)_{D}^{20}=-56^{\circ} 4$ (pyridine) [2828];
${ }^{1} \mathrm{H}$ NMR [3565,3617,3619,3621], ${ }^{13} \mathrm{C}$ NMR [3565,3617,3619,3621], IR [3565,3617,3619,3621], UV [3565,3617,3621], MS [3617,3619], EIMS [3621].

1-[4-(4-Bromobutoxy)-2-hydroxy-3-propylphenyl]ethanone
[92518-06-4] $\quad \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3} \quad$ mol.wt. 329.23

b.p. ${ }_{0.25} 180^{\circ}$ [3181].

Synthesis

- Preparation by reaction of 1,4-dibromobutane with 2,4-dihydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (78\%) [3181].

1-[4-[(5-Bromopentyl)oxy]-5-ethyl-2-hydroxyphenyl]ethanone

1-[2,4-Dihydroxy-3-(1-methylhexyl)phenyl]ethanone

[79557-94-1]

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$
mol.wt. 250.34
Synthesis

- Preparation by hydrogenation of 2,4-dihydroxy-3-(1-methyl-2-hexenyl) acetophenone in ethanol using 10% PdO/C as catalyst (54\%) [3184].
m.p. $78-81^{\circ}$ [3184].

1-(2-Heptyl-4,6-dihydroxyphenyl)ethanone

[83375-18-2]	$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 250.34
H	Syntheses
	- Preparation by reaction of acetonitrile with 5-heptylresorcinol according to Hoesch reaction (57\%) [3623].
	- Also refer to: [3624].
m.p. $61-62^{\circ}$ [3623]	${ }^{1} \mathrm{H}$ NMR [3623].

1-(4-Heptyl-2,6-dihydroxyphenyl)ethanone

[83375-19-3] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 250.34

Synthesis

- Obtained (poor yield) by reaction of acetonitrile with 5-heptylresorcinol according to Hoesch reaction (5\%) [3623].
m.p. $46-47^{\circ}$ [3623]; ${ }^{1} \mathrm{H}$ NMR [3623].

1-[4-(Heptyloxy)-2-hydroxyphenyl]ethanone

[219696-56-7] | Synthesis |
| :--- |

N.B.: The polymer-bound triphenylphosphines - commercially available - are easily removed by filtration from the reaction products.
Oil [3625].

1-[6-Hydroxy-3-methoxy-2,4-bis(1-methylethyl)phenyl]ethanone

[188903-79-9]

 $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 250.34
Synthesis

- Refer to: [3626].
N.B.: this compound, that has never been prepared, is however mistakenly mentioned in Chem. Abstr., 126, 277303r (1997). However, it is not mentioned in the original paper [3626]. In this paper, the compound is the 2-hydroxy-4,6-diiso-propyloxy-5-methoxyacetophenone, a ketone already obtained by [3506].

1-(2-Hydroxy-4-methoxy-3,5-dipropylphenyl)ethanone

N.B.: Pr indicates the propyl group $-\mathrm{C}_{3} \mathrm{H}_{7}$ in Chem. Abstr., 92, 6368x (1980) and 98, 54239b (1983), an usual abbreviation. However, in the two references [2326,2327], Pr represented the prenyl group $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$. Therefore they concern the 2-hydroxy-4-methoxy-3,5-diprenylacetophenone and not the above mentioned 2-hydroxy-4-methoxy-3,5-dipropylacetophenone.

1-[6-Hydroxy-3-methoxy-2,4-bis(1-methylethoxy)phenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 282.34 Syntheses

- Obtained by partial methylation of 2,5-dihydroxy-4,6-diisopropyloxyacetophenone (m.p. 37°) according to [3505], (67\%) (compound 14) [3506].
- Also refer to: [3503,3627].

Pale yellow oil [3506]; ${ }^{1} \mathrm{H}$ NMR [3506].
1-[4-[(5-Aminopentyl)oxy]-5-ethyl-2-hydroxyphenyl]ethanone
[117705-90-5]

$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$ mol.wt. 265.35 Synthesis

- Preparation by hydrogenation of 5-(4-acetyl-2-ethyl-5-hydroxyphenoxy)pentane nitrile in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in acetic acid (>98\%) [2678,2679].
m.p. $75-76^{\circ}$ [2678,2679]; ${ }^{1} H$ NMR [2678,2679].

1-[6-(Benzoyloxy)-2,4-dihydroxy-3-methylphenyl]ethanone
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28

Synthesis

- Obtained by reaction of benzoyl chloride on 2,4,6-tri-hydroxy-3-methylacetophenone with 2% sodium hydroxide solution at $0^{\circ}(13 \%)$ [3051].
m.p. 189° [3051].

1-[2-(Benzoyloxy)-6-hydroxy-4-methoxyphenyl]ethanone

[49602-08-6]

Oil [2854].
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28
Synthesis

- Preparation by reaction of benzoyl chloride with 2,6-di-hydroxy-4-methoxyacetophenone in the presence of 1.5 N sodium hydroxide at r.t. [2854].

1-[2-Hydroxy-4-(4-methoxybenzoyloxy)phenyl]ethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28

Synthesis

- Preparation by reaction of p -anisoyl chloride on resacetophenone with potassium carbonate in toluene (70%) [2613] or in aqueous sodium hydroxide solution (the best way) [2613].
m.p. 151° [2613].

1-[5-[[4-(Acetyloxy)phenyl]sulfonyl]-2-hydroxyphenyl]ethanone
[147816-49-7]

$$
\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S} \quad \text { mol.wt. } 334.35
$$

Syntheses

- Obtained by UV light irradiation (254 nm) of 0.02 M bisacetate of bisphenol-S in acetonitrile for 3.5 h (20\%) [3541].
- Also obtained by Fries rearrangement of bisacetate of bisphenol-S with aluminium chloride (3 equiv.) at $160^{\circ}(17 \%)$ [3541].
m.p. $166^{\circ} 6$ [3541]; ${ }^{1} \mathrm{H}$ NMR [3541], UV [3541].

1-(5-Hydroxy-3,4'-dimethyl[1,1'-biphenyl]-2-yl)ethanone

[108909-47-3]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ mol.wt. 240.30
 Syntheses

- Obtained by aromatization of 4-acetyl-3-methyl-5-(4-methylphenyl)-2-cyclohexen-1one (m.p. 130°) with bromine in chloroform (60\%) or by heating at 170° for 3 h [3628].
- Also obtained by deacylation of 1,1'-(3-hydroxy-4',5-di-methyl[1,1'-biphenyl]-2,6-diyl)bis-ethanone (m.p. 165°) with sodium hydroxide in refluxing dilute ethanol for $3 \mathrm{~h}(60 \%)$ [3628].
- Also refer to: [3629].
m.p. 180° [3628]; IR [3628].

1-[2-Hydroxy-5-methyl-3-(phenylmethyl)phenyl]ethanone

[350981-92-9]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Synthesis

- Obtained from 3-acetyl-2-hydroxy-5-methylbenzyl O,O-di-methylphosphorothionothiolate (m.p. $99^{\circ} 5$) on treatment with aluminium chloride in refluxing benzene for 5-10 min (93%) [3630].
m.p. 84° [3630]; ${ }^{1} \mathrm{H}$ NMR [3630], IR [3630], MS [3630].

1-[2-Hydroxy-4-(2-phenylethyl)phenyl]ethanone

[122379-44-6]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 240.30
Synthesis

- Refer to: [3631].

1-[2-Hydroxy-5-(2-phenylethyl)phenyl]ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Syntheses

- Preparation by Fries rearrangement of 4-acetoxy-diphenylmethane with aluminium chloride in boiling chlorobenzene (70\%) [3579].
- Also refer to: [3632].
m.p. 52° [3579]; b.p. ${ }_{18} 250^{\circ}$ [3579].

1-(2,2'-Dihydroxy-5,5'-dimethyl[1,1'-biphenyl]-3-yl)ethanone

[24046-00-2]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ mol.wt. 256.30

Syntheses

- Obtained by Fries rearrangement of 2,2'-diace-toxy-5,5'-di-methylbiphenyl with aluminium chloride in nitrobenzene at 120° for $2 \mathrm{~h}(53 \%)$ [3633].
- Also refer to: [3634].
m.p. $129-130^{\circ}$ [3633]; TLC [3633];
${ }^{1} H$ NMR [3633,3634], IR [3633,3634].

1-[2,4-Dihydroxy-5-(2-phenylethyl)phenyl]ethanone

[60640-95-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Syntheses

- Preparation by Fries rearrangement of 2,4-dihy-droxy-diphenylethane diacetate with aluminium chloride in the presence of 2,4-dihydroxydiphenylethane in nitrobenzene at 50° [2508].
- Also refer to: [3635].
m.p. 136° [2508].

1-[2-Hydroxy-4-methoxy-3-(phenylmethyl)phenyl]ethanone

[95832-45-4]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
Synthesis

- Preparation by partial methylation of 3-benzyl-2,4-di-hydroxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone (87\%) [2324].
m.p. $119-120^{\circ}$ [2324]; ${ }^{1} \mathrm{H}$ NMR [2324].

1-[2-Hydroxy-4-methoxy-5-(phenylmethyl)phenyl]ethanone

m.p. $\quad 95-96^{\circ}[2324] ;$ mol.wt. 256.30

1-[2-Hydroxy-3-methyl-4-(phenylmethoxy)phenyl]ethanone

[73640-74-1]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 256.30

Syntheses

- Preparation by reaction of benzyl chloride on 2,4-di-hydroxy-3-methylacetophenone with potassium carbonate and potassium iodide in refluxing acetone (81\%) [2582].
- Also refer to: [2025,2675].
m.p. $87-88^{\circ}$ [2582]; ${ }^{1} \mathrm{H}$ NMR [2582], IR [2582], MS [2582].

1-[2-Hydroxy-6-methyl-4-(phenylmethoxy)phenyl]ethanone
[72545-51-8]

m.p. $83-84^{\circ}$ [3636].

1-[2-Hydroxy-4-(2-phenylethoxy)phenyl]ethanone

[63359-84-2]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Obtained by reaction of 1-bromo-2-phenylethane with resacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h (45\%) [3204].
N.B.: the 1-chloro derivative and butanone can also be used instead of the mentioned starting materials.
m.p. 69° [3204].

1-[2-Hydroxy-5-(2-phenylethoxy)phenyl]ethanone

[63359-85-3] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Obtained by reaction of 1-bromo-2-phenylethane with quinacetophenone in the presence of potassium carbonate in refluxing acetone for $24 \mathrm{~h}(21 \%)$ [3204].
N.B.: the 1-chloro derivative and the butanone can also be used instead of the mentioned starting materials.
m.p. 36° [3204].

1-[2,4-Dihydroxy-3-methyl-6-(phenylmethoxy)phenyl]ethanone

[39548-93-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
 Synthesis

- Obtained by reaction of benzyl chloride on the 2,4,6-tri-hydroxy-3-methylacetophenone with potassium carbonate in boiling acetone (20%) [3605], (<2\%) [3043].
m.p. 212° [3043], $187-188^{\circ}$ [3605]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [3605], UV [3605].

1-[2-Hydroxy-3-methoxy-4-(phenylmethoxy)phenyl]ethanone

[52249-85-1]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
mol.wt. 272.30
 Synthesis

- Preparation by reaction of dimethyl sulfate on 4-(benzyloxy)-2,3-dihydroxyacetophenone with potassium carbonate in refluxing acetone [1989,2817,3637], (82\%) [2817].
m.p. 146° [2817], $143-145^{\circ}$ [1989]; ${ }^{1} \mathrm{H}$ NMR [1989].

1-[2-Hydroxy-3-methoxy-6-(phenylmethoxy)phenyl]ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30 Synthesis

- Preparation by adding 6-(benzyloxy)-2-hydroxy-3-iodo-acetophenone and cuprous iodide to a solution of sodium methoxide, previously prepared from methyl alcohol and sodium hydride in DMF [2524].
m.p. 103° [2524]; IR [2524].

1-[2-Hydroxy-4-methoxy-5-(phenylmethoxy)phenyl]ethanone

[52249-88-4]	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
OH	Synthesis
	- Preparation by reaction of benzyl bromide on 2,5-di-hydroxy-4-methoxyacetophenone with potassium carbonate in boiling acetone (67\%) [2849].
m.p. 151° [2849].	

1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)phenyl]ethanone

[10299-59-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad m o l . w t .272 .30$ Syntheses

- Preparation by reaction of dimethyl sulfate on 2-(benzyloxy)-4,6-dihydroxyacetophenone with potassium carbonate in refluxing acetone (95\%) [3605], (85\%) [3604].
- Preparation by reaction of benzyl bromide with phloroacetophenone 4-methyl ether in the presence of potassium carbonate in acetone at r.t. under nitrogen (82\%) [2853].
m.p. $\quad 120-121^{\circ}$ [3605], $110-113^{\circ}$ [3604], $110-111^{\circ} 5$ [2853]; ${ }^{1} \mathrm{H}$ NMR [2853].

1-[2-Hydroxy-5-methoxy-4-(phenylmethoxy)phenyl]ethanone

[34176-18-6]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
mol.wt. 272.30

Synthesis

- Preparation by reaction of dimethyl sulfate on 4-(benzyloxy)-2,5-dihydroxyacetophenone with potassium carbonate in refluxing acetone [2417,2823,2824], (85-86\%) [2823,2824].
m.p. 130° [2824], $128-129^{\circ}$ [2823], 126° [2417].

1-[2-Hydroxy-6-methoxy-3-(phenylmethoxy)phenyl]ethanone

[126405-79-6]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Synthesis

- Preparation by adding 2-hydroxy-3-iodo-6-methoxy-acetophenone and cuprous iodide to a solution of sodium benzylate, previously prepared from benzyl alcohol and sodium hydride in DMF [2524].

Oil [2524]; ${ }^{1} \mathrm{H}$ NMR [2524], IR [2524].
1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl]ethanone
[39548-89-5]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Syntheses

- Preparation by reaction of benzyl chloride on 2,4-dihydroxy-6-methoxyacetophenone with potassium carbonate in boiling acetone [2831,2838,3605], (55\%) [3605].
- Preparation by reaction of dimethyl sulfate on 4-(benzyloxy)-2,6-dihydroxyacetophenone with potassium carbonate in refluxing acetone (73\%) [2838].
m.p. $90-91^{\circ}$ [3605], $73-74^{\circ}$ [2838], 72° [2831]. A melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [3605], UV [3605]; TLC [2885].

1-[3-Hydroxy-4-(4-methoxybenzyloxy)phenyl]ethanone

[187966-38-7]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Syntheses

- Preparation by reaction of p-methoxybenzyl bromide with the sodium salt of 3,4-di-hydroxyacetophenone (SM) in DMF at r.t. for 24 h (75%). SM was obtained by adding a solution of 3,4 -dihydroxyacetophenone in DMF to a suspension of sodium hydride (2 mol) in the same solvent [3638].
- Also refer to: [3639].

Crystals [3638] (m.p. not mentioned); ${ }^{1} \mathrm{H}$ NMR [3638].

1-[2-Hydroxy-6-(2-phenoxyethoxy)phenyl]ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Synthesis

- Preparation by reaction of 2-bromoethoxybenzene with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (34\%) [2270].
m.p. $79-80^{\circ}$ [2270].

1-[2,4-Dihydroxy-3-[(2-hydroxyphenyl)methyl]-6-methoxyphenyl]ethanone
[102056-82-6]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30 Syntheses

- Preparation by catalytic hydrogenolysis of 3-(o-benzyloxybenzyl)-2,4-dihydroxy-6-methoxy-acetophenone at r.t. and atmospheric pressure in the presence of 10% Pd / C in ethyl acetate (66\%) [2325].
- Preparation from the $2^{\prime}, 4^{\prime}$-dihydroxy- 3^{\prime}-[(2-hydroxyphenyl)-(1-piperidino) methyl]-6'-methoxy-acetophenone, the piperidine moiety was removed by catalytic hydrogenation using $10 \% \mathrm{Pd} / \mathrm{C}$ as catalyst (50-60\%) [2832].
m.p. $184-185^{\circ}$ [2325]; ${ }^{1} \mathrm{H}$ NMR [2325], IR [2325], UV [2325].

1-[2,6-Dihydroxy-3-methoxy-4-(phenylmethoxy)phenyl]ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Preparation by hydrolysis of 4-benzyloxy-6-hydroxy-3-methoxy-2-tosyloxyacetophenone with potassium carbonate in refluxing methanol for 2 h (94\%) [3640].
m.p. $149-150^{\circ}$ [3640].

1-[3,6-Dihydroxy-2-methoxy-4-(phenylmethoxy)phenyl]ethanone
[25892-94-8]
m.p. $161-162^{\circ}$ [2838], $109-110^{\circ}$ [3641]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [3641].

1-[3,6-Dihydroxy-4-methoxy-2-(phenylmethoxy)phenyl]ethanone

[41997-38-0]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
mol.wt. 288.30

Synthesis

- Obtained from 6-(benzyloxy)-2-hydroxy-4-methoxy-acetophenone by persulfate oxidation (Elbs reaction) (17\%) [3604].
m.p. $119-120^{\circ}$ [3604]; TLC [2885].

1-[2-Hydroxy-4-methyl-6-[(phenylmethyl)amino]phenyl]ethanone
[97066-16-5]

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 255.32
Synthesis

- Preparation by reaction of potassium hydroxide with 2-acetyl-3-benzylamino-5-hydroxy-5-methyl-2-cyclo-hexene-1-one in ethanol at 40° (73\%) [2712].
m.p. $\quad 160^{\circ}$ [2712]; ${ }^{1} \mathrm{H}$ NMR [2712], IR [2712], UV [2712], MS [2712].

1-[2-(Acetyloxy)-6-hydroxy-3,5-di-2-propenylphenyl]ethanone

[117156-76-0]

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 274.32
Synthesis

- Obtained (by-product) by thermal rearrangement of 3-acetyl-4,6-bis(allyloxy) acetophenone in refluxing diphenyl ether (3\%) [3331].
${ }^{1} \mathrm{H}$ NMR [3331], IR [3331].

1-[4-(Acetyloxy)-2-hydroxy-3,5-di-2-propenylphenyl]ethanone

[106987-29-5]

Pale greenish yellow oil [3331]; ${ }^{1} \mathrm{H}$ NMR [3331], IR [3331], UV [3331], MS [3331].
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 274.32
Synthesis

- Obtained (by-product) by thermal Claisen rearrangement of 3-acetyl-4,6-bis(allyloxy) acetophenone or of 3-acetyl-2,4bis(allyloxy)acetophenone in refluxing N,N-dimethyl-aniline (5-6\%) [3331].

1-[4-[(5-Bromopentyl)oxy]-2-hydroxy-3-(2-propenyl)phenyl]ethanone

[61270-23-3]

 Synthesis

- Preparation by reaction of 1,5-dibromopentane with 3-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone [2270].

Oil [2270].
1-[6-[(5-Bromopentyl)oxy]-2-hydroxy-3-(2-propenyl)phenyl]ethanone
[61270-18-6]

$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrO}_{3}$
mol.wt. 341.24
Synthesis

- Preparation by reaction of 1,5-dibromopentane with 3-allyl-2,6-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone [2270].
b.p. ${ }_{0.1} 180-200^{\circ}$ [2270].

1-[2-Hydroxy-4-(pentyloxy)-5-(2-propenyl)phenyl]ethanone
[117690-49-0] $\quad \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 262.35

Synthesis

- Preparation by reaction of n-pentyl bromide with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone (43$44 \%$) [2671,2678,2679].
Oil [2671,2678,2679].
1-[4-(Ethoxymethoxy)-2-hydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone
[175546-56-2]

${ }^{1} \mathrm{H}$ NMR [3644].
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 278.35
Synthesis
- Preparation by reaction of ethoxymethyl chloride with 2,4-dihydroxy-5-(3-methyl-2-butenyl)acetophenone in acetone for 10 min at 30° (66\%) [3644].

1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxy-3-methylphenyl] ethanone

[145194-40-7]
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9} \quad$ mol.wt. 358.35
Isolation from natural sources

- From the roots of Euphorbia ebracteolata Hayata (Euphorbiaceae) [3040].

1-[4-[(5-Bromopentyl)thio]-2-hydroxy-3-propylphenyl]ethanone

[125617-44-9]
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2} \mathrm{~S}$
mol.wt. 359.33

Synthesis

- Preparation by reaction of 1,5-dibromopentane with 2-hydroxy-4-mercapto-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone [2271].

Pale yellow oil [2271].

1-[4-[(5-Bromopentyl)oxy]-5-ethyl-2-hydroxy-3-methylphenyl]ethanone

[140660-35-1] $\quad \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{3} \quad$ mol.wt. 343.26

Synthesis

- Preparation by reaction of 1,5-dibromopentane with 5-ethyl-2,4-dihydroxy-3-methylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (76\%) [2671].
oil [2671].
1-[4-[(5-Bromopentyl)oxy]-2-hydroxy-3-propylphenyl]ethanone
[99453-85-7]
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{3} \quad$ mol.wt. 343.26

Synthesis

- Preparation by reaction of 1,5-dibromopentane with 2,4-dihydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone [2270,3181], (22\%) [3181].
b.p. ${ }_{0.02} 172-180^{\circ}[2270] ; \quad$ MS [3181].

1-[2-Hydroxy-3-nitro-5-(1,1,3,3-tetramethylbutyl)phenyl]ethanone

[30299-56-0]

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$
mol.wt. 293.36
Synthesis

- Preparation by reaction of 65% nitric acid with 2-hydroxy-5-tert-octylacetophenone in acetic acid, first at 0°, then at 20° [3645].

```
m.p. 865 [3645]; IR [3645], UV [3645].
```

1-[2,4-Bis(1,1-dimethylethyl)-6-hydroxyphenyl]ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad \text { mol.wt. } 248.37
$$

Synthesis

- Obtained by UV light irradiation of 3,5-di-tertbutylphenyl acetate in benzene at r.t. (photoFries rearrangement) [3646].
m.p. $198^{\circ} 5$ [3646].

1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

[37456-29-4]

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 248.37 Syntheses

- Preparation by reaction of methylmagnesium iodide on 3,5-di-tert-butyl-2-hydroxybenzonitrile in ethyl ether, first at 0° and then at r.t. (58\%) [3647].
- Also obtained by reaction of sec-butyllithium on 2-bromo-4,6-di-tert-butylphenyl acetate in ethyl ether at -95° and -78°, followed by hydrolysis of mixture with saturated ammonium chloride (metal-promoted Fries rearrangement) (43-52\%) [3648].
- Preparation by reaction of acetic anhydride with 2,4-di-tert-butylphenol in the presence of boron trifluoride-acetic acid complex at 100° [2997].
m.p. $45-46^{\circ}$ [2997], $43-44^{\circ} 5$ [3647]; b.p. . $_{0.45} 100^{\circ}$ [2997];
${ }^{1} \mathrm{H}$ NMR [3647], IR [3647].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone

[14035-33-7]

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad \mathrm{~mol} . w t .248 .37$
Syntheses

- Preparation by reaction of acetic acid on 2,6-di-tert-butylphenol with trifluoroacetic anhydride at r.t. [1952,3649-3651], (78-87\%) [1952,3651].
- Preparation by reaction of acetic anhydride on 2,6-di-tert-butylphenol with sulfodifluoroacetic acid in acetic acid at $20^{\circ}(81 \%)$ [3652] or with boron trifluoride etherate at $5^{\circ}(30 \%)$ [3653].
- Preparation by reaction of acetyl chloride on 2,6-di-tert-butylphenol with aluminium chloride at -10° (95\%) [3654] and at $0^{\circ}(70 \%)$ [3655].
- Also obtained by reaction of potassium ferricyanide on 2,6-di-tert-butyl-4-(1-methoxyethyl)-phenol with aqueous sodium hydroxide in benzene (20\%) [3655].
- Also obtained (poor yield) by bubbling air into a cumene solution of 2,6-di-tert-butyl-4-ethylphenol in the presence of cumene hydroperoxide and cobalt phthalate between 80° and $100^{\circ}(2 \%)$ [3486].
m.p. $150-151^{\circ} 5$ [1952,3653], 148° [3486], $147-148^{\circ}$ [3650,3651,3655], 146$147^{\circ}$ [3654], 141-143 ${ }^{\circ}$ [3652];
${ }^{1} \mathrm{H}$ NMR [3651,3653], ${ }^{13} \mathrm{C}$ NMR [3653], IR [3653], MS [3656].

1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl] ethanone

[129375-13-9]
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 248.37 Synthesis

- Preparation by Fries rearrangement of 2-tert-butyl-5-methyl-4-isopropylphenyl acetate with titanium tetrachloride in chlorobenzene at 100° (23\%) [3360].
m.p. 44° [3360];
${ }^{1} \mathrm{H}$ NMR [3360] (Sadtler: standard n ${ }^{\circ} 52742$ M);
IR [3360] (Sadtler: standard n ${ }^{\circ} 79801$ K); UV [3360], MS [3360].

1-[2-Hydroxy-3,5-bis(2-methylpropyl)phenyl]ethanone

[35158-27-1]

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$ Synthesis

- Preparation by reaction of ethyl acetoacetate with 2-isobutyl-6-methyl-2-heptenal in the presence of pyridine and piperidine as catalysts in refluxing benzene (29%). The 2-isobutyl-6-methyl-2-heptenal was obtained by self-condensation of iso-capro-aldehyde in the presence of 15% potassium hydroxide solution (Aldol condensation) [2958-2960].
b.p. ${ }_{1-2} 116-118^{\circ}$ [2958,2959,2960];

IR [2958-2960], UV [2958-2960], MS [2958-2960].

1-(2-Hydroxy-5-octylphenyl)ethanone

[74604-19-6] $\quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 248.37
 Synthesis

- Preparation by reaction of acetyl chloride on 4-octylphenol with aluminium chloride in ethylene dichloride at $110-120^{\circ}$ (58\%) [2625].
b.p. $168-170^{\circ}$ [2625].

1-[2-Hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]ethanone

[57373-80-5] $\quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 248.37
and
[30299-53-7] (2'-Hydroxy-5'-(1,1,3,3-tetramethylbutyl)acetophenone)
 Syntheses

- Obtainedby Friesrearrangementof4-(1,1,3,3-tetram-ethyl-butyl)phenyl acetate also called 4-tertoctylphenyl acetate with aluminium chloride [3355,3357], in 1,2,3-trichloro-propane or in tetrachloroethane at 120° under nitrogen (71-77\%) [3357]; (high yield) [3355].
- Preparation by demethylation of 2-methoxy-5-tert-octyl-acetophenone with 4\% hydrobromic acid in refluxing acetic acid (47-52\%) [3355].
- Preparation by UV light irradiation of 4-tert-octylphenyl acetate in benzene or in ethanol solution (37\%) (photo-Fries rearrangement) [3645].
${ }^{1} \mathrm{H}$ NMR [3645], IR [3645], UV [3645].

1-[4,6-Bis(1,1-dimethylethyl)-2,3-dihydroxyphenyl]ethanone

[84296-99-1]

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 264.37
Synthesis

- Obtained by irradiation of a benzene solution of 3,5-di-tert-butyl-o-benzoquinone in the presence of a large excess of acetaldehyde (6\%) [3386].
m.p. $\quad 169-170^{\circ}$ [3386]; ${ }^{1} \mathrm{H}$ NMR [3386], IR [3386].

1-(2-Heptyl-6-hydroxy-4-methoxyphenyl)ethanone

[4670-13-7]

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 264.37
Synthesis

- Preparation by partial methylation of 2,4-dihy-droxy-6-heptylacetophenone in acetone with dimethyl sulfate in the presence of 10% sodium hydroxide at 45° for 4 h (70\%) [3623].

Isolation from natural sources

- Obtained by alkaline degradation of various siphulin derivatives* with potassium hydroxide in refluxing methanol [3657]. The siphulin (an homoflavone) 7-hydroxy-5-heptyl-2-[3',5'-dihydroxy-2-carboxybenzyl]chroman-4-one (m.p. 180°) [3658] is a constituent of the North Scandinavican lichen siphula ceratites (Wahlenberg) Fr.
* siphulin methyl ester trimethyl ether [3658], decarboxysiphulin trimethyl ether or a lactol.
Oil [3623,3657], liquid compound [3658];
b.p. ${ }_{0.01} 110^{\circ}$ [3658], b.p..$_{0.01} 120^{\circ}$ [3657]; $n_{D}^{18}=1.5372$ [3657], $n_{D}^{19}=1.5339$ [3658]; ${ }^{1} \mathrm{H}$ NMR [3623,3657], IR [3657,3658], UV [3657,3658].

1-[2-Hydroxy-4-(isooctyloxy)phenyl]ethanone

[127313-67-1]
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 264.37
Synthesis

- Refer to: [3659] (Chinese paper).

1-[2-Hydroxy-4-(sec-octyloxy)phenyl]ethanone

[127313-63-7]
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 264.37

Synthesis

- Refer to: [3659] (Chinese paper).

1-[2-Hydroxy-5-(sec-octyloxy)phenyl]ethanone
[127313-62-6] $\quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 264.37

1-[2-Hydroxy-4,5-dimethoxy-3,6-bis(1-methylethoxy)phenyl]ethanone

[169130-25-0]

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 312.36
Synthesis

- Preparation by smooth demethylation of 2,5-diiso-propyloxy-3,4,6-trimethoxyacetophenone with aluminium bromide in acetonitrile (high yield) [3320].

1-[4-(Cinnamoyloxy)-2-hydroxyphenyl]ethanone

OH	$\begin{array}{ll} \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4} & \text { mol.wt. } 282.30 \\ \text { Synthesis } & \end{array}$
	- Obtained by reaction of cinnamoyl chloride on resacetophenone with potassium carbonate in toluene (17%) [2613].
m.p. 131° [2613].	

1-[2-Hydroxy-3-(2-propynyl)-4,6-bis(2-propynyloxy)phenyl]ethanone

[53771-25-8]

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 282.30
Synthesis

- Obtained (poor yield) by reaction of 2-propynyl bromide with phloroacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (4\%) [3160].
m.p. $150-151^{\circ}$ [3160]; IR [3160], UV [3160].

1-[2-Hydroxy-5-iodo-4-phenoxy-3-(2-propenyl)phenyl]ethanone
[144691-36-1]

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IO}_{3}$
mol.wt. 394.21
Synthesis

- Obtained by reaction of iodosobenzene diacetate (DAIB) with 3-allyl-2,4-dihydroxyacetophenone in refluxing methanol (38\%) [2624].
m.p. 160° [2624]; ${ }^{1} \mathrm{H}$ NMR [2624], IR [2624].

1-[2-Hydroxy-5-[(3-phenyl-2-propenyl)oxy]phenyl]ethanone

[79950-56-4] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31

Synthesis

- Preparation by reaction of cinnamyl bromide with quinacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone under nitrogen (90\%) [2357].
m.p. $105-107^{\circ}$ [2357]; ${ }^{1} \mathrm{H}$ NMR [2357], IR [2357], MS [2357].

1-[4-[(3-Chlorophenyl)methoxy]-5-ethyl-2-hydroxyphenyl]ethanone
[117706-49-7] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3} \quad$ mol.wt. 304.77

Synthesis

- Preparation by reaction of 3-chlorobenzyl bromide with 5-ethyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide (47%) [2678,2679].

1-[5-Ethyl-4-[(3-fluorophenyl)methoxy]-2-hydroxyphenyl]ethanone
[117706-48-6]

m.p. $\quad 104-105^{\circ}[2678,2679]$.

$$
\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3} \quad \text { mol.wt. } 288.32
$$

Synthesis

- Preparation by reaction of 3-fluorobenzyl bromide with 5-ethyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide (18\%) [2678,2679].

1-[2-Hydroxy-5-(3-phenylpropyl)phenyl]ethanone

[61270-17-5] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33

Syntheses

- Preparation by Fries rearrangement of 4'-acetoxy-1,3-diphenylpropane with aluminium chloride in boiling chlorobenzene [3579].
- Preparation by reaction of acetic anhydride with 4-(3-phenylpropyl)phenol in the presence of boron trifluoride-acetic acid complex at 100° [2270].

Oil [2270]; b.p. ${ }_{18.5} 232^{\circ}$ [3579]; ${ }^{1} \mathrm{H}$ NMR [2270], MS [2270].

1-[2,4-Dihydroxy-5-(3-phenylpropyl)phenyl]ethanone

m.p. 106° [3579].

1-(5-Ethoxy-3-hydroxy-2-methyl[1,1'-biphenyl]-4-yl)ethanone

[138151-67-4]

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 270.33
$$

Synthesis

- Preparation by heating at 100° for 18 h a dioxane solution of 4-chloro-2-methyl-3-phenyl-2-cyclobutenone and 4-ethoxy-4-(tri-n-butylstannyl)-3-buten-2-one (I) with $\mathrm{Pd}(\text { benzonitrile })_{2} \mathrm{Cl}_{2}$ and tris(2-furyl)phosphine (50\%).
- The compound (I) was obtained by adding a tetrahydrofuran solution of tetrabutylammonium cyanide $\left(\mathrm{Bu}_{4} \mathrm{NCN}\right)$ to a tetrahydrofuran solution of 3-ethoxy-2cyclobutenone and $\mathrm{n}-\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{SnSi}\left(\mathrm{CH}_{3}\right)_{3}$ cooled to -22° and then the mixture was warmed at r.t. [3660].
m.p. $78-80^{\circ}$ [3660]; ${ }^{1} \mathrm{H}$ NMR [3660], ${ }^{13} \mathrm{C}$ NMR [3660], IR [3660].

1-(5'-Ethyl-4-hydroxy-2'-methoxy[1,1'-biphenyl]-3-yl)ethanone
[131845-25-5] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Refer to: [3661].

1-[2-Hydroxy-5-[1-(4-hydroxyphenyl)-1-methylethyl]phenyl]ethanone
[104676-26-8] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Obtained by Fries rearrangement of 2,2-bis (acetoxy-phenyl)propane (bisphenol-A diacetate) (1 mol) with titanium tetrachloride (4 mol) in nitrobenzene, first for 24 h at r.t., then for 6 h at $55^{\circ}(23 \%)$ [3662].
m.p. $\quad 139-140^{\circ}$ [3662]; ${ }^{1} \mathrm{H}$ NMR [3662], ${ }^{13} \mathrm{C}$ NMR [3662], IR [3662].

1-[2-Hydroxy-4-(3-phenylpropoxy)phenyl]ethanone

[63359-86-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Syntheses

- Obtained by reaction of 1-bromo-3-phenylpropane with resacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h . The 1-chloro derivative and butanone can also be used instead of the mentioned starting materials (83\%) [3204].
- Also refer to: [3663]. m.p. $75-77^{\circ}$ [3204].

1-[2-Hydroxy-5-(3-phenylpropoxy)phenyl]ethanone
[63359-87-5] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Syntheses

- Obtained by reaction of 1-bromo-3-phenylpropane with quinacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h . The 1 -chloro derivative and butanone can also be used instead of the mentioned starting material and solvent (54\%) [3204].
- Also refer to: [3663].
m.p. $34-35^{\circ}$ [3204].

1-[2-Hydroxy-6-(3-phenylpropoxy)phenyl]ethanone

[69079-93-2]	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
OH	Synthesis
	- Obtained by reaction of 1-bromo-3-phenylpropane with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h . The 1 -chloro derivative and butanone can also be used instead of the mentioned starting material and solvent (75\%) [3204].
m.p. $95-96^{\circ}$ [3204].	

1-[2-Hydroxy-3,4-dimethoxy-5-(phenylmethyl)phenyl]ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Synthesis

- Preparation by reaction of dimethyl sulfate with 5-benzyl-2,3,4-trihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (68\%) [3583].
m.p. $42-43^{\circ}$ [3583]; ${ }^{1} \mathrm{H}$ NMR [3583], IR [3583], UV [3583].

1-[2-Hydroxy-4-methoxy-3-[(2-methoxyphenyl)methyl]phenyl]ethanone
[103633-39-2]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Synthesis

- Obtained by reaction of dimethyl sulfate with 2,4-di-hydroxy-3-(o-hydroxybenzyl)acetophenone in the presence of potassium carbonate in refluxing acetone (9\%) [2325].

Oil [2325]; ${ }^{1} \mathrm{H}$ NMR [2325].

1-[2-Hydroxy-4-methoxy-3-methyl-6-(phenylmethoxy)phenyl]ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33

Synthesis

- Preparation by reaction of methyl iodide with 6-(benzyloxy)-2,4-dihydroxy-3-methylacetophenone in the presence of potassium carbonate in refluxing acetone (88%) [3043].
m.p. 127° [3043].

1-[6-Hydroxy-2-methoxy-3-methyl-4-(phenylmethoxy)phenyl]ethanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
 Syntheses

- Preparation by reaction of benzyl bromide on 4,6-di-hydroxy-2-methoxy-3-methylacetophenone with potassium carbonate in boiling acetone (48\%) [3051].
- Preparation by partial catalytic hydrogenolysis of 4,6-bis-(benzyloxy)-2-methoxy-3-methylacetophenone with $\mathrm{PdCl}_{2} / \mathrm{C}$ in methanol (86\%) [3051] or by reaction of 10% ethanolic hydrochloric acid on the same starting material in refluxing dioxane (42\%) [3043].
m.p. 105° [3051], 103° [3043].

1-[2-Hydroxy-3-(3-phenoxypropoxy)phenyl]ethanone

[69079-92-1] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33

Synthesis

- Obtained by reaction of 1-bromo-3-phenoxypropane with 2,3-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h . The 1 -chloro derivative and butanone can also be used instead of the mentioned starting material and solvent (32\%) [3204].
m.p. $56-57^{\circ}$ [3204].

1-[2-Hydroxy-4-[2-(phenylmethoxy)ethoxy]phenyl]ethanone

[307520-94-1]

Synthesis

- Refer to: [3596] (compound 1d).

1-[2-Hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]ethanone
[3162-52-5]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Preparation by reaction of benzyl chloride with 2,4-di-hydroxy-3,6-dimethoxyacetophenone in the presence of potassium carbonate [3135,3472] or potassium carbonate and potassium iodide [3130] in refluxing acetone (72\%) [3472], (63\%) [3130], (53\%) [3135].The same reaction using benzyl bromide instead of benzyl chloride led to an inseparable mixture (68\%) of 2-benzyl- and 4-benzyl ethers (m.p. 105-107$) ~[3137] . ~$
- Preparation by reaction of acetyl chloride on 2,5-dimethoxyresorcinol dibenzyl ether with aluminium chloride in benzene at $0^{\circ}(35 \%)$ [3472].
- Obtained (by-product) by reaction of acetonitrile with 2,6-bis(benzyloxy)-1,4dimethoxybenzene (Hoesch reaction) [3135].
m.p. $113-115^{\circ}$ [3130], $111-111^{\circ} 5$ [3135], $109^{\circ} 5-110^{\circ}$ [3472].

1-[2-Hydroxy-4,6-dimethoxy-3-(phenylmethoxy)phenyl]ethanone

[54299-57-9]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Preparation by reaction of benzyl chloride with 2,3-di-hydroxy-4,6-dimethoxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (56\%) [3130].
- Preparation from 2,3-bis(benzyloxy)-4,6-dimethoxy-acetophenone. The 2-benzyloxy group was selectively split with concentrated hydrochloric acid in acetic acid at r.t. (80\%) [3132].
m.p. $95-97^{\circ}$ [3132], $90-92^{\circ}$ [3130].

1-[5-Hydroxy-2,4-dimethoxy-3-(phenylmethoxy)phenyl]ethanone
[65039-99-8]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
mol.wt. 302.33
Synthesis

- Obtained [3664] according to the procedure [3665].

1-[6-Hydroxy-2,3-dimethoxy-4-(phenylmethoxy)phenyl]ethanone

[25892-95-9]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Obtained by partial methylation of 4-(benz-yloxy)-3,6-di-hydroxy-2-methoxyacetophenone [3130,3148,3507,3641,3666-3669], with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone [3643], for 5 h (57\%) [3642].
- Also refer to: [3670,3671].
m.p. $86-87^{\circ}$ [3642], $84-85^{\circ}$ [3641]; IR [3642].

1-[6-Hydroxy-2,4-dimethoxy-3-(phenylmethoxy)phenyl]ethanone

[52249-87-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Preparation by reaction of benzyl chloride with 3,6-di-hydroxy-2,4-dimethoxyacetophenone,
- in the presence of potassium carbonate and sodium iodide in refluxing acetone for 10 h , then at r.t. for 6 h [3669,3672], (57\%) [3665];
- in the presence of potassium carbonate in DMF [3673].
- Also refer to: [3664,3674-3678].

Oil [3665,3673]; ${ }^{1} \mathrm{H}$ NMR [3673].
1-[6-Hydroxy-3,4-dimethoxy-2-(phenylmethoxy)phenyl]ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
Synthesis

- Preparation by reaction of dimethyl sulfate on 6-(benzyloxy)-2,5-dihydroxy-4-methoxyacetophenone with potassium carbonate in refluxing acetone (57\%) [3604].
m.p. $87-89^{\circ}$ [3604].

1-(4-Hydroxy-2,2',4'-trimethoxy[1,1'-biphenyl]-3-yl)ethanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad \text { mol.wt. } 302.33
$$

 Syntheses

- Obtained by alkaline degradation of 2-(2,4-di-methoxyphenyl)-1,9-di-O-methylhemiergo-flavinone $\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{9}\right)$ with 10% sodium hydroxide on a steam bath for 1.75 h [3679].
- Also obtained by alkaline degradation of 6-(2,4-dimethoxyphenyl)-5-methoxy-2-methylchromone (m.p. $141-142^{\circ}$) with $25 \%(\mathrm{w} / \mathrm{v})$ aqueous sodium hydroxide during 2 h on a steam bath (72\%) [2569].
m.p. 94° [3679], 93° [2569]; IR [2569].

1-[2,3,4-Trihydroxy-5-[(4-hydroxy-3,5-dimethylphenyl)methyl]phenyl] ethanone

[142045-74-7] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

Synthesis

- Refer to: [3680] (Japanese patent).

1-[2,5-Dihydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]ethanone
[3162-50-3] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33

Syntheses

- Obtained by oxidation of 4-(benzyloxy)-2-hydroxy-3,6-di-methoxyacetophenone with potassium persulfate (Elbs reaction), (46\%) [3428], (14\%) [3681].
- Also refer to: [3150,3682-3684].
m.p. $60-62^{\circ}$ [3681], 59-61 ${ }^{\circ}$ [3428];

IR [3428]; TLC [3681].

1-[4'-(Dimethylamino)-5-hydroxy-3-methyl[1,1'-biphenyl]-2-yl]ethanone

[108909-48-4]

$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \quad$ mol.wt. 269.34
Syntheses

- Obtained by aromatization of 4-acetyl-5-[4-(dimethyl-amino)phenyl]-3-methyl-2-cyclo-hexen-1-one (m.p. 162°) with bromine in chloroform (70%) or by heating at 170° for 3 h [3628].
- Also obtained by deacylation of 1, 1^{\prime}-[4'-(dimethylamino)-3-hydroxy-5-methyl[1,1'-biphenyl]-2,6-diyl]bis-ethanone (m.p. 153°) with sodium hydroxide in refluxing dilute ethanol for $3 \mathrm{~h}(70 \%)$ [3628].
- Also refer to: [3629]. m.p. 192° [3628].

1-[4-(5-Hexynyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 272.34
Synthesis

- Preparation by reaction of 6-bromo-1hexyne with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone (15-20\%) [2671,2678,2679].
Oil [2671]; m.p. <25ํ [2678,2679]; ${ }^{1} \mathrm{H}$ NMR [2678,2679].
1-[3-(Cyclohexyloxy)-4-hydroxy-5-(2-propenyl)phenyl]ethanone
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 274.36

Synthesis

- Preparation by thermal Claisen rearrangement of 4-(allyloxy)-3-cyclohexyloxyacetophenone in boiling N, N-diethylaniline (69\%) [2946].
m.p. 58° [2946]; b.p. ${ }_{0.6} 170-180^{\circ}$ [2946].

1-[4-(5-Hexenyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone

[117690-54-7]

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$
Synthesis

- Preparation by reaction of 6-bromo-1hexene with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone (30\%) [2671,2678,2679].

Oil [2671]; m.p. $<25^{\circ}$ [2678,2679].
1-[4-[(6-Bromohexyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone
[117706-41-9] $\quad \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrO}_{3}$ mol.wt. 355.27

Synthesis

- Preparation by reaction of 1,6-dibromohexane with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide at reflux (42\%) [2678,2679].

1-[3-(Hexyloxy)-4-hydroxy-5-(2-propenyl)phenyl]ethanone

$$
\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \quad \text { mol.wt. } 276.38
$$

Synthesis

- Preparation by thermal Claisen rearrangement of 4-(allyloxy)-3-(hexyloxy)acetophenone without solvent at 200° (47\%) [2946].
m.p. 83° [2946]; b.p. ${ }_{0.9} 175-180^{\circ}$ [2946].

1-[4-(Hexyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$
mol.wt. 276.38 Synthesis

- Preparation by reaction of hexyl bromide with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone (85\%) [2671], (36\%) [2678,2679].
m.p. $42-44^{\circ}$ [2671,2678,2679].

1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]-5-(3-methyl-2-butenyl)phenyl] ethanone

[181047-51-8]

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 308.37
Synthesis

- Preparation by treatment of 4-(2-methoxy-ethoxyme-thoxy)-2-(3,3-dimethylall-yloxy)-acetophenone in refluxing N, N-diethyl-aniline at 220° for 4 h under argon atmosphere (77\%) (Claisen rearrangement) [3408].

1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-(3-methyl-2-butenyl)phenyl] ethanone

[84092-45-5]

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 324.37
Syntheses

- Obtained by reaction of prenyl bromide with 2-hydroxy-4,6-di-(methoxymethoxy)aceto-phenone in methanolic potassium hydroxide solution, first at 0°, then at r.t. for $24 \mathrm{~h}(74 \%)$ [3413].
- Also refer to: [3685].
liquid [3413]; ${ }^{1} \mathrm{H}$ NMR [3413], IR [3413], UV [3413].
1-[4-[(6-Bromohexyl)oxy]-2-hydroxy-3-propylphenyl]ethanone
[92518-46-2] $\quad \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrO}_{3} \quad$ mol.wt. 357.29

Synthesis

- Preparation by reaction of 1,6-dibromohexane with 2,4-di-hydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (37\%) [3181].

1-[4-[4-(Dimethylamino)butoxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \quad$ mol.wt. 291.39

Synthesis

- Preparation by reaction of dimethylamine with 5-allyl-4-(4-bromobutoxy)-2hydroxyacetophenone during 16 h [2671].

1-[4-[4-(Dimethylamino)butoxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone (Hydrochloride)
[117706-32-8]

$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}, \mathrm{HCl}$ mol.wt. 327.85 Synthesis

- Obtained by reaction of hydrogen chloride with the corresponding base in ethanol, then adding ethyl ether to the mixture [2671].
m.p. $88-90^{\circ}$ [2671].

1-[2,4-Bis(1,1-dimethylethyl)-3-hydroxy-6-methylphenyl]ethanone
[175438-44-5]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39
Synthesis

- Refer to: Chem. Abstr., 124, 260501q (1995).
N.B.: this ketone is erroneously referenced in the Chemical Abstracts (Vol. 124, 1996, Formula Index, 2675F). The compound actually obtained by reaction between acetic anhydride and 2,6-di-tert-butyl-6-methylphenol in the presence of various metal bis(trifluoromethylsulfonyl)-amides such as a titanium and ytterbium bistrifylamides in methylene chloride or acetonitrile at r.t. is the phenolic ester, i.e. the 2,6-di-tert-butyl-6-methylphenyl acetate (90-99\%), which has been unambiguously characterized [3686] (personal communication from professor Koichi Mikami).

1-(2-Hydroxy-5-nonylphenyl)ethanone
[115851-77-9] $\quad \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39

Synthesis

- Preparation by reaction of acetyl chloride on 4-nonylphenol with aluminium chloride in ethylene dichloride at $110-120^{\circ}$ (63\%) [2625].
b.p. ${ }_{4} 178-182^{\circ}$ [2625].

1-(2-Hydroxy-5-tert-nonylphenyl)ethanone

[57375-45-8]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39
Synthesis

- Preparation by Fries rearrangement of 4-tert-nonylphenyl acetate with aluminium chloride under nitrogen in tetra-chloroethane or in tetrachloroethylene at $120-125^{\circ}$ (77-79\%) [3357] or in refluxing chlorobenzene (46\%) [3357].

1-[5-Ethyl-2-hydroxy-4-[[6-(methylthio)hexyl]oxy]phenyl]ethanone
[117706-37-3]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 310.46
Synthesis

- Preparation by adding a DMF solution of 4-(6-bromo-hexyloxy)-5-ethyl-2-hydroxy acetophenone to a DMF solution of methanethiol previously treated with sodium hydride (78\%) [2671,2678,2679].
m.p. $52-53^{\circ}[2678,2679], 47-48^{\circ}[2671] ;$
${ }^{1} \mathrm{H}$ NMR [2671,2678,2679], MS [2671].

1-(3,5-Dibutyl-2,6-dihydroxy-4-methoxyphenyl)ethanone

1-[2-Hydroxy-4-[(6-hydroxyhexyl)oxy]-3-propylphenyl]ethanone

[106627-20-7]
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 294.39

Synthesis

- Preparation by reaction of 6-chlorohexanol with 2,4-di-hydroxy-3-propylacetophenone in the presence of potassium carbonate in refluxing methyl ethyl ketone (20\%) [3181].
Oily solid [3181]; MS [3181].

1-[2-Hydroxy-3-propyl-4,6-bis(propyloxy)phenyl]ethanone

m.p. $\quad 78-80^{\circ}[3160]$ mol.wt. 294.39

1-[5-Ethyl-2-hydroxy-4-[[6-(methylsulfinyl)hexyl]oxy]phenyl]ethanone

[117706-38-4]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 326.46
Synthesis

- Obtained (by-product) by reaction of m-chloro-perbenzoic acid on 2-hydroxy-4-[6-(methylthio)-hexyloxy]-5-ethylacetophenone in methylene chloride, first at 0°, then at r.t. (17\%) [2671,2678,2679].
m.p. $87-90^{\circ}[2678,2679], 87-89^{\circ}$ [2671].

1-[5-Ethyl-2-hydroxy-4-[[6-(methylsulfonyl)hexyl]oxy]phenyl]ethanone

[117690-76-3]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}$
Synthesis

- Preparation by reaction of m-chloroperbenzoic acid on 5-ethyl-2-hydroxy-4-[6-(methylthio)hexyloxy]-acetophenone in methylene chloride, first at 0°, then at r.t. (70-76\%) [2671,2678,2679].
m.p. $124-126^{\circ}[2671,2678,2679]$.

1-[5-Ethyl-2-hydroxy-4-[[3-(trifluoromethyl)phenyl]methoxy]phenyl] ethanone

[117706-51-1]

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 338.33
Synthesis

- Preparation by reaction of 3-(trifluoromethyl)benzyl bromide with 5-ethyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide (11\%) [2678,2679].

1-[3-Hydroxy-6-methoxy-2-(2-propenyl)[1,1'-biphenyl]-4-yl]ethanone

[43037-65-6]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 282.34
Synthesis

- Obtained by thermal Claisen rearrangement of 1-[2-methoxy-5-(2-propenyloxy)[1, 1'-biphenyl]-4-yl]ethanone in N,Ndimethylaniline at 170° (52\%) [3467].

1-[3-Hydroxy-6-methoxy-4-(2-propenyl)[1,1'-biphenyl]-2-yl]ethanone
[43037-67-8]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 282.34
Synthesis

- Obtained by thermal Claisen rearrangement of 1-[2-methoxy-5-(2-propenyloxy)[1, 1'-biphenyl]-4-yl]ethanone in N,Ndimethylaniline at 170° (33\%) [3467]. The formation of this ketone is rationalised as involving a [2368,,3466] acetyl shift.

1-[2-Hydroxy-4-(phenylmethoxy)-3-(2-propenyl)phenyl]ethanone

[137170-49-1]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 282.34
Syntheses

- Refer to: [3268,3687] (patents).

1-[2-Hydroxy-4-(phenylmethoxy)-5-(2-propenyl)phenyl]ethanone
[117690-55-8]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 282.34
Synthesis

- Preparation by reaction of benzyl bromide on 5-allyl-2,4-dihydroxyacetophenone with potassium carbonate and potassium iodide (60\%) [2678,2679].
m.p. 86° [2678,2679].

1-[3-Hydroxy-6-(phenylmethoxy)-2-(2-propenyl)phenyl]ethanone

$$
\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 282.34
$$

Synthesis

- Obtained (by-product) by reaction of benzyl bromide with 2-allyl-3,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 5.5 h under nitrogen atmosphere (3\%) [3471].

1-[6-Hydroxy-3-(phenylmethoxy)-2-(2-propenyl)phenyl]ethanone

[263138-72-3]	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 282.34
	Synthesis
$\underbrace{\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}}_{\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}}$	- Obtained by reaction of benzyl bromide with 2-allyl-3,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 5.5 h under nitrogen atmosphere (54\%) [3471].
m.p	${ }^{1} \mathrm{H}$ NMR [3471], ${ }^{13} \mathrm{C}$ NMR [3471], IR [3471], MS [3471]

1-(2'-Acetoxy-2-hydroxy-5,5'-dimethyl[1,1'-biphenyl]-3-yl)ethanone

Pale yellow oil [3633]; b.p. ${ }_{10}{ }^{-5} 120^{\circ}$ [3633].

1-[2-Hydroxy-4-(phenylmethoxy)-6-(2-propenyloxy)phenyl]ethanone
 [76609-36-4]
 m.p. $64-65^{\circ}$ [3190].

 $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
 mol.wt. 298.34
 Synthesis
 - Obtained by partial benzylation of 6-(allyloxy)-2,4-dihydroxyacetophenone [3190].

1-[4-Hydroxy-3-[(2-methoxy-3-methylphenyl)methyl]-5-methylphenyl] ethanone

[38778-41-5]	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad \mathrm{~mol}$. .wt. 284.36
$\mathrm{OH} \quad \mathrm{CH}_{3} \mathrm{O} \quad \mathrm{CH}_{3}$	Synthesis
	- Preparation by Fries rearrangement of 2-acetoxy-2'-methoxy-3,3'-dimethyldiphenylmethane with aluminium chloride in nitrobenzene at 40° for $3 \mathrm{~h}(50 \%)$ [3688].
m.p. $124-125^{\circ}$ [3688];	
${ }^{1} \mathrm{H}$ NMR [3688], IR [3688],	[3688].

1-(3-Hydroxy-6-methoxy-2-propyl[1,1'-biphenyl]-4-yl)ethanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Synthesis

- Obtained by catalytic hydrogenation of 1-[3-hydroxy-6-methoxy-2-(2-propenyl)[1,1'-biphenyl]-4-yl]ethanone or by thermal Fries rearrangement of 3-(acetyloxy)-6-methoxy-2-propyl [$1,1^{\prime}$-biphenyl] with aluminium chloride [3467].

1-(3-Hydroxy-6-methoxy-4-propyl[1,1'-biphenyl]-2-yl)ethanone

[43037-70-3]
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36

Synthesis

- Obtained by catalytic hydrogenation of 1-[3-hydroxy-6-methoxy-4-(2-propenyl)[1,1'-biphenyl]-2-yl]ethanone or by thermal Fries rearrangement of 5-(acetyloxy)-2-methoxy-4-propyl[1,1'-biphenyl] with aluminium chloride [3467].

1-[2-Hydroxy-4-(4-phenylbutoxy)phenyl]ethanone

[63359-88-6]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Synthesis

- Obtained by reaction of 1-bromo-4-phenylbutane with resacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h . The 1 -chloro derivative and the butanone can also be used instead of the mentioned starting material and solvent (59\%) [3204].
- Also refer to: [3663].
m.p. 55° [3204].

1-[5-Ethyl-2-hydroxy-4-[[3-(methylthio)phenyl]methoxy]phenyl]ethanone
[117706-52-2]

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S} \quad \text { mol.wt. } 316.42
$$

Synthesis

- Preparation by reaction of 3-meth-ylmercapto- benzyl bromide with 2,4-dihydroxy-5-ethyl-acetophenone in the presence of potassium carbonate and potassium iodide (18\%) [2678,2679].
m.p. 89° [2678,2679]; ${ }^{1} \mathrm{H}$ NMR [2678,2679].

1-[2-Hydroxy-6-(4-phenoxybutoxy)phenyl]ethanone

[69079-91-0]	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 300.35
OH	Synthesis
	- Obtained by reaction of 1-bromo-4-phenoxybutane with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h (91%). The 1 -chloro derivative and butanone can also be used instead of the mentioned starting material and solvent [3204].

1-[4-Hydroxy-2-[(4-hydroxy-3-methoxyphenyl)methyl]-3,5-dimethoxyphenyl] ethanone

[147904-71-0]

GC [3689], GC-MS [3689].
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis

- Obtained by alkaline CuO oxidation of lignin (compound Vm 2 Sn) named 2-vanillylacetosyringone [3689].

1-[2-Hydroxy-3,4,6-trimethoxy-5-(phenylmethoxy)phenyl]ethanone

 $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
 Syntheses
 - Preparation by [3320] according to [3321] (Japanese paper).
 - Also obtained by benzylation of 2,5-dihydroxy-3,4,6-tri-methoxyacetophenone with benzyl chloride [3322].

1-[2-Hydroxy-3,5,6-trimethoxy-4-(phenylmethoxy)phenyl]ethanone

[3162-49-0] \quad| mol.wt. 332.35 |
| :--- |
| m.p. $35-36^{\circ}$ [3428]; IR [3428], UV [3428]. |

1-[4-Hydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone

[41607-43-6]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}$
mol.wt. 272.39
Synthesis

- Preparation by thermal Claisen rearrangement of 3-(3,3-dimethylallyl)-4-(3,3-dimethylallyloxy)acetophenone in N, N-diethylaniline at $170-175^{\circ}$ (84\%) [2060].

Isolation from natural sources

- From the roots of several Gerbera species (Tribus Arctotideae, Fam. Compositae): Gerbera asplenifolia (1.5\%) [3692], Gerbera crocea (1\%) [3692] and as a trace in Gerbera cordata Less. (0.008\%) [3693].
- From the roots of several Ageratina species (Compositae): Ageratina aschenbornia (0.017%) [3450] and Ageratina altissima (0.005%) [3450].
m.p. $93^{\circ} 6$ [3692], $92^{\circ} 3$ [2060]; ${ }^{1} \mathrm{H}$ NMR [3692], IR [3692], UV [3692].

1-[2,4-Dihydroxy-3,5-bis-(3-methyl-2-butenyl)phenyl]ethanone

[24672-82-0]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$
mol.wt. 288.39
Syntheses

- Obtained (poor yield) by reaction of 2-methyl-but-3-en-2-ol on resacetophenone with boron trifluoride etherate [2326,3453] in dioxane at r.t. (6\%) [3453].
- Also obtained [3457] (poor yield) [3456] by reaction of prenyl bromide with resacetophenone in potassium hydroxide solution at r.t. (3\%) [3456].
m.p. 117° [3457], $109-114^{\circ}$ [3456], 109-110 [3453];
${ }^{1} \mathrm{H}$ NMR [2326,2327,3456,3457], IR [3456,3457], UV [2326,3456].

1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone

[88661-97-6]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 288.39 Synthesis

- Preparation by condensation of resacetophenone with 3,7-dimethyl-3-hy-droxy-1,6-octadiene in the presence of boron trifluoride etherate in dioxane at r.t. (compound 14) [3458].
${ }^{1} \mathrm{H}$ NMR [3458], IR [3458].

1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone

[18296-19-0] (Z)
[20212-67-3] (E)

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 288.39

Syntheses

- Preparation by alkylation of 2,4-di-hydroxyacetophenone lithium salt with geranyl bromide in refluxing benzene (23\%) [3694] (no specification).
- Also obtained by treatment of 6-acetyl-2-methyl-2-(4-methylpent-3-enyl)-3-phenylthiochroman-5-ol with potassium naphthalenide in tetrahydrofuran at -78°; then, the mixture was allowed to warm to $-30^{\circ}(48 \%)(2 E, 6 Z)$ [3459]. m.p. 120-121 ${ }^{\circ}$ [3694]; ${ }^{1} \mathrm{H}$ NMR [3694], UV [3694] (compound XX); (no specification) (E isomer ?).
m.p. $93-96^{\circ}$ [3459]; ${ }^{1} \mathrm{H}$ NMR [3459], MS [3459] (compound 29);
(as a $1: 1$ mixture of E and Z isomers by ${ }^{13} \mathrm{C}$ NMR) [3459].

1-[5-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$
mol.wt. 288.39
Synthesis

- Preparation by condensation of resaceto-phenone with 3,7-dime-thyl-3-hydroxy-1,6-octadiene in the presence of boron trifluoride etherate in dioxane at r.t. (compound 15) [3458].

1-[5-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone (E)

[20212-68-4]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$
mol.wt. 288.39
Synthesis

- Obtained (poor yield) by alkylation of 2,4-di-hydroxyacetophenone lithium salt with geranyl bromide in benzene (<2\%) [3694].
m.p. 88° [3694];
${ }^{1} \mathrm{H}$ NMR [3694], UV [3694].
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)-5-(3-methyl-2-butenyl) phenyl]ethanone (E)
[81053-02-3]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 288.39 Isolation from natural sources
- From the aerial parts of Artemisia campestris L. subsp. glutinosa (Gay ex Besser) Batt. (Compositae) (1.8\%) [3441].
m.p. 83° [3441]; ${ }^{1} \mathrm{H}$ NMR [3441], IR [3441], UV [3441], MS [3441].

1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)-5-(3-methyl-2-butenyl) phenyl]ethanone (Z)
[77370-28-6]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 288.39
Isolation from natural sources

- From Artemisia campestris L. ssp. glutinosa (Gay ex Besser) Batt,
- compound (7) (12\%) (from the aerial parts) [3441];
- compound (2) [3465].
m.p. 109-110 [3465]; ${ }^{1} \mathrm{H}$ NMR [3441,3465], IR [3465], UV [3465], MS [3441,3465].

1-[2,6-Dihydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl] ethanone

[158499-98-0]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 304.39 Synthesis

- Obtained by reaction of 4,6-dihy-droxy-3-prenyl-2-tosyloxyacetophenone with prenyl bromide in the presence of potassium carbonate in acetone at 20° for 2 h , followed by hydrolysis of the resulting 6-hydroxy-3-prenyl-4-prenyloxy-2-tosyloxyacetophenone with 30% potassium hydroxide in refluxing ethanol under nitrogen atmosphere for 1 h [3695].

Isolation from natural sources

- From the fruit of Evodia merrillii [3695].
m.p. 108-110 [3695]; ${ }^{1} \mathrm{H}$ NMR [3695], IR [3695].

1-[4,6-Dihydroxy-3-(3-methyl-2-butenyl)-2-[(3-methyl-2-butenyl)oxy]phenyl] ethanone

[153399-38-3]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 304.39
Syntheses

- Obtained by hydrolysis of $4^{\prime}, 6^{\prime}$-bis(benzo-yloxy)-2'-(3-methyl-2-butenyloxy)-3'-(3-methyl-2-butenyl)-acetophenone with dilute sodium hydroxide under nitrogen atmosphere at 50° [3571].
- Also refer to: [3695].

Isolation from natural sources

- From the root bark of Euodia lunu-ankenda (Rutaceae) [3696].
m.p. $73-75^{\circ}$ [3696], 71-72́ [3571]; TLC [3696];
${ }^{1}$ H NMR [3571,3696], IR [3571,3696], UV [3696],
MS [3696], HRMS [3696].
N.B.: The synthetic works [3571,3695] have suggested that the prenylphenol of natural products isolated by [3696] had an incorrectly assigned structure. This compound [3696] is identical with 1-[2,6-dihydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl]ethanone [158499-98-0].

1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,5-trihydroxyphenyl]ethanone

[18296-18-9] (Z)
[20212-66-2] (E)

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$ mol.wt. 304.39

Syntheses

- Preparation by reaction of geraniol of 2,4,5-trihydroxyacetophenone in refluxing decalin [3694] (no specification).
- Also obtained by reaction of potassium naphthalenide with 6-acetyl-2-methyl-2-(4-methylpent-3-enyl)-3-phenylthiochroman-5,8-diol in tetrahydrofuran at r.t. $(11 \%)(E, Z)$ [3459].
m.p. 127-130 [3694]; UV [3694]; (compound XVIII);
(no specification) (E isomer ?).
Unstable oil [3459]; ${ }^{1} \mathrm{H}$ NMR [3459], MS [3459]; (compound 30);
(as a $1: 1$ mixture of E and Z isomers by ${ }^{13} \mathrm{C}$ NMR) [3459].

1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxyphenyl]ethanone (E)

m.p. 147-150ㅇ [3697]; column chromatography [3697];
${ }^{1} \mathrm{H}$ NMR [3697], ${ }^{13} \mathrm{C}$ NMR [3697], IR [3697], UV [3697], MS [3697].
1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl]ethanone (E)
[142905-40-6] $\quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 304.39

Synthesis

- Obtained by hydrolysis of 2-toluenesulfonyloxy-6-hydroxy-4-(1'-geranyloxy)acetophenone with 30% potassium hydroxide in refluxing ethanol for 1.5 h (75\%) [3608].

Isolation from natural sources

- From the fruit of Evodia Merrillii Kanehira \& Sasaki ex Kanehira (Rutaceae) [3697].

Waxy substance [3697]; m.p. 147-148 ${ }^{\circ}$ [3608];
${ }^{1} \mathrm{H}$ NMR [3608,3697], ${ }^{13} \mathrm{C}$ NMR [3697], IR [3608,3697], UV [3697], MS [3697], EIMS [3608], HREIMS [3608];
column chromatography [3697].
1-[4-Hydroxy-3,5-bis(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (E, Z)

1-[4-Hydroxy-3,5-bis(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (Z, Z)

[77370-30-0]

$$
\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \quad \text { mol.wt. } 304.39
$$

Isolation from natural sources

- From Artemisia camprstris L. ssp. glutinosa (Gay ex Besser) Batt,
- compound (10) (0.6%) (from the aerial parts) [3441];
- compound (3) (12\%) [3465].
m.p. 120° [3465]; ${ }^{1} \mathrm{H}$ NMR [3441,3465], IR [3465], UV [3465], MS [3441,3465].

1-[2,4,6-Trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone

[35458-19-6]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 304.39 Syntheses

- Preparation by reaction of 2-meth-ylbut-3-en-2-ol with phloroacetophenone in the presence of boron trifluoride etherate in dioxane at 20° [3477,3500], (21\%) [3477] or at 50° [3401].
- Also obtained by reaction of prenyl bromide with phloroacetophenone in the presence of potassium hydroxide in 80% aqueous methanol (15\%) [3117].
m.p. $78-79^{\circ}$ [3117,3401,3477,3500], 68-72$~[2879] ; ~ b . p ., ~ 135-140 ́ ~[3117] ; ~ ;$
${ }^{1} H$ NMR [2879]; UV [3117,3477].

1-[2,4-Dihydroxy-3-(tetrahydro-2H-pyran-2-yl)-6-[(tetrahydro-2H-pyran-2yl)oxy]phenyl]ethanone

[136257-83-5] $\quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 336.38

Synthesis

- Obtained (by-product) by reaction of 3,4-dihydro2 H -pyran on phloroacetophenone with p-toluenesulfonic acid in dioxane at r.t. (8\%) [2368].
m.p. $\quad 118-121^{\circ}$ [2368]; ${ }^{1} \mathrm{H}$ NMR [2368], ${ }^{13} \mathrm{C}$ NMR [2368].

1-[2-Hydroxy-4,6-bis[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone

[130600-90-7]

${ }^{1} \mathrm{H}$ NMR [2368], ${ }^{13} \mathrm{C}$ NMR [2368].

1-[2,4,6-Trihydroxy-3,5-bis(tetrahydro-2H-pyran-2-yl)phenyl]ethanone

[136257-82-4] $\quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 336.38

Synthesis

- Obtained (by-product) by reaction of 3,4-dihydro2 H -pyran on phloroacetophenone with p-toluenesulfonic acid in dioxane at r.t. (1\%) [2368].
${ }^{1} \mathrm{H}$ NMR [2368], ${ }^{13} \mathrm{C}$ NMR [2368].

1-[4-[(7-Bromoheptyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone

[117706-40-8]

$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrO}_{3}$
mol.wt. 369.30
Synthesis

- Preparation by reaction of 1,7-dibromoheptane with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (70\%) [2671,2678,2679].
oil [2671,2678,2679].

1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)-3-(3-methylbutyl)phenyl]ethanone

[50773-38-1]

m.p. $113^{\circ} 5$ [3457];
${ }^{1} \mathrm{H}$ NMR [3457], IR [3457].
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 290.40
Synthesis

- Preparation by reaction of prenyl bromide with 2,4-dihydroxy-3isopentylacetophenone in aqueous potassium hydroxide solution at r.t. [3457].

1-[4-(Heptyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone

[117706-56-6]	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \quad \mathrm{~mol}$. wt. 290.40
OH	Synthesis
	- Preparation by reaction of heptyl bromide with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone (77\%) [2671], (40\%) [2678,2679].

Oil [2671,2678,2679].

1-[2-Hydroxy-4-[[6-(methylthio)hexyl]oxy]-5-(2-propenyl)phenyl]ethanone

[117706-34-0]

$$
\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S} \quad \text { mol.wt. } 322.47
$$

 Synthesis

- Preparation by adding a DMF solution of 5-allyl-4-(6-bromohexyloxy)-2-hydroxyacetophenone to a DMF solution of methanethiol previously treated with sodium hydride (54\%) [2678,2679].
m.p. $42^{\circ}[2678,2679]$.

1-[5-(Acetyloxy)-2-hydroxy-4-(1,1,3,3-tetramethylbutyl)phenyl]ethanone

1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)-5-(3-methylbutyl)phenyl] ethanone

[57744-70-4]

$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 306.40
Synthesis

- Obtained by reaction of 2-methyl-3-buten-2-ol with isopentylphloroacetophenone in the presence of boron trifluoride etherate in dioxane at $20^{\circ}(13 \%)$ [3500].
m.p. $92^{\circ} 5-93^{\circ} 5$ [2879], $92-93^{\circ} 5$ [3500];
${ }^{1} \mathrm{H}$ NMR [2879].

1-[2-Hydroxy-4-[[6-(methylsulfinyl)hexyl]oxy]-5-(2-propenyl)phenyl] ethanone

[117706-35-1]

$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 338.47
Synthesis

- Obtained (by-product) by reaction of m-chloro-perbenzoic acid with 5-allyl-2-hydroxy-4-[6-(methyl-thio)hexyloxy] acetophenone in methylene chloride, first at 0°, then at r.t. (9%) [2678,2679].

1-[2-Hydroxy-4-[[6-(methylsulfonyl)hexyl]oxy]-5-(2-propenyl)phenyl] ethanone
[117706-36-2]

$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 354.47
Synthesis

- Obtained by reaction of m-chloroperbenzoic acid with 5-allyl-2-hydroxy-4-[6-(methylthio)hexyloxy]-acetophenone in methylene chloride, first at 0°, then at r.t. (20\%) [2678,2679].

1-[4-[(7-Bromoheptyl)oxy]-2-hydroxy-3-propylphenyl]ethanone
[106627-33-2] $\quad \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{BrO}_{3}$ mol.wt. 371.31

Synthesis

- Preparation by reaction of 1,7-dibromoheptane with 2,4-di-hydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (21\%) [3181].

1-(4-Butoxy-5-hexyl-2-hydroxyphenyl)ethanone

[101002-31-7]
$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$
mol.wt. 292.42

Synthesis

- Obtained by partial alkylation of 2,4-dihydroxy-5-hexyl-acetophenone with butyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [3493].
m.p. 37° [3493].

1-[4-(Decyloxy)-2-hydroxyphenyl]ethanone

[143286-86-6]	Syntheses - Preparation by partial alkylation of resacetophe- none with decyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [3493].
- Also refer to: [3698].	

1-[2,4,6-Trihydroxy-3,5-bis(3-methylbutyl)phenyl]ethanone

[55380-57-9]

$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 308.42 Synthesis

- Preparation by catalytic hydrogenation of deoxyacetohumulone [2,4,6-trihydroxy-3,5-(dimethylallyl) acetophenone] in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethanol [3401].
${ }^{1} \mathrm{H}$ NMR [3401], UV [3401], MS [3401].
1-[4-[[4-(Bromomethyl)phenyl]methoxy]-2-hydroxy-5-(2-propenyl)phenyl] ethanone
[117706-46-4]

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{3} \quad$ mol.wt. 375.26
Synthesis
- Preparation by reaction of 4-(bromomethyl)benzyl bromide with 5-allyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide (18%) [2678,2679].

Oil [2678,2679].

1-[2-Hydroxy-4-[(3-methylphenyl)methoxy]-5-(2-propenyl)phenyl]ethanone
[117706-45-3]

m.p. $87-88^{\circ}$ [2678,2679].
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 296.37
Synthesis

- Preparation by reaction of 3-methylbenzyl bromide on 5-allyl-2,4-dihydroxyacetophenone with potassium carbonate and potassium iodide (50\%) [2678,2679].

1-[3-Hydroxy-4-methoxy-6-(phenylmethoxy)-2-(2-propenyl)phenyl]ethanone $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37

Synthesis

- Preparation by thermal Claisen rearrangement of 3-(allyloxy)-6-(benzyloxy)-4-methoxyacetophenone in boiling carbitol (diethylene glycol monoethyl ether) (89\%) [2849].
m.p. 116° [2849].

1-[4-Hydroxy-2-methyl-5-(1-methylethyl)-3-(phenylmethyl)phenyl]ethanone $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 282.38
 Synthesis

- Obtained (poor yield) by reaction of benzyl chloride with 4-hydroxy-2-methyl-5-isopropylacetophenone in the presence of zinc chloride in boiling chloroform (4\%) [3699].
m.p. 88° [3699]; b.p. ${ }_{14} 243-245^{\circ}$ [3699].

1-[4-Hydroxy-3-[(2-methoxy-3,5-dimethylphenyl)methyl]-5-methylphenyl] ethanone
[38778-48-2]
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 298.38

Synthesis

- Obtained by Fries rearrangement of 2-acetoxy-2'-methoxy-3,3',5-trimethyldiphenylmethane with aluminium chloride in nitrobenzene at 55° for 3 h (23\%) [3688].
m.p. 128° [3688];
${ }^{1} \mathrm{H}$ NMR [3688], IR [3688], UV [3688].

1-[6-Hydroxy-3-methoxy-2-(1-methylethoxy)-4-(phenylmethoxy)phenyl] ethanone

[188927-31-3]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 330.38
Synthesis

- Preparation by treatment of 4-(benzyloxy)-3,6-di-methoxy-2-isopropoxyacetophenone (m.p. $74-75^{\circ}$) with aluminium bromide in acetonitrile at 0° for $10-15 \mathrm{~min}(75 \%)$ [3507].
m.p. $69-70^{\circ}$ [3507].

1-[4-Hydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methyl]-3,5dimethoxyphenyl]ethanone

[147904-74-3] $\quad \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7} \quad$ mol.wt. 362.38

Synthesis

- Obtained by upon alkaline CuO oxidation of lignin (compound Sm 2 Sn) named 2-syringylaceto-syringone [3689].

GC [3689], GC-MS [3689].

1-[2-(3,7-Dimethyl-2,6-octadienyl)-4-hydroxy-6-methoxyphenyl]ethanone

[121379-44-0]

 $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ mol.wt. 302.41 Isolation from natural sources

- From the bulbs of Dioscorea bulbifera [3404].

1-[2-Hydroxy-4-methoxy-3-(3,7-dimethyl-2,6-octadienyl)phenyl]ethanone (E)
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ mol.wt. 302.41

Synthesis

- Preparation by reaction of dimethyl sulfate on 3-geranyl-2,4-di-hydroxyacetophenone with potassium carbonate in refluxing acetone [3694].
${ }^{1} H$ NMR [3694]; UV [3694].

1-[2-Hydroxy-4-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone

[50773-40-5]

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 302.41
Syntheses

- Preparation by reaction of 2-meth-ylbut-3-en-2-ol with 2-hydroxy-4methoxyacetophenone in the presence of boron trifluoride etherate [2326].
- Preparation by reaction of dimethyl sulfate with 2,4-dihydroxy-3,5-(dimethylallyl) acetophenone in the presence of potassium carbonate in refluxing acetone [3457]. ${ }^{1} \mathrm{H}$ NMR [2326,2327,3457], UV [2326].

1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone

[123999-38-2]

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 318.41 Isolation from natural sources

- From Euodia lunu-ankenda root bark (Rutaceae) [3696].
- From Acronychia pedunculata root bark (Rutaceae) [3700].

Yellow oil [3696,3700];
TLC [3700]; HPLC [3696]; ${ }^{1} \mathrm{H}$ NMR [3700], IR [3700], HRMS [3700], MS [3700].

1-[2,4-Dihydroxy-5-methoxy-3-(3,7-dimethyl-2,6-octadienyl)phenyl]ethanone (E)
[20212-64-0]

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$ mol.wt. 318.41 Synthesis

- Obtained by alkylation of 2,4-di-hydroxy-5methoxyacetophenone lithium salt with geranyl bromide in benzene (7\%) [3610,3694].

Isolation from natural sources

- Also obtained on barium hydroxide degradation of homoflemingin, a chalkone isolated from the seed pods of Flemingia rhodocarpa Baker (Leguminosae) [3610,3694].
m.p. $\quad 107^{\circ}$ [3694]; ${ }^{1} \mathrm{H}$ NMR [3694], UV [3694], MS [3694].

1-[2,5-Dihydroxy-4-methoxy-3-(3,7-dimethyl-2,6-octadienyl)phenyl]ethanone (E)
[20180-88-5]

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$ mol.wt. 318.41
Synthesis

- Obtained by Elbs persulfate oxidation of 3-geranyl-2-hydroxy-4-methoxyacetophenone (10\%) [3694].
m.p. $69-70^{\circ}$ [3694]; ${ }^{1} \mathrm{H}$ NMR [3694], UV [3694].

1-[2-Hydroxy-4-[(6-O- β-D-xylopyranosyl- β-D-glucopyranosyl)oxy]phenyl] ethanone (Bungeiside D)
[149475-54-7]

$R=\beta-D-x y l(1 \rightarrow 6) \beta-D-g l c$
Colourless needles [3554]; m.p. 238-240 [3554]; $(\alpha)_{D}=-68^{\circ} 3(c=0.5$, methanol) [3554]; MS [3554], ${ }^{1} \mathrm{H}$ NMR [3554], ${ }^{13} \mathrm{C}$ NMR [3554], IR [3554].

1-[2-Hydroxy-4-(octyloxy)-5-(2-propenyl)phenyl]ethanone
[117690-46-7]

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{12} \quad$ mol.wt. 446.41
Isolation from natural sources

- From the roots of Cynanchum bungei DECNE (Asclepiadaceae) [3554].

Oil [2678,2679].

1-[2-Hydroxy-4-[(6-hydroxy-6-methylheptyl)oxy]-5-(2-propenyl)phenyl] ethanone

[117706-02-2]

Oil [2671].

1-[4-[(8-Bromooctyl)oxy]-2-hydroxy-3-propylphenyl]ethanone

$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BrO}_{3}$
Synthesis

- Preparation by reaction of 1,8-dibromooctane with 2,4-di-hydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (63\%) [3181].
pale green oil [3181]; ${ }^{1} \mathrm{H}$ NMR [3181].

1-[2,6-Bis(acetyloxy)-4-hydroxy-3-[(4-methoxyphenyl)methyl]phenyl] ethanone

[145747-40-6]

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 372.37
Synthesis

- Obtained by enzymatic hydrolysis of 2,4,6-tri-acetoxy-3-(4-methoxy)benzylacetophenone in the presence of porcine pancreas lipase in tetrahydrofuran at $42-45^{\circ}$ (65\%) [2388].

1-[2-Hydroxy-3-(3-methyl-2-butenyl)-4-(phenylmethoxy)phenyl]ethanone
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 310.39

Synthesis

- Obtained by reaction of benzyl bromide with 3-prenylresacetophenone in the presence of potassium carbonate in refluxing acetone for 8 h (64\%) [3701].
m.p. $70-71^{\circ}$ [3701]; ${ }^{1} \mathrm{H}$ NMR [3701], IR [3701].

1-[4,6-Dihydroxy-3-(3-methyl-2-butenyl)-2-[[(4-methylphenyl)sulfonyl]oxy] phenyl]ethanone

[158499-95-7]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 390.46
Synthesis

- Obtained by hydrolysis of 4,6-bis(benzo-yloxy)-3-prenyl-2-(tosyloxy)acetophenone with aqueous methanolic sodium hydroxide solution under nitrogen at 50° [3695].

Paste [3695].

1-[2-Hydroxy-4-(3-phenylpropoxy)-5-propylphenyl]ethanone

[117706-47-5]

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$
mol.wt. 312.41
Synthesis

- Preparation by reaction of 3-phenylpropyl bromide on 2,4-dihydroxy-5propylacetophenone with potassium carbonate and potassium iodide (26%) [2678,2679].
m.p. $60^{\circ}[2678,2679]$.

1-[2-Hydroxy-4,5-dimethoxy-6-(1-methylethoxy)-3-(phenylmethoxy)phenyl] ethanone

[169130-27-2]

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 360.41
Synthesis

- Obtained by selective demethylation of 3-benzyloxy-6-isopropoxy-2,4,5-trimethoxyacetophenone with aluminium bromide in acetonitrile, first at 0° for 15 min , then at $50-60^{\circ}$ for $15-20 \mathrm{~min}$ after dilution with ca. 3\% hydrochloric acid (68\%) [3320].
m.p. $\quad 76-77^{\circ}$ [3320]; ${ }^{1} \mathrm{H}$ NMR [3320].

1-[2-Hydroxy-4,5-dimethoxy-3-(3,7-dimethyl-2,6-octadienyl)phenyl]ethanone (E) [20212-65-1]
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44
Synthesis

- Preparation by methylation of 3-geranyl-2,4-dihydroxy-5-methoxyacetophenone or of 3-geranyl-2,4,5-trihy-droxyaceto-phenone with diazomethane [3694].
Oil [3694]; ${ }^{1} \mathrm{H}$ NMR [3694], IR [3694], UV [3694].

1-[2-Hydroxy-4-(methoxymethoxy)-3,5-bis(3-methyl-2-butenyl)phenyl] ethanone

[217442-59-6]

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44
Synthesis

- Obtained by reaction of chloromethyl methyl ether with 3,5-diprenylresacetophenone in acetone in the presence of potassium carbonate [3614] at r.t. for 3 h (83\%) [3702].
m.p. $\quad 67-68^{\circ}$ [3702]; ${ }^{1} \mathrm{H}$ NMR [3702].

1-[2-[(4-O- β-D-Galactopyranosyl- β-D-glucopyranosyl)oxy]-4-hydroxyphenyl] ethanone

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{13} \quad$ mol.wt. 476.41

Synthesis

- Preparation by reaction of 0.2 M sodium methoxide with 4-acetylresacetophenone-2-heptaacetyl-β-D-lactosid in boiling methanol for 3 min (40%) [3552].
Lact $=\beta$-D-Lactosid rest
Monohydrate [3552]; m.p. 165-168 [3552];
$(\alpha)_{\mathrm{D}}^{21}=-45^{\circ}(\mathrm{c}=1$, water) [3552].

1-[4-[(4-O- β-D-Galactopyranosyl- β-D-glucopyranosyl)oxy]-2-hydroxyphenyl] ethanone

$$
\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{13} \quad \text { mol.wt. } 476.43
$$

Lact $=\beta$-D-Lactosid rest
m.p. 255-258 ${ }^{\circ}$ [3552];
$(\alpha)_{\mathrm{D}}^{21}=-62^{\circ} 6(\mathrm{c}=1$, water) [3552].

1-[4-[(4-O- β-D-Glucopyranosyl- β-D-glucopyranosyl)oxy]-2-hydroxyphenyl] ethanone

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{13} \quad$ mol.wt. 476.43
Synthesis

- Preparation by reaction of sodium on $2^{\prime}, 4^{\prime}$-dihydroxy-acetophenone-4- β-hepta-O-acetyl-D-cellobioside in methanol (67\%) [1936].
m.p. 212° [1936];
$(\alpha)_{\mathrm{D}}^{17}=-60^{\circ}$ (pyridine) [1936].

1-[2,4-Bis-(β-D-galactopyranosyloxy)-6-hydroxyphenyl]ethanone

[88087-01-8]

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{14} \quad$ mol.wt. 492.43
Synthesis

- Preparation by deacetylation of phloracetophenone 2,4-di-O-(2,3,4,6-tetra-O-acetyl)-β-D-galactopyranoside with 0.1 Nmethanolic sodium methoxide (87\%) [2842].
m.p. $\quad 183-185^{\circ}$ [2842]; ${ }^{1} \mathrm{H}$ NMR [2842].

1-[4-[(9-Bromononyl)oxy]-2-hydroxy-3-propylphenyl]ethanone
[79557-82-7]

$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{BrO}_{3} \quad$ mol.wt. 399.37
Synthesis

- Preparation by reaction of 1,9-dibromononane with 2,4-dihydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (63\%) [3181].

1-(5-Dodecyl-2-hydroxyphenyl)ethanone
[84744-37-6]
$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$
mol.wt. 304.47
Synthesis

b.p. $4198-203^{\circ}$ [2625].

1-[4-(Dodecyloxy)-2-hydroxyphenyl]ethanone

[52122-72-2]

$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \quad$ mol.wt. 318.37
Syntheses

- Preparation by partial alkylation of resacetophenone with dodecyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [3493].
- Also refer to: [3698].
m.p. 51° [3493,3698].

1-[3-(Diphenylmethyl)-2,4-dihydroxyphenyl]ethanone
[107114-32-9] $\quad \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 318.37
 Synthesis

- Obtained by reaction of resacetophenone with diphenylcarbinol in the presence of boron trifluoride etherate in dioxane at r.t. (21\%) [3703].
m.p. 203-204 ${ }^{\circ}$ [3703];
${ }^{1} \mathrm{H}$ NMR [3703], IR [3703], UV [3703].

1-[5-(Diphenylmethyl)-2,4-dihydroxyphenyl]ethanone

[107114-35-2] \begin{tabular}{l}
Synthesis

- Preparation by reaction of resacetophenone with
diphenylcarbinol in the presence of boron trifluoride
etherate in dioxane at r.t. (39%) [3703].

${ }^{1} \mathrm{H}$ NMR [3703], IR [3703], UV [3703].
\end{tabular}

1-[4-[(10-Bromodecyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone

[117706-39-5] \quad\begin{tabular}{l}
Synthesis

- Preparation by reaction of 1,10-dibromode-

cane with 5-allyl-2,4-dihydroxyacetophe-

none in the presence of potassium carbonate

and potassium iodide (18\%) [2678,2679].
\end{tabular}

1-[4-[(10-Bromodecyl)oxy]-2-hydroxy-3-propylphenyl]ethanone

[106627-35-4]

$\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{BrO}_{3}$ mol.wt. 413.40
Synthesis

- Preparation by reaction of 1,10 -dibromodecane with 2,4-di-hydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (60\%) [3181].

1-[2,4,6-Trihydroxy-3,5-bis[(pentadecafluoroheptyl)thio]phenyl]ethanone

$$
\mathrm{C}_{22} \mathrm{H}_{6} \mathrm{~F}_{30} \mathrm{O}_{4} \mathrm{~S}_{2} \quad \text { mol.wt. } 968.37
$$

 Synthesis

- Preparation by reaction of perfluoroheptanesulfenyl chloride with phloroacetophenone in chloroform in the presence of a slight excess of pyridine and a little quantity of iron powder, first at -40°, then at 60° for 3 h (39\%) [2480].
m.p. $106-108^{\circ}$ [2480]; ${ }^{1} \mathrm{H}$ NMR [2480], IR [2480].

1-[2,4-Bis(benzoyloxy)-6-hydroxyphenyl]ethanone

$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 376.37

Synthesis

- Preparation by reaction of benzoyl chloride on phloroacetophenone in dilute aqueous sodium hydroxide [2827].
m.p. $109-110^{\circ}$ [2827].

1-[3,4-Bis(benzoyloxy)-2-hydroxyphenyl]ethanone

[27865-59-4]

m.p. $108-109^{\circ}$ [2403]; ${ }^{1} \mathrm{H}$ NMR [2403], IR [2403].

1-[2-Hydroxy-3-iodo-4,6-bis(phenylmethoxy)phenyl]ethanone

[95165-66-5]

$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{IO}_{4}$
mol.wt. 474.29
Syntheses

- Obtained by reaction of 2-hydroxy-4,6-bis(benzyloxy)-acetophenone with iodine in the presence of silver trifluoroacetate in chloroform at r.t. (83\%) [3571].
- Also refer to: [3695].

```
m.p. 204-206 [3571]; '1H NMR [3571].
```

1-[2-Hydroxy-6-methyl-3-phenyl-4-(phenylmethyl)phenyl]ethanone
[64648-09-5]

m.p. $124^{\circ}[2647,2976] ;$
${ }^{1} \mathrm{H}$ NMR [2647,2648,2976], ${ }^{13} \mathrm{C}$ NMR [2647,2976], IR [2647,2976], MS [2647,2976].

1-[2,4-Dihydroxy-3,5-bis(phenylmethyl)phenyl]ethanone

[95832-44-3] $\quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \quad \mathrm{~mol} . w t .332 .40$

Syntheses

- Obtained by reaction of benzyl alcohol with resacetophenone in the presence of boron trifluoride etherate and dioxane at $60-70^{\circ}$ (9\%) [2324].
- Also obtained (poor yield) by reaction of benzyl bromide with resacetophenone in the presence of potassium hydroxide in methanol at r.t. ($<2 \%$) [3583].
m.p. 159- 160° [3583], $157-158^{\circ}$ [2324]; ${ }^{1} \mathrm{H}$ NMR [2324], IR [2324], UV [2324].

1-[3-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]ethanone
[107114-34-1]
$\begin{array}{ll}\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} & \text { mol.wt. } 332.40 \\ \text { Synthesis } & \end{array}$

- Preparation by partial methylation of 3-(diphe-nyl-methyl)resacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone (90%) [3703].
m.p. $\quad 161-162^{\circ}$ [3703]; ${ }^{1} \mathrm{H}$ NMR [3703].

1-[5-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]ethanone

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 332.40
Synthesis

- Preparation by partial methylation of 5-(diphenylmethyl)resacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone (90\%) [3703].
m.p. $145-146^{\circ}$ [3703]; ${ }^{1} \mathrm{H}$ NMR [3703].

1-[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone

1-[2-Hydroxy-4-(phenylmethoxy)-5-(phenylmethyl)phenyl]ethanone
[105485-48-1] $\quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$ mol.wt. 332.40

(| - Preparation by reaction of benzyl chloride |
| :--- |
| with 5-benzyl-2,4-dihydroxyacetophenone in |
| potassium iodide in refluxing acetone [3583]. |

m.p. $\quad 100-102^{\circ}$ [3583]; ${ }^{1} \mathrm{H}$ NMR [3583], UV [3583].

1-[2,4-Dihydroxy-6-(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 348.40
Synthesis

- Obtained (poor yield) by reaction of benzyl chloride with phloroacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (6\%) [3605].
m.p. $166-167^{\circ}$ [3605]; UV [3605].

1-[2,4-Dihydroxy-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl]ethanone
[103633-36-9]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 348.40
Syntheses

- Obtained by reaction of o-benzyloxybenzyl alcohol with resacetophenone in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for $3 \mathrm{~h}(10 \%)$ [2325].
- Also obtained by reaction of o-benzyloxybenzyl bromide with resacetophenone in methanol in the presence of potassium hydroxide at r.t. for 24 h (14\%) [2325].
m.p. $155-156^{\circ}$ [2325]; ${ }^{1} \mathrm{H}$ NMR [2325], IR [2325], UV [2325].

1-[2,4-Dihydroxy-5-[[2-(phenylmethoxy)phenyl]methyl]phenyl]ethanone

[103633-37-0]	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 348.40
	Syntheses
	- Obtained by reaction of o-benzyloxybenzyl alcohol with resacetophenone in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for 3 h (18%) [2325]. - Also obtained by reaction of o-benzyloxybenzyl bromide with resacetophenone in methanol in the presence of potassium hydroxide at r.t. for 24 h (7\%) [2325].
m.p. $127-128^{\circ}$ [23]; ${ }^{1} \mathrm{H}$ NMR [2325], IR [2325], UV [2325].

1-[3-(Diphenylmethyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone

[101161-94-8]

m.p. $\quad 150-151^{\circ}$ [2432]; ${ }^{1} \mathrm{H}$ NMR [2432], IR [2432], UV [2432].

1-[3-(Diphenylmethyl)-4,6-dihydroxy-2-methoxyphenyl]ethanone

m.p. \quad| [101161-95-9] |
| :--- |

1-[2-Hydroxy-3,4-bis(phenylmethoxy)phenyl]ethanone

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
mol.wt. 348.40
Syntheses

- Obtained by reaction of benzyl chloride with gallacetophenone in the presence of sodium bicarbonate and sodium iodide in refluxing mixture of acetone and ethanol [2403,2817,3637], (48\%) [2403], (<2\%) [2817].
- Also refer to: [3704].
m.p. 114-115 ${ }^{\circ}$ [2403], $113-114^{\circ}$ [2817]; ${ }^{1} \mathrm{H}$ NMR [2403], IR [2403].

1-[2-Hydroxy-4,5-bis(phenylmethoxy)phenyl]ethanone

[7298-39-7]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
Syntheses

- Preparation by reaction of benzyl halide with 2,4,5-tri-hydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (69\%) [2418].
- Preparation by reaction of benzyl chloride with 5-acetoxy-2,4-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (52\%) [2906].
m.p. $96-97^{\circ}$ [2906], $94-95^{\circ}$ [2418]; ${ }^{1} \mathrm{H}$ NMR [2906], IR [2906].

1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]ethanone

[18065-05-9]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 348.40
Synthesis

- Preparation by reaction of benzyl chloride on phloroacetophenone with potassium carbonate in refluxing acetone (29\%) [2838], (20\%) [3605], in DMF at 100° (54\%) [2830] and at $150-153^{\circ}$ (26\%) [3705] or in HMPA at $90-93^{\circ}$ (80\%) [2829].
m.p. $119-120^{\circ} 5$ [2830], $101-102^{\circ}$ [3605], $100-102^{\circ}$ [2829], $98-100^{\circ}$ [2838], $96-98^{\circ}$ [3705]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [2830], IR [2830], UV [3605], MS [2830].

1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]ethanone-1-13C

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
mol.wt. 349.40
Syntheses

- Preparation by selective deprotection of tri-O-benzyl-phloroacetophenone labelled at the carbonyl group with titanium tetrachloride in methylene chloride for 160 min at 0° (80%) [3706].
- Also refer to: [3707,3708].
m.p. 104° [3706], 103° [3707];
${ }^{1} \mathrm{H}$ NMR [3706], ${ }^{13} \mathrm{C}$ NMR [3706], IR [3706], UV [3706], MS [3706].

1-[4-Hydroxy-2,6-bis(phenylmethoxy)phenyl]ethanone

[76799-38-7]

1-[6-Hydroxy-2,3-bis(phenylmethoxy)phenyl]ethanone
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 348.40

Synthesis

- Preparation by reaction of benzyl chloride 2-(benzyloxy)-3,6-dihydroxyacetophenone with potassium carbonate in refluxing acetone (10\%) [2358].
m.p. $57^{\circ} 5$ [2358].

1-[2,5-Dihydroxy-3,4-bis(phenylmethoxy)phenyl]ethanone
[151148-87-9]
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 364.40
 3,4-bis(benzyloxy)-2-hydroxyacetophenone (Elbs reaction) (10\%) [3709].
m.p. 121° [3709];
${ }^{1} \mathrm{H}$ NMR [3709], UV [3709]; TLC [3709].

1-[2-Hydroxy-3-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]phenyl] ethanone

[88086-96-8]

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{12} \quad$ mol.wt. 482.44
Syntheses

- Obtained by reaction of acetobromo-α-D-galactose with 2,3-dihydroxyacetophenone,
- in the presence of silver carbonate in quinoline at r.t., according to the Koenigs-Knorr method [2842];
- in the presence of 10% aqueous potassium hydroxide in acetone at r.t. for 24 h , according to the Fischer method (14\%) [2842].
m.p. $152-153^{\circ}$ [2842];
$(\alpha)_{\mathrm{D}}^{20}=-47^{\circ}(\mathrm{c}=1$ in chloroform) [2842];
${ }^{1} \mathrm{H}$ NMR [2842].

1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]phenyl] ethanone

[54918-27-3]

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{12} \quad$ mol.wt. 482.44 Syntheses

- Preparation by reaction of acetobromo-α-D-galactose (m.p. 79-81) with resacetophenone,
- in the presence of silver oxide in quinoline at r.t. for $2 \mathrm{~h}(30 \%)$ [3552];
- in the presence of 10% aqueous potassium hydroxide in acetone at r.t. for 24 h (12\%) [2842].
m.p. $115-117^{\circ}$ [3552], 115° [2842];
$(\alpha)_{D}^{22}=-2^{\circ} 6(\mathrm{c}=4$ in chloroform) [3552].

1-[2-Hydroxy-5-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]phenyl] ethanone

[88086-98-0]

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{12} \quad$ mol.wt. 482.44
Syntheses

- Preparation by reaction of acetobromo- $\alpha-D-g a l a c t o s e$,
- with 2-benzoyloxy-5-hydroxyacetophenone in the presence of silver carbonate in dry quinoline at r.t. for 3 h according to the Koenigs-Knorr method (quantitative yield) [2842];
- with quinacetophenone in the presence of 10% aqueous sodium hydroxide in acetone at r.t. for 24 h according to the Fischer method (14\%) [2842].
m.p. $\quad 69-73^{\circ}$ [2842]; ${ }^{1} \mathrm{H}$ NMR [2842].

1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]phenyl] ethanone

$$
\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{12} \quad \text { mol.wt. } 482.44
$$

Synthesis

- Preparation by reaction of acetobromo- α-D-galactose with 2,6-dihydroxyacetophenone in the presence of silver carbonate in quinoline at r.t. for 3 h [2842], according to Koenigs-Knorr method [3710].

1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl] ethanone

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{12} \quad$ mol.wt. 482.44 Syntheses

- Obtained by reaction of acetobromo- α -D-glucose with resacetophenone,
(Ac) $)_{4}-\beta-\mathrm{D}-\mathrm{Glc}-\mathrm{O}$

- in acetone in the presence of 10% sodium hydroxide at r.t. for 4 days (30\%) [3563];
- in acetone in the presence of aqueous potassium hydroxide solution at r.t. for $24-40 \mathrm{~h}(20-45 \%)$ [2528];
- in quinoline in the presence of silver oxide during $15 \mathrm{~min}(11 \%)$ [2736].
m.p. $131-132^{\circ}$ [2736], 130-131 ${ }^{\circ}$ [3563];
$(\alpha)_{\mathrm{D}}^{20}=-29^{\circ} 7$ (in acetone) [3563].

1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl] ethanone

$$
\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{12} \quad \text { mol.wt. } 482.44
$$

Syntheses

- Preparation by glycosation of 2,6-dihydroxyacetophenone with acetobromo- α-D-glucose,
- in the presence of cadmium carbonate in refluxing toluene for 20 h , with removal of generated water (71\%) [3711], according to Dick's method [3712];
- in the presence of benzyltributylammonium chloride and potassium carbonate in chloroform at r.t. for 24 h (93\%) [3713];
- in the presence of potassium hydroxide in aqueous acetone (38\%) [3711], (32\%) [3714].
m.p. $201-203^{\circ}$ [3714], $200^{\circ} 5-201^{\circ} 5$ [3711], 197-200 ${ }^{\circ}$ [3713];
${ }^{1} \mathrm{H}$ NMR [3711,3713], IR [3711,3713], MS [3711], FAB-MS [3713].

1-[4-Hydroxy-3-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]ethanone (Tetraacetylpungenin)

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{12} \quad$ mol.wt. 482.44
Synthesis

- Preparation by treatment of 3-(β-tetraacetylglu-copyranosyl-oxy)-4-(2-methoxyethoxy)methoxyacetophenone (SM) with zinc bromide in methylene chloride at r.t. under nitrogen atmosphere (76%). SM was obtained by action of acetobromo- α-D-glucose with 3-hydroxy-4-(2-methoxy-ethoxy)-methoxyacetophenone in the presence of silver oxide in dry quinoline at r.t. under nitrogen atmosphere [3410].
m.p. $106-112^{\circ}$ [3410]; ${ }^{1} \mathrm{H}$ NMR [3410], IR [3410], MS [3410].

1-[2,6-Dihydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl] ethanone

$$
\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{13} \quad \text { mol.wt. } 498.42
$$

Synthesis

- Obtained by reaction of acetobromo- α-Dglucose with phloracetophenone in the presence of 2.25 N aqueous sodium hydroxide in acetone at $0^{\circ}(9-12 \%)$ [3715].
m.p. 215-216 [3715];
$(\alpha)_{\mathrm{D}}^{20}=-52^{\circ} 7$ (pyridine) [3715].

1-[2-Heptyl-6-hydroxy-4-(phenylmethoxy)phenyl]ethanone

[96864-14-1]		$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$	mol.wt. 340.46
	OH	Synthesis	

- Preparation by reaction of benzyl bromide with 2,4-dihydroxy-6-heptylacetophenone in the presence of potassium carbonate in refluxing acetone for 1.5 h (42\%) [3624].
m.p. 45° [3624]; ${ }^{1} \mathrm{H}$ NMR [3624], MS [3624].

1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3,5-bis(3-methyl-2-butenyl)phenyl] ethanone

[131303-37-2]

$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{6} \quad$ mol.wt. 392.49
Syntheses

- Obtained by reaction of methoxymethyl chloride with 3,5-diprenyl-2,4,6-trihydroxyacetophenone (57\%) [3716].

1-(2-Hydroxy-5-tetradecylphenyl)ethanone

[118469-76-4] $\quad \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2} \quad$ mol.wt. 332.53

Synthesis

- Preparation by Fries rearrangement of 4-tetradecylphenyl acetate with aluminium chloride without solvent at 120° (94\%) [3719].
m.p. $39-40^{\circ}$ [3719]; ${ }^{1} \mathrm{H}$ NMR [3719], IR [3719].

1-[3-(Dodecyloxy)-2-hydroxy-4,6-dimethoxyphenyl]ethanone

[103777-47-5]

$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5} \quad$ mol.wt. 380.52
Synthesis

- Preparation by partial demethylation of 3-(dodecyloxy)-2,4,6-trimethoxyacetophenone (SM) with aluminium chloride in acetonitrile at 60° for $1.5 \mathrm{~h}(83 \%)$. SM was obtained by alkylation of 3-hydroxy-2,4,6-trimethoxy-acetophenone with dodecyl iodide in the presence of potassium carbonate in refluxing acetone for 12 h [3148].
m.p. $53-54^{\circ}$ [3148].

1-[4-(Dodecyloxy)-2-hydroxy-3,6-dimethoxyphenyl]ethanone

1-[4-(Dodecyloxy)-6-hydroxy-2,3-dimethoxyphenyl]ethanone
[103777-43-1]

$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5} \quad$ mol.wt. 380.52
Synthesis

- Preparation by partial alkylation of 4,6-dihy-droxy-2,3-di-methoxyacetophenone with dodecyl iodide [3148].
Oil [3148].

1-[4,6-Bis(benzoyloxy)-2-hydroxy-3-methylphenyl]ethanone

$$
\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{6} \quad \text { mol.wt. } 390.39
$$

m.p. 149° [3051]. Synthesis

- Obtained by reaction of benzoyl chloride on 2,4,6-tri-hydroxy-3-methylacetophenone with 2% sodium hydroxide solution at 0° (9-12\%) [3051].

1-[2-(Acetyloxy)-3-(diphenylmethyl)-4-hydroxyphenyl]ethanone

[145747-37-1]	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 360.41
	Synthesis
	- Obtained by enzymatic hydrolysis of 2,4-diacetoxy-3(diphenylmethyl)acetophenone in the presence of porcine pancreas lipase in tetrahydrofuran at $42-45^{\circ}(70 \%)$ [2388].

1-[2-(Acetyloxy)-5-(diphenylmethyl)-4-hydroxyphenyl]ethanone
 $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 360.41 Synthesis

- Obtained by enzymatic hydrolysis of 2,4-diac-etoxy-5-(diphenylmethyl)acetophenone in the presence of porcine pancreas lipase in tetrahydrofuran at $42-45^{\circ}$ (68\%) [2388].

1-[2-Hydroxy-4-methoxy-3,5-bis(phenylmethyl)phenyl]ethanone

[95832-46-5] \quad\begin{tabular}{l}
mol.wt. 346.43

Synthesis
3,5-di-benzyl-2,4-dihydroxyacetophenone in the
presence of potassium carbonate in refluxing
acetone (90\%) [3703].

\end{tabular}

Oil [3703]; ${ }^{1} \mathrm{H}$ NMR [3703].
1-[3-(Diphenylmethyl)-2-hydroxy-4,6-dimethoxyphenyl]ethanone

[101161-96-0] \quad| Synthesis |
| :--- |

1-[3-(Diphenylmethyl)-6-hydroxy-2,4-dimethoxyphenyl]ethanone

[101161-97-1] $\quad \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 362.42

Synthesis

- Preparation by reaction of dimethyl sulfate with 2,4-di-hydroxy-6-methoxy-5-(diphenylmethyl)acetophenone in the presence of potassium carbonate in refluxing acetone (69\%) [2432].
m.p. $\quad 167-168^{\circ}$ [2432]; ${ }^{1} \mathrm{H}$ NMR [2432], UV [2432].

1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl]ethanone

[39548-92-0]

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 362.42
Syntheses

- Preparation by reaction of benzyl chloride on 3-methylphloracetophenone with potassium carbonate in refluxing acetone (27-31\%) [3043,3051], (18\%) [3605].
- Also refer to: [3054].
m.p. 145° [3051,3605,3720], 142° [3043].

1-[2,4-Dihydroxy-6-methoxy-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl] ethanone

[103633-31-4]

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 378.42 Syntheses

- Obtained by reaction of o-(benzyloxy)benzyl bromide with 2,4-dihydroxy-6-methoxyacetophenone in the presence of potassium hydroxide in methanol at r.t. for $24 \mathrm{~h}(18 \%)$ [2325].
- Also obtained by reaction of o-(benzyloxy)benzyl alcohol with 2,4-dihydroxy-6-methoxyacetophenone in the presence of boron trifluoride etherate in dioxane (7\%) [2325].
m.p. 152-153 ${ }^{\circ}$ [2325]; TLC [2325];
${ }^{1} \mathrm{H}$ NMR [2325], IR [2325], UV [2325].

1-[4,6-Dihydroxy-2-methoxy-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl] ethanone

[103633-32-5] | Syntheses |
| :--- |
| - Obtained by reaction of o-(benzyloxy)benzyl alcohol |
| with 2,4-dihydroxy-6-methoxyacetophenone in the |
| presence of boron trifluoride etherate in dioxane at |
| 60-70 for $3 \mathrm{~h}(<15 \%)$ [2325]. |

1-[2-Hydroxy-3-[(2-hydroxyphenyl)methyl]-6-methoxy-4-(phenylmethoxy)phenyl]ethanone

1-[2,4-Dihydroxy-3-[(2-hydroxyphenyl)methyl]-6-methoxyphenyl]ethanone, monoether with benzenemethanol
[102056-83-7] $\quad \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 378.42

Synthesis

- Obtained by reaction of benzyl chloride with 2', 4'-di-hydroxy-3'-(2-hydroxybenzyl)-6'-methoxy-acetophenone in the presence of potassium carbonate in refluxing acetone (10\%) [2832].

1-[2-Hydroxy-3-methoxy-4,6-bis(phenylmethoxy)phenyl]ethanone
[24126-73-6]

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 378.42
Syntheses

- Preparation by selective cleavage of 2-benzyloxy group of 2,4,6-tris(benzyloxy)-3methoxyacetophenone (SM) with concentrated hydrochloric acid in acetic acid at r.t. for $50 \mathrm{~min}(82 \%)$. SM (oily material) was obtained by reaction of benzyl chloride with 4-benzyloxy-2,6-di-hydroxy-3-methoxyacetophenone in the presence of potassium carbonate in DMF at $150-160^{\circ}$ for 10 min [3640].
- Also obtained by partial benzylation of 3-methoxy-2,4,6-trihydroxyacetophenone [3721], with benzyl chloride in the presence of potassium carbonate in refluxing acetone for 16 h (6\%) [3722].
m.p. 140-141 ${ }^{\circ}$ [3721,3722], 137-138 ${ }^{\circ}$ [3640]; ¹H NMR [3721]; UV [3721,3722].

1-[2-Hydroxy-5-methoxy-3,4-bis(phenylmethoxy)phenyl]ethanone

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 378.42
Synthesis

- Preparation by reaction of dimethyl sulfate with 3,4-bis(benzyloxy)-2,5-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for $8 \mathrm{~h}(79 \%)$ [3709].
m.p. 131° [3709]; TLC [3709];
${ }^{1} H$ NMR [3709], IR [3709], UV [3709].
1-[6-Hydroxy-2-methoxy-3,4-bis(phenylmethoxy)phenyl]ethanone
[73239-53-9]
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 378.42

Synthesis not yet described

- Refer to: [2885].

TLC [2885].

1-[6-Hydroxy-3-methoxy-2,4-bis(phenylmethoxy)phenyl]ethanone $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 378.42
 Syntheses

- Obtained by partial benzylation of 3-meth-oxy-2,4,6-tri-hydroxyacetophenone [3721], with benzyl chloride in the presence of potassium carbonate in refluxing acetone for $16 \mathrm{~h}(31 \%)$ [3722].
- Also refer to: [3507,3723].

Oil [3722]; m.p. 70-71² [3721]; ${ }^{1} \mathrm{H}$ NMR [3721].
1-[6-Hydroxy-4-methoxy-2,3-bis(phenylmethoxy)phenyl]ethanone

m.p. $95-97^{\circ}$ [3130]. \quad\begin{tabular}{l}
Synthesis

- | Preparation by reaction of benzyl chloride with |
| :--- |
| 6-(benzyloxy)-2,5-dihydroxy-4-methoxyaceto- |
| phenone in the presence of potassium carbonate |
| and potassium iodide in refluxing acetone (71\%) |
| [3130]. |

\hline
\end{tabular}

1-[6-Hydroxy-3-methoxy-2-[[(4-methylphenyl)sulfonyl]oxy]-4(phenylmethoxy)phenyl]ethanone

[188927-30-2] \quad\begin{tabular}{l}

- Preparation by treatment of

4-(benzyloxy)-3,6-dimethoxy

-2-(tosyloxy) acetophenone

(m.p. 106-108) with aluminium

bromide in acetonitrile at 0° for

1 h (quantitative yield) [3507].
\end{tabular}

1-[2-Hydroxy-6-methoxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy] phenyl]ethanone

[139545-92-9]

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{13} \quad$ mol.wt. 512.47 Syntheses

- Obtained by treatment of 2,4-dihydroxy-6-methoxy-acetophenone with aceto-bromo- α-D-glucose,
- in acetone in the presence of 10% aqueous sodium hydroxide at r.t. for 4.5 h (48\%) [3619];
- in quinoline or in acetone in the presence of silver oxide at r.t. for 20 min (22% and 30% yields, respectively) [3724].
m.p. $169-171^{\circ}$ [3619], 168° [3724];
$(\alpha)_{\mathrm{D}}^{25}=-39^{\circ} 7$ to $-42^{\circ} 3$ (pyridine) [3724];
${ }^{1} \mathrm{H}$ NMR [3619], IR [3619], MS [3619]; TLC [3619].
1-[2,4-Dihydroxy-6-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]phenyl]ethanone (E, E)
[200129-18-6] $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 372.50

Synthesis

- Refer to: [3725] (Chinese paper).

1-[2,6-Dihydroxy-4-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]phenyl] ethanone

[156499-52-4] $\quad \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 372.50

Isolation from natural sources

- From the aerial parts of Boronia Ramosa (Rutaceae) [3726].

Gum [3726];
${ }^{1} \mathrm{H}$ NMR [3726], ${ }^{13} \mathrm{C}$ NMR [3726], IR [3726], UV [3726], MS [3726].

1-[2,6-Dihydroxy-4-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]phenyl] ethanone (E, E)

[183143-91-1] $\quad \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 372.50

Syntheses

- Preparation by hydrolysis of 2-p-toluenesulfonyloxy-6-hydroxy-4-(1'farnesyloxy)acetophenone with 30% potassium hydroxide in refluxing ethanol for 1.5 h (89\%) [3608].
- Obtained (poor yield) by reaction of farnesyl bromide with phloroacetophenone in the presence of potassium carbonate in refluxing acetone for 4 h (7\%) [3725,3727].

Isolation from natural sources

- From the aerial parts of Boronia ramosa in Australian genus Boronia (Rutaceae) [3725,3726].
White gum [3608,3726];
${ }^{1} \mathrm{H}$ NMR [3608,3726], ${ }^{13} \mathrm{C}$ NMR [3726], IR [3608,3726], UV [3726], EIMS [3608,3726].

1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxy-3-(3-methyl-2-butenyl) phenyl]ethanone (E)

[126259-76-5] $\quad \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 372.50

Synthesis

- Obtained by hydrolysis of $4^{\prime}, 6^{\prime}$-bis (benzoyloxy)-2'-geranyloxy-3'prenylacetophenone with dilute sodium hydroxide under nitrogen atmosphere at 50° (good yield) [3571].

Isolation from natural sources

- From the Euodia Lunu-Ankenda root bark (Rutaceae) [3696].
N.B.: The synthetic works [3571,3695] have suggested that the natural product ketone isolated by [3696] had an incorrectly assigned structure. This compound [3696] will be identical with 1-[4-[(3,7-dimethyl-2,6-octadienyl)oxy]-2,6-di-hydro-3-(3-methyl-2-butenyl)phenyl]ethanone [142905-38-2].
m.p. $88-90^{\circ}$ [3696], $71-73^{\circ}$ [3571]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [3571,3696], IR [3696][3571], UV [3696], MS [3696],
HRMS [3696]; TLC [3696];
1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-(3-methyl-2-butenyl) phenyl]ethanone (E)
[142905-38-2] $\quad \mathbf{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 372.50

Synthesis

- Obtained via a nine-step synthesis from the $4^{\prime}, 6^{\prime}$-bis(benzyloxy)-2'hydroxyacetophenone [3695].

Isolation from natural sources

- From the fruit of Evodia Merrillii Kanehira and Sasaki ex Kanehira (Rutaceae) [3697,3728].
m.p. $98-101^{\circ}$ [3697,3728], $98-100^{\circ}$ [3695]; column chromatography [3697];
${ }^{1} \mathrm{H}$ NMR [3695,3697,3728], ${ }^{13} \mathrm{C}$ NMR [3697],
IR [3695,3697,3728], UV [3697], MS [3697].

1-[2-Hydroxy-3-(3-methyl-2-butenyl)-4,6-bis[(3-methyl-2-butenyl)oxy]phenyl] ethanone

$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4}$ mol.wt. 372.50
Synthesis

- Obtained (poor yield) by reaction of prenyl bromide with phloroaceto-phenone in the presence of aqueous potassium hydroxide solution (3\%) [3117].
b.p. $0_{0.2} 135-150^{\circ}$ [3117].

1-[2,4,6-Trihydroxy-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl)phenyl]ethanone
[156499-51-3] $\quad \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 372.50

Isolation from natural sources

- From the aerial parts of Boronia Ramosa (Rutaceae) [3726].

$$
\begin{aligned}
& \text { m.p. } 112-115^{\circ} \text { [3726]; } \\
& { }^{1} \mathrm{H} \text { NMR [3726], }{ }^{13} \mathrm{C} \text { NMR [3726], IR [3726], UV [3726], MS [3726]. }
\end{aligned}
$$

1-[2,4,6-Trihydroxy-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl)phenyl]ethanone (E, E)
[183143-90-0] $\quad \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 372.50

Synthesis

- Obtained by reaction of farnesyl bromide with phloroacetophenone in the presence of potassium carbonate in refluxing acetone for 4 h (52%) [3725,3727].Isolation from natural sources
- From the aerial parts of Boronia ramosa in Australia [3725].

1-[4-[(12-Bromododecyl)oxy]-2-hydroxy-3-propylphenyl]ethanone

[106627-36-5]

$\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BrO}_{3} \quad$ mol.wt. 441.45
Synthesis

- Preparation by reaction of 1,12-dibromododecane with 2,4-dihydroxy-3-propylacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (45\%) [3181].

1-(2-Hydroxy-4-pentadecylphenyl)ethanone

[52122-69-7] $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{2} \quad$ mol.wt. 346.55
Synthesis

- Preparation by Fries rearrangement of 3-pentadecylphenyl acetate with aluminium chloride without solvent at $140-150^{\circ}$ [2601].
m.p. 50° [2601]; b.p. $212-214^{\circ}$ [2601].

1-(2,4-Dihydroxy-6-pentadecylphenyl)ethanone

 $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3} \quad$ mol.wt. 362.55 Synthesis

- Preparation by reaction of acetic acid on 5-pentade-cyl-resorcinol with boron trifluoride and hydrofluoric acid in xylene at $50-60^{\circ}$ (75\%) [3729].
m.p. 63° [3729].

1-[2-Hydroxy-3,5-dimethoxy-4,6-bis(phenylmethoxy)phenyl]ethanone
[3162-54-7]

$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 408.45
Synthesis

- Obtained by alkaline degradation of Lucidin dibenzyl ether by refluxing with 10% aqueous ethanolic potassium hydroxide under nitrogen atmosphere for 17 h [3428].
b.p. ${ }_{0.2} 160-180^{\circ}$ [3428]; m.p. $86-87^{\circ}$ [3428].

1-[4-(Hexadecyloxy)-2-hydroxyphenyl]ethanone

[143286-87-7]

m.p. 56° [3493].
$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{3} \quad$ mol.wt. 376.58
Synthesis

- Preparation by partial alkylation of resacetophenone with hexadecyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [3493].

1-[4-[[(2E)-3,7-Dimethyl-2,6-octadienyl]oxy]-2-hydroxy-6-[[(4-methylphenyl) sulfonyl]oxy]phenyl]ethanone

[225088-73-3] $\quad \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 458.58

Synthesis

- Preparation by treatment of 2-toluenesulfonyl-oxy-4,6-dihydroxy-acetophenone with geranyl bromide in acetone in the presence of potassium carbonate at r.t. for 2 h (84%) [3608].
Colourless gum [3608];
${ }^{1} H$ NMR [3608], IR [3608], EIMS [3608], HREIMS [3608].
1-[6-Hydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]-2-[[(4methylphenyl)sulfonyl]oxy]phenyl]ethanone
[158499-97-9] $\quad \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 458.58

Synthesis

- Obtained by reaction of prenyl bromide with $4^{\prime}, 6^{\prime}$-dihydroxy- 3^{\prime}-prenyl-2'tosyloxyacetophenone in the presence of potassium carbonate in acetone at 20° for 2 h [3695].
${ }^{1} \mathrm{H}$ NMR [3695].
1-[4,6-Dihydroxy-3-(methoxymethoxy)-3-(3,7,11-trimethyl-2,6,10dodecatrienyl)phenyl]ethanone

$$
\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5} \quad \text { mol.wt. } 416.56
$$

Synthesis

- Obtained by reaction of chloromethyl methyl ether with 3-farnesyl-2,4,6-tri-hydroxyacetophe-none in the presence of potassium carbonate in refluxing acetone for 5 h (82\%) [3727].

1-[2-Hydroxy-4-(octadecyloxy)phenyl]ethanone

$\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{3} \quad$ mol.wt. 404.63
Syntheses

- Preparation by partial alkylation of resacetophenone with octadecyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [3493].
- Also refer to: [3698].
m.p. 61° [3493,3698]; GC [3730].

1-[2-Hydroxy-4-(phenylmethoxy)-3,5-bis(phenylmethyl)phenyl]ethanone

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{3}$
mol.wt. 422.52
Synthesis

- Obtained by reaction of benzyl chloride with 3,5-dibenzyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone [3583].
m.p. $87-89^{\circ}$ [3583]; ${ }^{1} \mathrm{H}$ NMR [3583], IR [3583], UV [3583].

1-[2-Hydroxy-3,4-bis(phenylmethoxy)-5-(phenylmethyl)phenyl]ethanone
[105485-46-9]

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 438.52
Synthesis

- Preparation by reaction of benzyl chloride with 5-benzyl-2,3,4-trihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone (64\%) [3583].
m.p. $56-58^{\circ}$ [3583]; ${ }^{1} \mathrm{H}$ NMR [3583], IR [3583], UV [3583].

1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone

[18065-06-0]

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 438.52
Synthesis

- Obtained by reaction of benzyl chloride with phloroacetophenone in the presence of potassium carbonate in DMF at $150-153^{\circ}$ (31\%) [3705] or in refluxing acetone [3605,3606], (2\%) [3605].
m.p. $123-124^{\circ}$ [3605,3606], 111-112 ${ }^{\circ}$ [3705];
${ }^{1} H$ NMR [3605], IR [3606], UV [3605,3606].

1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone-1- ${ }^{13} \mathrm{C}$

[357409-15-5]

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 439.52
Syntheses

- Obtained (by-product) by selective deprotection of tri-O-benzylphloroacetophenone labelled at the carbonyl group with titanium tetrachloride in methylene chloride for 160 min at $0^{\circ}(7 \%)$ [3706].
- Also refer to: [3708].
m.p. 117° [3706];
${ }^{1} \mathrm{H}$ NMR [3706], ${ }^{13} \mathrm{C}$ NMR [3706], IR [3706], UV [3706], MS [3706].

1-[2-Hydroxy-4-(phenylmethoxy)-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl]ethanone

[103633-40-5] $\quad \mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 438.52

Synthesis

- Preparation by reaction of benzyl chloride with 3-(o-benzyloxybenzyl)-2,4-dihydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone for $6 \mathrm{~h}(73 \%)$ [2325].
m.p. $\quad 135-136^{\circ}$ [2325]; \quad TLC [2325]; ${ }^{1} H$ NMR [2325], IR [2325], UV [2325].

1-[2-Hydroxy-4-(phenylmethoxy)-5-[[2-(phenylmethoxy)phenyl]methyl] phenyl]ethanone

[103633-43-8]
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 438.52 Synthesis

m.p. 113-114 ${ }^{\circ}$ [2325]; TLC [2325];
${ }^{1} \mathrm{H}$ NMR [2325], IR [2325], UV [2325].

1-[2-Hydroxy-3,4,6-tris(phenylmethoxy)phenyl]ethanone

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5} \quad$ mol.wt. 454.52
Synthesis

- Preparationfrom2,3,4,6-tetrakis(benzyloxy) acetophenone on refluxing with 90% aqueous acetic acid (91\%) [3731], (78\%) [2442,3149]. There is a selective hydrolysis of the 2-(benzyloxy) group [3731].
m.p. $\quad 141-142^{\circ}$ [2442,3149];
${ }^{1} \mathrm{H}$ NMR [2442,3149,3731], IR [2442,3149,3731], MS [3731].
1-[2-Hydroxy-5-methoxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone

$$
\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{5} \quad \text { mol.wt. } 468.55
$$

Synthesis

- Obtained (by-product) by partial benzylation of 3-methoxy-2,4,6-trihydroxyacetophenone [3721].
Oil [3721]; ${ }^{1} \mathrm{H}$ NMR [3721].
1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)-3-[[2-(phenylmethoxy)phenyl] methyl]phenyl]ethanone

1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-6-hydroxy-3-(3-methyl-2-butenyl)-2-[[(4-methylphenyl)sulfonyl]oxy]phenyl]ethanone (E)
[158499-96-8] $\quad \mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 526.69

Synthesis

- Obtained by reaction of geranyl bromide with 4',6'-dihydroxy-3'-prenyl-2'tosyloxyacetophenone in the presence of potassium carbonate in acetone at 20° for 2 h [3695].
${ }^{1} \mathrm{H}$ NMR [3695].
1-[2-Hydroxy-6-[[(4-methylphenyl)sulfonyl]oxy]-4-[[(2E,6E)-3,7,11-trimethyl-
2,6,10-dodecatrienyl]oxy]phenyl]ethanone
[225088-74-4] $\quad \mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 526.69

Synthesis

- Obtained by reaction of 2-toluenesulfonyloxy-4,6-dihydroxyacetophenone with farnesyl bromide in acetone in the presence of potassium carbonate at r.t. for 2 h (60\%) [3608].
Colourless gum [3608];
${ }^{1} \mathrm{H}$ NMR [3608], IR [3608], EIMS [3608].
1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxyphenyl]ethanone
[107114-29-4]

$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{3}$	mol.wt. 484.59
Synthesis	

- Obtained by reaction of resacetophenone with diphenyl-carbinol in the presence of boron trifluoride etherate in dioxane at r.t. (14\%) [3703].
m.p. $144-145^{\circ}$ [3703];
${ }^{1} \mathrm{H}$ NMR [3703], IR [3703], UV [3703].
1-[2-Hydroxy-4-[(per-O-acetyl- β-D-galactopyranosyl- β-D-glucopyranosyl) oxy]phenyl]ethanone

OH	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{20} \quad$ mol.wt. 770.70 Synthesis
 $(\mathrm{Ac})_{7}$-Lact $=$ heptaacetyllactosid rest	- Preparation by reaction of α-acetobromolactose with resacetophenone in the presence of silver oxide in quinoline at r.t. for $2 \mathrm{~h}(40 \%)$ [3552].
m.p. 195-197 [3552]; $(\alpha)_{\mathrm{D}}^{21}=-32^{\circ} 3(\mathrm{c}=2$ in chloroform $)$	552].

1-[3,5-Bis(diphenylmethyl)-2-hydroxy-4-methoxyphenyl]ethanone

$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{3} \quad$ mol.wt. 498.62
Synthesis

- Preparation by reaction of dimethyl sulfate with 3,5-bis-(diphenylmethyl)-2,4-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone (81\%) [3703].
m.p. $152-153^{\circ}$ [3703]; ${ }^{1} \mathrm{H}$ NMR [3703].

1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone

[101161-93-7]

$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{4} \quad$ mol.wt. 514.62
Synthesis

- Obtained (poor yield) by reaction of diphenylcarbinol with 2,4-dihydroxy-6-methoxyacetophenone in dioxane at r.t. in the presence of boron trifluoride etherate (7\%) [2432].
m.p. $122-123^{\circ}$ [2432]; ${ }^{1} \mathrm{H}$ NMR [2432], IR [2432], UV [2432].

1-[2-(Acetyloxy)-3,5-bis(diphenylmethyl)-4-hydroxyphenyl]ethanone
[145747-39-3]
$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{4}$
mol.wt. 526.63

Synthesis

- Obtained by partial deacylation of 2,4-diac-etoxy-3,5-bis-(diphenylmethyl)acetophenone by porcine pancreatic lipase in tetrahydrofuran at $42-45^{\circ} \quad(63 \%)$ [2388,2389].

1-[2-Hydroxy-4-[[2-(phenylmethoxy)phenyl]methoxy]-3-[[2-(phenylmethoxy) phenyl]methyl]phenyl]ethanone

[103633-46-1]	$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{O}_{5} \quad$ mol.wt. 544.65
$\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Synthesis
	- Obtained (poor yield) by reaction of o-ben-zyloxy-benzyl bromide with resacetophe-
1	e in methanol in the presence of
	potassium hydroxide at r.t. for $24 \mathrm{~h}(<2 \%)$ [2325]
$\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	[2325].

m.p. $135-136^{\circ}$ [2325]; TLC [2325];
${ }^{1} \mathrm{H}$ NMR [2325], IR [2325], UV [2325].

1-[2-Hydroxy-4,6-bis[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]phenyl]ethanone

[88087-00-7]

$\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{22} \quad$ mol.wt. 828.73
Synthesis

- Obtained by reaction of $2,3,4$, 6-tetra-O-acetyl- α-D-galactopyranosyl bromide with phloracetophenone in the presence of 30% aqueous sodium hydroxide in acetone (17\%) [2842], according to Zemplen's procedure [3715].
m.p. $184-186^{\circ}$ [2842]; ${ }^{1} \mathrm{H}$ NMR [2842].

1-[2-Hydroxy-4,6-dimethoxy-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β-Dglucopyranosyl]phenyl]ethanone
[115130-46-6] $\quad \mathrm{C}_{44} \mathrm{H}_{46} \mathrm{O}_{9} \quad$ mol.wt. 718.84
and
1-[6-Hydroxy-2,4-dimethoxy-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β-Dglucopyranosyl]phenyl]ethanone
[169566-54-5]

$\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{O}_{9} \quad$ mol.wt. 718.84
Synthesis

- Obtained (via O C glycoside rearrangement) by adding boron trifluoride etherate to a mixture of 2-hydroxy-4,6dimethoxyacetophenone, 2,3,4,6-tetra-O-benzyl- α-D-glucopyranosyl fluoride (R) and powdered molecular sieves $4 \AA$ in methylene chloride and stirring at -78° for 2 h under an argon atmosphere; after the disappearance of R on TLC, the reaction temperature was raised from -78° to r.t. and the mixture stirred for 45 min (92\%) [3198].
N.B.: The 3-isomer was obtained by selective glycosylation of 2-hydroxy-4,6-dimethoxy-acetophenone with O-(2,3,4,6-tetra-O-benzyl- α-D-glucopyranosyl) trichloroacetimidate and trimethylsilyl triflate as promoter in methylene chloride first at -25°, then heating up to r.t. [3732,3733].
${ }^{1} \mathrm{H}$ NMR [3198], IR [3198], MS [3198].

1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)-β-D-glucopyranosyl]phenyl]ethanone
[169566-44-3] $\quad \mathrm{C}_{50} \mathrm{H}_{50} \mathrm{O}_{9} \quad$ mol.wt. 794.94
and
1-[6-Hydroxy-4-methoxy-2-(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)-β-D-glucopyranosyl]phenyl]ethanone
[169566-55-6]

$\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{O}_{9} \quad$ mol.wt. 794.94
Synthesis

- Obtained (via O fi C glycoside rearrangement) by adding boron trifluoride etherate to a mixture of 2-(benzyloxy)-6-hydroxy-4-methoxy-acetophenone, 2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl fluoride (R) and powdered molecular sieves $4 \AA$ in methylene chloride and stirring at -78° for 2 h under an argon atmosphere; after the disappearance of (R) on TLC, the reaction temperature was raised from -78° to r.t. and the mixture stirred for $45 \mathrm{~min}(78 \%)$ [3198].
${ }^{1} \mathrm{H}$ NMR [3198], IR [3198], MS [3198].
1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β -D-glucopyranosyl]phenyl]ethanone
[169566-46-5] $\quad \mathrm{C}_{56} \mathrm{H}_{54} \mathrm{O}_{9} \quad$ mol.wt. 871.04
and
1-[6-Hydroxy-2,4-bis(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β -D-glucopyranosyl]phenyl]ethanone
[169566-56-7]

$\mathrm{C}_{56} \mathrm{H}_{54} \mathrm{O}_{9} \quad$ mol.wt. 871.04
Synthesis
- Obtained (via O fi C glycoside rearrangement) by adding boron trifluoride etherate to a mixture of 2-acetylphloroglucinol 3,5-bis(benzyl ether), 2,3,4,6-tetra-O-benzyl- α-D-glucopyranosyl fluoride (R) and powdered molecular sieves $4 \AA$ in methylene chloride and stirring at -20° for 2 h under an argon atmosphere; after the disappearance of (R) on TLC, the reaction temperature was raised from -20° to r.t. and the mixture stirred for 45 min (92\%) [3198].

Colourless syrup [3198]; ${ }^{1} \mathrm{H}$ NMR [3198], IR [3198], MS [3198].

Part VI
 Addendum to Volume 2

Chapter 10
 Addendum 2005-2008

Monoketones Unsubstituted on the Acetyl Groups

Chapter 9. Compounds Derived from Acetic Acid [3734] p. 659-1092

1-(2,4-Dihydroxy-3,5,6-trinitrophenyl)ethanone
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9} \quad$ mol.wt. 287.14

New compound
Syntheses

- Obtained by reaction of nitric acid with 3,5-bis(5-acetyl-2-benzoyloxy-4-hydroxyphenyl)sulfide in acetic acid [3735,3736].
m.p. $\quad 174-175^{\circ}[3735,3736]$.

1-(3-Bromo-5-chloro-2-hydroxyphenyl)ethanone
[59443-15-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49

Described [3734] p. 662
Syntheses

- Also refer to: [3737-3741].

1-(5-Bromo-3-chloro-2-hydroxyphenyl)ethanone
[331821-10-4] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49

New compound
Synthesis

- Refer to: [3742].
${ }^{1} \mathrm{H}$ NMR [3742], IR [3742], UV [3742].

1-(3-Bromo-2-hydroxy-5-nitrophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4}$
mol.wt. 260.04

Described [3734] p. 663
Synthesis

- Also refer to: [3739].

1-(5-Bromo-2-hydroxy-3-nitrophenyl)ethanone

[70978-54-0]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4} \quad$ mol.wt. 260.04 Described [3734] p. 663
Syntheses	
- Also refer to: [3743,3744].	

1-(3,5-Dibromo-2-hydroxyphenyl)ethanone

[22362-66-9]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}$
mol.wt. 293.94
Described [3734] p. 665
Syntheses

- Also refer to: [3740,3742].

1-(3,5-Dibromo-4-hydroxyphenyl)ethanone
[2887-72-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94

Described [3734] p. 665
Syntheses

- Also obtained by adding HMTAB (hexamethylene tetraminebromine complex) to 4-hydroxyacetophenone in methylene chloride at r.t. for $5 \mathrm{~min}(44 \%)$ [3745].
- Also refer to: [3737,3738,3746-3748].
m.p. $180-183^{\circ}$ [3745].

Methyl ether [79324-79-1] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97

- Preparation by reaction of dimethyl sulfate with 3,5-dibromo-4-hydroxyacetophenone in the presence of sodium hydroxide [3749,3750].
- Also refer to: [3751-3758].
m.p. $78^{\circ} \quad[3750] ;{ }^{1} \mathrm{H}$ NMR [3753,3756], ${ }^{13} \mathrm{C}$ NMR [3751,3754], UV [3757].

1-(4-Chloro-3-fluoro-2-hydroxyphenyl)ethanone

[949900-54-3] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2} \quad$ mol.wt. 188.59

New compound
Syntheses

- Refer to: [3759,3760].

1-(4-Chloro-5-fluoro-2-hydroxyphenyl)ethanone

[105533-69-5]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2}$
mol.wt. 188.59

Described [3734] p. 668
Syntheses

- Also refer to: [3761,3762].

1-(5-Chloro-4-fluoro-2-hydroxyphenyl)ethanone
[865451-01-0] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2} \quad$ mol.wt. 188.59

New compound
Synthesis

- Obtained by reaction of acetyl chloride with 4-chloro-3fluorophenol in the presence of aluminium chloride in toluene, first at 40° for 1 h , then at 80° for $3 \mathrm{~h}(61 \%)$ [3762].
${ }^{1} \mathrm{H}$ NMR [3762].
1-(5-Chloro-2-hydroxy-3-nitrophenyl)ethanone
[84942-40-5]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4}$
mol.wt. 215.59

Described [3734] p. 670
Syntheses

- Also refer to: [3763,3764].

1-(2,4-Dichloro-6-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 205.04

Described [3734] p. 671
Syntheses

- Also obtained by heating its methyl ether with pyridinium chloride for 30 min (70\%) [3765].
- Also obtained by Fries rearrangement of 3,5-dichlorophenyl acetate [3766] according to [3767].

Methyl ether [41068-37-5] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07 [3765]

Benzyl ether [1023279-01-7] $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 295.16

- Obtained by reaction of benzyl chloride with 2,4-dichloro-6-hydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone for 16 h (92\%) [3766]. m.p. $87-88^{\circ}$ [3766]; ${ }^{1} \mathrm{H}$ NMR [3766], ${ }^{13} \mathrm{C}$ NMR [3766], MS [3766].

2,4-Dichlorobenzoate [1023278-90-1] $\quad \mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{O}_{3} \quad$ mol.wt. 378.04

- Obtained by reaction of 2,4-dichloro-6-hydroxyacetophenone with 2,4-dichlorobenzoic acid in the presence of N, N-dicyclohexylcarbodiimide and 4-pyrrolidinopyridine in methylene chloride under nitrogen at r.t. for 24 h (98\%) [3766]. m.p. 112-113 ${ }^{\circ}$ [3766]; ${ }^{1} \mathrm{H}$ NMR [3766], ${ }^{13} \mathrm{C}$ NMR [3766], MS [3766].

1-(2,6-Dichloro-4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Described [3734] p. 671
Synthesis

- Also obtained by reaction of acetyl chloride with 3,5-dichloroanisole in the presence of aluminium chloride in carbon disulfide [3768].
m.p. $117-119^{\circ}$ [3768].

Methyl ether [157487-30-4] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07

- Obtained by heating a mixture of 1-(2,6-dichloro-4-methoxyphenyl)ethan-1-ol and manganese (IV) oxide in benzene for $15 \mathrm{~h}(87 \%)$ [3769].
- Also refer to: [3770].
b.p. ${ }_{0.6} 125-128^{\circ}$ [3769]; ${ }^{1} \mathrm{H}$ NMR [3769], IR [3769].

1-(3,5-Dichloro-2-hydroxyphenyl)ethanone
[3321-92-4] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Described [3734] p. 672
Syntheses

- Also refer to: [3737,3738,3740,3742,3771-3776].

1-(3,5-Dichloro-4-hydroxyphenyl)ethanone

[17044-70-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

- Obtained by oxychlorination of 4-methoxyacetophenone (2 mol) with ammonium chloride $(2.2 \mathrm{~mol})$ and oxone $(2.2 \mathrm{~mol})$ in acetonitrile at r.t. for $24 \mathrm{~h}(14 \%)$ [3777].
- Also refer to: [3751-3757,3778-3780].
${ }^{1} \mathrm{H}$ NMR [3753,3756,3777],
${ }^{13}$ C NMR [3751,3754], IR [3779,3780], UV [3757], MS [3777].

1-(2,4-Difluoro-3-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 172.13

New compound
Syntheses

- Refer to: [3781-3786].

Methyl ether [373603-19-1] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 186.16 $\quad[3782,3784,3785]$

1-(3,5-Difluoro-2-hydroxyphenyl)ethanone

[140675-42-9] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 172.13

Described [3734] p. 674
Syntheses

- Also refer to: [3771,3787].

1-(3,5-Difluoro-4-hydroxyphenyl)ethanone
[133186-55-7] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 172.13

Methyl ether [170570-79-3] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 186.16

- Obtained by fluorination of 4-methoxyacetophenone with manganese (IV) tetrafluoride formed in situ using manganese (IV) dioxide and pyridinium polyhydrogenofluoride under very mild conditions [3789].
- Also refer to: [3778,3788].

MS [3789].

1-(2-Hydroxy-3,5-diiodophenyl)ethanone

[7191-46-0] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{2} \quad \mathrm{~mol} . w t .387 .94$

Described [3734] p. 676
Syntheses

- Also refer to: [3740,3742,3747].

1-(4-Hydroxy-3,5-diiodophenyl)ethanone

[7191-55-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{2} \quad$ mol.wt. 387.94

Methyl ether [31827-84-6] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{2} \quad$ mol.wt. 401.97

- Preparation by reaction of methyl iodide with 4-hydroxy-3,5-diiodoacetophenone in the presence of sodium hydroxide [3790].
- Obtained from the potassium salt [3791,3792].
- Also refer to: [3752-3755,3757,3793]. m.p. 107° [3790], $97-98^{\circ}$ [3791,3792]; ${ }^{1} \mathrm{H}$ NMR [3753], ${ }^{13} \mathrm{C}$ NMR [3754], UV [3757].

1-(2-Hydroxy-3,5-dinitrophenyl)ethanone

[69027-37-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 226.15

Described [3734] p. 677
Synthesis

- Also refer to: [3739].

1-(2-Bromo-4-hydroxyphenyl)ethanone
[61791-99-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05

Methyl ether [89691-67-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

- Obtained by reaction of acetyl chloride with 3-bromoanisole in the presence of aluminium chloride [3794], (59\%) [3795].
- Obtained by reaction of acetic anhydride with 3-bromoanisole in the presence of aluminium chloride in carbon disulfide at r.t., then at $30-35^{\circ}$ until no more hydrochloric acid is evolved [3796,3797].
- Also obtained by reaction of acetic anhydride with m-bromoanisole in the presence of lithium perchlorate at 100° for $5 \mathrm{~h}(60 \%)$ [3798].
- Also refer to: $[3770,3799,3800]$.
b.p. ${ }_{8} 149-151^{\circ}$ [3795], b.p. ${ }_{15} 163-166^{\circ}$ [3795];
m.p. $69-71^{\circ}$ [3800], 23° [3795]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [3796,3797,3799], ${ }^{13} \mathrm{C}$ NMR [3799], IR [3796,3797,3799].
2,4-Dinitrophenylhydrazone (of the methyl ether) $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}_{5} \quad$ mol.wt. 409.20 m.p. $193-194^{\circ}$ [3795].

1-(2-Bromo-5-hydroxyphenyl)ethanone

$$
\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad \text { mol.wt. } 215.05
$$

New compound
Syntheses

- Refer to: [3801,3802].

Methyl ether [6342-63-8] $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

- Obtained by action of pyridinium chlorochromate with 1-(2-bromo-5-methoxy) ethanol [3803].
- Also obtained by bromination of 3-methoxyacetophenone with N -bromosuccinimide in dilute sulfuric acid at 60° for $5 \mathrm{~h}(94 \%)$ [3804].
- Also obtained from 3-methoxyacetophenone by reaction of hypobromous acid, generated in situ, in aqueous acetic acid containing perchloric acid as a catalyst at r.t. [3805].
- Also refer to: $[3801,3806]$.
b.p. $\cdot_{0.4} 102^{\circ}$ [3803], b.p. $\cdot_{0.7} 105^{\circ}$ [3801], b.p. $\cdot_{1.5} 115-125^{\circ}$ [3805], b.p. $\cdot_{13} 157-158^{\circ}$ [3807];
${ }^{1} \mathrm{H}$ NMR [3807], IR [3807], UV [3801].
Oxime (of the methyl ether) $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2} \quad$ mol.wt. 244.09 m.p. $131-132^{\circ}$ [3801], $125-126^{\circ}$ [3805].

1-(3-Bromo-4-hydroxyphenyl)ethanone

[1836-06-2] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05

Described [3734] p. 680
Synthesis

- Also obtained by adding HMTAB (hexamethylene tetraminebromine complex) to 4-hydroxyacetophenone in methylene chloride at r.t. for $5 \mathrm{~min}(56 \%)$ or at -5° for $150 \mathrm{~min}(88 \%)$ [3745].
m.p. $108-110^{\circ}$ [3745].

Methyl ether [35310-75-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

- Obtained by reaction of acetic anhydride with o-bromoanisole in the presence of lithium perchlorate at 100° for $5 \mathrm{~h}(99 \%)$ [3744,3798,3808].
${ }^{13} \mathrm{C}$ NMR [3751,3754].
1-(4-Bromo-2-hydroxyphenyl)ethanone
[30186-18-6] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05

Described [3734] p. 680
Syntheses

- Also refer to: [3809-3814].

Methyl ether [89368-12-7] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

- Obtained by reaction of acetic anhydride with m-bromoanisole in the presence of lithium perchlorate at 100° for $5 \mathrm{~h}(40 \%)$ [3798].
- Also refer to: $[3815,3816]$.

1-(5-Bromo-2-hydroxyphenyl)ethanone
[1450-75-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05

Described [3734] p. 681
Syntheses

- Also refer to: [3738,3744,3773,3809,3817-3826].

UV [3801].
Methyl ether [16740-73-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

- Preparation by reaction of methyl iodide with 5-bromo-2-hydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 3 h (86%) [3820].
- Obtained from 2-methoxyacetophenone by reaction of hypobromous acid, generated in situ, in aqueous acetic acid containing perchloric acid as a catalyst at r.t. (34\%) [3805].
- Also refer to: [3827].
b.p. 120° [3805]; white solid [3820];
${ }^{1} \mathrm{H}$ NMR [3805,3820], ${ }^{13} \mathrm{C}$ NMR [3820], UV [3801], MS [3820].

1-(3-Bromo-2,4-dihydroxyphenyl)ethanone

[60990-39-8]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$
mol.wt. 231.05

Described [3734] p. 682
Synthesis

- Also refer to: [3739].

1-(3-Bromo-2,5-dihydroxyphenyl)ethanone

[33857-20-4]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$
mol.wt. 231.05

Described [3734] p. 682
Synthesis

- Also refer to: [3739].

1-(5-Bromo-2,4-dihydroxyphenyl)ethanone

[60965-25-5]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$
mol.wt. 231.05

Described [3734] p. 683
Synthesis

- Also refer to: [3828].

Dibenzyl ether [747413-68-9] $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrO}_{3} \quad$ mol.wt. 411.30

- Obtained by reaction of N -bromosuccinimide with 2,4-Bis(benzyloxy)acetophenone in DMF at r.t. for $3 \mathrm{~h}(97 \%)$ [3829].
White powder [3829]; ${ }^{1} \mathrm{H}$ NMR [3829], MS [3829].
Dimethyl ether [182056-48-0] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10
- Obtained by reaction of acetic anhydride with 1-bromo-2,4-dimethoxybenzene in the presence of boron trifluoride etherate in methylene chloride first at 0°, then at r.t. for $24 \mathrm{~h}(85 \%)$ [3830].
m.p. $149-150^{\circ}$ [3830];
${ }^{1} \mathrm{H}$ NMR [3830], ${ }^{13} \mathrm{C}$ NMR [3830], MS [3830].

1-(5-Bromo-2,3,4-trihydroxyphenyl)ethanone

[870652-37-2] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4} \quad$ mol.wt. 247.05

Described [3734] p. 684
Syntheses

- Also refer to: [3831,3832].

Trimethyl ether [23030-56-0] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4} \quad$ mol.wt. 289.13

- Obtained by treatment of 5-bromogallacetophenone with dimethyl sulfate in the presence of sodium hydroxide [3833].
- Also obtained by Friedel-Crafts acetylation of 4-bromopyrogallol trimethyl ether with acetyl chloride in the presence of aluminium chloride in carbon disulfide, then treatment of the compound obtained (partly demethylated) with dimethyl sulfate in the presence of sodium hydroxide [3833].
- Also obtained by reaction of N-bromosuccinimide (NBS) with 2,3,4-trimethoxyacetophenone in acetic acid/acetic anhydride mixture under reflux for 1 h (54\%) [3834].
- Also refer to: [3835].
b.p. ${ }_{0.3} 112-115^{\circ}$ [3834], b.p. ${ }_{0.3} 134-135^{\circ}$ [3833], b.p. $174-176^{\circ}$ [3835];
m.p. $52.5-53^{\circ}$ [3834];
${ }^{1} \mathrm{H}$ NMR [3834], IR [3833].
2,4-Dinitrophenylhydrazone (of the trimethyl ether) $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{7} \quad \mathrm{~mol}$. wt. 469.25
m.p. $137-139^{\circ}$ [3833,3835]; IR [3833,3835].

1-(2-Chloro-3-hydroxyphenyl)ethanone

[69240-96-6]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$
mol.wt. 170.60

Described [3734] p. 684
Syntheses

- Also refer to: [3836,3837].

1-(2-Chloro-4-hydroxyphenyl)ethanone
[68301-59-7] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$ mol.wt. 170.60

Described [3734] p. 684
Syntheses

- Also obtained by heating its methyl ether with pyridinium chloride for $15 \mathrm{~min}(36 \%)$ [3765].
- Also refer to: [3838].

Methyl ether [41068-36-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

- Obtained by reaction of acetyl chloride with 3-chloroanisole in the presence of aluminium chloride (55\%) [3839], in carbon disulfide (62\%) [3795] or in 1,2-dichloroethane (81\%) [3840].
- Also obtained by reaction of acetic anhydride with 3-chloroanisole,
- in the presence of aluminium chloride [3796,3797], (58\%) [3841];
- in the presence of ferric chloride (50\%) [3839].
- Also refer to: [3765,3770,3819,3842-3846].
b.p. ${ }_{10} 139-141^{\circ}$ [3795], b.p. ${ }_{11} 142^{\circ}$ [3841], b.p..$_{12} 151^{\circ}$ [3839];
m.p. 26-27 [3795];
${ }^{1} H$ NMR [3796,3797,3844,3845], ${ }^{13}$ C NMR [3845], IR [3796,3797,3844].
2,4-Dinitrophenylhydrazone (of the methyl ether) $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{CIN}_{4} \mathrm{O}_{5} \quad$ mol.wt. 364.78 m.p. $181-183^{\circ}$ [3795].

Oxime (of the methyl ether) $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 199.64 m.p. $97-98^{\circ}$ [3770].

1-(2-Chloro-5-hydroxyphenyl)ethanone

[58020-38-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60

Methyl ether [77344-69-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.52

- Obtained by reaction of dimethylcadmium with 2-chloro-5-methoxybenzoyl chloride [3847].
- Also obtained by reduction of 1-(2-chloro-5-methoxyphenyl)-2-diazoethanone with hydrogen iodide [3847].
- Also refer to: [3801,3848-3850].
b.p. 116° [3801], b.p. 122° [3847];

UV [3801,3850].

1-(2-Chloro-6-hydroxyphenyl)ethanone

[55736-04-4]	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60
Described [3734] p. 685	
OH	Synthesis
- Also refer to: [3851].	

1-(3-Chloro-2-hydroxyphenyl)ethanone

[3226-34-4]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$
mol.wt. 170.60

Described [3734] p. 685
Syntheses

- Also refer to: [3852,3853].

1-(3-Chloro-4-hydroxyphenyl)ethanone

[2892-29-7] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60

Described [3734] p. 685
Syntheses

- Also obtained by heating its methyl ether with pyridinium chloride for 30 min (54\%) [3765].
- Also refer to: [3852,3854].

Methyl ether [37612-52-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

- Obtained by oxychlorination of 4-methoxyacetophenone (2 mol) with ammonium chloride (2 mol) and oxone $(2 \mathrm{~mol})$ in acetonitrile at r.t. for $24 \mathrm{~h}(68 \%)$ [3777].
- Also obtained by heating for 4 h a mixture of 2-chloroanisole,
- and acetic anhydride in the presence of ferric chloride (40\%) [3839];
- and acetyl chloride in the presence of aluminium chloride (52\%) [3839].
- Also refer to: [3744,3765,3808,3855].
b.p. ${ }_{12} 148^{\circ}$ [3839]; ${ }^{1} \mathrm{H}$ NMR [3777], ${ }^{13} \mathrm{C}$ NMR [3751,3754], MS [3777].

1-(4-Chloro-2-hydroxyphenyl)ethanone

[6921-66-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad m o l . w t .170 .60$
Described [3734] p. 686

Syntheses

- Also obtained by Fries rearrangement of 3-chlorophenyl acetate [3766] according to [3767].
- Also refer to: [3762,3766,3856,3857].

Methyl ether [60207-19-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

- Refer to: [3858,3859]; ${ }^{13}$ C NMR [3858].

Benzyl ether $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72

- Obtained by reaction of benzyl chloride with 4-chloro-2-hydroxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone for $16 \mathrm{~h}(59 \%)$ [3766].
m.p. $\quad 58-59^{\circ}$ [3766]; ${ }^{1} \mathrm{H}$ NMR [3766], ${ }^{13} \mathrm{C}$ NMR [3766], MS [3766].

2,4-Dichlorobenzoate [1023278-89-8] $\quad \mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad$ mol.wt. 343.59

- Obtained by reaction of 4-chloro-2-hydroxyacetophenone with 2,4-dichlorobenzoic acid in the presence of N, N-dicyclohexylcarbodiimide and 4-pyrrolidinopyridine in methylene chloride under nitrogen at r.t. for $24 \mathrm{~h}(81 \%)$ [3766]. m.p. $81-82^{\circ}$ [3766]; ${ }^{1} \mathrm{H}$ NMR [3766], ${ }^{13} \mathrm{C}$ NMR [3766], MS [3766].

Oxime [56484-63-0] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2} \quad$ mol.wt. 185.62 [3856].

1-(4-Chloro-3-hydroxyphenyl)ethanone
[61124-56-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60

Methyl ether [78898-63-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62 [3860]

1-(5-Chloro-2-hydroxyphenyl)ethanone

[1450-74-4]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$
mol.wt. 170.60

Described [3734] p. 687
Syntheses

- Also refer to: [3738,3761,3762,3771,3773,3774,3817,3823 ,3861], UV [3801].

Methyl ether [6342-64-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62 [3862]

- Obtained by reaction of methylmagnesium bromide with 5-chloro-2-methoxybenzoyl chloride in the presence of bis[2-(N,N-dimethylamino)ethyl] ether in THF at -5° to 0° (69\%) [3863].
- Also obtained by heating for 4 h a mixture of acetic anhydride and 4 -chloroanisole in the presence of ferric chloride (40%) [3839].
- Also obtained by heating for 4 h a mixture of acetyl chloride and 4-chloroanisole in the presence of aluminium chloride (52\%) [3839].
- Also obtained by reaction of methyl iodide with 5-chloro-2-hydroxyacetophenone in the presence of potassium carbonate in acetone at r.t. for 15 h under nitrogen (97\%) [3864].
- Also refer to: [3801,3858,3864-3868].
b.p. 108° [3867], b.p. 135° [3865], b.p. ${ }_{12} 149^{\circ}$ [3839], b.p. ${ }_{25} 162^{\circ}$ [3801];
m.p. 30° [3839], 29-30 ${ }^{\circ}$ [3868];
${ }^{1} \mathrm{H}$ NMR [3864], ${ }^{13} \mathrm{C}$ NMR [3858,3864], IR [3866], UV [3801], MS [3864].

1-(5-Chloro-2,4-dihydroxyphenyl)ethanone

Dibenzyl ether [705963-54-8] $\quad \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClO}_{3} \quad$ mol.wt. 366.84

- Obtained by reaction of benzyl bromide with 5-chloro-2,4-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetonitrile for $6 \mathrm{~h}(90 \%)$ [3829].
- Also refer to: [3870-3874].

Off-white solid [3829];
${ }^{1} \mathrm{H}$ NMR [3829], MS [3829]; TLC [3829].

1-(2-Fluoro-4-hydroxyphenyl)ethanone

[98619-07-9] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14

Described [3734] p. 691
Syntheses

- Also refer to: [3788,3862,3875,3876].

Methyl ether [74457-86-6] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

- Obtained by reaction of acetic anhydride with 3-fluoroanisole in the presence of aluminium chloride in carbon disulfide at r.t., then at $30-35^{\circ}$ until no more hydrochloric acid is evolved [3797], (61\%) [3796].
- Also obtained by reaction of acetyl chloride with 3-fluoroanisole in the presence of aluminium chloride in 1,2-dichloroethane at $0-5^{\circ}$, then at r.t. for 2 h [3840].
- Also obtained by reaction of acetic anhydride with m-fluoroanisole in the presence of lithium perchlorate at 100° for $1 \mathrm{~h}(70 \%)$ [3798].
- Also refer to: [3770,3862,3877-3881].

Colourless crystals [3796]; m.p. 53-54 [3796];
${ }^{1} \mathrm{H}$ NMR [3796,3797], IR [3796,3797].

1-(2-Fluoro-6-hydroxyphenyl)ethanone

[93339-98-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14

1-(3-Fluoro-2-hydroxyphenyl)ethanone

[699-92-3] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14

Described [3734] p. 691
Synthesis

- Also refer to: [3851].

Methyl ether [295779-86-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

- Obtained by reaction of 1-fluoro-4-hydroxy-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoro-borate) with 2-methoxyacetophenone in refluxing acetonitrile for $0.5-4 \mathrm{~h}$ [3885].

1-(3-Fluoro-4-hydroxyphenyl)ethanone
[403-14-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14

Described [3734] p. 692
Synthesis

- Also obtained by reaction of 1-fluoro-4-hydroxy-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) with 4-hydroxyacetophenone in refluxing acetonitrile for $0.5-4 \mathrm{~h}$ [3885].

Methyl ether [455-91-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

- Obtained by fluorination of 4-methoxyacetophenone with manganese (IV) tetrafluoride formed in situ using manganese (IV) dioxide and pyridinium polyhydrogenofluoride under very mild conditions [3789].
- Also obtained by reaction of 1-fluoro-4-hydroxy-1,4-diazoniabicyclo[2.2.2] octane bis(tetrafluoroborate) with 4-methoxyacetophenone in refluxing acetonitrile for 0.5-4 h [3885].
- Also refer to: [3744,3886-3888].
${ }^{13} \mathrm{C}$ NMR [3754], MS [3789].

1-(4-Fluoro-2-hydroxyphenyl)ethanone

[1481-27-2] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14
 Described [3734] p. 692
Syntheses

- Also obtained by Friedel-Crafts acylation of mfluorophenol with acetic acid in a mixture of graphite and methanesulfonic acid at 120° for $4 \mathrm{~h}(60 \%)$ [3889].
- Also obtained by Fries rearrangement of 3-fluorophenyl acetate in the presence of aluminium chloride (88\%) [3890], at 140° for $2 \mathrm{~h}(48 \%)$ [3891].
- Also refer to: [3741,3892-3897].
${ }^{1} \mathrm{H}$ NMR [3889,3891,3898], ${ }^{13} \mathrm{C}$ NMR [3889], ${ }^{19} \mathrm{~F}$ NMR [3899], IR [3889,3891,3900].
BIOLOGICAL DATA: Cytotoxicity [3891]; anticoagulant [3891]; antithrombotic [3901].

Methyl ether [51788-80-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

- Preparation by reaction of methyl iodide with 4-fluoro-2-hydroxyacetophenone in the presence of potassium carbonate,
- in DMSO at r.t. for $1 \mathrm{~h}(100 \%)$ [3902];
- in acetone (97\%) [3890].
- Preparation by reaction of methyl iodide on the Na salt of 4-fluoro-2-hydroxyacetophenone obtained by treatment with sodium hydride in DMF at 0° for 1 h (92\%) [3903].
- Preparation by reaction of dimethyl sulfate with 4-fluoro-2-hydroxyacetophenone in the presence of aqueous sodium hydroxide [3899].
- Also obtained by reaction of acetic anhydride with m-fluoroanisole in the presence of lithium perchlorate at 100° for $1 \mathrm{~h}(30 \%)$ [3798].
- Also refer to: [3904].

White solid; m.p. $50-51.5^{\circ}$ [3902];
${ }^{1} \mathrm{H}$ NMR [3902], ${ }^{19}$ F NMR [3899], MS [3902].

1-(4-Fluoro-3-hydroxyphenyl)ethanone

[949159-95-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14

New compound
Synthesis

- Refer to: [3905].

Methyl ether [64287-19-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17 [3905,3906]
1-(5-Fluoro-2-hydroxyphenyl)ethanone
[394-32-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad m o l . w t . ~ 154.14$
 Described [3734] p. 692
Syntheses

- Also obtained by reaction of acetyl chloride with 4-fluorophenol in the presence of aluminium chloride, first at r.t. for 30 min , then at 130° for $2 \mathrm{~h}(89 \%)$ [3907].
- Also refer to: [3741,3773,3861,3908-3910].
m.p. $53-54^{\circ}$ [3907]; UV [3801].

Methyl ether [455-82-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

- Also obtained by reaction of 1-fluoro-4-hydroxy-1,4-diazoniabicyclo[2.2.2]octane bis(tetra-fluoroborate) with 2-methoxyacetophenone in refluxing acetonitrile for 0.5-4 h [3885].

UV [3801].
1-(2-Hydroxy-4-iodophenyl)ethanone
[39730-66-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Described [3734] p. 694
Syntheses

- Also obtained by Fries rearrangement of 3-iodophenyl acetate (m.p. 32.4-34.6 ${ }^{\circ}$) with aluminium chloride in chlorobenzene at 140° for $90 \mathrm{~h}(69 \%)$ [3911].
- Also refer to: [3912].
brown solid [3911]; m.p. 51.5-52́ [3911];
${ }^{1} \mathrm{H}$ NMR [3911], ${ }^{13} \mathrm{C}$ NMR [3911], IR [3911], MS [3911].

1-(2-Hydroxy-5-iodophenyl)ethanone

[7191-41-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Described [3734] p. 694
Synthesis

- Also obtained by diazotization of 5-amino-2-hydroxyacetophenone and replacement of the diazonium salt by iodine (39\%) [3911].

Purple oil [3911].

1-(3-Hydroxy-2-iodophenyl)ethanone

[348616-32-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Methyl ether [110718-83-7] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07

- Refer to: [3913-3916], (61\%) [3917].

Pale yellow oil [3917];
${ }^{1} \mathrm{H}$ NMR [3914,3917], ${ }^{13} \mathrm{C}$ NMR [3914,3917], IR [3917], MS [3917].

1-(4-Hydroxy-2-iodophenyl)ethanone

[89942-32-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Described [3734] p. 695
Synthesis

- Obtained by Fries rearrangement of 3-iodophenyl acetate in the presence of aluminium chloride in nitrobenzene [3918].
m.p. $128-136^{\circ}$ [3918].

Methyl ether [90347-63-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07

- Obtained by reaction of acetyl chloride with 3-iodoanisole in the presence of aluminium chloride in carbon disulfide [3919], (55\%) [3795].
- Also refer to: [3807,3915], (37\%) [3917].
b.p. ${ }_{0.01} 107-109^{\circ}$ [3807], b.p. $139-140^{\circ}$ [3919], b.p. $158-159^{\circ}$ [3795], b.p. ${ }_{9.5}$ 168-170 ${ }^{\circ}$ [3795];
m.p. $68-70^{\circ}$ [3795], 45-47 ${ }^{\circ}$ [3919]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [3807,3917], ${ }^{13} \mathrm{C}$ NMR [3917], IR [3807,3917], MS [3917].
2,4-Dinitrophenylhydrazone (of the methyl ether) $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{O}_{5} \quad$ mol.wt. 456.20 m.p. $137-140^{\circ}$ [3919], 108.5-109 ${ }^{\circ}$ [3795].

1-(4-Hydroxy-3-iodophenyl)ethanone
[62615-24-1] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Described [3734] p. 695
Syntheses

- Also obtained by adding iodine to a solution of 4-hydroxyacetophenone in dilute THF in the presence of sodium bicarbonate and stirring at r.t. for $3 \mathrm{~h}(47 \%)$ [3920].
- Also obtained by adding rapidly a solution of potassium iodide and iodine in water to a solution of 4-hydroxyacetophenone in concentrated ammonium hydroxide. After overnight stirring at r.t., the mixture was filtered through Celite and the filtrate acidified to pH 1 (56\%) [3921].
- Also refer to: [3922,3923].
m.p. $154-156^{\circ}$ [3921], $152-154^{\circ}$ [3920];
${ }^{1} \mathrm{H}$ NMR [3920], MS [3920].
Methyl ether [79324-77-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07 [3924]
${ }^{13} \mathrm{C}$ NMR [3754].

1-(2-Hydroxy-3-nitrophenyl)ethanone

[28177-69-7]	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15 Described [3734] p. 697 Synthesis -
- Also refer to: [3744].	

1-(2-Hydroxy-5-nitrophenyl)ethanone
[1450-76-6] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15

Described [3734] p. 698
Syntheses

- Also refer to: [3892,3908].

1-(3-Hydroxy-2-nitrophenyl)ethanone

[53967-72-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15

Described [3734] p. 698
Synthesis

- Obtained by nitration of 3-hydroxyacetophenone with cupric nitrate in acetic acid-acetic anhydride mixture, at $10-15^{\circ}$ for 7-8 h (25\%) [3925].

Yellow solid; m.p. 134-136 [3925];
${ }^{1} \mathrm{H}$ NMR [3925], ${ }^{13} \mathrm{C}$ NMR [3925], IR [3925].
Methyl ether [33852-43-6] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17 [3926]

1-(3-Hydroxy-4-nitrophenyl)ethanone

[89942-63-2] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15

Described [3734] p. 699
Synthesis

- Also refer to: [3927].

Methyl ether [22106-39-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

- Refer to: [3928].

1-(4-Hydroxy-3-nitrophenyl)ethanone
[6322-56-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15
 Described [3734] p. 699
Syntheses

- Also obtained by nitration of 4-hydroxyacetophenone with zirconyl nitrate in acetone at 50° for 5 h (84\%) [3929].
- Also refer to: [3930-3932].

Methyl ether [6277-38-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

- Preparation by reaction of acetyl chloride with 2-nitroanisole in the presence of aluminium chloride,
- in nitrobenzene at $0^{\circ}[3933,3934]$;
- in carbon disulfide [3935].
- Also obtained by reaction of dimethyl sulfate with 4-hydroxy-3-nitroacetophenone in the presence of lithium hydroxide hydrate in THF at 70° for $1.5 \mathrm{~h}(72 \%)$ [3936].
- Also obtained by treatment of 4-chloro-3-nitroacetophenone with sodium methoxide in methanol [3937].
- Also obtained by reaction of diazomethane with 4-hydroxy-3-nitroacetophenone in ethyl ether [3938].
- Also obtained by treatment of 4-methoxyacetophenone,
- with nitric acid in sulfuric acid at 0° [3939];
- with lithium nitrate in the presence of scandium triflate in acetic anhydride and acetonitrile mixture at 20° for $5 \mathrm{~h}(67 \%)$ [3940].
- Also refer to: [3754,3941-3947], (14\%) [3948].
m.p. 99.5° [3935], 98° [3943,3945], $97-99^{\circ}$ [3937], $92-94^{\circ}$ [3940].
${ }^{1} \mathrm{H}$ NMR [3940], ${ }^{13} \mathrm{C}$ NMR [3754,3938], IR [3940,3942], UV [3757].

1-(5-Hydroxy-2-nitrophenyl)ethanone

[30879-49-3] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15

Methyl ether [42887-67-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

- Refer to: [3949].

1-(2,4-Dihydroxy-5-nitrophenyl)ethanone

[3328-77-6] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \quad$ mol.wt. 197.15

Described [3734] p. 701
Synthesis

- Also obtained by nitration of resacetophenone with zirconyl nitrate in acetone at 50° for 5 h (98\%) [3929].

1-(3,4-Dihydroxy-2-nitrophenyl)ethanone

[383382-42-1] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \quad$ mol.wt. 197.15

New compound

Synthesis

- Obtained from 4-hydroxy-3-methoxy-2-nitroacetophenone by ether cleavage with aluminium chloride in a pyridine/1, 2-dichloroethane mixture [3950].

1-(3,4-Dihydroxy-5-nitrophenyl)ethanone

[116313-84-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \quad$ mol.wt. 197.15

Described [3734] p. 703
Synthesis

- Also refer to: [3951].

1-(3-Amino-5-bromo-2-hydroxyphenyl)ethanone
[70977-85-4] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{2} \quad$ mol.wt. 230.06

Described [3734] p. 703
Synthesis

- Also refer to: [3952].

1-(2-Hydroxyphenyl)ethanone
[118-93-4] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \quad$ mol.wt. 136.15

Described [3734] p. 706
Syntheses

- Also obtained by heating its methyl ether with pyridinium chloride for 15 min (52\%) [3765].
- Also obtained by reaction of acetyl chloride with phenol in the presence of aluminium chloride at 120° [3953].
Oil [3953]; IR [3954], UV [3801,3955,3956].
Methyl ether [579-74-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18
- Preparation by reaction of dimethyl sulfate with o-hydroxyacetophenone in the presence of sodium hydroxide [3953].
- Also refer to: [3859,3957], (2\%) [3765,3917].

Oil; b.p. ${ }_{10} 117-119^{\circ}$ [3953].
${ }^{1} \mathrm{H}$ NMR [3917], ${ }^{13} \mathrm{C}$ NMR [3858,3917], IR [3917,3954], UV [3801,3955,3956].

Oxime (of the methyl ether) [22233-79-0] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19 [3958]
Acetate $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 178.19

- Preparation by reaction of acetic anhydride with o-hydroxyacetophenone [3953]. m.p. 89° [3953]; IR [3954].

Benzoate $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 240.26

- Obtained by reaction of benzoyl chloride with o-hydroxyacetophenone in suspension of 2 N sodium hydroxide solution at r.t. for $20 \mathrm{~min}(80 \%)$ [3959]. m.p. 87-88 [3959]; IR [3954].

Benzyl ether [31165-67-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27 [3960]

1-(3-Hydroxyphenyl)ethanone

[121-71-1] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \quad$ mol.wt. 136.15

Described [3734] p. 709
Syntheses

- Obtained by bioconversion of acetophenone through the living cells of Escherichia coli carrying plasmid pKF6256 expressing todCI-bphA2A3A4 (6.1\%) [3961].
- Also obtained by heating its methyl ether with pyridinium chloride for 30 min (19\%) [3765].
- Also obtained by diazotization of 3-aminoacetophenone, followed by hydrolysis of the diazonium salt obtained [3953].
- Also refer to: [3957,3962]. m.p. 96° [3953];
${ }^{1} \mathrm{H}$ NMR [3961], ${ }^{13} \mathrm{C}$ NMR [3961], UV [3801,3956,3963], MS [3961].
Methyl ether [586-37-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18
- Refer to: [3808,3957], (84\%) [3765,3917].

Colourless oil [3917];
${ }^{1} \mathrm{H}$ NMR [3917], ${ }^{13} \mathrm{C}$ NMR [3917], IR [3917], UV [3801,3955,3956].
Oxime (of the methyl ether) [122806-25-1] $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$ mol.wt. 165.19 [3958]

Acetate $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 178.19

- Obtained by reaction of acetic anhydride with 3-hydroxyacetophenone in the presence of pyridine [3953].

1-(4-Hydroxyphenyl)ethanone

[99-93-4] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \quad$ mol.wt. 136.15

Described [3734] p. 710
Syntheses

- Also obtained by heating its methyl ether with pyridinium chloride for $60 \mathrm{~min}(54 \%)$ [3765].
- Also obtained by reaction of acetyl chloride with phenol in the presence of aluminium chloride at 120° [3953].
- Also refer to: [3954,3957,3964].
m.p. $\quad 107^{\circ}$ [3953]; IR [3954], UV [3801,3956].

Methyl ether $\quad[100-06-1] \quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18

- Preparation by reaction of acetic acid with anisole in the presence of trifluoromethyl sulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) for $<1 \mathrm{~min}$ at r.t. (91\%) [3965].
- Also obtained by reaction of acetic anhydride with anisole in the presence of aluminium chloride in carbon disulfide (94-96\%) [3966], at r.t., then at $30-35^{\circ}$ until no more hydrochloric acid [3796,3797].
- Preparation by reaction of dimethyl sulfate with p-hydroxyacetophenone in the presence of sodium hydroxide [3953].
- Also refer to: [3808,3957,3967,3968], (37\%) [3765,3917].
b.p. ${ }_{15} 139^{\circ}$ [3966]; m.p. 36-37.5${ }^{\circ}$ [3966], 35° [3953];
${ }^{1} \mathrm{H}$ NMR [3796,3797,3917], ${ }^{13} \mathrm{C}$ NMR [3858,3917], IR [3796,3797,3917,3954], UV [3801,3956].

Oxime (of the methyl ether) [2475-92-5] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19 [3958,3969]

Acetate [13031-43-1] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 178.19

- Preparation by acetylation of 4-hydroxyacetophenone with acetic anhydride,
- in the presence of aluminium triflate for 10 min at r.t. (98%) [3964];
- in the presence of sodium acetate [3953].
- Also refer to: [3954,3962].
b.p. ${ }_{19}$ 165-170 ${ }^{\circ}$ [3970];
m.p. 54° [3953], $52-54^{\circ}$ [3971], 52° [3972];
${ }^{1} \mathrm{H}$ NMR [3973,3974], ${ }^{13} \mathrm{C}$ NMR [3973], IR [3954,3973], UV [3975], MS [3976].
Ecotoxicology: [3977].
Benzyl ether [54696-05-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27 [3960]
- Obtained by reaction of benzyl chloride with 4-hydroxyacetophenone in the presence of KOH in acetonitrile. Then, the mixture was refluxed for 3 h [3978].
- Also refer to: [3960].

1-(2,3-Dihydroxyphenyl)ethanone

[13494-10-5] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15

Described [3734] p. 713
Syntheses

- Also obtained by bioconversion of acetophenone through the living cells of Escherichia coli carrying plasmid pUC6256B expressing todCI-bphA2A3A4 and $b p h B$ (39.2\%) [3961].
- Also refer to: [3895].
${ }^{1} \mathrm{H}$ NMR [3961], ${ }^{13} \mathrm{C}$ NMR [3961], UV [3956], MS [3961].
Diacetate $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 236.22
- Obtained by heating 2,3-dihydroxyacetophenone with acetic anhydride and sodium acetate at reflux for $5 \mathrm{~min}(50 \%)$ [3979].
m.p. 109° [3979].

Dimethyl ether [38480-94-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

- Obtained by heating its oxime with pyridinium chloride containing 5\% of water (35\%) [3980].
- Also obtained by reaction of methylmagnesium iodide with 2,3-dimethoxybenzonitrile [3981], (57\%) [3982].
- Also obtained from 2,3-dimethoxybenzaldehyde (multi-step reaction) [3983].
- Also obtained from diethyl malonate and 2,3-dimethoxybenzoyl chloride [3984].
- Also obtained by treatment of ethyl 3-(2,3-dimethoxyphenyl)-3-oxopropionate with sulfuric acid [3985].
- Also obtained by oxidation of 1-hydroxy-1-(2,3-dimethoxyphenyl)ethane with Jones' reagent in acetone (61\%) [3986].
- Also obtained from acetyl chloride and veratrole by the procedure [3987], (71\%) [3988].
- Also obtained by adding an acidic dichromate solution to 2,3-dimethoxyphenylmethylcarbinol in 67% aqueous acetone below 10° (65\%) [3989].
- Also refer to: [3990,3991].
b.p. ${ }_{14} 146-147^{\circ}$ [3955], b.p. ${ }_{20} 150^{\circ}$ [3980], b.p. . $_{20} 150-153^{\circ}$ [3984];
${ }^{1}$ H NMR [3982,3983], IR [3982,3986], UV [3955,3956,3963].
Oxime [870-70-1] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3} \quad$ mol.wt. 167.16 [3737]

1-(2,4-Dihydroxyphenyl)ethanone

[89-84-9]
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
mol.wt. 152.15

Described [3734] p. 714

Syntheses

- Also obtained by heating its dimethyl ether with pyridinium chloride for $30 \mathrm{~min}(80 \%)$ [3765].
- Also refer to: [3954]. IR [3954], UV [3956,3963].

Dimethyl ether [829-20-9] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

- Obtained by reaction of dimethyl sulfate with resacetophenone in the presence of 10% aqueous sodium hydroxide (61\%) [3953].
- Also obtained by reaction of acetic anhydride with resorcinol dimethyl ether in the presence of aluminium chloride in carbon disulfide (77-80\%) [3966], at r.t., then at $30-35^{\circ}$ until no more hydrochloric acid [3796,3797].
- Also refer to: [3765,3859,3962,3992-3995].
b.p. 157.5° [3966];
m.p. 40° [3953], 39- 40° [3966], $37-41.5^{\circ}$ [3984];
${ }^{1} \mathrm{H}$ NMR [3796,3797], ${ }^{13} \mathrm{C}$ NMR [3858], IR [3796,3797,3954], UV [3801,3956,3963].

Diacetate $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$ mol.wt. 236.22 IR [3954].
Dibenzyl ether [22877-01-6] $\quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 332.40

- Obtained by reaction of benzyl bromide with resacetophenone in the presence of potassium carbonate in refluxing acetonitrile for 18 h (97\%) [3829].
- Also refer to: [3870-3874].

White powder [3829]; ${ }^{1} \mathrm{H}$ NMR [3829], MS [3829].
Oxime [6134-79-8] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3} \quad$ mol.wt. 167.16 [3737]

1-(2,5-Dihydroxyphenyl)ethanone

[490-78-8] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15
 Described [3734] p. 716
Syntheses

- Also obtained by action of aluminium chloride with a mixture of hydroquinone dimethyl ether and 3,3-dimethylacryloyl chloride in boiling benzene for 3 h [3996].
- Also obtained by treatment of 2',5'-dihydroxy-3,3-dimethylacrylophenone with aluminium chloride in boiling benzene for 2 h (56\%) [3996].
- Also obtained by heating its methyl ether with pyridinium chloride for 30 min (96\%) [3765].
- Also obtained by reaction of acetic acid with hydroquinone in the presence of zinc chloride at $140-150^{\circ}$ [3953].
- Also refer to: [3895,3997-3999]. m.p. 202-204 [3996]; UV [3801,3956,3963].

Dibenzoate $\quad \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 360.37 m.p. 114° [3996].

Dimethyl ether [1201-38-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

- Obtained by reaction of dimethyl sulfate with quinacetophenone in the presence of 10% aqueous sodium hydroxide [3953].
- Also refer to: [3765,3993,3995,4000-4002]. b.p. ${ }_{8} 149-154^{\circ}$ [3984], b.p. ${ }_{13} 159-162^{\circ}$ [3953]; UV [3955,3956].

Oxime [24558-42-7] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3} \quad$ mol.wt. 167.16

- Refer to: [3737,3996]. m.p. 152° [3996].

1-(2,6-Dihydroxyphenyl)ethanone

[699-83-2] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15

Described [3734] p. 718
Syntheses

- Also refer to: [3822,3931,3997,4003-4013].

UV [3956,3963].
Dimethyl ether [2040-04-2] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20 [3992,3993]
UV [3956,3963].
Dibenzyl ether $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 332.40

- Preparation by reaction of benzyl bromide with 2,6-dihydroxyacetophenone in the presence of potassium carbonate and sodium iodide in refluxing acetone for $18 \mathrm{~h}(46 \%)$ [4006].

1-(3,4-Dihydroxyphenyl)ethanone

[1197-09-7] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15

Dimethyl ether [1131-62-0] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
(Acetoveratrone)

- Obtained by reaction of dimethyl sulfate with acetoguaiacone [4014] in the presence of sodium hydroxide in ethanol, first at 50°, then at reflux for 1 h (78\%) [4015].
- Using tungstophosphoric acid supported over zirconia in mesoporous channels of MCM-41 as catalyst in veratrole acetylation [4016].
- Preparation by reaction of acetic acid with veratrole in the presence of trifluoromethyl sulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) for 3 min at r.t. (95\%) [3965].
- Also refer to: [3738,3808,3967,4017-4024].

Isolation from natural sources

- Recovery of residual plant components after distillation of essential oils (Mentha longifolia) [4025].
- From the fresh Iris rhizomes (0.47%) [4026].
b.p. ${ }_{2-3} 135-136^{\circ}$ [4014], b.p. ${ }_{7.5} 160-164^{\circ}$ [3984];
m.p. $50-51^{\circ}$ [4015]; ${ }^{1} \mathrm{H}$ NMR [4014], UV [3801,3956,4015].

Diacetate $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 236.22

- Obtained by reaction of acetic anhydride with pyrocatechol (40\%) [4027]. m.p. $87.8-88.2^{\circ}$ [4027].

1-(3,5-Dihydroxyphenyl)ethanone
[51863-60-6] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15

Described [3734] p. 720
Syntheses

- Also refer to: [3738,3964,3991,4011,4028-4032].

UV [3956].
Hydrate (1:1) [957864-27-6] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O} \quad$ mol.wt. 170.17

- Refer to: [4033].

Diacetate [35086-59-0] $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 236.22

- Preparation by acetylation of 3,5-dihydroxyacetophenone with acetic anhydride in the presence of aluminium triflate for 20 min at r.t. (96%) [3964].
- Also obtained by reaction of dimethylcadmium with 3,5-diacetoxybenzoyl chloride in benzene [4034].
- Also refer to: [3954,4035-4038].
b.p. ${ }_{0.6} 165-168^{\circ}$ [4034]; m.p. 93° [4034], $91-92^{\circ}$ [4038].
${ }^{14} \mathbf{C}$-3,5-(Diacetoxyphenyl)ethanone [62492-84-6] $\quad \mathrm{C}_{11}{ }^{(14)} \mathrm{CH}_{12} \mathrm{O}_{5} \quad$ mol.wt.
238.21
- Obtained by reaction of acetyl chloride with ${ }^{14} \mathrm{C}$-3,5-dihydroxyacetophenone [4039]. m.p. $91-93^{\circ}$ [4039].

Dimethyl ether [39151-19-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

- Obtained by reaction of acetyl chloride with 3,5-dimethoxybenzene according to [3987], (84\%) [3988].
- Also refer to: [3991,4040,4041].

UV [3956].
1-(2,3,4-Trihydroxyphenyl)ethanone (Gallacetophenone)
[528-21-2]
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$
mol.wt. 168.15

Described [3734] p. 720
Syntheses

- Obtained by reaction of acetic acid with pyrogallol in the presence of zinc chloride at $145-150^{\circ}$ [3953].
- Also refer to: [3814,4042].

Trimethyl ether [13909-73-4] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

- Obtained by reaction of dimethyl sulfate with gallacetophenone in methanol in the presence of potassium hydroxide [3953].
- Also refer to: [4043].

Isolation from natural sources

- From the essential oil in buds of Syringa oblata Lindl (lilac) [4044].

Oil [3953];
b.p. ${ }_{14} 172-172.5^{\circ}$ [3953], b.p. ${ }_{17} 170-178^{\circ}$ [3984]; GC-MS [4044].

1-(2,3,5-Trihydroxyphenyl)ethanone

[316819-88-2] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15

New compound
Syntheses

- Refer to: in 2006 [3737,3738].
N.B.: The compound previously obtained in 1983 actually was 2,4,5-trihydroxyacetophenone [4045,4046].

1-(2,3,6-Trihydroxyphenyl)ethanone

[85918-30-5] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15

1-(2,4,5-Trihydroxyphenyl)ethanone

[1818-27-5]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15
Described [3734] p. 721
Synthesis

- Also refer to: [3738].

UV [3963].
Trimethyl ether [1818-28-6] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

- Preparation by reaction of acetyl chloride with hydroxyhydroquinone trimethyl ether in the presence of aluminium chloride [4047], (quantitative yield) [3953].
- Also obtained by reaction of acetic anhydride with 1,2,4-trimethoxybenzene in the presence of iodine on heating for 18 h (88\%) [4048].
- Also obtained by reaction of dimethyl sulfate,
- with 2,4,5-triacetoxyacetophenone in the presence of sodium methoxide in methanol [4047,4049];
- with $2,4,5$-trihydroxyacetophenone in the presence of sodium hydroxide in dilute ethanol [4046,4050] or sodium methoxide in methanol [4047,4049];
- with 2,5-dihydroxy-4-methoxyacetophenone in the presence of sodium methoxide in methanol [4051];
- with 2-hydroxy-4,5-dimethoxyacetophenone in the presence of sodium methoxide in methanol [4051] or in the presence of potassium hydroxide [4052].
- Also obtained by treatment of $2^{\prime}, 4^{\prime}, 5,5^{\prime}, 6,7,8$-heptamethoxyflavone with 50% potassium hydroxide in methanol [4053].
- Also obtained by irradiation of 2,3-bis(2,4,5-trimethoxyphenyl)-2,3-butanediol in the presence of carbon tetrachloride in acetonitrile [4054].
- Also refer to: [4055-4057].
b.p. 33 285- 290° [4047,4049];
m.p. 102-103 ${ }^{\circ}$ [4046,4056], 102° [3953,4047,4055], 101° [4050], 99° [4052], $98-98.5^{\circ}$ [4048], $96-100^{\circ}$ [3984], 95-96́ [4057];
${ }^{1} \mathrm{H}$ NMR [4048,4053,4058], ${ }^{13} \mathrm{C}$ NMR [4048,4058], IR [4053,4057,4058], UV [3801], MS [4053,4058].

BIOLOGICAL ACTIVITY: Toxicity [4058,4059]; hypolipaemic [4058]; activity on second instar larvae of the cotton bug, Dysdercus cingulatus [4059].

1-(2,4,6-Trihydroxyphenyl)ethanone

- Also obtained by reaction of acetyl chloride with phloroglucinol in the presence of aluminium chloride at $50^{\circ}(70 \%)$ [4060].
UV [3963].
Tribenzoate $\quad \mathrm{C}_{29} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 480.47
${ }^{1} \mathrm{H}$ NMR [4008], ${ }^{13} \mathrm{C}$ NMR [4008], MS [4008].
Trimethyl ether [832-58-6] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
- Preparation by reaction of dimethyl sulfate with phloroacetophenone [3953].
- Also obtained by reaction of acetic acid with phloroglucinol trimethyl ether in the presence of PPA on a boiling water bath for 5-20 min (76\%) [4061].
- Also refer to: [3765,3825,3931].
m.p. 102° [4061], $93.5-104^{\circ}$ [3984], 91° [3953]; UV [3963].

1-(3,4,5-Trihydroxyphenyl)ethanone

[33709-29-4] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15

Described [3734] p. 723
Synthesis

- Also refer to: [3738].

Trimethyl ether [1136-86-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

- Obtained by treatment of a mixture of methyl 3,4,5-trimethoxybenzoate (m.p. 82°) and ethyl acetate with sodium on a water boiler for 8 h , then with 25% sulfuric acid [3953].
- Also refer to: [3825,3931,3967,4021,4022,4062].
b.p. 160° [3953];
m.p. $78-81.5^{\circ}$ [3984], 72° [3953]; GC-MS [3967].

1-(2,3,4,6-Tetrahydroxyphenyl)ethanone
[63635-39-2] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5} \quad$ mol.wt. 184.15

Tetramethyl ether [7508-05-6] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26

- Preparation by reaction of acetyl chloride with 1,2,3,5-tetramethoxybenzene (m.p. 47°) [3953], in the presence of aluminium chloride [4064-4066], (quantitative yield) [3953].
- Also obtained by treatment of 1,2,3,5-tetramethoxybenzene with acetic anhydride in the presence of $\operatorname{In}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ on microwave irradiation at $85-95^{\circ}$ for 3 min (87\%) [4067] or 6 min at $75-90^{\circ}$ (53\%) [4068].
- Also obtained by treatment of 2-hydroxy-3,4,6-trimethoxyacetophenone with dimethyl sulfate in ethyl acetate/chloroform mixture [4069] or in the presence of potassium carbonate in boiling acetone for 10 h [4070].
- Also obtained by reaction of excess dimethyl sulfate with 3,6-dihydroxy-2, 4-dimethoxy-acetophenone in the presence of potassium carbonate in refluxing acetone for 24 h [4071].
- Also obtained by treatment of (E)-1-(2,3,4,6-tetramethoxyphenyl)-2-buten-1one with 15% potassium hydroxide in boiling dilute ethanol for 7 h [4070].
- Also obtained by reaction of methyl acetate with 1,2,3,5-tetramethoxybenzene in the presence of PPA [4072].
- Also obtained by treatment of sinensetin with potassium hydroxide in dilute ethanol, followed by methylation of the product so obtained [4073].

Isolation from natural sources

- From liverwort Adelanthus decipiens [4074].
b.p. . $_{0.2} 116-118^{\circ}$ [4075], 310° [4064,4076];
crystals [4071];
m.p. 55-56 ${ }^{\circ}$ [4077], $54^{\circ} \quad[3953]$, 53-54 ${ }^{\circ} \quad[4065,4066]$, 53° [4073], 49.5-51 [4067], 48-50ํ [4076];
${ }^{1} H$ NMR [4070,4074,4075], IR [4070,4075].

1-(Pentahydroxyphenyl)ethanone

1-(2-Amino-3-hydroxyphenyl)ethanone
[4502-10-7] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17

Described [3734] p. 724
Synthesis

- Also obtained by bioconversion of nitro precursor using recombinant Escherichia coli strains [4078].

1-(2-Amino-4-hydroxyphenyl)ethanone
[90033-64-0] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17

Methyl ether (Hydrochloride) [335104-63-7] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 201.65

- Refer to: [4079].

1-(3-Amino-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17
Described [3734] p. 726
Syntheses

- Also obtained by bioconversion of nitro precursor using recombinant Escherichia coli strains [4078].
- Also refer to: [4080].

1-(3-Amino-4-hydroxyphenyl)ethanone

[54255-50-4] $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17

Described [3734] p. 727
Syntheses

- Also obtained by reduction of 4-hydroxy-3-nitro-acetophenone by catalytic hydrogenation with hydrogen in the presence of,
- Pd/C in ethanol [3932];
- Pt on carbon disulfide in ethanol [3932].
- Also refer to: [4081,4082].

1-(4-Amino-2-hydroxyphenyl)ethanone

[2476-29-1] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17

Described [3734] p. 728
Synthesis

- Also refer to: [3809].

1-(5-Amino-2-hydroxyphenyl)ethanone

[50-80-6]
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17

Described [3734] p. 728
Syntheses

- Also obtained by refluxing a suspension of N-(3-acetyl-4hydroxyphenyl)acetamide in 15% hydrochloric acid for 40 min (84\%) [3911].
- Also refer to: [3809].

Green solid [3911]; ${ }^{1} \mathrm{H}$ NMR [3911], ${ }^{13} \mathrm{C}$ NMR [3911], MS [3911].
Methyl ether [85276-70-6] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 201.65

- Obtained by treatment of 2-methoxy-5-nitroacetophenone in ethanol and granulated tin with hydrochloric acid $(\mathrm{d}=1.18)$ at 25° for $16 \mathrm{~h}(65 \%)$ [4085].
- Also obtained by Fries rearrangement of 4-(N-acetylamino)anisole in the presence of lithium perchlorate and ytterbium triflate in nitromethane at 100° for 8 h [4086].
- Also refer to: $[3858,4087]$.
b.p. ${ }_{0.25} 125-127^{\circ}$ [4085]; m.p. 91° [4086];
${ }^{1} \mathrm{H}$ NMR [4086], ${ }^{13} \mathrm{C}$ NMR [3858], IR [4086].

```
Hydrochloride (of the methyl ether) \(\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad\) mol.wt. \(201.65 \mathrm{~m} . \mathrm{p}\). \(186^{\circ}\) (d) [4085]
```

1-(3-Amino-2,4-dihydroxyphenyl)ethanone
$\begin{array}{ll}\text { [909255-13-6] } & \begin{array}{l}\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3} \quad \text { mol.wt. } 167.16 \\ \text { New compound } \\ \text { Syntheses } \\ -\end{array} \\ & \text { Refer to: [4082,4088]. }\end{array}$
m.p. $216-218^{\circ}$ [4088]; ${ }^{1} \mathrm{H}$ NMR [4088], MS [4088].

1-[2-Hydroxy-6-(trifluoromethyl)phenyl]ethanone
[1024605-96-6] $\quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \quad m o l . w t .204 .15$

1-[4-Hydroxy-3-(trifluoromethyl)phenyl]ethanone

[149105-11-3] $\quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \quad \mathrm{~mol} . w t .204 .15$

Described [3734] p. 730
Synthesis

- Also refer to: [4089].

Methyl ether [149105-10-2] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 218.18

- Refer to: [4089].

3-Acetyl-4-hydroxybenzonitrile
[35794-84-4] $\quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{2} \quad$ mol.wt. 161.16

New compound

Syntheses

- Obtained by heating a mixture of 4-cyanophenyl acetate and aluminium chloride at $180-185^{\circ}$ for $2 \mathrm{~h}(58 \%)$ [4090].
- Also refer to: [4091].
m.p. 103° [4091], $100-101^{\circ}$ [4090];
${ }^{1} \mathrm{H}$ NMR [4090], IR [4090], UV [4090].

1-(2,6-Dibromo-3-methoxyphenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 307.97
$$

New compound

Synthesis

- Obtained from 3-methoxyacetophenone by reaction of hypobromous acid, generated in situ, in aqueous acetic acid containing perchloric acid catalyst at r.t. (14-15\%) [3805].
${ }^{1} \mathrm{H}$ NMR [3805].
Oxime $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}_{2} \quad$ mol.wt. 322.98 [3805]

1-(4,6-Dibromo-3-methoxyphenyl)ethanone

 $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97 New compound

Synthesis

- Obtained from 3-methoxyacetophenone by reaction of hypobromous acid, generated in situ, in aqueous acetic acid containing perchloric acid catalyst at r.t. (2-3\%) [3805].
${ }^{1} \mathrm{H}$ NMR [3805].
Oxime $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}_{2} \quad$ mol.wt. 322.98 [3805]

1-(2,6-Dichloro-3-methoxyphenyl)ethanone

[157487-31-5] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07

New compound

Syntheses

- Obtained by heating a mixture of 1-(2,6-dichloro-3-meth-oxyphenyl)ethan-1-ol and manganese (IV) oxide in benzene for $15 \mathrm{~h}(74 \%)$ [3769].
- Also refer to: [3770].
b.p. ${ }_{0.5} 121-122^{\circ}$ [3769]; m.p. $38-40^{\circ}$ [3769];
${ }^{1} H$ NMR [3769], IR [3769].

1-(2,5-Difluoro-4-methoxyphenyl)ethanone

[1010800-85-7] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$
mol.wt. 186.16

New compound
Synthesis

- Refer to: [3887].

3-Acetyl-4-hydroxybenzoic acid

[16357-40-7] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 180.16

New compound

Synthesis

- Obtained by Fries rearrangement of 4-acetoxybenzoic acid (1 mol) with aluminium chloride (3.3 mol) at $150-155^{\circ}$ for $1 \mathrm{~h}(24 \%)$ [4092].

Methyl ether [103203-97-0] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19
- Obtained by treatment of 4-(2-methoxy-5-methylphenyl)-4-methyl-2,5cyclohexadienone with $\mathrm{Zn}\left(\mathrm{MnO}_{4}\right)_{2}$ in acetone [3941].
- Also obtained by reaction of dimethyl sulfate with 3-acetyl-4-hydroxybenzoic acid [3941].
- Also refer to: [4095].
m.p. $225-226^{\circ}$ [3941].

Methyl ester [57009-12-8] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

- Refer to: [4096]. m.p. $91-92^{\circ}$ [4096].

Ethyl ester [57009-53-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

- Prepared by refluxing the acid and ethyl alcohol in the presence of a few drops of concentrated sulfuric acid [4092].
- Also refer to: [4090].
m.p. $90-92^{\circ}$ [4097], 71° [4092]. One of the reported melting points is obviously wrong.
${ }^{1}$ H NMR [4097,4098], UV [4098].

5-Acetyl-2-hydroxybenzoic acid

[13110-96-8] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 180.16

New compound
Syntheses

- Obtained by Fries rearrangement of 2-(acetyloxy)-benzoic acid (Aspirin) (1 mol) in the presence of aluminium chloride (3.3 mol),
- in nitrobenzene at r.t. for 1 h (36\%) [4092];
- without solvent at $120-125^{\circ}$ for $1 \mathrm{~h}(19 \%)$ [4092].
- Also obtained by treatment of 2-(acetyloxy)benzoic acid with aluminium chloride in nitrobenzene at 60° [4099].
- Also obtained by reaction of acetyl chloride with 2-hydroxybenzoic acid in the presence of ferric chloride at $110-115^{\circ}$ [4100].
- Also obtained by treatment of phenyl o-acetoxybenzoate with aluminium chloride in carbon disulfide [4101].
- Also obtained by treament of methyl o-(acetyloxy)salicylate with aluminium chloride in nitrobenzene [4102].
- Also obtained by reaction of acetyl chloride with 2-hydroxybenzoic acid in the presence of aluminium chloride in nitrobenzene [4103].
m.p. 217° [4103], 216-217 ${ }^{\circ}$ [4092], 209-210 ${ }^{\circ}$ [4104].

BIOLOGICAL ACTIVITY: Inhibition of cyclooxygenase [4105].
Methyl ether $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

- Obtained by reaction of dimethyl sulfate with 5-Acetyl-2-hydroxybenzoic acid in the presence of aqueous sodium hydroxide solution [4100].

Methyl ester [16475-90-4] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

- Obtained by heating a solution of 5-acetyl-2-hydroxybenzoic acid and sulfuric acid in methanol for 24 h (82\%) [4106].
- Also obtained by reaction of acetyl chloride with methyl 2-methoxybenzoate in the presence of aluminium chloride at r.t. for $12 \mathrm{~h}(60 \%)$ [3934].
- Also refer to: [4107-4109].
b.p. ${ }_{15} 162^{\circ}$ [4109];
m.p. 62° [3934], $60-62^{\circ}$ [4108], 58-61 ${ }^{\circ}$ [4106];
${ }^{1} \mathrm{H}$ NMR [4107], ${ }^{13} \mathrm{C}$ NMR [4107], IR [4107].

1-(3-Bromo-2-hydroxy-5-methylphenyl)ethanone

[56609-15-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

Described [3734] p. 737
Syntheses

- Also refer to: [4110,4111].

1-(3-Bromo-2-hydroxy-5-methoxyphenyl)ethanone
[37113-61-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07

Described [3734] p. 739
Synthesis

- Also obtained by reaction of bromine with 2-hydroxy-5-methoxyacetophenone in acetic acid in the presence of sodium acetate at r.t. for $48 \mathrm{~h}(87 \%)$ [4112].
Green/yellow needles; m.p. 74-77 ${ }^{\circ}$ [4112];
${ }^{1} \mathrm{H}$ NMR [4112].

Methyl ether [286931-60-0] $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10

- Obtained by reaction of dimethyl sulfate with 3-bromo-2-hydroxy-5-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone for $24 \mathrm{~h}(82 \%)$ [4112].
b.p. ${ }_{0.5} 110-114^{\circ}$ [4112]; m.p. 41-42 ${ }^{\circ}$ [4112];
${ }^{1} H$ NMR [4112], MS [4112].
1-(5-Bromo-2-hydroxy-3-methoxyphenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad \text { mol.wt. } 245.07
$$

Described [3734] p. 740
Syntheses

- Also obtained by reaction of bromine with 2-hydroxy-3-methoxyphenylacetophenone in the presence of sodium bromide in dilute ethanol at 25° [3955].
- Also obtained by treatment of its methyl ether with hydrogen bromide in acetic acid for 4.5 h (36\%) [3955].
Yellow crystals; m.p. 108-109 ${ }^{\circ}$ [3955]; UV [3955].
Methyl ether [7507-91-7] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 250.10
- Obtained from 5-bromo-2,3-dimethoxybenzoic acid (m.p. 121-124) (49.5\%) [3955].
- Also obtained by treatment of 1-(5-bromo-2,3-dimethoxyphenyl)ethanol with chromium trioxide in the presence of pyridine in methylene chloride for 0.25 h (86\%) [4113].
m.p. 65-66º [4113], 63.7-64.9º [3955];
${ }^{1} \mathrm{H}$ NMR [4113], IR [4113], UV [3955,4113].
1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone
[39503-61-2]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07

Described [3734] p. 740
Synthesis

- Also refer to: [4114].

1-(3-Chloro-2-hydroxy-5-methylphenyl)ethanone

[7507-88-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad m o l . w t .184 .62$

Described [3734] p. 741
Syntheses

- Also refer to: [4111,4115].

1-(3-Chloro-4-hydroxy-5-methylphenyl)ethanone

[54556-95-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Methyl ether [56755-88-5] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

- Obtained by reaction of dimethyl sulfate with 3-chloro-4-hydroxy-5-methylacetophenone in the presence of sodium ethoxide and sodium iodide in boiling ethanol [4116].
- Also refer to: [3778].
b.p. ${ }_{0.05} 95-100^{\circ}$ [4116];
$\mathrm{n}_{\mathrm{D}}^{20}=1.5502$ [4116].
1-(5-Chloro-2-hydroxy-4-methylphenyl)ethanone
[28480-70-8]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Described [3734] p. 743
Syntheses

- Also refer to: [3773,3775,3857,4117-4119].

1-[3-(Chloromethyl)-4-hydroxyphenyl]ethanone

[24085-05-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
 Described [3734] p. 744
Synthesis

- Also obtained by chloromethylation of 4-hydroxy-acetophenone by the methode of Trave [4120,4121].
m.p. 160° (d) [4121];
${ }^{1} \mathrm{H}$ NMR [4121], IR [4121], MS [4121].

1-[5-(Chloromethyl)-2-hydroxyphenyl]ethanone

[30787-43-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Described [3734] p. 744
Synthesis

- Also refer to: [3744].

1-(3-Chloro-2-hydroxy-5-methoxyphenyl)ethanone

[286931-53-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad m o l . w t .200 .62$

Described [3734] p. 746
Synthesis

- Also obtained by reaction of N -chlorosuccinimide with 2-hydroxy-5-methoxyacetophenone in acetic acid in the presence of magnesium acetate at r.t. for 24 h (80%) [4112].
Green-yellow needles; m.p. $78-79^{\circ}$ [4112];
${ }^{1} \mathrm{H}$ NMR [4112], MS [4112].
Methyl ether [286931-54-2] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 214.65
- Obtained by reaction of dimethyl sulfate with 3-chloro-2-hydroxy-5-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone for 24 h [4112].
Clear oil; b.p..$_{0.1} 91^{\circ}$ [4112];
${ }^{1} H$ NMR [4112], MS [4112].
1-(2-Fluoro-4-hydroxy-3-methylphenyl)ethanone
[872415-45-7] $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

New compound
Synthesis

- Refer to: [3862].

Methyl ether [872415-44-6] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 182.19 [3862]

1-(3-Fluoro-2-hydroxy-4-methoxyphenyl)ethanone

[1018451-08-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 184.17

New compound

Synthesis

- Preparation by treatment of 2-fluoro-1,3-dimethoxybenzene with boron trifluoride-acetic acid complex at 80° for 4 h (98\%) [4122].
Light yellow solid; m.p. 103° [4122];
${ }^{1} \mathrm{H}$ NMR [4122], ${ }^{19}$ F NMR [4122], MS [4122].
Methyl ether [1018451-09-6] $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 198.07
- Obtained by treatment of 3-fluoro-2-hydroxy-4-methoxyacetophenone with methyl iodide in the presence of potassium carbonate in refluxing acetone for 1.5 h (93\%) [4122].
m.p. 65° [4122];
${ }^{1} \mathrm{H}$ NMR [4122], ${ }^{19} \mathrm{~F}$ NMR [4122], IR [4122], MS [4122].

1-(2-Hydroxy-3-iodo-5-methylphenyl)ethanone

[175655-10-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07

Described [3734] p. 749
Syntheses

- Also refer to: [3740,4111,4115].

1-(2-Iodo-5-methoxyphenyl)ethanone

[110718-87-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07

New compound

Syntheses

- Obtained from 4-bromoanisole (multi-step reaction) (37\%) [3917].
- Also obtained from 2-bromoanisole (multi-step reaction) (73\%) [3913].
- Also obtained from 2-amino-5-methoxyacetophenone [3915,4123].
- Also obtained by reaction of equimolar amounts of 3-methoxyacetophenone, iodine and silver trifluoroacetate [4124].
- Also refer to: [4125,4126].

Golden oil [3913];
${ }^{1} \mathrm{H}$ NMR [3917], ${ }^{13} \mathrm{C}$ NMR [3917], IR [3917], MS [3917].
1-(2-Hydroxy-5-methyl-3-nitrophenyl)ethanone
[66108-30-3] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

Described [3734] p. 752
Syntheses

- Also refer to: [3764,4110,4127-4129].

IR [4127].

1-(2-Hydroxy-3-methoxy-5-nitrophenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17

New compound
Synthesis

- Preparation by reaction of 70% nitric acid with 2-hydroxy-3-methoxyacetophenone in acetic acid at 25° (95\%) [3955].
m.p. $148.1-149.5^{\circ}$ [3955]; UV [3955].

Methyl ether [102652-91-5] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 225.20

- Obtained by methylation of 2-hydroxy-3-methoxy-5-nitroacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 4 h (53\%) [3955].
m.p. 81.2-83.2́ [3955]; UV [3955].

Acetate $\quad \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{6} \quad \mathrm{~mol} . w t .253 .21$
m.p. $125.2-126.8^{\circ}$ [3955].

1-(4-Hydroxy-3-methoxy-2-nitrophenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad \text { mol.wt. } 211.17
$$

New compound

Synthesis

- Obtained by hydrolysis of 4-acetoxy-3-methoxy-2-nitroacetophenone with 3 N sodium hydroxide in dilute methanol at r.t. [3950].

1-(4-Hydroxy-5-methoxy-2-nitrophenyl)ethanone
[418759-58-7] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad m o l . w t .211 .17$

Described [3734] p. 756
Syntheses

- Also refer to: [4130,4131].

Benzyl ether [75665-88-2] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \quad$ mol.wt. 301.30 [4131]

1-(2-Hydroxy-3-methylphenyl)ethanone

[699-91-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18

Described [3734] p. 757
Syntheses

- Also refer to: [3773,3853,3892].

UV [3955].
Methyl ether [6342-75-2] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

- Preparation by reaction of dimethyl sulfate with 2-hydroxy-3-methylacetophenone in the presence of sodium hydroxide solution [4132].
- Also obtained by reaction of methyl iodide with 2-hydroxy-3-methylacetophenone in the presence of sodium ethoxide in ethanol on a water bath for 3 h [3865].
- Also refer to: [3955,4133].
colourless oil [3865];
b.p. ${ }_{12} 115^{\circ}$ [4132], b.p. ${ }_{14} 116-117^{\circ}$ [3955], b.p. 120° [3865],
b.p. ${ }_{15} 125-128^{\circ}$ [4133], b.p. ${ }_{760} 240^{\circ}$ [4132];

UV [3955].
Benzoate $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29

- Obtained by reaction of benzoyl chloride with 2-hydroxy-3-methylacetophenone in suspension of 2 N sodium hydroxide solution at r.t. for $20 \mathrm{~min}(75 \%)$ [3959]. m.p. $102-103^{\circ}$ [3959].

1-(2-Hydroxy-4-methylphenyl)ethanone
[6921-64-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18

Described [3734] p. 758
Syntheses

- Also obtained by Fries rearrangement of 3-methylphenyl acetate in the presence of zirconium chloride with ultrasound irradiation in DCM at r.t. for 24 h (93\%) [4134].
- Also obtained by heating its methyl ether with pyridinium chloride for 15 min (66\%) [3765].
- Also obtained by Friedel-Crafts acylation of m-cresol with acetic acid in a mixture of graphite and methanesulfonic acid at 120° for $2 \mathrm{~h}(80 \%)$ [3889].
- Also refer to: [3773,3959,4018,4135,4136].
${ }^{1} \mathrm{H}$ NMR [3889], ${ }^{13} \mathrm{C}$ NMR [3889].
Methyl ether [35633-35-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
- Obtained by reaction of dimethyl sulfate with 2-hydroxy-4-methylacetophenone in the presence of potassium hydroxide in acetone at r.t. for 15 h (97\%) [4134].
- Also obtained by reaction of acetic anhydride with 3-methylanisole in the presence of lithium perchlorate at 60° for 2 h (30\%) [3798].
- Also refer to: [3765,4137].
${ }^{13} \mathrm{C}$ NMR [3858].
Benzyl ether [58110-89-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. $240.30 \quad$ Refer to: [4136].
Benzoate [5177-98-0] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29
- Obtained by reaction of benzoyl chloride with 2-hydroxy-4-methylacetophenone in suspension in 2 N sodium hydroxide solution at r.t. for 20 min (78\%) [3959].
- Also refer to: [4138-4140].
b.p. ${ }_{0.02} 150-165^{\circ}$ [4138]; m.p. 98-99 ${ }^{\circ}$ [3959].

1-(2-Hydroxy-5-methylphenyl)ethanone

Described [3734] p. 760

Syntheses

- Also obtained by treatment of 2'-hydroxy-5'-methyl-3,3dimethylacrylophenone with aluminium chloride in boiling benzene for 7 h [3996].
- Also obtained by treatment of 2-hydroxy-5-methyl- α-chloroacetophenone with zinc powder and hydrochloric acid [4141].
- Also obtained by treatment of its methyl ether with hydrogen bromide in acetic acid (6.6\%) [3955].
- Also refer to: [3773,3959,3967,3991,4018,4110,4142]. m.p. $50-50.5^{\circ}$ [4141], 50° [3996], $47-48^{\circ}$ [4142], 46-47.5 ${ }^{\circ}$ [3955]; UV [3801,3955].

Methyl ether [20628-07-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

- Preparation by reaction of acetic acid with 4-methylanisole in the presence of trifluoromethyl-sulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) for 3 min at r.t. (97\%) [3965].
- Also obtained by reaction of acetic acid with p-cresyl methyl ether in the presence of PPA (74\%) [3955].
- Also obtained by reaction of acetic anhydride with 4-methylanisole,
- in the presence of aluminium chloride in carbon disulfide (64-70\%) [3966];
- in the presence of lithium perchlorate at 100° for $3 \mathrm{~h}(99 \%)$ [3798].
- Also refer to: [4142], (42\%) [3917].
b.p. 120.5° [3966], b.p. $121-123^{\circ}$ [3955];
${ }^{1} \mathrm{H}$ NMR [3917], ${ }^{13} \mathrm{C}$ NMR [3917], UV [3801,3955].
Benzyl ether [36808-17-0] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
- Obtained by reaction of benzyl chloride with 2-hydroxy-5-methylacetophenone in the presence of KOH in acetonitrile. Then, the mixture was refluxed for 3 h (89\%) [3978].
m.p. 81° [3978];
${ }^{1} \mathrm{H}$ NMR [3978], ${ }^{13} \mathrm{C}$ NMR [3978], IR [3978], MS [3978].
Benzoate $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29
- Obtained by reaction of benzoyl chloride with 2-hydroxy-5-methylacetophenone in suspension in 2 N sodium hydroxide solution at r.t. for $20 \mathrm{~min}(76 \%)$ [3959].
m.p. $96-97^{\circ}$ [3959].

1-(4-Hydroxy-2-methylphenyl)ethanone

[875-59-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18

- Also obtained by heating its methyl ether with pyridinium chloride for 7.5 min (56\%) [3765].
- Also refer to: [3765,4018,4144,4145].

Methyl ether [24826-74-2] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

- Obtained by reaction of acetic anhydride with 3-methylanisole in the presence of aluminium chloride in carbon disulfide (87\%) [3966], at r.t., then at $30-35^{\circ}$ until no more hydrochloric acid is evolved [3796,3797].
- Also obtained by reaction of acetic anhydride with 3-methylanisole in the presence of lithium perchlorate at 60° for $2 \mathrm{~h}(70 \%)$ [3798].
- Also refer to: [3765].
b.p. 116.5° [3966], b.p. ${ }_{735} 267^{\circ}$ [3966];
${ }^{1} \mathrm{H}$ NMR [3796,3797], ${ }^{13} \mathrm{C}$ NMR [3858], IR [3796,3797].

1-(4-Hydroxy-3-methylphenyl)ethanone

[876-02-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18

Described [3734] p. 766
Syntheses

- Also obtained by heating its methyl ether with pyridinium chloride for 15 min (53\%) [3765].
- Also refer to: [3743,4146-4148].

Methyl ether [10024-90-5] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

- Preparation by reaction of acetic anhydride with 2-methylanisole in the presence of lithium perchlorate at 60° for $1.5 \mathrm{~h}(99 \%)$ [3798].
- Also obtained by Friedel-Crafts acetylation of o-methoxytoluene (73\%) [3966], (21\%) [4149].
- Refer to: [3765,3778,4150].
b.p. 116° [3966]; m.p. 26-26.5 ${ }^{\circ}$ [3966], 24.5-25 ${ }^{\circ}$ [4149];
${ }^{13}$ C NMR [3751,3754].
Benzyl ether [56443-69-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
- Obtained by reaction of benzyl chloride with 4-hydroxy-3-methylacetophenone in the presence of KOH in acetonitrile. Then, the mixture was refluxed for 3 h [3978].

1-(5-Hydroxy-2-methylphenyl)ethanone

[40180-70-9]
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$
mol.wt. 150.18

Methyl ether [110743-57-2] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

- Refer to: [4151], (5\%) [3917].
b.p. $118-121^{\circ}$ [4151];
${ }^{1} \mathrm{H}$ NMR [3917], ${ }^{13} \mathrm{C}$ NMR [3917], IR [3917].
1-(2,4-Dihydroxy-3-methylphenyl)ethanone

Isolation from natural sources

- From the volatile oil of Dendrobium nobile Lind [4157].
- From the volatile oil of Dendrobium Ioddigesii Rolfe [4157]. MS [4157]; GC-MS [4157].

1-(2,4-Dihydroxy-5-methylphenyl)ethanone

[93578-16-6] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Described to: [3734] p. 769
Synthesis

- Also obtained by heating its methylether with pyridinium chloride for $15 \mathrm{~min}(67 \%)$ [3765].

Dimethyl ether $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23 [3765].

1-(2,4-Dihydroxy-6-methylphenyl)ethanone

[703-29-7]
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Dimethyl ether [6110-38-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

- Obtained by reaction of acetyl chloride with orcinol dimethyl ether [4158],
- in the presence of aluminium chloride [3953];
- in the presence of stannic chloride [4159].
- Also obtained by reaction of dimethyl sulfate with 2,4-dihydroxy-6-methylacetophenone in the presence of sodium hydroxide in dilute methanol [4160].
- Also refer to: [4161].
b.p. ${ }_{0.2} 98.5-99.5^{\circ}[4159] ; \quad$ b.p. $._{15} 150-165^{\circ}$ [3953];
m.p. 85° [3953], 48° [4160], $41-42^{\circ}$ [4158,4162].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [4158,4162,4163], ${ }^{13} \mathrm{C}$ NMR [4164],
IR [4162,4163], UV [4158,4159,4162], MS [4158].

1-(2,5-Dihydroxy-4-methylphenyl)ethanone

[54698-17-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
 Described [3734] p. 771
Syntheses

- Obtained by hydrolysis of 5-acetoxy-2-hydroxy-4-methyl-acetophenone with concentrated hydrochloric acid in methanol at r.t. for $1 \mathrm{~h}(27 \%)$ [4165].
- Also obtained by Fries rearrangement of 2,5-diacetoxytoluene,
- in the presence of boron trifluoride dihydrate for 4 h at 130° (quantitative yield) [4166];
- in the presence of aluminium chloride at $125-130^{\circ}$ (41\%) [4167].

Isolation from natural sources

- From the root bark of Paeonia suffruticosa Andrews (Paeoniaceae) [4168]. m.p. $146-147^{\circ}$ [4167], 146° [4165];
${ }^{1} H$ NMR [4166], ${ }^{13} \mathrm{C}$ NMR [4166], IR [4166], UV [4166], MS [4166].
Dimethyl ether [13720-58-6] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
- Obtained by action of dimethyl sulfate with 2,5-dihydroxy-4-methylacetophenone in the presence of potassium carbonate in refluxing acetone for $7 \mathrm{~h}(50 \%)$ [4165].
- Also refer to: [4137].
m.p. 76° [4165].

Dibenzyl ether $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}$ mol.wt. 346.43

- To a solution of 2,5-dihydroxy-4-methylacetophenone in dimethoxyethane was added potassium carbonate, under nitrogen and the solution was stirred to 80° in nitrogen atmosphere. Then, benzyl bromide and N,N-dimethylformamide were added (95\%) [4166].
${ }^{1} \mathrm{H}$ NMR [4166], ${ }^{13} \mathrm{C}$ NMR [4166], IR [4166], UV [4166], MS [4166].

1-(3,4-Dihydroxy-2-methylphenyl)ethanone

[18087-17-7] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Dimethyl ether [24186-66-1] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

- Obtained from 4-methylveratrole by reaction,
- with acetyl chloride in the presence of aluminium chloride in carbon disulfide [4169,4170];
- with acetic anhydride in the presence of aluminium chloride [4171] in tetrachloroethane [4172].
- Also obtained by treatment of ω-chloro-4,5-dimethoxyacetophenne with zinc in acetic acid [4173].
- Also refer to: [4174-4176].
b.p. ${ }_{15} 175^{\circ}$ [4170], b.p. ${ }_{70} 204^{\circ}$ [4169];
m.p. $76-77^{\circ}$ [4170], 76° [4176], $75-76^{\circ}$ [4175], $73-75^{\circ}[4171,4172], 68^{\circ}$ [4169,4173];
${ }^{1} \mathrm{H}$ NMR [4171], IR [4171], UV [4171].

1-[4-Hydroxy-3-(hydroxymethyl)phenyl]ethanone

[39235-58-0] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

New compound

Syntheses

- Obtained by refluxing 3-chloromethyl-4-hydroxy-acetophenone with water for 3 h (70\%) [4120].
- Also obtained by heating 6-acetyl-1,3-benzo(4H)dioxine with hydrochloric acid for $2 \mathrm{~h}(80 \%)$ [4177].
- Also obtained by treatment of 4-hydroxyacetophenone with poly(oxymethylene) (37\%) [4177].
- Also refer to: [3978,4178-4180].
m.p. $124-125^{\circ}$ [4181], $120.5-121.5^{\circ}$ [4180], $116-118^{\circ}$ [4178,4179], 116° [4120]; ${ }^{1} \mathrm{H}$ NMR [4120], IR [4120], MS [4120].

4-Benzyl ether [39235-59-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30 [3978]

- Obtained by reaction of benzyl chloride with 4-hydroxy-3-hydroxymethylacetophenone in the presence of potassium hydroxide and tetraethylammonium iodide in refluxing acetonitrile for $3 \mathrm{~h}(88 \%)$ [3978,4177].
- Preparation by reaction of benzyl bromide with the potassium salt of 5-acetyl-2hydroxybenzyl alcohol [4180].

```
m.p. 125 [3978], 124-125 [4180], 122.5-124 [ [4177];
' H NMR [3978,4177], '3}\textrm{C}\mathrm{ NMR [3978,4177], IR [3978,4177], MS [3978].
```


1-(2-Hydroxy-3-methoxyphenyl)ethanone

[703-98-0] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Described [3734] p. 775

Syntheses

- Also obtained by action of hydrogen bromide with 2,3-dimethoxyacetophenone in acetic acid at 30° for $25 \mathrm{~min}(92 \%)$ [3989] or at r.t. (70\%) [3984].
- Also refer to: [3744,3810].
m.p. $53-54^{\circ}$ [3989,4182], 49-51.5 ${ }^{\circ}$ [3984];

UV [3955,3956].
Acetate $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21 (m.p. 44.5-46.5 ${ }^{\circ}$) [3984]
1-(2-Hydroxy-4-methoxyphenyl)ethanone (Paeonol)
[552-41-0] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Described [3734] p. 775
Synthesis

- Also obtained by action of hydrogen bromide with 2,4-dimethoxyacetophenone in acetic acid at r.t. (9\%) [3984].
m.p. 41-50º [3984]; IR [3954], UV [3956,3963].

Acetate $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ mol.wt. 208.21 m.p. 43-46 [3984].
Oxime [51864-08-5] $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ mol.wt. 181.19 [3737,3738]

1-(2-Hydroxy-5-methoxyphenyl)ethanone

[705-15-7] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
 Described [3734] p. 777
Syntheses

- Obtained by heating 2,5-dimethoxyacetophenone oxime with pyridinium chloride containing 10% of water (11%) [3980].
- Also obtained by action of hydrogen bromide with 2,5-diimethoxyacetophenone in acetic acid at r.t. (6\%) [3984].
- Also refer to: [3744,3892,3997,3998,4011,4183].
b.p. ${ }_{17} 145^{\circ}$ [3980]; m.p. $46-47^{\circ}$ [3984]; UV [3955,3963].

USE: Ultraviolet absorbers [4183].
Acetate $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ mol.wt. 208.21 m.p. $60-62^{\circ}$ [3984].

Benzyl ether $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30 [4184]
Oxime $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ mol.wt. 181.19 m.p. 113° [3980].
1-(2-Hydroxy-6-methoxyphenyl)ethanone
[703-23-1] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

UV [3956,3963].
1-(3-Hydroxy-4-methoxyphenyl)ethanone (Isoacetovanillone)
[6100-74-9]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Described [3734] p. 779
Synthesis

- Also refer to: [3738]; UV [3956].

Benzyl ether $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30 [3947]
1-(3-Hydroxy-5-methoxyphenyl)ethanone
[35999-23-6] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

1-(4-Hydroxy-2-methoxyphenyl)ethanone (Isopaenol)
[493-33-4] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad \mathrm{~mol} . w t .166 .18$

1-(4-Hydroxy-3-methoxyphenyl)ethanone (Acetoguaiacone, Acetovanillone)
[498-02-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Described [3734] p. 781
Syntheses

- Also obtained by Fries rearrangement of guaiacol acetate in the presence of zinc chloride [3953].
- Also refer to: [4015].
m.p. 116° [3953]; UV [3956,3963,4015].

Isolation from natural sources

- From the fresh Iris rhizomes (2.69\%) [4026].

Benzoate $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28

- Obtained by reaction of benzoyl chloride with acetoguaiacone in the presence of pyridine (90\%) [4015].
m.p. $108-109^{\circ}$ [4015].

Acetate [54771-60-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

- Refer to: [4185].

1-(5-Hydroxy-2-methoxyphenyl)ethanone
[31405-60-4] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Described [3734] p. 782
Synthesis

- Also prepared by treatment of 5-(pivaloyloxy)-2-methoxyacetophenone in DMF with a 2 M sodium hydroxide aqueous solution at 100° for 12 h (83%) [3818].

Yellow oil [3818];
${ }^{1} \mathrm{H}$ NMR [3818], ${ }^{13} \mathrm{C}$ NMR [3818], UV [3956], MS [3818].

1-(2,3-Dihydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18

Described [3734] p. 783
Syntheses

- Also obtained by Fries rearrangement of 2,3-dihydroxy-3-methoxyphenyl diacetate with boron trifluoride etherate at 70° for 1 h , then hydrolyse with concentrated HCl at 60° for $2 \mathrm{~h}(75 \%)$ [4186].
- Also refer to: [4187].

1-(2,4-Dihydroxy-6-methoxyphenyl)ethanone

[3602-54-8]
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Described [3734] p. 785

Synthesis

- Also obtained by reaction of dimethyl sulfate with phloroacetophenone in the presence of potassium carbonate in refluxing acetone for 5 h (14\%) [4188].

Isolation from natural sources

- From the aerial parts of Artemisia scoparia [4189].
m.p. 204-206 [4188].

1-(2,6-Dihydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$
mol.wt. 182.18

Described [3734] p. 787

Syntheses

- Also obtained by reaction of dimethyl sulfate with phloroacetophenone in the presence of potassium carbonate in refluxing acetone for $5 \mathrm{~h}(21 \%)$ [4188].
- Also refer to: [4190,4191].
m.p. $140-141^{\circ}$ [4188].

1-(3,6-Dihydroxy-2-methoxyphenyl)ethanone

[33539-20-7] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18

Described [3734] p. 789
Synthesis

- Also refer to: [4042].

1-(2,4,6-Trihydroxy-3-methylphenyl)ethanone

[2657-28-5] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
 Described [3734] p. 790
Syntheses

- Also obtained by treatment of its trimethyl ether with boron tribromide in methylene chloride at -78°, then at r.t. for $24-48 \mathrm{~h}(80 \%)$ [4192].
- Also refer to: [4193,4194].
${ }^{1} \mathrm{H}$ NMR [4192], ${ }^{13} \mathrm{C}$ NMR [4192], UV [4194], MS [4192].
Trimethyl ether [39701-13-8] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
- Obtained by reaction of dimethyl sulfate with 4,6-dihydroxy-2-methoxy-3methylacetophenone in the presence of potassium carbonate in boiling acetone for 2 h (quantitative yield) [4195].
- Also obtained by reaction of dimethyl sulfate with 2-hydroxy-4,6-dimethoxy-3-methyl-acetophenone,
- in the presence of potassium carbonate in boiling acetone for $48 \mathrm{~h}(90 \%)$ [4195];
- in the presence of 2 N sodium hydroxide at 100° for 30 min [4196].
- Also obtained by reaction of methyl iodide with 2,4,6-trihydroxy-3-methylacetophenone in the presence of potassium carbonate in DMF for 5 h [4197].
- Also obtained by reaction of dimethyl sulfate with 2,4,6-trihydroxy-3-methylacetophenone in the presence of potassium carbonate in boiling acetone for 3 h [4198].
- Also obtained by reaction of acetyl chloride with 2,4,6-trimethoxytoluene in methylene chloride in the presence of stannic chloride at -10° for $2-3 \mathrm{~h}$ (77\%) [4192].
- Also refer to: [4193].

Isolation from natural sources

- From Euphorbia portulacoides [4199].

Colourless oil [4195,4196]; b.p. ${ }_{12}$ 203-204́ [4196];
m.p. 44-45 [4196], 44° [4195];
${ }^{1} \mathrm{H}$ NMR [4192,4196-4200], ${ }^{13} \mathrm{C}$ NMR [4192], IR [4196-4198], UV [4198], MS [4192,4197].

1-(3-Aminomethyl-4-hydroxyphenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad \text { mol.wt. } 165.19
$$

New compound

Synthesis

- Obtained by treatment of N -(5-acetyl-2-hydroxy-benzyl) phthalimide (m.p. 207°) with boiling 7% aqueous sodium hydroxide for 7 min [4201].
m.p. 202° (d) [4201].

Hydrochloride [109314-50-3] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 201.65 (m.p. 253°) [4201]

1-[2-Hydroxy-4,6-bis(trifluoromethyl)phenyl]ethanone

[884851-57-4] $\quad \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{O}_{2} \quad$ mol.wt. 272.15

New compound

Synthesis

- To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 1,3-bis-silyl enol ether $\left(\mathrm{R}^{3}=\mathrm{CH}_{3}\right)$ and 1,1,1,5,5,5-hexafluoro-4-silyloxy-3-penten-2-one was added TiCl_{4} at -78° under argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20° during 14 h and, subsequently, a saturated aqueous solution of NaHCO_{3} was added (35\%) [4202]. ${ }^{1} \mathrm{H}$ NMR [4202], ${ }^{13} \mathrm{C}$ NMR [4202], ${ }^{19} \mathrm{~F}$ NMR [4202]; TLC [4202].

1-(3-Ethynyl-4-hydroxyphenyl)ethanone

[370565-08-5] $\quad \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2} \quad$ mol.wt. 160.17

New compound
Synthesis

- Preparation from p-acetyl-o-[(trimethylsilyl)-ethynyl] phenol (m.p. 127-129 ${ }^{\circ}$) via a Sonogashira coupling followed by desilylation [3920].
m.p. $100-102^{\circ}$ [3920];
${ }^{1} \mathrm{H}$ NMR [3920], ${ }^{13} \mathrm{C}$ NMR [3920], MS [3920].

1-[2-Hydroxy-4-methyl-6-(trifluoromethyl)phenyl]ethanone

[884851-54-1] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 218.18

New compound
Synthesis

- To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 1,3-bis-silyl enol ether
$\left(\mathrm{R}^{3}=\mathrm{CH}_{3}\right)$ and 1,1,1-trifluoro-4-silyloxy-3-penten-2one was added TiCl_{4} at -78° under argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20° during 14 h and, subsequently, a saturated aqueous solution of NaHCO_{3} was added (61\%) [4202].
${ }^{1} \mathrm{H}$ NMR [4202], ${ }^{13} \mathrm{C}$ NMR [4202], ${ }^{19} \mathrm{~F}$ NMR [4202]; TLC [4202].

1-[6-Hydroxy-3-methyl-2-(trifluoromethyl)phenyl]ethanone

[884851-62-1] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 218.18

New compound

Synthesis

- To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 1,3-bis-silyl enol ether $\left(\mathrm{R}^{3}=\mathrm{CH}_{3}\right)$ and 4-ethoxy-1,1,1-trifluoro-3-methyl-3-buten-2-one was added TiCl_{4} at -78° under argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20° during 14 h and, subsequently, an aqueous solution of $10 \% \mathrm{HCl}$ was added (60\%) [4202].
${ }^{1} \mathrm{H}$ NMR [4202], ${ }^{13} \mathrm{C}$ NMR [4202], ${ }^{19} \mathrm{~F}$ NMR [4202], IR [4202]; TLC [4202].

1-(7-Methoxy-1,3-benzodioxol-5-yl)ethanone

[66922-69-8]
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
mol.wt. 194.19

New compound

Synthesis

- Refer to: [4203].

1-(5-Bromo-4-ethyl-2-hydroxyphenyl)ethanone

[649551-87-1]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
mol.wt. 243.10

New compound

Synthesis

- Preparation by reaction of bromine with 4-ethyl-2hydroxyacetophenone in chloroform at -12° for 50 min (76\%) [3911].

Brown solid [3911]; MS [3911].

1-(3-Bromo-4-methoxy-2-methylphenyl)ethanone

[898538-41-5] $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10

1-(5-Bromo-4-methoxy-2-methylphenyl)ethanone

[898538-40-4] \quad| $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10 |
| :--- |
| New compound |
Synthesis

1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone

[18064-89-6]

 Described [3734] p. 804
Synthesis

- Also refer to: [4205].

1-(5-Bromo-2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5} \quad$ mol.wt. 291.10

New compound
Synthesis

- Obtained by halogenation of 2,4-dihydroxy-3,6-dimethoxy-acetophenone with N -bromosuccinimide [4206].

1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)ethanone

[50343-13-0] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Described [3734] p. 806
Syntheses

- Also obtained by [3 + 3] cyclisation of 2-chloro-3-(silyl-oxy)alk-2-en-1-one (3a) with 1,3-bis-silyl enol ether (4b) in the presence of titanium tetrachloride in methylene chloride, first at -78°, then to 20° for 20 h (50\%) [4207], (49\%) [4208].
$\mathbf{3 a}=3$-chloro-4-(trimethylsilyloxy)-3-penten-2-one.

$\mathbf{4 b}=$ 2,4-bis(trimethylsilyloxy)-2-pentene.

m.p. $\quad 99^{\circ}$ [4208];
${ }^{1} \mathrm{H}$ NMR [4208], ${ }^{13} \mathrm{C}$ NMR [4208], IR [4208], MS [4208].

1-(2-Chloro-4-methoxy-5-methylphenyl)ethanone

[412021-93-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

USE: For preparation of phenylmethylbicyclocarboxamide derivatives as VR1 receptor inhibitors [4209].

1-(5-Chloro-4-methoxy-2-methylphenyl)ethanone

[103039-12-9] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

New compound
Synthesis

- Refer to: [4210].

1-[2-(2-Chloroethoxy)-6-hydroxyphenyl]ethanone

[870652-73-6]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
mol.wt. 214.65

New compound
Synthesis

- Refer to: [4211].

1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]ethanone
[109661-96-3]

Described [3734] p. 807
Syntheses

- Also obtained by reaction of 1-bromo-2-chloroethane with resacetophenone in the presence of potassium carbonate in boiling acetone for 24 h (50\%) [4212].
- Also refer to: [4211].
m.p. $96-98^{\circ}$ [4212]; ${ }^{1} \mathrm{H}$ NMR [4212].

1-(2-Fluoro-3,4-dimethoxyphenyl)ethanone

[158641-45-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{3} \quad$ mol.wt. 198.19

1-[2,4-Dihydroxy-3-iodo-6-(methoxymethoxy)phenyl]ethanone

[321569-79-3]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{5} \quad$ mol.wt. 338.10

New compound

Synthesis

- Obtained by reaction of iodine and periodic acid mixture with 2,4-dihydroxy-6-methoxymethoxyacetophenone in dilute ethanol for 1 h at 40° (94\%) [4213].
m.p. $162-164^{\circ}$ [4213]; ${ }^{1} \mathrm{H}$ NMR [4213].

\mathbf{N}-(3-Acetyl-4-hydroxyphenyl)acetamide

[7298-67-1]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$
mol.wt. 193.20
 New compound
Synthesis

- Obtained by adding aluminium chloride to a suspension of N -(4-methoxyphenyl)acetamide and acetyl chloride then refluxing for 4.5 h (87\%) [3911].

Pale green solid [3911];
${ }^{1} \mathrm{H}$ NMR [3911], ${ }^{13} \mathrm{C}$ NMR [3911], MS [3911].

1-(4,5-Dimethoxy-2-nitrophenyl)ethanone

[4101-32-0] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 225.20

New compound
Synthesis

- Refer to: [4019].

1-(2-Ethyl-4-hydroxyphenyl)ethanone

[103323-98-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Described [3734] p. 812

Syntheses

- Also obtained by heating its methyl ether with pyridinium chloride for 15 min (61\%) [3765].
- Also obtained by Fries rearrangement of 3-ethylphenyl acetate with aluminium chloride at 140° for $30 \mathrm{~min}(14 \%)$ [4214].
b.p. ${ }_{11} 182-184^{\circ}$ [4214]; m.p. $109-110^{\circ}$ [4214].

2,4-Dinitrophenylhydrazone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 344.33
m.p. $206-207^{\circ}$ [4214].

Methyl ether [41068-29-5] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

- Obtained by reaction of acetic anhydride with 3-ethylanisole in the presence of aluminium chloride in carbon disulfide at r.t., then at $30-35^{\circ}$ until no more hydrochloric acid is evolved [3796,3797].
- Also refer to: [3765].
${ }^{1} H$ NMR [3796,3797], IR [3796,3797].

1-(3-Ethyl-4-hydroxyphenyl)ethanone

[22934-47-0] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Methyl ether [29643-34-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

- Obtained by reaction of acetyl chloride with 2-ethylanisole in the presence of aluminium chloride in carbon disulfide at r.t. overnight (45\%) [4215].
- Also obtained by reaction of dimethyl sulfate with 3-ethyl-4-hydroxyacetophenone in the presence of aqueous sodium hydroxide [4216].
- Also obtained by Fries rearrangement of 2-ethylphenyl acetate in the presence of aluminium chloride in nitrobenzene [4216].
- Also refer to: [3778,4217,4218].
b.p. ${ }_{0.5} 99-101^{\circ}$ [4216], b.p. 120° [4215], b.p. $._{25} 156-158^{\circ}$ [4217];

IR [4217], UV [4217].

1-(4-Ethyl-2-hydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20 Described [3734] p. 813
Syntheses

- Also obtained by Fries rearrangement of 3-ethylphenyl acetate (b.p. ${ }_{21} 116-118^{\circ}$) with aluminium chloride at 140° for $30 \mathrm{~min}(77 \%)$ [4214] or at 130° for 2 h 30 $\min (97 \%)$ [3911].
- Also obtained by Friedel-Crafts acylation of m-ethylphenol with acetic acid in a mixture of graphite and methanesulfonic acid at 120° for $2.5 \mathrm{~h}(73 \%)$ [3889].
- Also refer to: [3912,4219,4220].

Brown oil [3911]; b.p. ${ }_{13} 128-130^{\circ}$ [4214];
${ }^{1} \mathrm{H}$ NMR [3889,3911], ${ }^{13} \mathrm{C}$ NMR [3889,3911], IR [3889], MS [3911].
Methyl ether $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

- Preparation by reaction of dimethyl sulfate with 4-ethyl-2-hydroxyacetophenone in the presence of aqueous sodium hydroxide solution (92\%) [4221].
b.p. ${ }_{15} 160^{\circ}$ [4221].

2,4-Dinitrophenylhydrazone $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 344.33 m.p. $211-212^{\circ}$ [4214].

1-(4-Ethyl-3-hydroxyphenyl)ethanone

[73898-20-1]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
Described [3734] p. 814
Synthesis

- Also refer to: [3905].

Methyl ether [947691-65-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23 [3905]

1-(5-Ethyl-2-hydroxyphenyl)ethanone

[24539-92-2] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Described [3734] p. 814
Syntheses

- Also refer to: [3773,3887,4222].

1-(2-Hydroxy-3,5-dimethylphenyl)ethanone

[1198-66-9]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
mol.wt. 164.20

Described [3734] p. 814
Synthesis

- Also refer to: [3773].

1-(2-Hydroxy-4,5-dimethylphenyl)ethanone

[36436-65-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Described [3734] p. 815
Synthesis

- Also refer to: [4223].

1-(2-Hydroxy-4,6-dimethylphenyl)ethanone

[16108-50-2]

Described [3734] p. 816
Synthesis

- Also obtained by heating its methyl ether with pyridinium chloride for 15 min (51\%) [3765].

Methyl ether
[21009-92-7]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 178.23

- Obtained by reaction of acetyl chloride with 3,5-dimethylanisole in the presence of aluminium chloride in carbon disulfide at 25° [4224].
- Also obtained by reaction of dimethyl sulfate with 2-hydroxy-4,6-dimethylacetophenone in the presence of sodium hydroxide at 50° (60\%) [4225].
- Also obtained by reaction of acetic anhydride with 3,5-dimethylanisole in the presence of aluminium chloride in carbon disulfide [4226].
- Also refer to: [3765,4227-4229].
b.p. ${ }_{14} 135^{\circ}$ [4224], b.p. ${ }_{18} 140-144^{\circ}$ [4226];
m.p. $48-49^{\circ}[4224,4227] ;$
${ }^{1} \mathrm{H}$ NMR [4225,4228,4229], IR [4225].

1-(4-Hydroxy-2,3-dimethylphenyl)ethanone

[5384-57-6] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Described [3734] p. 818
Syntheses

- Also obtained by heating its methyl ether with pyridinium chloride for $15 \mathrm{~min}(70 \%)$ [3765].
- Also refer to: [4230].

Methyl ether $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23 [3765]

1-(4-Hydroxy-2,6-dimethylphenyl)ethanone

[91060-92-3]
mol.wt. 164.20

Methyl ether [60999-76-0] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

- Obtained by treatment of 2,6-dimethyl-4-methoxybenzoyl chloride,
- with dimethylcadmium in benzene [4231];
- with methylmagnesium iodide [4231].
- Also obtained by treatment of 2-(1-ethoxyvinyl)-5-methoxy-1,3-dimethylbenzene with 50% sulfuric acid in dilute THF at r.t. [4232].
- Also obtained by reaction of dimethyl sulfate with 4-hydroxy-2,6-dimethylacetophenone in the presence of aqueous sodium hydroxide (84\%) [4225].
- Also refer to: [4233,4234].
b.p. ${ }_{0.08} 85-92^{\circ}$ [4231]; m.p. 47° [4231], $46-48^{\circ}$ [4234];
${ }^{1} \mathrm{H}$ NMR [4225,4234], ${ }^{13} \mathrm{C}$ NMR [3858], IR [4225,4234].

1-(4-Hydroxy-3,5-dimethylphenyl)ethanone

[5325-04-2] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Methyl ether [60609-65-6] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

- Obtained by reaction of dimethyl sulfate with 3,5-dimethyl-4-hydroxyacetophenone in aqueous sodium hydroxide solution [4235].
- Also obtained by reaction of acetyl chloride,
- with 2-methoxy-1,3-dimethylbenzene in the presence of aluminium chloride in benzene [4236];
- with 1-methoxy-2,6-dimethyl-4-tert-butylbenzene in the presence of aluminium chloride in nitromethane/methylene chloride mixture at r.t. for 12 h (80\%) [4237].
- Preparation by the method of [4235], (77\%) [4149].
- Also refer to: [3751-3756,4233,4238-4241].
b.p. $105-110^{\circ}$ [4241];
m.p. $47-48^{\circ}$ [4235], $39.5-40.5^{\circ}$ [4149], 39-40 ${ }^{\circ}$ [4236];
${ }^{1} \mathrm{H}$ NMR [3753,3756,4233,4241], ${ }^{13} \mathrm{C}$ NMR [3751,3754,4239], IR [4149,4240], UV [4240].

1-(2,4-Dihydroxy-3,5-dimethylphenyl)ethanone
[577-45-7] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Described [3734] p. 820
Synthesis

- Also refer to: [4242].

1-(2-Ethyl-4,5-dihydroxyphenyl)ethanone

[267008-03-7]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
New compound
Synthesis

- Obtained by treatment of 4,5-dimethoxy-2-ethyl-acetophenone with boron tribromide in methylene chloride at r.t. for 12 h (97\%) [4243].
'H NMR [4243], IR [4243]
Dimethyl ether [105401-93-2] $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
- Obtained from 4-ethyl-1,2-dimethoxybenzene by treatment with,
- acetyl chloride in the presence of ferric chloride in carbon disulfide [4244];
- acetic anhydride in the presence of titanium tetrachloride (66\%) [4243].
- Also refer to: [4174,4245,4246].
b.p. ${ }_{10} 104-108^{\circ}$ [4243];
m.p. 63° [4244], $62-63^{\circ}$ [4245], 62° [4246]; ${ }^{1} \mathrm{H}$ NMR [4243], IR [4243].

1-(3-Ethyl-2,6-dihydroxyphenyl)ethanone

[54337-59-6] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Described [3734] p. 824
Syntheses

- Also refer to: [3822,4033].

1-(5-Ethyl-2,4-dihydroxyphenyl)ethanone

[4460-42-8]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 180.20
Described [3734] p. 825
Syntheses

- Also obtained by reaction of acetic acid with 4-ethyl-resorcinol in the presence of boron trifluoride etherate at 90° for 12 h under nitrogen (69\%) [3829].
- Also refer to: [4247-4249].

Light-pink crystalline solid [3829]; m.p. 112° [4249];
${ }^{1} \mathrm{H}$ NMR [3829], MS [3829]; TLC [3829].
USE: Stabilization of PVC [4249].
Dibenzyl ether [1001385-69-8] $\quad \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 360.45

- Obtained by reaction of benzyl bromide with 5-ethyl-2,4-dihydroxyacetophenone in the presence of potassium carbonate in DMF at r.t. for $3 \mathrm{~h}(70 \%)$ [3829].
Colourless solid [3829];
${ }^{1} \mathrm{H}$ NMR [3829], ${ }^{13} \mathrm{C}$ NMR [3829], MS [3829].

1-(2-Hydroxy-4-methoxy-5-methylphenyl)ethanone

[81511-52-6]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Described [3734] p. 827
Synthesis

- Also obtained by reaction of acetic anhydride with N -(2,4-dimethoxybenzyl)-N-ethylethanamine in the presence of boron trifluoride etherate in methylene chloride (52\%) [3830].
m.p. $64-65^{\circ}$ [3830];
${ }^{1} \mathrm{H}$ NMR [3830], ${ }^{13} \mathrm{C}$ NMR [3830], MS [3830].

1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethanone

[4223-84-1]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 180.20

Described [3734] p. 828
Synthesis

- Also refer to: [4250].

1-(3-Hydroxy-4-methoxy-5-methylphenyl)ethanone

[741264-99-3]

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}
$$

mol.wt. 180.20

New compound
Synthesis

- Refer to: [3737].

1-(4-Hydroxy-2-methoxy-5-methylphenyl)ethanone
[868702-20-9] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

New compound
Synthesis

- Refer to: [3862].

1-[2-Hydroxy-5-(methoxymethyl)phenyl]ethanone
[60402-33-7] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad m o l . w t .180 .20$

New compound
Synthesis

- Refer to: [3744].

1-[4-Hydroxy-3-(methoxymethyl)phenyl]ethanone

[65033-20-7]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

New compound
Syntheses

- Refer to: [4011,4251].

1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)ethanone
[83459-37-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

Described [3734] p. 831
Syntheses

- Also refer to: [4193,4252].

Isolation from natural sources

- From Euphorbia ebracteolata (Euphorbiaceae) [4253,4254].
- From the roots of Euphorbia kansui (Euphorbiaceae) [4255].
- From Stellera chamaejasme [4253]. ${ }^{1} \mathrm{H}$ NMR [4193,4255], ${ }^{13} \mathrm{C}$ NMR [4193,4255],
UV [4253], MS [4253]; HPLC [4253], LC [4253].

1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)ethanone
[52200-61-0] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

Described [3734] p. 832

Isolation from natural sources

- From the Lichen Psoroma leprolomum (compound 8) [4193].

1-(2-Hydroxy-3,4-dimethoxyphenyl)ethanone

[5396-18-9]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 196.20

Described [3734] p. 834

Syntheses

- Also obtained by action of hydrogen bromide with 2,3,4-trimethoxyacetophenone in acetic acid at r.t. (71\%) [3984].
- Also refer to: [3810,4011,4042].
m.p. 65.5-71.5 ${ }^{\circ}$ [3984].

1-(2-Hydroxy-4,6-dimethoxyphenyl)ethanone

[90-24-4]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Described [3734] p. 837
Syntheses

- Also obtained by reaction of dimethyl sulfate with phloroacetophenone in the presence of potassiumcarbonate in refluxing acetone (97\%) [4071] for 5 h (36\%) [4188].
- Also obtained by action of hydrogen bromide with 2,4,6-trimethoxyacetophenone in acetic acid at r.t. (27\%) [3984].
- Also refer to: [4205,4256,4257]. m.p. $80-82^{\circ}$ [4188], $79-82^{\circ}$ [3984], 78° [4071].

Acetate $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24
m.p. $105-108^{\circ}$ [3984].

1-(6-Hydroxy-2,3-dimethoxyphenyl)ethanone

[22248-13-1]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 196.20

Described [3734] p. 841
Synthesis

- Also refer to: [4042].

1-[2-Hydroxy-4-(2-hydroxyethoxy)phenyl]ethanone

[17086-21-4]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
New compound
Synthesis

- Refer to: [4258].

1-[2-Hydroxy-4-(methoxymethoxy)phenyl]ethanone
[65490-08-6]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 196.20

Described [3734] p. 842
Syntheses

- Also obtained by reaction of methoxymethyl chloride with resacetophenone in the presence of potassium carbonate in acetone at r.t. for $24 \mathrm{~h}(87 \%)$ [4259].
- Also refer to: [4260].
m.p. $38-39^{\circ}$ [4259];
${ }^{1} \mathrm{H}$ NMR [4259], ${ }^{13} \mathrm{C}$ NMR [4259], IR [4259], MS [4259].
1-[2-Hydroxy-5-(methoxymethoxy)phenyl]ethanone
[31405-69-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

1-(2,4,6-Trihydroxy-3,5-dimethylphenyl)ethanone

[13383-63-6]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 196.20

Described [3734] p. 843
Synthesis

- Also refer to: [4194].

UV [4194].
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)ethanone
[7499-99-2]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 212.20

Described [3734] p. 844
Syntheses

- Also refer to: [4262,4263].

1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)ethanone

[6962-57-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20

Described [3734] p. 845
Syntheses

- Obtained by treatment of 2-hydroxy-4,6-dimethoxyacetophenone with an aqueous solution of potassium persulfate in 10% sodium hydroxide (58\%) [4071].
- Also refer to: [4264].
m.p. 164° [4071].

1-[2,4-Dihydroxy-6-(methoxymethoxy)phenyl]ethanone
[71386-98-6]

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad \text { mol.wt. } 212.20
$$

New compound

Synthesis

- Obtained from palladium-carbon-catalyzed hydrogenolysis of 2,4-bis(benzyloxy)-6-methoxymethoxyacetophenone in a mixture of methanol and ethyl acetate at 20° (95\%) [4213].
m.p. $\quad 117-119^{\circ}$ [4213]; ${ }^{1} \mathrm{H}$ NMR [4213].

1-[5-(Dimethylamino)-2-hydroxyphenyl]ethanone
[49619-68-3] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22

Methyl ether $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.25

- Refer to: [3858]; ${ }^{13} \mathrm{C}$ NMR [3858].

1-(2-Amino-4,5-dimethoxyphenyl)ethanone

[4101-30-8]
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$
mol.wt. 195.25

New compound
Syntheses

- Refer to: [4019,4265].

Ethyl 3-acetyl-2-deuterio-4-hydroxybenzoate

[78515-06-7] $\quad \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{DO}_{4} \quad$ mol.wt. 209.21

New compound
Synthesis

- Obtained by reaction of 5-formyl-1,3-dimethyluracil-d1 with 2,4-pentanedione in the presence of sodium ethoxide in ethanol on heating for 3 h [4098].
m.p. $65-67^{\circ}$ [4098]; ${ }^{1} \mathrm{H}$ NMR [4098], UV [4098].

1-[3-Ethyl-6-hydroxy-2-(trifluoromethyl)phenyl]ethanone

[884851-64-3] $\quad \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 232.20
 New compound
Synthesis

- To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 1,3-bis-silyl enol ether $\left(\mathrm{R}^{3}=\mathrm{CH}_{3}\right)$ and 4-ethoxy-3-ethyl-1,1,1-trifluoro-3-buten-2-one was added TiCl_{4} at -78° under argon atmosphere.
The temperature of the reaction mixture was allowed to rise to 20° during 14 h and, subsequently, an aqueous solution of $10 \% \mathrm{HCl}$ was added (40%) [4202].
${ }^{1} \mathrm{H}$ NMR [4202], ${ }^{13} \mathrm{C}$ NMR [4202], ${ }^{19} \mathrm{~F}$ NMR [4202], IR [4202]; TLC [4202].

1-[2-Hydroxy-3-(2-propen-1-yl)phenyl]ethanone

[58621-39-9]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 176.22
Described [3734] p. 850
Syntheses

- Also obtained by thermal Claisen rearrangement of 2-(allyloxy)acetophenone,
- by heating at 200° for 44 h (quantitative yield) [3911];
- by irradiation in a microwave set at 230 W and 210° for 1 h with simultaneous air cooling (quantitative yield) [3911].
${ }^{1} \mathrm{H}$ NMR [3911], ${ }^{13} \mathrm{C}$ NMR [3911], MS [3911].

1-[2,4-Dihydroxy-3-(2-propen-1-yl)phenyl]ethanone

[38987-00-7]

Described [3734] p. 852
Syntheses

- Also refer to: [4155,4266].

1-[2,5-Dihydroxy-3-(2-propen-1-yl)phenyl]ethanone

[956525-45-4] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21

New compound
Synthesis

- Refer to: [3895].

Oxime [956525-49-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{4} \quad$ mol.wt. 224.24 [3895]
1-[5-Hydroxy-2-(2-propen-1-yloxy)phenyl]ethanone
[956525-48-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21

New compound
Synthesis

- Refer to: [3895].

1-[5-(Acetyloxy)-2-hydroxy-4-methylphenyl]ethanone

[126570-32-9]	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
OH	Described [3734] p. 854
COCH_{3}	Synthesis
	- Also obtained by Fries rearrangement of 2-methylhydroquinone diacetate with aluminium chloride at 120° for 15 min [4165].
m.p. 108° [4165].	

1-(2,3-Dihydro-6-hydroxy-7-methoxy-5-benzofuranyl)ethanone

[88897-94-3] \quad| $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21 |
| :--- |
| New compound |
| Synthesis |
| $-\quad$ Refer to: [4267]. |

1-[2-Hydroxy-5-(1-oxopropoxy)phenyl]ethanone
[1004985-99-2] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

New compound
Synthesis

- Obtained by direct acylation of quinacetophenone with vinyl propionate in the presence of Candida antarctica lipase B (CAL-B) in diisopropyl ether at 45° for 1 day (73\%) [4268].
${ }^{1} \mathrm{H}$ NMR [4268], ${ }^{13} \mathrm{C}$ NMR [4268].

1-[5-Hydroxy-2-(1-oxopropoxy)phenyl]ethanone

[1004986-06-4] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

New compound
Synthesis

- Obtained by direct acylation of quinacetophenone with vinyl propionate in the presence of Candida antarctica lipase B (CAL-B) in diisopropyl ether at 45° for 1 day (8%) [4268].
${ }^{1} \mathrm{H}$ NMR [4268], ${ }^{13} \mathrm{C}$ NMR [4268].
1-(5-Bromo-2-hydroxy-3,4,6-trimethoxyphenyl)ethanone
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{5} \quad$ mol.wt. 305.13

New compound
Synthesis

- Obtained by bromination of 2-hydroxy-3,4,6-trimethoxy-acetophenone with N -bromosuccinimide [4206].
m.p. 83° [4206].

Methyl ether [92905-07-2] $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{5} \quad$ mol.wt. 397.13

- Obtained by treatment of 2-hydroxy-3,4,6-trimethoxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [4206].
- Also obtained by treatment of 2,4-dihydroxy-3,6-dimethoxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [4206]. m.p. 51° [4206].

1-[2-(2-Chloroethyl)-4-methoxyphenyl]ethanone

[960592-54-5]	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}$ mol.wt. 198.65
New compound	
Synthesis	
O	- Refer to: [4269].

1-(4-Ethyl-5-methoxy-2-nitrophenyl)ethanone

1-[4-Hydroxy-3-(1-methylethyl)phenyl]ethanone

[1632-59-3]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Described [3734] p. 867
Synthesis

- Also obtained by heating its methyl ether with pyridinium chloride for 15 min (67\%) [3765].

Methyl ether [1634-64-6] $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ mol.wt. 192.26

- Obtained by reaction of acetyl chloride with 2-isopropylanisole in the presence of aluminium chloride in carbon disulfide [4270], (64\%) [4184].
- Also obtained by using the method [4271], (66\%) [4272].
- Also refer to: [3765,4273].
b.p. ${ }_{0.2} 108^{\circ}$ [4184], b.p. ${ }_{21} 165-166^{\circ}$ [4270], b.p. ${ }_{37} 170-178^{\circ}$ [4272];
$\mathrm{n}_{\mathrm{D}}^{23}=1.5385[4270] ;$ m.p. $50-51^{\circ}$ [4184].

1-(2-Hydroxy-4-propylphenyl)ethanone

[104175-20-4] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Described [3734] p. 868
Synthesis

- Also obtained by Fries rearrangement of 3-propylphenyl acetate (b.p. ${ }_{16} 128-129^{\circ}$) with aluminium chloride at $130-135^{\circ}$ for $90 \mathrm{~min}(78 \%)$ [4214].
b.p. ${ }_{18} 145-146^{\circ}$ [4214].

2,4-Dinitrophenylhydrazone $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 358.35
m.p. $198-199^{\circ}$ [4214].

1-(4-Hydroxy-2-propylphenyl)ethanone

[104174-27-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Described [3734] p. 868
Synthesis

- Also obtained by Fries rearrangement of 3-propylphenyl acetate (b.p. ${ }_{16} 128-129^{\circ}$) with aluminium chloride at $130-135^{\circ}$ for 90 min (2\%) [4214].
b.p. ${ }_{760} 332-334^{\circ}[4214] ;$ m.p. $75-76^{\circ}$ [4214].

2,4-Dinitrophenylhydrazone $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 358.35
m.p. $163-164^{\circ}$ [4214].

1-[2,4-Dihydroxy-5-(1-methylethyl)phenyl]ethanone

[747414-17-1] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad m o l . w t . ~ 194.23$

New compound

Syntheses

- Obtained by reaction of acetic acid with 4-isopropylresorcinol in the presence of boron trifluoride etherate at 90° for $16 \mathrm{~h}(88 \%)$ [3829].
- Also refer to: [3870-3874].

Off-white solid [3829]; ${ }^{1} \mathrm{H}$ NMR [3829], MS [3829].
Dibenzyl ether [747414-18-2] $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 374.48

- Obtained by reaction of benzyl bromide with 5-isopropylresacetophenone in the presence of potassium carbonate in DMF at 150° for 16 h under nitrogen (88%) [3829].
- Also refer to: [3870-3874].

Colourless solid [3829]; ${ }^{1} \mathrm{H}$ NMR [3829], MS [3829].
1-[2-Hydroxy-3-methyl-4-[(methylthio)methoxy]phenyl]ethanone
[942133-87-1]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 226.30
 New compound
Synthesis

- Obtained by treatment of 2,4-dihydroxy-3-methyl-acetophenone with chloromethyl methyl sulfide in the presence of $\mathrm{KOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ mixture in boiling 2-butanone [4274].

1-[2-Hydroxy-4-(methoxymethoxy)-3-methylphenyl]ethanone
[942133-85-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

New compound

Synthesis

- Obtained by treatment of 2,4-dihydroxy-3-methyl-acetophenone with chloromethyl methyl ether in the presence of $\mathrm{KOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ mixture in boiling 2-butanone [4274].

1-(2,4,6-Trihydroxy-3-propylphenyl)ethanone

[96756-28-4]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
New compound
Synthesis

- Obtained by treatment of its trimethyl ether with boron tribromide in methylene chloride at -78°, then at r.t. for 24-48 h (77\%) [4192].
${ }^{1} \mathrm{H}$ NMR [4192], ${ }^{13} \mathrm{C}$ NMR [4192], MS [4192].
Trimethyl ether [916916-57-9] $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31
- Obtained by reaction of acetyl chloride with 2,4,6-trimethoxy-n-propylbenzene in methylene chloride in the presence of stannic chloride at -10° for $2-3 \mathrm{~h}$ (80\%) [4192].
${ }^{1} \mathrm{H}$ NMR [4192], ${ }^{13} \mathrm{C}$ NMR [4192], MS [4192].

1-(2-Hydroxy-3,4,5-trimethoxyphenyl)ethanone

[30225-96-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23

Described [3734] p. 888
Synthesis

- Also obtained by Friedel-Crafts reaction of 3,4,5-trimethoxy-phenol and acetic anhydride using zinc chloride in nitromethane (91\%) [4275].

1-(2-Hydroxy-3,4,6-trimethoxyphenyl)ethanone

[7507-98-4] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23

Described [3734] p. 888
Syntheses

- Also obtained by reaction of acetyl chloride with 1,2,3,5-tetra-methoxybenzene in the presence of aluminium chloride in ethyl ether (55\%) [4071] under argon, at 0° for 3 h , then at r.t. overnight (56\%) [4276].

Isolation from natural sources

- From liverwort Adelanthus decipiens [4074].
- From liverwort Plagiochila fasciculata Lindenb. [4277].

```
m.p. 114-115}\mp@subsup{}{}{\circ}[4276], 112-1130 [4071]
\mp@subsup{}{}{13}\textrm{C}\mathrm{ NMR [4276,4278], NOE [4074].}
```

1-(6-Hydroxy-2,3,4-trimethoxyphenyl)ethanone
[22248-14-2]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 226.23

Described [3734] p. 891
Syntheses

- Also obtained by reaction of dimethyl sulfate with 2,3,4,6-tetrahydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 3 h (41\%) [4063].
- Also refer to: [4071].
m.p. 76° [4063];
${ }^{1} \mathrm{H}$ NMR [4063], ${ }^{13} \mathrm{C}$ NMR [4063], IR [4063], UV [4063], MS [4063]; TLC [4063].

1-(2-Amino-4-ethyl-5-methoxyphenyl)ethanone
[947691-67-0]

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
mol.wt. 193.25
New compound
Syntheses

- Refer to: [3905,4279].

1-(2-Amino-5-ethyl-4-methoxyphenyl)ethanone
[947691-62-5]
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
mol.wt. 193.25

New compound
Syntheses

- Refer to: [3905,4279].

1-[3-[(Dimethylamino)methyl]-4-hydroxyphenyl]ethanone
[73096-98-7]
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.25

New compound
Syntheses

- Obtained by adding dimethylamine to a solution of 3-chloromethyl-4-hydroxyacetophenone in benzene in the cold. Stirring was continued for $4-5 \mathrm{~h}$, then treatment of the hydrochloride so obtained with sodium bicarbonate (60%) [4120].
- Also obtained by adding an aqueous solution of 37% formaldehyde to 4-hydroxyacetophenone and dimethylamine in dilute ethanol, then refluxing for $22 \mathrm{~h}(72 \%)$ [4280].
- Also obtained from 4-hydroxyacetophenone using Mannich reaction (55\%) [4281].
- Also obtained by reaction of dimethylmethyliminium iodide with 4-hydroxyacetophenone in the presence of,
- potassium carbonate in methylene chloride at r.t. for 7 h (85\%) [4282];
- carbonate exchange resin in methylene chloride at r.t. for 16 h (97\%) [4283].
- Also refer to: (55\%) [4281].
m.p. 74° [4282], 73° [4281], 72° [4120], 68° [4280];
${ }^{1} \mathrm{H}$ NMR [4120,4281,4282], IR [4120], MS [4120,4282]; pK_{a} [4284].
BIOLOGICAL ACTIVITY: Insecticide [4120,4154].
Hydrochloride [91246-57-0] $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 229.71
m.p. $\quad 174-175^{\circ}$ [4281], 170° [4280].

Methyl ether $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27

- A solution of (5-bromo-2-methoxybenzyl)dimethylamine, butoxyethene, palladium diacetate, 1,3-bis(diphenylphosphino)propane and potassium carbonate in dimethylformamide under argon was heated at 80° overnight. The mixture was poured into a solution of 2 N aqueous hydrochloric acid and stirred for 1 h . The solution was adjusted to basic pH using a solution of 2 N aqueous sodium hydroxide (42\%) [4285].
Orange oil [4285]; ${ }^{1} \mathrm{H}$ NMR [4285]; GC-MS [4285].
8-Acetyl-5,7-dihydroxy-3-iodo-6-methoxy-4H-1-benzopyran-4-one
[870480-53-8]

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{IO}_{6} \quad$ mol.wt. 376.10
New compound
Synthesis
- Obtained by treatment of its dimethyl ether with titanium tetrachloride in toluene, first at r.t, then at 100° for $1 \mathrm{~h}(73 \%)$ [4275].
Colourless crystals; m.p. 224-226 [4275];
${ }^{1} \mathrm{H}$ NMR [4275], MS [4275].
Dimethyl ether [870480-17-4] $\quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IO}_{6} \quad$ mol.wt. 404.16
- Obtained by treatment of (E)-3'-acetyl-3-(dimethylamino)-2'-hydroxy-4',5', 6^{\prime}-trimethoxy-acrylophenone (m.p. 113-114 ${ }^{\circ}$) with iodine in methylene chloride at r.t. for $2 \mathrm{~h}(83 \%)$ [4275].
m.p. $\quad 139-140^{\circ}$ [4275]; ${ }^{1} \mathrm{H}$ NMR [4275], MS [4275].

1-(5-Hydroxy-2,3-dimethyl-6-benzofuranyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 204.23
$$

New compound
Synthesis

- Also obtained by heating its methyl ether with pyridinium chloride for 30 min (71\%) [3765].

Methyl ether [4223-70-5] $\quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 218.25.

- Refer to: [3765,4286].
b.p. ${ }_{12} 191-192^{\circ}$ [4286]; m.p. 114° [4286].

1-(4,7-Dimethoxy-5-benzofuranyl)ethanone

[1025008-58-5] $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 220.22

New compound
Synthesis

- Obtained from 5-acetyl-4,7-dimethoxy-6-benzofuranyl 1,1,1-trifluoromethanesulfonate [1025008-57-4], (89\%) [4267].

1-(6-Hydroxy-7-methoxy-4-methyl-5-benzofuranyl)ethanone

USE: As potassium channel blockers [4287].
1-(6-Hydroxy-4,7-dimethoxy-5-benzofuranyl)ethanone (Khellinone)
[484-51-5]
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 236.22

New compound
Syntheses

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 4,9-dimethoxy-7-methylfuro[3,2-g] chromen- 5 -one in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h [4288].
- Also obtained by treatment of 5-(β-dimethylaminocrotonyl)-4,7-dimethoxy-6hydroxycoumarone with 3% sodium hydroxide for 30 min at r.t. [4289].
- Also refer to: [4287], 7 [4267]. m.p. $98-99^{\circ}$ [4289].

USE: As potassium channel blockers [4287].
Phenylhydrazone $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 326.35
m.p. $167-168^{\circ}$ [4289].

1-[(2-Cyclopropylmethoxy)-6-hydroxyphenyl]ethanone

[405239-70-5] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24

New compound

Synthesis

- Preparation by reaction of (bromomethyl)cyclopropane with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in acetone at 50° for 2 days (83\%) [4006].

1-[4-Hydroxy-3-(1-hydroxy-3-buten-1-yl)phenyl]ethanone

[1000781-23-6] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24

New compound
Synthesis

- Refer to: [4290].

1-[3-(Acetyloxy)-6-hydroxy-2,4-dimethylphenyl]ethanone

[334868-41-6]
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

New compound

Syntheses

- Obtained by [3+3] cyclisation of 2-acetoxy-3-(silyloxy) alk-2-en-1-one (4a) with 1,3-bis-silyl enol ether (5b) in
the presence of titanium tetrachloride in methylene chloride, first at -78°, then to 20° for 20 h (55\%) [4207], (42\%) [4291].
Yellow crystals [4291];
${ }^{1} \mathrm{H}$ NMR [4291], ${ }^{13} \mathrm{C}$ NMR [4291], IR [4291], MS [4291].
$\mathbf{4} \mathbf{a}=3$-(acetyloxy)-4-(trimethylsilyloxy)-3-penten-2-one.

$\mathbf{5 b}=$ 2,4-bis(trimethylsilyloxy)-2-pentene.

1-(2,3-Dihydro-6-hydroxy-4,7-dimethoxy-5-benzofuranyl)ethanone

[6938-22-3]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24
New compound
Synthesis

- Obtained by treatment of Khellinone in methanol with hydrogen in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(86 \%)$ [4267].

1-[3-(2-Chloroethyl)-2,4-dimethyl-6-hydroxyphenyl]ethanone
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70

New compound
Syntheses

- Preparation by adding titanium tetrachloride in methylene chloride to a methylene chloride solution of 1,1-diacetyl-cyclopropane and 1-methyl-1, 3-bis (trimethylsilyloxy)-1,3-butadiene at -78° under argon atmosphere in the presence of molecular sieves $(4 \AA)$. The temperature of the reaction mixture was allowed to rise to 20° over 6 h , and stirred for an additional 6 h at 20° (68\%) [4292], (82\%) [4293].
${ }^{1} \mathrm{H}$ NMR [4293], ${ }^{13} \mathrm{C}$ NMR [4293], IR [4293], MS [4293]; TLC [4293].

1-(2-Butyl-4-hydroxyphenyl)ethanone

[105337-80-2] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

New compound

Synthesis

- Obtained by Fries rearrangement of 3-butylphenyl acetate (b.p. ${ }_{12} 130-131^{\circ}$) with aluminium chloride at $130-135^{\circ}$ for $60 \mathrm{~min}(9 \%)$ [4214].
b.p. . $_{34} 226-230^{\circ}$ [4214]; m.p. 61-62 ${ }^{\circ}$ [4214].

1-(4-Butyl-2-hydroxyphenyl)ethanone

[105337-19-7]

b.p. ${ }_{34} 180-182^{\circ}[4214]$.
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

New compound

Synthesis

- Obtained by Fries rearrangement of 3-butylphenyl acetate (b.p. ${ }_{12} 130-131^{\circ}$) with aluminium chloride at $130-135^{\circ}$ for $60 \mathrm{~min}(73 \%)$ [4214].

2,4-Dinitrophenylhydrazone $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 372.38
m.p. $187-188^{\circ}$ [4214].

1-(5-Butyl-2-hydroxyphenyl)ethanone

[50743-14-1] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Methyl ether [784177-14-6] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28 Refer to: [4294].

1-(3,4-Diethyl-2,5-dihydroxyphenyl)ethanone

[873222-91-4]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

New compound

Synthesis

- Obtained by $\left[\mathrm{Cp} * \mathrm{RuCl}_{2}\right]_{2}$-catalyzed cocyclisation of 3-hexyne (1,2-diethylacetylene), 3-buten-2-one and carbon monoxide in DMF at 140° for 20 h (60\%) [4295].

1-(2,5-Dihydroxy-3-methyl-4-propylphenyl)ethanone

[873222-93-6]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

New compound

Synthesis

- Obtained by $\left[\mathrm{Cp} * \mathrm{RuCl}_{2}\right]_{2}$-catalyzed cocyclisation of 2-hexyne, 3-buten-2-one and carbon monoxide in DMF at 140° for $20 \mathrm{~h}(27 \%)$ [4295].
${ }^{1} \mathrm{H}$ NMR [4295].
1-(2,5-Dihydroxy-4-methyl-3-propylphenyl)ethanone
[873222-92-5]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
New compound
Synthesis
- Obtained by $\left[\mathrm{Cp} * \mathrm{RuCl}_{2}\right]_{2}$-catalyzed cocyclisation of 2-hexyne, 3-buten-2-one and carbon monoxide in DMF at 140° for 20 h (35\%) [4295].
${ }^{1} \mathrm{H}$ NMR [4295].

1-[2,4-Dihydroxy-5-(2-methylpropyl)phenyl]ethanone (6-Acetyl-4-isobutylresorcinol)

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 208.26
$$

New compound
Synthesis

- Obtained by reaction of acetic acid with 4-isobutylresorcinol in the presence of boron trifluoride etherate at 90° for 16 h [3829].

Dibenzyl ether $\quad \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3} \quad$ mol.wt. 388.51

- Obtained by reaction of benzyl bromide with 5-isobutylresacetophenone in the presence of potassium carbonate in DMF under nitrogen at 150° for 16 h (25\%) [3829].
Colourless crystals [3829]; ${ }^{1} \mathrm{H}$ NMR [3829], MS [3829].

1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]ethanone

[140660-31-7] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Described [3734] p. 924
Synthesis

- Also obtained by adding sulfuric acid to a suspension of resacetophenone in a mixture of 2-methyl-2propanol and trifluoroacetic acid under nitrogen.
The resulting suspension was heated at 75° for $3 \mathrm{~h}(92 \%)$ [3829].
Pale orange powder [3829]; ${ }^{1} \mathrm{H}$ NMR [3829], MS [3829].
Dibenzyl ether [747414-06-8] $\quad \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3} \quad$ mol.wt. 388.51
- Obtained by treatment of 5-tert-butylresacetophenone with benzyl bromide in the presence of potassium carbonate in DMF at r.t. for $4 \mathrm{~h}(36 \%)$ [3829].
- Also refer to: [3870-3874].

Pale-pink powder [3829]; ${ }^{1} \mathrm{H}$ NMR [3829], MS [3829].
1-[2-Hydroxy-3-methyl-4-[2-(methylthio)ethoxy]phenyl]ethanone
[942133-89-3]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$
New compound
Synthesis

- Obtained by treatment of 2,4-dihydroxy-3-methyl-acetophenone with 2-chloroethyl methyl sulfide in the presence of $\mathrm{KOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ mixture in boiling 2-butanone [4274].

1-[2,3-Dimethoxy-5-(methoxymethyl)phenyl]ethanone

[1004984-76-2]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$
mol.wt. 224.26

New compound
Synthesis

- Obtained by adding a solution of 1-(2,3-dimethoxy-5methoxymethylphenyl)ethanol in methylene chloride to a suspension of PCC and silica gel in methylene chloride and stirring for 2 h at r.t. (98\%) [4296].

Oil [4296];
${ }^{1} \mathrm{H}$ NMR [4296], ${ }^{13} \mathrm{C}$ NMR [4296], IR [4296], MS [4296].

1-[4-(Ethoxymethoxy)-2-hydroxy-3-methylphenyl]ethanone

$$
\begin{equation*}
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 224.26 \tag{942133-88-2}
\end{equation*}
$$

New compound

Synthesis

- Obtained by treatment of 2,4-dihydroxy-3-methyl-acetophenone with 2-chloroethyl methyl ether in the presence of $\mathrm{KOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ mixture in boiling 2-butanone [4274].

1-(3-Ethyl-4-hydroxy-2,6-dimethoxyphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 224.26
$$

Acetate $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29

- Obtained by reaction of acetic anhydride with 3-ethyl-4-hydroxy-2,6-dimethoxyacetophenone (80\%) [4297].
b.p. ${ }_{0.005} 180-200^{\circ}$ [4297]; m.p. 59-60 [4297].

1-[4-(Ethoxymethoxy)-2-hydroxy-6-methoxyphenyl]ethanone

[158017-91-5]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
mol.wt. 240.26

New compound
Synthesis

- Obtained by reaction of ethoxymethyl chloride with 2,4-dihydroxy-6-methoxyacetophenone in the presence of potassium carbonate in acetone for $5-10 \mathrm{~min}$ [4298].
m.p. 95° [4298];
${ }^{1} \mathrm{H}$ NMR [4298], IR [4298], UV [4298]; LC [4298].
Methyl ether [158017-92-6] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
- Obtained by reaction of dimethyl sulfate with 4-ethoxymethoxy-2-hydroxy-6-methoxy-acetophenone in the presence of potassium carbonate in refluxing acetone for 8 h (79\%) [4298].
Colourless oil [4298];
${ }^{1} \mathrm{H}$ NMR [4298], IR [4298]; TLC [4298].
1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]ethanone
[65490-09-7]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$
mol.wt. 256.26
Described [3734] p. 935
Synthesis
- Also obtained by reaction of chloromethyl methyl ether with phloroacetophenone monohydrate in the presence of potassium carbonate in refluxing acetone for $90 \mathrm{~min}(50 \%)$ [4299] according to [4300].

White solid [4299]; ${ }^{1} \mathrm{H}$ NMR [4299], ${ }^{13} \mathrm{C}$ NMR [4299].

1-[3-[(Dimethylamino)methyl]-2-hydroxy-5-methylphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27
New compound
Synthesis

- Obtained by adding N,N-dimethylamine gas into a solution of 3-chloromethyl-2-hydroxy-5-m ethylacetophenone in cold benzene and stirring for $4-5 \mathrm{~h}$. The solution of the hydrochloride obtained was neutralized with sodium bicarbonate solution to pH 7.0 (74\%) [4154].
Oil [4154]; ${ }^{1} \mathrm{H}$ NMR [4154], UV [4154].
BIOLOGICAL ACTIVITY: Insecticide [4154].
1-[6-Hydroxy-2-(1-methylethenyl)-5-benzofuranyl]ethanone (Euparin)
[532-48-9]
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 216.24

New compound

Isolation from natural sources

- From the roots of Ligularia stenocephala MATSUM. et KOIDZ. (Compositae) [4301].
- From brittle bush (Encelia farinosa Gray) [4302].

Yellow needles [4302]; m.p. $117-118^{\circ}$ [4303], 116° [4302];
${ }^{1} \mathrm{H}$ NMR [4302], IR [4302], UV [4302], MS [4302].
Acetate [69309-25-7] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
m.p. 80° [4304], $78-79^{\circ}$ [4302].

1-[6-Hydroxy-2-(1-methylethenyl)-7-benzofuranyl]ethanone
[55682-75-2] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 216.24
 New compound
Synthesis

- Refer to: [4305] (Chinese paper).

1-[(2R)-2,3-Dihydro-6-hydroxy-2-(1-methylethenyl)-5-
benzofuranyl]ethanone (R)-(-)-Hydroxytremetone
[21491-62-3]

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 218.25
New compound
Isolation from natural sources

- From the roots of Ligularia stenocephala MATSUM. et KOIDZ. (Compositae) [4301].
- From the white snakeroot plant (Eupatorium urticaefolium) [4306].
- From the rayless goldenrod plant (Aploppapus heterophyllus) [4306].

1-(7-Hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone (Eupatoriochromene A)
[19013-03-7] $\quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 218.25

New compound
Synthesis

- Obtained by dehydrogenation of 6-acetyl-7-hydroxy-2,2-dimethylchroman with DDQ in refluxing benzene for 1.5 h [4302].
m.p. $76-77^{\circ}$ [4302], 76° [4307];
${ }^{1} \mathrm{H}$ NMR [4302,4307], IR [4302], MS [4302].
Isolation from natural sources
- From the genus of Eupatorium riparium Regel and Eupatorium glandulosum H.B. \& K. (syn. Eupatorium adenophorum Spr.) (Eupatorieae) [4307].

Acetate $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 260.29
m.p. $75.5-76.5^{\circ}$ [4302].

Methyl ether [20628-09-5] $\quad \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 232.28
(Encecalin)

- Obtained by treatment of eupatoriochromene A with dimethyl sulfate in the presence of potassium carbonate [4307].
- Also obtained by oxidation of encecalol [6-(1-hydroxyethyl)-7-methoxy-2, 2-dimethylchromene] (encecalol) with manganese oxide in petroleum ether suspension for 2 h at r.t. (84\%) [4302].
Isolation from the natural sources
- From the genus of Eupatorium riparium Regel and Eupatorium glandulosum H.B. \& K. (syn. Eupatorium adenophorum Spr.) (Eupatorieae) [4307].
- From Encelia californica Nutt (tribe Heliantheae) [4084].
- From brittle bush (Encelia farinosa Gray) [4302].

Yellow viscous oil [4302], oil [4307];
b.p. ${ }_{0.05} 123^{\circ}$ [4308], b.p. $._{0.11} 135-137^{\circ}$ [4302];
${ }^{1} \mathrm{H}$ NMR [4302,4307], IR [4084,4302], MS [4084,4302].
Oxime (of the methyl ether) [23840-18-8] $\quad \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 247.29 m.p. 140° [4084,4308], $136-137^{\circ}$ [4302]; ${ }^{1} \mathrm{H}$ NMR [4084].

1-[6-Hydroxy-2-(1-methylethyl)-5-benzofuranyl]ethanone (Isodihydroeuparin)

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 218.25

New compound

Syntheses

- Obtained by hydrogenation (1 atm) of euparin in ethanol in the presence of Raney nickel [4309].
- Also refer to: [4310]. Isolation from natural sources
- From brittle bush (Encelia farinosa Gray) [4302].
- From the aerial parts of Senecio graveolens Wedd [4311]. m.p. $188-120^{\circ}$ [4302], 62° [4309], 57-58.5 ${ }^{\circ}$ [4312]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [4302,4309], UV [4302].

1-(4-Ethoxy-6-hydroxy-7-methoxy-5-benzofuranyl)ethanone

New compound

Syntheses

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 4-ethoxy-9-methoxy-7-methylfuro[3,2-g]-chromen-5-one (m.p. 104-106 ${ }^{\circ}$) in refluxing dilute ethanol, then the resulting solution was stirred at 70° for $3 \mathrm{~h}(75 \%)$ [4288].
- Also obtained by treatment of 5-(β-ethylaminocrotonyl)-4-ethoxy-6-hydroxy-7-methoxy-coumarone with 3% potassium hydroxide for 30 min at r.t. [4289].
m.p. $94-95^{\circ}$ [4288], $93-95^{\circ}$ [4289];
${ }^{1} \mathrm{H}$ NMR [4288], ${ }^{13} \mathrm{C}$ NMR [4288], MS [4288].
Benzoate $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$ mol.wt. 354.36 m.p. 83-85 ${ }^{\circ}$ [4289].
1-(7-Ethoxy-6-hydroxy-4-methoxy-5-benzofuranyl)ethanone
[88897-98-7] $\quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 250.25

New compound
Synthesis

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 9-ethoxy-4-methoxy-7-methylfuro[3,2-g]-chromen-5-one in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h [4288].

1-[3-(1,1-Dimethyl-2-propenyl)-2-hydroxyphenyl]ethanone

[873211-43-9]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
New compound
Synthesis

- Refer to: [4313].

BIOLOGICAL ACTIVITY: Antiproliferative and antimicrobial agent [4313].
1-[2-Hydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone
[873211-41-7] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27

New compound
Synthesis

- Refer to: [4313].

BIOLOGICAL ACTIVITY: Antiproliferative and antimicrobial agent [4313].
1-[4-Hydroxy-3-[(2E)-2-methyl-2-butenyl]phenyl]ethanone
[603110-50-5] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27

New compound
Synthesis

- Refer to: [4314].

1-[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone

[26932-05-8] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27

Described [3734] p. 939
Synthesis

- Also refer to: [4313].

BIOLOGICAL ACTIVITY: Antiproliferative and antimicrobial agent [4313].
1-(3,4-Dihydro-7-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone
[31273-58-2]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
New compound
Syntheses

- Obtained by cyclization of 2,4-dihydroxy-5-prenyl-acetophenone with concentrated hydrochloric acid in refluxing ethanol for 3 h (87\%) [4302].
- Also refer to: [4315].
m.p. 119° [4316], $117-118^{\circ}$ [4302];
${ }^{1} \mathrm{H}$ NMR [4302], IR [4302].

1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone

[19825-40-2]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Described [3734] p. 941
Synthesis

- Also refer to: [4155].

1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone

[28437-37-8]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Described [3734] p. 942
Syntheses

- Also obtained by adding 2-methyl-3-buten-2-ol over 30 min to a solution of resacetophenone in 80% formic acid at $50^{\circ}(7 \%)$ [4302].
- Also obtained by reaction of prenyl bromide with resacetophenone in potassium hydroxide solution between 0° and 25° for 13 h (23\%) [4317].
- Also refer to: [4155,4318-4320].
m.p. $144-145^{\circ}$ [4302], 144° [4316], $139-141^{\circ}$ [4320], $124-125^{\circ}$ [4318].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [4302,4317-4319], ${ }^{13} \mathrm{C}$ NMR [4318], IR [4302,4318,4319], UV [4155,4319].

1-[3-(Acetyloxy)-6-hydroxy-2,4,5-trimethylphenyl]ethanone
[66901-79-9]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
New compound
Synthesis

- Readily obtained from TMHQ (trimethylhydroquinone) by treatment with BF_{3}-acetic acid complex [4321].

Isopropyl ether $\quad \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 278.35

- Preparation by reaction of isopropyl bromide with 1-(2,5-dihydroxy-3,4, 6-trimethylphenyl)ethanone in the presence of potassium carbonate and potassium iodide in acetone at r.t. for 24 h [4321].

1-[2-Hydroxy-5-(2,2-dimethylpropanoyloxy)phenyl]ethanone
2,2-Dimethylpropionic acid 3-acetyl-4-hydroxyphenyl ester

$$
\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 236.27
$$

New compound
Synthesis

- Obtained by reaction of pivaloyl chloride with quinacetophenone in the presence of pyridine at r.t. for $1 \mathrm{~h}(79 \%)$ [3818].

Colourless oil [3818]; ${ }^{1} \mathrm{H}$ NMR [3818], ${ }^{13} \mathrm{C}$ NMR [3818], MS [3818].
Methyl ether $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

- Obtained by reaction of methyl iodide with the ketone above mentioned in the presence of lithium carbonate in DMF at 120° for 4 h (82%) [3818].
Colourless oil [3818]; ${ }^{1} \mathrm{H}$ NMR [3818], ${ }^{13} \mathrm{C}$ NMR [3818], MS [3818].
1-[2-Hydroxy-6-[(tetrahydro-2H-pyran)-2-yl]phenyl]ethanone
[63854-17-1] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Described [3734] p. 947
Synthesis

- Also obtained by reaction of 3,4-dihydro-2H-pyran with 2,6-dihydroxyacetophenone in the presence of p-toluenesulfonic acid in THF. The mixture was stirred under argon atmosphere overnight (55\%) [4276].
Pale yellow crystals (unstable) [4276];
${ }^{1} \mathrm{H}$ NMR [4276], ${ }^{13} \mathrm{C}$ NMR [4276].

1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone (6-Demethylacronylin)
[27364-71-2]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Described [3734] p. 947
Synthesis

- Also obtained by reaction of 3-methyl-2-butenyl bromide with phloroacetophenone in the presence of aqueous potassium hydroxide at r.t. for $24 \mathrm{~h}(29 \%)$ [4322].

Isolation from natural sources.

- From the root bark of Acronychia laurifolia B1 (Rutaceae) [4323].
m.p. $\quad 173-174^{\circ}$ [4322], 154° (d) [4323]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [4323], IR [4323], UV [4323], MS [4323].

1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]-3-methylphenyl]ethanone

[886999-22-0]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28

New compound

Synthesis

- Obtained by reaction of 2-methoxyethoxymethyl chloride with 2,4-dihydroxy-3-methyl acetophenone in the presence of DIEA in methylene chloride [4152].
m.p. $\quad 57-59^{\circ}$ [4152];
${ }^{1} \mathrm{H}$ NMR [4152], IR [4152], MS [4152]; TLC [4152].

1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-methylphenyl]ethanone

[106929-57-1] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28

Described [3734] p. 965
Synthesis

- Also obtained by reaction of chloromethyl methyl ether with 2,4,6-trihydroxy-3methylacetophenone in the presence of potassium carbonate in refluxing acetone for 1 h (64\%) [4192].
${ }^{1} \mathrm{H}$ NMR [4192], ${ }^{13} \mathrm{C}$ NMR [4192], MS [4192].

1-[4-[2-(Dimethylamino)ethoxy]-2-hydroxy-3-methylphenyl]ethanone

 [942133-91-7]$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3} \quad$ mol.wt. 237.30

New compound

Synthesis

- Obtained by treatment of 2,4-dihy-droxy-3-methyl-acetophenone with dimethylaminoethyl chloride in the presence of $\mathrm{KOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ mixture in boiling 2-butanone [4274].

Hydrochloride (1:1) [942134-13-6] $\quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 273.76 [4274]

1-[2-Hydroxy-5-(4-nitrophenoxy)phenyl]ethanone

[1006063-13-3] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.35

New compound

Synthesis

- Obtained by adding quinacetophenone to a mixture of 5 N sodium hydroxide and DMSO; then after 40 min , adding 4-fluoronitrobenzene and stirring the solution obtained at 50° for 5 h (20\%) [4324].
Oil [4324]; ${ }^{13} \mathrm{C}$ NMR [4324], MS [4324].

1-[5-Hydroxy-2-(4-nitrophenoxy)phenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.35

New compound

Synthesis

- Obtained by adding quinacetophenone to a mixture of 5 N sodium hydroxide and DMSO; then after 40 min , 4-fluoronitrobenzene and stirring the solution obtained at 50° for $5 \mathrm{~h}(<1 \%)$ [4324].
Oil [4324]; ${ }^{13} \mathrm{C}$ NMR [4324], MS [4324].
1-[2,4-Dihydroxy-5-(phenylazo)phenyl]ethanone (E)

1-[2,6-Dihydroxy-3-(phenylazo)phenyl]ethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \quad$ mol.wt. 256.26

New compound
Synthesis

- Obtained by coupling 2-acetylresorcinol with benzenediazonium chloride [4325].
m.p. $\quad 150-151^{\circ}$ [4325].

1-(6-Hydroxy[1,1'-biphenyl]-3-yl)ethanone
[20281-51-0] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

Benzyl ether $\quad \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 302.37

- Obtained by reaction of benzyl chloride with 4-hydroxy-3-phenylacetophenone in the presence of potassium hydroxide in refluxing methanol (88\%) [4184]. m.p. $87-89^{\circ}$ [4184].

1-(7-Hydroxy-8-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone (Ripariochromen A)

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 248.28
New compound
Syntheses

- Obtained by treatment of 6-acetyl-7-hydroxy-8-methoxy-2,2-dimethyl-3,4-dihydro-2H-1benzopyran with DDQ in boiling benzene for 8 h [4327,4328].
- Also prepared from 2-methyl-1,3-butadiene (multi-step reaction) [4327].
- Also prepared from gallacetophenone (multi-step reaction) [4327].

Isolation from natural sources

- From the roots of Eupatorium riparium Regel [4329].
- From the roots of Ageratina riparia [4083].
m.p. $90-91^{\circ}[4330], 89.5-90.5^{\circ}[4328,4331]$;
${ }^{1}$ H NMR [4327,4328,4331], IR [4328,4330,4331], UV [4328,4330,4331].
BIOLOGICAL DATA: Antifungal activity [4329].

1-(4,7-Diethoxy-6-hydroxy-5-benzofuranyl)ethanone

[88349-53-5] $\quad \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 264.28

New compound
Synthesis

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 4,9-diethoxy-7-methylfuro[3,2-g]chromen5 -one (m.p. 90°) in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h (55\%) [4288].
m.p. $\quad 72-74^{\circ}$ [4288]; ${ }^{1} \mathrm{H}$ NMR [4288], ${ }^{13} \mathrm{C}$ NMR [4288], MS [4288].

1-(6-Hydroxy-4-methoxy-7-propoxy-5-benzofuranyl)ethanone
[880479-07-2] $\quad \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \quad m o l . w t .264 .28$

New compound
Synthesis

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 4-methoxy-7-methyl-9-propoxyfuro[3,2-g]-chromen-5-one in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h [4288].

1-(6-Hydroxy-7-methoxy-4-propoxy-5-benzofuranyl)ethanone
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 264.28

New compound
Synthesis

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 9-methoxy-7-methyl-4-propoxyfuro [3,2-g]-chromen-5-one in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h [4288].

5-Acetyl-2,4,6-trihydroxyphenyl-1,3-dicarboxylic acid diethyl ester $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{8} \quad$ mol.wt. 312.28

New compound
Syntheses

- Obtained by reaction of acetonitrile with 2,4, 6-trihydroxy-phenyl-1,3-dicarboxylic acid diethyl ester in the presence of aluminium chloride and hydrogen chloride in ethyl ether (9\%) [4297].
- Also refer to: [4332,4333].

$$
\text { m.p. } 129^{\circ}[4332,4333], 128-130^{\circ}[4297] .
$$

1-[3-(Cyclopentyloxy)-2-hydroxy-4-methoxyphenyl]ethanone

[1001056-78-5] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

New compound
Synthesis

- Refer to: [4334].

1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[30403-01-1] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Described [3734] p. 983
Syntheses

- Also obtained by reaction of diazomethane with 2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-acetophenone in ethyl ether (19\%) [4322].
- Also refer to: [4155,4335,4336].
m.p. $\quad 169-170^{\circ}$ [4322], 164° [4335].

1-[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[77179-30-7]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29 New compound

Syntheses

- Obtained by reaction of 4-bromo-2-methyl-2-butene with 2,6-dihydroxy-4methoxyacetophenone in the presence of potassium hydroxide,
- in methanol at 20° for 40 h (13\%) [4337];
- in ethanol at r.t. for 24 h [4338].
- Also obtained by reaction of α, α-dimethylallyl alcohol with 2,6-dihydroxy-4-methoxy-acetophenone in the presence of boron trifluoride etherate in dioxane for 2 h [4339].
- Also refer to: [4335,4336]. m.p. 164° [4335], $125-126^{\circ}$ [4338], 43° [4337]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [4337,4338], IR [4337,4338], UV [4337,4338].
N.B.:
- In the paper [4337], the "isomers" 3-C-prenyl (compound C, m.p. 43°) and 5-C-prenyl (compound \mathbf{D}, m.p. 36°) are a single and same compound.
- The constitution of the title compound previously suggested by [4335] is incorrect [4336].

1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone (Acronylin)
[27364-64-3] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Described [3734] p. 983
Syntheses

- Also refer to: [4155,4340].

Isolation from natural sources

- From Acronychia pedunculata (Rutaceae) [4341].
- From the stem bark of Acronychia laurifolia (Rutaceae) [4342] also named Acronychia pedunculata [4323,4343].
- From the stem bark and Leaves of Melicope stipitata (Rutaceae) [4344].

Colourless needles [4343];
m.p. $128-130^{\circ}$ [4343,4344], 127-128 ${ }^{\circ}$ [4345];
${ }^{1} \mathrm{H}$ NMR [4344], ${ }^{13} \mathrm{C}$ NMR [4345], IR [4344], UV [4155,4344], MS [4344].
1-[2-Hydroxy-3-methyl-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone
[200726-78-9] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

New compound

Synthesis

- Obtained by reaction of 2,3-dihydropyran with 2,4-dihydroxy-3-methylacetophenone in the presence of p-toluenesulfonic acid in ethyl ether at r.t. (83\%) [4346].

1-[3-[2-(Acetyloxy)ethyl]-4-ethyl-2,5-dihydroxyphenyl]ethanone

[873222-94-7]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29

New compound

Synthesis

- Obtained by $\left[\mathrm{Cp} * \mathrm{RuCl}_{2}\right]_{2}$-catalyzed cocyclisation of 1-acetoxy-3-hexyne, 3-buten-2-one and carbon monoxide in DMF at 140° for $20 \mathrm{~h}(45 \%)$ [4295].
${ }^{1} \mathrm{H}$ NMR [4295].

1-[4-[2-(Acetyloxy)ethyl]-3-ethyl-2,5-dihydroxyphenyl]ethanone

[873222-95-8]
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
mol.wt. 266.29

New compound

Synthesis

- Obtained by $\left[\mathrm{Cp} * \mathrm{RuCl}_{2}\right]_{2}$-catalyzed cocyclisation of 1-acetoxy-3-hexyne, 3-buten-2-one and carbon monoxide in DMF at 140° for $20 \mathrm{~h}(30 \%)$ [4295].
${ }^{1} \mathrm{H}$ NMR [4295].
1-[3-Allyl-5-(dimethylaminomethyl)-4-hydroxyphenyl]ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2} \quad \text { mol.wt. } 233.31
$$

New compound

Synthesis

- Obtained by reaction of dimethylmethylimminium iodide with 3-allyl-4-hydroxyacetophenone in the presence of carbonate exchange resin in methylene chloride at r.t. for $16 \mathrm{~h}(87 \%)$ [4283].

1-[4-Hydroxy-3,5-bis(1-methylethyl)phenyl]ethanone

[720-19-4]

Ethyl ether [1023740-57-9] $\quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 248.37

- Refer to: [4348].

1-(2,5-Dihydroxy-3,4-dipropylphenyl)ethanone
[873222-85-6]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$
mol.wt. 236.21
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31
New compound
Synthesis

- Refer to: [4347].

New compound

Synthesis

- Obtained by $\left[\mathrm{Cp} * \mathrm{RuCl}_{2}\right]_{2}$-catalyzed cocyclisation of 4-octyne (1,2-dipropylacetylene), 3-buten-2-one and carbon monoxide in DMF at 140° for 20 h (79\%) [4295].

1-(6-Chloro-3-hydroxy-5-methyl[1,1'-biphenyl]-2-yl)ethanone

[1001025-04-2]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
New compound
Synthesis

- Obtained by reaction of 3-chloro-4-phenyl-4-(trimethyl-silyloxy)-3-buten-2-one with 2,4-bis-(trimethylsilanyloxy)-1,3-pentadiene in the presence of titanium tetrachloride (43\%) [4208].

Yellow crystals; m.p. 68° [4208];
${ }^{1} \mathrm{H}$ NMR [4208], ${ }^{13} \mathrm{C}$ NMR [4208], IR [4208], MS [4208].

1-(4'-Chloro-4-methoxy[1,1'-biphenyl]-2-yl)ethanone

[841298-81-5] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72

1-[2-Hydroxy-6-(phenylmethyl)phenyl]ethanone

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad \text { mol.wt. } 226.27
$$

New compound
Synthesis

- Obtained by reaction of benzyl bromide with 2,6-dihydroxy-acetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone overnight under nitrogen (78\%) [4010].
m.p. $\quad 109-111^{\circ}$ [4010];
${ }^{1} \mathrm{H}$ NMR [4010], ${ }^{13} \mathrm{C}$ NMR [4010]; TLC [4010].

1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]ethanone

[67088-16-8]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27

Described [3734] p. 1001
Synthesis

- Also refer to: [4155].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]ethanone

[29682-12-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27
Described [3734] p. 1003
Syntheses

- Also obtained by reaction of benzyl bromide with resacetophenone in the presence of potassium carbonate in refluxing acetone for 18 h (87\%) [3911].
- Also refer to: [4211].

Pink solid [3911]; ${ }^{1} \mathrm{H}$ NMR [3911], ${ }^{13} \mathrm{C}$ NMR [3911], MS [3911].
1-[2-Hydroxy-5-(phenylmethoxy)phenyl]ethanone
[30992-63-3] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad m o l . w t .242 .27$

Described [3734] p. 1004
Synthesis

- Also refer to: [3908].

1-[2-Hydroxy-6-(phenylmethoxy)phenyl]ethanone

[4047-24-9] $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Described [3734] p. 1004
Synthesis

- Preparation by reaction of benzyl bromide with 2,6dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for $12 \mathrm{~h}(82 \%)$ [4351].
m.p. 189° [4351].

1-(5,7-Dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone
[18780-97-7] $\quad \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 262.3

New compound
Syntheses

- Obtained by treatment of 6-acetyl-7-hydroxy-5-methoxy-2,2-dimethylchromene with dimethyl
sulfate in the presence of potassium carbonate in refluxing acetone for 12 h [4352,4353].
- Also obtained from 2,4-dihydroxy-5-prenyl-6-methoxyacetophenone (multi-step reaction) [4352].
- Also obtained from 2,4-dihydroxy-3-iodo-6-methoxyacetophenone (multi-step reaction) [4352].
- Also obtained from 2-hydroxy-3-iodo-4-O-(1,1-dimethylpropargyl)-6-methoxyacetophenone (multi-step reaction) [4352].
- From α, α-dimethylallyl alcohol (multi-step reaction) [4352].
- Also refer to: [4354,4355].

Isolation from natural sources

- From Medicosma cunninghamii [4355].
- From Acradenia franklinii [4356].
- From Euodia lunu-ankenda Merr [4357].
- From Melicope stipitata [4344].
m.p. $79-80^{\circ}$ [4354], 79° [4353], $78-79^{\circ}$ [4356], 78-78.5 ${ }^{\circ}$ [4355], 76-78 ${ }^{\circ}$ [4344], 76-77º [4357];
${ }^{1} \mathrm{H}$ NMR [4354], IR [4356], UV [4358].

1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone

[33523-62-5]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32
Described [3734] p. 1011
Syntheses

- Obtained by reaction of diazomethane with 2,4,6-trihydroxy-3-(3-methyl-2-butenyl)- acetophenone in ethyl ether [4335], (90\%) [4359], (20\%) [4322].
- Also obtained by reaction of prenyl bromide with 2-hydroxy-4,6-dimethoxyacetophenone in the presence of potassium carbonate in refluxing acetone for 8 h [4360,4361].
- Also obtained by reaction of 4-bromo-2-methyl-2-butene with xanthoxyline in the presence of potassium carbonate in boiling acetone for 8 h [4360].
- Also obtained by reaction of 50% potassium hydroxide with 7,7-methylglabranin in boiling methanol for 6 h [4362].
- Also obtained by refluxing 2,4-dimethoxy-6-(3,3-dimethylallyloxy)acetophenone with N, N-dimethylaniline for 5 h (3\%) [4363].
- Also refer to: [4155,4298,4340].
m.p. 114° [4335], $113-114^{\circ}$ [4345,4359,4361,4364], 113° [4322], $112-113^{\circ}$ [4362], 109-110 ${ }^{\circ}$ [4360], 103-104 ${ }^{\circ}$ [4363];
${ }^{1} \mathrm{H}$ NMR [4359-4364], IR [4361,4363], UV [4361-4363].
Methyl ether [101253-53-6] $\quad \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 278.35
- Obtained by reaction of dimethyl sulfate with 4,6-dimethoxy-3-(3,3-dimethylallyl)phloroacetophenone in the presence of potassium carbonate in boiling acetone [4335].
m.p. $50-51^{\circ}$ [4335].

Benzoate [42344-99-0] $\quad \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 368.53

- Obtained by reaction of benzoyl chloride with 4,6-dimethoxy-2-hydroxy-3-(3-methyl-2-butenyl)-acetophenone in the presence of potassium carbonate in refluxing acetone for $6 \mathrm{~h}(90 \%)$ [4359].
m.p. $81-83^{\circ}$ [4359], $81-82^{\circ}$ [4335].

1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[4683-33-4]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32
Described [3734] p. 1011
Syntheses

- Also obtained by refluxing 2,4-dimethoxy-6-(3,3-dimethyl-allyloxy)acetophenone with N, N-dimethylaniline for 5 h (3\%) [4363].
- Also obtained by reaction of diazomethane with 2,4-dihydroxy-6-methoxy-5prenylacetophenone in ethyl ether [4340].
- Also refer to: [4155].
m.p. $102-104^{\circ}$ [4363];
${ }^{1} \mathrm{H}$ NMR [4340,4363], IR [4340,4363], UV [4155,4340,4363].

1-(4-Heptyl-2,5-dihydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 250.34

New compound
Syntheses

- Obtained by treatment of 4'-heptyl-2',5'-dihydroxy-3,3-dimethylacrylophenone with aluminium chloride in refluxing benzene for 3 h [3996].
- Also obtained by reaction of acetyl chloride with 2-heptylhydroquin one dimethyl ether in the presence of aluminium chloride in carbon disulfide [3996].
b.p. ${ }_{0.1} 143-147^{\circ}$ [3996], b.p. $170-180^{\circ}$ [3996].

1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-propylphenyl]ethanone

[916916-81-9]

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 298.34

New compound

Synthesis

- Obtained by reaction of chloromethyl methyl ether with 2,4,6-trihydroxy-3-propylaceto phenone in the presence of potassium carbonate in refluxing acetone for 1 h (68\%) [4192].
${ }^{1} \mathrm{H}$ NMR [4192], ${ }^{13} \mathrm{C}$ NMR [4192], MS [4192].

1-[4-[2-(Diethylamino)ethoxy]-2-hydroxy-3-methylphenyl]ethanone

[942133-92-8]
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$
mol.wt. 265.35

New compound

Synthesis

- Obtained by treatment of 2,4-dihydroxy-3-methyl-acetophenone with diethylaminoethyl chloride in the presence of $\mathrm{KOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ mixture in boiling 2-butanone [4274].

Hydrochloride (1:1) [942134-14-7] $\quad \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 301.81 [4274]

1-(2',4'-Dimethoxy[1,1'-biphenyl]-4-yl)ethanone

[178055-99-7]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 256.30
New compound
Synthesis

- Obtained by Suzuki coupling: p-chloroacetophenone (1 equiv), 2,4-dimethoxyphenylboronic acid (1.5 equiv) and sodium hydroxide (4 equiv) was added in water (20 ml). Then, Pd/PANI ($1 \mathrm{~mol} \%$) was added to the solution at 100° and stirred at this temperature for 6-8 h (70\%) [4365].
${ }^{1} \mathrm{H}$ NMR [4365].

1-[2-Hydroxy-3-methyl-4-(phenylmethoxy)phenyl]ethanone

[73640-74-1]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 256.30

Described [3734] p. 1018
Syntheses

- Preparation by reaction of benzyl chloride with 2,4-dihydroxy-3-methylacetophenone in the presence of potassium carbonate and potassium iodide in acetone at 56° (88\%) [4154].
- Also refer to: [4153].

1-[6-Hydroxy-4-methoxy-7-(pentyloxy)-5-benzofuranyl]ethanone
[880479-08-3] $\quad \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 292.92

New compound
Synthesis

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 4-methoxy-7-methyl-9-pentyloxyfuro [3,2-g]-chromen-5-one in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h [4288].

1-[6-Hydroxy-7-methoxy-4-(pentyloxy)-5-benzofuranyl]ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \quad \text { mol.wt. } 292.92
$$

New compound

Synthesis

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 9-methoxy-7-methyl-4-pentyloxyfuro[3,2-g]-chromen-5-one in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h [4288].

1-(3-Acetyl-2-hydroxy-4,5,6-trimethoxyphenyl)-3-(dimethylamino) (2E)-2-propen-1-one

[870480-50-5]

$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{6} \quad$ mol.wt. 323.34
New compound
Synthesis

- Obtained by reaction of 2,6-diacetyl-3,4,5-trimethoxyphenol with N,N-dimethyl-formamide dimethyl acetal in DMF at 100° for $6 \mathrm{~h}(67 \%)$ [4275].

Yellow crystals; m.p. $113-114^{\circ}$ [4275];
${ }^{1} \mathrm{H}$ NMR [4275], MS [4275].
1-[2-Hydroxy-4,5,6-trimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[340816-26-4]

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 294.35
New compound
Synthesis

- Obtained by reaction of prenyl bromide with 6-hydroxy-2,3,4-trimethoxyacetophenone in the presence of potassium hydroxide in methanol for 20 h at r.t. (37\%) [4063].
m.p. 112° [4063];
${ }^{1} \mathrm{H}$ NMR [4063], ${ }^{13} \mathrm{C}$ NMR [4063], IR [4063], UV [4063], MS [4063].

1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxy-3-methylphenyl]ethanone

[145194-40-7]

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9} \quad$ mol.wt. 358.35
Described [3734] p. 1025

Isolation from natural sources

- Also obtained from the roots of Euphorbia ebracteolata Hayata (Euphorbiaceae) [4254,4366].

1-[2-Hydroxy-4,6-dimethoxy-3-(1-methyl-4-piperidinyl)phenyl]ethanone

[872057-13-1]

$$
\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \quad \text { mol.wt. } 293.36
$$

New compound

Synthesis

- Refer to: [3830].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone
[14035-33-7] $\quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 248.37

Described [3734] p. 1026
Syntheses

- Also obtained by reaction of acetyl chloride with 2,6-di-tert-butylphenol in the presence of titanium tetrachloride [3816].
- Also refer to: [4347,4348,4367].

Methyl ether $\quad[30492-50-3] \quad \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39

- Refer to: [4348,4367].

1-(2-Hydroxy-5-nonylphenyl)ethanone

[115851-77-9] $\quad \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39

Described [3734] p. 1041
Synthesis

- Also obtained by reaction of acetyl chloride with 4-nonylphenol in the presence of aluminium chloride (98\%) [4368].

1-[6-Hydroxy-4-methoxy-7-(phenylmethoxy)-5-benzofuranyl]ethanone

[880479-09-4] $\quad \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \quad m o l . w t .312 .32$

New compound

Synthesis

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 4-methoxy-7-methyl-9-benzyloxy-furo[3,2-g]-chromen-5-one in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h (48\%) [4288].
yellow solid; m.p. 78-80 ${ }^{\circ}$ [4288];
${ }^{1} \mathrm{H}$ NMR [4288], ${ }^{13} \mathrm{C}$ NMR [4288], MS [4288].

1-[6-Hydroxy-7-methoxy-4-(phenylmethoxy)-5-benzofuranyl]ethanone

[119104-31-3] $\quad \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 312.32

New compound
Synthesis

- Obtained by slowly adding 3 M sodium hydroxide to a solution of 9-methoxy-7-methyl-4-benzyloxy-furo[3,2-g]-chromen-5-one in refluxing dilute ethanol, then the resulting solution was stirred at 70° for 3 h [4288].

1-[3'-(1,1-Dimethylethyl)-2'-hydroxy[1,1'-biphenyl]-4-yl]ethanone
[521273-05-2] $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad m o l . w t .268 .36$

New compound
Synthesis

- Obtained by coupling of 2-tert-butylphenol (0.5 mmol) and 4-bromoacetophenone $(0.6 \mathrm{mmol})$ in the presence of $[[\mathrm{Rh}$
$\left.\mathrm{Cl}(\mathrm{COD})]_{2}\right](5 \mathrm{~mol} \% \mathrm{Rh}), \mathrm{ClPi} \mathrm{Pr}_{2}(10 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.85 \mathrm{mmol})$ in refluxing toluene for 18 h (89\%) [4369].

1-[4-Hydroxy-3-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-5-methoxyphenyl] ethanone
[75340-36-2]
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35

New compound

Isolation from natural sources

- Characterization in a pulp mill effluent [4370].

1-[2,4-Dihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone

[24672-82-0]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 288.39
Described [3734] p. 1048
Syntheses

- Preparation by reaction of 2-methyl-but-3-en-2-ol with resacetophenone in the presence of boron trifluoride etherate in dioxane at r.t. for 1 h under nitrogen [4371].
- Also refer to: [4155].

1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone

[123999-38-2]

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 318.41
Described [3734] p. 1059

Isolation from natural sources

- From the leaves of Acronychia pedunculata (L.) Miq. (Rutaceae) [4372]. Oil [4372]; ${ }^{1} \mathrm{H}$ NMR [4372], MS [4372].

Diacetate $\quad \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6} \quad$ mol.wt. 402.49

- Preparation by acetylation of 1-[2,4-dihydroxy-6-methoxy-3,5-bis(3-methyl-2butenyl) phenyl]ethanone with acetic anhydride in the presence of pyridine at 27° for 18 h (quantitative yield) [4343].
Yellow oil [4343]; ${ }^{1} \mathrm{H}$ NMR [4343], IR [4343], MS [4343]
1-[2,6-Dihydroxy-4-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone

$$
\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \quad \text { mol.wt. } 318.41
$$

New compound

Synthesis

- Obtained by reaction of 4-bromo-2-methyl-2-butene with 2,6-dihy-droxy-4-methoxy-acetophenone in the presence of potassium hydroxide in methanol at 20° for 40 h (19\%) [4337]. ${ }^{1} \mathrm{H}$ NMR [4337], IR [4337], UV [4337].

1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone (E)
[122585-64-2] $\quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 318.41

New compound

Isolation from natural sources

- From Helichrysum cerastroides DC subsp. aurosicum Merxm. et A. Schreiber (Compositae) [4373].
${ }^{1} \mathrm{H}$ NMR [4373], IR [4373], MS [4373].

1-[2,4-Dihydroxy-3,5-bis(phenylazo)phenyl]ethanone (E)

$$
\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \quad \text { mol.wt. } 360.37
$$

New compound
Syntheses

- Obtained by coupling resacetophenone with benzenediazonium chloride [4325,4374,4375].
m.p. $221-222^{\circ}$ [4325], $220-221^{\circ}$ [4374], 220° [4375].

Diacetate $\quad \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 444.45 (m.p. 148 ${ }^{\circ}$) [4325]
1-[2,6-Dihydroxy-3,5-bis(phenylazo)phenyl]ethanone (E)

$$
\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \quad \text { mol.wt. } 360.37
$$

New compound
Syntheses

- Obtained by coupling 2-acetylresorcinol with benzenediazonium chloride [4325,4374].
m.p. 170° [4325], $169-170^{\circ}$ [4374].

1-[4,5-Dimethoxy-2-[(3,4-dimethoxyphenyl)ethyl]phenyl]ethanone

2-Acetyl-4,5,3',4'-tetramethoxydibenzyl $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 344.41

New compound
Syntheses

- Obtained by reaction of acetyl chloride with $* 3,4,3^{\prime}, 4^{\prime}$-tetramethoxydibenzyl in the presence of aluminium chloride in benzene at r.t for 1 h , then at reflux for 2.5 h (13\%) [4376,4377].
b.p. ${ }_{20} 120-130^{\circ}$ [4376]; m.p. $96-98^{\circ}$ [4376]; UV [4376].
*1,2-(3,4-dimethoxyphenyl)ethane.

1-[4-[(6-O-L-Arabinofuranosyl- β-D-glucopyranosyl)oxy]-2-hydroxy-6-methoxy-3-methylphenyl]ethanone
 1-[4-(- α-L-Arabinofuranosyl[1—>6]- β-D-glucopyranosyloxy)-2-hydroxy-6-methoxy-3-methylphenyl]ethanone

[883886-04-2] $\quad \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{13} \quad$ mol.wt. 490.46

New compound

Isolation from natural sources

- From the roots of Euphorbia ebracteolata Hayata (Euphorbiaceae) [4254].

White needles [4254]; m.p. 256-258 [4254];
${ }^{1} \mathrm{H}$ NMR [4254], ${ }^{13} \mathrm{C}$ NMR [4254], IR [4254], MS [4254].
N.B.: $\mathrm{R}=\alpha$-D-Glucopyanosyl $(6 \longrightarrow 1)$ - β-L-arabinofuranosyl.

1-[3-(1-Ethoxy-3-methylbutyl)-4,6-dihydroxy-2-methoxy-5-(3-methyl-2-butenyl)phenyl]ethanone
[253791-31-0]

Isolation from natural sources

- From the leaves of Acronychia pedunculata (L.) Miq. (Rutaceae) [4372].

Oil [4372];
${ }^{1} \mathrm{H}$ NMR [4372], ${ }^{13} \mathrm{C}$ NMR [4372], MS [4372].

Part VII Monoketones Substituted on the Acetyl Groups

Chapter 11
 Compounds Derived from Halogenoacetic Acids

11.1 Compounds Derived from Bromoacetic Acids

11.1.1 From Monobromoacetic Acid

2-Bromo-1-(2-hydroxy-3,5-diiodophenyl)ethanone

[32559-04-9]	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrI}_{2} \mathrm{O}_{2} \quad$ mol.wt. 466.84
OH	Synthesis
	- Preparation by bromination of 2-hydroxy-3,5-diiodoacetophenone in acetic acid at $70-80^{\circ}$, under light irradiation (84\%) [4378].
m.p. $150-151^{\circ}$ [43	

2-Bromo-1-(4-hydroxy-3,5-diiodophenyl)ethanone

[31827-97-1] \begin{tabular}{l}
Synthesis

- Preparation by reaction of bromine on 4-hydroxy-3,

5-di-iodoacetophenone in boiling chloroform under
light irradiation $(81-83 \%)$

m.p. 4379,4380$].$
\end{tabular}

2-Bromo-1-(4-hydroxy-3,5-dinitrophenyl)ethanone
[120388-18-3] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{O}_{6} \quad$ mol.wt. 305.04

Synthesis

- Preparation by bromination of 4-hydroxy-3,5-dinitroacetophenone with cupric bromide in refluxing ethyl acetate (60\%) [4381].
m.p. $92-94^{\circ}$ [4381]; Crystal Data [4381].

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2}$
mol.wt. 372.84
Syntheses
- Preparation by action of bromine with 3,5-dibromo-2-hydroxy-acetophenone in refluxing acetic acid for 2.5 h (55\%) [4382].
- Also obtained by reaction of bromine with 2-hydroxyacetophenone in chloroform in an ice bath for 2 h [4383].
m.p. $\quad 107-108^{\circ}$ [4382]; ${ }^{1} \mathrm{H}$ NMR [4382], IR [4382].

2-Bromo-1-(3,5-dibromo-4-hydroxyphenyl)ethanone

[34969-79-4] | Synthesis |
| :--- |
| - Preparation by bromination of 3,5-dibromo-4-hydroxy- |
| acetophenone in chloroform [4384-4386], |
| [4386] |

m.p. $137^{\circ}[4386], 128^{\circ}[4384,4385]$.

2-Bromo-1-(3,5-dibromo-2,4-dihydroxyphenyl)ethanone
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{3} \quad$ mol.wt. 388.84

Synthesis

- Preparation by bromination of resacetophenone in acetic acid [4387].
m.p. $112-113^{\circ}$ [4387].

2-Bromo-1-(3,5-dibromo-2,6-dihydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{3} \quad$ mol.wt. 388.84 Synthesis

- Preparation by bromination of 2,6-dihydroxyacetophenone with cupric bromide in refluxing chloro-form-ethyl acetate mixture [4388].
m.p. 150° [4388].

2-Bromo-1-(3-chloro-4-hydroxyphenyl)ethanone

[41877-19-4] \begin{tabular}{l}
Syntheses

- Preparation by selective bromination of 3-chloro-4-
hydroxy-acetophenone with dioxane dibromide in
dioxane-ethyl ether mixture at r.t. (85%)

[4389].
\end{tabular}

- Preparation by selective bromination of 3-chloro-4-hydroxy-acetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture [4390], (100\%) [4391].
m.p. $\quad 128-130^{\circ}$ [4389]; ${ }^{1} \mathrm{H}$ NMR [4389].

2-Bromo-1-(4-chloro-2-hydroxyphenyl)ethanone

[157068-00-3] \quad\begin{tabular}{l}
Synthesis

- Obtained by reaction of bromoacetyl bromide on

3-chloroanisole with aluminium chloride in carbon

tetrachloride, first at 0°, then at r.t. (16%) [4392].
\end{tabular}

2-Bromo-1-(4-chloro-3-hydroxyphenyl)ethanone

2-Bromo-1-(5-chloro-2-hydroxyphenyl)ethanone
[52727-99-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49

Syntheses

- Preparation by bromination of 5-chloro-2-hydroxyacetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture (73\%) [4394].
- Also refer to: [4395] (compound 1b).
m.p. $64-65^{\circ}$ [4394]; ${ }^{1} \mathrm{H}$ NMR [4394].

2-Bromo-1-(2-fluoro-4-hydroxyphenyl)ethanone

[220131-30-6] | Synthesis | - Refer to: [4396]. |
| :--- | :--- |

2-Bromo-1-(5-fluoro-2-hydroxyphenyl)ethanone
[126581-65-5]

m.p. $86-87^{\circ}$ [4397,4398]; ${ }^{1} \mathrm{H}$ NMR [4398].

[73898-36-9]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrIO}_{2} \quad$ mol.wt. 340.94
Synthesis

- Preparation by reaction of dioxane dibromide on 3-hydroxy-4-iodoacetophenone in dioxane-ethyl ether mixture at r.t. (75\%) [4393].

2-Bromo-1-(4-hydroxy-3-iodophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrIO}_{2} \quad$ mol.wt. 340.94
Synthesis

- Preparation by reaction of dioxane dibromide on 4-hydroxy-3-iodoacetophenone in dioxane-ethyl ether mixture at r.t. (87\%) [4393].

2-Bromo-1-(2-hydroxy-4-nitrophenyl)ethanone
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4} \quad \mathrm{~mol}$. wt. 260.04

Synthesis

- Preparation by reaction of bromine on 2-hydroxy-4-nitroacetophenone in refluxing acetic acid (63\%) [4399].
m.p. 112° [4399].

2-Bromo-1-(2-hydroxy-5-nitrophenyl)ethanone
[5037-70-7]

m.p. 127° [4399].
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4} \quad$ mol.wt. 260.04
Synthesis

- Preparation by bromination of 2-hydroxy-5-nitroacetophenone in acetic acid (60\%) [4399].

2-Bromo-1-(4-hydroxy-3-nitrophenyl)ethanone
[5029-61-8]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4} \quad$ mol.wt. 260.04
Syntheses

- Preparation by bromination of 4-hydroxy-3-nitroacetophenone in chloroform (74\%) [4400], (71\%) [4399] or in acetic acid (58\%) [4401].
- Preparation by selective bromination of 4-hydroxy-3nitroacetophenone with dioxane dibromide in diox-ane-ethyl ether mixture at r.t. (94\%) [4389].
m.p. 93° [4399,4401], $91^{\circ} 5-92^{\circ}$ [4400], $80-82^{\circ}$ [4389]; b.p. ${ }_{0.2} 150-155^{\circ}$ [4401].

2-Bromo-1-(5-hydroxy-2-nitrophenyl)ethanone

[50695-17-5]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4}$
mol.wt. 260.04

Synthesis

- Obtained by bromination of 5-hydroxy-2-nitroacetophenone in chloroform-carbon tetrachloride-ethyl acetate mixture at $61^{\circ}(15 \%)$ [4400].
m.p. $112^{\circ} 5-113^{\circ}$ [4400].

2-Bromo-1-(3,4-dihydroxy-5-nitrophenyl)ethanone

[134610-95-0] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of boron tribromide on
4-hydroxy-3-methoxy-5-nitro- α-bromoacetophe-
none in methylene chloride [4402].

\end{tabular}

$$
\text { m.p. } \quad 138-140^{\circ} \text { [4402]. }
$$

2-Bromo-1-(3-bromo-4-hydroxyphenyl)ethanone

[41877-18-3]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94
Syntheses

- Preparation by reaction of dioxane dibromide on 3-bromo-4-hydroxyacetophenone in dioxane-ethyl ether mixture at r.t. (82-85\%) [4389,4393].
- Preparation by reaction of bromine on 4-hydroxyacetophenone in acetic acid at r.t. (37\%) [4386].
- Preparation by reaction of phenyltrimethylammonium tribromide on 4-hydroxy-α-bromo-acetophenone [4403].
- Also refer to: [4404]. m.p. 143° [4386], $142-144^{\circ}$ [4389], $140-142^{\circ}$ [4405]; ${ }^{1} \mathrm{H}$ NMR [4389].

2-Bromo-1-(4-bromo-3-hydroxyphenyl)ethanone
[73898-35-8]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94
Synthesis

- Preparation by selective bromination of 4-bromo-3-hydroxy-acetophenone with dioxane dibromide in dioxane-ethyl ether mixture at r.t. (79\%) [4393].

2-Bromo-1-(5-bromo-2-hydroxyphenyl)ethanone

[67029-74-7] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94

Syntheses

- Claimed to be prepared from 2-hydroxyacetophenone or 5-bromo-2-hydroxyacetophenone by reaction of bromine in glacial acetic acid and from 2-hydroxy- α-bromo-acetophenone by reaction ofbromine in 50% aqueous acetic acid (quantitative yields) (m.p. 107°) [4406]. No proof of structure was provided [4407]. Actually, it probably concerns 3,5-dibromo-2-hydroxyacetophenone (m.p. 108° [4408], $108-109^{\circ}$ [4386]), as the use of acetic acid as solvent favours the aromatic ring bromination.
- Preparation by bromination of 5-bromo-2-hydroxyacetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture [4390,4407], (50\%) [4407].
m.p. 107° [4406], 69° [4407].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [4407], IR [4407].
2-Bromo-1-(5-bromo-2,4-dihydroxyphenyl)ethanone

$[99657-26-8]$	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{3}$	mol.wt. 309.94
OH	Synthesis	

- Preparation by bromination of 5-bromo-2,4-dihy-droxy-acetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture [4390,4409].

2-Bromo-1-(2-hydroxyphenyl)ethanone
[2491-36-3]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05
Syntheses

- Preparation by bromination of 2-hydroxyacetophenone with cupric bromide in refluxing chloroformethyl acetate mixture [4390,4391,4409-4413], (100\%) [4390,4410], (56\%) [4391], (36\%) [4411].
- Preparation by reaction of bromine on 2-hydroxyacetophenone in acetic acid at r.t. (47\%) [4406] or in a mixture of ethyl ether and chloroform [4413] according to [4414].
- Preparation by Fries rearrangement of phenyl bromoacetate with aluminium chloride without solvent at $120-140^{\circ}(45-50 \%)$ [4415,4416$]$.
m.p. $70-71^{\circ}$ [4416], 45° [4406], 44- 45° [4391], $41-43^{\circ}$ [4412], 40° [4390], $39-41^{\circ}$ [4411].
One of the reported melting points is obviously wrong.

$$
\begin{aligned}
& \text { b.p. }_{7-10} 120-125^{\circ} \text { [4415], b.p. }{ }_{18} 152-158^{\circ} \text { [4406]; } \\
& { }^{1} \text { H NMR [4411], UV [4417]. }
\end{aligned}
$$

2-Bromo-1-(3-hydroxyphenyl)ethanone

[2491-37-4]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05
Syntheses

- Preparation by bromination of 3-hydroxyacetophenone,
- with cupric bromide in refluxing chloroform-ethyl acetate mixture [4390,4391,4410,4412,4418], (quantitative yield) [4390,4391,4410];
- with dioxane dibromide in dioxane-ethyl ether mixture at r.t. (91\%) [4389];
- in using silica gel coated with cupric bromide in refluxing ethyl acetate (94\%) [4419];
- with bromine in chloroform at $2^{\circ}(96 \%)$ [4420].
m.p. $74-75^{\circ}$ [4389], $70-72^{\circ}$ [4420]; amorphous [4419];
${ }^{1} \mathrm{H}$ NMR [4389,4419], IR [4419,4420], UV [4420], MS [4419].

2-Bromo-1-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05
Syntheses

- Preparation by bromination of 4-hydroxyacetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture [4390,4391,4410-4413,4418,4421], (quantitative yield) [4390,4391,4410], (34-38\%) [4411,4418], (15\%) [4421].
- Preparation by reaction of dioxane dibromide on 4-hydroxyacetophenone in dioxane-ethyl ether mixture at r.t. (86\%) [4389].
- Preparation by bromination of 4-hydroxyacetophenone in acetic acid (63\%) [4422] or in a mixture of ethyl ether and chloroform [4413] according to [4414].
- Preparation by Fries rearrangement of phenyl bromoacetate with aluminium chloride without solvent between 120° and 140° (40\%) [4415], (30\%) [4416].
- Preparation by reaction of tetrabutylammonium tribromide, benzyltrimethylammonium tribromide or phenyltrimethylammonium tribromide on 4-hydroxyacetophenone in tetrahydrofuran [4403].
- Preparation by reaction of ammonium tribromide on 4-hydroxyacetophenone in methylene chloride-methanol mixture [4403].
- Preparation by reaction of silica gel coated with cupric bromide on 4-hydroxyacetophenone in refluxing ethyl acetate (95\%) [4419].
- Preparation by sonochemical bromination of 4-hydroxyacetophenone using p-toluenesulfonic acid/N-bromosuccinimide in methanol for 6 h at 35-37 (97\%) [4423].
N.B.: In the absence of ultrasound the reaction takes place at the boiling point of methanol (65°) for $24 \mathrm{~h}(58 \%)$ [4423].
- Also refer to: [4424-4428].

$$
\begin{array}{ll}
\text { m.p. } & 146^{\circ}[4416], 132-133^{\circ}[4429], 130-131^{\circ}[4411], 130^{\circ}[4422], 129-131^{\circ} \\
& {[4418], 128-130^{\circ}[4403], 128-129^{\circ}[4415], 126-127^{\circ}[4421], 125-129^{\circ}} \\
& {[4423], 124-126^{\circ}[4389,4390], 121-122^{\circ}[4419], 105-108^{\circ}[4430] ;} \\
{ }^{1} \text { H NMR }[4389,4411,4419,4421,4423,4429], \text { IR }[4419,4423], \text { UV }[4421], \text { MS } \\
\\
{[4419,4429] .}
\end{array}
$$

2-Bromo-1-(2,3-dihydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05
Synthesis

- Obtained by reaction of hydrobromic acid on 2,3-diacetoxy- α-bromoacetophenone in refluxing ethanol [4431].
m.p. $75-76^{\circ}$ [4431]; UV [4417].

2-Bromo-1-(2,4-dihydroxyphenyl)ethanone

[2491-39-6]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05
Syntheses

- Preparation by bromination of resacetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture (quantitative yield) [4390,4410], (3\%) [4411].
- Also obtained by reaction of bromoacetonitrile on resorcinol with zinc chloride and hydrobromic acid in ethyl ether (Hoesch reaction) [4432,4433].
- Also obtained by reaction of bromoacetyl chloride on resorcinol with aluminium bromide or aluminium chloride in carbon disulfide [4421,4434], (80\%) [4434], (12\%) [4421].
- Also obtained (poor yield) by reaction of bromoacetic acid on resorcinol with zinc chloride or phosphorous oxychloride [4435,4436].
m.p. $144-145^{\circ}$ [4390], 127° [4432,4433], 126-128 ${ }^{\circ}$ [4421], 118-119 ${ }^{\circ}$ [4411].
There is discrepancy between the different melting points.
${ }^{1} \mathrm{H}$ NMR [4411, 4421], UV [4421].

2-Bromo-1-(2,5-dihydroxyphenyl)ethanone

[25015-91-2]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05

Syntheses

- Preparation by bromination of 2,5-dihydroxyacetophenone,
- with cupric bromide in refluxing chloroformethylacetate mixture (74-87\%) [4390,4410,4437], (70\%) [4438], (37\%) [4411];
- with bromine in acetic acid at 55-58 ${ }^{\circ}$ (16\%) [4439].
- Preparation by reaction of hydrobromic acid on 5- α-bromoacetoxy-2-hydroxy-α-bromoacetophenone in methanol at r.t. (87\%) [4440].
- Preparation by reaction of aluminium bromide on 2-hydroxy-5-methoxy- α -bromo-acetophenone in carbon disulfide at r.t. (87\%) [4440].
- Also obtained by action of acetic acid saturated with hydrobromic acid (10 min, r.t.) on 2,5-di-acetoxy- α-diazoacetophenone, reduced pressure elimination of acetic acid, then action (overnight, r.t.) of a methanolic solution of hydrobromic acid (59\%) [4440].
- Also obtained by reaction of aluminium bromide on 2,5-dimethoxy- α-chloroa cetophenone in refluxing carbon disulfide (28\%) [4440].
- Also obtained by reaction of bromoacetyl bromide on 1,4-dimethoxybenzene with aluminium bromide at r.t. (11\%) [4421], (2\%) [4440].
- Also obtained by reaction of phenyltrimethylammonium bromide tribromide with 2,5-dihydroxy-acetophenone in THF at r.t. overnight (63\%) [4441], according to [4442].
m.p. $120-121^{\circ}$ [4439], $117^{\circ} 5-119^{\circ}$ [4440], $117-119^{\circ}$ [4421], $114-116^{\circ}$ [4438], 113-115 [4411,4437], 112-113 ${ }^{\circ}$ [4390];
TLC [4441]; flash chromatography [4441];
${ }^{1}$ H NMR [4411,4421,4438-4441], IR [4438,4441], UV [4417,4421,4439,4441], MS [4438,4441].

2-Bromo-1-(2,6-dihydroxyphenyl)ethanone

[2491-40-9]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05 Syntheses

- Preparation by bromination of 2,6-dihydroxyacetophenone with cupric bromide in refluxing ethyl acetate (quantitative yield) [4391].
- Preparation by reaction of 40% hydrobromic acid on 2,6-diacetoxy- α-bromoacetophenone in refluxing 60% ethanol (73\%) [4443].
- Refer to: [4444] (Japanese patent).
m.p. 143° [4443]; UV [4417].

2-Bromo-1-(3,4-dihydroxyphenyl)ethanone
[40131-99-5]

$$
\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad \text { mol.wt. } 231.05
$$ Syntheses

- Preparation by reaction of bromoacetic acid on pyrocatechol with phosphorous oxychloride [4445].
- Preparation by reaction of bromoacetyl bromide on pyrocatechol with aluminium bromide in carbon disulfide at r.t. (63\%) [4446].
- Preparation by reaction of bromine on 3,4-dihydroxyacetophenone in chloroform at r.t. [4447,4448].
- Also refer to: [4404,4449-4453], and [4454] (Japanese patent).
m.p. 167° [4445], 61° [4446]. One of the reported melting points is obviously wrong. ${ }^{1} H$ NMR [4446], IR [4446], UV [4446], MS [4446].

2-Bromo-1-(3,5-dihydroxyphenyl)ethanone

[62932-92-7] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05

Syntheses

- Preparation by reaction of bromine on 3,5-dihy-droxy-acetophenone in chloroform at r.t. [4447].
- Also refer to: [4404,4450].

2-Bromo-1-(2,3,4-trihydroxyphenyl)ethanone

[105190-52-1]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4}$
mol.wt. 247.05
Syntheses

- Preparation by reaction of bromoacetyl bromide on pyrogallol with aluminium bromide in carbon disulfide at r.t. (42\%) [4446].
- Also obtained by reaction of bromoacetic acid on pyrogallol with phosphorous oxychloride [4455], (poor yield) [4435,4436] or with zinc chloride (poor yield) [4435,4436].
m.p. 159° [4455], 138° [4446]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [4446], IR [4446], UV [4446], MS [4446].
2-Bromo-1-(3,4,5-trihydroxyphenyl)ethanone

2-Bromo-1-(3,4,5-tribromo-2-hydroxy-6-methoxyphenyl)ethanone
[98592-28-0]

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{3} \quad$ mol.wt. 481.76
Synthesis not yet described

- Only one reference dealing with $2,3^{\prime}, 4^{\prime}, 5^{\prime}$-tetrabromo-$2^{\prime}$-hydroxy- 6^{\prime}-methoxyacetophenone does exist. This reference [Chem. Abstr., Formula Index, page $112 \mathrm{~F}, \mathbf{5 2}$, 2796h (1958)] is obviously erroneous. The described product is actually $2,2,3^{\prime}, 5^{\prime}$-tetrabromo-$2^{\prime}$-hydroxy-6'-methoxyacet-ophenone, since in the original paper [4457] it is specified that two labile bromine atoms are present in the molecule.

2-Bromo-1-[3-bromo-5-(chloromethyl)-4-hydroxyphenyl]ethanone

[107700-04-9] | Synthesis |
| :--- |
| - Preparation by adding a methylene chloride solu- |
| tion of bromine to a methanol/methylene chloride |
| solution of 3-(chloromethyl)-4-hydroxyacetophe- |
| none at r.t. (80\%) [4458]. |

2-Bromo-1-(3,5-dibromo-2-hydroxy-4-methylphenyl)ethanone

[260435-53-8]

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{2} \quad$ mol.wt. 386.87
Syntheses

- Preparation by reaction of bromine with 2-hydroxy-4-methylacetophenone in chloroform/ethylene dichloride mixture, first in an ice-water bath, then for 2 h at r.t. (50\%) [4459].
- Preparation by reaction of bromine with 3,5-dibromo-2-hydroxy-4-methylacetophenone in acetic acid first at r.t., then at reflux to discolouration (72\%) [4460].

```
m.p. 139-140 [4459], 136-137}\mp@subsup{}{}{\circ}[4460]
' H NMR [4459,4460], IR [4459,4460].
```

2-Bromo-1-(2-hydroxy-3-iodo-5-methylphenyl)ethanone
[194226-48-7]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrIO}_{2}$
mol.wt. 354.97
Synthesis

- Preparation [4461] (compound 1a) according to described procedure [4462] (Romanian patent).

2-Bromo-1-(4-hydroxy-3-iodo-5-methoxyphenyl)ethanone
[144978-69-8]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrIO}_{3}$
mol.wt. 370.97

Syntheses

- Preparation by reaction of bromine with 5-iodoac-eto-vanillone in chloroform (quantitative yield) [4463].
- Preparation from 4-hydroxy-3-methoxy- α-bromoacetophenone by the oxidative procedure using chloramine T and sodium iodide in DMF, DMSO or acetonitrile $[4463,4464]$.
${ }^{1} \mathrm{H}$ NMR [4463], ${ }^{13} \mathrm{C}$ NMR [4463], MS [4463].

```
2-Bromo-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone
[125629-36-9] \(\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{5} \quad\) mol.wt. 290.07
```



```
Synthesis
- Preparation by reaction of \(96 \%\) nitric acid on 4-hydroxy-3-methoxy- \(\alpha\)-bromoacetophenone in acetic acid at \(20-25^{\circ}\) [4402,4465], (72\%) [4465].
m.p. \(147-149^{\circ}\) [4402,4465]; \({ }^{1} \mathrm{H}\) NMR [4465].
```

2-Bromo-1-(3-bromo-2-hydroxy-5-methylphenyl)ethanone
[194226-50-1]
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97
Syntheses

- Preparation by reaction of bromine on 2-hydroxy5 -methyl- α-bromoacetophenone in 50% aqueous acetic acid at $60^{\circ}(75 \%)$ [4406].
- Also obtained by reaction of bromine with 2-hydroxy-5-methylacetophenone in chloroform in an ice bath for 2 h [4383].
m.p. 106° [4406].

2-Bromo-1-(5-bromo-2-hydroxy-3-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97
Synthesis

- Preparation by reaction of bromine (1 mol) with 5-bromo-2-hydroxy-3-methylacetophenone (1 mol) in acetic acid on a water bath for $20 \mathrm{~min}(47 \%)$ [4466].
m.p. $\quad 72-73^{\circ}$ [4466]; ${ }^{1} \mathrm{H}$ NMR [4466], IR [4466].

2-Bromo-1-(5-bromo-2-hydroxy-4-methylphenyl)ethanone
[194226-49-8]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$
mol.wt. 307.97
Synthesis

- Obtained by reaction of bromine with 2-hydroxy-4-methyl-acetophenone in chloroform in an ice bath for 2 h [4383].

2-Bromo-1-(5-bromo-2-hydroxy-4-methoxyphenyl)ethanone
 $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 323.97

Syntheses

- Obtained by reaction of bromine with 3,3'-diacetyl-4,4'-di-hydroxy-6,6'-dimethoxydiphenyl ether in acetic acid in the presence of a crystal of iodine, first at 90°, then at r.t. overnight [4467].
- Also obtained (by-product) by reaction of bromine on 5-bromo-2-hydroxy-4methoxyacetophenone in acetic acid [4468].
m.p. $\quad 178-180^{\circ}$ [4468], $72-73^{\circ}$ [4467]. One of the reported melting points is obviously wrong.

2-Bromo-1-(2-hydroxy-4-methylphenyl)ethanone

[144219-74-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07
 Synthesis

- Preparation by reaction of bromine with 2-acetoxy-4-methylacetophenone in refluxing chloroform (44\%) [4469].
colourless oil [4469];
${ }^{1} \mathrm{H}$ NMR [4469], IR [4469], MS [4469].
2-Bromo-1-(2-hydroxy-5-methylphenyl)ethanone
[51317-87-4]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07 Syntheses
- Preparation by reaction of bromoacetic acid on p-cresol with boron trifluoride into an autoclave at 70° (90\%) [4470].
- Preparation by Fries rearrangement of p-cresyl bromoacetate with aluminium chloride without solvent at 125° (47%) [4471].
- Preparation by reaction of bromine on 2-hydroxy-5-methylacetophenone in acetic acid at r.t. (39\%) [4406].
m.p. $45^{\circ} 5-46^{\circ} 5$ [4471], 44-45 ${ }^{\circ}$ [4470].

2-Bromo-1-(3-hydroxy-4-methylphenyl)ethanone

[73898-30-3] \quad\begin{tabular}{l}
Synthesis

- Preparation by selective bromination of 3-hydroxy-

4-methylacetophenone with dioxane dibromide in
dioxane-ethyl ether mixture at r.t.

(42\%) [4393].
\end{tabular}

2-Bromo-1-(4-hydroxy-2-methylphenyl)ethanone
[41877-16-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

Synthesis

- Preparation by selective bromination of 4-hydroxy-2-methylacetophenone with dioxane dibromide in dioxane-ethyl ether mixture at r.t. (86\%) [4389].
m.p. $\quad 122-124^{\circ}$ [4389];
${ }^{1} \mathrm{H}$ NMR [4389].

2-Bromo-1-(4-hydroxy-3-methylphenyl)ethanone

[41877-17-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

Syntheses

- Preparation by selective bromination of 4-hydroxy-3-methylacetophenone with dioxane dibromide in dioxane-ethyl ether mixture at r . (98\%) [4389], (78\%) [4393].
- Preparation by selective bromination of 4-hydroxy-3-methyl-acetophenone with cupric bromide in refluxing chloroform-ethyl acetate mixture (quantitative yield) [4391].
m.p. $124-125^{\circ}$ [4389]; ${ }^{1} \mathrm{H}$ NMR [4389].

2-Bromo-1-[4-hydroxy-3-(methylthio)phenyl]ethanone
[66265-63-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \mathrm{~S} \quad$ mol.wt. 261.14

Synthesis

- Preparation by reaction of dioxane dibromide on 4-hydroxy-3-(methylthio)acetophenone in dioxane-ethyl ether mixture (75\%) [4472,4473].
solid [4472].
2-Bromo-1-[4-hydroxy-3-(hydroxymethyl)phenyl]ethanone
[62932-94-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
 Syntheses
- Refer to: [4474-4482].

2-Bromo-1-(2-hydroxy-4-methoxyphenyl)ethanone
[60965-24-4]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07 Syntheses

- Obtained by reaction of cupric bromide with 2-hydroxy-4-methoxyacetophenone, in refluxing chloroform-ethyl acetate mixture [4391,4413], (quantitative yield) [4391] according to [4390], (62\%) [4483] or in refluxing dioxane (44\%) [4484], (10\%) [4411].
- Preparation by reaction of bromine with 2-hydroxy-4-methoxyacetophenone in a mixture of ethyl ether and chloroform [4413] according to [4414].
- Preparation from resorcinol dimethyl ether,
- by reaction of bromoacetyl bromide with aluminium bromide at r.t. [4485];
- by reaction of bromoacetyl chloride with aluminium chloride in carbon disulfide [4484,4486], (23\%) [4484].
- Preparation by reaction of bromoacetonitrile on resorcinol dimethyl ether with hydrobromic acid gas in ethyl ether [4433].
m.p. 161° [4484], 92° [4485], $90-92^{\circ}$ [4411], $70-72^{\circ}$ [4483].

There is discrepancy between the different melting points.
${ }^{1} \mathrm{H}$ NMR [4411,4483], IR [4483], MS [4483].
2-Bromo-1-(2-hydroxy-5-methoxyphenyl)ethanone
[203524-87-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07

m.p. $65-66^{\circ}$ [4440].

2-Bromo-1-(2-hydroxy-6-methoxyphenyl)ethanone

[50879-47-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
N.B.: It has been observed that glacial acetic acid promotes
side chain bromination of 2-hydroxyacetophenones [4422].

However, actually, 3-bromo-2-hydroxy-6-methoxyacetophenone was obtained by bromination of 2-hydroxy-6-methoxyacetophenone in glacial acetic acid, dilute acetic acid (80%) or acetic anhydride [4489,4490].
m.p. 106° [4488,4490].

2-Bromo-1-(3-hydroxy-4-methoxyphenyl)ethanone

[90971-90-7]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07 Synthesis

- Preparation by reaction of cupric bromide on 3-hydroxy-4-methoxyacetophenone in refluxing dioxane (80\%) [4391].

2-Bromo-1-(4-hydroxy-3-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$
mol.wt. 245.07
Syntheses

- Preparation by reaction of cupric bromide on 4-hydroxy-3-methoxyacetophenone in refluxing chloroform-ethyl acetate mixture (quantitative yield) [4391].
- Preparation by reaction of bromoacetyl bromide on guaiacol with aluminium chloride in carbon disulfide (75\%) [4491].
- Preparation by reaction of bromine with 4-hydroxy-3-methoxyacetophenone [4429,4492] in ice cooled solution of ethyl ether and dioxane (quantitative yield) [4492].
m.p. $\quad 78-79^{\circ}$ [4491]; ${ }^{1} \mathrm{H}$ NMR [4492], IR [4492], MS [4492].

2-Bromo-1-(2,3-dihydroxy-4-methoxyphenyl)ethanone

[204648-67-9] \quad\begin{tabular}{l}
Synthesis

- Refer to: [4493] (Japanese patent).
\end{tabular}

2-Bromo-1-(2,6-dihydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4} \quad$ mol.wt. 261.07
Synthesis

- Preparation by hydrolysis of 2,6-dihydroxy-4-methoxy- α-bromoacetophenone with 16% hydrobromic acid in refluxing ethanol (94\%) [4494].
m.p. $139^{\circ} 5-140^{\circ} 5$ (d) [4494].

2-Bromo-1-[4-hydroxy-3-(methylsulfonyl)phenyl]ethanone
[66264-67-3] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4} \mathrm{~S} \quad$ mol.wt. 293.14

Synthesis

- Preparation by reaction of aluminium chloride on 4-meth-oxy-3-(methylsulfonyl)- α-bromoacetophenone in refluxing chlorobenzene (70\%) [4473]. crystalline solid [4473].

2-Bromo-1-[5-(2-bromoacetyloxy)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{4}$
mol.wt. 352.00
Synthesis

- Preparation by reaction of bromoacetyl bromide on hydroquinone dimethyl ether with aluminium bromide (13-16\%) [4421,4440].
m.p. $106-107^{\circ}$ [4440], $105-107^{\circ}$ [4421].

1-[5-(Acetyloxy)-2-hydroxyphenyl]-2-bromoethanone
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{4} \quad$ mol.wt. 273.08

> Synthesis

- Preparation from 2,5-dihydroxy- α-bromoacetophenone on heating with acetyl bromide (62\%) [4440].
m.p. $143^{\circ} 5-144^{\circ}$ [4440].

2-Bromo-1-(3-bromo-2-hydroxy-4,5-dimethylphenyl)ethanone
[319923-52-9] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 322.00

Synthesis

- Preparation by reaction of bromine with 3-bromo-2-hydroxy-4,5-dimethylacetophenone in acetic acid first at r.t., then at reflux to discolouration (2 min) (80\%) [4495].
m.p. $\quad 109-110^{\circ}$ [4495]; ${ }^{1} \mathrm{H}$ NMR [4495], IR [4495].

2-Bromo-1-(5-bromo-2-hydroxy-3,4-dimethylphenyl)ethanone

[260430-25-9]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 322.00
Syntheses

- Preparation by reaction of bromine with 2-hydroxy-3,4-dimethylacetophenone,
- in chloroform/ethylene dichloride mixture, first in an ice-water bath, then for 1 h at r.t. (68\%) [4459];
- in chloroform in an ice-water bath for 2 h [4383].
- Preparation by reaction of bromine with 5-bromo-2-hydroxy-3,4-dimethylacetophenone in acetic acid first at r.t., then at reflux to discolouration (2 min) (68\%) [4495].
m.p. $\quad 97-98^{\circ}$ [4459,4495]; ${ }^{1} \mathrm{H}$ NMR [4459,4495], IR [4459,4495].

2-Bromo-1-(3-bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone
[29784-35-8]
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$
mol.wt. 354.00

Synthesis

- Obtained by reaction of bromine on 2-hydroxy-4,6-di-methoxyacetophenone in chloroform (22\%) [4489].
m.p. 194-195 [4489]; ${ }^{1} \mathrm{H}$ NMR [4489].

2-Bromo-1-(3-ethyl-4-hydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$ mol.wt. 243.10
 Syntheses

- Preparation by reaction of dioxane dibromide on 3-ethyl-4hydroxyacetophenone in dioxane-ethyl ether mixture at r.t. (63\%) [4393].
- Also refer to: [4496].

2-Bromo-1-(4-ethyl-3-hydroxyphenyl)ethanone

[73898-31-4]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
mol.wt. 243.10
Synthesis

- Preparation by reaction of dioxane dibromide on 4-ethyl-3-hydroxyacetophenone in dioxane-ethyl ether mixture at r.t. (67\%) [4393].

2-Bromo-1-(5-ethyl-2-hydroxyphenyl)ethanone
[180154-50-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10

Synthesis

- Refer to: [4497].

2-Bromo-1-(2-hydroxy-4,6-dimethylphenyl)ethanone

[67029-80-5] \quad\begin{tabular}{l}
Synthesis

- Preparation by reaction of cupric bromide on
2-hydroxy-4,6-dimethylacetophenone in reflux-
ing chloroform-ethyl acetate mixture [4407].

\end{tabular}

2-Bromo-1-(4-hydroxy-2,5-dimethylphenyl)ethanone
[107584-78-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10

Synthesis

- Preparation from 4-hydroxy-2,5-dimethylacetophenone by standard bromination procedure according to [4492], (62\%) [4429].
m.p. $\quad 129-131^{\circ}$ [4429]; ${ }^{1} \mathrm{H}$ NMR [4429], MS [4429].

2-Bromo-1-(4-hydroxy-3,5-dimethylphenyl)ethanone
[157014-27-2]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
mol.wt. 243.10
Syntheses

- Preparation by reaction of 4-hydroxy-3,5-dime-thyl- α-chloroacetophenone in boiling methylene chloride with 46-48\% aqueous hydrobromic acid in the presence of tetrabutylammonium bromide (0.3 M relative to the ketone) for 24 h , (87% yield) [4498].
- Also obtained from 4-(benzyloxy)-3,5-dimethyl- α-bromoacetophenone by the former treatment (83\%) [4499].
- Also refer to: [4500].
m.p. 131° [4498], $130^{\circ} 6$ [4499]; ${ }^{1} \mathrm{H}$ NMR [4498,4499], IR [4499], MS [4498,4499].

2-Bromo-1-[4-hydroxy-3-(ethylthio)phenyl]ethanone
 $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{~S} \quad$ mol.wt. 275.17
Synthesis

- Preparation by reaction of bromine on 3-(ethylthio)-4hydroxyacetophenone in chloroform, in the presence of calcium carbonate at 25° [4435, 4473].

2-Bromo-1-[4-hydroxy-3-(2-hydroxyethyl)phenyl]ethanone

2-Bromo-1-[4-hydroxy-3-(methoxymethyl)phenyl]ethanone
[91363-39-2] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10

Synthesis

- Refer to: [4503].

2-Bromo-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone
[18064-92-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 275.10
 Syntheses

- Preparation by reaction of cupric bromide on 2-hydroxy-3,4-dimethoxyacetophenone [4504] or 2,3,4-trimethoxy-acetophenone [4505] in refluxing chloroform-ethyl acetate mixture (47\%) [4504], (26\%) [4505].
- Preparation by reaction of bromine on 2-hydroxy-3,4-dimethoxyacetophenone in chloroform-ethyl ether solution (44\%) [4414].
- Preparation by reaction of bromoacetyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in methylene chloride at 20° (42\%) [4506].
m.p. $144-145^{\circ}$ [4414], 142° [4506], $140-142^{\circ} 5$ [4505], $140-141^{\circ}$ [4504];
${ }^{1} \mathrm{H}$ NMR [4414,4504,4505], IR [4414,4506,4507].

2-Bromo-1-(2-hydroxy-3,5-dimethoxyphenyl)ethanone

2-Bromo-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone

[18064-88-5]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 275.10
Syntheses

- Preparation by reaction of aluminium bromide with 2,4,6-trimethoxy- α-bromoacetophenone at 120° [4508].
- Preparation by reaction of bromoacetyl bromide with phloroglucinol trimethyl ether according to [4509], but using aluminium bromide instead of aluminium chloride in carbon disulfide at r.t. [4508].
- Also obtained by reaction of cupric bromide on 2-hydroxy-4,6-dimethoxyacetophenone in refluxing chloroform-ethyl acetate mixture [4410,4505], (2\%) [4505].
m.p. $\quad 130-131^{\circ}$ [4508], $125-126^{\circ}$ [4505]; ${ }^{1} \mathrm{H}$ NMR [4410,4505], MS [4410].

2-Bromo-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone

[51149-28-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 275.10

Syntheses

- Preparation by bromination of 4-hydroxy-3,5-dimethoxy-acetophenone with,
- bromine in chloroform [4463,4510-4512], (90\%) [4511], (27\%) [4512];
- cupric bromide in a refluxing mixture of ethyl acetate and chloroform [4513].
- Also refer to: [4514].
m.p. 130° [4511], 118- 120° [4512]; ${ }^{1} \mathrm{H}$ NMR [4511,4512], IR [4512], MS [4513].

2-Bromo-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5}$
Synthesis

- Preparation by reaction of NBS on 2,4-dihy-droxy-3,6-dimethoxyacetophenone in refluxing carbon tetrachloride (64\%) [4515].
m.p. $159-160^{\circ}$ [4515].

2-Bromo-1-(2,5-dihydroxy-3,4-dimethoxyphenyl)ethanone

[204648-54-4]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5} \quad$ mol.wt. 291.10
Synthesis

- Refer to: [4493] (Japanese paper).

2-Bromo-1-(3,6-dihydroxy-2,4-dimethoxyphenyl)ethanone
[204648-57-7]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5} \quad$ mol.wt. 291.10
Synthesis

- Refer to: [4493] (Japanese paper).

2-Bromo-1-[3-hydroxy-4-(1-methylethyl)phenyl]ethanone

[73898-32-5]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$
mol.wt. 257.13
Synthesis

- Preparation by bromination of 3-hydroxy-4-isopropyl-acetophenone with dioxane dibromide in dioxane-ethyl ether mixture at r.t. (78\%) [4393].

2-Bromo-1-[4-hydroxy-3-(1-methylethyl)phenyl]ethanone
[73898-25-6]
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$
mol.wt. 257.13

Synthesis

- Preparation by bromination of 4-hydroxy-3-iso-propyl-acetophenone with dioxane dibromide in dioxane-ethyl ether mixture at r.t. (55\%) [4393].

2-Bromo-1-(4-ethyl-2-hydroxy-5-methoxyphenyl)ethanone
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 273.13
Synthesis

- Preparation by reaction of bromine on 4-ethyl-2-hydroxy-5-methoxyacetophenone in acetic acid at r.t. (59\%) [4516].
m.p. $75-76^{\circ}$ [4516].

2-Bromo-1-[3-bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone
 [153355-99-8]

 $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2}$
 Synthesis
 - Refer to: [4517] (Japanese patent).

2-Bromo-1-[3-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone

[118788-50-4]

2-Bromo-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{2}$
Synthesis

- Refer to: [4519].
N.B.: All reagents and starting materials were from commercial sources. This compound was called 4-hydroxy-3-isopropyl-6-methyl phenacyl bromide (p. 185).

2-Bromo-1-[3-(1,1-dimethylethyl)-4-hydroxy-5-methylphenyl]ethanone
[18611-32-0]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 285.18
Syntheses

- Preparation by bromination of 3-tert-butyl-4-hydroxy-5-methylacetophenone in usual manner in benzene or chloroform [4520].
- Preparation by reaction of cupric bromide with 3-tert-butyl-4-hydroxy-5-methylacetophenone in refluxing ethyl acetate (72\%) [4518]. m.p. $95-97^{\circ}$ [4520], $90-92^{\circ}$ [4518].

2-Bromo-1-(2-hydroxy-4-pentylphenyl)ethanone
[133301-45-8]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$
Synthesis

- Obtained by reaction of cupric bromide with 2-hydroxy-4-pentylacetophenone in refluxing ethyl acetate/chloroform mixture (1:1) for 4 h (18\%) [4521].
${ }^{1} \mathrm{H}$ NMR [4521], IR [4521]; TLC [4521].

2-Bromo-1-(3-cyclohexyl-4-hydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{2}$
mol.wt. 297.19
Synthesis

- Preparation by reaction of dioxane dibromide on 3-cyclohexyl-4-hydroxyacetophenone in dioxane and ethyl ether mixture at r.t. (95\%) [4393].

2-Bromo-1-(4-cyclohexyl-3-hydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{2}$
mol.wt. 297.19

Synthesis

- Preparation by reaction of dioxane dibromide on 4-cyclohexyl-3-hydroxyacetophenone in dioxane and ethyl ether mixture at r.t. (51\%) [4393].

2-Bromo-1-(5-cyclohexyl-2-hydroxyphenyl)ethanone
[74815-30-8]

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{2}$
mol.wt. 297.19
Synthesis

- Preparation by reaction of cupric bromide on 5-cyclohexyl-2-hydroxyacetophenone in refluxing ethyl acetate [4388].
- yellow oil [4388].

2-Bromo-1-[4-hydroxy-3,5-bis(1-methylethyl)phenyl]ethanone

[157014-26-1]

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2}$
Synthesis

- Preparation by a Friedel-Crafts acylation of propofol (2,6-diisopropylphenol) using aluminium chloride and bromoacetyl bromide in methylene chloride (compound 6) [4522].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-bromoethanone
[14386-64-2]

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2}$
Synthesis

- Preparation by reaction of bromine with 3,5-di-tert-butyl-4-hydroxyacetophenone in ethanol under nitrogen bubbling for 2.5 h (73\%) [4523] or in refluxing methylene chloride (67\%) [4518].

11.1.2 From Dibromoacetic Acid

2,2-Dibromo-1-(4-hydroxy-3,5-diiodophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{I}_{2} \mathrm{O}_{2}$
mol.wt. 545.74
Synthesis

- Obtained by reaction of bromine on 4-hydroxy-3,5-diiodo-acetophenone with sunlight in chloroform at $50-60^{\circ}$ (83%) [4524].
m.p. $132-133^{\circ}$ [4524].

2,2-Dibromo-1-(4-hydroxy-3,5-dinitrophenyl)ethanone

[120388-19-4]	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 383.94
OH	Synthesis
	- Preparation by bromination of 4-hydroxy-3,5-dini-tro-acetophenone with excess cupric bromide in refluxing ethyl acetate (66\%) [4381].
m.p. $93-95^{\circ}$ [4381]	

2,2-Dibromo-1-(3-bromo-4-hydroxy-5-nitrophenyl)ethanone

[35928-54-2]	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{3} \mathrm{NO}_{4} \quad$ mol.wt. 417.84
OH	Synthesis
	- Preparation by bromination of 3-bromo-4-hydroxy 5-nitro-acetophenone in acetic acid-sulfuric acid solution at 25° (78\%) [4525].
m.p. 121° [4525];	NMR [4525].

2,2-Dibromo-1-(3,5-dibromo-2-hydroxyphenyl)ethanone

[49619-83-2]
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{4} \mathrm{O}_{2}$
Syntheses

- Preparation by reaction of bromine on 2-hydroxyacetophenone in acetic acid [4386,4526], (62\%) [4386].
- Also obtained by reaction of aqueous sodium hypobromite on chromone-3-carboxaldehyde in acetic acid (24-30\%) [4527,4528].
- Also obtained by reaction of sodium sulfite on 3,5-dibromo-2-hydroxy- α, α, α -tribromo-acetophenone, in boiling acetic acid [4529].
- Also obtained by reaction of bromine on 3,3'-diacetyl-4,4'-dihydroxydiphenyl thioether [4530].

```
m.p. 124-125 [ [4527], 122-123 [ [4529], 121-1220 [4528], 120-121*
        [4386,4526,4530];
'1}\textrm{H}\mathrm{ NMR [4527,4528], IR [4527,4528], UV [4527], MS [4527,4528].
```


2,2-Dibromo-1-(3,5-dibromo-4-hydroxyphenyl)ethanone

$$
\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{4} \mathrm{O}_{2} \quad \text { mol.wt. } 451.73
$$

Syntheses

- Preparation by reaction of bromine on 3,5-dibromo-4-hydroxyacetophenone [4385,4386].
- Preparation by reaction of bromine on 4-hydroxyacetophenone in acetic acid (60\%) [4386].
m.p. $105-106^{\circ}$ [4386], 105° [4385].

2,2-Dibromo-1-(3,5-dibromo-2,4-dihydroxyphenyl)ethanone
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{4} \mathrm{O}_{3} \quad$ mol.wt. 467.73

Synthesis

- Preparation by reaction of bromine on resacetophenone in acetic acid [4531].
m.p. $110-110^{\circ} 5$ [4531].

2,2-Dibromo-1-(4-hydroxy-3-nitrophenyl)ethanone

[35928-53-1] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}_{4} \quad$ mol.wt. 338.94
Syntheses

- $\left.\begin{array}{l}\text { Preparation by bromination of 4-hydroxy-3-nitro-acetophe- } \\ \text { none with excess cupric bromide in refluxing ethyl acetate } \\ \text { Preparation by bromination of 4-hydroxy-3-nitro-aceto- } \\ \text { phenone in acetic acid-sulfuric acid mixture at } 25^{\circ}(49 \%) \\ \text { [4525]. }\end{array}\right)$
m.p. 63° [4525]; ${ }^{1} \mathrm{H}$ NMR [4525].

2,2-Dibromo-1-(3-bromo-4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2} \quad$ mol.wt. 372.84
Synthesis

- Preparation by reaction of bromine on 4-hydroxy-acetophenone in acetic acid or chloroform (65\%) [4386].
m.p. 139° [4386].

2,2-Dibromo-1-(5-bromo-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2} \quad$ mol.wt. 372.84

Synthesis

- Preparation by reaction of bromine on 2-hydroxy-acetophenone in chloroform or acetic acid (quantitative yield) [4386].
m.p. $103-104^{\circ}$ [4386].

2,2-Dibromo-1-(2-hydroxyphenyl)ethanone

[54735-43-2]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}$	mol.wt. 293.94
	Syntheses	

- Obtained by transformation of 4-hydroxycoumarin with tetrabutylammonium bromide promoted by hydrogen peroxide and vanadium pentoxide at 5° for $1 \mathrm{~h}(55 \%)$ [4532].
- Also refer to: [4533].
${ }^{1} \mathrm{H}$ NMR [4532], ${ }^{13} \mathrm{C}$ NMR [4532], UV [4533]; TLC [4532], GC [4532].

2,2-Dibromo-1-(4-hydroxyphenyl)ethanone

[92596-96-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94

Syntheses

- Preparation by bromination of 4-hydroxyacetophenone with excess cupric bromide in refluxing ethyl acetate (56-82\%) [4381].
- Also obtained (by-product) by reaction of brominewith p-hydroxyacetophenone in dioxane at r.t. for 40 $\min (<6 \%)$ [4534].
m.p. $121-122^{\circ}$ [4534]; ${ }^{1} \mathrm{H}$ NMR [4534], IR [4534].

1-(3-Amino-4-hydroxyphenyl)-2,2-dibromoethanone (Hydrobromide)

$$
\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{NO}_{2}, \mathrm{HBr} \quad \text { mol.wt. } 389.87
$$

Synthesis

- Preparation by reaction of bromine on 3-amino-4-hydroxyacetophenone hydrobromide in acetic acid at 65° (60\%) [4401].
m.p. 215° [4401].

2,2-Dibromo-1-[3-bromo-5-(chloromethyl)-4-hydroxyphenyl]ethanone

[107700-05-0]

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{3} \mathrm{ClO}_{2}$ mol.wt. 421.31
Synthesis

- Preparation by adding a methylene chloride solution of bromine to a methanol/methylene chloride solution of 3-(chloromethyl)-4-hydroxyacetophenone at r.t. (82\%) [4458].
m.p. 140° [4458]; ${ }^{1} \mathrm{H}$ NMR [4458], IR [4458], MS [4458].

2,2-Dibromo-1-(3,5-dibromo-2-hydroxy-6-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{3} \quad$ mol.wt. 481.76
Synthesis

- Obtained by reaction of bromine on 3,3'-diacetyl-2,2'-dihydroxy-4,4'-dimethoxydiphenylsulfide in acetic acid, heated in a boiling water bath [4457].
m.p. $\quad 101-102^{\circ}$ [4457].

2,2-Dibromo-1-(3-bromo-5-ethyl-2,4-dihydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{3} \quad$ mol.wt. 416.89
m.p. $144-145^{\circ}$ [4535].

2,2-Dibromo-1-(3-bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone
[88503-19-9]

m.p. $167-168^{\circ}$ [4536].
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{4} \quad$ mol.wt. 432.89
Synthesis

- Preparation by heating for 7 h on a steam bath a mixture of 2-hydroxy-3-iodo-4,6-dimethoxyacetophenone and bromine in acetic acid (67\%) [4536].

2,2-Dibromo-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone
[72235-94-0]

m.p. 111° [4408].
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 350.05
Synthesis

- Preparation by reaction of bromine on 4-hydroxy-2-methyl-5-isopropylacetophenone in acetic acid at 18° (45\%) [4408].

1-[4-(Benzoyloxy)-3,5-dibromo-2-hydroxyphenyl]-2,2-dibromoethanone

 $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{O}_{4} \quad$ mol.wt. 571.84

Synthesis

- Preparationbybrominationof4-(benzoyloxy)-2-hydroxy-acetophenone at r.t. [4537].
m.p. $69-70^{\circ}$ [4537].

11.1.3 From Tribromoacetic Acid

2,2,2-Tribromo-1-(3,5-dibromo-2-hydroxyphenyl)ethanone

[98436-51-2] $\quad \mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Br}_{5} \mathrm{O}_{2} \quad$ mol.wt. 530.63

Synthesis

- Obtained by reaction of bromine on 4-hydroxycoumarin (benzotetronic acid) in methanol or acetic acid at r.t. [4529].
m.p. $125-126^{\circ}$ [4529].

2,2,2-Tribromo-1-(2-hydroxyphenyl)ethanone

[101495-49-2]
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2}$
Synthesis

m.p. 87° [4529].

- Obtained by reaction of bromine on 4-hydroxycoumarin (benzotetronic acid) in acetic acid-dioxane mixture at r.t. [4529].

2,2,2-Tribromo-1-(5-bromo-2-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{3} \quad$ mol.wt. 481.76
Synthesis

- Preparation by reaction of bromine on bromopaeonol (5-bromo-2-hydroxy-4-methoxyacetophenone) in the presence of a crystal of iodine at r.t. [4538].
m.p. $123-124^{\circ}$ [4538].

2,2,2-Tribromo-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Br}_{3} \mathrm{O}_{2} \quad$ mol.wt. 428.95
Synthesis

- Preparation by reaction of bromine on 4-hydroxy-2-methyl-5-isopropylacetophenone in acetic acid at $18^{\circ}(90 \%)$ [4408].
m.p. 69° [4408].

11.2 Compounds Derived from Chloroacetic Acids

11.2.1 From Monochloroacetic Acid

2-Chloro-1-(3-chloro-5-fluoro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{FO}_{2} \quad$ mol.wt. 223.03
Synthesis

- Preparation by Fries rearrangement of 2-chloro-4-fluoro-phenyl chloroacetate with aluminium chloride without solvent at $130-140^{\circ}(63 \%)$ [4539].
b.p. 116° [4539].

2-Chloro-1-(3,5-dichloro-2-hydroxyphenyl)ethanone

[79214-30-5]

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 239.48
Syntheses

- Preparation by Fries rearrangement of 2,4-dichlorophenyl chloroacetate with aluminium chloride without solvent at $135-145^{\circ}$ [4412,4540], (56\%) [4540].
- Preparation by reaction of chloroacetyl chloride on 2,4-dichloroanisole with aluminium chloride in refluxing carbon disulfide (45\%) [4405].
m.p. $136-136^{\circ} 8$ [4540], 133° [4405], $132-134^{\circ}$ [4412].

2-Chloro-1-(3,5-dichloro-4-hydroxyphenyl)ethanone

[220291-97-4] \begin{tabular}{l}
Syntheses

Preparation by Fries rearrangement of 2,6-dichlo-
rophenyl chloroacetate with aluminium chloride
without solvent at 112-114 ${ }^{\circ}$ (77\%) [4541].

- Also refer to: [4542] (Japanese patent).
\end{tabular}

m.p. $120-121^{\circ}$ [4541].

1-(5-Bromo-2-hydroxyphenyl)-2-chloroethanone

[100959-21-5] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49

Synthesis

- Preparation by reaction of chloroacetyl chloride with 4-bromophenol in the presence of aluminium chloride at 40° (66\%) [4543].
m.p. $73-74^{\circ}$ [4543].

1-(3-Bromo-4,5-dihydroxyphenyl)-2-chloroethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{3}$
mol.wt. 265.50
Synthesis

- Preparation by bromination of 3,4-dihydroxy- α-chloroacetophenone with bromine in the presence of quinoline sulfate while cooling (60%) [4544] according to the method [4545].
m.p. 137° [4544].

2-Chloro-1-(3-fluoro-4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2} \quad$ mol.wt. 188.59
Synthesis

- Preparation by Fries rearrangement of 2-fluorophenyl chloroacetate with aluminium chloride without solvent at 135-140 ${ }^{\circ}$ (27-40\%) [4546].
m.p. $101-102^{\circ}$ [4546].

2-Chloro-1-(5-fluoro-2-hydroxyphenyl)ethanone

[2002-75-7]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2} \quad$ mol.wt. 188.59

Synthesis

- Preparation by Fries rearrangement of 4-fluorophenyl chloroacetate with aluminium chloride without solvent at 130° (50\%) [4547].
b.p. ${ }_{10} 177^{\circ}$ [4547].

2-Chloro-1-(2-hydroxy-5-nitrophenyl)ethanone

2-Chloro-1-(4-hydroxy-3-nitrophenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4} \quad$ mol.wt. 215.59

Syntheses

- Preparation by reaction of chlorine on 4-hydroxy-3-nitroacetophenone in acetic acid (45\%) [4401].
- Also obtained by reaction of chloroacetyl chloride on 2-nitrophenol with aluminium chloride in nitrobenzene at $50-60^{\circ}$ (19\%) [4401].
m.p. $88^{\circ}[4401] ;$ b.p. ${ }_{0.1} 135-140^{\circ}$ [4401], b.p. ${ }_{0.4} 140-145^{\circ}$ [4401].

2-Chloro-1-(3-chloro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04 Synthesis

- Obtained by reaction of chloroacetonitrile on 2-chloro-phenol with aluminium chloride and boron trichloride mixture in ethylene dichloride at r.t. (21\%) [4549, 4550].
m.p. $\quad 72-73^{\circ}$ [4549,4550]; ${ }^{1} \mathrm{H}$ NMR [4550].

2-Chloro-1-(3-chloro-4-hydroxyphenyl)ethanone

[39066-18-7] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Synthesis

- Preparation by Fries rearrangement of 2-chlorophenyl chloroacetate with aluminium chloride without solvent at $135-140^{\circ}$ (39-59\%) [4546,4551,4552].
m.p. $141-142^{\circ}$ [4546].

2-Chloro-1-(4-chloro-2-hydroxyphenyl)ethanone

[75717-50-9]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04
OH	Synthesis
	- Preparation by reaction of chloroacetonitrile on 3-chloro-phenol with aluminium chloride and boron trichloride mixture in refluxing ethylene dichloride (51\%) [4549,4550].

2-Chloro-1-(5-chloro-2-hydroxyphenyl)ethanone

[24483-75-8]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 205.04
Syntheses

- Preparation by Fries rearrangement of 4-chlorophenyl chloroacetate with aluminium chloride without solvent at $140-150^{\circ}$ [4412,4553,4554], (30\%) [4554].
- Also obtained by reaction of chloroacetonitrile on 4-chlorophenol with aluminium chloride and boron trichloride mixture in ethylene dichloride [4549,4550], (18\%) [4549].
m.p. $107-110^{\circ}$ [4412], $65-66^{\circ}$ [4549,4550], 65° [4553,4554]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [4550].

1-(5-Amino-2-hydroxy-4-nitrophenyl)-2-chloroethanone $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{4} \quad$ mol.wt. 230.61

Synthesis

- Preparation by treatment of 5-acetamido-2-hy-droxy-4-nitro- α-chloroacetophenone with boiling 25% aqueous hydrochloric acid solution [4555].
m.p. 145° (d) [4555].

1-(5-Amino-2-hydroxy-4-nitrophenyl)-2-chloroethanone (Hydrochloride) $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{4}, \mathrm{HCl} \quad$ mol.wt. 267.07

Synthesis

- Preparation from 5-amino-2-hydroxy-4-nitro- α -chloro-acetophenone [4555] (see above).
m.p. 210° (d) [4555].

2-Chloro-1-(2-hydroxyphenyl)ethanone

[53074-73-0]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60 Syntheses

- Preparation by reaction of acetonitrile on phenol with aluminium chloride and boron trichloride in refluxing ethylene dichloride (78\%) [4549] or in methylene chloride at r.t. (85\%) [4550].
- Preparation by halogenation of o-hydroxyacetophenone,
- using EGDMA crosslinked polystyrene based benzyltriethylammonium dichloroiodate or tetrachloroiodate reagents in chloroform for $7-11 \mathrm{~h}$ at $30^{\circ}(80 \%)$ [4556];
- using $5 \% \mathrm{~N}, \mathrm{~N}^{\prime}-\mathrm{MBA}$ crosslinked polyacrylamide-based dichloroiodate or tetrachloroiodate reagents in chloroform at 30° for 8 h (77-79\%) [4557];
- with benzyltrimethylammonium dichloroiodate in refluxing methylene chloride/methanol mixture for 10 h (73\%) [4558].
- Preparation by reaction of hexachloro-2,4-cyclohexadienone on 2-hydroxyacetophenone in refluxing ethanol (66\%) [4559].
- Preparation by Fries rearrangement of phenyl monochloroacetate,
- with aluminium chloride(50\%) [4560], without solvent at 120° (50\%) [4561] or at 140° (by-product) [4562];
- with beryllium chloride without solvent at $130-140^{\circ}(30 \%)$ [4563].
- Also obtained by reaction of chloroacetyl chloride on bromomagnesium phenolate in toluene at r.t. (17%) [4564].
- Also obtained by reaction of aluminium chloride on 2-chloroacetylanisole in refluxing carbon disulfide [4565,4566].
- Also obtained (by-product) by reaction of chloroacetyl chloride on phenol with aluminium chloride at 140° [4562].
- Also obtained (by-product) by treatment of anisole with chloroacetyl chloride in the presence of aluminium chloride in tetrachloroethane in a boiling water bath for 2-3 h [4567,4568].
- Also refer to: [4569-4577].
m.p. 101° [4566], $74-75^{\circ}$ [4564], 74° [4557,4560-4562], $73-74^{\circ}$ [4565], 73° [4558,4559,4563,4566-4568], 72-73ㅇ [4550], 72° [4556], 71-71ํ 5 [4573];
One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [4558,4559,4564], IR [4558,4559].

2-Chloro-1-(3-hydroxyphenyl)ethanone

[62932-90-5]	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60
OH	Synthesis
	- Preparation by reaction of hexachloro-2,4-cyclohexadienone on 3-hydroxyacetophenone in refluxing ethanol (50\%) [4559].
m.p. 93° [4559];	${ }^{1} \mathrm{H}$ NMR [4559], IR [4559].

2-Chloro-1-(4-hydroxyphenyl)ethanone

[6305-04-0]

Syntheses
- Preparation by reaction of p-hydroxyacetophenone with
benzyltrimethylammonium dichloroiodate in refluxing
methylene chloride/methanol mixture for $10 \mathrm{~h}(95 \%)$
[4558] or for $12 \mathrm{~h}(92 \%)$ [4578].

- Preparation by reaction of chloroacetyl chloride,
- with anisole in the presence of aluminium chloride in ligroin (44\%) [4579], for 1 h in a water bath $\left(50-55^{\circ}\right)(32 \%)$ [4580], for $4 \mathrm{~h}(36 \%)$ [4581] or for $3 \mathrm{~h}(41-42 \%)$ [4582];
- with anisole in the presence of aluminium chloride without solvent [4583], in carbon disulfide [4584] or in tetrachloroethane in a boiling water bath for 2-3 h [4567], (53\%) [4568];
- with phenol in the presence of aluminium chloride without solvent at 140° (71%) [4562] or in tetrachloroethane, first at 70° for 5 h , then at r.t. for 10 h [4585].
- Also obtained by Fries rearrangement of phenyl chloroacetate,
- with aluminium chloride without solvent at $120-140^{\circ}$ [4561,4562], (65\%) [4562];
- with beryllium chloride without solvent at $130-140^{\circ}$ (23\%) [4563].
- Preparation by reaction of hexachloro-2,4-cyclohexadienone on 4-hydroxyacetophenone in refluxing ethanol (77\%) [4559].
- Also refer to: [4586-4588].

```
m.p. 151-152 [ [4573], 150-151\circ [4578], 150}\mp@subsup{}{}{\circ}\mathrm{ [4558], 148*
    [4562,4579,4582-4584], 147-148* (d) [4580], 14705 [4581], 147*
    [4567,4568], 145-146 [4563], 142 [4559];
'1H NMR [4558,4559,4578], IR [4558,4559].
```


2-Chloro-1-(2,3-dihydroxyphenyl)ethanone

[63704-55-2]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59
Synthesis

- Refer to: [4589] (Japanese patent).

2-Chloro-1-(2,4-dihydroxyphenyl)ethanone

[25015-92-3] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59
 Syntheses

- Preparation by reaction of chloroacetonitrile on resorcinol with zinc chloride (Hoesch reaction) (90\%) [4590], (82\%) [4591] or with triflic acid (trifluoromethanesulfonic acid) (23\%) [4592].
- Also obtained by reaction of chloroacetic acid on resorcinol with boron trifluoride (30\%) [4593] or with zinc chloride or phosphorous oxychloride (poor yield) [4435,4436].
m.p. 132° [4593], 131° [4590], $130-132^{\circ}$ [4592], 130° [4591];
${ }^{1} \mathrm{H}$ NMR [4592], IR [4592], UV [4417].

2-Chloro-1-(2,5-dihydroxyphenyl)ethanone

[60912-82-5]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59 Syntheses

- Obtained by reaction of hydrochloric acid on 2,5-diace-toxy- α-chloroacetophenone in methanol at r.t. (85\%) [4440].
- Preparation by reaction of aluminium bromide on 2,5 -di-methoxy- α-chloroacetophenone in carbon disulfide at r.t. (72\%) [4440].
- Also obtained by action of acetic acid saturated with hydrochloric acid (10 min , r.t.) on 2,5-di-acetoxy- α-diazoacetophenone, reduced pressure elimination of acetic acid, then action (overnight, r.t.) of a methanolic solution of hydrochloric acid (53\%) [4440].
- Also obtained by reaction of sulfur dioxide on 2-chloroacetyl-1,4-benzoquinone in water [4440].

```
m.p. 132-133' [4440].
```


2-Chloro-1-(3,4-dihydroxyphenyl)ethanone

[99-40-1]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59
Syntheses

- Preparation by Fries rearrangement of pyrocatechol mono-chloroacetate with aluminium chloride in nitrobenzene at $100^{\circ}(60 \%)$ [4594] or without solvent at 100° (25\%) [4595].
- Preparation by reaction of chloroacetic acid on pyrocatechol with boron trifluoride in tetrachloroethane or in carbon tetrachloride at 65-85 (95-98\%) [4593] or with phosphorous oxychloride [4445,4596-4599], (80\%) [4445], (35-58\%) [4596,4597,4599].
- Preparation by reaction of chloroacetyl chloride on pyrocatechol [4445].
- Preparation by reaction of chloroacetyl chloride on veratrole with aluminium chloride in nitrobenzene at 40° (82%) [4600].
m.p. 173° [4445,4593,4594,4596,4597,4600], 172° [4599,4601], 171° [4595], $169-170^{\circ}$ [4437]; b.p. 190° [4600].

2-Chloro-1-(3,5-dihydroxyphenyl)ethanone
$\begin{array}{rll}{[39878-43-8]} & \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} & \text { mol.wt. } 186.59 \\ \mathrm{OH} & \text { Synthesis } & \end{array}$

- Preparation by reaction of hydrochloric acid on 3,5 -di-acetoxy- α-diazoacetophenone in aqueous methanol at reflux (97\%) [4602].
m.p. 117° [4602].

2-Chloro-1-(2,3,4-trihydroxyphenyl)ethanone

[17345-68-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{4} \quad$ mol.wt. 202.59

Syntheses

- Preparation by Fries rearrangement of 2,6-dimethoxyphenyl chloroacetate with aluminium chloride without solvent at 100° [4603].
- Preparation by reaction of chloroacetyl chloride on pyrogallol [4445].
- Preparation by reaction of chloroacetic acid on pyrogallol with phosphorous oxychloride [4435,4436,4455,4590,4598,4599,4604,4605], (55\%) [4605], (40$41 \%$) [4599,4604], with boron trifluoride [4593,4606] or with zinc chloride (poor yield) [4435,4436].
- Preparation by reaction of chloroacetic anhydride with pyrogallol in the presence of boron trifluoride in ethyl ether [4607].
m.p. 169° [4604], $167-168^{\circ}$ [4455], 167° [4593], 166° [4599], $163-165^{\circ}$ [4437].

2-Chloro-1-(2,4,5-trihydroxyphenyl)ethanone

[14771-02-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{4} \quad$ mol.wt. 202.59

Synthesis

- Preparation by reaction of chloroacetonitrile on 1,2,4-benzenetriol (hydroxyhydroquinone) with zinc chloride in ethyl ether (Hoesch reaction) [4431,4608,4609].
m.p. 182° [4431], $139-140^{\circ}$ [4609]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [4431], IR [4431,4609], UV [4431,4609].

2-Chloro-1-(2,4,6-trihydroxyphenyl)ethanone

[110865-03-7]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}$
mol.wt. 202.59
Syntheses

- Preparation by reaction of chloroacetyl chloride on phloroglucinol with aluminium chloride in nitromethane (86\%) [4606].
- Preparation by reaction of chloroacetonitrile on phloro-glucinol (Hoesch reaction) (88\%) [4610], (68\%) [4611].
- Also refer to: [4612] (compound 1).
m.p. 190° [4606], $188-191^{\circ}$ [4610,4611]; ${ }^{1} \mathrm{H}$ NMR [4611], IR [4611], MS [4611].

1-(3-Amino-4-hydroxyphenyl)-2-chloroethanone

[108708-12-9] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2} \quad$ mol.wt. 185.61

Synthesis

- Preparation by Friedel-Crafts chloroacetylation of N-acetyl-oanisidine followed by hydrolysis with concentrated hydrochloric acid in ethanol [4613].
m.p. 113° [4613].

1-(4-Amino-2-hydroxyphenyl)-2-chloroethanone

[108708-13-0]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}$
Synthesis

- Preparation by Friedel-Crafts chloroacetylation of N -acetyl-m-anisidine followed by hydrolysis with concentrated hydrochloric acid in ethanol [4613].
m.p. 214° (d) [4613].

1-(5-Amino-2-hydroxyphenyl)-2-chloroethanone

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2} \quad$ mol.wt. 185.61
Synthesis

- Preparation by Friedel-Crafts chloroacetylation of N-acetyl-panisidine followed by hydrolysis with concentrated hydrochloric acid in ethanol [4555,4613,4614].
m.p. 135° [4555,4614], 128° [4613].

1-(5-Amino-2-hydroxyphenyl)-2-chloroethanone (Hydrochloride)
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2}, \mathrm{HCl} \quad$ mol.wt. 222.07

Synthesis

- Obtained by reaction of gaseous hydrochloric acid on 5-amino-2-hydroxy- α-chloroacetophenone in ethyl ether [4555].
m.p. 210° (d) [4555].

2-Chloro-1-(3-chloro-4-hydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07
Synthesis

- Preparation by Fries rearrangement of 2-chloro-6-methylphenyl chloroacetate with aluminium chloride at 140° [4615].
m.p. $98^{\circ} 5-99^{\circ} 5$ [4615]; b.p. ${ }_{12} 172-180^{\circ}$ [4615].

2-Chloro-1-(4-chloro-2-hydroxy-5-methylphenyl)ethanone
 [22307-95-5]
 $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07
 Synthesis not yet described

 - See [4616]; this reference mentioned in the Chem. Abstr., 70, 11442s (1969) is erroneous. Actually, the ketone described here as the $2,4^{\prime}$-dichloro-2^{\prime}-hydroxy-5'-methylacetophenone should be the 2,5'-dichloro-2'-hydroxy-4'-methyl-acetophenone. In fact, on one hand, it is obtained by Fries rearrangement of 4-chloro-3-methylphenyl chloroacetate and on the other hand, it provides the 5-chloro-6-methyl-3-[2H]-benzofuranone by cyclisation (see below).

2-Chloro-1-(5-chloro-2-hydroxy-4-methylphenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 219.07
$$

Synthesis

- Preparation by Fries rearrangement of 4-chloro-3-methyl-phenyl chloroacetate with aluminium chloride without solvent at 150° [4616].
m.p. $\quad 111^{\circ}$ [4616]; ${ }^{1} \mathrm{H}$ NMR [4616], IR [4616].

2-Chloro-1-(3-chloro-4-hydroxy-5-methoxyphenyl)ethanone
[160925-81-5] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 235.07

Syntheses

- Preparation by chlorination of acetoguaiacone (4-hydroxy-3-methoxyacetophenone) in dioxane with 2.5 mol equiv chlorine in acetic acid (67\%) [4617].
- Also refer to: [4618].
m.p. $149-150^{\circ}$ [4617]; ${ }^{1} \mathrm{H}$ NMR [4617], ${ }^{13} \mathrm{C}$ NMR [4617], MS [4617].

2-Chloro-1-(5-chloro-2-hydroxy-4-methoxyphenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad \text { mol.wt. } 235.07
$$

Syntheses

- Preparation by reaction of chloroacetyl chloride on 4-chlororesorcinol dimethyl ether with aluminium chloride in carbon disulfide (66\%) [4486].
- Preparation by reaction of chlorine on 2-hydroxy-4-methoxy- α-chloroacetophenone in chloroform (40-45\%) [4486].
m.p. $178^{\circ} 5-180^{\circ}$ [4486].

2-Chloro-1-(2-hydroxy-3-methylphenyl)ethanone

[75717-51-0]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$
mol.wt. 184.62
Syntheses

- Preparation by reaction of chloroacetonitrile on o-cresol with aluminium chloride and boron trichloride mixture in ethylene dichloride at r.t. (75\%) [4549,4550] or with only boron trichloride in methylene chloride at r.t. under nitrogen (18\%) [4619].
- Preparation by Fries rearrangement of 2-methylphenyl chloroacetate with aluminium chloride without solvent at 140° (50\%) [4620], (20\%) [4621].
m.p. 67° [4621], $66-67^{\circ}$ [4620], $65-66^{\circ}$ [4549,4550], 63-64ㅇ [4619];
${ }^{1} \mathrm{H}$ NMR [4550,4619], IR [4619], UV [4619], MS [4619].
2-Chloro-1-(2-hydroxy-4-methylphenyl)ethanone
[20834-75-7] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
Syntheses

- Preparation by Fries rearrangement of 3-methylphenyl chloroacetate with aluminium chloride without solvent between 140° and 150° [4616,4620,4622-4624], (70\%) [4620], (50\%) [4623,4624], (12\%) [4622].
- Preparation by reaction of chloroacetonitrile on m-cresol with boron trichloride and aluminium chloride in refluxing ethylene dichloride (quantitative yield) [4549].
- Also refer to: [4388,4575].
m.p. 102-102 5 [4620], 102° [4616], 101° [4623], 100° [4622], $95-96^{\circ}$ [4549];
${ }^{1} \mathrm{H}$ NMR [4616], IR [4616].

2-Chloro-1-(2-hydroxy-5-methylphenyl)ethanone

[22307-94-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Syntheses

- Preparation by Fries rearrangement of p-tolyl chloroacetate with aluminium chloride without solvent at $140^{\circ} \quad[4412,4562,4620,4623], \quad(90-93 \%)$ [4620,4623], (37\%) [4562].
- Preparation by reaction of chloroacetic acid on p-cresol with boron trifluoride etherate (66\%) or boron trifluoride (46%) in an autoclave at 70° [4470].
- Preparation by reaction of chloroacetyl chloride on 4-methylanisole with aluminium chloride in refluxing carbon disulfide (50-60\%) [4625].
- Preparation by reaction of chloroacetyl chloride on p-cresol with aluminium chloride without solvent at 140° (31\%) [4562].
m.p. $65^{\circ}[4562,4623], 63^{\circ}[4625], 62-63^{\circ}[4412,4620], 62^{\circ}[4470]$.

2-Chloro-1-(2-hydroxy-6-methylphenyl)ethanone

[73331-41-6]	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62 Synthesis
- Refer to: [4626].	

2-Chloro-1-(4-hydroxy-2-methylphenyl)ethanone

[37904-71-5]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Synthesis

- Preparation by Fries rearrangement of 3-methylphenyl chloroacetate with aluminium chloride without solvent at 140° [4620,4622], (30\%) [4620].
m.p. $148^{\circ} 5-149^{\circ}$ [4620], $147^{\circ} 5$ [4622].

2-Chloro-1-(4-hydroxy-3-methylphenyl)ethanone

[40943-24-6] | Synthesis |
| :--- |
| - Preparation by Fries rearrangement of 2-methylphenyl |
| chloroacetate with aluminium chloride without solvent at |
| 140° [4620,4621], (50\%) [4620]. |

2-Chloro-1-(5-hydroxy-2-methylphenyl)ethanone

mol.

2-Chloro-1-[3-hydroxy-4-(methylthio)phenyl]ethanone

[151792-80-2]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \mathrm{~S} \quad$ mol.wt. 216.69

Synthesis

- Preparation by hydrolysis of 3-hydroxy-4-methyl-thio- α-chloroacetophenone chloroacetate with 1 N sodium hydroxide in methanol at r.t. (94\%) [4627].
m.p. 140° [4627]; ${ }^{1} \mathrm{H}$ NMR [4627], IR [4627], MS [4627].

2-Chloro-1-(2,4-dihydroxy-3-methylphenyl)ethanone

[21861-21-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

Synthesis

- Preparation by reaction of chloroacetonitrile with 2-methyl-resorcinol (72\%) (Hoesch reaction) [4628].
m.p. 155° [4628].

2-Chloro-1-(2,4-dihydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
Syntheses

- Preparation by reaction of chloroacetonitrile with 4-methyl-resorcinol (Hoesch reaction) [4629].
- Also obtained by Friedel-Crafts acylation of 4-methylresorcinol with chloroacetyl chloride in the presence of aluminium chloride in nitrobenzene [4630].
m.p. 157° [4630], 156° [4629].

2-Chloro-1-(2,4-dihydroxy-6-methylphenyl)ethanone
[22670-61-7]

m.p. 151° [4628].

2-Chloro-1-(3,4-dihydroxy-2-methylphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

m.p. 178° [4631]; ${ }^{1} \mathrm{H}$ NMR [4631], IR [4631].

2-Chloro-1-(3,4-dihydroxy-5-methylphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

m.p. 180° [4631]; ${ }^{1} \mathrm{H}$ NMR [4631], IR [4631].

2-Chloro-1-(4,5-dihydroxy-2-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

Syntheses

- Preparation by reaction of chloroacetyl chloride on homoveratrole (3,4-dimethoxytoluene) with aluminium chloride in carbon disulfide or nitrobenzene at $40^{\circ}(82 \%)$ [4600].
- Also obtained (very low yield) by Fries rearrangement of creosol chloroacetate with aluminium chloride at 100° [4595].
m.p. 130° [4595], 128° [4600]; b.p. 187° [4600].

2-Chloro-1-(2-hydroxy-3-methoxyphenyl)ethanone

[75717-52-1]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
Synthesis

- Preparation by reaction of chloroacetonitrile on guaiacol with aluminium chloride and boron trichloride in refluxing ethylene dichloride (42\%) [4549,4553].
m.p. $\quad 113-114^{\circ}$ [4549,4550]; ${ }^{1} \mathrm{H}$ NMR [4550].

2-Chloro-1-(2-hydroxy-4-methoxyphenyl)ethanone

[60965-23-3]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
Syntheses

- Preparation by reaction of diazomethane on 2,4-dihydroxy- α-chloroacetophenone in ethyl ether (60\%) [4590].
- Preparation by reaction of chloroacetyl chloride on 2,4-dimethoxybenzene with aluminium chloride in refluxing carbon disulfide (86\%) [4486], (55\%) [4632] or in ethyl ether at r.t. (57\%) [4411].
- Preparation by reaction of chloroacetyl chloride on bromomagnesium 3-methoxyphenolate in toluene at r.t. (84\%) [4564].
- Preparation by reaction of chloroacetonitrile on 3-methoxyphenol with aluminium chloride and boron trichloride in methylene chloride at r.t. (81\%) [4549,4550] or with zinc chloride and hydrochloric acid in ethyl ether (by-product) [4433].
- Also refer to: [4575].
m.p. 117-118 ${ }^{\circ}$ [4549,4550], $116^{\circ} \quad[4411,4486]$, 115-117 ${ }^{\circ}$ [4564], $115-116^{\circ}$ [4632], 114° [4590];
${ }^{1} \mathrm{H}$ NMR [4411,4564], MS [4564].

2-Chloro-1-(2-hydroxy-5-methoxyphenyl)ethanone

[75717-53-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

Syntheses

- Preparation by reaction of chloroacetyl chloride on hydroquinone dimethyl ether with aluminium chloride in refluxing carbon disulfide (65\%) [4486].
- Preparation by reaction of chloroacetonitrile on hydroqui none monomethyl ether with boron trichloride and aluminium chloride in ethylene dichloride (67\%) [4549,4553].
- Also refer to: [4575].
m.p. $83-84^{\circ}$ [4549,4550], 81-81ํ 5 [4486]; ${ }^{1} \mathrm{H}$ NMR [4550].

2-Chloro-1-(2-hydroxy-6-methoxyphenyl)ethanone
[75717-59-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

Syntheses

- Obtained (by-product) by reaction of chloroacetyl chloride on bromomagnesium 3-methoxyphenolate in toluene at r.t. (10\%) [4564].
- Also obtained (by-product) by reaction of chloroacetonitrile on 3-methoxyphenol with aluminium chloride and boron trichloride mixture in ethylene dichloride at r.t. (5\%) [4550].
m.p. $105-109^{\circ}$ [4564]; ${ }^{1} \mathrm{H}$ NMR [4564], IR [4564].

2-Chloro-1-(3-hydroxy-4-methoxyphenyl)ethanone

[55761-46-1]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62 Syntheses

- Preparation by Fries rearrangement of guaiacol chloroacetate with aluminium chloride in refluxing carbon disulfide (63\%) [4633], (49\%) [4634,4635].
- Also obtained by reaction of 5 N sodium hydroxide with 5-chloroacetylguaiacol chloroacetate in dioxane, the mixture being gently warmed [4636].
m.p. $122-123^{\circ}$ [4635], $121-122^{\circ}$ [4636], $116-118^{\circ}$ [4633].

2-Chloro-1-(4-hydroxy-2-methoxyphenyl)ethanone

[^12]
2-Chloro-1-(4-hydroxy-3-methoxyphenyl)ethanone

[6344-28-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62

Syntheses

- Preparation by reaction of chloroacetyl chloride on veratrole with aluminium chloride in carbon disulfide (72\%) [4637].
- Preparation by reaction of chloroacetyl chloride withguaiacol in the presence of aluminium chloride in boiling carbon disulfide (56\%) [4638]; the same yield was obtained using tetrachloroethane as solvent [4638].
- Preparation by chlorination of the acetate of acetoguaiacone (4-acetoxy-3methoxyacetophenone) with 1.1 mol equiv chlorine in chloroform and subsequent hydrolysis (67\%) [4617].
m.p. $102-104^{\circ}$ [4636], 102° [4637], $100-102^{\circ}$ [4617,4638];
${ }^{1} \mathrm{H}$ NMR [4617], ${ }^{13} \mathrm{C}$ NMR [4617], MS [4381].

2-Chloro-1-(2,3-dihydroxy-4-methoxyphenyl)ethanone

(70\%) [4607].

2-Chloro-1-(2,4-dihydroxy-3-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 216.62 Synthesis

- Preparation by reaction of chloroacetonitrile with 2,6-di-hydroxyanisole (Hoesch reaction) [4639].
m.p. $71-72^{\circ}$ [4639].

2-Chloro-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone

[70651-70-6]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 216.62
Syntheses

- Obtained by treatment of 2-hydroxy-4,6-dime-thoxy- α-chloroacetophenone with aluminium chloride in refluxing chlorobenzene for 1 h (85\%) [4640].
- Preparation by reaction of chloroacetonitrile with phloroglucinol monomethyl ether (Hoesch reaction) (41\%) [4641].
- Also refer to: $[4642,4643]$.
m.p. $184-186^{\circ}$ (d) [4641], 174-175 ${ }^{\circ}$ [4640].

One of the reported melting points is obviously wrong.

2-Chloro-1-(2,5-dihydroxy-4-methoxyphenyl)ethanone

[163980-43-6]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 216.62
Synthesis

- Preparation by reaction of chloroacetonitrile with methoxy-hydroquinone (Hoesch reaction) (84\%) [4644].
light brown crystals [4644]; ${ }^{1} \mathrm{H}$ NMR [4644], MS [4644].
1-[5-(Acetyloxy)-2-hydroxyphenyl]-2-chloroethanone

$$
\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad \text { mol.wt. } 228.63
$$

Syntheses

- 12 Preparation by reaction of acetyl chloride on 2,5-dihy-droxy- α-chloroacetophenone at reflux (73\%) [4440].
- Also obtained (by-product) by reaction of 2,5-diacetoxy-α-chloroacetophenone with sodium acetate (7\%) [4440].
m.p. $151-152^{\circ}$ [4440].

2-Chloro-1-(3-chloro-2-hydroxy-4,6-dimethoxyphenyl)ethanone
[72565-72-1]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 265.09
Synthesis

- Preparation by reaction of chloroacetyl chloride with 2-chloro-3,5-dimethoxyphenol in the presence of aluminium chloride in nitrobenzene at r.t. [4645,4646,4647], (88\%) [4647], (70\%) [4646].
m.p. 211° (d) [4646]; ${ }^{1} \mathrm{H}$ NMR [4647], IR [4646].

2-Chloro-1-(3-ethyl-2-hydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Synthesis

- Preparation by Fries rearrangement of 2-ethylphenyl chloroacetate with aluminium chloride without solvent at 140° (39\%) [4648].
oil [4648].

2-Chloro-1-(3-ethyl-4-hydroxyphenyl)ethanone
[145736-97-6]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
Synthesis

- Refer to: [4649].

2-Chloro-1-(4-ethyl-2-hydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Syntheses

- Preparation by Fries rearrangement of 3-ethylphenyl chloroacetate with aluminium chloride without solvent at 140° (49\%) [4648].
- Also obtained also by Fries rearrangement of 4-ethylphenylchloroacetate with aluminium chloride without solvent at 140°, on account of a migration of the ethyl group (46\%) [4648].
m.p. $69-70^{\circ}$ [4648].

2-Chloro-1-(5-ethyl-2-hydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
Synthesis

- Preparation by reaction of chloroacetyl chloride on 4-ethylanisole with aluminium chloride in carbon disulfide (32\%) [4648].
m.p. $50-52^{\circ}$ [4648].

2-Chloro-1-(2-hydroxy-3,4-dimethylphenyl)ethanone

 $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65 Synthesis

- Preparation by reaction of chloroacetonitrile on 2,3-di-methylphenol with aluminium chloride and boron trifluoride in refluxing ethylene dichloride (quantitative yield) [4550].
m.p. $95-96^{\circ}$ [4550].

2-Chloro-1-(2-hydroxy-3,5-dimethylphenyl)ethanone
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Synthesis

- Preparation by reaction of chloroacetyl chloride on 2,4-dimethylanisole with aluminium chloride in carbon disulfide (20%) [4650].

2-Chloro-1-(2-hydroxy-4,5-dimethylphenyl)ethanone

[22307-96-6]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2}$
Synthesis

- Preparation by Fries rearrangement of 3,4-dimethylphenyl chloroacetate with aluminium chloride without solvent at 150° [4616].
m.p. 101° [4616]; ${ }^{1} \mathrm{H}$ NMR [4616], IR [4616].

2-Chloro-1-(2-hydroxy-4,6-dimethylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Synthesis

- Preparation by Fries rearrangement of 3,5-dimethylphenyl chloroacetate with aluminium chloride without solvent at $135-140^{\circ}$ [4621,4623], (good yield) [4623].
m.p. 92° [4623].

2-Chloro-1-(4-hydroxy-3,5-dimethylphenyl)ethanone

[40943-25-7]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2}$
mol.wt. 198.65

Syntheses

- Preparation by reaction of chloroacetyl chloride with 2,6-di-methylphenol in the presence of aluminium chloride in nitrobenzene at $60^{\circ}(43 \%)$ [4498].
- Also obtained (poor yield) by reaction of aluminium chloride on 2,6-dimethyl-4-ethylphenyl chloroacetate without solvent at 150° [4615].
m.p. $107^{\circ} 7$ [4498]; ${ }^{1} \mathrm{H}$ NMR [4498], IR [4498], MS [4498].

2-Chloro-1-(5-hydroxy-2,4-dimethylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Synthesis

- Preparation (by-product) by reaction of chloroacetyl chloride on 2,4-dimethylanisole with aluminium chloride in carbon disulfide (10%) [4650].
m.p. $107-107^{\circ} 5$ [4650].

2-Chloro-1-(2,4-dihydroxy-3,5-dimethylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 214.65

Synthesis

- Preparation by reaction of acetonitrile on 2,4-dim-ethyl-resorcinol (Hoesch reaction) (93\%) [4632].
m.p. $126-127^{\circ}$ [4632].

2-Chloro-1-(5-ethyl-2,4-dihydroxyphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad \text { mol.wt. } 214.65
$$

Syntheses

- Preparation by reaction of 4-ethylresorcinol with chloro-acetonitrile (Hoesch reaction) [4629], (95\%) [4651], (88\%) [4652].
- Preparation by Friedel-Crafts acylation of 4-ethylresorcinol with chloroacetyl chloride in nitrobenzene in the presence of aluminium chloride for 24 h at r.t. (70\%) [4630].
m.p. $163-165^{\circ}$ [4630], $161-161^{\circ} 5$ [4651], $161^{\circ}[4629,4652]$.

2-Chloro-1-(5-ethyl-2,3,4-trihydroxyphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad \text { mol.wt. } 230.65
$$

Synthesis

- Preparation by reaction of chloroacetonitrile with 4-ethyl-pyrogallol (m.p. 105-106²) (Hoesch reaction) (60\%) [4652].
m.p. $131-132^{\circ} 5$ [4652].

2-Chloro-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone

[7507-92-8]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 230.65
Synthesis

- Preparation by reaction of chloroacetyl chloride with 1,2,3-trimethoxybenzene in the presence of aluminium chloride in ethylene dichloride first at 0°, then at r.t. (70\%) [4653] or without solvent at $100^{\circ}(16 \%)$ [4654].
m.p. $161^{\circ} 5$ [4654], $160-162^{\circ}$ [4653]; ${ }^{1} \mathrm{H}$ NMR [4653], MS [4653].

2-Chloro-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad \text { mol.wt. } 230.65
$$

Synthesis

- Preparation by reaction of chloroacetonitrile on 3,4-di-methoxyphenol (Hoesch reaction) (47\%) [4655].
m.p. $\quad 154-155^{\circ}$ [4655].

2-Chloro-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone

[103040-51-3]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 230.65 Syntheses

- Preparation by reaction of chloroacetonitrile on phloroglucinol dimethyl ether (Hoesch reaction) [4611].
- Preparation by reaction of chloroacetyl chloride on phloroglucinol trimethyl ether with aluminium chloride in boiling ligroin [4656].
- Preparation by partial demethylation of 2,4,6-trimethoxy- α-chloroacetophenone by heating with aluminium chloride without solvent at 120° (89\%) [4508].

```
m.p. 144-146 [4508], 142-144 [4656], 136-140 [4611];
'1H NMR [4611], IR [4611], MS [4611].
```


2-Chloro-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone

[59719-58-3]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 230.65
Synthesis

- Preparation by chlorination of 4-(benzyloxy)-3,5-di-methoxybenzoylacetic acid methyl ester with sulfuryl chloride in acetic acid at r.t., and subsequent hydrolysis of the keto ester so obtained by refluxing in hydrochloric acid (90\%) [4657].

2-Chloro-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{5} \quad \text { mol.wt. } 246.65
$$

 Synthesis

- Preparation by reaction of chloroacetonitrile on 2,5-dimethoxyresorcinol (Hoesch reaction) (52\%) [4515], (25\%) [4658].
m.p. $150-151^{\circ} 5$ [4658], $148-149^{\circ}$ [4515].

2-Chloro-1-(3,6-dihydroxy-2,4-dimethoxyphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{5} \quad \text { mol.wt. } 246.65
$$

Synthesis

- Obtained by reaction of chloroacetyl chloride with 1,4-di-hydroxy-2,6-dimethoxybenzene in ethyl ether in the presence of aluminium chloride, cooling in ice and standing overnight (45\%) [4659].
m.p. 154° [4659].

2-Chloro-1-[4-(dimethylamino)-2-hydroxyphenyl]ethanone

[127354-36-3] mol.wt. 213.66
m.p. $96-98^{\circ}$ (d) [4564]; ${ }^{1} \mathrm{H}$ NMR [4564], IR [4564], MS [4564].

2-Chloro-1-(3-chloro-2-hydroxy-4,6-dimethoxy-5-methylphenyl)ethanone

[201288-73-5]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 279.12
Synthesis

- Preparation by reaction of chloroacetyl chloride with 2-chloro-3,5-dimethoxy-4-methylphenol in ethyl ether in the presence of aluminium chloride, first at 0° under an argon atmosphere, then at r.t. for 0.5 h and at reflux for $3 \mathrm{~h}(90 \%)$ [4660].
m.p. $144-146^{\circ}$ [4660]; ${ }^{1} \mathrm{H}$ NMR [4660], IR [4660], MS [4660].

2-Chloro-1-[5-(chloromethyl)-2-hydroxy-3,4-dimethoxyphenyl]ethanone

[76439-46-8]

m.p. $\quad 130-131^{\circ}$ [4653]; ${ }^{1} \mathrm{H}$ NMR [4653], MS [4653].

2-Chloro-1-(2,4-dihydroxy-5-propylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 22.8.68

Synthesis

- Preparation by reaction of chloroacetonitrile with 4-propyl-resorcinol (Hoesch reaction) [4629].
m.p. $156-157^{\circ}$ [4629].

2-Chloro-1-(2-hydroxy-4-methoxy-3,5-dimethylphenyl)ethanone
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 228.68

Synthesis

- Preparation by reaction of chloroacetyl chloride on 2,4-dimethylresorcinol dimethyl ether with aluminium chloride in refluxing carbon disulfide (42\%) [4632].
m.p. $158-160^{\circ}$ [4632].

2-Chloro-1-(6-hydroxy-2,3,4-trimethoxyphenyl)ethanone
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{5} \quad$ mol.wt. 260.67

Synthesis

- Preparation by reaction of chloroacetonitrile on 3,4,5-trimethoxyphenol (antiarol) (Hoesch reaction) (42\%) [4658].
m.p. $107-107^{\circ} 5$ [4658].

2-Chloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

[127354-33-0]

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70 Synthesis

- Preparation by reaction of chloroacetyl chloride with aluminium or titanium 2-tert-butylphenolate in toluene at r.t. (98% and 70% yields, respectively) [4564].
m.p. $\quad 52-53^{\circ}$ [4564]; ${ }^{1} \mathrm{H}$ NMR [4564], IR [4564], MS [4564].

2-Chloro-1-[3-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone
 [127354-34-1] $\quad \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70

 Synthesis
 - Obtained by reaction of chloroacetyl chloride with dichloroaluminium 2-tert-butylphenolate or with trichloro (2-tert-butylphenoxy)titanium in toluene at r.t. (50% and 52% yields, respectively) [4564].

2-Chloro-1-[5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

[75060-43-4]

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70
Synthesis

- Obtained by reaction of chloroacetyl chloride on 4-tert- butylanisole with aluminium chloride in methylene chloride at r.t. (10\%) [4661].
m.p. $\quad 51-52^{\circ}$ [4661]; ${ }^{1} \mathrm{H}$ NMR [4661], IR [4661].

2-Chloro-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone

[72235-89-3]

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70
Syntheses

- Obtained by reaction of chloroacetyl chloride on thymol with aluminium chloride in nitrobenzene at 50° (21\%) [4662].
- Also obtained by Fries rearrangement of thymyl chloroacetate with aluminium chloride in nitrobenzene at r.t. (15\%) [4408].
m.p. 133° [4662], 132° [4408]; b.p. .0.0018 $^{175-178^{\circ} \text { [4662]. }}$

2-Chloro-1-[6-hydroxy-2-methyl-3-(1-methylethyl)phenyl]ethanone
[23053-74-9]

m.p. $68^{\circ} 5$ [4663].
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70
Synthesis

- Obtained by reaction of chloroacetyl chloride on 3-methyl-4-isopropylanisole (p-thymol methyl ether) with aluminium chloride in carbon disulfide [4663].

1-(5-Butyl-2,4-dihydroxyphenyl)-2-chloroethanone

$$
\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{3} \quad \text { mol.wt. } 242.70
$$

Synthesis

- Preparation by reaction of chloroacetonitrile with 4-butyl-resorcinol (Hoesch reaction) [4629].
m.p. $155-156^{\circ}$ [4629].

2-Chloro-1-(2,4-dihydroxy-5-pentylphenyl)ethanone $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{3} \quad$ mol.wt. 256.73

Synthesis

- Preparation by reaction of chloroacetonitrile with 4-pentyl-resorcinol (Hoesch reaction) [4629].
m.p. $148-149^{\circ}$ [4629].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-chloroethanone
[75060-96-7]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClNO}_{2} \quad$ mol.wt. 255.74
Synthesis

- From the corresponding hydrochloride (see below) [4661].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-chloroethanone (Hydrochloride)
[75060-68-3]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClNO}_{2}, \mathrm{HCl} \quad$ mol.wt. 292.20
Synthesis

- Preparation by reaction of concentrated hydrochloric acid on 2-chloroacetyl-4-tert-butyl-6-(N-chloro-acetylaminomethyl)phenol in refluxing ethanol (64\%) [4661].
m.p. $\quad 160^{\circ}$ (d) [4661]; ${ }^{1} \mathrm{H}$ NMR [4661], IR [4661].

2-Chloro-1-[2-hydroxy-5-(1-triazene-3-phenyl)phenyl]ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 289.72
$$

Synthesis

- Obtained by reaction of benzenediazonium chloride on 5-amino-2-hydroxy- α-chloroacetophenone in the presence of an aqueous sodium acetate solution [4555].
m.p. 127° [4555].

2-Chloro-1-(5-hexyl-2,4-dihydroxyphenyl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}_{3} \quad \text { mol.wt. } 270.76
$$

Synthesis

- Preparation by reaction of chloroacetonitrile with 4-hexyl-resorcinol (Hoesch reaction) [4629].
m.p. 145° [4629].

2-Chloro-1-(5'-ethyl-4-hydroxy-2'-methoxy[1,1'-biphenyl]-3-yl)ethanone
[131845-71-1] $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}$ mol.wt. 304.77

Synthesis

- Refer to: [4664].

11.2.2 From Dichloroacetic Acid

2,2-Dichloro-1-(4-hydroxy-3,5-dinitrophenyl)ethanone

[52129-63-2] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of chlorine on 4-hydroxy-3,5-
di-nitroacetophenone in methylene chloride-ethanol
mixture (93\%) [4665,4666]

\end{tabular}

2,2-Dichloro-1-(3-chloro-4-hydroxy-5-nitrophenyl)ethanone

[52501-35-6]

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{NO}_{4} \quad$ mol.wt. 284.48
Synthesis

- Preparation by reaction of chlorine on 4-hydroxy-3nitroacetophenone with ferric chloride in methylene chloride-ethanol mixture (94\%) [4665,4666].

2,2-Dichloro-1-(3,5-dichloro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 273.93
Syntheses

- Preparation by Fries rearrangement of 2,4-dichlorophenyl dichloroacetate with aluminium chloride without solvent at 120° (50\%) [4667].
- Also obtained when 4-hydroxycoumarin in aceticacid was treated with an excess of gaseous chlorine at $10-15^{\circ}$ and the polychlorinated product so formed hydrolyzed [4668,4669].
m.p. 90° [4667], 70° [4668,4669].

2,2-Dichloro-1-(3,5-dichloro-4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}$
mol.wt. 273.93
Synthesis

- Obtained (by-product) by Fries rearrangement of 2,6-di-chlorophenyl dichloroacetate with aluminium chloride without solvent at 135° (9\%) [4541].
m.p. $92^{\circ} 5-94^{\circ} 5$ [4541].

2,2-Dichloro-1-(3-chloro-2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 239.48

Synthesis

- Preparation by Fries rearrangement of 2-chlorophenyl dichloroacetate with aluminium chloride without solvent at $120^{\circ}(76 \%)$ [4667].
b.p. ${ }_{8} 173^{\circ}$ [4667].

2,2-Dichloro-1-(2-hydroxyphenyl)ethanone

[29003-58-5]

b.p. ${ }_{0.1} 65-72^{\circ}$ [4670].
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04
Synthesis

- Preparation by Fries rearrangement of phenyl dichloroacetate with aluminium chloride without solvent at $120^{\circ}(50 \%)$ [4670].

2,2-Dichloro-1-(3-hydroxyphenyl)ethanone

[85299-04-3] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Synthesis

- Preparation by reaction of hexachloro-2,4-cyclohexadienone on 3-hydroxyacetophenone in refluxing ethanol (34\%) [4559].
pale yellow oil [4559]; ${ }^{1} \mathrm{H}$ NMR [4559], IR [4559].

2,2-Dichloro-1-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Synthesis

- Preparation by reaction of dichloroacetyl chloride on anisole with aluminium chloride in carbon disulfide at $25-30^{\circ}$ (34\%) [4671].
m.p. 98° [4671].

2,2-Dichloro-1-(2,4-dihydroxyphenyl)ethanone

[29003-59-6]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 221.04
Synthesis

- Refer to: [4672].

2,2-Dichloro-1-(2-hydroxy-3-methylphenyl)ethanone

[145818-23-1]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07
Synthesis

- Preparation by reaction of dichloroacetonitrile on o-cresol (Hoesch reaction) (25\%) [4619].
m.p. $33^{\circ} 5$ [4619]; ${ }^{1} \mathrm{H}$ NMR [4619], IR [4619], UV [4619], MS [4619].

2,2-Dichloro-1-(2-hydroxy-4-methylphenyl)ethanone

[116046-02-7]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 219.07
Synthesis

- Preparation by reaction of dichloroacetyl chloride with 3-methylanisole in the presence of aluminium chloride at 80° (30\%) [4673].
m.p. $125-126^{\circ}$ [4673]; ${ }^{1} \mathrm{H}$ NMR [4673], IR [4673], MS [4673].

2,2-Dichloro-1-(2-hydroxy-4-methoxyphenyl)ethanone

[95235-25-9]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 235.07
Syntheses

- Preparation by Fries rearrangement of 3-methoxyphenyl dichloroacetate with aluminium chloride without solvent at 120° (42\%) [4667].
- Also obtained (by-product) by reaction of dichloroacetyl chloride with resorcinol dimethyl ether in the presence of aluminium chloride at $0-10^{\circ}(9 \%)$ [4673].
m.p. 86° [4673], 84° [4667].

2,2-Dichloro-1-(5-ethyl-2-hydroxyphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 233.09
$$

Synthesis

- Preparation by Fries rearrangement of 4-ethylphenyl dichloroacetate with aluminium chloride without solvent at $120^{\circ}(53 \%)$ [4667].
b.p. ${ }_{8} 110^{\circ}$ [4667].

2,2-Dichloro-1-(2-hydroxy-4,6-dimethylphenyl)ethanone
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 233.09

Synthesis

- Preparation by Fries rearrangement of 3,5-dimethylphenyl dichloroacetate with aluminium chloride without solvent at $120^{\circ}(58 \%)$ [4667].
b.p. 150° [4667].

2,2-Dichloro-1-(2,4-dihydroxy-3,5-dimethylphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 249.09

Synthesis

- Preparation by reaction of dichloroacetonitrile on 2,4-di-methylresorcinol (Hoesch reaction) [4632].
m.p. 123° [4632]; b.p. ${ }_{0.001} 150^{\circ}$ [4632].

2,2-Dichloro-1-[3-chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 295.59

Synthesis

- Preparation by Fries rearrangement of 4-tert-butyl-2-chlorophenyl dichloroacetate with aluminium chloride at 120° (79\%) [4667].
b.p. ${ }_{20} 175^{\circ}$ [4667].

2,2-Dichloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

[127354-38-5]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 261.15
Synthesis

- Preparation by reaction of dichloroacetyl chloride on bromomagnesium 2-tert-butylphenolate in toluene at r.t. (58\%) [4564]. yellow oil [4564];
'H NMR [4564], IR [4564], MS [4564].
2,2-Dichloro-1-[5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 261.15

Synthesis

- Preparation by Fries rearrangement of 4-tertbutylphenyl dichloroacetate with aluminium chloride at $120^{\circ}(86 \%)$ [4667].
b.p. ${ }_{10} 120^{\circ}$ [4667].

2,2-Dichloro-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone

[72235-91-7]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 261.15
Synthesis

- Preparation by reaction of dichloroacetyl chloride on thymol with aluminium chloride in nitrobenzene at r.t., via a Fries rearrangement (20\%) [4408].
m.p. 110° [4408].

2,2-Dichloro-1-[3-(1,1-dimethylethyl)-2-hydroxy-5-methylphenyl]ethanone
[127354-45-4]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 275.17
Syntheses

- Preparation by reaction of dichloroacetyl chloride,
- on aluminium tri 2-tert-butyl-4-methylphenolate in toluene at r.t. (98\%) [4564];
- on bromomagnesium 2-tert-butyl-4-methylphenolate in toluene at r.t. (78\%) [4564].
m.p. $\quad 55-59^{\circ}$ [4564]; ${ }^{1} \mathrm{H}$ NMR [4564], IR [4564], MS [4564].

2,2-Dichloro-1-[3-(1,1-dimethylethyl)-2-hydroxy-6-methylphenyl]ethanone
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 275.17

Synthesis

- Preparation by Fries rearrangement of 2-tert-butyl-5-methyl-phenyl dichloroacetate without solvent at $120^{\circ}(60 \%)$ [4667].
b.p. 88° [4667].

2,2-Dichloro-1-[5-(1,1-dimethylpropyl)-2-hydroxyphenyl]ethanone

 $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 275.17

Synthesis

- Preparation by Fries rearrangement of 4-tert-pentylphenyl dichloroacetate with aluminium chloride without solvent at 120° (54\%) [4667].
b.p. ${ }_{2} 122^{\circ}$ [4667].

2,2-Dichloro-1-[2-hydroxy-5-(1-methylbutyl)phenyl]ethanone

$$
\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 275.17
$$

Synthesis

- Preparation by Fries rearrangement of 5-sec-pentylphenyl dichloroacetate with aluminium chloride without solvent at 120° (43\%) [4667].
b.p. ${ }_{10} 125^{\circ}$ [4667].

11.2.3 From Trichloroacetic Acid

2,2,2-Trichloro-1-(5-chloro-2-hydroxyphenyl)ethanone
[145818-26-4]

 $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2} \quad$ mol.wt. 273.93 Syntheses

- Preparation by Fries rearrangement of 4-chlorophenyl trichloroacetate with aluminium chloride without solvent at $125-130^{\circ}(25 \%)$ [4674,4675].
- Preparation by reaction of trichloroacetonitrile on 4-chlorophenol (Hoesch reaction) [4619].
b.p. ${ }_{44} 129-132^{\circ}$ [4619, 4674,4675]; ${ }^{1}$ H NMR [4619], IR [4619], UV [4619], MS [4619].

2,2,2-Trichloro-1-(2-hydroxyphenyl)ethanone

2,2,2-Trichloro-1-(4-hydroxyphenyl)ethanone
 [131170-16-6] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad m o l . w t .239 .48$

 Synthesis
 - Preparation by reaction of trichloroacetonitrile on phenol (Hoesch reaction) (95\%) [4665,4666,4676,4677], (30\%) [4619].
 m.p. $99-99^{\circ} 5 \quad[4619,4676,4677] ;$ b.p. ${ }_{0.5} 170^{\circ}$ [4676,4677];
 ${ }^{1} \mathrm{H}$ NMR [4619], IR [4619], UV [4619], MS [4619].

2,2,2-Trichloro-1-(2,4-dihydroxyphenyl)ethanone

[76569-42-1] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad m o l . w t .255 .48$

Synthesis

- Preparation by reaction of trichloroacetonitrile with resorcinol in the presence of triflic acid (52\%) [4592] or zinc chloride (55\%) [4678].
m.p. $142^{\circ} 5$ [4678], $138-141^{\circ}$ [4592];
${ }^{1} H$ NMR [4592], IR [4592], UV [4592], MS [4592].

2,2,2-Trichloro-1-(2,5-dihydroxyphenyl)ethanone

[145818-27-5] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad$ mol.wt. 255.48

Synthesis

- Preparation by reaction of trichloroacetonitrile on hydroquinone (Hoesch reaction) (40\%) [4619].
m.p. $\quad 123-124^{\circ}$ [4619];
'H NMR [4619], IR [4619], UV [4619], MS [4619].

2,2,2-Trichloro-1-(2-hydroxy-3-methylphenyl)ethanone

$[145818-22-0]$	Synthesis - Preparation by reaction of trichloroacetonitrile on o-cresol (Hoesch reaction) (70\%) [4619].

oil [4619]; ${ }^{1} \mathrm{H}$ NMR [4619], IR [4619], UV [4619], MS [4619].

2,2,2-Trichloro-1-(2-hydroxy-4-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 253.51

Synthesis

- Preparation by reaction of trichloroacetonitrile on m -cresol with aluminium chloride and gaseous hydrochloric acid in chlorobenzene at r.t. (37\%) [4677].
b.p. ${ }_{17} 162-163^{\circ}$ [4677].

2,2,2-Trichloro-1-(2-hydroxy-5-methylphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 253.51

Synthesis

- Obtained by reaction of trichloroacetonitrile on p-cresol with aluminium chloride and gazeous hydrochloric acid in chlorobenzene at $50-60^{\circ}$ (11\%) [4677].

2,2,2-Trichloro-1-(4-hydroxy-2-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 253.51

Synthesis

- Preparation by reaction of trichloroacetonitrile on m -cresol with aluminium chloride and gazeous hydrochloric acid in chlorobenzene at r.t. (36\%) [4677].
m.p. $84-87^{\circ}$ [4677].

2,2,2-Trichloro-1-(4-hydroxy-3-methylphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 253.51

Synthesis

- Preparation by reaction of trichloroacetonitrile on o-cresol with aluminium chloride and gaseous hydrochloric acid in chlorobenzene at $60^{\circ}(90 \%)$ [4677].
m.p. $90-91^{\circ}$ [4677].

2,2,2-Trichloro-1-(2-hydroxy-5-methoxyphenyl)ethanone

[145818-25-3]

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{3}$
mol.wt. 269.51
Synthesis

- Preparation by reaction of trichloroacetonitrile on 4-methoxyphenol (Hoesch reaction) (73\%) [4619].
m.p. $65-66^{\circ}$ [4619];
${ }^{1} \mathrm{H}$ NMR [4619], IR [4619], UV [4619], MS [4619].

2,2,2-Trichloro-1-(4-hydroxy-2-methoxyphenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad \text { mol.wt. } 269.51
$$

Synthesis

- Preparation by reaction of trichloroacetonitrile on 3-methoxyphenol with zinc chloride and gaseous hydrochloric acid in ethyl ether at 0° (Hoesch reaction) (34\%) [4679].
m.p. 144° [4679].

2,2,2-Trichloro-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone

$$
\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{4} \quad \text { mol.wt. } 285.51
$$

Synthesis

- Preparation by reaction of trichloroacetonitrile on phloroglucinol monomethyl ether with zinc chloride and gaseous hydrochloric acid in ethyl ether at 0° (Hoesch reaction) (39-49\%) [4679].
m.p. 152° [4679].

2,2,2-Trichloro-1-(4-hydroxy-2,5-dimethylphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 267.54
$$

Synthesis

- Preparation by reaction of trichloroacetonitrile on 2,5-dimethylphenol with aluminium chloride and gaseous hydrochloric acid in chlorobenzene at r.t. (70\%) [4676].
m.p. $85-86^{\circ}$ [4676].

2,2,2-Trichloro-1-(5-ethyl-2,4-dihydroxyphenyl)ethanone

 $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad$ mol.wt. 283.54

Synthesis

- Preparation by reaction of trichloroacetonitrile on 4-ethylresorcinol (Hoesch reaction) (52\%) [4678].
m.p. 138° [4678].

2,2,2-Trichloro-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{4} \quad$ mol.wt. 299.54

Synthesis

- Preparation by reaction of trichloroacetonitrile on 3,4-di-methoxylphenol (Hoesch reaction) (26%) [4679].
m.p. 107° [4679].

2,2,2-Trichloro-1-(4-hydroxy-2,6-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{4} \quad$ mol.wt. 299.54

Synthesis

- Preparation by reaction of trichloroacetonitrile on phloroglucinol dimethyl ether (Hoesch reaction) (38\%) [4680].
m.p. 117° [4680].

2,2,2-Trichloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

[111422-36-7]

m.p. $54-58^{\circ}$ [4564]; ${ }^{1} \mathrm{H}$ NMR [4564], IR [4564], MS [4564].

2,2,2-Trichloro-1-[4-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone

[145818-24-2]
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{2}$
mol.wt. 295.59

Synthesis

- Preparation by reaction of trichloroacetonitrile on 3-tert- butylphenol (Hoesch reaction) (74\%) [4619].
m.p. $46-47^{\circ} 5$ [4619]; ${ }^{1} H$ NMR [4619], IR [4619], UV [4619], MS [4619].

2,2,2-Trichloro-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 295.59

Synthesis

- Preparation by reaction of trichloroacetonitrile on thymol (Hoesch reaction) (73\%) [4681].
m.p. $99-100^{\circ}$ [4681].

2,2,2-Trichloro-1-[4-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 295.59

Synthesis

- Preparation by reaction of trichloroacetonitrile on carvacrol (Hoesch reaction) (75\%) [4681]. oil [4681].

1-(5-Butyl-2,4-dihydroxyphenyl)-2,2,2-trichloroethanone

$$
\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad \text { mol.wt. } 311.59
$$

Synthesis

- Preparation by reaction of trichloroacetonitrile on 4-n-butylresorcinol (Hoesch reaction) (57\%) [4678].
m.p. $95-98^{\circ}$ [4678].

2,2,2-Trichloro-1-(5-hexyl-2,4-dihydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad$ mol.wt. 339.65

Synthesis

- Preparation by reaction of trichloroacetonitrile on 4-n-hexylresorcinol (Hoesch reaction) (56\%) [4678].
m.p. $71-73^{\circ}$ [4678].

11.3 Compounds Derived from Fluoroacetic Acids

11.3.1 From Monofluoroacetic Acid

2-Fluoro-1-(2-hydroxyphenyl)ethanone

[83505-27-5]	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2}$ Synthesis
When refluxed with water, 3-fluoro-4-hydroxy- coumarin, undergoes hydrolytic ring opening and decarboxylation to give 2-fluoro-2'-hydroxy- acetophenone (32\%) [4682].	
m.p. $67-69^{\circ}$ [4682];	

2-Fluoro-1-(4-hydroxyphenyl)ethanone
 [295779-85-0] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14
 Synthesis
 - Preparation by fluorination of p-hydroxyacetophenone (2 $\mathrm{mmol})$ with 1-fluoro-4-hydroxy-1,4-diazoniabicyclo-[2.2.2] octane bis(tetrafluoroborate)(Accufluor ${ }^{\text {TM }}$ NFTh) $(2.1 \mathrm{mmol}$ of active compound) in refluxing methanol for $0.5-4 \mathrm{~h}$ until potassium iodide starch paper showed the consumption of the fluorinating reagent. Then, hydrolysis of the dimethylketal formed with 10% hydrochloric acid solution in acetonitrile (75-85\%) [4683].

N.B.: Accufluor ${ }^{\text {TM }}$ NFTh is commercially available as $50 \% \mathrm{w} / \mathrm{w}$ on alumina.
m.p. 180-183 ${ }^{\circ} 5$ [4684];
${ }^{1} \mathrm{H}$ NMR [4684], ${ }^{13} \mathrm{C}$ NMR [4684], ${ }^{19} \mathrm{~F}$ NMR [4684], IR [4684], MS [4684].

1-(2,4-Dihydroxyphenyl)-2-fluoroethanone

2-Fluoro-1-(3-hydroxy-4-methoxyphenyl)ethanone

[85465-61-8] \quad\begin{tabular}{l}
Synthesis

Preparation by heating a mixture of 3-acetoxy-4-
methoxy- α-bromoacetophenone and potassium
hydrogen fluoride in diethylene glycol for 8 h at
$100^{\circ}(61 \%)[4686,4687]$

\end{tabular}

m.p. $70-71^{\circ}[4686,4687]$.

11.3.2 From Difluoroacetic Acid

There is no hydroxyketone derived from difluoroacetic acid such as described up to December 2003. Only, a methyl ether, the α, α-difluoro-4-methoxyacetophenone [4688] (compound 1G), is mentioned in 1988.

2,2-Difluoro-1-(4-methoxyphenyl)ethanone

[114829-07-1]	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$	mol.wt. 186.16
OCH_{3}	Synthesis	
	- Prepara with an methyle [4688].	by reaction of difluoroacetyl chloride in the presence of aluminium chloride in hloride, first at 4°, then at $20^{\circ}(56 \%)$

m.p. $\quad 39-40^{\circ}$ [4688]; b.p. 25 134- 135° [4688];
${ }^{1} \mathrm{H}$ NMR [4688].

11.3.3 From Trifluoroacetic Acid

1-(3,5-Dibromo-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone
[65240-11-1]

$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 363.91
Synthesis

- Preparation by reaction of bromine on 2,4-dihydroxyα, α, α-trifluoroacetophenone in acetic acid at r.t. (49\%) [4689].
m.p. 81° [4689].

1-(3,5-Dichloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 275.01
Synthesis

- Preparation by reaction of sulfuryl chloride on 2,4-di-hydroxy- α, α, α-trifluoroacetophenone at r.t. [4689].
m.p. 101° [4689].

1-(2,4-Dihydroxy-3,5-dinitrophenyl)-2,2,2-trifluoroethanone
[65240-17-7]

m.p. 68° [4689].
$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \quad$ mol.wt. 296.12
Synthesis

- Preparation by reaction of 65% nitric acid on 2,4-di-hydroxy- α, α, α-trifluoroacetophenone in concentrated sulfuric acid [4689].

1-(3-Bromo-4-hydroxyphenyl)-2,2,2-trifluoroethanone

[303143-05-7]

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrF}_{3} \mathrm{O}_{2} \quad$ mol.wt. 269.02
Synthesis

- Obtained by demethylation of 3-bromo-4-methoxyα, α, α-trifluoroacetophenone with lithium chloride in refluxing DMF for 2 h (93\%) [4690].

1-(5-Bromo-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

[65239-86-3]	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrF}_{3} \mathrm{O}_{3} \quad$ mol.wt. 285.02
OH	Synthesis
	- Preparation by reaction of trifluoroacetic anhydride on 4-bromoresorcinol with aluminium chloride in ethylene dichloride at r.t. (88\%) [4689].
Br	
m.p. 81° [4689].	

1-(3-Chloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

[65239-93-2]

m.p. 113° [4689].
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{O}_{3} \quad$ mol.wt. 240.57
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 2-chlororesorcinol with aluminium chloride in ethylene dichloride at r.t. (83\%) [4689].

1-(5-Chloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone
[65233-63-8]

m.p. 110° [4689].

2,2,2-Trifluoro-1-(4-hydroxy-3-iodophenyl)ethanone

[303143-06-8] \begin{tabular}{l}
Synthesis

- Obtained by demethylation of 3-iodo-4-methoxy-
a, α, α-tri-fluoroacetophenone with lithium chloride in
refluxing DMF for $2 \mathrm{~h}(87 \%)$ [4690].

\end{tabular}

Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 4-chlororesorcinol with aluminium chloride in ethylene dichloride at r.t. (90%) [4689].

Synthesis

- Obtained by demethylation of 3-iodo-4-methoxyα, α, α-tri-fluoroacetophenone with lithium chloride in refluxing DMF for 2 h (87\%) [4690].

1-(2,4-Dihydroxy-5-nitrophenyl)-2,2,2-trifluoroethanone

[65240-16-6] $\quad \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{NO}_{5} \quad$ mol.wt. 251.12

Synthesis

- Preparation by reaction of 26% nitric acid on 2,4-di-hydroxy- α, α, α-trifluoroacetophenone in acetic acid at 0° [4689].
m.p. 81° [4689].

2,2,2-Trifluoro-1-(2-hydroxyphenyl)ethanone

[25666-51-7]

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 190.12
Synthesis

- Preparation by Fries rearrangement of phenyl trifluoroacetate with aluminium chloride without solvent at 90° (42\%) [4691].
b.p. ${ }_{55} 92^{\circ}$ [4691]; ${ }^{1} \mathrm{H}$ NMR [4691], IR [4691].

2,2,2-Trifluoro-1-(4-hydroxyphenyl)ethanone
[1823-63-8]

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 190.12
Syntheses

- Preparation by reaction of trifluoroacetic acid with phenol in hydrofluoric acid at $100^{\circ}(75 \%)$ [4692].
- Obtained in small amount by Fries rearrangement of phenyl trifluoroacetate with aluminium chloride without solvent at 90° [4691].
m.p. $\quad 105^{\circ} 5-106^{\circ}$ [4691]; ${ }^{1} \mathrm{H}$ NMR [4692], ${ }^{19} \mathrm{~F}$ NMR [4692], IR [4691,4692].

1-(2,4-Dihydroxyphenyl)-2,2,2-trifluoroethanone

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 206.12
Syntheses

- Preparation by reaction of trifluoroacetonitrile on resorcinol (Hoesch reaction) (62\%) [4679,4693,4694].
- Preparation by reaction of trifluoroacetic anhydride on resorcinol with aluminium chloride in ethylene dichloride at r.t. (73-83\%) [4695].
m.p. $106-108^{\circ}[4695], 103^{\circ}[4679,4693]$.

1-(2,6-Dihydroxyphenyl)-2,2,2-trifluoroethanone

$[70211-42-6]$	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$	mol.wt. 206.12
OH	Syntheses	

- Obtained by total demethylation of 2,6-dimethoxyα, α, α-trifluoroacetophenone with boron tribromide in methylene chloride, first at 0° for 15 min , then at r.t. overnight (22%) [4696].
- Also refer to: [4697].
N.B.: There is also an erroneous reference. It concerns the $2^{\prime}, 6^{\prime}$-dihydroxytrifluoroacetanilide [4698].
${ }^{1} H$ NMR [4696], MS [4696].

2,2,2-Trifluoro-1-(2,3,4-trihydroxyphenyl)ethanone

[65239-87-4] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 222.12

Synthesis

- Preparation by reaction of trifluoroacetic anhydride on pyrogallol with aluminium chloride in ethylene dichloride at r.t. (75\%) [4689].
m.p. 134° [4689].

2,2,2-Trifluoro-1-(2,4,6-trihydroxyphenyl)ethanone

[13340-79-9] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 222.12

m.p. $174-177^{\circ}$ [4695]; ${ }^{1} \mathrm{H}$ NMR [4695], ${ }^{19}$ F NMR [4695], IR [4695].

1-(5-Chloro-2,4-dihydroxy-3-methylphenyl)-2,2,2-trifluoroethanone

[65240-08-6]

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClF}_{3} \mathrm{O}_{3} \quad$ mol.wt. 254.59 Synthesis

- Preparation by reaction of sulfuryl chloride on 2,4-di-hydroxy-3-methyl- α, α, α-trifluoroacetophenone in ethylene dichloride at r.t. (76\%) [4689].
m.p. 96° [4689].

2,2,2-Trifluoro-1-(2-hydroxy-5-methyl-3-nitrophenyl)ethanone

1-(2,4-Dihydroxy-3-methyl-5-nitrophenyl)-2,2,2-trifluoroethanone
[65240-15-5] $\quad \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{5} \quad$ mol.wt. 265.15

Synthesis

- Obtained by reaction of 26% nitric acid on 2,4-dihy-droxy-3-methyl- α, α, α-trifluoroacetophenone in acetic acid at $0^{\circ}(21 \%)$ [4689].
m.p. 104° [4689].

2,2,2-Trifluoro-1-(2-hydroxy-5-methylphenyl)ethanone

 $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 204.15
 Synthesis
 - Preparation by Fries rearrangement of 4-methylphenyl trifluoroacetate with aluminium chloride without solvent at $115^{\circ}(25 \%)$ [4700].
 m.p. $40^{\circ} 5-42^{\circ}$ [4700].

1-(2,4-Dihydroxy-3-methylphenyl)-2,2,2-trifluoroethanone
[65233-60-5]

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 220.15
Syntheses

- Preparation by reaction of trifluoroacetic anhydride on 2-methylresorcinol with aluminium chloride in ethylene dichloride at r.t. (90\%) [4689].
- Preparation by Fries rearrangement of 2-methylresorcinol monotrifluoroacetate with aluminium chloride in nitrobenzene or without solvent at 120° [4689].
m.p. 101° [4689].

2,2,2-Trifluoro-1-(2-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 220.15
Synthesis

- Obtained by refluxing α-(difluoronitromethyl)-2-hydroxy-4-methoxy- α-(trifluoromethyl)benzenemethanol (SM) in hexane for 6 h in the presence of activated charcoal (91%). SM was prepared by reaction of NPFA with resorcinol monomethyl ether in carbon tetrachloride or nitromethane for 12 h at 20° (99%, m.p. 67-69 $)$ [4701].
m.p. $62-64^{\circ}$ [4701];
${ }^{1} \mathrm{H}$ NMR [4701], ${ }^{13} \mathrm{C}$ NMR [4701], ${ }^{19} \mathrm{~F}$ NMR [4701]; TLC [4701].

2,2,2-Trifluoro-1-(2-hydroxy-6-methoxyphenyl)ethanone

[193738-66-8]
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 220.15

Synthesis

- Obtained by partial demethylation of 2,6-dime-thoxy- α, α, α-trifluoroacetophenone with boron tribromide in methylene chloride, first at 0° for 15 min, then at r.t. overnight (17%) [4696].
yellow oil [4696]; ${ }^{1} \mathrm{H}$ NMR [4696], MS [4696].

2,2,2-Trifluoro-1-(4-hydroxy-3-methoxyphenyl)ethanone

$[188194-66-3]$	Synthesis - - This compound (6) [4702] was synthesized accord- ing to Dudley [4703].

1-[2,4-Dihydroxy-5-(methylthio)phenyl]-2,2,2-trifluoroethanone

[65239-90-9]	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 252.21
OH	Synthesis
	- Preparation by reaction of trifluoroacetic anhydride on 4-methylthioresorcinol with aluminium chloride in ethylene dichloride at r.t. (68\%) [4689].
m.p. 57° [4689].	

1-(2,4-Dihydroxy-3-methoxyphenyl)-2,2,2-trifluoroethanone
[65239-88-5]

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{4}$
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 2-methoxyresorcinol with aluminium chloride in ethylene dichloride at r.t. (78\%) [4689].
mol.wt. 236.15
m.p. 79° [4689].

1-(2,4-Dihydroxy-6-methoxyphenyl)-2,2,2-trifluoroethanone $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 236.15 Synthesis

- Preparation by reaction of trifluoroacetonitrile on phloroglucinol monomethyl ether with zinc chlophloroglucinol monomethyl ether with zinc chlo-
ride and gaseous hydrochloric acid in ethyl ether at 0° (Hoesch reaction) (33\%) [4679].
m.p. 154° [4679].

1-(3-Amino-2-hydroxy-5-methylphenyl)-2,2,2-trifluoroethanone

[70977-83-2]	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{2} \quad \mathrm{~mol}$. wt. 219.16
H	Synthesis
	- Preparation by catalytic hydrogenation of 2-hydroxy 5-methyl-3-nitro- α, α, α-trifluoroacetophenone in the presence of $5 \% \mathrm{Pt} / \mathrm{C}$ in ethanol at 25° [4699,4700], (57\%) [4699].

m.p. $87-88^{\circ}[4699,4700]$.

1-[2-(Acetyloxy)-5-chloro-4-hydroxyphenyl]-2,2,2-trifluoroethanone

or
1-[4-(Acetyloxy)-5-chloro-2-hydroxyphenyl]-2,2,2-trifluoroethanone
[65233-64-9]

(I)

(II)
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClF}_{3} \mathrm{O}_{4}$ mol.wt. 282.60

Synthesis

- Preparation by reaction of acetylchloride on5-chloro-2,4-dihydroxy- α, α, α-trifluoroacetophenone with pyridine in benzene at r.t. (72\%) [4689]. m.p. $80-83^{\circ}$ [4689].
N.B.: The 4-(Acetyloxy)-5-chloro-2-hydroxy- α, α, α-trifluoroacetophenone (II) is the most likely formula, for two reasons: On the one hand, there is a strong chelation between hydroxyl and keto groups in the raw material and, on the other hand, the esterification was carried out at r.t.

1-(3-Ethyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

[577-54-8]

m.p. 139° [4679].
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \quad \mathrm{~mol}$. wt. 234.17
Synthesis

- Preparation by reaction of trifluoroacetonitrile on 2-ethyl-resorcinol (Hoesch reaction) (74\%) [4679].

1-(5-Ethyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone
[584-41-8] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 234.17

Synthesis

- Preparation by reaction of trifluoroacetonitrile on 4-ethyl-resorcinol (Hoesch reaction) (71\%) [4679]. m.p. 99° [4679].

1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2,2,2-trifluoroethanone

 $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 250.17

Synthesis

- Preparation by reaction of trifluoroacetonitrile on 1,3-dihydroxy-5-methoxy-4-methylbenzene(Hoesch reaction) (22\%) [4680].
m.p. 145° [4680].

1-(5-Ethyl-2,3,4-trihydroxyphenyl)-2,2,2-trifluoroethanone

[65239-92-1]

m.p. 82° [4689].
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 250.17
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 4-ethylpyrogallol with aluminium chloride in ethylene dichloride at r.t. (80\%) [4689].

2,2,2-Trifluoro-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 250.17

Synthesis

- Preparation by reaction of trifluoroacetonitrile on 3,4-di-methoxyphenol (Hoesch reaction) (62\%) [4679].
m.p. 82° [4679].

2,2,2-Trifluoro-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone

 $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 250.17 Synthesis

- Obtained (by-product) by reaction of trifluoroacetonitrile on phloroglucinol dimethyl ether (Hoesch reaction) (5\%) [4680].
m.p. 87° [4680].

2,2,2-Trifluoro-1-(4-hydroxy-2,6-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 250.17

Synthesis

- Preparation by reaction of trifluoroacetonitrile on phloroglucinol dimethyl ether (Hoesch reaction) (25\%) [4680].
m.p. 155° [4680].

2,2,2-Trifluoro-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \quad \mathrm{~mol}$. wt. 250.17
Synthesis

- This compound (7) [4702] was synthesized according to Dudley [4703].

1-[2-(Acetyloxy)-4-hydroxy-3-methylphenyl]-2,2,2-trifluoroethanone
or
1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]-2,2,2-trifluoroethanone
[65233-62-7]

(I)
$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4}$
Synthesis

- Preparation by reaction of acetyl chloride on 2,4-dihy-droxy-3-methyl- α, α, α-trifluoroacetophenone with pyridine in benzene at r.t. (87\%) [4689].
m.p. $49-50^{\circ}$ [4689].
N.B.: The 1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]-2,2,2-trifluoroethanone (II) is the most likely formula. This hypothesis is supported by the fact that, considering the precursor (2,4-di-hydroxy-3-methyl- α, α, α-trifluoroacetophenone), the hydroxy group in the 4-position is less hindered than the hydroxyl substituent in the 2-position which is furthermore chelated with the vicinal carbonyl group. In addition, the reported melting point $\left(49-50^{\circ}\right)$ is in good agreement with those generally measured for o-hydroxyketones (below 80°) compared to those of p-hydroxy-ketones which are considerably higher (usually $120-200^{\circ}$).

1-[4-(3-Bromopropoxy)-2-hydroxyphenyl]-2,2,2-trifluoroethanone
[125617-37-0]

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{O}_{3} \quad$ mol.wt. 327.10
Synthesis

- Preparation by reaction of 1,3-dibromopropane with 2,4 -dihydroxy- $\alpha, \alpha, \alpha-$ trifluoroacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone [4704].
pale yellow oil [4704]; IR [4704].
1-[2,4-Dihydroxy-3-(1-methylethyl)phenyl]-2,2,2-trifluoroethanone

[65239-70-5] \quad\begin{tabular}{l}
Syntheses

($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$

Preparation by reaction of trifluoroacetic anhy-

dride on 2-isopropylresorcinol with aluminium

chloride in ethylene dichloride at r.t.

[4689].
\end{tabular}

- Preparation by reaction of isopropanol on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with polyphosphoric acid at 80° (30\%) [4689].
- Preparation by reaction of propylene on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with phosphorous oxychloride and phosphoric anhydride at 50° [4689].
- Preparation by Fries rearrangement of 2-isopropylresorcinol trifluoroacetate with aluminium chloride without solvent or in nitrobenzene at 120° [4689].
m.p. 145° [4689].

1-[2,4-Dihydroxy-5-(1-methylethyl)phenyl]-2,2,2-trifluoroethanone

[65239-68-1]
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 248.20
 Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 4-isopropylresorcinol with aluminium chloride in chloroform at r.t. (70\%) [4689].
m.p. 97° [4689].

1-(2,4-Dihydroxy-3-propylphenyl)-2,2,2-trifluoroethanone
[65239-69-2]
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 248.20

Syntheses

- Preparation by reaction of trifluoroacetic anhydride on 2-propylresorcinol with aluminium chloride in ethylene dichloride at r.t. (88\%) [4689].
- Preparation by reaction of trifluoroacetonitrile on 2-propylresorcinol (Hoesch reaction) (66\%) [4705].
m.p. 114° [4689], $110-112^{\circ}$ [4705]; ${ }^{1} \mathrm{H}$ NMR [4705].

1-(2,4-Dihydroxy-5-propylphenyl)-2,2,2-trifluoroethanone
[65239-67-0]

m.p. 95° [4689].
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 248.20
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 4-propylresorcinol with aluminium chloride in ethylene dichloride at r.t. (87\%) [4689].

2,2,2-Trifluoro-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 264.20

Synthesis

- Preparation by reaction of trifluoroacetonitrile on 3,5-dimethoxy-2-methylphenol (Hoesch reaction) (43\%) [4680].
m.p. 100° [4680].

1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2,2-trifluoroethanone

[111422-37-8]
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}$
mol.wt. 246.23

Synthesis

- Preparation by reaction of trifluoroacetyl chloride on bromomagnesium 2-tert-butylphenolate in toluene at r.t. (74\%) [4564].
yellow oil [4564]; ${ }^{1} \mathrm{H}$ NMR [4564], IR [4564], MS [4564].

1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2,2-trifluoroethanone

[75060-56-9]

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 246.23
Synthesis

- Preparation by demethylation of 5-tert-butyl-2-methoxy- α, α, α-trifluoroacetophenone with 47% hydrobromic acid and 57% hydriodic acid in refluxing acetic acid (70\%) [4661].
${ }^{1} \mathrm{H}$ NMR [4661], IR [4661], MS [4661].
1-(4-Butoxy-2-hydroxyphenyl)-2,2,2-trifluoroethanone
[65240-27-9]
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3}$
Synthesis
- Obtained by reaction of butyl iodide on 2,4-dihy-droxy- $\alpha, \alpha, \alpha-$-trifluoroacetophenone with potassium carbonate in refluxing acetone (29\%) [4689].

1-(5-Butyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

[65239-71-6]

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 262.23
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 4-butylresorcinol with aluminium chloride in ethylene dichloride at r.t. (82\%) [4689]. m.p. 96° [4689].

1-[2,4-Dihydroxy-3-(2-methylpropyl)phenyl]-2,2,2-trifluoroethanone
[65239-73-8]

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 262.23
Syntheses

- Preparation by reaction of trifluoroacetic anhydride on 2-isobutylresorcinol with aluminium chloride in ethylene dichloride at r.t. (78\%) [4689].
- Preparation by Fries rearrangement of 2-isobutylresorcinol monotrifluoroacetate with aluminium chloride in nitro-benzene at 120° [4689].
- Preparation by reaction of isobutyl alcohol on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with polyphosphoric acid at 80° [4689].
- Preparation by reaction of isobutylene on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with phosphorous pentoxide and phosphorous oxychloride at 50° [4689]. m.p. 114° [4689].

1-[2,4-Dihydroxy-5-(2-methylpropyl)phenyl]-2,2,2-trifluoroethanone

m.p. 90° [4689]; b.p. ${ }_{0.1} 90^{\circ}$ [4689].

1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]-2,2,2-trifluoroethanone
[65239-74-9] $\quad \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 262.23

Syntheses

- Preparation by reaction of trifluoroacetic anhydride on 4-tert-butylresorcinol with aluminium chloride in ethylene dichloride at r.t. (80\%) [4689].
- Preparation by reaction of tert-butyl alcohol on 2,4-di-hydroxy- α, α, α-trifluoroacetophenone with polyphosphoric acid at 80° [4689].
m.p. 159° [4689].

1-(3-Cyclopentyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone
[65240-20-2] $\quad \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 274.24

Synthesis

- Preparation by reaction of cyclopentene on 2,4-dihy-droxy- α, α, α-trifluoroacetophenone with phosphorous oxychloride-phosphorous pentoxide mixture at 50° [4689].
m.p. 166° [4689].

1-(5-Cyclopentyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 274.24
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 4-cyclopentylresorcinol with aluminium chloride in ethylene dichloride at r.t. (75\%) [4689].
m.p. 94° [4689].

1-[2,4-Dihydroxy-3-(3-methylbutyl)phenyl]-2,2,2-trifluoroethanone
[65239-77-2]

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}$
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 2-isopentylresorcinol with aluminium chloride in ethylene dichloride at r.t. (84\%) [4689].
m.p. 101° [4689].

1-(2,4-Dihydroxy-3-pentylphenyl)-2,2,2-trifluoroethanone

[65239-78-3]
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 276.26
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 2-pentylresorcinol with aluminium chloride in ethylene dichloride at r.t. (87\%) [4689].
m.p. 105° [4689].

1-(2,4-Dihydroxy-5-pentylphenyl)-2,2,2-trifluoroethanone
[65239-75-0]

m.p. 97° [4689].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2,2-trifluoroethanone
[75060-97-8]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2} \quad$ mol.wt. 275.27
Synthesis

- Preparation from the corresponding hydrochloride (see below) [4661].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2,2-trifluoroethanone (Hydrochloride)

[75060-74-1]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 311.73
Synthesis

- Preparation by reaction of concentrated hydrochloric acid on 4-tert-butyl-6-(N-chloroacetylaminomethyl)-2-(trifluoroacetyl) phenol in refluxing ethanol (83\%) [4661].
m.p. $180-186^{\circ}$ [4661]; ${ }^{1} \mathrm{H}$ NMR [4661], IR [4661].

1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

[65239-79-4]	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 288.27
OH	Synthesis
	- Preparation by reaction of trifluoroacetic anhydride with 4-cyclohexylresorcinol in the presence of aluminium chloride in ethylene dichloride at r.t. (78\%) [4689].
	m.p. 80° [4689].

1-(5-Cyclohexyl-2,3,4-trihydroxyphenyl)-2,2,2-trifluoroethanone
mol.w. 304.27

1-(3-Bromo-5-hexyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

[65240-12-2]
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrF}_{3} \mathrm{O}_{3} \quad$ mol.wt. 369.18

m.p. 39° [4689].

1-[4-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]-2,2,2-trifluoroethanone

[125617-40-5]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrF}_{3} \mathrm{O}_{3} \quad$ mol.wt. 369.18
Synthesis

- Preparation by reaction of 1,3-dibromopropane with 2,4-dihydroxy-3-pro-pyl- α, α, α-trifluoroacetophenone in the presence of potassium carbonate and potassium iodide in refluxing methyl ethyl ketone [4704].
yellow oil [4704]; IR [4704].

1-(3-Chloro-5-hexyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

[65240-10-0]
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{O}_{3}$
mol.wt. 324.73

Synthesis

- Preparation by reaction of sulfuryl chloride on 5-n-hexyl-2,4-dihydroxy- α, α, α-trifluoroacetophenone at r.t. [4689].
m.p. 40° [4689].

1-[2,4-Dihydroxy-3-(1-methylpentyl)phenyl]-2,2,2-trifluoroethanone
[65240-18-8]

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 290.28
Synthesis

- Preparation by reaction of 1-hexene on 2,4-dihydroxyα, α, α-trifluoroacetophenone with phosphorous oxychloride and phosphorous pentoxide at 50° (30\%) [4689].
m.p. 97° [4689].

1-[2,4-Dihydroxy-3-(4-methylpentyl)phenyl]-2,2,2-trifluoroethanone
[65240-07-5]

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}$
Synthesis

- Preparation by Fries rearrangement of 2-iso- hexyl-3-hydroxyphenyl trifluoroacetate with aluminium chloride in nitrobenzene or without solvent at 120° [4689].
m.p. 97° [4689].

2,2,2-Trifluoro-1-(5-hexyl-2,4-dihydroxyphenyl)ethanone

[65233-68-3]

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 290.28
Syntheses

- Preparation by Fries rearrangement of 4-hexyl-3-hydroxyphenyl trifluoroacetate with aluminium chloride at 120°, in nitrobenzene (47%) or without solvent (38\%) [4689].
- Preparation by reaction of trifluoroacetamide on 4-hexyl-resorcinol at reflux, with boron trifluoride etherate (55\%) or with p-toluenesulfonic acid (20\%) [4689].
- Preparation by reaction of trifluoroacetonitrile on 4-hexylresorcinol, in the presence of hydrochloric acid,
- with zinc chloride in ethyl ether at 0° (Hoesch reaction) (69\%) [4689];
- with aluminium chloride (Houben reaction), in ethylene dichloride (60\%), in phosphorous oxychloride (55\%), in toluene (20\%) or in nitrobenzene (15\%) [4689].
- Preparation by reaction of trifluoroacetyl chloride on 4-hexylresorcinol at r.t. [4689],
- with aluminium chloride in ethylene dichloride (92\%) or in phosphorous oxychloride (20\%);
- with boron trifluoride etherate in ethylene dichloride (40\%);
- with zinc chloride in ethylene dichloride (30%).
- Preparation by reaction of trifluoroacetic acid on 4-hexylresorcinol in ethylene dichloride [4689],
- with phosphorous pentachloride (54\%) or p-toluenesulfonic acid (30\%) at r.t.;
- with boron trifluoride etherate at reflux (40%).
- Also obtained by reaction of ethyl trifluoroacetate on 4-hexylresorcinol with p-toluenesulfonic acid at reflux (25\%) [4689].
- Preparation by reaction of trifluoroacetic anhydride on 4-hexylresorcinol at r.t. (see table below) [4689].

Catalyst	Solvent	Yield (\%)
AlCl_{3}	POCl_{3}	80
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	10
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	75
	$\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	85
	POCl_{3}	60
ZnCl_{2}	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	65
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	83
	$\mathrm{CH}_{2} \mathrm{Cl}^{2} \mathrm{CH}_{2} \mathrm{Cl}$	87
	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	15
	POCl_{3}	30
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	30
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	45
	$\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	68
	POCl_{3}	$60\left(\right.$ at $\left.100^{\circ}\right)$
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	20
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	20
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	25
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	25
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{CH}_{2} \mathrm{Cl}^{2}-\mathrm{CH}_{2} \mathrm{Cl}$	22
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	35
$\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$	60
	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	70

m.p. 90° [4689].

1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]-2,2,2-trifluoroethanone

[65239-81-8]	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 296.25
OH	Synthesis
	- Preparation by reaction of trifluoroacetic anhydride on 4-benzylresorcinol with aluminium chloride in ethylene dichloride at r.t. (80\%) [4689].
m.p. 114° [4689].	

1-[2,4-Dihydroxy-3-[(4-methylphenyl)sulfonyl]phenyl]-2,2,2-trifluoroethanone
[65240-14-4]

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 360.31
Synthesis

- Obtained by reaction of p-toluenesulfonyl chloride on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with aluminium chloride in phosphorous oxychloride (22\%) [4689].
m.p. 127° [4689].

1-[2,4-Dihydroxy-5-[(4-methylphenyl)sulfonyl]phenyl]-2,2,2-trifluoroethanone
[65240-13-3]

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 360.31
Synthesis

- Preparation by reaction of p-toluenesulfonyl chloride on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with ferric chloride in phosphorous oxychloride at $120^{\circ}(40 \%)$ [4689].
m.p. 145° [4689].

1-(3-Cycloheptyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

[65240-21-3]

$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 302.29
Synthesis

- Preparation by reaction of cycloheptene on 2,4-dihy-droxy- α, α, α-trifluoroacetophenone with phosphorous trichloride and phosphorous pentoxide at 50° [4689].
m.p. 174° [4689].

1-[2,4-Dihydroxy-3-(4-methylcyclohexyl)phenyl]-2,2,2-trifluoroethanone

[65239-82-9]

$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 302.29
Syntheses

- Preparation by reaction of trifluoroacetic anhydride on 2-(4-methylcyclohexyl)resorcinol with aluminium chloride in ethylene dichloride at r.t. (76\%) [4689].
- Preparation by Fries rearrangement of 3-hydroxy-2-(4-methylcyclohexyl)phenyl trifluoroacetate with aluminium chloride in nitrobenzene or without solvent at 120° [4689].
m.p. 143° [4689].

2,2,2-Trifluoro-1-(5-heptyl-2,4-dihydroxyphenyl)ethanone

[65239-80-7]
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 304.31

Syntheses

- Preparation by reaction of trifluoroacetic anhydride on 4-heptylresorcinol with aluminium chloride in ethylene dichloride at r.t. (79\%) [4689].
- Preparation by Fries rearrangement of 4-heptyl-3-hy-droxy-phenyl- α, α, α-trifluoroacetate with aluminium chloride in nitrobenzene or without solvent at 120° [4689].
m.p. 85° [4689].

1-[5-(3,5-Dimethylcyclohexyl)-2,4-dihydroxyphenyl]-2,2,2-trifluoroethanone
[65239-83-0]

$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 304.31
Synthesis

- Preparation by acylation of 4-(3,5-dime-thylcyclo-hexyl)-resorcinol (1 mol) with trifluoroacetic anhydride (1.2 mol) in the presence of aluminium chloride (2 mol) in ethylene dichloride at r.t. (79\%) [4689].
m.p. 126° [4689].

1-[2 (or 4)-(Acetyloxy)-5-hexyl-4 (or 2)-hydroxyphenyl]-2,2,2-trifluoroethanone
[65233-69-4]

(I)

(II)
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4}$
mol.wt. 332.32 Synthesis

- Preparation by reaction of acetyl chloride on 5-hexyl-2,4-dihydroxy- α, α, α-tri-fluoroacetophenone with pyridine in benzene at r.t. (83\%) [4689].
m.p. 30° [4689].
N.B.: The 1-[4-(acetyloxy)-5-hexyl-2-hydroxyphenyl]-2,2,2-trifluoroethanone (II) is the most likely formula. This hypothesis is supported by the fact that, considering the precursor (5-hexyl-2,4-di-hydroxy- α, α, α-trifluoroacetophenone), the hydroxy group in the 2-position is chelated with the carbonyl group. In addition, the reported melting point $\left(30^{\circ}\right)$ is in good agreement with those generally measured for o-hydroxyketones (below 80°) compared to those of p-hydroxyketones which are considerably higher (usually $120-200^{\circ}$).

1-[2,4-Dihydroxy-3-(1-methylheptyl)phenyl]-2,2,2-trifluoroethanone

[65240-22-4]

$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 318.34
Synthesis

- Refer to: [4689].

1-(2,4-Dihydroxy-5-octylphenyl)-2,2,2-trifluoroethanone
[65239-94-3]

$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 318.34
Synthesis

- Preparation by reaction of trifluoroacetic anhydride on 4-octylresorcinol with aluminium chloride in ethylene dichloride at r.t. (74\%) [4689].
m.p. 87° [4689].

1-(2,4-Dihydroxy-5-nonylphenyl)-2,2,2-trifluoroethanone

[65239-84-1]
$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 332.36
Synthesis

m.p. 87° [4689].

- Preparation by reaction of trifluoroacetic anhydride with 4-nonylresorcinol in the presence of aluminium chloride in ethylene dichloride at r.t. (85\%) [4689].

1-[4-(Decyloxy)-2-hydroxyphenyl]-2,2,2-trifluoroethanone

[65240-25-7]

$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 346.39
Synthesis

- Preparation by reaction of decyl iodide on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with potassium carbonate in refluxing acetone (53\%) [4689].
m.p. $27-28^{\circ}$ [4689]; b.p. ${ }_{0.1} 150^{\circ}$ [4689].

1-[2,4-Dihydroxy-3-(1-methylnonyl)phenyl]-2,2,2-trifluoroethanone

[65134-36-3]

m.p. 98° [4689].
$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 346.39 Synthesis

- Preparation by reaction of 1-decene on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with phosphorous oxychloride and phosphorous pentoxide at 50° [4689].

1-[5-Chloro-2-hydroxy-4-(10-undecenoyloxy)phenyl]-2,2,2-trifluoroethanone
10-Undecenoic acid, 2 (or 4)-Chloro-5-hydroxy-4 (or 2)-(trifluoroacetyl)phenyl ester
[65233-67-2]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClF}_{3} \mathrm{O}_{4} \quad$ mol.wt. 406.83
Synthesis

- Preparation by reaction of 10 -undecenoyl chloride on 5-chloro-2,4-di-hydroxy- α, α, α-trifluoro-acetophenone with pyridine in benzene at r.t. (65\%) [4689]. b.p. ${ }_{0.07} 168^{\circ}$ [4689].

1-[2-Hydroxy-3-methyl-4-(10-undecenoyloxy)phenyl]-2,2,2-trifluoroethanone
10-Undecenoic acid, 3-Hydroxy-2-methyl-4 (or 6)-(trifluoroacetyl)phenyl ester
[65233-66-1] $\quad \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 386.41

Synthesis

- Preparation by reaction of 10 -undecenoyl chloride on 2,4-dihydroxy-3-methyl- α, α, α-trifluoro-acetophenone with pyridine in benzene at r.t. (64\%) [4689].
b.p. ${ }_{0.07} 165^{\circ}$ [4689].

1-(3-Cyclododecyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{3}$
mol.wt. 372.43

Synthesis

- Preparation by reaction of cyclododecene on 2,4-di-hydroxy- $\alpha, \alpha, \alpha-$ trifluoroacetophenone with phosphorous oxychloride and phosphorous pentoxide at 50° [4689].
m.p. 166° [4689].

1-[2,4-Dihydroxy-3-(1-methylundecyl)phenyl]-2,2,2-trifluoroethanone
[65134-37-4]

$\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 374.44
Synthesis

- Preparation by reaction of 1-dodecene on 2,4 -di-hydroxy- α, α, α-trifluoroacetophenone with phosphorous oxychloride and phosphorous pentoxide at 50° [4689].
m.p. 96° [4689].

1-(5-Dodecyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone

m.p. 92° [4689].

1-[5-Chloro-2 (or 4)-hydroxy-4 (or 2)-(octadecanoyloxy)phenyl]-2,2,2trifluoroethanone
[65233-65-0]

(I)
$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{ClF}_{3} \mathrm{O}_{4} \quad$ mol.wt. 507.03
Synthesis

- Preparation by reaction of stearoyl chloride on 5-chloro-2,4-dihydroxy- α, α, α-trifluoroacetophenone with pyridine in benzene at r.t. (40\%) [4689].
m.p. 51° [4689].
N.B.: The 1-[5-Chloro-2-hydroxy-4-(octadecanoyloxy)phenyl]-2,2,2-trifluoroethanone (II) is the most likely formula.

1-[2,4-Dihydroxy-3-(1-methylheptadecyl)phenyl]-2,2,2-trifluoroethanone

$$
\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{O}_{3} \quad \text { mol.wt. } 458.60
$$

Synthesis

- Preparation by reaction of 1-octadecene on 2,4-dihydroxy- α, α, α-trifluoroacetophenone with phosphorous oxychloride and phosphorous pentoxide at 50° [4689].
m.p. $98^{\circ}[4689]$.

11.4 Compounds Derived from Iodoacetic Acids

11.4.1 From Monoiodoacetic Acid

1-(3-Bromo-5-chloro-2-hydroxyphenyl)-2-iodoethanone

$$
\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrClIO}_{2} \quad \text { mol.wt. } 375.39
$$

 Synthesis

- Obtained by reaction of iodine monochloride with 3-bromo-5-chloro-2-hydroxyacetophenone in boiling acetic acid [4706].

1-(5-Chloro-2-hydroxy-3-nitrophenyl)-2-iodoethanone
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{ClINO}_{4} \quad$ mol.wt. 309.49

Synthesis

- Obtained by reaction of iodine monochloride with 5-chloro-2-hydroxy-3-nitroacetophenone in boiling acetic acid [4706].

1-(5-Chloro-2-hydroxyphenyl)-2-iodoethanone

[438625-16-2] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClIO}_{2} \quad$ mol.wt. 296.49

Synthesis

- Obtained by reaction of iodine monochloride with 5-chloro-2-hydroxyacetophenone in boiling acetic acid [4706].

1-(2-Hydroxyphenyl)-2-iodoethanone

The foregoing analysis assumes that only one mol of iodine reacts with each mol of o-hydroxyacetophenone, which may be incorrect. The title substance does not appear to have been isolated [4569].
m.p. $65^{\circ}[4567,4568]$.

1-(4-Hydroxyphenyl)-2-iodoethanone

[99233-31-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Syntheses

- Obtained by reaction of iodine with p-hydroxyacetophenone in the presence of 1-fluoro-4-chloromethyl-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)* in methanol for 19 h at r.t. (64\%) [4708].
- This reagent is known under the commercial name of Selectfluor ${ }^{\text {TM }}$ F-TEDA-BF ${ }_{4}$.
- Also refer to: [4567,4568,4707,4710].
m.p. 130° [4567,4568]; 126-128 ${ }^{\circ} 8$ [4708]; TLC [4708]; Crystal data [4567,4568];
${ }^{1} \mathrm{H}$ NMR [4708], IR [4708], MS [4708].

1-(2,4-Dihydroxyphenyl)-2-iodoethanone

1-(3,4-Dihydroxyphenyl)-2-iodoethanone

[105174-59-2] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{3} \quad$ mol.wt. 278.05

Syntheses

- Preparation by reaction of sodium iodide on 3,4-dihydroxy- α chloroacetophenone in acetone at r.t. (34\%) [4446].
- Also refer to: [4711].
no m.p.: This compound progressively decomposed from 140° and gave a black residue at $162-163^{\circ}$ [4446];
${ }^{1} \mathrm{H}$ NMR [4446], IR [4446], UV [4446], MS [4446].
2-Iodo-1-(2,3,4-trihydroxyphenyl)ethanone

[105174-62-7] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of sodium iodide on 2,3,4-tri-
hydroxy- α-chloroacetophenone in acetone at r.t.
$(63 \%)[4446]$.

\end{tabular}

m.p. 144-145 [4446]; ${ }^{1} \mathrm{H}$ NMR [4446], IR [4446], UV [4446], MS [4446].

1-(3,4-Dihydroxy-2-methylphenyl)-2-iodoethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3} \quad \mathrm{~mol} . \mathrm{wt} .292 .07$

Synthesis

- Preparation by reaction of sodium iodide on 3,4-dihydroxy-2-methyl- α-chloroacetophenone in acetone at r.t. (62\%) [4631].
m.p. $171-172^{\circ}$ [4631].

1-(3,4-Dihydroxy-5-methylphenyl)-2-iodoethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3} \quad$ mol.wt. 292.07
 Synthesis

- Preparation by reaction of sodium iodide on 2,4-dihy-droxy-5-methyl- α-chloroacetophenone in acetone [4631]. m.p. 177° [4631].

1-(2-Hydroxy-4-methoxyphenyl)-2-iodoethanone

m.p. 102° [4485].

1-(4-Hydroxy-2-methoxyphenyl)-2-iodoethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3} \quad$ mol.wt. 292.07

Synthesis

- Preparation by reaction of sodium iodide on 4-hydroxy-2-methoxy- α-chloroacetophenone in acetone at r.t. [4432]. m.p. 128° [4432].

1-(4-Hydroxy-3-methoxyphenyl)-2-iodoethanone

[105174-52-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3} \quad$ mol.wt. 292.07

m.p. 103° [4446]; ${ }^{1} \mathrm{H}$ NMR [4446], IR [4446], UV [4446], MS [4446].

11.4.2 From Diiodoacetic Acid

2,2-Diiodo-1-(2-hydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{2} \quad$ mol.wt. 387.94

Synthesis not yet described
N.B.: Not obtained.

- The iodination kinetics of o-hydroxyacetophenone have been investigated at 25° in aqueous buffer solutions. The foregoing analysis assumes that only 1 mol of iodine reacts with each mol of o-hydroxyacetophenone, which may be incorrect. Cyclisation probably predominates over the introduction of a second iodine atom into o-hydroxyacetophenone, at least in the early stages of the reaction. There is formation of 3-coumaranone [4569].

11.4.3 From Triiodoacetic Acid

There is no hydroxyketone derived from triiodoacetic acid such as described up to December 2003.

Chapter 12
 Compounds Derived from Aminoacetic Acids

12.1 Compounds Derived from Aminoacetic Acid

2-Amino-1-(2-hydroxyphenyl)ethanone

[72481-17-5]

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17
Syntheses

- Obtained by treatment of 3-nitro-4-hydroxycou-marin-m.p. $177^{\circ}(\mathrm{d})$-with refluxing in a mixture of 58% hydriodic acid solution and acetic acid for 15 min . The iodine produced during the reaction was reduced with hypophosphorous acid [4712].
- Also refer to: [4713,4714].

2-Amino-1-(2-hydroxyphenyl)ethanone (Hydrochloride)
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 187.63

Synthesis

- Preparation by treatment of 3-nitro-4-hydroxy-coumarin-m.p. 177° (d)—with refluxing in a mixture of 58% hydriodic acid solution and acetic acid for 15 min . The iodine produced during the reaction was reduced with hypophosphorous acid. Then, recrystallisation of the obtained base from concentrated hydrochloric acid (66\%) [4712].
m.p. $229-230^{\circ}$ [4712].

2-Amino-1-(3-hydroxyphenyl)ethanone
[90005-54-2] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17

Syntheses

- Obtained by adding ammonia to an aqueous solution of its hydrochloride (63\%) [4715].
- Also refer to: [4713,4716-4719].
m.p. $217-220^{\circ}$ [4717], 215-235 ${ }^{\circ}$ [4715].

2-Amino-1-(3-hydroxyphenyl)ethanone (Hydrochloride)

[14665-75-9]

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 187.63
Syntheses

- Preparation by hydrolysis of m-(benzoyloxy)-α-amino-acetophenone hydrochloride (SM) (m.p. 202-205º) [4717], (m.p. 206º [4715],
- with refluxing 10% hydrochloric acid (quantitative yield) [4715], for 2 h (80\%) [4717];
- with 37% hydrochloric acid in chlorobenzene at 90° for $3 \mathrm{~h}(90 \%)$ [4718]. SM was obtained by reaction of hexamethylenetetramine with m-(benzoyloxy)-α-bromoacetophenone (m.p. 162°) in ethanol in the presence of 37% hydrochloric acid for 6 h at r.t. (75\%) [4718].
- Also obtained by hydrolysis of 3,6-bis(3-hydroxyphenyl)-2,5-dihydropyrazine in aqueous suspension with hydrochloric acid at r.t. [4720].
- Also obtained by reaction of 3-acetoxy- α-bromoacetophenone (m.p. 71-72 ${ }^{\circ}$) with hexamethylenetetramine in chloroform, followed by acetoxy group elimination in the obtained compound with hydrochloric acid [4721].
- Also obtained by reaction of 3-hydroxy- α-iodoacetophenone with hexamethylenetetramine, followed by transformation of the obtained iodo derivative (m.p. $138-139^{\circ}$) into hydrochloride salt [4722].
- Also refer to: [4716].
m.p. $221-222^{\circ}$ [4720-4722], 219-220 ${ }^{\circ}$ [4715], 218-220 (d) [4718], 217-220 ${ }^{\circ}$ [4717].

2-Amino-1-(4-hydroxyphenyl)ethanone

[77369-38-1]

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17
Syntheses

- Obtained by oxidation of the biogenic amine 1-(4-hydroxy-phenyl)-2-aminoethanol at high pH [4723].
- Also obtained by hydrogenation of p-hydroxyi-sonitroso-acetophenone-so called p-hydroxy- α -(hydroximino)-acetophenone-over Pd / C in acetic acid at a temperature $<60^{\circ}$ (91\%) [4717].
- Also obtained from the corresponding hydrochloride aqueous solution with ammonia [4597].
- Also refer to: [4713,4724-4728].
N.B.: For the acetate [172417-70-8], refer to: [4728,4729]; pK_{B} [4730].

2-Amino-1-(4-hydroxyphenyl)ethanone (Hydrochloride)

[19745-72-3]

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 187.63
Syntheses

- Preparation by treatment of α-amino-p-hydroxy-acetophenone with hydrogen chloride in DMF (70\%) [4714].
- Preparation by hydrogenation of p-hydroxy- α-(hydroximino) acetophenone (SM) over Pd/C in DMF (70\%).

SM was obtained by adding tert-butyl nitrite to a mixture of p-hydroxyacetophenone, hydrogen chloride and DMF at 40-45 [4731].

- Preparation from α-amino-p-benzoyloxyacetophenone hydrochloride with refluxing 20\% hydrochloric acid solution for $7 \mathrm{~h}(80 \%)$ [4724].
- Preparation by condensation of phenol with aminoacetonitrile hydrochloride (Houben-Hoesch reaction) (51\%) [4732].
- Also obtained by demethylation of α-amino-p-methoxyacetophenone (m.p. 197°) with 38% hydrochloric acid at $160-170^{\circ}$ for 2 h [4597].
- Also refer to: [4733].
m.p. $249-251^{\circ}$ [4732], 242° [4597], 241-245 ${ }^{\circ}$ (d) [4724].

2-Amino-1-(2,4-dihydroxyphenyl)ethanone $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3} \quad$ mol.wt. 167.16
 Syntheses

- Obtained from its hydriodide (m.p. 258°) or its hydrochloride (m.p. 280°) by addition of a hot concentrated solution of sodium carbonate [4566]. - Also refer to: [4734,4735].
m.p. 310° (d) [4566].

2-Amino-1-(2,4-dihydroxyphenyl)ethanone (Hydrochloride)

$$
\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}, \mathrm{HCl} \quad \text { mol.wt. } 203.61
$$

- Also obtained by addition of concentrated hydrochloric acid to an alcoholic solution of the corresponding hydriodide (SM). SM—m.p. 128° (d)—was prepared from 2,4-dimethoxy- α-phthaliminoacetophenone (m.p. 188°) with boiling concentrated hydriodic acid containing some acetic acid [4566].
- Also obtained by treatment of 3-acetamido-4,7-dihydroxycoumarin (m.p. 268) with 10% hydrochloric acid for 1 h [4734].
- Also refer to: [4735].
m.p. 280° (d) [4566], 271° [4734], 257° [4432].

One of the reported melting points is obviously wrong.

2-Amino-1-(3,4-dihydroxyphenyl)ethanone (Arterenone; Noradrenalone; ART)
[499-61-6] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3} \quad$ mol.wt. 167.16
 Syntheses

- Preparation by reaction of 35% aqueous ammonia with 3 ,4-dihydroxy- α-chloroacetophenone in methanol or in ethanol [4736], (71-73\%) [4737], (67\%) [4738].
- Also obtained by adding ammonia to an aqueous solution of the corresponding hydrochloride [4730,4739], (60-75\%) [4597].
- Also obtained by adding sodium carbonate to an aqueous solution of its hydriodide (m.p. 247-248 ${ }^{\circ}$) (SM). SM was prepared from $m, m^{\prime}, p, p^{\prime}$-tetramethoxy-2,5diphenylpyrazine by boiling for 2 h with a mixture of acetic acid and concentrated hydriodic acid [4566].
- Preparation by hydrogenolysis of α-dibenzylamino-3,4-dihydroxyacetophenone hydrochloride in water in the presence of Pd / C under hydrogen atmosphere for 5 h . Then, treatment of the concentrated solution with 28% ammonia (85%) [4580].
- Also refer to: [4713,4720,4740,4741].

Isolation from natural sources

- From insect cuticle [4742,4743].
- Also obtained by mild acid hydrolysis of sclerotized cuticles from locusts (Schistocerca gregaria) and beetles (Pachynoda sinuata) [4744].
- From acid hydrolysates of insect sclerotized cuticle in refluxing 1 N formic acid for 1 h or in boiling methanolic hydrochloric acid. The cuticle used was obtained from the desert locust Schistocerca gregaria [4745].
- Also obtained by hydrolysis of 2-(3',4'-dihydroxyphenyl)-3-acetylamino-6 (or 7)-(N-acetyl-2"-aminoethyl)-2,3-dihydro-1,4-benzodioxin (SM) with 6 N hydrochloric acid at 110° for 3 h . SM was formed by incubation of N -acetyldopamine with locust cuticle [4746].
- ART was the major identified catechol recovered from strong acid hydrolysates of tanning pharate pupae cuticle from Manduca sexta [4747].
m.p. 300° (d) [4738], 235° (d) [4566,4580], $>200^{\circ}$ (d) (not melted) [4597,4739];
One note a very large dispersion of the various melting points.
${ }^{1} \mathrm{H}$ NMR [4746], UV [4744,4745], MS [4744,4748]; HPLC [4747]; pK_{B} [4730]; column chromatography [4744]; TLC [4744].

2-Amino-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride)

[5090-29-9] \begin{tabular}{l}
Syntheses

Preparation by demethylation of α-amino-3,4-dime-
thoxy-acetophenone on heating with 37% hydrochloric
acid for 2.5 h at $160-165^{\circ}$ under carbon dioxide (85\%)
$[4739]$.

\end{tabular}

- Preparation by dissolving the corresponding base in a mixture of concentrated hydrochloric acid/methanol and allowing to stand several hours at -10° (82%) [4736].
- Also obtained by hydrogenation of 3,4-dihydroxy- α-azidoacetophenone (m.p. 132°) in an ethanol and concentrated hydrochloric acid solution under hydrogen in the presence of $4 \% \mathrm{Pd} / \mathrm{C}$ for $7 \mathrm{~h}(65 \%)$ [4715].
- Also obtained from the addition compound (SM) of 3,4-diacetoxy- α-chloroacetophenone and hexamethylene tetramine in chloroform at r.t. for $24 \mathrm{~h}(40 \%)$. SM in ethanolic solution was treated with 38% hydrochloric acid at r.t. for 3 days [4597].
- Also obtained from hydrolysis of 3,6-bis(3,4-dihydroxyphenyl)-2,5-dihydropyrazine -m.p. 250° (d)—in aqueous suspension with hydrochloric acid at r.t. [4720].
- Also refer to: [4737].

```
m.p. 270 [4720], 260 [4738], 259` [4730], 256 (d) [4715,4739], 255 [4736],
    252}\mp@subsup{}{}{\circ}[4597]
```

One note a very large dispersion of the various melting points.

2-Amino-1-(2-hydroxy-5-methylphenyl)ethanone

	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19
OH	Synthesis
	- Obtained by hydrogenation of the complex formed by addition of 2-(benzyloxy)-5-methyl- α-bromoacetophenone and hexamethylenetetramine in ethanol in the presence of Pd / C [4749].

2-Amino-1-(2-hydroxy-5-methylphenyl)ethanone (Hydrochloride)

$$
\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad \text { mol.wt. } 201.66
$$

 Synthesis

- Obtained by hydrogenolysis of 2-(benzyloxy)-5-methyl- α-aminoacetophenone hydrochloride (m.p. $191-192^{\circ}$) (SM) with hydrogen in the presence of Pd/C in 95\% ethanol.
- SM was prepared by reaction of 2-(benzyloxy)-5-methyl- α-bromoacetophenonewith hexamethylene-tetramine, followed by treatment with ethanolic hydrogen chloride [4749].
m.p. $222-225^{\circ}$ (d) [4749].

12.2 Compounds Derived from Substituted Aminoacetic Acids

2-Diazo-1-(4-hydroxy-3-methoxyphenyl)ethanone

	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3} \quad$ mol.wt. 193.28
OH	Synthesis
	- Preparation by reaction of potassium hydroxide with 4-acetoxy-3-methoxy- α-diazoacetophenone (m.p. 92-93 ${ }^{\circ}$) in methanol at 20° for 15 h (quantitative yield) [4750]. - amorphous solid [4750].

2-Azido-1-(4-hydroxy-3-methoxyphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \quad$ mol.wt. 207.19

Synthesis

- Obtained by reaction of 4-hydroxy-3-methoxy- α -chloro-acetophenone with an alkali metal azide in dilute alcohols $\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right)$ [4751].

1-(3-Hydroxyphenyl)-2-(methylamino)ethanone (Phenylephrone)
[52093-42-2]

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19
Syntheses

- Preparation by reductive condensation of m-hydroxyphenyl-glyoxal with methylamine in ethanol under saturated hydrogen atmosphere in the presence of Raney nickel at 45° (55\%) [4752].
- Also obtained by action of potassium N-methyl-p-toluene sulfonamide with m -acetoxy- α-bromoacetophenone in acetone during some hours. Then, the resulting intermediate compound (m.p. $120-121^{\circ}$) was treated with boiling 55\% aqueous hydriodic acid for 1 h [4753-4755].
- Also obtained by reaction of methylamine with α-bromo-m-benzoyloxyacetophenone in isopropanol, and subsequent treatment with aqueous hydrochloric acid [4756].
- Also obtained by reaction of methylamine with α-bromo-m-hydroxyacetophenone in dilute ethanol [4757,4758].
- Also refer to: [4713,4719,4759,4760].
m.p. 135° [4753-4755], 128° [4752].

1-(3-Hydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride)

[94240-17-2]

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 201.65
Syntheses

- Preparation by conversion of the base with 35% ethanolic hydrogen chloride [4752].
- Also obtained by hydrogenolysis of 2-(benzyl-methyl-amino)-1-(3-hydroxyphenyl) ethanone hydrochloride with hydrogen in the presence of Pd-black in ethanol [4759].
- Also refer to: [4753,4761].
m.p. 238° [4757,4758], 234° [4752-4755]; IR [4759].

1-(4-Hydroxyphenyl)-2-(methylamino)ethanone

[21213-89-8]

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$
mol.wt. 165.19
Syntheses

- Preparation by reductive condensation of p-hydroxy-phenyl-glyoxal with methylamine in ethanol under saturated hydrogen atmosphere in the presence of Raney nickel at 45° [4752].
- Also obtained by reductive condensation of p-hydroxy-phenylglyoxal potassium bisulfite $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{SK}\right.$, preparation given) with methylamine in dilute ethanol under saturated hydrogen atmosphere and cooling with ice (71\%) [4752].
- Also obtained by reduction of potassium 2-(4-hydroxyphenyl)-2-oxo-1-methylaminoethane sulfonate $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{5} \mathrm{SK}\right.$, preparation given) in dilute ethanol with hydrogen in the presence of Raney nickel (65\%) [4752].
- Also obtained by reaction of potassium N-methyl-p-toluenesulfonamide with p-acetoxy- α-bromoacetophenone in acetone during some hours. Then, the resulting intermediate compound was treated with boiling 55% aqueous hydriodic acid for 1 h [4753].
- Also obtained by degradation of p-toluenesulfonamide (prepared from α-meth-ylamino-p-methoxy-acetophenone) on heating with 37% hydrochloric acid for 2 h at 150° under carbon dioxide [4739].
- Also obtained by treatment of p-hydroxy- α-bromoacetophenone in ethanol with a 40% methylamine solution, first in an ice bath, then at r.t. overnight [4762].
- Also obtained by reaction of methylaminoacetonitrile with phenol (HoubenHoesch reaction) (75\%) [4732].
- Also refer to: [4713,4724,4761].
m.p. 148° [4753], $147-148^{\circ}$ [4762], 147° [4739,4752], $142-144^{\circ}$ (d) [4732]; pK_{B} [4730].

1-(4-Hydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride)

[67828-68-6]	Syntheses - Obtained by reaction of hydrochloric acid with the corresponding base [4739], (83\%) [4732], (50\%) [4724].
Also obtained by treatment of its oxalate (m.p. $\left.166^{\circ}\right)$ with ethanolic hydrogen chloride $(72 \%)[4752]$.	

- Also obtained by reaction of methylaminoacetonitrile hydrochloride with phenol (Hoesch reaction) (88\%) [4763].
- Also refer to: [4753,4764-4766].

1-(2,4-Dihydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride)

$$
\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}, \mathrm{HCl} \quad \text { mol.wt. } 217.65
$$

 Synthesis

- Preparation by successively adding methylamino-acetonitrile hydrochloride and resorcinol to a solution of aluminium chloride in nitrobenzene, then bubbling hydrogen chloride for 6-8 h through the reaction mixture at $20-30^{\circ}(73 \%)$ [4763].
m.p. $265-267^{\circ}$ [4763].

1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone (Adrenalone)
[99-45-6]
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$
mol.wt. 181.19 Syntheses

- Preparation by reaction of excess 33% aqueous methylamine with 3,4-dihydroxy- α-chloroacetophenone [4767].
- Preparation by adding an aqueous solution of 40% methyl-amine to an ethanolic solution of 3,4-dihy-droxy- α-chloro-acetophenone. Then, adding of ammonia to a solution of recrystallized hydrochloride so formed, (71-73\%) [4737], (62\%) [4738].
- Preparation by reductive condensation of 3,4-dihydroxyphenylglyoxal with methylamine in ethanol under hydrogen atmosphere in the presence of 14% Pd/C [4752].
- Also obtained by degradation of p-toluenesulfonamide, prepared from 3,4-dime-thoxy- α-methyl-aminoacetophenone, with refluxing 37\% hydrochloric acid (150-160 $)$ for 2 h under carbon dioxide [4739].
- Also obtained by treatment of 3,4-diacetoxy- α-chloroacetophenone (m.p. 110°) with 30% methylamine solution (good yield, not specified) [4768].
- Also refer to: [4713,4719,4740,4769-4774].
m.p. 232° [4767], 230° [4738], 229° (d) [4739], 215° (d) [4775]; UV [4776,4777]; pK_{B} [4730,4778];
micellar liquid chromatography [4779-4781]; electrophoresis [4782].

1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride) (Stryphnon)
[62-13-5]

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 217.65
Syntheses

- Obtained by action of hydrochloric acid on 3,4-dihydroxy- α-methylaminoacetophenone (65\%) [4737], in methanol [4738,4739].
- Also obtained (poor yield) from the base by saturation of its aqueous solution with hydrogen chloride (7\%) [4752].
- Also refer to: [4761,4765-4767].
m.p. 248° [4730], 241°
(d) $[4739,4752], 240^{\circ}$
(d) [4738], 237-243 ${ }^{\circ}$
(d) [4775];
UV [4773].

2-(Dimethylamino)-1-(2-hydroxyphenyl)ethanone
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22

Synthesis

- Obtained by adding a solution of dimethylamine (2 mol) in ethyl ether to a cold solution of o-hydroxy- α-chloro-acetophenone (m.p. 71-71 $\left.{ }^{\circ} 5\right)(1 \mathrm{~mol})$ and sodium iodide (1 mol) in acetone. The mixture was then allowed to stand for 14 h at 0° [4573].

2-(Dimethylamino)-1-(2-hydroxyphenyl)ethanone (Hydrochloride)
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 215.69

Synthesis

- Obtained by adding of ethanolic hydrochloric acid to a solution of the corresponding base in acetone (61\%) [4573].
m.p. $105-107^{\circ}$ [4573].

2-(Dimethylamino)-1-(4-hydroxyphenyl)ethanone
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22

Syntheses

- Obtained by adding a solution of dimethylamine (2 mol) in ethyl ether to a cold solution of p-hydroxy- α-chloro-acetophenone (m.p. $\left.151-152^{\circ}\right)(1 \mathrm{~mol})$ and sodium iodide $(1 \mathrm{~mol})$ in acetone. The mixture was then allowed to stand for 14 h at 0° [4573].
- Also obtained by hydrolysis of 1-[4-(benzoyloxy)phenyl]-2-dimethylaminoethanone with aqueous hydrochloric acid [4783].
- Also obtained by reaction of dimethylamine with p-(benzoyloxy)- α-bromoacetophenone in isopropanol [4724].
- Also refer to: [4566].
m.p. 142° [4566].

2-(Dimethylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride)

[2970-79-8]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl}$
Syntheses

- Obtained by reaction of dimethylamine with p-acetoxy- α-bromoacetophenone in benzene, followed by treatment with dilute hydrochloric acid [4784].
- Also obtained by reaction of dimethylamine with p-benzoyl-oxy- α-bromoacetophenone in isopropanol [4724] or in benzene [4783] and subsequent treatment with hydrochloric acid (88\%) [4783], (47\%) [4724].
- Also obtained by adding ethanolic hydrochloric acid to a solution of the corresponding base in acetone (43\%) [4573].
- Also refer to: [4785].
m.p. $242-243^{\circ}$ [4573], 235° [4784], 234-237${ }^{\circ}$ [4783], 233-235 ${ }^{\circ}$ [4724].

2-(Ethylamino)-1-(3-hydroxyphenyl)ethanone

[22510-12-9]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
Syntheses

- Preparation by reductive condensation of 3-hydroxyphenyl-glyoxal with ethylamine in ethanol under saturated hydrogen atmosphere in the presence of Raney nickel at 45° (49%) [4752].
- Also obtained by reaction of ethylamine with 1-(3-acetoxy-phenyl)-2-bromoethanone in aqueous isopropanol [4786].
m.p. 203-205 ${ }^{\circ}$ [4752].

2-(Ethylamino)-1-(3-hydroxyphenyl)ethanone (Hydrochloride)

[22510-04-9]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl}$
mol.wt. 215.69
Syntheses

- Preparation by crystallization of the base in 2 N hydrochloric acid [4752].
- Also obtained by reaction of 40% ethylamine solution with m-acetoxy- α-bromoacetophenone in isopropanol, first at 0°, then at 40° for 10 min , followed by treatment with hydrochloric acid [4786].
m.p. $221-222^{\circ}$ [4752], 212-215 ${ }^{\circ}$ (d) [4786].

2-(Ethylamino)-1-(4-hydroxyphenyl)ethanone

[99075-26-0]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
Syntheses

- Preparation by reductive condensation of 4-hydroxy-phenyl-glyoxal with ethylamine in ethanol under saturated hydrogen atmosphere in the presence of Raney nickel at 45° [4752].
- Also obtained by reductive condensation of 4-hydroxy-phenylglyoxal potassium bisulfite $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{SK}\right.$, preparation given) with ethylamine [4752].
- Also obtained by reaction of ethylamine with 1-[4-(benzoyloxy)phenyl]-2bromoethanone in isopropanol [4724].
$\mathrm{pK}_{\mathrm{B}}=6.23$ [4730].
2-(Ethylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride)
[74730-79-3]

$$
\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad \text { mol.wt. } 215.69
$$

Syntheses

- Preparation by treatment of the oxalate with 28% ethanolic hydrogen chloride (65\%) [4752].
- Also obtained by reaction of α-bromo-p-benzoyloxy-acetophenone with ethylamine in isopropanol and subsequent treatment with hydrochloric acid (51\%) [4724].
m.p. $228-231^{\circ}$ (d) [4724], 221° [4752].

1-(2-Hydroxy-5-methylphenyl)-2-(methylamino)ethanone
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22
 Synthesis

- Preparation by hydrogenolysis of 2-(benzyl-methylamino)-1-(2-hydroxy-5-methylphenyl) ethanone with hydrogen in the presence of Pd / C as catalyst [4749].

1-(2-Hydroxy-5-methylphenyl)-2-(methylamino)ethanone (Hydrochloride)

$$
\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad \text { mol.wt. } 215.69
$$

 Synthesis

- Obtained by hydrogenolysis of 2-(benzyloxy)-5-methyl-N-benzylmethylaminoacetophenone hydrochloride or of 2-hydroxy-5-methyl-N-benzylmethylaminoacetophenone hydrochloride with hydrogen in the presence of Pd / C in 95% ethanol [4749].
m.p. $204-206^{\circ}$ [4749].

1-(4-Hydroxy-3-methylphenyl)-2-(methylamino)ethanone (Hydrochloride)

$$
\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad \text { mol.wt. } 215.69
$$

Synthesis

- Preparation by successively adding methylaminoacetonitrile hydrochloride and o-cresol to a solution of aluminium chloride in nitrobenzene, then bubbling hydrogen chloride for $6-8 \mathrm{~h}$ through the reaction mixture at $20-30^{\circ}$ (90\%) [4763].
m.p. $237-238^{\circ}$ [4763].

1-(3,4-Dihydroxyphenyl)-2-(dimethylamino)ethanone

[150-10-7]	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$	mol.wt. 195.22

Syntheses

- Preparation by reaction of 3,4-dihydroxy- α-chloroacetophenone with dimethylamine [4787,4788], in ethanol at 40° for 75 min [4789,4790] or at 60° for 5 h [4791].
- Also obtained by action of sodium ethoxide with N-methyl-adrenalone hydrochloride in boiling ethanol (72-74\%) [4737].
- Also obtained by demethylation of 2-dimethylamino-1-(3-hydroxy-4-methoxyphenyl)ethanone with concentrated aqueous hydrochloric acid at 130° [4792].
- Also obtained by reaction of dimethylamine with α-chloro-3-acetoxy-4hydroxyacetophenone in aqueous ethanol [4793].
m.p. $>130^{\circ}$ (d) [4737].

1-(3,4-Dihydroxyphenyl)-2-(dimethylamino)ethanone (Hydrochloride)

[16899-83-5] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 231.69

Syntheses

- Preparation by reaction of the corresponding base (SM) with hydrogen chloride in ethanol, [4787], (66\%) [4791], (62\%) [4771], (54\%) [4792], (50\%) [4789,4790]. SM was obtained by reaction of 3,4-dihydroxy- α-chloroacetophenone with concentrated aqueous dimethylamine.
- Direct preparation by reaction of 3,4-dihydroxy- α-chloro-acetophenone with dimethylamine in methanol for 20-30 min at $<5^{\circ}(73-76 \%)$ [4737] or in absolute ethanol for 2 h at $60^{\circ}(45 \%)$ [4788].
- Also obtained by treatment of 3,4-dimethoxy- α-dimethylaminoacetophenone (SM) with concentrated hydrochloric acid for 2.5 h at $150-160^{\circ}$ in a sealed tube (41\%) [4794] or for 2 h at $130^{\circ}(25 \%)$ [4792]. SM was prepared by reaction of 3,4-dimethoxy- α-chloroacetophenone with dimethylamine in benzene at r.t. overnight $\left(91 \%\right.$, b.p. $\left.{ }_{6} 155-157^{\circ}\right)$ [4794].
- Also obtained by treatment of 3-hydroxy-4-methoxy- α-dimethylaminoacetophenone with concentrated hydrochloric acid for 2 h at 130°, (65\%) [4792].
- Also refer to: [4761].
m.p. 236-237
(d) $[4789,4790], 234-236^{\circ}$
(d) $[4737,4771], 232^{\circ}$
(d) [4794],
231-232 ${ }^{\circ}$
(d) $[4792], 225-227^{\circ}$
(d) $[4787,4788], 213-214^{\circ}$ [4791].

One note a very large dispersion of the various melting points. ${ }^{1} \mathrm{H}$ NMR [4788], IR [4788].

1-(3,4-Dihydroxyphenyl)-2-(ethylamino)ethanone $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 195.22 Syntheses

- Obtained by adding an aqueous solution of 40% ethylamine to an ethanolic solution of α-chloro-3,4-dihydroxyacetophenone, then adding ammonia in a solution of the recrytallized hydrochloride so formed (50\%) [4738].
- Also refer to: [4740].
m.p. $\quad 185^{\circ}$ [4738]; pK_{B} [4730].

1-(3,4-Dihydroxyphenyl)-2-(ethylamino)ethanone (Hydrochloride)
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 231.69

Syntheses

- Obtained by condensation of 3,4-dihydroxy- α -chloro-acetophenone with ethylamine in ethanol or isopropanol at $60-80^{\circ}$. The amino ketone base which separated was treated with concentrated hydrochloric acid [4795].
- Also obtained by total demethylation of 1-(3,4-dimethoxyphenyl)-2(ethylamino)ethanone hydrochloride (m.p. 190-192 $)$, (71\%) [4773] according to [4763].
m.p. 260°
(d) [4738],
$255-257^{\circ}$
(d) [4773], 240-242
(d) [4795].

One of the reported melting points is obviously wrong.
1-(3-Hydroxy-4-methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride)
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{HCl}$
mol.wt. 231.69

Synthesis

- Preparation by successively adding methylamino-acetonitrile hydrochloride and guaiacol to a solution of aluminium chloride in nitrobenzene, then bubbling hydrogen chloride for $6-8 \mathrm{~h}$ through the reaction mixture at $20-30^{\circ}(25 \%)$ [4763].
m.p. $230-230^{\circ} 5$ [4763].

2-(Cyclopropylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride)
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 243.69

Synthesis

- Obtained (poor yield) by treatment of cyclopropylamine salt of 4-chloroacetylcatechol (m.p. $95-97^{\circ}$) in refluxing isopropanol under nitrogen for 3 h . The formed free base in methanol was treated with ethanolic hydrochloric acid [4796].
m.p. $200-204^{\circ}$ [4796].

1-(3-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.25

Syntheses

- Preparation by reductive condensation of 3-hydroxyphenyl-glyoxal with isopropylamine in ethanol under saturated hydrogen atmosphere in the presence of Raney nickel at 45° [4752].
- Also obtained by reaction of isopropylamine with α-bromo-m-hydroxyacetophenone in ethanol [4797].

1-(3-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride)

COCOCH2
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 229.71
Syntheses

- Preparation by conversion of the oxalate in 28% ethanolic hydrogen chloride (35\%) [4752].
- Also obtained by [4797] according to [4724,4795].
m.p. $226-227^{\circ}$ [4752], 213-216 [4797].

One of the reported melting points is obviously wrong.

1-(4-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone

[99985-57-6]

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.25
Syntheses

- Preparation by reductive condensation of 4-hydroxyphenyl-glyoxal with isopropylamine in ethanol under saturated hydrogen atmosphere in the presence of Raney nickel at 45° (86%) [4752].
- Also obtained by reductive condensation of 4-hydroxy-phenylglyoxal potassium bisulfite $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{SK}\right.$, preparation given) with isopropylamine [4752].
- Also obtained by reaction of isopropylaminoacetonitrile with benzyl phenyl ether (m.p. 39-41 ${ }^{\circ}$) [4763] or with phenol [4732] in the presence of aluminium chloride and hydrogen chloride in nitrobenzene.
- Also obtained by reaction of isopropylamine with α-bromo-4-benzoyloxyacetophenone in isopropanol [4724].
- Also refer to: [4798].
m.p. $\quad 120-121^{\circ}$ [4752]; $\mathrm{pK}_{\mathrm{B}}[4730,4799]$.

1-(4-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride)
[69716-74-1]

$$
\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{HCl} \quad \text { mol.wt. } 229.71
$$

Syntheses

- Preparation from the base with aqueous hydrochloric acid (84\%) [4752].
- Also obtained by reaction of α-bromo-p-benzo-yloxy-acetophenone with isopropylamine in isopropanol between 20° and 30° for 2 h , then treatment of the formed base with refluxing 15% hydrochloric acid solution (64\%) [4724].
- Also obtained by reaction of isopropylaminoacetonitrile hydrochloride (m.p. $166-167^{\circ}$),
- with phenol (Houben-Hoesch reaction) (61\%) [4732], (42\%) [4798];
- with phenyl benzyl ether in the presence of aluminium chloride in nitrobenzene at $20-30^{\circ}$, then bubbling hydrogen chloride for 6 h (39\%) [4763].
m.p.
$272-273^{\circ}$ (d) [4763], 263° (d) [4798], 258-260́ (d) [4732], 250-252 ${ }^{\circ}$
[4724], 248-249 [4752]. One note a very large dispersion of the various melting points.

1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Isoproterenone)

[121-28-8]

$$
\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}
$$

$$
\text { mol.wt. } 209.25
$$

Syntheses

- Obtained by reductive condensation of 3,4-dihy-droxy-phenylglyoxal with isopropylamine in ethanol under hydrogen atmosphere in the presence of 14% Pd / C [4752].
N.B.: In the same manner, the substance can also be obtained from 3,4-bis(benzyloxy)phenylglyoxal [4800].
- Also obtained by reaction of 3,4-dihydroxy- α-chloroacetophenone with excess isopropylamine in refluxing ethanol for 2.5 h (76\%) [4801].
- Also obtained from the corresponding sulfate by action of a hot sodium bicarbonate aqueous solution (60°) (80%) [4761].
- Also obtained by treatment of the corresponding hydrochloride in concentrated aqueous solution at 0° with ammonia [4802].
m.p. 173° [4761], $168-169^{\circ}$ [4801], 96° [4802]. One of the reported melting points is obviously wrong. pK_{B} [4730];
${ }^{1} \mathrm{H}$ NMR [4801], IR [4801], UV [4801].

1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride)

[16899-81-3]

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 245.71
Syntheses

- Obtained by condensation of α-chloro-3,4-dihydroxy-acetophenone with isopropylamine [4803] in isopropanol at $65-70^{\circ}$. The amino ketone which separated was treated with concentrated hydrochloric acid (54\%) [4795], (46\%) [4804].
- Also obtained by demethylation of 3-methoxy-4-hydroxy- α-isopropylaminoacetophenone hydrochloride with concentrated hydrochloric acid at 140° for 6 h in a sealed tube (73\%) [4802].
- Also refer to: [4763,4805-4807]. m.p. $257-259^{\circ}$ [4763], $255-257^{\circ}$ [4802], 239-242 ${ }^{\circ}$ (d) [4795,4804].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [4804], ${ }^{13} \mathrm{C}$ NMR [4804], UV [4773].
1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Sulfate)
[27693-62-5]

$$
\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}, 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \quad \text { mol.wt. } 258.28
$$

Synthesis

- Preparation by reaction of 5 N ethanolic sulfuric acid with the crude base (58\%) [4752].
m.p. 243° [4752].

1-(3,4-Dihydroxyphenyl)-2-(propylamino)ethanone
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 209.25

Syntheses

- Obtained by condensation of α-chloro-3,4-dihydroxyacetophenone with propylamine in ethanol or isopropanol at 60-80 ${ }^{\circ}$ [4795].
- Also obtained by treatment of 1-(3,4-dimethoxyphenyl)-2-(propylamino)ethanone with aqueous hydrobromic acid [4773].
$\mathrm{pK}=6.2$ [4730].

1-(3,4-Dihydroxyphenyl)-2-(propylamino)ethanone (Hydrochloride)
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 245.71

Syntheses

- Obtained by condensation of α-chloro-3,4-dihy-droxy-acetophenone with propylamine in ethanol or isopropanol at $60-80^{\circ}$. The amino base which separated was treated with concentrated hydrochloric acid [4795].
- Also obtained by total demethylation of 1-(3,4-dimethoxyphenyl)-2(propylamino)ethanone hydrochloride (m.p. 193-194ㅇ), (82\%) [4773] according to [4763].
m.p. $240-241^{\circ}$
(d) $[4773], 234-236^{\circ}$
(d) [4795].

2-(Dimethylamino)-1-(3-hydroxy-4-methoxyphenyl)ethanone
[55761-48-3] $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 209.25

Synthesis

- Obtained by reaction of dimethylamine with α-chloro-3-hydroxy-4-methoxyacetophenone in benzene [4792].

2-(Dimethylamino)-1-(3-hydroxy-4-methoxyphenyl)ethanone (Hydrochloride)
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 245.71

Synthesis

- Obtained by reaction of α-chloro-3-hydroxy-4-methoxyacetophenone with dimethylamine in benzene, first at r.t. overnight, then at $50-60^{\circ}$ for 1 h ,
followed by treatment of the isolated base with hydrochloric acid in ethyl ether (41\%) [4792].
m.p. $220-221^{\circ}$ (d) [4792].

2-(Cyclobutylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride)

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 257.72

Synthesis

- Obtained by treatment of 4-chloroacetylcatechol cyclobutylamine salt (m.p. 100-104 ${ }^{\circ}$) in refluxing isopropanol for $3 \mathrm{~h}(21 \%)$ or in a sealed tube at 100° for $1.5 \mathrm{~h}(28 \%)$ [4796].
m.p. 225-228 [4796]; IR [4796], UV [4796].

2-[(1,1-Dimethylethyl)amino]-1-(4-hydroxy-3-nitrophenyl)ethanone
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 252.27

Synthesis

- Obtained by reaction of aqueous nitric acid with α-tert-butylamino-p-hydroxyacetophennone [4808].

2-(Butylamino)-1-(4-hydroxyphenyl)ethanone
[18986-11-3]

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27
Syntheses

- Preparation by reductive condensation of 4-hydroxyphenyl-glyoxal with n-butylamine in ethanol under saturated hydrogen chloride atmosphere in the presence of Raney nickel at 45° (75\%) [4752].
- Also obtained by reductive condensation of 4-hydroxy-phenylglyoxal potassium bisulfite $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{SK}\right.$, preparation given) with n-butylamine (85\%) [4752].
- Also obtained by reaction of n-butylamine with α-bromo-p-benzoyloxyacetophenone in isopropanol [4724].
- Also obtained by reaction of n-butylaminoacetonitrile with phenol in the presence of aluminium chloride and hydrogen chloride in nitrobenzene [4763,4809].
- Also obtained from the corresponding hydrochloride with ammonia [4809]. m.p. $\quad 119-120^{\circ}$ [4752,4809]; $\quad \mathrm{pK}_{\mathrm{B}}=5.45$ [4730].

2-(Butylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride)

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 243.73

Syntheses

- Preparation from the base with hydrochloric acid (92\%) [4752].
- Preparation by reaction of n-butylaminoacetonitrile hydrochloride (m.p. 101-1025) [4763], (m.p. $95-96^{\circ}$) [4809] with phenol in nitrobenzene in the presence of hydrogen chloride and aluminium chloride as catalyst (Houben-Hoesch reaction), (78\%) [4763], (66\%) [4809].
- Also obtained by reaction of α-bromo-p-benzoyloxyacetophenone with n-butylamine in isopropanol and subsequent treatment with hydrochloric acid (44\%) [4724].
m.p. 231° [4752,4809], 228-230́ [4763], 228-229ํ [4724].

2-[(1,1-Dimethylethyl)amino]-1-(4-hydroxyphenyl)ethanone

[60853-18-1] $\quad \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27

Syntheses

- Obtained by reaction of tert-butylamine with α-bromo-p-benzoyloxyacetophenone in isopropanol [4724].
- Also obtained by reaction of tert-butylaminoacetonitrile hydrochloride with phenol in the presence of aluminium chloride and hydrogen chloride in nitrobenzene (modified Hoesch reaction) [4763,4798].
- Also refer to: [4810]. $\mathrm{pK}_{\mathrm{B}}=6.1$ [4730].

2-[(1,1-Dimethylethyl)amino]-1-(4-hydroxyphenyl)ethanone (Hydrochloride)
[41489-87-6]

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 243.73
Syntheses

- Preparation by successively adding tert-butylamino-acetonitrile hydrochloride and phenol to a solution of aluminium chloride in nitrobenzene, then bubbling hydrogen chloride for 6-8 h through the reaction mixture at $20-30^{\circ}$ (75\%) [4763], (63\%) [4798].
- Also obtained by reaction of α-bromo-p-benzoyloxyacetophenone with tertbutylamine in isopropanol and subsequent treatment with hydrochloric acid to complete hydrolysis (25\%) [4724].
- Also refer to: [4810].

```
m.p. 268-270 (d) [4763,4810], 254-257` (d) [4724], 253-255`}[4798]
```

One of the reported melting points is obviously wrong.

2-(Butylamino)-1-(3,4-dihydroxyphenyl)ethanone

[33406-44-9] $\quad \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 223.27

Synthesis

- Obtained by condensation of α-chloro-3,4-dihy-droxy-acetophenone with butylamine in ethanol or isopropanol at $60-80^{\circ}$ [4795].
$\mathrm{pK} \mathrm{B}_{\mathrm{B}}$ [4730].

2-(Butylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride)

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 259.73

Synthesis

- Obtained by condensation of α-chloro-3,4-dihydroxyacetophenone with butylamine in ethanol or isopropanol at $60-80^{\circ}$. The amino base which separated was treated with concentrated hydrochloric acid [4795].
m.p. $206-208^{\circ}$ (d) [4795].

1-(3,4-Dihydroxyphenyl)-2-[(1,1-dimethylethyl)amino]ethanone
[105644-17-5] $\quad \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 223.27

Syntheses

- Preparation by demethylation of 2-tert-butylamino-1-(3,4-dimethoxyphenyl)ethanone hydrochloride with aqueous hydrobromic acid [4763].
- Also obtained by reaction of tert-butylamine with 2-chloro-1-(3,4-dihydroxyphenyl)ethanone in dioxane [4795].
- Also refer to: [4811,4812].
m.p. $\quad 199-201^{\circ}$ [4811]; pK_{B} [4730].

1-(3,4-Dihydroxyphenyl)-2-[(1,1-dimethylethyl)amino]ethanone (Hydrochloride)

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl}$
mol.wt. 259.73
Syntheses

- Obtained by condensation of α-chloro-3,4-di-hydroxy-acetophenone with tert-butylamine in dioxane at $60-80^{\circ}$. The amino ketone base which separated was treated with concentrated hydrochloric acid [4795].
- Also refer to: [4806,4807,4813].
m.p. $233-235^{\circ}$ (d) [4795].

1-(3,4-Dihydroxyphenyl)-2-[(1-methylpropyl)amino]ethanone (Hydrochloride)
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl} \quad m o l . w t .259 .73$

Synthesis

- Obtained by condensation of α-chloro-3,4-di-hydroxyacetophenone with sec-butylamine in ethanol or isopropanol at $60-80^{\circ}$. The amino base which separated was treated with concentrated hydrochloric acid [4795].
m.p. $226-227^{\circ}$ [4795].

1-(3,4-Dihydroxyphenyl)-2-[(2-methylpropyl)amino]ethanone
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 223.27

Synthesis

- Obtained by condensation of α-chloro-3,4-dihydroxy-acetophenone with isobutylamine in ethanol or isopropanol at 60-80 ${ }^{\circ}$ [4795].
$\mathrm{pK}_{\mathrm{B}}=6.52$ [4730].

1-(3,4-Dihydroxyphenyl)-2-[(2-methylpropyl)amino]ethanone (Hydrochloride)

$$
\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl}
$$

mol.wt. 259.73

Synthesis

- Obtained by condensation of α-chloro-3,4-dihydroxy-acetophenone with isobutylamine in ethanol or isopropanol at $60-80^{\circ}$. The amino ketone base which separated was treated with concentrated hydrochloric acid [4795].
m.p. $214-216^{\circ}$ [4795].

1-(4-Hydroxy-3-methoxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride)

 $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 259.73

Synthesis

- Preparation by treatment of the corresponding oxalate (SM) with 26% ethanolic hydrogen chloride (61% yield). SM was obtained in two steps. First, gradual addition of a 3-methoxy-4-hydroxyphenylglyoxal potassium bisulfite and isopropylamine solution in dilute ethanol to a suspension of Raney nickel in 84% ethanol maintained at 45° under excess hydrogen. Then, after catalyst elimination, addition of oxalic acid to the obtained solution [4802].
m.p. 236° (d) [4802].

2-(Cyclopentylamino)-1-(3,4-dihydroxyphenyl)ethanone

[16149-16-9] $\quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 235.28

Synthesis

- Obtained by condensation of α-chloro-3,4-dihydroxyacetophenone with cyclopentylamine in ethanol or isopropanol at 60-80 [4795] or in boiling isopropanol for $30 \mathrm{~min}(98 \%)$ [4796].
hemihydrate: m.p. 182° [4796]; UV [4796].

2-(Cyclopentylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride)

[16149-17-0]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 271.74
Syntheses

- Obtained by condensation of α-chloro-3,4-di-hydroxy-acetophenone with cyclopentylamine in ethanol or isopropanol at 60-80 . The amino ketone base which separated was treated with concentrated hydrochloric acid [4795].
- Obtained by reaction of N -cyclopentylnoradrenalone with hydrochloric acid (44\%) [4796]. m.p. $213-214^{\circ}$ (d) [4795], 205-207${ }^{\circ}$ [4796].

1-(3,4-Dihydroxyphenyl)-2-(1,2-dimethylpropylamino)ethanone (Hydrochloride) $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 273.76
 Synthesis

- Obtained by condensation of α-chloro-3,4-di-hydroxyacetophenone with 1,2-dimethylpropylamine in ethanol or isopropanol at $60-80^{\circ}$. The amino ketone base which separated was treated with concentrated hydrochloric acid [4795].
m.p. $231-233^{\circ}$ [4795].

1-(3,4-Dihydroxyphenyl)-2-(1-ethylpropylamino)ethanone (Hydrochloride)
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 273.76

Synthesis

- Obtained by condensation of α-chloro-3,4-di-hydroxy-acetophenone with 1-ethylpropylamine in methanol or isopropanol at $60-80^{\circ}$. The amino ketone base which separated was treated with concentrated hydrochloric acid [4795].
m.p. $\quad 198-201^{\circ}$ [4795].

1-(3,4-Dihydroxyphenyl)-2-(pentylamino)ethanone (Hydrochloride)
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 273.76

m.p. $201-202^{\circ}$ (d) [4795].

Synthesis

- Obtained by condensation of α-chloro-3,4-dihydroxy-acetophenone with pentylamine in ethanol or isopropanol at $60-80^{\circ}$. The amino ketone base which separated was treated with concentrated hydrochloric acid [4795].

1-(4-Hydroxyphenyl)-2-(phenylamino)ethanone

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26
Syntheses

- Preparation by adding aniline (0.1 ml) and rhodium (II) acetate dimer (2 mg) to a suspension of resin $\mathbf{6}(52 \mathrm{mg})$
in benzene and the mixture stirred at 85° for 2 h . The compound was isolated and purified by preparative TLC (51\%) [4814].
N.B.: Resin 6 (resin-bound α-TMS diazoketone 6) (preparation given).
- Also refer to: [4815].
${ }^{1} \mathrm{H}$ NMR [4814], ${ }^{13} \mathrm{C}$ NMR [4814], IR [4814], MS [4814].

2-(Cyclohexylamino)-1-(3,4-dihydroxyphenyl)ethanone

[16149-18-1]

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \quad$ mol.wt. 249.31
Syntheses

- Obtained by condensation of α-chloro-3,4-dihy-droxy-acetophenone with cyclohexylamine in ethanol or isopropanol at $60-80^{\circ}$ [4795] or in boiling isopropanol for 30 min [4796].
- Also obtained by reaction of 3,4-diacetoxy- α-iodo-acetophenone with cyclohexylamine in the presence of potassium carbonate in boiling acetone for 4 h (24\%) [4796].
hemihydrate [4796]; m.p. 187-188 ${ }^{\circ}$ [4796]; IR [4796], UV [4796].

2-(Cyclohexylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride)

[16149-19-2]

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 285.77
Synthesis

- Obtained by condensation of α-chloro-3,4-dihydroxy-acetophenone with cyclohexylamine in ethanol or isopropanol at $60-80^{\circ}$. The amino ketone base which separated was treated with concentrated hydrochloric acid [4795,4796].
m.p. $256-258^{\circ}$ (d) [4795], 242-245 ${ }^{\circ}$ [4796].

2-(Cyclohexylamino)-1-(3,5-dihydroxyphenyl)ethanone

[161040-30-8]

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \quad$ mol.wt. 249.31
Synthesis

- Obtained by treatment of 3,5-diacetoxy-α-bromo-acetophenone with cyclohexylamine in ethyl acetate and then refluxing with hydrochloric acid [4816].

1-(4-Hydroxy-3-methoxyphenyl)-2-(1-methyl-2-pyrrolidinyl)ethanone (-) (Phyllostone)

[126262-24-6] $\quad \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \quad$ mol.wt. 249.31

Gum [4817]; $(\alpha)_{\mathrm{D}}=-5^{\circ}$ (ethanol);
${ }^{1} H$ NMR [4817], IR [4817], UV [4817], MS [4817].
1-(4-Hydroxyphenyl)-2-[(phenylmethyl)amino]ethanone
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 241.29

Synthesis

- Obtained by adding ammonia to an aqueous solution of its hydrochloride [4818].
m.p. $132-133^{\circ}$ [4818].

1-(4-Hydroxyphenyl)-2-[(phenylmethyl)amino]ethanone (Hydrochloride)

$$
\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{HCl} \quad \text { mol.wt. } 277.75
$$

Synthesis

- Obtained by reductive condensation of p-hydroxyphenyl-glyoxal hydrate and benzylamine under hydrogen in the presence of Raney nickel in ethanol at 40°. Then, treatment of the mixture with 6 N ethanolic hydrogen chloride (82\%) [4818].
N.B.: The same reaction from p-hydroxyphenylglyoxal-potassium bisulfite at 45° gave a 79% yield [4818].
m.p. 240° [4818].

1-(3,4-Dihydroxyphenyl)-2-[(phenylmethyl)amino]ethanone

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 257.29

Syntheses

- Obtained by reaction of α-chloro-3,4-dihydroxyacetophenone with benzylamine [4740].
- Also obtained by adding ammonia to an aqueous solution of its hydrochloride [4818].
m.p. $147-148^{\circ}$ [4818].

1-(3,4-Dihydroxyphenyl)-2-[(phenylmethyl)amino]ethanone (Hydrochloride)

$$
\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl} \quad \text { mol.wt. } 293.75
$$

Synthesis

- Obtained by reductive condensation of 3,4-dihydroxyphenyl-glyoxal and benzylamine under hydrogen in the presence of Raney nickel in ethanol at 45°. Then, treatment of the mixture with ethanolic hydrogen chloride (73\%) [4818].
m.p. $220-221^{\circ}$ [4818].

1-(3,4-Dihydroxyphenyl)-2-(heptylamino)ethanone
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \quad$ mol.wt. 265.35

Synthesis

- Preparation by reaction of excess heptylamine with α-chloro-3,4-diacetoxyacetophenone [4740].
m.p. 125° [4740].

1-(3,4-Dihydroxyphenyl)-2-[2-(phenylethyl)amino]ethanone (Hydrochloride)
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 307.78

Synthesis

- Obtained by total demethylation of 1-(3,4-dimethoxy-phenyl)-2[(phenylethyl)amino]ethanone hydrochloride (m.p. 219-222́), (79\%) [4773] according to [4763].
monohydrate [4773]; m.p. 220-222 ${ }^{\circ}$ (d) [4773].

1-(3-Hydroxy-4-methoxyphenyl)-2-[(phenylmethyl)amino]ethanone (Hydrochloride)

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl}$ mol.wt. 307.78

Synthesis

- Obtained by reductive condensation of 3-hydroxy-4-methoxyphenylglyoxal and benzylamine under hydrogen in the presence of Raney nickel in ethanol at 45° for 45 min . Then, elimination of the catalyst and acidification of the mixture with hydrochloric acid (54\%) [4818].
m.p. 226° [4818].

1-(4-Hydroxy-3-methoxyphenyl)-2-[(phenylmethyl)amino]ethanone (Hydrochloride)

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 307.78

Synthesis

- Preparation by reductive condensation of 4-hydroxy-3-methoxyphenylglyoxal-potassiumbisulfite and benzylamine under hydrogen in the presence of Raney nickel in dilute ethanol at 45° for 1.75 h . Then, elimination of the catalyst and acidification of the mixture with hydrochloric acid (76\%) [4818].
m.p. 230° [4818].

2-(Benzyl-methyl-amino)-1-(2-hydroxy-5-methylphenyl)ethanone
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \quad$ mol.wt. 269.34
 Synthesis

- Obtained by condensation of 2-hydroxy-5-methyl- α-bromoacetophenone with benzyl methyl amine in ethyl ether at r.t. for 24-72 h [4749].

2-(Benzyl-methyl-amino)-1-(2-hydroxy-5-methylphenyl)ethanone (Hydrochloride) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 305.80
 Synthesis

- Obtained by reaction of 2-hydroxy-5-methyl- α-bromoacetophenone with N -benzylmethylamine in ethyl ether at r.t. for $24-72 \mathrm{~h}$, followed by treatment with hydrochloric acid [4749].
m.p. $\quad 86^{\circ} 5-187^{\circ}$ [4749].

2-[Bis(phenylmethyl)amino]-1-(4-hydroxyphenyl)ethanone
[88693-95-2]
$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2}$
mol.wt. 331.41

Synthesis

- Preparation by reaction of p-hydroxyphenacyl chloride (1 mol) with dibenzylamine (2 mol) in refluxing ethanol for 4 h [4580]. uncrystallizable oil [4580].

2-[Bis(phenylmethyl)amino]-1-(4-hydroxyphenyl)ethanone (Hydrochloride)

$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 367.87

Synthesis

- Preparation by adding a solution of ethanolic hydrogen chloride to a solution of α-diben-zylamino-p-hydroxy-acetophenone in chloroform (77\%) [4580].

Chapter 13
 Compounds Derived from Alkoxyacetic Acids

13.1 Compounds Derived from Methoxyacetic Acids

1-(2,4-Dihydroxy-3-iodophenyl)-2-methoxyethanone

[72511-78-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{4} \quad$ mol.wt. 308.07

Synthesis

- Obtained by iodination of 2,4-dihydroxy- α -methoxy-acetophenone with iodine and periodic acid in ethanol for 2 h at r.t. (74\%) [4819].
m.p. M157-158 ${ }^{\circ}$ [4819].

1-(2-Hydroxyphenyl)-2-methoxyethanone

[138206-45-8]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
mol.wt. 166.18
Syntheses

- Preparation by hydrogenolysis of 2-(benzyloxy)-α-methoxyacetophenone (SM) in the presence of Pd / C in ethanol for 1 h in hydrogen atmosphere (96%). SM was obtained by treatment of 2-(benzyloxy)phenylmagnesium bromide with methoxyacetonitrile in THF, first in an ice bath, then stirred for 2 h at r.t. (56%, colourless oil) [4395].
- Also obtained by decomposition of 1-(2-acetoxyphenyl)-2-diazoethanone in methanol with copper bronze (54\%). The diazoketone (deep red thick oil) was prepared by reaction of diazomethane with 2-acetoxybenzoyl chloride in ethyl ether [4820].
colourless oil [4395], pale yellow liquid [4820]; b.p. ${ }_{0.6-0.8} 76-77^{\circ}$ [4820];
${ }^{1} \mathrm{H}$ NMR [4395], IR [4395], MS [4395].

1-(3-Hydroxyphenyl)-2-methoxyethanone

[54794-31-9] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Syntheses

- Refer to: [4821] and [4822] (Polish patent).
N.B.: K salt [4823].

1-(4-Hydroxyphenyl)-2-methoxyethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Syntheses

- Obtained by scission of 5-hydroxy-4-(4-hydroxyphenyl) 5 H -furan-2-one with potassium hydroxide in methanol at 20° for 24 h (85%) [4824].
Also obtained by catalytic debenzylation of 1-(4-benzyl-oxyphenyl)-2-methoxyethanone in methanol under hydrogen (five bars) in the presence of 5\% Pd/C for $24 \mathrm{~h}(81 \%)$ [4824].
- Also obtained by methoxylation of the trimethylsilyl enol ether of 4-acetoxyacetophenone (SM) according to the procedure [4825], iodosobenzenediacetate replaced iodosobenzene, followed by hydrolysis of the ester complex formed (40%). SM was prepared in two steps from p-hydroxy-acetophenone, namely acetylation, then trimethylsilylation (80\%) [4826].
- Also obtained by reaction of 2-chloro-1-(4-hydroxyphenyl)ethanone (m.p. 151°) with methanolic sodium methoxide at r.t. for $24 \mathrm{~h}(90 \%)$ [4827].
- Also refer to: [4828-4833].
m.p. $133-135^{\circ}$ [4827], $128-130^{\circ}$ [4824];
${ }^{1} \mathrm{H}$ NMR [4824,4827], ${ }^{13} \mathrm{C}$ NMR [4824], IR [4824,4827],
MS [4824,4827].

1-(2,4-Dihydroxyphenyl)-2-methoxyethanone

[57280-75-8]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18 Syntheses

- Obtained by reaction of methoxyacetonitrile with resorcinol and subsequent hydrolysis of the ketimine hydrochloride (m.p. 205-207º) formed (Hoesch reaction) [4834-4837].
- Also obtained by decomposition of 1-(2,4-diacetoxyphenyl)-2-diazoethanone in methanol with copper bronze (43\%). The diazoketone (brownish yellow glassy solid) was prepared by reaction of diazomethane with 2,4-diacetoxybenzoyl chloride in ethyl ether [4820].
- Also obtained by alkaline degradation of 7-acetoxy-3,4-dimethoxycoumarin (m.p. 123-124 ${ }^{\circ}$) with sodium hydroxide or sodium carbonate [4838].
- Also refer to: [4640,4819,4839-4848].
m.p. $138-139^{\circ}$ [4836], $136-138^{\circ}$ [4820], 136° [4837];
${ }^{1} \mathrm{H}$ NMR [4836], ${ }^{13} \mathrm{C}$ NMR [4836], MS [4836].

1-(2,6-Dihydroxyphenyl)-2-methoxyethanone $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18

Synthesis

- Obtained by Fries rearrangement of 4-methylumbelliferone methoxyacetate, followed by alkaline hydrolysis of the resulting 8-(2-methoxyacetyl)-4-methylumbelliferone [4849].

1-(3,4-Dihydroxyphenyl)-2-methoxyethanone
[64349-40-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18

Syntheses

- Obtained by methoxylation of the trimethylsilyl enol ether of 3,4-diacetoxyacetophenone (SM) according to the procedure [4825], iodosobenzenediacetate replaced iodosobenzene, followed by hydrolysis of the ester
- complex formed (40%). SM was prepared in two steps from 3,4-dihydroxy-acetophenone, namely acetylation (70\%), then trimethyl-silylation (88\%) [4850].
- Also refer to: [4828,4851].

2-Methoxy-1-(2,4,6-trihydroxyphenyl)ethanone
[55317-02-7]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 198.18
Syntheses

- Preparation by reaction of methoxyacetonitrile with phloro-glucinol (Hoesch reaction) [4834, 4837,4852-4856], (80\%) [4857], (79\%) [4858], (77\%) [4836], (75-80\%) [4859], (50\%) [4860].
- Also refer to: [4839,4840,4842-4844,4861-4878].
monohydrate [328074-83-5]: [4837,4856]; Crystal data [4856];
m.p. 195-196 [4854], 192-194 ${ }^{\circ}$ [4836,4857], 192° [4837,4879], 191-194 ${ }^{\circ}$ [4860];
${ }^{1} \mathrm{H}$ NMR [4836,4857], ${ }^{13} \mathrm{C}$ NMR [4836,4857,4880], MS [4836,4857].
1-(2,4-Dihydroxy-3-iodo-6-methoxyphenyl)-2-methoxyethanone
[74047-42-0]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{5}$
mol.wt. 338.10

Synthesis
- Preparation by iodination of 2,4-dihydroxy-6, α-dimethoxy-acetophenone with iodine and periodic acid in dilute ethanol for 2 h at $60-70^{\circ}$ (78\%) [4881].
m.p. $191-193^{\circ}$ [4881];
N.B.: This ketone was characterized by its corresponding diacetate: m.p. 112-114 ${ }^{\circ}$ and ${ }^{1} \mathrm{H}$ NMR [4881].

1-(2-Hydroxy-6-methylphenyl)-2-methoxyethanone

[75278-05-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Synthesis

- Obtained by fission of 3-methoxy-5-methylflavone (m.p. 113-115 ${ }^{\circ}$) with ethanolic potash (50\%) [4882].
N.B.: This compound could not be prepared by Hoesch condensation of m-cresol with methoxyacetonitrile [4882].
oil [4882]; ${ }^{1} \mathrm{H}$ NMR [4882].
1-(2,4-Dihydroxy-6-methylphenyl)-2-methoxyethanone

[75278-00-1]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
OH	Syntheses
	- Preparation by Hoesch condensation of orcinol with methoxyacetonitrile (53\%) [4882]. - Also refer to: [4863].
m.p. $182-183^{\circ}$ [4882];	NMR [4882].

1-(2-Hydroxy-4-methoxyphenyl)-2-methoxyethanone (Fisetol dimethyl ether)
[4940-44-7]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by reaction of methoxyacetonitrile with resorcinol monomethyl ether (Hoesch reaction) [4837], (80\%) [4883].
- Also obtained by decomposition of 1-(2-acetoxy-4-methoxy-phenyl)-2-diazoethanone in methanol with copper bronze for 30 min at $50-55^{\circ}$, followed by hydrolysis of the acetyl derivative (57\%). The diazoketone (m.p. 102-105 $)$ was prepared by reaction of diazomethane with 2-acetoxy-4-methoxybenzoyl chloride in ethyl ether for 12 h at -5° [4820].
- Obtained by alkaline degradation of different polymethoxyflavones with potassium hydroxide,
- From fisetin tetramethyl ether (3,7,3', 4^{\prime}-tetramethoxyflavone) [4837,4884-4890];
- From 3,7,3', $4^{\prime}, 5^{\prime}$-pentamethoxyflavone (SM) (m.p. 149°) [4891], (81\%) [4890]. SM was prepared by methylation of $3,7,3^{\prime}, 4^{\prime}, 5^{\prime}$-pentahydroxyflavone, itself isolated from Robinia pseudacacia [4890];
- From kanugin (3,7,3'-trimethoxy-4',5'-methylenedioxyflavone) (m.p. 203-205º), isolated from the root bark of Pongamia glabra [4892];
- From demethoxykanugin (3,7-dimethoxy-3',4'-methylenedioxyflavone) (SM) (m.p. 142°), [4893], (86\%) [4894]. SM was isolated from the seed oil of karanja (Pongamia glabra) [4894] or from fresh root bark and the stem bark of Pongamia glabra [4893].
- Also obtained by alkaline degradation of 3,7-dimethoxychromone with sodium ethoxide [4895].
- Also obtained by alkaline degradation of 3,4,7-trimethoxycoumarin (m.p. 113-115*) with refluxing 5% aqueous sodium hydroxide for 1 h (60\%) [4838].
- Also obtained by partial methylation of α-methoxyresacetophenone with dimethyl sulfate,
- in the presence of potassium carbonate in refluxing benzene for 12 h (83%) [4848] or for $10 \mathrm{~h}(78 \%)$ [4846];
- in 5\% aqueous sodium hydroxide [4837,4896], (70\%) [4835].
- Also refer to: [4640,4842,4897].
m.p. 132° [4883], $69-70^{\circ}$ [4820,4848], 68-69 ${ }^{\circ}$ [4893], $67-68^{\circ}$ [4838], 67° [4890,4894], 66° [4837,4846,4891], 65-67$~[4892], ~ 65-66^{\circ} ~[4835] . ~ O n e ~$ of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [4883]; TLC [4838].

1-(2-Hydroxy-5-methoxyphenyl)-2-methoxyethanone

[103323-12-2] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

Synthesis

- Obtained by decomposition of 1-(2-acetoxy-5-methoxy-phenyl)-2-diazoethanone in methanol with copper bronze (57\%). The diazoketone (dark reddish liquid) was prepared by reaction of diazomethane with 2-acetoxy-5-methoxy-benzoyl chloride in ethyl ether [4820].
reddish liquid [4820]; b.p. . $_{0.3-0.4} 98-100^{\circ}$ [4820].

1-(4-Hydroxy-3-methoxyphenyl)-2-methoxyethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Synthesis

- Refer to: [4828] (Japanese paper).
[127255-97-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

Synthesis

- Preparation by reaction of o-hydroxyacetophenone with catalytic amounts of diphenyl diselenide and excess of ammonium peroxydisulfate in refluxing methanol for $1.5 \mathrm{~h}(72 \%)$ [4898].
oil [4898]; TLC [4898]; GLC [4898];
${ }^{1} \mathrm{H}$ NMR [4898], ${ }^{13} \mathrm{C}$ NMR [4898], MS [4898].

1-(4-Hydroxyphenyl)-2,2-dimethoxyethanone

[144757-78-8]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Obtained by oxidation of p-hydroxyacetophenone with methyl nitrite gas in methanolic hydrogen chloride [4899], at $0-5^{\circ}$ over $4 \mathrm{~h}(57 \%)$ [4900].
N.B.: The reaction involves oxidation with a source of nitrosonium ion $\left(\mathrm{NO}^{+}\right)$in the presence of an alcohol and a source of H^{+}to give a phenylglyoxal acetal.
Experimental procedure: Preparation by reaction of methyl nitrite with p-hydroxyacetophenone in 1.25 N methanolic hydrogen chloride between 0° and 5° for $4 \mathrm{~h}(72 \%)$. The methyl nitrite source was supplied by adding gradually 33% aqueous sulfuric acid to a sodium nitrite solution in aqueous methanol (1:1) under nitrogen.
N.B.: During the course of the reaction, the bath was maintained at about -20°. The methyl nitrite generator was not cooled [4901].
- Also obtained from electrosynthesis by a selenium catalyzed transformation of p-hydroxy-acetophenone in methanol at r.t. (22\%) [4902].
- Also refer to: [4899,4903].
white solid [4903];
${ }^{1} \mathrm{H}$ NMR [4901,4902], ${ }^{13} \mathrm{C}$ NMR [4901], MS [4901,4902].

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-methoxyethanone

[62330-14-7]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20
Syntheses

- Preparation by condensation of methoxyacetonitrile with phloroglucinol monomethyl ether (Hoesch reaction) (60\%) [4879].
- Preparation by a three-step synthesis: first, tosylation of α-methoxyphloroacetophenone with p-toluenesulfonyl chloride in the presence of potassium carbonate in refluxing acetone for 4 h . Dimethyl sulfate and potassium carbonate were then added and the mixture refluxed for 36 h more. Finally, saponification of the residue isolated by distillation with refluxing 5% methanolic potassium hydroxide for $4 \mathrm{~h}(42 \%)$ [4861].
- Also refer to: [4839,4840,4881,4904].
m.p. 208° [4879], 190-192 ${ }^{\circ}$ [4861].

1-(2,5-Dihydroxy-4-methoxyphenyl)-2-methoxyethanone
[35930-51-9] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20

Syntheses

- Obtained on oxidation of 2-hydroxy-4, α-dimethoxy-acetophenone with potassium persulfate in aqueous sodium hydroxide at $30-40^{\circ}$ for 90 min and at r.t. for 36 h [4905] (18\%) [4848] (Elbs reaction).
- Also obtained by reaction of methoxyacetonitrile with 1,4-di-hydroxy-2-methoxybenzene (Hoesch reaction) (13\%) [4906].
- Also refer to: [4907,4908].
trihydrate [4848];
m.p. 150° [4906], $148-149^{\circ}$ [4905], $145-146^{\circ}$ [4848].

1-(2,6-Dihydroxy-4-methoxyphenyl)-2-methoxyethanone

[70390-87-3]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20 Syntheses

- Obtained by alkaline degradation of quercetin 3,7,3',4'-tetra-methyl ether (m.p. 159-160 ${ }^{\circ}$) (5-hydroxy-3,7, $3^{\prime}, 4^{\prime}$-tetra-methoxyflavone) (SM) with potassium hydroxide. SM was isolated from citrus reticulata Blanco (Rutaceae) [4909].
- Also obtained by partial methylation of α-methoxy-phloroacetophenone with diazomethane in a methanol/ethyl ether mixture at 0° for $2 \mathrm{~h}(<8 \%)$ [4879].
- Also refer to: [4871,4910,4911]. m.p. $161-162^{\circ}$ [4879]; MS [4909].

2-Methoxy-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone

[110333-13-6] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20

Syntheses

- Preparation by condensation of 2-methylphloroglucinol with methoxyacetic acid-boron trifluoride complex at $28-30^{\circ}$ for $24 \mathrm{~h}(50 \%)$ [4912].
- Preparation by reaction of methoxyacetonitrile with 2-methylphloroglucinol (28\%) (Hoesch reaction) [4913].
- Also refer to: [4914].
m.p. 207° [4912], 206-207$~[4913] ; ~ s e s q u i h y d r a t e ~[4913] . ~$.

2-Methoxy-1-(6-methoxy-2,4,5-trihydroxyphenyl)ethanone

[65039-95-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 228.20

- Also refer to: [4915,4916].

2-Methoxy-1-(2,4,6-trihydroxy-3-methoxyphenyl)ethanone

[16297-02-2] [4918].
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 228.20
Synthesis

- Preparation by reaction of methoxyacetonitrile with iretol (Hoesch reaction) [4917], (59\%) [4918].
m.p. $157-158^{\circ}$ (anhydrous) [4917,4918], $82-84^{\circ}$ [4919], 79-80 (dihydrate)

Syntheses

- Obtained by reaction of potassium persulfate with 2,4-di-hydroxy-6, α-dimethoxyacetophenone in aqueous sodium hydroxide at r.t. under nitrogen for 38 h (11\%) [4904] (Elbs reaction).
m.p. 163° [4904]; IR [4904], UV [4904].

1-[6-Hydroxy-2-methoxy-3,4-(methylenedioxy)phenyl]-2-methoxyethanone
[91144-13-7]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 240.21
Syntheses

- Obtained by reaction of methoxyacetonitrile with 3-methoxy-4,5-(methylenedioxy)phenol (Hoesch reaction) [4905], (41\%) [4920], (29\%) [4904].
- Also obtained (trace) by reaction of methylene iodide with 3,4,6-trihydroxy-2, α-dimethoxyacetophenone in the presence of potassium carbonate in refluxing acetone for 30 h (1\%) [4904].
- Also obtained by alkaline degradation of meliternatin with boiling alcoholic potassium hydroxide [4862], for 7 h (65\%) [4921]. Meliternatin-3,5-dimethoxy-6,7,3', 4^{\prime}-bis(methylenedioxy)flavone-(m.p. 198-1985) was first isolated from Melicope ternata (Rutaceae) [4921], then from Melicope mantelli Buch [4922].
m.p. $142-144^{\circ}[4862,4921], 140-142^{\circ}$ [4904,4920]; IR [4904,4920].

2-Chloro-1-(2-hydroxy-4,6-dimethoxyphenyl)-2-methoxyethanone

[88092-53-9]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{5} \quad$ mol.wt. 260.67
Synthesis

- Obtained (by-product) by reaction of 1-(2-hydroxy-4,6-dimethoxyphenyl)-2methoxyethanone with iron complex $\left[\mathrm{Fe}(\mathrm{DMF})_{3} \mathrm{Cl}_{2}\right]\left[\mathrm{FeCl}_{4}\right]$ in refluxing dilute methanol for $4 \mathrm{~h}(<3 \%)$ [4923].
semi-solid [4923]; column chromatography [4923];
${ }^{1} \mathrm{H}$ NMR [4923], UV [4923].
1-(4,6-Dihydroxy-2,3-dimethylphenyl)-2-methoxyethanone
[132020-84-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23 Syntheses
- Preparation by reaction of methoxyacetonitrile with 1,3-di-hydroxy-4,5-dimethylbenzene (Hoesch reaction) (71\%) [4858].
- Also refer to: [4863,4864].

1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-methoxyethanone
[21417-76-5]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
Syntheses

- Obtained by alkaline hydrolysis of 3,7,8, $3^{\prime}, 4^{\prime}$-pentamethoxy-flavone (m.p. 153°) with 10% potassium hydroxide solution in boiling ethanol for $4 \mathrm{~h}(58 \%)$ [4924].
- Also obtained by alkaline hydrolysis of O-pentamethyl-dihydromelanoxetin (3,7,8,3',4'-pentamethoxyflavanone) (m.p. 146-148 ${ }^{\circ}$) with 8% potassium hydroxide solution in refluxing ethanol for 30 min [4925]. m.p. $85-86^{\circ}$ [4924], $82-84^{\circ}$ [4925]; ${ }^{1} \mathrm{H}$ NMR [4924].

1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-methoxyethanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23

Synthesis

- Preparation by partial methylation of 4, α-dimethoxy-2,5-dihydroxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing benzene for 12 h (38\%) [4848].
m.p. $90-91^{\circ}$ [4848].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-methoxyethanone

[17874-42-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
Syntheses

- Preparation by partial methylation of α-methoxyphloro-acetophenone [4874],
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone/benzene mixture for 12 h (60\%) [4876], (38\%) [4871];
- with methyl iodide in the presence of potassium carbonate in refluxing acetone for 3 h [4913];
- with diazomethane (1 mol) in a methanol/ethyl ether mixture at 0° for 2 h [4879].
- Also obtained by condensation of phloroglucinol dimethyl ether with methoxyacetonitrile (Hoesch reaction) (45\%) [4858], (25\%) [4876].
- Also obtained by alkaline degradation of various polymethoxyflavones,
- From izalpinin dimethyl ether (m.p. 194°) (3,5,7-trimethoxyflavone) on boiling with 10% ethanolic potassium hydroxide for 3 h (52\%) [4926];
- From kaempferide trimethyl ether (m.p. 153-154 $)$ (SM) (3,5,7,4'-tetramethoxyflavone) with potassium hydroxide. SM was isolated from Citrus reticulata Blanco (Rutaceae) [4909];
- From populnetin tetramethyl ether, so called kaempferol tetramethyl ether (m.p. 165-166 ${ }^{\circ}$) (3,5,7,4'-tetramethoxyflavone) by refluxing with 8% ethanolic potassium hydroxide for 6 h [4874];
- From morin pentamethyl ether (m.p. 154-157 ${ }^{\circ}$) (3,5,7,2', 4^{\prime}-pentamethoxyflavone) by heating at reflux with 20% ethanolic potassium hydroxide for $8-10 \mathrm{~h}$ [4884];
- From quercetin pentamethyl ether (m.p. 148-150 $)$ (3,5,7,3', 4^{\prime}-pentamethoxyflavone) with ethanolic potassium hydroxide $[4884,4889]$ or with boiling dilute ethanolic sodium hydroxide (54\%) [4927];
- From oxyayanin-A trimethyl ether (m.p. 190-193 $)$ (3,5,7,2', $4^{\prime}, 5^{\prime}$-hexamethoxyflavone) [4928], with potassium hydroxide in boiling ethanol for 8 h (57\%) [4868];
- From myricetin hexamethyl ether (m.p. 153°) (3,5,7,3', $4^{\prime}, 5^{\prime}$-hexamethoxyflavone) with boiling 10% ethanolic potassium hydroxide [4889,4929].
- Also obtained by alkaline degradation of 3,4,5,7-tetramethoxycoumarin with refluxing 5\% aqueous sodium hydroxide for 1 h [4838].
- Also refer to: [4640,4837,4842,4862,4865,4872,4923,4930-4935].
m.p. $104-106^{\circ}$ [4874], $104-105^{\circ}$ [4913], 103-104 ${ }^{\circ}$ [4868,4876], 102-104 ${ }^{\circ}$ [4838,4884,4889,4928], 102° [4926,4927,4929], $98-100^{\circ}$ [4871], 98° [4879];
${ }^{1} \mathrm{H}$ NMR [4871], ${ }^{13} \mathrm{C}$ NMR [4880], IR [4871,4927], MS [4909];
TLC [4838]; GLC [4936].

1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-methoxyethanone
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23

Synthesis

- Obtained (by-product) by condensation of phloroglucinol dimethyl ether with methoxyacetonitrile (Hoesch reaction) ($<2 \%$) [4876].
m.p. $259-260^{\circ}$ [4876].

1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-2-methoxyethanone
[42923-40-0]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 242.23
Syntheses

- Obtained by reaction of methoxyacetonitrile with 2,5-di-methoxyresorcinol (Hoesch reaction) [4937], (82\%) [4938], (62\%) [4939,4940].
- Also obtained by debenzylation of 4-benzyloxy-2-hydroxy-3,6, α-trimethoxyacetophenone in acetic acid in the presence of hydrochloric acid $(\mathrm{d}=1.16)$ on a boiling water bath for 1 h [4941].
- Also refer to: [4942-4944].
m.p. $150-151^{\circ}$ [4938-4940], 149- 150° [4941].

1-(2,5-Dihydroxy-3,6-dimethoxyphenyl)-2-methoxyethanone
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 242.23

Synthesis

- Obtained by reduction of 2-(2-methoxyacetyl)-3, 6-di-methoxy-1,4-benzoquinone (m.p. 222$224^{\circ}$) with sulfur dioxide in ethanol (40\%). This quinone was prepared by oxidation of 2-hydroxy-3,5,6, α-tetramethoxyacetophenone with fuming nitric acid in ethyl ether [4945].
m.p. ${175-177^{\circ}}^{[4945]}$.

1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-2-methoxyethanone

[100059-77-6] \quad| Synthesis |
| :--- |

Isolation from natural sources

- Preparation by hydrolysis of Casticin (m.p. 186-187$) ~\left(5,3^{\prime}\right.$-dihydroxy-3,6,7, 4^{\prime}-tetramethoxy-flavone) with potassium hydroxide in refluxing ethanol for 4 h under nitrogen (66\%) [4948].
- Also by degradation of Gnaphaliin monomethyl ether (SM) (m.p. 176-178) (5-hydroxy-3,7,8-trimethoxyflavone) with 10% ethanolic potassium hydroxide for 2 h under nitrogen. SM was prepared by partial methylation of Gnaphaliin (m.p. 174-175 $)$ (3,5-dihydroxy-7,8-dimethoxy-flavone), itself isolated from the aerial parts of Gnaphalium obtusifolium [4949].
- Also refer to: [4876].
m.p. $129-130^{\circ}[4946,4948]$.

1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-2-methoxyethanone

[14639-73-7]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 242.23
Syntheses

- Preparation from 2-hydroxy-4,6, α trimethoxyacetophenone by Elbs reaction (22\%) [4858],
- with sodium persulfate in aqueous sodium hydroxide at $15-20^{\circ}$ for 23 h [4868,4950], (23\%) [4876], (32\%) [4877];
- with potassium persulfate in aqueous sodium hydroxide at $15-20^{\circ}$ for 20 h (26\%) [4928].
- Also refer to: [4872,4907,4908,4915,4916,4951-4954].
m.p. $139-140^{\circ}$ [4877], $135-136^{\circ}$ [4876,4928];
sublimation at $115-130^{\circ} / 0.2 \mathrm{~mm}$ [4877]; ${ }^{1} \mathrm{H}$ NMR [4950], ${ }^{13} \mathrm{C}$ NMR [4880].
1-(4,6-Dihydroxy-2,3-dimethoxyphenyl)-2-methoxyethanone
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 242.23

Synthesis

- Preparation by reaction of methoxyacetonitrile with 4,5-di-methoxyresorcinol, according to the Hoesch method [4946].
m.p. $129-130^{\circ}$ [4946].

2-Methoxy-1-(2,4,6-trihydroxy-3,5-dimethoxyphenyl)ethanone

1-[2-Hydroxy-3-iodo-4-(2-propenyloxy)phenyl]-2-methoxyethanone
[72511-79-6]

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{4} \quad$ mol.wt. 348.14
Synthesis

- Obtained by allylation of 2,4-dihydroxy-3-iodo- α-methoxyacetophenone with allyl bromide in
the presence of potassium carbonate in refluxing acetone for 4-5 h (53\%) [4819].
m.p. $88-90^{\circ}$ [4819]; ${ }^{1} \mathrm{H}$ NMR [4819].

1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-2-methoxyethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Synthesis

- Obtained by Claisen rearrangement of 2-hydroxy-4-allyloxy- α methoxyacetophenone by heating for 2 h at $190-195^{\circ}$ under reduced pressure (67\%) [4957].
m.p. 139-139 5 [4957].

1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-methoxyethanone

[57280-73-6]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24 Syntheses

- Obtained by reaction of allyl bromide with α-methoxyresacetophenone in the presence of potassium carbonate in refluxing acetone for 5 h (52\%) [4957].
- Also refer to: [4838].
pale yellow viscous liquid [4957].
1-[2,4-Dihydroxy-6-(2-propenyloxy)phenyl]-2-methoxyethanone
[62330-10-3]
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 238.24
 Synthesis
- Preparation by a three-step synthesis: first, tosylation of α-methoxyphloroacetophenone with p-toluenesulfonyl chloride in the presence of potassium carbonate in refluxing acetone for 4 h . Allyl bromide and potassium carbonate were then added to the reaction mixture and refluxed for 30 h . Finally, saponification of the residue, isolated by distillation, with refluxing 5\% methanolic potassium hydroxide for 4 h (38\%) [4861].
m.p. $184-186^{\circ}$ [4861].

1-(2-Ethoxy-6-hydroxy-4-methoxyphenyl)-2-methoxyethanone
[21587-55-3]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Syntheses

- Obtained by alkaline degradation of various flavones,
- with potassium hydroxide in boiling ethanol for 8 h ,
- From 5-ethoxy-3,7,3', $\mathbf{4}^{\prime}$ 'tetramethoxyflavone (20\%) [4927];
- From 5-ethoxy-3,7, ${ }^{\prime}, 4^{\prime}, 5^{\prime}$-pentamethoxyflavone [4928];
- From 5,2'-diethoxy-3,7,4',5'-tetramethoxyflavone [4928];
- From 5,2',5'-triethoxy-3,7,4'-trimethoxyflavone (oxyayanin-A triethyl ether) (57\%) [4868];
- with sodium hydroxide in boiling ethanol for 1 h ,
- From 5,3', 5^{\prime}-triethoxy-3,7,4'-trimethoxyflavone (33\%) [4958]. This flavone (m.p. 139°) was prepared from myricetin, first by selective methylation, then ethylation of the obtained myricetin 3,7,4'-trimethyl ether (m.p. 207-208 ${ }^{\circ}$) [4958];
- From 5,3'-diethoxy-3,7,4'-trimethoxyflavone. This flavone was prepared from quercetin, first by selective methylation, then ethylation of the obtained quercetin 3,7,4'-trimethyl ether (m.p. 174°) [4958].
m.p. 110° [4928], $109-110^{\circ}$ [4868], 106- 107° [4927], 95° [4958];
${ }^{1} \mathrm{H}$ NMR [4958], MS [4958].

1-(4-Ethoxy-2-hydroxy-6-methoxyphenyl)-2-methoxyethanone

[91555-84-9]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Syntheses

- Obtained by alkaline degradation of various polysubstituted flavones with potassium hydroxide in refluxing ethanol,
- From 7-ethoxy-3,5-dimethoxyflavone (m.p. 128-129ㅇ) (81\%) [4959];
- From 7-ethoxy-3,5,4'-trimethoxyflavone [4874];
- From 7-ethoxy-3,5,3', 4^{\prime}-tetramethoxyflavone (m.p. 158-160 $) ~(81 \%)$ [4959].
m.p. $108-110^{\circ}$ [4874], $105-106^{\circ}$ [4959].

1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-methoxyethanone
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26

Syntheses

- Obtained by treatment of α-methoxyphloracetophenone with methyl iodide in the presence of potassium carbonate in refluxing acetone for $3 \mathrm{~h}[4913,4960]$, (18%) [4961].
- Also obtained by condensation of methoxyacetonitrile with 2-hydroxy-4,6-dimethoxytoluene (Hoesch reaction) [4961].
- Also obtained (by-product) by treatment of α-methoxyphloracetophenone with dimethyl sulfate in the presence of potassium carbonate by refluxing in an acetone and benzene mixture ($1: 3, \mathrm{v} / \mathrm{v}$) for $12 \mathrm{~h}(<3 \%)$ [4871].
- Also obtained by alkaline degradation of 8-methylquercetin pentamethyl ether (m.p. 213-215 ${ }^{\circ}$) with boiling ethanolic potash [4962].
- Also refer to: [4914].
m.p. 176-177 ${ }^{\circ}$ [4913,4960] (anhydrous); 148-149 ${ }^{\circ}$ [4961,4962], 141-142 ${ }^{\circ}$ [4913,4960], 140-142 ${ }^{\circ}$ [4871] (hydrate);
${ }^{1} \mathrm{H}$ NMR [4871], IR [4871].
1-(4-Ethoxy-3,6-dihydroxy-2-methoxyphenyl)-2-methoxyethanone
 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 256.26 Synthesis
- Obtained by reaction of potassium persulfate with 4-ethoxy-2-hydroxy-6, α-dimethoxyacetophenone in aqueous sodium hydroxide at r.t. for 24 h (23\%) (Elbs reaction) [4959].

1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-methoxyethanone (Gossypetol tetramethyl ether)
[7741-43-7]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 256.26
Syntheses

- Preparation by partial methylation of 2,4-dihy-droxy-3,6, α-trimethoxyacetophenone,
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 12 h (63\%) [4939];
- with diazomethane in acetone (82\%) [4942].

Isolation from natural sources

- Also obtained by alkaline degradation of various polymethoxyflavones with potassium hydroxide,
- From chlorflavonin dimethylether (3^{\prime}-chloro-3,5,7,8,2'-pentamethoxyflavone) (m.p. 114-115 ${ }^{\circ}$) (SM), (35\%). SM was obtained by methylation of chlorflavonin (3^{\prime}-chloro-5,2'-dihydroxy-3,7,8-trimethoxyflavone) (m.p. 212°), itself isolated from cultures of Aspergillus candidus [4963];
- From Herbacetin pentamethyl ether (3,5,7,8,4'-pentamethoxyflavone) (m.p. 156-158) [4937];
- From Gossypetin hexamethyl ether (3,5,7,8,3',4'-hexamethoxyflavone) (m.p. 170-172$) ~[4964] ; ~[4842,4939], ~(85 \%) ~[4965], ~(63 \%) ~[4939] ; ~$
- From 3,5,7,8, $3^{\prime}, 4^{\prime}, 5^{\prime}$-heptamethoxyflavone (m.p. 194-194 ${ }^{\circ} 5$) (SM), (51\%) [4966]. SM was prepared according to different methods:
- by methylation of 5,7,3'-trihydroxy-3,8,4',5'-tetramethoxyflavone (m.p. 214-216 ${ }^{\circ}$), itself isolated from Beyeria brevifolia (Muell. Arg.) Benth. [4967];
- by methylation of 5,7-dihydroxy-3,8,3',4',5'-pentamethoxyflavone (m.p. 204-205 ${ }^{\circ}$), itself isolated from the whole plant of Conyza stricta Willd. (Compositae) [4966];
- from hibiscetin heptamethyl ether (m.p. 194-196 ${ }^{\circ}$). Hibiscetin is an aglycone of Hibiscitrin ($3,5,7,8,3^{\prime}, 4^{\prime}, 5^{\prime}$-heptahydroxyflavone). It was isolated from the flowers of Hibiscus sabdariffa [4968].
- Also refer to: [4855].
m.p. $116-118^{\circ}$ [4939], $115-116^{\circ}$ [4937,4942,4963,4965-4968];

UV [4942]; GLC [4936].

1-(2-Hydroxy-3,5,6-trimethoxyphenyl)-2-methoxyethanone

[62953-05-3]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 256.26
Syntheses

- Preparation in numerous steps starting from 2,6-dihydroxy- α-methoxyacetophenone. No data [4849].
- Also obtained by alkaline degradation of some flavones with refluxing ethanolic potassium hydroxide,
- From 3,5,6,8,4'-pentamethoxyflavone (m.p. 158-159) (SM). SM was prepared by methylation of 5,6 -dihydroxy-3,8,4'-trimethoxyflavone (m.p. 178$179^{\circ}$), itself isolated from the whole plant of Conyza stricta Willd. (Compositae) [4966];
- From methyl gardenin ($3,5,6,8,3^{\prime}, 4^{\prime}, 5^{\prime}$-heptamethoxyflavone) (m.p. 116-117 ${ }^{\circ}$) (SM) [4842], (84\%) [4945]. SM was prepared by methylation of gardenin (m.p. $163-164^{\circ}$), itself isolated from Dikamali gum (gum of Gardenia lucida) [4945].
m.p. $110-112^{\circ}$ [4966], $88-89^{\circ}$ [4945]. One of the reported melting points is obviously wrong.

1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-methoxyethanone (Quercetagetol tetramethyl ether)

[14290-59-6] \quad\begin{tabular}{l}
Syntheses

Obtained by partial methylation of
2,5-dihydroxy- $\alpha, 4,6$-tri-methoxyacetophe-
none with dimethyl sulfate [4950], in the
presence of potassium carbonate,

$\mathrm{C}_{12} \mathrm{C}_{16} \mathrm{O}_{6}$
\end{tabular}

- in boiling acetone/benzene (1:1) for 8.5 h (53\%) [4877];
- in refluxing benzene for $10 \mathrm{~h}(47 \%)$ [4876].
- Also obtained by alkaline degradation of various polymethoxyflavones,
- From mikanin dimethyl ether so-called Tangeretin [4969] (3,5,6,7,4'-pentamethoxyflavone) (SM) (m.p. 157-158) [4867], (m.p. 155-156) [4970] with potassium hydroxide in refluxing ethanol for $6.5 \mathrm{~h}(29 \%)$ [4867] or for 8 h [4970]; SM was isolated from oil of the bark of bitter orange [4970];
- From alnusin trimethyl ether (3,5,6,7-tetramethoxyflavone) (m.p. 112-1125) (SM) refluxing in a mixture of 50% potassium hydroxide solution and ethanol for 20 h under nitrogen (50\%). SM was prepared by methylation of alnusin (6-methoxy-3,5,7-trihydroxyflavone) (m.p. 239-241$). ~ A l n u s i n ~ w a s ~$ the main flavonoid isolated from Alnus sieboldiana (Betulaceae) [4971];
- From vogeletin tetramethyl ether with potassium hydroxide in refluxing ethanol for 6 h (81\%) [4972], (98\%) [4973];
N.B.: The mikanin dimethyl ether is identical with penduletin dimethyl ether and vogeletin tetramethyl ether.
- From apulein ($2^{\prime}, 5^{\prime}$-dihydroxy-3,5,6,7,4'-pentamethoxyflavone) (m.p. 211-213 ${ }^{\circ}$) with 20% sodium hydroxide in refluxing dilute methanol (1:1) for 4 h [4974]. The apulein was isolated from the wood of Apuleia leiocarpa (Vog.) Macbr. (= Apuleia praecox Mart.) (Leguminosae, subfamily Caesalpinioideae);
- From apulein diethyl ether (2',5'-diethoxy-3,5,6,7,4'-pentamethoxyflavone) (m.p. $129-131^{\circ}$) with 10% ethanolic potassium hydroxide at reflux for 10 h under nitrogen [4974];
- From quercetagetin hexamethyl ether (3,5,6,7,3', 4^{\prime}-hexamethoxyflavone) (m.p. 141-142ㅇ) [4876];
- From patuletin hexamethyl ether (3,5,6,7,3',4'-hexamethoxyflavone) (m.p. 141-142 ${ }^{\circ}$ [4975],
- with refluxing (150-155 $) 50 \%$ aqueous potash for $8 \mathrm{~h}(21 \%)$;
- with refluxing 7% ethanolic potash for $6 \mathrm{~h}(94 \%)$;
- From methyl $3,5,6,7,3^{\prime}, 4^{\prime}$-hexamethoxyflavone-2'-carboxylate (m.p. $151-152^{\circ}$) (SM1) with potassium hydroxide in refluxing dilute ethanol for 8 h (78\%) [4844]. SM1 was obtained by prolonged methylation of distemonanthin, itself isolated from the wood of distemonanthus benthamianus;
- From (3,5,6,7, $2^{\prime}, 3^{\prime}, 4^{\prime}$-heptamethoxyflavone) (m.p. 191-192 $)$ [4928];
- From apulein dimethyl ether (3,5,6,7,2',4',5'-heptamethoxyflavone) (m.p. 159-160 $)$ with 50% aqueous potassium hydroxide in refluxing ethanol for 8 h [4974];
- From $3,5,6,7,3^{\prime}, 4^{\prime}, 5^{\prime}$-heptamethoxyflavone (m.p. $155-156^{\circ}$) (SM2) with potassium hydroxide in boiling ethanol for 7 h , under nitrogen [4866]. SM2 was isolated from Eremophila fraseri F. Muell.
oil [4970];
m.p. 77-78 ${ }^{\circ}$ [4876], 75-76 ${ }^{\circ}$ [4928,4975], 72-73 ${ }^{\circ}$ [4973], 71-72ㅇ [4844,4877,4972,4976], 70-71² [4866,4867], 69-71 ${ }^{\circ}$ [4971,4974];
${ }^{1}$ H NMR [4950,4971], IR [4877,4971,4974], UV [4971,4974], MS [4974];
TLC [4974]; GLC [4936].

1-(2,5-Dihydroxy-3,4,6-trimethoxyphenyl)-2-methoxyethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{7} \quad$ mol.wt. 272.25
Syntheses

- Obtained by oxidation of 2-hydroxy3,4,6, α-tetramethoxy-acetophenone with alkali persulfate (Elbs reaction) (14\%) [4939].
- Also refer to: [4977,4978].
m.p. $102-103^{\circ}$ [4939].

1-[2-Hydroxy-3-iodo-6-methoxy-4-(2-propenyloxy)phenyl]-2methoxyethanone
[74047-41-9] $\quad \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{5} \quad$ mol.wt. 378.16

Synthesis

- Obtained by treatment of 2,4-dihy-droxy-3-iodo-6, α-dimethoxyacetophenone with allyl bromide in the presence of potassium carbonate in refluxing acetone for $4-5 \mathrm{~h}$ (54\%) [4881].
m.p. $\quad 167-168^{\circ}$ [4881]; ${ }^{1} \mathrm{H}$ NMR [4881].

1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]-2-methoxyethanone

[62330-15-8]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 238.24 Synthesis

- Preparation by partial alkylation of 2,4-dihydroxy- $6, \alpha$-dimethoxyacetophenone with allyl bromide in the presence of potassium carbonate in refluxing acetone for $4 \mathrm{~h}(80 \%)$ [4861]. m.p. $87-89^{\circ}$ [4861].

1-(2,4-Diethoxy-6-hydroxyphenyl)-2-methoxyethanone

[2495-77-4]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
Syntheses

- Obtained by partial ethylation of 2,4,6-trihydroxy- α-methoxyacetophenone,
- with diethyl sulfate in the presence of potassium carbonate in boiling acetone for $5 \mathrm{~h}(78 \%)$ [4867] or for 16 h [4854];
- with ethyl iodide in the presence of potassium carbonate in refluxing acetone for 6 h [4874].
- Also obtained by alkaline degradation of some polysubstituted flavones with potassium hydroxide,
- From 3,4'-dimethoxy-5,7,3'-triethoxyflavone (m.p. 108-109º) (SM). SM was prepared by total ethylation of 3,4'-dimethoxy-5,7,3'-trihydroxyflavone (m.p. 235$236^{\circ}$), itself isolated from Baccharis sarothroides A. Gray (Compositae) [4979];
- From 3-methoxy-5,7,3', 4^{\prime}-tetraethoxyflavone (m.p. 146-148 ${ }^{\circ}$) (SM) in boiling ethanol for $6 \mathrm{~h}(35 \%)$. SM was prepared by total ethylation of quercetin 3-methyl ether (m.p. 261-263 $)$, itself obtained by hydrolysis of its glycoside (m.p. 165-167 ${ }^{\circ}$). This one (stizoloside) was isolated from the aerial parts of Stizolophus balsamita (Lam.) A. Takht, so-called Centaurea balsamita Lam. (Compositae) [4980].
m.p. $111-112^{\circ}$ [4867], $110-112^{\circ}$ [4874], $110-111^{\circ}$ [4980], $109-111^{\circ}$ [4854], $109-110^{\circ}$ [4979];
${ }^{1} \mathrm{H}$ NMR [4979], IR [4979], UV [4979].

1-(2,4-Diethoxy-3,6-dihydroxyphenyl)-2-methoxyethanone

[4324-58-7]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28
Synthesis

- Obtained by reaction of potassium persulfate with 2,4-di-ethoxy-6-hydroxy- α methoxyacetophenone in the presence of aqueous sodium hydroxide (Elbs reaction), (33\%) [4867], (25\%) [4854].
m.p. $102-103^{\circ}$ [4854], $101-103^{\circ}$ [4867]; ${ }^{1} \mathrm{H}$ NMR [4854].

1-(2-Ethoxy-6-hydroxy-3,4-dimethoxyphenyl)-2-methoxyethanone

[14965-23-2]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28
Syntheses

- Obtained by alkaline degradation of two flavones with potassium hydroxide in refluxing ethanol for 12 h under nitrogen,
- From 5,3', 4^{\prime}-triethoxy-3,6,7-trimethoxyflavone (m.p. 96-97$) ~(98 \%) ~[4981] ; ~ ;$
- From 5,3',5'-triethoxy-3,6,7,4'-tetramethoxyflavone (m.p. 120-121) [4866]. m.p. $82-83^{\circ}$ [4866,4981].

1-(3-Ethoxy-6-hydroxy-2,4-dimethoxyphenyl)-2-methoxyethanone $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28
 Syntheses

- Obtained by alkaline degradation of two flavones with potassium hydroxide in boiling ethanol for 7 h ,
- From 6,3'-diethoxy-3,5,7,4'-tetramethoxyflavone (di-O-ethyl-O-methyl oxyay-anin-B) (73\%) [4868];
- From 6,2'-diethoxy-3,5,7,4',5'-pentamethoxyflavone (m.p. 136-137º) [4928].
- Also obtained by reaction of ethyl iodide with 3,6-dihydroxy-2,4-dimethoxy- α -methoxy-acetophenone in the presence of potassium carbonate in refluxing acetone for 18 h [4868].
m.p. $78-79^{\circ}$ [4868], 78° [4928].

1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)-2-methoxyethanone (Calycopterol pentamethyl ether)

[5071-47-6]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 286.28
Syntheses

- Obtainedby alkaline degradation of Calycopterin dimethyl ether or Thapsin dimethyl ether (SM) both 3,5,6,7,8,4'-hexa-methoxyflavone (m.p. 133-134) [4842,4982], (89\%) [4983], (54\%) [4984]. SM was prepared by total methylation of Thapsin, itself isolated from Digitalis Thapsi, L. [4983].
- Also obtained by alkaline degradation of purpurascenin (3,5,6,7,8,2',4', 5'-octamethoxyflavone) (m.p. 132-133 ${ }^{\circ}$) with refluxing ethanolic potassium hydroxide for 15 h (24\%) [4985]. Purpurascenin was isolated from the roots, stem, leaves and flowers of Pogostemon purpurascens (Labiatae).
- Also obtained by alkaline degradation of Digicitrine dimethyl ether (3,5,6,7,8, $3^{\prime}, 4^{\prime}, 5^{\prime}$-octamethoxy- flavone) (m.p. 126°) with potassium hydroxide in refluxing 80% ethanol for 4 h (ca. 115°) (75%) [4986]. The Digicitrine dimethyl ether was prepared by methylation of Digicitrine ($5,3^{\prime}$-dihydroxy-3,6,7,8,4', 5^{\prime} hexamethoxyflavone) (m.p. 178-179 $)$, itself isolated from the leaves of Digitalis purpurea L.
- Also obtained by alkaline degradation of Melibentin with potassium hydroxide in refluxing dilute ethanol for 5 h (73\%) [4987]. Melibentin (3,5,6,7,8-pentamethoxy$3^{\prime}, 4^{\prime}$-methylenedioxyflavone) (m.p. 134-135 $)$ was isolated from the bark and the wood of Melicope broadbentiana F. M. Bail (Rutaceae).
- Also obtained by alkaline degradation of Natsudaidain methyl ether (3,5,6,7,8,3', 4'-heptamethoxy-flavone) (SM) (m.p. 130-131º) [4970], (m.p. 128) [4988] with potassium hydroxide in refluxing ethanol [4970], (75\%) [4988]. SM was isolated from oil of the bark of bitter orange [4970] or was prepared by methylation of Natsudaidain (3-hydroxy-5,6,7,8,3' $\mathbf{4}^{\prime}$-hexamethoxyflavone) (m.p. 146), itself isolated from the peel oil of Citrus natsudaidai HAYATA [4988].
- Also obtained by partial methylation of 2,5-dihydroxy-3,4,6, α-tetramethoxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 1 h [4978,4989], (29\%) [4977].
- Also refer to: [4990-4992].
gum [4985]; sublimation at $40^{\circ} / 0.01 \mathrm{~mm}$ [4986];
m.p. $85-87^{\circ}$ [4987], 66-67$~[4983], ~ 65-67^{\circ} ~[4984], ~ 65-66^{\circ} ~[4986], ~ 64-66^{\circ}$ [4970], 64° [4988], 62-64 ${ }^{\circ}$ [4977]. One of the described melting points is obviously wrong.
GLC [4936]; TLC [4985,4986].
${ }^{1}$ H NMR [4985,4987], IR [4987], UV [4986,4987], MS [4985].

1-(2,3-Diethoxy-6-hydroxy-4-methoxyphenyl)-2-methoxyethanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 284.31

Syntheses

- Obtained by alkaline degradation of various polyalkylated flavones with potassium hydroxide in refluxing ethanol,
- From (5,6,3'-triethoxy-3,7,4'-trimethoxyflavone) oxyayanin-B triethyl ether (72\%) [4868];
- From 5,6-diethoxy-3,7,3',4'-tetramethoxyflavone (SM). SM was prepared by ethylation of 5,6-dihydroxy-3,7,3', $\mathbf{4}^{\prime}$-tetra-methoxyflavone (m.p. 211-213), itself isolated from the heartwood of Distemonanthus benthamianus Baillon [4928];
- From 5,6-diethoxy-3,7,2', $4^{\prime}, 5^{\prime}$-pentamethoxyflavone (m.p. 97-99º) (SM1). SM1 was prepared by ethylation of 5,6 -dihydroxy-3,7, $2^{\prime}, 4^{\prime}, 5^{\prime}-$ pentamethoxyflavone (m.p. 142-145 ${ }^{\circ}$), itself isolated from the heartwood of Distemonanthus benthamianus (Leguminosae) [4993].
m.p. 80° [4928], $79-80^{\circ}$ [4868,4993]; ${ }^{1} \mathrm{H}$ NMR [4993].

1-(2,4-Diethoxy-6-hydroxy-3-methoxyphenyl)-2-methoxyethanone

[4324-59-8]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 284.31
Syntheses

- Obtained by reaction of dimethyl sulfate with 2,4-diethoxy-3,6-dihydroxy-α-methoxyacetophenone in the presence of potassium carbonate in refluxing acetone for 2.5 h [4993], (27\%) [4867] or for 12 h [4854].
- Preparation by Friedel-Crafts acylation of 3,5-diethoxy-4-methoxyphenol with methoxyacetyl chloride in ethyl ether in the presence of aluminium chloride, first at 10°, then at 20° for $3 \mathrm{~h}(72 \%)$ [4918].
- Also obtained by reaction of methoxyacetonitrile with 3,5-diethoxy-4-methoxyphenol (Hoesch reaction) [4917], (7\%) [4918].
- Also obtained by alkaline degradation of 5,7-diethoxy-3,6,4'-trimethoxyflavone (SM) (m.p. 123-124 ${ }^{\circ}$) with sodium hydroxide in refluxing dilute ethanol for

20 h under nitrogen (71\%). SM was prepared by ethylation of 5,7-dihydroxy-3,6,4'-trimethoxyflavone (m.p. 164-165 ${ }^{\circ}$), itself isolated from the leaves and terminal branches of Dodonaea attenuata var. linearis [4994].
m.p. $65-66^{\circ}$ [4994], $60-62^{\circ}$ [4854], 57-58 ${ }^{\circ}$ [4867], 56-57$~[4993] ; ~$
b.p. ${ }_{0.2} 145-146^{\circ}$ [4918,4917]; ${ }^{1} \mathrm{H}$ NMR [4854,4993], IR [4918].

1-(4,6-Diethoxy-2-hydroxy-3-methoxyphenyl)-2-methoxyethanone

[5128-46-1]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 284.31
Syntheses

- Obtained by alkaline degradation of some polyalcoxy-flavones with potassium hydroxide,
- From 5,7-diethoxy-3,8,4'-trimethoxyflavone (m.p. 106-108) (SM) (91\%). SM was obtained by ethylation of 5,7-dihydroxy-3,8,4'-trimethoxyflavone (m.p. 173-175 ${ }^{\circ}$), itself isolated from Beyeria sp [4854];
- From 5,7,3'-triethoxy-3,8,4', 5^{\prime}-tetramethoxyflavone (m.p. 138-139º) (89\%) [4967];
- From 5,7,4'-triethoxy-3,8-dimethoxyflavone (m.p. 128-129 ${ }^{\circ}$) (71\%) [4981];
- From 5,7,4'-triethoxy-3,8,3'-trimethoxyflavone (m.p. 110-111) (23\%) [4981].
m.p. $125-126^{\circ}$ [4981], $124-125^{\circ}$ [4854,4967]; ${ }^{1} \mathrm{H}$ NMR [4854].

1-(2-Ethoxy-6-hydroxy-3,4,5-trimethoxyphenyl)-2-methoxyethanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 300.31

Synthesis

- Obtainedbyalkaline degradation of Calycopterin diethyl ether (m.p. 131-132) [4982], so called Thapsin diethyl ether (m.p. 130 ${ }^{\circ}$) [4983] (5,4'-diethoxy-3,6,7,8-tetramethoxyflavone) with refluxing ethanolic potash [4982], (86\%) [4983].
m.p. $75-77^{\circ}$ [4982], 63-64́ [4983].

1-[(4-Benzoyloxy)-2-hydroxyphenyl]-2-methoxyethanone
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28

Synthesis

- Formed (by-product) by simple hydrolysis of 2,4-di-benzoyloxy- α-methoxyacetophenone with potassium ethoxide in pyridine at r.t. for $1 \mathrm{~min}(11 \%)$ [4846].
m.p. 122° [4846].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-methoxyethanone

m.p. $67-68^{\circ}$ [4839].

1-[2,4-Dihydroxy-(6-phenylmethoxy)phenyl]-2-methoxyethanone
[62952-93-6]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
mol.wt. 288.30
Synthesis

- Preparation in one pot by tosylation of α-methoxy-phloracetophenone with 2 mol of p-toluenesulfonyl chloride, subsequent benzylation and final detosylation (35\%) [4839].
m.p. $227-228^{\circ}$ [4839].

1-[2,4,6-Trihydroxy-3-(phenylmethyl)phenyl]-2-methoxyethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
 Synthesis

- Obtained by total hydrogenolysis of 1-[2-hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]-2-methoxyethanone in methanol in the presence of Pd / C under hydrogen atmosphere [4995].
m.p. 98° (monohydrate) [4995]; IR [4995], UV [4995].

1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)phenyl]-2-methoxyethanone

[62952-92-5]

m.p. $22-124^{\circ}$ [4839].
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis

- Preparation by partial methylation of 6-(benzyloxy)-2,4-di-hydroxy- α-methoxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 4 h (86\%) [4839].

1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl]-2-methoxyethanone

[62952-91-4]

m.p. $101-102^{\circ}$ [4839].
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis

- Obtained by reaction of benzyl chloride with 2,4-di-hydroxy-6, α-dimethoxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone for 5 h [4839].

1-[2-Hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]-2-methoxyethanone

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad \text { mol.wt. } 332.35
$$

Syntheses

- Obtained (by-product) during the condensation of methoxyacetonitrile with 1,3-bis(benzyloxy)-2,5-di-methoxybenzene (Hoesch reaction) (32\%) [4941].
- Also refer to: [4865,4942,4996].
m.p. $109-110^{\circ}$ [4941].

1-[2,5-Dihydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]-2methoxyethanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35

Syntheses

- Obtained by oxidation of 4-(benzyloxy)2 -hydroxy-3,6, α-trimethoxyacetophenone in alkaline solution with potassium persulfate (Elbs reaction) (10\%) [4941].
- Also refer to: [4997].
deep yellow viscous oil [4941].
1-[2-Hydroxy-6-(phenylmethoxy)-3,4,5-trimethoxyphenyl]-2methoxyethanone

[94385-86-1] \quad| Synthesis |
| :--- |

m.p. $64^{\circ} 5-65^{\circ}$ [4986]; UV [4986].

1-[2,6-Dihydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]-2methoxyethanone

[18074-51-6]
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$
mol.wt. 378.42
Synthesis

- Obtained from 1-[2-hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl) phenyl]-2-methoxyethanone by partial hydrogenolysis in methanol in the presence of Pd/C [4995].
m.p. 203-205 [4995]; IR [4995], UV [4995].

1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]-2-methoxyethanone

[18074-53-8]

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 378.42
Synthesis

- Obtained (poor yield) by reaction of benzyl chloride with α-methoxyphloracetophenone in the presence of potassium carbonate in refluxing acetone (5\%) [4995].
m.p. $\quad 124^{\circ}$ [4995]; IR [4995], UV [4995].

1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]-2methoxyethanone

$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{5} \quad$ mol.wt. 468.55
Synthesis

- Preparation by benzylation of α-meth-oxyphlor-acetophenone with benzyl chloride in the presence of sodium iodide and potassium carbonate in boiling acetone for 3 h (34\%) [4995].
m.p. $147-148^{\circ}$ [4995]; IR [4995], UV [4995].

13.2 Compounds Derived from Phenylmethoxyacetic Acids

2-(Phenylmethoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis

- Preparation by reaction of benzyloxyacetonitrile with phloroglucinol (Hoesh reaction) (91\%) [4998].

1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-2-(phenylmethoxy)ethanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad \text { mol.wt. } 318.33
$$

Synthesis

- Obtained by hydrogenation of 2-(benzyloxy)-1-[4-(benzyloxy)-2-hydroxy-3,6-dimethoxy-phenyl]ethanone in ethyl acetate over Pd/C [4942].
m.p. $175-176^{\circ}$ [4942].

1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-(phenylmethoxy)ethanone

$$
\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad \text { mol.wt. } 332.35
$$

Synthesis

- Obtained by partial methylation of 2-(benzyloxy)-1-(2,4-dihydroxy-3,6dimethoxyphenyl)ethanone with diazomethane [4942].
m.p. $\quad 172-174^{\circ}$ [4942].

1-[2-Hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]-2-(phenylmethoxy) ethanone

$$
\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6} \quad \text { mol.wt. } 408.45
$$

Synthesis

- Obtained by reaction of (benzyloxy)-acetonitrile with 2,5-dimethoxyresorcinol dibenzyl ether (Hoesch reaction) (33\%) [4942].
m.p. $150-151^{\circ}$ [4942].

13.3 Compounds Derived from Ethoxyacetic Acids

2-Ethoxy-1-(4-hydroxyphenyl)ethanone

[91061-33-5] \begin{tabular}{l}
Synthesis

Obtained by adding ethanol $(0.1 \mathrm{ml})$ and boron
trifluoride etherate to a suspension of resin 6
$(52 \mathrm{mg})$ in methylene chloride, and stirring the
mixture at r.t. for 1 h . The compound was iso-
lated by usual method and purified by prepara-
tive TLC (52%) [4814].

\end{tabular}

N.B.: Resin 6 (resin-bound α-TMS diazoketone 6) (preparation given).
${ }^{1} \mathrm{H}$ NMR [4814], ${ }^{13} \mathrm{C}$ NMR [4814], IR [4814], MS [4814].

1-(2,4-Dihydroxyphenyl)-2-ethoxyethanone

	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
H	Synthesis
	- Obtained by reaction of ethoxyacetonitrile with resorcinol [4999], (97\%) [4433], (28\%) (Hoesch reaction) [5000].
$\begin{array}{ll} \text { m.p. } & 136-137^{\circ}[4433], 13 \\ \text { b.p. } \\ 195-200^{\circ}[5000] . \end{array}$	$-136^{\circ} \text { [5000], } 132-133^{\circ} \text { [4999]; }$

2-Ethoxy-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.201
Syntheses

m.p. $197-198^{\circ}$ [5001].

2-Ethoxy-1-(2-hydroxy-4-methoxyphenyl)ethanone
[34811-99-9]

oil [5003];
IR [4999].

2,2-Diethoxy-1-(4-hydroxyphenyl)ethanone

[200420-28-6]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Synthesis

- Obtained by partial methylation of α-ethoxy-2,4-dihydroxy-acetophenone (SM) with diazomethane in ethyl ether [5003], (18\%) [4999]. SM was prepared by reaction of ethoxyacetonitrile with resorcinol (Hoesch reaction) [5003].
b.p. ${ }_{0.02} \quad 80-85^{\circ}$ [4999]; ${ }^{1} \mathrm{H}$ NMR [4999],

ค. $30-31^{\circ}$ [4999]
b.p. ${ }_{0.02}$
-

$$
0
$$,号

2-Ethoxy-1-(4-ethoxy-2-hydroxyphenyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26

Synthesis

- Obtained by treatment of fisetin tetraethyl ether ($3,7,3^{\prime}, 4^{\prime}$-tetraethoxyflavone) with boiling alcoholic potassium hydroxide solution [4837,4885,4886,4888].
m.p. $42-44^{\circ}$ [4886].

2-Ethoxy-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone
[21587-57-5]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Syntheses

- Obtained by partial methylation of α-ethoxyphloro-acetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 12 h (62\%) [5000].
- Also obtained by degradation of 3-ethoxy-5,7,3',4'-tetramethoxyflavone with sodium hydroxide in boiling dilute ethanol for $16 \mathrm{~h}(9 \%)$ [4927].
m.p. $103-104^{\circ}$ [5000], $99-100^{\circ}$ [4927].

2-Ethoxy-1-(2-ethoxy-6-hydroxy-4-methoxyphenyl)ethanone
[21587-58-6]

m.p. $82-83^{\circ}$ [4927]; IR [4927].
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
Synthesis

- Obtained (poor yield) by degradation of 3,5-diethoxy-7,3', 4'-trimethoxyflavone (m.p. 164-165 ${ }^{\circ}$) with sodium hydroxide in refluxing ethanol (3\%) [4927].

2-Ethoxy-1-(6-hydroxy-2,3,4-trimethoxyphenyl)ethanone
[19598-24-4]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28
Synthesis

- Obtained by alkaline degradation of Eupatoretin diethyl ether (m.p. 119-120 ${ }^{\circ}$) (3,3'-diethoxy-5,6,7,4'-tetramethoxy-flavone) with potassium hydroxide in refluxing ethanol under nitrogen for $17 \mathrm{~h}(46 \%)$ [5005].
m.p. $60-61^{\circ}$ [5005]; ${ }^{1} \mathrm{H}$ NMR [5005], IR [5005], UV [5005], MS [5005].

1-(2,4-Diethoxy-6-hydroxyphenyl)-2-ethoxyethanone
[64184-96-9]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 268.31
Syntheses

- Obtained by partial ethylation of α-ethoxyphloro-acetophenone with ethyl iodide in the presence of potassium carbonate in refluxing acetone for $12 \mathrm{~h}(53 \%)$ [5001].
- Also obtained by degradation of various polyethoxyflavones with boiling ethanolic potash,
- From 3,5,7,3'-tetraethoxy-4'-methoxyflavone (m.p. 136-137) (8\% potassium hydroxide, reflux 6 h) [5002];
- From 3,5,7,3', 4^{\prime}-pentaethoxyflavone (quercetin pentaethyl ether) (7\% potassium hydroxide, reflux 6 h) (good yield) [5001];
- From 3,5,7,3',5'-pentaethoxy-4'-methoxyflavone (m.p. 160°) (4^{\prime}-methylmyricetin pentaethyl ether) (SM). SM was obtained by total ethylation of 4'-methylmyricetin, itself isolated from the leaves of Elaeocarpus lanceofolius Roxb. (Elaeocarpaceae) [5006,5007];
- From 3,5,7,3', $4^{\prime}, 5^{\prime}$-hexaethoxyflavone (m.p. 149- 151°) (myricetin hexaethyl ether) [4889,5006]. Myricetin is the 3,5,7,3', $4^{\prime}, 5^{\prime}$-hexahydroxyflavone.
N.B.: Na salt [5001].
m.p. $97-98^{\circ}$ [5002], $96-97^{\circ}$ [4889,5001], 96° [5006];
${ }^{1} \mathrm{H}$ NMR [5006], UV [5006], MS [5006].

1-(2,4-Diethoxy-3,6-dihydroxyphenyl)-2-ethoxyethanone

 $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 284.31

Synthesis

- Obtained by reaction of potassium persulfate with 2 -hydroxy-4,6, α-triethoxyacetophenone in 5% aqueous sodium hydroxide, first at 15°, then at r.t. for $20 \mathrm{~h}(30 \%)$ (Elbs reaction) [5001].
m.p. $103-104^{\circ}$ [5001].

2-Ethoxy-1-(2-ethoxy-6-hydroxy-3,4-dimethoxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 284.31
Syntheses

- Obtained by alkaline degradation of various substituted flavones with potassium hydroxide in refluxing ethanol,
- From Mikanin diethyl ether (m.p. 94-95) (3,5-diethoxy-6,7,4'trimethoxyflavone) [4867];
- From Eupatin triethyl ether (m.p. 105-106º) (3,5,3'-tri-ethoxy-6,7,4'trimethoxyflavone) (26\%) [5005];
- From Eupalitin triethyl ether (m.p. 80-81) (3,5,4'-triethoxy-6,7-dimethoxyflavone) (88\%) [5008];
- From Eupatolitin tetraethyl ether (m.p. 120-121 ${ }^{\circ}$) (3,5, $3^{\prime}, 4^{\prime}$-tetraethoxy-6,7dimethoxyflavone) (97\%) [5008].
m.p. $61-62^{\circ}$ [4867], 59-60ㅇ [5005,5008];
${ }^{1} \mathrm{H}$ NMR [5005], IR [5008], UV [5005], MS [5005,5008].

2-Ethoxy-1-(2-hydroxy-3,4,5,6-tetramethoxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 300.31
Synthesis

- Obtained by alkaline degradation of Natsudaidain ethyl ether (3-ethoxy$5,6,7,8,3^{\prime}, 4^{\prime}$-hexamethoxyflavone) (m.p. 118°) with potassium hydroxide in refluxing ethanol [4988].
m.p. 47° [4988]; ${ }^{1} \mathrm{H}$ NMR [4988], IR [4988], MS [4988].

2-Ethoxy-1-(2,3-diethoxy-6-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 298.34
Synthesis

- Refer to: [5001].

2-Ethoxy-1-(2,4-diethoxy-6-hydroxy-3-methoxyphenyl)ethanone
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 298.34

Syntheses

- Obtainedfromethyl3,5,7,3',4'-pentaethoxy-6-methoxy-flavone-2'-carboxylate (m.p. $111-112^{\circ}$) (SM) by hydrolysis with 20% ethanolic potassium hydroxide at reflux for $8 \mathrm{~h}(73 \%)$. SM was obtained by ethylation of distemonanthin, itself isolated from the wood of distemonanthus benthamianus [4844].
- Also obtained by alkaline degradation of patuletin pentaethyl ether (3,5,7,3', $\mathbf{4}^{\prime}$-pen-taethoxy-6-methoxyflavone) (m.p. 127-128 ${ }^{\circ}$) with refluxing 7% ethanolic potash on a water bath for $6 \mathrm{~h}(40 \%)$ [5001].
- Also obtained by partial methylation of $\alpha, 4,6$-triethoxy-2,5-dihydroxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing benzene for 12 h (38\%) [5001].

$$
\text { m.p. } 88-89^{\circ}[4844], 86-87^{\circ}[5001] .
$$

2-Ethoxy-1-(2-hydroxy-3,4,6-triethoxyphenyl)ethanone (Gossypitol tetraethyl ether)

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 312.36

Synthesis

- Obtained by alkaline degradation of Gossypetin hexaethyl ether (m.p. 144-146) (3,5,7,8, $3^{\prime}, 4^{\prime}$-hexaethoxyflavone) with potassium hydroxide in refluxing dilute ethanol for 6 h (84\%) [4964].
m.p. $110-111^{\circ}$ [4964].

13.4 Miscellaneous

2-(β-D-Glucopyranosyloxy)-1-(4-hydroxyphenyl)ethanone
[167638-61-1] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 314.29

Isolation from natural sources

- From the fresh root bark of Picea abies (Pinaceae) (compound 4) [5009].
$(\alpha)_{\mathrm{D}}=-33^{\circ}(\mathrm{c}=0.2$ methanol) [5009];
${ }^{1} \mathrm{H}$ NMR [5009], ${ }^{13} \mathrm{C}$ NMR [5009], UV [5009].
1-(4-Hydroxyphenyl)-2,2-bis(1-methylethoxy)ethanone
[144757-80-2]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31
Syntheses
- Obtained by gradually adding a 33% hydrogen chloride solution in isopropanol to a solution of p-hydroxyphenyl-glyoxal and isopropyl nitrite in isopropanol cooled to 0°. Hydrogen chloride solution was added at such a speed to maintain a temperature of less than 25° [4901].
- Also refer to: [4900].
solid [4901]; ${ }^{1} \mathrm{H}$ NMR [4901], ${ }^{13} \mathrm{C}$ NMR [4901], MS [4901].

2-(β-D-Glucopyranosyloxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone

[178959-37-0]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{9}$
mol.wt. 344.32

Isolation from natural sources

- From inner bark of Pinus sylvestris (compound 4) [5010].

1-(4-Hydroxyphenyl)-2,2-bis(3-methylbutoxy)ethanone

[144757-79-9]

$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$
mol.wt. 308.42
Syntheses

- Obtained by slowly adding isoamyl nitrite to a solution of p-hydroxyacetophenone in isoamyl alcohol acidified with anhydrous hydrogen chloride at temperature $<25^{\circ}$ (62\%) [4901].
- Also refer to: [4900].
${ }^{1} \mathrm{H}$ NMR [4901], ${ }^{13} \mathrm{C}$ NMR [4901], MS [4901].

Chapter 14
 Compounds Derived from Aryloxyacetic Acids

14.1 Compounds Derived from Phenoxyacetic Acid

1-(2-Hydroxyphenyl)-2-phenoxyethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by hydrogenolysis of 2-benzyloxy- α phenoxyacetophenone in ethanol/dioxane (1:1) in the presence of Pd / C under hydrogen (85%) [5011].
- Also obtained by acidic hydrolysis of 4-hydroxy-3-phenoxycoumarin (m.p. 216) [5012] according to [5013].
- Also prepared by reaction of phenoxyacetonitrile with phenol (Hoesch reaction) [5014].
- Also refer to: [5015]. m.p. 115-115 5 [5011], 115° [5012]; UV [5011].

1-(4-Hydroxyphenyl)-2-phenoxyethanone

[41978-29-4]

m.p. $\quad 159-160^{\circ}$ [5017]; b.p. $212-220^{\circ}$ [5017].

1-(2,4-Dihydroxyphenyl)-2-phenoxyethanone

[73014-19-4]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses

- Obtained by reaction of phenoxyacetonitrile with resorcinol (Hoesch reaction) [4433,50185020], (88\%) [5021], (82\%) [5011].
- Also refer to: [5022,5023].
m.p. $209^{\circ} 5-210^{\circ}$ [5011], 207-208 ${ }^{\circ}$ [5021], 204-205 ${ }^{\circ}$ [4433];
${ }^{1} \mathrm{H}$ NMR [5021], UV [5011].

2-Phenoxy-1-(2,4,6-trihydroxyphenyl)ethanone

[72023-07-1]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Syntheses

- Preparation by reaction of phenoxyacetonitrile with phloroglucinol (Hoesch reaction), (84\%) [5011], (80\%) [5024], (48\%) [5025].
- Also refer to: [5026-5028].
m.p. 275° (d) [5025], 244-245 [5011], 234ํ [5024].

One note a very large dispersion of the various melting points.
${ }^{1} H$ NMR [5024], UV [5011].

1-(2-Hydroxy-4-methoxyphenyl)-2-phenoxyethanone

[73023-08-2] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Syntheses

- Obtained by partial methylation of 2,4-dihydroxy- α-phenoxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone for $2.5 \mathrm{~h}(83 \%)$ [5011].
- Also refer to: [5019].
m.p. $86^{\circ} 5-87^{\circ}$ [5011]; UV [5011].

1-(2-Hydroxy-5-methoxyphenyl)-2-phenoxyethanone
[137612-24-9] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
 Syntheses

- Obtained by acylation of hydroquinone monomethyl ether with phenoxyacetonitrile in the presence of boron trichloride and aluminium chloride in ethylene dichloride (44\%) [5029].
- Also refer to: [5014].

1-(4-Hydroxy-3-methoxyphenyl)-2-phenoxyethanone

[41978-28-3] \quad\begin{tabular}{l}
Syntheses

- Obtained (by-product, unusual result) by methylation of

2-(3-chlorophenoxy)-1-(4-hydroxy-3-methoxyphenyl)-

ethanone [4429].
\end{tabular}

m.p. $94^{\circ} 5-95^{\circ}[5017] ;$ b.p. $218-225^{\circ}$ [5017].

1-(5-Ethyl-2,4-dihydroxyphenyl)-2-phenoxyethanone

[243465-56-7]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
mol.wt. 272.30

Synthesis

- Obtained [5022] by previously described methods [5026].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenoxyethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Obtained by partial methylation of 2,4,6-trihydroxy- α-phenoxyacetophenone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone for 8 h (63\%) [5011].
m.p. $122-123^{\circ}$ [5011]; UV [5011].

1-[3,5-Bis-(1,1-dimethylethyl)-4-hydroxyphenyl]-2-phenoxyethanone

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$
mol.wt. 340.46
Synthesis

- Refer to: [5017] (Japanese paper).
m.p. $111^{\circ} 5-112^{\circ}$ [5017].

14.2 Compounds Derived from Substituted Phenoxyacetic Acids

2-(2,4-Dichlorophenoxy)-1-(2,4-dihydroxyphenyl)ethanone
[137987-83-8]

 $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 313.14 Synthesis

- Obtained by reaction of 2,4-dichlorophe-noxy-acetonitrile with resorcinol (Hoesch reaction) (85\%) [5021].
m.p. 192° [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

2-(4-Bromophenoxy)-1-(2,4-dihydroxyphenyl)ethanone

[243465-55-6]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{4}$
mol.wt. 323.14

Synthesis

- Obtained [5022] by previously described method [5026].

2-(4-Bromophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[243657-60-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{5} \quad$ mol.wt. 339.14
Synthesis

- Preparation by Hoesch condensation of p-bromo-phenoxyacetonitrile with phloroglucinol in benzene/ ethyl ether in the presence of zinc chloride and hydrogen chloride at $0^{\circ}(82 \%)$ [5024].
m.p. 256° [5024]; ${ }^{1} \mathrm{H}$ NMR [5024].

2-(4-Chlorophenoxy)-1-(2,4-dihydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}$
mol.wt. 278.69
Syntheses

- Obtained by reaction of 4-chlorophenoxyacetonitrile with resorcinol (Hoesch reaction) (84\%) [5021].
- Also refer to: [5030] (Japanese patent).
m.p. $187^{\circ} 5$ [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

2-(4-Chlorophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[243657-59-2]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{5} \quad$ mol.wt. 294.69
Synthesis

- Preparation by Hoesch condensation of p-chloro-phenoxyacetonitrile with phloroglucinol in benzene/ethyl ether in the presence of zinc chloride and hydrogen chloride at $0^{\circ}(85 \%)$ [5024]. m.p. 251° [5024]; ${ }^{1} \mathrm{H}$ NMR [5024].

2-(4-Fluorophenoxy)-1-(2-hydroxyphenyl)ethanone

[137612-30-7]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
mol.wt. 246.24
Syntheses

- Obtained by reaction of p-fluorophenoxyacetonitrile with phenol (Hoesch reaction) [5014].
- Also refer to: [5029].

1-(2,4-Dihydroxyphenyl)-2-(2-fluorophenoxy)ethanone

[137987-82-7]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{4} \quad$ mol.wt. 262.24
Synthesis

- Obtained by reaction of 2-fluorophenoxyacetonitrile with resorcinol (Hoesch reaction) (87\%) [5021].
m.p. 163° [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenoxy)ethanone

[121361-56-6] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{4} \quad$ mol.wt. 262.24

Syntheses

- Obtained by reaction of p-fluorophenoxyacetonitrile with resorcinol (Hoesch reaction), (86\%) [5021], (63\%) [5031].
- Also refer to: [5020,5022].
m.p. 165° [5021,5031]; ${ }^{1} \mathrm{H}$ NMR [5021,5031], IR [5031].

2-(4-Fluorophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[127526-42-5]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{5}$

Synthesis

- Preparation by Hoesch condensation of p-fluoro-phenoxyacetonitrile with phloroglucinol in benzene/ethyl ether in the presence of zinc chloride and hydrogen chloride at 0° (81%) [5024].
m.p. 242° [5024]; ${ }^{1} \mathrm{H}$ NMR [5024].

2-(4-Iodophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[243657-61-6]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{5}$
Synthesis

- Preparation by Hoesch condensation of p-iodophenoxy- acetonitrile with phloroglucinol in benzene/ethyl ether in the presence of zinc chloride and hydrogen chloride at $0^{\circ}(80 \%)$ [5024]. m.p. 269° [5024]; ${ }^{1} \mathrm{H}$ NMR [5024].

1-(2,4-Dihydroxyphenyl)-2-(2-nitrophenoxy)ethanone

[137987-91-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$
Synthesis

- Obtained by reaction of o-nitrophenoxyacetonitrile with resorcinol (Hoesch reaction) (84\%) [5021].
m.p. 287° [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

1-(2,4-Dihydroxyphenyl)-2-(3-nitrophenoxy)ethanone

[137987-90-7]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6} \quad$ mol.wt. 289.24

Synthesis

- Obtained by reaction of m-nitrophenoxyacetonitrile with resorcinol (Hoesch reaction) (81\%) [5021].
m.p. 275° [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenoxy)ethanone

[137987-89-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6} \quad$ mol.wt. 289.24
Synthesis

- Obtained by reaction of p-nitrophenoxyacetonitrile with resorcinol (Hoesch reaction) (86\%) [5021].
m.p. 281° [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

2-(4-Nitrophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[243657-68-3] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{7} \quad$ mol.wt. 305.24

Synthesis

- Preparation by Hoesch condensation of p-nitro-phenoxyacetonitrile with phloroglucinol in benzene/ethyl ether in the presence of zinc chloride and hydrogen chloride at 0° (87%) [5024]. m.p. 295° [5024]; ${ }^{1} \mathrm{H}$ NMR [5024].

2-(4-Cyanophenoxy)-1-(2-hydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 253.26

Syntheses

- Refer to: [5032,5033].

2-(3-Chlorophenoxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone

2-(4-Fluorophenoxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone

[104972-13-6]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4}$
mol.wt. 276.26

Synthesis

- Preparation by treatment of 1-(4-isopropoxy-3-meth-oxy-phenyl)-2-(4-fluorophenoxy)ethanone (viscous liquid) (1 mol) with aluminium chloride (4 mol) in benzene for 2 h at r.t. (95\%) [5034].
${ }^{1} \mathrm{H}$ NMR [5034], ${ }^{13} \mathrm{C}$ NMR [5034],
${ }^{19}$ F NMR [5034], IR [5034]; TLC [5034].

1-(4-Hydroxy-3-methoxyphenyl)-2-(3-nitrophenoxy)ethanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 303.27
Synthesis

- Obtained by saponification of 1-(4-acetoxy-3-methoxy-phenyl)-2-(3-nitrophenoxy)ethanone (m.p. 130-133 $)$ with sodium methoxide in refluxing methanol for 2.5 h (65\%) [4429].
m.p. $187^{\circ} 5-189^{\circ} 5$ [4429];
${ }^{1} \mathrm{H}$ NMR [4429], IR [4429], MS [4429].
1-(4-Hydroxyphenyl)-2-(3-methylphenoxy)ethanone

1-(2,4-Dihydroxyphenyl)-2-(2-methylphenoxy)ethanone

1-(2,4-Dihydroxyphenyl)-2-(3-methylphenoxy)ethanone

[137987-85-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Synthesis

- Obtained by reaction of 3-methylphenoxyacetonitrile with resorcinol (Hoesch reaction) (82\%) [5021].
m.p. 162° [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

1-(2,4-Dihydroxyphenyl)-2-(4-methylphenoxy)ethanone

[137987-84-9]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Synthesis

- Obtained by condensation of (p-methylphenoxy)-acetonitrile with resorcinol in ethyl ether/benzene in the presence of zinc chloride according to Houben-Hoesch method (95\%) [5018], (87\%) [5021].
m.p. $\quad 171-172^{\circ}$ [5018], 167° [5021];
${ }^{1} \mathrm{H}$ NMR $[5018,5021]$.
1-(2-Hydroxyphenyl)-2-(4-methoxyphenoxy)ethanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
 Syntheses
- Refer to: [5032] (compound 1d) and [5033].

1-(4-Hydroxyphenyl)-2-(2-methoxyphenoxy)ethanone
[143486-72-0] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Synthesis

- Preparation by saponification of 1-(4-acetoxyphenyl)-2-(2-methoxyphenoxy)ethanone (SM) with potassium hydroxide in ethanol for 3 h at temperature $<30^{\circ}$ under nitrogen (90%) [5035]. SM was obtained by alkylation of sodium 2-methoxyphenoxide with p-acetoxy- α -bromo-acetophenone (Williamson synthesis) (96%, m.p. $\left.67^{\circ} 5-68^{\circ} 5\right)$.
m.p. $159-160^{\circ}$ [5035]; ${ }^{1} \mathrm{H}$ NMR [5035].

1-(2,4-Dihydroxyphenyl)-2-(2-methoxyphenoxy)ethanone

[137987-88-3]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis

- Obtained by reaction of o-methoxyphenoxyacetonitrile with resorcinol (Hoesch reaction) (87\%) [5021].
m.p. 193° [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

1-(2,4-Dihydroxyphenyl)-2-(3-methoxyphenoxy)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 274.27
Synthesis

- Obtained by reaction of m-methoxy-phenoxy-acetonitrile with resorcinol (Hoesch reaction) (85\%) [5021].
m.p. 145° [5021]; ${ }^{1} \mathrm{H}$ NMR [5021].

1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenoxy)ethanone
[121361-55-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27

Syntheses

- Obtained by reaction of p-methoxy-phenoxy-acetonitrile with resorcinol (Hoesch reaction) (89\%) [5021], (73\%) [5031].
- Also refer to: [4685].
m.p. 179° [4685,5031], 175° [5021];
${ }^{1} H$ NMR [4685,5021,5031], IR [4685,5031].

1-(3-Hydroxy-4-methoxyphenyl)-2-(2-hydroxyphenoxy)ethanone

[99783-86-5]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Syntheses

- Preparation by reaction of 3-hydroxy-4-methoxy- α-chloroacetophenone,
- with pyrocatechol monosodium salt in DMF at r.t. for 3 h (51\%) [4634];
- with pyrocatechol in the presence of potassium carbonate in 2-butanone [5036].
- Also refer to: [5037].
m.p. 154° [4634]; ${ }^{1} \mathrm{H}$ NMR [4634], MS [4634].

1-(4-Hydroxy-3-methoxyphenyl)-2-(3-hydroxyphenoxy)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 274.27
Syntheses

- Obtained by saponification of 1-(4-acetoxy-3-meth-oxy-phenyl)-2-(3-hydroxyphenoxy)ethanone with sodium methoxide in refluxing methanol for 2.5 h [4429].
- Also obtained by coupling reaction of 4-hydroxy-3-methoxy- α-bromoacetophenone with sodium m-acetoxyphenolate [4429].
m.p. $145-146^{\circ}$ [4429]; ${ }^{1} \mathrm{H}$ NMR [4429], IR [4429], MS [4429].

2-(4-Methoxyphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone
[243657-65-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 290.27
Synthesis

- Preparation by Hoesch condensation of p-methoxy-phenoxyacetonitrile with phloroglucinol in
benzene/ethyl ether in the presence of zinc chloride and hydrogen chloride at 0° (78\%) [5024].
m.p. 259° [5024]; ${ }^{1} \mathrm{H}$ NMR [5024].

1-(4-Hydroxy-3-methoxyphenyl)-2-[3-(trifluoromethyl)phenoxy]ethanone
[107584-69-0] $\quad \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 326.27

Synthesis

- Obtained by saponification of 1-(4-acetoxy-3-meth-oxy-phenyl)-2-[3-(trifluoromethyl)phenoxy]ethanone with sodium methoxide in refluxing methanol for $2.5 \mathrm{~h}(88 \%)$ [4429].
m.p. $107^{\circ} 5-108^{\circ} 5$ [4429]; ${ }^{1} \mathrm{H}$ NMR [4429], IR [4429], MS [4429].

2-(4-Acetoxyphenoxy)-1-(2,4-dihydroxyphenyl)ethanone

1-(2,4-Dihydroxyphenyl)-2-(4-ethylphenoxy)ethanone

$$
[201284-76-6] \quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 272.30
$$

Synthesis

- Obtained by condensation of (p-ethylphenoxy)-acetonitrile with resorcinol in ethyl ether/benzene in the presence of zinc chloride according to Houben-Hoesch method (84\%) [5018].
m.p. $\quad 147-148^{\circ}$ [5018]; ${ }^{1} \mathrm{H}$ NMR [5018].

1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methylphenoxy)ethanone

[107584-67-8] \quad\begin{tabular}{l}
Synthesis

- Obtained by saponification of 1-(4-acetoxy-3-

methoxy-phenyl)-2-(3-methylphenoxy)ethanone

with sodium methoxide in refluxing methanol for

$2.5 \mathrm{~h}(53 \%)$ [4429].
\end{tabular}

m.p. $170^{\circ} 5-172^{\circ} 5$ [4429];
${ }^{1} \mathrm{H}$ NMR [4429], IR [4429], MS [4429].

2-(4-Ethylphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[243657-62-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Preparation by Hoesch condensation of p-ethyl-phenoxyacetonitrile with phloroglucinol in ethyl ether/benzene in the presence of zinc chloride and hydrogen chloride at $0^{\circ}(88 \%)$ [5024].
m.p. 247° [5024]; ${ }^{1} \mathrm{H}$ NMR [5024].

1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)ethanone
[22317-35-7]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
mol.wt. 288.30
Syntheses

- Preparation by treatment of 1-(4-acetoxy-3-methoxy-phenyl)-2-(2-methoxyphenoxy)ethanone in chloroform solution with sodium methoxide in methanol, followed by acidification with dilute sulfuric acid (92\%) [5038].
- Also obtained by hydrogenolysis of 1-[4-(benzyloxy)-3-methoxyphenyl]-2-(2methoxyphenoxy)ethanone in methanol in the presence of $5 \% \mathrm{Pd}$ on barium sulfate under hydrogen pressure (72\%) [5039].
- Preparation by treatment of 1-(4-isopropoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)ethanone (m.p. 70°) (1 mol) with aluminium chloride (4 mol) in benzene for 2 h at r.t. (95\%) [5034].
- Also obtained by oxidative degradation with 3% peracetic acid of 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)ethanol and 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanol (used as softwood lignin model compounds) in 10% acetic acid or 50% ethanol for 48 h at 30° [5040].
- Also obtained by degradation of 1-(4-benzyloxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)ethanol in the presence of Aspergillus flavus. Initial reactions in the degradation of this compound were oxidation of the α-hydroxy group to the corresponding ketone and debenzylation of the benzyloxy group [5041].
- Formation from kraft lignin in sulfate cooking [5042,5043].
- Also obtained from the cleavage of the β-ether bond in the guaiacylglycol- β guaiacyl ether (SM) with the water solution of phthalocyanine complex trisodium tetra-4-sulfonatophthalocyanine-iron (III) (Fe(TSPc)). Fe(TSPc) catalyzed formation of oxidized products in the absence of oxygen. The radical derived from SM then undergoes further single electron oxidation and deprotonation to give the titled compound [5044].
- Also refer to: [5045-5051].
m.p. $94-95^{\circ}$ [5039], 93° [5038], 65-67$~[5043] . ~$.

One the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5034,5039,5041], ${ }^{13} \mathrm{C}$ NMR [5034], IR [5034,5041], UV [5039],
MS [5039,5041]; TLC [5034,5041]; GC [5041].
1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methoxyphenoxy)ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30 Synthesis

- Obtained by saponification of 1-(4-acetoxy-3-methoxy-phenyl)-2-(3-methoxyphenoxy)ethanone with sodium methoxide in refluxing methanol for 2.5 h (75\%) [4429].
m.p. $109-110^{\circ}$ [4429];
${ }^{1} \mathrm{H}$ NMR [4429], IR [4429], MS [4429].

2-(4-Ethoxyphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[243657-66-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30

Synthesis

- Preparation by Hoesch condensation of p-ethoxyphenoxyacetonitrile with phloro-glucinol in benzene/ethyl ether in the presence of zinc chloride and hydrogen chloride at $0^{\circ}(81 \%)$ [5024].
m.p. 223° [5024]; ${ }^{1} \mathrm{H}$ NMR [5024].

2-(2,4-Dimethoxyphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[149312-75-4]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{7} \quad$ mol.wt. 320.30
Synthesis

- Obtained by reaction of 2,4-dime-thoxyphenoxy-acetonitrile with phloroglucinol in THF in the presence of zinc chloride and hydrogen chloride in an ice bath for 4 h (53\%) (Hoesch reaction) [5025].
m.p. $105-107^{\circ}$ [5025]; monohydrate [5025];
${ }^{1} \mathrm{H}$ NMR [5025], ${ }^{13} \mathrm{C}$ NMR [5025], IR [5025], UV [5025], MS [5025].
1-(4-Hydroxy-2,5-dimethylphenyl)-2-[3-(trifluoromethyl)phenoxy]ethanone
[107584-80-5] $\quad \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 324.30

Synthesis

- Obtained by coupling 2,5-dimethyl-4-hy-droxy- α-bromo-acetophenone with m-(trifluoromethyl)phenol (87\%) [4429].
m.p. $191-194^{\circ}$ [4429];
${ }^{1} \mathrm{H}$ NMR [4429], IR [4429], MS [4429].
1-(4-Hydroxy-2,5-dimethylphenyl)-2-(3-methylphenoxy)ethanone
[107584-79-2]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Synthesis
- Obtained by coupling 2,5-dimethyl-4-hy-droxy- α-bromo-acetophenone with m-cresol (54\%) [4429].
m.p. $188^{\circ} 5-190^{\circ} 5$ [4429];
${ }^{1} \mathrm{H}$ NMR [4429], IR [4429], MS [4429].

1-(2,4-Dihydroxyphenyl)-2-[4-(1-methylethyl)phenoxy]ethanone

[201284-86-8]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Synthesis

- Obtained by condensation of (p-isopropyl-phenoxy)acetonitrile with resorcinol in ethyl ether/benzene in the presence of zinc chloride according to Houben-Hoesch method (90\%) [5018].
m.p. 167° [5018]; ${ }^{1} \mathrm{H}$ NMR [5018].

1-(2,4-Dihydroxyphenyl)-2-(4-propylphenoxy)ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Synthesis

- Obtained by condensation of (p-propylphenoxy)-acetonitrile with resorcinol in ethyl ether/benzene in the presence of zinc chloride according to Houben-Hoesch method (88\%) [5018]. m.p. $149-150^{\circ}$ [5018]; ${ }^{1} \mathrm{H}$ NMR [5018].

1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxy-4-methylphenoxy)ethanone

[152306-57-5]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$ mol.wt. 302.33
Synthesis

- Obtained by coupling α-bromoacetoguaiacone (1 equiv) with sodium creosolate (8 equiv) (compound 8) (19\%) [5052].
m.p. $109-111^{\circ}$ [5052];
${ }^{1} \mathrm{H}$ NMR [5052], ${ }^{13} \mathrm{C}$ NMR [5052], IR [5052], MS [5052].
1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone
[18167-90-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33 Syntheses
- Preparation by reaction of α-bromoacetosyringone (m.p. 130°) with guaiacol in the presence of sodium hydroxide in refluxing ethanol for 3 h (64\%) [4511].
- From degradation of the lignin model com pound syringylglycol β-guaiacyl ether (m.p. $70-71^{\circ}$) (SM) by Polyporus versicolor and Stereum frustulatum [4511].
SM was obtained by reduction of α-guaiacoxyacetosyringone in ethyl acetate with hydrogen over $10 \% \mathrm{Pd} / \mathrm{C}$ or with sodium borohydride in isopropanol (almost quantitative yield).
m.p. $85-86^{\circ}$ [4511].

2-(2,6-Dimethoxy-4-methylphenoxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone
[105153-11-5]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis

- Refer to: [5053].

1-(4-Hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy] ethanone

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 346.38
Synthesis

- Refer to: [5054].

2-([1,1'-Biphenyl]-2-yloxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone
[108434-12-4] $\quad \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 334.37

Synthesis

- Obtained by degradation of 1-(4-benzyloxy-3-meth-oxy-phenyl)-2-(2-phenylphenoxy)ethanol in the presence of Aspergillus flavus. Initial reactions in the degradation of this compound were oxidation of the α-hydroxy group to the corresponding ketone and debenzylation of the benzyloxy group [5041].
${ }^{1} \mathrm{H}$ NMR [5041], IR [5041], MS [5041];
TLC [5041]; GC [5041].
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]-2-(4-methoxyphenoxy)ethanone
[121361-58-8]

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{10}$ Synthesis
- Obtained by hydrolysis of 1-[2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyrano- syl) oxy]phenyl]-2-(4-methoxyphenoxy)ethanone with 2 N sodium hydroxide in refluxing dilute methanol for $30 \mathrm{~min}(93 \%)$ [5031].
m.p. $144^{\circ}[5031] ;(\alpha)_{\mathrm{D}}^{23}=-38^{\circ}(\mathrm{c}=0.7$ in acetone $)$ [5031]; IR [5031].

2-[2,4-Bis(phenylmethoxy)phenoxy]-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{7} \quad$ mol.wt. 472.49
Synthesis

- Obtained by reaction of 2,4-(dibenzyl-oxy)phenoxyacetonitrile with phloro-glucinol in THF in the presence of zinc
chloride and hydrogen chloride in an ice bath for 4 h (57\%) (Hoesch reaction) [5025].
m.p. $91-92^{\circ}$ [5025]; monohydrate [5025];
${ }^{1} \mathrm{H}$ NMR [5025], ${ }^{13} \mathrm{C}$ NMR [5025], IR [5025], UV [5025], MS [5025].

2-(4-Fluorophenoxy)-1-[2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]-phenyl]ethanone

$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{FO}_{13} \quad$ mol.wt. 592.53 Synthesis

- Obtained by glycosylation of 1-(2,4-di-hydroxyphenyl)-2-(4-fluorophenoxy)ethanone with acetobromoglucose (34\%) [5031].
m.p. 174° [5031]; $\quad(\alpha)_{\mathrm{D}}^{23}=-28^{\circ}(\mathrm{c}=1$ in chloroform $)$ [5031];
${ }^{1} \mathrm{H}$ NMR [5031], IR [5031].

1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-2-(4-methoxy-phenoxy)ethanone

[121361-57-7]

$\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{14}$ mol.wt. 604.56 Synthesis

- Obtained by glycosylation of 1-(2,4-di-hydroxy-phenyl)-2-(4-methoxyphenoxy) ethanone with acetobromo-glucose (45\%) [5031].
m.p. 180° [5031]; $\quad(\alpha)_{\mathrm{D}}^{23}=-27^{\circ}(\mathrm{c}=1$ in chloroform $)$ [5031];
${ }^{1} \mathrm{H}$ NMR [5031], IR [5031].

Chapter 15
 Compounds Derived from Hydroxyacetic Acids

1-(3,5-Dichloro-2-hydroxyphenyl)-2-hydroxyethanone
[58483-53-7] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 221.04

Synthesis

- Refer to: [5055] (Romanian patent).

1-(5-Chloro-2-hydroxyphenyl)-2-hydroxyethanone
[52728-05-9] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59

Synthesis

- Obtained by oxidative rearrangement of 5-chloro-2-hydroxy- α-bromoacetophenone in moist DMSO for 16 h at $20^{\circ}(56 \%)$ [4394].
m.p. $98-99^{\circ}$ [4394]; ${ }^{1} \mathrm{H}$ NMR [4394].

1-(3,4-Dihydroxy-5-nitrophenyl)-2-hydroxyethanone

2-Hydroxy-1-(2-hydroxyphenyl)ethanone

[17375-96-1] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15

Syntheses

- Preparation by treatment of 2-hydroxy- α-bromo-acetophenone with refluxing water for $16 \mathrm{~h}(88 \%)$ [5056].
- Alsoobtainedbyhydrolysis of 2-hydroxy- α-(benzoyloxy)acetophenone with 50% aqueous potassium hydroxide in refluxing ethanol for 34 h (73\%) [4394].
- Also obtained by oxidative rearrangement of 2-hydroxy- α-bromoacetophenone in moist DMSO for 16 h at 20° (31\%) [4394].
- Also obtained by action of hot aqueous sodium carbonate on 2,3-dihydro-2hydroxybenzo[b] furan-3-one (m.p. 108°) (SM) at 100° for 1 h (33\%). SM was obtained by oxidation of 2-hydroxyacetophenone with selenium dioxide [5057].
- Also obtained by hypervalent iodine oxidation of 1-(trimethylsilyloxy)-1-[2-(trimethylsilyloxy)-phenyl]ethene with iodosobenzene, boron trifluoride etherate and water. The mixture was stirred at -40° for 1 h , then the temperature was slowly (1 h) raised to r.t. and stirring was continued for $30 \mathrm{~min}(25 \%)$ [5058].
- Also obtained by a selective one-step synthesis from phenoxymagnesium bromide (1 mol) and anhydrous monomeric glyoxal (1 mol) in boiling benzene for $20 \mathrm{~h}(24 \%)$ [5059].
- Also obtained from α-chloro-o-hydroxyacetophenone by hydrolysis with boiling water for 15-20 h (20\%) [4577].
- Also refer to: [4483,4879,5060-5064].
m.p. $66-67^{\circ}$ [5057], 65° [4577,5059], 64-65 ${ }^{\circ}$ [4394,5056,5058];
${ }^{1} \mathrm{H}$ NMR [4394,5057,5059], IR [5059], UV [5059].
2-Hydroxy-1-(3-hydroxyphenyl)ethanone

2-Hydroxy-1-(4-hydroxyphenyl)ethanone
[5706-85-4] $\begin{aligned} & \text { - Preparation by reaction of p-hydroxy-a-bromoaceto- } \\ & \text { phenone with formic acid in the presence of DBU, }\end{aligned}$ (49\%) [5067].
- Preparation by demethylation of α-acetoxy-p-methoxyacetophenone (SM) with aluminium chloride in refluxing benzene for $3 \mathrm{~h}(80 \%)$. In the reaction, deacetylation takes place simultaneously. SM was obtained by treatment of α-chloro-p-methoxyacetophenone with potassium acetate in ethanol [5068].
- Preparation by action of boron trifluoride etherate with p-hydroxyphenyl diazomethyl ketone (SM1) in nitromethane under nitrogen at 22° for 15 min (81%). SM1, preparation given, melted at $145-150^{\circ}$ (d) [5069].
- Preparation from α-acetoxy-4-hydroxyacetophenone (m.p. 133°),
- by heating with 16% aqueous sodium hydroxide for 15 min on a steam bath (quantitative yield) [5070];
- in methanolic solution by treatment with 0.5 N aqueous sodium hydroxide at r.t. for $15 \mathrm{~min}(67 \%)$ [4523].
- Preparation by adding excess of concentrated hydrochloric acid to a warm concentrated aqueous solution of the potassium salt and cooling the solution [5071].
- Preparation by treatment of the sodium salt with aqueous hydrochloric acid [5072].
- Also obtained from p-acetoxybenzoylcarbinol (SM2) by heating with 4\% ethanolic potassium hydroxide for 45 min on a water bath (20\%). SM2 was prepared from p-acetoxyphenyl diazomethyl ketone (m.p. 109-110 $)$ after treatment in dioxane with 2 N sulfuric acid at r.t. for 20 min , then at 40° until no more nitrogen evolved [5073].
- Also obtained by condensation of glyoxal with phenol,
- in the presence of butylamine at 33° for $3 \mathrm{~h}(29 \%)$ [5074];
- in the presence of aqueous sodium hydroxide at 33° for $6 \mathrm{~h}(25 \%)$ [5075];
- in the presence of hydrogen chloride at 80° for $4 \mathrm{~h}(<5 \%)$ [5076].
- Also obtained by reductive condensation of p-hydroxyphenylglyoxal potassium bisulfite with diethylamine under hydrogen in the presence of Raney nickel in dilute ethanol for 1.5 h at 45° [4818].
- Also obtained from bisphenol A which is metabolized by a Gram-negative aerobic bacterium via a novel pathway involving oxidative skeletal rearrangement of the bisphenol A [5077].
- Also obtained by peroxidatic degradation of 7,4'-dihydroxyflavanone or 7,4'-dihydroxy-3'-methoxyflavanone [5078].
- Also refer to: $[5064,5079]$.
N.B.: Na salt [5070,5072], K salt [5071].
m.p. $177-178^{\circ}$ [5068,5071], $173-174^{\circ}$ [5073], 173° [4523], $170-177^{\circ}$ [4818], $170-172^{\circ}$ [5072], $170-171^{\circ}$ [5069], $165-167^{\circ}$ [5066,5067];
${ }^{1} \mathrm{H}$ NMR [5066,5069], IR [5066,5069], MS [5066].

2,2-Dihydroxy-1-(4-hydroxyphenyl)ethanone

S197447-05-5]

Syntheses
- Obtained by oxidation of p-hydroxyacetophenone
with selenium oxide [5080].
- Also refer to: [5081] (compound
[5082,5083].

1-(2,3-Dihydroxyphenyl)-2-hydroxyethanone

1-(2,4-Dihydroxyphenyl)-2-hydroxyethanone (Fisetol)
[487-47-8] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15

Syntheses

- Obtained by hydrolysis of a-acetoxyresacetophenone (m.p. $164^{\circ} 5$) [5085],
- with 5% aqueous sodium carbonate on a steam bath for 3 h (35\%) [5085];
- with 10% aqueous sodium hydroxide for 2 h at r.t. (38\%) [5085].
- Also obtained by hydrolysis of 2,4, α-triacetoxyacetophenone (m.p. 94) [5085],
- with 2 N sodium hydroxide [5085];
- with 5 N methanolic ammonia for 8 days in the cold [5086].
- Also obtained by demethylation of α-methoxyresacetophenone with 40% hydrobromic acid for 3 h on a boiling water bath (16\%) [4640].
- Also obtained by treatment of $\alpha-[($ methoxycarbonyl)oxy]resacetophenone (m.p. $157-158^{\circ}$) or α-[(ethoxycarbonyl)oxy]resacetophenone (m.p. 107°) with 2 N sodium hydroxide for 2 h at r.t. [4432].
- Also obtained by reaction of hydroxyacetonitrile with resorcinol [4845], (41\%) (Hoesch reaction) [5087].
- Also obtained by a selective one-step synthesis from 3-hydroxyphenoxymagnesium bromide (0.1 mol) and anhydrous monomeric glyoxal (0.1 mol) in boiling benzene for 20 h (35\%) [5059].
- Also obtained by treatment of Fisetin (3,7,3', $\mathbf{4}^{\prime}$-tetrahydroxyflavone)-m.p. 330° (d)—with boiling ethanolic potassium hydroxide [4885].
- Also refer to: [4467,4835,4837,5088,5089].
m.p. 191° [4845], 189° [4432,5085-5087], 187-188$~[4640], ~ 185-186 ~[5059] ; ~ ;$
${ }^{1}$ H NMR [5059], IR [5059], UV [4640,5059,5090].

1-(3,4-Dihydroxyphenyl)-2-hydroxyethanone (DOPKET)
[29477-54-1] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15
 Syntheses

- Obtained by saponification of its triacetate (SM) (m.p. 94°) with sodium hydroxide (or sodium ethoxide) in ethanol in a water bath for $20 \mathrm{~min}(33 \%)$. SM was prepared by treatment of 3,4-dihydroxy- α-chloroacetophenone with potassium acetate in refluxing acetic anhydride for 15 min (quantitative yield) [4768].
- Also obtained by heating N -acetyldopamine with 1 N hydrochloric acid [5091].
- Also obtained by hydrolysis of 2-(3',4'-dihydroxyphenyl)-3-acetylamino-6 (or 7) -(N-acetyl-2"-aminoethyl)-2,3-dihydro-1,4-benzodioxine (SM) with refluxing 1 N hydrochloric acid for 3 h . SM was formed by incubation of N -acetyldopamine with locust cuticle [4746].
- Also obtained from the quinone of 3,4-dihydroxyphenylglycol by attack with isomerase (SM). This enzyme (SM) has been purified from the hemolymph of Sarcophaga bullata [5092].

Isolation from natural sources

- From sclerotization of the adult cuticle (Leucophaea maderae) [5093].
- Also obtained by mild acid hydrolysis of sclerotized cuticles from locusts (Schistocerca gregaria) and beetles (Pachynoda sinuata) [4744].
- From acid hydrolysates of insect hard cuticle [5094].
- From acid hydrolysates of insect sclerotized cuticle in refluxing 1 N formic acid for 1 h . The cuticle used was obtained from the desert locust (Schistocerca gregaria) [4745].
- By acid hydrolysis from exuviae of last instar larvae of the cicada Tibicen pruinosa [5095].
- From the seed coat tamarind (Tamarindus indica L.) [5096].
- From the skins of tamarind seeds [5097].
- From mild acid hydrolysates of tanning pharate pupae cuticle from Manduca Sexta [4747].
- In hydrolysates of the wing-scales of butterfly (Eurema hecabe) in 1 N hydrochloric acid. This compound was also present in the hydrolyzate of wing-scales of Catopsilia crocale, Appias indra and Morpho rhetenor [5098].
- In aqueous extracts from cockroach and locust exuviae of various Orthoptera in refluxing water for 1 h (Periplaneta americana, Periplaneta brunnea, Chortoicetes terminifera and Austracris guttulosa) [5099].
- in acidic extracts of insect cuticles (exuviae) in refluxing 1 N hydrochloric acid for 1.5 h , i.e.:
- Orthoptera (Periplaneta americana, Periplaneta brunnea, Blattella germanica, Nauphoeta cinerea, Chortoicetes terminifera and Austracris guttulosa) [5099];
- Hemiptera (Nezara viridula) [5099];
- Lepidoptera (Papilio aegeus and Antheraea helena) [5099];
- Coleoptera (Anthrenus australis) [5099].
- in acidic extracts of insect cuticles (preparia) in refluxing 1 N hydrochloric acid for 1.5 h , i.e.:
- Diptera (Lucilia cuprina) [5099].
- in acid extracts of insect cuticles (prepal cuticles):
- Lepidoptera (Papilio aegeus) [5099].
- Also refer to: [5100-5105].
m.p. 195° [4768]; UV [4744,5094], MS [4744,4748,5094];
electrophoresis [5093]; column chromatography [4744];
TLC [4744,5093,5094]; LCEC chromatography [5093]; GC [5099]; HPLC [4747,5092]; HPLC-MS [5091].

2-Hydroxy-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5} \quad$ mol.wt. 184.15 Syntheses

- Preparation according to Hoesch reaction from phloroglucinol,
- with acetoxyacetonitrile (81\%) [5106];
- with hydroxyacetonitrile (63\%) [5090].
- Also obtained from dihydrokaempferol (3,5,7,4'-tetrahydroxyflavanone) (Aromadendrin) by basic hydrolysis and subsequent oxidation [5107].
- Dihydrokaempferol yields kaempferol (3,5,7,4'-tetrahydroxyflavone) with peroxides and alkaline conditions; subsequent thermolysis produces the titled ketone [5107].
- Quercetin (3,5,7,3', 4^{\prime}-pentahydroxyflavone) yields the same product under alkaline thermolysis (80°) [5107].
- Also refer to: [4868]. m.p. 226° [5090], 224° [5106]; UV [5090]; GC-MS [5107].

2-Hydroxy-1-(2-hydroxy-4-methylphenyl)ethanone

[55960-03-7]

- Also refer to: [5084].

2-Hydroxy-1-(2-hydroxy-5-methylphenyl)ethanone

1-(4,5-Dihydroxy-2-methylphenyl)-2-hydroxyethanone
[61407-16-7] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
 Synthesis

- Obtained (trace amounts) by heating D-fructose or D-glucose in 0.3 M acetate buffer of pH 4.5 at 96° for 48 h under nitrogen or D-fructose in 0.3 M acetate buffer of pH 4.5 in a stainless autoclave at 160° for 4 h [5108].
amorphous [5108]; ${ }^{1} \mathrm{H}$ NMR [5108], MS [5108].

2-Hydroxy-1-(2-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Syntheses

- Preparation from 2-hydroxy-4-methoxy- α -bromo-acetophenone with refluxing water for $20 \mathrm{~h}(76 \%)$ [4483].
- Also obtained from fisetol 4-monomethyl ether diacetate (m.p. 86°) by heating with ethanolic potassium hydroxide [4485].
- Also obtained by a selective one-step synthesis from 3-methoxyphenoxymagnesium bromide (1 mol) and anhydrous monomeric glyoxal (1 mol) in boiling benzene for $20 \mathrm{~h}(45 \%)$ [5059].
- Also obtained by action of 40% aqueous hydrobromic acid with 2-hydroxy-4, $\alpha-$ dimethoxy-acetophenone in acetic acid on a boiling water bath for 3 h (22\%) [4640].
- Also refer to: [4433,4835,4837,5060,5088,5109]. m.p. 128° [4485], 127° [4640], $126-128^{\circ}$ [4483], 126-127 ${ }^{\circ}$ [5059]; ${ }^{1} \mathrm{H}$ NMR [4483,5059], IR [4483,5059], UV [4640,5059], MS [4483].

2-Hydroxy-1-(3-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Syntheses

- Preparation by total hydrolysis of 4-methoxy-3, α -diacetoxy-acetophenone (m.p. 82-83) [4638], (m.p. 81-82 ${ }^{\circ}$) [4750] in methanol with concentrated hydrochloric acid,
- for $4-5 \mathrm{~h}$ at r.t. (75\%) [4638];
- for 30 min at reflux (56\%) [4750].
m.p. $177-178^{\circ}$ [4750], $176-177^{\circ}$ [4638]; IR [4750], UV [4750].

2-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)ethanone

[18256-48-9]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18
Syntheses

- Preparation by total hydrolysis of 3-methoxy4, α-diacetoxy-acetophenone (m.p. 77-78 ${ }^{\circ}$) [4638], (m.p. 75-76 $)$ [4750] in methanol with concentrated hydrochloric acid,
- for $4-5 \mathrm{~h}$ at r.t. (78\%) [4638], (25\%) [5039];
- during 14 h at 20°, then for 30 min at reflux (67\%) [4750].
- Obtained by photorelease of 1-glutamic acid from 5-[2-(4-hydroxy-3-methoxyphenyl)-2-oxoethyl] l-glutamate, mono(trifluoroacetate) [284043-07-8] with either 300 or 350 nm lamps in water or in deuterium oxide [5110].
- Also obtained by photorelease of γ-aminobutyric acid from 2-(4-hydroxy-3-methoxyphenyl)-2-oxoethyl γ-aminobutyrate [284043-11-4] with either 300 or 350 nm lamps in water or in deuterium oxide [5110].
N.B.: Details of the synthesis and ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, UV and HRMS data are available free of charge via the Internet at http://pubs.acs.org. Complete experimental details are provided in the full paper [5110].
- Also obtained by treatment of 2-(acetoxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone,
- with boiling aqueous barium carbonate for 2 h [4637];
- with 16% aqueous sodium hydroxide on the steam bath. The obtained sodium salt was treated with 2 N acetic acid (62\%) [5111].
N.B.: Na salt sesquihydrate (70\%) [5111].
- Also refer to: [5112].

Isolation from natural sources

- From cell cultures of Solanum khasianum (Solanaceae) [5113,5114].
N.B.: Microsomal preparations from heterotropic cell cultures of Solanum khasianum catalyse the hydroxylation of the α-methyl group of acetovanillone. The reaction requires both oxygen and NADPH [5113].
- From the Namibian shrub Salsola tuberculatiformis [5115].
- From the suprarenal capsules [4750].
- Also refer to: [5116].
m.p. $160-161^{\circ}$ [4750,5039], 159- 160° [4638], 158- 160° (anhydrous) [5111];
${ }^{1} \mathrm{H}$ NMR [5039,5114], ${ }^{13} \mathrm{C}$ NMR [5114], IR [4750,5039],
UV [4750,5114], MS [5039,5114,5116];
fluorescence spectroscopy [5117]; HPLC [5114]; GC/MS [5114,5116].

2-Hydroxy-1-(2-hydroxy-3,5-dimethylphenyl)ethanone

[55960-05-9] \begin{tabular}{l}
Synthesis

Obtained by a selective one-step synthesis for
2,4-dimethyl-phenoxymagnesium bromide $(1 \mathrm{~mol})$
and anhydrous monomeric glyoxal $(1 \mathrm{~mol}) \mathrm{in}$
boiling benzene for $20 \mathrm{~h}(35 \%)$

| [5059] |
| :--- |

${ }^{1} \mathrm{H}$ NMR [5059], IR [5059], UV [5059].
\end{tabular}

2-Hydroxy-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone

[83768-75-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$
Syntheses

- Preparation by hydrolysis of 2-(2-hydroxy-4,6-dimethoxy-phenyl)-2-oxoethyl benzoate in pyridine with aqueous sodium hydroxide under nitrogen atmosphere at r.t. for 1 h (80\%) [5118].
- Also obtained by degradation of 2-[2-(2-hydroxy-4,6-dimethoxyphenyl)-2-oxoethoxy]-2-methyl-propionic acid in refluxing mixture of concentrated hydrochloric acid/methanol ($1 \mathrm{vol} / 5 \mathrm{vol}$) for $1 \mathrm{~h}(42 \%)$ [5119].
- Also obtained by action of 40% hydrobromic acid with 2-hydroxy- $\alpha, 4,6-$ trimethoxyacetophenone in acetic acid by heating on a boiling water bath for 3 h (32\%) [4640].
- Also refer to: [5088].
m.p. $140-142^{\circ}$ [5119], $139-140^{\circ}$ [4640], $131-132^{\circ}$ [5118]; TLC [5118];
${ }^{1} \mathrm{H}$ NMR [5118,5119], IR [5118], UV [4640], MS [5118].
2-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone (Danielone)
[90426-22-5]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20
Syntheses
- Preparation by an efficient simple three-step synthesis:
- First, slowly adding a methanolic 3,5-dimethoxy-4-(methoxymethoxy)acetophenone to a cooled
methanolic potassium hydroxide solution. Then iodosobenzene diacetate was added and the reaction mixture stirred at r.t. overnight, cooled in an ice bath and 6% hydrochloric acid was added. After refluxing at 60° for 1 h , the reaction mixture was cooled at r.t. and water was added (60\%) [5120].
- Obtained by hydrolysis of its diacetate (SM) with 5\% hydrochloric acid in 70\% dilute ethanol at 80° for 1.5 h [5121]. SM was prepared according to [5122].
- Also obtained by photorelease of 1-glutamic acid from 5-[2-(4-hydroxy-3,5-dimethoxyphenyl)-2-oxoethyl] l-glutamate, mono(trifluoroacetate) [284043-10-3] with either 300 or 350 nm lamps in water or in deuterium oxide [5110].
- Also obtained by photorelease of γ-aminobutyric acid from 2-(4-hydroxy-3,5-dimethoxyphenyl)-2-oxoethyl γ-aminobutyrate [284043-12-5] with either 300 or 350 nm lamps, in water or in deuterium oxide [5110].
N.B.: Details of the synthesis and ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, UV and HRMS data are available free of charge via the Internet at http://pubs.acs.org. Complete experimental details are provided in the full paper [5110].
- Also obtained from 1,2-bis(4-hydroxy-3,5-dimethoxyphenyl)-propane-1,3-diol, a β-1-lignin substructure model compound, by degradation with laccase of Coriolus versicolor (Fr.) Quel. [5123].
- Also refer to: [5124-5126].

Isolation from natural sources

- From Nicotiana tabacum [5121,5127] and Atropa belladona root cultures [5121].
- From cell. suspension cultures of Hyoscyamus albus [5128].
- From Carica papaya fruit slices (Caricaceae) [5129].
- Isolated as virulence gene inducing compounds of Agrobacterium from the hairy root cultures of belladonna [5130].
- Also refer to: [5116].
m.p. 145° [5129], $109-110^{\circ}$ [5121]. One of the reported melting points is obviously wrong.
TLC [5129]; GC/MS [5116,5127];
${ }^{1} \mathrm{H}$ NMR [5121,5129], ${ }^{13} \mathrm{C}$ NMR [5121,5129], IR [5120,5129],
UV [5121,5127,5129], MS [5116,5120,5121,5127,5129].
1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-2-hydroxyethanone (Methyldegeranylmelicopol)
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 228.20
Synthesis

- Obtained by degradation of methylmelicopol (VII) (SM) with refluxing 2 N hydrochloric acid for 5 min in an atmosphere of nitrogen (16%) [4987]. SM was isolated from the leaves of Melicope broadbentiana F. M. Bail (Rutaceae) [4987,5131].
N.B.: In the paper [4987], the formulas (VII) as well as (XI) representing the titled compound were erroneous [5131].

```
m.p. 181-183 [4987];
1H NMR [4987], IR [4987], UV [4987].
```


2-Hydroxy-1-(4-hydroxy-3-propylphenyl)ethanone

$[178978-33-1]$	Synthesis - Refer to: [5132].

2-Hydroxy-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl)ethanone

[184706-61-4] | $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$ mol.wt. 226.23 |
| :--- |
| Isolation from natural sources |

2-Hydroxy-1-(6-hydroxy-2,3,4-trimethoxyphenyl)ethanone (Dimethyldegeranylmelicopol)

[51117-08-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 242.23

Syntheses

- Preparation by reaction of acetoxyacetonitrile with antiarol (Hoesch reaction), followed by heating the isolated intermediate compound in refluxing dilute ethanol for 8 h (32\%) [5131].
- Also obtained by hydrogenolysis of dimethylmelicopol (VIII) (SM) [4987]. SM was obtained by partial methylation of methylmelicopol (VII) [4987], itself isolated from the leaves of Melicope broadbentiana F. M. Bail. (Rutaceae) [4987,5131]. In the paper [4987], the formulas (VII) and (VIII), as well as (XIX) representing the titled compound were erroneous [5131].

```
m.p. 87} [4987], 86-87o [5131]
'1H NMR [4987], IR [4987], UV [4987].
```


1-[3-(Dimethylethyl)-2-hydroxyphenyl]-2-hydroxyethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 208.26
Synthesis

- Obtained by a selective one-step synthesis from 2-tert-butylphenoxymagnesium bromide (1 mol) and anhydrous monomeric glyoxal (1 mol) in boiling benzene for $20 \mathrm{~h}(45 \%)$ [5059].
oil [5059]; ${ }^{1} \mathrm{H}$ NMR [5059], IR [5059], UV [5059].

1-[3-(Dimethylethyl)-2-hydroxy-6-methylphenyl]-2-hydroxyethanone

[55960-06-0] \quad\begin{tabular}{l}
Synthesis

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$

Obtained by a selective one-step synthesis
from 2-tert-butyl-5-methylphenoxymag-
nesium bromide $(1 \mathrm{~mol})$ and anhydrous
monomeric glyoxal $(1 \mathrm{~mol})$ in boiling
benzene for $20 \mathrm{~h}(25 \%)$ [5059].

\end{tabular}

m.p. $76-77^{\circ}$ [5059]; ${ }^{1} \mathrm{H}$ NMR [5059], IR [5059], UV [5059].

1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]-2-hydroxyethanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{9} \quad$ mol.wt. 330.29
Synthesis

- Refer to: [5020].

2-Hydroxy-1-[2-hydroxy-4-(2-phenylethyl)phenyl]ethanone
[132197-47-8]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Refer to: [5134] (Japanese patent).

1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl]-2-hydroxyethanone [142905-41-7] $\quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 320.38

- From the fruit of Evodia Merrillii Kanehira \& Sasaki ex Kanehira (Rutaceae) [5135]. m.p. $106-108^{\circ}$ [5135]; column chromatography [5135];
${ }^{1} \mathrm{H}$ NMR [5135], ${ }^{13} \mathrm{C}$ NMR [5135], IR [5135], UV [5135], MS [5135].
1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxyphenyl]-2-hydroxyethanone (E)
[149492-42-2] $\quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 320.38
 Isolation from natural source
- From the fruits of Evodia merrillii Kanehira \& Sasaki ex Kanehira (Rutaceae) [5136].
m.p. $144^{\circ} 5-146^{\circ}$ [5136];
${ }^{1} \mathrm{H}$ NMR [5136], ${ }^{13} \mathrm{C}$ NMR [5136], IR [5136], UV [5136], MS [5136].
1-[6-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,4-dihydroxy-3-methoxyphenyl]-2hydroxyethanone (Melicopol)
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6} \quad$ mol.wt. 350.41

Isolation from natural source

- From the leaves of Melicope broadbentiana F. M. Bail. (Rutaceae) [4987,5131].
N.B.: In the paper [4987], the formula (VI) representing the titled compound was erroneous [5131].
m.p. 133-134 ${ }^{\circ}$ [4987];
${ }^{1} \mathrm{H}$ NMR [4987], ${ }^{1} \mathrm{H}$ NMR NOE [5131], IR [4987], UV [4987,5131].

1-[3,4-Dimethoxy-6-[(3,7-dimethyl-2,6-octadienyl)oxy]-2-hydroxyphenyl]-2hydroxyethanone (Methylmelicopol)

N.B.: In the paper [4987], the formula (VII) representing the titled compound was erroneous [5131].
m.p. 103° [4987];
${ }^{1} \mathrm{H}$ NMR [4987], ${ }^{1} \mathrm{H}$ NMR NOE [5131], IR [4987], UV [4987,5131].

1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-(3-methyl-2-butenyl) phenyl]-2-hydroxyethanone (E)

[149492-41-1]
$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} \quad$ mol.wt. 388.26
Isolation from
 natural source

- From the fruits of Evodia merrillii Kanehira \& Sasaki ex Kanehira (Rutaceae) [5136].

```
m.p. 136-137} [5136]
    '1H NMR [5136], '13C NMR [5136], IR [5136], UV [5136], MS [5136].
```


Chapter 16
 Compounds Derived from Acyloxy- and Aroyloxyacetic Acids

16.1 Compounds Derived from Acetoxyacetic Acids

2-(Acetyloxy)-1-(2-hydroxyphenyl)ethanone

[40231-09-2] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Syntheses

- Preparation by hydrolysis of o-acetoxy- α-acetoxyacetophenone (SM) with aqueous potassium hydroxide solution by gently warming for $10-15 \mathrm{~min}$ on a water bath maintained at $80^{\circ}(71 \%)$. SM was obtained by cupric chloridecatalyzed decomposition of o-acetoxy- α-diazoacetophenone in dioxane solution in the presence of acetic acid (65\%, m.p. 161-162 $)$ [5137].
- Also obtained by oxidative rearrangement of 2-acetoxy- α-bromoacetophenone in moist DMSO for 28 h at 20° (49\%) [4394].
- Also obtained by reaction of potassium acetate with o-hydroxy- α-bromoacetophenone in acetone at r.t. for 90 min [5032].
m.p. $170-171^{\circ}$ [5137], $58-59^{\circ}$ [4394], 57° [5032]. One of the reported melting points is obviously wrong. Ogle and Main [5032] consider that the reported product of m.p. 171° [5137], identified by only elemental and IR analysis, is not the titled product.
${ }^{1} \mathrm{H}$ NMR [4394,5032], ${ }^{13} \mathrm{C}$ NMR [5032], IR [5032,5137].

2-(Acetyloxy)-1-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19
Syntheses

- Preparation by reaction of α-chloro- 4 -acetoxyacetophenone with potassium acetate in boiling ethanol for 4 h (quantitative yield) [5138].
- Preparation by reaction of acetic acid and potas-sium acetate with α-chloro-4-hydroxyacetophenone in refluxing ethanol for $1 \mathrm{~h}(80 \%)$ [5070].
- Preparation by reaction of acetic acid with p-hydroxyphenacyl chloride in acetonitrile in the presence of triethylamine, first in an ice bath for 15 min , then at reflux for 3 h (50\%) [4523].
- Also refer to: [5139,5140]. m.p. 133° [4523,5070], 127° [5138].

2-(Acetyloxy)-1-(2,4-dihydroxyphenyl)ethanone

[63124-23-2]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 210.19
Synthesis

- Preparation by reaction of acetoxyacetonitrile with resorcinol (Hoesch reaction) (85\%) [5085], (40\%) [5141].
m.p. $\quad 167-168^{\circ}$ [5141], $164^{\circ} 5$ [5085]; ${ }^{1} \mathrm{H}$ NMR [5141], IR [5141], UV [5090].

2-(Acetyloxy)-1-(3,4-dihydroxyphenyl)ethanone
[67083-58-3]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 210.19
Synthesis

- Preparation by adding a solution of sodium acetate in aqueous acetic acid to an ethanolic solution of 3,4-di-hydroxy- α-chloroacetophenone, and heating at reflux for $24 \mathrm{~h}(83 \%)$ [5142].

Isolation from natural sources

- Obtained by mild acid hydrolysis of sclerotized cuticles from locusts (Schistocerca gregaria) and beetles (Pachynoda sinuata) [4744].
m.p. $157-160^{\circ}$ [5142]; UV [4744], MS [4744,4748];
column chromatography [4744]; TLC [4744].

2-(Acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone

[139473-80-6] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21

Syntheses

- Obtained by reaction of α-chloroacetovanillone with potassium acetate,
- in refluxing ethanol for $2 \mathrm{~h}(56 \%)$ [4637] or for 4 h (67\%) [5138];
- in refluxing acetic acid and ethanol mixture for 1 h (57\%) [5111].
- Also obtained by partial hydrolysis of 4, α-diacetoxy-3-methoxyacetophenone (m.p. $75-76^{\circ}$) in the presence of potassium bicarbonate in methanol for 16 h at $20^{\circ}(96 \%)$ [4750].
- Also obtained from 4-hydroxy-3-methoxy- α-diazoacetophenone by slowly heating in acetic acid at 110° (29\%) [4750].
- Also refer to: [5143].
m.p. $113-114^{\circ}$ [4750], 110° [5111,5138].

2-(Acetyloxy)-1-[4-(acetyloxy)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 252.22

Syntheses

- Preparation by reaction of ammonia with fisetol triacetate (m.p. 94°) in ethanol for 30 min at r.t. (93\%) [5090].
- Also obtained by adding acetic anhydride to a suspension of fisetol sodium salt in a water/ethyl ether mixture (27\%) [5090].
- Also obtained by adding, with stirring and cooling, a solution of fisetol (m.p. 189$190^{\circ}$) in aqueous sodium hydroxide to a solution of acetic anhydride in chloroform (or benzene). Then, the mixture was maintained for 10 min at r.t. (19\%) [5090]. m.p. 99-1000 [5090]; UV [5090].

2-(Acetyloxy)-1-[4-(acetyloxy)-2,6-dihydroxyphenyl]ethanone

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{7} \quad$ mol.wt. 268.22
Syntheses

- Obtained by partial acetylation of α-hydroxy-phloracetophenone with acetic anhydride in chloroform in the presence of aqueous sodium hydroxide, for 24 h at r.t. (31\%) [5090].
- Also obtained by partial deacetylation of α-hydroxyphloracetophenone tetraacetate (m.p. 109-110 $)$ in ethanol with ammonia, for 1.5 h at r.t. (30\%) [5090]. m.p. 167-169 [5090]; UV [5090].

2-(Acetyloxy)-1-[4-(acetyloxy)-2-hydroxy-6-methoxyphenyl]ethanone
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{7} \quad$ mol.wt. 282.25

m.p. 121° [5090].

Synthesis

- Obtained by reaction of $4, \alpha$-diacetoxy-2,6-di-hydroxyacetophenone with diazomethane in ethyl ether at 0° (37\%) [5090].

2-(Acetyloxy)-1-[2,4-dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 278.30
Synthesis

- Obtained (poor yield) by reaction of 2-methyl-3-buten2 -ol with 2,4-di-hydroxy- α (acetoxy)acetophenone in dioxane in the presence of boron trifluoride etherate at $50-60^{\circ}$ for $3 \mathrm{~h}(6 \%)$ [5141].
m.p. $147-148^{\circ}$ [5141]; ${ }^{1} \mathrm{H}$ NMR [5141], IR [5141].

2-(Acetyloxy)-1-[2,4-dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone
[63124-24-3] $\quad \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 278.30

Synthesis

- Obtained by reaction of 2-methyl-3-buten-2-ol with 2,4-di-hydroxy- α-(acetoxy)acetophenone in dioxane in the presence of boron trifluoride etherate at $50-60^{\circ}$ for $3 \mathrm{~h}(20 \%)$ [5141].
m.p. ${ }^{129-130}{ }^{\circ}$ [5141]; ${ }^{1} \mathrm{H}$ NMR [5141], IR [5141].

2-(Acetyloxy)-1-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone

[28441-16-9] $\quad \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 306.40

Syntheses

- Preparation by reaction of acetic acid with 3,5-di-tert-butyl-4-hydroxy- α-bromoacetophenone in toluene in the presence of DBU, first at 0° for 1 h , then at r.t. overnight (79%) [4523].
- Also refer to: [5144].
m.p. $103-105^{\circ}[4523,5144]$.

16.2 Compounds Derived from Other Acyloxy- and Phenacyloxyacetic Acids

2-(2,4-Dihydroxyphenyl)-2-oxoethyl 2-methylpropanoate
[63124-27-6]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24
Synthesis

- Obtained by reaction of isobutyryloxyacetonitrile with resorcinol (Hoesch reaction) (40\%) [5141].
m.p. 116-117 ${ }^{\circ}$ [5141]; ${ }^{1} \mathrm{H}$ NMR [5141], IR [5141].

2-(4-Hydroxyphenyl)-2-oxoethyl 2,2-dimethylpropanoate

[230310-21-1]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Synthesis

- Obtained by adding dropwise triethylamine over 15 min to a cooled solution of p-hydroxyphenacyl chloride and pivalic acid in acetonitrile in an ice bath and then refluxing for 3 h [4523].
m.p. $178^{\circ} 5$ [4523]; ${ }^{1} \mathrm{H}$ NMR [4523].

2-(2,5-Dihydroxyphenyl)-2-oxoethyl hexanoate

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
mol.wt. 266.29

Synthesis

- Obtained by reaction of hexanoic acid with 2,5-di-hydroxy- α-bromoacetophenone in acetonitrile in the presence of triethylamine at 70° for 4 h [4441].
flash chromatography [4441]; ${ }^{1} \mathrm{H}$ NMR [4441], IR [4441], MS [4441].

2-(4-Hydroxyphenyl)-2-oxoethyl benzeneacetate
[230310-20-0] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28

m.p. $\quad 106-107^{\circ}$ [4523]; ${ }^{1} \mathrm{H}$ NMR [4523].

2-(2,5-Dihydroxyphenyl)-2-oxoethyl 2-propylpentanoate (so called Valproate)

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$
mol.wt. 294.35
Synthesis

- Obtained by reaction of valproic acid with 2,5-dihydroxy- α-bromoacetophenone in acetonitrile in the presence of triethylamine at 70° for 4 h [4441].
flash chromatography [4441]; ${ }^{1} \mathrm{H}$ NMR [4441], IR [4441], MS [4441].

2-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]-2-oxoethyl 2-methylpropanoate

[63124-29-8]

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ mol.wt. 306.36 Synthesis

- Obtained (poor yield) by reaction of 2-methyl-3-buten-2-ol with 2,4-di- hydroxy- α-(isobutyryloxy)-acetophenone in dioxane in the presence of boron trifluoride etherate at $50-60^{\circ}$ for $3 \mathrm{~h}(5 \%)$ [5141].
m.p. $147-148^{\circ}$ [5141]; ${ }^{1} \mathrm{H}$ NMR [5141], IR [5141].

2-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-oxoethyl 2-methylpropanoate
[63124-28-7]

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 306.36
Synthesis

- Obtained by reaction of 2-methyl-3-buten-2-ol with 2,4-dihydroxy- α-(isobutyryloxy)acetophenone in dioxane in the presence of boron trifluoride etherate at $50-60^{\circ}$ for $3 \mathrm{~h}(20 \%)$ [5141].
m.p. $122-123^{\circ}$ [5141]; ${ }^{1} \mathrm{H}$ NMR [5141], IR [5141].

2-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-oxoethyl 2,2-dimethylpropanoate
[230310-24-4]

$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 348.48
Synthesis

- Preparation by adding in one portion DBU to a solution of 2-bromo-1-(3,5-di-tert-butyl-4-hydroxyphenyl)ethanone and pivalic acid in toluene. The solution was stirred in ice for 1 h and then overnight at r.t. (70\%) [4523].
m.p. $\quad 134-135^{\circ} 5$ [4523]; ${ }^{1} \mathrm{H}$ NMR [4523].

2-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-oxoethyl benzeneacetate

$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$
mol.wt. 382.50
Synthesis

- Preparation by adding in one portion DBU to a solution of 2-bromo-1-(3,5-di-tert-butyl-4-hydroxy-phenyl)ethanone and phenylacetic acid in toluene. The solution was stirred in an ice bath for 1 h and then at r.t. overnight (58\%) [4523].
m.p. $\quad 63-63^{\circ} 5$ [4523]; ${ }^{1} \mathrm{H}$ NMR [4523].

16.3 Compounds Derived from Benzoyloxyacetic Acids

1-(4-Hydroxyphenyl)-2-[(2-nitrobenzoyl)oxy]ethanone

[130627-04-2]

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{6} \quad$ mol.wt. 301.26
Syntheses

- Refer to: [5145,5146].

2-(Benzoyloxy)-1-(2-hydroxyphenyl)ethanone

[52728-02-6]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26
Syntheses

- Preparation by hydrolysis of 2-(benzoyloxy)-1-(2-acetoxy-phenyl)ethanone (SM) with aqueous potassium hydroxide solution by gently warming for $10-15 \mathrm{~min}$ on a water bath maintained at 80° (75%) [5137]. SM was obtained by cupric chloride-catalyzed decomposition of o-acetoxy- α-diazoacetophenone in dioxane solution in the presence of benzoic acid (86%, m.p. $110-111^{\circ}$).
- Also obtained by oxidative rearrangement of 2-benzoyloxy- α-bromoacetophenone in moist DMSO for 24 h at $20^{\circ}(23 \%)$ [4394].
m.p. $\quad 123-124^{\circ}$ [5137], $104-105^{\circ}$ [4394]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [4394].

2-(Benzoyloxy)-1-(2,4-dihydroxyphenyl)ethanone
[143091-87-6]

- Also refer to: [5062,5149,5150]. m.p. 202-203 ${ }^{\circ}$ [5147], 200° [5148].
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 272.26 Syntheses
- Preparation by reaction of benzoyloxyacetonitrile (so called benzoylglycollonitrile) with resorcinol (Hoesch reaction), (79\%) [5147], (63\%) [5148].

2-(Benzoyloxy)-1-(2,5-dihydroxyphenyl)ethanone

[117421-24-6]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 272.26
Synthesis

- Obtained by reaction of 2,5-dihydroxy- α-bromoacetophenone with benzoic acid in the presence of triethylamine in acetonitrile at 45° for 4 h [4421].

MS [4421]; HPLC [4421].

2-(2-Hydroxyphenyl)-2-oxoethyl 2-hydroxybenzoate

[68176-44-3] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 272.26

Synthesis

- Preparation by hydrolysis of 1-(2-acetox yphenyl)-2-[(2-methoxybenzoyl)oxy]ethanone (SM) with aqueous potassium hydroxide solution by gently warming for $10-15 \mathrm{~min}$ on a water bath maintained at 80° (70\%) [5137]. SM was obtained by cupric chloride-catalyzed decomposition of o-acetoxy- α-diazoacetophenone in dioxane solution in the presence of o-acetoxybenzoic acid (35%, m.p. 124-125 $)$.
m.p. $139-140^{\circ}$ [5137].

2-(Benzoyloxy)-1-(2,4,6-trihydroxyphenyl)ethanone

[65982-77-6]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 288.26
Syntheses

- Obtained by reaction of benzoyloxyacetonitrile with phloroglucinol (Hoesch reaction) [4870,4877,4879,5000], (89\%) [5106], (67\%) [5147].
- Also refer to: [4873,5062,5151-5153].
m.p. 235° [5106], 234-235 ${ }^{\circ}$ [5147], 220-225 ${ }^{\circ}$ [5062].

2-(Benzoyloxy)-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28
 Synthesis

- Obtained by reaction of benzoyloxyacetonitrile with phloroglucinol monomethyl ether (Hoesch reaction) (68\%) [4879].
m.p. 145° [4879].

2-(Benzoyloxy)-1-(2,6-dihydroxy-4-methoxyphenyl)ethanone $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28
 Syntheses

- Obtained by partial methylation of α-(benzoyl-oxy)phloroacetophenone with diazomethane in ethyl ether for 4 h at $5^{\circ}(37 \%)$ [5062] or in a methanol/ ethyl ether mixture for 1 h at $0^{\circ}(27 \%)$ [4879].
- Also refer to: [4877].
m.p. $215-217^{\circ}$ [5062], 211° [4879].

2-(Benzoyloxy)-1-(2,4,6-trihydroxy-3-methoxyphenyl)ethanone

[1162-73-8] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{7} \quad$ mol.wt. 318.28

Syntheses

- Obtained by reaction of benzoyloxyacetonitrile with iretol (Hoesch reaction) [5154], (28\%) [5155].
- Also refer to: [5156].
m.p. 227-229ํ [5155]; ${ }^{1} \mathrm{H}$ NMR [5155], IR [5155], UV [5155].

2-(Benzoyloxy)-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31
Synthesis

- Obtained by reaction of benzoyloxyacetonitrile with 3,4-dimethoxyphenol (Hoesch reaction) (17\%) [4655]. m.p. 128° [4655].

2-(Benzoyloxy)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone

[147437-71-6]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$
Syntheses

- Preparation by reaction of benzoyloxyacetonitrile with phloroglucinol dimethyl ether (Hoesch reaction) (56\%) [4879].
- Preparation by reaction of benzoyloxyacetonitrile with phloroglucinol (Hoesh reaction), followed by partial methylation of the obtained ketone with dimethyl sulfate [5118].
- Preparation by partial methylation of α-(benzoyloxy)phloroacetophenone with excess diazomethane in ethyl ether for $2 \mathrm{~h}(50 \%)$ [4879] or for 4 h at $5^{\circ}(6 \%)$ [5062].
- Also refer to: [5157].
m.p. 135° [4879], 132° [5062], $120-122^{\circ}$ [5157]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5157], ${ }^{13} \mathrm{C}$ NMR [5157], IR [5157], UV [5157], MS [5157].
2-(Benzoyloxy)-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone
[7741-48-2]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{7} \quad$ mol.wt. 332.31
Syntheses
- Preparation by hydrogenation of 2-(benzoyloxy)-1-[4-(benzyloxy)-2-hydroxy-3,6-dimethoxy-phenyl]ethanone in ethyl acetate in the presence of Pd/C (86\%) [4942].
- Also obtained by reaction of benzoyloxyacetonitrile with 2,5-dimethoxyresorcinol (Hoesch reaction) (51\%) [5158].
m.p. 177° [5158], $175-176^{\circ}$ [4942]; UV [4942,5158].

2-(Benzoyloxy)-1-(2,4,6-trihydroxy-3,5-dimethoxyphenyl)ethanone
[1167-74-4] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{8} \quad$ mol.wt. 348.31

Syntheses

- Obtained by reaction of benzoyloxyacetonitrile with 2,4-dimethoxyphloroglucinol (Hoesch reaction) (12-15\%) [5155].
- Also refer to: [5159].
m.p. $139-142^{\circ}$ [5155]; ${ }^{1} \mathrm{H}$ NMR [5155], IR [5155], UV [5155].

1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-[(4-nitrobenzoyl)oxy]ethanone
[116512-01-7]

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{9} \quad$ mol.wt. 391.33
Synthesis

- Preparation by treatment of 2,3,4,6-tetra-methoxy- α-(p-nitrobenzoyloxy)acetophenone with aluminium chloride in acetonitrile at 60° for 2 h (90\%) [5160].
m.p. $1^{173-174}{ }^{\circ}$ [5160]; ${ }^{1} \mathrm{H}$ NMR [5160].

2-(Benzoyloxy)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)ethanone

[7741-49-3]

m.p. $172-174^{\circ}$ [4942]; UV [4942].
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7}$
mol.wt. 346.34
Synthesis

- Preparation by partial methylation of 2-(benzoyl-oxy)-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone with diazomethane (71\%) [4942].

2-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-oxoethyl 4-methoxybenzoate

m.p. $151-152^{\circ}$ [5160]; ${ }^{1} \mathrm{H}$ NMR [5160].

2-(Benzoyloxy)-1-[2-hydroxy-4-methoxy-6-(phenylmethoxy)phenyl]ethanone

[14585-08-1]

$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 392.41
Synthesis

- Obtained by reaction of benzyl chloride with α - benzoyloxy-2,6-dihydroxy-4-methoxyacetophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone for 3.5 h (17\%) [4877].
m.p. $151-153^{\circ}$ [4877].

2-(Benzoyloxy)-1-[2-hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl] ethanone

[10048-37-0] $\quad \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{7}$ mol.wt. 422.43

Synthesis

- Obtained by reaction of benzoyloxyacetonitrile with 1,3-bis(benzyloxy)-2,4-di-methoxy-benzene (Hoesch reaction) (32\%) [4942].
m.p. $150-151^{\circ}$ [4942]; UV [4942].

2-(Benzoyloxy)-1-[2-hydroxy-4,6-bis(phenylmethoxy)phenyl]ethanone

[14585-09-2]

$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 468.51
Synthesis

- Obtained by reaction of benzyl chloride with α-(benzoyloxy)phloroacetophenone in the presence of potassium carbonate in refluxing acetone for 2 h (12\%) [4877] or for 26 h (13\%) [5151].
m.p. 140° [5151], 136° [4877]; UV [5151].

2-(Benzoyloxy)-1-[2-hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone

or

2-(Benzoyloxy)-1-[6-hydroxy-2,4-bis(phenylmethoxy)-3-(phenylmethyl) phenyl]ethanone

	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{6} \quad$ mol.wt. 558.63 Synthesis
	- Obtained by reaction of benzyl chloride with α-(benzo yloxy)phloracetophenone in refluxing acetone for 26 h
	carbonate (7%) or in the presence of potassium carbonate and sodium iodide in the same time (12%). The same result was obtained using only benzyl bromide [5151].
m.p. $182^{\circ}{ }^{\text {[5151]; }}$ UV [5151].	

Chapter 17
 Compounds Derived from Nitroacetic Acids

1-(3,5-Dichloro-2-hydroxyphenyl)-2-nitroethanone

[60795-15-5]

m.p. 137° [5161]; IR [5161].

1-(3-Chloro-2-hydroxyphenyl)-2-nitroethanone

[60795-09-7]

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}_{4}$
Synthesis

- Preparation by treatment of 6,8-dichloro-4-hydroxy-3-nitro-coumarin with 4% potassium hydroxide solution at r.t. for 24 h (85\%) [5161].
m.p. 103° [5161]; IR [5161].

1-(4-Chloro-2-hydroxyphenyl)-2-nitroethanone

[60795-11-1]

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4}$
Synthesis

- Preparation by treatment of 7-chloro-4-hydroxy-3-nitro-coumarin with 4% potassium hydroxide solution at r.t. for 24 h (73\%) [5161].
m.p. $117-118^{\circ}$ [5161]; $\operatorname{IR}[5161]$.

1-(5-Chloro-2-hydroxyphenyl)-2-nitroethanone

[60795-14-4] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4} \quad$ mol.wt. 215.59

Syntheses

- Preparation by treatment of 6-chloro-4-hydroxy-3-ni-tro-coumarin with 4% potassium hydroxide solution at r.t. for 24 h (65\%) [5161].
- Also refer to: [5162].
m.p. 112° [5161]; IR [5161].

1-(2-Hydroxy-5-nitrophenyl)-2-nitroethanone

[59507-91-4] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 226.15

Synthesis

- Preparation by heating a solution of 3,6-dinitro-4-hydroxycoumarin (m.p. 188°) in 10% aqueous sodium hydroxide at 65° for 2 h , then cooling and acidification with hydrochloric acid (91\%) [5056].
m.p. 160° [5056]; ${ }^{1} \mathrm{H}$ NMR [5056].

1-(4-Hydroxyphenyl)-2-nitrosoethanone

[143527-88-2]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{3} \quad$ mol.wt. 165.15 Synthesis

- Refer to: [5163].

1-(2-Hydroxyphenyl)-2-nitroethanone

[29378-60-7]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4} \quad$ mol.wt. 181.15
Syntheses

- Preparation by alkaline degradation of 4-hydroxy-3-nitrocoumarin [5164]—m.p. 177° (d)—with 5% sodium hydroxide,
- for 1.5 h at $50-60^{\circ}(95 \%)$ [5056];
- for 24 h at 20°, (79\%) [4712], (75\%) [5161].
- The same compound was isolated in reactions of either some coumarins or some chromenes with 5% sodium hydroxide for 1 h at r.t. or by heating at $90-95^{\circ}$ (70-90\%) [5165]:

Coumarins

3-Nitro-4-(pyridylamino)coumarin
m.p. $224-225^{\circ}$

3-Nitro-4-(3-methyl-2-pyridylamino)coumarin
m.p. $227-229^{\circ}$

3-Nitro-4-(4-methyl-2-pyridylamino)coumarin
m.p. 243-244 ${ }^{\circ}$

3-Nitro-4-(5-methyl-2-pyridylamino)coumarin
m.p. $225-226^{\circ}$

3-Nitro-4-(6-methyl-2-pyridylamino)coumarin
m.p. $250-252^{\circ}$

Chromenes
2-Hydroxy-3-nitro-4-(3-methyl-2-pyridylimino)-4H-chromene
m.p. $245-246^{\circ}$

2-Hydroxy-3-nitro-4-(4-methyl-2-pyridylimino)-4H-chromene
m.p. $250-252^{\circ}$

2-Hydroxy-3-nitro-4-(5-methyl-2-pyridylimino)-4H-chromene
m.p. $233-234^{\circ}$

2-Hydroxy-3-nitro-4-(6-methyl-2-pyridylimino)-4H-chromene

- Also refer to: [5142,5162,5166-5169].
m.p. $106-107^{\circ}$ [4712], 106° [5056], $105-106^{\circ}$ [5161], $96-97^{\circ}$ [5165];
${ }^{1} \mathrm{H}$ NMR [5056,5161,5165], IR [5056,5161,5165].

1-(2-Hydroxy-3-methylphenyl)-2-nitroethanone

[60795-08-6]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}$ Synthesis

- Preparation by treatment of 4-hydroxy-8-methyl-3-nitro-coumarin with 4\% potassium hydroxide solution at r.t. for $24 \mathrm{~h}(80 \%)$ [5161].
m.p. 126° [5161]; ${ }^{1} \mathrm{H}$ NMR [5161], IR [5161].

1-(2-Hydroxy-4-methylphenyl)-2-nitroethanone

[60795-10-0]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17 Synthesis

- Preparation by treatment of 4-hydroxy-7-methyl-3-nitro-coumarin with 4\% potassium hydroxide solution at r.t. for $24 \mathrm{~h}(72 \%)$ [5161].
m.p. $\quad 114^{\circ}$ [5161]; IR [5161].

1-(2-Hydroxy-5-methylphenyl)-2-nitroethanone

[60795-13-3]	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17
OH	Syntheses
	- Preparation by treatment of 4-hydroxy-6-methyl-3-nitro-coumarin with 4% potassium hydroxide solution at r.t. for $24 \mathrm{~h}(88 \%)$ [5161].
CH_{3}	- Also refer to: [5162,5168,5170].
m.p. 134° [5161];	${ }^{1} \mathrm{H}$ NMR [5161], IR [5161].

1-(2-Hydroxy-4-methoxyphenyl)-2-nitroethanone

[60795-12-2]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17
Syntheses

- Preparation by treatment of 4-hydroxy-7-methoxy-3-nitro-coumarin with 4\% potassium hydroxide solution at r.t. for $24 \mathrm{~h}(76 \%)$ [5161].
- Also refer to: [5142,5171]. m.p. $\quad 140^{\circ}$ [5161]; IR [5161].

Chapter 18
 Compounds Derived from Arylacetic Acids

18.1 Compounds Derived from Phenylacetic Acid

1-(3-Bromo-5-fluoro-2-hydroxyphenyl)-2-phenylethanone

[4108-04-7] $\quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrFO}_{2} \quad$ mol.wt. 309.13

Syntheses

- Preparation by Fries rearrangement of 2-bromo-4-fluoro-phenyl phenylacetate with aluminium chloride, according to the methods [5172],
- without solvent at 130° for 2 h [5173];
- in nitrobenzene at 25° for 6 h [5173].
- Also refer to: [5174].
m.p. $\quad 130^{\circ}$ [5174]; b.p. ${ }_{1.5} 154-155^{\circ}$ [5173].

1-(3,5-Dibromo-2,4-dihydroxyphenyl)-2-phenylethanone
[19816-40-1]
m.p. 190° [5176], 180° [5175].

1-(3-Chloro-5-fluoro-2-hydroxyphenyl)-2-phenylethanone

[4108-05-8]
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{2}$
mol.wt. 264.68

Syntheses

- Preparation by Fries rearrangement of 2-chloro-4-fluoro-phenyl phenylacetate with aluminium chloride, according to the methods [5172],
- without solvent at 130° for 2 h [5173];
- in nitrobenzene at 25° for 6 h [5173].
- Also obtained by Friedel-Crafts acylation of p-fluoroanisole, followed by demethylation and chlorination of the obtained ketone [5174].
m.p. 122° [5174]; b.p. ${ }_{1-1.5} 209-210^{\circ}$ [5173].

1-(3,5-Dichloro-4-hydroxyphenyl)-2-phenylethanone

[73048-86-9]	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 281.11
OH	Synthesis
	- Obtained by DDQ oxidation of 1-(3,5-dichloro-4-hydroxy-phenyl)-2-phenylethanol in dioxane at r.t. for $16 \mathrm{~h}(82 \%)$ [5177].
m.p. $132-135^{\circ}$ [5177];	${ }^{1} \mathrm{H}$ NMR [5177].

1-(4-Bromo-2-hydroxyphenyl)-2-phenylethanone

[54981-35-0]

m.p. 68° [5178].
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14
Synthesis

- Obtained by Fries rearrangement of 3-bromophenyl phenylacetate with aluminium chloride in carbon disulfide for 1 h at r.t. [5178].

1-(5-Bromo-2-hydroxyphenyl)-2-phenylethanone

[54981-34-9]

m.p. $70^{\circ}[5178]$.
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14
Synthesis

- Obtained by Fries rearrangement of 4-bromophenyl phenylacetate with aluminium chloride in carbon disulfide for 1 h at r.t. [5178].

1-(3-Bromo-2,4-dihydroxyphenyl)-2-phenylethanone

[19816-35-4]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
mol.wt. 307.14
Synthesis

- Obtained by Friedel-Crafts acylation of 2-bromoresorcinol with phenylacetyl chloride in nitrobenzene in the presence of aluminium chloride, first at r.t. overnight, then heating on a steam bath for $4 \mathrm{~h}(50 \%)$ [5176].
m.p. 195° [5176].

1-(5-Bromo-2,4-dihydroxyphenyl)-2-phenylethanone

[92152-59-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
mol.wt. 307.14
Syntheses

- Obtained by reaction of bromine (1 mol) with 4-phenyl-acetylresorcinol in acetic acid at r.t. for 24 h [5175].
- Also obtained by Friedel-Crafts acylation [5179] of 4-bromoresorcinol with phenylacetyl chloride in nitrobenzene in the presence of aluminium chloride [5180].
- Also refer to: [5181].
m.p. 112° [5179,5180], 103° [5175].

1-(5-Bromo-2,3,4-trihydroxyphenyl)-2-phenylethanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 323.14
 Synthesis

- Obtained by reaction of bromine with 4-phe-nylacetyl-pyrogallol in acetic acid [5182], at r.t. for 24 h [5175].
m.p. 164° [5182], $155-156^{\circ}$ [5175].

1-(3-Chloro-2-hydroxyphenyl)-2-phenylethanone

[70331-83-8] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Syntheses

- Preparation by Friedel-Crafts reaction [5183].
- Also refer to: [5184].
protonation constants [5185];
complexes with Cu (II), Ni (II) and Co (II) [5185].

1-(4-Chloro-2-hydroxyphenyl)-2-phenylethanone

[107410-55-9] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69

Synthesis

- Preparation by Fries rearrangement of m-chlorophenyl phenylacetate with aluminium chloride, first in carbon disulfide for 1 h , then, after elimination of the solvent, at 100° for 5 h (58\%) [5186].
m.p. $62-64^{\circ}$ [5186].

1-(5-Chloro-2-hydroxyphenyl)-2-phenylethanone

[126260-45-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 246.69
Syntheses

- Obtained by Friedel-Crafts acylation of p-chlorophenol with phenylacetic acid in the presence of boron trifluoride at 160° for 4 h in a sealed tube (68\%) [5187].
- Also obtained by Fries rearrangement of p-chlorophenyl phenylacetate with aluminium chloride in refluxing chlorobenzene for 4 h (25\%) [5188].
- Also obtained by Friedel-Crafts acylation of p-chloroanisole with phenylacetyl chloride in the presence of aluminium chloride in refluxing carbon disulfide for $5 \mathrm{~h}(25 \%)$ [4471].
m.p. 69° [5187], 66-67$~[4471], ~ 64-65^{\circ} ~[5188] ; ~ ;$
b.p. ${ }_{0.3} 153-154^{\circ}$ [5187], b.p. ${ }_{30} 280-285^{\circ}$ [4471].

1-(5-Chloro-2,4-dihydroxyphenyl)-2-phenylethanone

[92103-22-5]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad \mathrm{~mol}$.wt. 262.69
Syntheses

- Preparation by Friedel-Crafts acylation [5179] of 4-chlororesorcinol with phenylacetyl chloride in nitrobenzene in the presence of aluminium chloride, first at 10°, then at r.t. for 36 h (73\%) [5180].
- Also refer to: [5181].
m.p. 121° [5180], 120° [5179].

1-(5-Fluoro-2-hydroxyphenyl)-2-phenylethanone

[343-59-9]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 230.24
Syntheses

- Preparation by Fries rearrangement of p-fluorophenyl phenylacetate with aluminium chloride,
- at $150-180^{\circ}$ for $20 \mathrm{~min}(85 \%)$ [5189];
- at 130° for 2 h (77\%) [5190], according to the method [5191];
- at 130° for 2 h [5173], according to the method [5172];
- in nitrobenzene at 25° for 6 h [5173], according to the method [5172].
m.p. 85° [5189]; b.p. ${ }_{1.5} 175-179^{\circ}$ [5173], b.p. ${ }_{1-2}$ 200-205 ${ }^{\circ}$ [5190].

1-(2,4-Dihydroxy-3-nitrophenyl)-2-phenylethanone

m.p. 109° [5176].

1-(2,4-Dihydroxy-5-nitrophenyl)-2-phenylethanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

m.p. $156-157^{\circ}$ [5175].

Synthesis

- Obtained by reaction of fuming nitric acid ($\mathrm{d}=1.5$) with 4 -phenylacetylresorcinol in acetic acid in an ice bath for 48 h [5175].

1-(3,4-Dihydroxy-5-nitrophenyl)-2-phenylethanone

[274925-86-9]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
Synthesis

- Preparation by treatment of 1-(4-hydroxy-3-methoxy-5-nitrophenyl)-2-phenylethanone with aluminium chloride in refluxing ethyl acetate/ pyridine mixture for $2 \mathrm{~h}(99 \%)$ [5192,5193].
m.p. $178-179^{\circ}$ [5193], $177^{\circ} 6-178^{\circ} 8$ [5192];
${ }^{1} \mathrm{H}$ NMR [5192,5193], ${ }^{13} \mathrm{C}$ NMR [5192,5193], IR [5192,5193];
HPLC [5192], IR [5192,5193].

1-(2,3,4-Trihydroxy-5-nitrophenyl)-2-phenylethanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6} \quad \text { mol.wt. } 289.24
$$

m.p. $\quad 179-180^{\circ}$ [5175].

Synthesis

- Obtained by reaction of fuming nitric acid ($\mathrm{d}=1.5$) with 4 -phenylacetylpyrogallol in acetic acid in an ice bath for 48 h [5175].

1-(2-Hydroxyphenyl)-2-phenylethanone

[2491-31-8]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25
Syntheses

- Obtained by Fries rearrangement of phenyl phenylacetate,
- with aluminium chloride,
- without solvent, between 80° and 130° for $1 \mathrm{~h} \mathrm{(72} \mathrm{\%)} \mathrm{[5194]} ,\mathrm{at} 140^{\circ}$ for $3 \mathrm{~h}(60 \%)$ [5195-5197], at 120° for $4 \mathrm{~h}[5198,5199]$ or at 60° for 4 h (26\%) [5200];
- in nitrobenzene at 60° for $4 \mathrm{~h}(14 \%)$ [5201], at r.t. for 24 h (4\%) [5195,5196];
- in nitroethane at r.t. for $24 \mathrm{~h}(<13 \%)$ [5202];
- in chlorobenzene at 50° for $4 \mathrm{~h}(21 \%)$ [5200];
- with titanium tetrachloride in chlorobenzene at 50° for $4 \mathrm{~h}(<5 \%)$ [5200];
- with polyphosphoric acid at $100^{\circ}(1 \%)$ [5203];
- with or without 20% Bleicherde at 200° for 9 h (poor yields) [5204].
- Also obtained by stirring a mixture of S-[3-hydroxy-4-(phenylacetyl)phenyl] dimethylcarbamothioate, Raney nickel and ethanol at r.t. for 1 h (67\%) [5205].
- Also obtained by photo-Fries rearrangement of phenyl phenylacetate,
- in the presence of α - or β-cyclodextrin in organic solvents [5206];
- included in a Nafion membrane, at r.t. for 7 h (quantitative yield) [5207].
- Also obtained by acylation of phenol with phenylacetic acid,
- in the presence of boron trifluoride etherate under argon on a water bath for 1.5 h (23\%) [5208];
- in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (21\%) [5209];
- in the presence of polyphosphoric acid at $100^{\circ}(4 \%)$ [5203].
- Also obtained by degradation of 3-phenyl-4-hydroxycoumarin in refluxing 30\% ethanolic hydrogen chloride for $1 \mathrm{~h}(56 \%)$ [5210].
- Also obtained by demethylation of 2-methoxyphenyl benzyl ketone (oil, b.p..$_{0.001}$ $130-140^{\circ}$),
- with 47% hydrobromic acid $(\mathrm{d}=1.5)$ in acetic acid for 5 h at reflux (87%) [5199] or for 10 h on a steam bath (61\%) [5211];
- with aluminium chloride in nitrobenzene on a steam bath for $1 \mathrm{~h} \mathrm{(36} \mathrm{\%)} \mathrm{[5211]}$.
- Also obtained by hydrolysis of (2-methoxybenzoyl)phenylacetonitrile (m.p. $108-109^{\circ}$) in acetic acid,
- with concentrated hydrochloric acid on a steam bath for 20 h (48\%) [5211];
- with 47% hydrobromic acid on a steam bath for 10 h (34\%) [5211].
- Also obtained from ethyl (2-methoxybenzoyl)phenylacetate (m.p. 67-68),
- with boiling pyridinium chloride for $20 \mathrm{~min}\left(\mathrm{ca} .220^{\circ}\right)(47 \%)$ [5212];
- in acetic acid with concentrated hydrochloric acid for 15 h on a steam bath (35\%) [5211].
- Also obtained by heating under reflux flavone with 5% aqueous sodium hydroxide [5213].
- Also refer to: [5214-5223].
N.B.: Complexes with Mn (II) [5224], Ni (II) [5224], Hg (II) [5224] and Co (II) [5224,5225].
m.p. 60-61 [5205], 60° [5198,5199], 59° [5214], 58-60ํ [5200], 57-58 ${ }^{\circ}$
[5212], 56-57 [5211], 55° [5195-5197,5204,5210].
b.p. ${ }_{0.004} 150-155^{\circ}$ [5211], b.p. ${ }_{23} 165^{\circ}$ [5204];
${ }^{1} H$ NMR [5205], IR [5195-5197], UV [5195-5197],
MS [5205]; GC [5207]; GC-MS [5207].
1-(3-Hydroxyphenyl)-2-phenylethanone
[332072-68-1] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 212.25

Synthesis

- Obtained by electrolysing in an undivided cell a DMF solution containing 3-iodophenol, chloromethylbenzene, iron pentacarbonyl and a catalytic amount of a nickel-2, 2^{\prime}-bi-pyridine complex (57%) [5226].
- This compound seems to have not been described previously.

It is not mentioned in the Chemical Abstracts between 1907 (volume 1) and 2000 (volume 133) under the various denominations, namely: m-Hydroxy- α-phenylacetophenone, 3'-Hydroxy-2-phenyl-acetophenone and actually 1-(3-Hydroxyphenyl)-2-phenylethanone, neither in the Beilsteins Handbuch der Organischen Chemie under the denomination [3-Oxy-phenyl]-benzyl-keton. This ketone might very likely be prepared more simply by diazotization of the 1-(3-aminophenyl)-2phenylethanone [55251-36-0], an amino ketone known for a long time [5227].
${ }^{1} \mathrm{H}$ NMR [5226], ${ }^{13} \mathrm{C}$ NMR [5226], IR [5226], MS [5226].

1-(4-Hydroxyphenyl)-2-phenylethanone

[2491-32-9]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
Syntheses

- Obtained by reaction of phenylacetic acid with phenol,
- in the presence of zinc chloride (Nencki reaction),
- at $170-200^{\circ}$ (reflux) for $1.5 \mathrm{~h}(20 \%)$ [5228,5229];
- at $170-180^{\circ}$ [5230], for $2 \mathrm{~h}(15 \%)$ [5231];
- in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (75\%) [5209];
- in the presence of polyphosphoric acid in a boiling water bath for 15 min (28\%) [5232] or at 100° (19\%) [5203];
- in the presence of boron trifluoride at 80° for $2 \mathrm{~h}(87 \%)$ [5233];
- in the presence of boron trifluoride etherate under argon on a water bath for $1.5 \mathrm{~h}(75 \%)$ [5208].
- Also obtained by Friedel-Crafts acylation of phenol with phenylacetyl chloride in nitrobenzene in the presence of aluminium chloride (60\%) [5231], at 80-90 for $1.5 \mathrm{~h}(61 \%)$ [5234] or at $\leq 80^{\circ}$ for $0.75 \mathrm{~h}(60-70 \%)$ [5229].
- Also obtained (by-product) by reaction of phenylacetyl chloride with anisole in benzene in the presence of stannic chloride between 55° and 75° for 1 h [5228].
- Also obtained by Fries rearrangement of phenyl phenylacetate,
- with aluminium chloride,
- without solvent at 50° for $4 \mathrm{~h} \mathrm{(25} \mathrm{\%)} \mathrm{[5200]} ,\mathrm{at} 80^{\circ}$ for $4 \mathrm{~h}(72 \%)$ [5200], first in a water bath for 1 h , then at 120° for $4 \mathrm{~h}[5198,5199]$ or at 140° for 3 h (10\%) [5195-5197];
- in nitrobenzene at r.t. for $12 \mathrm{~h}(35 \%)$ [5202] or for $24 \mathrm{~h}(65 \%)$ [5195,5196], at 50° for $4 \mathrm{~h}(64 \%)$ [5200], at 60° for $4 \mathrm{~h}(64 \%)$ [5201];
- in nitroethane at r.t. for $24 \mathrm{~h}(70 \%)$ [5202];
- in nitropropane at 70° for $6 \mathrm{~h}(30 \%)$ [5202];
- with polyphosphoric acid at $100^{\circ}(8 \%)$ [5203];
- with titanium tetrachloride in chlorobenzene at 50° for $4 \mathrm{~h}(19 \%)$ [5200].
- Also obtained by diazotization of p-aminodeoxybenzoin [5235].
- Also obtained (poor yield) by heating phenyl phenylacetate with or without 20% of Bleicherde for 9 h at 200° [5204].
- Also obtained by photo-Fries rearrangement of phenyl phenylacetate in the presence of α - or β-cyclodextrin in organic solvents [5206].
- Also refer to: [5236-5247].
$\begin{array}{ll}\text { m.p. } & 151^{\circ} \quad[5198,5199], 149^{\circ} \text { [5231], } 148^{\circ} \text { [5209], } 146-147^{\circ} \text { [5228], } \\ & 145-147^{\circ} \text { [5200], }\end{array}$
144° [5230,5248], 143° [5232], 142° [5195,5196,5229,5233], 141° [5204], $139-142^{\circ}$ [5234], 129° [5235].
There is discrepancy between the different melting points.
b.p. $220-230^{\circ}$ [5231]; IR [5195,5199], UV [5195,5199,5230,5248].

1-(2,3-Dihydroxyphenyl)-2-phenylethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 228.25
Syntheses

- Preparation by total demethylation of 2,3-dimethoxy-desoxybenzoin (yellow oil, b.p. $170-173^{\circ}$) with hydrobromic acid ($\mathrm{d}=1.5$) in refluxing acetic acid for $5 \mathrm{~h}(74 \%)$ [5199].
- Also obtained by alkaline degradation of 8-hydroxyisoflavone (m.p. 222-224 ${ }^{\circ}$) with sodium hydroxide in refluxing methanol for 1.5 h [5199].
m.p. $79-81^{\circ}$ [5199]; paper chromatography [5199].

1-(2,4-Dihydroxyphenyl)-2-phenylethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by Friedel-Crafts acylation of resorcinol with phenylacetyl chloride in the presence of aluminium chloride,
- in methylene chloride (85\%) [5184];
- in nitrobenzene at $70-80^{\circ}$ for $15 \mathrm{~min}(<80 \%)$ [5249], at r.t. for $24 \mathrm{~h}(63 \%)$ [5250] or for 2 days (60\%) [5175];
- in ethyl ether at r.t. for 24 h (43\%) [5251].
- Preparation by acylation of resorcinol with phenylacetyl chloride in boiling ethylene dichloride $\left(84^{\circ}\right)$, using a series of clay based catalysts (KSF, KSF/0, KP10, K10, K0, KS) (65-81\%) [5252], (60\%) [5253].
- Preparation by reaction of phenylacetic anhydride with resorcinol,
- in the presence of concentrated sulfuric acid as catalyst at 130° for some minutes (60\%) [5254];
- in the presence of boron trifluoride etherate for 2.5 h at $70-75^{\circ}(48 \%)$ [5255].
- Preparation by reaction of phenylacetic acid with resorcinol,
- in the presence of boron trifluoride etherate under argon on a water bath for 1 h (89\%) [5208];
- in the presence of boron trifluoride at $105-108^{\circ}$ for 15 min , followed by hydrolysis of the obtained boron difluoride chelate (m.p. 154-155 $) ~(78 \%)$ [5256] or at 90° for 1 h (66\%) [5257];
- in the presence of boron trifluoride in chloroform (87\%) [5258];
- in the presence of zinc chloride (Nencki reaction) at 120° for $2.5 \mathrm{~h}(70 \%)$ [5175], at $125-135^{\circ}$ [5259], at 140° for $15 \mathrm{~min}(10 \%)$ [5249] or at $145-150^{\circ}$ for 2 h [5230];
- in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (50\%) [5209];
- in the presence of 70% perchloric acid at 150° for $30 \mathrm{~min}(30 \%)$ [5260];
- in the presence of Amberlite IR-120, a cation exchange resin sulfonic acid type, at 160° for $2-3 \mathrm{~h}(41 \%)$ [5261].
N.B.: Zeokarb 225 was found to be as effective.
- Preparation by reaction of phenylacetonitrile with resorcinol (Hoesch reaction) [5262-5265], (64\%) [5266], (58\%) [5267], (40\%) [5268].
- Also obtained by heating 2-phenyl-4-benzylidene-7-hydroxy-[4H]-1-benzopyran (SM) with refluxing aqueous sodium hydroxide for 1 h . SM was obtained by condensation of 1,4-diphenyl-1,3-butanediol with resorcinol in acetic acid [5269].
- Also obtained by degradation of 7-hydroxy-2-methyl-3-phenylchromone (m.p. 244-246 ${ }^{\circ}$) with refluxing 5\% aqueous sodium hydroxide for 3 h [5175].
- Also obtained by treatment of ethyl (2,4-dimethoxybenzoyl)phenylacetate with boiling pyridinium chloride (ca. 220°) for $20 \mathrm{~min}(48 \%)$ [5212].
- Also refer to: [4685,4935,5181,5205,5216,5217,5220,5270-5282].
N.B.: Complexes with Mn (II), Co (II), Ni (II) and Hg (II) [5224].

```
m.p. 116 [5230,5248], 115-1160 [5175,5283],
    115 [5250,5257,5258,5260,5262,5269], 114-1160 [5261],
    114-115 [5254,5264,5275], 114 [5249,5284], 113-115* [5256], 113-
    114* [5251], 113 [5209], 110-113 [5212];
b.p. }\mp@subsup{}{10}{}220-22\mp@subsup{5}{}{\circ} [5259]
'1H NMR [5268], IR [5256], UV [5230,5248,5256,5264], MS [5268].
```


1-(2,5-Dihydroxyphenyl)-2-phenylethanone

(52122-86-8]

- mith hydrobromic acid in acetic acid, first at 0°, then at reflux for 6 h
[5285].
- Also obtained by Friedel-Crafts acylation of hydroquinone with phenylacetyl chloride in the presence of aluminium chloride in nitrobenzene, keeping overnight, then on a water bath for 3 h [5285] or at $70-80^{\circ}$ for 15 min [5249].
- Also obtained by acylation of hydroquinone with phenylacetic acid,
- in the presence of boron trifluoride etherate under argon on a water bath for 6 h (68\%) [5208];
- in the presence of boron trifluoride (saturation) at 125° for $1.5 \mathrm{~h}(56 \%)$ [5257];
- in the presence of zinc chloride at 150° [5249] (Nencki reaction).
- Also refer to: [5286].
m.p. 170° [5249], 113° [5285], 112° [5257], $109^{\circ} 5$ [4989].

One of the reported melting points is obviously wrong.

1-(2,6-Dihydroxyphenyl)-2-phenylethanone

[13936-92-0]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Obtained by treatment of 3,5-dicarbomethoxy-2,6-di-hydroxyphenyl benzyl ketone (m.p. 129-131),
- with boiling 10% alcoholic caustic soda for 3 h . The obtained dicarboxylic acid was decarboxylated by boiling with water for $3 \mathrm{~h}(75 \%)$ [5287];
- with refluxing 4% methanolic potassium hydroxide for 4 h , followed by refluxing 12 h in water (35\%) [5288].
- Also refer to: [5217,5258]. m.p. $\quad 170^{\circ}$ [5287], $166-167^{\circ}$ [5288].

1-(3,4-Dihydroxyphenyl)-2-phenylethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Preparation by reaction of phenylacetic acid with pyrocatechol,
- in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (60\%) [5209];
- in the presence of phosphorous oxychloride for 2 h at 90-100́ (59\%) [5234];
- in the presence of boron trifluoride in chloroform, first at 10°, then at r.t. overnight (36%) [5289];
- in the presence of zinc chloride at $140-150^{\circ}$ (Hoesch reaction) [5249].
- Also obtained by total demethylation of 3,4-dimethoxydesoxybenzoin (m.p. $87-88^{\circ}$) with hydrobromic acid $(\mathrm{d}=1.5)$ in refluxing acetic acid for 5 h [5289].
m.p. $173-174^{\circ}$ [5289], 173° [5209,5249], 168- 170° [5234].

2-Phenyl-1-(2,3,4-trihydroxyphenyl)ethanone

[22761-00-8]	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
H	Syntheses
	- Obtained by reaction of phenylacetic acid with pyrogallol,
	- in the presence of zinc chloride at 150° for 30 min (Nencki reaction) [5230], (52\%)
	[5290] or at 120° for $2.5 \mathrm{~h}(60 \%)$ [5175];

- in the presence of Amberlite IR-120 cation exchange resin (sulfonic acid type) at 160° for $2-3 \mathrm{~h}(34 \%)$ [5261]. N.B.: Zeokarb 225 was found to be as effective;
- in the presence of 70% perchloric acid at 150° for $30 \mathrm{~min}(25 \%)$ [5260];
- in the presence of boron trifluoride in chloroform, first in ice cooling, then at r.t. overnight (96\%) [5258].
- Also obtained by Friedel-Crafts acylation of pyrogallol,
- with phenylacetyl chloride in nitrobenzene in the presence of aluminium chloride at r.t. for 2 days (50\%) [5175];
- with phenylacetic anhydride in the presence of boron trifluoride etherate for 2.5 h at $75-80^{\circ}$ (26\%) [5255].
- Also refer to: [5220,5272,5277].

$$
\begin{array}{ll}
\text { m.p. } & 147^{\circ}[5260], 144-145^{\circ}[5175], 141-142^{\circ}[5290], \\
& 140-141^{\circ}[5230,5248,5258], 135-136^{\circ}[5261] .
\end{array}
$$

2-Phenyl-1-(2,4,5-trihydroxyphenyl)ethanone

[787-06-4] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
 Syntheses

- Obtained by reaction of phenylacetonitrile with hydroxy-hydroquinone (Hoesch reaction) (43\%) [5291].
- Also refer to: [5292].
m.p. 208-210 ${ }^{\circ}$ [5291]; ${ }^{13} \mathrm{C}$ NMR [5293].

2-Phenyl-1-(2,4,6-trihydroxyphenyl)ethanone

[727-71-9]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Syntheses

- Preparation by reaction of phenylacetonitrile with phloroglucinol (Hoesch reaction),
- in the presence of zinc chloride [4852,5262,5264,5265], (44-45\%) [5250,5294], (39\%) [5255];
- in the presence of boron trifluoride etherate (50\%) [5255].
- Also obtained by reaction of phenylacetic acid with phloroglucinol in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (50\%) [5209].
- Also refer to: [5217,5220,5263,5272,5273,5295,5296].
N.B.: Complexes with Mn (II), Co (II) Ni (II) and Hg (II) [5224].

The monohydrate of this ketone was at first obtained [5250,5262]. The water of crystallisation is lost on heating the crystals at 90°.
m.p. $164-165^{\circ}$ [5264], 163° [5209], 162° [5250,5262,5294];

IR [5294], UV [5264,5294]; TLC [5294].

1-(4-Amino-3-hydroxyphenyl)-2-phenylethanone

[54903-53-6]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 227.26
Syntheses

- Preparation from 6-phenylacetyl-benzoxazolinone by alkaline hydrolysis with boiling 10% aqueous sodium hydroxide solution for 4 h (90-100\%) [5297].
- Also refer to: [5298]. m.p. $141-142^{\circ}$ [5297].

1-(3-Amino-4,5-dihydroxyphenyl)-2-phenylethanone

[473790-02-2]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 243.26
Synthesis

- Preparation by hydrogenation of 1-(3,4-dihydroxy-5-nitro-phenyl)-2-phenylethanone in methanolic suspension in the presence of 10% Pd / C at r.t. for $2 \mathrm{~h}(91 \%)$ [5299].
m.p. 234-237 [5299];
${ }^{1} \mathrm{H}$ NMR [5299], ${ }^{13} \mathrm{C}$ NMR [5299], IR [5299].

1-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl)-2-phenylethanone

[19816-38-7]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{3}$
mol.wt. 400.07
Syntheses

- Obtained by alkaline degradation of two substituted isoflavones with 10% sodium hydroxide in refluxing ethanol for 4 h ,
- from 6,8-dibromo-7-methoxyisoflavone (m.p. 139 $) ~(92 \%) ~[5176] ;$
- from 2,6,8-tribromo-7-methoxyisoflavone (m.p. 218 ${ }^{\circ}$ [5176].
m.p. 120° [5176].

1-(2-Hydroxy-3,5-diiodo-4-methoxyphenyl)-2-phenylethanone

- Also obtained by iodination of benzyl 2-hydroxy-3-iodo-4-methoxyphenyl ketone with iodine and iodic acid in ethanol at $60-70^{\circ}$ overnight [5176].
m.p. 140° [5176].

1-(3-Bromo-2-hydroxy-4-methoxyphenyl)-2-phenylethanone

1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-phenylethanone

[92435-54-6]

m.p. 112° [5180].
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 260.72
Synthesis

- Preparation by Friedel-Crafts acylation of 4-chloro-3-methylphenol with phenylacetyl chloride in nitrobenzene in the presence of aluminium chloride [5180].

1-(2-Chloro-6-hydroxy-4-methoxyphenyl)-2-phenylethanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 276.72
Syntheses

- Obtained by Friedel-Crafts reaction of 1-chloro-3,5-di-methoxybenzene with phenylacetyl chloride in the presence of aluminium chloride and zinc chloride in ethylene dichloride between -10° and -7°, then at r.t. for 1 h and subsequent demethylation at 70° for $1 \mathrm{~h}(47 \%)$ [5300].
- Also refer to: $[5301,5302]$.
m.p. $123-125^{\circ}$ [5300]; ${ }^{1} \mathrm{H}$ NMR [5300], IR [5300].

1-(4-Chloro-2-hydroxy-6-methoxyphenyl)-2-phenylethanone

- Also refer to: [5302].
m.p. $74-75^{\circ}$ [5300]; ${ }^{1} \mathrm{H}$ NMR [5300], IR [5300].

1-(2-Hydroxy-3-iodo-4-methoxyphenyl)-2-phenylethanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3} \quad$ mol.wt. 368.17
 Syntheses

- Obtained by alkaline degradation of 8-iodo-7-methoxy-isoflavone (m.p. 169°) with 10% sodium hydroxide in refluxing ethanol for $4 \mathrm{~h}(81 \%)$ [5176].
- Also obtained by Friedel-Crafts acylation of 2-iodoresorcinol dimethyl ether with phenylacetyl chloride in nitrobenzene in the presence of aluminium chloride and heating for 2 h [5176].
m.p. 217° [5176].

1-(2-Hydroxy-5-methyl-3-nitrophenyl)-2-phenylethanone

[70978-50-6]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$
mol.wt. 271.27

Synthesis

- Obtained by nitration of 2-hydroxy-5methylphenyl benzyl ketone,
- using standard reagents at $-20^{\circ}(81 \%)$ [4699];
- with fuming nitric acid in acetic acid/methylene chloride at r.t. [4700].
m.p. $80-82^{\circ}[4699,4700]$.

1-(3-Hydroxy-4-methoxy-5-nitrophenyl)-2-phenylethanone

[473789-93-4] \quad\begin{tabular}{l}
Synthesis

- Obtained by partial methylation of 1-(3,4-
dihydroxy-5-nitrophenyl)-2-phenyletha-
none with dimethyl sulfate in the presence
of potassium carbonate in DMF for 1 h at
$80^{\circ}(25 \%)$ [5299].

\end{tabular}

m.p. $121-123^{\circ}$ [5299]; ${ }^{1} \mathrm{H}$ NMR [5299], ${ }^{13} \mathrm{C}$ NMR [5299], IR [5299].

1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-phenylethanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$
mol.wt. 287.27
Synthesis

- Preparation by treatment of 1-(4-hydroxy-3-methoxy-phenyl)-2-phenylethanone with 70% nitric acid in acetic acid at r.t. for $30 \mathrm{~min}(72 \%)$ [5192], (71\%) [5193].
m.p. $129-130^{\circ}$ [5193];
${ }^{1} \mathrm{H}$ NMR [5193], ${ }^{13} \mathrm{C}$ NMR [5193].

1-(2-Hydroxy-3-methylphenyl)-2-phenylethanone

[7294-92-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses

- Obtained by Fries rearrangement of o-cresyl phenylacetate,
- in the presence of aluminium chloride,
- without solvent at $160-180^{\circ}$ for 30 min (53\%) [5303], at 140° for 3 h (45%) [5196,5304] or at 130° for $4 \mathrm{~h}(12 \%)$ [5305];
- in nitrobenzene at 60° for 4 h (10\%) [5201];
- with alumina in methanesulfonic acid at 160° for $10 \mathrm{~min}(15 \%)$ [5306].
- Also obtained by Friedel-Crafts acylation of o-cresol with phenylacetic acid in the presence of alumina in methanesulfonic acid at 140° for 5 min (12%) [5306].
- Also obtained by photo-Fries rearrangement of o-tolyl phenylacetate,
- in the presence of α - or β-cyclodextrin in organic solvents [5206];
- included in a Nafion membrane at r.t. for 7 h (quantitative yield) [5207].
- Also refer to: [5307].
m.p. 44° [5196,5304]; b.p. $176-180^{\circ}$ [5303];

IR [5196,5304], UV [5196,5304]; GC [5207]; GC-MS [5207].

1-(2-Hydroxy-4-methylphenyl)-2-phenylethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 226.27 Syntheses

- Preparation by Fries rearrangement of m-cresyl phenylacetate,
- with aluminium chloride,
- without solvent, for 3 h at 140° (50\%) [5197,5304];
- starting in carbon disulfide and, after solvent elimination, for 1 h at $60-70^{\circ}$, then 24 h at r.t. (77\%) [5308];
- in nitrobenzene for 4 h at $60^{\circ}(65 \%)$ [5201] or in refluxing nitromethane for $3 \mathrm{~h}(49 \%)$ [5305];
- with alumina in methanesulfonic acid for 15 min at 160° (90\%) [5306].
- Preparation by direct acylation of m-cresol with phenylacetic acid,
- with boron trifluoride for 2 h at 90° (93%) [5233];
- with alumina in methanesulfonic acid for 5 min at 120° (83\%) [5306].
- Also obtained by hydrolysis of 2-difluoroboryloxy-4-methylphenyl benzyl ketone (SM) (m.p. $125-126^{\circ}$) with refluxing dilute ethanol for $15-20 \mathrm{~min}$. SM was prepared by action of phenylacetic acid with m -cresol in the presence of boron trifluoride etherate for 30 min at $125-130^{\circ}$ (50\%) [5309].
m.p. $52-53^{\circ}$ [5309], 49° [5308], $32-33^{\circ}$ [5233].

One of the reported melting points is obviously wrong.
b.p. 164° [5197,5304], b.p. $170-175^{\circ}$ [5233], b.p. ${ }_{17} 218^{\circ}$ [5308];

IR [5309], UV [5309].

1-(2-Hydroxy-5-methylphenyl)-2-phenylethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses

- Preparation by Fries rearrangement of p-cresyl phenylacetate with aluminium chloride (68\%) [5310],
- without solvent at $120-140^{\circ}$ for $20 \mathrm{~min}(82 \%)$ [5303], at $130-135^{\circ}$ for $30 \mathrm{~min}(80 \%)$ [5311] or at $130-140^{\circ}$ for 3 h (14%) [5312];
- in nitrobenzene at r.t. for $48 \mathrm{~h}(80 \%)$ [5195-5197] or at 60° for 4 h (64%) [5201];
- in 1,2,4-trichlorobenzene at reflux for $30 \mathrm{~min}(78 \%)$ [5188];
- in chlorobenzene at reflux for $4 \mathrm{~h} \mathrm{(23} \mathrm{\%)} \mathrm{[5305]} \mathrm{or} \mathrm{for} 30 \mathrm{~min}(86 \%)$ [5188].
- Preparation by Friedel-Crafts acylation of p-cresol with phenylacetic acid,
- in the presence of boron trifluoride at 80° for $2 \mathrm{~h}(89 \%)$ [5233];
- in the presence of zinc chloride [5313].
- Also obtained by Friedel-Crafts acylation of p-cresol methyl ether with phenylacetyl chloride in the presence of aluminium chloride, first in refluxing carbon disulfide for 5 h , then, after solvent elimination, at $120-130^{\circ}$ for $5 \mathrm{~h}(54-61 \%)$ [5314].
- Also obtained by photo-Fries rearrangement of p-tolyl phenylacetate,
- in the presence of α - or β-cyclodextrin in organic solvents [5206];
- included in a Nafion membrane, at r.t. for 7 h (quantitative yield) [5207].
- Also obtained by reaction of N -diethylaniline with α-bromo-2-hydroxy-5methyldeoxybenzoin [5314].
- Also refer to: [5315].

```
m.p. 65-6\mp@subsup{6}{}{\circ} [5188,5312], 65 [5195-5197,5314], 64 [5233], 635-65`
    [5310], 63` [5311,5313], 54-58} [5303];
b.p.7}169-17\mp@subsup{4}{}{\circ}[5303], b.p.0.6 170 [5233], b.p. . 195-199 [5311],
b.p. }\mp@subsup{}{13-14}{210-213}\mp@subsup{}{}{\circ}\mathrm{ [5314]; GC [5207]; GC-MS [5207];
IR [5195-5197], UV [5195-5197].
```


1-(2-Hydroxy-6-methylphenyl)-2-phenylethanone

[137937-39-4]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Synthesis

- Obtained (by-product) by Fries rearrangement of m -tolyl phenylacetate with aluminium chloride in chlorobenzene at 140° for 4 h (5\%) [5307].
m.p. 85° [5307];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 57893$ M) [5307],
IR (Sadtler: standard $n^{\circ} 84941$ K) [5307], UV [5307], MS [5307].

1-(4-Hydroxy-2-methylphenyl)-2-phenylethanone

[3669-50-9] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Syntheses

- Obtained by reaction of phenylacetyl chloride with m -cresol in the presence of aluminium chloride in nitrobenzene for 30 min in a boiling water bath (26\%) [5316].
- Also obtained by reaction of phenylacetic acid with m-cresol,
- in the presence of boron trifluoride at 90° for $2 \mathrm{~h} \mathrm{(3} \mathrm{\%)} \mathrm{[5233];}$
- in the presence of zinc chloride at reflux $\left(200^{\circ}\right)$ for $1 \mathrm{~h}[5316,5317]$.
- Also obtained by Fries rearrangement of m-cresyl phenylacetate with aluminium chloride,
- in refluxing chlorobenzene for 4 h (24\%) [5305];
- in nitromethane or in nitroethane at r.t. for $12 \mathrm{~h}(18-21 \%)$ [5202];
- in nitrobenzene at 60° for $4 \mathrm{~h}(10 \%)$ [5202], (8%) [5201] or at r.t. for 10 h (10\%) [5202];
- without solvent at 140° for $3 \mathrm{~h}(10 \%)$ [5304] or first in carbon disulfide, then after elimination of the solvent, at $60-70^{\circ}$ for 1 h and at r.t. for $24 \mathrm{~h}(2 \%)$ [5308].
m.p. 142° [5316], $138-139^{\circ}$ [5233], 138° [5304,5308].

1-(4-Hydroxy-3-methylphenyl)-2-phenylethanone

[7354-81-6] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
 Syntheses

- Preparation by Fries rearrangement of o-cresyl phenylacetate with aluminium chloride,
- in nitroethane at r.t. for 12 h (73\%) [5202];
- in nitrobenzene at 60° for $4 \mathrm{~h}(72 \%)$ [5201] or at 50° for 4 h (60\%) [5305];
- in refluxing chlorobenzene for $4 \mathrm{~h}(58 \%)$ [5305];
- in refluxing nitromethane for $4 \mathrm{~h} \mathrm{(21} \mathrm{\%)} \mathrm{[5305];}$
- without solvent at 130° for $4 \mathrm{~h}(49 \%)$ [5305] or at 140° for $3 \mathrm{~h}(30 \%)$ [5196,5304].
- Preparation by Fries rearrangement of o-cresyl phenylacetate with alumina in methanesulfonic acid for 10 min at 160° (85\%) [5306].
- Also obtained by photo-Fries rearrangement of o-cresyl phenylacetate in the presence of α - or β-cyclodextrin in organic solvents [5206].
- Also obtained by reaction of phenylacetic acid with o-cresol,
- in the presence of alumina in methanesulfonic acid at 140° for $5 \min (88 \%)$ [5306];
- in the presence of aluminium chloride in nitrobenzene in a water bath for $1-5 \mathrm{~h}-1.25 \mathrm{~h}$ (60-70\%) [5317];
- in the presence of zinc chloride at reflux (180-200) [5318], (<20\%) [5317] (Nencki reaction).
- Also refer to: [5307].

```
m.p. 156}[5196,5304], 152 [5317]
IR [5196,5304], UV [5196,5304].
```


1-(2,4-Dihydroxy-3-methylphenyl)-2-phenylethanone

[39581-98-1]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by demethylation of 2-hydroxy-4-methoxy-3-methylphenyl benzyl ketone with hydriodic acid in refluxing acetic anhydride (125-135) for 2 h (64\%) [5319].
- Also obtained by reaction of phenylacetic acid with 2-methylresorcinol in the presence of phosphorous oxychloride and zinc chloride, heating on a water bath for $3 \mathrm{~h}(45 \%)$ [5320].
- Also obtained by reaction of phenylacetonitrile with 2-methylresorcinol (Hoesch reaction) [5321].
- Also refer to: [5279,5322].
m.p. 178° [5320], $157-159^{\circ}$ [5319,5321].

One of the reported melting points is obviously wrong.

1-(2,4-Dihydroxy-5-methylphenyl)-2-phenylethanone

[106737-29-5]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by reaction of phenylacetonitrile with 4-methyl-resorcinol (Hoesch reaction) [5323].
- Also obtained by demethylation of 4-hydroxy-2-methoxy-5-methylphenyl benzyl ketone with aluminium chloride in refluxing benzene for 4 h (74\%) [5324].
m.p. $98-99^{\circ}$ [5323], 96° [5324].

1-(2,4-Dihydroxy-6-methylphenyl)-2-phenylethanone

[55338-29-9]

- Also refer to: [5325,5326]. m.p. 148° [5180].

1-(2,6-Dihydroxy-3-methylphenyl)-2-phenylethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27
Synthesis

- Obtained by treatment of 5-carbomethoxy-

2,6-dihydroxy-3-methyldeoxybenzoin (m.p. $168-170^{\circ}$) with potassium hydroxide in refluxing dilute ethanol for $4 \mathrm{~h}(38 \%)$ [5327].
m.p. $135-136^{\circ}$ [5327].

1-(2-Hydroxy-3-methoxyphenyl)-2-phenylethanone

- Also obtained (by-product) by reaction of phenylacetic acid with guaiacol in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (5\%) [5209].
m.p. $165-168^{\circ}$ [5209], $78-79^{\circ}$ [5328]. One of the reported melting points is obviously wrong. UV [5209].

1-(2-Hydroxy-4-methoxyphenyl)-2-phenylethanone

[18439-96-8] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by Friedel-Crafts acylation of orcinol with phenylacetyl chloride in nitrobenzene in the presence of aluminium chloride [5180].

Syntheses

- Preparation from 2-acetoxy-3-methoxybenzonitrile and benzylmagnesium chloride (75-90\%) [5328].

Syntheses

- Preparation by partial methylation of 2,4-dihydroxyphenyl benzyl ketone [5265],
- with methyl iodide in the presence of potassium carbonate in refluxing acetone for 3 h (85%) [5250] or for 12 h (91\%) [5284];
- with methyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [5329];
- with dimethyl sulfate,
- in the presence of potassium carbonate in boiling benzene for 90 min (51\%) [5330] or in boiling acetone [4935];
- in the presence of alkali in boiling ethanol [5331].
- Also obtained by Friedel-Crafts acylation of resorcinol dimethyl ether with phenylacetyl chloride in the presence of aluminium chloride in boiling carbon disulfide for $1 \mathrm{~h}(50 \%)$ [5332] or in boiling ethyl ether (33\%) [5333].
- Also obtained by acylation of resorcinol monomethyl ether with phenylacetic acid in the presence of polyphosphoric acid at 95° for $30 \mathrm{~min}(40 \%)$ [5334].
- Also obtained by degradation of 4-hydroxy-7-methoxy-3-phenylcoumarin with refluxing 30\% ethanolic hydrogen chloride (45\%) [5210].
- Also obtained from 4,7-dimethoxy-3-phenylcoumarin on heating with 5% aqueous sodium hydroxide for 2 h on a water bath (71\%) [5335].
- Also obtained by hydrolysis of ethyl 2,4-dimethoxybenzoyl-phenylacetate (m.p. $76-77^{\circ}$) in acetic acid with concentrated hydrochloric acid on a steam bath for $15 \mathrm{~h}(68 \%)$ [5211].
- Also obtained by hydrolysis of 2,4-dimethoxybenzoyl-phenylacetonitrile (m.p. $108-109^{\circ}$) in acetic acid with concentrated hydrochloric acid on a steam bath for 15 h (47\%) [5211].
- Also obtained by condensation of phenylacetonitrile with resorcinol monomethyl ether (Hoesch reaction) (23\%) [5336].
- Also refer to: [4935,5215,5216,5222,5270,5273,5277,5278,5337-5340]. m.p. 92° [5332], 90° [5284,5331,5336], 88-89ㅇ [5211], 88° [5250,5330], $87-88^{\circ}$ [5335], $86-87^{\circ}$ [5329], 86° [5210], 75° [5334].
One of the reported melting points is obviously wrong. b.p. ${ }_{0.001} 155-165^{\circ}$ [5211]; ${ }^{1} \mathrm{H}$ NMR [5341,5337].

1-(2-Hydroxy-5-methoxyphenyl)-2-phenylethanone

[80427-38-9]	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
OH	Syntheses
	- Preparation by Fries rearrangement of p-methoxyphenyl phenylacetate with titanium tetrachloride at 120° for $1 \mathrm{~h}(60-74 \%)$ [5342].
OCH_{3}	- Also obtained by Friedel-Crafts acylation of hydroquinone dimethyl ether with phenylacetyl chloride in the presence of aluminium chloride,

- in carbon disulfide at r.t. for 1 h (by-product) [5343];
- in refluxing ethyl ether for 8 h [5344], (43\%) [5217].
- Also obtained (poor yield) by partial degradation of 6-methoxy-3-phenyl-4-hydroxycoumarin with 30% ethanolic hydrogen chloride at reflux for 1 h [5210].
- Also refer to: [5345,5346].
m.p. 45° [5217], 44° [5342]; IR [5342], UV [5342].

1-(2-Hydroxy-6-methoxyphenyl)-2-phenylethanone
 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Syntheses

- Obtained by partial methylation of benzyl 2,6-dihy-droxy-phenyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone [5217].
- Also obtained on heating 3-(6-methoxy-2-tosyloxyphenyl)-3-oxo-2-phenylpropanal (m.p. 137-138) with ethanolic potassium hydroxide (2N) at reflux for 2 h (88\%) [5347].
m.p. 71° [5347], 66° [5217]; IR [5347].

1-(3-Hydroxy-4-methoxyphenyl)-2-phenylethanone

[58451-99-3] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Syntheses

- Preparation from 2-methoxy-5-(phenylacetyl)phenyl phenylacetate (SM) with refluxing methanolic potassium hydroxide (91\%) [5348]. SM was obtained by acylation of 2-methoxyphenyl phenylacetate with phenylacetyl chloride in the presence of stannic chloride in nitromethane for 1 h at $20^{\circ}\left(76 \%\right.$, m.p. $\left.95^{\circ}\right)$.
- Preparation from 3-benzyloxy-4-methoxybenzonitrile and benzylmagnesium chloride (75-90\%) [5328].
- Preparation by treatment of 3-benzyloxy-4-methoxyphenyl benzyl ketone (SM) with a mixture of concentrated hydrochloric acid and acetic acid ($1: 2 \mathrm{v} / \mathrm{v}$) and heating at 70° for 1 h (69\%) [5349]. SM was obtained by oxidation of 1-(3-benzyloxy-4-methoxyphenyl)-2-phenylethanol (m.p. 79-82 ${ }^{\circ}$) with potassium dichromate in dilute sulfuric acid at 50° for $1 \mathrm{~h}\left(80 \%\right.$, m.p. $\left.105-106^{\circ}\right)$.
m.p. $106-107^{\circ}$ [5328,5349], 101° [5348];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 28214 \mathrm{M}$) [5349],
IR (Sadtler: standard n° 55286) [5348], UV [5348], MS [5349].
1-(4-Hydroxy-2-methoxyphenyl)-2-phenylethanone
[85288-47-7]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses
- Obtained by acylation of resorcinol monomethyl ether with phenylacetic acid in the presence of polyphosphoric acid at 95° for 30 min (30%) [5334].
- Also obtained (by-product) by condensation of phenylacetonitrile with resorcinol monomethyl ether (Hoesch reaction) (7\%) [5336].
m.p. 113° [5336], 86° [5334].

One of the reported melting points is obviously wrong.
b.p. ${ }_{13} 260-265^{\circ}$ [5336]; ${ }^{1} \mathrm{H}$ NMR [5334,5341].

1-(4-Hydroxy-3-methoxyphenyl)-2-phenylethanone
[66476-02-6] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Syntheses

- Preparation by oxidation of 1-(4-hydroxy-3-methoxy-phenyl)-2-phenylethanol with DDQ in dioxane at r.t. for 16 h (89%) [5177].
- Preparation by reaction of benzylmagnesium chloride with 4-acetoxy-3-methoxybenzonitrile (72\%) [5350].
- Preparation by reaction of phenylacetic acid with guaiacol in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (60\%) [5209].
- Preparation from 1-(4-benzyloxy-3-methoxyphenyl)-2-phenylethanone (m.p. $136-138^{\circ}$) by catalytic hydrogen transfer using ammonium formate as hydrogen donor and $10 \% \mathrm{Pd} / \mathrm{C}$ catalysis in refluxing methanol for 30 min (94\%) [5193].
N.B.: Na salt [5350].
m.p. $110-111^{\circ}$ [5350], $108-110^{\circ}$ [5177], 108° [5209], 106-108 ${ }^{\circ}$ [5193];
${ }^{1} \mathrm{H}$ NMR [5177,5193], ${ }^{13} \mathrm{C}$ NMR [5193], UV [5209].

1-(2,4-Dihydroxy-5-methoxyphenyl)-2-phenylethanone

[79744-57-3]

Syntheses

- Refer to: [5293,5351].
${ }^{13}$ C NMR [5293].

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-phenylethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Obtained by reaction of phenylacetonitrile with phloro-glucinol monomethyl ether (Hoesch reaction) (38\%) [5295].
- Preparation by tosylation of 2,4,6-trihydroxyphenyl benzyl ketone with p-toluenesulfonyl chloride in the presence of potassium carbonate in refluxing acetone for 4 h , followed by methylation with dimethyl sulfate (reflux 30 h) and final detosylation with refluxing ethanolic sodium hydroxide for 45 min (19\%) [5335].
- Also refer to: [5352].
m.p. 146° [5335], $145-146^{\circ}$ [5295].

1-(2,5-Dihydroxy-4-methoxyphenyl)-2-phenylethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27
Syntheses

- Obtained by partial methylation of 2,4,5-trihydroxyphenyl benzyl ketone with excess diazomethane in ethyl ether at r.t. overnight (47\%) [5291].
- Also obtained by alkaline oxidation of 2-hydroxy-4-methoxyphenyl benzyl ketone with potassium persulfate in aqueous potassium hydroxide/pyridine mixture (Elbs reaction) [5344].
- Also refer to: [5217].

```
m.p. 153-154` [5344], 150-152* [5291]; }\mp@subsup{}{}{13}\textrm{C}\mathrm{ NMR [5293].
```

2-Phenyl-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone
[3136-47-8]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Obtained by reaction of phenylacetonitrile with 2-methyl-phloroglucinol (Hoesch reaction) [5353].
- Also obtained by reduction of 2,4,6-trihydroxy-3-formyl-phenyl benzyl ketone with hydrogen in acetic acid using $5 \% \mathrm{Pd} / \mathrm{C}$ as catalyst [5354].
- Also refer to: [5296,5355,5356].
m.p. 200° [5353], $198-199^{\circ}$ [5354].

1-(3-Amino-2-hydroxy-5-methylphenyl)-2-phenylethanone

[70977-87-6] $\quad \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 241.29

Synthesis

- Preparation by hydrogenation of 2-hydroxy-5-methyl-3-nitrophenyl benzyl ketone in ethanol using $5 \% \mathrm{Pd} / \mathrm{C}$ as catalyst at atmospheric pressure [4700], (74\%) [4699].
m.p. $74-76^{\circ}$ [4699,4700].

1-[3-Hydroxy-4-(methylamino)phenyl]-2-phenylethanone

[54943-18-9] \quad\begin{tabular}{l}
Synthesis

- Preparation from 3-methyl-6-phenylacetyl-

benzoxazolinone by alkaline hydrolysis

with boiling 10\% aqueous sodium hydrox-

ide for $4 \mathrm{~h}(90-100 \%)$ [5297].
\end{tabular}

1-[2-(Ethenyloxy)-6-hydroxyphenyl]-2-phenylethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29

Synthesis

- Obtained (by-product) by reaction of diethylamin-ochloro-ethane with 2,6-dihydroxydesoxybenzoin in the presence of sodium ethoxide in refluxing ethanol for 4 h (6\%) [5357].
m.p. 85° [5357].

1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-phenylethanone

[145747-27-9]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28
Syntheses

- Obtained by selective deacetylation catalyzed by porcine pancreas lipase in THF at $42-45^{\circ}$ of,
- 1-acetoxy-1-(2,4-diacetoxyphenyl)-2-phenylethene during 72 h (20\%) [5265];
- 2,4-diacetoxyphenyl benzyl ketone during $48 \mathrm{~h}(65 \%)$ [5265] or $[5358,5359]$ (in the table below):

Lipase	Solvent	Time (h)	Yields (\%)
PPL	Acetone/n-BuOH	40	35
PPL	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{n}-\mathrm{BuOH}$	50	35
PPL	THF/n-BuOH	42	65
CCL	DIPE/n-BuOH	45	60

PPL $=$ porcine pancreas lipase; $\mathrm{CCL}=$ candida cylindracea lipase; DIPE = diisopropyl ether
m.p. 140° [5265]; TLC [5265];
${ }^{1} \mathrm{H}$ NMR [5265], ${ }^{13} \mathrm{C}$ NMR [5265], IR [5265], UV [5265], MS [5265].

1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-phenylethanone

[2652-17-7]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28

Synthesis

- Obtained by reaction of phenylacetonitrile with 3-methoxy-4,5-methylenedioxyphenol (Hoesch reaction) (24\%) [5360].
m.p. $162-164^{\circ}$ [5360]; UV [5360].

1-(3-Bromo-2-hydroxy-4,5-dimethoxyphenyl)-2-phenylethanone

1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone
[28750-55-2]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4} \quad$ mol.wt. 351.20
Syntheses

- Preparation by bromination of 2-acetoxy-4,6-dimethoxyphenyl benzyl ketone with bromine in acetic acid for 1 h at r.t. (69\%) [5215].
- Also obtained by bromination of 2-hydroxy-4,6-dimethoxyphenyl benzyl ketone with bromine in chloroform under UV light at r.t. overnight (55\%) [5294].
m.p 205-206º [5215], 200-202 [5294]; TLC [5294];
${ }^{1} \mathrm{H}$ NMR [5215,5297], IR [5294], UV [5294].

1-(2-Hydroxy-3,5-dimethylphenyl)-2-phenylethanone

[93433-76-2]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Syntheses

- Preparation by Fries rearrangement of 2,4-dimethylphenyl phenylacetate with aluminium chloride,
- without solvent for 15 min at $140-145^{\circ}(85 \%)$ [5362] or for 1 h at $120^{\circ}(56 \%)$ [5313];
- in refluxing chlorobenzene for 4 h (18\%) [5305].
b.p. ${ }_{0.01} 180-190^{\circ}$ [5362], b.p. ${ }_{10} 201-203^{\circ}$ [5313].

1-(2-Hydroxy-4,5-dimethylphenyl)-2-phenylethanone

[18439-99-1]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30 Syntheses

- Preparation by Fries rearrangement of 3,4-dimethylphenyl phenylacetate with aluminium chloride at 130° for $25 \mathrm{~min}(72 \%)$ [5363].
- Also obtained (poor yield) by treatment of 6,7-dimethyl-3-phenyl-4-hydroxycoumarin with refluxing 30% ethanolic hydrogen chloride for 1 h [5210]. m.p. $69-70^{\circ}$ [5363], 68° [5210]; ${ }^{1} \mathrm{H}$ NMR [5363], IR [5363].

1-(2-Hydroxy-4,6-dimethylphenyl)-2-phenylethanone

[38319-83-4]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Syntheses

- Preparation by Friedel-Crafts acylation of 3,5-dimethyl-anisole with phenylacetyl chloride in the presence of aluminium chloride, first for 1 h at r.t., then for 1 h at reflux (43%) [5364].
- Also obtained by Fries rearrangement of 3,5-dimethylphenyl phenylacetate with aluminium chloride for 30 min on a water bath (10\%) [5313].
b.p. $168-173^{\circ}$ [5364], b.p. ${ }_{20} 220-225^{\circ}$ [5313];
${ }^{1} \mathrm{H}$ NMR [5364], IR [5364]; $\quad \mathrm{n}_{\mathrm{D}}^{23.2}=1.5921$ [5364].

1-(4-Hydroxy-3,5-dimethylphenyl)-2-phenylethanone

[73049-13-5] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Syntheses

- Preparation by oxidation of 1-(4-hydroxy-3,5-dim-ethyl-phenyl)-2-phenylethanol with DDQ in dioxane at r.t. for 16 h (83\%) [5177].
- Preparation by Fries rearrangement of 2,6-dimethylphenyl phenylacetate with aluminium chloride in refluxing chlorobenzene for 4 h (74\%) [5305].
m.p. $\quad 117-118^{\circ}$ [5177]; ${ }^{1} \mathrm{H}$ NMR [5177].

1-(2-Ethoxy-4-hydroxyphenyl)-2-phenylethanone
[50775-90-1]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Syntheses

- Refer to: [5365,5366].

1-(4-Ethoxy-2-hydroxyphenyl)-2-phenylethanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Syntheses

- Obtained by partial ethylation of 2,4-dihydroxydeoxy-benzoin with ethyl iodide in the presence of potassium carbonate in boiling acetone during 3 h (68\%) [5250].
- Also refer to: [5357].
m.p. 86° [5250].

1-(5-Ethyl-2,4-dihydroxyphenyl)-2-phenylethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Syntheses

- Preparation by reaction of phenylacetonitrile with 4-ethyl-resorcinol,
- in the presence of boron trifluoride etherate (96\%) [5367,5371];
- in the presence of zinc chloride (Hoesch reaction) [5323].
m.p. $105-105^{\circ} 5$ [5323], $100-102^{\circ}$ [5367,5371]; ${ }^{1} \mathrm{H}$ NMR [5367].

1-(2-Hydroxy-4-methoxy-3-methylphenyl)-2-phenylethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30 Synthesis

- Obtained by reaction of methyl iodide with benzyl 2,4-di-hydroxyphenyl ketone in methanol in the presence of potassium hydroxide, first at 0°, then standing overnight and refluxing for 6 h (45\%) [5319].
- Also refer to: [5278,5338]. m.p. $110-111^{\circ}$ [5319].

1-(2-Hydroxy-4-methoxy-5-methylphenyl)-2-phenylethanone

1-(2-Hydroxy-4-methoxy-6-methylphenyl)-2-phenylethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Syntheses

- Obtained by condensation of phenylacetonitrile with orcinol monomethyl ether (1\%) (Hoesch reaction) [5336].
- Also obtained by reaction of phenylacetyl chloride with orcinol dimethyl ether in the presence of aluminium chloride [5369].
m.p. 110° [5336].

1-(2-Hydroxy-6-methoxy-3-methylphenyl)-2-phenylethanone

[15578-05-9]

m.p. $80-82^{\circ}$ [5327].
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Obtained by partial methylation of 2,6-dihy-droxy-3-methyldeoxybenzoin with dimethyl sulfate in the presence of potassium carbonate in boiling acetone (74\%) [5327].

1-(4-Hydroxy-2-methoxy-5-methylphenyl)-2-phenylethanone

[101169-10-2]

m.p. 129° [5324].
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Obtained by reaction of phenylacetonitrile with 4-methyl-resorcinol dimethyl ether (Hoesch reaction) [5324].

1-(4-Hydroxy-2-methoxy-6-methylphenyl)-2-phenylethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Obtained (poor yield) by condensation of phenylacetonitrile with orcinol monomethyl ether (7\%) (Hoesch reaction) [5336].
m.p. 93° [5336].

1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-phenylethanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 272.30
$$

Synthesis

- Obtained by reaction of phenylacetonitrile with 2,6-di-hydroxy-4-methoxytoluene (Hoe-sch reaction) (52\%) [5353].
m.p. $141-143^{\circ}$ [5353].

1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-phenylethanone

[24852-33-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Syntheses

- Obtained by Friedel-Crafts acylation of pyrogallol trimethyl ether with phenylacetyl chloride in the presence of aluminium chloride,
- in boiling carbon disulfide for $30 \mathrm{~min}(39 \%)$ [5370] or for 12 h [5344];
- in ice-cold ethyl ether, then at r.t. overnight (57\%) [5371].
- Also refer to: [5277,5293,5351,5372,5375].
m.p. 113-114 [5344], 112-113 ${ }^{\circ}$ [5370], 106-107 ${ }^{\circ}$ [5371]; ${ }^{13} \mathrm{C}$ NMR [5293].

1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-phenylethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Syntheses

- Obtained by partial methylation of benzyl 2,5-dihydroxy-4-methoxyphenyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone [5217].
- Also obtained (by-product) by reaction of phenylacetyl chloride with hydroxyhydroquinone trimethyl ether in the presence of aluminium chloride [5344,5377,5378].
- Also obtained by reaction of phenylacetonitrile with 3,4-dimethoxyphenol (Hoesch reaction) (56\%) [5379].
- Also obtained (compound 7c) [5380] according to the procedure [5291].
m.p. $94-95^{\circ}$ [5379], 94° [5377,5378], 93° [5217];
${ }^{13} \mathrm{C}$ NMR [5293], IR [5379], UV [5379], MS [5379].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Syntheses

- Obtained by partial methylation of benzyl 2,4,6-tri-hydroxyphenyl ketone [5265],
- with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [5294], for 1 h [5381], (69\%) [5250] or for 14 h (68\%) [5382];
- with methyl iodide in the presence of potassium carbonate in refluxing acetone for 6 h [5353].
- Also obtained by condensation of phenylacetonitrile with phloroglucinol dimethyl ether (Hoesch reaction) (28\%) [5383], (19\%) [5384].
- Also obtained by Friedel-Crafts acylation of phloroglucinol trimethyl ether with phenylacetyl chloride in ethyl ether in the presence of aluminium chloride, first in an ice bath for 30 min and then at r.t. for 24 h [5385].
- Also obtained from 4,5,7-trimethoxy-3-phenylcoumarin on heating with 5\% aqueous sodium hydroxide [5335].
- Also refer to: [4935,5215,5220,5273,5278,5295,5337,5338,5339,5340,5375,5380, 5386].
m.p. 118° [5384], $117-118^{\circ}[5385], 117^{\circ}[5250,5294,5383], 116^{\circ}[5353,5382]$, 115-116$~[5335] ;$
${ }^{1} \mathrm{H}$ NMR [5341], IR [5294], UV [5294]; TLC [5294].

1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-phenylethanone

[131196-74-2] \quad\begin{tabular}{l}
Syntheses

- Obtained (by-product) by condensation of pheny-

lacetonitrile with phloroglucinol dimethyl ether

(Hoesch reaction) [5383], (26\%) [5384].
\end{tabular}

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-phenylethanone

[73049-12-4]	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
OH	Synthesis
	- Preparation by oxidation of 1-(3,5-dimethoxy-4-hydroxy-phenyl)-2-phenylethanol with DDQ in dioxane at r.t. for $16 \mathrm{~h}(92 \%)$ [5177].
m.p. $117-118^{\circ}$ [5177];	${ }^{1} \mathrm{H}$ NMR [5177].

1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-2-phenylethanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 288.30
$$

Syntheses

- Preparation by condensation of 2,6-dime-thoxy-hydroquinone with the complex phenylacetic acid and boron trifluoride (83\%) [5387], (quantitative yield) [5388].
- Also obtained by saponification of 6-hydroxy-2,4-di-methoxy-3-(phenylacetoxy) phenyl benzyl ketone with 10% alcoholic potassium hydroxide for 2 h on a water bath [5387].
- Also obtained (poor yield) by persulfate oxidation of 2-hydroxy-4,6-dimethoxyphenyl benzyl ketone (Elbs reaction) (8\%) [5387].
yellow oil [5388]; m.p. 108° [5387]; b.p. $220-240^{\circ}$ [5387], b.p. ${ }_{1} 230-250^{\circ}$ [5388].

1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-2-phenylethanone

[38987-02-9]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31 Syntheses

- Obtained by Claisen rearrangement of 4-allyloxy-2-hydroxyphenyl benzyl ketone either using boiling dimethylaniline or heating up to $185-190^{\circ}$ under reduced pressure [5276].
- Also obtained by reaction of allyl bromide with 2,4-dihydroxydesoxybenzoin in the presence of methanolic potassium hydroxide (22\%) [5283].
- Also refer to: [5277].
m.p. $162-163^{\circ}$ [5283], 126° [5276]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [5283], IR [5283], UV [5283,5279].

1-[2,4-Dihydroxy-5-(2-propenyl)phenyl]-2-phenylethanone

m.p. $99-100^{\circ}$ [5276]; UV [5276].

1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-phenylethanone

[78660-73-8]

O-[3-Hydroxy-4-(phenylacetyl)phenyl] dimethylcarbamothioate
[142751-36-8]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S} \quad$ mol.wt. 315.39
Synthesis

- Obtained by stirring a mixture of 2,4-di-hydroxyphenyl benzyl ketone (1 mol), dimethylthiocarbamoyl chloride (2 mol), 1,4-diazabicyclo[2,2,2]octane $(2 \mathrm{~mol})$ and DMF at r.t. for 2 h (95\%) [5205].
m.p. $\quad 94-95^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

S-[3-Hydroxy-4-(phenylacetyl)phenyl] dimethylcarbamothioate

[142751-40-4]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S} \quad$ mol.wt. 315.39
Synthesis

- Obtained by refluxing a solution of O-[3-hydroxy-4-(phenylacetyl) phenyl] dimethylcarbamothioate [142751-36-8] in $\mathrm{N}, \mathrm{N}-$ dimethylaniline for 1 h (87%) (Newman-Kwart rearrangement) [5205].
m.p. $\quad 100-101^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

1-(2,4-Dihydroxy-5-propylphenyl)-2-phenylethanone

- in the presence of zinc chloride (Hoesch reaction) [5323].
m.p. $95-96^{\circ}$ [5323], $92-93^{\circ}$ [5367,5368]; ${ }^{1} \mathrm{H}$ NMR [5367].

1-[2-Hydroxy-4-(1-methylethoxy)phenyl]-2-phenylethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Syntheses

- Obtained by partial alkylation of benzyl 2,4-di-hydroxyphenyl ketone with isopropyl bromide in DMF in the presence of potassium carbonate (79\%) [5266].
- Also obtained by alkali degradation of ipriflavone (7-(1-methylethoxy)-3-phenyl-[4H]-1-benzo-pyran-4-one) (m.p. $115-117^{\circ}$) at high $\mathrm{pH}(\mathrm{pH}>9)$ (main degradation product) [5389].
- Also refer to: [5365,5366,5390,5391,5392].

1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-2-phenylethanone

[97714-79-9]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Syntheses

- Obtained by reaction of chloromethyl ethyl ether with benzyl 2,4dihydroxyphenyl ketone in acetone in the presence of potassium carbonate at r.t. for $15-45 \mathrm{~min}$ [5393].
- Also refer to: [5273].

1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-phenylethanone
[39604-67-6]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Syntheses

- Preparation by partial methylation of 2,4-dihydroxy-3-methyl-6-methoxyphenyl benzyl ketone with methyl iodide in the presence of potassium carbonate in boiling acetone for 4 h (82\%) [5353].
- Also obtained by O and nuclear methylations of 2,4,6-trihydroxyphenyl benzyl ketone with methyl iodide in the presence of potassium carbonate in refluxing acetone for 6 h (11\%) [5353].
- Also obtained by partial methylation of 2,4,6-trihydroxy-3-methylphenyl benzyl ketone with dimethyl sulfate or with an excess methyl iodide in the presence of potassium carbonate in refluxing acetone for 3 h [5353].
- Also obtained by reduction of 2-hydroxy-3-formyl-4,6-dimethoxyphenyl benzyl ketone with hydrogen in acetic acid using 5\% Pd/C as catalyst (90\%) [5354].
- Also refer to: [5381].
m.p. $153-155^{\circ}$ [5353], $153-154^{\circ}$ [5354].

1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-phenylethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Syntheses

- Obtained (poor yield) by reaction of phenylacetyl chloride with 4-hydroxy-2,6-dimethoxytoluene in ethyl ether in the presence of aluminium chloride for 3 days at r.t. (8\%) [5394].
- Also refer to: [5381].
m.p. 47-48 ${ }^{\circ}$ [5394]; IR [5394].

1-[4-(Ethoxymethoxy)-2,6-dihydroxyphenyl]-2-phenylethanone

[97714-81-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis

- Obtained by reaction of chloromethyl ethyl ether with benzyl 2,4,6trihydroxyphenyl ketone in acetone in the presence of potassium carbonate at r.t. for $15-45 \mathrm{~min}$ [5393].

1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-phenylethanone
[55742-64-8]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Obtained by reaction of phenylacetyl chloride with 1,2,3,5-tetramethoxybenzene in the presence of aluminium chloride,
- in nitrobenzene on a water bath for $6 \mathrm{~h}(13 \%)$ [5395].
- in ethyl ether for 8 h on a water bath [5344].
m.p. 89° [5395], $85-86^{\circ}$ [5344].

1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-phenylethanone

1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-phenylethanone
[145747-29-1]

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 328.32
Syntheses

- Obtained by regioselective enzyme-catalyzed deacetylation of benzyl 2,4,6-triacetoxyphenyl ketone in various solvents containing n -butanol with two different lipases at $42-45^{\circ}$ for 40 h ,
- using porcine pancreas lipase in acetone or in acetonitrile (40\%), in THF (70\%) [5358,5359], in diisopropyl ether (65\%) [5358];
- using candida cylindracea lipase in diisopropyl ether (40\%) [5359].
- Also obtained (small amount) by selective deacetylation of 1-acetoxy-1-(2,4,6-triacetoxyphenyl)-2-phenylethene (m.p. 67°) using porcine pancreas lipase in THF at $42-45^{\circ}$ for 72 h [5265].

1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]-2-phenylethanone

[39022-25-8]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 282.34 Synthesis

- Obtained by Claisen rearrangement of 4-allyloxy-2-methoxyphenyl benzyl ketone (m.p. 126-127 ${ }^{\circ}$) either using boiling dimethylaniline or heating up to 185$190^{\circ}$ under reduced pressure [5276].
m.p. $127-128^{\circ}$ [5276]; UV [5276].

1-[4-Hydroxy-3-methoxy-5-(2-propenyl)phenyl]-2-phenylethanone

$$
\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 282.34
$$

Synthesis

- Obtained by DDQ oxidation of 1-(3-allyl-4-hydroxy-5-methoxyphenyl)-2-phenylethanol in dioxane at r.t. for 16 h (88\%) [5177].
m.p. $\quad 140-142^{\circ}$ [5177]; ${ }^{1} \mathrm{H}$ NMR [5177].
N.B.: In the original paper-page 1600-[5177], the authors point out a registry N° [73049-14-6] for the title compound (4e) (benzyl 3-allyl-4-hydroxy-5-methoxyphenyl ketone) $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$. Nevertheless, the same registry number was assigned, undoubtedly by mistake, to 1-[4-hydroxy-3-methoxy-5-(2-propeny-loxy)phenyl]-2-phenylethanone $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$, Chem. Abstr., Formula Index 92, 215017w (1980). Actually, this ketone is not represented in [5177]. The assigning of this registry number for the ketone $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$ by Chem. Abstr. is definitive.

1-[2-Hydroxy-3-methyl-4-(2-propenyloxy)phenyl]-2-phenylethanone

[57097-17-3]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 282.34
Syntheses

- Refer to: [5279,5322].

1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]-2-phenylethanone

[66541-26-2] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34

Synthesis

- Obtained by treatment of 2,4-dihy-droxy-6-methoxyphenyl benzyl ketone with allyl bromide in the presence of potassium carbonate in refluxing acetone for 4 h [5335].
m.p. $81-82^{\circ}$ [5335].

1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2-phenylethanone

[75060-51-4]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 268.36
Synthesis

- Obtained by demethylation of 2-pheny-lacetyl-4-tert-butyl-anisole with a 47% hydrobromic acid $/ 57 \%$ hydriodic acid mixture in refluxing acetic acid (63\%) [4661].

1-(4-Butoxy-2-hydroxyphenyl)-2-phenylethanone
[50775-75-2]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Syntheses

- Preparation by partial alkylation of 2,4-dihydroxyphenyl benzyl ketone with butyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [5329].
- Also refer to: [5365,5366,5390,5392].
m.p. 72-75 ${ }^{\circ}$ [5329].

1-(5-Butyl-2,4-dihydroxyphenyl)-2-phenylethanone

[96643-96-8]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 284.36
Syntheses

- Preparation by reaction of phenylacetonitrile with 4-butyl-resorcinol,
- in the presence of boron trifluoride etherate (92\%) [5367,5368];
- in the presence of zinc chloride (Hoesch reaction) [5323].
m.p. 91° [5323], $79-80^{\circ}$ [5367,5368]; ${ }^{1} \mathrm{H}$ NMR [5367].

1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-2-phenylethanone

[35486-77-2]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 296.37
Synthesis

- Refer to: [5397].
paper chromatography [5397].

1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-2-phenylethanone

[130064-20-9]
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$
mol.wt. 312.37
Synthesis

- Preparation by reaction of 3,4-dihydro-2H-pyran with 1-(2,4-dihydroxyphenyl)-2-phenylethanone in dioxane in the presence of PTSA (p-toluenesulfonic acid) at r.t. for $4 \mathrm{~h}(80 \%)$ [5280].
m.p. 89° [5280];
${ }^{1}$ H NMR [5280], IR [5280], MS [5280].

2-Phenyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone
[85602-17-1]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$
mol.wt. 312.37
Synthesis

- Refer to: [5398].

1-(2,4-Dihydroxy-5-pentylphenyl)-2-phenylethanone

[96643-97-9]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 298.38
Syntheses

- Preparation by reaction of phenylacetonitrile with 4-pentyl-resorcinol,
- in the presence of boron trifluoride etherate (81\%) [5367,5371];
- in the presence of zinc chloride (Hoesch reaction) [5323].
m.p. $94-95^{\circ}$ [5367,5371], 89-90ํ [5323]; ${ }^{1} \mathrm{H}$ NMR [5367].

1-[2-Hydroxy-4-(pentyloxy)phenyl]-2-phenylethanone

[50775-76-3]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$
mol.wt. 298.38
Synthesis

- Preparation by partial alkylation of benzyl 2,4-di-hydroxyphenyl ketone with pentyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [5329].
- Also refer to: [5365,5366,5390,5392].
m.p. 70-73 ${ }^{\circ}$ [5329].

1-(3-Cyclohexyl-2,6-dihydroxyphenyl)-2-phenylethanone $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 310.39

Synthesis

- Obtained by reaction of phenylacetonitrile with 4-cyclo-hexylresorcinol (Hoesch reaction) [5357].
m.p. 221° [5357].

1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-2-phenylethanone

[159977-40-9]

-
Preparation by reaction of phenylacetic acid with trifluoride etherate at 125° for 30 min, followed by hydrolysis of the complex obtained (m.p. $\left.165-166^{\circ}\right)$ with boiling dilute ethanol for 15-20 $\min (39 \%)$
[5256].

- Also obtained by reaction of phenylacetonitrile with 4-cyclohexylresorcinol (Hoesch reaction) [5357].
m.p. 133° [5357], $132-133^{\circ}$ [5256]; IR [5256], UV [5256].

1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]-2phenylethanone

[55607-21-1]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 326.39
Syntheses

- Obtained by reaction of 2-hydroxy-2-methyl-3-butene with 2,4-dihydroxy-6-methoxyphenyl benzyl ketone in dioxane in the presence of boron trifluoride etherate for 1 h at r.t. (14\%) [5352].
- Also obtained by reaction of prenyl bromide with 2,4-dihydroxy-6-methoxyphenyl benzyl ketone in methanolic potassium hydroxide for 20 h at r.t. (20\%) [5352].
m.p. $133-134^{\circ}$ [5352]; ${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].

1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]-2phenylethanone

[55607-22-2] \quad\begin{tabular}{l}
Syntheses

Obtained by reaction of 2-hydroxy-2-methyl-
3yl benze with 2,4-dihydroxy-6-methoxyphe-
boron trifluoride etherate for 1 h at resence of
[5352].

\end{tabular}

- Also obtained by reaction of prenyl bromide with 2,4-di-hydroxy-6-methoxyphenyl benzyl ketone in methanolic potassium hydroxide for 20 h at r.t. (13\%) [5352].
m.p. $\quad 93-94^{\circ}$ [5352]; ${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].

1-[4-(Ethoxymethoxy)-2-hydroxy-3-(2-propenyl)phenyl]-2-phenylethanone

light brown oil [5283]; ${ }^{1} \mathrm{H}$ NMR [5283], IR [5283], UV [5283].

1-(5-Hexyl-2,4-dihydroxyphenyl)-2-phenylethanone

[96643-98-0]

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \quad \mathrm{~mol}$.wt. 312.41
Syntheses

- Preparation by reaction of phenylacetonitrile with 4-hexyl-resorcinol,
- in the presence of boron trifluoride etherate under hydrogen chloride atmosphere ($8-10 \mathrm{~h}$) and at r.t. overnight (83\%) [5367,5371];
- in the presence of zinc chloride (Hoesch reaction) [5323].
- Also obtained (poor yield) by Friedel-Crafts acylation of 4-hexylresorcinol with phenylacetyl chloride in the presence of aluminium chloride in nitrobenzene at 80° for 2 days [5399].
m.p. 90° [5399], $86-87^{\circ}$ [5323], $83-84^{\circ}$ [5367,5371]; ${ }^{1} \mathrm{H}$ NMR [5367].

1-[4-(Hexyloxy)-2-hydroxyphenyl]-2-phenylethanone

[50776-01-7]

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 312.41
Syntheses

- Preparation by partial alkylation of benzyl 2,4-di-hydroxyphenyl ketone with hexyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [5329].
- Also refer to: [5365,5366]. m.p. $60-62^{\circ}$ [5329].

1-[2-Hydroxy-4-(4-nitrobenzoyloxy)phenyl]-2-phenylethanone

 $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{6}$ mol.wt. 377.35 Synthesis

- Obtained by partial esterification of benzyl 2,4-dihydroxyphenyl ketone [5250] with p-nitrobenzoyl chloride in the presence of pyridine [5217].
m.p. $178-180^{\circ}$ [5217].

1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]-2-phenylethanone

[95832-51-2]

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 318.37
Syntheses

- Obtained by reaction of benzyl alcohol with 2,4-di-hydroxydesoxybenzoin in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for $7 \mathrm{~h}(21 \%)$ [5400].
- Also obtained by rearrangement of 2-hydroxy-4-(benzyloxy)desoxybenzoin in TFA at r.t. for $70 \mathrm{~h}(16 \%)$ [5400].
- Obtained by reaction of benzyl bromide with 2,4-dihydroxydesoxybenzoin in methanol in the presence of potassium hydroxide at r.t. for 24 h (11\%) [5275].
m.p. $122-124^{\circ}$ [5275], $121-122^{\circ}$ [5400];
column chromatography [5400]; TLC [5400];
${ }^{1} \mathrm{H}$ NMR [5400], IR [5400], UV [5400].

1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]-2-phenylethanone
[95832-52-3]

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 318.37
Syntheses

- Obtained by reaction of benzyl alcohol with 2,4-dihydroxy-desoxybenzoin in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for $7 \mathrm{~h}(31 \%)$ [5400].
- Also obtained by rearrangement of 2-hydroxy-4-(benzyl-oxy)desoxybenzoin in TFA at r.t. for $70 \mathrm{~h}(31 \%)$ [5400].
- Also obtained by reaction of benzyl bromide with 2,4-dihydroxydesoxybenzoin in methanol in the presence of potassium hydroxide at r.t. for $24 \mathrm{~h}(<3 \%)$ [5275].
m.p. $128-129^{\circ}$ [5400], $126-128^{\circ}$ [5275];
column chromatography [5400]; TLC [5400];
${ }^{1} \mathrm{H}$ NMR [5400], IR [5400], UV [5400].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-phenylethanone

[39604-80-3]

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$
Syntheses

- Preparation by partial benzylation of 2,4-dihydroxy-phenyl benzyl ketone,
- with benzyl chloride in the presence of potassium carbonate in refluxing acetone [5265], (72\%) [5381];
- with benzyl bromide in the presence of potassium carbonate in refluxing acetone [5329] or in the presence of potassium hydroxide at r.t. for 24 h (29\%) [5275].
- Also refer to: $[5337,5404]$.
m.p. $105-106^{\circ}$ [5275], 104-108 ${ }^{\circ}$ [5329], 104-105 ${ }^{\circ}$ [5381].

1-[2-Hydroxy-4-[[(4-methylphenyl)sulfonyl]oxy]phenyl]-2-phenylethanone

[102478-26-2]

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}$
Synthesis

- Obtained by partial esterification of benzyl 2,4-dihydroxyphenyl ketone with p-toluenesulfonyl chloride in acetone in the presence of potassium carbonate [5217].
m.p. 117° [5217].

1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone

[55607-23-3]

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 340.42
Synthesis

- Obtained by partial methylation of 2,4-di-hydroxy-6-methoxy-3-prenylphenyl benzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 3.5 h (96\%) [5352].
m.p. $113-114^{\circ}$ [5352]; ${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].

1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2phenylethanone

[55607-25-5] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 340.42

Synthesis

- Obtained by partial methylation of 2,4-dihy-droxy-6-methoxy-5-prenylphenyl benzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 4 h [5352].
m.p. $80-81^{\circ}$ [5352]; ${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].

1-[2-Hydroxy-4-methoxy-3-(phenylmethyl)phenyl]-2-phenylethanone
[95832-54-5]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 332.40
Synthesis

- Preparation by reaction of dimethyl sulfate with 3-benzyl-2,4-dihydroxydeoxybenzoin in the presence of potassium carbonate in refluxing acetone for 3 h [5400].
oil [5400]; TLC [5400]; ${ }^{1} \mathrm{H}$ NMR [5400].

1-[2-Hydroxy-4-methoxy-5-(phenylmethyl)phenyl]-2-phenylethanone

[95832-53-4]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 332.40
Synthesis

- Preparation by reaction of dimethyl sulfate with 5-benzyl-2,4-dihydroxydeoxybenzoin in the presence of potassium carbonate in refluxing acetone for 3 h (84\%) [5400].
m.p. $80-81^{\circ}$ [5400]; TLC [5400]; ${ }^{1} \mathrm{H}$ NMR [5400].

1-[2-Hydroxy-5-methyl-4-(phenylmethoxy)phenyl]-2-phenylethanone
[112198-28-4]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 332.40
Synthesis

- Preparation by reaction of benzyl chloride with 2,4-dihydroxy-5-methylphenyl benzyl ketone in the presence of potassium carbonate in refluxing acetone for 7 h (73\%) [5324].
m.p. 108° [5324].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-phenylethanone
[14035-39-3]

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \quad$ mol.wt. 324.46 Syntheses

- Preparation by Friedel-Crafts acylation of 2,6-di-tert-butylphenol with phenylacetyl chloride in the presence of aluminium chloride for 15 min at -10° (84%) [5402], (75%) [5403].
- Preparation by oxidation of 1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenylethanol with DDQ in dioxane at r.t. for $16 \mathrm{~h}(90 \%)$ [5177].
- Also refer to: [5404,5405].
m.p. $129-130^{\circ}$ [5177], $120-122^{\circ}$ [5402,5403]; ${ }^{1} \mathrm{H}$ NMR [5177].

1-[4-(1,5-Dimethylhexyl)-2-hydroxyphenyl]-2-phenylethanone

[146935-09-3] $\quad \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \quad$ mol.wt. 324.46

1-[6-Hydroxy-2,4-dimethoxy-3-[(phenylacetyl)oxy]phenyl]-2-phenylethanone

$$
\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{6} \quad \text { mol.wt. } 406.44
$$

Synthesis

- Obtained (by-product) by condensation of 2,6-dimethoxy-hydroquinone with the complex phenylacetic acid and boron trifluoride [5387].
m.p. 105° [5387].

1-[4-(Decyloxy)-2-hydroxyphenyl]-2-phenylethanone

[143287-02-9]

m.p. $66-69^{\circ}$ [5329].
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3} \quad$ mol.wt. 368.52
Synthesis

- Preparation by partial alkylation of benzyl 2,4-di-hydroxyphenyl ketone with decyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [5329].

1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]-2phenylethanone

[55607-20-0] $\quad \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \quad$ mol.wt. 394.51

Syntheses

- Obtained (poor yield) by reaction of 2-hydroxy-2-methyl-3butene with 2,4-di-hydroxy-6-methoxyphenyl benzyl ketone in dioxane in the presence of boron trifluoride etherate for 1 h at r.t. (4\%) [5352].
- Also obtained (poor yield) by reaction of prenyl bromide with 2,4-dihydroxy-6methoxyphenyl benzyl ketone in methanolic potassium hydroxide for 20 h at r.t. (5\%) [5352].
oil [5352]; TLC [5352].
1-[(4-Hydroxy-3,5-diphenyl)phenyl]-2-phenylethanone
1-(2'-Hydroxy[$1, l^{\prime}: 3^{\prime}, l^{\prime \prime}$-terphenyl]-5'-yl)-2-phenylethanone
[73048-87-0]

m.p. $155-156^{\circ}$ [5177]; ${ }^{1} \mathrm{H}$ NMR [5177].

1-[4-(Dodecyloxy)-2-hydroxyphenyl]-2-phenylethanone

$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3}$
mol.wt. 396.57
Synthesis

- Preparation by partial alkylation of 2,4-dihydroxy-phenyl benzyl ketone with dodecyl bromide in the presence of potassium carbonate in refluxing acetone for 20 h [5329].
m.p. $68-71^{\circ}$ [5329].

1-[3-(Diphenylmethyl)-2,4-dihydroxyphenyl]-2-phenylethanone

[98497-96-2] $\quad \mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{3}$ mol.wt. 394.47

Synthesis

- Obtained by reaction of 2,4-dihydroxydesoxybenzoin with diphenylcarbinol in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for 3 h (17\%) [5274].
m.p. 133-134 ${ }^{\circ}$ [5274]; column chromatography [5274]; TLC [5274];
${ }^{1} \mathrm{H}$ NMR [5274], IR [5274], UV [5274].

1-[5-(Diphenylmethyl)-2,4-dihydroxyphenyl]-2-phenylethanone

[98497-97-3]

$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{3}$
mol.wt. 394.47
Synthesis

- Obtained by reaction of 2,4-dihydroxydesoxybenzoin with diphenylcarbinol in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for 3 h (24\%) [5274].
m.p. $142-143^{\circ}$ [5274];
column chromatography [5274]; TLC [5274];
${ }^{1} \mathrm{H}$ NMR [5274], IR [5274], UV [5274].

1-[3-(Diphenylmethyl)-2,4,6-trihydroxyphenyl]-2-phenylethanone

[104310-95-4]

$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 410.47
Synthesis

- Obtained by reaction of diphenylcarbinol with 2,4,6-trihydroxyphenyl benzyl ketone in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for 3.5 h (24\%) [5407].
m.p. 160-162́[5407]; TLC [5407];
${ }^{1} \mathrm{H}$ NMR [5407], IR [5407], UV [5407].

1-[5-(Diphenylmethyl)-2,3,4-trihydroxyphenyl]-2-phenylethanone

[106556-47-2] $\quad \mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 410.47

Synthesis

- Obtained by reaction of diphenylcarbinol with 2,3,4-tri-hydroxyphenyl benzyl ketone in dioxane in the presence of boron trifluoride etherate for 4 h at r.t. (39\%) [5272].
m.p. $177-178^{\circ}$ [5272]; TLC [5272];
${ }^{1} \mathrm{H}$ NMR [5272], IR [5272], UV [5272].

1-[2,4-Dihydroxy-3,5-bis(phenylmethyl)phenyl]-2-phenylethanone

[95832-50-1]

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 408.50
Syntheses

- Obtained by reaction of benzyl alcohol with 2,4-di-hydroxydesoxybenzoin in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for 7 h (10\%) [5400].
- Also obtained (trace) by reaction of benzyl bromide with 2,4-dihydroxydesoxybenzoin in methanol in the presence of potassium hydroxide at r.t. for 24 h (<2\%) [5275].
m.p. $111-112^{\circ}$ [5400], $110-112^{\circ}$ [5275]; column chromatography [5400]; ${ }^{1} \mathrm{H}$ NMR [5400], ${ }^{13} \mathrm{C}$ NMR [5275], IR [5400], UV [5400].

1-[3-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]-2-phenylethanone

[98498-01-2]
$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 408.50
Synthesis

- Preparation by reaction of dimethyl sulfate with 2,4-dihydroxy-3-(diphenylmethyl)desoxybenzoin in the presence of potassium carbonate in refluxing acetone for 3 h (93\%) [5274].
m.p. $126-127^{\circ}$ [5274]; TLC [5274]; ${ }^{1} \mathrm{H}$ NMR [5274].

1-[5-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]-2-phenylethanone
[98498-02-3]

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 408.50
Synthesis

- Preparation by reaction of dimethyl sulfate with 2,4-di-hydroxy-5-(diphenyl-methyl)desoxybenzoin in the presence of potassium carbonate in refluxing acetone for 3 h (93\%) [5274].
m.p. $110-111^{\circ}$ [5274]; TLC [5274]; ${ }^{1} H$ NMR [5274].

1-[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]-2-phenylethanone
[107044-42-8]

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 408.50
Syntheses

- Obtained by reaction of benzyl chloride (1 mol) with 3-benzyl-2,4-dihydroxydesoxybenzoin in the presence of potassium carbonate (4 mol) in boiling acetone for 1.5 h [5275].
- Also obtained (trace) by reaction of benzyl bromide with 2,4-dihydroxydesoxybenzoin in methanol in the presence of potassium hydroxide at r.t. for 24 h (<1\%) [5275].
m.p. $97-98^{\circ}$ [5275]; column chromatography [5275];
${ }^{1} H$ NMR [5275], IR [5275], UV [5275].

1-[2-Hydroxy-4-(phenylmethoxy)-5-(phenylmethyl)phenyl]-2-phenylethanone

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3} \quad$ mol.wt. 408.50 Synthesis

- Obtained by reaction of benzyl bromide (1 mol) with 5-benzyl-2,4-dihydroxydesoxybenzoin in the presence of potassium carbonate (4 mol) in boiling acetone for 1.5 h (19\%) [5275].
m.p. $\quad 90-92^{\circ}$ [5275]; column chromatography [5275];
${ }^{1} \mathrm{H}$ NMR [5275], IR [5275].

1-[2,4-Dihydroxy-6-(phenylmethoxy)-3-(phenylmethyl)phenyl]-2phenylethanone

[39548-97-5]

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 424.50
Synthesis

- Obtained (by-product) by benzylation of 2,4,6-tri-hydroxyphenyl benzyl ketone with benzyl chloride in the presence of potassium carbonate in refluxing acetone for 7 h (9\%) [5408].
m.p. $170-171^{\circ}$ [5408]; ${ }^{1} \mathrm{H}$ NMR [5408], UV [5408].

1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]-2-phenylethanone

[39548-96-4]

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 424.50
Syntheses

- Obtained by reaction of benzyl chloride with 2,4,6-trihydroxyphenyl benzyl ketone in the presence of potassium carbonate in refluxing acetone for 5 h (34\%) [5381] or for $7 \mathrm{~h}(21 \%)$ [5408].
- Also refer to: [5401].
m.p. $99-100^{\circ}$ [5381], $95-96^{\circ}$ [5408]; ${ }^{1} \mathrm{H}$ NMR [5408], UV [5408].

1-[2-Hydroxy-4-methoxy-3,5-bis(phenylmethyl)phenyl]-2-phenylethanone
[95832-55-6]
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 422.52
Synthesis

- Obtained by reaction of dimethyl sulfate with 3,5-di-benzyl-2,4-dihydroxyphenyl benzyl ketone in the presence of potassium carbonate in refluxing acetone for 3 h (23\%) [5400].
oil [5400]; TLC [5400]; ${ }^{1} \mathrm{H}$ NMR [5400].

1-[2-Hydroxy-4-(phenylmethoxy)-3,5-bis(phenylmethyl)phenyl]-2phenylethanone

[107044-43-9]

m.p. $51-52^{\circ}$ [5275]; TLC [5275];
${ }^{1} \mathrm{H}$ NMR [5275], IR [5275], UV [5275].

1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]-2phenylethanone

[^13]$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{3} \quad$ mol.wt. 498.62
Synthesis

- Obtained by reaction of benzyl chloride (1 mol) with 3,5-dibenzyl-2, 4-dihydroxydesoxybenzoin in the presence of potassium carbonate (4 mol) in boiling acetone for 1.5 h (33\%) [5275].

1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxyphenyl]-2-phenylethanone
[98497-95-1]

$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{3}$
mol.wt. 560.69
Synthesis

- Obtained by reaction of 2,4-dihy-droxydesoxy-benzoin with diphenylcarbinol in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for 3 h (15\%) [5274].
m.p. $136-137^{\circ}$ [5274]; column chromatography [5274]; TLC [5274];
${ }^{1} \mathrm{H}$ NMR [5274], IR [5274], UV [5274].

1-[3,5-Bis(diphenylmethyl)-2,4,6-trihydroxyphenyl]-2-phenylethanone

[104310-93-2]

$$
\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{4}
$$

$$
\text { mol.wt. } 576.69
$$

> Synthesis

- Obtained by reaction of diphenylcarbinol with 2,4,6-trihydroxyphenyl benzyl ketone in dioxane in the presence of boron trifluoride etherate at $60-70^{\circ}$ for $3.5 \mathrm{~h}(21 \%)$ [5407].
m.p. $122-124^{\circ}$ [5407]; TLC [5407];
${ }^{1} \mathrm{H}$ NMR [5407], IR [5407], UV [5407].

18.2 Compounds Derived from Substituted Phenylacetic Acids

2-(4-Chlorophenyl)-1-(5-fluoro-2-hydroxyphenyl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{2} \quad \text { mol.wt. } 264.68
$$

Synthesis

- Preparation by Fries rearrangement of p-fluorophenyl p-chlorophenylacetate with aluminium chloride at $150-180^{\circ}$ for $20 \mathrm{~min}(32 \%)$ [5189].
m.p. $124-126^{\circ}$ [5189]; ${ }^{1} \mathrm{H}$ NMR [5189], MS [5189].

2-(4-Chlorophenyl)-1-(3,4-dihydroxy-5-nitrophenyl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{5} \quad \text { mol.wt. } 307.69
$$

Synthesis

- Preparation by treatment of 2-(4-chloro-phenyl)-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone with aluminium chloride in refluxing ethyl acetate/pyridine mixture for 2 h (94\%) [5192], (90-96\%) [5193].
m.p. $162-164^{\circ}$ [5192,5193]; HPLC [5192];
${ }^{1} H$ NMR [5192,5193], ${ }^{13}$ C NMR [5192,5193], IR [5192,5193].

2-(4-Bromophenyl)-1-(4-hydroxyphenyl)ethanone

[63186-92-5]

m.p. 186° [5409,5410];
${ }^{1} \mathrm{H}$ NMR [5409], IR [5409].
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 291.14
Synthesis

- Preparation by demethylation of 2-(4-bro-mophenyl)-1-(4-methoxyphenyl)ethanone with 48% hydrobromic acid in refluxing acetic acid for 7 h (89\%) [5409], (82\%) [5410].

2-(4-Bromophenyl)-1-(2,4-dihydroxyphenyl)ethanone

[92152-60-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 307.14
Syntheses

- Preparation by reaction of p-bromophenylacetonitrile with resorcinol,
- in the presence of boron trifluoride etherate under hydrogen chloride atmosphere ($8-10 \mathrm{~h}$) and at r.t. overnight (90%) [5367,5368];
- in the presence of zinc chloride and hydrogen chloride (Hoesch reaction) [5181].
- Preparation by Friedel-Crafts acylation of resorcinol with p-bromophenylacetyl chloride in nitrobenzene in the presence of aluminium chloride at 50° (54%) [5357].
- Also refer to: [4685,5411].
m.p. $176-177^{\circ}$ [5367,5368], 176° [5357], 100-101ㅇ [5181]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [5367].

2-(4-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[147220-80-2]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{4}$
mol.wt. 323.15

Synthesis

- Refer to: [4685] (compound IIg), preparation according to reported procedures [5412,5413].
m.p. 231° [4685]; ${ }^{1} \mathrm{H}$ NMR [4685], IR [4685].

2-(2-Chlorophenyl)-1-(2,4-dihydroxyphenyl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad \text { mol.wt. } 262.69
$$

Synthesis

- Obtained by reaction of o-chlorophenylacetonitrile with resorcinol (Hoesch reaction) (20\%) [5414].
m.p. 142° [5414].

2-(4-Chlorophenyl)-1-(2,4-dihydroxyphenyl)ethanone

[15485-64-0] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 262.69

Syntheses

- Preparation by Friedel-Crafts acylation of resorcinol with p-chlorophenylacetyl chloride in nitrobenzene in the presence of aluminium chloride for some hours at $40-50^{\circ}$ (64\%) [5357].
- Obtained by reaction of p-chlorophenylacetonitrile with resorcinol (Hoesch reaction) [5262,5264].
- Also refer to: [4685,5271,5411,5415].
m.p. $159^{\circ} 5-160^{\circ}$ [5264], 156° [5357], $153-154^{\circ}$ [5262]; UV [5264].

1-(5-Chloro-2,4-dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4}$
mol.wt. 278.69
Synthesis

- Obtained by reaction of p-hydroxyphenylacetic acid with 4-chlororesorcinol in the presence of boron trifluoride etherate under argon, on a water bath for 1 h (67\%) [5208].
m.p. ${ }^{196-197^{\circ}}$ [5208]; ${ }^{1} \mathrm{H}$ NMR [5208], ${ }^{13} \mathrm{C}$ NMR [5208], MS [5208].

1-(5-Chloro-2-hydroxyphenyl)-2-(2,5-dihydroxyphenyl)ethanone

[115781-55-0]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4}$
mol.wt. 278.69

Synthesis

- Obtained by alkali cleavage of 6-chloro-3-($2^{\prime}, 5^{\prime}-$ dihydroxy-phenyl)-4-hydroxycoumarin with refluxing 2% methanolic potassium hydroxide for 4 h (73\%) [5416].
m.p. $219^{\circ}{ }^{[5416] ;}$ IR [5416], UV [5416].

2-(2-Chlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

 Synthesis

- Obtained by reaction of o-chlorophenylacetonitrile with phloroglucinol (20\%) (Hoesch reaction) [5414].
m.p. $172-172^{\circ} 5$ [5414].

2-(4-Chlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4} \quad$ mol.wt. 278.69 Syntheses

- Obtained by reaction of p-chlorophenylacetonitrile with phloroglucinol (Hoesch reaction) [5262,5264].
- Also refer to: [4685,5415,5417].
m.p. 224-225 ${ }^{\circ}$ [5264], 221-222 ${ }^{\circ}$ [5262]; UV [5264].

1-(5-Chloro-2-hydroxyphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone

m.p. 189° [5416]; IR [5416], UV [5416].

1-(2,4-Dihydroxyphenyl)-2-(2-fluorophenyl)ethanone

[121060-02-4]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
mol.wt. 246.24

Syntheses

- Refer to: [4685] (compound Id), preparation according to reported procedures [5412,5413].
- Also refer to: [5026,5418,5419].
m.p. 138° [4685]; ${ }^{1} \mathrm{H}$ NMR [4685], IR [4685].

1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenyl)ethanone

[15485-70-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FwO}_{3} \quad$ mol.wt. 246.24
Syntheses

- Preparation by reaction of p-fluorophenylacetonitrile with resorcinol (Hoesch reaction) [5264], (70\%) [5420], (45\%) [5421].
- Also refer to: [4685,5026,5415,5418,5419]. m.p. $149-150^{\circ}$ [5264], $144-145^{\circ}$ [5421], $143-144^{\circ}$ [5420]; ${ }^{1} H$ NMR [5420,5421], UV [5264], MS [5421].

2-(2-Fluorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[101068-28-4] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{4} \quad$ mol.wt. 262.24

Synthesis

- Refer to: [4685] (compound IId), preparation according to reported procedures [5412,5413].
m.p. 182° [4685]; ${ }^{1} \mathrm{H}$ NMR [4685], IR [4685].

2-(4-Fluorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

- Also refer to: [4685,5415].
m.p. 199-200 [5264]; UV [5264].

1-(2,4-Dihydroxyphenyl)-2-(4-iodophenyl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{3} \quad \text { mol.wt. } 354.14
$$

Syntheses

- Obtained by reaction of resorcinol with p-iodophenyl-acetyl chloride in nitrobenzene in the presence of aluminium chloride at $50-60^{\circ}(27 \%)$ [5357].
- Also refer to: [5422].
m.p. 186° [5357,5422].

1-(2,4-Dihydroxyphenyl)-2-(3-nitrophenyl)ethanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

Synthesis

- Preparation by reaction of m-nitrophenylacetonitrile with resorcinol (Hoesch reaction) (46\%) [5423].
m.p. $156^{\circ} 5$ [5423].

1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenyl)ethanone

[15485-63-9]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25 Syntheses

- Obtained by reaction of p-nitrophenylacetonitrile with resorcinol (Hoesch reaction) [5264], (65\%) [5399], (60\%) [5268], (40\%) [5424], (35\%) [5425], (27\%) [5423].
- Also obtained by reaction of p-nitrophenylacetic acid with resorcinol in the presence of boron trifluoride in chloroform, first cooling in ice, then at r.t. overnight (12\%) [5258].
- Also refer to: [4685,5217,5271].
m.p. $295-297^{\circ}$ [5264], 210° [5258,5425], 205 ${ }^{\circ}$ [5399], 204° [5424], 202° [5423]. One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [5268], UV [5264], MS [5268].

2-(3-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6} \quad \text { mol.wt. } 289.25
$$

Synthesis

- Preparation by reaction of m-nitrophenylacetonitrile with phloroglucinol (Hoesch reaction) (63\%) [5423].

[^14]2-(4-Nitrophenyl)-1-(2,3,4-trihydroxyphenyl)ethanone
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6} \quad$ mol.wt. 289.25

Synthesis

- Obtained by reaction of p-nitrophenylacetic acid with pyrogallol in the presence of boron trifluoride in chloroform, first cooling in ice, then at r.t. overnight (93\%) [5258].
m.p. $227-228^{\circ}$ [5258].

2-(4-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[15485-67-3] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$ mol.wt. 289.25
 Syntheses

- Obtained by reaction of p-nitrophenylacetonitrile with phloroglucinol (Hoesch reaction) [5264], (quantitative yield) [5424], (56\%) [5423].
- Also refer to: [5217,5246,5258].
m.p. $249-250^{\circ}$ [5264], 247° [5423], 245° [5424]; UV [5264].

1,2-Bis(2-hydroxyphenyl)ethanone

[7622-42-6] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Syntheses

- Preparation by reduction of $2,2^{\prime}$-dihydroxybenzoin with zinc dust and 15% potassium hydroxide in boiling ethanol for 8 h [5426], (70-75\%) [5427].
- Also refer to: [5428].
m.p. 104° [5427].

1,2-Bis(3-hydroxyphenyl)ethanone

[63192-59-6] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Syntheses

- Obtained by reductive coupling of methyl m-hydroxy-benzoate using $\mathrm{TiCl}_{3} / \mathrm{LiAlH}_{4}$ in refluxing tetrahydrofuran for 3 h under nitrogen (20\%) [5429].
- Also refer to: [5430].

GC [5429]; GC-MS [5429];
${ }^{1} \mathrm{H}$ NMR [5429], ${ }^{13} \mathrm{C}$ NMR [5429], IR [5429], MS [5429].

1,2-Bis(4-hydroxyphenyl)ethanone

[3669-47-4]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 228.25
Syntheses

- Preparation by total demethylation of 4-methoxyphenyl 4-methoxybenzyl ketone (4,4'-dimethoxydeoxybenzoin),
- with refluxing pyridinium chloride (4 equiv) for 1 h (80-85\%) [5431];
- with boiling a mixture of 50% aqueous hydriodic acid and phenol for 30 min (94\%) [5432];
- with hydriodic acid $(\mathrm{d}=1.7)$ in acetic acid at $135-140^{\circ}$ for 10 min (quantitative yield) [5432];
- with aluminium chloride in refluxing benzene for 1.5 h (25\%) [5433].
- Also obtained by diazotization of 4,4'-diaminodeoxybenzoin, followed by hydrolysis of the diazonium salt formed [5434].
- Also obtained (by-product) by Fries rearrangement of phenyl p-methoxyphenylacetate with aluminium chloride for 1.5 h at 145° (31\%) [5280].
- Also refer to: [5435].
m.p. 217° [5432], 215-219ํ [5433], 215° [5431], 214-215 ${ }^{\circ}$ [5434], 212° [5280].

1-(2-Hydroxyphenyl)-2-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25
Syntheses

- Obtained by treatment of ethyl [(2-meth-oxybenzoyl)-(4-methoxyphenyl)]acetate with boiling pyridinium chloride for 20 min (ca. 220°) (48\%) [5212].
- Also obtained (by-product) by Fries rearrangement of phenyl p-methoxyphenylacetate with aluminium chloride for 1.5 h at 145° (12\%) [5280].
- Also obtained by demethylation of 2-hydroxyphenyl 4-methoxybenzyl ketone with pyridinium chloride at 220° for $1 \mathrm{~h}(79 \%)$ [5280].
- Also refer to: [5436,5437].
m.p. 140° [5280], $106-107^{\circ}$ [5212]. One of the reported melting points is obviously wrong.

1-(2,3-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone

1-(2,4-Dihydroxyphenyl)-2-(2-hydroxyphenyl)ethanone

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad \text { mol.wt. } 244.25
$$

Synthesis not yet described
N.B.: This ketone (XIII) cannot be prepared by condensation of o-hydroxyphenylacetonitrile with resorcinol (Hoesch reaction) [5438].

1-(2,4-Dihydroxyphenyl)-2-(3-hydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 244.25
Syntheses

- Preparation by reaction of m-hydroxyphenylacetic acid with resorcinol in the presence of boron trifluoride etherate under argon on a water bath for 1 h (93\%) [5208].
- Also obtained by demethylation of 1-(2,4-dihydroxy-phenyl)-2-(3-methoxyphenyl)ethanone with concentrated hydrobromic acid in refluxing acetic acid for 4 h under an argon atmosphere (89\%) [5439].
m.p. 214-216 ${ }^{\circ}$ [5439]; ${ }^{1} \mathrm{H}$ NMR [5439], IR [5439], UV [5439], MS [5439].

1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone

$[17720-60-4]$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$	mol.wt. 244.25
OH	Syntheses	

- Preparation by reaction of p-hydroxyphenylacetic acid with resorcinol [5440] in the presence of boron trifluoride etherate under argon on a water bath for 1 h (98\%) [5208], at 100° for $1 \mathrm{~h}(70 \%)$ [5441] or for $15 \mathrm{~min}(40 \%)$ [5268].
- Preparation by demethylation of 2,4-dihydroxy-4'-methoxydesoxybenzoin with pyridinium bromide, kept at the melting stage for 1 min (quantitative yield) [5442].
- Preparation by catalytic hydrogenation of 2,4-dihydroxy-4'-(benzyloxy)desoxybenzoin [5443].
- Also obtained by treatment of ethyl 2,4-dimethoxybenzoyl-4-methoxyphenylacetate with boiling pyridinium chloride for $20 \mathrm{~min}\left(\mathrm{ca} .220^{\circ}\right)(49 \%)$ [5212].
- Also obtained by alkaline degradation of daidzein (m.p. 315-320ㅇ) (7,4'-dihydroxyisoflavone) with refluxing 30% potassium hydroxide for 5 min (99%) [5444].
- Also obtained by reaction of p-hydroxyphenylacetonitrile with resorcinol (Hoesch reaction) (26\%) [5444].
- Also refer to: [4685,5216,5270,5280,5292,5436,5445,5446,5447,5448,5449]. m.p. 192° [5443,5444], 190-191 ${ }^{\circ}$ [5442], 183-184 ${ }^{\circ}$ [5212];
${ }^{1} \mathrm{H}$ NMR [5268], ${ }^{13} \mathrm{C}$ NMR [5293,5450], MS [5268].

1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone-1- ${ }^{13} \mathrm{C}$

[215653-80-8]

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad \text { mol.wt. } 245.25
$$

Synthesis

- Preparation by reaction of 4-benzyloxy-phenyl-acetonitrile $\left[1-{ }^{13} \mathrm{C}\right]$ with resorcinol (Hoesch reaction) (96\%) [5451].

2-(2,5-Dihydroxyphenyl)-1-(2-hydroxyphenyl)ethanone

[115781-54-9] \quad\begin{tabular}{l}
Synthesis

Obtained by alkali cleavage of 3 - $\left(2^{\prime}, 5^{\prime}\right.$-di-
hydroxyphenyl)-4-hydroxycoumarin with refl-
uxing 2%
(62%) methanolic potassium hydroxide for 4 h

[5416].
\end{tabular}

m.p. 203° [5416]; IR [5416], UV [5416].

1-(3,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone

1-(2-Hydroxyphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone
[115781-50-5]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 260.25
Synthesis

- Obtained from 4-hydroxy-3-($2^{\prime}, 4^{\prime}, 5^{\prime}-$ trihydroxyphenyl)-coumarin with refluxing 2% methanolic potassium hydroxide for 4 h (75\%) [5416].
m.p. 185° [5416]; IR [5416], UV [5416].

2-(2-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Syntheses

- Obtained by alkaline degradation of isogenistein (5,7,2'-trihydroxyisoflvone) (SM) (m.p. 302 ${ }^{\circ}$ [5453] with potassium hydroxide [5453,5454,5455,5456]. SM was obtained by hydrolysis of isogenistin, its glycoside, (m.p. 265) [5455], isolated from soya bean [5453,5454,5455].
- Also obtained by partial demethylation of 2-hydroxy-4,6-dimethoxyphenyl 2-methoxybenzyl ketone (m.p. 116-118 ${ }^{\circ}$) with aluminium chloride in refluxing benzene for 2 h (35\%) [5456].
- Also refer to: [5457]. m.p. 217-220 [5456], 182-183 ${ }^{\circ}$ [5453].

One of the reported melting points is obviously wrong.
2-(4-Hydroxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25
Syntheses

- Obtained by reaction of p-hydroxyphenylacetic acid with pyrogallol in the presence of boron trifluoride etherate under argon on a water bath for 1 h (92\%) [5208] or at 100° for $15 \mathrm{~min}(40 \%)$ [5268].
- Also refer to: [5458] (Chinese paper).
m.p. 208-209 ${ }^{\circ}$ [5208];
${ }^{1} H$ NMR [5208,5268], ${ }^{13}$ C NMR [5208], MS [5208,5268].

2-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[15485-65-1]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 260.25
Syntheses

- Preparation by reaction of p-hydroxy-phenyl-acetonitrile with phloroglucinol (Hoesch reaction) (58\%) [5459].
- Also obtained by alkaline degradation of genistein (5,7,4'-trihydroxyisoflavone) (m.p. 296-298ㅇ) with refluxing 5\% potassium hydroxide for 30 min [5444].
- Also obtained by reaction of p-hydroxyphenylacetic with phloroglucinol in the presence of boron trifluoride etherate under argon for 5 h at $0^{\circ}(83 \%)$ [5208].
- Also refer to: [5277,5295,5460,5461,5462].
monohydrate [5459];
m.p. 259° (d) [5459], 253-257 ${ }^{\circ}$ [5444]; ${ }^{13} \mathrm{C}$ NMR [5293].

2-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone-1-13 C

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 261.25
Synthesis

- Preparation by reaction of 4-benzyloxyphenylacetonitrile [1-13C] with phloroglucinol (Hoesch reaction) (75\%) [5451].

2-(3,4-Dihydroxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone

[57165-58-9]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 276.25
Synthesis

- Preparation in two steps: First, reaction of 3,4-di-methoxyphenylacetyl chloride with 1,2,3-trimethoxy-benzene in the presence of aluminium chloride at $30-40^{\circ}$ for 16 h . Then, the formed 2,3,4, $3^{\prime}, 4^{\prime}$-penta-methoxydeoxybenzoin was demethylated by heating at reflux with pyridinium chloride [5463].
m.p. $155-156^{\circ}$ [5463].

2-(4-Aminophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[64225-20-3]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 259.26

Syntheses

- Preparation by reaction of p-acetami-dophenyl-acetonitrile with phloroglucinol in ethyl ether in the presence of zinc chloride under hydrogen chloride
atmosphere for 4 h . Then, hydrolysis of the obtained ketimine hydrochloride in boiling water for 2 h (Hoesch reaction) [5382].
- Preparation by hydrogenation of 2,4,6-trihydroxyphenyl 4-nitrobenzyl ketone in ethanol in the presence of Raney nickel as catalyst with hydrogen at 40 lb pressure for 6 h (67\%) [5382].
- Also refer to: [5464].
m.p. $240-242^{\circ}$ [5464], 197° [5382]. One of the reported melting points is obviously wrong. IR [5464].

2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxyphenyl)ethanone

 $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26 Synthesis

- Preparation by stirring a mixture of S-[4-(1,3-benzodioxol-5-ylacetyl)-3-hydroxyphenyl] dimethylcarbamothioate [142751-43-7], Raney nickel and ethanol at r.t. for $1 \mathrm{~h}(71 \%)$ [5205].
m.p. 62-63 ${ }^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

2-(1,3-Benzodioxol-5-yl)-1-(2,4-dihydroxyphenyl)ethanone (Pseudo-baptigenetin)

[5653-25-8]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 272.26
Syntheses

- Preparation by reaction of (3,4-meth-ylenedioxy)-phenylacetyl chloride with resorcinol in nitromethane in the presence of aluminium chloride, under nitrogen, first at 0° for 3 h and at r.t. for 20 h (59\%) [5465].
- Also obtained by reaction of (3,4-methylenedioxy)phenylacetonitrile with resorcinol (Hoesch reaction) [5466].
- Also obtained by alkaline degradation of pseudo-baptigenin (7-hydroxy-3',4'-methylenedioxy-isoflavone) (SM) (m.p. 298-299 [5466], 298 [5467], 296-298 [5468], 293-295 [5469]) with 12% sodium hydroxide in refluxing dilute ethanol for 15 min [5469] or with refluxing 5\% potassium hydroxide for 2 h (78\%) [5468]. SM was obtained from pseudo-baptisin (isolated from Baptisia tinctoria RBr) whether by heating at 280° or by hydrolysis with various acids or emulsin [5467].
- Also refer to: [5205,5271,5277,5380,5470].
m.p. 151° [5468], $148-149^{\circ}$ [5283], $146-148^{\circ}$ [5469], $87-89^{\circ}$ [5465]. One of the reported melting points is obviously wrong.
b.p. ${ }_{0.03} 210-220^{\circ}$ [5468]; TLC [5465];
${ }^{1} \mathrm{H}$ NMR [5465], IR [5465].

2-(1,3-Benzodioxol-5-yl)-1-(2,3,4-trihydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 288.26
Synthesis

- Obtained by reaction of 3,4-(methylene-dioxy)phenyl-acetonitrile with pyrogallol (Hoesch reaction) (21\%) [5470].
m.p. $\quad 185^{\circ}$ [5470].

2-(1,3-Benzodioxol-5-yl)-1-(2,4,5-trihydroxyphenyl)ethanone

[2828-14-0]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 288.26
Synthesis

- Obtained by reaction of 3,4-(methylene-dioxy)phenyl-acetonitrile with hydroxyhydroquinone (Hoesch reaction) (73\%) [5471], (42\%) [5472].
m.p. 206-208 ${ }^{\circ}$ [5472], 202-203 ${ }^{\circ}$ [5471];
${ }^{1} \mathrm{H}$ NMR [5471], ${ }^{13} \mathrm{C}$ NMR [5293], UV [5472];
TLC [5471].
2-(1,3-Benzodioxol-5-yl)-1-(2,4,6-trihydroxyphenyl)ethanone

- Also refer to: [5295].
m.p. 202° [5330,5473].
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 288.26
Syntheses
- Preparation by reaction of 3,4-(methylene-dioxy)phenyl-acetonitrile with phloroglucinol (Hoesch reaction) (65-66\%) [5330,5473].

1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-(2,5-dihydroxyphenyl)ethanone

[115781-56-1] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4} \quad$ mol.wt. 292.74
 Synthesis

- Obtained by alkali cleavage of 6-chloro-3(2', 5'-di-hydroxyphenyl)-4-hydroxy-7methylcoumarin with refluxing 2% methanolic potassium hydroxide for 4 h (65\%) [5416].
m.p. 222° [5416]; IR [5416], UV [5416].

1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone

[115781-52-7]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{5}$
mol.wt. 308.72

Synthesis

- Obtained from 6-chloro-4-hydroxy-7-methyl-3-(2', 4', 5^{\prime}-trihydroxyphenyl) coumarin with refluxing 2% methanolic potassium hydroxide for 4 h (78\%) [5416].
m.p. 201° [5416]; IR [5416], UV [5416].

1-(2-Hydroxy-4-methoxyphenyl)-2-(4-fluorophenyl)ethanone
[128040-46-0]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3}$
mol.wt. 260.26
Synthesis

- Preparation by partial methylation of 4'-fluoro-2,4-dihydroxydeoxybenzoin with dimethyl sulfate in refluxing acetone for $6 \mathrm{~h}(90 \%)$ [5420] or in the presence of potassium carbonate in refluxing acetone for 4 h (60\%) [5421].
m.p. $90-92^{\circ}$ [5421], $78-80^{\circ}$ [5420]; ${ }^{1} \mathrm{H}$ NMR [5420,5421], MS [5421].

1-(3,4-Dihydroxy-5-nitrophenyl)-2-(2-methylphenyl)ethanone
[274925-87-0]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 287.27
Synthesis

- Preparation by treatment of 1-(4-hydroxy-3-meth-oxy-5-nitrophenyl)-2-(2-methylphenyl)ethanone with aluminium chloride in refluxing ethyl acetate/ pyridine mixture for $2 \mathrm{~h}(90-96 \%)$ [5193].
m.p. $163-165^{\circ}$ [5193];
${ }^{1} H$ NMR [5193], ${ }^{13}$ C NMR [5193], IR [5193].

1-(3,4-Dihydroxy-5-nitrophenyl)-2-(4-methylphenyl)ethanone

[400871-10-5]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 287.27
Synthesis

- Preparation by treatment of 1-(4-hydroxy-3-methoxy-5-nitrophenyl)-2-(4-methylphenyl) ethanone with aluminium chloride in refluxing ethyl acetate/pyridine mixture for 2 h (90-96\%) [5193].
m.p. $\quad 189-190^{\circ}$ [5193];
${ }^{1} \mathrm{H}$ NMR [5193], ${ }^{13} \mathrm{C}$ NMR [5193], IR [5193].

1-(2-Hydroxy-4-methoxyphenyl)-2-(4-nitrophenyl)ethanone

[57272-98-7]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$
mol.wt. 287.27
Syntheses

- Obtained (poor yield) by reaction of p-nitrophenyl-acetonitrile with resorcinol monomethyl ether (9\%) (Hoesch reaction) [5425].
- Also obtained by partial methylation of 2,4-di-hydroxyphenyl 4-nitrobenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone [5217].
m.p. 136° [5425], $134-136^{\circ}$ [5217].

1-(4-Hydroxy-2-methoxyphenyl)-2-(4-nitrophenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$
mol.wt. 287.27
Synthesis

- Obtained by reaction of p-nitrophenylacetonitrile with resorcinol monomethyl ether (Hoesch reaction) [5425].
m.p. $149-150^{\circ}$ [5425].

1-(3,4-Dihydroxy-5-nitrophenyl)-2-(4-methoxyphenyl)ethanone
[440362-23-2]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 303.27 Synthesis

- Preparation by partial demethylation of 1-(4-hydroxy-3-methoxy-5-nitrophenyl)-2-(4-methoxyphenyl)ethanone using aluminium chloride and pyridine in ethyl acetate at reflux for 2 h (91\%) [5192].
diacetate m.p. $88-89^{\circ}$ [5192].
2-(4-Nitrophenyl)-1-(2,4,6-trihydroxy-3-methoxyphenyl)ethanone
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{7} \quad$ mol.wt. 319.27
 Synthesis
- Obtained by reaction of p-nitrophenylacetonitrile with iretol (Hoesch reaction) (50\%) [5474].
m.p. 220° [5474].

1-(2,4-Dihydroxyphenyl)-2-(4-methylphenyl)ethanone

m.p. 114° [5262].
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Synthesis

- Obtained by reaction of p-tolylacetonitrile with resorcinol (Hoesch reaction) [5262].

1-(2-Hydroxyphenyl)-2-(2-methoxyphenyl)ethanone

[92549-19-4]
 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Syntheses

- Preparation by stirring a mixture of S-[3-hydroxy-4-[(2-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate [142751-41-5], Raney nickel and ethanol at r.t. for $1 \mathrm{~h}(71 \%)$ [5205].
- Also obtained by heating 2-methoxybenzoyl-2-methoxy-phenylacetonitrile (m.p. 107-108 ${ }^{\circ}$) in acetic acid with concentrated hydrochloric acid on a steam bath for 15 h (47\%) [5475].
- Also obtained by alkaline degradation of 2^{\prime}-methoxyisoflavone (m.p. 184°) with potassium hydroxide in boiling aqueous methanol for 1.5 h (almost quantitative yield) [5476].
- Also obtained by heating ethyl 2-methoxybenzoyl-2-methoxyphenylacetate (m.p. 76-77 ${ }^{\circ}$) in acetic acid with concentrated hydrochloric acid on a steam bath for 15 h (54\%) [5475].
- Also refer to: [5477]. colourless oil [5475]; b.p. $._{0.004} 140-150^{\circ}$ [5475]; m.p. 64° [5476], 59-60 ${ }^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

1-(2-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone

[79744-47-1]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Preparation by addition of p-methoxybenzylmagnesium chloride to a solution of 2-hydroxybenzonitrile in THF at r.t. overnight, then refluxing with aqueous hydrochloric acid for 4 h (90\%) [5478].
- Also obtained by heating a solution of 2-methoxy-benzoyl-4-methoxyphenylacetonitrile (m.p. 109-110 5) in acetic acid containing hydrochloric acid on a steam bath for 15 h (47\%) [5479].
- Also obtained by stirring a mixture of S-[3-hydroxy-4-[(4-methoxyphenyl) acetyl]phenyl] dimethylcarbamothioate [142751-42-6], Raney nickel and ethanol at r.t. for $1 \mathrm{~h}(73 \%)$ [5205].
- Also obtained by heating a solution of ethyl 2-methoxybenzoyl-4-methoxyphenylacetate (b.p. ${ }_{0.004} 180-200^{\circ}$) in acetic acid containing hydrochloric acid on a steam bath for 15 h (54\%) [5479].
- Also obtained by Fries rearrangement of phenyl p-methoxyphenylacetate with aluminium chloride for 1.5 h at 145° (13\%) [5280].
m.p. 86° [5280], $85-86^{\circ}$ [5205], $79-81^{\circ}$ [5478]; b.p. ${ }_{0.003} 160-180^{\circ}$ [5479];
${ }^{1} \mathrm{H}$ NMR [5205,5280], ${ }^{13} \mathrm{C}$ NMR [5293], IR [5280], MS [5205,5280,5478]; TLC [5478].

1-(4-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone

[3669-46-3]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
Syntheses

- Obtained by Fries rearrangement of phenyl p-methoxy-phenylacetate in nitromethane,
- in the presence of aluminium chloride for 25 h at $20^{\circ}(48 \%)$ [5480] or for 1.5 h at 145° (12\%) [5280];
- in the presence of titanium tetrachloride for 6 h at 20° (26\%) [5480].
- Also obtained by partial demethylation of 4,4'-dimethoxydeoxybenzoin,
- with aluminium chloride in refluxing benzene for 1.5 h (33\%) [5433];
- with sodium in refluxing ethylene glycol for $3 \mathrm{~h}(12 \%)$ [5481].
m.p. $175-178^{\circ}$ [5433], 175° [5280,5481], 171° [5480];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard ${ }^{\circ} 44611 \mathrm{M}$),
IR (Sadtler: standard n ${ }^{\circ} 71639$ K) [5480], UV [5480], MS [5480].
1-(2,4-Dihydroxy-3-methylphenyl)-2-(4-hydroxyphenyl)ethanone

1-(2,4-Dihydroxy-6-methylphenyl)-2-(4-hydroxyphenyl)ethanone
m.p. $\quad 186-187^{\circ}$ [5208]; $\quad{ }^{1} \mathrm{H}$ NMR [5208], ${ }^{13} \mathrm{C}$ NMR [5208], MS [5208]. 258.27

2-(2,5-Dihydroxyphenyl)-1-(2-hydroxy-5-methylphenyl)ethanone

[115781-53-8]

Obtained by alkali cleavage of 3-(2',5'-dih-
with refluxing 2\% methanolic potassium hydrox-
ide for $4 \mathrm{~h}(79 \%)$ [5416].

m.p. 223° [5416]; IR [5416], UV [5416].

2-(3,5-Dihydroxyphenyl)-1-(2-hydroxy-4-methylphenyl)ethanone

[111192-02-0]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27

Synthesis

- Obtained by decarboxylation of 6,8-dihy-droxy-3-(2-hydroxy-4-methylphenyl) isocoumarin (m.p. 201-202 ${ }^{\circ}$) with refluxing 10% aqueous potassium hydroxide solution for 6 h (90%) [5482].
m.p. 89° [5482]; ${ }^{1} \mathrm{H}$ NMR [5482], IR [5482], MS [5482].

1-(2,4-Dihydroxyphenyl)-2-(2-methoxyphenyl)ethanone

[92549-46-7]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation by reaction of o-methoxyphenylacetic acid with resorcinol in the presence of boron trifluoride etherate under argon on a water bath for 1 h (98\%) [5208].
- Also obtained by reaction of o-methoxyphenylacetonitrile with resorcinol (Hoesch reaction) (25\%) [5438], (23\%) [5483].
- Also refer to: $[5263,5479]$.
m.p. 164° [5483], 159- 160° [5438].

1-(2,4-Dihydroxyphenyl)-2-(3-methoxyphenyl)ethanone

[89019-83-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation by reaction of m-methoxyphenylacetic acid with resorcinol under argon atmosphere,
- in the presence of boron trifluoride etherate on a water bath for 1 h (96\%) [5208];
- in ethylene dichloride in the presence of boron trifluoride, first at r.t., then at 60° for 2 h (63\%) [5439].
m.p. $109-110^{\circ}$ [5439]; ${ }^{1} \mathrm{H}$ NMR [5439], IR [5439], UV [5439], MS [5439].

1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone (Ononetin)

[487-49-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Preparation by condensation of p-methoxyphenyl-acetonitrile with resorcinol (Hoesch reaction) [4989,5264,5265,5385], (64\%) [5484], (50\%) [5268], (48\%) [5444].
- Preparation by Friedel-Crafts acylation of resorcinol with p-methoxyphenylacetyl chloride in the presence of aluminium chloride for 24 h at r.t., in nitrobenzene (50\%) [5250] or in ethyl ether (36\%) [5251].
- Also obtained by reaction of p-methoxyphenylacetic anhydride with resorcinol in the presence of boron trifluoride etherate for 3.5 h at 75° (67\%) [5255].
- Also obtained by reaction of p-methoxyphenylacetic acid with resorcinol,
- in the presence of boron trifluoride etherate under argon on a water bath for $1.5 \mathrm{~h}(98 \%)$ [5208] or at 100° for $1 \mathrm{~h}(77 \%)$ [5439];
- in the presence of boron trifluoride in chloroform (51\%) [5258].
- Also obtained by alkaline degradation of formononetin (7-hydroxy-4'methoxyisoflavone) (SM) (m.p. 265º) [5444,5484,5485,5486], (95\%) [5487], (51%) [5484]. SM was prepared by hydrolysis of ononin with 4% sulfuric acid [5484].
- Also obtained by degradation of onospin (m.p. 172°) (SM1) by heating with dilute sulfuric acid or by treatment with emulsin. SM1 was prepared from ononin by heating with 10% sodium hydroxide for 2 min [5484,5486].
- Also obtained by decarboxylation of 5-carboxy-2,4-dihydroxy-4'methoxydeoxybenzoin (m.p. 200°) in boiling quinoline containing copper bronze during 5 min (26\%) [5488].
- Also refer to: [4685,4983,5181,5205,5217,5220,5263,5271,5273,5277,5279, 5281,5415,5417,5442,5448,5449].
m.p. $161^{\circ} 5-162^{\circ} 5$ [5264], $159^{\circ} 5$ [5484], 159° [4989,5258], $158-159^{\circ}$ [5251], 158° [5250,5444,5487,5488], 156-157$~[5283], ~ 153-155^{\circ} ~[5439] ; ~$
${ }^{1} \mathrm{H}$ NMR [5268,5439], ${ }^{13} \mathrm{C}$ NMR [5293,5450], IR [5439], UV [5264,5439], MS [5268,5439].

1-(2,5-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone
[56308-07-7]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27

Synthesis

- Refer to: [5281] (Hungarian paper).

1-(2-Hydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone

[60278-33-3]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Syntheses

- Obtained by reaction of p-hydroxyphenylacetic acid with m-methoxyphenol,
- in the presence of boron trifluoride in ethylene dichloride at 80° for 2 h under an argon atmosphere (47\%) [5439];
- in the presence of polyphosphoric acid at 95° for $30 \mathrm{~min}(57 \%)$ [5334].
- Also refer to: [5270,5448,5489].
gum [5334]; m.p. 151-1540 [5439];
${ }^{1} \mathrm{H}$ NMR [5439], ${ }^{13} \mathrm{C}$ NMR [5293], IR [5439], UV [5439], MS [5439].

1-(4-Hydroxy-2-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27
Synthesis

- Obtained by reaction of p-hydroxyphenylacetic acid with m-methoxyphenol in ethylene dichloride in the presence of boron trifluoride at 80° for 2 h under an argon atmosphere (23\%) [5439].
m.p. ${ }^{147-151^{\circ}}$ [5439]; ${ }^{1} \mathrm{H}$ NMR [5439],

IR [5439], UV [5439], MS [5439].

2-(4-Methylphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[59108-68-8]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

m.p. 205-206 (anhydrous) [5262];
sesquihydrate [5262].

Synthesis

- Preparation by reaction of p-tolylacetonitrile with phloroglucinol (Hoesch reaction) $[4852,5265]$.

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 274.27
Syntheses

- Preparation by reaction of p-hydroxy-phenyl-acetonitrile with phloroglucinol monomethyl ether (57\%) (Hoesch reaction) [5330].
- Also refer to: [5281,5295].
m.p. $186-188^{\circ}$ [5330].

1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone
[79744-54-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
Synthesis

- Obtained by reaction of p-hydroxyphenylacetonitrile with 2-methoxyhydroquinone (Hoesch reaction) [5293,5351].
${ }^{13}$ C NMR [5293].
1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis
- Obtained by heating a mixture of 5,4'-dihydroxy-7-methoxyisoflavone and tribasic sodium phosphate in water at reflux for 1 h (83\%) [5295].
m.p. 247-249 ${ }^{\circ}$ [5295].

1-(2,4-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethanone
[36754-72-0]

- Also refer to: [5380,5492].
m.p. $161-162^{\circ}[5490,5491]$.
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 274.27
Syntheses
- Obtained by reaction of (3-hydroxy-4-methoxy-phenyl)acetonitrile with resorcinol (Hoesch reaction) (41\%) [5490,5491].

1-(2,4-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethanone-1-14 C

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 274.27
Synthesis

- Obtained by hydrolysis of 2,4-dihydroxyphenyl 3-benzoyloxy-4-methoxybenzyl [${ }^{14} \mathrm{C}$] ketone (SM) with sodium hydroxide in dilute methanol (31-35\%). SM was obtained by reaction of 3-benzoyloxy-4-methoxybenzyl $\left[{ }^{14} \mathrm{C}\right]$ nitrile with resorcinol (Hoesch reaction) [5492].
m.p. $166-168^{\circ}$ [5492].

1-(2,4-Dihydroxyphenyl)-2-(4-hydroxy-2-methoxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 274.27
Synthesis

- Refer to: [5277].

1-(2,4-Dihydroxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)ethanone
[40456-49-3]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 274.27
Syntheses

- Preparation by reaction of 4-hydroxy-3-methoxyphenyl-acetic acid with resorcinol in the presence of boron trifluoride etherate under argon on a water bath for 1 h (99\%) [5208].
- Also obtained by reaction of (4-acetoxy-3-methoxy-phenyl)acetonitrile with resorcinol (Hoesch reaction) [5493].
colourless granules [5493]; ${ }^{1} \mathrm{H}$ NMR [5493], IR [5493].
1-(2-Hydroxy-5-methylphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone

[115781-49-2]	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
HO	Synthesis
	- Obtained from 4-hydroxy-6-methyl-3-(2',4', 5'-trihydroxy-phenyl)coumarin with refluxing 2% methanolic potassium hydroxide for 4 h (67\%) [5416].
m.p. 193° [5416]; IR [54	6], UV [5416].

2-(2-Hydroxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone

N.B.: This ketone cannot be prepared by condensation of o-hydroxyphenylacetonitrile with 2-methylphloroglucinol (Hoesch reaction) [5438].
m.p. 186° [5455].

2-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27

Syntheses

- Obtained by partial demethylation of 2-hydroxy-4,6-dimethoxy-3-methylphenyl 4-methoxybenzyl ketone with aluminium chloride in refluxing benzene for 2 h (58\%) [5494].
- Also obtained by alkaline degradation of methylgenistein (8-methyl-5,7,4'trihydroxyisoflavone) (m.p. 298 ${ }^{\circ}$) with potash [5453,5455].
m.p. $235-237^{\circ}$ [5494], 190° [5455]. One of the reported melting points is obviously wrong.

2-(2-Methoxyphenyl)-1-(2,4,5-trihydroxyphenyl)ethanone

2-(2-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[116854-95-6]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Syntheses

- Preparation by reaction of 2-methoxyphenylacetonitrile with phloroglucinol (Hoesch reaction),
- in the presence of zinc chloride [5287,5457], (74\%) [5454], (48\%) [5456], (42\%) [5255], (37\%) [5495];
- in the presence of boron trifluoride etherate (45\%) [5255].
- Also refer to: [5295,5496,5497,5498].
monohydrate [5456,5495]; sublimation at $120^{\circ} / 0.04 \mathrm{~mm}$ [5495];
m.p. 170° [5287], 169° [5495], $168-170^{\circ}$ [5456], 167-169${ }^{\circ}$ [5454,5457].

2-(3-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[111474-27-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis

- Preparation by reaction of 3-meth-oxyphenyl-acetonitrile with phloroglucinol (Hoesch reaction) (75\%) [5496], (30\%) [5295].
m.p. $168-169^{\circ}$ [5295], $165-166^{\circ}$ [5496]; ${ }^{1} \mathrm{H}$ NMR [5496], IR [5496].

2-(4-Methoxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone

[38412-59-8]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27 Syntheses

- Obtained by acid hydrolysis of 4-methoxybenzyl 2-hydroxy-3,4-diphenylmethylenedioxyphenyl ketone (m.p. 146°) in acetic acid in the presence of 2 drops of concentrated hydrochloric acid at 100° for $5 \mathrm{~min}(48 \%)$ [5499].
- Also obtained by reaction of 4-methoxyphenylacetic acid with pyrogallol in chloroform in the presence of excess boron trifluoride, first at 0°, then at r.t. overnight (77\%) [5258] or for 2 days (54\%) [5499].
- Also refer to: [5351,5296,5500].
m.p. 157° [5499], $145-146^{\circ}$ [5258];
${ }^{1} \mathrm{H}$ NMR [5499], ${ }^{13} \mathrm{C}$ NMR [5293]; TLC [5499].

2-(4-Methoxyphenyl)-1-(2,4,5-trihydroxyphenyl)ethanone

[76095-38-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Syntheses

- Preparation by reaction of p-methoxy-phenyl-acetonitrile with hydroxyhydroquinone (Hoesch reaction) [5291,5293,5351,5501], (80\%) [5471].
- Also refer to: [5502,5503,5504,5505].
m.p. $180-181^{\circ}$ [5471,5501]; TLC [5471];
${ }^{1} \mathrm{H}$ NMR [5471], ${ }^{13} \mathrm{C}$ NMR [5293], UV [5501].
2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone
[15485-66-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Syntheses
- Preparation by reaction of p-methoxy-phenyl-acetonitrile with phloroglucinol (Hoesch reaction),
- inthe presence of zinc chloride [4852,5264,5265],(91-92\%)[5461,5462,5506], (80\%) [5459], (66\%) [5294], (57\%) [5250], (55\%) [5255];
- in the presence of boron trifluoride etherate (82\%) [5255].
- Preparation by Fries rearrangement of 3,5-dihydroxyphenyl p-methoxyphenylacetate with aluminium chloride in nitrobenzene, first at 60°, then at 150° for 2 h (75\%) [5506].
- Preparation by Friedel-Crafts acylation of phloroglucinol with p-methoxyphenylacetyl chloride in nitrobenzene at 100° for $2 \mathrm{~h}(50 \%)$ [5506].
- Preparation by reaction of p-methoxyphenylacetic acid with phloroglucinol in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (68\%) [5209].
- Also refer to: [4685,5263,5273,5281,5295,5415,5417,5448,5460]. m.p. $198-200^{\circ}$ [5462], 198-199$~[5264], ~ 195 ~[5250], ~ 194 ~[5294], ~$ 192-193 ${ }^{\circ}$ [5459,5506], 192° [5209]; monohydrate [5459];
${ }^{1} H$ NMR [5462], ${ }^{13}$ C NMR [5293,5450,5462], IR [5294],
UV [5264,5294,5462]; TLC [5294].

2-(1,3-Benzodioxol-5-yl)-1-(6-hydroxy-1,3-benzodioxol-5-yl)ethanone

[2746-90-9]

- Also obtained by reaction of methylene sulfate with 2,4,5-trihydroxyphenyl (3,4-methylenedioxy)benzyl ketone in the presence of potassium hydroxide in dilute acetone for 70 min at $45-50^{\circ}$ (9\%) [5472].
m.p. 172-173 ${ }^{\circ}$ [5472]; IR [5472], UV [5472].

2-(4-Bromophenyl)-1-[2-(ethenyloxy)-6-hydroxyphenyl]ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad \text { mol.wt. } 333.18
$$

Synthesis

- Obtained (by-product) by reaction of dieth-ylaminochloro-ethane with 2,6-dihydroxy-4'bromodesoxybenzoin in the presence of sodium ethoxide in refluxing ethanol for 4 h [5357].
m.p. 103° [5357].

1-[2-(Ethenyloxy)-6-hydroxyphenyl]-2-(4-iodophenyl)ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{3} \quad \text { mol.wt. } 380.18
$$ Synthesis

- Obtained (by-product) by reaction of dieth-ylaminochloro-ethane with 2,6-dihydroxy-4'iododesoxybenzoin in the presence of sodium ethoxide in refluxing ethanol for 4 h [5357].
m.p. 131° [5357].

1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(4-nitrophenyl)ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{7} \quad \text { mol.wt. } 331.28
$$

 Synthesis

- Obtained by condensation of 3-meth-oxy-4,5-methylenedioxyphenol with 4-nitrophenyl-acetontrile (Hoesch reaction) (37\%) [5507].
m.p. $165-167^{\circ}$ [5507]; IR [5507].

2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4-methoxyphenyl)ethanone

[5128-56-3]

- Also refer to: [5380,5508].
m.p. 145° [5468].

2-(1,3-Benzodioxol-5-yl)-1-(4-hydroxy-3-methoxyphenyl)ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad \text { mol.wt. } 286.28
$$

Synthesis

- Obtained by hydrogenolysis of 4-benzyloxy-3-meth-oxy-phenyl 3,4-methylenedioxybenzyl ketone (oil) with hydrogen in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in ethanol at r.t. for $1.5 \mathrm{~h}(87 \%)$ [5509].
m.p. $132-133^{\circ}$ [5509];
${ }^{1} H$ NMR [5509], IR [5509], UV [5509], MS [5509].

2-(1,3-Benzodioxol-5-yl)-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone

[55607-36-8]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28

Synthesis

- Obtained by reaction of 3,4-methylene-dioxyphenyl-acetonitrile with phloroglucinol monomethyl ether (Hoesch reaction) [5295], (27\%) [5352].
m.p. $143-144^{\circ}$ [5295], $138-139^{\circ}$ [5352];
${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].
2-(1,3-Benzodioxol-5-yl)-1-(2,5-dihydroxy-4-methoxyphenyl)ethanone
[2746-89-6]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28
Synthesis
- Obtained by treatment of 2,4,5-trihydroxyphenyl (3,4-methylenedioxy)benzyl ketone in acetone with an ethereal diazomethane solution at r.t. overnight (76\%) [5472].
m.p. 194-196 [5472]; UV [5472].

1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(4-hydroxyphenyl)ethanone
[3207-38-3]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28
Syntheses

- Obtained by alkaline degradation of irisolone (4'-hydroxy-5-methoxy-6,7methylenedioxyisoflavone) (m.p. 258$265^{\circ}$) (SM) with refluxing aqueous sodium hydroxide for 1.5 h . SM was isolated from the rhizomes of iris nepalensis D. DON (Iridaceae) [5510].
- Also obtained by reaction of 4-hydroxyphenylacetonitrile with 3-methoxy-4,5-methylenedioxy-phenol (Hoesch reaction) (7\%) [5507].
- Also obtained by diazotization of 6-hydroxy-2-methoxy-3,4-methylenedioxyphenyl 4-aminobenzyl ketone, followed by hydrolysis of the diazonium salt obtained (10\%) [5507].
m.p. $159-160^{\circ}$ [5510], $152-153^{\circ}$ [5507]; IR [5507], UV [5507,5510].

2-(4-Bromophenyl)-1-(5-ethyl-2,4-dihydroxyphenyl)ethanone

[96643-99-1]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3} \quad$ mol.wt. 335.20
Synthesis

- Preparation by reaction of p-bromophenylacetonitrile with 4-ethylresorcinol in the presence of boron trifluoride etherate under hydrogen chloride atmosphere at r.t. overnight (80\%) [5368], (70\%) [5367].
m.p. $124-125^{\circ}$ [5367,5371]; ${ }^{1} \mathrm{H}$ NMR [5367].

1-(2-Bromo-6-hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone

[191847-25-3]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4} \quad$ mol.wt. 351.20
Synthesis

- Obtained by Friedel-Crafts acylation of 3,5-di-methoxybromobenzene with 4-methoxyphenyl-acetyl chloride in the presence of aluminium chloride (12\%) [5511].
m.p. $\quad 180-182^{\circ}$ [5511]; ${ }^{1} \mathrm{H}$ NMR [5511], MS [5511].

2-(4-Bromophenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4} \quad$ mol.wt. 351.20
Synthesis

- Refer to: [5370] (Japanese paper).
m.p. $134-135^{\circ}$ [5370].

2-(4-Chlorophenyl)-1-(5-ethyl-2,4-dihydroxyphenyl)ethanone

[96644-00-7]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3} \quad$ mol.wt. 290.75
Synthesis

- Preparation by reaction of p-chlorophenylacetonitrile with 4-ethylresorcinol in the presence of boron trifluoride etherate under hydrogen chloride atmosphere at r.t. overnight (80\%) [5368], (70\%) [5367].
m.p. $\quad 130-131^{\circ}[5367,5368] ;{ }^{1} \mathrm{H}$ NMR [5367].

2-(3-Chlorophenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone

[24863-50-1] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{4} \quad$ mol.wt. 306.75

Synthesis

- Obtained by Friedel-Crafts acylation of pyrogallol tri-methyl ether with m-chlorophenylacetyl chloride in the presence of aluminium chloride in carbon disulfide for 30 min (54\%) [5370].
m.p. $111-112^{\circ}$ [5370]; ${ }^{1} \mathrm{H}$ NMR [5370].

2-(4-Chlorophenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone

[24852-34-4]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{4}$
mol.wt. 306.75
Synthesis

- Obtained by Friedel-Crafts acylation of pyrogallol trimethyl ether with p-chlorophenylacetyl chloride in carbon disulfide in the presence of aluminium chloride for 30 min (59\%) [5370].
m.p. $113-114^{\circ}$ [5370].

2-(4-Aminophenyl)-1-(6-hydroxy-4-methoxy-1,3-benzodioxol-5-yl)ethanone
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \quad$ mol.wt. 301.30

Synthesis

- Obtained by catalytic reduction of 6-hydroxy-2-methoxy-3,4-methylenedioxyphenyl 4-nitrobenzyl ketone in ethyl acetate with hydrogen in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at r.t. (82\%) [5507].
m.p. $170-172^{\circ}$ [5507]; IR [5507].

1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-nitrophenyl)ethanone

[96644-02-9]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \quad$ mol.wt. 301.30
Synthesis

- Obtained by reaction of p-nitrophenylacetonitrile with 4-ethylresorcinol in the presence of boron trifluoride etherate under hydrogen chloride atmosphere (8-10 h), then at r.t. overnight (94\%) [5367].
m.p. $\quad 159-160^{\circ}$ [5367]; ${ }^{1} \mathrm{H}$ NMR [5367].

1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(4-nitrophenyl)ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6} \quad \text { mol.wt. } 317.30
$$

Synthesis

- Obtained by reaction of p-nitrophenylacetonitrile with 2,6-dihydroxy-4methoxytoluene (Hoesch reaction) [5258].
m.p. 201° [5258].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-nitrophenyl)ethanone

[56982-36-6]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6} \quad$ mol.wt. 317.30
Syntheses

- Obtained by partial methylation of 4-nitrobenzyl 2,4,6-trihydroxyphenyl ketone,
- with diazomethane in ethyl ether at 0° for $48 \mathrm{~h}(57 \%)$ [5382];
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone [5217].
- Also refer to: [5512].
m.p. 150° [5217], $148-149^{\circ}$ [5512], 148° [5382].

1-(2,4-dihydroxy-3,6-dimethoxyphenyl)-2-(4-Nitrophenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{7}$
mol.wt. 333.30
Synthesis

- Obtained by reaction of p-nitrophenylacetonitrile with 2,5-dimethoxyresorcinol (Hoesch reaction) [5474].
m.p. $\quad 174^{\circ}[5474]$.

1-(2-Hydroxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone
[74384-36-4] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Preparation by Fries rearrangement of o-cresyl o-meth-oxy-phenylacetate with aluminium chloride in nitromethane for 170 h at $20^{\circ}(60 \%)$ [5480].
m.p. 167° [5480];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ} 44610$ M);
IR (Sadtler: standard $\mathrm{n}^{\circ} 71638 \mathrm{~K}$) [5480],
UV [5480], MS [5480].

1-(2-Hydroxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone

$$
\begin{aligned}
& \text { [74384-33-1] } \\
& \begin{array}{l}
\text { Ongement. } 256.30 \\
\text { phenylacetate with ald aminium } \\
\text { chloride in nitromethane for } 25 \mathrm{~h} \text { at } \\
20^{\circ}(11 \%)[5480] .
\end{array}
\end{aligned}
$$

oil [5480]; IR [5480], UV [5480], MS [5480].
1-(2-Hydroxy-5-methylphenyl)-2-(2-methoxyphenyl)ethanone

m.p. 95° [5480];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 44606$ M), IR (Sadtler: standard n${ }^{\circ} 71634$ K) [5480], UV [5480], MS [5480].

1-(2-Hydroxy-5-methylphenyl)-2-(4-methoxyphenyl)ethanone
[74384-34-2]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Synthesis

- Obtained by Fries rearrangement of p-cresyl p-methoxyphenylacetate with aluminium chloride in nitromethane for 25 h at 20° (22\%) [5480].
m.p. 55° [5480];

IR [5480], UV [5480], MS [5480].

1-(4-Hydroxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone

[74384-31-9] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Preparation by Fries rearrangement of o-cresyl p-methoxy-phenylacetate with aluminium chloride in nitromethane for 25 h at 20° (71\%) [5480].
m.p. 160° [5480];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ} 44612$ M),
IR (Sadtler: standard $n^{\circ} 71640$ K) [5480], UV [5480], MS [5480].
1-(2,4-Dihydroxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Syntheses
- Preparation by hydrogenation of 2,4-dihydroxy-3-formylphenyl4-methoxybenzyl ketone (m.p. $114-115^{\circ}$) in acetic acid in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in an atmosphere of hydrogen at r.t. and at atmospheric pressure (79\%) [5354].
- Preparation by reaction of p-methoxyphenylacetonitrile with 2-methylresorcinol (48\%) (Hoesch reaction) [5513].

Also refer to: [5514].
m.p. 175° [5513], $172-173^{\circ}$ [5354].

1-(2,4-Dihydroxy-5-methylphenyl)-2-(4-methoxyphenyl)ethanone
[56308-10-2]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Syntheses

- Obtained by reaction of 4-methoxyphenylacetonitrile with 4-methylresorcinol (Hoesch reaction) (44\%) [5515], (36\%) [5488].
- Also refer to: [5281] (Hungarian paper).
m.p. 155° [5488], $139-140^{\circ}$ [5515]. One of the reported melting points is obviously wrong.

1-(2,4-Dihydroxy-6-methylphenyl)-2-(4-methoxyphenyl)ethanone

[15485-71-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Synthesis

- Obtained by treatment of orcinol with p-methoxyphenylacetonitrile in ethyl ether in the presence of zinc chloride and hydrogen chloride (Hoesch reaction) [5264].
m.p. $109-110^{\circ}$ [5264]; UV [5264].

1-(2,6-Dihydroxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone

$$
[131196-70-8] \quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 272.30
$$

Synthesis

- Obtained from 2,6-dihydroxy-4'-methoxy-5-methoxycarbonyl-3methyldeoxybenzoin
(m.p. 116°) which was simultaneously hydrolysed and decarboxylated by treatment with potassium hydroxide in refluxing dilute ethanol for 1.5 h (84%) [5488].
m.p. 164° [5488].

1-(2,6-Dihydroxy-4-methylphenyl)-2-(4-methoxyphenyl)ethanone

2-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)ethanone

[183054-34-4]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Synthesis

- Obtained by Friedel-Crafts acylation of isopropyl phenyl ether with homoveratroyl chloride in ethylene dichloride in the presence of aluminium chloride, first at 20°, then at 40° for $2-3 \mathrm{~h}$ and at r.t. overnight (31\%) [5517].
m.p. $165-167^{\circ}$ [5517];
${ }^{1} \mathrm{H}$ NMR [5517], ${ }^{13} \mathrm{C}$ NMR [5517], IR [5517], MS [5517].

1-(2-Hydroxy-4-methoxyphenyl)-2-(2-methoxyphenyl)ethanone

[18440-00-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
 Syntheses

- Preparation by partial methylation of 2,4-dihydroxy-2'-methoxydeoxybenzoin,
- with methyl iodide in the presence of potassium carbonate in boiling acetone during 1.5 h (quantitative yield) [5483];
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 5 h (83\%) [5518].
- Also obtained by Friedel-Crafts acylation of resorcinol dimethyl ether with o-methoxyphenylacetyl chloride in the presence of aluminium chloride, first in carbon disulfide, then on steam bath for 2.5 h after solvent elimination (40\%) [5519].
- Also obtained by hydrolysis of 2,4-dimethoxybenzoyl-2-methoxyphenylacetonitrile (m.p. 114-115) in acetic acid with concentrated hydrochloric acid on a steam bath for $15 \mathrm{~h}(43 \%)$ [5211].
- Also obtained by hydrolysis of ethyl 2,4-dimethoxybenzoyl-2-methoxyphenylacetate (m.p. $94-96^{\circ}$) in acetic acid with concentrated hydrochloric acid on a steam bath for $15 \mathrm{~h}(40 \%)$ [5211].
- Also obtained by degradation of 7,2'-dimethoxy-3-phenyl-4-hydroxycoumarin with refluxing 30% alcoholic hydrogen chloride for 1 h (36\%) [5210].
- Also refer to: [5278,5338,5340,5448,5476].
m.p. 94° [5483], $93-95^{\circ}$ [5519], $93-94^{\circ}$ [5518], 92° [5210], $90-91^{\circ}$ [5211];
b.p. ${ }_{0.001} 180^{\circ}$ [5211].

1-(2-Hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone

- Preparation by partial methylation of 2,4-di-hydroxyphenyl 4-methoxybenzyl ketone,
- with methyl iodide in the presence of potassium carbonate in boiling acetone during 3 h (83\%) [5250];
- with dimethyl sulfate [5520], in the presence of potassium carbonate in boiling acetone [5385];
- with diazomethane in ethyl ether [5484,5487].
- Also obtained by alkaline degradation of formononetin methyl ether (7,4'-dimethoxyisoflavone) [5487], (m.p. 156°) with boiling 10% sodium hydroxide for 1 h [5484].
- Also obtained by hydrolysis of 2,4-dimethoxybenzoyl-4-methoxyphenyl-acetonitrile (m.p. 105-106 $)$ in acetic acid with concentrated hydrochloric acid on a steam bath for 15 h (38\%) [5211].
- Also obtained by hydrolysis of ethyl 2,4-dimethoxybenzoyl-4-methoxyphenylacetate (m.p. $48-50^{\circ}$) in acetic acid with concentrated hydrochloric acid on a steam bath for 15 h (33\%) [5211].
- Also obtained by reaction of p-methoxyphenylacetonitrile with resorcinol monomethyl ether (Hoesch reaction) [5486].
- Also refer to: [4935,5273,5278,5330,5337,5338,5340,5381,5420,5421,5447, 5448,5461,5462].
m.p. 104° [5250,5484], 102° [5487], $100-100^{\circ} 5$ [5211], $92-93^{\circ}$ [5486];
b.p. ${ }_{0.001} 190^{\circ}[5211] ;{ }^{13} \mathrm{C}$ NMR [5293,5450].

1-(4-Hydroxy-2-methoxyphenyl)-2-(4-methoxyphenyl)ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 272.30
$$

Syntheses

- Obtained by heating 1-[4-(glucopyrano-syloxy)-2-methoxyphenyl]-2-(4-methoxyphenyl)ethanone (SM) with concentrated sulfuric acid for 20 min . SM was obtained by methylation of synthetic onospin (m.p. $179^{\circ} 5$) with excess methyl iodide in the presence of potassium carbonate in boiling methanol for 2 h . This same methylation can be realized by using diazomethane [5486].
- Also obtained by reaction of p-methoxyphenylacetonitrile with resorcinol monomethyl ether (Hoesch reaction) [5489].
m.p. $173-175^{\circ}$ [5486].

1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(4-hydroxyphenyl)ethanone

	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad \mathrm{~mol} . w \mathrm{w}$. 288.30
	Syntheses
	- Obtained by reaction of p-hydroxy-
	phenylacetonitrile with 2,6-dihy-
	droxy-4-methoxytoluene (m.p.
	124°) (Hoesch reaction) (50\%)
	[5495].

- Also refer to: [5488].
m.p. 207° [5495].

1-(2,3-Dihydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone

[38412-65-6]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Obtained by reaction of 4-methoxyphenylacetic acid with 3-methoxycatechol in chloroform in the presence of excess boron trifluoride, first at 0°, then at r.t. for 2 days (97\%) [5499].
m.p. 137° [5499].

1-(2,4-Dihydroxy-3-methoxyphenyl)-2-(4-methoxyphenyl)ethanone

Synthesis

- Obtained by mild base hydrolysis of 8-O-methyl-retusin (7-hydroxy-8,4'-dimethoxyisoflavone) (SM) (m.p. 229-232 ${ }^{\circ}$, itself isolated from heartwood of Xanthocercis zambesiaca (Bak.) (Leguminosae) [5522].
m.p. $\quad 140-142^{\circ}$ [5522]; ${ }^{1} \mathrm{H}$ NMR [5522], IR [5522], UV [5522], MS [5522].

1-(2,4-Dihydroxy-5-methoxyphenyl)-2-(4-methoxyphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Obtained by alkaline degradation of afromosin (7-hydroxy-6,4'-dimethoxyisoflavone), (69\%) [5501], (64\%) [5523]. Afromosin (m.p. 228-229ㅇ), was isolated from afromosia elata Harms [5523]. Afromosin is the aglycone of wistin (m.p. 209-210 $)$, itself isolated from the bark of wistaria floribunda DC [5501].
- Also obtained by reaction of 4-methoxyphenyl-acetonitrile with 4-methoxyresorcinol (Hoesch reaction) (20\%) [5523].
m.p. $128-129^{\circ}$ [5523], 127° [5501]; ${ }^{13} \mathrm{C}$ NMR [5293], IR [5523], UV [5501,5523].

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(2-methoxyphenyl)ethanone

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(4-methoxyphenyl)ethanone

[13539-34-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Preparation by reaction of p-meth-oxyphenyl-acetonitrile with phloroglucinol monomethyl ether (Hoesch reaction) [5295,5524], (39\%) [5525], (31\%) [5495].
- Also obtained by alkaline degradation of genistein 5,4'-dimethyl ether (7-hydroxy-5,4'-dimethoxyisoflavone) (m.p. 290-293 ${ }^{\circ}$) in boiling 30% potassium hydroxide for 15 min (93\%) [5444].
crystals [5444]; m.p. 166-167$~[5295], ~ 129-130 ́ ~[5495], ~ 126-127 ~[5525] . ~ O n e ~$ of the reported melting points is obviously wrong. UV [5525].

1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}$
mol.wt. 288.30
Syntheses

- Obtained by alkaline persulfate oxidation of 2-hydroxy-4-methoxyphenyl 4-methoxybenzyl ketone (Elbs reaction) (21\%) [5520].
- Also obtained by partial methylation of 2,4,5-tri-hydroxyphenyl 4-methoxybenzyl ketone with excess diazomethane in ethyl ether at r.t. overnight (14\%) [5291].
- Also obtained by reaction of 4-methoxyphenylacetonitrile with 2-methoxyhydroquinone so called methoxyquinol (24\%) (Hoesch reaction) [5523].
m.p. 150° [5523], $148-149^{\circ}$ [5291], 133-134 ${ }^{\circ}$ [5520].

One of the reported melting points is obviously wrong.
${ }^{13} \mathrm{C}$ NMR [5293], IR [5523], UV [5520,5526].

1-(2,4-Dihydroxyphenyl)-2-(2,4-dimethoxyphenyl)ethanone

[1855-30-7]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Obtained by reaction of 2,4-dime-thoxyphenyl-acetonitrile with resorcinol (Hoesch reaction) [5265], (55\%) [5526], (37\%) [5527,5531], (5\%) [5529].
- Also refer to: [5530,5445].
m.p. $158-159^{\circ}$ [5526], $155-156^{\circ}$ [5529], 154° [5528], 152° [5527];
b.p. ${ }_{0.02} 200-210^{\circ}$ [5529]; $\quad \operatorname{IR}$ [5528].

1-(2,4-Dihydroxyphenyl)-2-(2,5-dimethoxyphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Synthesis

- Obtained by reaction of 2,5-dimethoxyphenylacetonitrile (m.p. $56-57^{\circ}$) with resorcinol (40\%) (Hoesch reaction) [5531].
m.p. $\quad 144-145^{\circ}$ [5531].

1-(2,4-Dihydroxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone
[24126-98-5]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Preparation by Friedel-Crafts acylation of resorcinol with 3,4-dimethoxyphenylacetyl chloride in nitro- benzene in the presence of aluminium chloride for 24 h at r.t. (56\%) [5250].
- Preparation by reaction of 3,4-dimethoxyphenyl-acetonitrile with resorcinol (Hoesch reaction) [5332], (60\%) [5532], (49\%) [5527].
- Obtained by heating Cladrin (7-hydroxy-3',4'-dimethoxyisoflavone) (m.p. $257-258^{\circ}$) with 10% aqueous barium hydroxide at reflux for $2 \mathrm{~h}(73 \%)$. Cladrin was isolated from Cladrastis lutea (Mich. f.) K. Koch (Leguminosae) [5533].
- Also refer to: [5271,5537,5280].
m.p. $182-183^{\circ}$ [5533], 180° [5527], $177^{\circ} 5$ [5250], $177-178^{\circ}$ [5532], $176^{\circ} 5$ [5332].

1-(2,4-Dihydroxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone-1-14 C

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 290.29
Synthesis

- Obtained by reaction of 3,4-dimethoxybenzyl $\left[{ }^{14} \mathrm{C}\right]$ nitrile with resorcinol (Hoesch reaction) (38\%) [5492].
m.p. $183-184^{\circ}$ [5492]; TLC [5492].

2-(4-Ethoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Preparation by condensation of p-eth-oxyphenyl-acetonitrile with phloroglucinol (Hoesch reaction) [5535].
m.p. 208-210 ${ }^{\circ}$ [5535].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-hydroxyphenyl)ethanone

[69127-79-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Obtained by alkaline degradation of genistein 5,7-di-methyl ether (5,7-dim-ethoxy-4'-hydroxyisoflavone) (m.p. 266°) with 40% potassium hydroxide in a water bath for $15 \mathrm{~min}(41 \%)$ [5536].
- Also obtained by diazotization of 4-aminobenzyl 2-hydroxy-4,6-dimethoxyphenyl ketone hydrochloride, followed by hydrolysis of the diazonium salt obtained (33\%) [5382].
- Also obtained by reaction of p-hydroxyphenylacetonitrile with phloroglucinol dimethyl ether (Hoesch reaction) (25\%) [5537], (19\%) [5536].
- Also refer to: [5295,5463]. m.p. 112° [5537,5539], 110° [5382].

1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-(4-hydroxyphenyl)ethanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Obtained by reaction of p-hydroxyphenylacetonitrile with phloroglucinol dimethyl ether (Hoesch reaction) [5537,5539].
m.p. 182° [5536], 181° [5537].

2-(2-Methoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
Syntheses

- Preparation by reaction of o-methoxyphenylacetonitrile with 2-methylphloroglucinol (m.p. 215°) (Hoesch reaction), (45\%) [5495], (35\%) [5497].
- Also refer to: [5355].
m.p. 206° [5495], $198-200^{\circ}$ [5497]; sublimation at $160^{\circ} / 0.01 \mathrm{~mm}$ [5495].

2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 288.30
$$

Syntheses

- Obtained by reaction of p-meth-oxyphenyl-acetonitrile with 2-methylphloroglucinol (m.p. 215 ${ }^{\circ}$) [5495] (Hoesch reaction), (54\%) [5538], (26\%) [5495].
- Also refer to: [5296,5355,5359]. m.p. 228° [5495], 220-221 ${ }^{\circ}$ [5538]; sublimation at $160^{\circ} / 0.01 \mathrm{~mm}$ [5495].

1-(2,4-Dihydroxy-3-methoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethanone
[61243-85-4]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.
Syntheses

- Obtained by mild base hydrolysis of 7,3'-di-hydroxy-8,4'-dimethoxyisoflavone(m.p. $\left.\quad 212-213^{\circ}\right),(71 \%)$ [5522].
- Also refer to: [5539].
m.p. $127-129^{\circ}$ [5522]; ${ }^{1} \mathrm{H}$ NMR [5522], IR [5522], UV [5522], MS [5522].

2-(2,3-Dimethoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

2-(2,4-Dimethoxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone

[14756-83-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30
Syntheses

- Obtained by reaction of phenylacetic acid with pyrogallol in the presence of zinc chloride at 130° for 2 h (Nencki reaction) (39\%) [5540].
- Also obtained (poor yield) by reaction of 2,4-di-methoxyphenylacetonitrile with pyrogallol (Hoesch reaction) (4\%) [5540].
m.p. $134-135^{\circ}$ [5540].

2-(2,4-Dimethoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[65568-08-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30
Syntheses

- Obtained by condensation of 2,4-dime-thoxyphenyl-acetonitrile (m.p. 76 ${ }^{\circ}$) with phloroglucinol (Hoesch reaction) [5276,5381,5541,5542].
- Also refer to: [5277,5295,5476,5534,5543].
m.p. 178° [5542], 175° [5541]; paper chromatography [5397].

2-(3,4-Dimethoxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone
[93435-58-6]

m.p. 174° [5470].
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6}$
mol.wt. 304.30
Synthesis

- Obtained by condensation of 3,4-dime-thoxyphenyl-acetonitrile (m.p. 45-47 ${ }^{\circ}$) [5544] with pyrogallol (Hoesch reaction) [5545], (23\%) [5470].

2-(3,4-Dimethoxyphenyl)-1-(2,4,5-trihydroxyphenyl)ethanone

[66116-74-3]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6}$
mol.wt. 304.30

Syntheses

- Preparation by reaction of 3,4-dime-thoxyphenyl-acetonitrile with hydroxyhydroquinone (Hoesch reaction) (81%) [5471].
- Also refer to: [5351].
m.p. 193-194${ }^{\circ}$ [5471]; TLC [5471];
${ }^{1} \mathrm{H}$ NMR [5471], ${ }^{13} \mathrm{C}$ NMR [5293].

2-(3,4-Dimethoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[53084-06-3]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30
Syntheses

- Preparation by reaction of 3,4-dime-thoxyphenyl-acetonitrile with phloroglucinol (Hoesch reaction),
- in the presence of zinc chloride [5295,5549], (47\%) [5250], (42\%) [5294], (38\%) [5255];
- in the presence of boron trifluoride etherate (59\%) [5255].
- Also refer to: [5263].
N.B.: The monohydrate of this ketone was at first obtained [5250]. The water of crystallisation is lost on heating the crystals at 90°.
m.p. 208-210 [5546], 184-186 [5295], 182- 184° [5255], 181° [5250], $180-181^{\circ}$ [5294]. One of the reported melting points is obviously wrong.
${ }^{13}$ C NMR [5293], IR [5294], UV [5294]; TLC [5294].

2-(4-Methoxyphenyl)-1-(3,4,6-trihydroxy-2-methoxyphenyl)ethanone

[14701-83-8]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 304.30
Synthesis

- Obtained by persulfate oxidation of 2,4-dihydroxy-6-methoxyphenyl 4-methoxybenzyl ketone (Elbs reaction) [5525].
m.p. 144° [5525]; UV [5525].

2-(4-Aminophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone

$$
\begin{array}{ll}
\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} & \text { mol.wt. } 287.32 \\
\text { Synthesis } &
\end{array}
$$

- Preparation by hydrogenation of 2-hydroxy-4,6-dimethoxyphenyl 4- itrobenzyl ketone in ethanol in the presence of Raney nickel as catalyst with hydrogen for 8 h [5382].
m.p. $103-104^{\circ}$ [5382].

2-(4-Aminophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone (Hydrochloride)

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}, \mathrm{HCl}$ mol.wt. 323.78

Synthesis

- Obtained by treatment of the above base with hot dilute hydrochloric acid [5382].
m.p. $198-200^{\circ}$ [5382].

1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone

[145747-28-0]	Syntheses - Obtained by selective deacetylation catalyzed by porcine pancreas lipase in THF at $42-45^{\circ}$ of,
-	2,4-diacetoxyphenyl 4-methoxybenzyl ketone during $48 \mathrm{~h}(73 \%)$
[5265,5358,5359].	

- 1-acetoxy-1-(2,4-diacetoxyphenyl)-2-(4-methoxyphenyl)-ethene during 72 h (18\%) [5265].
semi solid [5265]; TLC [5265];
${ }^{1} H$ NMR [5265], IR [5265], UV [5265], MS [5265].

2-(1,3-Benzodioxol-5-yl)-1-(4-ethoxy-2-hydroxyphenyl)ethanone

 (Pseudo-baptigenetin monoethyl ether)
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 300.31
Syntheses

- Obtained by partial ethylation of pseudobaptigenetin in ethanol with diazoethane in ethyl ether for 1.25 h [5468].
- Also obtained by alkaline degradation of pseudo-baptigenin monoethyl ether (m.p. 172°) with potassium hydroxide in boiling dilute ethanol [5468].
m.p. 129° [5468].

2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone
[84018-73-5]
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31
Synthesis

- Obtained by reaction of 3,4-(methylenedioxy)phenyl-acetonitrile with pyrogallol (Hoesch reaction) and subsequent partial methylation of the 2,3,4-trihydroxy-phenyl 3,4-methylenedioxybenzyl ketone so obtained with dimethyl sulfate [5374] according to the method [5472].

2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone
[2746-88-5]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31
Syntheses

- Obtained by partial methylation of 3,4-(methylene-dioxy)benzyl 2,4,5-trihydroxyphenyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 6 h (40\%) [5472] or according to [5273], (90\%) [5471].
- Also obtained by partial demethylation of 3,4-(methylenedioxy)benzyl 2,4,5-trimethoxyphenyl ketone (m.p. 153-154 ${ }^{\circ}$) with aluminium chloride in refluxing acetonitrile for $45 \mathrm{~min}(43 \%)$ [5379].
- Also obtained (trace) by reaction of 3,4-(methylenedioxy)phenylacetyl chloride with 1,2,4-tri-methoxybenzene in the presence of aluminium chloride in ethyl ether at 0° overnight ($<1 \%$) [5379].
- Also refer to: [5381].
m.p. $153-154^{\circ}$ [5472], 119° [5471], 118-119 [5379]. One of the reported melting points is obviously wrong.
IR [5379,5475], UV [5379,5475], MS [5379].

2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone

[22044-73-1]

$$
\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad \text { mol.wt. } 316.31
$$

Syntheses

- Preparation by partial methylation of 3,4-(methylene-dioxy)benzyl 2,4,6-trihydroxyphenyl ketone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [5295], for 14 h (73\%) [5473].
- Also refer to: [5281,5380].

Isolation from natural sources

- Obtained (major product) by alkaline hydrolysis of Derrustone (5,7-dimethoxy$3^{\prime}, 4^{\prime}$-methylene-dioxyisoflavone) (m.p. 153-154 ${ }^{\circ}$) (SM) with 25% aqueous potassium hydroxide in refluxing methanol for 2 h (69\%). SM was isolated from the root material of Derris robusta (Roxb.) Benth [5547]. m.p. 102-103 ${ }^{\circ}$ [5547], $98-99^{\circ}$ [5295], 97° [5473]; IR [5547].

2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-1,3-benzodioxol-5-yl)ethanone

[61243-78-5]
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31

Synthesis

- Obtained by mild base hydrolysis of $3^{\prime}, 4^{\prime}$-dimethoxy-6,7-methylenedioxyisoflavone [5522].
m.p. $148-151^{\circ}$ [5522];
${ }^{1} H$ NMR [5522], IR [5522], UV [5522], MS [5522];
TLC [5522].

1-(4-Hydroxy-6-methoxy-1,3-benzodioxol-5-yl)-2-(4-methoxyphenyl)ethanone
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31

Synthesis

- Obtained by alkali degradation of 5,4'-dimethoxy-7,8-methylenedioxy-2-methylisoflavone (m.p. 214-215 ${ }^{\circ}$) with potassium hydroxide in refluxing dilute ethanol for 2 h under a stream of nitrogen gas (88\%) [5507].
m.p. 133-134º [5507]; IR [5507], UV [5507].

1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(2-methoxyphenyl)ethanone

1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(4-methoxyphenyl)ethanone
[3207-42-9]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31
Syntheses

- Obtained by methylenation of 2,4,5-tri-hydroxy-6-methoxyphenyl 4-methoxybenzyl ketone with methylene iodide in the presence of potassium carbonate in refluxing acetone for 40 h [5525].
- Also obtained by alkaline degradation of irisolone methyl ether (4',5-dimethoxy-6,7-methylenedioxy-isoflavone) (m.p. 184-185 $)$ with refluxing aqueous sodium hydroxide for 1.5 h [5510].
- Also obtained by reaction of 4-methoxyphenylacetonitrile with 3-methoxy-4,5-methylenedioxy-phenol (Hoesch reaction) (12\%) [5507].
- Also obtained in two steps: First, methylation of 6-benzyloxy-2-hydroxy-3,4-methylenedioxy-phenyl 4-methoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 27 h . The obtained methyl ether was debenzylated with hydrogen in ethanol in the presence of 10% Pd / C for 5 h at r.t. (31\%) [5507].
m.p. $114-115^{\circ}$ [5507], 113-114 ${ }^{\circ}$ [5510,5525];

IR [5507], UV [5507,5510,5525].

1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5}$
mol.wt. 381.22
Synthesis

- Preparation by bromination of 2-hydroxy-4,6,4'-trimethoxydeoxybenzoin with bromine in chloroform under UV light at r.t. overnight (52\%) [5294].
m.p. $158-159^{\circ}$ [5294]; TLC [5294];
${ }^{1} \mathrm{H}$ NMR [5294], IR [5294], UV [5294].
1-(5-Bromo-2-hydroxy-3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone
[24852-43-5]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5} \quad$ mol.wt. 381.22
Synthesis
- Obtained by bromination of 2-hydroxy-3,4-di-methoxyphenyl 4-methoxybenzyl ketone with bromine in the presence of sodium acetate in chloroform for 5 h (70\%) [5370].
m.p. $81-82^{\circ}$ [5370]; ${ }^{1} \mathrm{H}$ NMR [5370].

1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone

[247931-29-9]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{4}$ mol.wt. 320.77
Synthesis

- Obtained by partial alkylation of 1-(2,4-dihydroxy-phenyl)-2-(4-methoxyphenyl)ethanone with

1-bromo-2-chloroethane in the presence of potassium carbonate in refluxing acetone for 24 h (70\%) [5420].
m.p. $87-89^{\circ}$ [5420]; ${ }^{1} \mathrm{H}$ NMR [5420].

1-(2,4-Dihydroxy-5-propylphenyl)-2-(4-fluorophenyl)ethanone

[96644-01-8]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3} \quad$ mol.wt. 288.32 Synthesis

- Obtained by reaction of p-fluorophenylacetonitrile with 4-propylresorcinol in the presence of boron trifluoride etherate under hydrogen chloride at r.t. for 8-10 h, then at r.t. overnight (63\%) [5367].
m.p. $\quad 100-101^{\circ}$ [5367]; ${ }^{1} \mathrm{H}$ NMR [5367].

1-(2-Hydroxy-3,5-dimethylphenyl)-2-(2-methoxyphenyl)ethanone

[74384-39-7]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 270.33
Synthesis

- Obtained by Fries rearrangement of 2,4-dimethylphenyl 2-methoxyphenylacetate with aluminium chloride in nitromethane at 20° for $170 \mathrm{~h} \mathrm{(39} \mathrm{\%)} \mathrm{[5480]}$.
m.p. 85° [5480];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ} 44603 \mathrm{M}$), [5480],
IR (Sadtler: standard n ${ }^{\circ} 71631 \mathrm{~K}$), [5480], UV [5480],
MS [5480].
1-(2-Hydroxy-3,5-dimethylphenyl)-2-(4-methoxyphenyl)ethanone
[74384-35-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Synthesis
- Preparation by Fries rearrangement of 2,4-di-methylphenyl 4-methoxyphenylacetate with aluminium chloride in nitromethane at 20° for 170 h (59\%) [5480].
m.p. $\quad 23^{\circ}$ [5480]; IR [5480], UV [5480], MS [5480].

1-(4-Hydroxy-3,5-dimethylphenyl)-2-(2-methoxyphenyl)ethanone

1-(4-Hydroxy-3,5-dimethylphenyl)-2-(4-methoxyphenyl)ethanone

[74384-32-0]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Synthesis

- Preparation by Fries rearrangement of 2,6-dimethyl-phenyl 4-methoxyphenylacetate withaluminiumchloride in nitromethane at 20° for $50 \mathrm{~h}(76 \%)$ [5480].
m.p. 177° [5480];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 44604 \mathrm{M}$), [5480],
IR (Sadtler: standard n ${ }^{\circ} 71632$ K), [5480], UV [5480], MS [5480].

2-(3,5-Dimethoxyphenyl)-1-(2-hydroxy-4-methylphenyl)ethanone

[111191-98-1]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 286.33

Synthesis

- Obtained (poor yield) by Fries rearrangement of m-cresyl 3,5-dimethoxyphenylacetate (b.p. 0.0595°) in the presence of aluminium chloride, first in carbon disulfide, then at $130-145^{\circ}$ for 2 h after solvent elimination (15\%) [5482].
brown gum [5482].
N.B.: Methyl ether: m.p. 199-200 [5482], ${ }^{1} \mathrm{H}$ NMR [5482], IR [5482], MS [5482].

2-(4-Ethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone

[89019-87-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 286.33
Synthesis

- Obtained (by-product) by reaction of p-hydroxyphenylacetic acid with m-methoxy-phenol in ethylene dichloride in the presence of boron trifluoride at 80° for 2 h under an argon atmosphere (2\%) [5439].
m.p. $95-97^{\circ}$ [5439]; ${ }^{1} \mathrm{H}$ NMR [5439], IR [5439], UV [5439], MS [5439].

1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone

[96644-03-0]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
Synthesis

- Preparation by condensation of p-methoxyphenyl-acetonitrile with 4-ethylresorcinol in the presence of boron trifluoride etherate under hydrogen chloride atmosphere (8-10 h) at r.t. overnight (86\%) [5367].

1-(2-Hydroxy-4-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone

[39604-65-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 286.33
Syntheses

- Preparation by partial methylation of,
- 2,4-dihydroxy-3-methylphenyl 4-methoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 6 h [5354], (86\%) [5513];
- 2,4-dihydroxyphenyl 4-methoxybenzyl ketone with methyl iodide in methanolic potash, first in a bath of ice-salt mixture, then at r.t. overnight and at reflux for 7 h (39\%) [5354].
- Also refer to: [5381]. m.p. $121-122^{\circ}$ [5513], $116-117^{\circ}$ [5354].

1-(2-Hydroxy-6-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad \text { mol.wt. } 286.33
$$

Synthesis

- Obtained by partial methylation of 2,6-dihydroxy-3-methylphenyl 4-methoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone for $1 \mathrm{~h}(71 \%)$ [5488].
oil [5488].
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

Synthesis

- Obtained by reaction of o-methoxyphenylacetonitrile with 2,6-dihydroxy-4-methoxyyoluene (m.p. 124°) (Hoesch reaction) (36%) [5287], (31\%) [5495].
m.p. 195° [5495], 194° [5287].

1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Obtained by reaction of p-methoxy-phenyl-acetonitrile with 2,6-dihydr-oxy-4-methoxytoluene (m.p. 124 ${ }^{\circ}$) (Hoesch reaction) [5494], (44\%) [5548], (33\%) [5495].
- Also refer to: [5281].
m.p. $162-164^{\circ}$ [5494], 162° [5495], $125-127^{\circ}$ [5548]. One of the reported melting points is obviously wrong.

1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone
 $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Obtained by alkaline hydrolysis of 5-hydroxy-7,4'-dimethoxy-8-methylisoflavone (m.p. $164-166^{\circ}$) with potassium hydroxide in refluxing ethanol for $30 \mathrm{~min}(31 \%)$ [5353].
- Also obtained by reaction of p-methoxyphenylacetonitrile with 2,4-dihydroxy-6-methoxytoluene (m.p. 119°) (Hoesch reaction) (41\%) [5495].
- Also obtained by alkaline hydrolysis of 5-hydroxy-7,4'-dimethoxy-2,6dimethylisoflavone (m.p. 198-200 ${ }^{\circ}$) with 8% alcoholic potassium hydroxide at reflux for 30 min [5353].
m.p. $196-197^{\circ}$ [5353], 192° [5495].

1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

Synthesis

- Obtained by catalytic debenzylation of 4,6-bis(benzyloxy)-2-methoxy-3-methylphenyl 2-methoxybenzyl ketone (m.p. 107°) in acetic acid in the presence of Pd / C for 20 min (quantitative yield) [5549].
m.p. 118° [5549].

1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

Synthesis

- Obtained by hydrogenolysis of 4,6-bis(benzyloxy)-2-methoxy-3methylphenyl 4-methoxybenzyl ketone (m.p. 106°) in the presence of Pd / C in acetic acid for 10 min (quantitative yield) [5549].
m.p. 176° [5549].

1-(2,4-Dihydroxyphenyl)-2-(2-ethoxy-5-methoxyphenyl)ethanone

[18086-36-7]

m.p. $\quad 114-115^{\circ}$ [5531].
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis

- Obtained by reaction of 2-ethoxy-5-methoxyphenyl-acetonitrile (m.p. $46-48^{\circ}$) with resorcinol (34\%) (Hoesch reaction) [5531].

2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone

[70779-11-2]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Preparation by partial methylation of 2,4-di-hydroxyphenyl 2,4-dimethoxybenzyl ketone [5265],
- with methyl iodide in the presence of potassium carbonate in boiling acetone for $70 \min (95 \%)$ [5527];
- with diazomethane in ethyl ether for 30 min (quantitative yield) [5529].
- Also refer to: [5277,5534].
m.p. 116° [5527], $114-115^{\circ}$ [5529]; b.p. ${ }_{0.05} 170-180^{\circ}$ [5529];
${ }^{1} H$ NMR [5341], UV [5550].

2-(2,5-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone

[18086-26-5]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis

- Preparation by partial methylation of 2,4-dihydroxy-phenyl 2,5-dimethoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for $6 \mathrm{~h}(92 \%)$ [5531].
m.p. $1^{113-114^{\circ}}$ [5531]; ${ }^{1} \mathrm{H}$ NMR [5341].

2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone

[53084-05-2]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Preparation by partial methylation of 2,4-di-hydroxyphenyl 3,4-dimethoxybenzyl ketone,
- with methyl iodide in the presence of potassium carbonate in boiling acetone for $70 \mathrm{~min}(86-91 \%)$ [5527] or for $3 \mathrm{~h}(81 \%)$ [5250];
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 6 h (69\%) [5532] or in boiling 10% alcoholic sodium hydroxide for $1 \mathrm{~h}(31 \%)$ [5332].
- Also obtained by reaction of 3,4-dimethoxyphenylacetyl chloride with 1,3-dimethoxybenzene in the presence of aluminium chloride in boiling benzene for 1 h (52\%) [5332].
- Also refer to: $[4896,5278,5281,5338]$. m.p. 119° [5250,5332], 118° [5527], $116-117^{\circ}$ [5532].

2-(3,4-Dimethoxyphenyl)-1-(4-hydroxy-3-methoxyphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Preparation by reaction of 3,4-dimethoxyphenylacetic acid with guaiacol in the presence of zinc chloride and phosphorous oxychloride for 24 h at r.t. (40\%) [5209].
- Also refer to: [5551].
m.p. $142-144^{\circ}$ [5209].

2-(2-Ethoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone

(Hoesch reaction) (11\%) [5483].
m.p. 174° [5483].

1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone

[3606-32-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Obtained by alkaline hydrolysis of di-O-methylretusin (7,8,4'-trimethoxyisoflavone) (m.p. 151°) (SM) with 10% aqueous potassium hydroxide in refluxing ethanol for $1 \mathrm{~h}(67 \%)$. SM was obtained by partial methylation of retusin (m.p. 249°) (7,8-dihydroxy-4'methoxyisoflavone), itself isolated from Dalbergia retusa heartwood (cocobolo) (Leguminosae) [5499].
- Also obtained by Friedel-Crafts reaction of 4-methoxyphenylacetyl chloride with pyrogallol trimethyl ether in the presence of aluminium chloride [5552].
- Also refer to: [5503,5296,5370].
m.p. 122-123 ${ }^{\circ}$ [5499], $121-122^{\circ}$ [5552]; ${ }^{13} \mathrm{C}$ NMR [5293].

1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(2-methoxyphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Obtained by reaction of o-methoxyphenylacetonitrile with 3,4-dimethoxyphenol (Hoesch reaction) [5553], (35\%) [5379].
- Also refer to: [5554,5343].
m.p. $108-109^{\circ}$ [5379];

IR [5379], UV [5379], MS [5379].
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone
[5128-49-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Preparation by partial methylation of,
- 2,4-dihydroxy-5-methoxyphenyl 4-methoxybenzyl ketone with methyl iodide in the presence of potassium carbonate in boiling acetone [5501];
- 2,5-dihydroxy-4-methoxyphenyl 4-methoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 4 h (80\%) [5520];
- 2,4,5-trihydroxyphenyl 4-methoxybenzyl ketone with excess diazomethane in ethyl ether at r.t. overnight (45\%) [5291] or with methyl iodide in the presence of potassium carbonate in refluxing acetone for 1.5 h [5501] or according to [5273], (86\%) [5471].
- Also obtained by Friedel-Crafts acylation of 1,2,4-trimethoxybenzene with p-methoxyphenylacetyl chloride in the presence of aluminium chloride in ethyl ether [5520].
- Also obtained by reaction of p-methoxyphenylacetonitrile with 3,4-dimethoxyphenol (Hoesch reaction) (25\%) [5523].
- Also obtained by alkaline degradation of afromosin 7-methyl ether (6,7,4́-trimethoxyisoflavone) (SM) (m.p. 178º [5501], (m.p. 174-175º) [5523] with potassium hydroxide in refluxing ethanol [5501] for 40 min under nitrogen (61\%) [5523]. SM was obtained by methylation of afromosin (7-hydroxy-6,4'dimethoxyisoflavone) (m.p. 228-229$)$, itself isolated from Afromosia elata Harms [5523].
m.p. $100-101^{\circ}$ [5471], $99-100^{\circ}$ [5501,5520,5523], $98-100^{\circ}$ [5291];
${ }^{1} \mathrm{H}$ NMR [5471], ${ }^{13} \mathrm{C}$ NMR [5293], IR [5501], UV [5501,5520]; TLC [5471].
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(2-methoxyphenyl)ethanone
[56308-08-8]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

Syntheses

- Preparation by partial methylation of 2,4,6-trihydroxy-phenyl 2-methoxybenzyl ketone,
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 14 h (86%) [5287], for $4 \mathrm{~h}(70 \%)$ [5456] or for 3.5 h (58\%) [5495];
- with methyl iodide and of potassium carbonate in refluxing acetone for 4 h (54\%) [5498].
- Also obtained by partial methylation of 2-hydroxy-4,6-dimethoxyphenyl 2-hydroxybenzyl ketone (95\%) [5476].
- Also refer to: [5281,5295,5497,5518].
m.p. 122° [5495], $116-118^{\circ}$ [5456,5498], 116° [5287].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(3-methoxyphenyl)ethanone

[109089-92-1]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Synthesis

- Preparation by partial methylation of 3-methoxy-benzyl 2,4,6-trihydroxyphenyl ketone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone for 3 h (70\%) [5295].
m.p. $66-67^{\circ}$ [5295].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone

[39604-68-7]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Preparation by partial methylation of 2,4,6-tri-hydroxyphenyl 4-methoxybenzyl ketone,
- with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone [5294,5535,5555], for $3 \mathrm{~h}(64 \%)$ [5250];
- with diazomethane in ethyl ether at $0^{\circ}(80 \%)$ [5462] or in methanol [5461];
- with methyl iodide in the presence of potassium carbonate in refluxing acetone for 3 h (42\%) [5538].
- Also obtained by reaction of 4-methoxyphenylacetonitrile with phloroglucinol dimethyl ether (Hoesch reaction) [5384], (19\%) [5383].
- Also obtained by alkaline degradation of 3-(p-anisoyl)-4,6-dimethoxybenzofuran with potassium hydroxide in refluxing dilute methanol for 1.5 h (78%) [5556].
- Also obtained by alkaline hydrolysis of 5,7,4'-trimethoxyisoflavone (m.p. $162-163^{\circ}$) with 1 N aqueous sodium hydroxide in refluxing ethanol for 2 h [5487].
- Also refer to: [4935,5273,5295,5338,5339,5340,5381,5420,5448,5476,5557,5558]. monohydrate [5556];
m.p. 140° [5556], 139-140 [5462]; 89 ${ }^{\circ}$ [5250,5384], 88-89 ${ }^{\circ}$ [5383,5487,5535,5538], $86-87^{\circ}$ [5294]. One of the reported melting points is obviously wrong.
${ }^{1}$ H NMR [5462], IR [5294], UV [5294,5462]; TLC [5294], HPLC [5462].

1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone

[109089-93-2]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
Syntheses

- Obtained by reaction of p-methoxyphenylacetonitrile with phloroglucinol dimethyl ether (Hoesch reaction) [5384].
- Also obtained by saponification of 4-ace-toxy-2,6-di-methoxyphenyl 4-methoxybenzyl ketone (m.p. 137°) in ethanol with 3% aqueous sodium hydroxide [5384].
- Also refer to: [5558].
m.p. 73° [5384].

1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
 Synthesis

- Obtained (poor yield) by condensation of 2,6-di-methoxyhydroquinone with the complex p-methoxyphenylacetic acid and boron trifluoride in chloroform at r.t. overnight ($<2 \%$) [5387].
m.p. $\quad 110^{\circ}$ [5387].

1-(2,4-Dihydroxy-5-methoxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone
[24126-91-8]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Syntheses

- Obtained by condensation of 3,4-dime-thoxyphenyl-acetonitrile with 4-methoxyresorcinol (Hoesch reaction) (14\%) [5533].
- Also obtained by heating Cladrastin (7-hydroxy-6, $3^{\prime}, 4^{\prime}$-trimethoxyisoflavone) (m.p. 206-207) with 10%
aqueous barium hydroxide at reflux for 2 h under nitrogen (62\%). Cladrastin was isolated from Cladrastis lutea (Mich. f.) K. Koch (Leguminosae) [5533]. m.p. 166-167$~[5533] ; ~ U V ~[5533], ~ M S ~[5533] . ~$.

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(2,4-dimethoxyphenyl)ethanone

m.p. $\quad 169-171^{\circ}$ [5295].
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis

- Preparation by reaction of 2,4-dime-thoxyphenyl-acetonitrile with phloroglucinol monomethyl ether (Hoesch reaction) [5295].

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone

[109092-83-3]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Synthesis

- Obtained by reaction of 3,4-dimethoxy-phenyl-acetonitrile with phloroglucinol monomethyl ether (Hoesch reaction) [5295,5559], (20\%) [5383].
m.p. 180° [5383], $179-180^{\circ}$ [5295], $108-109^{\circ}$ [5559]. One of the reported melting points is obviously wrong. IR [5559].

1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone

[24126-94-1]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33
Syntheses

- Obtained by reaction of 3,4-dime-thoxyphenyl-acetonitrile with methoxyquinol (2-methoxy-hydroquinone) (Hoesch reaction) (16\%) [5533].
- Also refer to: [5351].
m.p. 188-189 ${ }^{\circ}$ [5533];
${ }^{13} \mathrm{C}$ NMR [5293], UV [5533], MS [5533].

1-(2,4-Dihydroxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone

- Also obtained by reaction of resorcinol with homoasaronic acid (2,4,5trimethoxyphenylacetic acid) (m.p. 102-103 $)$,
- in the presence of zinc chloride at $130-140^{\circ}$ for 2 h (31%) (Nencki reaction) [5560];
- in the presence of phosphorous oxychloride and zinc chloride at $50-60^{\circ}$ for 2 h (24\%) [5560];
- in the presence of polyphosphoric acid on a steam bath for $15 \mathrm{~min}(46 \%)$ [5560].
m.p. $201-202^{\circ}$ [5560].

2-(2,3-Dimethoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone

m.p. 201° [5483].

2-(2,4-Dimethoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 318.33

Syntheses

- Obtained by reaction of 2,4-dime-thoxyphenyl-acetonitrile with 2-methylphloroglucinol (Hoesch reaction) (56\%) [5561].
- Also refer to: [5562].
m.p. 188-189 [5561]; UV [5561].

1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl) ethanone
[64640-60-4]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 334.33
Synthesis

- Preparation by reaction of 3-(be-nzyloxy)-4-methoxyphenylacetonitrile with 1,3-(dibenzyl-oxy)-2,5-dimethoxybenzene (Hoesch reaction) [5563], (61\%) [5508].
m.p. 278-279 ${ }^{\circ}$ [5508], 277-279 ${ }^{\circ}$ [5563];
${ }^{1} \mathrm{H}$ NMR [5508], IR [5563], UV [5508].

2-(3,4-Dimethoxyphenyl)-1-(3,4,6-trihydroxy-2-methoxyphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 334.33
Synthesis

- Obtained by reaction of potassium persulfate with 2,4-dihydroxy-6-methoxyphenyl 3,4-dimethoxy-benzyl ketone in 40% aqueous potassium hydroxide at r.t. overnight (Elbs reaction) [5559].
m.p. $135-137^{\circ}$ [5559].

1-(2,4,6-Trihydroxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone
[72545-40-5]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 334.33
Synthesis

- Obtained by reaction of 2,4,5-trimethoxyphenyl-acetonitrile with phloroglucinol (Hoesch reaction) [5276], (40\%) [5564].
N.B.: The phloroglucinol could not be condensed with 2,4,5-trimethoxyphenylacetyl chloride in the presence of aluminium chloride [5249,5567].
m.p. 208-209́ [5564].

1-(2,4,6-Trihydroxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone

Syntheses

- Preparation by reaction of 3,4, 5-trimethoxyphenyl-acetonitrile with phloroglucinol in ethyl ether (63\%) (Hoesch reaction) [5496].
- Also refer to: [5351].
m.p. 197-198ㅇ [5496]; ${ }^{1} \mathrm{H}$ NMR [5496], ${ }^{13} \mathrm{C}$ NMR [5293], IR [5496], MS [5496].

2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-3-(2-propenyl)phenyl]ethanone
[117951-99-2]

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 312.32
Syntheses

- Obtained by reaction of allyl bromide with 2,4-dihydroxy3', 4^{\prime}-methylenedioxydesoxybenzoin in the presence of methanolic potassium hydroxide (16\%) [5283].
- Also refer to: [5277].
m.p. 121-122 ${ }^{\circ}$ [5283]; ${ }^{1} \mathrm{H}$ NMR [5283], IR [5283], UV [5283].

2-[4-(Acetyloxy)phenyl]-1-(6-hydroxy-4-methoxy-1,3-benzodioxol-5-yl) ethanone

 $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{7} \quad$ mol.wt. 344.32 Synthesis

- Obtained by reaction of acetic anhydride with 4 '-hydroxybenzyl 2-hydroxy-4,5-methylenedioxy-6-methoxyphenyl ketone in pyridine at r.t. for 1 h [5510].
m.p. $162-163^{\circ}$ [5510].

1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-(4-hydroxyphenyl)ethanone

[147747-31-5]

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{7} \quad$ mol.wt. 344.32
Syntheses

- Obtained (poor yields) by regioselective enzyme-catalyzed deacetylation of 4-acetoxybenzyl 2,4,6-tri-acetoxyphenyl ketone in the dry organic solvents hereafter mentioned containing n-butanol with lipase at $42-45^{\circ}$ [5359].

Lipase	Solvent	Time (h)	Yields (\%)
PPL	THF/n-BuOH	45	15
CCL	DIPE/n-BuOH	46	15

PPL $=$ porcine pancreas lipase;
CCL = candida cylindracea lipase;
DIPE $=$ diisopropyl ether.
O-[4-(1,3-Benzodioxol-5-ylacetyl)-3-hydroxyphenyl] dimethylcarbamothioate
[142751-39-1]

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S} \quad$ mol.wt. 359.40
Synthesis

- Obtained by stirring a mixture of 2-(1,3-benzodioxol-5-yl)-1-(2, 4-dihydroxy- phenyl)ethanone (1 mol), dimethylthio-carbamoyl chloride (2 mol), 1,4-diaza-bicyclo[2,2,2]octane and N,N-dim-ethyl-formamide at r.t. for 2 h (92\%) [5205].
m.p. $\quad 168-169^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

S-[4-(1,3-Benzodioxol-5-ylacetyl)-3-hydroxyphenyl] dimethylcarbamothioate
[142751-43-7]
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S} \quad$ mol.wt. 359.40
 Synthesis

- Obtained by refluxing a solution of O-[4-(1,3-Benzodioxol-5-ylacetyl)-3-hydroxyphenyl] dimethylcarbamothioate [142 751-39-1] in N,N-dimethylaniline for 1 h (91\%) (NewmanKwart rearrangement) [5205].
m.p. $160-161^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-2-(4-methoxyphenyl)ethanone

[117951-88-9]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34
Syntheses

- Obtained by reaction of allyl bromide with 2,4-dihyd-roxy-4'-methoxydesoxybenzoin in methanolic potassium hydroxide at r.t. overnight (27\%) [5283].
- Also refer to: [5277].
m.p. $97-98^{\circ}$ [5283]; ${ }^{1} \mathrm{H}$ NMR [5283], IR [5283], UV [5283].

1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-(4-methoxyphenyl)ethanone

[73937-48-1] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34

Syntheses

- Refer to: [5565] and [5279] (compound \mathbf{X}).

2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-4-methoxy-1,3-benzodioxol-5-yl) ethanone

[2631-85-8]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 346.34
Syntheses

- Obtained by reaction of methylene iodide with 2,4,5-tri-hydroxy-6-methoxyphenyl 3,4-dimethoxybenzyl ketone in the presence of potassium carbonate in refluxing acetone for 45 h [5559].
- Also obtained (poor yield) by reaction of 3,4-di-methoxyphenylacetonitrile with 3-methoxy-4,5-methylenedioxyphenol (Hoesch reaction) (<2\%) [5360].
m.p. $125-126^{\circ}$ [5559], $121^{\circ} 5-122^{\circ}$ [5360]; UV [5360].

2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-7-methoxy-1,3-benzodioxol-5-yl) ethanone

[61243-79-6] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 346.34

Synthesis

- Obtained by mild base hydrolysis of 8,3',4'-tri-methoxy-6,7-methylenedioxyisoflavone [5522].
m.p. $\quad 162-163^{\circ}$ [5522];
${ }^{1} \mathrm{H}$ NMR [5522], IR [5522], UV [5522], MS [5522];
TLC [5522].
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(6-methoxy-1,3-benzodioxol-5-yl) ethanone
[24195-24-2]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 346.34
Synthesis
- Obtained by alkaline degradation of 6,7, 3'-tri-methoxy-4',5'-methylenedioxyisoflavone (m.p. $234^{\circ} 5-235^{\circ} 5$) (SM) with sodium hydroxide in refluxing 50% aqueous ethanol ($10-45 \mathrm{~min}$) (88%). SM was
isolated from the heartwood of Cordyla africana (Leguminosae, sub-family: Caesalpinioideae, tribe: Swartzieae) [5379].
m.p. 161-162 ${ }^{\circ}$ [5379]; IR [5379], UV [5379], MS [5379].

1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(7-methoxy-1,3-benzodioxol-5-yl) ethanone

[24195-23-1] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 346.34

Synthesis

- Obtained by alkaline degradation of 6,7,3'-tri-methoxy-4',5'-methylenedioxyisoflavone (m.p. 211-212 ${ }^{\circ}$) (SM) with sodium hydroxide in refluxing 50% aqueous ethanol (10-45 min) (28\%). SM was isolated from the heartwoodof Cordylaafricana(Leguminosae, sub-family: Caesalpinioideae, tribe: Swartzieae) [5379].
m.p. $143-144^{\circ}$ [5379]; IR [5379], UV [5379], MS [5379].

O-[3-Hydroxy-4-[(2-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate
[142751-37-9]
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S} \quad$ mol.wt. 345.42

Synthesis

- Obtained by stirring a mixture of 2,4-di-hydroxyphenyl 2-methoxybenzyl ketone (1 mol), dimethylthiocarbamoyl chloride (2 mol), 1,4-diazabicyclo[2,2,2]octane and DMF at r.t. for $2 \mathrm{~h}(91 \%)$ [5205].
m.p. $168-169^{\circ}$ [5205];
${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].
S-[3-Hydroxy-4-[(2-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate
[142751-41-5] $\quad \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S} \quad$ mol.wt. 345.42

Synthesis

- Obtained by refluxing a solution of O-[3-Hydroxy-4-[(2-methox-yphenyl)acetyl]-phenyl] dimethylcarbamothioate [142751-37-9] in N, N-dimethylaniline for 1 h (89\%) (Newman-Kwart rearrangement) [5205].
m.p. $107-108^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

O-[3-Hydroxy-4-[(4-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate

[142751-38-0]

$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ mol.wt. 345.42
Synthesis

- Obtained by stirring a mixture of 2,4-dihydroxyphenyl 4-methoxybenzyl ketone (1 mol), dimethylthiocarbamoyl chloride (2 mol), 1,4-diazabicyclo[2,2,2] octane (2 mol) and N, N-dimethyl-formamide at r.t. for 2 h (96%) [5205].
m.p. $\quad 114-115^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

S-[3-Hydroxy-4-[(4-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate

[142751-42-6] $\quad \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S} \quad$ mol.wt. 345.42

Synthesis

- Obtained by refluxing a solution of O-[3-Hydro-xy-4-[(4-methoxy-phenyl)-acetyl]phenyl] dimethylcarbamothioate [142751-38-0] in N,Ndimethylaniline for 1 h (92\%) (Newman-Kwart rearrangement) [5205].
m.p. $130-131^{\circ}$ [5205]; ${ }^{1} \mathrm{H}$ NMR [5205], MS [5205].

1-(6-Ethoxy-2,4-dihydroxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone

m.p. 185° [5483]. \quad\begin{tabular}{l}
Synthesis

Obtained by reaction of o-methoxy-
phenylacetonitrile with 4-ethoxy-2,6-
dihydroxytoluene (Hoesch reaction)
(32%) [5483].

\end{tabular}

2-(2-Ethoxy-5-methoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35
Synthesis

- Obtained by partial methylation of 2,4-dihydroxy-phenyl 2-ethoxy-5methoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 6 h (87\%) [5531].
m.p. $107-108^{\circ}$ [5531].

1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone

[97714-80-2]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35 Syntheses

- Obtained by reaction of chloromethyl ethyl ether with 2,4 -dihydroxyphenyl 4-methoxybenzyl ketone in acetone in the presence of potassium carbonate at r.t. for $15-45 \mathrm{~min}$ [5393].
- Also refer to: [5273].

1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35
 Syntheses

- Preparation by partial methylation of 2,4-dihydroxy-6-methoxy-3-methylphenyl 2-methoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone (quantitative yield) [5495], for 14 h (89\%) [5287].
- Also obtained by partial methylation of 2,4,6-trihydroxy-3-methylphenyl 2-methoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for $4 \mathrm{~h}(82 \%)$ [5497] or for 3 h (66\%) [5495].
- Also obtained (by-product) by partial methylation of 2,4,6-trihydroxyphenyl 2-methoxybenzyl ketone with methyl iodide in the presence of potassium carbonate in refluxing acetone for 4 h (11\%) [5498].
- Also obtained by reaction of o-methoxyphenylacetonitrile with 2-hydroxy-4,6dimethoxytoluene (m.p. 67°) (Hoesch reaction) (38\%) [5495].
- Also refer to: [5518].
m.p. 150° [5287], 148° [5495], $146-148^{\circ}$ [5497,5501].

1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone

[56308-12-4]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35
Syntheses

- Obtained by partial methylation of 2,4,6-tri-hydroxy-3-methylphenyl 4-methoxybenzyl ketone,
- with dimethyl sulfate in the presence of potassium carbonate in boiling acetone for $4 \mathrm{~h}(73 \%)$ [5538] or for $3 \mathrm{~h}(68 \%)$ [5495];
- with excess methyl iodide in the presence of potassium carbonate in boiling acetone for 4 h [5538].
- Also obtained by reaction of methyl iodide with 2,4,6-trihydroxyphenyl 4-methoxybenzyl ketone in the presence of potassium carbonate in refluxing acetone for 3 h (13\%) [5538].
- Also obtained by partial methylation of 2,4-dihydroxy-6-methoxy-3-methylphenyl 4-methoxy-benzyl ketone with methyl iodide in the presence of potassium carbonate in boiling acetone [5495] for 2 h (96\%) [5538].
- Also obtained by partial methylation of 2,6-dihydroxy-4-methoxy-3-methylphenyl 4-methoxy-benzyl ketone with dimethyl sulfate with of potassium carbonate in boiling acetone [5495].
- Also obtained by partial methylation of 2,4-dihydroxy-6-methoxy-3-methylphenyl 4-hydroxy-benzyl ketone with dimethyl sulfate with potassium carbonate in boiling acetone [5495].
- Also obtained by reaction of p-methoxyphenylacetonitrile with 2-hydroxy-4,6dimethoxytoluene (m.p. 67°) (Hoesch reaction) (38\%) [5495].
- Also refer to: [5296,5284].
m.p. 116° [5495], $114-115^{\circ}$ [5494,5538].

1-(4-Hydroxy-2,6-dimethoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35

Synthesis

- Obtained (by-product) by reaction of p-methoxyphenyl-acetonitrile with 2-hydroxy-4,6-dimethoxytoluene (Hoesch reaction) (small amounts) [5495].

1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone
 $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35
 Syntheses

- Obtained by partial methylation of 4,6-dihy-droxy-2-methoxy-3-methylphenyl 2-methoxybenzyl ketone with methyl iodide in the presence of potassium carbonate in boiling acetone for $30 \mathrm{~min}(96 \%)$ [5549].
- Preparation by alkaline degradation of 5,7,2'-trimethoxy-6-methylisoflavone (m.p. 220°) with sodium hydroxide in refluxing dilute methanol for $1.5 \mathrm{~h}(74 \%)$ [5483].
- Also refer to: [4935].
m.p. 134° [5483].

1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone
[22081-01-2] $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35
 Syntheses

- Obtained by partial methylation of 4,6-di-hydroxy-2-methoxy-3-methylphenyl 4-methoxy-benzyl ketone with excess methyl iodide in the presence of potassium carbonate in boiling acetone for $1.5 \mathrm{~h}(96 \%)$ [5549].
- Also obtained by reaction of p-methoxyphenylacetyl chloride with 4-hydroxy-2,6-dimethoxy-toluene in ethyl ether in the presence of aluminium chloride (18\%) [5394].
m.p. 88° [5549], $87-88^{\circ}$ [5394];
${ }^{1} \mathrm{H}$ NMR [5341], IR [5394]; TLC [5394].
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2-(2,4-dimethoxyphenyl)ethanone

(m.p. 216-217 ${ }^{\circ}$) with refluxing alcoholic potash for $2 \mathrm{~h}(83 \%)$ [5561].
m.p. $174-175^{\circ}$ [5561]; UV [5561].

2-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35

Synthesis

- Preparation by partial methylation of 2,4,6-tri-hydroxy-2', 3^{\prime}-dimethoxydeoxybenzoin with dimethyl sulfate in the presence of potassium carbonate in boiling acetone (92\%) [5483].
m.p. 132° [5483].

2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone

[6502-87-0]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Preparation by partial methylation of 2,3,4-tri-hydroxyphenyl 2,4-dimethoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 6 h (82\%) [5540].
- Also obtained by Friedel-Crafts acylation of pyrogallol trimethyl ether with 2,4-dimethoxy-phenylacetyl chloride [5566], (41\%) [5540].
- Also refer to: [5567]. m.p. ${ }^{134-135^{\circ}}$ [5566,5543]; ${ }^{1} \mathrm{H}$ NMR [5341].

2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone

[15402-24-1]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Preparation by Hoesch condensations of 1,2,4-tri-hydroxybenzene with 2,4-dimethoxyphenyl-acetonitrile or with 2,4-dihydroxyphenylacetonitrile, followed by partial methylations of the ketones so obtained [5265].
- Also obtained by Friedel-Crafts acylation of 1,2,4-trimethoxybenzene with 2,4-dimethoxyphenylacetyl chloride in the presence of aluminium chloride [5567] in ethyl ether [5553], (31\%) [5568].
- Also refer to: [5277]. m.p. $122-123^{\circ}[5568,5570]$.

2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone (Albizoin)

[39604-69-8]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Preparation by partial methylation of 2,4-di-methoxybenzyl 2,4,6-trihydroxyphenyl ketone with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [5295], (92\%) [5569].
- Preparation by partial demethylation of 2,4-dimethoxybenzyl 2,4,6-trimethoxyphenyl ketone with aluminium chloride in refluxing ethyl ether for 10 h (65\%) [5570].
- Also obtained by alkaline degradation of 5,7,2', ${ }^{\prime}$ 'tetramethoxyisoflavone (m.p. $203-204^{\circ}$) with potassium hydroxide in refluxing dilute ethanol for 1 h (93%) [5570].
- Also obtained by alkaline degradation of ferreirin trimethyl ether (m.p. 163°) [5570], so called dihydrodalbergioidin tetramethyl ether (m.p. 165-166) [5561], (5,7,2', 4^{\prime}-tetramethoxy-isoflavanone) with potassium hydroxide in refluxing dilute ethanol for $1 \mathrm{~h}(21 \%)$ [5570] or for $6 \mathrm{~h}(26 \%)$ [5561].
- Also obtained by Friedel-Crafts acylation of 1,3,5-trimethoxybenzene with 2,4-dimethoxyphenyl-acetyl chloride in the presence of aluminium chloride in ethyl ether at 0° for 16 h [5571].
- Also refer to: [4923,5277,5381,5483,5534].

Isolation from natural sources

- From the marine mollusc Nerita albicilla (Class Gastropoda, family Neritidae) [5571].
m.p. $140-142^{\circ}$ [5571], 139° [5570], 138-139${ }^{\circ}$ [5561], 137-138 ${ }^{\circ}$ [5569], 136-137º [5295];
${ }^{1} \mathrm{H}$ NMR [5341,5571], IR [5561,5571], UV [5561,5571], MS [5571];
HPLC [5571].
2-(2,5-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone

[^15]
2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone

[61243-86-5]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Obtained by partial methylation of 2,3,4-tri-hydroxyphenyl 3,4-dimethoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 6 h (82\%) [5470].
- Also obtained by Friedel-Crafts acylation of pyrogallol trimethyl ether with 3,4-dimethoxyphenyl-acetyl chloride (homoveratroyl chloride) in ethyl ether in the presence of aluminium chloride, first at 0°, then at r.t. overnight (33-34\%) [5214,5473] or in refluxing methylene chloride for $2.5 \mathrm{~h}(70 \%)$ [5572,5576].
- Obtained by partial demethylation of 2,3,4-trimethoxyphenyl $3^{\prime}, 4^{\prime}$ dimethoxybenzyl ketone (oil) with aluminium chloride in refluxing ethyl ether for $1 \mathrm{~h}(67 \%)$ [5522].
- Also refer to: [5574].
m.p. $139-140^{\circ}$ [5573], $135-137^{\circ}$ [5522], 134° [5470], 133-134 ${ }^{\circ}$ [5214],
${ }^{1} \mathrm{H}$ NMR [5573], IR [5573].

2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone

[24195-22-0]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Obtained by alkaline degradation of 6,7,3', 4'-tetra-methoxyisoflavone (m.p. 187-188 ${ }^{\circ}$) (SM) with sodium hydroxide in refluxing 50% aqueous ethanol (45\%) [5379]. SM was isolated from the heartwood of Cordyla africana (Leguminosae).
- Also obtained by partial demethylation of 3,4-di-methoxybenzyl 2,4,5-trimethoxyphenyl ketone (m.p. 120-121 ${ }^{\circ}$) with aluminium chloride in refluxing acetonitrile for $45 \mathrm{~min}(10 \%)$ [5379].
- Also obtained by partial methylation of 3,4-dimethoxybenzyl 2,4,5-trihydroxyphenyl ketone (85\%) [5471] according to [5273].
m.p. $138-139^{\circ}$ [5471], 137-138 ${ }^{\circ}$ [5379];
${ }^{1} \mathrm{H}$ NMR [5341], ${ }^{13} \mathrm{C}$ NMR [5293], IR [5379], UV [5379], MS [5379]; TLC [5471].

2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone

[109250-71-7]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Preparation by partial methylation of 2,4-di-hydroxy-6,3',4'-trimethoxydeoxybenzoin with methyl iodide in the presence of potassium carbonate in boiling acetone for 1 h (80\%) [5383].
- Also obtained by partial methylation of 2,4,6-trihydroxy-3',4'-dimethoxydeoxybenzoin with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [5294], (80\%) [5295], for 3 h [5250] or for 10 h [5546].
- Also obtained by hydrolysis of O-trimethylsantal (5,7,3',4'-tetramethoxyisoflavone) (m.p. 155-156 ${ }^{\circ}$) with potassium hydroxide in boiling dilute ethanol for 1 h (82\%) [5383].
- Also obtained by reaction of 3,4-dimethoxyphenylacetonitrile with phloroglucinol dimethyl ether (Hoesch reaction) (12\%) [5383].
- Also refer to: [4935,5476]. m.p. $120-121^{\circ}$ [5546], $117^{\circ} 5$ [5294], 117° [5250,5383], $101-103^{\circ}$ [5295]; One of the reported melting points is obviously wrong.
IR [5294], UV [5294]; TLC [5294].
2-(3,4-Dimethoxyphenyl)-1-(4-hydroxy-2,6-dimethoxyphenyl)ethanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis
- Obtained (by-product) by reaction of 3,4-dimethoxy-phenylacetonitrile with phloroglucinol dimethyl ether (Hoesch reaction) ($<3 \%$) [5383].
m.p. 140° [5383].

1-(2-Hydroxy-4-methoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone
[85288-48-8]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Obtained by partial methylation of 2,4-di-hydroxyphenyl2,4,5-trimethoxybenzyl ketone in acetone,
- with an etheral solution of diazomethane (96\%) [5560];
- with methyl iodide in the presence of potassium carbonate in refluxing acetone for 70 min (96\%) [5560].
m.p. ${ }^{135-136}{ }^{\circ}$ [5560]; ${ }^{1} \mathrm{H}$ NMR [5341].

1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-(4-methoxyphenyl)ethanone

[13539-22-5]

${ }^{1} \mathrm{H}$ NMR [5341].
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Synthesis

- Refer to: [5341] (compound XII).

1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-(4-methoxyphenyl)ethanone

[22110-04-9]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35
Syntheses

- Preparation by acylation of antiarol,
- with p-methoxyphenylacetyl chloride in ethyl ether in the presence of aluminium chloride at r.t. for 12 h (28\%) [5396] or for 24 h (55\%) [5251];
- with p-methoxyphenylacetic acid in chloroform in the presence of boron trifluoride at r.t. overnight (37\%) [5387].
- Also obtained by alkaline hydrolysis of munigin dimethyl ether (m.p. 176°) (5,6,7,4'-tetramethoxy-isoflavone) with potassium hydroxide in refluxing ethanol for 30 min (84\%) [5575].
m.p. $91-92^{\circ}$ [5396], 73° [5575], 69° [5251,5390].

One of the reported melting points is obviously wrong.
b.p. $190-200^{\circ}$ [5575], b.p. $207-222^{\circ}$ [5251], b.p. $210-220^{\circ}$ [5387].

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone

[129207-78-9]

m.p. $130-131^{\circ}$ [5559]; IR [5559].
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 348.35
Synthesis

- Obtained by reaction of 3,4,5-tri methoxyphenyl-acetonitrile with phloroglucinol monomethyl ether (Hoech reaction) [5559].

1-(3,4,6-Trihydroxy-2-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone
[129207-79-0]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 364.35
Synthesis

- Obtained by reaction of potassium persulfate with 2,4-dihydroxy-6methoxyphenyl 3,4,5-trimethoxybenzyl ketone in 40% aqueous potassium hydroxide at r.t. overnight (Elbs reaction) (21\%) [5559].
m.p. $164-165^{\circ}$ [5559].

1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone

[204068-63-3]

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 358.35
Synthesis

- Obtained (small amount) by selective deacetylation of 1-acetoxy-1-(2, 4,6-triacetoxy-phenyl)-2-(4-methoxyphenyl)ethene catalyzed by porcine pancreas lipase in THF at 42-45 for 72 h [5265].

2-(4-Chlorophenyl)-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl] ethanone

[85602-22-8]

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClO}_{4} \quad$ mol.wt. 346.81
Synthesis

- Preparation by reaction of prenyl chloride with 2-(4-chlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone in ethyl ether in the presence of a saturated aqueous sodium carbonate solution and a catalytic amount of cuprous chloride for 3 h at r.t. (45\%) [5576].
m.p. $\quad 182-184^{\circ}$ [5576]; ${ }^{13} \mathrm{C}$ NMR [5576], IR [5576], MS [5576].

1-(2-Hydroxyphenyl)-2-[4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone

1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(3,4,5-trimethoxyphenyl) ethanone

[50901-33-2]

m.p. $119-120^{\circ}$ [5559].
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 376.38
Synthesis

- Obtained by reaction of methylene iodide with 2,4,5-trihydroxy-6-methoxyphenyl 3,4,5-trimethoxy-benzyl ketone in the presence of potassium carbonate in refluxing acetone for 50 h [5559].

1-(5-Ethyl-2,4-dihydroxyphenyl)-2-[4-(1-methylethoxy)phenyl]ethanone
[96644-04-1]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 314.38
Synthesis

- Preparation by condensation of p-isopropyl-oxyphenylacetonitrile with 4-ethylresorcinol in the presence of boron trifluoride etherate under hydrogen chloride atmosphere ($8-10 \mathrm{~h}$) at r.t. overnight (62\%) [5367].
m.p. $\quad 95-96^{\circ}$ [5367]; ${ }^{1} \mathrm{H}$ NMR [5367].

2-(3,4-Diethoxyphenyl)-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone

$$
\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad \text { mol.wt. } 346.38
$$

Synthesis

- Obtained by reaction of 3,4-diethoxy-phenyl-acetonitrile with phloroglucinol monomethyl ether (Hoesch reaction) (24\%) [5383].
m.p. $129-130^{\circ}$ [5383].

2-(3,4-Dimethoxyphenyl)-1-(4-ethoxymethoxy-2-hydroxyphenyl)ethanone
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 346.38

Synthesis

- Obtained by reaction of ethoxymethyl chloride with 2,4-dihydroxyphenyl 3,4-dimethoxybenzyl ketone in the presence of potassium carbonate in acetone for 45 min [5534].

TLC [5534].

2-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl) ethanone

m.p. 160° [5483].

2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl) ethanone

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 346.38
Syntheses

- Preparation by partial methylation of 2,4,6-tri-hydroxy-3-methylphenyl 2,4-dimethoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 40 h (55\%) [5561].
- Also refer to: [5562].
m.p. 142-143 [5561]; UV [5561].

2-(2,4-Dimethoxyphenyl)-1-(6-hydroxy-2,4-dimethoxy-3-methylphenyl) ethanone

[22081-04-5]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 346.38
Synthesis

- Obtained by reaction of 2,4-dime-thoxyphenyl-acetyl chloride with 4-hydroxy-2,6-dimethoxy-toluene in ethyl ether in the presence of aluminium chloride [5394].
m.p. $115-116^{\circ}$ [5394]; IR [5394], UV [5394].

1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone

[20390-13-0]

m.p. $170-171^{\circ}$ [5568].
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7} \quad$ mol.wt. 362.38
Synthesis

- Preparation by Friedel-Crafts acylation of pyrogallol trimethyl ether with 2,4,5-trimethoxy-phenylacetyl chloride in the presence of aluminium chloride in ethyl ether at 0° overnight (68\%) [5568].

1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone

[24195-21-9]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7} \quad$ mol.wt. 362.38 Synthesis

- Obtained by alkaline degradation of $6,7,2^{\prime}, 4^{\prime}, 5^{\prime}$-pentamethoxyisoflavone (m.p. 171-172 $)(\mathrm{SM})$ with sodium hydroxide in refluxing 50% aqueous ethanol ($10-45 \mathrm{~min}$) (84%). SM was isolated from the heartwood of Cordyla africana (Leguminosae; sub-family: Caesal-pinioideae, tribe: Swartzieae) [5379].
m.p. $137-138^{\circ}$ and $127^{\circ} 5-128^{\circ} 5$ [5379]; IR [5379], UV [5379], MS [5379].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7} \quad$ mol.wt. 362.38
Synthesis

- Obtained by partial methylation of 2,4,6-tri-hydroxyphenyl 2,4,5-trimethoxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 14 h (74\%) [5564].
m.p. $144-145^{\circ}$ [5564].

2-[4-(Acetyloxy)phenyl]-1-[2,6-bis(acetyloxy)-4-hydroxyphenyl]ethanone

$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{8}$
mol.wt. 386.36
Syntheses

- Obtained by regioselective enzyme-catalyzed deacetylation of 4-acetoxybenzyl 2,4,6-triacetoxyphenyl ketone in the dry organic solvents hereafter mentioned containing n-butanol with lipase at $42-45^{\circ}$ [5359].

Lipase	Solvent	Time (h)	Yields (\%)
PPL	Acetone/n-BuOH	48	18
PPL	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{n}-\mathrm{BuOH}$	48	18
PPL	$\mathrm{THF} / \mathrm{n}-\mathrm{BuOH}$	45	55
CCL	DIPE/n-BuOH	46	52

PPL = porcine pancreas lipase; $\mathrm{CCL}=$ candida cylindracea lipase; DIPE = diisopropyl ether.
TLC [5359].

2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]ethanone

[94683-36-0]

 $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$ mol.wt. 340.38 Syntheses

- Obtained by alkaline degradation of Tephrosia maxima Pers. (7- γ, γ-di-methy-lallyloxy)-3', 4'-meth ylenedioxy-isoflavone so called 7-O- γ, γ-dimethyl-allylpseudobaptigenin (m.p. $\left.126-128^{\circ}\right) \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5}$, with sodium hydroxide (12%) in refluxing dilute ethanol for 15 min [5469].
- Also obtained by partial allylation of Ψ-baptigenetin (2,4-dihydroxyphenyl 3,4-methylenedioxy-benzyl ketone) with γ, γ-dimethylallyl bromide in the presence of potassium carbonate in refluxing acetone for 8 h (64\%) [5470].
m.p. $81-82^{\circ}$ [5470], $73-74^{\circ}$ [5469].

2-(3,4-Diethoxyphenyl)-1-(2-ethoxy-4,6-dihydroxyphenyl)ethanone

$$
\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \quad \text { mol.wt. } 360.41
$$

Synthesis

- Obtained by condensation of 3,4-di-ethoxyphenyl-acetonitrile with phloroglucinol monoethyl ether (Hoesch reaction) (16\%) [5383].
rhombic prisms [5383];
4-methyl ether m.p. 99° [5383]

1-(3-Ethoxy-6-hydroxy-2,4-dimethoxyphenyl)-2-(4-ethoxyphenyl)ethanone

$$
\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \quad \text { mol.wt. } 360.41
$$

Syntheses

- Obtained by acylation of 4-ethoxy-3,5-dimethoxy-phenol,
- with p-ethoxyphenylacetic acid in chloroform in the presence of boron trifluoride at r.t. overnight (31\%) [5387];
- with p-ethoxyphenylacetyl chloride in ethyl ether in the presence of aluminium chloride at 0° for 2 h , then at r.t. overnight (9%) [5577].
m.p. 104° [5387,5580]; b.p. $0.5220-230^{\circ}$ [5387].

1-(6-hydroxy-2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone
[64554-42-3]

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8} \quad$ mol.wt. 392.41
Synthesis

- Obtained by alkaline degradation of irigenin trimethyl ether (5,6,7, 3',4',5'-hexamethoxy-isoflavone) (m.p. 163°) with potassium hydro xide in refluxing dilute ethanol for

3 h (82%). Irigenin (5,7,3'-trihydroxy-6,4', 5^{\prime} 'tri-methoxyisoflavone) (m.p. 185°) was prepared by acidic hydrolysis of iridin (7-glucopyranosyloxy-5,3'-dihydroxy$6,4^{\prime}, 5^{\prime}$-trimethoxyisoflavone) (m.p. 216-217), itself isolated from iris kumaonensis Wall. [5578].
m.p. 92° [5578]; IR [5578], UV [5578]; TLC [5578].

2-[4-(Benzoyloxy)phenyl]-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 364.35

Synthesis

- Preparation by reaction of 4-ben-zoyloxy-acetonitrile with phloroglucinol (Hoesch reaction) (44\%) [5330].
m.p. 224° [5330].

2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone

[55607-37-9]
$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 370.95 Synthesis

- Obtained (poor yield) by prenylation of 2,4-dihydro-xy-6-methoxyphenyl 3,4methylenedioxybenzyl ket one with 2-hydroxy-2-met hyl-3-butene in dioxane in the presence of boron tri-fluoride etherate for 1 h at r.t. (4\%) [5352].
m.p. $155-156^{\circ}$ [5352]; ${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].

2-(1,3-Benzodioxol-5-yl)-1-[4,6-dihydroxy-2-methoxy-3-(3-methyl-2-butenyl) phenyl]ethanone

[55607-38-0] $\quad \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}$ mol.wt. 370.95

Synthesis

- Obtained (poor yield) by prenylation of 2,4-dihydroxy-6-methoxyphenyl 3,4-methylenedioxybenzyl ketone with 2-hydroxy-2-methyl-3-butene in dioxane in the presence of boron trifluoride etherate for 1 h at r.t. (3\%) [5352].
m.p. $105-106^{\circ}$ [5352]; ${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].

1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4methoxyphenyl)ethanone

[35817-95-9]

$$
\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \quad \text { mol.wt. } 356.42
$$

Syntheses

- Obtained by nuclear prenylation of 2,4-dih-ydroxy-6-methoxyphenyl 4-methoxyben zyl ketone,
- using 2-methyl-2-hydroxy-3-methylbutene in dioxane in the presence of boron trifluoride etherate, first at 0°, then for 1 h at r.t. (9%) [5524];
- with prenyl bromide in the presence methanolic potassium hydroxide, first with cooling, then keeping the reaction mixture for 20 h at r.t. (12\%) [5524].
m.p. $153-154^{\circ}$ [5524]; ${ }^{1} \mathrm{H}$ NMR [5524]; TLC [5524].

1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4-methoxyphenyl)ethanone

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 356.42
Synthesis

- Obtained by nuclear prenylation of 2,4-dihydroxy-6-methoxyphenyl4-met hoxybenzyl ketone using 2-methyl-2-hydroxy-3-methylbutene in dioxane in the presence of boron trifluoride etherate, first at 0°, then for 1 h at r.t. (7\%) [5524].
m.p. $\quad 91-92^{\circ}$ [5524]; ${ }^{1} \mathrm{H} \operatorname{NMR}$ [5524]; TLC [5524].

1-[4-(Ethoxymethoxy)-2-hydroxy-3-(2-propenyl)phenyl]-2-(4-methoxyphenyl)ethanone
[117951-89-0]

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$ mol.wt. 356.42 Synthesis

- Obtained by reaction of ethoxymethyl chloride with 3-allyl-2,4-dihydroxy-4'-me thoxydesoxybenzoin in the presence of potassium carbonate in acetone for 10 min at r.t. [5283].

TLC [5283].

1-[2-Hydroxy-6-methoxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-2-(4-methoxyphenyl)ethanone

[35817-38-0]
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 356.42

Synthesis

- Obtained by reaction of prenyl bromide with 2,4-dihydroxy-6,4'dimethoxydesoxyben zoin in the presence of potassium carbonate in refluxing acetone for $3 \mathrm{~h}(81 \%)$ or in the presence of methanolic potassium hydroxide, first with cooling, then keeping the reaction mixture for 20 h at r.t. (2%) [5524].
m.p. $76-77^{\circ}$ [5524]; ${ }^{1} \mathrm{H}$ NMR [5524]; TLC [5524].

1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone (Onospin)

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{9} \quad$ mol.wt. 420.42
Syntheses

- Obtained by reaction of acetobromoglucose with 1-(2,4-dihydr-oxyphenyl)-2-(4-methoxy-phenyl) ethanone in acetone in the presence of 10% aqueous sodium hydroxide at r.t. for $12 \mathrm{~h}(25 \%)$ [5486].
- Also obtained by alkaline degradation of Ononin - 7-(β-D-glucopyranosyloxy)-4'-methoxy isoflavone (SM) - [5251] with boiling aqueous barium hydroxide [5486]. SM was isolated from the roots of thorny restharrow (Ononis spinosa) (Leguminosae, sub-family Fabaceae) [5251,5489].
m.p. $179^{\circ} 5$ [5486];
$(\alpha)_{\mathrm{D}}=65^{\circ} 9-67^{\circ} 2$ (methanol) [5486].
1-(2,4-Diethoxy-6-hydroxy-3-methoxyphenyl)-2-(4-ethoxyphenyl)ethanone $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \quad \mathrm{~mol} . \mathrm{wt} .374 .43$

Synthesis

- Obtained by Friedel-Crafts acylation of 3,5-di-ethoxy-4-methoxy-phenolwithp-ethoxy-phenylacetyl chloride in ethyl ether in the presence of aluminium chloride at r.t. for 12 h [5396].
oil [5396].
1-(2,4-Diethoxy-6-hydroxyphenyl)-2-(3-ethoxy-4-methoxyphenyl)ethanone $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \quad$ mol.wt. 374.43

Synthesis

- Obtained by condensation of 3-ethoxy-4-methoxyphenylacetonitrile with phloroglucinol diethyl ether (Hoesch reaction) (16\%) [5383].
m.p. 117° [5383].

1-(2,4-Diethoxy-6-hydroxyphenyl)-2-(4-ethoxy-3-methoxyphenyl)ethanone

$$
\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \quad \text { mol.wt. } 374.43
$$

Synthesis

- Obtained by condensation of 4-ethoxy-3-methoxyphenylacetonitrile with phloro-glucinol diethyl ether (Hoesch reaction) (16\%) [5383].
m.p. 138° [5383].

2-(3,4-Diethoxyphenyl)-1-(2-ethoxy-6-hydroxy-4-methoxyphenyl)ethanone

$$
\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \quad \text { mol.wt. } 374.43
$$

Syntheses

- Obtained by alkaline degradation of O-triethyl-santal (7-methoxy-5, 3',4'-triethoxyisoflavone) (m.p. $111-112^{\circ}$) with potassium hydroxide in boiling dilute ethanol for 1.5 h (67\%) [5383].
- Also obtained by partial methylation of 2,4-di-hydroxy-6,3',4'-triethoxydeoxybenzoin [5383].
m.p. 99° [5383].

2-(3,4-Diethoxyphenyl)-1-(4-ethoxy-2-hydroxy-6-methoxyphenyl)ethanone

$$
\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \quad \text { mol.wt. } 374.43
$$

Synthesis

- Obtained by partial ethylation of 2,4-di-hydroxy-6-methoxyphenyl 3,4-diethoxybenzyl ketone with ethyl iodide in the presence of potassium carbonate in boiling acetone for 2 h (77\%) [5383].
m.p. $111-112^{\circ}$ [5383].

1-[2-Hydroxy-4-(4-nitrobenzoyloxy)phenyl]-2-(4-methoxyphenyl)ethanone

$$
\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{7} \quad \text { mol.wt. } 407.38
$$

 Synthesis

- Obtained by partial esterification of 2 , 4-dihydroxyphenyl 4-methoxybenzylket one with p-nitrobenzoyl chloride in the presence of pyridine [5217].
m.p. $166-167^{\circ}$ [5217].

1-[4-(Benzoyloxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone

[102706-12-7]

- Also refer to: [4846]. m.p. $120-121^{\circ}$ [5217].

2-[2-(Benzoyloxy)-4-methoxyphenyl]-1-(2,4-dihydroxyphenyl)ethanone

[52250-27-8]
oil [5579].
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 362.38
Syntheses

- Obtained by partial esterification of 2,4-di-hydroxypheny14-methoxybenzyl ketone with benzoyl chloride (Schotten-Baumann method) [5217].
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 378.38
Synthesis
- Preparation by reaction of 2-benzoy-loxy-4-methoxy-phenylacetonitrile with resorcinol (Hoesch reaction) [5579].

2-[2-(Benzoyloxy)-4-methoxyphenyl]-1-(2,4,6-trihydroxyphenyl)ethanone

[32884-28-9]

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 394.38
Synthesis

- Obtained by reaction of 2-benzoyloxy-4-methoxy-phenylacetonitrile with phloroglucinol [5562].
m.p. 207-208 [5562]; IR [5562].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-(4-methoxyphenyl)ethanone
[95307-71-4]

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
mol.wt. 348.40
Syntheses

- Preparation by partial alkylation of 2,4-di-hydroxyphenyl 4-methoxybenzyl ketone with benzyl chloride in the presence of potassium carbonate in refluxing acetone for 6 h (80\%) [5420] or 8 h [5580], (37\%) [5581].
- Also refer to: [5277,5385].
m.p. 103° [5581], $93-95^{\circ}$ [5420]; ${ }^{1} \mathrm{H}$ NMR [5420].

1-[2-Hydroxy-4-[[(4-methylphenyl)sulfonyl]oxy]phenyl]-2-(4-methoxyphenyl)ethanone

[102599-68-8] $\quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 412.46

Synthesis

- Obtained by partial esterification of 2, 4-dihydroxyphenyl 4-methoxybenzyl
ketone with p-toluenesulfonyl chloride in acetone in the presence of potassium carbonate [5217].
m.p. 91° [5217].

2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl) phenyl]ethanone

[55607-39-1] $\quad \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O} \quad$ mol.wt. 384.43

Synthesis

- Obtained by partial methylation of 2,4-dihydroxy-6-methoxy-3-prenyl-phenyl 3,4-methylenedioxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 3.5 h (96\%) [5352].
m.p. $118-119^{\circ}$ [5352]; ${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].

2-(1,3-Benzodioxol-5-yl)-1-[6-hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone

[^16]
1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4-methoxyphenyl)ethanone

[51323-85-4] $\quad \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5}$ mol.wt. 370.45
 Synthesis

- Obtained by partial methylation of 3-pre-nyl-2,4-dihydroxy-6, 4'-di-methoxydesoxybenzoinwith dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 3.5 h [5524].
m.p. $94-95^{\circ}$ [5524].

2-(2,4-Dimethoxyphenyl)-1-[4,6-bis(ethoxymethoxy)-2-hydroxyphenyl] ethanone

1-[4-Hydroxy-6-(phenylmethoxy)-1,3-benzodioxol-5-yl]-2-(4-methoxyphenyl) ethanone
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 392.41
Synthesis

- Obtained by alkaline degradation of 5-benzyloxy-4'-methoxy-7,8-methy-lenedioxy-2-methylisoflavone with 10% aqueous potassium hydroxide in refluxing ethanol for 2 h under a stream of nitrogen gas (74\%) [5507].
m.p. $148-149^{\circ}$ [5507]; IR [5507], UV [5507].

1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl]-2-(2-hydroxy-4methoxyphenyl)ethanone

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 394.42
Synthesis

- Obtained by alkaline degradation of 2'-benzoyloxy-7-benzy loxy-4',5-di-methoxy-2-me thoxycarbonylisoflavone (m.p. 183-184 ${ }^{\circ}$) with potassium hydroxide in refluxing dilute ethanol for 2 h (98\%) [5562].
m.p. $1^{120-122^{\circ}}$ [5562]; ${ }^{1} \mathrm{H}$ NMR [5562], IR [5562].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-(4-methylphenyl)ethanone

[81116-01-0]

$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \quad$ mol.wt. 338.49
Syntheses

- Obtained by acylation of 2,6-di-tertbutylphenol with p-methylphenylacetyl chloride according to [5402], (35\%) [5403].
- Also refer to: [5582].
m.p. $114-115^{\circ}$ [5403]; IR [5403].

1-[2-Hydroxy-6-methoxy-3-methyl-4-(phenylmethoxy)phenyl]-2-(4-methoxyphenyl)ethanone

[102749-29-1]

$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 392.45
Synthesis

- Obtained by reaction of benzyl bromide with 2,4-dihydroxy-6-methoxy-3-methylphenyl 4-methoxybenzyl ketone in the presence of potassium carbonate in boiling acetone for 3 h (77\%) [5488].
m.p. 118° [5488].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-(2,4,5-trimethoxyphenyl)ethanone

$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 408.45

Synthesis

- Obtained by reaction of 2,4-dihydroxyphenyl 2,4,5-trimethoxybenzyl ketone with benzyl chloride in the presence of potassium carbonate in refluxing acetone for 8 h (94\%) [5560].
m.p. $149-150^{\circ}$ [5560].

1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-2-[4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone

[130064-21-0]

$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6} \quad$ mol.wt. 412.48
Synthesis

- Preparation by reaction of 3,4-dihydro-2H-pyran with 1-(2,4-dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone in concentrated hydrochloric acid and stirring in an ice bath for 4 h (87\%) [5280].
m.p. 118° [5280]; ${ }^{1} \mathrm{H}$ NMR [5280], IR [5280], MS [5280].

2-(2-Fluorophenyl)-1-[2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]-phenyl]ethanone

[121060-06-8]

$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{FO}_{12} \quad$ mol.wt. 576.53 Synthesis

- Obtained by glycosidation of 1-(2,4-dihydroxy-phenyl)-2-(2-fluorophenyl)ethanone with acetobromo- α-D-glucose in aqueous acetone containing potassium hydroxide [5418].

2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-6-(phenylmethoxy)-3(phenylmethyl)phenyl]ethanone

$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 468.51
Synthesis

- Obtained by benzylation of 2,4, 6-trihydroxy-phenyl 3,4-methylenedioxybenzyl ketone with benzyl chloride in the presence of potassium carbonate in refluxing acetone for $7 \mathrm{~h}(10 \%)$ [5408].
m.p. $145-146^{\circ}$ [5408]; ${ }^{1} \mathrm{H}$ NMR [5408], UV [5408].

2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-bis(phenylmethoxy)phenyl] ethanone

[39549-00-3]

$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 468.51
Synthesis

- Obtained by benzylation of 2,4, 6-tri-hydroxyphenyl 3,4-methyl-enedioxy-benzyl ketone with benzyl chloride in the presence of potassium carbonate in refluxing acetone for 7 h (17\%) [5408].
m.p. $78-79^{\circ}$ [5408]; ${ }^{1} \mathrm{H}$ NMR [5408], UV [5408].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-[4-methoxy-2-(phenylmethoxy) phenyl]ethanone

[67685-29-4]

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5} \quad$ mol.wt. 454.52
Syntheses

- Obtained by decarbonylation of the acetal-2-(2-benzyloxy-4-methoxyphenyl)-1-(2,4-dib-enzyloxyphenyl)-3,3-dimetho xy-propan-1-one-(colourless oil) in refluxing methanol $(200 \mathrm{ml})$ containing 60% perchloric acid (30 ml) for 1.5 h (12\%) [5521].
- Also obtained by selective debenzylation of 2,2',4-tribenzyloxy-4'methoxydeoxybenzoin (m.p. 111°) in acetonitrile in the presence of boron trifluoride etherate and sodium iodide at r.t. (88\%) [5521].
m.p. 101° [5521]; ${ }^{1} \mathrm{H}$ NMR [5521], MS [5521]; TLC [5521].

1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-2-(4-methoxyphenyl)ethanone

[42868-73-5]

$\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{13} \quad$ mol.wt. 588.57
Synthesis

- Obtained by glycosidation of 1-(2,4-dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone with acetobromo- α-D-glucose in aqueous acetone containing potassium hydroxide [5418].

1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl]-2-(2-methoxyphenyl) ethanone

$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{5} \quad$ mol.wt. 468.55
 Synthesis

- Obtained by reaction of benzyl bromide (2 mol) with $2,4,6$-trihydroxy-3-methylphenyl 2-methoxybenzyl ketone in the presence of potassium carbonate in boiling acetone for 3 h (31\%) [5549].
m.p. 146° [5549].

1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl]-2-(4-methoxyphenyl)ethanone

$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{5} \quad$ mol.wt. 468.55

Synthesis

- Obtained by reaction of benzyl bromide (2 mol) with 2,4,6-trihydroxy-3-methylphenyl 4-methoxybenzyl ketone in the presence of potassium carbonate in boiling acetone for 3 h (37\%) [5549].
m.p. 129° [5549].

2-(2,4-Dimethoxyphenyl)-1-[2-hydroxy-4,6-bis(phenylmethoxy)phenyl] ethanone

[39604-84-7]

$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{6} \quad$ mol.wt. 484.55
Synthesis

- Obtained by reaction of benzyl chloride with 2,4,6-trihydroxyphenyl 2,4-dimethoxybenzyl ketone in the presence of potassium carbonate in refluxing acetone for 5 h (38\%) [5381].
m.p. $136-137^{\circ}$ [5381].

2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-bis(phenylmethoxy)-3(phenylmethyl)phenyl]ethanone

$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{6} \quad$ mol.wt. 558.63 Synthesis

- Obtained (poor yield) by benzylation of 2,4,6-trihydroxyphenyl 3^{\prime}, 4'-methylenedioxy-benzyl ketone with benzyl chloride in the presence of potassium carbonate in refluxing acetone for $7 \mathrm{~h}(10 \%)$ [5408].
m.p. $135-136^{\circ}$ [5408]; ${ }^{1} \mathrm{H}$ NMR [5408], UV [5408].

18.3 Compounds Derived from Di- and Triphenylacetic Acids

1-(3,4-Dihydroxy-5-nitrophenyl)-2,2-diphenylethanone

[400871-22-9]	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{5} \quad$ mol.wt. 349.34
	Synthesis
	- Preparation by treatment of 2,2-diphenyl-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone with aluminium chloride in refluxing ethyl acetate/pyridine mixture for $2 \mathrm{~h}(90-96 \%)$ [5193].
m.p. 204-205 ${ }^{\circ}$ [5193];	H NMR [5193],

1-(2-Hydroxyphenyl)-2,2-diphenylethanone

[4970-24-5] $\quad \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 288.34

Syntheses

- Obtained (by-product) by Fries rearrangement of phenyl diphenylacetate with aluminium chloride in nitrobenzene for 4 h at 60° (3\%) [5201].
- Also obtained (poor yield) by refluxing phenyl diphenyl-acetate (pyrolysis, 300 ${ }^{\circ}$) [5204].
N.B.: By using "Kupferbronze" or various silicates ("Bleicherde", for example) as catalysts, the yield increases with appreciable change from 140°.
m.p. $99-100^{\circ}$ [5201].

1-(4-Hydroxyphenyl)-2,2-diphenylethanone

[4873-38-5] | Syntheses |
| :--- |
| - Preparation by Fries rearrangement of phenyl diphenyl- |
| acetate with aluminium chloride, |

1-(2-Hydroxy-3-methylphenyl)-2,2-diphenylethanone

[133859-03-7]

 $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 302.37 Synthesis

- Obtained by Fries rearrangement of o-tolyl diphenylacetate with aluminium chloride in nitrobenzene at 60° for 4 h (20\%) [5201].
IR [5201].
1-(2-Hydroxy-4-methylphenyl)-2,2-diphenylethanone

[133859-04-8]	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}$
OH	Synthesis
	- Obtaine dipheny nitroben

m.p. $179-180^{\circ}$ [5201]; IR [5201].

1-(2-Hydroxy-5-methylphenyl)-2,2-diphenylethanone

[133859-05-9]

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 302.37
Syntheses

- Obtained by Fries rearrangement of p-tolyl diphenylacetate (m.p. 76°) [4548] with aluminium chloride,
- without solvent in boiling water bath for 1 h [4548];
- in nitrobenzene at 60° for $4 \mathrm{~h}(22 \%)$ [5201].

IR [5201].

1-(4-Hydroxy-2-methylphenyl)-2,2-diphenylethanone
[133859-06-0] $\quad \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 302.37

Syntheses

- Obtained (poor yields) by Fries rearrangement of m-tolyl diphenylacetate with aluminium chloride,
- in nitromethane or in nitroethane at r.t. for 12 h (19-21\%) [5202];
- in nitrobenzene at r.t. for $10 \mathrm{~h}(10 \%)$ or at 60° for $4 \mathrm{~h}(10 \%)$ [5202], (6\%) [5201].
m.p. $150-151^{\circ}$ [5202], $125-127^{\circ}$ [5201].

One of the reported melting points is obviously wrong.

1-(4-Hydroxy-3-methylphenyl)-2,2-diphenylethanone

[122918-54-1] $\quad \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 302.37

Synthesis

- Preparation by Fries rearrangement of o-cresyl diphenyl-acetate with aluminium chloride in nitrobenzene at 60° for $4 \mathrm{~h}(49 \%)$ [5201] or in nitroethane at r.t. for $12 \mathrm{~h}(73 \%)$ [5202].
m.p. $211-212^{\circ}$ [5201].

1-(4-Hydroxyphenyl)-2,2,2-triphenylethanone

[133859-07-1]

IR [5201].
$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 364.44
Synthesis

- Obtained (poor yield) by Fries rearrangement of phenyl triphenylacetate with aluminium chloride in nitrobenzene for 4 h at $60^{\circ}(5 \%)$ [5201].

18.4 Compounds Derived from Cycloalkylacetic Acids

2-Cyclopentyl-1-(2-hydroxyphenyl)ethanone

[56234-70-9]

b.p. $112-114^{\circ}$ [5583].
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
Synthesis

- Obtained by reaction of cyclopentylacetyl chloride with phenol in the presence of aluminium chloride at 140° for $15 \min (46 \%)$ [5583].

2-Cyclopentyl-1-(4-hydroxyphenyl)ethanone

[56184-10-2] | Synthesis |
| :--- |
| $\left.\begin{array}{l}\text { Obtained by reaction of cyclopentylacetyl chloride with } \\ \text { phenol in the presence of aluminium chloride at } 140^{\circ} \text { for }\end{array}\right)$ |

b.p. $175-185^{\circ}$ [5583].

2-Cyclopentyl-1-(2,4-dihydroxyphenyl)ethanone

[59108-69-9]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis

- Obtained by reaction of cyclopentylacetonitrile with resorcinol (Hoesch reaction) [4852].

2-Cyclohexyl-1-(3,4-dihydroxy-5-nitrophenyl)ethanone
[400871-12-7]
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5} \quad$ mol.wt. 279.29

Synthesis

- Preparation by treatment of 2-cyclohexyl-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone with aluminium chloride in refluxing ethyl acetate/pyridine mixture for 2 h (90-96\%) [5193].
m.p. 113-114 ${ }^{\circ}$ [5193];
${ }^{1} \mathrm{H}$ NMR [5193], ${ }^{13} \mathrm{C}$ NMR [5193], IR [5193].

2-Cyclopentyl-1-(2-hydroxy-3-methylphenyl)ethanone

[56184-11-3] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30

Synthesis

- Preparation by reaction of cyclopentylacetyl chloride with o-cresol in the presence of aluminium chloride at 180° for $15 \mathrm{~min}(40-45 \%)$ [5583].
b.p. $121-123^{\circ}$ [5583].

2-Cyclopentyl-1-(2-hydroxy-4-methylphenyl)ethanone

[56184-13-5] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30

Synthesis

- Preparation by reaction of cyclopentylacetyl chloride with m -cresol in the presence of aluminium chloride at 140° for $15 \mathrm{~min}(81 \%)$ [5583].
b.p. $126-128^{\circ}$ [5583].

2-Cyclopentyl-1-(2-hydroxy-5-methylphenyl)ethanone

b.p. $124-126^{\circ}$ [5583].

2-Cyclopentyl-1-(4-hydroxy-3-methylphenyl)ethanone

[56184-12-4] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 218.30

Synthesis

- Preparation by reaction of cyclopentylacetyl chloride with o-cresol in the presence of aluminium chloride at 140° for $15 \mathrm{~min}(56 \%)$ [5583].
b.p. $180-190^{\circ}$ [5583].

Chapter 19
 Compounds Derived from S-Substituted Mercaptoacetic Acids

2-(3,5-Dibromo-2-hydroxyphenyl)-2-oxoethyl thiocyanate

$$
\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S} \quad \text { mol.wt. } 351.02
$$

Synthesis

- Obtained by reaction of ammonium thiocyanate with 3,5, α-tribromo-2-hydroxyacetophenone in aqueous acetone at r.t. for 6 h (69\%) [4383].
m.p. $142-143^{\circ}$ [4383]; IR [4383].

2-(5-Bromo-2-hydroxyphenyl)-2-oxoethyl thiocyanate

[260430-29-3]	Synthesis - Obtained by reaction of ammonium thiocyanate with 5, α-di-bromo-2-hydroxyacetophenone in aqueous acetone at r.t. for $6 \mathrm{~h}(88 \%)$
[4383].	

1-(2-Hydroxyphenyl)-2-(methylthio)ethanone

[56986-82-4]	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$ mol.wt. 182.96
OH	Synthesis
	- Preparation by adding a solution of 15% sodium methylmercaptide to a solution of 2-hydroxy- α -bromo-acetophenone in methanol in an ice bath. The reaction mixture was stirred for 30 min at r.t. (98\%) [4395].

yellow liquid [4395]; MS [4395].

1-(2-Hydroxyphenyl)-2-(methylsulfonyl)ethanone

[39068-36-5]
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}$
mol.wt. 214.24

Synthesis

- Obtained by condensation of methyl 2-hydroxybenzoate with dimethylsulfone carbanion in DMSO (65\%) [5584].
m.p. 139-140 ${ }^{\circ}$ [5584].

1-(3-Hydroxyphenyl)-2-(methylsulfonyl)ethanone

[52945-17-2] \quad\begin{tabular}{l}
Synthesis

- Obtained by condensation of methyl 3-hydroxy-

benzoate with dimethylsulfone carbanion in DMSO

(60%) [5584].
\end{tabular}

1-(4-Hydroxyphenyl)-2-(methylsulfonyl)ethanone

[52945-18-3]

Synthesis
- Obtained by condensation of methyl 4-hydroxy-
benzoate with dimethylsulfone carbanion in DMSO
m.p. $173-174^{\circ}$ [5584]

2-(3-Bromo-2-hydroxy-5-methylphenyl)-2-oxoethyl thiocyanate
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNO}_{2} \mathrm{~S} \quad$ mol.wt. 286.15

Synthesis

- Obtained by reaction of ammonium thiocyanate with 3, α-dibromo-2-hydroxy-5-methylacetophenone in aqueous acetone at r.t. for 6 h (66%) [4383].
m.p. $148-149^{\circ}$ [4383]; IR [4383].

2-(5-Bromo-2-hydroxy-4-methylphenyl)-2-oxoethyl thiocyanate $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNO}_{2} \mathrm{~S} \quad$ mol.wt. 286.15

Synthesis

- Obtained by reaction of ammonium thiocyanate with 5, α-di-bromo-2-hydroxy-4-methylacetophenone in aqueous acetone at r.t. for $6 \mathrm{~h}(73 \%)$ [4383].
m.p. $122-123^{\circ}$ [4383]; IR [4383].

1-(2-Hydroxy-5-methylphenyl)-2-(methylsulfinyl)ethanone

[52159-50-9]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
mol.wt. 212.27
Synthesis

- Refer to: [5585].

1-(2,4-Dihydroxy-6-methylphenyl)-2-(methylsulfinyl)ethanone

[478795-87-8]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$
mol.wt. 228.27
Synthesis

- Obtained by reaction of ethyl 2,4-dihy-droxy-6-methyl-benzoate with sodium methylsulfinylmethide [5586] according to [5587].
oil [5586].
1-(2-Hydroxy-3-methoxyphenyl)-2-(methylsulfinyl)ethanone
[65220-47-5] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 228.27

Synthesis

- Preparation by reaction of methyl 3-methoxysalicylate (methyl 2-hydroxy-3-methoxybenzoate) with methylsulfinyle carbanion, itself obtained from DMSO and sodium hydride (83\%) [5588].
m.p. $140-142^{\circ}$ [5588]; TLC [5588].

1-(3-Hydroxy-4-methoxyphenyl)-2-(methylsulfinyl)ethanone
[66100-55-8]

m.p. $158-161^{\circ}$ [5589];
${ }^{1} \mathrm{H}$ NMR [5589], IR [5589].
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 228.27
Synthesis

- Preparation by reaction of methyl isovanillinate (methyl 3-hydroxy-4-methoxybenzoate) with methylsulfinylecarbanion, itself obtained from DMSO and sodium hydride (89\%) [5589].

1-(4-Hydroxy-3-methoxyphenyl)-2-(methylsulfinyl)ethanone

[66100-54-7]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 228.27

m.p. $151-152^{\circ}$ [5589];
${ }^{1} \mathrm{H}$ NMR [5589], IR [5589].

Synthesis

- Preparation by reaction of methyl vanillinate (methyl 4-hydroxy-3-methoxybenzoate) with methylsulfinyle, carbanion itself obtained from DMSO and sodium hydride (90%) [5589].

1-(4-Hydroxy-3-methoxyphenyl)-2-(methylsulfonyl)ethanone
[52945-22-9] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 244.27

m.p. $157-158^{\circ}$ [5584].

Synthesis

- Obtained by condensation of methyl 4-hydroxy-3-methoxy-benzoate with dimethylsulfone carbanion in DMSO (76\%) [5584].

2-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)-2-oxoethyl thiocyanate

[260430-31-7]

m.p. $149-150^{\circ}$ [4383]; IR [4383].
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrNO}_{2} \mathrm{~S} \quad$ mol.wt. 300.18
Synthesis

- Obtained by reaction of ammonium thiocyanate with 5, α-di-bromo-2-hydroxy-3,4-dimethylacetophenone in aqueous acetone at r.t. for $6 \mathrm{~h}(52 \%)$ [4383].

2-(3,5-Dibromo-2-hydroxyphenyl)-2-oxoethyl dimethylcarbamodithioate

[214959-26-9]

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}_{2} \quad$ mol.wt. 413.15
Synthesis

- Obtained by reaction of 3,5-dibromo-2-hydroxy- α-bromoacetophenone with sodium or piperidinium N,Ndimethyldithiocarbamate in methanol at r.t. for $12 \mathrm{~h}(72 \%)$ [4382].
m.p. 164° [4382];
${ }^{1} \mathrm{H}$ NMR [4382], IR [4382], UV [4382].

2-(3,5-Dichloro-2-hydroxyphenyl)-2-oxoethyl dimethylcarbamodithioate

[87669-75-8]
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}_{2} \quad$ mol.wt. 324.2

Syntheses

- Refer to: [5590,5591].

1-(2-Hydroxy-4-methoxy-6-methylphenyl)-2-(methylsulfinyl)ethanone
[104783-89-3]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 242.30
Syntheses

- Preparation by reaction of ethyl 2-hydroxy-4-methoxy-6-methylbenzoate (m.p. 73-74) with sodium methyl-sulfinylmethide, itself obtained from DMSO and sodium hydride (85\%) [5587].
- Also refer to: [5586].
m.p. $\quad 146-148^{\circ}$ [5587]; ${ }^{1} \mathrm{H}$ NMR [5587], IR [5587].

1-(2-Hydroxy-6-methoxy-4-methylphenyl)-2-(methylsulfinyl)ethanone

[205880-83-7]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 242.30
Syntheses

- Preparation by treatment of methyl 2-hydroxy-6-methoxy-4-methylbenzoate (methyl mono-O-methyl-p-orsellinate)
(m.p. $94-96^{\circ}$) with sodium methylsulfinyl-methide (SM) formed in situ. SM was obtained by action of sodium hydride (3 equiv) with DMSO (7 equiv) in benzene at 50° for 1 h . (78\%) [5592].
- Also refer to: [5593].
m.p. 62-64 ${ }^{\circ}$ [5592].

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(methylsulfonyl)ethanone

[52945-23-0]

m.p. $154-155^{\circ}$ [5584].
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 274.29
Synthesis

- Obtained by condensation of methyl 4-hydroxy-3,5-di-methoxybenzoate with dimethylsulfonyl carbanion in DMSO (74\%) [5584].

1-[2-Hydroxy-5-(1-methylethyl)phenyl]-2-(methylsulfinyl)ethanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 240.32
Syntheses

- Refer to: [5585,5594].

1-(4-Ethoxy-2-hydroxy-6-methylphenyl)-2-(methylsulfinyl)ethanone
[478795-93-6]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 256.32

oil [5586].

Synthesis

- Obtained by reaction of ethyl4-ethoxy-2-hydroxy-6-methylbenzoate with sodium methylsulfinylmethide [5586] according to [5587].

2-(3,5-Dibromo-2-hydroxyphenyl)-2-oxoethyl diethylcarbamodithioate

[214959-27-0]

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}_{2} \quad$ mol.wt. 441.21
Synthesis

- Obtained by action of 3,5-dibromo-2-hydroxy- α-bromoacetophenone with sodium or piperidinium N, N diethyldithiocarbamate in methanol at r.t. for $12 \mathrm{~h}(58 \%)$ [4382].
m.p. 132° [4382]; ${ }^{1} \mathrm{H}$ NMR [4382], IR [4382], UV [4382].

1-[2-Hydroxy-6-methyl-4-(1-methylethoxy)phenyl]-2-(methylsulfinyl) ethanone

[478795-95-8]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 270.35
Synthesis

- Obtainedbyreactionofethyl2-hydroxy-4-iso-propoxy-6-methylbenzoate with sodium methyl-sulfinylmethide [5586] according to [5587].
oil [5586].

1-(2-Hydroxy-6-methyl-4-propoxyphenyl)-2-(methylsulfinyl)ethanone

[478795-94-7]

oil [5586].
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 270.35
Synthesis

- Obtained by reaction of ethyl 2-hydroxy-6-methyl-4-propoxybenzoate with sodium methylsulfinylmethide [5586] according to [5587].

1-(2-Hydroxyphenyl)-2-[2-(trimethylsilyl)ethylthio]ethanone
[193075-79-5]

$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SSi}$
mol.wt. 268.45
Synthesis

- Preparation by adding an ethanolic solution of sodium 2-(trimethylsilyl)ethanethiolate in a solution of 2-chloro-1-(2-hydroxyphenyl)ethanone in dioxane at r.t. for 2 h under nitrogen (99\%) [4570]. pale yellow oil [4570]; ${ }^{1} \mathrm{H}$ NMR [4570], IR [4570].

2-[(4-Chlorophenyl)thio]-1-(2-hydroxyphenyl)ethanone

[113272-14-3]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \mathrm{~S} \quad$ mol.wt. 278.76
Syntheses

- Preparation by adding dropwise at r.t. an ethanolic solution of sodium 4-chlorothiophenoxide to a solution of 2-hydroxy- α-bromoacetophenone in dioxane and stirring the mixture for a further hour (84\%) [5595].
- Also refer to: [5596].
m.p. $83-84^{\circ}$ [5595]; ${ }^{1} \mathrm{H}$ NMR [5595], IR [5595], MS [5595].

2-[(4-Chlorophenyl)sulfinyl]-1-(2-hydroxyphenyl)ethanone

[113272-15-4]
$[131137-71-8](\pm) \quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \mathrm{~S} \quad$ mol.wt. 294.76

Syntheses

- Preparation by oxidation of α-(4-chlorop-henylthio)-2-hydroxyacetophenone in methylene chloride with 3-chloroperoxybenzoic acid at 0° for $5 \mathrm{~h}(93 \%)$ [5595].
- Also refer to: [5596].
m.p. $131-132^{\circ}$ [5595];
${ }^{1} \mathrm{H}$ NMR [5595], IR [5595], MS [5595].

1-(2-Hydroxyphenyl)-2-(phenylthio)ethanone

[56307-98-3]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 244.31
Syntheses

- Preparation by adding an ethanolic solution of sodium benzenethiolate to a solution of 2-hydroxy- α-bromoacetophenone in dioxane at r.t. and stirring for 1 h at the same temperature (77%) [5596,5597].
- Preparation by condensation of 2-hydroxy- α-bromoacetophenone (or 2-hydroxy-α-chloro-acetophenone) with thiophenol in the presence of sodium ethoxide in an ethanol/dioxane mixture (77\%) [5598].
- Also refer to: [4395].
m.p. 55° [5597,5598], 52-54ํ [5596];
${ }^{1} \mathrm{H}$ NMR [5596,5597], IR [5596,5597], UV [5597,5598].

1-(4-Hydroxyphenyl)-2-(phenylthio)ethanone

mol.wt. 244.31
Syntheses

- Preparation by adding thiophenol (0.1 ml) and rhodium (II) acetate dimer (2 mg) to a suspension of resin $6(52 \mathrm{mg})$ in benzene and the mixture agitated at 50° for 2 h . Resin was filtered, successively washed with methylene chloride, THF and ethyl ether and dried in vacuo. A $50 \%(\mathrm{v} / \mathrm{v})$ solution of TFA in methylene chloride was added to the above resin and the mixture was agitated at r.t. for 30 min . After, the resin was filtered and washed with methylene chloride, the combined filtrates were concentrated and purified by preparative TLC (ethyl acetate/toluene) to give the titled compound (64\%) [4814].
N.B.: Resin 6 (resin-bound α-TMS diazoketon 6) (preparation given).
- Also refer to: [4815].
${ }^{1} \mathrm{H}$ NMR [4814], ${ }^{13} \mathrm{C}$ NMR [4814], IR [4814], MS [4814].

1-(2,4-Dihydroxyphenyl)-2-(phenylthio)ethanone

[56307-99-4]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 260.31 Syntheses

- Preparation by condensation of 2,4-dihydroxy-α-chloro-acetophenone with thiophenol in the presence of sodium ethoxide in a mixture of ethanol/dioxane (93\%) [5598].
- Also obtained by condensation of phenylthioacetonitrile with resorcinol (Hoesch reaction) (54\%) [5598].

```
m.p. 152-153` [5598]; UV [5598].
```


1-(3,4-Dihydroxyphenyl)-2-(phenylthio)ethanone

[131985-77-8] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 260.31

Synthesis

- Refer to: [5599] (Japanese patent).

1-(2-Hydroxyphenyl)-2-(phenylsulfinyl)ethanone

[131137-70-7]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
mol.wt. 260.31
Synthesis

- Preparationby oxidationof 1-(2-hydroxyphenyl)-2-(phenyl-thio)ethanone with m-CPBA in methylene chloride at 0° for 5 h and water then added (90\%) [5596].
m.p. $117-118^{\circ}$ [5596];
${ }^{1} \mathrm{H}$ NMR [5596], IR [5596], MS [5596].

2-(Phenylthio)-1-(2,4,6-trihydroxyphenyl)ethanone

[56308-00-0]

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 276.31
Syntheses

- Preparation by condensation of phenylthioacetonitrile with phloroglucinol (Hoesch reaction) (85\%) [5598].
- Also obtained by condensation of 2,4,6-trihydroxy- α-chloro-acetophenone with thiophenol in the presence of sodium ethoxide in an ethanol/dioxane mixture (20\%) [5598].
m.p. $173-174^{\circ}$ [5598]; UV [5598].

1-(4-Butoxy-2-hydroxy-6-methylphenyl)-2-(methylsulfinyl)ethanone

[478795-98-1]

oil [5586].
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$ mol.wt. 284.38
Synthesis

- Obtained by reaction of ethyl 4-butoxy-2-hydroxy-6-methylbenzoate with sodium methylsulfinylmethide [5586] according to [5587].

1-[2-Hydroxy-6-methyl-4-(1-methylpropoxy)phenyl]-2-(methylsulfinyl)ethanone [478795-97-0] $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 284.38
 Synthesis

- Obtained by reaction of ethyl 4-sec-butoxy-2-hydroxy-6methylbenzoate with sodium methylsulfinylmethide [5586] according to [5587].
oil [5586].
1-[2-Hydroxy-6-methyl-4-(2-methylpropoxy)phenyl]-2-(methylsulfinyl)ethanone
[478795-96-9]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$ mol.wt. 284.38
Synthesis
- Obtained by reaction of ethyl 4-isobutoxy-2-hydroxy-6-methylbenzoate with sodium methylsulfinylmethide [5586] according to [5587].
oil [5586].
1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]-6-methylphenyl]-2-(methylsulfinyl)ethanone
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S}$ mol.wt. 316.38
Synthesis
- Preparation by reaction of ethyl 2-hydroxy-4-(2-meth oxyethoxy)-methoxy-6methylbenzoate with methylsulfinyl carbanion, itself obtained from DMSO and sodium hydride (86\%) [5587].
m.p. $106-107^{\circ}$ [5587]; ${ }^{1} \mathrm{H}$ NMR [5587], IR [5587].

2-Chloro-1-(2-hydroxy-4-methoxyphenyl)-2-(phenylthio)ethanone

[153432-53-2]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{~S}$
Synthesis

- Preparation by reaction of N-chlorosuccinimide with 2^{\prime}-hydroxy-4'-methoxy-2-(phenylthio)acetophenone in carbon tetrachloride under argon at r.t. for 2 h (83\%) [5600].
m.p. $\quad 49-50^{\circ} 5$ [5600]; ${ }^{1} \mathrm{H}$ NMR [5600], ${ }^{13} \mathrm{C}$ NMR [5600], IR [5600], MS [5600].

1-(2-Hydroxyphenyl)-2-[(4-methylphenyl)thio]ethanone
[108378-94-5]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$

Synthesis

- Preparation by adding an ethanolic solution of sodium 4-methylbenzenethiolate to a solution of 2-hydroxy- α-bromoacetophenone in dioxane at r.t. and stirring for 1 h at the same temperature (83%) [5601,5596]. m.p. 66-67ํ [5596]; ${ }^{1} \mathrm{H}$ NMR [5596], IR [5596].

1-(2-Hydroxyphenyl)-2-[(phenylmethyl)thio]ethanone

[111809-47-3]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 258.34

Synthesis

- Preparation by adding a solution of sodium phe-nylmethane-thiolate in ethanol to a solution of o-hydroxy- α-chloro-acetophenone in dioxane at
20° during 40 min and then stirring at the same temperature for 30 min more (84\%) [4571].
m.p. 64° [4571]; ${ }^{1} \mathrm{H}$ NMR [4571], IR [4571].

1-(2-Hydroxy-4-methoxyphenyl)-2-(phenylthio)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 274.34
Syntheses

- Preparation by reaction of sodium thiophenolate with 2-hydroxy-4-methoxy- α-chloroacetophenone in tetrahydrofuran under argon, at r.t. for $10 \mathrm{~min}(73 \%)$ [5600].
- Also obtained by partial methylation of 2,4-dihydroxy- α-phenylthioacetophenone with dimethyl sulfate in the presence of potassium carbonate in acetone for 3 h (64\%) [5598].
- Also obtained by alkaline degradation of 3-(phenylthio)-7-methoxychromone (m.p. $101-102^{\circ}$) with N -sodium hydroxide in dilute methanol for $3 \mathrm{~h}(96 \%)$ [5598].
m.p. $42-44^{\circ}$ [5600], 42-43 ${ }^{\circ}$ [5598]; ${ }^{1} \mathrm{H}$ NMR [5600], ${ }^{13} \mathrm{C}$ NMR [5600], UV [5598].

1-(2-Hydroxyphenyl)-2-[(4-methylphenyl)sulfinyl]ethanone

- Also refer to: [5601].
m.p. 118-119 ${ }^{\circ}$ [5596]; ${ }^{1} \mathrm{H}$ NMR [5596], IR [5596].

1-(2-Hydroxy-5-methylphenyl)-2-[(R)-(4-methylphenyl)sulfinyl]ethanone
[371258-74-1] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 288.37

Syntheses

- Preparation at -78° by reaction between methyl 2-hydroxy-5-methylbenzoate and (R)-(+)-methyl p-tolyl sulfoxide in the presence of lithium diisopropylamide (LDA) in THF (91\%) [5602].
m.p. $128^{\circ}[5602] ;(\alpha)_{\mathrm{D}}^{22}=+134^{\circ}$ to $+148^{\circ}$ ($\mathrm{c}=1$ in chloroform) [5602];
${ }^{1} \mathrm{H}$ NMR [5602], IR [5602], MS [5602].
1-(2-Hydroxy-5-methylphenyl)-2-[(S)-(4-methylphenyl)sulfinyl]ethanone
[371258-72-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 288.37
Synthesis
- Refer to: [5602].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(phenylthio)ethanone

[56308-02-2]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 304.37
Synthesis

- Preparation by partial methylation of 2-(phenylthio)-2', $4^{\prime}, 6^{\prime}$-trihydroxy-acetophenone with dimethyl sulfate in the presence of potassium carbonate in acetone for 2 h (88\%) [5598].
m.p. 75° [5598]; UV [5598].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-[(R)-(4-methylphenyl)sulfinyl]ethanone
[371258-80-9]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 334.39
Synthesis

- Preparation at -78° by reaction between methyl 2-hydroxy-4,6dimethoxybenzoate and (R)-(+)- methyl p-tolyl sulfoxide in the presence of lithium diisopropylamide (LDA) in THF (58\%) [5602].
m.p. $107-109^{\circ}$ [5602]; $(\alpha)_{\mathrm{D}}^{20}=-28^{\circ}$ to $-32^{\circ}(\mathrm{c}=1$ in chloroform) [5602]; ${ }^{1} \mathrm{H}$ NMR [5602], IR [5602], MS [5602]; TLC [5602].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-(methylsulfinyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 310.46
Syntheses

- Obtained by reaction of 3,5-di-tert-butyl-4hydroxybenzoyl chloride with excess DMSO at r.t. (16-18\%) [5603].
- Obtained by acylation of 2,6-di-tert-butylphenol with 2-(methylthio)acetic acid and the intermediate oxidized with m-CPBA [5604].
m.p. $143^{\circ} 6-144^{\circ} 9$ [5604], $61-62^{\circ}$ [5603].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5603], IR [5603].
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-(methylsulfonyl)ethanone
[191157-34-3]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 326.46
Synthesis

- Refer to: [5604].

1-[2-Hydroxy-4,6-dimethoxy-3-(2-propenyl)phenyl]-2-[(S)-(4-methylphenyl) sulfinyl]ethanone

[371258-84-3]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}$ mol.wt. 374.46 Synthesis

- Obtained at -78° in THF using lithium diisopropylamide (LDA), either by reaction between methyl 2-hydroxy-4,6-dimethoxy-3-(2-propenyl)-benzoate and (R)-(+)-methyl p-tolyl sulfoxide in the presence of 1,3-dimethyl-3,4,5,6-tetrahydro-2[1H]-pyrimidinone (DMPU) (this method yields only a trace of the desired compound), or by reaction between 2-hydroxy-4,6-dimethoxy-3-(2propenyl)benzaldehyde and (R)-(+)-methyl p-tolyl sulfoxide via the subsequent oxidation ${ }^{\mathrm{t}}$ r.t. by MnO_{2} of the intermediate 1-[2-hydroxy-4,6-dimethoxy-3-(2-propenyl)phenyl]-2-(4-methylsulfinyl)ethanol (57\%) [5602].
m.p. $150-151^{\circ}[5602] ;(\alpha)_{\mathrm{D}}^{30}=+52^{\circ}$ to $+56^{\circ}(\mathrm{c}=1.5$ in chloroform) [5602];
${ }^{1} \mathrm{H}$ NMR [5602], ${ }^{13} \mathrm{C}$ NMR [5602], IR [5602], MS [5602];
TLC [5602].

Part VIII

Di- and Polyketones

Chapter 20
 Aromatic Ketones Containing Only Acetyl Groups

20.1 Acetyl Groups Located on One Ring

20.1.1 Unsubstituted Acetyl Groups and Homologues

1,1'-(5-Bromo-4,6-dihydroxy-1,3-phenylene)bis-ethanone

[117156-78-2] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{4} \quad$ mol.wt. 273.08

Syntheses

- Preparation by bromination of resodiacetophenone,
- with NBS in refluxing dioxane for 10 h (97\%) [5605];
- with bromine, for 6 h at r.t. [5606], in cooled acetic acid [4538].
- Also refer to: [5607].
m.p. 205° [4538], 202-203 ${ }^{\circ}$ [5606]; ${ }^{1} \mathrm{H}$ NMR [5605], IR [5605], UV [5605].

1,1'-(5-Bromo-2,4,6-trihydroxy-1,3-phenylene)bis-ethanone

[98149-38-3] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{5} \quad$ mol.wt. 289.08

Synthesis

- Preparation by Friedel-Crafts acylation of 2-bromophloroglucinol with acetyl chloride or acetic anhydride in the presence of boron trifluoride (72-78\%) [5608].
m.p. $150-152^{\circ}$ [5608].

1,1'-(4-Chloro-6-hydroxy-1,3-phenylene)bis-ethanone

[30335-99-0]
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{3}$
mol.wt. 212.63

Syntheses

- Obtained by Fries rearrangement,
- of 4-acetyl-3-chlorophenyl acetate with aluminium chloride at 120° for $20 \min (35 \%)$ [5609];
- of 3-chlorophenyl acetate with aluminium chloride at $175-180^{\circ}$ for 3 h (by-product) [5610].
- Also obtained from 5-acetyl-6-chloro-2,3-dimethyl-benzofuran by oxidation with chromium trioxide in dilute acetic acid at 50° for 30 min , followed by hydrolysis of the resulting keto ester (18\%) [5609].

```
m.p. 84*} [5610], 75 [5609]
b.p., 1670 [5609]; 1'H NMR [5610], MS [5610].
```


1,1'-(5-Chloro-2-hydroxy-1,3-phenylene)bis-ethanone

[71643-62-4]
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 212.63
Syntheses

- Preparation by Fries rearrangement of 2-(acetyloxy)-5-chloroacetophenone with aluminium chloride for 1 h at 130°, then 1 h at $140^{\circ}(80 \%)$ [5611].
- Also refer to: [5612, 5613].
b.p. ${ }_{6} 120^{\circ}$ [5611].

1,1'-(5-Fluoro-2-hydroxy-1,3-phenylene)bis-ethanone
[106823-62-5]

b.p. 130-135 ${ }^{\circ}$ [5614]; IR [5614].

1,1'-(4-Hydroxy-5-nitro-1,3-phenylene)bis-ethanone

m.p. $104-105^{\circ}$ [4699].
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 223.19 Synthesis [4699].
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 196.18
Synthesis

- Preparation by Fries rearrangement of 2-acetyl-4-fluoro-phenyl acetate (b.p. 124-126 ${ }^{\circ}$) with aluminium chloride at $130-140^{\circ}$ for $3 \mathrm{~h}(71 \%)$ [5614].
- Preparation by nitration of 5-acetyl-2-hydroxyacetophenone at -20° using standard reagents (51\%)

1,1'-(2,4-Dihydroxy-5-nitro-1,3-phenylene)bis-ethanone

[103264-32-0]

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{6} \quad$ mol.wt. 239.18
Syntheses

- Preparation by reaction of 1,3-dinitroquinolizin-4-one with sodio-2,4,6-heptanetrione in DMF for 1.5 h between -15° and -10° (57\%) [5615].
- Also obtained by nitration of 2,4-diacetylresorcinol with a nitric acid $(\mathrm{d}=1.42) /$ sulfuric acid $(\mathrm{d}=1.84)$ mixture in acetic acid at 0° for $1 \mathrm{~h}(41 \%)$ [5616].
- Also obtained by Fries rearrangement of 4-nitroresorcinol diacetate in nitrobenzene with aluminium chloride at $95-100^{\circ}$ for 2 h or at r.t. for 72 h (38\%) [5616].
m.p. 142-143 ${ }^{\circ}$ [5615], 139- 140° [5616]; ${ }^{1} \mathrm{H}$ NMR [5615], IR [5615].

1,1'-(4,6-Dihydroxy-5-nitro-1,3-phenylene)bis-ethanone
[103262-48-2]

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{6} \quad$ mol.wt. 239.18
Syntheses

- Preparation by Fries rearrangement of 2-nitroresorcinol diacetate with aluminium chloride,
- without solvent, at 140° [5617], at $100-110^{\circ}(30 \%)$ [5618];
- in nitrobenzene, at 140° [5617], at $100-110^{\circ}$ for 3 h (60\%) [5618] and at $25-28^{\circ}$ for 70 h (73\%) [5618].
- Preparation by Friedel-Crafts acetylation of 2-nitroresorcinol with acetic anhydride in the presence of aluminium chloride in nitrobenzene at $120-130^{\circ}$ for $3 \mathrm{~h}(76 \%)$ [5618].
- Preparation by nitration of 4,6-diacetylresorcinol,
- with nitric acid $(\mathrm{d}=1.42)$ at $80^{\circ}(84 \%)$ [5605], or first at 80°, then at r.t. for 2 h [5619];
- with nitric acid in sulfuric acid at 0° [5617];
- with concentrated nitric acid in a concentrated sulfuric acid/acetic acid mixture at 0° for 1 h [5618];
- with cooled fuming nitric acid, then at r.t. for 30 min [4538];
- with fuming nitric acid in acetic acid, first at 0°, then at r.t. for a few minutes [4538].
m.p. 235° [5605], 235° (d) [5619], 234° [5617,5618], 231° [4538];
${ }^{1} \mathrm{H}$ NMR [5605], IR [5605], UV [5605].

1,1'-(2-Hydroxy-1,3-phenylene)bis-ethanone

[103867-89-6]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 178.19
Syntheses

- Obtained by hydrolysis of 2-(3-acetyl-2-hydroxyphenyl)-2-methyl-1,3-dioxolane with a 5% aqueous hydrochloric acid/ethanol mixture at r.t. for 5 min (almost quantitative yield) [5620].
- Also obtained by UV light irradiation of 2-(2-acetoxy-phenyl)-2-methyl-1,3dioxolane in hexane (7\%) [5621] or in hexane in the presence of potassium carbonate for 6 h (7\%) [5620].
m.p. $\quad 71-73^{\circ}$ [5621]; ${ }^{1} \mathrm{H}$ NMR [5621], IR [5621], UV [5621].

1,1'-(4-Hydroxy-1,2-phenylene)bis-ethanone

1,1'-(4-Hydroxy-1,3-phenylene)bis-ethanone

[30186-16-4] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \quad m o l . w t .178 .19$

Syntheses

- Preparation by reaction of acetyl chloride (2 mol) with o-methoxyacetophenone (1 mol) in the presence of aluminium chloride (2 mol) in boiling carbon disulfide for $12 \mathrm{~h}(87 \%)$ [5623].
- Preparation by Fries rearrangement of various substituted phenyl esters (1 mol) in the presence of aluminium chloride,
- of p-acetylphenyl acetate,
- at 150° for $3 \mathrm{~h}:\left(\mathrm{AlCl}_{3} 3.5 \mathrm{~mol}\right)(80 \%)[5624,5625]$ or $\left(\mathrm{AlCl}_{3} 4 \mathrm{~mol}\right)(60 \%)$ [5626];
- at $140-150^{\circ}$ for $2 \mathrm{~h}\left(\mathrm{AlCl}_{3} 3.4 \mathrm{~mol}\right)(78 \%)$ [5627] or for $1 \mathrm{~h}\left(\mathrm{AlCl}_{3}\right.$ 3.3 mol) (40\%) [5628];
- first at $130-140^{\circ}$, then at 160° for $10 \mathrm{~min}\left(\mathrm{AlCl}_{3} 2.7 \mathrm{~mol}\right)$ (poor yields) [5623,5629];
- of o-acetylphenyl acetate,
- first at 50°, then at 80° for $15 \mathrm{~min}(\mathrm{AlCl} 32.7 \mathrm{~mol})(46 \%)$ [5623,5629];
- in nitrobenzene at r.t. overnight (AlCl 33.3 mol) (43\%) [5628];
- of o-bromophenyl acetate at 180° for $5 \mathrm{~h}\left(\mathrm{AlCl}_{3} 3.2 \mathrm{~mol}\right)$ (by-product) (18%) [5630].
- Also obtained by photo-Fries rearrangement of two different esters in hexane for 6 h ,
- of 2-(4-acetoxyphenyl)-2-methyl-1,3-dioxolane (12\%) [5620,5621];
- of 2-(2-acetoxyphenyl)-2-methyl-1,3-dioxolane (4\%) [5620,5621].
- Also obtained by Friedel-Crafts acylation of p-hydroxyacetophenone with acetyl chloride in tetrachloroethane in the presence of aluminium chloride (4 mol) at 130° for 4 h (49\%) [5626].
- Also obtained by treatment of two different substituted acetophenones with 5\% aqueous hydrochloric acid/ethanol $(30 \mathrm{v} / 1 \mathrm{v})$ at r.t. for 5 min ,
- of 2-(5-acetyl-2-hydroxyphenyl)-2-methyl-1,3-dioxolane (almost quantitative yield) [5620];
- of 2-(3-acetyl-4-hydroxyphenyl)-2-methyl-1,3-dioxolane (almost quantitative yield) [5620].
- Also obtained by decarboxylation of 3,5,3', 3^{\prime}-tetraacetylxanthyrone in boiling water for 4 h (18\%) [5631].
- Also refer to: [5632,5633,5634] and also [5635] (Fries rearrangement).

Isolation from natural sources

- From the aerial parts of Ophryosporusfloribundus (Compositae, tribe Eupatorieae) [5636].
- From the Artemisia campestris L. subsp. glutinosa (Gay ex Besser) (Compositae) [5637].
m.p. 95° [5623], 93° [5630], $92-93^{\circ}$ [5628], 92 [5624], $91-92^{\circ}$ [5626], $90-92^{\circ}$ [5621], $90-91^{\circ}$ [5629], 72° [5631], 64-65 ${ }^{\circ}$ [5637].
One of the reported melting points is obviously wrong.
${ }^{1}$ H NMR [5621,5626,5627,5630,5631,5637],
IR [5036,5626,5627,5631,5637,5638], UV [5631,5637], MS [5631,5637].

1,1'-(2,3-Dihydroxy-1,4-phenylene)bis-ethanone

[39126-03-9] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Hueckel MO calculations (compound XI) [5640];
${ }^{1} \mathrm{H}$ NMR [5639], ${ }^{13} \mathrm{C}$ NMR [5639].

1,1'-(2,4-Dihydroxy-1,3-phenylene)bis-ethanone

[2163-12-4]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
mol.wt. 194.19
Syntheses

- Obtained from resorcinol by a typical FriedelCrafts reaction (40\%) [5641],
- with acetic acid in the presence of boron trifluoride,
- at 140° for 3 h in a sealed tube (30\%) [5257];
- at 125° for $6 \mathrm{~h}(20 \%)$ [5642];
- with acetic anhydride,
- in the presence of concentrated sulfuric acid at 130° for $15 \mathrm{~min}(15 \%)$ [5643];
- in the presence of zinc chloride at $145-150^{\circ}(7 \%)$ [5644] or at $150-160^{\circ}$ for $20 \mathrm{~min}(6 \%)$ [5645];
- with acetyl chloride,
- by heating in the presence of concentrated sulfuric acid (10\%) [5643];
- in ethyl ether in the presence of aluminium chloride at r.t. for 3 days (7\%) [5251].
- Also obtained by acetylation of resacetophenone with acetic anhydride,
- in the presence of boron trifluoride in acetic acid at 80° for $1.5 \mathrm{~h}(31 \%)$ [5646];
- in the presence of boron trifluoride at 70° for 2 h in a sealed tube (30\%) [5257];
- in the presence of aluminium chloride in nitrobenzene at $105-110^{\circ}$ for 2 h (15\%) [5647].
- Also obtained by acetylation of 2-acetylresorcinol with acetic acid in the presence of zinc chloride at reflux for 5 min [5648].
- Also obtained by Fries rearrangement of resorcinol diacetate,
- on heating with concentrated sulfuric acid (45\%) [5643];
- with aluminium chloride,
- at $180-185^{\circ}$ for $1.5 \mathrm{~h}\left(\mathrm{AlCl}_{3} 3 \mathrm{~mol}\right)(60 \%)$ [5649];
- at $160-170^{\circ}$ for $2 \mathrm{~h}\left(\mathrm{AlCl}_{3} 3 \mathrm{~mol}\right)$ [5650];
- at $130-135^{\circ}$ for $4.5 \mathrm{~h}\left(\mathrm{AlCl}_{3}>2 \mathrm{~mol}\right)($ crude, $90 \%)$ [5651];
- in nitrobenzene at 100° for $3 \mathrm{~h}\left(\mathrm{AlCl}_{3} 3.3 \mathrm{~mol}\right)$ [5616].
- Also obtained by treatment of 4-acetoxy-2-hydroxyacetophenone with aluminium chloride in nitrobenzene at 115° [5652,5653], (26\%) [5619] (Fries rearrangement).
- Also obtained by heating 2,4-diacetoxyacetophenone with aluminium chloride for $3 \mathrm{~h}(26 \%)$ [5654] (Fries rearrangement).
- Also obtained by decarboxylation of 3,5-diacetyl-2,4-dihydroxybenzoic acid,
- with refluxing very dilute hydrochloric acid in water for 12-18 h [5655];
- with very dilute hydrochloric acid in acetic acid at $160-170^{\circ}$ in a sealed tube for 7-8 h [5656].
- Also obtained by degradation of 7,7'-diacetoxy-4,4'-dimethyl-3,4-dihydro-4,6'bicoumarin with aluminium chloride between 135° and 170° for 2 h (19\%) [5654].
- Also obtained by Claisen rearrangement of 3-acetyl-2,4-bis(3-methyl-2butenyloxy)acetophenone, resulting from deprenylation,
- in trifluoroacetic acid at 0° for $3 \mathrm{~h}(95 \%)$ [5657];
- in the presence of palladium chloride-bis(acetonitrile) in refluxing dioxane for $45 \mathrm{~min}(31 \%)$ [5657];
- by heating neat at 185° for $2 \mathrm{~h}(22 \%)$ [5657].
- Also refer to: [5658,5659,5660,5661,5662,5663,5664].
N.B.: Mono Na salt [5665]; di Na salt [5660].
m.p. $96-97^{\circ}$ [5641], $95-96^{\circ}$ [5656], 92° [5643,5652], $91-92^{\circ}$ [5654], 90° [5644,5645], 89° [5648], $88-89^{\circ}$ [5651], 88° [5257], $86-87^{\circ}$ [5655], 86° [5251], 85-87ํ [5619], 85-86$~[5647], ~ 85^{\circ} ~[5642,5646] . ~$
b.p. ${ }_{26} 170-172^{\circ}$ [5651];
${ }^{1} \mathrm{H}$ NMR [5639,5641,5645], ${ }^{13} \mathrm{C}$ NMR [5639,5641], IR [5645], UV [5320].

1,1'-(2,5-Dihydroxy-1,4-phenylene)bis-ethanone

[20129-52-6]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19
Syntheses

- Obtained by reaction of acetyl chloride (7.6 mol) with hydroquinone dimethyl ether (1.8 mol) in nitrobenzene in the presence of aluminium chloride (5 mol), first at r.t. for 67 h , then at 95° for $40 \mathrm{~h}(10 \%)$ [5666].
- Also obtained by photo-Fries rearrangement of hydroquinone diacetate in methanol under nitrogen for 12 h (10\%) [5667].
- Also refer to: [5668].
m.p. 192° [5666], 155° [5667]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5639,5667], ${ }^{13} \mathrm{C}$ NMR [5639], IR [5667], MS [5668];
Crystals data [5669,5670,5671]; Hueckel MO calculations (compound VIII) [5640].

1,1'-(3,6-Dihydroxy-1,2-phenylene)bis-ethanone
[39125-99-0] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Synthesis

- Preparation by oxidative cyclization of 1,3-bis(trimethyl-silyloxy)-1-methyl-1,3-butadiene: to a acetonitrile solution of sodium bicarbonate (12 equiv.) and CAN (6 equiv.) was slowly added an acetonitrile solution of 1,3-bis(trimethyl-silyloxy)-1-methyl-1,3-butadiene (2 equiv.) at -45°.

The temperature of the reaction mixture was allowed to rise to 20° during 2 h .
After stirring for 1 h at 20°, a saturated aqueous solution of brine was added, the organic layer was separated and the aqueous layer was extracted with ethyl ether.

The combined organic extracts were dried, filtered and the solvent was removed in vacuo. The residue was purified by column chromatography (compound 4 h) (28%) [5672].

Hueckel MO calculations (compound VII) [5640].

1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-ethanone

[2161-85-5] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Syntheses

- Preparation by Friedel-Crafts acylation of resorcinol,
- with acetic anhydride,
- in the presence of zinc chloride [5673,5674,5675], (80\%) [5676], at $142-150^{\circ}$ for $15 \mathrm{~min}(96 \%)$ [5677], (90%) [5644] or at $150-160^{\circ}$ for 20 min (68\%) [5645];
- in the presence of ferric chloride [5678].
- in the presence of concentrated sulfuric acid at 130° for $15 \min (15 \%)$ [5643];
- in the presence of 70% perchloric acid at $125-135^{\circ}$ for $15-20 \min (42 \%)$ [5679].
- with acetyl chloride,
- in the presence of zinc chloride [5680,5681], at 120° [5682];
- in the presence of ferric chloride [4598,5678], at 150° for $15 \mathrm{~min}(60 \%)$ [5683] or at reflux for 30 min [5673];
- in the presence of concentrated sulfuric acid (18\%) [5643].
- by a typical Friedel-Crafts reaction (24\%) [5641].
- Also obtained by acylation of resorcinol with acetic acid,
- in the presence of polyphosphoric acid for 15 min in a boiling water bath (9\%) [5684];
- in the presence of boron trifluoride at 125° for $6 \mathrm{~h}(20 \%)$ [5642].
- Also obtained by Friedel-Crafts acylation of paeonol with acetic anhydride in nitrobenzene in the presence of aluminium chloride [5685].
- Also obtained by Fries rearrangement of resorcinol diacetate,
- with hot concentrated sulfuric acid (31\%) [5643];
- with polyphosphoric acid at 70° for $2 \mathrm{~h}(19 \%)$ [5686];
- with aluminium chloride,
- in nitrobenzene in a boiling water bath (70\%) [4471];
- without solvent (15\%) [5687], at 205-210 ${ }^{\circ}$ for 1.5 h (14\%) [5649].
- with fused zinc chloride [5606,5673,5680,5688,5689], at 120° [5682] or at 130° (40-50\%) [5690];
- with ferric chloride at 180° for 3 h [5691], (32\%) [5692], under nitrogen (16%) [5693,5694] or under carbon dioxide [5673], (15\%) [5695].
- Also obtained by photo-Fries rearrangement of resorcinol diacetate in methanol at 25° under nitrogen [5696].
- Also obtained by acylation of resacetophenone,
- with acetic acid,
- in the presence of zinc chloride (Nencki reaction) [5618];
- in the presence of zinc chloride and phosphorous oxychloride at $140-150^{\circ}$ for 30 min [5606,5673,5697].
- in the presence of polyphosphoric acid (14\%) [5698], in a boiling water bath for $10 \min (21 \%)$ [5684].
- with acetic anhydride,
- in the presence of boron trifluoride in acetic acid at 80° for $1.5 \mathrm{~h}(35 \%)$ [5646].
- in the presence of aluminium chloride in nitrobenzene at $105-110^{\circ}$ for 2 h (15\%) [5647].
- Also obtained by Friedel-Crafts acylation of resorcinol dimethyl ether with acetyl chloride in carbon disulfide at 10° for $1 \mathrm{~h}(9 \%)$ [5646].
- Also obtained by Fries rearrangement of 2-acetoxy-4-hydroxyacetophenone with ferric chloride at 180° for $3 \mathrm{~h}(12 \%)$ [5695].
- Also obtained by Fries rearrangement of 2,4-diacetoxyacetophenone with aluminium chloride (9\%) [4660].
- Also obtained (poor yield) by treatment of 7,7'-diacetoxy-4,4'-dimethyl-3,4-dihydro-4, 6^{\prime}-bi-coumarin with aluminium chloride between 135° and 170° for $2 \mathrm{~h}(<3 \%)$ [4660].
- Also obtained by total dealkylation,
- of resodiacetophenone diallyl ether with trifluoroacetic acid at 60° for 1 h (85\%) [5605];
- of resodiacetophenone dimethyl ether with 48% aqueous hydrobromic acid in refluxing acetic acid for $2 \mathrm{~h}(34 \%)$ [5699,5700].
- of resodiacetophenone diprenyl ether,
- with trifluoroacetic acid at 0° for $24 \mathrm{~h}(95 \%)$ [5657];
- with boron trifluoride etherate in refluxing carbon tetrachloride (98\%) [5657].
- Also refer to: [5607,5619,5651,5653,5658,5661,5701,5702,5703,5704,5705, 5706,5707,5708,5709].
N.B.: Mono Na salt [52597-47-4] [4857], di Na salt [52814-43-4] [4836].
m.p. 185° [5647,5685], 183° [5682], 182-184ㅇ [5699], 182-183 ${ }^{\circ}$ [5618], 182° [5619,5642,5643,5646,5679,5684,5690,5692,5695], 181-184 ${ }^{\circ}$ [5700], 181$182^{\circ}$ [5686], $180-180^{\circ} 5$ [4660], 180° [5697,5698], $179^{\circ} 5$ [5689], 179- 181° [5694], 178-180 [5677], 178-179º [5644,5645,5683], 178° [5710], 177$178^{\circ}$ [4471], 176-177 [5641];
${ }^{1} \mathrm{H}$ NMR [5639, 5641,5645,5693, 5694], ${ }^{13} \mathrm{C}$ NMR [5639,5641],
IR [5645,5683], UV [5653,5711], MS [5693,5694];
Crystal data [5674]; Conductimetry [5711]; Polarography [5711].

1,1'-(2,4,5-Trihydroxy-1,3-phenylene)bis-ethanone

[2999-24-8]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 210.19
Syntheses

- Preparation by Fries rearrangement of 1,2,4-triacetoxy-benzene with aluminium chloride,
- at 140° for 35 min [5712], 64% [5713], 30% [5714];
- at $160-170^{\circ}$ for $2 \mathrm{~h}(60 \%)$ [5650].
- Also obtained by oxidation of 2,4-diacetylresorcinol with potassium persulfate (Elbs reaction) [5712].
m.p. $186-187^{\circ}$ [5712], 186° [5714], 185° [5650], 183° [5713].

1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-ethanone

[2161-86-6]
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$
mol.wt. 210.19

Syntheses

- Preparation by Friedel-Crafts acylation of phloroglucinol,
- with acetic acid,
- by using boron trifluoride-acetic acid complex at $28-30^{\circ}$ for 18 h (85\%) [5642];
- without cooling (71\%) [5715];
- or by heating on a steam bath for $2 \mathrm{~h}(60 \%)$ [5716];
- with acetic anhydride,
- in the presence of boron trifluoride-ethyl ether complex at 20° for 1 h (80\%) [5646];
- in the presence of zinc chloride at $145-150^{\circ}$ for $15 \mathrm{~min}(25 \%)$ [5644];
- in the presence of concentrated sulfuric acid (24\%) [5643];
- with acetyl chloride,
- (4 equiv.) in the presence of ferric chloride [5673,5717], (3\%) [5678];
- in ethyl ether in the presence of aluminium chloride at r.t. for 5 days (8\%) [5251].
- Also obtained by Fries rearrangement of phloroglucinol triacetate with aluminium chloride at $160-170^{\circ}$ for $2 \mathrm{~h}(10 \%)$ [5650].
- Also obtained by monodecarbonylation of 2,4,6-triacetylphloroglucinol in 73\% sulfuric acid at r.t. for 72 h [5650].
- Also obtained by hydrolysis of 5-acetoxy-2,4-diacetyl-1,3-dihydroxybenzene [5667], in the presence of 70% sulfuric acid [5678].
- Also refer to: [5718,5719,5720].

Isolation from natural sources

- This compound is one of the antifungal metabolites produced by Pseudomonas fluorescens [5721,5722,5723,5724,5725,5726,5727,5728,5729,5730,5731,5732, 5733,5734,5735,5736,5737,5738,5739].
- Production in the rhizosphere by strains of fluorescent Pseudomonas spp. [5740].
- Also produced by a bacterial symbiot of the white-backed planthopper (insect), Sogatella furcifera [5741,5742].
- Also produced by a fungal ectosymbiot of an ambrosia beetle (insect), Scolytoplatypus mikado [5742].
N.B.: An hemihydrate was obtained by crystallisation of ketone in aqueous ethanol [5725] and a monohydrate in 20\% aqueous acetic acid [5717]. The melting points are determined after solvents elimination.
m.p. 173° [5644], $172-173^{\circ}$ [5667], 171° [5251], 170° [5717], $168-170^{\circ}$ [5716,5725], 168° [5642,5646,5650,5715,5743], 153° [5643].
One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5716], IR [5716,5725], UV [5715,5725]; TLC [5725].
1,1'-(4-Amino-6-hydroxy-1,3-phenylene)bis-ethanone
[79324-45-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 193.20

Syntheses

- Preparation by hydrolysis of 3-acetamido-4,6-diacetyl-phenol (m.p. 201-202 ${ }^{\circ}$) with concentrated hydrochloric acid in refluxing ethanol for $5 \mathrm{~h}(91 \%)$ [5744] or for $3.5 \mathrm{~h}(60 \%)$ [5745].
- Preparation by hydrolysis of 2-amino-5-(1-iminoethyl)-4-hydroxyacetophenone (SM) on heating with aqueous hydrochloric acid. SM was obtained by heating a mixture of resodiacetophenone, aqueous ammonia and concentrated hydrochloric acid as a catalyst in an autoclave during 8-72 h [5746].
m.p. $227-230^{\circ}$ [5744].

1,1'-(5-Amino-4-hydroxy-1,3-phenylene)bis-ethanone

[100245-11-2]	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 193.20
OH	Synthesis
	- Preparation by hydrogenation of 5-acetyl-2-hydroxy-3-nitroacetophenone using $5 \% \mathrm{Pd} / \mathrm{C}$ as a catalyst in ethanol (49\%) [4699].
m.p. $156-160^{\circ}$ (d) [99].

1,1'-(5-Bromo-2,4-dihydroxy-6-methyl-1,3-phenylene)bis-ethanone

 $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 287.11

Synthesis

- Obtained by reaction of bromine with 2,4-diacetyl-3,5-di-hydroxytoluene (diacetylorcinol) in acetic acid [5747].
m.p. 79° [5747].

1,1'-(2-Hydroxy-4-methyl-1,3-phenylene)bis-ethanone
[131941-97-4]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 192.21

Synthesis

- Obtained by Fries rearrangement of m-cresyl acetate with aluminium chloride [5748,5749].
${ }^{13} \mathrm{C}$ NMR [5748].

1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)bis-ethanone
[55108-28-6]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21 Syntheses

- Preparation by Friedel-Crafts acylation of p-cresol with excess acetyl chloride in nitrobenzene in the presence of aluminium chloride [5750,5751], at 60° for $6 \mathrm{~h}(42 \%)$ [5752], (20\%) [5753].
- Also obtained by Friedel-Crafts acylation of p-cresol methyl ether with excess acetyl chloride in the presence of aluminium chloride [4625].

Also obtained by Fries rearrangement of p-cresyl acetate with aluminium chloride [5748,5754].

- Preparation by Fries rearrangement of 2-(acetyloxy)-5-methylacetophenone with aluminium chloride,
- at $100-120^{\circ}$ for $10 \mathrm{~min}(76 \%)$ [5755];
- at 130° for 1 h , then at 140° for $1 \mathrm{~h}(70 \%)$ [5611].
- Also refer to: [5756,5757,5758,5759,5760,5761,5762,5763,5764,5765,5766].
N.B.: Metal complexes of binucleating ligands: Cu (II) [5750,5759,5760,5764], Ni (II) [5759] and UO_{2} (VI) [5759]; Li salt (compound 2) [5767].
Dioxime [5768].
m.p. 83° [5755], $82-83^{\circ}$ [4625], 82° [5752,5753];
b.p. $85-87^{\circ}$ [5611], b.p. ${ }_{18} 194^{\circ}$ [5755];
${ }^{1} \mathrm{H}$ NMR [5748,5752,5769], ${ }^{13} \mathrm{C}$ NMR [5748], IR [5752],
UV [4856,5752,5762]; emission spectra [5765].

1,1'-(4-Hydroxy-2-methyl-1,3-phenylene)bis-ethanone

[170802-46-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad m o l . w t .192 .21$

Synthesis

- Obtained by Fries rearrangement of m-cresyl acetate with aluminium chloride [5748].
${ }^{1} \mathrm{H}$ NMR [5748], ${ }^{13} \mathrm{C}$ NMR [5748].

1,1'-(4-Hydroxy-5-methyl-1,3-phenylene)bis-ethanone

[23133-81-5]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21
Syntheses

- Obtained by Fries rearrangement of o-cresyl acetate with aluminium chloride [5748].
- Also refer to: [5770].
${ }^{13} \mathrm{C}$ NMR [5748].
1,1'-(4-Hydroxy-6-methyl-1,3-phenylene)bis-ethanone
[16475-85-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21

Syntheses

- Preparation by cyclization of 1,1,3,3-tetraacetylpropene (formerly so called methenylbisacetylacetone) (SM) (m.p. 117-118) [5771],
- by adding a solution of $\mathrm{SM}(1 \mathrm{~mol})$ in benzene to a sodium methoxide (4 mol) or magnesium methoxide (4 mol) solution in methanol and set aside for 24 h (quantitative yields) [5772];
- on heating of its potassium salt in alcoholic solution for 6-8 h at reflux. SM was prepared by treatment of ethoxymethyleneacetylacetone (m.p. 140-142 ${ }^{\circ}$) with the potassium salt of acetylacetone in ethanol [5771].
- Also obtained directly by heating together sodioacetylacetone and ethoxymethyleneacetylacetone at 100° for 30 min [5773].
- Also obtained by Fries rearrangement of m-cresyl acetate with aluminium chloride [5635,5748,5749].
- Also obtained by heating a mixture of 3,5-diacetyl-2,4-heptanedione (m.p. 33-35*) and triethyl-ammonium formate (TEAF) at $145-150^{\circ}$ for 5 h with stirring in a constant stream of air (28\%) [5774].
- Also obtained by heating a mixture of 4,6-diacetyl-3-methyl-2-cyclohexen-1-one and TEAF at $145-150^{\circ}$ for 4 h with stirring in a stream of oxygen (33\%) [5774].
- Also obtained from 1,1,3,3-tetraacetylpropane (formerly so called methylenebisacetylacetone) (SM1) (m.p. 87-88 ${ }^{\circ}$,
- by reaction with concentrated sulfuric acid under oxygen of the air during short-lived-via the formation of 4,6-diacetyl-3-methyl-2-cyclohexen-1-one-(m.p. 75°) [5775];
- in chloroformic solution with hydrogen chloride under oxygen of the air [5775];
- SM1 (1 vol) in solution of 20\% hydrochloric acid (3-4 vol) during 5-8 days at r.t. (44\%).

SM1 was obtained by condensation of formaldehyde with acetylacetone [5775].

- Also refer to: [5755,5776,5777,5778].
N.B.: $\mathrm{Ba}[5771]$ and K salts [5771,5775].
m.p. 112° [5771], 108° [5772], 106° [5775], 105° [5773], 104- 105° [5774];
b.p. 310° (without decomposition) [5771]; TLC [5772];
${ }^{1} \mathrm{H}$ NMR [5748,5772,5773,5774], ${ }^{13} \mathrm{C}$ NMR [5748],
IR [5772,5773,5774], UV [5772,5773], MS [5772].

1,1'-(2,4-Dihydroxy-5-methyl-1,3-phenylene)bis-ethanone

 $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Synthesis

- Obtained by Fries rearrangement of 4,6-dimethylresorcinol diacetate (m.p. 44°) with aluminium chloride by heating, first at 120° and then raising the temperature to 180° over a period of an hour (19\%) [5779]. N.B.: One of the methyl groups was displaced during the reaction.

$$
\text { m.p. } \quad 83-84^{\circ}[5779] .
$$

1,1'-(2,4-Dihydroxy-6-methyl-1,3-phenylene)bis-ethanone

[13444-19-4]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21 Syntheses

- Preparation by Fries rearrangement of orcinol diacetate (m.p. 25 ${ }^{\circ}$) [5780] with aluminium chloride, at $140-150^{\circ}$ for $1.5 \mathrm{~h}(80 \%)$ [5649], at 150° for $2 \mathrm{~h}(42 \%)$ [5781].
- Also obtained by acylation of γ-orcacetophenone or β-orcacetophenone with acetic anhydride in nitrobenzene in the presence of aluminium chloride in a water bath for 6 h (15-20\%) [5782].
- Also obtained by reaction of acetyl chloride with an anhydrous disodium salt (SM) in chloroform (major product). SM was prepared by action of sodium ethoxide with diacetylacetone or dimethylpyrone in ethanol [5747].
- Also obtained (small amount) during an attempt to acylate 2-acetylfuran with a three-fold excess acetyl chloride in the presence of aluminium chloride,
first between 20° and 45°, then at 115° for 3 h . This diketone was formed by self-condensation of acetyl chloride in these conditions [5783].
- Also obtained by decarboxylation of 3,5-diacetyl-o-orsellinic acid [5781].
- Also obtained in two steps: first, reaction of acetyl chloride with diacetyl acetone disodium salt in chloroform at 20° for 1 h , then, after elimination of solvent, treatment of the residue in refluxing 3 N sodium hydroxide for 30 min [5783].
- Also obtained by reaction of acetic anhydride with orcinol in concentrated sulfuric acid at 130° for 15 min [5783], according to the method [5643].
m.p. $96^{\circ}[5781], 95^{\circ}$ [5747,5782,5784], 94-95 ${ }^{\circ}$ [5783];
${ }^{1} \mathrm{H}$ NMR [5783,5784], IR [5784], MS [5783,5784].

1,1'-(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis-ethanone

[22304-66-1]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 208.21

> Syntheses

- Preparation by Fries rearrangement of 2,6-diacetoxytoluene with aluminium chloride in nitrobenzene,
- at 75° for 3 h , under nitrogen (63%) [5693,5694];
- at 67° for $4 \mathrm{~h}(58 \%)$ [5687].
- Preparation by reaction of acetic anhydride with 2-methyl-resorcinol,
- in the presence of sodium acetate at reflux for $8 \mathrm{~h}(83 \%)$ [5687];
- in the presence of zinc chloride at 142° for $15 \mathrm{~min}(60 \%)$ [5785].
m.p. $146-147^{\circ}$ [5785], $139-142^{\circ}$ [5687], 137-139${ }^{\circ}$ [5693,5694];
${ }^{1} \mathrm{H}$ NMR [5693,5694,5785], IR [5785], MS [5693,5694].

1,1'-(2-Hydroxy-4-methoxy-1,3-phenylene)bis-ethanone

[64857-81-4] \quad\begin{tabular}{l}
Syntheses

- Preparation by Friedel-Crafts acylation of paeonol

with acetic anhydride,
\end{tabular}
- in acetic acid in the presence of boron trifluoride at 50° for 1 h [5646];
- in nitrobenzene in the presence of aluminium chloride at r.t. for 72 h [5685].
- Preparation by methylation of 2,4-diacetylresorcinol [5682], with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for $2 \mathrm{~h}(51 \%)$ [5646] or for 8 h (50\%) [5652].
- Also obtained by hydrolysis of 2-(3-acetyl-2-hydroxy-4-methoxyphenyl)-2-methyl-1,3-dioxolane with a mixture of 5% aqueous hydrochloric acid and ethanol at r.t. for 5 min (almost quantitative yield) [5652].

```
m.p. 104 [5646,5652], 102 [5685,5786], 101-102 [5720]; IR [5720].
```


1,1'-(2-Hydroxy-5-methoxy-1,3-phenylene)bis-ethanone

[103867-90-9] \quad| S-methoxyphenyl)-2-methyl-1,3-dioxolane with a |
| :--- |
| mixture of 5% aqueous hydrochloric acid and |
| ethanol at r.t. for 5 min (almost quantitative yield) |
| [5620]. |

m.p. $116-117^{\circ}$ [5620]; ${ }^{1} \mathrm{H}$ NMR [5620], IR [5620].

1,1'-(4-Hydroxy-5-methoxy-1,3-phenylene)bis-ethanone

1,1'-(4-Hydroxy-6-methoxy-1,3-phenylene)bis-ethanone
[99865-77-7]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
Syntheses

- Preparation by action of methyl iodide with the potassium salt of resodiacetophenone in ethanol [5606].
- Preparation by reaction of acetyl chloride (1 mol) with resorcinol dimethyl ether (0.15 mol) in the presence of aluminium chloride in carbon disulfide for 1 h (27\%) [5788].
- Preparation by reaction of acetic acid with resacetophenone monomethyl ether (m.p. 51°) in the presence of polyphosphoric acid for 10 min in a boiling water bath (36\%) [5698].
m.p. $121-122^{\circ}$ [5788], $121^{\circ} 5$ [5682], 121° [5698], 120° [5606];

UV [5711]; Conductimetry [5711]; Polarography [5711].

1,1'-[4,6-Dihydroxy-5-(hydroxymethyl)-1,3-phenylene]bis-ethanone

[58805-54-2]

m.p. $150-151^{\circ}$ [5789].
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
Synthesis

- Obtained by action of a 40% formaldehyde solution with resodiacetophenone in 1% aqueous sodium hydroxide at r.t. for $5 \mathrm{~min}(78 \%)$ [5789].

1,1'-(2,4-Dihydroxy-6-methoxy-1,3-phenylene)bis-ethanone

[3098-38-2]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
Syntheses

- Preparation by reaction of phloroglucinol monomethyl ether,
- with boron trifluoride-acetic acid complex at 100° for 4 h (80\%) [5642];
- with acetic anhydride and acetic acid in the presence of boron trifluoride at 20° for $1 \mathrm{~h}(81 \%)$ [5646].
- Preparation by Fries rearrangement of phloroglucinol monomethyl ether diacetate in acetic acid in the presence of boron trifluoride at 75° for 15 min (66\%) [5790].
- Also obtained by partial demethylation,
- of 2,4-diacetylphloroglucinol trimethyl ether with boron trichloride, first at -70°, then at r.t. for $20 \mathrm{~min}(72 \%)$ [5791];
- of 2,4-diacetyl-3,5-dimethoxyphenol with boron trifluoride in ethyl ether containing a small amount of acetic acid at r.t. for $24 \mathrm{~h}(10 \%)$ [5646].
- Also obtained by monomethylation of 2,4-diacetylphloroglucinol [5789,5792],
- with diazomethane in benzene [5646];
- with methyl iodide in the presence of potassium carbonate in boiling acetone for 3 h [5646].
- Also obtained by hydrogenolysis of 3-(benzyloxy)-2,6-diacetyl-5-methoxyphenol [5646].
- Also obtained by treatment of 2,6-dihydroxy-4-methoxy-3-trichloroacetylacetophenone with zinc dust in acetic acid on a steam bath for 3 min (quantitative yield) [4680].
- Also refer to: [5793].
m.p. 106° [5642,5646], $105-106^{\circ}$ [5790], 105° [4680];
${ }^{1} \mathrm{H}$ NMR [5794], ${ }^{2} \mathrm{H}$ NMR [5794], ${ }^{3} \mathrm{H}$ NMR [5794].

1,1'-(4,6-Dihydroxy-5-methoxy-1,3-phenylene)bis-ethanone

1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-ethanone
[2999-42-0]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
Syntheses

- Preparation by Friedel-Crafts acylation of 2-methylphloroglucinol with acetic anhydride/acetic acid in the presence of excess boron trifluoride,
- at r.t. for 20 h (56\%) [5646];
- first at r.t., then heating on a steam bath for 2 h [5796], (21\%) [5716].
- Also obtained by UV irradiation of a d-usnic acid solution in THF for 12 h at -20° under oxygen (13\%) [5797].
- Also obtained by UV irradiation of a decarbousnic acid solution in THF for 8 h at -20° under oxygen (6\%) [5797].
- Also obtained by hydrolysis of 2,4-diacetyl-3,5-dihydroxy-6-methylphenyl acetate with concentrated sulfuric acid for 10 min in cold (78\%) [5797].
- Also obtained by saponification of its diacetate (SM)-1,1'-[4,6-di(acetyloxy)-2-hydroxy-5-methyl-1,3-phenylene]bis-ethanone-with refluxing 2 N sodium carbonate for $10 \mathrm{~min}(69 \%)$. SM was prepared from the ozonid of diacetyldecarbousnic acid (C 21 H 22 O 11 , m.p. 146°) by treatment with boiling 3% methanolic hydrogen chloride for $5 \mathrm{~min}\left(73 \%\right.$, m.p. 116°) [5798].
- Also refer to: [5720,5799].
m.p. 172° [5797], $169-170^{\circ}$ [5716], 168° [5798], 160° [5646]; TLC [5797]; ${ }^{1} \mathrm{H}$ NMR [5716,5797], IR [5716], UV [5797], MS [5797].

1,1'-(2,4,6-Trihydroxy-5-methoxy-1,3-phenylene)bis-ethanone

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 240.21
Synthesis

- Obtained by reaction of iretol with boron trifluorideacetic acid complex at r.t. for 20 h (52\%) [4919].
m.p. 140° [4919].

$$
\begin{aligned}
& \text { 1,1'-[2-Hydroxy-4-methyl-6-(trifluoromethyl)-1,3-phenylene]bis-ethanone } \\
& \text { m.p. } 83-85^{\circ}[5800] ;
\end{aligned}
$$

1,1'-[4-(Acetyloxy)-2-hydroxy-1,3-phenylene]bis-ethanone

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 236.22

Synthesis

- Obtained by heating at reflux $\left(180^{\circ}\right)$ for 1 h a mixture of 2,4-diacetylresorcinol, sodium acetate and acetic anhydride (29\%) [5658].
m.p. $147-148^{\circ}$ [5658]; ${ }^{1} \mathrm{H}$ NMR [5658], IR [5658], UV [5658].

1,1',1"-(2,4-Dihydroxy-1,3,5-benzenetriyl)tris-ethanone

[64857-82-5]

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$
mol.wt. 236.22
Syntheses

- Obtained by heating 2,4-diacetoxyacetophenone with aluminium chloride (29%) (Fries rearrangement) [5654].
- Also obtained (by-product) by Friedel-Crafts acylation of resorcinol dimethyl ether with acetyl chloride in the presence of aluminium chloride in carbon disulfide at 10° for 1 h (5\%) [5646].
- Also obtained by Friedel-Crafts acylation of paeonol with acetic anhydride in the presence of aluminium chloride in nitrobenzene at 100° for 2 h [5685].
- Also obtained by reaction of acetic anhydride (2 mol) with resacetophenone (1 mol) in the presence of aluminium chloride (3 mol) in nitrobenzene on a steam bath for 4 h (51\%) [5664].
- Also obtained by reaction of acetyl chloride with 4,6-diacetylresorcinol in the presence of aluminium chloride, first at 110° for 15 min , then at 130° for 1 h (73\%) [5665].
- Also obtained by degradation of 7,7'-diacetoxy-4,4'-dimethyl-3,4-dihydro-4,6'bicoumarin with aluminium chloride in dilute hydrochloric acid between 135° and 170° for $2 \mathrm{~h}(5 \%)$ [5654].
m.p. $137-138^{\circ}$ [5664], 137° [5646], 136° [5665,5685], 135-136${ }^{\circ} 5$ [5654];
${ }^{1} H$ NMR [5654], MS [5654].

1,1'-[4-(Acetyloxy)-2,6-dihydroxy-1,3-phenylene]bis-ethanone

[104654-31-1]
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$
mol.wt. 252.22
Synthesis

- Obtained by UV light irradiation of 1,3,5-triacetoxybenzene in methanol at r.t. for 12 h under nitrogen (25\%) [5667].

Isolation from natural sources

- From Hypericum japonicum Thunb. and Agromonia pilosa Ledb. [5720]. m.p. 150° [5667].

1,1'-[5-(Acetyloxy)-2,4-dihydroxy-1,3-phenylene]bis-ethanone

[55168-30-4] $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 252.22

Synthesis

- Obtained by treatment of 1,2,4-triacetoxybenzene with acetic acid and zinc chloride at 130° for 1 h (24\%) [5713] or at 140° for $30 \mathrm{~min}(9 \%)$ [5801].
m.p. $142-143^{\circ}$ [5801], 142° [5713];
${ }^{1} \mathrm{H}$ NMR [5713,5801], IR [5713,5801], MS [5713].

1,1'-[5-(Acetyloxy)-4,6-dihydroxy-1,3-phenylene]bis-ethanone

[104654-32-2]
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 252.22
Syntheses

- Obtained by photolysis of 1,2,3-triacetoxybenzene in methanol at r.t. for 12 h under nitrogen (20%) [5667].
- Also obtained by reaction of acetic acid with gallacetophenone in the presence of zinc chloride and phosphorous oxychloride at $140-150^{\circ}$ for 30 min [5697], according to [5802].
m.p. 209-210 [5667], 207-209º [5697].

$\mathbf{1 , 1}, \mathbf{1}^{\prime \prime}$-(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris-ethanone

[2161-87-7]
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$
Syntheses

- Obtained by Friedel-Crafts acylation of phloroglucinol,
- with acetic anhydride in the presence of boron trifluoride in acetic acid at r.t. (60\%) [5646];
- with acetyl chloride in the presence of aluminium chloride in ethyl ether at r.t. for 6 days (17%) [5251];
- with acetyl chloride and acetic acid in the presence of ferric chloride in ethyl acetate [5717].
- Also obtained by Fries rearrangement of phloroglucinol triacetate,
- in the presence of aluminium chloride,
- without solvent [5803], at $160-170^{\circ}$ (40\%) [5650];
- in nitrobenzene at r.t. for 4 h [5650];
- in the presence of zinc chloride at $130^{\circ}(40-50 \%)$ [5690], for 3 h (60%) [5804].
- Also refer to: [5720,5743,5793,5805,5806].
N.B.: Tri-Na salt [5807,5808].

Isolation from natural sources

- From Pseudomonas fluorescens [5725].
sublimation at $140^{\circ} / 15 \mathrm{~mm}$ [5251]; TLC [52515725];
m.p. $158-159^{\circ}$ [5650], 156° [5646,5717,5801], 152- 153° [5251];
${ }^{1} \mathrm{H}$ NMR [5251,5639,5794], ${ }^{2} \mathrm{H}$ NMR [5794], ${ }^{3} \mathrm{H}$ NMR [5794], ${ }^{13} \mathrm{C}$ NMR [5639], MS [5725].

1,1'-(2-Hydroxy-4,6-dimethyl-5-nitro-1,3-phenylene)bis-ethanone
[85450-67-5]

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 251.24 Synthesis

- Obtained by reaction of nitromethane with 3,5-diacetyl-2,6-dimethyl-4-pyrone in the presence of potassium tert-butoxide in tert-butanol at $30-40^{\circ}$ for 75 min (74\%) [5809].
m.p. $117-119^{\circ}$ [5809].

1,1'-(2-Hydroxy-4,6-dimethyl-1,3-phenylene)bis-ethanone
[66634-65-9]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Syntheses

- Obtained by Friedel-Crafts acylation of 3,5dimethylphenol with acetyl chloride in the presence of aluminium chloride in boiling carbon
disulfide for some hours [5810], (40\%) [5811], (36\%) [5812].
- Also obtained by acylation of 3,5-dimethylanisole with acetyl chloride (6 mol) in the presence of a large excess of aluminium chloride in boiling carbon disulfide for 2 h , then, after solvent elimination, heating in a water bath for 4 h (33\%) [5811].
- Also obtained by Fries rearrangement of 3,5-dimethylphenyl acetate with aluminium chloride (2 mol) in a water bath for 2 h [5810].
- Also obtained by condensation of 2,4,6-heptanetrione (1 mol) and 2,4-pentanedione (1 mol) in the presence of sodium hydroxide in 50% aqueous methanol at 25° for 25 h (50\%) [5800].
m.p. $109-110^{\circ}$ [5810,5811,5812], $102-105^{\circ}$ [5800]; ${ }^{1} \mathrm{H}$ NMR [5800].

1,1'-(4-Hydroxy-5,6-dimethyl-1,3-phenylene)bis-ethanone

[51233-76-2] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
 Syntheses

- Obtained (by-product) by Fries rearrangement of 2,3-di-methylphenyl acetate with aluminium chloride at 135° for $30 \mathrm{~min}(<10 \%)$ [5813].
- A sample of pure 4-hydroxy-2,3-dimethylacetophenone (m.p. 144°) [5814], stored in a stoppered bottle, was analyzed 10 years later. The melting point $\left(144^{\circ}\right)$ was lowered to 138°. By treatment of the mixture in boiling heptane, the pure insoluble 4-hydroxy-2,3-dimethylacetophenone was recovered by filtration and thoroughly washed with boiling heptane (50%). The solution was then concentrated and the residue chromatographied on silica gel with benzene-ethyl acetate-acetic acid mixture $(90 / 5 / 5)$ as eluent. The 2,3-dimethylphenol (25%) and the pure entitled diketone (25%) were isolated [5815].
m.p. 101° [5815]; TLC [5815];

IR [5815] $1685 \mathrm{~cm}^{-1}$ ($\mathbf{C}=\mathrm{O}$ para), $1640 \mathrm{~cm}^{-1}$ ($\mathbf{C}=\mathrm{O}$ ortho), UV [5815].
N.B.: This transformation was unexpectedly obtained by a simple storage in a dry dull place.

1,1'-(2,4-Dihydroxy-5,6-dimethyl-1,3-phenylene)bis-ethanone

[82817-51-4]

m.p. $78-80^{\circ}$ [5816]; IR [5816], UV [5816].

1,1'-(5-Ethyl-2,4-dihydroxy-1,3-phenylene)bis-ethanone

[63411-83-6] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

m.p. 71-73 [5817]; TLC [5817]. (2.2 mol) at 155° for $1 \mathrm{~h}(57 \%)$ [5817].

- Obtained by Fries rearrangement of 4,6-diethylresorcinol diacetate (1 mol) with aluminium chloride

1,1'-(5-Ethyl-4,6-dihydroxy-1,3-phenylene)bis-ethanone $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

 Synthesis
 - Obtained by Fries rearrangement of 2-ethylresorcinol diacetate (m.p. 70-71 ${ }^{\circ}$) with aluminium chloride at 150° for $30 \mathrm{~min}(84 \%)$ [5665].
 m.p. 110° [5665].

1,1'-(2-Hydroxy-4-methoxy-6-methyl-1,3-phenylene)bis-ethanone

[78274-03-0] \quad\begin{tabular}{l}
Synthesis

O-methoxy-4-methylacetophenone (yield 25\%) or

2-hydroxy-4-methoxy-6-methylacetophenone
with acetyl chloride in the presence of aluminium
chloride [5818].

\end{tabular}

m.p. $\quad 98^{\circ}$ [5818]; ${ }^{1} \mathrm{H}$ NMR [5818], IR [5818], MS [5818].

1,1'-(4-Hydroxy-2,6-dimethoxy-1,3-phenylene)bis-ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24
Syntheses

- Obtained by debenzylation of 3-acetyl-6-(benzyloxy)-2,4-di-methoxyacetophenone (83\%) [5646].
- Also obtained (by-product) by Friedel-Crafts acylation of phloroglucinol trimethyl ether with acetyl chloride in the presence of aluminium chloride in boiling carbon disulfide [5819]. N.B.: No direct proof of the constitution of the diketone was described, but it would appear most probable that it is 3-acetyl-6-hydroxy-2,4-dimethoxyacetophenone [5819].
- Also obtained by saponification of its veratric ester (m.p. 198) in pyridine with powdered potassium hydroxide (pre-heated at 100°) at 50° for 1 h [5820].
m.p. 192° [5820], $127-128^{\circ}$ [5819], 106° [5646]. One note a very large dispersion of the various melting points.

1,1'-(2,4-Dihydroxy-5,6-dimethoxy-1,3-phenylene)bis-ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 254.24
Synthesis

- Obtained from antiarol by reaction,
- with acetic anhydride in the presence of boron trifluoride in acetic acid at 30° (max), followed by standing overnight (quantitative yield) [5821];
- with acetyl chloride in the presence of aluminium chloride in nitrobenzene, during a short time on a steam bath (poor yield) [4946].
m.p. $93^{\circ} 5-94^{\circ} 5$ [5821], $91-93^{\circ}$ [4946].

1,1'-(2,5-Dihydroxy-3,6-dimethoxy-1,4-phenylene)bis-ethanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 254.24
Synthesis

- Obtained (by-product) by metallation of 2,5-dime-thoxy-hydroquinonebis[tetrahydropyranyl (2) ether], followed by treatment of the intermediate aryllithium compound with acetic anhydride in THF at r.t. (3-5\%) [5822].
m.p. 159° [5822].

1,1'-(5-Amino-2-hydroxy-4,6-dimethyl-1,3-phenylene)bis-ethanone
[85450-76-6]

m.p. 111° [5809].

1,1'-[4-(Ethylamino)-6-hydroxy-1,3-phenylene]bis-ethanone
[79324-49-5]
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 221.26
Syntheses

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 221.26
Synthesis

- Preparation by catalytic hydrogenation of 3-acetyl-2-hydroxy-4,6-dimethyl-5-nitroacetophenone in ethanol in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 40° for 3 days (61%) [5809].
- Obtained by hydrolysis of 2-(ethylamino)-5-[1-(ethylimino)-ethyl]-4-hydroxyacetophenone on heating with aqueous hydrochloric acid [5746].
- Also obtained first, by treatment of 3-acetamido-4,6-diacetyl-phenol with sodium hydride in N -methylpyrrolidone at $<5^{\circ}$.

After 15 min , the mixture was treated with ethyl iodide at $<5^{\circ}$ for 2 h , then acidified with concentrated hydrochloric acid/ethanol (1:1) and heated to reflux for 2.5 h (63\%) [5744].
m.p. $103-104^{\circ}$ [5744], 99° [5746].

1,1'-[4,6-Dihydroxy-5-(2-propenyl)-1,3-phenylene]bis-ethanone
[75631-42-4]

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 234.25
Syntheses

- Obtained (poor yield) by Claisen rearrangement of 4,6-di-acetylresorcinol diallyl ether (m.p. 92°) in refluxing N, N-diethylaniline for 6 h (6\%) [5823].
- Also refer to: [5746].
m.p. $93-94^{\circ}$ [5823]; MS [5823].

1,1'-[4-Hydroxy-6-(2-propenyloxy)-1,3-phenylene]bis-ethanone
[117156-74-8]

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 234.25
Synthesis

- Obtained by partial deallylation of 3-acetyl-4,6-di-(allyloxy)acetophenone (m.p. 92°) in trifluoroacetic acid, with stirring at 0°. Stirring was continued at r.t. for a further 24 h (70\%) [5605].
m.p. 95° [5605]; TLC [5605]; ${ }^{1} \mathrm{H}$ NMR [5605], IR [5605], UV [5605].
[35075-32-2]

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 250.24
Synthesis
- Obtained by reaction of allyl bromide with 2,4-diacetyl-phloroglucinol in the presence of potassium carbonate in refluxing acetone for $48 \mathrm{~h}(27 \%)$ [5789,5792].
m.p. $111-112^{\circ}$ [5789,5792].

1,1'-[2-(Acetyloxy)-4,6-dihydroxy-5-methyl-1,3-phenylene]bis-ethanone

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 266.25

Synthesis

- Obtained by treatment of usnetol with ozone, in 20 parts of chloroform or acetic acid for 1 h [5798], (15-20\%) [5824].
m.p. 172° [5824].

1,1'-[4-(Acetyloxy)-2,6-dihydroxy-5-methyl-1,3-phenylene]bis-ethanone

[69150-72-7]

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 266.25
Synthesis

- Obtained by ozonolysis of diacetyldecarbousnic acid in carbon tetrachloride for 4 h at 15° [5797].
m.p. 120-1210 [5797]; TLC [5797];
${ }^{1} \mathrm{H}$ NMR [5797], IR [5797], MS [5797].
1,1'-[5-(Acetyloxy)-2,4-dihydroxy-6-methoxy-1,3-phenylene]bis-ethanone
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{7}$ mol.wt. 282.25

Synthesis

- Obtained by reaction of acetic anhydride with 2,6-di-methoxyhydroquinone diacetate in the presence of boron trifluoride in acetic acid at 30° (max), followed by standing overnight (60\%) [5821].
m.p. $98^{\circ} 5-100^{\circ} 2$ [5821].

1,1'-(4-Ethyl-2-hydroxy-6-methyl-1,3-phenylene)bis-ethanone
[76716-12-6]

1,1'-[4,6-Dihydroxy-5-(1-methylethyl)-1,3-phenylene]bis-ethanone

[75643-06-0]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Synthesis

- Refer to: [5825] (Japanese patent).

1,1'-(4,6-Dihydroxy-5-propyl-1,3-phenylene)bis-ethanone
[58805-52-0]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27
Syntheses

- Obtained by Fries rearrangement of 2-propylresorcinol diacetate with aluminium chloride for 1 h at $130-150^{\circ}$ [5789].
- Also refer to: [5746,5825] (Japanese patent).

1,1'-[5-(Ethoxymethyl)-4,6-dihydroxy-1,3-phenylene]bis-ethanone

[58805-51-9] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27

Synthesis

- Obtained by refluxing an ethanolic solution of 4,6-diacetyl-2-(hydroxymethyl)resorcinol in the presence of a small amount of concentrated sulfuric acid for 2 h (84\%) [5789].
m.p. $163-165^{\circ}$ [5789].

1,1'-[2,4-Dihydroxy-6-(2-hydroxypropoxy)-1,3-phenylene]bis-ethanone

[23937-51-1] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 268.27

m.p. $152-154^{\circ}$ [5792].

Synthesis

- Preparation by reaction of propylene oxide with 2,4-diacetylphloroglucinol in the presence of benzyl trimethyl ammonium hydroxide at 100° for 48 h (63\%) [5792].
[79324-47-3] $\quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 235.28

Syntheses

- Preparation by hydrogenation of 2-allyl-3-amino-4,6-di-acetylphenol (SM) in ethanol in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ at atmospheric pressure and at r.t. (82%). SM was obtained by Claisen rearrangement of 3-(allyloxy)-4,6-diacetylaniline (m.p. 131-134) in N -methylpyrrolidone under nitrogen at 200° for 3 h [5744].
- Also refer to: [5801,5826,5827].
m.p. $138-139^{\circ}$ [5744].

1,1'-[2,4-Dihydroxy-6-methoxy-5-(2-propenyl)-1,3-phenylene]bis-ethanone
[37126-09-3]

m.p. $84^{\circ} 5-85^{\circ}$ [5789].
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 264.28
Synthesis

- Obtained by Claisen rearrangement of 2,6-diacetyl-3-(allyloxy)-5-methoxyphenol in refluxing tetralin for 3.5 h (25\%) [5789].

1,1'-[2-Hydroxy-4-methoxy-6-(2-propenyloxy)-1,3-phenylene]bis-ethanone

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$
mol.wt. 264.28

Synthesis

- Obtained by reaction of methyl iodide with 2,4-diacetyl-5-(allyloxy)resorcinol in the presence of potassium carbonate in refluxing acetone for 16 h (quantitative yield) [5789].
red oil (crude product) [5789]; b.p. ${ }_{0.3} 148-162^{\circ}$ [5789].

1,1'-[5-(1,1-Dimethylethyl)-2-hydroxy-1,3-phenylene]bis-ethanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.20 Synthesis

- Obtained by Friedel-Crafts acylation of p-tertbutylphenol with acetyl chloride (3 mol) in nitrobenzene in the presence of aluminium chloride at $65-70^{\circ}$ overnight (45\%) [5766].
m.p. $53-54^{\circ}$ [5766]; ${ }^{1} \mathrm{H}$ NMR [5766], MS [5766].

1,1'-(5-Butyl-4,6-dihydroxy-1,3-phenylene)bis-ethanone

[40449-66-9] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Syntheses

- Obtained by Fries rearrangement of 2-butylresorcinol diacetate with aluminium chloride for 1 h at $130-150^{\circ}$ [5789].
- Also refer to: [5793,5825] (Japanese patent).
m.p. $61-64^{\circ}$ [5789].

1,1'-(2,4-Dihydroxy-6-methoxy-5-propyl-1,3-phenylene)bis-ethanone
[37126-10-6]

m.p. $48-49^{\circ}$ [5789].
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29
Synthesis

- Obtained by hydrogenation of 2,4-diacetyl-6-allyl-5-methoxyresorcinol in ethanol over 5\% Pd/C at three atmospheres for 2 h (61\%) [5789].

1,1'-(4,6-Dihydroxy-2-methoxy-5-propyl-1,3-phenylene)bis-ethanone
[37126-08-2] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29

Syntheses

- Obtained by hydrogenation of 2,4-diacetyl-6-allyl-5-(benzyl-oxy)-3-methoxyphenol in ethanol containing hydrochloric acid at three atmospheres in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ for $1 \mathrm{~h}(61 \%)$ [5789].
- Also refer to: $[5793,5828]$.
b.p. ${ }_{0.6} 150-170^{\circ}$ [5789]; m.p. 80° [5789].

1,1'-[2,4-(Diacetyloxy)-6-hydroxy-5-methyl-1,3-phenylene]bis-ethanone

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{7}$	mol.wt. 308.29
Synthesis	

- Obtained from the ozonid of diacetyldecarbousnic acid $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{11}\right.$, m.p. $\left.146^{\circ}\right)$ by treatment with boiling 3% methanolic hydrogen chloride for $5 \min (73 \%)$ [5798].
m.p. 116° [5798]; sublimation without decomposition at $110^{\circ} / 12 \mathrm{~mm}$ [5798].

1,1'-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)-1,3-phenylene]bis-ethanone

[117374-55-7]
 $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 262.31 Syntheses

- Obtained by thermal rearrangement,
- of 3-acetyl-2,4-bis(3-methyl-2-butenyloxy)-acetophenone (m.p. 62°) in refluxing N, N-dimethylaniline for 1.5 h (11\%) [5829];
- of 5-acetyl-2,4-bis(3,3-dimethylallyloxy)-acetophenone (m.p. 103-104 ${ }^{\circ}$), in refluxing N, N-dimethylaniline for $3 \mathrm{~h}(6 \%)$ [5830], in refluxing n-decane for $18 \mathrm{~h}(6 \%)$ [5830], in refluxing o-xylene for $90 \mathrm{~h}(10 \%)$ [5830] or by heating in a sealed tube at 150° for $18 \mathrm{~h}(6 \%)$ or at 185° for $8 \mathrm{~h}(2 \%)$ [5830].
m.p. 65-66 [5830]; TLC [5830]; ${ }^{1} \mathrm{H}$ NMR [5830], IR [5830], UV [5830], MS [5830].

1,1'-[4,6-Dihydroxy-5-(3-methyl-2-butenyl)-1,3-phenylene]bis-ethanone
[117374-56-8] $\quad \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 262.31

Syntheses

- Obtained (poor yields) by thermal rearangement of 5-acetyl-2,4-bis(3, 3-dimethylallyloxy)acetophenone (m.p. 103-104ㅇ),
- in refluxing n-decane for $18 \mathrm{~h}(8 \%)$ [5830];
- in refluxing o-xylene for 90 h (11\%) [5830];
- by heating in a sealed tube at 150° for $8 \mathrm{~h}(10 \%)$ [5830].
m.p. 89-90ํ [5830]; TLC [5830]; ${ }^{1} \mathrm{H}$ NMR [5830], IR [5830], UV [5830], MS [5830].

1,1'-[4-Hydroxy-2-[(3-methyl-2-butenyl)oxy]-1,3-phenylene]bis-ethanone
 $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 262.31

Syntheses

- Obtained by Claisen rearrangement of 3-acetyl-2,4-bis (3-methyl-2-butenyloxy)acetophenone with palladium chloride-bis(acetonitrile) in refluxing dioxane for 45 min (29\%) [5657].
- Also refer to: [5831].
m.p. 51° [5657]; ${ }^{1} \mathrm{H}$ NMR [5657], IR [5657], UV [5657], MS [5657].

1,1'-[4-Hydroxy-6-[(3-methyl-2-butenyl)oxy]-1,3-phenylene]bis-ethanone
[136811-83-1]

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 262.31
Syntheses

- Obtained by Claisen rearrangement of 5-acetyl-2,4-bis(3-methyl-2-butenyloxy) acetophenone,
- with palladium chloride-bis(acetonitrile) in refluxing dioxane for 4 h (95\%) [5657];
- with boron trifluoride etherate at r.t. for 7 days (48\%) [5657].
- Also refer to: [5831].
m.p. 83-87º [5657]; ${ }^{1} \mathrm{H}$ NMR [5657], UV [5657], MS [5657].

1,1'-[4-(Ethylamino)-6-hydroxy-5-propyl-1,3-phenylene]bis-ethanone

[79324-51-9]

$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \quad$ mol.wt. 263.34
Syntheses

- Preparation by hydrogenation of 2-allyl-3-hydroxy-4,6-di-acetyl-N-ethylaniline (SM) in ethanol in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ at $15-20$ psi for 2.5 h (63%). SM was obtained by Claisen rearrangement of 3-(allyloxy)-4,6-diacetyl-N-ethyl-aniline (m.p. $82-83^{\circ}$) in refluxing N -methylpyrrolidone under nitrogen for 1 h [5744].
- Also refer to: [5826]. m.p. $114-115^{\circ}$ [5744].

1,1'-(4-Hydroxy-5-iodo-6-phenoxy-1,3-phenylene)bis-ethanone

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{4}$
mol.wt. 396.18
Synthesis

- Preparation by thermal rearrangement of 4,6-diacetyl-3-hydroxy-2-phenyliodoniophenolate (SM) in refluxing acetonitrile for $30 \mathrm{~min}(50 \%)$. SM was obtained by reaction of iodosobenzene diacetate with resodiacetophenone in methanol in the presence of potassium hydroxide, at 0° for $30 \mathrm{~min}\left(40 \%\right.$, m.p. $\left.120-130^{\circ}\right)$ [5709]. m.p. 132-136 ${ }^{\circ}$ [5709]; ${ }^{1} \mathrm{H}$ NMR [5709], IR [5709], MS [5709].

1,1'-[4'-(Dimethylamino)-3-hydroxy-5-methyl[1,1'-biphenyl]-2,6-diyl] bis-ethanone

[108909-50-8]

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \quad$ mol.wt. 311.38
Synthesis

- Obtained by aromatization of 4,6-diacetyl-5-[4-(dimethyl-amino)phenyl]-3-methyl-2-cyclohexen-1-one (m.p. 117°) with bromine in chloroform (45\%) or by heating at 170° for 3 h [5832].
m.p. 153° [5832]; IR [5832].

1,1'-[2-Hydroxy-4-(phenylmethoxy)-6-(2-propenyloxy)-1,3-phenylene] bis-ethanone

[37126-05-9]

m.p. 92° [5789].
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 340.38
Synthesis

- Obtained by reaction of benzyl chloride with 2,4-di-acetyl-5-(allyloxy)resorcinol in the presence of potassium carbonate and potassium iodide in refluxing acetone for $43 \mathrm{~h} \mathrm{(33} \mathrm{\%)} \mathrm{[5789]}$.

1,1'-[4-Hydroxy-2-methoxy-6-(phenylmethoxy)-5-(2-propenyl)-1,3-phenylene]bis-ethanone

$$
\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} \quad \text { mol.wt. } 354.40
$$

Syntheses

- Obtained by Claisen rearrangement of 3-acetyl-4-allyloxy-6-benzyloxy-2-methoxyacetophenone in refluxing tetralin under nitrogen for 4 h (36\%) [5789].
- Also refer to: $[5793,5828]$.
oil [5789].

20.1.2 Diversely Substituted Acetyl Groups

1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)bis[2-chloroethanone
[99984-12-0]
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
mol.wt. 261.10
Syntheses

- Obtained (by-product) by Friedel-Crafts acylation of p-cresol methyl ether with chloroacetyl chloride in the presence of aluminium chloride in refluxing carbon disulfide for $4-5 \mathrm{~h}$ [4625].
- Also obtained by Friedel-Crafts acylation of p-cresol with chloroacetyl chloride in the presence of aluminium chloride at 140° for 4 h [4623].
m.p. 168° [4623], $167-168^{\circ}$ [4625].

1,1'-(2-Hydroxy-4,5,6-trimethoxy-1,3-phenylene)bis[2-phenylethanone
3,4,5-Trimethoxy-2,6-bis(phenylacetyl)phenol
[22228-86-0]

$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 420.46
Syntheses

- Obtained by Friedel-Crafts acylation of 6-hydroxy-2,3,4-trimethoxyphenyl benzyl ketone with phenylacetyl chloride in the presence of aluminium chloride [5251].
- Also obtained (by-product) by Friedel-Crafts acylation of antiarol with phenylacetyl chloride in the presence of aluminium chloride ($<3 \%$) [5251].
m.p. 106° [5251]; ${ }^{1} \mathrm{H}$ NMR [5251], IR [5251].

20.2 Acetyl Groups Located on Different Rings

20.2.1 Diphenyl Derivatives

Symmetrical ketones

1,1'-(2,2'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone
[60312-44-9]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28
 Synthesis

- Obtained by alkaline degradation of 8,8'bichromonyl (m.p. 326°) with refluxing 10% sodium hydroxide for 20 min [5833].
m.p. $167-168^{\circ}$ [5833]; IR [5833].

1,1'-(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

 $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28
Syntheses

- Preparation by Fries rearrangement of 4,4'-diacetoxy-biphenyl,
- with a mixture of aluminium chloride and sodium chloride (5:1, w/w), first at 140°, then at 200° for 2 min (melting) (70\%) [5834];
- with a mixture of aluminium chloride and zinc chloride (5:1, w/w), first at 140°, then at 200° for 2 min (melting) (82\%) [5834];
- with aluminium chloride at 120° [5835], (75\%) [5836,5837];
- with aluminium chloride in refluxing chlorobenzene for 24 h (19\%) [5838].
- Also obtained by alkaline degradation of 6,6'-bichromonyl (m.p. 298-2990) with refluxing 10% sodium hydroxide for 20 min [5833].
- Also refer to: $[5839,5840]$.
m.p. 219-220 ${ }^{\circ}$ [5836], 219-219 $5 ~[5837], ~ 215-216 ~[5838], ~ 209-210 ́ ~[5833] ; ~ ;$ IR [5838].

1,1'-(6,6'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28
Syntheses

- Preparation by Fries rearrangement of 2,2'-diacetoxy-biphenyl (1 mol) with aluminium chloride $(1 \mathrm{~mol})$ at $110-120^{\circ}$ for 4 h (52\%) [5835].
- Also obtained by Friedel-Crafts acylation of 2,2'-di-hydroxybiphenyl (1 mol) with acetyl chloride (4 mol) in the presence of aluminium chloride (4 mol) at $110-120^{\circ}$ [5835].
m.p. 275° [5835].

1, $\mathbf{1}^{\prime}$-(2,2',4,4'-Tetrahydroxy $\mathbf{1 , ~}^{\prime} \mathbf{1}^{\prime}$-biphenyl]-3,3'-diyl)bis-ethanone
[2551-44-2] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28

Syntheses

- Obtained by refluxing a solution of 9,9'-di-O-methylergoflavinone-m.p. 330° (d)-in 50% aqueous potassium hydroxide for $30 \mathrm{~min}(10 \%)$ [5841].
- Also obtained (poor yield) by Fries rearrangement of 6,6'-bi-(7-acetoxy-4methylcoumarin) (m.p. 327°) with aluminium chloride at 260° for 75 min , followed by heating the resulting 6,6'-bi-(8-acetyl-7-hydroxy-4-methylcoumarin) with $20 \%(\mathrm{w} / \mathrm{v})$ aqueous sodium hydroxide on a steam bath for 5 h under nitrogen (<3\%) [5842].
- Also obtained by Fries rearrangement of 2,2',4,4'-tetraacetoxybiphenyl (1 mol) with aluminium chloride (4 mol),
- without solvent at $130-140^{\circ}$ for $4 \mathrm{~h}(27 \%)$ [5835];
- in nitrobenzene at r.t. for 24 h [5835].
- Also refer to: [5843].
m.p. $249-250^{\circ}$ [5841], 248-249 ${ }^{\circ}$ [5842], 245° [5835]; IR [5841].

$\mathbf{1 , 1} \mathbf{1}^{\prime}$-(2,2',6,6'-Tetrahydroxy $\mathbf{1 , 1}^{\prime} \mathbf{1}^{\prime}$-biphenyl]-3,3'-diyl)bis-ethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$
mol.wt. 302.28

Synthesis

- Obtained by oxidative coupling of resacetophenone using silica-bound ferric chloride, first in methylene chloride, then, after solvent elimination, the residue left at r.t. for a week (13\%) [5844].
m.p. 286-287 [5844]; TLC [5844]; IR [5844].

1,1'-(4,4',6,6'-Tetrahydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone
[23080-53-7]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28
Syntheses

- Obtained by Fries rearrangement of 2,2',4,4'-tetra-acetoxybiphenyl (1 mol) with aluminium chloride (4 mol),
- without solvent at $130-140^{\circ}$ for $4 \mathrm{~h}(30 \%)$ [5835];
- in nitrobenzene at r.t. for 24 h [5835].
- Also obtained by oxidative coupling of resacetophenone using silica-bound ferric chloride, first in methylene chloride, then, after solvent elimination, the residue left at r.t. for a week (10%) [5844].
m.p. 236° [5835], $197-198^{\circ}$ [5844]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5844], IR [5844]; TLC [5844].

1,1'-(5,5',6,6'-Tetrahydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

[224030-70-0]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28
Synthesis

- Refer to: [5845].

1,1'-(2,2'-Dihydroxy-5,5'-dimethyl[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

[13938-30-2]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34
Syntheses

- Obtained by hydrolysis of [$\mathrm{m}, \mathrm{m}^{\prime}$-bitolyl]-6,6'-diol-5,5'-bis(2-methyl-1,3-dioxolan-2-yl), its diketal-[24046-06-8], $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$, m.p. $169^{\circ} 5-170^{\circ}$-with hydrogen chloride in methanol (almost quantitative yield) [5846].
- Also obtained (poor yield) by Fries rearrangement of 2,2'-diacetoxy-5,5'dimethylbiphenyl with aluminium chloride in nitrobenzene at 120° for 2 h (11\%) [5846].
- Also refer to: [5847].
m.p. $189^{\circ} 5-190^{\circ}$ [5846]; TLC [5846];
${ }^{1} \mathrm{H}$ NMR [5846,5847], IR [5846,5847].
1,1'-(2,2'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 330.34
Synthesis
- Obtained by oxidative coupling of resacetophenone 4-methyl ether using silica-bound ferric chloride, first in methylene chloride, then, after solvent elimination, the residue left at r.t. for a week (10\%) [5844].
m.p. 322° [5844]; TLC [5844]; IR [5844].

1,1'-(4,4'-Dihydroxy-2,2'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 330.34
Syntheses

- Obtained by degradation of $1,1^{\prime}, 9$, 9^{\prime}-tetra-O-methylergoflavinone in 10% sodium hydroxide solution at reflux for 2 h under nitrogen [5848], (40\%) [5841].
- Also obtained by degradation of 9,9'-di-O-ethyl-1,1'-di-O-methylergoflavinone (m.p. 271°) in 1% sodium hydroxide solution on a steam bath for $2 \mathrm{~h}(31 \%)$ [5841].
- Also obtained by degradation of 6,6'-bis(5-methoxy-2-methylchromone) in $80 \%(\mathrm{w} / \mathrm{v})$ aqueous sodium hydroxide solution on a steam bath for 2.5 h under nitrogen (11\%) [5848].
- Also obtained by degradation of 1,1',9-tri-O-methylchrysinone A in 10% aqueous sodium hydroxide solution on a steam bath for 1.5 h under nitrogen (9\%) [5849].
- Also obtained by degradation of 1, $1^{\prime}, 9,9^{\prime}$-tetra-O-methylergoflavin (m.p. 282° (d)) with barium hydroxide octahydrate in boiling water for $5 \mathrm{~h}(5 \%)$ [5850].
- Also obtained by degradation of 1,1'-di-O-methyl-9,9'-di-O-ethylergoflavin (m.p. 280° (d)) in a $50 \%(\mathrm{w} / \mathrm{v})$ barium hydroxide octahydrate solution in boiling water for $5 \mathrm{~h}(<2 \%)$ [5841].
m.p. $168-169^{\circ}$ [5848], 168° [5841,5850];
${ }^{1} \mathrm{H}$ NMR [5848], IR [5841,5848,5849], UV [5841].

1,1'-(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 330.34
Synthesis

- Obtained by oxidative coupling of resacetophenone 4-methyl ether using silica-bound ferric chloride, first in methylene chloride, then, after solvent elimination, the residue left at r.t. for a week (10%) [5844].
m.p. 125° [5844]; TLC [5844]; ${ }^{1} \mathrm{H}$ NMR [5844], IR [5844].

1,1'-(6,6'-Dihydroxy-5,5'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 330.34
Syntheses

- Obtained by alkaline CuO oxidation of lignin (compound Vn-Vn) named dehydrodiacetovanillone [5851].
- Also refer to: [5852].

GC [5851], GC-MS [5851].
N.B.: Utilisation in the long-lasting perfume compositions [5852].

$\mathbf{1 , 1}-\left(\mathbf{2 , 2} \mathbf{2}^{\prime}, \mathbf{4 , 4} \mathbf{4}^{\prime}\right.$-Tetrahydroxy $\left[1,1^{\prime}\right.$-biphenyl $]-3,3$ ' $, 5,5^{\prime}$ 'tetrayl)tetrakis-ethanone

[23080-58-2]

$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{8} \quad$ mol.wt. 386.36
Syntheses

- Obtained by Fries rearrangement of 2,2', 4,4'-tetra-acetoxybiphenyl (1 mol) with aluminium chloride (4 mol),
- without solvent at $130-140^{\circ}$ for $4 \mathrm{~h}(20 \%)$ [5835];
- in nitrobenzene at r.t. for 24 h [5835].
- Also obtained by Friedel-Crafts acylation of 2,2',4,4'-tetrahydroxybiphenyl (1 mol) with acetyl chloride (4 mol) in the presence of aluminium chloride $(7 \mathrm{~mol})$ at 120° for 2 h [5835].
m.p. 302° [5835].

1,1'-(2,2'-Diethoxy-4,4'-dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

m.p. 99° [5848]; ${ }^{1} \mathrm{H}$ NMR [5848].

1,1'-(2,2'-Dihydroxy-4,4',6,6'-tetramethoxy[1, $\mathbf{1}^{\prime}$-biphenyl]-3,3'-diyl) bis-ethanone

[35134-71-5]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8} \quad$ mol.wt. 390.39
Syntheses

- Obtained by oxidative coupling of phloraceto-phenone 4,6-dimethyl ether (Xanthoxylin) using silicabound ferric chloride, either at $43-45^{\circ}$ for 6 days (81%) [5853], or first in methylene chloride, then, after solvent elimination, the residue left at r.t. for a week (40\%) [5844].
- Obtained by Friedel-Crafts acylation of $2,2^{\prime}, 4,4^{\prime}, 6,6^{\prime}$-hexamethoxybiphenyl,
- with acetic anhydride in the presence of aluminium chloride in nitrobenzene (20\%) [5854];
- with acetyl chloride in the presence of aluminium chloride in ethyl ether (15\%) [5854].
m.p. $262-264^{\circ}$ [5844], 254- 257° [5854], 211-212 ${ }^{\circ}$ [5853]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5844,5853,5854], ${ }^{13} \mathrm{C}$ NMR [5853], IR [5844,5853], MS [5853].

Asymmetrical ketones

1,1'-(4,6'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

1,1'-($\mathbf{2}^{\prime}, \mathbf{3 , 6 , 6} \mathbf{6}^{\prime}$-Tetrahydroxy[1,1'-biphenyl]-2,3'-diyl)bis-ethanone (Cynandione A)
$1,1^{\prime}$-($2,2^{\prime}, 3^{\prime}, 6$,-Tetrahydroxy [1, 1^{\prime}-biphenyl]-3, $\mathbf{4}^{\prime}$ 'diyl)bis-ethanone
(Present name attributed by CAS Registry Handbook Number Section-1995 Supplement)

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28
Isolation from natural sources

- From the Cynanchum taiwanianum (Asclepiadaceae) [5855,5856,5857, 5858,5859].
- From the Cynanchum wilfordii Hemsley (Asclepiadaceae) [5860,5861,5862,5863].
N.B.: The structure of Cynandione A, previously designated as $3^{\prime}, 4$-diacetyl$2,2^{\prime}, 3,6^{\prime}$-tetrahydroxy-biphenyl [5855], has been revised as 2,3'-diacetyl-2',3,6,6'tetrahydroxybiphenyl [5859] in 1997.
m.p. 203-206 [5855]; ${ }^{1} \mathrm{H}$ NMR [5855,5857,5859], ${ }^{1} \mathrm{H}$ NMR-NOE [5859], ${ }^{13}$ C NMR [5855], IR [5855,5859], UV [5855], MS [5855,5857].

1,1'-(2,4',6,6'-Tetrahydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

[93108-00-0] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28

Synthesis

- Obtained by oxidative coupling of resacetophenone using silica-bound ferric chloride, first in methylene chloride, then, after solvent elimination, the residue left at r.t. for a week (15\%) [5844].
m.p. 130° [5844]; TLC [5844]; IR [5844].

1,1'-(3-Hydroxy-4',5-dimethyl[1,1'-biphenyl]-2,6-diyl)bis-ethanone

[108909-49-5] | - Obtained by aromatization of 4,6-diacetyl-3- |
| :--- |
| methyl-5-(4-methylphenyl)-2-cyclohexen-1-one |
| (m.p. 140°) with bromine in chloroform (40\%) or |
| by heating at 170° for 3 h [5832]. |

1,1'-(2,4'-Dihydroxy-2',4-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 330.34
Synthesis

- Obtained by degradation of 6,8'-bis (5-methoxy-2-methylchromone) (m.p. $250-252^{\circ}$) in $80 \%(\mathrm{w} / \mathrm{v})$ aqueous sodium hydroxide solution on a steam bath for 2 h (13\%) [5848].
m.p. $\quad 130-132^{\circ}$ [5848]; ${ }^{1} \mathrm{H}$ NMR [5848].

1,1'-(2,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone

m.p. $194-195^{\circ}$ [5844]; TLC [5844]; | ${ }^{1} \mathrm{H}$ NMR [5844], IR [5844]. |
| :--- |

1,1'-(2,4'-Dihydroxy-6,6'-dimethoxy-2',4-dimethyl[1,1'-biphenyl]-3,3'-diyl) bis-ethanone
[110325-66-1] $\quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 358.40

Synthesis

- Obtained by alkaline hydrolysis of desertorin C (m.p. 235-237$) ~(S M) ~ i n ~ a ~$ mixture of 10% aqueous potassium hydroxide and dioxane (1:1) at reflux for $2 \mathrm{~h}(54 \%)$. SM was isolated from Emericella desertorum Samson \& Mouchacca strain CBS 653.73. [5864].
m.p. $149-150^{\circ}$ [5864];
${ }^{1} \mathrm{H}$ NMR [5864], ${ }^{13} \mathrm{C}$ NMR [5864], IR [5864], UV [5864], MS [5864].
1,1'-(2,4'-Dihydroxy-2',4,6,6'-tetramethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone
[37879-22-4]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8} \quad$ mol.wt. 390.39
Synthesis
- Obtained by Friedel-Crafts acylation of 2,2',4,4',6,6'-hexamethoxybiphenyl with acetyl chloride in the presence of aluminium chloride in ethyl ether (23\%) [5854].
m.p. ${ }^{185-186^{\circ}}$ [5854]; ${ }^{1} \mathrm{H}$ NMR [5854].

> 1,1'-(2-Hydroxy-2',4,4',6,6'-pentamethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone
> [37879-23-5]
> $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{8} \quad$ mol.wt. 404.42
> Synthesis
> - Obtained by Friedel-Crafts acylation of $2,2^{\prime}, 4,4^{\prime}, 6,6^{\prime}$-hexamethoxybiphenyl with acetyl chloride in the presence of aluminium chloride in ethyl ether (16\%) [5854].
m.p. $213-215^{\circ}$ [5854]; ${ }^{1} \mathrm{H}$ NMR [5854].

20.2.2 Diphenylmethane Derivatives

20.2.2.1 Unsubstituted Acetyl Groups

1,1-[Methylenebis(5-bromo-2-hydroxy-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{4} \quad$ mol.wt. 442.10
Synthesis

- Preparation by Fries rearrangement of 2,2'-diacetoxy-5,5'-dibromodiphenylmethane with aluminium chloride at $160-180^{\circ}$ for $20 \min (60 \%)$ [5865].
m.p. $232-235^{\circ}$ [5865].

1,1'-[Methylenebis(5-chloro-2-hydroxy-3,1-phenylene)]bis-ethanone

[60011-06-5]

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 353.20
Syntheses

- Preparation by Fries rearrangement of 2,2'-diacetoxy-5,5'-dichlorodiphenylmethane with aluminium chloride at $150-155^{\circ}$ for $20 \mathrm{~min}(80-85 \%)$ [5866], at $160-180^{\circ}$ for $20 \mathrm{~min}(70 \%)$ [5865] or at $170-180^{\circ}$ for $30 \mathrm{~min}(90 \%)$ [5867], (40\%) [5868].
- Also obtained by adding 38% formaldehyde to a cooled solution of 2-acetyl-4chlorophenol (SM) in concentrated sulfuric acid/methanol solution ($2: 1 \mathrm{v} / \mathrm{v}$) and stirring for 1.5 h at 20°, then for 4 h at $60-70^{\circ}$ (quantitative yield) [5867] or first at -10° under stirring for 2 h , then at r.t. overnight (60%) [5868]. SM was prepared by Fries rearrangement of p-chlorophenyl acetate with aluminium chloride at 160° for $20 \mathrm{~min}\left(98 \%\right.$, m.p. 54 ${ }^{\circ}$) [5867].
N.B.: Mono- and binuclear complexes of Cu (II), Ni (II), Co (II), Fe (III) and $\mathrm{V}(\mathrm{V})$ [5868].
m.p. 202-203 ${ }^{\circ}$ [5865,5866,5867,5868]; sublimation $155-160^{\circ} / 0.01 \mathrm{~mm}$ [5867]; X-ray data [5866,5869,5870].

1,1'-[Methylenebis(5-fluoro-2-hydroxy-3,1-phenylene)]bis-ethanone
m.p. $\quad 155-156^{\circ}$ [5865]; ${ }^{13} \mathrm{C}$ NMR [5865].

1-[2-[(3-Acetyl-4-hydroxyphenyl)methyl]-5-hydroxyphenyl]ethanone

1,1'-[Methylenebis(2-hydroxy-3,1-phenylene)]bis-ethanone

[60312-53-0]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 284.31
Syntheses

- Obtained by Fries rearrangement of 2,2'-diacetoxy-diphenylmethane with aluminium chloride, first at 140° for 5 min , then at $160-180^{\circ}$ for 20 min (70\%) [5865].
- Also obtained by alkaline degradation of 8,8'-bichromonyl methane (m.p. 222-223 ${ }^{\circ}$) with refluxing aqueous 10% sodium hydroxide for 20 min [5833].
m.p. $\quad 183-184^{\circ}$ [5865], $108-109^{\circ}$ [5833]. One of the reported melting points is obviously wrong. Sublimation at $220^{\circ} / 0.03 \mathrm{~mm}$ [5865];
IR [5833], MS [5865].

1,1'-[Methylenebis(4-hydroxy-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 284.31 Syntheses

- Obtained by Fries rearrangement of 2,2'-diacetoxy-diphenylmethane with aluminium chloride,
- in nitrobenzene at 45° for 3 h (30\%) [5872];
- without solvent (by-product), first at 140° for 5 min , then at $160-180^{\circ}$ for $20 \mathrm{~min}(20 \%)$ [5865].
m.p. $272-274^{\circ}$ [5872], 271-274 ${ }^{\circ}$ [5865];
sublimation at $180-190^{\circ} / 0.035 \mathrm{~mm}$ [5865]; MS [5865].

1,1'-[Methylenebis(6-hydroxy-3,1-phenylene)]bis-ethanone

[28467-22-3]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 284.31
Syntheses

- Obtained by Fries rearrangement of 4,4'-diacetoxy-diphenylmethane,
- with aluminium chloride at $130-140^{\circ}$ for $1 \mathrm{~h}(50 \%)$ [5873];
- with aluminium chloride and sodium chloride mixture at $140-150^{\circ}$ for 4 h (28\%) [5874,5875].
- Also obtained by reaction of 1,3,5-trioxane with o-hydroxyacetophenone in acetic acid in the presence of 98% sulfuric acid under nitrogen at $95-100^{\circ}$ for 24 h [5840].
- Also obtained by alkaline degradation of 6,6'-bichromonyl methane (m.p. 193-194) with refluxing aqueous 10% sodium hydroxide for 20 min [5833].
- Also refer to: [5876]. m.p. $156-157^{\circ}$ [5874,5875], $155-156^{\circ}$ [5833], 155° [5873], 130° [5840].

One of the reported melting points is obviously wrong.
IR [5840], UV [5840], MS [5840].
1,1'-[Methylenebis(2,4-dihydroxy-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31
Syntheses

- Obtained by treatment of resacetophenone with methylene iodide in the presence of ethanolic sodium ethoxide for 18 h at r.t., then for 1 h at $60-70^{\circ}$ [5877] (19\%) [5878].
- Also refer to: [5876].
m.p. 204-205 ${ }^{\circ}$ [5878]; UV [5878].

1,1'-[Methylenebis(2,5-dihydroxy-3,1-phenylene)]bis-ethanone
m.p. $227-228^{\circ}$ [5866]; IR [5866], MS [5866].

1,1'-[Methylenebis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31

Synthesis

- Obtained by heating at reflux a mixture of resaceto-phenone, 40% formaldehyde and concentrated hydrochloric acid for 2 h [5879].
m.p. $>250^{\circ}$ [5879].

1,1'-[Methylenebis(4,5,6-trihydroxy-3,1-phenylene)]bis-ethanone $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{8} \quad$ mol.wt. 348.31

Synthesis

- Obtained by reaction of formaldehyde with gallaceto-phenone in the presence of hydrogen chloride [5182,5879]. m.p. 265° [5879].

1-[3-[(3-Acetyl-4-hydroxyphenyl)methyl]-2-hydroxy-5(hydroxymethyl) phenyl]ethanone
 $2^{\prime}, 6^{\prime \prime \prime}$-Dihydroxy-5'-(hydroxymethyl)-3', $3^{\prime \prime \prime}$-methylenediacetophenone
 [30787-44-1]

 $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 314.34
 Synthesis
 - Obtained by hydrolyzing 2-hydroxy-5-(chloro-methyl)acetophenone [5880,5881].

1,1'-[Methylenebis(4-hydroxy-5-methyl-3,1-phenylene)]bis-ethanone
[38782-67-1]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37
Synthesis

- Preparation by Fries rearrangement of 2,2'-di-acetoxy-3,3'-dimethyldiphenylmethane in nitrobenzene with aluminium chloride at 60° for 3 h [5882], (59\%) [5872].
m.p. $\quad 257^{\circ}$ [5872]; ${ }^{1} \mathrm{H}$ NMR [5882], IR [5882].

1-[3-[(5-Acetyl-4-hydroxy-2-methoxyphenyl)methyl]-2-hydroxy-4methoxyphenyl]ethanone

[71204-08-5]
m.p. $\quad 161-162^{\circ}$ [4897]; ${ }^{1} \mathrm{H}$ NMR [4897].

1,1'-[Methylenebis(2,4-dihydroxy-5-methyl-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 344.36

Synthesis

- Preparation by action of 40% aqueous formaldehyde with 2,4-dihydroxy-5methylacetophenone in ethanol in the presence of concentrated sulfuric acid at $10^{\circ}(77 \%)$ [5883].
m.p. 258° (d) [5883].

1,1'-[Methylenebis(4,6-dihydroxy-5-methyl-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 344.36

Synthesis

- Preparation by action of 40% aqueous formaldehyde with 2,4-dihydroxy-3methylacetophenone in ethanol in the presence of concentrated sulfuric acid at r.t. for 3 days (68\%) [5883].
m.p. $263-264^{\circ}$ [5883].

1,1'-[Methylenebis(2-hydroxy-4-methoxy-3,1-phenylene)]bis-ethanone
[28466-42-4]
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \quad \mathrm{~mol}$.wt. 344.36

Synthesis

- Obtained by acid-catalyzed condensation of formaldehyde with 2-hydroxy-4-methoxy-acetophenone in the presence of 35% aqueous sulfuric acid [4897].
m.p. 255-256 [4897];
diacetate derivative: m.p. $\quad 161-162^{\circ}$ [4897]; ${ }^{1} \mathrm{H}$ NMR [4897].

1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-ethanone
[71204-07-4]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 344.36
Synthesis

- Obtained by acid-catalyzed condensation of formaldehyde with 2-hydroxy-4-methoxy-acetophenone in the presence of 35% aqueous sulfuric acid [4897].
m.p. 204-205 [4897]; ${ }^{1} \mathrm{H}$ NMR [4897].

1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-3,1-phenylene)]
 bis-ethanone (Didemethylpseudoaspidin)

[142382-28-3] $\quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 376.36

Isolation from natural sources

- From the roots of Euphorbia ebracteolata Hayata (Euphorbiaceae) [5884].
- From the roots of Euphorbia kansui (Euphorbiaceae) [5885].
m.p. $232-233^{\circ}$ [5885];
${ }^{1} \mathrm{H}$ NMR [5885], ${ }^{13} \mathrm{C}$ NMR [5885], IR [5885], EIMS [5885].
1,1'-[Methylenebis(2,4,6-trihydroxy-5-methyl-3,1-phenylene)]bis-ethanone

$$
\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8} \quad \text { mol.wt. } 376.36
$$

Synthesis

- Obtained by hydrolysis of 8-isobutyryl-5-methoxy-methyleneoxy-2,2-dim-ethylchroman-7-ol (SM) in the presence of 2,4,6-trihydroxy-3-methylacetophenone. The hydrolysis of SM proceeds with the liberation of formaldehyde which condenses with phenol under these acidic conditions [5716].

$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}-[M e t h y l e n e b i s(2,4-d i h y d r o x y-5,1,3-b e n z e n e t r i y l)] t e t r a k i s-e t h a n o n e ~$

[84422-46-8] $\quad \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}$ mol.wt. 400.39

Synthesis

- Obtained by reaction of formaldehyde with 3-acetylresacetophenone in the presence of dilute sulfuric acid in refluxing ethanol for 16 h (42\%) [5661].
m.p. 184° [5661]; ${ }^{1} \mathrm{H}$ NMR [5661].

$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(4,6-dihydroxy-5,1,3-benzenetriyl)]tetrakis-ethanone

$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}$
mol.wt. 400.39

Synthesis

- Obtained by acid-catalysed condensation of formaldehyde with 5-acetylresacetophenone in the presence of dilute sulfuric acid in refluxing ethanol for 30 min [5661].
m.p. $345-346^{\circ}$ [5661]; TLC [5661].
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}-[$ Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)]tetrakis-ethanone
20,

Isolation from natural sources

- From the culture fluid of Pseudomonas aurantiaca [5886].
- Also refer to: [5720] (compound 28).
m.p. 284-286 [5608].

1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)] bis-ethanone (Mallotophenone)

1,1'-[Methylenebis(6-hydroxy-4,5-dimethoxy-3,1-phenylene)]bis-ethanone

$$
\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{8} \quad \text { mol.wt. } 404.42
$$

Synthesis

- Obtained from 2-hydroxy-3,4-dime-thoxy-acetophenone with formaldehyde and 35% aqueous sulfuric acid [4897].
m.p. $\quad 141-142^{\circ}$ [4897].

$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2-hydroxy-4-methoxy-5,1,3-benzenetriyl)]tetrakisethanone

$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{8} \quad$ mol.wt. 428.44

Synthesis

- Obtained by partial methylation of 3, $3^{\prime}, 5,5^{\prime}$-tetra-acetyl-2, $2^{\prime}, 4,4^{\prime}$-tetrahydroxydiphenylmethane with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 12 h (29\%) [5661].
m.p. 132° [5661]; ${ }^{1} \mathrm{H}$ NMR [5661];

TLC [5661], column chromatography [5661].
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone
Proposed name mallotojaponin*
[86828-07-1]

$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{8} \quad$ mol.wt. 444.48
Isolation from natural sources

- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [5896]* [5887, 5889,5890,5891,5892,5893,5894, 5897,5898].
m.p. $190-191^{\circ}$ [5893], $188-189^{\circ}$ [5898];
${ }^{1} H$ NMR [5893,5898], ${ }^{13} \mathrm{C}$ NMR [5897,5898], IR [5893,5898],
UV [5893,5898], MS [5893,5898]; Cytotoxicity [5894].

1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]ethanone (proposed name mallotolerin)*
[86828-08-2] $\quad \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{9}$ mol.wt. 460.48

Isolation from natural sources

- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [5896]* [5889,5890,5891, 5892,5894], [5897,5898].
m.p. 197-199 [5898];
${ }^{1} \mathrm{H}$ NMR [5892,5898], ${ }^{13} \mathrm{C}$ NMR [5898], IR [5892,5898],
UV [5892,5898] MS [5892,5898]; Cytotoxicity [5894].

1-[3,5-Bis[(5-acetyl-2-hydroxy-3-methylphenyl)methyl]-4-hydroxyphenyl]ethanone

20.2.2 2 Halogenated Acetyl Groups

1,1'-[Methylenebis(5-chloro-2,4-dihydroxy-3,1-phenylene)]bis[2, 2,2-trifluoroethanone

m.p. 205° [4689]. \quad\begin{tabular}{l}

- | Preparation by reaction of paraformal- |
| :--- |
| dehyde with 5-chloro-2,4-dihydroxy- α, |
| α, α-trifluoro-acetophenone in methanol |
| in the presence of concentrated sulfuric |
| acid at 0° for $5 \mathrm{~h}(87 \%)$ [4689]. |

\end{tabular}

1,1'-[Methylenebis(2,4-dihydroxy-5-methyl-3,1-phenylene)]bis [2,2,2-trifluoroethanone

$$
\begin{aligned}
& \text { [65240-30-4] } \\
& \text { m.p. } 234^{\circ}[4689] \text {. }
\end{aligned} \begin{aligned}
& \text { Preparation by reaction of paraformal- } \\
& \text { dehyde with 2,4-dihydroxy-5-methyl- } \\
& \text { a, } \alpha, \alpha \text {-trifluoro-acetophenone at } 140^{\circ} \\
& (92 \%)[4689] .
\end{aligned}
$$

1,1'-[Methylenebis(4,6-dihydroxy-5-methyl-3,1-phenylene)]bis
[2,2,2-trifluoroethanone
[65240-39-3]

$\mathrm{CF}_{3} \mathrm{CO}$
m.p. 195° [4689].
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{6} \quad$ mol.wt. 452.31
Synthesis

- Preparation by reaction of paraformaldehyde with 2,4-dihydroxy-3-methyl- α, α, α-trifluoro-acetophenone in methanol in the presence of concentrated sulfuric acid at 0° for $5 \mathrm{~h}(87 \%)$ [4689].

1,1'-[Methylenebis(5-ethyl-2,4-dihydroxy-3,1-phenylene)]bis
[2,2,2-trifluoroethanone

1,1'-[Methylenebis[2,4-dihydroxy-5-(1-methylethyl)-3,1-phenylene]] bis[2,2,2-trifluoroethanone

[65240-35-9]

m.p. 140° [4689].
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{O}_{6} \quad$ mol.wt. 508.41
Synthesis

- Preparation by reaction of paraformaldehyde with 2,4-dihydroxy-5-isopropyl- α, α, α-tri-fluoroacetophenone at 140° (89\%) [4689].

1,1'-[Methylenebis[4,6-dihydroxy-5-(1-methylethyl)-3,1-phenylene]] bis[2,2,2-trifluoroethanone

$$
\begin{aligned}
& \text { (65240-38-2] } \\
& \text { m.p. } \\
& \text { formaldehyde with 2,4-dihydroxy- } \\
& \text { 3-isopropyl- } \alpha, \alpha, \alpha \text {-tri-fluoroace- } \\
& \text { tophenone at } 140^{\circ}(90 \%) \text { [4689]. }
\end{aligned}
$$

1,1'-[Methylenebis(5-butyl-2,4-dihydroxy-3,1-phenylene)]bis

[2,2,2-trifluoroethanone

[65290-78-0] $\quad \mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{O}_{6} \quad$ mol.wt. 536.47

Synthesis

- Preparation by reaction of paraformaldehyde with 5-butyl-2,4-dihydroxyα, α, α-trifluoroacetophenone at 140° (91\%) [4689].
m.p. 145° [4689].

1,1'-[Methylenebis(2,4-dihydroxy-5-pentyl-3,1-phenylene)]bis

[2,2,2-trifluoroethanone

[65240-32-6]

$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{O}_{6} \quad$ mol.wt. 564.52
Synthesis

- Preparation by reaction of paraformaldehyde with 2,4-dihydroxy-5-pentylα, α, α-trifluoro-acetophenone at 140° (90\%) [4689].
m.p. 131° [4689].

1,1'-[Methylenebis(5-cyclohexyl-2,4-dihydroxy-3,1-phenylene)]
bis[2,2,2-trifluoroethanone

1,1'-[Methylenebis(5-hexyl-2,4-dihydroxy-3,1-phenylene)] bis[2,2,2-trifluoroethanone

1,1'-[Methylenebis[2,4-dihydroxy-5-(phenylmethyl)-3,1-phenylene]]

 bis[2,2,2-trifluoroethanone

1,1'-[Methylenebis(5-dodecyl-2,4-dihydroxy-3,1-phenylene)] bis[2,2,2-trifluoroethanone

m.p. 110° [4689].
$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~F}_{6} \mathrm{O}_{6} \quad$ mol.wt. 760.90
Synthesis

- Preparation by reaction of paraformaldehyde with 2,4-dihydroxy-5-dodecylα, α, α-trifluoro-acetophenone at 140° (85\%) [4689].

20.2.3 Diphenylalkanes Derivatives and Homologues

1,1'-[1,2-Ethanediylbis(6-hydroxy-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34
Synthesis

- Preparation by Friedel-Crafts acylation of 1,2-bis(p-methoxyphenyl) ethane (m.p. 127-129 ${ }^{\circ}$) with acetyl chloride in the presence of aluminium chloride in ethylene dichloride at 65° for $2.5 \mathrm{~h}(86 \%)$ [5899].
m.p. 194-1955 [5899].

1,1'-[Ethylidenebis(4,5,6-trihydroxy-3,1-phenylene)]bis-ethanone

1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-methoxyphenyl]ethanone

[27171-77-3]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37 Syntheses

- Obtained by partial methylation of 1,2-bis-(3'-acetyl-4'-hydroxyphenyl)ethane with dimethyl sulfate in ethyl ether in the presence of 2 N aqueous potassium hydroxide at 100° for 8 h (29\%) [5899] or with methyl halide [5904].
- Also obtained by acetylation of 1,2-bis(4'-methoxyphenyl)ethane with acetyl chloride in the presence of aluminium chloride [5904].
m.p. 62-63 ${ }^{\circ}$ [5899].

1,1'-[2-Hydroxy-5-[1-(4-hydroxyphenyl)-1-methylethyl]-1,3-phenylene] bis-ethanone

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37
Syntheses

- Obtained by action of acetyl chloride with 2,2-bis (4-acetoxyphenyl)propane in ethylene dichloride in the presence of aluminium chloride at 50° for 5 h (38\%) [5905].
- Also refer to: [5906].

1,1'-[(1-Methylethylidene)bis(6-hydroxy-3,1-phenylene)]bis-ethanone
[3511-69-1]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$
mol.wt. 312.37
Syntheses

- Preparation by reaction of acetyl chloride,
- with 2,2-bis(4-ethoxyphenyl)propane (bisphenol A diethyl ether) in the presence of aluminium chloride in methylene chloride at 30° for 30 min (61\%) [5905] or in ethylene dichloride at 50° for 3 h (63-65\%) [5907];
- with 2,2-bis(4-methoxyphenyl)propane (bisphenol A dimethyl ether) in the presence of aluminium chloride in ethylene dichloride at 70° for $2 \mathrm{~h}(45 \%)$ [5908].
- Also obtained by Fries rearrangement of bisphenol A diacetate in nitrobenzene,
- in the presence of aluminium chloride, first at r.t., then at $120-130^{\circ}$ for 3 h (28\%) [5909];
- in the presence of titanium tetrachloride, first at r.t. for 24 h , then at 55° for 6 h (11\%) [5910].
m.p. $142-143^{\circ}$ [5910], $141-142^{\circ}$ [5905,5907,5908], 107-109ํ [5909].

One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [5910], ${ }^{13}$ C NMR [5910], IR [5910].

1,1'-[1,3-Propanediylbis(6-hydroxy-3,1-phenylene)]bis-ethanone

[29668-20-0]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37
Syntheses

- Obtained by Friedel-Crafts acylation of 1,3-bis(4-methoxyphenyl)propane with acetyl chloride in tetrachloroethane in the presence of aluminium chloride, first at $0-5^{\circ}$, then below 15° overnight [5875].
- Also refer to: [5911,5912,5913].
m.p. 112° [5875].

1,1'-[(2-Methoxyethylidene)bis(4,5,6-trihydroxy-3,1-phenylene)]bis-ethanone

[143868-77-3] $\quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{9} \quad$ mol.wt. 392.36

Synthesis

- Refer to: [5902] (Japanese patent).

1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-ethoxyphenyl]ethanone

Syntheses

- Obtained by partial ethylation of 1,2-bis-(3'-acetyl-4'-hydroxyphenyl)ethane with ethyl iodide in the presence of potassium carbonate in refluxing acetone for 12 h (17\%) [5899] or with ethyl halide [5904].
- Also obtained by acetylation of 1,2-bis(4-ethoxyphenyl)ethane with acetyl chloride in the presence of aluminium chloride [5904].
m.p. $75^{\circ} 5-76^{\circ}$ [5899].

1-[5-[1-(3-Acetyl-4-hydroxyphenyl)-1-methylethyl]-2-methoxyphenyl]ethanone 6^{\prime}-Hydroxy- $6^{\prime \prime \prime}$-methoxy- $3^{\prime}, 3^{\prime \prime \prime}$-isopropylidenediacetophenone

Synthesis

- Preparation by acetylation of bisphenol A dimethyl ether with acetyl chloride in the presence of aluminium chloride, and subsequent partial methylation with methyl bromide of the obtained 2,2-bis (3-acetyl-4-hydroxyphenyl)propane [5904].
${ }^{1} H$ NMR [5904], IR [5904].

1,1'-[5-[1-(3-Acetyl-4-hydroxyphenyl)-1-methylethyl]-2-hydroxy-1,3-phenylene]bis-ethanone

Synthesis

- Obtained by action of acetyl chloride with 2,2-bis (4-acetoxyphenyl)propane in ethylene dichloride in the presence of aluminium chloride at 50° for 30 h (15\%) [5905].
m.p. $111^{\circ} 5-112^{\circ}$ [5905].

1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-isopropoxyphenyl]ethanone

S34036-60-7]
hydroxyphenyl)ethane with isopropyl iodide in the presence of potassium
hydroxide in ethanol at 80° for $14 \mathrm{~h}(25 \%)$ [5899].
m.p. $70-71^{\circ}$ [5899].

1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-propoxyphenyl]ethanone

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 340.42
Synthesis

- Preparation by acetylation of 1,2-bis-(4-hydroxyphenyl)ethane diisopropyl ether with acetyl chloride in the presence of aluminium chloride and subsequent partial alkylation of the obtained 1,2-bis(3-acetyl-4-hydroxy-phenyl) ethane with isopropyl bromide (or chloride) [5904].
${ }^{1} \mathrm{H}$ NMR [5904].
1,1'-[(1-Ethylpropylidene)bis(6-hydroxy-3,1-phenylene)]bis-ethanone
[20636-45-7] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$ mol.wt. 340.42
 Syntheses
- Refer to: [5907,5914].

1,1'-[1,6-Hexanediylbis(6-hydroxy-3,1-phenylene)]bis-ethanone

[29668-19-7]

mol.wt. 354.45
Synthesis

- Obtained by Friedel-Crafts acylation of 1,6-bis-(4-methoxyphenyl)hexane with acetyl chloride in the presence of aluminium chloride in tetrachloro-ethane, first at $0-5^{\circ}$, then below 15° overnight (65\%) [5875].
m.p. $97-98^{\circ}$ [5875].

1,1'-[[(4-Chlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)] bis-ethanone
$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClO}_{8} \quad$ mol.wt. 458.85

Synthesis

- Obtained by condensation of 1 mol of p-chloro-benzaldehyde (m.p. 47-50 ${ }^{\circ}$) with two mol of gallacetophenone [5182].
m.p. $230-231^{\circ}$ [5182].

1, $1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[(1-Methylethylidene)bis(2-hydroxy-5,1,3-benzenetriyl)] tetrakis-ethanone

$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 396.44
Syntheses

- Preparation by Friedel-Crafts acylation of 2,2-bis (4-ethoxyphenyl)propane (bisphenol A diethyl ether) with acetyl chloride in ethylene dichloride in the presence of aluminium chloride at 60° for $7 \mathrm{~h}(52 \%)$ [5905].
- Also obtained by Fries rearrangement of 2,2-bis(4-acetoxyphenyl)propane (bisphenol A diacetate) with aluminium chloride in an acetyl chloride/ethylene dichloride mixture at 50° for $30 \mathrm{~h}(10 \%)$ [5905].
m.p. $204^{\circ} 5-205^{\circ}$ [5905].

20.2.4 Diphenyl Ethers and Related Compounds

1,1'-[Oxybis(6-hydroxy-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28
Syntheses

- Obtained by Fries rearrangement of 4,4'-diacetoxy-diphenyl ether with aluminium chloride and sodium chloride at $140-$ 150° for 4 h [5875] or at 140° for 3 h (40\%) [5915].
- Also refer to: [5874,5876]. m.p. 185° [5915], 181-183$~[5875] . ~$.

1-[5-(2-Acetyl-3,6-dihydroxyphenoxy)-2-hydroxyphenyl]ethanone
[72926-21-7] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28

Synthesis

- Preparation by adding an aqueous solution of sodium hydrosulfite to an ethereal solution of 2-acetyl-3-(3-acetyl-4-hydroxyphenoxy)-1, 4-benzoquinone (m.p. $120-121^{\circ}$) and stirring the mixture at r.t. for $30 \mathrm{~min}(80 \%)$ [5916].
'H NMR [5916].

1,1'-[1,2-Ethanediylbis[0xy(6-hydroxy-2,1-phenylene)]]bis-ethanone
[16139-62-1] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6}$ mol.wt. 330.34

Syntheses

- Obtained by reaction of 1,2-dibromoethane with 2,6-di-hydroxyacetophenone
in the presence of potassium carbonate in refluxing acetone for 48 h [5875] or for 72 h [5917].
- Also refer to: [5918].
m.p. $188-189^{\circ}$ [5875,5917].

1,1'-[1,3-Propanediylbis[oxy(6-hydroxy-2,1-phenylene)]]bis-ethanone
[16150-42-8] $\quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 344.36

Synthesis

- Obtained by reaction of 1,3-dibromopropane with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 48 h [5875].
m.p. $184-185^{\circ}$ [5875].

1-[4-[3-(2-Acetyl-3-hydroxyphenoxy)-2-hydroxypropoxy]-2-hydroxyphenyl]ethanone

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{7}$ mol.wt. 360.36
Synthesis

- Obtained by reaction of 2-(3-chloro-2-hydroxypro-poxy)-6-hydroxyacetophenone
(SM) with resaceto-phenone in the presence of potassium carbonate in refluxing acetone for $48 \mathrm{~h}(31 \%)$. SM was prepared by reaction of epichlorohydrin with 2,6-dihydroxyacetophenone in the presence of benzyltrimethylammonium hydroxide in dioxane at 100° for $72 \mathrm{~h}(37 \%$, oil) [5875].
m.p. $182-185^{\circ}$ [5875].

1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-2,1-phenylene)]] bis-ethanone

- with 1,3-dichloro-2-propanol [5919], in the presence of potassium carbonate in refluxing acetone for 72 h [5917];
- with 1,3-dibromo-2-propanol in the presence of potassium carbonate in refluxing acetone for $48 \mathrm{~h}(21 \%)$ [5875].
- with epichlorohydrin in the presence of potassium hydroxide in refluxing isopropanol for 48 h (59\%) [5875].
m.p. $165-166^{\circ}[5875,5917]$.

1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-3,1-phenylene)]] bis-ethanone

[16139-50-7]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{7}$ mol.wt. 360.36
Syntheses

- Obtained by reaction of 1 , 3-dibromo-2-hydroxypropane with 2,5-dihydroxy- acetophenone (quinacetophenone) in the presence of potassium carbonate in refluxing acetone for 48 h [5875].
- Also obtained by reaction of epichlorohydrin with quinacetophenone in the presence of potassium hydroxide in boiling isopropanol for 48 h [5875].
m.p. $127-129^{\circ}$ [5875].

1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(2-hydroxy-4,1-phenylene)]] bis-ethanone

[16139-45-0] $\quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{7}$ mol.wt. 360.36

with resacetophenone in the presence of potassium carbonate in refluxing acetone for 48 h [5875].

- Also obtained by reaction of epichlorohydrin with resacetophenone in the presence of potassium hydroxide, in boiling acetone for 48 h [5875] or in boiling water for 3 h (20\%) (by-product) [5920].
- Also obtained by heating a mixture of epichlorohydrin, sodium, ethanol and resacetophenone under reflux for 4 h [5920].
m.p. $178-180^{\circ}$ [5875], 161° [5920]. One of the reported melting points is obviously wrong.

1,1'-[1,4-Butanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone

[16129-95-6]
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 358.39

Synthesis

- Preparation by reaction of 1,4-dibromobutane with 2,6-di-hydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 72 h [5917] or for 48 h [5875].
m.p. $219-221^{\circ}[5875,5917]$.

1,1'-[1,5-Pentanediylbis[0xy(5-chloro-6-hydroxy-2,1-phenylene)]]bis-ethanone
$2^{\prime}, 2^{\prime \prime \prime}$-(Pentamethylenedioxy)bis [5'-chloro-6'-hydroxyacetophenone
[16130-26-0] $\quad \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{6} \quad$ mol.wt. 441.31

Synthesis

- Preparation by reaction of 1,5dibromopentane with 3-chloro-2, 6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 72 h [5917].
m.p. 96° [5917].

1-[4-[[5-(2-Acetyl-3-hydroxyphenoxy)pentyl]oxy]-2-hydroxyphenyl]ethanone
[16130-20-4]

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 372.42
Syntheses

- Obtained by reaction of 2-(5-bro-mopentyloxy)-6-hydroxyacetophenone (SM) with resaceto-phenone in the presence of potassium carbonate in refluxing acetone for $18 \mathrm{~h}(60 \%)$. SM was formed by reaction of 1,5-dibromopentane with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 20 h (oil, 50\%) [5875].
- Also refer to: [5917].
m.p. 91-915 [5875,5917].

1,1'-[1,5-Pentanediylbis[oxy(2-hydroxy-3,1-phenylene)]]bis-ethanone
[16139-26-7]

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 372.42
Synthesis

- Obtained by reaction of 1,5-dibromopentane with 2,3-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 48 h [5875,5917].
m.p. $103^{\circ} 5-104^{\circ} 5[5875,5917]$.

1,1'-[1,5-Pentanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-ethanone
[37086-37-6]

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \quad \mathrm{~mol} . w t .372 .42$ Synthesis

- Obtained by reaction of 1,5-dibromo-pentane with resacetophenone in the presence of potassium carbonate in refluxing acetone for 48 h [5875].
m.p. $119-121^{\circ}$ [5875].

1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-2,1-phenylene)]]bis-ethanone
 [16130-01-1] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 372.42

 Synthesis
 - Preparation by reaction of 1,5-dibromopentane with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 72 h [5917] or for 48 h [5875].
 m.p. $131-133^{\circ}$ [5875,5917].

1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-3,1-phenylene)]]bis-ethanone
[16139-42-7] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 372.42

Synthesis

- Obtained by reaction of 1,5-dibromopentane with quinacetophenone in the presence of potassium carbonate in refluxing acetone for 48 h [5875,5917].
m.p. $107-109^{\circ}[5875,5917]$.

1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-4-methoxy-2,1-phenylene)]]bis-ethanone
[23937-88-4]

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{9} \quad$ mol.wt. 420.42
Syntheses

- Obtained by reaction of 1,3-dibromo-2-hydroxypropane with 2,6-dihydroxy-4methoxyacetophenone in the presence of potassium carbonate in refluxing acetone for 48 h [5875].
- Also obtained by reaction of epichlorohydrin with 2,6-dihydroxy-4-methoxyacetophenone in the presence of potassium hydroxide in refluxing isopropanol for 48 h [5875].
m.p. $108-182^{\circ}$ [5875]. A typing error probably occurred in the published data.

1,1'-[1,6-Hexanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone

[16130-02-2]
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6} \quad$ mol.wt. 386.44
$\mathrm{HO} \quad \mathrm{COCH}_{3} \mathrm{CH}_{3} \mathrm{CO} \quad \mathrm{OH}$ Synthesis

- Preparation by reaction of 1,6-dibromohexane with 2,6-di-hydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 72 h [5917] or for 48 h [5875].
m.p. $147^{\circ} 5-148^{\circ} 5[5875,5917]$.

1,1'-[1,5-Pentanediylbis[0xy(2-hydroxy-3-methyl-4,1-phenylene)]] bis-ethanone

 $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6} \quad$ mol.wt. 400.47

Synthesis

- Preparation by reaction of 1,5-dibromo-pentane with
2,4-dihydroxy-3-methyl-acetophenone in the presence of potassium carbonate in refluxing acetone for 72 h [5917].
m.p. $116-117^{\circ}$ [5917].

1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-4-methoxy-2,1-phenylene)]]bis-ethanone
[23937-90-8] $\quad \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8} \quad \mathrm{~mol} . w t .432 .47$

Synthesis

- Obtained by reaction of 1,5-dibromopentane with 2,6 -dihydroxy-4methoxyacetophenone in the presence of potassium carbonate in refluxing acetone for 48 h [5875].
m.p $146-147^{\circ}$ [5875].

1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-4-methoxy-3,1-phenylene)]]bis-ethanone

[23937-59-9]

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8} \quad$ mol.wt. 432.47
Synthesis

- Obtained by reaction of 1,5-dibromopentane with 2,5 -dihydroxy-4methoxyacetophenone in the presence of potassium carbonate in refluxing acetone for 48 h [5875].
m.p. $145-148^{\circ}$ [5875].

1,1'-[1,8-Octanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone

[16139-58-5]
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6}$
mol.wt. 414.50

Synthesis

- Preparation by reaction of 1,8-dibromooctane with 2,6-di-hydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 72 h [5917] or for 48 h [5875].
m.p. $108-109^{\circ}$ [5875], 107-109$~[5917] . ~$.

1,1'-[1,9-Nonanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone

$$
[16139-60-9] \quad \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{6} \quad \text { mol.wt. } 428.53
$$

Synthesis

- Preparation by reaction of 1,9-dibromononane with 2,6-di-hydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 72 h [5917] or for 48 h [5875].
m.p. $55-59^{\circ}[5875,5917]$.

1,1'-[1,10-Decanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone

[16258-59-6] $\quad \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6} \quad$ mol.wt. 442.55

Synthesis

- Preparation by reaction of 1,10-dibromodecane with 2,6-dihydroxyacetophenone in the presence of potassium carbonate in refluxing acetone for 72 h [5917] or for 48 h [5875].
m.p. $102^{\circ} 5-104^{\circ}[5875,5917]$.

20.2.5 Diphenyl Sulfide Derivatives and Related Compounds

20.2.5.1 Diphenyl Sulfide Derivatives

1,1v-[Thiobis(5-bromo-6-hydroxy-3,1-phenylene)]bis[2,2-dibromoethanone

$$
\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Br}_{6} \mathrm{O}_{4} \mathrm{~S} \quad \text { mol.wt. } 775.73
$$

Synthesis

- Obtained by reaction of excess bromine with 3,3'-diacetyl-4,4'-dihydroxydiphenyl sulfide in acetic acid in a boiling water bath for 3 h [4530].
m.p. $168-170^{\circ}$ [4530].

1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis[2,2,2-trifluoroethanone

[65239-96-5]

$\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 442.29
Synthesis

- Obtained by Friedel-Crafts acylation of 2, $2^{\prime}, 4,4^{\prime}$-tetrahydroxydiphenylsulfide with trifluoroacetic anhydride in the presence of aluminium chloride in ethylene dichloride at r.t. (10\%) [4689].
m.p. 172° [4689].

1, $\mathbf{1}^{\prime}$-[Thiobis(5-Bromo-6-hydroxy-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 460.14

Synthesis

- Obtained by reaction of bromine with 3,3'-di-acetyl-4,4'-dihydroxydiphenyl sulfide in acetic acid, first at 90°, then at r.t. for 6 h [4530].
m.p. $218-219^{\circ}$ [4530].

1,1'-[Thiobis(4-hydroxy-5-nitro-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 392.35

Synthesis

- Obtained by reaction of thionyl chloride with 4-hydroxy-3-nitroacetophenone in the presence of copper, first at r.t. overnight, then at reflux for 30 min [5921].
m.p. $>300^{\circ}$ [5921].
$1,1^{\prime}$-[Thiobis(6-hydroxy-5-nitro-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 392.35

Synthesis

- Obtained by reaction of 3,3'-diacetyl-4,4'-di-hydroxydiphenyl sulfide with dilute nitric acid at reflux for 2 h [4530].
m.p. $206-208^{\circ}$ [4530].
$1,1^{\prime}$-[Thiobis(6-hydroxy-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 302.35

Syntheses

- Obtained by reaction of thionyl chloride or sulfur dichloride with o-hydroxyacetophenone in the presence of copper powder, first at r.t. overnight, then in a boiling water bath for 10 min [4530].
- Also refer to: [5922].
m.p. $196-197^{\circ}$ [4530].

1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone

[56923-41-2]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 334.35
Syntheses

- Obtained by reaction of thionyl chloride with resacetophenone in chloroform in the presence of copper powder, first at 0°, then at r.t. overnight and, the next day, at reflux $\left(60^{\circ}\right)$ for $5 \mathrm{~min}(11 \%)$ [5923].
- Also refer to: [5922].
m.p. $209-210^{\circ}$ [5923].

1,1'-[Thiobis(2-hydroxy-6-methoxy-3,1-phenylene)]bis-ethanone

[103154-01-4]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 362.40
Syntheses

- Obtained by reaction of thionyl chloride with 2-hydroxy-6-methoxyacetophenone in chloroform in the presence of copper powder at r.t. overnight (23\%) [4457].
- Also obtained by reaction of sulfur monochloride or sulfur dichloride with 2-hydroxy-6-methoxy-acetophenone in ethyl ether, first at 0° for 1 h and at r.t. overnight ($<15 \%$) [4457].
m.p. $184-185^{\circ}$ [4457].

1,1'-[Thiobis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-ethanone
[56923-42-3] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 362.40

Syntheses

- Obtained by reaction of thionyl chloride with paeonol in chloroform in the presence of copper powder, first at r.t. overnight, then at 60° for 10 min (19\%) [4467].
- Also refer to: [5922].
m.p. $223-224^{\circ}$ [4467].

1,1'-[Thiobis[4-(benzoyloxy)-6-hydroxy-3,1-phenylene]]bis-ethanone
[56923-50-3]

$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 542.57

Syntheses

- Obtained by reaction of thionyl chloride or sulfur dichloride with 4-(benzoyloxy)-2-hydroxy-acetophenone in the presence of copper powder in chloroform at 60° for 10 min [5924].
- Also refer to: [5922].
$1,1^{\prime}$-[Thiobis[6-hydroxy-4-(phenylmethoxy)-3,1-phenylene]]bis-ethanone
[56923-49-0] $\quad \mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 514.60

Syntheses

- Obtained by reaction of thionyl chloride or sulfur chloridewith4-(benzyloxy)-2-hydroxy-acetophenone in chloroform in the presence of copper powder, first at 0°, then at r.t. overnight and at 60° for 10 min [5925].
- Also refer to: [5922].
m.p. 202-203 ${ }^{\circ}$ [5925].

20.2.5.2 Diphenyl Sulfone Derivatives

1,1'-[Sulfonylbis(4-hydroxy-5-nitro-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S} \quad$ mol.wt. 424.34

Synthesis

- Obtained by oxidation of 5,5'-diacetyl-2,2'-dihydroxy-3,3'-dinitrodiphenyl sulfide with hydrogen peroxide in acetone at r.t. overnight (74\%) [5921].
m.p. 135° [5921].

1,1'-[Sulfonylbis(4-hydroxy-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 334.35

Synthesis

- Obtained by oxidation of 5,5'-diacetyl-$2,2^{\prime}$-dihydroxy-diphenyl sulfide with hydrogen peroxide in acetone at r.t. overnight (73\%) [5921].

$$
\text { m.p. }>300^{\circ}[5921] .
$$

1,1'-[Sulfonylbis(6-hydroxy-3,1-phenylene)]bis-ethanone

[56923-31-0]
N.B.: The UV irradiation of a diester solution in 0.02 M acetonitrile does not lead to the above mentioned diketone.

- Also obtained by Fries rearrangement of 4,4'-diacetoxydiphenyl sulfone with aluminium chloride (5 equiv.) at $150-160^{\circ}$ for 5 h (30\%) [5915].
- Also obtained by oxidation of 3,3'-diacetyl-4,4'-dihydroxydiphenyl sulfide with hydrogen peroxide (73\%) [5915] according to [5921] or with 30% hydrogen peroxide in acetic acid at r.t. for $48 \mathrm{~h}(63 \%)$ [5922].
- Also obtained by alkaline degradation of 6,6'-bichromonyl sulfone (m.p. 266$268^{\circ}$) with refluxing aqueous 10% sodium hydroxide for 20 min [5833].
- Also refer to: [5927].
m.p. $189-190^{\circ}$ [5915], 189° [5921,5922], 187-188 ${ }^{\circ}$ [5833], $186^{\circ} 6$ [5926];
${ }^{1} \mathrm{H}$ NMR [5926], IR [5922], UV [5922].

$1,1^{\prime}$-[Sulfonylbis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 366.35 Synthesis

- Obtained by oxidation of 5,5'-diacetyl-2,2'-4,4'-tetra-hydroxydiphenyl sulfide with 30% hydrogen peroxide in acetic acid at r.t. for $48 \mathrm{~h}(75 \%)$ [5922] or in acetone at r.t. overnight (73\%) [5921].
m.p. 195° [5921,5922]; IR [5922], UV [5922].

1,1'-[Sulfonylbis(6-hydroxy-4-methoxy-5-nitro-3,1-phenylene)]bis-ethanone

$$
\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S} \quad \text { mol.wt. } 484.40
$$

Synthesis

- Obtained by nitration of 3, 3^{\prime}-diacetyl-4,4'-dihydroxy-6,6'-dimethoxydiphenyl sulfone in concentrated sulfuric acid with concentrated nitric acid at 60° for 15 min [5922].

1,1'-[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-ethanone

[56923-33-2]
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{8} \mathrm{~S}$
Synthesis

- Obtained by oxidation of 3,3'-diacetyl-4,4'-di-hydroxy-6,6'-dimethoxydiphenyl sulfide with 30% hydrogen peroxide in acetic acid at r.t. for 48 h (68\%) [5922].
m.p. 281-282 ${ }^{\circ}$ [5922]; IR [5922], UV [5922].

1,1'-[Sulfonylbis[4-(benzoyloxy)-6-hydroxy-5-nitro-3,1-phenylene]] bis-ethanone

$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{~S} \quad$ mol.wt. 664.56
Synthesis

- Obtained by nitration of 5,5'-diacetyl-2,2'-bis(benzoyloxy)-4,4'-dihydroxy-diphenyl sulfone in concentrated sulfuric acid with concentrated nitric acid at 50° for $15 \min$ [5922].

1,1'-[Sulfonylbis[4-(benzoyloxy)-6-hydroxy-3,1-phenylene]]bis-ethanone

$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{10} \mathrm{~S} \quad$ mol.wt. 574.56
Synthesis

- Obtained by oxidation of 5,5'-diacetyl-2,2'-bis(benzoyloxy)-4,4'-dihydroxy-diphenyl sulfide with 30% hydrogen peroxide in acetic acid at r.t. for $48 \mathrm{~h}(71 \%)$ [5922].
m.p. 245-246 [5922]; IR [5922], UV [5922].

$1,1^{\prime}$-[Sulfonybis[6-hydroxy-5-nitro-4-(phenylmethoxy)-3,1-phenylene]] bis-ethanone

$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S} \quad$ mol.wt. 636.59
 diacetyl-2,2'-bis(benzyloxy)-4,4'-dihydroxy-diphenyl sulfone in concentrated
sulfuric acid with concentrated nitric acid at 60° for 15 min [5922].
1,1'-[Sulfonylbis[6-hydroxy-4-(phenylmethoxy)-3,1-phenylene]]bis-ethanone
[56923-34-3] $\quad \mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S} \quad$ mol.wt. 546.60

Synthesis

- Obtained by oxidation of 5, 5'-diacetyl-2,2'-bis(benz-yloxy)-4,4'-dihydroxydiphenyl sulfide with 30% hydrogen peroxide in acetic acid at r.t. for 48 h (75\%) [5922].
m.p. $222-223^{\circ}$ [5922]; IR [5922], UV [5922].

Chapter 21

Aromatic Ketones Containing At Least One Acetyl Group and One Other Acyl Group

21.1 Acyl Groups Located on One Ring

21.1.1 Diphenyl Ketone Derivatives

1-(3-Benzoyl-2,4-dihydroxy-5-nitrophenyl)ethanone

[54917-81-6]
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{6}$
mol.wt. 301.26

Synthesis

- Obtained by heating 3-benzoyl-2,4-dihy-droxy-acetophenone-4- β-D-glucopyranoside with dilute nitric acid for $3 \mathrm{~min}(44 \%)$ [5928].
N.B: A sesquihydrate was obtained by crystallisation of the ketone in water [5928]. The melting point is determined after water elimination $\left(100^{\circ} / 0.04 \mathrm{~mm} / 1 \mathrm{~h}\right)$. m.p. $114-118^{\circ}$ [5928].

1-(3-Benzoyl-4-hydroxyphenyl)ethanone

[13043-37-3]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$
Synthesis

- Refer to: [5929,5930].

1-(4-Benzoyl-3-hydroxyphenyl)ethanone

[39954-75-1]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 240.26
Synthesis

- Obtained by alkaline hydrolysis of 3-(benzoy-loxy)-4-benzoylacetophenone (SM) (m.p. 88°)
with sodium hydroxide in boiling ethanol for 15 min . SM was prepared by oxidation of 6-acetyl-2,3-diphenyl-benzofuran (m.p. 119°) with chromium trioxide in acetic acid at $70-75^{\circ}$ for 2 h [5931].
m.p. 103° [5931]; IR [5931].

1-(5-Benzoyl-2-hydroxyphenyl)ethanone

[2589-80-2] \begin{tabular}{l}
Syntheses

- Obtained by Fries rearrangement of

4-(acetyloxy)-benzophenone with alumin-
ium chloride $(3.3 \mathrm{~mol})$ at $150-160^{\circ}$ for 1 h
[5628].

\end{tabular}

- Also obtained by hydrolysis of 3-acetyl-4-(acetyloxy)-benzophenone [5932].
- Also refer to: [5929].

$$
\text { m.p. 102-103º [5628], 95-96 [5932]; }{ }^{1} \mathrm{H} \text { NMR [5932], IR [5932], MS [5932]. }
$$

1-(3-Benzoyl-2,4,6-trihydroxyphenyl)ethanone

[31188-65-5]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 272.26
Syntheses

- Preparation by C-acetylation of 2-benzoylphloroglucinol with boron trifluoride-acetic acid complex (76\%) [5933].
- Also refer to: [5929,5934].
m.p. $145-146^{\circ}$ [5933].

1-(4-Benzoyl-3-hydroxy-2-methylphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29
Synthesis

- Obtained by alkaline hydrolysis of 4-ben-zoyl-3-benzoyl-oxy-2-methylacetophenone (m.p. 102°) [5935].
m.p. 39° [5935]; IR [5935].

1-(4-Benzoyl-5-hydroxy-2-methylphenyl)ethanone

[39954-81-9]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29
Synthesis

- Obtained by alkaline hydrolysis of 3-(benzoyloxy)-4-benzoyl-6-methylacetophenone (m.p. 135°) (SM) with sodium hydroxide in boiling ethanol for 15 min . SM
was obtained by oxidation of 6-acetyl-5-methyl-2,3-diphenyl-benzofuran (m.p. 133°) with chromium trioxide in acetic acid at $70-75^{\circ}$ for 2 h [5931].
m.p. 92° [5931]; IR [5931].

1-(5-Benzoyl-4-hydroxy-2-methylphenyl)ethanone

[51846-51-6]

m.p. $108-112^{\circ}$ [5935]; \quad IR [5935].

1-(3-Benzoyl-2-hydroxy-4,6-dimethylphenyl)ethanone

[84312-32-3]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31
Synthesis

- Obtained by UV light irradiation of 2-acetyl-3,5-di-methylphenyl benzoate in benzene for 10 h (13\%) [5936].
m.p. 138-139 [5936]; ${ }^{1} \mathrm{H}$ NMR [5936], IR [5936], UV [5936], MS [5936].

1-(3-Benzoyl-6-hydroxy-2,4-dimethylphenyl)ethanone

[84312-33-4]
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31

Synthesis

- Obtained by UV light irradiation of 2-acetyl-3,5-dimethyl-phenyl benzoate in benzene for $10 \mathrm{~h}(6 \%)$ [5936].
m.p. 61-65${ }^{\circ}$ [5936]; ${ }^{1} \mathrm{H}$ NMR [5936], IR [5936], UV [5936], MS [5936].

1-(4-Benzoyl-3-hydroxy-2,5-dimethylphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31
Synthesis

- Obtained by alkaline hydrolysis of 4-benzoyl-3-benzoyl-oxy-2,5-dimethylacetophenone (m.p. 145-146 ${ }^{\circ}$) [5935].
m.p. $95-102^{\circ}$ [5935].

1-[3-Benzoyl-4-(β-D-galactopyranosyloxy)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{9} \quad$ mol.wt. 418.40
Synthesis

- Obtained by action of 4-formyl-1,2-phenylene dibenzoate with 2-hydroxy-4-(β-D-galactopyranosyloxy)-acetophenone in acetone in the presence of 2 N aqueous sodium hydroxide at $20^{\circ}(16 \%)$ [5928].
m.p. $\quad 199-201^{\circ}[5928] ; \quad(\alpha)_{\mathrm{D}}^{18}=+78^{\circ}(\mathrm{c}=0.4$ in pyridine $)$ [5928].

1-[3-Benzoyl-4-(β-D-glucopyranosyloxy)-2-hydroxyphenyl]ethanone

1-(4-Benzoyl-3-hydroxy-5-methyl-6-nitro[1,1'-biphenyl]-2-yl)ethanone

[85450-70-0]
$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{5} \quad$ mol.wt. 375.38
Synthesis

- Obtained (by-product) by reaction of 1,3-dibenzoyl-4,6-dimethylpyrone with nitromethane in tert-butanol in the presence of potassium tert-butoxide at 60° for 4 h (13\%) [5809].
m.p. $141-142^{\circ}$ [5809].

1-(6-Amino-4-benzoyl-3-hydroxy-5-methyl[1,1'-biphenyl]-2-yl)ethanone

[85450-81-3]

m.p. $120-123^{\circ}$ [5809].
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}$
mol.wt. 345.40
Synthesis

- Obtained (poor yield) by catalytic hydrogenation of 3-acetyl-2-hydroxy-6-methyl-5-nitro-4-phenyl-benzophenone in ethanol in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 40° for 3 days (9\%) [5809].

21.1.2 Miscellaneous

1-(3-Acetyl-4-hydroxyphenyl)-1-propanone

1-(5-Acetyl-2-hydroxyphenyl)-1-propanone

[36039-26-6] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad m o l . w t .192 .20$

Syntheses

- Preparation by Fries rearrangement of p-(propionyloxy)acetophenone with aluminium chloride (4 mol) without solvent at 150° for $3 \mathrm{~h}(62 \%)$ [5626].
- Also obtained by Friedel-Crafts acylation of p-hydroxyacetophenone with propionyl chloride in the presence of aluminium chloride (4 $\mathrm{mol})$ in tetrachloroethane at 130° for $4 \mathrm{~h}(47 \%)$ [5626].
- Also obtained by deacylation of 2-(LD-2'-acetoxypropionyloxy)-5-acetylpropiophenone (24\%) [5633].
m.p. $67-69^{\circ}$ [5626]; ${ }^{1} \mathrm{H}$ NMR [5626], IR [5626].

1-(5-Acetyl-2-hydroxyphenyl)-1-butanone

[92757-66-9] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad m o l . w t .206 .24$

Syntheses

- Preparation by Fries rearrangement of p-(butyryloxy)acetophenone with aluminium chloride (4 mol) without solvent at 150° for $3 \mathrm{~h}(58 \%)$ [5626].
- Also obtained by Friedel-Crafts acylation of p-hydroxyacetophenone with butyryl chloride in the presence of aluminium chloride (4 mol) in tetrachloroethane at 130° for $4 \mathrm{~h}(47 \%)$ [5626].
m.p. $\quad 54-55^{\circ}$ [5626]; ${ }^{1} \mathrm{H}$ NMR [5626], IR [5626].

1-(5-Acetyl-2-hydroxyphenyl)-3-methyl-2-buten-1-one

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 218.25
Isolation from natural sources

- From the aerial parts of Ophryosporus floribundus (Compositae, tribe Eupatorieae) [5636].
- From the leaves of ageratina altissima (L) K. et R. (Compositae) [5938].
- From the aerial parts of senecio behnii Ric. et Martic [5939].
- From the aerial parts of Ophryosporus charua (Griseb.) Hieron (Compositae) [5940].
- From Ophryosporus chilca [5940].
m.p. $75^{\circ} 5$ [5938]; TLC [5938];
${ }^{1} \mathrm{H}$ NMR [5938], IR [5938], UV [5938], MS [5938].

1-(5-Acetyl-2-hydroxyphenyl)-3-methyl-1-butanone

[62458-64-4]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Syntheses

- Preparation by Fries rearrangement of p-acetylphenyl isovalerate without solvent in the presence of aluminium chloride at $140-160^{\circ}$ for $2.5 \mathrm{~h}(51 \%)$ [5941] or at 150° for $3 \mathrm{~h}(32 \%)$ [5626].
- Also obtained by Friedel-Crafts acylation of p-hydroxy-acetophenone with isovaleryl chloride (4 mol) in tetrachloroethane at 130° for $4 \mathrm{~h}(37 \%)$ [5626].

Isolation from natural sources

- From the genus Flourensia cernua DC (Compositae) [5942].
- From the aerial parts of Ophryosporus floribundus (Compositae, tribe Eupatorieae) [5636].
- From sliced yacon tubers after inoculation with the bacterium Pseudomonas cichorii and incubation at 20° for 3 days, then extraction with acetone. Yacon (Polymnia sonchifolia) (Compositae) is cultivated in South America and has recently been introduced in Japan [5943].
Colourless oil [5942];
m.p. $94^{\circ} 5-96^{\circ}$ [5943]; 64-66º [5626], $61^{\circ} 5$ [5941].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5626,5942,5943], ${ }^{13} \mathrm{C}$ NMR [5943], IR [5626,5942,5943], UV [5943], MS [5942,5943].

1-(5-Acetyl-2-hydroxyphenyl)-1-hexanone

[92757-67-0]
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 234.30

Syntheses

- Obtained by Fries rearrangement of p-(caproyloxy)-acetophenone with aluminium chloride (4 mol) without solvent at 150° for 3 h (37\%) [5626].
- Also obtained by Friedel-Crafts acylation of p-hydroxy-acetophenone with caproyl chloride in the presence of aluminium chloride in tetrachloroethane at 130° for $4 \mathrm{~h}(39 \%)$ [5626].
m.p. $\quad 52^{\circ}$ [5626]; ${ }^{1} \mathrm{H}$ NMR [5626], IR [5626].

1-(3-Acetyl-2,4-dihydroxyphenyl)-3-phenyl-2-propen-1-one

[116470-07-6]
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 282.30
[84422-44-6] (E)
Synthesis

- Obtained by reaction of benzaldehyde with 2,4-diacetyl-resorcinol in ethanol in the presence of concentrated aqueous potassium hydroxide at r.t. (Claisen-Schmidt condensation), for 48 h (34\%) [5661] or for 24 h (9\%) [5658].
m.p. 149° [5658], 134° [5661]; TLC [5658,5661].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [5658,5661], IR [5658], UV [5658], MS [5658].

1-(5-Acetyl-2,4-dihydroxyphenyl)-3-phenyl-2-propen-1-one (E)

1-[5-Acetyl-2-hydroxy-3-(1-hydroxy-3-methyl-2-butenyl)phenyl]-3-methyl-1-butanone

[94413-27-1]
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 292.38
 Isolation from natural sources

- From the aerial parts of Ophryosporus peruvianus (Gmel.) K. et R. (Compositae) [5945].

1-[5-Acetyl-2-hydroxy-3-(3-methyl-1,3-butadienyl)phenyl]-3-methyl-1-butanone (E)

[148707-32-8]

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}$ mol.wt. 286.37
Synthesis
N.B.: After several days in a CDCl_{3} solution used for the ${ }^{1} \mathrm{H}$ NMR measurements, 3-(3-hydroxy-3-methyl-1-butenyl)-5-isovaleryl-p-hydroxy-acetophenone (E) was converted into the titled substance [5946].
${ }^{1} \mathrm{H}$ NMR [5946].
1-[5-Acetyl-2-hydroxy-3-(3-methyl-2-butenyl)phenyl]-3-methyl-2-buten-1-one (Piloselloidon)
[94413-26-0] $\quad \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 286.37
 Isolation from natural sources

- From the roots of Gerbera piloselloidesCass.(Compositae, tribe Arctotideae) [5947].
- From the aerial parts of Ophryosporus chilca (Compositae,tribeEupatorieae) [5945].
- From the aerial parts of Ophryosporus peruvianus (Compositae) [5945].

Colourless oil [5947]; TLC [5945]; ${ }^{1} H$ NMR [5947], IR [5947], MS [5947].
1-[5-Acetyl-2-hydroxy-3-(3-hydroxy-3-methyl-1-butenyl)phenyl]-3-methyl-1butanone (E)
[54963-60-9]

$$
\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \quad \text { mol.wt. } 304.39
$$

 Isolation from natural sources

- From the aerial parts of Ophryosporus charua (Griseb.) Hieron (Compo-sitae) [5940].
- From the aerial parts of Ophryosporus macrodon Griseb. (Compositae, tribe Eupatorieae) [5946].
m.p. 103-105 ${ }^{\circ}$ [5946]; ${ }^{1} \mathrm{H}$ NMR [5946], MS [5946].

1,1'-(5-Acetyl-2-hydroxy-1,3-phenylene)bis[3-methylbutanone

[94413-28-2]

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 304.39
Isolation from natural sources

- From the aerial parts of Ophryosporus peruvianus (Gmel.) K.et R. (Compositae) [5945].
${ }^{1} \mathrm{H}$ NMR [5945], IR [5945], MS [5945]; TLC [5945].
1-(3-Acetyl-2,4-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)-2-propen-1-one
[116470-11-2]
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$
mol.wt. 342.35

Synthesis

- Obtained by reaction of veratraldehyde with 2,4-diacetylresorcinol in ethanol in the presence of aqueous potassium hydroxide at r.t. for 24 h (18\%) [5658].
m.p. 189-190² [5658]; TLC [5658];
${ }^{1} \mathrm{H}$ NMR [5658], IR [5658], UV [5658], MS [5658].

1-(3-Acetyl-2,6-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)-2-propen-1-one

[116470-10-1]

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 342.35
Synthesis

- Obtained (by-product) by reaction of veratraldehyde with 2,4-diacetylresorcinol in ethanol in the presence of aqueous potassium hydroxide at r.t. for 24 h (6\%) [5658].
m.p. 164° [5658]; TLC [5658]; ${ }^{1} \mathrm{H}$ NMR [5658], IR [5658], UV [5658], MS [5658].

21.2 Acyl Groups Located on Different Rings

21.2.1 Diphenyl Ketone Derivatives

Symmetrical ketones

1,1'-[Carbonylbis(5-bromo-2-hydroxy-3,1-phenylene)]bis-ethanone
[83143-07-1]
$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{5}$
mol.wt. 456.09

Synthesis

- Preparation by Fries rearrangement of 2,2'-di-acetoxy-5,5'-dibromobenzophenone with aluminium chloride at $160-180^{\circ}$ for $20 \mathrm{~min}(50 \%)$ [5865].
m.p. $230-231^{\circ}$ [5865].

1,1'-[Carbonylbis(5-chloro-2-hydroxy-3,1-phenylene)]bis-ethanone

[83143-06-0]

$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{5} \quad$ mol.wt. 367.18
Synthesis

- Preparation by Fries rearrangement of 2,2'-di-acetoxy-5,5'-dichlorobenzophenone with aluminium chloride,
- at $160-180^{\circ}$ for $20 \mathrm{~min}(80 \%)$ [5865];
- at $170-180^{\circ}$ for $30 \mathrm{~min}(80 \%)$ [5867].
m.p. $222-224^{\circ}[5865,5867]$.
N.B.: Na salt, m.p. $>360^{\circ}$ [5867].

1,1'-[Carbonylbis(5-fluoro-2-hydroxy-3,1-phenylene)]bis-ethanone

[83143-05-9]

$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{5}$
mol.wt. 334.28
Synthesis

- Preparation by Fries rearrangement of 2,2'-di-acetoxy-5,5'-difluorobenzophenone with aluminium chloride at $160-180^{\circ}$ for $20 \mathrm{~min}(72 \%)$ [5865].
m.p. $149-150^{\circ}$ [5865].

1,1'-[Carbonylbis(2-hydroxy-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$
mol.wt. 298.30

Synthesis

- Preparation by Fries rearrangement of 2,2'-di-acetoxybenzophenone with aluminium chloride at $160-180^{\circ}$ for $20 \mathrm{~min}(63 \%)$ [5865].
m.p. $170-171^{\circ}$ [5865].

1,1'-[Carbonylbis(4-hydroxy-3,1-phenylene)]bis-ethanone

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 298.30

Synthesis

- Obtained (by-product) by Fries rearrangement of $2,2^{\prime}$-diacetoxybenzophenone with aluminium chloride at $160-180^{\circ}$ for 20 min (10\%) [5865].

1,1'-[Carbonylbis(6-hydroxy-3,1-phenylene)]bis-ethanone
[20795-69-1]

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 298.30
Syntheses

- Obtained by Fries rearrangement of 4,4'-diacetoxy-benzophenone,
- with aluminium chloride at 140° for 4 h (40\%) [5948];
- with aluminium chloride and sodium chloride at $140-150^{\circ}$ for 6 h [5875].
- Also obtained by alkaline degradation of 6,6'-bichromonyl ketone (m.p. 249-250) with refluxing 10% aqueous sodium hydroxide for 20 min [5833].
m.p. $182-183^{\circ}$ [5948], $180-181^{\circ}$ [5833], $174-176^{\circ}$ [5875].

1,1'-[Carbonylbis(2,5-dihydroxy-3,1-phenylene)]bis-ethanone

[78563-21-0]

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{7} \quad$ mol.wt. 330.29
Synthesis

- Obtained by Fries rearrangement of 2,2',5,5'-tetra-acetoxybenzophenone with aluminium chloride at $175-178^{\circ}$ for $20 \mathrm{~min}(30 \%)$ [5866].
m.p. $>300^{\circ}$ [5866].
N.B.: This ketone (5d) was characterized by its corresponding tetraacetate ($\mathbf{5 d}_{1}$) m.p. 254-256 ${ }^{\circ}$ [5866]; IR [5866], MS [5866].

1,1'-[Carbonylbis(5-amino-2-hydroxy-3,1-phenylene)]bis-ethanone

[78563-23-2]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$
mol.wt. 328.31
Synthesis

- Preparation by Fries rearrangement of 5,5'-di-acetamido-2,2'-diacetoxybenzophenone with aluminium chloride at $175-178^{\circ}$ for $20 \mathrm{~min}(80 \%)$ [5866].
m.p. 254-255 ${ }^{\circ}$ [5866]; IR [5866], MS [5866].

Asymmetrical ketones
1-[5-(5-Chloro-2-hydroxybenzoyl)-2-hydroxyphenyl]ethanone
[220042-68-2]

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{4}$
Synthesis

- Obtained (20% yield) by adding a solution of 6-chloro-4-oxo-4 H -1-ben-zopyran-3-carboxaldehyde in acetic acid to a preheated $\left(70-80^{\circ}\right)$ mixture of acetylacetone in acetic acid containing a catalytic amount of concentrated hydrochloric acid [5949].
m.p. 144° [5949]; ${ }^{1} \mathrm{H}$ NMR [5949], IR [5949].

1-[2-Hydroxy-5-(2-hydroxy-5-nitrobenzoyl)phenyl]ethanone

[220042-69-3]

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{6}$
Synthesis

- Obtained (30% yield) by adding a solution of 6-nitro-4-oxo-4 H -1-benzo-pyran-3-carboxaldehyde in acetic acid to a preheated $\left(70-80^{\circ}\right)$ mixture of acetylacetone in acetic acid containing a catalytic amount of concentrated hydrochloric acid [5949].
m.p. 174° [5949]; ${ }^{1} \mathrm{H}$ NMR [5949], IR [5949].

1-[2-(2-Hydroxybenzoyl)phenyl]ethanone

[17526-21-5]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 240.26
Synthesis

- Refer to: [5929].

1-[2-(2,4-Dihydroxybenzoyl)phenyl]ethanone

[36414-93-4]
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$
mol.wt. 256.26

Syntheses

- Refer to: [5929,5950].

1-[2-Hydroxy-5-(2-hydroxybenzoyl)phenyl]ethanone

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 256.26
Syntheses

- Obtained (17% yield) by adding a solution of 4-oxo-4H-1-benzopyran-3-carboxaldehyde in acetic acid to a preheated $\left(70-80^{\circ}\right)$ mixture of acetylacetone in acetic acid containing a catalytic amount of concentrated hydrochloric acid [5949].
- Also refer to: [5929].
m.p. 128° [5949]; ${ }^{1} \mathrm{H}$ NMR [5949], IR [5949].

1-[2-Hydroxy-5-(2-hydroxy-5-methylbenzoyl)phenyl]ethanone
[220042-67-1]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28
Synthesis

- Obtained (15% yield) by adding a solution of 6-methyl-4-oxo-4H-1-benzopyran-3-carboxaldehyde in acetic acid to a preheated ($70-80^{\circ}$) mixture of acetylacetone in acetic acid containing a catalytic amount of concentrated hydrochloric acid [5949].
m.p. 141° [5949]; ${ }^{1} \mathrm{H}$ NMR [5949], IR [5949].

1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone

(Baishouwubenzophenone)
[115834-34-9] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28

Isolation from natural sources

- From Baishouwu, the botanical source of which being chiefly the tuber of Cynanchum auriculatum Royleex Wight(Asclepiadaceae) [5951].
- Also refer to: [5929].
${ }^{1} \mathrm{H}$ NMR [5951], ${ }^{13} \mathrm{C}$ NMR [5951], IR [5951], UV [5951], MS [5951].

1-[3-(3-Acetyl-4-hydroxybenzoyl)-2-hydroxyphenyl]ethanone

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 298.30

Synthesis

- Obtained (by-product) by Fries rearrangement of 2,4'-diacetoxybenzophenone with aluminium chloride at $158-160^{\circ}$ for $2 \mathrm{~h}(<2 \%)$ [5952].
m.p. 152° [5952]; IR [5952].

1-[3-(3-Acetyl-4-hydroxybenzoyl)-4-hydroxyphenyl]ethanone

[124208-68-0]
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 298.30

Synthesis

- Preparation by Fries rearrangement of $2,4^{\prime}$-di-acetoxybenzophenone with aluminium chloride at $158-160^{\circ}$ for 2 h (60\%) [5952].
m.p. 184-185 ${ }^{\circ}$ [5952]; IR [5952].

1-[4-Hydroxy-3-(4-hydroxy-3-methoxybenzoyl)-5-methoxyphenyl]ethanone

[147904-65-2] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 316.31

Synthesis

- Obtained by alkaline CuO oxidation of lignin (compound Vo5Vn) named 5-vanilloacetovanillone [5851].

GC [5851], GC-MS [5851].
1-[3-(3,4-Dihydroxy-5-methoxybenzoyl)-4-hydroxy-5-methoxyphenyl]ethanone
[147904-69-6]
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{7}$
mol.wt. 332.31

Synthesis

- Obtained by alkaline CuO oxidation of lignin [5851].
GC [5851], GC-MS [5851].
1-[4-Hydroxy-3-(4-hydroxy-3-methoxy-5-methylbenzoyl)-5-methoxyphenyl] ethanone

GC [5851], GC-MS [5851].

1-[4-Hydroxy-3-(4-hydroxy-3,5-dimethoxybenzoyl)-5-methoxyphenyl]ethanone

$$
\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7} \quad \text { mol.wt. } 346.34
$$

Synthesis

- Obtained by alkaline CuO oxidation of lignin (compound $\mathbf{S . 5 V n}$) named 5-syringoacetovanillon [5851].

GC [5851], GC-MS [5851].

21.2.2 Miscellaneous

2,2'-Thiobis-1-(3,4-dihydroxyphenyl)ethanone

1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[2-methoxyethanone]
[71204-18-7]

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{8} \quad$ mol.wt. 404.42 Synthesis

- Obtainedfrom2-hydroxy4, α-di-methoxyacetophenone with formaldehyde and 35% aqueous sulfuric acid [4897].
m.p. 152° [4897]; (dibenzoate: m.p. 95-96) [4897].

1-(2,4-Dihydroxyphenyl)-2-[4-[2-(2,4-dihydroxyphenyl)-2-oxoethyl]phenyl] ethanone
$\alpha \alpha, \alpha$-bis-(2,4-dihydroxybenzoyl)-p-xylene
[97829-54-4]
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 378.38

Syntheses

- Preparation by reaction of 1,4-di-cyanobenzene (terephthalonitrile) with resorcinol (Hoesch reaction) (52\%) [5954].
- Also refer to: [5955].
m.p. 282° (d) $[5954,5955]$.

1,1'-[[(3,4-Dichlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)] bis-ethanone

$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{8} \quad$ mol.wt. 493.30

Synthesis

- Obtained by condensation of 1 mol of 3,4-dichloro-benzaldehyde (m.p. $41-44^{\circ}$) with 2 mol of gallacetophenone [5182].
m.p. $259-260^{\circ}$ [5182].

1,1'-[(Phenylmethylene)bis(4,5,6-trihydroxy-3,1-phenylene)]bis-ethanone $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 424.41

Synthesis

- Obtained by condensation of benzaldehyde (1 mol) with gallacetophenone (2 mol) in saturated ethanol with hydrogen chloride [5182,5956].
- dihydrate [5956]; m.p. 226° [5956].

1,1'-[Methylenebis(2-hydroxy-4,6-dimethoxy-3,1-phenylene)]bis[2-methoxyethanone
[71204-19-8]

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{10} \quad \mathrm{~mol} . \mathrm{w} .464 .47$ Synthesis

- Obtainedfrom2-hydroxy-4,6,a-tri-methoxyacetophenone on refluxing with formaldehyde and 35% aqueous sulfuric acid [4897].
176-178º [4897].

1-[3-[(5-Benzoyl-2,4-dihydroxy-3-methylphenyl)methyl]-2,4-dihydroxy-5-methylphenyl]ethanone

1,1'-[[(4-Hydroxy-3-methoxyphenyl)methylene]bis(4,6-dihydroxy-3,1-phenylene)] bis-ethanone

1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-5-(2,3-dihy-droxy-3-methylbutyl)-2,4,6-trihydroxyphenyl]ethanone
(Mallotojaponol)
[131836-01-6] (racemic) $\quad \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{10} \quad$ mol.wt. 478.18

Isolation from natural sources

- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [5896].
m.p. $150-151^{\circ}$ [5896];
$n_{\mathrm{D}}^{23}=0^{\circ}$ (c = 0.1 in chloroform) [5896];
${ }^{1} H$ NMR [5896], IR [5896], UV [5896], EIMS [5896].
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihy-droxy-5-(3-methyl-2-butenyl)phenyl]-1-butanone
(Butyrylmallotojaponin)
[96853-73-5]

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{8} \quad$ mol.wt. 72.54 Isolation from natural sources
- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [5887, 5893, 5892-5894, 5899, 5897].
${ }^{1} \mathrm{H}$ NMR [5897], ${ }^{13} \mathrm{C}$ NMR [5897], IR [5897], MS [5897]; Cytotoxicity [5894].

1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihy-droxy- 5-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone
(Isobutyrylmallotojaponin)

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{8} \quad$ mol.wt. 72.54

Isolation from natural sources

- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [5887, 5890, 5892-5894, 5896, 5897].
${ }^{1} \mathrm{H}$ NMR [5897], ${ }^{13} \mathrm{C}$ NMR [5897], IR [5897], MS [5897]; Cytotoxicity [5894].
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihy-droxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-1-butanone

Proposed name butyrylmallotolerin* (old name mallotolerin)**
[102904-17-6] (racemic)
[130778-21-1] (optical isomer not indicated)

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{9} \quad$ mol.wt. 88.54

Isolation from natural sources

- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [5896],* [5887,5888,5889,5890, 5892],** [5894].
m.p. $197-198^{\circ}$ [5892];
${ }^{1} \mathrm{H}$ NMR [5889,5892], ${ }^{13} \mathrm{C}$ NMR [5888,5889,5892], IR [5892], UV [5892], MS [5892];
Cytotoxicity [5894].
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihy-droxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-2-methyl-1-propanone

Proposed name isobutyrylmallotolerin* (old name Isomallotolerin)
[126026-30-0]

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{9} \quad$ mol.wt. 488.54
Isolation from natural sources

- From the pericarps of Mallotus japonicus Muell. Arg. (Euphorbiaceae) [5896],* [5887,5888, 5889,5890].
m.p. $216-217^{\circ}$ [5888];
$(\alpha)_{D}^{23}=0^{\circ}(\mathrm{c}=0.63$ in chloroform) [5888];
${ }^{1} \mathrm{H}$ NMR [5888,5889], ${ }^{13} \mathrm{C}$ NMR [5888,5889], IR [5888], UV [5888], MS [5888].

1,1'-[(Phenylmethylene)bis(4-ethoxy-6-hydroxy-3,1-phenylene)]bis-ethanone $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{6} \quad$ mol.wt. 448.52

Synthesis

- Obtained by condensation of resacetophenone 4-ethyl ether (2 mol) with benzaldehyde (1 mol) in the presence of hydrogen chloride in ethanol [5956].
m.p. 211° [5956].

1,1'-[Methylenebis(2,4-dihydroxy-3,1-phenylene)]bis[2-phenylethanone

$$
\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6} \quad \text { mol.wt. } 468.50
$$

Synthesis

- Obtained by treatment of 2,4-dihydroxy-deoxybenzoin with methylene iodide in the presence of sodium ethoxide in ethanol (29\%) [595].
m.p. $191-192^{\circ}$ [5878]; IR [5878], UV [5878].

1,1'-[Methylenebis(2,4,6-trihydroxy-3,1-phenylene)]bis-[2-phenoxyethanone

[243465-50-1]
$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{10}$
mol.wt. 532.50

Synthesis

- The Mannich reaction of α-phenoxy-2,4,6-trihydroxy-acetophenone with aminoacids
led to the exclusive formation of bis-(α-phenoxy-2,4,6-trihydroxy-acetophenon3 -yl)methane (26\%) [5022].
m.p. 239° [5022]; ${ }^{1} \mathrm{H}$ NMR [5022].

1,1'-[Methylenebis(5-acetyl-4,6-dihydroxy-3,1-phenylene)]bis-[3-phenyl-2-propen-1-one

[84422-51-5] (E,E)

$\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{O}_{8}$ mol.wt. 576.60 Synthesis

- Obtained by reaction of benzaldehyde with 3,3',5,5'-tetra-acetyl2,2', 4,4'-tetrahydroxydiphenylmethane in
ethanol in the presence of aqueous potassium hydroxide, first with shaking for 30 min , then the reaction mixture was kept in the refrigerator for $48 \mathrm{~h}(10 \%)$ [5661]. m.p. 220° [5661]; ${ }^{1} \mathrm{H}$ NMR [5661]; TLC [5661], column chromatography [5661].

Part IX
 Addendum to Volume 3

Chapter 22
 Addendum 2005-2008

Monoketones Substituted on the Acetyl Groups

Chapter 11. Compounds Derived from Halogenoacetic Acids [5958] p. 1201

11.1 Compounds Derived from Bromoacetic Acids [5958] p. 1201

11.1.1 From Monobromoacetic Acid [5958] p. 1201

2-Bromo-1-(3-chloro-4-hydroxyphenyl)ethanone
[41877-19-4] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49

Methyl ether $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2}$ mol.wt. 263.52

- Preparation by reaction of bromine with 3-chloro-4-methoxyacetophenone in acetic acid in the presence of concentrated hydrochloric acid at r.t. for 3.5 h (88\%) [5959]. Yellow solid [5959]; ${ }^{1} \mathrm{H}$ NMR [5959].

2-Bromo-1-(4-chloro-2-hydroxyphenyl)ethanone

[157068-00-3]	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49
Described [5958] p. 1203	
Slanthesis	

2-Bromo-1-(5-chloro-2-hydroxyphenyl)ethanone

[52727-99-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49

2-Bromo-1-(3-hydroxy-4-nitrophenyl)ethanone

m.p. 89° [5963]; IR [5964].

Methyl ether [90725-63-6] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{4} \quad$ mol.wt. 274.07

- Obtained by reaction of bromine with 3-methoxy-4-nitroacetophenone in acetic acid [5965].
- Also obtained from 3-methoxy-4-nitrotoluene (multi-step reaction) [5965].
- Also obtained from 3-methoxy-4-nitrobenzoic acid (multi-step reaction) [5965].
- Also obtained from 3-methoxy-4-nitrobenzoyl chloride (multi-step reaction) [5965].
- Also refer to: $[5966,5967]$.
m.p. $90-91.5^{\circ}$ [5965].

2-Bromo-1-(4-hydroxy-3-nitrophenyl)ethanone

[5029-61-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4} \quad$ mol.wt. 260.04

Methyl ether [65447-49-6] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{4} \quad$ mol.wt. 274.07

- Obtained by reaction of bromine with 4-hydroxy-3-nitroacetophenone in chloroform [5969,5970].
- Also obtained by reaction of pyridinium hydrobromide perbromide with 4-methoxy-3-nitro-acetophenone in THF at r.t. for 3 h [5971].
- Also refer to: [5972].
m.p. 96° [5970], $95-96^{\circ}$ [5972]; ${ }^{1} \mathrm{H}$ NMR [5972], IR [5972].

2-Bromo-1-(3,4-dihydroxy-5-nitrophenyl)ethanone

[134610-95-0]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{5}$
mol.wt. 276.04
 Described [5958] p. 1205
Synthesis

- Also refer to: [5973].

2-Bromo-1-(5-bromo-2-hydroxyphenyl)ethanone
[67029-74-7] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 293.94

Methyl ether [67639-58-1] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97

- Refer to: [5974,5975,5976,5977].

2-Bromo-1-(2-hydroxyphenyl)ethanone

[2491-36-3] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05

Described [5958] p. 1206
Syntheses

- Also refer to: $[5960,5978,5979]$.

Methyl ether [31949-21-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

- Also obtained according to the procedure of Buckman (80\%) [5980].
- Also refer to: [5981,5982,5983].
b.p. 130° [5980]; ${ }^{1} \mathrm{H}$ NMR [5980], IR [5980].

Benzyl ether $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}$ mol.wt. 305.17

- Obtained by reaction of bromine with 2-(benzyloxy)acetophenone in diethyl ether (65\%) [5984]. m.p. $\quad 79-81^{\circ}$ [5984]; ${ }^{1} \mathrm{H}$ NMR [5984]; GC-MS [5984].

2-Bromo-1-(3-hydroxyphenyl)ethanone
$\begin{array}{ll}\text { [2491-37-4] } & \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad \text { mol.wt. } 215.05 \\ \text { Described [5958] p. 1207 } \\ \text { Syntheses } \\ \text { - } & \text { - Also refer to: [5985,5986,5987,5988] }\end{array}$

Methyl ether [5000-65-7] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

- Obtained by reaction of bromine with 3-methoxyacetophenone in chloroform at 0° for 3 h (88%) [5989].
- Also refer to: [5981,5983,5990,5991,5992,5993,5994,5995].

Benzyl ether $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}$ mol.wt. 305.17

- Obtained by reaction of bromine with 3-(benzyloxy)acetophenone in diethyl ether (70\%) [5984].
m.p. $\quad 58-60^{\circ}$ [5984]; ${ }^{1} \mathrm{H}$ NMR [5984]; GC-MS [5984].

Benzoate $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}_{3}$ mol.wt. $319.15 \mathrm{~m} . \mathrm{p}$. $104-105^{\circ}$ [5996]
2-Bromo-1-(4-hydroxyphenyl)ethanone
[2491-38-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2} \quad$ mol.wt. 215.05
 Described [5958] p. 1207
Syntheses

- Also obtained by reaction of pyridinium hydrobromide perbromide with 4-hydroxyacetophenone in THF at r.t. for 3 h [5971].
- Also refer to: [5977,5985,5997,5998,5999,6000,6001,6002, 6003,6004,6005,6006,6007].
Methyl ether [2632-13-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07
- Obtained by reaction of N -bromosuccinimide (NBS) with 4-methoxyacetophenone in the presence of trimethylsilyl trifluoromethanesulfonate (TMS-OTf) in acetonitrile at r.t. for 24 h (87\%) [6008].
- Also obtained by reaction of pyridinium hydrobromide perbromide with 4-methoxyacetophenone in THF at r.t. for 3 h [5971].
- Also refer to: [5994,5999,6009].

Benzyl ether [4254-67-5] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 305.17

- Obtained by reaction of bromine with 4-benzyloxyacetophenone in methanol in the presence of concentrated hydrochloric acid at $0-5^{\circ}$ for 1 h , then at r.t. for another 1 h (90\%) [6010].
- Also refer to: [6011,6012,6013,6014,6015,6016,6017].
m.p. $83-84^{\circ}$ [6011], 82° [6010], 68° [6012].

One of the reported melting points is obviously wrong. ${ }^{1} \mathrm{H}$ NMR [6010,6012,6015], IR [6010], MS [6010].

2-Bromo-1-(2,4-dihydroxyphenyl)ethanone

$\begin{aligned} {[2491-39-6] } & \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad \text { mol.wt. } 231.05 \\ \mathrm{OH} & \text { Described [5958] p. } 1208\end{aligned}$

Synthesis

- Also refer to: [5985].

Dimethyl ether [60965-26-6] $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10

- Refer to: [5981,6018,6019,6020].

2-Bromo-1-(2,5-dihydroxyphenyl)ethanone
[25015-91-2] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05

Described [5958] p. 1208
Synthesis

- Also refer to: [5985].

Dimethyl ether [1204-21-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10

- Obtained by bromination of 2,5-dimethoxyacetophenone using polymersupported pyridinium bromide perbromide in chloroform at r.t. [6021].
- Also obtained by a halogen-exchange reaction [6022].
- Also refer to: [5981,5994,6018,6023,6024,6025,6026,6027].

2-Bromo-1-(3,4-dihydroxyphenyl)ethanone

mol.wt. 231.05
 Described [5958] p. 1209 Syntheses

- Also refer to: [6028,6029,6030].

Dimethyl ether [1835-02-5] $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$ mol.wt. 259.10

- Obtained by reaction of bromine with acetoveratrone in chloroform at r.t. (84\%) [6031].
- Also obtained by reaction of pyridinium bromide with 3,4-dimethoxyacetophenone in a mixture of chloroform and ethanol [6032].
- Also obtained by reaction of pyridinium hydrobromide perbromide with 3,4-dimethoxy-acetophenone in THF at r.t. for 3 h [5971].
- Also obtained by bromination of 3,4-dimethoxyacetophenone using polymersupported pyridinium bromide perbromide in chloroform at r.t. [6021].
- Also obtained by reaction of bromine with 3,4-dimethoxyacetophenone in chloroform at r.t. for $1 \mathrm{~h}(58 \%)$ [6033].
- Also refer to: [6009,6020,6026,6027,6034,6035]. m.p. $80-81^{\circ}$ [6031].

Diacetate $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}_{5} \quad$ mol.wt. 315.12

- Preparation by bubbling bromine vapours with nitrogen into a concentrated solution of 3,4-diacetoxyacetophenone in chloroform (71\%) [6036].
m.p. 99.2-99.8 ${ }^{\circ}$ [6036].

2-Bromo-1-(3,5-dihydroxyphenyl)ethanone

[62932-92-7]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3} \quad$ mol.wt. 231.05

Described [5958] p. 1210
Syntheses

- Also obtained by treatment of 3,5-dihydroxyacetophenone with cupric bromide in boiling ethyl acetate for 2.5 h [6037].
- Also obtained by treatment of its diacetyl ester (I) with hydrobromic acid in boiling dilute ethanol for 30 min . I was prepared by reaction of bromine with 3,5-diacetoxyacetophenone in chloroform at r.t. for 30 min [6038].

Dimethyl ether [50841-50-4] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 259.10

- Refer to: [6023,6026,6034,6039].

Dibenzyl ether [28924-18-7] $\quad \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrO}_{3} \quad$ mol.wt. 411.30

- Refer to: [6040,6041].

2-Bromo-1-(2,3,4-trihydroxyphenyl)ethanone
[105190-52-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4} \quad$ mol.wt. 247.05

Trimethyl ether [103477-58-3] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4} \quad$ mol.wt. 289.13

- Refer to: [6042].

2-Bromo-1-(3,4,5-trihydroxyphenyl)ethanone
[111011-09-7] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4} \quad$ mol.wt. 247.05

Trimethyl ether [51490-01-8]
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4} \quad$ mol.wt. 289.13

- Refer to: [6009,6023,6034,6043].

2-Bromo-1-(2-chloro-4-methoxyphenyl)ethanone
 [30095-51-3] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2} \quad$ mol.wt. 263.52

 New compound
 Synthesis
 - Refer to: [6044].

2-Bromo-1-(3-fluoro-4-methoxyphenyl)ethanone
[350-27-6] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrFO}_{2} \quad$ mol.wt. 247.06

New compound
Synthesis

- Refer to: [6045].

2-Bromo-1-(2-hydroxy-5-methyl-3-nitrophenyl)ethanone
[685892-02-8]
 $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{4} \quad$ mol.wt. 274.07 New compound

Syntheses

- Refer to: [6046,6047].

Benzoate [36695-28-0]

2-Bromo-1-(3-bromo-2-hydroxy-5-methylphenyl)ethanone
[194226-50-1] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97

Described [5958] p. 1212
Syntheses

- Also refer to: [6046,6047].

2-Bromo-1-(4-bromo-2-methoxyphenyl)ethanone
[252561-75-4]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97
New compound
Synthesis

- Refer to: [6049].

2-Bromo-1-(2-hydroxy-4-methylphenyl)ethanone

[144219-74-9]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$
mol.wt. 229.07

Described [5958] p. 1213
Synthesis

- Also obtained by reaction of cupric bromide with 2-hydroxy-4-methylacetophenone in boiling ethyl acetate/chloroform mixture for $8 \mathrm{~h}(82 \%)$ [6050].
${ }^{1} \mathrm{H}$ NMR [6050].
Methyl ether [145964-98-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10
- Obtained by bromination of 2-methoxy-4-methylacetophenone in ethyl ether [6051].
- Also refer to: [5966,6052].
b.p. ${ }_{15} 190^{\circ}$ [6051].

BIOLOGICAL DATA: Phytotoxic activity [6052]; phytogrow-inhibitory activity on seeds of Amaranthus hypochondriacus, Echinochloa crus-galli and Medicago sativa [6052].

Benzyl ether [860782-82-7] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{2} \quad$ mol.wt. 319.20

- Obtained by reaction of bromine with 2-benzyloxy-4-methylacetophenone in benzene, first at 0°, then at r.t. for $4 \mathrm{~h}(40 \%)$ [6052].

White solid; m.p. 84° [6052]; ${ }^{1} \mathrm{H}$ NMR [6052], ${ }^{13} \mathrm{C}$ NMR [6052], IR [6052], MS [6052].
BIOLOGICAL DATA: Phytotoxic activity [6052]; phytogrow-inhibitory activity on seeds of Amaranthus hypochondriacus, Echinochloa crus-galli and Medicago sativa [6052].

2-Bromo-1-(2-hydroxy-5-methylphenyl)ethanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

Described [5958] p. 1213
Syntheses

- Also refer to: [6046,6047].

Benzyl ether $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{2} \quad$ mol.wt. 319.20

- Obtained by reaction of bromine with 2-benzyloxy-5-methylacetophenone in methanol in the presence of concentrated hydrochloric acid at $0-5^{\circ}$ for 1 h , then at r.t. for another 1 h (89\%) [6010].
m.p. 115° [6010]; ${ }^{1} \mathrm{H}$ NMR [6010], IR [6010], MS [6010].

2-Bromo-1-(4-hydroxy-3-methylphenyl)ethanone
[41877-17-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

- Obtained by reaction of bromine with 4-benzyloxy-3-methylacetophenone in methanol in the presence of concentrated hydrochloric acid first at $0-5^{\circ}$ for 1 h , then at r.t. for $1 \mathrm{~h}(71 \%)$ [6010].
m.p. $\quad 170^{\circ}$ [6010]; ${ }^{1} \mathrm{H}$ NMR [6010], ${ }^{13} \mathrm{C}$ NMR [6010], IR [6010], MS [6010].

2-Bromo-1-[4-hydroxy-3-(hydroxymethyl)phenyl]ethanone
[62932-94-9] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07

Described [5958] p. 1214
Synthesis

- Obtained by treatment of its diacetate with 1 N hydrogen bromide in tetrahydrofuran at 75° [6053].

4-Benzyl ether [324556-80-1] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3} \quad$ mol.wt. 335.20

- Obtained by reaction of bromine with 4-benzyloxy-3-hydroxymethylacetophenone in methanol in the presence of concentrated hydrochloric acid first at $0-5^{\circ}$ for 1 h , then at r.t. for $1 \mathrm{~h}(70 \%)$ [6010].
- Also refer to: [6013,6014,6054].
m.p. 130° [6010]; ${ }^{1} \mathrm{H}$ NMR [6010], ${ }^{13} \mathrm{C}$ NMR [6010], IR [6010], MS [6010].

2-Bromo-1-(2-hydroxy-4-methoxyphenyl)ethanone
[60965-24-4]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
Described [5958] p. 1214
Synthesis

- Also refer to: [5960].

2-Bromo-1-(2-hydroxy-5-methoxyphenyl)ethanone
[203524-87-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07

Described [5958] p. 1215
Syntheses

- Also refer to: [5961,6055].

Benzyl ether [857561-04-7] $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3} \quad$ mol.wt. 335.20

- Obtained by bromination of 2-benzyloxy-5-methoxyacetophenone,
- using polymer-supported pyridinium bromide perbromide in chloroform ($\mu \mathrm{w}$, 300 sec) at 60° [6021];
- with bromine in water at r.t. [6021].

2-Bromo-1-(3-hydroxy-4-methoxyphenyl)ethanone

[90971-90-7]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07

Described [5958] p. 1215

Benzyl ether $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3} \quad$ mol.wt. 335.20

- Obtained by reaction of pyridinium hydrobromide perbromide with 3-benzy-loxy-4-methoxy-acetophenone in THF at r.t. for 3 h [5971].

2-Bromo-1-(4-hydroxy-3-methoxyphenyl)ethanone
[69638-06-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad m o l . w t .245 .07$

Acetate [50893-83-9] $\quad \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 287.11

- Refer to: [6056].

2-Bromo-1-(2,3-dihydroxy-4-methoxyphenyl)ethanone

[204648-67-9]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4} \quad$ mol.wt. 261.07
Described [5958] p. 1216
Synthesis

- Also refer to: [6057].

Methyl 3-(Bromoacetyl)-4-hydroxybenzoate
[71620-33-2] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{4} \quad$ mol.wt. 273.08

New compound

Synthesis

- Obtained by adding methyl 3-acetyl-4-hydroxybenzoate in a chloroform and ethyl acetate mixture to a suspension of CuBr_{2} in the same solvent. Then the resulting mixture was refluxed for $6 \mathrm{~h}(49 \%)$ [6058].
m.p. $98-99^{\circ}$ [6058].

Methyl 5-(Bromoacetyl)-2-hydroxybenzoate
[36256-45-8]
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{4}$
mol.wt. 273.08

New compound

Synthesis

- Obtained by reaction of dioxane dibromide with methyl 5-acetyl-2-hydroxybenzoate in dioxane/ethyl ether mixture (76\%) [6059].

Benzoate $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{5} \quad$ mol.wt. 377.19

- Refer to: [6054]

2-Bromo-1-(2,5-dimethoxy-4-nitrophenyl)ethanone
[851531-99-2]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}_{5} \quad$ mol.wt. 304.10
New compound
Synthesis

- Refer to: [6039].

2-Bromo-1-(3,6-dimethoxy-2-nitrophenyl)ethanone
[99057-95-1]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}_{5} \quad$ mol.wt. 304.10

New compound

Synthesis

- Refer to: [6039].

2-Bromo-1-(4,5-dimethoxy-2-nitrophenyl)ethanone

2-Bromo-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5} \quad$ mol.wt. 291.10

Described [5958] p. 1220
Synthesis

- Preparation by reaction of N -bromosuccinimide with 2,4-dihydroxy-3,6-dimethoxyacetophenone [6060]. m.p. $159-160^{\circ}$ [6060].

2-Bromo-1-(2-methoxy-4,5-dimethylphenyl)ethanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 257.13

New compound
Synthesis

- Obtained by bromination of 2-methoxy-4,5-dimethyl-acetophenone [6051].

2-Bromo-1-(2,4,5-trimethoxyphenyl)ethanone

[7298-46-6] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4} \quad$ mol.wt. 289.13

New compound

Synthesis

- Obtained by reaction of bromoacetonitrile with 1,2,4-trimethoxybenzene (Hoesch reaction) [6061].
USE: Intermediate in lamellarin-S synthesis [6061].
2-Bromo-1-(2-hydroxy-3,4,6-trimethoxyphenyl)ethanone
[91335-60-3] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{5} \quad$ mol.wt. 305.13

New compound
Synthesis

- Obtained by bromination under UV light of 2-ace-toxy-3,4,6-trimethoxyacetophenone followed by hydrolysis of the product with methanolic hydrochloric acid [6060] according to the process [6062].

2-Bromo-1-(5-butyl-2-methoxyphenyl)ethanone

1-[2,6-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-bromoethanone
[1019197-17-1]

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2} \quad$ mol.wt. 327.26
New compound
Synthesis

- Refer to: [6064].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-bromoethanone
[14386-64-2] $\quad \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2} \quad$ mol.wt. 327.26

Described [5958] p. 1223
Syntheses

- Also obtained by reaction of bromine with 4-hydroxy-3,5-ditert-butylacetophenone in the presence of aluminium chloride in octane at 70° for $30 \mathrm{~min}(91 \%)$ [6065].
- Also obtained by reaction of bromine with 4-hydroxy-3,5-di-tert-butylacetophenone [6066] in octane or isooctane [6067].
- Also refer to: [6064,6068].
m.p. $95-97^{\circ}$ [6065].

11.1.2 From Dibromoacetic Acid [5958] p. 1224

2,2-Dibromo-1-(4-hydroxyphenyl)ethanone
[92596-96-8] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \quad m o l . w t .293 .94$

Described [5958] p. 1226
Synthesis

- Also refer to: [5958].

Methyl ether [13664-92-1] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97 [5990]
2,2-Dibromo-1-[3-(hydroxymethyl)-4-(phenylmethoxy)phenyl]ethanone
[324556-83-4] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3} \quad$ mol.wt. 414.09

New compound
Syntheses

- Obtained by reaction of bromine with 4-benzyloxy-3hydroxymethylacetophenone in methanol in the presence of concentrated hydrochloric acid at $0-5^{\circ}$ for 1 h , then at r.t. for another $1 \mathrm{~h}(25 \%)$ [6010].
- Also refer to: [6014].
m.p. 110° [6010]; ${ }^{1} \mathrm{H}$ NMR [6010], IR [6010], MS [6010].

11.1.3 From Tribromoacetic Acid [5958] p. 1228

11.2 Compounds Derived from Chloroacetic Acids [5958] p. 1229

11.2.1 From Monochloroacetic Acid [5958] p. 1229

1-(3-Bromo-5-chloro-2-hydroxyphenyl)-2-chloroethanone

[1019854-96-6]	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrCl}_{2} \mathrm{O}_{2}$ New compound
Synthesis	
- Refer to: [6069]. 283.94	

2-Chloro-1-(5-chloro-3-fluoro-2-hydroxyphenyl)ethanone
[1019854-97-7] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{FO}_{2} \quad$ mol.wt. 223.03

New compound
Synthesis

- Refer to: [6069].

2-Chloro-1-(3,5-dichloro-2-hydroxyphenyl)ethanone
[79214-30-5] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2} \quad$ mol.wt. 239.48

Described [5958] p. 1229
Synthesis

- Also refer to: [6069].

1-(5-Bromo-2-hydroxyphenyl)-2-chloroethanone
[100959-21-5] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2} \quad$ mol.wt. 249.49

2-Chloro-1-(5-fluoro-2-hydroxyphenyl)ethanone

[2002-75-7]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2} \quad$ mol.wt. 188.59
Described [5958] p. 1230
Synthesis

- Also refer to: [6070].

2-Chloro-1-(3-chloro-4-hydroxyphenyl)ethanone

[39066-18-7] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 205.04

Methyl ether [79881-25-7] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07 [6071]

2-Chloro-1-(5-chloro-2-hydroxyphenyl)ethanone

[24483-75-8]
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 205.04

Described [5958] p. 1232
Syntheses

- Also refer to: [6069,6072].

2-Chloro-1-(3-hydroxyphenyl)ethanone

[62932-90-5]

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$
mol.wt. 170.60
Described [5958] p. 1233
Synthesis

- Also refer to: [6073].

2-Chloro-1-(4-hydroxyphenyl)ethanone

[6305-04-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2} \quad$ mol.wt. 170.60

Described [5958] p. 1233
Syntheses

- Also obtained by reaction of acetyl chloride with anisole in the presence of aluminium chloride in n-heptane at 35° for 4 h 30 min (20\%) [5961].
- Also refer to: [5962,6002,6074].
${ }^{1} H$ NMR [5961], MS [5961].

Methyl ether [2196-99-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

- Obtained by treatment of 4-methoxyacetophenone with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) and p-toluenesulfonic acid in methanol at $30-35^{\circ}$ (94\%) [6075].
- Also refer to: [6074,6076,6077,6078]. m.p. 96-98 [6078], 92-94 [6075].

2-Chloro-1-(2,4-dihydroxyphenyl)ethanone

[25015-92-3] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59

Dimethyl ether [4783-90-8] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 214.65

- Refer to: [6079].

2-Chloro-1-(3,4-dihydroxyphenyl)ethanone
[99-40-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3} \quad$ mol.wt. 186.59

Described [5958] p. 1235
Syntheses

- Also refer to: [5985,6080,6081,6082,6083].

2-Chloro-1-(2,4,5-trihydroxyphenyl)ethanone

[14771-02-9]

Trimethyl ether [19278-85-4]
mol.wt. 244.67

- Obtained by reaction of chloroacetonitrile with 1,2,4-trimethoxybenzene (Hoesch reaction) [6061].
USE: Intermediate in lamellarin-S synthesis [6061].

2-Chloro-1-(2,4,6-trihydroxyphenyl)ethanone

[110865-03-7]
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{4}$
mol.wt. 202.59

Described [5958] p. 1236
Syntheses

- Also refer to: [6084,6085].

1-(2-Bromo-5-methoxyphenyl)-2-chloroethanone
[949898-83-3] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2} \quad$ mol.wt. 263.52

New compound

Synthesis

- Refer to: [6086].

2-Chloro-2-fluoro-1-(4-methoxyphenyl)ethanone $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClFO}_{2} \quad$ mol.wt. 202.61

New compound

Syntheses

- Obtained by adding 2,2-dichloro-2-fluoromethyl 4-methoxyphenyl ketone in DMF to a solution of stannous chloride and aluminium powder in DMF at r.t. Then, the mixture was heated at 60° for $1.5 \mathrm{~h}(52 \%)$ [6087].
- Also obtained by reaction of ethyl chlorofluoroacetate with p-anisole magnesium bromide in ethyl ether at -78° for 2 h (20\%) [6088].
b.p. ${ }_{12} 145^{\circ}$ [6088]; light-yellow crystals [6088];
${ }^{1} \mathrm{H}$ NMR [6087,6088], ${ }^{19}$ F NMR [6087,6088], IR [6087,6088]; TLC [6087].

2-Chloro-1-(2-hydroxy-4-methylphenyl)ethanone

[20834-75-7]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Described [5958] p. 1239
Synthesis

- Also obtained by Fries rearrangement of 3-methylphenyl chloroacetate in the presence of Fe - or Zn -contg. catalysts [6089].

2-Chloro-1-(4-hydroxy-2-methylphenyl)ethanone
 [37904-71-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad m o l . w t .184 .62$

 Described [5958] p. 1240
 Synthesis
 - Also obtained by Fries rearrangement of 3-methylphenyl chloroacetate in the presence of Fe - or Zn -contg. catalysts [6089].

2-Chloro-1-(4-hydroxy-3-methylphenyl)ethanone
[40943-24-6] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62

Methyl ether [62613-62-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

- Obtained by reaction of chloroacetyl chloride with 2-methoxytoluene [6090]. m.p. 70° [6090].

2-Chloro-1-(3-methoxy-4-methylphenyl)ethanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 198.65
$$

 New compound
Synthesis

- Obtained from 3-methoxy-4-methylbenzoyl chloride by Nierenstein reaction [6051].
b.p. ${ }_{10} 157-160^{\circ}$ [6051].

2-Chloro-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone
[7507-92-8]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}$
mol.wt. 230.65

Described [5958] p. 1248
Synthesis

- Also refer to: [6091].

2-Chloro-1-[5-(chloromethyl)-2-hydroxy-3,4-dimethoxyphenyl]ethanone
[76439-46-8]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 279.12
Described [5958] p. 1250
Synthesis

- Also refer to: [6091].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-chloroethanone
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClO}_{2} \quad$ mol.wt. 282.81

New compound
Syntheses

- Refer to: [6065,6092,6093].

2-Chloro-1-[2-hydroxy-3-methyl-5-(1-methylheptyl)phenyl]ethanone
$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{ClO}_{2} \quad$ mol.wt. 296.84

New compound
Synthesis

- Obtained by Friedel-Crafts acylation of 2-methyl-4-(1-methylheptyl)phenol with chloroacetyl chloride in the presence of zinc chloride [6094].
b.p. ${ }_{3} 186-188.3^{\circ}[6094] ; \mathrm{d}_{20}=1.0486[6094] ; \mathrm{n}_{\mathrm{D}}^{20}=1.5188$ [6094].

2-Chloro-1-[2-hydroxy-3-methyl-5-(1-methylnonyl)phenyl]ethanone
$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{ClO}_{2} \quad$ mol.wt. 324.89

New compound
Synthesis

- Obtained by Friedel-Crafts acylation of 2-meth-yl-4-(1-methylnonyl)phenol with chloroacetyl chloride in the presence of zinc chloride [6094].
b.p. . $_{1.8} 176-177^{\circ}$ [6094]; $\mathrm{d}_{20}=1.0301$ [6094]; $\mathrm{n}_{\mathrm{D}}^{20}=1.5184$ [6094].

11.2.2 From Dichloroacetic Acid [5958] p. 1254

2,2-Dichloro-1-(4-hydroxyphenyl)ethanone
[4974-60-1] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad m o l . w t .205 .04$

Methyl ether [29003-60-9] $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07 [6096]

- Preparation by treatment of anisole with benzyltrimethylammonium tetrachloroiodate ($\mathrm{BTMA}_{\mathrm{ICl}}^{4}$) in acetic acid at 70° for $5 \mathrm{~h}(78 \%)$ [6098].
- Also obtained by reaction of anisole with dichloroacetyl chloride in the presence of aluminium chloride [6095].
m.p. $77-78^{\circ}$ [6098], $75-76^{\circ}$ [6095]; ${ }^{1} \mathrm{H}$ NMR [6098], IR [6098].

2,2-Dichloro-2-fluoro-1-(4-methoxyphenyl)ethanone
[16629-88-2] $\quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FO}_{2} \quad$ mol.wt. 237.06

New compound

Syntheses

- To acetonitrile was added periodic acid and this mixture was stirred at r.t. for 15 min . Dichlorofluoromethyl 4-methoxyphenyl alcohol was added followed by addition of pyridinium chlorochromate in acetonitrile, then the reaction mixture was stirred at 0°, for 10 min and at r.t. for $2.5 \mathrm{~h}(62 \%)$ [6087].
- Also obtained by reaction of sodium fluorodichloroacetate with p-anisole magnesium bromide in ethyl ether [6099].
b.p. ${ }_{2} 110-112^{\circ}$ [6099]; $n_{\mathrm{D}}^{18}=1.5616$ [6099];
${ }^{1} \mathrm{H}$ NMR [6087], ${ }^{19}$ F NMR [6087], IR [6087,6099].
1-(3,5-Diacetoxyphenyl)-2,2-dichloroethanone
[144660-11-7]

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{5} \quad$ mol.wt. 305.11
New compound
Synthesis
- Preparation by treatment of 3,5-diacetoxyacetophenone with benzyltrimethylammonium tetrachloroiodate (BTMA ICl_{4}) in acetic acid at 70° for 6 h (93\%) [6098].
m.p. $\quad 85-87^{\circ}$ [6098]; ${ }^{1} \mathrm{H}$ NMR [6098], IR [6098].

11.2.3 From Trichloroacetic Acid [5958] p. 1259

11.3 Compounds Derived from Fluoroacetic Acids [5958] p. 1264

11.3.1 From Monofluoroacetic Acid [5958] p. 1264

2-Fluoro-1-(2-hydroxyphenyl)ethanone

[83505-27-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14

Described [5958] p. 1264

Methyl ether [2967-87-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

- Obtained by reaction of α-fluoroacetonitrile with 2-bromoanisole [6100].
- Also refer to: [6101].
m.p. $88-89^{\circ}$ [6100]; IR [6100].

2-Fluoro-1-(4-hydroxyphenyl)ethanone

[295779-85-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2} \quad$ mol.wt. 154.14

Methyl ether [73744-44-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

- Obtained by reaction of fluoroacetyl chloride with anisole in the presence of aluminium chloride in chloroform at r.t. [6102].
- Also obtained by reaction of pyridinium poly(hydrogen fluoride) with 4-methoxy-α-diazo-acetophenone in ethyl ether at r.t. for $24 \mathrm{~h}(54 \%)$ [6103].
- Also obtained by reaction of Selectfluor with 1-(4-methoxyphenyl)ethanone in boiling methanol for 24 h (71\%) [6104].
- Preparation by adding Rongalite to a solution of dichlorofluoromethyl 4-methoxyphenyl ketone in ethanol under nitrogen. Then, the solution was refluxing for 45 min (65\%) [6087].
- Also refer to: [6101,6105,6106,6107,6108]. m.p. 79.3-79.8 ${ }^{\circ}$ [6106], $78.5-79.4^{\circ}$ [6102], 78-79ํ [6103,6104]; ${ }^{1} \mathrm{H}$ NMR [6087,6102,6103,6104,6108], ${ }^{13}$ C NMR [6102,6103,6106], ${ }^{19}$ F NMR [6087,6102,6103,6106,6108], IR [6087,6102,6103,6106,6108], MS [6103,6108]; TLC [6087].

1-(3,4-Dihydroxyphenyl)-2-fluoroethanone

 $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{3} \quad$ mol.wt. 170.14

New compound

Synthesis

- Obtained by reaction of monofluoroacetyl chloride with pyrocatechol in the presence of phosphorous oxychloride in benzene (32\%) [6109].
m.p. 185° [6109].

1-(3,5-Difluoro-4-methoxyphenyl)-2-fluoroethanone

$$
[872968-14-4] \quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \quad \text { mol.wt. } 204.15
$$

New compound

Synthesis

- Obtained by fluorination of 4-methoxyacetophenone with manganese (IV) tetrafluoride formed in situ using manganese (IV) dioxide and pyridinium polyhydrogeno-fluoride under very mild conditions [6110].
MS [6110].

2-Fluoro-1-(3-fluoro-4-methoxyphenyl)ethanone

[501426-62-6] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 186.16
 New compound
Synthesis

- Also obtained by reaction of Selectfluor with 1-(4-methoxyphenyl)ethanone in boiling methanol for $24 \mathrm{~h} \mathrm{(9} \mathrm{\%)} \mathrm{[6104]}$.
m.p. $82-84^{\circ}$ [6104]; ${ }^{1} \mathrm{H}$ NMR [6104].

2-Fluoro-1-(3-methoxyphenyl)ethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

New compound
Syntheses

- Obtained by reaction of potassium bifluoride with α-bro-mo-3-methoxyacetophenone in triethyleneglycol at 100° for $3 \mathrm{~h}(54 \%)$ [5989].
- Also obtained by reaction of aqueous sodium hydroxide with 2,3,3-trifluoro-1-(3-methoxy-phenyl)-1-propenyl p-toluenesulfonate in DMSO at 80° for 3 h (69%) [6106]. m.p. $53-54^{\circ}$ [5989].

11.3.2 From Difluoroacetic Acid [5958] p. 1265

2,2-Difluoro-1-(4-methoxyphenyl)ethanone

[114829-07-1] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 186.16

Described [5958] p. 1266
Syntheses

- Also obtained by treatment of butyl-[2,2-difluoro-1-(4-methoxyphenyl)-eth-(Z)-ylidene]amine with aqueous hydrochloric acid in acetonitrile [6111].
- Also obtained by reaction of p-anisole magnesium bromide with ethyl 2,2-difluoroacetate in THF at -78° (36\%) [6112].
- Also obtained by treatment of 2,2-difluoro-1-(4-methoxyphenyl)vinyl benzoate with aqueous potassium hydroxide in THF at r.t. for $12 \mathrm{~h}(72 \%)$ [6113].
- Also obtained by reaction of Selectfluor with 1-(4-morpholinyl)-1-(4-methoxyphenyl)ethene in the presence of $4 \AA$ molecular sieves in acetonitrile at -10° for 8 h (64\%) [6107].
- Also refer to: [6108,6114,6115].
${ }^{1} \mathrm{H}$ NMR [6107,6108,6111,6112,6113], ${ }^{13} \mathrm{C}$ NMR [6111,6112],
${ }^{19}$ F NMR [6107,6108,6111,6112,6113], IR [6108,6111,6112,6115], MS [6108,6111].

11.3.3 From Trifluoroacetic Acid [5958] p. 1266

1-(5-Chloro-2-hydroxyphenyl)-2,2,2-trifluoroethanone
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{O}_{2} \quad$ mol.wt. 224.57

New compound

Synthesis

- Preparation in two steps: First, reaction of ethyl trifluoroacetate with 2-butoxy-5-chlorophenyllithium, itself obtained by reaction of butyllithium with 2-butoxy-5-chloro-1-bromo-benzene; then, addition of trifluoroacetic acid in the mixture so obtained (70\%) [6116].

2,2,2-Trifluoro-1-(2-hydroxyphenyl)ethanone

[25666-51-7] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 190.12

Described [5958] p. 1268
Synthesis

- Preparation in two steps: First, reaction of ethyl trifluoroacetate with 2-butoxyphenyllithium, itself obtained by reaction of butyllithium with 2-butoxy-1-bromobenzene; then, addition of trifluoroacetic acid in the mixture so obtained (69\%) [6116].

Methylether [26944-43-4] $\quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 204.15
Refer to: [6112,6117].

2,2,2-Trifluoro-1-(4-hydroxyphenyl)ethanone

[1823-63-8] $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 190.12

Methyl ether [711-38-6] $\quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 204.15

- Refer to: [6112,6118,6119,6120,6121,6122].

1-(2,3-Dihydroxyphenyl)-2,2,2-trifluoroethanone
[874992-53-7] $\quad \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{3} \quad$ mol.wt. 206.12

New compound
Syntheses

- Obtained by bioconversion of trifluoroacetophenone through living cells of Escherichia coli carrying,
- plasmid pKF6256 expressing todCI-bphA2A3A4 (1.9\%) [6123];
- plasmid pUC6256B expressing todCI-bphA2A3A4 and bphB (4.4\%) [6123].
${ }^{1} \mathrm{H}$ NMR [6123], ${ }^{13} \mathrm{C}$ NMR [6123], MS [6123].

2,2,2-Trifluoro-1-(3-methoxyphenyl)ethanone

[30724-22-2] $\quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \quad$ mol.wt. 204.15

New compound

Syntheses

- Obtained by adding successively $1.6 \mathrm{M} \mathrm{n-BuLi}$ in hexane, then after $10 \mathrm{~min}, \mathrm{~N}, \mathrm{~N}$-diethyltrifluoroacetamide (5 min) to a solution of 1-bromo-3-methoxybenzene in THF at -78° under argon and stirring the mixture for 2 h (88\%) [6124].
- Also refer to: [6112].

Pale yellow oil [6124];
${ }^{1} \mathrm{H}$ NMR [6124], ${ }^{13} \mathrm{C}$ NMR [6124], ${ }^{19} \mathrm{~F}$ NMR [6124], IR [6124], MS [6124].
Oxime [154187-44-7] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{2} \quad$ mol.wt. 219.05

- Preparation by reaction of hydroxylamine hydrochloride with 2,2,2-trifluoro-1-(3-methoxy-phenyl)ethanone in refluxing methanol for 2 h (97\%) [6124].
- Also refer to: [6125].

Clear viscous oil [6124];
${ }^{1} \mathrm{H}$ NMR [6124], ${ }^{13} \mathrm{C}$ NMR [6124], ${ }^{19} \mathrm{~F}$ NMR [6124], IR [6124], MS [6124].

11.4 Compounds Derived from Iodoacetic Acids [5958] p. 1288

11.4.1 From Monoiodoacetic Acid [5958] p. 1288

1-(2-Hydroxyphenyl)-2-iodoethanone
[99233-30-4] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Described [5958] p. 1289
Synthesis

- Also refer to: [6126].

1-(3-Hydroxyphenyl)-2-iodoethanone

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05
New compound
Synthesis

- Obtained by reaction of iodine with 3-hydroxyacetophenone in the presence of cupric oxide in refluxing methanol for 2 h (84\%) [6127].

1-(4-Hydroxyphenyl)-2-iodoethanone

[99233-31-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2} \quad$ mol.wt. 262.05

Described [5958] p. 1289
Synthesis

- Also obtained by reaction of iodine with 4-hydroxy-acetophenone in the presence of cupric oxide in refluxing methanol for 2 h (91\%) [6124].

Methyl ether [80336-72-7] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07

- To a solution of 4-methoxyacetophenone (2 mmol) in methanol, containing iodine (1 mmol) and a 30% aqueous solution of hydrogen peroxide (1.2 mmol), was added concentrated sulfuric acid $(0.2 \mathrm{mmol})$ and the mixture stirred at 60° for $1-3 \mathrm{~h}(94 \%)$ [6128].
- To a solution of 4-methoxyacetophenone (1 mmol) in methanol, containing iodine (0.5 mmol) and a 30% aqueous solution of hydrogen peroxide (0.6 mmol), was added $\mathrm{H}_{4} \mathrm{SiO}_{4} .12 \mathrm{WO}_{3}(0.03-0.033 \mathrm{mmol})$ and the mixture stirred at 65° for 1.5-3 h (95\%) [6128].
- Also obtained by reaction of iodine with 4-methoxyacetophenone in the presence of cupric oxide in methanol at 65° for $1 \mathrm{~h}(99 \%)$ [6127].
- Also obtained by reaction of potassium iodide with ω-chloro-p-methoxyacetophenone by prolonged heating in aqueous alcohol or in nitromethane [6076].
- Also refer to: [6129].
m.p. 61° [6076]; ${ }^{1} \mathrm{H}$ NMR [6128], MS [6128]; TLC [6128].

1-(3,4-Dihydroxyphenyl)-2-iodoethanone

[105174-59-2] $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{3} \quad$ mol.wt. 278.05

Dimethyl ether [569352-21-2] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{3} \quad$ mol.wt. 306.10

- To a solution of 3,4-dimethoxyacetophenone (2 mmol) in methanol, containing iodine (1 mmol) and a 30% aqueous solution of hydrogen peroxide (1.2 mmol), was added concentrated sulfuric acid $(0.2 \mathrm{mmol})$ and the mixture stirred at 60° for $1-3 \mathrm{~h}(93 \%)$ [6128].
- To a solution of 3,4-dimethoxyacetophenone (1 mmol) in methanol, containing iodine (0.5 mmol) and a 30% aqueous solution of hydrogen peroxide (0.6 mmol), was added $\mathrm{H}_{4} \mathrm{SiO}_{4} .12 \mathrm{WO}_{3}(0.03-0.033 \mathrm{mmol})$ and the mixture stirred at 65° for 1.5-3 h (95\%) [6128].
${ }^{1} \mathrm{H}$ NMR [6128], MS [6128]; TLC [6128].

11.4.2 From Diiodoacetic Acid [5958] p. 1291

11.4.3 From Triiodoacetic Acid [5958] p. 1291

Chapter 12. Compounds Derived from Aminoacetic Acids [5958] p. 1293

12.1 Compounds Derived from Aminoacetic Acid [5958] p. 1293

2-Amino-1-(2-hydroxyphenyl)ethanone
[72481-17-5]

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17
Described [5958] p. 1293
Syntheses

- Also obtained by reaction of hexamethylenetetramine with 2-chloro-1-(2-hydroxyphenyl)ethanone in trichloroethylene [6126,6130].
- Also obtained by reaction of Hexamethylenetetramine with 1-(2-hydroxyphenyl)-2-iodoethanone in trichloroethylene [6126,6130].
- Also obtained by treatment of 2-phthalimido-1-(2-methoxyphenyl)ethanone with hydrogen iodide in methyl acetate [6131].

Hydrochloride [505094-69-9] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 187.63

- Refer to: [6126,6132].
m.p. 235° [6126].

Methyl ether $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19 [6133].
Hydrochloride (of the methyl ether) [34589-97-4] $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 201.65

- Refer to: [6132,6134], (72\%) [6133]. m.p. $\quad 165^{\circ}$ [6133]; ${ }^{1} \mathrm{H}$ NMR [6133], IR [6133].

2-Amino-1-(3-hydroxyphenyl)ethanone (Hydrochloride)
[14665-75-9]

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 187.63
Described [5958] p. 1294
Synthesis

- Also refer to: [6132].
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl}$
mol.wt. 201.65
- Refer to: [6027,6132,6134].

2-Amino-1-(4-hydroxyphenyl)ethanone
[77369-38-1] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 151.17

Hydrochloride [19745-72-3] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 187.63

- Obtained by treatment of α-bromo-4-hydroxyacetophenone with hexamethylenetetramine in chloroform at r.t. for 1 h [5971].
- Also refer to: [6132].

Methyl ether [40513-43-7] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19

- Refer to: [6027,6135,6136].

Hydrochloride (of the methyl ether) [3883-94-1] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 201.65

- Obtained by treatment of α-bromo-4-methoxyacetophenone with hexamethylenetetramine in chloroform at r.t. for 1 h [5971].
- Also refer to: [6127,6132,6134,6137,6138,6139].

2-Amino-1-(3,4-dihydroxyphenyl)ethanone

[499-61-6] $\quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3} \quad$ mol.wt. 167.16

Described [5958] p. 1296
Synthesis

- Also obtained by reaction of 3,4-dihydroxyphenacyl chloride and $\alpha-\mathrm{N}$-acetyllysine in 15% potassium borate and r.t. overnight, then adding acetic acid to adjust pH to 5 [6140].
Isolation from natural sources
- Obtained by hydrolysis of sclerotized cuticles from locust Scistocerca gregaria and the beetle Tenebrio molitor by dilute hydrochloric acid [6140].
MS [6140]; HPLC [6140].
Dimethyl ether (Hydrochloride) [61416-34-0] $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{HCl}$ mol.wt. 231.69
- Also obtained by treatment of α-bromo-3,4-dimethoxyacetophenone with hexamethylenetetramine in chloroform at r.t. for 1 h [5971].
- Also refer to: [6132].

2-Amino-1-(4-methoxy-3-nitrophenyl)ethanone (Hydrochloride)
[877395-19-2]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{HCl}$ mol.wt. 246.65

New compound

Synthesis

- Obtained by treatment of α-bromo-4-methoxy-3-nitro-acetophenone with hexamethylenetetramine in chloroform at r.t. for 1 h [5971].

2-Amino-1-[-4-methoxy-3-(phenylmethoxy)phenyl]ethanone (Hydrochloride) $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 307.78

New compound

Synthesis

- Obtained by treatment of α-bromo-3-(benzyloxy)-4methoxyacetophenone with hexamethylenetetramine in chloroform at r.t. for 1 h [5971].

12.2 Compounds Derived from Substituted Aminoacetic Acids [5958] p. 1298

2-Azido-1-(2-hydroxyphenyl)ethanone

[67139-49-5] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 177.16

New compound

Syntheses

- Preparation by reaction of sodium azide with 2-bromo-1-(2-hydroxyphenyl)ethanone (89\%) [6141].
- Also refer to: [6142,6143].
m.p. $73-74^{\circ}$ [6141].

Methyl ether $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 191.19

- Obtained by reaction of sodium azide with 2-bromo-1-(2-methoxyphenyl)ethanone in dilute ethanol at r.t. for $30 \mathrm{~min}(89 \%)$ [6133].
m.p. $\quad 45-46^{\circ}$ [6133]; ${ }^{1} \mathrm{H}$ NMR [6133], IR [6133].

Acetate $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \quad$ mol.wt. 219.20

- Preparation by adding dropwise triethylamine and acetyl chloride to a solution of o-hydroxy-phenacyl azide in THF at $0-5^{\circ}$, then at r.t. for $1 \mathrm{~h}(95 \%)$ [6143]. m.p. $54-55^{\circ}$ [6143]; ${ }^{1} \mathrm{H}$ NMR [6143].

Benzoate $\quad \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \quad$ mol.wt. 281.27 [6143]

- Preparation by adding dropwise triethylamine and benzoyl chloride to a solution of o-hydroxy-phenacyl azide in THF at $0-5^{\circ}$, then at r.t. for $1.5 \mathrm{~h}(90 \%)$ [6143]. m.p. $59-60^{\circ}$ [6143]; ${ }^{1} \mathrm{H}$ NMR [6143].

2-Azido-1-(4-hydroxyphenyl)ethanone

[169315-44-0] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 177.16

New compound

Syntheses

- Preparation by reaction of sodium azide with α-bromo-4hydroxyacetophenone [6144], (80\%) [6141].
- Also obtained by reaction of sodium azide with α-chloro-4hydroxyacetophenone in alcohol [6145].
- Also refer to: [6146,6147]. m.p. $139-140^{\circ}$ [6141], 136° [6145]; ${ }^{1} \mathrm{H}$ NMR [6146], ${ }^{13} \mathrm{C}$ NMR [6146].

Methyl ether [6595-28-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 191.19

- Obtained by reaction of sodium azide with 4-methoxyphenacyl bromide in DMSO at r.t. for at least $30 \mathrm{~min}(93 \%)$ [6148].
- Also refer to: [6149,6150].

Light yellow powder [6148]; ${ }^{1} \mathrm{H}$ NMR [6148].
2-Azido-1-(3,4-dihydroxyphenyl)ethanone
[165947-83-1] $\quad \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3} \quad$ mol.wt. 193.16

New compound

Syntheses

- Preparation by reaction of sodium azide with 3,4-dihy-droxy-phenacyl chloride in water (80\%) [5996] or in DMF (90\%) [6080].
m.p. 132° (d) [5996].

Dimethyl ether [187101-52-6] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \quad m o l . w t .221 .22$

- Obtained by reaction of sodium azide with 3,4-dimethoxyphenacyl bromide in DMSO at r.t. for at least $30 \mathrm{~min}(87 \%)$ [6148].
Yellow powder [6148]; ${ }^{1} \mathrm{H}$ NMR [6148].

2-Azido-1-(3-methoxyphenyl)ethanone

$[194787-89-8]$	$C_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 191.19
New compound	
Syntheses	
- Refer to: [6027,6151,6152] (Chinese patent).	

1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone

[99-45-6]

$$
\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \quad \text { mol.wt. } 181.19
$$

> Described [5958] p. 1300
> Syntheses
> - Also refer to: $[6153,6154,6155,6156]$.

Diacetate (Hydrochloride) $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}, \mathrm{HCl}$ mol.wt. 301.73 [6157]

1-(3,4-Dihydroxy-5-nitrophenyl)-2-(dimethylamino)ethanone (Hydrochloride)

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{5}, \mathrm{HCl} \quad$ mol.wt. 262.67

New compound
Synthesis

- Obtained by adding a solution of 3,4-dihy-droxy-5-nitro- α-bromoacetophenone in DMF to a solution of 40% aqueous dimethylamine for 1 h . at r.t. Then, treatment with concentrated hydrochloric acid (pH 1) (96%) [5973].
Monohydrate; yellow solid [5973]; ${ }^{1} \mathrm{H}$ NMR [5973], ${ }^{13} \mathrm{C}$ NMR [5973], IR [5973].

1-(2-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride)
[958292-64-3] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 215.68

New compound

Synthesis

- A solution of α-bromo-2-methoxyacetophenone in acetonitrile was added to a solution of dimethylamine (8 M solution in ethanol) in acetonitrile at 0°. The solution was stirred at 0° for 5 min . Ether was added and the resulting precipitate after drying, was dissolved in ether and 1 M hydrogen chloride in ether was added at 0° [6027].

1-(3-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride)
[958292-65-4]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 215.68

New compound

Synthesis

- A solution of α-bromo-3-methoxyacetophenone in acetonitrile was added to a solution of dimethylamine (8 M solution in ethanol) in acetonitrile at 0°. The solution was stirred at 0° for 5 min . Ether was added and the resulting precipitate after drying, was dissolved in ether and 1 M hydrogen chloride in ether was added at 0° [6027].

1-(4-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride)

[29705-80-4] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 215.68

New compound

Synthesis

- A solution of α-bromo-4-methoxyacetophenone in acetonitrile was added to a solution of dimethylamine (8 M solution in ethanol) in acetonitrile at 0°. The solution was stirred at 0° for 5 min . Ether was added and the resulting precipitate after drying, was dissolved in ether and 1 M hydrogen chloride in ether was added at 0° [6027].

2-Amino-1-(2,5-dimethoxyphenyl)ethanone (Hydrochloride)
[671224-08-1]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{HCl}$
mol.wt. 231.69
New compound
Synthesis

- Refer to: [6027].

2-(Ethylmethylamino)-1-(4-hydroxyphenyl)ethanone

[1009636-07-0]
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
mol.wt. 193.25

New compound
Synthesis

- Refer to: [6158] (Chinese patent).

2-(Diethylamino)-1-(4-hydroxyphenyl)ethanone
[87154-81-2]

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27
New compound
Synthesis

- Refer to: [6158] (Chinese patent).

1-(3,4-Dihydroxyphenyl)-2-(phenylamino)ethanone

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 243.26

New compound
Syntheses

- Obtained by reaction of 3,4-dihydroxy- α-chloroacetophenone in ethanol with aniline [6159,6160].
- Also refer to: $[6161,6162]$.
m.p. 160° [6159], $149^{\circ}[6160,6161]$.

Sulfate $\quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4} \quad$ mol.wt. 584.60 [6162].
m.p. 208° [6162].

Dimethyl ether $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 271.31

- This compound was synthesized [6163] from 2-bromo-3', 4'-dimethoxyacetophenone by using a known procedure [6164].
m.p. $\quad 121^{\circ}$ [6163]; ${ }^{1} \mathrm{H}$ NMR [6163], ${ }^{13} \mathrm{C}$ NMR [6163], MS [6163].

2-Azido-1-[3-(benzoyloxy)phenyl]ethanone
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \quad$ mol.wt. 281.27

New compound
Synthesis

- Obtained by reaction of sodium azide with 2-bromo-1-[(3-benzoyloxy)phenyl]ethanone in dilute ethanol (95\%) [5996].
m.p. 115° [5996].

2-Azido-1-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone

[870789-66-5]

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 289.38
New compound
Syntheses

- Preparation by reaction of sodium azide with 2-bromo-1-(3,5-di-tert-butyl-4-hydroxyphenyl) ethanone in dilute acetone at r.t. for 1 h [6066].
- Also refer to: [6165].

2-Amino-1-[3,5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone (Hydrochloride)
[84203-40-7]

$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2}, \mathrm{HCl}$ New compound
Synthesis

- Obtained by hydrogenation of 2-azido-1-[3,5-bis-(1,1-dimethylethyl)-4-hydroxyphenyl] ethanone in the presence of Pd / C in methanol, then treatment of the amine so obtained with hydrochloric acid (67\%) [6066].

1-(3,4-Dimethoxyphenyl)-2-(3-trifluoromethylphenylamino)ethanone
α-(m-Trifluoromethylphenylamino)acetoveratrone

$$
\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3} \quad \text { mol.wt. } 339.31
$$

New compound
Synthesis

- This compound was synthesized [6163] from 2-bromo- $3^{\prime}, 4^{\prime}$-dimethoxyacetophenone by using a known procedure [6164].
m.p. 127° [6163]; ${ }^{1} \mathrm{H}$ NMR [6163], ${ }^{13} \mathrm{C}$ NMR [6163], MS [6163].

2-(4-Cyanophenylamino)-1-(3,4-dimethoxyphenyl)ethanone α-(p-Cyanophenylamino)acetoveratrone

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \quad$ mol.wt. 296.33

New compound

Synthesis

- This compound was synthesized [6163] from 2-bromo-3', 4^{\prime}-dimethoxyacetophenone by using a known procedure [6164].
m.p. $\quad 200-201^{\circ}$ [6163]; ${ }^{1} \mathrm{H}$ NMR [6163], ${ }^{13} \mathrm{C}$ NMR [6163], MS [6163].

1-(3,4-Dimethoxyphenyl)-2-[(2-methoxyphenyl)amino]ethanone α-(o-Methoxyphenylamino) acetoveratrone
Synthesis
252655-15-5]

1-(3,4-Dimethoxyphenyl)-2-[(4-methoxyphenyl)amino]ethanone
α-(p-Methoxyphenylamino) acetoveratrone

[252655-16-6]	Synthesis New compound
This compound was synthesized [6163] from2-bromo-3',4'-dimethoxyacetophenone by using a known procedure [6164].	

m.p. 117° [6163]; ${ }^{1} \mathrm{H}$ NMR [6163], ${ }^{13} \mathrm{C}$ NMR [6163], MS [6163].

Chapter 13. Compounds Derived from Alkoxyacetic Acids [5958] p. 1321

13.1 Compounds Derived from Methoxyacetic Acids [5958] p. 1321

1-(4-Hydroxyphenyl)-2-methoxyethanone

Methyl ether [21160-26-9] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

- Obtained by adding with cooling an ethereal solution of methoxyacetonitrile to a solution of magnesium anisyl bromide in ethyl ether [6166], (30\%) [6167].
- Also refer to: [6168]. b.p. ${ }_{35} 185-190^{\circ}$ [6167].

1-(2,4-Dihydroxyphenyl)-2-methoxyethanone

[57280-75-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18

Described [5958] p. 1322
Synthesis

- Also obtained by reaction of methoxyacetonitrile with resorcinol and subsequent hydrolysis of the ketimine hydrochloride so formed (Hoesch reaction) (48\%) [6169].
White solid [6169]; m.p. 108-110 [6169];
${ }^{1} \mathrm{H}$ NMR [6169], ${ }^{13} \mathrm{C}$ NMR [6169], IR [6169], MS [6169].

1-(3,4-Dihydroxyphenyl)-2-methoxyethanone

[64349-40-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 182.18

Dimethyl ether [22341-22-6] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
α-methoxyacetoveratrone

- This compound was synthesized by [6163] according to: [6170].
- Also refer to: [6166,6167,6171].
b.p. ${ }_{15} 190^{\circ}$ [6166]; m.p. 66-67 [6163], 64-65 [6171], 62° [6166];
${ }^{1} \mathrm{H}$ NMR [6163], ${ }^{13} \mathrm{C}$ NMR [6163], IR [6171], MS [6163].

2-Methoxy-1-(2,4,6-trihydroxyphenyl)ethanone

[55317-02-7]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 198.18
Described [5958] p. 1323
Syntheses

- Preparation by reaction of methoxyacetonitrile with phloroglucinol (Houben-Hoesch reaction) (76\%) [6172].
- Also refer to: [6173].

1-[2-Hydroxy-4-[(trifluoromethanesulfonyl)oxy]phenyl]-2-methoxyethanone

(Trifluoromethane sulfonic acid, 3-hydroxy-4-(methoxyacetyl)phenyl ester) (Chem. Abstr., Formula Index Vol. 141, 2004, 1496F)
[649551-91-7] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 314.24

New compound

Synthesis

- Obtained by reaction of trifluoromethanesulfonic anhydride (triflic anhydride) with $2^{\prime}, 4^{\prime}-$ dihydroxy-2-methoxy-acetophenone in the presence of 2,6-lutidine in methylene chloride at 0° for 2 h under argon atmosphere (87\%) [6169].
N.B.: The product was contaminated with 5% of its ditriflate.

Purple oil [6169]; ${ }^{1} \mathrm{H}$ NMR [6169].
2-Methoxy-1-(3,4,5-trimethoxyphenyl)ethanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 240.26
$$

New compound
Synthesis

- Obtained by adding an etheral solution of 3,4,5-trimethoxy-benzoyl chloride to a solution of sodio-derivative of ethyl α, γ-dimethoxyacetoacetate in toluene on a steam bath for 8 h (36\%) [6166].
b.p. ${ }_{15} 212^{\circ}$ [6166]; m.p. 54° [6166].

Semicarbazone $\quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \quad$ mol.wt. 255.23
m.p. 158° [6166].

1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]-2-methoxyethanone
[943827-52-9]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 198.18

New compound

Synthesis

- Preparation by reaction of chloromethyl methyl ether with 2-methoxy-1-(2,4,6-trihydroxyphenyl)ethanone in the presence of potassium carbonate in acetone at 23° (68\%) [6172].
${ }^{1} \mathrm{H}$ NMR [6172], ${ }^{13} \mathrm{C}$ NMR [6172].

1-(4-Decyl-2-hydroxyphenyl)-2-methoxyethanone

2'-Hydroxy-4'-decyl-2-methoxyacetophenone

$$
\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \quad \text { mol.wt. } 306.44
$$

New compound
Synthesis

- Refer to: [6169] (complex procedure) (76\%).

Pale yellow solid; m.p. $\quad<25^{\circ}$ [6169];
${ }^{1} \mathrm{H}$ NMR [6169], ${ }^{13} \mathrm{C}$ NMR [6169], MS [6169].
2,4,5-Trimethoxybenzoate $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{7} \quad$ mol.wt. 500.28

- Preparation: Refer to [6169] (68\%).

Yellow solid; m.p. 80-81 [6169];
${ }^{1} \mathrm{H}$ NMR [6169], ${ }^{13} \mathrm{C}$ NMR [6169], IR [6169], MS [6169]; TLC [6169].

13.2 Compounds Derived from Phenylmethoxyacetic Acids [5958] p. 1345

2-(Phenylmethoxy)-1-(2,4,6-trihydroxyphenyl)ethanone
[322405-72-1] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27

Described [5958] p. 1345
Synthesis

- Also refer to: [6174].

1-(2,5-Dimethoxyphenyl)-2-(phenylmethoxy)ethanone
[736933-09-8]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 286.33
New compound
Synthesis

- Refer to: [6175].

13.3 Compounds Derived from Ethoxyacetic Acids [5958] p. 1346

2,2-Diethoxy-1-(4-methoxyphenyl)ethanone
[66186-69-4]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$
New compound
Synthesis

- Refer to: [6176].

13.4 Miscellaneous [5958] p. 1351

Chapter 14. Compounds Derived from Aryloxyacetic Acids [5958] p. 1353

14.1 Compounds Derived from Phenoxyacetic Acid [5958] p. 1353

1-(4-Hydroxyphenyl)-2-phenoxyethanone

Methyl ether [19513-78-1] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Refer to: [6177].
1-(4-Hydroxy-3-methoxyphenyl)-2-phenoxyethanone
[41978-28-3]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}$
mol.wt. 258.27

Methyl ether [140455-40-9] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

- Preparation by reaction of $3^{\prime}, 4^{\prime}$-dimethoxy- α-bromoacetophenone with phenol in the presence of potassium carbonate in acetone [6163,6178,6179,6180].
- Also refer to: [6177,6181].

```
m.p. 95-96} [6179], 91-920 [6180]
' H NMR [6177,6179,6180,6181], '3'C NMR [6179], MS [6177,6179].
```

2-Phenoxy-1-(3,4,5-trimethoxyphenyl)ethanone $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 303.33

New compound
Synthesis

- Refer to: [6177].

14.2 Compounds Derived from Substituted Phenoxyacetic Acids [5958] p. 1355

1-(4-Hydroxy-3-methoxyphenyl)-2-[3-(trifluoromethyl)phenoxy]ethanone
[107584-69-0]
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4}$
mol.wt. 326.27

Methyl ether $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4} \quad$ mol.wt. 340.30

- Preparation by [6163] according to: [6178,6179].
m.p. $\quad 144-145^{\circ}$ [6163]; ${ }^{1} \mathrm{H}$ NMR [6163], ${ }^{13} \mathrm{C}$ NMR [6163], MS [6163].

1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)ethanone
α-(2-Methoxyphenoxy)acetoveratrone
[22317-35-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Described [5958] p. 1363

Methyl ether [22675-96-3] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

- Preparation by reaction of $3^{\prime}, 4^{\prime}$-dimethoxy- α-bromoacetophenone with guaiacol in the presence of potassium carbonate in acetone [6163,6178,6179], (94\%) [6182].
- Preparation [6183], according to the procedure [6178].
- Also refer to: [6180,6184,6185,6186,6187,6188,6189,6190]. m.p. $94-95.4^{\circ}$ [6191], 94° [6180], $93-94^{\circ}$ [6182], $92-93^{\circ}$ [6183], $90-92^{\circ}$ [6178];
${ }^{1} \mathrm{H}$ NMR [6180,6182,6191], UV [6190]; circular dichroism [6188].
1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methoxyphenoxy)ethanone
[107584-68-9]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Methyl ether [72327-16-3] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

- Preparation by reaction of $3^{\prime}, 4^{\prime}$-dimethoxy- α-bromoacetophenone with 3-methoxyphenol in the presence of potassium carbonate in boiling acetone [6163,6178,6179] for 6 h [6192].
m.p. 90° [6179,6192];
${ }^{1} \mathrm{H}$ NMR [6179], ${ }^{13} \mathrm{C}$ NMR [6179], IR [6192], MS [6179].
2,4-Dinitrophenylhydrazone (of the methyl ether) $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8} \quad$ mol.wt. 482.30 m.p. $\quad 177^{\circ}$ [6192].

3-[2-(3,4-Dimethoxy)-2-oxoethoxy]benzonitrile

α-(m-Cyanophenoxy)acetoveratrone

$$
\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4} \quad \text { mol.wt. } 297.31
$$

New compound

Synthesis

- Preparation by [6163] according to: [6178,6179].
m.p. $144-145^{\circ}$ [6163].
${ }^{1} \mathrm{H}$ NMR [6163], ${ }^{13} \mathrm{C}$ NMR [6163], MS [6163].

4-[2-(3,4-Dimethoxy)-2-oxoethoxy]benzonitrile

α-(p-Cyanophenoxy)acetoveratrone
[151425-43-3] $\quad \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4} \quad$ mol.wt. 297.31

New compound

Syntheses

- Preparation by reaction of α-bromoacetoveratrone with 4-hydroxybenzonitrile in the presence of potassium carbonate in refluxing acetone [6163,6178,6179].
m.p. $\quad 131-132^{\circ}$ [6179]; ${ }^{1} \mathrm{H}$ NMR [6179], ${ }^{13} \mathrm{C}$ NMR [6179], MS [6179].

1-(3,4-Dimethoxyphenyl)-2-(4-methoxyphenoxy)ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

New compound

Syntheses

- Preparation by reaction of $3^{\prime}, 4^{\prime}$-dimethoxy-α-bromo-acetophenone with 4-m.ethoxyphenol in the presence of potassium carbonate in acetone [6163,6178,6179].
m.p. $\quad 104^{\circ}$ [6179]; ${ }^{1} \mathrm{H}$ NMR [6179], ${ }^{13} \mathrm{C}$ NMR [6179], MS [6179].

2-(2,3-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone

ω-($2^{\prime}, 3^{\prime}$-Dimethoxyphenoxy)acetoveratrone
[72327-23-2]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}$
mol.wt. 332.35

New compound

Synthesis

- Obtained by reaction of ω-bromoacetoveratrone with 2,3-dimethoxyphenol in the presence of potassium carbonate in refluxing acetone for 8 h (70\%) [6192].
m.p. $94-95^{\circ}$ [6192]; IR [6192].

2,4-Dinitrophenylhydrazone $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{9} \quad$ mol.wt. 512.48
m.p. $198-199^{\circ}$ [6192].

2-(2,6-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone
α-(2,6-Dimethoxyphenoxy)acetoveratrone
[29389-04-6] $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 332.35

New compound

Syntheses

- Preparation by reaction of α-bromoacetoveratrone with 2,6-dimethoxyphenol in the presence of potassium carbonate in refluxing acetone [6179,6180].
- Also obtained by reaction of $3^{\prime}, 4^{\prime}$-dimethoxy- α -bromo-acetophenone with the sodium salt of 2,6-dimethoxyphenol in DMF at r.t. for $1 \mathrm{~h}(93 \%)$ [6193].
m.p. $\quad 103-104^{\circ}$ [6179], $100-103^{\circ}$ [6193], 97° [6180];
${ }^{1} \mathrm{H}$ NMR [6179,6180,6193], ${ }^{13} \mathrm{C}$ NMR [6179], MS [6179].
1-(3,4-Dimethoxyphenyl)-2-(2-methoxy-4-propylphenoxy)ethanone
ω-(2-Methoxy-4-propylphenoxy)acetoveratrone

$$
\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \quad \text { mol.wt. } 344.41
$$

New compound
Synthesis

- Refer to: [6182].
${ }^{1} \mathrm{H}$ NMR [6182].

Chapter 15. Compounds Derived from Hydroxyacetic Acids [5958] p. 1369

2-Hydroxy-1-(2-hydroxyphenyl)ethanone

[17375-96-1]
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
mol.wt. 152.15

Described p. [5958] 1370
Syntheses

- Also refer to: [6194,6195,6196].
o-Methyl ether [224321-19-1] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18 Refer to: [6100,6197]

2-Hydroxy-1-(3-hydroxyphenyl)ethanone

[131341-58-7] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad m o l . w t .152 .15$

Described [5958] p. 1370
m-Methyl ether [87428-52-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

- Refer to: [6198].

2-Hydroxy-1-(4-hydroxyphenyl)ethanone
[5706-85-4] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \quad$ mol.wt. 152.15

p-Methyl ether [4136-21-4] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

- Obtained by photocatalytic oxidation of 2-(4-methoxyphenyl)-1,2-ethanediol using silica-encapsulated $\mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40}$ as photocatalyst in acetonitrile for 1 h at r.t. under oxygen as the sole reoxidant of the catalyst, (90\%) [6199].
- Also obtained by treatment of 4-methoxyacetophenone with iodosobenzene in methanolic sodium hydroxide (50\%) [6200].
- Also refer to: [6201].
${ }^{1} \mathrm{H}$ NMR [6199], IR [6199], MS [6199]; TLC [6199].

2,2-Dihydroxy-1-(4-hydroxyphenyl)ethanone

[197447-05-5] $\quad \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad m o l . w t .168 .15$

Described [5958] p. 1372
Synthesis

- Also obtained by adding a saturated aqueous solution of sodium carbonate to a solution of ω-dichloro p-hydroxyacetophenone in ethanol and heating to $40-120^{\circ}$ [6097].

1-(2,4-Dihydroxyphenyl)-2-hydroxyethanone (Fisetol)
[487-47-8]

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15
Described [5958] p. 1372
Synthesis

- Also refer to: [6202].

1-(3,4-Dihydroxyphenyl)-2-hydroxyethanone (DOPKET)

[29477-54-1]	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 168.15 Described [5958] p. 1373 Syntheses
$-\quad$ Also refer to: [6203,6204,6205].	

Isolation from natural sources

- From the aerial parts of Jasminum grandiflorum collected in Jessore (Bangladesh) [6206].
${ }^{1} \mathrm{H}$ NMR [6207], ${ }^{13} \mathrm{C}$ NMR [6207], IR [6207], UV [6207].
BIOLOGICAL ACTIVITY: In vitro antioxidative activity with the linoleic acid system [6207].

Dimethyl ether $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20

- Obtained by treatment of 3,4-dimethoxyacetophenone with iodosobenzene in methanolic sodium hydroxide (40\%) [6200].

1-(3-Fluoro-4-methoxyphenyl)-2,2-dihydroxyethanone
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{4} \quad$ mol.wt. 200.17

New compound
Synthesis

- Obtained by hydrolysis of (3-fluoro-4-methoxyphenyl)-oxo-acetaldehyde [6208].
m.p. 95° [6208]; ${ }^{1} \mathrm{H}$ NMR [6208], IR [6208].

2-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone
[90426-22-5] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 212.20

Described [5958] p. 1377
Synthesis

- Also refer to: [6209].

1-[2-[[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]oxy]-4,6-dihydroxy]-2hydroxyethanone
[149492-42-2] $\quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$ mol.wt. 320.38

Isolation from natural sources

- From the fruits of Melicope
- semecarpifolia (Merr.) T. G. Hartley (Rutaceae) compound 8 [6210].

BIOLOGICAL ACTIVITY: Antiinflammatory [6210].

1-[4-[[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]oxy]-2,6-dihydroxy]-2-hydroxyethanone [142905-41-7] $\quad \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 320.38

Isolation from natural sources

- From the fruits of Melicope semecarpifolia (Merr.) T. G. Hartley (Rutaceae) compound 9 [6210].BIOLOGICAL ACTIVITY: Antiinflammatory [6210].

Chapter 16. Compounds Derived from Acyloxyand Aroyloxyacetic Acids [5958] p. 1383

16.1 Compounds Derived from Acetoxyacetic Acids [5958] p. 1383

2-(Acetyloxy)-1-(2-hydroxyphenyl)ethanone

[40231-09-2] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Methyl ether [74786-55-3]

mol.wt. 208.21

- Obtained from 2-methoxyacetophenone and [hydroxy(tosyloxy)iodo]benzene (HTIB)/polymer-supported [hydroxy(tosyloxy)iodo] benzene (PSHTIB) in N, N-dimethylformamide/dimethyl-acetamide (72\%) [6211]. m.p. 55° [6211]; ${ }^{1} \mathrm{H}$ NMR [6211], ${ }^{13} \mathrm{C}$ NMR [6211].

2-(Acetyloxy)-1-(4-hydroxyphenyl)ethanone
[20816-46-0] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad m o l . w t .194 .19$

Described [5958] p. 1383
Syntheses

- Also obtained by adding, step by step, triethylamine in a solution of ω-chloro-4-hydroxy acetophenone in acetic acid/acetonitrile at 0°, then refluxing for 3 h (40\%) [5961].
- Also refer to: [6055,6212].
${ }^{1} \mathrm{H}$ NMR [5961], MS [5961].

Methyl ether [58518-78-8] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

- Obtained by reaction of sodium acetate with 2-bromo-4'-methoxyacetophenone in boiling methanol for 48 h (43\%) [6213].
- Also obtained by reaction of potassium thioacetate with 4-methoxy- α-chloroacetophenone [6214].
- Also obtained from 4-methoxyacetophenone and [hydroxy(tosyloxy)iodo]benzene (HTIB)/polymer-supported [hydroxy(tosyloxy)iodo]benzene (PSHTIB) in N, N-dimethyl-formamide/dimethylacetamide (74\%) [6211].
- Also refer to: [5962].
b.p. $2.5140-141.5^{\circ}$ [6215];
m.p. 69° [6211], 59° [6214], 56° [6213], $55-56^{\circ}$ [6216].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6211,6213,6216], ${ }^{13} \mathrm{C}$ NMR [6211,6216], IR [6213,6216], MS [6216].
Acetate $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 236.22

- Obtained by reaction of acetic anhydride with ω-acetoxy-4-hydroxyacetophenone at reflux $\left(100^{\circ}\right)$ for $2 \mathrm{~h}(75 \%)$ [5961].
${ }^{1} H$ NMR [5961], MS [5961].

2-(Acetyloxy)-1-(2-hydroxy-4-methylphenyl)ethanone

[860806-61-7]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
New compound
Synthesis

- Obtained by hydrogenation of α-acetoxy-2-benzyloxy-4-methylacetophenone in ethyl acetate with hydrogen (60 bar) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ at 60° for $5 \mathrm{~h}(57 \%)$ [6052].

Colourless crystalline needles; m.p. 87° [6052];
${ }^{1} \mathrm{H}$ NMR [6052], ${ }^{13} \mathrm{C}$ NMR [6052], IR [6052], UV [6052], MS [6052].
BIOLOGICAL DATA: Phytotoxic activity [6052]; phytogrow-inhibitory activity on seeds of Amaranthus hypochondriacus, Echinochloa crus-galli and Medicago sativa [6052].
Isolation from natural sources

- From Hofmeisteria schaffneri (A. Gray) R.M. King and H. Robinson (Asteraceae) [6052].

Methyl ether [860782-84-9] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

- Obtained by adding successively DBU, then after 10 min, α-bromo-2-methoxy-4-methyl-acetophenone in THF to an acetic acid/THF mixture and stirring at r.t. for $2.5 \mathrm{~h}(76 \%)$ [6052].
Colourless oil [6052]; ${ }^{1} \mathrm{H}$ NMR [6052], ${ }^{13} \mathrm{C}$ NMR [6052], IR [6052], MS [6052].

BIOLOGICAL DATA: Phytotoxic activity [6052]; phytogrowth-inhibitory activity on seeds of Amaranthus hypochondriacus, Echinochloa crus-galli and Medicago sativa [6052].

Benzyl ether [860782-83-8] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34

- Obtained by adding α-bromo-2-benzyloxy-4-methylacetophenone in THF to a mixture of DBU in ethyl acetate/THF at r.t. for 10 min , then stirring for 2.5 h (82\%) [6052].
White solid; m.p. 73° [6052];
${ }^{1} \mathrm{H}$ NMR [6052], ${ }^{13} \mathrm{C}$ NMR [6052], IR [6052], UV [6052], MS [6052].
BIOLOGICAL DATA: Phytotoxic activity [6052]; phytogrowth-inhibitory activity on seeds of Amaranthus hypochondriacus, Echinochloa crus-galli and Medicago sativa [6052].

2-Acetoxy-1-(7-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone (Ripariochromene B)
[27045-16-5]
 $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 276.29
New compound Synthesis

- Refer to: [6217].

Isolation from natural sources

- From the roots of Eupatorium riparium Regel [6218].
- From the aerial parts of Ageratina riparia [6219].
m.p. $146-147^{\circ}$ [6217,6220];
${ }^{1} \mathrm{H}$ NMR [6217,6220], IR [6217,6220], UV [6217,6220].
BIOLOGICAL DATA: Antifungic activity [6218].

16.2 Compounds Derived from Other Acyloxyand Phenacyloxyacetic Acids [5958] p. 1386

16.3 Compounds Derived from Benzoyloxyacetic Acids [5958] p. 1389

2-(Benzoyloxy)-1-(2,5-dihydroxyphenyl)ethanone
[117421-24-6]

$$
\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \quad \text { mol.wt. } 272.26
$$

Described [5958] p. 1389

Dimethyl ether [478972-03-1] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 300.31

- Obtained from 2-bromo-1-(2,5-dimethoxyphenyl)ethanone (Chinese paper) [6022].

Chapter 17. Compounds Derived from Nitroacetic Acids [5958] p. 1395

1-(4-Methoxyphenyl)-2-nitroethanone
[46318-58-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

New compound
Synthesis

- Refer to: [6221].

Chapter 18. Compounds Derived from Arylacetic Acids [5958]
 p. 1399

18.1 Compounds Derived from Phenylacetic Acid [5958] p. 1399

1-(3,4-Dihydroxy-5-nitrophenyl)-2-phenylethanone (BIA-3-202)
[274925-86-9]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

Described [5958] p. 1403
Syntheses

- Also refer to: [5973,6222,6223,6224].

BIOLOGICAL ACTIVITY: [5973].
1-(2-Hydroxyphenyl)-2-phenylethanone

Acetate $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29

- Obtained by reaction of acetic anhydride with 2-hydroxybenzoin [6225].

Methyl ether [33470-10-9] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

2-Methoxydeoxybenzoin

- Also obtained by deamination of 2-amino-1-(2-methoxyphenyl)-1-phenylethanol with sodium nitrite in 50% aqueous acetic acid at 0° [6133].
- Also obtained by reaction of 2-methoxybenzamide with benzylmagnesium bromide [6133].
${ }^{1} \mathrm{H}$ NMR [6133], IR [6133], UV [6133].

1-(2,4-Dihydroxyphenyl)-2-phenylethanone

[3669-41-8] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 228.25

Described [5958] p. 1407
Synthesis

- Also refer to: [6226].

1-(3,4-Dihydroxyphenyl)-2-phenylethanone
[107410-02-6] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \quad m o l . w t .228 .25$

Dimethyl ether [3141-93-3] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

- Refer to: [6227] (Japanese patent).

2-Phenyl-1-(2,4,6-trihydroxyphenyl)ethanone

[727-71-9]
 $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Described [5958] p. 1411
Syntheses

- Preparation by reaction of phenylacetonitrile with phloroglucinol (Hoesch reaction) in the presence of zinc chloride [6084].
- Also refer to: [6225,6228], (20\%) [6229].

White crystals; m.p. 162° [6229];
${ }^{1} \mathrm{H}$ NMR [6229], ${ }^{13} \mathrm{C}$ NMR [6229], IR [6229], UV [6229], MS [6229];
TLC [6229].

1-(2-Hydroxy-4-methoxyphenyl)-2-phenylethanone

[18439-96-8]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27

Described [5958] p. 1419
Synthesis

- Also refer to: [6230].
N.B.: Terbium complex (luminescent properties) [6230].

1-(4-Hydroxy-3-methoxyphenyl)-2-phenylethanone

[66476-02-6] \quad\begin{tabular}{l}
Synthesis

- Also obtained by cleavage of 1-(4-benzyloxy-3-methoxy-
phenyl)-2-phenylethanone with $30 \% ~ \mathrm{HBr}$ in acetic acid/
methylene chloride (91\%) [6231].

\end{tabular}

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone

[39604-66-5]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
mol.wt. 272.30

Described [5958] p. 1430
Synthesis

- Also refer to: [6230].
N.B.: Terbium complex (luminescent properties) [6230].

1-(3-Hexyl-2,4-dihydroxyphenyl)-2-phenylethanone

$$
\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \quad \text { mol.wt. } 312.41
$$

New compound

Synthesis

- Obtained by reaction of phenylacetonitrile with 2-hexyl-resorcinol in the presence of zinc chloride (31\%) (Hoesch reaction) [6225].
m.p. $104-105^{\circ}$ [6225].

1-(3-Hexyl-2,6-dihydroxyphenyl)-2-phenylethanone
[110146-61-7]
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$
mol.wt. 312.41

New compound
Synthesis

- Obtained by reaction of phenylacetonitrile with 4-hexyl-resorcinol in the presence of zinc chloride (17\%) (Hoesch reaction) [6225].
m.p. $210-211^{\circ}$ [6225].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-phenylethanone
[39604-80-3]

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 318.37
Described [5958] p. 1441
Synthesis

- Also obtained by reaction of benzyl alcoholwith1-(2,4-dihydrox-yphenyl)-2-phenylethanone in the presence of triphenylphosphine and DIAD (diisopropyl diazodicarboxylate) in THF (87\%) [6226].

1-[3,5-Bis(1,1-dimethyl)-4-hydroxyphenyl]-2-phenylethanone

[14035-39-3]

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2}$
mol.wt. 324.46
Described [5958] p. 1443
Synthesis

- Preparation by reaction of phenylacetyl chloride with 2,6-di-tert-butylphenol in the presence of titanium tetrachloride [6066].

1-[3,5-Bis(1,1-dimethyl)-4-hydroxyphenyl]-2-cyclohexylethanone
$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2} \quad$ mol.wt. 330.51
 New compound
Synthesis

- Preparation by reaction of cyclohexylacetyl chloride with 2,6-di-tert-butylphenol in the presence of titanium tetrachloride [6066].

18.2 Compounds Derived from Substituted Phenylacetic Acids [5958] p. 1449

1-(5-Bromo-2-hydroxyphenyl)-2-(4-nitrophenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNO}_{4} \quad$ mol.wt. 322.14
New compound
Synthesis

- Refer to: [6232].

2-(3,4-Dichlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}$
mol.wt. 313.14

New compound
Synthesis

- Preparation by reaction of 3,4-dichlorophenylacetonitrile with phloroglucinol (Hoesch reaction) in the presence of zinc chloride [6084].

2-(4-Bromophenyl)-1-(2,4-dihydroxyphenyl)ethanone

[92152-60-5]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3} \quad$ mol.wt. 307.14

Described [5958] p. 1450
Synthesis

- Also obtained by Friedel-Crafts acylation of resorcinol with 4-bromophenylacetic acid in the presence of boron trifluoride (good yield) [6233,6234].
${ }^{1} \mathrm{H}$ NMR [6233], ${ }^{13} \mathrm{C}$ NMR [6233], MS [6233].
BIOLOGICAL DATA: Potent selective estrogen receptor modulator [6233].

2-(3-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[879559-91-8]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 323.15

New compound

Synthesis

- Obtained by reaction of 3-bromophenylacetonitrile with phloroglucinol (Hoesch reaction) [6235].

BIOLOGICAL ACTIVITY: In vitro activity against the coccidian parasite Cryptosporidium parvum [6235].

2-(4-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone
[147220-80-2] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 323.15

Described [5958] p. 1451
Syntheses

- Also obtained by reaction of 4-bromophenylacetonitrile with phloroglucinol (Hoesch reaction) [6235].
- Also refer to: [6236].
m.p. $\quad 231^{\circ}$ [6236], 222-224 [6235]; ${ }^{1} \mathrm{H}$ NMR [6235,6236], ${ }^{13} \mathrm{C}$ NMR [6235], IR [6236].

BIOLOGICAL ACTIVITY: In vitro activity against the coccidian parasite Cryptosporidium parvum [6235].

1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenyl)ethanone
[15485-70-8]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
mol.wt. 246.24

Described [5958] p. 1453

Dimethyl ether [315233-59-1] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{3} \quad$ mol.wt. 274.29

- Refer to: [6237].

1-(2-Hydroxyphenyl)-2-(4-nitrophenyl)ethanone
[340959-86-6]
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
mol.wt. 257.25
 New compound Synthesis

- Refer to: [6238] (70\%).

1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenyl)ethanone
[15485-63-9] $\quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 273.25

Described [5958] p. 1454
Syntheses

- Also obtained by reaction of p-nitrophenylacetic acid with resorcinol in the presence of boron trifluoride etherate at 80° for 5 h [6239].
- Also refer to: [6240,6241].
m.p. 206-208 [6241]; ${ }^{1} \mathrm{H}$ NMR [6241].

BIOLOGICAL ACTIVITY: Effect on enzyme activity [6241].
2,4-Dinitrophenylhydrazone $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{8}$
mol.wt. 453.37 m.p. 238° [6242]

2-(3-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[876487-63-7]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$
mol.wt. 289.25
Described [5958] p. 1454
Synthesis

- Also obtained by reaction of 3-nitrophenylacetonitrile with phloroglucinol (Hoesch reaction) [6235].

BIOLOGICAL ACTIVITY: In vitro activity against the coccidian parasite Cryptosporidium parvum [6235].

2-(4-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[15485-67-3]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$
mol.wt. 289.25

Described [5958] p. 1455

Syntheses

- Also obtained by reaction of 4-nitrophenylacetonitrile with phloroglucinol (Hoesch reaction) (51\%) [6235].
- Also refer to: [6240,6243,6244].
m.p. 212-214 ${ }^{\circ}$ [6235]; ${ }^{1} \mathrm{H}$ NMR [6235], ${ }^{13} \mathrm{C}$ NMR [6235], MS [6235].

BIOLOGICAL ACTIVITY: In vitro activity against the coccidian parasite Cryptosporidium parvum [6235].

1-(2-Hydroxyphenyl)-2-(4-hydroxyphenyl)ethanone

[109561-92-4]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 228.25

Described [5958] p. 1456
Synthesis

- Also obtained by demethylation of 1-(2-hydroxyphenyl)-2-(4-methoxyphenyl)ethanone [6245].
m.p. 102° [6245].

1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 244.25
Described [5958] p. 1457
Synthesis

- Also obtained by demethylation of 1-(2,4-dihydroxy-phenyl)-2-(4-methoxyphenyl)ethanone [6245].
m.p. 186° [6245].

1,2-Bis(3,4-dihydroxyphenyl)ethanone

3,3',4,4'-Tetrahydroxydeoxybenzoin
[100622-09-1] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25

New compound
Synthesis

- Obtained by treatment of 3,3',4,4'-tetrahydroxybenzil dihydrate (m.p. 125-130 ${ }^{\circ}$) with granulated tin in dilute hydrochloric acid. The mixture was heated on a steam bath $1.5 \mathrm{~h}(49 \%)$ (compound VIII) [6246].
m.p. 196-198 ${ }^{\circ}$ (monohydrate) [6246]; UV [6246].

Tetramethyl ether [4927-55-3] $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35
(Desoxyveratroin), (3,3',4,4'-Tetramethoxydesoxybenzoin)

- Preparation by the reduction of veratril with tin and hydrochloric acid [6247].
- Also obtained by treatment of veratroin with zinc powder in methanol and acetic acid mixture on a boiling water bath for $1-2 \mathrm{~h}$ [6248].
- Also obtained by treatment of veratril in ethanol with granulated tin and a saturated copper sulfate solution in the presence of concentrated hydrochloric acid on a boiling water bath for 4 h [6247].
- Also obtained by reaction of homoveratroyl chloride (3,4-dimethoxyphenylacetyl chloride) with veratrole in the presence of aluminium chloride,
- in refluxing carbon disulfide (31\%) [6249] for 2 h [6247];
- in refluxing methylene chloride for $2 \mathrm{~h}(98 \%)$ [6250].
- Also refer to: $[6251,6252]$.
b.p. ${ }_{0.01} 190-210^{\circ}$ [6248], b.p. $240-270^{\circ}$ [6249];
m.p. 107° [6247], 106° [6248], $105-107^{\circ}$ [6250], $104-106^{\circ}$ [6249], 100- 101° [6253];
${ }^{1} \mathrm{H}$ NMR [6250,6252], ${ }^{13} \mathrm{C}$ NMR [6250], IR [6252], MS [6251].
Tetraacetate [102599-72-4] $\quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{9} \quad$ mol.wt. 428.39
- Obtained by reaction of acetic anhydride with 3,3',4,4'-tetrahydroxydeoxybenzoin in the presence of pyridine [6246].
m.p. 127-128º [6246]; UV [6246].

2-(4-Aminophenyl)-1-(2,4-dihydroxyphenyl)ethanone $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 243.26
 New compound
Synthesis

- Obtained by reduction of 1-(2,4-dihydroxyphenyl)-2-(4-nitrophenyl) ethanone with iron powder in the presence of ammonium chloride in water at $60-70^{\circ}$ for $2 \mathrm{~h}(56 \%)$ [6225].
m.p. 241° [6225].

2-(2-Carboxyphenyl)-1-(3,4-dihydroxy-5-nitrophenyl)ethanone

 $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{7} \quad$ mol.wt. 2255.27

New compound

Synthesis

- Obtainedbydemethylationof2-(2-carboxyphenyl)-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone with aluminium chloride by refluxing an ethyl acetate/pyridine mixture for 2 h (72\%) [6254].
m.p. $\quad 244-247^{\circ} ; \quad{ }^{1} \mathrm{H}$ NMR [6254], ${ }^{13} \mathrm{C}$ NMR [6254], IR [6254].

BIOLOGICAL ACTIVITY: [6254].
1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-(4-chlorophenyl)ethanone

$$
\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{5} \quad \text { mol.wt. } 321.72
$$

New compound
Syntheses

- Preparation by reaction of 70% nitric acid with 2-(4-chloro-phenyl)-1-(4-hydroxy-3methoxyphenyl)ethanone in acetic acid at 20° for 30 min [6254].
- Also refer to: [6231].

2-(1,3-Benzodioxol-5-yl)-1-(2,4,6-trihydroxyphenyl)ethanone

[39548-98-6] $\quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 288.26

Described [5958] p. 1462
Synthesis

- Preparation by reaction of (3,4-methyl-enedioxy)phenyl-acetonitrile with phloroglucinol (Hoesch reaction) in the presence of zinc chloride (95\%) [6084].
White powder [6084]; ${ }^{1} \mathrm{H}$ NMR [6084], ${ }^{13} \mathrm{C}$ NMR [6084], MS [6084].

2-(2-Bromophenyl)-1-(4-methoxyphenyl)ethanone

[655244-07-8] $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 305.17

New compound

Syntheses

- Preparation by Friedel-Crafts acylation of anisole with 2-bromophenylacetyl chloride in the presence of aluminium chloride in tetrahydrofuran for 2 h at 20° (81\%) [6255].
- Also refer to: [6256].
m.p. $\quad 91-92^{\circ}$ [6255]; ${ }^{1} \mathrm{H}$ NMR [6255], ${ }^{13} \mathrm{C}$ NMR [6255].

2-[4-(Bromomethyl)phenyl]-1-(2,5-dihydroxyphenyl)ethanone
[340960-50-1]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17

New compound

Synthesis

- Refer to: [6257].

1-(4-Chloro-2-hydroxyphenyl)-2-(4-methoxyphenyl)ethanone

Abstract

[189289-99-4]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$
mol.wt. 276.72
New compound
Synthesis

- Obtained by Fries rearrangement of 3-chlorophenyl 4-methoxyphenylacetate [6245].
m.p. 107° [6245].

2-(2-Chlorophenyl)-1-(2,4-dihydroxy-3-methylphenyl)ethanone

[328019-93-8]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$
mol.wt. 276.72
New compound
Synthesis

- Refer to: [6258].

BIOLOGICAL DATA: Protein binding [6258].
2-(4-Fluorophenyl)-1-(4-methoxyphenyl)ethanone
[2729-19-3]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2}$ mol.wt. 244.27

1-(2-Hydroxyphenyl)-2-(3-methyl-4-nitrophenyl)ethanone

New compound Synthesis - Refer to: [6237].
[1018669-07-2]

${ }^{1} \mathrm{H}$ NMR [6238], ${ }^{13} \mathrm{C}$ NMR [6238], IR [6238], MS [6238].

1-(2,5-Dihydroxyphenyl)-2-(4-methylphenyl)ethanone

[340959-90-2]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27

New compound

Synthesis

- Refer to: [6257].

1-(2-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Described [5958] p. 1465
Synthesis

- Also obtained by Fries rearrangement of phenyl 4-methoxyphenylacetate [6245].
m.p. 85° [6245].

1-(4-Hydroxyphenyl)-2-(2-methoxyphenyl)ethanone

[341526-37-2]

$$
\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 242.27
$$

New compound

Synthesis

- Refer to: [6259].

1-(4-Hydroxyphenyl)-2-(3-methoxyphenyl)ethanone
[341526-35-0]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 242.27

New compound
Synthesis

- Refer to: [6259].

1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone
[487-49-0]
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 258.27

Described [5958] p. 1468
Syntheses

- Also obtained by reaction of resorcinol with 4-methoxyphenylacetic acid in the presence of PPA under microwave irradiation and solventfree conditions [6260].
- Also obtained by Fries rearrangement of 3-hydroxyphenyl 4-methoxyphenylacetate [6245].
- Also refer to: [6261]. m.p. 155° [6245].

2-(3-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone

[111474-27-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Described [5958] p. 1473
Synthesis

- Preparation by reaction of 3-methoxyphenylacetonitrile with phloroglucinol (Hoesch reaction) in the presence of zinc chloride [6084].

2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone
[15485-66-2]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Described [5958] p. 1474
Syntheses

- Preparation by reaction of 4-meth-oxyphenyl-acetonitrile with phloroglucinol (Hoesch reaction) in the presence of zinc chloride [6084].
- Also obtained by reaction of phloroglucinol with 4-methoxyphenylacetic acid in the presence of PPA under microwave irradiation [6260].

2-(2-Carboxyphenyl)-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{7} \quad$ mol.wt. 331.28

New compound
Synthesis

- Obtained by adding dropwise 70\% nitric acid to a stirred suspension of 2-(2-carboxyphenyl)-1-(4-hydroxy-3-methoxyphenyl)ethanone in acetic acid at room temperature, then stirring for $30 \mathrm{~min}(62 \%)$ [6254].

2-(2-Carboxyphenyl)-1-(4-hydroxy-3-methoxyphenyl)ethanone
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28

New compound

Synthesis

- To a stirred an cooled $\left(-78^{\circ}\right)$ solution of diisopropylamine in THF under nitrogen was added 2 M n-butyllithium solution in hexane. After stirring the mixture for 30 min , o-toluic acid in THF was added dropwise, and the resulting deep red solution was stirred at -78° for 1 h . Thereupon, a solution of methyl vanillate in THF was added dropwise, and the temperature was gradually allowed to reach room temperature. The mixture was then poured on ice/2 $\mathrm{N} \mathrm{HCl}(66 \%)$ [6254].
m.p. $166-168^{\circ}$ [6254].

2-(2-Bromo-5-methoxyphenyl)-1-(4-methoxyphenyl)ethanone
 [1019652-01-7]

 $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3} \quad$ mol.wt. 335.20
 New compound
 Synthesis
 - Obtained by reaction of 2-bromo-5-methoxyphenylacetyl chloride with anisole in the presence of aluminium chloride in methylene chloride (89\%) [6262].

1-(5-Chloro-2,4-dihydroxyphenyl)-2-(ethoxyphenyl)ethanone
[708259-71-6]

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{4}$

New compound

Synthesis

- Obtained by Friedel-Crafts acylation of 4-chloro-resorcinol with 4-ethoxyphenylacetic acid in the presence of boron trifluoride (good yield) [6233,6234].
${ }^{1} \mathrm{H}$ NMR [6233], ${ }^{13} \mathrm{C}$ NMR [6233], MS [6233].
BIOLOGICAL DATA: Potent selective estrogen receptor modulator [6233].

1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-(4-methoxyphenyl)ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6} \quad \text { mol.wt. } 317.30
$$

New compound

Syntheses

- Obtained by reaction of 70% nitric acid with 1-(4-hydroxy-3-methoxyphenyl)-2-(4-methoxyphenyl)ethanone [6254].
- Also refer to: [6231].

1-(2,4-Dihydroxy-5-methylphenyl)-2-(4-methylphenyl)ethanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

New compound

Synthesis

- Obtained by reaction of 4-methylresorcinol with 4-methylphenylacetyl compound at molar ratio $1: 1$ in solvent in the presence of Lewis acid catalyst [6263] (Chinese paper).

1-(2-Hydroxy-4-methylphenyl)-2-(4-methoxyphenyl)ethanone

[189289-98-3]

m.p. 124° [6245].
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
New compound
Synthesis

- Also obtained by Fries rearrangement of 3-methyl-phenyl 4-methoxyphenylacetate [6245].

2-(3-Methoxyphenyl)-1-(4-methoxyphenyl)ethanone

[98540-26-2] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

New compound
Synthesis

- Refer to: [6262].

1-(2-Hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone
[39604-64-3]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30
Described [5958] p. 1483
Syntheses

- Also obtained by Fries rearrangement of 3-methoxyphenyl 4-methoxyphenylacetate [6245].
- Also refer to: [6230]. m.p. 136° [6245].
N.B.: Terbium complex (luminescent properties) [6230].

1,2-Bis(4-hydroxy-3-methoxyphenyl)ethanone (Melicopone, Desoxyvanilloin)
[5438-67-5] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

New compound

Syntheses

- Obtained by treatment of 4,4'-dihydroxy-3,3'-dimethoxy-benzil with zinc and ammonium chloride in boiling dilute ethanol [6253], (84\%) [6253].
- Also obtained from 3,3'-dimethoxy-4,4'-dihydroxy-trans-stilbene (27\%) [6251].
- Also refer to: [6264,6265].

Isolation from natural sources

- From the root wood Melicope semecarpifolia Merr. T. Hartley [6266]. m.p. $154-155^{\circ}$ [6253,6265];
${ }^{1} \mathrm{H}$ NMR [6266], ${ }^{13} \mathrm{C}$ NMR [6266], IR [6266], UV [6253,6266], MS [6266]. BIOLOGICAL DATA: Cytotoxicity [6266].

Diacetate $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 372.37

- Obtained by reaction of acetic anhydride with Melicopone in the presence of pyridine [6253].
m.p. $172-173^{\circ}$ [6253].

Dibenzyl ether [3122-36-9] $\quad \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{5} \quad$ mol.wt. 468.55

- Obtained by reaction of benzyl chloride with melicopone in the presence of potassium carbonate in boiling ethanol for $12 \mathrm{~h}(74 \%)$ [6264].
- Also obtained by reduction of 4,4'-dibenzyloxy-3,3'-dimethoxybenzoin with zinc powder in acetic acid [6267].
m.p. $146.5-147.5^{\circ}$ [6267], 145-146 ${ }^{\circ}$ [6264].

2-(1,3-Benzodioxol-5-yl)-1-(3,4-dimethoxyphenyl)ethanone
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 300.31

New compound

Syntheses

- Obtained by reaction of 3,4-dimethoxyphenylacetyl chloride with 1,3-benzodioxole in the presence of stannic chloride in methylene chloride, first at -10°, then at r.t. for $2 \mathrm{~h}(66 \%)$ [6250].
- Alsoobtainedfrom 1,3-benzodioxole-5-carbaldehyde and[(3,4-dimethoxyphenyl)-(tetrahydropyran-2-yloxy)methyl]phosphonic acid dimethyl ester [6268].
- Also obtained from polymer- $\mathrm{PPh}_{2}(1+)-\mathrm{CH}_{3} * \mathrm{I}(1-)$ (multi-step reaction) [6268].
m.p. $110-111^{\circ}$ [6250], $88-89^{\circ}$ [6268]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6250,6268], ${ }^{13} \mathrm{C}$ NMR [6250], IR [6250,6268].

2-(1,3-Benzodioxol-5-yl)-1-(3,5-dimethoxyphenyl)ethanone

[1003857-18-8]

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 300.31
New compound
Synthesis

- Refer to: [6269].

2-(2,6-Dimethoxyphenyl)-1-(3-methoxyphenyl)ethanone

[960591-80-4]

GC [6270].
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33
New compound
Synthesis

- Obtained by reaction of 1-chloro-2,6-dimethoxybenzene with 3-methoxyacetophenone in the presence of (DtBPF) $\mathrm{PdCl}_{2}(2 \mathrm{~mol} \%)$ and $\mathrm{NaOtBu}(1.1$ equiv) in dioxane at $100^{\circ}(98 \%)$ [6270].

2-(2,6-Dimethoxyphenyl)-1-(4-methoxyphenyl)ethanone

[960591-81-5] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 286.33

New compound

Synthesis

- Obtained by reaction of 1-chloro-2,6-dimethoxybenzene with 4-methoxyacetophenone in the presence of (DtBPF) PdCl_{2} ($2 \mathrm{~mol} \%$) and NaOtBu (1.1 equiv) in dioxane at 100° (99%) [6270].

GC [6270].

1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(2-methylphenyl)ethanone

[302918-18-9]

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}
$$

mol.wt. 270.33

1-(3-Methoxy-5-methylphenyl)-2-(4-methoxyphenyl)ethanone
[1019984-29-2]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 270.33
New compound
Synthesis

- Refer to: [6271].

1-(3,4-Dimethoxyphenyl)-2-(2-hydroxy-3-methoxyphenyl)ethanone

New compound

Synthesis

- Obtained by photochemical rearrangement of α-guaiacoxy-acetoveratrone on solid supports [6179].

1-(3,4-Dimethoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33
New compound
Synthesis

- Obtained by reaction of 3-hydroxy-4-methoxyphenylacetic acid with pyrocatechol dimethyl ether in the presence of phosphoric acid [6272].
m.p. $112-113^{\circ}$ [6272]; ${ }^{1} \mathrm{H}$ NMR [6272], IR [6272], UV [6272].

1-(3,4-Dimethoxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)ethanone
[135625-64-8]

$$
\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad \text { mol.wt. } 302.33
$$

New compound

Syntheses

- Obtained by photochemical rearrangement of α-guaiacoxyl-acetoveratrone [6183],
- on solid supports [6179];
- in tetradeuteriomethanol at 25° [6180];
- in acetonitrile [6190].
- Also obtained by desilylation of 1-(3,4-dimethoxyphenyl)-2-[4-[(tert-butyldim-ethylsilyl)oxy]-phenyl]ethanone $\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~S}\right.$; m.p. 129-130 $) ~(60 \%)$ [6183], according to the procedure [6273].
m.p. $119-119.5^{\circ}$ [6274], $118-120^{\circ}$ [6183];
${ }^{1} \mathrm{H}$ NMR [6180,6183], ${ }^{13} \mathrm{C}$ NMR [6183], IR [6183], MS [6183].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone

[39604-68-7]
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 302.33

Described [5958] p. 1504
Synthesis

- Refer to: [6230].
N.B.: Terbium complex (luminescent properties) [6230].

1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-ethylphenyl)ethanone

New compound
Synthesis

- Refer to: [6263] (Chinese patent).

1,2-Bis(3,5-di-tert-butyl-4-hydroxyphenyl)ethanone
[17055-19-5]

$\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{3} \quad$ mol.wt. 452.68
New compound
Syntheses

- Obtained by adding 2,6-di-tertbutylphenol (0.01 mol) in bromoacetyl chloride (10 ml) to a mixture of bromoacetyl chloride $(15 \mathrm{ml})$ and aluminium chloride $(0.5 \mathrm{~g})$ at -10° and allowed to stand for $15 \mathrm{~min}(23 \%)$ [6065].
N.B.: The same compound was obtained by reaction of chloroacetyl chloride with 2,6-di-tert-butylphenol.
- Also refer to: [6275].
m.p. 240-241 [6275], 95-97 (recrystallized from octane) [6065].

One of the reported melting points is obviously wrong. IR [6065,6275].

18.3 Compounds Derived from Di- and Triphenylacetic Acids [5958] p. 1538

18.4 Compounds Derived from Cycloalkylacetic Acids [5958] p. 1541

Chapter 19. Compounds Derived from S-Substituted Mercaptoacetic acids [5958] p. 1543

1-(4-Hydroxyphenyl)-2-mercaptoethanone
[23081-13-2] $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$ mol.wt. 168.22

m.p. $133-134^{\circ}$ [6276].

Methyl ether [139488-44-1] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 182.24

- Facile displacement of the bromide in 2-bromo-1-(4-methoxyphenyl)ethanone with potassium thioacetate delivered the corresponding thioacyl analog, which was easily hydrolyzed to the free thiol [5981]. Obtained in two steps: First, reaction of potassium thioacetate with 2-bromo-1-(4-methoxyphenyl)ethanone in THF at 40° for $24 \mathrm{~h}(99 \%)$, then treatment of the thioacyl derivative so obtained with 1 M sodium hydroxide in methanol at r.t. for $1 \mathrm{~h}(84 \%)$ [5981].

1-(3,4-Dihydroxyphenyl)-2-(methylthio)ethanone

[104692-98-0] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 198.24

New compound

Synthesis

- Obtained by reaction of methanethiol sodium salt and 2-chloro-1-(3,4-dihydroxyphenyl)ethanone in methanol (85\%) [6277], (77\%) [6278].
m.p. 110° [6277], $107-108^{\circ}$ [6278]; ${ }^{1} \mathrm{H}$ NMR [6278].

Dimethyl ether [67489-10-5] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 226.30

- Obtained by reaction of α-(methylthio)acetyl chloride with veratrole in the presence of aluminium chloride in methylene chloride for 30 min at 0° (82%) [6279].
- Also obtained by reaction of methanethiol sodium salt and 2-chloro-1-(3,4dimethoxyphenyl)ethanone in methanol (53\%) [6277].
- Also refer to: [6279,6280,6281]. m.p. $\quad 53^{\circ}$ [6277]; ${ }^{1} \mathrm{H}$ NMR [6279,6281].

Diacetate $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 282.32

- Obtained by reaction of acetic anhydride with the titled compound in the presence of concentrated sulfuric acid [6277].
m.p. $97-98^{\circ}$ [6277].

1-(4-Hydroxyphenyl)-2-(methylsulfonyl)ethanone

[52945-18-3] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 214.24

Described [5958] p. 1544
Synthesis

- Also refer to: [6282].

1-(4-Methoxyphenyl)-2-(methylthio)ethanone

[46188-84-5] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 196.27

New compound

Syntheses

- Obtained by reaction of methanethiol sodium salt and ω-chloro-p-methoxyacetophenone in methanol (94\%) [6277], (72\%) [6283].
- Also obtained by adding a 20% aqueous solution of the sodium salt of methylmercaptan to a solution of α-bromo-4-methoxyacetophenone in ethyl ether at r.t. for 14 h [6284], (89\%) [6285].
- Also obtained by reaction of α-(methylthio)acetyl chloride with anisole in the presence of aluminium chloride in methylene chloride at 0° for $30 \mathrm{~min}(83 \%)$ [6279].
- Also refer to: [6280,6284,6286].
b.p. ${ }_{1} 132-136^{\circ}$ [6285], b.p. ${ }_{10} 175^{\circ}$ [6284]; m.p. 33° [6277,6283];
${ }^{1} \mathrm{H}$ NMR [6279,6284], ${ }^{13} \mathrm{C}$ NMR [6284], IR [6284], MS [6284].
1-(3,4-Dihydroxyphenyl)-2-(ethylthio)ethanone
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 212.26

New compound
Synthesis

- Obtained by reaction of ethanethiol sodium salt and 2-chloro-1-(3,4-dihydroxyphenyl)ethanone in methanol [6277].
m.p. 94-94.5 ${ }^{\circ}$ [6277].

Dimethyl ether [100257-47-4] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 240.32

- Obtained by reaction of ethanethiol with 2-bromo-1-(3,4-dimethoxyphenyl) ethanone in the presence of ethanolic sodium ethylate [6287].
b.p. ${ }_{0.1} 170^{\circ}$ [6287].

Dibenzoate $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 420.49

- Obtained by reaction of benzoyl chloride with the titled compound in the presence of pyridine [6277].
m.p. $107.5-108.5^{\circ}$ [6277].

1-(2-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone

[1023921-91-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 244.27
New compound
Synthesis

- Refer to: [6288].

1-(3-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$
mol.wt. 244.27

New compound
Synthesis

- Refer to: [6288].

1-(4-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone
[142608-19-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 244.27

New compound
Synthesis

- Refer to: [6288].
[2-(3,4-Dihydroxyphenyl)-2-(oxoethyl)]dimethylsulfonium chloride $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{~S} \quad$ mol.wt. 249.26

New compound
Synthesis

- Obtained by reaction of silver chloride with dime-thyl-(3,4-dihydroxyphenacyl)sulfonium iodide [6277].
m.p. $151.5-152.5^{\circ}$ [6277].

[2-(3,4-Dihydroxyphenyl)-2-(oxoethyl)]dimethylsulfonium iodide

[77263-39-9]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{IO}_{3} \mathrm{~S} \quad$ mol.wt. 340.18
New compound
Syntheses

- Obtained from 1-(3,4-dihydroxyphenyl)-2-methylsulfanyl ethanone [6277].
- Also refer to: [6289].
m.p. 135° [6289], $130-130.5^{\circ}$ [6277]; ${ }^{1} \mathrm{H}$ NMR [6289].

BIOLOGICAL ACTIVITY: Inhibition of $<3 \mathrm{H}>$ dopamine binding [6289]; ability to produce circling behavior in rats lesioned unilaterally in the substantia nigra with 6-hydroxydopamine and antagonism by haloperidol of circling behavior [6289].

Dimethyl ether $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{IO}_{3} \mathrm{~S}$ mol.wt. 368.24

- Refer to: [6277]. m.p. 107-108 [6277].

2-(Ethylthio)-1-(4-methoxyphenyl)ethanone

[115505-09-4]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$
mol.wt. 210.30

New compound
Syntheses

- Obtained by reaction of ethanethiolate sodium salt with 2'-chloro-4-methoxyacetophenone in methanol (50\%) [6277].
- Also refer to: [5981,6290].
b.p. ${ }_{11} 181^{\circ}$ [6277];
${ }^{1} \mathrm{H}$ NMR [6291], ${ }^{13} \mathrm{C}$ NMR [6290], IR [6291], UV [6291,6292].
BIOLOGICAL DATA: Inhibition of enzyme activity [5981]; effect on cell growth [5981].

1-(2-Methoxy-5-methylphenyl)-2-[(methylsulfonyl)oxy]ethanone

[1023022-17-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 258.30

New compound
Synthesis

- Refer to: [6288].

1-[4-(Acetyloxy)-3-methoxyphenyl]-2-(methylthio)ethanone
[1018948-88-3] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 228.27

1-[4-Methoxy-3-(methoxymethyl)phenyl]-2-[(methylsulfonyl)oxy]ethanone
[1023922-21-5]
 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 288.32

New compound

Synthesis

- Refer to: [6288].

1-(4-Hydroxyphenyl)-2-(phenylthio)ethanone

[137524-65-3]
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
mol.wt. 244.31

Methyl ether $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 258.34

- Obtained by reaction of α-(phenylthio)acetyl chloride with anisole in the presence of aluminium chloride in methylene chloride for 30 min at $0^{\circ}(59 \%)$ [6279].
- Also refer to: [6293].
m.p. $85-85.5^{\circ}$ [6279], 79-81.5 ${ }^{\circ}$ [6293]; ${ }^{1} \mathrm{H}$ NMR [6279].

1-(3,4-Dihydroxyphenyl)-2-(phenylthio)ethanone

[131985-77-8] $\quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 260.31

Dimethyl ether $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ mol.wt. 288.37

- Obtained by reaction of α-(phenylthio)acetyl chloride with veratrole in the presence of aluminium chloride in methylene chloride at 0° for $30 \mathrm{~min}(65 \%)$ [6279]. ${ }^{1} \mathrm{H}$ NMR [6279].

1-(4-Hydroxyphenyl)-2-[(4-methylphenyl)sulfonyl]ethanone
[896109-71-0]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 290.34

New compound

Synthesis

- Refer to: [6282].

Part VIII Di- and Polyketones

Chapter 20. Aromatic Ketones Containing Only Acetyl Groups [5958] p. 1559

20.1 Acetyl Groups Located on One Ring [5958] p. 1559

20.1.1 Unsubstituted Acetyl Groups [5958] p. 1559

1,1'-(5-Fluoro-2-hydroxy-1,3-phenylene)bis-ethanone
[106823-62-5] $\quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{3} \quad$ mol.wt. 196.18

Described [5958] p. 1560
Synthesis

- Also obtained by Fries rearrangement of 2-acetyl-4-fluorophenyl acetate by heating at $170-180^{\circ}$ for 3 h with aluminium chloride first heated at 140° for 20 min (19\%) [6294].
Yellow solid; m.p. 64-66 [6294]; ${ }^{1} \mathrm{H}$ NMR [6294].
1,1'-(4-Hydroxy-1,3-phenylene)bis-ethanone

Isolation from natural sources

- From capitulum of a head rot-resistant sunflower genotype [6295].

BIOLOGICAL ACTIVITY: Antifungal [6295].
Acetate [1007089-42-0] $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 220.22
Isolation from natural sources

- From capitulum of a head rot-resistant sunflower genotype [6295].

BIOLOGICAL ACTIVITY: Antifungal [6295].

1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-ethanone

[2161-85-5] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Described [5958] p. 1566
Synthesis

- Also refer to: [6296].

1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-ethanone
[2161-86-6]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 210.19
Described [5958] p. 1568
Syntheses

- Obtained by phloroglucin acetylation with acetic anhydride catalyzed by boron trifluoride etherate at 95° [6297].
- Also obtained by reaction of acetonitrile on phloroglucinol (Houben-Hoesch reaction) (14\%) [6298].
- Also refer to: [6299,6300,6301,6302,6303,6304.6305].
m.p. $167-169^{\circ}$ [6298].

BIOLOGICAL ACTIVITY: Antifungal compound [6299,6306,6307,6308]; antimicrobial antibiotic [6309]; an active ingredient in plant protection against soil-borne pathogens [6297]; role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots [6310]; phenotypic, genotypic and colonization properties of 2,4-diacetylphloroglucinol-producing Pseudomonas spp. isolated from roots of wheat [6311].

1,1'-(2,4-Dihydroxy-6-methoxy-1,3-phenylene)bis-ethanone

[3098-38-2]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21

Described [5958] p. 1575
Synthesis

- Also obtained by reaction of acetonitrile with 2,4-dihydroxy-6-methoxyacetophenone (Houben-Hoesch reaction) (23\%) [6298].

1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-ethanone
[2999-42-0]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
Described [5958] p. 1576

Trimethyl ether [3133-39-9] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29

- Obtained by total methylation of 2,4-diacetyl-6-methylphloroglucinol with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [6312].
- Also obtained by methylation of 4,6-diacetyl-5-methoxy-2-methylresorcinol with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [6312].
- Also obtained by methylation of 2,4-diacetyl-5-methoxy-6-methylresorcinol with dimethyl sulfate in the presence of potassium carbonate in boiling acetone [6312].
- Also refer to: [6313]. m.p. $67-68^{\circ}$ [6313], $66-67^{\circ}$ [6312]; ${ }^{1} \mathrm{H}$ NMR [6313], IR [6313].

1,1', $1^{\prime \prime}$-(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris-ethanone

[2161-87-7]

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ mol.wt. 252.22
Described [5958] p. 1578
Syntheses

- Also obtained by Fries rearrangement of phloroglucinol triacetate [6314].
- Also obtained by reaction of acetic acid with phloroglucinol in the presence of PPA on a boiling water bath for 5-20 min (12\%) [6315].

$$
\text { m.p. } 154-155^{\circ}[6315] .
$$

1,1'-(4,6-Dihydroxy-2-methoxy-5-methyl-1,3-phenylene)bis-ethanone
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24

New compound

Synthesis

- Obtained by reaction of acetic anhydride with 2,4-dihy-droxy-6-methoxy-3-methylacetophenone in the presence of boron trifluoride at 80° for $1 \mathrm{~h}(47 \%)$ [6312].
m.p. 94° [6312].

1,1'-(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis-ethanone
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24

New compound
Syntheses

- Obtained by reaction of acetonitrile with 2-hydroxy-4,6-dimethoxyacetophenone (Houben-Hoesch reaction) [6298].
- Also obtained by reaction of acetic anhydride with phloroglucinol dimethyl ether in the presence of boron trifluoride [6312].
- Also refer to: [6316].
b.p. ${ }_{0.005} 140-160^{\circ}$ [6298]; m.p. 128° [6312], 127° [6298].

Benzyl ether $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 328.34

- Obtained by reaction of benzyl bromide with the titled diketone [6312].

1,1'-(4-Hydroxy-2,6-dimethoxy-1,3-phenylene)bis-ethanone

[72221-04-6]
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24

Described [5958] p. 1581
Synthesis

- Also obtained by reaction of acetic acid with phloroglucinol dimethyl ether in the presence of PPA on a boiling water bath for 5-20 $\min (46 \%)$ [6315].
m.p. 126° [6315].

1-(2-Acetyl-6-methoxy-5-benzofuranyl)ethanone

(2,5-Diacetyl-6-methoxybenzofuran) (Euparone methyl ether)
[23840-15-5]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 232.14
New compound
Synthesis

- Obtained by adding a solution of 6-methoxy-coumarone-2,5-dicarboxylic acid in THF to a solution of methyllithium in ethyl ether. After 3 h , the reaction mixture was decomposed with aqueous ammonium chloride [6317].
Isolation from natural source
- From Encelia california Nutt. (Compositae, tribe Heliantheae) [6317].
m.p. $\quad 140-141^{\circ}$ [6317]; ${ }^{1} \mathrm{H}$ NMR [6317], IR [6317], UV [6317], MS [6317].
$1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-(2,4-Dihydroxy-6-methoxy-1,3,5-benzenetriyl)tris-ethanone

$$
\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6} \quad \text { mol.wt. } 266.25
$$

New compound

Synthesis

- Obtained by reaction of acetic acid with phloroglucinol monomethyl ether in the presence of PPA on a boiling water bath for 5-20 min (34\%) [6315].
m.p. 109° [6315].

1,1'-(2-Hydroxy-4,5,6-trimethoxy-1,3-phenylene)bis-ethanone
[870480-47-0] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 268.27

New compound
Synthesis

- Preparation by reaction of acetic anhydride (4 equiv) with 3,4,5-trimethoxyphenol (1 equiv) in the presence of aluminium chloride (3 equiv) in nitromethane, first at 0°, then at r.t. for 20 h (74\%) [6318].
Colourless crystals [6318]; m.p. 85-86 [6318]; ${ }^{1} \mathrm{H}$ NMR [6318], MS [6318].
1-[3-Acetyl-2,6-dihydroxy-5-(phenylazo)phenyl]ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \quad \text { mol.wt. } 298.30
$$

New compound
Synthesis

- Obtained by coupling 2,4-diacetylresorcinol with benzenediazonium chloride [6319].
m.p. 144° [6319].

1-[5-Acetyl-2,4-dihydroxy-3-(phenylazo)phenyl]ethanone

$$
\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \quad \text { mol.wt. } 298.30
$$

New compound
Synthesis

- Obtained by coupling 4,6-diacetylresorcinol with benzenediazonium chloride [6319].
m.p. 202° [6319].

20.1.2 Diversely Substituted Acetyl Groups [5958] p. 1590

20.2 Acetyl Groups Located on Different Rings [5958] p. 1590

20.2.1 Diphenyl Derivatives [5958] p. 1590

Symmetrical ketones [5958] p. 1590
Asymmetrical ketones [5958] p. 1595
$\mathbf{1 - 1} \mathbf{1}^{\prime}$-($\mathbf{2}^{\prime}, \mathbf{3 , 6 , 6} \mathbf{6}^{\prime}$-Tetrahydroxy $\mathbf{1}^{\prime}, \mathbf{1}^{\prime}$-biphenyl]-2,3'-diyl)bis-ethanone (Cynandione A)
[168706-29-4]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$
mol.wt. 302.28

Described [5958] p. 1596

Isolation from natural sources

- Refer to: [6320] (Chinese patent).

BIOLOGICAL DATA: For treating nervous degenerative diseases [6320].

20.2.2. Diphenylmethane Derivatives [5958] p. 1598

20.2.2.1 Unsubstituted Acetyl Groups [5958] p. 1598

1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-3,1-phenylene)]bis-ethanone
[142382-28-3] $\quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 376.36

Described [5958] p. 1603

Isolation from natural sources

- Also from the roots of Euphorbia ebracteolata Hayata (Euphorbiaceae) [6321].

1,1'-[Methylenebis(2,4,6-trihydroxy-5-methyl-3,1-phenylene)]bis-ethanone
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 376.36

Described [5958] p. 1603

Hexamethyl ether $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8} \quad$ mol.wt. 460.53

- Refer to: [6322]; UV [6322].

1-[3-[(3-Acetyl-4,6-dihydroxy-2-methoxy-5-methylphenyl)methyl]-2,4-dihydroxy-6-methoxyphenyl]ethanone
2, 2',4,4'-Tetrahydroxy-6,6'-dimethoxy-3,3'-dimethyl-7,5'-bis-acetophenone (compound 2)
[883886-03-1]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8} \quad$ mol.wt. 390.39
New compound

Isolation from natural sources

- From the roots of Euphorbia ebracteolata Hayata (Euphorbiaceae) [6321].
m.p. $228-230^{\circ}$ [6321];
${ }^{1} \mathrm{H}$ NMR [6321], ${ }^{13} \mathrm{C}$ NMR [6321], IR [6321], MS [6321];
X-ray crystal data [6321].

20.2.2.2 Halogenated Acetyl Groups [5958] p. 1606

20.2.3 Diphenylalkanes Derivatives and Homologues [5958] p. 1610

1,1'-[1,2-Ethanediylbis(4,5-dimethoxy-1,2-phenylene)]bis-ethanone
2,2'-Diacetyl-4,5,3', 4'-tetramethoxydibenzyl
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6} \quad$ mol.wt. 386.44

New compound
Synthesis

- Obtained by reaction of acetyl chloride with *3,4, $3^{\prime}, 4^{\prime}$-tetramethoxydibenzyl in the presence of aluminium chloride in benzene at r.t for 1 h , then at reflux for $2.5 \mathrm{~h}(28 \%)$ [6323].
- Colourless rods; m.p. 173-175 ${ }^{\circ}$ [6323]; UV [6323].
*1,2-(3,4-Dimethoxyphenyl)ethane

20.2.4 Diphenyl Ethers and Related Compounds [5958] p. 1614

1-[6-(3-Acetyl-2,6-dihydroxy-4-methoxy-5-methylphenoxy)-2-hydroxy-

4-methoxy-3-methylphenyl]ethanone

3'-(2"-Acetyl-3"-hydroxy-5"-methoxy-4"-methylphenoxy)-2',4'-dihydroxy-6'-methoxy-5'-methyl-acetophenone (Leprolomin)
[68984-67-8]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8} \quad$ mol.wt. 390.39
New compound

Isolation from natural sources

- From Psoroma leprolomum (Nyl.) Räs (Lichen collected from the bark of eucalypts) (compound 12) (0.6\%) [6324].
- From Psoroma anthrophyllum [6325].

Pale yellow prisms [6324]; m.p. 238-239 ${ }^{\circ}$ [6324];
${ }^{1} \mathrm{H}$ NMR [6324], ${ }^{13} \mathrm{C}$ NMR [6324], UV [6324], MS [6324]; TLC [6324].
Triacetate (compound 15) $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{11} \quad$ mol.wt. 516.50

- Obtained by reaction of acetic anhydride with leprolomin in the presence of sulfuric acid (2 drops) at 40° for $30 \mathrm{~min}(46 \%)$ [6324].
m.p. 121.5-122.5 ${ }^{\circ}$ [6324]; ${ }^{1} \mathrm{H}$ NMR [6324], MS [6324];

X-ray crystallography [6324].
1-[3-(2-Acetyl-3-hydroxy-5-methoxy-4-methylphenoxy)-2,4,6-trimethoxy-
5-methyl-phenyl]ethanone
3'-(2"-Acetyl-3"-hydroxy-5"-methoxy-4"-methylphenoxy)-2', 4', 6^{\prime}-trimethoxy-5'-methyl-acetophenone (Di-O-methyllepromin)
[68984-68-9]

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{8}$
mol.wt. 418.16
New compound
Synthesis

- Obtained by treatment of a solution of leprolomin in ethyl acetate with an excess of etheral diazomethane at r.t. for 2 h (compound 13) (93\%) [6324].

Pale yellow crystals; m.p. 122-123 ${ }^{\circ}$ [6324];
${ }^{1} \mathrm{H}$ NMR [6324], MS [6324]; TLC [6324].

Methyl ether $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8} \quad$ mol.wt. 432.18
(Tri-O-methylleprolomin) (compound 14)

- Obtained by reaction of dimethyl sulfate with di-O-methylleprolomin in the presence of potassium carbonate in refluxing acetone for 16 h (77\%) [6324]. oil [6324]; ${ }^{1} \mathrm{H}$ NMR [6324], MS [6324]; TLC [6324].

20.2.5 Diphenyl Sulfide Derivatives and Related Compounds [5958] p. 1620

20.2.5.1 Diphenyl Sulfide Derivatives [5958] p. 1620
20.2.5.2 Diphenyl Sulfone Derivatives [5958] p. 1623

Chapter 21. Aromatic Polyketones Containing At Least One Acetyl Group and One Other Acyl Group [5958] p. 1627

21.1 Acyl Groups Located on One Ring [5958] p. 1627

2,4-Dihydroxy-3-(1-oxoethyl)benzaldehyde
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 180.16

New compound
Syntheses

- Obtained by adding successively zinc cyanide (2 mol) and aluminium chloride (2 mol) to asolution of resacetophenone in ethyl ether, then passing hydrogen chloride for 4.5 h into the stirred mixture [6326], (45\%) [6327].

```
m.p. 112-114 [6327].
```

2,4-Dinitrophenylhydrazone $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{7}$ mol.wt. 360.49

```
m.p. 283-285* (d) [6327]
```

Dioxime $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 210.19 m.p. 218-219 ${ }^{\circ}$ (d) [6327]
2,6-Dihydroxy-3-(1-oxoethyl)benzaldehyde
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \quad$ mol.wt. 180.16

New compound

Synthesis

- Obtained by adding zinc cyanide to a solution of 2,6-dihydroxyacetophenone in ethyl ether; hydrogen
chloride was passed into the solution to saturation ($6-7 \mathrm{~h}$). Then, the reaction mixture was allowed to stand overnight (35\%) [6326].
m.p. $101-102^{\circ}$ [6326].

2,4,6-Trihydroxy-3-(1-oxoethyl)benzaldehyde

[62018-55-7]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{5} \quad$ mol.wt. 196.16

New compound

Syntheses

- Obtained by reaction of acetonitrile with 2,4,6-trihydroxy-benzaldehyde (Houben-Hoesch reaction) [6298].
- Also obtained by reaction of ethyl orthoformate with phloracetophenone in the presence of aluminium chloride [6328].
- Preparation by adding successively zinc cyanide and aluminium chloride to a solution of phloracetophenone in ethyl ether. The reaction mixture was cooled in ice and saturated with hydrogen chloride [6298,6329], (73\%) [6326].
- Also obtained by reaction of DMF with phloracetophenone in the presence of phosphorous oxychloride at 20° for $1 \mathrm{~h}(70 \%)$ [6330,6331,6332].
- Also refer to: [6326,6333,6334,6335] (compound 10).
m.p. $182-183^{\circ}$ [6334], $180-182^{\circ}$ [6329], 176° [6326], 173-174$~[6298], ~$ 163-165 [6336].
One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6335,6336], ${ }^{13} \mathrm{C}$ NMR [6335], IR [6333,6336].
BIOLOGICAL ACTIVITY: Cytotoxicity [6332].
- No effect: Antifungal [6332]; antimalarial [6332]; antibacterial [6332].

Monohydrate $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{5} \mathrm{H}_{2} \mathrm{O} \quad$ mol.wt. 214.18 [6326]

5-Acetyl-2-hydroxy-3-methoxybenzaldehyde

[112579-47-2] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

New compound
Synthesis

- Obtained by Fries rearrangement of o-vanillin acetate (small amount) [6337].

5-Acetyl-3-hydroxy-2-methoxybenzaldehyde (5-Acetylvanillin)

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad \text { mol.wt. } 194.19
$$

New compound
Synthesis

- Obtained by treatment of 2-hydroxy-3-methoxyacetophenone by chloroform in the presence of potassium hydroxide (19\%) [6337].
Pale yellow needles; m.p. 120-121 ${ }^{\circ}$ [6337].

Bis-semicarbazone $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4} \quad$ mol.wt. 308.30
m.p. $335-338^{\circ}$ [6337].

Bis-phenylhydrazone $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$ mol.wt. 374.44
m.p. $186-188^{\circ}$ [6337].

Benzenesulfonate $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}$ mol.wt. 334.35

- Obtained by reaction of benzenesulfonyl chloride with 5-acetylvanillin in the presence of pyridine (84\%) [6337].
m.p. $123-125^{\circ}$ [6337].

3-Acetyl-2,6-dihydroxy-4-methoxybenzaldehyde

[52117-67-6]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 210.19
New compound
Synthesis

- Obtained by reaction of hydrogen cyanide with 2,4-dihydroxy-6-methoxyacetophenone [6338].
- Also refer to: [6339]

Isolation from natural sources

- From the roots of Euphorbia ebracteolata Hayata (Euphorbiaceae) [6321].
- From the roots of Euphorbia kansui (Euphorbiaceae) [6340].
- From Euphorbia decipiens Boiss and Buhse (Euphorbiaceae) [6341].
- Also obtained by heating 2,4-dihydroxy-6-methoxy-3-methylacetophenone 4 -O- α-L-arabinofuranosyl-(1—>6)- β-D-glucopyranoside with $10 \% \mathrm{HCl}$ under reflux for 5 h [6321].
Plates [6340]; m.p. 137-138 [6340,6341], 134° [6338];
${ }^{1}$ H NMR [6321,6340,6341], ${ }^{13}$ C NMR [6321,6340], IR [6339,6340,6341], MS [6340, 6341].

BIOLOGICAL ACTIVITY: [6341].
2,4-Dinitrophenylhydrazone $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{8}$ mol.wt. 390.31

```
m.p. 291-293 (d) [6338]
```


3-Acetyl-2,4,6-trihydroxy-5-methylbenzaldehyde

[59677-81-5] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \quad$ mol.wt. 210.19

New compound

Syntheses

- Obtained by reaction of methyl iodide with 2,4,6-trihydroxy-3-(1-oxoethyl)benzaldehyde in the presence of potassium hydroxide in methanol at $70^{\circ}(50 \%)$ [6330,6331,6332].
- Also prepared by interaction of C-methylphloroacetophenone, zinc cyanide and hydrogen cyanide in ethyl ether saturated at 0°, for 24 h followed by rapid heating to boiling of the aldimine salt with water [6334].
- Also obtained by reaction of acetyl chloride with 2-formyl-4-methylphloroglucinol in the presence of aluminium chloride at 0° and at r.t. for 48 h , then at 60° for 1 h [6342].
- Also refer to: [6339].
m.p. 155° [6342], 134° [6334]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6342], IR [6339], MS [6342].
BIOLOGICAL ACTIVITY: Antifungal (Candida albicans) [6332]; antibacterial (no effect*) [6332],*Aspergillus fumigatus, mycobactetium intracellulaire, methicillin-resistant Staphylococcus aureus; antimalarial (no effect) [6332]; antiprotozoal (no effect) [6332]; cytotoxicity [6332].

2,4-Dinitrophenylhydrazone $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{8}$ mol.wt. 390.31 m.p. 294-295 [6334].

2-Hydroxy-4,6-dimethoxy-3-(1-oxoethyl)benzaldehyde

[99866-01-0]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
New compound
Syntheses

- Obtained by treatment of 2-hydroxy-4,6-dimethoxyacetophenone with zinc cyanide in ethyl ether in the presence of hydrogen chloride (84\%) [6298].
- Preparation by reaction of acetonitrile with 4,6-dimethoxysalicylaldehyde (Houben-Hoesch reaction) (76\%) [6298].
- Also refer to: [6343,6344].

Sublimation 180-200 $/ 0.005 \mathrm{~mm}$ [6298]; m.p. 170° [6343], 168-170́ [6298].

21.1.1 Diphenyl Ketone Derivatives [5958] p. 1627

21.1.2 Miscellaneous [5958] p. 1631

1-(4-Acetyl-3-hydroxyphenoxy)-2-propanone
[248595-17-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

New compound
Synthesis

- Obtained by reaction of chloroacetone with resacetophenone in the presence ofpotassium carbonate in refluxing acetone for $12 \mathrm{~h}(75 \%)$ [6345].
m.p. $\quad 102-103^{\circ}$ [6345]; ${ }^{1} \mathrm{H}$ NMR [6345], IR [6345].

1-(4-Acetyl-3-hydroxy-2-methylphenoxy)-2-propanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

New compound

Synthesis

- Obtained by reaction of chloroacetone with 2,4-dihydroxy-3-methylacetophenone in the presence of potassium carbonate in refluxing acetone for 12 h (79\%) [6345].
m.p. $126-128^{\circ}$ [6345]; ${ }^{1} \mathrm{H}$ NMR [6345], IR [6345].

2-(4-Acetyl-3-hydroxyphenoxy)-1-phenylethanone

[948045-82-7]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$
mol.wt. 270.28

New compound
Synthesis

- Obtained by reaction of phenacyl bromide with resacetophenone in the presence of potassium carbonate in refluxing acetone for 12 h (53\%) [6345].
m.p. $132-133^{\circ}$ [6345]; ${ }^{1} \mathrm{H}$ NMR [6345], IR [6345].

21.2 Acyl Groups Located on Different Rings [5958] p. 1636

21.2.1 Diphenyl Ketone Derivatives [5958] p. 1636

Symmetrical ketones [5958] p. 1636
Asymmetrical ketones [5958] p. 1638

1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone

[115834-34-9]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 302.28

Described [5958] p. 1639

Isolation from natural sources

- From the ethyl acetate extract of the rhizome of Cynanchum otophyllum (Schneid Asclepiadaceae) [6346].

3-Acetyl-(6-benzoyloxy)-2,4-dihydroxy-5-methylbenzaldehyde

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 314.29

New compound
Synthesis

- Obtained by heating a mixture of benzoyl chloride and 3-acetyl-2,4,6-trihydroxy-5-methylbenzaldehyde in pyridine on a water bath for 15 min and left at r.t. overnight (73\%) [6342].
m.p. $165-166^{\circ}$ [6342]; ${ }^{1} \mathrm{H}$ NMR [6342].

2-(4-Acetyl-3-hydroxy-2-methylphenoxy)-1-phenylethanone

[948045-84-9]
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$
mol.wt. 284.30

New compound

Synthesis

- Obtained by reaction of phenacyl bromide with 2,4-dihydroxy-3-methylacetophenone in the presence of potassium carbonate in refluxing acetone for $12 \mathrm{~h}(56 \%)$ [6345].
m.p. $124-125^{\circ}$ [6345]; ${ }^{1} \mathrm{H}$ NMR [6345], IR [6345].

2-(4-Acetyl-2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone

[7249-35-6]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 344.37

New compound

Syntheses

- Preparation by reaction of 3,4-dimethoxyphenacyl bromide with the sodium salt of 4-hydroxy-3-methoxyacetophenone in ethanol [6031,6347].
- Also refer to: [6182].
m.p. $138-139^{\circ}$ and $120.5-121^{\circ}$ (allotropic varieties) [6031,6347];
${ }^{1}$ H NMR [6182], UV [6031,6347].
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-(4,6,10,12,16,18,22,24-Octahydropentacyclo[19.3.1.1 $\left.{ }^{3,7} \cdot \mathbf{1}^{9.13} \cdot \mathbf{1}^{15.19}\right]$ octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecane-5,11,17,23-tetrayl)-tetrakis[ethanone]
5,11,17,23-Tetraacetylresorcinol
[872681-08-8]

m.p. $>300^{\circ}$ [6348];
${ }^{1} \mathrm{H}$ NMR [6348], ${ }^{13} \mathrm{C}$ NMR [6348],
IR [6348], MS [6348].
$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{O}_{12} \quad$ mol.wt. 656.64
New compound
Synthesis
- Obtained by reaction of 2-acetylresorcinol with formaldehyde in dilute sodium hydroxide for 2 h at 0° under nitrogen, then 24 h at r.t. (37\%) [6348].

Part X
Hydroxypropiophenones, Hydroxyisobutyrophenones, Hydroxypivalophenones and Derivatives

Chapter 23

Aromatic Ketones Containing One Propionyl Group

23.1 Benzene Derivatives

1-(3-Hydroxy-4-methylphenyl- ${ }^{14} \mathrm{C}_{6}$)-1-propanone

[106697-21-6] $\quad \mathrm{C}_{4}{ }^{14} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 176.16
 Synthesis

- Preparation by treatment of ${ }^{14} \mathrm{C}$-3-amino-4-methyl-propiophenone in dilute hydrochloric acid with sodium nitrite in water, first at 0°, then at $50^{\circ}(71 \%)$ [6349].

1-(2-Hydroxyphenyl)-1-propanone-2,2,3,3,3- d_{5}

$$
\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{D}_{5} \mathrm{O}_{2} \quad \text { mol.wt. } 155.21
$$

Synthesis

- Refer to: [6350].
ion 1^{-}, radical ion 1^{-}[72051-68-4], ESR spectrum [6350].

1-(3,5-Dibromo-4,6-dichloro-2-hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 376.86

Synthesis

- Preparation by bromination of 2,4-dichloro-6-hy-droxy-propiophenone [6351] according to the method [6352].
m.p. 97° [6351];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 9475M),
IR (Sadtler: standard n ${ }^{\circ}$ 38941); TLC [6353].

1-(3,5-Dibromo-2-chloro-4-hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{ClO}_{2}$
mol.wt. 342.41
Syntheses

- Preparation by bromination of 2-chloro-4-hydroxypropiophenone, according to [6354], (good yield) [6355, 6356].
m.p. 80° [6355,6356];
${ }^{1} H$ NMR (Sadtler: standard n° 8917M),
IR (Sadtler: standard n ${ }^{\circ}$ 38080) [6355,6356], UV [6356,6357];
TLC [6353,6358].

1-(3,5-Dibromo-4-chloro-2-hydroxyphenyl)-1-propanone

[17765-21-8]

1-(2,3,5-Tribromo-4-hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{2} \quad$ mol.wt. 386.87
Synthesis

- Preparation by reaction of potassium bromate and potassium bromide on 2-bromo-4-hydroxypropiophenone according to the procedure [6352], (96\%) [6360].
m.p. 84-85 ${ }^{\circ}$ [6360];

IR (Sadtler: standard n ${ }^{\circ}$ 38935) [6360],
UV [6357,6360]; TLC [6353,6358].

1-(2,4,6-Tribromo-3-hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{2}$
mol.wt. 386.87
Synthesis

- Preparation by bromination of m-hydroxypropiophenone in acetic acid using potassium bromatepotassium bromide mixture [6352] in the presence of hydrochloric acid at r.t. for $24 \mathrm{~h}(90 \%)$ [6360].
m.p. $72-73^{\circ}$ [6360];
${ }^{1}$ H NMR (Sadtler: standard 9471M), IR [6360], UV [6360].

1-(3,4,5-Tribromo-2-hydroxyphenyl)-1-propanone

$$
\begin{aligned}
& \text { [17765-22-9] }
\end{aligned} \begin{aligned}
& \text { Synthesis } \\
& \text { - Preparation by bromination of 4-bromo-2-hydroxy- } \\
& \text { propiophenone according to [6354], (89\%) [6360]. }
\end{aligned}
$$

1-[4-(Hydroxy- d)phenyl]-1-propanone-2,2- \boldsymbol{d}_{2}
[91889-34-8] $\quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{D}_{3} \mathrm{O}_{2} \quad$ mol.wt. 153.20

${ }^{1} \mathrm{H}$ NMR [6361].

1-(3-Bromo-5-chloro-2-hydroxyphenyl)-1-propanone

[2892-15-1] \quad| Syntheses |
| :--- |
| $\left.\begin{array}{l}\text { Preparation by bromination of 5-chloro-2-hydroxy- } \\ \text { propiophenone, according to [6355], (good yield) }\end{array}\right)$ |

m.p. $126-127^{\circ}$ [6355,6356];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 9089M),
IR (Sadtler: standard n° 38077) [6355,6356], UV [6356,6359];
TLC [6353,6358].

1-(3-Bromo-5-chloro-4-hydroxyphenyl)-1-propanone

[2892-25-3]

 $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2} \quad$ mol.wt. 263.52 Syntheses

- Preparation by bromination of 3-chloro-4-hydroxy-propiophenone in aqueous acetic acid [6362] or according to the procedure [6354], (good yield) [6355,6356].
m.p. 125° [6362], $121-122^{\circ}$ [6355,6356];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8729M), IR (Sadtler: standard $\mathrm{n}^{\circ} 38074$) [6355,6356], UV [6356,6357]; TLC [6353,6358].

1-(5-Bromo-3-chloro-2-hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2}$
mol.wt. 263.52
Syntheses

- Preparation by bromination of 3-chloro-2-hydroxypropiophenone, according to the procedure [6354], (good yield) [6355,6356].
- Also refer to: [6364].
m.p. 115° [6355,6356];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8730M), IR (Sadtler: standard $\mathrm{n}^{\circ} 38075$) [6355,6356], UV [6356,6359]; TLC [6353,6358].

Thiosemicarbazone $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrClN}_{3} \mathrm{OS}$ mol.wt. 336.64 (m.p. 213°).
USE: Fungicide [6364].
BIOLOGICAL ACTIVITY: Antituberculotic [6364].

1-(3-Bromo-5-fluoro-2-hydroxyphenyl)-1-propanone

[342-16-5]	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrFO}_{2}$	mol.wt. 247.06
	Syntheses	

- Preparation by bromination of 5-fluoro-2-hydroxypropiophenone [6351] according to the method [6352], in aqueous acetic acid medium [6365].
m.p. 85° [6351,6365];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 9473M), IR (Sadtler: standard n° 38939), UV [6359];
TLC [6353,6358].
1-(3-Bromo-5-fluoro-4-hydroxyphenyl)-1-propanone
[350-14-1] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrFO}_{2} \quad$ mol.wt. 247.06

Synthesis

- Preparation by bromination of 3-fluoro-4-hydroxy-propiophenone in aqueous acetic acid [6362].
m.p. 114° [6362].

1-(5-Bromo-2-hydroxy-3-iodophenyl)-1-propanone

[868606-10-4] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of iodine and iodic acid with
5-bromo-2-hydroxypropiophenone in dilute ethanol
for 1.5 h at $35-40^{\circ}(82 \%)$ [6366].

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrIO}_{2}$
\end{tabular}

1-(5-Bromo-2-hydroxy-3-nitrophenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{4} \quad$ mol.wt. 274.07
Synthesis

- Preparation by reaction of nitric acid $(d=1.52)$ with 5-bromo-2-hydroxypropiophenone in concentrated sulfuric acid $(\mathrm{d}=1.80)$ between -2° and $0^{\circ}(73 \%)$ [6367].
m.p. $\quad 101^{\circ}$ [6367].

1-(3-Bromo-2,4-dihydroxy-5-nitrophenyl)-1-propanone

[100246-22-8] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{5} \quad$ mol.wt. 290.07

Syntheses

- Obtained by treatment of 3,3'-dipropionyl-4, $4^{\prime}, 6$, 6'-tetra-hydroxy-5,5'-dibromophenyl thioether (m.p. 212-213 ${ }^{\circ}$) with nitric acid $(\mathrm{d}=1.4)$ at 5° for 2 h [6368].
- Also obtained by bromination of 5-nitrorespropiophenone in acetic acid with bromine [6368].
m.p. $230-231^{\circ}$ [6368].

1-(3,5-Dibromo-2-hydroxyphenyl)-1-propanone

[2887-68-5]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97
Syntheses

- Preparation by bromination of various o-hydroxypropiophenones,
- from 2-hydroxypropiophenone, according to the procedure [6354], (71\%) [6360] or with bromine in 80% aqueous acetic acid (54\%) [6369];
- from 3-bromo-2-hydroxypropiophenone, according to the procedure [6354], (98\%) [6360];
- from 5-bromo-2-hydroxypropiophenone, according to the procedure [6354], (98\%) [6360].
- Preparation by Fries rearrangement of 2,4-dibromophenyl propionate (b.p. 275-280 ${ }^{\circ}$ [6370] with aluminium chloride at 100° for $2 \mathrm{~h}(88 \%)$ [6360], at $160-165^{\circ}$ for $30 \mathrm{~min}(66 \%)$ [6371] or at 150° for $2 \mathrm{~h}(33 \%)$ [6370].
- Also obtained by Friedel-Crafts acylation of 2,4-dibromophenol with propionic anhydride in nitrobenzene in the presence of aluminium chloride at 120° [6370].
- Also refer to: [6363,6372,6373].
m.p. 121° [6370], $119-120^{\circ}$ [6360], 118° [6369], $117-118^{\circ}$ [6355,6356], 116.5-117 ${ }^{\circ}$ [6371];
${ }^{1}$ H NMR (Sadtler: standard $\mathrm{n}^{\circ} 9699 \mathrm{M}$), IR (Sadtler: standard $\mathrm{n}^{\circ} 38934$) [6355,6356,6360], UV [6356,6359,6360]; TLC [6353,6358].

1-(3,5-Dibromo-4-hydroxyphenyl)-1-propanone

[2887-65-2] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 307.97

Syntheses

- Preparation by treatment of p-hydroxypropiophenone with bromine,
- in dilute acetic acid [6374], at r.t. for 5 h (80\%) [6375], (63\%) [6362] or in an acetic acid and sodium acetate mixture [6375];
- in dilute ethanol [6376,6377] or in methanol (90\%) [6378];
- in acetone (97%) [6355,6356,6360].
- Preparation by treatment of 3-bromo-4-hydroxypropiophenone with bromine in acetone (97\%) [6360].
- Also obtained by demethylation of 3,5-dibromo-4-methoxypropiophenone (m.p. 59°) [6362], (m.p. 99°) [6379] with pyridinium chloride at reflux for 10 min [6379].
N.B.: One of the reported melting points is obviously wrong.
- Also refer to: [6363].
m.p. 130° [6379], $115-116^{\circ}$ [6360], 115° [6355,6356], $114-115^{\circ}$ [6378], 114° [6362,6375,6377], 100° [6376];
IR (Sadtler: standard n° 38933) [6360], UV [6357,6360]; TLC [6358].
Acetate $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$ mol.wt. 350.01 (m.p. 79.5-80.5 $)$ [6378].

1-(3,5-Dibromo-2,4-dihydroxyphenyl)-1-propanone

[64603-55-0]
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$
mol.wt. 323.97
 Syntheses

- Preparation by bromination of respropiophenone (40\%) [6380], with bromine in chloroform [6381], in acetic acid [6382], in 80% acetic acid (51\%) [6383] or in 50\% acetic acid [6369].
- Also obtained by hydrolysis of 6,8-dibromo-2,3-dimethyl-7-hydroxychromone (m.p. 243 ${ }^{\circ}$) [6381].
m.p. 158° [6369], $151-152^{\circ}$ [6380,6383], 148° [6382], $73-74^{\circ}$ [6381].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

1-(5-Chloro-2-hydroxy-3-nitrophenyl)-1-propanone

[90537-41-0]

m.p. 98° [6367].
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClNO}_{4}$
mol.wt. 229.62
Synthesis

- Preparation by reaction of nitric acid $(d=1.52)$ with 5-chloro-2-hydroxypropiophenone in concentrated sulfuric acid $(\mathrm{d}=1.80)$ between -2° and $0^{\circ}(72 \%)$ [6367].

1-(2,4-Dichloro-6-hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
mol.wt. 219.07

Syntheses

- Preparation by Fries rearrangement of 3,5-dichlorophenyl propionate with aluminium chloride [6351].
- Also refer to: [6384].
m.p. 85° [6351];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 9474 \mathrm{M}$), IR (Sadtler: standard $\mathrm{n}^{\circ} 38940$), UV [6359];
TLC [6353].
Oxime [75408-94-5] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2} \quad$ mol.wt. 234.58 [6384].

1-(3,4-Dichloro-2-hydroxyphenyl)-1-propanone

[777067-72-8]

m.p. $97-98^{\circ}$ [6385]; ${ }^{1} \mathrm{H}$ NMR [6385].

1-(3,4-Dichloro-5-hydroxyphenyl)-1-propanone

[113730-39-5]

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07
Synthesis

- Obtained by Fries rearrangement of 2,3-dichlorophenyl propionate with aluminium chloride at $120-130^{\circ}$ for 2 h (38\%) [6385].
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07
Synthesis
- Preparation by demethylation of 3,4-dichloro-5-methoxy-propiophenone (m.p. 85°) with 30% hydrogen bromide in acetic acid at reflux for 48 h (88\%) [6386].
m.p. $\quad 133-134^{\circ}$ [6386]; ${ }^{1} \mathrm{H}$ NMR [6386].

1-(3,5-Dichloro-2-hydroxyphenyl)-1-propanone

[18430-74-5] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 219.07

Syntheses

- Preparation by Fries rearrangement of 2,4-dichlorophenyl propionate (b.p. ${ }_{14} 148^{\circ}$) [6387] with aluminium chloride [6351,6388], at 155°, following Hartung's procedure [6389], (90%) [6390] or at $165-175^{\circ}$ for $40 \mathrm{~min}(76 \%)$ [6387].
- Preparation by Friedel-Crafts reaction of propionyl chloride with 2,4-dichlorophenol in the presence of aluminium chloride [6391].
- Also refer to: [6392-6396].
m.p. 117° [6351], $116.5-117.5^{\circ}$ [6390], 115-116$~[6387] ; ~ ;$
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ}$ 9698M) [6397], IR (Sadtler: standard ${ }^{\circ}$ 38937) [6398],
UV [6359,6397,6399,6400], fluorescence spectrum [6397];
TLC [6353,6358].

1-(3,5-Dichloro-4-hydroxyphenyl)-1-propanone

[51335-40-1] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad m o l . w t .219 .07$
 Syntheses

- Preparation by Fries rearrangement of 2,6-dichlorophenyl propionate (b.p. ${ }_{0.5} 113-115^{\circ}$) with aluminium chloride at $134-145^{\circ}$ for $2 \mathrm{~h}(87 \%)$ [6401].
N.B.: Not obtained by Fries rearrangement of the same ester with boron trifluoride instead of aluminium chloride at $195-210^{\circ}$ for 3 h .
- Also obtained by heating a suspension of sodium propionate and 2,6-dichlorophenol in neat triflic acid [6402].
- Also obtained by demethylation of 3,5-dichloro-4-methoxypropiophenone (m.p. 90°) with pyridinium chloride at reflux for 10 min [6379].
- Also obtained by chlorination of p-hydroxypropiophenone [6403].
- Also refer to: [6404-6408].
m.p. 118° [6379], $110-111^{\circ}$ [6401].

1-(4,5-Dichloro-2-hydroxyphenyl)-1-propanone

white solid [6409];
${ }^{1} \mathrm{H}$ NMR [6409], ${ }^{13} \mathrm{C}$ NMR [6409], MS [6409].

1-(3,5-Dichloro-2,4-dihydroxyphenyl)-1-propanone

m.p. $146-147^{\circ}$ [6383], $142-145^{\circ}$ [6410].

1-(4-Fluoro-2-hydroxy-5-nitrophenyl)-1-propanone

[123450-85-1]
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{FNO}_{4} \quad$ mol.wt. 213.17
Synthesis

Synthesis

- Obtained by reaction of fuming nitric acid with 4-fluoro-2-hydroxypropiophenone in acetic acid at 0° for 30 min [6412].

1-(2,5-Difluoro-4-hydroxyphenyl)-1-propanone

[188435-69-0] \quad\begin{tabular}{l}
Synthesis

- Refer to: [6413].
\end{tabular}

1-(3,5-Difluoro-4-hydroxyphenyl)-1-propanone

[178374-78-2]	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 186.16
OH	Syntheses
	- Obtained by Fries rearrangement of 2,6-difluorophenyl propionate (b.p. $61-65^{\circ}$) with aluminium chloride for 2 h at $90-95^{\circ}$ under nitrogen (50\%) [6414]. - Also refer to: [6405,6406,6415-6417].
m.p. $127-129^{\circ}$	14]; ${ }^{1} \mathrm{H}$ NMR [6414].

1-(2-Hydroxy-3,5-diiodophenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{2}$
mol.wt. 401.97
Syntheses

- Preparation by reaction of iodine with o-hydroxypropiophenone in 10% aqueous sodium carbonate at r.t. for some hours (75%) [6418,6419].
m.p. $110-112^{\circ}$ [6418].

1-(4-Hydroxy-3,5-diiodophenyl)-1-propanone

[7091-08-9]

- in the presence of an aqueous sodium carbonate solution at r.t. (97\%) [6419];
- in ammonia in the presence of potassium iodide at r.t. overnight (94\%) [6420];
- in ethanol in the presence of mercuric oxide yellow [6362].
- Also refer to: [6363,6421].

Note: Effect on pituitary-thyroid relation [6421].
m.p. 124° [6362], 122° [6420]; UV [6422]; TLC [6422].

1-(2-Hydroxy-3,5-dinitrophenyl)-1-propanone

[91211-02-8] $\quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ mol.wt. 240.17

Syntheses

- Obtained (by-product) by reaction of fuming nitric acid $(\mathrm{d}=1.52)$ with o-hydroxypropiophenone in concentrated sulfuric acid at 0° for 2 h [6423,6424].
- Also obtained by reaction of nitric acid with 2-hydroxy-5-nitropropiophenone in acetic acid, first at 0°, then at r.t. [6425].
m.p. $115-117^{\circ}$ [6423,6424]; IR [6425]; $\operatorname{HPLC}[6426] ; \quad$ TLC [6426].

1-(2-Bromo-4-hydroxyphenyl)-1-propanone

1-(2-Bromo-6-hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad \mathrm{~mol} . \mathrm{wt} .229 .07$

Synthesis

- Obtained by alkaline degradation of 5-bromo-2,3-dim-ethyl-chromone (m.p. 1630) [6427].
m.p. 82° [6427].

1-(3-Bromo-2-hydroxyphenyl)-1-propanone

[17764-91-9]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$ mol.wt. 229.07 Synthesis

- Obtained by Fries rearrangement of o-bromophenyl propionate with titanium tetrachloride at 110° for $30 \mathrm{~min}(29 \%)$ [6360].
m.p. $55-56^{\circ}$ [6360];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 9531M), IR (Sadtler: standard n° 38930) [6360], UV [6359,6360]; TLC [6353,6358].

1-(3-Bromo-4-hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$
mol.wt. 229.07
Syntheses

- Preparation by Fries rearrangement of o-bromophenyl propionate with aluminium chloride at 100° for $2 \mathrm{~h}(95 \%)$ [6360] or 120° for $20-30 \mathrm{~min}$ [6428].
- Also obtained (by-product) by Friedel-Crafts acylation of o-bromoanisole or o-bromophenetole with propionyl chloride in the presence of aluminium chloride [6429,6430].
- Also refer to: $[6431,6432]$.
m.p. 132° [6360], 130° [6428], 125° [6429,6430];

IR (Sadtler: standard n ${ }^{\circ}$ 38929) [6360], UV [6357,6360]; TLC [6353,6358]. USE: Fungicide [6432].

1-(4-Bromo-2-hydroxyphenyl)-1-propanone

[17764-92-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07

Syntheses

- Preparation by Friedel-Crafts acylation of m-bromophenol with propionyl chloride in the presence of aluminium chloride in refluxing ethylene dichloride for $2 \mathrm{~h}(78 \%)$ [6433].
- Also obtained by Fries rearrangement of 3-bromophenyl propionate in the presence of aluminium chloride at 50° for $3 \mathrm{~h}(47 \%)$ [6360].
- Also refer to: [6434].
b.p. ${ }_{17} 156-158^{\circ}$ [6360];
m.p. $61-62^{\circ}$ [6360], $49-52^{\circ}$ [6433]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 9532 \mathrm{M}$), [6433], ${ }^{13} \mathrm{C}$ NMR [6433],
IR (Sadtler: standard n ${ }^{\circ}$ 38932), [6360,6433], UV [6359,6360];
TLC [6353,6358].

1-(5-Bromo-2-hydroxyphenyl)-1-propanone

[17764-93-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \quad$ mol.wt. 229.07
 Syntheses

- Preparation by Fries rearrangement of 4-bromophenyl propionate with aluminium chloride [6435] at 165° for $1 \mathrm{~h}(97 \%)$ [6360], at $150-160^{\circ}$ for 30 min [6436] or at 120° for $30-40 \mathrm{~min}(80 \%)$ [6428].
- Preparation by bromination of o-hydroxypropiophenone with bromine in 80% aqueous acetic acid at r.t. (66\%) [6369].
- Also obtained by acylation of p -bromophenol with propionic acid in the presence of boron trifluoride in a sealed tube at 120° for $1 \mathrm{~h}(59 \%)$ [6437].
- Also refer to: [6364,6438-6445].
b.p. ${ }_{14} 143-153^{\circ}$ [6437], b.p. ${ }_{21} 154-156^{\circ}$ [6360];
m.p. 78° [6428], 77° [6369], 76° [6360,6436], 75° [6437];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 9533 \mathrm{M}$); IR [6360], UV [6359,6360]; TLC [6353,6358].
Notes: Acidity of methylene proton [6446]; C-deuteration [6447].
Thiosemicarbazone $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{OS} \quad$ mol.wt. 302.19
(m.p. 220 ${ }^{\circ}$ [6364].

USE: Fungicide [6364].
BIOLOGICAL ACTIVITY: Antituberculotic [6364].

1-(3-Bromo-2,5-dihydroxyphenyl)-1-propanone

1-(3-Bromo-2,6-dihydroxyphenyl)-1-propanone

[99548-74-0] \quad\begin{tabular}{l}
Synthesis

Obtained by decarboxylation of 5-bromo-2,4-
dihydroxy-3-propionylbenzoic acid (36\%) [6450].

\end{tabular}

m.p. 115° [6450].

1-(4-Bromo-2,5-dihydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
Synthesis

- Obtained by Fries rearrangement of 2-bromohydroquinone dipropionate (m.p. $58-59^{\circ}$) with aluminium chloride at $170-180^{\circ}$ for 2 h [6451].
m.p. $110-111^{\circ}$ [6451].

1-(5-Bromo-2,4-dihydroxyphenyl)-1-propanone

[157732-52-0]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3} \quad$ mol.wt. 245.07
Syntheses

- Refer to: [6452] (compound 1h), [6453] (compound 1c).

1-(5-Bromo-2,3,4-trihydroxyphenyl)-1-propanone

$$
\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4} \quad \text { mol.wt. } 261.07
$$

Synthesis

- Preparation by bromination of 4-propionylpyrogallol in acetic acid [6454].
m.p. 131° [6454].

1-(2-Chloro-4-hydroxyphenyl)-1-propanone

[2892-21-9]	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$	mol.wt. 184.62
OH	Syntheses	

- Obtained by Fries rearrangement of m-chlorophenyl propionate with aluminium chloride for 3 h at $50^{\circ}(19 \%)$ [6355,6356].
- Also obtained by demethylation of 2-chloro-4-methoxypropiophenone with aluminium chloride in refluxing heptane for 3 h [6455].
- Also refer to: [6456].
m.p. 93° [6355,6356], $92-93^{\circ}$ [6455];

IR (Sadtler: standard n° 37036) [6355,6356], UV [6356,6357,6457];
TLC [6353,6358].

1-(2-Chloro-5-hydroxyphenyl)-1-propanone

[1127-96-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
 Syntheses

- Preparation by diazotization of 5-amino-2-chloropropiophenone (b.p. $._{0.5} 143-162^{\circ}$), followed by hydrolysis of the diazonium salt obtained [6458-6460], (27\%) [6455,6461].
- Also refer to: [6456,6462].
b.p. ${ }_{0.4} 135-140^{\circ}$ [6459], b.p. $._{0.5} 135-140^{\circ}$ [6455,6458,6461-6463].

1-(3-Chloro-2-hydroxyphenyl)-1-propanone

[938-67-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
 Syntheses

- Obtained by Fries rearrangement of o-chlorophenyl propionate,
- with aluminium chloride at 110° for $2 \mathrm{~h}(35 \%)$ [6464], (25\%) [6465];
- with titanium tetrachloride at 100° for $7 \mathrm{~h}(17 \%)$ [6355,6356,6466];
- with zirconium chloride in o-dichlorobenzene over 1 h at 120° [6467].
- Also obtained by isomerization of 3-chloro-4-hydroxypropiophenone with aluminium chloride at $180-200^{\circ}$ for $1 \mathrm{~h}(24 \%)$ [6466,6468].
- Also obtained by tert-butyl group elimination of 5-tert-butyl-3-chloro-2hydroxypropiophenone with aluminium chloride at 190° for $15 \mathrm{~min}(80 \%)$ [6466].
- Also refer to: [6469-6471].
m.p. 72° [6464], $43-44^{\circ}$ [6355,6356], $41-42^{\circ}$ [6465]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 8375M) [6472],
IR (Sadtler: standard n ${ }^{\circ} 37031$) [6355,6356,6465],
UV [6356,6359,6457]; TLC [6353,6358].
USE: Preparation of tetrahydronaphthalines as antiinflammatory [6469].

1-(3-Chloro-4-hydroxyphenyl)-1-propanone

[2892-27-5] \quad\begin{tabular}{l}
Syntheses

-| Preparation by Fries rearrangement of o-chlorophenyl |
| :--- |
| propionate with aluminium chloride [6428], at 165° for 1 h |
| (98%) |

[6355,6356] or at 110° for $2 \mathrm{~h}(63 \%)$ [6465].
\end{tabular}

- Preparation by demethylation of 3-chloro-4-methoxy-propiophenone (m.p. 88°) [6429] (m.p. 89-90 ${ }^{\circ}$ [6377] with refluxing pyridinium chloride for $15 \mathrm{~min}(75 \%)$ [6362].
- Preparation by diazotization of 3-amino-4-hydroxypropiophenone, followed by decomposition of the diazonium salt obtained (52\%) [6473].
- Preparation by chlorination of p-hydroxypropiophenone with chlorine in cooled acetic acid (57\%) [6362].
- Also refer to: [6363,6471,6474-6476].
m.p. $118-119^{\circ}$ [6355,6356], $114.5-115.5^{\circ}$ [6465], 114° [6362], 80° [6428], 79° [6473]. Some reported melting points are obviously wrong.
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8376M), IR (Sadtler: standard n° 37032) [6355,6356], UV [6356,6357,6457]; TLC [6353,6358].

1-(4-Chloro-2-hydroxyphenyl)-1-propanone

[1127-97-5]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \quad$ mol.wt. 184.62
Syntheses

- Preparation by Fries rearrangement of m-chlorophenyl propionate (b.p. ${ }_{0.8} 90^{\circ}$) [6477] with aluminium chloride,
- without solvent at 100° for $2 \mathrm{~h}(92 \%)$ [6355], at 140° for $2 \mathrm{~h}(89 \%)$ [6477], at $140-150^{\circ}$ for 3 h [6478], (77%) [6479], at 130° for 2 h (77\%) [6480], at 165° for $1 \mathrm{~h}(72 \%)$ [6355], at 50° for $3 \mathrm{~h}(55 \%)$ [6356] or at $30-40^{\circ}$ (53\%) [6461];
- in nitrobenzene at 25° for $6 \mathrm{~h}(87 \%)$ [6480].
- Preparation by Fries rearrangement of m-chlorophenyl propionate with titanium tetrachloride at 100° for $2 \mathrm{~h}(75 \%)$ [6355].
- Also obtained by Friedel-Crafts reaction of propionyl chloride with m-chlorophenol in the presence of aluminium chloride [6481].
- Also obtained by isomerization of 2-chloro-4-hydroxypropiophenone on heating with aluminium chloride between 165° and $200^{\circ}(30-70 \%)$ [6482].
- Also refer to: [6483] (compound 1e), [6484] (compound 1b) and [6485] (compound 1a) and [6407] (12i).
b.p. 103° [6479], b.p. ${ }_{60} 130-140^{\circ}$ [6460,6461,6463];
colourless prisms [6477];
m.p. $49-51^{\circ}$ [6355,6356], 49° [6479,6480], 45-47$~[6459-6461,6463] ; ~ ;$
${ }^{1} H$ NMR (Sadtler: standard n° 8380M) [6477,6479],
IR (Sadtler: standard n ${ }^{\circ}$ 37035) [6355,6356], [6477,6479],
UV [6356,6359,6457]; TLC [6353,6358].
Note: C-Deuteration [6447].

Oxime [75408-96-7] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 199.64 [6384].

1-(5-Chloro-2-hydroxyphenyl)-1-propanone

[2892-16-2]

- with aluminium chloride [6486] according to the procedure [6487], at $130-140^{\circ}$ for 90 min (almost quantitative yield) [6488,6489], at 140° for 2 h [6477], at 155° [6490], at 165° for $1 \mathrm{~h}(95 \%)$ [6355,6356] or at 170° for 45 $\min (87 \%)$ [6491] or for $1-2 \mathrm{~h}(80-96 \%)$ [6492];
- with titanium tetrachloride at 50° for $3 \mathrm{~h}(59 \%)$ [6355,6356$]$.
- Preparation by acylation of p-chlorophenol with propionic acid in the presence of boron trifluoride in a sealed tube at 150° for $5 \mathrm{~h}(82 \%)$ [6437].
- Also refer to: [6364,6493-6499].
b.p. $124-126^{\circ}$ [6355], b.p. ${ }_{15} 135-136^{\circ}$ [6437];
m.p. $62-63^{\circ}$ [6355], 59.7° [6490], 59-60ํ [6437], 56.5-57.5 ${ }^{\circ}$ [6489];
${ }^{1}$ H NMR [6397,6500], IR (Sadtler: standard n° 8981) [6355,6356,6398], UV [6356,6359,6397,6399,6400,6457], fluorescence spectrum [6397];
ionization [6501]; TLC [6353,6358].
Note: C-Deuteration [6447].
BIOLOGICAL ACTIVITY: Antimicrobial [6486].
Oxime [29725-94-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{2} \quad$ mol.wt. 199.64 [6502].
Thiosemicarbazone $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS} \quad$ mol.wt. 257.74 (m.p. 218 ${ }^{\circ}$) [6364].
USE: Fungicide [6364].
BIOLOGICAL ACTIVITY: Antituberculotic [6364].

1-(2-Chloro-4,5-dihydroxyphenyl)-1-propanone

1-(3-Chloro-2,4-dihydroxyphenyl)-1-propanone

1-(3-Chloro-2,6-dihydroxyphenyl)-1-propanone

[99055-11-5]	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
OH	Syntheses
	- Obtained by decarboxylation of 5-chloro-2,4 dihydroxy-3-propionylbenzoic acid [6450]. - Also obtained by hydrolysis of 6-chloro-7-hydroxy-4-methyl-8-propionylcoumarin [6450].
m.p. 107° [6450].	

1-(4-Chloro-2,5-dihydroxyphenyl)-1-propanone

[75859-14-2] \quad| 2-chloro-hydroquinone [6507] by known methods |
| :--- |
| [6508-6510]. |

1-(5-Chloro-2,4-dihydroxyphenyl)-1-propanone

[85131-64-2]
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3}$
mol.wt. 200.62
Syntheses

- Obtained by reaction of propionic acid with 4-chloro-resorcinol in the presence of zinc chloride at reflux for 3 min (Nencki reaction) (29\%) [6511].
- Also refer to: [6453,6512].
m.p. 90° [6511].

Note: Ionization [6513].
Oxime [82667-80-9] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{3} \quad$ mol.wt. 215.63.
USE: In iron spectrophotometric determination in pharmaceuticals [6512,6514]; in spectrometric determination of palladium [6515].

1-(5-Chloro-2,3,4-trihydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 216.62

Synthesis

- Preparation by chlorination of 4-propionylpyrogallol in acetic acid [6454].
m.p. 126° [6454].

1-(2-Fluoro-3-hydroxyphenyl)-1-propanone

1-(3-Fluoro-2-hydroxyphenyl)-1-propanone

USE: Preparation of heteroaryl alkylidenetetrahydro-naphthalenamines as antiinflammatories [6517]; preparation of tetrahydronaphthalines as antiinflammatory [6469].

1-(3-Fluoro-4-hydroxyphenyl)-1-propanone

[586-16-3] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17

OH	Syntheses
	- Obtained by demethylation of 3-fluoropiophenone with pyridinium chloride at reflux [6362], (59\%) [6518].
$\mathrm{COCH}_{2} \mathrm{CH}_{3}$	- Also refer to: [6363,6405,6406,6517,6519].

m.p. $109-110^{\circ}$ [6518].

USE: Preparation of heteroaryl alkylidenetetrahydronaphthalenamines as antiinflammatories [6517].

1-(3-Fluoro-5-hydroxyphenyl)-1-propanone

[179113-58-7]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17
Synthesis

- Refer to: [6520].

1-(4-Fluoro-2-hydroxyphenyl)-1-propanone

[247230-94-0]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17
Syntheses

- Preparation by Fries rearrangement of 3-fluorophenyl propionate [6521] with aluminium chloride at 150° for $10 \mathrm{~min}(88 \%)$ [6522,6523].
- Also refer to: [6524-6526].
${ }^{1} \mathrm{H}$ NMR [6522,6523].

1-(5-Fluoro-2-hydroxyphenyl)-1-propanone

[443-09-4]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2} \quad$ mol.wt. 168.17
Syntheses

- Preparation by Fries rearrangement of p-fluorophenyl propionate (b.p. ${ }_{18-20} 118-120^{\circ}$) [6527] with aluminium chloride at 150° for $1 \mathrm{~h}(80-81 \%)$ [6351,6528] or at reflux for 30 min (57\%) [6527].
- Also obtained by demethylation of 5-fluoro-2-methoxy-propiophenone (b.p. ${ }_{13} 132^{\circ}$) with refluxing pyridinium chloride for $15 \mathrm{~min}(76 \%)$ [6365].
b.p. ${ }_{6-7} 97-99^{\circ}$ [6527], b.p. ${ }_{13} 111-112^{\circ}$ [6365], b.p. ${ }_{13} 113^{\circ}$ [6351],
b.p. ${ }_{22} 117-121^{\circ}$ [6528];
m.p. $36-37^{\circ}$ [6351], 32° [6365], 30.5° [6528];
${ }^{1}$ H NMR (Sadtler: standard $n^{\circ} 9472$ M), IR (Sadtler: standard $n^{\circ} 38938$), UV [6359];
TLC [6353,6358].
Notes: Deuteration [6447]; acidity of methylene proton [6446].

1-(2-Fluoro-4,6-dihydroxyphenyl)-1-propanone

[864866-62-6]

1-(4-Hydroxy-3-iodophenyl)-1-propanone $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2} \quad$ mol.wt. 276.07

USE: Fungicide [6432].

1-(2,4-Dihydroxy-3-iodophenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3} \quad \mathrm{~mol} . w t .292 .07$
Synthesis

- Obtained by adding an aqueous solution of iodine and periodic acid to an ethanolic solution of respropiophenone, then stirring the mixture for 2 h (49\%) [6530].
m.p. $\quad 97-98^{\circ}$ [6530]; ${ }^{1} \mathrm{H}$ NMR [6530].

1-(2-Hydroxy-3-nitrosophenyl)-1-propanone

2-Propionyl-6-nitrosophenol

1-(3-Hydroxy-4-nitrosophenyl)-1-propanone

3-Propionyl-6-nitrosophenol
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3} \quad$ mol.wt. 179.18

Synthesis

- Preparation from propiophenone (no precision) [6531].

1-(4-Hydroxy-3-nitrosophenyl)-1-propanone

4-Propionyl-2-nitrosophenol
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3} \quad$ mol.wt. 179.18

Synthesis

- Preparation from p-propionylphenol [6531].

1-(2-Hydroxy-3-nitrophenyl)-1-propanone

[91991-98-9] \quad\begin{tabular}{l}
Syntheses

Obtained by degradation of 3-methyl-8-nitro-
chromone (m.p. 148-150 $)$ with boiling 5%
potassium hydroxide for $2 \mathrm{~h} \mathrm{(84} \mathrm{\%)}$ [6423].

\end{tabular}

- Also obtained by reaction of fuming nitric acid ($\mathrm{d}=1.52$) with o-hydroxypropiophenone in concentrated sulfuric acid at 0° for 2 h (38\%) [6423], (8\%) [6532].
- Also refer to: [6424,6533,6534].
m.p. $97-98^{\circ}$ [6423], $95-97^{\circ}$ [6423], $92-94^{\circ}$ [6532];

TLC [6426]; HPLC [6426]; conformation and H bonds [6425].

1-(2-Hydroxy-4-nitrophenyl)-1-propanone

[79925-34-1]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17
Syntheses

- Obtained by Fries rearrangement of 3-nitrophenyl propionate* (m.p. 49°) [6535] with aluminium chloride [6536], in nitrobenzene at $125-130^{\circ}$ for $25 \mathrm{~h}(20 \%)$ or without solvent at 125° for 20 h (14\%) [6537].
- Also obtained by Friedel-Crafts acylation of 3-nitrophenol with propionyl chloride in the presence of aluminium chloride [6536].
- Also refer to: [6483] (compound 1f), [6446].
m.p. $68-69^{\circ}$ [6537].

Notes: C-Deuteration [6447]; *temperature of decomposition of the mixture AlCl_{3} /ester (2:1) 183° [6535].

1-(2-Hydroxy-5-nitrophenyl)-1-propanone

[55805-95-3] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17 Syntheses

- Preparation by Friedel-Crafts acylation of p-nitrophenol with propionyl chloride in nitrobenzene in the presence of aluminium chloride (36\%) [6538].
- Also obtained by Fries rearrangement of p-nitrophenyl propionate (m.p. 63-64 ${ }^{\circ}$ [6535] in nitrobenzene in the presence of aluminium chloride at 125° for $5 \mathrm{~h}(23 \%)$ [6539].
- Preparation by reaction of boron trichloride with 2-methoxy-5-nitropropiophenone in methylene chloride, first at -78°, then at r.t. for $14 \mathrm{~h}(92 \%)$ [6409].
- Also obtained by nitration of o-hydroxypropiophenone (23\%) [6532], in acetic acid with fuming nitric acid, first at 0°, then at 60° [6540].
- Alsoobtainedbyalkalinehydrolysisof3-methyl-6-nitrochromone(m.p. 147-148) (85\%) [6540].
- Also refer to: [6534,6541].
white solid [6409];
m.p. 114° [6437], 99° [6540], $94.5-95.0^{\circ}$ [6538], $93-94^{\circ}$ [6539], $91-93^{\circ}$ [6532].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6409,6540], ${ }^{13} \mathrm{C}$ NMR [6409], IR [6538], MS [6409];
TLC [6426]; HPLC [6426].

Notes: Temperature of decomposition of the mixture AlCl_{3} /ester (2:1) 135° [6535]; C-deuteration [6447]; chelates with cobalt (II), copper (II), nickel (II), and zinc (II) [6542,6543]; acidity of methylene proton [6446].

Oxime [58402-96-3] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 210.18 [6544].

1-(3-Hydroxy-4-nitrophenyl)-1-propanone

 $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17 Synthesis

- Obtained by reaction of 3-hydroxypropiophenone with nitric acid in acetic acid at 70° [6545].

1-(3-Hydroxy-5-nitrophenyl)-1-propanone
[193693-96-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

Synthesis

- Obtained in two steps: First, a mixture of 3-hydroxy-propiophenone and dysprosium nitrate in ethyl acetate was refluxed ($85-105^{\circ}$) for 30 min . Then, the isolated intermediate $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{4}\right)_{3} \mathrm{Dy}$ (60\%) was dissolved in 6 N hydrochloric acid (52\%) [6546].
m.p. $130-132^{\circ}$ [6546]; MS [6546].

Dysprosium salt [193693-93-5] [6546].

1-(4-Hydroxy-3-nitrophenyl)-1-propanone

[50916-44-4] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17

- Preparation by treatment of 4-hydroxypropiophenone with fuming nitric acid $[6473,6547]$ or with nitric acid in concentrated sulfuric acid between -2° and $0^{\circ}(80 \%)$ [6367].
- Preparation by Friedel-Crafts acylation of o-nitrophenol with propionyl chloride in nitrobenzene in the presence of aluminium chloride at $55-60^{\circ}$ for 2.5 h , then at r.t. overnight [6547,6548], (41\%) [6549].
- Also obtained (poor yield) by Fries rearrangement of 2-nitrophenyl propionate in nitrobenzene with aluminium chloride at 90° for 8 h , then at r.t. overnight [6539].
- Also obtained by reaction of concentrated nitric acid with $2,2^{\prime}$-dihydroxy-5, 5^{\prime}-dipropionyldiphenyl sulfide (m.p. 103°) in concentrated sulfuric acid at r.t. overnight [6550].
- Also refer to: [6534,6551].
m.p. 67° [6367], 66° [6473], $65.4-66.2^{\circ}$ [6549], $65-66^{\circ}$ [6548], 58-61 ${ }^{\circ}$ [6539], $58-60^{\circ}$ [6550].
USE: Fungicide [6552].
BIOLOGICAL ACTIVITY: Sympathomimetic [6548].

1-(5-Hydroxy-2-nitrophenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \quad$ mol.wt. 195.17
Syntheses

- Obtained by reaction of nitric acid with 3-hydroxypropiophenone in acetic acid at $70^{\circ}(30-35 \%)$ [6545].
- Also refer to: [6553].

1-(2,4-Dihydroxy-3-nitrophenyl)-1-propanone
[103441-87-8] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17
 Synthesis

- Obtained by Friedel-Crafts acylation of 2-nitroresorcinol with propionic anhydride (1 mol) in the presence of aluminium chloride (3.3 mol) in nitrobenzene at $120-130^{\circ}$ for 3 h [6554].
m.p. 83° [6554].

1-(2,4-Dihydroxy-5-nitrophenyl)-1-propanone

[63411-89-2] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17
 Syntheses

- Preparation by adding respropiophenone in small portions with constant stirring to nitric acid ($\mathrm{d}=1.42$) cooled in an ice bath $\left(<10^{\circ}\right)$, (77%) [6555], (43\%) [6380].
- Preparation by reaction of fuming nitric acid with respropiophenone in glacial acetic acid at $0-5^{\circ}$ [6556].
- Also obtained by treatment of 3,3'-dipropionyl-4,4',6,6'-tetrahydroxydiphenyl thioether (m.p. $\left.161-162^{\circ}\right)$ with nitric acid $(\mathrm{d}=1.4)$ at 5° for $2 \mathrm{~h}[6368]$.
- Also refer to: [6452] (compound 1g). m.p. $137-138^{\circ}$ [6380], 131° [6368,6555]; ${ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

Diacetate $\quad \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{7} \quad$ mol.wt. 295.25 (m.p. 89°) [6555].

- Preparation by reaction of acetic anhydride with 2,4-dihydroxy-5-nitropropiophenone in the presence of sodium acetate [6555].

Oxime [473807-71-5] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \quad$ mol.wt. 226.18.
USE: As a gravimetric reagent for Cu (II) determination [6557] and Ni (II) and Pd (II) determination [6558].

1-(2,6-Dihydroxy-3-nitrophenyl)-1-propanone

[103440-67-1] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5} \quad$ mol.wt. 211.17
 Syntheses

- Obtained by reaction of propionic anhydride with 4-nitroresorcinol in nitrobenzene in the presence of aluminium chloride, first at 0°, then heating in a steam bath for 3 h [6559].
- Also obtained by reaction of nitric acid $(\mathrm{d}=1.42)$ with 2,6-dihydroxypropiophenone at 0° for 10 min [6559].
- Also obtained by Fries rearrangement of 4-nitroresorcinol dipropionate with aluminium chloride (3.3 equiv) in nitrobenzene, first at $95-100^{\circ}$ for 2 h , then at r.t. for $72 \mathrm{~h}(42 \%)$ or without solvent at 100° for $3 \mathrm{~h}(25 \%)$ [6560].
m.p. $115-116^{\circ}$ [6560], $114-115^{\circ}$ [6559].

1-(2,4,6-Trihydroxy-3-nitrophenyl)-1-propanone

[119691-92-8]

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{6} \quad$ mol.wt. 227.17
Synthesis

- Preparation by addition of a concentrated sulfuric acid and fuming nitric acid mixture to a solution of 2,4,6-trihydroxy-propiophenone in concentrated sulfuric acid and hexane mixture under cooling with an ice bath (70-80\%) [6561].
m.p. $108-109^{\circ}$ [6561]; ${ }^{1} \mathrm{H}$ NMR [6561], IR [6561], MS [6561].

1-(2-Hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18

Syntheses

- Obtained by Fries rearrangement of phenyl propionate,
- with aluminium chloride in refluxing carbon disulfide [6562], then at $130-150^{\circ}$ for $2-3 \mathrm{~h}$ after solvent elimination (32-35\%) [6389,6563,6564], (43\%) [6565];
- with aluminium chloride in chlorobenzene using microwave irradiation for 3 min at $106^{\circ}(28 \%)$ [6566];
- with aluminium chloride in nitrobenzene at 50° for 18 h (16\%) [6567] or at 20° for 48 h (10\%) [6568];
- with aluminium chloride in nitromethane at 20° for 7 days (20%) [6569,6570];
- with aluminium chloride in heptane at $80-90^{\circ}$ for $7 \mathrm{~h}(53 \%)$ or in tetrachloroethane at 95° for $5 \mathrm{~h}(43 \%)$ [6571];
- with aluminium chloride without solvent at 250° for 5 min or at $180-200^{\circ}$ for $15 \mathrm{~min}(76-78 \%)$ [6355], at $140-160^{\circ}(32-35 \%)$ [6572,6573], at $140^{\circ}(48 \%)$ [6574], at $120^{\circ}(30 \%)$ [6575] or at 50° for $10 \mathrm{~h}(30 \%)$ [6355,6356,6576].
N.B.: Industrial manufacturing (S.P.C.A. in 1956), with aluminium chloride without solvent at $180-200^{\circ}$ for $15 \mathrm{~min}(62 \%)$ [6351].
- with zirconium chloride in o-dichlorobenzene at 120° for 3 h (83\%) [6467];
- with titanium tetrachloride in o-dichlorobenzene at 150° for 1 h (62%) [6577], in nitromethane at 20° for 7 days (13\%) [6569] or without solvent at 50° for $10 \mathrm{~h}(30 \%)$ [6355,6356,6576];
- with titanium tetrabromide in o-dichlorobenzene at 150° for $1 \mathrm{~h}(60 \%)$ [6577];
- with stannic chloride at 50° for $3 \mathrm{~h}(25 \%)$ [6355,6356];
- with boron trifluoride at $120-135^{\circ}$ for $15 \mathrm{~min}(15 \%)$ [6355,6356];
- with zinc chloride at $180-200^{\circ}$ for $15 \mathrm{~min}(10 \%)$ [6355];
- with polyphosphoric acid at 100° (13\%) [6578].
- Also obtained by Friedel-Crafts acylation of phenol with propionyl chloride in the presence of aluminium chloride (40\%) [6579], at $120-130^{\circ}$ for $1 \mathrm{~h}(45 \%)$ [6580,6581] according to the method [6582].
- Also obtained by acylation of phenol with propionic acid,
- in the presence of boron trifluoride at 165° for $1 \mathrm{~h}(45 \%)$ [6583] or at 80° for 2 h (8\%) [6572];
- in the presence of polyphosphoric acid at 100° for 10 min (by-product) (5\%) [6578];
- in the presence of zinc chloride at 160° for 1 h [6584].
- Also obtained by isomerization of 4-hydroxypropiophenone with aluminium chloride (1.5 equiv) at 165° for $1 \mathrm{~h}(40 \%)$ or at $180-200^{\circ}$ for $15 \mathrm{~min}(55 \%)$ [6356,6468,6482].
- Also obtained by demethylation of 2-propionylanisole with fuming hydrochloric acid $(\mathrm{d}=1.19)$ in a sealed tube at 110° for 6 h [6585].
- Also obtained (by-product) by heating 3-tert-butyl-4-hydroxypropiophenone with aluminium chloride at 170° for $15 \mathrm{~min}(13 \%)$ [6586].
- Also obtained by treatment of 2,3-dimethylchromone with sodium ethoxide in boiling ethanol for 30 h [6587] according to the method [6588].
- Also obtained from 2-allylphenol by treatment with perbenzoic acid in ethyl ether, first at 0°, then between 0° and 25° for $24 \mathrm{~h}(78 \%)$ [6589].
- Also obtained by reaction of 2-bromophenyl propionate in a ethyl ether/hexane/ THF mixture at low temperature (-78 to -95°) with sec-butyllithium to give, after hydrolysis, the titled ketone (metal-promoted Fries rearrangement) (17\%) [6590].
- Also obtained by reaction of ethylmagnesium bromide,
- with 2-hydroxybenzamide in boiling benzene, followed by hydrolysis (30\%) [6591];
- with 2-hydroxy-N,N-diethylbenzamide in boiling benzene, followed by hydrolysis (82-84\%) [6591].
- Also isolated by heating of 1-(o-hydroxyphenyl)cyclopropyltrimethylammonium iodide for 1 h at 140° with 1.5 equiv of N, N-diisopropylethylamine (not water-free) (38\%) [6592].
- Also obtained by hydrolysis of 2-(1-methyliminopropyl)phenol (4aa) with aqueous acetic acid/THF at 40° for $4 \mathrm{~h}(86 \%)$ [6593].
- Also obtained by photolysis of phenyl propionate [6594] in water or in solution containing β-cyclodextrine (254 nm) at 25° for 2 h [6595].
- Also obtained by treatment of 2-(1-hydroxypropyl)phenol with MnO_{2} in methylene chloride for 7 h at r.t. [6596].
- Also refer to: [6439,6597-6619].
b.p. ${ }_{0.1} 54^{\circ}$ [6574], b.p. $72-74^{\circ}$ [6583,6620], b.p. 8_{4}° [6579],
b.p. $6110-114^{\circ}$ [6621],
b.p. $110-115^{\circ}$ [6562,6573,6584], [6389,6563,6564]
b.p. ${ }_{12} 110-115^{\circ}[6580,6581]$, b.p. ${ }_{15} 111^{\circ}$ [6591], b.p..$_{12} 113^{\circ}$ [6355],
b.p. ${ }_{15} 115^{\circ}$ [6575,6585], b.p. ${ }_{26-28} 129-133^{\circ}$ [6356], b.p. ${ }_{8} 150^{\circ}$ [6622],
b.p. ${ }_{80} 150^{\circ}$ [6587];
m.p. $20-22^{\circ}$ [6591], $12-13^{\circ}$ [6355,6356]; $d_{17}=1.106$ [6356];
$\mathrm{n}_{\mathrm{D}}^{20}=1.550[6356], \mathrm{n}_{\mathrm{D}}^{20}=1.5490$ [6579], $\mathrm{n}_{\mathrm{D}}^{25}=1.5485$ [6574];
${ }^{1} H$ NMR [6590,6592,6593], ${ }^{13} \mathrm{C}$ NMR [6590,6593],
${ }^{17}$ O NMR [6623], IR (Sadtler: standard n° 833) [6593,6622,6624], [6355,6356,6590,6592], UV [6356,6359,6457,6625-6627],
MS [6592,6593,6628]; TLC [6353,6356,6358,6629];
GLC [6630]; paper chromatography [6631,6632]; polarography [6627]; ionization [6501].
Notes: Metal-ligand stability constants of complexes of o-hydroxypropiophenone with cobalt [41586-12-3], copper [18906-66-6] and iron [41586-11-2] [6633]; nickel complex [6634]; Uranium complexes [54204-29-4], [54204-307] and [54331-13-4] [6635]; zinc complex [37848-03-6] [6636]; boron complex [42593-40-8] [6637,6638]; cadmium complex [37848-04-7] [6636]; copper complex [60400-13-7] [6639].
USE: For preparation of 3-methylchromone (Tricromyl) [85-90-5] [6640].
BIOLOGICAL ACTIVITY: Antispasmodic; vasodilator (coronary) [6640,6641].
Oxime [18265-75-3] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19 [6642-6645].
Hydrazone [70136-38-8] $\quad \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} \quad$ mol.wt. 164.21 [6646].
$\boldsymbol{\beta}$-D-Glucopyranoside [31826-79-6] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 312.32.
- Preparation by reaction of sodium methoxide with its tetraacetate below in methanol at r.t. for 20 min [6647,6648].
- Also refer to: [6649].
m.p. $119-121^{\circ}$ [6648], 105° [6647];

UV [6647]; $\quad(\alpha)_{\mathrm{D}}^{25}=-66.4^{\circ}$ (water) [6647], $\mathrm{n}_{\mathrm{D}}^{21}=-50.3^{\circ}$ (water) [6648].

Tetra-O-acetyl- β-D-glucopyranoside

[31826-78-5] $\quad \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{11}$ mol.wt. 480.47.

- Preparation by reaction of tetra-O-acetyl- $\alpha \alpha$-D-glucopyranosyl bromide with 2-hydroxy-propiophenone in the presence of silver oxide in quinoline at r.t. for 30 min [6647], (40-50\%) [6648].
- Also refer to: [6650]. m.p. $167-168^{\circ}$ [6648], $162-162.5^{\circ}$ [6647];

UV [6647]; $\quad(\alpha)_{D}^{20}=-41^{\circ}$ (chloroform) [6648], $\quad(\alpha)_{D}^{25}=-31^{\circ}$ (1,2-dichloroethane) [6647].

Acetate [97139-82-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21.

- Obtained by reaction of acetic anhydride with 2-hydroxypropiophenone [6591].
- Also obtained by reaction of ethylmagnesium bromide with 2-acetoxybenzoyl chloride (84\%) [6651].
- Also refer to: [6565,6652].
b.p. ${ }_{14} 147^{\circ}$ [6591]; m.p. 26° [6591,6653];
${ }^{1} \mathrm{H}$ NMR [6651], ${ }^{13} \mathrm{C}$ NMR [6651].
1-(2-Hydroxyphenyl)-1-propanone labelled with carbon-14
1-[2-Hydroxy[phenyl-U- $\left.\left.{ }^{14} \mathrm{C}\right]\right]-1$-propanone
[132899-53-7] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 152.16

Synthesis

- Obtained by Fries rearrangement of [phenyl-U- ${ }^{14} \mathrm{C}$] propionate $(232 \mu \mathrm{Ci})$ with aluminium chloride at 110° for $30 \mathrm{~min}(48 \%)(112 \mu \mathrm{Ci})$ [6654].

Colourless oil [6654].
1-(3-Hydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18
Syntheses

- Preparation by diazotization of m -aminopropiophenone, followed by decomposition of the diazonium salt obtained [6562,6655], (76\%) [6389], (71\%) [6656].
- Also obtained by saponification of 3-acetoxypropiophenone (b.p. $127-128^{\circ}$) with refluxing 10% sodium hydroxide for $2-3 \mathrm{~h}$ (83\%) [6657].
- Also obtained by reductive deamination of 2-amino-5-hydroxypropiophenone (diazotization, followed by decomposition of the diazonium salt formed with copper powder in ethanol) [6658].
- Also obtained by reaction of ethylmagnesium bromide with 3-hydroxy-N, N -diethylbenzamide in refluxing n-butyl ether for 4 h (75\%) [6591].
- Also obtained by treatment of 3-methoxypropiophenone (b.p. $._{0.05} 70-76^{\circ}$) with pyridinium chloride at 210° for $30 \mathrm{~min}(85 \%)$ [6659].
- Also obtained by treatment of 1-hydroxy-1-(3-hydroxyphenyl)propane (m.p. 105-107 ${ }^{\circ}$) with DDQ in dioxane for 72 h (97\%) [6659].
- Also refer to: [6545,6546,6659-6664].
b.p. ${ }_{1.8} 131-133^{\circ}$ [6657], b.p. ${ }_{0.05} 150^{\circ}$ [6656];
m.p. 82° [6389,6562,6591], 78° [6656], 77.5-78 ${ }^{\circ}$ [6658], 76-77$~[6659], ~$

MS [6628], UV [6457]; paper chromatography [6631,6632,6665].
BIOLOGICAL ACTIVITY: Tyrosine hydroxylase inhibition [6666].

1-(4-Hydroxyphenyl)-1-propanone (Paroxypropione)

[70-70-2] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 150.18
 Syntheses

- Preparation by Fries rearrangement of phenyl propionate,
- with aluminium chloride in refluxing carbon disulfide [6562], (44\%) [6473], then at $130-150^{\circ}$ for $2-3 \mathrm{~h}$ after solvent elimination (45-50\%) [6389,6563,6564];
- with aluminium chloride in nitrobenzene at 50° for 18 h (72\%) [6567] or at 20° for $48 \mathrm{~h}(60 \%)$ [6568];
- with aluminium chloride in nitromethane at 20° for $7-8$ days (80%) [6569,6570];
- with aluminium chloride in chlorobenzene using microwave irradiation for 3 min at 106° (62\%) [6566];
- with aluminium chloride in ethylene dichloride at 95° for 5 h or in heptane at $80-90^{\circ}$ for $7 \mathrm{~h}(36 \%)$ [6571], in benzene or in tetrachloroethane at 80° [6667];
- with aluminium chloride in the presence of propionyl chloride at $50-60^{\circ}$ for 6 h (49\%) [6668];
- with aluminium chloride without solvent at 50° for 10 h (60%) [6355,6356,6576], at $120^{\circ}(43 \%)$ [6575] or at $140^{\circ}(40 \%)$ [6574];
- with titanium tetrachloride in nitromethane at 20° for 7 days (56\%) [6569] or without solvent at 50° for $10 \mathrm{~h}(39 \%)$ [6355,6356,6576];
- with polyphosphoric acid at 100° (61\%) [6578];
- with boron trifluoride at 50° for $3 \mathrm{~h}(46 \%)$ [6355];
- with stannic chloride at 50° for $3 \mathrm{~h}(10 \%)$ [6355].
- Also obtained by acylation of phenol with propionic acid,
- in the presence of boron trifluoride at 70° for $1 \mathrm{~h}(84 \%)$ [6583], at $70-75^{\circ}$ (65-70\%) [6362], at $73-75^{\circ}$ for $3 \mathrm{~h}(88 \%)$ [6378] according to the method [6669] or at 80° for $2 \mathrm{~h}(40 \%)$ [6572];
- in the presence of polyphosphoric acid at 100° for $10 \mathrm{~min}(81 \%)$ [6578] or in a boiling water bath for $5 \mathrm{~min}(58 \%)$ [6670];
- in the presence of zinc chloride (Nencki reaction) at 160° for 1 h [6584] or at reflux for $5 \mathrm{~min}\left(155^{\circ}\right)$ [6376], (10-12\%) [6620,6667].
- Also obtained by Friedel-Crafts acylation of phenol with propionyl chloride in the presence of aluminium chloride (37%) [6579] or at $125-130^{\circ}$ for $1 \mathrm{~h}(22 \%)$ [6580,6581] according to the method [6582]. N.B.: This same reaction in carbon disulfide, using propionyl chloride formed in situ by action of oxalyl chloride with sodium propionate (method B), for 1 h at 70°, yield 65% [6671].
- Also obtained by demethylation of 4-propionylanisole with refluxing pyridinium chloride for $10-15 \mathrm{~min}$ (90\%) [6667], (78\%) [6672].
- Also obtained by an ethyl group elimination in 4-propionylphenetole with aluminium chloride [6673] according to the method [6674] or with refluxing pyridinium chloride for $10 \mathrm{~min}(90 \%)$ [6667].
- Also obtained by tert-butyl group elimination in 3-tert-butyl-4-hydroxypropiophenone with aluminium chloride without solvent at 170° for $15 \mathrm{~min}(66 \%)$ [6586] or in nitromethane at 20° for 8 days (34%) [6570,6586].
- Also obtained by hydrolysis of 4-propionoxypropiophenone with potassium hydroxide in boiling ethanol [6675].
- Also obtained by reaction of ethylmagnesium bromide with 4-hydroxy-N, N -diethylbenzamide in boiling n-butyl ether (135°), followed by hydrolysis (65\%) [6591].
- Also obtained by reaction of propionitrile with phenol (Hoesch reaction) [6667].
- Also obtained by pyrolysis of α-(4'-propionylphenoxy)propiophenone, first at $335-345^{\circ}$ for 16 min , then at 430° for $8 \mathrm{~min}(26 \%)$ [6676].
- Also obtained by photolysis of phenyl propionate [6594] in water or in solution containing β-cyclodextrine (254 nm) at 25° for 2 h [6595].
- Also refer to: [6364,6403,6408,6431,6432,6598,6602,6607,6610,6611, 6677-6695].
b.p. $1135-150^{\circ}$ [6563,6564], b.p. ${ }_{0.5} 140-145^{\circ}$ [6583], b.p. 164° [6574].

Some boiling points are obviously wrong.
m.p. $152-153^{\circ}$ [6696], 150° [6355,6356], 149- 150° [6578], 149° [6473], $148-149^{\circ}$ [6378,6579], 148.5° [6675], 148° [6376,6389,6562,6566,6575, 6697], $147-150^{\circ}$ [6668],147-148ㅇ [6563,6564,6567,6584,6621], 147° [6670], 146° [6574], $145-147^{\circ}$ [6583];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8373M) [6698],
IR (Sadtler: standard n° 8329) [6356,6698-6702],
UV [6422,6696,6703], [6356,6357,6457,6625,6698];
MS [6628,6704];
TLC [6353,6356,6358,6422], chromatography [6700,6705];
high-speed liquid chromatography [6706]; polarography [6707];
pK_{a} [6707]; dielectric properties [6708]; cryoscopic study [6673].
Notes: Toxicity [6709,6710]; deuteration [6361]; bacterial degradation [6711].
BIOLOGICAL ACTIVITY: Pituitary gonadotropic hormone inhibitor (compound
7116) [6640]; antimicrobial [6712]; antiinflammatory [6713]; antiviral [6714]; choleretic [6715]; melanoma metastasis chemotherapy [6716].

Oxime [133595-72-9] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19 [6717,6718].
Potassium salt [138660-02-3] [6719].
$\boldsymbol{\beta}$-D-Glucopyranoside [31826-80-9] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{7} \quad$ mol.wt. 312.32.

- Preparation by reaction of sodium methoxide with the tetraacetate described below in methanol at r.t. for 20 min [6647,6648].
- Also refer to: [6720].
m.p. $173-175^{\circ}$ [6648], 160° [6647]. One of the reported melting points is obviously wrong.
$(\alpha)_{\mathrm{D}}^{25}=-95.9^{\circ}$ (water) [6647], $(\alpha)_{\mathrm{D}}^{15}=-84.4^{\circ}$ [6648]; UV [6647].
Tetra-O-acetyl- β-D-glucopyranoside [31867-16-0] $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{11}$ mol.wt. 480.47.
- Preparation by reaction of tetra-O-acetyl- α-D-glucopyranosyl bromide with 4-hydroxy-propiophenone,
- in the presence of silver oxide in quinoline at r.t. for 30 min [6647];
- in the presence of aqueous potassium hydroxide in acetone (40-50\%) [6648].
- Also refer to: [6650,6720].
m.p. $158-159.5^{\circ}$ [6647], $157-158^{\circ}$ [6648];

UV [6647]; $\quad(\alpha)_{D}^{24}=-27.8^{\circ}$ (chloroform) [6648], $(\alpha)_{D}^{25}=-21.5^{\circ}$ (1,2-dichloroethane) [6647].
Ethyl ether $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23.

- Obtained by reaction of propionic anhydride with phenetole in the presence of iodine at reflux for $3 \mathrm{~h}(57 \%)$ [6721].
- Preparation by reaction of propionyl chloride with phenetole in the presence of aluminium chloride in carbon disulfide [6722].
m.p. 30° [6722], 29-30 ${ }^{\circ}$ [6721].

Propionate $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad \mathrm{~mol} . w t .206 .24$ (m.p. 63°) [6351].
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 57885M), IR (Sadtler: standard n° 84933K).

1-(4-Hydroxyphenyl)-1-propanone labelled with carbon-14

1-[4-Hydroxy[phenyl-U- ${ }^{14} \mathrm{C}$]]-1-propanone
[132899-54-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \quad$ mol.wt. 152.16

Syntheses

- Obtained by Fries rearrangement of [phenyl-U- ${ }^{14} \mathrm{C}$] propionate (232 mCi) with aluminium chloride at 110° for 30 min (39\%) (90 mCi) [6654].
- Also obtained with a radioactivity of 27 microcuries/mg by condensing phenol with $\mathrm{Et}^{14} \mathrm{CO}_{2} \mathrm{H}$ in the presence of BF_{3} [6723].
m.p. $147-149^{\circ}$ [6654].

1-(2,3-Dihydroxyphenyl)-1-propanone

[90536-26-8] $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18

Syntheses

- Obtained by total demethylation of 2,3-dimethoxypropiophenone (b.p. 114°) (SM) with refluxing hydriodic acid $(\mathrm{d}=1.96)$ and an equal volume of acetic acid for $6 \mathrm{~h}(41 \%)$ [6724]. SM was prepared by action of ethyl-magnesium iodide on 2,3-dimethoxybenzaldehyde (m.p. 51-52 ${ }^{\circ}$), followed by oxidation of the obtained carbinol (b.p. $._{2} 108-110^{\circ}$) with potassium dichromate in dilute sulfuric acid.
- Obtained by total demethylation of 2,3-dimethoxypropiophenone (b.p. .0.2-0.3 $100-102^{\circ}$) with refluxing pyridinium chloride for 30 min (75\%) [6725].
- Obtained by total demethylation of 2,3-dimethoxypropiophenone with boron tribromide in methylene chloride at r.t. overnight (78\%) [6726].
- Also obtained (by-product) by Fries rearrangement of o-methoxyphenyl propionate (1 mol) or pyrocatechol dipropionate in the presence of pyrocatechol with aluminium chloride (2 mol) without solvent at $135-140^{\circ}$ for $2-3.5 \mathrm{~h}$ (small amounts) [6727].
b.p. ${ }^{182-187^{\circ}}$ [6727];
m.p. 102.5-103.5 ${ }^{\circ}$ [6727], 56-57 ${ }^{\circ}$ [6725], 56° [6726], 53° [6724]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6726], ${ }^{13} \mathrm{C}$ NMR [6726], IR [6726,6728], MS [6726].
Note: This leads [6724] to doubt the correctness of the structure given to the by-product obtained [6727].

1-(2,4-Dihydroxyphenyl)-1-propanone (Respropiophenone)

- in the presence of zinc chloride (Nencki reaction) [6729], at reflux ($160-165^{\circ}$) for 15 min [6376,6382,6389,6556,6730,6731], (86\%) [6732], (76\%) [6733], (73\%) [6383], (62\%) [6380,6734], at 150° for 20 min [6735];
- in the presence of boron trifluoride for 2 h at $70^{\circ}(79 \%)$ [6736], at $80^{\circ}(67 \%)$ [6572] or at $105-108^{\circ}$ for $15 \mathrm{~min}(71 \%)$ [6737];
- in the presence of polyphosphoric acid for 10-20 min in a boiling water bath (65\%) [6738];
- in the presence of 70% perchloric acid at reflux for 30 min (70\%) [6739];
- in the presence of Amberlite IR-120 (cation exchange resin sulfonic acid type) at 160° for $2-3 \mathrm{~h}$ (76\%) [6740].
N.B.: Zeokarb 225 was found to be as effective.
- Preparation by reaction of propionitrile with resorcinol (Hoesch reaction) [6741,6742], (75\%) [6565], (65\%) [6555], (46\%) [6743], (35\%) [6744].
- Preparation by reaction of propionic anhydride with resorcinol,
- in the presence of Amberlite IR-120 (cation exchange resin sulfonic acid type) at 160° for $2-3 \mathrm{~h}(82 \%)$ [6740];
- in the presence of concentrated sulfuric acid (small drops) at 130° for some $\min (60 \%)$ [6744].
- Also obtained by Fries rearrangement of resorcinol dipropionate,
- with aluminium chloride at $180-185^{\circ}$ for $90 \mathrm{~min}(25 \%)$ [6745];
- with boron trifluoride, in the presence of resorcinol, at 75° for $1 \mathrm{~h}(83 \%)$ [6736].
- Also obtained by reaction of ethylmagnesium bromide with 2,4-dihydroxy-N, N-diethylbenzamide in refluxing benzene (12\%) [6591].
- Also refer to: [6452,6524,6617,6746-6771].
b.p. ${ }_{0.8} 152-154^{\circ}$ [6736];
m.p. (monohydrate) 57° [6743], 56° [6572,6591,6730,6731];
(anhydrous) $102-104^{\circ}$ [6740], 101.5° [6743], 101° [6733,6736,6738],
$100-101^{\circ}$ [6737], 99° [6744], $98-100^{\circ}$ [6565],
98° [6382,6772], 97.5° [6730,6731], $97-98^{\circ}$ [6380],
97° [6572,6591,6739], 96° [6383], $95-96^{\circ}$ [6732], 95° [6376];
${ }^{1}{ }^{1} \mathrm{H}$ NMR [6380], IR [6380,6733,6737], UV [6733,6737];
paper chromatography [6773]; TLC [6380].
USE: For chelatometric determination of iron [6774,6775]; preserving agent for liquid foods [6776]; fungicide [6777].
BIOLOGICAL ACTIVITY: Antimelanoma and skin depigmentation [6778]; choleretic [6715]; anthelmintic [6779]; trypanosoma brucei brucei response [6780]; bactericide [6781].

1-(2,5-Dihydroxyphenyl)-1-propanone

[938-46-5]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Syntheses

- Preparation by Fries rearrangement of quinol dipropionate (hydroquinone dipropionate),
- with aluminium chloride without solvent at $130-140^{\circ}$ for $4 \mathrm{~h}(75 \%)$ [6782], at 142° for $30 \mathrm{~min}(80 \%)$ [6783], at $160-165^{\circ}$ for 3 h (good yields) [6508] or at $190-200^{\circ}$ for $90 \mathrm{~min}(60 \%)$ [6745];
- by using various quantities of aluminium chloride at 180° for 2 h (to see below) [6733];

AlCl_{3} (equiv)	Yields (\%)
1	21
2	21
3	45
4	78
5	89

- with aluminium chloride (2 equiv) in nitromethane at 20° for a week (7\%) [6733] or in nitrobenzene (24\%) [6784];
- with boron trifluoride complex $\left(\mathrm{BF}_{3}-\mathrm{OBu}_{2}\right)$ at reflux for $1 \mathrm{~h}(42 \%)$ [6785];
- by using titanium tetrachloride (2 equiv) at 130° for 2 h gave only 6% yield [6733].
- Also obtained by treatment of,
- hydroquinone dipropionate with aluminium chloride in the presence of hydroquinone (61\%) [6784];
- 2-hydroxy-5-(propionyloxy)propiophenone with aluminium chloride (5 equiv) at 180° for 30 min in the presence of hydroquinone (57\%) [6733].
- Also obtained by acylation of hydroquinone with propionic acid,
- in the presence of boron trifluoride in ethylene dichloride at $50-55^{\circ}$ (59%) [6509], in tetrachloroethane at $90-95^{\circ}$ for $5 \mathrm{~h}(70 \%)$ [6786] or at 50° for 4 h (70%) [6787] or without solvent (67\%) [6510], at 80° for 2 h (54\%) [6572] or at 125° for $2 \mathrm{~h}(71 \%)$ [6736];
- in the presence of zinc chloride at 190° few min (Nencki reaction) [6376];
- in the presence of 70% perchloric acid at reflux for $1 \mathrm{~h}(12 \%)$ [6739].
- Also obtained by Friedel-Crafts acylation of hydroquinone with propionyl chloride in nitrobenzene in the presence of aluminium chloride (40\%) [6784].
- Also obtained from 2-hydroxy-5-(propionyloxy)propiophenone; the ester group elimination on hydrolysis with 85% sulfuric acid at r.t. or by treatment with by aluminium chloride [6745].
- Also obtained by reaction of benzoquinone (2.5 equiv) with 2-oxobutanoic acid in aqueous acetonitrile or an acetonitrile/methylene chloride mixture (91\%) [6788].
- Also refer to: [6761,6789-6798].

$$
\begin{array}{ll}
\text { m.p. } & 99-99.5^{\circ}[6787], 98^{\circ}[6786], 97-98^{\circ}[6509], 97^{\circ}[6733], 96^{\circ}[6510,6745], \\
& 92^{\circ}[6376,6572,6736,6739,6784], 91-92^{\circ}[6782], 80-82^{\circ}[6783] .
\end{array}
$$

Some melting points are obviously wrong.
${ }^{1} H$ NMR [6472,6783], IR [6733,6783];
TLC [6783]; capillary electrochromatography [6799];
paper chromatography [6632].

Notes: C-Deuteration [6447]; acidity of methylene proton [6446]; skin depigmentation [6778].
USE: Preservating agent for liquid foods [6776].
BIOLOGICAL ACTIVITY: Antimelanoma [6778].

1-(2,6-Dihydroxyphenyl)-1-propanone

[3361-72-6]

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
Syntheses

- Preparation by alkaline degradation of two substituted coumarins,
- from 4-methyl-7-hydroxy-8-propionylcoumarin (m.p. 200 ${ }^{\circ}$, [6800], 197-198 ${ }^{\circ}$ [6801], 187° [6802,6803]) (70\%) [6800], (65\%) [6380,6804], (60\%) [6801,6803], (48\%) [6805];
- from 7-hydroxy-8-propionylcoumarin (m.p. 168º) [6806].
- Also obtained by reaction of ethylmagnesium iodide on 2,6-dimethoxybenzonitrile, followed by cleavage of the ether linkages with aluminium chloride [6804].
- Preparation by dehydrogenation of 2-propionylcyclohexane-1,3-dione,
- in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in refluxing cumene overnight under nitrogen (57\%) [6807];
- in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in tetraethyleneglycol dimethyl ether at 185° [6808].
- Also obtained by decarboxylation of 4,6-dihydroxy-5-propionyl-1,3-benzenedicarboxylic acid in refluxing water for $12 \mathrm{~h}(25 \%)$ [6809].
- Also obtained from 2-chloro-2-propionyl-1,3-cyclohexanedione (m.p. 89°) by rearrangement in $10-20 \%$ hydrogen chloride-DMF at $120-130^{\circ}$ for $15-20 \mathrm{~min}$, according to the procedure [6810], (79\%) [6811].
- Also refer to [6812-6817].
m.p. 139° [6800,6806], $137-138^{\circ}$ [6380,6809], $136-137^{\circ}$ [6801], 136° [6811], $135-137^{\circ}$ [6807], 133.5° [6803], $130-132^{\circ}$ [6802,6805];
${ }^{1} \mathrm{H}$ NMR [6380,6811], ${ }^{13} \mathrm{C}$ NMR [6811], IR [6380,6811], UV [6733]; TLC [6380]; sublimation $118-132^{\circ} / 0.01 \mathrm{mbar}$ [6811].

Dibenzoate $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{5}$ mol.wt. 374.39 (m.p. 95°) [6800].

1-(3,4-Dihydroxyphenyl)-1-propanone (4-Propionylpyrocatechol)

[7451-98-1]	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
H	Syntheses
	- Obtained by Fries rearrangement of pyrocatechol dipropionate with aluminium chloride in chlorobenzene at 80° for 2 h (84%) [6818] or in nitrobenzene at 100° for 15 min [6389], (39\%) [6784].

- Obtained by Fries rearrangement of pyrocatechol dipropionate with aluminium chloride in the presence of pyrocatechol, in nitrobenzene at 80° for $1 \mathrm{~h}(37 \%)$ [6580,6581] or in nitromethane at r.t. for $72 \mathrm{~h}(76 \%)$ [6733].
- Also obtained by Fries rearrangement of o-methoxyphenyl propionate (1 mol) by aluminium chloride (2 mol) without solvent at 140° for $2 \mathrm{~h}(51-55 \%)$ [6727] or in nitrobenzene at 80° for $30-60 \mathrm{~min}$ [6620]. A demethylation occurs during the reaction.
- Also obtained by acylation of pyrocatechol with propionic acid,
- in the presence of boron trifluoride [6819], at 150° for 2 h in a sealed tube (36\%) [6736];
- in the presence of polyphosphoric acid for 15 min in a boiling water bath (12\%) [6738].
- Preparation by demethylation of 4-hydroxy-3-methoxypropiophenone with refluxing pyridinium chloride for 10 min (80%) [6820].
- Also obtained when propiovanillone was heated with an alkali sulfide under conditions used in the kraft cooking process [6821].
- Also refer to: [6685,6713,6822-6835].

Isolation from natural sources

- From sprucewood pulp cooking with sodium bisulfite [6836].
- From high-moorland peat extracts [6837].
- From components of the peat fulvic acid fraction [6838].
b.p. ${ }_{15} 210-220^{\circ}$ [6620];
m.p. 148° [6819], 146° [6580,6581,6620,6736,6738,6784], $146-148^{\circ}$ [6818], 145° [6733], 142° [6820];
ESR spectrum [6839], IR [6733], UV [6733];
chromatography [6840-6842]; paper chromatography [6843]; chromatography on ion-exchange paper [6844]; TLC [6733];
dielectric constant and dipole moment in p-dioxane [6845].
Note: skin depigmentation [6778].
USE: Antioxidizing agent [6846,6847].
BIOLOGICAL ACTIVITY: β-Adrenergic receptor mutant [6848]; antiinflammatory [6713]; as trypanocide, mitochondria respiration response [6849]; trypanosoma brucei brucei inhibition [6780]; pharmacological [6828]; antimelanoma [6778].

Diethyl ether [720-66-1] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28.

- Obtained by reaction of propionyl chloride with catechol diethyl ether in the presence of aluminium chloride in refluxing benzene for 40 min (49\%) [6850].
- Also refer to: [6851-6854].
b.p. . $_{0.5} 119-121^{\circ}$ [6850], b.p. ${ }_{30} 181^{\circ}$ [6851];
m.p. $39-40^{\circ}$ [6854], $38-39^{\circ}$ [6851], $36-39^{\circ}$ [6850].

BIOLOGICAL ACTIVITY: Antiinflammatory [6713].

1-(3,5-Dihydroxyphenyl)-1-propanone

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 166.18
Syntheses

- Obtained by hydrolysis of its diacetate (SM) with boiling 10% sulfuric acid. SM was prepared by condensation of 3,5-diacetoxybenzoyl chloride (m.p. 88°) with diethyl cadmium in benzene (50\%) [6855].
- Also refer to: [6856].
m.p. 175° [6855].

BIOLOGICAL ACTIVITY: Anthelmintic [6857].

1-(2,3,4-Trihydroxyphenyl)-1-propanone

[22760-98-1] $\quad \begin{aligned} & \text { Syntheses } \\ & \text { - Preparation by acylation of pyrogallol with } \\ & \text { propionic acid, }\end{aligned}$

- in the presence of boron trifluoride [6454] in ethyl ether for 1 h at $0^{\circ}(80 \%)$ [6858,6859];
- in the presence of Amberlite IR-120 (cation exchange resin sulfonic acid type) at 160° for $2-3 \mathrm{~h}(78 \%)$ [6740].
N.B.: Zeokarb 225 was found to be as effective.
- in the presence of zinc chloride [6860,6861], at 130-140 for 90 min (Nencki reaction) (35\%) [6862];
- in the presence of 70% perchloric acid at reflux for $1 \mathrm{~h} \mathrm{(33} \mathrm{\%)} \mathrm{[6739]}$.
- Preparation by reaction of propionyl chloride with pyrogallol and heating 4 h on a water bath (75\%) [6454].
- Preparation by acylation of pyrogallol with propionic anhydride,
- in the presence of Amberlite IR-120 (cation exchange resin sulfonic acid type) at 160° for $2-3 \mathrm{~h}(79 \%)$ [6740].
N.B.: Zeokarb 225 was found to be as effective.
- in the presence of concentrated sulfuric acid (small drops) at 130° for some min (65\%) [6744];
- in the presence of zinc chloride, but using a mixture of propionic acid/propionic anhydride (85/100) at $135-140^{\circ}$ for 40 min , then at r.t. overnight (59\%) [6863].
- Also refer to: [6757,6758,6864,6865].
m.p. 129° [6454], $128-130^{\circ}$ [6740], $128-129^{\circ}$ [6862], 128° [6858,6859],
127° [6739,6860,6861], $126-127^{\circ}$ [6744], 125-127 ${ }^{\circ}$ [6863];
${ }^{1} \mathrm{H}$ NMR [6863], IR [6863], ESR spectrum [6839], UV [6858].

Note: In determination of molybdenum (molybdenum complex) [6866] for determination of tungsten by spectrophotometry [6867].
USE: Matrix metalloprotease inhibitors and their application in cosmetic and pharmaceutical compositions [6868].

1-(2,3,5-Trihydroxyphenyl)-1-propanone

USE: Matrix metalloprotease inhibitors and their application in cosmetic and pharmaceutical compositions [6868].

1-(2,3,6-Trihydroxyphenyl)-1-propanone

USE: Matrix metalloprotease inhibitors and their application in cosmetic and pharmaceutical compositions [6868].

1-(2,4,5-Trihydroxyphenyl)-1-propanone

- by Friedel-Crafts acylation of hydroxyhydroquinone with propionyl chloride in the presence of aluminium chloride;
- by Fries rearrangement of hydroxyhydroquinone dipropionate with aluminium chloride;
- by reaction of propionitrile with hydroxyhydroquinone (Hoesch reaction).
- Also refer to: [6871].
${ }^{1} \mathrm{H}$ NMR [6870], ${ }^{13} \mathrm{C}$ NMR [6870].
USE: Matrix metalloprotease inhibitors and their application in cosmetic and pharmaceutical compositions [6868].

Triethyl ether [63213-30-9] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 266.34.

- Preparation by condensation of 1,2,4-triethoxybenzene with propionic acid in the presence of PPA at $50-55^{\circ}$ for $40 \mathrm{~min}(60-80 \%)$ [6872].
m.p. $66-67^{\circ}$ [6872].

1-(2,4,6-Trihydroxyphenyl)-1-propanone (Phloropropiophenone) (Flopropione)

N.B.: Shinoda [6875,6876] has previously described this experiment and gives the m.p. as 113° for the hydrated and 207° for the anhydrous product. These melting points correspond with those of hydrated and anhydrous phloroglucinol, and it would appear that Shinoda did not obtain phloropropiophenone [6744].

- Preparation by reaction of propionic anhydride with phloroglucinol,
- in the presence of concentrated sulfuric acid (one drop) at 130° for 5 min (65\%) [6744];
- in the presence of Amberlite IR-120 (cation exchange resin sulfonic acid type) at 160° for $2-3 \mathrm{~h}(42 \%)$ [6740]. N.B.: Zeokarb 225 was found to be as effective.
- in the presence of boron trifluoride etherate at 10° (62-65\%) [6879].
- Preparation by reaction of propionyl chloride with phloroglucinol,
- in the presence of aluminium chloride in nitrobenzene/carbon disulfide solution (76%) [6880], in nitrobenzene at 60° (55\%) [6881] or without solvent at 50° (70\%) [6882];
- in the presence of boron trifluoride etherate at 10° (compound 3) (62-65\%) [6879].
- Also refer to: [6743,6758,6765,6857,6883-6891].

Isolation from natural sources

- From Inula viscosa (L.) Ait (Tribus Inulea, Compositae) [6892].
m.p. (monohydrate) $114-115^{\circ}$ [6565], 113° [6875,6876];
(anhydrous) 207° [6875,6876], 185-186 [6874], 177° [6565],
$175-178^{\circ}$ [6879], $175-176^{\circ}$ [6877], 174-176$~[6740,6890], ~$
$174-175^{\circ}$ [6873,6885,6886], 174° [6880],
170-171 ${ }^{\circ}$ [6744];
${ }^{1} \mathrm{H}$ NMR [6881,6893], ${ }^{13} \mathrm{C}$ NMR [6881], UV-visible spectrum [6894]; GLC [6895]; TLC [6629,6890,6895]; HPLC [6896];
paper chromatography [6895].

Note: Toxicity [6897].
USE: Fungicide [6880]; matrix metalloprotease inhibitors and their application in cosmetic and pharmaceutical compositions [6868].
BIOLOGICAL ACTIVITY: Antispasmodic [6640,6898,6899]; choleretic [6715,6900]; antischistosomal [6879]; antimicrobial [6901], for staphylococcus aureus [6891]; identification of candidate drugs for treatment of amyotrophic lateral sclerosis [6902]; ligand-based virtual screening and design of antimalarial compounds [6903]; pharmacological action [6904].

Compound with 4,4'-(1E)-1,2-ethenediylbis[pyridine] (1:1) [820990-87-2] [6905].

1-(3,4,5-Trihydroxyphenyl)-1-propanone

USE: Matrix metalloprotease inhibitors and their application in cosmetic and pharmaceutical compositions [6868].

1-(Pentahydroxyphenyl)-1-propanone

USE: Matrix metalloprotease inhibitors and their application in cosmetic and pharmaceutical compositions [6868].

1-(2-Amino-5-hydroxyphenyl)-1-propanone

[35364-15-9]	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19
OH	Syntheses
	- Obtained by UV-irradiation of 3-ethyl-2,1-benzisoxazole in 66% sulfuric acid for 90 min at $80-90^{\circ}$ [6906], (88-95\%) [6658]. - Also prepared from 2-nitro-5-hydroxybenzaldehyde (five steps) or from p-anisidine (one step) [6907,6908]. - Also refer to: [6553,6908-6912].
m.p. 145° [6658].	

1-(3-Amino-4-hydroxyphenyl)-1-propanone

[130521-20-9] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19 Syntheses

- Preparation by hydrolysis of 3-acetamido-4-hydroxypropiophenone [6913] with refluxing 10 N hydrochloric acid for $30 \mathrm{~min}(74 \%)$ [6744,6913].
- Also obtained by treatment of 4-hydroxy-3-nitro-propiophenone suspended in hydrochloric acid with granulated tin [6473] or in the presence of Pd / C [6914].
- Preparation by reduction of the nitro group of 4-hydroxy-3-nitropropiophenone in boiling alkaline solution with sodium hydrosulfite [6915].
- Also refer to: [6916,6917]. m.p. $145-146^{\circ}$ [6913], $144-145^{\circ}$ (d) [6915]; ${ }^{1} \mathrm{H}$ NMR [6913], IR [6913].
BIOLOGICAL ACTIVITY: Bactericide [6915].
Hydrochloride $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 201.65 (m.p. 217 ${ }^{\circ}$) [6473].

1-(4-Amino-2-hydroxyphenyl)-1-propanone

[83294-23-9] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19

Note: Acidity of methylene proton [6446].
m.p. 137° [6918].

1-(4-Amino-3-hydroxyphenyl)-1-propanone

[54903-52-5]	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19 Syntheses
	- Preparation by alkaline hydrolysis of 6-propionyl-$2-(3 H)$-benzoxazolinone with boiling 10% aqueous sodium hydroxide solution for 4 h (90-100\%) [6913,6920]. - Also refer to: [6921-6924].
m.p. 139° [6913], 138 BIOLOGICAL ACTIVI	${ }^{\circ}$ [6920]; ${ }^{1} \mathrm{H}$ NMR [6913], IR [6913]. Analgesic [6923].

1-(5-Amino-2-hydroxyphenyl)-1-propanone
[79925-35-2] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 165.19

Syntheses

- Obtained from 4-hydroxy-3-(1-oxopropyl)acetanilide by hydrolysis with boiling 50% hydrochloric acid [6429].
- Also refer to: [6925].

Notes: C-Deuteration [6447]; acidity of methylene proton [6446]; antidote against cyanide [6925].
m.p. 81° [6429].

Hydrochloride [142301-96-0] $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 201.65.

- Refer to: [6925].

Note: Antidote against cyanide [6925].
1-(5-Amino-2,4-dihydroxyphenyl)-1-propanone
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 181.19
 Syntheses

- Preparation by hydrogenation of 2,4-dihydroxy-5-nitro-propiophenone in acetone in the presence of Raney nickel [6555].
- Preparation from its hydrochloride, by addition of N sodium carbonate solution [6555].
m.p. $147-151^{\circ}$ (d) [6555].

Hydrochloride $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 217.65.

- Preparation from the corresponding nitro compound by catalytic reduction in acetone solution using Raney nickel. Then, after filtration of the catalyst and half elimination of solvent by vacuum distillation, the hydrochloride was prepared by passing dry hydrogen chloride into the remaining solution [6555].
m.p. $>300^{\circ}$ [6555].

1-(2-Hydroxy-4-methylphenyl)-1-propanone-2,2,3,3,3- d_{5}

$$
\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{D}_{5} \mathrm{O}_{2} \quad \text { mol.wt. } 169.23
$$

ion $\left(1^{-}\right)$, radical ion $\left(1^{-}\right)$[72051-77-5], ESR spectrum [6350].

4-Hydroxy-3-nitro-5-(1-oxopropyl)benzonitrile

[70978-55-1] $\quad \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 220.18

Synthesis

- Preparation by nitration of 4-hydroxy-3-(1-oxopropyl)-benzonitrile at -20° (40\%) [6926].
m.p. 90° [6926].

5-Bromo-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid
[101012-66-2]

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{5} \quad$ mol.wt. 289.08
Syntheses

- Obtained by Fries rearrangement of methyl 5-bromo-2,4-di-propionoxybenzoate (m.p. 122°) with aluminium chloride (3.3 mol) at $125-130^{\circ}$ for 1 h (25%) or at $160-170^{\circ}$ [6450]. The above reaction, when carried out using nitrobenzene at r.t. for 24 h or at 100° for 1 h gave the same keto acid.
- Also obtained by acylation of methyl 5-bromo- β-resorcylate with propionic anhydride under the conditions of the Friedel-Crafts reaction [6450].
- Also obtained by treatment of methyl 5-bromo-2,4-dihydroxy-3-propionylbenzoate with 10% sodium hydroxide solution at r.t. for 24 h [6450].
- Also obtained by Fries rearrangement of 2-hydroxy-4-propionoxy-5-bromobenzoic acid (m.p. 166°) with aluminium chloride (3.3 mol) at $165-170^{\circ}$ for $1 \mathrm{~h}(33 \%)$ [6450].
- Also obtained by Friedel-Crafts propionylation of 5-bromo- β-resorcylic acid [6450].
m.p. $219-220^{\circ}$ [6450].

1-(2,3,5-Tribromo-4-methoxyphenyl)-1-propanone

[23689-25-0]

m.p. 90° [6360]; IR [6360], UV [6360].

1-(2,4,6-Tribromo-3-methoxyphenyl)-1-propanone

[23689-32-9]
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{2} \quad$ mol.wt. 400.89

b.p. ${ }_{15} 192^{\circ}$ [6360]; m.p. $36-37^{\circ}$ [6360];

IR [6360], UV [6360].

Synthesis

- Preparation by reaction of dimethyl sulfate with 2,4,6-tribromo-3-hydroxypropiophenone [6360].

1-(3,4,5-Tribromo-2-methoxyphenyl)-1-propanone
[23600-68-2]

m.p. 64° [6360]; IR [6360], UV [6360].

5-Chloro-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid

[102541-32-2]	$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{5} \quad \mathrm{~mol} . \mathrm{wt} .244 .63$
OH	Syntheses
	- Obtained by Fries rearrangement of methyl 5-chloro-2,4-dipropionoxybenzoate (m.p. 114°) with aluminium chloride at $125-130^{\circ}$ for $1 \mathrm{~h}(21 \%)$ [6450].
COOH	- Also obtained by alkaline hydrolysis of methy
	chloro-2,4-dihydroxy-3-propionylbenzoate [6450]

- Also obtained by Friedel-Crafts acylation of 5-chloro-2,4-dihydroxybenzoic acid with propionic anhydride in the presence of aluminium chloride [6450].
- Also obtained by Fries rearrangement of 5-chloro-2-hydroxy-4-propionoxybenzoic acid (m.p. 155°) with aluminium chloride at 165° for $1 \mathrm{~h}(32 \%)$ [6450].
m.p. $206-207^{\circ}$ [6450].

2-Hydroxy-3-(1-oxopropyl)benzonitrile

[99184-81-3]

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2} \quad$ mol.wt. 175.19 Synthesis

- Preparation by treatment of 2-methoxy-3-propionyl-benzonitrile with aluminium chloride in refluxing benzene for $2 \mathrm{~h}(72 \%)$ [6533].
m.p. $82-85^{\circ}$ [6533]; UV [6533].

3-Hydroxy-4-(1-oxopropyl)benzonitrile

$$
\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2} \quad \text { mol.wt. } 175.19
$$

Synthesis

- Obtained by demethylation of its methyl ether with alumunium chloride in refluxing benzene for 1 h [6927].
m.p. $170-171^{\circ}$ [6927].

1-(3-Bromo-5-chloro-2-hydroxy-4-methylphenyl)-1-propanone

[22362-76-1] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrClO}_{2} \quad$ mol.wt. 277.54
 Synthesis

- Preparation by bromination of 5-chloro-2-hydroxy-4-methylpropiophenone [6351] according to the method [6352].
m.p. 100° [6351];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8734M), IR (Sadtler: standard n° 38082), UV [6359].

1-(3-Bromo-5-chloro-4-methoxyphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrClO}_{2} \quad$ mol.wt. 277.54

Synthesis

- Obtained by reaction of bromine with 3-chloro-4-methoxypropiophenone in dilute acetic acid [6362].
m.p. 57° [6362].

1-(5-Bromo-4-methoxy-2-nitrosophenyl)-1-propanone

1-(3,5-Dibromo-2-hydroxy-4-methylphenyl)-1-propanone

[2892-33-3]
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}$
mol.wt. 322.00

Syntheses

- Preparation by bromination of 2-hydroxy-4-methyl-propiophenone with bromine, according to the procedure [6354], (good yield) [6355,6356].
m.p. 105° [6355,6356];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8733M), IR (Sadtler: standard $\mathrm{n}^{\circ} 38079$) [6355,6356],
UV [6356,6359]; TLC [6353,6358].

1-(3,5-Dibromo-4-hydroxy-2-methylphenyl)-1-propanone

[3023-09-4]	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 322.00
H	Syntheses
	- Preparation by bromination of 4-hydroxy-2-methylpropiophenone with bromine, according to the procedure [6354], (good yield) [6355,6356].
m.p. 97-98 ${ }^{\circ}$ [63	,6356];
${ }^{1} \mathrm{H}$ NMR (Sadtler [6355,6356],	standard n° 8732M), IR (Sadtler: standard n° 38078)
UV [6353,6356-63	

1-(3,5-Dibromo-2-methoxyphenyl)-1-propanone

[24876-08-2] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 322.00

Syntheses

- Preparation from 3,5-dibromo-2-hydroxypropiophenone,
- by reaction with dimethyl sulfate in the presence of potassium carbonate in acetone [6370] or in the presence of sodium hydroxide in methanol [6360];
- by reaction with methyl iodide in the presence of potassium hydroxide in ethanol [6363].
b.p. ${ }_{17} 170^{\circ}$ [6360];
m.p. 66° [6363], 54° [6360,6370]; IR [6360], UV [6360].

2,4-Dinitrophenylhydrazone [23600-74-0] $\quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 502.12 (m.p. $131-132^{\circ}$) [6360].

1-(3,5-Dibromo-4-methoxyphenyl)-1-propanone

[24876-03-7]	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}$	mol.wt. 322.00
OCH_{3}	Syntheses	

- Preparation by reaction of dimethyl sulfate with 3,5-dibromo-4-hydroxypropiophenone [6360,6378].
- Also refer to: [6379].
b.p. ${ }_{17} 193^{\circ}$ [6360];
m.p. 63-65 [6360], 62-63 [6378]; IR [6360], UV [6360].

2,4-Dinitrophenylhydrazone $\quad[23600-56-8] \quad \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 502.12 (m.p. 63-65º) [6360].

1-(3,4-Dichloro-5-methoxyphenyl)-1-propanone

[113730-37-3]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 233.09
Synthesis

- Obtained by adding a solution of 45% nitrosylsulfuric acid in sulfuric acid to a solution of 2-amino-3,4-dichloro-5-methoxypropiophenone in THF between -25° and -16° over 7 min , then to keep at 0° for 1.5 h . Next, 45-50\% aqueous hypophosphorous acid was added at $<10^{\circ}$ and to keep like this for $2.5 \mathrm{~h}(93 \%)$ [6386].
m.p. 85° [6386]; ${ }^{1} \mathrm{H}$ NMR [6386].

1-(3,5-Dichloro-2-methoxyphenyl)-1-propanone $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 233.09

Synthesis

- Obtained by reaction of dimethyl sulfate with 3, 5-dichloro-2-hydroxypropiophenone in the presence of aqueous sodium hydroxide in refluxing acetone (80\%) [6390].
m.p. $37-38^{\circ}$ [6390].

1-(3,5-Dichloro-4-methoxyphenyl)-1-propanone

[213470-65-6]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 233.09
Syntheses

- Obtained by reaction of propionyl chloride with 2,6-di-chloroanisole in the presence of aluminium chloride in carbon disulfide for 2 h at $0^{\circ}[6379,6407]$.
- Also obtained by oxidation of 1-(3,5-dichloro-4-methoxy-phenyl)-1-propanol with PDC in methylene chloride at 25° overnight (97%) [6929,6930].
m.p. 90° [6379], $65-66^{\circ}$ [6929,6930]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6930], ${ }^{13} \mathrm{C}$ NMR [6930], MS [6930].

1-(3,5-Dichloro-2-hydroxy-4-methoxyphenyl)-1-propanone

[66021-80-5]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 249.09 Synthesis

- Preparation by chlorination of 2-hydroxy-4-methoxy-propiophenone [6410].

1-(3,5-Difluoro-4-methoxyphenyl)-1-propanone

[71292-82-5]
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{2} \quad$ mol.wt. 200.19

Synthesis

- Refer to: [6415].

1-(3,5-Diiodo-4-methoxyphenyl)-1-propanone

[31827-85-7]

- methyl iodide in the presence of potassium hydroxide in ethanol [6362] or methanol [6931];
- dimethyl sulfate in the presence of sodium hydroxide in dilute methanol [6420].
m.p. 106° [6931], 104° [6362], $83-84^{\circ}$ [6420]. One of the reported melting points is obviously wrong.

3-Amino-4-hydroxy-5-(1-oxopropyl)benzonitrile

[70977-86-5]	Synthesis - Preparation by hydrogenation of 4-hydroxy-3- nitro-5-(1-oxopropyl)benzonitrile using 5% Pd / C as catalyst in ethanol (70\%) [6932].
m.p. $144-146^{\circ}$ [6926].	

2-Hydroxy-3-(1-oxopropyl)benzoic acid

3-Propionylsalicylic acid
[35888-92-7]
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19 Syntheses

- Obtained by ozonolysis of 2-hydroxy-3-prope-nyl-propiophenone [6933].
- Also obtained by hydrolysis of 2-acetoxy-3-propionyl-benzoic acid (SM) with 10% sodium hydroxide (65%). SM was prepared by treatment of 2-acetoxy-3-propenylpropiophenone with potassium permanganate in acetic acid at 15° for 30 min (80\%) [6934].
- Also obtained by heating 2-hydroxy-3-propionylbenzaldehyde with potassium hydroxide at 110° (85\%) [6935].
- Also refer to: [6936].

2-Hydroxy-5-(1-oxopropyl)benzoic acid

5-Propionylsalicylic acid
[78417-99-9] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

> Syntheses

- Obtained by hydrolysis of methyl propionylsalicylate [6937], in boiling 20% aqueous potassium hydroxide [6938].
- Also obtained by alkaline hydrolysis of 5-propionyl-salicylamide (m.p. 216º [6939].
m.p. 179° [6939], $177-179^{\circ}$ [6938], $176-177^{\circ}$ [6940].

4-Hydroxy-3-(1-oxopropyl)benzoic acid

[25065-13-8] \begin{tabular}{l}
Syntheses

Preparation by reaction of propionyl chloride with
enloride in in tetrachloroethane at 120° for $3-4 \mathrm{~h}(70-80 \%)$
[6941].

\end{tabular}

- Also obtained by Fries rearrangement of 4-propionyl-oxybenzoic acid (m.p. 185-188 ${ }^{\circ}$) with aluminium chloride in nitrobenzene (47\%) [6942], (25\%) [6943].
m.p. $225-227^{\circ}$ [6943], $220-221^{\circ}$ [6942], 220° [6941].

1-[2-[(Difluoroboryl)oxy]-4-hydroxy-6-methylphenyl]-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BF}_{2} \mathrm{O}_{3} \quad$ mol.wt. 228.00

Synthesis

- Obtained by reaction of propionic acid with 5-methylresorcinol in the presence of boron trifluoride etherate [6944].

1-(3-Bromo-2-hydroxy-5-methylphenyl)-1-propanone

[2892-30-0]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10
Syntheses
 Syntheses

- Preparation by bromination of 2-hydroxy-5-methylpropiophenone,
- with bromine, according to the procedure [6354], (good yield) [6355,6356];
- with N -bromosuccinimide in DMF, first at 0°, then at r.t. for 18 h (86%) [6945,6946].
- Also refer to: [6947] (compound I), [6948].
m.p. 133° [6355,6356], 130° [6945,6946];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8731M), IR (Sadtler: standard n° 38076) [6355,6356],
UV [6359]; TLC [6353,6358].

1-(3-Bromo-4-hydroxy-5-methylphenyl)-1-propanone

[2904-86-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10

OH	Syntheses
	- Preparation by bromination of 4-hydroxy-3-methylpropiophenone with bromine, according to the procedure [6354], (good yield) [6355,6356].
m.p. 97° [6355,6356];	
${ }^{1} \mathrm{H}$ NMR (Sadtler: [6355,6356],	standard $n^{\circ} 8728 M$), IR (Sadtler: standard n° 38072)
UV [6356,6357];	C [6353,6358].

1-(5-Bromo-2-hydroxy-3-methylphenyl)-1-propanone

1-(2-Bromo-4-methoxyphenyl)-1-propanone

[24876-04-8] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10
Syntheses

- Obtained by reaction of propionic anhydride with 3-
bromoanisole in the presence of aluminium chloride in
carbon disulfide (65\%) [6949].

1-(3-Bromo-2-methoxyphenyl)-1-propanone

[23689-23-8]	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10
OCH_{3}	Synthesis
	- Preparation by reaction of dimethyl sulfate with 3-bromo-2-hydroxypropiophenone [6360].
b.p. ${ }_{14} 143^{\circ}$ [6360];	
m.p. $2-3^{\circ}$ [6360]; $\mathrm{n}_{\mathrm{D}}^{20}$. 551 [6360]; IR [6360], UV [6360].

1-(3-Bromo-4-methoxyphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 243.10

Syntheses

- Preparation by methylation of 3-bromo-4-hydroxy-propiophenone with dimethyl sulfate [6360].
- Also obtained by treatment of 4-methoxypropiophenone with bromine in acetic acid/potassium acetate [6375].
- Also obtained by reaction of sodium methoxide with 2-bromo-4-(2-bromo-1-methoxypropyl)-1-methoxy-benzene in boiling methanol for 2 h [6951].
- Also obtained by reaction of zinc powder with 2-bromo-1-(3-bromo-4-methoxyphenyl)-1-propanone in boiling ethanol for $2-3 \mathrm{~h}$ [6952].
- Also obtained by distillation of 4-(1-ethoxypropenyl)-2-bromo-1-methoxybenzene or by treatment of this with acid [6953].
- Also refer to: [6362,6377,6430,6954,6955].
m.p. 101° [6360,6375], $100-101^{\circ}$ [6951], 100.5° [6953], $99-101^{\circ}$ [6954,6956];

IR [6360], UV [6360].

1-(4-Bromo-2-methoxyphenyl)-1-propanone

1-(5-Bromo-2-methoxyphenyl)-1-propanone

1-(3-Bromo-4-hydroxy-5-methoxyphenyl)-1-propanone

$[103653-15-2]$	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$	mol.wt. 259.10
OH	Synthesis	

- Preparation by reaction of bromine with propiovanillone in dilute acetic acid (67\%) [6959].
m.p. $141-142.5^{\circ}$ [6959].

1-(2-Chloro-6-hydroxy-4-methylphenyl)-1-propanone

Fluorescence spectrum data [6960].

1-(3-Chloro-2-hydroxy-5-methylphenyl)-1-propanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 198.65
$$

Syntheses

- Obtained by alkaline hydrolysis of 8-chloro-3, 6-dimethyl-2-ethylchromone (m.p. 74-75 ${ }^{\circ}$) or 8 -chloro-3,6-dimethyl-2-propylchromone (m.p. $68-71^{\circ}$) with sodium ethoxide in ethanol at r.t. overnight [6428].
- Also obtained by Fries rearrangement of 2-chloro-4-methylphenyl propionate (b.p. ${ }_{760} 248^{\circ}$) [6961] with aluminium chloride [6962], without solvent at 120° for 10 min (quantitative yield) [6961] or for 30 min [6428].
- Also refer to: [6963].
m.p. 115° [6961].

1-(4-Chloro-2-hydroxy-5-methylphenyl)-1-propanone

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 198.65
$$

Synthesis

- Refer to: [6964].

Oxime [129078-81-5] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{2} \quad$ mol.wt. 213.66.
USE: In molybdenum determination by spectrophotometry
[6964]; in uranium determination by spectrophotometry [6965].

1-(5-Chloro-2-hydroxy-3-methylphenyl)-1-propanone

[941-74-2] \begin{tabular}{l}
Syntheses

Preparation by Friedel-Crafts acylation of
4-chloro-2-methylphenol with propionyl chloride
in the presence of aluminium chloride at $80-90^{\circ}$
for 3 h (quantitative yield) [6966]

\end{tabular}

- Also obtained by Fries rearrangement of 4-chloro-2-methyl-phenyl propionate (b.p. 249-252 ${ }^{\circ}$) [6428] with aluminium chloride [6962], without solvent at 120° for $30 \mathrm{~min}(85 \%)$ [6428] or at 140° for 2 h [6477].
- Also obtained by alkaline hydrolysis of 6-chloro-3,8-dimethyl-2-ethylchromone (m.p. 85°) with sodium ethoxide in ethanol at r.t. overnight [6428].
m.p. 61° [6428];
${ }^{1} \mathrm{H}$ NMR [6472,6966], IR [6966], MS [6966], HRMS [6966].

1-(5-Chloro-2-hydroxy-4-methylphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65 Syntheses

- Preparation by Fries rearrangement of 4-chloro-3-methyl-phenyl propionate (b.p. ${ }_{760} 250^{\circ}$) [6961] in the presence of aluminium chloride [6351, 6488,6967], at 155° for 30 min [6490] or at 120° for 10 min (94\%) [6961].
- Preparation by heating 4-chloro-3-methylphenol, propionic acid and boron trifluoride in a sealed tube 1 h at $100^{\circ}(86 \%)$ [6437].
- Also refer to: [6968-6970].
b.p. $3110-115^{\circ}$ [6490];
m.p. 76° [6961], $67-68^{\circ}$ [6351], 66° [6437,6967], 65.3° [6490].
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ}$ 8735M), IR (Sadtler: standard n ${ }^{\circ}$ 8986),
UV [6359,6399], fluorescence spectrum data [6960]; TLC [6353].
Hydrazone [203301-19-3] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$ mol.wt. 212.68 (HMCPH).
USE: Gravimetric reagent for Cu (II), Ni (II), Co (II), Fe (II) and Fe (III) [6971]. BIOLOGICAL ACTIVITY: Antimicrobial [6968].

1-(2-Chloro-4-methoxyphenyl)-1-propanone

- with propionic anhydride in the presence of aluminium chloride in carbon disulfide (61\%) [6949] or in the presence of ferric chloride (54\%) [6972];
- with propionyl chloride in the presence of aluminium chloride (63\%) [6972].
- Also refer to: [6455,6950].
b.p. 122° [6972], b.p. ${ }_{12} 152-153^{\circ}$ [6949], b.p. ${ }_{16} 159-160^{\circ}$ [6455];
m.p. $27-28^{\circ}$ [6455].

1-(3-Chloro-2-methoxyphenyl)-1-propanone

[68597-43-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
Syntheses

- Preparation by reaction of ethylmagnesium bromide with 3-chloro-2-methoxybenzonitrile [6973].
- Preparation by oxidation of 1-(3-chloro-2-methoxyphenyl)-1-propanol with chromium trioxide in the presence of dilute sulfuric acid in acetone [6477].
- Also refer to: [6469,6974].
b.p. ${ }_{15} 135-140^{\circ}$ [6973], b.p. ${ }_{50} 170^{\circ}$ [6477].

USE: Preparation of tetrahydronaphthalines as antiinflammatory [6469].
2,4-Dinitrophenylhydrazone $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5}$ mol.wt. 378.70 (m.p. 160 $)$ [6973].

1-(3-Chloro-4-methoxyphenyl)-1-propanone

[4394-54-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

- with propionic anhydride in the presence of ferric chloride (62\%) [6972];
- with propionyl chloride in the presence of aluminium chloride [6430] in carbon disulfide (62\%) [6975], (55\%) [6972], in methylene chloride for 3 h at 0° [6976] or for 1.5 h at r.t. with addition of ammonium chloride (72\%) [6977].
- Also obtained by oxidation of 1-(3-chloro-4-methoxyphenyl)-1-propanol with PDC in methylene chloride at 25° overnight (82\%) [6930].
- Also refer to: [6363,6929,6978].
b.p. ${ }_{12} 149^{\circ}$ [6972];
m.p. $91-92^{\circ}$ [6930], $88-90^{\circ}$ [6978], 88-89 [6977], 88° [6430,6975]. ${ }^{1} \mathrm{H}$ NMR [6930], ${ }^{13} \mathrm{C}$ NMR [6930], MS [6930].

1-(3-Chloro-5-methoxyphenyl)-1-propanone

[89106-39-8]

oil [6979].
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
Synthesis

- Obtained (method P) by reaction of ethylmagnesium bromide with 3-chloro-5-methoxybenzoyl chloride in THF at -78° (83\%) [6979].

1-(4-Chloro-2-methoxyphenyl)-1-propanone

[36871-55-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Syntheses

- Preparation by reaction of dimethyl sulfate with 4-chloro-2-hydroxypropiophenone in the presence of sodium hydroxide [6980,6981].

IR [6980].

1-(4-Chloro-3-methoxyphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
Synthesis

- Obtained (method O) by reaction of diethylcadmium with 4-chloro-3-methoxybenzoyl chloride (59\%) [6979].
oil [6979].

1-(5-Chloro-2-methoxyphenyl)-1-propanone

[68597-44-4] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Syntheses

- Preparation by acylation of 4-chloroanisole,
- with propionic anhydride in the presence of ferric chloride (62\%) [6972];
- with propionyl chloride in the presence of aluminium chloride [6489,6975], (55\%) [6972].
- Preparation by reaction of methyl iodide with 5-chloro-2-hydroxypropiophenone in the presence of ethanolic sodium ethoxide [6488] or methanolic sodium methoxide [6477].
- Also refer to: [6974].
b.p. ${ }_{6} 135-140^{\circ}$ [6488,6975], b.p. ${ }_{16.5} 137^{\circ}$ [6477], b.p. ${ }_{12} 150^{\circ}$ [6972];
m.p. $41-42^{\circ}[6488,6975]$.

1-[3-(Chloromethyl)-4-hydroxyphenyl]-1-propanone

[106909-28-8] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65
 Syntheses

- Preparation by chloromethylation of 4-hydroxy-propiophenone [6982,6983] according to the procedure [6984].
- Also refer to: [6985] (Czech patent).

1-[5-(Chloromethyl)-2-hydroxyphenyl]-1-propanone

[99070-79-8] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Syntheses

- Obtained by reaction of paraformaldehyde with o-hydroxy-propiophenone in the presence of hydrochloric acid at 30° for 7 h (33\%) [6986].
- Also refer to: [6942].
b.p. ${ }_{4} 145-150^{\circ}$ [6986]; m.p. 54-55 ${ }^{\circ}$ [6986].

1-(X-Chloro-4-hydroxy-3-methoxyphenyl)-1-propanone

[67166-42-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 214.65

GC-MS [6987].
1-(2-Amino-3,4-dichloro-5-methoxyphenyl)-1-propanone
[113730-35-1]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
mol.wt. 248.11
Synthesis

- Obtained by adding a solution of propionitrile and 2,3-dichloro-4-methoxyaniline in methylene chloride to a solution of boron trichloride in methylene chloride. Next, solid aluminium chloride was added to the mixture between 5° and 12°, then kept at r.t. for 30 min and at 75° for $90 \mathrm{~h}(34 \%)$ [6386].
m.p. 86° [6386]; ${ }^{1} \mathrm{H}$ NMR [6386].

1-(2-Fluoro-3-methoxyphenyl)-1-propanone

[934637-29-3]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 182.19
Synthesis

- Refer to: [6988].

1-(2-Fluoro-5-methoxyphenyl)-1-propanone

1-(3-Fluoro-2-methoxyphenyl)-1-propanone

[879339-88-5] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 182.19

USE: Preparation of heteroaryl alkylidenetetrahydro-naphthalenamines as antiinflammatories [6517]; preparation of tetrahydronaphthalines as antiinflammatory [6469].

1-(3-Fluoro-4-methoxyphenyl)-1-propanone

[586-22-1] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 182.19
 Syntheses

- Obtained by reaction of propionyl chloride [6978,6989] or propionic anhydride [6518] with 2 -fluoroanisole in the presence of aluminium chloride in carbon disulfide.
$\mathrm{COCH}_{2} \mathrm{CH}_{3}$ - Also refer to: [6950,6954-6956].
b.p. ${ }_{15} 160-162^{\circ}$ [6518];
m.p. 86° [6518], 84° [6955], $83-85^{\circ}$ [6978], $83-84^{\circ}[6954,6956]$;

IR [6978].

1-(4-Fluoro-2-methoxyphenyl)-1-propanone

[231958-06-8]	Syntheses - Preparation by reaction of methyl iodide with 4-fluoro-2-hydroxypropiophenone in the presence of potassium carbonate in acetone at 40° for 12 h (97\%) [6522].
- Also refer to: [6990].	
${ }^{1} \mathrm{H}$ NMR [6522].	

1-(4-Fluoro-3-methoxyphenyl)-1-propanone

[82846-20-6]	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad \mathrm{~mol}$. wt. 182.19
OCH_{3}	Synthesis
	- Obtained (method O) by reaction of diethylcadmium with 4-fluoro-3-methoxybenzoyl chloride (68\%) [6979].
m.p. $180-181^{\circ}$ [6979]	

1-(5-Fluoro-2-methoxyphenyl)-1-propanone

[653-64-5]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2}$
mol.wt. 182.19

Syntheses

- Preparation by reaction of propionyl chloride with 4-fluoroanisole in the presence of aluminium chloride in carbon disulfide [6363,6365].
- Also refer to: [6954,6956].
b.p. 120° [6954], b.p. ${ }_{13} 132^{\circ}$ [6365]; $\mathrm{n}_{\mathrm{D}}^{23}=1.5175$ [6365].

1-(2-Hydroxy-3-iodo-5-methylphenyl)-1-propanone

[868606-11-5]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{2} \quad$ mol.wt. 290.10
Synthesis

- Preparation by reaction of iodine and iodic acid with 2-hydroxy-5-methylpropiophenone in dilute ethanol for 1.5 h at $35-40^{\circ}(86 \%)$ [6366].

1-(2-Iodo-4-methoxyphenyl)-1-propanone
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{2} \quad$ mol.wt. 290.10

Synthesis

- Obtained by reaction of propionic anhydride with 3-iodoanisole in the presence of aluminium chloride in carbon disulfide (58\%) [6949].
b.p. ${ }_{6} 158-162^{\circ}$ [6949]; m.p. 61-63${ }^{\circ}$ [6949].

1-(3-Iodo-4-methoxyphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{2} \quad$ mol.wt. 290.10

Syntheses

- Obtained by reaction of propionic anhydride with 2-iodoanisole in the presence of aluminium chloride in carbon disulfide [6518].
- Also refer to: [6672].
b.p. 170° [6518]; m.p. 95° [6518].

1-(4-Hydroxy-3-iodo-5-methoxyphenyl)-1-propanone

[103653-13-0]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{3}$
mol.wt. 306.10
Synthesis

- Preparation by adding an aqueous solution of iodine and potassium iodide to a solution of 4-hydroxy-3-methoxy-propiophenone in aqueous sodium hydroxide (90\%) [6959].
m.p. 136.5° [6959].

2-Hydroxy-5-(1-oxopropyl)benzamide

5-Propionylsalicylamide $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 193.20
 Synthesis

- Preparation by Friedel-Crafts acylation of salicylamide (m.p. 140°) (compound 8407) [6640] with propionyl chloride in the presence of aluminium chloride in nitrobenzene at 20° for $12 \mathrm{~h}(90 \%)$ [6939].
m.p. 216° [6939].

1-(2-Hydroxy-3-methyl-5-nitrophenyl)-1-propanone

[90922-89-7] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20

Synthesis

- Preparation by reaction of nitric acid $(d=1.52)$ with 2-hydroxy-3-methylpropiophenone in concentrated sulfuric acid $(\mathrm{d}=1.80)$ between -2° and $0^{\circ}(82 \%)$ [6367].
m.p. 113° [6367].

1-(2-Hydroxy-5-methyl-3-nitrophenyl)-1-propanone

[70978-40-4]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20
Syntheses

- Preparation by nitration of 2-hydroxy-5-methylpropiophenone,
- with nitric acid in acetic acid [6991] at r.t. for $2.5 \mathrm{~h}(80 \%)$ [6992];
- with nitric acid $(\mathrm{d}=1.52)$ in sulfuric acid $(\mathrm{d}=1.8)$, between -2° and 0° for 20 min (75\%) [6367].
- Also refer to: [6993].
m.p. 151° [6367], $136-137^{\circ}$ [6992], 135-136 [6991]. One of the reported melting points is obviously wrong.

1-(4-Hydroxy-2-methyl-5-nitrophenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4}$
mol.wt. 209.20
Syntheses

- Preparation by reaction of concentrated nitric acid ($\mathrm{d}=1.42$) with 4-hydroxy-2-methylpropiophenone in acetic acid [6994].
- Preparation by reaction of nitric acid $(\mathrm{d}=1.52)$ with 4-hydroxy-2-methylpropiophenone in concentrated sulfuric acid $(\mathrm{d}=1.80)$ between -2° and $0^{\circ}(65 \%)$ [6367].
m.p. 95° [6994], 92° [6367].

1-(4-Hydroxy-3-methyl-5-nitrophenyl)-1-propanone

1-(2-Methoxy-3-nitrophenyl)-1-propanone
[103205-56-7] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20

Synthesis

- Preparation by reaction of dimethyl sulfate with 2-hydroxy-3-nitropropiophenone in the presence of potassium carbonate in boiling acetone for 8-10 h (50\%) [6533].
yellow oil [6533]; b.p. ${ }_{10} 160-165^{\circ}$ [6533];
$\mathrm{d}_{20} 1.2136$ [6533];
$\mathrm{n}_{\mathrm{D}}^{21}=1.5379$ [6533]; UV [6533].

1-(2-Methoxy-5-nitrophenyl)-1-propanone

[682320-25-8] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20

Synthesis

- Obtained by adding tetrabutylammonium nitrate to a solution of 2-methoxypropiophenone, trifluoroacetic anhydride and 18-crown-6 in methylene chloride under argon, then the solution mixed at r.t. for 3.5 h (91\%) [6409].
white solid [6409];
${ }^{1} \mathrm{H}$ NMR [6409], ${ }^{13} \mathrm{C}$ NMR [6409], MS [6409]; TLC [6409].

1-(3-Methoxy-2-nitrophenyl)-1-propanone

[103204-36-0] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20

Synthesis

- Obtained by reaction of methyl iodide with ethyl 3-methoxy-2-nitrobenzoylmalonate in ethanolic sodium ethoxide solution [6996].
m.p. 96° [6996]; sublimation at $80^{\circ} / 0.001 \mathrm{~mm}$ [6996];

IR [6997], UV [6996].
1-(3-Methoxy-4-nitrophenyl)-1-propanone

[246041-90-7] \quad\begin{tabular}{l}
Synthesis

Obtained by hydrolysis of 1-[1-(3-methoxy-4-
nitrophenyl)-1-phenoxypropyl]-1 H-benzotriaz-
ole in dioxane with dilute sulfuric acid [6998].

\end{tabular}

1-(4-Methoxy-2-nitrophenyl)-1-propanone

[37888-90-7] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20

1-(4-Methoxy-3-nitrophenyl)-1-propanone

[103204-39-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20
 Syntheses

- Preparation by reaction of concentrated nitric acid with p-methoxypropiophenone in sulfuric acid between 0° and 5° for 30 min (64\%) [7000], (77\%) [6937], (96\%) [7001,7002].
- Also obtained by treatment of 2,2'-dimethoxy-5,5'-di-propionyldiphenyl sulfide (m.p. 175°) with concentrated sulfuric acid/concentrated nitric acid mixture at r.t. overnight [7003].
- Also refer to: [7004].
m.p. 101° [7001], $100-101^{\circ}$ [6937,7005], $99-101^{\circ}$ [7002], $99-100^{\circ}$ [7003], 86° [7000]. One of the reported melting points is obviously wrong.

1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5} \quad$ mol.wt. 225.20

Synthesis

- Obtained (poor yield) by nitration of 1-(4-hydroxy-3-methoxyphenyl)-1-propanol with nitric acid (2 mol) in carbon tetrachloride at 5° [7006].
m.p. $160-161^{\circ}$ [7006].

2,4,6-Trihydroxy-3-(1-oxopropyl)benzaldehyde 1-oxime

1-[3-(Azidomethyl)-4-hydroxyphenyl]-1-propanone

[154603-70-0]	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 205.22
OH	Synthesis
	- Preparation by reaction of 3-(chloromethyl)-4-hydroxypropiophenone with sodium azide in DMF at 30° for 24 h [6985].

1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-1-propanone
[104129-04-6] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrNO}_{2} \quad$ mol.wt. 258.11

Syntheses

- Preparation by bromination of 3-(aminomethyl)-4-hydroxy-propiophenone [6476,7008].

Oxime [104129-05-7] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \quad$ mol.wt. 273.12 [6476,7008].
BIOLOGICAL ACTIVITY: Diuretic and hypohypertensive [6476,7008].

1-[3-(Aminomethyl)-5-chloro-4-hydroxyphenyl]-1-propanone

[109314-57-0] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{2} \quad$ mol.wt. 213.66

Syntheses

- Refer to: [6476,7008].

Oxime [104129-08-0]
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \quad$ mol.wt. 228.67 [6476,7008].
BIOLOGICAL ACTIVITY: Diuretic and antihypertensive [7008].
1-(2-Amino-4-fluoro-5-methoxyphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FNO}_{2}$
mol.wt. 197.21
Syntheses

- Preparation by successively adding propionitrile and aluminium chloride to a solution of boron trichloride and 3-fluoro-4-methoxyaniline in benzene under nitrogen and refluxing the mixture obtained for 8 h (70\%) [7009].
- Also refer to: [7010].
m.p. 96.5-97.5 ${ }^{\circ}$ [7009]; MS [7009].

1-[3-(Aminomethyl)-4-hydroxy-5-iodophenyl]-1-propanone

Oxime [104129-07-9] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{IN}_{2} \mathrm{O}_{2} \quad$ mol.wt. 320.12 [6476,7008].
Note: Isomerization [7011].
BIOLOGICAL ACTIVITY: Diuretic and antihypertensive [7008].

1-(2-Hydroxy-3-methylphenyl)-1-propanone

[3338-15-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20 Syntheses

- Preparation by Fries rearrangement of o-cresyl propionate,
- with aluminium chloride [6389,6562], without solvent, at 50° for $3 \mathrm{~h}(16 \%)$ [6355], at 120° for $3 \mathrm{~h}(40 \%)$ [7012], (49\%) [7013], at 130° (35\%) [7014], at 160° for $2 \mathrm{~h}(60 \%)$ [7015] or at 165° for $1 \mathrm{~h}(41-45 \%)$ [6355,6466] or in nitromethane at 20° for a week (18%) [6569];
- with zirconium chloride in o-dichlorobenzene over 1 h at 120° [6467].
- Also obtained by Fries rearrangement of o-cresyl propionate with titanium tetrachloride at 50° for 3 h (38\%) [6355].
- Also obtained by isomerization of 4'-hydroxy-3'-methylpropiophenone at $180-200^{\circ}$ for 1 h in the presence of aluminium chloride (1.5 mol) (43\%) [6468] or (2.5 mol) (59\%) [6466].
- Also obtained from 5-tert-butyl-2-hydroxy-3-methylpropiophenone by tertbutyl group elimination with aluminium chloride (2 equiv) at 190° for 15 min (77\%) [6466].
- Also obtained by acylation of o-cresol with propionic acid in the presence of zinc chloride at reflux for $30 \mathrm{~min}(25 \%)$ (Nencki reaction) [7016].
- Also refer to: [7017,7018].
b.p. ${ }_{20} 115-117^{\circ}$ [6355], b.p. ${ }_{15} 127-129^{\circ}$ [7012-7014,7016],
b.p. 140° [6389,6562], b.p. ${ }_{760} 222-224^{\circ}$ [7015];
m.p. 22-23 ${ }^{\circ}$ [7012,7013]; $\mathrm{d}_{20} 1.088$ [6355];
$\mathrm{n}_{\mathrm{D}}^{20}=1.548$ [6355];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8374M), IR (Sadtler: standard n ${ }^{\circ}$ 37029) [6355],
UV [6359,6457].
Note: Isomerization [7011].

1-(2-Hydroxy-4-methylphenyl)-1-propanone

[2886-52-4] \quad\begin{tabular}{l}
Syntheses

- Preparation by Fries rearrangement of m-cresyl

propionate with aluminium chloride [7019],
\end{tabular}
- in nitromethane at 20° for 7 days (81\%) [6569];
- in nitrobenzene at r.t. [6620,7020], (79\%) [6571], (63-67\%) [7021,7022];
- first, in carbon disulfide, then at $60-70^{\circ}$ for 1 h after solvent elimination and at r.t. for $24 \mathrm{~h}(76 \%)$ [7023];
- without solvent at 100° (86\%) [7019], (71\%) [6355,6576], 120° (85\%) [7014], 120-150́ [7024], (45\%) [7025], (93\%) [7021], (39\%) [7013] or 165° (89\%) [6355].
- Preparation by Fries rearrangement of m-cresyl propionate using various catalysts,
- with titanium tetrachloride without solvent at 100° for $7 \mathrm{~h}(96 \%)[6355,6576]$ or in nitromethane at 20° for 7 days (86%) [6569];
- with boron trifluoride in propionic acid at 70° for $2 \mathrm{~h}(90 \%)$ [6583];
- with stannic chloride without solvent at 100° for 7 h (56\%) [6355];
- with zinc chloride at $150-160^{\circ}$ for $1 \mathrm{~h}(20 \%)$ [6620].
- Also obtained by Fries rearrangement of 2-tert-butyl-5-methylphenyl propionate using various catalysts. In this reaction, the tert-butyl group elimination precedes the Fries rearrangement.
- without solvent, in the presence of aluminium chloride at 120° for 30 min (45\%) [7025];
- with solvents, in the presence of various catalysts, at r.t. for 2 weeks [7025] (in the table below),

Catalyst	Solvent	Yield (\%)
AlCl_{3}	Nitromethane	56
	Ethylene dichloride	17
TiCl_{4}	Nitromethane	22
	Ethylene dichloride	39
	Ethylene tetrachloride	32
NbCl_{5}	Nitromethane	26
	Ethylene dichloride	21
TaCl_{5}	Nitromethane	26
	Ethylene dichloride	25

- Also obtained (by-product) by Fries rearrangement of 2-isopropyl-5-methylphenyl propionate with aluminium chloride (1.4 equiv) without solvent at 100° for 2 h (14\%) [7026].
- Also obtained by acylation of m-cresol with propionic acid,
- in the presence of boron trifluoride for 2 h at $70^{\circ}(93 \%)$ [6583] or $80^{\circ}(83 \%)$ [6572] and for 30 min at $125-130^{\circ}$ (50\%) [7027];
- in the presence of zinc chloride (Nencki reaction) at reflux for 20 min (good yield) [6667], (11\%) [6620];
- in the presence of polyphosphoric acid (low yield) [7028].
- Also obtained from 2-allyl-5-methylphenol by treatment with perbenzoic acid in ethyl ether, first at 0°, then between 0° and 25° for $24 \mathrm{~h}(74 \%)$ [6589].
- Also obtained by treatment of 5-tert-butyl-4-hydroxy-2-methylpropiophenone with aluminium chloride at 200° for $15 \mathrm{~min}(40 \%)$ [7025]. There are first a tert-butyl group elimination, followed by an acyl group migration from para to ortho position.
- Also obtained by reduction of 2-chloro-2'-hydroxy-4'-methylpropiophenone with zinc powder in acetic acid [7019].
- Also obtained by degradation of 3,7-dimethylchromone with sodium ethoxide in boiling ethanol for 30 min [7019].
- Also obtained by heating various ketones (SM) with a large excess of aluminium chloride (5.2 equiv) in chlorobenzene at 100° for 2 h [7026] (to see table below):

SM	Yield (\%)
2-Hydroxy-4-methyl-3-isopropylpropiophenone	100
2-Hydroxy-4-methyl-5-isopropylpropiophenone	85
2-Hydroxy-6-methyl-3-isopropylpropiophenone	37
2-Hydroxy-4-methyl-6-isopropylpropiophenone	22

- Also obtained by isomerization of 4-hydroxy-2-methylpropiophenone with aluminium chloride (3 mol) for 1 h at $180-200^{\circ}(43 \%)$ [6482].
- Also refer to: [6364,6614,6639,7011,7029-7032].
b.p. ${ }_{4} 101-102^{\circ}$ [7014], b.p. ${ }_{10} 115-120^{\circ}$ [6572,7019], b.p. ${ }_{12} 124^{\circ}$ [6355],
b.p. ${ }_{15} 125-135^{\circ}$ [6620], b.p. ${ }_{13} 133-135^{\circ}$ [6583];
m.p. $45-46^{\circ}$ [6355,6620,7023], 44-46 ${ }^{\circ}$ [7022], 44-45 ${ }^{\circ}$ [7027], 44° [6583,6667], $43-44^{\circ}$ [7013,7014,7020,7021], 43° [7024], 41.5-42.5 ${ }^{\circ}$ [7019], 41° [6572];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 8377M), IR (Sadtler: standard $n^{\circ} 37033$), [6355,6356,7027],
UV [6356,6359,6457,7027]; ESR spectrum [6350]; TLC [6353,6358].
Notes: Acidity of methylene proton [6446]; radical ion (1-) [72051-76-4]; C-deuteration [6447].
USE: Metal-ligand stability constants of complexes of 2-hydroxy-4-methylpropiophenone,
- with cobalt [41653-56-9], iron [41586-13-4] and nickel [41586-14-5] [6633];
- with cadmium [37848-06-9], copper [37848-05-8] and zinc complexes [6636].

BIOLOGICAL ACTIVITY: Nematocide [7030].
Thiosemicarbazone $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$ mol.wt. 237.33 (m.p. 181°)
USE: Fungicide [6364].
BIOLOGICAL ACTIVITY: Antituberculotic [6364]

1-(2-Hydroxy-5-methylphenyl)-1-propanone

[938-45-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by acylation of p-cresol with propionic acid using various catalysts,
- in the presence of boron trifluoride for 2 h at $80^{\circ}(87 \%)$ [6572] or 70° (80\%) [6583];
- in the presence of zinc chloride (Nencki reaction) for 1 h at reflux (55\%) [7016].
- Preparation by Fries rearrangement of 4-methylphenyl propionate [7033-7035], (80\%) [7036] using various conditions,
- with aluminium chloride, without solvent, at 110° for 90 min [6409], at 120° (90%) [7014] for 40 min (93%) [6992], at 165° for 1 h (88%) [6355,6356], at 170° for $1-2 \mathrm{~h}(80-96 \%)$ [6492] or heating on a water bath for 1 h (80\%) [7037];
- with aluminium chloride (1 equiv), without solvent, at 100° for $1 \mathrm{~h}(50 \%)$ [7013] or in nitromethane at 20° for 7 days (58\%) [6569].
- Preparation by dealkylation of phenolic ethers,
- from 2-ethoxy-5-methylpropiophenone by treatment with aluminium chloride in refluxing carbon disulfide, then heating at $60-70^{\circ}$ for 8 h after solvent elimination [6673,7038] according to the Gattermann procedure [6674];
- from 2-methoxy-5-methylpropiophenone by refluxing with pyridinium chloride for 4 h (77\%) [7023];
- from direct acylation of 4-methylanisole with propionyl chloride in the presence of aluminium chloride in methylene chloride (82\%) [6946], in petroleum ether heating for 30 h in a water bath (42%) [7039] or in refluxing carbon disulfide for 5 h , dealkylation of the obtained 2-methoxy-5-methylpropiophenone occuring in situ [7033,7037,7040].
- Preparation by Friedel-Crafts acylation of p-cresol,
- with propionyl chloride in the presence of aluminium chloride in ethylene dichloride at $110-120^{\circ}$ for $8 \mathrm{~h}(70 \%)$ [7041];
- with propionic anhydride in the presence of aluminium chloride (2 mol) and a trace of magnesium perchlorate at 170° for $1 \mathrm{~h}(96 \%)$ [6491].
- Also obtained by adding aluminium chloride, followed by addition over 6 h of propionyl chloride to aluminium p-cresylate in benzene. After standing 15 h , the mixture was refluxed $2 \mathrm{~h}(82 \%)$ [7042].
- Preparation from 3-iodo-2'-hydroxy-5'-methylpropiophenone by treatment with zinc powder in 80% acetic acid and heating on a water bath [7043].
- Also obtained by treatment of 2-hydroxy-3-isopropyl-6-methylpropiophenone with aluminium chloride (1.4 equiv) without solvent at 100° for 2 h (25\%) [7026].
- Also refer to: [6496,7011,7044] (compound 3), [7045] (compound 3b) and [6364,7046-7051].
- Also obtained by treatment of 3,6-dimethylchromone with sodium methoxide in boiling methanol for 30 min [7052].
yellow liquid [6409], oil [7052,7053];
$\mathrm{n}_{\mathrm{D}}^{14.5}=1.5480$ [7042];
b.p. 97° [7035], b.p. $108-109^{\circ}$ [7041], b.p. ${ }_{10} 115-117^{\circ}$ [6992], b.p. ${ }_{5} 115-117^{\circ}$ [7042],
b.p. ${ }_{11} 123-124^{\circ}$ [7033,7037], b.p. ${ }_{13} 126-128^{\circ}$ [6583], b.p. 128° [6572],
b.p. ${ }_{15} 128.5-129^{\circ}$ [7040], b.p. ${ }_{16-16.5} 129-130^{\circ}$ [7013,7014], b.p. ${ }_{15} 130-132^{\circ}$ [7023],
b.p. ${ }_{15} 131^{\circ}$ [6356], b.p. ${ }_{22} 135-140^{\circ}$ [7038],
b.p. ${ }_{40} 153^{\circ}[7016,7039,7054]$, b.p. ${ }_{30} 160^{\circ}$ [7036], b.p. 241° [7034];
m.p. 2° [7039,7054], -2° [7038], -10° [7040];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8918M) [6409,6472,7053],
IR (Sadtler: standard n° 38070) [6355,6356,7035,7053],
UV [6356,6359,6457,7033,7035], MS [6409];
cryoscopic study [6673]; TLC [6353,6358]; pK_{a} [7034].
Notes: Acidity of methylene proton [6446]; deuteration [6447];
USE: Herbicide-antidote [6384].

Ethyl ether $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26 (m.p. 50-51 ${ }^{\circ}$) [7055].

- Preparation by reaction of diethyl sulfate with 2-hydroxy-5-methylpropiophenone in the presence of sodium hydroxide [7055].

Acetate		$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$	mol.wt. 206.24 (m.p. 58 ${ }^{\circ}$) [7056].
Oxime	[10080-44-1]	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$	mol.wt. 179.21 [6384,6502,7057].
Hydrazone	[70136-39-9]	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$	mol.wt. 178.23 [6646].
Thiosemicar	bazone	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$	mol.wt. 237.33 (m.p. 178 ${ }^{\circ}$).

USE: Fungicide [6364].
BIOLOGICAL ACTIVITY: Antituberculotic [6364].

1-(2-Hydroxy-6-methylphenyl)-1-propanone

[51451-26-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
 Syntheses

- Preparation from 3-tert-butyl-2-hydroxy-6-methylpropiophenone by tert-butyl group elimination with aluminium chloride in nitromethane at 20° for a week (89-90\%) [7011,7025].
- Preparation from 2-allyl-3-methylphenol by treatment with perbenzoic acid in ethyl ether, first at 0°, then between 0° and 25° for 24 h (69\%) [6589].
- Also obtained by demethylation of 2-methoxy-6-methylpropiophenone with aluminium chloride in refluxing carbon disulfide for 6 h (14\%) [7058].
- Also obtained from 2-hydroxy-3-isopropyl-6-methylpropiophenone by heating with aluminium chloride (5.2 equiv) in chlorobenzene at 100° for $2 \mathrm{~h}(40 \%)$ [7026].
- Also obtained by alkaline degradation of 2,3,5-trimethylchromone with boiling aqueous sodium hydroxide [6427,7059] or potassium hydroxide [7060].
b.p. ${ }_{11} 129-130^{\circ}$ [7011], b.p. 140° [7025,7058];
m.p. 28.5° [6427,7059], 27° [7011], 25-27$~[7025,7058] ; ~ ;$
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 57891M) [7011],
IR (Sadtler: standard n° 84939K) [7011,7025], UV [7011,7025], MS [7011].
1-(3-Hydroxy-4-methylphenyl)-1-propanone
[18158-56-0] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by diazotization of 3-amino-4-methyl-propiophenone, followed by hydrolysis of the diazonium salt formed $[6389,6562,7061$, 7062], (79\%) [7063], (67\%) [7064].
m.p. 123° [6389,6562], 121° [7064], $120-122^{\circ}$ [7062], 119- 121° [7063];
${ }^{1} \mathrm{H}$ NMR [7063], IR [7063].

Sodium salt [7062].

1-(4-Hydroxy-2-methylphenyl)-1-propanone

[2887-55-0]

Syntheses

- Obtained (poor yield) by Fries rearrangement of m-cresyl propionate (b.p. ${ }_{10} 108-110^{\circ}$) [7019] with aluminium chloride,
- in nitrobenzene at 2° for $24 \mathrm{~h}(10 \%)$ [7021] or at 0° for 5 days [7020];
- without solvent at 50° for $3 \mathrm{~h}(21 \%)$ [6355,6576], at 100° for 90 min [6994], (11%) [7019] or for $7 \mathrm{~h}(12 \%)$ [6355,6356] or at $120^{\circ}(6 \%)$ [7014].
- Also obtained (poor yield) by Fries rearrangement of m-cresyl propionate with boron trifluoride in propionic acid at 70° for $2 \mathrm{~h}(8 \%)$ [6583].
- Also obtained (poor yield) by Fries rearrangement of p-thymyl propionate with aluminium chloride at 100° for 2 h (11\%) [7026].
- Also obtained by reaction of propionyl chloride with m-cresol in the presence of aluminium chloride in nitrobenzene at 15° for $42 \mathrm{~h}(39 \%)$ [7065].
- Also obtained (poor yields) by reaction of propionic acid with m-cresol,
- in the presence of boron trifluoride at 80° for 2 h [6572] or at 70° for 2 h (6\%) [6583];
- in the presence of polyphosphoric acid [7028].
- Preparation by heating 4-methoxy-2-methylpropiophenone with pyridinium chloride at reflux for 10-15 min [7066], (90\%) [6667], (78\%) [6672].
- Also obtained by treatment of 2-methoxy-6-methylpropiophenone (b.p. ${ }_{16}$ 137°; m.p. 8°) with aluminium chloride in refluxing carbon disulfide for 6 h (68\%) [7058].
- Preparation by treatment of 4-hydroxy-2-methyl-5-isopropylpropiophenone with aluminium chloride in chlorobenzene, first at r.t. for 24 h , then at 50° for 3 h (63\%) [7067].
- Also obtained by reaction of propionyl chloride with 3-methylanisole in the presence of aluminium chloride in refluxing methylene chloride for 3 h [6976].
- Also refer to: [7022,7031].
m.p. $127^{\circ}[7014], 120^{\circ}[6583,7067], 118^{\circ}[7065], 117-119^{\circ}[6355,6356]$, $117-118^{\circ}$ [7021], 116° [6667,7066], $114-115^{\circ}$ [7019], 114° [7058], $110-111^{\circ}$ [7020]. There is a large dispersion of melting points pointed out in literature.
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 8378M) [7020],
IR (Sadtler: standard n ${ }^{\circ}$ 37034) [6355,6356,7020],
UV [6356,6357,6457]; TLC [6353,6358].
BIOLOGICAL ACTIVITY: Nematocide [7030].

1-(4-Hydroxy-3-methylphenyl)-1-propanone

[940-04-5] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by Fries rearrangement of o-cresyl propionate with aluminium chloride,
- in nitrobenzene at r.t. [7068,7069], (75\%) [7070];
- in nitromethane at 20° for a week (58\%) [6569];
- first in gently refluxing carbon disulfide, then at $135-140^{\circ}$ for 2 h after solvent elimination [6562], (43\%) [6389];
- without solvent at 50° for 3 h (55%) [6355], at 120° for 3 h [7012], (15%) [7013], at 130° (65\%) [7014], or at 165° for $1 \mathrm{~h}(22 \%)$ [6355].
- Also obtained by demethylation of its methyl ether by treatment with aluminium chloride in light petroleum (b.p. 100-120 $)$, first at 100° for 4 h , then at $78-80^{\circ}$ overnight [7071].
- Also obtained by isopropyl group elimination from 4-hydroxy-5-methyl-2isopropylpropiophenone with aluminium chloride in chlorobenzene at r.t. for 24 h , then at 50° for $3 \mathrm{~h}(55 \%)$ [7067].
- Also obtained by acylation of o-cresol with propionic acid in the presence of zinc chloride at reflux for 5 min (15\%) [6667], (11\%) [7016].
- Also refer to: [6519,6995,7072-7077].
b.p. ${ }_{1} 150-155^{\circ}$ [7070], b.p. ${ }_{16} 185-190^{\circ}$ [7014], b.p. ${ }_{12} 190-195^{\circ}$ [6389,6562], b.p. ${ }_{15} 205-210^{\circ}$ [6667];
m.p. 86.5° [6389,6562], 86° [6355,6667,7067,7070], 85° [7013], $84-85^{\circ}$ [7071], 83.5° [7012], 83-84 ${ }^{\circ}$ [7016], 83° [7014]; 63° (monohydrate) [6355];
${ }^{1}$ H NMR [6472], IR (Sadtler: standard n° 37030) [7078], UV [6357,6457].
USE: Fungicide [7075].

1-(2-Methoxyphenyl)-1-propanone

mol.wt. 164.20
Syntheses

- Preparation by reaction of ethylmagnesium bromide with o-methoxybenzonitrile (90\%) [7079,7080].
- Also obtained (by-product) by $\operatorname{Pd}($ II)-catalyzed aerobic dialkoxylation of 2-propenylanisole (22\%) [7081].
- Also obtained by propionylation of anisole with propionyl chloride and propionic anhydride over solid-acid catalysts [7082].
- Also refer to: [6980,7083-7086].
b.p. ${ }_{12} 125^{\circ}$ [7079], b.p. ${ }_{16} 133^{\circ}$ [7079].

1-(3-Methoxyphenyl)-1-propanone

[37951-49-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by reaction of ethylmagnesium bromide,
- with m-methoxybenzonitrile (m.p. 60º), (91-94\%) [7079,7080];
- with 3-methoxybenzaldehyde and oxidation of the resulting 1-(3-methoxyphenyl)-1-propanol with sodium dichromate in sulfuric acid (70\%) [6979].
- Also refer to: [7083,7087,7088]. oil [6979]; b.p. ${ }_{14} 129^{\circ}$ [7079].

1-(4-Methoxyphenyl)-1-propanone

[121-97-1] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by reaction of ethylmagnesium bromide with p-methoxybenzonitrile (95\%) [7079,7080].
- Preparation by acylation of anisole with propionic anhydride,
- in the presence of chloroacetic acid for 48 h at $170-180^{\circ}$ (86-88\%) [7089];
- in the presence of iodine for 3 h at reflux (50\%) [6721].
- Preparation by acylation of anisole with propionic acid,
- on the solid surface of alumina in the presence of trifluoroacetic anhydride (95\%) [7090];
- in the presence of $\mathrm{HNTf}_{2}(20 \mathrm{~mol} \%)$ in refluxing toluene for $24 \mathrm{~h}(64 \%)$ [7091];
- and propionic anhydride in the presence of scandium triflate [7092].
- Formation from diethylpropionyloxonium chloroantimonate (V) reaction with anisole (41\%) [7073].
- Also obtained by oxidation of 1-(4-methoxyphenyl)propane with DDQ in wet dioxane/silica gel under sonication (61\%) [7093].
- Also refer to: [6605,6980,7033,7094-7100].

Note: Deuteration: Obtention of 1-(4-methoxyphenyl)-1-propanone-2,2-d [91889-35-9] [6361].
Isolation from natural sources

- From the essential oil of Crithmum maritimum L. (Umbelliferae) [7101].
- From Pimpinella anisum (Umbelliferae) [6704].
- From the essential oil of Anethum graveolens L. [7102].
- From volatile components and key odorants of Fennel (Foeniculum vulgare Mill.) and Thyme (Thymus vulgaris L.) [7103].
- From the essential oil of Zanthoxylum rhetsa (Roxb.) DC [7104].
- From volatile metabolites of marine fungus Hypoxylon sp. [7105].
- Also refer to: [6672,7083].
b.p. ${ }_{2} 108-110^{\circ}$ [7095], b.p. 127° [7079], b.p. ${ }_{12} 136-139^{\circ}$ [7100], b.p. ${ }_{12} 143-144^{\circ}$ [7033], b.p. ${ }_{15} 148-149^{\circ}$ [7089]; m.p. 35° [7079], 27° [7089], 26-27$~[6721,7100], ~ 25-27^{\circ} ~[7073], ~ 25-26^{\circ} ~[7033] ;$ ${ }^{1} \mathrm{H}$ NMR [7093], ${ }^{13} \mathrm{C}$ NMR [7093,7095], UV [7033].

1-[2-Hydroxy-5-(methylthio)phenyl]-1-propanone

[75060-89-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S} \quad$ mol.wt. 196.27

Synthesis

- Refer to: [7106].

1-[4-Hydroxy-3-(methylthio)phenyl]-1-propanone

[66265-14-3]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
mol.wt. 196.27

Syntheses

- Obtained by reaction of propionyl chloride with 2-(methyl-thio)phenol in nitrobenzene in the presence of aluminium chloride, first at $45-50^{\circ}$, then at $60-70^{\circ}$ for 3 h (35\%) [7107].
- Also obtained by reaction of propionic acid with 2-(methyl-thio)phenol in the presence of boron trifluoride [7108].
- Also refer to: [7109].
crystalline product [7107].
1-(2,3-Dihydroxy-5-methylphenyl)-1-propanone
[91061-55-1]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 180.20
Syntheses

- Obtained by reaction of propionic acid with creosol in the presence of boron trifluoride at 160° for $90 \mathrm{~min}(60 \%)$ [7110].
- Also obtained by total demethylation of 2,3-dime-thoxy-5-methylpropiophenone (b.p. ${ }_{0.2} 103-105^{\circ}$) with boiling pyridinium chloride for 30 min (51\%) [7110].
m.p. $\quad 84-85^{\circ}$ [7110], 73° [6351]. One of the melting points is obviously wrong. ${ }^{1}$ H NMR (Sadtler: standard n° 49337M), IR (Sadtler: standard $n^{\circ} 76410 K$), UV [7110].

1-(2,4-Dihydroxy-3-methylphenyl)-1-propanone

[63876-46-0]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Obtained by demethylation of 2-hydroxy-4-methoxy-3-methylpropiophenone,
- with hydriodic acid $(\mathrm{d}=1.7)$ in acetic anhydride at $130-140^{\circ}$ for $2 \mathrm{~h}(65 \%)$ [6769];
- with aluminium chloride at $135-140^{\circ}$ for 3 h [6769].
- Preparation by reaction of propionic anhydride with 1,3-dihydroxy-2-methylbenzene in the presence of boron trifluoride etherate at 75° for $6 \mathrm{~h}(84 \%)$ [7111].
- Also obtained by reaction of propionitrile with 2-methylresorcinol (Hoesch reaction) [6768,6769].
- Also refer to: [6453,7112-7114].
m.p. $128-130^{\circ}$ [6768,6769], $124-125^{\circ}$ [7111];
${ }^{1} \mathrm{H}$ NMR [7111], IR [7111], UV [7111], MS [7111].

1-(2,4-Dihydroxy-5-methylphenyl)-1-propanone

$[117952-43-9]$	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$	mol.wt. 180.20
OH	Syntheses	

Syntheses

- Preparation by reaction of propionitrile with 4-methyl-resorcinol (Hoesch reaction) (66\%) [7115].
- Also refer to: [7116,7117].
m.p. $109-110^{\circ}$ [7115].

1-(2,4-Dihydroxy-6-methylphenyl)-1-propanone (Orcpropiophenone)
(β-Orcpropiophenone)
[5880-41-1] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Syntheses

- Obtained by reaction of propionitrile with orcinol [6744], (23\%) [7118].
- Also obtained (by-product) by acylation of orcinol with propionic anhydride in nitrobenzene in the presence of aluminium chloride, first in a water bath for 1 h , then at r.t. overnight (5\%) [7119].
- Also obtained by reaction of propionic acid with orcinol in the presence of boron trifluoride etherate, then heating the chelate formed with dilute ethanol [6944].
- Also refer to: [7120] (compound 7), [7121] (compound XII), [7122,7123] (compound IX).
m.p. $127-128^{\circ}$ [7118], 122° [6744].

1-(2,5-Dihydroxy-4-methylphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by reaction of propionic acid with 2-methylhydroquinone [6507], by known methods [6509,6510].
- Also obtained (by-product) by irradiation (490 nm) of 5-methyl-2-propanoyl-1,4-benzoquinone in acetonitrile in the presence of Rose bengal for 12 h (5-10\%) [7124].
m.p. $110-116^{\circ}$ [6507].

1-(2,6-Dihydroxy-4-methylphenyl)-1-propanone (p-Orcipropiophenone)
(γ-Orcpropiophenone)
[5792-37-0]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by action of 85% sulfuric acid on di-propionylorcinol 4 h at r.t. (80\%) [7125].
- Also obtained by reaction of propionic anhydride with orcinol,
- in the presence of concentrated sulfuric acid (one drop) at 130° (60\%) [6744].
N.B.: Crystallized in yellow needles with one molecule of water.
- in the presence of aluminium chloride in nitrobenzene, heating for 1 h on a water bath, then keeping the mixture at r.t. overnight (40\%) [7119];
- in the presence of Amberlite IR-120 (cation exchange resin sulfonic acid type) at 160° for $2-3 \mathrm{~h}(19 \%)$ [6740]. N.B.: Zeokarb 225 was found to be as effective.
- Also obtained (by-product) by Fries rearrangement of orcinol dipropionate with aluminium chloride (3 mol) at $140-150^{\circ}$ for $90 \mathrm{~min}(20 \%)$ [6745].
- Also obtained by acylation of pyrogallol with propionic acid in the presence of Amberlite IR-120 (cation exchange resin sulfonic acid type) at 160° for $2-3 \mathrm{~h}$ (14\%) [6740].
- Also refer to: [6609,7126].
m.p. 135° [7125], 132-133 ${ }^{\circ}$ [7119], 130-132 ${ }^{\circ}$ [6740], 129° [6744].

1-(4,5-Dihydroxy-2-methylphenyl)-1-propanone

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 180.20
$$

Synthesis

- Obtained by Fries rearrangement of 4-methylcatechol dipropionate with aluminium chloride [6351].
m.p. 95° [6351];
${ }^{1}$ H NMR (Sadtler: standard n° 49335M),
IR (Sadtler: standard $\mathrm{n}^{\circ} 76408 \mathrm{~K}$).

1-[4-Hydroxy-3-(hydroxymethyl)phenyl]-1-propanone

$[106909-29-9]$	Synthesis -Obtained by hydrolysis of propiophenone [6983]. $\mathrm{C}_{12} \mathrm{H}_{3}$ 3-(chloromethyl)-4-hydroxy-

1-(2-Hydroxy-3-methoxyphenyl)-1-propanone

[78094-43-6]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$	mol.wt. 180.20
Syntheses	

- Obtained by Fries rearrangement of 2-methoxyphenyl propionate with zirconium chloride in o-dichlorobenzene 1 h at 120° (good yield) [6467] or with aluminium chloride in nitrobenzene at 20° for 24 h (28\%) [7127].
- Also obtained by partial demethylation of 2,3-dimethoxypropiophenone with aluminium chloride for 3 h at 0° (75\%) [7128].
- Also obtained (by-product) by reaction of ethylmagnesium iodide with 2,3-dimethoxybenzonitrile (16\%) [7129].
- Also obtained by reaction of ethylmagnesium bromide with 2-(benzyloxy)-3methoxybenzonitrile in ethyl ether at r.t. overnight (11\%) [7130].
- Also refer to: [7131].
m.p. $\quad 73-74^{\circ}$ [7130], $72-73^{\circ}$ [7128] 72° [7129].

1-(2-Hydroxy-4-methoxyphenyl)-1-propanone

[6270-44-6]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Syntheses

- Preparation by reaction of propionyl chloride with resorcinol dimethyl ether in ethyl ether at 0° in the presence of aluminium chloride [7132,7133].
- Also obtained by reaction of propionic acid with resorcinol monomethyl ether in the presence of polyphosphoric acid for 10 min in a boiling water bath (31\%) [6738].
- Also obtained by reaction of methyl iodide with 2,4-dihydroxypropiophenone in methanol in the presence of potassium hydroxide [7134] or potassium carbonate [6747].
- Also obtained by partial methylation of respropiophenone with methyl iodide [7135] or a methyl halogenide (unspecified) [6380] in the presence of potassium carbonate in refluxing acetone for $2.5 \mathrm{~h}(55 \%)$ [7135] or for 5 h (40\%) [6380].
- Also obtained by partial methylation of respropiophenone [7136], with dimethyl sulfate in the presence of potassium carbonate in boiling benzene for $10 \mathrm{~h}(72 \%)$ [6762].
- Also obtained by treatment of 2-hydroxy-4-methoxy- α-(hydroxymethyl)propiophenone (pale yellow oil) with 4% aqueous sodium carbonate in refluxing ethanol for 1 h (31\%) [6757].
- Preparation by Birch reduction of methoxychromone [7137].
- Also refer to: [6483,6617,6755,6757,6758,7138-7142].

${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ}$ 30286M) [6380], IR (Sadtler: standard n° 57331) [6380]; TLC [6380].
Notes: Acidity of methylene proton [6446]; C-deuteration [6447].

1-(2-Hydroxy-5-methoxyphenyl)-1-propanone

[49710-99-8]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20 Syntheses

- Preparation by Fries rearrangement of p-methoxyphenyl propionate,
- with titanium tetrachloride without solvent at 120° for 1 h (74\%) [7143];
- with aluminium chloride in nitrobenzene at $80-100^{\circ}$ for $2 \mathrm{~h}(41 \%)$ [6465].
- Also obtained from 2-hydroxy-5-methoxy- α-chloropropiophenone by treatment with zinc in acetic acid [7144,7145].
- Also obtained (by-product) by reaction of propionyl chloride with p-dimethoxybenzene in methylene chloride in the presence of aluminium chloride at r.t. [7146,7147].
- Also refer to: [7148-7150].
b.p. ${ }_{0.9} 140-142^{\circ}$ [6465], b.p. ${ }_{19} 158-160^{\circ}$ [7144];
m.p. $85-88^{\circ}$ [6465], 48.5° [7143], 47-49${ }^{\circ}$ [7144], 47-48 ${ }^{\circ}$ [7147]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 30291M), IR (Sadtler: standard n ${ }^{\circ}$ 57336) [7143], UV [7143].
Notes: C-Deuteration [6447]; acidity of methylene proton [6446].

1-(2-Hydroxy-6-methoxyphenyl)-1-propanone

[3839-97-2]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Obtained by partial methylation of 2,6-dihydroxypropiophenone with dimethyl sulfate,
- in the presence of potash in refluxing acetone (70-75\%) [6801];
- in the presence of 2 N sodium hydroxide at r.t. for $2 \mathrm{~h}(9 \%)$ [6800]. N.B.: In this reaction, the dimethyl ether was the main product $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}, 37 \%\right.$, m.p. $\left.45^{\circ}\right)$.
- Also obtained by partial methylation of 2,6-dihydroxypropiophenone with methyl iodide (51\%) [7151].
- Preparation by oxidative aromatization of 2-propionylcyclohexane-1,3-dione with iodine (2 equiv) in refluxing methanol for $13 \mathrm{~h}(79 \%)$ [7152].
- Also refer to: [7153].
vacuum sublimation [7151];
m.p. 55° [6800], $53-54^{\circ}$ [6801], $52-53^{\circ}$ [7151].

1-(3-Hydroxy-4-methoxyphenyl)-1-propanone

[829-76-5]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by hydrolysis of various esters,
- of 4-methoxy-3-propionyloxypropiophenone with potassium hydroxide in refluxing methanol (92\%) [7154];
- of 3-chloroacetoxy-4-methoxypropiophenone (m.p. 77.5-78.5 $)$ with sodium acetate in refluxing methanol for 3 h [7155].
- Also obtained by direct acylation of guaiacol with propionic acid in the presence of phosphorous oxychloride on a steam bath for $3 \mathrm{~h}(25 \%)$ [6620,7156].
- Also obtained (by-product) by Fries rearrangement of 2-methoxyphenyl propionate with various catalysts at 20° for 24 h : Aluminium chloride and titanium tetrachloride ($10-13 \%$), stannic chloride and antimony pentachloride (6-7\%) [7154].
- Compound derived from secondary products of isoeugenol synthesis [7157].
- Also obtained by treatment of 2-methoxy-5-propionylphenyl methoxyphenylphosphonate with dilute hydrochloric acid in aqueous ethanol [6822].
m.p. $93-94^{\circ}$ [6620], 93° [7154], $90-91^{\circ}$ [6822], 89-91$~[7155] ; ~$
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 28212M), IR (Sadtler: standard n° 55284) [6822,7154],
UV [7154].
Propionate $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27 (m.p. 44°) [6351];
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ}$ 30296M), IR (Sadtler: standard n ${ }^{\circ}$ 57341).

Benzoate $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 284.31 (m.p. 98°) [6351];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 28223M), IR (Sadtler: standard n° 55295).

1-(3-Hydroxy-5-methoxyphenyl)-1-propanone

[502924-49-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
 Synthesis

- Refer to: [6958].

1-(4-Hydroxy-2-methoxyphenyl)-1-propanone

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 180.20
$$

 Syntheses

- Obtained by reaction of propionic acid with resorcinol monomethyl ether in the presence of polyphosphoric acid for 10 min in a boiling water bath (28\%) [6738].
- Also obtained by debenzylation of 4'-(benzyloxy)-2'methoxypropiophenone (m.p. 59-60 $)$ with concentrated hydrochloric acid in acetic acid at 100° for 30 min [7135].
b.p. ${ }_{0.001} 140^{\circ}$ [7135];
m.p. 117° [6738], 114-116 ${ }^{\circ}$ [7135];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 28220M), IR (Sadtler: standard n° 55292).
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Propiovanillone) (Propioguaiacone) (Guaiacylpropanone) (Ethyl guaiacyl ketone)
[1835-14-9] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
 Syntheses
- Preparation by Fries rearrangement of 2-methoxyphenyl propionate [7158], (b.p. ${ }_{20} 140-143^{\circ}$) [7159],
- with aluminium chloride in nitrobenzene, first at $60-80^{\circ}$ for 1 h , then at r.t. overnight [7160], at 60° for 1 h [7161], (65\%) [7159], (50\%) [6620] or at 50° for $5 \mathrm{~h}(44 \%)$ [7127];
- with aluminium chloride (2 mol) in nitromethane at r.t. for $24 \mathrm{~h}(65 \%)$ [7154];
- with aluminium chloride in carbon disulfide [6832];
- with titanium tetrachloride (2 mol) in nitromethane at r.t. for 24 h (62\%) [7154];
- with stannic chloride (2 mol) in nitromethane at r.t. for 24 h (69\%) [7154];
- with antimony pentachloride (2 mol) in nitromethane at r.t. for $24 \mathrm{~h}(28 \%)$ with formation of important tars [7154].
- Also obtained by acylation of guaiacol with propionic acid,
- in the presence of boron trifluoride in xylene at $60-70^{\circ}$ (almost theoretical yield) [6820], boron trifluoride at 70° for 90 min (77\%) [7162], (50\%)
[7163], boron trifluoride (60\%) [7164] or boron trifluoride etherate for 170 h at r.t. in a sealed tube (30\%) [7165];
- by heating in the presence of polyphosphoric acid (70\%) [7166], for 15 min in a boiling water bath (61\%) [6738].
- Also obtained by acylation of veratrole with propionyl chloride in the presence of aluminium chloride in carbon disulfide at r.t. for $10 \mathrm{~h}(50-60 \%)$ [7167].
- Also obtained by oxidation of 1-(4-hydroxy-3-methoxyphenyl)propane with DDQ in wet dioxane/silica gel under sonication (53\%) [7093].
- Also obtained by reaction of propionyl chloride (SM) with guaiacol in carbon disulfide in the presence of aluminium chloride for 1 h at 70° (70\%) [6671]. SM was formed in situ by action of oxalyl chloride with sodium propionate (method B).
- Also obtained by oxidation of 1-(4-hydroxy-3-methoxyphenyl)-1-propanol (m.p. 69ํ) [7168],
- with silver nitrate in aqueous sodium hydroxide, first at 60°, then at reflux for 2 h [6700], (90\%) [7169] or at reflux for 5 h (51\%) [7170];
- with DDQ in dioxane for 18 h at r.t. [7171] or for 3 days [7172] or in benzene [7168].
- Also obtained by hydrogenation of 1-(4-hydroxy-3-methoxyphenyl)-2-propen-1-one in ethyl acetate over $\mathrm{Pd}^{2} \mathrm{BaSO}_{4}$, followed by chromatography on silica gel [7173].
- Also obtained by reduction of β-hydroxypropioguaiacone (VI) in the presence of sulfide ions [7174].
- Also refer to: [6821,7175-7194].

Isolation from natural sources

- From Brazilian propolis, Myrceugenia euosma (O. Berg) Legrand (Myrtaceae) (compound 5) [7195].
- From leaves and stems of Rhinacanthus nasutus (L.) Kurz (Acanthaceae) [7196].
- From bamboo stems, Phyllostachys edulis Makino (Gramineae) (compound 11) [7197].
- From the aerial parts of sage (Salvia lavandulifolia) [7198].
- By enzymatic hydrolysis of bound aroma constituents from raspberry fruit pulp [7199].
- By enzymatic hydrolysis of bound aroma constituents from strawberry fruit (Fragaria vesca f. semperflorens) [7200].
- Obtained by oxidation of Pepper dioxane lignin [8068-03-9] with hydrogen peroxide in 1 N sodium hydroxide [7201].
- Of raw cane sugar flavour [7202].
- Also obtained by oxidation of lignin [9005-53-2] [7203].
- Identification in softwood lignin [7164].
- The sodium bisulfite digestion of sprucewood yields about 1.5% of propiovanillone. Similar yield of this compound was obtained from sodium borohydridereduced sprucewood [7204].
- Determination, in wastewater from kraft pulping [7205].
- Formation during lignin degradation with "white liquor" [7174].
- Formation in spruce lignin degradation in wood digestion with sodium bisulfide [7206].
- Also obtained by alkaline cooking of lignin model compounds (veratrylglycerol β-guaiacyl ether, α-(2-methoxyphenoxy)- β-hydroxypropioveratrone and ω -(2-methoxyphenoxy)acetoveratrone) with a solution containing sodium hydroxide and sodium sulfide or sodium bisulfide [7207].
- Identification in lignin and sprucewood ethanolysis products [7208].
- Identification on the aromatic composition of Vitis vinifera L. var. treixadura Wines [7209].
- Identification in Spanish oak heartwood of Quercus robur, Quercus petraea, Quercus pyrenaica and Quercus faginea [7210].
- Identification in Quercus rubra L. oak heartwood (Fagaceae) [7211].
b.p. ${ }_{0.15} 110-125^{\circ}$ [7163], b.p. $._{11} 162-168^{\circ}$ [6738], b.p. . $_{5-7} 165-175^{\circ}$ [7162],
b.p. ${ }_{3} 165-180^{\circ}$ [7165], b.p. ${ }_{11} 168-172^{\circ}$ [7167], b.p. ${ }_{8} 175-180^{\circ}$ [7166],
b.p. ${ }_{15} 180-185^{\circ}$ [6620], b.p. ${ }_{12} 182^{\circ}$ [6820], b.p. ${ }_{16} 182-187^{\circ}$ [6832];
m.p. 63° [7168], $62-63^{\circ}$ [7159,7169,7173], 61-62 ${ }^{\circ}$ [6620,7093,7160,7194], $59-60^{\circ}$ [7161,7170], 58-60 ${ }^{\circ}$ [7172], 58° [7164,7167], 54 ${ }^{\circ}$ [6820,7166], 48-50ํ [7162,7165];
${ }^{1}$ H NMR (Sadtler: standard n° 28216M), [7093,7165,7168,7195], ${ }^{13}$ C NMR [7093,7195],
IR (Sadtler: standard n ${ }^{\circ}$ 55288) [6699,6700,6822,7161,7194],
photoelectron spectrum [7212], UV [7161,7213],
MS [7174,7195,7214];
HPLC [7200,7215-7217]; GC [7174,7200,7218];
GC-MS [7198,7200,7210,7219-7223];
paper chromatography [7224,7225]; TLC [7169,7174];
chromatography [6700,6841,6843,7226-7228];
column chromatography [7174]; gel chromatography [7229];
pK_{a} [7203,7230]; potentiometric titration in DMSO [7231];
ionization potential [7232].
Notes: Thermal decomposition [7233]; basicity [7234]; ion (1-) [116235-78-0]
[7235]; of sunflower, honeybee olfaction in relation to, [7236].
BIOLOGICAL ACTIVITY: Choleretic [7237].
Ethyl ether [833-67-0] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26.
- Preparation by reaction of diethyl sulfate with 4-hydroxy-3-methoxypropiophenone in the presence of potassium hydroxide in dilute methanol at 50° for 10 min (91\%) [6850].
- Also obtained by treatment of α-(4-ethoxy-3-methoxybenzoyl)propionic acid ethyl ester (b.p.3 $202-205^{\circ}$) with sodium hydroxide in boiling dilute ethanol for $1.5 \mathrm{~h}(81-94 \%)$ [7238] or in aqueous methanol [7239].
- Also obtained by reaction of sodium methoxide with 1-ethoxy-4-(1, 2-dibromopropyl)-2-methoxybenzene in methanol [7100,7240].
- Also obtained by treatment of 1-ethoxy-4-(1-ethoxypropenyl)-2-methoxybenzene with diluted acid [7100,7240,7241].
- Preparation from 4-hydroxy-3-methoxypropiophenone [7242].
- Also refer to: [7239].
b.p. ${ }_{13} 155^{\circ}$ [7100];
m.p. $62^{\circ}[7100,7238,7239], 60-61^{\circ}[6850], 56-57^{\circ}[7241]$.

Propyl ether $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28.

- Obtained by treatment of propyl isoeugenol dibromide (m.p. 53-54 ${ }^{\circ}$) with sodium hydroxide in refluxing methanol for 4 h (quantitative yield) [7243].
b.p. 284-287 ${ }^{\circ}$ [7243]; m.p. 63-64$~[7243] . ~$

Benzyl ether $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33 [7244,7245].
Sodium salt [7167].
$\boldsymbol{\beta}$-D-Glucopyranoside (Baihuaqianhuoside)
[155969-61-2] $\quad \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{8} \quad$ mol.wt. 342.35 [6720,7246].

- Isolated from Kokuto, non-centrifuged Cane Sugar (Saccharum officinarum) [7247] and from Glehnia littoralis root and rhizoma (Umbelliferae) [7248].
Note: Effect on lignification in potato and spruce bark cultures [7249] and in tissue cultures in vitro [7250].

Tetra-O-acetyl- β-D-glucopyranoside

[432547-82-5] $\quad \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{12} \quad$ mol.wt.510.49 [6720].
Acetate $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.40 GC-MS [7251].
Propionate $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27 (b.p. ${ }_{26}$ 202 ${ }^{\circ}$) [6351];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 30294M), IR (Sadtler: standard n ${ }^{\circ}$ 57339).
Benzoate $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 284.31 (m.p. 109°) [6351];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 28222M), IR (Sadtler: standard n° 55294).
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone-1- ${ }^{14} \mathrm{C}$

[15212-07-4]	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 182.20
OH	Syntheses
	- Obtained by reaction of propionyl chloride-3- ${ }^{-14} \mathrm{C}(\mathrm{EtCOCl}-1-$ $\left.{ }^{14} \mathrm{C}\right)(\mathrm{SM})$ with veratrole in the presence of aluminium chloride in refluxing carbon disulfide (40%) [7252], then at 70° for $1 \mathrm{~h}(60 \%)$ [7253]. SM was prepared by action of oxalyl chloride with sodium propionate-(carboxyl- ${ }^{14} \mathrm{C}$) [7253].
b.p. $._{0.001} 110-120$	dark red oil which slowly crystallized [7253].

1-(5-Hydroxy-2-methoxyphenyl)-1-propanone

[80427-31-2]
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
mol.wt. 180.20

Synthesis

- Preparation by hydrolysis of the corresponding propionic ester (SM) with sodium hydroxide in refluxing methanol for 1 h (quantitative yield) [7143]. SM was obtained by acylation of 4-methoxyphenyl propionate with propionyl chloride in nitromethane in the presence of stannic chloride at 20° for $48 \mathrm{~h}(56 \%)$.
m.p. $\quad 6^{\circ}$ [7143];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 30292M), IR (Sadtler: standard n ${ }^{\circ}$ 57337) [7143], UV [7143].

Propionate $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27 [6351].
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 35282 \mathrm{M}$), IR (Sadtler: standard $\mathrm{n}^{\circ} 62650 \mathrm{~K}$).

1-(2,4-Dihydroxy-5-methoxyphenyl)-1-propanone

[79744-64-2]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparations using various methods [6870],
- by Friedel-Crafts acylation of 4-methoxyresorcinol with propionyl chloride in the presence of aluminium chloride;
- by Fries rearrangement of 4-methoxyresorcinol propionate with aluminium chloride;
- by reaction of propionitrile with 4-methoxyresorcinol (Hoesch reaction).
${ }^{13} \mathrm{C}$ NMR [6870].

1-(2,5-Dihydroxy-4-methoxyphenyl)-1-propanone

[3839-58-5]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Synthesis

- Preparation by Fries rearrangement of 2-methoxyhydroquinone dipropionate (m.p. 59.5-60 ${ }^{\circ}$) with aluminium chloride in nitrobenzene at r.t. for $64 \mathrm{~h}(82 \%)$ [7254].
m.p. $112-114^{\circ}$ [7254].

Dibenzyl ether $\quad \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 376.45.

- Obtained by reaction of benzyl chloride with 2,5-dihydroxy-4-methoxypropiophenone in the presence of potash in ethanol at 20° for 4 h (85\%) [7254].
m.p. $119-120^{\circ}$ [7254].

Diacetate $\quad \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6} \quad$ mol.wt. 280.63.

- Obtained by reaction of acetic anhydride with 2,5-dihydroxy-4-methoxypropiophenone in the presence of pyridine at 20° for $48 \mathrm{~h}(90 \%)$ [7254].
m.p. 104° [7254].

1-(2,6-Dihydroxy-4-methoxyphenyl)-1-propanone (Desaspidinol P)

[69480-04-2]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation according to: [7255,7256].
- Also refer to: [6895] (compound 15) and [7257] (compound 17).
m.p. 118-120 [7257];

MS [7257]; GLC [6895]; TLC [6895,7257]; paper chromatography [6895].

1-(3,4-Dihydroxy-5-methoxyphenyl)-1-propanone

Note: Redox potential [7258].

1-(3,5-Dihydroxy-4-methoxyphenyl)-1-propanone

[148204-59-5]

GC [7259], GC-MS [7259].
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
From natural sources

- In liquid wastes from eucalyptus wood and kraft lignin charring [7259].

1-(2,4,6-Trihydroxy-3-methylphenyl)-1-propanone
[57765-50-1]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Obtained by Friedel-Crafts acylation of 2-methyl-phloroglucinol with propionyl chloride in the presence of aluminium chloride in nitrobenzene [7260].
- Also refer to: [6890] (compound 23), [6895] (compound 8) and [7261] (compound 5).

Isolation from natural sources

- From Dryopteris caucasia (A. Br.; Fraser-Jenkins, Corley) [7261].
- From Dryopteris of Japan (Dryopteris bissetiana, Dryopteris lacera) [7262]. m.p. 205° [6890,7260];

TLC [6890,6895,7262]; GLC [6895]; paper chromatography [6895,7262].
1-(3-Amino-2-hydroxy-5-methylphenyl)-1-propanone

[70978-23-3]	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22
OH	Syntheses
	- Preparation by reduction of 2-hydroxy-5-methyl-3-nitropropiophenone in ethanol using 5\% Pd/C as catalyst at atmospheric pressure and 25° [6926,6993].
m.p. 40° [6993].	

1-(3-Amino-4-hydroxy-5-methylphenyl)-1-propanone

[141771-82-6]	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22
OH	Synthesis
	- Obtained by reduction of 4-hydroxy-3-methyl-5nitropropiophenone with Raney nickel in ethanol (99\%) [6995].

1-(5-Amino-4-hydroxy-2-methylphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
mol.wt. 179.22
Synthesis

- Preparation by reduction of the nitro group of 4-hydroxy-2-methyl-5-nitropropiophenone with sodium hydrosulfite in boiling alkaline solution [6994].
m.p. 135° [6994].

1-(3-Amino-2-methoxyphenyl)-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
Synthesis

- Preparation from its hydrochloride [6533].

Hydrochloride $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl}$ mol.wt. 215.68.

- Preparation by reduction of 2-methoxy-3-nitropropiophenone with iron powder in the presence of concentrated hydrochloric acid in refluxing ethanol for 1 h (63\%) [6533].

$$
\text { m.p. } \quad 154-155^{\circ} \text { (d) [6533]; UV [6533]. }
$$

1-(3-Amino-4-methoxyphenyl)-1-propanone

[103028-92-8] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22

Syntheses

- Obtained from the 4-methoxy-3-nitropropiophenone by hydrogenation in the presence of Pd in benzene/ethyl acetate [7263] or by selective reduction with tin in aqueous hydrochloric acid [7002,7263].
m.p. $\quad 107-109^{\circ}[7002,7263]$.

1-[3-(Amminomethyl)-4-hydroxyphenyl]-1-propanone (Hydrochloride)

[109314-49-0] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 203.58

1-[3-Hydroxy-4-(methylamino)phenyl]-1-propanone

[54903-58-1]

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22
Syntheses

- Preparation from 3-methyl-6-propionylbenzoxazolinone by alkaline hydrolysis with boiling 10% aqueous sodium hydroxide solution for $4 \mathrm{~h}(90-100 \%)$ [6920,7264].
m.p. $149-150^{\circ}$ [6920], $145-149^{\circ}$ [7264].

1-(4-Ethyl-2-hydroxyphenyl)-1-propanone-2,2,3,3,3- d_{5}

ion $\left(1^{-}\right)$, radical ion $\left(1^{-}\right)$[72051-81-1]; ESR spectrum [6350].

4,6-Dihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxylic acid

4,6-Dihydroxy-5-propionylisophthalic acid $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{7} \quad$ mol.wt. 254.20

Synthesis

- Obtained by hydrolysis of its dimethyl ester with 4\% potassium hydroxide in refluxing methanol [6809].

5-Bromo-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester
 [99853-35-7] $\quad \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{5} \quad$ mol.wt. 303.11

 Syntheses
 - Obtained by Fries rearrangement of methyl 5-bromo-2,4-di-propionoxybenzoate (m.p. 122°) with aluminium chloride (3.3 mol) at $125-130^{\circ}$ for 1 h (32%) [6450]. The above reaction, when carried out using nitrobenzene at r.t. for 24 h or at 100° for 1 h gave the same keto ester.
 - Also obtained by acylation of methyl 5-bromo- β-resorcylate with propionic anhydride under the conditions of the Friedel-Crafts reaction [6450].
 m.p. 120° [6450].

5-Chloro-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester

 $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{5} \quad$ mol.wt. 258.66 Syntheses

- Obtained by Fries rearrangement of methyl 5-chloro-2,4-dipropionoxybenzoate (m.p. 114°) with aluminium chloride at $125-130^{\circ}$ for $1 \mathrm{~h}(37 \%)$ [6450].
- Also obtained by Friedel-Crafts acylation of methyl 5-chloro-2,4-dihydroxybenzoate with propionic anhydride in the presence of aluminium chloride [6450].
- Preparation by esterification of the corresponding keto acid [6450].
m.p. 107° [6450].

1-(3,4-Dimethoxyphenyl)-1-propanone-3,3,3- \boldsymbol{d}_{3}
[63386-37-8] $\quad \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{D}_{3} \mathrm{O}_{3} \quad$ mol.wt. 197.25
 Synthesis

- Obtained by trideuteriomethylation of the lithio derivative of 3,4-dimethoxyacetophenone (41\%) [7265].
m.p. $57-59^{\circ}$ [7265]; ${ }^{1} \mathrm{H}$ NMR [7265].

1-[4-(Acetyloxy)-2-hydroxy-3-iodophenyl]-1-propanone

4-Hydroxy-3-(1-oxopropyl)phenylacetonitrile

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 189.21

Synthesis

- Preparation by slowly adding a solution of 5-chlorom-ethyl-2-hydroxypropiophenone in benzene to an aqueous solution of potassium cyanide at r.t. for 1 h , then keeping at $30-35^{\circ}$ for $2-3 \mathrm{~h}(68 \%)$ [6942].
b.p. ${ }_{8} 180-185^{\circ}$ [6942]; m.p. $55-57^{\circ}$ [6942].

2-Methoxy-3-(1-oxopropyl)benzonitrile

[99842-70-3]

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 189.21
Synthesis

- Preparation by diazotization of 3-amino-2-methoxy-propiophenone hydrochloride, followed by treatment of the diazonium salt obtained with cuprous cyanide (74\%) [6533].
m.p. $87-88^{\circ}$ [6533]; UV [6533].

3-Methoxy-4-(1-oxopropyl)benzonitrile

[14004-66-1]	Synthesis -Preparation by diazotization of 4-amino-2- methoxy-propiophenone hydrochloride (SM), followed by treatment of the diazonium salt obtained with cuprous cyanide (41\%) [6927].
SM was prepared by hydrolysis of 4-acetamido- 2-methoxypropiophenone with boiling 2\% hydro- chloric acid for 1 h.	

m.p. $90-91^{\circ}$ [6927].

1-(3,5-Dibromo-2-hydroxy-4,6-dimethylphenyl)-1-propanone

[5384-16-7]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$
Syntheses

- Preparation by bromination of 2^{\prime}-hydroxy- $4^{\prime}, 6^{\prime}-$ dimethyl-propiophenone, according to [6352], (good yield) [6356,6981].
m.p. 104° [6356,6981];

IR (Sadtler: standard n ${ }^{\circ} 38088$), UV [6356,6359]; TLC [6353,6358].

1-[3,5-Bis(chloromethyl)-2-hydroxyphenyl]-1-propanone

[99860-74-9] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \quad$ mol.wt. 247.12

Synthesis

- Obtained by reaction of paraformaldehyde with o-hydroxy-propiophenone in the presence of hydrochloric acid at $60-70^{\circ}$ for 7 h (15\%) [6986].
b.p. $161-164^{\circ}$ [6986]; m.p. $73-74^{\circ}$ [6986].

1-(3,5-Dichloro-2-hydroxy-4,6-dimethoxyphenyl)-1-propanone
[66021-78-1]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$
Synthesis

- Preparation by chlorination of 2-hydroxy-4,6-dimethoxy-propiophenone [6410].

1-[4-(Acetyloxy)-2-hydroxyphenyl]-1-propanone
[91143-73-6]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
Syntheses

- Preparation by reaction of acetic anhydride with 2,4-di-hydroxypropiophenone (respropiophenone) in the presence of sodium acetate for 24 h at r.t. (80\%) [6731].
- Also obtained by treatment of respropiophenone in a 9:1 (vol/vol) mixture of cyclohexane/tert-amyl alcohol with vinyl acetate (5 equiv) in the presence of Pseudomonas cepacia lipase adsorbed on Celite for 24 h at 40° (20\%) [6761].
- Also refer to: [7267].
m.p. $80-81^{\circ}$ [6731];
${ }^{1} \mathrm{H}$ NMR [6761], ${ }^{13} \mathrm{C}$ NMR [6761], IR [6761].

1-[5-(Acetyloxy)-2-hydroxyphenyl]-1-propanone

[148730-78-3] \begin{tabular}{l}
Syntheses

Obtained by treatment of 2,5-dihydroxypropiophenone
in a 9:1 (vol/vol) mixture of cyclohexane/tert-amyl
alcohol with vinyl acetate (5 equiv) in the presence of
Pseudomonas cepacia lipase adsorbed on Celite for 24
h at 40° (93\%) [6761].

\end{tabular}

- Also obtained (by-product) by treatment of hydroquinone dipropionate with boron trifluoride complex $\left(\mathrm{BF}_{3}-\mathrm{OAc}\right)$ at reflux for $1 \mathrm{~h}(9 \%)$ [6785].
${ }^{1} \mathrm{H}$ NMR [6761], ${ }^{13} \mathrm{C}$ NMR [6761], IR [6761].

2-Hydroxy-5-methyl-3-(1-oxopropyl)benzoic acid

[1760-86-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Syntheses

- Obtained by Fries rearrangement of 2-propio-nyloxy-5-methylbenzoic acid [6926], (m.p. 104) with aluminium chloride (3.3 mol) at 170° for 3 h (30\%) [7268].
- Also obtained by Friedel-Crafts acylation of 2-hydroxy-5-methylbenzoic acid with propionyl chloride in the presence of aluminium chloride (3 mol) in nitrobenzene, first at r.t. overnight, then heating on a water bath for $3 \mathrm{~h}(15 \%)$ [7268].
m.p. 110° [7268].

2-Hydroxy-3-(1-oxopropyl)benzoic acid methyl ester
[88466-30-2] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Syntheses

- Refer to: [6936,7269].

2-Hydroxy-5-(1-oxopropyl)benzoic acid methyl ester
Methyl 5-propionylsalicylate
[77526-99-9] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Syntheses

- Obtained by Fries rearrangement of methyl 2-(propionyloxy)benzoate (SM) with aluminium chloride in boiling carbon disulfide for 2 h [6938]. SM was prepared by treating the oil of wintergreen (methyl salicylate) with propionyl chloride at reflux for $2 \mathrm{~h}(90 \%)$ [6938].
- Preparation by Friedel-Crafts acylation of methyl salicylate with propionyl chloride using aluminium chloride as catalyst in carbon disulfide (96\%) [6940].
- Also obtained by Fries rearrangement of methyl propionylsalicylate [7005].
- Also obtained by Fries rearrangement of 2-(propionyloxy)benzoic acid, according to [6961], followed by esterification (30\%) [7270].
- Also refer to: [7271]. m.p. 64-65 [6938], 60-61 ${ }^{\circ}$ [6940], 59-60 ${ }^{\circ}$ [7270].

4-Hydroxy-3-(1-oxopropyl)phenylacetic acid
[115048-28-7]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
Synthesis

- Preparation by hydrolysis of 4-hydroxy-3-(1-oxopropyl) phenylacetonitrile with dilute sulfuric acid in boiling acetic acid for 2 h (82\%) [6942].
m.p. $145-146^{\circ}$ [6942].

2-Methoxy-5-(1-oxopropyl)benzoic acid

m.p. $127-128^{\circ}$ [6937].

4-Methoxy-3-(1-oxopropyl)benzoic acid

[91143-39-4] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Syntheses

- Preparation by treatment of methyl 4-methoxy-3-pro-pionyl-benzoate with potassium hydroxide in refluxing methanol for 30 min , then acidification with 6 N sulfuric acid (84\%) [6943].
- Also refer to: [6941].
m.p. 209-211 [6943], 194° [6941]. One of the reported melting points is obviously wrong.

1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]-1-propanone

[27178-00-3]

m.p. $\quad 130-131^{\circ}$ [6629]; IR [6629]; TLC [6629].

1-(3-Bromo-2-hydroxy-4,5-dimethylphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$
mol.wt. 257.13
Syntheses

- Preparation by bromination of 2-hydroxy-4,5-dimethyl-propiophenone, according to the procedure [6354], (good yield) [6356,6981].
m.p. $\quad 124-125^{\circ}$ [6356,6981];

IR (Sadtler: standard n° 38086) [6356,6981], UV [6356,6359];
TLC [6353,6358].

1-(3-Bromo-4-hydroxy-2,5-dimethylphenyl)-1-propanone

[5384-08-7] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 257.13

Syntheses

- Preparation by bromination of 4-hydroxy-2,5-dime-thyl-propiophenone, according to the procedure [6354], (good yield) [6356,6981].
m.p. 77° [6356,6981];
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ}$ 8919M), IR (Sadtler: standard n° 38085) [6356, 6981],
UV [6356,6357]; TLC [6353,6358].

1-(3-Bromo-6-hydroxy-2,4-dimethylphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 257.13 Syntheses

- Preparation by Fries rearrangement of 4-bromo-3,5-di-methylphenyl propionate (m.p. 30.5 ${ }^{\circ}$) with aluminium chloride at 100° for $2 \mathrm{~h}(79 \%)$ [6356,6981].
- Also obtained by partial bromination of 2-hydroxy-4,6-di-methylpropiophenone, according to the procedure [6352], (51\%) [6356,6981].
- Also obtained by partial debromination of $3^{\prime}, 5^{\prime}$-dibromo-2'-hydroxy-4', 6^{\prime}-dimethylpropiophenone with copper powder in benzoic acid at 200° for $15 \mathrm{~min}(24 \%)$ [6356,6981].
m.p. 131° [6356,6981];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n${ }^{\circ} 9091 \mathrm{M}$), IR (Sadtler: standard n ${ }^{\circ}$ 38087), UV [6356,6359]; TLC [6353,6358].

1-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)-1-propanone

1-(5-Bromo-4-hydroxy-2,3-dimethylphenyl)-1-propanone

[5570-71-8] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 257.13

Syntheses

- Preparation by bromination of 4-hydroxy-2,3-dime-thyl-propiophenone, according to the procedure [6354], (good yield) [6356,6981].
m.p. 69-70 [6356,6981];
${ }^{1}$ H NMR (Sadtler: standard n° 9090M), IR (Sadtler: standard n° 38083) [6356, 6981], UV [6356,6357]; TLC [6353,6358].

1-(3-Bromo-2-methoxy-5-methylphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 257.13
Synthesis

- Preparation by reaction of methyl iodide with 3-bromo-2-hydroxy-5-methylpropiophenone in the presence of potassium carbonate in acetone (93\%) [6946].
b.p. ${ }_{9.5} 95-100^{\circ}$ [6945,6946];
${ }^{1} \mathrm{H}$ NMR [6945], ${ }^{13} \mathrm{C}$ NMR [6945], IR [6945].
1-(5-Bromo-4-ethoxy-2-hydroxyphenyl)-1-propanone
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 273.13

Synthesis

- Refer to: [7273].

Oxime [344367-93-7] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}_{3} \quad$ mol.wt. 288.14[7273].

1-(5-Chloro-3-ethyl-2-hydroxyphenyl)-1-propanone

[53347-07-2]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 212.68
Synthesis

- Preparation by Fries rearrangement of 4-chloro-2-ethyl-phenyl propionate (b.p. ${ }_{13} 137-140.5^{\circ}$) with aluminium chloride at 120° for $1 \mathrm{~h}(82 \%)$ [7274].
m.p. $44-45^{\circ}$ [7274].

USE: Fungicide [7275].
BIOLOGICAL ACTIVITY: Bactericide [7274].

1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)-1-propanone

[105041-56-3]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}$
mol.wt. 212.68
Syntheses

- Preparation by Fries rearrangement of 4-chloro-3,5-di-methylphenyl propionate (b.p. 123°) with aluminium chloride in carbon disulfide for 2 h at 80°, then at 110° for 2 h after solvent elimination [7276], (76\%) [7277].
- Also obtained (by-product) by reaction of propionic anhydride with 4-chloro-3,5-dimethylanisole or 4-chloro-3,5-dimethylphenetole in the presence of aluminium chloride in refluxing carbon disulfide [7278].
white crystalline solid [7278], yellowish white [7277]; m.p. 106° [7277].
Ethyl ether $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 240.73.
- Obtained by reaction of propionic anhydride with 4-chloro-3,5-dimethylphenetole in the presence of aluminium chloride in refluxing carbon disulfide (62\%) [7278]. b.p. $155-156^{\circ}$ [7278]; m.p. 53-54 ${ }^{\circ}$ [7278].

1-(2-Chloro-4-methoxy-5-methylphenyl)-1-propanone

1-(3-Chloro-2-methoxy-5-methylphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 212.68
Synthesis

- Obtained by treatment of 3-chloro-2-hydroxy-5-methyl-propiophenone with methyl iodide in the presence of sodium ethoxide in refluxing ethanol for 3 h [6962].
oil [6962]; b.p. ${ }_{8} 140^{\circ}$ [6962].

1-(5-Chloro-2-methoxy-3-methylphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}$
mol.wt. 212.68

Syntheses

- Preparation from 5-chloro-2-hydroxy-3-methylpropiophenone,
- by reaction with methyl iodide in the presence of sodium methoxide [6477] or ethoxide [6962];
- by reaction with dimethyl sulfate in the presence of sodium hydroxide in refluxing ethanol for 2 h (74\%) [6966].
colourless oil [6966];
b.p. 139° [6477,6962]; ${ }^{1} \mathrm{H}$ NMR [6966], IR [6966], MS [6966].

1-(5-Chloro-2-methoxy-4-methylphenyl)-1-propanone

[107076-02-8]	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 212.68
CH_{3}	Synthesis
	- Obtained by reaction of methyl iodide with 5-chloro-2-hydroxy-4-methylpropiophenone in the presence of sodium ethoxide in ethanol [6488].

m.p. 74° [6488].

1-[5-(Chloromethyl)-2-methoxyphenyl]-1-propanone

[100126-81-6] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 212.68

Synthesis

- Obtained by chloromethylation of 2-methoxypropiophenone (54\%) [6986].
m.p. $107-108^{\circ}$ [6986].

1-(2-Chloro-4,5-dimethoxyphenyl)-1-propanone

[149743-47-5]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3} \quad$ mol.wt. 228.68
Syntheses

- Refer to: [6503,7280].

1-(4-Chloro-2,5-dimethoxyphenyl)-1-propanone

[13720-54-2]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3}$
mol.wt. 228.68
Synthesis

- Obtained by reaction of propionyl chloride with-2-chloro-1,4-dimethoxybenzene in the presence of aluminium chloride in carbon disulfide (50\%) [7281].
m.p. $80-81^{\circ}$ [7281].

1-(2-Fluoro-4,6-dimethoxyphenyl)-1-propanone

1-(3-Fluoro-2,6-dimethoxyphenyl)-1-propanone

[119257-50-0] \quad\begin{tabular}{l}
Synthesis

- Obtained by fluorination of 2,6-dimethoxypropio-

phenone [6817].
\end{tabular}

2-Hydroxy-5-(1-oxopropyl)acetanilide

[130521-17-4]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$
mol.wt. 207.23
Synthesis

- Obtained by reaction of propionyl chloride with 2-acetyl-aminophenol in DMF in the presence of aluminium chloride at 85° for 5 h [6913].

3-Hydroxy-4-(1-oxopropyl)acetanilide

[66611-86-7]
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 207.23 Syntheses

- Preparation by Fries rearrangement with aluminium chloride of 3-acetamidophenyl propionate [6351,7282], at 180° for 4 h (52\%) [6918].
- Also obtained by Friedel-Crafts acylation of m-acetaminoanisole with propionyl chloride in the presence of aluminium chloride in refluxing ethylene dichloride for 2 h (40\%) [6918].
- Also refer to: [6429,6919,6927].
m.p. 161° [6351], 154° [6918];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 28219M), IR (Sadtler: standard n ${ }^{\circ}$ 55291).

4-Hydroxy-3-(1-oxopropyl)acetanilide

[99855-34-2]

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$
mol.wt. 207.23
Syntheses

- Obtained by Fries rearrangement of 4-(propionyloxy)acetanilide [7282], (m.p. 128°) with aluminium chloride, first at $110-120^{\circ}$, then at 160° for 3 h [6429].
- Also refer to: [7283,7284].

1-(5-Ethyl-2-hydroxy-3-nitrophenyl)-1-propanone

[70978-47-1] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 223.23

Syntheses

- Preparation by nitration of 5-ethyl-2-hydroxypropiophenone at -20° (25\%) [6926], with concentrated nitric acid $(\mathrm{d}=1.42)$ in concentrated sulfuric acid between -15° and 5° [6993].
m.p. $86.5-87.5^{\circ}$ [6993], $86-87^{\circ}$ [6926].

1-(2-Methoxy-5-methyl-3-nitrophenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 223.23

Synthesis

- Obtained by reaction of nitric acid with 2-meth-oxy-5-methylpropiophenone in acetic anhydride for $45 \mathrm{~min}(52 \%)$ [7285].
yellow oil [7285]; ${ }^{1} \mathrm{H}$ NMR [7285], MS [7285].

1-(2,4-Dimethoxy-5-nitrophenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 239.23

Synthesis

- Preparation by reaction of dimethyl sulfate with 2,4-di-hydroxy-5-nitropropiophenone in the presence of 20% sodium hydroxide (75%) [6555].
m.p. 155° [6555].

1-(4,5-Dimethoxy-2-nitrophenyl)-1-propanone

[91134-62-2]
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$
Syntheses

- Preparation by nitration of propioveratrone,
- with fuming nitric acid in sulfuric acid (60\%) [7001];
- with nitric acid in acetic acid (65\%) [7286].
- Also obtained by oxidation of 1-(4,5-dimethoxy-2-nitrophenyl)propyl nitrate (m.p. $99-100^{\circ}$) with potassium permanganate [7006].
- Also refer to: [7287,7288].
m.p. $132-133^{\circ}$ [7001,7286], 130-131 [7006];
${ }^{1} \mathrm{H}$ NMR [7286], IR [7286].
USE: As intermediate for photoreactive protecting reagents [7288].
BIOLOGICAL ACTIVITY: Hypolipidemic [7287].

1-(6-Ethoxy-2-hydroxy-3-nitrophenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 239.23

Syntheses

- Obtained by Friedel-Crafts reaction of propionic anhydride with 5-ethoxy-2-nitrophenol in the presence of aluminium chloride on heating in nitrobenzene [6407]. To see (58C) [6559].

2-[[2,4,6-Trihydroxy-3-(1-oxopropyl)phenyl]methylene]hydrazinecarboxamide

1-(3-Ethyl-4-hydroxyphenyl)-1-propanone
[540495-26-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
 Synthesis

- Refer to: [7289].

1-(4-Ethyl-2-hydroxyphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Preparation by Fries rearrangement of 3-ethylphenyl propionate (b.p. $3.597-98^{\circ}$) [7024] with aluminium chloride in nitrobenzene at 25° for $6 \mathrm{~h}(92 \%)$ or without solvent at 130° for 2 h (89%) [7290] or at $140-150^{\circ}$ [7024].
Note: Ion (1^{-}), radical ion $\left(1^{-}\right)$[72051-80-0], ESR spectrum [6350].
b.p. ${ }_{4} 116-120^{\circ}$ [7024], b.p. ${ }_{5} 146^{\circ}$ [7290].

1-(5-Ethyl-2-hydroxyphenyl)-1-propanone

[63909-10-4]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Preparation by Fries rearrangement of 4-ethylphenyl propionate with aluminium chloride at 100° for 2 h (70\%) [7291] or at 170° for $1-2 \mathrm{~h}$ (80-96\%) [6492].
- Preparation by Friedel-Crafts acylation of 4-ethylphenol,
- with propionic anhydride in the presence of magnesium perchlorate at 170° for $90 \mathrm{~min}(82 \%)$ [6491];
- with propionyl chloride in the presence of aluminium chloride in refluxing methylene chloride (59\%) [6993].
- Also refer to: [6926,7048].

Hydrazone [70136-40-2] $\quad \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \quad$ mol.wt. 192.26 [6646].

1-(2-Hydroxy-3,4-dimethylphenyl)-1-propanone

[5384-01-0]

- with titanium tetrachloride at 50° for 3 h or 100° for $2 \mathrm{~h}(82-84 \%)$ [6356,6576,6981];
- with aluminium chloride at 165° for 2 h (85\%) [6356,6981].
- Also obtained by isomerization of $2^{\prime}, 3^{\prime}$-dimethyl-4'-hydroxypropiophenone by treatment with aluminium chloride [6482], for 1 h at 180-200 ${ }^{\circ}$ (59-71\%) [6356,6468].
- Also refer to: [7292].
m.p. $44-45^{\circ}$ [6356,6981];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8381M), IR (Sadtler: standard n° 37037) [6356,6981],
UV [6356,6359,6457]; TLC [6353,6356,6358].

1-(2-Hydroxy-3,5-dimethylphenyl)-1-propanone

[5570-72-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Preparation by Fries rearrangement of 2,4dimethylphenyl propionate,
- with aluminium chloride, without solvent, at 100° for 7 h (63\%) [6356,6576,6981], $130-140^{\circ}$ for $5 \mathrm{~h}(90 \%)$ [7293], 165° for $1 \mathrm{~h}(74 \%)$ [6356,6981] or in nitromethane at 20° for $7 \mathrm{~h}(72 \%)$ [6569];
- with titanium tetrachloride at 100° for $7 \mathrm{~h}(83-86 \%)$ [6356,6576,6981].
- Also obtained by Fries rearrangement of 2,5-dimethylphenyl propionate with aluminium chloride at 100° for $7 \mathrm{~h}(60 \%)$ [6356,6981] or 165° for $1 \mathrm{~h}(92 \%)$ [6981].
- Also obtained by isomerization of 2,5-dimethyl-4-hydroxypropiophenone by heating with aluminium chloride [6482], at $180-200^{\circ}$ for 1 h (57\%) [6356,6468].
- Also obtained by isomerization of 4-hydroxy-2,6-dimethylpropiophenone with aluminium chloride (3 mol) for 1 h at $180-200^{\circ}(10 \%)$ [6482].
- Also obtained by reaction of sec-butyllithium (1.1 equiv) with 2-bromo-4,6dimethylphenyl propionate in tetrahydrofuran/ethyl ether/hexane at -95° for 30 min and -78° for 30 min , then hydrolysis with saturated ammonium chloride (31\%) (Metal-promoted Fries rearrangement) [6590].
- Also refer to: [7294].
m.p. 54° [6356,6981], 52-53$~[7293] ; ~ ;$
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8382M) [6590], ${ }^{13} \mathrm{C}$ NMR [6590],
IR (Sadtler: standard n ${ }^{\circ}$ 37038) [6356,6590,6981], UV [6356,6359,6457]; TLC [6353,6358].

Hydrazone [70136-44-6] $\quad \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \quad$ mol.wt. 192.26 [6646].

1-(2-Hydroxy-3,6-dimethylphenyl)-1-propanone

[51233-75-1] \quad| Syntheses |
| :--- |

- with titanium tetrachloride at 120° for $1 \mathrm{~h}(76-79 \%)$ [7031];
- with aluminium chloride in nitromethane at r.t. for 21 days (11\%) [6569].
- Also refer to: [7292].
m.p. 43° [6569,7031];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 21708M) [6569,7031], IR [6569,7031],
UV [6569,7031], MS [7031].

1-(2-Hydroxy-4,5-dimethylphenyl)-1-propanone

[5384-13-4] \quad\begin{tabular}{l}
Syntheses

- Preparation by Fries rearrangement of 3,4-dime-
thylphenyl propionate with aluminium chloride,

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
\end{tabular}

- without solvent between 120° and 150° (quantitative yield) [7295], at 165° for $1 \mathrm{~h}(93 \%)$ [6356,6981], at 100° for $2 \mathrm{~h}(90 \%)$ [6356], at $110^{\circ}(85 \%)$ [7296] and in the presence of sodium chloride [7297];
- in nitromethane at 20° for 7 days (89%) [6569].
- Preparation by Fries rearrangement of 3,4-dimethylphenyl propionate with titanium tetrachloride,
- without solvent at 100° for $1-2 \mathrm{~h}(91 \%)$ [6356,6981];
- in nitromethane at 20° (63\%) [6569] for $100 \mathrm{~h}(99 \%)$ [7031].
- Preparation by Friedel-Crafts acylation of 3,4-xylenol with propionic acid in the presence of boron trifluoride etherate (quantitative yield) [7298].
- Also obtained by isomerization,
- of 2-hydroxy-4,6-dimethylpropiophenone (1 mol) with aluminium chloride (3 mol) [6482] at $140-180^{\circ}$ some hours (quantitative yield) [6468,7295] and in the presence of sodium chloride [7297];
- of 2-hydroxy-3,5-dimethylpropiophenone (1 mol) with aluminium chloride $(1.5 \mathrm{~mol})$ at $180-200^{\circ}$ for $1 \mathrm{~h}(20 \%)$ [6468].
- Also refer to: [7292,7294].
b.p. 101° [7296], b.p..$_{10} 140^{\circ}$ [6569,7031]. One of the reported boiling points is obviously wrong.
m.p. 61° [6569,7031], $60-61^{\circ}$ [6356,6981], 60° [7295,7297];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8384M), IR (Sadtler: standard $\mathrm{n}^{\circ} 37041$) [6356,6981,7031]; UV [6356,6359,6399,6457,7031], MS [7031];
TLC [6353,6358].

1-(2-Hydroxy-4,6-dimethylphenyl)-1-propanone

[5384-54-3]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Preparation by Fries rearrangement of 3,5-dimethylphenyl propionate (m-5-xylyl propionate, b.p. ${ }_{56} 167^{\circ}$) [7299],
- in the presence of aluminium chloride at $120-150^{\circ}$ (quantitative yield) [7295], at 130° for $2 \mathrm{~h}(95 \%)$ [7290], at 120° for $1 \mathrm{~h}(98 \%)$ [7031], at 100° for $5 \mathrm{~h}(83 \%)$ [7299] or at 50° for $3 \mathrm{~h}(61 \%)$ [6356,6576];
- in the presence of aluminium chloride in nitrobenzene at 25° for $6 \mathrm{~h}(96 \%)$ [7290];
- in the presence of an aluminium chloride and sodium chloride mixture at 85° for 5 h [7297];
- in the presence of titanium tetrachloride at 120° for 1 h (98\%) [7031] or at 50° for $3 \mathrm{~h}(79 \%)$ [6356,6576,6981].
- Also obtained by reaction of propionic acid with 3,5-xylenol in the presence of boron trifluoride at 70° for $2 \mathrm{~h}(90 \%)$ [6583] or boron trifluoride etherate at $97-100^{\circ}$ for 30 min (15\%) [7027].
- Also obtained by reaction of propionic anhydride,
- with 3,5-dimethylphenol in the presence of aluminium chloride in refluxing ethylene dichloride (79\%) [7300];
- with 3,5-dimethylanisole in the presence of aluminium chloride in refluxing carbon disulfide (small amount) [7278].
- Also obtained by alkaline degradation of 2,3,5,7-tetramethylchromone [6427].
- Also obtained by reaction of 2-bromo-4,6-dimethylphenyl propionate at low temperature (-78 to -95°) with sec-butyllithium to give, after hydrolysis, the titled ketone (metal-promoted Fries rearrangement) (yields: 31% by GC; 17% isolated) [6590].
- Also refer to: [7294,7301].
b.p. 150° [7290], b.p. $._{15} 151-151.5^{\circ}$ [6583].
m.p. 78° [6583,7278,7295], [6356,6427,6981,7031], 76° [7027,7299], 75° [7297].
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8385M) [6590,7031], ${ }^{13} \mathrm{C}$ NMR [6590],
IR (Sadtler: standard n ${ }^{\circ}$ 37042) [6356,6590,6981,7027,7031],
UV [6356,6359,6457,7027,7031], MS [7031];
TLC [6353,6356,6358]; GC [6590].

1-(4-Hydroxy-2,3-dimethylphenyl)-1-propanone

[5355-81-7] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
 Syntheses

- Obtained by Fries rearrangement of 2,3-dimethylphenyl propionate with aluminium chloride in nitrobenzene at 50° for $3 \mathrm{~h}(10 \%)$ [6356,6576,6981].
m.p. 140° [6356,6981];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 9088M), IR (Sadtler: standard $\mathrm{n}^{\circ} 38071$) [6356,6981],
UV [6356,6357,6457]; TLC [6353,6358].

1-(4-Hydroxy-2,5-dimethylphenyl)-1-propanone

[5384-06-5] \quad\begin{tabular}{l}
Syntheses

Preparation by Fries rearrangement of 2,5-dimeth-
ylphenyl propionate with aluminium chloride,

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
\end{tabular}

- in nitrobenzene at r.t. for $24 \mathrm{~h}(70 \%)$ [7302] or $44 \mathrm{~h}(41 \%)$ [6981];
- in nitromethane at r.t. for 21 days (61%) [6569]. The same result (61%) was obtained by using titanium tetrachloride as catalyst at r.t. for 7 days;
- in nitromethane at 20° for 24 h , but using different quantities of aluminium chloride by mole of ester:

$\mathrm{AlCl}_{3}(\mathrm{~mol})$	Yield (\%)
1	9
2	74
3	82

- without solvent at 100° for $7 \mathrm{~h}(36 \%)$ [6356,6981].
- Also refer to: [6468,6482,7294].
m.p. 128° [7302], 127° [6356,6569,6981];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8379M), IR (Sadtler: standard $\mathrm{n}^{\circ} 37039$) [6356,6981],
UV [6356,6357,6457]; TLC [6353,6358].

1-(4-Hydroxy-3,5-dimethylphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Preparation by Fries rearrangement of 2,6-dimethylphenyl propionate with aluminium chloride,
- without solvent at 50° for $10 \mathrm{~h}(56 \%)$ [6356,6981], at $130-140^{\circ}$ [7303], (59\%) [7304] or at 165° for 1 h [7305], (59\%) [6981];
- in nitrobenzene at r.t. for $24 \mathrm{~h}(70 \%)$ [7294] or in nitromethane at 20° for 7 days (69\%) [6569].
- Preparation by Fries rearrangement of 2,6-dimethylphenyl propionate with titanium tetrachloride at 100° for $2 \mathrm{~h}(20 \%)$ [6981].
- Preparation by oxidation of (3,5-dimethyl-4-hydroxyphenyl)ethylcarbinol with DDQ in dioxane at r.t. for $16 \mathrm{~h}(80 \%)$ [7306].
- Also refer to: [6405,6406,6519,7307,7308]. m.p. 108° [6356,6981], $106-108^{\circ}$ [7303], 106-107$~[7294], ~ 106-106.5 ~[7304] ; ~ ;$ ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 8383M), IR (Sadtler: standard n ${ }^{\circ}$ 37040) [6356,6981], UV [6356,6357,6457]; TLC [6353,6358].

Oxime [75408-97-8] $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.26 [6384].

1-(6-Hydroxy-2,3-dimethylphenyl)-1-propanone

[121194-66-9] $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 178.23
 Synthesis

- Preparation by treatment of 3-tert-butyl-2-hydroxy-5,6-dimethylpropiophenone with aluminium chloride in nitromethane at 20° for 24 h (quantitative yield) [7031].
m.p. 70° [7031];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 52710M) [7031],
IR (Sadtler: standard n° 79767K) [7031], UV [7031], MS [7031].

1-(2-Methoxy-3-methylphenyl)-1-propanone

[68597-45-5]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Preparation by adding a solution of 5-chloro-2-methoxy-3-methylpropiophenone and ammonium formate in ethanol to a suspension of 10% Pd / C in aqueous 2.5 N potassium hydroxide and heating at 60° for $20 \mathrm{~min}(82 \%)$ [6966].
- Also obtained by reaction of methyl iodide with 2-methoxy-3-methylbenzoyl chloride in the presence of zinc in an ethyl acetate/toluene mixture (70\%) [7309].
- Also obtained by reaction of ethylmagnesium bromide with 2-methoxy-3-methylbenzonitrile (69\%) [6973].
- Also refer to: [7292]. colourless oil [6966]; b.p. ${ }_{0.3} 86^{\circ}$ [6973], b.p. ${ }_{12} 122^{\circ}$ [7309]; ${ }^{1} \mathrm{H}$ NMR [6966], IR [6966], MS [6966].

1-(2-Methoxy-4-methylphenyl)-1-propanone

[36871-54-2]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23 Syntheses

- Obtained by reaction of methyl iodide with 2-methoxy-4-methylbenzoyl chloride in the presence of zinc in an ethyl acetate/toluene mixture (68\%) [7309].
- Obtained by reaction of dimethyl sulfate with 2-hydroxy-4-methylpropiophenone in the presence of sodium hydroxide in methanol [6980,6981].
- Also obtained by reaction of propionyl chloride with 3-methylanisole in the presence of aluminium chloride in carbon disulfide at r.t. for $24 \mathrm{~h}(27 \%)$ [7310].
b.p. ${ }_{15} 142-144^{\circ}$ [7310], b.p. ${ }_{14} 147^{\circ}$ [7309]; IR [6980].

1-(2-Methoxy-5-methylphenyl)-1-propanone

[82620-73-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Preparation by reaction of propionyl chloride with 4-methylanisole in the presence of aluminium chloride in carbon disulfide (97\%) [7311].
- Also obtained by reaction of methyl iodide with 2-methoxy-5-methylbenzoyl chloride in the presence of zinc in an ethyl acetate/toluene mixture (60\%) [7309].
- Also refer to: [7033,7312,7313].
b.p. ${ }_{10} 128-130^{\circ}$ [7311], b.p. $._{13} 142-143^{\circ}$ [7309], b.p. ${ }_{16-17} 144.8-146.4^{\circ}$ [7033];
${ }^{1} \mathrm{H}$ NMR [7311], IR [7311], UV [7033].

2,4-Dinitrophenylhydrazone [82623-49-2] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 358.39 (m.p. 112-112.5 ${ }^{\circ}$ [7311].

1-(2-Methoxy-6-methylphenyl)-1-propanone

1-(3-Methoxy-2-methylphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Preparation by reaction of 3-methoxy-2-methylbenzoyl chloride with diethylcadmium according to the procedure [7315] for 3 h at $40-50^{\circ}(50 \%)$ [7316].
oil [7316]; b.p.0.1 $95-105^{\circ}$ [7316].

1-(3-Methoxy-4-methylphenyl)-1-propanone

[18158-58-2] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23 Syntheses

- Obtained by reaction of dimethyl sulfate with 3-hydroxy-4-methylpropiophenone (70\%) [7064] in the presence of aqueous 2 N sodium hydroxide at $40-45^{\circ}$ (60\%) [7061].
yellow oil [7064]; b.p. ${ }_{5} 134-136^{\circ}$ [7061], b.p. 147° [7064];
${ }^{1} \mathrm{H}$ NMR [7061].
1-(3-Methoxy-5-methylphenyl)-1-propanone
[29578-84-5]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Synthesis
- Refer to: [7317].

1-(4-Methoxy-2-methylphenyl)-1-propanone

[53773-76-5] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
 Syntheses

- Preparation by reaction of propionyl chloride with 3-methylanisole in the presence of aluminium chloride in methylene chloride for 3 h at 0° [6976], in carbon disulfide at r.t. for 24 h (52\%) [7310] or by Friedel-Crafts acylation using samarium triiodide [7318].
- Also refer to: [6672,7292,7312].
m.p. 43° [7310].

1-(4-Methoxy-3-methylphenyl)-1-propanone

[76805-57-7]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 178.23

Syntheses

- Refer to: [6519,7312,7319,7320].

1-(5-Methoxy-2-methylphenyl)-1-propanone

[29578-81-2]	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
OCH_{3}	Syntheses
	- Obtained (method P) by reaction of ethylmagnesium bromide with 5-methoxy-2-methylbenzoyl chloride in THF at -78° (73\%) [6979]. - Also refer to: [7321].
oil [6979]; b.p. ${ }_{18}$	-147 ${ }^{\circ}$ [7321].

1-(3,6-Dihydroxy-2,4-dimethylphenyl)-1-propanone

[210104-11-3] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of 2,6-dimethylbenzo-
quinone (2.5 equiv) with 2-oxobutanoic acid in
aqueous acetonitrile or an acetonitrile/methylene
chloride mixture (38\%) [6788].

\end{tabular}

1-(2,3-Dimethoxyphenyl)-1-propanone

[76049-04-2] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

Syntheses

- Obtained by reaction of ethylmagnesium bromide with 2,3-dimethoxybenzonitrile [6724, 7130,7322].
- Preparation by reaction of dimethyl sulfate with 2-hydroxy-3-methoxypro piophenone in aqueous alkaline solution [7130].
- Also obtained by a Jones oxidation of 1-(2,3-dimethoxyphenyl)-1-propanol in acetone with sodium dichromate in dilute sulfuric acid for 3 h at 20° [6726].
- Also obtained by reaction of 2,3-dimethoxybenzoyl chloride with diethylcadmium in ethyl ether [7322].
- Also refer to: [6725,7129,7131,7323].
colourless oil [6724];
b.p. $._{0.2} 97-98^{\circ}$ [7130], b.p. $._{0.7} 99-101^{\circ}$ [7322], b.p. ${ }_{0.2-0.3} 100-102^{\circ}$ [6725],
b.p. 114° [6724];
${ }^{1} \mathrm{H}$ NMR [6726], ${ }^{13} \mathrm{C}$ NMR [6726], IR [6726].

1-(2,4-Dimethoxyphenyl)-1-propanone

[831-00-5]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Preparation by reaction of dimethyl sulfate with respropiophenone in methanol,
- in the presence of aqueous sodium hydroxide solution (89\%) [6389];
- in the presence of potassium hydroxide, according to the procedure [7324], (68\%) [6555].
- Also obtained by reaction of methyl iodide with respropiophenone in butanone in the presence of potassium carbonate [7325].
- Also obtained by Friedel-Crafts acylation of 1,3-dimethoxybenzene with propionyl chloride [6796] using stannic chloride in carbon disulfide (80\%) [7111] or 10% mol. samarium triiodide in acetonitrile [7318].
- Also obtained by reaction of propionic acid with 1,3-dimethoxybenzene in the presence of PPA [6738], (quantitative yield) [7326], (74\%) [7327].
- Also obtained by decarboxylation of 2,4-dimethoxy-6-carboxypropiophenone with Cu dust [7325].
- Also refer to: [6530,6796,7097,7328-7333].
b.p. 143.5° [7327], b.p. ${ }_{18} 174-176^{\circ}$ [6796], b.p. ${ }_{20} 180^{\circ}$ [6389];
m.p. 83° [6389], 78° [6738], 75° [7325], 74-75 ${ }^{\circ}$ [7326], 72° [6796], 67° [6555], $66-67^{\circ}[7111]$. Some melting points are obviously wrong.
${ }^{1} H$ NMR [7111,7318], IR [7111,7318,7326],
UV [7111,7326,7333], MS [7111]; Luminescence spectroscopy [7333].
1-(2,5-Dimethoxyphenyl)-1-propanone
[5803-30-5] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

Syntheses

- Obtained by acylation of hydroquinone dimethyl ether,
- with propionyl chloride $[6796,7147,7149,7334]$ in the presence of aluminium chloride in petroleum ether (34\%) [7335], in carbon disulfide [7336], (64\%) [7281] or using 10% mol. samarium triiodide in acetonitrile (60\%) [7318];
- with propionic anhydride in the presence of aluminium chloride in nitromethane [7337];
- with propionic acid in the presence of PPA at 70° for $2 \mathrm{~h}(95 \%)$ [7338];
- in the presence of zeolite catalyst [7339].
- Also obtained by oxidation of 1-(2,5-dimethoxyphenyl)-1-propanol with PDC in methylene chloride for 2 days at r.t. [7340].
- Also refer to: [6407,6713,7014,7341-7345].

Isolation from natural sources

- From leaf and root of Asarum forbesii Maxim (Aristolochiaceae) [7346]. b.p. ${ }_{0.3} 102-103^{\circ}$ [7342], b.p. $130-137^{\circ}$ [7147], b.p. ${ }_{13} 160^{\circ}$ [6796], b.p. ${ }_{12} 160-162^{\circ}$ [7341], b.p. ${ }_{19} 165-172^{\circ}$ [7337], b.p. ${ }_{13} 167-169^{\circ}$ [7335]; m.p. 8° [7338];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 24405M) [7318,7336],
IR (Sadtler: standard ${ }^{\circ}$ 52517) [7318,7336], UV [7336],
MS [7336,7347]; GC-MS [7346].
BIOLOGICAL ACTIVITY: Antiinflammatory [6713].

1-(2,6-Dimethoxyphenyl)-1-propanone

[3840-02-6] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

- with 2-hydroxy-6-methoxypropiophenone in the presence of aqueous sodium hydroxide (quantitative yield) [6801];
- with 2,6-dihydroxypropiophenone in the presence of alkali (70\%) [6801] or 2 N sodium hydroxide at r.t. for $2 \mathrm{~h}(38 \%)$ [6800].
- Also refer to: [7348].
b.p. $148-150^{\circ}$ [6801];
m.p. 45° [6800], $44-45^{\circ}$ [6801], $42-43^{\circ}$ [7348].

1-(3,4-Dimethoxyphenyl)-1-propanone (Propioveratrone)

[1835-04-7]	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23 Syntheses
Preparation by reaction of dimethyl sulfate with propionyl- catechol in alkaline solution (43\%) [7349].	
Preparation by reaction of propionyl chloride with veratrole [6796,7350]	

- in the presence of aluminium chloride in nitrobenzene for 24 h at r.t. (85%) [7351] or 1 h at $-5^{\circ}(36 \%)$ [6854], in refluxing benzene [7352], (84\%) [7353], (65\%) [7354], in chloroform for 1 h at $0-5^{\circ}$ under nitrogen (79\%) [7355], in carbon disulfide (61\%) [7354], in ethylene dichloride for 1 h at 35° (54\%) [7356] or in boiling petroleum ether for $30 \mathrm{~h}(28 \%)$ [7335];
- in the presence of zinc chloride in boiling carbon disulfide (36\%) [7357];
- over cation-exchanged clays [7358] or using zeolite-H-beta catalysts [7359].
- Preparation by reaction of propionic acid with veratrole,
- in the presence of PPA at 60° for $2.5 \mathrm{~h}(98 \%)$ [7360], at 100° for 90 min (75\%) [7361] or at 70-80 for 4 h (55\%) [7362];
- in the presence of zinc chloride (12-15\%) [7363].
- Preparation by reaction of propionic anhydride with veratrolein the presence of iodine for 3 h at reflux (46\%) [6721].
- Also obtained by oxidation of 1-(3,4-dimethoxyphenyl)propane with DDQ in wet dioxane/silica gel under sonication (78\%) [7093].
- Also obtained from (3,4-dimethoxyphenyl) (dimethylaminoethyl) ketone by hydrogenation in the presence of $\mathrm{Pd}-\mathrm{BaSO}_{4}$ catalyst in tetralin at 130° (65\%) [7364].
- Also obtained by reaction of sodium methoxide with 1,2-dibromo-1-(3, 4-dimethoxyphenyl)-propane [7100,7241,7335].
- Also refer to: [6591,6828,7167,7365,7366].

Isolation from natural sources

- From the leaves of Hedyosmum spp. from Bolivia (Chlorantaceae) [7367].
- From the aerial parts of Pteronia camphorata (Compositae) [7368].
- From Asarum max. [7369].
b.p. ${ }_{0.2} 137^{\circ}$ [7351], b.p. ${ }_{0.8} 140^{\circ}$ [7354], b.p. $153-156^{\circ}$ [6854],
b.p. ${ }_{5} 157-160^{\circ}$ [7361], b.p. $158-160^{\circ}$ [7353], b.p. ${ }_{20} 188^{\circ}$ [7354];
m.p. $62-63^{\circ}$ [7349,7364], 62° [7100], 61° [7356], 60° [7335],
$59-60^{\circ}$ [7093,7351,7353], 58.5-59.5ํ [7355], $58-59^{\circ}$ [6796,7241,7351,7362,7370,7371], 58° [7357], 57.5° [7354,7361], 56-58ํ [6721], 55-56ํ [6854];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 24409M) [7093,7368], ${ }^{13} \mathrm{C}$ NMR [7093],
IR (Sadtler: standard n° 52522) [7368], UV [7213], MS [7368];
CG-MS [7372]; GC [7368]; TLC [7368].
BIOLOGICAL ACTIVITY: Antiinflammatory [7350].

1-(3,5-Dimethoxyphenyl)-1-propanone

[41497-31-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Preparation by reaction of ethylmagnesium bromide,
- with 3,5-dimethoxybenzamide (m.p. 145-146 ${ }^{\circ}$) (80-85\%) [6856,7373];
- with 3,5-dimethoxybenzonitrile (m.p. 86-87 $)$ [7373].
- Also obtained by decarboxylation of 3,5-dimethoxy-2-carboxypropiophenone with Cu dust [7325] or by heating its ethyl ether with 25% sulfuric acid for 13 h [7374].
- Preparation by following the method [6856] starting from benzoic acid (good yield) [7349].
- Preparation (method O) by reaction of diethylcadmium with 3,5-dimethoxybenzoyl chloride (71\%) [6979].
- Obtained by reaction of methyl iodide with 3,5-dimethoxybenzoyl chloride in the presence of zinc in an ethyl acetate/toluene mixture (19\%) [7309].
- Also refer to: [7375].
b.p. $._{0.08} 98-100^{\circ}$ [7373], b.p. ${ }_{11} 162-163^{\circ}$ [6856], b.p. ${ }_{17} 168-170^{\circ}$ [7309], b.p. ${ }_{15} 170-172^{\circ}$ [7374];
m.p. $34-35^{\circ}[7325,7374], 33.5^{\circ}[7349], 32.5^{\circ}[6856], 27^{\circ}[6979]$.

1-(3-Ethoxy-4-hydroxyphenyl)-1-propanone

[159186-06-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

BIOLOGICAL ACTIVITY: Antiasthmatic [7377].
Ethyl ether $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28.

- Preparation by reaction of propionyl chloride with o-diethoxybenzene in the presence of aluminium chloride in nitrobenzene at -5° for 2 h (73%) [6851].
- Also obtained by reaction of excess ethyl bromide with 3,4-dihydroxypropiophenone in the presence of potassium hydroxide in refluxing ethanol for 9 h (54\%) [6851].
b.p. ${ }_{32} 181-184^{\circ}$ [6851]; m.p. 38-39 ${ }^{\circ}$ [6851].

1-(4-Ethoxy-2-hydroxyphenyl)-1-propanone

[63411-90-5]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Preparation by reaction of an ethyl halide (unspecified) with respropiophenone in the presence of potassium carbonate in refluxing acetone for $5 \mathrm{~h}(51 \%)$ [6380].
- Also obtained by reaction of ethyl iodide with respropiophenone in the presence of potassium hydroxide in ethanol [7140,7378].

Notes: Polymer with 1,2-ethanediol [161450-86-8] [7379]; polymer with 1,3-propanediol [163706-93-2] [7076]; polymer with 1,4-butanediol [160308-44-1] [7380].
m.p. 54° [7140], $52-53^{\circ}$ [6380], 49° [7378];
${ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

1-(4-Ethoxy-3-hydroxyphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Synthesis

- Obtained (by-product) by reaction of ethyl bromide with 3,4-dihydroxypropiophenone in boiling 25\% ethanolic potassium hydroxide solution for $9 \mathrm{~h} \mathrm{(38} \mathrm{\%)} \mathrm{[6851]}$.

1-(5-Ethoxy-2-hydroxyphenyl)-1-propanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 194.23
$$

Synthesis

- Obtained (by-product) by Friedel-Crafts acylation of hydroquinone diethyl ether with propionyl chloride or propionic anhydride in the presence of aluminium chloride, first below 5° and short reflux times [7149].
N.B.: The amount of dealkylation could, however, be held below 20% under mild conditions. When more drastic conditions were employed, for example with longer reflux times, up to about 40% of the titled ketone could be obtained [7149].
m.p. 82° [7149].

1-(2-Ethyl-4,5-dihydroxyphenyl)-1-propanone

[267008-04-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

Synthesis

- Preparation by demethylation of 4-propionyl-5-ethylveratrole (b.p. ${ }_{2} 95-101^{\circ}$) with boron tribromide in methylene chloride, first at 0°, then at r.t. for 12 h (95-97\%) [7381].
${ }^{1} \mathrm{H}$ NMR [7381].

1-(2-Ethyl-4,6-dihydroxyphenyl)-1-propanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 194.23
$$

Synthesis

- Obtained by reaction of propionitrile with 5-ethylresorcinol (Hoesch reaction) (19\%) [7382].
m.p. 142° [7382].

1-(3-Ethyl-2,6-dihydroxyphenyl)-1-propanone

[116867-95-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

Syntheses

- Obtained from 5-ethyl-2,4-dihydroxy-3-propionylbenzoic acid in refluxing dilute acetic acid in the presence of a few drops of concentrated hydrochloric acid (37\%) [6450].
- Also obtained by hydrolysis of 8-propionyl-7-hydroxy-6-ethyl-4-methylcoumarin in refluxing 10% sodium hydroxide for 2 h [6450].
m.p. 102° [6450].

1-(5-Ethyl-2,4-dihydroxyphenyl)-1-propanone

[158153-04-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
 Syntheses

- Preparation by Fries rearrangement of 4-ethylresorcinol dipropionate in the presence of aluminium chloride (2 equiv) without solvent at $60-70^{\circ}$ for $3-4 \mathrm{~h}$ or in nitrobenzene at 110° for 5 h [7383].
- Preparation by reaction of propionitrile with 4-ethyl-resorcinol (Hoesch reaction) (76\%) [7115].
- Also refer to: [7384].
m.p. $69-70^{\circ}$ [7115], 67.5° [7383].

Oxime [114113-06-3] $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 209.22.

- For determination of cobalt and copper by gravimetry [7385].

1-(2-Hydroxy-3-methoxy-5-methylphenyl)-1-propanone

[91970-96-6]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 194.23
Syntheses

- Preparation by partial demethylation of 2,3-dimethoxy-5-methylpropiophenone with aluminium chloride in nitromethane, first at 0°, then at 20° for 5 days (88%) [7285].
- Also obtained by partial methylation of 2,3-dihydroxy-5-methylpropiophenone with dimethyl sulfate in the presence of potassium carbonate in acetone (39\%) [7110].
m.p. $69-70^{\circ}$ [7110], 67-68ㅇ [7285];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 49338M) [7285],
IR (Sadtler: standard $\mathrm{n}^{\circ} 76411 \mathrm{~K}$) [7285], UV [7285].

1-(2-Hydroxy-4-methoxy-3-methylphenyl)-1-propanone

 $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23 Syntheses

- Obtained by reaction of methyl iodide (5 mol) with respropiophenone in methanol in the presence of potassium hydroxide, first at 0° and at r.t. overnight, then at reflux for 6 h (22\%) [6769].
- Also obtained by alkaline hydrolysis of 7-methoxy-2,3,8-trimethylchromone [6769].
m.p. $78-79^{\circ}$ [6769].

1-(2-Hydroxy-4-methoxy-6-methylphenyl)-1-propanone
[64030-63-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

Syntheses

- Preparation by partial methylation of 2,4-dihy-droxy-6-methylpropiophenone with dimethyl sulfate,
- in the presence of excess 0.5 N sodium hydroxide [6744];
- in the presence of potassium carbonate in refluxing acetone [7120], (65\%) [7121].
- Also obtained by reaction of propionitrile with orcinol monomethyl ether (Hoesch reaction) [6744].
- Also refer to: [7386].

Isolation from natural sources

- From Juniperus sabina leaves (Cupressaceae) [7387].
- Obtained by alkaline degradation of Coumarsabin with potassium hydroxide in refluxing methanol for $2 \mathrm{~h}(40 \%$) [7388]. Coumarsabin (3,5-dimethyl-4,7-dimethoxycoumarin) (m.p. 86-87) was isolated from the leaves of Juniperus sabina (Cupressaceae).
m.p. $98-100^{\circ}$ [7387], $84-85^{\circ}$ [7121], 83-84$~[7120], ~ 82-83^{\circ}[7388]$, 73.5° [6744];
${ }^{1} \mathrm{H}$ NMR [7121,7387,7388], ${ }^{13} \mathrm{C}$ NMR [7387], IR [7387,7388],
UV [7387,7388].
1-(2-Hydroxy-6-methoxy-4-methylphenyl)-1-propanone $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
 Syntheses
- Obtained by partial methylation of 2,6-dihy-droxy-4-methyl-propiophenone with dimethyl sulfate in the presence of 0.5 N sodium hydroxide (40\%) [6744].
- Also obtained by reaction of propionic anhydride with orcinol monomethyl ether in the presence of concentrated sulfuric acid at 130° [6744].
m.p. 75° [6744].

1-(3-Hydroxy-2-methoxy-5-methylphenyl)-1-propanone
[108439-91-4] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23 Synthesis

- Obtained by treatment of 2-methoxy-5-methyl-3-nitro-propiophenone (yellow oil) with stannous chloride dihydrate, then sodium nitrite, according to the Woodward procedure [7389], (23\%) [7285].
m.p. 31° [7285]; ${ }^{1} \mathrm{H}$ NMR [7285], IR [7285], UV [7285].

1-(4-Hydroxy-2-methoxy-6-methylphenyl)-1-propanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 194.23
$$

Syntheses

- Obtained by partial methylation of 2,4-dihydroxy-6-methylpropiophenone with dimethyl sulfate in the presence of 0.5 N sodium hydroxide [6744].
- Also obtained by reaction of ethyl cyanide with orcinol monomethyl ether (Hoesch reaction) [6744].
m.p. 114° [6744].

1-(4-Hydroxy-3-methoxy-5-methylphenyl)-1-propanone

[91970-97-7] \quad\begin{tabular}{l}
Synthesis

m.p.

Obtained by Fries rearrangement of 2-methoxy-
6-methyl-phenyl propionate with aluminium chloride
in refluxing carbon disulfide for $3 \mathrm{~h}(55 \%)$

[7390]
\end{tabular}

1-(4-Hydroxy-5-methoxy-2-methylphenyl)-1-propanone
[104216-16-2]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 194.23
Syntheses

- Preparation by Fries rearrangement of isocreosol propionate with aluminium chloride in nitromethane, first at 0°, then at 30° for $24 \mathrm{~h}(97 \%)$ [7285].
- Also obtained by reaction of propionyl chloride with isocreosol in the presence of aluminium chloride in nitrobenzene, first at $30-35^{\circ}$, then at r.t. overnight (25\%) [7391].
m.p. 87° [7285], 85.5° [7391];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 49334M) [7285],
IR (Sadtler: standard $\mathrm{n}^{\circ} 76407 \mathrm{~K}$) [7285], UV [7285]; pK_{a} [7285].
Benzoate [109469-57-0] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34 (m.p. 69°) [7391].

1-(5-Hydroxy-4-methoxy-2-methylphenyl)-1-propanone

[91970-98-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Preparation by reaction of propionyl chloride with creosol in the presence of aluminium chloride in methylene chloride, first at -20°, then at 20° for 2 h (95\%) [7040].
- Preparation by reaction of propionic acid with creosol in the presence of boron trifluoride, first at 0°, then at 25° for 2 days (80\%) [7110].
- Also obtained by Fries rearrangement of creosol propionate with aluminium chloride in methylene chloride, first at -20°, then at 20° for $8 \mathrm{~h}(59 \%)$ [7285].
m.p. 98° [7285], $97-99^{\circ}$ [7110];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 49333M) [7285],
IR (Sadtler: standard n° 76406K) [7285], UV [7285]; pK_{a} [7285].
Propionate [108439-90-3] $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29 (m.p. 46°) [7285].
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 49331M) [7285], IR (Sadtler: standard n° 76404K) [7285], UV [7285].

1-[4-Hydroxy-3-(methoxymethyl)phenyl]-1-propanone

USE: Pharmaceutical intermediate [7392].
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-1-propanone (Aspidinol-P)

[55765-53-4] \quad\begin{tabular}{l}
Syntheses

- Refer to: [6890] (compound 15), [6895]

(compound 23) and [7393] (compound 31-P).

- Also refer to: [7394].
\end{tabular}

N.B.: On the EI mass spectra drawing, the formula of the "titled ketone" was displayed (Fig. 9, page 136) [7394]. Actually, the concerned ketone was the upper homologous, i.e. the 2,6-dihydroxy-4-methoxy-3-methylbutyrophenone,
called Aspidinol (compound 7). On the drawing of the displayed formula of compound 7, a methylene group is missing in the lateral chain [7394].

Isolation from natural sources

- From Dryopteris of Japan [7262].
m.p. 190-192 ${ }^{\circ}$ [6890];

UV [7394], MS [7262,7393,7394];
GLC [6895]; TLC [6890,6895,7262]; HPLC [7394];
paper chromatography [6895,7262].

1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-1-propanone

[39026-68-1] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23 Isolation from natural sources

- Preparation by acid hydrolysis of its glycoside (SM1) $\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{9}\right.$, m.p. 179-180 , [39027-10-6]), itself obtained by treatment of (SM2) $\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{12}\right.$, m.p. 270°, [39036-20-9]) with barium hydroxide in boiling aqueous dioxane. SM2 is the hexamethyl ether of poriolide. The poriolide (major compound) $\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{12}\right.$, m.p. 265°, [39262-30-1]) was isolated from the leaves of Leucothoe Keiskei Miq. (Ericaceae) [7395,7396].
N.B.: Isoporiolide $\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{12}\right.$, m.p. 293-295 ${ }^{\circ}$, [39262-31-2]) is an isomer of poriolide. Isoporiolide hexamethyl ether (SM3) $\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{12}\right.$, [39084-13-4]), decomposed under the same conditions using barium hydroxide, yields the phenol glycoside SM1 [7395,7396].
m.p. $132-134^{\circ}$ [7395,7396];
${ }^{1} \mathrm{H}$ NMR [7395,7396], IR [7395,7396], UV [7395,7396].

1-(2-Hydroxy-3,4-dimethoxyphenyl)-1-propanone

[61948-26-3]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Preparation by reaction of propionyl chloride with pyrogallol trimethyl ether in the presence of aluminium chloride in ethyl ether at 0° [7133], (56\%) [7132] or at r.t. for 24 h (92\%) [7397].
- Preparation by reaction of methyl iodide with 2,3,4-tri-hydroxypropiophenone in the presence of potassium carbonate in acetone, first at r.t. for 20 h , then at reflux for 8 h (94\%) [6863].
- Also refer to: $[6757,6758,7398]$ (compound 1f).
m.p. $94-96^{\circ}$ [6863], $93-94^{\circ}$ [7132], $91-92^{\circ}$ [7397];
${ }^{1} H$ NMR [6863,7132,7397], IR [6863].

1-(2-Hydroxy-4,5-dimethoxyphenyl)-1-propanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 210.23
$$

 Syntheses

- Obtained by condensation of propionitrile with 3,4-di-methoxyphenol (Hoesch reaction) (16\%) [7399].
- Also obtained (by-product) by reaction of propionyl chloride with 1,2,4-trimethoxybenzene in the presence of aluminium chloride in carbon disulfide [7400], (29\%) [7401].
- Also refer to: [7133,7402,7403].
m.p. 125° [7399], $124-126^{\circ}$ [7401,7402], 124- 125° [7400].

1-(2-Hydroxy-4,6-dimethoxyphenyl)-1-propanone

[2215-82-9]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Preparation by reaction of propionyl chloride with phloroglucinol trimethyl ether in the presence of aluminium chloride in ethyl ether at 0° for $40 \mathrm{~h}(64 \%)$ [7404] or $48 \mathrm{~h}(71 \%)$ [7405].
- Also obtained by reaction of propionitrile with phloroglucinol dimethyl ether (Hoesch reaction) (67\%) [7406], (38\%) [6873,7407].
- Also obtained by reaction of dimethyl sulfate with phloropropiophenone in acetone in the presence of potassium carbonate [6629].
- Also obtained (by-product) by irradiation of 3,5-dimethoxy-2-propionylphenyl methacrylate in acetonitrile under argon atmosphere with high-pressure Hg lamp at r.t. (25\%) [7408].
- Also refer to: [6757,6758,7138,7386,7409] (compound 1d).
m.p. 113-114 ${ }^{\circ}$ [6629], 113° [7406], 111° [6873,7405], $110-111^{\circ}$ [7404]; TLC [6629].

1-(4-Hydroxy-2,6-dimethoxyphenyl)-1-propanone
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

Syntheses

- Obtained by saponification of 4-(benzoyloxy)-2, 6-di-methoxypropiophenone (m.p. 103°) with 15% methanolic potassium hydroxide at r.t. for 2 h [6873].
- Also obtained (by-product) by reaction of propionitrile with phloroglucinol dimethyl ether (Hoesch reaction) [6873].
- Also refer to: [6743].
m.p. $180^{\circ}[6743,6873]$.

1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Propiosyringone)

[5650-43-1]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Preparation by oxidation of (3,5-dimethoxy-4-hydroxy-phenyl)ethylcarbinolalsonamed 1-(4-hyd-roxy-3,5-di-methoxyphenyl)-1-propanol,
- with DDQ in dioxane at r.t. for $16 \mathrm{~h}(70 \%)$ [7306];
- using silver oxide in sodium hydroxide as described by [7169], (40\%) [7170].
- Also obtained by partial demethylation of 3,4,5-trimethoxypropiophenone,
- with hydrobromic acid at 40° or hydrochloric acid at 100° (20-30\%) [6591];
- in concentrated sulfuric acid solution [6973,7410], at $45-47^{\circ}$ for $12 \mathrm{~h} \mathrm{(67} \mathrm{\%)}$ [7411];
- in the course of the reaction of ethylmagnesium bromide with 3,4,5-trimethoxybenzonitrile (14\%) [7349].
- Also obtained by Fries rearrangement of 2,6-dimethoxyphenyl propionate (b.p. ${ }_{0.5} 125-127^{\circ}$) with aluminium chloride in nitrobenzene [7411,7412], (30\%) [7413] or at 80° for $30-60 \mathrm{~min}$ [7414], according to the procedure [6620], (11\%) [6700,7161,7411].
- Preparation by reaction of sodium methoxide with 3-bromo or 3-iodo-4-hydroxy-5-methoxy-propiophenone in the presence of anhydrous cupric chloride (trace) in DMF at 100° (64\%) [6959].

Isolation from natural sources

- Preparation from Aspen poplar wood [7415].
- From the aerial parts of Baccharis magellanica (Compositae) [7416].
- Identification in Spanish oak heartwood of Quercus robur, Quercus petraea, Quercus pyrenaica and Quercus faginea [7210].
- Identification in organic aerosols emitted from the combustion of biomass indigenous to South Asia [7417].
- In biodegradation of oak (Quercus alba) wood during growth of the shiitake mushroom (Lentinula edodes) [7418].
- One of aromatic degradation products in the steam hydrolysis residue of birchwood (Betula pubescens) [7419].
- Identification from volatile components of hardwood sawdust smoke [7420].
- Identification, in hydrogenolysis products of Fraxinus mandshurica [7421].
- Determination in black kraft liquor by GLC [7422].
- Of raw cane sugar flavour [7202].
- A flavour component of whiskey [7423].
- Its β-D-glucopyranoside [367502-03-2] was isolated from Kokuto, non-centrifuged Cane Sugar (Saccharum officinarum) [7247] or from the aerial parts of Conyza blinii [7424].
- Also refer to: [7092,7180,7188,7425-7430].
m.p. (monohydrate) $99-100^{\circ}$ [6591];
(anhydrous) $113-115^{\circ}$ [7431], 111.5-112.5 ${ }^{\circ}$ [6696],
$109-110^{\circ}$ [7161,7411,7413], 109° [7349],
$108.5-109.5^{\circ}$ [6959], 108-109${ }^{\circ}$ [7170], 107-109$~[7415], ~$
107° [6591], 106.5-108$~[7414] ; ~$
${ }^{1} H$ NMR [7416], IR [6700,7161,7416,7420],
UV [6696,7161,7212,7213], MS [7416,7420];
GC-MS [7210,7220,7221,7423,7432];
chromatography [6700]; paper chromatography [7224,7419]; GC [7420]; GLC [7419]; HPLC [7423]; ionization potential [7232]. USE: Antioxidizing agent [7414].

Benzyl ether $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 300.35 (m.p. 71-72 ${ }^{\circ}$) [7412].
Ethyl ether [184963-79-9] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28 [7433,7434].
Propyl ether [184963-86-8] $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31 [7433,7434].
Isobutyl ether [184963-80-2] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 266.34 [7434].
Acetate [52536-84-2] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27.

- Refer to: [6591,7419,7435].
m.p. 118° [7419], $110-112^{\circ}$ [6591], 105° [7435], 95° [7419];

MS [7251,7372]; GC-MS [7251,7372].
1-[2-Hydroxy-6-(2-hydroxyethoxy)phenyl]-1-propanone
[3361-73-7] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
 Syntheses

- Obtained by treatment of 2,6-dihydroxypropiophenone with epoxyethane [6802].
- Also refer to: [6805].
m.p. $91-92^{\circ}$ [6802].

1-(2,3-Dihydroxy-4,6-dimethoxyphenyl)-1-propanone

[94190-89-3]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23
Syntheses

- Preparation by Fries rearrangement of 1,2-dihy-droxy-3,5-dimethoxybenzene dipropionate with aluminium chloride in methylene chloride at r.t. for $3 \mathrm{~h}(94 \%)$ [7436,7437].
- Also obtained by hydrolysis of 1-[2-hydroxy-4,6-di-methoxy-3-(propionyloxy) phenyl]-1-propanone with 6 N hydrochloric acid in refluxing methanol for 30 min (79\%) [7438].
- Also refer to: [7439].
m.p. 128° [7436,7437], 127° [7438];
${ }^{1} \mathrm{H}$ NMR [7438], ${ }^{13} \mathrm{C}$ NMR [7438], MS [7438]; TLC [7438].

1-(2,4-Dihydroxy-3,5-dimethoxyphenyl)-1-propanone

[99964-98-4]
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 226.23

Isolation from natural sources

- From Leucanthemopsis pallida subsp. flaveola (Compositae) (compound 1) [7440].
Colourless solid [7440]; m.p. 122-123 ${ }^{\circ}$ [7440];
${ }^{1} \mathrm{H}$ NMR [7440], ${ }^{13} \mathrm{C}$ NMR [7440], IR [7440],
UV [7440].

1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-1-propanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad \text { mol.wt. } 226.23
$$

Synthesis

- Preparation by reaction of propionitrile with 2,5-dimethoxy-resorcinol (Hoesch condensation) (63\%) [7441].
m.p. $126-127^{\circ}$ [7441].

1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-1-propanone

[134081-93-9] \quad\begin{tabular}{l}
Synthesis

- Preparation by hydrolysis of 6-hydroxy-3,

4-dimethoxy-2-(tosyloxy) propiophenone
(m.p. 120.5-121

refluxing methanol for 1-3 h (82\%) [7442].
\end{tabular}

m.p. $\quad 142-143^{\circ}$ [7442]; ${ }^{1} \mathrm{H}$ NMR [7442].

1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-1-propanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \quad \text { mol.wt. } 226.23
$$

Synthesis

- Obtained by Elbs persulfate oxidation of 2-hydroxy-4,6-di-methoxypropiophenone (31\%) [7405].
m.p. $\quad 120-121^{\circ}$ [7405].

[2,4-Dimethoxy-5-(1-oxopropyl)phenyl]arsonic acid

2,4-Dimethoxy-5-arsonopropiophenone

$$
\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{AsO}_{6} \quad \text { mol.wt. 318.16. }
$$

Syntheses

- Obtained from 5-amino-2,4-dimethoxypropiophenone through diazo reaction and coupling with sodium nitrite (61\%) [6555].
- Also obtained by direct arsonation of respropiophenone with arsenic acid for 75 h at 100°, followed by methylation of the intermediate compound (11\%) [6555].
m.p. 243° [6555].

1-(3-Amino-5-ethyl-2-hydroxyphenyl)-1-propanone

[70978-24-4]

$$
\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad \text { mol.wt. } 193.25
$$

Syntheses

- Preparation by hydrogenation of 5-ethyl-2-hydroxy-3-nitropropiophenone in ethanol using 5\% Pd/C as catalyst at atmospheric pressure and 25° [6926,6993].
m.p. 30° [6993].

1-[3-(Dimethylamino)-4-hydroxyphenyl]-1-propanone

[141771-86-0]	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.25
OH	Synthesis
	- Obtained from methylation of 3-amino-4-hydroxy-propiophenone by methyl iodide and triethylamine in methanol [6995].
$\mathrm{COCH}_{2} \mathrm{CH}_{3}$	

1-[3-(Aminomethyl)-2-hydroxy-5-(methylthio)phenyl]-1-propanone

[75061-07-3]

Hydrochloride [75060-88-7]
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$
mol.wt. 225.31
Synthesis

- Refer to: [7106].

BIOLOGICAL ACTIVITY: Antiinflammatory [7106].

1-(2-Amino-4,5-dimethoxyphenyl)-1-propanone

[4765-46-2] $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 209.25

Synthesis

- Preparation by successively adding propionitrile and aluminium chloride to a solution of boron trichloride and 3,4-dimethoxyaniline in benzene under nitrogen and refluxing the mixture obtained for $8 \mathrm{~h}(60 \%)$ [7009].
- Preparation by reduction of 4,5-dimethoxy-2-nitropropiophenone with iron and acetic acid (68\%) [7286].
m.p. 128-129 [7009];
${ }^{1} \mathrm{H}$ NMR [7286], IR [7286], MS [7009].
1-(2-Amino-4,6-dimethoxyphenyl)-1-propanone
[124623-19-4]
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 209.25
Synthesis
- Preparation by successively adding propionitrile and aluminium chloride to a solution of boron trichloride and 3,5-dimethoxyaniline in benzene under nitrogen and refluxing the mixture obtained for 8 h (92\%) [7009].
m.p. $63-66^{\circ}$ [7009]; MS [7009].

1-(5-Amino-2,4-dimethoxyphenyl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 209.25

Synthesis

- Preparation from the corresponding nitro compound by catalytic reduction in acetone solution using Raney nickel. Then, after filtration of the catalyst and half elimination of solvent by vacuum distillation, the hydrochloride was prepared by passing dry hydrogen chloride into the remaining solution [6555].
m.p. 107° [6555].

Hydrochloride $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl} \quad$ mol.wt. 245.71 (m.p. > 300 ${ }^{\circ}$) [6555].
1-[2-Hydroxy-4-(1-methylethyl)phenyl]-1-propanone-2,2,3,3,3- d_{5} $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{D}_{5} \mathrm{O}_{2} \quad$ mol.wt. 197.29

Ion $\left(1^{-}\right)$, radical ion $\left(1^{-}\right)$[72051-85-5], ESR spectrum [6350].
1-[4,5-Dichloro-3-hydroxy-2-(2-propenyl)phenyl]-1-propanone

[113730-43-1]	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$	mol.wt. 259.13
OH	Synthesis	

Synthesis

- Obtained by heating 2-allyl-4,5-dichloro-3-hydroxy-propiophenone (m.p. 50°) at 235° for 8 min (Claisen rearrangement) (59\%) [6386].
m.p. 80° [6386]; ${ }^{1} \mathrm{H}$ NMR [6386].

1-[2-Hydroxy-4-(2-propynyloxy)phenyl]-1-propanone

1-(3,5-Dibromo-2-methoxy-4,6-dimethylphenyl)-1-propanone
[5384-17-8]
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2} \quad$ mol.wt. 350.05

Synthesis

- Preparation by reaction of dimethyl sulfate with 3,5-di-bromo-4,6-dimethyl-2-hydroxypropiophenone in methanol in the presence of aqueous sodium hydroxide [6981].
m.p. 70° [6981].

1-[2-Hydroxy-3-(1-propenyl)phenyl]-1-propanone

[35888-89-2]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 190.24 Syntheses

- Preparation by potassium hydroxide-catalyzed isomerization of 3-allyl-2-hydroxypropiophenone [6933] in refluxing diethylene glycol (55\%) [6935].
- Also refer to: [6934,7443,7444] (Japanese patents) and [6936,7445,7446].

1-[2-Hydroxy-3-(1-propenyl)phenyl]-1-propanone (E)

[187276-37-5]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 190.24
Synthesis

- Refer to: [7269].

1-[2-Hydroxy-3-(2-propenyl)phenyl]-1-propanone

[35888-91-6]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 190.24
Syntheses

- Obtained by Claisen rearrangement of 2-(allyloxy)-propiophenone (b.p. ${ }_{5.5}$ $112-113^{\circ}$) without solvent at $250-260^{\circ}$ (79\%) [7447].
- Also refer to: [6933-6935,7443,7446].
b.p. $100-102^{\circ}$ [7447].

1-[4-Hydroxy-3-(2-propenyl)phenyl]-1-propanone

[91496-09-2]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 190.24
Syntheses

- Obtained by Claisen rearrangement of 4-(allyloxy)propiophenone (b.p. 4.5 140-142 ${ }^{\circ}$) [7447],
- in boiling dimethylaniline [6667], for 5-6 h [7448];
- without solvent at $200-210^{\circ}$ for 12 h [6667] or at $260-270^{\circ}(80 \%)$ [7447].
- Also refer to: [7449].
b.p. ${ }_{21} 203-204^{\circ}$ [7448]; m.p. 83° [6667,7448], 65° [7447].

One of the reported melting points is obviously wrong.
1-[2,4-Dihydroxy-5-(1-methylethenyl)phenyl]-1-propanone
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24

Synthesis

- Obtained from 2,4-dihydroxy-5-propionyl- β-cinnamic acid on heating above its melting point [6800].

1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-1-propanone

[74815-88-6]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Syntheses

- Preparation by Claisen rearrangement of 4-(allyl-oxy)-2-hydroxypropiophenone,
- at $210-215^{\circ}$ for $1.5 \mathrm{~h}(90 \%)$ [7450] or at 205° for 2 h (85%) [7451];
- in refluxing o-dichlorobenzene for $20-24 \mathrm{~h}(75-80 \%)$ [6766].
- Also refer to: [7452,7453].
m.p. $\quad 124^{\circ}$ [7451]; ${ }^{1} \mathrm{H}$ NMR [7450], MS [7450].

1-[2,6-Dihydroxy-3-(2-propenyl)phenyl]-1-propanone

[17488-75-4]

m.p. $57-59^{\circ}$ [7153].
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Synthesis

- Obtained by heating 6-allyl-8-propionyl-β-methyl-umbelliferone (m.p.136-137.5 ${ }^{\circ}$) in sodium hydroxide solution containing sodium hydrosulfite [7153].

1-[3,6-Dihydroxy-2-(2-propenyl)phenyl]-1-propanone

m.p. $90-91^{\circ}$ [7454], $90-90.5^{\circ}$ [6787];
${ }^{1} H$ NMR [6787], MS [6787].

1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-1-propanone

[106627-40-1]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Syntheses

- Preparation by reaction of allyl bromide with respropiophenone,
- in the presence of potassium carbonate in refluxing acetone for 7 h [7451] or in refluxing methyl ethyl ketone for 3 days (55\%) [7450];
- in the presence of cesium carbonate in DMF at $20^{\circ}(95-98 \%)$ [6766].
b.p. ${ }_{7} 156-162^{\circ}$ [7450], b.p. ${ }_{14} 174^{\circ}$ [7451]; MS [7450].

1-[2-Hydroxy-5-(2-propenyloxy)phenyl]-1-propanone

b.p. ${ }_{10} 163-165^{\circ}$ [6787]; m.p. $50-51^{\circ}$ [6787,7454];
${ }^{1} \mathrm{H}$ NMR [6787], MS [6787].

1-[5-(Acetoxymethyl)-2-hydroxyphenyl]-1-propanone

[108540-33-6] | Synthesis |
| :--- |
| - Preparation by reaction of sodium acetate with 5-chloro- |
| methyl-2-hydroxypropiophenone in acetic acid at |
| 125-130 |

1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]-1-propanone

[130737-47-2]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Syntheses

- Preparation by partial acetylation of 2, 4-dihydroxy-3-methylpropiophenone[7113] with acetyl chloride in the presence of boron trifluoride etherate [7114].
- Also refer to: [7455].

1-[2-(Acetyloxy)-5-methoxyphenyl]-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Synthesis

- Preparation by acetylation of 2-hydroxy-5-methoxypropiophenone [7149].
m.p. 54° [7149].

5-Ethyl-2-hydroxy-3-(1-oxopropyl)benzoic acid

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Synthesis

- Obtained by Fries rearrangement of 5-ethyl-2-propionoxy-benzoic acid according to [7268], (45\%) [6926].
m.p. $135-136^{\circ}$ [6926].

1-[2-Hydroxy-5-(1-oxopropoxy)phenyl]-1-propanone

[459124-92-6] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Syntheses

- Obtained by Fries rearrangement of 1,4-dipropiony-loxy-benzene with aluminium chloride (20%) [6745], at 142° for $30 \mathrm{~min}[6783,6798]$ or at 120° for $4 \mathrm{~h}(43 \%)$ [6733].
- Also obtained by heating 2-propionylhydroquinone with propionic anhydride [6745].
m.p. $71-73^{\circ}$ [6783,6798], 71° [6733], 53° [6745].

One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [6783,6798], IR [6733,6783,6798], UV [6733].

2-Hydroxy-3-(1-oxopropyl)benzoic acid ethyl ester

[35888-93-8]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
Syntheses

- Obtained by esterification of the corresponding acid [6935].
- Also refer to: [6933,6936,7269].

4-Hydroxy-3-(1-oxopropyl)benzoic acid ethyl ester

[100117-91-7]	Syntheses
Obtained by reaction of propionyl chloride with ethyl p-hydroxybenzoate in the presence of aluminium chloride in tetrachloroethane at 120° for 3-4 $\mathrm{h}[6941]$.	
- Also refer to: [6942].	

m.p. $73-75^{\circ}$ [6942], 65° [6941].

One of the reported melting points is obviously wrong.

2-Methoxy-5-(1-oxopropyl)benzoic acid methyl ester

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Syntheses

- Preparation by methylation of 5-propionylsalicylic acid with dimethyl sulfate in 25% sodium hydroxide at 80° (62\%) [6937,7005].
- Also obtained by refluxing 1 h methyl 5-propionylsalicylate in a methanolic solution of sodium methoxide with dimethyl sulfate (74\%) [6937,7005].
m.p. 83.5-84.5 ${ }^{\circ}$ [6937,7005].

4-Methoxy-3-(1-oxopropyl)benzoic acid methyl ester
[91497-18-6]

m.p. 74-75 ${ }^{\circ}$ [6943].

1-[2,4,6-Trihydroxy-3-(2-propenyl)phenyl]-1-propanone

[85602-23-9]	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
OH	Syntheses
	- Preparation by alkenylation of phloropropiophenone with allyl chloride in aqueous ethyl ether in the presence of sodium carbonate and cuprous chloride at r.t. for $3 \mathrm{~h}(90 \%)$ [7456]. - Also refer to: [7457].
m.p. 157-159 ${ }^{\circ}$ [7456];	${ }^{13} \mathrm{C}$ NMR [7456,7458], IR [7456], MS [7456].
USE: Fungicide [7457].	
BIOORGANIC ACTIVIT	Y: Bactericide [7457].

2,4-Dimethoxy-6-(1-oxopropyl)benzoic acid
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24

Synthesis

- Obtained by heating 3,5-dimethoxyphthalic anhydride, propionic acid and sodium propionate at $170-180^{\circ}$ for 1.5 h [7325].

3,5-Dimethoxy-2-(1-oxopropyl)benzoic acid

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24

m.p. 160° [7325].

Synthesis

- Obtained by heating 3,5-dimethoxyphthalic anhydride, propionic acid and sodium propionate at $170-180^{\circ}$ for 1.5 h [7325].

5-Ethyl-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid

[105339-17-1]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24
Syntheses

- Obtained by Fries rearrangement of methyl 2,4-dipropio-noxy-5-ethylbenzoate (m.p. 89°) with aluminium chloride at $110-120^{\circ}$ for 1 h (26\%) [6450].
- Also obtained by Friedel-Crafts acylation of methyl 2,4-di-hydroxy-5-ethylbenzoate with propionic anhydride in the presence of aluminium chloride in nitrobenzene, first at $25-30^{\circ}$ for 20 h , then at 105° for 4 h [6450].
- Also obtained by treatment of methyl 5-ethyl-2,4-dihydroxy-3-propionylbenzoate with 10% sodium hydroxide solution at r.t. for 24 h [6450].
m.p. 183° [6450].

1-(3-Bromo-6-methoxy-2,4-dimethylphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{2}$
mol.wt. 271.15

Syntheses

- Preparation by reaction of dimethyl sulfate with 3-bromo-6-hydroxy-2,4-dimethylpropiophenone [6351].
- Preparation by reaction of bromine with 2-meth-oxy-4,6-dimethylpropiophenone in dilute acetic acid at r.t. for 2 h [6980].
${ }^{1} \mathrm{H}$ NMR [6980].

1-(3-Chloro-4-hydroxy-5-propylphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad$ mol.wt. 226.70

Synthesis

- Preparation by heating a suspension of sodium propionate and 2-chloro-6-propylphenol in neat triflic acid [6402].

1-(3-Chloro-6-methoxy-2,4-dimethylphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}$
mol.wt. 226.70
Synthesis

- Obtained by reaction of propionic anhydride with 4-chloro-3,5-dimethylanisole in the presence of aluminium chloride in refluxing carbon disulfide (55\%) [7278].
m.p. 66.5-67.5 ${ }^{\circ}$ [7278].

1-(5-Chloro-2,4-dihydroxy-3-propylphenyl)-1-propanone

[612812-31-4] $\quad \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{3} \quad$ mol.wt. 242.70

Synthesis

- Preparation by heating a mixture of 4-chloro-2-propylresorcinol, sodium propionate and triflic acid [7459].

4-Hydroxy-3-(1-oxopropyl)propionanilide

[91641-62-2]

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 221.26
Syntheses

- Obtained by Fries rearrangement of p-aminophenol dipropionate (m.p. 165°) with aluminium chloride at 140° for $1 \mathrm{~h}(60 \%)$ [7460].
- Also refer to: [7283].
m.p. 125° [7460].

2-Methoxy-5-(1-oxopropyl)acetanilide

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 221.26

Synthesis

- Obtained by reaction of acetic anhydride with 3-amino-4-methoxypropiophenone at r.t. for 12 h [7002].
m.p. $134-138^{\circ}$ [7002].

3-Methoxy-4-(1-oxopropyl)acetanilide

1-(2,4,6-Trihydroxy-3-nitro-5-propylphenyl)-1-propanone

[119691-98-4]	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{6} \quad$ mol.wt. 269.25
OH	Synthesis
	- Obtained by reaction of fuming nitric acid with 3'-propyl-2', 4', 6'-trihydroxypropiophenone in acetic acid at $60^{\circ}(30-40 \%)$ [6561].
m.p. $100-102^{\circ}$ [6561];	
${ }^{1} \mathrm{H}$ NMR [6561], IR [6561],	MS [6561].

1-(3,4,5-Trimethoxy-2-nitrophenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{6} \quad$ mol.wt. 269.25

Synthesis

- Obtained from ethyl α-(nitrotrimethylgallyl)propionate by boiling a short time with dilute sulfuric acid [7461].
heavy brown oil [7461].

1-(2-Ethyl-6-hydroxy-4-methylphenyl)-1-propanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad \text { mol.wt. } 192.26
$$

Syntheses

- Preparation by Fries rearrangement of 3-ethyl-5-methyl-phenyl propionate (b.p. ${ }_{28} 142^{\circ}$) with aluminium chloride,
- without solvent at 130° for $2 \mathrm{~h}(78 \%)$ [6480];
- in nitrobenzene at 25° for $6 \mathrm{~h}(80 \%)$ [6480].
- To see (12i) [6407].
b.p. 240° [6480].

1-(3-Ethyl-4-hydroxy-5-methylphenyl)-1-propanone

 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26 Synthesis

- Obtained by Fries rearrangement of 2-methyl-6-ethylphenyl propionate with aluminium chloride at 120° (73\%) [7304].
m.p. $101-102^{\circ}$ [7304].

1-(5-Ethyl-2-hydroxy-3-methylphenyl)-1-propanone

1-(2-Ethyl-3-methoxyphenyl)-1-propanone

[17055-42-4]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Syntheses

- Preparation by reaction of 2-ethyl-3-methoxybenzonitrile with ethylmagnesium bromide (60\%) [7130] or ethyl-magnesium iodide (69\%) [7129].
- Also refer to: [7462].
b.p. ${ }_{0.2} 82-84^{\circ}$ [7130], b.p. 142° [7129].

1-(2-Ethyl-6-methoxyphenyl)-1-propanone

Synthesis

- Obtained from o-bromoanisole by treatment with sodium amide and diethyl ketone in THF at 65° for 6 h (30\%) [7463].
${ }^{1} \mathrm{H}$ NMR [7463], IR [7463].

1-(3-Ethyl-4-methoxyphenyl)-1-propanone

[2129-07-9] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
 Syntheses

- Preparation by Friedel-Crafts acylation of 2-ethylanisole with propionyl chloride in the presence of aluminium chloride in carbon disulfide [7350], (81\%) [7464].
b.p. ${ }^{145-147^{\circ}}$ [7464].

BIOLOGICAL ACTIVITY: Antiinflammatory [7350].
Semicarbazone $\quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 249.31 (m.p. 175 ${ }^{\circ}$) [7464].
2,4-Dinitrophenylhydrazone $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 372.38 (m.p. 155 $)$ [7464].

1-(4-Ethyl-2-methoxyphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Preparation by reaction of dimethyl sulfate with 4-ethyl-2-hydroxypropiophenone in the presence of 10% aqueous sodium hydroxide at r.t. (87\%) [7290].
b.p. ${ }_{29} 215^{\circ}$ [7290].

1-[2-Hydroxy-4-(1-methylethyl)phenyl]-1-propanone

 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Refer to: [6350].
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$

N.B.: Ion (1^{-}), radical ion $\left(1^{-}\right)$[72051-84-4], ESR spectrum [6350].

1-[2-Hydroxy-5-(1-methylethyl)phenyl]-1-propanone

Hydrazone [70136-41-3] $\quad \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \quad$ mol.wt. 206.29 [6646].

1-[4-Hydroxy-3-(1-methylethyl)phenyl]-1-propanone

[1807-41-6] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Preparation by Fries rearrangement of o-isopropylphenyl propionate with aluminium chloride in nitrobenzene at r.t. for 3 days, then at $50-60^{\circ}$ for $3-4 \mathrm{~h}(64 \%)$ [7465].
- Refer to: [7289].
m.p. 123° [7465].

1-(2-Hydroxy-3-propylphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Obtained (poor yield) by Fries rearrangement of 2-propyl-phenyl propionate (b.p. ${ }_{11} 120^{\circ}$)
[7466] with aluminium chloride at $130-135^{\circ}$ for $30 \mathrm{~min}(15 \%)$ [7466] or at 120° according to [6961], (87\%) [7467].
N.B.: The compound obtained by [7467] is in reality the para isomer, 4-hydroxy-3-propyl-propiophenone.
b.p. ${ }_{13} 142^{\circ}$ [7466], b.p. 164° [7467]. Boiling points incoherents.
m.p. 78-79 ${ }^{\circ}$ [7467], 43° [7466].

One of the reported melting points is obviously wrong.
1-(2-Hydroxy-4-propylphenyl)-1-propanone $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
 Synthesis

- Preparation by reaction of propionic acid with m-propyl-phenol in the presence of zinc chloride for 5 h at 180° (Nencki reaction) (38\%) [7468].
b.p. ${ }_{0.7} 90^{\circ}$ [7468], b.p. ${ }_{13} 124-125^{\circ}$ [7468].

1-(2-Hydroxy-5-propylphenyl)-1-propanone

	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
OH	Syntheses
	- Preparation by Fries rearrangement of p-propylphenyl propionate (b.p. 254-256 ${ }^{\circ}$ [6575] with aluminium
	chloride for 2 h at 100° and the reaction terminated at
$\mathrm{C}_{3} \mathrm{H}_{7}$	$120^{\circ}(83 \%)$ [6575] or at 120° according to [6961], (61\%) [7467].

b.p. ${ }_{3} 115-118^{\circ}$ [7467], b.p. 270° [6575].

1-(4-Hydroxy-3-propylphenyl)-1-propanone

[194792-41-1] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26 Syntheses

- Preparation by Fries rearrangement of 2-propylphenyl propionate (b.p. ${ }_{1.3-1.4} 84-86^{\circ}$) [7469], (b.p. . $_{11} 120^{\circ}$) [7466], (b.p. 245°) [6575] with aluminium chloride at 120° according to [6961] (87%) [7467], for 2 h at 100° and the reaction terminated at $120^{\circ}(70 \%)$ [6575], for 30 min at $130-135^{\circ}$ (63\%) [7466] or for 3 h at $140-150^{\circ}(51 \%)$ [7469].
- Also obtained by reaction of propionyl chloride with 2-propylphenol in the presence of aluminium chloride in nitrobenzene at r.t. overnight (Behn's method) [7470].
- Also refer to: [7289,7452,7471].
b.p. 164° [7467];
m.p. $80-81^{\circ}$ [7470], $78-79^{\circ}$ [7467], 77-78ํ [7469], 77° [6575], 75° [7466];
${ }^{1} \mathrm{H}$ NMR [7469], ${ }^{13} \mathrm{C}$ NMR [7469].

1-(2-Methoxy-3,4-dimethylphenyl)-1-propanone

[107075-91-2]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Refer to: [7292].

1-(2-Methoxy-3,5-dimethylphenyl)-1-propanone

[5384-04-3]
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 192.26
Syntheses

- Preparation by reaction of dimethyl sulfate with 3,5-di-methyl-2-hydroxypropiophenone in methanol in the presence of aqueous sodium hydroxide [6981].
- Also refer to: [7292].
b.p. ${ }_{13} 154^{\circ}$ [6981];
m.p. $-17^{\circ}[6981] ; \mathrm{n}_{\mathrm{D}}^{20}=1.523$ [6981].

1-(2-Methoxy-3,6-dimethylphenyl)-1-propanone

[107075-92-3]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Synthesis

- Refer to: [7292].

1-(2-Methoxy-4,5-dimethylphenyl)-1-propanone

[36871-58-6]

b.p. ${ }_{25} 190^{\circ}$ [7472]; m.p. 69° [7472].

1-(2-Methoxy-4,6-dimethylphenyl)-1-propanone

[5384-14-5]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Syntheses

- Preparation by reaction of propionic anhydride with 3,5-di-methylanisole in the presence of aluminium chloride in refluxing carbon disulfide (75\%) [7278].
- Also obtained by reaction of dimethyl sulfate with 2-hydroxy-4,6-dimethylpropiophenone in the presence of aqueous or dilute methanolic sodium hydroxide [7278].
- Also refer to: [6980,7292].
b.p. $._{2} 120-122^{\circ}$ [7278], b.p..$_{13} 143^{\circ}$ [6981], b.p..$_{36} 175^{\circ}$ [7290];
m.p. $28-29^{\circ}$ [6981]; IR [6981].

1-(4-Methoxy-2,3-dimethylphenyl)-1-propanone

[90852-26-9] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
 Synthesis

- Refer to: [7473] (Japanese patent).

1-(4-Methoxy-2,5-dimethylphenyl)-1-propanone

[36871-56-4] \quad\begin{tabular}{l}
Syntheses

- Preparation by reaction of dimethyl sulfate with
4-hydroxy-2,5-dimethylpropiophenone in methanolic
sodium hydroxide solution [6980].

- Also refer to: [7292].
\end{tabular}

IR [6980].
1-(4-Methoxy-2,6-dimethylphenyl)-1-propanone

1-(4-Methoxy-3,5-dimethylphenyl)-1-propanone

[5384-11-2]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
Syntheses

- Preparation by reaction of dimethyl sulfate with 3, 5-di-methyl-4-hydroxypropiophenone in methanol in the presence of 20% potassium hydroxide (90%) [6981].
- Also refer to: [7292,7474].
b.p. ${ }_{12} 154-156^{\circ}$ [6981]; m.p. $27^{\circ}[6981]$.

1-(2,4-Dihydroxy-3-propylphenyl)-1-propanone

[79558-49-9]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by reaction of propionitrile with 2-propyl-resorcinol (Hoesch reaction) (80\%) [7451].
- Also obtained by reaction of hydrogen with 3-allyl-respropiophenone,
- in the presence of PdCl_{2} in ethanol for 1 h [7451];
- in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in MTBE (tert-butyl methyl ether) (quantitative yield) [6766];
- in the presence of Raney nickel at r.t. for 4.5 h at 60 psi of hydrogen (18%) [7450].
- Preparation by reaction of propionic acid with 2-propylresorcinol in the presence of hydrobromic acid [7475].
- Also obtained by heating a mixture of 2-propylresorcinol, sodium propionate and triflic acid (TfOH) [7459].
- Also refer to: [7452,7476-7483].
m.p. $109-110^{\circ}$ [7451]; MS [7450].

1-(2,4-Dihydroxy-5-propylphenyl)-1-propanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 208.26
$$

 Syntheses

- Preparation by Fries rearrangement of 4-propylresorcinol dipropionate in the presence of aluminium chloride (2 equiv) without solvent at $60-70^{\circ}$ for $3-4 \mathrm{~h}$ or in nitrobenzene at 110° for 5 h [7383].
- Preparation by reaction of propionitrile with 4-propyl-resorcinol (Hoesch reaction) (80\%) [7115].
b.p. ${ }_{9.5} 190-195^{\circ}$ [7383]; m.p. $82^{\circ}[7115,7484], 73-74^{\circ}[7383]$.

1-(2,6-Dihydroxy-3-propylphenyl)-1-propanone

 $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Obtained by catalytic reduction of 2,6-dipropionylresorcinol with Pd in acetic acid [7383].
m.p. 92° [7383].

1-(3,6-Dihydroxy-2-propylphenyl)-1-propanone

[28885-63-4] \quad\begin{tabular}{l}
Synthesis

Obtained by catalytic hydrogenation of 2-allyl-3,
6-di-hydroxypropiophenone [7454] over Pd / C in
ethanol with hydrogen at 1 atmosphere for $3.5 \mathrm{~h}(89 \%)$
[6787].

\end{tabular}

m.p. $114-114.5^{\circ}$ [6787], 114° [7454]; ${ }^{1} \mathrm{H}$ NMR [6787], MS [6787].

1-(2,3-Dimethoxy-5-methylphenyl)-1-propanone

[108439-93-6]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by reaction of 2,3-dimethoxy-5-methylbenzoyl chloride with zinc ethyl iodide (prepared according to [7309] in toluene at r.t. for 2 h (70\%) [7110]).
- Obtained by reaction of 2,3-dimethoxy-5-methylbenzonitrile and ethylmagnesium bromide [7370]. N.B.: Analysis showed that the oil had a composition corresponding to a mixture of about equal parts of 2,3-dimethoxy-5-methylpropiophenone and 2-ethyl-3-methoxy-5-methylpropiophenone. This oil by distillation in vacuo gave no apparent separation [7370].
- Also refer to: [6351,7285].
oil [7370];
b.p. $100-102^{\circ}$ [7370], b.p. $._{0.2} 103-105^{\circ}$ [6351], b.p. ${ }_{0.2-0.3} 104-105^{\circ}$ [7110];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 49339 \mathrm{M}$), IR (Sadtler: standard $\mathrm{n}^{\circ} 76412 \mathrm{~K}$).

1-(2,4-Dimethoxy-3-methylphenyl)-1-propanone

[77942-13-3]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by methylation of 2,4-dihydroxy-3-methyl-propiophenone [6530] with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 48 h (86\%) [7111].
- This dimethyl ether can be obtained by reaction of propionyl chloride with 2,6-dimethoxytoluene, according to the procedure used to prepare the acetyl derivative (92-99\%) [7485,7486].
- Also refer to: [7112].
m.p. $40-41^{\circ}$ [7111]; ${ }^{1} \mathrm{H}$ NMR [7111], IR [7111], UV [7111], MS [7111].

1-(2,4-Dimethoxy-5-methylphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 208.26
Synthesis

- Preparation by reaction of propionyl chloride with 1,3-dimethoxy-4-methylbenzene in the presence of stannic chloride in carbon disulfide (80\%) [7111].
m.p. 72.5-73.5ํ [7111]; ${ }^{1} \mathrm{H}$ NMR [7111], IR [7111], UV [7111], MS [7111].

1-(2,4-Dimethoxy-6-methylphenyl)-1-propanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 208.26
$$

Synthesis

- Obtained by reaction of dimethyl sulfate with 2,4-di-hydroxy-6-methylpropiophenone in the presence of aqueous sodium hydroxide [6744].
m.p. $42-43^{\circ}$ [6744].

1-(2,5-Dimethoxy-4-methylphenyl)-1-propanone

[13720-53-1]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by reaction of propionyl chloride with 2,5-dimethoxytoluene in the presence of aluminium chloride in carbon disulfide (75%) [7281].
- Also refer to: [7487].
m.p. $76-77^{\circ}$ [7281].

1-(4,5-Dimethoxy-2-methylphenyl)-1-propanone

[3307-02-6]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Synthesis

- Preparation by reaction of propionyl chloride with homoveratrole (3,4-dimethoxytoluene) in carbon disulfide in the presence of aluminium chloride (82\%) [7488].
b.p. 165° [7488]; m.p. 55° [6351], 40° [7488]. One of the reported melting points is obviously wrong.
${ }^{1}$ H NMR (Sadtler: standard n° 49336M), IR (Sadtler: standard $n^{\circ} 76409 \mathrm{~K}$).

1-(3-Ethoxy-4-methoxyphenyl)-1-propanone

[833-53-4] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Syntheses

- Obtained by ethylation of 3-hydroxy-4-methoxy-propiophenone formed from guaiacol propionate by Fries reaction [6850].
- Also prepared by oxidation of the secondary alcohol obtained from 3-ethoxy-4-methoxybenzaldehyde and ethylmagnesium iodide [6850].
- Also obtained by hydration of 3-ethoxy-4-methoxy-1-propynylbenzene [7489]. m.p. $66-67^{\circ}$ [6850], 65-65.7 ${ }^{\circ}$ [7489].

1-[3-(Ethoxymethyl)-4-hydroxyphenyl]-1-propanone

[136715-22-5] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Preparation [7392] (Czech patent).
- USE: Pharmaceutical intermediate [7392].

1-[5-(Ethoxymethyl)-2-hydroxyphenyl]-1-propanone

[100257-32-7] \quad\begin{tabular}{l}
Synthesis

Obtained by reaction of 95% ethanol with 5-chlorom-
ethyl-2-hydroxypropiophenone in the presence of iron
and concentrated hydrochloric acid at r.t. for $2 \mathrm{~h}(56 \%)$

[6986].
\end{tabular}

b.p. ${ }_{4} 145-147^{\circ}$ [6986]; m.p. $31.5-34^{\circ}$ [6986].

1-(4-Ethyl-3-hydroxy-5-methoxyphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Refer to: [7434].

1-(2-Hydroxy-6-methoxy-3,4-dimethylphenyl)-1-propanone

[185207-93-6]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Refer to: [7490,7491].

1-[2-Hydroxy-4-(1-methylethoxy)phenyl]-1-propanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 208.26
$$

Synthesis

- Refer to: [7492].

Oxime [214398-51-3] $\quad \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 223.27.
USE: Spectrophotometric reagent for iron [7492].
1-(2-Hydroxy-4-propoxyphenyl)-1-propanone
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Refer to: [7493].

Oxime [77697-21-3] $\quad \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 223.27.
USE: For spectrophotometric determination of various metals: copper [7493,7494], molybdenum [7495] or vanadium [7496].

1-(3-Hydroxy-4-propoxyphenyl)-1-propanone
[54560-82-6] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Obtained (by-product) by reaction of 3,4-meth-ylenedioxy-benzonitrile and ethyl magnesium bromide in toluene for $30 \mathrm{~min}(4 \%)$ [7497].
m.p. 81.5-82.5² [7497]; ${ }^{1} \mathrm{H}$ NMR [7497], IR [7497], UV [7497], MS [7497]; TLC [7497];

1-(4-Hydroxy-3-propoxyphenyl)-1-propanone
[54560-83-7] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
 Synthesis

- Obtained (by-product) by reaction of 3,4-methylenedioxybenzonitrile and ethyl magnesium bromide in toluene for 30 min (3\%) [7497].
m.p. 76.5-77º [7497]; ${ }^{1} \mathrm{H}$ NMR [7497], IR [7497], UV [7497], MS [7497]; TLC [7497].

1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-1-propanone

[124300-17-0]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Syntheses

- Obtained by reaction of ethoxymethyl chloride with respropiophenone in the presence of potassium carbonate in acetone at 60° for 3 h (37\%) [6757].
- Also obtained by treatment of 4-ethoxymethoxy-2-hydroxy- α-(hydroxymethyl) propiophenone (pale yellow oil) with 4% aqueous sodium carbonate in refluxing ethanol for $1.5 \mathrm{~h}(36 \%)$ [6757].
pale yellow oil [6757]; ${ }^{1} \mathrm{H}$ NMR [6757], IR [6757], UV [6757]; TLC [6757].
1-(2-Hydroxy-3,4-dimethoxy-6-methylphenyl)-1-propanone
[81421-70-7] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
 Syntheses
- Obtained by Friedel-Crafts acylation of 3,4, 5-trimethoxy-toluene with propionyl chloride in the presence of aluminium chloride,
- in carbon tetrachloride at r.t. for $1.3 \mathrm{~h}(30 \%)$ [7388];
- in ethyl ether, first at 10° for 1 h , then at r.t. overnight (68\%) [7120].

Isolation from natural sources

- From Juniperus sabina (Cupressaceae) [7387].
- Obtained by alkaline degradation of 8-Methoxycoumarsabin with potassium hydroxide in refluxing methanol for 2 h (41\%) [7388]. 8-Methoxycoumarsabin (3,5-dimethyl-4,7,8-tri-methoxycoumarin) (m.p. 125-126 ${ }^{\circ}$) was isolated from the leaves of Juniperus sabina (Cupressaceae).
m.p. $104-106^{\circ}$ [7120,7387], 103-104 ${ }^{\circ}$ [7388]; ${ }^{1} \mathrm{H}$ NMR [7120,7387,7388], ${ }^{13}$ C NMR [7387], IR [7387,7388],
UV [7387,7388].
1-(2-Hydroxy-3,5-dimethoxy-4-methylphenyl)-1-propanone
[383187-35-7] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26

Syntheses

- Preparation by Fries rearrangement of 2,4-dimethoxy-3-methylphenyl propionate in the presence of boron trifluoride dimethyl etherate for 3 h at $90^{\circ}(74-76 \%)$ [7498,7499].
m.p. 78-79 ${ }^{\circ}$ [7499]; ${ }^{1} \mathrm{H}$ NMR [7499], ${ }^{13} \mathrm{C}$ NMR [7499], IR [7499], MS [7499], HRMS [7499].

1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-1-propanone

[69480-07-5] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26

Syntheses

- Refer to: [6895,7500].
m.p. 133° [6895];

GLC [6895], TLC [6895], paper chromatography [6895].
1-[2-Methoxy-5-(methoxymethoxy)phenyl]-1-propanone

1-(2,3,4-Trimethoxyphenyl)-1-propanone

[18060-58-7]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Syntheses

- Preparation by reaction of propionic anhydride with pyrogallol trimethyl ether in the presence of PPA at $45-60^{\circ}$ for 3 h (82\%) [7502].
- Obtained by reaction of ethylmagnesium bromide with 2,3,4-trimethoxybenzonitrile (25\%) [6973].
- Also refer to: [7343,7433,7434,7503]. b.p. ${ }_{0.2} 118-119^{\circ}$ [6973], b.p. $131-138^{\circ}$ [7502];
${ }^{1} \mathrm{H}$ NMR [7502], IR [7502], MS [7503].
1-(2,4,5-Trimethoxyphenyl)-1-propanone (Isoacoramone)

- with propionic anhydride catalyzed either by iodine or aluminium chloride [7504], (95\%) [7505];
- with propionyl chloride in the presence of aluminium chloride in methylene chloride at 10° for $1 \mathrm{~h}(80 \%)$ [7506] or in carbon disulfide (67\%) [7254,7507], (60\%) [7281,7401].
- Also obtained by treatment of 2-hydroxy-4,5-dimethoxypropiophenone with dimethyl sulfate in the presence of sodium hydroxide [7401].
- Also obtained by reaction of dimethyl sulfate with 2,5-dihydroxy-4-methoxypropiophenone in the presence of alkali (61\%) [7254].
- Also obtained by oxidation of 1-(3,4,5-trimethoxyphenyl)propane with DDQ in wet dioxane/silica gel under sonication (64\%) [7093].
- Also obtained by heating dibromoasarone with zinc powder in the presence of potassium hydroxide at reflux some hours [7508].
- Also refer to: [7509].

Isolation from natural sources

- From the root of Asarum maximum [7369].
- From Acorus tatarinowii (Araceae) [7510].
- From Piper marginatum [7511].
- Also refer to: [7280,7433,7434].
b.p. ${ }_{13} 186^{\circ}$ [7508];
m.p. $108.5-109.5^{\circ}$ [7254], $108-110^{\circ}$ [7506], 108-109 ${ }^{\circ}$ [7093,7281], 106-108 ${ }^{\circ}$ [7401,7507,7508], 105-106 ${ }^{\circ}$ [7505]; ${ }^{1} \mathrm{H}$ NMR [7093, 7505,7510,7512], ${ }^{13} \mathrm{C}$ NMR [7093,7510],
IR [7505,7510], MS [7505].
BIOLOGICAL ACTIVITY: Hypolipaemic effect [7504]; toxicity [7504].
Oxime $\quad \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 239.27 (m.p. $106-108^{\circ}$) [7507].
Semicarbazone $\quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \quad$ mol.wt. 281.31 (m.p. 165-167) [7507].

1-(2,4,6-Trimethoxyphenyl)-1-propanone

[834-94-6]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Syntheses

- Obtained by reaction of propionic acid with phloropropiophenone trimethyl ether in the presence of PPA as a condensing agent [7326,7513], (55\%) [7514].
- Also obtained by reaction of propionitrile with phloroglucinol trimethyl ether [7515].
- Also obtained from trans-2,4,6-trimethoxy-1-propenylbenzene by a Wacker oxidation [7097].
- Also obtained (by-product) by reaction of propionyl chloride with phloroglucinol trimethyl ether in the presence of aluminium chloride in ethyl ether [7405].
- Refer to: [7516-7518].
m.p. ${136-137^{\circ} \text { [7405], } 89^{\circ} \text { [7514], } 85^{\circ} \text { [7515], } 84.5-85^{\circ} \text { [7326], }}^{\text {(73 }}$
$82-83^{\circ}$ [7516]. One of the reported melting points is obviously wrong.
IR [7326].
USE: 3D QSAR study of hypolipidemic asarones by comparative molecular surface analysis [7519].

1-(3,4,5-Trimethoxyphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Syntheses

- Obtained by reaction of 5\% ethanolic potassium hydroxide with 2-(3,4,5-trimethoxybenzoyl)-2-methylacetic acid ethyl ester (m.p. 40°) at 60° for 1 h (76\%) [7520], (73\%) [7521].
- Also obtained by oxidation of ethyl-(3,4,5-trimethoxy-phenyl)carbinol with DDQ in dioxane at 20° for $14 \mathrm{~h}(89 \%)$ [7522].
- Also obtained by reaction of ethylmagnesium bromide with 3,4,5-trimethoxybenzonitrile (56%) [7349] or with 3,4,5-trimethoxybenzamide [6591] or 3,4, 5-trimethoxybenzaldehyde (83\%) [7523] or still with 3,4,5-trimethoxybenzoyl chloride (87\%) [7524].
- Also obtained by reaction of diethylcadmium with 3,4,5-trimethoxybenzoyl chloride [7525].
- Also obtained by reaction of ethyllithium with 3,4,5-trimethoxy-N,N-dimethylbenzamide (51\%) [7526].
- Also obtained by bubbling ozone through the warm solution of 3-(3,4,5-trimethoxyphenyl)-pentene(2) in 70\% acetic acid for 4 h (45\%) [7527], (60\%) [7528].
- Also obtained by oxidation of 1-(3,4,5-trimethoxyphenyl)propane with DDQ in wet dioxane/silica gel under sonication (65\%) [7093,7512].
- Also obtained by oxidation of 1-(3,4,5-trimethoxyphenyl)-1-propanol with Jones reagent [7529,7530].
- Also refer to: [6828,7340,7343,7411,7531-7536], (74-84\%) [7537], (66\%) [7538,7539].

Isolation from natural sources

- From Virola surinamensis (Myristicaceae) [6523].
b.p. ${ }_{11} 177-178^{\circ}$ [7521], b.p. ${ }_{10} 181-182^{\circ}$ [7525], b.p. ${ }_{40} 210^{\circ}$ [7527];
m.p. 53.5° [7527], 53-56 ${ }^{\circ}$ [7538], 53-55.5ํ [7526], 53-54ํ [7524], 53° [6591,7520], 52-53 ${ }^{\circ}$ [7093,7512,7523], 52° [7349], $51-53^{\circ}$ [7529], 51.5-52.5ํ [7525], 51-52 ${ }^{\circ}$ [7521];
${ }^{1} H$ NMR [6523,7093,7512,7523,7524,7529],
${ }^{13}$ C NMR [6523,7093], IR [6523], UV [7213], MS [6523,7529].
USE: Fungicide [7539]; antioxidizing agent [6846].
1-[2-Hydroxy-5-(2,3-dihydroxypropoxy)phenyl]-1-propanone
3-(4-Hydroxy-3-propionylphenoxy)-1,2-propanediol
[956-23-0]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Syntheses
- Preparation by reaction of 3-chloro-1,2propanediol with 2,5-dihydroxypropiophenone in the presence of sodium ethoxide in ethanol [6465].
- Also refer to: [7540], (83\%).
b.p. ${ }_{0.06} 165-173^{\circ}$ [7540]; m.p. $79.5-81^{\circ}$ [6465]; ${ }^{1} \mathrm{H}$ NMR [6465,6472].

1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-1-propanone

[51379-76-1]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 240.26
Syntheses

- Preparation by reaction of propionyl chloride with 1,2,3,5-tetramethoxybenzene (m.p. 47°) [7541] in the presence of aluminum chloride in ethyl ether first at 0°, then at r.t. [7542], (56\%) [7405], (55\%) [7543] or in carbon disulfide at r.t. for 3-4h (33\%) [7541]
- Preparation by reaction of propionic anhydride with 1,2,3,5-tetramethoxybenzene in the presence of aluminium chloride [7544] in ethyl ether, first 5 h at 0°, then at r.t. overnight (66\%) [7545].
- Preparation by partial demethylation of 2,3,4,6-tetramethoxypropiophenone with aluminium chloride in acetonitrile at 50° for $1-2 \mathrm{~h}(82 \%)$ [7442].
- Also refer to: [7546,7547].
m.p. 132° [7545], $129-130^{\circ}$ [7405], 128-129.5 ${ }^{\circ}$ [7543],

128-130 [7442], 124-126 ${ }^{\circ}$ [7541]; ${ }^{1} \mathrm{H}$ NMR [7442,7543], IR [7543]; TLC [7543].

1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
mol.wt. 240.26
Syntheses

- Preparation by hydrogenolysis of 6-(benzyloxy)-2,3,4-tri-methoxypropiophenone over $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate-methanol (1:1) (89\%) [7442].
- Also obtained by partial methylation of 3,6-dihydroxy-2,4-dimethoxypropiophenone with dimethyl sulfate in the presence of potassium carbonate in refluxing benzene for 12 h [7542], (43\%) [7405].
- Also refer to: [7546].
oil [7405]; m.p. 42.5-43.5 ${ }^{\circ}$ [7442]; ${ }^{1} \mathrm{H}$ NMR [7442].

1-(2,5-Dihydroxy-3,4,6-trimethoxyphenyl)-1-propanone

[119232-80-3] \quad\begin{tabular}{l}
Synthesis

- Preparation by Elbs persulfate oxidation of

2-hydroxy-3,4,6-trimethoxypropiophenone

[7548], according to the method [7549].
\end{tabular}

1-(4-Amino-3-ethyl-5-methoxyphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27
Isolation from natural sources

- From paradica and maghraby banana psedudostem [7550].

Note: Banana plant juice and its pulping liquor as anti-corrosive materials [7550].

1-[3-(Dimethylamino)-4-hydroxy-5-methylphenyl]-1-propanone
[141771-83-7] $\quad \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 207.27

Synthesis

- Obtained from methylation of 3-amino-4-hy-droxy-5-methylpropiophenone by methyl iodide and triethylamine in methanol (64\%) [6995].

1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone-2,2,3,3,3- d_{5} $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{D}_{5} \mathrm{O}_{2} \quad$ mol.wt. 211.32
 Synthesis

- Refer to: [6350].

Ion (1^{-}), radical ion (1^{-}) [72051-89-9], ESR spectrum [6350].

1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone-2,2,3,3,3- d_{5}

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{D}_{5} \mathrm{O}_{2}$
mol.wt. 211.32
Synthesis

- Refer to: [6350].

Ion (1^{-}), radical ion $\left(1^{-}\right)$[69858-32-8], ESR spectrum [6350]; high-resolution ESR spectrum [7551].

3-[2,4-Dihydroxy-5-(1-oxopropyl)phenyl]-3-methyl-2-propenoic acid (E)

2,4-Dihydroxy-5-propionyl- β-methylcinnamic acid $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 250.24
 Syntheses

- Obtained (poor yield) by saponification of the residual mixture (m.p. 165-185 ${ }^{\circ}$) obtained in Fries rearrangement of 4-methylumbelliferone propionate (m.p. 150°), after 8-propionyl and 6-propionyl derivatives separation (4\%) [6800].
- Also obtained by hydrolysis of 6-propionyl-4-methyl-umbelliferone (m.p. 228) with sodium hydroxide [6800].
m.p. $164-166^{\circ}$ [6800].

1-[2,3-Bis(acetyloxy)-4-hydroxyphenyl]-1-propanone

[161583-88-6] $\quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 266.25
 Syntheses

- Obtained by enzymatic deacetylation of 2,3,4-triacetoxypropiophenone (m.p. 75-76 ${ }^{\circ}$) with two lipases in various solvents [7552] (see table below).
- Also refer to: [7553].

Solvent	With PPL	
THF	70	50
Acetone	20	20
DIPE	65	65

N.B.: ${ }^{\text {a }}$ PPL $=$ porcine pancreas lipase ${ }^{\mathrm{b}} \mathrm{CCL}=$ candida cylindracea lipase
m.p. 68-70 ${ }^{\circ}$ [7552]; ${ }^{1} \mathrm{H}$ NMR [7552], IR [7552], UV [7552], MS [7552]; TLC [7552].

1-[2,4-Bis(acetyloxy)-6-hydroxyphenyl]-1-propanone

[22665-89-0]

m.p. $69-70^{\circ}$ [6629];

IR [6629,7554]; TLC [6629].
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 266.25
Synthesis

- Obtained (poor yield) by reaction of acetic anhydride with phloropropiophenone in the presence of pyridine at 95° for $2 \mathrm{~h}(7 \%)$ [6629].

1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 266.25
Syntheses

- Obtained by enzymatic deacetylation of 2,4,6-triacetoxy-propiophenone (m.p. 56-57º) [6565] with two lipases in various solvents [7552] (see table below).
- Also obtained by regioselective deacetylation of 2,4,6-tri-acetoxypropiophenone with PPL in THF/n-butanol at $42-45^{\circ}(60 \%)$ [7555].
- Also refer to: [7553].

Solvent	With PPL	
a (yield \%)	With $\mathrm{CCL}^{\mathrm{b}}$ (yield \%)	
THF	60	35
Acetone	35	30
DIPE	50	20

N.B.: ${ }^{\text {a PPL }}=$ porcine pancreas lipase ${ }^{\mathrm{b}} \mathrm{CCL}=$ candida cylindracea lipase
m.p. $\quad 110-114^{\circ}$ [7552]; ${ }^{1} \mathrm{H}$ NMR [7552], MS [7552]; TLC [7552].

4,6-Dihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxylic acid dimethyl ester

 4,6-Dihydroxy-5-propionylisophthalic acid dimethyl ester
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{7} \quad$ mol.wt. 282.25
Synthesis

- Obtained by reaction of propionyl chloride with dimethyl resorcinol-4,6-dicarboxylate in the presence of aluminium chloride in nitrobenzene for 3 h , then at r.t. overnight (75\%) [6809].
m.p. $112-113^{\circ}$ [6809].

2-Ethyl-3-methoxy-5-(1-oxopropyl)benzonitrile

[105838-23-1]

m.p. 110° [6973].
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 217.20
Synthesis

- Preparation by reaction of ethylmagnesium bromide with 4,5-dimethoxyisophthalonitrile (75\%) [6973].

1-[2-Hydroxy-5-methyl-3-(2-propenyl)phenyl]-1-propanone

[108293-74-9] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27

Synthesis

- Obtained by thermal Claisen rearrangement of 2-(allyloxy)-5-methylpropiophenone [7447] at 190° for 20 h in an argon atmosphere (80%) [7556].
m.p. $40-41^{\circ}$ [7556]; ${ }^{1} \mathrm{H}$ NMR [7556], MS [7556].

1-[4-Hydroxy-3-methyl-5-(2-propenyl)phenyl]-1-propanone

[5551-29-1]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
Synthesis

- Preparation by thermal Claisen rearrangement of 4-(allyloxy)-3-methylpropiophenone (b.p. ${ }_{25} 185^{\circ}$) in refluxing N, N-diethylaniline for $7 \mathrm{~h}(95 \%)$ [7557].
b.p. ${ }_{25} 215^{\circ}$ [7557]; m.p. 74° [7557].

1-[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]-1-propanone

b.p. ${ }_{15}$ 197-198 ${ }^{\circ}$ [7448]; m.p. 75° [7448].

1-[3-(Cyclopropylmethyl)-2,4-dihydroxyphenyl]-1-propanone

[194792-34-2]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 220.27

Synthesis

- Refer to: [7452].

1-[2-Hydroxy-4-methoxy-5-(2-propenyl)phenyl]-1-propanone
[869562-75-4]

1-[2-Hydroxy-5-methoxy-3-(2-propenyl)phenyl]-1-propanone [102569-09-5]

1-[2-Hydroxy-6-methoxy-3-(2-propenyl)phenyl]-1-propanone
[17488-54-9]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis

- Refer to: [7559].
- Also obtained by isomerization of 2-(allyloxy)-6-methoxypropiophenone by distillation at a high pressure and long storage or by heating in a sealed tube for 24 h at $215-220^{\circ}$ (Claisen rearrangement) (30\%) [7153].
b.p. ${ }_{2} 126-130^{\circ}$ [7153];
m.p. $\quad 99-101^{\circ}[7153] ; \quad n_{\mathrm{D}}^{20}=1.5524$ [7153].

1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]-1-propanone

[152719-59-0]
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 220.27

Syntheses

- Preparation by thermal Claisen rearrangement of 2-methoxy-4-(allyloxy)propiophenone (2-O-methyl-4-O-allylrespropiophenone) by heating at 200° for $2 \mathrm{~h}(80 \%)$ [7451].
- Also refer to: [7449].
m.p. $\quad 132-133^{\circ}$ [7451].

1-[2-Methoxy-4-(2-propenyloxy)phenyl]-1-propanone
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27

Synthesis

- Obtained by reaction of dimethyl sulfate with 4-(allyloxy)-2-hydroxypropiophenone in the presence of 20% potassium hydroxide in acetone [7451].
m.p. $31^{\circ}[7451]$.

1-[2-Methoxy-6-(2-propenyloxy)phenyl]-1-propanone

[17488-72-1]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 220.27
Synthesis

- Preparation by reaction of allyl bromide with 2-hydroxy-6-methoxypropiophenone in acetone in the presence of potassium carbonate (76%) [7153].
b.p. $142-144^{\circ}$ [7153].

4-Hydroxy-3-(1-oxopropyl)phenylacetic acid ethyl ester
[108994-28-1] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Synthesis

- Preparation by reaction of ethanol with 4-hydroxy-3-(1-oxopropyl)phenylacetonitrile in the presence of hydrogen chloride, first at 0° for 2 h , then at reflux for $2 \mathrm{~h}(91 \%)$ [6942].
m.p. $35-37^{\circ}$ [6942].

1-[2-Methoxy-5-(1-oxopropoxy)phenyl]-1-propanone

[80427-25-4] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Synthesis

- Obtained by reaction of propionyl chloride with 4-(propionyloxy)anisole in the presence of stannic chloride in nitromethane at 20° for $48 \mathrm{~h}(56 \%)$ [7143].

```
m.p. 115 [7143]; IR [7143], UV [7143].
```


5-Ethyl-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester

[106214-15-7] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27

Syntheses

- Obtained by Fries rearrangement of methyl 2,4-di-propionoxy-5-ethylbenzoate (m.p. 89°) with aluminium chloride at $110-120^{\circ}$ for 1 h (33\%) [6450].
- Also obtained by Friedel-Crafts acylation of methyl 2,4-di-hydroxy-5-ethylbenzoate with propionic anhydride in the presence of aluminium chloride in nitrobenzene, first at $25-30^{\circ}$ for 20 h , then at 105° for 4 h [6450].
m.p. 91° [6450].

2-[4,5-Dimethoxy-2-(1-oxopropyl)phenoxy]acetic acid

m.p. $\quad 138-140^{\circ}[7400]$ mol.wt. 268.27

1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 285.18
Syntheses

- Preparation by adding a solution of 5-tert-butyl-2-hydroxy-propiophenone in an acetic acid and hydrochloric acid $(\mathrm{d}=1.19)$ mixture to an aqueous solution of 0.2 N potassium bromate and potassium bromide, then stirring 24 h after the addition of ketone (97\%) [7560,7561].
- Also obtained by Fries rearrangement of 2-bromo-4-tert-butylphenyl propionate (b.p. $\mathbf{3}_{3} 128^{\circ}$) [7562] with aluminium chloride without solvent at 110° for 2 h (68\%) [7562] or at 20° for 8 days (24%) [7560,7561].
b.p. 165° [7562]; m.p. 125° [7560,7561];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 16616M), IR (Sadtler: standard n° 44742) [7560,7561],
UV [6359,7560,7561]; TLC [6353].
1-[3-Bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-propanone

[20683-42-5] \quad\begin{tabular}{l}
Syntheses

Preparation by reaction of potassium bromate and
potassium bromide on the 3-tert-butyl-4-hydroxypro-
piophenone according to the procedure [6352], (97\%)
[7560,7561]

\end{tabular}

m.p. 70° [7560,7561];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 16615M),
IR (Sadtler: standard n° 44736) [7560,7561],
UV [6357,7560,7561]; TLC [6353].
1-[5-Bromo-3-(1,1-dimethylethyl)-2-hydroyphenyl]-1-propanone
[35154-19-9] $\quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 285.18
 Syntheses

- Preparation by reaction of potassium bromate and potassium bromide on the 3-tert-butyl-2-hydroxy-propiophenone according to the procedure [6352], (93\%) [7560,7561].
m.p. $\quad 96^{\circ}[7560,7561]$;
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 16613 \mathrm{M}$), IR (Sadtler: standard $\mathrm{n}^{\circ} 44734$) [7560,7561],
UV [7560,7561]; TLC [6353].
1-[5-Bromo-4-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone
[35154-28-0]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2} \quad$ mol.wt. 285.18
Syntheses
- Preparation by reaction of potassium bromate and potassium bromide on the 4-tert-butyl-2-hydroxy-propiophenone according to the procedure [6352], (82\%) [7560,7561].
- Also obtained by Fries rearrangement of 4-bromo-3-tert-butylphenyl propionate [6351].
m.p. 47° [7560,7561]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 18462M) [7560,7561], IR (Sadtler: standard n° 44739) [7560,7561], UV [7560,7561]; TLC [6353].

1-[3-Chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone

[51233-86-4]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 240.73
Syntheses

- Preparation by Fries rearrangement of 2-chloro-4-tert-butylphenyl propionate [6351] (b.p. ${ }_{10} 129^{\circ}$) [7563],
- with aluminium chloride (1.5 mol) at 110° (80\%) [7563];
- with titanium tetrachloride $(1.5 \mathrm{~mol})$ at 140° for $15 \mathrm{~min}(28 \%)$ [6466].
b.p. ${ }_{10} 142^{\circ}$ [7563]; m.p. 113° [6351,6466];
${ }^{1}$ H NMR (Sadtler: standard n° 20028M), IR (Sadtler: standard n° 47037) [6466], UV [6466].

1-[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]-1-propanone

[107223-72-3]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2} \quad$ mol.wt. 240.73
Syntheses

- Obtained by reaction of ethyl chloroformate with 1-[4-[(dimethylamino)methyl]-2-hydroxy-3-propylphenyl]-1-propanone in toluene, first in an ice-water bath for 2 h , then at r.t. for 16 h (75\%) [7564].
- Also refer to: [7565].
m.p. $41-44^{\circ}$ [7564].

1-[2-Hydroxy-4-(4-morpholinyl)phenyl]-1-propanone
[404009-42-3]

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \quad$ mol.wt. 235.28
Synthesis

- Refer to: [7566].

1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl]-1-propanone

[85052-32-0] $\quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 251.28

Synthesis

- Refer to: [7567].

1-(4-Butoxy-2-hydroxy-5-nitrophenyl)-1-propanone

Note: Complex with Fe (III) [7569].

1-(3,4-Diethyl-2-hydroxyphenyl)-1-propanone

[936642-85-2]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Synthesis

- Obtained by reaction of 2,3-diethylcyclobutenone with ethyl vinyl ketone in the presence of a catalytic amount of $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}$ and $\mathrm{P}\left(\text { cyclo }-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ in toluene at 130° for 12 h under an argon atmosphere (73\%) [7570].

Yellow liquid [7570]; b.p. ${ }_{0.1} 120-130^{\circ}$ [7570];
${ }^{1} \mathrm{H}$ NMR [7570], ${ }^{13} \mathrm{C}$ NMR [7570], IR [7570], MS [7570]; GLC [7570].

1-(3,5-Diethyl-4-hydroxyphenyl)-1-propanone

1-[2-(1,1-Dimethylethyl)-6-hydroxyphenyl]-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Synthesis

- Obtained from 2-allyl-3-tert-butylphenol by treatment with perbenzoic acid in ethyl ether, first at 0°, then between 0° and 25° for 24 h (68\%) [6589].

1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone

[25441-52-5]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 206.28
Syntheses

- Obtained by Fries rearrangement of 2-tertbutylphenyl propionate,
- with titanium tetrachloride in nitromethane or nitrobenzene at 20° for 24 h (15-17\%) [7561] or without solvent at 100° for $2 \mathrm{~h}(21 \%)$ [7560];
- with niobium pentachloride in nitromethane at 20° for $6 \mathrm{~h}(26 \%)$ [7561];
- with tantalum pentachloride in nitromethane at 20° for 2 h (15\%) [7561].
- Also refer to: [6586,7571,7572].
b.p. ${ }_{13} 143^{\circ}$ [7560,7561]; m.p. 36° [7560,7561];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 18459 \mathrm{M}$), IR (Sadtler: standard $\mathrm{n}^{\circ} 44733$) [7560,7561],
UV [7560,7561]; TLC [6353,7560,7561].

1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]-1-propanone

[20683-32-3] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

m.p. 159° [7560,7561];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 16614 \mathrm{M}$), IR (Sadtler: standard $\mathrm{n}^{\circ} 44735$) [7560,7561],
UV [6357,7560,7561]; TLC [6353].

1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone

[22362-62-5] $\quad \begin{aligned} & \text { Syntheses } \\ & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\end{aligned}$

- with titanium tetrachloride (91\%) [7560,7561];
- with aluminium chloride (66%) [7560,7561].
N.B.: Ion (1^{-}), radical ion $\left(1^{-}\right)$[72051-88-8], ESR spectrum [6350].
b.p. ${ }_{11} 149-150^{\circ}[7560,7561] ;$ m.p. $48-49^{\circ}$ [7560,7561];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 18461M), IR (Sadtler: standard $\mathrm{n}^{\circ} 44738$) [7560,7561],
UV [6359,7560,7561]; TLC [6353].

1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone

[22362-63-6]

- from 4-tert-butylphenyl propionate (classic reaction),
- in nitrobenzene at 50° for 5-6 h with titanium tetrachloride (93\%) [7106] or aluminium chloride (50\%) [7560],
- in nitromethane at 20° for 192 h with titanium tetrachloride (78\%) [7560], stannic chloride (70\%) [6570,7560], aluminium chloride (60\%) [6466] and ferric chloride (45\%) [7560];
- without solvent in the presence of aluminium chloride at 120° for 1 h and at 140° or 180° for $15 \mathrm{~min}(41-43 \%)$ [6466,7573];
- from 2-tert-butylphenyl propionate (reaction with intermolecular migration of tert-butyl group). Cf. [7561,7571,7572,7574-7577];
- in nitromethane with aluminium chloride at 20° for $72 \mathrm{~h}(92 \%)$ [6570] or 168-192 h (45-60\%) [6570,6586,7560],
- in nitromethane with other catalysts at 20° for 168-192 h: Gallium chloride (73-74\%) [6570], zirconium chloride (63-71\%) [6570,6586,7560] and ferric chloride or stannic chloride (49-53\%) [6570,6586,7560];
- from di-tert-butyl or tri-tert-butylphenyl propionates in nitromethane at 20° using various catalysts (reactions with migration of an o-tert-butyl group and sometimes elimination of these).

Esters	Catalysts	Reaction times (h)	Yield (\%)	Reference
2,4-Di-tert-butylphenyl propionate	SnCl_{4}	144	59	$[6570,7712]$
	AlCl_{3}	168	54	$[6570]$
2,6-Di-tert-butylphenyl propionate	AlCl_{3}	240	50	$[7712]$
2,4,6-Tri-tert-butylphenyl propionate	SbCl_{5}	2	16	$[7712]$

${ }^{\mathrm{a}} \mathrm{Cf}$. Fries rearrangement of 2-tert-butylphenyl propionate.
${ }^{\text {b }}$ formation of a very important tar.

- Also obtained by Fries rearrangement of phenyl propionate with aluminium chloride in nitromethane in the presence of tert-butyl chloride at 20° for 24 h (63\%) [6570]. (There are simultaneously acylation and alkylation of the aromatic ring).
- Also obtained by Friedel-Crafts acylation of p-tert-butylphenol with propionyl chloride in nitromethane in the presence of aluminium chloride at 20° for 120 h (66\%) [6466].
- Also obtained by demethylation of 5-tert-butyl-2-methoxypropiophenone in the presence of a 47% hydrobromic acid $/ 57 \%$ hydriodic acid mixture in refluxing acetic acid (70\%) [7106].
- Also obtained by alkylation of o-hydroxypropiophenone with tert-butyl chloride in nitromethane in the presence of aluminium chloride at 20° for $40 \mathrm{~h}(79 \%)$ [6570].
- Also obtained from 3,5-di-tert-butyl-2-hydroxypropiophenone after total elimination of the tert-butyl group in 3^{\prime} position by action of aluminium chloride in nitromethane at 20° for $72 \mathrm{~h}(98 \%)$ [6570].
b.p. ${ }_{6} 119-122^{\circ}$ [7106], b.p. ${ }_{12} 145-146^{\circ}$ [7560], b.p. ${ }_{26} 165^{\circ}$ [7573];
m.p. 31° [7560];
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ}$ 18464M), IR (Sadtler: standard n ${ }^{\circ}$ 44741) [7560];
UV [6359,7560]; high-resolution ESR spectrum [7551]; TLC [6353].
Note: Ion (1^{-}), radical ion $\left(1^{-}\right)$[69858-31-7], ESR spectrum [6350].

1-(2-Ethyl-3-methoxy-5-methylphenyl)-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Obtained by reaction of 2,3-dimethoxy-5-methylbenzonitrile and ethylmagnesium bromide [7370]. N.B.: Analysis showed that the oil had a composition corresponding to a mixture of about equal parts of 2,3-dimethoxy-5-methyl-propiophenone and 2-ethyl-3-methoxy-5-methylpropiophenone. This oil by distillation in vacuo gave no apparent separation [7370].
oil [7370]; b.p. $100-102^{\circ}$ [7370].

1-[2-Hydroxy-3-methyl-6-(1-methylethyl)phenyl]-1-propanone

b.p. 164° [7578].

1-[2-Hydroxy-4-methyl-3-(1-methylethyl)phenyl]-1-propanone

[129375-02-6]

b.p. ${ }_{11} 143-144^{\circ}$ [7026];
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Synthesis

- Preparation by Fries rearrangement of 3-methyl-2-iso-propylphenyl propionate with aluminium chloride in nitromethane at 20° for $170 \mathrm{~h}(98 \%)$ [7026].
m.p. 47-48 ${ }^{\circ}$ [7026];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard ${ }^{\circ}$ 52702M), [7026],
IR (Sadtler: standard n° 79759K) [7026], UV [7026], MS [7026].

1-[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl]-1-propanone

[121194-62-5]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Syntheses

- Preparation by Fries rearrangement of 3-methyl-4-isopropyl-phenyl propionate with titanium tetrachloride or aluminium chloride in nitromethane at r.t. for $100 \mathrm{~h}(97 \%)$ [7031].
- Also obtained by Fries rearrangement of various esters with aluminium chloride (1.4 equiv) without solvent at 100° for 2 h [7026]:

Esters	Yields (\%)
3-Methyl-4-isopropylphenyl propionate	44
3-Methyl-2-isopropylphenyl propionate	17
5-Methyl-2-isopropylphenyl propionate	14

b.p. ${ }_{17} 161-162^{\circ}$ [7031];
m.p. 35° [7031];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n${ }^{\circ}$ 52704M) [7031], IR (Sadtler: standard n ${ }^{\circ}$ 79761K) [7031],
UV [7031], MS [7031].

1-[2-Hydroxy-5-methyl-3-(1-methylethyl)phenyl]-1-propanone

[129375-04-8]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Syntheses

- Preparation by Fries rearrangement of 2-isopropyl-4-methylphenyl propionate with titanium tetrachloride at 100° for 2 h (95\%) [7026].
- Also obtained by treatment of 2-hydroxy-3-isopropyl-6-methylpropiophenone with aluminium chloride (1.4 equiv) without solvent at 100° for $2 \mathrm{~h}(28 \%)$ [7026].
- Also obtained (by-product) by Fries rearrangement of two esters with aluminium chloride (1.4 equiv) without solvent at 100° for 2 h [7026]:

Esters	Ketone (\%)
2-Isopropyl-5-methylphenyl propionate	16
4-Isopropyl-3-methylphenyl propionate	8

- Also refer to: [7031].
b.p. ${ }_{15}$ 148-149 ${ }^{\circ}$ [7026];
m.p. 28-29́ [7026];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 52741M) [7026],
IR (Sadtler: standard n ${ }^{\circ}$ 79800K) [7026], UV [7026], MS [7026].

1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]-1-propanone

[121194-61-4]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Syntheses

- Preparation by Fries rearrangement of thymyl propionate (b.p. ${ }_{19}$ 180 ${ }^{\circ}$) [7579] with aluminium chloride [7580], at 120° (83\%) [7579] Cf. (13i) [6407] or titanium tetrachloride at 120° for $1 \mathrm{~h}(79 \%)$ [7031].
- Also obtained by Friedel-Crafts acylation of thymol with propionic acid in the presence of aluminium chloride at reflux for 12 h (82\%) [7581].
N.B.: Two reported boiling points (117-118\%/11 mbar [7581] and $161 \% / 6 \mathrm{mbar}$ [7579]) are obviously erroneous, since they correspond to a mixture of products, not containing the expected compound.
b.p. ${ }_{11} 117-118^{\circ}$ [7580,7581], b.p. ${ }_{14} 156-157^{\circ}$ [7031], b.p. ${ }_{6} 161^{\circ}$ [7579];
m.p. 39° [7031]; ${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 52706M) [7031],

IR (Sadtler: standard ${ }^{\circ}$ 79763K) [7031], UV [7031], MS [7031].

1-[2-Hydroxy-6-methyl-4-(1-methylethyl)phenyl]-1-propanone

[121194-63-6] \quad| Syntheses |
| :--- |
| $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ |

- with titanium tetrachloride at 120° for $1 \mathrm{~h}(94 \%)$ [7031];
- with aluminium chloride at 120° for $1 \mathrm{~h}(94 \%)$ [7031] or at 100° for 2 h (76\%) [7026].
- Also obtained by Fries rearrangement of 2-isopropyl-3-methylphenyl propionate with aluminium chloride (1.4 equiv) at 100° for $2 \mathrm{~h}(53 \%)$ [7026].
b.p. ${ }_{14} 164^{\circ}$ [7031]; m.p. 23° [7031];
${ }^{1}$ H NMR (Sadtler: standard n° 52705M) [7031], IR (Sadtler: standard ${ }^{\circ}$ 79762K) [7031],
UV [7031], MS [7031].

1-[4-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]-1-propanone

[129375-03-7] | Synthesis |
| :--- |
| - Obtained (poor yield) by Fries rearrangement of |
| 3-methyl-2-isopropylphenyl propionate with aluminium |
| chloride in nitromethane at 20° for $170 \mathrm{~h}(1 \%)$ [7026]. |

1-[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl]-1-propanone

[37847-36-2]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Syntheses

- Preparation by Fries rearrangement of 2-isopro-pyl-5-methylphenyl propionate (thymyl propionate) (b.p. ${ }_{13}$ 133.5-134.5${ }^{\circ}$) [7302] with aluminium chloride,
- in nitrobenzene, first in an ice bath, then at r.t. for 24 h [7582], (90\%) [6961], (85\%) [7302];
- without solvent at 100° for $2 \mathrm{~h} \mathrm{(35} \mathrm{\%)} \mathrm{[7026]}$.
- Also obtained by demethylation of 4-methoxy-2-methyl-5-isopropylpropiophenone (b.p. ${ }_{15} 169-171^{\circ}$) with boiling pyridinium chloride for $37 \mathrm{~min}(60 \%)$ [7583].
- Also obtained by reaction of propionyl chloride with thymol in nitrobenzene in the presence of aluminium chloride [7470].
- Also obtained (by-product) by Fries rearrangement of 3-methyl-4-isopropylphenyl propionate with aluminium chloride (1.4 equiv) without solvent at 100° for 2 h (17\%) [7026].
- Also refer to: [7031,7584].
b.p. ${ }_{13} 195-200^{\circ}$ [7583], b.p. ${ }_{13} 196-200^{\circ}$ [7585], b.p. ${ }_{15} 200^{\circ}$ [7470];
m.p. 113° [6351,7302], 112° [6961,7470], 111° [7583,7585];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 52707M), IR (Sadtler: standard $\mathrm{n}^{\circ} 79764 \mathrm{~K}$).

1-[4-Hydroxy-5-methyl-2-(1-methylethyl)phenyl]-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Syntheses

- Preparation by Fries rearrangement of 2-methyl-5-isopropylphenyl propionate (carvacryl propionate) (b.p. ${ }_{12.5}$ 135-136.5º) with aluminium chloride in nitrobenzene, first in an ice bath, then at r.t. or at 30° for $24 \mathrm{~h}(86-87 \%)$ [6961,7302$]$.
- Also obtained by reaction of propionyl chloride with carvacrol in the presence of aluminium chloride in nitrobenzene, first at $<50^{\circ}$, then at r.t. for 24 h (quantitative yield) [7586] or simply at r.t. for 24 h (12\%) [7587].
- Also refer to: [7067].
b.p. ${ }_{15} 201^{\circ}$ [7586];
m.p. 110° [7302,7586], 76° [6961,7587]. One of the reported melting points is obviously wrong.

1-[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]-1-propanone

[121194-67-0]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad \mathrm{~mol}$. wt. 206.28
O	Synthesis
	- Preparation by treatment of 3-tert-butyl-2-hydroxy 6-methyl-5-isopropylpropiophenone with aluminium chloride in nitromethane at 20° for 24 h (99\%) [7031].

N.B.: The structure of this ketone previously reported in the literature [7588] $(150 \% 15 \mathrm{mbar})$ is wrong. The procedure described by these authors leads to 2-hydroxy-4-methyl-5-isopropylpropiophenone instead of the titled ketone.
m.p. 70° [7031];
${ }^{1}$ H NMR (Sadtler: standard n° 52703M) [7031], IR (Sadtler: standard ${ }^{\circ}$ 79760K) [7031],
UV [7031], MS [7031].

1-[2-Hydroxy-5-(1-methylpropyl)phenyl]-1-propanone

[131867-27-1]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
OH	Synthesis
	- Preparation by reaction of propionic acid with p-secbutylphenol in the presence of boron trifluoride (71\%) [6509].
$\begin{gathered} \text { b.p. } ._{6} 134-137^{\circ}[650 \\ \mathrm{n}_{\mathrm{D}}^{25}=1.5251[6509 \end{gathered}$	

1-[4-Hydroxy-3-(1-methylpropyl)phenyl]-1-propanone

[16648-74-1]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
OH CH	Synthesis
	- Preparation by Fries rearrangement of 2-sec-butylphenyl propionate with aluminium chloride in nitrobenzene at 50° for 24 h [7589].
m.p. 110-112 ${ }^{\circ}$ [7589]	
USE: Fungicide [7590]	

1-(4-Methoxy-2,3,5-trimethylphenyl)-1-propanone

1-(4-Methoxy-2,3,6-trimethylphenyl)-1-propanone

[107076-01-7]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
OCH_{3}	Syntheses
	- Preparation from 2,3,5-trimethylanisole and propionyl chloride [7591] according to the procedures [7592,7593]. - Also refer to: [7292].

m.p. $\quad 56-57^{\circ}$ [7591]; ${ }^{1} \mathrm{H}$ NMR [7591], IR [7591], MS [7591].

1-(4-Butoxy-2-hydroxyphenyl)-1-propanone

[178693-81-7]

USE: As indicator for determination of Fe (III) [7569,7595].
Oxime [161140-14-3] $\quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3} \quad$ mol.wt. 237.30.
USE: Analytical reagent for Ni (II) [7594,7596-7598], Cu (II) [7594,7599] and Mo (VI) [7600].

1-(5-Butyl-2,4-dihydroxyphenyl)-1-propanone

1-(2,4-Dimethoxy-3,5-dimethylphenyl)-1-propanone

[20935-63-1]
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 222.28

Syntheses

- Preparation by reaction of propionyl chloride with 1,3-dimethoxy-2,4-dimethylbenzene in the presence of,
- stannic chloride in carbon disulfide (87\%) [7111];
- aluminium chloride in carbon disulfide (80\%) [7601].
oil [7111]; b.p. . $_{0.5} 120^{\circ}$ [7111], b.p. ${ }_{12} 155-158^{\circ}$ [7601];
${ }^{1}$ H NMR [7111], IR [7111,7601], UV [7111,7601], MS [7111].

1-[2-(1,1-Dimethylethoxy)-6-hydroxyphenyl]-1-propanone

1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]-1-propanone
[95102-26-4] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Syntheses

- Preparation from various methods [7602,7603] (Japanese patents),
- by Fries rearrangement of 4-tert-butylresorcinol propionate with aluminium chloride in nitrobenzene;
- by reaction of propionitrile with 4-tert-butylresorcinol (Hoesch reaction);
- by alkylation of respropiophenone with tert-butyl chloride.

1-(2-Ethyl-4,5-dimethoxyphenyl)-1-propanone

- with propionyl chloride in the presence of aluminium chloride in methylene chloride, first between -5° and 0°, then at r.t. for $4 \mathrm{~h}(78 \%)$ [7604];
- with propionic anhydride in the presence of iodine (66\%) [7381].
b.p. $95-101^{\circ}$ [7381]; m.p. $43-44^{\circ}$ [7604]; ${ }^{1} H$ NMR [7381,7604], IR [7381,7604].

1-(4-Ethyl-2,5-dimethoxyphenyl)-1-propanone

[153756-50-4] \quad| Synthesis |
| :--- |

1-(4-Ethyl-3,5-dimethoxyphenyl)-1-propanone

[184963-81-3]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$
Syntheses

- Obtained by reaction of ethylmagnesium bromide with $3,4,5$-trimethoxybenzonitrile (20\%) [6973].
- Also refer to: [7433,7434].
m.p. 72° [6973].

Oxime $\quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3} \quad$ mol.wt. 237.3 (m.p. 94-95 ${ }^{\circ}$) [6973].

1-(5-Ethyl-2,4-dimethoxyphenyl)-1-propanone

[158153-03-8]

1-[4-Hydroxy-3-methoxy-5-(1-methylethyl)phenyl]-1-propanone

- Preparation by reaction of propionic acid with 6-isopropyl-guaiacol in the presence of boron trifluoride for 90 min at $70^{\circ}(60 \%)$ [7607].
- Preparation by reaction of dimethyl sulfate with 3,4-dihydroxy-5-isopropylpropiophenone in the presence of potassium carbonate in acetone at r.t. for 2 h (95\%) [7606].
m.p. $87.5-88^{\circ}$ [7606], $87-88^{\circ}$ [7607]; ${ }^{1} \mathrm{H}$ NMR [7606], IR [7606].

1-(2-Hydroxy-6-methoxy-3-propylphenyl)-1-propanone

[17488-55-0]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
Synthesis

- Preparation by hydrogenation of 3-allyl-2-hydroxy-6-methoxypropiophenone over Pd / C (80\%) [7153].
m.p. $77-78^{\circ}$ [7153].

1-(4-Hydroxy-3-methoxy-5-propylphenyl)-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Synthesis

- Preparation by reaction of propionic acid with 6-pro-pyl-guaiacol in the presence of boron trifluoride for 90 min at $70^{\circ}(70 \%)$ [7607].
m.p. $85-86^{\circ}$ [7607].

1-[4-Hydroxy-3-[(1-methylethoxy)methyl]phenyl]-1-propanone
[136715-23-6]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 222.28
Synthesis

- Refer to: [7392].

1-[4-Hydroxy-3-(propoxymethyl)phenyl]-1-propanone
[114477-32-6] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Syntheses

- Obtainedby reaction of 1-propanolwith3-(chloromethyl)-4-hydroxypropiophenone in the presence of sodium hydrogenocarbonate [6982].
- Also refer to: [7392,7608-7610].

1-[3-(1-Hydroxypropyl)-4-methoxyphenyl]-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Syntheses

- Obtained by treatment of 2,4-dipropionylanisole with sodium borohydride in refluxing mixture of nitromethane/water ($8 \mathrm{v} / 1 \mathrm{v}$) for 2 h (31%) [6733,7611].
m.p. 80° [6733,7611];
${ }^{1} \mathrm{H}$ NMR [6733,7611], IR [6733,7611].
1-[5-(1-Hydroxypropyl)-2-methoxyphenyl]-1-propanone

$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 222.28
$$

Syntheses

- Obtained by treatment of 2,4-dipropionylanisole with sodium borohydride in refluxing mixture of nitromethane/water (8v/1v) for $2 \mathrm{~h}(22 \%)$ [6733,7611].
colourless oil [6733,7611];
${ }^{1} H$ NMR [6733,7611], IR [6733,7611].
1-[4-(2-Ethoxyethoxy)-2-hydroxyphenyl]-1-propanone
[63411-93-8]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28 Synthesis
- Preparation by reaction of a 2-ethoxyethyl halide (unspecified) with respropiophenone in the presence of potassium carbonate in refluxing acetone for 5 h (74\%) [6380].
m.p. $45-46^{\circ}$ [6380] (purified by vacuum sublimation);
${ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

1-[2-Hydroxy-4-(2-hydroxybutoxy)phenyl]-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28 Synthesis

- Obtained by reaction of respropiophenone with 1,2-butylene oxide in the presence of ethanolic sodium hydroxide [7612].

1-(2,3,4-Trimethoxy-6-methylphenyl)-1-propanone

[81421-71-8]
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 238.28
Synthesis

- Obtained by reaction of propionyl chloride with 3,4,5-tri-methoxytoluene (m.p. 35-36) in the presence of aluminium chloride in carbon tetrachloride at r.t. (55\%) (impure ketone) [7388].

1-(2,3,5-Trimethoxy-4-methylphenyl)-1-propanone

1-(3-Ethoxy-2-hydroxy-4,6-dimethoxyphenyl)-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
Synthesis

- Obtained (by-product) by reaction of propionyl chloride with 1,2,3,5-tetramethoxybenzene in the presence of aluminium chloride in ethyl ether at r.t. for 20 h (16\%) [7543].
m.p. 100.5-101.5 ${ }^{\circ}$ [7543]; ${ }^{1} \mathrm{H}$ NMR [7543], IR [7543].

1-(2,3,4,6-Tetramethoxyphenyl)-1-propanone

[89880-48-8]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28
Syntheses

- Obtained by reaction of propionyl chloride with 1,2,3,5-tetramethoxybenzene in the presence of aluminium chloride in carbon disulfide [7541] or in ethyl ether (45\%) [7543].
- Also obtained by reaction of dimethyl sulfate with 2-hydroxy-3,4,6-trimethoxypropiophenone in the presence of potassium carbonate in refluxing acetone [7541], (94\%) [7543].
- Also refer to: [7442].
m.p. $55-56^{\circ}$ [7541], $50-52^{\circ}$ [7543]; ${ }^{1} \mathrm{H}$ NMR [7543], IR [7543].

1-[2-Hydroxy-4,6-dimethoxy-3-(methoxymethoxy)phenyl]-1-propanone

[276690-11-0]
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$
mol.wt. 270.28

Synthesis

- Refer to: [7439].

1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)-1-propanone

[117970-66-8] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28
 Syntheses

- Preparation by partial methylation of 2,5-dihy-droxy-3,4,6-trimethoxypropiophenone with dimethyl sulfate in the presence of potassium carbonate in benzene (50\%) [7548].
- Also obtained by reaction of propionyl chloride with pentamethoxybenzene (m.p. 58-59 ${ }^{\circ}$) [7549] in the presence of aluminium chloride,
- in ethyl ether at r.t. for 16 h [7548], according to the method [7549];
- in methylene chloride at r.t. (55\%) [7116].

1-(3-Hydroxy-2,4,5,6-tetramethoxyphenyl)-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 270.28
Synthesis

- Obtained by hydrogenation of patagonaldehyde (SM) (m.p. 108-109º) at atmospheric pressure over Pt in ethanol containing a few drops of perchloric acid for $1 \mathrm{~h}(25 \%)$ [7613]. SM was isolated from the heartwood of Patagonula americana L. (Boraginaceae).
oil [7613]; ${ }^{1} \mathrm{H}$ NMR [7613], IR [7613], MS [7613]; TLC [7613].
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxyphenyl]-1-propanone
[118609-36-2]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 232.28
Synthesis
- Refer to: [7614].

3-[2,4-Dimethoxy-3-(1-oxopropyl)phenyl]-2-propenoic acid

2,4-Dimethoxy-3-propionylcinnamic acid
[100884-41-1] $\quad \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 264.28

Synthesis

- Obtained (one-pot) by saponification of 8-propionylumbelliferone (m.p. 168°) and treatment in situ with dimethyl sulfate in boiling 3 N potassium hydroxide of the residual mixture [6806].
m.p. 134° [6806].

1-[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone

1-[2-Methoxy-5-methyl-3-(2-propenyl)phenyl]-1-propanone

b.p. $._{0.1} 88-90^{\circ}$ [7556]; ${ }^{1} \mathrm{H}$ NMR [7556], MS [7556].

1-[3-(Cyclopentyloxy)-4-hydroxyphenyl]-1-propanone

USE: Pharmaceutical intermediate [7616].

1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone

[97304-06-8]

$$
\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad \text { mol.wt. } 234.30
$$

Synthesis

- Obtained by reaction of isopentenyl bromide with respropiophenone in an aqueous 8% potassium hydroxide solution at r.t. for 5 h (17\%) [6777].

USE: Fungicide [6777].
m.p. 118° [6777];
${ }^{1} H$ NMR [6777], IR [6777], UV [6777], MS [6777].

1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]-1-propanone

[97304-11-5]
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 234.30

Synthesis

- Obtained by reaction of isopentenyl bromide with respropiophenone in an aqueous 8% potassium hydroxide solution at r.t. for 5 h (12%) [6777].

USE: Fungicide [6777].
m.p. 53° [6777];
${ }^{1} H$ NMR [6777], IR [6777], UV [6777], MS [6777].
1-[2,4-Dimethoxy-3-(2-propenyl)phenyl]-1-propanone
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Synthesis

- Preparation by reaction of dimethyl sulfate in acetone with 3-allylrespropiophenone in the presence of 20% potassium hydroxide solution [7451].
b.p. ${ }_{18} 180^{\circ}$ [7451];
$n_{D}^{15}=1.540[7451]$.
1-[2,4-Dimethoxy-5-(2-propenyl)phenyl]-1-propanone
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30

Synthesis

- Preparation by reaction of dimethyl sulfate with 5-allyl-4-hydroxy-2-methoxypropiophenone in the presence of 10% aqueous sodium hydroxide [7451].
m.p. $67^{\circ}[7451]$.

1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-1-propanone

[87061-00-5]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Syntheses

- Refer to: [6748,7617-7619] (Japanese patents).

1-[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-1-propanone
2,4,6-Trihydroxypropiophenone-4-O-3,3'-dimethylallyl ether
[70219-80-6] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29 Isolation from natural sources

- From Leontonyx squarrosus (compound 4) [7620].
colourless oil [7620]; IR [7620], MS [7620].

1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-1-propanone
[270084-45-2] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Syntheses

- Preparation by reaction of THP with respropiophenone [7621], according to the procedure [7622].
- Also refer to: [7623] (compound 7-OTHP).

1-[2-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-1-propanone
[54437-06-8] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Synthesis

- Refer to: [6795].

1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone
[69916-07-0]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29
Syntheses

- Obtained by reaction of prenyl bromide with phloropropiophenone in a benzene/ethyl ether solution in the presence of methanolic sodium methoxide, first at 5°, then at r.t. for $6 \mathrm{~h}(21 \%)$ [6880].
- Also refer to: [6901,7457,7624,7625].
m.p. 170° [6880];
${ }^{1} \mathrm{H}$ NMR [6880,7458], ${ }^{13} \mathrm{C}$ NMR [7458], IR [6880], UV [6880], MS [6880].
USE: Fungicide [6880,7457,7624,7625].
BIOLOGICAL ACTIVITY: Antimicrobial [6901]; bactericide [7457].
1-[4-Hydroxy-3-[2-(1-oxopropoxy)ethoxy]phenyl]-1-propanone

1-[2-Hydroxy-4,6-dimethoxy-3-(1-oxopropoxy)phenyl]-1-propanone

[94190-88-2]
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$
mol.wt. 282.29
Syntheses

- Obtained by treatment of 1-(2-hydroxy-4,6-di-methoxy-3-propionylphenyl)-1-propanone with a mixture of m -chloroperbenzoic acid and trifluoroacetic acid in refluxing methylene chloride for 2 h (31\%) [7438].
- Also refer to: [7439].
m.p. 120° [7438];
${ }^{1} \mathrm{H}$ NMR [7438], ${ }^{13} \mathrm{C}$ NMR [7438]; TLC [7438].

2-[4,5-Dimethoxy-2-(1-oxopropyl)phenoxy]propanoic acid

$$
\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}, 0.5 \mathrm{H}_{2} \mathrm{O} \quad \text { mol.wt. } 291.30
$$

Synthesis

- Obtained by treatment of ethyl α-(2-propionyl-4,5-dimethoxyphenoxy)propionate with 10% aqueous sodium hydroxide on a steam bath, then at r.t. overnight (91%) [7400].
m.p. $100-104^{\circ}$ [7400].

1-[3-Bromo-5-(1,1-dimethylethyl)-4-methoxyphenyl]-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2} \quad$ mol.wt. 299.22
Synthesis

- Obtained by reaction of dimethyl sulfate with 3-bromo-5-tert-butyl-4-hydroxypropiophenone (81\%) [7560].
colourless oil [7560]; b.p. ${ }_{15} 172^{\circ}$ [7560];
IR [7560], UV [7560].
2,4-Dinitrophenylhydrazone $\quad \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrN}_{4} \mathrm{O}_{5}$ mol.wt. 479.33
[35154-12-2] (E) ${ }^{1} \mathrm{H}$ NMR [7627], UV [7627] and
[35154-11-1] (Z) ${ }^{1} \mathrm{H}$ NMR [7627], UV [7627].
syn (m.p. 160°) (red crystals) [7560,7627] and
anti (m.p. 188 ${ }^{\circ}$) (yellow crystals) [7560,7627].
1-[5-Bromo-3-(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone
[35154-21-3]
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2} \quad$ mol.wt. 299.22
Synthesis

- Obtained by reaction of dimethyl sulfate with 5-bromo-3-tert-butyl-2-hydroxypropiophenone (60\%) [7560].
colourless oil [7560]; b.p. ${ }_{18} 190^{\circ}$ [7560];
IR [7560], UV [7560].
2,4-Dinitrophenylhydrazone $[35154-22-4] \quad \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrN}_{4} \mathrm{O}_{5} \quad$ mol.wt. 479.33 (m.p. 181°) [7560].

1-[5-Bromo-4-(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone
[35155-00-1] $\quad \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2} \quad$ mol.wt. 299.22

Synthesis

- Preparation by reaction of dimethyl sulfate with 5-bromo-4-tert-butyl-2-hydroxypropiophenone (99\%) [7560].
m.p. $\quad 98^{\circ}$ [7560];
${ }^{1}$ H NMR (Sadtler: standard 18463M), IR (Sadtler: standard 44740) [7560], UV [7560].

2,4-Dinitrophenylhydrazone [35155-01-2] $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrN}_{4} \mathrm{O}_{5}$ mol.wt. 479.33 (m.p. $155-156^{\circ}$) [7560].

1-[2,3,4-Trihydroxy-5-(4-morpholinomethyl)phenyl]-1-propanone

[73044-15-2]

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{5} \quad$ mol.wt. 281.31
Synthesis

- Preparation by reaction of equimolar amounts of 2,3,4-tri-hydroxypropiophenone, morpholine and formaldehyde in alcoholic solution (Mannich reaction) [7628].

USE: Antioxidizing agent and antiradiation [7628].
1-(3,5-Diethyl-4-methoxyphenyl)-1-propanone

1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]-1-propanone
[133903-09-0]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31
Syntheses

- The reaction of $\left[\mathrm{AlMe}(\mathrm{dbmp})_{2}\right](\mathrm{Hdbmp}=2$, 6-di-tert-butyl-4-methylphenol) with $\mathrm{O}: \mathrm{C}(\mathrm{Cl})$ Et leads to acylation of one of the dbmp ligands and affords [AlMe(dbmp)(bhmpp)] (SM). (Hbhmpp = 3-tert-butyl-2-hydroxy-5-methyl-propiophenone). Hydrolysis of SM yields uncomplexed Hbhmpp, the titled ketone [7629].
- Also refer to: [7630].
${ }^{1} \mathrm{H}$ NMR [7629], ${ }^{13} \mathrm{C}$ NMR [7629], IR [7629]; X-ray crystallography [7629].

1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl]-1-propanone

[137937-38-3]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31
Syntheses

- Preparation by Fries rearrangement of 2-tert-butyl-5-methylphenyl propionate (b.p. ${ }_{19} 152^{\circ}$) [7631],
- with titanium tetrachloride in chlorobenzene at 100° for $2 \mathrm{~h} \mathrm{(55} \mathrm{\%)} \mathrm{[7011]} \mathrm{or}$ in ethylene dichloride at 20° for 7 days (16%) [7025];
- with aluminium chloride at 110° for $2 \mathrm{~h}(80 \%)$ or in nitrobenzene at 25° for 6 h (82\%) [7631].
b.p. 108° [7631]; m.p. 70° [7011], 68° [7025];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 57887M) [7011],
IR (Sadtler: standard n° 84935K) [7011,7025], UV [7011,7025], MS [7011], Absolute X-ray crystal structure data [7011,7632].

1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methylphenyl]-1-propanone

[52069-29-1]

BIOLOGICAL ACTIVITY: Lipoxygenase inhibitor [7308].

1-[3-(1,1-Dimethylethyl)-6-hydroxy-2-methylphenyl]-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$
mol.wt. 220.31
Synthesis

- Described as being obtained by Fries rearrangement of 2-tert-butyl-5-methylphenyl propionate with titanium tetrachloride in ethylene dichloride at 20° for 7 days (16\%) (compound 3e) [7025].
m.p. 68° [7025];
${ }^{1} \mathrm{H}$ NMR [7025], IR (Sadtler: standard n° 47035) [7025], UV [7025].
N.B.: After examination of ${ }^{1} \mathrm{H}$ NMR spectra, the title ketone was formulated as 1-[3-(1,1-dimethyl-ethyl)-6-hydroxy-2-methylphenyl]-1-propanone [7025]. This contradicted some results with respect to the mobility of the tert-butyl group [6586,7560,7571]. So, a structural analysis from X-ray data has been realized [7632] and has led to the formula 1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl]-1-propanone (compound 5) [7011], (compound 2e) in the paper [7025].

1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-methylphenyl]-1-propanone

[51233-85-3]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31
Syntheses

- Preparation by Fries rearrangement of 4-tert-butyl-2-methylphenyl propionate in the presence of aluminium chloride in nitromethane at 20° for 7 days (83\%) [6466].
- Preparation by Friedel-Crafts alkylation of 2-hydroxy-3-methylpropiophenone with tert-butyl chloride in nitromethane in the presence of aluminium chloride at 20° for 24 h (78\%) [6466].
m.p. M67 [6466];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 20029M), IR (Sadtler: standard n ${ }^{\circ}$ 47038) [6466], UV [6466].

1-[5-(1,1-Dimethylethyl)-4-hydroxy-2-methylphenyl]-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31
Synthesis

- Preparation by Fries rearrangement of 2-tert-butyl-5-methyl-phenyl propionate with titanium tetrachloride in nitromethane at r.t. for 24 h (31\%) [7025].
m.p. 133° [7025];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 20027M) [7025],
IR (Sadtler: standard ${ }^{\circ}$ 47036) [7025], UV [7025].

1-[3-(1,1-Dimethylethyl)-4-methoxyphenyl]-1-propanone

[35154-05-3]	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31
OCH_{3}	Synthesis
	- Preparation by reaction of dimethyl sulfate with 3-tert-butyl-4-hydroxypropiophenone (quantitative yield) [7560].
b.p. 20167° [7560];	; m.p. 66-67${ }^{\circ}$ [7560];
${ }^{1} \mathrm{H}$ NMR (Sadtler:	standard 18460M),
IR (Sadtler: stand	ard 44737) [7560], UV [7560].

2,4-Dinitrophenylhydrazones $\quad \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} \quad$ mol.wt. 400.48
[35154-07-5] (E) ${ }^{1} \mathrm{H}$ NMR [7627] and [35154-06-4] (Z) ${ }^{1} \mathrm{H}$ NMR [7627]; syn (m.p. 162°) (red crystals) [7560,7627]; anti (m.p. 178°) (yellow crystals) [7560,7627].

1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-1-propanone
[35155-04-5] $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad m o l . w t .220 .31$

Synthesis

- Preparation by reaction of dimethyl sulfate with 5-tert-butyl-2-hydroxypropiophenone [7560].
b.p. ${ }_{15} 166-167^{\circ}[7560] ;$ m.p. 46° [7560];

IR [7560], UV [7560].

1-[2-Hydroxy-5-(1,1-dimethylpropyl)phenyl]-1-propanone

$$
\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad \text { mol.wt. } 220.31
$$

Syntheses

- Obtained by Fries rearrangement of p-tertamylphenol propionate (b.p. ${ }_{20} 118^{\circ}$) with aluminium chloride at 120° for 1 h (45\%) [7573], Cf. (10i) [6407].
- Also obtained by reaction of propionic acid with p-tert-amyl-phenol in the presence of boron trifluoride at $70-80^{\circ}$ for 2 h [6363].
yellow amber-coloured oil [6363];
b.p. ${ }_{30} 110^{\circ}$ [7573], b.p. $\cdot_{24} 206-209^{\circ}$ [6363]. One of the reported boiling points is obviously wrong. $\mathrm{n}_{\mathrm{D}}^{24}=1.5320$ [6363].

1-[4-Methoxy-2-methyl-5-(1-methylethyl)phenyl]-1-propanone

- Also obtained by reaction of propionyl chloride with 2-iso-propyl-5-methylanisole in the presence of aluminium chloride in carbon disulfide [7583].
- Also refer to: [7319].
b.p. ${ }_{15} 169-171^{\circ}$ [7583], b.p. ${ }_{20} 169-171^{\circ}$ [7582].

1-(2,4-Dihydroxy-5-pentylphenyl)-1-propanone $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31
 Syntheses

- Preparation by reaction of propionitrile with 4-amyl-resorcinol (Hoesch reaction) [7484], (83\%) [7115].
b.p. ${ }_{6} 192-195^{\circ}$ [7484];
m.p. $52-53^{\circ}$ [7115,7484].

1-[3,4-Dimethoxy-5-(1-methylethyl)phenyl]-1-propanone

[83569-69-1]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31
Syntheses

- Preparation by reaction of propionyl chloride with 1,2-dimethoxy-3-isopropylbenzene,
- in the presence of ferric chloride in refluxing carbon disulfide (56\%) [7635];
- in the presence of aluminium chloride in methylene chloride at r.t. (71\%) [7635].
- Also obtained by reaction of dimethyl sulfate with 4-hydroxy-5-methoxy-3-isopropyl-propiophenone in the presence of potassium carbonate in acetone at r.t. for $2 \mathrm{~h}(95 \%)$ [7606].
b.p. ${ }_{0.04} 113-116^{\circ}$ [7635], b.p. $._{0.5} 130-132^{\circ}$ [7606];
$\mathrm{n}_{\mathrm{D}}^{20}=1.5257$ [7635], $\mathrm{n}_{\mathrm{D}}^{24}=1.531$ [7606];
${ }^{1} \mathrm{H}$ NMR [7606], IR [7606,7635].
1-(2,3-Dimethoxy-5-propylphenyl)-1-propanone
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31

Synthesis

- Obtained by reaction of ethylmagnesium bromide with 2,3-dimethoxy-5-propylbenzonitrile (15\%) [6973].
b.p. ${ }_{0.5} 121-124^{\circ}$ [6973].

1-[5-(1,1-Dimethylpropyl)-2,4-dihydroxyphenyl]-1-propanone

1-[2-Hydroxy-4-(3-methylbutoxy)phenyl]-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31

Syntheses

- Obtained by reaction of isoamyl bromide with respropiophenone in the presence of potassium carbonate in refluxing acetone for 3 days (45\%) [7636].
- Also refer to: [7637,7638].
N.B.: The name of this ketone, called 2-(3-methylbutoxy)-4-hydroxypropiophenone (7b) was erroneous [7636] (page 82).
m.p. 43-44욱636];
${ }^{1} \mathrm{H}$ NMR [7636], MS [7636]; TLC [7636].

1-[4-Hydroxy-3-[(1-methylpropoxy)methyl]phenyl]-1-propanone

Synthesis

- Preparation by reaction of 4-hydroxy-3-(chloromethyl)-propiophenone with 2-butanol in the presence of sodium bicarbonate at $30-40^{\circ}$ [7392].

1-[2-Hydroxy-4-(pentyloxy)phenyl]-1-propanone

[63411-91-6]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31
Synthesis

- Preparation by reaction of a pentyl halide (unspecified) with respropiophenone in the presence of potassium carbonate in refluxing acetone for 5 h (64\%) [6380].
viscous oil, purified by preparative TLC [6380];
${ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

1-[2,4-Dimethoxy-5-(1-hydroxypropyl)phenyl]-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31
Syntheses

- Obtained by treatment of 4,6-dipropionyl-1,3-dimethoxy-benzene with sodium borohydride in a mixture of nitromethane/ water ($8 \mathrm{v} / 1 \mathrm{v}$) for 24 h at $20^{\circ}(48 \%)$ [6733,7611].
m.p. $\quad 134^{\circ}[6733,7611]$;
${ }^{1} H$ NMR [6733,7611], IR [6733,7611].

1-[2,6-Dimethoxy-3-(1-hydroxypropyl)phenyl]-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31
Syntheses

- Obtained by treatment of 2,4-dipropionyl-1,3-dime-thoxy-benzene with sodium borohydride in a mixture of nitromethane/water ($8 \mathrm{v} / 1 \mathrm{v}$) for 24 h at 20° (88%) [6733,7611].
m.p. $\quad 58^{\circ}[6733,7611] ;$
${ }^{1} \mathrm{H}$ NMR [6733,7611], IR [6733,7611].
2,4-Dinitrophenylhydrazone $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$ mol.wt. 432.48 (m.p. 257) [6733];
IR [6733], UV [6733].

1-[6-Methoxy-2-(methoxymethoxy)-3,4-dimethylphenyl]-1-propanone

1-[2,4,6-Trihydroxy-3-(3-methylbutyl)phenyl]-1-propanone
[96756-27-3]
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31

Syntheses

- Preparation by hydrogenation of 2,4,6-trihydroxy-3-iso-pentenylpropiophenone in the presence of PtO_{2} at r.t. for $1 \mathrm{~h}(86 \%)$ [6880].
- Also obtained by reaction of propionic acid with C-isoamyl-phloroglucinol in the presence of boron trifluoride at $28-30^{\circ}$ for 24 h (63\%) [7639].
USE: Fungicide [6880].
m.p. 175° (table 1) and 180° (table 2) [7639], 173° [6880];
${ }^{1} \mathrm{H}$ NMR [6880], IR [6880], UV [6880], MS [6880].

1-(2,4,6-Trihydroxy-3-pentylphenyl)-1-propanone

[66711-60-2]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31 Syntheses

- Obtained by Friedel-Crafts acylation of 2,4, 6-trihydroxy-pentylbenzene with propionyl chloride in a carbon disulfide/nitrobenzene solution in the presence of aluminium chloride, first at r.t., then at $30-35^{\circ}$ for 6 h (58\%) [6880].
- Also refer to: [7640].

USE: Fungicide [7640].
m.p. 166° [6880]; ${ }^{1} \mathrm{H}$ NMR [6880], IR [6880], UV [6880], MS [6880].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone
[75060-92-3]
$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2} \quad$ mol.wt. 235.33
Syntheses

- Refer to: [7106,7641].
- Also refer to: [7642-7653].

USE: Antioxidizing agent [7654].
BIOLOGICAL ACTIVITY: Antiinflammatory [7654-7659]; antiarteriosclerotic agent [7641]; atherosclerosis [7660]; heart infarction inhibition [7661]; antihypertensive [7662]; antiallergic [7663].

Hydrochloride (ONO-3144) [75060-66-1] $\quad \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}, \mathrm{HCl} \mathrm{mol}$.
wt. 271.79.

- For syntheses, refer to: [7106,7641,7648,7662].

Note: Ion (1-) [118464-88-3] [7654].
BIOLOGICAL ACTIVITY: Antiinflammatory [7106,7654]; antiarteriosclerotic agent [7641].

1-(5-Bromo-2-hydroxy-3-iodo-4-phenoxyphenyl)-1-propanone
[245407-13-0]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrIO}_{3} \quad$ mol.wt. 447.07
Syntheses

- Obtained by oxidation of 5-bromo-2,4-dihy-droxy-propiophenone [6368] with phenyliodonium diacetate (PIDA) under three conditions (compound 4h) [6452]:
(a) (basic): in the presence of potassium hydroxide in methanol at 0° and stirring overnight (38\%).
(b) (neutral): in refluxing methanol (10%).
(c) (acidic): in refluxing acetic acid (20%).
m.p. $\quad 146-147^{\circ}$ [6452]; ${ }^{1} \mathrm{H}$ NMR [6452], IR [6452], MS [6452]; TLC [6452].

1-(2-Hydroxy-3-iodo-5-nitro-4-phenoxyphenyl)-1-propanone

[245407-11-8]

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{INO}_{5}$
mol.wt. 413.17
Syntheses

- Obtained by oxidation of 2,4-dihydroxy-5-ni-tro-propiophenone [6555] with phenyliodonium diacetate (PIDA) under three conditions (compound 4g) [6452]:
(a) (basic): in the presence of potassium hydroxide in methanol at 0° and stirring overnight (48\%).
(b) (neutral): in refluxing methanol (27\%).
(c) (acidic): in refluxing acetic acid (41%).
m.p. $\quad 190-192^{\circ}$ [6452]; ${ }^{1} \mathrm{H}$ NMR [6452], IR [6452], MS [6452]; TLC [6452].

1-(3-Bromo-4,6-dihydroxy[1,1'-biphenyl]-2-yl)-1-propanone

[860152-45-0] \quad\begin{tabular}{l}
Synthesis

- Refer to: [7664].
\end{tabular}

1-[3-[(4-Bromophenyl)sulfonyl]-4-hydroxyphenyl]-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{~S} \quad$ mol.wt. 369.24

Synthesis

- Preparation by treatment of 4-propionylphenyl p-bromophenylsulfonate (1 mol) with aluminium chloride (3 mol) at 140° for $3-4 \mathrm{~h}(84-100 \%)$ [7665].
m.p. $105-106^{\circ}$ [7665].

BIOLOGICAL ACTIVITY: Bactericide (no data) [7665].

1-[3-[(4-Chlorophenyl)sulfonyl]-4-hydroxyphenyl]-1-propanone

m.p. $68-70^{\circ}$ [7665].

BIOLOGICAL ACTIVITY: Bactericide (no data) [7665].

1-(2-Hydroxy-3-iodo-4-phenoxyphenyl)-1-propanone

[245407-09-4]
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3} \quad$ mol.wt. 368.17
Syntheses

- Obtained by oxidation of respropiophenone [6734] with phenyliodonium diacetate (PIDA) under three conditions (compound 4e) [6452]:
(a) (basic): in the presence of potassium hydroxide in methanol at 0° and stirring overnight (68%).
(b) (neutral): in refluxing methanol (40%).
(c) (acidic): in refluxing acetic acid (55\%).
m.p. 136-138 ${ }^{\circ}$ [6452]; ${ }^{1} \mathrm{H}$ NMR [6452], IR [6452]; TLC [6452].

1-[4-Hydroxy-3-[(4-iodophenyl)sulfonyl]phenyl]-1-propanone

[67474-17-3]

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{4} \mathrm{~S} \quad$ mol.wt. 416.24
Synthesis

- Preparation by treatment of 4-propionylphenyl p-iodophenylsulfonate (1 mol) with aluminium chloride (3 mol) in nitrobenzene at $100-110^{\circ}$ (84-100\%) [7665].

BIOLOGICAL ACTIVITY: Bactericide (no data) [7665].
m.p. 135° [7665].

1-(4-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)-1-propanone

m.p. $55-60^{\circ}$ [7666].

1-[2,4-Dihydroxy-5-[(4-nitrophenyl)azo]phenyl]-1-propanone

USE: Dye for polypropylene fibres [7667].

1-(2-Hydroxy[1,1'-biphenyl]-3-yl)-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Syntheses

- Obtained (by-product) by Fries rearrangement of o-xenyl propionate,
- with aluminium chloride at 160° for $30-45 \mathrm{~min}(8 \%)$ [7668], (4\%) [7669];
- with titanium tetrachloride in nitromethane at 20° for 24 h (10\%) [7561].
b.p. ${ }_{3.5} 183-185^{\circ}$ [7668]; $\mathrm{n}_{\mathrm{D}}^{20}=1.6145$ [7561]; IR [7561], UV [7561].

1-(3-Hydroxy[1,1'-biphenyl]-4-yl)-1-propanone

[108478-15-5] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Syntheses

- Preparation by Fries rearrangement of 3hydroxybiphenyl propionate (b.p. $160-165^{\circ}$) [7668,7670] with aluminium chloride (71-74\%) [7668,7671].
- Preparation by Friedel-Crafts acylation of 3-methoxy-biphenyl with propionyl chloride in the presence of aluminium chloride, first in refluxing methylene chloride for 11 h , then at r.t. for $11 \mathrm{~h}(71 \%)$ [7671].
- Also obtained by ether cleavage of 3-methoxy-4-propionylbiphenyl with aluminium chloride in refluxing methylene chloride overnight (53\%) [7671].
- Also obtained (poor yield) by heating diethyl propionylmalonate and 2-phenyl-$3-\mathrm{yn}$-2-ol together for 1.5 h , the final temperature was 230° (7\%) [7672].
m.p. $113-113.5^{\circ}$ [7672], $110.5-111^{\circ}$ [7671], 109° [7668,7670]; IR [7672], UV [7672].

1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-1-propanone

2-Hydroxy-5-phenylpropiophenone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

Syntheses

- Refer to: [7666,7673].

USE: Plasticizer for vinyl chloride-vinylene chloride polymers [7673].

1-(4'-Hydroxy[1,1'-biphenyl]-4-yl)-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27

- Obtained by Fries rearrangement of 4-(propionyloxy)biphenyl (m.p. 93°) with aluminium chloride in nitrobenzene, first at 20° for 12 h , then at 60° for 1 h (38\%) [7674].
- Also obtained by treatment of 4-methoxy-4'-propionylbiphenyl with 48% hydrobromic acid in boiling acetic acid for 7-8 h (70\%) [7675]. m.p. 179° [7674], 174° [7675].

Benzoate $\quad \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 330.38.

- Preparation by reaction of benzoyl chloride with 4-hydroxy-4'-propionylbiphenyl in the presence of pyridine (82%) [7675].
m.p. $167-168^{\circ}$ [7675].

1-(6-Hydroxy[1,1'-biphenyl]-3-yl)-1-propanone

[95102-29-7]

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 226.27
Syntheses

- Preparation by Fries rearrangement of o-xenyl propionate (2-hydroxydiphenyl propionate),
- with aluminium chloride [7603], at 120° for 5 h [7676] or 160° for $30-45 \mathrm{~min}$ [7668], (46\%) [7669];
- with titanium tetrachloride in nitromethane at 20° for 24 h (22\%) [7561].
- Also obtained by direct condensation of o-hydroxydiphenyl with propionic acid in the presence of boron trifluoride for $2-3 \mathrm{~h}$ between 65° and 85° [6819].
- Also obtained by treatment of 5-propionyl-2-methoxydiphenyl (m.p. 92°) with boiling pyridinium chloride [7677].
- Also refer to: [7602,7670]. m.p. 154° [6819], $151-152^{\circ}$ [7668], 150° [7561], 148-149 ${ }^{\circ}$ [7677], 148° [7676], 147.5-148 ${ }^{\circ}$ [7669];

IR [7561], UV [7561].

1-(2,5-Dihydroxy[1,1'-biphenyl]-4-yl)-1-propanone

 $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27 Synthesis

- Obtained (by-product) by Friedel-Crafts acylation of 2,5-dimethoxydiphenyl (b.p. ${ }_{4}$ $147-149^{\circ}$) with propionyl chloride or propionic anhydride in the presence of aluminium chloride (15\%) [7668].
b.p. $220-230^{\circ}$ [7668]; m.p. $138-139^{\circ}$ [7668].

1-(3,6-Dihydroxy[1,1'-biphenyl]-2-yl)-1-propanone

6-Propionyl-2,5-dihydroxydiphenyl $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
 Synthesis

- Obtained by direct propionylation of 2,5-dimethoxydiphenyl, but total demethylation took place at the same time (15\%) [7668].

1-(2-Hydroxy-3-phenoxyphenyl)-1-propanone

[307000-30-2] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Synthesis

- Refer to: [7678].

USE: For inhibiting development of body odours in cosmetic compositions [7679-7683].

1-(2-Hydroxy-4-phenoxyphenyl)-1-propanone

[479580-94-4] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Synthesis

- Refer to: [7678].

USE: For inhibiting development of body odours in cosmetic compositions [7679-7683].

1-(4-Hydroxy-3-phenoxyphenyl)-1-propanone
[307000-51-7] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

1-[4-Hydroxy-3-(phenylsulfonyl)phenyl]-1-propanone
[67474-13-9] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 290.34

Synthesis

- Preparation by treatment of 4-propionylphenyl benzenesulfonate (1 mol) with aluminium chloride (3 mol) at 140° for $3-4 \mathrm{~h}(84-100 \%)$ [7665].

BIOLOGICAL ACTIVITY: Bactericide (no data) [7665].
m.p. 64° [7665].

1-(3,4-Dihydroxyphenyl)-1-propanone 3-phenylphosphonate

2-Hydroxy-5-propionylphenyl hydrogen phenylphosphonate

1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]-1-propanone-2,2,3,3,3- \boldsymbol{d}_{5} $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{D}_{5} \mathrm{O}_{2} \quad$ mol.wt. 239.37

Synthesis

- Refer to: [6350].

Ion $\left(1^{-}\right)$, radical ion $\left(1^{-}\right)$[57209-24-2], ESR spectrum [6350].
1-[4-(3-Bromopropoxy)-2-hydroxy-3-(2-propenyl)phenyl]-1-propanone
[194792-40-0]

1-[4-(3-Chloro-2-hydroxypropoxy)-2-hydroxy-3-(2-propenyl)phenyl]-1-propanone
[63360-15-6]

1-(3-Cyclohexyl-4-hydroxyphenyl)-1-propanone

[95185-71-0] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 232.32

Synthesis

- Preparation by Fries rearrangement of 2-cyclohexylphenyl propionate [7603].

USE: As colour developer [7603].
1-(5,6,7,8,9,10-Hexahydro-1-hydroxy-2-benzocyclooctenyl)-1-propanone
[936642-86-3]

$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClO}_{4} \quad$ mol.wt. 298.77
Syntheses

- Refer to: [7112,7453,7482,7684].

Synthesis

- Refer to: [7452].

Refo: [7112,7453,7482,768].

1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$
mol.wt. 248.32
Synthesis

- Preparation by reaction of propionic acid with 4-cyclohexyl-resorcinol in the presence of boron trifluoride etherate at 125° for $15 \mathrm{~min}(80 \%)$ [6737].
m.p. 72-73² [6737]; IR [6737], UV [6737].

1-[3-(Cyclohexyloxy)-4-hydroxyphenyl]-1-propanone

[137053-40-8] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 248.32

USE: As pharmaceutical intermediate [7616].

1-[4-(Cyclohexyloxy)-2-hydroxyphenyl]-1-propanone

[101002-35-1]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 248.32
Syntheses

- Obtained by Fries rearrangement of 3-(cyclohexyloxy)-phenyl propionate [7685].
- Also obtained by reaction of cyclohexyl bromide with respropiophenone in the presence of potassium carbonate in refluxing acetone [7237].
m.p. $80-81^{\circ}$ [7237].

Oxime [101002-22-6] $\quad \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \quad$ mol.wt. 263.34 [7686] (m.p. 65-69 ${ }^{\circ}$) [7237,7687].

- As lipoxygenase inhibitor [7685]; antiallergic and antiinflammatory agent [7688].

1-[3-[(Cyclopentyloxy)methyl]-4-hydroxyphenyl]-1-propanone

2-[4,5-Dimethoxy-2-(1-oxopropyl)phenoxy]acetic acid ethyl ester

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 296.32

Synthesis

- Obtained by reaction of ethyl bromoacetate with 2-hydroxy-4,5-dimethoxypropiophenone in the presence of potassium hydroxide in refluxing acetone (96\%) [7400].
m.p. $112-114^{\circ}$ [7400].

1-[2-Hydroxy-4-(β-D-glucopyranosyloxy)phenyl]-1-propanone

 $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 328.32 Synthesis

- Preparation by treatment of its tetraacetate (m.p. 129-130 $)$ with boiling methanolic 0.2 M sodium methoxide for 3 min (75\%) [6731].
m.p. (monohydrate) $144-145^{\circ}[6731] ; \quad(\alpha)_{\mathrm{D}}^{25}=-51.4^{\circ}(\mathrm{c}=2$ in DMF) [6731]; (anhydrous) $79-181^{\circ}$ [6731]; $\quad(\alpha)_{\mathrm{D}}^{20}=-53.2^{\circ}(\mathrm{c}=2$ in DMF) [6731];
paper chromatography [6731].
1-[4-Hydroxy-2-(β-D-glucopyranosyloxy)phenyl]-1-propanone (Trihydrate)

$$
\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{8}, 3 \mathrm{H}_{2} \mathrm{O} \quad \text { mol.wt. } 382.36
$$

Synthesis

- Obtained by treatment of its pentaacetate (m.p. 110$112^{\circ}$) with boiling methanolic 0.2 M sodium methoxide for $3 \min (50 \%)$ [6731].
m.p. 69-70 ${ }^{\circ}$ [6731]; paper chromatography [6731];
$(\alpha)_{\mathrm{D}}^{30}=-74.5^{\circ}(\mathrm{c}=1$ in water $)[6731]$.

1-[4-(3-Bromopropoxy)-2-hydroxy-3-propyl]-1-propanone

[194608-83-8]

- Also refer to: [7480,7483].
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3} \quad$ mol.wt. 329.23
Syntheses
- Preparation by reaction of 1,3-dibromopropane with 2,4-dihydroxy-3-propylpropiophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone [7452,7478].

1-[5-[(6-Chlorohexyl)oxy]-2-hydroxyphenyl]-1-propanone

[140439-50-5] $\quad \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClO}_{3} \quad$ mol.wt. 284.78

Synthesis

- Preparation by reaction of 1-bromo-6-chlorohexane with 2,5-dihydroxypropiophenone in the presence of potassium carbonate in refluxing 2-butanone for 16 h (83\%) [6789].
yellow solid [6789]; ${ }^{1} \mathrm{H}$ NMR [6789].

1-[4-(3-Chloro-2-hydroxypropoxy)-2-hydroxy-3-propylphenyl]-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClO}_{4} \quad$ mol.wt. 300.78 Synthesis

- Preparation by reaction of epichlorohydrin with 2,4-dihydroxy-3-propylpropiophenone, according to the method [7690] (quantitative yield) [7482].
oily solid [7482].
1-(2-Fluoro-4-hydroxy-3,5-dipropylphenyl)-1-propanone

1-[2-Hydroxy-4-(2-morpholinoethoxy)phenyl]-1-propanone (Hydrochloride)
[20800-11-7]

m.p. $\quad 193-195^{\circ}[7691] ; \quad \mathrm{LD}_{50}$ [7691].
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{HCl} \quad$ mol.wt. 315.80
Synthesis

- Obtained by adding a solution of o-hydroxy-propiophenone and sodium ethoxide in ethanol to morpholine hydrochloride and the mixture refluxed 3 h [7691].

1-[2,3,4-Trihydroxy-5-(1-piperidinylmethyl)phenyl]-1-propanone

[73044-16-3]

$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$
mol.wt. 279.34
Synthesis

- Preparation by reaction of equimolar amounts of 2,3,4-trihydroxypropiophenone, piperidine and formaldehyde in alcoholic solution (Mannich reaction) [7628].

USE: Antioxidizing agent and antiradiation [7628].
1-[3-(1,1-Dimethylethyl)-2-hydroxy-5,6-dimethylphenyl]-1-propanone
[121194-64-7]
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34
Synthesis

- Preparation by Fries rearrangement of 2-tert-butyl-4,5-di-methylphenyl propionate with titanium tetrachloride in chlorobenzene at 100° for 2 h (52\%) [7031].
m.p. 56° [7031];
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ}$ 52743M) [7031],
IR (Sadtler: standard n° 79802K) [7031], UV [7031], MS [7031].
1-[3-(1,1-Dimethylethyl)-2-methoxy-4-methylphenyl]-1-propanone
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34

b.p. ${ }_{15} 180^{\circ}$ [7472]; m.p. 72° [7472].

1-[3-(1,1-Dimethylethyl)-2-methoxy-6-methylphenyl]-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34
Synthesis

- Preparation by reaction of dimethyl sulfate with 3-tert-butyl-2-hydroxy-6-methylpropiophenone [6351].
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 57888M), IR (Sadtler: standard n° 84936K).

1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]-1-propanone

Synthesis

- Refer to: [6350].

Note: Ion $\left(1^{-}\right)$, radical ion $\left(1^{-}\right)$[57139-00-1], ESR spectrum [6350].

1-(2-Hydroxy-3,4-dipropylphenyl)-1-propanone

[936642-84-1] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34
Synthesis

- Obtained by reaction of 2,3-dipropylcyclobutenone with ethyl vinyl ketone in the presence of a catalytic amount of $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}$ and $\mathrm{P}\left(\text { cyclo }-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ in toluene at 130° for 12 h under an argon atmosphere (75\%) [7570].
White solid [7570]; b.p. $120-130^{\circ}$ [7570];
${ }^{1} \mathrm{H}$ NMR [7570], ${ }^{13} \mathrm{C}$ NMR [7570], IR [7570], MS [7570]; GLC [7570].

1-(2-Hydroxy-3,5-dipropylphenyl)-1-propanone

[92729-83-4]

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34
Syntheses

- Preparation by Fries rearrangement of 2,4-dipropylphenyl propionate (b.p. ${ }_{15} 154^{\circ}$) [7466], (b.p. 277-279 ${ }^{\circ}$) [6575] with aluminium chloride for 30 min at $130-135^{\circ}$ (75\%) [7466] or 2 h at 100° and the reaction terminated at $120^{\circ}(62 \%)$ [6575].
amber-coloured oil [7466]; b.p., 154-155 [7466], b.p. 295-298 [6575];
$\mathrm{n}_{\mathrm{D}}^{26}=1.5217$ [7466].

1-(4-Hydroxy-3,5-dipropylphenyl)-1-propanone

[449779-75-3] \quad\begin{tabular}{l}
Synthesis

Preparation by heating a suspension of sodium
propionate and 2,6-dipropylphenol in neat triflic
acid at 50° for $1 \mathrm{~h}(85 \%)$ [6402]

\end{tabular}

white solid [6402]; ${ }^{1} \mathrm{H}$ NMR [6402], MS [6402].

1-(2,4-Dihydroxy-3,5-dipropylphenyl)-1-propanone

[449779-73-1] \quad\begin{tabular}{l}
Syntheses

- Preparation by heating a mixture of 1,3-dihydroxy-
2,4-di-propylbenzene, sodium propionate and triflic
acid (TfOH) (75\%) [7459].

- Also refer to: [7479].
\end{tabular}

1-(2,5-Dihydroxy-3,4-dipropylphenyl)-1-propanone

[873222-90-3] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 250.34

Synthesis

- Obtained by catalytic cocyclization of 4-octyne, ethyl vinyl ketone and carbon monoxide (20 atmospheres) in the presence of $\left[\mathrm{Cp} * \mathrm{RuCl}_{2}\right]_{2}$ in DMF at 140° for 20 h (54\%) [7692].
yellow solid [7692]; m.p. 116-117 ${ }^{\circ}$ [7692];
${ }^{1} \mathrm{H}$ NMR [7692], ${ }^{13} \mathrm{C}$ NMR [7692], IR [7692], MS [7692]; TLC [7692].

1-(2,4-Dihydroxy-5-hexylphenyl)-1-propanone

m.p. 50-51 $^{\circ}$ [7115,7484].

1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-1-propanone

[120350-19-8]

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$
mol.wt. 250.34
Synthesis

- Preparation by reaction of propionyl chloride with 2-tert-butylhydroquinone dimethyl ether in the presence of aluminium chloride in carbon disulfide [7336].
${ }^{1} H$ NMR [7336], IR [7336], UV [7336], MS [7336].

1-[4-Methoxy-3-(3-methylbutoxy)phenyl]-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 250.34
Synthesis

- Obtained by treatment of 2-isopentyloxy-1-methoxy-4-(1-propynyl)benzene with aque-ous-ethanolic sulfuric acid [7693].
m.p. $64.5-65^{\circ}$ [7693].

4-Nitrophenylhydrazone $\quad \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \quad$ mol.wt. 385.46 (m.p. 106-108 ${ }^{\circ}$)[7693].
2,4-Dinitrophenylhydrazone $\quad \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \quad$ mol.wt. 430.46 (m.p. 136-137${ }^{\circ}$)[7693].

1-(3-Hexyl-2,4,6-trihydroxyphenyl)-1-propanone

USE: Fungicide [7640].

1-(2,4,6-Trihydroxy-3,5-dipropylphenyl)-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 266.34
Synthesis

- This ketone was synthetic or obtained from hops [7694].

1-[3,4-Bis(ethoxymethoxy)-2-hydroxyphenyl]-1-propanone

[124300-26-1]
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 298.34
Synthesis

- Obtained by treatment of 3,4-di (ethoxymethoxy)-2-hydroxy- α-hydroxymethylpropiophenone (pale yellow oil) with 4% ethanolic sodium carbonate at reflux for $1 \mathrm{~h}(31 \%)$ [6757].
pale yellow oil [6757]; ${ }^{1} \mathrm{H}$ NMR [6757]; TLC [6757].
1-[4-[(Dimethylamino)methyl]-2-hydroxy-3-propylphenyl]-1-propanone
[107223-71-2]

$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2} \quad$ mol.wt. 249.35
Synthesis
- Obtained by reaction of propionyl chloride with 3-[(dimethylamino)methyl]-2propylphenyl propionate hydrochloride (m.p. $\quad 178-180^{\circ}$) in the presence of aluminium chloride at 165° for $2 \mathrm{~h}(86 \%)$ [7564].
b.p. ${ }_{0.2} 105-112^{\circ}[7564]$.

1-[2,4-Dihydroxy-5-[(6-nitro-2-benzothiazolyl)azo]phenyl]-1-propanone

[65412-18-2]

USE: Dye for polypropylene fibres [7667].

1-[5-(2-Benzothiazolylazo)-2,4-dihydroxyphenyl]-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
mol.wt. 327.36
Synthesis

USE: Dye for polypropylene fibres [7667].

1-[4-[(2,4-Dichlorophenyl)methoxy]-2-hydroxyphenyl]-1-propanone

[63411-96-1]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$
Synthesis

- Obtained by reaction of a 2,4dichlorobenzyl halide (unspecified) with respropiophenone in the presence of potassium carbonate in refluxing acetone for 5 h (43\%) [6380].
m.p. $109-110^{\circ}$ [6380]; ${ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

1-[4-[(3,4-Dichlorophenyl)methoxy]-2-hydroxyphenyl]-1-propanone

[63411-95-0]

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3} \quad$ mol.wt. 325.19
Synthesis

- Obtained by reaction of a 3,4dichlorobenzyl halide (unspecified) with respropiophenone in the presence of potassium carbonate in refluxing acetone for 5 h (55\%) [6380].
m.p. $126-127^{\circ}{ }^{[6380] ;}{ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

1-[4-(Benzoyloxy)-2-hydroxyphenyl]-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 270.28

Synthesis

- Obtained (by-product) by action of potassium hydroxide with 2,4-di(benzoyloxy) propiophenone in pyridine at 50° for 5 min [6762].
b.p. ${ }_{0.4} 210-220^{\circ}$ [6762]; m.p. 80° [6762].

1-[2-(Benzoyloxy)-4,6-dihydroxyphenyl]-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 286.28
Syntheses

- Obtained by reaction of benzoyl chloride with phloropropiophenone in the presence of 1.5% aqueous potassium hydroxide (8\%) [6873].
- Also refer to: [6743].
m.p. $191-192^{\circ}$ [6873].
N.B.: A mixture of the two monobenzoates (see below its isomer) melts at about 167°.

1-[4-(Benzoyloxy)-2,6-dihydroxyphenyl]-1-propanone

$$
\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5} \quad \text { mol.wt. } 286.28
$$

Syntheses

- Obtained by reaction of benzoyl chloride with phloropropiophenone in the presence of 1.5% aqueous potassium hydroxide (19\%) [6873].
- Also refer to: [6743].
m.p. 193° [6743,6873].
N.B.: A mixture of the two monobenzoates (see above its isomer) melts at about 167°.

1-(3'-Chloro-2'-methoxy[1,1'-biphenyl]-4-yl)-1-propanone
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad \mathrm{~mol}$.wt. 274.75

Synthesis

- Obtained (by-product) by reaction of propionyl chloride with 3-chloro-2-methoxybiphenyl in the presence of aluminium chloride, in mixture with its 3-propionyl isomer (major product). Total yield (73\%) [7695].
b.p. ${ }_{20} 230-235^{\circ}[7695]$.

1-(5-Chloro-6-methoxy[1,1'-biphenyl]-3-yl)-1-propanone

$$
\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2} \quad \text { mol.wt. } 274.75
$$

Synthesis

- Obtained (major product) by reaction of propionyl chloride with 3-chloro-2-methoxybiphenyl in the presence of aluminium chloride, in mixture with its 4 '-propionyl isomer (minor product). Total yield (73\%) [7695].
b.p. ${ }_{20} 230-235^{\circ}$ [7695].

1-(5'-Fluoro-2'-methoxy[1,1'-biphenyl]-4-yl)-1-propanone

light-yellow crystals [7696];
${ }^{1} \mathrm{H}$ NMR [7696], ${ }^{13} \mathrm{C}$ NMR [7696], MS [7696].
1-[2,4-Dihydroxy-5-[(2-methoxyphenyl)azo]phenyl]-1-propanone
[65412-10-4] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 300.31

Synthesis

- Refer to: [7667].

USE: Dye for polypropylene fibres [7667].
1-[2,4,6-Trihydroxy-3-methyl-5-(phenylazo)phenyl]-1-propanone (E)
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \quad$ mol.wt. 300.31

Syntheses

- Preparation by reaction of 1,3-diphenyltriazene (diazoaminobenzene) with 2,4,6-trihydroxy-3-methylpropiophenone [7260,7697].
m.p. $211^{\circ}[7260,7697]$.

1-[2-Hydroxy-3-(phenylmethyl)phenyl]-1-propanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad \text { mol.wt. } 240.30
$$

Synthesis

- Obtained by Fries rearrangement of 2-ben zylphenyl propionate with aluminium chloride [6351].
m.p. 53° [6351];
${ }^{1} H$ NMR (Sadtler: standard n ${ }^{\circ}$ 29909M).
1-[2-Hydroxy-5-(phenylmethyl)phenyl]-1-propanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad \text { mol.wt. } 240.30
$$

Syntheses

- Obtained by alkylation of 2-hydroxypropiophenone with benzyl chloride in the presence of zinc chloride, at reflux (21\%) [7698].
- Also obtained by Fries rearrangement of 4-benzylphenyl propionate (b.p. 205°) with aluminium chloride [7699].
b.p. ${ }_{0.6} 148-150^{\circ}[7698] ; \quad \mathrm{n}_{\mathrm{D}}^{24.5}=1.5601$ [7698]; m.p. $75-76^{\circ}$ [7699].

1-[4-Hydroxy-3-(phenylmethyl)phenyl]-1-propanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
 Syntheses

- Obtained by Fries rearrangement of 2-benzylphenyl propionate (b.p. ${ }_{25}$ 203 $^{\circ}$) [7699] with aluminium chloride [6351,7699].
- Also obtained by alkylation of 4-hydroxypropiophenone with benzyl chloride in the presence of zinc chloride, at reflux (18\%) [7698].
b.p. $216-220^{\circ}[7698] ;$ m.p. 157° [6351,7698], 153° [7699];
${ }^{1} H$ NMR (Sadtler: standard n° 28217M), IR (Sadtler: standard n° 55289).

1-(3-Methoxy[1,1'-biphenyl]-4-yl)-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Syntheses

- Preparation by reaction of propionyl chloride with 3-methoxybiphenyl [7671].
- Also obtained by reaction of ethylmagnesium bromide with 3-methoxybiphenyl-4-carbonitrile [7671].
m.p. $68.5-69^{\circ}$ [7671].

1-(3'-Methoxy[1,1'-biphenyl]-4-yl)-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Synthesis

- Preparation by reaction of propionyl chloride with 3-methoxybiphenyl in the presence of aluminium chloride in refluxing methylene chloride for 11 h (92\%) [7671].
m.p. $87-88^{\circ}$ [7671].

1-(4'-Methoxy[1,1'-biphenyl]-4-yl)-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30
Syntheses

- Obtained by reaction of propionyl chloride with 4-methoxybiphenyl in the presence of aluminium chloride,
- in carbon disulfide (30\%) [7675];
- in nitrobenzene, first at 0°, then at r.t. overnight (26\%) [7674].
- Also refer to: [7700-7702].
m.p. 149° [7674].

1-(5-Methoxy[1,1'-biphenyl]-2-yl)-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Syntheses

- Preparation by reaction of propionic anhydride with 3-methoxybiphenyl in the presence of aluminium chloride in carbon disulfide [7668,7670].
- Also obtained by reaction of ethylmagnesium bromide with 5-methoxybiphenyl-2-carbonitrile [7671].
b.p. ${ }_{2.5} 171.5-173^{\circ}[7671] ;$ m.p. $72^{\circ}[7668,7670]$.

1-(6-Methoxy[1,1'-biphenyl]-3-yl)-1-propanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Syntheses

- Obtained by reaction of propionyl chloride [7677] or propionic anhydride [7668,7670] with 2-methoxybiphenyl in the presence of aluminium chloride.
m.p. $93-94^{\circ}[7668,7670], 92^{\circ}$ [7677].

1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Syntheses

- Obtained by O-debenzylation of 2-hydroxy-3-benzyl-4-benzyloxypropiophenone with concentrated hydrochloric acid in refluxing acetic acid for 2 h (27\%) [7703].
- Also obtained by reaction of propionitrile with 2-benzylresorcinol (Hoesch reaction) (12\%) [7703].
m.p. $157-158^{\circ}$ [7703].

1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]-1-propanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 256.30
$$

Synthesis

- Obtained by Fries rearrangement of 2,4-dihy-droxy-diphenylmethane dipropionate (b.p. ${ }_{16} 240^{\circ}$) with aluminium chloride [7699].
m.p. 92° [7699].

1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-1-propanone

[63411-94-9] \quad| Syntheses |
| :--- |

- in the presence of potassium carbonate in refluxing acetone for 2 h (75%) [7135], for $5 \mathrm{~h}(45 \%)$ [6380] or for $8 \mathrm{~h}(47 \%)$ [7703];
- in the presence of methanolic potassium hydroxide, first at r.t. overnight, then at reflux for 5 h [7703].
m.p. $113-114^{\circ}$ [6380,7703], 112-114 ${ }^{\circ}$ [7135];
${ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

1-[2-Hydroxy-5-(phenylmethoxy)phenyl]-1-propanone

1-[3-Hydroxy-4-(phenylmethoxy)phenyl]-1-propanone

[178375-14-9]

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30
Syntheses

- Refer to: [6405,6406].

1-(2-Methoxy-5-phenoxyphenyl)-1-propanone
[502924-47-2] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 256.30

Synthesis

- Refer to: [6958].

1-(3-Methoxy-5-phenoxyphenyl)-1-propanone

[502924-51-8]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 256.30
Synthesis

- Refer to: [6958].

1-[2,4,6-Trihydroxy-3-(phenylmethyl)phenyl]-1-propanone
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 272.30

1-[4-Hydroxy-3-[(4-methylphenyl)sulfonyl]phenyl]-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 304.37
Synthesis

- Preparation by treatment of 4-propionylphenyl p-toluenesulfonate (1 mol) with aluminium chloride (3 mol) at 140° for $3-4 \mathrm{~h}(84-100 \%)$ [7665].
m.p. 84° [7665].

BIOLOGICAL ACTIVITY: Bactericide (no data) [7665].

1-[4-Hydroxy-3-[(4-methoxyphenyl)sulfonyl]phenyl]-1-propanone
[67474-18-4] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 320.37.

Synthesis

- Preparation by treatment of 4-propionylphenyl p-methoxyphenylsulfonate (1 mol) with aluminium chloride (3 mol) at 140° for $3-4 \mathrm{~h}$ (84-100\%) [7665].
m.p. $64-65^{\circ}$ [7665].

BIOLOGICAL ACTIVITY: Bactericide (no data) [7665].
1-[2-Hydroxy-4-(4-hydroxy-1-butynyl)-3-propylphenyl]-1-propanone
[194792-37-5]
1-[2-Hydroxy-3,5-dimethoxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 294.35
Isolation from natural sources

- From Leucanthemopsis pallida subsp. flaveola (Compositae) (compound 2) [7440].
${ }^{1} \mathrm{H}$ NMR [7440], ${ }^{13} \mathrm{C}$ NMR [7440], IR [7440], UV [7440].

2-[4,5-Dimethoxy-2-(1-oxopropyl)phenoxy]propanoic acid ethyl ester

$$
\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} \quad \text { mol.wt. } 310.35
$$

Synthesis

- Obtained by reaction of ethyl α-bromopropionate with 2-hydroxy-4,5-dimethoxypropiophenone in the presence of potassium hydroxide in refluxing acetone for 6-10 h (84%) [7400].
m.p. $62-63^{\circ}$ [7400].

1-[4-(4-Bromobutyl)-2-hydroxy-3-propylphenyl]-1-propanone

[194792-39-7]

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2} \quad$ mol.wt. 327.26
Synthesis

- Refer to: [7452].

1-[4-(4-Bromobutoxy)-2-hydroxy-3-propylphenyl]-1-propanone

1-[2-Hydroxy-4-(2-piperidinoethoxy)phenyl]-1-propanone (Hydrochloride)

[20800-22-0]

 mol.wt. 313.82 Synthesis

- Obtained by adding a solution of o-hydroxy-propiophenone and sodium ethoxide in ethanol to piperidine hydrochloride and the mixture refluxed 3 h [7691].
m.p. $\quad 181-183^{\circ}$ [7691]; $\quad \operatorname{LD}_{50}$ [7691].

4-Methoxy-3-methyl-2-(1-oxopropyl)phenyl diethylcarbamate

$$
\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \quad \text { mol.wt. } 293.16
$$

Synthesis

- Obtained by lithiation-zinc transmetallation of 4-methoxy-3-methylphenyl diethylcarbamate followed by cross coupling with propionyl chloride (6\%) [7500].
${ }^{1} \mathrm{H}$ NMR [7500].
4-Methoxy-5-methyl-2-(1-oxopropyl)phenyl diethylcarbamate $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \quad$ mol.wt. 293.16

Synthesis

- Obtained by lithiation-zinc transmetallation of 4-methoxy-3-methylphenyl diethylcarbamate followed by cross coupling with propionyl chloride (76%) [7500].
m.p. $67-68^{\circ}$ [7500];
${ }^{1} \mathrm{H}$ NMR [7500], ${ }^{13} \mathrm{C}$ NMR [7500], IR [7500], MS [7500].

1-[3-[(Hexyloxy)methyl]-4-hydroxyphenyl]-1-propanone

[114477-31-5]
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$
mol.wt. 264.36

Syntheses

- Obtained by reaction of 4-hydroxy-3-chloromethylpropiophenone with 1-hexanol in the presence of sodium bicarbonate [7392].
- Also refer to: [7610].

USE: Pharmaceutical intermediate [7392].

1-[2-Hydroxy-4-(4-hydroxybutyl)-3-propylphenyl]-1-propanone

1-(3-Heptyl-2,4,6-trihydroxyphenyl)-1-propanone
[74477-94-4]

USE: Fungicide [7625].
1-[4-Methoxy-3-[(4-nitrophenyl)methyl]phenyl]-1-propanone
[188984-62-5]

1-[5-[(4-Ethylphenyl)azo]-2,4-dihydroxyphenyl]-1-propanone
[65412-09-1]

USE: Dye for polypropylene fibres [7667].

1-[2-Hydroxy-5-(phenylethyl)phenyl]-1-propanone
$\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33

Synthesis

- Preparation by Fries rearrangement of 4-(phenylethyl) phenyl propionate (b.p. ${ }_{18} 220^{\circ}$; m.p. 38-39 ${ }^{\circ}$) with aluminium chloride (70\%) [7699].
b.p. ${ }_{18} 220^{\circ}$ [7699]; m.p. 47-48 ${ }^{\circ}$ [7699].

1-[4-Methoxy-3-(phenylmethyl)phenyl]-1-propanone
mol.wt. 254.33
Syntheses

Obtained by reaction of dimethyl sulfate with 3-benzyl-
4-hydroxypropiophenone in the presence of aqueous
sodium hydroxide solution [7699].

| - Also refer to: [7698]. |
| :--- | :--- |

b.p. ${ }_{0.5} 187-188^{\circ}$ [7698]; m.p. 120° [7698], 119° [7699].

1-(4,5-Dimethoxy[1,1'-biphenyl]-3-yl)-1-propanone $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
 Synthesis

- Obtained by reaction of propionic anhydride with 3,4-dimethoxydiphenyl in the presence of aluminium chloride in carbon disulfide (10\%) [7668]. b.p. ${ }_{3} 228-230^{\circ}$ [7668]; m.p. 113° [7668].

1-[2-Methoxy-4-(phenylmethoxy)phenyl]-1-propanone $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Preparation by reaction of methyl iodide with 4-(benzyloxy)-2-hydroxypropiophenone in the presence of potassium carbonate in boiling acetone [7135].
m.p. $59-60^{\circ}$ [7135].

1-[3-Methoxy-4-(phenylmethoxy)phenyl]-1-propanone

[1835-15-0]

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33
Syntheses

- Obtained by reaction of sodium methoxide with 1-benzyloxy-4-(1,2-dibromopropyl)-2-methoxybenzene [7245].
- Also obtained by reaction of ethylmagnesium bromide with o-benzylvanillin (85\%) [7705].
- Also obtained by reaction of benzyl chloride with 4-hydroxy-3-methoxypropiophenone in the presence of potassium carbonate and sodium iodide in refluxing dilute ethanol for 5 h (92\%) [7163].
- Also refer to: [6406,7244].
m.p. $99-101^{\circ}$ [7705], $98-101^{\circ}$ [7163], 93° [7245], $91-93^{\circ}$ [7194];
${ }^{1} \mathrm{H}$ NMR [7705]; Polarographic half-wave potential [7706].

1-[4-Methoxy-3-(phenylmethoxy)phenyl]-1-propanone

1-[5-Methoxy-2-(phenylmethoxy)phenyl]-1-propanone
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 270.33

Synthesis

- Obtained by reaction of benzyl chloride with 2-hydroxy-5-methoxypropiophenone in the presence of potassium hydroxide in methanol [7149].
b.p. $194-196^{\circ}$ [7149]; m.p. 47° [7149].

1-[2-Hydroxy-4-methoxy-5-(phenylmethoxy)phenyl]-1-propanone

| [3904-19-6] | $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ | mol.wt. 286.33 |
| ---: | :--- | :--- | :--- |
| OH | Synthesis | |

- Obtained by reaction of benzyl chloride with 2,5-dihydroxy-4-methoxypropiophenone in the presence of sodium ethoxide in refluxing ethanol for 12 h (88\%) [7254].
m.p. 99° [7254].

1-(4',6-Dihydroxy-3',5-dimethoxy[1,1'-biphenyl]-3-yl)-1-propanone

4'-Hydroxy-3'-(4-hydroxy-3-methoxyphenyl)-5'-methoxypropiophenone

Synthesis

- Obtained by saponification of 3,3'-dimethoxy-4-hydroxy-2'-propionoxy-5'-propionylbiphenyl [7161].
${ }^{1} \mathrm{H}$ NMR [7161].

1-[3-[1-(2,4-Dihydroxyphenyl)-2-hydroxyethyl]-2,4,6-trihydroxyphenyl]-1propanone

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7} \quad$ mol.wt. 334.33
Syntheses

- Refer to: [7709,7710] (Japanese patents).

1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone-2,2,3,3,3- d_{5} $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{D}_{5} \mathrm{O}_{2} \quad$ mol.wt. 267.42

Synthesis

- Refer to: [7711].

Radical ion (1^{-}) [65282-39-5], ESR spectrum [7711].
Ion $\left(1^{-}\right)$, radical ion $\left(1^{-}\right)$[72051-73-1], ESR spectrum [6350].
1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone
[40662-81-5]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39
Syntheses

- Preparation by Fries rearrangement of 2,4-di-tert-butyl-phenyl propionate in nitromethane,
- with titanium tetrachloride at 20° for a week (69\%) [7712];
- with stannic chloride at 20° for $24 \mathrm{~h}(50 \%)$ [6570,7712].
- Also obtained by Fries rearrangement of 2,6-di-tert-butyl-phenyl propionate with titanium tetrachloride in nitromethane at 20° for a week (17\%) [7712]. There is a tert-butyl group migration on the ring.
- Also obtained by Fries rearrangement of 2,4,6-tri-tert-butylphenyl propionate in nitromethane,
- with titanium tetrachloride at 20° for 8 days (25\%) [7712];
- with antimony pentachloride at 20° for $2 \mathrm{~h}(38 \%)$ [7712].

In these above two reactions, there are tert-butyl group eliminations.

- Also obtained (by-product) by Fries rearrangement of 2-tert-butylphenyl propionate in the presence of aluminium bromide, antimony pentachloride, antimony pentafluoride or boron trifluoride in nitromethane at 20° for 24 h (5-8\%) [7576].
b.p. ${ }_{18-20} 155-156^{\circ}$ [7712]; m.p. 68° [7712];
${ }^{1} H$ NMR (Sadtler: standard ${ }^{\circ}$ 16617M), IR (Sadtler: standard n ${ }^{\circ}$ 44743) [7712], UV [7712].
Notes: Radical ion (1^{-}) [72051-72-0], ESR spectrum [6350]; radical ion (1^{-}) [65282-38-4], ESR spectrum [7711].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-propanone

[14035-34-8]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39
Syntheses

- Preparation by Friedel-Crafts acylation of 2, 6-di-tert-butylphenol with propionyl chloride in the presence of aluminium chloride,
- at 0° for 45 min [7713] according to the procedure [7714];
- at -10° for $1-13 \mathrm{~min}(92 \%)$ [7715];
- at 20° for 20 min , followed by hydrolysis of the formed keto ester $(85 \%$, m.p. 46.5-47.5 ${ }^{\circ}$) [7716].
- Preparation by Friedel-Crafts acylation of 2,6-di-tert-butylphenol with propionyl chloride in the presence of titanium tetrachloride in ethylene dichloride [7717].
- Preparation by Fries rearrangement of 2,6-di-tert-butylphenyl propionate with titanium tetrachloride in nitromethane at 20° for a week (66%) [7712].
- Also obtained by hydrolysis of 2,6-di-tert-butyl-4-ethylmethoxymethylenequinone (m.p. 98-101 ${ }^{\circ}$) with hydrochloric acid (98\%) [7718].
- Also obtained by oxidation of (3,5-di-tert-butyl-4-hydroxyphenyl)-ethylcarbinol with DDQ in dioxane at r.t. for $16 \mathrm{~h}(94 \%)$ [7306].
- Also obtained from 4-bromo-2,6-di-tert-butyl-4-(1-hydroxypropyl)-2,5-cyclohexadienone (m.p. 51 ${ }^{\circ}$) [7719],
- by treatment with 80% aqueous acetic acid or ethanol at 60° for $15 \mathrm{~min}(92 \%)$ [7719];
- by treatment in petroleum ether at r.t. for $48 \mathrm{~h}(92 \%)$ [7719];
- by treatment with pyridine in methanol at r.t. for 6 h (18\%) [7720];
- by treatment with 5% methanolic sulfuric acid at r.t. for 18 h in the presence of silver nitrate (19%) or without this one (9%) [7721].
- Also obtained from 2,6-di-tert-butyl-4-(1-methoxypropyl)phenol (m.p. 45°) by bromine oxidation on heating in 80% aqueous acetic acid at 60° for 15 min (64\%) [7718].
- Also obtained by treatment of 4-bromo-2,6-di-tert-butyl-4-(1-bromopropyl)-2,5-cyclohexadienone (m.p. $75-77^{\circ}$) with a water-petroleum ether mixture (69\%) [7719].
- Also obtained from 2,6-di-tert-butyl-4-(1-hydroxypropyl)phenol (m.p. 77°) by bromine oxidation on heating in 80% aqueous acetic acid (37\%) or in petroleum ether with ice cooling (21\%) [7719].
- Also obtained from 2,6-di-tert-butyl-4-ethylmethylenequinone (m.p. 37°) by bromine oxidation on heating in 80% aqueous acetic acid at 80° for 15 min (25\%) [7719].
- Also obtained (trace) by oxidation of 2,6-di-tert-butyl-4-propylphenol with cumene hydroperoxide in the presence of cobalt phthalate in cumene under air bubbling at $80-100^{\circ}$ for $100 \mathrm{~h}(<4 \%)$ [7722].
- Also refer to: [6485,7723-7730].
m.p. $137^{\circ}[7712,7718,7719], 136-137^{\circ}[7713,7716,7721], 136^{\circ}[7722]$, 134-135 [7715];
${ }^{1}$ H NMR (Sadtler: standard ${ }^{\circ}$ 18465M) [7731], IR (Sadtler: standard $n^{\circ} 44745$) [7712], UV [7712], MS [7732].
BIOLOGICAL ACTIVITY: Antiinflammatory [7717], anticholesteremic [7733].
1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl]-1-propanone
[121194-65-8]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39 Synthesis
- Preparation by Fries rearrangement of 2-tert-butyl-5-methyl-4-isopropylphenyl propionate with titanium tetrachloride in chlorobenzene at 100° for $2 \mathrm{~h}(51 \%)$ [7031].
m.p. 73° [7031];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 52744M) [7031], IR (Sadtler: standard n° 79803K) [7031], UV [7031], MS [7031].

1-[2-Hydroxy-3,5-di(1-methylpropyl)phenyl]-1-propanone

[107621-04-5]

b.p. $106-109^{\circ}$ [6509];
$\mathrm{n}_{\mathrm{D}}^{25}=1.5153$ [6509].
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39 Synthesis

- Preparation by reaction of propionic acid with 2,4-di-sec-butylphenol (b.p. $186-89^{\circ}$) in the presence of boron trifluoride (67\%) [6509].

1-[3-(Heptyloxy)methyl-4-hydroxyphenyl]-1-propanone

[136715-27-0] \quad\begin{tabular}{l}
Synthesis

Obtained by reaction of 4-hydroxy-3-chloromethyl-
propiophenone with 1-heptanol in the presence of
sodium bicarbonate [7392].

\end{tabular}

USE: Pharmaceutical intermediate [7392].

1-[2-Hydroxy-4-(octyloxy)phenyl]-1-propanone

[63411-92-7]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 278.39
Synthesis

- Preparation by reaction of an octyl halide (unspecified) with respropiophenone in the presence of potassium carbonate in refluxing acetone for 5 h (60\%) [6380].
viscous oil, purified by preparative TLC [6380];
${ }^{1} \mathrm{H}$ NMR [6380], IR [6380]; TLC [6380].

1-(2,4,6-Trihydroxy-3-octylphenyl)-1-propanone

[74477-95-5]

USE: Fungicide [7625].
1-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2-hydroxy-4,6-dimethoxyphenyl]-1-propanone
[293744-05-5]

$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si} \quad$ mol.wt. 340.49
Syntheses

- Preparation by reaction of tert-butyldimethylsilyl chloride with 2,3-dihy-droxy-4,6-dimethoxy-propiophenone in the presence of imidazole in DMF (95\%) [7436,7437].

N -(5-Chloro-2-pyridinyl)- N^{\prime}-[(1R,2R)-2-[6-fluoro-2-hydroxy-3-(1-oxopropyl) phenyl]-cyclopropyl]-urea (MSC 197)
[247230-90-6]

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClFN}_{3} \mathrm{O}_{3}$ mol.wt. 377.80
Syntheses

- Obtained by treatment of its methyl ether with boron trichloride in methylene chloride [6522].
- Also refer to: [6521].
m.p. 196.5-198.5 ${ }^{\circ}$ [6522];
$(\alpha)_{\mathrm{D}}^{22}=-176.8^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ [6522];
${ }^{1} \mathrm{H}$ NMR [6522].

N-(5-Chloro-2-pyridinyl)-N \mathbf{N}^{\prime}-[(1S,2S)-2-[6-fluoro-2-hydroxy-3-(1-oxopropyl) phenyl]-cyclopropyl]-urea (MSC 198)
[247230-91-7] $\quad \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClFN}_{3} \mathrm{O}_{3}$ mol.wt. 377.80

m.p. $196-197^{\circ}$ [6522];
$(\alpha)_{\mathrm{D}}^{22}=+176.8^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ [6522];
${ }^{1} \mathrm{H}$ NMR [6522].

1-[4-(Benzoyloxy)-2,6-dimethoxyphenyl]-1-propanone

$$
\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \quad \text { mol.wt. } 314.34
$$

 Syntheses

- Obtained by reaction of 4-(benzoyloxy)-2,6-di-hydroxypropiophenone with methyl iodide in the presence of potassium carbonate in boiling acetone for 30 h [6873].
- Also refer to: [6743].
m.p. 103° [6873].

1-[4,6-Dihydroxy-2-(2-methoxyethyl)[1,1'-biphenyl]-3-yl]-1-propanone

[860152-82-5] $\quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$ mol.wt. 300.35

Synthesis

- Refer to: [7664].

1-[2-Hydroxy-3,4-dimethoxy-6-(phenylmethoxy)phenyl]-1-propanone
[134082-01-2]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
mol.wt. 316.35
Synthesis

- Preparation by reaction of benzyl chloride with 2,6-di-hydroxy-3,4-dimethoxypropiophenone in N, N-dimethyl-formamide in the presence of potassium carbonate at $150-160^{\circ}$ for $10-20$ min, followed by treatment of the dibenzyl ether obtained by concentrated hydrochloric acid in acetic acid at r.t. for 2-3 h(85\%) [7442].
m.p. $\quad 111.5-113^{\circ}$ [7442]; ${ }^{1} \mathrm{H}$ NMR [7442].

1-[2-Hydroxy-4,6-dimethoxy-3-(phenylmethoxy)phenyl]-1-propanone

[293744-03-3]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 316.35
Syntheses

- Preparation by reaction of benzyl bromide with 2,3-dihydroxy-4,6-dimethoxypropiophenone in the presence of Hünig base in methylene chloride for 1 day (71\%) [7436,7437].
m.p. $\quad 68^{\circ}[7436,7437]$.

1-[3-Hydroxy-4,6-dimethoxy-2-(phenylmethoxy)phenyl]-1-propanone

m.p. 132° [7436,7437]. \quad| Syntheses |
| :--- |

1-[6-Hydroxy-3,4-dimethoxy-2-[[(4-methylphenyl)sulfonyl]oxy]phenyl]-1-propanone

[134081-85-9]

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{~S} \quad$ mol.wt. 380.42
Synthesis

- Preparation by partial demethylation of 3,4,6-tri-methoxy-2-(tosyloxy)propiophenone (m.p. 121-123 ${ }^{\circ}$) with aluminium bromide in acetonitrile at r.t. for $2-3 \mathrm{~h}$ (88\%) [7442].
m.p. $\quad 120.5-121^{\circ}$ [7442]; ${ }^{1} \mathrm{H}$ NMR [7442].

1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-(3-methyl-2-butenyl)phenyl]-1-propanone

[199166-83-1]

$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6} \quad$ mol.wt. 338.40
Synthesis

- Refer to: [7735].

USE: Preparation of flavones and naphthalenes as estrogens [7735].

1-[3,5-Bis(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone

$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \quad$ mol.wt. 276.42
Synthesis

- Obtained by reaction of methyl iodide with the sodium salt of 3,5-di-tert-butyl-2-hydroxypropiophenone in THF [7712].
b.p. ${ }_{15} 163^{\circ}$ [7712]; m.p. 55° [7712];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard $\mathrm{n}^{\circ} 16618 \mathrm{M}$), IR (Sadtler: standard n° 44744) [7712], UV [7712].

1-[3,5-Bis(1,1-dimethylethyl)-4-methoxyphenyl]-1-propanone

[40662-88-2] \quad\begin{tabular}{l}
Synthesis

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$

Preparation by reaction of dimethyl sulfate with

3,5-di-tert-butyl-4-hydroxypropiophenone in the

presence of sodium hydroxide in dilute metha-

nol [7712].
\end{tabular}

yellow oil [7712]; $\mathrm{n}_{\mathrm{D}}^{20}=1.5165$ [7712]; IR [7712], UV [7712].

1-(2-Hydroxy-5-nonylphenyl)-1-propanone

$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ mol.wt. 276.42

Synthesis

- Obtained by acylation of 4-nonylanisole in the presence of aluminium halide or boron halide [7736].

1-(4-Hydroxy-3-nonylphenyl)-1-propanone
[104557-28-0] $\quad \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \quad$ mol.wt. 276.42

1-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2-hydroxy-3-propylphenyl]-1-propanone

[194854-84-7]
$\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si} \quad$ mol.wt. 322.52

Syntheses

- Refer to: [7476,7477].

N -(5-Cyano-2-pyridinyl)- N^{\prime}-[(1R,2R)-2-[6-fluoro-2-hydroxy-3-(1-oxopropyl) phenyl]-cyclopropyl]-urea

N-(5-Cyano-2-pyridinyl)- \mathbf{N}^{\prime}-[(1S,2S)-2-[6-fluoro-2-hydroxy-3-(1-oxopropyl) phenyl]-cyclopropyl]-urea (MIV 150)
[231957-54-3]
$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{3} \quad$ mol.wt. 368.37

Syntheses

- Refer to: [6522,6990,7734, 7738].
${ }^{1} \mathrm{H}$ NMR [6522].

1-(2,2'-Diethyl-5'-hydroxy[1,1'-biphenyl]-4-yl)-1-propanone

[540495-32-7]

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 282.32
Synthesis

- Refer to: [7289].

1-(5'-Hydroxy-2'-methyl-2-propyl[1,1'-biphenyl]-4-yl)-1-propanone

1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4-hydroxyphenyl]-1-propanone (E)

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ mol.wt. 302.42

Synthesis

- Refer to: [7617] (Japanese patent).

1-[2,4,6-Trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]-1-propanone
[50874-47-0]
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$
mol.wt. 318.41
Syntheses

- Obtained by reaction of 1-bromo-3-methyl-2-butene with phloropropiophenone in the presence of the weakly basic resin DeAcidite H-IP $\left(\mathrm{OH}^{-}\right.$form) in boiling benzene for 16 h (12\%) [7739]. The yield was similar to the one obtained by using 2-methyl-3-buten-2-ol and a Lewis acid but the isolation was simpler.
- Also refer to: [7740].
m.p. 83° [7739].

1-(5-Decyl-2-hydroxyphenyl)-1-propanone

[102020-39-3] $\quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2} \quad$ mol.wt. 290.45

b.p. $161-165^{\circ}[6509] ;{ }_{\mathrm{D}}^{25}=1.5072$ [6509].

1-[4-(Decyloxy)-2-hydroxyphenyl]-1-propanone

[101002-30-6]
$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$
mol.wt. 306.45
Syntheses

- Obtained by Fries rearrangement of 3(decyloxy)phenyl propionate [7685].
- Also obtained by reaction of n-decyl bromide with respropiophenone in the presence of potassium carbonate in refluxing acetone [7237].
- Also refer to: [7688].
m.p. 30° [7237].

Oxime [101002-16-8] $\quad \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3} \quad$ mol.wt. 321.46 (m.p. $58-59^{\circ}$) [7237,7641,7686].

USE: Antiallergic and antiinflammatory agent [7688], lipoxygenase inhibitor [7685].

1-[4-Hydroxy-3-[(nonyloxy)methyl]phenyl]-1-propanone

[136715-28-1] $\quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \quad$ mol.wt. 306.45

Synthesis

- Preparation [7392] (Czech patent).

USE: As pharmaceutical intermediate [7392].
1-(4'-Hydroxy-3',5-dimethoxy-6-propionyloxy[1,1'-biphenyl]-3-yl)-1-propanone
4'-Hydroxy-3'-(4-hydroxy-3-methoxyphenyl)-5'-methoxypropiophenone 4^{\prime}-propionate 3,3'-Dimethoxy-4-hydroxy-2'-propionoxy-5'-propionylbiphenyl
[18592-99-9] $\quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 358.39

Synthesis

- Isolation from the dehydrogenation resin of propioguaiacone through preparative TLC (compound 12) (6\%) [7161].
${ }^{1} \mathrm{H}$ NMR [7161], IR [7161], UV [7161].
1-[2'-Ethyl-5'-hydroxy-2-(1-methylethyl)[1,1'-biphenyl]-4-yl]-1-propanone

1-($\mathbf{2}^{\prime}$-Ethyl-5'-hydroxy-2-propyl[1,1'-biphenyl]-4-yl)-1-propanone
[540495-37-2]

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 296.41
Syntheses

- Refer to: [7289,7741].

1-[4-Hydroxy-2-methyl-5-(1-methylethyl)-3-(phenylmethyl)phenyl]-1-propanone

b.p. ${ }_{22} 244-246^{\circ}[7585] ; \quad \mathrm{n}_{\mathrm{D}}^{22}=1.5640$ [7585].

1-[3-[(Decyloxy)methyl]-4-hydroxyphenyl]-1-propanone

[136715-29-2] $\quad \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \quad$ mol.wt. 320.47

Synthesis

- Preparation [7392] (Czech patent).

USE: As pharmaceutical intermediate [7392].

1-[2,4-Dihydroxy-5-[[4-(phenylazo)phenyl]azo]phenyl]-1-propanone

[65561-66-2]

USE: For dyeing nickel-containing polypropylene fibres [7742,7743].

1-(3'-Hydroxy [1, $1^{\prime}: 2^{\prime}, 1^{\prime \prime}$-terphenyl]-4'-yl)-1-propanone

[777067-73-9]

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \quad$ mol.wt. 374.40
Synthesis

- Preparation, refer to: [7742,7743].
(4.8 mmol), tris (dibenzylideneacetone)-dipalladium (0) (0.1 mmol) and a 20% solution of tricyclo-hexylphosphine (0.25 mmol) in toluene. The resulting mixture was heated at 80° for $24 \mathrm{~h}(48 \%)$ [6385].
m.p. $\quad 129-130^{\circ}$ [6385]; ${ }^{1} \mathrm{H}$ NMR [6385].

Oxime $\quad \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{2} \quad$ mol.wt. 317.39 (m.p. 220-221 ${ }^{\circ}$) [6385].

4-[[3-Hydroxy-4-(1-oxopropyl)-2-propylphenyl]methoxy]benzeneacetonitrile

[107223-73-4]

$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \quad$ mol.wt. 337.42 Synthesis

- Obtained by adding 1-[4-(ch loromethyl)-2-hydroxy-3-propylphenyl]-1-propanone, then sodium iodide to a solution of 4-hydroxybenzeneacetonitrile and potassium tert-butoxide in DMF cooled with an ice-water bath, then stirring at r.t. for 24 h (51\%) [7564].
m.p. $122-126^{\circ}$ [7564].

1-[2-Hydroxy-3-propyl-4-[[4-(1H-tetrazol-5-ylmethyl)phenoxy]methyl] phenyl]- 1-propanone
[107223-61-0] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ mol.wt; 380.45

Synthesis

- Obtained by reaction of sodium azide with 4-[(4-propionyl-2-propyl-3-hydroxyphenyl)methoxy] benzene-acetonitrile in the presence of ammonium chloride in DMF at 105° for 20 h (32\%) [7564].
m.p. $162-166^{\circ}$ [7564].

4-[[3-Hydroxy-4-(1-oxopropyl)-2-propylphenoxy]methyl]-3-methoxybenzoic acid [118683-25-3] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \quad$ mol.wt. 372.42

Synthesis

- Preparation from the substituted 2-propyl-resorcinol intermediate described in [7744], (compound 56) [7481].
m.p. $217-218^{\circ}$ [7481].

1-(2'-Ethyl-5'-methoxy-2-propylphenyl[1,1'-biphenyl]-4-yl)-1-propanone

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$
mol.wt. 310.44
Synthesis

- In a four-step process from 1-(4-hydroxy-3-propylphenyl)-1-propanone [7741].

1-[5-[(1RS,2SR)-1-Ethyl-2-(4-hydroxyphenyl)butyl]-2-hydroxyphenyl]-1propanone (3-Propionylhexestrol)

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 326.44

Synthesis

- Obtained by treatment of its dimethyl ether with refluxing pyridinium chloride for 20 min [7745].
m.p. 168° [7745].

1-[5-(1,1-Dimethylethyl)-4',6-dihydroxy-3', $\mathbf{5}^{\prime}$-dimethoxy[1,1'-biphenyl]-3-yl]-

 1-propanone

1-(4-Dodecyl-2-hydroxyphenyl)-1-propanone

$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2} \quad$ mol.wt. 318.50

Oxime [101002-26-0] $\quad \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{2} \quad$ mol.wt. 333.51 [7685].

1-(5-Dodecyl-2-hydroxyphenyl)-1-propanone

$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2} \quad$ mol.wt. 318.50

Hydrazone [70136-42-4] $\quad \mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O} \quad$ mol.wt. 332.53 [6646].

1-(5-sec-Dodecyl-2-hydroxyphenyl)-1-propanone

$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2} \quad$ mol.wt. 318.50

Synthesis

- Refer to: [7746].

Oxime [37769-66-7] $\quad \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{2} \quad$ mol.wt. 333.51

- extg. agents, for copper from iron-contg. aq. solns. [7746].

1-[4-(Dodecyloxy)-2-hydroxyphenyl]-1-propanone

[143286-88-8]

$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \quad$ mol.wt. 334.50 Synthesis

- Obtained by reaction of n-dodecyl bromide with respropiophenone in the presence of potassium carbonate in refluxing acetone [7237].

Oxime [99283-87-1] $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3} \quad$ mol.wt. 349.51 (m.p. 63-65 ${ }^{\circ}$) [7747].

- Also refer to: [7685,7686].

1-[4-Hydroxy-3-methyl-2,6-di(phenyl)phenyl]-1-propanone

m.p. \quad| 220-22140 ${ }^{\circ}$ [7748]; |
| :--- |

1-[3-(Diphenylmethyl)-2,4,6-trihydroxyphenyl]-1-propanone
[105630-22-6]

m.p. $155-156^{\circ}$ [6886];
${ }^{1} \mathrm{H}$ NMR [6886], IR [6886], UV [6886]; TLC [6886].

1-[2,4-Dihydroxy-5-[[2-methyl-4-[(2-methylphenyl)azo]phenyl]azo]phenyl]-1-propanone
[65561-67-3]

USE: Dye, for polypropylene fibres [7742,7743].
1-[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]-1-propanone $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 346.43
 Synthesis

- Obtained by reaction of benzyl chloride with respropiophenone in the presence of methanolic potassium hydroxide, first at r.t. overnight, then at reflux for $5 \mathrm{~h}(12 \%)$ [7703].
m.p. 120° [7703].

1-[4-[3-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio]propoxy]-2-hydroxy-3-propylphenyl]-1-propanone

Synthesis

- Refer to: [7452].

Oxime [194791-97-4] $\quad \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 490.03 [7452].

1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-1-propanone

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{12} \quad$ mol.wt. 496.47

Synthesis

- Obtained by reaction of α-acetobromoglucose ($\alpha-\mathrm{ABG}$) with respropiophenone in the presence of silver oxide in quinoline for 2 h (50\%) [6731].
m.p. $129-130^{\circ}$ [6731];
$(\alpha)_{D}^{20}=-25.6^{\circ}(\mathrm{c}=2$ in chloroform $)$ [6731].

1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-1-propanone

 $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{12} \quad$ mol.wt. 496.47

Syntheses

- Preparation by treatment of 2,6-dihydroxypropiophenone with cadmium carbonate in refluxing toluene for 1 h with removal of the generated water with a Dean-stark apparatus. Then, adding acetobromoglucose and the whole heated at reflux for $15 \mathrm{~h}(55 \%)$ [6813].
- Also refer to: [7749]. m.p. 175.5-177.5 ${ }^{\circ}$ [6813]; ${ }^{1} \mathrm{H}$ NMR [6813], IR [6813], FAB-MS [6813]. Na salt [6813].

1-[5-[(1RS,2SR)-1-Ethyl-2-(4-methoxyphenyl)butyl]-2-methoxyphenyl]-1-propanone $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \quad$ mol.wt. 354.49
Synthesis

- Obtained by reaction of propionyl chloride with hexestrol dimethyl ether in the presence of aluminium chloride in nitrobenzene, first at 0°, then at r.t. for 3 h [7745].
b.p. ${ }_{18} 280^{\circ}[7745] ; \quad$ m.p. 96° [7745].

4-Hydroxy-7-[2-hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2-propylphenoxy]propoxy]-3-nitro-2H-1-benzopyran-2-one
[69076-17-1]
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{10} \quad$ mol.wt. 447.58
OH

Syntheses

- Preparation by method H (compound 169) (83\%) [7482].
- Also refer to: [7112,7453].
m.p. 121° [7482].

4-Hydroxy-7-[2-hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2-propylphenoxy] propoxy]-2H-1-benzopyran-2-one

[69076-45-5] $\quad \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8} \quad$ mol.wt. 442.47

Syntheses

- Preparation by method G (compound 81) (61\%) [7482].
- Also refer to: [7112,7453].
m.p. 89° [7482].

1-[4-[4-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio]butoxy]-2-hydroxy-3-propylphenyl]-1-propanone

Synthesis

- Refer to: [7452].

Oxime [194791-99-6] $\quad \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 504.05 [7452].

1-(2,4-Dihydroxy-6-pentadecylphenyl)-1-propanone

[95818-32-9]
$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{3} \quad$ mol.wt. 376.58
Synthesis

- Preparation by condensation of propionic acid with 5-pentadecylresorcinol (m.p. 95°) (SM) in xylene in the presence of $\mathrm{BF}_{3}-\mathrm{HF}$ for 1 h at $50-60^{\circ}$, then at r.t. overnight [6820]. SM was prepared by catalytic hydrogenation of cardol 1,3-dihydroxy-5-(8,11-pentadecadienyl)benzene [7750], abundant material present in oil of cashew nuts (Anacarde) [7751].
m.p. 76° [6820].

1-(2,5-Dihydroxy-4-pentadecylphenyl)-1-propanone

1-[3-(Diphenylmethyl)-2,4,6-trimethoxyphenyl]-1-propanone

$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 390.48
Synthesis

- Obtained by reaction of dimethyl sulfate with 3-diphenyl-methyl-2,4,6-trihydroxypropiophenone in the presence of potassium carbonate in refluxing acetone for 4 h [6886].
m.p. ${ }^{156-157^{\circ}}$ [6886]; ${ }^{1} \mathrm{H}$ NMR [6886], UV [6886]; TLC [6886].

1-[2-Methoxy-6-(8,11-pentadecadiynyl)phenyl]-1-propanone

1-(4-Hexadecyl-2,5-dihydroxyphenyl)-1-propanone

2-Hexadecyl-5-propionylhydroquinone
[65208-26-6]

$\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{3} \quad$ mol.wt. 390.61
Synthesis

- Preparation by reaction of propionic acid with 2-hexadecyl-hydroquinone(m.p.112.5-113.5*) in the presence of boron trifluoride (50\%) [6509].
m.p. $93-94^{\circ}$ [6509].

1-(3-Hexadecyl-2-hydroxy-5-methoxyphenyl)-1-propanone

[103048-60-8]

m.p. 65.4-66.5 [6509].

1-[5-[4,6-Bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-2,4-dihydroxyphenyl]-1-propanone

7-[2-Hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2-(2-propenyl)phenoxy]propoxy]-4-(phenylmethoxy)-2H-1-benzopyran-2-one
[63360-36-1] $\quad \mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{8} \quad \mathrm{~mol} . \mathrm{wt}$. 530.57

Syntheses

- Preparation by method E (compound 114) (25\%) [7482].
- Also refer to: [7112,7453,7684].
m.p. 117° [7482].

6-[3-Hydroxy-4-(1-oxopropyl)-2-propylphenoxy]hexanoic acid diphenylmethyl ester

[106627-30-9]

$\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{5} \quad$ mol.wt. 488.62
Synthesis

- This ketone (compound 43) was synthesized from 2,4-di hydroxy-3-propyl-propiophenone according to the method C (56\%) [7450].
${ }^{1} \mathrm{H}$ NMR [7450].

1-[3,5-Bis(diphenylmethyl)-2,4,6-trihydroxyphenyl]-1-propanone

[105630-20-4]

$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{4} \quad$ mol.wt. 514.62
Synthesis

- Obtained by reaction of 2,4,6-trihydroxypropiophenone with diphenylcarbinol in dioxan in the presence of boron trifluoride etherate at $60-70^{\circ}$ for $4 \mathrm{~h}(11 \%)$ [6886].
m.p. 249-250 [6886]; ${ }^{1} \mathrm{H}$ NMR [6886],

IR [6886], UV [6886]; TLC [6886].
1-[3,5-Bis(diphenylmethyl)-2,4,6-trimethoxyphenyl]-1-propanone
[105630-21-5] $\quad \mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{4} \quad$ mol.wt. 556.70

Synthesis

- Obtained by reaction of dimethyl sulfate with 3,5-bis-(diphenylmethyl)-2,4,6-trihydroxypropiophenone in the presence of potassium carbonate in refluxing acetone for 10 h [6886].
m.p. 198-199² [6886]; ${ }^{1} \mathrm{H}$ NMR [6886], UV [6886]; TLC [6886].

23.2 Naphthalene Derivatives

1-(3-Bromo-4-hydroxy-1-naphthalenyl)-1-propanone
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 279.13

Synthesis

- Obtained by reaction of bromine with 4-propionyl-1-naphthol in chloroform [7756].
m.p. 111° [7756].

1-(4-Bromo-1-hydroxy-2-naphthalenyl)-1-propanone
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{2} \quad$ mol.wt. 279.13

Syntheses

- Preparation by reaction of bromine with 2-propionyl-1-naphthol in acetic acid [7757].
- Also obtained by reaction of bromine with 4,4'-dihydroxy-3,3'dipropionyldinaphthyl trisulfide (m.p. 190 ${ }^{\circ}$) in acetic acid [7758].
- Also refer to: [6730,7759,7760].
m.p. $98-99^{\circ}$ [7759], $98^{\circ}[6730,7758], 97^{\circ}$ [7757].

1-(7-Bromo-3,4-dihydroxy-2-naphthalenyl)-1-propanone

[52749-67-4]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{3}$
mol.wt. 295.13
Syntheses

- Obtained by irradiation of 6-bromo-1,2naphthoquinone and propionaldehyde in benzene with a 300 W high-pressure mercury arc lamp between 15° and 20° for $2-10$ days [7761], (26\%) [7762].
m.p. $\quad 143-144.5^{\circ}$ [7762]; ${ }^{1} \mathrm{H}$ NMR [7762], IR [7762].

1-(4-Chloro-1-hydroxy-2-naphthalenyl)-1-propanone

$$
\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad \text { mol.wt. } 234.68
$$ Syntheses

- Obtained by Fries rearrangement of 4-chloro-1-naphthyl propionate with aluminium chloride on heating in a water bath for 1.5 h (61\%) [7763].
- Alsoobtainedbyactionof chlorine with4,4'-dihydroxy-3,3'-dipropionyldinaphthyl trisulfide (m.p. 190°) in acetic acid [7758].
- Also obtained by action of sulfuryl chloride with 2-propionyl- α-naphthol in the presence of bismuth chloride in ethyl ether [7758].
- Also obtained by action of chlorine with 2-propionyl- α-naphthol in acetic acid [7758].
m.p. 93° [7758], $90-91^{\circ}$ [7763].

1-(3-Hydroxy-4-nitroso-2-naphthalenyl)-1-propanone

[256335-72-5]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 229.24
Synthesis

- Refer to: [7764] (Japanese patent).

1-(6-Hydroxy-5-nitroso-2-naphthalenyl)-1-propanone

[219661-16-2]

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 229.24
Syntheses

- Refer to: [7765,7766].

1-(1-Hydroxy-4-nitro-2-naphthalenyl)-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 245.23
Syntheses

- Preparation by reaction of fuming nitric acid $(\mathrm{d}=1.5)$ with 2-propionyl-1-naphthol (85\%) [7760].
- Also obtained by reaction of fuming nitric acid with 2,4-di-propionyl-1-naphthol in acetic acid [7767].
- Also obtained by reaction of fuming nitric acid with 4-acetyl-2-propionyl-1naphthol in acetic acid [7767].
- Also obtained by reaction of nitric acid $(\mathrm{d}=1.42)$ with 2-propionyl- α-naphthol in acetic acid [7758].
- Also obtained by action of nitric acid $(\mathrm{d}=1.42)$ with 4,4'-dihydroxy-3, 3^{\prime}-dipropionyldinaphthyl trisulfide (m.p. 190°) in acetic acid [7758].
- Also refer to: [7759]. m.p. $162-163^{\circ}$ [7759], 162° [7760], 158° [7758].

1-(4-Hydroxy-3-nitro-1-naphthalenyl)-1-propanone
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 245.23

Syntheses

- Obtained by reaction of fuming nitric acid with 4-pro-pionyl-1-naphthol [7756] or with 2,4-dipropionyl-1naphthol in acetic acid [7767].
m.p. 100° [7756].

1-(1-Hydroxy-2-naphthalenyl)-1-propanone

[24490-31-1] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 200.24

- in the presence of aluminium chloride (40\%) [7768], first at 100° for 2 h , then at 120° for 1 h (54\%) [7769];
- in the presence of stannic chloride (100%) [7768], at 55° for $16 \mathrm{~h}(73 \%)$ [7770];
- in the presence of zinc chloride (100%) [7768];
- in the presence of a catalytic amount of scandium triflate- $\mathrm{Sc}(\mathrm{OTf})_{3}$ ($5 \mathrm{~mol} \%$) in toluene at 100° for 6 h [7771], (89\%) [7772,7773].
- Preparation by reaction of propionic acid with α-naphthol,
- in the presence of zinc chloride (Nencki reaction) [6376,6730], (65\%) [7760], (48\%) [7759];
- in the presence of boron trifluoride [6819,7774], at 70° for $2 \mathrm{~h}(83 \%)$ [7775] at 100° for $5 \mathrm{~h}(80 \%)$ [7639], at $28-30^{\circ}$ for $18 \mathrm{~h} \mathrm{(65} \mathrm{\%)} \mathrm{[7639]} \mathrm{or} \mathrm{at} \mathrm{r.t}. \mathrm{(20} \mathrm{\%)} \mathrm{[7776];}$
- in the presence of polyphosphoric acid at 100° for $15 \mathrm{~min}(42 \%)$ [7777];
- in the presence of hafnium triflate ($20 \mathrm{~mol} \%$) in toluene-nitromethane at 100° for $6 \mathrm{~h}(80 \%)$ [7778].
- Also obtained by reaction of propionyl chloride with α-naphthol,
- in the presence of a catalytic amount of scandium triflate- $\mathrm{Sc}(\mathrm{OTf})_{3}$ ($5 \mathrm{~mol} \%$) in toluene/nitromethane at 100° for $6 \mathrm{~h}(98 \%)$ [7772,7779];
- in the presence of zinc chloride in nitrobenzene (22\%) [7756].
- Also obtained by boiling a 4-hydroxy-3-(1-oxopropyl)-1-naphthalenesulfonic acid and concentrated sulfuric acid mixture, followed by distillation [7757].
- Also obtained by heating 4-propionyl- α-naphthol, 2,4-dipropionyl- α-naphthol or 4-acetyl-2-propionyl- α-naphthol with zinc chloride in acetic acid or propionic acid on a sand bath for 3 h [7767].
- Also obtained by dye-sensitized photooxidation of enolic tautomer of 1-(3,4-dihydro-1-hydroxy-2-naphthalenyl)-1-propanone [134643-89-3] (19-24\%) [7780].
- Also refer to: [6684,7781-7785].
m.p. 86° [7775,7777], $85-87^{\circ}$ [7776], 85° [7760], 84-85 ${ }^{\circ}$ [7772], 83-84 ${ }^{\circ}$ [7769], 82° [6819,7639,7770], $81-82^{\circ}$ [7759], 81° [6376,6730,7757];
${ }^{1} \mathrm{H}$ NMR [7772], ${ }^{13} \mathrm{C}$ NMR [7772], IR [7772];
fuorescence spectrum data [6960].
Oxime (2-Pronapox) [21660-75-3] $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$ mol.wt. 215.25 [7786-7789].

1-(2-Hydroxy-1-naphthalenyl)-1-propanone

[33828-93-2]	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 200.24 Syntheses
Preparation by Fries rearrangement of β-naphthyl propionate (m.p. 46-47 aluminium chloride,	

- first in boiling carbon disulfide for 1 h , then at 120° for 4 h after solvent elimination [7791], (72\%) [7792];
- in nitrobenzene at r.t. for $48 \mathrm{~h}(66 \%)$ [7793];
- in tetrachloroethane at higher temperatures (60-100\%) [7790].
- Preparation by reaction of propionic acid with β-naphthol in the presence of boron trifluoride [6819,7774], at $28-30^{\circ}$ for $18 \mathrm{~h}(75 \%)$ or at 100° for $5 \mathrm{~h}(85 \%)$ [7639].
- Preparation by reaction of propionic anhydride with β-naphthol in the presence of aluminium chloride in ethylene dichloride (95\%) [7300].
- Also obtained by treatment of 2-methoxynaphthalene with propionyl chloride in refluxing carbon disulfide for $2 \mathrm{~h}(30 \%)$ [7794].
- Also refer to: [7795-7797].
b.p. ${ }_{13} 171-175^{\circ}$ [7793];
m.p. $82-84^{\circ}$ [7791], 78.8-79.8 ${ }^{\circ}$ [7794], 72° [6819], 71° [7639], $70-72^{\circ}$ [7793], $70-71^{\circ}$ [7792], $64-66^{\circ}$ [7790]. There is a large dispersion of melting points pointed out in literature.
${ }^{13} \mathrm{C}$ NMR [7794], ${ }^{17} \mathrm{O}$ NMR [7798]; MNDO heat of formation [7799].
Oxime [350026-68-5] $\quad \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 215.25 (m.p. 112-116 ${ }^{\circ}$) [7797].

1-(3-Hydroxy-1-naphthalenyl)-1-propanone

Note: MNDO heat of formation [7799].

1-(3-Hydroxy-2-naphthalenyl)-1-propanone

[91902-70-4]	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 200.24
	Synthesis - Refer to: [7799].

Note: MNDO heat of formation [7799].

1-(4-Hydroxy-1-naphthalenyl)-1-propanone

[133181-63-2] \quad\begin{tabular}{l}
Syntheses

Preparation from 4-methoxy-1-propionylnaphthalene
with boiling pyridinium chloride for 30 min [6667] or
by heating at $240-250^{\circ}$ for 1 h in a sealed tube (55\%)
[7770].

\end{tabular}

- Also obtained by reaction of propionic acid with α-naphthol,
- in the presence of boron trifluoride at r.t. (20\%) [7639], (10\%) [7776];
- in the presence of polyphosphoric acid at 100° for $15 \mathrm{~min}(1 \%)$ [7777].
- Also obtained by Fries rearrangement of 1-naphthyl propionate with aluminium chloride (4\%) [7768], at 100° for 2 h , then at 120° for $1 \mathrm{~h}(6 \%)$ [7769] or in nitrobenzene at r.t. (23\%) [7800].
- Also obtained by reaction of propionyl chloride with α-naphthol in the presence of zinc chloride in nitrobenzene (43\%) [7756].
- Also obtained by heating 1-hydroxy-4-propionyl-2-naphthoic acid at $>205^{\circ}$ for 30 min [7767]. There is a carboxyl group elimination.
m.p. 190° [7776], 189° [7770], $188-189^{\circ}$ [7769,7800], 187° [6667,7639], 185° [7777].

1-(5-Hydroxy-1-naphthalenyl)-1-propanone

[91307-45-8] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 200.24

1-(6-Hydroxy-1-naphthalenyl)-1-propanone

Note: MNDO heat of formation [7799].

1-(6-Hydroxy-2-naphthalenyl)-1-propanone

[33828-92-1] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 200.24

Syntheses

- Preparation by treatment of 6-propionylnerolin (2-methoxy-6-propionylnaphthalene) with boiling pyridinium chloride for 20 min (86\%) [6667].
- Preparation by Fries rearrangement of 2-naphthyl propionate [7802] using hydrogen fluoride as catalyst [7803].
- Also refer to: [7804-7809].
m.p. 164° [6667]; MNDO heat of formation [7799].

1-(7-Hydroxy-1-naphthalenyl)-1-propanone

[175226-47-8] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 200.24

Synthesis

- Refer to: [7799].

Note: MNDO heat of formation [7799].

1-(7-Hydroxy-2-naphthalenyl)-1-propanone

[175226-46-7]	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 200.24 Synthesis
- Refer to: [7799].	

Note: MNDO heat of formation [7799].

1-(8-Hydroxy-1-naphthalenyl)-1-propanone

[131421-22-2] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 200.24

Syntheses

- Obtained by adding dropwise, at -78° under nitrogen, a solution of ethylmagnesium bromide in ethyl ether to a solution of $2 H$-naphtho[1,8-bc]furan-2-one (m.p. $99-101^{\circ}$) [7810] in THF over a period of 3 h . After heating the mixture to 0°, a saturated aqueous ammonium chloride solution was added (33\%) [7811].
- Also refer to: [7812]. m.p. $\quad 114-117^{\circ}$ [7811]; ${ }^{1} \mathrm{H}$ NMR [7811].

1-(1,4-Dihydroxy-2-naphthalenyl)-1-propanone

[75859-15-3]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 216.24
Syntheses

- Obtained by demethylation of the corresponding 4-methyl ether with concentrated hydrobromic acid in acetic acid [7813].
- Also obtained by thermal reaction of 2-propionyl-1,4-naphthoquinone with allyltrimethylstannane in benzene under argon atmosphere (7\%) [7814].
- Also obtained by photochemical reaction (409-429 nm) between 1,4-naphthoquinone and propionaldehyde, in benzene at r.t. for 5 days [7815] under argon (79\%) [7816] according to the procedure [7817].
m.p. $186-188^{\circ}$ [7815], $182-184^{\circ}$ [7814];
${ }^{1} \mathrm{H}$ NMR [7814-7816], ${ }^{13} \mathrm{C}$ NMR [7816],
IR [7814-7816], MS [7814,7816].

1-(1,8-Dihydroxy-2-naphthalenyl)-1-propanone

$$
\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 216.24
$$

Syntheses

- Obtained by reaction of propionic acid with 1,8-dihydroxy-naphthalene in the presence of zinc chloride at $145-150^{\circ}$ [7818].
- Also obtained by reaction of zinc chloride with 1,8-di-hydroxynaphthalene dipropionate in nitrobenzene at $140-150^{\circ}$ [7819].
m.p. $101-102^{\circ}$ [7818].

1-(3,4-Dihydroxy-2-naphthalenyl)-1-propanone

[61983-10-6]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 216.24
Syntheses

- Obtained by irradiation of 1,2-naphthoquinone and propionaldehyde,
- in acetonitrile-benzene by UV in the presence of magnesium perchlorate (29\%) [7820];
- in benzene by a 300 W high-pressure mercury arc lamp between 15° and 20° for 2-10 days [7761], (19\%) [7762].
- Also refer to: [7821].
m.p. 129-130.5 ${ }^{\circ}$ [7762]; ${ }^{1} \mathrm{H}$ NMR [7762], IR [7762].

1-(6,7-Dihydroxy-2-naphthalenyl)-1-propanone

[144289-53-2]
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 216.24

Synthesis

- Obtained by total demethylation of its dimethyl ether (SM) with 1 M boron tribromide at 0°. SM was prepared by reaction of propionic anhydride with 2,3-dimethoxy-naphthalene in nitrobenzene at 0° in the presence of aluminium chloride [7822].
BIOLOGICAL ACTIVITY: As lipoxygenase inhibitor [7822].

1-(5,6,7,8-Tetrahydro-1-hydroxy-2-naphthalenyl)-1-propanone

[100612-28-0]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
Syntheses

- Obtained by Fries rearrangement of 5,6,7,8-tetra-hydro-1-naphthyl propionate (b.p. ${ }_{12} 152^{\circ}$) with aluminium chloride in nitrobenzene, first at 0° for $2-3 \mathrm{~h}$, then at r.t. for $15-17 \mathrm{~h}(68 \%)$ [7800].
- Also obtained by Friedel-Crafts acylation of 5,6,7,8-tetrahydro-1-naphthol with propionyl chloride in the presence of titanium tetrachloride neat at 120° for 1 h (85\%) [7823].
m.p. $87.5-88.5^{\circ}$ [7800], $86-88^{\circ}$ [7823];
${ }^{1} \mathrm{H}$ NMR [7823], ${ }^{13} \mathrm{C}$ NMR [7823], IR [7823], MS [7823].
Oxime $\quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 219.28 (m.p. 141-141.5 ${ }^{\circ}$) [7800].

1-(5,6,7,8-Tetrahydro-3-hydroxy-2-naphthalenyl)-1-propanone

[60401-57-2]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
Syntheses

- Obtained by Fries rearrangement of 5,6,7,8-tetra-hydro-2-naphthyl propionate (b.p. ${ }_{12} 160^{\circ}$) with aluminium chloride at 120° for $4 \mathrm{~h}(48 \%)$ [7824].
- Also obtained by Fries rearrangement of 5,6,7,8-tetrahydro-2-naphthyl propionate with aluminium chloride in nitrobenzene at r.t. overnight [7824].
- Also refer to: [7825,7826].
m.p. $58-59^{\circ}$ [7824].

USE: Intermediate for the preparation of allergy inhibitor [7825].
Oxime $\quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 219.28 (m.p. 134.5-135.5 ${ }^{\circ}$) [7824].
1-(5,6,7,8-Tetrahydro-4-hydroxy-1-naphthalenyl)-1-propanone $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 204.27
 Syntheses

- Obtained by Fries rearrangement of 5,6,7,8-tetrahydro-1-naphthyl propionate (b.p. ${ }_{12} 152^{\circ}$) with aluminium chloride in nitrobenzene, first at 0° for $2-3 \mathrm{~h}$, then at r.t. for 15-17 h [7800].
- Also obtained by treatment of its methyl ether with aluminium chloride in refluxing benzene for 6 h (55\%) [7403].
m.p. $152-153^{\circ}$ [7403], 146-147.5 ${ }^{\circ}$ [7800].

Semicarbazone $\quad \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 261.32 (m.p. 225-226.5 $)$ [7800].

3,4-Dihydroxy-2-(1-oxopropyl)-1-naphthalenecarbonitrile

[61983-21-9]

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 241.25
Syntheses

- Obtained by irradiation of 4-cyano-1,2-naphthoquinone and propionaldehyde in benzene by a 300 W high-pressure mercury arc lamp between 15° and 20° for $2-10$ days [7761], (50\%) [7762] or by exposition to sunlight for a fortnight (18\%) [7827].
m.p. 171-174 ${ }^{\circ}$ [7762], 168° [7827]; ${ }^{1} \mathrm{H}$ NMR [7762], IR [7762].

1-Hydroxy-4-(1-oxopropyl)-2-naphthoic acid

$$
\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \quad \text { mol.wt. } 244.25
$$

 Syntheses

- Obtained from 2,3-dimethyl-6-propionyl-1,4- α-naphthopyrone (m.p. 168°) by refluxing with 5% aqueous sodium hydroxide for 3 h [7767].
- Also refer to: [7756].
m.p. $205^{\circ}[7756,7767]$.

1-(5-Bromo-6-methoxy-2-naphthalenyl)-1-propanone

[92189-66-7]
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 293.16

Syntheses

- Preparation by bromination of 1-(6-methoxy-2-naphthalenyl)-1-propanone with 1,3-dibromo-5,5-dimethylhydantoin in ethanol (99\%) [7828].
- Also obtained by heating 5-bromo-6-methoxy-2-(α-bromopropionyl)naphthalene (m.p. 162°) with zinc in acetic acid for $3 \mathrm{~h}(75 \%)$ [7829].
- Also refer to: [7830-7833].
m.p. $127-128^{\circ}$ [7829].

1-(5-Chloro-6-methoxy-2-naphthalenyl)-1-propanone

[69750-45-4]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 248.71
Syntheses

- Preparation by reaction of propionyl chloride with 1-chloro-2-methoxynaphthalene (m.p. 66°) in the presence of aluminium chloride in methylene chloride, first at 0°, then at 5° for $15 \mathrm{~min}(97 \%)$ [7834].
- Also refer to: [7835] (Chinese paper).
m.p. $129-131^{\circ}$ [7834]; crystal data [7834].

1-(2-Hydroxy-3-methyl-1-naphthalenyl)-1-propanone

[185413-93-8] \quad| Cli4 |
| :--- |

GC-MS [7836]; MS [7836].
1-(1-Methoxy-2-naphthalenyl)-1-propanone $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Syntheses

- Preparation by reaction of dimethyl sulfate with 2-propionyl-1-naphthol in the presence of alkali [7760].
- Preparation by reaction of ethylmagnesium bromide with 1-methoxy-2-naphthonitrile (59\%) [6973].
- Also obtained by treatment of 2-propionyl-1-naphthol with methyl iodide in the presence of potassium carbonate in refluxing acetone for 8 h (35\%) [7837].
- Also refer to: [6755,7838].

```
b.p.0.3 125-126 [6973];
m.p. 50-51} [6973], 48-49.5o [7837], 45 [7760], 42-43` [7838].
```

Oxime $\quad \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 229.28 (m.p. 112-113 ${ }^{\circ}$) [7838].
Semicarbazone $\quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 271.32 (m.p. 192 ${ }^{\circ}$) [7838].

1-(2-Methoxy-1-naphthalenyl)-1-propanone

[25801-58-5]
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26
Syntheses

- Obtained by reaction of propionyl chloride with 2-methoxy-naphthalene in the presence of aluminium chloride in methylene chloride for 5 min at 0° under nitrogen (74\%) [7839].
- Also obtained by acylation of 2-methoxynaphthalene with propionic anhydride in nitrobenzene in the presence of zeolite-beta catalysts [7840].
- Also obtained by electrochemical acylation of 2-methoxynaphthalene with propionic anhydride in methylene chloride in the presence of LiClO_{4} (74\%) [7841].
- Also refer to: [7358,7842,7843].

```
b.p.2-3 141-143 [7791];
'H NMR [7839], IR [7839]; HPLC [7839].
```

1-(3-Methoxy-2-naphthalenyl)-1-propanone
[17295-05-5]

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26
Syntheses

- Obtained by adding methyllithium in diethyl ether to a solution of 4,4-dimethyl-2-[2-(3-methox ynaphthyl)]-oxazoline (m.p. 125-127 ${ }^{\circ}$) in THF/ diethyl ether at -95°. Then, the resulting orange clear solution was stirred at -78° for 6 h , quenched with neat methyl iodide and warmed to r.t. overnight (47\%) [7844].
- Also obtained by condensation of 3-methoxy-2-naphthoyl chloride with diethylcadmium in benzene (63\%) [7837].
yellowish oil [7844]; m.p. 48-49 [7837];
${ }^{1} \mathrm{H}$ NMR [7844], ${ }^{13} \mathrm{C}$ NMR [7844], MS [7844]; TLC [7844].
Semicarbazone $\quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 271.32 (m.p. 212-213 ${ }^{\circ}$) [7837].

1-(4-Methoxy-1-naphthalenyl)-1-propanone

[5471-38-5]

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26
Syntheses

- Preparation by reaction of propionic acid with 1-meth-oxy-naphthalene in the presence of boron trifluoride, first at 0°, then at 70° for $10-15 \mathrm{~h}(84 \%)$ [7845].
- Also obtained by reduction of 3-(dibutylamino)-1-(4-methoxynaphthalen-1-yl)-1-propanone with Adam's catalyst (22\%) [7846].
- Also refer to: [7292,7756,7847-7849].
m.p. 58° [7756,7845], 56-57$~[7846] ; ~{ }^{1} H$ NMR [7849].

1-(5-Methoxy-1-naphthalenyl)-1-propanone

[904923-39-3] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Synthesis

- Refer to: [7847].

1-(5-Methoxy-2-naphthalenyl)-1-propanone
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Synthesis

- Preparation by reaction of ethylmagnesium bromide with 5-methoxy-2-naphthonitrile in benzene (84\%) [7850].
m.p. $92-93^{\circ}$ [7850].

Semicarbazone $\quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 271.32 (m.p. 212 ${ }^{\circ}$) [7850].

1-(6-Methoxy-1-naphthalenyl)-1-propanone

[81336-21-2] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Synthesis

- Obtained from sodium-liquid ammonia reduction of 4,6-dimethoxy-1-naphthyl ethyl ketone in THF/EtOH mixture in presence of excess ammonium chloride [7851].
pale yellow oil [7851]; b.p. ${ }_{0.1}{80^{\circ}}^{\circ}$ [7851];
${ }^{1} \mathrm{H}$ NMR [7851]; IR [7851].
1-(6-Methoxy-2-naphthalenyl)-1-propanone
[2700-47-2]

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26
Syntheses
- Obtained by reaction of propionyl chloride with 2-methoxynaphthalene in the presence of aluminium chloride,
- in methylene chloride and nitromethane (74\%) [7852];
- in methylene chloride and nitrobenzene at 15° for $20 \mathrm{~h}(71 \%)$ [7839];
- in nitrobenzene (64\%) [7853] at r.t. for 24 h (80\%) [7854].
- Also obtained by reaction of propionyl chloride with 2-methoxynaphthalene (neroline) in the presence of stannic chloride in nitrobenzene, first at 0°, then at r.t. for $12 \mathrm{~h}(32-41 \%)$ [7855].
- Also obtained by acylation of 2-methoxynaphthalene with propionic anhydride in nitrobenzene in the presence of zeolite-beta catalysts [7840].
- Also refer to: [7829,7831-7833,7843,7856-7861].
b.p. ${ }_{0.3} \quad 180-185^{\circ}$ [7854], b.p. ${ }_{0.5} 190-220^{\circ}$ [7855];
m.p. $114-115^{\circ}$ [7839], $111.5-113.5^{\circ}$ [7853], 109° [7854,7855];
${ }^{1} \mathrm{H}$ NMR [7839], IR [7839]; HPLC [7839].

1-(7-Methoxy-1-naphthalenyl)-1-propanone
[507272-84-6] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Syntheses

- Refer to: [7847,7862].

1-(8-Methoxy-2-naphthalenyl)-1-propanone
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Synthesis

- Preparation by reaction of ethylmagnesium bromide with 8-methoxy-2-naphthonitrile in benzene (84\%) [7850].
m.p. $\quad 69-70^{\circ}$ [7850].

Semicarbazone $\quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ mol.wt. 271.32 (m.p. 188-189 ${ }^{\circ}$) [7850].
1-(3,4-Dihydroxy-7-methyl-2-naphthalenyl)-1-propanone
[61983-39-9] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 230.26
 Syntheses

- Obtained by irradiation of 6-methyl-1, 2-naphthoquinone and propionaldehyde in benzene by a 300 W high-pressure mercury arc lamp between 15° and 20° for $2-10$ days [7761], (15\%) [7762].
m.p. $148-149^{\circ}$ [7762]; ${ }^{1} \mathrm{H}$ NMR [7762], IR [7762].

1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-1-propanone
[128462-64-6]

1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-1-propanone
[68047-77-8]

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 230.26
Syntheses

- Preparation by Fries rearrangement of 5-meth-oxy-1-naphthyl propionate with boron trifluoride etherate at 120° for $1 \mathrm{~h}(80 \%)$ [7863].
- Also obtained by photo-Fries rearrangement of 5-methoxy-1-naphthyl propionate in methanol [7864].

```
    m.p. 102-103 [7864], 92-95 [7863]; IR [7864], MS [7864].
```

1-(4-Hydroxy-6-methoxy-1-naphthalenyl)-1-propanone
[81336-23-4] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 230.26

Synthesis

- Obtained from sodium-liquid ammonia reduction of 4,6-dimethoxy-1-naphthyl ethyl ketone in THF (6\%) [7851].
m.p. $\quad 130-132^{\circ}$ [7851]; $\quad \operatorname{IR}[7851]$, MS [7851].

1-(8-Hydroxy-4-methoxy-1-naphthalenyl)-1-propanone
[70340-72-6] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 230.26

Syntheses

- Obtained by propionylation of 5-methoxy-1-propion-oxy-naphthalene with subsequent ester cleavage [7865], (96\%) [7866].
- Also refer to: [7867].
m.p. $135-136^{\circ}$ [7866]; ${ }^{1} \mathrm{H}$ NMR [7866], IR [7866].

1-(5,6,7,8-Tetrahydro-4-methoxy-1-naphthalenyl)-1-propanone

mol.wt. 218.30

Synthesis

- Obtained by Friedel-Crafts acylation of 5,6,7,8-tetra-hydro-1-methoxynaphthalene with propionyl chloride in the presence of aluminium chloride in nitrobenzene, first at 0° for 4 h , then at r.t. for $24 \mathrm{~h}(33 \%)$ [7403].
b.p. ${ }_{10} 169-171^{\circ}$ [7403]; m.p. $36-37^{\circ}$ [7403].

1-[3-(Aminomethyl)-5,6,7,8-tetrahydro-2-hydroxy-1-naphthalenyl]-1-propanone

Hydrochloride [75060-82-1] $\quad \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 269.77.
USE: Antiinflammatory [7106].

1-[4-(Acetyloxy)-3-hydroxy-2-naphthalenyl]-1-propanone

[75089-89-3] $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 258.27

Synthesis

- Obtained by keeping a benzene solution of 1,2-naphthoquinone, 3-propionylnaphthalene-1,2diol, DTBP and acetaldehyde in the dark at 30° for 7 days (16\%) [7821].
m.p. $\quad 130-131^{\circ}$ [7821];
${ }^{1} \mathrm{H}$ NMR [7821], IR [7821], MS [7821]; TLC [7821].

1-[5-(Acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis

- Obtained by irradiation (409-429 nm) of 5,8-dioxo-5,8-dihydro-1-naphthalenyl acetate in the presence of propionaldehyde in benzene for 18 h at r.t. (41%) [7868].
m.p. $170-171^{\circ}$ [7868];
${ }^{1} \mathrm{H}$ NMR [7868], ${ }^{13} \mathrm{C}$ NMR [7868], IR [7868], UV [7868],
MS [7868]; HPLC [7868].
1-[8-(Acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27
Synthesis
- Obtained by irradiation (409-429 nm) of 5,8-dioxo-5,8-dihydro-1-naphthalenyl acetate in the presence of propionaldehyde in benzene for 18 h at r.t. (43\%) [7868].
m.p. $179-181^{\circ}$ [7868];
${ }^{1} \mathrm{H}$ NMR [7868], ${ }^{13} \mathrm{C}$ NMR [7868], IR [7868], UV [7868],
MS [7868]; HPLC [7868].
1-(1-Ethyl-6-hydroxy-2-naphthalenyl)-1-propanone
[195729-19-2]

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$
Synthesis
- Refer to: [7809].

1-(1,4-Dimethoxy-2-naphthalenyl)-1-propanone

[477904-75-9]

1-(4,6-Dimethoxy-1-naphthalenyl)-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 244.29
Synthesis

- Preparation by reaction of propionyl chloride with 1,7-dimethoxynaphthalene in the presence of aluminium chloride in nitrobenzene at r.t. for $16 \mathrm{~h}(75 \%)$ [7851].
b.p. ${ }_{0.4} 190-195^{\circ}$ [7851]; m.p. $126-127^{\circ}$ [7851];
${ }^{1} \mathrm{H}$ NMR [7851], IR [7851].
1-(6,7-Dimethoxy-2-naphthalenyl)-1-propanone
[72337-80-5]

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 244.29
Syntheses
- Preparation by reaction of propionic anhydride with 2,3-dimethoxynaphthalene in the presence of aluminium chloride in nitrobenzene at 0° [7822].
- Also obtained by reaction of propionyl chloride with 2,3-dimethoxynaphthalene in the presence of aluminium chloride in nitrobenzene at r.t. overnight (77\%) [7870].
- Also refer to: [7871,7872].
b.p. ${ }_{17} 243-244^{\circ}$ [7870]; m.p. 102° [7870], 101-103${ }^{\circ}$ [7872];
${ }^{1} \mathrm{H}$ NMR [7872], IR [7872].
1-(1-Hydroxy-4,8-dimethoxy-2-naphthalenyl)-1-propanone
[88792-61-4]

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$
Synthesis
- Obtained by Fries rearrangement of 1-propionoxy-4,8-dimethoxynaphthalene (m.p. 109-110 ${ }^{\circ}$) [7873] with boron trifluoride etherate (1.1 equiv) at 120° for $5 \mathrm{~min}(92 \%)$ [7873], (good yield) [7874] according to the procedure [7875].
m.p. 129-130 ${ }^{\circ}$ [7873,7874]; ${ }^{1} \mathrm{H}$ NMR [7873], IR [7873], MS [7873].

1-(5-Hydroxy-2,4-dimethoxy-3-methyl-6-nitroso-1-naphthalenyl)-1-propanone
[78377-72-7]
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}$
mol.wt. 303.31

Synthesis

- Obtained by treatment of 6,8-dimethoxy-7-methyl-5-(1-oxopropyl)-1,2-naphthalenedione [78377-71-6] (compound 9) with hydroxylamine hydrochloride (excess) in ethanol at r.t. [7876].
USE: As intermediate in total synthesis of rifamycine S segment (compound 16b) [7876].
m.p. $\quad 139-140^{\circ}$ [7876]; ${ }^{1} \mathrm{H}$ NMR [7876].

1-(2,4-Dihydroxy-5,8-dimethoxy-3-methyl-6-nitro-1-naphthalenyl)-1-propanone
[98291-50-0]

1-(1-Ethyl-6-methoxy-2-naphthalenyl)-1-propanone

[195729-50-1]

1-(6-Hydroxy-1-propyl-2-naphthalenyl)-1-propanone
[195729-60-3]

 Synthesis

- Refer to: [7809].

1-(1,4-Dihydro-6,8-dimethoxy-7-methyl-1,4-epoxynaphthalene-5-yl)-1-propanone

Synthesis

- Obtained by Jones oxidation of 1-(1,4-dihydro-6,8-di-methoxy-7-methyl-1,4-epoxynaphthalene-5-yl)-1-propanol (80\%) [7878].
m.p. $\quad 74-75^{\circ}$ [7878]; ${ }^{1} \mathrm{H}$ NMR [7878].

1-(1-Hydroxy-6,7-dimethoxy-3-methyl-2-naphthalenyl)-1-propanone

[125575-68-0]

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 274.32 Synthesis

- Preparation by treatment of ethyl 3,4-dime-thoxy-6-(phenylsulfinyl)methylbenzoate (m.p. 102-104 ${ }^{\circ}$), first with LDA in THF at -78°, then 4 -hexen- 3 -one and the mixture refluxed for 12 h (80\%) [7879].
${ }^{1} \mathrm{H}$ NMR [7879].
1-(8-Hydroxy-2,4-dimethoxy-3-methyl-1-naphthalenyl)-1-propanone
[90363-44-3]
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$
mol.wt. 274.32

Syntheses

- Preparation by reaction of 60% perchloric acid with 1-(1,4-dihydro-6,8-dimethoxy-7-methyl-1,4-epoxy-naphthalen-5-yl)-1-propanone (m.p. 74-75 $)$ in THF at 50° for $50 \mathrm{~min}(86 \%)$ [7878].
- Also obtained by treatment of 3,5-dimethoxy-4-methyl-2H-naphtho[1,8-bc] furan-2-one [90363-46-5] (m.p. 107-108 ${ }^{\circ}$) with ethyllithium (1.05 equiv) in ethyl ether at 0° for 1.5 h [7878].
m.p. 179-1810 [7878]; ${ }^{1} \mathrm{H}$ NMR [7878], IR [7878], UV [7878].

1-[6-Methoxy-1-(methoxymethoxy)-2-naphthalenyl]-1-propanone

[195730-04-2]

Synthesis

- Refer to: [7809].

1-(2,4-Dihydroxy-5,8-dimethoxy-3-methyl-1-naphthalenyl)-1-propanone

[98291-47-5] \begin{tabular}{l}

Preparation by stirring a solution of 1-[2,4-bis
(benzyloxy)-5,8-dimethoxy-3-methyl-1-naphthyl]-1-
propanone in ethyl acetate with Pd in methanol at 25°
for 20 min under hydrogen bubbling (quantitative
yield) [7877].

\end{tabular}

```
m.p. 111-112} [7877]
'1H NMR [7877], IR [7877], UV [7877]; TLC [7877].
```

1-[5,6,7,8-Tetrahydro-3-hydroxy-4-(2-propenyl)-2-naphthalenyl]-1-propanone [60401-59-4] $\quad \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 244.33

Syntheses

- Preparation by Claisen rearrangement of 1-[5,6,7,8 -tetra-hydro-3-(2-propenyloxy)-2-naphthalenyl]-1-pro panone [7825,7826].

USE: Intermediate for the preparation of allergy inhibitor [7825].
1-(5,6,7,8-Tetrahydro-2-hydroxy-3-propyl-1-naphthalenyl)-1-propanone
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 246.35

Synthesis

- Obtained by Fries rearrangement of 5,6,7,8-tetrahydro-3-propyl-2-naphthalenyl propionate (b.p. ${ }_{20} 192^{\circ}$) with aluminium chloride at 150° for 3 h [7824].
m.p. $83-83.5^{\circ}$ [7824].

1-[5,8-Bis(acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1-propanone

$[360790-49-4]$	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{7}$	mol.wt. 332.31
$\mathrm{CH}_{3} \mathrm{COO} \mathrm{OH}$	Synthesis	

- Obtained by irradiation (409-429 nm) of 4-(acetyloxy)-5,8-dioxo-5,8-dihydro-1-naphthalenyl acetate in the presence of propionaldehyde in benzene for 18 h at r.t. (60%) [7868].
m.p. $159-160^{\circ}$ [7868];
${ }^{1} \mathrm{H}$ NMR [7868], ${ }^{13} \mathrm{C}$ NMR [7868], IR [7868], MS [7868]; HPLC [7868].

N-[1,6-Dihydroxy-8-methoxy-7-methyl-5-(1-oxopropyl)-2-naphthalenyl]acetamide

$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5} \quad$ mol.wt. 317.34
Synthesis

- Obtained by reaction of boron trichloride with N-[1-(acetyloxy)-6,8-dimethoxy-7-methyl-5-(1-oxopropyl)-2-naphthalenyl]acetamide in methylene chloride at -20° (94\%) [7876].
m.p. $119-123^{\circ}$ [7876].

1-(6-Methoxy-1-propyl-2-naphthalenyl)-1-propanone

[195729-54-5] $\quad \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 256.34

Synthesis

- Refer to: [7809].

1-[6-Methoxy-3-[(methoxymethoxy)methyl]-2-naphthalenyl]-1-propanone

[195730-12-2] \quad\begin{tabular}{l}
Synthesis

- Refer to: [7809]. 288.34
\end{tabular}

1-(1,6,7-Trimethoxy-3-methyl-2-naphthalenyl)-1-propanone

[125575-55-5]

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 288.34
Synthesis

- Preparation by treatment of 1-(1-hydroxy-6,7-di-methoxy-3-methyl-2-naphthalenyl)-1-propanone with methyl iodide in the presence of potassium carbonate in refluxing acetone (95\%) [7879].
m.p. $81-82^{\circ}$ [7879]; ${ }^{1} \mathrm{H}$ NMR [7879], MS [7879].

1-(1,4,5,8-Tetramethoxy-2-naphthalenyl)-1-propanone

[275803-01-5]

m.p. 68.3-69.5 ${ }^{\circ}$ [7880]; ${ }^{1} \mathrm{H}$ NMR [7880], IR [7880].

1-(7-Bromo-2,4,5,8-tetramethoxy-3-methyl-6-nitro-1-naphthalenyl)-1-propanone

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{7} \quad$ mol.wt. 442.26
Synthesis

- Obtained by nitration of 1-(7-bromo-2,4,5, 8-tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone with copper(II) nitrate in acetic anhydride at -20° for $2 \mathrm{~h}(56 \%)$ [7878].
m.p. $\quad 154-155^{\circ}$ [7878]; ${ }^{1} \mathrm{H}$ NMR [7878].

1-(7-Bromo-2,4,5,8-tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone

[90363-49-8]

m.p. $87-88^{\circ}$ [7878]; ${ }^{1} \mathrm{H}$ NMR [7878].

1-(2,4,5,8-Tetramethoxy-3-methyl-6-nitro-1-naphthalenyl)-1-propanone
[90363-52-3]

$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{7} \quad$ mol.wt. 363.37
Syntheses

- Preparation by nitration of 1-(2,4,5,8-tetrame-thoxy-3-methyl-1-naphthalenyl)-1-propanone with copper (II) nitrate in acetic anhydride at -20° (80\%) [7878].
- Also obtained by debromination of 1-(7-bromo-2,4,5,8-tetramethoxy-3-methyl-6-nitro-1-naphthalenyl)-1-propanone with sodium formate [$\left.\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, \mathrm{DMF}, 100^{\circ}, 3 \mathrm{~h}\right]$ [7878].
- Also obtained by methylation of 1-(2,4-dihydroxy-5,8-dimethoxy-3-methyl-6-nitro-1-naphthalenyl)-1-propanone (SM) with dimethyl sulfate in the presence of potassium carbonate in acetone at 20° for $5 \mathrm{~h}(94 \%)$. SM was obtained by treatment of 1-(5,8-dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-6-nitro-1-naph-thalenyl)-1-propanone in THF with 1 N HCl at 23° for 3 days (100\%) [7877].
m.p. $126-127^{\circ}$ [7878]; ${ }^{1} \mathrm{H}$ NMR [7877,7878],

IR [7877,7878], UV [7877,7878],
X-ray crystallography [7878]; TLC [7877,7878].

1-[6-Hydroxy-1-(3-methylbutyl)-2-naphthalenyl]-1-propanone

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 270.37
Synthesis

- Refer to: [7809] (Japanese patent).

1-(2,4,5,8-Tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 318.37
Syntheses

- Preparation by debromination of 1-(7-bromo-2,4,5,8-tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone with zinc powder in 10% aqueous sodium hydroxide-dioxane ($1: 2 \mathrm{v} / \mathrm{v}$) at 70° for 12 h (100\%) [7878].
- Also obtained by reductive methylation of 5,7-dimethoxy-6-methyl-8-propio-nyl-1,4-naphthoquinone (60\%) [7878].
m.p. $\quad 76-77^{\circ}$ [7878]; ${ }^{1} \mathrm{H}$ NMR [7878].

1-(6-Amino-2,4,5,8-tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone

$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5} \quad$ mol.wt. 333.38
Synthesis

- Obtained by catalytic reduction of 1-(2,4,5,8 -tetramethoxy-3-methyl-6-nitro-1-naphtha lenyl)-1-propanone with hydrogen in methanol in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ [7878].
${ }^{1} \mathrm{H}$ NMR [7878].
1-[6-Methoxy-1-(3-methylbutyl)-2-naphthalenyl]-1-propanone
[195729-78-3]
$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 284.40

Synthesis

- Refer to: [7809] (Japanese patent).
\mathbf{N}-[1,4,6,8-Tetramethoxy-7-methyl-5-(1-oxopropyl)-2-naphthalenyl]acetamide
[90363-54-5]

m.p. $193-194^{\circ}$ [7878]; ${ }^{1} \mathrm{H}$ NMR [7878].
mol.wt. 375.42
Synthesis
- Obtained by acetylation of 1-(6-amino-2,4,5, 8-tetra-methoxy-3-methyl-1-naphthalenyl)-1-propanone with acetic anhydride in the presence of pyridine (95\%) [7878].

1-[5,8-Dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-6-nitro-1-naphthalenyl]-1-propanone

$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{9} \quad$ mol.wt. 423.42
Synthesis

- Obtained by adding a solution of 1-[5,8-dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-1-naphthalenyl]-1-propanone in acetic anhydride to a mixture of copper(II) nitrate trihydrate in acetic anhydride at -40° and stirring at -40° for $1 \mathrm{~h}(77 \%)$ [7877].
m.p. 89.5-90.5 ${ }^{\circ}$ [7877]; ${ }^{1} \mathrm{H}$ NMR [7877], IR [7877], UV [7877].

1-[6-Hydroxy-3-[3-(3-methoxypropoxy)propyl]-2-naphthalenyl]-1-propanone
[181236-19-1]

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 330.42
Synthesis

- Refer to: [7882] (Japanese patent).

1-[5,8-Dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-1-naphthalenyl]-1-propanone

pale yellow syrup [7877];
${ }^{1} H$ NMR [7877], IR [7877], UV [7877]; TLC [7877].
1-[6-Amino-5,8-dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-1-naphthalenyl]-1-propanone

yellow-brown syrup [7877].
$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{7} \quad$ mol.wt. 394.44
Synthesis

- Preparation by reaction of 1-[5,8-dimethoxy-2,4-bis-(methoxymethoxy)-3-methyl-6-nitro-1-naphthalenyl]-1-propanone with hydrogen in methanol in the presence of $5 \% \mathrm{Pd} / \mathrm{C}(100 \%)$ [7877].

1-(6-Hydroxy-1-octyl-2-naphthalenyl)-1-propanone

[195729-93-2]

1-[6-Hydroxy-1-(3-phenylpropyl)-2-naphthalenyl]-1-propanone

1-[2-Hydroxy-6-methoxy-3-methyl-5-(phenylmethoxy)-1-naphthalenyl]-

 1-propanone[185413-94-9] $\quad \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 350.41

Synthesis

- Preparation by treatment of the tetralone 24-two diastereoisomeric 1-acetoxy-5-benzy-loxy-3,4-dihydro-6-methoxy-3-methyl-1-pro-pionylnaphthalen- $2(1 \mathrm{H})$-ones-in methylene chloride with silica gel for $16 \mathrm{~h}(81 \%)$ [7836].

1-(6-Methoxy-1-octyl-2-naphthalenyl)-1-propanone

[195729-92-1] $\quad \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2} \quad$ mol.wt. 326.48

Synthesis

- Refer to: [7809].

N-[6-Hydroxy-7-methyl-5-(1-oxopropyl)-4-(phenylmethoxy)-2-naphthalenyl] acetamide

1-[6-Methoxy-1-(3-phenylpropyl)-2-naphthalenyl]-1-propanone
[195729-68-1] $\quad \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 332.44

Synthesis

- Refer to: [7809].

1-(1-Dodecyl-6-hydroxy-2-naphthalenyl)-1-propanone
[195729-86-3]

$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2} \quad$ mol.wt. 340.51
Synthesis

- Refer to: [7809].

1-(1-Dodecyl-6-methoxy-2-naphthalenyl)-1-propanone
[195729-85-2]

$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}$
Synthesis

- Refer to: [7809].

1-[2-Hydroxy-3-methyl-6,8-bis(phenylmethoxy)-1-naphthalenyl]-1-propanone

$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 426.51
Synthesis

- Obtained from 1-(3,5-dibenzyloxyphenyl)-2-methylheptane-3,5-dione by treatment with manganese (III) acetate in acetic acid (68\%) [7836].
m.p. $36-38^{\circ}$ [7836]; ${ }^{1} \mathrm{H}$ NMR [7836], IR [7836], MS [7836].

1-[8-Hydroxy-3-methyl-2,4-bis(phenylmethoxy)-1-naphthalenyl]-1-propanone
[98291-44-2]

$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 426.51
Syntheses

- Preparation by treatment of 1-[2,4-bis(benzyloxy)-5,8-dihydro-3-methyl-5,8-epoxy-1-naphthyl]-1propanone (m.p. $112-114^{\circ}$) in THF with 60% perchloric acid at 25° for $35 \mathrm{~h}(81 \%)$ [7877].
- Also obtained by adding dropwise 1.60 M ethyllithium in ethyl ether to an ice-cold suspension of 3,5-bis(benzyloxy)-4-methyl-2H-naphtho[1,8-bc]furan-2-one(m.p. 136-137º) in ethyl ether. After being stirred at 0° for 1 h , a saturated aqueous ammonium chloride solution was added to the mixture (26\%) [7877].
m.p. $188-190^{\circ}$ (d) [7877];
${ }^{1} \mathrm{H}$ NMR [7877], IR [7877], UV [7877]; TLC [7877].

23.3 Heterocyclic Derivatives

5-Hydroxy-4-(1-oxopropyl)-1,3-benzoxathiol-2-one

[112450-17-6]
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}$
mol.wt. 224.24

Synthesis

- Preparation by adding a solution of 2-propionyl-1, 4-benzoquinone in acetic acid to a solution of thiourea in 2 N hydrochloric acid, stirring at r.t. for 30 min , then heating on a steam bath for $1 \mathrm{~h}(74 \%)$ [7883].
m.p. ${ }^{194-195^{\circ}}$ [7883]; ${ }^{1} \mathrm{H}$ NMR [7883], ${ }^{13} \mathrm{C}$ NMR [7883].

1-(6-Hydroxy-1,3-benzodioxol-4-yl)-1-propanone

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad \text { mol.wt. } 194.19
$$

Synthesis

- Refer to: [7884] (Hypothetical compound).

1-(6-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone (Kakuol)

2-Hydroxy-4,5-methylenedioxypropiophenone
[18607-90-4] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Syntheses

- Obtained from sesamolyl propionate with aluminium chloride in refluxing carbon disulfide for 1 h [7885].
- Synthesized from sesamol [7886].

Isolation from natural sources

- From Asarum root oil [7887] of China [7888].
- From Asarum forbesii [7889].
- From the essential oils from five species of Asarum namely, Asarum heterotropoides variety mandshuricum, Asarum sieboldii (cultivated), Asarum caudigerellum (from Sichuan), Asarum sieboldii (from Shandong), Asarum sieboldii (wild) [7890] and Asarum sieboldii rhizome [7891].
- From Asarum sieboldii forma seoulense, Asarum forbesii, Asarum inflatum variety dinghugense and Asarum caudigerum variety cardiophyllum [7892].
- From Asiasarum [7886].
- From Asiasarum heterotropoides MAEK. variety mandshuricum MAEK. [7893].
- From the root and rhizomes of Asarum heterotropoides variety mandshuricum [7894].
- From the leaves of Piper marginatum Jacq. (Piperaceae) [7895,7896].
- From volatile oil of the Chinese drug chichin, Asiasarum heterotropoides variety seoulense [7885].
- From essential oil of Asiasari Radix [7897].
- Absorption, distribution and excretion of [3H]-labeled Kakuol in mice and rats [7898].
- Also refer to: [7899-7901].
N.B.: The formula of Kakuol represented in Chem. Abstr., 104, 199940a (1986) was erroneous.
m.p. $\quad 110^{\circ}$ [7885]; ${ }^{1} \mathrm{H}$ NMR [7902], ${ }^{13} \mathrm{C}$ NMR [7902];

GC-MS [7888,7890,7892,7896,7897]; GC [7885,7887].
USE: Fungicide [7886,7891].
BIOLOGICAL ACTIVITY: Antiviral [7894].
1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone (Demethyllatifolon) (Radiatinol)
3-Hydroxy-4,5-methylenedioxypropiophenone
3,4-Methylenedioxy-5-hydroxypropiophenone
1-(3,4-Methylenedioxy-5-hydroxyphenyl)-propan-1-one
4-Hydroxy-5,6-methylenedioxy-2-(1-oxopropyl)benzene
[83016-68-6]

Isolation from natural sources

- From Ferula communis subsp communis (compound 20) [7905].
- From Ferula elaeochytris (Umbelliferae) (compound 2) [7884].
- From Sphallerocarpus gracilis (Umbelliferae) (compound 1) [7906].
- From the underground parts of Laserpitium siler L. of Slovenian origin [7907].
- From the underground parts of Laser trilobum (L.) Borkh. species [7908].
- From the roots of Peucedanum pauciradiatum (Umbelliferae) [7909].

USE: Antifeedant activity against granary pests [7910] and insect [7904].
m.p. $169-170^{\circ}$ [7909], $161-164^{\circ}$ [7907], $161-162^{\circ}$ [7906], $159-162^{\circ}$ [7908], 154-156 [7884];
${ }^{1} H$ NMR [7884,7906,7907,7909], ${ }^{13}$ C NMR [7884,7906],
IR [7884,7907,7909], UV [7884], MS [7884,7907];
GC [7911]; GC/MS [7911].

1-(5-Bromo-6-hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1-propanone

Oxime [73860-07-8] $\quad \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3} \quad$ mol.wt. 299.12 (m.p. 216-217 ${ }^{\circ}$) [7912].

1-(8-Hydroxy-5-quinazolinyl)-1-propanone

[185437-45-0] $\quad \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \quad$ mol.wt. 202.22

Synthesis

- Refer to: [7914] (Japanese patent).

1-(4-Hydroxy-5-benzofuranyl)-1-propanone

[124210-94-2]
m.p. $92-94^{\circ}$ [7915]; ${ }^{1} \mathrm{H}$ NMR [7915], IR [7915].

1-(4,5-Dihydroxybenzo[b]thien-6-yl)-1-propanone

[912952-35-3]	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}$ mol.wt. 222.26
OH	Synthesis
	- Obtained by photoacylation of benzo[b]thio-phene-4,5-dione with propionaldehyde in benzene (31\%) [7916].
m.p. 138-140 ${ }^{\circ}$ [7916];	
${ }^{1} \mathrm{H}$ NMR [7916], IR [79	

1-(6-Hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1-propanone
[68241-22-5] $\quad \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3} \quad$ mol.wt. 205.21

Syntheses

- Preparation by Fries rearrangement of 6-propion-oxy-3-methyl-1,2-benzisoxazole with aluminium chloride at 140° for 2 h [7917], (70\%) [7918].
- Also refer to: [7267,7912,7913,7919].
m.p. 88° [7918]; ${ }^{1} \mathrm{H}$ NMR [7918].

Oxime [68241-40-7] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \quad$ mol.wt. 220.23 (m.p. 184 ${ }^{\circ}$) [7918].

1-(5-Hydroxy-2-methyl-1H-benzimidazol-4-yl)-1-propanone

[137538-58-0]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \quad$ mol.wt. 204.23 Synthesis

- Obtained by Friedel-Crafts acylation of 5-hydroxy-2-methylbenzimidazole with propionic anhydride [7920].

1-(2,3-Dihydro-5-hydroxy-1,4-benzodioxin-6-yl)-1-propanone

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Synthesis

- Refer to: [7921].

Oxime [34747-40-5] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 223.23.

- A reagent for photometric determination of titanium [7921].

1-(2,3-Dihydro-7-hydroxy-1,4-benzodioxin-6-yl)-1-propanone

[859403-57-9]
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21
 Synthesis

- Obtained by Fries rearrangement of 2,3-dihydro-6-propionyloxy-1,4-benzodioxin with titanium tetrachloride in 1,2-dichloroethane at r.t. [7922].

1-(4-Methoxy-1,3-benzodioxol-5-yl)-1-propanone
[340016-41-3] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Isolation from natural sources

- From Anethum sowa Roxb. (Apiaceae) [7923].
m.p. 67° [7923];
${ }^{1} \mathrm{H}$ NMR [7923], IR [7923], MS [7923].

1-(6-Methoxy-1,3-benzodioxol-5-yl)-1-propanone

[70342-29-9]	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21 Isolation from natural sources
- From the Piper aleyreanum [7924] (Piperaceae).	
- From the roots of Piper marginatum [7902].	
USE: Fungicide [7886].	

1-(7-Methoxy-1,3-benzodioxol-5-yl)-1-propanone (Crocatone) (Latifolone)
[19937-86-1] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Syntheses

- Preparation by methylation of 1-(3,4-methylene-dioxy-5-hydroxyphenyl)-1-propanone with diazomethane [7909].
- Preparation by Jones oxidation of the intermediate alcohol obtained by reaction of ethylmagnesium bromide with 3-methoxy-4,5-(methylenedioxy) benzaldehyde [7926].
Isolation from natural sources
- From the root of Laserpitium latifolium L. (Umbelliferae) [7927-7930].
- From the roots of Laserpitium siler L. (Umbelliferae) [7907].
- From Laser trilobum L. BORKH (Umbelliferae) [7929].
- From the roots of Ferula tunshanica $S u$ [7931].
- From Ferula sinaica (Umbellifereae) [7932,7933].
- From Ferula arrigoni (Umbellifereae) [7934].
- From Ferula licentiana variety tunshanica and Ferula kingdonwardii [7935,7936].
- From the roots of Thapsia garganica L. (Umbellifereae) [7911].
- From the roots of Thapsia villosa (Umbellifereae) [7937-7939].
- Also refer to: [7433,7940].
m.p. $89-90^{\circ}$ [7929], $88-89^{\circ}$ [7926], 88° [7927-7930], $86-88^{\circ}$ [7937];
${ }^{1} \mathrm{H}$ NMR [7907,7937,7941], ${ }^{13} \mathrm{C}$ NMR [7932],
IR [7928,7930,7937,7942],
UV [7928,7930,7942], MS [7932,7937];
Chromatography [7928]; polarography [7928,7930]; TLC [7937].

1-(4-Hydroxy-7-methoxy-1,3-benzodioxol-5-yl)-1-propanone

3,4-Dichloro-7-hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one

$$
\begin{aligned}
& \text { [63876-51-7] } \\
& \begin{array}{l}
\text { Obtained in two steps: First, reaction of alu- } \\
\text { mone (2 mol) in methylene chloride, the } \\
\text { stirring continued till the evolution of hydro- } \\
\text { gen chloride gas ceased (3 h). Then, hexachlo- } \\
\text { ropropene (2 mol) was added and the reaction } \\
\text { mixture was stirred for } 3 \text { more hours [7944]. }
\end{array}
\end{aligned}
$$

m.p. 148-149 ${ }^{\circ}$ [7944]; ${ }^{1} \mathrm{H}$ NMR [7944], IR [7944], MS [7944].

7-Hydroxy-8-(1-oxopropyl)-2H-1-benzopyran-2-one
7-Hydroxy-8-propionylcoumarin
8-Propionylumbelliferone
[67752-18-5] $\quad \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 218.21

Synthesis

- Obtained by Fries rearrangement of 7-propionoxycoumarin (m.p. 94°) with aluminium chloride for 1 h at $150-160^{\circ}$ (45\%) [6806].
m.p. 168° [6806].

5-Bromo-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran
[100953-75-1]

m.p. $104-105^{\circ}$ [7945].

5-Chloro-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran

[104095-32-1] $\quad \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClO}_{3} \quad$ mol.wt. 238.67

Synthesis

- Obtained by decarboxylation of 5-chloro-6-hy-droxy-3-methyl-7-propionylcoumarilic acid on heating for 10 min at 255° [7945].
m.p. 114° [7945].

8-Hydroxy-5-(1-oxopropyl)quinoline

1-(8-Hydroxy-[5]quinolyl)-propane-1-one
[91569-25-4] $\quad \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ mol.wt. 201.22

Syntheses

- Obtained by Friedel-Crafts acylation of 8-hydroxy-quinoline with propionyl chloride in the presence of aluminium chloride in nitrobenzene [7946,7947] at 70-80 ${ }^{\circ}(20 \%)$ [7948,7949].
m.p. $127-128^{\circ}$ [7949], $124-125^{\circ}$ [7946], 91° [7948]. One of the reported melting points is obviously wrong.
USE: Fungicide [7946].
Hydrochloride $\quad \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl} \quad$ mol.wt. 237.68 (m.p.279-280 ${ }^{\circ}$ (d) [7948], 224° [7949]).
One of the reported melting points is obviously wrong.
- Refer to: [7948,7949].

1-(5-Bromo-3-ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-1-propanone
[73860-04-5] $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}_{3} \quad$ mol.wt. 298.16

Synthesis

- Preparation by reaction of bromine with 3-ethyl-6-hydroxy-7-propionyl-1,2-benzisoxazole in acetic acid at r.t. for $2 \mathrm{~h}(80 \%)$ [7912].
m.p. $\quad 109-110^{\circ}$ [7912]; ${ }^{1} \mathrm{H}$ NMR [7912], IR [7912].

Oxime [73860-08-9] $\quad \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3} \quad$ mol.wt. 313.15 (m.p. 185 $)$ [7912].

1-(5-Hydroxy-2H-1-benzopyran-6-yl)-1-propanone

[457628-04-5] $\quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 204.23

Syntheses

- Refer to: [6524-6526].

1-(6-Hydroxy-3-methyl-7-benzofuranyl)-1-propanone

6-Hydroxy-3-methyl-7-propionylbenzofuran
[35093-15-3]

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 204.23
Syntheses

- Obtained by decarboxylation of 6-hydroxy-3-me thyl-7-propionylcoumarilic acid on heating for 10 min at 248° [7950].
- Also obtained from 3-chloro-4-methyl-8-propionyl-coumarin by heating with 10% aqueous sodium carbonate for 2 h on a water bath [7950].
- Also obtained by treatment of 3-bromo-7-hydroxy-8-propionyl-4-methylcoumarin with refluxing 7% aqueous sodium carbonate for $1 \mathrm{~h}(25 \%)$ [7951].
m.p. 98° [7950], 92° [7951].

1-(3-Ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \quad$ mol.wt. 219.24
Syntheses

- Preparation by Fries rearrangement of 6-propion-oxy-3-ethyl-1,2-benzisoxazole with aluminium chloride at $135-140^{\circ}$ for 2 h (65%) [7918].
- Also refer to: [7912].
m.p. 65° [7918]; ${ }^{1} \mathrm{H}$ NMR [7918].

Oxime [68241-42-9] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \quad$ mol.wt. 234.25 (m.p. 146°) [7918].

1-(4,5-Dimethoxy-1,3-benzodioxol-6-yl)-1-propanone

(m.p. 105°) with potassium hydroxide [7952].
N.B.: This isoapiole was prepared from apiole (Dill) [6640] by allylic-propenylic rearrangement (Claisen).
b.p. 760 260 ${ }^{\circ}$ [7952].

Semicarbazone $\quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \quad$ mol.wt. 295.30 (m.p. 159-160 ${ }^{\circ}$) [7952].
1-(4,7-Dimethoxy-1,3-benzodioxol-5-yl)-1-propanone (Methoxylatifolone)
[107882-48-4]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24
Syntheses

- Obtained by treatment of isoapiole dibromide (m.p. $70-72^{\circ}$) with sodium methoxide in refluxing methanol for 5 h [7243].
N.B. This isoapiole is also named apiole (Parsley) [6640].
- Also refer to: [7953].

Isolation from natural sources

- From roots of Ferula ovina Boiss. (Umbelliferae) [7954] and Ferula sinaica Boiss growing in Egypt [7933].
m.p. 95.5° [7243].

6-Bromo-3-chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one 6-Bromo-3-chloro-7-hydroxy-4-methyl-8-propionylcoumarin

$$
\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrClO}_{4} \quad \text { mol.wt. } 345.58
$$

Synthesis

- Obtained by Fries rearrangement of 6-bromo-3-chlo ro-4-methyl-7-propionyloxycoumarin (m.p. 136 ${ }^{\circ}$) with aluminium chloride for 90 min at 155° [7945].
m.p. $\quad 190^{\circ}$ [7945].

3,4-Dichloro-7-hydroxy-8-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one
[63876-52-8]

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad$ mol.wt. 301.13
Synthesis

- Obtained in two steps: First, reaction of aluminium chloride (6 mol) with 2,4-dihydroxy-3-methylpropiophenone (2 mol) in methylene chloride, the stirring continued till the evolution of hydrogen chloride gas ceased (3 h). Then, hexachloropropene (2 mol) was added and the reaction mixture was stirred for 3 more hours [7944].
m.p. 191-192 ${ }^{\circ}$ [7944]; ${ }^{1} \mathrm{H}$ NMR [7944], IR [7944], MS [7944].

3,6-Dichloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one

3,6-Dichloro-7-hydroxy-4-methyl-8-propionylcoumarin

$$
\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4} \quad \text { mol.wt. } 301.13
$$

Synthesis

- Obtained by Fries rearrangement of 3,6-dichloro-4-methyl-7-propionyloxycoumarin with aluminium chloride for 90 min at 155° [7945].

5-Hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one-3-carboxylic acid
5-Hydroxy-6-propionylcoumarin-3-carboxylic acid

$$
\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6} \quad \text { mol.wt. } 262.22
$$

Syntheses

- Preparation from cyanoacetic acid and 2,4-dihydroxy-3-formylpropiophenone in 20% sodium hydroxide solution (59\%) [6768].
- Also refer to: [7955].
m.p. $185-186^{\circ}$ [6768].
3-Bromo-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one

6-Bromo-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one
6-Bromo-7-hydroxy-4-methyl-8-propionylcoumarin
[109099-37-8] $\quad \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 311.13

Syntheses

- Obtained by Pechmann condensation of 4-bromo-2-propionylresorcinol with ethyl acetoacetate [6450].
- Also obtained by Fries rearrangement of 7-(pro pionyloxy)-6-bromo-4-methylcoumarin (m.p. 128 ${ }^{\circ}$) with aluminium chloride (3.3 mol) at 150° for $1 \mathrm{~h}(36 \%)$ [6450].
m.p. 198° [6450].

5-Bromo-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid
5-Bromo-6-hydroxy-3-methyl-7-propionylcoumarilic acid

[108245-61-0] \quad\begin{tabular}{l}
Synthesis

Obtained by Fries rearrangement of 5-bromo-3-

methyl-6-(propionyloxy)coumarilic acid (m.p.

207-208) with aluminium chloride by heating
for 1 h at 150-160 [7945].

\end{tabular}

m.p. $273-274^{\circ}$ [7945].

3-Chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one

m.p. 206-207 [7950].

6-Chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one
6-Chloro-7-hydroxy-4-methyl-8-propionylcoumarin
m.p. $181^{\circ}[6450]$ mol.wt. 266.68 .

5-Chloro-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid

5-Chloro-6-hydroxy-3-methyl-7-propionylcoumarilic acid

[109218-76-0]	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClO}_{5} \quad \mathrm{~mol}$.wt. 282.68
$\mathrm{COCH}_{2} \mathrm{CH}_{3}$	Synthesis
	- Obtained by Fries rearrangement of 5-chloro-3-methyl-6-(propionyloxy)coumarilic acid (m.p. 201°) with aluminium chloride by heating for 1 h at $150-160^{\circ}$ [7945].
m.p. 276° [7945].	

5-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one
5-Hydroxy-4-methyl-6-propionylcoumarin
[39818-44-5]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 232.24
Syntheses

- Obtained by condensation of respropiophenone with ethyl acetoacetate in the presence of aluminium chloride in nitrobenzene at $120-130^{\circ}$ (39\%) [6750].
- Also obtained by Fries rearrangement of 4-methyl-5-(propionyloxy)coumarin with aluminium chloride at $120-130^{\circ}$ for 2 h [6750].
m.p. $164-165^{\circ}$ [6750].

7-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one

7-Hydroxy-4-methyl-6-propionylcoumarin
6-Propionyl-4-methylumbelliferone
[39818-42-3] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 232.24

Syntheses

- Obtained by Fries rearrangement of 4-methylumbelliferone propionate with aluminium chloride at $160-165^{\circ}$ for 1 h [6800].
- Also obtained from 2,4-dihydroxy-5-propionyl- β-methyl-cinnamic acid by cyclisation with sulfuric acid or on heating above its melting point. It is partly dehydrated yielding the titled ketone [6800].
- Also obtained by reaction of acetoacetic ester with respropiophenone in the presence of phosphorous oxychloride in refluxing benzene for $3 \mathrm{~h}(25 \%)$ [6752].
m.p. 228° [6800], 227-228 ${ }^{\circ}$ [6752].

Acetate $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27 (m.p. 137°) [6800].
Benzoate $\quad \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 336.34 (m.p. 138°) [6800].
7-Hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one
7-Hydroxy-4-methyl-8-propionylcoumarin
8-Propionyl-4-methylumbelliferone
[3361-71-5] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 232.24

Syntheses

- Obtained by Fries rearrangement of 4-methylumbelliferone propionate (m.p. 145-146 ${ }^{\circ}$ [6801] with aluminium chloride for $60-70 \mathrm{~min}$ at $100-155^{\circ}$ (68%) [6801], at $120-170^{\circ}$ for $2-3 \mathrm{~h}$ [6802,6803], (69\%) [6805] or at $160-165^{\circ}$ for $1 \mathrm{~h}(29 \%)$ [6800].
- Also obtained from 2-propionylresorcin by condensation with acetoacetic ester in the presence of concentrated sulfuric acid [6800]. m.p. 200° [6800], $197-198^{\circ}$ [6801], $192-195^{\circ}$ [6802,6805], 187° [6803].

Acetate $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 274.27 (m.p. 168°) [6800].
Benzoate $\quad \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 336.34 (m.p. 134°) [6800].

6-Hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid
 6-Hydroxy-3-methyl-7-propionylcoumarilic acid

[108881-73-8]

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 248.24
Syntheses

- Obtained by Fries rearrangement of 3-methyl-6-propionyl-oxycoumarilic acid (m.p. 229°) with aluminium chloride by heating for 1 h , first at $120-125^{\circ}$, then at $150-160^{\circ}$ [7950].
- Also obtained by treatment of 3-bromo-7-hydroxy-8-propionyl-4-methylcoumarin with refluxing 7% aqueous sodium carbonate for $1 \mathrm{~h}(42 \%)$ [7951].
m.p. 240° [7950].

8-Hydroxy-2-methyl-5-(1-oxopropyl)quinoline

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 215.25
Synthesis

- Obtained by reaction of propionyl chloride with 8-quinaldinol (8-hydroxy-2-methylquinoline) in nitrobenzene in the presence of aluminium chloride [7946].
m.p. $97-98^{\circ}$ [7946].

USE: Fungicide [7946].
1-(2-Ethyl-7-hydroxy-4-benzofuranyl)-1-propanone

1-(6-Hydroxy-3,7-dimethyl-5-benzofuranyl)-1-propanone

[39874-76-5] $\quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 218.25

m.p. 120° [7957].

Synthesis

- Obtained from 3-bromo-7-hydroxy-6-pro-pionyl-4,8-di-methylcoumarin with refluxing 10% aqueous sodium carbonate solution for 1 h (25\%) [7957].

1-(4,7-Dihydroxy-2,3-dimethyl-6-benzofuranyl)-1-propanone

[49812-94-4]

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 234.25
Synthesis

- Preparation by treatment of its dimethyl ether with pyridinium chloride (compound 10) (63\%) [7148].
m.p. 190° [7148].

USE: Radioprotective activity [7148].

1-(1-Ethyl-5-hydroxy-2-methyl-1H-benzimidazol-4-yl)-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
mol.wt. 232.28
Synthesis

- Obtained by Friedel-Crafts acylation of 1-ethyl-5-hydroxy-2-methylbenzimidazole with propionic anhydride [7920].

3-Bromo-7-hydroxy-4,8-dimethyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one
[39874-75-4]
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{4}$
mol.wt. 246.26
 Synthesis

- Obtained by reaction of bromine with 7-hydroxy-6-propionyl-4,8-dimethylcoumarin in hot acetic acid (45\%) [7957].
m.p. $\quad 223^{\circ}$ [7957].

7-Hydroxy-4,8-dimethyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one
7-Hydroxy-4,8-dimethyl-6-propionylcoumarin
[25944-43-8] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 246.26

Syntheses

- Obtained by Fries rearrangement of 4,8-dime-thyl-7-propionoxycoumarin (m.p. 129 ${ }^{\circ}$) [7958] with aluminium chloride at 160° for 2 h (60\%) [7959].
- Also refer to: [7957].
m.p. $\quad 200^{\circ}$ [7959].

7-Methoxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one

$$
\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 246.26
$$

 Syntheses

- Obtained by reaction of dimethyl sulfate with 7-hydroxy-4-methyl-6-propionylcoumarin in aqueous alkaline solution [6800].
- Also obtained by oxidation of 7-methoxy-4-methyl-6-propylcoumarin in diethyl ether with ceric ammonium nitrate in aqueous acetic acid (94\%) [7960].
m.p. 180° [6800], 172° [7960]; ${ }^{1} H$ NMR [7960], IR [7960].

7-Methoxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one

$$
\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 246.26
$$

Synthesis

- Obtained by reaction of dimethyl sulfate with 8-pro-pionyl-4-methylumbelliferone in the presence of a N sodium hydroxide solution at r.t. for 2 h [6800].
m.p. 150° [6800].

6-Hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid methyl ester

[35093-16-4]	Synthesis
m.p. $\quad 154^{\circ}$ [7951].	Obtained by esterification of the corresponding carboxylic acid with dimethyl sulfate and sodium bicarbonate in refluxing acetone for 2 h [7951]

6-Methoxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid
6-Methoxy-3-methyl-7-propionylcoumarilic acid

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 262.26
Synthesis

- Preparation by reaction of methyl iodide with 6-hydroxy-3-methyl-7-propionylcoumarilic acid in the presence of potassium carbonate in acetone [7950].
m.p. $\quad 93^{\circ}$ [7950].

5-Ethyl-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran

[106379-22-0] $\quad \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 232.28
 Synthesis

- Obtained by decarboxylation of 5-ethyl-6-hy-droxy-3-methyl-7-propionylcoumarilic acid on heating for 10 min at 255° [7945].
m.p. 64-65 ${ }^{\circ}$ [7945].

1-(5-Hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone
[118585-45-8]

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 232.28
Synthesis

- Refer to: [7961].

1-(3,4-Dihydro-7-hydroxy-8-iodo-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone

[117844-80-1]

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{IO}_{3} \quad$ mol.wt. 360.19
Synthesis

- Obtained by reaction of isoprene (2-me thyl-1,3-butadiene) with 2,4-dihydroxy-3-iodopropiophenone in petroleum ether in the presence of 85% phosphoric acid for 20 h at $30-35^{\circ}(89 \%)$ [6530].
m.p. $\quad 91-92^{\circ}$ [6530]; ${ }^{1} \mathrm{H}$ NMR [6530].

1-(3,4-Dihydro-5-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone
[117844-76-5]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Synthesis

- Obtained by reaction of isoprene (2-methyl-1,3-butadiene) with respropiophenone in petroleum ether in the presence of 85% phosphoric acid for 8 h at $30-35^{\circ}(25 \%)$ [6530].
m.p. $\quad 95-96^{\circ}$ [6530]; ${ }^{1} \mathrm{H}$ NMR [6530].

1-(3,4-Dihydro-7-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 234.30
Syntheses

- Obtained by reaction of isoprene (2-methyl-1,3-butadiene) with respropiophenone in petroleum ether in the presence of 85% phosphoric acid for 8 h at $30-35^{\circ}$ (32\%) [6530].
- Also obtained by refluxing the 8-iodo derivative with N, N-dimethylaniline for 2 h at $190-200^{\circ}$ (98\%) [6530].
m.p. $148-149^{\circ}$ [6530]; ${ }^{1} \mathrm{H}$ NMR [6530].

1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29
Synthesis

- Refer to: [6887].

1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-1-propanone
2,2-Dimethyl-8-propionylchroman-5,7-diol
[201035-08-7] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Syntheses

- Obtained by reaction of 2-methyl-2-buten-1-ol with phloropropiophenone in dioxane in the presence of Amberlite IR-120 resin (H^{+}form), first at 20° during 0.5 h , then at reflux for 24 h [7739].
- Also refer to: [6887].

5-Hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one-3-carboxylic acid ethyl ester

5-Hydroxy-2-oxo-6-propionyl-2H-chromene-3-carboxylic acid ethyl ester
5-Hydroxy-6-propionylcoumarin-3-carboxylic acid ethyl ester
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \quad$ mol.wt. 290.27

Synthesis

- Obtained by reaction of 5-hydroxy-6-propionyl-coumarin-3-carboxylic acid with ethanol in the presence of concentrated sulfuric acid for 18 h at reflux [7955].
m.p. $152-154^{\circ}$ [7955].

3-Chloro-6-ethyl-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one 3-Chloro-6-ethyl-7-hydroxy-4-methyl-8-propionylcoumarin

$$
\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}_{4} \quad \text { mol.wt. } 294.73
$$

Synthesis

- Obtained by Fries rearrangement of 3-chloro-6-ethyl-4-methyl-7-propionyloxycoumarin with aluminium chloride for 90 min at 155° [7945].

1-[2-Methoxy-6-(2-pyridinyl)phenyl]-1-propanone
[872630-73-4]
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$ mol.wt. 241.29

Synthesis

- Obtained by acylation of 2-(3-methoxyphenyl)pyridine (2 mmol) with ethylene (7 atm) and carbon monoxide (20 atm) in the presence of catalytic amounts of $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ in DMA at 160° for $10 \mathrm{~h}(20 \%)$ [7962].
${ }^{1} \mathrm{H}$ NMR [7962], ${ }^{13} \mathrm{C}$ NMR [7962], IR [7962], MS [7962]; GC [7962].

1-[4-Methoxy-2-(2-pyridinyl)phenyl]-1-propanone

[188527-69-7] $\quad \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 241.29
 Synthesis

- Obtained by acylation of 2-(3-methoxyphenyl)pyridine (2 mmol) with ethylene (7 atm) and carbon monoxide (20 atm) in the presence of catalytic amounts of $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ in DMA at 160° for $10 \mathrm{~h}(53 \%)$ [7962].
${ }^{1} \mathrm{H}$ NMR [7962], ${ }^{13} \mathrm{C}$ NMR [7962], IR [7962], MS [7962]; GC [7962].
1-[5-Methoxy-2-(2-pyridinyl)phenyl]-1-propanone
[872630-76-7]

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 241.29
Synthesis
- Obtained by acylation of 2-(4-methoxyphenyl) pyridine (2 mmol) with ethylene (7 atm) and carbon monoxide (20 atm) in the presence of catalytic amounts of $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ in DMA at 180° for 10 h (62\%) [7962].
light yellow solid [7962]; m.p. $125-130^{\circ}$ [7962];
${ }^{1} \mathrm{H}$ NMR [7962], ${ }^{13} \mathrm{C}$ NMR [7962], IR [7962], MS [7962];
GC [7962].
6-Ethyl-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one
6-Ethyl-7-hydroxy-4-methyl-8-propionylcoumarin
[109402-62-2] $\quad \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 260.29

Syntheses

- Preparation by reaction of 4-ethyl-2-propionylresorcinol with ethyl acetoacetate in the presence of 80% sulfuric acid at r.t. overnight [6450].
- Also obtained by Fries rearrangement of 7-propion-oxy-6-ethyl-4-methylcoumarin (m.p. 154°) with aluminium chloride (3.3 mol) at $140-150^{\circ}$ for 1 h (40\%) [6450].
m.p. 111° [6450].

5-Ethyl-6-hydroxy-3-methyl-7-(1-oxopropyl)-2-benzofurancarboxylic acid
[109402-64-4]

m.p. 243° [7945].
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 276.29
Synthesis

- Obtained by Fries rearrangement of 5-ethyl-3-methyl-6-propionyloxycoumarilic acid (m.p. 175°) with aluminium chloride by heating for 1 h at $150-160^{\circ}$ [7945].

6-Hydroxy-3,7-dimethyl-5-(1-oxopropyl)-2-benzofurancarboxylic acid methyl ester

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 276.29
Synthesis

- Obtained by reaction of dimethyl sulfate with the corresponding carboxylic acid in the presence of sodium bicarbonate in refluxing acetone (24\%) [7957].
m.p. 172° [7957].

1-(3,4-Dihydro-7-hydroxy-2,2,8-trimethyl-2H-1-benzopyran-6-yl)-1-propanone

1-(3,4-Dihydro-6-methoxy-3,7-dimethyl-1H-2-benzopyran-8-yl)-1-propanone
[229003-30-9]
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$
mol.wt. 248.32

Synthesis

- Refer to: [7963].

1-[5-Hydroxy-2-(4-hydroxyphenyl)-7-benzoxazolyl]-1-propanone

1-(6-Hydroxy-2H-naphtho[1,2-b]pyran-5-yl)-1-propanone
[127869-99-2]
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 254.29
Synthesis

- Obtained by thermal reaction of 2-propionyl-1, 4-naphthoquinone with allyltrimethylstannane in benzene under argon atmosphere (3\%) [7814].
m.p. $69-72^{\circ}$ [7814];
${ }^{1} \mathrm{H}$ NMR [7814], IR [7814], MS [7814].

5-Hydroxy-6-methoxy-2-methyl-4-(1-oxopropyl)-3-benzofurancarboxylic acid ethyl ester

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 306.32
Synthesis

- Obtained by Michael addition of ethyl acetoacetate to 2 -(2-ethyl-1,3-dioxolan-2-yl)-6-methoxy-2,5-cyclo-hexadiene-1,4-dione [78094-44-7] in ethanol in the presence of 0.1 equiv of sodium ethoxide, at r.t. for 30 min ; then, addition of 6 N hydrochloric acid which effected deketalization and dehydration of the adduct (37\%) [7128].
m.p. $\quad 97-99^{\circ}$ [7128];
${ }^{1}$ H NMR [7128], IR [7128]; X-ray crystallography [7128].

1-[5-Hydroxy-2-(4-hydroxyphenyl)-7-benzofuranyl]-1-propanone

1-(6-Hydroxy-1,4-dimethyl-9H-carbazol-3-yl)-1-propanone
[136950-73-7]

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \quad$ mol.wt. 267.33 Synthesis

- Obtained directly by reaction of propionic anhydride with 6-methoxy-1,4-dimethyl- 9 H -carbazole in refluxing toluene (55\%) [7966].
m.p. 248° [7966];
${ }^{1} \mathrm{H}$ NMR [7966], IR [7966].

1-[2,3-Dihydro-5-hydroxy-3,3-dimethyl-2-(4-morpholinyl)-4-benzofuranyl]-1-propanone

[116074-75-0]

2-propionyl-1,4-benzoquinone in methylene
chloride to a stirred solution of 1-(N -morpholino)-
2-methyl-1-propene (enamine) in methylene
chloride at 5°, then the mixture stirred for 1 h at
r.t. (50\%) [7967].

m.p. $\quad 133-134^{\circ}$ [7967]; ${ }^{1} \mathrm{H}$ NMR [7967], IR [7967].

1-(4-Hydroxy-3-methyl-6-phenyl-2-benzofuranyl)-1-propanone

[687184-53-7]
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 280.32

Synthesis

- Refer to: [7968] (compound 11h).

BIOLOGICAL ACTIVITY: Anticancer [7968].

1-[7-Methoxy-2,2-dimethyl-4-(1-methylethyl)-2H-1-benzopyran-6-yl]-1-propanone

[851036-32-3]

7-Hydroxy-8-methyl-6-(1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one 7-Hydroxy-8-methyl-4-phenyl-6-propionylcoumarin
[25944-41-6]
$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 308.33

m.p. 179° [7959].

1-(3,4,9,10-Tetrahydro-5-hydroxy-2,2,8,8-tetramethyl-2H,8H-benzo[1,2-b:
3,4-b']dipyran-6-yl)-1-propanone
3,4,9,10-Tetrahydro-2,2,8,8-tetramethyl-6-propionyl-2H,8H-benzo[1,2-b;3,4-b'] dipyran-5-ol
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 318.41
Synthesis

- Obtained by reaction of 2-methyl-2-buten1 -ol with phloropropiophenone in dioxane in the presence of Amberlite IR-120 resin (4^{+} form), first at 20° during 0.5 h , then at reflux for 24 h [7739].

1-(7-Hydroxy-2,2-diphenyl-1,3-benzodioxol-5-yl)-1-propanone

1-[6-Hydroxy-3-(4-methylphenyl)-2-phenyl-5-benzofuranyl]-1-propanone
[438490-68-7]

1-[6-Hydroxy-3-(4-methoxyphenyl)-2-phenyl-5-benzofuranyl]-1-propanone
$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{3}$
Synthesis

- Refer to: [7971].
[438490-65-4]

$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 372.42
Syntheses
- Refer to: [7971,7972].

USE: Antifeedant [7971].

Chapter 24
 Aromatic Ketones Containing One Isobutyryl Group

24.1 Benzene Derivatives

1-(3,5-Dibromo-4-fluoro-2-hydroxyphenyl)-2-methyl-1-propanone

USE: Preparation of piperidine compounds as NMDA receptor antagonists for treatment of dementia [7973].

1-(3-Bromo-6-fluoro-2-hydroxyphenyl)-2-methyl-1-propanone

[881190-64-3]
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrFO}_{2} \quad$ mol.wt. 261.09

Synthesis

- Refer to: [7973].

USE: Preparation of piperidine compounds as NMDA receptor antagonists for treatment of dementia [7973].

1-(4-Bromo-5-fluoro-2-hydroxyphenyl)-2-methyl-1-propanone

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrFO}_{2}$
mol.wt. 261.09

Synthesis

- Obtained by Fries rearrangement of 3-bromo-4-fluoro-phenyl isobutyrate [7974].

1-(3,5-Dibromo-2-hydroxyphenyl)-2-methyl-1-propanone

$$
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \quad \text { mol.wt. } 322.00
$$

Synthesis

- Obtained by reaction of bromine with o-isobutyrophenone in acetic acid [7975].
m.p. 97° [7975].

1-(3,5-Dichloro-4-hydroxyphenyl)-2-methyl-1-propanone

[124500-38-5]

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$

Syntheses

- Obtained by Fries rearrangement of 2,6-dichlorophenyl isobutyrate with aluminium chloride at $130-135^{\circ}$ for 4.5 h (42\%) [6401].
- Also refer to: [7976].
m.p. 112-113 ${ }^{\circ}$ [6401].

1-(4-Fluoro-2-hydroxy-5-nitrophenyl)-2-methyl-1-propanone

[119994-05-7]	Syntheses - Obtained by reaction of fuming nitric acid with 4-fluoro-2-hydroxyisobutyrophenone in acetic acid at 0° for 30 min [6412].
- Also refer to: [7977].	

Oxime [119994-06-8] $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{4}$ mol.wt. 242.21 [7978].

1-(4-Bromo-2-hydroxyphenyl)-2-methyl-1-propanone

[140896-90-8]

1-(5-Bromo-2-hydroxyphenyl)-2-methyl-1-propanone
[934524-37-5]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
Synthesis

- Obtained by Fries rearrangement of 3-bromophenyl isobutyrate [7974].
b.p. ${ }_{12} 144-145^{\circ}$ [7979].
- Also refer to: [7980].

1-(5-Bromo-2,3,4-trihydroxyphenyl)-2-methyl-1-propanone
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4} \quad$ mol.wt. 275.10

Synthesis

- Preparation by reaction of bromine with 2,3,4-tri-hydroxy-isobutyrophenone in acetic acid [6454].
m.p. 135° [6454].

1-(4-Chloro-2-hydroxyphenyl)-2-methyl-1-propanone
[6618-61-7] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Syntheses

- Obtained by using standard Friedel-Crafts acylation [7976].
- Also refer to: [6460,6463].
b.p. ${ }_{11} 133-138^{\circ}$ [6460].

1-(4-Chloro-3-hydroxyphenyl)-2-methyl-1-propanone
[124500-32-9] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

Synthesis

- Obtained by using standard Friedel-Crafts acylation [7976].

1-(5-Chloro-2-hydroxyphenyl)-2-methyl-1-propanone
[90743-04-7] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2} \quad$ mol.wt. 198.65

> Syntheses

- Obtained by Fries rearrangement of 4-chlorophenyl isobutyrate (b.p. 120°; m.p. 29°) with aluminium chloride at 110° for 3 h [7981] or in nitrobenzene at 140° for $2 \mathrm{~h}(55 \%)$ [7979].
- Also refer to: [6489,7980,7982,7983].
yellow oil [7981]; b.p. . $_{20} 130^{\circ}$ [7981], b.p. ${ }_{18} 140-142^{\circ}$ [7979].

1-(3-Chloro-2,5-dihydroxyphenyl)-2-methyl-1-propanone

[918310-93-7]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
mol.wt. 214.65

Synthesis

- Refer to: [7984].

USE: For preparation of agrochemical pesticides [7984].

1-(4-Chloro-2,5-dihydroxyphenyl)-2-methyl-1-propanone

[88772-49-0]
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
mol.wt. 214.65

Synthesis

- Refer to: [7985].

1-(2-Fluoro-6-hydroxyphenyl)-2-methyl-1-propanone
[881190-63-2] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 182.19

Synthesis

- Refer to: [7973].

USE: Preparation of piperidine compounds as NMDA receptor antagonists for treatment of dementia [7973].

1-(3-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone

[879339-62-5]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 182.19
Synthesis

- Refer to: [6517].

USE: Preparation of heteroaryl alkylidenetetrahydro-naphthalenamines as antiinflammatories [6517].

1-(3-Fluoro-4-hydroxyphenyl)-2-methyl-1-propanone

[879339-65-8] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 182.19

Syntheses

- Refer to: [6517,7986].

USE: Preparation of heteroaryl alkylidenetetrahydro-naphthalenamines as antiinflammatory agents [6517]; preparation of δ-methylenebenzenebutanamines as anti-inflammatory agents [7986].

1-(4-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone

USE: Preparation of piperidine compounds as NMDA receptor antagonists for treatment of dementia [7973].

1-(5-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone

[183280-17-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2} \quad$ mol.wt. 182.19

Synthesis

- Obtained by Fries rearrangement of p-fluorophenyl isobutyrate with aluminium chloride between 150° and 180° for $20 \mathrm{~min}(38 \%)$ [7987].
oil [7987]; ¹H NMR [7987], MS [7987].

1-(2-Hydroxy-5-nitrophenyl)-2-methyl-1-propanone

[88521-75-9]

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20
Syntheses

- Obtained by reaction of isobutyryl chloride with p-nitrophenol in nitrobenzene in the presence of aluminium chloride (9\%) [6538], according to the modified method [7988].
- Also refer to: [7989].
m.p. 74-74.5 ${ }^{\circ}$ [6538]; ${ }^{1} \mathrm{H}$ NMR [6538], IR [6538].

1-(4-Hydroxy-3-nitrophenyl)-2-methyl-1-propanone

[82350-84-3] $\quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \quad$ mol.wt. 209.20

Synthesis

- Refer to: [7990].

1-(3,4-Dihydroxy-5-nitrophenyl)-2-methyl-1-propanone

[134610-34-7]

BIOLOGICAL ACTIVITY: As catechol-O-methyltransferase inhibitor [7991]. m.p. $98-99^{\circ}$ [7991].

1-(2-Hydroxyphenyl)-2-methyl-1-propanone

[6640-69-3] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Obtained by Fries rearrangement of phenyl isobutyrate, - with aluminium chloride [7992],
- without solvent at $140-150^{\circ}$ for 1 h [7794], (40\%) [7993] or at 170° for 40 min (40\%) [7994];
- in nitrobenzene at 50° for $18 \mathrm{~h} \mathrm{(25} \mathrm{\%)} \mathrm{[6567]} \mathrm{or} \mathrm{in} \mathrm{carbon} \mathrm{disulfide} \mathrm{(17} \mathrm{\%)}$ [6683];
- with ferric chloride in a boilin g water bath for 6 h [7975].
- Also obtained by reaction of isobutyryl chloride with phenol in nitrobenzene on a steam-cone for 30 min (7\%) [7993].
- Also obtained by reaction of sec-butyllithium (1.1 equiv) with 2-bromo-4methylphenyl isobutyrate in tetrahydrofuran/ethyl ether/hexane at -95° for 30 min and -78° for 30 min , then hydrolysis with saturated ammonium chloride (62\%) (metal-promoted Fries rearrangement) [6590].
- Also obtained by hydrolysis of 2-\{2-methyl-1-[(1R)-1-phenylethyl]iminopropyl $\}$ phenol (4ea) with aqueous acetic acid/THF at 40° for 4 h (77\%) [6593].
- Also refer to: [7980,7995-7998].
N.B.: The formula of the ketone obtained by [7999] is not compatible with the o-hydroxyketone of the title. In fact, the mentioned melting point ($64-66^{\circ}$) [7999] should be much lower than the one of the p-isomer, that is of 56° [7975].
colourless oil [6593,6683];
b.p. ${ }_{0.4} 68^{\circ}$ [7993], b.p. . $_{3.5} 79.3-79.5^{\circ}$ [7994], b.p. $102-105^{\circ}$ [7992],
b.p. ${ }_{10} 110^{\circ}$ [7975], b.p. ${ }_{21} 121-123^{\circ}$ [7997], b.p. ${ }_{16} 130^{\circ}$ [6683];
${ }^{1} \mathrm{H}$ NMR [6590,6593], ${ }^{13} \mathrm{C}$ NMR [6590,6593,7794],
IR [6590,6593,6624], MS [6593,6628].

1-(3-Hydroxyphenyl)-2-methyl-1-propanone

[103323-37-1]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20
Syntheses

- Obtained by treatment of 3-methoxyisobutyrophenone with pyridinium chloride at 210° for 30 min [6659].
- Also obtained by treatment of 1-hydroxy-1-(3-hydroxy-phenyl)-2-methylpropane (m.p. 132-134) with DDQ in dioxane for 72 h [6659].
- Also obtained by diazotization of 3-aminoisobutyrophenone, followed by hydrolysis of the diazonium salt obtained (19\%) [8000].
- Also obtained by reaction of diisopropylcadmium with 3-acetoxybenzoyl chloride in benzene, followed by treatment of the acetate obtained with refluxing 10% sodium hydroxide for $2-3 \mathrm{~h}(15 \%)$ [6657].
b.p. 129° [6657]; MS [6628].

1-(4-Hydroxyphenyl)-2-methyl-1-propanone

[34917-91-4] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \quad$ mol.wt. 164.20

Syntheses

- Preparation by reaction of isobutyronitrile with phenol in the presence of triflic acid at r.t. for 15 days (32\%) [8001].
- Also obtained by Fries rearrangement of phenyl isobutyrate,
- with aluminium chloride [7992,8002],
- in nitrobenzene at 25° for $40 \mathrm{~h}(86 \%)$ [7993], at 40° for 48 h under an argon atmosphere [8003] or at 50° for $18 \mathrm{~h}(62 \%)$ [6567];
- in carbon disulfide (15\%) [6683];
- without solvent at $140-150^{\circ}$ for $1 \mathrm{~h}(11 \%)$ [7993];
- with ferric chloride in a boiling water bath for 6 h (16\%) [7975].
- Also obtained by reaction of isobutyryl chloride with phenol in nitrobenzene on a steam-cone for 30 min (73\%) [7993].
- Also obtained by demethylation of 4-isobutyrylanisole with pyridinium chloride at 180° for 10 h (quantitative yield) [8004] or at reflux for 15 min (92\%) [6672].
- Also refer to: [6664,6834,7985,7997,8005-8017].

$$
\begin{aligned}
& \text { b.p. } ._{0.1} 128^{\circ} \text { [7993], b.p. } ._{21} 196-198^{\circ} \text { [7997], b.p. }{ }_{17} 200^{\circ} \text { [6683]; } \\
& \text { m.p. } 58-59^{\circ} \text { [6683], } 56^{\circ} \text { [7975], } 54^{\circ} \text { [6567,7993]; } \quad \text { MS [6628]. }
\end{aligned}
$$

1-(2,3-Dihydroxyphenyl)-2-methyl-1-propanone

[862666-40-8] $\quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20

Syntheses

- Preparation by total demethylation of 2,3-dimethoxy-isobutyrophenone with boron tribromide in methylene chloride at r.t. overnight (62\%) [6726].
- Also refer to: [6727].

Brown wax [6726]; m.p. 93.5° [6727];
${ }^{1} \mathrm{H}$ NMR [6726], ${ }^{13} \mathrm{C}$ NMR [6726], IR [6726], MS [6726].

1-(2,4-Dihydroxyphenyl)-2-methyl-1-propanone

[29048-54-2]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Preparation by reaction of isobutyronitrile with resorcinol in the presence of triflic acid at r.t. for 14 days (81%) [8001].
- Also obtained by condensation of isobutyric acid with resorcinol,
- in the presence of zinc chloride at $125-135^{\circ}$ [8018];
- in the presence of boron trifluoride at 70° for $2 \mathrm{~h}(79 \%)$ [6736];
- in the presence of Amberlite IR-120 or Zeokarb 225 (cation-exchange resin, sulfonic acid type) at 160° for $2-3 \mathrm{~h}(69 \%)$ [6740].
- Also obtained by reaction of isobutyryl chloride with resorcinol in the presence of aluminium chloride at $85-90^{\circ}(79 \%)$ [8019] or in nitrobenzene at $40-50^{\circ}$ (59\%) [8020].
- Other preparation (Japanese paper) (75\%) [8021].
- Also refer to: [8022].
b.p. $0_{0.3} 150^{\circ}$ [8020], b.p. $0_{0.4} 150-151^{\circ}$ [6736], b.p. ${ }_{6-7} 173-175^{\circ}$ [8018];
m.p. 67-69 [6740], 67-68.5 ${ }^{\circ}$ [8018], 67-68ํ [8021], 66-67 [8001];
${ }^{1} \mathrm{H}$ NMR [8001], IR [8001], MS [8001].
USE: In determination of uranium by spectrophotometry [8023].
BIOLOGICAL ACTIVITY: Antimelanoma and skin depigmentation [6778]; catechol O-methyl-transferase inhibitor [8024,8025].
Uranium complex [68079-14-1] [8023].

1-(2,5-Dihydroxyphenyl)-2-methyl-1-propanone

1-(2,6-Dihydroxyphenyl)-2-methyl-1-propanone

b.p. ${ }_{0.02} 105-110^{\circ}$ [6811]; m.p. 112° [6811];
${ }^{1} \mathrm{H}$ NMR [6811], ${ }^{13} \mathrm{C}$ NMR [6811], IR [6811].

1-(3,4-Dihydroxyphenyl)-2-methyl-1-propanone (U-0521)

[5466-89-7]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 180.20
Syntheses

- Obtained by reaction of isobutyryl chloride with pyrocatechol in the presence of aluminium chloride in chlorobenzene, first at 55° for 30 min , then at $110-115^{\circ}$ for $3 \mathrm{~h}(39 \%)$ [8027].
- Also obtained by treatment of a pyrocatechol and its diisobutyrate mixture with aluminium chloride in chlorobenzene at 110° for $3 \mathrm{~h}(18 \%)$ [8027].
- Also obtained by Fries rearrangement of pyrocatechol diisobutyrate (69\%) [6727].
- Also obtained (35\%) [8028] according to the procedure [8029].
- Also refer to: [6828,8030-8039].
b.p. ${ }_{0.05} 150-155^{\circ}$ [8027], b.p. $200-210^{\circ}$ [6727];
m.p. 106.5-107.5 ${ }^{\circ}$ [6727], $94-96^{\circ}$ [8027,8029].

BIOLOGICAL ACTIVITY: Catechol O-methyltransferase inhibitor [8024,8025, 8040]; pharmacology [6828]; antimelanoma and skin depigmentation [6778]; antihypertensive [8041]; tyrosine hydroxylase inhibition [8042].

1-(3,5-Dihydroxyphenyl)-2-methyl-1-propanone

$$
\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \quad \text { mol.wt. } 180.20
$$

Synthesis

- Refer to: [8043] (Japanese patent).

2-Methyl-1-(2,3,4-trihydroxyphenyl)-1-propanone $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
 Synthesis

- Obtained by reaction of isobutyric acid with pyrogallol in the presence of zinc chloride at 140-145 ${ }^{\circ}$ (40\%) (Nencki reaction) [6454].
b.p. ${ }_{19} 198-200^{\circ}$ [6454]; m.p. 118° [6454].

2-Methyl-1-(2,4,5-trihydroxyphenyl)-1-propanone

[99186-85-3]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Preparation by reaction of isobutyryl chloride with 1,2,4-benzenetriol in nitrobenzene in the presence of aluminium chloride [8044-8047].
- Also obtained by Fries rearrangement of 1,2,4-benzenetriol triisobutyrate with aluminium chloride in nitrobenzene [8045].
- Also refer to: [8048].
m.p. $136-138^{\circ}$ [8044-8047].

USE: Antioxidizing agent [8048] for fats and oils [8044-8046], lard [8049] and paraffin waxes [8046].

2-Methyl-1-(2,4,6-trihydroxyphenyl)-1-propanone

[35458-21-0]

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 196.20
Syntheses

- Obtained by reaction of isobutyronitrile with phloroglucinol (Hoesch reaction) [8050], (34\%) [8051] according to the procedure [8052] or in the presence of triflic acid at r.t. for 13 days (41%) [8001].
- Preparation by reaction of isobutyryl chloride with phloroglucinol [7740] in the presence of aluminium chloride in a nitrobenzene/carbon disulfide solution (80\%) [8053], (52-54\%) [6880,8054,8055], (44\%) [8056], (38\%) [8057] or in a methylene chloride/nitromethane solution [8058].
- Also obtained by reaction of isobutyric acid with phloroglucinol,
- in the presence of boron trifluoride etherate and the mixture heated on a steam bath for 2 h [8059,8060];
- in the presence of phosphorous oxychloride and aluminium chloride under nitrogen, at 0° for $8 \mathrm{~h}(40-54 \%)$ [8061,8062].
- Also refer to: [8063-8071].
- Also obtained by reaction performed by VPS, (valerophenone synthase), a polyketide synthase, with isobutyryl-CoA [8072-8075].
- Also refer to: [6889, 8076-8078].

Isolation from natural sources

- From Helichrysum species [8079,8080].
- From Hops Humulus lupulus L. (Cannabinaceae) [8081].
- Formation in the biosynthesis of hop bitter acids in Humulus lupulus (Cannabaceae) [8082].
colourless oil [8079], yellowish oil [8081];
m.p. (hydrates) $78-82^{\circ}$ [8056], $71-74^{\circ}$ [8068], 70° [8055], 68° [8052,8083], $65-66.5^{\circ}$ [8001]; (anhydrous) $177-178^{\circ}$ [8050], 140° [6880], $138-140^{\circ}$ [8052,8056], 138-139${ }^{\circ}$ [8057], 138° [8054,8055, 8084], $134-136^{\circ}$ [8068]. One of the reported melting points is obviously wrong.
${ }^{1} H$ NMR [8001,8057,8059,8079,8081],
${ }^{13}$ C NMR [8059,8081], IR [8001,8059,8068,8079,8081], UV [8057,8059,8075, 8085],
MS [8001,8057,8068,8073,8075,8079,8081];
GC [6895]; TLC [8057]; HPLC [8057,8073,8075].
USE: Fungicide [6880].
BIOLOGICAL ACTIVITY: Antibiotic [8086]; antibiotic-resistant bacteria [8062]; for biliary and urinary tract disorder treatment [8087]; antagonist against both thromboxane A_{2} and leukotriene D_{4} [8088]; antimicrobial for staphylococcus aureus [6891]; as allergy inhibitor [8089]; vesicular stomatitis virus inhibition [8059].

2-Methyl-1-(2,3,4,6-tetrahydroxyphenyl)-1-propanone

1-(2-Amino-5-hydroxyphenyl)-2-methyl-1-propanone

[404918-98-5] $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 179.22

Synthesis

- Refer to: [8090].

1-(2-Hydroxy-5-isocyanatophenyl)-2-methyl-1-propanone

1-(2,3-Dichloro-4-methoxyphenyl)-2-methyl-1-propanone

1-(3,5-Dichloro-4-methoxyphenyl)-2-methyl-1-propanone

1-(4-Methoxyphenyl-2,6- d_{2})-2-methyl-1-propanone
[870456-80-7]

${ }^{1} \mathrm{H}$ NMR [8101].
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{O}_{2} \quad$ mol.wt. 180.24
Synthesis

- Obtained (low yield) by regioselective ortho-deuteration of 4-methoxyisobutyrophenone in the presence of $\left[\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{cod})\right]^{+} . \mathrm{BF}_{4}^{-}$[8101].

2-Hydroxy-5-(2-methyl-1-oxopropyl)benzoic acid

2-Hydroxy-5-isobutyrylbenzoic acid
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Synthesis

- Obtained by saponification of methyl 2-hydroxy-5-isobutyrylbenzoate with sodium hydroxide in refluxing dilute ethanol for 2.5 h (81\%) [8102].
m.p. $168-170^{\circ}$ [8102].

1-(5-Bromo-2-methoxyphenyl)-2-methyl-1-propanone
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2} \quad$ mol.wt. 257.13

Synthesis

- Obtained by reaction of dimethyl sulfate with 5-bromo-2-hydroxyisobutyrophenone in the presence of aqueous sodium hydroxide [7979].
b.p. ${ }_{10} \quad 158-163^{\circ}$ [7979].

1-(5-Chloro-2-methoxyphenyl)-2-methyl-1-propanone
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2} \quad$ mol.wt. 212.68

b.p. ${ }^{2} \quad 150-152^{\circ}$ [7979].

1-(2-Fluoro-6-methoxyphenyl)-2-methyl-1-propanone

USE: Preparation of piperidine compounds as NMDA receptor antagonists for treatment of dementia [7973].

1-(3-Fluoro-4-methoxyphenyl)-2-methyl-1-propanone
[879339-67-0] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}_{2} \quad$ mol.wt. 196.22

Syntheses

- Refer to: [6517, 7986].

USE: Preparation of heteroaryl alkylidenetetrahydro-naphthalenamines as antiinflammatory agents [6517]; preparation of δ-methylenebenzene-butanamines as antiinflammatory agents [7986].

1-(2-Hydroxy-5-methyl-3-nitrophenyl)-2-methyl-1-propanone
[70978-42-6] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4} \quad$ mol.wt. 223.23

Syntheses

- Preparation by nitration of 2-hydroxy-5-methylisobutyrophenone at -20° (76\%) [6926].
- Also obtained by nitration of 2-hydroxy-5-methyl-isobutyrophenone in methylene chloride using fuming nitric acid $(\mathrm{d}=1.5)$ in acetic acid at r.t. for $6 \mathrm{~h}(76 \%)$ [6993].
- Also obtained by reaction of phenyllithium with 2-bromo-4-methyl-6-nitrophenyl isobutyrate in THF at -78° (65\%) [8103].
m.p. $75-77^{\circ}$ [6926,6993].

1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-methyl-1-propanone
[134610-33-6] $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 239.23

Synthesis

- Obtained by reaction of 50% nitric acid with 4-hydroxy-3-methoxyisobutyrophenone in acetic acid at r.t. for $15 \min$ [7991].
m.p. $85-87^{\circ}$ [7991].

BIOLOGICAL ACTIVITY: As catechol-O-methyltransferase inhibitor [7991].
1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-2-methyl-1-propanone
[104129-15-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}_{2} \quad$ mol.wt. 272.14

Oxime [104129-14-8] $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$ mol.wt. 287.16.
BIOLOGICAL ACTIVITY: Diuretic and hypohypertensive agent [6476,7008].

1-(2-Hydroxy-3-methylphenyl)-2-methyl-1-propanone

[128291-79-2]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 178.23
Syntheses

- Obtained by Fries rearrangement of o-tolyl isobutyrate [8104], (b.p. ${ }_{15} 112^{\circ}$) [7981] with aluminium chloride at a higher temperature (56%) [8105], at 140° for $4 \mathrm{~h}(45 \%)$ [8106] or at $100-110^{\circ}(20 \%)$ [7981].
- Also obtained by reaction of isobutyryl chloride with o-cresol in the presence of aluminium chloride [8107].
lightly yellow greenish oil [7981]; b.p. ${ }_{23} 135-137^{\circ}$ [8106]; IR [7078].

1-(2-Hydroxy-4-methylphenyl)-2-methyl-1-propanone

[116557-45-0]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
Syntheses

- Obtained by Fries rearrangement of 3-methylphenyl isobutyrate in the presence of aluminium chloride (70\%) [7992], (66\%) [7019].
- Also obtained by reaction of isobutyric acid with m-cresol in the presence of $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{SiO}_{2}$ at 100° for 24 h (52\%) [8108].
- Also refer to: [7276].
b.p. ${ }_{11} 120-121^{\circ}$ [7019], b.p. ${ }_{20} 130^{\circ}$ [7992], b.p. 235° [8108];
${ }^{1} \mathrm{H}$ NMR [8108], IR [8108].
1-(2-Hydroxy-5-methylphenyl)-2-methyl-1-propanone
[64207-03-0] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Preparation by Fries rearrangement of p-cresyl isobutyrate,
- with aluminium chloride (92\%) [7992], at 170° for $1.5 \mathrm{~h}(80-96 \%)$ [6492];
- with aluminium chloride at $140-150^{\circ}$ for $4-5 \mathrm{~h}$ (80\%) [7981].
- Also obtained by reaction of isobutyric acid with p-cresol in the presence of boron trifluoride at 70° for $2 \mathrm{~h}(79 \%)$ [6583].
- Also obtained from 2-bromo-2-methyl-1-(2-hydroxy-5-methylphenyl)-1propanone, named o-[α-bromoisobutyro]-p-cresol in the paper,
- by treatment with zinc powder in acetic acid [8109];
- by treatment with boiling dimethylaniline or diethylaniline [8110].
- Also refer to: [6926,7033,7052,7980,8109,8111,8112].
colourless oil [7981];

```
b.p. }\mp@subsup{}{10}{}124-12\mp@subsup{5}{}{\circ}\mathrm{ [7981], b.p. }\mp@subsup{}{10}{}12\mp@subsup{5}{}{\circ}\mathrm{ [7992], b.p. .11 125-125.3}\mp@subsup{}{}{\circ}\mathrm{ [7033],
b.p. }\mp@subsup{}{18}{}131-13\mp@subsup{2}{}{\circ}[6583], b.p.760 250-251\circ [7981], b.p.763 ( 250.5-251.5 [7033];
UV [7033,8111].
```


1-(4-Hydroxy-2-methylphenyl)-2-methyl-1-propanone

[761459-40-9] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Obtained (by-product) by Fries rearrangement of 3-methyl-phenyl isobutyrate in the presence of aluminium chloride (7\%) [7992].
- Also obtained by reaction of isobutyric acid with m -cresol in the presence of $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{SiO}_{2}$ at 100° for 24 h (26\%) [8108].
- Preparation by heating 4-methoxy-2-methylisobutyrophenone with pyridinium chloride at reflux for $15 \mathrm{~min}(80 \%)$ [6672].
b.p. 160° [7992].

USE: Intermediate in preparation of fungicidal acid amide derivatives [8113].

1-(4-Hydroxy-3-methylphenyl)-2-methyl-1-propanone

[73206-57-2] | Syntheses |
| :--- |
| - Obtained by Fries rearrangement of o-tolyl isobutyrate |
| (b.p. 112°) [7981] with aluminium chloride at $100-110^{\circ}$ |
| (major compound) [7981] or at 140° for $4 \mathrm{~h}(44 \%)$ [8106]. |

b.p. ${ }_{12} 182^{\circ}$ [7981];
m.p. $\quad 123-124^{\circ}$ [8106], 122° [7981].

1-(2-Methoxyphenyl)-2-methyl-1-propanone

1-(3-Methoxyphenyl)-2-methyl-1-propanone

[6026-75-1]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
mol.wt. 178.23
Syntheses

- Preparation by a Grignard reaction of isobutyryl chloride with (3-methoxyphenyl)magnesium chloride at -70° in THF according to the method [8118], (60\%) [7356].
- Also refer to: [8115,8119-8121].
oil [7356].

1-(4-Methoxyphenyl)-2-methyl-1-propanone

[2040-20-2] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23
 Syntheses

- Preparation by reaction of isobutyryl chloride with anisole,
- in the presence of aluminium chloride [8122];
- in the presence of graphite in refluxing ethylene dichloride for $3 \mathrm{~h}(89 \%)$ [8123,8124];
- in the presence of bismuth triflate at 80° for $1 \mathrm{~h}(99 \%)$ [8125];
- in the presence of bismuth (III) chloride at 80° for $2 \mathrm{~h} \mathrm{(71} \mathrm{\%)} \mathrm{[8126];}$
- in the presence of trifluoroacetic acid [8127].
- Also obtained by reaction of isobutyric acid with anisole,
- on the solid surface of alumina in the presence of trifluoroacetic anhydride (90\%) [7090];
- in the presence of $\mathrm{Eu}\left(\mathrm{NTf}_{2}\right)_{3}(15 \mathrm{~mol} \%)$ at 250° for $16 \mathrm{~h}(77 \%)$ (compound 9f) [7091].
- Also obtained by reaction of isobutyric anhydride with anisole,
- in the presence of chloroacetic acid for 48 h at $170-180^{\circ}$ (93-97\%) [7089];
- in the presence of $\mathrm{TiCl}(\mathrm{OTf})_{3} / \mathrm{TfOH}$ in acetonitrile at r.t. for $12 \mathrm{~h}(90 \%)$ [8128];
- in the presence of iodine for 3 h at reflux (42\%) [6721].
- Also obtained by photo-oxidative fragmentation of 2-methyl-1-(4-methoxy phenyl)-1-propanol sensitized by titanium dioxide in acetonitrile in the presence of silver sulfate (18%) [8129].
- Also obtained by treatment of ethyl 2,2-dimethyl-3-oxo-3-(4-methoxyphenyl) propionate with sulfuric acid in refluxing acetic acid (41\%) [8130].
- Also refer to: [6672,7033,7090,7095,8115,8121,8131-8133].

Isolation from natural sources

- From Betula Alba L., also named Betula verrucosa Ehr or Betula pendula Roth [8122].
b.p. ${ }_{2.1} 12-114^{\circ}$ [7095], b.p..$_{13} 148^{\circ}$ [8122], b.p. ${ }_{14} 149-150^{\circ}$ [7033],
b.p. ${ }_{14} 150^{\circ}$ [8130], b.p. ${ }_{16} 152.5-153^{\circ}$ [7089], b.p. ${ }_{40} 188-190^{\circ}$ [6721],
b.p. 276-277 ${ }^{\circ}$ [8122]; ${ }^{13} \mathrm{C}$ NMR [7095], UV [7033].

Semicarbazone $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ mol.wt. 235.29 (m.p. 193-194 ${ }^{\circ}$ [8122], 188-189 ${ }^{\circ}$ [8130]).

1-(2-Hydroxy-3-methoxyphenyl)-2-methyl-1-propanone

[266310-09-2] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

Synthesis

- Refer to: [7131] (Chinese paper).

1-(2-Hydroxy-4-methoxyphenyl)-2-methyl-1-propanone

[29048-55-3]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Obtained by partial methylation of 2,4-dihy-droxy-isobutyrophenone with dimethyl sulfate in the presence of sodium methoxide in refluxing methanol [7276], (66\%) [8020].
- Other preparation (Japanese paper) (93\%) [8021].

$$
\text { b.p. }{ }_{0.2} 120-123^{\circ} \text { [8020], b.p. } ._{5} 127-128^{\circ}[8021] ; \quad \text { m.p. } 27^{\circ}[8020] .
$$

1-(2-Hydroxy-5-methoxyphenyl)-2-methyl-1-propanone

USE: For preparation of agrochemical pesticides [7984].
1-(4-Hydroxy-3-methoxyphenyl)-2-methyl-1-propanone
[14046-53-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23

Syntheses

- Preparation by reaction of isobutyric anhydride with guaiacol in the presence of zinc chloride at 155° for 3 min [7991].
- Also obtained by Fries rearrangement of guaiacol isobutyrate with aluminium chloride in nitrobenzene, first at r.t. for 3 h , then at 90° for $30 \mathrm{~min}(14 \%)$ [6828].
- Also refer to: [8134].
b.p. ${ }_{0.07} 118^{\circ}$ [6828];
m.p. $95-97.5^{\circ}$ [6828], 86-87$~[7991] ; ~$
${ }^{1} \mathrm{H}$ NMR [6828], IR [6828].
BIOLOGICAL ACTIVITY: As catechol-O-methyltransferase inhibitor [7991]; pharmacology [6828].

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-methyl-1-propanone (Robustaol B)
[102092-19-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

Syntheses

- Obtained by reaction of isobutyronitrile with 5-methoxy-resorcinol (Hoesch reaction) [8135].
- Total synthesis [8136] (Chinese paper).

Isolation from natural sources

- From Eucalyptus robusta Sm. [8136].
- From Kunzea sinclairii and Kunzea ericoides (Myrtaceae) [8135].
${ }^{1} \mathrm{H}$ NMR [8135], ${ }^{13} \mathrm{C}$ NMR [8135], spectral analyses [8136] (Chinese paper). BIOLOGICAL ACTIVITY: Antiviral [8135,8137].

1-(2,6-Dihydroxy-4-methoxyphenyl)-2-methyl-1-propanone
[42541-62-8]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Preparation by reaction of diazomethane with phloroisobutyrophenone in ethyl ether at 0° for 5 days (59\%) [8051].
- Also obtained (poor yield) by reaction of dimethyl sulfate with phloroisobutyrophenone in the presence of potassium bicarbonate in refluxing benzene overnight (6\%) [8138].
- Also obtained by reaction of isobutyronitrile with 5-methoxyresorcinol (Hoesch reaction) [8135].
Isolation from natural sources
- From Kunzea sinclairii and Kunzea ericoides (Myrtaceae) [8135].
m.p. $162-163^{\circ}$ [8138], 153-155 ${ }^{\circ}$ (d) [7175];
${ }^{1}$ H NMR [8051,8135,8138], IR [8051,8138], UV [8051].
BIOLOGICAL ACTIVITY: Antiviral [8135].

1-(3,5-Dihydroxy-4-methoxyphenyl)-2-methyl-1-propanone

[148204-60-8] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23

Isolation from natural sources

- Identification in liquid wastes from eucalyptus wood and kraft lignin charring [7259].

GC [7259], GC-MS [7259].
2-Methyl-1-(2,4,6-trihydroxy-3-methylphenyl)-1-propanone
[69480-03-1]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 210.23
Syntheses

- Preparation by reaction of isobutyronitrile with 2-methyl-phloroglucinol (Hoesch reaction) [6895,7255], (32\%) [8139], (35\%) [8140].
- Preparation by reaction of isobutyryl chloride with 2-methyl-phloroglucinol in the presence of aluminium chloride in carbon disulfide/nitrobenzene mixture (51\%) [8054].
- Also refer to: [6891].
m.p. (monohydrate) 160-161 [8140]; (anhydrous) 161-162 ${ }^{\circ}$ [7255,8140], 160° [8054], 158-159ํ [6895];
CG [6895]; MS [6895].
BIOLOGICAL ACTIVITY: Antimicrobial for staphylococcus aureus [6891].

1-(3-Amino-2-hydroxy-5-methylphenyl)-2-methyl-1-propanone

[70977-80-9] $\quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \quad$ mol.wt. 193.25

Syntheses

- Preparation by hydrogenation of the 2-hydr-oxy-5-methyl-3-nitroisobutyrophenone using $5 \% \mathrm{Pd} / \mathrm{C}$ as catalyst in ethanol [6993], (89\%) [6932].
m.p. $41-42^{\circ}$ [6926,6993].

1-(2-Amino-5-methoxyphenyl)-2-methyl-1-propanone

USE: Intermediate; preparation of triazoloquinolines which increase apo-A1 production for use in treatment of diseases or conditions caused by elevated levels of LDL-cholesterol or by inflammation.

1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-methyl-1-propanone

[251463-58-8]	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
OH	Synthesis
OCOCH_{3}	- Obtained by partial enzymatic regioselective deacetylation of 2,4-diacetoxyisobutyrophenone (oil) with porcine pancreatic lipase in THF in the presence of n-butanol for 48 h at $42-45^{\circ}(55 \%)$ [8022].
semi-solid [8022]	
H NMR [8022],	MR [8022], IR [8022], UV [8022], MS [8022]; TLC [8022]

2-Hydroxy-5-(2-methyl-1-oxopropyl)benzoic acid methyl ester

Methyl 2-hydroxy-5-isobutyrylbenzoate

$$
\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 222.24
$$

Syntheses

- Obtained by reaction of isobutyryl chloride with methyl o-anisate in carbon disulfide in the presence of aluminium chloride, first at 0°, then at r.t. for $30 \mathrm{~h}(23 \%)$ [8102].
- Also obtained by Fries rearrangement of o-carbomethoxyphenyl isobutyrate (b.p. ${ }_{10-12} 150-154.5^{\circ}$) [8102].
m.p. $97-99^{\circ}$ [8102].

2-Methoxy-5-(2-methyl-1-oxopropyl)benzoic acid

$$
\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 222.24
$$

Synthesis

- Obtained by treatment of methyl 2-methoxy-5-isobutyrylbenzoate with sodium hydroxide in dilute ethanol (37\%) [8102].
m.p. $97.5-99.5^{\circ}$ [8102].

2-Methoxy-6-(2-methyl-1-oxopropyl)benzoic acid $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24
 Synthesis

- Obtained by reaction of diisopropylcadmium with 3-methoxyphthalic anhydride (a mixture with its isomer below) [8102].

3-Methoxy-2-(2-methyl-1-oxopropyl)benzoic acid $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Synthesis

- Obtained by reaction of diisopropylcadmium with 3-methoxyphthalic anhydride (a mixture with its isomer above) [8102].

1-[2-(Acetyloxy)-4,6-dihydroxyphenyl]-2-methyl-1-propanone
[62545-34-0]

1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]-2-methyl-1-propanone
[62545-45-3]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$ mol.wt. 238.24 Synthesis

- Obtained by acetylation of phloroisobutyrophenone [8058].

1-(4-Chloro-2-hydroxy-3,6-dimethoxyphenyl)-2-methyl-1-propanone
[88771-65-7]

Synthesis

- Refer to: [7985].

1-(4-Fluoro-2,6-dimethoxyphenyl)-2-methyl-1-propanone

[263010-96-4] $\quad \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{3} \quad$ mol.wt. 226.24

Syntheses

- Refer to: [8142,8143].

4-Hydroxy-3-(2-methyl-1-oxopropyl)acetanilide
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \quad$ mol.wt. 221.26

Synthesis

- Refer to: [7283].

1-(5-Ethyl-2-hydroxyphenyl)-2-methyl-1-propanone

1-(2-Hydroxy-3,5-dimethylphenyl)-2-methyl-1-propanone

[106141-17-7]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26 Syntheses

- Obtained by Fries rearrangement of 2,4-dimethylphenyl isobutyrate (b.p. 245°) with aluminium chloride at 120° for $3 \mathrm{~h}(70 \%)$ [7981].
- Also obtained by reaction of sec-butyllithium (1.1 equiv) with 2-bromo-4,6-dimethylphenyl isobutyrate in tetrahydrofuran/ethyl ether/hexane at -95° for 30 min and -78° for 30 min , then hydrolysis with saturated ammonium chloride (72\%) (metalpromoted Fries rearrangement) [6590].
- Also refer to: [8110].
yellow oil [7981]; b.p. ${ }_{13} 129^{\circ}$ [7981];
${ }^{1} \mathrm{H}$ NMR [6590], ${ }^{13} \mathrm{C}$ NMR [6590], IR [6590].
1-(2-Hydroxy-4,5-dimethylphenyl)-2-methyl-1-propanone
[50342-15-9]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Synthesis
- Obtained by Fries rearrangement of 3,4-dimethylphenyl isobutyrate with aluminium chloride at 130° for 5 h [7276].
b.p. ${ }_{20} 150^{\circ}$ [7276].

Oxime $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$ mol.wt. 207.27 (m.p. 136°) [7276].

1-(2-Hydroxy-4,6-dimethylphenyl)-2-methyl-1-propanone

[21009-91-6]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Syntheses

- Obtained by reaction of isobutyryl chloride with 3,5-di-methylanisole in the presence of aluminium chloride in boiling carbon disulfide [7276,8110], (70-75\%) [7052].
- Also obtained by Fries rearrangement of 3,5-dimethylphenyl isobutyrate with aluminium chloride at 140° for $30 \mathrm{~min}(25 \%)$ [8145] or at 130° for 5 h [7276].
- Also obtained by reaction of isobutyric acid with 3,5-dimethylphenol in the presence of boron trifluoride at 95° [6583].
- Also refer to: [8110].
b.p. ${ }_{20} 150^{\circ}$ [7276].
m.p. $93-94^{\circ}[7052,8110], 93^{\circ}$ [6583], $82-82.5^{\circ}$ and $91-91.5^{\circ}$ (dual m.p.) [8145];
${ }^{1} \mathrm{H}$ NMR [8145], IR [8145].

1-(4-Hydroxy-3,5-dimethylphenyl)-2-methyl-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Synthesis

- Preparation by Fries rearrangement of 2,6-dimethylphenyl isobutyrate with aluminium chloride at 125° for 3.5 h (94\%) [6401].
m.p. $106.5-107^{\circ}$ [6401].

1-(2-Methoxy-3-methylphenyl)-2-methyl-1-propanone

[82053-90-5]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 192.26
Syntheses

- Preparation by reaction of dimethyl sulfate with 2-hydroxy-3-methylisobutyrophenone in the presence of potassium carbonate in boiling acetone for 10 h (93\%) [8106].
- Also refer to: [8105].
b.p. ${ }_{15} 124-125^{\circ}$ [8106].

1-(2-Methoxy-4-methylphenyl)-2-methyl-1-propanone

[143428-35-7]	Synthesis - Obtained by reaction of dimethyl sulfate with 2-hydroxy-4-methylisobutyrophenone in the presence of sodium hydroxide [7992].
b.p. 192.26	

1-(2-Methoxy-5-methylphenyl)-2-methyl-1-propanone

[30574-34-6]	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
H_{3}	Syntheses
	- Preparation by reaction of dimethyl sulfate with 2-hydroxy-5-methylisobutyrophenone in the presence of sodium hydroxide [7033,7992]. - Also obtained by oxidation of 1-(2-methoxy-5-methyl-phenyl)-2-methyl-1-propanol with PCC (90\%) [8146] according to the process [8147]. - Also refer to: $[7313,8148]$.
b.p. 105° [8146], b.p ${ }^{1} \mathrm{H}$ NMR [8146], IR [$\begin{aligned} & \text { 136-137.5 }{ }^{\circ} \text { [7033], b.p. }{ }_{14} 138^{\circ} \text { [7992]; } \\ & \text { 46], UV [7033]. } \end{aligned}$

1-(3-Methoxy-4-methylphenyl)-2-methyl-1-propanone

[74654-51-6]	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
OCH_{3}	Synthesis
	- Preparation by nucleophilic substitution reaction via arene-chromium tricarbonyl complex (83\%) [8149].
b.p. ${ }_{0.04} 92-110^{\circ}$ [8149]; ${ }^{1} \mathrm{H}$ NMR [8149], IR [8149];	GLC [8149].

1-(4-Methoxy-2-methylphenyl)-2-methyl-1-propanone

USE: Intermediate in preparation of fungicidal acid amide derivatives [8113].

1-(4-Methoxy-3-methylphenyl)-2-methyl-1-propanone

[2954-63-4] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
 Syntheses

- Preparation by acylation of 2-methylanisole,
- with isobutyric acid in the presence of triflic acid [8150];
- with isobutyric anhydride in acetonitrile in the presence of $\mathrm{TiCl}(\mathrm{OTf})_{3} / \mathrm{TfOH}$ at r.t. for $12 \mathrm{~h}(96 \%)$ [8128];
- with isobutyryl chloride in the presence of aluminium chloride in carbon disulfide (70\%) [7319], first at 0°, then at r.t. (81\%) [8151].
- Also refer to: [8152-8154].

$$
\text { b.p. }_{0.5} 110-115^{\circ}[8151], \text { b.p. } 275^{\circ}[7319] ; \quad \text { m.p. } 22-23^{\circ}[8151] .
$$

1-(2,4-Dihydroxy-3,5-dimethylphenyl)-2-methyl-1-propanone

[267001-71-8]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Synthesis

- Obtained by reaction of isobutyric acid with 2,4-di-methylresorcinol in the presence of boron trifluoride etherate at 120° for $1-2 \mathrm{~h}$ under an argon atmosphere. Then, the resulting complex was refluxed for 30 min to 1 h in an aqueous THF (70-80\%) [8155].
m.p. $81-82^{\circ}$ [8155];
${ }^{1} \mathrm{H}$ NMR [8155], ${ }^{13} \mathrm{C}$ NMR [8155], IR [8155], MS [8155]; TLC [8155].

1-(2,3-Dimethoxyphenyl)-2-methyl-1-propanone

[105329-87-1]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26 Syntheses

- Obtained by oxidation of 1-(2,3-dimethoxy-phenyl)-2-methyl-1-propanol in acetone with sodium dichromate in dilute sulfuric acid at r.t. for 3 h (60\%) [6726].
- Also refer to: [7131].

Colourless oil [6726];
${ }^{1} \mathrm{H}$ NMR [6726], ${ }^{13} \mathrm{C}$ NMR [6726], IR [6726], MS [6726].

1-(2,4-Dimethoxyphenyl)-2-methyl-1-propanone

[86774-65-4] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Syntheses

- Preparation by reaction of isobutyryl chloride with 1,3-di-methoxybenzene [6796] in the presence of aluminium chloride in petroleum ether [7992].
- Preparation by reaction of N,N-diethylisobutyramide with 1,3-dimethoxybenzene in the presence of phosphorous oxychloride (63%) [8156,8157].
- Preparation by reaction of isobutyronitrile with 1,3-dimethoxybenzene in the presence of triflic acid [8001].
- Also refer to: [8158].
b.p. $120-125^{\circ}$ [8156,8157], b.p. $126-130^{\circ}$ [6796], b.p. $1_{2} 128^{\circ}$ [7992];
m.p. $35-37^{\circ}$ [8001]; ${ }^{1} \mathrm{H}$ NMR [8001], IR [8001].

1-(2,5-Dimethoxyphenyl)-2-methyl-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by reaction of isobutyryl chloride with 1,4-di-methoxybenzene [7697] in the presence of aluminium chloride in petroleum ether [7697,7992] or in carbon disulfide [7336].
b.p. 125° [7697,7992];
${ }^{1} H$ NMR [7336], IR [7336], UV [7336], MS [7336].

1-(2,6-Dimethoxyphenyl)-2-methyl-1-propanone

[52856-18-5]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Preparation by condensation of 2,6-dimethoxyphenyllithium,
- with isobutyryl chloride in ethyl ether at -78° (78\%) [8158];
- with methyl isobutyrate in refluxing ethyl ether for $5 \mathrm{~h}(46 \%)$ [8159].
m.p. $38.9-39.2^{\circ}$ [8159].

1-(3,4-Dimethoxyphenyl)-2-methyl-1-propanone
[14046-55-0] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
 Syntheses

- Preparation by acylation of veratrole,
- with isobutyryl chloride in the presence of aluminium chloride [7350], (85\%) [6796], in benzene [8083], in ethylene dichloride (73\%) [7356];
- with isobutyric acid in the presence of PPA at 60° for 2.5 h [8160], (87\%) [7360] or for $15 \mathrm{~h}(68 \%)$ [8161];
- with isobutyric anhydride in acetonitrile in the presence of $\mathrm{TiCl}(\mathrm{OTf})_{3} / \mathrm{TfOH}$ at r.t. for $12 \mathrm{~h}(89 \%)$ [8128].
- Also obtained by oxidation of 4-methoxyphenylpropane with DDQ in wet dioxane/silica gel under sonication (61\%) [7093].
- Also obtained by reaction of 3,4-dimethoxybenzoic acid with isopropylmagnesium bromide (72\%) [8162].
- Also obtained by oxidation of 1-(3,4-dimethoxyphenyl)-2-methyl-1-propanol with chromium trioxide in dilute sulfuric acid (Jones's reaction) (82\%) [8163].
- Also refer to: [6828,7539,8164-8166].
clear oil [8162]; b.p. . $_{0.2} 116-117^{\circ}$ [6796,8083], b.p. . $_{0.1-0.7} 117-126^{\circ}$ [7360]; ${ }^{1} \mathrm{H}$ NMR [7093,8162,8163], ${ }^{13} \mathrm{C}$ NMR [7093,8162].
USE: Fungicide [7539] or intermediate in preparation of fungicidal acid amide derivatives [8113].

BIOLOGICAL ACTIVITY: Antiinflammatory [7350].

1-(3,5-Dimethoxyphenyl)-2-methyl-1-propanone

[73109-77-0]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Syntheses

- Obtained by reaction of isobutylmagnesium bromide on 3,5-dimethoxybenzonitrile (m.p. 87-88 ${ }^{\circ}$) (88%) [8167].
- Also obtained by reaction of isopropylmagnesium bromide with 3,5-dimethoxybenzamide (71\%) [8168].
oil [8168]; b.p. $117-119^{\circ}$ [8168], b.p. ${ }_{2} 143-145^{\circ}$ [8167].
Semicarbazone $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ mol.wt. 265.31 (m.p. 195-196 ${ }^{\circ}$) [8167].

1-(4-Hydroxy-3-methoxy-5-methylphenyl)-2-methyl-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26

Synthesis

- Preparation by Fries rearrangement of 2-methoxy-6methylphenyl isobutyrate with aluminium chloride in refluxing carbon disulfide for 3 h (60\%) [7390].
b.p. ${ }_{0.35} 122-130^{\circ}[7390] ;$ m.p. $52-53^{\circ}$ [7390].

1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-methyl-1-propanone

[91555-68-9]	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
$\mathrm{OH}^{\mathrm{OH}}$	Synthesis
	- Preparation by condensation of isobutyronitrile with 2,6-dihydroxy-4-methoxytoluene (Hoesch reaction) (63\%) [7255].

Isolation from natural sources

- From the aerial parts of Hypericum beanii (Guttiferae) [8169]. pale yellow oil [8169]; b.p. ${ }_{0.2} 135-140^{\circ}$ [7255];

```
m.p. \(148-149^{\circ}\) [7255];
\({ }^{1} \mathrm{H}\) NMR [8169], \({ }^{13} \mathrm{C}\) NMR [8169], IR [8169], UV [7255,8169], MS [8169].
BIOLOGICAL ACTIVITY: Anti-staphylococcal [8169].
```


1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2-methyl-1-propanone

 (Aspidinol-iB)| [42541-64-0] | $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$ | mol.wt. 224.26 |
| ---: | :--- | :--- |
| OH | Syntheses | |

Syntheses

- Obtained by reaction of isobutyronitrile with 2-methyl-phloroglucinol 1-methyl ether (Hoesch reaction) (37\%) [8170].
- Also obtained by reaction of isobutyric acid with 2,4-di-hydroxy-6-methoxytoluene (m.p. $114-117^{\circ}$) in the presence of boron trifluoride for $45 \mathrm{~min}(47 \%)$ [8171].
- Preparation by reaction of isobutyryl chloride with 3-methoxy-2-methylphloroglucinol in the presence of aluminium chloride in carbon disulfide/nitrobenzene mixture (69\%) [8054].
- Also obtained by reaction of methyl iodide with 2,6-dihydroxy-4-methoxyisobutyrophenone in methanol in the presence of sodium methoxide at 0° for 5 days (9\%) [8051].
- Also obtained by partial methylation of 3-methylphloroisobutyrophenone with diazomethane in ethyl ether for 4 days at r.t. (24\%) [7255].
- Also refer to: [8172].

Isolation from natural source

- From Eucalyptus pulverulenta [8173].
m.p. $145-147^{\circ}$ [8051], 142° [8054], $141-142^{\circ}$ [7255,8170], $136-138^{\circ}$ [8171];
${ }^{1} \mathrm{H}$ NMR [8051,8171], ${ }^{13} \mathrm{C}$ NMR [8171], IR [8051,8171],
UV [7255,8051], MS [8171].
1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-2-methyl-1-propanone (Pseudoaspidinol-iB)
[55382-30-4]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 224.26
Syntheses
- Obtained by alkaline cleavage of kosotoxin. Kosotoxin (m.p. 119-122 ${ }^{\circ}$) was isolated from Hagenia abyssinica (Bruce) Gmel [6932].
- Also obtained by treatment of methyl 2,6-dihy-droxy-4-methoxy-3-methyl-5-isobutyrylbenzoate (m.p. 88-90 $)$ with refluxing 5-6\% aqueous potassium hydroxide for 30 min (63\%) [7255] or for 1 h (94\%) [8171].
- Also obtained by treatment of 2,6-dihydroxy-4-methoxy-3-methyl-5-isobutyrylbenzoic acid with refluxing 2 N aqueous sodium carbonate for 90 min (86%) [7255].
- Also refer to: [8174-8177].

Isolation from natural sources

- From Hagenia abyssinica [8178].
m.p. $81-82^{\circ}$ [8171], 79-80 ${ }^{\circ}$ [7255], 59-61 [6932];
${ }^{13}$ C NMR [8175,8179,8180], UV [7255]; GC [6895].

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-methyl-1-propanone

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \quad \text { mol.wt. } 224.26
$$

 Syntheses

- Obtained by partial demethylation of 3,4,5-trimeth-oxy-isobutyrophenone in concentrated sulfuric acid at $35-40^{\circ}$ for $20 \mathrm{~h}(85 \%)$ [8181].
- Also obtained (by-product) on reaction of isobutylmagnesium bromide with 3,4,5-trimethoxybenzonitrile (45\%) [8181], 27\% [8167].
m.p. 94° [8167], 93-93.5 ${ }^{\circ}$ [8181].

Semicarbazone $\quad \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \quad$ mol.wt. 281.31 (m.p. 162.5 ${ }^{\circ}$) [8167].

1-[3-Chloro-5-[(3,3-dichloro-2-propen-1-yl)oxy]-2-hydroxyphenyl]-2-methyl-1-propanone

[918311-03-2] $\quad \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad$ mol.wt. 323.60

Synthesis

- Refer to: [7984].

USE: For preparation of agrochemical pesticides [7984].
2-Methoxy-5-(2-methyl-1-oxopropyl)benzoic acid methyl ester
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Synthesis

- Preparation by reaction of dimethyl sulfate with methyl 2-hydroxy-5-isobutyrylbenzoate in the presence of sodium methoxide in methanol at $50-60^{\circ}$ (98\%) [8102].
m.p. $50-52^{\circ}$ [8102].

2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)benzoic acid

$$
\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6} \quad \text { mol.wt. } 268.27
$$

Synthesis

- Obtained by treatment of methyl 2,6-dihydroxy-4-methoxy-3-methyl-5-isobutyrylbenzoate with an aqueous 6% potassium hydroxide solution (32\%) [7255].
m.p. 103-105 ${ }^{\circ}$ [7255]; UV [7255].

1-[2,4-Dihydroxy-3-(iminomethyl)-6-methoxy-5-methylphenyl]-2-methyl-1-propanone
[98442-56-9] $\quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ mol.wt. 251.28

Synthesis

- Refer to: [8171].

1-(3-Ethyl-4-methoxyphenyl)-2-methyl-1-propanone
[111039-01-1] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Preparation by Friedel-Crafts acylation of 2-ethylanisole with isobutyryl chloride in the presence of aluminium chloride [7350].

BIOLOGICAL ACTIVITY: Antiinflammatory [7350].

1-[2-Hydroxy-5-(1-methylethyl)phenyl]-2-methyl-1-propanone

[934524-36-4] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Refer to: [7980].

1-(6-Hydroxy-2,3,4-trimethylphenyl)-2-methyl-1-propanone
[82490-57-1]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28 Synthesis

- Obtained by Fries rearrangement of 3,4,5-trimethylphenyl isobutyrate with aluminium chloride, first at 90°, then at 140° for 30 min (14%) [8182].
m.p. $\quad 86-87^{\circ}$ [8182]; ${ }^{1} \mathrm{H}$ NMR [8182].

1-(2-Methoxy-4,6-dimethylphenyl)-2-methyl-1-propanone
[38319-72-1] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Obtained by methylation of 2-hydroxy-4,6-di-methyl-isobutyrophenone with dimethyl sulfate [8145].
b.p. ${ }_{2} 109-110^{\circ}$ [8145]; ${ }^{1} \mathrm{H}$ NMR [8145], IR [8145].

1-(4-Methoxy-3,5-dimethylphenyl)-2-methyl-1-propanone

[124500-33-0]
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 206.28

Synthesis

- Refer to: [7976].

1-(2,4-Dihydroxy-3-propylphenyl)-2-methyl-1-propanone
[120072-80-2]

1-(2,3-Dimethoxy-5-methylphenyl)-2-methyl-1-propanone
[882512-69-8]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
Synthesis

- Refer to: [8183].
oil [8184];
${ }^{1} \mathrm{H}$ NMR [8184], ${ }^{13} \mathrm{C}$ NMR [8184], IR [8184], MS [8184].
1-(3,4-Dimethoxy-2-methylphenyl)-2-methyl-1-propanone
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Synthesis

- Obtained by reaction of isobutyryl chloride with 3,4-dime-thoxy-2-methylphenylmagnesium bromide in THF (51\%) [7390].
b.p. . $_{0.15} 99^{\circ}$ [7390]; IR [7390], UV [7390].

2,4-Dinitrophenylhydrazone $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6}$ mol.wt. 402.41 (m.p. 111-112 ${ }^{\circ}$) [7390].

1-(3,4-Dimethoxy-5-methylphenyl)-2-methyl-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Synthesis

- Preparation by reaction of dimethyl sulfate with 4-hydroxy-3-methoxy-5-methylisobutyrophenone in methanol in the presence of sodium methoxide (40\%) [7390].
b.p. ${ }_{0.06} 103^{\circ}$ [7390]; IR [7390], UV [7390].

1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-2-methyl-1-propanone

[97761-90-5]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28
Synthesis

- Obtained by hydrogenation of 2,6-dihydroxy-3-isobutyryl-4-methoxy-5-methylbenzaldehyde in acetic acid in the presence of 10% Pd/C for 1.5 h (61\%) [8171].

Isolation from natural sources

- From Hagenia abyssinica (Rosaceae) [8171,8178].
m.p. 73° [8171];
${ }^{1} \mathrm{H}$ NMR [8171,8178], ${ }^{13} \mathrm{C}$ NMR [8171,8178], IR [8171], MS [8171,8178].

1-(2,6-Dihydroxy-4-methoxy-3,5-dimethylphenyl)-2-methyl-1-propanone

[138690-38-7]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28
Isolation from natural sources

- From Eucalyptus robusta Smith leaves (Myrtaceae) [8185].
- Also refer to: [8172].
${ }^{1} \mathrm{H}$ NMR [8185], ${ }^{13} \mathrm{C}$ NMR [8185], IR [8185],
UV [8185], MS [8185]; HPLC [8185].
BIOLOGICAL ACTIVITY: Phosphodiesterase inhibitory [8185].
1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-methyl-1-propanone (Baeckeol)

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28
Syntheses
- Preparation in two steps: First, reaction of isobutyric acid with 2,4,6-trimethoxytoluene (m.p. $24-26^{\circ}$) in the presence of boron trifluoride. Then, the complex obtained* $(76 \%$, m.p. 180°) was hydrolyzed in dilute methanol at 50° for $1 \mathrm{~h}(96 \%)$ [8139].
- 2,2-Difluor-1,2-dihydro-4-isopropyl-5,7-dimethoxy-8-methyl-1-oxa-3-oxonia-2-boratanaphthalin (5a) (in german).
- Also obtained by direct methylation of phloroisobutyrophenone with methyl iodide in the presence of potassium carbonate in refluxing acetone for 2 h (29\%) [8186].
- Also obtained by reaction of diazomethane with 2,4,6-trihydroxy-3methylisobutyrophenone in ethyl ether (20\%) [8140], (13\%) [7255,8139].
Isolation from natural sources
- From the essential oils of Baeckea crenulata and Darwinia grandiflora (Myrtaceae) [8140,8186-8188].
- From the leaves and terminal branches of Thryptomene saxicola (Myrtaceae) [8189].
- From Calythrix angulata Lindl. [8190].
- From Baeckea frutescens L. (Myrtaceae) [8191-8193] and Baeckea gunniana variety latifolia [8194].
- From steam volatile leaf oils of some Melaleuca species from western Australia (Myrtaceae) [8195].
- From the leaf oil of Xanthostemon eucalyptoides (Myrtaceae) [8196].
- Also refer to: [8172,8197].
oil [8189]; b.p. ${ }_{0.1} 140^{\circ}$ [7255];
m.p. 104° [8190], $103.5-104^{\circ}$ [8194], 103-104 ${ }^{\circ}$ [7255,8186-8188,8193], 103° [8139], 102-103 ${ }^{\circ}$ [8140];
${ }^{1} \mathrm{H}$ NMR [8139,8189,8191], ${ }^{13} \mathrm{C}$ NMR [8189,8191], UV [8085,8198], [7255,8139], MS [8191]; GC [8190,8196]; GC-MS [8195,8196].
BIOLOGICAL ACTIVITY: Antitumor [8191]; cytotoxic [8191].
1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-methyl-1-propanone (o-Isobaeckeol, Isobaeckeol)
[98442-62-7]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28
Synthesis
- Obtained by reaction of isobutyric acid with 4-hydroxy-2,6-dimethoxytoluene (m.p. 144$146^{\circ}$) in the presence of boron trifluoride (51\%) [8171].

Isolation from natural sources

- From the leaves and terminal branches of Thryptomene saxicola (Myrtaceae) [8189].
- From Australian Austromyrtus (Austromyrtus dulcis and Austromyrtus tenuifolia) (Myrtaceae) [8199].
- From the leaf essential oils of Eucalypyus miniata and Eucalypyus chartaboma [8200].
- From the leaf oil of Xanthostemon crenulatus and Xanthostemon umbrosus (Myrtaceae) [8196].
- Also refer to: [8172].
N.B.: This ketone gives a stable complex with boron trifluoride [8172], named "2,2-difluor-4-isopropyl-5,7-dimethoxy-6-methyl-1-oxa-3-oxonia-2-boratanaphthalin" (in German in the paper) (m.p. 141-142 ${ }^{\circ}$ [8171].
oil [8189]; m.p. 56° [8171];
${ }^{1} \mathrm{H}$ NMR [8171,8189,8200], ${ }^{13} \mathrm{C}$ NMR [8189,8200],
IR [8171,8189], MS [8189,8200];
GC [8196], GC-MS [8189,8196,8199].

2-Methyl-1-(2,4,6-trimethoxyphenyl)-1-propanone (Conglomerone)

[480-25-1]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28
Synthesis

- Preparation by reaction of isobutyronitrile with 1,3,5-tri-methoxybenzene (Hoesch reaction) [7515].

Isolation from natural sources

- From Eucalyptus conglomerata (Myrtaceae) [8201].
- Also refer to: [8197].
m.p. $61-62^{\circ}$ [7515], $57-60^{\circ}$ [8001]; ${ }^{1} \mathrm{H}$ NMR [8001], IR [8001].

2-Methyl-1-(3,4,5-trimethoxyphenyl)-1-propanone
mol.wt. 238.28

Isolation from natural source

- From the essential oil of Ocotea comoriensis Kostermans (Lauraceae) [8202].
b.p. ${ }_{0.9} 34-136^{\circ}$ [7538], b.p. $147-150^{\circ}$ [8167], b.p. $164-166^{\circ}$ [8181];
m.p. $37-39^{\circ}$ [8181]; GC [8202]; GC-MS [8202].

1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-methyl-1-propanone

[853577-59-0] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 254.28

Syntheses

- Preparation by reaction of isobutyryl chloride with 3,4,5-trimethoxyphenol using boron trifluoride etherate as catalyst (80\%) [8203].
- Also refer to: [8204].

USE: Preparation of chromenones as inhibitors of antiapoptotic BCL-2 family members for treatment of cancer [8204].

1-[3-Chloro-5-[(3,3-dichloro-2-propen-1-yl)oxy]-2-methoxyphenyl]-2-methyl-1-propanone

$$
\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{O}_{3} \quad \text { mol.wt. } 337.63
$$

Synthesis

- Refer to: [7984].

USE: For preparation of agrochemical pesticides [7984].
Oxime [918311-05-4] $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{NO}_{3}$ mol.wt. 352.64.
USE: For preparation of agrochemical pesticides [7984].
Methyl 2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)benzoate

1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2-methyl-1-propanone
[75060-54-7]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$
mol.wt. 220.31
Synthesis

- Refer to: [7106].

1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]-2-methyl-1-propanone

[106477-03-6]

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31

Syntheses

- Obtained by Friedel-Crafts acylation of thymol with isobutyric acid in the presence of aluminium chloride at reflux for 12 h (79\%) [7581].
- Also obtained by Fries rearrangement of thymyl isobutyrate with aluminium chloride [7580].
b.p. ${ }_{13} 118-120^{\circ}$ [7580,7581]; m.p. $49^{\circ}[7580,7581]$.

1-[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl]-2-methyl-1-propanone

 $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad$ mol.wt. 220.31 Syntheses

- Obtained by reaction of isobutyryl chloride with thymol in the presence of aluminium chloride in nitrobenzene [7470].
- Also obtained by treatment of its methyl ether (b.p. ${ }_{16} 168^{\circ}$) with pyridinium chloride at reflux for $3 \mathrm{~h}(22 \%)$ [7583].
b.p. ${ }_{13} 194^{\circ}$ [7583]; m.p. 80° [7470], 79° [7583].

1-[4-Hydroxy-3-(1-methylpropyl)phenyl]-2-methyl-1-propanone

[16648-76-3] $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \quad m o l . w t .220 .31$
 Syntheses

- Preparation by Fries rearrangement of 2-sec-butylphenyl isobutyrate with aluminium chloride in nitrobenzene at 50° for 24 h [7589].
- Also refer to: [7590].
b.p. ${ }_{0.8} 172^{\circ}$ [7589]; m.p. 88-89 ${ }^{\circ}$ [7589].

USE: Fungicide [7590].

1-(3-Butyl-2,4,6-trihydroxyphenyl)-2-methyl-1-propanone

[66711-57-7]
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31

Synthesis

- Refer to: [7640].

USE: Fungicide [7640].
1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)-2-methyl-1-propanone
[173867-31-7] $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 252.31

Isolation from natural sources

- From the leaves of Baeckea frutescens L. (Myrtaceae) [8191,8192].
- From the leaf oil of the Genus Xanthostemon (Myrtaceae) [8196].
oil [8192]; ${ }^{1} \mathrm{H}$ NMR [8191,8192], ${ }^{13} \mathrm{C}$ NMR [8191,8192],
MS [8191,8192]; GC [8196], GC-MS [8196].
BIOLOGICAL ACTIVITY: Antitumor [8191]; cytotoxic against leukaemia L 1210 cells [8191,8192].

2-Methyl-1-(2,4,6-trimethoxy-3-methylphenyl)-1-propanone
 (Baeckeol methyl ether)

- From the leaf oil of Xanthostemon eucalyptoides (Myryaceae) [8196].
${ }^{1} \mathrm{H}$ NMR [8200], ${ }^{13} \mathrm{C}$ NMR [8200], MS [8200]; GC [8196], GC-MS [8196].
1-[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-2-methyl-1-propanone
[70219-81-7] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32 Isolation from natural sources
- From Helichrysum crispum (Compositae) [8205].
- From Leontonyx squarrosus DC (Compositae) (tribe Inulae) [7620].
- From Helichrysum asperum (Thunb.)

Hilliard et Burt. var. albidulum (DC) Hilliard (compound 7) (Compositae) [8206]. colourless oil [7620]; ${ }^{1} \mathrm{H}$ NMR [7620], IR [7620], MS [7620].

2-Methyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone
[35932-36-6]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32
Syntheses

- Obtained by reaction of isopentenyl bromide (prenyl bromide) with phloroisobutyrophenone [8207],
- in a benzene/ethyl ether solution in the presence of sodium methoxide, first at 5°, then at r.t. for $6 \mathrm{~h}(18 \%)$ [6880];
- in dioxane in the presence of sodium hydride at 60° for 3.5 h (32%) [8067];
- in aqueous potassium hydroxide [8076], (54\%) [8060], (7\%) [8057].
- Also refer to: [8065,8138,8208], [8077,8078,8082].

Isolation from natural sources

- From Helichrysum gymnoconum (Compositae) [8209].
- From Helichrysum odoratissimum and Helichrysum cephaloideum (compound 14) [8210].
- From Helichrysum infaustum [8205].
- From Helichrysum platypterum DC [8080,8211,8212].
- From Helichrysum stenopterum [8080].
- From Helichrysum flanaganii Bolus [8212].
- From Helichrysum asperum (Thunb.) Hilliard et Burtt. var. albidulum (DC) Hilliard [8206].
- From Helichrysum indicum (L.) Grieson [8206].
- From Helichrysum moeserianum Thell. [8206].
- From Helichrysum species endemic to Madagascar [8213].
- From Helichrysum kraussii (Asteraceae) [8214].
- From Helichrysum paronychioides [8215].
- Formation from in vitro prenylation of phloroisobutyrophenone (SM) in Humulus lupulus (Cannabaceae). The first step, formation of SM from malonylCoA and isobutyryl-CoA, is catalyzed by valerophenone synthase (VPS) [8216].
m.p. 166° [8060], 165° [8067], 160° [6880], $159-160^{\circ}$ [8057];
${ }^{1} \mathrm{H}$ NMR [8057,8060,8067,8076,8209,8214,8215,8217],
${ }^{13}$ C NMR [8214], IR [8060,8209,8215], UV [8057,8215],
MS [8057,8076,8209,8214,8215];
TLC [8057,8214]; HPLC [8057,8216]; GC-MS [8214].
USE: Fungicide, [6880]; antioxidizing agent [8215].
BIOLOGICAL ACTIVITY: Antibacterial [8214].

1-[2,6-Dihydroxy-4-[(4-hydroxy-3-methyl-2-butenyl)oxy]phenyl]-2-methyl-1-propanone (E)

[122585-52-8]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 280.32 Isolation from natural sources

- From Helichrysum asperum (Thunb.)
Hilliard et Burtt. var. albidulum (DC)
Hilliard (compound 8) [8206].
${ }^{1} \mathrm{H}$ NMR [8206], IR [8206], MS [8206].

4-[3,5-Dihydroxy-4-(2-methyl-1-oxopropyl)phenoxy]-2-methylbutanoic acid

[122585-57-3]

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 296.32 Isolation from natural sources

- From Helichrysum asperum (Thunb.)
Hilliard et Burtt. var. albidulum (DC)
Hilliard (compound 14) [8206].
${ }^{1} \mathrm{H}$ NMR [8206], IR [8206], MS [8206].

1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]-2-methyl-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$
mol.wt. 234.34
Synthesis

- The reaction of $\left[\mathrm{AlMe}(\mathrm{dbmp})_{2}\right](\mathrm{Hdbmp}=$ 2,6-di-tert-butyl-4-methylphenol) with $\mathrm{O}: \mathrm{C}(\mathrm{Cl}) \operatorname{Pr}^{i}$ leads to acylation of one of the dbmp ligands and affords [AlMe(dbmp)(bhmpp)] (SM). (Hbhmpp = 3-tert-butyl-2-hydroxy-5-methylisobutyrophenone). Hydrolysis of SM yields uncomplexed Hbhmpp, the titled ketone [7629].
${ }^{1} \mathrm{H}$ NMR [7629], ${ }^{13} \mathrm{C}$ NMR [7629], IR [7629]; X-ray crystallography [7629].
1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-2-methyl-1-propanone
[75060-47-8] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34

Synthesis

- Refer to: [7106].

1-[4-Methoxy-2-methyl-5-(1-methylethyl)phenyl]-2-methyl-1-propanone
 $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34 Syntheses

- Preparation by acylation of 2-isopropyl-5methylanisole with isobutyryl chloride in the presence of aluminium chloride in carbon disulfide [7319].
- Also refer to: [7583].
b.p. ${ }_{20} 178^{\circ}$ [7319], b.p. ${ }_{16} 186^{\circ}$ [7583].

2-Methyl-1-[2,4,6-trihydroxy-3-(3-methylbutyl)phenyl]-1-propanone
[22628-86-0]

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 266.34 Syntheses

- Obtained by reaction of isobutyryl chloride with isopentylphloroglucinol (m.p. 125-126.5) in the presence of aluminium chloride in nitrobenzene for 4 days at 0° (17\%) [8218].
- Preparation by hydrogenation of 2,4,6-trihydroxy-3-isopentenylisobutyrophenone in the presence of PtO_{2} in methanol under an hydrogen atmosphere at r.t. for $1 \mathrm{~h}(87 \%)$ [6880].
- Also refer to: [8219,8220].
m.p. 184° [6880], $183-184^{\circ}$ [8218];
${ }^{1} \mathrm{H}$ NMR [8218], UV [8218], MS [8220].
BIOLOGICAL ACTIVITY: Fungicide [6880].

2-Methyl-1-(2,4,6-trihydroxy-3-pentylphenyl)-1-propanone

[96756-26-2] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 266.34
 Synthesis

- Preparation by reaction of isobutyryl chloride with 2,4,6-trihydroxypentylbenzene in the presence of aluminium chloride in a nitrobenzene/carbon disulfide solution, first at r.t., then at $30-35^{\circ}$ for $6 \mathrm{~h}(31 \%)$ [6880].
m.p. 164° [6880].

USE: Fungicide [6880].
2-Methyl-1-(2,4,6-trimethoxy-3,5-dimethylphenyl)-1-propanone (Apodophyllone, Camfieldone)
[25677-09-2] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 266.34
 Isolation from natural sources

- From the leaves of Eucalyptus apodophylla (Myrtaceae) [8221], Eucalyptus miniata and Eucalyptus Chartaboma [8200],Xanthostemon eucalyptoides [8196].
- From the leaf oil of Xanthostemon crenulatus (Myrtaceae) [8196].
- Also refer to: [8197,8222].
${ }^{1} \mathrm{H}$ NMR [8200,8221], ${ }^{13} \mathrm{C}$ NMR [8200,8221], MS [8200,8221]; GC [8196,8221], GC-MS [8196,8221].
USE: Antiherbivore chem. of Eucalyptus involved cues and deterrents for marsupial folivores [8222].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1propanone

[75060-94-5]

$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2} \quad$ mol.wt. 249.35
Synthesis

- Refer to: [7106].

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1propanone (Hydrochloride)

[75060-72-9]

BIOLOGICAL ACTIVITY: Inflammation inhibitor [7106].

1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-2-methyl-1-propanone

[868266-16-4]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 240.30

Synthesis

- Refer to: [8223].

1-(2-Hydroxy-4-phenoxyphenyl)-2-methyl-1-propanone

USE: For inhibiting development of body odours in cosmetic compositions [7679-7683].

4-[3,5-Dihydroxy-4-(2-methyl-1-oxopropyl)phenoxy]-2-methyl-
2-butenoic acid methyl ester
[122585-60-8]

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 308.33 Isolation from natural sources

- From Helichrysum asperum (Thunb.)
Hilliard et Burtt. var. albidulum (DC)
Hilliard (Compositae) [8206].
${ }^{1} \mathrm{H}$ NMR [8206], IR [8206], MS [8206].

1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-methyl-1propanone

[71539-57-6]

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 278.35
Synthesis

- Obtained by reaction of diazomethane with 3 -isopentenyl-2,4, 6-trihydroxy-isobutyrophenone [8067].

Isolation from natural sources

- From Helichrysum gymnoconum (Compositae) [8209].
- From Helichrysum platypterum [8080].
m.p. 122° [8067], $120-122^{\circ}$ [8080];
${ }^{1} \mathrm{H}$ NMR [8080,8209], IR [8080,8209], MS [8080,8209].

1-[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone

[103771-68-2]

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 278.35
Isolation from natural sources

- From Helichrysum cephaloideum (compound 19) [8080].
N.B.: This methyl ether has been reported previously (compound 3) in mixture with the 2-methylbutyryl isomer (compound 7) [8209], but were erroneously assigned as 6-O-methyl ethers.
${ }^{1} \mathrm{H}$ NMR [8209], IR [8209], MS [8209].
1-[2-(β-D-Glucopyranosyloxy)-4,6-dihydroxyphenyl]-2-methyl-1-propanone
[17004-75-0]

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9} \quad$ mol.wt. 358.35 Isolation from natural sources
- From Hops Humulus lupulus L. (Cannabinaceae) [8081,8224].
white powder [8081];

$$
(\alpha)_{\mathrm{D}}^{20}=-55.6^{\circ}
$$

(methanol) [8081];
${ }^{1} \mathrm{H}$ NMR [8081], ${ }^{13} \mathrm{C}$ NMR [8081], IR [8081], MS [8081].
USE: Antioxidizing agent [8224]
BIOLOGICAL ACTIVITY: Antiallergic agent [8224].
1-[4-($\boldsymbol{\beta}$-D-Glucopyranosyloxy)-2,6-dihydroxyphenyl]-2-methyl-1-propanone
[868634-82-6]

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9} \quad$ mol.wt. 358.35
Isolation from natural sources

- From Hops Humulus lupulus L. (Cannabinaceae) [8081].
beige powder [8081];
$(\alpha)_{\mathrm{D}}^{20}=-17.4^{\circ}$
(methanol) [8081];
${ }^{1} \mathrm{H}$ NMR [8081], ${ }^{13} \mathrm{C}$ NMR [8081], IR [8081], MS [8081].

1-[2,6-Dimethoxy-4-(4-morpholinyl)phenyl]-2-methyl-1-propanone

[263010-97-5]

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \quad$ mol.wt. 293.36
Syntheses

- Refer to: [8142,8143].

1-[3,5-Dimethoxy-4-(2-methylpropyl)phenyl]-2-methyl-1-propanone

$$
\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \quad \text { mol.wt. } 264.36
$$

Syntheses

- Obtained (by-product) by reaction of isobutylmagnesium bromide on 3,4,5-trimethoxybenzonitrile [8167], (6\%) [8181].
m.p. $\quad 183-184^{\circ}$ [8181].

Semicarbazone $\quad \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \quad$ mol.wt. 321.42 (m.p. 184 ${ }^{\circ}$) [8167].
1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-2-methyl-1-propanone
[120350-21-2]

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$
mol.wt. 264.36
Synthesis

- Preparation by reaction of isobutyryl chloride with 2-tert-butylhydroquinone dimethyl ether in the presence of aluminium chloride in carbon disulfide [7336].
${ }^{1} \mathrm{H}$ NMR [7336], IR [7336], UV [7336], MS [7336].

1-(4-Methoxy[1,1'-biphenyl]-3-yl)-2-methyl-1-propanone

[868266-15-3] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33

Synthesis

- Refer to: [8223].

1-[4-[[4-(Acetyloxy)-3-methyl-2-butenyl]oxy]-2,6-dihydroxyphenyl]-2-methyl-1-propanone (E)
[122585-53-9]

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$ mol.wt. 322.36 Isolation from natural sources

- From Helichrysum asperum (Thunb.) Hilliard et Burtt. var. albidulum (DC) Hilliard (compound 9) [8206].

1-[3-[4-(Acetyloxy)-3-methyl-2-butenyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-propanone (E)

[122585-62-0]

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$ mol.wt. 322.36 Isolation from natural sources

- From Helichrysum asperum (Thunb.) Hilliard et Burtt. (compound 24) [8206].
${ }^{1} \mathrm{H}$ NMR [8206], IR [8206], MS [8206].

1-[3-[4-(Acetyloxy)-3-methyl-2-butenyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-propanone

[261928-44-3]

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$ mol.wt. 322.36 Isolation from natural sources

- FromHelichrysum caespititium (Asteraceae) [8225].

BIOLOGICAL ACTIVITY: Antimicrobial properties [8225]; for treatment of tuberculosis and other infections [8226].
m.p. $\quad 140^{\circ}$ [8225]; ${ }^{1} \mathrm{H}$ NMR [8225], ${ }^{13} \mathrm{C}$ NMR [8225], MS [8225].

1-[2,4-Dihydroxy-6-[(1E)-2-(4-hydroxyphenyl)ethenyl]phenyl]-2-methyl-1-propanone

[352276-35-8]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34
Synthesis

- Refer to: [8227].

Isolation from natural sources

- From the root bark of Ekebergia benguelensis C. DC. (Meliaceae) (compound 4) [8228].
pale yellow amorphous powder [8228];
m.p. $80-72^{\circ}$ (such as in the paper) [8228];
${ }^{1} \mathrm{H}$ NMR [8228], ${ }^{13} \mathrm{C}$ NMR [8228], IR [8228], UV [8228], MS [8228].
1-[2,6-Dihydroxy-3-methyl-4-(phenylmethoxy)phenyl]-2-methyl-1-propanone
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 300.35

Synthesis

- Obtained by reaction of phenyldiazomethane with 3-methylphloroisobutyrophenone in ethyl ether, first at r.t. for 2 h , then at reflux for $30 \mathrm{~min}(15 \%)$ [7255].
b.p. ${ }_{0.3} 150^{\circ}$ [7255]; m.p. 135° [7255]; UV [7255].

1-[4-(β-D-Glucopyranosyloxy)-2,6-dihydroxy-3,5-dimethylphenyl]-2-methyl-1-propanone

1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1-propanone
[102520-04-7]

$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \quad$ mol.wt. 276.42
Synthesis

- Preparation by reaction of isopropylmagnesium chloride and 2,4-di-tert-butyl-6-cyanophenol in ethyl ether, first at 0° for 30 min , then at r.t. overnight (83\%) [8230].
m.p. $33.5-34.5^{\circ}$ [8230]; ${ }^{1} \mathrm{H}$ NMR [8230], IR [8230].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-methyl-1-propanone

[14035-36-0]		$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$	mol.wt. 276.42
	OH	Syntheses	

 Syntheses

- Obtained in oxygenation of 2,4-dimethyl-3-[3,5-bis-(1,1-dimethylethyl)-4-hydroxyphenyl]-2pentene (m.p. $66.2-67.0^{\circ}$) in the presence of Co (Salpr) in methylene chloride at 0° (20\%) [8230].
- Preparation by acylation of 2,6-di-tert-butylphenol with isobutyric acid in trifluoroacetic anhydride at r.t. [8231], first at 0°, then at r.t. for $3 \mathrm{~h}(92 \%)$ [7727].
- Preparation by acylation of 2,6-di-tert-butylphenol with isobutyryl chloride in the presence of aluminium chloride [8232].
- Also refer to: [8233-8236].
m.p. $145-147^{\circ}$ [7727,8231];
${ }^{1} \mathrm{H}$ NMR [7727,8230], IR [7727]; TLC [8230].
USE: Antioxidizing agent [8237].
O-methyloxime [81389-57-3] $\quad \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2} \quad$ mol.wt. 305.46 [7821].

1-[2-Hydroxy-6-[(1E)-2-(4-hydroxyphenyl)ethenyl]-4-methoxyphenyl]-2-methyl-1-propanone

[352276-34-7]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 312.37
Synthesis

- Refer to: [8227].

Isolation from natural sources

- From the root bark of Ekebergia benguelensis C. DC. (Meliaceae) (compound 3) [8228].
reddish amorphous powder [8228]; m.p. 173-175 [8228];
${ }^{1} \mathrm{H}$ NMR [8228], ${ }^{13} \mathrm{C}$ NMR [8228], IR [8228], UV [8228], MS [8228].
1-[4,6-Dihydroxy-2-(2-methoxyethyl)[1,1'-biphenyl]-3-yl]-2-methyl-1-propanone

1-(2-Hydroxy-5-nonylphenyl)-2-methyl-1-propanone

S219906-66-8]	Synthesis Obtained in two steps: First, 4-nonylphenol was heated with aluminium isopropoxide in toluene/iso- propanol with distillation of isopropanol and some toluene. Then, the mixture was cooled to 50° and treated with isobutyraldehyde over 50 min followed by stirring for 1 h [8238].

3-[[2,4-Dihydroxy-6-methoxy-3-(2-methyl-1-oxopropyl) phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one
 (Nor-auricepyrone)

[103766-16-1] $\quad \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{7} \quad$ mol.wt. 376.41
Isolation from natural sources

- From Helichrysum cephaloideum (Compositae) (compound 25) [8080].
yellow oil [8080]; ${ }^{1} \mathrm{H}$ NMR [8080], IR [8080], MS [8080]; TLC [8080].

1-[3-[(2E)-3,7-Dimethyl-2,6-octadienyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-propanone
(E) $[72008-03-8] \quad \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44
(Z) [72008-05-0]

Synthesis

- Obtained by alkylation of phloroisobutyrophenone with geranyl bromide in dioxane in the presence of sodium hydride (28\%) [8067].

Isolation from natural sources

- From Helichrysum infaustum (Compositae) [8205].
- From Helichrysum stenopterum [8080].
- From Helichrysum oxofilum [8067].
- From Helichrysum krookii Moeser [8212].
- From Helichrysum natalitium DC [8211].
- From Hypericum jovis (Guttiferae) [6882,8239].
- From Helichrysum monticola Hilliard [8206].
- From Esenbeckia nesiotica (Rutaceae) [8240].
- From the aerial parts of Achyrocline alata (HBK) DC (tribe Inulae) [8241].
- From the leaves of Hypericum styphelioides [8242].

USE: Antioxidizing agent [8239]; taxonomy in relation to [8241].
m.p. $128-130^{\circ}$ [8240];
${ }^{1} H$ NMR [8211,8240,8242], ${ }^{13}$ C NMR [8211,8239,8240,8242], IR [8240], UV [8240], MS [8211,8240].

1-[4-[[(2E)-3,7-Dimethyl-2,6-octadienyl]oxy]-2,6-dihydroxyphenyl]-2-methyl-1-propanone

[71539-65-6] $\quad \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44

Isolation from natural sources

- From Helichrysum gymnoconum (Compositae) [8209].
- From Hypericum jovis (Guttiferae) [8239].
- From Helichrysum anomalum Less (compound 7a) (Compositae) [8206]. USE: Antioxidizing agent [8239].
${ }^{1} \mathrm{H}$ NMR [8209], ${ }^{13} \mathrm{C}$ NMR [8239], IR [8209], MS [8209].

2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)
 phenyl]-1-propanone (Deoxycohumulone, Desoxycohumulone,
 4-Deoxycohumulone)

[5880-42-2]
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44

Syntheses

- Obtained by reaction of 2-methyl-3-buten-2-ol (3-hydroxy-3-methyl-1-butene) with phloroisobutyrophenone in the presence of zinc chloride [8058] or boron trifluoride etherate in dioxane [8064], at 20° for $8-9 \mathrm{~h}$ (18\%) [8063], (11-14\%) [8243].
- Also obtained by reaction of 1-chloro-3-methyl-2-butene with phloroisobutyrophenone in the presence of magnesium oxide and potassium iodide in refluxing acetone [8070] under nitrogen or argon [8071].
- Also obtained by reaction of 1-bromo-3-methyl-2-butene with phloroisobutyrophenone in the presence of a weakly basic resin DeAcidite 4-1P (OH form) in boiling benzene (14\%) [7739].
- Also obtained by prenylation of 3-prenyl-2,4,6-trihydroxyisobutyrophenone [8208].
- Also obtained by phase transfer-catalyzed prenylation of 2,4,6-trihydroxyisobutyrophenone [7740].
- Also obtained by photolysis of colupulone [8243,8244] in isopropanol or methanol at 350 nm under nitrogen for 7 days (65\%) [8245].
- Also refer to: [7739,8246,8247], [8077,8078,8082,8248,8249].

Isolation from natural sources

- In cohumulone formation in hop plant [8250].
- Formation from isobutyric acid and isovaleric acid in hop [8251].
- Formation from in vitro prenylation of phloroisobutyrophenone (SM) in Humulus lupulus (Cannabaceae). The first step, formation of SM from malonylCoA and isobutyryl-CoA, is catalyzed by valerophenone synthase (VPS) [8216].
m.p. 89° [7739], $88-90^{\circ}$ [8063,8243], $88-89^{\circ}$ [8245,8249];
${ }^{1} \mathrm{H}$ NMR [8245], IR [8245], UV [8243,8245], MS [8245,8247];
GLC [8247]; HPLC [8216,8252,8253].
Note: Humulone formation [8244].
BIOLOGICAL ACTIVITY: Antibiotic [8086].

2-Methyl-1-[2,4,6-trihydroxy-3-(3-hydroxy-3,7-dimethyl-6-octenyl) phenyl]-1-propanone (Hyperjovinol A)

[722457-94-5] (+)

$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}$ mol.wt. 350.46 Isolation from natural sources

- From Hypericum jovis (Guttiferae) [6882,8239].
yellow amorphous solid [8239];
$(\alpha)_{D}=+5^{\circ} \quad \mathrm{c}=0.1$ in chloroform) [8239];
${ }^{1} \mathrm{H}$ NMR [8239], ${ }^{13} \mathrm{C}$ NMR [8239], IR [8239], UV [8239], MS [8239].
USE: Antioxidizing agent [6882,8239].

2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methylbutyl)phenyl]-1-propanone

[33759-61-4] $\quad \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \quad$ mol.wt. 336.47

Syntheses

- Obtained by hydrogenation of colupulone in methanol in the presence of PdCl_{2} (87\%) [8254].
- Also refer to: $[8086,8255]$.
clear gum unstable in air [8254]; ${ }^{1} \mathrm{H}$ NMR [8254], IR [8254], UV [8254].
BIOLOGICAL ACTIVITY: Antibiotic [8086].

1-[2-Hydroxy-4-methoxy-6-[(1E)-2-[4-(methoxymethoxy)
 phenyl]ethenyl]phenyl]-2-methyl-1-propanone

[852612-18-1] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$ mol.wt. 356.42

Synthesis

- Refer to: [8227].

1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-methylphenyl]-2-methyl-1-propanone (Otogirin)
[137251-97-9] $\quad \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4} \quad$ mol.wt. 346.47

Isolation from natural sources

- From Hypericum erectum (Hypericaceae) [8256], (Guttiferae) [8088].

BIOLOGICAL ACTIVITY: Antibiotic [8088,8256] and antiallergenic [8256].
m.p. 66-68 ${ }^{\circ}$ [8256];
${ }^{1} \mathrm{H}$ NMR [8256], ${ }^{13} \mathrm{C}$ NMR [8256], IR [8256], UV [8256], HRMS [8256].

1-[2-(4,5-Dihydro-4,4-dimethyl-2-oxazolyl)-4'-fluoro-
 4-hydroxy-3'-methyl[1,1'-biphenyl]-3-yl]-2-methyl-1-propanone

[136553-42-9]

USE: In preparation of HMG-CoA reductase inhibitors [8257].

1-[4-Hydroxy-3-[(2,4,7-trinitro-9H-fluorene-9-ylidene)amino] phenyl]-2-methyl-1-propanone

1-[2-(4,5-Dihydro-4,4-dimethyl-2-oxazolyl)-4'-fluoro-4-methoxy-3^{\prime}-methyl [1,1'-biphenyl]-3-yl]-2-methyl-1-propanone
[136577-47-4]

USE: In preparation of HMG-CoA reductase inhibitors [8257].
6-Ethyl-4-hydroxy-5-methyl-3-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2H-pyran-2-one (6-O-Desmethylauricepyron)
[75680-08-9]
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FNO}_{3} \quad$ mol.wt. 383.46 Synthesis - Refer to: [8257]. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{7} \quad$ mol.wt. 430.50
 Isolation from natural sources

- From the roots of Helichrysum mixtum (Compositae) (compound 21) [8080].
- From the aerial parts of Helichrysum stenopterum (Compositae) (compound 21) [8080].
- From Helichrysum odoratissimum and Helichrysum cephaloideum (compound 1) [8210].
${ }^{1} \mathrm{H}$ NMR [8210], IR [8210], MS [8210].
1-[4,6-Bis(acetyloxy)-3-(3,7-dimethyl-2,6-octadienyl)-2-hydroxyphenyl]-2-methyl-1-propanone (E)
[144785-83-1] $\quad \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6} \quad$ mol.wt. 416.51

Synthesis

- Obtained by partial acylation of the corresponding substituted phloroglucinol with acetic anhydride in the presence of pyridine [8240].
oil [8240]; ${ }^{1} \mathrm{H}$ NMR [8240], IR [8240], MS [8240].
1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl]-2-methyl-1-propanone

$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 390.48
Synthesis
- Obtained by partial benzylation of 3-methylphloroisobutyrophenone with benzyl bromide in the presence of potassium carbonate in refluxing acetone (13\%) [7255], according to the method $[8259,8260]$.
oil [7255]; b.p. ${ }_{0.2} 150-160^{\circ}$ [7255].
3-[[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl) phenyl]-methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one (Auricepyron)

m.p. 115° [8261]; ${ }^{1} \mathrm{H}$ NMR [8210,8261], IR [8261], MS [8261].

3-[[2,4-Dihydroxy-6-methoxy-5-(3-methyl-2-butenyl)-3-(2-methyl-1-oxopropyl) phenyl]-methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one
[103771-70-6] $\quad \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{7}$ mol.wt. 444.52

Isolation from natural sources

- From the roots of Helichrysum cephaloideum (Compositae) (compound 23) [8080].

3-[[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]-methyl]-6-ethyl-4-methoxy-5-methyl-2H-pyran-2-one
[74948-75-2]

$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7}$ mol.wt. 458.55
Synthesis

- Obtained by reaction of diazomethane with Auricepyron in ethyl ether at r.t. for 1 h [8261].
oil [8261];
${ }^{1} \mathrm{H}$ NMR [8261], ${ }^{13} \mathrm{C}$ NMR [8261]; TLC [8261].

2-Methyl-1-[2,4,6-trihydroxy-3-[1-(4-hydroxy-6-methoxy-1,3-benzodioxol-5-yl)-2-methylpropyl]-5-(3-methyl-2-butenyl)phenyl]-1-propanone (S) (Helinudifolin)

$\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{8} \quad$ mol.wt. 486.56
Isolation from natural sources

- From the roots of Helichrysum nudifolium (Compositae) (compound 27) [8080].
colourless oil [8080];
${ }^{1} \mathrm{H}$ NMR [8080], IR [8080], MS [8080];
TLC [8080].
3,3'-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-phenylene]-bis(methylene)] bis-[6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one (23-Methylitalidipyron)
[75680-22-7] $\quad \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{10} \quad$ mol.wt. 528.56

Isolation from natural sources

- From Helichrysum italicum (Compositae) [8210].
m.p. $\quad 178-182^{\circ}$ [8210];
${ }^{1} \mathrm{H}$ NMR [8210], IR [8210], UV [8210], MS [8210].
3-[[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxy-5-(2-methyl-1-oxopropyl) phenyl]-methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one (E) (Achyroclinopyrone)
[77820-39-4] $\quad \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{7} \quad$ mol.wt. 498.62

Isolation from natural sources

- From the aerial parts of Achyrocline alata (HBK) DC, but only isolated as its tetraacetate by treatment of the crude phloroglucinol derivative with acetic anhydride for 1 h at 70° [8241].
Tetraacetate $\quad \mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{11} \quad$ mol.wt. 666.30 [8241].
colourless gum [8241]; ${ }^{1} \mathrm{H}$ NMR [8241], IR [8241], MS [8241].

24.2 Naphthalene Derivatives

1-(7-Bromo-3,4-dihydroxy-2-naphthalenyl)-2-methyl-1-propanone

[61983-31-1]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 309.16
Synthesis

- Obtained by irradiation of 6-bromo-1,2naphthoquinone and isobutyraldehyde in benzene by a 300 W high-pressure mercury arc lamp between 15° and 20° for $2-10$ days (15\%) [7762].
m.p. $\quad 116.5-118^{\circ}$ [7762]; ${ }^{1} \mathrm{H}$ NMR [7762], IR [7762].

1-(6,7-Dihydroxy-5-nitro-2-naphthalenyl)-2-methyl-1-propanone
[404964-71-2]

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5} \quad$ mol.wt. 275.26
Synthesis

- Refer to: [8262].

1-(1-Hydroxy-2-naphthalenyl)-2-methyl-1-propanone
[79387-88-5]

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26 Syntheses

- Obtained by Fries rearrangement of 1-naphthyl isobutyrate [8104],
- with aluminium chloride (53\%) [7768], at $100-120^{\circ}$ for $3 \mathrm{~h}(60 \%)$ [8263];
- with zinc chloride or stannic chloride (75\%) [7768];
- with yttrium triflate-methane sulfonic acid in toluene at 100° for 5 h under argon [8264], (87\%) [8265].
- Preparation by reaction of isobutyric acid with α-naphthol,
- in the presence of boron trifluoride at 70° for 2 h (95\%) [7775];
- in the presence of zinc chloride at 170° (good yield) [6376];
- in the presence of $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{SiO}_{2}$ at 130° for $24 \mathrm{~h}(74 \%)$ [8108].
- The 4-isobutyryl-1-naphthol was quantitatively rearranged to the 2 -isomer by refluxing with 35% sodium hydroxide solution for 2 h [7768].
- Also obtained by irradiation of 2-isobutyryl-3,4-dihydronaphthalen-1 $(2 \mathrm{H})$-one (b.p. ${ }_{0.3} 110^{\circ}$) in various solvents (hexane, acetonitrile or methanol) under bubbling air in 10-30\% yield depending on the solvent used [8266].
- Also obtained by dye-sensitized photooxidation of enolic tautomer of 1-(3,4-dihydro-1-hydroxy-2-naphthalenyl)-2-methyl-1-propanone [128838-13-1] (26-29\%) [7780].
- Also refer to: [7784,7785].

1-(2-Hydroxy-1-naphthalenyl)-2-methyl-1-propanone
[95455-11-1] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Syntheses

- Preparation by Fries rearrangement of 2-naphthyl isobutyrate in the presence of aluminium chloride [7992].
- Also obtained (poor yield) by treatment of 2-meth-oxy-naphthalene with isobutyryl chloride and aluminium chloride in refluxing carbon disulfide for 2 h (2\%) [7794].
pure oil [7794]; b.p. $164-166^{\circ}$ [7992]; ${ }^{13} \mathrm{C}$ NMR [7794].

1-(4-Hydroxy-1-naphthalenyl)-2-methyl-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Syntheses

- Obtained by Fries rearrangement of α-naphthyl isobutyrate with aluminium chloride (34\%) [7768].
- Also obtained by reaction of isobutyric acid with α-naphthol in the presence of $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{SiO}_{2}$ at 130° for $24 \mathrm{~h}(20 \%)$ [8108].

1-(6-Hydroxy-2-naphthalenyl)-2-methyl-1-propanone

[100886-06-4] $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 214.26

Syntheses

- Preparation by esterification of β-naphthol with isobutyryl fluoride in the presence of hydrogen fluoride at $0-40^{\circ}$, followed by Fries rearrangement of ester formed in situ [7802] at $60-100^{\circ}$ [8267].

1-(1,4-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone

1-(1,8-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 230.26

Syntheses

- Obtained by reaction of isobutyric acid with 1,8-dihydroxy-naphthalene in the presence of zinc chloride at $145-150^{\circ}$ [7818].
- Also obtained by reaction of zinc chloride with 1,8-dihydroxynaphthalene diisobutyrate in nitrobenzene at $140-150^{\circ}$ [7819].
m.p. 88° [7818].

Diacetate $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 314.34 (m.p. 105-106 ${ }^{\circ}$) [7818].

1-(3,4-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone

$[61983-12-8]$	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$	mol.wt. 230.26
Syntheses		

- Obtained by irradiation of 1,2-naphthoquinone and isobutyraldehyde in benzene by a 300 W high-pressure mercury arc lamp between 15° and 20° for 2-10 days [7761], (5\%) [7762].
m.p. $105-107^{\circ}$ [7762]; ${ }^{1} \mathrm{H}$ NMR [7762], IR [7762].

1-(6,7-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone
[404964-94-9]
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$
mol.wt. 230.26

Synthesis

- Refer to: [8262].

1-(2-Methoxy-1-naphthalenyl)-2-methyl-1-propanone $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 228.29
 Syntheses

- Preparation by reaction of dimethyl sulfate with the sodium salt of 1-(2-Hydroxy-1-naphthalenyl)-2-methyl-1-propanone [7992].
- Also obtained by treatment of 2-methoxynaphthalene,
- with isobutyric anhydride and aluminium chloride in refluxing carbon disulfide (20\%) [7794];
- with isobutyryl chloride and aluminium chloride in refluxing carbon disulfide for 5 h (2\%) [7794].
yellow oil [7992]; b.p. $176-178^{\circ}$ [7992].

1-(4-Methoxy-1-naphthalenyl)-2-methyl-1-propanone

[36198-81-9]
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 228.29

Syntheses

- Preparation by reaction of isobutyric acid with 1-methoxy-naphthalene in the presence of boron trifluoride, first at 0°, then at 70° for $10-15 \mathrm{~h}(93 \%)$ [7845].
- Also obtained by Fries rearrangement of α-naphthyl isobutyrate with aluminium chloride (34\%) [7768].
- Also obtained by reaction of isobutyryl chloride with 1-methoxynaphthalene in the presence of aluminium chloride in carbon disulfide (72\%) [7846,7849] according to the procedure [8268].
m.p. $100-101^{\circ}$ [7849], $97-97.5^{\circ}$ [7846], 96° [7845];
${ }^{1} \mathrm{H}$ NMR [7849].
1-(6-Methoxy-1-naphthalenyl)-2-methyl-1-propanone
[69769-76-2]
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 228.29

Synthesis

- Obtained from sodium-liquid ammonia reduction of 4,6-dimethoxy-1-naphthyl isopropyl ketone in THF/EtOH mixture in presence of excess ammonium chloride [7851].
b.p. ${ }_{0.1} 140^{\circ}$ [7851]; ${ }^{1} \mathrm{H}$ NMR [7851], IR [7851].

1-(6-Methoxy-2-naphthalenyl)-2-methyl-1-propanone

6-isobutyrylnerolin
[179930-43-9]
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 228.29

Syntheses

- Preparation by action of potassium tertbutoxide and methyl iodide with 6-propionylneroline (methylation) (74\%) [7855].
- Also obtained by condensation of isobutyryl chloride with neroline in the presence of aluminium chloride in nitrobenzene at r.t. for 24 h [7855,8269], according to [7854].
- Also obtained by hydrolysis of 2-[1-(N-isobutyrylimino)-1-isopropyl]-6methoxynaphthalene $\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}\right.$, m.p. 141.5-142 $)$ [8269].
- Also refer to: [8270,8271].
b.p. ${ }_{15} 213-214^{\circ}$ [7855], b.p. ${ }_{14} 220^{\circ}$ [8269];
m.p. $57-58^{\circ}$ [7855,8269].

1-(3,4-Dihydroxy-7-methyl-2-naphthalenyl)-2-methyl-1-propanone
[61983-40-2]

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 244.29
Synthesis

- Obtained by irradiation of 6-methyl-1,2naphthoquinone and isobutyraldehyde in benzene by a 300 W high-pressure mercury arc lamp between 15° and 20° for 2-10 days (8\%) [7762].
m.p. $155-156^{\circ}$ [7762]; ${ }^{1} \mathrm{H}$ NMR [7762], IR [7762].

1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-2-methyl-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 244.29
Synthesis

- Obtained by reaction of 2-isobutyryl-1,3-indandione with diazomethane in ethyl ether (66-72\%) [7813].

1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-2-methyl-1-propanone

m.p. $92-93^{\circ}$ [7864]; IR [7864], MS [7864].

1-(4,6-Dimethoxy-1-naphthalenyl)-2-methyl-1-propanone

1-(6,7-Dimethoxy-2-naphthalenyl)-2-methyl-1-propanone

24.3 Heterocyclic Derivatives

5-Hydroxy-4-(2-methyl-1-oxopropyl)-1,3-benzoxathiol-2-one

[112450-18-7]

m.p. $182-184^{\circ}$ [7883];
${ }^{1} \mathrm{H}$ NMR [7883], ${ }^{13} \mathrm{C}$ NMR [7883].

1-(4,5-Dihydroxybenzo[b]thien-6-yl)-2-methyl-1-propanone

[912952-37-5]

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S} \quad$ mol.wt. 263.29
Synthesis

- Obtained by photoacylation of benzo[b]thiophene-4,5-dione with isobutyraldehyde in benzene (33\%) [7916].
m.p. 117-120 [7916];
${ }^{1} \mathrm{H}$ NMR [7916], IR [7916].

8-Hydroxy-5-(2-methyl-1-oxopropyl)quinoline

1-(8-Hydroxy-[5]quinolyl)-2-methylpropan-1-one
[101724-90-7] $\quad \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \quad$ mol.wt. 215.25
 Synthesis

- Obtained by reaction of isobutyryl chloride with 8-quinolinol (8-hydroxyquinoline) in nitrobenzene in the presence of aluminium chloride [7946].
m.p. 75-76 ${ }^{\circ}$ [7946].

Note: Fungicide [7946].

1-(4,6-Dimethoxy-1,3-benzodioxol-5-yl)-2-methyl-1-propanone

[73213-22-6]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27 Isolation from natural sources

- From Helichrysum chrysargyrum (Compositae) [8273].

Colourless oil [8273];
${ }^{1} \mathrm{H}$ NMR [8273], IR [8273], MS [8273].

1-[2,3-Dihydro-4,6-dihydroxy-2-(1-methylethenyl)-5-benzofuranyl]-
 2-methyl-1-propanone (4,6-Dihydroxy-9,9-dimethyltremeton)

[103771-74-0]
[96552-58-8] (R) $\quad \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 262.31

Isolation from natural sources

- From Helichrysum [8079].
- From Helichrysum cephaloideum and Helichrysum mixtum [8080].
colourless oil [8079];
$(\alpha)_{\mathrm{D}}=-8.7^{\circ}(\mathrm{c}=0.9$ in chloroform [8079];
${ }^{1} \mathrm{H}$ NMR [8079,8217] IR [8079], MS [8079].
1-(5,7-Dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone

1-(5,7-Dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone

[72935-08-1] \quad| Synthesis |
| :--- |

m.p. $\quad 102-103^{\circ}$ [8138];
${ }^{1} \mathrm{H}$ NMR [8138], IR [8138], UV [8138].
1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone

Isolation from natural sources

- From Helichrysum platypterum DC (Compositae) [8080].
m.p. $142-143^{\circ}$ [8060], 142° [8080,8207];
${ }^{1}$ H NMR [8060,8080,8207,8209], IR [8060,8080],
UV [8060,8207], MS [8080]; TLC [8080].

1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone

[35932-37-7] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32

Syntheses

- Obtained by hydrolysis of 8-isobutyryl-7-hydroxy-5-methoxymethyleneoxy-2,2-dimethylchroman in refluxing methanol containing 1 drop of concentrated sulfuric acid for 3 h (90\%) [8138].
- Also obtained by treatment of 3-isoprenylphloro-isobutyrophenone with p-toluenesulfonic acid in refluxing benzene [8207], (40\%) [8060].
- Also obtained from a mixture of phloroisobutyrophenone, 2-methyl-3-buten-2-ol and Amberlite IR 120 resin (H^{+}form) in refluxing dioxane for 24 h (5\%) [7739].
- Also obtained by treatment of 3-(dimethylallyl)phloroisobutyrophenone in benzene in the presence of 10% sulfuric acid [8209].
Isolation from natural sources
- From Helichrysum platypterum DC (Compositae) [8080].
m.p. 147° [7739], $145-146^{\circ}$ [8060], 145° [8207], 144° [8080];
${ }^{1} \mathrm{H}$ NMR [8060,8080,8207,8209], ${ }^{13}$ C NMR [8080],
IR [8060,8080,8209], UV [8060,8207], MS [8080,8209].
1-[2,3-Dihydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-7-
benzofuranyl]-2-methyl-1-propanone (Lupulone F)
[842121-75-9] $\quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 264.32

yellow oil [8274]; ${ }^{1} \mathrm{H}$ NMR [8274],
${ }^{13}$ C NMR [8274], IR [8274], UV [8274],
MS [8274].

1-(5,7-Dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone
[111983-96-1] $\quad \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \quad$ mol.wt. 276.33

Isolation from natural sources

- From Hypericum revolutum Vahl (Guttiferae) [8275-8278].
m.p. $79-81^{\circ}$ [8276];
${ }^{1} \mathrm{H}$ NMR [8276], ${ }^{13} \mathrm{C}$ NMR [8276], IR [8276],
UV [8276], MS [8276]; TLC [8276]; HPLC [8275,8277].
USE: Fungicide [8276].
BIOLOGICAL ACTIVITY: [8278].

1-(5-Hydroxy-7-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone

[365947-78-0] \quad| ($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO}$ |
| :--- |
| [8281]. |

viscous oil [8281];
${ }^{1} \mathrm{H}$ NMR [8281], ${ }^{13} \mathrm{C}$ NMR [8281], IR [8281], UV [8281], MS [8281].
BIOLOGICAL ACTIVITY: MAO inhibitory on rat brain mitochondria [8280]; antimicrobial [8282].

1-(7-Hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1propanone

viscous oil [8281];
${ }^{1} \mathrm{H}$ NMR [8281], ${ }^{13} \mathrm{C}$ NMR [8281], IR [8281], UV [8281], MS [8281].
BIOLOGICAL ACTIVITY: MAO inhibitory on rat brain mitochondria [8280]; antimicrobial [8282].

1-(7-Hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1propanone

[72934-97-5]	Synthesis
Obtained by reaction of 3-chloro-3-methyl-1-butyne mith 2,6-dihydroxy-4-methoxyisobutyrophenone in the presence of potassium carbonate and potassium iodide in refluxing acetone for $48 \mathrm{~h}(23 \%)$ [8138].	
${ }^{1} \mathrm{H}$ NMR [8138], IR [8138], MS [8138].	

1-(3,4-Dihydro-5-hydroxy-7-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone

[71539-69-0]
yellow oil [8080];
${ }^{1} \mathrm{H}$ NMR [8080,8209], IR [8080,8209], MS [8080,8209]; TLC [8080].

1-(3,4-Dihydro-5-hydroxy-7-methoxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 278.35
CH [8080].
yellow oil [8080];
${ }^{1} \mathrm{H}$ NMR [8080], IR [8080], MS [8080].
1-(3,4-Dihydro-7-hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone
[72935-00-3]

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 278.35
Synthesis

- Obtained by reaction of methyl iodide with 8-isobutyryl-5,7-dihydroxy-2,2-dimethylchroman in the presence of potassium carbonate in refluxing acetone for 1.5 h (66\%) [8138].
m.p. $68-69^{\circ}$ [8138]; ${ }^{1} \mathrm{H}$ NMR [8138], IR [8138].

1-[3,4-Dihydro-5,7-dihydroxy-6-(hydroxymethyl)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone

1-(5,7-Dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 290.36
Isolation from natural sources

- From Hypericum species native to South Brazil (Guttiferae) [8280].
- From the aerial parts of Hypericum polyanthemum Klotzsch ex Reichardt [8279, 8281].
viscous oil [8281];
${ }^{1} \mathrm{H}$ NMR [8281], ${ }^{13} \mathrm{C}$ NMR [8281], IR [8281], UV [8281], MS [8281];
TLC [8280,8281]; HPLC [8280].
BIOLOGICAL ACTIVITY: MAO inhibitory on rat brain mitochondria [8280]; antitumor [8279]; antimicrobial [8282].

1-[7-Hydroxy-5-(methoxymethoxy)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone
[72935-05-8]
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$
mol.wt. 306.36

Synthesis

- Obtained by dehydrogenation of corresponding 3,4-dihydro derivative [72935-01-4] with DDQ in refluxing benzene for 1 h (83\%) [8138].
m.p. $\quad 76-77^{\circ}$ [8138]; ${ }^{1} \mathrm{H}$ NMR [8138].

1-[3,4-Dihydro-7-hydroxy-5-(methoxymethoxy)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone

[72935-01-4]

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 308.37
Syntheses

- Obtained by reaction of chloromethyl methyl ether with 8-isobutyryl-5,7-dihydroxy-2,2-dimethylchroman in the presence of potassium carbonate in acetone at r.t. overnight (82\%) [8138].
- Also refer to: [8060].
m.p. $\quad 95-96^{\circ}$ [8138]; ${ }^{1} \mathrm{H}$ NMR [8138], IR [8138].

2-Methyl-1-[5,7,8-trihydroxy-2-methyl-2-(4-methyl-3-pentenyl)$\mathbf{2 H}$-1-benzopyran-6-yl]-1-propanone
[103784-23-2]

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}$ mol.wt. 346.42 Isolation from natural sources

- From South african Helichrysum species (Compositae) [8080].

1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-yl]-2-methyl-1-propanone

[72008-16-3]
[722457-96-7] (-)

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$ mol.wt. 332.44
Isolation from natural sources

- From Hypericum jovis (Guttiferae) [8239].
- Also refer to: [8211].
$(\alpha)_{\mathrm{D}}=-1$
($\mathrm{c}=0.1$ in chloroform) [8239];
${ }^{1} \mathrm{H}$ NMR [8211], ${ }^{13} \mathrm{C}$ NMR [8239], IR [8211], UV [8211], MS [8211].
USE: Antioxidizing agent [8239].
1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone
[72008-14-1]
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$

Isolation from natural sources

- From Hypericum jovis (Guttiferae) [8239].
- From Hypericum amblycalyx [8283].
- Also refer to: [8211].

USE: Antioxidizing agent [8239].
oil [8211]; ${ }^{1} \mathrm{H}$ NMR [8211], IR [8211], UV [8211], MS [8211].
1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone (+)
[658702-62-6]

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44
Isolation from natural sources

- From the aerial parts of Hypericum amblycalyx [8283].

Note: Cytotoxic [8283].
BIOLOGICAL ACTIVITY: Antibacterial [8283].

1-[2,3-Dihydro-4,6-dihydroxy-5-(3-methylbutyl)-2-
 (1-methylethenyl)-7-benzofuranyl]-2-methyl-1-propanone

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44

Synthesis

- Preparation by adding isoprene dibromide to a solution of 2,4,6-trihydroxy-3-isopentylisobutyrophenone disodium salt and sodium methoxide in methanol. The solution was stirred under nitrogen, in the dark, for 72 h [8218].
pale yellow oil [8218]; UV [8218], MS [8218]; TLC [8218].
1-[5,7-Dihydroxy-2,2-dimethyl-6-(3-methyl-2-butenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone
[31918-60-2]

${ }^{1} \mathrm{H}$ NMR [8284], IR [8284], UV [8284], MS [8284]; TLC [8284], GLC [8284].
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44
Synthesis
- Obtained from colupulone when refluxing with zinc dust in acetic acid containing some hydrochloric acid [8284].

1-[4,6-Dihydroxy-5-(3-methylbutyl)-2-(1-methylethyl)-7-benzofuranyl]-2-methyl-1-propanone
[18892-91-6]

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44
Syntheses

- Obtained by dehydration of 4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-7-isobutyryl-5-iso-pentyl-2,3-dihydrobenzo[b]furan (m.p. 150°) with p-toluenesulfonic acid in refluxing benzene under a stream of oxygen-free nitrogen for 20 h [8285], (54\%) [8218].
- Also obtained by treatment of 4,6-dihydroxy-2-(1-methylethenyl)-7-isobutyryl$(2 \mathrm{H})$-benzofuran with p-toluenesulfonic acid in refluxing benzene for 3 h under nitrogen [8218].
m.p. $164-164.5^{\circ}$ [8218], 163.5-164.5${ }^{\circ}$ [8285];
${ }^{1}$ H NMR [8218,8285], IR [8218], UV [8218,8285],
MS [8218,8285,8286]; TLC [8218].
1-[(4aR,9aR)-2,3,4,4a,9,9a-Hexahydro-6,8-dihydroxy-1,1,4a-
trimethyl-1H-xanthen-7-yl]-2-methyl-1-propanone (Hyperjovinol B)

[722457-95-6]
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44

Isolation from natural sources

- From Hypericum jovis (Guttiferae) [8239].
yellow amorphous solid [8239];
$(\alpha)_{D}=-2^{\circ}$ (c - 0.1 in chloroform) [8239];
${ }^{1} \mathrm{H}$ NMR [8239], ${ }^{13} \mathrm{C}$ NMR [8239], IR [8239], UV [8239], MS [8239].
USE: Antioxidizing agent [8239].

2-Methyl-1-(3,4,6,7-tetrahydro-5-hydroxy-2,2,8,8-tetramethyl-2H,8H-benzo[1,2-b:5,4-b']-dipyran-10-yl)-1-propanone

$$
\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad \text { mol.wt. } 332.44
$$

Syntheses

- Obtained from colupulone when refluxing with zinc dust in acetic acid containing some hydrochloric acid for 1.5 h [8284].
- Also obtained from colupulone when refluxing in methanol in the presence of 12 N hydrochloric acid for 3.5 h [8056].
- Also obtained by oxidation of colupulone (m.p. 92-94) with ammonium persulfate in refluxing ethanol for 50 min [8219].
- Also obtained from isomerization of 6-isobutyryl-3,4,9,10-tetrahydro-5-hydroxy-2,2,8,8-tetra-methylbenzo-[1,2-b:3,4-b']dipyran by heating with concentrated sulfuric acid at 60° for 5 min [8056], (40\%) [8287].
m.p. $170-172^{\circ}$ [8219], 169.5° [8056], 169-170.5 ${ }^{\circ}$ [8287], $168-169^{\circ}$ [8284];
${ }^{1}$ H NMR [8284], IR [8284,8287], UV [8056,8219,8284,8287];
TLC [8287]; GLC [8287].

2-Methyl-1-(3,4,9,10-tetrahydro-5-hydroxy-2,2,8,8-tetramethyl$2 \mathrm{H}, \mathbf{8 H}$-benzo[1,2-b:3,4-b']-dipyran-6-yl)-1-propanone

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \quad$ mol.wt. 332.44
Syntheses

- Obtained by reaction of 1-bromo-3-methyl-2-butene with phloroisobutyrophenone in chloroform (6\%) [8056].
- Also obtained (poor yield) in two steps: First, dialkenylation of phloroisobutyrophenone with 1-bromo-3-methyl-2-butene using powdered sodium, then cyclisation during workup with 5 N hydrochloric acid (1\%) [8288].
- Also obtained from a mixture of phloroisobutyrophenone, 2-methyl-3-buten-2-ol and Amberlite IR 120 (H^{+}form) in refluxing dioxane for 24 h (6\%) [7739].
- Also obtained from colupulone when refluxing with zinc dust in acetic acid containing some hydrochloric acid for 1.5 h [8284].
- Also obtained by oxidation of colupulone (m.p. 92-94 ${ }^{\circ}$) with ammonium persulfate in refluxing ethanol for 50 min [8219].
- Also obtained by adding isobutyryl chloride to the solution of 3,4,9,10-tetrahydro-2,2,8,8-tetra-methylbenzo[1,2-b:3,4- b^{\prime}]-dipyran-5-ol (compound VI) and aluminium chloride in nitrobenzene at -5° during 10 min . Then, the mixture was stirred at 20° for 4 days (16%) [8287].
m.p. $86-88^{\circ}$ [8056], 85° [7739], 84° [8056,8288], 83-84 ${ }^{\circ}$ [8287], $82-83^{\circ}$ [8284];
${ }^{1}$ H NMR [8284,8288], IR [8056,8219,8284,8287],
UV [8056,8219,8284,8287], MS [8284]; TLC [8287]; GLC [8287].
1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methyl-2-butenyl)-7-benzofuranyl]-2-methyl-1-propanone

1-[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-6-(tetrahydro-2H-pyran-2-yl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone

[72935-03-6]	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \quad$ mol.wt. 348.44
$\mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}$	Synthesis
+ $\sim^{\circ} \mathrm{CH}_{3}$	- Obtained by reaction of 2,3-dihydropyran with
	8-isobutyryl-5,7-dihydroxy-2,2-dimethylchroman
	in the presence of p-toluenesulfonic acid in ben-
	zene at r.t. overnight (50\%) [8138]. The same
	result was obtained in the presence of concentrated
	hydrochloric acid as catalyst.

m.p. $\quad 94-95^{\circ}$ [8138]; ${ }^{1} \mathrm{H}$ NMR [8138], IR [8138].

1-[2,3,8,9-Tetrahydro-4-hydroxy-2-(1-hydroxy-1-methylethyl)-7,7-dimethyl-7H-furo[2,3-f]-1-benzopyran-5-yl]-2-methyl-1-propanone

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \quad$ mol.wt. 348.44
Syntheses

- Obtained by oxidation of colupulone (m.p. $92-94^{\circ}$) with ammonium persulfate in refluxing ethanol for 50 min [8219].
- Also obtained by treatment of 3,3a-dihydro-4-hydroxy-2-(1-hydroxy-1-methylethyl)-5-isobutyryl-3a,7-bis-(3-methyl-2-butenyl)-6-(2H)-benzofuranone [29525-23-3] with concentrated hydrochloric acid in refluxing methanol for 1 h [8219].
pale yellow oil [8219];
${ }^{1} \mathrm{H}$ NMR [8219], IR [8219], UV [8219], MS [8219].
1-[2,3,6,7-Tetrahydro-8-hydroxy-2-(1-hydroxy-1-methylethyl)-5,5-dimethyl-2H-furo[2,3-h]-1-benzopyran-9-yl]-2-methyl-1-propanone
[24416-48-6]

$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \quad$ mol.wt. 348.44
Syntheses
- Obtained by oxidation of colupulone (m.p. $92-94^{\circ}$) with ammonium persulfate in refluxing ethanol for 50 min [8219,8289].
- Also obtained by treatment of 1-[2,3-dihydro4, 6-di-hydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methyl-2-butenyl)-7-benzofuranyl]-2-methyl-1-propanone [24416-50-0] with concentrated hydrochloric acid in refluxing methanol for 2 h [8219].
- Also obtained by treatment of 3,5-dihydro-6-hydroxy-2-(1-hydroxy-1-methy lethyl)-7-isobutyryl-5,5-bis(3-methyl-2-butenyl)-4-(2H)-benzofuranone [22592-22-9] with concentrated hydrochloric acid in refluxing methanol for 75 min [8219].
m.p. $\quad 107.5-109^{\circ}$ [8219];
${ }^{1} \mathrm{H}$ NMR [8219], IR [8219], UV [8219], MS [8219,8286];
TLC [8219]; GLC [8219].

1-[3,4-Dihydro-5,7-dihydroxy-6-(3-methylbutyl)-2,2-dimethyl-

 2H-1-benzopyran-8-yl]-2-methyl-1-propanone1-(5,7-Dihydroxy-6-isopentyl-2,2-dimethyl-8-chromanyl)-2-methyl-1-propanone

$$
\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}
$$

mol.wt. 334.46
Syntheses

- Obtained by hydrogenolysis of 7-hydroxy-8-isobutyryl-2,2-dimethyl-6,6-bis(3-methyl-2-butenyl)-5-(6H)-chromanone [24416-46-4] in ethanol over $5 \% \mathrm{Pd} / \mathrm{C}$ with hydrogen [8219].
- Also obtained by reaction of 2-methyl-3-buten-2-ol with 2,4,6-trihydroxy-3-isopentylisobutyrophenone (m.p. 184-185) in dioxan in the presence of boron trifluoride etherate under nitrogen [8219].
oil [8219]; ${ }^{1} \mathrm{H}$ NMR [8219], IR [8219], UV [8219], MS [8219].

1-[3,4-Dihydro-5,7-dihydroxy-8-(3-methylbutyl)-2,2-dimethyl-

 2H-1-benzopyran-6-yl]-2-methyl-1-propanone1-(5,7-Dihydroxy-8-isopentyl-2,2-dimethyl-6-chromanyl)-2-methyl-1-propanone
[29373-18-0]

$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \quad \mathrm{~mol} . \mathrm{wt} .334 .46$
Syntheses

- Also obtained by reaction of 2-methyl-3-buten-2-ol with 2,4,6-trihydroxy-3-isopentylisobutyrophenone (m.p. 184-185 ${ }^{\circ}$) in dioxan in the presence of boron trifluoride etherate at $55-60^{\circ}$ for 4 h under nitrogen [8219].
- Obtained by hydrogenolysis of 7-hydroxy-6-isobutyryl-2,2-dimethyl-8,8-bis(3-methyl-2-butenyl)-5-(8H)-chromanone [29525-19-7] in ethanol over 5\% Pd/C with hydrogen [8219].
oil [8219]; ${ }^{1} \mathrm{H}$ NMR [8219], IR [8219], UV [8219], MS [8219,8286].

1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methylbutyl)-7-benzofuranyl]-2-methyl-1-propanone
[18944-22-4] $\quad \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \quad$ mol.wt. 350.46
[22592-23-0]

$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \quad$ mol.wt. 350.46

Syntheses

- Obtained by hydrogenation of 1-[2,3-dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methyl-2-butenyl)-7-benzofuranyl]-2-methyl-1-propanone [24416-50-0] in ethanol with hydrogen in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ for 15 min [8219].
- Also obtained by hydrogenation of 3,5-dihydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-7-isobutyryl-5,5-bis(3-methyl-2-butenyl)-4-(2H)-benzofuranone (SM) with hydrogen in ethanol over Pd / C [8218,8285]. SM was obtained on mild air-oxidation of colupulone (m.p. 94.5-95.5 ${ }^{\circ}$).
m.p. $152.5-153^{\circ}$ [8219], $150.5-151.5^{\circ}$ [8285], 150° [8218];
${ }^{1} \mathrm{H}$ NMR [8218,8285], IR [8218,8219],
UV [8218,8219,8285], MS [8218,8285,8286].
1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-7-
(3-methylbutyl)-5-benzofuranyl]-2-methyl-1-propanone
[29525-24-4] $\quad \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \quad$ mol.wt. 350.46
 Syntheses
- Obtained by hydrogenolysis of 3,3a-dihydro-4-hydroxy-2-(1-hydroxy-1-methylethyl)-5-isobu-tyryl-3a,7-bis(3-methyl-2-butenyl)-6(2 H)-benzofuranone [29525-23-3] in ethanol with hydrogen over $5 \% \mathrm{Pd} / \mathrm{C}$ [8219].
- Also refer to: [8218,8285].
m.p. $\quad 124-126^{\circ}$ [8217,8219];
${ }^{1} \mathrm{H}$ NMR [8217,8219], IR [8219], UV [8219], MS [8219]; TLC [8219].
5,7-Dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-4-propyl-2H-1-benzopyran-2-one

USE: Insecticide [8053].

5,7-Dihydroxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-4-propyl-2H-1-benzopyran-2-one

[98192-71-3]
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5} \quad$ mol.wt. 358.43

Synthesis

- Refer to: [8053].

Isolation from natural sources

- From Mammea americana L. (Guttiferae) (compound mammea B/ AD) $[8053,8290]$.
m.p. $139-140^{\circ}$ [8290];
${ }^{1} \mathrm{H}$ NMR [8290], IR [8290], UV [8290], MS [8290].
Note: Insecticide [8053].
1-[5,8-Dihydroxy-7-methoxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-yl]-2-methyl-1-propanone (Helicerestripyrone-6-O-methyl ether)
[103771-77-3]

$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5} \quad$ mol.wt. 360.45
Isolation from natural sources
- From the aerial parts of Helichrysum nudifolium (Compositae) (compound 37) [8080].
yellow oil [8080];
${ }^{1} \mathrm{H}$ NMR [8080], IR [8080], MS [8080]; TLC [8080].
4-(1-Acetoxypropyl)-5,7-dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-2-one (-)
[879420-45-8]

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7} \quad$ mol.wt. 416.47
Isolation from natural sources
- From the seed of Mammea americana L. (Guttiferae) (compound Xc) [8291], (Clusiaceae) (compound mammea E/BD) [8292].
yellow semisolid [8292];
$(\alpha)_{\mathrm{D}}^{25}=-46^{\circ}$ (methanol) [8292];
${ }^{1} \mathrm{H}$ NMR [8291,8292], ${ }^{13} \mathrm{C}$ NMR [8292], UV [8291,8292],
MS [8291,8292]; HPLC [8292].
Note: Cytotoxicity [8292]
USE: Insecticide [8291].
BIOLOGICAL ACTIVITY: apoptosis induction (human colon cancer SW-480 cells) [8292].

4,5-Dichloro-3-hydroxy-6-[[7-hydroxy-5-methoxy-2,2-dimethyl-8-(2-methyl -1-oxopropyl)-2H-1-benzopyran-3-yl]oxy]-1,2-benzenedicarbonitrile

[72935-04-7] \quad\begin{tabular}{l}
Synthesis

Obtained by reaction of DDQ with 8-isobutyryl-
chromen (m.p. $67-68^{\circ}$) in in benzene atr.t. overnight
[8138]

\end{tabular}

m.p. $246-247^{\circ}$ [8138];
${ }^{1} \mathrm{H}$ NMR [8138], IR [8138], MS [8138].
5,7-Dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one (Isomesuol)
[16981-21-8]
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 392.45
 Syntheses

- Obtained by reaction of prenyl bromide with 5,7-di-hydroxy-4-phenyl-8isobutyrylcoumarin in 10% aqueous potassium hydroxide at 0° (20-35\%) [8053].
- Also obtained on treatment of mesuol with 5% methanolic or with 10% aqueous potassium hydroxide [8293]. Mesuol was isomerized to Isomesuol [8293].
m.p. 171° [8293]; ${ }^{1} \mathrm{H}$ NMR [8293], MS [8293].

5,7-Dihydroxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one (Mesuol)
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{5} \quad$ mol.wt. 392.45

Synthesis

- Obtained by prenylation of 5,7-dihy-droxy-4-phenyl-6-isobutyrylcoumarin [8053].

Isolation from natural sources

- From the kernel of Mammea americana L. (Guttiferae) [8053,8294].
- From the bark of Mammea aficana G. Don (Guttiferae) [8295].
- From Mesua ferrea Linn [8293].

Note: Insecticidal material [8053].
BIOLOGICAL ACTIVITY: Antibiotic [8293].
m.p. 154° [8293];
${ }^{1}$ H NMR [8293,8294], IR [8293], UV [8294], MS [8293,8294].

3-[[2,3-Dihydro-4,6-dihydroxy-2-(1-methylethenyl)-5-(2-methyl-1-oxopropyl)-7-benzofuranyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one
[75680-05-6]
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{7} \quad$ mol.wt. 428.48

Isolation from natural sources

- From the roots of Helichrysum cephaloideum and Helichrysum mixtum (Compositae) (compound 33) [8080], (compound 8) [8210].

3-[[5,7-Dihydroxy-2,2-dimethyl-6-(2-methyl-1-oxopropyl)-2H-1-benzopyran-8-yl]-methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one
[103784-19-6] $\quad \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{7} \quad$ mol.wt. 428.48

Isolation from natural sources

- From Helichrysum mixtum (Compositae) (compouund 35) [8080].
yellow oil [8080];
${ }^{1} \mathrm{H}$ NMR [8080], IR [8080], MS [8080].
1-[(2R,3S)-3,4-Dihydro-5,7-dihydroxy-2-methyl-3-(3-methyl-2-butenyl)-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone (+) (Hypercalyxone)
[658702-60-4]

$\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4} \quad$ mol.wt. 400.16
Isolation from natural sources
- From the aerial parts of Hypericum amblycalyx [8283].

Note: Cytotoxic activity [8283].
BIOLOGICAL ACTIVITY: Antibacterial [8283];
5,7-Dimethoxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-
4-phenyl-2H-1-benzopyran-2-one

Chapter 25
 Aromatic Ketones Containing One Pivaloyl Group

25.1 Benzene Derivatives

1-[2-Fluoro-6-(hydroxy-d)phenyl]-2,2-dimethyl-1-propanone

[195871-76-2] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{DFO}_{2} \quad$ mol.wt. 181.23

${ }^{13} \mathrm{C}$ NMR [8296], ${ }^{19} \mathrm{~F}$ NMR [8296].
1-(2-Fluoro-6-hydroxyphenyl)-2,2-dimethyl-1-propanone

[158897-29-1] | Synthesis |
| :--- |
| - Obtained (poor yield) by treatment of 6-fluoro-2- |
| methoxy-benzonitrile with a threefold excess of tert- |
| butyllithium in pentane for 196.22 |
| in followed by hydrolysis |
| pivalophenone (compound 19) with a large excess of aluminium chloride in carbon |
| disulfide overnight (ca. 1\%) (compound 6) [7794], (compound 8) [8296]. |
| Sublimation on a cold-finger at 50 and 0.1 mbar [7794]; |
| ${ }^{13} \mathrm{C}$ NMR [7794,8296], ${ }^{19} \mathrm{~F}$ NMR [8296]. |

1-(2-Hydroxyphenyl)-2,2-dimethyl-1-propanone

[22526-25-6] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Obtained by reaction of sec-butyllithium (1.1 equiv) with 2-bromophenyl pivalate in tetrahydrofuran/ethyl ether/hexane at -95° for 30 min and -78° for 30 min , then hydrolysis with saturated ammonium chloride (76\%) (metal-promoted Fries rearrangement) [6590].
- Also obtained by action of aluminium chloride with 2-methoxypivalophenone [7794].
${ }^{1} \mathrm{H}$ NMR [6590], ${ }^{13} \mathrm{C}$ NMR [6590,7794], IR [6590], MS [6628].

1-(3-Hydroxyphenyl)-2,2-dimethyl-1-propanone

[32578-14-6] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \quad$ mol.wt. 178.23

Syntheses

- Obtained by reaction of tricarbonyl-[(1,2,3,4-n)-1-acetoxy-5-endo-propionyl-1,3-cyclohexadiene]iron with trimethylamine N -oxide in DMA at r.t. for 1 h (16% and 59% of its acetoxy derivative) [8297].
- Also obtained by treatment of m-methoxypivalophenone with reluxing 45% hydrogen bromide in acetic acid for 4.5 h (72\%) [8298].
- Also refer to: [8299].
b.p. 0.2126° [8298]; m.p. 65-67 [8298];
${ }^{1} \mathrm{H}$ NMR [8298], IR [8298], UV [8298], MS [6628,8298].

1-(4-Hydroxyphenyl)-2,2-dimethyl-1-propanone

$[72569-10-9]$	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$	mol.wt. 178.23
OH	Syntheses	

- Obtained by Fries rearrangement of phenyl pivalate (1 mol) in nitromethane at 20° for 6 days,
- in the presence of hydrogen chloride (1 mol) and stannic chloride (2 mol) (23\%) [8300];
- in the presence of aluminium chloride (1.1 mol) (6%) [8300].
- Also obtained by Friedel-Crafts acylation of phenol (1 mol) with pivaloyl chloride $(1 \mathrm{~mol})$ in the presence of stannic chloride (2 mol) in nitromethane at 20° for 6 days (26%) [8300].
- Also obtained from p-acetoxybenzoyl chloride by treatment with lithium tertbutoxide and tert-butyllithium in a mixture pentane/tetrahydrofurane in the presence of cuprous iodide, followed by hydrolysis (80\%) [6683].
- Also obtained by an ultrasound assisted iodine catalyzed Friedel-Crafts acylation of phenol with pivaloyl chloride for 10 min at r.t. (84\%) [8301]. The same pivaloylation, carried out at silent (non-ultrasound) conditions, gave only, after 6 h at r.t., a yield of 62%.
- Also obtained by an ultrasound assisted aluminium chloride catalyzed FriedelCrafts acylation of phenol with pivaloyl chloride in hexane for 10 min at r.t. (82\%) [8302].
- Also refer to: [8303-8306].
b.p. ${ }_{0.5} 157^{\circ}$ [8302], b.p. ${ }_{5} 170-174^{\circ}$ [6683];
m.p. 90° [8300], $88-89^{\circ}$ [6683];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard ${ }^{\circ}$ 35271M) [6683,8300,8302], ${ }^{13} \mathrm{C}$ NMR [6683],
IR (Sadtler: standard $n^{\circ} 62639 \mathrm{~K}$) [6683,8300], UV [8300], MS [6628,6683,8300].

1-(2,3-Dihydroxyphenyl)-2,2-dimethyl-1-propanone

 viscous, yellow liquid [8307]; b.p. ${ }_{3} 114-119^{\circ}$ [8307].
Diacetate [101103-44-0] $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$ mol.wt. 278.30 (m.p. 70-71) [8307].

1-(2,4-Dihydroxyphenyl)-2,2-dimethyl-1-propanone

[60884-07-3]

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
Syntheses

- Preparation by total demethylation of 2,4-dime-thoxy-pivalophenone (m.p. 150°) with aluminium chloride (3 mol) in refluxing benzene for 5 h (80\%) [8308].
- Also obtained by reaction of pivalic acid with resorcinol in the presence of boron trifluoride etherate at r.t. for $30 \mathrm{~h}(28 \%)$ [8308].
m.p. 129° [8308].

USE: Aldose reductase inhibition [8309].
1-(2,5-Dihydroxyphenyl)-2,2-dimethyl-1-propanone
[35459-97-3] $\quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 194.23
 Syntheses

- Obtained by total demethylation of 2,5-dimethoxypivalophenone,
- with 48% hydrobromic acid in refluxing acetic acid for 3 h (49\%) [8310];
- with 45% hydrobromic acid in refluxing acetic acid for 1.5 h (54\%) [8311].
- Also obtained by irradiation of a 1,4-benzoquinone and trimethylacetaldehyde mixture for 18 days (56\%) [8312].
- Also refer to: [8313].
m.p. $95-98^{\circ}$ [8310], 95° [8312], $93-95^{\circ}$ [8311];
${ }^{1}$ H NMR [8311,8312], IR [8310-8312], MS [8311,8312,8314].
USE: Antioxidizing agent [8315,8316].

1-(2,6-Dihydroxyphenyl)-2,2-dimethyl-1-propanone

$$
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \quad \text { mol.wt. } 194.23
$$

1-(3,4-Dihydroxyphenyl)-2,2-dimethyl-1-propanone

$[72017-59-5]$	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$	mol.wt. 194.23
OH	Synthesis	

- Preparation by total demethylation of 3,4-dimethoxy-pivalophenone by heating with pyridinium chloride at $200-220^{\circ}$ for $1 \mathrm{~h}(88 \%)$ [6828].
m.p. $127-129.5^{\circ}$ [6828].

BIOLOGICAL ACTIVITY: Pharmacology [6828]; central nervous system depressant [6828].

1-(2-Fluoro-6-methoxyphenyl)-2,2-dimethyl-1-propanone

[158897-28-0]
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{2} \quad$ mol.wt. 210.25

Synthesis

- Preparation by treatment of 6-fluoro-2-methoxybenzonitrile with a threefold excess of tert-butyllithium in pentane for 1 h , followed by hydrolysis [7794].
${ }^{13}$ C NMR [7794].
1-(2-Hydroxy-4-methylphenyl)-2,2-dimethyl-1-propanone
[14194-55-9] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
 Syntheses
- Obtained by Fries rearrangement of 3-methylphenyl pivalate (1 mol) in nitromethane at 20° for 6 days,
- in the presence of hydrogen chloride (1 mol) and stannic chloride (2 mol) (60%) [8300];
- in the presence of aluminium chloride (1.1 mol) (27\%) [8300].
- Also obtained by Fries rearrangement of 3-methylphenyl pivalate in nitrobenzene in the presence of aluminium chloride at r.t. for $142 \mathrm{~h}(22 \%)$ [6571].
- Also obtained by Friedel-Crafts acylation of 3-methylphenol (1 mol) with pivaloyl chloride (1 mol) in the presence of stannic chloride (2 mol) in nitromethane at 20° for 6 days (40%) [8300].
b.p. ${ }_{7.5} 121-126^{\circ}$ [6571], b.p. ${ }_{21} 140-141^{\circ}$ [8300];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 30300M) [8300],
IR (Sadtler: standard n° 57345K) [8300], UV [8300], MS [8300].

1-(2-Hydroxy-5-methylphenyl)-2,2-dimethyl-1-propanone

[72569-13-2]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 192.26

Syntheses

- Obtained by Fries rearrangement of 4-methylphenyl pivalate (1 mol) in nitromethane at 20° for 6 days,
- in the presence of hydrogen chloride (1 mol) and stannic chloride (2 mol) (24%) [8300];
- in the presence of aluminium chloride (1.1 mol) (9%) [8300].
- Also obtained by Fries rearrangement of 4-methylphenyl pivalate in nitrobenzene in the presence of aluminium chloride at r.t. for $162 \mathrm{~h}(3 \%)$ [6571].
- Also obtained by Friedel-Crafts acylation of 4-methylphenol (1 mol) with pivaloyl chloride (1 mol) in the presence of stannic chloride (2 mol) in nitromethane at 20° for 6 days (24%) [8300].
- Preparation by heating 2-methoxy-5-methylisobutyrophenone with pyridinium chloride at reflux for 2 h (83\%) [6672].
- Also obtained by reaction of sec-butyllithium (1.0-1.1 equiv) with 2-bromo-4methylphenyl pivalate (metal-promoted Fries rearrangement),
- in tetrahydrofuran/ethyl ether/hexane at -95° for 30 min and -78° for 30 min , then hydrolysis with saturated ammonium chloride (71\%) [6590];
- in tetrahydrofuran at -100° for 2 h , followed by hydrolysis (25\%) [8317].
- Also refer to: [7987].
oil [8300]; b.p. ${ }_{0.3} 51^{\circ}$ [8317], b.p. 80° [6571];
$\mathrm{n}_{\mathrm{D}}^{20}=1.5341$ [8317];
m.p. 32° [8317];
${ }^{1} \mathrm{H}$ NMR [6590,8300,8317], ${ }^{13} \mathrm{C}$ NMR [6590], IR [6590,8300,8317], UV [8300], MS [8300,8317].

1-(4-Hydroxy-3-methylphenyl)-2,2-dimethyl-1-propanone
mol.wt. 192.26

- Also obtained by Friedel-Crafts acylation of 2-methylphenol (1 mol) with pivaloyl chloride (1 mol) in the presence of stannic chloride (2 mol) in nitromethane at 20° for 6 days (38\%) [8300].
m.p. 118° [8300];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 35272M) [8300],
IR (Sadtler: standard n ${ }^{\circ}$ 62640K) [8300], UV [8300], MS [8300].
1-(2-Methoxyphenyl)-2,2-dimethyl-1-propanone
[22526-24-5] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Preparation by treatment of 2-methoxybenzoic acid with tert-butyllithium (3 equiv) in pentane (60\%) [7794].
- Also refer to: [8318].

1-(3-Methoxyphenyl)-2,2-dimethyl-1-propanone

[32578-12-4]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26
Syntheses

- Preparation by treatment of 1-(3-methoxyphenyl)-2,2dimethylpropanol with manganese dioxide in refluxing benzene for $15 \mathrm{~h}(81 \%)$ [8298].
- Also obtained by reaction of m -anisic acid with tert-butylliyhium at -78° [8319].
- Also refer to: [8320].
b.p. ${ }_{13} 129-130^{\circ}$ [8298];
${ }^{1} \mathrm{H}$ NMR [8298,8319], IR [8298].
1-(4-Methoxyphenyl)-2,2-dimethyl-1-propanone
[2040-26-8] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 192.26

Syntheses

- Preparation by reaction of pivaloyl chloride with anisole,
- in the presence of bismuth (III) chloride at 100° for 3 h (94\%) [8126];
- in the presence of indium metal (1 equiv) at 100° for 6 h without solvent (76%) or in dioxane for 4 h (80%) [8321].
- Also obtained by reaction of pivalic anhydride with anisole in acetonitrile in the presence of $\mathrm{TiCl}(\mathrm{OTf})_{3} / \mathrm{TfOH}$ at r.t. for $12 \mathrm{~h}(68 \%)$ [8128].
- Also refer to: [7095,8129,8302,8322-8324].
b.p. ${ }_{2} 116-118^{\circ}$ [7095], b.p. ${ }_{8} 138-140^{\circ}$ [8325]; ${ }^{13} \mathrm{C}$ NMR [7095].

1-(2,4-Dihydroxy-6-methylphenyl)-2,2-dimethyl-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Synthesis

- Obtained by reaction of pivalic acid with orcinol in the presence of boron trifluoride etherate at r.t. for 5 days (15\%) [8308].
m.p. 148° [8308]; MS [8308]; TLC [8308].

1-(2,6-Dihydroxy-4-methylphenyl)-2,2-dimethyl-1-propanone

[60884-09-5]

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 208.26
Synthesis

- Obtained by reaction of pivalic acid with orcinol in the presence of boron trifluoride etherate at r.t. for 5 days [8308]. pale yellow oil [8308]; b.p. 220° [8308].

1-(2-Hydroxy-6-methoxyphenyl)-2,2-dimethyl-1-propanone

[60884-04-0] $\quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \quad m o l . w t .208 .26$

Synthesis

- Obtained by partial demethylation of 2,6-dimethoxypivalophenone (m.p. 86°) with aluminium chloride (3 mol) in refluxing benzene for $6 \mathrm{~h}(26 \%)$ [8308]. m.p. 82° [8308].

1-(2-Hydroxy-3,4-dimethylphenyl)-2,2-dimethyl-1-propanone

[72569-14-3]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 206.28
Syntheses

- Obtained by Fries rearrangement of 2,3-dimethylphenyl pivalate (1 mol) in nitromethane at 20°,
- in the presence of hydrogen chloride (1 mol) and stannic chloride (2 mol) for $24 \mathrm{~h}(47 \%)$, but only (41%) after 6 days of reaction [8300];
- in the presence of aluminium chloride (1.1 mol) for 6 days (29%) [8300].
- Also obtained by Friedel-Crafts acylation of 2,3-dimethylphenol (1 mol) with pivaloyl chloride (1 mol) in the presence of stannic chloride (2 mol) in nitromethane at 20° for $24 \mathrm{~h}(51 \%)$, but only (39%) after 6 days of reaction [8300].
m.p. 38° [8300];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 35273M) [8300],
IR (Sadtler: standard $n^{\circ} 62641 \mathrm{~K}$) [8300], UV [8300], MS [8300].

1-(2-Hydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone

[72569-15-4]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
mol.wt. 206.28
Syntheses

- Obtained by Fries rearrangement of 2,4-dimethylphenyl pivalate (1 mol) in nitromethane at 20° for 6 days,
- in the presence of hydrogen chloride (1 mol) and stannic chloride (2 mol) (13%) [8300];
- in the presence of aluminium chloride (1.1 mol) (4\%) [8300].
- Also obtained by Friedel-Crafts acylation of 2,4-dimethylphenol (1 mol) with pivaloyl chloride (1 mol) in the presence of stannic chloride (2 mol) in nitromethane at 20° for 6 days (10%) [8300].
m.p. 41° [8300];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 35274M) [8300],
IR (Sadtler: standard n° 62642K) [8300], UV [8300], MS [8300].

1-(2-Hydroxy-4,5-dimethylphenyl)-2,2-dimethyl-1-propanone

[72569-16-5]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Syntheses

- Obtained by Fries rearrangement of 3,4-dimethylphenyl pivalate (1 mol) in nitromethane at 20° for 6 days,
- in the presence of hydrogen chloride (1 mol) and stannic chloride (2 mol) (64%) [8300];
- in the presence of aluminium chloride (1.1 mol) (47\%) [8300].
- Also obtained by Friedel-Crafts acylation of 3,4-dimethylphenol (1 mol) with pivaloyl chloride (1 mol) in the presence of stannic chloride (2 mol) in nitromethane at 20° for 6 days (62%) [8300].
m.p. 69° [8300];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 35275M) [8300],
IR (Sadtler: standard $n^{\circ} 62643 \mathrm{~K}$) [8300], UV [8300], MS [8300].

1-(4-Hydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone

[72569-12-1]

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28
Syntheses

- Obtained by Fries rearrangement of 2,6-dimethylphenyl pivalate (1 mol) in nitromethane at 20° for 6 days,
- in the presence of hydrogen chloride (1 mol) and stannic chloride (2 mol) (42\%) [8300];
- in the presence of aluminium chloride (1.1 mol) (3\%) [8300].
- Also obtained by Friedel-Crafts acylation of 2,6-dimethylphenol (1 mol) with pivaloyl chloride (1 mol) in the presence of stannic chloride (2 mol) in nitromethane at 20° for 6 days (28%) [8300].
N.B.: By irradiation of 2,4,6-trimethylphenyl pivalate (mesityl pivalate) in acetonitrile at 254 nm for 8 h at 0°, there is a photodecarboxylation and formation of 2-tert-butylmesitylene (16\%) [8326].
m.p. 67° [8300]; ${ }^{1} \mathrm{H}$ NMR [8300], IR [8300], UV [8300], MS [8300].

1-(2-Methoxy-5-methylphenyl)-2,2-dimethyl-1-propanone

[54696-08-1] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Synthesis

- Refer to: [6672].

1-(2-Methoxy-6-methylphenyl)-2,2-dimethyl-1-propanone

[162052-63-3]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28 Syntheses
Obtained by oxidation of 2,2-dimethyl-1-(2-methoxy-6- methylphenyl)-1-propanol with PCC in methylene chlo- ride (90\%) [8327].	
- Also refer to: [8328].	

yellow liquid [8327];
${ }^{1} \mathrm{H}$ NMR [8327], IR [8327], MS [8327]; TLC [8327].

1-(4-Methoxy-2-methylphenyl)-2,2-dimethyl-1-propanone

[2234-19-7] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 206.28

Syntheses

- Obtained by reaction of pivaloyl chloride with 3-methylanisole in petroleum ether in the presence of aluminium chloride, first at 0°, then at $55-60^{\circ}$ for $15 \mathrm{~min}(63 \%)$ [8329].
- Also refer to: [7095].
b.p. ${ }_{0.8} 100^{\circ}$ [7095], b.p. $126-128^{\circ}$ [8329];
m.p. $\quad 73.5-74^{\circ}$ [8329]; ${ }^{13} \mathrm{C}$ NMR [7095].

```
1-(4-Methoxy-3-methylphenyl)-2,2-dimethyl-1-propanone
[181260-67-3] 毎13 H18 O
```



```
Syntheses
- Obtained by reaction of pivaloyl chloride with 2-methylanisole in petroleum ether in the presence of aluminium chloride, first at \(0^{\circ}\), then at \(55-60^{\circ}\) for 15 min [8329].
- Also obtained by reaction of pivalic anhydride with 2-methylanisole in acetonitrile in the presence of \(\mathrm{TiCl}(\mathrm{OTf})_{3} / \mathrm{TfOH}\) at r.t. for 12 h (64\%) [8128].
b.p. \(127-129^{\circ}\) [8329]; m.p. \(51-52^{\circ}\) [8329].
```


1-(5-Methoxy-2-methylphenyl)-2,2-dimethyl-1-propanone

[2030-70-8]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$	mol.wt. 206.2
CH_{3}	Syntheses	
$\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}_{3}$	- Obta aniso chlor	reaction of piva roleum ether in at 0°, then at : [7095].
b.p. $130-132^{\circ}$ [8329];		
m.p. 51-	50-51 ${ }^{\circ}$; ${ }^{13} \mathrm{C}$ NMR [7

1-(2,4-Dihydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone

[267001-74-1] $\quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28

Synthesis

- Obtained by reaction of pivalic acid with 2,4-dimethyl-resorcinol in the presence of boron trifluoride etherate at 120° for $1-2 \mathrm{~h}$ under an argon atmosphere. Then, the resulting complex was refluxed for 30 min to 1 h in an aqueous THF (70-80\%) [8155].
m.p. $61-62^{\circ}$ [8155];
${ }^{1} \mathrm{H}$ NMR [8155], ${ }^{13} \mathrm{C}$ NMR [8155], IR [8155], MS [8155]; TLC [8155].

1-(2,4-Dimethoxyphenyl)-2,2-dimethyl-1-propanone

[60884-08-4]	Syntheses
- Preparation by reaction of pivaloyl chloride with 1,3-di-methoxybenzene in the presence of stannic chloride/hydrochloric acid gas in nitromethane at r.t. for 6 days (quantitative yield) [8300].	

- Also obtained on hydrolysis of 2-(2,4-dimethoxyphenyl)-2-(1,1-dimethylethyl)-1,3-benzoxathiole [111122-89-5] (m.p. 110-111) by mercury(II) oxide/35\% aqueous tetrafluoroboric acid at r.t. according to [8330], (quantitative yield) [8331].
- Also refer to: [8309].
b.p. ${ }_{12} 171-173^{\circ}$ [8331], b.p. ${ }_{40} 193-194^{\circ}$ [8300];
${ }^{1}$ H NMR (Sadtler: standard ${ }^{\circ}$ 30301M) [8300], IR (Sadtler: standard n° 57346) [8300],
UV [8300], MS [8300].
1-(2,5-Dimethoxyphenyl)-2,2-dimethyl-1-propanone

[39868-14-9]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28
OCH_{3}	Syntheses
	- Preparation by reaction of pivaloyl chloride with hydroquinone dimethyl ether in the presence of aluminium chloride in carbon disulfide [7336]. - Also refer to: [8332].
m.p. $46.5-48.5^{\circ}$	10],
${ }^{1} \mathrm{H}$ NMR [7336],	7336], UV [7336], MS [7336].

1-(3,4-Dimethoxyphenyl)-2,2-dimethyl-1-propanone

[30314-46-6]	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 222.28 Synthesis
Obtained by reaction of pivalic anhydride with veratrole in acetonitrile in the presence of $\mathrm{TiCl}(\mathrm{OTf})_{3} / \mathrm{TfOH}$ at r.t. for $12 \mathrm{~h}(66 \%)$	
[8128].	

1-[3-(Hydroxymethyl)-4-methoxyphenyl]-2,2-dimethyl-1-propanone

USE: Intermediate for the preparation of anticonvulsants [8333,8334].

2,2-Dimethyl-1-(2,4,5-trihydroxy-3,6-dimethylphenyl)-1-propanone

[267001-65-0] \quad\begin{tabular}{l}
Synthesis

Obtained by thermal rearrangement of 2,6-dime-
thyl-4-(trimethylacetyl)-3,6-dihydroxy-2,4-cyclo-
hexadien-1-one in refluxing benzene for $12 \mathrm{~h}(93 \%)$

[8155].
\end{tabular}

Caution: The ketone obtained was stored under argon to prevent its oxidation to 3,6-dimethyl-5-(trimethylacetyl)-2-hydroxy-p-quinone.
yellow glass [8155];
${ }^{1} \mathrm{H}$ NMR [8155], ${ }^{13} \mathrm{C}$ NMR [8155], IR [8155], MS [8155]; TLC [8155].

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2,2-dimethyl-1-propanone

[41247-25-0]
 $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 238.28 Synthesis

- Obtained by enzymic dehydration of 2,6-dimethoxy-4-(1-hydroxyneopentyl)phenol [38775-76-7] only (44\% yield) or in mixture with 4-hydroxy-3,5-dimethoxycinnamyl alcohol [537-33-7] (poor yield) [8335].
oil [8335]; ${ }^{1} \mathrm{H}$ NMR [8335], MS [8335]; TLC [8335].

1-(3,4-Dimethoxy-2-methylphenyl)-2,2-dimethyl-1-propanone

 $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 236.31
 Synthesis

- Obtained by reaction of pivalonitrile with 3,4-dimethoxy-2methylphenylmagnesium bromide in THF (54\%) [7390].
b.p. ${ }_{0.04} 81^{\circ}$ [7390]; m.p. 28° [7390].

2,2-Dimethyl-1-(2,4,6-trimethoxyphenyl)-1-propanone

[111122-82-8] \begin{tabular}{l}
Syntheses

- Obtained on hydrolysis of 2-(1,1-dimethylethyl)-

2-(2,4,6-trimethoxyphenyl)-1,3-benzoxathiole
[111122-92-0] by mercury(II) oxide/35\% aque-
ous tetrafluoroboric acid at r.t. according to
[8330], (quantitative yield) [8331].

\end{tabular}

m.p. $\quad 70-71^{\circ}$ [8331]; ${ }^{1} \mathrm{H}$ NMR [8331], IR [8331], MS [8331].

1-[2-Hydroxy-6-(2-methyl-1,3-dioxolan-2-yl)phenyl]-2,2-dimethyl-1propanone

1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone

[5384-70-3] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34

Syntheses

- Obtained by irradiation (450 W Hanovia lamp) of o-tert-butylphenyl pivalate (b.p..$_{0.7} 93^{\circ}$) in pentane or benzene solutions (14\%) [8337].
- Also obtained by heating 6,11-di-tert-butyl-1,2,4-trioxa-spiro[4,6]undeca-6,8, 10-triene (m.p. 78-79 ${ }^{\circ}$) in methylcyclohexane at 100° for $1 \mathrm{~h}(60 \%)$ [8338].
- Also refer to: [8339]. m.p. 69-69.5º [8337]; IR [8337], UV [8337].

1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]-2,2-dimethyl-1-propanone
[5384-64-5] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34

Synthesis

- Obtained by irradiation (450 W Hanovia lamp) of o-tertbutylphenyl pivalate (b.p. ${ }_{0.7} 93^{\circ}$) in pentane or benzene solutions (3\%) [8337].
m.p. $152-153^{\circ}$ [8337]; IR [8337], UV [8337].

1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone
[186962-25-4] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34
 Synthesis

- Obtained by demethylation of 5-tert-butyl-2-pivaloyl-anisole with aluminium chloride in benzene at 50° for $43 \mathrm{~h}(34 \%)$ [8340].
colourless oil [8340]; ${ }^{1} \mathrm{H}$ NMR [8340], ${ }^{13} \mathrm{C}$ NMR [8340], IR [8340].

1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone

[186962-23-2] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \quad$ mol.wt. 234.34

Synthesis

- Obtained by demethylation of 4-tert-butyl-2-pivaloylanisole with aluminium chloride in benzene at 50° for 27 h (63\%) [8340].
colourless oil [8340];
${ }^{1} \mathrm{H}$ NMR [8340], ${ }^{13} \mathrm{C}$ NMR [8340], IR [8340].

1-[3-(1,1-Dimethylethyl)-4,5-dihydroxyphenyl]-2,2-dimethyl-1-propanone

[81389-67-5] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 250.34

Syntheses

- Preparation by reduction of 4-pivaloyl-2,6-di-tert-butyl-6-hydroperoxy-2,4-cyclohexadienone (m.p. 112°) with dimethyl sulfide at r.t. (quantitative yield) [7727,8231].
m.p. $\quad 144-146^{\circ}$ [8231]; ${ }^{1} \mathrm{H}$ NMR [8231].

1-[4-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]-2,2-dimethyl-1-propanone

[35460-03-8]

m.p. $185-186^{\circ}$ [8310]; IR [8310].

2,2-Dimethyl-1-(2,3,4-trimethoxy-6-methylphenyl)-1-propanone

[162052-64-4] $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 266.34

Synthesis

- Obtained by oxidation of 2,2-dimethyl-1-(2,3,4-trimethoxy-6-methylphenyl)-1-propanol (b.p. $115-117^{\circ}$) with PCC in methylene chloride (92\%) [8327].
- Also refer to: [8328].
m.p. $93-94^{\circ}$ [8327]; ${ }^{1} \mathrm{H}$ NMR [8327], IR [8327], MS [8327].

1-[4-(1,1-Dimethylethyl)-2-methoxyphenyl]-2,2-dimethyl-1-propanone

[186962-24-3]

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 248.37
Synthesis

- Obtained by reaction of pivaloyl chloride with 3-tert-butylanisole in the presence of aluminium chloride in carbon disulfide at r.t. for $1 \mathrm{~h}(17 \%)$ [8340].
m.p. $45.5-46^{\circ}$ [8340];
${ }^{1} \mathrm{H}$ NMR [8340], ${ }^{13} \mathrm{C}$ NMR [8340], IR [8340].

1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-2,2-dimethyl-1-propanone
[186962-22-1] $\quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \quad$ mol.wt. 248.37

Synthesis

- Obtained by reaction of pivaloyl chloride with 4-tertbutylanisole in the presence of aluminium chloride in carbon disulfide at r.t. for $1 \mathrm{~h}(25 \%)$ [8340].
m.p. $\quad 0-31^{\circ}$ [8340];
${ }^{1} \mathrm{H}$ NMR [8340], ${ }^{13} \mathrm{C}$ NMR [8340], IR [8340].

1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-2,2-dimethyl-1-propanone

[868266-11-9] \quad| | $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 254.33 |
| :--- | :--- |
| | SOC $\left(\mathrm{CH}_{3}\right)_{3}$ |
| Synthesis | |

1-[3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]-2,2-dimethyl-1-propanone

[145746-56-1] $\quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 334.39

Synthesis

- Preparation by addition of sodium benzenesulfinate in water to pivaloyl-1,4-benzoquinone and trifluoroacetic acid in methylene chloride (66\%) [8341].
m.p. $101.5-104^{\circ}$ [8341];
${ }^{1} \mathrm{H}$ NMR [8341], IR [8341], MS [8341].
1-(4-Hydroxy-3,5-dipropylphenyl)-2,2-dimethyl-1-propanone
 $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \quad$ mol.wt. 262.39

> Synthesis

- Preparation by heating a suspension of sodium pivalate and 2,6-dipropylphenol in neat triflic acid [6402].

1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-2,2-dimethyl-1-propanone
[39868-15-0]

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \quad$ mol.wt. 278.39
Syntheses

- Preparation by reaction of pivaloyl chloride with 2-tert-butylhydroquinone dimethyl ether in the presence of aluminium chloride in carbon disulfide [7336] or in a mixture of nitrobenzene/tetrachloroethane (6\%) [8310].
m.p. $62.5-63.5^{\circ}$ [8310];
${ }^{1} \mathrm{H}$ NMR [7336,8310], IR [7336,8310], UV [7336], MS [7336].

1-(4'-Methoxy[1,1'-biphenyl]-2-yl-3,4,5,6-d \mathbf{d}_{4})-2,2-dimethyl-1-propanone

[852290-70-1]
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{D}_{4} \mathrm{O}_{2}$
mol.wt. 272.38
Synthesis

- Refer to: [8342].

1-(4'-Methoxy[1,1'-biphenyl]-2-yl-3-d)-2,2-dimethyl-1-propanone
[852290-72-3]
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{DO}_{2}$
mol.wt. 269.36

Synthesis

- Refer to: [8342].

1-(4'-Methoxy[1,1'-biphenyl]-2-yl)-2,2-dimethyl-1-propanone

1-(4-Methoxy[1,1'-biphenyl]-3-yl)-2,2-dimethyl-1-propanone

| [868266-10-8] | $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$$\quad$ mol.wt. 268.36 | |
| :--- | :--- | :--- | :--- |
| | SyC $\left(\mathrm{CH}_{3}\right)_{3}$ | Synthesis |

1-(5-Methoxy[1,1'-biphenyl]-2-yl)-2,2-dimethyl-1-propanone

[501374-02-3]

- 2,4-dimethoxypivalophenone with phenylbor-
onate via a carbon-oxygen bond cleavage (76%)
- 48318];
4-methoxypivalophenone with phenylboronate
[8342] (78\%) [8343].

1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone
$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2} \quad$ mol.wt. 290.45

Synthesis

- Refer to: [8344].

Oxime [161429-78-3] $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$ mol.wt. 305.46.
USE: Cosmetics containing this compound as chelating photoprotectants [8344].

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2,2-dimethyl-1-propanone

[14035-38-2]

 $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2} \quad$ mol.wt. 290.45 Syntheses

- Preparation by acylation of 2,6-di-tert-butylphenol with pivalic acid in trifluoroacetic anhydride at r.t. [8231].
- Also refer to: [8234,8345].
m.p. $\quad 137-139^{\circ}$ [8231].

Note: Toxicity to mosquito [8231].
USE: Stabilizer for plastics, oils and fats against heat, light and oxidation [8345].
O-methyloxime [14446-95-8] $\quad \mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}$ mol.wt. 319.49 [8346].

2,2-Dimethyl-1-(3',4',5'-trimethoxy[1,1'-biphenyl]-2-yl)-1-propanone

[878555-18-1]

$$
\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \quad \text { mol.wt. } 328.41
$$

Syntheses

- Obtained from cobalt(II)-catalyzed crosscoupling between 2 -fluoropivalophenone and 3,4,5-trimethoxyphenylcopper (formed by transmetallation of 3,4,5-trimethoxyphenylmagnesium chloride with CuCN .2 LiCl) at 80° for $1 \mathrm{~h}(71 \%)$ [8347,8348].
- The same reaction realized with 2-chloropivalophenone at 80° for 30 min gives (81%) of the titled ketone [8347].
- Also refer to: [8349].
m.p. $<30^{\circ}$ [8348];
${ }^{1} \mathrm{H}$ NMR [8348], ${ }^{13} \mathrm{C}$ NMR [8348], IR [8348], MS [8348].
2,2-Dimethyl-1-(2,2',6,6'-tetramethoxy[1,1'-biphenyl]-3-yl)-1-propanone
[475502-03-5] $\quad \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5} \quad \mathrm{~mol}$.wt. 358.43

Synthesis

- Preparation by reaction of pivaloyl chloride with $2,2^{\prime}, 6,6^{\prime}$-tetramethoxydiphenyl in the presence of zinc in toluene at 90° for 12 h under nitrogen (65\%) [8350].
m.p. $\quad 93-94^{\circ}$ [8350], ${ }^{1} \mathrm{H}$ NM [8350], ${ }^{13} \mathrm{C}$ NMR [8350].

1-[3-Hydroxy-2-[2-(1-methyl-1H-indol-2-yl)ethenyl]phenyl]-2,
 2-dimethyl-1-propanone

[204569-03-9] $\quad \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}$ mol.wt. 333.43

Synthesis

- Refer to: [8351].

1-[3-(9-Anthracenyl)-5-hydroxyphenyl]-2,2-dimethyl-1-propanone

$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}$
mol.wt. 354.45
Synthesis

- Refer to: [8352]. fluorescence spectra [8352].

25.2 Naphthalene Derivatives

1-(1-Hydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone

[100976-03-2]

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$
mol.wt. 228.29
Syntheses

- Preparation by reaction of pivalic acid with α-naphthol in the presence of boron trifluoride at 70° for 2 h (72\%) [7775].
- Also obtained by adding tert-butyllithium to 1-hydroxy-2-naphthoic acid at -78°; then the temperature was allowed to rise $25^{\circ}(42 \%)$ [8263].
- Also obtained by Fries rearrangement of 1-naphthyl pivalate with stannic chloride [8353].
m.p. 68° [7775], $66-68^{\circ}$ [8353]; IR [8353].

1-(3-Hydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone

[574001-78-8]
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 228.29

Synthesis

- Refer to: [8354] (compound 8u).
${ }^{1} \mathrm{H}$ NMR [8354], ${ }^{13} \mathrm{C}$ NMR [8354], IR [8354];
TLC [8354].

1-(4-Hydroxy-1-naphthalenyl)-2,2-dimethyl-1-propanone

[882698-66-0] $\quad \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \quad$ mol.wt. 228.29

Synthesis

- Refer to: [8355] (Japanese patent).

USE: Preparation of azoquinone compound suitable as electron transport agent for electrophotographic photoconductor to improve sensitivity [8355].

1-(1,4-Dihydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone
[128462-68-0]
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 244.29

Synthesis

- Obtained by demethylation of the corresponding 4-methyl ether with concentrated hydrobromic acid in acetic acid [7813].

1-(2-Methoxy-1-naphthalenyl)-2,2-dimethyl-1-propanone

[130138-40-8]	Col.wt. 242.32 Synthesis
Obtained by electrochemical acylation of 2-methoxy- naphthalene with pivalic anhydride in methylene chlo- ride in the presence of LiClO_{4} at $35^{\circ}(22 \%)$ [7841]. Also refer to: [8356].	

1-(3-Methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 242.32

Synthesis

- Obtained by reaction of N -methoxy-N-methyl-2,2-dimethyl-propanamide with 2-methoxynaphthalene (multistage) [8354].

1-(4-Methoxy-1-naphthalenyl)-2,2-dimethyl-1-propanone
Syntheses

Preparation by reaction of pivaloyl chloride with
1-methoxy-naphthalene in the presence of aluminium
chloride in carbon disulfide [7849], according to the
procedure [8268].

- Also obtained by methylation of 1-methoxy-4-isobutyryl-naphthalene [7845], according to the procedure [8357].
m.p. $\quad 94^{\circ}$ [7845], $92-94^{\circ}$ [7849]; ${ }^{1} \mathrm{H}$ NMR [7849].

1-(4-Methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone

[177028-19-2]

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 242.32
Synthesis

- Obtained (by-product) by reductive coupling of 2-pivaloyl-1,4-dimethoxynaphthalene (m.p. $93-94^{\circ}$) with $\left(\mathrm{TiCl}_{3}\right)_{2} \mathrm{LiAlH}_{4}$ in refluxing THF for 3 h under nitrogen (1\%) [8358].
colourless oil [8358]; ${ }^{1} \mathrm{H}$ NMR [8358], MS [8358].

1-(6-Methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone

[67460-92-8]

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \quad$ mol.wt. 242.32
Syntheses

- Obtained by reaction of tert-butyllithium withN,N-dimethyl-6-methoxynaphthalene-2-carboxamide in THF at -78°, followed by quenching with ethyl iodide (73\%) [8359].
- Also obtained by action of sodium amide and methyl iodide with 6-isobutyrylneroline (methylation) (54\%) [7855].
- Also obtained by action of tert-butylmagnesium chloride with 2-cyanoneroline in ethyl ether (25\%) [7855], according to [8360].
- Also obtained by reaction of pivaloyl chloride with 2-methoxynaphthalene (neroline) in the presence of stannic chloride in nitrobenzene, first at 0°, then at r.t. for $1.5 \mathrm{~h}(12 \%)$ [7855].
- Also refer to: $[7802,8356]$.
b.p. ${ }_{0.5} 180-185^{\circ}$ [7855]; m.p. $83-84^{\circ}$ [7855];
${ }^{1} \mathrm{H}$ NMR [8359], MS [8359].

1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone

[128462-66-8]
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 258.32

Syntheses

- Obtained by reaction of 2-pivaloyl-1,3-indandione with diazomethane in ethyl ether (91\%) [7813].
- Also obtained by reaction of pivaloyl chloride with 1-hydroxy-4-methoxynaphthalene in the presence of stannic chloride in 1,2-dichloroethane, first at -78° for 15 min , then at r.t. for 2 h under nitrogen (10\%) [8358].

Isolation from Natural Sources

- From the sponge Petrosia seriata [8361].
m.p. $\quad 103-104^{\circ}$ [8358]; ${ }^{1} \mathrm{H}$ NMR [8358], MS [8358].

BIOLOGICAL ACTIVITY: Natural cardioactive hydroquinone [8361].

1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone

[92920-82-6]	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 258.32
OH	Syntheses
	- Obtained by photo-Fries rearrangement of 5-meth-oxy-1-naphthyl pivalate (m.p. 123-124ㅇ) [7864], in methanol [7864,8362].
OCH_{3}	- Also refer to: [8363].
m.p. 76-77 ${ }^{\circ}$ [7864];	H NMR [8363], IR [7864], MS [7864].

1-(1,4-Dimethoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone
[177028-17-0]
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 272.34
Synthesis

- Preparation: 1.6 M n-butyllithium in hexane was added to a solution of 1,4-dimethoxynaphthalene in THF at 0° under a nitrogen atmosphere, and the mixture stirred at r.t. for 5 h . Then, in nitrogen atmosphere and at -78°, the reaction mixture was added to pivaloyl chloride in THF and stirred 30 $\min (58 \%)$ [8358].
m.p. $93-94^{\circ}$ [8358]; ${ }^{1} \mathrm{H}$ NMR [8358], ${ }^{13} \mathrm{C}$ NMR [8358]; TLC [8358].

25.3 Heterocyclic Derivatives

1-(4-Hydroxy-3-methyl-6-phenyl-2-benzofuranyl)-2,2-dimethyl-1-propanone
[687184-57-1] $\quad \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} \quad$ mol.wt. 308.38

Synthesis

- Refer to: [7968] (compound 11i).

BIOLOGICAL ACTIVITY: Anticancer [7968].
1-[5-Hydroxy-2-phenyl-6-(phenylamino)-4-benzoxazolyl]-2, 2-dimethyl-1-propanone
[65908-29-4]

$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \quad$ mol.wt. 386.45
Synthesis

- Obtained by heating 2,5-dianilino-3-pivaloyl-1,4-benzoquinone with N -phenylbenzamidine at $120-125^{\circ}$ for $1 \mathrm{~h}(26 \%)$ [8364].
m.p. 126° [8364];
${ }^{1} H$ NMR [8364], IR [8364], UV [8364], MS [8364].

Part XI
Di- and Polyketones

Chapter 26

Aromatic Polyketones Containing Only Propionyl Groups

26.1 Propionyl Groups Located on the Same Ring

1,1'-(2,4-Dihydroxy-5-nitro-1,3-phenylene)bis-1-propanone

[105910-12-1] $\quad \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 267.24

Synthesis

- Obtained (poor yield) by Fries rearrangement of 4-nitroresorcinol dipropionate with aluminium chloride (3.3 equiv) in nitrobenzene, first at $95-100^{\circ}$ for 2 h , then at r.t. for $72 \mathrm{~h}(3 \%)$ [6560].
m.p. $132-133^{\circ}$ [6560].

1,1'-(4,6-Dihydroxy-5-nitro-1,3-phenylene)bis-1-propanone

[105905-84-8]

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{6} \quad$ mol.wt. 267.24
Syntheses

- Preparation by Fries rearrangement of 2-nitroresorcinol dipropionate (m.p. 66°) with aluminium chloride (3.3 equiv) in nitrobenzene at 100° for $3 \mathrm{~h}(67-80 \%)$ or without solvent at $100-110^{\circ}$ for 3 h (23\%) [6554].
- Also obtained from 4,6-dipropionylresorcinol by treatment with a concentrated sulfuric acid/concentrated nitric acid mixture in acetic acid at 0° for $1 \mathrm{~h}(75 \%)$ [6554].
- Also obtained by Friedel-Crafts acylation of 2-nitroresorcinol with propionic anhydride in nitrobenzene in the presence of aluminium chloride (3.3 equiv) at $120-130^{\circ}$ for 3 h (57\%) [6554].
m.p. 248° [6554].

1,1'-(4-Hydroxy-1,3-phenylene)bis-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24
Syntheses

- Preparation by Friedel-Crafts acylation of o-hydroxypropiophenone with propionyl chloride in the presence of aluminium chloride in refluxing carbon disulfide for 2 h (94\%) [8365].
- Also refer to: [6351].
m.p. $54-55^{\circ}$ [8365], 53° [6351];
${ }^{1}$ H NMR (Sadtler: standard n ${ }^{\circ}$ 20025M) [8365], IR (Sadtler: standard n ${ }^{\circ} 47033$) [8365].

1,1'-(2,4-Dihydroxy-1,3-phenylene)bis-1-propanone

[2999-19-1] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Syntheses

- Preparation by Fries rearrangement of resorcinol dipropionate in the presence of aluminium chloride [6560],
- without solvent, AlCl_{3} (2 equiv) at $130-135^{\circ}$ for 4.5 h [7383] or at 180° for 30 min (55\%) [6733], AlCl_{3} (3 equiv) at $180-185^{\circ}$ for $1.5 \mathrm{~h}(55 \%)$ [6745];
- in nitromethane, AlCl_{3} (2 equiv) at r.t. for $3 \mathrm{~h}(24 \%)$ [6733].
- Preparation by Fries rearrangement of resorcinol dipropionate in the presence of titanium tetrachloride [6733],
- without solvent, TiCl_{4} (2 or 5 equiv) at 100° for $2 \mathrm{~h}(63 \%$ and 74% yields, respectively) [6733];
- in nitromethane, TiCl_{4} (2 equiv) at r.t. for $3 \mathrm{~h}(36 \%)$ [6733].
- Also obtained by acylation of resorcinol,
- with propionyl chloride (2 equiv) in nitromethane at r.t. for 5 h in the presence of titanium tetrachloride (5 equiv) (82%) or aluminium chloride (5 equiv) (17\%) [6733];
- with propionic anhydride, by heating in the presence of concentrated sulfuric acid (23\%) [8366];
- with propionic acid in the presence of boron trifluoride at 140° for 3 h in a sealed tube (poor yield) [6736].
- Also obtained by acylation of respropiophenone,
- with propionyl chloride (2 equiv) in nitromethane at 20° for 24 h in the presence of titanium tetrachloride (5 equiv) (78%) or aluminium chloride (5 equiv) (24\%) [6733];
- with propionic acid in the presence of boron trifluoride at $130-150^{\circ}$ in a sealed tube (poor yield) [6736].
- Also obtained by action of sodium ethoxide in refluxing ethanol for 3 h ,
- with 2,3-dimethyl-7-hydroxy-8-propionylchromone (m.p. 161.5-162) [8367];
- with $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$-tetramethyl[benzo-1.6.3.2-di(γ-pyrone)] (m.p. $188-191^{\circ}$) [8367].
- Also refer to: [8368].
b.p. ${ }_{24} 184-185^{\circ}$ [7383],
m.p. 83° [6733], 82° [8367], 81° [8366], 78-79ํ [7383], 78° [6736];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 24406M), IR (Sadtler: standard n° 52518) [6733],
UV [6733].

1,1'-(2,5-Dihydroxy-1,4-phenylene)bis-1-propanone

[91497-44-8]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24 Synthesis

- Obtained (poor yield) by condensation of hydroquinone with propionic acid in xylene in the presence of $\mathrm{BF}_{3}-\mathrm{HF}$ by heating on a boiling water bath (7\%) [6820].
m.p. $151-152^{\circ}$ [6820].

1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-1-propanone

[2999-20-4]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Syntheses

- Preparation by Fries rearrangement of resorcinol dipropionate,
- in the presence of zinc chloride at 130° [8369], (60\%) [8367], (40-50\%) [8370] or at 180° (33\%) [6733];
- in the presence of aluminium chloride (2 equiv) in nitromethane at r.t. for 2 h (41%) or without solvent at 180° for $30 \mathrm{~min}(24 \%)$ [6733];
- in the presence of titanium tetrachloride (2 equiv) in nitromethane at r.t. for 2 h (16\%) [6733].
- Also obtained by reaction of propionic anhydride with resorcinol,
- in the presence of stannic chloride (5 equiv) at reflux for 5 h (63\%) [6733];
- in the presence of zinc chloride (0.5 equiv) at reflux for $30 \min$ (39\%) [6733];
- in the presence of concentrated sulfuric acid at reflux [8366].
- Also obtained by reaction of propionyl chloride with resorcinol in nitromethane at r.t. for 2 h in the presence of aluminium chloride (5 equiv) (29%) or titanium tetrachloride (5 equiv) (10\%) [6733].
- Also obtained by reaction of propionyl chloride with respropiophenone in nitromethane at r.t. for 5 h in the presence of aluminium chloride (5 equiv) (44%) or titanium tetrachloride (5 equiv) (19\%) [6733].
- Also obtained by reaction of propionic acid with respropiophenone,
- in the presence of polyphosphoric acid for 10 min in a boiling water bath (34\%) [6738];
- in the presence of zinc chloride (Nencki reaction) [6554].
- Also refer to: [6452,8368,8371-8374].
m.p. 128° [6733], 127° [6554], $125-126^{\circ}$ [8367], 125° [6738,8366,8370];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n° 24408M), IR (Sadtler: standard n° 52520) [6733],
UV [6733].

1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-1-propanone

(Dipropionylphloroglucinol) (Phlorodipropiophenone)
[3145-11-7]

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24
Syntheses

- Obtained by reaction of phloroglucinol with propionic anhydride,
- by heating in the presence of concentrated sulfuric acid [8366];
- in the presence of boron trifluoride etherate at reflux for 4 h [8375].
- Preparation by Friedel-Crafts acylation of phloroglucinol with propionic acid in the presence of boron trifluoride etherate (53-78\%) [8059,8088,8376].
- Also obtained by reaction of 2-propionylphloroglucinol with propionic anhydride in the presence of boron trifluoride at $26-30^{\circ}$ for $24-30 \mathrm{~h}$ [8377].
- Also refer to: [6888,8089,8378].
m.p. $\quad 152-154^{\circ}$ [8375], $137-138^{\circ}$ [8366]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [8059,8088], ${ }^{13} \mathrm{C}$ NMR [8059,8088], IR [8059,8088], UV [8059, 8088].

USE: Fungicide [8377].
BIOLOGICAL ACTIVITY: Antimicrobial against Bacillus subtilis [8376]; vesicular stomatitis virus inhibition [8059]; as allergy inhibitor [8089]; for herpes virus control [8379]; as herpes virus inhibitor [8380].

1,1'-(4,5,6-Trihydroxy-1,3-phenylene)bis-1-propanone (Gallodipropiophenone) 4,6-Dipropionylpyrogallol

[3811-86-7] \quad\begin{tabular}{l}

- Obtained by reaction of pyrogallol with propionic

anhydride by heating in the presence of concen-

trated sulfuric acid [8366].
\end{tabular}

m.p. 186° [8366].

1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)bis-1-propanone

[105290-18-4]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27
Synthesis

- Refer to: [8381].

Note: Lanthanum, lutetium and yttrium complexes [8381].

1,1'-(4-Hydroxy-5-methyl-1,3-phenylene)bis-1-propanone

[137937-49-6]

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27 Synthesis

- Preparation by Fries rearrangement of 3-methyl-4-propionoxypropiophenone (m.p. 52-53 ${ }^{\circ}$ [7070] with aluminium chloride without solvent at 160° for $2 \mathrm{~h}(80 \%)$ [7011].
m.p. 50° [7011]; ${ }^{1} \mathrm{H}$ NMR [7011], IR [7011], UV [7011], MS [7011].

1,1'-(4-Methoxy-1,3-phenylene)bis-1-propanone

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
mol.wt. 220.27

Syntheses

- Preparation by reaction of dimethyl sulfate with 2,4-dipropionylphenol in the presence of 20% sodium hydroxide in methanol for 1.5 h at r.t. (81\%) [6733].
m.p. 94° [6733];
${ }^{1}$ H NMR (Sadtler: standard 24410M), IR (Sadtler: standard 52523) [6733],
UV [6733].

1,1'-(2,4-Dihydroxy-6-methyl-1,3-phenylene)bis-1-propanone
(Dipropionylorcinol)
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Syntheses

- Preparation by Fries rearrangement of orcinol dipropionate with aluminium chloride at $145-150^{\circ}$ for $90 \mathrm{~min}(60 \%)$ [6745,7125].
- Also obtained by condensing propionic anhydride with γ-orcpropiophenone in the presence of aluminium chloride in nitrobenzene [7119,7126].
m.p. $85-86^{\circ}$ [6745,7119,7125].

1,1'-(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis-1-propanone
[218591-69-6] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Synthesis

- Refer to: [8368].

1,1'-(4-Hydroxy-6-methoxy-1,3-phenylene)bis-1-propanone
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 236.27

Syntheses

- Obtained by Fries rearrangement of 3-meth-oxy-4-propionylphenyl propionate [6351].
- Also obtained by partial methylation of 4,6-dipropionyl-resorcinol [6351].
- Also obtained by reaction of propionic acid with 4-hydroxy-2-methoxypropiophenone in the presence of polyphosphoric acid for 10 min in a boiling water bath (31\%) [6738].
- Also obtained by reaction of propionic acid with resorcinol monomethyl ether (by-product) in the presence of polyphosphoric acid for 10 min in a boiling water bath (1\%) [6738].
m.p. 130° [6351], 127° [6738];
${ }^{1} \mathrm{H}$ NMR (Sadtler: standard n ${ }^{\circ}$ 30293M), IR (Sadtler: standard n ${ }^{\circ}$ 57338).

1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-1-propanone
 [3098-43-9] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27

 Syntheses
 - Preparation by reaction of propionic anhydride with 2-methylphloroglucinol in the presence of boron trifluoride etherate at reflux for 4 h [8375].
 - Also refer to: [8382].
 m.p. ${135-137^{\circ}}^{[8375]}$.

1,1'-(2,4-Dimethoxy-1,3-phenylene)bis-1-propanone

[60302-89-8] $\quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29

Syntheses

- Preparation by reaction of dimethyl sulfate with 2,4-dipropionylresorcinol in the presence of 20% sodium hydroxide in methanol for 1.5 h at r.t. (88\%) [6733].
- Also refer to: [7611].
b.p. ${ }_{18} 198^{\circ}$ [6733]; m.p. 40.5° [6733];
${ }^{1}$ H NMR (Sadtler: standard 24407M), IR (Sadtler: standard 52519) [6733], UV [6733].

1,1'-(4,6-Dimethoxy-1,3-phenylene)bis-1-propanone

[60278-79-7]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 250.29
Syntheses

- Preparation by reaction of dimethyl sulfate with 4,6-dipropionylresorcinol in the presence of 20% sodium hydroxide in methanol for 1.5 h at r.t. (35\%) [6733].
- Also refer to: [7611].
m.p. 165° [6733];
${ }^{1}$ H NMR (Sadtler: standard 25359M), IR (Sadtler: standard 52521) [6733], UV [6733].

1,1'-(5-Ethyl-2,4-dihydroxy-1,3-phenylene)bis-1-propanone

$$
\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \quad \text { mol.wt. } 250.29
$$

Synthesis

- Obtained by Fries rearrangement of 4-ethylresorcinol dipropionate in the presence of aluminium chloride (2 equiv) without solvent at $60-70^{\circ}$ for $3-4 \mathrm{~h}$ or in nitrobenzene at 110° for 5 h [7383].
m.p. 81° [7383].

1,1'-(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis-1-propanone
[94190-87-1]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29
Syntheses

- Obtained by reaction of propionic acid with phloroglucinol dimethyl ether in the presence of polyphosphoric acid at 60° for $1 \mathrm{~h}(41 \%)$ [7438].
- Also refer to: [7439].
m.p. $\quad 75-80^{\circ}$ [7438]; ${ }^{1} \mathrm{H}$ NMR [7438].

1,1'-(6-Hydroxy-2,4-dimethoxy-1,3-phenylene)bis-1-propanone

$$
\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad \text { mol.wt. } 266.29
$$

Synthesis

- Obtained by treatment of phloroglucinol dimethyl ether with propionic acid in the presence of polyphosphoric acid at 100° for 15 min (30\%) [7514].
m.p. 101° [7514].

1,1'-[4,6-Dihydroxy-5-(1-oxopropoxy)-1,3-phenylene]bis-1-propanone

[52597-50-9]

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 294.30
Synthesis

- Obtained by Fries rearrangement of pyrogallol tripropionyl ester with zinc chloride at $130^{\circ}(40 \%)$ [8372].
m.p. 190° [8372]; ${ }^{1} \mathrm{H}$ NMR [8372], IR [8372].

1,1',1"-(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6} \quad$ mol.wt. 294.30

Synthesis

- Obtained by treatment of phloroglucinol with propionic acid in the presence of polyphosphoric acid [8383] at 100° for $10 \mathrm{~min}(20 \%)$ [7514].
m.p. $\quad 143^{\circ}$ [7514].

1,1'-(1-Hydroxy-2,4-naphthalene)bis-1-propanone

$$
\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \quad \text { mol.wt. } 256.30
$$

 Syntheses

- Preparation by reaction of propionyl chloride with 2-propionyl-1-naphthol,
- in the presence of zinc chloride in nitrobenzene for 48 h at r.t. (nearly quantitative yield) [7767];
- in the presence of aluminium chloride in the same conditions (45\%) [7767].
- Also obtained (by-product) by Fries rearrangement of 1-naphthyl propionate with aluminium chloride, first at 100° for 2 h , then at 120° for $1 \mathrm{~h}(2 \%)$ [7769].
- Also refer to: [7756].
m.p. 103° [7756,7767], $100-101^{\circ}$ [7769].

Na salt [7767].

1,1', $1^{\prime \prime}$-(2,4-Dihydroxy-6-methoxy-1,3,5-benzenetriyl)tris-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 308.33

Synthesis

- Obtained by treatment of phloroglucinol monomethyl ether with propionic acid in the presence of polyphosphoric acid [8383] at 100° for $10 \mathrm{~min}(32 \%)$ [7514].
m.p. $\quad 104^{\circ}$ [7514].

1,1'-[5-(1,1'-Dimethylethyl)-4-hydroxy-1,3-phenylene]bis-1-propanone
 [54362-59-3]

 $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \quad$ mol.wt. 262.35
 Syntheses
 - Obtained (by-product) by Fries rearrangement of 2-tert-butylphenyl propionate in nitromethane at 20° with antimony pentachloride (7\%) [6570,7561,7576] or rhenium pentachloride (7\%) in the same conditions [7576].

m.p. 64° [6570,7561]; easy sublimation [6570,7561];
${ }^{1} H$ NMR [6570,7561], IR [6570,7561], UV [6570,7561],
MS [6570,7561]; TLC [6570,7561].

1,1'-(4-Hydroxy-5-iodo-6-phenoxy-1,3-phenylene)bis-1-propanone

[245407-10-7]

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{IO}_{4} \quad$ mol.wt. 424.23
Syntheses

- Obtained by oxidation of 5-propionyl-2,4-dihydroxy-propiophenone [8374] with phenyliodonium diacetate (PIDA) under three conditions (compound 4e) [6452]:
(a) (basic): in the presence of potassium hydroxide in methanol at 0° and stirring overnight (75%);
(b) (neutral): in refluxing methanol (40\%);
(c) (acidic): in refluxing acetic acid (60%).
m.p. 119-120ㅇ [6452]; ${ }^{1} \mathrm{H}$ NMR [6452], IR [6452]; TLC [6452].

1,1'-[4-Methoxy-2-(2-pyridinyl)-1,3-phenylene]bis-1-propanone

[205983-85-3]

$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$
mol.wt. 297.35
Synthesis

- Obtained by acylation of 2-(3-methoxyphenyl)pyridine (2 mmol) with ethylene (7 atm) and carbon monoxide (20 atm) in the presence of catalytic amounts of $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ in DMA at 160° for 10 h (7\%) [7962].
Dark brown solid [7962]; m.p. 148° [7962];
${ }^{1} \mathrm{H}$ NMR [7962], ${ }^{13} \mathrm{C}$ NMR [7962], IR [7962], MS [7962]; GC [7962].

26.2 Propionyl Groups Located on Different Rings

1,1'-[Thiobis(5-bromo-4,6-dihydroxy-3,1-phenylene)]bis-1-propanone

[103096-89-5]

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 520.20
Synthesis

- Obtained by adding a 10% solution of bromine ($\mathrm{wt} / \mathrm{vol}$) in acetic acid to a hot solution of $3,3^{\prime}$-dipr opionyl-4,4',6,6'-tetrahydroxy diphenyl thioether in acetic acid [6368].
m.p. $212-213^{\circ}$ [6368].

1,1'-[Sulfinylbis(6-chloro-4-hydroxy-3,1-phenylene)]bis-1-propanone

> [50444-94-5]
> $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{~S} \quad$ mol.wt. 415.29
> Synthesis
> - Obtained by treatment of 4-chloro2-hydroxypropiophenone with thionyl chloride in the presence of aluminium chloride in carbon disulfide (56\%) [6478].
m.p. 219° [6478]; ${ }^{1} \mathrm{H}$ NMR [6478], IR [6478].

USE: Fungicide [6478].

1,1'-(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-1-propanone

[36677-69-7] $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 298.34

Syntheses

- Preparation by Fries rearrangement of 4,4'-di-hydroxybiphenyl dipropionate with aluminium chloride without solvent at 120° (55\%) [7467] or in refluxing chlorobenzene for 24 h (58\%) [8384].
- Preparation by adding 4,4'-dipropionyloxybiphenyl to a melt of sodium chlo-ride-aluminium chloride at 140°. The temperature of the melt was raised rapidly to 200° and maintained there for $2 \mathrm{~min}(97 \%)$ [8385].
- Also refer to: [8386].
m.p. $143-144^{\circ}$ [8384,8385], $140-141^{\circ}$ [7467]; IR [8384].

USE: Polymer with 1,3-propanediamine [386704-18-3] [8387]; polymer with 1,2-benzenediamine [401843-27-4] [8388]; polymer with 3-methoxy-1,2benzenediamine [568600-66-8] [8389].
BIOLOGICAL ACTIVITY: Antibacterial against a cariogenic bacterium [8386].

1,1'-[Thiobis(6-hydroxy-3,1-phenylene)]bis-1-propanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S} \quad$ mol.wt. 330.40
Synthesis

- Obtained by reaction of thionyl chloride or sulfur dichloride with p-hydroxy-propiophenone in the presence of copper powder at r.t. overnight [6550].
m.p. 103° [6550].

1,1'-[Oxybis(4-hydroxy-3,1-phenylene)]bis-1-propanone

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$
mol.wt. 314.34
Synthesis

- Preparation by Fries rearrangement of 4,4'-dihydroxydiphenyl oxide dipropionate with aluminium chloride at 150° for 30 min (99\%) [8390].
${ }^{1} \mathrm{H}$ NMR [8390], ${ }^{13} \mathrm{C}$ NMR [8390], IR [8390].

1,1'-[Sulfonylbis(6-hydroxy-3,1-phenylene)]bis-1-propanone

[95699-99-3]

$\mathrm{Cl}_{8} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}$ Synthesis

- Obtained by oxidation of 2,2'-dihydroxy-5,5'-dipropionyldiphenyl sulfide with hydrogen peroxide (100 vols.) in acetone at r.t. overnight (73\%) [6550].
m.p. 105° (d) [6550].

1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis-1-propanone

[103154-02-5]

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}$
mol.wt. 362.40
Syntheses

- Obtained by reaction of thionyl chloride with respropiophenone in chloroform in the presence of finely divided copper at r.t. overnight (31\%) [6368].
- The same thioether was obtained by interaction of the respropiophenone and sulfur monochloride or sulfur dichloride in ethyl ether, first at 5°, then at r.t. for 1 h (9\% and 21% yields, respectively) [6368].
m.p. $161-162^{\circ}$ [6368].

1,1'-[Methylenebis(4,6-dihydroxy-3,1-phenylene)]bis-1-propanone

[124300-19-2]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \quad$ mol.wt. 344.36
Synthesis

- Obtained (poor yield) by reaction of ethoxymethyl chloride with respropiophenone in the presence of potassium carbonate in acetone at 60° for 3 h (6\%) [6757].
m.p. $\quad 163^{\circ}$ [6757]; TLC [6757].

1,1'-[Methylenebis[oxy(2-hydroxy-4,1-phenylene)]]bis-1-propanone

[66047-39-0]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6}$ mol.wt. 344.36 Synthesis

- Obtained by condensation of respropiophenone with methylene dibromide or methylene dichloride (25\%) [8391].
m.p. 142° [8391].

Dioxime [66047-44-7] $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ mol.wt. 374.39 [8391].

1,1'-[Methylenebis(2,4,6-trihydroxy-3,1-phenylene)]bis-1-propanone

Bis(3-propionyl-2,4,6-trihydroxyphenyl)methane
[2828-37-7]

Obtained by reaction of 35%
formaldehyde solution with
phloropropiophenone in etha-
nol in the presence of concen-
trated sulfuric acid at r.t. for
30 min [8392].

m.p. 300° (d) [8392].

1,1'-[Methylenebis(4,5,6-trihydroxy-3,1-phenylene)]bis-1-propanone

$2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-Hexahydroxy-5,5'-dipropionyldiphenylmethane
[124300-24-9]

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 376.36
Syntheses

- Obtained by reaction of ethoxymethyl chloride with 2,3,4-tri-hydroxy-propiophenone in the presence of potassium carbonate in acetone at 60° for $3 \mathrm{~h}(35 \%)$ [6757].
- Preparation by reaction of 35% aqueous formaldehyde with 4-propionylpyrogallol in the presence of hydrochloric acid in refluxing ethanol (90\%) [6454].
m.p. 242-243 [6757], 238° [6454];
${ }^{1} \mathrm{H}$ NMR [6757], ${ }^{13} \mathrm{C}$ NMR [6757], IR [6757], UV [6757]; TLC [6757].

1,1'-[Thiobis(2-hydroxy-5-methyl-3,1-phenylene)]bis-1-propanone

- with refluxing sulfur monochloride or sulfur dichloride in the presence of copper powder for $3 \mathrm{~h}(15 \%)$ [7049,8393].
m.p. $110^{\circ}[7049,8393]$.

1,1'-[Thiobis(4-hydroxy-5-methyl-3,1-phenylene)]bis-1-propanone

[103858-21-5]
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$
mol.wt. 358.46

Syntheses

- Preparation, first, gradually adding copper powder to the mixture of 2-hydroxy-3-methylpropiophenone and thionyl chloride, then refluxing the mixture for 3 h [7017].
- Also obtained by allowing 2-hydroxy-3-methylpropiophenone, sulfur dichloride and copper powder to react overnight at r.t. [7017].
m.p. 98° [7017].

1,1'-[Thiobis(6-methoxy-3,1-phenylene)]bis-1-propanone

[97921-47-6]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$
mol.wt. 358.46
Synthesis

- Obtained by treatment of p-methoxy-propiophenone with thionyl chloride or sulfur dichloride in the presence of copper powder on a boiling water bath for 15 min and at r.t. overnight [7003].
m.p. $\quad 175^{\circ}$ [7003].
$1,1^{\prime}$-(6,6'-Dihydroxy-5,5'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-1-propanone
4,4'-Dipropionyl-6, 6^{\prime}-biguaiacol; Dehydrodipropioguaiacone
[18592-97-7] $\quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$ mol.wt. 358.39

Syntheses

- Obtained by enzymic dehydrogenation of propioguaiacone with horseradish peroxidase in water in the presence of hydrogen peroxide at 30° for $1 \mathrm{~h}(60 \%)$ (compound 10) [7161].
- Also obtained by oxidation of 4-hydroxy-3-methoxypropiophenone in the $\mathrm{HSO}_{3} \mathrm{~F}-\mathrm{PbO}_{2}$ system [8394].
- Also refer to: [8395].
m.p. 207-208º [7161]; UV [7161]; photoelectron spectrum [7212];

Raman spectroscopy [8396]; ionization potential [7232].
USE: As UV-absorbers for sunscreens and other products [8397]; as active oxygen scavengers for therapeutic uses [8398].

1,1'-[1,2-Ethanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1-propanone

Synthesis

- Obtained by condensation of respropiophenone with ethylene dibromide or ethylene dichloride (25\%) [8391].
m.p. 165° [8391].

Dioxime [66047-46-9] $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ mol.wt. 388.42 [8391].

1-[4-Hydroxy-3-methoxy-5-[2-methoxy-4-(1-oxopropyl)phenoxy] phenyl]-1-propanone

2-Hydroxy-3-methoxy-5-propionyl 2'-methoxy-4'-propionylphenyl ether 4^{\prime}-Hydroxy- $3^{\prime \prime \prime}, 5^{\prime}$-dimethoxy- $3^{\prime}, 4^{\prime \prime \prime}$-oxydipropiophenone
[16737-81-8]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 358.39
Syntheses

- Isolation from the dehydrogenation resin of propioguaiacone through preparative TLC (6\%) (compound 14) [7161].
- Also obtained by dehydrogenation of propioguaiacone in aqueous solution with hydrogen peroxide (small amount) [8399].
${ }^{1} \mathrm{H}$ NMR [7161], IR [7161], UV [7161].

1,1'-[Thiobis(4-hydroxy-6-methoxy-3,1-phenylene)]bis-1-propanone

[103509-21-3]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 390.46 Syntheses

- Obtained by methylating 3, 3'-dipropionyl-4,4',6,6'-tetra hydroxydiphenyl thioether with dimethyl sulfate (1:1) in the presence of alkali (unspecified) at 100° [6368].
- Also obtained by reaction of thionyl chloride with 2-hydroxy-4-methoxypropiophenone in the presence of copper powder in ethyl ether at r.t. overnight (38\%) [6368].
- Also obtained by reaction of sulfur monochloride or sulfur dichloride with 2-hydroxy-4-methoxy-propiophenone in the presence of copper powder in ethyl ether at r.t. overnight (13% and 26% yields, respectively) [6368].
m.p. $202-203^{\circ}$ [6368].

1,1'-[(Methylethylidene)bis(4-hydroxy-3,1-phenylene)]bis-1-propanone

[3511-70-4] $\quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \quad$ mol.wt. 340.42

Synthesis

- Obtained by Fries rearrangement of $4,4^{\prime}$-di-(propionoxy)diphenyldimethylmethane also named 2,2-bis[(4-propionyloxy)phenyl]propane with aluminium chloride in nitrob-enzene at $120-130^{\circ}$ for 3 h (23\%) [8400].
m.p. $150-151^{\circ}$ [8400].

1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-1-propanone
 $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$ mol.wt. 372.42 Synthesis

- Obtained by reaction of ethoxymethyl chloride with 2-hydroxy-4-methoxy-propiophenone in the presence of potassium carbonate in acetone at 60° for 24 h (20\%) [6757].
m.p. $\quad 170^{\circ}$ [6757];
${ }^{1} \mathrm{H}$ NMR [6757], IR [6757], UV [6757]; TLC [6757].

1,1'-[1,3-Propanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1-propanone

[66047-42-5]
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$ mol.wt. 372.42

Synthesis

- Obtained by condensation of respropiophenone with 1,3-dibromopropane or 1,3-dichloropropane (18\%) [8391].
m.p. 151° [8391].

Dioxime [66047-47-0] $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$ mol.wt. 402.45 [8391].

1,1'-[Thiobis[6-(acetyloxy)-4-hydroxy-3,1-phenylene]]bis-1-propanone

$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S}$ mol.wt. 446.48
Synthesis

- Obtained by partial acetylation of 3,3'-dipropi-onyl-4, $4^{\prime}, 6,6^{\prime}$-tetrahydroxydiphenyl thioether with acetic anhydride in the presence of pyridine [6368].
m.p. $216-217^{\circ}$ [6368].

1,1'-[Thiobis(4,6-dimethoxy-3,1-phenylene)]bis-1-propanone

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S} \quad$ mol.wt. 418.51

Synthesis

- Obtained by methylating 3,3'-dipropionyl-4,4',6,6'tetrahydroxydiphenyl thioe ther with excess of dimethyl sulfate in the presence of alkali (unspecified) at 100° [6368].
m.p. $197-198^{\circ}$ [6368].

1-[3-[[2,4-Dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl)phenyl]methyl]-

 2,4,6-trihydroxy-5-methylphenyl]-1-propanone (Margaspidin PP)

- From Dryopteris marginata (WALL.) CHRIST and Dryopteris inaequalis [8401].
m.p. 176° [8401], $169-173^{\circ}$ [7262]; MS [7262,8401]; TLC [8401].

1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]bis-1-propanone

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8} \quad$ mol.wt. 432.47

Isolation from natural sources

- From Dryopteris species of Japan [7262].

MS [7393]; TLC [7262]; paper chromatography [7262].

1,1'-[Methylenebis(2-hydroxy-4,6-dimethoxy-3,1-phenylene)] bis-1-propanone

[124300-29-4]

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8} \quad \mathrm{~mol}$. wt. 432.47
Synthesis

- Preparation by reaction of ethoxymethyl chloride with 2-hy-droxy-4,6-dimethoxy-propiophenone in the presence of potassium carbonate in acetone at 60° for $4 \mathrm{~h}(91 \%)$ [6757].
m.p. 211-212ํ [6757]; ${ }^{1} \mathrm{H}$ NMR [6757], IR [6757], UV [6757]; TLC [6757].

1,1'-[[(3,4-Dichlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)]bis-1-propanone

$3^{\prime \prime}, 4^{\prime \prime}$-Dichloro-2, $2^{\prime} 3,3^{\prime}, 4,4^{\prime}$-hexahydroxy-5,5'-dipropionyltriphenylmethane $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{8} \quad$ mol.wt. 521.35

Synthesis

- Obtained by reaction of 3,4-dichloro-benzaldehyde with 4-propionylpyrogallol in the presence of hydrochloric acid in refluxing ethanol for 30 min [6454].
m.p. $209-210^{\circ}$ [6454].

1,1'-[[(4-Chlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-

phenylene)]bis-1-propanone
$4^{\prime \prime}$-Chloro- $2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-hexahydroxy-5,5'-dipropionyltriphenylmethane

$$
\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClO}_{8} \quad \text { mol.wt. } 486.91
$$

Synthesis

- Obtained by reaction of 4-chlorobenzaldehyde with 4-propionylpyrogallol in the presence of hydrochloric acid in refluxing ethanol for 30 min [6454].
m.p. $189-190^{\circ}$ [6454].

1,1'-[(Phenylmethylene)bis(2,4,6-trihydroxy-3,1-phenylene)]bis-1-propanone

[147170-16-9]

$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{8}$
mol.wt. 452.46
Synthesis

- Refer to: [8402] (Japanese patent).

1,1'-[(Phenylmethylene)bis(4,5,6-trihydroxy-3,1-phenylene)]bis-1-propanone
2, 2',3,3',4,4'-Hexahydroxy-5,5'-dipropionyltriphenylmethane
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{8} \quad$ mol.wt. 452.46

Synthesis

- Obtained by reaction of benzaldehyde with 4-propionylpyrogallol in the presence of hydrochloric acid in refluxing ethanol for 30 min [6454].

1,1'-[[(2,3,4-Trihydroxyphenyl)methylene]bis(2,4,6-trihydroxy-3,1-phenylene)] bis-1-propanone

[143868-75-1]

$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{11} \quad$ mol.wt. 500.46
Synthesis

- Refer to: [8403] (Japanese patent).
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)]tetrakis-1-propanone
[68223-29-0]

$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{10}$
mol.wt. 488.49
Syntheses
- Obtained by condensation of 2,4-di-propionylphloroglucinol with 40% formaldehyde [8404], (58-65\%) [6879] or with methoxymethyl acetate in acetic acid in the presence of few drops of concentrated sulfuric acid [8405].
m.p. $235-237^{\circ}$ [6879].

BIOLOGICAL ACTIVITY: Antischistosomal (an analog of agrimophol) [6879].

3,3-Bis[4-hydroxy-3-(1-oxopropyl)phenyl]phthalide

$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{6} \quad$ mol.wt. 430.46

Synthesis

- Obtained by Fries rearrangement of 3,3-bis[4-(propionyloxy)phenyl]phthalide with aluminium chloride in nitrobenzene at $120-130^{\circ}$ for 3 h (20\%) [8400].
m.p. $199-200^{\circ}$ [8400].

1,1'-[Methylenebis(1-hydroxy-4,2-naphthalenediyl)]bis-1-propanone

[76288-10-3]
$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{4}$
mol.wt. 412.49

Synthesis

- Refer to: [7789].

Dioxime [76288-07-8] $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ mol.wt. 442.51 [7789].

$1,1^{\prime}-\left[(1 R)-2,2^{\prime}\right.$-Dimethoxy[1,1'-binaphthalene]-6,6'-diyl]bis-1-propanone

$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4} \quad$ mol.wt. 426.51
Synthesis

- Refer to: [6445].

1-[2'-Hydroxy-6-(2-hydroxy-3-methoxy-5-propionylphenoxy)-
5,3'-dimethoxy-5'-propionyl[1,1'-biphenyl]-3-yl]-1-propanone
4'-Hydroxy-4"'-(2-hydroxy-3-methoxy-5-propionylphenoxy)-5',5"'-dimethoxy$3^{\prime}, 3^{\prime \prime \prime}$-bipropiophenone
3,3'-Dimethoxy-2'-hydroxy-5,5'-dipropionylbiphenyl-2-yl 2"-hydroxy-3"-methoxy-5"-propionylphenyl ether
[18593-02-7]
$\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{9} \quad$ mol.wt. 536.58

Syntheses

- Isolation from the dehydrogenation resin of propioguaiacone through preparative TLC (trace amounts) (compound 15) [7161].
- Also obtained by dehydrogenation of propioguaiacone in aqueous solution with hydrogen peroxide (small amount) [8399].
m.p. $235-236^{\circ}$ [7161];
${ }^{1} \mathrm{H}$ NMR [7161], IR [7161], UV [7161].

[^17]
Chapter 27

Aromatic Polyketones Containing At Least One Propionyl Group

27.1 Carbonyl Groups Located on the Same Ring

2-Hydroxy-3-(1-oxopropyl)benzaldehyde

[35888-90-5] $\quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \quad$ mol.wt. 178.19

Syntheses

- Preparation by ozonization of 2-hydroxy-3-propenyl-propiophenone in an acetic acidformic acid mixture at $0^{\circ}(67 \%)$ [6935].
- Also refer to: [6933].

2,6-Dihydroxy-3-(1-oxopropyl)benzaldehyde

2,4-Dihydroxy-3-formylpropiophenone $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \quad$ mol.wt. 194.19

Synthesis

- Obtained by adding zinc cyanide, potassium chloride, followed by aluminium chloride in ethyl ether to a solution of respropiophenone in ethyl acetate, then passing hydrogen chloride into the mixture for 30 min (64\%) [6768].
m.p. $\quad 140-141^{\circ}$ [6768].

2,4,6-Trihydroxy-3-(1-oxopropyl)benzaldehyde

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$	mol.wt. 210.19
Syntheses	

- Preparation by reaction of ethyl orthoformate with phloropropiophenone in methylene chloride in the presence of aluminium chloride cooling in an ice bath for 30 min [8378,8406] (70\%) [7007].
N.B.: Compound 27 [8406], compound 5 or 9 [8378] and compound 17 [7007].
- Also obtained by reaction of phosphorous oxychloride with phloropropiophenone in DMF at r.t. (70\%) [6882].
m.p. $158-160^{\circ}$ [7007]; ${ }^{1} \mathrm{H}$ NMR [7007], IR [7007], MS [7007].

2,4,6-Trihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxaldehyde

1-(3-Acetyl-4-hydroxyphenyl)-1-propanone

[79010-36-9] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21
 Syntheses

- Preparation by Fries rearrangement of 4-propionylphenyl acetate (1 mol) with aluminium chloride $(3.6 \mathrm{~mol})$ at 150° for $3 \mathrm{~h}(80 \%)$ [8407].
- Preparation by reaction of propionyl chloride with 2-hydroxy-acetophenone in carbon disulfide in the presence of aluminium chloride, first at r.t. for 1 h , then at reflux for 1 h (95\%) [8408].
- Also refer to: [8409,8410].
m.p. 69° [8407,8411], 68-69ํ [8408]; ${ }^{1} \mathrm{H}$ NMR [8407], IR [8407].

PHARMACOLOGICAL DATA [8407].

1-(5-Acetyl-2-hydroxyphenyl)-1-propanone

[36039-26-6] $\quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \quad$ mol.wt. 192.21
 Syntheses

- Preparation by Fries rearrangement of p-(propionyloxy) -acetophenone with aluminium chloride (4 mol) without solvent at 150° for 3 h (62\%) [8412].
- Also obtained by Friedel-Crafts acylation of p-hydroxyacetophenone with propionyl chloride in the presence of aluminium chloride (4 mol) in tetrachloroethane at 130° for $4 \mathrm{~h}(47 \%)$ [8412].
- Also obtained by Friedel-Crafts acylation of o-hydroxypropiophenone with acetyl chloride in the presence of aluminium chloride in refluxing carbon disulfide (90-95\%) [8413], (90\%) [8414], (72\%) [8415].
- Also obtained by deacylation of 2-(DL-2'-acetoxypropionyloxy)-5-acetylpropiophenone (24\%) [8416].
b.p. ${ }_{4-5} 175-180^{\circ}$ [8415];
m.p. 67-69 [8412], 64-65 ${ }^{\circ}$ [8415], 64° [8413];
${ }^{1} \mathrm{H}$ NMR [8412], IR [8412].
1-(5-Acetyl-2,4-dihydroxyphenyl)-1-propanone
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 208.21

Synthesis

- Obtained by reaction of propionic acid with resacetophenone (m.p. 142°) in the presence of polyphosphoric acid [8383] for 10 min in a boiling water bath (32\%) [6738].
m.p. 122° [6738].

1-(3-Acetyl-2,4,6-trihydroxyphenyl)-1-propanone

[3118-35-2]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
Syntheses

- Preparation by Friedel-Crafts acylations of phloroglucinol [8375,8406] according to the method (i) [7007].
- Preparation by reaction of propionic anhydride with 2-acetylphloroglucinol in the presence of boron trifluoride in ethyl ether at -2° to 5° for $24-30 \mathrm{~h}$ [8417].
- Also refer to: $[7007,8406]$.
m.p. 161° [7007], 149- 150° [8375]; ${ }^{1} \mathrm{H}$ NMR [7007], IR [7007], MS [7007].

USE: Fungicide [8417].
BIOLOGICAL ACTIVITY: Anthelmintic and antibacterial [8418,8419]; antitumor promoting agent [8406].

2,4,6-Trihydroxy-3-methyl-5-(1-oxopropyl)benzaldehyde
[96573-37-4]

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 224.21
Syntheses

- Preparation by reaction of methyl iodide with formyl-phlorophenone (3-formyl-2,4,6trihydroxypropiophenone) in the presence of potassium hydroxide in methanol at $70^{\circ}(50 \%)$ [6882] or in dilute methanol at 65° for $24 \mathrm{~h}(30 \%)$ [7007].
- Also refer to: [8378].
N.B.: Compound 1 [8378] and compound 25 [7007].
m.p. 123-125 [7007]; ${ }^{1} \mathrm{H}$ NMR [7007], IR [7007], MS [7007].

1-(3-Acetyl-2-hydroxy-5-methylphenyl)-1-propanone

[91496-99-0] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 206.24

Syntheses

- Preparation by reaction of propionyl chloride with 2-hydroxy-5-methylacetophenone in the presence of aluminium chloride in carbon disulfide at r.t. for $1 \mathrm{~h}(95 \%)$ [8420].
- Also refer to: [8421].
m.p. $51-52^{\circ}$ [8420];
${ }^{1} \mathrm{H}$ NMR [8420,8422], ${ }^{7} \mathrm{Li}$ NMR [8422], ${ }^{13} \mathrm{C}$ NMR [8422], IR [8420],
X-ray data [8422].
Lithium salt [199329-92-5] [8422] (compound 4).

1-(5-Acetyl-2-hydroxy-4-methoxyphenyl)-1-propanone

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$	mol.wt. 222.24
Synthesis	

- Obtained by reaction of acetic acid with 2-hydroxy-4-methoxypropiophenone in the presence of polyphosphoric acid for 10 min in a boiling water bath (38\%) [6738].
m.p. 129° [6738].

1-(5-Acetyl-4-hydroxy-2-methoxyphenyl)-1-propanone
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \quad$ mol.wt. 222.24

Synthesis

- Obtained by reaction of propionic acid with 2-hydroxy-4-methoxyacetophenone (m.p. 51°) in the presence of polyphosphoric acid [8383] for 10 min in a boiling water bath (26\%) [6738].
m.p. 92° [6738].

3-Ethyl-2,4,6-trihydroxy-5-(1-oxopropyl)benzaldehyde

[96573-38-5] $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \quad$ mol.wt. 238.24

Synthesis

- Preparation by reaction of ethyl iodide with formyl-phlorophenone (3-formyl-2,4,6-trihydroxypropiophenone) in the presence of potassium hydroxide in dilute methanol at 65° for 24 h (30\%) [7007].
N.B.: Compound 14 [8378] and compound 26 [7007].
m.p. $146-149^{\circ}$ [7007]; ${ }^{1} \mathrm{H}$ NMR [7007], IR [7007], MS [7007].

1-[2,4,6-Trihydroxy-3-(1-oxopropyl)phenyl]-1-butanone

N.B.: Compound 34 [8406] and compound 29 [7007].
m.p. 135° [7007];
${ }^{1} \mathrm{H}$ NMR [7007], IR [7007], MS [7007].

2,4,6-Trihydroxy-3-(1-oxopropyl)-5-propylbenzaldehyde

[96573-39-6] \quad\begin{tabular}{l}
Synthesis

- Preparation by reaction of propyl iodide with
formyl-phlorophenone (3-formyl-2,4,6-
trihydroxypropiophenone) in the presence of
potassium hydroxide in dilute methanol at 65° for
$24 \mathrm{~h} \mathrm{(30} \mathrm{\%)} \mathrm{[7007]}$.

\end{tabular}

N.B.: Compound 15 [8378] and compound 27 [7007].
m.p. 133-135 [7007]; ${ }^{1} \mathrm{H}$ NMR [7007], IR [7007], MS [7007].

1-(2-Acetyl-3,5,6-trimethoxyphenyl)-1-propanone

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29
Synthesis

- Preparation: 3,4,6-trimethoxy-2-propenylacetophenone (m.p. 80°) formed with osmium tetroxide an adduct which, when decomposed by sulfur dioxide in aqueous methanol, give the titled diketone [8423].
m.p. $94-97^{\circ}$ [8423]; UV [8423].

3-Butyl-2,4,6-trihydroxy-5-(1-oxopropyl)benzaldehyde

[120716-99-6] \quad\begin{tabular}{l}
Synthesis

Preparation by reaction of n-butyl iodide with
formyl-phlorophenone (3-formyl-2,4,6-
trihydroxypropiophenone) in the presence of
potassium hydroxide in dilute methanol at 65° for
$24 \mathrm{~h} \mathrm{(30} \mathrm{\%)[7007,8378]}$.

\end{tabular}

N.B.: Compound 16 [8378].

1-[2,4,6-Trihydroxy-3-(1-oxopropyl)phenyl]-1-pentanone
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \quad$ mol.wt. 266.29

Synthesis

- Preparation [8378] according to the method [7007]. PHARMACOLOGICAL DATA: The compound ($\mathrm{n}^{\circ} 18$) was assayed for its inhibition of the Hill reaction using chloroplasts isolated from the leaves of Spinacia oleracea; $\mathrm{pl} 50=4.9$ [8378].

1-[4-Bromoacetyl-1-hydroxy-2-naphthalenyl]-1-propanone

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \quad$ mol.wt. 321.17
Synthesis

- Obtained by reaction of bromine with 4-acetyl-2-propionyl-1-naphthol in chloroform [7767].
m.p. 158° [7767].

1-[1-Hydroxy-4-(1-oxoethyl)-2-naphthalenyl]-1-propanone
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27

Syntheses

- Preparation by reaction of acetyl chloride with 2-propionyl-1-naphthol in the presence of zinc chloride in nitrobenzene (80\%) [7767].
- Preparation by reaction of propionyl chloride with 4-acetyl-1-naphthol in the presence of aluminium chloride (75\%) [7767].
- Also obtained by reaction of propionic acid with 4-acetyl- α-naphthol in the presence of polyphosphoric acid at 100° for $15 \mathrm{~min}(44 \%)$ [7777].
m.p. $\quad 142^{\circ}$ [7767], 134° [7777].

1-[4-Hydroxy-3-(1-oxoethyl)-1-naphthalenyl]-1-propanone $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 242.27
 Syntheses

- Obtained by reaction of propionic acid with 2-acetyl-α-naphthol in the presence of polyphosphoric acid at 100° for $15 \mathrm{~min}(44 \%)$ [7777].
- Also obtained by heating 4-propionyl-1-naphthol with acetic acid in the presence of zinc chloride for 3 h [7756].
m.p. 119° [7777].

1-[3-Bromo-2,4,6-trihydroxy-5-(1-oxopropyl)phenyl]-1-hexanone

[98149-39-4]

$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{5}$
mol.wt. 359.22
Synthesis

- Refer to: [6879] (Chinese paper), (compound 8) (72-78\%).
m.p. 183° [6879].

1-[3-(4-Fluorobenzoyl)-5-fluoro-2-hydroxyphenyl]-1-propanone

m.p. $\quad 160-161^{\circ}$ [8424].
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3} \quad$ mol.wt. 290.27
Synthesis

- Obtained by Fries rearrangement of 4-fluoro-2-propionylphenyl 4-fluorobenzoate (b.p. ${ }_{0.5} 110^{\circ}$) with aluminium chloride ($4-5 \mathrm{~mol}$) at 150° for 5-6 h [8424].

1-(5-Benzoyl-2-hydroxyphenyl)-1-propanone
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \quad$ mol.wt. 254.29

Synthesis

- Obtained by Friedel-Crafts acylation of o-hydroxy-propiophenone with benzoyl chloride [8425].

1-[3-(2-Bromo-1-oxopropyl)-4-hydroxy-1-naphthalenyl]-1-propanone

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3} \quad$ mol.wt. 335.20
 Synthesis

- Obtained by reaction of bromine with 2,4-dipropionyl-1-naphthol in acetic acid [7767].
m.p. 100° [7767].

1-(5-Benzoyl-2-hydroxy-3-methylphenyl)-1-propanone
[101597-03-9] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31

- Also obtained by Friedel-Crafts acylation of 2-hydroxy-3-methylpropiophenone with benzoyl chloride in the presence of aluminium chloride at 160° for 2 h [7015]. m.p. 86° [7015].

1-(5-Benzoyl-2-methoxyphenyl)-1-propanone

[502924-43-8] $\quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 268.31

Synthesis

- Refer to: [6958].

3-(4-Chlorophenyl)-1-[2-hydroxy-5-(1-oxopropyl)phenyl]-2-propen-1-one

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{3} \quad$ mol.wt. 314.77
Synthesis

- Preparation by Claisen-Schmidt condensation of p-chlorobenzaldehyde with 2-hydroxy-5-propionyl-acetophenone in the presence of potassium hydroxide in methanol at r.t. for 24 h (96\%) [8408].
m.p. $103-104^{\circ}$ [8408].

3-(4-Chlorophenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one

[154185-30-5]

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{3} \quad$ mol.wt. 314.77 Syntheses

- Preparation by reaction of p-chlorobenzaldehyde with 5-acetyl-2-hydroxypropiophenone in the presence of potassium hydroxide in methanol at r.t. for $24 \mathrm{~h}(90 \%)$ [8413,8414].
m.p. $121-122^{\circ}$ [8414], $120-121^{\circ}$ [8413]; IR [8414].

3-(4-Chlorophenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one (E)

[144728-36-9]

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{3} \quad$ mol.wt. 314.77
Synthesis

- Refer to: [8414].

1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one

Synthesis

- Preparation by Claisen-Schmidt condensation of benzaldehyde with 2-hydroxy-5-propionylacetophenone in the presence of potassium hydroxide in methanol at r.t. for 24 h (96\%) [8408].
m.p. $\quad 95-96^{\circ}$ [8408].

1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one

[15	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 280.32
	Syntheses
	- Preparation by reaction of benzaldehyde with 5-acetyl-2-hydroxypropiophenone in the presence of potassium hydroxide in methanol at r.t. for $24 \mathrm{~h}(90 \%)$ [8413,8414].

m.p. $120-121^{\circ}$ [8414], 120° [8413];
${ }^{1} \mathrm{H}$ NMR [8414], IR [8414].

1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one (E)

[144728-32-5]

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 280.32
Synthesis

- Refer to: [8414].

1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one

m.p. $101-102^{\circ}$ [8408].

1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one
[154185-31-6]
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}$
mol.wt. 294.35

Syntheses

- Preparation by reaction of p-tolualdehyde with 5-acetyl-2-hydroxypropiophenone in the presence of potassium hydroxide in methanol at r.t. for $24 \mathrm{~h}(90 \%)$ [8413,8414].
m.p. ${142-143^{\circ}}^{\circ}$ [8414], $140-142^{\circ}$ [8413]; IR [8414].

1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one (E)
[144728-37-0]

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \quad$ mol.wt. 294.35
Synthesis

- Refer to: [8414].

1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one
[87545-01-5]

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 310.35
Synthesis

- Preparation by Claisen-Schmidt condensation of p-anisaldehyde with 2-hy-droxy-5-propionyl-acetophenone in the presence of potassium hydroxide in methanol at r.t. for $24 \mathrm{~h}(94 \%)$ [8408].
m.p. $\quad 74-75^{\circ}$ [8408]; ${ }^{1} \mathrm{H}$ NMR [8408], IR [8408].

1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one

[154185-32-7]

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 310.35
Syntheses

- Preparation by reaction of p-methoxybenzaldehyde with 5-acetyl-2-hydroxypropiophenone in the presence of potassium hydroxide in methanol at r.t. for 24 h (88\%) [8413,8414].
m.p. $129-130^{\circ}$ [8414], $128-130^{\circ}$ [8413], IR [8414].

1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one (E)
[144728-38-1]
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \quad$ mol.wt. 310.35

Synthesis

- Refer to: [8414].

3-(3,4-Dimethoxyphenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one
[154185-33-8]
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} \quad$ mol.wt. 340.38

Syntheses

- Preparation by reaction of 3,4-dimethoxybenzaldehyde with 5-acetyl-2-hydroxypropiophenone in the presence of potassium hydroxide in methanol at r.t. for $24 \mathrm{~h}(85 \%)$ [8413,8414].
m.p. $125-126^{\circ}$ [8414], 124° [8413]; IR [8414].

3-(3,4-Dimethoxyphenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one (E)

1-[2-Acetyl-5,6-dimethoxy-3-(phenylmethoxy)phenyl]-1-propanone
[102553-89-9]

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$
Synthesis

- The 6-benzyloxy-3,4-dimethoxy-2-propenylacetophenone (m.p. 80°; IR, UV) formed with osmium tetroxide an adduct which, when decomposed by sulfur dioxide in 80% ethanol give the titled diketone [8423].
m.p. 111° [8423].

27.2 Carbonyl Groups Located on Different Rings

1-(2-Acetyl-7-hydroxy-4-benzofuranyl)-1-propanone

[59445-80-6] $\quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4} \quad$ mol.wt. 232.24

Synthesis

- Obtained by treatment of its methyl ether with aluminium chloride (4 equiv) in methylene chloride at r.t. (89\%) [8426].
m.p. 213° [8426].

3-Acetyl-5-hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one
3-Acetyl-5-hydroxy-6-propionylcoumarin $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \quad$ mol.wt. 260.25

Synthesis

- Preparation from 2,4-dihydroxy-3-formylpropiophenone, ethyl acetoacetate and piperidine (45\%) [6768].
m.p. $188-190^{\circ}$ [6768].

1-(2-Acetyl-7-methoxy-4-benzofuranyl)-1-propanone

$$
\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \quad \text { mol.wt. } 246.26
$$

 Syntheses

- Obtained by reaction of dimethyl sulfate with 7-hydroxy-4-methyl-6-propionylcoumarin in aqueous alkaline solution [6800].
- Also obtained by oxidation of 7-methoxy-4-methyl-6propylcoumarin in diethyl ether with ceric ammonium nitrate in aqueous acetic acid (94\%) [7960].
m.p. 180° [6800], 172° [7960]; ${ }^{1} \mathrm{H}$ NMR [7960], IR [7960].

7-Hydroxy-2,3-dimethyl-8-(1-oxopropyl)-4H-1-benzopyran-4-one
7-Hydroxy-2,3-dimethyl-8-(1-oxopropyl)chromone

[100886-53-1] \quad\begin{tabular}{l}
Syntheses

- Preparation by Fries rearrangement of 7-propionoxy-

2,3-dimethylchromone with aluminium chloride for
30 min at $120-130^{\circ}(90 \%)$ [8367]

\end{tabular}

- Preparation by Friedel-Crafts acylation of 7-hydroxy-2,3-dimethylchromone with propionic anhydride in the presence of aluminium chloride at $155-160^{\circ}$ for 90 min (55\%) [8427].
m.p. 163° [8427], $161.5-162^{\circ}$ [8367].

3,4-Dihydro-6,8-dihydroxy-7-methyl-5-(1-oxopropyl)-1(2H)-naphthalenone

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \quad$ mol.wt. 248.28
Synthesis

- Obtained by reaction of propionic acid with3,4-dihydro-6,8-dihydroxy-7-methyl-1 $(2 \mathrm{H})$-naphthalenone (m.p. 200-201 ${ }^{\circ}$) [78377-68-1] in the presence of boron trifluoride at $90^{\circ}(92 \%)$ [7876].
m.p. $89-90^{\circ}$ [7876].

2-Bromo-5,7-dimethoxy-6-methyl-8-(1-oxopropyl)-1,4-naphthalenedione
[90363-47-6] $\quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{5} \quad$ mol.wt. 367.20

Synthesis

- Obtained by oxidation of 8-hydroxy-2,4-dimethoxy-3-methyl-1-propionaphthone with 3 equiv N-bromo -succinimide in aqueous acetic acid at 25° for 1 h (61\%) [7878].
m.p. $\quad 144-145^{\circ}$ [7878]; ${ }^{1} \mathrm{H}$ NMR [7878].

5,7-Dimethoxy-6-methyl-8-(1-oxopropyl)-1,4-naphthalenedione
[90363-48-7] $\quad \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30

Synthesis

- Obtained (by-product) by oxidation of 8-hydroxy-2,4-dimethoxy-3-methyl-1-propionaphthone with 3 equiv N -bromosuccinimide in aqueous acetic acid at 25° for 1 h (17\%) [7878].
m.p. $\quad 145-150^{\circ}$ [7878]; ${ }^{1} \mathrm{H}$ NMR [7878].

2-(4-Fluorophenyl)-5,7-dihydroxy-6-(1-oxopropyl)-4H-1-benzopyran-4-one

4'-Fluoro-5,7-dihydroxy-6-propionylflavone
[848734-12-3]
$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FO}_{5} \quad$ mol.wt. 328.30

Synthesis

- Obtained from 4-fluorobenzoylacetic acid ethyl ester and phloropropiophenone in boiling diphenyl ether for 3 h (56\%) [8428].
m.p. $201-202^{\circ}$ [8428];
${ }^{1} \mathrm{H}$ NMR [8428], MS [8428].

1-[3-[[2,4-Dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl)phenyl]methyl]-2,4,6-trihydroxy-5-methylphenyl]-1-butanone (Margaspidin BP)

$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8}$ mol.wt. 432.47
Isolation from natural sources

- From Dryopteris marginata (WALL.) CHRIST [8401].
m.p. 176° [8401];

MS [8401]; TLC [8401].
1-[2,6-Dihydroxy-4-methoxy-3-methyl-5-[[2,4,6-trihydroxy-3-methyl-5-
(1-oxopropyl)-phenyl]methyl]phenyl]-1-butanone (Margaspidin PB)
[66655-97-8]
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8}$ mol.wt. 432.47

Isolation from natural sources

- From Dryopteris marginata (WALL.) CHRIST [8401].
m.p. 176° [8401];

MS [8401]; TLC [8401].
1-[2,4,6-Trihydroxy-3-methyl-5-[[2,4,6-trihydroxy-3,5-bis
(1-oxopropyl)phenyl]methyl]-phenyl]-1-butanone
[68223-39-2] $\quad \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{9}$ mol.wt. 460.48

Synthesis

- Refer to: [8404].

BIOLOGICAL ACTIVITY:
Antimalarial comparable to that of agrimol [8404].

1,1'-[Thiobis[2,4,6-trihydroxy-5-(1-oxopropyl)-3,1-phenylene]]bis-1-hexanone
[98149-26-9]

m.p. 124° [6879].
$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{10} \mathrm{~S}$ mol.wt. 590.69
Synthesis

- Refer to: [6879] (Chinese paper), (compound 23) (44-52\%).

1-[3,5-Bis[[2,4-dihydroxy-6-methoxy-5-methyl-3-
 (1-oxopropyl)phenyl]methyl]-2,4,6-trihydroxyphenyl]-1-butanone

[49582-15-2]

$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{12}$ mol.wt. 640.68 Isolation from natural sources

- From African Dryopteris series [6890, 7262,7393].

MS [7393].

1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-(2-methyl-1-oxopropyl)-5-

 methylphenyl]methyl]-2,4,6-trihydroxyphenyl]-1-propanone (Protokosin)$\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{12} \quad$ mol.wt. 654.71

Isolation from natural sources

- From Hagenia abyssinica (Bruce) Gmel. [6932].

Chapter 28

Aromatic Polyketones Containing Only Isobutyryl Groups

28.1 Isobutyryl Groups Located on the Same Ring

1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis[2-methyl-1-propanone

[3133-29-7]

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
mol.wt. 266.29
Syntheses

- Preparation by reaction of isobutyric acid with phloroglucinol in the presence of boron trifluoride (compound 20) (53-78\%) [8376], (compound 15) (62\%) [8060], (compound 12) [8088], (compound 10) [8059].
- Also refer to: [8382,8429-8431].
m.p. $133-135^{\circ}$ [8060], $124-127^{\circ}$ [8429,8430];
${ }^{1} \mathrm{H}$ NMR [8059,8060,8088], ${ }^{13}$ C NMR [8059,8088],
IR [8059,8060,8088], UV [8059,8088].
BIOLOGICAL ACTIVITY: Antimicrobial against Bacillus subtilis [8376]; vesicular stomatitis virus inhibition [8059]; as allergy inhibitor [8089]; for herpes virus control [8379]; as herpes virus inhibitor [8380].

1,1'-(2,6-Dihydroxy-4-methoxy-5-methyl-1,3-phenylene)bis[2-methyl-1-propanone $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 294.35

Synthesis

- Refer to: [8172] (compound 8a).

1,1'-(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis[2-methyl-1-propanone
[60831-51-8] $\quad \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \quad$ mol.wt. 294.35

Synthesis

- Preparation in two steps: First, reaction of isobutyric acid with 1,3,5-trimethoxybenzene in the presence of boron trifluoride. Then, the complex obtained* (27%, m.p. $150-151^{\circ}$) was hydrolyzed in dilute methanol at 50° (87\%) [8139].
* 2,2-Difluor-1,2-dihydro-8-isobutyryl-4-isopropyl-5,7-dimethoxy-1-oxa-3-oxonia-2-borata-naphthalin (compound 6).
m.p. $92-94^{\circ}$ [8139]; ${ }^{1} \mathrm{H}$ NMR [8139].

28.2 Isobutyryl Groups Located on Different Rings

1,1'-[Methylenebis(2,4,6-trihydroxy-3,1-phenylene)]bis[2-methyl-1-propanone

4-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl) phenyl]methyl]-3,5-dihydroxy-2,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one (Kosotoxin)
N.B.: Deleted Registry Number [55838-74-9]; other CAS registry [55382-25-7].
[1400-16-4]

$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8}$ mol.wt. 460.52 Isolation from natural sources

- From Hagenia abyssinica (Rosaceae) [80 68,8175,8432-8440].

The Flowers of Hagenia abyssinica (Bruce) Gmel are known under their names (Kousso, Kosso, Kusso or Koso) [6932].
m.p. $119-122^{\circ}$ [6932], 80° [8434,8435] (old papers);
$(\alpha)_{\mathrm{D}}^{25}=+11.7^{\circ}-12.1^{\circ}$ (chloroform) [6932];
${ }^{1} \mathrm{H}$ NMR [6932,8437-8439], ${ }^{13} \mathrm{C}$ NMR [8175],
IR [6932,8437-8439], UV [6932,8437-8439],
MS [6932,8436-8439];
GC [8438]; TLC [8437-8439]; HPLC [8433,8437-8439].
Note: Acute toxicity [8439].
BIOLOGICAL ACTIVITY: Spasmolytic [8432]; antitumor action [8439]; anthelmintic against tapeworm [8441].

PHARMACOLOGICAL DATA [8442].
1-[3-[[2,6-Dihydroxy-4-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl] methyl]-2,6-dihydroxy-4-methoxy-5-methylphenyl]-2-methyl-1-propanone
[99174-41-1] $\quad \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8} \quad$ mol.wt. 460.52

Synthesis

- Obtained by reaction of a 2,6-dihydroxy-4-methoxy-3-methylisobutyrophenone and 4,6-dihydroxy-2-methoxy-3-methyl-isobutyrophenone mixture with formaldehyde in the presence of 1% aqueous potassium hydroxide for 45 min at 0° (7\%) [7255].
m.p. $170-171^{\circ}$ [7255]; UV [7255].

1-[3-[[2,6-Dihydroxy-4-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl]methyl]-4,6-dihydroxy-2-methoxy-5-methylphenyl]-2-methyl-1-propanone
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8} \quad$ mol.wt. 460.52

Synthesis

- Obtained by reaction of a 2,4-dihydroxy-6-methoxy-3-methylisobutyrophenone and 4,6-dihydroxy-2-methoxy-3-methyl-isobutyrophenone mixture with formaldehyde in the presence of 1% aqueous potassium hydroxide for 45 min at 0° (14\%) [7255].
m.p. 164.5° [7255]; UV [7255].

1-[3-[[4,6-Dihydroxy-2-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl] methyl]-2,6-dihydroxy-4-methoxy-5-methylphenyl]-2-methyl-1-propanone
[99174-42-2]

$$
\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8}
$$

mol.wt. 460.52

Synthesis

- Obtained by reaction of 2,4-dihydroxy-6-methoxy-3-methylisobutyrophenone and 2,6-dihydroxy-4-methoxy-3-methyl-isobutyrophenone mixture with formaldehyde in the presence of 1% aqueous potassium hydroxide for 45 min at 0° (15\%) [7255].
m.p. 183° [7255]; UV [7255].

1-[3-[[2-Hydroxy-4,6-dimethoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl] methyl]-2,4,6-trihydroxy-5-methylphenyl]-2-methyl-1-propanone (β-Kosin)
[1400-15-3] $\quad \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8}$ mol.wt. 460.52

Syntheses

- Obtained by alkali treatment of protokosin isolated from Hagenia abyssinica [7255,8085,8198,8435].
m.p. 120° [8198,8435]; IR [8085], UV [8085].

BIOLOGICAL ACTIVITY: Anthelmintic [8085].
Triacetate $\quad \mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{11} \quad$ mol.wt. 586.64 (m.p. 155°) [8198].
1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-5-methyl-3,1-phenylene)] bis[2-methyl-1-propanone
[568-50-3]
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8} \quad$ mol.wt. 460.52

Syntheses

- Obtained by reaction of 2,6-dihydroxy-4-methoxy-3-methylisobutyrophenone with formaldehyde in the presence of 1% aqueous potassium hydroxide for 45 min at $0^{\circ}(49 \%)$ [7255,8170].
m.p. 192-193 ${ }^{\circ}$ [7255,8170]; UV [7255].

Tetraacetate $\quad \mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{12} \quad$ mol.wt. 628.67 (m.p. 141°) [7255].
1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]bis[2-methyl-1-propanone (α-Kosin)
[99174-40-0]

Syntheses

- Obtained by reaction of 4,6-dihydroxy-2-methoxy-3-methylisobutyrophenone with formaldehyde in the presence of 1% aqueous potassium hydroxide for 45 min at $0^{\circ}(36 \%)$ [7255,8170].
- Also obtained by alkaline cleavage of Kosotoxin [8068].
- Also obtained by treatment of Protokosin with zinc dust in boiling aqueous sodium hydroxide for $5 \mathrm{~min}[8085,8198]$.
- Also refer to: [8436].

Isolation from natural sources

- From flowers of Hagenia abyssinica also named Brayera anthelmintica [8175,8437,8439].
m.p. $160-160.5^{\circ}$ [7255], 160° [8435], 158° [8170,8198].
${ }^{13}$ C NMR [8175], IR [8085], UV [7255,8085];
HPLC [8433,8437].
Note: Acute toxicity [8439].
BIOLOGICAL ACTIVITY: Anthelmintic [8085]; antitumor [8439].

Triacetate	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{11}$	mol.wt. 586.64 (m.p. 123 ${ }^{\circ}$) [8198].
Tetraacetate	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{12}$	mol.wt. 628.67 (m.p. 124°) [7255].

1,1'-[Methylenebis(4,6-dihydroxy-2-methoxy-5-methyl-3,1-phenylene)] bis[2-methyl-1-propanone
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8} \quad$ mol.wt. 460.52

Synthesis

- Obtained by reaction of 2,4-dihydroxy-6-methoxy-3-methylisobutyrophenone with formaldehyde in the presence of 1% aqueous potassium hydroxide for 45 \min at $0^{\circ}(33 \%)$ [1484].
m.p. 205-207 [7255]; UV [7255].

Tetraacetate $\quad \mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{12} \quad$ mol.wt. 628.67 (m.p. 172-174) [7255].
2-[[3-Bromo-5,7-dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]-methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one (Bromouliginosin B)
[19647-29-1]

$\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{BrO}_{8}$ mol.wt. 577.47
Synthesis

- Preparation by treatment of Uliginosin B with bromine followed by dehydrohalogenation in pyridine [8443].

Isolation from natural sources

- From Hypericum uliginosum, a woody herb found in Mexico and Central America [8443].
X-ray diffraction study [8443].
BIOLOGICAL ACTIVITY: Antibiotic [8443].
2-[[5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl] methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexa-dien-1-one (Uliginosin B-iBiB)
[19809-79-1]

$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8}$ mol.wt. 498.57
Synthesis
- Obtained (poor yield) by adding a solution of DDQ in benzene over 30 min to a stirred solution of Uliginosin A-iBiB (8\%) [8138].

Isolation from natural sources

- From the Mexican plant Hypericum uliginosum HBK (Tzotzil) [8060, 8138,8207,8444,8445].
m.p. $142.5-143.5^{\circ}$ [8138], $139.5-142^{\circ}$ [8444,8445];
${ }^{1}$ H NMR [8138,8444], IR [8138,8444], UV [8138,8444], MS [8444];
X-ray diffraction study [8443]; TLC [8138].
BIOLOGICAL ACTIVITY: Antibiotic [8060,8138,8207,8444,8445].

2-[[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-6-(2-methyl-1-oxopropyl)-2H-1-benzopyran-8-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one (Isodihydrouliginosin $\mathrm{B}-\mathrm{iBiB}$)

$$
[19809-81-5] \quad \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{8} \quad \text { mol.wt. } 500.59
$$

Syntheses

- Obtained by reaction of 5,7-dihydroxy-6-isobutyryl-2,2-dimethylchroman with albaspidin-iBiB in the presence of sodium hydride in refluxing ethanol for 1 h (23\%) [8060,8207].
- Also obtained by reaction of p-toluenesulfonic acid with Uliginosin A in refluxing benzene for 30 min [8444].
- Also refer to: [8138].
m.p. 163° [8060], 159° [8207], $156-158.5^{\circ}$ [8444];
${ }^{1} \mathrm{H}$ NMR [8060,8444], IR [8060,8444], UV [8060,8444]; TLC [8444].
2-[[3,4-Dihydro-5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one (Dihydrouliginosin B -iBiB)
[19809-80-4] $\quad \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{8} \quad$ mol.wt. 500.59

Syntheses

- Obtained by reaction of albaspidin-iBiB with 5,7-dihydroxy-8-isobutyryl-2,2dimethylchroman (m.p. 145-146 ${ }^{\circ}$) in the presence of sodium hydride in refluxing ethanol for 45 min (83\%) [8060], (ca. 80\%) [8207].
- Also obtained by hydrogenation of Uliginosin B in ethyl acetate with hydrogen in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ [8444].
Isolation from natural sources
- From the Mexican plant Hypericum uliginosum HBK [8060,8138,8444].
pale yellow solid [8138]; m.p. 149° [8207], 141-142 ${ }^{\circ}$ [8060], 138-141 ${ }^{\circ}$ [8444];
${ }^{1} H$ NMR [8060,8138,8444], IR [8060,8444], UV [8060,8444],
MS [8444].

3,5-Dihydroxy-4,4-dimethyl-2-(2-methyl-1-oxopropyl)-6-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2,5-cyclohexa-dien-1-one
(Uliginosin A-iBiB)
[19809-78-0]
$\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{8} \quad$ mol.wt. 500.59

Syntheses

- Obtained by reaction of albaspidin-iBiB with 2,4,6-trihydroxy-3-(3-methyl-2butenyl)isobutyrophenone in the presence of sodium hydride in refluxing methanol for $1.5 \mathrm{~h}(50 \%)$ [8060,8207].
Isolation from natural sources
- From the Mexican plant Hypericum uliginosum HBK (Tzotzil) [8060, 8138,8207,8444,8445].
m.p. 164° [8207], $161-162^{\circ}$ [8060], $160.5-161.5^{\circ}$ [8444,8445];
${ }^{1} \mathrm{H}$ NMR [8060,8444], IR [8060,8444], UV [8060,8444], MS [8444];
X-ray diffraction study [8443].
BIOLOGICAL ACTIVITY: Antibiotic [8060,8138,8207,8444,8445].

$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}-[M e t h y l e n e b i s(2,4,6-t r i h y d r o x y-5,1,3-b e n z e n e t r i y l)] t e t r a k i s[2-m e t h y l-~$ 1-propanone

[68223-31-4] $\quad \mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{10} \quad$ mol.wt. 544.60

Syntheses

- Preparation by bimolecular condensation of 2,4-diisobutyryl-phloroglucinol with 40% formaldehyde [6879,8404] or with methoxymethyl acetate in the presence of a few drops of concentrated sulfuric acid [8405].
BIOLOGICAL ACTIVITY: Antischistosomal (an analog of agrimophol) [6879].

1,1'-[Methylenebis(2,4,6-trimethoxy-5-methyl-3,1-phenylene)] bis[2-methyl-1-propanone

$\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{8} \quad$ mol.wt. 516.63

Synthesis

- Obtained by treatment of α or β-Kosins with dimethyl sufate in the presence of N sodium hydroxide on a steam bath under nitrogen [8085]. gum [8085]; IR [8085], UV [8085].

1,1'-[Methylenebis(3,4-dihydro-5,7-dihydroxy-2,2-dimethyl-2H-
 1-benzopyran-6,8-diyl)]bis[2-methyl-1-propanone

[72935-02-5]

$\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{8}$
mol.wt. 540.65
Syntheses

- Obtained by heating a solution of 8-isobutyryl-7-hy-droxy-5-methoxy-methyle-neoxy-2,2-dimethylchroman in 80% acetic acid containing 2 drops of concentrated sulfuric acid on a steam bath for 45 min (91\%) [8138].
- Also obtained by hydrolysis of 8-isobutyryl-5-methoxymethyleneoxy-2,2-dime-thylchroman-7-ol in the presence of an excess of isobutyrylfilicinic acid [8060].
${ }^{1} \mathrm{H}$ NMR [8060], IR [8060].
1,1'-(1,7a,13a,13b-Tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-hexamethyl-2H,13H-bis[1]benzopyrano[5,4-bc:3',4'-e]pyran-4,11-diyl)bis[2-methyl-1-propanone
(7a $\alpha, 13 \mathrm{a} \alpha, 13 \mathrm{~b} \alpha$) [111983-98-3] [8275]
(7ad, 13a人, 13bß) [112709-78-1] [8277] (Hyperevoline)
$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{8}$ mol.wt. 552.66

Isolation from natural sources

- From Hypericum revolutum VAHL (Guttiferae) [8275-8277].
m.p. 206-210 [8276];

TLC [8276,8277];
HPLC [8275,8277];
${ }^{1} \mathrm{H}$ NMR [8276],
${ }^{13}$ C NMR [8276], IR [8276], UV [8276], MS [8276,8277], X-Ray Analysis [8276,8277].
Note: Fungicidal [8276,8277].
BIOLOGICAL ACTIVITY: Antibiotic [8277].

1,1'-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-

1,3-phenylene]bis[methylene-(2,4-dihydroxy-6-methoxy-5-methyl-3,1-

phenylene)]]bis[2-methyl-1-propanone (Agrimol G) (Tripseudo-aspidinol iB, iB, iB)
[121693-17-2] $\quad \mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{12} \quad$ mol.wt. 668.74

Isolation from natural sources

- From Xian he cao (Agrimonia pilosa Ledb.) [8446].
- From Hagenia abyssinica [6932].
- Also refer to: [8447].
m.p. $167-170^{\circ}$ [8446];
${ }^{1} \mathrm{H}$ NMR [8446], ${ }^{13} \mathrm{C}$ NMR [8446], IR [8446], MS [8446].
BIOLOGICAL ACTIVITY: Antimicrobial [8446]; antimicrobial for Staphylococcus aureus [6891].

1-[3-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl) phenyl]methyl]-2,4,6-trihydroxy-5-[[2-hydroxy-4,6-dimethoxy-3-methyl-5-(2-methyl-1-oxopropyl)-phenyl]methyl]phenyl]-2-methyl-1-propanone

$$
\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{12} \quad \text { mol.wt. } 682.77
$$

Isolation from natural sources

- Of Hagenia abyssinica, Gmel female flowers [8440].
- Also refer to: [7255,8434].
m.p. 176° [8434].

1,1'-[(6-Methylheptylidene)bis(3,4-dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6,8-diyl)]bis[2-methyl-1-propanone

[99814-61-6]

yellow crystals [8080];
m.p. 189° [8080];
${ }^{1} \mathrm{H}$ NMR [8080], IR [8080],
MS [8080].

1,1'-[(6-Methylheptylidene)bis[2,4,6-trihydroxy-5-(3-methyl-2-butenyl)-

 3,1-phenylene]]bis[2-methyl-1-propanone[103771-72-8]

yellow crystals [8080];
m.p. $120-121^{\circ}$ [8080];
${ }^{1} \mathrm{H}$ NMR [8080], IR [8080], MS [8080].

p. 120-121 [8080]
$\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{8} \quad$ mol.wt. 638.84
Isolation from natural sources

- From the aerial parts of Helichrysum platypterum DC (Compositae) (compound 5) [8080].
$\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{8} \quad$ mol.wt. 638.84
Isolation from natural sources
- From the aerial parts of Helichrysum platypterum DC (Compositae) (compound 28) [8080].

Chapter 29

Aromatic Polyketones Containing At Least One Isobutyryl Group

29.1 Carbonyl Groups Located on the Same Ring

2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-benzenedicarboxaldehyde

[245052-19-1] \quad\begin{tabular}{l}
mol.wt. 252.22

Isolation from natural sources

From eucalyptus essential oil, Eucalyptus
apodophylla (Myrtaceae)
(component C) [8221].

\end{tabular}

MS [8221]; GC [8221], GC-MS [8221].

1-(2-Acetyl-6-hydroxyphenyl)-2-methyl-1-propanone

2,4-Dihydroxy-6-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)benzaldehyde

$$
\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad \text { mol.wt. } 252.27
$$

Synthesis

- Obtained (poor yield) by reaction of zinc cyanide with 2,6-dihydroxy-4-methoxy-3methylisobutyrophenone in the presence of aluminium chloride according to the Gattermann-Adams reaction (10\%) [8171].
m.p. 70° [8171];
${ }^{1} \mathrm{H}$ NMR [8171], ${ }^{13} \mathrm{C}$ NMR [8171], IR [8171], MS [8171].

2,6-Dihydroxy-4-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)benzaldehyde

 $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 252.27

Synthesis

- Preparation by reaction of zinc cyanide with 4,6-dihydroxy-2-methoxy-3-methylisobutyrophenone in the presence of aluminium chloride according to the Gattermann-Adams reaction (54\%) [8171].
Isolation from natural sources
- From Hagenia abyssinica (Rosaceae) [8178].
m.p. $65-66^{\circ}$ [8171], 54-56 [8178]. One of the reported melting points is obviously wrong.
${ }^{1} \mathrm{H}$ NMR [8171,8178], ${ }^{13} \mathrm{C}$ NMR [8178], IR [8171,8178], UV [8178], MS [8178].

29.2 Carbonyl Groups Located on Different Rings

1-[2-[2,6-Dihydroxy-3-(3-methyl-2-butenyl)benzoyl]-3-hydroxy-5-methylphenyl]-2-methyl-1-propanone (FD-549)
[175413-69-1] $\quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5} \quad$ mol.wt. 382.46

BIOLOGICAL ACTIVITY: Antitumor [8448].
1,1'-[Methylenebis(5-acetyl-2,4,6-trihydroxy-3,1-phenylene)]bis [2-methyl-1-propanone
[98149-24-7]

$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{10}$ mol. t. 488.49
Synthesis

- Obtained by condensation of 3-acetyl-2,4,6-trihydroxyisobutyrophenone (2 mol) in the presence of 40% formaldehyde (58-65\%) [6879].
m.p. $180-182^{\circ}$ [6879].

BIOLOGICAL ACTIVITY: Antischistosomal (an analog of agrimophol) [6879].

3-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl] methyl]-2,4,6-trihydroxy-5-(3-methyl-1-oxobutyl)benzaldehyde (Robustaol A)
[78411-76-4]

$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{9}$
mol.wt. 474.51 Synthesis

- Preparation from 4,6-dihydroxy-2-methoxy-3-meth-ylisobutyrophenone and 3-iso-valeryl-2,4,6-tri-hydroxybenzaldehyde [8176].

Isolation from natural sources

- From Eucalyptus robusta [8176].

4,9-Dihydro-8-hydroxy-6-methoxy-2,2,4,4-tetramethyl-5-(2-methyl-1-oxopropyl)-9-(2-methylethyl)-1H-xanthene-1,3(2H)-dione (Myrtucommulone B)

4-[1-[2,4,6-Trihydroxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl]-2-methylpropyl]-5-hydroxy-2,2,6,6-tetramethyl-4-cyclohexene-1,3-dione (Semimyrtucommulone)
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{7} \quad$ mol.wt. 446.97

Isolation from natural sources

- From plants of family Myrtaceae [6882,8449].

USE: Antioxidizing agent [6882,8449].

1-[6-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-
5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone (Isobutyrylmallotochromene)
[116964-16-0] $\quad \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8} \quad$ mol.wt. 470.52

Isolation from natural sources

- From the pericarps of Mallotus japonicus MUELL (Euphorbiaceae) [8450], (compound 11) [8451], (compound 9) [8452,8453].
m.p. 180-181 ${ }^{\circ}$ [8451]; ${ }^{1} \mathrm{H}$ NMR [8451], ${ }^{13} \mathrm{C}$ NMR [8451], IR [8451], UV [8451], MS [8451].
Note: Cytotoxicity [8453].
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone (Isobutyrylmallotojaponin)
[96853-74-6]

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{8} \quad$ mol.wt. 472.54
Isolation from natural sources
- From Mallotus japonicus MUELL ARG. (Euphorbiaceae) (compound D) [8454] (compound 5) [8451,8455], (compound 6) [8456] (compound 3) [8452,8453], (compound 9) [8457].
N.B.: The compound D was a mixture of butyrophenone and isobutyrophenone (2:1) [8454,8456].
m.p. 157-158 ${ }^{\circ}$ [8454]; ${ }^{1} \mathrm{H}$ NMR [8454], ${ }^{13} \mathrm{C}$ NMR [8454], IR [8454], MS [8454].
Note: Cytotoxicity [8453,8455,8458].
BIOLOGICAL ACTIVITY: Antiviral and antitumor [8452].

1-[6-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-3,4-dihydro-3,5,7-trihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone
(Isobutyrylmallotochromanol)
[129399-53-7]

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{9} \quad$ mol.wt. 488.53
Isolation from natural sources

- From the pericarps of Mallotus japonicus MUELL. ARG. (Euphorbiaceae) (compound 13) [8452], (compound 2) [8457], (compounds 5) [8459,8460].
- Also refer to: [8461-8466].
m.p. 211-212 ${ }^{\circ}$ [8457];
${ }^{1} \mathrm{H}$ NMR [8457], ${ }^{13} \mathrm{C}$ NMR [8457], IR [8457], UV [8457], MS [8457].
Note: Cytotoxicity [8452,8457].
BIOLOGICAL ACTIVITY: Antiviral and antitumor [8452]; antiherpetic [8452]; drug-coated coronary stent system [8464]; catheter with balloon for the expansion of blood vessels carrying contrast agents and drugs [8466]; method and device for coating medical goods using ultrasound spraying [8465]; inhibition of lipopolysaccharide-induced pro-inflammatory cytokine expression via suppression of nuclear factor-kB activation [8460]; prostaglandin E_{2} production and induction of prostaglandin endoperoxide synthase-2 is inhibited in a murine macrophage-like cell line RAW 264.7 [8459]; for treatment of carcinoid syndrome [8467]; expandable medical devices with Parylene C and paclitaxel coating [8468]; method for targeted delivery of therapeutic substances into cells using nanoparticles [8469].

1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihy-droxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-2-methyl-1-propanone (Isobutyrylmallotolerin), old name (isomallotolerin)
[126026-30-0] $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{9}$ mol.wt. 488.53

Isolation from natural sources

- From the pericarps of Mallotus japonicus MUELL. ARG. (Euphorbiaceae) [8450], (compound 1) [8470], (compound 6) [8452,8453], (compound 11) [8457].
m.p. 216-217 ${ }^{\circ}$ [8470]; ${ }^{1} \mathrm{H}$ NMR [8470], ${ }^{13} \mathrm{C}$ NMR [8470], IR [8470], UV [8470], MS [8470]; HPLC [8470].
Note: Cytotoxicity [8453].
BIOLOGICAL ACTIVITY: Antiviral and antitumor [8452].

1-[2,4,6-Trihydroxy-3-(2-methyl-1-oxopropyl)-5-[[2,4,6-trihydroxy-3-methyl-5-(1-oxobutyl)phenyl]methyl]phenyl]-1-butanone
[68223-53-0]

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{9} \quad$ mol.wt. 488.53
Synthesis

- Preparation by bimolecular condensation of acylphloroglucinol derivatives [8404] (Chinese paper).

BIOLOGICAL ACTIVITY: Antimalarial [8404].
1-[2,4,6-Trihydroxy-3-methyl-5-[[2,4,6-trihydroxy-3,5-bis(2-methyl-1-oxopropyl)-phenyl]methyl]phenyl]-1-butanone
[68223-40-5]

BIOLOGICAL ACTIVITY: Antimalarial [8404].
$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{9} \quad$ mol.wt. 488.53
Synthesis

- Preparation by bimolecular condensation of acylphloroglucinol derivatives [8404] (Chinese paper).

4,9-Dihydro-8-hydroxy-6-methoxy-2,2,4,4-tetramethyl-5-
(2-methyl-1-oxopropyl)-9-(2-methylpropyl)-1H-xanthene-1,3(2H)-dione

[139979-87-6]	Obtained by treatment of 4-[1-[2,6-Dihydroxy- 4-methoxy-3-(2-methyl-1-oxopropyl) phenyl]-3-methylbutyl]-5-hydroxy-2,2,6,6- tetramethyl-4-cyclohexene-1,3-dione (com- pound 4) with p-toluenesulfonic acid in refluxing benzene for 2.5 h [8135].

${ }^{1} \mathrm{H}$ NMR [8135], IR [8135], UV [8135], MS [8135].

4-[1-[2,6-Dihydroxy-4-methoxy-3-(2-methyl-1-oxopropyl)phenyl]-

 3-methylbutyl]-5-hydroxy-2,2,6,6-tetramethyl-4-cyclohexene-1,3-dione[139955-98-9]

$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{7} \quad$ mol.wt. 460.57
Isolation from natural sources

- From Kunzea ericoides (A. Rich) leaves and twigs (Myrtaceae) [8135].
m.p. ${ }^{129-132}{ }^{\circ}$ [8135]; TLC [8135]; ${ }^{1} \mathrm{H}$ NMR [8135], ${ }^{13} \mathrm{C}$ NMR [8135],
IR [8135], UV [8135], MS [8135].
BIOLOGICAL ACTIVITY: Antiviral [8135].

2-[[5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-
 1-benzopyran-6-yl]-methyl]-3,5-dihydroxy-4,4-dimethyl-6-
 (3-methyl-1-oxobutyl)-2,5-cyclohexadien-1-one (Uliginosin B-iViB)

[72934-91-9]

$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{8} \quad$ mol.wt. 512.60 Isolation from natural sources

- From the Mexican plant Hypericum uliginosum HBK (natural impurity) [8138].

3,5-Dihydroxy-4,4-dimethyl-2-(3-methyl-1-oxobutyl)-6-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2,5-cyclohexadien-1-one (Uliginosin $A-i V i B)$
[69299-75-8] $\quad \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{8} \quad$ mol.wt. 514.62

- Obtained by reaction of albaspidin-iViV (m.p. 133-134 ${ }^{\circ}$) and 2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-isobutyrophenone in the presence of sodium hydride in refluxing methanol for 1.5 h (74\%) [8060].
- Also refer to: [8138].
m.p. $157-158^{\circ}$ [8060]; ${ }^{1} \mathrm{H}$ NMR [8060], IR [8060].

2-Methyl-1-[1,7a,13a,13b-tetrahydro-5,8,10-trihydroxy-
2,2,6,9,13,13-hexamethyl-4-(2-methyl-1-oxopropyl)-2H,13H-bis[1]
benzopyrano[5,4-bc: $\left.3^{\prime}, 4^{\prime}-e\right]$ pyran-11-yl]-1-butanone
[112613-99-7]
$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{8}$
mol.wt. 566.69

m.p. ${ }^{193-197^{\circ}}$ [8276]; ${ }^{1} \mathrm{H}$ NMR [8276], ${ }^{13} \mathrm{C}$ NMR [8276],

IR [8276], UV [8276],
MS [8276]; HPLC [8275]; TLC [8276].

2-Methyl-1-[1,7a,13a,13b-tetrahydro-5,8,10-trihydroxy-
 2,2,6,9,13,13-hexamethyl-11-(2-methyl-1-oxopropyl)-2H,13H-bis[1] benzopyrano[5,4-bc:3', $\left.\mathbf{4}^{\prime}-e\right]$ pyran-4-yl]-1-butanone

[112614-00-3]

m.p. $193-197^{\circ}$ [8276]; ${ }^{1} \mathrm{H}$ NMR [8276], ${ }^{13}$ C NMR [8276],
IR [8276], UV [8276],
MS [8276]; HPLC [8275]; TLC [8276].
1-[3-[(3-Acetyl-2,6-dihydroxy-4-methoxy-5-methylphenyl)
methyl]-5-[[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl) phenyl]methyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-butanone (Agrimol D)
[55576-64-2] $\quad \mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{12} \quad$ mol.wt. 654.71

Isolation from natural sources

- From the whole plant Agrimol pilosa, ledeb [8471] (Chinese paper).
- From the Chinese herb medicine Agrimonia pilosa [8472] (Chinese paper).
m.p. $\quad 147-149^{\circ}$ [8471]; ${ }^{1} \mathrm{H}$ NMR [8472], IR [8472], UV [8472], MS [8472].

1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl) phenyl]methyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-butanone (Agrimol A)
[55576-65-3] $\quad \mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{12} \quad$ mol.wt. 682.77

Synthesis

- Refer to: [8174] (Chinese paper).

Isolation from natural sources

- From the whole plant Agrimol pilosa, ledeb [8471] (Chinese paper).
- From the Chinese herb medicine Agrimonia pilosa [8472] (Chinese paper).
m.p. $\quad 176-178^{\circ}$ [8471]; ${ }^{1} \mathrm{H}$ NMR [8472], IR [8472], UV [8472], MS [8472].

1-[6-[1-[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]-6-methylheptyl]-3,4-dihydro-5,7-dihydroxy-2,2-dimethyl- 2H-1-benzopyran-8-yl]-2-methyl-1-butanone
[103771-65-9]

$\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{8}$ mol.wt. 652.87 Isolation from natural sources

- From the aerial parts of Helichrysum platypterum DC (Compositae) (compound 6) [8080].

2-Methyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-[6-methyl-
1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl] heptyl]phenyl]-1-butanone
[103771-73-9]

Isolation from natural sources

- From the aerial parts of Helichrysum platypterum DC (Compositae) (compound 29) [8080].

Protokosin

[1392-97-8]
Protokosin proved to be a mixture of isobutyryl, isovaleryl and 2-methylbutyryl side-chain homologues [6932]; (compound 7987) [6640]. Protokosin was therefore represented by the general formula below:
$\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{O}_{12}, \quad \mathrm{C}_{40} \mathrm{H}_{52} \mathrm{O}_{12}, \quad \mathrm{C}_{39} \mathrm{H}_{50} \mathrm{O}_{12} \quad$ and $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{O}_{12}$

Isolation from natural sources

- From kousso flowers Hagenia abyssinica (Bruce) Gmel (Brayera anthelmintica) (Rosaceae) [6932,8085,8178, 8198,8434,8435].
$\mathrm{R}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \quad-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \quad-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ m.p. 182° [8198,8435], 181-183 ${ }^{\circ}$ [6932], 176° [8434], 174-176 ${ }^{\circ}$ [8473];
$(\alpha)_{\mathrm{D}}^{25}=+13.4^{\circ}-14.4^{\circ}$ (chloroform) [6932];
${ }^{1} \mathrm{H}$ NMR [6932], IR [6932,8085], UV [6932,8085], MS [6932].
BIOLOGICAL ACTIVITY: Anthelmintic [8085].

Chapter 30
 Aromatic Polyketones Containing Only Pivaloyl Groups

30.1 Pivaloyl Groups Located on the Same Ring

1,1'-(2,5-Dihydroxy-1,4-phenylene)bis[2,2-dimethyl-1-propanone

[39868-19-4]

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \quad$ mol.wt. 278.35
Syntheses

- Obtained by total demethylation of its dimethyl ether with 48% hydrobromic acid in refluxing acetic acid for 24 h (32\%) [8310].
- Also obtained by visible light irradiation of 1,4-benzoquinone and trimethylacetaldehyde mixture for 18 days (4\%) [8312].
m.p. $\quad 184-185^{\circ}$ [8312], $180-181^{\circ}$ [8310];
${ }^{1} \mathrm{H}$ NMR [8310,8312], IR [8310,8312], MS [8310,8312].
1,1'-(2,5-Dimethoxy-1,4-phenylene)bis[2,2-dimethyl-1-propanone
[39868-16-1]

m.p. $195-199^{\circ}$ [8310].

Note: Antioxidant [8315].

30.2 Pivaloyl Groups Located on Different Rings

$1,1^{\prime}-\left[(1 R)-2,2^{\prime}\right.$-Dihydroxy[1, 1^{\prime}-binaphthalene]-3,3'-diyl]bis
[2,2-dimethyl-1-propanone
[574004-35-6] $\quad \mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{4} \quad$ mol.wt. 454.57

Synthesis

- Preparation from 3-hydroxy-2-pivaloylnaphthalene by oxidative biaryl coupling using cuprous iodide in the presence of (S, S)-1,5-diazadecalin in a methylene chloride/acetonitrile mixture under oxygen for 48 h at 40° (58\%) (compound 9 u) [7694].
${ }^{1} \mathrm{H}$ NMR [7694], ${ }^{13} \mathrm{C}$ NMR [7694], IR [7694], MS [7694];
$(\alpha)_{\mathrm{D}}^{25}=+81^{\circ}$ (chloroform) [7694]; TLC [7694]; HPLC [7694].

$1,1^{\prime}$-($2,2^{\prime}$-Dihydroxy[1,1'-binaphthalene]-6,6'-diyl)bis

[2,2-dimethyl-1-propanone

$[874183-64-9]$ (racemic)	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{4}$	mol.wt. 454.57
$[874187-24-3](1 R)$		
$[874187-25-4](1 S)$		

Synthesis

Note: Highly efficient chromatographic resolution of α, α^{\prime}-dihydroxybiaryls [8474].

Chapter 31
 Aromatic Polyketones Containing At Least One Pivaloyl Group

31.1 Carbonyl Groups Located on the Same Ring

1-(2-Acetyl-6-hydroxyphenyl)-2,2-dimethyl-1-propanone
[171609-27-1] $\quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \quad$ mol.wt. 220.27

Synthesis

- Refer to: [8336] (Japanese patent).
N.B.: No polyketone located on different rings is described in the literature till Dec., 31, 2007.

References

1. Hart, L. S.: Ph. D. (London) (1967).
2. Charlesworth, E. H. and Charleson, P.: Can. J. Chem., 46, 1843-1847 (1968).
3. Dewar, M. J. S. and Hart, L. S.: Tetrahedron, 26, 973-1000 (1970).
4. Campbell, N. and Thomson, A.: Proc. Roy. Soc. Edinburgh, Sect. A, 68 (3) 245-256 (1970); Chem. Abstr., 72, 110958n (1970).
5. Agzatova, K. O.; Yuldashev, Kh. Yu and Sidorova, N. G. (USSR): Deposited Doc., SPSTL 366Khp-D80, 12 pp. (1980); Chem. Abstr., 97, 55405u (1982).
6. Effenberger, F. and Gutmann, R.: Chem. Ber., 115, 1089-1102 (1982).
7. Graebe, C. and Ullmann, F.: Ber. Dtsch. Chem. Ges., 29 (1) 824-825 (1896).
8. Hayashi, I.; Ogihara, K. and Shimizu, K.: Bull. Chem. Soc. Jpn., 56 (8) 2432-2437 (1983).
9. Kulka, M.: J. Am. Chem. Soc., 76, 5469-5471 (1954).
10. Moriconi, E. J.; O’Connor, W. F. and Forbes, W. F.: J. Am. Chem. Soc., 82, 5454-5459 (1960).
11. Staudinger, H. and Kon, N.: Justus Liebigs Ann. Chem., 384, 38-135 (1911).
12. Warren S. Forster: U.S. 2,818,400 (1957); Chem. Abstr., 52, 5036d (1958).
13. Ullmann, F. and Goldberg, I.: Ber. Dtsch. Chem. Ges., 35, 2811-2814 (1902).
14. Blicke, F. F. and Weinkauff, O. J.: J. Am. Chem. Soc., 54, 1446-1453 (1932).
15. Reiter, P. L.: Ph. D., University of Stuttgart, Stuttgart (Germany) (1974).
16. Billon, P.: Ann. Chim. (Paris), 7, 336-384 (1927).
17. DeTar, D. F. and Relyea, D. I.: J. Am. Chem. Soc., 76, 1680-1685 (1954).
18. Pfeiffer, P. and Loewe, W.: J. Prakt. Chem., 147, 293-310 (1937).
19. Stoermer, R.; Friderici, E. and Altgelt, H.: Ber. Dtsch. Chem. Ges., 41, 321-324 (1908).
20. Krause, M.; Rouleau, A.; Stark, H.; Luger, P.; Lipp, R.; Garbarg, M.; Schwartz, J. C. and Schunack, W.: J. Med. Chem., 38 (20) 4070-4079 (1995).
21. McOmie, J. F. W.; Watts, M. L. and West, D. E.: Tetrahedron, 24, 2289-2292 (1968).
22. Kulka, M.: Can. 560,324 (1958); Chem. Abstr., 53, 10130h (1959).
23. Kaplan, J. P.; Jalfre, M. and Giudicelli, Don P. R. L.: Ger. Offen. 2,634,288 (1977); Chem. Abstr., 86, 189530n (1977).
24. Martin, R. and Coton, G.: Bull. Soc. Chim. Fr., (4) 1442-1445 (1973).
25. Cullinane, N. M.; Morgan, N. M. E. and Plummer, C. A. J.: Recl. Trav. Chim. Pays-Bas, 56, 627-631 (1937).
26. Gore, P. H.; Smith, G. H. and Thornburn, S.: J. Chem. Soc. C, 1, 650-652 (1971).
27. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 2926-2929 (1958).
28. Yamamoto, J.; Ishikawa, T. and Okamoto, Y.: Nippon Kagaku Kaishi, 11, 1870-1875 (1989).
29. Tawada, H.; Natsugari, H.; Ishikawa, E.; Sugiyama, Y.; Ikeda, H. and Meguro, K.: Chem. Pharm. Bull., 43 (4) 616-625 (1995).
30. Yamamoto, J.; Kurokawa, H. and Sugita, K.: Nippon Kagaku Kaishi, (11), 2107-2110 (1995); Chem. Abstr., 105, 152640h (1996).
31. Baltzly, R.; Ide, W. S. and Phillips, A. P.: J. Am. Chem. Soc., 77, 2522-2533 (1955).
32. Dawson, I. M.; Hart, L. S. and Littler, J. S.: J. Chem. Soc., Perkin Trans. 2, 2 (9) 1601-1606 (1985).
33. Mahajan, A. R.; Dutta, D. K.; Boruah, R. C. and Sandhu, J. S.: Tetrahedron Lett., 31 (27) 3943-3944 (1990).
34. Khanna, R. N.; Singh, K. P. and Sharma, J.: Org. Prep. Proced. Int., 24 (6) 687-690 (1992).
35. Huber, H. and Brunner, K.: Monatsh. Chem., 56, 322-330 (1930).
36. Yamamoto, J.: Ikeda, Y.; Inohara, T.; Nakata, H. and Umezu, M.: Nippon Kagaku Kaishi, (12), 1911-1915 (1981); Chem. Abstr., 96, 85136d (1982).
37. Effenberger, F.; Klenk, H. and Reiter, P. L.: Angew. Chem., 85 (18) 819-820 (1973).
38. Olah, G. A.; Arvanaghi, M. and Krishnamurthy, V. V.: J. Org. Chem., 48 (19) 3359-3360 (1983).
39. Sekiguchi, T. and Tanaka, M.: Nippon Kagaku Kaishi, 4, 742-746 (1985); Chem. Abstr., 104, 109139u (1986).
40. Nakazawa, K. and Kusuda, K.: J. Pharm. Soc. Jpn., 75, 257-260 (1955).
41. Kad, G. L.; Trahan, I. R.; Kaur, J.; Nayyar, S.; Arora, A. and Brar, J. S.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 35B (7) 734-736 (1996).
42. Venkatachalapathy, C. and Pitchumani, K.: Tetrahedron, 53 (50) 17171-17176 (1997).
43. Arventi, B. I.: Bull. Soc. Chim. Fr., 999-1007 (1937).
44. Perrot, C. and Cerutti, E.: Bull. Soc. Chim. Fr., 2225-2232 (1974).
45. Arventi, B. I.: Bull. Soc. Chim. Fr., 598-603 (1936).
46. Perrot, C. and Cerutti, E.: C. R. Acad. Sci., Ser. C, 265, 320-323 (1967).
47. Rio, G. and Berthelot, J.: Bull. Soc. Chim. Fr., 1705-1707 (1971).
48. Hamada, Chiomatsu: Science Repts. Tôhoku Imp. Univ., First Ser. 22, 55-60 (1933); Chem. Abstr., 27, 3928^{5} (1933).
49. Heiber, F.: Ber. Dtsch. Chem. Ges., 24, 3677-3687 (1891).
50. Casnati, G.; Colli, M.; Pochini, A. and Ungaro, R.: Chim. Ind. (Milan), 59 (11) 764-765 (1977).
51. Satoh, T.; Itaya, T.; Miura, M. and Nomura, M.: Chem. Lett., 9, $823-824$ (1996).
52. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 1311-1312 (1958).
53. Hoefnagel, A. J. and van Bekkum, H.: Appl. Catal., 97 (2) 87-102 (1993).
54. Cullinane, N. M. and Edwards, B. F. R.: J. Appl. Chem., 133-136 (1959).
55. Thomas, L. H. and Vlismas, T.: J. Chem. Soc., 612-615 (1963).
56. Graebe, C. and Ullmann, F.: Ber. Dtsch. Chem. Ges., 27, 3483-3484 (1894).
57. Graebe, C. and Ullmann, F.: Justus Liebigs Ann. Chem., 291, 8-17 (1896).
58. Horne, S. and Rodrigo, R.: J. Org. Chem., 55 (15) 4520-4522 (1990).
59. Miller, J. A.: J. Org. Chem., 52, 322-323 (1987).
60. Cadogan, J. I. G.; Hutchison, H. S. and McNab, H.: J. Chem. Soc., Perkin Trans. 1, 2, 385-393 (1991).
61. Cohn, P.: Monatsh. Chem., 17, 102-109 (1896).
62. Bennett, O. F.; Sister, M. J. B.; Malloy, R.; Dervin, P. and Saluti, G.: J. Org. Chem., 37 (9) 1356-1359 (1972).
63. Tsekhanskii, R. S.; Zobova, N. N. and Ushenina, V. F.: Izv. Vysshikh Uchebn. Zavedenii, Khim. i Khim. Tekhnol., 4, 985-987 (1961); Chem. Abstr., 57, 16449 (1962).
64. Avnir, D.; De Mayo, P. and Ono, Isao: J. Chem. Soc., Chem. Commun., 24, 1109-1110 (1978).
65. Syamala, M. S.; Rao, B. N. and Ramamurthy, V.: Tetrahedron, 44 (23) 7234-7242 (1988).
66. Plank, A.: Tetrahedron Lett., 52, 5423-5426 (1968).
67. Anderson, J. C. and Reese, C. B.: J. Chem. Soc., 1781-1784 (1963).
68. Horspool, W. M. and Pauson, P. L.: J. Chem. Soc., 5162-5166 (1965).
69. Chênevert, R. and Voyer, N.: Tetrahedron Lett., 25 (44) 5007-5008 (1984).
70. Singh, A. K. and Sonar, S. M.: Synth. Commun., 15 (12) 1113-1121 (1985).
71. Pitchumani, K.; Warrier, M. and Ramamurthy, V.: J. Am. Chem. Soc., 118 (39) 9428-9429 (1996).
72. Finnegan, R. A. and Mattice, J. J.: Tetrahedron, 21, 1015-1026 (1965).
73. Boulton, A. J.; Tsoungas, P. G. and Tsiamis, C.: J. Chem. Soc., Perkin Trans. 1, 9, 1665-1667 (1986).
74. Bouzard, D.; Weber, A. and Le Henaff, P.: Bull. Soc. Chim. Fr., 3375-3384 (1972).
75. Brown, R. E. and Shavel, J., Jr.: U.S. 3,927,023 (1975); Chem. Abstr., 84, 90154q (1976).
76. Daglish, A. F. and Faulkner, D.: U.S. 2,659,709 (1953); Chem. Abstr., 48, 4253 f (1954).
77. Dewhirst, F. E.: U.S. 4,244,970 (1981); Chem. Abstr., 94, 156549n (1981).
78. Eastman Kodak Co., French Patent 1,256,112 (1961).
79. Finnegan, R. A.; Merkel, K. E. and Patel, J. K.: J. Pharm. Sci., 62 (3) 483-485 (1973).
80. Fujii, S.; Yaegashi, T.; Nakayama, T.; Sakurai, Y.; Nunomura, S. and Okutome, T.: Fr. Demande FR 2,500,825 (1982); Chem. Abstr., 98, 88995k (1983).
81. Jasching, W.: Kunststoffe, 52 (8) 458-464 (1962).
82. Kamal, A. and Sattur, P. B.: Synth. Commun., 12 (2) 157-162 (1982).
83. Kamal, A.; Rao, A. B. and Sattur, P. B.: J. Org. Chem., 53 (17) 4112-4114 (1988).
84. Lebedeva, E. P.; Matyushin, G. A.; Mezentseva, G. A.; Tavrizova, M. A. and Fain, V. Ya.: Zh. Prikl. Spektrosk., 31 (1) 104-108 (1979); Chem. Abstr., 91, 174466a (1979).
85. Pinazzi, C. P. and Fernandez, A.: Makromol. Chem., 168, 19-26 (1973).
86. Rigaudy, J. and Paillous, N.: Tetrahedron Lett., 40, 4825-4831 (1966).
87. Stanley, T.: U.S. 3,330,884 (1967); Chem. Abstr., 68, 96546k (1968).
88. Surendranath, V.: Sasmira Tech. Dig., 3, 9-11 (1980); Chem. Abstr., 96, 51894g (1982).
89. Arventiev, B.; Gabe, I.; Offenberg, H. and Nicolaescu, T.: An. Stiint Univ. "Al I Cuza" Iasi, Sect. 1c, 10, 173-182 (1964).
90. Winkler, L. W.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 266, 45-62 (1928).
91. Dilling, W. L.: J. Org. Chem., 31, 1045-1050 (1966).
92. Evans, D.; Cracknell, M. E.; Saunders, J. C.; Smith, C. E.; Williamson, W. R. N.; Dawson, W. and Sweatman, W. J.: J. Med. Chem., 30 (8) 1321-1327 (1987).
93. Hrdlovic, P. and Bellus, D.: Chem. Zvesti, 21 (6) 410-416 (1967).
94. Salman, S. R. and Abas, K. F.: Thermochim. Acta, 152 (2) 381-386 (1989); Chem. Abstr., 112, 157512x (1990).
95. Salman, S. R. and Abas, K. F.: Thermochim. Acta, 149, 381-386 (1989); Chem. Abstr., 112, 157570q (1990).
96. Hrdlovic, P.; Bellus, D. and Lazar, M.: Collect. Czech. Chem. Commun., 33, 59-67 (1968).
97. Kopczynski, T.; Krzyzanowska, E. and Olszanowski, A.: J. Prakt. Chem., 331 (3) 486-492 (1989).
98. Chaudet, J. H. and Tamblyn, J. W.: SPE (Soc. Plastics Engrs.) Trans., 1, 57-62 (1961); Chem. Abstr., 56, 4936c (1962).
99. Hrdlovic, T.; Schubertova, N. and Pavlovcik, R.: Collect. Czech. Chem. Commun., 36 (5) 1942-1947 (1971).
100. Offenberg, H. L. and Arventiev, B.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 17 (1) 45-48 (1971).
101. Salman, S. R.: Can. J. Spectrosc., 34 (2) 50-51 (1989).
102. Salman, S. R.; Kamounah, F. S. and Tameesh, A. H. H.: J. Chromatogr., 483, 390-393 (1989).
103. Arventiev, B.; Gabe, I.; Offenberg, H.; Nicolaescu, T.; Harnagea, F. and Badilescu, S.: An. Stiiint Univ. "Al I Cuza" Iasi, Sect. 1c, 12 (2), 181-183 (1966).
104. Kysel, O. and Jany, I.: Chem. Zvesti, 28 (1) 70-76 (1974).
105. Shulgin, A. T. and Kerlinger, H. O.: Chem. Commun., 9, 249-250 (1966).
106. Strat, M.; Singurel, L. and Strat, G.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1b, 20 (1) 67-72 (1974).
107. Strat, M.; Umreiko, D. S. and Khovratovich, N. N.: Zh. Prikl. Spektrosk., 19 (1) 103-108 (1973); Chem. Abstr., 79, 77607s (1973).
108. Strat, M.; Umreiko, D. S. and Khovratovich, N. N.: Zh. Prikl. Spektrosk., 19 (2) 288-293 (1973); Chem. Abstr., 79, 114652a (1973).
109. Hrdlovic, P. and Bellus, D.: Chem. Zvesti, 22 (7) 508-513 (1968).
110. Kysel, O. and Zahradnik, R.: Collect. Czech. Chem. Commun., 35 (10) 3030-3044 (1970).
111. Kysel, O.; Zahradnik, R. and Pakula, B.: Collect. Czech. Chem. Commun., 35 (10) 30203029 (1970).
112. Tsekhanskii, R. S.: Zh. Prikl. Spektrosk., 5 (3) 316-322 (1966); Chem. Abstr., 66, 33262c (1967).
113. VanAllan, J. and Tinker, J. F.: J. Org. Chem., 19, 1243-1251 (1954).
114. Ballantine, J. A. and Pillinger, C. T.: Org. Mass. Spectrom., 1 (3) 425-445 (1968); Chem. Abstr., 69, 111296v (1968).
115. Kysel, O.: Collect. Czech. Chem. Commun., 39 (11) 3256-3267 (1974).
116. Durisinova, L. and Bellus, D.: J. Chromatogr., 32 (3) 584-587 (1968).
117. Schubertova, N. and Hrdlovic, P.: Chem. Zvesti, 23 (7) 495-500 (1969).
118. Bennetau, B.; Rajarison, F.; Dunogues, J. and Babin, P.: Tetrahedron, 50 (4) 1179-1188 (1994).
119. Astoin, J.; Lepage, F.; Fromantin, J. P. and Poisson, M.: Eur. J. Med. Chem. - Chim. Ther., 15 (5) 457-462 (1980).
120. Cassebaum, H.: J. Prakt. Chem., 13, 141-151 (1961).
121. Giovannini, E.; Rosales, J. and de Souza, B.: Helv. Chim. Acta, 54 (7) 2111-2113 (1971).
122. Smith, A. W.: Ber. Dtsch. Chem. Ges., 24, 4025-4058 (1891).
123. Azzolina, O.; Vercesi, D. and Ghislandi, V.: Farmaco, Ed. Sci., 43 (5) 469-478 (1988).
124. Binev, I.; Kolev, Ts. and Yukhnovski, I.: Izv. Khim., 14 (3) 341-354 (1982); Chem. Abstr., 97, 215337d (1982).
125. Newman, M. S. and Pinkus, A. G.: J. Org. Chem., 19, 985-991 (1954).
126. Doebner, O. and Stackmann, W.: Ber. Dtsch. Chem. Ges., 9, 1918-1920 (1876).
127. Olszanowski, A.: J. Prakt. Chem., 332 (6) 1093-1098 (1990).
128. Minajew, W.: Chem. Zentralbl., 1, 84 (1927).
129. Bruce, D. B.; Sorrie, A. J. S. and Thomson, R. H.: J. Chem. Soc., 2403-2406 (1953).
130. Blicke, F. F. and Weinkauff, O. J.: J. Am. Chem. Soc., 54, 330-334 (1932).
131. Gerecs, A.; Szell, T. and Windholz, M.: Acta Chim. (Budapest), 3, 459-467 (1953).
132. Rosenmund, K. and Schnurr, W.: Justus Liebigs Ann. Chem., 460, 56-98 (1928).
133. Matsui, K. and Motoi, M.: Bull. Chem. Soc. Jpn., 46, 565-569 (1973).
134. Hauser, C. R. and Man, E. H.: J. Org. Chem., 17, 390-396 (1952).
135. Norell, J. R.: J. Org. Chem., 38, 1924-1928 (1973).
136. Gardner, P. D.: J. Am. Chem. Soc., 77, 4674-4675 (1955).
137. Nakazawa, K.; Matsuura, S. and Baba, S.: J. Pharm. Soc. Jpn., 74, 498-501 (1954).
138. Fujita, T.; Ishiguro, M.; Takahata, K. and Saeki, K.: Jpn. Kokai Tokkyo Koho JP 60,252,444 [85,252,444] (1985); Chem. Abstr., 104, 168144q (1986).
139. Hartmann, C. and Gattermann, L.: Ber. Dtsch. Chem. Ges., 25, 3531-3534 (1892).
140. Blakey, W.; Jones, W. I. and Scarborough, H. A.: J. Chem. Soc., 2865-2872 (1927).
141. Auwers, K. and Betteridge, F. H.: Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 32, 39-45 (1900).
142. Montagne, P. J.: Recl. Trav. Chim. Pays-Bas, 39, 339-349 (1920).
143. Matsuura, T. and Kitaura, Y.: Tetrahedron, 25 (18) 4501-4514 (1969).
144. Heller, G.: Ber. Dtsch. Chem. Ges., 46, 1497-1504 (1913).
145. Pieroni, A. and Longhini, S.: Gazz. Chim. Ital., 62, 387-393 (1932).
146. Doebner, O.: Justus Liebigs Ann. Chem., 210, 246-284 (1881).
147. Razus, A. C.; Arvay, Z.; Bartha, E.; Condeiu, C. and Glatz, A. M.: Rev. Chim. (Bucharest), 36 (4) 299-302 (1985); Chem. Abstr., 103, 123109v (1985).
148. Snyder, H. R. and Elston, C. T. : J. Am. Chem. Soc., 77, 364-366 (1955).
149. Nakazawa, K. and Baba, S.: J. Pharm. Soc. Jpn., 75, 378-381 (1955); Chem. Abstr., 50, 2510b (1956).
150. Kindler, K., Oelschlager, H. and Henrich, P.: Arch. Pharm. (Weinheim, Ger.), 287, 210-223 (1954).
151. Rose, J. B. and Cinderey, M. B.: Eur. Pat. Appl. EP 75,390 (1983); Chem. Abstr., 99, 70383v (1983).
152. Takai, T. and Taniguchi, K.: Jpn. Kokai Tokkyo Koho JP 01,224,345 [89,224,345] (1989); Chem. Abstr., 112, 118455m (1990).
153. Becker, H. D.; Björk, A. and Adler, E.: J. Org. Chem., 45, 1596-1600 (1980).
154. Kobsa, H.: J. Org. Chem., 27, 2293-2298 (1962).
155. Bhavsar, M. D. and Desai, V. B.: Man-Made Text. India, 31 (12) 529-535, 556 (1988); Chem. Abstr., 112, 7121e (1990).
156. Phadke, R. and Shah, R. C.: J. Indian Chem. Soc., 27 (7), 349-356 (1950).
157. Doebner, O. and Stackmann, W.: Ber. Dtsch. Chem. Ges., 10, 1968-1972 (1877).
158. Grucarevic, S. and Merz, V.: Ber. Dtsch. Chem. Ges., 6, 1238-1246 (1873).
159. Minajew, W.: Zh. Russ. Fiz. Khim. O-va., Chast Khim., 58, 307-317 (1926); Chem. Zentralbl., 1, 84 (1927).
160. Fischer, E.: Ber. Dtsch. Chem. Ges., 42, 1015-1022 (1909).
161. Priestley, H. M. and Moness, E.: J. Org. Chem., 5, 355-361 (1940).
162. Ioffé, I. S.: Zh. Obshch. Khim., 20 (2) 346-355 (1950).
163. Caro, H. and Graebe, C.: Ber. Dtsch. Chem. Ges., 11, 1348-1351 (1878).
164. Compagnie de Saint-Gobain, Fr. Addn. 2,064,557 (1971); Chem. Abstr., 76, 153344j (1972).
165. Copping, L. G.; Kerry, J. C.; Watkins, T. I.; Willis, R. J. and Palmer, B. H.: U.S. US 4,344,893 (1982); Chem. Abstr., 98, 106973h (1983).
166. Karrer, W.: Konstitution und Vorkommen Organischen Pflanzenstoffe, pp. 187-188 (1958), Bükhauser (Basel).
167. Rao, A. V. R.; Sarma, M. R.; Venkataraman, K. and Yemul, S. S.: Phytochemistry, 13 (7) 1241-1244 (1974).
168. Whitesitt, C. A.; Simon, R. L.; Reel, J. K.; Sigmund, S. K.; Phillips, M. L.; Shadle, J. K.; Heinz, L. J.; Koppel, G. A.; Hunden, D. C.; Lifer, S. L.; Berry, D.; Ray, J.; Little, S. P.; Liu Xiadong; Marshall, W. S. and Panetta, J. A.: Bioorg. Med. Chem. Lett., 6 (18) 2157-2162 (1996).
169. Hantzsch, A. and Blackler, M. B.: Ber. Dtsch. Chem. Ges., 39, 3080-3102 (1906).
170. Ridd, J. H.; Yousaf, T. I. and Rose, J. B.: J. Chem. Soc., Perkin Trans. 2, 9, 1729-1734 (1988).
171. Locksley, H. D. and Murray, I. G.: J. Chem. Soc. C, 7, 1332-1340 (1971).
172. Pallares, E. S. and Garza, H. M.: Arch. inst. cardiol. Mex., 17, 833-849 (1947); Chem. Abstr., 42, 2730i (1948).
173. Pfeiffer, P. and Wang, Liu: Angew. Chem., 40, 983-991 (1927).
174. Hamazaki, Y.; Kawabata, S.; Yamamoto, T.: Shiraishi, Y.; Ueno, A. Amemiya, K. and Saga, K.: U.S. 4,124,726 (1978); Chem. Abstr., 90, 168289h (1979).
175. Hamazaki, Y.; Kawabata, S.; Yamamoto, T.; Shiraishi, Y.; Ueno, A.; Amemiya, K. and Saga, K.: Ger. Offen. 2,659,580 (1977); Chem. Abstr., 87, 167732y (1977).
176. Tsekhanskii, R. S.: Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 17 (1) 59-61 (1974); Chem. Abstr., 80, 94804s (1974).
177. Bursey, M. M. and Twine, C. E., Jr.: J. Org. Chem., 36 (1) 137-140 (1971).
178. Boehme, W. R. and Scharpf, W. G.: J. Org. Chem., 26, 1692-1695 (1961).
179. Baker, W. and Smith, A. R.: J. Chem. Soc., 346-348 (1936).
180. Al-Hamdany, R. and Ali, B.: J. Chem. Soc., Chem. Commun., 9, 397 (1978).
181. Ceccato, G.; Geri, S. and Colombo, L.: Ger. Offen., 2,350,293 (1974); Chem. Abstr., 81, 137428n (1974).
182. Chao, T. S.; Kjonaas, M. and DeJovine, J.: Prepr., Div. Pet. Chem., Am. Chem. Soc., 24 (3) 836-846 (1979); Chem. Abstr., 95, 9579q (1981).
183. Shah, R. C. and Mehta, P. R.: J. Indian Chem. Soc., 13, 368-371 (1936).
184. Dobratz, E. H. and Kolka, A. J.: US 3,403, 183 (1968); Chem. Abstr., 69, 106263c (1968).
185. Oelschlager, H.: Arch. Pharm. (Weinheim, Ger.), 288, 102-113 (1955).
186. Eichenauer, U. and Neumann, P.: Ger. Offen. DE 3,831,092 (1990); Chem. Abstr., 113, 114819f (1990).
187. Baeyer, A.: Justus Liebigs Ann. Chem., 372, 80-151 (1910).
188. Komarowsky, A. and von Kostanecki, S.: Ber. Dtsch. Chem. Ges., 27, 1997-2000 (1894).
189. Larine, N. A.; Matveeva, E. N. and Smirnova, V. S.: Zh. Obshch. Khim., 30 (7) 2377-2379 (1960).
190. Tasaki, T.: Acta Phytochim., 2, 49-73 (1925).
191. Wagle, D. R.; Usgaonkar, U. and Usgaonkar, R. N.: Indian J. Chem., Sect. B, 16B (5) 378-380 (1978).
192. Limaye, D. B. and Munje, R. H.: Rasayanam, 1, 80-86 (1937); Chem. Abstr., 32, 2096^{1} (1938).
193. Nishino, H. and Kurosawa, K.: Bull. Chem. Soc. Jpn., 56 (2) 474-480 (1983).
194. Stanley, L. N.: U.S. 3,073,866 (1963); Chem. Abstr., 59, 11348d (1963).
195. Price, P. and Israelstam, S. S.: J. Org. Chem., 29 (9) 2800-2802 (1964).
196. Hoefnagel, A. J. and van Bekkum, H.: PCT Int. Appl. WO 93 22,268 (1993); Chem. Abstr., 120, 191347x (1994).
197. Malin, G.: Justus Liebigs Ann. Chem., 138, 76-83 (1866).
198. Nufer, H. L.: US 3,407,235 (1968); Chem. Abstr., 70, 19805h (1969).
199. Boboli, E.; Malasnicki, W. L. and Kowalski, M.: Pol. 83,600 (1977); Chem. Abstr., 90, 137491p (1979).
200. Desai, R. D. and Ekhlas, M.: Proc. Indian Acad. Sci., 8A, 567-577 (1938).
201. Shioda, Hirohisa; Namiki, Isamu; Hori, Hisako and Katsuyama, Yoshihisa: U.S. 3, 639,483 (1972); Chem. Abstr., 76, 153339m (1972).
202. Shioda, Hirohisa; Namiki, Isamu; Hori, Hisako and Katsuyma, Yoshihisa: Brit. 1,246,958 (1971); Chem. Abstr., 76, 26022c (1972).
203. Dischendorfer, O.: Monatsh. Chem., 62, 263-283 (1933).
204. Sekiguchi, T. and Tanaka, M.: Jpn. Kokai Tokkyo Koho JP 60,185,743 [85,185,743] (1985); Chem. Abstr., 104, 68598x (1986).
205. Kauffmann, H. and Pannwitz, P.: Ber. Dtsch. Chem. Ges., 43, 1205-1213 (1910).
206. Israelstam, S. S. and Stephen, H.: J. S. African Chem. Inst., 26, 41-48 (1943); Chem. Abstr., 38, 731^{5} (1944).
207. Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 29 (5) 351-356 (1952).
208. Desai, R. D. and Radha, K. S.: Proc. Indian Acad. Sci., 12A, 46-49 (1940).
209. Setalvad, J. I.; Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 33 (4) 249-252 (1956).
210. Doebner, O. and Stackmann, W.: Ber. Dtsch. Chem. Ges., 11, 2268-2274 (1878).
211. Yukutomi, M.; Tanaka, Y.; Genda, S. and Kitaura, M.: U.S. 3,769,349 (1973); Chem. Abstr., 79, 146221a (1973).
212. Pfeiffer, P.: Justus Liebigs Ann. Chem., 398, 137-196 (1913).
213. Eiglmeier, K.: Ger. Offen., 2,451,037 (1976); Chem. Abstr., 85, 46202a (1976).
214. Whelen Myron S.: US 3,371, 119 (1968); Chem. Abstr., 69, 35748b (1968).
215. Popova, Z. V.; Ianovskii, D. M.; Zilberman, E. N.; Reibakova, N. A. and Ganina, V. I.: Zh. Prikl. Khim.(Leningrad), 34, 874-881 (1961).
216. Zil'berman, E. N. and Rybakova, N. A.: Zh. Obshch. Khim., 30 (6) 1992-1996 (1960).
217. Zil'berman, E. N. and Rybakova, N. A.: Zh. Obshch. Khim., 32 (2) 591-596 (1962).
218. Simpson, E. M. D.; Tomlinson, M. L. and Taylor, H. V.: J. Chem. Soc., 2239-2243 (1951).
219. Newland, G. C. and Tamblyn, J. W.: J. Appl. Polymer Sci., 8 (5) 1949-1956 (1964); Chem. Abstr., 62, 693c (1965).
220. Fischer, E.: Justus Liebigs Ann. Chem., 371, 303-318 (1910).
221. Ahluwalia, V. K. and Khanduri, C. H.: Indian J. Chem., Sect. B, 28B (7) 599-601 (1989).
222. American Cyanamid Co.: French Patent 1,098,344 (1955).
223. Anon.: Res. Discl., 155, 38 (1977); Chem. Abstr., 86, 141475w (1977).
224. Ching, Ta Yen: U.S. 4,288,631 (1981); Chem. Abstr., 95, 204987y (1981).
225. Coleman, R. A. and Weicksel, J. A.: Modern Plastics, 36 (12) 117, 119, 121, 198, 200 (1959); Chem. Abstr., 53, 19435h (1959).
226. Gol’denberg, V. I.; Shlyapintokh, V. Ya.; Postnikov, L. M. and Sukhanov, G. A.: Izv. Akad. Nauk SSSR, Ser. Khim., 10, 2232-2236 (1968).
227. Henry, R. A. and Tait, C. W.: U.S. 3,070,473 (1962); Chem. Abstr., 58, 6639f (1963).
228. Hung, W. M. and Su, Kai C.: Eur. Pat. Appl. EP 388,356 (1990); Chem. Abstr., 114, 150261x (1991).
229. Kashiwai, K.; Yoshida, T.; Suga, A.; Ikeda, Y. and Kumagai, S.: Jpn. Kokai Tokkyo Koho JP 03 31,235 [91 31,235] (1991); Chem. Abstr., 115, 49102s (1991).
230. Kirkpatrick, A. and Maclaren, J. A.: Text. Res. J., 37 (6) 510-511 (1967); Chem. Abstr., 67, 82891m (1967).
231. Marcincin, A. and Pikler, A.: Zb. Pr. Chemickotechnol. Fak. SVST (Slov. Vys. Sk. Tech.) 197-202 (1969-1970) (Pub. 1971); Chem. Abstr., 76, 114573p (1972).
232. Ricoh Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 57,146,689 [82,146,689] (1982); Chem. Abstr., 99, 222478v (1983).
233. Volkotrub, M. N.; Rubtsova, T. A. and Lukovnikov, A. F.: Vysokomol. Soedin., Ser. B, 19 (10) 762-765 (1977); Chem. Abstr., 88, 38473m (1978).
234. Desai, R. D. and Vakil, V. M.: Proc. Indian Acad. Sci., 12A, 391-398 (1940).
235. Piller, B.; Meier, M.; Puennenberger, M.; Biland, R. and Luethi, C.: Ger. Offen. 2,111,766 (1971); Chem. Abstr., 76, 29514a (1972).
236. Schmitt, R. G. and Hirt, R. C.: J. Polym. Sci., 45, 35-47 (1960).
237. Tasaki, T.: Chem. Zentralbl., 2, 1354-1356 (1925).
238. Head, F. S. H.: J. Chem. Soc. C, 34-37 (1969).
239. Gray, D. N. and Knight, R. D.: U.S. 3,387,035 (1968); Chem. Abstr., 69, 35730q (1968).
240. Giesen, M.: Chim. peintures, 23, 69-81 (1960); Chem. Abstr., 54, 17905h (1960).
241. Giesen, M.: Fette, Seifen, Anstrichm., 61 (12) 1245-1251 (1959).
242. Gysling, H. and Heller, H. J.: Kunststoffe, 51, 13-17 (1961); Chem. Abstr., 55, 11906f (1961).
243. Rubtsova, T. A. and Volkotrub, M. N. (USSR): Deposited Doc. 1974, VINITI 1703-74, 12 pp.; Chem. Abstr., 88, 158779n (1978).
244. Uhde, W. J. and Zydek, G.: Fresenius' Z. analyt. Chem., 239 (1) 25-26 (1968); Chem. Abstr., 69, 49051f (1968).
245. Chiavari, G.; Conciali, V. and Vitali, P.: J. Chromatogr., 249 (2) 385-392 (1982).
246. Coupek, J.; Pokorny, S.; Protivova, J.; Holcik, J.; Karvas, M. and Pospisil, J.: J. Chromatogr., 65 (1) 279-286 (1972).
247. Rotschova-Protivova, J.; Pospisil, J.; Holcik, J. and Durmis, J.: J. Chromatogr., 106 (2) 343-348 (1975).
248. Gray, D. N. and Burton, G.: J. Chem. Eng. Data, 11 (1) 59-60 (1966); Chem. Abstr., 65, 62h (1966).
249. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 25A, 353-358 (1947).
250. Shahane, R. Y.: Curr. Sci., 10, 523-524 (1941).
251. Desai, R. D. and Mavani, C. K.: Curr. Sci., 10, 524 (1941).
252. Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 25 (8) 377-384 (1948).
253. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 29A, 269-273 (1949).
254. Dischendorfer, O.: Monatsh. Chem., 66, 201-217 (1935).
255. Klinger, H. and Standke, O.: Ber. Dtsch. Chem. Ges., 24, 1340-1346 (1891).
256. Bogert, M. T. and Howells, H. P.: J. Am. Chem. Soc., 52, 837-850 (1930).
257. Herzig, J. and Hofmann, B.: Ber. Dtsch. Chem. Ges., 41, 143-145 (1908).
258. Percec, V.; Zhao, M.; Bae, J. Y. and Hill, D. H.: Macromolecules, 29 (11) 3727-3735 (1996).
259. Kraus, G. A. and Kirihara, M.: J. Org. Chem., 57 (11) 3256-3257 (1992).
260. Takahata, K.; Kaya, H.; Taniguchi, K. and Takai, T.: PCT Int. Appl. WO 90 00,087 (1990); Chem. Abstr., 113, 8410 (1990).
261. Al-Hamdany, R.; Al-Rawi, J. M.; Ahmed, B. A. and Al-Shahiry, K. F.: J. Prakt. Chem., 329 (2) 337-342 (1987).
262. Bruce, J. M.; Fitzjohn, S. and Pardasani, R. T.: J. Chem. Res., Synop., 8, 252-253 (1981).
263. Desai, S. M. and Trivedi, K. N.: Indian J. Chem., Sect. B, 24 B (1) 47-50 (1985).
264. Kraus, G. A.; Kirihara, M. and Wu, Y.: ACS Symp. Ser. 1994, 577 (Benign by Design), 76-83; Chem. Abstr., 123, 21803n (1995).
265. Maruyuma, K. and Miyagi, Y.: Bull. Chem. Soc. Jpn., 47 (5) 1303-1304 (1974).
266. Singh, J. M. and Turner, A. B.: J. Chem. Soc., Perkin Trans. 1, 18, $2294-2296$ (1972).
267. Suzuki, T.; Hibino, K.; Murai, M. and Fujita, T.: Eur. Pat. Appl. EP 93,194 (1983); Chem. Abstr., 100, 28796w (1984).
268. Limaye, D. B.: Ber. Dtsch. Chem. Ges., 67B,12-15 (1934).
269. Sinyavskaya, L. P. and Shamshurin, A. A.: Zh. Org. Khim., 4 (7) 1267-1270 (1968).
270. Jhaveri, D. B.; Thakor, V. M. and Naik, H. B.: Vidya, B, 19 (2) 149-152 (1976); Chem. Abstr., 87, 201001w (1977).
271. Rosenmund, K. and Lohfert, H.: Ber. Dtsch. Chem. Ges., 61, 2601-2607 (1928).
272. Rosenblatt, D. H.; Epstein, J. and Levitch, M.: J. Am. Chem. Soc., 75, 3277-3278 (1953).
273. Bartolotti, P.: Gazz. Chim. Ital., 27, 280-288 (1897).
274. Criodain, T. O.; O’Sullivan, M.; Meegan, M. J. and Donnelly, D. M. X.: Phytochemistry, 20 (5) 1089-1092 (1981).
275. Nachbaur, C.: Justus Liebigs Ann. Chem., 107, 243-248 (1858).
276. Rojdestvenskii, N.: Zh. Russ. Fiz. Khim. O-va, Chast. Khim., 46, 1075-1077 (1914); Chem. Abstr., 9, 1899 (1915).
277. Balani, R. A. and Sethna, S.: J. Indian Chem. Soc., 44 (1) 52-56 (1967).
278. Sawhney, K. N. and Mathur, K. B. L.: Indian J. Chem., Sect. B, 19B (7) 590-592 (1980).
279. Creveling, C. R.; Morris, N.; Shimizu, H.; Ong, H. and Daly, J.: Mol. Pharmacol., 8 (4) 398-409 (1972); Chem. Abstr., 77, 71863j (1972).
280. Gazave, J. M.; Hayaux du Tilly-Achard, M. and Parrot, J. L.: Conv. Int. Polifenoli, [Relaz. Comun.], 135-141 (1975); Chem. Abstr., 86, 83512t (1977).
281. Gazave, J. M.; Rancurel, A. and Grenier, G.: Ger. Offen. 2,501,443 (1975); Chem. Abstr., 83, 188522n (1975).
282. Katz, R. and Jacobson, A. E.: Mol. Pharmacol., 8 (5) 594-599 (1972); Chem. Abstr., 77, 161447f (1972).
283. Matsushita, H.; Yamahata, T. and Kakimoto, H.: U.S. 3,983,279 (1976); Chem. Abstr., 86, 113700x (1977).
284. Shinagawa, Yoshiya and Shinagawa, Yasuko: Int. J. Quantum Chem., Quantum Biol. Symp., 5, 269-279 (1978); Chem. Abstr., 90, 117100g (1979).
285. Huls, R. and Hubert, A.: Bull. Soc. Chim. Belg., 65, 596-602 (1956).
286. Kahn, A. M. M.; Linnell, W. H. and Sharp, L. K.: J. Chem. Soc., 1618-1621 (1960).
287. Graebe, C. and Feer, A.: Ber. Dtsch. Chem. Ges., 19, 2607-2614 (1886).
288. Pohlmann, C. W.: Recl. Trav. Chim. Pays-Bas, 55, 737-752 (1936).
289. Richter, R.: J. Prakt. Chem., 28, 273-309 (1883).
290. Baddar, F. G.; El-Assal, L. S. and Baghos, V. B.: J. Chem. Soc., 1714-1718 (1955).
291. Lewis, J. R. and Warrington, B. H.: J. Chem. Soc., 5074-5077 (1964).
292. Dean, F. M.; Goodchild, J.; Houghton, L. E.; Martin, J. A.; Morton, R. B.; Parton, B.; Price, A. W. and Somvichien, N.: Tetrahedron Lett., 35, 4153-4159 (1966).
293. Lewis, J. R.: Proc. Chem. Soc., London, 373 (1963).
294. Allen, N. S.; Luc-Gardette, J. and Lemaire, J.: Polym. Photochem., 3 (4) 251-265 (1983); Chem. Abstr., 99, 39247e (1983).
295. Hohlweg, R.; Joergensen, T. K.; Andersen, K. E.; Olsen, U. B.; Madsen, P.; Polivka, Z.; Koenigova, O.; Miksik, F.; Kovandova, M.; Silhankova, A. and Sindelar, K.: PCT Int. Appl. WO 97 11,071 (1997); Chem. Abstr., 126 (23) 305593f (1997).
296. Lewis, J. R.: J. Chem. Soc. C, 4, 629-631 (1971).
297. Marsh, P. B. and Butler, M. L.: Ind. Eng. Chem., 38, 701-705 (1946).
298. Nakai, Noboru; Fujii, Yutaka; Kobashi, Kyoichi and Nomura, Keiichi: Arch. Biochem. Biophys., 239 (2) 491-496 (1985); Chem. Abstr., 103, 34008u (1985).
299. Smith, M. G.; Renga, J. M.; Riley, B. K.; Ray, P. G. and Marlowe, C.: U.S. US 4,938, 790 (1990); Chem. Abstr., 113, 191411u (1990).
300. Staedel, W.: Justus Liebigs Ann. Chem., 283, 149-151 (1894).
301. Staedel, W.: Justus Liebigs Ann. Chem., 283, 164-181 (1894).
302. Yoshikawa, T.; Kimura, K. and Fujimura, S.: J. Appl. Polym. Sci., 15 (10) 2513-2519 (1971); Chem. Abstr., 76, 34680 (1972).
303. Bichan, D. J. and Yates, P.: Can. J. Chem., 53 (14) 2054-2063 (1975).
304. Kandaswamy, P. and Reddy, S. J.: Indian J. Environ. Prot., 9 (8) 607-608 (1989); Chem. Abstr., 113, 243982c (1990).
305. Gattermann, L. and Rudt, H.: Ber. Dtsch. Chem. Ges., 27, 2293-2297 (1894).
306. Burke, H. M. and Joullie, M. M.: J. Med. Chem., 21 (10) 1084-1086 (1978).
307. Valette, M.: Bull. Soc. Chim. Fr., 289-300 (1930).
308. Horner, L. and Baston, D. W.: Justus Liebigs Ann. Chem., 5-6, 910-935 (1973).
309. Konishi, Jinemon: Eur. Pat. Appl. 6,407 (1980); Chem. Abstr., 93, 114516y (1980).
310. Oustinov, V. A.; Mironov, G. S.; Kopeikin, V. V.; Lapteva, N. E.; Pachomov, V. I. and Koloskova, G. N.: Otkrytiya, Izobret., Prom. Obraztsy, Tovarnye Znaki, 53 (35) 56-57 (1978); Chem. Abstr., 85, 192378d (1976).
311. Oustinov, V. A.; Mironov, G. S.; Kopeikin, V. V.; Lapteva, N. E.; Pachomov, V. I. and Koloskova, G. N.: U.S.S.R. 529,149 (1976); Chem. Abstr., 85, 192378d (1976).
312. Britton, E. C.: U. S. 1,961,630 (1934); Chem. Abstr., 28, 4744^{5} (1934).
313. Lesiak, T. and Nowakowski, J.: J. Prakt. Chem., 323 (4) 684-690 (1981).
314. Mironov, G. S.; Budnij, I. V.; Cerniakovskaja, K. A. and Farberov, M. I.: Zh. Org. Khim., 8, 597-600 (1972).
315. Gupta, A. R. and Saharia, G. S.: J. Indian Chem. Soc., 35 (2) 133-135 (1958).
316. Dahl, K. J. and Jansons, V.: Eur. Pat. Appl. EP 69,598 (1983); Chem. Abstr., 99, 38197b (1983).
317. Michael, A.: Amer. Chem. J., 5, 81-97 (1883).
318. Keller, R. T.: US 3,366,691 (1968); Chem. Abstr., 69, 35747a (1968).
319. Dann, O. and Mylius, G.: Justus Liebigs Ann. Chem., 587, 1-15 (1954).
320. Baeyer, A.: Justus Liebigs Ann. Chem., 353, 152-204 (1907).
321. Ost, H.: J. Prakt. Chem., 20, 208 (1879).
322. Auwers, K.: Ber. Dtsch. Chem. Ges., 36, 3893-3902 (1903).
323. Städel, W. and Gail, F.: Justus Liebigs Ann. Chem., 194, 307-372 (1878).
324. Staedel, W. and Gail, F.: Ber. Dtsch. Chem. Ges., 11, $744-746$ (1878).
325. Hodogaya Chemical Co., Ltd. : Jpn. Kokai Tokkyo Koho JP 59,170,033 [84,170,033] (1984); Chem. Abstr., 102, 78568k (1985).
326. Zincke, T. and Birschel: Justus Liebigs Ann. Chem., 362, 221-241 (1908).
327. Baeyer, A. and Burkhardt, J. B.: Justus Liebigs Ann. Chem., 202, 36-140 (1880).
328. Burkhardt, J. B.: Justus Liebigs Ann. Chem., 202, 126-135 (1880).
329. Baeyer, A. and Burkhardt, J. B.: Ber. Dtsch. Chem. Ges., 11, 1299-1301 (1878).
330. Liebermann, C.: Ber. Dtsch. Chem. Ges., 11, 1434-1438 (1878).
331. Liebermann, C.: Ber. Dtsch. Chem. Ges., 6, 951-953 (1873).
332. Gomberg, M. and Snow, H. R.: J. Am. Chem. Soc., 47, 198-211 (1925).
333. Nishinaga, A. and Matsuura, T.: J. Org. Chem., 29, 1812-1817 (1964).
334. Colegate, S. M.; Hewgill, F. R. and Howie, G. B.: Aust. J. Chem., 28 (2) 343-353 (1975).
335. Dale, R. S. and Schorlemmer, C.: Justus Liebigs Ann. Chem., 217, 387-388 (1883).
336. Michael, A.: Ber. Dtsch. Chem. Ges., 14, 656-658 (1881).
337. Hibbert, D. B.; Sandall, J. P. B.; Lovering, J. R.; Ridd, J. H. and Yousaf, T. I.: J. Chem. Soc., Perkin Trans. 2, 9, 1739-1742 (1988).
338. Stewart, R.; Granger, M. R.; Moodie, R. B. and Muenster, L. J.: Can. J. Chem., 41, 1065-1070 (1963).
339. Sinitsyna, T. A.; Alekseeva, I. A. and Voronina, N. M.: Zh. Prikl. Spektrosk., 32 (4) 648-651 (1980); Chem. Abstr., 93, 185247x (1980).
340. Saharia, G. S. and Sharma, B. R.: J. Sci. Ind. Res., Sect. B, 16B, 125-128 (1957).
341. Atkinson, J. E. and Lewis, J. R.: J. Chem. Soc. C, 281-287 (1969).
342. Atkinson, J. E. and Lewis, J. R.: Chem. Commun., 16, 803 (1967).
343. Findlay, J. W. A.; Gupta, P. and Lewis, J. R.: J. Chem. Soc. C, 19, 2761-2762 (1969).
344. Graebe, C. and Eichengrün, A.: Justus Liebigs Ann. Chem., 269, 295-325 (1892).
345. Amin, J. H. and Desai, R. D.: J. Sci. Ind. Res., Sect. B, 13B, 178-180 (1954).
346. Bhavsar, M. D. and Desai, V. B.: Man-Made Text. India, 31 (10) 431, 433, 435, 437-439 (1988); Chem. Abstr., 111, 232222n (1989).
347. Canon, K. K.: Jpn. Kokai Tokkyo Koho 81 05,567 (1981); Chem. Abstr., 95, 124004k (1981).
348. Kaukeinen, J. Y. and Rockafellow, D. A.: Ger. Offen. 2,533,688 (1976); Chem. Abstr., 85, 169687v (1976).
349. Kaukeinen, J. Y. and Rockafellow, D. A.: U.S. 4,234,670 (1980); Chem. Abstr., 94, 165665z (1981).
350. Teasley, M. F. and Hsiao, B. S.: Macromolecules, 29 (20) 6432-6441 (1996).
351. Irwin, R. S.; Sweeny, W.; Gardner, K. H.; Gochanour, C. R. and Weinberg, M.: Macromolecules, 22 (3) 1065-1074 (1989).
352. Irwin, R. S.: Ger. Offen., 2,932,178 (1980); Chem. Abstr., 94, 4880a (1981).
353. Destrade, C.; Nguyen Huu Tinh and Gasparoux, H.: Mol. Cryst. Liq. Cryst., 59 (3-4) 273288 (1980); Chem. Abstr., 93, 58557y (1980).
354. Irwin, R. S.: Eur. Pat. Appl. 26,991 (1981); Chem. Abstr., 95, 26546u (1981).
355. Irwin, R. S.: U.S. 4,245,082 (1981); Chem. Abstr., 94, 123029q (1981).
356. B.A.S.F.: D.R.P. 50451 (1889).
357. Abe, Taku; Kimura, Takeshi; Ayabe, Yoshimoto and Shiomi, Taiichi: Jpn. Kokai Tokkyo Koho JP 61,282,335 [86,282,335] (1986); Chem. Abstr., 107, 39399q (1987).
358. Campbell, T. W. and Coppinger, G. M.: U.S. 2,686,123 (1954); Chem. Abstr., 49, 4203h (1955).
359. Campbell, T. W. and Coppinger, G. M.; J. Am. Chem. Soc., 73, 2708-2712 (1951).
360. Orndorff, W. R. and Wang, C.: J. Am. Chem. Soc., 49, 1284-1289 (1927).
361. B.A.S.F.: D.R.P. 54661 (1890).
362. Fischer, E. and Rapaport, M.: Ber. Dtsch. Chem. Ges., 46, 2389-2401(1913).
363. Desai, R. D. and Mavani, C. K.: J. Sci. Ind. Res., Sect. B, 12B, 236-239 (1953).
364. Haas, G.; Neisius, K. H. and Stein, A.: Ger. Offen. DE 3,220,816 (1983); Chem. Abstr., 100, 219047n (1984).
365. Largeron, M.; Dupuy, H. and Fleury, M. B.: Tetrahedron, 51 (17) 4953-4968 (1995).
366. Samreth, S.; Bellamy, F. and Millet, J.: Eur. Pat. Appl. EP 290,321 (1988); Chem. Abstr., 110, 232029f (1989).
367. Stahlhofen, P.: Eur. Pat. Appl. EP 68,346 (1983); Chem. Abstr., 99, 30749n (1983).
368. Suzuki, T.; Hibino, K.; Murai, M. and Fujita, T.: U.S. U.S. 4,425,404 (1984); Chem. Abstr., 100, 113786n (1984).
369. Largeron, M.; Langevin-Bermond, D. and Fleury, M. B.: J. Chem. Soc., Perkin Trans. 2, 5, 893-899 (1996).
370. Hishmat, O. H.; Abd El-Rahman, A. H. and Kandeel, Ez Eldin M.: Indian J. Chem., Sect. B, 14B (1) 41-42 (1976).
371. Hoesch, K.: Ber. Dtsch. Chem. Ges., 48, 1122-1133 (1915).
372. Rosenmund, K. and Schulz, H.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 265, 308-319 (1927).
373. Pathak, V. P. and Khanna, R. N.: Bull. Chem. Soc. Jpn., 55 (7) 2264-2268 (1982).
374. Pathak, V. P. and Khanna, R. N.: Indian J. Chem., Sect. B, 21B (3) 253-254 (1982).
375. Ahluwalia, V. K.; Khanna, M. and Singh, R. P.: Synthesis, 5, 404-406 (1983).
376. Karrer, P.: Helv. Chim. Acta, 2, 486-489 (1919).
377. Randriaminahy, M.; Proksch, P.; Witte, L. and Wray, V.: Z. Naturforsch., C : Biosci., 47 (1-2) 10-16 (1992).
378. Bohlmann, F. and Suwita, A.: Phytochemistry, 17 (11) 1929-1934 (1978).
379. Motylewski, S.: Ber. Dtsch. Chem. Ges., 42, 3148-3152 (1909).
380. Burmistrova, R. S.; Gushchina, N. A.; Florentseva, L. I. and Yanovskii, D. M.: Zh. Prikl. Khim., 38 (10) 2383-2386 (1965); Chem. Abstr., 64, 3770d (1966).
381. Atkinson, H. and Heilbron, I. M.: J. Chem. Soc., 2688-2691 (1926).
382. Pola Chemical Industries, Inc.: Jpn. Kokai Tokkyo Koho JP 58,110,535 [83,110,535] (1983); Chem. Abstr., 99, 212282n (1983).
383. Mikhailova, N. N. and Vorozheeva, V. P.: Zavodsk. Lab., 30 (7) 802-803 (1964); Chem. Abstr., 61, 10048g (1964).
384. McDonald, P. D.: Ph.D. Thesis, Pennsylvania State University, U.S.A. (1970).
385. McDonald, P. D. and Hamilton, G. A.: J. Am. Chem. Soc., 95 (23) 7752-7758 (1973).
386. Arai, Naoto; Tuji, Takuji and Yoneda, Hiroshi: Ger. Offen. DE 3,219,278 (1982); Chem. Abstr., 98, 98842x (1983).
387. Brunelle, D. J.: U.S. US 4,452,932 (1984); Chem. Abstr., 101, 73299t (1984).
388. Chao, T. S; Hutchison, D. A. and Kjonaas, M.: Ind. Eng. Chem. Prod. Res. Dev., 23 (1) 21-27 (1984); Chem. Abstr., 100, 70883x (1984).
389. Chao, T. S. and Kjonaas, M.: Prepr.- Am. Chem. Soc., Div. Pet. Chem., 27 (2) 362-379 (1982); Chem. Abstr., 99, 160972r (1983).
390. Eisai Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 82,114,509 (1982); Chem. Abstr., 97, 188282y (1982).
391. Kato, Taizo: Juzen Igakkai Zasshi, 93 (2) 275-290 (1984); Chem. Abstr., 102, 73168v (1985).
392. Sato, T.; Kato, T.; Kajiwara, S.; Miyamori, C. and Takata, I.: Int. Congr. Ser.- Excerpta Med., 605 (Curr. Probl. Thyroid Res.), 147-150 (1983); Chem. Abstr., 99, 188304y (1983).
393. Verkman, A. S. and Solomon, A. K.: J. Gen. Physiol., 80 (4) 557-581 (1982); Chem. Abstr., 97, 194667u (1982).
394. Nurmukhametov, R. N.; Betin, O. I. and Shigorin, D. N.: Dokl. Akad. Nauk SSSR, 234 (5) 1128-1131 (1977); Chem. Abstr., 87, 85677v (1977).
395. Sharghi, H. and Tamaddon, F.: Tetrahedron, 52 (43) 13623-13640 (1996).
396. Lo, Young S.: Can. CA 1,262,353 (1989); Chem. Abstr., 113, 114820z (1990).
397. Finnegan, R. A. and Merkel, K. E.: J. Org. Chem., 37 (19) 2986-2989 (1972).
398. Finnegan, R. A. and Patel, J. K.: J. Chem. Soc., Perkin Trans. 1, 15, 1896-1901 (1972).
399. Meyer, R. and Conzetti, A.: Ber. Dtsch. Chem. Ges., 30, 969-973 (1897).
400. Meyer, R. and Conzetti, A.: Ber. Dtsch. Chem. Ges., 32, 2103-2108 (1899).
401. Inoue, Y.; Hata, K. and Oishi, T.: Jpn. Kokai Tokkyo Koho JP 61,293,946 [86,293,946] (1986); Chem. Abstr., 107, 39398p (1987).
402. Grover, P. K.; Shah, G. D. and Shah, R. C.: J. Chem. Soc., 3982-3985 (1955).
403. Abe, Yoshio and Okawa, Katsuaki: Jpn. Kokai Tokkyo Koho JP 03, 167,151 [91,167,151] (1991); Chem. Abstr., 116, 6240p (1992).
404. Shoesmith, J. B. and Haldane, J.: J. Chem. Soc., 125, 113-115 (1924).
405. Aries, R.: Fr. 1,559,837 (1969); Chem. Abstr., 72, 24515j (1970).
406. Gaekwad, Y. G. and Sethna, S.: J. Indian Chem. Soc., 55 (8) 794-800 (1978).
407. Hotta, H. and Akasaka, M.: Jpn. Kokai Tokkyo Koho JP 62,138,422 [87,138,422] (1987); Chem. Abstr., 107, 183352m (1987).
408. Saxena, S. K.; Sahib, M. K.; Kumar, S.; Seth, M. and Bhaduri, A. P.: Indian J. Biochem. Biophys., 21 (2) 139-141 (1984); Chem. Abstr., 101, 48792r (1984).
409. Kauffmann, H. and Grombach, A.: Justus Liebigs Ann. Chem., 344, 30-77 (1906).
410. Endo, T.; Takada, T. and Komatsu, S.: Jpn. Kokai Tokkyo Koho JP 05,125,180 [93,125,180] (1993); Chem. Abstr., 120, 9190r (1994).
411. Patel, J. K.: M.S. thesis, State University of New-York at Buffalo, Buffalo, N.Y. (1967).
412. Locksley, H. D. and Murray, I. G.: J. Chem. Soc. C, 392-398 (1970).
413. Ellis, R. C.; Whalley, W. B. and Ball, K.: J. Chem. Soc., Perkin Trans. 1, 13, 1377-1382 (1976).
414. Ellis, R. C.; Whalley, W. B. and Ball, K.: Chem. Commun., 16, 803-804 (1967).
415. Usgaonkar, U. R. and Jadhav, G. V.: J. Indian Chem. Soc., 40 (1) 27-30 (1963).
416. Quillinan, A. J. and Scheinmann, F.: J. Chem. Soc., Perkin Trans. 1, 13, 1329-1337 (1973).
417. Karrer, P.: Helv. Chim. Acta, 4, 992-993 (1921).
418. Nishikawa, H. and Robinson, R.: J. Chem. Soc., Trans. 121, 839-843 (1922).
419. Urano, H. and Kikuchi, H.: Jpn. Kokai Tokkyo Koho JP 63,264,543 [88,264,543]; Chem. Abstr., 111, 7061q (1989).
420. Yamada, H.; Takao, M. and Fukuhara, C.: Jpn. Kokai Tokkyo Koho JP 61 97,240 [86 97,240] (1986); Chem. Abstr., 105, 226048v (1986).
421. Shimizu, Y.; Nakanishi, H.; Kuwana, K. and Ninomiya, T.: Jpn. Kokai Tokkyo Koho JP 63,208,840 [88,208,840] (1988); Chem. Abstr., 110, 182980q (1989).
422. Atkinson, J. E.; Gupta, P. and Lewis, J. R.: Tetrahedron, 25, 1507-1511 (1969).
423. Atkinson, J. E.; Gupta, P. and Lewis, J. R.: Chem. Commun., 1386-1387 (1968).
424. Abe, Toyohiko; Mishina, Makoto and Kohtoh, Noriaki: Polym. Adv. Technol., 4 (4) 188-293 (1993); Chem. Abstr., 120, 120514p (1994).
425. Kishimura, S.; Yamaguchi, A.; Yamada, Y. and Nagata, H.: Polym. Eng. Sci., 32 (20) 1550-1555 (1992); Chem. Abstr., 118, 29738n (1993).
426. Makishima, H. and Nakano, K.: Jpn. Kokai Tokkyo Koho JP 04,214,563 [92,214,563] (1992); Chem. Abstr., 118, 90911 e (1993).
427. Ogata, Naoya: Kino Zairyo, 7 (12) 43-46 (1987); Chem. Abstr., 108, 229441r (1988).
428. Donnelly, D. M. X.; O’Reilly, J. and Whalley, W. B.: Phytochemistry, 14 (10) 2287-2290 (1975).
429. Hogberg, Bertil; Fex, Hans; Bracke, Bo Fredholm; Perklev, Torsten and Veige, Sten: Ger. Offen. 2,240,229 (1973); Chem. Abstr., 78, 147556e (1973).
430. Laidlaw, R. A. and Smith, G. A.: Chem. Ind. (London), 1604-1605 (1959).
431. Spada, A.; Cameroni, R. and Bernabei, M. T.: Gazz. Chim. Ital., 86, 46-55 (1956).
432. Dhar, K. L. and Kalla, Ashok K.: Phytochemistry, 13 (12) 2894 (1974).
433. Arisawa, M.; Morita, N.; Kondo, Y. and Takemoto, T.: Chem. Pharm. Bull., 21 (10) $2323-$ 2328 (1973).
434. Kato, T.; Takahashi, K.; Obara, H. and Nakayama, T.: Jpn. Kokai Tokkyo Koho JP 05,289,332 [93,289,332] (1993); Chem. Abstr., 120, 204680c (1994).
435. Klopman, G. and Buyukbingol, E.: Mol. Pharmacol., 34 (6) 852-862 (1988); Chem. Abstr., 110, 150323m (1989).
436. Koyama, S.; Horikawa, Y. and Kimura, O.: Jpn. Kokai Tokkyo Koho JP O5 70,397 [93 70,397] (1993); Chem. Abstr., 119, 138880u (1993).
437. Oota, T.; Kurokawa, M.; Yamachika, M.; Tsuji, A. and Hayase, R.: Jpn. Kokai Tokkyo Koho JP 06,202,320 [94,202,320] (1994); Chem. Abstr., 121, 289741s (1994).
438. Hosaka, Y.; Nozue, I.; Takatori, M. and Harita, Y.: Jpn. Kokai Tokkyo Koho JP 62,150,245 [87,150,245] (1987); Chem. Abstr., 108, 46855j (1988).
439. Korczynski, A. and Nowakowski, A.: Bull. Soc. Soc. Chim. Fr., 329-337 (1928).
440. Hoesch, K. and Zarzecki, T.: Ber. Dtsch. Chem. Ges., 50, 462-468 (1917).
441. König, E. and Kostanecki, S.: Ber. Dtsch. Chem. Ges., 27, 1994-1997 (1894).
442. Ciamician, G. and Silber, P.: Ber. Dtsch. Chem. Ges., 27, 1627-1633 (1894).
443. Karanjgoakar, C. G.; Rao, A. V. R.; Venkataraman, K.; Yemul, S. S. and Palmer, K. J.: Tetrahedron Lett., 50, 4977-4980 (1973).
444. Löwe, J.: Z. Anal. Chem., 14, 117-130 (1875).
445. Locksley, H. D.; Moore, I. and Scheinmann, F.: Tetrahedron, 23, 2229-2234 (1967).
446. Hlasiwetz, H. and Pfaundler, L.: Justus Liebigs Ann. Chem., 127, 351-361 (1863).
447. Ciamician, G. and Silber, P.: Gazz. Chim. Ital., 22 (1) 461-492 (1892).
448. Wagner, R.: J. Prakt. Chem., [1] 51 (1) 82-106 (1850).
449. Nierenstein, M.: J. Indian Chem. Soc., 8, 143-145 (1931).
450. Ciamician, G. and Silber, P.: Ber. Dtsch. Chem. Ges., 28, 1393-1398 (1895).
451. Benedikt, R.: Justus Liebigs Ann. Chem., 185, 114-119 (1877).
452. Popa, G.; Dumitrescu, V.; Dumitrescu, N. and Vegh, B.: Rev. Chim. (Bucharest), 26 (2) 160-163 (1975); Chem. Abstr., 83, 107785a (1975).
453. Bymark, R. M.; Kirk, A. R.; Griggs, A. L. and Martin, S. J.: Eur. Pat. Appl. EP 342,035 (1989); Chem. Abstr., 112, 218894x (1990).
454. Dumitrescu, V. and Dumitrescu, N.: Bul. Inst. Politeh. "Gheorghe Gheorghiu-Dej" Bucuresti, Ser. Chim., 45, 72-78 (1983); Chem. Abstr., 101, 239502 f (1984).
455. Bleuler, H. and Perkin, A. G.: J. Chem. Soc., 109, 529-543 (1916).
456. B.A.S.F.: D.R.P. 49,149 (1889).
457. Miyano, M. and Deason, J. R.: U.S. US 4,683,241 (1987); Chem. Abstr., 108, 37399m (1988).
458. Duennenberger, M. and Schellenbaum, M.: Ger. Offen. 2,033,720 (1971); Chem. Abstr., 75, 117482y (1971).
459. Cassebaum, H. and Drux, R.: Ger. 1,134,084 (1962); Chem. Abstr., 58, 3358b (1963).
460. Balani, R. A. and Sethna, S.: J. Indian Chem. Soc., 48 (5) 417-422 (1971).
461. Buu-Hoi, N. P.; Xuong, N. D. and Lavit, D.: J. Chem. Soc., 1034-1038 (1954).
462. Blatt, A. H.: J. Org. Chem., 20, 591-602 (1955).
463. Löwenberg, E.: Justus Liebigs Ann. Chem., 346, 386-389 (1906).
464. Anschütz, R.: Justus Liebigs Ann. Chem., 346, 381-382 (1906).
465. Löwenberg, E.: Dissertation, Bonn (Germany), 39-46 (1904).
466. Kostanecki, S.; Lampe, V. and Marschalk, C.: Ber. Dtsch. Chem. Ges., 40, 3660-3669 (1907).
467. Joshi, G. G. and Shah, N. M.: J. Indian Chem. Soc., 31, 220-222 (1954).
468. Takematsu, T.; Konnai, M.; Konno, K.; Hayashi, Y.; Ikeda, K.; Go, A. and Ishigaki, A.: Jpn. Kokai Tokkyo Koho, 79 02,323 (1979); Chem. Abstr., 90, 181589a (1979).
469. Sivakumar, A. and Reddy, S. J.: Trans. SAEST, 29 (1) 27-30 (1985); Chem. Abstr., 103, 149432v (1985).
470. Hensel, W. and Hoyer, H.: Z. Physik Chem. (Frankfurt), 36 (5/6) 387-391 (1963).
471. Comarmond, J.; Purcell, T. and Zard, L.: Fr. Demande FR 2,575,470 (1986); Chem. Abstr., 106, 102283u (1987).
472. Miyamoto, T.; Mohri, T.; Shigeoka, S.; Itoh, H. and Hayashi, M.: Eur. Pat. Appl. EP 65,874 (1982); Chem. Abstr., 98, 143114z (1983).
473. Patel, S. V.; Bhadani, G. V. and Joshi, G. B.: J. Indian Chem. Soc., 61 (2) 169-171 (1984).
474. Kamiya, T.; Tanaka, K.; Tsutomu, K.; Kishimoto, T.; Hemmi, K/; Sakane, K. and Gotoh, J.: Ger. Offen. 2,724,073 (1977); Chem. Abstr., 88, 190856w (1978).
475. Jones, P. H.; Bariana, D. S.; Fung, A. K. L.; Martin, Y. C.; Kyncl, J. and Lall, A.: Ger. Offen. 2,642, 879 (1977); Chem. Abstr., 87, 22795m (1977).
476. Shutske, G. M.; Setescak, L. L. and Allen, R. C.: Eur. Pat. Appl. 2,666 (1979); Chem. Abstr., 92, 94378d (1980).
477. Imaki, K.; Arai, Y. and Okegawa, T.: Eur. Pat. Appl. EP 210,772 (1987); Chem. Abstr., 106, 175951v (1987).
478. Sato, H.; Kuromaru, K.; Ishizawa, T.; Aoki, B. and Koga, H.: Chem. Pharm. Bull., 40 (10) 2597-2601 (1992).
479. Koga, H. and Sato, H.: Jpn. Kokai Tokkyo Koho JP 01,131, 180 [89,131,180] (1989); Chem. Abstr., 111, 214474s (1989).
480. Schellenbaum, M. and Duennenberger, M.: Ger. Offen. 2,033,749 (1971); Chem. Abstr., 75, 151537e (1971).
481. Roche, M. and Cerutti, E.: C. R. Acad. Sci., Ser. C, 279 (15) 663-666 (1974).
482. Harada, H.; Matsushita, Y.; Yodo, M.; Nakamura, M. and Yonetani, Y.: Chem. Pharm. Bull., 35 (8) 3215-3226 (1987).
483. Shores, J. H.: Justus Liebigs Ann. Chem., 346, 382-386 (1906).
484. Houtman, T., Jr.: U.S. 2,419,553 (1947); Chem. Abstr., 41, 5150d (1947).
485. Kouskov, V. K. and Naoumov, I. A.: Zh. Obshch. Khim., 31 (1) 54-59 (1961).
486. Patel, S. V.; Nagar, N. Y. and Joshi, G. B.: J. Indian Chem. Soc., 60 (3) 304-306 (1983).
487. Shores, J. H.: Dissertation, Bonn (Germany), 9-16 (1898).
488. Strat, G.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1b, 28, 13-18 (1982).
489. Tarbell, D. S. and Fanta, P. E.: J. Am. Chem. Soc., 65, 2169-2174 (1943).
490. Chandrakumar, N. S.; Chen, B. B.; Clare, M.; Desai, B. N.; Djurie, S. W.; Docter, S. H.; Gasiecki, A. F.; Haack, R. A.; Liang, Chi-Dean; Miyashiro, J. M.; Penning, T. D.; Russell, M. A. and Yu, S. Siu-tzyy: PCT Int. Appl. WO 96 10, 999 (1996); Chem. Abstr., 125 (11) 142725p (1996).
491. Chandrakumar, N. S.; Chen, B. B.; Clare, M.; Desai, B. N.; Djurie, S. W.; Docter, S. H.; Gasiecki, A. F.; Haack, R. A.; Liang, Chi-Dean; Miyashiro, J. M.; Penning, T. D.; Russell, M. A. and Yu, S. Siu-tzyy: PCT Int. Appl. WO 96 11,192 (1996); Chem. Abstr., 125 (11) 142545e (1996).
492. Krause, M.; Rouleau, A.; Stark, H.; Garbarg, M.; Schwartz, J. C. and Schunack, W.: Pharmazie, 51 (10) 720-726 (1996).
493. Schmitz, F.: Justus Liebigs Ann. Chem., 346, 389-391 (1906).
494. Schmitz, F.: Dissertation, Bonn (Germany), pp. 40-43 (1904).
495. Melton, J. W. and Henze, H. R.: J. Am. Chem. Soc., 69, 2018-2020 (1947).
496. Ullmann, F.; Engi, G.; Wosnessensky, N.; Kuhn, E. and Herre, E.: Justus Liebigs Ann. Chem., 366, 78-118 (1909).
497. Ruminski, J. K.: Chem. Anal. (Warsaw), 37 (2) 171-175 (1992); Chem. Abstr., 118, 212388n (1993).
498. Sivakumar, A. and Reddy, S. J.: Trans. SAEST, 19 (4) 295-297 (1984); Chem. Abstr., 103, 122895m (1985).
499. Sivakumar, A. and Reddy, S. J.: Trans. SAEST, 18 (4) 331-333 (1983); Chem. Abstr., 100, 182126j (1984).
500. Sivakumar, A. and Reddy, S. J.: Indian J. Chem., Sect. A, 23A (9) 732-735 (1984).
501. Offenberg, H.; Harnagea, F.; Badilescu, S. and Arventiev, B.: An. Stiint Univ. "Al. I. Cuza" Iasi, Sect. 1c, 12 (1) 67-72 (1966); Chem. Abstr., 67, 11034y (1967).
502. Offenberg, H. and Arventiev, B.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c,11 (2) 155-163 (1965).
503. Arventiev, B.; Singurel, L.; Ofenberg, H. L. and Nicolaescu, T.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 20 (1) 41-45 (1974).
504. Hishmat, O. H. and Abd El Rahman, A. H.: Z. Naturforsch., B: Anorg. Chem., Org. Chem., 31B (8) 1138-1141 (1976).
505. Yaegashi, T.; Nunomura, S.; Okutome, T.; Nakayama, T.; Kurumi, M.; Sakurai, Y.; Aoyama, T. and Fujii, S.: Chem. Pharm. Bull., 32 (11) 4466-4477 (1984).
506. Bhavsar, M. D. and Desai, V. B.: Man-Made Text. India, 32 (1) 8-11, 15 (1989); Chem. Abstr., 113, 213772s (1990).
507. Gronowska, J. and Ruminski, J.: Rocz. Chem., 45 (11) 1957-1965 (1971).
508. Hayashi, M.: J. Prakt. Chem., 123, 289-312 (1929).
509. Ogata, M.; Matsumoto, H.; Kida, S. and Shimizu, S.: Fukusokan Kagaku Toronkai Koen Yoshishu, 12th, 71-75 (1979); Chem. Abstr., 93, 71640q (1980).
510. Schering A.-G.: Fr. Demande 2,267,101 (1975); Chem. Abstr., 86, 29806d (1977).
511. Nencki, M. and Stoeber, E.: Ber. Dtsch. Chem. Ges., 30B, 1768-1772 (1897).
512. Aebi, J.; Guerry, P.; Jolidon, S. and Morand, O.: Eur. Pat. Appl. EP 636,367 (1995); Chem. Abstr., 122, 178398m (1995).
513. Guerry, P.; Jolidon, S. and Zurflueh, R.: Eur. Pat. Appl. EP 410,359 (1991); Chem. Abstr., 115, 71122v (1991).
514. Zakett, D.; Flynn, R. G. A. and Cooks, R. G.: J. Phys. Chem., 82 (22) 2359-2362 (1978).
515. Offenberg, H. L.; Ludatser, F. and Arventiev, B.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 17 (1) 73-78 (1971).
516. Orban, S.: Plaste Kautsch., 23 (4) 260-263 (1976); Chem. Abstr., 85, 33886b (1976).
517. Wittig, G.; Baugert, F. and Richter, H. E.: Justus Liebigs Ann. Chem., 446, 155-204 (1926).
518. Montfort, B.; Laude, B.; Vebrel, J. and Cerutti, E.: Bull. Soc. Chim. Fr., 848-854 (1987).
519. Chakravarti, D. and Bera, B. C.: J. Indian Chem. Soc., 21, 109-111 (1944).
520. Yamamoto, J.; Nakane, I.; Nakashima, M.; Asano, M.; Akamatsu, H.; Okamoto, Y. and Sugita, K.: Nippon Kagaku Kaishi, 9, 1587-1592 (1989).
521. Kindler, H. and Oelschlager, H.: Chem. Ber., 87, 194-202 (1954).
522. Arventiev, B.; Offenberg, H. and Nicolaescu, T.: An. Stiint Univ. "Al I. Cuza" Iasi, Sect. 1c, 10, 65-70 (1964).
523. Buchanan, R. L.; Partyka, R. A. and Standridge, R. T.: U.S. 4,056,540 (1977); Chem. Abstr., 88, 22931y (1978).
524. Hagihara, T.: Shikizai Kyokaishi, 44 (10) 449-464 (1971); Chem. Abstr., 76, 47424a (1972).
525. Humbert, D.; Dagnaux, M.; Cohen, N. C.; Fournex, R. and Clemence, F.: Eur. J. Med. Chem. - Chim. Ther., 18 (1) 67-78 (1983).
526. Neumann, S. M. and Henzel, R. P.: Eur. Pat. Appl. EP 727,320 (1996); Chem. Abstr., 125 (20) 261448k (1996).
527. Richter, P.; Besch, A.; Wunderlich, I. and Hagen, A.: Ger. (East) DD 290,184 (1991); Chem. Abstr., 115, 255827k (1991).
528. Roussel-UCLAF: Fr. Demande 2,405,252 (1979); Chem. Abstr., 92, 41964k (1980).
529. Seymour, R. B. and Tsang, Hing Shya: Tex. J. Sci., 23 (2) 187-200 (1971); Chem. Abstr., 76, 58639a (1972).
530. Sumathi, T. and Balasubramanian, K. K.: Tetrahedron Lett., 34 (24) 3915-3918 (1993).
531. Kreshkov, A. P.; Gurvich, Ya. A. and Gel'pern, G. M.: Zh. Anal. Khim., 28 (12) 2440-2445 (1973); Chem. Abstr., 80, 90983 b (1974).
532. Buu-Hoi, N. P.; Lavit, D. and Xuong, N. D.: J. Org. Chem., 19, 1617-1621 (1954).
533. Arcadi, A.; Cacchi, S.; Rosario, M. D.; Fabrizi, G. and Marinelli, F.: J. Org. Chem., 61 (26) 9280-9288 (1996).
534. Widdowson, K. L.; Veber, D. F.; Jurewicz, A. J.; Rutledge, M. C. Jr. and Hertzberg, R. P.: PCT Int. Appl. WO 96 25,157 (1996); Chem. Abstr., 125 (21) 275430k (1996).
535. Arventiev, B. and Offenberg, H.: Acad. Repub. Pop. Rom., Fil. Iasi, Stud. cercet. stiint., Chim., 11, 305-310 (1960); Chem. Abstr., 56, 11554c (1962).
536. Furka, A. and Szell, T.: Acta Phys. Chem. Szeged, 7, 70-72 (1961).
537. Szell, T.; Hajas, E. and Sipos, S.: Acta Phys. Chem. Szeged, 11, 47-50 (1965).
538. Kysel, O.: Kinet. Mech. Polyreactions, Int. Symp. Macromol. Chem., Prep., 5, 263-270 (1969); Chem. Abstr., 75, 68099t (1971).
539. Ullmann, F. and Mallet, E.: Ber. Dtsch. Chem. Ges., 31, 1694-1696 (1898).
540. Furka, A. and Szell, T.: Acta Phys. Chem. Szeged, 6, 113-115 (1960).
541. Brose, T.; Holzscheiter, F.; Mattersteig, G.; Pritzkow, W. and Voerckel, V.: J. Prakt. Chem. /Chem.-Ztg., 334 (6) 497-504 (1992).
542. Hamazaki, Y.; Yamamoto, T.; Seri, K.; Sakasai, M.; Sato, R. and Ishiyama, N.: Ger. Offen. 2,757,459 (1978); Chem. Abstr., 89, 146626t (1978).
543. Hayashi, I.; Ogihara, K.; Itikawa, T. and Shimizu, K.: Eur. Pat. Appl. EP 127,342 (1984); Chem. Abstr., 102, 185507m (1985).
544. Katakami, T.; Yokoyama, T.; Miyamoto, M.; Mori, H.; Kawauchi, N.; Nobori, T.; Kamiya, J. and Ishii, M.: Eur. Pat. Appl. EP 454,498 (1991); Chem. Abstr., 116, 128950r (1992).
545. Katakami, T.; Yokoyama, T.; Miyamoto, M.; Mori, H.; Kawauchi, N.; Nobori, T.; Sannohe, K.; Kamiya, J.; Ishii, M. and Yoshihara, K.: Eur. Pat. Appl. EP 369,627 (1990); Chem. Abstr., 115, 29363z (1991).
546. Kulkarni, Y. D.; Sharma, R.; Sharma, V. L. and Dua, P. R.: Biol. Mem., 13 (2) 183-187 (1987); Chem. Abstr., 108, 198210h (1988).
547. Kulkarni, Y. D.; Sharma, R.; Sharma, V. L. and Dua, P. R.: J. Indian Chem. Soc., 64 (1) 46-48 (1987).
548. Abramovitch, R. A.; Hey, D. H. and Long, R. A. J.: J. Chem. Soc., 1781-1788 (1957).
549. Borsche, W.; Löwenstein, H. and Quast, R.: Ber. Dtsch. Chem. Ges., 50, 1339-1355 (1917).
550. Hanabusa, K.; Shirai, H.; Hojo, N.; Kondo, K. and Takemoto, K.: Makromol. Chem., 183 (5) 1101-1111 (1982).
551. Price, D. N. and Wain, R. L.: Ann. Appl. Biol., 83 (1) 115-124 (1976); Chem. Abstr., 85, 15221b (1976).
552. Kolbach, D.; Blazevic, N.; Hannoun, M.; Kajfez, F.; Kovac, T.; Rendic, S. and Sunjic, V.: Helv. Chim. Acta, 60 (1) 265-283 (1977).
553. Garcia, E. E.; Benjamin, L. E.; Fryer, R. I.; Sternbach, L. H. and Archer, G.: J. Med. Chem., 15 (9) 986-987 (1972).
554. Sawada, H.; Hara, A.; Asano, S. and Matsumoto, Y.: Clin. Chem. (Winston-Salem, N. C.), 22 (10) 1596-1603 (1976); Chem. Abstr., 86, 11657w (1977).
555. Ishida, S.; Hashida, Y.; Shizuka, H. and Matsui, K.: Bull. Chem. Soc. Jpn., 52 (4) 1135-1138 (1979).
556. Hoffmann-La Roche, F. \& Co., A.-G.: Ger. 1,145,626 (1963); Chem. Abstr., 60, 12033h (1964).
557. Sternbach, L. H.; Fryer, R. I.; Metlesics, W.; Sach, G. and Stempel, A.: J. Org. Chem., 27, 3781-3788 (1962).
558. Basha, A.; Ahmed, S. S. and Farooqui, T. A.: Tetrahedron Lett., 36, 3217-3220 (1976).
559. Aichaoui, H.; Lesieur, I. and Henichart, J. P.: Synthesis, 8, 679-680 (1990).
560. Bhavsar, M. D. and Shah, B. M.: Man-Made Text. India, 31 (7) 287-288, 291, 303 (1988); Chem. Abstr., 110, 136814r (1989).
561. Ono Pharmaceutical Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 58,140,016 [83,140,016] (1983); Chem. Abstr., 99, 200517e (1983).
562. Julia, M. and Baillargé, M.: Bull. Soc. Chim. Fr., 639-642 (1952).
563. Rohr, T. M. and Kuhn, J.: Eur. Pat. Appl. EP 169,808 (1986); Chem. Abstr., 104, 216418f (1986).
564. Bastide, M.; Chabard, J. L.; Lartigue, C.; Bargnoux, H.; Petit, J.; Berger, J. A.; Ait Mansour, H.; Lesieur, D. and Busch, N.: Biol. Mass Spectrom., 20 (8) 484-492 (1991); Chem. Abstr., 115, 149652q (1991).
565. Bonte, J. P.; Lesieur, D.; Lespagnol, C.; Cazin, J. C. and Cazin, M.: Eur. J. Med. Chem., 9 (5) 497-500 (1974).
566. Moussavi, Z.; Lesieur, D.; Lespagnol, C.; Sauzieres, J. and Olivier, P.: Eur. J. Med. Chem., 24 (1) 55-60 (1989).
567. Gattermann, L.: Ber. Dtsch. Chem. Ges., 29, 3034-3037 (1896).
568. Synthelabo S. A.: Israeli IL 56,737 (1982); Chem. Abstr., 100, 34271n (1984).
569. Kaplan, J. P. and Raizon, B. M.: Ger. Offen. 2,907,379 (1979); Chem. Abstr., 92, 6279u (1980).
570. Lubenets, E. G.; Gerasimova, T. N. and Fokin, E. P.: Zh. Org. Khim., 7 (4) 805-812 (1971).
571. Hishmat, O. H. and Abd El Rahman, A. H.: J. Prakt. Chem., 315 (2) 227-234 (1973).
572. Taher, B.; Schleusener, A. and Baltes, W.: Dtsch. Lebensm.-Rundsch., 90 (2) 35-38 (1994); Chem. Abstr., 121, 238039m (1994).
573. Wittig, G. and Schulze, W.: J. Prakt. Chem., 130, 81-91 (1931).
574. Changani, V. S.; Kalavadia, A. V.; Manvar, U. V. and Joshi, G. K.: J. Indian Chem. Soc., 66 (1) 63-64 (1989).
575. Patel, R. B. and Keemtilal: Acta Cienc. Indica, [Ser.] Chem., 9 (1-4) 49-51 (1983); Chem. Abstr., 101, 16246z (1984).
576. Shah, R. R.; Mehta, R. D. and Parikh, A. R.: J. Indian Chem. Soc., 58 (11) 1113-1115 (1981).
577. Shah, V. H.; Gaur, V. B.; Patel, H. H. and Parikh, A. R.: Acta Cienc. Indica, [Ser.] Chem., 8 (4) 212-217 (1982); Chem. Abstr., 98, 160620d (1983).
578. Bartolotti, P. and Linari, A.: Gazz. Chim. Ital., 32, 271-276 (1902).
579. Abd el Rahman, A. H. and Basha, R. M.: Z. Naturforsch., B: Anorg. Chem., Org. Chem., 32B (9) 1084-1088 (1977).
580. Auwers, K. and Mauss, W.: Liebigs Ann. Chem., 464, 293-311 (1928).
581. Schroetter, E.; Hoegel, E. and Jeschke, H. J.: Ger. (East) 106,635 (1974); Chem. Abstr., 82, 155759w (1975).
582. Strat, M.; Singurel, L. and Strat, G.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1b, 20 (2) 157-162 (1974).
583. Schroetter, E.; Weuffen, W. and Herudek, D.: Pharmazie, 29 (6) 374-382 (1974).
584. Bruna, R. F.; Fergus, J. H.; Coughenour, L. L.; Courtland, G. G.; Pugsley, T. A.; Dodd, J. H. and Tinney, F. J.: Mol. Pharmacol., 38 (6) 950-958 (1990); Chem. Abstr., 114, 220744h (1991).
585. Heeres, J.: U.S. 4,101,665 (1978); Chem. Abstr., 90, 87466m (1979).
586. Hinnen, A.: Ger. Offen. 1,949,867 (1970); Chem. Abstr., 73, 77083u (1970).
587. Zakhs, E. R.; Zvenigorodskaya, L. A. and Efros, L. S.: Khim. Geterotsikl. Soedin., 12, 1618-1623 (1973); Chem. Abstr., 81, 51080 (1974).
588. Haigh, D. B. and Hindley, R. M.: Eur. Pat. Appl. EP 299,620 (1989); Chem. Abstr., 111, 7394a (1989).
589. Sato, H.; Dan, T.; Onuma, E.; Tanaka, H.; Aoki, B. and Koga, H.: Chem. Pharm. Bull., 39 (7) 1760-1772 (1991).
590. Arventiev, B. and Offenberg, H.: An. Stiint Univ. "Al. I. Cuza", Sect. 1c, 8 (1) 217-224 (1962).
591. Ghosh, C. K. and Mukhopadhyay, K. K.: I. Indian Chem. Soc., 55 (1) 52-55 (1978).
592. Prashad, M.; Ray, S. and Bhaduri, A. P.: Indian J. Chem., Sect. B, 16B (2) 142-143 (1978).
593. Patel, S. V.; Bhadani, G. V. and Joshi, G. B.: J. Indian Chem. Soc., 61 (4) 372-374 (1984).
594. Masutani, T.; Itami, Y.; Nishioka, T.; Maeda, M. and Kitahara, K.: Jpn. Kokai Tokkyo Koho JP 61 22,052 [86 22,052] (1986); Chem. Abstr., 105, 78656z (1986).
595. Reich, D. A. and Nightingale, D. V.: J. Org. Chem., 21, 825-826 (1956).
596. Yamamoto, J.; Kisida, M.; Takenaka, Y. and Okamoto, Y.: Nippon Kagaku Kaishi, 3, 288-293 (1988).
597. Milligan, B. and Holt, L. A.: Polym. Degrad. Stab., 10 (4) 335-352 (1985); Chem. Abstr., 102, 205341h (1985).
598. Brieaddy, L. E.: PCT Int. Appl. WO 96 05,188 (1996); Chem. Abstr., 125, 114724u (1996).
599. Kawai, T.; Shimizu, T. and Chiba, H.: J. Pharm. Soc. Jpn., 72, 660-665 (1956).
600. Downey, P. M. and Zerbe, R. O.: US 2,670,382 (1954); Chem. Abstr., 49, 4020b (1955).
601. Cox, E. H.: J. Am. Chem. Soc., 49, 1028-1030 (1927).
602. Miquel, J. F.; Muller, P. and Buu-Hoi, N. P.: Bull. Soc. Chim. Fr., 633-636 (1956).
603. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 434-438 (1958).
604. Buu-Hoi, N. P.; Royer, R. and Eckert, B.: J. Org. Chem., 17, 1463-1465 (1952).
605. Lacey, R. N.: Brit. 951,435 (1964); Chem. Abstr., 60, 15779b (1964).
606. Arventiev, B.; Wexler, H. and Strul, M.: Acad. Repub. Pop. Rom., Fil. Iasi, Stud. cercet. stiint., Chim., 11, 63-73 (1960); Chem. Abstr., 55, 15453a (1961).
607. Ritchie, E.: J. Proc. Roy. Soc. N. S. Wales, 80, 33-40 (1946); Chem. Abstr., 41, 3094i (1947).
608. Sumitomo Chemical Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 58 38,229 [83 38,229] (1983); Chem. Abstr., 99, 38201y (1983).
609. Arventiev, B.; Singurel, L.; Offenberg, G. and Nicolaescu, T.: An. Stiint. Univ. "Al. I. Cuza", Sect. 1c, 13 (2) 135-138 (1967).
610. Saxena, S. K.; Seth, M.; Bhaduri, A. P. and Sahib, M. K.: J. Steroid Biochem., 18 (3) 303308 (1983); Chem. Abstr., 98, 173374b (1983).
611. Sandner, M. R.; Hedaya, E. and Trecker, D. J.: J. Am. Chem. Soc., 90 (26) 7249-7254 (1968).
612. Bredereck, H.; Lehmann, G.; Fritzsche, E. and Schönfeld, C.: Angew. Chem., 26, 445-446 (1939).
613. Bredereck, H.; Lehmann, G.; Schönfeld, C. and Fritzsche, E.: Ber. Dtsch. Chem. Ges., 72B, 1414-1429 (1939).
614. Jackson, L. B. and Waring, A. J.: J. Chem. Soc., Perkin Trans. 2, 11, 1893-1898 (1990).
615. Szymanowski, J. and Blaszczak, J.: Chem. Stosow., 26 (1) 99-109 (1982); Chem. Abstr., 98, 215259a (1983).
616. Kotali, A.; Glaveri, U.; Pavlidou, E. and Tsoungas, P. G.: Synthesis, 12, 1172-1173 (1990).
617. Reilly, J. and Drumm, P. J.: J. Chem. Soc., 2814-2819 (1927).
618. Auwers, K. and Czerny, H.: Ber. Dtsch. Chem. Ges., 31, 2692-2698 (1898).
619. Auwers, K.: Ber. Dtsch. Chem. Ges., 36, 3890-3892 (1903).
620. Bradshaw, J. S., Loveridge, E. L. and White, L.: J. Org. Chem., 33, 4127-4132 (1968).
621. Dey, B. B. and Raman, M. V. S., Laboratory manual of organic chemistry; S. Vishwanathan, ed., Madras, (India), 1957, page 279.
622. Hellwinkel, D.; Laemmerzahl, F. and Hofmann, G.: Chem. Ber., 116 (10) 3375-3405 (1983).
623. Kruber, O.: Ber. Dtsch. Chem. Ges., 65, 1382-1396 (1932).
624. Natsugari, H.; Ikeda, H.; Ishimaru, T. and Doi, T.: Eur. Pat. Appl. EP 585,913 (1994); Chem. Abstr., 122, 56051x (1995).
625. Negi, A. S.; Dwivedi, I.; Setty, B. S. and Ray, S.: Indian J. Pharm. Sci., 56 (3) 105-108 (1994); Chem. Abstr., 121, 293002u (1994).
626. Ray, S.; Grover, P. K. and Anand, N.: Indian J. Chem., 9 (7) 619-623 (1971).
627. Sharma, I. and Ray, S.: Indian J. Chem., Sect. B; 27B (4) 374-375 (1988).
628. Zimmerman, H. E. and Swenton, J. S.: J. Am. Chem. Soc., 89 (4) 906-912 (1967).
629. Kulickova, M.; Slama, P. and Hrdlovic, P.: Chem. Zvesti, 33 (5) 630-635 (1979).
630. Morton, A. and Erlam, T.: J. Chem. Soc., 159-169 (1941).
631. Szymanowski, J.; Voelkel, A. and Rashid, Z. A.: J. Chromatogr., 402, 55-64 (1987).
632. Arventiev, B.; Strul, M. and Wexler, H.: Acad. Repub. Pop. Rom., Fil. Iasi, Stud. cercet. stiint., Chim., 11, 53-62 (1960); Chem. Abstr., 55, 15452h (1961).
633. Arventiev, B. and Wexler, H.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 12 (1) 51-55 (1966); Chem. Abstr., 67, 53981 (1967).
634. King, F. E.; King, T. J. and Muir, I. H. M.: J. Chem. Soc., 5-10 (1946).
635. Chardonneus, L. and Schlapbach, W.: Helv. Chim. Acta, 29, 1413-1424 (1946).
636. John, H. and Beetz, P.: J. Prakt. Chem., 149, 164-170 (1937).
637. Bartolotti, P.: Gazz. Chim. Ital., 30, 56-98 (1900).
638. Hercouet, A. and Le Corre, M.: Tetrahedron, 37 (16) 2867-2873 (1981).
639. Amin, K. C. and Amin, G. C.: J. Indian Chem. Soc., 37 (8) 469-472 (1960).
640. Cox, E.: J. Am. Chem. Soc., 52, 352-358 (1930).
641. Pande, C. D.; Tripathi, B. N. and Venkataramani, B.: Indian J. Chem., 6 (9) 542-543 (1968).
642. Gomberg, M. and Anderson, L. C.: J. Am. Chem. Soc., 47, 2022-2033 (1925).
643. Bartolotti, P.: Gazz. Chim. Ital., 30, 229-234 (1900).
644. Orndorff, W. R. and McNulty, S. A.: J. Am. Chem. Soc., 49, 992-997 (1927).
645. Schering-Kahlbaum A.-G.: E. P. 397505 (1933); Chem. Zentralbl., 105, 129 (1934).
646. Kumiai Chemical Industry Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 46,904 (1982); Chem. Abstr., 97, 34709f (1982).
647. Kumiai Chemical Industry Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 82 46,905 (1982); Chem. Abstr., 97, 19054v (1982).
648. Borsche, W. and Hahn-Weinheimer, P.: Justus Liebigs Ann. Chem., 570, 155-164 (1950).
649. Kostanecki, S. and Tambor, J.: Ber. Dtsch. Chem. Ges., 28, 2302-2309 (1895).
650. Kurosawa, K.; Sasaki, Y. and Ikeda, M.: Bull. Chem. Soc. Jpn., 46, 1498-1501 (1973).
651. Ambrovic, P. and Mikovic, J.: Eur. Polym. J.-Supplement, 371-377 (1969)
652. König, E. and Kostanecki, S.: Ber. Dtsch. Chem. Ges., 39, 4027-4031 (1906).
653. Ahluwalia, V. K.; Singh, D. and Singh, R. P.: Monatsh. Chem., 116 (6-7) 869-872 (1985).
654. Hardegger, E.; Widmer, E.; Steiner, K. and Pfiffner, A.: Helv. Chim. Acta, 47, (7) 2027-2030 (1964).
655. Hosler, J. F. and Storfer, S. J.: U.S. 2,928,878 (1960); Chem. Abstr., 54, 14195f (1960).
656. Launas, K. R.; Neelakantan, S. and Seshadri, T. R.: Proc. Indian Acad. Sci., 46A, 343-348 (1957).
657. Hardy, W. B. and Forster, W. S. : U.S. 2,773,903 (1956); Chem. Abstr., 51, 16552d (1957).
658. Glahn, W. H. and Stanley, L. N.: U.S. 2,861,104 (1958); Chem. Abstr., 53, 8081a (1959).
659. Zemzina, I. N. and Sidorova, N. G.: Kratkie Tezisy-Vsesoyuznoe Soveshchanie, probleme Mekhanizmy Geteroliticheskikh reaktsü, Leningrad, 184-185 (1974); Chem. Abstr., 85, 62765s (1976).
660. Piccolo, O.; Filippini, L.; Tinucci, L.; Valoti, E. and Citterio, A.: Tetrahedron, 42 (3) 885-891 (1986).
661. Zemzina, I. N. and Karaul'uykh, L. V.: Zh. Org. Khim., 9 (10) 2163-2167 (1973).
662. Rosenkranz, H. J. and Lachmann, B.: Ger. Offen. 2,209,527 (1973); Chem. Abstr., 80, 3265c (1974).
663. Zemzina, I. N. and Inagamova, M. I.: Nauch. Tr. Tashkent. Un-T, 462, 45-48 (1974); Chem. Abstr., 84, 4593c (1976).
664. Abdel-Nabi, Ismail M.; Kadry, Abdelrazak M.; Davis, Richard A. and Abdel-Rahman, Mohamed S.: J. Appl. Toxicol., 12 (4) 255-259 (1992); Chem. Abstr., 117, 144887b (1992).
665. Barabas, E. S.; Mallya, P. and Gromelski, S. J., Jr.: U.S. US 4,312,995 (1982); Chem. Abstr., 96, 218388m (1982).
666. E. I. du Pont de Nemours \& Co. Brit. 835,841 (1960); Chem. Abstr., 54, 21850h (1960).
667. Mikovic, J.; Ambrovic, P.; Manasek, Z. and Karvas, M.: Chem. Zvesti, 27 (2) 255-262 (1973).
668. Neumann, P.; Eilingsfeld, H. and Aumueller, A.: Eur. Pat. Appl. EP 351,615 (1990); Chem. Abstr., 113, 23371n (1990).
669. Prichard, J. H.: U.S. 3,219,621 (1965); Chem. Abstr., 64, 3780d (1966).
670. Raychaudhuri, S.; Seshadri, T. R. and Mukerjee, S. K.: Indian J. Chem., 10 (1) 56-58 (1972).
671. René, L.; Buisson, J. P. and Royer, R.: Bull. Soc. Chim. Fr., 475-476 (1974).
672. Sumathi, T. and Balasubramanian, K. K.: Tetrahedron Lett., 33 (16) 2213-2216 (1992).
673. Szymanowski, J.; Voelkel, A.; Beger, J. and Binte, H. J.: J. Prakt. Chem., 327 (3) 353-361 (1985).
674. Ishikura, Y.; Kino, M. and Kanehisa, S.: Jpn. Kokai Tokkyo Koho 03,170,414 [91,170,414] (1991); Chem. Abstr., 116, 136247g (1992).
675. Eyton, W. B.; Ollis, W. D.; Fineberg, M.; Gottlieb, O. R.; Guimaraes, I. S. de S. and Magalhaes, M. T.: Tetrahedron, 21, 2697-2705 (1965).
676. Dubini, M.; Cicchetti, O.; Vicario, G. P. and Bua, E.: Eur. Polym. J., 3 (3) 473-479 (1967); Chem. Abstr., 67, 91187p (1967).
677. Kauffmann, H. and Grombach, A.: Ber. Dtsch. Chem. Ges., 38, 794-801 (1905).
678. Leary, G. and Oliver, J. A.: Tetrahedron Lett., 3, 299-302 (1968).
679. Martin, R.: Monatsh. Chem., 112, 1155-1163 (1981).
680. Percec, V.; Bae, J.-Y.; Zhao, M. and Hill, D. H.: J. Org. Chem., 60 (4) 1066-1069 (1995).
681. Larine, N. A.; Matveeva, E. N. and Petrova, T. G.: Zh. Obshch. Khim., 34 (3) 864-866 (1964).
682. Perrot, C. and Cerutti, E.: C. R. Acad. Sci., Ser. C, 264 (15) 1301-1303 (1967).
683. Auwers, K. and Rietz, E.: Ber. Dtsch. Chem. Ges., 40, 3514-3521 (1907).
684. Hardy, W. B.; Forster, W. S. and Coleman, R. A.: Ger. Offen., 1,093,374 (1956).
685. Ahluwalia, V. K.; Khanna, M. and Singh, R. P.: Indian J. Chem., Sect. B, 20B (11) 990-991 (1981).
686. Bartolotti, P.: Gazz. Chim. Ital., 26, 433-441 (1896).
687. Martin, R.: Bull. Soc. Chim. Fr., 901-905 (1977).
688. Strupczewski, J. T.; Helsley, G. C.; Chiang, Y. and Bordeau, K. J.: Eur. Pat. Appl. EP 402,644 (1990); Chem. Abstr., 114, 185553w (1991).
689. Strupczewski, J. T.; Helsley, G. C.; Chiang, Y.; Bordeau, K. J. and Glamkowski, E. J.: Eur. Pat. Appl. EP 542,136 (1993); Chem. Abstr., 120, 54553x (1994).
690. Gronowska, J.; Pilat, E. and Ruminski, J.: Rocz. Chem., 47, 1949-1955 (1973).
691. Richtzenhain, H. and Alfredsson, B.: Acta Chem. Scand., 8 (9) 1519-1529 (1954).
692. Sinitsyna, T. A.; Sidorov, E. O.; Voronina, N. M.; Yalovets, I. A.; Latosh, N. I. and Alekseeva, I. A.: Zh. Obshch. Khim., 50 (5) 1174-1177 (1980).
693. Auricchio, S.; Morrocchi, S. and Ricca, A.: Tetrahedron Lett., 33, 2793-2796 (1974).
694. Jobst, J. and Hesse, O.: Justus Liebigs Ann. Chem., 199, 17-96 (1879).
695. Parmar, V. S.; Khanduri, C. H.; Tyagi, O. D.; Prasad, A. K.; Gupta, S.; Bisht, K. S.; Pati, H. N. and Sharma, N. K.: Indian J. Chem., Sect. B, 31B (12) 925-929 (1992).
696. Harrison, C. R.; Hodge, P. and Khan, N.: J. Chem. Soc., Perkin Trans. 1, 1592-1594 (1980).
697. Clark, G. A. and Havens, C. B.: U.S. 3,072,602 (1963); Chem. Abstr., 58, 6992c (1963).
698. Martin, R. and Demerseman, P.: Synthesis, 8, 738-740 (1992).
699. Head, F. S. H.: Brit. 1,088,755 (1967); Chem. Abstr., 69, 10258d (1968).
700. Eggensperger, H.; Franzen, V. and Kloss, W.: Brit. 1,186,818 (1970); Chem. Abstr., 72, 132325f (1970).
701. Bailey, D.; Tirrell, D. and Vogl, O.: J. Macromol. Sci., Chem., A12 (5) 661-699 (1978).
702. Wang, R. H. S. and Irick, G., Jr.: U.S. 4,043,973 (1977); Chem. Abstr., 87, 168757x (1977).
703. Wang, R. H. S. and Zannucci, J. S.: U.S. 4,115,348 (1978); Chem. Abstr., 90, 72866t (1979).
704. Sato, H.; Dan, T.; Onuma, E.; Tanaka, H.; Aoki, B. and Koga, H.: Chem. Pharm. Bull., 40 (1) 109-116 (1992).
705. Dziomko, V. M.; Markovich, I. S. and Kruglova, N. V.: Khim. Geterotsikl. Soedin., 3, 536-537 (1968); Chem. Abstr., 69, 96653p (1968).
706. Shibaldain, N. L.: M.Sc. Thesis, Basrah, IRAQ (1984).
707. Kamounah, Fadhil S.; Al-Sheibani, Ikbal S.; Shibaldin, Nazar I. and Salman, Salman R.: Magn. Reson. Chem., 23 (7) 521-523 (1985); Chem. Abstr., 104, 129370r (1986).
708. Salman, S. R. and Kamounah, F. S.: Magn. Reson. Chem., 25 (11) 966-969 (1987).
709. Saunders, J. C. and Williamson, W. R. N.: Ger. Offen. 2,450,053 (1975); Chem. Abstr., 83, 97263n (1975).
710. Saunders, J. C. and Williamson, W. R. N.: Ger. Offen. 2,615,487 (1976); Chem. Abstr., 86, 72208x (1977).
711. Saunders, J. C. and Williamson, W. R. N.: J. Med. Chem., 22 (12) 1554-1558 (1979).
712. Ruminski, J. K.; Dabkowska, H. and Gronowska, J.: Pol. J. Chem., 52 (3) 629-635 (1978).
713. Chatterjea, J. N.; Gupta, S. N. P. and Mehrotra, V. N.: J. Indian Chem. Soc., 42 (4) 205-210 (1965).
714. Evans, D.; Saunders, J. C. and Williamson, W. R. N.: Brit. 1,586,466 (1981); Chem. Abstr., 95, 61748h (1981).
715. Szymanowski, J. and Prochaska, K.: J. Colloid Interface Sci., 123 (2) 456-465 (1988); Chem. Abstr., 109, 116566n (1988).
716. Szymanowski, J. and Prochaska, K.: J. Colloid Interface Sci., 125 (2) 649-666 (1988); Chem. Abstr., 110, 45408v (1989).
717. Arventiev, B. and Wexler, H.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 17 (1) 61-65 (1971).
718. Perrot, C.: Thèse d'Etat, Besançon, France, (1972).
719. Meisenheimer, J.; Hanssen, R. and Wachterowitz, A.: J. Prakt. Chem., 119, 315-367 (1928).
720. Auwers, K. and Mauss, W.: Ber. Dtsch. Chem. Ges., 61, 1495-1507 (1928).
721. Dean, F. M.; Herbin, G. A.; Matkin, D. A.; Price, A. W. and Robinson, M. L.: J. Chem. Soc., Perkin Trans. 1, 9, 1986-1993 (1980).
722. Blatt, A. H.: Org. React., 1, 342-369 (1942).
723. Wexler, H. and Arventiev, B.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 17 (1) 67-71 1971); Chem. Abstr., 75, 118198x (1971).
724. Baddeley, G.: J. Chem. Soc., 273-274 (1943).
725. Bartolotti, P. and Linari, A.: Gazz. Chim. Ital., 32, 494-503 (1902).
726. Royer, R.; Demerseman, P.; Cheutin, A.; Allegrini, E. and Michelet, R.: Bull. Soc. Chim. Fr., 1379-1388 (1957).
727. Fischer, A.; Greig, C. C. and Roederer, R.: Can. J. Chem., 53 (11) 1570-1578 (1975).
728. Chardonneus, L.; Laroche, B. and Gamba, G.: Helv. Chim. Acta, 48, 1800-1803 (1965).
729. Starkov, S. P.; Panasenko, A. I., Volkotrub, M. N. and Zhidkova, L. A.: Zh. Obshch. Khim., 63 (2) 406-408 (1993).
730. Royer, R.; René, L. and Demerseman, P.: Chim. Ther., 8 (2) 139-142 (1973).
731. Royer, R.; René, L.; Demerseman, P. and Cavier, R.: Fr. Demande 2,198,735 (1974); Chem. Abstr., 82, 31247h (1975).
732. Al-Ka’bi, J.; Gore, P. H.; Moonga, B.; Al-Shiebani, I. S.; Shibaldain, N. L. and Kamounah, F. S.: J. Chem. Res. (M), 7, 2201-2226 (1986).
733. Wittig, G.; Oppermann, A. and Faber, K.: J. Prakt. Chem., 158, 61-71 (1941).
734. Basil, B. and Wooldridge, K. R. H.: Ger. Offen. 2,627,210 (1976); Chem. Abstr., 86, 139626c (1977).
735. Hrdlovic, P.; Schubertova, N.; Arventiev, B. and Wexler, H.: Collect. Czech. Chem. Commun., 36 (5) 1948-1954 (1971).
736. Arventiev, B.; Gabe, I. and Cascaval, A.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 13 (1) 53-58 (1967).
737. Miertus, S. and Kysel, O.: J. Mol. Struct., 26 (2) 163-173 (1975); Chem. Abstr., 83, 113408w (1975).
738. Beger, J.; Binte, H. J.; Brunne, L. and Neumann, R.: J. Prakt. Chem./Chem.-Ztg., 334 (3) 269-277 (1992); Chem. Abstr., 117, 130886p (1992).
739. Al-Ka’bi, J.; Farooqi, J. A.; Gore, P. H.; Moonga, B. S. and Waters, D. N.: J. Chem. Res., Synop., 3, 80-81 (1989).
740. Ruminski, J. K.: Chem. Ber., 116, 970-979 (1983).
741. Auwers, K. and Markovits, T.: Ber. Dtsch. Chem. Ges., 41, 2332-2340 (1908).
742. Fujio, M.; Mishima, M.; Tsuno, Y.; Yukawa, Y. and Takai, Y.: Bull. Chem. Soc. Jpn., 48 (7) 2127-2133 (1975).
743. Auwers, K. and Janssen, E.: Justus Liebigs Ann. Chem., 483, 44-65 (1930).
744. Rey, M. E. and Waters, W. A.: J. Chem. Soc., 2753-2755 (1955).
745. Fusco, R. and Sannicolo, F.: J. Org. Chem., 46 (1) 90-92 (1981).
746. Green, P. N. and Green, W. A.: Eur. Pat. Appl. EP 279,475 (1988); Chem. Abstr., 111, 39004q (1989).
747. Koutek, B.; Musil, L.; Velek, J.; Lycka, A.; Snobl, D. Synackova, M. and Soucek, M.: Collect. Czech. Chem. Commun., 46 (10) 2540-2556 (1981).
748. Linari, A.: Gazz. Chim. Ital., 33, 60-65 (1903).
749. Jones, E. T. and Robertson, A.: J. Chem. Soc., 1689-1693 (1932).
750. Shah, H. A. and Shah, R. C.: J. Indian Chem. Soc., 17, 32-36 (1940).
751. Tahara, Y.: Ber. Dtsch. Chem. Ges., 24, 2459-2462 (1891).
752. Abd el Rahman, A. H. and Ismail, E. M.: Arzneim.-Forsch. (Drug Res.) 26 (5) 756-759 (1976).
753. Ahluwalia, V. K.; Kumar, D. and Gupta, M. C.: Indian J. Chem., Sect. B, 16B (7) 574-578 (1978).
754. Afzal, M.; Davies, J. S. and Hassal, C. H.: J. Chem. Soc. C, 13, 1721-1727 (1969).
755. Bartolotti, P.: Gazz. Chim. Ital., 28, 283-290 (1898).
756. Varache-Beranger, M.; Nuhrich, A. and Devaux, G.: Eur. J. Med. Chem., 23 (6) 501-510 (1988).
757. Bargellini, G.: Gazz. Chim. Ital., 46, 249-255 (1916).
758. Marini-Bettolo, G. B.; Ballio, A. and Baroni, G.: Gazz. Chim. Ital., 78, 301-303 (1948).
759. Marini-Bettolo, G. B. and Paolini, L.: Ital 435,779 (1948); Chem. Abstr., 44, 8375d (1950).
760. Guimaraes, I. S. de S.; Gottlieb, O. R.; Andrade, C. H. S. and Magalhaes, M. T.: Phytochemistry, 14 (5/6) 1452-1453 (1975).
761. Bargellini, G. and Martegiani, E.: Atti. R. Accad. Naz. Lincei, 20, 183-190 (1911).
762. Bargellini, G. and Martegiani, E.: Gazz. Chim. Ital., 41, 603-612 (1911).
763. Kulshresth, S. K.; Mukerjee, S. K. and Seshadri, T. R.: Indian J. Chem., 12 (1) 10-14 (1974).
764. Seshadri, T. R.: J. Indian Chem. Soc., 40 (7) 497-504 (1963).
765. Pollak, J.: Monatsh. Chem., 18, 736-748 (1897).
766. Karrer, P. and Lichtenstein, N.: Helv. Chim. Acta, 11, 789-795 (1928).
767. Polonsky, J. and Auguste, F.: Bull. Soc. Chim. Fr., 541-549 (1955).
768. Ahluwalia, V. K. and Mehta, B.: Indian J. Chem., Sect. B, 25B (11) 1171 (1986).
769. Ahluwalia, V. K.; Singh, R. and Singh, R. P.: Gazz. Chim. Ital., 114 (11-12) 501-503 (1984).
770. Wagner, H.; Seligmann, O.; Chari, M. V.; Wollenweber, E.; Dietz, V. H.; Donnelly, D. M.; Meegan, M. J. and O’Donnell, B.: Tetrahedron Lett., 44, 4269-4272 (1979).
771. Elborne, W. : Pharm. J., 24 (3) 168-171 (1893).
772. Ciamician, G. and Silber, P.: Ber. Dtsch. Chem. Ges., 27, 1497-1501 (1894).
773. Ciamician, G. and Silber, P.: Ber. Dtsch. Chem. Ges., 24, 299-301 (1891).
774. Messner, J.: Pharm. Zentralhalle Dtschl., 67, 680-688 (1926).
775. Canter, F. W.; Curd, F. H. and Robertson, A.: J. Chem. Soc., 1245-1255 (1931).
776. Hamana, R.; Saito, M. and Mori, S.: Jpn. Kokai Tokkyo Koho JP 61,200,941 [86,200,941] (1986); Chem. Abstr., 106, 84165a (1987).
777. Karvas, M.; Jexova, E.; Holcik, J. and Balogh, A.: Chem. Prum., 18 (7-8) 427-429 (1968); Chem. Abstr., 69, 86549v (1968).
778. Hahn, E. and Neumann, P.: U.S. US 4,885,396 (1989); Chem. Abstr., 113, 23370m (1990).
779. Hahn, E. and Neumann, P.: Ger. Offen. DE 3,814,781 (1989); Chem. Abstr., 112, 216426x (1990).
780. Aumueller, A. and Goetze, W.: Eur. Pat. Appl. EP 425,974 (1991); Chem. Abstr., 115, 49103t (1991).
781. Kim, Bongsub and Kaack, H.: U.S. US 4,978,797 (1990); Chem. Abstr., 114, 184976z (1991).
782. Al-Malaika, S.; Goonetileka, M. D. R. J. and Scott, G.: Polym. Degrad. Stab., 32 (2) 231247 (1991); Chem. Abstr., 114, 208492s (1991).
783. Anthony, Blair T.: Can. CA 1,175,056 (1984); Chem. Abstr., 102, 63082y (1985).
784. Anthony, Blair T.: U.S. US 4,366,207 (1982); Chem. Abstr., 98, 90555k (1983).
785. Gay, M. and Lavault, S.: Eur. Pat. Appl. EP 401,134 (1990); Chem. Abstr., 114, 248540n (1991).
786. Scott, G.: Food Addit. Contam., 5(Suppl. 1) 421-432 (1988); Chem. Abstr., 110, 113323r (1989).
787. Wang, R. H. S. and Gott, S. L.: PCT Int. Appl. WO 89 02,906 ’1989); Chem. Abstr., 111, 196060x (1989).
788. Zannucci, J. S. and Pruett, W. P.: U.S. US 4,418,000 (1983); Chem. Abstr., 100, 52643q (1984).
789. Kumagai, S.; Kashiwai, K. and Suga, A.: Jpn. Kokai Tokkyo Koho JP 02,180,909 [90,180,909] (1990); Chem. Abstr., 113, 232242k (1990).
790. Minafuji, M. and Mori, S.: Jpn. Kokai Tokkyo Koho JP 63,253,050 [88,253,050] (1988); Chem. Abstr., 110, 172879z (1989).
791. Miyazaki, N. and Takayanagi, T.: Jpn. Kokai Tokkyo Koho JP 02 40,268 [90 40,268] (1990); Chem. Abstr., 113, 80631w (1990).
792. Ono, H.; Masai, T. and Suzuki, H.: Japan 72 29,199 (1972); Chem. Abstr., 78, 98936t (1973).
793. Takayanagi, T.; Miyazaki, N. and Sasao, Y.: Jpn. Kokai Tokkyo Koho JP 01,287,160 [89,287,160] (1989); Chem. Abstr., 112, 200807m (1990).
794. Gordon, D. A.: U.S. Patent 3,086,988.
795. Barabas, E. S.; Mallya, P. and Gromelski, S. J., Jr.: U.S. US 4,302,606 (1981); Chem. Abstr., 96, 104914z (1982).
796. Barabas, E. S.; Mallya, P. and Gromelski, S. J., Jr.: U.S. US 4,310,687 (1982); Chem. Abstr., 96, 200337j (1982).
797. Barabas, E. S.; Mallya, P. and Gromelski, S. J., Jr.: U.S. US 4,301,267 (1981); Chem. Abstr., 96, 86464w (1982).
798. White, W. N.; Gwynn, D.; Schlitt, R.; Girard, C. and Fife, W.: J. Am. Chem. Soc., 80, 3271-3277 (1958).
799. Miyano, M.; Deason, J. R.; Nakao, A.; Stealey, M. A.; Villamil, C. I.; Sohn, D. D. and Mueller, R. A.: J. Med. Chem., 31 (5) 1052-1061 (1988).
800. Larine, N. A., Matveeva, E. N. and Kajoutkina, L. V.: Zh. Obshch. Khim., 32 (2) 367-369 (1962).
801. Eggensperger, H.; Diehl, K. H. and Kloss, W.: Ger. 1,768,599 (1971); Chem. Abstr., 76, 85557d (1972).
802. Luston, J.; Gunis, J. and Manasek, Z.: J. Macromol. Sci.-Chem. A7 (3) 587-599 (1973).
803. Gordon, D. A. and Burgert, B. E.: U.S. Patent 2,967,186 (1961).
804. Ruminski, J. K. and Przewoska, K. D.: Chem. Ber., 115, 3436-3443 (1982).
805. McGookin, A.; Robertson, A. and Simpson, T. H.: J. Chem. Soc., 2021-2029 (1951).
806. Powell, V. H. and Sutherland, M. D.: Aust. J. Chem., 16 (2) 282-284 (1963).
807. Ciamician, G. and Silber, P.: Ber. Dtsch. Chem. Ges., 27, 409-426 (1894).
808. Pollak, J.: Monatsh. Chem., 22, 996-1001 (1901).
809. Jones, T. G. H. and White, M.: J. Proc. Roy. Soc. Qd., 43 (4) 24-27 (1931).
810. Fukuoka, N. and Yasuda, H.: Jpn. Kokai Tokkyo Koho JP 01,153,651 [89,153,651] (1989); Chem. Abstr., 112, 37420u (1990).
811. Kuliev, A. M.; Sardarova, S. A. and Agamalieva, M. M.: Prisadki Smaz. Maslam, 7, 3-5 (1981); Chem. Abstr., 97, 55410s (1982).
812. Dischendorfer, O. and Verdino, A.: Monatsh. Chem., 68, 10-20 (1936).
813. Arventiev, B.; Wexler, H.; Gabe, I.; Harnagea, F. and Badilescu, S.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 13 (1) 59-60 (1967).
814. Dillard, R. D.; Carr, F. P.; McCullough, D.; Haisch, K. D.; Rinkema, L. E. and Fleisch; J. H.: J. Med. Chem., 30 (5) 911-918 (1987).
815. Dillard, R. D.: Eur. Pat. Appl. EP 132,366 (1985); Chem. Abstr., 103, 141966b (1985).
816. Kise, M.; Yoshimoto, Y.; Fujisawa, H.; Sasaki, Y. and Yasufuku, S.: Eur. Pat. Appl. EP 331,195 (1989); Chem. Abstr., 112, 76603a (1990).
817. Itoh, H.; Konno, M.; Tokuhiro, T.; Iguchi, S. and Hayashi, M.: Brit. UK Pat. Appl. 2,026,480 (1980); Chem. Abstr., 93, 167893a (1980).
818. Finnegan, R. A. and Knutson, D.: Tetrahedron Lett., 30, 3429-3432 (1968).
819. Baeseler, M.; Seiffarth, K.; Dahlmann, J.; Hoeft, E. and Woydowski, K.: Ger. (East) DD 268,930 (1989); Chem. Abstr., 112, 76607e (1990).
820. Yakshin, V. V.; Mirokhin, A. M. and Ignat'ev, M. M.: Kompleksn. Ispol'z. Miner. Syr’ya, 4, 60-64 (1984); Chem. Abstr., 102, 95339d (1985).
821. Royer, R.; Demerseman, P.; Michelet, R. and Cheutin, A.: Bull. Soc. Chim. Fr., 1148-1157 (1959).
822. Strubell, W. and Baumgartel, H.: J. Prakt. Chem., 9, 213-216 (1959).
823. Orndorff, W. R. and Lacey, H. T.: J. Am. Chem. Soc., 49, 818-826 (1927).
824. Royer, R. and Bisagni, E.: Bull. Soc. Chim. Fr., 486-492 (1954).
825. Buu-Hoi, N. P.; Royer, R.; Xuong, N. D. and Thang, K. V.: Bull. Soc. Chim. Fr., 1204-1207 (1955).
826. Royer, R.; Demerseman, P. and Cheutin, A.: Bull. Soc. Chim. Fr., 275-277 (1960).
827. Lacey, H. T.: Ph. D. Thesis, Cornell University Library (1926).
828. John, H. and Beetz, P.: J. Prakt. Chem., 143, 342-346 (1935).
829. Durmis, J.; Karvas, M.; Caucik, P. and Holcik, J.: Eur. Polym. J., 11 (3) 219-222 (1975).
830. Pickett, J. E. and Moore, J. R.: Angew. Makromol. Chem., 232, 229-238 (1995); Chem. Abstr., 124, 57753f (1996).
831. Mathur, A. K.; Mathur, K. B. L. and Seshadri, T. R.: Indian J. Chem., Sect. B, 15B (1) 54-57 (1977);
832. Mathur, A. K.: Curr. Sci., 47 (23) 889-890 (1978).
833. Obrecht, D.: Helv. Chim. Acta., 74 (1) 27-46 (1991).
834. Power, M. B.; Bott, S. G.; Bishop, E. J.; Tierce, K. D.; Atwood, J. L. and Barron, A. R.: J. Chem. Soc., Dalton Trans., 2, 241-247 (1991).
835. Hoeschele, G. K. and Verbanc, J. J.: U.S. 3,008,995 (1961); Chem. Abstr., 57, 736f (1962).
836. Hoeschele, G. K. and Verbanc, J. J.: U.S. 3,113,880 (1963); Chem. Abstr., 60, 6995g (1964).
837. Asahi-Dow Ltd.: Jpn. Kokai Tokkyo Koho JP 57,105,452 [82,105,452] (1982); Chem. Abstr., 98, 5082m (1983).
838. Antus, S.; Schindlbeck, E.; Ahmad, S.; Seligmann, O.; Chari, V. M. and Wagner, H.: Tetrahedron, 38 (1) 133-137 (1982).
839. Avar, Lajos and Hofer, Kurt: Ger. Offen. 2,146,075 (1972); Chem. Abstr., 76, 153345k (1972).
840. Koike, Denzo: Gunma Daigaku Kyoyobu Kiyo, 2, 13-28 (1968); Chem. Abstr., 70, 57356v (1969).
841. Itazaki, H.; Hayashi, K.; Matsuura, M.; Yonetani, Y. and Nakamura, M.: Chem. Pharm. Bull., 36 (9) 3404-3432 (1988).
842. Itazaki, H.; Hayashi, K.; Matsuura, M.; Yonetani, Y. and Nakamura, M.: Eur. Pat. Appl. EP 182,302 (1986); Chem. Abstr., 105, 97483g (1986).
843. Sharma, P. K. and Khanna, R. N.: Monatsh. Chem., 116, 353-356 (1985).
844. Havens, C. B. and Clark, G. A.: U.S.P. 2,964,554.
845. Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 27 (10) 531-534 (1950).
846. Mullaji, B. Z. and Shah,, R. C.: Proc. Indian Acad. Sci., 34A, 88-96 (1951).
847. Ishizuka Glass Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 57,165,466 [82,165,466]; Chem. Abstr., 98, 181234w (1983).
848. Kanzaki Paper Mfg. Co.: Jpn. Kokai Tokkyo Koho JP 58,224,787 [83,224,787] (1983); Chem. Abstr., 101,46392m (1984).
849. Lappin, G. L. and Tamblyn, J. W.: USP 2,861,053 (1958); Chem. Abstr., 53, 4818i (1959).
850. Balazs, E.; Toth, A.; Bogsch, E.; Stefko, B. Gebhardt, I. and Mathe, D.: Hung. Teljes HU 26,079 (1983); Chem. Abstr., 100, 47089j (1984).
851. Balazs, E.; Toth, A.; Bogsch, E.; Stefko, B.; Gebhardt, I. and Mathe, D.: Pat. Specif. (Aust.) AU 514, 160 (1981), Chem. Abstr., 96, 195119h (1982).
852. Il'in, S. N.; Biryukov, V. P.; Levin, P. I. and Zimin, Yu. B.: U.S.S.R. 307,085 (1971); Chem. Abstr., 76, 4510h (1972).
853. Shlyapintokh, V. Ya.: Pure Appl. Chem., 55 (10) 1661-1668 (1983); Chem. Abstr., 100, 122112s (1984).
854. Parrish, J. R.: J. S. Afr. Chem. Inst., 23 (3) 129-135 (1970); Chem. Abstr., 74, 42077p (1971).
855. Finnegan, R. A. and Knutson, D.: Chem. Ind. (London), 1837-1838 (1965).
856. Kreilick, R. W.: J. Am. Chem. Soc., 88, 5284-5288 (1966).
857. Portnykh, N. V.; Volodd'kin, A. A. and Ershov, V. V.: Izv. Akad. Nauk SSSR, Ser. Khim., 12, 2243-2244 (1966).
858. Suda, H.; Kanoh, S.; Hasegawa, H. and Motoi, M.: Kanazawa Daigaku Kogakubu Kiyo, 15 (1) 71-74 (1982); Chem. Abstr., 97, 197910d (1982).
859. Cook, C. D. and Gilmour, N. D.: J. Org. Chem., 25, 1429-1431 (1960).
860. Sergovskaya, N. L.; Kornienko, N. I.; Shekhter, O. V. and Tsizin, Yu. S.: Zh. Org. Khim., 18 (10) 2167-2170 (1982).
861. Nishinaga, A., Shimizu, T. and Matsuura, T.: Tetrahedron Lett., 22 (52) 5293-5296 (1981).
862. Nishinaga, A.; Shimizu, T.; Toyoda, Y.; Matsuuda, T. and Hirotsu, K.: J. Org. Chem., 47 (12) 2278-2285 (1982).
863. Coffield, T. H.; Filbey, A. H.; Ecke, G. G. and Kolka, A. J.: J. Am. Chem. Soc., 79, 50195023 (1957).
864. Mather, J.: Brit. 1,060,855 (1967); Chem. Abstr., 67, 99858d (1967).
865. Hechenbleikner, I.: Ger. Offen., 2,061,019 (1971); Chem. Abstr., 76, 4503h (1972).
866. Knapp, Laszlo.; Wein, Tibor; L. Tarjanyi, Eva; Varfalvi, Ferenc; Ivadi, Laszlo and Ersek, Laszlo: Hung. Teljes HU 39,708 (1986); Chem. Abstr., 107, 39400h (1987).
867. Haga, T.; Fukutani, H.; Nagasawa, H. and Nishimura, A.: Japan Kokai 74 01,545 (1974); Chem. Abstr., 81, 3596g (1974).
868. Ishigami, M.; Arimoto, K. and Hamada, M.: Japan 74 48,315 (1974); Chem. Abstr., 82, 155806j (1975).
869. Armitage, J. B.; Dessauer, R. and Hyson, A. M.: U.S. 3,098,842 (1963); Chem. Abstr., 59, 10309f (1963).
870. Allen, N. S.; Binkley, J. P.; Parsons, B. J.; Phillips, G. O. and Tennent, N. H.: Dyes Pigm., 4 (1) 11-24 (1983); Chem. Abstr., 98, 73805z (1983).
871. Grzywa, E. and Zdrojek, T.: Pol. PL 114,150 (1982); Chem. Abstr., 98, 144821q (1983).
872. Hokko Chemical Industry Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 57,175,109 [82,175,109] (1982); Chem. Abstr., 98, 139011w (1983).
873. Melchore, J. A.: Ind. Eng. Chem., Proc. Res. Develop., 1, 232-235 (1962); Chem. Abstr., 59, 3553g (1963).
874. Mikhailov, N. V.; Tokareva, L. G. and Popov, A. G.: Vysokomolekul. Soedin., 5 (2) 188-194 (1963); Chem. Abstr., 59, 2980c (1963).
875. Sadrmohaghegh, C.; Scott, G. and Setoudeh, E.: Eur. Polym. J., 18 (11) 1007-1010 (1982); Chem. Abstr., 98, 108235t (1983).
876. Shultz, A. R.; Young, A. L.; Alessi, S. and Stewart, M.: J. Appl. Polym. Sci., 28 (5) 1685-1700 (1983); Chem. Abstr., 98, 216421j (1983).
877. Simunkova, D. and Marcek, O.: Plaste Kautsch., 30 (1)18-20 (1983); Chem. Abstr., 98, 144348r (1983).
878. Sumitomo Chemical Co. Ltd., Jpn. Kokai Tokkyo Koho JP 57,119,941 [82,119,941] (1982); Chem. Abstr., 98, 90464e (1983).
879. Teijin Chemicals, Ltd.: Jpn. Kokai Tokkyo Koho JP 57,149,335 [82,149,335] (1982); Chem. Abstr., 98, 108960a (1983).
880. Zannucci, J. S.: U.S. US 4,355,080 (1982); Chem. Abstr., 98, 17801h (1983).
881. The Merck Index, Merck \& CO., Inc. publishers, 11th edition, (1989).
882. Brevet Polonia 105,666 (1980).
883. Olszanowski, A.; Wisniewski, M. and Szymanowski, J.: Chem. Stosow., 30 (3) 439-446 (1986); Chem. Abstr., 108, 186261n (1988).
884. Goszczynski, S.; Kopczynski, T.; Szymanowski, J.; Borowiak, A. and Blaszczak, J.: Pol. 105,987 (1980); Chem. Abstr., 93, 135805g (1980).
885. Nemes, A.; Baciu, D.; Muresian, F. O.; Glatz, A. M. and Stanescu, L.: Rom. RO 86,745 (1985); Chem. Abstr., 105, 155055g (1986).
886. Ashbrook, A. W.; Itzkovitch, I. J. and Sowa, W.: CIM Spec. Vol., 21 (2, Proc. Int. Solvent Extr. Conf., 1977), 741-749 (1979); Chem. Abstr., 92, 87593s (1980).
887. Haga, T.; Fukutani, H.; Nagasaka, H.; Nishimura, A. and Imai, Y.: Japan Kokai 74 27,497 (1974); Chem. Abstr., 81, 137030 (1974).
888. Burgess, R. H.: Brit. 1,001,062 (1965); Chem. Abstr., 63, 11801h (1965).
889. General Mills, Inc., Fr. 2,093, 173 (1972); Chem. Abstr., 77, 114047r (1972).
890. Mattison, P. L. and Swanson, R. R.: S. African 70 08,071 (1970); Chem. Abstr., 76, 153340e (1972).
891. Mattison, P. L. and Swanson, R. R.: U.S. 3,939,203 (1976); Chem. Abstr., 84, 164446k (1976).
892. Burgess, R. H.: Brit. 1,001,471 (1965); Chem. Abstr., 63, 15061d (1965).
893. Jochanan, Ramat: Israeli 39,037 (1975); Chem. Abstr., 83, 80381b (1975).
894. Tozzi, A.: Polym. Age, 5 (10) 272-274 (1974); Chem. Abstr., 83, 132481 f (1975).
895. Kubodera, S. and Morigaki, M.: Jpn. Kokai Tokkyo Koho JP 01,171,887 [89,171,887] (1989); Chem. Abstr., 112, 149106c (1990).
896. Sakai, M. and Takahashi, O.: Jpn. Kokai Tokkyo Koho JP 63,264,748 [88,264,748] (1988); Chem. Abstr., 114, 72224w (1991).
897. Saharia, G. S. and Sharma, H. R.: Sci. Cult., 45 (4) 139-144 (1979); Chem. Abstr., 92, 6202p (1980).
898. Agrawal, V. K. and Sharma, S.: Indian J. Chem., Sect. B, 23B (9) 839-843 (1984).
899. SORI, French Patent 2,321,276 (1976).
900. Majoie, B.: Ger. Offen. 2,637,098 (1977); Chem. Abstr., 86, 189537v (1977).
901. Gonda, M.; Kitsukawa, K.; Suzuka, S.; Kanasugi, M.; Sato, Y. and Otomo, K.: Eur. Pat. Appl. EP 140,050 (1985); Chem. Abstr., 103, 132484r (1985).
902. Mieville, A.: Ger. Offen. 2,605,382 (1976); Chem. Abstr., 85, 192382a (1976).
903. Bragole, R. A. and Shepard, R. A.: J. Org. Chem., 25, 1230-1232 (1960).
904. Sornay, R.; Gurrieri, J.; Tourne, C.; Renson, F. J.; Majoie, B. and Wulfert, E.: Arzneim.Forsch., 26 (5) 885-889 (1976).
905. Chu, F. and Hawker, C. J.: Polym. Bull. (Berlin), 30 (3) 265-272 (1993); Chem. Abstr., 119, 28729u (1993).
906. Hawker, C. J. and Chu, Fengkui: Macromolecules, 29 (12) 4370-4380 (1996).
907. Mindl, J. and Vecera, M.: Collect. Czech. Chem. Commun., 38 (11) 3496-3505 (1973).
908. Samreth, S.; Bellamy, F. and Millet, J.: Eur. Pat. Appl. EP 367,671(1990); Chem. Abstr., 114, 24485k (1991).
909. Fukuoka, S. and Tojo, M.: Jpn. Kokai Tokkyo Koho JP 61,221,147 [86,221,147] (1986); Chem. Abstr., 107, 84169e (1987).
910. Alberola, A. and Fernandez, M. I.: An. Quim., 65 (12) 1121-1124 (1969).
911. Suzuki, K.; Kajigaeshi, S. and Sano, M.: Yûki Gôsei Kagaku Kyôkaishi, 16, 82-87 (1958); Chem. Abstr., 52, 10019f (1958).
912. Fromantin, J. P. M. J.: Brit. UK Pat. Appl. 1,016,460 (1979); Chem. Abstr., 93, 46189s (1980).
913. Hoffmann-La Roche, F., \& Co., A.-G.: Fr. 1,531,765 (1968); Chem. Abstr., 71, 112635h (1969).
914. Hoffmann-La Roche, F., \& Co., A.-G.: Fr. 1489246 (1967); Chem. Abstr., 69, 10254z (1968).
915. Ruegg, R.; Ryser, G. and Schwieter, U.: Brit. 1,115,158 (1968); Chem. Abstr., 69, 76941c (1968).
916. Montagne, P.: Chem. Weekblad, 14, 526-529 (1917).
917. Ruenitz, P. C.; Bourne, C. S.; Sullivan, K. J. and Moore, S. A.: J. Med. Chem., 39 (24) 4853-4859 (1996).
918. Giles, D. P.; Kerry, J. C.; Kozlik, A.; Palmer, B. H.; Shutler, S. W. and Willis, R. J.: Eur. Pat. Appl. 26,040 (1981); Chem. Abstr., 95, 115059e (1981).
919. Gibson, M. S.; Vines, S. M. and Walthew, J. W.: J. Chem. Soc., Perkin Trans. 1, 2, 155-160 (1975).
920. Mitter, B. and Saharia, G. S.: Vikram, J. Vikram Univ., 2, 143-147 (1958); Chem. Abstr., 54, 12062f (1960).
921. Johnson, F. and Cricchio, R.: U.S. 3,985,783 (1976); Chem. Abstr., 85, 192377c (1976).
922. Colquhoun, H. M.: Polym. Commun., 29 (6) 154-155 (1988); Chem. Abstr., 109, 93743b (1988).
923. Barton, H.: J. Pharmacol. Pharm., 31 (2) 169-174 (1979).
924. Aggarwal, S. C. and Saharia, G. S.: J. Indian Chem. Soc., 37 (5) 295-298 (1960).
925. Zincke, T. and Siebert, K.: Ber. Dtsch. Chem. Ges., 39, 1930-1938 (1906).
926. Malik, V. P. and Saharia, G. S.: J. Sci. Ind. Res., Sect. B, 15B, 633-635 (1956).
927. Watanabe, H.; Kenji, M. and Tsuboi, A.: Jpn. Kokai Tokkyo Koho JP 03, 127,753 [91,127,753] (1991), Chem. Abstr., 115, 233090n (1991).
928. Thiele, K.; Ahmed, Q.; Jahn, U. and Adrian, R. W.: Arzneim.-Forsch. 29 (5) 711-720 (1979).
929. Gu, Caixian and Chen, Fangfang: Yiyao Gongye, 6, 5-6 (1983); Chem. Abstr., 99, 157938d (1983).
930. Rose, J. B.: Ger. Offen., 2,730,991 (1978); Chem. Abstr., 88, 104911f (1978).
931. Sundstrom, G.: J. Agric. Food Chem., 25 (1) 18-21 (1977); Chem. Abstr., 86, 38307u (1977).
932. Montagne, P. J.: Ber. Dtsch. Chem. Ges., 49, 2243-2262 (1916).
933. Cooper, D. G.; King, R. J. and Brown, T. H.: PCT Int. Appl. WO 95 11,238 (1995); Chem. Abstr., 123, 55712x (1995).
934. Cornu-Chagnon, M.-C.; Dupont, H. and Edgar, A.: Fundam. Appl. Toxicol., 26 (1) 63-74 (1995); Chem. Abstr., 123, 47328m (1995).
935. Czech, Z.: Ger. Offen. DE 19,501,025 (1996); Chem. Abstr., 125 (16) 196681q (1996).
936. De Cointet, P.; Loppinet, V.; Sornay, R.; Morinere, J. L.; Boucherle, A.; Renson, F. J.; Voegelin, H. and Dumont, C.: Chim. Ther., 8 (5) 574-587 (1973).
937. Matsumura, S. and Inada, H.: Jpn. Kokai Tokkyo Koho JP 03 41,047 [91 41,047] (1991); Chem. Abstr., 115, 8309w (1991).
938. Mieville, A.: Ger. Offen. 2,250,327 (1973); Chem. Abstr., 79, 53029d (1973).
939. Nunes, R. C.; Diaz-Calleja, R.; Pinto, M.; Saiz, E. and Riande, E.: J. Phys. Chem., 99 (34) 12962-12970 (1995).
940. Pong, S. F. and Huang, C. L.: J. Pharm. Sci., 63 (10) 1527-1532 (1974).
941. Shoji, R.; Watanabe, T.; Tashiro, S. and Shi, S.: Iyakuhin Kenkyu, 26 (6) 386-397 (1995); Chem. Abstr., 123, 296397d (1995).
942. Takahashi, A.; Inada, H. and Matsumura, S.: Jpn. Kokai Tokkyo Koho JP 03 81,245 [91 81,245] (1991); Chem. Abstr., 115, 160067y (1991).
943. Yousaf, T. I.: Ph. D. Thesis, London, UK (1983).
944. Luu Duc Cuong: Arzneim.-Forsch., 26 (5) 894-895 (1976).
945. Fukuoka, S. and Tojo, M.: Jpn. Kokai Tokkyo Koho JP 63 57,546 [88 57,546] (1988); Chem. Abstr., 109, 92474c (1988).
946. Fromantin, J. P. M. J.: U.S. Patent 4,277,497 (1981).
947. Majoie, B.: U.S. Patent 4,146,385 (1979).
948. Fukuoka, S.; Shimizu, A. and Yamataka, K.: Jpn. Kokai Tokkyo Koho JP 62,114,927 [87,114,927] (1987); Chem. Abstr., 108, 21502d (1988).
949. Bier, G. and Kricheldorf, H. R.: Ger. Offen. DE 3,211,421 (1983); Chem. Abstr., 100, 7431h (1984).
950. Bourgeois, Y.; Devaux, J.; Legras, R. and Parsons, I. W.: Polymer, 37 (14) 3171-3176 (1996); Chem. Abstr., 125 (12) 143421y (1996).
951. Cooper, D. G.; King, R. J. and Brown, T. H.: PCT Int. Appl. WO 95 11,240 (1995); Chem. Abstr., 123, 55711w (1995).
952. Hamann, P. R.; Hinman, L.; Hollander, I.; Holcomb, R.; Tsou, H. R.; Hallett, W. and Weiss, M. J.: Eur. Pat. Appl. EP 689,845 (1996); Chem. Abstr., 124, 261609t (1996).
953. Kane, M.; Dean, J. R.; Hitchen, S. M.; Tomlinson, W. R.; Tranter, R. I. and Dowle, C. J.: Analyst (Cambridge, U. K.), 118 (10) 1261-1264 (1993); Chem. Abstr., 120, 216617a (1994).
954. Schwartz, J. C.; Arrang, J. M.; Garbarg, M.; Quemener, A.; Lecomte, J. M.; Ligneau, X.; Schunack, W. G.; Stark, H.; Purand, K. and al.: PCT Int. Appl. WO 96 29,315 (1996); Chem. Abstr., 126 (2) 18872r (1997).
955. Stark, P. A.; Stewart, E. G. and Everaerts, A. I.: PCT Int. Appl. WO 97 07,161 (1997); Chem. Abstr., 126 (19) 252329r (1997).
956. Wan, I. Y.; Priddy, D. B.; Lyle, G. D. and McGrath, J. E.: Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 34 (1) 806-807 (1993); Chem. Abstr., 120, 192415e (1994).
957. Attwood, T. E.; Dawson, P. C.; Freeman, J. L.; Hoy, L. R. J.; Rose, J. B. and Staniland, P. A.: Polymer, 22 (8) 1096-1103 (1981).
958. Saharia, G. S. and Sharma, B. R.: J. Indian Chem. Soc., 33, 788-790 (1956).
959. Bowen, I. H. and Lewis, J. R.: J. Chem. Soc., Perkin Trans. 1, 5, 683-685 (1972).
960. Fabre, J. L.; James, C. and Lave, D.: Eur. Pat. Appl. EP 253,711 (1988); Chem. Abstr., 109, 128993n (1988).
961. Saharia, G. S. and Sharma, B. R.: J. Sci. Ind. Res., Sect. B, 14B, 263-267 (1955).
962. Yazaki, T.; Makino, M.; Yamamoto, T.; Tsuji, K.; Zenda, H. and Kosuge, T.: Yakugaku Zasshi, 98 (7) 914-922 (1978); Chem. Abstr., 89, 197912r (1978).
963. Picart, F.: Eur. Pat. Appl. EP 51,023 (1982); Chem. Abstr., 97, 198512n (1982).
964. Bellamy, F.; Horton, D.; Millet, J.; Picart, F.; Samreth, S. and Chazan, J. B.: J. Med. Chem., 36 (7) 898-903 (1993).
965. Kankare, J. J. and Haapakka, K. E.: Ger. Offen. DE 3,908,918 (1989); Chem. Abstr., 113, 207868m (1990).
966. Kankare, J.; Haapakka, K.; Kulmala, S.; Nanto, V.; Eskola, J. and Takalo, H.: Anal. Chim. Acta, 266 (2) 205-212 (1992).
967. Ours, C. W. and Lee, C. M.: U.S. US 4,323,691 (1982); Chem. Abstr., 97, 23475a (1982).
968. Konwar, D.; Boruah, R. C. and Sandhu, J. S.: Chem. Ind. (London), 6, 191 (1989).
969. Walker, G. N.: J. Org. Chem., 27, 1929-1930 (1962).
970. Loewe, H.; Urbanietz, J.; Duewel, D. and Kirsch, R.: Ger. Offen. 2,443,297 (1976); Chem. Abstr., 85, 78128x (1976).
971. Belokon, Yu. N.; Pritula, L. K.; Tararov, V. I.; Bakhmutov, V. I.; Struchkov, Yu. T.; Timofeeva, T. V. and Belikov, V. M.: J. Chem. Soc., Dalton Trans., 6, 1867-1872 (1990).
972. Yamaguchi, S.; Ohhira, Y.; Yamada, M.; Michitani, H. and Kawase, Y.: Bull. Chem. Soc. Jpn., 63 (3) 952-954 (1990).
973. Lamchen, M. and Wicken, A. J.: J. Chem. Soc., 2779-2782 (1959).
974. Bowen, I. H.; Gupta, P. and Lewis, J. R.: Chem. Commun., 1625-1626 (1970).
975. Bowen, I. H.: Thesis, University of Aberdeen, UK (1967).
976. Tsekhanskii, R. S. and Fedorov, Yu. A.: Uch. Zap. Chuvashsk. Gos. Ped. Inst., 14, 116-117 (1962); Chem. Abstr., 60, 15759 (1964).
977. DoAmaral, J. R.; Blanz, E. J. and French, F. A.: J. Med. Chem., 12 (1) 21-25 (1969).
978. Meussdoerffer, J. N. and Niederpruem, H.: Ger. Offen. 2,653,601 (1978); Chem. Abstr., 89, 129265 g (1978).
979. Plattner, J. J.; Fung, A. K. L.; Smital, J. R.; Lee, C. M.; Crowley, S. R.; Pernet, A. G.; Bunnell, P. R.; Buckner, S. A. and Sennello, L. T.: J. Med. Chem., 27 (12) 1587-1596 (1984).
980. Rodrigo, R.: Personal communication (05.08.1993).
981. Lothrop, W. C. and Goodwin, P. A.: J. Am. Chem. Soc., 65, 363-367 (1943).
982. Basil, B.; Coffee, E. C. J.; Gell, D. L.; Maxwell, D. R.; Sheffield, D. J. and Wooldridge, K. R. H.: J. Med. Chem., 13 (3) 403-406 (1970).
983. Zonis, L. S.; Khaletskii, A. M. and Pesin, V. G.: Zh. Obshch. Khim., 33 (1) 3141-3142 (1963).
984. Glanz, K. D.: Eur. Pat. Appl. EP 100,196 (1984); Chem. Abstr., 101, 31195a (1984).
985. Glanz, K. D.: U.S. US 4,470,057 (1984); Chem. Abstr., 102, 15251f (1985).
986. Hoffmann-La Roche, F. \& Co., A.-G.: Brit. 929,254 (1963); Chem. Abstr., 60, 2827g (1964).
987. Reyes, J.; Greco, F.; Motais, R. and Latorre, R.: J. Membr. Biol., 72 (1-2) 93-103 (1983); Chem. Abstr., 98, 175236g (1983).
988. Zaitseva, N. P.; Koval, E. K.; Kobel'chuk, Yu. M.; Zherebtsova, L. P. and Moshchinskaya, N. K.: Vopr. Khim. Khim. Tekhnol., 72, 37-39 (1983); Chem. Abstr., 102, 24231b (1985).
989. Joshi, U. K.; Kelkar, R. M. and Paradkar, M. V.: Indian J. Chem., 23B (5) 456-457 (1984).
990. Royer, R. and Demerseman, P.: Bull. Soc. Chim. Fr., 1682-1686 (1959).
991. Martin, R.; Gros, N.; Böhmer, V. and Kämmerer, H.: Monatsh. Chem., 110, 1057-1066 (1979).
992. Bhavsar, M. D. and Saraiya, P. N.: Man-Made Text. India, 29 (5) 224-230 (1986); Chem. Abstr., 107, 77603j (1987).
993. Bhavsar, M. D. and Surendranath, V.: Man-Made Text. India, 28 (11) 425, 427-429, 431 (1985); Chem. Abstr., 106, 49685y (1987).
994. Bencze, W. L.: US 3,007, 935 (1961); Chem. Abstr., 56, 4681e (1962).
995. Breipohl, G.; Knolle, J. and Stueber, W.: Ger. Offen. DE 3,711,866 (1988); Chem. Abstr., 110, 154897z (1989).
996. Breipohl, G.; Knolle, J. and Stueber, W.: Tetrahedron Lett., 28 (46) 5651-5654 (1987).
997. Fukuoka, N. and Suzuki, M.: Jpn. Kokai Tokkyo Koho JP 01 71,835 [89 71,835] (1989); Chem. Abstr., 111,173764r (1989).
998. Kometani, T. and Shiotani, S.: J. Med. Chem., 21 (11) 1105-1110 (1978).
999. Stueber, W.; Knolle, J. and Breipohl, G.: Int. J. Pept. Protein Res., 34 (3) 215-221 (1989); Chem. Abstr., 112, 199053d (1990).
1000. Adam, W. and Schulz, M. H.: Chem. Ber., 125, 2455-2461 (1992).
1001. Ruenitz, P. C.: PCT Int. Appl. WO 92 04,310 (1992); Chem. Abstr., 117, 7654j (1992).
1002. Katzenellenbogen, J. A.; Tatee, T. and Robertson, D. W.: J. Labelled Compd. Radiopharm., 18 (6) 865-879 (1981).
1003. Maguer, P.: Bull. Soc. Chim. Fr., 199-204 (1987).
1004. Aslam, M. and Aguilar, D. A.: U.S. US 5,130,448 (1992); Chem. Abstr., 118, 38609y (1993).
1005. Buu-Hoi, N. P.; Jacquignon, P. and Périn, F.: Bull. Soc. Chim. Fr., 1622-1624 (1962).
1006. Farooqui, M Y. H. and Metcalf, R. L.: Pestic. Biochem. Physiol., 19 (2) 210-220 (1983); Chem. Abstr., 98, 193319r (1983).
1007. Horace A. De Wald: U.S. 3,272,841 (1966); Chem. Abstr., 66, 2349h (1967).
1008. Horace A. De Wald: U.S. 3,288,806 (1966); Chem. Abstr., 66, 37765s (1967).
1009. Parke, Davis \& Co.: Fr. 1,464,253 (1966); Chem. Abstr., 67, 64241v (1967).
1010. Lin, Chun-Nan; Liou, Shorong Shii; Ko, Feng Nien; Teng, Che Ming: J. Pharm. Sci., 82(1) 11-16 (1993).
1011. Lin, Chun-Nan; Won, Shen-Jeu; Lieu, Hsiao-Sheng and Liou, Shorong-Shii: U.S. US 5,741,813 (1998); Chem. Abstr., 128, 317250 (1998).
1012. Varadi, G.; Toth, G. K. and Penke, B.: Int. J. Pept. Protein Res., 43 (1) 29-30 (1994); Chem. Abstr., 120, 164889u (1994).
1013. Rink, H.: Tetrahedron Lett., 28 (33) 3787-3790 (1987).
1014. Sawada, S.; Yasui, K. and Takahashi, S.: Biosci. Biotechnol. Biochem., 56 (9) 1506-1507 (1992).
1015. Broadhurst, M. J.; Hassall, C. H. and Thomas, G. J.: J. Chem. Soc., Perkin Trans. 1, 22, 2502-2512 (1977).
1016. Prashad, M.; Seth, M.; Bhaduri, A. P. and Srimal, R. C.: Indian J. Chem., Sect. B, 17B (5) 496-498 (1979).
1017. Rink, H.: Eur. Pat. Appl. EP 285,562 (1988); Chem. Abstr., 111, 97721 g (1989).
1018. Brossi, A. and Teitel, S.: Tetrahedron Lett., 6, 417-419 (1970).
1019. Bernauer, K.; Borgulya, J.; Bruderer, H.; Da Prada, M. and Zürcher, G.: Pat. Specif. (Aust.) AU 603,788 (1990); Chem. Abstr., 115, 49134d (1991).
1020. Yardley, J. P. and Fletcher, H., 3rd, Synthesis, 4, 244 (1976).
1021. Kataoka, M.; Ando, T. and Nakagawa, M.: Bull. Chem. Soc. Jpn., 44 (1) 177-184 (1971).
1022. Shah, R. C.; Deshpande, R. K. and Chaubal, J. S.: J. Chem. Soc., 642-650 (1932).
1023. D.R.P. 295,495
1024. Tadros, W. and Latif, A.: J. Chem. Soc., 3337-3340 (1949).
1025. Diaz-Mondejar, M. R. and Miranda, M. A.: Tetrahedron, 38 (10) 1523-1526 (1982).
1026. Fuson, R. C. and Hornberger, C., Jr., J. Org. Chem., 16, 637-642 (1951).
1027. Hayashi, T.; Okina, G.; Ryu, K. and Ryu, S.: Jpn. Kokai Tokkyo Koho JP 07 82, 263 [95 82,263] (1995); Chem. Abstr., 123, 285780x (1996).
1028. Grenier, G. and Pacheco, H.: Chim. Ther., 7, 408-414 (1966).
1029. Gapinski, D. M.: Eur. Pat. Appl. EP 242,989 (1987); Chem. Abstr., 109, 54488c (1988).
1030. Sato, T.: Jpn. Kokai Tokkyo Koho JP 02 43,540 [90 43,540] (1990); Chem. Abstr., 114, 217938u (1991).
1031. Shutske, G. M.; Setescak, L. L.; Allen, R. C.; Davis, L.; Effland, R. C.; Ranbom, K.; Kitzen, J. M.; Wilker, J. C. and Novick, W. J., Jr.: J. Med. Chem., 25 (1) 36-44 (1982).
1032. Shutske, G. M.; Setescak, L. L. and Allen, R. C.: Eur. Pat. Appl. EP 45,078 (1982); Chem. Abstr., 96, 217825q (1982).
1033. Kaplan, J. P.: Fr. Demande FR 2,548, 183 (1985); Chem. Abstr., 103, 123154 f (1985).
1034. Srivastava, A. K. and Bahel, S. C.: J. Indian Chem. Soc., 53 (8) 841-845 (1976).
1035. Morand, O. H.; Aebi, J. D.; Dehmlow, H.; Ji, Yu-Hua; Gains, N.; Lengsfeld, H. and Himber, J.: J. Lipid Res., 38 (2) 373-390 (1997); Chem. Abstr., 126 (22) 287791n (1997).
1036. Comarmond, J.; Purcell, T. and Zard, L.: Fr. Demande FR 2,575,469 (1986); Chem. Abstr., 107, 134303n (1987).
1037. Desbois, M.: Eur. Pat. Appl. EP 84,742 (1983); Chem. Abstr., 100, 6085m (1984).
1038. Joshi, K. C. and Bahel, S. C.: J. Indian Chem. Soc., 37 (11) 687-689 (1960).
1039. Berthier, C.; Allaigre, J. P. and Desbois, J.: Fr. Demande FR 2,553,763 (1985); Chem. Abstr., 103, 141480p (1985).
1040. Bagolini, C. A.; Pacifici, L. and Quaresima, E. T.: Eur. Pat. Appl. EP 323,416 (1989); Chem. Abstr., 112, 20792u (1990).
1041. Allen, J. and Giffard, D.: J. Labelled Compd. Radiopharm., 19 (2) 301-307 (1982).
1042. Kaplan, J. P.; Raizon, B. M.; Desarmenien, M.; Feltz, P.; Headley, P. M.; Worms, P.; Lloyd, K. G. and Bartholini, G.: J. Med. Chem., 23 (6) 702-704 (1980).
1043. Burke, J. T.; Durand, A.; Ferrandes, B. and Morselli, P. L.: Biopharm. Pharmacokinet., Eur. Congr., 2nd, 2, 493-500 (1984); Chem. Abstr., 102, 197455 f (1985).
1044. Davis, B.: J. Labelled Compd. Radiopharm., 24 (10) 1221-1227 (1987); Chem. Abstr., 109, 54439n (1988).
1045. Farraj, N. F.; Davis, S. S.; Parr, G. D. and Stevens, H. N. E.: Int. J. Pharm., 43 (1-2) 93-100 (1988); Chem. Abstr., 108, 192701x (1988).
1046. Farraj, N. F.; Davis, S. S.; Parr, G. D. and Stevens, H. N. E.: Int. J. Pharm., 46 (3) 231-239 (1988); Chem. Abstr., 112, 221862 d (1988).
1047. Farraj, N. F.; Davis, S. S.; Parr, G. D. and Stevens, H. N. E.: Pharm. Res., 4 (1) 28-32 (1987).
1048. Farraj, N. F.; Davis, S. S.; Parr, G. D. and Stevens, H. N. E.: Pharm. Res., 5 (4) 226-231 (1988).
1049. Ferrandes, B.; Durand, A.; Fraisse-Andre, J. and Morselli, P. L.: Metab. Antiepileptic Drugs, [Proc. Workshop], 183-190 (1982) (Pub. 1984); Chem. Abstr., 101, 103519j (1984).
1050. Gillet, G.; Fraisse-Andre, J.; Lee, C. R.; Dring, L. G. and Morselli, P. L.: J. Chromatogr., 230 (1) 154-161 (1982).
1051. Kaplan, J. P.: Ger. Offen. 2,914,801 (1979); Chem. Abstr., 92, 146448y (1980).
1052. Mompon, B.; Loyaux, D.; Kauffmann, E. and Krstulovic, Ante L.: J. Chromatogr., 363 (2) 372-391 (1986).
1053. Morselli, P. L.; Burke, J. T.; Ferrandes, B.; Padovani, P.; Bianchetti, G.; Gomeni, R.; Thenot, J. P. and Thiercelin, J. P.: Metab. Antiepileptic Drugs, [Proc. Workshop], 191-197 (1982) (Pub. 1984); Chem. Abstr., 101, 143454r (1984).
1054. Padovani, P.; Thenot, J. P.; Warrington, S.; Hermann, P.; Fraisse-Andre, F.; Thiercelin, J. F.; Larribaud, J. and Morselli, P. L.: Adv. Epileptol., 15th, 169-175 (1984); Chem. Abstr., 102, 72314c (1985).
1055. Yuan, Mu; Zhong, Yuguo; Pang, Qijie and Li, Zhenghua: Huaxi Yike Daxue Xuebao, 21 (3) 310-314 (1990); Chem. Abstr., 114, 206687k (1991).
1056. Padovani, P.; Deves, C.; Bianchetti, G.; Thenot, J. P. and Morselli, P. L.: J. Chromatogr., 308, 229-239 (1984).
1057. Tadkod, R. S.; Sattur, P. B.; Kulkarni, S. N. and Nargund, K. S.: J. Karnatak Univ., 3 (1) 29-32 (1957); Chem. Abstr., 53, 8062 f (1959).
1058. Kamiya, T. and Teraji, T.: U.S. US 4,350,692 (1982); Chem. Abstr., 98, 71808d (1983).
1059. Sakai, J.; Ikeda, K. and Ishida, Y.: Iyakuhin Kenkyu, 15 (6) 1078-1090 (1984); Chem. Abstr., 102, 119508m (1985).
1060. Selwood, D. L.; Livingston, D. J.; Comley, J. C. W.; O’Dowd, A. B.; Hudson, A. T.; Kackson, P.; Jandu, K. S.; Rose, V. S. and Stables, J. N.: J. Med. Chem., 33 (1) 136-142 (1990).
1061. Olin, J.: U.S. 3,736,343 (1973); Chem. Abstr., 79, 42219q (1973).
1062. Kaplan, J. P. and Raizon, B.: Fr. Demande FR 2,475,543 (1981); Chem. Abstr., 96, 6370z (1982).
1063. Comarmond, J.; Purcell, T. and Zard, L.: Eur. Pat. Appl. EP 239,461 (1987); Chem. Abstr., 108, 150318x (1988).
1064. Kaplan, J. P.: Ger. Offen. DE 3,414,050 (1984); Chem. Abstr., 102, 113038m (1985).
1065. Kaplan, J. P. and Raizon, B.: Fr. Demande FR 2,501,201 (1982); Chem. Abstr., 98, 71653z (1983).
1066. Buu-Hoi, N. P.; Xuong, N. D.; Binon, F. and Nam, N. H.: C. R. Acad. Sci., 235, 329-331 (1952).
1067. Watanabe, Y.; Yoshiwara, H. and Kanao, M.: J. Heterocycl. Chem., 30 (2) 445-451 (1993).
1068. Van Daele, G.: Eur. Pat. Appl. EP 68,544 (1983); Chem. Abstr., 99, 22493j (1983).
1069. Van Daele, G.: Eur. Pat. Appl. EP 76,530 (1983); Chem. Abstr., 99, 194812d (1983).
1070. Egyed, J.; Furka, A. and Szell, T.: Acta Phys. Chem. Szeged, 11, 51-54 (1965).
1071. Mironov, G. S.; Oustinov, V. A. and Farberov, M. I.: Zh. Org. Khim., 8 (7) 1509-1515 (1972).
1072. Curtz, J.; Rudolph, C. H. G.; Schroeder, L.; Albert, G.; Rehnig, A. E. E. and Sieverding, E. G.: Can. Pat. Appl. CA 2,167,550 (1996); Chem. Abstr., 126 (1) 7819c (1997).
1073. Royer, R.; Lechartier, J. P. and Demerseman, P.: Bull. Soc. Chim. Fr., 2948-2951 (1972).
1074. Kaplan, J. P.: Ger. Offen. DE 3,242,442 (1983); Chem. Abstr., 99, 104980e (1983).
1075. Kaplan, J. P.: Fr. Demande FR 2,535,319 (1984); Chem. Abstr., 101, 191151m (1984).
1076. Kaplan, J. P.: Ger. Offen. DE 3,342,999 (1984); Chem. Abstr., 101, 191323u (1984).
1077. Kaplan, J. P. and Raizon, B.: Ger. Offen. DE 3,341,198 (1984); Chem. Abstr., 101, 191321s (1984).
1078. Jolad, S. D.; Badiger, V. V. and Nargund, K. S.: J. Karnatak Univ., 5, 1-9 (1960); Chem. Abstr., 58, 3341g (1963).
1079. Newman, M. S. and Pinkus, A. G.: J. Org. Chem., 19, 996-1002 (1954).
1080. Kawai, Y.; Yamazaki, H.; Kayakiri, N.; Yoshihara, K.; Yatabe, T. and Oku, T.: PCT Int. Appl. WO 95 29,907 (1995); Chem. Abstr., 124 (15) 202000q (1996).
1081. Kaplan, J. P.: Ger. Offen. DE 3,414,051 (1984); Chem. Abstr., 102, 113052m (1985).
1082. Miyamoto, T.; Watsuka, H.; Hashimoto, S.; Itoh, H.; Mohri, T. and Hayashi, M.: Eur. Appl. EP 79,141 (1983); Chem. Abstr., 99, 121998j (1983).
1083. Ours, C. W. and Lee, C. M.: Ger. Offen. 3,038,011 (1981); Chem. Abstr., 95, 42695x (1981).
1084. Borgulya, J.; Bruderer, H.; Bernauer, K.; Zürcher, G. and Da Prada, M.: Helv. Chim. Acta, 72 (5) 952-968 (1989).
1085. Meguro, K.; Tawada, H. and Ikeda, H. PCT Int. Appl. WO 91 12,249 (1991); Chem. Abstr., 115, $279815 f$ (1991).
1086. Yamada, O.; Ishida, H.; Nitani, F.; Ito, K. and Yamamoto, H.: Japan 74 11,410 (1974); Chem. Abstr., 81, 115925v (1974).
1087. Huston, R. C. and Robinson, K. R.: J. Am. Chem. Soc., 73, 2483-2486 (1951).
1088. Bhagwat, V. K. and Shahane, R. Y.: Rasayanam, 1, 191-194 (1939); Chem. Abstr., 34, $5070{ }^{9}$ (1940).
1089. Sharghi, H. and Eshghi, H.: Bull. Chem. Soc. Jpn., 66, 135-139 (1993).
1090. Kurosu, Yasuhisa; Kanasugi, Haruki; Sakuraba, Yasuya and Imamura, Shosuke: Japan Kokai 78 59,026 (1978); Chem. Abstr., 89, 101972m (1978).
1091. Saunders, J. C. and Williamson, W. R. N.: Ger. Offen. 2,546,738 (1976); Chem. Abstr., 86, 43409h (1977).
1092. Roussel-UCLAF: Fr. Demande 2,269,330 (1975); Chem. Abstr., 85, 5378u (1976).
1093. Williamson, W. R. N. and Saunders, J. C.: Brit. 1,488,004 (1977); Chem. Abstr., 88, 120799f (1978).
1094. Itoh, Y.; Ohne, K.; Tanaka, H.; Goto, S. and Ieda, S.: PCT Int. Appl. WO 94 26,738 (1994); Chem. Abstr., 123, 143640c (1995).
1095. Waldemar, A. and Arce de Sanabia, J.: J. Org. Chem., 38 (14) 2571-2572 (1973).
1096. Tsai, S. C. and Liu, S. T.: J. Chin. Chem. Soc. (Taipei), 38 (1) 39-45 (1991).
1097. Jaunin, R.: Ger. Offen. 2,733,886 (1978); Chem. Abstr., 88, 152424w (1978).
1098. Vollenweider, J. K. and Fischer, H.: Chem. Phys., 124 (3) 333-345 (1988).
1099. Abe, Toshiyuki; Gonda, Michihiro; Otomo, Kikuo and Yoshikawa, Katsumasa: Jpn. Kokai Tokkyo Koho JP 62 59,086 (1987); Chem. Abstr., 107, 124719p (1987).
1100. Toray Industries, Inc.: Jpn. Kokai Tokkyo Koho JP 60 15,455 [85 15,455] (1985); Chem. Abstr., 102, 205262h (1985).
1101. Toray Industries, Inc.: Jpn. Kokai Tokkyo Koho JP 60 49,060 [85 49,060] (1985); Chem. Abstr., 103, 38525h (1985).
1102. Toray Industries, Inc.: Jpn. Kokai Tokkyo Koho JP 60 49,061 [85 49,061] (1985); Chem. Abstr., 103, 143216f (1985).
1103. Toray Industries, Inc.: Jpn. Kokai Tokkyo Koho JP 60 53,558 [85 53,558] (1985); Chem. Abstr., 103, 143217g (1985).
1104. Marcantonatos, M.; Marcantonatos, A. and Monnier, D.: Helv. Chim. Acta, 48 (1) 194-201 (1965).
1105. Kricheldorf, H. B.; Chen, Xiangdong and Masri, Majdi Al.: Macromolecules, 28 (7) 2112-2117 (1995).
1106. De Vos, F. and Slegers, G.: J. Labelled Compd. Radiopharm., 34 (7) 643-652 (1994).
1107. Kaplan, J. P.; Raizon, B.; Peynot, M. and Mangane, M.: Ger. Offen. DE 3,343,000 (1984); Chem. Abstr., 102, 5913j (1985).
1108. De Vos, F. and Slegers, G.: J. Chromatogr., A $692(1+2)$ 97-102 (1995).
1109. Eiglmeier, K. and Schulz, J.: Ger. Offen. DE 3,206, 129 (1982); Chem. Abstr., 98, 106978p (1983).
1110. Tadkod, R. S.; Kulkarni, S. N. and Nargund, K. S.: J. Karnatak Univ., 3, 78-80 (1958); Chem. Abstr., 54, 8717 (1960).
1111. Freeman, H. S.: PCT Int. Appl. WO 89 10,384 (1989); Chem. Abstr., 112, 160482t (1990).
1112. Freeman, H. S.; Hao, Z.; McIntosh, S. A.; Posey, J. C., Jr. and Hsu, W. N.: Dyes Pigm., 12 (3) 233-242 (1990); Chem. Abstr., 112, 141216t (1990).
1113. Freeman, H. S. and Posey, J. C., Jr.: Dyes Pigm., 20 (3) 171-195 (1992); Chem. Abstr., 118, 82822m (1993).
1114. Belled, C.; Miranda, M. A. and Simon-Fuentes, A.: An. Quim., Ser. C, 85 (1) 39-47 (1989).
1115. Belled, C.; Miranda, M. A. and Simon-Fuentes, A.: An. Quim., 86, 431-435 (1990).
1116. Hishmat, O. H.; Abd-el-Rahman, A. H. and Wahba, N. F.: Pol. J. Chem., 52 (1) 87-95 (1978).
1117. Hishmat, O. M.; Abd El Rahman, A. H.; Khalil, K. M. A. and Atta, S. M. S.: J. Indian Chem. Soc., 58 (7) 697-700 (1981).
1118. Fukuoka, S. and Matsuda, H.: Jpn. Kokai Tokkyo Koho JP 61 12,643 [86 12,643] (1986); Chem. Abstr., 105, 42483b (1986).
1119. Fukuoka, S. and Matsuda, H.: Jpn. Kokai Tokkyo Koho, JP 61 07,230 [86 07,230] (1986); Chem. Abstr., 104, 206905y (1986).
1120. Hinshaw, J. C.; Toner, J. L. and Reynolds, G. A.: Eur. Pat. Appl. EP 68,875 (1983); Chem. Abstr., 98, 218134s (1983).
1121. Chardonneus, L. and Würmli, A.: Helv. Chim. Acta, 29, 922-928 (1946).
1122. Adams, J. H.; Gupta, P.; Khan, M. S.; Lewis, J. R. and Watt, R. A.: J. Chem. Soc., Perkin Trans. 1, 19, 2089-2093 (1976).
1123. Adams, J. H.; Brown, P.M.; Gupta, P.; Khan, M. S. and Lewis, J. R.: Tetrahedron, 37 (1) 209-217 (1981).
1124. Aboulezz, A. F. and Quelet, R.: J. Chem. U.A.R., 5 (2) 137-146 (1962); Chem. Abstr., 63, 1411h (1965).
1125. Agarwal, S. K. and Murray, R. W.: Photochem. Photobiol., 35 (1) 31-35 (1982).
1126. Shriner, R. L. and Moffett, R. B.: J. Am. Chem. Soc., 63, 1694-1698 (1941).
1127. Freyberg, D. P. and Mockler, G. M. and Sinn, E.: Inorg. Chem., 18 (3) 808-815 (1979).
1128. Baba, Y. and Kodama, H.: Japan 72 38,062 (1972); Chem. Abstr., 79, 147160s (1973).
1129. Fujii, Y.; Kurokawa, T.; Ishida, S.; Yamaguchi, I. and Misato, T.: Nippon Noyaku Gakkaishi, 1 (4) 313-320 (1976); Chem. Abstr., 86, 115837w (1977).
1130. Martens, J. and Praefcke, K.: Chem. Ber., 107, 2319-2325 (1974).
1131. Böhmer, V.; Lüderwald, I. and Martin, R.: Fresenius' Z. Anal. Chem., 297 (5) 365-369 (1979).
1132. Tomita, M.; Nakata, M. and Nakano, J.: Japan Kokai 75 53,370 (1975); Chem. Abstr., 84, 43842c (1976).
1133. Ofenberg, H.; Pham Xuan Hoi and Arventiev, B.: An. Stiint. Univ. "Al. I. Cuza", Iasi, Sect. 1c, 20 (2) 177-181 (1974).
1134. Nuhrich, A.; Varache-Lembege, M.; Renard, P. and Devaux, G.: Eur. J. Med. Chem., 29 (1) 75-83 (1994).
1135. Sharma, I.; Salman, M.; Koley, P. L. and Ray, S.: Indian J. Chem., Sect. B, 23B (6) 567-570 (1984).
1136. Ueda, S. and Kurosawa, K.: Bull. Chem. Soc. Jpn., 50 (1) 193-196 (1977).
1137. Johnson, P. C. and Robertson, A.: J. Chem. Soc., 2381-2389 (1950).
1138. Aggarwal, S. K.; Grover, S. K. and Seshadri, T. R.: Indian J. Chem., 10 (9) 911-913 (1972).
1139. Fomenko, A. S.; Abramova, T. M.; Platonova, E. P. and Furman, E. G.: Vysokomol. Soedin., Ser. B, 11 (5) 387-390 (1969); Chem. Abstr., 71, 39618y (1969).
1140. Gupta, A. and Yavrouian, A. H.: U.S. US 4,310,650 (1982); Chem. Abstr., 96,143553a (1982).
1141. Kumar, S.; Seth, M.; Bhaduri, A. P.; Agnihotri, A. and Srivastava, A. K.: Indian J. Chem., Sect. B, 23B (2) 154-157 (1984).
1142. Mehrotra, P. K.; Prashad, M.; Seth, M.; Bhaduri, A. P. and Kamboj, V. P.: Indian J. Exp. Biol., 17 (12) 1317-1319 (1979); Chem. Abstr., 92, 104744m (1980).
1143. Newland, G. C. and Tamblyn, J. W.: U.S. 3;003,996 (1959); Chem. Abstr., 56, 4953b (1962).
1144. Osuga, S.; Washitsuka, S.; Kaida, K.; Otsuki, H. and Morioka, T.: Jpn. Kokai Tokkyo Koho JP ${ }^{\circ} 4$ 80,029 [92 80,029] (1992); Chem. Abstr., 117, 152867k (1992).
1145. Beger, J.; Neumann, R.; Vogel, T.; Luecke, L.; Kaestner, G.; Runge, H. J.; Schewe, T.; Schewe, C.; Ludwig, P. and Slapke, J.: Ger. (East) DD 297,155 (1992); Chem. Abstr., 116, 214145p (1992).
1146. Kaplan, J. P.: Eur. Pat. Appl. EP 125975 (1984); Chem. Abstr., 102, 95399y (1985).
1147. Kamogawa, H.; Takayanagi, Y. and Nanasawa, M.: J. Polym. Sci., Polym. Chem. Ed., 19 (11) 2947-2953 (1981).
1148. Miranda Alonso, M. A; Diaz Mondejar, M. R. and Corma Canos, A.: Span. ES 508,568 (1982); Chem. Abstr., 99, 38199d (1983).
1149. Kaplan, J. P.: Fr. Demande FR 2,535,318 (1984); Chem. Abstr., 102, 5705t (1985).
1150. Rây, J. N.; Silooja, S. S. and Wadha, P. R.: J. Indian Chem. Soc., 10, 617-620 (1933).
1151. Fuson, R. C.; Scott, S. L. and Speck, S. B.: J. Am. Chem. Soc., 63, 2845-2846 (1941).
1152. Perrot, C. and Cerutti, E.: Bull. Soc. Chim. Fr., 2591-2595 (1974).
1153. Kämmerer, H.; Büsing, G. and Haub, H. G.: Makromol. Chem., 66, 82-90 (1963).
1154. Kämmerer, H.; Gros, G. and Schweikert, H.: Makromol. Chem., 143, 135-152 (1971).
1155. Izawa, T.; Fujii, Y. and Asaka, Y.: Nippon Noyaku Gakkaishi, 6 (2) 223-226 (1981); Chem. Abstr., 95, 145173e (1981).
1156. Harper, S. D. and Arduengo, A. J.: J. Am. Chem. Soc., 104 (9) 2497-2501 (1982).
1157. Preston, P. N.; Winwick, T. and Morley, J. O.: J. Chem. Soc., Chem. Commun., 2, 89-90 (1983).
1158. Preston, P. N.; Winwick, T. and Morley, J. O.: J. Chem. Soc., Perkin Trans. 1, 7, 1439-1441 (1983).
1159. Glahn, W. H. and Stanley, U.S. Pat. 2,789,140 (1957); Chem. Abstr., 51, 13927d (1957).
1160. Mahfouz, N. M. A.; Hambloch, H.; Omar, N. M. and Frahm, A. W.: Arch. Pharm. (Weinheim, Ger.), 323 (3) 163-169 (1990).
1161. Quillinan, A. J. and Scheinmann, F.: J. Chem. Soc., Perkin Trans. 1, 11, 1382-1387 (1972).
1162. Appel, H.; Baker, W.; Hagenbach, H. and Robinson, R.: J. Chem. Soc., 738-744 (1937).
1163. Donnelly, D. M. X.; Thompson, J. C.; Whalley, W. B. and Ahmad, S.: J. Chem. Soc., Perkin Trans., 16, 1737-1745 (1973).
1164. Lemoine, J.; Amgar, A. and Rasquin, B.: Fr. Demande FR 2,540, 103 (1984); Chem. Abstr., 102, 45603q (1985).
1165. Schwenk, U.; Eiglmeier, K. and Pfueller, P.: Ger. Offen. 2,518,631 (1976); Chem. Abstr., 86, 72209y (1977).
1166. Bachelet, J. P.; Cavier, R.; Lemoine, J.; Rigothier, M. C.; Gayral, P. and Royer, R.: Eur. J. Med. Chem., 14 (4) 321-324 (1979).
1167. Lewis, J. R. and Paul, J. G.: J. Chem. Soc., Perkin Trans. 1, 3, 770-775 (1981).
1168. Ollis, W. D.; Redman, B. T.; Roberts, R. J.; Sutherland, I. O.; Gottlieb, O. R. and Magalhaes, M. T.: Phytochemistry, 17, 1383-1388 (1978).
1169. Perkin Jr., W. H. and Weizmann, C.: Chem. Zentralbl., 1, 406-408 (1907).
1170. Perkin Jr., W. H. and Weizmann, C.: J. Chem. Soc., 89, 1649-1665 (1906).
1171. Coll, G.; Costa, A.; Deya, P. M. and Saa, J. M.: Tetrahedron Lett., 32 (2) 263-266 (1991).
1172. Philbin, E. M.; Swirski, J. and Wheeler, T. S.: J. Chem. Soc., 4455-4458 (1956).
1173. Donnelly, D. M. X.; Criodain, T. O. and O'Sullivan, M.: Proc. R. Ir. Acad., Sect. B, 83B (1-16) 39-48 (1983); Chem. Abstr., 100, 20402u (1984).
1174. Donnelly, B. J.; Donnelly, D. M. X. and O'Sullivan, A. M.: Tetrahedron, 24 (5) 2617-2622 (1968).
1175. Garofano, T. and Werber, G.: Ann. Chim. (Rome), 50, 245-276 (1960).
1176. Mauthner, F.: J. Prakt. Chem., 87, 403-409 (1913).
1177. Pettit, G. H.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R.; Hamel, E. and Pettit, R. K.: J. Med. Chem., 41 (10) 1688-1695 (1998).
1178. Jung, M. E.; Lam, P. Yuk-Sun; Mansuri, M. M. and Speltz, L. M.: J. Org. Chem., 50, 1087-1105 (1985).
1179. Sundholm, E. G.: Tetrahedron, 34 (5) 577-586 (1978).
1180. Martin, R. and Demerseman, P.: Monatsh. Chem., 121, 227-236 (1990).
1181. Franck, B.; Stöckigt, J.; Zeidler, U. and Gerhard, F.: Chem. Ber., 106 (4) 1198-1220 (1973).
1182. Rhodes, A.; Boothryod, B.; Gonagle, M. P. and Somerfield, G. A.: Biochem. J., 81 (1) 28-37 (1961).
1183. Sargent, M. V.: J. Chem. Soc., Chem. Commun., 6, 285 (1980).
1184. Sargent, M. V.: J. Chem. Soc., Perkin Trans. 1, 2, 403-411 (1982).
1185. Stout, G. H.; Christensen, E. N.; Balkenhol, W. J. and Stevens, K. L.: Tetrahedron, 25 (7) 1961-1973 (1969).
1186. Stout, G. H. and Balkenhol, W. J.: Tetrahedron, 25 (7) 1947-1960 (1969).
1187. Cotterill, P. J. and Scheinmann, F.: J. Chem. Soc., Perkin Trans. 1, 2353-2357 (1980).
1188. Quillinan, A. J.: Ph. D. thesis, University of Salford, UK (1971).
1189. Taub, D.; Kuo, C. H.; Slates, H. L. and Wendler, N. L.: Tetrahedron, 19 (1) 1-17 (1963).
1190. Taub, D.; Kuo, C. H. and Wendler, N. L.: Chem. Ind. (London), 557-558 (1962).
1191. Taub, D.; Kuo, C. H. and Wendler, N. L.: J. Org. Chem., 28, 2752-2755 (1963).
1192. Kuo, C. H.; Hoffsommer, R. D.; Slates, H. L.; Taub, D. and Wendler, N. L.: Chem. Ind. (London), 1627-1628 (1960).
1193. Jurd, L. and Wong, R. Y.: Aust. J. Chem., 34 (8) 1633-1644 (1981).
1194. Oshima, T.; Nakajima, Y. and Nagai, T.: Chem. Lett., 11, 1977-1980 (1993).
1195. Dalvi, V. J. and Jadhav, G. V.: J. Indian Chem. Soc., 33 (11) 807-811 (1956).
1196. Dalvi, V. J. and Jadhav, G. V.: J. Univ. Bombay, 25A, Pt.3, 19-22 (1957); Chem. Abstr., 52, 1967g (1968).
1197. Hishmat, O. H. and Abd el Rahman, A. H.: Justus Liebigs Ann. Chem., 733, 120-124 (1970).
1198. Seshadri, T. R.; Subramani, P. E. and Varadarajan, S.: J. Sci. Ind. Res., Sect. B, 11B, 56-62 (1952).
1199. Habicht, E. and Zbinden, P.: Eur. Pat. Appl. EP 107,623 (1984); Chem. Abstr., 101, 72715p (1984).
1200. Habicht, E. and Zbinden, P.: U.S. US 4,517,184 (1985); Chem. Abstr., 103, 87860x (1985).
1201. Gaur, V. B.; Shah, V. H. and Parikh, A. R.: Indian J. Heterocycl. Chem., 1 (3) 141-146 (1991).
1202. Kalaiya, S. B. and Parikh, A. R.: J. Indian Chem. Soc., 64 (3) 172-175 (1987).
1203. Setalvad, J. I. and Shah, N. M.: J. Indian Chem. Soc., 31, 600-604 (1954).
1204. Setalvad, J. I. and Shah, N. M.: J. Indian Chem. Soc., 32, 529-532 (1955).
1205. Habicht, E. and Zbinden, P.: Eur. Pat. Appl. EP 64,027 (1982); Chem. Abstr., 98, 179352q (1983).
1206. Balz, G. and Schiemann, G.: Ber. Dtsch. Chem. Ges., 60, 1186-1190 (1927).
1207. Amin, G. C.; Chaughuley, A. S. U. and Jadhav, G. V.: J. Indian Chem. Soc., 36 (9) 617-621 (1959).
1208. Naik, R. M.; Thakor, V. M. and Shah, R. C.: Proc. Indian Acad. Sci., 37A, 765-773 (1953).
1209. Amin, G. C.; Chaughuley, A. S. U. and Jadhav, G. V.: J. Indian Chem. Soc., 36 (9) 617-621 (1959).
1210. Bernauer, K.; Borgulya, J.; Bruderer, H.; Da Prada, M. and Zürcher, G.: Eur. Pat. Appl. 1,034,690 (1987).
1211. Bernauer, K.; Borgulya, J.; Bruderer, H.; Da Prada, M. and Zürcher, G.: Swiss Pat. Appl. CH 980/86 (1986).
1212. Rajamohan, K. and Rao, N. V. S.: Indian J. Chem., 11 (10) 1076-1077 (1973).
1213. Ahluwalia, V. K.; Gupta, R.; Grover, M.; Mukherjee, I. and Khanduri, C. H.: Indian J. Chem., Sect. B, 27B (12) 1138-1139 (1988).
1214. Ahluwalia, V. K.; Mann, R. R. and Singh, S. B.: J. Indian Chem. Soc., 65 (11) 768-770 (1988).
1215. Mitsubishi Chemical Industries Co., Ltd., Neth. Appl. 74 01,240 (1975); Chem. Abstr., 85, 20855r (1976).
1216. Munakata, H. and Imaki, N.: Ger. Offen. 2,338,823 (1974); Chem. Abstr., 80, 145793x (1974).
1217. Robertson, A.; Waters, R. B. and Jones, E. T.: J. Chem. Soc., 1681-1688 (1932).
1218. Temchin, Yu. I.; Burmistrov, E. F.; Medvadev, A. I.; Egidis, F. M. and Rozantsev, E. G.: Sint. Issled. Eff. Khim. Polim. Mater., Mater. Vses. Nauchno-Tekh. Konf., 4th, 81-86 (1972) (Pub. 1974); Chem. Abstr., 82, 140955h (1975).
1219. Takuwa, A.; Iwamoto, H.; Soga, O. and Maruyama, K.: J. Chem. Soc., Perkin Trans. 1, 9, 1627-1631 (1986).
1220. Findlay, G. H. and Nel, S. J.: Brit. J. Dermatol., Suppl., 7, 44-49 (1971); Chem. Abstr., 76, 121420q (1972).
1221. Gregson, M.: Ph. D Thesis, University of Sheffield, UK (1965).
1222. Ollis, W. D.: Experientia, 22, 777-783 (1966).
1223. Ollis, W. D.: Recent Advances in Phytochemistry (edited by J. T. Mabry), Vol. I, pp. 329-374, North Holland Publication, Amsterdam, 1968.
1224. Seshadri, T. R.: Phytochemistry, 11, 881-898 (1972).
1225. Khera, U. and Chibber, S. S.: Indian J. Chem., Sect. B, 16B (1) 78-79 (1978).
1226. Muangnoicharoen, N. and Frahm, A. W.: Phytochemistry, 21 (3) 767-772 (1982).
1227. Barnes, H. C.; Ollis, W. D.; Sutherland, I. O.; Gottlieb, O. R. and Taveira Magalhaes, M.: Tetrahedron, 21, 2707-2715 (1965).
1228. Bargellini, G. and Martegiani, E.: Atti. R. Accad. Naz. Lincei, 20, 118-124 (1911).
1229. Messner, J.: Pharm. Zentralhalle Dtschl., 67, 696-699 (1926).
1230. Hesse, O.: Ber. Dtsch. Chem. Ges., 26, 2790-2795 (1893).
1231. Messner, J.: Pharm. Zentralhalle Dtschl., 67, 625-627 (1926).
1232. Gottlieb, O. R. and Mors, W. B.: J. Am. Chem. Soc., 80, 2263-2265 (1958).
1233. Mauthner, N.: Mat. naturw. Anz. ungar. Akad. Wiss., 50, 484-486 (1933); Chem. Abstr., 28, 3392^{9} (1934).
1234. Singh, J. M. and Turner, A. B.: J. Chem. Soc., Perkin Trans. 1, 22, 2556-2559 (1974).
1235. Croft, T. S.: Phosphorous Sulfur, 2 (1-2-3) 129-132 (1976).
1236. Thakor, V. M. and Shah, N. M.: J. Indian Chem. Soc., 23, 423-424 (1946).
1237. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 25A, 341-344 (1947).
1238. Setalvad, J. I.; Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 29 (12) 915-920 (1952).
1239. Rosenmund, K. W.; Buchwald, R. and Deligiannis, T.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 271, 342-352 (1933).
1240. Gottlieb, O. R.; Fineberg, M.; Guimaraes, I. S. de S.; Magalhaes, M. T.; Ollis, W. D. and Eyton, W. B.: An. Acad. Brasil. Cienc., 36 (1) 33-34 (1964); Chem. Abstr., 62, 5491h (1965).
1241. Locksley, H. D.; Quillinan, A. J. and Scheinmann, F.: J. Chem. Soc. (C), 3804-3814 (1971).
1242. Oxford, A. W. and Ellis, F.: Eur. Pat. Appl. EP 28,063 (1981); Chem. Abstr., 96, 34874k (1982).
1243. Oxford, A. W. and Ellis, F.: Brit. UK Pat. Appl. GB 2,058,785 (1981); Chem. Abstr., 96, 51977p (1982).
1244. Durmis, J.; Balogh, A.; Caucik, P. and Karvas, M.: Brit. 1,396,240 (1975); Chem. Abstr., 83, 165164h (1975).
1245. Durmis, J.; Caucik, P.; Balogh, A.; Karvas, M. and Holcik, J.: Czech. 157,337 (1975); Chem. Abstr., 83, 96742f (1975).
1246. Durmis, J.; Karvas, M.; Balogh, A. and Caucik, P.: Ger. Offen. 2,350,180 (1975); Chem. Abstr., 83, 58438d (1975).
1247. Bruce, J. M. and Lloyd-Williams, P.: J. Chem. Soc., Perkin Trans. 1, 21, 2877-2884 (1992).
1248. Delle Monache, G.; Gonzalez, J. G.; Delle Monache, F. and Marini Bettolo, G. B.: Phytochemistry, 19, 2025-2028 (1980).
1249. Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Nicklaus, M. C.; Milne, G. W. A.; Proksa, B. and Pommier, Y.: J. Med. Chem., 40 (6) 942-951 (1997).
1250. Singh, P.; Pardasani, R. T.; Prashant, A.; Pokharna, C. P. and Chaudhary, B.: J. Indian Chem. Soc., 71 (6-8) 409-414 (1994).
1251. Singh, P.; Pardasani, R. T.; Prashant, A.; Pokharna, C. P. and Chaudhary, B.: Pharmazie, 48 (9) 699-700 (1993).
1252. Ciba-Geigy A.-G., Jpn. Tokkyo Koho 80, 12,586 (1980); Chem. Abstr., 93, 195471e (1980).
1253. Klarmann, E. and Wowern, J. V.: J. Am. Chem. Soc., 51, 605-610 (1929).
1254. Ravi, P.; Vathani, P. and Reddy, G. C.: Indian J. Heterocycl. Chem., 3 (3) 209-210 (1994).
1255. Kraus, G. A. and Liu, P.: Tetrahedron Lett., 35 (42) 7723-7726 (1994).
1256. Orito, I.: Science Repts. Tohoku Imp. Univ., 1st Ser., 18, 121-128 (1929); Chem. Abstr., 24, 98 (1930).
1257. Minagawa, M. and Kubota, N.: Japan Kokai 74 78,692 (1974); Chem. Abstr., 83, 60596x (1975).
1258. Percec, V.; Bae, J. Y.; Zhao, M. and Hill, D. H.: Macromolecules, 28 (20) 6726-6734 (1995).
1259. Toth, E.; Torley, J.; Fekete, G.; Szporny, L.; Vereczkey, L.; Palosi, E.; Klebovich, I.; Vittay, P.; Gorog, S. and Hajdu, I.: Eur. Pat. Appl. EP 112,587 (1984); Chem. Abstr., 102, 5915m (1985).
1260. Abdulla, Khalid A.; Abdul-Rahman, Azhar L.; Al-Hamdany, Ra’Ad and Al-Saigh, Zeki Y.: J. Prakt. Chem., 324 (3) 498-504 (1982).
1261. Yamashita, M.: Science Repts. Tohoku Imp. Univ. 1st Ser., 18, 129-133 (1929); Chem. Abstr., 24, 98 (1930).
1262. Yamashita, M.: Bull. Chem. Soc. Jpn., 3, 180-182 (1928).
1263. Limaye, D. B. and Talwalkar, S. S.: Rasayanam, 1, 141-146 (1938); Chem. Abstr., 33, 1698^{3} (1939).
1264. Hoefnagel, A. J. and van Bekkum, H.: Appl. Catal., 102 (1) N16 (1993); Chem. Abstr., 119, 273835y (1993).
1265. Limaye, D. B. and Shenolikar, G. S.: Rasayanam, 1, 93-100 (1937); Chem. Abstr., 32, 2096^{6} (1938).
1266. Abe, Yoshio; Tanaka, Naoki and Ookawa, Katsuaki: Jpn. Kokai Tokkyo Koho JP 05,311,151 [93, 311,151] (1993); Chem. Abstr., 120, 165988n (1994).
1267. Hiller, Gary Lynn: Ger. Offen. 2,212,302 (1972); Chem. Abstr., 78, 91034p (1973).
1268. Kobayashi, Hajime; Yano, Yasuhiro and Endo, Ichiro: Ger. Offen., 2,702,919 (1977); Chem. Abstr., 89, 34144c (1978).
1269. Rao, E. V. S. Bhushana; Kumari, S. Subhadra and Rao, K. S. R. Krishna Mohan: Indian J. Chem., Sect. B, 26B (7) 620-623 (1987).
1270. Kim, Hakwon: J. Korean Chem. Soc., 40 (8) 549-556 (1996); Chem. Abstr., 125, 275477f (1996).
1271. Bailey, D.; Tirrell, D.; Pinazzi, C. and Vogl, O.: Macromolecules, 11 (2) 312-320 (1978).
1272. Tirrell, D. and Vogl, O.: Makromol. Chem., 181, 2097-2109 (1980).
1273. Tirrell, D. A.: ACS Symp. Ser. 1981, 151(Photodegradation Photostab. Coat.), 43-49; Chem. Abstr., 95, 8090m (1981).
1274. Tirrell, D.; Bailey, D. and Vogl, O.: Polym. Drugs, [Proc. Int. Symp.] 1977 (Pub. 1978), 77-101; Chem. Abstr., 91, 145926v (1979).
1275. Houben, J. and Fischer, W.: J. Prakt. Chem., 123, 89-109 (1929).
1276. Avar, Lajos and Hess, Erwin: Ger. Offen. DE 3,320,615 (1983); Chem. Abstr., 100, 193628a (1984).
1277. Bergstroem, M.; Lu, L.; Marouez, M.; Moulder, R.; Jacobsson, G.; Oegren, M.; Eriksson, B.; Watanabe, Y. and Langstroem, B.: Scand. J. Gastroenterol., 31 (12) 1216-1222 (1996); Chem. Abstr., 126, 98810g (1997).
1278. Lotta, T.; Taskinen, J.; Backstrom, R. and Nissinen, E.: J. Comput.-Aided Mol. Des., 6 (3) 253-272 (1992); Chem. Abstr., 117, 142869y (1992).
1279. Mannisto, P. T. and Tuomainen, P.: Naunyn-Schmiedeberg's Arch. Pharmacol., 344 (4) 412-418 (1991); Chem. Abstr., 115, 270584x (1991).
1280. Smit, N. P. M.; Latter, A. J. M.; Naish-Byfield, S.; Westerhof, W.; Pavel, S. and Riley, P. A.: Biochem. Pharmacol., 48 (4) 743-752 (1994); Chem. Abstr., 121, 195222w (1994).
1281. Tornwall, M.; Tuomainen, P. and Mannisto, P. T.: Arch. Int. Pharmacodyn. Ther., 320, 5-20 (1992); Chem. Abstr., 118, 224969 r (1993).
1282. Tornwall, M. and Mannisto, P. T.: Pharmacol. Toxicol. (Copenhagen), 69 (1) 64-70 (1991); Chem. Abstr., 115, 105480c (1991).
1283. Da Prada, M.; Zuercher, G.; Kettler, R. and Colzi, A.: Adv. Behav. Biol., 39 (Basal Ganglia 3) 723-732 (1991); Chem. Abstr., 115, 198214g (1991).
1284. Maj, J.; Rogoz, Z.; Skuza, G.; Sowinska, H. and Superata, J.: J. Neural Transm.: Parkinson's Dis. Dementia Sect., 2 (2) 101-112 (1990); Chem. Abstr., 115, 126794y (1991).
1285. Tedroff, J.; Hartvig, P.; Bjurling, P.; Andersson, Y.; Antoni, G. and Laangstroem; B.: J. Neural Transm.: Gen. Sect., 85 (1) 11-17 (1991); Chem. Abstr., 115, 247522s (1991).
1286. Correa, Dirceu de B. and Gottlieb, O. R.: Phytochemistry, 14 (1) 271-272 (1975).
1287. Sandifer, R. M.; Bhattacharya, A. K. and Harris, T. M.: J. Org. Chem., 46 (11) 2260-2267 (1981).
1288. Fung, A. K. L.; Morrison, D. E. and Pernet, A. G.: U.S. 4,268,691 (1981); Chem. Abstr., 95, 97357u (1981).
1289. Harris, J. F., Jr.: U.S. US 4,447,592 (1984); Chem. Abstr., 101, 132352e (1984).
1290. Chiang, Hung-Cheh and Chien, Chung-Hsin: Hua Hsueh, 1, 7-9 (1979); Chem. Abstr., 94, 46445t (1981).
1291. Tomita, M.; Nakata, M. and Nakano, J.: Japan Kokai 75,154,259 (1975); Chem. Abstr., 85, 78001a (1976).
1292. Tomita, M.; Nakata, M. and Nakano, J.: Japan Kokai 75,151,874 (1975); Chem. Abstr., 85, 21103f (1976).
1293. Kawatsuki, N.; Fujisawa, K.; Matsuzaki, I. and Uetsuki, M.: Eur. Pat. Appl. EP 271,002 (1988); Chem. Abstr., 109, 219622g (1988).
1294. Hardy, W. B.; Forster, W. S. and Coleman, R. A.: U.S. 2,853,521 (1958); Chem. Abstr., 53, 5206b (1959).
1295. Farbenfabriken Bayer A.-G.: Neth. Appl. 6,413,419 (1965); Chem. Abstr., 63, 16557f (1965).
1296. Salman, M.; Ray, S.; Agarwal, A. K.; Durani, S.; Setty, B. S.; Kamboj, V. P. and Anand, N.: J. Med. Chem., 26 (4) 592-595 (1983).
1297. Ray, S.; Grover, P. K. and Anand, N.: Indian 129, 188 (1974); Chem. Abstr., 81, 169437f (1974).
1298. Kole, P. L. and Ray, S.: J. Labelled Compd. Radiopharm., 16 (2) 373-375 (1979); Chem. Abstr., 91, 140669d (1979).
1299. Sharma, I. and Ray, S.: Indian J. Chem., Sect. B, 24B (1) 59-61 (1985).
1300. Goni, M. A. and Hedges, J. I.: Geochim. Cosmochim. Acta, 56 (11) 4025-4043 (1992).
1301. Coppinger, G. M. and Bell, E. R.: J. Phys. Chem., 70 (11) 3479-3489 (1966).
1302. Kamas, F.; Svoboda, P.; Kralicek, J. and Kral, I.: Czech. CS 200,061 (1982); Chem. Abstr., 98, 108434g (1983).
1303. American Cyanamid Co.: Brit. 890,476 (1962); Chem. Abstr., 57, 736c (1962).
1304. Burgess, R. H.: Brit. 992,312 (1965); Chem. Abstr., 63, 5841g (1965).
1305. Craven, W. J.: U.S. 3,000,857 (1959); Chem. Abstr., 56, 1626g (1962).
1306. Geigy, J. R.; A.-G.: Belg. 652,265 (1964); Chem. Abstr., 64, 14364g (1966).
1307. Gottfried, C. and Dutzer, M. J.: J. Appl. Polymer Sci., 5, 612-619 (1961).
1308. Imperial Chemical Industries Ltd.: Neth. Appl. 6,401,477 (1964); Chem. Abstr., 64, 3781a (1966).
1309. Martinovich, R. J.: U.S. 3,445,424 (1969); Chem. Abstr., 71, 39845v (1969).
1310. Mitsubishi Rayon Co., Ltd. Japan 9624('65) (1961); Chem. Abstr., 63, 18376c (1965).
1311. "Montecatini" Societa Generale per l'Industria Mineraria e Chimica: Brit. 923,407 (1963); Chem. Abstr., 59, 5309d (1963).
1312. O'Neill, W. A.; Stimpson, J. W. and Mather, J.: Brit. 954,387 (1964); Chem. Abstr., 61, 7190c (1964).
1313. Schmitt, R. G. and Hirt, R. C.: J. Appl. Polymer Sci., 7 (5) 1565-1580 (1963).
1314. Hawkins, E. G. E.: J. Appl. Chem., 6, 131-136 (1956).
1315. Nandi, M.; Verma, S. D.; Mehrotra, J. K. and Sircar, A. K.: J. Indian Chem. Soc., 40 (4) 296-298 (1963).
1316. Matsui, K.: J. Soc. Org. Synthetic. Chem. (Japan), 9, 92-96 (1951); Chem. Abstr., 47, 815c (1953).
1317. Okazaki, K.; Kawaguchi, T. and Matsui, K.: J. Pharm. Soc. Jpn., 72, 1403-1404 (1952).
1318. Meltzer, R. I. and Stanaback, R. J.: J. Org. Chem., 26, 1977-1979 (1961).
1319. Shiba, T. and Cahnmann, H. J.: J. Org. Chem., 27, 1773-1778 (1962).
1320. Faith, H. E.; Bahler, M. E. and Florestano, H. J.: J. Am. Chem. Soc., 77, 543-547 (1955).
1321. McGarry, E. J.; Forsyth, B. A. and Wilshire, C.: Ger. Offen., 2,848,493 (1979); Chem. Abstr., 91, 157428x (1979).
1322. Moshfegh, A. A.; Badri, R.; Hojjatie, M.; Kaviani, M.; Naderi, B.; Nazmi, A. H.; Ramezanian, M.; Roozpeikar, B. and Hakimelahi, G. H.: Helv. Chim. Acta, 65 (4) 12211228 (1982).
1323. Prows, B. L. and McIlhenny, W. F.: U. S. Environ. Prot. Agency, Off. Res. Dev., [Rep.] EPA, EPA-660/3-73-006, 126 pp. (1973); Chem. Abstr., 84, 100689j (1976).
1324. Le Fèvre, R. W.: J. Chem. Soc., 3249-3252 (1928).
1325. Kamogawa, H.: Kogyo Gijutsuin Sen'i Kogyo Shikensho Kenkyu Hokoku, 86, 95-96 (1969); Chem. Abstr., 72, 3996b (1970).
1326. Omori, A.; Tomihashi, N.; Shimizu, Y. and Nakai, K.: Jpn. Kokai Tokkyo Koho JP 61 12,740 [86 12,740] (1986); Chem. Abstr., 105, 44828s (1986).
1327. Shiraishi, Shohei: Japan Kokai 75 23,219 (1975); Chem. Abstr., 83, 88707h (1975).
1328. Baeyer, A. and Drewsen, V.: Liebigs Ann. Chem., 212, 340-347 (1882).
1329. Eichhoff, H. J.; Kämmerer, H. and Weller, D.: Makromol. Chem., 132, 163-177 (1970).
1330. Kämmerer, H.; Hegemann, G.; Lotz, W.; Ritz, J.; Pachta, K. and Mueller, O.: Makromol. Chem., 180 (7) 1635-1650 (1979).
1331. Gierer, J.; Yang, E. and Reitberger, T.: Holzforschung, 50 (4) 353-359 (1996); Chem. Abstr., 125 (20) 250692j (1996).
1332. Chan, F. D.; Nguyen, Kien Loi and Wallis, A. F. A.: J. Wood Chem. Technol., 15 (3) 329-347 (1995).
1333. Wallis, A. F. A.; Chan, F. D. and Nguyen, Kien Loi: Int. Symp. Wood. Pulping Chem., 8th, 1, 549-556 (1995); Chem. Abstr., 128, 36144a (1998).
1334. Evliya, H. and Olcay, A.: Holzforschung, 28 (4) 130-135 (1974); Chem. Abstr., 82, 60215b (1975).
1335. Pearl, I. A. and Olcay, A.: Tappi, 54 (10) 1656-1658 (1971); Chem. Abstr., 76, 47541m (1972).
1336. Ioffé, I. S.: Zh. Obshch. Khim., 17 (7) 1359-1369 (1947).
1337. Voronina, N. M.; Ivakin, A. A.; Podgornaya, I. V. and Klyachina, K. N.: Otkrytiya, Izobret., Prom. Obraztsy, Tovarnye Znaki, 51 (25) 79 (1974); Chem. Abstr., 81, 105020g (1974).
1338. Voronina, N. M.; Ivakin, A. A.; Podgornaya, I. V. and Klyachina, K. N.: U.S.S.R. 435,229 (1974); Chem. Abstr., 81, 105020g (1974).
1339. Sala, T. and Sargent, M. V.: J. Chem. Soc., Perkin Trans. 1, 3, 855-869 (1981).
1340. Nogi, T.; Yasuhara, Y.; Nagai, M.; Hanada, T. and Tanaka, T.: Japan 69 08,656 (1969); Chem. Abstr., 71, 21890w (1969).
1341. Humphrey, J. S.: Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem., 9 (1) 453-460 (1968); Chem. Abstr., 71, 125332g (1969).
1342. Izuoka, A.; Miya, S. and Sugawara, T.: Tetrahedron Lett., 29 (44) 5673-5676 (1988).
1343. Sato, K.: Jpn. Kokai Tokkyo Koho JP 61 89,092 [86 89,092] (1986); Chem. Abstr., 106, 25850x (1987).
1344. Sala, T. and Sargent, M. V.: J. Chem. Soc., Chem. Commun., 23, 1043-1044 (1978)
1345. McMaster, B. J.; Scott, A. I. and Trippett, S.: J. Chem. Soc., 4628-4631 (1960).
1346. Day, A. C.; Nabney, J. and Scott, A. I.: Proc. Chem. Soc. (London), 284-285 (1960).
1347. Scott, A. I.: Proc. Chem. Soc. (London), 195 (1958).
1348. Birch, A. J.: Proc. Chem. Soc., London, 3-13 (1962).
1349. Harris, C. M.; Roberson, J. S. and Harris, T. M.: J. Am. Chem. Soc., 98 (17) 5380-5386 (1976).
1350. Rhodes, A.; Somerfield, G. A. and Gonagle, M. P.: Biochem. J., 88 (1) 349-357 (1963).
1351. Karasawa, H.; Kometani, K. and Nakamura, K.: Eur. Pat. Appl. EP 351,732 (1990); Chem. Abstr., 113, 60647c (1990).
1352. Kumaki, J.; Nakamura, S. and Yonetani, K.: Jpn. Kokai Tokkyo Koho JP 02,292,356 [90,292,356]; Chem. Abstr., 115, 51130t (1991).
1353. Kai, Yuan-Chu; Li, Ying; Yu, Pei-Lin; Cheng, Ya-Ping; Wang, Te-Sheng; Chen, I-Sin and Li, Liang-Chuan: Hua Hsueh Hsueh Pao, 36 (2) 143-148 (1978); Chem. Abstr., 89, 197115h (1978).
1354. Li, Liangquan and Gai, Yuanzhu: Huaxue Shiji, 4 (4) 226-227 (1982); Chem. Abstr., 97, 197917m (1982).
1355. Oie, M.; Kawata, S. and Yamada, T.: Eur. Pat. Appl. EP 419, 147 (1991); Chem. Abstr., 116, 13368q (1992).
1356. Toukhy, M. A. and Beauchemin, B. T., Jr., Polym. Microelectron. Proc. Int. Symp. 1989 (Pub. 1990), 363-374; Chem. Abstr., 117, 201687n (1992).
1357. Toukhy, M. A. and Jeffries, A. T.: U.S. US 5,019,478 (1991); Chem. Abstr., 116, 117237n (1992).
1358. Moussa, G. E. M.: Acta Chem. Scand., 22 (10) 3329-3330 (1968).
1359. Bohlmann, F. and Suwita, A.: Phytochemistry, 18 (12) 2046-2049 (1979).
1360. Bohlmann, F. and Zdero, C.: Phytochemistry, 19 (4) 683-684 (1980).
1361. Ko, M. and Tachiki, S.: Jpn. Kokai Tokkyo Koho JP 04,209,667 [92,209,667] (1992); Chem. Abstr., 118, 222903 r (1993).
1362. Ko, M. and Tachiki, S.: Jpn. Kokai Tokkyo Koho JP 04,209,666 [92,209,666] (1992); Chem. Abstr., 118, 104897u (1993).
1363. Urano, H.; Sugiura, H.; Kikuchi, H. and Yamazawa, Y.: Jpn. Kokai Tokkyo Koho JP 01 17,049 [89 17,049] (1989); Chem. Abstr., 111, 31356k (1989).
1364. Kamisaka, T.; Watanuki, T.; Tsukamoto, K. and Ogata, M.: Jpn. Kokai Tokkyo Koho JP 01 63,965 [89 63,965] (1989); Chem. Abstr., 111, 144071g (1989).
1365. Hay, J. V. and Harris, T. M.: J. Chem. Soc., Chem. Commun., 16, 953-955 (1972).
1366. Bennett, B. and Clough, D.: Ger. Offen., DE 3,417,782 (1984); Chem. Abstr., 102, 133487k (1985).
1367. Kane, V. V.; Kulkarni, A. B. and Shah, R. C.: J. Sci. Ind. Res., Sect. B, 18B, 28-32 (1959).
1368. Albert, B.; Eilingsfeld, H. and Neumann, P.: Eur. Pat.Appl. EP 194,526 (1986); Chem. Abstr., 106, 205256s (1987).
1369. Franck, B. and Zeidler, U.: Chem. Ber., 106 (4) 1182-1197 (1973).
1370. Szabo, V.; Borbely, S.; Farkas, E. and Tolnai, S.: Magy. Kem. Foly., 81 (5) 220-224 (1975); Chem. Abstr., 83, 79033h (1975).
1371. Saito, T.; Noguchi, H. and Shibata, S.: Proceedings of Annual Meeting of the Japanese Society of Pharmacognosy (Chiba, 1975), p. 33.
1372. Nikaido, T.; Ohmoto, T.; Noguchi, H.; Kinoshita, T.; Saitoh, H. and Sankawa, U.: Planta Med., 43 (1) 18-23 (1981).
1373. Bian, Ji; Xu, Suisu; Huang, Song and Wang, Zexing: Shenyang Yaoke Daxue Xuebao, 13 (1) 34-40 (1996); Chem. Abstr., 125 (7) 81806s (1996).
1374. Stanley, L. N.: U.S. 2;921,962 (1960); Chem. Abstr., 54, 16431c (1960).
1375. Miyazawa, S. and Enomoto, K.: Jpn. Kokai Tokkyo Koho 79 65,535 (1979); Chem. Abstr., 91, 166380c (1979).
1376. Hendrickson, J. B.; Ramsay, M. V. J. and Kelly, T. R.: J. Am. Chem. Soc., 94 (19) 68346843 (1972).
1377. Pulgarin, C.; Gunzinger, J. and Tabacchi, R.: Helv. Chim. Acta, 68 (4) 945-948 (1985).
1378. Sato, Y.; Ajiro, Y. and Oda, T.: Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 21st, 152-158 (1978); Chem. Abstr., 90, 83393n (1979).
1379. Sato, Y.; Ajiro, Y.; and Oda, T.: Symp. Pap. IUPAC Int. Symp. Chem. Nat. Prod., 11th, 1, 175-178 (1978); Chem. Abstr., 92, 144892q (1980).
1380. Sato, Y.; Machida, T. and Oda, T.: Tetrahedron Lett., 51, 4571-4574 (1975).
1381. Sato, Y. and Oda, T.: J. Chem. Soc., Chem. Commun., 3, 135-136 (1978).
1382. Sato, Y. and Oda, T.: Tetrahedron Lett., 44, 3971-3974 (1976).
1383. Broadbent, D.; Mabelis, R. P. and Spencer, H.: Phytochemistry, 14 (9) 2082-2083 (1975).
1384. Sargent, M. V. and Vogel, P.: Aust. J. Chem., 29 (4) 907-914 (1976).
1385. Sargent, M. V.; Vogel, P.; Elix, J. A. and Ferguson, B. A.: Aust. J. Chem., 29 (10) $2263-$ 2269 (1976).
1386. Djura, P. and Sargent, M. V.: J. Chem. Soc., Perkin Trans. 1, 4, 395-400 (1978).
1387. Finlay-Jones, P. F.; Sala, T. and Sargent, M. V.: J. Chem. Soc., Perkin Trans. 1, 3, 874-876 (1981).
1388. Sundholm, E. G.: Acta Chem. Scand., Ser. B, B32 (3) 177-181 (1978).
1389. Scott, A. I.; Pike, D. G.; Ryan, J. J. and Guilford, H.: Tetrahedron, 27 (14) 3051-3063 (1971).
1390. Sundholm, G.: Acta Chem. Scand., B28 (9) 1102-1103 (1974).
1391. Santesson, J. and Sundholm, G.: Arkiv. Für Kem., 30, 427-431 (1969).
1392. Santesson, J.: Acta Chem. Scand., 22, 1698-1699 (1968).
1393. Fleury, M. B.; Maurette, J. M. and Largeron, M.: Fr. Demande FR 2,714,381 (1995); Chem. Abstr., 123, 340160x (1995).
1394. Tanigaki, Teiichi: Ger. Offen. DE 3,402,831 (1984); Chem. Abstr., 101, 230145j (1984).
1395. Colquhoun, H. M.; Daniels, J. A. and Lewis, D. F.: Eur. Pat. Appl. EP 232,992 (1987); Chem. Abstr., 109, 149073c (1988).
1396. Buu-Hoi, N. P.; Royer, R. and Hubert-Habart, M.: Recl. Trav. Chim. Pays-Bas, 70 (9-10) 825-832 (1951).
1397. Ko, Seung Hye and Chae, Woo Ki: Bull. Korean Chem. Soc., 19 (5) 513-514 (1998); Chem. Abstr., 129, 95171a (1998).
1398. Fieser, L. F. and Bradsher, C. K.: J. Am. Chem. Soc., 58, 2337-2338 (1936).
1399. Martin, R.: Bull. Soc. Chim. Fr., 983-988 (1974).
1400. Martin, R.; Lafrance, J. R. and Demerseman, P.: Bull. Soc. Chim. Belg., 100 (7) 539-548 (1991).
1401. Ruminski, J. K. and Mokhtar, H. M.: Pol. J. Chem., 55, 995-1005 (1981).
1402. Siegrist, A. E.; Maeder, E. and Dünnenberger, M.: Ger. Offen. 1,093,373 (1958); Chem. Abstr., 57, 9746c (1962).
1403. Petrillo, G.; Novi, M.; Dell'Erba, C.; Tavani, C. and Berta, G.: Tetrahedron, 46 (23) 7977-7990 (1990).
1404. Qualitz, M. and Krupp, V. A.: Ger. Offen. DE 3,009,754 (1981); Chem. Abstr., 96, 208444n (1982).
1405. Qualitz, M. and Krupp, V. A.: Ger. Offen. DE 3,111,904 (1982); Chem. Abstr., 99, 46047t (1983).
1406. Dewar, M. J. S. and Hart, L. S.: Tetrahedron, 26, 1001-1008 (1970).
1407. Bruce, J. M. and Chaudhry, A.-u.-h.: J. Chem. Soc., Perkin Trans. 1, 2, 295-297 (1974).
1408. Yamamoto, J.; Yamana, H.; Haraguchi, Y. and Sasaki, H.: Nippon Kagaku Kaishi, 8, 747-750 (1996).
1409. Kath, J.; Baron, H. and Doeller, W.: Ger. Offen. 1,468,202 (1969).
1410. Niyazov, A. N.; Yurchenko, N. N. and Atlyev, K. A.: Izv. Akad. Nauk Turkm. SSR, Ser. Fiz.-Tekh., Khim. Geol. Nauk, 6, 69-75 (1981); Chem. Abstr., 96, 122354w (1982).
1411. Yurchenko, N. N.; Niyazov, A. N. and Vakhabova, K. D.: Izv. Akad. Nauk Turkm. SSR, Ser. Fiz.-Tekh., Khim. Geol. Nauk, 3, 48-54 (1987); Chem. Abstr., 108, 111914u (1988).
1412. Bhargava, S. S.; Jain, S. K. and Saharia, G. S.: Indian J. Chem., 5 (11) 543-544 (1967).
1413. Miranda, M. A. and Tormos, R.: J. Org. Chem., 58 (12) 3304-3307 (1993).
1414. Ismailov, A. G. and Salimova, B. A.: Zh. Org. Khim., 4 (1) 85-88 (1968).
1415. Schultz, A. G.; Napier, J. J. and Ravichandran, R.: J. Org. Chem., 48, 3408-3412 (1983).
1416. Matzke, M.; Mohrs, K. H.; Raddatz, S.; Fruchtmann, R.; Hatzelmann, A.; Kohlsdorfer, C.; Mueller-Peddinghau, R. and Theisen,-Popp, P.: Eur. Pat. Appl. EP 525,571 (1993); Chem. Abstr., 119, 95356h (1993).
1417. Niyazov, A. N. and Atlyev, K.: Izv. Akad. Nauk Turkm. SSR, Ser. Fiz.-Tekhn., Khim. i Geol. Nauk, 4, 38-41 (1966); Chem. Abstr., 66, 104785p (1967).
1418. Talbot, R. H. and Adams, R.: J. Am. Chem. Soc., 49, 2040-2042 (1927).
1419. Garcia, H.; Martinez-Utrilla, R.; Miranda, M. A. and Roquet-Jalmar, M. F.: J. Chem. Res., Synop., 12, 350-351 (1982).
1420. Franck, B.; Radtke, V. and Zeidler, U.: Angew. Chem., Int. Ed. Engl., 6 (11) 952-953 (1967).
1421. Rigaudy, J.; Perlat, M. C.; Simon, D. and Nguyen Kim Cuong: Bull. Soc. Chim. Fr., 493-500 (1976).
1422. Mandal, S. K. and Nag, K.: J. Chem. Soc., Dalton Trans., 11, 2429-2434 (1983).
1423. Newman, M. S. and Pinkus, A. G.: J. Org. Chem., 19, 992-995 (1954).
1424. Kar, Tanusree. and Sen Gupta, S. P.: Indian J. Phys., A, 66A (5) 645-651 (1992); Chem. Abstr., 118, 264010c (1993).
1425. Ray, Tanusree and Gupta, S. P. Sen.: Cryst. Struct. Commun., 10 (3) 1123-1128 (1981); Chem. Abstr., 95, 213415n (1981).
1426. Ge, Dalun; Liang, Xiaotian; Lu, Yuhua and Qi, Jianxin: Yaoxue Xuebao, 22 (11) 822-826 (1987); Chem. Abstr., 109, 110207z (1988).
1427. Iwagaki, M.; Kono, J. and Kaguchi, H.: Jpn. Kokai Tokkyo Koho JP 62,136,641 [87,136,641] (1987); Chem. Abstr., 108, 29489a (1988).
1428. Clark, G. A. and Havens, C. B.: U.S. 2,891,996 (1959); Chem. Abstr., 54, 432e (1960).
1429. Dischendorfer, O. and Verdino, A.: Monatsh. Chem., 66, 255-284 (1935).
1430. Miller, G. J. and Quackenbush, F. W.: J. Am. Oil Chem. Soc., 34, 404-407 (1957).
1431. Hardy, W. B.: U.S. 2,890, 193 (1959); Chem. Abstr., 54, 4044h (1960).
1432. Hardy, W. B.: U.S. 2,890,201 (1959); Chem. Abstr., 54, 4045b (1960).
1433. Mandal, S. K.; Thompson, L. K.; Newlands, M. J.; Biswas, A. K.; Adhikary, B.; Nag, K.; Gabe, E. and Lee, F. L.: Can. J. Chem., 67 (4) 662-670 (1989).
1434. Newman, M. S. and Pinkus, A. G.: J. Org. Chem., 19, 978-984 (1954).
1435. Eiden, F.; Leister, H. P. and Mayer, D.: Arzneim. Forsch./ Drug Res., 33 (1) 101-105 (1983).
1436. Rigaudy, J.; Perlat, M. C. and Nguyen Kim Cuong: Bull. Soc. Chim. Fr., 2521-2526 (1974).
1437. Rigaudy, J. and Sparfel, D.: Bull. Soc. Chim. Fr., 3441-3446 (1972).
1438. Rigaudy, J. and Paillous, N.: Bull. Soc. Chim. Fr., 585-591 (1971).
1439. Rio, G. and Scholl, M. J.: J. Chem. Soc., Chem. Commun., 12, 474 (1975).
1440. Bhatt, M. R. and Shah, N. M.: J. Indian Chem. Soc., 33 (5) 318-320 (1956).
1441. Wilharm, P.: Eur. Pat. Appl. EP 564,981 (1993); Chem. Abstr., 120, 163696s (1994).
1442. Wilharm, P.: Ger. Offen. DE 4,211,420 (1993); Chem. Abstr., 120, 134450b (1994).
1443. Hakimelahi, G. H. and Moshfegh, A. A.: Helv. Chim. Acta, 64 (2) 599-609 (1981).
1444. Bettinetti, G. F. and Gamba, A.: Gazz. Chim. Ital., 100 (12) 1144-1159 (1970).
1445. Dischendorfer, O. and Limontschew, W.: Monatsh. Chem., 80, 741-748 (1949).
1446. Lakshmi, C., Mrs; Raj, N. Giridhar; Srinivasan, K. V. S. Chandra, Mrs. and Kumar, K. Akshaya: J. Inst. Chem. (India), 60 (3) 114 (1988); Chem. Abstr., 110, 153838u (1989).
1447. Shapiro, Anna; Nathan, H. C.; Hutner, S. H.; Garofalo, Joanne; McLaughlin, Susan, Dittus; Rescigno, Diane and Bacchi, C. J.: J. Protozool., 29 (1) 85-90 (1982); Chem. Abstr., 97, 103749h (1982).
1448. Lee, W. Y.; Moon, B. G.; Park, C. H.; Bang, S. H. and Lee, J. H.: Bull. Korean Chem. Soc., 9 (5) 325-328 (1988); Chem. Abstr., 110, 153839v (1989).
1449. Weiss, R. and Chledowski, L.: Monatsh. Chem., 65, 357-366 (1935).
1450. Tayama, T.: Jpn. Kokai Tokkyo Koho JP 63 96,148 [88 96,148] (1988); Chem. Abstr., 109, 231700p (1988).
1451. Blicke, F. F. and Patelski, R. A.: J. Am. Chem. Soc., 60, 2283-2285 (1938).
1452. Darms, R. and Monnier, C. E.: Eur. Pat. Appl. EP 157,740 (1985); Chem. Abstr., 104, 225761q (1986).
1453. Martinez Nunez, F.; De Abajo, J.; Mercier, R. and Sillion, B.: Polymer, 33 (15) 3286-3291 (1992); Chem. Abstr., 117, 151431b (1992).
1454. Mikitaev, A. K.: Acta Polym., 32 (8) 453-460 (1981); Chem. Abstr., 95, 220388j (1981).
1455. Salaskin, S. N.; Kalachev, A. I.; Korshak, V. V. and Vinogradova, S. V.: Deposited Doc. 1975, VINITI 1064-1075, 23 pp.; Chem. Abstr., 87, 68688g (1977).
1456. Meador, M. A.; Abdulaziz, M. and Meador, M. A. B.: ACS Symp. Ser., 1990, 417 (Radiat. Curing Polym. Mater.), 220-237; Chem. Abstr., 113, 24612d (1990).
1457. Laskorin, B. N.; Yakshin, V. V.; Ul'yanov, V. S. and Mirokhin, A. M.: U.S.S.R. 591,452 (1978); Chem. Abstr., 89, 108668a (1978).
1458. Sugawara, K.; Sasada, K.; Miyata, S.; Mori, S.; Yonezawa, N. and Murao, A.: Jpn. Kokai Tokkyo Koho JP 03,145,438 [91,145,438] (1991); Chem. Abstr., 115, 231871 u (1991).
1459. Okawara, M.; Tani, S. and Imoto, E.: Kogyo Kagaku Zasshi, 68 (1) 223-228 (1965); Chem. Abstr., 63, 3068g (1965).
1460. Sasada, K.; Sugawara, K.; Miyata, S.; Mori, S.; Yonezawa, N. and Murao, A.: Jpn. Kokai Tokkyo Koho JP 03,141,239 [91,141,239] (1991); Chem. Abstr., 115, 256876n (1991).
1461. Thomas II, F. D.; Shamma, M. and Fernelius, W. C.: J. Am. Chem. Soc., 80, 5864-5867 (1958).
1462. Miyata, S.; Sugawara, K.; Sasada, K.; Mori, S.; Yonezawa, N. and Murao, A.: Jpn. Kokai Tokkyo Koho JP 03,141,240 [91,141,240] (1991); Chem. Abstr., 115, 233094s (1991).
1463. Yao, Run-hua; Ma, Rong-sheng; Chen, Yao-qing and Huang, Lan-sun: Yaoxue Xuebao, 19 (3) 228-231 (1984); Chem. Abstr., 103, 123103p (1985).
1464. Ishikura, S.; Kanda, K. and Mizuguchi, R.: Jpn. Kokai Tokkyo Koho JP 61 23,663 [86 23,663] (1986); Chem. Abstr., 105, 116678 t (1986).
1465. Nozaki, S.; Kanno, T. and Watanabe, H.: Jpn. Kokai Tokkyo Koho JP 01 47,590 [89 47, 590] (1989); Chem. Abstr., 111, 244475k (1989).
1466. Doebner, O. and Wolff, W.: Ber. Dtsch. Chem. Ges., 12, 661-663 (1879).
1467. Kusuda, M. and Matsuoka, Y.: Jpn. Kokai Tokkyo Koho JP 63 99,033 [88 99,033] (1988); Chem. Abstr., 109, 210704c (1988).
1468. Pakkal, R.; Thomas, II, F. D. and Fernelius, W. C.: J. Org. Chem., 25, 282-283 (1960).
1469. Misra, G. C.; Pande, L. M.; Joshi, G. C. and Misra, A. K.: Aust. J. Chem., 25, 1579-1581 (1972).
1470. Maerov, S. B.: J. Polymer Sci., part A, 3, 487-499 (1965).
1471. Dilthey, W. and Harenberg, F.: J. Prakt. Chem., 136, 49-74 (1933).
1472. Kusuda, M. and Matsuoka, Y.: Jpn. Kokai Tokkyo Koho JP 62,234,041 [87,234,041] (1987); Chem. Abstr., 109, 170034a (1988).
1473. Kusuda, M. and Matsuoka, Y.: Jpn. Kokai Tokkyo Koho JP 62,234,042 [87,234,042] (1987]; Chem. Abstr., 109, 149056z (1988).
1474. Milionis, J. P.: U.S. 3,649,695 (1972); Chem. Abstr., 76, 153346m (1972).
1475. Desai, V. B.: M.Sc. Thesis, University of Bombay, Bombay (India) (1974).
1476. Martin, R.: Handbook of Hydroxybenzophenones, Springer, the Netherlands (2000).
1477. Schönberg, A. and Mustafan A.: J. Chem. Soc., 746-748 (1946).
1478. Bonnard, Y. and Meyer-Oulif, J.: Bull. Soc. Chim. Fr., 49 (4), 1303-1309 (1931).
1479. Tasaki, T.: Acta Phytochim., 2, 49-73 (1925).
1480. Zhou, C. and Larock, R.: J. Am. Chem. Soc., 126 (8), 2302-2303 (2004).
1481. Royer, R.; Colin, G.; Demerseman, P.; Combrisson, S. and Cheutin, A.: Bull. Soc. Chim. Fr. (8), 2785-2792 (1969).
1482. Bunnett, J. F.; Connor, D. S. and O'Reilly, K. J.: J. Org. Chem., 44 (23), 4197-4199 (1979).
1483. Hill, G. and Harris, F. L.: J. Org. Chem., 42 (20), 3306-3307 (1977).
1484. Chittimalla, S. K.; Chang, T-C.; Liu, T-C.; Hsieh, H-P. and Liao, C-C.: Tetrahedron, 64 (11), 2586-2595 (2008).
1485. Chung, M-K.; Qi, G. and Stryker, J. M.: Org. Lett., 8 (7), 1491-1494 (2006).
1486. Tomioka, H.; Nakanishi, K. and Izawa, Y.: J. Chem. Soc., Perkin Trans. 1, (2), 465-470 (1991).
1487. Wagner, P. J.; Meador, M. A. and Park, B-S.: J. Am. Chem. Soc., 112 (13), 5199-5211 (1990).
1488. Wang, D. and Zhang, Z.: Org. Lett., 5 (24), 4645-4648 (2003).
1489. Sharshira, E. M.; Shimada, S.; Okamura, M.; Hasegawa, E. and Horaguchi, T.: J. Heterocycl. Chem., 33 (6), 1797-1806 (1996).
1490. Kalena, G. P.; Jadhav, S. M. and Banerji, A.: Molecules, 5 (3), 240-244 (2000).
1491. Grammaticakis, P.: Bull. Soc. Chim. Fr., (9), 865-872 (1953).
1492. Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T. and Hiroya. K.: Org. Lett., 9 (15), 2931-2934 (2007).
1493. Liu, H.; Papa, E.; Walker, J. D. and Gramatica, P.: Journal of Molecular Graphics \& Modelling, 26 (1), 135-144 (2007).
1494. Song, F.; Lu, S.; Gunnet, J.; Xu, J. Z.; Wines, P.; Proost, J.; Liang, Y.; Baumann, C.; Lenhard, J.; Murray, W. V.; Demarest, K. T. and Kuo, G-H.: J. Med. Chem., 50 (12), 2807-2817 (2007).
1495. Moorthy, J. N. and Samanta, S.: J. Org. Chem., 72 (25), 9786-9789 (2007).
1496. Montagne, P. J.: Recl. Trav. Chim., 40, 247-248 (1921).
1497. Montagne, P. J.: Recl. Trav. Chim., 41, 703-721 (1922).
1498. Farhadi, S.; Afshari, M.; Maleki, M. and Babazadeh, Z.: Tetrahedron Lett., 46 (49), 84838486 (2005).
1499. Capillon, J. and Guetté, J. P.: Tetrahedron, 35 (15), 1807-1815 (1979).
1500. Gobec, S.; Brozic, P. and Rizner, T. L.: Bioorg. Med. Chem. Lett., 15 (23), 5170-5175 (2005).
1501. Yamada, O.; Ishida, S.; Futatsuya, F.; Ito, K.; Yamamoto, H. and Munakata, K.: Agric. Biol. Chem., 38 (10), 2017-2020 (1974).
1502. Montagne, P. J.: Recl. Trav. Chim., 39, 339-349 (1920).
1503. Sharghi, H. and Tamadon, F.: Tetrahedron, 52 (43), 13623-13640 (1996).
1504. Keumi, T.; Yoshimura, K.; Shimada, A. and Kitajima, M.: Bull. Chem. Soc. Jpn., 61, 455-460 (1988).
1505. Russell, A. and Butler, G. B.: J. Am. Chem. Soc., 71 (11), 3663-3664 (1949).
1506. Dil'dina, E. V.; Bol'shakov, M. N.; Vasil'eva, I. P.; Klimova, N. V.; Rudaya, L. I.; Shamanin, V. V. and Skorokhodov, S. S.: Russian J. Org. Chem., 42 (8), 1232-1233 (2006).
1507. Goto, S. (Konica Minolta Medical \& Graphic, Inc., Japan): Jpn. Kokai Tokkyo Koho JP 2007 171,576 (2007); Chem. Abstr., 147, 128897u (2007).
1508. Leck, T. J.; Mouli, N.; Howell, J. L.; Rao, V. N. M.; Feiring, A. E.; Petrov, V. A.; Sievert, A. C.; Nappa, M. J.; et al. (E. I. Du PONT De Nemours and Company, USA): PCT Int. Appl. WO 2007126760 (2007); Chem. Abstr., 147 (25), 524572k (2007).
1509. Walker, G. N.: J. Am. Chem. Soc., 76 (15), 3999-4003 (1954).
1510. Bartolotti, P.: Gazz. Chim. Ital., 27, 280-288 (1897).
1511. Izumi, J. and Mukaiyama, T.: Chem. Lett., (9), 739-740 (1996).
1512. König, E. and Kostanecki, S.: Ber. Dtsch. Chem. Ges., 39, 4027-4031 (1906).
1513. Bruggemann, F.: J. Prakt. Chem., 53 (2), 253 (1896).
1514. Bursey, M. M. and Twine, C. E.: J. Org. Chem., 35 (6), 2012-2014 (1970).
1515. Quillinan, A. J. and Scheinmann, F.: J. Chem. Soc., Perkin Trans. 1, 1320-1337 (1973).
1516. Tasaki, T.: Acta Phytochim., 3, 278-279 (1927).
1517. Tasaki, T.: Chem. Zentralbl., 2, 1354-1356 (1925).
1518. Yamada, F. and Matsuda, S.: Kogyo Kagaku Zasshi, 63, 818-827 (1960); Chem. Abstr., 56, 5550d (1962).
1519. Kokubo, K.; Kitasaka, K. and Oshima, T.: Org. Lett., 8 (8), 1597-1600 (2006).
1520. Lavretovich, O. D.; Schneider, T.; Golovin, A. B. and Lee, J-C. (Kent State University, USA): U.S. Pat. Appl. Publ. US 2006 40,069 (2006); Chem. Abstr., 144, 243534y (2006).
1521. Tomitaka, S.; Mizukami, M.; Paladi, F. and Oguni, M.: Journal of Thermal Analysis and Calorimetry, 81 (3), 637-643 (2005).
1522. Verkerk, U.; Fujita, M.; Dzwiniel, T. L.; McDonald, R. and Stryker, J. M.: J. Am. Chem. Soc., 124 (34), 9988-9989 (2002).
1523. Potter, B. V. L.; Reed, M. J.; Woo, L. W. L.; Purohit, A.; Burbert, C.; Wood, M. P. and Sutcliffe, O. B. (Sterix Limited, UK): PCT Int. Appl. WO 2005 115,996 (2005); Chem. Abstr., 144, 36346y (2006).
1524. Enquist, P-A.; Nilsson, P. and Larhed, M.: Org. Lett., 5 (25), 4875-4878 (2003).
1525. Duplais, C.; Bures, F.; Sapountzis, I.; Korn, T. J.; Cahiez, G. and Knochel, P.: Angew. Chem. Int. Ed., 43 (22), 2968-2970 (2004).
1526. Migita, M.: Bull. Chem. Soc. Jpn., 7, 334-340 (1932).
1527. de Noronha, R. G.; Fernandes, A. C. and Romao, C. C.: Tetrahedron Lett., 50 (13), 14071410 (2009).
1528. Gauthier, S.; Sanceau, J-Y.; Mailhot, J.; Caron, B. and Cloutier, J.: Tetrahedron, 56 (5), 703-709 (2000).
1529. Larget, R.; Lockhart, B.; Pfeiffer, B.; Neudorffer, A; Fleury, M-B. and Largeron, M.: Bioorg. Med. Chem. Lett., 9 (20), 2929-2934 (1999).
1530. Sato, M. (Fuji Photo Film Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2006 40,955 (2006); Chem. Abstr., 144, 182279v (2006).
1531. Seiler, M. and Hollenberg, D. (Henkel Kommanditgesellschaft auf Aktien, Germany): PCT Int. Appl. WO 2006 29,686 (2006); Chem. Abstr., 144, 317924z (2006).
1532. Suenger, G.; Gross, W.; Hoeffkes, H.; Oberkobusch, D. and Benicke, W. (Henkel Kommanditgesellschaft auf Aktien, Germany): PCT Int. Appl. WO 2005 120,445 (2005); Chem. Abstr., 144, 74417e (2006).
1533. Urios, A.; Largeron, M.; Fleury, M-B. and Blanco, M.: Free Radical Biology \& Medicine, 40 (5), 791-800 (2006).
1534. Zhu, Q.; Wang, J. and Li, K. (Refine Chemicals Science and Technology Developing Co., Ltd., Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,081,807 (2007); Chem. Abstr., 148, 78753s (2008).
1535. Mondal, M.; Puranik, V. G. and Argade, N. P.: J. Org. Chem., 72 (6), 2068-2076 (2007).
1536. Brajeul, S.; Delpech, B. and Marazano, C.: Tetrahedron Lett., 48 (32), 5597-5600 (2007).
1537. Canter, F. W.; Curd, F. H. and Robertson, A.: J. Chem. Soc., 1255-1265 (1931).
1538. Qi, J. and Porco, J. A., Jr.: J. Am. Chem. Soc., 129 (42), 12682-12683 (2007).
1539. Frii, T.; Drab, D. M. and MacGillivray, L. R.: Org. Lett., 6 (25), 4647-4650 (2004).
1540. Khanna, R. N.; Singh, K. P. and Sharma, J.: Organic Preparations and Procedures International (OPPI) 24 (6), 687-690 (1992).
1541. Lin, C-M.; Huang, S-T.; Lee, F-W.; Kuo, H-S. and Lin, M-H.: Bioorg. Med. Chem., 14 (13), 4402-4409 (2006).
1542. Tada, M.; Takakuwa, T.; Nagai, M. and Yoshii, T.: Agricultural and Biological Chemistry, 54 (11), 3061-3063 (1990).
1543. Popova, Z. V.; Yanovskii, D. M.; Zil'bermann, E. N.; Rybakova, N. A. and Ganina, V. I.: Zhur. Priklad. Khim., 34, 874-881 (1961); Chem. Abstr., 15994a (1961).
1544. Pathak, V. P. and Khanna, R. N.: Indian J. Chem., Sect. B, 21B (3), 253-254 (1982).
1545. Locksley, H. D. and Murray, I. G.: J. Chem. Soc. C (7), 1332-1340 (1971).
1546. Quillinan, A. J. and Scheinmann, F.: J. Chem. Soc., Perkin Trans. 1, 392-397 (1970).
1547. Quillinan, A. J. and Scheinmann, F.: J. Chem. Soc., Perkin Trans. 1, 1382-1387 (1972).
1548. Lewis, J. R. and Warrington, B. H.: J. Chem. Soc., 5074-5077 (1964).
1549. Ziegler, K. and Ochs, C.: Ber. Dtsch. Chem. Ges., 55B, 2257-2277 (1922).
1550. Tambor, J.: Ber. Dtsch. Chem. Ges., 43, 1889 (1910).
1551. Bonner, T. G. and Phillips, J.: J. Chem. Soc., Sect. B: Physical Organic, 650-654 (1966).
1552. Brown, B. R. and White, M. S.: J. Chem. Soc., 3755 (1957).
1553. Brown, B. R.; Cummings, W. and Somerfield, G. A.: J. Chem. Soc., 3757-3761 (1957).
1554. Prashad, M.; Indian J. Chem., Sect. B, 19 (12), 1074-1075 (1980).
1555. Prashad, M.; Seth, M.; Bhaduri, A. P. and Srimal, R. C.: J. Indian Chem. Soc., 57 (12), 1244-1247 (1980).
1556. Raychaudhuri, S.; Seshadri, T. R. and Mukerjee, S. K.: Indian J. Chem., 10 (1), 56-58 (1972).
1557. Goethals, G.; Nadio, L. and Uzan, R.: Mol. Biomol. Spectrosc., 37 (3), 199-204 (1981).
1558. Tomioka, H.; Kimoto, K.; Murata, H. and Izawa, Y.: J. Chem. Soc., Perkin Trans. 1, (2), 471 (1991).
1559. Martin, R.: Monatsh. Chem., 112, 1155-1163 (1981).
1560. Curtze, J.: Ger. Offen. DE B 643,403 (1988); Chem. Abstr., 109, 129582c (1988).
1561. Wang, D. and Huang, L.: Riyong Huaxue Gongye, 34 (1), 34-36, 43 (2004); Chem. Abstr., 144, 232752s (2006).
1562. Pastor-Perez, L.; Barriau, E.; Berger-Nicoletti, E.; Kilbinger, A. F. M.; Perez-Prieto, J.; Frey, H. and Stiriba, S-E.: Macromolecules, 41 (4), 1189-1195 (2008).
1563. Akita, T. and Koga, N.: Polyhedron, 24 (16-17), 2321-2325 (2005).
1564. Gotoh, H. (Fujifilm Corporation, Japan): PCT Int. Appl. WO 2007 97,112 (2007); Chem. Abstr., 147, 311461m (2007).
1565. Hatanaka, Y.; Tamura, T. and Hiyoshi, T. (Toshiba Tec Corporation, Japan): Jpn. Kokai Tokkyo Koho JP 2007 223,061 (2007); Chem. Abstr., 147, 311353c (2007).
1566. Kim, B-K.; Park, S-H.; Lee, B-I.; Park, J-M. and Song, S-J. (Kolon Industries, Inc, S. Korea): PCT Int. Appl. WO 2007 119,949 (2007); Chem. Abstr., 147, 494029u (2007).
1567. Kim, B. W.; Kim, R. M.; Park, T. Y.; Kim, J. H.; Choi, K. S.; Kim, J. W.; Lee, K. B.; Byon, C. K. and Kim, M. S. (Dongjin Semichem Co., Ltd., S. Korea): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,975,575 (2007); Chem. Abstr., 147, 129016t (2007).
1568. Choudhary, M. I.; Naheed, S.; Anjum, S.; Nasim, S.; Atta-ur-Rahman and Fun, H. K.: Acta Cryst., Sect. E, E61 (11), 03584-03586 (2005).
1569. Vilar, S.; Santana, L. and Uriarte, E.: J. Med. Chem., 49 (3), 1118-1124 (2006).
1570. Yang, D-P.; Ji, H-F.; Tang, G-Y.; Ren, W. and Zhang, H-Y.: Molecules, 12 (4), 878-884 (2007).
1571. Mahajan, S. S.; Kamath, V. R. and Ghatpande, S. S.: Parasitology, 131 (4), 459-466 (2005).
1572. Porsolt, R. D.; Lenègre, A.; Avril, I.; Lancrenon, S.; Stéru, L. and Doumont, G.: Arzneim.Forsch., 37 (1), 388-394 (1987).
1573. Porsolt, R. D.; Lenègre, A.; Avril, I.; Stéru, L. and Doumont, G.: Pharmacol. Biochem. Behav., 27 (2), 253-256 (1987).
1574. Porsolt, R. D.; Lenègre, A.; Avril, I. and Doumont, G.: Psychopharmacol., 95, 291-297 (1988).
1575. Piette, F.; Siboni, S. and Favre-Berrone, M.: Rev. Geriatr., 11 (8), 375-378 (1986).
1576. Allain, H.; Denmat, J.; Bentue-Ferrer, D.; Milon, D.; Pignol, P.; Reymann, J. M.; Pape, D.; Sabouraud, O. and Van Den Driessche, J.: Fundam. Clin. Pharmacol., 2, 1-12 (1988).
1577. Heravi, M. M.; Abdolhosseini, N. and Oskooie, H. A.: Tetrahedron Lett., 46 (51), 89598963 (2005).
1578. Patil, B. R.; Bhusare, S. R.; Pawar, R. P. and Vibhute, Y. B.: ARKIVOC (Gainesville, FL, United States) (1), 104-108 (2006); Chem. Abstr., 144, 390528c (2006).
1579. Scherico Ltd.: FR 2,272,657 (1975); Chem. Abstr., 84, 135460 (1976).
1580. Schering: US 4,018,893 (1977); Chem. Abstr., 87, 84805 (1977).
1581. Cires, L.; Ofenberg, H. and Craita, C.: OPPI, 33 (4), 361-368 (2001).
1582. Arventiev, B.; Singurel, L.; Offenberg, H.; Nicolaescu, T. and Baciu, T.: Eur. Polym. J., (Suppl.), 505-509 (1969).
1583. Kaplan, J. P.; Jalfre, M. and Don Giudicelli, P. R. L. (Synthelabo S. A.): Ger. Offen. 2,634,288 (1977); Chem. Abstr., 86, 189530n (1977).
1584. Khanum, S. A.; Shashikanth, S.; Umesha, S. and Kavitha, R.: Eur. J. Med. Chem., 40 (11), 1156-1162 (2005).
1585. Yuldashev, K. Y.: J. Org. Chem. USSR, 16, 1610-1612 (1980).
1586. Gabbutt, C. D.; Heron, B. M. and Instone, A. C.: Tetrahedron, 62 (4), 737-745 (2006).
1587. Hayashi, M.: J. Prakt. Chem., 123, 289-312 (1929).
1588. Xing, D.; Guan, B.; Cai, G.; Fang, Z.; Yang, L. and Shi, Z.: Org. Lett., 8 (4), 693-696 (2006).
1589. Baltzly, R.; DuBreuil, S.; Ide, W. S. and Lorz, E.: J. Org. Chem., 14, 775-782 (1949).
1590. Chakravarti, D. and Bera, B. C.: J. Indian Chem. Soc., 21, 109-111 (1944).
1591. Tseitlin, G. M.; Tokarev, B. V. and Kulagin, V. N.: Zh. Org. Khim., 18 (5), 1075-1079 (1982).
1592. Aichaoui, H.; Poupaert, J. H.; Lesieur, D. and Henichart, J-P.: Tetrahedron, 47 (33), 6649-6654 (1991).
1593. Haviv, F.; Ratajczyk, J. D.; DeNet, R. W.; Kerdesky, F. A.; Walters, R. L.; Schmidt, S. P.; Holms, J. H.; Young, P. R. and Carter, G. W.: J. Med. Chem., 31 (9), 1719-1728 (1988).
1594. Vigroux, A.; Bergon, M. and Zedde, C.: J. Med. Chem., 38 (20), 3983-3994 (1995).
1595. Xu, D. W.; Chiaroni, A.; Fleury, M. B. and Largeron, M.: J. Org. Chem., 71 (17), 6374-6381 (2006).
1596. Smith, P. A. S. and Berry, W. L.: J. Org. Chem., 26 (1), 27-36 (1961).
1597. Learmonth, D. A.; Bonifacio, M. J. and Soares-da-Silva, P.: J. Med. Chem., 48 (25), 8070-8078 (2005).
1598. Sharghi, H.; Hosseini-sarvari, M. and Eskandari, R.: Synthesis, (12), 2047-2052 (2006).
1599. Salunkh, M. M.; Nara, S. J. and Harjani, J. R.: Tetrahedron Lett., 42, 1979 (2001).
1600. Yawer, M. A.; Hussain, I.; Reim, S.; Ahmed, Z.; Ullah, E.; Iqbal, I.; Fischer, C.; Reinke, H.; Goerls, H. and Langer, P.: Tetrahedron, 63 (51), 12562-12575 (2007).
1601. Harjani, J. R.; Nara, S. J. and Salunkhe, M. M.: Tetrahedron Lett., 42 (10), 1979-1981 (2001).
1602. Kang, W-Y.; Wang, Z-M.; Li, Z-Q; and Xu, X-J.: Helv. Chim. Acta, 88 (10), 2771-2776 (2005).
1603. Kapadia, M.; Patel, M.; Patel, G. and Joshi, J.: Journal of Coordination chemistry, 61 (5), 677-691 (2008).
1604. Matsufuji, A.; Sata, H. and Tatsuta, T. (Fujifilm Corporation, Japan): U.S. Pat. Appl. Publ. US 2008 49,173 (2008); Chem. Abstr., 148, 296063h (2008).
1605. Dias, J. D. P.; Gottlieb, O. R. and Mesquita, A. A. L.: Phytochemistry, 13 (8), 1953-1955 (1974).
1606. Mieville, A. (Laboratoires Fournier): Ger. Offen. 2,605,382 (1976); Chem. Abstr., 85, 192382a (1976).
1607. Santen Pharmaceutical Co., Ltd., Japan: PCT Int. Appl. WO 2006 11,669 (2006); Chem. Abstr., 144, 150253r (2006).
1608. Motherwell, W. B. and Vazquez, S.: Tetrahedron Lett., 41 (49), 9667-9671 (2000).
1609. Yatsuka, T. and Kizumoto, H. (Toyobo Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 2006 16,560 (2006); Chem. Abstr., 144, 129775c (2006).
1610. Tamura, N. and Toma, D. (Chisso Corp.; Chisso Petrochemical Corporation, Japan): Jpn. Kokai Tokkyo Koho JP 2006 124,871 (2006); Chem. Abstr., 144, 498340z (2006).
1611. Montagne, P. J.: Recl. Trav. Chim., 42, 487-510 (1923).
1612. Williams, D. L. and Ronzio, A. R.: J. Org. Chem., 18 (5), 489-492 (1953).
1613. Okano, M.; Amano, M. and Takagi, K.: Tetrahedron Lett., 39, 3001-3004 (1998).
1614. Treu, M. and Jordis, U.: Molecules, 7 (1), 18-25 (2002).
1615. Inamoto, K.; Katsuno, M.; Yoshino, T.; Arai, Y.; Hiroya, K. and Sakamoto, T.: Tetrahedron, 63 (12), 2695-2711 (2007).
1616. Bauer, V. J.; Duffy, B. J.; Hoffmann, D.; Kloize, S. S.; Kosely, R. W. Jr.; McFadden, A. R.; Martin, L. L.; Ong, H. H. and Geyer, H. M., III: J. Med. Chem., 19 (11), 1315-1324 (1976).
1617. Fahim, H. A.; Baddar, F. G. and Galaby, M. A.: J. Chem. Soc., 317-319 (1955).
1618. Inamoto, K.; Katsuno, M.; Yoshino, T.; Suzuki, I.; Hiroya, K. and Sakamoto, T.: Chem. Lett., 33 (8), 1026-1027 (2004).
1619. Kobayashi, K.; Kondo, S.; Hashimoto, K.; Fukamachi, S.; Morikawa, O. and Konishi, H.: Heterocycles, 71 (8), 1827-1835 (2007).
1620. Maeda, H.; Okamoto, J. and Ohmori, H.: Tetrahedron Lett., 37 (30), 5381-5384 (1996).
1621. Gan, Y.; Blank, D. H.; Ney, J. E. and Spencer, T. A.: J. Org. Chem., 71 (16), 5864-5869 (2006).
1622. Malamas, M. S.; Erdei, J. J.; Gunawan, I. S.; Nowak, P. and Harrison, B. L. (Wyeth, John, and Brother Ltd., USA): PCT Int. Appl. WO 2006 76,284 (2006); Chem. Abstr., 145, 167278w (2006).
1623. Wang, X-j.; Zhang, L.; Sun, X.; Xu, Y.; Krishnamurthy, D. and Senanayake, C. H.: Org. Lett., 7 (25), 5593-5595 (2005).
1624. Dehmlow, H.; Aebi, J. D.; Jolidon, S.; Ji, Y-H.; Mark, E. M. von der; Himber, J. and Morandi, O. H.: J. Med. Chem., 46 (15), 3354-3370 (2003).
1625. Kubo, K.; Ohyama, S-i.; Shimizu, T.; Takami, A.; Murooka, H.; Nishitoba, T.; Kato, S.; Yagi, M.; Kobayashi, Y.; linuma, N.; Isoe, T.; Nakamura, K.; Iijima, H.; Osawa, T. and Izawa, T.: Bioorg. Med. Chem., 11 (23), 5117-5133 (2003).
1626. Novak, L. and Protiva, M.: Coll. Czech. Chem. Commun., 30, 3752-3759 (1965).
1627. Rao, M. L. N.; Venkatesh, V. and Banerjee, D.: Tetrahedron, 63 (52), 12917-12926 (2007).
1628. Mora, G.; Darses, S. and Genet, J-P.: Adv. Synth. Catal., 349 (7), 1180-1184 (2007).
1629. Lee, J. I.: Bull. Korean Chem. Soc., 28 (5), 863-866 (2007); Chem. Abstr., 148, 537545s (2008).
1630. Effenberger, F.; Sohn, E. and Epple, G.: Chem. Ber., 116 (3), 1195-1208 (1983).
1631. Effenberger, F.; Franz, K. G. and Klenk, H.: Chem. Ber., 114 (3), 926-936 (1981).
1632. Wilkinson, M. C.; Saez, F. and Hon, W. L.: Synlett, (7), 1063-1066 (2006).
1633. Keumi, T.; Morita, T.; Shimada, T.; Teshima, N.; Kitajima, H. and Prakash, G. K. S.: J. Chem. Soc., Perkin Trans. 2, 847-852 (1986).
1634. Tozawa, T.; Tsuruta, O.; Kitajima, H.; Aoki, Y.; Ando, N. and Tamakawa, H. (Mitsubishi Pharma Corporation, Japan): PCT Int. Appl. WO 2006 49,232 (2006); Chem. Abstr., 144, 468151w (2006).
1635. Korn, T. J.; Schade, M. A.; Wirth, S. and Knochel, P.: Org. Lett., 8 (4), 725-728 (2006).
1636. Wang, F.; Van Gemert, B.; Stewart, K. J.; Knox, C. L.; Chopra, A. and Brown, P. M. (USA): U.S. Pat. Appl. Publ. US 2006 22,176 (2006); Chem. Abstr., 144, 302203w (2006).
1637. Shani, J.; Gazit, A.; Livshitz, T. and Biran, S.: J. Med. Chem., 28 (10), 1504-1511 (1985).
1638. Qin, C.; Chen, J.; Wu, H.; Cheng, J.; Zhang, Q.; Zuo, B.; Su, W. and Ding, J.: Tetrahedron Lett., 49 (11), 1884-1888 (2008).
1639. Auwers, K.: Ber. Dtsch. Chem. Ges., 36, 3893-3904 (1903).
1640. Mingji, D.; Liang, B.; Wang, C.; You, Z.; Xiang, J.; Dong, G.; Chen, J. and Yang, Z.: Adv. Synth. Catal., 346 (13-15), 1669-1673 (2004).
1641. Suzuki, Y.; Ota, S.; Fukuta Y.; Ueda, Y. and Sato, M.: J. Org. Chem., 73 (6), 2420-2423 (2008).
1642. Hamacher, H.: Archiv. Pharm. (Weinheim): 308, 290-301 (1975).
1643. Andrus, M. B.; Ma, Y.; Zang, Y. and Song, C.: Tetrahedron Lett., 43 (50), 9137-9140 (2002).
1644. Begunov, R. S.; Brodskii, I. I.; Orlov, V. Y.; Kobrakov, K. I.; Stankevich, G. S. and Aleksanyan, K. G.: (GOU VPO Yaroslavskii Gosudarstvennyi Universitet im P. G. Demidova, Russia): Russ. RU 2,318,799 (2008); Chem. Abstr., 148, 331430z (2008).
1645. Bratulescu, G.: Rev. Roum. Chim., 48 (3), 175-177 (2003).
1646. Kaye, I. K.; Klein, H. C. and Burlant, W. J.: J. Am. Chem. Soc., 75 (3), 745-746 (1953).
1647. Membrey, F. and Doucet, J. P.: C. R. Acad. Sci., 282 (3), 149-151 (1976).
1648. Nakata, H. and Tanaka, K.: Org. Mass Spectrom., 29 (6), 283-288 (1994).
1649. Rusanov, A. L.; Komarova, L. G.; Prigozhina, M. P.; Begunov, R. S. and Nozdracheva, O. I.: Vysokomol. Soedineniya, Seriya A i Seriya B, 60 (1), 126-130 (2008); Chem. Abstr., 148, 427303m (2008).
1650. Shapiro, M. J.: Tetrahedron, 33 (10), 1091-1094 (1977).
1651. Hertel, E. and Leszczynski, C.: Z. Phys. Chem. (B), 53, 20-32 (1943).
1652. Dillard, R. D.; Hahn, R. A.; McCullough, D.; Carr, F. P.; Rinkema, L. E.; Roman, C. R. and Fleisch, J. H.: J. Med. Chem., 34 (9), 2768-2778 (1991).
1653. Wagner, G.; Voigt, B. and Steinbrück, K.: Pharmazie, 31 (6), 354-360 (1976).
1654. Diana, G. D.; Carabateas, P. M.; Johnson, R. E.; Williams, G. L.; Pancic, F. and Collins, J. C.: J. Med. Chem., 21 (9), 889-894 (1978).
1655. Kobayashi, K.; Mannami, T.; Kawakita, M.; Tokimatsu, J. and Konishi, H.: Bull. Chem. Soc. Jpn., 67 (2), 582-585 (1994).
1656. Roberts, R. M. G. and Sadri, A. R.: Tetrahedron, 39 (1), 137-142 (1983).
1657. Fausett, B. W. and Liebeskind, L. S.: J. Org. Chem., 70 (12), 4851-4853 (2005).
1658. Tang, G.; Nikolovska-Coleska, Z.; Qiu, S.; Yang, C.-Y.; Guo, J. and Wang, S.: J. Med. Chem., 51 (4), 717-720 (2008).
1659. Atkinson, G. E.; Fischer, P. M. and Chan, W. C.: J. Org. Chem., 65 (16), 5048-5056 (2000).
1660. Eian, G. L. and Kingsbury, C. A: J. Org. Chem., 32 (6), 1864-1866 (1967).
1661. Hoornaert, G. and Slootmaekers, P. J.: Bull. Soc. Chim. Belg., 77, 295-313 (1968).
1662. Lathioor, E. C. and Leigh, W. J.: Photochem. Photobiol., 82 (1), 291-300 (2006).
1663. Suzuki, Y.; Kitagawa, H. and Mukaiyama, T.: Bull. Chem. Soc. Jpn., 66 (12), 3729-3734 (1993).
1664. Yamane, M.; Kubota, Y. and Narasaka, K.: Bull. Chem. Soc. Jpn., 78 (2), 331-340 (2005).
1665. Mil’to, V. I.; Mironov, G. S. and Kopeikin, V. V.: J. Org. Chem. USSR, 25 (11), 2139-2141 (1989).
1666. Kakino, R.; Yasumi, S.; Shimizu, I. and Yamamoto, A.: Bull. Chem. Soc. Jpn., 75 (1), 137-148 (2002).
1667. Xin, B.; Zhang, Y. and Cheng, K.: Synthesis, (13), 1970-1978 (2007).
1668. Bandgar, B. P. and Sadavarte, V. S.: Synth. Commun., 29 (15), 2587-2590 (1999).
1669. Koh, J. T-T.; McGinley, P. L. and Pan, H. (University of Delaware, USA): PCT Int. Appl. WO 2008 13,791 (2008); Chem. Abstr., 148, 191728a (2008).
1670. Boeger, M.; Duerr, D.; Gsell, L.; Hall, R. G.; Karrer, F. Kristiansen, O.; Maienfisch, P.; Pascual, A. and Rindlisbacher, A.: Pest Management Science, 57 (2), 191-202 (2001).
1671. Boots Company, EP 3913 (1979); Chem. Abstr., 92, 76116 (1980).
1672. Faghih, R.; Dwight, W.; Gentles, R.; Phelan, K.; Esbenshade, T. A.; Ireland, L.; Miller, T. R.; Kang, C-H.; Fox, G. B.; Gopalakrishnan, S. M.; Hancock, A. A. and Bennani, Y. L.: Bioorg. Med. Chem. Lett., 12 (15), 2031-2034 (2002).
1673. Migita, M.: Bull. Chem. Soc. Jpn., 7, 341-345 (1932).
1674. Tadros, W.; Sakla, A. B. and Ishak, M. S.: J. Chem. Soc., 4210-4212 (1958).
1675. Gazit, A.; Livshitz, T. and Shani, J.: Steroids, 48 (1-2), 73-84 (1986).
1676. Jones, B.: J. Chem. Soc., 1854-1862 (1936).
1677. Vatulina, G. G.; Bol'shakova, S. A.; Tuzhilkova, T. N.; Bokova, A. I.; Makhsudova, B.; Khaitbaeva, A. G. and Mukhamedzhanov, S. Z.: Pharm. Chem. J., 19 (5), 326-330 (1985).
1678. Lee, C. C. and Wanigasekera, D.: J. Org. Chem., 65, 933-949 (1987).
1679. Bhatt, M. V. and Kulkarni, S. U.: Synthesis, 249-282 (1983).
1680. Johnson, C. R. and Braun, M. P.: J. Am. Chem. Soc., 115, 11014-11015 (1993).
1681. Kumar, S.; Seth, M.; Bhaduri, A. P.; Agnihotri, A. and Srivastava, A. K.: Indian J. Chem., 23B, 154-157 (1984).
1682. Romines, K. R.; Freeman, G. A.; Schaller, L. T.; Cowan, J. R.; Gonzales, S. S.; Tidwell, J. H.; Andrews, III, C. W.; Stammers, D. K.; Hazen, R. J.; Ferris, R. G.; Short, S. A.; Chan, J. H. and Boone, L. R.: J. Med. Chem., 49 (2), 727-739 (2006).
1683. Venu, T. D.; Shashikanth, S.; Khanum, S. A.; Naveen, S.; Firdouse, A.; Sridhar, M. A. and Prasad, J. S.: Bioorg. Med. Chem., 15 (10), 3505-3514 (2007).
1684. Tadkod, R. S.; Sattur, P. B.; Kulkarni, S. N. and Nargund, K. S.: J. Karnatak Univ., 3 (1), 29-32 (1957); Chem. Abstr., 53, 8062 f (1959).
1685. Kurosu, M.; Narayanasamy, P.; Biswas, K.; Dhiman, R. and Crick, D. C.: J. Med. Chem., 50 (17), 3973-3975 (2007).
1686. Faith, H. E.; Bahler, M. E. and Florestano, H. J.: J. Am. Chem. Soc., 77, 543-547 (1955).
1687. Taylor, H. M.; Jones, C. D.; Davenport, J. D.; Hirsch, K. S.; Kress, T. J. and Weaver, D.: J. Med. Chem., 30 (8), 1359-1365 (1987).
1688. Buu-Hoi, N. P.; Xuong, D. and Lavit, D.: J. Chem. Soc., 1034-1038 (1954).
1689. Katritzky, A. R.; Le, K. N. B. and Mohapatra, P. P.: Synthesis, (20), 3141-3146 (2007).
1690. Gholizadeh, M.: Int. J. Appl. Chem., 3 (2), 139-144 (2007).
1691. Prabhakar, B. T.; Khanum, S. A.; Jayashree, K.; Salimath, B. P. and Shashikanth, S.: Bioorg. Med. Chem., 14, 435-446 (2006).
1692. Sharghi, H. and Kaboudin, B.: J. Chem. Res. Synop. 628 (Miniprint) (10), 2678-2695 (1998).
1693. Honda, T. et al. (Daiichi Sankyo Company Limited, Japan): PCT Int. Appl. WO 2008 16,132 (2008); Chem. Abstr., 148 (11), 239450h (2008).
1694. Dan, Y.; Cai, X., Zhao, H.; Ren, X.; Chen, S.; Liu, H.; Wang, Z. and Pu, X. (Sichuan University; Yunnan Yuntianhua Co., Ltd., Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,618,872 (2005); Chem. Abstr., 144, 129814q (2006).
1695. Wang, Y-Q.; Yu, C-B.; Wang, D-W.; Wang, X-B. and Zhou, Y-G.: Org. Lett., 10 (10), 2071-2074 (2008).
1696. De Vos, F. and Slegers, G.: J. Labelled Compd. Radiopharm., 34 (7), 643-652 (1994).
1697. Joshi, K. C. and Bahel, S. C.: J. Indian Chem. Soc., 40 (1), 85-86 (1963).
1698. Sun, Y-f.; Gong, G-1.; Sheng, X-b. and Zhao, D-f.: Dalian Ligong Daxue Xuebao, 46 (6), 792-796 (2006); Chem. Abstr., 148, 123674e (2008).
1699. Steffan, R. J.; Matelan, E.; Bowen, S. M.; Ullrich, J. W.; Wrobel, J. E.; Zamaratski, E., Kruger, L.; Hedemyr, A. L. O.; Cheng, A.; Hansson, T.; Unwalla, R. J.; Miller, C. P. and Rhonnstad, P. P. (Wyeth, John, and Brother Ltd., USA): US Pat. Appl. Publ. US 2006 30,612 (2006); Chem. Abstr., 144, 212770t (2006).
1700. Adrian, G. P. and Bigot, P. A. R.: Fr. Demande FR 2,907,118 (2008); Chem. Abstr., 148, 471774q (2008).
1701. Manikumar, G.; Jin, C. and Rehder, R. S.: Synth. Commun., 38 (5), 810-815 (2008).
1702. Jorga, K.; Fotteler, B.; Heizmann, P. and Gasser, R.: Br. J. Clin. Pharmacol., 48 (4), 513520 (1999).
1703. Bernauer, K.; Borgulya, J.; Bruderer, H.; DaPrada, M. and Zürcher, G.: EP 237,929 (1987).
1704. Bernauer, K.; Borgulya, J.; Bruderer, H.; DaPrada, M. and Zürcher, G.: US Patent 5,236,952 (1993).
1705. Katritzky, A. R.; Singh, S. K.; Akhmedova, R.; Cai, C. and Bobrov, S.: ARKIVOC (VI), 6 (1997).
1706. Kakinuma, Y.; Tsuchiya, Y.; Oi, T.; Yamamoto, D.; Io, F. and Kumeta, S. (Taisho Pharmaceutical Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2008 31, 161 (2008); Chem. Abstr., 148, 239451j (2008).
1707. Fischer, R.; Lehr, S.; Feucht, D.; Franken, E-M.; Loesel, P.; Malsam, O.; Antons, S.; Ebenbeck, W.; Pleschke, A.; Schneider, M; Wischnat, R.; Arnold, C.; Auler, T.; Dittgen, J.; Hempel, W.; Hills, M. J.; Kehne, H.; Rosinger, C. H. and Sanwald, E. (Bayer Cropscience AG, Germany): Ger. Offen. DE 102,006,050,148 (2008); Chem. Abstr., 148, 517533r (2008).
1708. Fischer, R.; Lehr, S.; Feucht, D.; Malsam, O.; Arnold, C.; Hills, M. J.; Kehne, H. and Rosinger, C. H. (Bayer Cropscience AG, Germany): Ger. Offen. DE 102,006,025,874 (2007); Chem. Abstr., 148, 33615g (2008).
1709. Bruhin, J. (F. Hoffmann-La Roche A.-G., Switz.): Eur. Pat. Appl. EP 855, 379 (1988); Chem. Abstr., 129, 135979d (1998).
1710. Bachelet, J-P.; Demerseman, P. and Royer, R.: Bull. Soc. Chim. Fr., (7-8), 2631-2637 (1974).
1711. Dodean, R. A.; Kelly, J. X.; Peyton, D.; Gard, G. L.; Riscoe, M. K. and Winter, R. W.: Bioorg. Med. Chem., 16 (3), 1174-1183 (2008).
1712. Learmonth, D. A.; Vieira-Coelho, M. A.; Benes, J.; Alves, P. C.; Borges, N. Freitas, A. P. and Soares-da-Silva, P.: J. Med. Chem., 45 (3), 685-695 (2002).
1713. Largeron, M.; Neudorferr, A. and Fleury, M-B.: Tetrahedron Lett., 39 (28), 5035-5038 (1998).
1714. Largeron, M.; Neudorferr, A. and Fleury, M-B.: J. Chem. Soc., Perkin Trans. 2, (12), 2721-2728 (1998).
1715. Largeron, M. and Fleury, M-B.: J. Org. Chem., 65 (26), 8874-8881 (2000).
1716. Blattes, E.; Lockhart, B.; Lestage, P.; Schwendimann, L.; Gressens, P.; Fleury, M-B. and Largeron, M.: J. Med. Chem., 48 (4), 1282-1286 (2005).
1717. Largeron, M.; Neudorferr, A. and Fleury, M-B.: Angew. Chem., Int. Ed., 42 (9), 1026-1029 (2003).
1718. Largeron, M.; Neudorferr, A.; Vuilhorgne, M.; Blattes, E. and Fleury, M-B.: Angew. Chem., Int. Ed., 41 (5), 824-827 (2002).
1719. Xu, D.; Chiaroni, A. and Largeron, M.: Org. Lett., 7 (23), 5273-5276 (2005).
1720. Jakupovic, J.; Zdero, C.; Grenz, M.; Tsichritzis, F.; Lehmann, L.; Hashemi-Nejad, S. M. and Bohlmann, F.: Phytochemistry, 28 (4), 1119-1131 (1989).
1721. Derenberg, M. and Hodge, P.: Tetrahedron Lett., 41, 3825 (1971).
1722. Royer, R.; Lechartier, J-P. and Demerseman, P.: Bull. Soc. Chim. Fr. (7), 2948-2951 (1972).
1723. Al-Hendy, A. and Salama, S. A.: Journal of the Society for Gynecologic Investigation, 13 (2), 136-144 (2006).
1724. Storch, A.; Blessing, H.; Bareiss, M.; Jankowski, S.; Ling, Z. D.; Carvey, P. and Schwarz, J.: Mol. Pharmacol., 57 (3), 589-594 (2000).
1725. Borgulya, J.; Bruderer, H.; Bernauer, K.; Zurcher, G. and Da Prada, M.: Helv. Chim. Acta, 72 (5), 952-968 (1989).
1726. Ding, Y-S.; Gatley, S. J.; Fowler, J. S.; Chen, R.; Volkow, N. D.; Logan, J.; Shea, C. E.; Sugano, Y. and Koomen, J.: Life Sciences, 58 (3), 195-208 (1996).
1727. Ding, Y-S.; Sugano, Y.; Koomen, J. and Aggarwal, D.: J. Labelled compd. Radiopharm., 39 (4), 303-318 (1997).
1728. Largeron, M.; Chiaroni, A. and Fleury, M-B.: Chem. Eur. J., 14 (3), 996-1003 (2008).
1729. Assal, F.; Spahr, L.; Hadengue, A.; Rubbici-Brandt, L. and Burkhard, P. R.: Lancet, 352, 958 (1998).
1730. Karoum, F. (USA): PCT Int. Appl. WO 2006 37,061 (2006); Chem. Abstr., 144, 343621t (2006).
1731. Learmonth, D. A.; Palma, P. N.; Vieira-Coelho, M. A. and Soares-da-Silva, P.: J. Med. Chem., 47 (25), 6207-6217 (2004).
1732. Lee, J-Y. and Kim, Y.: Bull. Korean Chem. Soc., 26 (11), 1695-1700 (2005); Chem. Abstr., 144, 120933v (2006).
1733. McCreary, A. C.; Van Scharrenburg, G. J. M. and Tulp, M. T. M. (Neth.): U.S. Pat. Appl. Publ. US 2007 293,505 (2007); Chem. Abstr., 148, 62035y (2008).
1734. Vaya, N.; Karan, R. S.; Sadanand, S. and Gupta, V. K. (India): U.S. Pat. Appl. Publ. US 24,365 (2006); Chem. Abstr., 144, 198849s (2006).
1735. Xiang, J-N.; Gallop, M. A.; Zhou, C. X.; Nguyen, M. Q.; Dai, X.; Li, J. and Cundy, K. C. (Xenoport, Inc., USA): PCT Int. Appl. WO 2005 121,070 (2005); Chem. Abstr., 144, 51895v (2006).
1736. Khan, R. H. and Bahel, S. C.: Agric. Biol. Chem., 40 (9), 1881-1883 (1976).
1737. Consonno, F.: Gazz. Chim. Ital., 34 (IV), 374-387 (1904).
1738. Zhang, X. (Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuoming-shu CN 1,966,244 (2007); Chem. Abstr., 147, 53753h (2007).
1739. Kazin, V. N.; Sibrikov, S. G.; Kopeikin, V. V. and Mironov, G. S.: Zh. Org. Khim., 27 (2), 380-382 (1991).
1740. Sibrikov, S. G.; Kazin, V. N. and Kopeikin, V. V.: Zh. Org. Khim., 30 (7), 1080 (1994).
1741. Kazin, V. N.; Savinsky, N. G.; Sibrikov, S. G.; Savozhnikova, N. G. and Yablonskyi, O. P.: Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i KhimicheskayaTekhnologiya, 47 (6), 28-32 (2004); Chem. Abstr., 144, 253765p (2006).
1742. Quelet, R.; Allard, J.; Ducasse, J. and Germain, Y.: Bull. Soc. Chim. Fr., [5] 4,1092-1101 (1937).
1743. Wu, X.; Xiong, S. and Liang, X. (Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,099,490 (2008); Chem. Abstr., 148, 161603p (2008).
1744. Cann, M. R.; Davis, A-M. and Shannon, P. V. R.: J. Chem. Soc., Perkin Trans. 1, (7), 1413-1421 (1984).
1745. Sun, Y.; Li, Y.; Zhao, L. and Xiao, L.: Hecheng Huaxue, 3, 127 (1995).
1746. Delle Monache, F.; Delle Monache, G. and Gacs-Baitz, E.: Phytochemistry, 30 (6), 20032005 (1991).
1747. Bulawa, C. and Fleming, J. (Foldrx Pharmaceuticals, Inc., USA): PCT Int. Appl. WO 2008 58,269 (2008); Chem. Abstr., 148, 554111x (2008).
1748. Zhang, Y-B.; Zhang, P-Y.; Dai, G-F. and Liu, H-M.: Synth. Commun., 37 (19), 3319-3328 (2007).
1749. Chaturvedula, V. S. P.; Schilling, J. K. and Kingston, D. G. I.: J. Nat. Prod., 65, 965-972 (2002).
1750. Chen, Z. X.: Fine Chem., 20, 179-181 (2003).
1751. Zhang, Y-B.; Xu, X. J. and Liu, H. M.: J. Asian Nat. Prod. Res., 8, 119-123 (2006).
1752. Seo, E-K.; Wall, M. E.; Wani, M. C.; Navarro, H.; Mukherjee, R.; Farnsworth, N. R. and Kinghorn, A. D.: Phytochemistry, 52 (4), 669-674 (1999).
1753. Monache, F. D.; Monache, G. D.; Bettolo, G. B. M; Lyra, D. A. and Lwande, W.: Gazz. Chim. Ital., 114 (1/2), 55-60 (1984).
1754. Mottram, L. F.; Boonyarattanakalin, S.; Kovel, R. E. and Peterson, B. R.: Org. Lett., 8 (4), 581-584 (2006).
1755. Chen, C-A.; Yeh, R-H. and Lawrence, D. S.: J. Am. Chem. Soc., 124 (15), 3840-3841 (2002).
1756. Ishitani, H.; Naito, H. and Iwamoto, M.: Catal. Lett., 120 (1-2), 14-18 (2008).
1757. Mohansinh, R. D.; Rengaraju, S.; Moreshwar, G. M.; Mahendra, P. N. and Manohar, D. M. (Alembic Limited, India): Indian Pat. Appl. IN 2002 MU 337 (2005); Chem. Abstr., 148, 239016w (2008).
1758. Mohansinh, R. D.; Rengaraju, S.; Moreshwar, G. M.; Mahendra, P. N. and Manohar, D. M. (Alembic Limited, India): Indian Pat. Appl. IN 2002 MU 981 (2005); Chem. Abstr., 148, 238873m (2008).
1759. van Klink, J. W.; Brophy, J. J.; Perry, N. B. and Weavers, R. T.: J. Nat. Prod., 62, 487 (1999).
1760. van Klink, J. W.; Larsen, L.; Perry, N. B.; Weavers, R. T.; Cook, G. M.; Bremer, P. J.; MacKenzie, A. D. and Kirikae, T.: Bioorg. Med. Chem., 13 (24), 6651-6662 (2005).
1761. Steffan, R. J.; Matelan, E.; Ashwell, M. A.; Moore, W. J.; Solvibile, W. R.; Trybulski, E.; Chadwick, C. C.; Chippari, S.; Kenney, T.; Eckert, A.; Borges-Marcucci, L.; Keith, J. C.; Xu, Z.; Mosyak, L. and Harnish, D. C.: J. Med. Chem., 47 (26), 6435-6438 (2004).
1762. Kobayashi, K.; Hashimoto, K.; Ukon, T.; Fukamachi, S.; Morikawa, O. and Konishi, H.: Synthesis (4), 584-588 (2008).
1763. Uenishi, K.; Kosegi, K.; Asaumi, Y.; Ishizuka, Y. and Yaginuma, H. (Morishita Pharmaceutical Co., Ltd): Jpn. Kokai Tokkyo Koho JP 03,106,872 [91, 106,872] (1991); Chem. Abstr., 115, 256195q (1991).
1764. Yamada, O.; Kurozumi, A.; Ishida, S.; Futatsuya, F.; Ito, K. and Yamamoto, H. (Nippon Kayaku Co., Ltd): Ger. Offen. 2,241,560 (1973); Chem. Abstr., 78, 147571f (1973).
1765. Asano, Y.; et al. (Sanwa Kagaku Kenkyusho Co., Ltd., Japan): PCT Int. Appl. WO 2008 1,959 (2008); Chem. Abstr., 148 (6), 121586d (2008).
1766. Gemert, B. V. and Bergomi, M. P.: US 5,006,818 (1991); Chem. Abstr., 116, 194155m (1992).
1767. Eckhardt, M.; Himmelsbach, F.; Butz, T. M. and Martin, H-J. (Boehringer Ingelheim International G.m.b.H.; Boehringer Ingelheim Pharma G.m.b.H. \& Co. K.-G., Germany): PCT Int. Appl. WO 2008 49,923 (2008); Chem. Abstr., 148, 517924u (2008).
1768. Fullhart, L.: Dissertation, Iowa State Coll., 70-71 (1946).
1769. Papageorgiou, G. and Corrie, J. E. T.: Tetrahedron, 61 (3), 609-616 (2005).
1770. Hibbs, M. R.; Vargas, M.; Holtzclaw, J.; Rich, W.; Collard, D. M. and Schiraldi, D. A.: Macromolecules, 36 (20), 7543-7551 (2003).
1771. Taber, D. F. and Sethuraman, M. R.: J. Org. Chem., 65 (1), 254-255 (2000).
1772. McDonald, P. D. and Hamilton, G. A.: J. Am. Chem. Soc., 95 (23), 7752-7763 (1973).
1773. Liu, J-J.; Luk, K-C.; Pizzolato, G.; Ren, Y.; Thakkar, K. C.; Wovkulich, P. M. and Zhang, Z. (USA): U.S. Pat. Appl. Publ. US 2006 79,511 (2006); Chem. Abstr., 148, 390948q (2008).
1774. Theodorescu, D. and Lee, J. K. (USA): PCT Int. Appl. WO 2008 27,912 (2008); Chem. Abstr., 148, 347284r (2008).
1775. Zhao, Y-B.; Shen, Y-M.; He, H-P.; Mu, Q-Z. and Hao, X-J.: Natural Product Research, Part A: Structure and Synthesis, 21 (3), 203-210 (2007); Chem. Abstr., 148, 49816j (2008).
1776. Gong, S. S.; Liu, C. D.; Liu, S. L.; Du, Y. R.; Kang, W. and Dong, X. Q.: Yaoxue Xuebao, 23 (4), 276-280 (1988); Chem. Abstr., 109, 79560 h (1988).
1777. Suresh, P.; Srimurugan, S.; Babu, B. and Pati, H. N.: Tetrahedron Asymmetry, 18 (23), 2820-2827 (2007).
1778. Bazyl, I. T.; Skryabina, Z. E. and Saloutin, V. I.: Zh. Org. Khim., 32 (1), 148-149 (1996).
1779. Guthrie, R. W.; Heathers, G. P.; Higgins, A. J.; Kachensky, D. F.; Kierstead, R. W.; LeMahieu, R. A.; Mullin, J. G., Jr. and Tilley, J. W.: Eur. Pat. Appl. EP 512,352 (1992); Chem. Abstr., 118, 147306t (1993).
1780. Sipos, G. v. and Szabo, R.: Acta Phys. Chem. Szeged, 7, 126-128 (1961).
1781. Dhar, D. N. and Singhal, D. V.: Indian J. Appl. Chem., 34 (1), 23-26 (1971).
1782. Fuson, R. C.; Lewis, P. H. and Du Puis, R. N.: J. Am. Chem. Soc., 54, 1114-1120 (1932).
1783. Mazumdar, A. K. D.; Karmakar, P. K.; Rahman, M.; Saha, G. C.; Rangachari, K. and Banerji, K. D.: J. Indian Chem. Soc., 69 (4), 207-209 (1992).
1784. Jucker, E. and Vogel, A.: Helv. Chim. Acta, 46, 727-741 (1963).
1785. Renner, G. and Wolff, E.: Ger. Offen DE 3,014,669 (1981); Chem. Abstr., 97, 14750j (1982).
1786. Tashiro, M.; Tsuzuki, H.; Matsumoto, J.; Mataka, S.; Nakayama, K.; Tsuruta, Y. and Yonemitsu, T.: J. Chem. Res., Synop., (12), 372-373, 2826-2851 (1989).
1787. Folke, J. and Lindgaard-Joergensen, P.: Toxicol. Environ. Chem., 10 (1), 1-24 (1985); Chem. Abstr., 103, 92411 f (1985).
1788. Folke, J. and Guerra, M.: Chemosphere, 24 (4), 371-381 (1992); Chem. Abstr., 116, 241221s (1992).
1789. Rajan, P. S.; Chen, C. L; Gratzl, J. S. and Hise, R. G.: Holzforschung, 48 (Suppl), 117-124 (1994).
1790. Kamal, A.; Kazi, N. and Qureshi, A. A.: Pak. J. Sci. Ind. Res., 14 (1-2), 56-62 (1971); Chem. Abstr., 75, 106382 (1971).
1791. Beddoes, R. L.; Bruce, J. M.; Finch, H.; Heelam, L. M. J.; Hunt, I. D. and Mills, O. S.: J. Chem. Soc., Perkin Trans. 1, (10), 2670-2676 (1981).
1792. Banerji, K. D. and Poddar, Dayanand: J. Indian Chem. Soc., 56 (1), 62-65 (1979).
1793. Singh, H. and Nand, P.: Labdev, Part A, 12A (2), 63-66 (1974).
1794. Banerji, K. D.; Kumar, K.; Saha, G. C. and Mazumdar, A. K. D.: J. Indian Chem. Soc., 62 (7), 531-533 (1985).
1795. Mazumdar, A. K. D.; Das, S. C.; Rangachari, K.; Saha, G. C. and Banerji, K. D.: J. Indian Chem. Soc., 70 (10), 843-844 (1993).
1796. Sarbaggya, D. P. and Rangachari, K.: J. Indian Chem. Soc., 58 (2), 196-197 (1981).
1797. Krausz, F. and Martin, R.: Bull. Soc. Chim. Fr., 2192-2197 (1965).
1798. Martin, R.: Thesis Docteur-Ingenieur, Paris (1964).
1799. Buu-Hoï, N. P.; Lavit, D. and Xuong, N. D.: J. Org. Chem., 19, 1617-1621 (1954).
1800. Joshi, K. C. and Jauhar, A. K.: J. Indian Chem. Soc., 39 (7), 463-468 (1962); Chem. Abstr., 58, 2397h (1963).
1801. Buu-Hoï, N. P.; Xuong, N. D. and Lavit, D.: J. Chem. Soc., 1034-1038 (1954).
1802. Dawane, B. S. and Vibhute, Y. B.: J. Indian Chem. Soc., 77 (6), 299 (2000).
1803. Cairns, H. and Johnson, P. B.: Ger. Offen, 1,954,266 (1970); Chem. Abstr., 73, 25303w (1970).
1804. Verner, E.; Katz, B. A.; Spencer, J. R.; Allen, D.; Hataye, J.; Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.; Li, Y.; Luong, C.; Martelli, A.; Radika, K.; Rai, R.; She, M.; Shrader, W.; Sprengeler, P. A.; Trapp, S.; Wang, J.; Young, W. B. and Mackman, R. L.: J. Med. Chem., 44 (17), 2753-2771 (2001).
1805. Wakatsuka, H.; Nakai, H. and Okumoto, I.: Jpn. Kokai Tokkyo Koho JP 0395,144 [9195,144] (1991); Chem. Abstr., 115, 182817v (1991).
1806. Singh, H.; Verma, J. C. and Sharma, S. C.: J. Indian Chem. Soc., 40 (7), 555-556 (1963).
1807. Krause, G. H. and Hoyer, H.: Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol., 27B (6), 663-674 (1972).
1808. Jadhav, G. V. and Merchant, J. R.: J. Univ. Bombay, Sci., 19 (5), 35-38 (1951); Chem. Abstr., 46, 8630e (1952).
1809. Naik, R. M. and Sethna S.: J. Indian Chem. Soc., 29 (7), 493-498 (1952).
1810. Jadhav, G. V. and Merchant, J. R.: J. Indian Chem. Soc., 28 (5), 265-267 (1951).
1811. Auwers, K. v.; Mürbe, E.; Saurwein, K.; Deines, G. and Schornstein, J.: Fortsch. Chem., Phys., Phys. Chem., 18 (2), 37-77 (1924).
1812. Chien, S. L.; Chung, H. P. and Tai, H. C.: J. Chin. Chem. Soc. (Peking), 4, 361-369 (1936); Chem. Abstr., 31, 1155^{9} (1937).
1813. Christian, C. M. and Amin, G. C.: J. Indian Chem. Soc., 35 (2), 111-114 (1958).
1814. Thakar, K. A. and Muley, P. R.: J. Indian Chem. Soc., 52 (3), 243-247 (1975).
1815. Buu-Hoï, N. P. and Lavit, D.: J. Chem. Soc., 18-20 (1955).
1816. Rosenmund, K. W. and Pfroepffer, K.: Chem. Ber., 90, 1922-1928 (1957).
1817. Donnelly, J. A. and Murphy, J. J.: J. Chem. Soc. C, 2596-2598 (1970).
1818. Adams, R.: J. Am. Chem. Soc., 41, 247-270 (1919).
1819. Bachelet, J. P.; Cavier, R.; Lemoine, J.; Rigothier, M. C.; Gayral, P. and Royer, R: Eur. J. Med. Chem., 14 (4), 321-324 (1979).
1820. Strat, G.; Strat, M. and Grecu, I.: Spectrosc. Lett., 27 (2), 177-195 (1994).
1821. Hansen, P. E.: Magn. Reson. Chem., 31 (1), 23-37 (1993).
1822. Martin, R. and Betoux, J. M.: Chim. Anal. (Paris), 50 (9), 464-482 (1968).
1823. Nencki, M. and Stoeber, E.: Ber. Dtsch. Chem. Ges., 30, 1768-1772 (1897).
1824. Priestley, Hill M. and Moness Eugene: J. Org. Chem., 5, 355-361 (1940).
1825. Aslam, M.; Vicari, R.; Dammel, R.; Dossel, K. F.; Lingnan, J.; Ray, W. B. and Davenport, K. G.: Eur. Pat. Appl. EP 353,339 (1990); Chem. Abstr., 113, 153277x (1990).
1826. Joshi, G. G. and Shah, N. M.: J. Indian Chem. Soc., 31(3), 220-222 (1954).
1827. Coutts, S. J. and Kallmerten, J.: Tetrahedron Lett., 31 (30), 4305-4308 (1990).
1828. Strupczewski, J. T.; Helsley, G. C.; Chiang, Y.; Bordeau, K. J. and Glamkowski, E. J.: U.S. US 5,364,866 (1994); Chem. Abstr., 123, 169657p (1995).
1829. Martin, R. and Betoux, J. M.: Chim. Anal. (Paris), 50 (2), 65-76 (1968).
1830. Thakar, K. A. and Deshpande, G. D.: Indian J. Chem., 10, 1065-1067 (1972).
1831. Desai, R. D.; Trivedi, J. J. and Trivedi, J. P.: J. Sci. Ind. Res., 13B, 328-330 (1954).
1832. Barker, G. and Ellis, G. P.: J. Chem. Soc. C, 16, 2230-2233 (1970).
1833. Dahse, W.: Ber. Dtsch. Chem. Ges., 41, 1619-1625 (1908).
1834. Desai, R. D. and Ekhlas, M.: Proc. Indian Acad. Sci., 8A, 567-577 (1938).
1835. Gnagy, B. H.: J. Am. Chem. Soc., 45, 805-808 (1923).
1836. Kaneniwa, N.: J. Pharm. Soc. Jpn., 75 (7), 785-788 (1955).
1837. Vibhute, Y. B.; Wadje, S. S. and Jagdale, M. H.: J. Shivaji Univ.; Sci., 17, 79-81 (1977); Chem. Abstr., 93, 126301n (1980).
1838. Wechsler, A.: Monatsh. Chem., 15, 239-248 (1894).
1839. Desai, B. M. and Desai, R. D.: J. Sci. Ind. Res., 13B (4), 249-252 (1954).
1840. Naik, G. N.: J. Sci. Ind. Res., 20B, 339-341 (1961).
1841. Fujimoto, Y.; Ukita, T.; Miyagawa, H.; Tsurushima, T.; Irie, H.; Nishimura, K. and Ueno, T.: Biosci., Biotechnol., Biochem., 58 (9), 1627-1631 (1994).
1842. Sane, R. T. and Trakru, J. P. N.: Indian J. Chem., Sect. A, 16A (1), 93 (1978).
1843. Sane, R. T.; Deodhar, K. D.; Trakru, P. N. and Burkule, V. S.: J. Indian Chem. Soc., 55 (5), 511 (1978).
1844. Yao, Run-hua; Ma, Rong-Sheng; Chen, Yao-Qing and Huang, Lan-Sun: Yaoxue Xuebao, 19 (3), 228-231 (1984); Chem. Abstr., 103, 123103p (1985).
1845. Chen, J. and Li, Y.: Xiamen Daxue Xuebao, Ziran Kexueban, 32 (2), 249-251 (1993).
1846. Takaishi, H.; Kishida, M. and Miura, Y.: Jpn Kokai Tokkyo Koho, JP 04,356,438 [92,356,438] (1992); Chem. Abstr., 119, 27827n (1993).
1847. Maurer, F. and Grohe, K.: Ger. Offen DE 3,501,247 (1986); Chem. Abstr., 105, 225803a (1986).
1848. Ellis, Gwynn P. and Hudson, Henrietta V.: J. Chem. Res., Synop., (12), 372-373 (1985).
1849. Buckman, S. J.; Fenyes, J. G. E.; Flanagan, K. J.; Pera, J. D. and Pulido, M. L.: US 3,933,472 (1976); Chem. Abstr., 84, 106378d (1976).
1850. Pera, John D.; Buckman, Stanley J.; Fenyes, Joseph G. E.; Flanagan, Kenneth J. and Pulido, Miguel L.: Fr. Demande 2,174, 152 (1973); Chem. Abstr., 80, 120547g (1974).
1851. Bagade, M. B. and Ghiya, B. J.: Indian J. Chem., Sect. B, 30B (1), 71-74 (1991).
1852. Burdeska, K.: Synthesis, (11), 940-942 (1982).
1853. Hensel, W. and Hoyer, H.: Z. Phys. Chem. (Munich), 36 (5/6), 387-391 (1963).
1854. Gaur, V. B.; Shah, V. H. and Parikh, A. R.: Indian J. Heterocycl. Chem., 1 (3), 141-146 (1991).
1855. Woltersdorf, Otto W., Jr.; Robb, Charles M.; Bicking, John B.; Watson, L. Sherman and Cragoe, Edward J., Jr.: J. Med. Chem., 19 (7), 972-975 (1976).
1856. Merck and Co., Inc.: Fr. Addn. 95,106 (1970); Chem. Abstr., 78, 58067d (1973).
1857. Merck and Co., Inc.: Fr. CAM 0264 (1969); Chem. Abstr., 77, 5182k (1972).
1858. Sprague, James M. and Schultz, Everett, M.: US 3,453,312 (1969); Chem. Abstr., 71, 91096r (1969).
1859. Campaigne, E.; Kim, Chung S. and Smith, Homer A., Jr.: Proc. Indiana Acad. Sci., 92, 145-151 (1982) (Pub. 1983).
1860. Protiva, M.; Sedivy, Z.; Pomykacek, J.; Bartl, V.; Holubek, J. and Svatek, E.: Collect. Czech. Chem. Commun., 46 (9), 2245-2253 (1981).
1861. Eckstein, Z.; Alster, K. and Domanska, H.: Przem. Chem., 58 (10), 533-536 (1979).
1862. Deshpande, G. D.: Ph. D. Thesis, Marathwada University, India, (1972).
1863. Montanari, P.; Da Re, P. and Valenti, P.: J. Heterocycl. Chem., 25, 1277 (1988).
1864. Itazaki, H.; Hayashi, K.; Matsuura, M.; Yonetani, Y. and Nakamura, M.: Chem. Pharm. Bull., 36 (9), 3404-3431 (1988); Chem. Abstr., 110, 192740a (1989).
1865. Fisons Ltd.: Neth. Appl. 74 07,648 (1974); Chem. Abstr., 83, 9792 (1975).
1866. Uesugi, Y. and Suzuki, T.: Bull. Nat. Inst. Agr. Sci., Ser. C. 17, 193-202 (1964); Chem. Abstr., 62, 16898f (1965).
1867. Bhargava, P. M. and Sen, A. B.: J. Sci. Food Agr., 1, 178-182 (1950).
1868. Chien, S. L. and Yin, L. Y.: J. Chin. Chem. Soc. (Peking), 7, 40-45 (1939); Chem. Abstr., 34, $1979{ }^{9}$ (1940).
1869. Givens, E. N.; Venuto, P. B. and Alexakos, L. G.: J. Chem. Eng. Data, 14 (3), 392-396 (1969).
1870. Jha, B. C. and Amin, G. C.: Tetrahedron, 2 (3/4), 241-245 (1958).
1871. Sen, A. B. and Bhargava, P. M.: J. Indian Chem. Soc., 26 (8), 366-370 (1949).
1872. Tarbell, D. S. and Wilson, J. W.: J. Am. Chem. Soc., 64, 607-612 (1942).
1873. Adachi, H.; Tanaka, K.; Yamaguchi, M.; Miyahara, O.; Koguchi, M.; Kawana, T.; Tak0ahashi, A., Yamada, S.: PCT Int. Appl. WO 97 41,116 (1997); Chem. Abstr., 127, 346389h (1997).
1874. Cascaval, A.: Rom. RO 91,541 (1987); Chem. Abstr., 108, 74985v (1988).
1875. Huber, D.: Thèse de l'Université Louis Pasteur, Strasbourg, France (1988).
1876. Tarbell, D. S. and Wilson, J. W.: J. Am. Chem. Soc., 64, 1066-1070 (1942).
1877. Fischer, A.; Leary, G. J.; Topsom, R. D. and Vaughan, J.: J. Chem. Soc., 686-687 (1967).
1878. Shionogi and Co., Ltd. Jpn. Kokai Tokkyo Koho JP 59 65, 038 [84 65,038] (1984); Chem. Abstr., 102, 24285x (1985).
1879. Hamada, Y.; Ando, S. and Sakata, T.: Jpn. Kokai Tokkyo Koho JP 61 186,342 [86 186,342] (1986); Chem. Abstr., 106, 32574p (1987).
1880. Hamada, Y.; Koike, H. and Yorifuji, T.: Jpn. Kokai Tokkyo Koho JP 62 45, 549 [87 45,549] (1987); Chem. Abstr., 107, 115364s (1987).
1881. Ogata, M.: Eur. Pat. Appl. EP 66, 144 (1982); Chem. Abstr., 98, 143419c (1983).
1882. Shionogi and Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 59 93,077 [84 93,077] (1984); Chem. Abstr., 101, 230534k (1984).
1883. Joshi, R. C. and Thakar, K. A.: Marathwada Univ. J. Sci., 19 (12, Sect. A), 9-13 (1980); Chem. Abstr., 96, 181189u (1982).
1884. Delalande S. A.: Belg. BE 895,464 (1983); Chem. Abstr., 100, 85390h (1984).
1885. Ogata, M.; Matsumoto, H.; Takahashi, K.; Shimizu, S.; Kida, S.; Ueda, M.; Kimoto, S. and Haruna, M.: J. Med. Chem., 27 (9), 1142-1149 (1984).
1886. Lipinski, C. A.: Eur. Pat. Appl. EP 230,379 (1987); Chem. Abstr., 108, 75224h (1988).
1887. Royer, R. and René, L.: Bull. Soc. Chim. Fr., 3601-3609 (1970).
1888. Cox, B. and Waigh, R. D.: Synthesis, (9), 709-710 (1989).
1889. Brewster, C. M. and Harris, J. C.: J. Am. Chem. Soc., 52, 4866-4872 (1930).
1890. Segalle, R.: Monatsh. Chem., 17, 314-326 (1896).
1891. Looker, J. H.; Edman, J. R. and Dappen, J. I.: J. Heterocycl. Chem., 1, 141-144 (1964).
1892. Lau, C. K.; Bélanger, P. C.; Scheigetz, J.; Dufresne, C.; Williams, H. W. R.; Maycock, A. L.; Guindon, Y.; Bach, T.; Dallob, A. L.; Denis, D.; Ford-Hutchinson, A. W.; Gale, P. H.; Hopple, S. L.; Letts, L. G.; Luell, S.; McFarlane, C. S.; MacIntyre, E.; Meurer, R.; Miller, D. K.; Piechuta, H.; Riendeau, D.; Rokach, J. and Rouzer, C.: J. Med. Chem., 32 (6), 1190-1197 (1989).
1893. Enomoto, M.; Nagano, H.; Haga, T.; Morita, K. and Sato, M.: Jpn. Kokai Tokkyo Koho JP 07,145,112 [95,145,112] (1995); Chem. Abstr., 124, 29406b (1996).
1894. Enomoto, M.; Nagano, H.; Haga, T.; Morita, K. and Sato, M.: Jpn. Kokai Tokkyo Koho JP 01,52, 755 [89 52,755] (1989); Chem. Abstr., 111, 194588b (1989).
1895. Enomoto, M.; Nagano, H.; Haga, T.; Morita, K. and Sato, M.: Jpn. Kokai Tokkyo Koho JP 63,267,779 [88,267,779] (1988); Chem. Abstr., 110, 231324q (1989).
1896. Enomoto, M.; Nagano, H.; Haga, T.; Morita, K. and Sato, M.: Jpn. Kokai Tokkyo Koho JP 63,275,580 [88,275,580] (1988); Chem. Abstr., 110, 168104a (1989).
1897. Ford, R. E.; Knowles, P.; Lunt, E.; Marshall, S. M.; Penrose, A. J.; Ramsden, C. A.; Summers, A. J. H.; Walker, J. L. and Wright, D. E.: J. Med. Chem., 29 (4), 538-549 (1986).
1898. Ramsden, C. A.; Knowles, P.; Lewis, E. J.; Lunt, E. and Wright, D. E.: Ger. Offen 2,846,931 (1979); Chem. Abstr., 91, 74626j (1979).
1899. Martin, R.: Unpublished results.
1900. Vorozhtsov, N. N., Jr.; Rubina, T. D. and Yakobson, G. G.: USSR 143,404 (1962); Chem. Abstr., 57, 9744b (1962).
1901. Yakobson, G. G.; Rubina, T. P. and Voroshtsov, N. N., Jr.: Dokl. Akad. Nauk SSSR, 141, 1395-1396 (1961); Chem. Abstr., 56, 12782c (1962).
1902. Bowen, J. G.; Hockley, M. H. and Housley, J. R.: Faming Zhuanli Shenqing Gongkai Shuomingshu CN A,053,921 (1991); Chem. Abstr., 116, 194304j (1992).
1903. Shirai, M.; Shinozuka, T.; Okamura, H.; Tsunooka, M.; Kishimura, S.; Endo, M. and Sasago, M.: J. Photopolym. Sci. Technol., 14 (4), 621-630 (2001).
1904. Lehr, M.; Klimt, M. and Elfringhoff, A. S.: Bioorg. Med. Chem. Lett., 11 (19), 2569-2572 (2001).
1905. Kuroiwa, Katsumasa; Katayama, Katsuhiro; Miura, Shunei and Nagasawa, Takeshi: Jpn. Kokai Tokkyo Koho JP 02,234,052 [90,234,052] (1990); Chem. Abstr., 114, 159857d (1991).
1906. Xu, Linxiao and Giese, R. W.: Tetrahedron Lett., 34 (24), 3829-3832 (1993).
1907. Lang, H. J.; Gerlach, U.; Brendel, J.; Englert, H. C.; Gogelein, H.; Hropot, M.; Bohn, H.; Herling, A.; Busch, A. and Greger, R.: Eur. Pat. Appl. EP 807,629 (1997); Chem. Abstr., 128, 34684c (1998).
1908. Sunday, M. E.; Benacerraf, B. and Dorf, M. E.: J. Exp. Med., 152 (6), 1554-1562 (1980).
1909. Zaghouani, H. and Stanislawski, M.: Mol. Immunol., 24 (12), 1237-1242 (1987).
1910. Jurd, L.: Chem. Ind. (London), 322-323 (1961).
1911. Covello, M. and Piscopo, E.: Farmaco, Ed. Sci., 19, 675-687 (1964).
1912. Covello, M.; Dini, A. and De Simone, F.: Rend. Accad. Sci. Fis. Mat., Naples 36, 67-71 (1969).
1913. Covello, M.; Dini, A. and Piscopo, E.: Rend. Accad. Sci. Fis. Mat., Naples, 37, 56-62 (1970).
1914. Covello, M.; Piscopo, E. and Abignente, E.: Ann. Chim. (Rome), 50, 383-396 (1960).
1915. Piscopo, E.; Diurno, M. V. and Andreotti, A.: Boll. Soc. Ital. Biol. Sper., 59 (1), 44-50 (1983).
1916. Vibhute, Y. B. and Jagdale, M. H.: J. Indian Chem. Soc., 58 (11), 1115-1116 (1981).
1917. Covello, M.; De Simone, F. and Dini, A.: Rend. Accad. Sci. Fis. Mat., Naples, 35, 298-308 (1968).
1918. Covello, M.; Piscopo, E. and Abignente, E.: Ann. Chim. (Rome), 50, 1651-1665 (1960).
1919. Covello, M.; Piscopo, E. and Abignente, E.: Ann. Chim. (Rome), 52, 911-922 (1962).
1920. Chang, C. T. and Chen, F. C.: J. Chin. Chem. Soc. (Taipei), 7, 69-73 (1960); Chem. Abstr., 55, 3504c (1961).
1921. Dohrn, M. and Diedrich, P.: USP 2,116,104 (1938); Chem. Abstr., 32, 5160^{7} (1938).
1922. Schering-Kahlbaum A-G. Fr. 803426 (1936); Chem. Abstr., 31, 26207, 3510^{1} (1937).
1923. Scannell, R. T. and Stevenson, R.: J. Chem. Soc., Perkin Trans. 1, (12), 2927-2931 (1983).
1924. Shah, M. V. and Sethna, Suresh: J. Chem. Soc., 2676-2678 (1959).
1925. Joshi, S. S. and Singh, H.: J. Am. Chem. Soc., 76, 4993-4994 (1954).
1926. Kostka, K. and Ochocki, J.: Pol. J. Chem., 52, 1815-1818 (1978).
1927. Boileau, J.; Konrat, J. P. and Pascal, H.: Fr. 1,452,911 (1966); Chem. Abstr., 66, 104812v (1967).
1928. Lutskii, A. E.; Granzhan, V. A. and Semenko, S. V.: Zh. Strukt. Khim, 10 (1), 56-59 (1969); Chem. Abstr., 70, 101309h (1969).
1929. Holleman, M. A. F.: Bull. Soc. Chim. Fr., 9, I-XLV (1911).
1930. Charton, M.: J. Org. Chem., 28, 3121-3124 (1963).
1931. Cristiano, M. L. S.; Johnstone, R. A. and Pratt, M. J.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C51 (12), 2581-2583 (1995).
1932. Butenandt, A.; Hallmann, G. and Beckmann, R.: Chem. Ber., 90, 1120-1124 (1957).
1933. Bartlett, P. D. and Trachtenberg, E. N.: J. Am. Chem. Soc., 80, 5808-5812 (1958).
1934. Borders, C. L. Jr.; Perez, Dianne M.; Lafferty, Mark W.; Kondow, Alexander J.; Brahm, Jesper; Fenderson, Mary B.; Brelsford, Gregy L. and Pett, Virginia B.: Bioorg. Chem., 17 (1), 96-107 (1989).
1935. Mehta, A. M.; Jadhav, G. V. and Shah, R. C.: Proc. Indian Acad. Sci., 29A, 314-321 (1949).
1936. Reichel, L.; Proksch, G. and Tobien, G.: Justus Liebigs Ann. Chem., 10, 1709-1712 (1974).
1937. Chawla, H. M.; Mittal, R. S. and Johny, C. J.: Indian J. Chem., Sect. B, 26B (10), 992-993 (1987).
1938. Naik, A. R. and Jadhav, G. V.: J. Indian Chem. Soc., 25 (4), 171-174 (1948).
1939. Boit, H. G.: Beilstein's Handbuch Der Organischen Chemie, Springer-Verlag Ed., 8, 2098 (1971).
1940. Naik, R. M.; Thakor, V. M. and Shah, R. C.: Proc. Indian Acad. Sci., 37A, 765-773 (1953).
1941. Evstigneeva, R. P.; Rzheznikov, V. M. and Preobrazhenskii, N. A.: Zh. Obshch. Khim., 31, 1534-1537 (1961).
1942. Chen, F. C. and Chang, K. T.: J. Taiwan Pharm. Assoc., 4, 38-41 (1952); Chem. Abstr., 49, 3175 (1955).
1943. Campin, D. N.: Appita, 34 (3), 205-210 (1980).
1944. Pesson, M.: Fr. Demande 2,364,920 (1978); Chem. Abstr., 90, 54977a (1979).
1945. Sugiura, Koji: Jpn. Kokai Tokkyo Koho JP 01,193,372 [89,193,372](1989); Chem. Abstr., 112, 100917d (1990).
1946. Dandegaonker, S. H. and Revankar, G. R.: Monatsh. Chem., 96, 450-460 (1965).
1947. Dandegaonker, S. H.: J. Indian Chem. Soc., 46 (2), 148-152 (1969).
1948. Donnelly, J. A. and Doran, H. J.: Tetrahedron, 31 (15), 1791-1794 (1975).
1949. Harper, D. B. and Wain, R. L.: Ann. Appl. Biol., 64, 395-407 (1969).
1950. Harper, D. B. and Wain, R. L.: Ann. Appl. Biol., 67, 395-408 (1971).
1951. Leclerc, G.; Bizec, J. C.; Bieth, N. and Schwartz, J.: J. Med. Chem., 23 (7), 738-744 (1980).
1952. Matsuura, T.; Nishinaga, A. and Cahnmann, H. J.: J. Org. Chem., 27, 3620-3628 (1962).
1953. Edkins, R. P. and Linnell, W. H.: Q. J. Pharm. Pharmacol., 9, 75-109 (1936).
1954. Chen, F. C. and Tsai, T. H.: J. Taiwan Pharm. Assoc., 4, 42-44 (1952); Chem. Abstr., 49, 5374g (1955).
1955. Matsunaya, Y. and Imafuku, K.: Bull. Chem. Soc. Jpn., 65, 295-297 (1992).
1956. Chen, F. C. and Chang, C. T.: J. Chem. Soc., 146-150 (1958).
1957. Chen, F. C.; Chang, C. T.; Shi, T. T. and Li, T.: J. Chin. Chem. Soc. (Taipei), 1, 159-162 (1954).
1958. Choudhari, S. R.; Goswami, D. D. and Thakar, K. A.: J. Indian Chem. Soc., 55 (4), 401-404 (1978).
1959. Thakar, K. A.: J. Indian Chem. Soc., 40 (7), 539-542 (1963).
1960. Bird, Thomas Geoffrey Colerick and Ple, Patrick: Eur. Pat. Appl. EP 555,068 (1993); Chem. Abstr., 122, 187392g (1995).
1961. Hsu, K. K. and Chen, F. C.: T'ai-wan K'o Hsueh, 27 (1-2), 23-26 (1973); Chem. Abstr., 80, 66597h (1974).
1962. Kumar, A.; Zhao, M.; Wilson, W. D. and Boykin, D. W.: Bioorg. Med. Chem. Lett., 4 (24), 2913-2918 (1994); Chem. Abstr., 122, 71375z (1995).
1963. Yoshida, Z. and Haruta, M.: Tetrahedron Lett., (42), 3745-3751 (1965).
1964. Bégué, J. B. and Fétizon, M.: Bull. Soc. Chim. Fr., 781-787 (1969).
1965. Chang, C. T.; Chen, F. C.; Chen, T. S.; Hsu, K. K.; Ueng, T. and Hung, M.: J. Chem. Soc., 3414-3417 (1961).
1966. Klarmann, E.; Gates, L. W.; Shternov, V. A. and Cox, P. H. Jr.: J. Am. Chem. Soc., 55, 4657-4662 (1933).
1967. Niviere, P.; Tronche, P. and Couquelet, J.: Bull. Soc. Chim. Fr., 3658-3662 (1965).
1968. Pogosyan, G. M.; Akopyan, L. M. and Matsoyan, S. G.: Zh. Org. Khim., 111, 1605-1608 (1967).
1969. Kindler, K. and Oelschlager, H.: Chem. Ber., 87, 194-202 (1954).
1970. Horton, W. J. and Robertson, D. E.: J. Org. Chem., 25, 1016-1020 (1960).
1971. Feuerstein, W. and Kostanecki, S. v.: Ber. Dtsch. Chem. Ges., 31, 710-719 (1898).
1972. Kostanecki, S. v. and Ludwig, A.: Ber. Dtsch. Chem. Ges., 31, 2950-2953 (1898).
1973. Claus, A.: Ger. Offen, 96,659 (1897).
1974. Raposo, C.; Crego, M.; Mussons, M. L.; Caballero, M. C. and Moran, J. R.: Tetrahedron Lett., 35 (20), 3409-3410 (1994).
1975. Chen, F. C.; Chang, C. T. and Chen, T. S.: Formosan Sci., 12, 151-154 (1958).
1976. Joseph-Nathan, P.; Rogel, Maria A. and Rodriguez, V. M.: Rev. Soc. Quim. Mex., 18 (6), 265-268 (1974); Chem. Abstr., 83, 8639z (1975).
1977. Stradins, J. P. and Hasanli, B.: J. Electroanal. Chem., 353, 57-69 (1993).
1978. Malik, M. L. and Grover, S. K.: Indian J. Chem., Sect. B, 14B (7), 513-515 (1976).
1979. Rosenmund, K. W.; Kuhnhenn, W. and Lesch, W.: Ber. Dtsch. Chem. Ges., 56, 2042-2044 (1923).
1980. Rosenmund, K. W. and Kuhnhenn, W.: Ber. Dtsch. Chem. Ges., 56, 1266-1269 (1923).
1981. Gaur, V. B.; Shah, V. H. and Parikh, A. R.: J. Inst. Chem. (India), 63 (5), 171-173 (1991).
1982. Setalvad, J. I. and Shah, N. M.: J. Indian Chem. Soc., 30 (6), 373-378 (1953).
1983. Setalvad, J. I. and Shah, N. M.: J. Indian Chem. Soc., 31 (8), 600-601 (1954).
1984. Lee, T. T.; Starratt, A. N. and Jevnikar, J. J.: Phytochemistry, 21 (3), 517-523 (1982).
1985. Bates, M. A.; Sammes, P. G. and Thomson, G. A.: J. Chem. Soc., Perkin Trans. 1, (11), 3037-3045 (1988).
1986. Ghate, R. V.; Sarlashkar, V. D. and Ingle, T. R.: J. Indian Chem. Soc., 50 (9), 598-599 (1973).
1987. Shah, P. R. and Shah, N. M.: Indian J. Chem., 2, 296-297 (1964).
1988. Chakravarti, D. and Chakravarti, N.: J. Indian Chem. Soc., 16, 144-150 (1939).
1989. Schreiber, F. G. and Stevenson, R.: J. Chem. Soc., Perkin Trans. 1, (1), 90-92 (1977).
1990. Buu-Ної, N. P.: J. Org. Chem., 18, 1723-1729 (1953).
1991. Koshinaka, E.; Kurata, S.; Yamagishi, K.; Kubo, S. and Kato, H.: Yakugaku Zasshi, 98 (9), 1198-1207 (1978).
1992. Yuzuru, Yamamoto; Hideo, Kato; Sakae, Kurata and Kazunori, Nishide: Ger. Offen 2,521,347 (1975); Chem. Abstr., 84, 58911y (1976).
1993. Ballio, A. and Almirante, L.: Ann. Chim. (Rome), 41, 421-424 (1951).
1994. Shah, N. M. and Parikh, S. R.: J. Indian Chem. Soc., 36 (11), 784-786 (1959).
1995. Kawanishi, T. and Asai, H.: Jpn. Kokai Tokkyo Koho JP 03, 215, 462 [91,215,462] (1991); Chem. Abstr., 116, 41077n (1992).
1996. Kuliev, A. M.; Guseinov, M. S. and Sardarova, S. A.: Organ. Soedin. Sery., Riga 2, 13-17 (1980); Chem. Abstr., 95, 42568h (1981).
1997. Sen, A. B. and Saxena, M. S.: J. Indian Chem. Soc., 35 (2), 136-138 (1958).
1998. Dandegaonker, S. H. and Shet, S. G.: Monatsh. Chem., 96, 1214-1223 (1965).
1999. Trave, R. and Sacco, A.: Rend. Ist. Lomb. Accad. Sci. Lett. A: Sci. Mat., Fis., Chim., Geol.; A94, 273-288 (1960); Chem. Abstr., 55, 16462b (1961).
2000. Nencki, M.: Ber. Dtsch. Chem. Ges., 30, 1766-1768 (1897).
2001. Hoan, N. and Buu-Hoї, N. P.: C. R. Acad. Sci., 224, 1363-1365 (1947).
2002. Shiokawa, Y.; Nagano, M.; Taniguchi, K.; Take, K.; Kato, T. and Tsubaki, K.: PCT Int. Appl. WO 92 18,461 (1992); Chem. Abstr., 118, 101674h (1993).
2003. Bryan, J. D.; Goldberg, A. A. and Wragg, A. H.: J. Chem. Soc., 1279-1281 (1960).
2004. Sen, A. B. and Tiwari, S. S.: J. Indian Chem. Soc., 29 (6), 419-424 (1952).
2005. Cramer, F. and Elschnig, G. H.: Chem. Ber., 89, 1-2 (1956).
2006. So, Ying-Hung and Miller, Larry L.: Synthesis, (7), 468-469 (1976).
2007. Allen, J.; Bertin, J.; Frost, J. and Vassal, T.: Fr. Demande FR 2,672,286 (1992); Chem. Abstr., 118, 59592c (1993).
2008. Auwers, K. v. and Wittig, G.: Ber. Dtsch. Chem. Ges., 57, 1270-1275 (1924).
2009. Braude, M. B.; Polovinchik, R. L.; Vorob'eva, Z. G.; Bolotina, L. A.; Shvedova, V. I. and Bekhli, A. F.: Khim. Farm. Zh., 5 (10), 41-42 (1971); Chem. Abstr., 76, 33985x (1972).
2010. Flammang, M. and Wermuth, C. G.: Bull. Soc. Chim. Fr., 4927-4928 (1968).
2011. Klarmann, E.; Shternov, V. A. and Gates, L. W.: J. Am. Chem. Soc., 55, 2576-2589 (1933).
2012. Sen, A. B. and Gupta, S. K.: J. Indian Chem. Soc., 38 (10), 825-828 (1961).
2013. Sridar, V. and Rao, V. S. S.: Indian J. Chem., Sect. B, 33B (2), 184-185 (1994).
2014. Wittig, G.: Ber. Dtsch. Chem. Ges., 57, 88-95 (1924).
2015. Garcia, H.; Primo, J. and Miranda, M. A.: Synthesis, (9), 901-902 (1985).
2016. Cheng, P. L.; Fournari, P. and Tirouflet, J.: Bull. Soc. Chim. Fr., 2248-2251 (1963).
2017. Skraup, S. and Beng, E.: Ber. Dtsch. Chem. Ges., 60, 942-950 (1927).
2018. Martin, R.: Handbook of Hydroxyacetophenones, editor Kluwer Academic Publishers, Dordrecht, the Netherlands (1997).
2019. Blum, G.; Gazit, A. and Levitzki, A.: Biochemistry, 39 (51), 15705-15712 (2000).
2020. Farina, F. and Valderrama, J.: An. Quim., 70 (3), 258-261 (1974).
2021. Looker, J. H.; Edman, J. R. and Kingsbury, C. A.: J. Org. Chem., 49, 645-649 (1984).
2022. Huang, F. C.; Campbell, H. F. and Learn, K. S. US 5,082,849 (1992); Chem. Abstr., 116, 235459j (1992).
2023. Huang, F. C.; Campbell, H. F.; Learn, K. S. and Galemmo, R. A., Jr.: US 4,977,162 (1990); Chem. Abstr., 115, 8594k (1991).
2024. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 29A, 269-273 (1949).
2025. Yoshioka, T.; Horikoshi, H.; Kanai, T.; Hasegawa, K. and Aizawa, Y.: Eur. Pat. Appl. EP 277,836 (1988); Chem. Abstr., 110, 23876u (1989).
2026. Price, P. and Israelstam, S. S.: J. Org. Chem., 29, 2800-2802 (1964).
2027. Whitelaw, M. L. and Daniel, J. R.: J. Agric. Food Chem., 39 (1), 44-51 (1991).
2028. Kees, K. L.; Musser, J. H.; Chang, J.; Skowronek, M. and Lewis, A. J.: J. Med. Chem., 29 (11), 2329-2334 (1986).
2029. Babin, P.; Benneteau, B.; Dunogues, J. and Rajarison, F.: Fr. Demande FR 2,668,484 (1992); Chem. Abstr., 118, 59417z (1993).
2030. Bennetau, B.; Rajarison, F.; Dunogues, J. and Babin, P.: Tetrahedron, 50 (4), 1179-1188 (1994).
2031. Bowen, J. G.; Hockley, M. H.; Housley, J. R.; Hunneyball, I. M.; Titman, R. B. and Webber, D. G.: Eur. Pat. Appl. EP 354,693 (1990); Chem. Abstr., 113, 97601j (1990).
2032. Cherry, P. C.; Pipe, A. J.; Kitchin, J.; Borthwick, A. D.; Coles, R. J. and Burn, D.: U.S. US 4,769,367 (1988); Chem. Abstr., 110, 212803d (1989).
2033. Hansen, P. E.; Bolvig, S.; Buvari-Barcza, A. and Lycka, A.: Acta Chem. Scand., 51 (8), 881-888 (1997).
2034. Hansen, P. E.; Ibsen, S. N.; Kristensen, T. and Bolvig, S.: Magn. Reson. Chem., 32 (7), 399-408 (1994).
2035. Chen, C. Y.; Lin, E. C.; Ueng, T. and Chen, F. C.: Formosan Sci., 12, 144-148 (1958).
2036. Chen, F. C.; Chang, C. T.; Chen, C. Y.; Hung, M. and Lin, Y. C.: J. Org. Chem., 27, 310-312 (1962).
2037. Valoti, E.; Pallavicini, M.; Villa, L. and Pezzetta, D.: J. Org. Chem., 66 (3), 1018-1025 (2001).
2038. Buu-Hoї, N. P.; Xuong, N. D. and Lavit, D.: J. Org. Chem., 18, 910-915 (1953).
2039. Joshi, K. C.; Jain, R. and Garg, S.: J. Indian Chem. Soc., 62 (5), 388-390 (1985).
2040. Kelly, S. M.: Helv. Chim. Acta, 72, 594-607 (1989).
2041. Machin, P. J.; Hurst, D. N.; Bradshaw, R. M.; Blaber, L. C.; Burden, D. T.; Fryer, A. D.; Melarange, R. A. and Shivdasani, C.: J. Med. Chem., 26 (11), 1570-1576 (1983).
2042. Minor, J. T. and Vanderwerf, C. A.: J. Org. Chem., 17, 1425-1430 (1952).
2043. Chang, C. T. and Chen, F. C.: J. Chem. Soc., 3155-3156 (1961).
2044. Henning, R.; Lattrell, R.; Gerhards, H. J. and Leven, M.: J. Med. Chem., 30 (5), 814-819 (1987).
2045. Spitzer, W. A.; Victor, F.; Pollock, D. G. and Hayes, J. S.: J. Med. Chem., 31 (8), 1590-1595 (1988).
2046. Sharghi, H. and Kaboudin, B.: J. Chem. Res., Synop., (10), 628-629, 2678-2695 (1998).
2047. Löwe, W.; Elz, S.; Reiser, H. and Schott, S.: Arch. Pharm. (Weinheim), 327, 267-269 (1994).
2048. Watanabe, Y.; Yoshiwara, H. and Kanao, M.: J. Heterocycl. Chem., 30 (2), 445-451 (1993).
2049. Corse, J. and Ingraham, L. L.: J. Org. Chem., 16, 1345-1348 (1951).
2050. Joshi, K. C. and Giri, S.: J. Indian Chem. Soc., 39 (3), 185-187 (1962).
2051. Suter, C. M.; Lawson, E. J. and Smith, P. G.: J. Am. Chem. Soc., 61, 161-165 (1939).
2052. Gevorgyan, G. A.; Gabrielyan, S. A.; Apoyan, N. A.; Podol’skaya, L. P.; Sukasyan, R. S.; Sarkisyan, A. S.; Azlivyan, A. S; Akopyan, A. V. and Mndzhoyan, O. L.: Khim. Farm. Zh., 23 (12), 1478-1480 (1989); Chem. Abstr., 112, 172258n (1990).
2053. Gevorgyan, G. A.; Gabrielyan, S. A.; Vlasenko, E. V.; Durgaryan, L. K. and Mndzhoyan, O. L.: Khim. Farm. Zh., 21 (4), 419-425 (1987); Chem. Abstr., 107, 127109a (1987).
2054. Belanger, P. C.; Lau, C. K.; Williams, H. W. R.; Dufresne, C. and Scheigetz, J.: Can. J. Chem., 66 (6), 1479-1482 (1988).
2055. Kobayashi, S. and Karaishi, C.: Chem. Pharm. Bull., 10 (7), 1137-1141 (1962).
2056. Covello, M.; Piscopo, E. and Pepe, G.: Gazz. Chim. Ital., 88, 101-112 (1958).
2057. Mulchandani, N. B. and Shah, N. M.: Chem. Ber., 93, 1913-1918 (1960).
2058. Chen, F. C. and Chang, C. T.: J. Chin. Chem. Soc. (Taipei), 1, 156-158 (1954); Chem. Abstr., 49, 13932g (1955).
2059. Hirt, U. H.; Schuster, M. F. H.; French, A. N.; Wiest, O. G. and Wirth, T.: Eur. J. Org. Chem., (8), 1569-1579 (2001).
2060. Bohlmann, F. and Vorwerk, E.: Chem. Ber., 113, 261-266 (1980).
2061. Larock, R. C. and Yum, E. K.: Tetrahedron, 52 (8), 2743-2758 (1996).
2062. Sogawa, A.; Tsukayama, M.; Nozaki, H. and Nakayama, M.: Heterocycles, 43 (1), 101111 (1996).
2063. Kabalka, G. W.; Wang, L. and Pagni, R. M.: Tetrahedron, 57 (38), 8017-8028 (2001).
2064. Ahluwalia, V. K.; Prakash, C. and Gupta, R.: Tetrahedron, 38 (5), 609-611 (1982).
2065. Burke, J. M.; Scannell, R. T. and Stevenson, R.: Phytochemistry, 25 (5), 1248-1249 (1986).
2066. Gandhi, P. and Tiwari, R. D.: Curr. Sci., 47 (16), 576-577 (1978).
2067. Norris, R. K. and Sternhell, S.: Tetrahedron Lett., (2), 97-101 (1967).
2068. Vogel, A. I.: A Text Book of Practical Organic Chemistry, Third Edition, Longmans, London (1962).
2069. Masoud, Mamdouh S.; El-Dessouky, Mohamed A. and Haggag, Sawsan S.: Spectrosc. Lett., 18 (4), 251-266 (1985).
2070. Da Re, P.: Farmaco, Ed. Sci., 11, 662-669 (1956).
2071. Diehl, H.; Liggett, L. M.; Harrison, G. C.; Hach, C. C. and Curtis, R.: Iowa State Coll. J. Sci., 22, 91-109 (1947).
2072. Wittig, G.; Baugert, F. and Richter, H. E.: Justus Liebigs Ann. Chem., 446, 155-204 (1925).
2073. Allan, D. and London, J. D.: J. Chem. Soc., 821-825 (1949).
2074. Cushman, M.; Zhu, H.; Geahlen, R. L. and Kraker, A. J.: J. Med. Chem., 37 (20), 33533362 (1994).
2075. Kasahara, A.: Nippon Kagaku Zasshi, 79, 335-338 (1958); Chem. Abstr., 54, 5635i (1960).
2076. Lindemann, H. and Romanoff, S.: J. Prakt. Chem., 122, 214-231 (1929).
2077. Heslop, R. B. and Robinson, P. L.: J. Chem. Soc., 1271-1273 (1954).
2078. Katusumata, C. and Seguchi, K.: Nihon Yukagakkaishi, 45 (9), 857-863 (1996); Chem. Abstr., 125, 328002f (1996).
2079. Murata, H.; Ushio, H. and Furutani, A.: Brit. UK Pat. Appl. GB 2,298,861 (1996); Chem. Abstr., 126, 46965s (1997).
2080. Rajanna, K. C.; Solomon, F.; Ali, Mir Moazzam and Saiprakash, P. K.: Tetrahedron, 52 (10), 3669-3682 (1996).
2081. Raposo, C.; Luengo, A.; Almaraz, M.; Martin, M.; Mussons, M. L.; Caballero, M. C. and Moran, J. R.: Tetrahedron, 52 (37), 12323-12332 (1996).
2082. Gerecs, A.; Szell, T. and Windholz, M.: Acta Chim. Acad. Sci. Hung., 3, 459-467 (1953).
2083. Szell, T.: Chem. Ber., 91, 2609-2614 (1958).
2084. Szell, T.; Hajas, E. and Sipos, S.: Acta Phys. Chem., Szeged, 11, 47-50 (1965).
2085. Furka, A. and Szell, T.: Acta Univ. Szeged., Acta Phys. Chem., 6 (1-4), 116-121 (1960).
2086. Szell, T.; Furka, A. and Szilagyi, I.: J. Sci. Ind. Res., 18B, 323-325 (1959).
2087. Furka, A. and Szell, T.: Acta Univ. Szeged., Acta Phys. Chem., 6 (1-4), 122-125 (1960).
2088. Chaughuley, A. S. U. and Amin, G. C.: Sci. Cult., 19, 614 (1954).
2089. Szell, T.; Sipos, Gy and Szentgali, G.: Magy. Kem. Foly, 59, 148-151 (1953).
2090. Zagorevskii, V. A.; Zykov, D. A. and Orlova, E. K.: Zh. Obshch. Khim., 30 (12), 3894-3898 (1960); Chem. Abstr., 55, 22301f (1961).
2091. Klinke, P. and Gibian, H.: Chem. Ber., 94, 26-38 (1961).
2092. Du Crocq, H.; Lonsberg, R. J. J. C. and Salemink, C. A.: Recl. Trav. Chim. Pays-Bas, 93 (5), 139-142 (1974).
2093. Spada, A. and Casini, E.: Gazz. Chim. Ital., 80, 642-650 (1950).
2094. Brown, F. C.: J. Am. Chem. Soc., 68, 872-873 (1946).
2095. Gu, Shangxiang; Jing, Huanwang; Wu, Jigui and Liang, Yongmin: Synth. Commun., 27 (16), 2793-2797 (1997).
2096. Makela, O.; Karjalainen, K. and Potter, M.: Ann. Immunol. (Paris), 130C (2), 215-223 (1979).
2097. Miyoshi, S. and Ogawa, K.: PCT Int. Appl. WO 97 25,311 (1997); Chem. Abstr., 127, 161695m (1997).
2098. Banks, C. K. and Hamilton, C. S.: J. Am. Chem. Soc., 61, 357-360 (1939).
2099. Furlanetto, Richard W. and Kaiser, E. T.: J. Am. Chem. Soc., 95, 6786-6792 (1973).
2100. Pope, F. G.: Proc. Chem. Soc., London, 28, 331-332 (1912).
2101. Firouzabadi, N.; Iranpoor, N. and Zolfigol, M. A.: Synth. Commun., 27 (19), 3301-3311 (1997).
2102. Poirier, J.-M. and Votters, C.: Tetrahedron, 45 (5), 1415-1422 (1989).
2103. Nonoyama, N.; Chiba, K.; Hisatome, K.; Suzuki, H. and Shintani, F.: Tetrahedron Lett., 40 (38), 6933-6937 (1999).
2104. Zilberman, J.; Ioffe, D. and Gozlan, I.: Synthesis, (7), 659-660 (1992).
2105. Cavallini, G.; Massarani, E.; Mauri, L.; Nardi, D.; Pacchiano, F. and Mantegazza, P.: Boll. Chim. Farm., 103 (1), 48-64 (1964).
2106. Rapoport, M.; Hancock, C. K. and Meyers, E. A.: J. Am. Chem. Soc., 83, 3489-3494 (1961).
2107. Stockhausen, F. and Gattermann, L.: Ber. Dtsch. Chem. Ges., 25, 3521-3525 (1892).
2108. Szell, T.; Sweeney, M.; Chadha, S. and Soher, P.: Chem. Ber., 122 (4), 795-796 (1989).
2109. Kad, G. L.; Trehan, I. R.; Kam, J.; Nayyar, S.; Arora, A. and Brar, J. S.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 35B (7), 734-736 (1996).
2110. Borsche, W.: Ber. Dtsch. Chem. Ges., 50, 1339-1355 (1917).
2111. Zolfigol, M. A.; Ghaemi, E. and Madrakian, E.: Synlett, (2), 191-194 (2003).
2112. Zolfigol, M. A.; Madrakian, E. and Ghaemi, E.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 40B (12), 1191-1195 (2001).
2113. Beeley, L. J.; Thompson, M.; Dean, D. K.; Kotecha, N. R.; Berge, J. M. and Ward, R. W.: PCT Int. Appl. WO 96 04,233 (1996); Chem. Abstr., 125, 58092x (1996).
2114. Forstner, H. J. L.; Flagan, R. C. and Seinfeld, J. H.: Environ. Sci. Technol., 31 (5), 13451358 (1997); Chem. Abstr., 126, 215869w (1997).
2115. Ridderstad, A.; Nossal, G. J. V. and Tarlinton, D. M.: J. Immunol., 157 (8), 3357-3365 (1996); Chem. Abstr., 125, 273551b (1996).
2116. Vong, A. K. K.; Thompson, M.; Evans, J. M. and Morgan, H. K. A.: PCT Int. Appl. WO 95 34,547 (1995); Chem. Abstr., 124, 260843c (1996).
2117. Wang, J.; Tang, H. T.; Zhang, P.; Mak, T. C. W. and Zhang, Z. Y.: Chin. Chem. Lett., 9 (10), 899-902 (1998).
2118. Washburn, W. N.; Girotra, R. N.; Sher, P. M.; Mikkilineni, A. B.; Poss, K. M.; Mathur, A.; Gavai, A. and Bisacchi, G. S.: Eur. Pat. Appl. EP 659,737 (1995); Chem. Abstr., 124, 8408p (1996).
2119. Yang, Qing-chuan; Li, Hong-ming; Tang, You-qi and Huang, Wen-long: Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C52 (11), 2920-2922 (1996).
2120. Yale, H. L. and Bernstein, J.: U.S. 3,723,463 (1973); Chem. Abstr., 79, P42582c (1973).
2121. Boykin, D. W.: J. Mol. Struct., 295 (1-3), 39-45 (1993); Chem. Abstr., 119, 180275a (1993).
2122. Butenandt, A.; Biekert, E.; Däuble, M. and Köhrmann, K. H.: Chem. Ber., 92, 2172-2181 (1959).
2123. Chawla, H. M. and Mittal, R. S.: Curr. Sci., 52 (24), 1189-1190 (1983).
2124. Amin, G. C.; Chaughuley, A. S. U. and Jadhav, G. V.: J. Indian Chem. Soc., 36 (9), 617-621 (1959).
2125. Seshadri, S. and Trivedi, P. L.: J. Org. Chem., 22, 1633-1636 (1957).
2126. Naik, R. M.: Ph. D. Thesis, Bombay University, India (1955).
2127. Chandrasekhar: Ph. D. Bombay University (1944).
2128. Baker, W.: J. Chem. Soc., 1684-1692 (1934).
2129. Nencki, M. and Sieber, N.: J. Prakt. Chem., 23, 147-156 (1881).
2130. Omer, R. E. and Hamilton, C. S.: J. Am. Chem. Soc., 59, 642-644 (1937).
2131. Naik, R. M. and Thakor, V. M.: Proc. Indian Acad. Sci., 37A, 774-783 (1953).
2132. Amin, G. C.; Chaughuley, A. S. U. and Jadhav, G. V.: J. Indian Chem. Soc., 36 (12), 833-837 (1959).
2133. Marlow, W.: Chem. Ind. (London), 51, 1838 (1969).
2134. Seshadri, S. and Trivedi, P. L.: J. Org. Chem., 23, 1735-1738 (1958).
2135. Bernauer, Karl; Borgulya, Janos; Bruderer, Hans; Da Prada, Mose and Zurcher, Gerhard: Pat. Specif. (Aust.) AU 603,788 (1990); Chem. Abstr., 115, 49134d (1991).
2136. Backstrom, R.; Honkanen, E.; Pippuri, A.; Kairisalo, P.; Pystynen, J.; Heinola, K.; Nissinen, E.; Linden, I. B.; Mannisto, P. T.; Kaakkola, S. and Pohto, P.: J. Med. Chem., 32 (4), 841-846 (1989).
2137. Borgulya, J.; Bruderer, H.; Bernauer, K.; Zuercher, G. and Da Prada, M.: Helv. Chim. Acta, 72 (5), 952-968 (1989).
2138. Yoshida, S.; Asami, T.; Tsuchihashi, Y.; Uji-Ie, M.; Yoneyama, K. and Takahashi, N.: Agric. Biol. Chem., 53 (1), 229-233 (1989).
2139. Acton, J. P.; Donnelly, D. J. and Donnelly, J. A.: Monatsh. Chem., 113 (1), 73-79 (1982).
2140. Hashimoto, S. and Wakatsuka, H.: Jpn. Kokai Tokkyo Koho JP 05, 279,305 [93,279,305] (1993); Chem. Abstr., 120, 163700p (1994).
2141. Patel, D. R. and Patel, S. R.: J. Indian Chem. Soc., 45 (8), 703-709 (1968).
2142. Szekeres, L. and Karsay, B.: Gazz. Chim. Ital., 77, 471-473 (1947).
2143. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 2926-2929 (1958).
2144. Matsui, K. and Motoi, M.: Bull. Chem. Soc. Jpn., 46 (2), 565-569 (1973).
2145. Ogata, Y. and Tabuchi, H.: Tetrahedron, 20 (7), 1661-1666 (1964).
2146. Simonyi, Istvan and Tokar, Geza: Magy. Kem. Foly., 63, 11-14 (1957).
2147. Yamamoto, J.; Asano, M.; Okamoto, Y. and Sugita, K.: Chem. Express, 4 (1), 37-40 (1989).
2148. Lu, H.: Huaxue Shiji, 15 (4), 254 (1993); Chem. Abstr., 120, 133957k (1994).
2149. Blatt, A. H.: "Organic Reactions", Wiley, New-York, 1942, Vol. 1, Chapter 11, pp. 342-369.
2150. Meisenheimer, J. and Liang-Han Chou: Justus Liebigs Ann. Chem., 539, 78-92 (1939).
2151. Rosenmund, K. W. and Schnurr, W.: Justus Liebigs Ann. Chem., 460, 56-98 (1928).
2152. Tewari, S. S. and Tripathi, B. N.: J. Indian Chem. Soc., 33 (6), 613-614 (1956).
2153. Valyashko, N. A. and Rozum, Yu. S.: Zh. Obshch. Khim., 17, 755-782 (1947); Chem. Abstr., 42, 2588g (1948).
2154. Businelli, M.: Farm. Sci. e tec. (Pavia), 5, 522-527 (1950); Chem. Abstr., 45, 3819f (1951).
2155. Freudenberg, K. and Orthner, L.: Ber. Dtsch. Chem. Ges., 55, 1748-1751 (1922).
2156. Prey, V. and Pieh, G.: Monatsh. Chem., 80, 790-800 (1949).
2157. Szuchnik, A.; Swiderski, J. and Czerska, W.: Rocz. Chem., 32, 255-264 (1958); Chem. Abstr., 52, 17718h (1958).
2158. Turbina, A. I. and Sinyavskii, V. G.: Metody Polucheniya Khim. Reaktivov i Preparatov, Gos. Kom. Sov. Min. SSSR po Khim., 10, 86-89 (1964); Chem. Abstr., 65, 8807f (1966).
2159. Zagorevskii, V. A.; Zykov, D. A. and Pronina, L. P.: Zh. Obshch. Khim., 29, 1026-1030 (1959); Chem. Abstr., 54, 1511b (1960).
2160. Auwers, K. v.: Justus Liebigs Ann. Chem., 408, 212-254 (1915).
2161. Auwers, K. v.; Lechner, M. and Bundesmann, H.: Ber. Dtsch. Chem. Ges., 58, 36-51 (1925).
2162. Franklin, C. S.; Morris, D. S. and Smith, S. D.: J. Chem. Soc., 1683-1686 (1954).
2163. Fries, K. and Pfaffendorf, W.: Ber. Dtsch. Chem. Ges., 43, 212-219 (1910).
2164. Hocking, M. B.: J. Chem. Technol. Biotechnol., 30 (11), 626-641 (1980).
2165. Morton, R. A. and Stubbs, A. L.: J. Chem. Soc., 1347-1359 (1940).
2166. Yamamoto, J.; Kurokawa, H. and Sugita, K.: Nippon Kagaku Kaishi, 11, 2107-2110 (1985).
2167. Khanna, R. N.; Singh, K. P. and Sharma, J.: Org. Prep. Proced. Int., 24 (6), 687-690 (1992).
2168. Horii, Z.; Tsuji, J. and Inoi, T.: Yakugaku Zasshi, 77, 252-255 (1957); Chem. Abstr., 51, 8671f (1957).
2169. Yoshino, T.; Kijima, I. and Hashimura, I.: J. Chem. Soc. Jpn., 57, 898-900 (1954).
2170. Kobayashi, O.; Mitamura, S. and Kawada, A.: Jpn. Kokai Tokkyo Koho JP 06,135,884 [94,135,884] (1994); Chem. Abstr., 121, 179252a (1994).
2171. Coulthard, C. E.; Marshall, J. and Pyman, F. L.: J. Chem. Soc., 280-291 (1930).
2172. Nakazawa, K. and Kusuda, K.: J. Pharm. Soc. Jpn., 75, 257-260 (1955).
2173. Onoda, Takeru and Wada, Keisuke: Japan Kokai 76 08,231 (1976); Chem. Abstr., 84, 164449p (1976).
2174. Rao, Y. V. S.; Kulkarni, S. J.; Subrahmanyam, M. and Rao, A. V. R., Tetrahedron Lett., 34 (48), 7799-7800 (1993).
2175. Vogt, A. H. G. and Kouwenhoven, H. W.: Collect. Czech. Chem. Commun., 57 (4), 853-861 (1992).
2176. Cundy, C. S.; Higgins, R.; Kibby, S. A. M.; Lowe, B. M. and Paton, R. M.: Tetrahedron Lett., 30 (17), 2281-2284 (1989).
2177. Pouilloux, Y.; Gnep, N. S.; Magnoux, P. and Perot, G.: J. Mol. Catal., 40 (2), 231-233 (1987).
2178. Sakata, Yasutada and Hashimoto, Tadashi: Yakugaku Zasshi, 79, 878-880 (1959); Chem. Abstr., 54, 358e (1960).
2179. Klaman, D.: Justus Liebigs Ann. Chem., 583, 63-80 (1953).
2180. Pauly, H. and Lockemann, K.: Ber. Dtsch. Chem. Ges., 48, 28-32 (1915).
2181. Cullinane, N. M. and Edwards, B. F. R.: J. Appl. Chem., 9, 133-136 (1959).
2182. Thomas, L. H. and Vlismas, T.: J. Chem. Soc., 612-615 (1963).
2183. Leonte, M.; Beschia, M.; Pascaru, E. and Stoica, M.: Stud. Univ. Babès-Bolyai, Chem., 8 (1), 291-296 (1963).
2184. Anjaneyulu, A. S. R.; Mallavadhani, U. V.; Venkateswarlu, Y. and Prasad, A. V. R.: Indian J. Chem., Sect. B, 26B, 823-826 (1987).
2185. Friedlaender, P. and Neudörfer, J.: Ber. Dtsch. Chem. Ges., 30, 1077-1083 (1897).
2186. Tasaki, T.: Acta Phytochim., 3, 259-315 (1927).
2187. Tahara, Y.: Ber. Dtsch. Chem. Ges., 25, 1306-1310 (1892).
2188. So, Ying-Hung; Becker, James Y. and Miller, Larry L.: J. Chem. Soc., Chem. Commun., (7), 262-263 (1975).
2189. Simonis, H. and Lehmann, C. B. A.: Ber. Dtsch. Chem. Ges., 47, 692-699 (1914).
2190. Heywang, R. and Kostanecki, S. v.: Ber. Dtsch. Chem. Ges., 35, 2887-2891 (1902).
2191. Anschütz, R. and Scholl, M. E.: Justus Liebigs Ann. Chem., 379, 333-350 (1911).
2192. Syamala, M. S.; Rao, B. N. and Ramamurthy, V.: Tetrahedron, 44 (23), 7234-7242 (1988).
2193. Hageman, H. J.: Tetrahedron, 25 (24), 6015-6024 (1969).
2194. Ohara, M. and Watanabe, K.: Angew. Chem., Int. Ed. Engl., 14 (12), 820 (1975).
2195. Veglia, A. V.; Sanchez, A. M. and de Rossi, R. H.: J. Org. Chem., 55, 4083-4086 (1990).
2196. Anderson, J. C. and Reese, C. B.: J. Chem. Soc., 1781-1784 (1963).
2197. Anderson, J. C. and Reese, C. B.: Proc. Chem. Soc., London, 217 (1960).
2198. Bradshaw, J. S.; Loveridge, E. L. and White, L.: J. Org. Chem., 33, 4127-4132 (1968).
2199. Anderson, J. C. and Reese, C. B.: Tetrahedron Lett., (1) 1-4 (1962).
2200. Dunstan, Wyndham R. and Henry, T. A.: J. Chem. Soc. Trans., 75, 66-71 (1899).
2201. La Face, D.: Helv. Chim. Acta, 33, 249-250 (1950).
2202. Hunsberger, I. M.: J. Am. Chem. Soc., 72, 5626-5635 (1950).
2203. Matsumoto, Seiichiro; Kobayashi, Hiroshi and Ueno, Keihei: Bull. Chem. Soc. Jpn., 42 (4), 960-968 (1969).
2204. Tasaki, T.: Chem. Zentralbl., II, 1949-1951 (1927).
2205. Forsen, S.; Nilsson, M. and Wachtmeister, C. A.: Acta Chem. Scand., 16 (3), 583-590 (1962).
2206. Hansen, P. E.; Christoffersen, M. and Bolvig, S.: Magn. Reson. Chem., 31, 893-902 (1993).
2207. Hay, R. W. and Williams, P. P.: J. Chem. Soc., 2270-2272 (1964).
2208. Pala, G.: Nature (London), 204, 1190-1191 (1964).
2209. Porte, A. L.; Gutowsky, H. S. and Hunsberger, I. M.: J. Am. Chem. Soc., 82, 5057-5063 (1960).
2210. Hansen, P. E.: Magn. Reson. Chem., 24, 903-910 (1986).
2211. Reuben, J.: J. Am. Chem. Soc., 108, 1735-1738 (1986).
2212. Hunsberger, I. M.; Lednicer, D.; Gutowsky, H. S.; Don Bunker, L. and Taussig, P.: J. Am. Chem. Soc., 77, 2466-2475 (1955).
2213. Cram, D. J. and Cranz, F. W.: J. Am. Chem. Soc., 72, 595-600 (1950).
2214. Enebäck, C.: Acta Chem. Scand., 11 (5), 895-897 (1957).
2215. Horton, W. J. and Spence, J. T.: J. Am. Chem. Soc., 80, 2453-2456 (1958).
2216. Martin, R. and Krausz, F.: C. R. Acad. Sci., 258, 5614-5615 (1964).
2217. Wymann, W. E.; Davis, R.; Patterson, J. W., Jr. and Pfister, J. R.: Synth. Commun., 18 (12), 1379-1384 (1988).
2218. Biginelli, P.: Gazz. Chim. Ital., 24, 437-444 (1984).
2219. Dhami, K. S. and Stothers, J. B.: Can. J. Chem., 43, 479-497 (1965).
2220. Eykman, J. F.; Bergema, F. and Henrard, I. T.: Chem. Zentralbl., 76 (1), 814-817 (1905).
2221. Pfeiffer, P.: Justus Liebigs Ann. Chem., 383, 92-155 (1911).
2222. Rupe, H. and Majewski, K. v.: Ber. Dtsch. Chem. Ges., 332, 3401-3410 (1900).
2223. Valyashko, N. A. and Lutsky, A. E.: J. Gen. Chem. USSR, (Eng. Transl.), 21 1029-1047 (1951).
2224. Renson, M. and Huls, R.: Bull. Soc Chim. Belg., 61, 599-608 (1952).
2225. Giovannini, E.; Rosales, J. and de Souza, B.: Helv. Chim. Acta, 54 (7), 2111-2113 (1971).
2226. Bruce, J. M. and Roshan-Ali, Y.: J. Chem. Res., Synop., (7), 193, 2564-2572 (1981).
2227. Sogawa, S.; Nihro, Y.; Ueda, H.; Izumi, A.; Miki, T.; Matsumoto, H. and Satoh, T.: J. Med. Chem., 36 (24), 3904-3909 (1993).
2228. Maciejewicz, W.; Daniewski, M.; Dzido, T. H. and Bal, K.: Chem. Anal. (Warsaw), 47 (1), 21-30 (2002); Chem. Abstr., 137, 30134m (2002).
2229. Kim, Young-Hoi; Kim, Sam-Kon; Kim, Kun-Soo and Lee, Yun-Hwan: Han'guk Nonghwa Hakhoechi, 44 (4), 262-268 (2001); Chem. Abstr., 137, 124699b (2002).
2230. Aptula, A. O.; Netzeva, T. I.; Valkova, I. V.; Cronin, M. T. D.; Schultz, T. W.; Kühne, R. and Schüürmann, G.: Quant. Struct.-Act. Relat., 21 (1), 11-22 (2002); Chem. Abstr., 137, 104945d (2002).
2231. Ren, S.: Environ. Toxicol., 17 (2), 119-127 (2002); Chem. Abstr., 137, 42773g (2002).
2232. Yoshida, Z. and Haruta, M.: Tetrahedron Lett., (37), 2631-2636 (1964).
2233. Auwers, K. v. and Mauss, W.: Justus Liebigs Ann. Chem., 460, 240-277 (1928).
2234. B. Ramesh, Babu: Indian IN 171,970 (1993); Chem. Abstr., 121, 35018 f (1994).
2235. Huber, H. and Brunner, K.: Monatsh. Chem., 56, 322-330 (1930).
2236. Dann, O. and Mylius, G.: Justus Liebigs Ann. Chem., 587, 1-15 (1954).
2237. Davenport, K. G. and Hilton, C. B.: US 4,560,789 (1985); Chem. Abstr., 104, 148552t (1986).
2238. Simons, J. H.; Archer, S. and Randall, D. I.: J. Am. Chem. Soc., 62, 485-486 (1940).
2239. Snyder, H. R. and Elston, C. T.: J. Am. Chem. Soc., 77, 364-366 (1955).
2240. Gardner, P. D.: J. Am. Chem. Soc., 77, 4674-4675 (1955).
2241. Nakazawa, K. and Matsuura, S.: J. Pharm. Soc. Jpn., 74, 69-72 (1954).
2242. Mani, R.; Herbert, L. and Manise, D.: J. Tenn. Acad. Sci., 66 (1), 1-8 (1991); Chem. Abstr., 114, 163805c (1991).
2243. Corson, B. B.; Heintzelman, W. J.; Schwartzman, J. H.; Tiefenthal, H. E.; Lokken, R. J.; Nickels, J. E.; Atwood, G. R. and Pavlik, F. J.: J. Org. Chem., 23, 544-549 (1958).
2244. Ma, J.; Ji, Y. and Chen, H.: Huaxue Shiji, 13 (3), 191; 152 (1991); Chem. Abstr., 115, 231796y (1991).
2245. Michael, A. and Palmer, G. M.: Am. Chem. J., 7, 275-277 (1885).
2246. Schmid, H. and Schmid, K.: Helv. Chim. Acta, 35 (6), 1879-1890 (1952).
2247. Thompson, R. B.: US 2,483,566 (1949); Chem. Abstr., 43, 1539c (1950).
2248. McCoubrey, A. and Iyengar, N. K.: J. Chem. Soc., 3430-3433 (1951).
2249. Bhavsar, M. D. and Desai, V. B.: Man-Made Text. India, 31 (12), 529-535, 556 (1988).
2250. Booth, B. L. and Noori, G. F. M.: J. Chem. Soc., Perkin Trans. 1, (12), 2894-2900 (1980).
2251. Auwers, K. v. and Betteridge, F. H.: Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 32, 39-45 (1900).
2252. Hartmann, C. and Gattermann, L.: Ber. Dtsch. Chem. Ges., 25, 3531-3534 (1892).
2253. Klingel, J.: Ber. Dtsch. Chem. Ges., 18, 2687-2706 (1885).
2254. Perkin, W. H.: J. Chem. Soc., 546-549 (1889).
2255. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 1311-1312 (1958).
2256. De Pascual, T. J.; Galinanes, B; Diaz, F. and Grande, M.: An. Quim., 75 (12), 1000-1001 (1979).
2257. Kariyone, T.; Takahashi, M.; Ito, T. and Masutani, K.: Yakugaku Zasshi, 79, 394-395 (1959); Chem. Abstr., 53, 14096i (1959).
2258. Tanret, M.: Bull. Soc. Chim. Fr., 944-949 (1894).
2259. Kariyone, T. and Sawada, T.: Yakugaku Zasshi, 78, 1020-1022 (1958); Chem. Abstr., 53, 3203, 3204 (1959).
2260. Fukui, Y. and Kawano, N.: J. Am. Chem. Soc., 81, 6331 (1959).
2261. Osswald, W. F.; Zieboll, S.; Schütz, W.; Firl, J. and Elstner, E. F.: Z. Pflanzenkrankh. Pflanzenschutz, 94 (6), 572-577 (1987).
2262. Vongerichten, E.: Justus Liebigs Ann. Chem., 318, 121-136 (1901).
2263. Vongerichten, E.: Ber. Dtsch. Chem. Ges., 33, 2334-2342 (1900).
2264. Vongerichten, E.: Ber. Dtsch. Chem. Ges., 33, 2904-2909 (1900).
2265. Fischer, A.; Leary, G. J.; Topsom, R. D. and Vaughan, J.: J. Chem. Soc., 846-851 (1967).
2266. Clemmensen, E.: Ber. Dtsch. Chem. Ges., 47, 51-63 (1914).
2267. Suzuki, T.; Yano, A.; Okada, M. and Ishii, Y.: Nippon Kagaku Zasshi, 81 (2), 301-305 (1960); Chem. Abstr., 56, 434e (1962).
2268. Campbell, T. W. and Coppinger, G. M.: J. Am. Chem. Soc., 73, 2708-2712 (1951).
2269. Lemon, H. W.: J. Am. Chem. Soc., 69, 2998-3000 (1947).
2270. Appleton, R. A.; Bantick, J. R.; Chamberlain, T. R.; Hardern, D. N.; Lee, T. B. and Pratt, A. D.: J. Med. Chem., 20 (3), 371-379 (1977).
2271. Sprecher, A. v. and Beck, A.: Eur. Pat. Appl. EP 335,315 (1989); Chem. Abstr., 112, 118648b (1990).
2272. Coates, W. J. and Flynn, S. T.: Can. Pat. Appl. CA 2,027,169 (1991); Chem. Abstr., 115, 135931t (1991).
2273. Atkinson, J. G.; Guindon, Y. and Lau, C. K.: Eur. Pat. Appl. EP 146,243 (1985); Chem. Abstr., 103, 215151f (1985).
2274. Philion, R. E.: U.S. US 4,695,589 (1987); Chem. Abstr., 109, 54475w (1988).
2275. Sterling Drug, Inc.: Brit. 1,544,872 (1979); Chem. Abstr., 92, 163686s (1980).
2276. Forsskahl, I.; Popoff, T. and Theander, O.: Carbohydr. Res., 48 (1), 13-21 (1976).
2277. Awad, W. I.; El-Neweihy, M. F. and Selim, S. F.: J. Org. Chem., 23, 1783-1784 (1958).
2278. Baker, W. and Smith, A. R.: J. Chem. Soc., 346-348 (1936).
2279. Klages,: Ber. Dtsch. Chem. Ges. 36, 3585-3597 (1903).
2280. Krannichfeldt, H.: Ber. Dtsch. Chem. Ges., 46, 4016-4025 (1913).
2281. Posner, T. v.: Justus Liebigs Ann. Chem., 389, 1-120 (1912).
2282. Jefferson, A. and Wangchareontrakul, S.: Aust. J. Chem., 38 (4), 605-614 (1985).
2283. Popoff, T. and Theander, O.: Carbohydr. Res., 22 (1), 135-149 (1972).
2284. Doppler, T.; Schmid, H. and Hansen, H. J.: Helv. Chim. Acta, 62 (1), 314-325 (1979).
2285. Georgarakis, M.; Doppler, T.; Märky, M.; Hansen, H. J. and Schmid, H.: Helv. Chim. Acta, 54 (8), 2916-2920 (1971).
2286. Boehme, W. R. and Scharpf, W. G.: J. Org. Chem., 26, 1692-1695 (1961).
2287. Pohl, L. R.; Haddock, R. Garland, W. A. and Trager, W. F.: J. Med. Chem., 18 (5), 513-519 (1975).
2288. Huang, D.-S. and Ting, S.-H.: J. Chem. Res., Synop., (12), 500-501 (1994).
2289. Claus, A. and Huth, M.: J. Prakt. Chem., 53, 39-42 (1896).
2290. Crépieux, M. P.: Bull. Soc. Chim. Fr., 151-161 (1891).
2291. Drake, N. L.; Anspon, H. D. and Mozingo, R.: Org. Synth., Coll. Vol. 3, 761-762 (1960).
2292. Johnson, T. B. and Lane, F. W.: J. Am. Chem. Soc., 43, 348-360 (1921).
2293. Kirialov, N. P.: Zh. Obshch. Khim., 16, 1527-1534 (1946).
2294. Robinson, R. and Shah, R. C.: J. Chem. Soc., 1491-1498 (1934).
2295. Ruggeri, G.; Bianchi, M. and Aglietto, M.: Chim. Ind. (Milan), 68 (5), 97-102 (1986).
2296. Tasaki, T.: Acta Phytochim., 2, 49-73 (1925).
2297. Mezheritskii, V. V. and Dorofeenko, G. N.: Zh. Org. Khim., 5 (3), 515-517 (1969).
2298. Oelschläger, H.: Arch. Pharm. (Weinheim, Ger.), 288, 102-113 (1955).
2299. Nakazawa, K.: J. Pharm. Soc. Jpn., 74, 836-839 (1954).
2300. Hinkel, L. E. and Treharne, G. J.: J. Chem. Soc., 866-867 (1945).
2301. Hoesch, K. and Schulze-Tegel, M.: Ber. Dtsch. Chem. Ges., 48, 1122-1133 (1915).
2302. Morais, A. A.; Braz Fo, R. and Fraiz, S. V., Jr., Phytochemistry, 28 (1), 239-242 (1988).
2303. Zilberman, E. N. and Rybakova, N. A.: Zh. Obshch. Khim., 30 (6), 1992-1996 (1960).
2304. Zilberman, E. N. and Rybakova, N. A.: Zh. Obshch. Khim., 32 (2), 591-596 (1962).
2305. Killelea, J. R. and Lindwall, H. G.: J. Am. Chem. Soc., 70, 428 (1948).
2306. Dorofeenko, G. N. and Tkachenko, V. V.: Khim. Geterotsikl. Soedin., 2, 176-180 (1974); Chem. Abstr., 81, 13347r (1974).
2307. Israelstam, S. S. and Stephen, H.: J. S. Afr. Chem. Inst., 26, 41-48 (1943).
2308. Desai, R. D. and Ekhlas, M.: Proc. Indian Acad. Sci., 8A, 194-201 (1938).
2309. Rosenmund, K. W. and Schulz, H.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 265, 308-319 (1927).
2310. Eykman, J. F.: Chem. Weekbl., 31, 453-461 (1904).
2311. Eykman, J. F.: Chem. Zentralbl., I, 1597 (1904).
2312. Desai, R. D. and Mavani, C. K.: J. Sci. Ind. Res., 12B, 236-239 (1953).
2313. Mahal, H. S. and Venkataraman, K.: J. Chem. Soc., 616-617 (1933).
2314. Gulati, K. C. and Venkataraman, K.: J. Chem. Soc., 2376-2381 (1931).
2315. Pathak, V. P. and Khanna, R. N.: Synthesis, (11), 882-883 (1981).
2316. Nagai, W. N.: Ber. Dtsch. Chem. Ges., 24, 2847-2853 (1891).
2317. Pechmann, H. v. and Duisberg, C.: Ber. Dtsch. Chem. Ges., 16, 2119-2128 (1883).
2318. Bülow, C. and Wagner, H.: Ber. Dtsch. Chem. Ges., 34, 1782-1804 (1901).
2319. Mody, C. S. and Shah, R. C.: Proc. Indian Acad. Sci., 34A, 77-87 (1951).
2320. Setalvad, J. I.; Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 33 (4), 249-252 (1956).
2321. Shah, N. M. and Amin, G. C.: Curr. Sci., 21, 246 (1952).
2322. Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 29 (5), 351-356 (1952).
2323. Yoshikawa, M.; Harada, E.; Kawaguchi, A.; Yamahara, J.; Murakami, N. and Kitagawa, I.: Chem. Pharm. Bull., 41 (3), 630-632 (1993).
2324. Jain, A. C.; Arya, P. and Nayyar, N. K.: Indian J. Chem., Sect. B, 23B (11), 1030-1035 (1984).
2325. Jain, A. C. and Arya, P.: Indian J. Chem., Sect. B, 24B (10), 1015-1022 (1985).
2326. Alves de Lima, R. and Delle Monache, G.: Rend. Accad. Naz. 40 [Quaranta], 3, 181-191 (1978).
2327. Alves de Lima, R.; Delle Monache, G. and Botta, B.: Rev. Latinoam. Quim., 13 (2), 61-64 (1982).
2328. Patra, A.; Ghosh, G.; Sengupta, P. K. and Nath, S.: Magn. Reson. Chem., 25 (8), 734-736 (1987).
2329. Pelter, A.; Ward, R. S. and Bass, R. J.: J. Chem. Soc., Perkin Trans. 1, (6), 666-668 (1978).
2330. Cram, D. J.: J. Am. Chem. Soc., 70, 4240-4243 (1948).
2331. Gjertsen, F. B.; Solheim, E. and Scheline, R. R.: Xenobiotica, 18 (2), 225-234 (1988).
2332. Al-Ani, H. A. M. and Dewick, P. M.: J. Chem. Soc., Perkin Trans. 1, (12), 2831-2838 (1984).
2333. Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 25 (8), 377-384 (1948).
2334. Amin, G. C.; Shah, N. M.; Schreiber, R. S. and Prichard, W. W.: Org. Synth., 28, 42-43 (1948); Coll. vol. 3, 280-281 (1965).
2335. Desai, R. D. and Mavani, C. K.: Curr. Sci., 10, 524 (1941).
2336. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 15A, 11-15 (1942).
2337. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 25A, 353-358 (1947).
2338. Misra, G. C.; Sharma, S. D. and Joshi, G. C.: Labdev, Part A, 6A (3), 117-120 (1968).
2339. Rosenmund, K. W. and Lohfert, H.: Ber. Dtsch. Chem. Ges., 61, 2601-2607 (1928).
2340. Schreiber, R. S. and Prichard, W. W.: Org. Synth., Coll. Vol. 3, 280-281 (1960).
2341. Shahane, R. Y.: Curr. Sci., 10, 523-524 (1941).
2342. Rao, P. S. and Gakhar, K. L.: Proc. Indian Acad. Sci., 30A, 327-328 (1949).
2343. Sharma, P. V. and Khanna, R. N.: Acta Chim. Hung., 20 (12), 159-162 (1985).
2344. Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 27 (10), 531-534 (1950).
2345. Mauthner, F.: J. Prakt. Chem., 149, 324-327 (1937).
2346. Nencki, M. and Schmid, W.: J. Prakt. Chem., 23, 546-550 (1881).
2347. Russel, A. and Clark, S. F.: J. Am. Chem. Soc., 61, 2651-2658 (1939).
2348. Guzman-Lopez, E.; Rosas, N. and Walls, F.: Bol. Inst. Quim. Univ. Nac. Auton. Mex., 22, 125-151 (1970).
2349. Kurosawa, E.: Bull. Chem. Soc. Jpn., 34, 300-304 (1961).
2350. Kurosawa, E.: Nippon Kagaku Zasshi, 78, 312 (1957); Chem. Abstr., 54, 374i (1960).
2351. Kloetzel, M. C.; Dayton, R. P. and Abadir, B. Y.: J. Org. Chem., 20, 38-49 (1955).
2352. Goris, A. and Canal, H.: C. R. Acad. Sci., 200, 1990-1992 (1935).
2353. Raval, A. A. and Shah, N. M.: J. Org. Chem., 21, 1408-1411 (1956).
2354. Reynolds, D. D.; Cathcart, J. A. and Williams, J. L. R.: J. Org. Chem., 18, 1709-1715 (1953).
2355. Maruyama, K. and Matano, Y.: Bull. Chem. Soc. Jpn., 62 (12), 3877-3885 (1989).
2356. Klinger, H. and Kolvenbach, W.: Ber. Dtsch. Chem. Ges., 31, 1214-1216 (1898).
2357. Bruce, J. M. and Roshan-Ali, Y.: J. Chem. Soc., Perkin Trans. 1, (10), 2677-2679 (1981).
2358. Baker, W. and Flemons, G. F.: J. Chem. Soc., 2138-2143 (1948).
2359. Baker, W.: J. Chem. Soc., 1953-1954 (1934).
2360. Nakazawa, K.: J. Pharm. Soc. Jpn., 59, 297-302 (1939).
2361. Wallenfels, K.: Ber. Dtsch. Chem. Ges., 75, 785-793 (1942).
2362. Fisons Pharmaceuticals Ltd.: Fr. 1,559,722 (1969); Chem. Abstr., 72, 43452c (1970).
2363. Russel, A.; Frye, J. R.; Shriner, R. L. and Witte, M.: Org. Synth., 21, 22-27 (1941).
2364. Shamshurin, A. A. and Revenko, Yu. M.: Izv. Akad. Nauk Mold. SSR, (10), 86-97 (1962); Chem. Abstr., 62, 16102 f (1965).
2365. Shriner, R. L. and Witte, M.: Org. Synth., Coll. Vol. 3, 281-285 (1960).
2366. Sugasawa, S.: J. Chem. Soc., 1483-1484 (1934).
2367. Sugasawa, S.: Proc. Imp. Acad. (Tokyo), 10, 338-340 (1934).
2368. Adams, C. J. and Main, L.: Tetrahedron, 47 (27), 4959-4978 (1991).
2369. Limaye, D. B. and Gangal, D. D.: Rasayanam, 1, 64-68 (1936); Chem. Abstr., 31, 2182^{3} (1937).
2370. Russel, A.; Frye, J. R. and Mauldin, W. L.: J. Am. Chem. Soc., 62, 1441-1443 (1940).
2371. Limaye, D. B. and Munje, R. H.: Rasayanam, 1, $80-86$ (1937); Chem. Abstr., 32, 2096^{1} (1938).
2372. Mauthner, F.: J. Prakt. Chem., 139, 290-292 (1934).
2373. Gatenbeck, S. and Brunsberg, U.: Acta Chem. Scand., 20 (9), 2334-2338 (1966).
2374. Bobik, A.; Holder, G. M.; Ryan, A. J. and Wiebe, L. I.: Xenobiotica, 5 (2), 65-72 (1975).
2375. Allport, D. C. and Bu'Lock, J. D.: J. Chem. Soc., 654-662 (1960).
2376. Mraz, V.: Sb. Pr. Vyzk. Chem. Vyuziti Uhli, Dehtu Ropy, 7, 21-39 (1967); Chem. Abstr., 68, 95436n (1968).
2377. Moed, H. D.; Van Dijk, J. and Niewind, H.: Recl. Trav. Chim. Pays-Bas, 77, 273-282 (1058).
2378. Zakis, G.; Pumpura, L. and Neiberte, B.: Latv. PSR Zinat. Akad. Vestis, Kim. Ser., 5, 627-632 (1970); Chem. Abstr., 74, 42078q (1971).
2379. Neitzel, E.: Ber. Dtsch. Chem. Ges., 24, 2863-2868 (1891).
2380. Howton, D. R.; Mead, J. F. and Clark, W. G.: J. Am. Chem. Soc., 77, 2896-2897 (1955).
2381. Perkin, A. G. and Horsfall, L. H.: J. Chem. Soc., 77, 1314-1324 (1900).
2382. Lange, R. G.: J. Org. Chem., 27, 2037-2039 (1962).
2383. Birnbaum, L. S. and Powell, G.: J. Org. Chem., 4, 139-141 (1939).
2384. Dzierzgowski, S.: Zh. Russ. Fiz. Khim. O-va, 1, 154-163 (1893).
2385. Freudenberg, K. and Maitland, P.: Justus Liebigs Ann. Chem., 510, 193-205 (1934).
2386. Stephen, H. and Weizmann, C.: J. Chem. Soc., Trans., 105 (1), 1046-1057 (1914).
2387. Mosettig, E. and Burger, A.: J. Am. Chem. Soc., 52, 2988-2994 (1930).
2388. Parmar, V. S.; Khanduri, C. H.; Tyagi, O. D.; Prasad, A. K.; Gupta, Suman; Bisht, K. S.; Pati, H. N. and Sharma, N. K.: Indian J. Chem., Sect. B, 31B (12), 925-929 (1992).
2389. Parmar, V. S.; Prasad, A. K.; Sharma, N. K.; Bisht, K. S.; Sinha, Rita and Taneja, Poonam: Pure Appl. Chem., 64 (8), 1135-1139 (1992).
2390. Suortti, T.: Z. Lebensm. Unters. Forsch., 177 (2), 94-96 (1983).
2391. Ivanova, S. Z.; Medvedeva, S. A. and Tyukavkina, N. A.: Khim. Drev., 1, 103-108 (1978); Chem. Abstr., 88, 117788w (1978).
2392. Schnitzer, M. and Neyroud, J. A.: Fuel, 54 (1), 17-19 (1975); Chem. Abstr., 82, 123897y (1975).
2393. The Merck Index, 11th ed., (1989), Merck \& Co., Inc. (USA).
2394. Nishina, A.; Kajishima, F.; Matsunaga, M.; Tezuka, H.; Inatomi, H. and Osawa, T.: Biosci., Biotechnol., Biochem., 58 (2), 293-296 (1994); Chem. Abstr., 120, 215727z (1994).
2395. Mauthner, F.: J. Prakt. Chem., 115, 274-278 (1927).
2396. Huls, R. and Hubert, A.: Bull. Soc. Chim. Belg., 65, 596-602 (1956).
2397. Badhwar, I. C. and Venkataraman, K.: Org. Synth., Coll. Vol., 2, 304-305 (1959).
2398. Hartman, W. W. and Roll, L. J.: Org. Synth., Coll. Vol. 2, 304-305 (1959).
2399. Knowles, M. B.: US 2,763,691 (1956); Chem. Abstr., 51, 8791e (1957).
2400. Einhorn, A. and Hollandt, F.: Justus Liebigs Ann. Chem., 301, 95-117 (1898).
2401. Fischer, E.: Ber. Dtsch. Chem. Ges., 42, 1015-1022 (1909).
2402. Friedlaender, P.: DRP 105240 (1898).
2403. Kurosawa, K.: Bull. Chem. Soc. Jpn., 43 (7), 2176-2181 (1970).
2404. Fischer, E. and Speier, A.: Ber. Dtsch. Chem. Ges., 28, 3252-3258 (1895).
2405. Hart, M. C. and Woodruff, E. H.: J. Am. Chem. Soc., 58, 1957-1959 (1936).
2406. Mauthner, F.: J. Prakt. Chem., 118, 314-320 (1928).
2407. Campbell, T. W. and Coppinger, G. M.: US Patent 2,686,123 (1954); Chem. Abstr., 49, 4203h (1955).
2408. Baker, W.; Brown, N. C. and Scott, J. A.: J. Chem. Soc., 1922-1927 (1939).
2409. Nakazawa, K.: J. Pharm. Soc. Jpn., 59, 107-110 (1939).
2410. Ballio, A. and Almirante, L.: Ric. Sci., 20, 829-830 (1950).
2411. Chadha, T. C. and Venkataraman, K.: J. Chem. Soc., 1073-1076 (1933).
2412. Mauthner, F.: J. Prakt. Chem., 136, 213-216 (1933).
2413. Mauthner, N.: Mat. naturw. Anz. ungar. Akad. Wiss., 50, 480-482 (1934); Chem. Abstr., 28, 3392^{8} (1934).
2414. Bargellini, G. and Avrutin, G.: Gazz. Chim. Ital., 40, 347-353 (1910).
2415. Bargellini, G.: Gazz. Chim. Ital., 43, 164-175 (1913).
2416. Schmiz, C. and Eiden, F.: Liebigs Ann. Chem., 12, 2021-2030 (1980).
2417. Laumas, K. R.; Neelakantan, S. and Seshadri, T. R.: Proc. Indian Acad. Sci., 46A, 343-348 (1957).
2418. Xi, Fengde; Liang, Xiaotian and Lu, Yuhua: Huaxue Shiji, 12 (5), 312; 299 (1990); Chem. Abstr., 114, 184917f (1991).
2419. Healey, M. and Robinson, R.: J. Chem. Soc., 1625-1631 (1934).
2420. Go, Yakushu; Ro, Gyokuka; Shü, Hotoku and Yana, Gyoten: Jpn. Kokai Tokkyo Koho JP 06 41,140 [94 41,140] (1994); Chem. Abstr., 121, 35332d (1994).
2421. Jha, H. C.; Zilliken, F.; Offermann, W. and Breitmaier, E.: Can. J. Chem., 59 (15), 2266-2282 (1981).
2422. Clark-Lewis, J. W. and Jemison, R. W.: Aust. J. Chem., 20, 149-156 (1967).
2423. Gulati, K. C.; Seth, S. R. and Venkataraman, K.: J. Chem. Soc., 1765-1767 (1934).
2424. Gulati, K. C.; Seth, S. R. and Venkataraman, K.: Org. Synth., Coll. Vol. II (9th) 522-523 (1959).
2425. Howells, H. P. and Little, J. G.: J. Am. Chem. Soc., 54, 2451-2453 (1932).
2426. Johnson, J. R. and Bush, M. T.: Org. Synth., Coll. Vol. 2, 522-523 (1959).
2427. Robinson, R. and Venkataraman, K.: J. Chem. Soc., 2344-2348 (1926).
2428. Shriner, R. L. and Kleiderer, E. C.: J. Am. Chem. Soc., 51, 1267-1270 (1929).
2429. Sen, K. B. and Ghosh, P. C.: J. Chem. Soc., 61-63 (1920).
2430. Leuchs, H. and Sperling, R.: Ber. Dtsch. Chem. Ges., 48, 135-152 (1915).
2431. Heller, G.: Ber. Dtsch. Chem. Ges., 45, 418-427 (1912).
2432. Jain, A. C.; Gupta, S. M. and Bambah, P.: Indian J. Chem., Sect. B, 24B (4), 393-397 (1985).
2433. Hauteville, M.; Chadenson, M. and Chopin, J.: Bull. Soc. Chim. Fr., 1784-1788 (1973).
2434. Sonn, A. and Winzer, K.: Ber. Dtsch. Chem. Ges., 61, 2303-2306 (1928).
2435. Ringshaw, D. J. and Smith, H. J.: Chem. Ind. (London), 1383-1384 (1965).
2436. Wehrli, F. W.: J. Chem. Soc., Chem. Commun., (16), 663-664 (1975).
2437. Fukushima, S.; Noro, T.; Saiki, Y.; Ueno, A. and Akahori, Y.: Yakugaku Zasshi, 88 (9), 1135-1142 (1968); Chem. Abstr., 70, 35079e (1969).
2438. Mauthner, F.: J. Prakt. Chem., 115, 137-142 (1927).
2439. Gabetta, B. and Giorgi, R.: Eur. Pat. Appl. EP 390,496 (1990); Chem. Abstr., 114, 81404g (1991).
2440. Grollier, J. F.: Eur. Pat. Appl. EP 498,707 (1992); Chem. Abstr., 118, 45445v (1993).
2441. Kampfer, H.; Koenig, A. v.; Ranz, E.; Rintelen, H. v.; Mayer, D. and Sasse, K.: Ger. Offen. 1,925,998 (1970); Chem. Abstr., 75, 28234b (1971).
2442. Hatakeda, K.; Saito, N.; Ito, S. and Asano, T.: Tohoku Kogyo Gijtsu Shikensho Hokoku, 9, 1-3 (1978); Chem. Abstr., 89, 42680q (1978).
2443. Nierenstein, M.: J. Chem. Soc., 111, 4-11 (1917).
2444. Obara, H.; Onodera, J. and Kurihara, Y.: Bull. Chem. Soc. Jpn., 44, 289 (1971).
2445. Obara, H.; Onodera, J.; Kurihara, Y. and Yamamoto, F.: Bull. Chem. Soc. Jpn., 51 (12), 3627-3630 (1978).
2446. Mauthner, F.: J. Prakt. Chem., 147, 287-292 (1936/1937).
2447. Obara, H.; Onodera, J.; Tsuchiya, M.; Matsueda, H.; Sato, S. and Matsuba, S.: Bull. Chem. Soc. Jpn., 64 (1), 309-311 (1991).
2448. Onodera, J.; Machida, Y. and Yada, S.: Bull. Chem. Soc. Jpn., 62 (9), 3034-3035 (1989).
2449. Onodera, J.; Saito, T. and Obara, H.: Chem. Lett., 11, 1327-1330 (1979).
2450. Schäfer, W. and Leute, R.: Chem. Ber., 99, 1632-1641 (1966).
2451. Butenandt, A.; Schiedt, U. and Biekert, E.: Justus Liebigs Ann. Chem., 588, 106-116 (1954).
2452. Kluge, M. and Sicker, D.: J. Nat. Prod., 61 (6), 821-822 (1998); Chem. Abstr., 128, 321492u (1998).
2453. Escobar, C. A.; Kluge, M. and Sicker, D.: J. Heterocycl. Chem., 34 (5), 1407-1414 (1997).
2454. Doppler, T.; Hansen, H. J. and Schmid, H.: Helv. Chim. Acta, 55 (5), 1730-1736 (1972).
2455. Doppler, T.; Schmid, H. and Hansen, H. J.: Helv. Chim. Acta, 62 (1), 271-303 (1979).
2456. Bolognese, A.; Piscitelli, C. and Scherillo, G.: J. Org. Chem., 48 (21), 3649-3652 (1983).
2457. Butenandt, A.: Angew. Chem., 69 (1/2), 16-23 (1957).
2458. Butenandt, A.; Schiedt, U.; Biekert, E. and Cromartie, R. Jan T.: Justus Liebigs Ann. Chem., 590, 75-90 (1955).
2459. Butenandt, A.; Biekert, E. and Beckmann, R.: Justus Liebigs Ann. Chem., 607, 207-215 (1957).
2460. Butenandt, A.; Biekert, E. and Linzen, B.: Z. Physiol. Chem., 312, 227-236 (1958).
2461. Butenandt, A.; Biekert, E.; Kübler, H. and Linzen, B.: Z. Physiol. Chem., 319, 238-256 (1960).
2462. Butenandt, A.; Schiedt, U. and Biekert, E.: Justus Liebigs Ann. Chem., 586, 229-239 (1954).
2463. Sato, T.: Jpn. Kokai Tokkyo Koho JP 06,157,579 [94,157,579] (1994); Chem. Abstr., 121, 180113n (1994).
2464. Brown, F. J.;Bernstein, P. R.; Cronk, L. A.; Dosset, D. L.; Hebbel, K. C.; Maduskuie, T. P., Jr.; Shapiro, H. S.; Vacek, E. P.; Yee, Ying K.; Willard, A. K.; Krell, R. D. and Snyder, D. W.: J. Med. Chem., 32 (4), 807-826 (1989).
2465. Sugasawa, T.; Toyoda, T.; Adachi, M. and Sasakura, K.: J. Am. Chem. Soc., 100 (5), 4842-4852 (1978).
2466. Coltman, C. C. W.; Eyley, S. C. and Raphael, R. A.: Synthesis, (2), 150-152 (1984).
2467. Georgarakis, E. and Schmid, H.: Helv. Chim. Acta, 62 (1), 234-270 (1979).
2468. Julia, M. and Baillargé, M.: Bull. Soc. Chim. Fr., 639-642 (1952).
2469. Aichaoui, H.; Lesieur, I. and Henichart, J. P.: Synthesis, (8), 679-680 (1990).
2470. Gibson, C. S. and Levin, B.: J. Chem. Soc., 2388-2407 (1931).
2471. Bonte, J. P.; Lesieur, D.; Lespagnol, C.; Cazin, J. C. and Cazin, M.: Eur. J. Med. Chem., 9 (5), 497-500 (1974).
2472. Berthelot, P.; Vaccher, C.; Flouquet, N.; Viana, M. N.; Savel, J. and Debaert, M.: Ann. Pharm. Fr., 49 (1), 31-39 (1991).
2473. Kunckell, F.: Ber. Dtsch. Chem. Ges., 34, 124-129 (1901).
2474. Kunckell, F.: Ber. Dtsch. Pharm. Ges., 23, 472-490 (1913).
2475. Gattermann, L.; Lockhart, A. E. and Weinlig, C.: Ber. Dtsch. Chem. Ges., 29, 3034-3037 (1896).
2476. Meussdoerffer, J. N. and Niederpruem, H.: Ger. Offen. 2,653,601 (1978); Chem. Abstr., 89, 129265 g (1978).
2477. Oxford, A. W.; Mitchell, W. L.; Bradshaw, J.; Clitherow, J. W. and Baxter, I. C.: Eur. Pat. Appl. EP 533,266 (1993); Chem. Abstr., 119, 139268n (1993).
2478. Yoo, Sung Eun; Yi, Kyu Yang; Jeong, Nak Cheol; Suh, Jee Hee; Kim, Seon Ju; Shin, Hwa Sup; Lee, Byung Ho and Jung, Kyu Sik: Eur. Pat. Appl. EP 514,935 (1992); Chem. Abstr., 118, 169099c (1993).
2479. Yoo, Sung Eun; Yi, Kyu Yang; Jeong, Nak Cheol; Suh, Jee Hee; Kim, Seon Ju; Shin, Hwa Sup; Lee, Byung Ho and Jung, Kyu Sik: Eur. Pat. Appl. EP 514,942 (1992); Chem. Abstr., 118, 147548y (1993).
2480. Croft, T. S.: Phosphorous Sulfur, 2 (1-2-3), 129-132 (1976); Chem. Abstr., 89, 6062f (1978).
2481. Borthakur, R. C.; Goswami, A.; Goswami, M.; Borthakur, N.; Rastogi, R. C. and Bhattacharya, P. R.: Indian J. Chem., Sect. B, 25B (6), 668-671 (1986).
2482. Braude, M. B.; Ermakov, A. I.; Koroleva, T. I. and Bekhli, A. F.: Zh. Org. Khim., 9 (9), 1910-1914 (1973).
2483. Mamalis, P.; Green, J.; Outred, D. J. and Rix, M.: J. Chem. Soc., 3915-3926 (1962).
2484. Ankhiwala, M. D.: J. Indian Chem. Soc., 67 (10), 848-849 (1990).
2485. Dalvi, V. J. and Jadhav, G. V.: J. Indian Chem. Soc., 34 (4), 324-326 (1957).
2486. Limaye, D. B.: Rasayanam, 1, 1-14 (1936); Chem. Abstr., 31, 2206^{8} (1937).
2487. Naik, S. M. and Naik, H. B.: Orient. J. Chem., 41 (1), 167-168 (1998); Chem. Abstr., 129, 216539n (1998).
2488. Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 7 (2), 341-347 (1999); Chem. Abstr., 134, 100787r (2001).
2489. Ching-Te Chang: Hua Hsueh, (1), 15-18 (1967); Chem. Abstr., 67, 90612m (1967).
2490. Gurav, V. M. and Jagwani, U. K.: Marathwada Univ. J. Sci., Nat. Sci., 14 (7), 5-8 (1975); Chem. Abstr., 89, 108503t (1978).
2491. Gurav, V. M. and Ingle, D. B.: Indian J. Chem. Sect. B, 25B (2), 225-226 (1986).
2492. Gurav, V. M. and Ingle, D. B.: Indian J. Chem. Sect. B, 25B (8), 868-869 (1986).
2493. Braude, M. B.; Aranovitch, G. I.; Shvedova, V. I. and Bekhli, A. F.: Khim. Farm. Zh., 9 (4), 57-59 (1975); Chem. Abstr., 83, 27806t (1975).
2494. Briet, P.; Berthelon, J. J. and Collonges, F.: Eur. Pat. Appl. EP 80,419 (1983); Chem. Abstr., 99, 122305t (1983).
2495. Hecht, J. K.; Flynn, J. J., Jr. and Boer, F. P.: J. Org. Chem., 34 (11), 3645-3648 (1969).
2496. Cremer, S. E. and Tarbell, D. S.: J. Org. Chem., 26, 3653-3657 (1961).
2497. Fitzmaurice, C.; Cairns, H.; Hazard, R. and King, J.: Brit. 1,093,673 (1967); Chem. Abstr., 68, 114437g (1968).
2498. Meshitsuka, G. and Nakano, J.: Mokuzai Gakkaishi, 26 (8), 576-577 (1980); Chem. Abstr., 93, 206373c (1980).
2499. Parmar, V. S.; Singh, S. and Jain, R.: Indian J. Chem., Sect. B, 26B (2), 166-167 (1987).
2500. Parmar, V. S.; Singh, S. and Jain, R.: Indian J. Chem., Sect. B, 26B (5), 484-485 (1987).
2501. Soman, S. S. and Trivedi, K. N.: Indian J. Chem., Sect. B, 32B (3), 372-373 (1993).
2502. Romeo, A. and Bargellini, G.: Ann. Chim. (Rome), 42, 361-369 (1952).
2503. Witiak, D. T.; Kim, S. K.; Tehim, A. K.; Sternitzke, K. D.; McCreery, R. L.; Kim, S. U.; Feller, D. R.; Romstedt, K. J.; Kamanna, V. S. and Newman, H. A. I.: J. Med. Chem., 31 (7), 1437-1445 (1988).
2504. Fukui, K. and Nakayama, M.: Bull. Chem. Soc. Jpn., 37 (3), 300-302 (1964).
2505. Chiji, H; Aiba, T. and Izawa, M.: Agric. Biol. Chem., 42 (1), 159-165 (1978).
2506. Auwers, K. v.; Borsche, E. and Weller, R.: Ber. Dtsch. Chem. Ges., 54, 1291-1316 (1921).
2507. Tiwari, S. S. and Singh, A.: J. Indian Chem. Soc., 38 (1), 53-56 (1961).
2508. Wittig, G. and Schulze, W.: J. Prakt. Chem., 130, 81-91 (1931).
2509. Marathey, M. G.: J. Sci. Ind. Res., 20B, 40-41 (1961).
2510. Mazumdar, A. K. D.; Karmakar, P. K.; Rangachari, K.; Banerjee, K. P. and Banerji, K. D.: J. Indian Chem. Soc., 67 (11), 911-913 (1990).
2511. Mazumdar, A. K. D.; Karmakar, P. K.; Tiwari, S. K.; Banerjee, K. P. and Banerji, K. D.: J. Indian Chem. Soc., 67 (10), 845-847 (1990).
2512. Mazumdar, A. K. D.; Rahman, M.; Saha, G. C.; Karmakar, P. K. and Banerji, K. D.: J. Indian Chem. Soc., 68 (10), 571-573 (1991).
2513. Dijkstra, P. J.; den Hertog, Jr., H. J.; van Steen, B. J.; Zijlstra, S.; Skowronska-Ptasinska, M.; Reinhoudt, D. N.; van Eerden, J. and Harkema, S.: J. Org. Chem., 52, 2433-2442 (1987).
2514. Dijkstra, P. J.; van Steen, B. J.; Hams, B. H. M.; den Hertog, H. J. and Reinhoudt, D. N.: Tetrahedron Lett., 27 (27), 3183-3186 (1986).
2515. Manley, P. W.: PCT Int. Appl. WO 94 12,493 (1994); Chem. Abstr., 123, 55695u (1995).
2516. Patel, C. B. and Patel, R. P.: J. Indian Chem. Soc., 52 (4), 312-314 (1975).
2517. Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 6, 57-64 (1998); Chem. Abstr., 132, 207785z (2000).
2518. Gabriel, G.; Pickles, R. and Tyman, J. H. P.: J. Chem. Res., Synop., (11), 348-349, 2713-2719 (1989).
2519. Cresp, T. M.; Sargent, M. V.; Elix, J. A. and Murphy, D. P. H.: J. Chem. Soc., Perkin Trans. 1, (4), 340-345 (1973).
2520. Imai, Sachihiko: J. Sci. Hiroshima Univ., Ser. A: Phys. Chem., 35 (2), 171-182 (1971); Chem. Abstr., 77, 61705v (1972).
2521. Chang, C. T.; Young, M. F. and Chen, F. C.: Formosan Sci., 16, 29-30 (1962); Chem. Abstr., 59, 2759a (1963).
2522. Chang, C. T.: Formosan. Sci., 16 (4), 127-132 (1962); Chem. Abstr., 59, 3869e (1963).
2523. McCusker, P. E.; Philbin, E. M. and Wheeler, T. S.: J. Chem. Soc., 2374-2381 (1963).
2524. Ward, M.; Settembre, P. A.; Renaud, A. and Langlois, M.: Eur. Pat. Appl. EP 338,937 (1989); Chem. Abstr., 112, 178682 t (1990).
2525. Donnelly, J. A.: Tetrahedron, 29 (17), 2585-2588 (1973).
2526. Beirne, J. J.; Coyle, A. M. and Donnelly, J. A.: Tetrahedron, 26 (15), 3809 (1970).
2527. Zakis, G. and Neiberte, B.: Khim. Drev., 5, 76-80 (1985); Chem. Abstr., 105, 78602d (1986).
2528. Dorsch, W.; Müller, A.; Christoffel, V.; Stuppner, H.; Antus, S.; Gottsegen, A. and Wagner, H.: Phytomedicine, 1 (1), 47-54 (1994).
2529. Kalluraya, B. and Alphonsus, D. S.: Chim. Acta Turc., 21 (3), 241-246 (1993); Chem. Abstr., 121, 35214s (1994).
2530. Shinoda, J.; Sato, D. and Kawagoye, M.: J. Pharm. Soc. Jpn., 52, 766-777 (1932); Chem. Abstr., 27, 295 (1933).
2531. Brüll, J. and Friedlaender, P.: Ber. Dtsch. Chem. Ges., 30, 297-302 (1897).
2532. Sin-Teh Feng and Kun-Yuen Chiu: Hua Hsüeh Hsüeh Pao, 25 (5), 277-288 (1959); Chem. Abstr., 54, 17306i (1960).
2533. Modi, S. R. and Naik, H. B.: Orient. J. Chem., 10 (1), 85-86 (1994); Chem. Abstr., 122, 81186c (1995).
2534. Tripathi, B. N. and Garg, C. L.: Indian J. Chem., 7 (8), 778-779 (1969).
2535. Auwers, K. v. and Mauss, W.: Justus Liebigs Ann. Chem., 464, 293-311 (1928).
2536. Schroetter, E.; Raddatz, A. and Oettel, M.: J. Prakt. Chem., 317 (3), 520-524 (1975).
2537. Schroetter, E.; Hoegel, E. and Jeschke, H. J.: Ger. (East) 106,635 (1974); Chem. Abstr., 82, 155759w (1975).
2538. Kumamoto, S.; Somekawa, K.; Uemura, H. and Shimo, T.: Kenkyu Hokoku - Asahi Garasu Kogyo Gijutsu Shoreikai, 41, 185-196 (1982); Chem. Abstr., 99, 139892e (1983).
2539. Chakravarti, D. and Majumdar, B.: J. Indian Chem. Soc., 16, 151-159 (1939).
2540. Jetley, U. K.; Rehman, F.; Rastogi, S. N.; Lal, K. and Singh, J.: J. Inst. Chem. (India), 64, 215-217 (1992).
2541. Saksena, R. N. and Panday, K. K: J. Indian Chem. Soc., 49 (8), 779-783 (1972).
2542. Royer, R.; Demerseman, P.; Cheutin, A.; Allegrini, E. and Michelet, R.: Bull. Soc. Chim. Fr., 1379-1388 (1957).
2543. Hercouet, A. and Le Corre, M.: Tetrahedron, 37 (16), 2867-2873 (1981).
2544. Kaiser, C.; Schwartz, M. S.; Colella, D. F. and Wardell, J. R., Jr., J. Med. Chem., 18 (7), 674-683 (1975).
2545. Sohda, S.; Fujimoto, T. and Hirose, N.: J. Med. Chem., 22 (3), 279-286 (1979).
2546. Trave, R.: Gazz. Chim. Ital., 81, 773-781 (1951).
2547. Begasse, B. and Le Corre, M.: Tetrahedron, 36 (23), 3409-3412 (1980).
2548. Eto, M.: Organophosphorous pesticides: Organic and biological chemistry, CRC Press, Ohio (USA), (1974), p. 27.
2549. Lunts, L. H. C.; Toon, P. and Collin, D. T.: S. African 67 05,591 (1968); Chem. Abstr., 71, 91066f (1969).
2550. Dillard, R. D.; Carr, F. P.; McCullough, D.; Haisch, K. D.; Rinkema, L. E. and Fleisch, J. H.: J. Med. Chem., 30 (5), 911-918 (1987).
2551. Trave, R.: Gazz. Chim. Ital., 80, 502-509 (1950).
2552. Takahashi, K. and Tanaka, Y.: Chem. Pharm. Bull., 23 (3), 623-628 (1975); Chem. Abstr., 83, 113363c (1975).
2553. Smith, T. J.; Wearne, R. H. and Wallis, A. F. A.: Chemosphere, 30 (1), 69-80 (1995).
2554. Smith, T. J.; Wearne, R. H. and Wallis, A. F. A.: J. Chromatogr., 648, 289-293 (1993).
2555. Jayne, J. E.: J. Am. Chem. Soc., 75, 1742-1743 (1953).
2556. Kitagawa, M.; Yamamoto, K.; Katakura, S.; Kanno, H.; Yamada, K.; Nagahara, T. and Tanaka, M.: Chem. Pharm. Bull., 39 (10), 2681-2690 (1991).
2557. Harada, H.; Ohsugi, E.; Yonetani, Y. and Shinosaki, T.: Eur. Pat. Appl. EP 415,566 (1991); Chem. Abstr., 115, 71398q (1991).
2558. Kitagawa, M. and Tanaka, M.: Eur. Pat. Appl. EP 248,420 (1987); Chem. Abstr., 108, 94387e (1988).
2559. Bingham, S. J. and Tyman, J. H. P.: Chem. Commun. (Cambridge), (11), 925-926 (2000).
2560. Tyman, J. H. P.: personal communication, June 13, 2001.
2561. Takeuchi, Y.; Watanabe, I.; Misumi, K.; Irie, M.; Hirose, Y.; Hirata, K.; Yamato, M. and Harayama, T.: Chem. Pharm. Bull., 45 (12), 2011-2015 (1997).
2562. Sato, H.; Dan, T.; Onuma, E.; Tanaka, H.; Aoki, B. and Koga, H.: Chem. Pharm. Bull., 39 (7), 1760-1772 (1991).
2563. Rehman, F.; Rastogi, S. N.; Jetley, U. K.; Zaidi, S. Asif and Jhan, I. A.: Orient. J. Chem., 4 (1), 49-52 (1988); Chem. Abstr., 109, 107570g (1988).
2564. Schäfer, W.; Leute, R. and Schlude, H.: Chem. Ber., 104 (10), 3211-3221 (1971).
2565. Arad, D.; Elias, Y.; Elhanany, O.; Shokhen, M. and Puzis, L.: PCT Int. Appl. WO 97 47,270 (1997); Chem. Abstr., 128, 84381x (1998).
2566. Huneck, S. and Santesson, J.: Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol., 24B (6), 750-756 (1969).
2567. Panhekar, D. Y. and Ghiya, B. J.: Indian J. Heterocycl. Chem., 5 (2), 159-160 (1995); Chem. Abstr., 124, 289328z (1996).
2568. Seliger, H.; Cascaval, A. and Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 5, 129-134 (1997); Chem. Abstr., 132, 207732e (2000).
2569. Hopper, J. W.; Marlow, W.; Whalley, W. B.; Borthwick, A. D. and Bowden, R.: J. Chem. Soc. C, (21), 3580-3590 (1971).
2570. Crawford, L. W.; Eaton, E. O. and Pepper, J. M.: Can. J. Chem., 34 (11), 1562-1566 (1956).
2571. Lee, K.; Dudley, M. W.; Hess, K. M.; Lynn, D. G.; Joerger, R. D. and Binns, A. N.: Proc. Natl. Acad. Sci. U.S.A., 89 (18), 8666-8670 (1992).
2572. Zakis, G.: Sintez Model'nykh Soedinenii Lignina: Metodiki (Zinatne: Riga, Latv. SSR), 1980, 288pp.; Chem. Abstr., 94, 85998v (1981).
2573. Ahluwalia, V. K.; Prakash, C. and Singh, R. P.: Tetrahedron, 35 (17), 2081-2085 (1979).
2574. Donnelly, D. M. X.; Molloy, D. J.; Reilly, J. P. and Finet, J.-P.: J. Chem. Soc., Perkin Trans. 1, (20), 2531-2534 (1995).
2575. Mewshaw, R. E.; Marquis, K. L.; Shi, X.; Mcgaughey, G.; Stack, G. P.; Webb, M. B.; AbouGharbia, M.; Wasik, T.; Scerni, R.; Spangler, T.; Brennan, J. A.; Mazandarani, H.; Coupet, J. and Andree, T. H.: Tetrahedron, 54 (25), 7081-7108 (1998).
2576. Mewshaw, R. E. and Stack, G. P.: U.S. US 5,750,556 (1998); Chem. Abstr., 129, 12750q (1998).
2577. Stack, G. P. and Mewshaw, R. E.: Eur. Pat. Appl. EP 771,801 (1997); Chem. Abstr., 127, 34125a (1997).
2578. Chhaya, G. S., Trivedi, P. L. and Jadhav, G. V.: J. Univ. Bombay, Sci., 26 (5), 22-27 (1958); Chem. Abstr., 53, 14038 (1959).
2579. Bredereck, H.; Lehmann, G.; Schönfeld, C. and Fritzsche, E.: Ber. Dtsch. Chem. Ges., 72, 1414-1429 (1939).
2580. Song, G.; Zhou, B. and Wu, J.: Fenzi Kexue Yu Huaxue Yanjiu, 3 (4), 39-46 (1983); Chem. Abstr., 100, 174157e (1984).
2581. Frye, A. H.; Wallis, E. S. and Dougherty, G.: J. Org. Chem., 14, 397-404 (1949).
2582. Raphael, R. A. and Ravenscroft, P.: J. Chem. Soc., Perkin Trans. 1, (7), 1823-1828 (1988).
2583. Takada, T. and Ohki, S.: Chem. Pharm. Bull., 21 (6), 1369-1372 (1973).
2584. Rennie, E. H.; Cooke, W. T. and Finlayson, H. H.: J. Chem. Soc., 117, 338-350 (1920).
2585. Jadhav, G. V. and Merchant, J. R.: J. Indian Chem. Soc., 29 (7), 403-404 (1951).
2586. Kasahara, A.: Nippon Kagaku Zasshi, 79, 339-343 (1958); Chem. Abstr., 54, 5636e (1960).
2587. Cummins, B.; Donnelly, D. M. X.; Eades, J. F.; Fletcher, H. F.; Cinneide, F. O.; Philbin, E. M. and Swirski, J.: Tetrahedron, 19 (4), 499-512 (1963).
2588. Gowan, J. E.; MacGiolla Riogh, S. P.; MacMahon, G. J.; O’Cleirigh, S.; Philbin, E. M. and Wheeler, T. S.: Tetrahedron, 2 (1/2), 116-121 (1958).
2589. O'Cleirigh, S.: Ph. D. Thesis (N.U.I.) (1963).
2590. Hansen, P. E. and Bolvig, S.: Magn. Reson. Chem., 35 (8), 520-528 (1997).
2591. Mizuta, H.; Watanabe, S.; Sakurai, Y.; Nishiyama, K.; Furuta, T.; Kobayashi, Y. and Iwamura, M.: Bioorg. Med. Chem., 10 (3), 675-683 (2002).
2592. Teague, S. J.: Tetrahedron Lett., 37 (32), 5751-5754 (1996).
2593. Cizmarikova, R. and Misikova, E.: Czech. CS 276,922 (1992); Chem. Abstr., 120, 269843c (1994).
2594. Yamanaka, T. and Yaoka, O.: Jpn. Kokai Tokkyo Koho JP 62 33,143 [87 33,143] (1987); Chem. Abstr., 107, 58650f (1987).
2595. Beri, R. M.; Gakhar, K. L. and Rao, P. S.: Proc. Indian Acad. Sci., 33A, 88-91 (1951).
2596. Auwers, K. v.; Bundesman, H. and Wieners, F.: Justus Liebigs Ann. Chem., 447, 162-196 (1926).
2597. Kawai, Tomohiko; Shimizu, Tsunekazu and Chiba, Hisae: J. Pharm. Soc. Jpn., 76, 660-665 (1956).
2598. Cullinane, N. M.; Edwards, B. F. R. and Bailey-Wood, V. V.: Recl. Trav. Chim. Pays-Bas, 79, 1174-1180 (1960).
2599. Cullinane, N. M.; Evans, A. G. and Lloyd, E. T.: J. Chem. Soc., 2222-2231 (1956).
2600. Cullinane, N. M.; Lloyd, E. T. and Tudball, J. K.: J. Chem. Soc., 3894-3895 (1954).
2601. Downey, P. M. and Zerbe, R. O.: US 2,670,382 (1954); Chem. Abstr., 49, 4020b (1955).
2602. Martin, R.: Bull. Soc. Chim. Fr., 1503-1505 (1968).
2603. Munavalli, S.; Bhat, G. A. and Viel, C.: Bull. Soc. Chim. Fr., 3311-3318 (1966).
2604. Sumitomo Chemical Co., Ltd.: Jpn Kokai Tokkyo Koho JP 58 38,229 [83 38,229] (1983); Chem. Abstr., 99, 38201y (1983).
2605. Baltzly, R.; Ide, W. S. and Phillips, A. P.: J. Am. Chem. Soc., 77, 2522-2533 (1955).
2606. Yoshino, T.; Kijima, I.; Sugiura, M. and Shoji, T.: Yuki Gosei Kagaku Kyokai Shi, 21, 463-465 (1963); Chem. Abstr., 59, $7416 y$ (1963).
2607. Gonzalez, A. G.; Barrera, J. B. and Yanes, H. C.: Heterocycles, 34 (7), 1311-1315 (1992).
2608. Julia, M. and Chastrette, F.: Bull. Soc. Chim. Fr., 2255-2261 (1962).
2609. Miquel, J. F.; Müller, P. and Buu-Hoï, N. P.: Bull. Soc. Chim. Fr., 633-636 (1956).
2610. Skraup, S. and Poller, K.: Ber. Dtsch. Chem. Ges., 57, 2033-2038 (1924).
2611. Kindler, K.; Oelschlager, H. and Henrich, P.: Arch. Pharm. (Weinheim, Ger.), 287, 210-223 (1954).
2612. Lacey, R. N.: Brit. 951,435 (1964); Chem. Abstr., 60, 15779b (1964).
2613. Baker, W.: J. Chem. Soc., 1381-1389 (1933).
2614. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 3016-3019 (1957).
2615. Cullinane, N. M.; Woolhouse, R. A. and Edwards, B. F. R.: J. Chem. Soc., 3842-3845 (1961).
2616. Harrowven, D. C. and Dainty, R. F.: Tetrahedron Lett., 37 (42), 7659-7660 (1996).
2617. Solladie, G. and Girardin, A.: Bull. Soc. Chim. Fr., (1), 123-124 (1987).
2618. Solladie, G. and Girardin, A.: Synthesis, (7), 569-570 (1991).
2619. Ono, K. and Imoto, M.: Bull. Chem. Soc. Jpn., 11, 127-131 (1936).
2620. Cox, E.: J. Am. Chem. Soc., 52, 352-358 (1930).
2621. Hope, P. and Gray, J.: Brit. 1,470,665 (1977); Chem. Abstr., 87, 134545m (1977).
2622. Sandner, M. R.; Hedaya, E. and Treker, D. J.: J. Am. Chem. Soc., 90, 7249-7254 (1968).
2623. Bredereck, H.; Lehmann, G.; Fritzsche, E. and Schönfeld, C.: Angew. Chem., 52 (26), 445-446 (1939).
2624. Mandal, S. K. and Nag, K.: J. Chem. Soc., Dalton Trans., (11), 2429-2434 (1983).
2625. Krzyzanowska, E.; Olszanowski, A. and Juskowiak, M.: J. Prakt. Chem., 331, 617-630 (1989).
2626. Kotali, A.; Glaveri, U.; Pavlidon, E. and Tsoungas, P. G.: Synthesis, (12), 1172-1173 (1990).
2627. Kim, Jae Nyoung and Ryu, Eung K.: Synth. Commun., 26 (1), 67-74 (1996).
2628. Auwers, K. v. and Müller K.: Justus Liebigs Ann. Chem., 364, 147-182 (1909).
2629. Whalley, W. B.: J. Chem. Soc., 3235-3238 (1951).
2630. Krollpfeiffer, F.; Schultze, H.; Schlumbohm, E. and Sommermeyer, E.: Ber. Dtsch. Chem. Ges., 58, 1654-1676 (1925).
2631. Lindemann, H. and Pickert, W.: Justus Liebigs Ann. Chem., 456, 275-283 (1927).
2632. Lee, A. S.-Y. and Cheng, C.-L.: Tetrahedron, 53 (42), 14255-14262 (1997).
2633. Jackson, L. B. and Waring, A. J.: J. Chem. Soc., Perkin Trans. 2, (11), 1893-1898 (1990).
2634. Horri, Z. and Kinouchi, T.: J. Pharm. Soc. Jpn., 58, 293-295 (1938).
2635. Lohiya, S. B.: Ph. D. Thesis, Nagpur University, India (1983).
2636. Fan, P.; Guo, Z. and Zhang, J.: Tianran Chanwu Yanjiu Yu Kaifa, 8 (2), 40-45 (1996); Chem. Abstr., 126, 57468h (1997).
2637. Laekan, O. O.; Lasekan, W. O. and Idowu, M. A.: Food Chem., 58 (4), 341-344 (1997) (Pub. 1996); Chem. Abstr., 126, 211312 m (1997).
2638. Hiserodt, R. D.; Ho, Chi-Tang and Rosen, R. T.: ACS Symp. Ser. 660 (spices), 80-97 (1997); Chem. Abstr., 126, 292614 m (1997).
2639. Bhawsar, S. B.; Shinde, D. B.; Mane, D. V.; Thore, S. N.; Gajare, A. S. and Shingare, M. S.: Polym. J. Chem. 70 (6), 809-812 (1996).
2640. Bonsall, C. and Hill, J.: J. Chem. Soc. C, 1836-1839 (1967).
2641. Jones, T. H.; Blum, M. S. and Fales, H. M.: Synth. Commun., 11 (11), 889-894 (1981).
2642. Waterman, P. G.; Zhong, Shou-Ming; Jeffreys, J. A. D. and Bin Zakaria, Muhamad: J. Chem. Res., Synop., (1), 2-3; (1985); Miniprint, 0101-0144 (1985).
2643. Young, S. T.; Turner, J. R. and Tarbell, D. S.: J. Org. Chem., 28, 928-932 (1963).
2644. Carter, S. D. and Wallace, T. W.: Synthesis, (12), 1000-1002 (1983).
2645. Coutts, S. J. and Wallace, T. W.: Tetrahedron, 50 (40), 11755-11780 (1994).
2646. Folli, U.; Iarossi, D. and Taddei, F.: J. Chem. Soc., Perkin Trans. 2, (6), 848-853 (1973).
2647. Clark, J. H. and Miller, J. M.: Tetrahedron Lett., (2), 139-140 (1977).
2648. Takeshita, H.: Tetrahedron Lett., (19), 1657-1658 (1977).
2649. Takeshita, H.; Kikuchi, R. and Shoji, Y.: Bull. Chem. Soc. Jpn., 46 (2), 690-691 (1973).
2650. Blum, M. S.; Jones, T. H.; Snelling, R. R.; Overal, W. L.; Fales, H. M. and Highet, R. J.: Biochem. Syst. Ecol., 10 (1), 91-94 (1982).
2651. Brophy, J. J.; Cavill, G. W. K. and Duke, R. K.: Insect Biochem., 13 (5), 503-505 (1983).
2652. Tecle, B.; Brophy, J. J. and Toia, R. F.: Insect Biochem., 16 (2), 333-336 (1986).
2653. Lamberton, J. A.; Geewananda, Y. A.; Gunawardana, P. and Bick, I. R. C.: J. Nat. Prod., 46 (2), 235-247 (1983).
2654. Proksch, P. and Gülz, P. G.: Z. Naturforsch., C: Biosc., 35C (7/8), 529-532 (1980).
2655. Bohlmann, F.; Grenz, M.; Zdero, C.; Jakupovic, J.; King, R. M. and Robinson, H.: Phytochemistry, 24 (6), 1392-1393 (1985).
2656. Dean, R. E.; Midgley, A.; White, E. N. and McNeil, D.: J. Chem. Soc., 2773-2779 (1961).
2657. John, T. K. and Rao, G. S. K.: Indian J. Chem., Sect. B, 14B, 805-806 (1976).
2658. Valdebenito, H.; Bittner, M.; Sammes, P. G.; Silva, M. and Watson, W. H.: Phytochemistry, 21 (6), 1456-1457 (1982).
2659. Baldwin, J. E. and Lusch, M. J.: Tetrahedron, 38 (19), 2939-2947 (1982).
2660. Casini, G.; Ferappi, M. and Giardina, D.: Ann. Chim. (Rome), 62, 814-824 (1972).
2661. John, H. and Beetz, P.: J. Prakt. Chem., 149, 164-170 (1937).
2662. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 434-438 (1958).
2663. Pilkington, J. W. and Waring, A. J.: J. Chem. Soc., Perkin Trans. 2, (12), 1349-1359 (1976).
2664. Gerecs, A. and Windholz, M.: Acta Chim. Acad. Sci. Hung., 8, 295-302 (1955).
2665. Catch, J. R.; Elliott, D. F.; Hey, D. H. and Jones, E. R. H.: J. Chem. Soc., 552-555 (1949).
2666. Baltzly, R. and Phillips, A. P.: J. Am. Chem. Soc., 70, 4191-4193 (1948).
2667. d'Ans, J. and Zimmer, H.: Chem. Ber., 85, 585-590 (1952).
2668. Bonneau, I.; Gubelmann, M.; Nonn, A. and Rochin, C.: Fr. Demande FR 2,655,335 (1991); Chem. Abstr., 116, 58941n (1992).
2669. Lovie, J. C. and Thomson, R. H.: J. Chem. Soc., 485-487 (1961).
2670. Da Re, P. and Cimatoribus, L.: J. Org. Chem., 26, 3650-3653 (1961).
2671. Herron, D. K.; Goodson, T.; Bollinger, N. G.; Swanson-Bean, D.; Wright, I. G.; Staten, G. S.; Thompson, A. R.; Froelich, L. L. and Jackson, W. T.: J. Med. Chem., 35 (10), 1818-1928 (1992).
2672. Rangaswami, S. and Seshadri, T. R.: Proc. Indian Acad. Sci., 8A, 214-219 (1938).
2673. Kallay, F. and Janzso, G.: Tetrahedron Lett., (16), 1443-1446 (1978).
2674. Kallay, F.; Janzso, G.; Egyed, I.; Baitz-Gacs, E. and Tamas, J.: Acta Chim. Acad. Sci. Hung., 100 (1-4), 311-317 (1979).
2675. Morris, J.; Wishka, D. G. and Fang, Yue: J. Org. Chem., 57 (24), 6502-6508 (1992).
2676. Murai, J.: Sci. Rpts. Saitama Univ., 1A, 129-137 (1954); Chem. Abstr., 50, 981e (1956).
2677. McGookin, A.; Robertson, A. and Simpson, T. H.: J. Chem. Soc., 2021-2029 (1951).
2678. Bollinger, N. G.; Goodson, T., Jr. and Herron, D. K.: Eur. Pat. Appl. EP 276,065 (1988); Chem. Abstr., 109, 230544d (1988).
2679. Bollinger, N. G.; Goodson, T., Jr. and Herron, D. K.: U.S. US 4,945,099 (1990); Chem. Abstr., 114, 42277y (1991).
2680. Cai, Mengshen and Wang, Lan-Ming: Huaxue Xuebao, 48 (12), 1191-1198 (1990); Chem. Abstr., 114, 142922y (1991).
2681. Robertson, A.; Venkateswarlu, V. and Whalley, W. B.: J. Chem. Soc., 3137-3142 (1954).
2682. Yanagita, M.: Ber. Dtsch. Chem. Ges., 71, 2269-2273 (1938).
2683. Sethna, S. M. and Shah, R. C.: J. Indian Chem. Soc., 17, 211-214 (1940).
2684. Sethna, S. M. and Shah, R. C.: J. Indian Chem. Soc., 17, 487-494 (1940).
2685. Starkov, S. P.; Goncharenko, G. A.; Volkotroub, M. N. and Jidkova, L. A.: Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 36 (6), 86-89 (1993); Chem. Abstr., 120, 298178v (1994).
2686. Auricchio, S.; Morrocchi, S. and Ricca, A.: Tetrahedron Lett., (33), 2793-2796 (1974).
2687. Auricchio, S. and Ricca, A.: Gazz. Chim. Ital., 103 (1-2), 37-45 (1973).
2688. Stetter, H. and Vestner, S.: Chem. Ber., 97, 169-171 (1964).
2689. Stephen, J. F. and Marcus, E.: J. Org. Chem., 35, 258-261 (1970).
2690. Simonova, L. L. and Shamshurin, A. A.: Izv. Akad. Nauk Mold. SSR, Ser. Biol. Khim. Nauk, (3), 79-81 (1972); Chem. Abstr., 78, 4072h (1973).
2691. Saraiya, P. R. and Shah, R. C.: Proc. Indian Acad. Sci., 31, 213-223 (1950).
2692. Afzal, M.; Davies, J. S. and Hassal, C. H.: J. Chem. Soc. C, 1721-1727 (1969).
2693. Okazaki, K.: J. Pharm. Soc. Jpn., 59, 190-193 and 547-552 (1939); Chem. Abstr., 34, 1004^{8} (1940).
2694. Suga, T.; Hirata, T. and Walls, F.: J. Sci. Hiroshima Univ., Ser. A: Phys. Chem., 38 (2-3), 327-331 (1974); Chem. Abstr., 82, 124987q (1975).
2695. Tabuchi, H.; Tajimi, A. and Ichihara, A.: Biosci., Biotechnol., Biochem., 58 (11), 1956-1959 (1994).
2696. Ahmad, F. B. H. and Bruce, J. M.: Res. J. Chem. Environ., 3 (4), 9-10 (1999); Chem. Abstr., 133, 30552p (2000).
2697. Ballio, A. and Almirante, L.: Ric. Sci., 21, 85-86 (1951).
2698. Bycroft, B. W.; Knight, J. A. and Roberts, J. C.: J. Chem. Soc., 5148-5151 (1963).
2699. Patolia, R. J. and Trivedi, K. N.: J. Indian Chem. Soc., 57 (5), 532-535 (1980).
2700. Manecke, G. and Bourwieg, G.: Chem. Ber., 96, 2013-2015 (1963).
2701. Akiba, M.; Kosugi, Y. and Takada, T.: Hukusokan Kagaku Toronkai Koen Yoshishu, 5th, 54-58 (1975); Chem. Abstr., 84, 164669k (1976).
2702. Anon: Res. Discl., 191, 112-113 (1980); Chem. Abstr., 93, 85075w (1980).
2703. Lelental, M. and Fleming, J. C.: J. Photogr. Sci., 36 (5), 158-166 (1988); Chem. Abstr., 110, 125174f (1989).
2704. Takahashi, K. and Takani, M.: Chem. Pharm. Bull., 18 (9), 1831-1840 (1970); Chem. Abstr., 73, 130823p (1970).
2705. Asahina, Y. and Yanagita, M.: Ber. Dtsch. Chem. Ges., B, 71, 2260-2269 (1938).
2706. Takahashi, K. and Miyashita, S.: Chem. Pharm. Bull., 10, 603-607 (1962).
2707. Desai, R. D. and Vakil, V. M.: Proc. Indian Acad. Sci., 12A, 391-398 (1940).
2708. Ludwinowsky, S. and Tambor, J.: Ber. Dtsch. Chem. Ges., 39, 4037-4041 (1906).
2709. Desai, B. M. and Desai, P. R.: J. Indian Chem. Soc., 37 (9), 550-552 (1960).
2710. Rasinski, F.: J. Prakt. Chem., 25, 53-67 (1882).
2711. Takahashi, K. and Miyashita, S.: Chem. Pharm. Bull., 11, 209-213 (1963).
2712. Eiden, F. and Patzelt, G.: Arch. Pharm. (Weinheim, Ger.), 318 (4), 328-340 (1985).
2713. Tambor, J.: Ber. Dtsch. Chem. Ges., 41, 787-792 (1908).
2714. Labadie, R. P.: Planta Med., 32A, 42 (1977).
2715. Van den Berg, A. J. J. and Labadie, R. P.: Planta Med., 41 (2), 169-173 (1981).
2716. Popoff, T.; Theander, O. and Westerlund, E.: Acta Chem. Scand., Ser. B, B32 (1), 1-7 (1978).
2717. Loire, J. C. and Thomson, R. H.: J. Chem. Soc., 485-487 (1961).
2718. Borchardt, R. T. and Bhatia, P.: J. Med. Chem., 25 (3), 263-271 (1982).
2719. Ahmad, F. B. H. and Bruce, J. M.: Synth. Commun., 26 (7), 1263-1271 (1996).
2720. Patil, Ghanshyam; Matier, William L. and Mai, Khuong H. X.: Eur. Pat. Appl. EP 273,592 (1990); Chem. Abstr., 113, 211585j (1990).
2721. Bruce, J. M.: J. Chem. Soc., 360-365 (1960).
2722. Popoff, T. and Theander, O.: Acta Chem. Scand., Ser. B, B30 (5), 397-402 (1976).
2723. Manske, R. H. F. and Ledingham, A. E.: Can. J. Res., 22B, 115-124 (1944).

2723a. Carlini, R.; Higgs, K.; Taylor, N. and Rodrigo, R.: Can. J. Chem., 75 (6), 805-816 (1997).
2724. Chiba, K. and Tada, M.: J. Chem. Soc., Chem. Commun., (21), 2485-2486 (1994).
2725. Bohlmann, F.; Niedballa, U. and Schulz, J.: Chem. Ber., 102 (3), 864-871 (1969).
2726. Martinez, M. V.; Sanchez, F. A. and Joseph-Nathan, P.: Phytochemistry, 26 (9), 2577-2579 (1987).
2727. Buckman, S. J.; Pera, J. D. and Mercer, G. D.: Ger. Offen. 2,051,921 (1971); Chem. Abstr., 75, 37361t (1971).
2728. Amstutz, E. D.: J. Am. Chem. Soc., 71, 3836-3837 (1949).
2729. Reichstein, T.: Helv. Chim. Acta, 10, 392-397 (1927).
2730. Gregor, G.: Monatsh. Chem., 15, 437-445 (1894).
2731. Tahara, Y.: Ber. Dtsch. Chem. Ges., 24, 2459-2462 (1891).
2732. Appel, H.; Baker, W.; Hagenbach, H. and Robinson, R.: J. Chem. Soc., 738-744 (1937).
2733. Bargellini, G. and Aureli, S.: Atti R. Accad. Naz. Lincei, 20 (2), 118-124 (1911).
2734. Bargellini, G. and Aureli, S.: Gazz. Chim. Ital., 41, 590-603 (1911).
2735. Lindemann, H.; Könitzer, H. and Romanoff, S.: Justus Liebigs Ann. Chem., 456, 284-311 (1927).
2736. Mauthner, F.: J. Prakt. Chem., 160, 33-37 (1942).
2737. Torrey, H. A. and Kipper, H. B.: J. Am. Chem. Soc., 30, 837-861 (1908).
2738. Lau, C. K.; Bélanger, P. C.; Dufresne, C. and Scheigetz, J.: J. Org. Chem., 52 (9), 16701673 (1987).
2739. Johnson, W. S. and Keller, R. T.: Org. Synth., Coll. Vol. 4, 836-838 (1963).
2740. Khan, H. and Zaman, A.: Tetrahedron, 30 (16), 2811-2815 (1974).
2741. Blom, A. and Tambor, J.: Ber. Dtsch. Chem. Ges., 38, 3589-3592 (1905).
2742. Mauthner, F.: J. Prakt. Chem., 136, 205-212 (1933).
2743. Mauthner, N.: Mat. naturw. Anz. ungar. Akad. Wiss., 50, 468-476 (1934); Chem. Abstr., 28, 3392^{7} (1934).
2744. Auwers, K. v. and Pohl, P.: Justus Liebigs Ann. Chem., 405, 243-294 (1914).
2745. Kuhn, R. and Staab, H. A.: Chem. Ber., 87, 266-272 (1954).
2746. Mathur, K. B. L.; Sharma, J. N.; Venkataramanan, K. and Krishnamurty, H. G.: J. Am. Chem. Soc., 79, 3582-3586 (1957).
2747. Kawamura, Y.; Takatsuki, H.; Torii, F. and Horie, T.: Bull. Chem. Soc. Jpn., 67 (2), 511-515 (1994).
2748. Dean, F. M.; Goodchild, J.; Houghton, L. E.; Martin, J. A.; Morton, R. B.; Parton, B.; Price, A. W. and Nongyow Somvichien: Tetrahedron Lett., (35), 4153-4159 (1966).
2749. Martin, G. v. and Jagi: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 213, 334-338 (1878).
2750. Lin, H. C. and Chern, H. M.: Chung-hua Yao Usueh Tsa Chih, 43 (2), 175-177 (1991); Chem. Abstr., 115, 99062z (1991).
2751. Goto, H.; Shimada, Y.; Akechi, Y.; Kohta, K.; Hattori, M. and Terasawa, K.: Planta Med., 62 (5), 436-439 (1996).
2752. Lin, W. C.; Chuang, W. C. and Shen, S. J.: J. High Resolut. Chromatogr. 19 (9), 530-533 (1996).
2753. Wu, Hsin-Kai and Shen, Shuenn-Jyi: J. Chromatogr., A, 753 (1), 139-146 (1996).
2754. Quinn, L. A. and Tang, H. H.: J. Am. Oil. Chem. Soc., 73 (11), 1585-1588 (1996); Chem. Abstr., 126, 6816n (1997).
2755. Peron, M. G.: J. Pharm. Chim., [7] 3, 238-241 (1910); Chem. Zentralbl., I, 1144 (1911).
2756. Guo, Libing; Liang, Jin ji and Yang, Qiwen: Zhongguo Zhongyao Zazhi, 21 (8), 484-485 (1996); Chem. Abstr., 126, 242697v (1997).
2757. Lou, F.; Li, X.; Ma, Q.; Meng, Y. and Wu, Q.: Zhongguo Yaoke Daxue Xuebao, 20 (3), 167-169 (1989); Chem. Abstr., 111, 228982t (1989).
2758. Sun, F.; Caiming and Lou, F.: Zhongguo Zhongyao Zazhi, 18 (6), 362-263 (1993); Chem. Abstr., 120, 398g (1994).
2759. Miyazawa, M.; Shimamura, H. and Kameoka, H.: Nat. Prod. Lett., 9 (4), 245-248 (1997).
2760. IIyas, M.; Parveen, M.; Shafinllah and Khan, M. S.: J. Indian Chem. Soc., 73 (11), 632 (1996).
2761. Finlayson, H. H.: J. Chem. Soc., 2763-2767 (1926).
2762. Pfeiffer, P. and Lin, Wang: Angew. Chem., 40, 983-991 (1927).
2763. Jurd, L. and Rolle, L. A.: J. Am. Chem. Soc., 80, 5527-5531 (1958).
2764. Tiemann, F.: Ber. Dtsch. Chem. Ges., 24, 2854-2855 (1891).
2765. Uchino, S.; Takahashi, S.; Ogini, N.; Maoka, T.; Takayama, S.; Hashimoto, K. and Kozuka, M.: Kuromatogurafi, 17 (3), 195-201 (1996); Chem. Abstr., 126, 51042t (1997).
2766. Luan, L.-Jun; Zeng, S.; Liu, Z.-q. and Fu, X.-c.: Gaodeng Xuexia Huaxue Xuebao 18 (1), 42-45 (1997); Chem. Abstr., 126, 194849x (1997).
2767. Pelter, A.; Ward, R. S. and Gray, T. I.: J. Chem. Soc., Perkin Trans. 1, (23), 2475-2483 (1976).
2768. Kostanecki, S. v. and Lampe, V.: Ber. Dtsch. Chem. Ges., 37, $773-778$ (1904).
2769. Vyas, G. N. and Shah, N. M.: Org. Synth., Coll. Vol. 4, 836-838 (1963).
2770. Oliverio, A. and Lugli, E.: Gazz. Chim. Ital., 78, 16-20 (1948).
2771. Wiley, P. F.: J. Am. Chem. Soc., 73, 4205-4209 (1951).
2772. Shulgin, A. T. and Dyer, D. C.: J. Med. Chem., 18 (12), 1201-1204 (1975).
2773. Kauffmann, H. and Beisswenger, A.: Ber. Dtsch. Chem. Ges., 38, 789-793 (1905).
2774. Schutte, L. and Havinga, E.: Tetrahedron, 23 (5), 2281-2284 (1967).
2775. Shine, H. J. and Subotkowski, W.: J. Org. Chem., 52, 3815-3821 (1987).
2776. Alvaro, M.; Garcia, H.; Iborra, S.; Miranda, M. A. and Primo, J.: Tetrahedron, 43 (1), 143-148 (1987).
2777. Nath, S.: Ph. D. Thesis, Kalyani University, India (1983).
2778. Kudav, N. A.; Trivedi, B. K. and Kulkarni, A. B.: Indian J. Chem. Sect. B, 12B, 1045-1049 (1974).
2779. Talvitie, A.: Finn. Chem. Lett., 8, 58-59 (1983).
2780. Nakazawa, K.: J. Pharm. Soc. Jpn., 59, 495-499 (1939).
2781. Baker, W.: J. Chem. Soc., 956-961 (1939).
2782. Guillen, M. D. and Ibargoitia, M. L.: J. Agric. Food Chem., 46 (4), 1276-1285 (1998); Chem. Abstr., 128, 243078x (1998).
2783. Martin, R.: Bull. Soc. Chim. Fr., 901-905 (1977).
2784. Schneider, W. and Kraft, E.: Ber. Dtsch. Chem. Ges., 55, 1892-1899 (1922).
2785. Schwarz, R. and Capek, K.: Monatsh. Chem., 83, 883-893 (1952).
2786. Brossi, A.; Gurien, H.; Rachlin, A. I. and Teitel, S.: J. Org. Chem., 32, 1269-1270 (1967).
2787. Sugasawa, S. and Kawasu, M.: J. Pharm. Soc. Jpn., 73, 1102-1105 (1953).
2788. Tzeng-Shou Tung, Tun-Shun Chung and Minlon-Huang: Yao Hsüeh Hsüeh Pao, 6 (3), 164-168 (1958); Chem. Abstr., 53, 14039 f (1959).
2789. Orem, W. H.; Lerch, H. E. and Kotra, R. K.: Geol. Geofiz., 34 (10-11), 108-123 (1993); Chem. Abstr., 121, 209510c (1994).
2790. Thiele, K.: U.S. 3,644,525 (1972); Chem. Abstr., 76, 140214s (1972).
2791. Mahesh, V. B.; Neelakantan, S. and Seshadri, T. R.: J. Sci. Ind. Res., 15B (6), 287-292 (1956).
2792. Jain, A. C. and Seshadri, T. R.: Proc. Indian Acad. Sci., 40A, 249-259 (1954).
2793. Walsh, D. A.; Franzyshen, S. K. and Yanni, J. M.: J. Med. Chem., 32 (1), 105-118 (1989).
2794. Omata, A.; Yomogida, K.; Nakamura, S.; Hashimoto, S.; Koba, S.; Furukawa, K. and Noro, S.: Flavour Fragrance J., 5 (1), 19-22 (1990).
2795. Barch, W. E.: J. Am. Chem. Soc., 57, 2330 (1935).
2796. Berlin, A. Ya.; Sherlin, S. M. and Serebrennikova, T. A.: Zh. Obshch. Khim., 19, 759-768 (1949).
2797. Mottern, H. O.: J. Am. Chem. Soc., 56, 2107-2108 (1934).
2798. Nakajima, M. and Takei, S.: J. Chem. Soc. Jpn., 70, 49-52 (1949).
2799. Otto, T.: Ber. Dtsch. Chem. Ges., 24, 2869-2870 (1891).
2800. Finnemore, H.: J. Chem. Soc., Trans. 93, 1520-1524 (1908).
2801. Riegel, B. and Wittcoff, H.: J. Am. Chem. Soc., 68, 1913-1917 (1946).
2802. Pratt, D. D. and Robinson, R.: J. Chem. Soc., 123, 745-758 (1923).
2803. Finnemore, H.: J. Chem. Soc., Trans. 93, 1513-1519 (1908).
2804. Moore, C. W.: J. Chem. Soc., 95, 734-751 (1909).
2805. Naves, Y. R.: Helv. Chim. Acta, 32, 1351-1353 (1949).
2806. Tutin, F.: J. Chem. Soc., 99, 1240-1248 (1911).
2807. Leger, F. and Hibbert, H.: J. Am. Chem. Soc., 60, 565-567 (1938).
2808. Srebotnik, E.; Jensen, K. A., Jr.; Kawai, S. and Hammel, K. E.: Appl. Environ. Microbiol. 63 (11), 4435-4440 (1997); Chem. Abstr., 128, 32216c (1998).
2809. Leeson, P. D.; Emmett, J. C.; Underwood, A. H. and Ellis, D.: Eur. Pat. Appl. EP 188,351 (1986); Chem. Abstr., 105, 209386 m (1986).
2810. Lutskii, A. E.: Molekulyarhaya Spektroskopiya, Leningrad. Gosudarst. Univ. im. A. A. Zhdanova, Sbornik Statei, 190-197 (1960); Chem. Abstr., 56, 4257a (1962).
2811. Baker, W.; Jukes, E. H. T. and Subrahmanyam, C. A.: J. Chem. Soc., 1681-1684 (1934).
2812. Perkin, A. G. and Wilson, C. R.: J. Chem. Soc., 83, 129-144 (1903).
2813. Horton, W. J. and Stout, M. G.: J. Org. Chem., 26, 1221-1223 (1961).
2814. Gardner, P. D.; Horton, W. J. and Pincock, R. E.: J. Am. Chem. Soc., 78, 2541-2543 (1956).
2815. Perkin, A. G. and Wilson, C. R.: Chem. Zentralbl., 74, 466 (1903).
2816. Nakazawa, K.: J. Pharm. Soc. Jpn., 59, 199-202 (1939).
2817. Khanna, R. N. and Seshadri, T. R.: Indian J. Chem., 1 (9), 385-387 (1963).
2818. Ollis, W. D.; Redman, B. T.; Sutherland, I. O. and Gottlieb, O. R.: Phytochemistry, 17 (8), 1379-1381 (1978).
2819. Raju, Vegesna S.; Subbaraju, Gottumukkala V.; Manhas, Maghar S.; Kaluza, Zbigniew and Bose, Ajay K.: Tetrahedron, 48 (39), 8347-8352 (1992).
2820. Baker, W.: J. Chem. Soc., 662-670 (1941).
2821. Perkin, A. G. and Wilson, C. R.: Chem. Zentralbl., 74, 89-90 (1903).
2822. Perkin, A. G. and Storey, R. C.: J. Chem. Soc., 243, 229-244 (1928).
2823. Adityachandhury, N.; Kirtaniya, C. L. and Mukherjee, B.: Tetrahedron, 27 (11), 2111-2117 (1971).
2824. Aneja, R.; Khanna, R. N. and Seshadri, T. R.: J. Chem. Soc., 163-168 (1963).
2825. Barton, D. H.; Donnelly, D. M. X.; Finet, J. P. and Guiry, P. J.: Tetrahedron Lett., 31 (51), 7449-7452 (1990).
2826. Hauteville, M. and Chadenson, M.: Bull. Soc. Chim. Fr., 1780 (1973).
2827. Sonn, A. and Bülow, W.: Ber. Dtsch. Chem. Ges., 58, 1691-1698 (1925).
2828. Zemplen, G.; Bognar, R. and Thiele, K.: Ber. Dtsch. Chem. Ges., 77, 446-451 (1944).
2829. Tsukayama, M.; Kawamura, Y.; Tamaki, H.; Kubo, T. and Horie, T.: Bull. Chem. Soc. Jpn., 62, 826-832 (1989).
2830. Ichino, K.; Tanaka, H.; Ito, K.; Tanaka, T. and Mizuno, M.: J. Nat. Prod., 51 (5), 906-914 (1983).
2831. Gulati, K. C. and Venkataraman, K.: J. Chem. Soc., 267-269 (1936).
2832. Malterud, K. E.; Undheim, J. and Erdal, J. E.: Tetrahedron Lett., 26 (39), 4807-4810 (1985).
2833. Shinoda, J. and Sato, S.: J. Pharm. Soc. Jpn., 48, 220-222 (1928); Chem. Abstr., 22, 2947 (1928).
2834. Jain, A. C. and Zutshi, M. K.: Tetrahedron Lett., (34), 3179-3182 (1971).
2835. Jain, A. C. and Zutshi, M. K.: Tetrahedron, 28 (22), 5589-5593 (1972).
2836. Manaktala, S. K.: Ph. D. Thesis, Delhi University, India (1964).
2837. Kuhn, R. and Löw, I.: Ber. Dtsch. Chem. Ges., 77, 202-210 (1944).
2838. Murti, V. V. S.; Seshadri, T. R. and Rao, K. V.: Proc. Indian Acad. Sci., 29A, 1-8 (1949).
2839. Yenesew, A.; Dagne, E.; Mueller, M. and Steglich, W.: Phytochemistry, 37 (2), 525-528 (1994).
2840. Gören, N. and Tahtasakal, E.: Phytochemistry, 36 (5), 1281-1282 (1994).
2841. Lin, X.; Jia, Z. and Lin, Z.: Gaodeng Xuexiao Huaxue Xuebao, 13 (6), 767-769 (1992); Chem. Abstr., 117, 86816q (1992).
2842. Konishi, F.; Esaki, S. and Kamiya, S.: Agric. Biol. Chem., 47 (7), 1419-1429 (1983); Chem. Abstr., 100, 22916p (1984).
2843. Sartori, G.; Casiraghi, G.; Bolzoni, L. and Casnati, G.: J. Org. Chem. 44 (5), 803-805 (1979).
2844. Asahina, Y.; Shinoda, J. and Inubuse, M.: J. Pharm. Soc. Jpn., 550, 1007-1019 (1927).
2845. Sonn, A.: Ber. Dtsch. Chem. Ges., 61, 2300-2302 (1928).
2846. Ayras, P. and Widen, C. J.: Org. Magn. Reson., 11 (11), 551-554 (1987).
2847. Nickl, J.: Chem. Ber., 91, 553-565 (1958).
2848. Simpson, T. H.: J. Org. Chem., 28, 2107-2110 (1963).
2849. Dean, F. M.; Randell, D. R. and Winfield, G.: J. Chem. Soc., 1071-1077 (1959).
2850. Ayub, Ali S.: Pak. J. Sci. Ind. Res., 22 (1-2), 38-39 (1979).
2851. APSimon, J. W.; Haynes, N. B.; Sim, K. Y. and Whalley, W. B.: J. Chem. Soc., 3780-3782 (1963).
2852. Whalley, W. B.: J. Chem. Soc., 3229-3235 (1951).
2853. Büchi, G.; Foulkes, D. M.; Kurono, M.; Mitchell, G. F. and Schneider, R. S.: J. Am. Chem. Soc., 89, 6745-6753 (1967).
2854. Hauteville, M.; Chadenson, M. and Chopin, J.: Bull. Soc. Chim. Fr., 1781-1784 (1973).
2855. Hauteville, M.; Chopin, J.; Geiger, H. and Schuler, L.: Tetrahedron, 37 (2), 377-381 (1981).
2856. Cairns, H.: Tetrahedron, 28 (2), 359-361 (1972).
2857. Cavell, B. D. and MacMillan, J.: J. Chem. Soc. C, 310-313 (1967).
2858. Duncanson, L. A.; Grove, J. F.; MacMillan, J. and Mulholland, T. P. C.: J. Chem. Soc., 3555-3564 (1957).
2859. Kokubun, T.; Harborne, J. B. and Eagles, J.: Phytochemistry, 35 (2), 331-333 (1994).
2860. Dave, K. G.; Telang, S. A. and Venkataraman, K.: J. Sci. Ind. Res., 19B, 470-476 (1960).
2861. Schmid, H. and Bolleter, A.: Helv. Chim. Acta, 33, 917-922 (1950).
2862. Birch, A. J. and Hextall, P.: Aust. J. Chem., 8 (2), 263-266 (1955).
2863. Kroes, B. H.; Van den Berg, A. J. J.; Quarles van Ufford, H. C.; Van Dijk, H. and Labadie, R. P.: Planta Med., 58 (6), 499-504 (1992); Chem. Abstr., 119, 479p (1993).
2864. Britton, W. E. and Steelink, C.: Tetrahedron Lett., (33), 2873-2876 (1974).
2865. Folke, J.: Sven. Papperstidn., 87 (15), R133-R144 (1984); Chem. Abstr., 102, 80618v (1985).
2866. Miyoshi, M. and Onodera, K.: Jpn. Kokai Tokkyo Koho JP 61,248,042 [86,248,042] (1986); Chem. Abstr., 106, 224414h (1987).
2867. Simoneit, Bernd R. T.; Rogge, W. F.; Mazurek, M. A.; Standley, I. J.; Hildemann, L. M. and Cass, G. R.: Environ. Sci. Technol., 27 (12), 2533-2541 (1993); Chem. Abstr., 119, 209380u (1993).
2868. Rodriguez-Maroto, J. M.; Garcia, F.; Rodriguez-Mirasol, J.; Cordero, T.; Suau, R. and Rodriguez, J. J.: J. Environ. Sci. Health, Part A, A 28 (3), 651-662 (1993); Chem. Abstr., 119, 79260s (1993).
2869. Farina, F. and Valderrama, J.: Synthesis, (6), 315-316 (1971).
2870. Curd, F. H. and Robertson, A.: J. Chem. Soc., 437-444 (1933).
2871. Matsuura, S.: Yakugaku Zasshi, 77, 298-301 (1957); Chem. Abstr., 51, 11338a (1957).
2872. Robertson, A. and Whalley, W. B.: J. Chem. Soc., 3355-3356 (1951).
2873. Huneck, S.: Phytochemistry, 11 (11), 3311-3312 (1972).
2874. Mukerjee, S. K.; Seshadri, T. R. and Varadarajan, S.: Proc. Indian Acad. Sci., 37A, 127144 (1953).
2875. Friedl, W.: US Pat. 2,898,374 (1959); Chem. Abstr., 54, 17330f (1960).
2876. Jain, A. C. and Seshadri, T. R.: Proc. Indian Acad. Sci., 42A, 279-284 (1955).
2877. Jain, A. C.; Lal, P. and Seshadri, T. R.: Tetrahedron, 25 (2), 283-286 (1969).
2878. Riedl, W.; Nickl, J.; Risse, K. H. and Mitteldorf, R.: Chem. Ber., 89, 1849-1863 (1956).
2879. Cann, M. R. and Shannon, P. V. R.: Chem. Ind. (London), 19, 779-780 (1982).
2880. Rao, G. S. K.; Rao, K. V. and Seshadri, T. R.: Proc. Indian Acad. Sci., 27A, 245-247 (1948).
2881. Venkat, G. and Seshadri, T. R.: Proc. Indian Acad. Sci., 36A, 130-133 (1952).
2882. Obara, H.; Onodera, J. and Abe, S.: Bull. Chem. Soc. Jpn., 52 (9), 2596-2599 (1979).
2883. Phadke, P. S.; Rao, A. V. R. and Venkataraman, K.: Indian J. Chem., 5 (4), 131-133 (1967).
2884. Shah, R. C.; Mehta, C. R. and Wheeler, T. S.: J. Chem. Soc., 1555-1559 (1938).
2885. Chawla, H. M.; Gambhir, I. and Kathuria, L.: J. Chromatogr., 188 (1), 289-291 (1980).
2886. Riedl, W. and Leucht, E.: Chem. Ber., 91, 2784-2794 (1958).
2887. Parkes, G. D.: J. Chem. Soc., 2143-2146 (1948).
2888. Moussavi, Z.; Lesieur, D.; Lespagnol, C.; Sauzieres, J. and Olivier, P.: Eur. J. Med. Chem., 24 (1), 55-60 (1989).
2889. Moussavi, Z.; Depreux, P.; Lesieur, D.; Cotelle, N.; Sauzieres, J.; Plancke, M. O. and Fruchart, J. C.: Farmaco, 46 (2), 339-355 (1991).
2890. Roblot, F.; Hocquemiller, R. and Cave, A.: J. Chem. Res., Synop., (11), 344-345, 2637-2651 (1989).
2891. Morris, J.; Wishka, D. G.; Lin, A. H.; Humphrey, W. R.; Wiltse, A. L.; Gammill, R. B.; Judge, T. M.; Bisaha, S. N.; Olds, N. L.; Jacob, C. S.; Bergh, C. L.; Cudahy, M. M.; Williams, D. J.; Nishizawa, E. E.; Thomas, E. W.; Gorman, R. R.; Benjamin, C. W. and Shebuski, R. J.: J. Med. Chem., 36 (14), 2026-2032 (1993).
2892. Donnelly, J. A. and Policky, F.: Chem. Ind. (London), 1338 (1965).
2893. Cechinel-Filho, V.; Vaz, Z. R.; Zunino, L.; Calixto, J. B. and Yunes, R. A.: Eur. J. Med. Chem., 31 (10), 833-839 (1996).
2894. Donnelly, J. A. and Doran, H. J.: Tetrahedron, 31 (13/14), 1565-1569 (1975).
2895. Smith, T. J.; Wearne, R. H. and Wallis, A. F. A.: Holzforschung, 48 (Suppl.), 125-132 (1994); Chem. Abstr., 120, 220640v (1994).
2896. Adam, W. and Schulz, M. H.: Chem. Ber., 125, 2455-2461 (1992).
2897. Parmar, V. S.; Prasad, A. K.; Sharma, N. K.; Singh, S. K.; Pati, H. N. and Gupta, S.: Tetrahedron, 48 (31), 6495-6498 (1992).
2898. Nicolosi, G.; Piattelli, M. and Sanfilippo, C.: Tetrahedron, 49 (15), 3143-3148 (1993).
2899. Nohara, A.; Umetani, T. and Sanno, Y.: Tetrahedron, 30 (19), 3553-3561 (1974).
2900. Okogun, J. I.; Enyenihi, V. H. and Ekong, D. E. U.: Tetrahedron, 34 (8), 1221-1224 (1978); Chem. Abstr., 89, 179792x (1978).
2901. Simokoriyama, M.: Bull. Chem. Soc. Jpn, 16 (8), 284-291 (1941).
2902. Tahara, Y.: Ber. Dtsch. Chem. Ges., 25, 1292-1305 (1892).
2903. Malin, G.: Justus Liebigs Ann. Chem., 138, 76-83 (1866).
2904. Ahuja, M.; Bandopadhyay, M. and Seshadri, T. R.: Indian J. Chem., 12 (1), 26-28 (1974).
2905. Kraemer, J.: Arch. Pharm. (Weinheim, Ger.), 303 (12), 1013-1024 (1970).
2906. Gregson, M.; Ollis, W. D.; Redman, B. T.; Sutherland, I. O.; Dietrichs, H. H. and Gottlieb, O. R.: Phytochemistry, 17 (8), 1395-1400 (1978).
2907. Thakar, K. A. and Joshi, R. C.: J. Indian Chem. Soc., 59 (1), 77-79 (1982).
2908. Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 7 (2), 349-354 (1999); Chem. Abstr., 134, 100788s (2001).
2909. Cohen, N.; Blount, J. F.; Lopresti, R. J. and Trullinger, D. P.: J. Org. Chem., 44 (12), 4005-4007 (1979).
2910. Letcher, R. M.: J. Chem. Res., Synop., (12), 380, 2901-2929 (1989).
2911. Barot, Vijay M. and Naik, H. B.: Asian J. Chem., 7 (3), 669-671 (1995); Chem. Abstr., 123, 339968k (1995).
2912. Marathey, M. G. and Athavale, J. M.: J. Indian Chem. Soc., 31 (9), 654-656 (1954).
2913. Shah, R. C. and Mehta, P, R.: J. Univ. Bombay, 4, 109-113 (1935).
2914. Bruckhausen, F. v.; Oberembt, H. and Feldhaus, A.: Justus Liebigs Ann. Chem., 507, 144-159 (1933).
2915. Perkin, A. G.: J. Chem. Soc., Trans., 67, 990-999 (1895).
2916. Chang, C. T.; Chen, T. S. and Chen, F. C.: J. Org. Chem., 26, 3142-3143 (1961).
2917. Donnelly, J. A.: Tetrahedron Lett., (19), 1-3 (1959).
2918. Jonas, R.: Bericht von Schimmel \& Co., April, 147-153 (1909).
2919. Penfold, A. R.: J. Proc. R. Soc. N. S. W., 61, 179-189 (1927).
2920. Schaeffer, H. J.; Lauter, W. M. and Foote, P. A.: J. Am. Pharm. Assoc., 43, 43-45 (1954).
2921. Semmler, F. W. and Schossberger, E.: Ber. Dtsch. Chem. Ges., 44, 2885-2890 (1911).
2922. Jemison, R. W.: Aust. J. Chem., 21 (1), 217-220 (1968).
2923. Kulkarni, S. U. and Thakar, K. A.: J. Indian Chem. Soc., 52 (9), 849-852 (1975).
2924. Sen, A. B. and Singh, S. B.: J. Indian Chem. Soc., 41 (6), 461-464 (1964).
2925. Adams, R. and Mecorney, J. W.: J. Am. Chem. Soc., 67, 798-802 (1945).
2926. Goswami, A. K.; Borthakur, N.; Rastogi, R. C. and Bhattacharya, P. R.: Indian J. Chem., Sect. B, 23B (9), 904-906 (1984).
2927. Dillar, R. D.: Eur. Pat. Appl. EP 132,366 (1985); Chem. Abstr., 103, 141966 (1985).
2928. Pouwels, A. D.; Tom, A.; Eijkel, G. B. and Boon, J. J.: J. Anal. Appl. Pyrolysis, 11, 417-436 (1987); Chem. Abstr., 108, 183203j (1988).
2929. Pirrung, M. C.; Brown, W. L.; Rege, S. and Laughton, P.: J. Am. Chem. Soc., 113 (22), 8561-8562 (1991).
2930. Tökés, A. L.: J. Antibiotics, 43 (10), 1332-1333 (1990).
2931. Donnelly, J. A.; Acton, J. P.; Donnelly, D. J. and Philbin, E. M.: Proc. R. Ir. Acad., Sect. B, 83B (1-16), 49-56 (1983); Chem. Abstr., 100, 103118g (1984).
2932. Levai, A. and Tokes, A. L.: Z. Naturforsch., C: Biosci., 37c (5-6), 540-541 (1982).
2933. Tökés, A. L. and Levai, A.: Stud. Org. Chem. (Amsterdam) 1981 (Pub. 1982). 11 (Flavonoids Bioflavonoids), 129-132; Chem. Abstr., 97, 215839u (1982).
2934. Chen, F. C.; Chang, C. T. and Chen, T. S.: J. Org. Chem., 27, 85-87 (1962).
2935. Gandhi, P. and Tiwari, R. D.: J. Indian Chem. Soc., 52 (11), 1111-1112 (1975).
2936. Nakazawa, K.: Chem. Pharm. Bull., 10, 1032-1038 (1962).
2937. Xing, Youquan; Sun, Zhizhong and Chen, Niangai: Zhongguo Yiyao Gongye Zazhi, 23 (7), 325-326 (1992); Chem. Abstr., 118, 233827v (1993).
2938. Gotoda, S.; Takahashi, N.; Nakagawa, H.; Murakami, M.; Takechi, T.; Komura, T. and Uchida, T.: Pestic. Sci., 52 (4), 309-320 (1998); Chem. Abstr., 128, 318299 (1998).
2939. Baker, W.; McOmie, J. F. W. and Miles, D.: J. Chem. Soc., 820-822 (1953).
2940. Eiden, F.; Patzelt, G. and Buchborn, H.: Arch. Pharm. (Weinheim, Ger.), 322 (10), 589-592 (1989).
2941. Joshi, R. S. and Naik, H. B.: J. Inst. Chem. (India), 52, 184-186 (1980).
2942. Jones, K. and Storey, J. M. D.: Tetrahedron Lett., 34 (48), 7797-7798 (1993).
2943. Kenner, J. and Statham, F. S.: J. Chem. Soc., 299-303 (1935).
2944. Ramage, G. R. and Stead, C. V.: J. Chem. Soc., 3602-3606 (1953).
2945. Kouskov, V. K.; Naoumov, I. A. and Bourtseva, T. A.: Zh. Obshch. Khim., 31 (1), 54-59 (1961).
2946. McCoubrey, A.: J. Pharm. Pharmacol., 8, 648-652 (1956).
2947. Sen, A. B. and Parmar, S. S.: J. Indian Chem. Soc., 30 (10), 720-722 (1953).
2948. Sen, A. B. and Parmar, S. S.: J. Indian Chem. Soc., 31 (9), 709-710 (1954).
2949. Sen, A. B. and Tiwari, S. S.: J. Indian Chem. Soc., 29 (5), 357-362 (1952).
2950. Knoelker, H. J. and Bauermeister, M.: Helv. Chim. Acta, 76 (7), 2500-2514 (1993).
2951. Krausz, F.; Martin, R. and Gavard, J. P.: Bull. Soc. Chim. Fr., 640-645 (1966).
2952. Vène, J.; Kerfanto, M. and Raphalen, D.: Bull. Soc. Chim. Fr., 1813-1817 (1963).
2953. Gardner, D.; Grove, J. F. and Ismay, D.: J. Chem. Soc., 1817-1819 (1954).
2954. Krausz, F. and Martin, R.: C. R. Acad. Sci., 256, 5594-5595 (1963).
2955. Smith, L. I. and Opie, J. W.: J. Org. Chem., 6, 427-436 (1941).
2956. Auwers, K. v. and Mauss, W.: Ber. Dtsch. Chem. Ges., 61, 1495-1507 (1928).
2957. Auwers, K. v. and Janssen, E.: Justus Liebigs Ann. Chem., 483, 44-65 (1930).
2958. Kallianos, A. G.; Warfield, A. H. and Simpson, M. I.: U.S. 3,605,760 (1971); Chem. Abstr., 76, 1949x (1972).
2959. Kallianos, A. G.; Warfield, A. H. and Simpson, M. I.: U.S. 3,787,501 (1974); Chem. Abstr., 80, 82410x (1974).
2960. Kallianos, A. G.; Warfield, A. H. and Simpson, M. I.: U.S. 3,900,521 (1975); Chem. Abstr., 83, 205942u (1975).
2961. Jatley, U. K.; Shukla, F.; Singh, J.; Sharma, K. N. and Rastogi, S. N.: J. Inst. Chem. (India), 59 (2), 91-94 (1987); Chem. Abstr., 107, 206135j (1987).
2962. Sabita, G., Mrs. and Rao, A. V. S.: Synth. Commun., 17 (3), 341-354 (1987).
2963. Suau, R.; Torres, G. and Valpuesta, M.: Tetrahedron Lett., 36 (8), 1311-1314 (1995).
2964. Hanaya, K.; Ozawa, K. and Muramatsu, T.: Nippon Kagaku Kaishi, 11, 1643-1649 (1986); Chem. Abstr., 107, 198010x (1987).
2965. Baddeley, G.: J. Chem. Soc., 273-274 (1943).
2966. Royer, R.; René, L. and Demerseman, P.: Chim. Ther., 2, 139-142 (1973).
2967. Tiwari, S. S. and Tewari, B. N.: J. Indian Chem. Soc., 31, 76-78 (1954).
2968. Fischer, A.; Greig, C. C. and Roederer, R.: Can. J. Chem., 53 (11), 1570-1578 (1975).
2969. Auwers, K. v.: Ber. Dtsch. Chem. Ges., 48, 90-93 (1915).
2970. Balaban, A. T.; Frangopol, P. T.; Katritzky, A. R. and Nenitzescu, C. D.: J. Chem. Soc., 3889-3895 (1962).
2971. Campbell, N. and Thomson, A.: Proc. R. Soc. Edinburgh, Sect. A, Math. Phys. Sci., 68 (3), 245-256 (1970).
2972. Dean, F. M.; Halewood, P.; Mongkolsuk, S.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 1250-1261 (1953).
2973. Sugiyama, N.; Sato, T.; Kataoka, H. and Kashima, C.: Bull. Chem. Soc. Jpn., 44, 555-556 (1971).
2974. Auwers, K. v. and Borsche, E.: Ber. Dtsch. Chem. Ges., 48, 1698-1717 (1915).
2975. Heikel, Armas: Suom. Kemistil. B, 8B, 33-34 (1935); Chem. Abstr., 30, 438^{2} (1936).
2976. Clark, J. H. and Miller, J. M.: J. Chem. Soc., Perkin Trans. 1, (18), 2063-2069 (1977).
2977. Fuson, R. C.; McKeever, C. H.; Rabjohn, N. and Gray, H. W.: J. Am. Chem. Soc., 65, 1028-1029 (1943).
2978. Salman, S. R. and Kamounah, F. S.: Magn. Reson. Chem., 25, 966-969 (1987).
2979. Föhlisch, B. and Herrscher, O.: Tetrahedron, 41 (10), 1979-1983 (1985).
2980. Dimmel, D. R. and Schuller, L. F.: J. Wood Chem. Technol., 6 (4), 535-564 (1986); Chem. Abstr., 106, 139963s (1987).
2981. Al-Ka’bi, Ja’far; Gore, P. H.; Moonga, Baljit; Al-Shiebani, Ikbal S.; Shibaldain Nazar L. and Kamounah, Fadhil S.: J. Chem. Res., Synop., (7), 246-247 (1986); Miniprint, 2201-2226 (1986).
2982. Shibaldain, Nazar L.: M. Sci. Thesis, University of Basrah, Basrah, Iraq (1984).
2983. Al-Ka’bi, Ja’far; Farooqi, Jameel A.; Gore, P. H.; Nassar, Ahmed M. G.; Saad, Esmat F.; Short, E. L. and Waters, David N.: J. Chem. Soc., Perkin Trans. 2, (6), 943-949 (1988).
2984. Fujio, M.; Mishima, M.; Tsuno, Y.; Yukawa, Y. and Takai, Y.: Bull. Chem. Soc. Jpn., 48 (7), 2127-2133 (1975).
2985. Fischer, A.; Leary, G. J.; Topsom, R. D. and Vaughan, J.: J. Chem. Soc., 782-785 (1966).
2986. Hapiot, P.; Neta, P.; Pinson, J.; Rolando, C. and Schneider, S.: New J. Chem., 17 (3), 211-224 (1993).
2987. Bhalerao, U. T.; Raju, B. China and Neelakantan, Parvathi: Synth. Commun., 25 (10), 1433-1439 (1995).
2988. Sato, N.: Tetrahedron Lett., 37 (47), 8519-8522 (1996).
2989. Goodyear, G. and Waring, A. J.: J. Chem. Soc., Perkin Trans. 2, (1), 103-107 (1990).
2990. Hassall, C. H. and Todd, A. R.: J. Chem. Soc., 611-613 (1947).
2991. Smith, L. I.; Opie, J. W.; Wawzonek, S. and Prichard, W. W.: J. Org. Chem., 4, 318-322 (1939).
2992. Bergel, F.; Morrison, A. C.; Moss, A. R. and Rinderknecht, H.: J. Chem. Soc., 415-421 (1944).
2993. Hall, J. B.; Sprecker, M. A.; Shuster, E. J.; Schmitt, F. L. and Vinals, J. F.: U.S. 4, 115,431 (1978); Chem. Abstr., 90, 71930x (1979).
2994. Manecke, G. and Bourwieg, G.: Chem. Ber., 95, 1413-1416 (1962).
2995. Matsui, M.; Yamashita, K. and Sugimura, I.: Japan 69 05, 214 (1969); Chem. Abstr., 71, 3257r (1969).
2996. Celli, A. M.; Lampariello, L. R.; Chimichi, S.; Nesi, R. and Scotton, M.: Can. J. Chem., 60 (11), 1327-1332 (1982).
2997. Cairns, H.; Chambers, A. and Lee, T. B.: Ger. Offen. 2,142,526 (1972); Chem. Abstr., 77, 34338w (1972).
2998. Ansell, M. F.; Nash, B. W. and Wilson, D. A.: J. Chem. Soc., 3028-3036 (1963).
2999. Schmutz, J.; Hirt, R.; Künzle, F.; Eichenberger, E. and Lauener, H.: Helv. Chim. Acta, 34, 620-626 (1953).
3000. Delalande S. A.: Belg. 884,602 (1981); Chem. Abstr., 95, 62259m (1981).
3001. Geissman, T. A. and Mojé, W.: J. Am. Chem. Soc., 73, 5765-5768 (1951).
3002. Chabrier, P.; Najer, H.; Giudicelli, R. and Joannic-Voisinet, E.: Bull. Soc. Chim. Fr., 1488-1491 (1958).
3003. Kostanecki, S. v. and Tambor, J.: Ber. Dtsch. Chem. Ges., 28, 2302-2309 (1895).
3004. Buckle, D. R.; Cantello, B. C. C.; Smith, H. and Spicer, B. A.: J. Med. Chem., 18 (4), 391-394 (1975).
3005. Smalberger, T. M.; Vleggaar, R. and Weber, J. C.: Tetrahedron, 31 (18), 2297-2301 (1975).
3006. Kostanecki, S. v.; Levi, R. and Tambor, J.: Ber. Dtsch. Chem. Ges., 32, 326-332 (1899).
3007. Auwers, K. v. and Rietz, E.: Ber. Dtsch. Chem. Ges., 40, 3514-3521 (1907).
3008. Behn, R.: Inaugural dissertation, Rostock, Germany (1897).
3009. Blumstein, J. and Kostanecki, S.: Ber. Dtsch. Chem. Ges., 33, 1478-1483 (1900).
3010. Beger, J.; Neumann, R.; Vogel, T.; Luecke, L.; Kaestner, G.; Runge, H. J.; Schewe, T.; Schewe, C.; Ludwig, P. and Slapke, J.: Ger. (East) DD 297,155 (1992); Chem. Abstr., 116, 214145p (1992).
3011. Reichel, L. and Weber, F. G.: Pharmazie, 30 (3), 195 (1975).
3012. Limaye, S. D. and Limaye, D. B.: Rasayanam, 1, 109-112 (1937); Chem. Abstr., 32, 2095^{8} (1938).
3013. Royer, R.; Bisagni, E.; Laval-Jeantet, A. M. and Marquet, J. P.: Bull. Soc. Chim. Fr., 2607-2616 (1965).
3014. Marshall, W. S.; Whitesitt, C. A.; Goodson, T.; Roman, C.; Rinkema, L. and Fleisch, J. H.: Agents Actions, 21 (3-4), 275-277 (1987); Chem. Abstr., 107, 211455t (1987).
3015. Limaye, S. D. and Limaye, D. B.: Rasayanam, 1, 201-207 (1941); Chem. Abstr., 36, 1038^{7} (1942).
3016. Setalvad, J. I.; Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 29 (12), 915-920 (1952).
3017. Tsujihara, K.; Saito, K.; Hongu, M.; Matsumoto, M. and Oku, A.: Eur. Pat. Appl. EP 850,948 (1998); Chem. Abstr., 129, 95682t (1998).
3018. Kachroo, P. L.; Singh, C. and Gupta, Rajive: J. Indian Chem. Soc., 58 (12), 1209-1211 (1981).
3019. Weiss, R. and Kratz, A.: Monatsh. Chem., 51, 386-396 (1929).
3020. Rosenmund, K. W.; Buchwald, R. and Deligiannis, T.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 271, 342-352 (1933).
3021. Desai, R. D. and Hamid, S. A.: Proc. Indian Acad. Sci., 6A, 287-290 (1937).
3022. Mills, F. D.: J. Heterocycl. Chem., 17 (7), 1597-1600 (1980).
3023. Browne, M. F. and Shriner, R. L.: J. Org. Chem., 22, 1320-1322 (1957).
3024. Bohlmann, F. and Wienhold, C.: Chem. Ber., 112 (7), 2394-2401 (1979).
3025. Jones, E. T. and Robertson, A.: J. Chem. Soc., 1689-1693 (1932).
3026. Raistrick, H.; Robinson, R. and Todd, A. R.: J. Chem. Soc., 80-88 (1937).
3027. Ahluwalia, V. K.; Kumar, D. and Gupta, Y. K.: Indian J. Chem., Sect. B, 17B (5), 433-437 (1979).
3028. Tambor, J.: Ber. Dtsch. Chem. Ges., 41, 793-799 (1908).
3029. Boote, V. A.; Bruce, J. M.; Clarke, J. A.; Pritchard, A. P. and Speak, R. J.: Rapid Commun. Mass Spectrom., 11 (7), 749-752 (1997); Chem. Abstr., 127, 17308v (1997).
3030. Edwards, Jr., J. D., McGuire, S. E. and Higuite, C.: J. Org. Chem., 29, 3029-3032 (1964).
3031. Faltis, F.; Holzinger, L.; Ita, P. and Schwarz, R.: Ber. Dtsch. Chem. Ges., 74, 79-97 (1941).
3032. Munavalli, S.: Chem. Ind. (London), 7, 293-294 (1972).
3033. Martin, R.; Gavard, J. P.; Delfly, M.; Demerseman, P. and Tromelin, A.: Bull. Soc. Chim. Fr., 659-662 (1986).
3034. Fargher, R. G. and Perkin, Jr., W. H.: J. Chem. Soc., 119, 1724-1744 (1921).
3035. Tennant, S. and Wege, D.: J. Chem. Soc., Perkin Trans. 1, (11), 2089-2093 (1989).
3036. Robertson, A.; Whalley, W. B. and Yates, J.: J. Chem. Soc., 3117-3123 (1950).
3037. Curd, F. H. and Robertson, A.: J. Chem. Soc., 1173-1179 (1933).
3038. Zhao, K.; Xu, G.; Jin, R.; Xu, L. and Cong, X.: Zhongcaoyao, 25 (2), 66-67, 75 (1995); Chem. Abstr., 122, 299184x (1995).
3039. Dong, Yunfa and Ding, Yunmei: Zhiwu Ziyuan Yu Huanjing, 1 (2), 1-3 (1992); Chem. Abstr., 118, 56152y (1993).
3040. Zhang, H. and Ding, Y.: Zhiwu Ziyuan Yu Huanjing, 1 (3), 6-9 (1992); Chem. Abstr., 118, 35926p (1993).
3041. Youssef, D. T. A.; Ramadan, M. A. and Khalifa, A. A.: Phytochemistry, 49 (8), 2579-2583 (1998).
3042. Dean, F. M. and Robertson, A.: J. Chem. Soc., 1241-1249 (1953).
3043. Matsuura, S.: Yakugaku Zasshi, 77, 302-306 (1957); Chem. Abstr., 51, 11338d (1957).
3044. Arisawa, M.; Fujita, A.; Hayashi, T.; Hayashi, K.; Ochiai, H. and Morita, N.: Chem. Pharm. Bull., 38 (6), 1624-1626 (1990).
3045. Arisawa, M.; Fujita, A.; Suzuki, R.; Hayashi, T.; Morita, N.; Kawano, N. and Koshimura, S.: J. Nat. Prod., 48 (3), 455-459 (1985).
3046. Kouno, I.; Shigematsu, N.; Iwagami, M. and Kawano, N.: Phytochemistry, 24 (3), 620-621 (1985).
3047. Shigematsu, N.; Kouno, I. and Kawano, N.: Phytochemistry, 33 (1), 323-325 (1983).
3048. Lounasmaa, M.; Widén, C. J. and Huhtikangas, A.: Acta Chem. Scand., Ser. B, 28, 1200-1208 (1974).
3049. Asakawa, Y.: Rev. Latinoam. Quim., 14 (3-4), 109-114 (1984); Chem. Abstr., 101, 3891f (1984).
3050. Ahluwalia, V. K.; Prakash, C. and Rani, N.: Indian J. Chem., Sect. B, 16B (5), 436-437 (1978).
3051. Whalley, W. B.: J. Chem. Soc., 105-107 (1955).
3052. Schiemenz, G. P. and Schröder, J. M.: Z. Naturforsch., B: Anorg. Chem., Org. Chem., 40B (5), 669-680 (1985).
3053. Bhrara, S. C.; Goel, R. N.; Jain, A. C. and Seshadri, T. R.: Indian J. Chem., 2, 399-401 (1964).
3054. Matsuura, S.: Pharm. Bull., 5, 195-198 (1957); Chem. Abstr., 52, 5396c (1958).
3055. Bolognese, A.; Chioccara, F. and Scherillo, G.: Phytochemistry, 13 (9), 1989-1990 (1974).
3056. Bhardwaj, D. K.; Mehta, C. K. and Sharma, G. C.: Proc. Indian Natl. Sci. Acad., Part A, 46 (1), 48-52 (1980); Chem. Abstr., 94, 1990a (1981).
3057. Bargellini, G.: Gazz. Chim. Ital., 46, 249-255 (1916).
3058. Brand, K. and Collischonn, H.: J. Prakt. Chem., 103, 329-351 (1922).
3059. Perkin, W. H. and Weizmann, C.: Chem. Zentralbl., I, 406-408 (1907).
3060. Perkin, W. H. and Weizmann, C.: J. Chem. Soc., 89, 1649-1665 (1906).
3061. Price, D. and Bogert, M. T.: J. Am. Chem. Soc., 56, 2442-2449 (1934).
3062. Fujii, T.; Yoshifuji, S. and Ohba, M.: Chem. Pharm. Bull., 26 (10), 3218-3222 (1978).
3063. Marini-Bettolo, G. B. and Paolini, L.: Ital. 435,779 (1948); Chem. Abstr., 44, 8375d (1950).
3064. Marini-Bettolo, G. B.; Ballio, A. and Baroni, G.: Gazz. Chim. Ital., 78, 301-303 (1948).
3065. Perkin, A. G. and Wilson, C. R.: Proc. Chem. Soc., London, 18, 215 (1902).
3066. Benington, F.; Morin, R. D. and Clark, Jr., L. C.: J. Org. Chem., 20, 102-108 (1955).
3067. Hüe, R.; Jubier, A.; Andrieux, J. and Resplandy, A.: Bull. Soc. Chim. Fr., 3617-3624 (1970).
3068. David, E. and Kostanecki, S. v.: Ber. Dtsch. Chem. Ges., 36, 125-129 (1903).
3069. Lenz, G. R. and Woo, Chi-Min: J. Heterocycl. Chem., 18, 691-693 (1981).
3070. Bargellini, G. and Marini-Bettolo, G. B.: Gazz. Chim. Ital., 70, 170-178 (1940).
3071. Jones, G. H.; Mackenzie, J. B. D.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 562-569 (1949).
3072. Bargellini, G. and Avrutin, G.: Gazz. Chim. Ital., 40, 342-347 (1910).
3073. Smith, L. E. and Haller, H. L.: J. Am. Chem. Soc., 56, 237-239 (1934).
3074. Alvarado, S. I.; Marc, P. A.; Dahlke, B. J. and Reilly, E. M.: Eur. Pat. Appl. EP 694,257 (1996); Chem. Abstr., 124, 168273u (1996).
3075. Okuno, M.; Kameoka, H.; Yamashita, M. and Miyazawa, M.: Yukagaku, 42 (1), 44-48 (1993); Chem. Abstr., 118, 154259h (1993).
3076. Hamado, M. and Kurosawa, K.: Bull. Chem. Soc. Jpn., 53 (9), 2630-2633 (1980).
3077. Canter, F. W.; Curd, F. H. and Robertson, A.: J. Chem. Soc., 1245-1255 (1931).
3078. Jackson, B.; Locksley, H. D.; Scheinmann, F. and Wolstenholme, W. A.: J. Chem. Soc. C, 3791-3804 (1971).
3079. Gutzke, M. E.; Fox, D. W.; Ciereseko, L. S. and Wender, S. H.: J. Org. Chem., 22, 1271-1272 (1957).
3080. Sastri, V. D. N. and Seshadri, T. R.: Proc. Indian Acad. Sci., 23A, 262-272 (1946).
3081. Morita, N.; Arisawa, M. and Takezaki, T.: Yakugaku Zasshi, 87 (8), 1017-1019 (1967); Chem. Abstr., 68, 19589z (1968).
3082. Mackenzie, J. B. D.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 2965-2970 (1950).
3083. Hutchins, W. A. and Wheeler, T. S.: J. Chem. Soc., 91-94 (1939).
3084. Belton, J. G.; Nowlan, N. V. and Wheeler, T. S.: Sci. Proc. R. Dublin Soc., 25, 19-32 (1949).
3085. Kostanecki, S. v. and Tambor, J.: Ber. Dtsch. Chem. Ges., 32, 2260-2269 (1899).
3086. Friedlaender, P. and Schnell, L. C.: Ber. Dtsch. Chem. Ges., 30, 2150-2155 (1897).
3087. Hartmann, G. and Nienhaus, F.: Phytopathol. Z., 81, 97-113 (1974).
3088. Stenhouse, J.: Justus Liebigs Ann. Chem., 89, 251-253 (1854).
3089. Stenhouse, J.: Justus Liebigs Ann. Chem., 104, 236-239 (1857).
3090. Smith, T. and Smith, H.: Pharm. J., 119, 688 (1927).
3091. Janot, M.-M.: Exposé des titres et des travaux scientifiques, 1-55 (1956): reference 10571. (Bibliothèque interuniversitaire de pharmacie, 4 avenue de l'Observatoire, 75270 Paris Cedex 06).
3092. Jonas, R.: Chem. Zentralbl., I, 1566 (1909).
3093. Kariyone, T.; Kawano, N. and Miura, H.: Yakugaku Zasshi, 79, 1182-1184 (1959); Chem. Abstr., 54, 3405c (1960).
3094. Kawano, N.: Chem. Ind. (London), 368-369 (1959).
3095. Anderson, J. A.: Can. J. Res., 7, 285-292 (1932).
3096. Morita, N.; Shimizu, M. and Arisawa, M.: Yakugaku Zasshi, 88 (9), 1214-1217 (1968); Chem. Abstr., 70, 26401b (1969).
3097. Bradley, W. and Robinson, R.: J. Chem. Soc., 1541-1569 (1928).
3098. Mauthner, F.: J. Prakt. Chem., 121, 255-258 (1929).
3099. Pepper, J. M. and Hibbert, H.: J. Am. Chem. Soc., 70, 67-71 (1948).
3100. Song, Y. N.; Shibuya, M.; Ebizuka, Y. and Sankawa, U.: Chem. Pharm. Bull., 39 (9), 2347-2350 (1991).
3101. Miguel, M. G. and Barroso, J. G.: Phytochemistry, 35 (2), 371-375 (1994).
3102. Ballio, A.: Gazz. Chim. Ital., 79, 924-929 (1949).
3103. Paulsen, A.: Medd. Norsk Farm. Selskap, 22, 213-217 (1960); Chem. Abstr., 59, 5557b (1963).
3104. Sugasawa, S.: J. Chem. Soc., 1621-1624 (1933).
3105. De Antoni, J.; Eche, R.; Guillemot, A.; Bruzzi, J.; Bourillet, F.; Potherat, J. J. and Lamoril, I.: Eur. J. Med. Chem.-Chim. Ther., 13 (6), 545-552 (1978).
3106. Patonay, T.; Molnar, D. and Muranyi, Z.: Bull. Soc. Chim. Fr., 132 (2), 233-242 (1995).
3107. Süsse, M.; Johne, S. and Hesse, M.: Helv. Chim. Acta, 75 (2), 457-470 (1992).
3108. Romanelli, G.; Autino, J. C.; Baronetti, G. and Thomas, H.: Molecules, 6 (12), 1006-1011 (2001).
3109. Bellino, A. and Venturella, P.: Ann. Chim. (Rome), 48, 111-124 (1958).
3110. Kamara, B. I.; Brandt, E. V. and Ferreira, D.: Tetrahedron, 55 (3), 861-868 (1999).
3111. Shao, Hua-Wu; Wei, Han-Xun and Li, Yu Lin: Hecheng Huaxue, 3 (4), 314-317 (1995); Chem. Abstr., 124, 289034a (1996).
3112. Huang, C.; Da, S.; Li, Y. and Li, Y.: J. Nat. Prod., 60 (3), 277-278 (1997).
3113. Link, J. T. and Sorensen, B. K.: Tetrahedron Lett., 41 (48), 9213-9217 (2000).
3114. Bombardelli, E.; Gabetta, B. and Magistretti, M. J.: Eur. Pat. Appl. EP 122,053 (1984); Chem. Abstr., 102, 131808s (1985).
3115. Campbell, T. W. and Coppinger, G. M.: J. Am. Chem. Soc., 73, 1849-1850 (1951).
3116. Xie, Jingxi; Wang, Lin; Liu, Chunxue and Ge, Dalun: Zhongguo Yixue Kexueyuan Xuebao, 8 (2), 84-87 (1986); Chem. Abstr., 108, 204365 f (1988).
3117. Riedl, W. and Hübner, H.: Chem. Ber., 90, 2870-2876 (1957).
3118. Lowry, J. B.: Nature (London), 241 (5384), 61-62 (1973).
3119. Isukura Sangyo K. K.: Jpn. Kokai Tokkyo Koho JP 58 21,678 [83 21,678] (1983); Chem. Abstr., 98, 197878v (1983).
3120. Liang, Xiaotian; Chen, Shufeng; Lu, Yuhua and Ge, Dalun: Yaoxue Xuebao, 20 (1), 33-38 (1985); Chem. Abstr., 104, 5661s (1986).
3121. Wang, L. and Kong, J.: Xibei Shifan Xueyuan Xuebao, Ziran Kexueban, 4, 64-68 (1987); Chem. Abstr., 110, 7898x (1989).
3122. Colella, D. F. and Kaiser, C.: Ger. Offen. 2,227,022 (1972); Chem. Abstr., 79, 126069d (1973).
3123. Kaiser, C. and Ross, S. T.: Ger. Offen. 2,313,625 (1973); Chem. Abstr., 80, 14739m (1974).
3124. Kaiser, C. and Ross, S. T.: U.S. 3,961,076 (1976); Chem. Abstr., 85, 108409j (1976).
3125. Kaiser, C. and Ross, S. T.: U.S. 3,966,770 (1976); Chem. Abstr., 85, 192698h (1976).
3126. Kinoshita, Y.; Ajisawa, Y.; Ikeguchi, S.; Ujiie, S. and Tsutsumi, N.: Jpn. Kokai Tokkyo Koho JP 63,201, 124 [88,201,124] (1988); Chem. Abstr., 110, 231436c (1989).
3127. Horton, W. J. and Stout, M. G.: J. Org. Chem., 27, 830-833 (1962).
3128. Nakazawa, K.: Chem. Pharm. Bull., 16 (12), 2503-2511 (1968).
3129. Nakazawa, K.: Tetrahedron Lett., (51), 5223-5225 (1967).
3130. Bhaskar, A. and Seshadri, T. R.: Indian J. Chem., 12 (6), 557-560 (1974).
3131. Bennett, G. J. and Lee, H. H.: J. Chem. Soc., Perkin Trans. 1, (4), 633-638 (1986).
3132. Horie, T.; Kourai, H. and Fujita, N.: Bull. Chem. Soc. Jpn., 56 (12), 3773-3780 (1983).
3133. Nakazawa, K. and Isoma, C.: "Yukikagobutsu-goseiho", ed by the Society of Synthetic Organic Chemistry, Japan, Gihodo, Tokyo (1970), Vol. 20, pp. 61-64.
3134. Sun, Yan-Ping; Wallis, A. F. A. and Nguyen, Kien Loi: J. Wood Chem. Technol., 17 (3), 209-222 (1997); Chem. Abstr., 127, 346145a (1997).
3135. Rabjohn, N. and Rosenberg, D. W.: J. Org. Chem., 24, 1192-1197 (1959).
3136. Sastri, V. D. N. and Seshadri, T. R.: Proc. Indian Acad. Sci., 24A (2), 243-253 (1946).
3137. Gardner, T. S.; Wenis, E. and Lee, J.: J. Org. Chem., 15, 841-849 (1950).
3138. Wessely, F. and Moser, G. H.: Monatsh. Chem., 56, 97-105 (1930).
3139. Ramage, G. R. and Stead, C. V.: J. Chem. Soc., 1393-1395 (1953).
3140. Chapman, E.; Perkin, A. G. and Robinson, R.: J. Chem. Soc., 3015-3041 (1927).
3141. Bargellini, G. and Bini, L.: Atti R. Accad. Naz. Lincei, 19 (2), 595-600 (1910).
3142. Bargellini, G. and Bini, L.: Gazz. Chim. Ital., 49, 47-63 (1919).
3143. Isoma, C.: Gifu Yakka Daigaku Kiyo, 17, 147-149 (1967); Chem. Abstr., 70, 37385a (1969).
3144. Oliverio, A. and Bargellini, G.: Gazz. Chim. Ital., 78, 372-385 (1948).
3145. Bargellini, G. and Bini, L.: Chem. Zentralbl., I, 392-393 (1911).
3146. Kutney, J. P. and Hansen, H. W.: Phytochemistry, 10 (12), 3298-3302 (1971).
3147. Hirashima, H. and Sumimoto, M.: Tappi J., 77 (1), 146-154 (1994); Chem. Abstr., 121, 207804c (1994).
3148. Horie, T.; Tsukayama, M.; Kourai, H.; Yokoyama, C.; Furukawa, M.; Yoshimoto, T.; Yamamoto, S.; Watanabe-Kohno, S. and Okata, K.: J. Med. Chem., 29 (11), 2256-2262 (1986).
3149. Hatakeda, K.; Saito, N.; Ito, S. and Asano, T.: Bull. Chem. Soc. Jpn., 50 (6), 1649-1650 (1977).
3150. Lee, H. H. and Tan, C. H.: J. Chem. Soc. C, 1583-1585 (1967).
3151. Iinuma, M.; Tanaka, T. and Matsuura, S.: Chem. Pharm. Bull., 32 (3), 1006-1010 (1984).
3152. Briggs, L. H. and Locker, R. H.: J. Chem. Soc., 2157-2164 (1949).
3153. Briggs, L. H. and Locker, R. H.: J. Chem. Soc., 3131-3136 (1951).
3154. Fukui, K. and Matsumoto, T.: Bull. Chem. Soc. Jpn., 36 (7), 806-809 (1963).
3155. Anderson, B. F.; Briggs, L. H.; Cebalo, T. and Trotman, M. A.: J. Chem. Soc., 1026-1029 (1964).
3156. Rittner, R.; Barbarini, J. E. and Suwinski, J.: An. Acad. Bras. Cienc., 69 (2), 167-172 (1997); Chem. Abstr., 127, 121535c (1997).
3157. Saners, R. R.; Husain, S. N.; Piechowski, A. P. and Bird, G. R.: Dyes Pigments, 8, 35-53 (1987).
3158. Takechi, H.; Kamada, S. and Machida, M.: Chem. Pharm. Bull., 44 (4), 793-799 (1996).
3159. Rittner, R. and Barbarini, J. E.: Can. J. Anal. Sci. Spectrosc., 43 (1), 14-18 (1998).
3160. Collins, E. and Shannon, P. V. R.: J. Chem. Soc., Perkin Trans. 1, (8), 944-952 (1974).
3161. Bottu S. A.: Fr. 2,244,458 (1975); Chem. Abstr., 83, 178802q (1975).
3162. Karadovidoff, I. and Chevalier, G.: Ger. Offen. 2,323,005 (1974); Chem. Abstr., 80, 95717c (1974).
3163. Reddy, B. P. and Krupadanam, G. L. D.: J. Heterocycl. Chem., 33 (6), 1561-1565 (1996).
3164. Ahluwalia, V. K.; Prakash, C. and Singh, R. P.: Aust. J. Chem., 32 (6), 1361-1367 (1979).
3165. Ford, R. E.; Knowles, P.; Lunt, E.; Marshall, S. M. and Summers, A. J. H.: Ger. Offen. 2,749,518 (1978); Chem. Abstr., 89, 109509m (1978).
3166. Aitken, R. A.; Bibby, M. C.; Double, J. A.; Laws, A. L.; Ritchie, R. B. and Wilson, D. W. J.: Arch. Pharm. Pharm. Med. Chem., 330, 215-224 (1997).
3167. Geresh, S.; Levy, O.; Markovits, Y. and Shani, A.: Tetrahedron, 31 (22), 2803-2807 (1975).
3168. Takahashi, T. and Oshika, T.: J. Pharm. Soc. Jpn, 74, 48-51 (1954).
3169. Aitken, R. A.; Bibby, M. C.; Bielefeldt, F.; Double, J. A.; Laws, A. L.; Mathieu, A. L.; Ritchie, R. B. and Wilson, D. W. J.: Arch. Pharm. Pharm. Med. Chem., 331, 405-411 (1998).
3170. Miranda, M. A. and Tormos, R.: J. Org. Chem., 58 (12), 3304-3307 (1993).
3171. Aitken, R. A.; Bibby, M. C.; Cooper, P. A.; Double, J. A.; Laws, A. L.; Ritchie, R. B. and Wilson, D. W. J.: Arch. Pharm. Pharm. Med. Chem., 333, 181-188 (2000).
3172. Denny, W. A.; Baguley, B. C.; Arwell, G. J. and Rewcastle, G. W.: Eur. Pat. 278,176 (1988); Chem. Abstr., 110, 8048 (1989).
3173. Valenti, P.; Fabbri, G.; Rampa, A.; Bisi, A.; Gobbi, S.; Da Re, P.; Carrara, M.; Sgevano, A. and Cima, L.: Anti-Cancer Drug Des., 11 (3), 243-252 (1996); Chem. Abstr., 125, 75671c (1996).
3174. Baxendale, I. R.; Lee, A.-L. and Ley, S. V.: J. Chem. Soc., Perkin Trans. 1, (16), 1850-1857 (2002).
3175. Baxendale, I. R.; Lee, A.-L. and Ley, S. V.: Synlett, (3), 516-518 (2002).
3176. Boeger, M. and Drabek, J.: Ger. Offen. 2,411,809 (1974); Chem. Abstr., 82, 3964w (1975).
3177. Buu-Hoï, N. P.; Jacquignon, P. and Dufour, M.: Bull. Soc. Chim. Fr., 23-27 (1964).
3178. Goering, H. L. and Jacobson, R. R.: J. Am. Chem. Soc., 80, 3277-3285 (1958).
3179. White, W. N.; Gwynn, D.; Schlitt, R.; Girard, C. and Fife, W.: J. Am. Chem. Soc., 80, 3271-3277 (1958).
3180. Arnold, R. T. and McCool, J. C.: J. Am. Chem. Soc., 64, 1315-1317 (1942).
3181. Marshall, W. S.; Goodson, T.; Cullinan, G. J.; Swanson-Bean, D.; Haisch, K. D.; Rinkema, L. E. and Fleisch, J. H.: J. Med. Chem., 30, 682-689 (1987).
3182. Baker, W. and Lothian, O. M.: J. Chem. Soc., 628-633 (1935).
3183. Krishnamoorthy, V.; Seshadri, T. R. and Krishnaswamy, N. R.: Indian J. Chem., 10 (3), 258-259 (1972).
3184. Oxford, A. W. and Ellis, F.: Eur. Pat. Appl. EP 28,063 (1981); Chem. Abstr., 96, 34874k (1982).
3185. Green, I. R.; Hugo, V. I.; Oosthuisen, F. J.; van Eeden, N. and Giles, R. G. F.: S. Afr. J. Chem., 48 (1/2), 15-22 (1995); Chem. Abstr., 124, 260773e (1996).
3186. Sinyavskaya, L. P. and Shamshurin, A. A.: Zh. Org. Khim., 3 (12), 2195-2199 (1967).
3187. Baker, W. and Lothian, O. M.: J. Chem. Soc., 274-281 (1936)
3188. Barnes, R. A.; Aguiar, L. S. and Da Costa, R. L.: An. Acad. Bras. Cienc., 52 (3), 515-520 (1980); Chem. Abstr., 94, 174522c (1981).
3189. Kalennikov, E. A.; Mardykina, L. M.; Paushkin, Ya. M.; Piller, P. Yu. and Ryatsep, A. Ya.: U.S.S.R. 487,063 (1975); Chem. Abstr., 84, 16967r (1976).
3190. Ahluwalia, V. K.; Gupta, R. and Rani, N.: Indian J. Chem., Sect. B, 19B (9), 814-815 (1980).
3191. Arora, U.: Indian J. Chem., Sect. B, 23B (4), 373-374 (1984).
3192. Nadkarni, D. R. and Wheeler, T. S.: J. Chem. Soc., 589-591 (1936).
3193. Fisons Pharmaceuticals Ltd.: Neth. Appl. 6,603,997 (1966); Chem. Abstr., 67, 100002d (1967).
3194. Fitzmaurice, C. and Lee, T. B.: Brit. 1,144,906 (1969); Chem. Abstr., 71, 91309n (1969).
3195. Chin, Masao; Sato, Shunji; Hosaka, Kunio and Mihashi, Hiroshi: Jpn. Kokai Tokkyo Koho JP 01 13,019 [89 13,019] (1989); Chem. Abstr., 111, 214230j (1989).
3196. Harries, C. and Haarmann, R.: Ber. Dtsch. Chem. Ges., 48, 32-41 (1915).
3197. Schöpf, C. and Heuck, K.: Justus Liebigs Ann. Chem., 459, 233-286 (1927).
3198. Kumazawa, T.; Ohki, K.; Ishida, M.; Sato, S.; Onodera, J. and Matsuba, S.: Bull. Chem. Soc. Jpn., 68 (5), 1379-1384 (1995).
3199. Ramachandran, P. K.; Tefteller, A. T.; Paulson, G. O.; Cheng, T.; Lin, C. T. and Horton, W. J.: J. Org. Chem., 28, 398-403 (1963).
3200. Mankiwala, S. C.; Naik, H. B. and Thakor, V. M.: J. Inst. Chem., Calcutta, 47, Pt. 4, 132-134 (1975); Chem. Abstr., 84, 4591a (1976).
3201. Atkinson, J. G.; Guindon, Y. and Lau, C. K.: Eur. Pat. Appl. EP 200,443 (1986); Chem. Abstr., 106, 102081b (1987).
3202. Jaen, J. C.; Wise, L. D.; Heffner, T. G.; Pugsley, T. A. and Meltzer, L. T.: J. Med. Chem., 34 (1), 248-256 (1991).
3203. Foguet, R.; Bolos, J.; Sacristan, A. and Ortiz, J. A.: PCT Int. Appl. WO 95 25,733 (1995); Chem. Abstr., 124, 117096 (1996).
3204. Buckle, D. R.; Outred, D. J.; Ross, J. W.; Smith, H.; Smith, R. J.; Spicer, B. A. and Gasson, B. C.: J. Med. Chem., 22 (2), 158-168 (1979).
3205. Bolos, J.; Gubert, S.; Anglada, L.; Planas, J. M.; Burgarolas, C.; Castello, J. M.; Sacristan, A. and Ortiz, J. A.: J. Med. Chem., 39 (15), 2962-2970 (1996).
3206. Bolos, J.; Loscertales, T.; Nieto, J.; Sacristan, A. and Ortiz, J. A.: J. Heterocycl. Chem., 37 (5), 1203-1208 (2000).
3207. Strupczewski, J. T.; Bordeau, K. J.; Chiang, Y.; Glamkowski, E. J.; Conway, P. G.; Corbett, R.; Hartman, H. B.; Szewczak, M. R.; Wilmot, C. A. and Helsley, G. C.: J. Med. Chem., 38 (7), 1119-1131 (1995).
3208. Mutlib, A. E.; Strupczewski, J. T. and Chesson, S. M.: Drug Metab. Dispos., 23 (9), 951-964 (1995); Chem. Abstr., 123, $305855 f$ (1995).
3209. Ollis, W. D.; Arshad, M. and Devlin, J. P.: J. Chem. Soc. C, 7, 1324-1326 (1971).
3210. Arshad, M.; Devlin, J. P.; Ollis, W. D. and Wheeler, R. E.: Chem. Commun., (3), 154-155 (1968).
3211. Nakazawa, K. and Wada, K.: Chem. Pharm. Bull., 20 (12), 2741-2743 (1972).
3212. Nakazawa, K. and Wada, K.: Chem. Pharm. Bull., 22 (6), 1326-1330 (1974).
3213. Williams, H. W. R. and Young, R. N.: Eur. Pat. Appl. EP 288,202 (1988); Chem. Abstr., 110, 11450s (1989).
3214. Kubota, T. and Tokoroyama, T.: Tetrahedron Lett., (8), 745-748 (1967).
3215. Tokoroyama, T. and Kubota, T.: Tetrahedron, 26 (4), 1085-1090 (1970).
3216. Shah, N. J.; Jhaveri, L. C. and Naik, H. B.: J. Inst. Chem. (India), 50 (4), 171-174 (1978); Chem. Abstr., 91, 56553d (1979).
3217. Kuliev, A. M.; Sardarova, S. A. and Agamalieva, M. M.: Prisadki Smaz. Maslam, 7, 3-5 (1981); Chem. Abstr., 97, 55410s (1982).
3218. Karrer, P. and Hoffmann, O.: Helv. Chim. Acta, 23, 1126-1131 (1940).
3219. Royer, R.; Hubert-Habart, M.; René, L.; Cheutin, A. and Desvoye, M. L.: Bull. Soc. Chim. Fr., 1259-1267 (1964).
3220. Lacey, R. N.: J. Chem. Soc., 1625-1633 (1960).
3221. Distillers \& Co.: GB 951,435 (1959); Chem. Abstr., 60, 15778 (1964).
3222. Royer, R. and René, L.: Bull. Soc. Chim. Fr., 1029-1036 (1970).
3223. Demerseman, P.; Lechartier, J. P.; Cheutin, A.; Reynaud, R.; Royer, R.; Rumpf, P. and Desvoye, M. L.: Bull. Soc. Chim. Fr., 1700-1705 (1962).
3224. Kawase, Y.; Royer, R.; Hubert-Habart, M.; Cheutin, A.; René, L.; Buisson, J. P. and Desvoye, M. L.: Bull. Soc. Chim. Fr., 3131-3140 (1964).
3225. Sala, R.; Doria, G. and Passarotti, C.: Tetrahedron Lett., 25 (40), 4565-4568 (1984).
3226. Inoe, H.; Kurokuzuhara, H.; Ikezawa, I. and Uchida, H.: Jpn. Kokai Tokkyo Koho JP 04 54,118 [92 54,118] (1992); Chem. Abstr., 117, 40435m (1992).
3227. Inoe, H.; Kurokuzuhara, H.; Ikezawa, I.; Uchida, H.; Kikuchi, M. and Sugano, K.: Jpn. Kokai Tokkyo Koho JP 04 54,119 [92 54,119] (1993); Chem. Abstr., 117, 40436n (1992).
3228. Cousin, S. G. and Lions, F.: J. Proc. R. Soc. N. S. W., 70, 413-427 (1936).
3229. Marwell, E. N.; Richardson, B.; Anderson, R.; Stephenson, J. L. and Crandall, T.: J. Org. Chem., 30, 1032-1035 (1965).
3230. McKittrick, B. A. and Stevenson, R.: J. Chem. Soc., Perkin Trans. 1, (2), 475-482 (1983).
3231. Bagley, S. W.; Broten, T. P.; Chakravarty, P. K.; Dhanoa, D. S.; Fitch, K. J.; Greenlee, W. J.; Kevin, N. J.; Kieczykowski, G. R.; Matthews, J. M. et al.: PCT Int. Appl. WO 96 04,905 (1996); Chem. Abstr., 125, 58490a (1996).
3232. Topp, A. and Boldt, P.: Chem. Ber., 109 (2), 459-465 (1976).
3233. Bertrand, F.; Basketter, D. A.; Roberts, D. W. and Lepoittevin, J.-P.: Chem. Res. Toxicol., 10 (3), 335-343 (1997); Chem. Abstr., 126, 140668u (1997).
3234. Kita, Y.; Okuno, T.; Egi, M.; Iio, K.; Takeda, Y. and Akai, S.: Synlett, (12), 1039-1040 (1994).
3235. Shiraishi, M. and Fukumoto, S.: Can. Pat. Appl. CA 2,099,466 (1994); Chem. Abstr., 121, 82705n (1994).
3236. Tokoroyama, T.; Maeda, S.; Nishikawa, T. and Kubota, T.: Tetrahedron, 25 (5), 1047-1054 (1969).
3237. Hanifin, J. W. and Cohen, E.: J. Org. Chem., 36 (7), 910-912 (1971).
3238. Marshall, W. S.; Sigmund, S. K. and Whitesitt, C. A.: U.S. US 4,777,299 (1988); Chem. Abstr., 110, 57310v (1989).
3239. Hardern, D. N.; Lee, T. B. and Bantick, J. R.: Eur. Pat. Appl. EP 56,172 (1982); Chem. Abstr., 97, 215762p (1982).
3240. Cruickshank, J. H. and Robinson, R.: J. Chem. Soc., 2064-2071 (1938).
3241. Russel, A. and Frye, J. R. in "Organic Syntheses", Collect. Vol. III, E. C. Horning, Ed., Wiley, New-York, N.Y., (1955), p. 281.
3242. Bobik, A.; Holder, G. M. and Ryan, A. J.: J. Med. Chem., 20 (9), 1194-1199 (1977).
3243. Atkinson, J. G.; Guindon, Y. and Lau, C. K.: U.S. Patent 4,663,347 (1987).
3244. Augstein, J.; Cairns, H. and Rogers, N. H.: Brit. 1,447,480 (1976); Chem. Abstr., 86, 72660p (1977).
3245. Augstein, J.; Cairns, H. and Rogers, N. H.: Ger. Offen. 2,361,490 (1974); Chem. Abstr., 81, 120633c (1974).
3246. Belanger, P. C.; Scheigetz, J. and Rokach, J.: Eur. Pat. Appl. EP 165,810 (1985); Chem. Abstr., 105, 6403s (1986).
3247. Rosenau, T.; Potthast, A.; Elder, T.; Lange, T.; Sixta, H. and Kosma, P.: J. Org. Chem., 67 (11), 3607-3614 (2002).
3248. Werder, F. v. and Jung, F.: Ber. Dtsch. Chem. Ges., 71, 2650-2652 (1938).
3249. Cohen, N.; Lopresti, R. J. and Williams, T. H.: J. Org. Chem., 43 (19), 3723-3726 (1978).
3250. Wang, S.; Yubo, F.; Renyong, L. and Yong, L.: Zhongguo Yaowuhuaxue Zazhi, 10 (3), 203-204 (2000); Chem. Abstr., 134, 237257n (2001).
3251. Yoshioka, T.; Kitazawa, E.; Kurumada, T.; Yamazaki, M.; Hasegawa, K. and Fujita, T.: Eur. Pat. Appl. EP 207,581 (1987); Chem. Abstr., 106, 119879r (1987).
3252. Eiden, F. and Teupe, E. G.: Arch. Pharm. (Weinheim, Ger.), 314 (3), 223-227 (1981).
3253. Teupe, G.: Dissertation Univ. München (1977).
3254. Momoda, J.; Imura, T. and Kobayakawa, T.: Eur. Pat. Appl. EP 678,517 (1995); Chem. Abstr., 124, 145901h (1996).
3255. Momota, J.; Imura, T. and Kobayakawa, T.: Jpn. Kokai Tokkyo Koho, JP 06,199,827 [94,199,827] (1994); Chem. Abstr., 123, 83206d (1995).
3256. Momota, J.; Imura, T. and Kobayakawa, T.: Jpn. Kokai Tokkyo Koho, JP 07,258,245 [95,258,245] (1995); Chem. Abstr., 124, 175832d (1996).
3257. Tanaka, T. and Okazaki, S.: Jpn. Kokai Tokkyo Koho JP 04,112,885 [92,112,885] (1992); Chem. Abstr., 117, 201990 (1992).
3258. Tanaka, T.; Imura, S.; Tanaka, K. and Kida, Y.: Eur. Pat. Appl. EP 401,958 (1990); Chem. Abstr., 115, 8577g (1991).
3259. Tanaka, T.; Imura, T.; Tanaka, K. and Kida, Y.: Jpn. Kokai Tokkyo Koho JP 02 69,471 [90 69,471] (1990); Chem. Abstr., 113, 78167 f (1990).
3260. Momoda, J.; Imura, S. and Kobayakawa, T.: U.S. US 5,693,830 (1997); Chem. Abstr., 128, 61426b (1998).
3261. Agarwal, S. G.; Thappa, R. K. and Dhar, K. L.: Fitoterapia, 67 (2), 178-179 (1996); Chem. Abstr., 125, 123407v (1996).
3262. Aitken, R. A.; Bibby, M. C.; Double, J. A.; Phillips, R. M. and Sharma, S. K.: Arch. Pharm. (Weinheim, Ger.), 329 (11), 489-497 (1996).
3263. Aitken, R. A.; Bibby, M. C.; Double, J. A.; Phillips, R. M. and Sharma, S. K.: Bioorg. Med. Chem. Lett., 4 (19), 2313-2326 (1994).
3264. Chou, Chyuan and Sheu, Shuenn Jyi: Hua Hsueh, 41 (2), 61-71 (1983); Chem. Abstr., 101, 210670y (1984).
3265. Taniguchi, S.; Miyashita, Y.; Ueyama, T.; Tanaka, H.; Matsumoto, K.; Hirase, J.; Ueda, A.; Sogawa, T.; Oshima, H. and Et, A.: Jpn. Kokai Tokkyo Koho JP 05 43,570 [93 43,570] (1993); Chem. Abstr., 119, 180756h (1993).
3266. Ishizuka, N.; Matsumura, Ken-ichi; Sakai, K.; Fujimoto, M.; Mihara, Shin-ichi and Yamamori, T.: J. Med. Chem., 45 (10), 2041-2055 (2002).
3267. Ishizuka, N. and Matsumura, Ken-ichi: Annual Report of Shionogi Research Laboratories, 51, 1-22 (2001).
3268. Oohashi, M. and Hori, W.: Jpn. Kokai Tokkyo Koho JP 06,100,526 [94,100,526] (1994); Chem. Abstr., 123, 169347n (1995).
3269. Nickl, J.: Dissertat., Techn. Hochschule, München, 1955.
3270. Astudillo, L.; Schmeda-Hirschmann, G.; Soto, R.; Sandoval, C.; Afonso, C.; Gonzalez, M. S. and Kijjoa, A.: World J. Microbiol. Biotechnol., 16 (6), 585-587 (2000); Chem. Abstr., 134, 277686h (2001).
3271. Lee, Sungsook; Morimoto, H. and Williams, P. G.: J. Labelled Compd. Radiopharm., 39 (6), 461-470 (1997); Chem. Abstr., 127, 121541b (1997).
3272. Fujiu, M.; Suhara, Y. and Ishitsuka, H.: Eur. Pat. Appl. 13,960 (1980); Chem. Abstr., 94, 83777y (1981).
3273. Baker, W. and Raistrick, H.: J. Chem. Soc., 670-672 (1941).
3274. Purushothaman, K. K.; Vasanth, S.; Connolly, J. D. and C. Labbé: J. Chem. Soc., Perkin Trans. 1, (23), 2594-2595 (1976).
3275. Botha, M. E.; Giles, R. G. F.; Moorhoff, C. M.; Engelhardt, L. M.; White, A. H.; Jardine, A. and Yorke, S. C.: J. Chem. Soc., Perkin Trans. 1, (1), 89-95 (1991).
3276. Baldwin, M. E.; Bick, I. R. C.; Komzak, A. A. and Price, J. R.: Tetrahedron, 16 (1/4), 206-211 (1961).
3277. Gruber, W. and Traub, F.: Monatsh. Chem., 77, 414-430 (1947).
3278. Nakazawa, K. and Matsuura, S.: J. Pharm. Soc. Jpn., 73, 484-486 (1953).
3279. Tada, A.; Saitoh, T. and Shoji, J.: Chem. Pharm. Bull., 28 (8), 2487-2493 (1980).
3280. Nakazawa, K. and Matsuura, S.: J. Pharm. Soc. Jpn., 75, 467-469 (1955).
3281. Mbwambo, Z. H.; Lee, S. K.; Mshiu, E. N.; Pezzuto, J. M. and Kinghorn, A. D.: J. Nat. Prod., 59 (11), 1051-1055 (1996).
3282. Morgenstein, T.; Bittner, M.; Silva, M.; Aqueveque, P. and Jakupovic, J.: Phytochemistry, 41 (4), 1149-1153 (1996).
3283. Birch, H. R. and Robertson, A.: J. Chem. Soc., 306-309 (1938).
3284. Lindstedt, G. and Misiorny, A.: Acta Chem. Scand., 6, 1212-1216 (1952).
3285. Aqil, M.; Rahman, W.; Hasaka, N.; Okigawa, M. and Kawano, N.: J. Chem. Soc., Perkin Trans. 1, (5), 1389-1392 (1981).
3286. Raghunathan, K.; Rangaswani, S. and Seshadri, T. R.: Indian J. Chem., 12 (11), 1126-1130 (1974).
3287. Brophy, J. J.; Goldsack, R. J.; Fookes, C. J. R. and Forster, P. I.: J. Essent. Oil Res., 7 (3), 237-254 (1995); Chem. Abstr., 123, 107769t (1995).
3288. Manki, K.; Tsuyoshi, T. and Michiko, T.: Chem. Pharm. Bull., 15 (3), 263-269 (1967).
3289. Beger, J.; Poeschmann, C.; Grupe, R.; Ziska, T.; Faust, G. and Laban, G.: Ger. Offen. DE 4,136,778 (1993); Chem. Abstr., 119, 138878z (1993).
3290. de Guttierez, A. N.; Catalan, C. A. N.; Diaz, J. G. and Herz, W.: Phytochemistry, 39 (4), 795-800 (1995).
3291. Venkatasubbaiah, P.; Tisserat, N. A. and Chilton, W. S.: Mycopathologia, 128 (3), 155-159 (1994); Chem. Abstr., 123, 108085d (1995).
3292. Murti, V. V. S.; Seshadri, T. R.; Sundaresan, V. and Venkataramani, B.: Proc. Indian Acad. Sci., 46, 265-271 (1957).
3293. Zhang, C.; Liu, F. and Zhu, H.: Yingyong Huaxue, 15 (5), 68-70 (1998); Chem. Abstr., 130, 66291c (1999).
3294. Du, Z. T. and Li, S. B.: Chin. Chem. Lett., 12 (11), 957-958 (2001).
3295. Bargellini, G. and Oliverio, A.: Ber. Dtsch. Chem. Ges., 75, 2083-2089 (1942).
3296. Oliverio, A. and Bargellini, G.: Gazz. Chim. Ital., 78, 386-396 (1948).
3297. Bargellini, G. and Zoras, S. M.: Gazz. Chim. Ital., 64, 192-202 (1934).
3298. Parmar, V. S.; Gupta, S.; Sinha, R. and Sharma, S. K.: Indian J. Chem., Sect. B, 32B (2), 244-256 (1993).
3299. Shaw, S. C.; Jha, A. S. and Gupta, A. K.: J. Indian Chem. Soc., 67 (8), 684-685 (1990).
3300. Horie, T.; Tsukayama, M.; Masumura, M.; Nakayama, M. and Hayashi, S.: Bull. Chem. Soc. Jpn., 52 (10), 2950-2952 (1979).
3301. Oliverio, A.; Marini-Bettolo, G. B. and Bargellini, G.: Gazz. Chim. Ital., 78, 363-372 (1948).
3302. Rizzi, George P.: Synth. Commun., 13 (14), 1173-1179 (1983).
3303. Bargellini, G.: Atti X ${ }^{\text {e }}$ Congr. Inter. Chim., 3, 32 (1939); Chem. Abstr., 34, 1018 ${ }^{1}$ (1940).
3304. Wessely, F. and Kallab, F.: Monatsh. Chem., 60, 26-31 (1932).
3305. Hattori, S.: Acta Phytochim., 5, 99-116 (1930).
3306. Horie, T.; Tsukayama, M.; Kawamura, Y. and Yamamoto, S.: Chem. Pharm. Bull., 35 (11), 4465-4472 (1987).
3307. Shaw, S. C.; Sharan, V. and Agrhari, S. L.: Acta Cienc. Indica, Chem., 16C (3), 233-236 (1990); Chem. Abstr., 116, 59012x (1992).
3308. Stefanovic, M.; Krstic, L. and Mladenovic, S.: J. Serb. Chem. Soc., 57 (4), 217-220 (1992); Chem. Abstr., 117, 48150k (1992).
3309. Yoshizaki, M.; Fujino, H.; Arise, A.; Ohmura, K.; Arisawa, M. and Morita, N.: Planta Med., 53 (3), 273-275 (1987).
3310. Lorimer, S. D. and Perry, N. B.: Planta Med., 60 (4), 386-387 (1994).
3311. Craveiro, A. A.; Andrade, C. H. S.; Matos, F. J. A.; Alencar, J. W. and Dantas, T. N. C.: J. Nat Prod., 43 (6), 756-757 (1980).
3312. Bargellini, G. and Bini, L.: Gazz. Chim. Ital., 41, 8-20 (1911).
3313. Horie, T.; Masumura, M. and Okumura, S.: Nippon Kagaku Zasshi, 83, 468-472 (1962); Chem. Abstr., 59, 1576 (1963).
3314. Quijano, L.; Calderon, J. J.; Gomez, G. F.; Escobar, E. and Rios, T.: Phytochemistry, 24 (5), 1085-1088 (1985).
3315. Matsuura, S.; Kunii, T. and Matsuura, A.: Chem. Pharm. Bull., 21, 2757-2759 (1973).
3316. Horie, T.; Kitou, T.; Kawamura, Y. and Yamashita, K.: Bull. Chem. Soc. Jpn., 69 (4), 1033-1041 (1996).
3317. Horie, T.; Masumura, M.; Kase, K.; Fukui, K. and Nakayama, M.: Nippon Kagaku Kaishi, (12), 2400-2406 (1974); Chem. Abstr., 83, 9697d (1975).
3318. Shaikh, Y. A. and Trivedi, K. N.: Indian J. Chem., 12 (12), 1262-1263 (1974).
3319. Horie, T.; Kawamura, Y.; Yamamoto, H. and Yamashita, K.: Chem. Pharm. Bull., 43 (12), 2054-2063 (1995).
3320. Horie, T.; Kawamura, Y.; Yamamoto, H.; Kitou, T. and Yamashita, K.: Phytochemistry, 39 (5), 1201-1210 (1995).
3321. Horie, T.; Kourai, H.; Nakayama, M.; Tsukayama, M. and Masumura, M.: Nippon Kagaku Kaishi, (9), 1397-1403 (1980); Chem. Abstr., 94, 139564w (1981).
3322. Rani, Indu: Indian J. Chem., Sect. B, 26B (9), 879 (1987).
3323. Stout, G. H. and Stout, V. F.: Tetrahedron, 14, 296-303 (1961).
3324. Heller, G.: Ber. Dtsch. Chem. Ges., 45, 2389-2392 (1912).
3325. Ahluwalia, V. K.; Singh, M. and Singh, R. P.: Synth. Commun., 14 (2), 127-137 (1984).
3326. John, H.: J. Prakt. Chem., 137, 365-376 (1933).
3327. John, H.: J. Prakt. Chem., 137, 351-364 (1933).
3328. Patolia, R. J. and Trivedi, K. N.: J. Indian Chem. Soc., 58 (1), 62-65 (1981).
3329. McCredie, R. S.; Ritchie, E. and Taylor, W. C.: Aust. J. Chem., 22 (5), 1011-1032 (1969).
3330. Pew, J. C.: J. Am. Chem. Soc., 74, 2850-2856 (1952).
3331. Anjaneyulu, A. S. R. and Mallavadhani, U. V.: J. Chem. Soc., Perkin Trans. 1, (3), 623-628 (1988).
3332. Dholakia, V. N. and Trivedi, K. N.: J. Indian Chem. Soc., 47 (11), 1058-1062 (1970).
3333. Shinma, N.; Fujiu, M.; Umeda, I.; Ohtsuka, T.; Ishitsuka, H. and Suhara, Y.: Eur. Pat. Appl. EP 51,819 (1982); Chem. Abstr., 97, 181953j (1982).
3334. Garcia, H.; Miranda, M. A. and Primo, J.: J. Chem. Res., Synop., (3), 100-101 (1986).
3335. Garcia, H.; Martinez-Utrilla, R. and Miranda, M. A.: Tetrahedron, 41 (15), 3131-3134 (1985).
3336. De Antoni, J.; Eche, R. and Potherat, J. J.: Ger. Offen. 2,647,866 (1975); Chem. Abstr., 87, 134495v (1977).
3337. Bittner, M.; Silva, M.; Aqueveque, P. and Jakupovic, J.: Bol. Soc. Quim. Peru, 62 (2), 66-71 (1996); Chem. Abstr., 125, 322997n (1996).
3338. Tiwari, S. S. and Singh, A.: J. Indian Chem. Soc., 34 (11), 830-832 (1957).
3339. Yasufuku, S. and Motonaga, A.: PCT Int. Appl. WO 93 19,066 (1993); Chem. Abstr., 120, 164170c (1994).
3340. Tiwari, S. S. and Tripathi, B. N.: J. Indian Chem. Soc., 33 (3), 211-213 (1956).
3341. Royer, R.; Demerseman, P.; Michelet, R. and Cheutin, A.: Bull. Soc. Chim. Fr., 1378-1388 (1958).
3342. Mase, T.; Hara, H.; Murase, K. and Tomioka, K.: Jpn. Kokai Tokkyo Koho JP 63,238,074 [88,238,074] (1988); Chem. Abstr., 110, 114844y (1989).
3343. Mase, T.; Murase, K.; Tsuzuki, R.; Tomioka, K. and Hara, H.: Eur. Pat. Appl. EP 214,732 (1987); Chem. Abstr., 106, 175944v (1987).
3344. Miyoshi, H.; Saitoh, I. and Iwamura, H.: Biochim. Biophys. Acta, 1143 (1), 23-28 (1993); Chem. Abstr., 119, 176027d (1993).
3345. Murphy, M. A.; Kvakovszky, G. and Fritch, J. R.: PCT Int. Appl. WO 93 15,063 (1993); Chem. Abstr., 121, 84281v (1994).
3346. Matsuura, T. and Kitaura, Y.: Tetrahedron Lett., (34), 3311-3312 (1967).
3347. Matsuura, T. and Kitaura, Y.: Tetrahedron, 25 (18), 4501-4514 (1969).
3348. Sartori, G.; Casnati, G.; Bigi, F. and Predieri, G.: J. Org. Chem., 55, 4371-4377 (1990).
3349. Kobayashi, S.; Moriwaki, M. and Hachiya, I.: Tetrahedron Lett., 37 (12), 2053-2056 (1996).
3350. Shudo, K.: Eur. Pat. Appl. EP 237,986 (1987); Chem. Abstr., 108, 94283t (1988).
3351. Kobayashi, S.; Moriwaki, M. and Hachiya, I.: Tetrahedron Lett., 37 (24), 4183-4186 (1996).
3352. Nanba, Ryoichi; Isozaki, Masashi; Endo, Isamu and Yomo, Yoshiyuki: Jpn. Kokai Tokkyo Koho JP 02,240,037 [90,240,037] (1990); Chem. Abstr., 114, 121718w (1991).
3353. Merck, E.; A.-G.: Fr. M 3687 (1965); Chem. Abstr., 68, 12685u (1968).
3354. Itoh, Hiroyuki; Konno, Mitoshi; Tokuhiro, Takao; Iguchi, Sadahiko and Hayashi, Masaki: Brit. UK Pat. Appl. 2,026,480 (1980); Chem. Abstr., 93, 167893a (1980).
3355. Yakshin, V. V.; Mirokhin, A. M. and Ignat'ev, M. M.: Kompleksn. Ispol'z. Miner. Syr’ya, 4, 60-64 (1984); Chem. Abstr., 102, 95339d (1985).
3356. Sen, A. B. and Kakaji, T. N.: J. Indian Chem. Soc., 29 (12), 950-954 (1952).
3357. Van der Zeeuw, Abraham J.: Ger. Offen. 2,510,352 (1975); Chem. Abstr., 83, 205944w (1975).
3358. Jimenez, M. C.; Leal, P.; Miranda, M. A. and Tormos, R.: J. Chem. Soc., Chem. Commun., (19), 2009-2010 (1995).
3359. Bollag, W.; Ruegg, R. and Ryser, G.: U.S. 4,105,681 (1978); Chem. Abstr., 90, 71919a (1979).
3360. Martin, R. and Demerseman, P.: Monatsh. Chem., 121, 227-236 (1990).
3361. Royer, R.; Demerseman, P.; Michelet, R. and Cheutin, A.: Bull. Soc. Chim. Fr., 1148-1157 (1959).
3362. Strubell, W. and Baumgartel, H.: J. Prakt. Chem., 9, 213-216 (1959).
3363. Behn, R.: DRP 95901 (1897); Chem. Zentralbl., 69, 1223 (1898).
3364. Behn, R.: Frdl., 5, 143-144 (1901).
3365. Mehta, K. J.; Parekh, K. S. and Parikh, A. R.: J. Inst. Chem. (India), 50 (5), 210-212 (1978).
3366. Mehta, K. J.; Patel, V. S. and Parikh, A. R.: J. Inst. Chem. (India), 50 (6), 241-242 (1978).
3367. Furka, A. and Szell, T.: J. Chem. Soc., 2312-2321 (1960).
3368. Ramanamma, C. V.; Dinge, A. S. and Paknikar, S. K.: Indian J. Chem., Sect. B, 28B (6), 517-519 (1989).
3369. Szell, T. and Furka, A.: Nature (London), 184, 117 (1959).
3370. Gerecs, A.; Windholz, M. and Sipos, Gy: Acta Chim. Acad. Sci. Hung., 4, 123-127 (1954).
3371. Royer, R. and Bisagni, E.: Bull. Soc. Chim. Fr., 486-492 (1954).
3372. Royer, R.: Bull. Soc. Chim. Fr., 412-417 (1953).
3373. Royer, R.; Demerseman, P. and Cheutin, A.: Bull. Soc. Chim. Fr., 275-277 (1960).
3374. Misato, T.; Ko, K.; Honma, Y.; Konno, K. and Taniyama, E.: Japan Kokai 76,110,021 (1976); Chem. Abstr., 86, 38592h (1977).
3375. Teikoku, Hormone Mfg. Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 60,130,567 [85,130,567] (1985); Chem. Abstr., 104, 50789a (1986).
3376. John, H. and Beetz, P.: J. Prakt. Chem., 143, 253-258 (1935).
3377. John, H. and Beetz, P.: J. Prakt. Chem., 143, 342-346 (1935).
3378. Rosenmund, K. W. and Chienchi W.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 266, 407-411 (1928).
3379. Witiak, D. T.; Heilman, W. P.; Sankarappa, S. K.; Cavestri, R. C. and Newman, H. A. I.: J. Med. Chem., 18 (9), 934-942 (1975).
3380. Limaye, D. B.: Rasayanam, 1, 246-250 (1943); Chem. Abstr., 38, 4258^{4} (1944).
3381. Bruce, J. M. and Chaudhry, A.-u.-h.: J. Chem. Soc., Perkin Trans. 1, (3), 372-379 (1972).
3382. Zambias, R. A. and Hammoud, M. L.: Eur. Pat. Appl. EP 399,773 (1990); Chem. Abstr., 114, 185249b (1991).
3383. Naito, H.; Hara, H.; Aono, T.; Sato, K. and Fujita, S.: Eur. Pat. Appl. EP 76,492 (1983); Chem. Abstr., 99, 131398c (1983).
3384. Ahmad, F. B. H.: Pertanika, 10 (3), 315-319 (1987); Chem. Abstr., 110, 23454e (1989).
3385. Fuji Photo Film Co., Ltd.: Jpn. Kokai Tokkyo Koho 81 12,642 (Cl. G03C7/00) (1981); Chem. Abstr., 95, 106338t (1981).
3386. Takuwa, Akio; Iwamoto, Hidetoshi; Soga, Osamu and Maruyama, Kazuhiro: Bull. Chem. Soc. Jpn., 55 (11), 3657-3658 (1982).
3387. Aponick, A.; Buzdygon, R. S.; Tomko, Jr., R. J.; Fazal, A. N.; Shughart, E. L.; McMaster, D. M.; Myers, M. C.; Pitcock, Jr., W. H. and Wigal, C. T.: J. Org. Chem., 67 (1), 242-244 (2002).
3388. Tu, S.; Shi, X.; Jiang, J. and Hua, W.: Zhongguo Yaoke Daxue Xuebao, 21 (5), 291-292 (1990); Chem. Abstr., 114, 184920b (1991).
3389. Anderskewitz, R.; Schromm, K.; Renth, E. O.; Himmelsbach, F.; Birke, F. and Fuegner, A.: Ger. Offen. DE 4,203,201 (1993); Chem. Abstr., 119, 270812c (1993).
3390. Anderskewitz, R.; Schromm, K.; Renth, E. O.; Himmelsbach, F.; Birke, F. and Fuegner, A.: PCT Int. Appl. WO 93 16,036 (1993); Chem. Abstr., 120, 77038x (1994).
3391. Kawakami, H.: Mokuzai Gakkaishi, 21 (11), 629-634 (1975); Chem. Abstr., 84, 61522c (1976).
3392. Terashima, N.; Shinoda, Y. and Kanda, T.: Mokuzai Gakkaishi, 20 (10), 494-500 (1974); Chem. Abstr., 82, 87916t (1975).
3393. Iiyama, K. and Wallis, A. F. A.: J. Wood Chem. Technol., 10 (1), 39-58 (1990); Chem. Abstr., 113, 134398w (1990).
3394. Row, L. R.; Sastry, V. D. N.; Seshadri, T. R. and Thiruvengadam, T. R.: Proc. Indian Acad. Sci., 28, 189-197 (1948).
3395. Sastri, V. D. N. and Seshadri, T. R.: Curr. Sci., 15, 235 (1946).
3396. Kawano, N. and Yamada, M.: Yakugaku Zasshi, 80, 1576-1578 (1960); Chem. Abstr., 55, 10425a (1961).
3397. Kawano, N.: Chem. Pharm. Bull., 9, 358-359 (1961).
3398. Bhardwaj, D. K.; Gupta, A. K.; Jain, R. K. and Sharma, G. C.: J. Nat. Prod., 44 (6), 662-663 (1981).
3399. Jain, R. K.: Ph. D. Thesis, University of Delhi, India (1978).
3400. Seto, Nobuo and Aoki, Kozo: Jpn. Kokai Tokkyo Koho JP 01,249,739 [89,249,739] (1989); Chem. Abstr., 112, 138743g (1990).
3401. Collins, E.; John, G. D. and Shannon, P. V. R.: J. Chem. Soc., Perkin Trans. 1, (2), 96-101 (1975).
3402. Shaw, S. J. and Smith, P. J.: J. Chem. Soc. C, 15, 1882-1885 (1968).
3403. Dean, F. M.; Evans, E. and Robertson, A.: J. Chem. Soc., 4565-4572 (1954).
3404. Gupta, D. and Singh, J.: Phytochemistry, 28 (3), 947-949 (1989).
3405. Tagashira, M.: Jpn. Kokai Tokkyo Koho JP 08 26,981 [96 26,981] (1996); Chem. Abstr., 124, 270565c (1996).
3406. Hattori, S.: Acta Phytochim., 5, 219-237 (1931).
3407. McGahren, W. J.; Ellestad, G. A.; Morton, G. O. and Kunstmann, M. P.: J. Org. Chem., 37 (10), 1636-1639 (1972).
3408. Noungoue-Tchamo, D.; Barron, D. and Mariotte, A. M.: Nat. Prod. Lett., 7 (1), 73-80 (1995); Chem. Abstr., 125, 195236m (1996).
3409. Appendino, G.; Tagliapietra, S.; Cravotto, G. and Nano, G. M.: Gazz. Chim. Ital., 119 (7), 385-388 (1989).
3410. Strunz, G. M.; Giguere, P. and Thomas, A. W.: J. Chem. Ecol., 12 (1), 251-260 (1986); Chem. Abstr., 104, 125005c (1986).
3411. Horie, T.; Kobayashi, T.; Kawamura, Y.; Yoshida, I.; Tominaga, H. and Yamashita, K.: Bull. Chem. Soc. Jpn., 68 (7), 2033-2041 (1995).
3412. Horie, T.; Tsukayama, M.; Kourai, H.; Nakayama, Y. and Nakayama, M.: Chem. Pharm. Bull., 34 (1), 30-35 (1986).
3413. Sherif, E.; Islam, A. and Krishnamurti, M.: Indian J. Chem., Sect. B, 21B (5), 478-479 (1982).
3414. Choi, Yoon-Jung; Shim, Pil-Jong; Ko, Kyung-Soo and Kim, Hee-Doo: Heterocycles, 43 (6), 1223-1228 (1996).
3415. Choi, Yoon-Jung; Shim, Pil-Jong; Ko, Kyung-Soo and Kim, Hee-Doo: Yakhak Hoechi, 41 (4), 14-17 (1997); Chem. Abstr., 126, 263950n (1997).
3416. Guz, N. R. and Stermitz, F. R.: J. Nat. Prod., 63 (8), 1140-1145 (2000).
3417. Hendrix, C.; Roets, E.; Bervoets, V.; Thomas, J.; Pijcke, M.; Busson, R.; Janssen, G. and Hoogmartens, J.: Arch. Pharm. (Weinheim, Ger.), 327 (4), 215-219 (1994).
3418. Li, Yu Lin and Zhao, Lian Yun: Chin. Chem. Lett., 5 (11), 935-938 (1994); Chem. Abstr., 122, 105470u (1995).
3419. Zhao, L. Y. and Li, Y.: Chin. Chem. Lett., 5 (12), 1009-1012 (1994); Chem. Abstr., 122, 160314w (1995).
3420. Zhao, L. Y.; Bu, X. Y. and Li, Y.: Chin. Chem. Lett., 6 (5), 367-368 (1995); Chem. Abstr., 123, 82991u (1995).
3421. Oliverio, A. and Casinovi, C.: Gazz. Chim. Ital., 80, 798-802 (1950).
3422. Bhardwaj, D. K.; Bansal, M. C.; Rohatgi, S. and Kumar, S.: Proc. Indian Natl. Sci. Acad., Part A, 56 (4), 379-382 (1990); Chem. Abstr., 114, 121806y (1991).
3423. Bhardwaj, D. K.; Chand, G.; Jain, A.; Srivastava, N. and Sharma, A. K.: Indian J. Chem., Sect. B, 25B (11), 1163-1164 (1986).
3424. Bhardwaj, D. K.; Rohatgi, S.; Kumar, S. and Rani, A.: Proc. Indian Natl. Sci. Acad., Part A, 56 (2), 161-163 (1990); Chem. Abstr., 114, 23595j (1991).
3425. Mizuno, M.; Matoba, Y.; Tanaka, T.; Tachibana, H.; Iinuma, M. and Iwamasa, M.: J. Nat. Prod., 50 (4), 751-753 (1987).
3426. Parmar, V. S.; Jain, R. and Singh, S.: J. Chem. Res., Synop., (9), 278-279 (1987).
3427. Tanaka, T.; Umemura, K.; Iinuma, M. and Mizuno, M.: Yakugaku Zasshi, 107 (4), 315-317 (1987); Chem. Abstr., 107, 197872t (1987).
3428. Lee, H. H. and Tan, C. H.: J. Chem. Soc., 2743-2749 (1965).
3429. Asakawa, Y.: Bull. Chem. Soc. Jpn., 44 (10), 2761-2766 (1971).
3430. Anderson, G. B.; Yang, L. L. N. and Falvey, D. E.: J. Am. Chem. Soc., 115 (16), 7254-7262 (1993).
3431. Haley, N. F.: J. Org. Chem., 42, 3929-3933 (1977).
3432. Tsukayama, M.; Utsumi, H.; Kunugi, A. and Nozaki, H.: Heterocycles, 45 (6), 1131-1142 (1997).
3433. Bohlmann, F. and Grenz, M.: Chem. Ber., 103, 90-96 (1970).
3434. Bohlmann, F. and Stöhr, F. M.: Liebigs Ann. Chem., (2), 185-191 (1980).
3435. Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G.-Q.; Barluenga, S. and Mitchell, H. J.: J. Am. Chem. Soc., 122 (41), 9939-9953 (2000).
3436. El-Dahmy, Sameeh I.: Zagazig J. Pharm. Sci., 2 (1), 73-80 (1993); Chem. Abstr., 120, 265829e (1994).
3437. Bohlmann, F. and Bühmann, U.: Chem. Ber., 105, 863-873 (1972).
3438. Bajwa, B. S.; Lal, P. and Seshadri, T. R.: Indian J. Chem., 9, 1322-1325 (1971).
3439. Bohlmann, F.; Wallmeyer, M.; King, R. M. and Robinson, H.: Phytochemistry, 23 (7), 1513-1514 (1984).
3440. Bohlmann, F. and Grenz, M.: Chem. Ber., 110, 295-300 (1977).
3441. De Pascual, T. J.; Bellido, I. S.; Gonzalez, M. S.; Muriel, M. R. and Hernandez, J. M.: Phytochemistry, 20 (10), 2417-2420 (1981).
3442. Morales, G.; Borquez, J. and Loyola, L. A.: Bol. Soc. Chil. Quim., 41 (2), 159-166 (1996); Chem. Abstr., 125, 110288g (1996).
3443. Dupre, S.; Grenz, M.; Jakupovic, J.; Bohlmann, F. and Niemeyer, H. M.: Phytochemistry, 30 (4), 1211-1220 (1991).
3444. Zdero, C.; Bohlmann, F. and Niemeyer, H. M.: Phytochemistry, 30 (2), 693-695 (1991).
3445. Takasugi, M. and Matsuda, T.: Phytochemistry, 43 (5), 1019-1021 (1996).
3446. Tomas-Barberan, F.; Iniesta-Sanmartin, E.; Tomas-Lorente,F. and Rumbero, A.: Phytochemistry, 29 (4), 1093-1095 (1990).
3447. Garcia de Quesada, T.; Rodriguez, B. and Valverde, S.: Phytochemistry, 11 (1), 446-449 (1972).
3448. Ponce, M. A. and Gros, E. G.: An. Asoc. Quim. Argent., 79 (5), 197-200 (1991); Chem. Abstr., 117, 147181c (1992).
3449. Bonner, W. A.; DeGraw, J. I.; Bowen, D. M. and Shah, V. R.: Tetrahedron Lett., (12), 417-420 (1961).
3450. Bohlmann, F.; Mahanta, P. K.; Suwita, A.; Suwita, A.; Natu, A. A.; Zdero, C.; Dorner, W.; Ehlers, D. and Grenz, M.: Phytochemistry, 16 (12),1973-1981 (1977).
3451. Nicolaou, K. C.; Pfefferkorn, J. A. and Cao, G.-Q.: Angew. Chem., Int. Ed., 39 (4), 734-739 (2000).
3452. Joshi, B. S. and Kamat, V. N.: J. Chem. Soc., Perkin Trans. 1, (9), 907-911 (1973).
3453. Jain, A. C.; Lal, P. and Seshadri, T. R.: Tetrahedron, 26 (11), 2631-2635 (1970).
3454. Liang, Xiaotian; Li, Heshui; Qi, Jianxin and Lu, Yuhua: Yao Hsueh Tung Po, 16 (6), 50-51 (1981); Chem. Abstr., 96, 19917h (1982).
3455. Barua, Putul; Barua, Nabin C. and Sharma, Ram P.: Chem. Ind. (London), 8, 303-305 (1984).
3456. Jain, A. C.; Lal, P. and Seshadri, T. R.: Indian J. Chem., Sect. B, 7, 1072-1075 (1969).
3457. Kyogoku, K.; Hatayama, K.; Yokomori, S.; Shio, M. and Komaysu, M.: Chem. Pharm. Bull., 21 (6), 1192-1197 (1973).
3458. Iyer, Meera R. and Trivedi, G. K.: J. Nat. Prod., 56 (2), 268-271 (1993).
3459. Mohamed, Salah E. N.; Thomas, Philip and Whiting, Donald A.: J. Chem. Soc., Perkin Trans. 1, 2, 431-437 (1987).
3460. Bhalla, V. K.; Nayak, U. Ramdas and Dev, Sukh: Tetrahedron Lett., (20), 2401-2406 (1968).
3461. Tsuda, H.; Ishitani, Y.; Takemura, Y.; Suzuki, Y. and Kato, T.: Heterocycles, 44, 139-142 (1997).
3462. Zdero, C.; Bohlmann, F. and Niemeyer, H. M.: Phytochemistry, 29 (10), 3247-3253 (1990).
3463. De Pascual, T. J.; Gonzalez, M. S.; Muriel, M. R. and Bellido, I. S.: Phytochemistry, 22 (11), 2587-2589 (1983).
3464. De Pascual, T. J.; Gonzalez, M. S.; Muriel, M. R. and Bellido, I. S.: Phytochemistry, 23 (8), 1819-1821 (1984).
3465. De Pascual, T. J.; Bellido, I. S.; Gonzalez, M. S.; Muriel, M. R. and Hernandez, J. M.: Phytochemistry, 19 (12), 2781-2782 (1980).
3466. Abdel-Mogib, M.; Dawidar, A. M.; Metwally, M. A. and Abou-Elzahab, M.: Phytochemistry, 29 (8), 2728-2729 (1990).
3467. Falshaw, C. P.; Lane, S. A. and Ollis, W. D.: J. Chem. Soc., Chem. Commun., (14), 491-492 (1973).
3468. Shen, Jianhua; Wang, Lan and Zhou, Bingnan: Chin. Chem. Lett., 2 (8), 629-630 (1991); Chem. Abstr., 116, 193975s (1992).
3469. Pathak, V. P.; Saini, T. R. and Khanna, R. N.: Indian J. Chem., Sect. B, 23B (8), 778-779 (1984).
3470. Cannon, J. R.; Ghisaberti, E. L. and Lojanapiwatna, Vitchu: J. Sci. Soc. Thailand, 6 (1), 59-62 (1980); Chem. Abstr., 93, 185878d (1980).
3471. Green, I. R.; De Koning, C. B. and Hugo, V. I.: S. Afr. J. Chem., 52 (4), 112-119 (1999); Chem. Abstr., 132, 264994r (2000).
3472. Geissman, T. A.: J. Am. Chem. Soc., 73, 3514-3515 (1951).
3473. Ogata, M.; Tawara, K.; Ueda, M. and Sato, K.: Eur. Pat. Appl. EP 227,100 (1987); Chem. Abstr., 108, 6009e (1988).
3474. Miles, C. O.; Main, L. and Nicholson, B. K.: Aust. J. Chem., 42 (7), 1103-1113 (1989).
3475. Dhar, M. L. and Magazine, N.: Proc. Natl. Acad. Sci., India, Sect. A, 62 (2), 153-156 (1992).
3476. Biswas, G. K. and Chatterjee, A.: Chem. Ind. (London), 654-655 (1970).
3477. Collins, E. and Shannon, P. V. R.: J. Chem. Soc., Perkin Trans. 1, (4), 419-424 (1973).
3478. Schwartz, J. A.: Eur. Pat. Appl. EP 343,866 (1989); Chem. Abstr., 113, 6372w (1990).
3479. Kuchar, M.; Culikova, K.; Panajotovova, V.; Brunova, B.; Jandera, A. and Kmonicek, V.: Collect. Czech. Chem. Commun., 63 (1), 103-114 (1998).
3480. Gautier, J. A.; Miocque, M. and Dang Quoc Quan: C. R. Acad. Sci., 258, 3731-3734 (1964).
3481. Cicchetti, O. and Moggi, G.: Chim. Ind. (Milan), 48 (9), 952-954 (1966).
3482. Power, M. B.; Bott, S. G.; Bishop, E. J.; Tierce, K. D.; Atwood, J. L. and Barron, A. R.: J. Chem. Soc., Dalton Trans., 2, 241-247 (1991).
3483. Kupfer, R.; Dwyer-Nield, L. D.; Malkinson, A. M. and Thompson, J. A.: Chem. Res. Toxicol., 15 (8), 1106-1112 (2002); Chem. Abstr., 137, 258747z (2002).
3484. Popkova, T. N.; Kukhareva, T. S.; Bekker, A. R. and Nifant'ev, E. E.: Zh. Obshch. Khim., 56 (8), 1813-1818 (1986).
3485. Tiwari, S. S. and Tewari, B. N.: J. Indian Chem. Soc., 31, 79-82 (1954).
3486. Hey, M. E. and Waters, V. A.: J. Chem. Soc., 2753-2755 (1955).
3487. DeGraw, J. I., Jr. and Bonner, W. A.: J. Org. Chem., 27, 3917-3919 (1962).
3488. Arnoldi, A.; Bonsignori, A.; Melloni, P.; Merlini, L.; Quadri, M. L.; Rossi, A. C. and Valsecchi, M.: J. Med. Chem., 33 (10), 2865-2869 (1990).
3489. Djura, P. and Sargent, M. V.: Aust. J. Chem., 29 (5), 1069-1077 (1976).
3490. Armstrong, E. C.; Bent, R. L.; Loria, A.; Thirtle, J. R. and Weissberger, A.: J. Am. Chem. Soc., 82, 1928-1935 (1960).
3491. Luteyn, J. M.; Spronck, H. J. W. and Salemink, C. A.: Recl. Trav. Chim. Pays-Bas, 97 (7-8), 187-190 (1978).
3492. Sudalai, A. and Rao, G. S. K.: Indian J. Chem., Sect. B, 28B (9), 760-761 (1989).
3493. Beger, J.; Binte, H. J.; Brunne, L. and Neumann, R.: J. Prakt. Chem./ Chem.-Ztg., 334 (3), 269-277 (1992).
3494. Tankred, S.; Hartmut, K.; Rapoport, S. M.; Binte, H. J.; Beger, J.; Slapke, J. and Grupe, R.: Eur. Pat. Appl. EP 149, 242 (1985); Chem. Abstr., 104, 129637h (1986).
3495. Tagashira, M.; Yuasa, M. and Uchama, K.: Jpn. Kokai Tokkyo Koho JP 08 27,057 [96 27,057] (1996); Chem. Abstr., 124, 288998f (1996).
3496. Timar, T.; Repasi, J.; Borsos Safranek, I.; Kiss, I.; Maroy, P. and Fodor, A.: Indian IN 158,187 (1986); Chem. Abstr., 107, 58857d (1987).
3497. Patonay, T.; Levai, A.; Hegedus, L. and Patonay-Peli, E.: Bull. Soc. Chim. Fr., 134 (7), 653-667 (1997).
3498. Späth, E. and Eiter, K.: Ber. Dtsch. Chem. Ges., 74, 1851-1866 (1941).
3499. Yamaguchi, S.; Takai, M.; Hanazome, I.; Okada, Y. and Kawase, Y.: Bull. Chem. Soc. Jpn. 60 (10), 3603-3605 (1987).
3500. Shannon, P. V. R. and John, G. D.: J. Chem. Soc., Perkin Trans. 1, (23), 2585-2593 (1977).
3501. Rao, G. S. K.; Rao, K. V. and Seshadri, T. R.: Proc. Indian Acad. Sci., 28, 103-110 (1948).
3502. Tomar, S. S.; Walia, S. and Mukerjee, S. K.: Indian J. Chem., Sect. B, 19B (9), 792-793 (1980).
3503. Iinuma, M.; Tanaka, T. and Mizuno, M.: Chem. Pharm. Bull., 33 (9), 4034-4036 (1985).
3504. Tanaka, T.; Iinuma, M. and Mizuno, M.: Yakugaku Zasshi, 107 (10), 827-829 (1987); Chem. Abstr., 109, 92550z (1988).
3505. Iinuma, M.; Tanaka, T. and Matsuura, S.: Chem. Pharm. Bull., 32 (9), 3354-3360 (1984).
3506. Iinuma, M.; Iwashima, K. and Matsuura, S.: Chem. Pharm. Bull., 32 (12), 4935-4941 (1984).
3507. Horie, T.; Shibata, K.; Yamashita, K.; Kawamura, Y. and Tsukayama, M.: Chem. Pharm. Bull., 45 (3), 446-451 (1997).
3508. Mezey-Vandor, G.; Kajtar-Peredy, M. and Nogradi, M.: Liebigs Ann. Chem., 5, 447-449 (1987).
3509. Simchowitz, L.; Textor, J. A. and Cragoe, E. J., Jr.: Am. J. Physiol., 265 (1, Pt. 1), C143-C155 (1993); Chem. Abstr., 119, 240916x (1993).
3510. Robbins, R. J. and Falvey, D. E.: Tetrahedron Lett., 35 (28), 4943-4946 (1994).
3511. Prakash, O., Tanwar, M. P.; Goyal, S. and Pahuja, S.: Tetrahedron Lett., 33 (43), 6519-6522 (1992).
3512. Spyroudis, S. and Tarantilli, P.: Tetrahedron, 50 (39), 11541-11552 (1994).
3513. Tamura, Y.; Yoshimoto, Y.; Tada, S.; Kunimoto, K.; Matsumura, S.; Murayama, M.; Shibata, Y. and Enomoto, H.: J. Med. Chem., 24 (8), 1006-1010 (1981).
3514. Humbert, D.; Dagnaux, M.; Cohen, N. C.; Fournex, R. and Clemence, F.: Eur. J. Med. Chem.-Chim. Ther., 18 (1), 67-78 (1983).
3515. Humbert, D.: personal communication, February 14, (1997).
3516. Takeuchi, N.; Nakagawa, H. and Tobinaga, S.: Chem. Pharm. Bull., 28 (10), 3002-3006 (1980).
3517. Humbert, D.; Clemence, F. and Dagnaux, M.: Ger. Offen. 2,917,902 (1979); Chem. Abstr., 92, 128938d (1980).
3518. Mallik, U. K. and Mallik, A. K.: Indian J. Chem., Sect. B, 31B (10), 696-697 (1992).
3519. Auwers, K. v. and Wittig, G.: J. Prakt. Chem., 108, 99-112 (1924).
3520. Harris, S. and Pierce, J. S.: J. Am. Chem. Soc., 62, 2223-2225 (1940).
3521. Matsumura, H.; Tsuchiya, T. and Imafuku, K.: Bull. Chem. Soc. Jpn., 56 (11), 3519-3520 (1983).
3522. Matsumura, H.; Tsuchiya, T.; Takeda, T. and Imafuku, K.: Bull. Chem. Soc. Jpn., 56 (7), 2037-2043 (1983).
3523. Isota, Y.; Murakami, T.; Ohkubo, N. and Yamamoto, J.: Nippon Kagaku Kaishi, 11 (2), 787-795 (2000).
3524. Ko, Seung Hye and Chae, Woo Ki: Bull. Korean Chem. Soc., 19 (5), 513-514 (1998).
3525. Takeuchi, N.; Handa, S.; Koyama, K.; Kamata, K.; Goto, K. and Tobinaga, S.: Chem. Pharm. Bull., 39 (7), 1655-1658 (1991).
3526. Bradsher, C. K.; Brown, F. C. and Porter, H. K.: J. Am. Chem. Soc., 76, 2357-2362 (1954).
3527. Akhrem, A. A.; Moiseenkov, A. M. and Lakhvich, F. A.: Izv. Akad. Nauk SSSR, Ser. Khim., 11, 2625-2627 (1970).
3528. Fieser, L. F. and Bradsher, C. K.: J. Am. Chem. Soc., 58, 1738-1741 (1936).
3529. Murthy, A. K.; Rao, K. S. R. K. and Rao, N. V. S.: J. Indian Chem. Soc., 49 (10), 10251028 (1972).
3530. Cheetham, K. H. and Hey, D. H.: J. Chem. Soc., 770-772 (1937).
3531. Hsu, K. K. and Wu, T. S.: T'ai-wan K'o Hsueh, 27 (1-2), 19-22 (1973); Chem. Abstr., 80, 47602g (1974).
3532. Cheng, H. M.; Eto, M.; Kuwatsuka, S.; Oshima, Y. and Kado, M.: Chung Kuo Nung Yeh Hua Hsueh Hui Chih, (Spec. Issue), 38-47 (1968); Chem. Abstr., 71, 110171e (1969).
3533. Cheng, H. M.; Eto, M.; Nakamura, K.; Kuwatsuka, S.; Oshima, Y. and Kado, M.: Agric. Biol. Chem., 32 (9), 1162-1174 (1968); Chem. Abstr., 69, 93942w (1968).
3534. Cheng, H. M.; Eto, M.; Taniguchi, E.; Kuwatsuka, S.; Oshima, Y. and Kado, M.: Bochu Kagaku, 34 (4), 176-182 (1969); Chem. Abstr., 72, 131405v (1970).
3535. Hsu, K. K. and Wu, T. S.: T'ai-wan Yao Hsueh Tsa Chih, 25 (1-2), 49-53 (1973); Chem. Abstr., 84, 105346e (1976).
3536. Harris, S. E. and Christiansen, W. G.: J. Am. Pharm. Assoc., 23, 530-536 (1934).
3537. Walter, W. and Wohlers, K.: Justus Liebigs Ann. Chem., 752, 115-135 (1971).
3538. Buu-Hoï, N. P. and Seailles, J., Jr.: J. Org. Chem., 20, 606-609 (1955).
3539. Bruce, J. M. and Chaudhry, A.-u.-h.: J. Chem. Soc., Perkin Trans. 1, (2), 295-297 (1974).
3540. Bruce, J. M. and Lloyd-Williams, P.: J. Chem. Soc., Perkin Trans. 1, (21), 2877-2884 (1992).
3541. Sridar, V. and Rao, V. S. S.: J. Photochem. Photobiol., A: Chem., 69, 325-327 (1993).
3542. Moffett, R. B.: J. Chem. Eng. Data, 25 (2), 176-183 (1980).
3543. Dutta, L. N.; Sinha, N. C. and Sarkar, A. K.: Indian J. Chem., Sect. B, 30B (12), 1112-1115 (1991).
3544. Jain, A. C.; Khazanchi, R. and Kumar, A.: Bull. Chem. Soc. Jpn., 52 (4), 1203-1204 (1979).
3545. Bajwa, B. S.; Lal, P. and Seshadri, T. R.: Indian J. Chem., 9, 17-19 (1971).
3546. Bencze, W. L.: German Patent, 1,946,084 (1970); Chem. Abstr., 73, 25136u (1970).
3547. Baker, S. R.; Ross, W. J. and Jamieson, W. B.: Ger. Offen, 2,936,730 (1980); Chem. Abstr., 94, 15550u (1981).
3548. Panasenko, A. I.; Polyanskaya, N. L. and Starkov, S. P.: Zh. Obshch. Khim., 64 (4), 673676 (1994).
3549. Shah, R. R. and Trivedi, K. N.: J. Indian Chem. Soc., 56 (10), 995-998 (1979).
3550. Allan, R. D.; Wells, R. J. and MacLeod, J. K.: Tetrahedron Lett., (45), 3945-3946 (1970).
3551. Tanaka, T.; Iinuma, M.; Yuki, K.; Fujii, Y. and Mizuno, M.: Phytochemistry, 31 (3), 993-998 (1992).
3552. Wagner, G. and Böhm, M.: Pharmazie, 18 (3), 202-206 (1963).
3553. Wagner, G. and Böhm, M.: Pharmazie, 17 (11), 670-676 (1962).
3554. Li, Jun; Kadota, S.; Kawato, Y.; Hattori, M.; Xu, Guojun and Namba, T.: Chem. Pharm. Bull., 40 (12), 3133-3137 (1992).
3555. Lin, Y.-L.; Lin, T.-C. and Kuo, Y.-H.: J. Nat. Prod., 60 (4), 368-370 (1997).
3556. Tsujihara, K.; Hongu, M.; Funami, N.; Inamasu, M. and Arakawa, K.: Eur. Pat. Appl. EP 684,254 (1995); Chem. Abstr., 124, 202943z (1996).
3557. Neish, A. C.: Can. J. Biochem. Physiol., 35, 161-167 (1957).
3558. Neish, A. C.: Can. J. Bot., 36, 649-662 (1958).
3559. Takahashi, I. T. and Mizutani, A.: Yakugaku Zasshi, 80, 782-783 (1960); Chem. Abstr., 54, 24504e (1960).
3560. Kraus, C. A. and Spiteller, G.: Z. Naturforsch., C: Biosci., 52 (5/6), 308-312 (1997).
3561. Kraus, C. and Spiteller, G.: Phytochemistry, 44 (1), 59-67 (1997) (Pub. 1996).
3562. Kanitskaya, L. V.; Medvedeva, S. A.; Ivanova, S. Z.; Kushnarev, D. F.; Ri, Bonhi; Babkin, V. A. and Kalabin, G. A.: Khim. Drev., (6), 3-10 (1987); Chem. Abstr., 108, 77428b (1988).
3563. Reichel, L. and Steudel, J.: Justus Liebigs Ann. Chem., 553, 83-97 (1942).
3564. Miura, H.; Kitamura, Y. and Sugii, M.: Shoyakugaku Zasshi, 39 (4), 312-315 (1985); Chem. Abstr., 106, 5348m (1987).
3565. Lee, Kang Ro; Hong, Seung Woo; Kwak, Jong Hwan; Pyo, Suhkneung and Jee, Ok Pyo: Arch. Pharmacal. Res., 19 (3), 231-234 (1996); Chem. Abstr., 125, 81936j (1996).
3566. Xiao, K.; Xuan, L.-J.; Xu, Y.-X.; Bai, D.-L. and Zhong, D.: Chem. Pharm. Bull., 50 (5), 605-608 (2002).
3567. Takeda, Y. and Fatope, M. G.: J. Nat. Prod., 51 (4), 725-729 (1988); Chem. Abstr., 109, 187280a (1988).
3568. Oxford, A. W. and Ellis, F.: Brit. UK Pat. Appl. GB 2,058,785 (1981); Chem. Abstr., 96, 51977p (1982).
3569. Anon: Res. Discl., 276, 223 (1987); Chem. Abstr., 109, 54378s (1988).
3570. Wadsworth, D. J. and Losch, S.: Tetrahedron, 50 (29), 8673-8676 (1994).
3571. Tsukayama, M.; Kikuchi, M. and Yoshioka, S.: Chem. Lett., (11), 1895-1898 (1993).
3572. De Groot, A. H.; Dommisse, R. A. and Lemiere, G. L.: Tetrahedron, 56 (11), 1541-1549 (2000).
3573. Greenspan, P. D.; Fujimoto, R. A.; Marshall, P. J.; Raychandhuri, A.; Lipson, K. E.; Zhou, H.; Doti, R. A.; Coppa, D. E.; Zhu, L.; Pelletier, R.; Uziel-Fusi, S.; Jackson, R. H.; Chin, M. H.; Kotyuk, B. L. and Fitt, J. J.: J. Med. Chem., 42, 164-172 (1999).
3574. Nishinaga, A.; Ando, H.; Maruyama, K. and Mashino, T.: Synthesis, (9), 839-841 (1992).
3575. Hossain, M. A. and Islam, A.: J. Bangladesh Acad. Sci., 18 (2), 111-116 (1994); Chem. Abstr., 122, 239265q (1995).
3576. Jadhav, G. V. and Merchant, J. R.: Proc. Indian Acad. Sci., Ser. A, 34A (3), 152-154 (1951).
3577. Dodwadmath, R. P.: J. Univ. Bombay, 9, Pt. 3, 172-179 (1940); Chem. Abstr., 35, 6959 ${ }^{6}$ (1941).
3578. Yamamoto, J.; Isota, Y. and Ohkubo, N.: Nihon Yukagakkaishi, 49 (5), 505-509 (2000); Chem. Abstr., 133, 43115y (2000).
3579. Wojahn, H.: Arch. Pharm., 271, 417-431 (1933).
3580. Kanzaki Paper Mfg. Co., Ltd. Sanko Kaihatsu Kagaku Kenkyusho, Jpn. Kokai Tokkyo Koho JP 59,176,093 [84,176,093] (1984); Chem. Abstr., 102, 103695j (1985).
3581. Sanko Kaihatsu Kagaku Kenkyusho Kanzaki Paper Mfg. Co. Ltd.: Jpn. Kokai Tokkyo Koho JP 59,175,448 [84,175,448] (1984); Chem. Abstr., 102, 113043j (1985).
3582. Mullaji, B. Z. and Shah, R. C.: Proc. Indian Acad. Sci., 34A, 88-96 (1951).
3583. Jain, A. C.; Nayyar, N. K. and Arya, P.: Indian J. Chem., Sect. B, 25B (3), 259-263 (1986).
3584. Kallay, F.; Janzso, G.; Egyed, I. and Baitz-Gacs, E.: Flavonoids Bioflavonoids, Proc. Hung. Bioflavonoid Symp., 5th, 1977, 235-246. Edited by Farkas, Lorand; Gabor, Miklos; Kallay, F. Elsevier: Amsterdam, Neth.
3585. Heller, H. G.; Oliver, S. N.; Whittall, J. and Tomlinson, I.: Eur. Pat. Appl. EP 246,114 (1987); Chem. Abstr., 108, 206269b (1988).
3586. Hermodson, M. A.; Barker, W. M. and Link, K. P.: J. Med. Chem., 14 (2), 167-169 (1971).

3586a. Cai, Mengshen; Bian, Zhaoqun; Qiao, Liang and Wang, Dong: Huaxue Xuebao, 49 (6), 593-599 (1991); Chem. Abstr., 115, 232635g (1991).
3587. Tsukayama, M.; Horie, T.; Fujimoto, K. and Nakayama, M.: Chem. Pharm. Bull., 34 (6), 2369-2374 (1986).
3588. Sofia, M. J.; Nelson, K.; Herron, D. K.; Goodson, T.; Froelich, L. L.; Spaethe, S. M.; Marder, P.; Roman, C. R. and Fleisch, J. H.: Bioorg. Med. Chem. Lett., 5 (17), 1995-2000 (1995).
3589. Clark-Lewis, J. W. and Williams, L. R.: Aust. J. Chem., 20, 2151-2167 (1967).
3590. Fischer, R.; Braeunlich, G.; Mohrs, K. H.; Hanko, R.; Butler-Ransohoff, J. E.; Es-sayed, M.; Sturton, G.; Tudhope, S.; Abram, T. and Mcdonald-Gilson, W. J.: Eur. Pat. Appl. EP 623,207 (1994); Chem. Abstr., 122, 160466x (1995).
3591. Major, A.; Nogradi, M.; Vermes, B. and Kajtac-Peredy, M.: Liebigs Ann. Chem., 6, 555-558 (1988).
3592. Malhotra, S.; Sharma, V. K. and Parmar, V. S.: J. Chem. Res., Synop., (6), 179 (1988).
3593. Sawyer, J. S.; Baldwin, R. F.; Sofia, M. J.; Floreancig, P.; Marder, P.; Saussy, D. L., Jr.; Froelich, L. L.; Silbough, S. A.; Stengel, P. W.; Cockerham, S. L. and Jackson, W. T.: J. Med. Chem., 36, 3982-3984 (1993).
3594. Shaw, S. C.; Gupta, A. K. and Kumar, R.: Acta Cienc. Indica, Chem., 18 (2), 137-140 (1992); Chem. Abstr., 121, 133762p (1994).
3595. Sofia, M. J.: Eur. Pat. Appl. EP 579,412 (1994); Chem. Abstr., 120, 322935n (1994).
3596. Van Acker, F. A. A.; Hageman, J. A.; Haenen, G. R. M. M.; van der Vijgh, W. J. F.; Bast, A. and Menge, W. M. P. B.: J. Med. Chem., 43 (20), 3752-3760 (2000).
3597. Dewick, P. M. and Martin, M.: Phytochemistry, 18 (4), 597-602 (1979).
3598. Dewick, P. M. and Ward, D.: Phytochemistry, 17, 1751-1754 (1978).
3599. Ayabe, S. and Furuya, T.: J. Chem. Soc., Perkin Trans. 1, (11), 2725-2734 (1982).
3600. Tsuda, Y.; Hosoi, S. and Goto, Y.: Chem. Pharm. Bull., 39 (1), 18-22 (1991).
3601. Pinto, D. C. G. A.; Silva, A. M. S. and Cavaleiro, J. A. S.: J. Heterocycl. Chem., 37 (6), 1629-1634 (2000).
3602. Joshi, B. S. and Rane, D. F.: Tetrahedron Lett., (46), 4579-4581 (1967).
3603. Binh, Vu; Mezey-Vandor, G. and Nogradi, M.: Liebigs Ann. Chem., 4, 734-741 (1984).
3604. Agarwal, S. C.; Bhaskar, A. and Seshadri, T. R.: Indian J. Chem., 11 (1), 9-12 (1973).
3605. Jain, A. C.; Jain, S. M. and Seshadri, T. R.: Indian J. Chem., Sect. B, 10B (6), 581-584 (1972).
3606. Chopin, J. and Roux, B.: C. R. Acad. Sci., 257 (1), 176-178 (1963).
3607. Kuser, P.; Inderbitzin, M.; Brauchli, J. and Eugster, C. H.: Helv. Chim. Acta, 54 (4), 980-995 (1971).
3608. Huang, C.; Zhang, Z.; Li, S. and Li, Y.: J. Chem. Res., Synop., (2), 148-149 (1999).
3609. Vermuri, V. S. S.; Rao, C. P.; Rao, J. M. and Rao, K. V. J.: Indian J. Chem., Sect. B, 23B (11), 1122-1123 (1984).
3610. Cardillo, G.; Cricchio, R. and Merlini, L.: Tetrahedron, 24 (13), 4825-4831 (1968).
3611. Hlubucek, J.; Ritchie, E. and Taylor, W. C.: Chem. Ind. (London), 49, 1780-1781 (1969).
3612. Hlubucek, J.; Ritchie, E. and Taylor, W. C.: Tetrahedron Lett., (17), 1369-1370 (1969).
3613. Matsumoto, J.; Fujimoto, T.; Takino, C.; Saitoh, M.; Hano, Y.; Fukai, T. and Nomura, T.: Chem. Pharm. Bull., 33 (8), 3250-3256 (1985).
3614. Suh, H.; Lee, S.; Kim, N.; Han, J. and Kim, J.: Bioorg. Med. Chem. Lett., 9 (10), 1433-1436 (1999).
3615. Gluchoff-Fiasson, K.; Fenet, B.; Leclerc, J.-C.; Reynaud, J.; Lussignol, M. and Jay, M.: Chem. Pharm. Bull., 49 (6), 768-770 (2001).
3616. Isawa, J.; Okano, K. and Nakamura, Y.: Agric. Biol. Chem., 36, 1247-1248 (1972).
3617. Kim, Soon Shin; Lee, Chung Kyu; Kang, Sam Sik; Jung, Hyun Ah and Choi, Jae Sue: Arch. Pharmacal. Res., 20 (2), 148-154 (1997); Chem. Abstr., 127, 60573q (1997).
3618. Zhang, D.; Wu, B.; Li, X. and Zhu, T.: Zhongcaoyao, 24 (6), 286-288 (1993); Chem. Abstr., 119, 156310n (1993).
3619. Konda, Y.; Funato, N.; Harigaya, Y.; Li, Xi; Zhang, D. and Onda, M.: J. Heterocycl. Chem., 28 (8), 1949-1951 (1991).
3620. Satsyperova, I. F.; Kurkin, V. A.; Zapesochnaya, G. G.; Pantova, I. A. and Avdeyeva, E. V.: Rastit. Resur., 31 (2), 27-31 (1995); Chem. Abstr., 123, 334957w (1995).
3621. Singh, A. K.; Pathak, V. and Agrawal, P. K.: Phytochemistry, 44 (3), 555-557 (1997).
3622. Isaza, J. H.; Ito, H. and Yoshida, T.: Phytochemistry, 58 (2), 321-327 (2001).
3623. Kjaer, A. and Kjaer, D.: Acta Chem. Scand., Ser. B: B36 (6), 417-419 (1982).
3624. Kjaer, A. and Kjaer, D.: Acta Chem. Scand., Ser. B: B39 (1), 65-68 (1985).
3625. Tunoori, A. R.; Dutta, D. and Georg, G. I.: Tetrahedron Lett., 39 (48), 8751-8754 (1998).
3626. Jain, S. C.; Rajwanshi, V. K.; Kumar, R.; Talwar, S. and Bharadvaja, A.: Synth. Commun., 27 (8), 1405-1414 (1997).
3627. Iinuma, M.; Tanaka, T.; Iwashima, K. and Matsuura, S.: Yakugaku Zasshi, 104 (6), 691694 (1984); Chem. Abstr., 101, 230191w (1984).
3628. Hamed, A. A.; Salem, M. A. I.; Hataba, A. M. and Attia, I. A.: Pol. J. Chem., 59 (10-12), 1161-1166 (1986); Chem. Abstr., 107, 39251k (1987).
3629. Hamed, A. A.; Salem, M. A. I.; Hataba, A. M. and Attia, I. A.: Egypt. J. Chem., 29 (4), 485-493 (1986) (Pub. 1987); Chem. Abstr., 111, 194658z (1989).
3630. Goswami, A.: J. Chem. Res., Synop., (12), 554-555 (2000).
3631. Fujimori, S.; Yamazaki, S.; Sugano, M.; Kawamura, M.; Ninomiya, K.; Tobbe, A. and Nitta, I.: Eur. Pat. Appl. EP 306,411 (1989); Chem. Abstr., 111, 194788s (1989).
3632. Isoda, Y.; Fujiwara, H. and Hosogami, T.: Jpn. Kokai Tokkyo Koho JP 03 86,884 [91 86,884] (1991); Chem. Abstr., 115, 183264z (1991).
3633. Tsuji, N. and Nagashima, K.: Tetrahedron, 25 (15), 3017-3031 (1969).
3634. Takasuka, M. and Matsui, Y.: J. Chem. Soc., Perkin Trans. 2, (12), 1743-1750 (1979).
3635. Hashimoto, T.; Kawarada, A. and Tamura, S.: U.S. 3,971,651 (1976); Chem. Abstr., 85, 155074f (1976).
3636. Ahluwalia, V. K.; Dhingra, S. and Kapur, K.: Indian J. Chem., Sect. B, 18B (1), 79-80 (1979).
3637. Farkas, L. and Wolfner, A.: Acta Chim. Acad. Sci. Hung., 88 (2), 173-177 (1976).
3638. El Hajji, H.; Dangles, O.; Figueiredo, P. and Brouillard, R.: Helv. Chim. Acta, 80 (2), 398-413 (1997).
3639. El Hajji, H.; Dangles, O.; Statona, A. and Brouillard, R.: Polyphenols Actual., 15, 7-10 (1996); Chem. Abstr., 126, 212302v (1997).
3640. Horie, T.; Shibata, K.; Yamashita, K.; Fujii, K.; Tsukayama, M. and Ohtsuru, Y.: Chem. Pharm. Bull., 46 (2), 222-230 (1998).
3641. Farkas, L. and Strelisky, J.: Tetrahedron Lett., (2), 187-190 (1970).
3642. Gupta, H. C.; Ayengar, K. N. N. and Rangaswami, S.: Indian J. Chem., 12 (9), 914-915 (1974).
3643. Raghav, S.; Garg, M.; Garg, S. K. and Gupta, S. R.: Indian J. Chem., Sect. B, 25B (4), 409-410 (1986).
3644. Parmar, V. S.; Bisht, K. S.; Jain, R.; Singh, S.; Sharma, S. K.; Gupta, S.; Malhotra, S.; Tyagi, O. D.; Vardhan, A.; Pati, H. N.; van den Berghe, D. A. and Vlietinck, A. J.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 35B (3), 220-232 (1996).
3645. Parrish, J. R.: J. S. Afr. Chem. Inst., 23 (3), 129-135 (1970); Chem. Abstr., 74, 42077p (1971).
3646. Finnegan, R. A. and Knutson, D.: Chem. Ind. (London), 1837-1838 (1965).
3647. Nishinaga, A.; Iwasaki, H.; Shimizu, T.; Toyoda, Y. and Matsuura, T.: J. Org. Chem., 51, 2257-2266 (1986).
3648. Miller, J. A.: J. Org. Chem., 52, 322-323 (1987).
3649. Kreilick, R. W.: J. Am. Chem. Soc., 88, 5284-5288 (1966).
3650. Nishinaga, A.; Shimizu, T. and Matsuura, T.: Tetrahedron Lett., 22 (52), 5293-5296 (1981).
3651. Nishinaga, A.; Shimizu, T.; Toyoda, Y.; Matsuura, T. and Hirotsu, K.: J. Org. Chem., 47, 2278-2285 (1982).
3652. Gandelsman, L. Z.; Nazaretian, V. P.; Chomenko, L. A. and Iagoupolskii, L. M.: Ukr. Khim. Zh. (Russ. Ed.), 52 (4), 405-406 (1986); Chem. Abstr., 106, 175885b (1987).
3653. Grosso, P. and Vogl, O.: J. Macromol. Sci., Chem., A 23 (9), 1041-1056 (1986).
3654. Portnykh, N. V.; Volod'kin, A. A. and Ershov, V. V.: Izv. Akad. Nauk SSSR, Ser. Khim., 12, 2243-2244 (1966).
3655. Cook, C. D. and Gilmour, N. D.: J. Org. Chem., 25, 1429-1431 (1960).
3656. Krokhin, A. V.; Chizhov, O. S.; Mikheeva, N. N.; Ershov, V. V. and Volod’kin, A. A.: Izv. Akad. Nauk SSSR, Ser. Khim., 12, 2686-2693 (1976).
3657. Bruun, T.: Acta Chem. Scand., 19 (7), 1677-1693 (1965).
3658. Bruun, T.: Tetrahedron Lett., (4), 1-4 (1960).
3659. Yuan, Chengye; Xiang, Caili; Li, Shusen; Jiang, Xiqi; Wang, Jiao; Pan, Boxi and Cao, Chiming: Huaxue Xuebao 47 (10), 990-995 (1989); Chem. Abstr., 113, 5625u (1990).
3660. Krysan, D. J.; Gurski, A. and Liebeskind, L. S.: J. Am. Chem. Soc., 114, 1412-1418 (1992).
3661. Tanaka, T.; Sakurai, Y.; Okazaki, H.; Hasegawa, T. and Fukuyama, Y.: Eur. Pat. Appl. EP 382,213 (1990); Chem. Abstr., 114, 81225z (1991).
3662. Nowakowska, E.; Daszkiewicz, z. and Kyziol, J. B.: Pol. J. Chem., 72, 1191-1197 (1998).
3663. Buckle, D. R. and Smith, H.: U.S. 4,200,577 (1980); Chem. Abstr., 93, 186172 f (1980).
3664. Wagner, H.; Maurer, I.; Farkas, L. and Strelisky, J.: Tetrahedron, 33 (11), 1405-1409 (1977).
3665. Stout, M. G.; Reich, H. and Huffman, M. N.: J. Pharm. Sci., 53 (2), 192-195 (1964).
3666. Ahmad, S.; Wagner, H. and Razaq, S.: Tetrahedron, 34 (10), 1593-1594 (1978).
3667. Herz, W.; Govindan, S. V.; Riess-Maurer, I.; Kreil, B.; Wagner, H.; Farkas, L. and Strelisky, J.: Phytochemistry, 19 (4), 669-672 (1980).
3668. Wagner, H.; Farkas, L.; Flores, G. and Strelisky, J.: Chem. Ber., 107 (3), 1049-1056 (1974).
3669. Wagner, H.; Maurer, I.; Farkas, L. and Strelisky, J.: Tetrahedron Lett., (1), 67-70 (1976).
3670. Wagner, H.; Maurer, I.; Farkas, L. and Strelisky, J.: Tetrahedron, 33 (11), 1411-1414 (1977).
3671. Yoo, Moohi; Son, Mi Won; Kim, Ik Yon; Kim, Won Bae; Kim, Soon Hoe; Lee, Sang Deuk; Lim, Geun Jho; Lim, Joong In; Ahn, Byoung Ok; Baik, Nam, Gi; Kim, Dong Sung; Oh, Tae Young; Ryu, Byung Kwon; Yang, Jae Sung and Shin, Hee Chan: PCT Int. Appl. WO 98 04,541 (1998); Chem. Abstr., 128, 180275m (1998).
3672. Saini, T. R.; Pathak, V. P. and Khanna, R. N.: Indian J. Chem., Sect. B, 22B (10), 1063 (1983).
3673. Iinuma, M.; Matsuura, S. and Tanaka, T.: Chem. Pharm. Bull., 32 (4), 1472-1476 (1984).
3674. Bhardwaj, D. K.; Bisht, M. S.; Gupta, A. K. and Kohli, R. M.: Proc. Indian Natl. Sci. Acad., Part A, 48 (3), 253-256 (1982).
3675. Bhardwaj, D. K.; Chand, G.; Jain, R. K. and Munjal, A.: Indian J. Chem., Sect. B, 21B (11), 1041-1042 (1982).
3676. Farkas, L.; Gottsegen, A.; Nogradi, M. and Antus, S.: J. Chem. Soc., Perkin Trans. 1, (2), 305-312 (1974).
3677. Kohli, R. M.: Ph. D. Thesis, University of Delhi, India (1981).
3678. Malhotra, S.; Sharma, V. K.; Gupta, S. R. and Parmar, V. S.: Indian J. Chem., Sect. B, 26B (7), 705-706 (1987).
3679. APSimon, J. W.; Corran, J. A.; Creasey, N. G.; Marlow, W.; Whalley, W. B. and Sim, K. Y.: J. Chem. Soc., 4144-4156 (1965).
3680. Urano, F.; Nakabata, M.; Fujie, H. and Ono, K.: Jpn. Kokai Tokkyo Koho JP 03,223,862 [91,223,862] (1991); Chem. Abstr., 117, 223096w (1992).
3681. Farkas, L.; Nogradi, M.; Sudarsanam, V. and Herz, W.: J. Org. Chem., 31, 3228-3232 (1966).
3682. Farkas, L.; Nogradi, M. and Zubovics, Z.: Acta Chim. Acad. Sci. Hung., 52 (3), 301-304 (1967).
3683. Farkas, L.; Nogradi, M.; Sudarsanam, V. and Herz, W.: Tetrahedron, 23 (9), 3557-3561 (1967).
3684. Thomas, M. B. and Mabry, T. J.: Tetrahedron, 24 (9), 3675-3679 (1968).
3685. Bu, Xian Yong; Xiao, Li and Li, Yu Lin: Chin. Chem. Lett., 7 (1), 11-12 (1996).
3686. Mikami, K.; Kotera, O.; Motoyama, Y.; Sakaguchi, H. and Maruta, M.: Synlett, (2), 171-172 (1996).
3687. Cohen, N.; Daniewski, A. R.; Lee, F. Kwo-Chen and Yagaloff, K. A.: PCT Int. Appl. WO 95 15,956 (1995); Chem. Abstr., 123, 339414b (1995).
3688. Niemann, W.; Böhmer, V.; Evers, H. and Kämmerer, H.: Makromol. Chem., 158, 123-134 (1972).
3689. Goni, M. A. and Hedges, J. I.: Geochim. Cosmochim. Acta, 56 (11), 4025-4043 (1992); Chem. Abstr., 118, 258334v (1993).
3690. Fang, N.; Leidig, M.; Mabry, T. J. and Munekazu, I.: Phytochemistry, 24 (12), 3029-3034 (1985).
3691. Lee, H. H. and Tan, C. H.: J. Chem. Soc., 6255-6256 (1964).
3692. Bohlmann, F.; Zdero, C. and Franke, H.: Chem. Ber., 106, 382-387 (1973).
3693. Bohlmann, F. and Grenz, M.: Chem. Ber., 108, 26-30 (1975).
3694. Cardillo, G.; Merlini, L. and Mondelli, R.: Tetrahedron, 24 (1), 497-510 (1968).
3695. Tsukayama, M.; Kikuchi, M. and Kawamura, Y.: Chem. Lett., (7), 1203-1206 (1994).
3696. Kumar, V.; Karunaratne, V.; Sanath, M. R.; Meegalle, K. and MacLeod, J. K.: Phytochemistry, 29 (1), 243-245 (1990).
3697. Chou, C. J.; Lin, L. C.; Chen, K. T. and Chen, C. F.: J. Nat. Prod., 55 (6), 795-799 (1992).
3698. Szymanowski, J.; Voelkel, A.; Beger, J. and Binte, H. J.: J. Prakt. Chem., 327 (3), 353-361 (1987).
3699. Royer, R.; Cheutin, A.; Routier, C. and Rips, R.: Bull. Soc. Chim. Fr., 1297-1302 (1956).
3700. Kumar, V.; Karunaratne, V.; Meegalle, M. R. and Sanath, K.: Phytochemistry, 28 (4), 1278-1279 (1989).
3701. Suri, J. L.; Gupta, G. K.; Taneja, S. C.; Dhar, K. L. and Atal, C. K.: Indian J. Chem., Sect. B, 19B (9), 813-814 (1980).
3702. Gulacsi, K.; Litkei, G.; Antus, S. and Gunda, T. E.: Tetrahedron, 54 (45), 13867-13876 (1998).
3703. Jain, A. C.; Tyagi, O. D. and Gupta, A.: Indian J. Chem., Sect. B, 25B (7), 755-758 (1986).
3704. Khanna, R. N.: Ph. D. Thesis, Delhi University, India (1962).
3705. Tsukayama, M.; Fujimoto, K.; Horie, T.; Masumara, M. and Nakayama, M.: Bull. Chem. Soc. Jpn., 58, 136-141 (1985).
3706. Nay, B.; Arnaudinaud, V. and Vercauteren, J.: Eur. J. Org. Chem., (12), 2379-2384 (2001).
3707. Kawamoto, H.; Nakatsubo, F. and Murakami, K.: J. Wood Chem. Technol., 9, 35-52 (1989).
3708. Nay, B.; Arnaudinaud, V. and Vercauteren, J.: C. R. Chimie, 5, 577-590 (2002).
3709. Jain, A. C.; Singh, P. K. and Bhojak, N.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 33B (4), 372-374 (1994).
3710. Koenigs, W. and Knorr, E.: Ber. Dtsch. Chem. Ges., 34, 957-981 (1901).
3711. Tsujihara, K.; Hongu, M.; Saito, K.; Inamasa, M.; Arakawa, K.; Oku, A. and Matsumoto, M.: Chem. Pharm. Bull., 44 (6), 1174-1180 (1996).
3712. Dick, W. E., Jr.: Carbohydr. Res., 70, 313-318 (1979).
3713. Hongu, M.; Saito, K. and Tsujihara, K.: Synth. Commun., 29 (16), 2775-2781 (1999).
3714. Diedrich, D. F.: J. Med. Pharm. Med., 5, 1054-1062 (1962).
3715. Zemplen, G. and Bognar, R.: Ber. Dtsch. Chem. Ges., 75, 645-649 (1942).
3716. Zhao, L. Y.; Bu, X. Y. and Li, Y.: Bull. Soc. Chim. Belg., 104 (2), 119-120 (1995).
3717. Zhang, F. and Li, Y.: Chin. Chem. Lett., 1 (1), 95-96 (1990).
3718. Zhang, F. and Li. Y.: Huaxue Xuebao, 49 (5), 498-501 (1991); Chem. Abstr., 115, 135736h (1991).
3719. Wissner, A.; Carroll, M. L.; Green, K. E.; Kerwar, S. S.; Pickett, W. C.; Schaub, R. E.; Torley, L. W.; Wrenn, S. and Kohler, C. A.: J. Med. Chem., 35 (9), 1650-1662 (1992).
3720. Bhrara, S. C.: Ph. D. Thesis, Dehli University, India (1964).
3721. Horie, T.; Tsukayama, M.; Masumura, M.; Nakayama, M.; Hayashi, S. and Fukui, K.: Nippon Kagaku Kaishi, (4), 773-779 (1972); Chem. Abstr., 77, 61744g (1972).
3722. Fukui, K.; Nakayama, M. and Horie, T.: Bull. Chem. Soc. Jpn., 42 (8), 2327-2330 (1969).
3723. Fukui, K.; Nakayama, M. and Horie, T.: Experientia, 25, 355-356 (1969).
3724. Zemplen, G.; Bognar, R. and Mechner, J.: Ber. Dtsch. Chem. Ges., 77, 99-108 (1944).
3725. Huang, C.-S.; Li, X.-Y.; Li, Y. and Li, Y.-L.: Gaodeng Xuexiao Huaxue Xuebao, 18 (11), 1804-1808 (1997); Chem. Abstr., 128, 48379u (1998).
3726. Ahsan, M.; Gray, A. I.; Waterman, P. G. and Armstrong, J. A.: J. Nat. Prod., 57 (5), 673-676 (1994).
3727. Huang, C.-S.; Li, X.-Y.; Li, Y. and Li, Y.-L.: Chin. Chem. Lett., 7 (8), 701-702 (1996).
3728. Lin, L. C.; Chou, C. J.; Chen, K. T. and Chen, C. F.: J. Nat. Prod., 56 (6), 926-928 (1993).
3729. Buu-Ної, N. P. and Xuong, N. D.: J. Org. Chem., 26, 2401-2402 (1961).
3730. Szymanowski, J.; Voelkel, A. and Rashid, Z. A.: J. Chromatogr., 402, 55-64 (1987).
3731. Hatakeda, K.; Asano, T.; Ito, S. and Saito, N.: Japan Kokai 76 95,033 (1976); Chem. Abstr., 85, 192376b (1976).
3732. Chopin, J.; Bouillant, M. L. and Besson, E.: The Flavonoids, Advances in Research (J. B. Harborne, T. J. Mabry, Eds.) Chapman and Hall, (1982), p. 449-504.
3733. Mahling, J.-A.; Jung, K.-H. and Schmidt, R. R.: Liebigs Ann. Chem., (3), 461-466 (1995).
3734. Martin, R.: Handbook of Hydroxyacetophenones, Springer, 2005, vol. I.
3735. Jadhav, G. V. and Merchant, J. R.: J. Univ. Bombay, Sci. 19A (5), 35-38 (1951); Chem. Abstr., 46, 8630a (1952).
3736. Jadhav, G. V. and Merchant, J. R.: Proc. Indian Acad. Sci., Ser. A, 34A (3), 152-154 (1951).
3737. Gupta, S. K. (Bioderm Research, USA): U.S. Pat. Appl. Publ. US 2006 74,108 (2006); Chem. Abstr., 144, 357726t (2006).
3738. Gupta, S. K. (USA): U.S. Pat. Appl. Publ. US 2005 271,608 (2005); Chem. Abstr., 144, 40393d (2006).
3739. Nandgaonkar, R. G. and Ingle, V. N.: Asian J. Chem., 17 (3), 2016-2018 (2005); Chem. Abstr., 144, 311814s (2006).
3740. Pui, A. and Mahy, J-P.: Polyhedron, 26 (13), 3143-3152 (2007).
3741. Yu, J. H.; Yang, Y. S. and Ji, R. Y.: Chinese Chem. Lett., 17 (8), 1005-1008 (2006).
3742. Pui, A. and Cascaval, A.: Rev. Chim. (Bucharest): 56 (8), 861-865 (2005).
3743. Inoue, T.; Kiguchi, T.; Hirata, K.; Shinagawa, Y.; Ogawa, N. and Deai, K. (Japan Tobacco Inc., Japan): PCT Int. Appl. WO 2007 86,504 (2007); Chem. Abstr., 147, 181550b (2007).
3744. Wong, N. C. W.; Tucker, J. E. L.; Hansen, H. C.; Chiacchia, F. S. and Mc Caffrey, D. (Resverlogix Corp., Can.): PCT Int. Appl. WO 2006 45,096 (2006); Chem. Abstr., 144, 432604g (2006).
3745. Heravi, M. M.; Abdolhosseini, N. and Oskooie, H. A.: Tetrahedron Lett., 46 (51), 8959-8963 (2005).
3746. Chovatia, P. T.; Akabari, J. D.; Kachhadia, P. K.; Zalavadia, P. D. and Joshi, H. S.: J. Serbian Chem. Soc., 71 (7), 713-720 (2006).
3747. Jhala, Y. S.; Ranawat, P. S.; Dulawat, S. S. and Verma, B. L.: Indian J. Heterocycl. Chem., 14 (4), 357-358 (2005).
3748. Mai, A.; Cheng, D.; Bedford, M. T.; Valente, S., Nebbioso, A.; Perrone, A.; Brosch, G.; Sbardella, G.; De Bellis, F.; Miceli, M. and Altucci, L.: J. Med. Chem., 51 (7), 2279-2290 (2008).
3749. Dorman, L. C.: J. Org. Chem., 31 (11), 3666-3671 (1966).
3750. Priestley, H. M. and Moness, E.: J. Org. Chem., 5, 355-361 (1940).
3751. Baliah, V.; Mangalamudaiyar, A.; Jeyaraman, R.: Indian J. Chem., Sect. B, 30B (11), 1046-1051 (1991).
3752. Ganapathy, K. and Ramanujam, M.: J. Indian Chem. Soc., 58, 701-703 (1981).
3753. Ganapathy, K. and Ramanujam, M.: J. Indian Chem. Soc., 60, 958-960 (1983).
3754. Pillay, M. K. and Mubarak, S.: J. Indian Chem. Soc., 69 (7), 392-393 (1992).
3755. Pillay, M. K. and Palanivelu, S.: J. Indian Chem. Soc., 63, 1055-1059 (1986).
3756. Pillay, M. K. and Palanivelu, S.: J. Indian Chem. Soc., 64 (4), 257-258 (1987).
3757. Pillay, M. K. and Palanivelu, S.: J. Indian Chem. Soc., 64, 610-611 (1987).
3758. Vyas, D. H.; Tala, S. D.; Dhaduk, M. F.; Akbari, J. D. and Joshi, H. S.: J. Indian Chem. Soc., 84 (11), 1140-1144 (2007).
3759. Berger, M.; Rehwinkel, H.; Schaecke, H.; Baeurle, S. and Schmees, N. (Bayer Schering Pharma Aktiengesellschaft, Germany): Eur. Pat. Appl. EP 1,834,948 (2007); Chem. Abstr., 147, 386004y (2007).
3760. Berger, M.; Rehwinkel, H.; Schaecke, H.; Baeurle, S. and Schmees, N. (Bayer Schering Pharma Aktiengesellschaft, Germany): PCT Int. Appl. WO 2007 104,582 (2007); Chem. Abstr., 147, 385731w (2007).
3761. Ishar, M. P. S.; Singh, G.; Singh, S.; Sreenivasan, K. K. and Singh, G.: Bioorg. Med. Chem. Lett., 16 (5), 1366-1370 (2006).
3762. Nittoli, T.; Curran, K.; Insaf, S.; DiGrandi, M.; Orlowski, M.; Chopra, R.; Agarwal, A.; Howe, A. Y. M.; Prashad, A.; Floyd, M. B.; Johnson, B.; Sutherland, A.; Wheless, K.; Feld, B.; O'Connell, J.; Mansour, T. S. and Bloom, J.: J. Med. Chem., 50 (9), 2108-2116 (2007).
3763. Filarowski, A.; Kochel, A.; Koll, A.; Bator, G. and Mukherjee, S.: J. Mol. Struct, 785 (1-3), 7-13 (2006).
3764. Mitra, S.; Singh, T. S.; Mandal, A. and Mukherjee, S.: Chem. Phys., 342 (1-3), 309-317 (2007).
3765. Royer, R.; Bachelet, J-P. and Demerseman, P.: Bull. Soc. Chim. Fr., (2), 611-615 (1973).
3766. Silva, V. L. M.; Silva, A. M. S.; Pinto, D. C. G. A.; Jagerovic, N.; Callado, L. F.; Cavaleiro, J. A. S. and Elguero, J.: Monatsh. Chem., 138 (8), 797-811 (2007).
3767. Singh, O. V.; Sangeeta, K. M. S.; Garg, C. P.; Kapoor, R. P.; Kapil, A. and Sharma, S.: Indian J. Chem., 32B (12), 1241-1248 (1993).
3768. Auwers, K. and Deines, G.: Fortsch. Chem. Phys., 18 (2), 32 (1924/1926).
3769. Kammermeier, T.; Kaiser, A.; Lee, G. S.; Burgemeister, T. and Wiegrebe, W.: Arch. Pharm. (Weinheim): 327 (5), 207-210 (1994).
3770. Kammermeier, T. and Wiegrebe, W.: Archiv. Pharm. (Weinheim), 327 (9), 547-561 (1994).
3771. Brown, B. S.; Koenig, J. R.; Gomtsyan, A. R. and Lee, C-H. (Abbott Laboratories, USA): PCT Int. Appl. WO 2007 121,299 (2007); Chem. Abstr., 147, 486435h (2007).
3772. Chan, T-H. and Chow, L. M-C. (The Hong Kong Polytechnic University, Peop. Rep. China): PCT Int. Appl. WO 2007 135,592 (2007); Chem. Abstr., 148, 10996t (2008).
3773. Halnor, V. B.; Joshi, N. S.; Karale, B. K. and Gill, C. H.: Heterocycl. Commun., 11 (2), 167-172 (2005).
3774. Kale, S. B. and Karale, B. K.: J. Heterocycl. Chem., 44 (2), 289-301 (2007).
3775. Pawar, S. B.; Shelke, S. N.; Sonawane, S. M.; Gill, C. H. and Karale, B. K.: Oriental J. Chem., 23 (1), 251-256 (2007); Chem. Abstr., 148, 331597j (2008).
3776. Pui, A.; Dobrota, C. and Mahy, J-P.: J. Coord. Chem., 60 (5-6), 581-595 (2007).
3777. Narender, N.; Mohan, K. V. V. M.; Srinivasu, P.; Kulkarni, S. J. and Raghavan, K. V.: Indian J. Chem., Sect. B, 43B (6), 1335-1338 (2004).
3778. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; ;Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y. and Isakson, P. C.: J. Med. Chem., 40 (9), 1347-1365 (1997).
3779. Varsanyi, G. and Sohar, P.: Acta Chim. Acad. Sci. Hung., 76 (3), 243-268 (1973).
3780. Varsanyi, G.; Horvath, G.; Imre, L.; Schawartz, J.; Sohar, P. and Soti, F.: Acta Chim. Acad. Sci. Hung., 93 (3-4), 315-355 (1977).
3781. Hass, M. P. and Sunkel, T. T. (Procter \& Gamble Company, USA): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,045,695 (2007); Chem. Abstr., 147, 486156t (2007).
3782. Hayes, M. P. and Schunk, T. T. (The Procter \& Gamble Company, USA): PCT Int. Appl. WO 2007 110,836 (2007); Chem. Abstr., 147, 406430q (2007).
3783. Radem-Furi, N. L.; Goodwinski, J. E. and Dikers, M. L. (Procter \& Gamble Company, USA): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,045,725 (2007); Chem. Abstr., 147, 469244c (2007).
3784. Redman-Furey, N. L.; Godlewski, J. E. and Dicks, M. L. (The Procter \& Gamble Company, USA): PCT Int. Appl. WO 2007 110,834 (2007); Chem. Abstr., 147, 433594c (2007).
3785. Reilly, M. (The Procter \& Gamble Company, USA): PCT Int. Appl. WO 2007 110,835 (2007); Chem. Abstr., 147, 406709n (2007).
3786. Relea, M. (Procter \& Gamble Company, USA): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,045,724 (2007); Chem. Abstr., 147, 486340y (2007).
3787. Dolle, R. E. and Lebourdonnec, B. (Adolor Corporation, USA): PCT Int. Appl. WO 2008 33,299 (2008); Chem. Abstr., 148, 379494a (2008).
3788. Hudkins, R. L.; Josef, K. A. and Tao, M.: PCT Int. Appl. WO 2008 13,838; Chem. Abstr., 148, 215066m (2008).
3789. Moughamir, K.; Rolando, C. and Charbonnier, F.: International Electronic Conferences on Synthetic Organic Chemistry, 5th, 6th, Sept. 1-30, 2001 and 2002 [and] 7th, 8th, Nov. 1-30, 2003 and 2004: 2004, 243-249; Chem. Abstr., 144, 108053a (2006).
3790. Covello, M.; De Simone, F. and Dini, A.: Rend. Accad. Sci. Fis. Mat., Naples, 35, 298-308 (1968).
3791. Schering-Kahlbaum A-G.: DE 679475 (1935).
3792. Schering-Kahlbaum A-G.: US 2,116,104 (1936).
3793. Schering-Kahlbaum A-G.: DE 659496 (1935).
3794. Wang, F.; Zhang, Y. J.; Yang, G. and Zhang, W.: Tetrahedron Lett., 48 (24), 4179-4182 (2007).
3795. Oki, M.: Bull. Chem. Soc. Jpn., 26, 331-336 (1953).
3796. Hartmann, R. W.; Heindl, A.; Schwarz, W. and Schönenberger, H.: J. Med. Chem., 27 (7), 819-824 (1984).
3797. Hartmann, R. W.; Heindl, A.; Schwarz, W. and Schönenberger, H.: J. Med. Chem., 28 (9), 1295-1301 (1985).
3798. Bartoli, G.; Bosco, M.; Marcantoni, E.; Massaccesi, M.; Rinaldi, S. and Sambri, L.: Tetrahedron Lett., 43 (36), 6331-6334 (2002).
3799. Takano, D.; Fukunaga, Y.; Doe, M.; Yoshihara, K. and Kinoshita, T.: J. Heterocycl. Chem., 34 (4), 1111-1114 (1997).
3800. Zara-Kaczian, E.; Deak, G. and Gyoergy, L.: Acta Chim. Hung., 126 (4), 441-454 (1989).
3801. Horton, W. J. and Robertson, D. E.: J. Org. Chem., 25, 1016-1020 (1960).
3802. Sengupta, S. K.; Sahni, S. K. and Kapoor, R. N.: Indian J. Chem., Sect. A, 19 (8), 810-812 (1980).
3803. Fleming, I. and Woolias, M.; J. Chem. Soc., Perkin Trans. 1, 829-837 (1979).
3804. Pravst, I.; Zupan, M. and Stavber, S.: Tetrahedron Lett., 47 (27), 4707-4710 (2006).
3805. Broxton, T. J.; Deady, L. W.; McCormack, J. D.; Kam, L. C. and Toh, S. H .: J. Chem. Soc., Perkin Trans. 1, (15),1769-1771 (1974).
3806. Wilds, A. L. and Beck, L. W.: J. Am. Chem. Soc., 66 (10), 1688-1694 (1944).
3807. Hellwinkel, D. and Bohnet, S.: Chem. Ber., 120, 1151-1174 (1987).
3808. Kerr, D. I. B.; Ong, J.; Perkins, M. V.; Prager, R. H. and Puspawati, N. M.: Aust. J. Chem., 59 (7), 445-456 (2006).
3809. Antel, J.; Waldeck, H.; Schoen, U.; Gregory, P-C.; Wurl, M.; Firnges, M.; Reiche, D. and Reinecker, U. (Solvay Pharmaceuticals G.m.b.H., Germany): U.S. Pat. Appl. Publ. US 2007 117,823 (2007); Chem. Abstr., 147, 9802z (2007).
3810. Barros, A. I. R. N. A. and Silva, A. M. S.: Monatsh. Chem., 137 (12), 1505-1528 (2006).
3811. Butler, T. W. and Wager, T. T. (Pfizer Products Inc., USA): PCT Int. Appl. WO 2007 88,450 (2007); Chem. Abstr., 147, 257644h (2007).
3812. Ehara, T.; Grosche, P.; Irie, O.; Iwaki, Y.; Kanazawa, T.; Kawakami, S. et al. (Novartis AG; Novartis Pharma G.m.b.H., Switzerland): PCT Int. Appl. WO 2007 77,005 (2007); Chem. Abstr., 147, 166201v (2007).
3813. Juhasz, L.; Docsa, T.; Brunyaszki, A.; Gergely, P. and Antus, S.: Bioorg. Med. Chem., 15 (12), 4048-4056 (2007).
3814. Reiser, U.; Kraemer, O.; Sennhenn, P. and Spevak, W. (Boehringer Ingelheim international G.m.b.H., Germany): PCT Int. Appl. WO 2007 128,782 (2007); Chem. Abstr., 147, 541856y (2007).
3815. Hamilton, N. M.; Grove, S. J. A.; Kiczun, M. J.; Morphy, J. R.; Sherborne, B.; Littlewood, P. T. A.; Brown, A. R.; Kingsbury, C.; Ohlmeyer, M.; Ho, K-K. and Kultgen, S. G. (N. V. Organon; Pharmacopeia Drug Discovery, Inc., Netherlands): PCT Int. Appl. WO 2007 71,638 (2007); Chem. Abstr., 147, 118252r (2007).
3816. Lanier, M.; Moorjani, M.; Tellew, J. E. and Williams, J. P. (SB Pharmaco Puerto Rico Inc.; Neurocrine Biosciences Inc., P. R.): PCT Int. Appl. WO 2006 44,821 (2006); Chem. Abstr., 144, 412502u (2006).
3817. Cardenas, M.; Marder, M.; Blank, V. C. and Roguin, L. P.: Bioorg. Med. Chem., 14 (9), 2966-2971 (2006).
3818. Cordero-Vargas, A.; Quiclet-Sire, B. and Zard, S. Z.: Org. Biomol. Chem., 3 (24), 4432-4443 (2005).
3819. Curtin, D. Y. and Tristram, E. W.: J. Am. Chem. Soc., 72 (11), 5238-5242 (1950).
3820. Hamilton, C. J.; Fairlamb, A. H. and Eggleston, I. M.: J. Chem. Soc., Perkin Trans. 1, (8), 1115-1123 (2002).
3821. Hardcastle, I. R.; Cockcroft, X.; Curtin, N. J.; El-Murr, M. D.; Leahy, J. J. J.; Stockley, M.; Golding, B. T.; Rigoreau, L.; Richardson, C.; Smith, G. C. M. and Griffin, R. J.: J. Med. Chem., 48 (24), 7829-7846 (2005).
3822. Li, J.; Rush, T. S.; Li, W.; DeVincentis, D.; Du, X.; Hu, Y.; Thomason, J. R.; Xiang, J. S.; Skotnicki, J. S.; Tam, S.; Cunnigham, K. M.; Chockalingam, P. S.; Morris, E. A. and Levin, J. I.: Bioorg. Med. Chem. Lett., 15 (22), 4961-4966 (2005).
3823. Miyake, H.; Nishino, S.; Nishimura, A. and Sasaki, M.: Chem. Lett., 36 (4), 522-523 (2007).
3824. Ono, M.; Yoshida, N.; Ishibashi, K.; Haratake, M.; Arano, Y.; Mori, H. and Nakayama, M.: J. Med. Chem., 48 (23), 7253-7260 (2005).
3825. Suenger, G.; Gross, W.; Hoeffkes, H.; Oberkobusch, D. and Benicke, W. (Henkel Kommanditgesellschaft auf Aktien, Germany): PCT Int. Appl. WO 2005 120,445 (2005); Chem. Abstr., 144, 74417e (2006).
3826. Ulven, T.; Frimurer, T.; Rist, O.; Kostenis, E.; Hoegberg, T.; Receveur, J-M. and Grimstrup, M. (7TM Pharma A/S, Den.): PCT Int. Appl. WO 2005 115,382 (2005); Chem. Abstr., 144, 36334t (2006).
3827. Patrick, D. A.; Bakunov, S. A.; Bakunova, S. M.; Kumar, E. V. K. S.; Lombardy, R. J.; Jones, S. K.; Bridges, A. S.; Zhirnov, O.; Hall, J. E.; Wenzler, E. H.; Brun, R. and Tidwell, R. R.: J. Med. Chem., 50 (10), 2468-2485 (2007).
3828. Desai, A. M. and Desai, K. K.: Oriental J. Chem., 22 (2), 461-463 (2006).
3829. Brough, P. A.; Aherne, W.; Barril, X.; Borgognoni, J.; Boxall, K.; Cansfield, J. E.; Cheung, K-M. J.; Collins, I.; Davies, N. G. M.; Drysdale, M. J.; Dymock, B.; Eccles, S. A.; Finch, H.; Fink, A.; Hayes, A.; Howes, R.; Hubbard, R. E.; James, K.; Jordan, A. M.; Lockie, A.; Martins, V.; Massey, A.; Matthews, T. P.; McDonald, E.; Northfield, C. J.; Pearl, L. H.; Prodromou, C.; Ray, S.; Raynaud, F. I.; Roughley, S. D.; Sharp, S. Y.; Surgenor, A.; Walmsley, D. L.; Webb, P.; Wood, M.; Workman, P. and Wright, L.: J. Med. Chem., 51 (2), 196-218 (2008).
3830. Liu, X. and Go, M-L.: Bioorg. Med. Chem., 15 (22), 7021-7034 (2007)
3831. Rosenmund, K. W.; Kuhnhenn, W. and Lesch, W.: Ber. Dtsch. Chem. Ges., 56, 2042-2044 (1923).
3832. Xu, D.; Chiaroni, A. and Largeron, M.: Org. Lett., 7 (23), 5273-5276 (2005).
3833. Erdtman, H.; Moussa, G. and Timell, A.: Acta Chem. Scand., 24 (1), 235-239 (1970).
3834. Blatchly, J. M.; Green, R. J. S.; McOmie, J. F. W. and Searle, J. B.: J. Chem. Soc., Sect. C, (10), 1353-1358 (1969).
3835. Mannich, C. and Hahn, L.: Ber. Dtsch. Chem. Ges., 44, 1542-1552 (1911).
3836. Kuntz, K. W.; Emerson, H. K.; Cheung, M. abd Badiang, J. G.: (Smithkline Beacham Corporation, USA): PCT Int. Appl. WO 2007 143,506; Chem. Abstr., 148, 55071d (2008).
3837. Kuntz, K.; Emmitte, K. A.; Rheault, T. R.; Smith, S.; Hornberger, K. Dickson, H. and Cheung, M. (Smithkline Beacham Corporation, USA): PCT Int. Appl. WO 2007 143,456; Chem. Abstr., 148, 55070c (2008).
3838. Kumar, S.; Sachar, A.; Singh, J. and Kour, D.: Indian J. Heterocycl. Chem., 16 (2), 125-130 (2006).
3839. Yuldashev, K. Y.: J. Org. Chem. USSR, 16, 1610-1612 (1980).
3840. Gust, R.; Burgemeister, T.; Mannschreck, A. and Schönenberger, H.: J. Med. Chem., 33 (9), 2535-2544 (1990).
3841. Loizos, M.; Hegarty, A-F. and Dubois, J-E.: Bull. Soc. Chim. Fr., (8), 2747-2753 (1969).
3842. Bodforss, S.: Ber. Dtsch. Chem. Ges., 72B (3), 468-482 (1939).
3843. Chem. Fabr. Wiernik and Co.: DE 62969 (1933).
3844. Chen, X.; Yu, M. and Wang, M.: J. Chem. Res. (Synopses), (2), 80-81 (2005).
3845. Lautens, M.; Schmid, G. A. and Chau, A.: J. Org. Chem., 67 (23), 8043-8053 (2002).
3846. Prelog, V.; Hahn, V.; Brauchli, H. and Beyerman, H. C.: Helv. Chim. Acta, 27, 1209-1224 (1944).
3847. Huang, Y-T.; Ni, T-N. and T'ang, J-Y.: K'o Hsüeh T'ung Pao, 428-429 (1959); Chem. Abstr., 54, 12052c (1960).
3848. Atkinson, D. C.; Godfrey, K. E.; Meek, B.; Saville, J. F. and Stillings, M. R.: J. Med. Chem., 26 (10), 1353-1360 (1983).
3849. Bachman, G. B. and Picha, G. M.: J. Am. Chem. Soc., 68 (18), 1599-1602 (1946).
3850. Braude, E. A.; Sondheimer, F. and Forbes, W. F.: Nature, 173, 117-119 (1954).
3851. Uto, Yoshikazu, et al. (Daiichi Sankyo Company Limited, Japan): PCT Int. Appl. WO 2008 56,687 (2008); Chem. Abstr., 148, 538285b (2008).
3852. Chubb, N. A. L.; Cox, M. R.; Dauvergne, J. S.; Ewin, R. A. and Lauret, C. (Pfizer Inc., USA): U.S. Pat. Appl. Publ. US 2007 167,506 (2007); Chem. Abstr., 147, 189176e (2007).
3853. Nikalje, A. P. G. and Pattan, S.: International Journal of Chemical Sciences, 5 (1), 290-296 (2007).
3854. Kaspar, M.; Bubnov, A.; Hamplova, V.; Novotna, V.; Lhotakova, I.; Havlicek, J. and Ilavsky, M.: Mol. Crystals Liquid Crystals, 428, 49-63 (2005).
3855. Huang, H-C.; Li, J. L.; Garland, D. J.; Chamberlain, T. S.; Reinhard, E. J.; Manning, R. E.; Seibert, K.; Koboldt, C. M.; Gregory, S. A.; Anderson, G. D.; Veenhuizen, A. W.; Zhang, Y.; Perkins, W. E.; Burton, E. G.; Cogburn, J. N.; Isakson, P. C. and Reitz, D. B.: J. Med. Chem., 39 (1), 253-266 (1996).
3856. Roth, G. P.; Wallace, G. A.; George, D. M.; Grongsaard, P.; Hayes, M. and Breinlinger, E. C. (Abbott Laboratories, USA): PCT Int. Appl. WO 2007 84,728 (2007); Chem. Abstr., 147, 211879k (2007).
3857. Shetgiri, N. P. and Nayak, B. K.: Indian J. Chem., Sect. B, 44B (6), 1267-1272 (2005).
3858. Goethals, G.; Uzan, R.; Nadjo, L. and Doucet, J-P.: J. Chem. Soc., Perkin Trans. 2, (8), 885-888 (1982).
3859. Liu, X. and Go, M-L.: Bioorg. Med. Chem., 14 (1), 153-163 (2006).
3860. Chen, W.; Zhang, P.; Aggen, J. B.; Dairaghi, D. J.; Pennell, A. M. K.; Sen, S. and Wright, J. J. K. (Chemocentryx, Inc., USA): U.S. Pat. Appl. Publ. US 2006 74,121 (2006); Chem. Abstr., 144, 370086d (2006).
3861. Bachute, R. T.; Karale, B. K.; Gill, C. H. and Bachute, M. T.: Indian J. Heterocycl. Chem., 14 (4), 375-376 (2005).
3862. Ackermann, J.; Aebi, J.; Binggeli, A.; Grether, U.; Kuhn, B.; Maerki, H-P. and Meyer, M. (Switz.): U.S. Pat. Appl. Publ. US 2006 4,091 (2006); Chem. Abstr., 144, 88044t (2006).
3863. Wang, X-j.; Zhang, L.; Sun, X.; Xu, Y.; Krishnamurthy, D. and Senanayake, C. H.: Org. Lett., 7 (25), 5593-5595 (2005).
3864. Zhong, Z.; Snowden, T. S.; Best, M. D. and Anslyn, E. V.: J. Am. Chem. Soc., 126 (12), 3488-3495 (2004).
3865. Chakravarti, D. and Dutta, N.: J. Indian Chem. Soc., 17, 65-71 (1940).
3866. Goethals, G.; Nadio, L. and Uzan, R.: Mol. Biomol. Spectrosc., 37 (3), 199-204 (1981).
3867. Sen, A. B. and Bhargava, P. M.: J. Indian Chem. Soc., 26 (8), 366-370 (1949).
3868. Wittig, G.: Ber. Dtsch. Chem. Ges., 57, 88-95 (1924).
3869. Cai, X.; Qian, C.; Gould, S. and Zhai, H. (Curis, Inc., USA): PCT Int. Appl. WO 2008 33,747; Chem. Abstr., 148, 355828m (2008).
3870. Congreve, M. S.; Fazal, L. H.; Frederickson, M.; Murray, C. W.; O’Brien, M. A.; Woodhead, A. J.; Lyons, J. F. and Thompson, N. T. (Astex Therapeutics Limited, UK): PCT Int. Appl. WO 2008 44,027; Chem. Abstr., 148, 471863 t (2008).
3871. Gallagher, N. J.; Lyons, J. F.; Thompson, N. T.; Yule, S. M. and Murray, C. W. (Astex Therapeutics Limited, UK): PCT Int. Appl. WO 2008 44,029; Chem. Abstr., 148, 471860q (2008).
3872. Gallagher, N. J.; Lyons, J. F.; Thompson, N. T.; Yule, S. M. and Murray, C. W. (Astex Therapeutics Limited, UK): PCT Int. Appl. WO 2008 44,041; Chem. Abstr., 148, 471859w (2008).
3873. Gallagher, N. J.; Lyons, J. F.; Thompson, N. T.; Yule, S. M. and Murray, C. W. (Astex Therapeutics Limited, UK): PCT Int. Appl. WO 2008 44,045; Chem. Abstr., 148, 471861r (2008).
3874. Lyons, J. F. and Thompson, N. T. (Astex Therapeutics Limited, UK): PCT Int. Appl. WO 2008 44,041; Chem. Abstr., 148, 471859w (2008). (Astex Therapeutics Limited, UK): PCT Int. Appl. WO 2008 44,054; Chem. Abstr., 148, 471862s (2008).
3875. Kim, H-D.; Suh, Y-G.; Park, H-G.; Oh, U. T.; Park, S. R.; Jeong, Y. S.; Shin, S. S.; Kim, S-Y.; Kim, J. K.; Lee, K-W.; Woo, B. Y.; Choi, J. K. and Park, Y-H. (Amorepacific Corporation, S. Korea): PCT Int. Appl. WO 2007 120,012 (2007); Chem. Abstr., 147, 486233r (2007).
3876. Washburn, W. N.; Harper, T. W.; Wu, G.; Godfrey, J. D.; McCann, P.; Girotra, R.; Shao, C.; Zhang, H.; Gavai, A.; Mikkilineni, A.; Dejneka, T.; Ahmed, S.; Caringal, Y.; Hangeland, J.; Zhang, M.; Cheng, P. T. W.; Russell, A. D.; Skwish, S.; Slusarchyk, D. A.; Allen, G. T.; Frohlich, B. H.; Abboa-Offei, B. E.; Cap, M.; Waldron, T. L.; George, R. J.; Tesfamariam, B.; Dickinson, K. E.; Seymour, A. A. and Sher, P. M.: Bioorg. Med. Chem. Lett., 17 (15), 4290-4296 (2007).
3877. Ali, A.; Lu, Z.; Sinclair, P. J.; Chen, Y-H.; Smith, C. J.; Li, H. and Thompson, C. F. (Merck \& Co., Inc., USA): PCT Int. Appl. WO 2007 81,569 (2007); Chem. Abstr., 147, 189165a (2007).
3878. Ali, A.; Napolitano, J. M.; Deng, Q.; Lu, Z.; Sinclair, P. J.; Taylor, G. E.; Thompson, C. F.; Quraishi, N.; Smith, C. J.; and Hunt, J. A. (Merck \& Co., Inc., USA): PCT Int. Appl. WO 2006 14,357 (2006); Chem. Abstr., 144, 192260w (2006).
3879. Ali, A.; Napolitano, J. M.; Deng, Q.; Lu, Z.; Sinclair, P. J.; Taylor, G. E.; Thompson, C. F.; Quraishi, N.; Smith, C. J.; Hunt, J. A. Dowst, A. A.; Chen, Y-H. and Li, H. (Merck \& Co., Inc., USA): PCT Int. Appl. WO 2006 14,413 (2006); Chem. Abstr., 144, 212781x (2006).
3880. Ali, A.; Sinclair, P. J.; Taylor, G. E. (Merck \& Co., Inc., USA): PCT Int. Appl. WO 2007 81,570 (2007); Chem. Abstr., 147, 189185g (2007).
3881. Gao, F.; Zhang, S.; Yang, X.; Gao, G.; Jia, R.; Chen, X. and Hu, Z.: Lanzhou Daxue Xuebao, Ziran Kexueban, 40 (4), 64-67 (2004); Chem. Abstr., 144, 385480b (2006).
3882. Ares, J. J.; Outt, P. E.; Kakodkar, S. V.; Buss, R. C. and Geiger, J. C.: J. Org. Chem., 58 (27), 7903-7905 (1993).
3883. Fletcher, S. R.; Burkamp, F.; Blurton, P.; Cheng, S. K. F.; Clarkson, R.; O’Connor, D.; Spinks, D.; Tudge, M.; Niel, M. B. van; Patel, S.; Chapman, K.; Marwood, R.; Shepard, S.; Bentley, G.; Cook, G. P.; Bristow, L. J.; Castro, J. L.; Hutson, P. H. and MacLeod, A. M.: J. Med. Chem., 45 (2), 492-503 (2002).
3884. Reddy, G. J.; Latha, D.; Thirupathaiah, C. and Rao, K. S.: Tetrahedron Lett., 45 (4), 847-848 (2004).
3885. Stavber, S.; Jereb, M. and Zupan, M.: Chem. Commun., (14), 1323-1324 (2000).
3886. Ambron, R.; Sung, Y-J.; Greenwood, J.; Frye, L.; Deng, S-X.; Xie, Y. and Landry, D. W. (The Trustees of Columbia University In the City of New York, USA): PCT Int. Appl. WO 2007 95,586 (2007); Chem. Abstr., 147, 292207q (2007).
3887. Kohno, Y.; Ochiai, K.; Takita, S., et al. (Kyorin Pharmaceutical Co., Ltd., Japan): PCT Int. Appl. WO 2008 29,882 (2008); Chem. Abstr., 148, 331717y (2008).
3888. Olsen, H. B.; Kaarsholm, N. C.; Madsen, P. and Balschmidt, P. (Novo Nordisk A/S, Den.): PCT Int. Appl. WO 2006 5,683 (2006); Chem. Abstr., 144, 150646w (2006).
3889. Sharghi, H.; Hosseini-Sarvari, M. and Eskandari, R.: Synthesis, (12), 2047-2052 (2006).
3890. Hoegberg, M.; Sahlberg, C.; Engelhardt, P.; Noreen, R.; Kangasmetsa, J.; Johansson, N. G.; Oeberg, B.; Vrang, L.; Zhang, H.; Sahlberg, B-L.; Unge, T.; Lövgren, S.; Fridborg, K. and Bäckbro, K.: J. Med. Chem., 42 (20), 4150-4160 (1999).
3891. Akamanchi, K. G.; Padmawar, P. A.; Thatte, U. M.; Rege, N. N. and Dahanukar, S. A.: Pharm. Pharmacol. Commun., 5 (5), 323-330 (1999).
3892. Araki, T. and Furukawa, T. (Sumitomo Chemical Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2006 69,906 (2006); Chem. Abstr., 144, 292573u (2006).
3893. Dorsey, B. D.; Milkiewicz, K. L.; Pippin, D. A.; Theroff, J. P.; Underiner, T. L.; Weinberg, L. and Zificsal, C. A. (Cephalon, Inc., USA): PCT Int. Appl. WO 2007 130,468 (2007); Chem. Abstr., 147, 541899q (2007).
3894. Oizumi, K.; Naito, S.; Nakao, A.; Shinozuka, T.; Matsui, S. and Shimada, K. (Sankyo Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2007 131,617 (2007); Chem. Abstr., 147, 9955b (2007).
3895. Sasaki, A.; Ueno, K.; Suzuki, Y.; Hamaoka, S., et al. (Eisai R \& D Management Co., Ltd., Japan): PCT Int. Appl. WO 2007 126,041 (2007); Chem. Abstr., 147, 522219b (2007).
3896. Wang, Y-Q.; Yu, C-B.; Wang, D-W.; Wang, X-B. and Zhou, Y-G.: Org. Lett., 10 (10), 2071-2074 (2008).
3897. Yao, N.; Song, A.; Wang, X.; Dixon, S. and Lam, K. S.: J. Comb. Chem., 9 (4), 668-676 (2007).
3898. Shawcross, F. and Sard, H.: J. Heterocycl. Chem., 32 (4), 1393-1396 (1995).
3899. Belsham, M. G.; Muir, A. R.; Kinns, M.; Phillips, L. and Twanmoh, L-M.: J. Chem. Soc., Perkin Trans. 2, (2), 119-125 (1974).
3900. Dolzhenko, Y. I.; Tsukerman, S. V.; Polyakov, V. K.; Shevtsova, R. G. and Lutskii, A. E.: J. Gen. Chem. (USSR), 50 (10), 1895-1897 (1980).
3901. Doble, M.; Karthikeyan, S.; Padmawar, P. A. and Akamanchi, K. G.: Bioorg. Med. Chem., 13 (21), 5996-6001 (2005).
3902. Mewshaw, R. E.; Zhou, D.; Zhou, P.; Shi, X.; Hornby, G.; Spangler, T.; Scerni, R.; Smith, D.; Schechter, L. E. and Andree, T. H.: J. Med. Chem., 47 (15), 3823-3842 (2004).
3903. Spitzer, W. A.; Victor, F.; Pollock, G. D. and Hayes, J. S.: J. Med. Chem., 31 (8), 1590-1595 (1988).
3904. Stark, H.; Sadek, B.; Krause, M.; Huels, A.; Ligneau, X.; Ganellin, C. R.; Arrang, J-M.; Schwartz, J-C. and Schunack, W.: J. Med. Chem., 43 (21), 3987-3994 (2000).
3905. Arrington, M. P.; Hopper, A. T.; Conticello, R. D.; Nguyen, T. M.; Hess, H-J.; Gauss, C. and Hitchcock, S. A. (Amgen Inc., Memory Pharmaceuticals Corporation, USA): PCT Int. Appl. WO 2007 103,260 (2007); Chem. Abstr., 147, 365512x (2007).
3906. Kimura, T.; Kawano, K.; Doi, E.; Kitazawa, N.; Shin, K.; Miyagawa, T.; Kaneko, T.; Ito, K.; Takaishi, M.; Sasaki, T. and Hagiwara, H. (Eisai Co., Ltd., Japan): PCT Int. Appl. WO 2005 115,990 (2005); Chem. Abstr., 144, 36339y (2006).
3907. Wang, N-X.; Yu, A-G.; Wang, G-X.; Zhang, X-H.; Li, Q-S. and Li, Z.: Synthesis, (8), 1154-1158 (2007).
3908. Laras, Y.; Pietrancosta, N.; Moret, V.; Marc, S.; Garino, C.; Rolland, A.; Monnier, V. and Kraus, J-L.: Aust. J. Chem., 59 (11), 812-818 (2006).
3909. Ren, S.: Agric. Soil Pollut., 191-208 (2005).
3910. Wang, N.; Yu, A.; Wang, G. and Wang, W. (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,978,442 (2007); Chem. Abstr., 147, 143279n (2007).
3911. Bennett, C. J.; Caldwell, S. T.; McPhail, D. B.; Morrice, P. C.; Duthie, G. G. and Hartley, R. C.: Bioorg. Med. Chem., 12 (9), 2079-2098 (2004).
3912. Kong Thoo Lin, P. and Bestwick, C. S. (The Robert Gordon University UK): PCT Int. Appl. WO 2008 62,184 (2008); Chem. Abstr., 148, 579963q (2008).
3913. Barr, K. J.; Watson, B. T. and Buchwald, S. L.: Tetrahedron Lett., 32 (40), 5465-5468 (1991).
3914. Cooney, J. M.; Gommans, L. H. P.; Main, L. and Nicholson, B. K.: J. Organomet. Chem., 634 (2), 157-166 (2001).
3915. Hirt, U. H.; Spingler, B. and Wirth, T.: J. Org. Chem., 63 (22), 7674-7679 (1998).
3916. Hirt, U. H. and Wirth, T.: Tetrahedron Asymmetry, 8 (1), 23-26 (1997).
3917. Buchwald, S. L.; Watson, B. T.; Lum, R. T. and Nugent, W. A.: J. Am. Chem. Soc., 109 (23), 7137-7141 (1987).
3918. Chen, F. C. and Chang, C. T.: J. Chem. Soc., 146-150 (1958).
3919. Kobayashi, S. and Kuraishi, C.: Chem. Pharm. Bull., 10 (7), 1137-1141 (1962).
3920. Kabalka, G. W.; Zhou, L-L.; Wang, L. and Pagni, R. M.: Tetrahedron, 62 (5), 857-867 (2006).
3921. Zenner, J. M. and Larock, R. C.: J. Org. Chem., 64 (20), 7312-7322 (1999).
3922. Bi, H-P.; Liu, X-Y.; Gou, F-R.; Guo, L-N.; Duan, X-H. and Liang, Y-M.: Org. Lett., 9 (18), 3527-3529 (2007).
3923. Bi, H-P.; Liu, X-Y.; Gou, F-R.; Guo, L-N.; Duan, X-H.; Shu, X-Z. and Liang, Y-M.: Angew. Chem. Int. Ed., 46 (37), 7068-7071 (2007).
3924. Pavlinac, J.; Zupan, M. and Stavber, S.: J. Org. Chem., 71 (3), 1027-1032 (2006).
3925. Mizdrak, J.; Hains, P. G.; Kalinowski, D.; Truscott, R. J. W.; Davies, M. J. and Jamie, J. F.: Tetrahedron, 63 (23), 4990-4999 (2007).
3926. Gabriele, B.; Mancuso, R.; Salerno, G.; Ruffolo, G. and Plastina, P.: J. Org. Chem., 72 (18), 6873-6877 (2007).
3927. Lin, X.; King, I.; Belcourt, M. F. and Doyle, T. W. (Vion Pharmaceuticals, Inc., USA): PCT Int. Appl. WO 2006 34,266 (2006); Chem. Abstr., 144, 350391w (2006).
3928. Cai, S. X.; Drewe, J. A.; Zhang, H-Z.; Kasibhatla, S.; Claassen, G.; Sirisoma, N. S. and Kemnitzer, W. E. (Cytovia, Inc., USA): PCT Int. Appl. WO 2008 11,045 (2008); Chem. Abstr., 148, 191966b (2008).
3929. Selvam, J. J. P.; Suresh, V.; Rajesh, K.; Reddy, S. R. and Venkateswarlu, Y.: Tetrahedron Lett., 47 (15), 2507-2509 (2006).
3930. Fukumoto, S.; Matsunaga, N.; Ohra, T.; Ohyabu, N.; Hasui, T.; Motoyaji, T.; Siedem, C. S.; et al. (Takeda Pharmaceutical Company Limited, Japan); PCT Int. Appl. WO 2007 77,961 (2007); Chem. Abstr., 147, 166327r (2007).
3931. Seiler, M. and Hollenberg, D. (Henkel Kommandit-gesellschaft auf Aktien, Germany): PCT Int. Appl. WO 2006 29,686 (2006); Chem. Abstr., 144, 317924z (2006).
3932. Yoshida, S.; Watanabe, T. and Sato, Y.: Bioorg. Med. Chem., 15 (10), 3515-3523 (2007).
3933. Behaghel, O. and Ratz, H.: Ber. Dtsch. Chem. Ges., 72B (6), 1257-1281 (1939).
3934. Borsche, W. and Barthenheier, J.: Justus Liebigs Ann. Chem., 553, 250-259 (1942).
3935. Stockhausen, F. and Gattermann, L.: Ber. Dtsch. Chem. Ges., 25, 3521-3525 (1892).
3936. Basak, A.; Nayak, M. K. and Chakraborti, A. K.: Tetrahedron Lett., 39 (27), 2883-2886 (1998).
3937. Bunnett, J. F.; Draper, Jr., F.; Ryason, P. R.; Noble, Jr., P.; Tonkyn, R. G. and Zahler, R. E.: J. Am. Chem. Soc., 75 (5), 642-645 (1953).
3938. Zeegers, P. J. and Thompson, M. J.: Magn. Reson. Chem., 30 (6), 497-499 (1992).
3939. Bogert, M. T. and Curtin, L.P.: J. Am. Chem. Soc., 45 (9), 2161-2167 (1923).
3940. Kawada, A.; Takeda, S.; Yamashita, K.; Abe, H. and Harayama, T.: Chem. Pharm. Bull., 50 (8), 1060-1065 (2002).
3941. Arkley, V.; Dean, F. M.; Robertson, A. and Sidisunthorn, P.: J. Chem. Soc., Part. II, 2322-2328 (1956).
3942. Berthelot, M. and Laurence, C.: Can. J. Chem., 53 (7), 993-995 (1975).
3943. Oelschlager, H.: Arch. Pharm. (Weinheim, Ger.), 290, 587-595 (1957).
3944. Oelschlager, H.: Arzneim. Forsch., 8, 532-536 (1958).
3945. Oelschläger, H.; Toporski, W.; Schmersahl, P. and Welsch, C.: Arch. Pharm. (Weinheim, Ger.), 296 (2), 107-120 (1963).
3946. Pope, F. G.: Proc. Chem. Soc., Lond., 28, 331-332 (1912).
3947. Xue, N.; Yang, X.; Wu, R.; Chen, J.; He, Q.; Yang, B.; Lu, X. and Hu, Y.: Bioorg. Med. Chem., 16 (5), 2550-2557 (2008).
3948. Holt, H.; LeBlanc, R.; Dickson, J.; Brown, T.; Maddox, J. R. and Lee, M.: Heterocycl. Commun., 11 (6), 465-470 (2005).
3949. Tois, J.; Vahermo, M. and Koskinen, A.: Tetrahedron Lett., 46 (5), 735-737 (2005).
3950. Learmonth, D. A.; Bonifacio, M. J. and Soares-da-Silva, P.: J. Med. Chem., 48 (25), 8070-8078 (2005).
3951. Learmonth, D. A.; Palma, P. N.; Vieira-Coelho, M. A. and Soares-da-Silva, P.: J. Med. Chem., 47 (25), 6207-6217 (2004).
3952. Ali, A.; Hunt, J. A.; Kallashi, F.; Kowalchick, J. E.; Kim, D.; Smith, C. J.; Sinclair, P. J.; Sweis, R. F.; Taylor, G. E.; Thompson, C. F.; Chen, L. and Quraishi, N. (Merck \& Co., Inc., USA): PCT Int. Appl. WO 2007 70,173 (2007); Chem. Abstr., 147, 95654g (2007).
3953. Hayashi, K.: Acta Phytochimica (Tokyo), VII (1), 119-141 (1933).
3954. Hergert, H. L. and Kurth, E. F.: J. Chem. Soc., 1622-1625 (1953).
3955. Horton, W. J. and Spence, J. T.: J. Am. Chem. Soc., 80, 2453-2456 (1958).
3956. Walterova, D.; Hruban, L. and Santavy, F.: Coll. Czech. Chem. Commun., 39 (9), 2449-2462 (1974).
3957. Lebedev, A. V.; Lebedeva, A. B.; Sheludyakov, V. D.; Kovaleva, E. A.; Ustinova, O. L. and Kozhevnikov, I. B.: Russ. J. Gen. Chem., 75 (5), 782-789 (2005).
3958. Ramalingan, C. and Park, Y-T.: J. Org. Chem., 72 (12), 4536-4538 (2007).
3959. Mumtazuddin, S.: J. Indian Chem. Soc., 83 (8), 835-837 (2006).
3960. Rudinger-Adler, E. and Buechi, J. Arzneim. Forsch., 29, 1326-1331 (1979).
3961. Shindo, K.; Nakamura, K.; Osawa, A.; Kagami, O.; Kanoh, K.; Furukawa, K. and Misawa, N.: J. Mol. Catal. B: Enzym., 35 (4-6), 134-141 (2005).
3962. Narender, T. and Reddy, K. P.: Tetrahedron Lett., 48 (18), 3177-3180 (2007).
3963. Santavy, F., Walterova, D. and Hruban, L.: Coll. Czech. Chem. Commun., 36 (6), 1825-1850 (1972).
3964. Kamal, A.; Khan, M. N. A.; Reddy, K. S. and Srikanth, Y. V. V.: Tetrahedron Lett., 48 (22), 3813-3818 (2007).
3965. Khodaei, M. M.; Alizadeh, A. and Nazari, E.: Tetrahedron Lett., 48 (24), 4199-4202 (2007).
3966. Noller, C. R. and Adams, R.: J. Am. Chem. Soc., 46, (8), 1889-1896 (1924).
3967. Amir, S.; Hafidi, M.; Lemee, L.; Merlina, G.; Guiresse, M.; Pinelli, E.; Revel, J-C.; Bailly, J-R. and Ambles, A.: Process Biochem. (Oxford, UK): 41 (2), 410-422 (2006).
3968. Tanaka, K.; Otake, Y.; Wada, A.; Noguchi, K. and Hirano, M. Org. Lett., 9 (11), 2203-2206 (2007).
3969. Li, X. and Li, J.: Chem. J. Internet, 8 (9), No pp. given, (2006); Chem. Abstr., 147, 119998b (2007).
3970. Takeda, A.; Moriwake, T.; Torii, S. and Takaki, T.: Bull. Chem. Soc. Jpn., 45 (12), 3718-3719 (1972).
3971. Gardner, P. D.: J. Am. Chem. Soc., 77, 4674-4675 (1955).
3972. Edkins, R. P. and Linnell, W. H. Q.: Q. J. Pharm. Pharmacol., 9, 75-109 (1936).
3973. Chakraborti, A. K. and Gulhane, R.: Chem. Commun., (15), 1896-1897 (2003).
3974. Chakraborti, A. K. and Shivani: J. Org. Chem., 71 (5), 5785-5788 (2006).
3975. Tagaki, W.; Fukushima, D.; Eiki, T. and Yano, Y.: J. Org. Chem., 44 (4), 555-563 (1979).
3976. Underwood, D. J. . and Bowie, J. H.: J. Chem. Soc., Perkin Trans. 2, (13), 1670-1674 (1977).
3977. Cespedes, C. L.; Uchoa, A.; Salazar, J. R.; Perich, F. and Paedo, F.: J. Agric. Food Chem., 50 (8), 2283-2292 (2002).
3978. Goswami, J. and Goswami, A.: J. Indian chem. Soc., 79 (5), 469-471 (2002).
3979. Krannichfeldt, H.: Ber. Dtsch. Chem. Ges., 46, 4016-4025 (1913).
3980. Royer, R.; Colin, G.; Demerseman, P.; Combrisson, S. and Cheutin, A.: Bull. Soc. Chim. Fr., (8), 2785-2792 (1969).
3981. Amstutz, E. D.: J. Am. Chem. Soc., 71, 3836-3837 (1949).
3982. Kagawa, H.; Shigematsu, A.; Ohta, S. and Harigaya, Y.: Chem. Pharm. Bull., 53 (5), 547-554 (2005).
3983. Albrecht, M.; Mirtschin, S.; de Groot, M.; Janser, I.; Runsink, J.; Raabe, G.; Kogej, M.; Schalley, C. A. and Froehlich, R.: J. Am. Chem. Soc., 127 (29), 10371-10387 (2005).
3984. Horton, W. J. and Spence, J. T.: J. Am. Chem. Soc., 77 (10), 2894-2896 (1955).
3985. Mauthner, F.: J. Prakt. Chem., 112, 60-64 (1926).
3986. Okogun, J. I.; Enyenihi, V. U. and Ekong, D. E. U.: Tetrahedron, 34 (8), 1221-1224 (1978).
3987. Gilman, H. and Nelson, J. F.: Recl. Trav. Chim., 55, 518-530 (1936).
3988. Woodruff, E. H.: J. Am. Chem. Soc., 64 (12), 2859-2862 (1942).
3989. Smith, H. E.; Russell, C. R. and Schniepp, L. E.: J. Am. Chem. Soc., 73 (2), 793-795 (1851).
3990. Jagtap, S. R. and Bhanage, B. M.: J. Chem. Res., Synop., (6), 370-372 (2007).
3991. Nagai, M.; Akiyama, Y.; Sato, H.; Sato, T. and Masuda, K. (Nippon Kayaku Kabushiki Kaisha, Japan): PCT Int. Appl. WO 2006 41,037 (2006); Chem. Abstr., 144, 412374d (2006).
3992. Boumendjel, A.; Dumontet, C.; Blanc, M. and Mariotte, A-M. (Université Claude Bernard Lyon 1; Université Joseph Fournier Grenoble 1, France): Fr. Demande FR 2,896,245 (2007); Chem. Abstr., 147, 188990d (2007).
3993. Lee, J. I.; Son, H. S. and Jung, M. G.: Bull. Korean Chem. Soc., 26 (9), 1461-1463 (2005).
3994. Park, H-J. and Choi, M-Y.: Saengyak Hakhoechi, 36 (2), 116-120 (2005); Chem. Abstr., 144, 184244d (2006).
3995. Zheng, L-l. and Ao, G-z.: Huaxue Shiji, 28 (9), 553-554 (2006); Chem. Abstr., 147, 74628m (2007).
3996. Cardani, C.: Gazz. Chim. Ital., 83, 62-72 (1953).
3997. Miyaji, H.; Eiraku, T. and Ishiguro, H. (Kyorin Pharmaceutical Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2005 350,362 (2005); Chem. Abstr., 144, 69734b (2006).
3998. Nguyen, M. T.; Pham, V. P.; Nguyen, T. P. N.; Nguyen, T. S. and Dao, T. T.: Tap Chi Hoa Hoc, 44 (4), 440-444 (2006); Chem. Abstr., 147, 343896y (2007).
3999. Rosenau, T.; Potthast, A.; Milacher, W.; Adorjan, I.; Hofinger, A. and Kosma, P.: Cellulose (Dordrecht, The Netherlands), 12 (2), 197-208 (2005).
4000. Agarwal, A.; Srivastava, K.; Puri, S. K.; Sinha, S. and Chauhan, P. M. S.: Bioorg. Med. Chem. Lett., 15 (23), 5218-5221 (2005).
4001. Rodriguez, Gonzalez R.; Gambarotti, C.; Liguori, L. and Bjorsvik, H-R.: J. Org. Chem., 71 (4), 1703-1706 (2006).
4002. Severin, I.; Dahbi, L.; Lhuguenot, J-C.; Andersson, M. A.; Hoornstra, D.; SalkinojaSalonen, M.; Turco, L.; Zuoco, F.; Staramati, A.; Dahlman, P.; Castle, L.; Savolainen, M.; Weber, A.; Honkalampi-Haemaelaeinen, U. and Von Wright, A.: Addit. Contam., 22 (10), 1032-1041 (2005).
4003. Chen, G.; Yee, D. J.; Gubernator, N. and Sames, D. (The Trustees of Columbia University in the City of New York, USA): PCT Int. Appl. WO 2006 26,368 (2006); Chem. Abstr., 144, 292572t (2006).
4004. Claffey, M. M.; Fliri, A. F J.; Gallaschun, R. J. and O’Donnell, C. J.: PCT Int. Appl. WO 2006 27,684 (2006); Chem. Abstr., 144, 292415u (2006).
4005. Gupta, S. K. (Bioderm Research, USA): U.S. Pat. Appl. Publ. US 2007 269,537 (2007); Chem. Abstr., 147, 547545t (2007).
4006. Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Masuda, T.; Shintani, T.; Sato, H.; Koriyama, Y.; Fukushima, K.; Nunami, N.; Yamauchi, M.; Fuchikami, K.; Komura, H.; Watanabe, A.; Ziegelbauer, K. B.; Bacon, K. B. and Lowinger, T. B.: Bioorg. Med. Chem. Lett., 14 (15), 4019-4022 (2004).
4007. Neubert, A.; Barnes, D.; Kwak, Y-S.;Nakajima, K.; Bebernitz, G. R.; Coppola, G. M.; Kirman, L.; Serrano-Wu, M. H.; Stams, T.; Topiol, S. W.; Vedananda, T. R. and Wareing, J. R. (Novartis A.-G.; Novartis Pharma G.m.b.H., Switzerland): PCT Int. Appl. WO 2007 115,058 (2007); Chem. Abstr., 147, 448783n (2007).
4008. Pinto, D. C. G. A.; Silva, A. M. S. and Cavaleiro, J. A. S.: Synlett, (12), 1897-1900 (2007).
4009. Raeisaenen, M. T.; Elo, P.; Kettunen, M.; Klinga, M.; Leskelae, M. and Repo, T.: Synth. Commun., 37 (11), 1765-1777 (2007).
4010. Smith, J. A.; Maloney, D. J.; Hecht, S. M. and Lannigan, D. A.: Bioorg. Med. Chem., 15 (14), 5018-5034 (2007).
4011. Sugimoto, T.; Yamamoto, K.; Manaka, A.; Ogita, H.; Kurosaka, J.; Kawamura, M.; Kashimura, M.; Sasamoto, N.; Miura, T.; Kanemoto, K.; Ozawa, T.; Chikauchi, K.; Shitara, E. and Kubota, D. (Taisho Pharmaceutical Co., Ltd.; Meiji Seika Kaisha, Ltd., Japan): PCT Int. Appl. WO 2007 91,393 (2007); Chem. Abstr., 147, 301394c (2007).
4012. Tapia, R.; Bau, A. and Salas, C.: Synth. Commun., 36 (6), 771-776 (2006).
4013. Tofanelli, M. B. D.; Rodrigues, J. D. and Ono, E. O.: Ciencia Rural, 35 (2), 462-464 (2005); Chem. Abstr., 147, 421234x (2007).
4014. Pernemalm, P-A. and Dence, C. W.: Acta Chem. Scand., Ser. B, 28 (4), 453-464 (1974).
4015. Erdtman, H. and Leopold, B.: Acta Chem. Scand., 3, 1358-1374 (1949).
4016. Sawant, D. P.; Vinu, A.; Lefebvre, F. and Halligudi, S. B.: J. Mol. Catal. A: Chem., 262 (1-2), 98-108 (2007).
4017. Azevedo, M. S.; Alves, A. P. L.; Alves, G. B. C.; Cardoso, J. N.; Lopes, R. S. C. and Lopes, C. C.: Quimica Nova, 29 (6), 1259-1265 (2006); Chem. Abstr., 147, 406621c (2007).
4018. Campagne, J. M. and Six, Y.: Science of Synthesis, 2004 (Pub. 2005), 26, 989-1044.
4019. Ding, D.; Zhang, F.; Wang, R.; Fu, Y.; Gong, B.; Wang, Y.; Cai, M.; Ma, L. and Li, X. (Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,024,628 (2007); Chem. Abstr., 147, 385850j (2007).
4020. Hu, L.; Shen, X.; Jiang, H.; Li, C. and Yang, Z. (Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,990,446 (2007); Chem. Abstr., 147, 211621v (2007).
4021. Katiyar, S. B.; Srivastava, K.; Puri, S. K. and Chauhan, P. M. S.: Bioorg. Med. Chem. Lett., 15 (22), 4957-4960 (2005).
4022. Lawrence, N. J.; Armitage, E. S. M.; Greedy, B.; Cook, D.; Ducki, S. and McGown, A. T.: Tetrahedron Lett., 47 (10), 1637-1640 (2006).
4023. Schadt, O.; Dorsch, D.; Schultz, M. and Blaukat, A. (Merck Patent GmbH, Germany): PCT Int. Appl. WO 2007 57,093 (2007); Chem. Abstr., 147, 9953z (2007).
4024. Shyamali, G.; Maryanoff, B. E.; Kinney, W. A.; Lawson, E. C.; Luci, D. K.; Marchenko, N. and Sviridov, S. (Janssen Pharmaceutics, N. V., Belgium): PCT Int. Appl. WO 2007 81,995 (2007); Chem. Abstr., 47, 189066u (2007).
4025. Havkin-Frenkel, D. (Bakto Flavors LLC, USA): PCT Int. Appl. WO 2007 75,580 (2007); Chem. Abstr., 147, 125521f (2007).
4026. Deng, G-b.; Li, X-m.; Lin, Y.; Zhou, J.; Liu, L-f.; Li, B. and Zhang, H.: Jingxi Huagong, 22 (3), 201-204 (2005); Chem. Abstr., 144, 113861s (2006).
4027. Howton, D. R.; Mead, J. F. and Clark, W. G.: J. Am. Chem. Soc., 17 (10), 2896-2897 (1955).
4028. Horimoto, A. (Sumitomo Bakelite Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2007 277,136 (2007); Chem. Abstr., 147, 469671q (2007).
4029. Kim, C. J.; Kim, J. S.; Yu, E. K.; Jeong, J. H.; Kang, M. S. and Kim, D. M. (Pdt Bio Co., Ltd., S. Korea): Repub. Korea 701,743 (2007); Chem. Abstr., 147, 343799u (2007).
4030. Percec, V.; Grigoras, C.; Bera, T. K.; Barboiu, B. and Bissel, P.: J. Polym. Sci., Part A: Polym. Chem., 43 (20), 4894-4906 (2005).
4031. Takeda, N.; Miyata, O. and Naito, T.: Eur. J. Org. Chem., (9), 1491-1509 (2007).
4032. Zhang, X-L.; Hong, W-L.; Liu, J-H.; Zhang, P-X.; Luo, Z-K. and Zhou, X-M.: Shenzhen Daxue Xuebao, Ligongban, 22 (3), 269-271 (2005); Chem. Abstr., 144, 434746d (2006).
4033. Malle, G. and Barbarat, P. (L’Oreal, Fr.): PCT Int. Appl. WO 2007 135,288 (2007); Chem. Abstr., 148, 1691b (2008).
4034. Huls, R. and Hibert, A.: Bull. Soc. Chim. Belg., 65, 596-602 (1956).
4035. Buonsanti, M. F.; Bertinaria, M.; Stilo, A. D.; Cena, C.; Fruttero, R. and Gasco, A.: J. Med. Chem., 50 (20), 5003-5011 (2007).
4036. Degussa: DE 2,061,864 (1971); Chem. Abstr., 76, 14103 (1972).
4037. Kakinami, T.; Urabe, Y.; Hermawan, I.; Yamanishi, H; Okamoto, T. and Kajigaeshi, S.: Bull. Chem. Soc. Jpn., 65 (9), 2549-2551 (1992).
4038. Mauthner, F.: J. Prakt. Chem., 115, 274-278 (1927).
4039. Saus, A.; Klingler, K. H. and Bickel, E.: Arzneim. Forsch., 27 (1), 35-36 (1977).
4040. Li, L.; Zhang, P.; Zhu, W.; Han, W. and Zhang, Z.: J. Photochem. Photobiol., A: Chem., 171 (2), 145-151 (2005).
4041. Li, L.; Zhu, W.; Zhang, P.; Zhang, Z.; Wu, H. and Han, W.: Chemosphere, 62 (9), 1514-1522 (2006).
4042. Reddell, P. W. and Gordon, V. A. (Ecobiotics Limited, Australia): PCT Int. Appl. WO 2007 70,986 (2007); Chem. Abstr., 147, 118064f (2007).
4043. Song, B-A.; Liu, X-H.; Yang, S.; Hu, D-Y.; Jin, L-H. and Zhang, H.: Chin. J. Chem., 23 (9), 1236-1240 (2005).
4044. Zhao, C-X.; Liang, Y-Z.; Fang, H-Z. and Li, X-N.: J. Chromatog., A. 1096 (1-2), 76-85 (2005).
4045. Chada, T. C. and Venkataraman, K.: J. Chem. Soc., 1073-1076 (1933).
4046. Mauthner, F.: J. Prakt. Chem., 136 (2), 205-213 (1933).
4047. Bargellini, G. and Avrutin, G.: Gazz. Chim. Ital., 40 (2), 347-353 (1910).
4048. Al-Farhan, E.; Amofah, R.; Keehn, P. M. and Stevenson, R.: Org. Prep. Proc. Int., 24 (1), 78-80 (1992).
4049. Bargellini, G.: Gazz. Chim. Ital., 43 (1), 164-175 (1913).
4050. Baker, W.: J. Chem. Soc., 71-73 (1934).
4051. Bargellini, G. and Aureli, S.: Atti R. Accad. Naz. Lincei, 20 (2), 118-124 (1911).
4052. Smith, L. E. and Haller, H. L.: J. Am. Chem. Soc., 56, 237-239 (1934).
4053. Quijano, L.; Calderon, J. S.; Gomez, G. F.; Soria, I. E. and Rios, T.: Phytochemistry, 19, 2439-2442 (1980).
4054. Whitten, D. G.; Farahat, M. S. and Gaillard, E. R.: Photochem. Photobiol., 65 (1), 23-32 (1997).
4055. Hattori, S.: Acta Phytochim., 6, 131-152 (1932).
4056. Paulsen, A.: Medd. Norsk. Farm. Selskap., 22, 213-217 (1960); Chem. Abstr., 59, 5557b (1963).
4057. Sanchez-Viesca, F. and Berros, M.: Heterocycles, 57 (10), 1869-1880 (2002).
4058. Cruz, A.; Garduno, L.; Salazar, M.; Martinez, E.; Jimenez-Vazquez, H. A.; Diaz, F.; Chamorro, G. and Tamariz, J.: Arzneim. Forsch., 51 (7), 535-544 (2001).
4059. Matolcsy, G.; Darwish, Y. M.; Belai, I.; Varjas, L. and Farag, A. I.: Z. Naturforsch., Teil B, 35B (11), 1449-1450 (1980).
4060. Bharate, S. B.; Bhutani, K. K.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Khan, I. A. and Singh, I. P.: Bioorg. Med. Chem., 14 (6), 1750-1760 (2006).
4061. Nakazawa, K. and Matsuura, S.: Yakugaku Zasshi, 74 (11), 1254-1255 (1954).
4062. Krivacsy, Z.; Blazso, M. and Shooter, D.: Environ. Pollut. (Amsterdam, Netherlands), 2006 (Pub. 2005), 139 (2), 195-205.
4063. Hossain, M. A. and Ismail, Z.: Indian J. Chem., Sect. B, 44B (2), 413-415 (2005).
4064. Bargellini, G. and Bini, I.: Gazz. Chim. Ital., 41, 8-20 (1911).
4065. Chapman, E.; Perkin, A. G. and Robinson, R.: J. Chem. Soc., 3015-3041 (1927).
4066. Hattori, S.: Acta Phytochim., 5, 99-116 (1930).
4067. Tsukayama, M.; Kusunoki, E.; Hossain, M. M.; Kawamura, Y. and Hayashi, S.: Heterocycles, 71 (7), 1589-1600 (2007).
4068. Tsukayama, M.; Kawamura, Y.; Ishizuka, T.; Hayashi, S. and Torii, F.: Heterocycles, 60 (12), 2775-2784 (2003).
4069. Horie, T.; Tsukayama, M.; Kawamura, Y. and Yamamoto, S.: Chem. Pharm. Bull., 35 (11), 4465-4472 (1987).
4070. Tanaka, N.; Yamazaki, N.; Hori, K.; Murakami, T.; Saiki, Y. and Chen, C-M.: Chem. Pharm. Bull., 32 (4), 1355-1358 (1984).
4071. Chopin, J.; Molho, D.; Pachéco, H.; Mentzer, C. and Grenier, G.: Bull. Soc. Chim. Fr., 192-204 (1957).
4072. Gardner, P. D.; Horton, W. J. and Pincock, R. E.: J. Am. Chem. Soc., 78, 2541-2543 (1956).
4073. APSimon, J. W.; Haynes, N. B.; Sim, K. Y. and Whalley, W. B.: J. Chem. Soc., 3780-3782 (1963).
4074. Rycroft, D. S.; Cole, W. J. and Rong, S.: Phytochemistry, 48 (8), 1351-1356 (1998).
4075. Rizzi, G. P.: Synth. Commun., 13 (14), 1173-1179 (1983).
4076. Bargellini, G. and Bini, I.: Gazz. Chim. Ital., 49, 47-63 (1919).
4077. Obara, H.; Onodera, J.; Kurihara, Y. and Yamamoto, F.: Bull. Chem. Soc. Jpn., 51 (12), 3627-3630 (1978).
4078. Nadeau, L. J.; Spain, J. C. and Kadiyala, V. (United States Air Force, USA): U.S. US 7,364,881 (2008); Chem. Abstr., 148, 493956c (2008).
4079. Xiang, J. S.; McKew, J. C.; Tam, S. Y.; Ipek, M.; Suri, V. and Mansour, T. S. (USA): U.S. Pat. Appl. Publ. US 2006 25,445 (2006); Chem. Abstr., 144, 170793v (2006).
4080. Soo, K. J.; Sin, H. M.; Yu, H. S.; Lim, G. J. and Yoo, J. H. (Estechpharma Co., Ltd.; Chengen Co., Ltd., S. Korea): Jpn. Kokai Tokkyo Koho JP 2007 231,019 (2007); Chem. Abstr., 147, 344098b (2007).
4081. Schiaffella, F.; Macchiarulo, A.; Milanese, L.; Vecchiarelli, A.; Costantino, G.; Pietrella, D. and Fringuelli, R.: J. Med. Chem., 48 (24), 7658-7666 (2005).
4082. Xu, D. W.; Chiaroni, A.; Fleury, M. B. and Largeron, M.: J. Org. Chem., 71 (17), 6374-6381 (2006).
4083. Banerjeee, S.; Jakupovic, J.; Bohlmann, F.; King, R. M. and Robinson, H.: Phytochemistry, 24 (11), 2681-2684 (1985).
4084. Bjeldanes, L. F. and Geissman, T. A.: Phytochemistry, 8, 1293-1296 (1969).
4085. Mathieson, D. W. and Newbery, G.: J. Chem. Soc., 1133-1137 (1949).
4086. Su, W. and Jin, C.: J. Chem. Res., Synopses, (9), 611-613 (2004).
4087. Fujikura, T.; Nigata, K.; Hashimoto, S.; Imai, K. and Takenaka, T.: Chem. Pharm. Bull., 30 (11), 4092-4101 (1982).
4088. Gao, H. and Kawabata, J.: Bioorg. Med. Chem. Lett., 18 (2), 812-815 (2008).
4089. Heinelt, U.; Hofmeister, A. and Czech, J. (Sanofi-Aventis, Fr.): PCT Int. Appl. WO 2008 14,888 (2008); Chem. Abstr., 148, 239207j (2008).
4090. Ellis, G. P. and Shaw, D.: J. Chem. Soc., Perkin Trans. 1, (6), 779-783 (1972).
4091. Cheng, P. L.; Fournari, P. and Tirouflet, J.: Bull. Soc. Chim. Fr., 2248-2251 (1963).
4092. Shah, D. N. and Shah, N. M.: J. Indian Chem. Soc., 26 (5), 235-238 (1949).
4093. Wurm, G. and Geres, U.: Archiv. Pharm. (Weinheim), 310 (2), 119-128 (1977).
4094. Ellis, G. P. and Hudson, H. V.: J. Chem. Res., Miniprint (12), 3830-3860 (1985).
4095. Zwaagstra, M. E.; Timmerman, H.; Tamura, M.; Tohma, T.; Wada, Y.; Onogi, K. and Zhang, M-Q.: J. Med. Chem., 40 (7), 1075-1089 (1997).
4096. Doria, G.; Romeo, C.; Corno, M. L. and Cadelli, G.: Farmaco, Ed. Sci., 35 (8), 674-680 (1980).
4097. Zhao, P-L.; Li, J. and Yang, G-F.: Bioorg. Med. Chem., 15 (5), 1888-1895 (2007).
4098. Hirota, K.; Kitade, Y. and Senda, S.: J. Org. Chem., 46 (20), 3949-3953 (1981).
4099. Rosenmund, K. W. and Schnurr, W.: Justus Liebigs Ann. Chem., 460, 56-98 (1928).
4100. Krannichfeldt, H.: Ber. Dtsch. Chem. Ges., 47, 156-159 (1914).
4101. Illari, G. and Giuseppetti, G.: Gazz. Chim. Ital., 77, 488-492 (1947).
4102. Amin, J. H. and Desai, R. D.: J. Sci. Ind. Res., 13B, 178-180 (1954).
4103. Shah, D. N. and Shah, N. M.: J. Univ. Bombay, 18/3A, 25-27 (1949).
4104. Leonte, M.; Beschia, M.; Pascaru, E. and Stoica, M.: Stud. Univ. Babès-Bolyai. Chem., 8 (1), 291-296 (1963).
4105. Garcia-March, F. J.; Garcia-Domenech, R.; Galvez, J.; Anton-Fos, G. M.; Julian-Ortiz, J. V. de; Giner-Pons, R. and Recio-Iglesias, M. C.: J. Pharm. Pharmacol., 49 (1), 10-15 (1997).
4106. Leclerc, G.; Bizec, J. C.; Bieth, N. and Schwartz, J.: J. Med. Chem., 23 (7), 738-744 (1980).
4107. Ballester, P.; Capo, M.; Costa, A.; Deya, P. M.; Gomila, R.; Decken, A. and Deschamps, G.: J. Org. Chem., 67 (25), 8832-8841 (2002).
4108. Jen, T.; Frazee, J. S.; Kaiser, C.; Colella, D. F. and Wardell, Jr., J. R.: J. Med. Chem., 20 (8), 1029-1035 (1977).
4109. Lesieur, D.; Blain, Y. and Bonte, J. P.: Chim. Therap., 6 (3), 215-217 (1971).
4110. Khadsan, R. E.; Kadu, M. V.; Doshi, A. G. and Aloolkar, N. H.: Asian J. Chem., 17 (3), 1600-1604 (2005); Chem. Abstr., 144, 311973t (2006).
4111. Puip, A. and Vizitiu, M-A.: Revista de Chimie (Bucharest, Romania), 58 (1), 25-27 (2007); Chem. Abstr., 148, 204561t (2008).
4112. Bingham, S. J. and Tyman, J. H. P.: Tetrahedron, 64 (16), 3471-3476 (2008).
4113. Kuleshyus, V. A.; Gaidyalis, P. G.; Pyatrauskas, O. Y. and Daukshas, V. K.: Pharm. Chem. J., 22 (7), 551-553 (1988).
4114. Gonzalez, J.; Jewell, T. M.; Li, H.; Linton, A. and Tatlock, J. H. (Pfizer Inc., USA): PCT Int. Appl. WO 2006 18,725 (2006); Chem. Abstr., 144, 254144x (2006).
4115. Pui, A.: J. Coord. Chem., 60 (7), 709-718 (2007).
4116. Schroetter, E.; Raddatz, A. and Oettel, M.: J. Prakt. Chem., 317 (3), 520-524 (1975).
4117. Narwade, S. K.; Kale, S. B. and Karale, B. K.: Indian J. Heterocycl. Chem., 16 (3), 275-278 (2007); Chem. Abstr., 148, 379537s (2008).
4118. Shetgiri, N. P. and Nayak, B. K.: Indian J. Chem., Sect. B, 44B (9), 1933-1936 (2005).
4119. Tekade, P. V.; Patil, K. N. and Bodkhe, P. S.: Asian J. Chem., 17 (2), 1340-1342 (2005); Chem. Abstr., 144, 432716v (2006).
4120. Borthakur, R. C.; Borthakur, N. and Rastogi, R. C.: Indian J. Chem., Sect. B, 23B (3), 244-248 (1984).
4121. Trave, R.: Gazz. Chim. Ital., 81, 773-781 (1951).
4122. Dodean, R. A.; Kelly, J. X.; Peyton, D.; Gard, G. L.; Riscoe, M. K. and Winter, R. W.: Bioorg. Med. Chem., 16 (3), 1174-1183 (2008).
4123. Fürstner, A.; Jumbam, D. N. and Seidel, G.: Chem. Ber., 127, 1125-1130 (1994).
4124. DellaGreca, M.; Fiorentino, A.; Monaco, P.; Pollio, A.; Previtera, L. and Zarrelli, A.: J. Chem. Ecol., 26 (3), 587-600 (2000).
4125. Carson, J. R.; Almond, H. R.; Brannan, M. D.; Carmosin, R. J.; Flaim, S. F.; Gill, A.; Gleason, M. M.; Keely, S. L.; Ludovici, D. W.; Pitis, P. M.; Rebarchak, M. C. and Villani, F. J.: J. Med. Chem., 31 (3), 630-636 (1988).
4126. Kumar, S.: J. Chem. Soc., Perkin Trans. 1, (19), 3157-3161 (1998).
4127. Konopacka, A. and Pawelka, Z.: J. Phys. Org. Chem., 18 (12), 1190-1195 (2005).
4128. Parmar, P. J.; Rajput, S. I. and Doshi, A. G.: Asian J. Chem., 17 (4), 2539-2542 (2005); Chem. Abstr., 144, 36282z (2006).
4129. Wadodkar, P. N. and Marathey, M. G.: Indian J. Chem., 10 (2), 145-148 (1972).
4130. Yamaguchi, K. (Kanagawa University, Japan): Jpn. Kokai Tokkyo Koho JP 2007 186,472 (2007); Chem. Abstr., 147, 212032r (2007).
4131. Yamaguchi, K.; Shiba, T.; Arai, T. and Ando, M. (Kanagawa University; Hitachi Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2008 50,321 (2008); Chem. Abstr., 148, 308474h (2008).
4132. Auwers, K.; Lechner, M. and Bundesmann, H.: Ber. Dtsch. Chem. Ges., 58, 36-51 (1925).
4133. Ruzicka, L.; Hösli, H. and Hofmann, K.: Helv. Chim. Acta, 19, 370-377 (1936).
4134. Harrowven, D. C.; Lucas, M. C. and Howes, P. D.: Tetrahedron, 57 (4), 791-804 (2001).
4135. Galkwad, D. D.; Renukdas, S. V.; Kendre, B. V.; Pawar, R. P. and Lokhande, P. D.: Organic Chemistry (Rajkot, India): 2 (1-3), 28-31 (2006); Chem. Abstr., 147, 406739x (2007).
4136. Perez-Vasquez, A.; Linares, E.; Bye, R.; Cerda-Garcia-Rojas, C. M. and Mata, R.: Phytochemistry, 69 (6), 1339-1347 (2008).
4137. Secci, F.; Frongia, A.; Ollivier, J. and Piras, P. P.: Synthesis, (7), 999-1002 (2007).
4138. Akt. Hassle: NL 6,413,996 (1965); Chem. Abstr., 63, 18083 (1965).
4139. Joshi, M. G. and Wadokar, K. N.: Indian J. Chem., Sect. B: 20 (10), 930-931 (1981).
4140. Patel, S. G. and Sethna, S.: J. Indian Chem. Soc., 50, 295-298 (1973).
4141. Auwers, K. and Müller, K.: Liebigs Ann. Chem., 364, 164-172 (1908).
4142. Spetz, Ake: Acta Chem. Scand., 10 (9), 1422-1426 (1956).
4143. Wu, Y.; Yang, L.; Liu, F.; Miao, M.; Zhu, H. and Mao, D.: Sepu, 25 (3), 408-412 (2007); Chem. Abstr., 147, 426999k (2007).
4144. Masson, C. and Bertrand, K. (Genfit, Fr.): Fr. Demande FR 2,898,892 (2007); Chem. Abstr., 147, 406547h (2007).
4145. Tsou, H-R.: Ayral-Kaloustian, S.; Birnberg, G. H.; Floyd, M. B.; Kaplan, J.; Kutterer, K. M. K.; Liu, X.; Nilakantan, R.; Otteng, M. A. Tang, Z.; Zask, A.; Reich, M. and Tran, T. (Wyeth, John, and Brother Ltd., USA): PCT Int. Appl. WO 2007 75;783 (2007); Chem. Abstr., 147, 166204y (2007).
4146. Funamizu, T.; Kondo, S. and Okamura, D. (Hokko Chemical Industry Co., Japan): Jpn. Kokai Tokkyo Koho JP 2007 137,852; Chem. Abstr., 147, 25326c (2007).
4147. Mitsubishi Pharma Corporation, (Japon): PCT Int. Appl. WO 2007 69,712 (2007); Chem. Abstr., 147, 95413c (2007).
4148. Yar, M. S.; Ali, M. A.; Sriram, D. and Yogeeswari, P.: Acta Pol. Pharm., 63 (6), 491-496 (2006); Chem. Abstr., 147, 401505p (2007).
4149. Smith, G. G. and White, D. V.: J. Org. Chem., 29 (12), 3533-3535 (1964).
4150. Congreve, M. S.; Callaghan, O.; Chessari, G.; Cowan, S. R.; Frederickson, M.; Murray, C. W. and Vinkovic, M. (Astex Therapeutics Limited, UK): PCT Int. Appl. WO 2007 72,041 (2007); Chem. Abstr., 147, 118037z (2007).
4151. Ried, W. and Schubert, H-J.: Justus Liebigs Ann. Chem., 653, 181-183 (1962).
4152. Cravotto, G.; Tagliapietra, S.; Cappello, R.; Palmisano, G.; Curini, M. and Bocalini, M.: Arch. Pharm. (Weinheim, Ger.), 339 (3), 129-132 (2006).
4153. Gammon, D. W.; Hunter, R. and Wilson, S. A.: Tetrahedron, 61 (45), 10683-10688 (2005).
4154. Goswami, A. K.; Borthakur, N.; Rastogi, R. C. and Bhattacharya, P. R.: Indian J. Chem., Sect. B; 23 (9), 904-906 (1984).
4155. Sherif, E. A.; Gupta, R. K. and Krishnamurti, M.: Tetrahedron Lett., 21 (7), 641-642 (1980).
4156. Zeng, Z-D.; Liang, Y-Z.; Wang, Y-L.; Li, X-R.; Liang, L-M.; Xu, Q-S.; Zhao, C-X.; Li, B-Y. and Chau, F-T.: J. Chromatogr., A 1107 (1-2), 273-285 (2006).
4157. Liu, J-H.; Gao, Y-Q.; Huo, X.; Yang, N-J. and Zhao, D-G.: Zhongchengyao, 28 (9), 1339-1342 (2006); Chem. Abstr., 147, 219615s (2007).
4158. Suga, T.; Hirata, T. and Walls, F.: J. Sci. Hiroshima Univ., Ser. A: Phys. Chem., 38 (2-3), 327-331 (1974); Chem. Abstr., 82, 124987q (1975).
4159. Musgrave, O. C.: J. Chem. Soc., (1), 1104-1108 (1957).
4160. Yagi, K.: Nippon Nogei Kagaku Kaishi, 29, 198-202 (1955); Chem. Abstr., 53, 303a (1959).
4161. Turov, A. V; Bondarenko, S. P.; Tkachuk, A. A. and Khilya, V. P.: Zh. Org. Khim., 41 (1), 51-56 (2005).
4162. Bruun, T.: Acta Chem. Scand., 19 (7), 1677-1693 (1965).
4163. De Oliveira, A. B.; Fonseca E Silva, L. G. and Gottlieb, O. R.: Phytochemistry, 11 (12), 3515-3519 (1972).
4164. Kazuo, T.; Toshifumi, H.; Osamu, K. and Takayuki, S.: Tetrahedron Lett., (16), 1311-1314 (1976).
4165. Shibata, S.; Nakahara, M. and Aimi, N.: Chem. Pharm. Bull., 11 (3), 379-381 (1963).
4166. Macias, F. A.; Chinchilla, D.; Molinillo, J. M. G.; Marin, D.; Varela, R. M. and Torres, A.: Tetrahedron, 59 (10), 1679-1683 (2003).
4167. Williams, J. L. R.: J. Org. Chem., 22 (7), 772-774 (1957).
4168. Sheng, X.; Xu, K.; Tang, L. and Tan, G.: Tianran Chanwu Yanjiu Yu Kaifa, 17 (6), 743-745 (2005); Chem. Abstr., 147, 26990b (2007).
4169. Harding, V. J. and Weizmann, C.: J. Chem. Soc., 97, 1126-1131 (1910).
4170. Fargher, R. G. and Perkin, Jr., W. H.: J. Chem. Soc., 119, 1724-1744 (1921).
4171. Grethe, G.; Lee, H. L.; Uskokovic, M. and Brossi, A.: J. Org. Chem., 33 (2), 494-508 (1968).
4172. Hoffmann-LaRoche: Patent US 3,629,265 (1971).
4173. Stephen, H. and Weizmann, C.: J. Chem. Soc., Perkin Trans. 105, 1046-1057 (1914).
4174. Daukshas, V. K.; Gaidyalis, P. G.; Kuleshyus, V. A.; Udrenaite, E. B. and Pyatrauskas, O. Y.: Pharm. Chem. J., 28 (1), 33-35 (1994).
4175. Hatam, N. A. R. and Whiting, D. A.: J. Chem. Soc. C, 1921-1932 (1969).
4176. Manske, R. H. F. and Ledingham, A. E.: Can. J. Res., 22B, 115-124 (1944).
4177. Goswami, J.; Borthakur, N. and Goswami, A.: J. Chem. Res., (4), 200-203 (2003).
4178. BASF: DE 2,309,639 (1974); Chem. Abstr., 82, 4265 (1975).
4179. BASF: FR 2,218,894 (1974); Chem. Abstr., 82, 4265 (1975).
4180. Colegate-Palmolive Co.: US 3,700,692 (1971); Chem. Abstr., 78, 43461 (1973).
4181. Sterling Drug: US 4,138,581 (1979); Chem. Abstr., 91, 91338 (1979).
4182. Freudenberg, K. and Klinck, F .: Ber. Dtsch. Chem. Ges., 73B (12), 1369-1376 (1940).
4183. Dobashi, Y.; Yuyama, T. and Ohkatsu, Y.: Polym. Degrad. Stabil., 92 (7), 1227-1233 (2007); Chem. Abstr., 147, 301884n (2007).
4184. Bowman, D. F.; Hewgill, F. R. and Kennedy, B. R.: J. Chem. Soc. (C), 2274-2279 (1966).
4185. Kang, D. W.; Lee, J. W.; Kim, Y. H.; Kim, H.; Ha, H. J.; Nam, E. J. and Joung, C. M. (Digital Biotech Co., Ltd., S. Korea): PCT Int. Appl. WO 2008 41,826 (2008); Chem. Abstr., 148, 449447p (2008).
4186. Ushio, H.; Yamauchi, K. and Kurimoto, I. (Sumitomo Chemical Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2006 8,522 (2006); Chem. Abstr., 144, 108332r (2006).
4187. Planas, L.; Mogi, M.; Takita, H.; Kajimoto, T. and Node, M.: J. Org. Chem., 71 (7), 2896-2898 (2006).
4188. Nagarajan, G. R. and Parmar, V. S.: Indian J. Chem., 16B (5), 439-440 (1978).
4189. Luo, Q.; Wang, N.; Liu, H.; Fan, M.; Ding, A. and Yao, X.: Shenyang Yaoke Daxue Xuebao, 23 (8), 492-494 (2006); Chem. Abstr., 147, 151248s (2007).
4190. Hossain, M. A.: Indian J. Chem., Sect. B, 38B (4), 431-433 (1999).
4191. Zhu, Y-Y.; Chen, X-H.; Huang, C-S.; Liu, H-X. and Lin, X-L.: Yingyong Huaxue, 22 (5), 560-562 (2005); Chem. Abstr., 144, 69637x (2006).
4192. Roelens, F.; Heldring, N.; Dhooge, W.; Bengtsson, M.; Comhaire, F.; Gustafsson, J-A.; Treuter, E. and De Keukeleire, D.: J. Med. Chem., 49 (25), 7357-7365 (2006).
4193. Elix, J. A.; Engkaninan, U.; Jones, A. J. ; Raston, C. L.; Sargent, M. V. and White, A. H.: Aust. J. Chem., 31 (9), 2057-2068 (1978).
4194. Morton, R. A. and Sawires, Z.: J. Chem. Soc., 1052-1064 (1940).
4195. Whalley, W. B.: J. Chem. Soc., 105-107 (1955).
4196. Huneck, S.: Phytochemistry, 11 (11), 3311-3312 (1972).
4197. Seligmann, O. and Wagner, H.: Tetrahedron, 37 (15), 2601-2606 (1981).
4198. Hossain, M. A.: Indian J. Chem., Sect. B, 40B (4), 324-326 (2001).
4199. Morgenstein, T.; Bittner, M.; Silva, M.; Aqueveque, P. and Jakupovic, J.: Phytochemistry, 41 (4), 1149-1153 (1996).
4200. Bolognese, A.; Chioccara, F. and Scherillo, G.: Phytochemisry, 13 (9); 1989-1990 (1974).
4201. Yamaguchi, M.: Nippon Kagaku Zasshi, 73, 393-394 (1952); Chem. Abstr., 47, 10497g (1953).
4202. Mamat, C.; Pundt, T.; Schmidt, A. and Langer, P.: Tetrahedron Lett., 47 (13), 2183-2185 (2006).
4203. Zhu, L.; Wang, W.; Huang, H.; Lin, Z.; Mou, L.; Nie, Z.; He, Y.; Ouyang, X.; Peng, S.; Zhang, D. and Wei, J. (Institute of Mataria Medica, Chinese Academy of Medical Sciences, Peop. Rep., China): PCT Int. Appl. WO 200624217 (2006); Chem. Abstr., 144, 292574v (2006).
4204. Kakinuma, Y.; Tsuchiya, Y.; Oi, T.; Yamamoto, D.; Io, F. and Kumeta, S. (Taisho Pharmaceutical Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2008 31, 161 (2008); Chem. Abstr., 148, 239451j (2008).
4205. Boeck, P.; Falcao, C. A. B.; Leal, P. C.; Yunes, R. A.; Cechinel Filho, V.; Torres-Santos, E. C. and Rossi-Bergmann, B.: Bioorg. Med. Chem., 14 (5), 1538-1545 (2006).
4206. Donnelly, D. M. X.; Lawless, R. M. and Wilson, R. K.: Chem. Ind. (London), (47), 1906 (1961).
4207. Ahmed, Z. and Langer, P.: Tetrahedron Lett., 47 (4), 417-420 (2006).
4208. Yawer, M. A.; Hussain, I.; Reim, S.; Ahmed, Z.; Ullah, E.; Iqbal, I.; Fischer, C.; Reinke, H.; Goerls, H. and Langer, P.: Tetrahedron, 63 (51), 12562-12575 (2007).
4209. Ando, K. and Tanaka, H. (Pfizer Japan Inc., Pfizer Inc., Japan): PCT Int. Appl. WO 2008 50,199 (2008); Chem. Abstr., 148, 517558c (2008).
4210. Yu, W.; Tong, L.; Chen, L.; Kozlowski, J. A.; Lavey, B. J.; Shih, N-Y.; Madison, V. S.; Zhou, G.; Orth, P.; Guo, Z.; Wong, M. K. C.; Yang, D-Y.; Kim, S. H.; Shankar, B. B.; Siddiqui, M. A.; Rosner, K. E.; Dai, C.; Popovici-Muller, J.; Girijavallabhan, V. M.; et al. (Schering Corporation, USA): U.S. Pat. Appl. US 2007 219,218 (2007); Chem. Abstr., 147, 385984f (2007).
4211. Diedrichs, N; Fahrig. T.; Gerlach, I.; Ragot, J.; Schuhmacher, J.; Thede, K. and Horvath, E. (Bayer Healthcare AG, Germany): PCT Int. Appl. WO 2005 113,529 (2005); Chem. Abstr., 144, 22800e (2006).
4212. Rampa, A.; Bisi, A.; Belluti, F.; Gobbi, S.; Piazzi, L.; Valenti, P.; Zampiron, A.; Caputo, A.; Varani, K.; Borea, P. A. and Carrara, M.: Farmaco, 60 (2), 135-148 (2005).
4213. Hossain, M. M.; Tokuoka, T.; Yamashita, K.; Kawamura, Y. and Tsukayama, M.: Synth. Commun., 36 (9), 1201-1211 (2006).
4214. Landa, S. and Macak, J.: Collect. Czech. Chem. Commun., 23 (7), 1322-1329 (1958).
4215. Sawhney, S. N. and Kachru, C. N.: J. Indian Chem. Soc., 36 (2), 121-125 (1959).
4216. Schroetter, E. and Schubert, H.: Pharmazie, 25, 242-245 (1970).
4217. Begué, J-P. and Fetizon, M.: Bull. Soc. Soc. Chim. Fr., (3), 781-787 (1969).
4218. Daukshas, V. K.; Pyatrauskas, O. Y.; Udrenaite, E. B.; Gaidyalis, P. G. and Gasperavichene, G. A.: Chem. Heterocycl. Compd., 20 (8), 838-841 (1984).
4219. Buckle, D. R.; Arch, J. R. S.; Fenwick, A. E.; Houge-Frydrych, C. S. V.; Pinto, I. L.; Smith, D. G.; Taylor, S. G. and Tedder, J. M.: J. Med; Chem., 33 (11), 3028-3034 (1990).
4220. Lynch, J. K.; Freeman, J. C.; Judd, A. S.; Iyengar, R.; Mulhern, M.; Zhao, G.; Napier, J. J.; Wodka, D.; Brodjian, S.; Dayton, B. D.; Falls, D.; Ogiela, C.; Reilly, R. M.; Campbell, T. J.; Polakowski, J. S.; Hernandez, L.; Marsh, K. C.; Shapiro, R.; Knourek-Segel, V.; Droz, B.; Bush, E.; Brune, M.; Preusser, L. C.; Fryer, R. M.; Reinhart, G. A.; Houseman, K.; Diaz, G.; Mikhail, A.; Limberis, J. T.; Sham, H. L.; Collins, C. A. and Kym, P. R.: J. Med. Chem., 49 (22), 6569-6584 (2006).
4221. Sen, A. B. and Tiwari, S. S.: J. Indian Chem. Soc., 29 (5), 357-362 (1952).
4222. Albrecht, B. K.; Andersen, D. L.; Bartberger, M.; Brown, J.; Brown, R.; Chaffee, S. C.; Cheng, Y.; Croghan, M.; Graceffa, R.; Harried, S.; Hitchcock, S.; Hungate, R.; Judd, T.; Kaller, M.; Kreiman, C.; La, D.; Lopez, P.; Masse, C. E.; Monenschein, H.; Nguyen, T.; Nixey, T.; Patel, V. F. et al. (Amgen Inc., USA): PCT Int. Appl. WO 2007 62,007 (2007); Chem. Abstr., 147, 30948m (2007).
4223. Hewitt, M.; Cronin, M. T. D.; Madden, J. C.; Rowe, P. H.; Johnson, C.; Obi, A. and Enoch, S. J.: J. Chem. Inform. Model., 47 (4), 1460-1468 (2007); Chem. Abstr., 147, 335594h (2007).
4224. Auwers, K. and Borsche, E.: Ber. Dtsch. Chem. Ges., 48, 1698-1717 (1915).
4225. Al-Ka'bi, J.; Gore, P. H.; Moonga, B.; Al-Shiebani, I. S.; Shibaldain, N. L. and Kamounah, F. S.: J. Chem. Res., Synop., (7), 246-247 (1986); Miniprint, 2201-2226 (1986).
4226. Fuson, R. C.; McKeever, C. H.; Rabjohn, N. and Gray, H. W.: J. Am. Chem. Soc., 65 (6), 1028-1029 (1943).
4227. Baliah, V. and Desikan, V. N. V.: Indian J. Chem., 9 (10), 1088-1091 (1971).
4228. Kamonuah, F. S.; Al-Sheibani, I. S.; Shibaldain, N. L. and Salman, S. R.: Magn. Reson. Chem., 23 (7), 521-523 (1985).
4229. Platzer, N.; Lang, C.; Basselier, J-J. and Demerseman, P.: Bull. Soc. Chim. Fr., (1-2), 227-232 (1975).
4230. Hutchinson, A. J.; Chenard, B. I.; Li, G.; Ghosh, M.; Tarrant, J. G.; Yoon, T.; Luke, G. P.; Lee, K.; O’Donnell, M-M. E.; Pringle, W. C.; Peterson, J. M.; Hodgetts, K. J.; Steenstra, C. K. and Doller, D. (USA): U.S. Pat. Appl. Publ. US 2006 9,456 (2006); Chem. Abstr., 144, 129005b (2006).
4231. Laarhoven, W. H.; Nivard, R. J. F. and Havinga, E.: Recl. Trav. Chim., 80, 775-791 (1961).
4232. Haack, R. A. and Beck, K. R.: Tetrahedron Lett., 30 (13), 1605-1608 (1989).
4233. Barre, F. and Marechal, E.: Bull. Soc. Chim. Fr., 2599-2602 (1974).
4234. Yates, K. and Mandrapilias, G.: J. Org. Chem., 45 (19), 3892-3902 (1980).
4235. Benington, F.; Morin, R. D.; Clark, L. C., Jr. and Fox, R. P.: J. Org. Chem., 23 (12), 1979-1984 (1958).
4236. Pillay, M. K. and Kanagavel, S.: Indian J. Chem., Sect. B, 14 (5), 368-369 (1976).
4237. Yamato, T.; Maeda, K.; Kamimura, H.; Noda, K. and Tashiro, M.: J. Chem. Res., M, (8), 1865-1889 (1995).
4238. Baliah, V. and Uma, M.: Tetrahedron Lett., 25, 21-25 (1960).
4239. Baliah, V.; Premasagar, V.; Krishnakumar, R. and Jeyaraman, R.: Indian J. Chem., Sect. B, 27 (1), 151-153 (1988).
4240. Ganapathy, K.; Ramanujam, M.; Balasubramanian, T.; Pillay, M. K. and Palanivelu, S.: Indian J. Chem., Sect. B, 20B (8), 689-692 (1981).
4241. Sannicolo, F.: Gazz. Chim. Ital., 115 (2), 91-96 (1985).
4242. Padma, V.; Vijaya, C. and Swamidural A. D.: Basic Clin. Pharmacol. Toxicol., 100 (5), 302-307 (2007).
4243. Ma, T.; Kojima, T. and Matsuda, Y.: Bull. Chem. Soc. Jpn., 73 (3), 747-748 (2000).
4244. Shinoda, J. and Sato, S.: J. Pharm. Soc. Jpn., 115-116 (1927); Chem. Abstr., 22, 772 (1928).
4245. Battersby, A. R. and Openshaw, H. T.: J. Chem. Soc., Spl. 67-71 (1949).
4246. Hoffmann-LaRoche: Patent BE 619513 (1962); Chem. Abstr., 59, 11453d (1963).
4247. Baluja, S.; Solanki, A. and Kachhadia, N.: J. Iranian Chem. Soc., 3 (4), 312-317 (2006); Chem. Abstr., 147, 365205z (2007).
4248. Nair, R.; Shah, A.; Baluja, S. and Chanda, S.: J. Serbian Chem. Soc., 71 (7), 733-744 (2006); Chem. Abstr., 147, 418629z (2007).
4249. Popova, Z. V.; Yanovskii, D. M.; Zil'bermann, E. N.; Rybakova, N. A. and Ganina, V. I.: Zh. Prikl. Khim. (Leningrad), 34, 874-881 (1961); Chem. Abstr., 15994a (1961).
4250. Lecornué, F.; Paugam, R. and Ollivier, J.: Eur. J. Org. Chem., (12), 2589-2598 (2005).
4251. Bogolubsky, A. V.; Ryabukhin, S. V.; Stetsenko, S. V.; Chupryna, A. A.; Volochnyuk, D. M. and Tolmachev, A.: J. Comb. Chem., 9 (4), 661-667 (2007).
4252. Curd, F. H. and Robertson, A.: J. Chem. Soc., 894-901 (1937).
4253. Su, X-1.; Lin, R-c.; Wong, S-k.; Kwan, S-y.; Tsui, S-k.; Ting, T-1.; Cheng, S-w. and Fung, K-p.: Zhongchengyao, 28 (4), 498-503 (2006); Chem. Abstr., 147, 102356s (2007).
4254. Yin; Z-Q.; Fan, C-L.; Ye, W-C.; Jiang, R-W.; Che, C-T.; Mak, T. C. W.; Zhao, S-X. and Yao, X-S.: Planta Med., 71 (10), 979-982 (2005).
4255. Ding, Yi-Li and Jia, Zhong-Jian: Phytochemistry, 31 (4) 1435-1436 (1992).
4256. Khan, S. A.; Ahmed, B. and Alam, T.: Pak. J. Pharm. Sci., 19 (4), 290-294 (2006); Chem. Abstr., 147, 343820u (2007).
4257. Wang, Z-X.; Ren, Z-H.; Yan, J.; Xu, X.; Shi, X-X. and Chen, G-R.: Youji Huaxue, 26 (9), 1254-1258 (2006); Chem. Abstr., 147, 344261z (2007).
4258. Senthilkumar, N.; Raghavan, A. and Nasar, A. S.: Macromol. Chem. Phys., 206 (24), 2490-2500 (2005).
4259. Maiti, A.; Cuendet, M.; Croy, V. L.; Endringer, D. C.; Pezzuto, J. M. and Cushman, M.: J. Med. Chem., 50 (12), 2799-2806 (2007).
4260. Romanelli, G.; Autino, J. C.; Baronetti, G. and Thomas, H.: International Electronic Conferences on Synthetic Organic Chemistry, 5th, 6th, Sept. 1-30, 2001 and 2002 and 7th,

8th, Nov. 1-30, 2003 and 2004 (computer optical disk) 2004, 1429-1434; Chem. Abstr., 144, 292362z (2006).
4261. Richardson, T. I.; Norman, B. H.; Lugar, C. W.; Jones, S. A.; Wang, Y.; Durbin, J. D.; Krishnan, V. and Dodge, J. A. (Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 USA); Bioorg. Med. Chem. Lett., 17 (13), 3570-3574 (2007).
4262. Jang, J.; Kim, H. P. and Park, H.: Arch. Pharm. Res., 28 (8), 877-884 (2005).
4263. Jang, J.; Sin, K-S.; Kim, H. P. and Park, H.: Arch. Pharm. Res., 28 (9), 1103 (2005).
4264. Zhao, Y.; Wang, F.; Liu, W. and Bai, H. (Zhejiang Hisun Naturelite Pharmaceutical R\&D Co., Ltd., Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,990,482 (2007); Chem. Abstr., 147, 211661h (2007).
4265. Arrington, M. P.; Liu, R.; Conticello, R. D.; Gauss, C. M.; Hopper, A.; Nguyen, T. M. and Tehim, A.(Memory Pharmaceuticals Corporation, USA): PCT Int. Appl. WO 2006 28,957 (2006); Chem. Abstr., 144, 292767k (2006).
4266. Gupta, R. K. and Krishnamurti, M.: Phytochemistry, 16 (7), 1104-1105 (1977).
4267. Cianci, J.; Baell, J. B.; Flynn, B. L.; Gable, R. W.; Mould, J. A.; Paul, D. and Harvey, A. J.: Bioorg. Med. Chem. Lett., 18 (6), 2055-2061 (2008).
4268. Miyazawa, T.; Hamada, M.; Morimoto, R.; Murashima, T. and Yamada, T.: Tetrahedron Lett., 49 (1), 175-178 (2007).
4269. Caron, S.; Do, N. M.; Sieser, J. E.; Arpin, P. and Vazquez, E.: Organic Process Research \& Development, 11 (6), 1015-1024 (2007); Chem. Abstr., 148, 78855b (2008).
4270. Kawase, Y.; Royer, R.; Hubert-Habart, M.; Cheutin, A.; René, L.; Buisson, J. P. and Desvoye, M. L.: Bull. Soc. Chim. Fr., 3131-3140 (1964).
4271. Stadnikoff, G. and Baryschewa, A.: Ber. Dtsch. Chem. Ges., 61B (8), 1996-1999 (1928).
4272. Blank, B. and Pfeiffer, F. R.: J. Med. Chem., 10 (4), 653-656 (1967).
4273. Cox, M. T. and Holohan, J. J.: Tetrahedron, 31, 633-635 (1975).
4274. Roma, G.; Di Braccio, M.; Grossi, G.; Piras, D.; Leoncini, G.; Bruzzese, D.; Signorello, M. G.; Fossa, P. and Mosti, L.: J. Med. Chem., 50 (12), 2886-2895 (2007).
4275. Igarashi, Y.; Kumazawa, H.; Ohshima, T.; Satomi, H.; Terabayashi, S.; Takeda, S.; Aburada, M. and Miyamoto, K-i.: Chem. Pharm. Bull., 53 (9), 1088-1091 (2005).
4276. Deodhar, M.; Black, D. S. and Kumar, N.: Tetrahedron, 63 (24), 5227-5235 (2007).
4277. Nagashima, F.; Sekiguchi, T.; Yakaoka, S. and Asakawa, Y.: Chem. Pharm. Bull., 52 (5), 556-560 (2004).
4278. Iinuma, M.; Matsuura, S. and Kusuda, K.: Chem. Pharm. Bull., 28 (3), 708-716 (1980).
4279. Hitchcock, S. A. and Arrington, M. P. (Amgen Inc., Memory Pharmaceuticals Corporation, USA): PCT Int. Appl. WO 2007 100,880 (2007); Chem. Abstr., 147, 322998t (2007).
4280. Dimmock, J. R.; Erciyas, E.; Kirkpatrick, D. L. and King, K. M.: Pharmazie, 43 (9), 614-616 (1988).
4281. Gautier, J-A.; Miocque, M. and Dang Quoc Quan: C. R. Acad. Sci., 258, 3731-3734 (1964).
4282. Pochini, A.; Puglia, G. and Ungaro, R.: Synthesis, (11), 906-907 (1983).
4283. Bream, R. N.; Ley, S. V. and Procopiou, P. A.: Org. Lett., 4 (22), 3793-3796 (2002).
4284. Gasanov, B. R.; Nasirov, M. M. and Stradyn, Y. P.: J. Gen. Chem. (USSR), 54 (9), 18521859 (1984).
4285. Nielsen, S. F.; Larsen, M.; Boesen, T.; Schoenning, K. and Kromann, H.: J. Med. Chem., 48 (7), 2667-2677 (2005).
4286. Royer, R.; Bisagni, E.; Laval-Jeantet, A. M. and Marquet, J. P.: Bull. Soc. Chim. Fr., 2607-2616 (1965).
4287. Flynn, B. L.; Baell, J. B.; Harvey, A. J.; Chaplin, J. H.; Paul, D. and Mould, J. A. (Bionomics Limited, Australia): PCT Int. Appl. WO 2008 40,057 (2008); Chem. Abstr., 148, 426735s (2008).
4288. Harvey, A. J.; Baell, J. B.; Toovey, N.; Homerick, D. and Wulff, H.: J. Med. Chem., 49 (4), 1433-1441 (2006).
4289. Musante, C. and Stener, A.: Gazz. Chim. Ital., 86 (IV), 297-315 (1956).
4290. Zhang, Z.; Pan, C. and Wang, Z.: Chem. Commun., (44), 4686-4688 (2007).
4291. Ullah, E.; Appel, B.; Fischer, C. and Langer, P.: Tetrahedron, 62 (41), 9694-9700 (2006).
4292. Langer, P. and Bose, G.: Angew. Chem. Int. Ed., 42 (34), 4033-4036 (2003).
4293. Bose, G.; Nguyen, Van Thi Hong; Ullah, E.; Lahiri, S.; Görls, H. and Langer, P.: J. Org. Chem., 69 (26), 9128-9134 (2004).
4294. Casellas, P.; Floutard, D.; Fraisse, P. and Jegham, S. (Sanofi-Synthelabo, Fr.): Fr. Demande FR 2,872,813 (2006); Chem. Abstr., 144, 128967e (2006).
4295. Fukuyama, T.; Yamaura, R.; Higashibeppu, Y.; Okamura, T.; Ryu, I.; Kondo, T. and Mitsudo, T.: Org. Lett., 7 (26), 5781-5783 (2005).
4296. Srikrishna, A.; Kumar, S. R. and Ravikumar, P. C.: Synth. Commun, 37 (23), 4123-4140 (2007).
4297. Gruber, W. and Traub, F.: Monatsh. Chem., 77, 414-430 (1947).
4298. Jain, A. C. and Sinha, S. P.: Indian J. Chem., Sect. B, 33 (4), 317-320 (1994).
4299. Lin, A-S.; Nakagawa-Goto, K.; Chang, F-R.; Yu, D.; Morris-Natschke, S. L.; Wu, C-C.; Chen, S-L.; Wu, Y-C. and Lee, K-H.: J. Med. Chem., 50 (16), 3921-3927 (2007).
4300. Zhao, L-M.; Jin, H-S.; Sun, L-P.; Piao, H-R. and Quan, Z-S.: Bioorg. Med. Chem., 15 (22), 5027-5029 (2005).
4301. Toyoda, K.; Yaoita, Y. and Kikuchi, M.: Chem. Pharm. Bull., 53 (12), 1555-1558 (2005).
4302. Steelink, C. and Marshall, G. P.: J. Org. Chem., 44 (9), 1429-1433 (1979).
4303. Karnthong, B. and Robertson, A.: J. Chem. Soc., (5), 933-936 (1939).
4304. Mukerjee, S. K.; Sarkar, S. C. and Seshadri, T. R.: Indian J. Chem., 8 (10), 861-863 (1970).
4305. Xiao, J.; Lu, W., Zhuang, M. and Lin, R.: Fenxi Yiqi, (3), 21-24 (2004); Chem. Abstr., 144, 376026f (2006).
4306. Bonner, W. A.; Burke, N. I.; Fleck, W. E.; Hill, R. K.; Joule, J. A.; Sjöberg, B. and Zalkow, J. H.: Tetrahedron, 20, 1419-1425 (1964).
4307. Anthonsen, T.: Acta Chem. Scand., 23 (10), 3605-3607 (1969).
4308. Geissman, T. A. and Bjeldanes, L. F.: Phytochemistry, 8, 1293 (1969).
4309. Alford, S. and Mentzer, C.: C. R. Acad. Sci., 258, 2103-2105 (1964).
4310. Oda, J.; Fukami, H. and Nakajima, M.: Agric. Biol. Chem., 30 (1), 59-63 (1966).
4311. Loyola, L. A.; Pedreros, S. and Morales, G.: Phytochemistry, 24 (7), 1600-1602 (1985).
4312. John, G. D.; and Shannon, P. V. R.: J. Chem. Soc., Perkin Trans. 1, (23), 2593-2599 (1977).
4313. Quincoces Suarez, J. A.; Peseke, K. and Estrada Roger, E. (Riemser Arzneimittel AG, Germany): PCT Int. Appl. WO 2006 3,010 (2006); Chem. Abstr., 144, 128737e (2006).
4314. Trend, R. M.; Ramtohul, Y. K. and Stolz, B. M.: J. Am. Chem. Soc., 127 (50), 1777817788 (2005).
4315. Murthy, Y. L. N.; Nanda, R.; Ellaiah, P. and Devi, R. B.: Heterocycl. Commun., 11 (2), 189-194 (2005).
4316. Cooper, S. R.: "Organic Syntheses", Collect. Vol. III, Wiley, New York, 1955, p. 761.
4317. Tan, W.; Li, W-D. Z.; Huang, C. and Li, Y.: Synth. Commun., 29 (19), 3369-3378 (1999).
4318. Helesbeux, J-J.; Duval, O.; Guilet, D.; Seraphin, D.; Rondeau, D. and Richomme, R.: Tetrahedron, 59 (27), 5091-5104 (2003).
4319. Jain, A. C. ; Lal, P. and Seshadri, T. R.: Tetrahedron, 26 (11), 2631-2635 (1970).
4320. Tsukayama, M.; Kikuchi, M. and Kawamura, Y.: Heterocycles, 38 (7), 1487-1490 (1994).
4321. Rosenau, T. and Stanger, A.: Tetrahedron Lett., 46 (45), 7845-7848 (2005).
4322. Vandewalle, M.: Bull. Soc. Chim. Belg., 70, 163-167 (1961).
4323. Banerji, J.; Rej, R. N. and Chatterjee, A.: Indian J. Chem., 11 (7), 693-694 (1973).
4324. Xie, C.; Sullivan, K. A.; Laurila, M. E.; Mitchell, D. N. and Pu, Y. J.: Synth. Commun., 38 (1), 21-32 (2008).
4325. Gore, T. S. and Venkataraman, K.: Proc. Indian Acad. Sci., Ser. A, 34A, 368-386 (1951).
4326. Neelakantam, K. and Sitaraman, M. V.: Proc. Indian Acad. Sci., Ser. A, 23A, 16-22 (1946).
4327. Ahluwalia, V. K. and Arora, K. K.: Tetrahedron, 37, 1437-1440 (1981).
4328. Tsukayama, M.: Bull. Chem. Soc. Jpn., 48 (1), 80-81 (1975).
4329. Bandara, B. M. R.; Hewage, C. M.; Karunaratne, V.; Wannigama, G. P. and Adikaram, N. K. B.: Phytochemistry, 31 (6), 1983-1986 (1992).
4330. Bajwa, B. S.; Khanna, P. L. and Seshadri, T. R.: Indian J. Chem., 11 (1), 100-103 (1973).
4331. Nakayama, M ; Hayashi, S.; Tsukayama, M.; Horie, T. and Masumura, M.: Chem. Lett., (4), 315-316 (1972).
4332. Leuchs, H. and Simion, F.: Ber. Dtsch. Chem. Ges., 44, 1874-1884 (1911).
4333. Leuchs, H. and Sperling, R.: Ber. Dtsch. Chem. Ges., 48, 135-152 (1915).
4334. Govek, S. P.; Shiau, A. K.; Noble, S. A. and Thomas, D. J. (USA): PCT Int. Appl. WO 2008 6,051 (2008); Chem. Abstr., 148, 144636j (2008).
4335. Huebner, H. and Riedl, W.: Chem. Ber., 93, 312-317 (1960).
4336. Orth, W. A. and Riedl, W.: Justus Liebigs Ann. Chem., 663, 74-82 (1963).
4337. Hossain, M. A. and Salehuddin, S. M.: Indian J. Chem., Sect. B, 41B (11), 2399-2401 (2002).
4338. Balani, S. K.; Gupta, R. K. and Krishnamurti, M.: J. Indian Chem. Soc., 57 (12), 1238-1239 (1980).
4339. Sharma, V. K. and Gupta, S. R.: Acta Chim. Hung., 113 (1), 93-96 (1983).
4340. Gupta, R. K. and Krishnamurti, M.: Indian J. Chem., Sect. B; 17B (3), 291-293 (1979).
4341. Brajeul, S.; Delpech, B. and Marazano, C.: Tetrahedron Lett., 48 (32), 5597-5600 (2007).
4342. Patra, A. and Mukhopadhyay, P. K.: J. Indian Chem. Soc., 60, 265-268 (1983).
4343. Kumar, V.; Karunaratne, V.; Sanath, M. R. and Meegalle, K.: Phytochemistry, 28 (4), 1278-1279 (1989).
4344. Parsons, I. C.; Gray, A. I.; Hartley, T. G. and Waterman, P. G.: Phytochemistry, 37 (2), 565-570 (1994).
4345. Jain, A. C. and Zutshi, M. K.: Tetrahedron, 28 (22), 5589-5593 (1972).
4346. Laurin, P.; Ferroud, D.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A. and Musicki, B.: Bioorg. Med. Chem. Lett., 9 (14), 2079-2084 (1999).
4347. Picard, J. A.; O’Brien, P. M.; Sliskovic, D. R.; Anderson, M. K.; Bousley, R. F.; Hamelehle, K. L.; Krause, B. R. and Stanfield, R . L.: J. Med. Chem., 39 (6), 1243-1252 (1996).
4348. Jarrott, B. Zanatta, S. D. and Williams, S. J. (Neuro Therapeutics Limited, Australia): PCT Int. Appl. WO 2008 52,288 (2008); Chem. Abstr., 148, 538273w (2008).
4349. Schmitz, F. U.; Roberts, C. D.; Griffith, R. C.; Botyanszki, J. and Pham, S. M. (Genelabs Technologies, Inc., USA): PCT Int. Appl. WO 2008 8,907 (2008); Chem. Abstr., 148, 144,751t (2008).
4350. Schmitz, F. U.; Roberts, C. D.; Griffith, R. C.; Botyanszki, J. and Pham, S. M. (Genelabs Technologies, Inc., USA): PCT Int. Appl. WO 2008 8,912 (2008); Chem. Abstr., 148, 168689e (2008).
4351. Patil, A. D. and Deshpande, V. H.: Indian J. Chem., Sect. B, 22B (2), 109-113 (1983).
4352. Ahluwalia, V. K.; Prakash, C. and Gupta, R.: Tetrahedron, 38 (5), 609-611 (1982).
4353. Lahey, F. N.: Univ. Queensland Papers, Dept. Chem., 1 (No. 17), 2-8 (1940).
4354. Hlubucek, J.; Ritchie, E. and Taylor, W. C.: Aust. J. Chem., 24, 2347-2354 (1971).
4355. Sutherland, M. D.: Univ. Queensland Papers, Dept. Chem., 1 (No. 35), 10 pp. (1949).
4356. Baldwin, M. E.; Bick, I. R. C.; Komzak, A. A. and Price, J. R.: Tetrahedron, 16 (1/4), 206-211 (1961).
4357. Manandhar, M. D.; Hussaini, F. A.; Kapil, R. S. and Shoeb, A.: Phytochemistry, 24 (1), 199-200 (1985).
4358. Wright, S. E.: J. Chem. Soc., 2005-2008 (1948).
4359. Vleggaar, R.; Smalberger, T. M. and De Waal, H. L.: J. S. Afr. Chem. Inst., 26 (2), 53-60 (1973).
4360. Ganguly, A.; Bhattacharyya, P.; Bhattacharyya, A. and Adityachaudhury, N.: Indian J. Chem., Sect. B, 27B (5), 462-463 (1988).
4361. Gupta, R. K. and Krishnamurti, M.: Phytochemistry, 16 (2), 293 (1977).
4362. Jayaraman, I.; Ghanim, A. and Khan, H. A.: Phytochemistry, 19 (6), 1267-1268 (1980).
4363. Burling, E. D.; Jefferson, A. and Scheinmann, F.: Tetrahedron, 21 (9), 2653-2669 (1965).
4364. Bhattacharyya, P. Zutshi, M. K.: Tetrahedron, 28 (22), 5589-5593 (1972).
4365. Gallon, B. J.; Kojima, R. W.; Kaner, R. B. and Diaconescu, P. L.: Angew. Chem. Int. Ed., 46 (38), 7251-7254 (2007).
4366. Wang, W. X. and Ding, X-B.: Acta Pharm. Sin., 34, 514-517 (1999).
4367. Isomura, Y.; Sakamoto, S.; Ito, N.; Homma, H.; Abe, T. and Kubo, K.: Chem. Pharm. Bull., 32 (1), 152-165 (1984).
4368. Li, X-j.; Feng, C.; Li, C-y. and Chen, W.: Tianjin Huagong, 21 (1), 21, $22-28$ (2007); Chem. Abstr., 148, 264671p (2008).
4369. Bedford, R. B.; Betham, M.; Caffyn, A. J. M.; Charmant, J. P. H.; Lewis-Alleyne, L. C.; Long, P. D.; Polo-Ceron, D. and Prashar, S-j.: Chem. Commun., (8), 990-992 (2008).
4370. Larsson, D. G. J.; Adolfsson-Erici, M. and Thomas, P.: Environ. Toxicol. Chem., 25 (2), 419-427 (2006).
4371. Narender, T.; Reddy, K. P.; Shweta, Srivastava, K.; Mishra, D. K. and Puri, S. K.: Org. Lett., 9 (26), 5369-5372 (2007).
4372. Sy, L-K. and Brown, G. D.: Phytochemistry, 52 (4), 681-683 (1999).
4373. Jakupovic, J.; Zdero, C.; Grenz, M.; Tsichritzis, F.; Lehmann, L.; Hashemi-Nejad, S. M. and Bohlmann, F.: Phytochemistry, 28 (4), 1119-1131 (1989).
4374. Gore, T. S.; Panse and Venkataraman, K.: Proc. Indian Acad. Sci., Ser. A, 29A, 289-305 (1949).
4375. Borsche, W.; Leditschke, H. and Lange, K.: Ber. Dtsch. Chem. Ges., 71B (5), 957-966 (1938).
4376. Battersby, A. R. and Binks, R.: J. Chem. Soc., 2896-2900 (1955).
4377. Kubiczek, G.: Monatsh Chem., 76, 55-64 (1946).
4378. Covello, M.; Dini, A. and De Simone, F.: Rend. Accad. Sci. Fis. Mat., Naples 36, 67-71 (1969).
4379. Covello, M.; Abignente, E. and Piscopo, E.: Ann. Chim. (Rome), 52, 213-225 (1962).
4380. Covello, M.; De Simone, F. and Dini, A.: Rend. Accad. Sci. Fis. Mat., Naples 35, 298-308 (1968).
4381. Borders, C. L. Jr.; Perez, Dianne M.; Lafferty, Mark W.; Kondow, Alexander J.; Brahm, Jesper; Fenderson, Mary B.; Brelsford, Gregy L. and Pett, Virginia B.: Bioorg. Chem., 17 (1) 96-107 (1989).
4382. Finaru, A.; Cascaval, A.; Tudorache, E. and Prisecaru, M.: Rev. Chim. (Bucharest), 50 (1) 8-12 (1999); Chem. Abstr., 131, 170145s (1999).
4383. Seliger, H.; Happ, E.; Cascaval, A.; Birsa, M. L. and Novitschi, G.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 5, 123-128 (1997); Chem. Abstr., 132, 207793a (2000).
4384. Nye, M. J. and Scriven, E. F. V.: Can. J. Chem., 49 (21) 3572-3574 (1971).
4385. Priestley, Hill M. and Moness Eugene: J. Org. Chem., 5, 355-361 (1940).
4386. Rosenmund, K. W. and P froepffer, K.: Chem. Ber., 90, 1922-1928 (1957).
4387. Segalle, R.: Monatsh. Chem., 17, 314-326 (1896).
4388. Baker, S. R.; Ross, W. J. and Jamieson, W. B.: Ger. Offen, 2,936,730 (1980); Chem. Abstr., 94, 15550u (1981).
4389. Pasaribu, S. J. and Williams, L. R.: Aust. J. Chem., 26 (6) 1327-1331 (1973).
4390. King, L. C. and Ostrum, G. K.: J. Org. Chem., 29, 3459-3461 (1964).
4391. Sharpe, C. J.; Shadbolt, R. S.; Ashford, A. and Ross, J. W.: J. Med. Chem., 14 (10) 977-982 (1971).
4392. Allen, J.; Schofield, J.; Vassal, T.; Frost, J. and Bertin, J.: Fr. Demande FR 2,696,741 (1994); Chem. Abstr., 121, 133978p (1994).
4393. Leclerc, G.; Bizec, J. C.; Bieth, N. and Schwartz, J.: J. Med. Chem., 23 (7) 738-744 (1980).
4394. Donnelly, J. A.; Kerr, P. A. and O’Boyle, P.: Tetrahedron, 29 (23) 3979-3983 (1973).
4395. Ogawa, M.; Matsuda, H.; Eto, H.; Asaoka, T.; Kuraishi, T.; Iwasa, A.; Nakashima, T. and Yamaguchi, K.: Chem. Pharm. Bull., 39 (9) 2301-2307 (1991).
4396. Tamai, T.; Tanaka, N.; Muranaka, H.; Mukaiyama, H.; Hirabayashi, A.; Sato, M. and Akahane, M.: PCT Int. Appl. WO 99 05,090 (1999); Chem. Abstr., 130, 139170b (1999).
4397. Gevorgyan, G. A.; Gabrielyan, S. A.; Vlasenko, E. V.; Durgaryan, L. K. and Mndzhoyan, O. L.: Khim. Farm. Zh., 21 (4) 419-425 (1987); Chem. Abstr., 107, 127109a (1987).
4398. Gevorkyan, G. A.; Gabrielyan, S. A.; Apoyan, N. A.; Podol'skaya, L. P.; Sukasyan, R. S.; Sarkisyan, A. S.; Azlivyan, A. S.; Akopyan, A. V. and Mndzhoyan, O. L.: Khim. Farm. Zh., 23 (12) 1478-1480 (1989); Chem. Abstr., 112, 172258n (1990).
4399. Sipos, Gyorgy v. and Szabo, Rozsa: Acta Phys. Chem. Szeged, 7, 126-128 (1961).
4400. Furlanetto, Richard W. and Kaiser, E. T.: J. Am. Chem. Soc., 95, 6786-6792 (1973).
4401. Cavallini, G.; Massarani, E.; Mauri, L.; Nardi, D.; Pacchiano, F. and Mantegazza, P.: Boll. Chim. Farm., 103 (1) 48-64 (1964).
4402. Bernauer, K.; Borgulya, J.; Bruderer, H.; Da Prada, M. and Zurcher, G.: Pat. Specif. (Aust.) AU 603,788 (1990); Chem. Abstr., 115, 49134d (1991).
4403. Matsunaya, Y. and Imafuku, K.: Bull. Chem. Soc. Jpn., 65, 295-297 (1992).
4404. Priimenko, B. A.; Romanenko, N. I.; Garmash, S. N.; Klyuev, N. A.; Fedulova, I. V.; Gnatov, N. I. and Koval, N. V.: Ukr. Khim. Zh., 51 (6) 660-663 (1985).
4405. Schoot, C. J. and Klassens, K. H.: Recl. Trav. Chim. Pays-Bas, 75, 190-192 (1956).
4406. Buu-Hoї, N. P. and Lavit, D.: J. Chem. Soc., 18-20 (1955).
4407. Becket, G. J. P.; Ellis, G. P. and Trindade, M. I.: J. Chem. Res., Synop., (2) 47 (1978).
4408. Bachelet, J. P.; Cavier, R.; Lemoine, J.; Rigothier, M. C.; Gayral, P. and Royer, R.: Eur. J. Med. Chem., 14 (4) 321-424 (1979).
4409. Cozzi, P.; Branzoli, U.; Lovisolo, P. P.; Orsini, G.; Carganico, G.; Pillan, A. and Chiari, A.: J. Med. Chem., 29 (3) 404-410 (1986).
4410. Chen, J. and Li, Y.: Xiamen Daxue Xuebao, Ziran Kexueban, 32 (2) 249-251 (1993).
4411. Malik, M. L. and Grover, S. K.: Indian J. Chem., Sect. B, 14B (7) 513-515 (1976).
4412. Muntwyler, R. and Menasse, R.: Eur. Pat. Appl. 31,795 (1981); Chem. Abstr., 95, 150463d (1981).
4413. Nomura, Y.; Yamakawa, T.; Nishioka, K.; Omura, T.; Miyake, N.; Masaki, M. and Nohira, H.: Chem. Pharm. Bull., 43 (2) 241-246 (1995).
4414. Fujii, T.; Yoshifuji, S. and Ohba, M.: Chem. Pharm. Bull., 26 (10) 3218-3222 (1978).
4415. Mukerji, D.: Justus Liebigs Ann. Chem., 619, 189-191 (1958).
4416. Vargha, L.; Ramonczai, J. and Bathory, J.: J. Am. Chem. Soc., 71, 2652-2655 (1949).
4417. Huke, M.; Goerlitzer, K. and Schenck, G.: Arch. Pharm. (Weinheim, Ger.), 302 (6) 401-422 (1969).
4418. Mercer, J. R.; Wiebe, L. I. and Chapman, J. D.: NucCompact, 22 (2) 40-46 (1991); Chem. Abstr., 116, 190279g (1992).
4419. Lin, Shin An and Ho, Chi Man: Hua Hsueh, 41 (3) 107-111 (1983); Chem. Abstr., 101, 170837z (1984).
4420. Buckman, S. J.; Pera, J. D. and Raths, F. W.: Ger. Offen 1,174,017 (1964); Chem. Abstr., 61, 9987d (1964).
4421. Munns, R. K.; Roybal, J. E.; Shimoda, W. and Hurlbut, J. A.: J. Chromatogr., 442, 209-218 (1988).
4422. Buu-Hoï, N. P.; Xuong, N. D. and Lavit, D.: J. Chem. Soc., 1034-1038 (1954).
4423. Adhikari, M. V. and Samant, S. D.: Ultrason. Sonochem., 9 (2) 107-111 (2002); Chem. Abstr., 137, 247456c (2002).
4424. Arnold, Lee D., Coe, Jotham W.; Kaneko, Takushi and Moyer, Mikel P.: PCT Int. Appl. WO 94 22,846 (1994); Chem. Abstr., 122, 314571s (1995).
4425. Kern, W. and Hummel, K.: Eur. Polym. J., 30 (6) 731-734 (1994).
4426. Kumar, Ashok; Rane, Ramakrishna Appaji and Ravindran, Vaikyaparambil Krishnan: Indian IN 171,707 (1992); Chem. Abstr., 122, 265043k (1995).
4427. Laufer, S. A.; Augustin, J.; Dannhardt, G. and Kiefer, W.: J. Med. Chem., 37 (12) 1894-1897 (1994).
4428. Takats, Peter; Laufer, Laszlo; Homoki and Radetzky, Odon: Hung. Teljes HU 64,926 (1994); Chem. Abstr., 122, 15794y (1995).
4429. Dimmel, D. R. and Schuller, L. F.: J. Wood Chem. Technol., 6 (4) 535-564 (1986); Chem. Abstr., 106, 139963s (1987).
4430. Suzuki, T.; Yano, A.; Okada, M. and Ishii, Y.: Nippon Kagaku Zasshi, 81 (2) 301-305 (1960); Chem. Abstr., 56, 434e (1962).
4431. Schenck, G.; Huke, M. and Görlitzer, K.: Tetrahedron Lett., (19) 2375-2378 (1968).
4432. Sonn, A. and Falkenheim, S.: Ber. Dtsch. Chem. Ges., 55, 2975-2985 (1922).
4433. Soon, A.: Ber. Dtsch. Chem. Ges., 52, 923-928 (1919).
4434. Naik, G. N. and Crawford, T. H.: Indian J. Chem., 4, 273-274 (1966).
4435. Dzierzgowski, S.: Ber. Dtsch. Chem. Ges., 27, 1983-1989 (1894).
4436. Friedlaender, P. and Rüdt, H.: Ber. Dtsch. Chem. Ges., 29, 1751-1756 (1896).
4437. Postovskii, I. Ya.; Novikova, A. P.; Chechulina, L. A. and Sidorova, L. P.: Khim. Geterosikl. Soedin., 8, 1051-1055 (1976); Chem. Abstr., 85, 177376h (1976).
4438. Sanchez-Viesca, F. and Berros, M. I.: Rev. Latinoamer. Quim., 29 (2) 73-79 (2001).
4439. Barker, G. and Ellis, G. P.: J. Chem. Soc. C, 16, 2230-2233 (1970).
4440. Kloetzel, M. C.; Dayton, R. P. and Abadir, B. Y.: J. Org. Chem., 20, 38-49 (1955).
4441. Bousquet, E.; Cavrini, V.; Gatti, R. and Spadaro, A.: J. Liq. Chromatogr. Relat. Technol., 21 (18) 2873-2886 (1998).
4442. Bousquet, E.; Santagati, N. A. and Tirendi, S.: J. Liq. Chromatogr. Relat. Technol., 20 (5) 757-760 (1997).
4443. Shriner, R. L. and Witte, M.: J. Am. Chem. Soc., 61, 2328-2329 (1939).
4444. Sasaki, Norio; Kudo, Sachio; Endo, Keiji and Suzuki, Rika: Jpn. Kokai Tokkyo Koho JP 04 77,487 [92 77,487] (1992); Chem. Abstr., 117, 145331c (1992).
4445. Dzierzgowski, S.: Zh. Russ. Fiz. Khim. O-va, 1, 154-163 (1893).
4446. Kossmehl, G. and Frohberg, H. C.: Chem. Ber., 119 (1) 50-64 (1986).
4447. Mase, T.; Arima, H.; Tomioka, K.; Yamada, T. and Murase, K.: J. Med. Chem., 29 (3) 386-394 (1986).
4448. Murase, K.; Mase, T.; Ida, H.; Takahashi, K. and Murakami, M.: Chem. Pharm. Bull., 25, 1368-1377 (1977).
4449. Al-Azawe, Subhi S.: Iraqi J. Sci., 31 (2) 273-289 (1990); Chem. Abstr., 114, 81673u (1991).
4450. Fuchigami, T.; Kandeel, Zaghloul El-Shahat and Nonaka, T.: Bull. Chem. Soc. Jpn., 58 (8) 2441-2442 (1985).
4451. Hameed, S.; Saify, Z. S.; Vaid, H. M. Fayyaz; Saeed, M.; Ahmed, M. and Khan, A.: J. Sci., Islamic Repub. Iran, 4 (4) 281-284 (1993); Chem. Abstr., 122, 105611r (1995).
4452. Maillard, J.; Langlois, M.; Delaunay, P.; VO Van Tri; Garcia, G.; Lannoy, J.; Roussillon, J. L.; Morin, R.; Eskenazi, P.; Benharkate, M.; Manuel, C. and Motosso, F.: Chim. Ther., 7 (6) 458-466 (1972).
4453. Pitet, G.; Couret, F.; Cousse, H. and Mouzin, G.: Eur. Pat. Appl. EP 36,357 (1981); Chem. Abstr., 96, 69052t (1982).
4454. Naka, T. and Hisano, M.: Jpn. Kokai Tokkyo Koho JP 02,275,869 [90,275,869] (1990); Chem. Abstr., 114, 185525p (1991).
4455. Nencki, M.: Zh. Russ. Fiz. Khim. O-va, 1, 110-125 (1893).
4456. Zaher, H. A.; Abdel-Rahman, R. M. and Abdel-Halim, A. M.: Indian J. Chem., Sect. B, 26B (2) 110-115 (1987).
4457. Dalvi, V. J. and Jadhav, G. V.: J. Indian Chem. Soc., 34 (4) 324-326 (1957).
4458. Borthakur, R. C.; Goswami, A.; Goswami, M.; Borthakur, N.; Rastogi, R. C. and Bhattacharya, P. R.: Indian J. Chem., Sect. B, 25B (6) 668-671 (1986).
4459. Seliger, H.; Happ, E.; Cascaval, A.; Birsa, M. L. and Novitschi, G.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 5, 111-122 (1997); Chem. Abstr., 132, 207731d (2000).
4460. Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 7 (2) 341-347 (1999); Chem. Abstr., 134, 100787r (2001).
4461. Sandulache, A.; Cascaval, A.; Toniutti, N. and Giumanini, A. G.: Tetrahedron, 53 (28) 9813-9822 (1997).
4462. Cascaval, A.; Sarbu, C.; Cilianu, B. St.; Carstea, A. and Bors, A.: Rom. RO 95,546 (1987).
4463. Lee, K.; Dudley, M. W.; Hess, K. M.; Lynn, D. G.; Joerger, R. D. and Binns, A. N.: Proc. Natl. Acad. Sci. U.S.A., 89 (18) 8666-8670 (1992).
4464. Kometani, T.; Watt, D. S. and Ji, T.: Tetrahedron Lett., 26 (17) 2043-2046 (1985).
4465. Borgulya, J.; Bruderer, H.; Bernauer, K.; Zuercher, G. and Da Prada, M.: Helv. Chim. Acta, 72 (5) 952-968 (1989).
4466. Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 6, 57-64 (998); Chem. Abstr., 132, 207785z (2000).
4467. Jadhav, G. V. and Merchant, J. R.: J. Indian Chem. Soc., 29 (7) 403-404 (1951).
4468. Brüll, J. and Friedlaender, P.: Ber. Dtsch. Chem. Ges., 30, 297-302 (1897).
4469. Gonzalez, A. G.; Barrera, J. B. and Yanes, H. C.: Heterocycles, 34 (7) 1311-1315 (1992).
4470. Oelschläger, H. and Moussa, O.: Arch. Pharm. (Weinheim, Ger.), 306, 807-812 (1973).
4471. Wittig, G.; Baugert, F. and Richter, H. E.: Justus Liebigs Ann. Chem., 446, 155-204 (1925).
4472. Philion, R. E.: U.S. US 4,695,589 (1987); Chem. Abstr., 109, 54475w (1988).
4473. Sterling Drug, Inc.: Brit. 1,544,872 (1979); Chem. Abstr., 92, 163686s (1980).
4474. Bays, D. E.: Brit. UK Pat. GB 2,230,525 (1990); Chem. Abstr., 114, 163767s (1991).
4475. Collins, I.; Wicks, P. D. and Forfar, A.: Ger. Offen. 2,704,895 (1977); Chem. Abstr., 87, 184202t (1977).
4476. Finch, H.; Lunts, L. H. C.; Naylor, A. and Skidmore, I. F.: Eur. Pat. Appl. EP 219,350 (1987); Chem. Abstr., 107, 39365a (1987).
4477. Kitazawa, M.; Okazaki, K.; Tamai, T.; Saito, M.; Tanaka, N.; Kobayashi, H.; Kikuchi, K. and Muranaka, H.: PCT Int. Appl. WO 97 30,023 (1997); Chem. Abstr., 127, 205361f (1997).
4478. Kitazawa, M.; Okazaki, K.; Tamai, T.; Saito, M.; Tanaka, N.; Kobayashi, H.; Kikuchi, K. and Muranaka, H.: PCT Int. Appl. WO 97 35,835 (1997); Chem. Abstr., 127, 262537s (1997).
4479. Klinger, K. H.: Arzneim.-Forsch./Drug Res., 27 (1A) 4-14 (1977); Chem. Abstr., 87, 23212f (1977).
4480. Lunts, L. H. C. and Judkins, B. D.: Brit. UK Pat. Appl. GB 2,230,775 (1990); Chem. Abstr., 114, 185280e (1991).
4481. Procopiou, P. A.; Morton, G. E.; Todd, M. and Webb, G.: Tetrahedron Asymmetry, 12 (14) 2005-2008 (2001).
4482. Skidmore, I. F.; Naylor, A.; Finch, H.; Lunts, L. H. C. and Campbell, I. B.: Eur. Pat. Appl. EP 303,465 (1989); Chem. Abstr., 111, 23406m (1989).
4483. Ahmad-Junan, S. A. and Whiting, D. A.: J. Chem. Soc., Perkin Trans. 1, (6) 675-678 (1992).
4484. Doifode, K. B. and Marathey, M. G.: J. Org. Chem., 29, 2025-2026 (1964).
4485. Tambor, J. and Du Bois, E. M.: Ber. Dtsch. Chem. Ges., 51, 748-751 (1918).
4486. Auwers, K. v. and Pohl, P.: Justus Liebigs Ann. Chem., 405, 243-294 (1914).
4487. Turan-Zitouni, G.; Kaplancikli, Z. A. and Chevallet, P.: Farmaco 52 (10) 635-638 (1997); Chem. Abstr., 128, 204829y (1998).
4488. Pendse, H. K.: Rasayanam, 2, 131-134 (1956); Chem. Abstr., 51, 5063 f (1957).
4489. Beirne, J. J.; Coyle, A. M. and Donnelly, J. A.: Tetrahedron, 26 (15) 3809 (1970).
4490. Donnelly, J. A.: Tetrahedron, 29 (17) 2585-2588 (1973).
4491. Riegel, B. and Wittcoff, H.: J. Am. Chem. Soc., 68, 1913-1917 (1946).
4492. Dimmel, D. R. and Shepard, D.: J. Wood Chem. Technol., 2, 297-315 (1982); Chem. Abstr., 98, 18276c (1983).
4493. Kurokawa, M.; Yoshida, T.; Sato, H.; Matsuoka, N. and Satomura, K.: PCT Int. Appl. WO 98 09,956 (1998); Chem. Abstr., 128, 230236x (1998).
4494. Duncanson, L. A.; Grove, J. F.; MacMillan, J. and Mulholland, T. P. C.: J. Chem. Soc., 3555-3564 (1957).
4495. Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Chim., 7 (2) 349-354 (1999); Chem. Abstr., 134, 100788s (2001).
4496. Mallion, Keith Blakeney; Brown, George Robert and Whittamore, Paul Robert Owen: PCT Int. Appl. WO 94 03,451 (1994); Chem. Abstr., 122, 213933f (1995).
4497. Lesieur, D.; Fourmaintraux, E.; Depreux, P.; Delagrange, P.; Renard, P. and GuardiolaLemaitre, B.: Eur. Pat. Appl. EP 721,947 (1996); Chem. Abstr., 125, 167778w (1996).
4498. Bhalerao, U. T.; Raju, B. Chinna and Neelakantan, Parvathi: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 33B (12) 1197-1199 (1994).
4499. Bhalerao, U. T.; Raju, B. China and Neelakantan, Parvathi: Synth. Commun., 25 (10) 1433-1439 (1995).
4500. Ayer, D. E.; Bundy, G. L. and Jacobsen, E. J.: PCT Int. Appl. WO 93 20,078 (1993); Chem. Abstr., 121, 134139c (1994).
4501. Finch, H.; Lunts, L. H. C.; Naylor, A.; Skidmore, I. F. and Campbell, I. B.: U.S. US 4,853,381 (1989); Chem. Abstr., 112, 138733d (1990).
4502. Finch, H.; Lunts, L. H. C.; Naylor, A.; Skidmore, I. F. and Campbell, I. B.: Eur. Pat. Appl. EP 223,410 (1987); Chem. Abstr., 108, 37371w (1988).
4503. Finch, H.; Lunts, L. H. C.; Naylor, A.; Skidmore, I. F.; Campbell, I. B.; Middlemiss, D. and Willbe, C.: Eur. Pat. Appl. EP 220,054 (1987); Chem. Abstr., 108, 55893x (1988).
4504. Cushman, M. and Mathew, J.: Synthesis, 5, 397-399 (1982).
4505. Jemison, R. W.: Aust. J. Chem., 21 (1) 217-220 (1968).
4506. Varache-Beranger, M.; Nuhrich, A. and Devaux, G.: Farmaco, Ed. Sci., 42 (6) 465-473 (1987).
4507. Varache-Beranger, M.; Nuhrich, A. and Devaux, G.: Bull. Soc. Pharm. Bordeaux, 124 (1-2) 85-97 (1985); Chem. Abstr., 104, 148198g (1986).
4508. Freudenberg, K.; Fikentscher, H. and Harder, M.: Justus Liebigs Ann. Chem., 441, 157-180 (1925).
4509. Dumont, H. and Tambor, J.: Ber. Dtsch. Chem. Ges., 43, 1969-1970 (1910).
4510. Hess, K. M.; Dudley, M. W.; Lynn, D. G.; Joerger, R. D. and Binns, A. N.: Proc. Natl. Acad. Sci. U. S.A., 88 (17) 7854-7858 (1991).
4511. Kirk, T. K.; Harkin, J. M. and Cowling, E. B.: Biochim. Biophys. Acta, 165 (1) 145-163 (1968).
4512. Miksche, G. E.: Acta Chem. Scand., 27 (4) 1355-1368 (1973).
4513. Tuor, Urs; Wariishi, Hiroyuki; Schoemaker, Hans E. and Gold, Michael H.: Biochemistry, 31 (21) 4986-4995 (1992).
4514. Deneke, U.; Guethlein, W. F.; Kuhr, M.; Merdes, H.; Murawski, H. R. and Wielinger, H. E.: Ger. Offen. DE 3,411,997 (1985); Chem. Abstr., 104, 145136z (1986).
4515. Gardner, T. S.; Wenis, E. and Lee, J.: J. Org. Chem., 15, 841-849 (1950).
4516. Ramachandran, P. K.; Tefteller, A. T.; Paulson, G. O.; Cheng, T.; Lin, C. T. and Horton, W. J.: J. Org. Chem., 28, 398-403 (1963).
4517. Yasufuku, S. and Motonaga, A.: PCT Int. Appl. WO 93 19,066 (1993); Chem. Abstr., 120, 164170c (1994).
4518. Thorwart, W.; Gebert, U.; Schleyerbach, R. and Bartlett, R.: Eur. Pat. Appl. EP 276,805 (1988); Chem. Abstr., 110, 75574p (1989).
4519. Srivastava, P.; Pandey, V. C.; Misra, A. P.; Gupta, P.; Raj, K. and Bhaduri, A. P.: Bioorg. Med. Chem., 6 (2) 181-187 (1998).
4520. Merck, E.; A.-G.: Fr. M 3687 (1965); Chem. Abstr., 68, 12685u (1968).
4521. Pillai, K. M. R.; Kapil, R. S. and Anand, N.: Indian J. Chem., Sect. B: 30B (2) 195-200 (1991).
4522. Cooke, A.; Anderson, A.; Buchanan, K.; Byford, A.; Gemmel, D.; Hamilton, N.; McPhail, P.; Miller, S.; Sundaram, H. and Vijn, P.: Bioorg. Med. Chem. Lett., 11 (7) 927-930 (2001).
4523. Zhang, K.; Corrie, J. E. T.; Munasinghe, R. N. and Wan, P.: J. Am. Chem. Soc., 121, 5625-5632 (1999).
4524. Covello, M.; Piscopo, E. and Abignente, E.: Ann. Chim. (Rome), 50, 1651-1665 (1960).
4525. Tajana, A.; Rossi, S. and Salvaterra, M.: Arzneim. Forsch., 21 (11) 1661-1662 (1971).
4526. Jadhav, G. V. and Merchant, J. R.: J. Univ. Bombay, Sci., 19 (5), 39-40 (1951); Chem. Abstr., 46, 8630e (1952).
4527. Nohara, A.; Ukawa, K. and Sanno, Y.: Tetrahedron Lett., (22) 1999-2002 (1973).
4528. Nohara, A.; Ukawa, K. and Sanno, Y.: Tetrahedron, 30 (19) 3563-3568 (1974).
4529. Fresenius, P. v.: Pharm. Zentralhalle Dtschl., 95 (12) 471-478 (1956).
4530. Jadhav, G. V. and Merchant, J. R.: J. Univ. Bombay, Sci., 19 (5) 41-44 (1951); Chem. Abstr., 46, 9073 f (1952).
4531. Brewster, C. M. and Harris, J. C.: J. Am. Chem. Soc., 52, 4866-4872 (1930).
4532. Bora, U.; Bose, G.; Chaudhuri, M. K.; Dhar, S. S.; Gopinath, R.; Khan, A. T. and Patel, B. K.: Org. Lett., 2 (3) 247-249 (2000).
4533. Arnold, G.: Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol., 29B (11-12) 758-764 (1974).
4534. Kumar, A.; Rane, R. A.; Ravindran, V. K. and Dike, S. Y.: Synth. Commun., 27 (7) 1133-1141 (1997).
4535. Shah, R. C. and Mehta, P. R.: J. Univ. Bombay, 4, 109-113 (1935).
4536. Donnelly, J. A.; Acton, J. P.; Donnelly, D. J. and Philbin, E. M.: Proc. R. Ir. Acad., Sect. B, 83 B (1-16) 49-56 (1983); Chem. Abstr., 100, 103118g (1984).
4537. Jadhav, G. V. and Merchant, J. R.: J. Univ. Bombay, Sci., 19 (5), 35-38 (1951); Chem. Abstr., 46, 8630a (1952).
4538. Adams, R.: J. Am. Chem. Soc., 41, 247-270 (1919).
4539. Joshi, K. C. and Gupta, Jharna Sen: J. Indian Chem. Soc., 40 (10) 851-856 (1963).
4540. Stefanyl, David and Howard, Wm. L.: J. Org. Chem., 20, 813-818 (1955).
4541. Tarbell, D. S. and Fanta, Paul E.: J. Am. Chem. Soc., 65, 2169-2174 (1943).
4542. Kasuya, K.; Yamazaki, N.; Nakane, H.; Hashimoto, M.; Koibuchi, S. and Hashimoto, M.: Jpn. Kokai Tokkyo Koho JP 11 24,250 [99 24,250] (1999); Chem. Abstr., 130, 160677g (1999).
4543. Iradian, M. A.; Aroyan, R. A.; Yengoyan, A. P.; Grigorian, G. Kh.; Nersessian, S. E. and Panossian, A. G.: Khim. Farm. Zh., 28 (7) 13-15 (1994); Chem. Abstr., 122, 81220j (1995).
4544. Rosenmund, K. W.; Kuhnhenn, W. and Lesch, W.: Ber. Dtsch. Chem. Ges., 56, 2042-2044 (1923).
4545. Rosenmund, K. W. and Kuhnhenn, W.: Ber. Dtsch. Chem. Ges., 56, 1266-1269 (1923).
4546. Hansen, H. L.: J. Am. Chem. Soc., 59, 280-281 (1937).
4547. Joshi, K. C. and Bahel, S. C.: J. Indian Chem. Soc., 37 (11) 687-689 (1960).
4548. Auwers, K. v.; Baum, H. and Lorenz, H.: J. Prakt. Chem., 115, 81-106 (1927).
4549. Sugasawa, T.; Toyoda, T. and Sasakura, K.: PCT Int. Appl. WO 81 02,157 (1981); Chem. Abstr., 96, 34864g (1982).
4550. Toyoda, Tatsuo; Sasakura, Kazuyuki and Sugasawa, Tsutomu: J. Org. Chem., 46, 189-191 (1981).
4551. Bertin, D.; Perronnet, J. and Teche, A.: Ger. Offen 2,225,495 (1972); Chem. Abstr., 78, 58054x (1973).
4552. Fosdick, L. S.; Faucher, O. and Urbach, K. F.: J. Am. Chem. Soc., 68, 840-843 (1946).
4553. Fries, K.; Hasselbach, A. and Schroder, L.: Justus Liebigs Ann. Chem., 405, 346-372 (1914).
4554. Ranisteano, S. and Bourdon, R.: Brit. 1,165,334 (1969); Chem. Abstr., 72, 12783g (1970).
4555. Kunckell, F.: Ber. Dtsch. Pharm. Ges., 23, 472-490 (1913).
4556. Mitra, S. S. and Sreekumar, K.: Polymer, 38 (6) 1363-1366 (1997); Chem. Abstr., 126, 277046j (1997).
4557. Mitra, S. S. and Sreekumar, K.: J. Polym. Sci., Part A: Polym. Chem., 35 (8) 1413-1421 (1997); Chem. Abstr., 127, 17225r (1997).
4558. Kajigaeshi, S.; Kakinami, T.; Moriwaki, M.; Fujisaki, S.; Maeno, K. and Okamoto, T.: Synthesis, 545-546 (1988).
4559. Guy, A.; Lemaire, M. and Guetté, J. P.: Synthesis, (12) 1018-1020 (1982).
4560. Mameli, E.: Gazz. Chim. Ital., 56, 759-772 (1926).
4561. Fries, K. and Pfaffendorf, W.: Ber. Dtsch. Chem. Ges., 43, 212-219 (1910).
4562. Cullinane, N. M. and Edwards, B. F. R.: J. Appl. Chem., 9, 133-136 (1959).
4563. Bredereck, H.; Lehmann, G.; Schönfeld, C. and Fritzsche, E.: Ber. Dtsch. Chem. Ges., 72, 1414-1429 (1939).
4564. Sartori, G.; Casnati, G.; Bigi, F. and Predieri, G.: J. Org. Chem., 55, 4371-4377 (1990).
4565. Auwers, K. v.: Ber. Dtsch. Chem. Ges., 59, 2899 (1926).
4566. Tutin, F.: J. Chem. Soc., 97, 2495-2524 (1910).
4567. Byk-Gulden Lomberg, Chemische Fabrik G.m.b.H. (Winterhalder, L. inventor): Ger. 935,363 (1955); Chem. Abstr., 52, 20061e (1958).
4568. Winterhalder, L. (to Byk-Gulden Lomberg, Chemische Fabrik G.m.b.H.): U.S. 2,838,570 (1958); Chem. Abstr., 52, 16301a (1958).
4569. Bell, R. P.; Earls, D. W. and Timimi, B. A.: J. Chem. Soc., Perkin Trans. 2, (7) 811-817 (1974).
4570. Berkessel, A.; Bats, J. W.; Bolte, M.; Neumann, T. and Seidel, L.: Chem. Ber./Recl., 130 (7) 891-897 (1997).
4571. Berkessel, A.; Bats, J. W.; Hueber, M.; Haase, W.; Neumann, T. and Seidel, L.: Chem. Ber., 128 (2) 125-129 (1995).
4572. Dixit, A. N.; Reddy, K. V.; Deshmukh, A. R. A. S.; Rajappa, S.; Ganguly, B. and Chandrasekhar, J.: Tetrahedron, 51 (5) 1437-1448 (1995).
4573. Letsinger, R. L. and Collat, R.: J. Am. Chem. Soc., 74, 621-623 (1952).
4574. Tolkunov, S. V. and Dulenko, V. I.: Khim. Geterotsikl. Soedin., (6) 766-769 (1987); Chem. Abstr., 108, 112154h (1988).
4575. Turan-Zitouni, G.; Demirayak, S. and Chevallet, P.: Acta Pharm. Turc., 34 (1) 23-26 (1992); Chem. Abstr., 117, 191739q (1992).
4576. Turan-Zitouni, G.; Demirayak, S.; Erol, K. and Oezdemir, M.: Farmaco, 49 (11) 755-757 (1994).
4577. Weidenhagen, R. and Herrmann, R.: Ber. Dtsch. Chem. Ges., 68, 1953-1961 (1935).
4578. Gu, Jian-Xin; Li, Zu-Yi and Lin, Guo-Qiang: Chin. J. Chem., 13 (5) 475-480 (1995); Chem. Abstr., 124, 84947d (1996).
4579. Allewelt, A. L. and Day, A. R.: J. Org. Chem., 6, 384-400 (1941).
4580. Simonoff, R. and Hartung, W. H.: J. Am. Pharm. Assoc., 35 (10) 306-309 (1946).
4581. Rubin, Nathan and Day, Allan R.: J. Org. Chem., 5, 54-60 (1940).
4582. Freudenberg, K.; Karimullah and Steinbrunn, G.: Justus Liebigs Ann. Chem., 518, 37-61 (1935).
4583. Kunckell, F. and Johannssen, F.: Ber. Dtsch. Chem. Ges., 31, 169-172 (1898).c
4584. Tutin, F.; Caton, F. W. and Hann, A. C. O.: J. Chem. Soc., 95, 2113-2126 (1909).
4585. Wilds, A. L. and Johnson, T. L.: J. Am. Chem. Soc., 67, 286-290 (1945).
4586. Beckmann, S.; Etzbach, K. H. and Sens, R.: PCT Int. Appl. WO 95 29,958 (1995); Chem. Abstr., 124, 120121r (1996).
4587. Christopher, S. M.; Myers, R. C. and Ballantyne, B.: J. Am. Coll. Toxicol., 12 (6) 581 (1993); Chem. Abstr., 121, 51694d (1994).
4588. Levin, N.: PhD. Thesis, University of Maryland, College Park, MD, USA (1942).
4589. Suzuki, T.; Nakai, H.; Akyama, T.; Matsumura, T.; Sasaki, M. and Kamimura, J.: Jpn. Kokai Tokkyo Koho JP 05,297,585 [93,297,585] (1993); Chem. Abstr., 120, 335034t (1994).
4590. Sonn, A.: Ber. Dtsch. Chem. Ges., 50, 1262-1270 (1917).
4591. Zilberman, E. N. and Rybakova, N. A.: Zh. Obshch. Khim., 32 (2) 591-596 (1962).
4592. Booth, B. L. and Noori, G. F. M.: J. Chem. Soc., Perkin Trans. 1, 12, 2894-2900 (1980).
4593. Buu-Hoï, N. P. and Seailles, J., Jr.: J. Org. Chem., 20, 606-609 (1955).
4594. Rosenmund, W. and Lohfert, H.: Ber. Dtsch. Chem. Ges., 61, 2601-2607 (1928).
4595. Krannichfeldt, H.: Ber. Dtsch. Chem. Ges., 46, 4016-4025 (1913).
4596. Johnson, T. B. and Gatewood, E.: J. Am. Chem. Soc., 51, 1815-1819 (1929).
4597. Mannich, C. and Hahn, F. L.: Ber. Dtsch. Chem. Ges., 44, 1542-1552 (1911).
4598. Nencki, M.: Ber. Dtsch. Chem. Ges., 30, 1766-1768 (1897).
4599. Singh, J. M.: Can. J. Chem., 46, 1168-1169 (1968).
4600. Stephen, H. and Weizmann, C.: J. Chem. Soc., Trans., 105 (1) 1046-1057 (1914).
4601. Dzierzgowski, S.: Beilstein Handbuch der Organischen Chemie, IV (8) 273
4602. Molteni, L.; Trebbi, A.; Vercesi, G. and Signorini, M.: Fr. Demande 2,215,954 (1974); Chem. Abstr., 82, 139626v (1975).
4603. Mauthner, F.: J. Prakt. Chem., 118, 314-320 (1928).
4604. Davies, J. S. H. and Deegan, T.: J. Chem. Soc., 3202-3206 (1950).
4605. Feuerstein, W. and Brass, K.: Ber. Dtsch. Chem. Ges., 37, 817-820 (1904).
4606. Le Floc'h, Y. and Lefeuvre, M.: Tetrahedron Lett., 27 (45) 5503-5504 (1986).
4607. Geissman, T. A. and Mojé, W.: J. Am. Chem. Soc., 73, 5765-5768 (1951).
4608. Geissman, T. A. and Harborne, J. B.: J. Am. Chem. Soc., 78, 832-837 (1956).
4609. Schenck, G.; Huke, M. and Görlitzer, K.: Tetrahedron Lett., (22) 2059-2061 (1967).
4610. Shriner, R. L. and Grosser, F.: J. Am. Chem. Soc., 64, 382-384 (1942).
4611. Chen, J. and Li, Y.: Xiamen Daxue Xuebao, Ziran Kexueban, 31 (6) 651-656 (1992); Chem. Abstr., 120, 270020p (1994).
4612. Chen, J.; Yang, W.; Pan, X.; Li, Y. and Tan, Z.: Huaxue Xuebao 45 (5) 503-505 (1987); Chem. Abstr., 107, 236283y (1987).
4613. Patel, S. V.; Patel, H. S. and Patel, S. R.: Angew. Makromol. Chem., 149, 151-159 (1987).
4614. Kunckell, F.: Ber. Dtsch. Chem. Ges., 34, 124-129 (1901).
4615. Auwers, K. v. and Mauss, W.: Justus Liebigs Ann. Chem., 464, 293-311 (1928).
4616. Palmer, M. H. and Scollick, N. M.: J. Chem. Soc. C, 22, 2833-2836 (1968).
4617. Smith, T. J.; Wearne, R. H. and Wallis, A. F. A.: Chemosphere, 30 (1) 69-80 (1995).
4618. Wallis, A. F. A.; Smith, T. J. and Wearne, R. H.: Int. Symp. Wood. Pulping Chem., 8th, 3, 377-382 (1995); Chem. Abstr., 128, 49644p (1998).
4619. Bigi, F.; Maggi, R.; Sartori, G. and Casnati, G.: Gazz. Chim. Ital., 122, 283-289 (1992).
4620. Ishikawa, Wataru and Kurosawa, Hideichi: J. Chem. Soc. Jpn., 63, 1265-1267 (1942).
4621. Auwers, K. v.: Ber. Dtsch. Chem. Ges., 49, 809-819 (1916).
4622. Catch, J. R.; Elliott, D. F.; Hey, D. H. and Jones, E. R. H.: J. Chem. Soc., 552-555 (1949).
4623. Fries, K. and Finck, G.: Ber. Dtsch. Chem. Ges., 41, 4271-4284 (1908).
4624. Skraup, S. and Poller, K.: Ber. Dtsch. Chem. Ges., 57, 2033-2038 (1924).
4625. Auwers, K. v.; Müller, K.; Dannehl, H.; Eisenlohr, F.; and Hirt, W.: Justus Liebigs Ann. Chem., 364, 147-182 (1909).
4626. Moffett, R. B.: J. Chem. Eng. Data, 25 (2) 176-183 (1980).
4627. Arnoldi, A.; Bassoli, A.; Merlini, L. and Ragg, E.: J. Chem. Soc., Perkin Trans. 1, (12) 1359-1366 (1993).
4628. Caporale, G. and Bareggi, A. M.: Gazz. Chim. Ital.: 98 (4) 444-457 (1968).
4629. Murai, J.: Science Repts. Saitama Univ., 1A, 147-151 (1954); Chem. Abstr., 50, 981g (1956).
4630. Horvath, K.: Monatsh. Chem., 82, 901-912 (1951).
4631. Heacock, R. A. and Huntzinger, O.: Can. J. Chem., 43 (9) 2535-2544 (1965).
4632. Kuhn, R. and Staab, H. A.: Chem. Ber., 87, 266-272 (1954).
4633. Sugasawa, S. and Kawasu, M.: J. Pharm. Soc. Jpn., 73, 1102-1105 (1953).
4634. Arnoldi, A.; Camarda, L. and Merlini, L.: J. Agric. Food Chem., 34, 339-344 (1986).
4635. Nodiff, E. A.; Hulsizer, J. M. and Tanabe, K.: Chem. Ind. (London), 962-963 (1974).
4636. Goldberg, A. A. and Turner, H. S.: J. Chem. Soc., 111-113 (1946).
4637. Pratt, D. D. and Robinson, R.: J. Chem. Soc., 123, 745-758 (1923).
4638. Ferrari, G. and Casagrande, C.: Chim. Ind. (Milan), 43, 621-624 (1961).
4639. Liebman, A. A. and Liu, Yu-Ying: U.S. 4,107,182 (1978); Chem. Abstr., 90, 72165p (1979).
4640. Grover, S. K.; Gupta, V. N.; Jain, A. C. and Seshadri, T. R.: J. Sci. Ind. Res., 19B (7) 258-264 (1960).
4641. Gruber, W. and Horvath, K.: Monatsch. Chem., 80, 563-571 (1949).
4642. Goupil, J. J.: Belg. 871,424 (1979); Chem. Abstr., 91, 39455f (1979).
4643. Goupil, J. J.: Can. CA 1,130,302 (1982); Chem. Abstr., 98, 16667g (1983).
4644. Ferreira, J. A.; Nel, J. W.; Brandt, E. V.; Bezuidenhoudt, B. C. B. and Ferreira, D.: J. Chem. Soc., Perkin Trans. 1, (8) 1049-1056 (1995).
4645. Danishefsky, Samuel and Walker, Frederick J.: J. Am. Chem. Soc., 101 (23) 7018-7020 (1979).
4646. MacMillan, J.; Mulholland, T. P. C.; Dawkins, A. W. and Ward, G.: J. Chem. Soc., 429-435 (1954).
4647. Yamato, Masatoshi: Jpn. Kokai Tokkyo Koho JP 01,258,668 [89,258,668] (1989); Chem. Abstr., 112, 178482c (1990).
4648. Chatterjea, J. N.; Gupta, S. N. P. and Mehrotra, V. N.: J. Indian Chem. Soc., 42 (4) 205-210 (1965).
4649. Chihiro, M.; Komatsu, H.; Tominaga, M. and Yabuuchi, Y.: PCT Int. Appl. WO 92 09,586 (1992); Chem. Abstr., 118, 191726d (1993).
4650. Auwers, K. v. and Mauss, W.: Ber. Dtsch. Chem. Ges., 61, 1495-1507 (1928).
4651. Davies, J. S. H.; McCrea, P. A.; Norris, W. L. and Ramage, G. R.: J. Chem. Soc., 3206-3213 (1950).
4652. Murai, J.: Science Repts. Saitama Univ., 1, 23-26 (1952); Chem. Abstr., 49, 3889a (1955).
4653. Nore, P. and Honkanen, E.: J. Heterocycl. Chem., 17 (5) 985-987 (1980).
4654. Price, D. and Bogert, M. T.: J. Am. Chem. Soc., 56, 2442-2449 (1934).
4655. Jones, G. H.; Mackenzie, J. B. D.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 562-569 (1949).
4656. Friedlaender, P. and Schnell, L. C.: Ber. Dtsch. Chem. Ges., 30, 2150-2155 (1897).
4657. Andeno, B. V.: Japan Kokai 75 14,653 (1975); Chem. Abstr., 85, 46217j (1976).
4658. Shriner, R. L.; Matson, E. D. and Damschroder, R. E.: J. Am. Chem. Soc., 61, 2322-2327 (1939).
4659. Balakrishna, K. J.; Seshadri, T. R. and Viswanath, G.: Proc. Indian Acad. Sci., Sect. A: 33A, 233-235 (1951).
4660. Takeuchi, Y.; Watanabe, I.; Misumi, K.; Irie, M.; Hirose, Y.; Hirata, K.; Yamato, M. and Harayama, T.: Chem. Pharm. Bull., 45 (12) 2011-2015 (1997).
4661. Itoh, H.; Konno, M.; Tokuhiro, T.; Iguchi, S. and Hayashi, M.: Brit. UK Pat. Appl. 2,026,480 (1980); Chem. Abstr., 93, 167893a (1980).
4662. John, H. and Beetz, P.: J. Prakt. Chem., 149, 171-174 (1937).
4663. Royer, R.; Bachelet, J. P. and Demerseman, P.: Bull. Soc. Chim. Fr., 878-882 (1969).
4664. Tanaka, T.; Sakurai, Y.; Okazaki, H.; Hasegawa, T. and Fukuyama, Y.: Eur. Pat. Appl. EP 382,213 (1990); Chem. Abstr., 114, 81225z (1991).
4665. Buckman, S. J.; Fenyes, J. G. E.; Flanagan, K. J.; Pera, J. D. and Pulido, M. L.: US 3,933,472 (1976); Chem. Abstr., 84, 106378d (1976).
4666. Pera, John D.; Buckman, Stanley J.; Fenyes, Joseph G. E.; Flanagan, Kenneth J. and Pulido, Miguel L.: Fr. Demande 2,174,152 (1973); Chem. Abstr., 80, 120547g (1974).
4667. Sen, A. B. and Gupta, A. K. Sen: J. Indian Chem. Soc., 33 (6) 437-439 (1956).
4668. Mentzer, C. and Meunier, P.: Bull. Soc. Chim. Biol., 29, 977-981 (1947).
4669. Mentzer, C. and Meunier, P.: C. R. Acad. Sci., 225, 1329-1331 (1947).
4670. Fountain, K. R. and Pierschbacher, M.: J. Org. Chem., 41, 2039-2042 (1976).
4671. Mauri, L. and Nardi, D.: Farmaco, Ed. Prat., 18 (12) 651-656 (1963).
4672. Kaltwasser, H.; Kochmann, W.; Pallas, M.; Damm, H. and Krueger, H.: Ger. (East) 71,245 (1970); Chem. Abstr., 73, 86830n (1970).
4673. Mahato, S. B.; Mandal, N. B.; Pal, A. K. and Maitra, S. K.: Tetrahedron, 43 (19) 4439-4445 (1987).
4674. Bhargava, P. M. and Sen, A. B.: J. Sci. Food Agr., 1, 178-182 (1950).
4675. Sen, A. B. and Bhargava, P. M.: J. Indian Chem. Soc., 26 (8) 366-370 (1949).
4676. Houben, J. and Fischer, W.: Ber. Dtsch. Chem. Ges., 63, 2455-2463 (1930).
4677. Houben, J. and Fischer, W.: J. Prakt. Chem., 123, 262-275 (1929).
4678. Ebine, S.: Sci. Rep. Saitama Univ., Ser. A, 2A, 69-78 (1955); Chem. Abstr., 50, 11971 (1956).
4679. Whalley, W. B.: J. Chem. Soc., 665-671 (1951).
4680. Whalley, W. B.: J. Chem. Soc., 3229-3235 (1951).
4681. Houben, J.: Ber. Dtsch. Chem. Ges., 63, 2455-2463 (1930).
4682. Dmowski, W.: J. Fluorine Chem., 20, 589-598 (1982).
4683. Stavber, S.; Jereb, M. and Zupan, M.: Chem. Commun. (Cambridge), (14), 1323-1324 (2000).
4684. Stavber, S.: Personal communication, June 22, 2001.
4685. Pivovarenko, V. G. and Khilya, V. P.: Khim. Geterotsikl. Soedin., (5) 595-600 (1992); Chem. Abstr., 118, 212822z (1993).
4686. Palfreyman, M. G. and McDonald, I. A.: Eur. Pat. Appl. EP 66,518 (1982); Chem. Abstr., 98, 179904w (1983).
4687. Palfreyman, M. G. and McDonald, I. A.: U.S. US 4,421,767 (1983); Chem. Abstr., 100, 210421x (1984).
4688. Kolycheva, M. T.; Yagupol'skii, Yu. L.; Zaitsev, L. M.; Gerus, I. I.; Kukhar, V. P. and Klebanov, B. M.: Khim. Farm. Zh., 22 (2) 159-163 (1988); Chem. Abstr., 109, 213 r (1988).
4689. Brickl, R.; Eberhardt, H.; Appel, K. R.; Lechner, U. and Merck, W.: Ger. Offen. 2,616,479 (1977); Chem. Abstr., 88, 37429q (1978).
4690. Li, Guoqing and Bittman, R.: Tetrahedron Lett., 41 (35) 6737-6741 (2000).
4691. Matsumoto, Seiichiro; Kobayashi, Hiroshi and Ueno, Keihei: Bull. Chem. Soc. Jpn., 42 (4) 960-968 (1969).
4692. Meussdoerffer, J. N. and Niederpruem, H.: Ger. Offen. 2,653,601 (1978); Chem. Abstr., 89, 129265 g (1978).
4693. Voznyi, Ya. V.; Dekaprilevich, M. O.; Yufit, D. S. and Struchkov, Yu. T.: Izv. Akad. Nauk SSSR, Ser. Khim., 6, 1371-1375 (1992); Chem. Abstr., 118, 124349v (1993).
4694. Voznyi, Ya. V.; Yufit, D. S.; Pavlov, V. A. and Struchkov, Yu. T.: Izv. Akad. Nauk SSSR, Ser. Khim., 4, 913-918 (1983); Chem. Abstr., 111, 194519e (1989).
4695. Mendel, A.: J. Chem. Eng. Data, 11 (4) 585-586 (1966).
4696. Kaltenbronn, J. S.; Quin, J., III; Reisdorph, B. R.; Klutchko, S.; Reynolds, E. E.; Welch, K. M.; Flynn, M. A. and Doherty, A. M.: Eur. J. Med. Chem., 32 (5) 425-431 (1997).
4697. Lee, Ihn-Sook; Liu, Yin; Narazaki, M.; Hibi, M.; Kishimoto, T. and Taga, T.: FEBS Lett., 401 (2,3) 133-137 (1997); Chem. Abstr., 126, 156260r (1997).
4698. Shiao, Daniel D.: US Pat., US 4,138,265 (1979); Chem. Abstr., 90, 195616u (1979).
4699. Ford, R. E.; Knowles, P.; Lunt, E.; Marshall, S. M.; Penrose, A. J.; Ramsden, C. A.; Summers, A. J. H.; Walker, J. L. and Wright, D. E.: J. Med. Chem., 29 (4) 538-549 (1986).
4700. Ramsden, C. A.; Knowles, P.; Lewis, E. J.; Lunt, E. and Wright, D. E.: Ger. Offen. 2,846,931 (1979); Chem. Abstr., 91, 74626j (1979).
4701. Dyachenko, V. I.; Kolomiets, A. F. and Fokin, A. V.: Izv. Akad. Nauk SSSR, Ser. Khim.; 6, 1436-1440 (1989); Chem. Abstr., 111, 214171r (1989).
4702. Lee, Kyunghee: Bull. Korean Chem. Soc., 18 (1) 18-23 (1997).
4703. Dudley, M.: Ph. D. Thesis, University of Chicago, Chicago, IL, USA (1991).
4704. Sprecher, A. v. and Beck, A.: Eur. Pat. Appl. EP 333,315 (1989); Chem. Abstr., 112, 118648b (1990).
4705. Brown, F. J.; Bernstein, P. R.; Cronk, L. A.; Dosset, D. L.; Hebbel, K. C.; Maduskuie, T. P., Jr.; Shapiro, H. S.; Vacek, E. P.; Yee, Ying K.; Willard, A. K.; Krell, R. D. and Snyder, D. W.: J. Med. Chem., 32 (4) 807-826 (1989).
4706. Bhandange, R. E.; Doshi, A. G.; Bhandange, D. G. and Raut, A. W.: Orient J. Chem., 17 (3) 525-526 (2001); Chem. Abstr., 137, 47065n (2002).
4707. Byk-Gulden Lomberg, Chemische Fabrik G.m.b.H. (Winterhalder, L. inventor): Ger. 949,288 (1956); Chem. Abstr., 53, 3150e (1959).
4708. Stavber, S.; Jereb, M. and Zupan, M.: Chem. Commun. (Cambridge), (5) 488-489 (2002).
4709. Winterhalder, L.: U.S. 2,786,671 (1957); Chem. Abstr., 51, 12975a (1957).
4710. Troponwerke Dinklage \& Co. (Külz, F. inventor): Ger. 894,396 (1953); Chem. Abstr., 52, 14685a (1958).
4711. Shirasaka, Tetsuhiko; Ishikawa, Hiroshi; Yasamura, Koichi; Jitsukawa, Koichiro; Toyama, Sachio; Tsubouchi, Hidetsugu; Sudo, Kimio and Tsuji, Koichi: Eur. Pat. Appl. EP 435,333 (1991); Chem. Abstr., 115, 279695s (1991).
4712. Huebner, C. F. and Link, K. P.: J. Am. Chem. Soc., 67, 99-101 (1945).
4713. Goodwin, B. L.; Ruthven, C. R. J. and Sandler, M.: Gen. Pharmacol., 28 (4) 535-543 (1997); Chem. Abstr., 126, 328527b (1997).
4714. Tafesh, A. M.; Kvakovszky, G. and Lindley, C. R.: U.S. US 5,349,090 (1994); Chem. Abstr., 121, 280383u (1994).
4715. Bretschneider, H. and Hörmann, H.: Monatsh. Chem., 84, 1021-1032 (1953).
4716. Brachwitz, H.: Z. Chem., 7, 154-166 (1967).
4717. Brachwitz, H.: Z. Chem., 7, 268-269 (1974).
4718. D'Amico, A.; Bertolini, L. and Monreale, C.: Chim. Ind. (Milan), 38, 93-99 (1956).
4719. Kulinskii, V. I.; Yashunskii, V. G.; Klimova, A. D. and Alpatova, T. V.: Radiats. Biol. Radioekol., 37 (6) 914-917 (1997); Chem. Abstr., 128, 292223z (1998).
4720. Muller, G.; Amiard, G. and Mathieu, J.: Bull. Soc. Chim. Fr., 533-535 (1949).
4721. Sachs, R.: F. P. 866570 (1939); Chem. Zentralbl. II, 1967 (1942).
4722. Sachs, R.: F. P. 851296 (1938); Chem. Zentralbl. II, 1077 (1940).
4723. Lindstad, R. I.; Koll, P. and McKinley-McKee, J. S.: Biochem. J., 330 (1) 479-487 (1998).
4724. Corrigan, J. R.; Langermann, M. J. and Moore, M. L.: J. Am. Chem. Soc., 67, 1894-1896 (1945).
4725. Izawa, T.; Nishiyama, S. and Yamamura, S.: Tetrahedron, 50 (48) 13593-13600 (1994).
4726. Kvakovszky, G.; Vicari, R.; Fruchey, O. S.; Tafesh, A. M. and Hilton, C. B.: U.S. US 5,393,860 (1995); Chem. Abstr., 123, 84259k (1995).
4727. Morisawa, Y.; Kataoka, M.; Nagahari, H.; Shimoji, Y.; Saito, F.; Sugiyama, M.; Koike, H. and Oshima, T.: Eur. Pat. Appl. EP 238,357 (1987); Chem. Abstr., 108, 56125k (1988).
4728. Vicari, R.; Kvakovszky, G.; Fruchey, O. S. and Metz, H. J.: U.S. US 5,464,941 (1995); Chem. Abstr., 124, 178873d (1996).
4729. Vicari, R.; Kvakovszky, G. and Fruchey, O. S.: U.S. US 5,464,923 (1995); Chem. Abstr., 124, 57098w (1996).
4730. Gero, A.: J. Org. Chem., 16, 1222-1230 (1951).
4731. Tafesh, A. M.; Fruchey, O. S.; Hilton, C. B. and Mueller, W. H.: PCT Int. Appl. WO 93 01,158 (1993); Chem. Abstr., 119, 95101w (1993).
4732. Asscher, M.: Recl. Trav. Chim. Pays-Bas, 68, 960-968 (1949).
4733. Broom, N. J. P.; O'Haulon, P. J.; Osborne, N. F. and Pengelly, D.: PCT Int. Appl. WO 95 05,384 (1995); Chem. Abstr., 124, 87687e (1996).
4734. Okumura, K.: Yakugaku Zasshi, 80, 525-532 (1960); Chem. Abstr., 54, 19659h (1960).
4735. Yamamoto, K. and Tsujii, H.: J. Pharm. Soc. Jpn., 75, 1226-1228 (1955); Chem. Abstr., 50, 8598c (1956).
4736. Langenbeck, W. and Fischer, F.: Pharmazie, 5, 56-57 (1950).
4737. Remizov, A. L.: Zh. Obshch. Khim., 28, 2530-2538 (1958).
4738. Stolz, F.: Ber. Dtsch. Chem. Ges., 37, 4149-4154 (1904).
4739. Kindler, K. and Peschke, W.: Archiv. Pharm. (Weinheim, Ger.), 269, 581-606 (1931).
4740. Dakin, H. D.: Proc. Royal Soc. (London), Ser. B, 76, 498-503 (1905).
4741. Nishina, A.; Kajishima, F.; Matsunaga, M.; Tezuka, H.; Inatomi, H. and Osawa, T.: Biosci., Biotechnol., Biochem., 58 (2) 293-296 (1994); Chem. Abstr., 120, 215727z (1994).
4742. Andersen, S. O.: J. Insect Physiol., 18, 527-540 (1972).
4743. Anderson, J. and Oiav, S.: J. Insect. Physiol., 16, 1951-1959 (1970).
4744. Andersen, S. O. and Roepstorff, P.: Insect. Biochem., 8 (2) 99-104 (1978).
4745. Andersen, S. O.: Insect Biochem., 1 (2) 157-170 (1971).
4746. Andersen, S. O.; Jacobsen, J. P. and Roepstorff, P.: Tetrahedron, 36, 3249-3252 (1980).
4747. Okot-Kotber, B. M.; Morgan, T. D.; Hopkins, T. L. and Kramer, K. J.: Insect. Biochem. Mol. Biol., 24 (8) 787-802 (1994).
4748. Roepstorff, P. and Andersen, S. O.: Biomed. Mass Spectrom., 7 (7) 317-320 (1980).
4749. Ardis, A. E.; Baltzly, R. and Schoen, W.: J. Am. Chem. Soc., 68, 591-595 (1946).
4750. Euw, J.; Neher, R.; Reichstein, T.; Tait, S. A. S.; Tait, J. F. and Wettstein, A.: Helv. Chim. Acta, 42, 1817-1829 (1959).
4751. Sejbal, J. and Krecek, V.: Czech. CS 274,244 (1992); Chem. Abstr., 119, 138986h (1993).
4752. Fodor, G.; Beke, D. and Kovacs, O.: Acta Chim. Acad. Sci. Hung., 1 (1) 149-162 (1951).
4753. Legerlotz, H.: Chem. Zentralbl., I, 586 (1930).
4754. Legerlotz, H.: DE 520,079 (1926).
4755. Stearns \& Co.: US 1,926,952 (1928).
4756. Moore, M. L. and Corrigan J. R. (to Sterling Drug Inc.): U.S. 2,460,143 (1949); Chem. Abstr., 43, 3460e (1949).
4757. Legerlotz, H.: DE 518,636 (1927).
4758. Legerlotz, H.: CH 171,977 (1930).
4759. Alpatova, T. V.; Kovtun, V. Yu.; Olovyanishnikova, Z. A.; Klimova, A. D.; Kulinskii, V. N. and Yashunskii, V. G.: Khim. Farm. Zh., 22 (11) 1349-1355 (1988).
4760. Goskonda, V. R.; Khan, M. A.; Hutak, C. M. and Reddy, I. K.: J. Pharm. Sci., 88 (2) 180-184 (1999); Chem. Abstr., 130, 232443c (1999).
4761. Bretschneider, H.: Monatsh. Chem., 76, 368-380 (1947).
4762. Legerlotz, H.: Chem. Zentralbl., I. 1, 1048 (1929).
4763. Moed, H. D.; Asscher, M.; Van Draanen, P. J. A. and Niewind, H.: Recl. Trav. Chim. PaysBas, 71, 933-944 (1952).
4764. Ali, F. E.; Bondinell, W. H.; Huffman, W. F.; Lago, M. A.; Keenan, R. McCulloch; Kwon, C.; Miller, W. H.; Nguyen, T. and Takata, D. T.: PCT Int. Appl. WO 96 00, 730 (1996); Chem. Abstr., 124, 289584e (1996).
4765. Ali, F. E.; Bondinell, W. H.; Keenan, R. McCulloch; Ku, T. Wen Fu; Miller, W. H. and Samanen, J.: PCT Int. Appl. WO 97 24, 122 (1997); Chem. Abstr., 127, 149074a (1997).
4766. Ali, F. E.; Bondinell, W. H.; Keenan, R. McCulloch; Ku, T. Wen Fu; Miller, W. H. and Samanen, J.: PCT Int. Appl. WO 97 24, 124 (1997); Chem. Abstr., 127, 149073z (1997).
4767. Dakin, H. D.: Proc. Royal Soc. (London), Ser. B, 76, 491-497 (1905).
4768. Voswinckel, H.: Ber. Dtsch. Chem. Ges., 42, 4651-4654 (1909).
4769. Bradbury, S. P.; Mekenyan, O.; Veith, G. D. and Zaharieva, N.: SAR QSAR Environ. Res., 4 (2-3) 109-124 (1995); Chem. Abstr., 124, 138080m (1996).
4770. Grady, R. W.; Bienen, E. J. and Clarkson, A. B., Jr.: Mol. Biochem. Parasitol., 21 (1) 55-63 (1986); Chem. Abstr., 106, 171p (1987).
4771. Grinsteins, V. and Adakovskii, Ya. A.: Latv. PSR Zinat. Akad. Vestis, Kim. Ser., 5, 593-596 (1968); Chem. Abstr., 70, 57586v (1969).
4772. Liu, Gengtao; Huang, Liang and Rao, Erchang: Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,052,855 (1991); Chem. Abstr., 116, 128905e (1992).
4773. Moed, H. D.; van Dijk, J. and Niewind, H.: Recl. Trav. Chim. Pays-Bas, 74, 919-936 (1955).
4774. Raether, G.; Lebus, F.; Klopsh, D.; Katzorke, D. and Wollmann, H.: Pharmazie, 46 (6) 426-431 (1991).
4775. Barrenscheen, H. K. and Filz, W.: Biochem. Z., 255, 344-350 (1932).
4776. Rozum, Yu. S.: Biokhimiya, 17, 476-479 (1952); Chem. Abstr., 47, 403g (1953).
4777. Thies, H. and Özbilici, Z.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 295, 194-196 (1962).
4778. Rao, P. S. and Hayon, E.: J. Am. Chem. Soc., 96, 1287-1294 (1974).
4779. Torres-Lapasio, J. R.; Villanueva-Camanas, R. M.; Sanchis-Mallols, J. M.; MedinaHernandez, M. J. and Garcia-Alvarez-Coque, M. C.: J. Chromatogr., A 677 (2) 239-253 (1994).
4780. Vidal-Ollivier, E.; Schwadrohn, G.; Maillard, C.; Balansard, G. and Ollivier, B.: J. Chromatogr., 396, 421-424 (1987).
4781. Villanueva-Camanas, R. M.; Sanchis-Mallols, J. M.; Torres-Lapasio, J. R. and RamisRamos, G.: Analyst (Cambridge, U. K.), 120 (6) 1767-1772 (1995).
4782. Hudson, J. C.; Golin, M. and Malcom, M.: J.-Can. Soc. Forensic Sci., 28 (2) 137-152 (Pub. 1995) (1995); Chem. Abstr., 123, 190633 (1995).
4783. Bretschneider, H. and Sachsenmaier, W.: Monatsh. Chem., 84, 619-628 (1953).
4784. Frederick Stearns \& Co.: Chem. Zentralbl., II, 351 (1929).
4785. Frederick Stearns \& Co.: A. P. 1680 055; Chem. Zentralbl., I, 1048 (1928).
4786. Goto, T.: J. Pharm. Soc. Jpn., 74, 318-319 (1954); Chem. Abstr. 49, 3960c (1955).
4787. Patel, P. J.; Messer, W. S. and Hudson, R. A.: J. Med. Chem., 36, 1893-1901 (1993).
4788. Patel, P. J.; Wohlfeil, E. R.; Stahl, S. S.; McLaughlin, K. A. and Hudson, R. A.: Biochem. Biophys. Res. Commun., 175 (2) 407-413 (1991).
4789. Bretschneider, H.: Monatsh. Chem., 81, 372-384 (1950).
4790. Bretschneider, H.: Sitzungsber. oesterr. akad. wiss. math. naturwiss. Kl. Abt. 2b, B 159, (3-4) 372-384 (1950).
4791. La Manna, A. and Campiglio, A.: Farmaco Ed. Sci., 14 (4) 317-322 (1959).
4792. Saito, S.; Kawazu, M.; Kugita, H. and Kinoshita, H.: Tanabe Seiyaku Kenkyû Nempô, 2, 7-9 (1957); Chem. Abstr., 52, 1094d (1958).
4793. Silten, E.: DE 541,475 (1930); Chem. Abstr., 26, 1943 (1932).
4794. Saito, S.: Japan 3972 (1952); Chem. Abstr., 48, 4586i (1954).
4795. Corrigan, J. R.; Langermann, M. J. and Moore, M. L.: J. Am. Chem. Soc., 71, 530-531 (1949).
4796. Temple, D. M.: Aust. J. Chem., 20, 601-604 (1967).
4797. Corrigan, J. R.; Sullivan, M. J.; Bishop, H. W. and Ruddy, A. W.: J. Am. Chem. Soc., 75, 6258-6260 (1953).
4798. Sohda, S.; Fujimoto, M.; Tamegai, T. and Hirose, N.: J. Med. Chem., 22 (3) 279-286 (1979).
4799. Lewis, G.P.: Br. J. Pharmacol. Chemother., 9, 488-493 (1954).
4800. Fodor, G. and Kovacs, O.: J. Am. Chem. Soc., 71, 1045-1048 (1949).
4801. Prasad, V. K.; Ricci, R. A.; Nunning, B. C. and Granatek, A. P.: J. Pharm. Sci., 62 (7) 1135-1140 (1973).
4802. Beke, D.; Kovacs, O.; Fabricius, I. and Lam, I.: Pharm. Zentralhalle Dtschl., 92 (7) 237-241 (1953).
4803. Hussain, A. A. and Truelove, J. E.: U.S. 3,868,461 (1975); Chem. Abstr., 82, 139675k (1975).
4804. Jakobsen, P.; Treppendahl, S.; Andersen, P. H.; Klysner, R.; Geisler, A. and Teuber, L.: J. Med. Chem., 28 (12) 1962-1964 (1985).
4805. Brazzell, R. K. and Kostenbauder, H. P.: J. Pharm. Sci., 71 (11) 1274-1281 (1982).
4806. Minatoya, H.; Tullar, B. F. and Conway, W. D.: U.S. 3,904,671 (1975); Chem. Abstr., 84, 16943e (1976).
4807. Minatoya, H.; Tullar, B. F. and Conway, W. D.: U.S. 4,138,581 (1979); Chem. Abstr., 91, 91338j (1979).
4808. Pharmacia AS: FR 2,291,741 (1976); Chem. Abstr., 85, 159631 (1976).
4809. Kovacs, O.: Pharm. Zentralhalle Dtschl., 92 (6) 193-197 (1953).
4810. Kowa, K. K.: JP 5,039,657 (1975).
4811. Hoffmann-La Roche \& Co., A.-G.: Swiss 263,801 (1949); Chem. Abstr., 44, 5910d (1950).
4812. Minatoya, H.; Tullar, B. F. and Conway, W. D.: Fr. Demande 2,042,295 (1971); Chem. Abstr., 76, 14129e (1972).
4813. Minatoya, H.; Tullar, B. F. and Conway, W. D.: Ger. Offen. 2,015,573 (1970); Chem. Abstr., 74, 53268c (1971).
4814. Iso, Y.; Shindo, H. and Hamana, H.: Tetrahedron, 56 (30) 5353-5361 (2000).
4815. Shindo, H. and Imune, Y.: Jpn. Kokai Tokkyo Koho JP 2000 290, 202 (2000); Chem. Abstr., 133, 296035r (2000).
4816. Brzezinska, E.: Acta Pol. Pharm., 51 (2) 137-141 (1994); Chem. Abstr., 122, 132942f (1995).
4817. Cave, A.; Leboeuf, M.; Moskowitz, H.; Ranaivo, A.; Bick, I. R. C.; Sinchai, W.; Nieto, M.; Sevenet, T. and Cabaliou, P.: Aust. J. Chem., 42 (12) 2243-2263 (1989).
4818. Fodor, G.; Kovacs, O. and Mecher, T.: Acta Chim. Acad. Sci. Hung., 1, 395-402 (1951).
4819. Ahluwalia, V. K.; Prakash, Chandra and Singh, R. P.: Aust. J. Chem., 32 (6) 1361-1367 (1979).
4820. Row, L. R. and Rao, D. V.: J. Sci. Ind. Res., 17B (5) 199-202 (1958).
4821. Hayashi, Y. and Kouji, H.: J. Agric. Food Chem., 38 (3) 845-850 (1990).
4822. Samula, K. and Jurkowska-Kowalczyk, E.: Pol. 70,479 (1974); Chem. Abstr., 82, 57567n (1975).
4823. Hayashi, Y.: J. Agric. Food Chem., 38 (3) 839-844 (1990).
4824. Eicher, T.; Wobido, M. and Speicher, A.: J. Prakt. Chem. / Chem.-Ztg., 338 (8) 706-710 (1996).
4825. Moriarty, R. M.; Prakash, O.; Ducan, M. P.; Vaid, R. V. and Musallam, H. A.: J. Org. Chem., 52, 150-153 (1987).
4826. Dangles, O. and Elhajji, H.: Helv. Chim. Acta, 77 (6) 1595-1610 (1994).
4827. Gurjar, M. K.; Joshi, S. V.; Sastry, B. S. and Rao, A. V. R.: Synth. Commun., 20 (22) 3489-3496 (1990).
4828. Abe, K.; Sakaino, Y.; Kakinuma, J. and Kakisawa, H.: Nippon Kagaku Kaishi, (8) 1197-1204 (1977); Chem. Abstr., 87, 153403e (1977).
4829. Doherty, J. B.; Dorn, C. P.; Durette, P. L.; Finke, P. E.; MacCoss, M.; Mills, S. G.; Shah, S. K.; Sahoo, S. P.; Polo, S. A. and Hagmann, W. K.: PCT Int. Appl. WO 94 10,143 (1994); Chem. Abstr., 122, 160362k (1995).
4830. Farmos-Yhtyma Oy: Neth. Appl. 79 02,407 (1979); Chem. Abstr., 92, 215050b (1980).
4831. Huhta, Soini Kanerva and Koskenniska, Lasse Antero: Finn. 58,491 (1980); Chem. Abstr., 94, 208529c (1981).
4832. Shetty, U. U. and Nelson, W. L.: J. Med. Chem., 31 (1) 55-59 (1988).
4833. Smith, B. L.; Mueller, W. H. and Strutz, H.: Eur. Pat. Appl. EP 449,602 (1991); Chem. Abstr., 115, 255804a (1991).
4834. Allan, J. and Robinson, R.: J. Chem. Soc., 2334-2336 (1926).
4835. Chopin, J.; Durual, P. and Chadenson, M.: Bull. Soc. Chim. Fr., 12, 3572-3577 (1965).
4836. Deng, Bo Liang; Lepoivre, J. A.; Lemiere, G.; Dommisse, R.; Claeys, M.; Boers, F. and De Groot, A.: Liebigs Ann. Recl., 10, 2169-2175 (1997).
4837. Slater, W. K. and Stephen, H.: J. Chem. Soc., 117, 309-318 (1920).
4838. Ahluwalia, V. K. and Prakash, Chandra: Indian J. Chem., 13 (8) 791-794 (1975).
4839. Ahluwalia, V. K. and Prakash, Chandra: Indian J. Chem., Sect. B, 14B (11) 858-860 (1976).
4840. Ahluwalia, V. K.; Ghazanfari, F. A. and Arora, K. K.: Synthesis, (7) 526-527 (1981).
4841. Allan, J. and Robinson, R.: J. Chem. Soc., 125, 2192-2195 (1924).
4842. Balakrishna, K. J.; Rao, N. P. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 29A, 394-403 (1949).
4843. Deng, Bo-Liang; Lepoivre, J. A.; Lemiere, G.; Dommisse, R.; Claeys, M.; Boers, F. and De Groot, A.: Eur. J. Org. Chem., (6) 1243 (1998).
4844. King, F. E.; King, T. J. and Stokes, P. J.: J. Chem. Soc., 4594-4600 (1954).
4845. King, H. G. C.; White, T. and Hughes, R. B.: J. Chem. Soc., 3234-3239 (1961).
4846. Ollis, W. D. and Weight, D.: J. Chem. Soc., 3826-3830 (1952).
4847. Pathak, V. P. and Khanna, R. N.: Gazz. Chim. Ital., 111 (1-2) 45-47 (1981).
4848. Row, L. R. and Seshadri, T. R.: Proc. Indian Acad. Sci., 21A, 155-161 (1945).
4849. Jain, S. C.; Talwar, S.; Bhagat, S.; Rajwanshi, V. K.; Kumar, R. and Babu, B. R.: Pure Appl. Chem., 68 (3) 739-742 (1996); Chem. Abstr., 125, 58150q (1996).
4850. Dangles, O.; Elhabiri, M. and Brouillard, R.: J. Chem. Soc., Perkin Trans. 2, (12), 2587-2596 (1994).
4851. Elhabiri, M.; Figueiredo, P.; George, F.; Cornard, J-P.; Fougerousse, A.; Merlin, J-C. and Brouillard, R.: Can. J. Chem., 74 (5) 697-706 (1996).
4852. Bass, R. J.: J. Chem. Soc., Chem. Commun., (2) 78-79 (1976).
4853. Boumendjel, A.; Bois, F.; Beney, C.; Mariotte, A.-M.; Conseil, G. and Di Petro, A.: Bioorg. Med. Chem. Lett., 11 (1) 75-77 (2001) (Pub. 2000).
4854. Dawson, R. M.; Henrick, C. A.; Jefferies, P. R. and Middleton, E. J.: Aust. J. Chem., 18 (11) 1871-1875 (1965).
4855. Farkas, L.; Nogradi, M. and Vermes, B.: Chem. Ber., 100, 2296-2300 (1967).
4856. Mandal, A.; Guha, D.; Das, R.; Mitra, S. and Mukherjee, S.: J. Chem. Phys., 114 (3) 1336-1343 (2001); Chem. Abstr., 134, 193105c (2001).
4857. Boers, F.; Deng, Bo Liang; Lemiere, G.; Lepoivre, j.; De Groot, A.; Dommisse, R. and Vlietinck, A. J.: Arch. Pharm. (Weinheim, Ger.), 330 (9-10) 313-316 (1997).
4858. Beutler, J. A.; Hamel, E.; Vlietinck, A. J.; Haemers, A.; Rajan, P.; Roitman, J. N.; Cardellina, J. H., II and Boyd, M. R.: J. Med. Chem., 41 (13) 2333-2338 (1998).
4859. Robinson, R. and Venkataraman, K.: J. Chem. Soc., 61-67 (1929).
4860. Gaydou, E. M. and Bianchini, J. P.: Ann. Chim. (Paris), 2 (6) 303-308 (1977); Chem. Abstr., 88, 136410h (1978).
4861. Ahluwalia, V. K. and Prakash, Chandra: Indian J. Chem., Sect. B: 14B (8) 586-588 (1976).
4862. Briggs, L. H. and Locker, R. H.: J. Chem. Soc., 3131-3136 (1951).
4863. De Meyer, N.; Haemers, A.; Mishra, L.; Pandey, H. K.; Pieters, L. A. C.; Van den Berghe, D. A. and Vlietinck, A. J.: J. Med. Chem., 34 (2) 736-746 (1991).
4864. De Meyer, N.; Haemers, A.; Mishra, L.; Pandey, H. K.; Pieters, L. A. C.; Van den Berghe, D. A. and Vlietinck, A. J.: J. Med. Chem., 35 (26) 4923 (1992).
4865. Farkas, L.; Gottsegen, A. and Nogradi, M.: Acta Chim. Acad. Sci. Hung., 55 (3) 311-317 (1968).
4866. Jefferies, P. R.; Knox, J. R. and Middleton, E. J.: Aust. J. Chem., 15, 532-537 (1962).
4867. Kiang, A. K.; Sim, K. Y. and Goh, J.: J. Chem. Soc., 6371-6374 (1965).
4868. King, F. E.; King, T. J. and Stokes, P. J.: J. Chem. Soc., 4587-4594 (1954).
4869. Kurono, M.; Baba, Y.; Iwata, N.; Oonishi, O.; Kakubuchi, M.; Isogawa, Y.; Mitani, T.; Ishiwatari, Y.; Oowaki, H. and Sawai, K.: Jpn. Kokai Tokkyo Koho JP 07 02,826 [95 02,826] (1995); Chem. Abstr., 122, 290713m (1995).
4870. Looker, J. H.; McMechan, J. H. and Mader, J. W.: J. Org. Chem., 43 (12) 2344-2347 (1978).
4871. Muradian, J. and Ferreira, P. C.: An. Farm. Quim. Sao Paulo, 18 (1) 125-130 (1978); Chem. Abstr., 91, 20256v (1979).
4872. Nath, S.: PhD Thesis, University of Kalyani, India (1983).
4873. Pacheco, H. and Grouiller, A.: C. R. Acad. Sci., 256, 3134-3136 (1963).
4874. Rao, P. R. and Seshadri, T. R.: Proc. Indian Acad. Sci., 24A (5) 456-464 (1946).
4875. Reddy, M. S.; Reddy, C. R.; Krupadanam, G. L. D. and Srimannarayana, G.: Indian J. Chem., Sect. B, 28B (12) 1057-1059 (1989).
4876. Row, L. R. and Seshadri, T. R.: Proc. Indian Acad. Sci., 23A, 23-36 (1946).
4877. Sim, K. Y.: J. Chem. Soc. (C) 976-979 (1967).
4878. Tokes, A. L.; Bognar, R. and Cservenyak, E. K.: Acta Chim. Sci. Hung., 99 (3) 337-339 (1979).
4879. Kuhn, R.; Löw, I. and Trischmann, H.: Ber. Dtsch. Chem. Ges., 77B, 202-210 (1944).
4880. Patra, A.; Ghosh, G.; Sengupta, P. K. and Nath, S.: Magn. Reson. Chem., 25 (8) 734-736 (1987).
4881. Ahluwalia, V. K.; Prakash, Chandra and Singh, R. P.: Tetrahedron, 35 (17) 2081-2085 (1979).
4882. Ahluwalia, V. K.; Prakash, Chandra and Singh, R. P.: Chem. Ind. (London), 11, 464-465 (1980).
4883. Ferreira, D.; van der Merwe, J. P. and Roux, D. G.: J. Chem. Soc., Perkin Trans. 1, 1492-1498 (1974).
4884. Herzig, J. and Hofmann, B.: Ber. Dtsch. Chem. Ges., 42, 155-159 (1909).
4885. Herzig, J. and Smoluchowski, T.: Monatsh. Chem., 14, 39-52 (1893).
4886. Herzig, J.: Monatsh. Chem., 12, 177-190 (1891).
4887. Herzig, J.: Monatsh. Chem., 20, 461-466 (1899).
4888. Kostanecki, S. and Tambor, J.: Ber. Dtsch. Chem. Ges., 28, 2302-2309 (1895).
4889. Perkin, A. G.: J. Chem. Soc., 99, 1721-1725 (1911).
4890. Schmid, L. and Tadros, F.: Ber. Dtsch. Chem. Ges., 65, 1689-1691 (1932).
4891. Brass, K. and Kranz, H.: Justus Liebigs Ann. Chem., 499, 175-187 (1932).
4892. Rajagopalan, S.; Rangaswami, S.; Rao, K. V. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 23A, 60-66 (1946).
4893. Mittal, O. P. and Seshadri, T. R.: J. Chem. Soc., 2176-2178 (1956).
4894. Naik Satam, P. G. and Bringi, N. V.: Indian J. Chem., 11 (3) 209-210 (1973).
4895. Feuerstein, W. and Kostanecki, S.: Ber. Dtsch. Chem. Ges., 32A, 1024-1030 (1899).
4896. Cavill, G. W. K.; Dean, F. M.; McGookin, A.; Marshall, B. M. and Robertson, A.: J. Chem. Soc., 4573-4581 (1954).
4897. Mohan, S. B.; Jhingan, A. K.; Vij, R. K.; Parthasarathi, J. and Murti, V. V. S.: Curr. Sci., 48 (9) 393-394 (1979); Chem. Abstr., 91, 107760d (1979).
4898. Tiecco, M.; Testaferri, L.; Tingoli, M. and Bartoli, D.: J. Org. Chem., 55 (15) 4523-4528 (1990).
4899. Mott, G. N.; Durrwachter, J. R. and Tafesh, A.: PCT Int. Appl. WO 93 17,989 (1993); Chem. Abstr., 120, 30556z (1994).
4900. Durrwachter, J. R.; Mott, G. N.; Ramos, H., Jr. and Tafesh, A.: PCT Int. Appl. WO 93 16,975 (1993); Chem. Abstr., 120, 8329f (1994).
4901. Durrwachter, J. R.; Meier, M.; Mott, G. N. and Mueller, W. H.: U.S. US 5,124,489 (1992); Chem. Abstr., 118, 6732s (1993).
4902. Smith, D. S.; Winnick, J.; Ding, Y. and Bottomley, L. A.: Electrochim. Acta, 43 (3-4) 335-339 (1998); Chem. Abstr., 128, 146646y (1998).
4903. Mcdonough, J. A.; Tafesh, A. M. and Fruchey, O. S.: U.S. US 5,319,142 (1994); Chem. Abstr., 121, 82699p (1994).
4904. Anderson, B. F.; Briggs, L. H.; Cebalo, T. and Trotman, M. A.: J. Chem. Soc., 1026-1029 (1964).
4905. Fukui, K.; Matsumoto, T. and Matsuzaki, S.: Bull. Chem. Soc. Jpn., 37 (2) 265-267 (1964).
4906. Donnelly, D. M. X. and Fitzgerald, M. A.: Phytochemistry, 10 (12) 3147-3153 (1971).
4907. Goel, R. N.; Jain, A. C. and Seshadri, T. R.: J. Chem. Soc., 1369-1371 (1956).
4908. Jain, A. C.; Seshadri, T. R. and Sreenivasan, K. R.: J. Chem. Soc., 3908-3910 (1955).
4909. Saxena, V. K. and Shrivastava, P.: Asian J. Chem., 7 (1) 157-160 (1995); Chem. Abstr., 122, 128669e (1995).
4910. Ikeda, M.; Sakai, T.; Tsuai, S.; Zuao, I.; Ryan, H.; Iyan, S.; Kai, Y.; Kako, Y.; Tsukada, I. and Yanagisawa, M.: Jpn. Kokai Tokkyo Koho JP 08,268,890 [96,268,890] (1996); Chem. Abstr., 126, 74678u (1997).
4911. Ishitsuka, H.; Shirai, H.; Umeda, I. and Suhara, Y.: Eur. Pat. Appl. 19,081 (1980); Chem. Abstr., 95, 7066w (1981).
4912. Mani, R. I.; Powers, P. F. and Drummond, L.: J. Tenn. Acad. Sci., 68 (3) 83-86 (1993); Chem. Abstr., 120, 322985d (1994).
4913. Jain, A. C. and Seshadri, T. R.: J. Sci. Ind. Res., 13B (8) 539-544 (1954).
4914. Jain, A. C. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 40A (6) 249-259 (1954).
4915. Wagner, H.; Maurer, I.; Farkas, L. and Strelisky, J.: Tetrahedron Lett., (1) 67-70 (1976).
4916. Wagner, H.; Maurer, I.; Farkas, L. and Strelisky, J.: Tetrahedron, 33 (11) 1405-1409 (1977).
4917. Fukui, K.; Matsumoto, T.; Nakamura, S.; Nakayama, M. and Horie, T.: Experientia, 24 (2) 108-109 (1968).
4918. Fukui, K.; Matsumoto, T.; Nakamura, S.; Nakayama, M. and Horie, T.: Bull. Chem. Soc. Jpn., 41 (6) 1413-1417 (1968).
4919. Phadke, P. S.; Rao, A. V. R. and Venkataraman, K.: Indian J. Chem., 5 (4) 131-133 (1967).
4920. Fukui, K. and Matsumoto, T.: Bull. Chem. Soc. Jpn., 36 (7) 806-809 (1963).
4921. Briggs, L. H. and Locker, R. H.: J. Chem. Soc., 2157-2164 (1949).
4922. Cambie, R. C.: J. Chem. Soc., 2376-2377 (1960).
4923. Varma, M.; Varma, R. S. and Parthasarathy, M. R.: J. Prakt. Chem., 325 (3) 382-386 (1983).
4924. Clark-Lewis, J. W.; Jemison, R. W. and Nair, V.: Aust. J. Chem., 21 (12) 3015-3024 (1968).
4925. Row, L. R. and Sastry, C. V. R.: Tetrahedron, 19, 1371-1376 (1963).
4926. Kimura, Y.: J. Pharm. Soc. Jpn., 57, 160-163 (1937).
4927. Hubert-Habart, M.; Menichi, G.; Takagi, K.; Cheutin, A.; Desvoye, M. L. and Royer, R.: Chim. Ther., 3 (4) 280-288 (1968).
4928. Malan, E. and Roux, D. G.: J. Chem. Soc., Perkin Trans. 1, (11), 2696-2703 (1979).
4929. Kimura, Y. and Hoshi, M.: J. Pharm. Soc. Jpn., 55, 229-232 (1935).
4930. Arens, H.; Ulbrich, B.; Fischer, H.; Deren, N. and Biedermann, J.: Ger. Offen. DE 3,601,417 (1987); Chem. Abstr., 107, 197938u (1987).
4931. Bennett, M.; Burke, A. J. and O’Sullivan, W. I.: Tetrahedron, 52 (20) 7163-7178 (1996).
4932. Kimura, Y. and Hoshi, M.: Proc. Imp. Acad. (Tokyo), 12 (9) 285-288 (1936); Chem. Abstr., 31, 18076 (1937).
4933. Kimura, Y.: J. Pharm. Soc. Jpn., 58, 123-127 (1938).
4934. Kimura, Y.: J. Pharm. Soc. Jpn., 58, 415-421 (1938).
4935. Narasimhachari, N.; Rajagopalan, D. and Seshadri, T. R.: J. Sci. Ind. Res., 12B (7) 287-293 (1953).
4936. Bekassy, S. and Nogradi, M.: Acta Chim. Acad. Sci. Hung., 59 (3-4) 425-429 (1969).
4937. Rao, P. R. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 22A, 157-162 (1945).
4938. Baker, W.; Nodzu, R. and Robinson, R.: J. Chem. Soc., 74-84 (1929).
4939. Murti, V. V. S.; Row, L. R. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 24A, 233-237 (1946).
4940. Rao, P. R.; Rao, P. S. and Seshadri, T. R.: Proc. Indian Acad. Sci., 19A, 88-92 (1944).
4941. Sastri, V. D. N. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 24A, 238-242 (1946).
4942. Fukui, K. and Matsumoto, T.: Nippon Kagaku Zasshi, 86 (10) 1079-1084 (1965); Chem. Abstr., 65, 13645e (1966).
4943. Horie, T.; Tsukayama, M.; Kawamura, Y. and Seno, M.: J. Org. Chem., 52 (21) 4702-4709 (1987).
4944. Parmar, V. S.; Jain, R. and Singh, S.: Indian J. Chem., Sect. B, 26B (4) 359-360 (1987).
4945. Balakrishna, K. J. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 27A, 91-103 (1948).
4946. Chapman, E.; Perkin, A. G. and Robinson, R.: J. Chem. Soc., 3015-3041 (1927).
4947. Goldsworthy, L. J. and Robinson, R.: J. Chem. Soc., 46-49 (1937).
4948. Belic, I.; Bergant-Dolar, J. and Morton, R. A.: J. Chem. Soc., 2523-2525 (1961).
4949. Hänsel, R. and Ohlendorf, D.: Tetrahedron Lett., (6) 431-432 (1969).
4950. Sharma, P. K.; Khanna, R. N. and Pathak, V. P.: Acta Chim. Hung., 112 (1) 27-29 (1983); Chem. Abstr., 99, 105024h (1983).
4951. Bhardwaj, D. K.; Bansal, M. C.; Bhalla, S.; Shrawat, V. S. and Tyagi, R. C.: Proc. Indian Natl. Sci. Acad., Part. A, 54 (4) 635-637 (1988); Chem. Abstr., 111, 232379u (1989).
4952. Bhardwaj, D. K.; Chand, G.; Jain, R. K. and Munjal, A.: Indian J. Chem., Sect. B, 21B (11) 1041-1042 (1982).
4953. Horie, T.; Kawamura, Y.; Tsukayama, M. and Yoshizaki, S.: Chem. Pharm. Bull., 37 (5) 1216-1220 (1989).
4954. Wagner, H.; Maurer, I.; Farkas, L. and Strelisky, J.: Tetrahedron, 33 (11) 1411-1414 (1977).
4955. Patwardhan, S. A. and Gupta, A. S.: J. Chem. Res., Synop. (12) 395, 3786-3794 (1984).
4956. Dutta, P. K.; Bagchi, D. and Pakrashi, S. C.: Indian J. Chem., Sect. B: 21B (11) 1037-1038 (1982).
4957. Aneja, R.; Mukerjee, S. K. and Seshadri, T. R.: Tetrahedron, 2, 203-210 (1958).
4958. Chand, L.; Maurya, R. and Ray, A. B.: J. Indian Chem. Soc., 59 (8) 1001-1003 (1982).
4959. Rajagopolan, S. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 28A (2) 31-38 (1948).
4960. Venkateswarlu, V.: Curr. Sci., 23, 329-330 (1954); Chem. Abstr., 50, 3295 ${ }^{\text {h }}$ (1956).
4961. Lindstedt, G. and Misiorny, A.: Acta Chem. Scand., 5, 1212-1216 (1951).
4962. Perkin, A. G.: J. Chem. Soc., 103, 1632-1638 (1913).
4963. Bird, A. E. and Marshall, A. C.: J. Chem. Soc. C, 2418-2420 (1969).
4964. Perkin, A. G.: J. Chem. Soc., 103, 650-662 (1913).
4965. Henrick, C. A. and Jefferies, P. R.: Aust. J. Chem., 17, 934-942 (1964).
4966. Sen, A. K.; Mahato, S. B. and Dutta, N. L.: Indian J. Chem., Sect. B: 14B (11) 849-851 (1976).
4967. Chow, P. W. and Jefferies, P. R.: Aust. J. Chem., 21, 2529-2542 (1968).
4968. Rao, P. R. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A: 27A, 104-110 (1948).
4969. Riganesis, M. D.: Chem. Zentralbl., 128, 9793 (1957).
4970. Böhme, H. and Völcker, P. E.: Arch. Pharm. (Weinheim, Ger.), 292, 529-536 (1959).
4971. Asakawa, Y.: Bull. Chem. Soc. Jpn., 44 (10) 2761-2766 (1971).
4972. Rangaswami, S. and Rao, K. H.: Proc. Indian Acad. Sci., 49A, 241-249 (1959).
4973. Sen, N. K.; Ghosh, P. C.; Kundu, A. B. and Chatterjee, A.: Chem. Ber., 104, 3425-3428 (1971).
4974. Filho, R. B. and Gottlieb, O. R.: Phytochemistry, 10, 2433-2450 (1971).
4975. Row, L. R. and Seshadri, T. R.: Proc. Indian Acad. Sci., 22A, 215-224 (1945).
4976. Fischer, R.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 275, 516-526 (1937).
4977. Farkas, L.; Nogradi, M. and Strelisky, J.: Chem. Ber., 99, 3218-3221 (1966).
4978. Farkas, L.; Nogradi, M. and Strelisky, J.: Tetrahedron, 50, 4563-4564 (1965).
4979. Kupchan, S. M. and Bauerschmidt, E.: Phytochemistry, 10, 664-666 (1971).
4980. Utkin, L. M. and Serebryakova, A. P.: Zh. Obshch. Khim., 34 (10) 3496-3499 (1964).
4981. Ghisalberti, E. L.; Jefferies, P. R. and Stacey, C. I.: Aust. J. Chem., 20 (5)1049-1053 (1967).
4982. Seshadri, T. R. and Venkateswarlu, V.: Proc. Indian Acad. Sci., Sect. A, 23A, 209-212 (1946).
4983. Karrer, W.: Helv. Chim. Acta, 17, 1560-1565 (1934).
4984. Seshadri, T. R. and Venkateswarlu, V.: Proc. Indian Acad. Sci., Sect. A, 23A, 192-208 (1946).
4985. Patwardhan, S. A. and Gupta, A. S.: Phytochemistry, 20 (6) 1458-1459 (1981).
4986. Meier, W. and Fürst, A.: Helv. Chim. Acta, 45, 232-239 (1962).
4987. Ritchie, E.; Taylor, W. L. and Vautin, S. T. K.: Aust. J. Chem., 18, 2021-2034 (1965).
4988. Kinoshita, K. and Murase, S.: Yakugaku Zasshi, 91 (10) 1105-1108 (1971); Chem. Abstr., 76, 11982s (1972).
4989. Baker, W. and Eastwood, F. M.: J. Chem. Soc., 2897-2907 (1929).
4990. Parmar, V. S.; Jain, R. and Singh, S.: J. Chem. Res., Synop., (12) 404-405 (1987).
4991. Rajagopalan, S.; Rao, K. V. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 26A (1) 18-21 (1947).
4992. Seshadri, T. R. and Venkateswarlu, V.: Proc. Indian Acad. Sci., Sect. A, 24A (4) 349-351 (1946).
4993. Malan, E. and Naidoo, S.: Phytochemistry, 19 (12) 2731-2733 (1980).
4994. Payne, T. G. and Jefferies, P. R.: Tetrahedron, 29, 2575-2583 (1973).
4995. Chopin, J. and Pineau, J. P.: C. R. Acad. Sci., Paris, Ser. C., 265 (21) 1172-1174 (1967).
4996. Farkas, L. and Nogradi, M.: Acta Chim. Acad. Sci. Hung., 58 (1) 93-95 (1968).
4997. Hänsel, R.; Rimpler, H. and Schwarz, R.: Tetrahedron Lett., (8) 735-738 (1967).
4998. Tanaka, H.; Stohlmeyer, M. M.; Wandless, T. J. and Taylor, L. P.: Tetrahedron Lett., 41 (50) 9735-9739 (2000).
4999. Clark-Lewis, J. W. and Baig, M. I.: Aust. J. Chem., 24, 2581-2592 (1971).
5000. Row, L. R.; Seshadri, T. R. and Thiruvengadam, T. R.: Proc. Indian Acad. Sci., Sect. A, 29A, 80-90 (1949).
5001. Row, L. R. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 23A, 140-146 (1946).
5002. Gupta, S. R. and Seshadri, T. R.: J. Chem. Soc., 3063-3065 (1954).
5003. Clark-Lewis, J. W. and Williams, L. R.: Aust. J. Chem., 20, 2151-2167 (1967).
5004. Machida, S.; Kawamonzen, Y. and Oba, M.: Jpn. Kokai Tokkyo Koho JP 09,297,400 [97,297,400] (1997); Chem. Abstr., 128, 68498k (1998).
5005. Kupchan, S. M.; Sigel, C. W.; Knox, J. R. and Udayamurthy, M. S.: J. Org. Chem., 34 (5) 1460-1463 (1969).
5006. Dasgupta, S.; Dutta, S. C. and Ray, A. B.: Indian J. Chem., Sect. B: 15B (2) 197 (1977).
5007. Ray, A. B.; Dutta, S. C. and Dasgupta, S.: Phytochemistry, 15 (11) 1797-1798 (1976).
5008. Quijano, L.; Malanco, F. and Rios, T.: Tetrahedron, 26, 2851-2859 (1970).
5009. Pan, H. and Lundgren, L. N.: Phytochemistry, 39 (6) 1423-1428 (1995).
5010. Pan, H. and Lundgren, L. N.: Phytochemistry, 42 (4) 1185-1189 (1996).
5011. Szabo, V. and Kiss, A.: Magy. Kem. Foly., 85 (8) 353-356 (1979); Chem. Abstr., 92, 110775p (1980).
5012. Kirkiacharian, B.; Billet, D. and Mentzer, C.: C. R. Acad. Sci., 257, 2676-2678 (1963).
5013. Mentzer, C.; Chopin, J. and Mercier, M.: C. R. Acad. Sci., 242, 1034-1036 (1956).
5014. Moinet, G.; Imbert, I.; Marais, D.; Vidaluc, J. L. and Mesangeau, D.: Can. Pat. Appl. CA 2,028,031 (1992); Chem. Abstr., 119, 116970w (1993).
5015. Berkessel, A.: Bioorg. Chem., 19 (1) 101-115 (1991).
5016. Ricoh Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 57,167,296 [82,167,296] (1982); Chem. Abstr., 100, 94556u (1984).
5017. Saburi, Y.; Yoshimoto, T. and Minami, K.: Nippon Kagaku Kaishi, (4) 754-757 (1973); Chem. Abstr., 79, 4609j (1973).
5018. Arkhipov, V. V.; Smirnov, M. N. and Khilya, V. P.: Chem. Heterocycl. Compd. (N. Y.), 33(5) 515-519 (1997).
5019. Vasil'ev, S. A.; Luk'yanchikov, M. S.; Molchanov, G. I.; Turubarov, V. D. and Khilya, V. P.: Khim.-Farm. Zh., 25 (7) 34-38 (1991); Chem. Abstr., 115, 225849u (1991).
5020. Vasil'ev, S. A.; Pivovarenko, V. G. and Khilya, V. P.: Dokl. Akad. Nauk Ukr., Ser. B: Geol., Khim. Biol. Nauki, (4) 34-37 (1989); Chem. Abstr., 112, 20813b (1989).
5021. Vasil'ev, S. A.; Boyarchuk, V. L.; Lukyanchikov, M. S. and Khilya, V. P.: Khim.-Farm. Zh., 25 (11) 50-55 (1991); Chem. Abstr., 116, 20897q (1992).
5022. Garazd, M. M.; Garazd, Ya. L.; Ogorodniichuk, A. S.; Shilin, V. V.; Turov, A. V. and Khilya, V. P.: Chem. Nat. Compd., 34 (4) 442-447 (1998) (Pub. 1999); Chem. Abstr., 131, 214522u (1999).
5023. Golub, A. A.; Antoshchuk, V. V. and Kapshuk, A. A.: Ukr. Khim. Zh., 60 (9-10) 606-609 (1994); Chem. Abstr., 124, 116727a (1996).
5024. Garazd, M. M.; Ogorodniichuk, A. S.; Shilin, V. V.; Vasil'ev, S. A.; Turov, A. V. and Khilya, V. P.: Chem. Nat. Compd., 34 (4) 435-441 (1998) (Pub. 1999); Chem. Abstr., 131, 214098k (1999).
5025. Zeng, L.; Fukai, T.; Nomura, T.; Zhang, R. Y. and Lou, Z. C.: J. Chem. Soc., Perkin Trans. 1, (10), 1153-1159 (1993).
5026. Pivovarenko, V. G.; Khilya, V. P. and Vasil'ev, S. A.: Khim. Prir. Soedin., (5) 639-643 (1989); Chem. Abstr., 113, 5988q (1990).
5027. Yamaguchi, T.; Hayashi, H.; Yoshida, R. and Nomura, T.: Jpn. Kokai Tokkyo Koho 07 17,856 [95 17,856] (1995); Chem. Abstr., 122, $205206 f$ (1995).
5028. Yanagisawa, T.; Sato, S.; Maruno, M. and Nomura, T.: Jpn. Kokai Tokkyo Koho JP 07 17,858 [95 17,858] (1995); Chem. Abstr., 122, 205224k (1995).
5029. Moinet, G.; Imbert, T.; Marais, D. and Vidaluc, J. L.: Fr. Demande FR 2,653,119 (1991); Chem. Abstr., 115, 279586g (1991).
5030. Takashima, M.; Satomura, M.; Iwakura, K. and Kurihara, N.: Jpn. Kokai Tokkyo Koho JP 62,280,074 [87,280,074] (1987); Chem. Abstr., 109, 83599v (1988).
5031. Pivovarenko, V. G.; Khilya, V. P.; Kovalev, V. N. and Vasil'ev, S. A.: Khim. Prir. Soedin., (4) 519-524 (1988); Chem. Abstr., 111, 39708x (1989).
5032. Ogle, C. R. and Main, L.: J. Chem. Res., Synop., (11) 472-473 (2001).
5033. Ogle, C. R.: M. Sc. Thesis; University of Waikato, New Zealand (1996).
5034. Romdhane, M.; Carrier, B.; Barrelle, M. and Beguin, C. G.: Holzforschung, 40, 259-261 (1986).
5035. Vedernikov, D. N.: Khim. Drev., (1) 87-91 (1992); Chem. Abstr., 117, 133139h (1992).
5036. Arnoldi, A.; Bassoli, A.; Merlini, L. and Ragg, E.: J. Chem. Soc., Perkin Trans. 2 (9) 1399-1406 (1991).
5037. Arnoldi, A., Bassoli, A.; Borgonovo, G.; Drew, M. G. B.; Merlini, L. and Morini, G.: J. Agric. Food Chem., 46 (10) 4002-4010 (1998).
5038. Semechkina, A. F. and Shorygina, N. N.: Izv. Akad. Nauk. SSSR, Ser. Khim., 5, 884-890 (1964).
5039. Omori, S. and Dence, C. W.: Wood Sci. Technol., 15 (1) 67-69 (1981); Chem. Abstr., 94, 193907y (1981).
5040. Oki, T.; Okubo, K. and Ishikawa, H.: Mokuzai Gakkaishi, 18 (12) 601-610 (1972); Chem. Abstr., 78, 73837y (1973).
5041. Betts, W. B. and Dart, R. K.: Mycol. Res., 92 (2) 177-181 (1989); Chem. Abstr., 111, 20635z (1989).
5042. Tamao, M. and Terashima, N.: Mokuzai Gakkaishi, 15 (3) 120-125 (1969); Chem. Abstr., 71, 103330c (1969).
5043. Terashima, N.; Tamao, M. and Kanda, T.: Mokuzai Gakkaishi, 14 (4) 220-226 (1968); Chem. Abstr., 70, 21099z (1969).
5044. Watson, P. A.; Wright, L. J. and Fullerton, T. J.: J. Wood Chem. Technol., 13 (3) 391-409 (1993); Chem. Abstr., 119, 252382h (1993).
5045. Castellan, A.; Colombo, N.; Cucuphat, C. and Fornier de Violet, P.: Holzforschung, 43 (3) 179-185 (1989); Chem. Abstr., 111, 117049z (1989).
5046. Cole, B. J. W. and Kwon, H.: Int. Symp. Wood. Pulping Chem., 8th, 1, 541-548 (1995); Chem. Abstr., 128, 36143z (1998).
5047. Dimmel, D. R. and Shepard, D.: J. Org. Chem., 47, 4799-4800 (1982).
5048. Godden, B.; Ball, A. S.; Helvenstein, P.; McCarthy, A. J. and Penninckx, M. J.: J. Gen. Microbiol., 138 (11) 2441-2448 (1992); Chem. Abstr., 118, 120635n (1993).
5049. Hosoya, S.; Kanazawa, K.; Kaneko, H. and Nakano, J.: Mokuzai Gakkaishi, 26 (2) 118121 (1980); Chem. Abstr., 93, 74113f (1980).
5050. Iiyama, K. and Lam Thi Bach Tuyet: J. Sci. Food Agric., 51 (4) 481-491 (1990); Chem. Abstr., 113, 113960h (1990).
5051. Tetaz, F.; Barrelle, M.; Beguin, C. G. and Pelmont, J.: New J. Chem., 15 (7) 587-591 (1991).
5052. Dimmel, D. R. and Bovee, L. F.: J. Wood Chem. Technol., 13 (4) 583-592 (1993); Chem. Abstr., 120, 56960b (1994).
5053. Dimmel, D. R. and Schuller, L. F.: J. Wood Chem. Technol., 6 (3) 345-365 (1986); Chem. Abstr., 105, 193103k (1986).
5054. Apfeld, P. B. and Dimmell, D. R.: J. Wood Chem. Technol., 8 (4) 461-481 (1988); Chem. Abstr., 110, 233389p (1989).
5055. Cascaval, A.: Rom. RO 91,541 (1987); Chem. Abstr., 108, 74985v (1988).
5056. Becket, G. J. P.; Ellis, G. P. and Trindade, M. I. U.: J. Chem. Res., Synop. (2) 47, 865-884 (1978).
5057. Howe, R.; Rao, B. S. and Heyneker, H.: J. Chem. Soc. C, 2510-2514 (1967).
5058. Moriarty, R. M.; Prakash, O. and Duncan, M. P.: Synth. Commun., 16 (10) 1239-1245 (1986).
5059. Casiraghi, G.; Salerno, G. and Sartori, G.: Synthesis, (3) 186-187 (1975).
5060. Ahmad-Junan, S. A. and Whiting, D. A.: J. Chem. Soc., Perkin Trans. 1, (2) 418-419 (1990).
5061. Crochet, R. A.; Sullivan, F. R. and Kovacic, P.: J. Org. Chem., 39 (21) 3094-3097 (1974).
5062. Deulofeu, V. and Schopflocher, N.: Gazz. Chim. Ital., 83, 449-458 (1953).
5063. Fujimoto, H.; Morimoto, K.; Ando, K.; Yagihara, M. and Ishikawa, T.: Jpn. Kokai Tokkyo Koho JP 63,264,752 [88,264,752] (1988); Chem. Abstr., 111, 67815y (1989).
5064. Kodama, H. and Yoshida, M.: Jpn. Kokai Tokkyo Koho JP 08,182,499 [96,182,499] (1996); Chem. Abstr., 125, 219777s (1996).
5065. Hammon, A.: Eur. Pat. Appl. EP 375,457 (1990); Chem. Abstr., 114, 42774h (1991).
5066. Park, Chan-Ho and Givens, R. S.: J. Am. Chem. Soc., 119 (10) 2453-2463 (1997).
5067. Givens, R. S.; Jung, A.; Park, Chan-Ho; Weber, J. and Bartlett, W.: J. Am. Chem. Soc., 119 (35) 8369-8370 (1997).
5068. Chadha, J. S. and Sharma, G. K.: Bull. Chem. Soc. Jpn., 39, 398 (1966).
5069. Beames, D. J. and Mander, L. N.: Aust. J. Chem., 27 (6) 1257-1268 (1974).
5070. Robertson, A. and Robinson, R.: J. Chem. Soc., 1460-1472 (1928).
5071. Leon, A.; Robertson, A.; Robinson, R. and Seshadri, T. R.: J. Chem. Soc., 2672-2701 (1931).
5072. Tedder, J. M. and Theaker, G.: J. Chem. Soc., 257-262 (1959).
5073. Linnell, W. H. and Roushdi, I. M.: Quart. J. Pharm. Pharmacol., 14, 270-280 (1941).
5074. Moryasu, M.; Maki, T. and Araki, Y.: Jpn. Kokai Tokkyo Koho JP 05,194,309 [93,194,309] (1993); Chem. Abstr., 120, 54326a (1994).
5075. Maki, T.; Araki, Y.; Moryasu, M. and Yamagata, N.: Jpn. Kokai Tokkyo Koho JP 05,178,784 [93,178,784] (1993); Chem. Abstr., 119, 249689h (1993).
5076. Maki, T.; Araki, Y. and Moryasu, M.: Jpn. Kokai Tokkyo Koho JP 05,178,783 [93,178,783] (1993); Chem. Abstr., 119, 270803a (1993).
5077. Spivack, J.; Leib, T. K. and Lobos, J. H.: J. Biol. Chem., 269 (10) 7323-7329 (1994).
5078. Patzlaff, M. and Barz, W.: Z. Naturforsch., 33c, 675-684 (1978).
5079. Moryasu, M. and Maki, T.: Jpn. Kokai Tokkyo Koho JP 05,194,308 [93,194,308] (1993); Chem. Abstr., 120, 54325z (1994).
5080. Yang, Y.; Wang, M. and Wang, D.: Chem. Commun. (Cambridge), (17), 1651-1652 (1997).
5081. Chen, Yong-jun; Ge, Cheng-sheng; Wang, Ming-wen and Wang, Dong: Yonji Huaxue, 20 (5) 795-798 (2000); Chem. Abstr., 134, 147373t (2001).
5082. Wang, M. W.; Chen, Y-J. and Wang, D.: Synlett, (3), 385-387 (2000).
5083. Wang, M. W.; Chen, Y-J.; Liu, L.; Wang, D. and Liu, X-L.: J. Chem. Res., Synop., (2), 80-81 (2000).
5084. Kulkarni, S. U. and Thakar, K. A.: J. Indian Chem. Soc., 52 (9) 849-852 (1975).
5085. Charlesworth, E. H.; Chavan, J. J. and Robinson, R.: J. Chem. Soc., 370-374 (1933).
5086. Nierenstein, M.; Wang, D. G. and Warr, J. C.: J. Am. Chem. Soc., 46, 2551-2555 (1924).
5087. Karrer, P. and Biedermann, H.: Helv. Chim. Acta, 10, 441 (1927).
5088. Grover, S. K.; Jain, A. C. and Seshadri, T. R.: Indian J. Chem., 1 (10) 429-431 (1963).
5089. Monties, B.; Marine-Font, A. and Douillard, R.: Ann. Physiol. Veg., 11 (4) 313-339 (1969); Chem. Abstr., 77, 31099h (1972).
5090. Zemplen, G.; Mester, L. and Pallos, L.: Acta Chim. Acad. Sci. Hung., 8, 133-138 (1956).
5091. Morgan, T. D.; Hopkins, T. L.; Kramer, K. J.; Roseland, C. R.; Czapla, T. H.; Tomer, K. B. and Crow, F. W.: Insect Biochem., 17 (2) 255-263 (1987); Chem. Abstr., 106, 173249y (1987).
5092. Saul, S. J. and Sugumaran, M.: J. Biol. Chem., 265 (28) 16992-16999 (1990).
5093. Czapla, T. H.; Hopkins, T. L. and Kramer, K. J.: Insect. Biochem., 19 (5) 509-515 (1989).
5094. Andersen, S. O. and Barrett, F. M.: J. Insect Physiol. 17 (1) 69-83 (1971).
5095. Barrett, F. M.: Insect Biochem., 7 (3) 209-214 (1977); Chem. Abstr., 87, 130822b (1977).
5096. Tsuda, T.; Watanabe, M.; Ohshima, K.; Yamamoto, T.; Kawakishi, S. and Osawa, T.: J. Agric. Food Chem., 42 (12) 2671-2674 (1994); Chem. Abstr., 121, 299533 q (1994).
5097. Yamamoto, A.; Ashina, T.; Oosawa, T. and Tsuda, T.: Jpn. Kokai Tokkyo Koho JP 07,268,322 [95,268,322] (1995); Chem. Abstr., 124, 54238f (1996).
5098. Umeabchi, Y. and Aburano, Y.: Sci. Rep. Kanazawa Univ., 24 (1) 55-60 (1979); Chem. Abstr., 91, 171935s (1979).
5099. Atkinson, P. W.; Brown, W. V. and Gilby, A. R.: Insect Biochem., 3 (11) 309-315 (1973).
5100. Corgier, M. and Pacheco, H.: Therapie, 28 (4) 639-649 (1973); Chem. Abstr., 80, 22522a (1974).
5101. Hopkins, T. L.; Starkey, S. R.; Xu, R.; Merritt, M. E.; Schaefer, J. and Kramer, K. J.: Insect Biochem. Physiol., 40 (3) 119-128 (1999); Chem. Abstr., 131, 42233g (1999).
5102. Lee, H. H. and Tan, C. H.: J. Chem. Soc. C, 1583-1585 (1967).
5103. Sugumaran, M.; Hennigan, B.; Semensi, V. and Dali, H.: Arch. Insect. Biochem. Physiol., 8 (2) 89-100 (1988); Chem. Abstr., 109, 207064p (1988).
5104. Tsuda, T.: Foods Food Ingredients J. Jpn., 163, 30-38 (1995); Chem. Abstr., 122, 212455q (1995).
5105. Tsuda, T.; Mizuno, K.; Ohshima, K.; Kawakishi, S. and Osawa, T.: J. Agric. Food Chem., 43 (11) 2803-2806 (1995); Chem. Abstr., 123, 283998a (1995).
5106. Chavan, J. J. and Robinson, R.: J. Chem. Soc., 368-370 (1933).
5107. Niklas, K. J. and Giannasi, D. E.: Science, 197 (4305) 767-769 (1977).
5108. Popoff, T. and Theander, O.: Acta Chem. Scand., Ser. B, B30 (5) 397-402 (1976).
5109. Gjertsen, F. B.; Solheim, E. and Scheline, R. R.: Xenobiotica, 18 (2) 225-234 (1988); Chem. Abstr., 108, 160851e (1988).
5110. Conrad, P. G., II; Givens, R. S.; Weber, J. F. W. and Kandler, K.: Org. Lett., 2 (11) 15451547 (2000).
5111. Levy, L. F. and Robinson, R.: J. Chem. Soc., 2715-2722 (1931).
5112. Nonni, A. J. and Dence, C. W.: Holzforschung, 42 (1) 37-46 (1988); Chem. Abstr., 108, 188675z (1988).
5113. Mühlenbeck, U. and Barz, W.: Phytochemistry, 44 (5) 865-867 (1997).
5114. Mühlenbeck, U.; Kortenbusch, A. and Barz, W.: Phytochemistry, 42 (6) 1573-1579 (1996).
5115. Swart, P.; van der Merwe, K. J.; Swart, A. C.; Todres, P. C. and Hofmeyr, J. H. S.: Planta Med., 59 (2) 139-143 (1993).
5116. Spencer, P. A. and Towers, G. H. N.: Phytochemistry, 30 (9) 2933-2937 (1991).
5117. Lundquist, K.; Josefsson, B. and Nyquist, G.: Holzforschung, 32 (1) $27-32$ (1978); Chem. Abstr., 88, 154594a (1978).
5118. Ng, S. C.; Sim, K. Y. and Loh, S. E.: Bull. Singapore Natl. Inst. Chem., 20, 193-197 (1992); Chem. Abstr., 118, 254651y (1993).
5119. Antus, S.; Borosa, F.; Giber, J.; Kajtar-Peredy, M. and Nogradi, M.: Liebigs Ann. Chem., 5, 995-1003 (1985).
5120. Luis, J. G. and Andres, L. S.: J. Chem. Res., Synop., (3) 220-221 (1999).
5121. Song, Yan Nong; Shibuya, M.; Ebizuka, Y. and Sankawa, U.: Chem. Pharm. Bull., 39 (9) 2347-2350 (1991).
5122. Kamaya, Y. and Higuchi, T.: Mokuzai Gakkaishi, 30 (3) 237-239 (1984); Chem. Abstr., 101, 3663h (1984).
5123. Kawai, S.; Umezawa, T.; Shimada, M.; Higuchi, T.; Koide, K.; Nishida, T.; Morohoshi, N. and Haraguchi, T.: Mokuzai Gakkaishi, 33 (10) 792-797 (1987); Chem. Abstr., 108, 58138r (1988).
5124. Okada, M.; Inaoka, Y. and Tsuji, K.: Jpn. Kokai Tokkyo Koho JP 07,206,644 [95,206,644] (1995); Chem. Abstr., 123, 296246 d (1995).
5125. Song, Yan Nong; Shibuya, M; Ebizuka, Y. and Sankawa, U.: Chem. Pharm. Bull., 39 (10) 2613-2616 (1991).
5126. Townsend, J. A. and Thomas, L. A.: PCT Int. Appl. WO 94 02,620 (1994); Chem. Abstr., 120, 210052r (1994).
5127. Stachel, S. E.; Messens, E.; Van Montagu, M. and Zambryski, P.: Nature (London) 318, 624-629 (1985).
5128. Miguel, M. G. and Barroso, J. G.: Phytochemistry, 35 (2) 371-375 (1994).
5129. Echeverri, F.; Torres, F.; Quinones, W.; Cardona, G.; Archbold, R.; Roldan, J.; Brito, I.; Luis, J. G. and Lahlou, El-Hassane: Phytochemistry, 1997 (Pub. 1996), 44 (2) 255-256.
5130. Song, Yan Nong; Shibuya, M.; Ebizuka, Y. and Sankawa, U.: Chem. Pharm. Bull., 38 (7) 2063-2065 (1990).
5131. Balgir, B. S.; Mander, L. N. and Mander, S. T. K.: Aust. J. Chem., 26 (11) 2459-2472 (1973).
5132. Harvey, C. M.; Sargent, C. and Siegl, P. K. S.: PCT Int. Appl. WO 96 09,818 (1996); Chem. Abstr., 125, 114587b (1996).
5133. Mbwambo, Z. H.; Lee, S. K.; Mshiu, E. N.; Pezzuto, J. M. and Kinghorn, A. D.: J. Nat. Prod., 59 (11) 1051-1055 (1996).
5134. Fujimori, S.; Yamazaki, T.; Kanno, M.; Kawamura, M.; Ninomiya, K.; Tobe, A. and Nitta, K.: Jpn. Kokai Tokkyo Koho JP 02,225,413 [90,225,413] (1990); Chem. Abstr., 114, 136082h (1991).
5135. Chou, C. J.; Lin, L. C.; Chen, K. T. and Chen, C. F.: J. Nat. Prod., 55 (6) 795-799 (1992).
5136. Lin, L. C.; Chou, C. J.; Chen, K. T. and Chen, C. F.: J. Nat. Prod., 56 (6) 926-928 (1993).
5137. Lazarevic, M.: Glas. Hem. Tehnol. Makedonija, 3 (1-4) 1-6 (1976); Chem. Abstr., 90, 22512d (1979).
5138. Nolan, T. J.; Pratt, D. D. and Robinson, R.: J. Chem. Soc., 1968-1971 (1926).
5139. Lietti, A. and Bonati, A.: Ger. Offen. 2,740,346 (1978); Chem. Abstr., 88, 177226w (1978).
5140. Lietti, A. and Bonati, A.: Ger. Offen. 2,808,823 (1979); Chem. Abstr., 92, 11231b (1980).
5141. Tsukayama, M.: Bull. Chem. Soc. Jpn., 50 (2) 459-462 (1977).
5142. Cragoe, E. J., Jr.; Bealor, M. D.; Robb, C. M.; Ziegler, C. and Sprague, J. M.: J. Org. Chem., 18, 561-569 (1953).
5143. Teng, L. C.; Walsh, D. A. and Shanklin, J. R., Jr.: U.S. US 5,070,087 (1991); Chem. Abstr., 116, 151575f (1992).
5144. Engelhardt, M.; Fruchstorfer, W.; Hesse, R.; Dennler, B. and Baumer, W.: Ger. Offen. 1,811,322 (1968); Chem. Abstr., 73, 55826 (1970).
5145. Sicker, D.: J. Prakt. Chem., 332 (3) 336-344 (1990).
5146. Sicker, D.; Hoffmann, K.; Goetz, L. and Mann, G.: Ger. (East) DD 288,602 (1991); Chem. Abstr., 115, 159191c (1991).
5147. Heap, T. and Robinson, R.: J. Chem. Soc., 2336-2344 (1926).
5148. Kumar, S.; Ram, L. and Ray, J. N.: J. Indian Chem. Soc., 23, 365-370 (1946).
5149. Du, Keyong; Zhang, Peiying and Cai, Mengshen: Beijing Yike Daxue Xuebao, 22 (1) 48, 47 (1990); Chem. Abstr., 117, 130960h (1992).
5150. Jerzmanowska, z. and Michalska, M.: Rocz. Chem., 35, 353-357 (1961).
5151. Grouiller, A. and Pacheco, H.: Bull. Soc. Chim. Fr., 4981-4985 (1968).
5152. Ichikawa, M.; Pamukcu, A. M. and Bryan, G. T.: Org. Prep. Proced. Int., 14 (3) 183-187 (1982); 96, 162389t (1982).
5153. Kumari, D.; Chhabra, S. C. and Gupta, S. R.: Indian J. Chem., Sect. B 17B (2) 168-169 (1979).
5154. Nielsen, J. G.; Norgaard, P. and Hjeds, H.: Acta Chim. Scand., 24 (2) 724-726 (1970).
5155. Dreyer, D. L.; Tabata, S. and Horowitz, R. M.: Tetrahedron, 20 (12) 2977-2983 (1964).
5156. Horie, T.; Shibata, K.; Yamashita, K.; Kawamura, Y. and Tsukayama, M.: Chem. Pharm. Bull., 45 (3) 446-451 (1997).
5157. Parmar, V. S.; Gupta, S.; Sinha, R. and Sharma, S. K.: Indian J. Chem., Sect. B: 32B (2) 244-256 (1993).
5158. Horowitz, R. M. and Gentili, B.: J. Org. Chem., 26, 2899-2902 (1961).
5159. Murphy, S. T.; Ritchie, E. and Taylor, W. C.: Aust. J. Chem., 27 (1) 187-194 (1974).
5160. Horie, T.; Tsukayama, M.; Kawamura, Y. and Yamamoto, S.: Chem. Pharm. Bull., 35 (11) 4465-4472 (1987).
5161. Rao, K. V. and Sundaramurthy, V.: Proc. Indian Acad. Sci., 83A (6) 238-242 (1976).
5162. Paparao, C. and Sundaramurthy, V.: Indian J. Chem., Sect. B, 25B (2) 212-214 (1986).
5163. Tafesh, A. M.; McDonough, J. A. and Mott, G. N.: Eur. Pat. Appl. EP 491,557 (1992); Chem. Abstr., 117, 150677z (1992).
5164. Subba Rao, N. V.: Khim. Geterotsikl. Soedin., (3) 291-310 (1977).
5165. Govori, S.; Rapic, V.; Leci, O.; Cacic, M. and Tabakovic, I.: J. Heterocycl. Chem., 33 (2) 351-354 (1996).
5166. Geissler, J. F.; Roesel, J. L.; Meyer, T.; Trinks, U. P.; Traxler, P. and Lydon, N. B.: Cancer Res., 52 (16) 4492-4498 (1992); Chem. Abstr., 117, 184410x (1992).
5167. Mujeeb-ur-Rahman; Siddiqi, Zeba S. and Zaman, Asif: J. Chem. Res., Synop., (9) 256-257 (1991).
5168. Paparao, C.; Rao, K. V. and Sundaramurthy, V.: Synthesis, (3) 234-236 (1981).
5169. Rao, K. V. and Sundaramurthy, V.: Indian J. Chem., 15B (3) 236-237 (1977).
5170. Paparao, C.; Rao, K. V. and Sundaramurthy, V.: Synthesis, (3) 236-237 (1981).
5171. Mohakhud, P. K.; Goyal, S.; Grover, N.; Saradhi, K. P. and Parthasarathy, M. R.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 35B (9) 904-910 (1996).
5172. Sen, A. B. and Tiwari, S. S.: J. Indian Chem. Soc., 29 (6) 419-424 (1952).
5173. Joshi, K. C. and Jauhar, A. K.: Indian J. Chem., 3 (8) 358-360 (1965).
5174. Buu-Hoï, N. P.; Lavit, D. and Xuong, N. D.: J. Org. Chem., 19, 1617-1621 (1954).
5175. Bhumgara, K. S.; Desai, R. D. and Waravdekar, W. S.: Proc. Indian Acad. Sci., 25A, 322-326 (1947).
5176. Chudgar, N. K.; Mani, N. V. and Sethna, S.: J. Inst. Chem. (India), 39 (5) 203-208 (1967).
5177. Becker, H. D.; Björk, A. and Adler, E.: J. Org. Chem., 45 (9) 1596-1600 (1980).
5178. Sreenivasulu, B.; Sundaramurthy, V. and Subba Rao, N. V.: Proc. Indian Acad. Sci., Sect. A, 80 (6) 273-277 (1974).
5179. Chakravarti, D.; Chakraborty, S.; Chakravarti, N. and Roy, N.: Sci. Cult. 28 (5) 242-243 (1962); Chem. Abstr., 58, 4504a (1963).
5180. Roy, N. K. and Chakravarti, N. N.: J. Indian Chem. Soc., 40 (7) 601-602 (1963).
5181. Chakravarti, D. and Roy, N. N.: J. Indian Chem. Soc., 41 (1) 65-68 (1964).
5182. Buu-Hoї, N. P.: J. Org. Chem., 18, 1723-1729 (1953).
5183. Lanyi, G.; Kallay, T.; Ledniczky, L.; Arvai, L.; Imrei, L.; Somfai, E.; Montay, T.; Gepesz, R. and Denes Lustig, V.: Can. Pat. Appl. CA 2,056,979 (1991); Chem. Abstr., 117, 233596y (1992).
5184. Lanyi, G.; Kallay, T.; Ledniczky, L.; Arvai, L.; Imrei, L.; Somfai, E.; Montay, T.; Gepesz, R. and Denes Lustig, V.: PCT Int. Appl. WO 91 16,293 (1991); Chem. Abstr., 117, 48102w (1992).
5185. Jain, P.; Chaturvedi, K. K. and Katyal, M.: Acta Cienc. Indica, 4 (3) 252-253 (1978); Chem. Abstr., 90, 210988n (1979).
5186. Bryan, J. D.; Goldberg, A. A. and Wragg, A. H.: J. Chem. Soc., 1279-1281 (1960).
5187. Kindler, H. and Oelschlager, H.: Chem. Ber., 87, 194-202 (1954).
5188. Yamamoto, J.; Nakane, I.; Nakashima, M.; Asano, M.; Akamatsu, H.; Okamoto, Y. and Sugita, K.: Nippon Kagaku Kaishi, 9, 1587-1592 (1989).
5189. Krause, M.; Rouleau, A.; Stark, H.; Garbarg, M.; Schwartz, J. C. and Schunack, W.: Pharmazie, 51 (10) 720-726 (1996).
5190. Srivastava, A. K. and Bahel, S. C.: J. Indian Chem. Soc., 53 (8) 841-845 (1976).
5191. Buu-Hoï, N. P. and Xuong, N. D.: J. Chem. Soc., 386-388 (1953).
5192. Learmonth, D. A. and Alves, P. C.: Synth. Commun., 32 (4) 641-649 (2002).
5193. Learmonth, D. A.; Vieira-Coelho, M. A.; Benes, J.; Alves, P. C.; Borges, N.; Freitas, A. P. and Soares-da-Silva, P.: J. Med. Chem., 45 (3) 685-695 (2002).
5194. Alvaro, M.; Baldovi, V.; Garcia, H.; Miranda, M. A. and Primo, J.: Monatsh. Chem., 121 (4) 267-274 (1990).
5195. Le-Van-Thoï and Nguyen-Van-Hoang: Ann. Fac. Sci., Univ. Saïgon, 63-73 (1962); Chem. Abstr., 62, 2733a (1965).
5196. Le-Van-Thoï and Nguyen-Van-Hoang: Israel J. Chem., 1 (4) 418-427 (1963).
5197. Le-Van-Thoï and Nguyen-Van-Hoang: Vietnamica Chim. Acta, 87-100 (1966); Chem. Abstr., 71, 124127g (1969).
5198. Chadha, T. C.; Mahal, H. S. and Venkataraman, K.: J. Chem. Soc., 1459-1462 (1933).
5199. Farooq, M. O.; Rahman, W.; Ilyas, M. and Sardar, Jehan: Chem. Ber., 94, 1996-2001 (1961).
5200. Yamamoto, J.; Kurokawa, H. and Sugita, K.: Nippon Kagaku Kaishi, 11, 2107-2110 (1985); Chem. Abstr., 105, 152640h (1986).
5201. Yamamoto, J.; Kashihara, N.; Fujii, Y.; Takahara, K. and Hashimoto, K.: Nippon Kagaku Kaishi, 2, 134-138 (1991); Chem. Abstr., 114, 228182u (1991).
5202. Yamamoto, J.; Asano, M.; Okamoto, Y. and Sugita, K.: Chem. Express, 4 (1) 37-40 (1989).
5203. Nakazawa, K. and Kusuda, K.: J. Pharm. Soc. Jpn., 75, 257-260 (1955).
5204. Skraup, S. and Binder, O.: Ber. Dtsch. Chem. Ges., 62, 1127-1138 (1929).
5205. Levai, A. and Sebok, P.: Synth. Commun., 22 (12) 1735-1750 (1992).
5206. Tung, Chen Ho; Ying, Yun Ming; Yang, Qiang and Wang, Xiao Hong: Chin. Chem. Lett., 6 (1) 27-30 (1995).
5207. Tung, Chen-Ho and Xu, Xiao-He: Tetrahedron Lett., 40 (1) 127-130 (1999).
5208. Wähälä, K. and Hase, T. A.: J. Chem. Soc., Perkin Trans. 1, (12) 3005-3008 (1991).
5209. Devi, N.; Jain, N. and Krishnamurty, H. G.: Indian J. Chem., Sect. B: 32B (8) 874-875 (1993).
5210. Deschamps-Vallet, C. and Mentzer, C.: C. R. Acad. Sci., Paris, Ser. C, 265, 1280-1283 (1967).
5211. Kawase, Y.: Bull. Chem. Soc. Jpn., 31 (4) 390-393 (1958).
5212. Kawase, Y.: Bull. Chem. Soc. Jpn., 32 (1)11-12 (1959).
5213. Crabbé, P.; Leeming, P. R. and Djerassi, C.: J. Am. Chem. Soc., 80, 5258-5263 (1958).
5214. Chatterjea, J. N. and Roy, S. K.: J. Indian Chem. Soc., 34 (3) 155-162 (1957).
5215. Donnelly, J. A. and Maloney, D. E.: Tetrahedron, 35, 2875-2881 (1979).
5216. Farkas, L.: Chem. Ber., 90, 2940-2943 (1957).
5217. Gowan, J. E.; Lynch, M. F.; O’Connor, N. S.; Philbin, E. M. and Wheeler, T. S.: J. Chem. Soc., 2495-2499 (1958).
5218. Hanaya, K.; Muramatsu, T. and Hasegawa, E.: Chem. Ind. (London), 23, 802-803 (1990).
5219. Hanaya, K.; Muramatsu, T.; Izawa, O.; Youkouchi, A. and Hasegawa, E.: Nippon Kagaku Kaishi, 4, 363-369 (1993); Chem. Abstr., 119, 139000v (1993).
5220. Kagal, S. A.; Nair, P. M. and Venkataraman, K.: Tetrahedron Lett., 14, 593-597 (1962).
5221. Krishnamurty, H. G. and Prasad, J. S.: Tetrahedron Lett., 35, 3071-3072 (1977).
5222. Saeed, A.; Sharma, A. P.; Durani, N.; Jain, R.; Durani, S. and Kapil, R. S.: J. Med. Chem., 33 (12) 3210-3216 (1990).
5223. Sharma, A. P.; Saeed, A.; Durani, S. and Kapil, R. S.: J. Med. Chem., 33 (12) 3216-3222 (1990).
5224. Sharma, V. K. and Bannerjee, N. R.: Bull. Soc. Chim. Fr., (3) 364-366 (1986).
5225. Sharma, V. K. and Bannerjee, N. R.: Bull. Soc. Chim. Fr., (3) 424-426 (1987).
5226. Dolhem, E.; Barhdadi, R.; Folest, J. C.; Nédelec, J. Y. and Troupel, M: Tetrahedron, 57 (3) 525-529 (2001).
5227. Moore, G. G. I.; Harrington, J. K. and Swingle, K. F.: J. Med. Chem., 18 (4) 386-391 (1975).
5228. Hill, P. and Short, W. F.: J. Chem. Soc., 1123-1126 (1935).
5229. Weisl, S.: Monatsh. Chem., 26, 977-1002 (1905).
5230. Tasaki, T.: Acta phytochimica, 3, 259-315 (1927).
5231. Lespagnol, A.; Mercier, F.; Bertrand, J. and Mercier, J.: Ann. Pharm. Fr., 8 (4) 241-261 (1950).
5232. Nakazawa, K.; Matsuura, S. and Kusuda, K.: J. Pharm. Soc. Jpn., 74, 495-497 (1954).
5233. Kindler, K.; Oelschlager, H. and Henrich, P.: Arch. Pharm., 287, 210-223 (1954).
5234. McPhee, W. D. and Erickson, E. S., Jr.: J. Am. Chem. Soc., 68, 624-627 (1946).
5235. Ney, E.: Ber. Dtsch. Chem. Ges., 21, 2445-2452 (1888).
5236. Berube, G.; He, Yue-hua; Groleau, S.; Sene, A.; Therien, H.-M. and Caron, M.: Inorg. Chim. Acta, 262 (2) 139-145 (1997).
5237. Fujita, I.; Murata, S.; Kozuki, T.; Irie, K. and Oohashi, N.: Jpn. Kokai Tokkyo Koho JP 07 41,459 [95 41,459] (1995); Chem. Abstr., 123, 227818e (1995).
5238. Gao, Peng; Li, Qun; Wang, Shi Yu and Zhang, Pang: Chin. Chem. Lett., 3 (7) 489-492 (1992).
5239. Hara, H.; Igarashi, S; Kimura, T.; Isaka, M.; Naito, R.; Nagaoka, H.; Koutoku, H.; Tomioka, K. and Mase, T.: PCT Int. Appl. WO 93 24,442 (1993); Chem. Abstr., 121, 280384v (1994).
5240. Harwood, H. J. and Goodrich, S. D.: U.S. US 5,405,913 (1995); Chem. Abstr., 123, 170528d (1995).
5241. He, Yuehua; Groleau, S.; C.-Gaudreault, R.; Caron, M.; Therien, H.-M. and Berube, G.: Bioorg. Med. Chem. Lett., 5 (19) 2217-2222 (1995).
5242. Kihara, M.; Ikeuchi, M. and Nagao, Y.: Drug. Des. Discovery, 12 (3) 259-271 (1995); Chem. Abstr., 122, 290146d (1995).
5243. Kyono, Y. and Tanaka, K.: Jpn. Kokai Tokkyo Koho JP 08,208,824 [96,208,824] (1996); Chem. Abstr., 125, 248818m (1996).
5244. Ruenitz, P. C.; Bagley, J. R.; Watts, C. K. W.; Hall, R. E. and Sutherland, R. L.: J. Med. Chem., 29 (12) 2511-2519 (1986).
5245. Seevers, R. H.; Mease, R. C.; Friedman, A. M. and Desombre, E. R.: Nucl. Med. Biol., 13 (4) 485-495 (1986); Chem. Abstr., 106, 119359w (1987).
5246. Szabo, V. and Levai, A.: Acta Phys. Chim. Debrecina, 15/16, 181-189 (1970); Chem. Abstr., 76, 3506z (1972).
5247. Yamamoto, H.; Johnson, R. and Funato, S.: Ger. Offen. DE 4,337,692 (1994); Chem. Abstr., 121, 217170g (1994).
5248. Tasaki, T.: Chem. Zentralbl., II, 1949-1951 (1927).
5249. Finzi, F.: Monatsh. Chem., 26, 1119-1138 (1905).
5250. Badcock, G. G.; Cavill, G. W. K.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 2961-2965 (1950).
5251. Gupta, S. R.; Malik, K. K. and Seshadri, T. R.: Indian J. Chem., 6 (9) 481-484 (1968).
5252. Farkas, J.; Bekassy, S.; Agai, B.; Hegedus, M. and Figueras, F.: Synth. Commun., 30 (14) 2479-2485 (2000).
5253. Bekassy, S.; Farkas, J.; Agai, B. and Figueras, F.: Topics in Catalysis, 13 (3) 287-290 (2000).
5254. Israelstam, S. S. and Stephen, H.: J. S. African Chem. Inst., 26, 41-48 (1943).
5255. Mohanty, S. and Grover, S. K.: Curr. Sci., 57 (10) 537-538 (1988); Chem. Abstr., 109, 169971x (1988).
5256. Panasenko, A. I.; Polyanskaya, N. L. and Starkov, S. P.: Zh. Obshch. Khim., 64 (4) 673-676 (1994).
5257. Oelschlager, H.: Arch. Pharm., 288, 102-113 (1955).
5258. Karmarkar, S. S.: J. Sci. Ind. Res., 20B, 334-338 (1961).
5259. Dohme, A. R. L.; Cox, E. H. and Miller, E.: J. Am. Chem. Soc., 48, 1688-1693 (1926).
5260. Mezheritskii, V. V. and Dorofeenko, G. N.: Zh. Org. Khim., 5 (3) 515-517 (1969).
5261. Price, P. and Israelstam, S. S.: J. Org. Chem., 29 (9) 2800-2802 (1964).
5262. Chapman, E. and Stephen, H.: J. Chem. Soc., 123, 404-409 (1923).
5263. Lalitha, V. R. and Subba Rao, N. V.: Proc. Indian Acad. Sci., Sect. A: 77A (4) 157-162 (1973).
5264. Moersch, G. W.; Morrow, D. F. and Neuklis, W. A.: J. Med. Chem., 10 (2) 154-158 (1967).
5265. Parmar, V. S.; Pati, H. N.; Azim, A.; Kumar, R.; Himanshu; Bisht, K. S.; Prasad, A. and Errington, W.: Bioorg. Med. Chem., 6 (1) 109-118 (1998).
5266. Shi, Chuntong and Wang, Shengfu: Zhongguo Haiyang Yaowu, 9 (3) 10-11 (1990); Chem. Abstr., 115, 92016d (1991).
5267. Baker, W.: J. Chem. Soc., 1381-1389 (1933).
5268. Mejias, L.; Reihmann, M. H.; Sepulveda-Boza, S. and Ritter, H.: Macromol. Biosci., 2 (1) 24-32 (2002).
5269. Bülow, C. and Grotowsky, H.: Ber. Dtsch. Chem. Ges., 35, 1519-1528 (1902).
5270. Farkas, L.: Chem. Ind. (London), 1212 (1957).
5271. Farkas, L.; Major, A.; Pallos, L. and Varady, J.: Chem. Ber., 91, 2858-2861 (1958).
5272. Jain, A. C. and Bambah, P. K.: Indian J. Chem., Sect. B, 25B (6) 649-651 (1986).
5273. Jain, A. C. and Mehta, A.: J. Chem. Soc., Perkin Trans. 1, (2) 215-220 (1986).
5274. Jain, A. C.; Arya, P. and Gupta, S. M.: Indian J. Chem., Sect. B, 24B (4) 383-388 (1985).
5275. Jain, A. C.; Nayyar, N. K. and Arya, P.: Indian J. Chem., Sect. B, 25B (6) 646-648 (1986).
5276. Krishnamoorthy, V.; Seshadri, T. R. and Krishnaswamy, N. R.: Indian J. Chem., 10 (3) 258-259 (1972).
5277. Parmar, V. S.; Bisht, K. S.; Jain, R.; Singh, S.; Sharma, S. K.; Gupta, S.; Malhotra, S.; Tyagi, O. D.; Vardhan, A.; Pati, H. N.; van den Berghe, D. A. and Vlietinck, A. J.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 35B (3) 220-232 (1996).
5278. Saxena, S.; Jain, P. K.; Makrandi, J. K. and Grover, S. K.: Tetrahedron Lett., 24 (32) 3401-3402 (1983).
5279. Shah, R. R. and Trivedi, K. N.: J. Indian Chem. Soc., 58 (3) 302-305 (1981).
5280. Sharma, A. P.; Saeed, A.; Durani, S. and Kapil, R. S.: J. Med. Chem., 33 (12) 3222-3229 (1990).
5281. Szabo, V.; Borbely, S.; Farkas, E. and Tolnai, S.: Magy. Kem. Foly., 81 (5) 220-224 (1975); Chem. Abstr., 83, 79033h (1975).
5282. Wu, E. S. C.; Cole, T. E.; Davidson, T. A.; Blosser, J. C.; Borrelli, A. R.; Kinsolving, C. R.; Milgate, T. E. and Parker, R. B.: J. Med. Chem., 30 (5) 788-792 (1987).
5283. Jain, A. C. and Tyagi, O. D.: Indian J. Chem., Sect. B, 27B (2) 112-116 (1988).
5284. Heilbron, I. M.; Hey, D. H. and Lythgoe, B.: J. Chem. Soc., 295-300 (1936).
5285. Ingle, T. R.; Phalnikar, N. L. and Bhide, B. V.: J. Indian Chem. Soc., 26 (12) 569-574 (1949).
5286. Boote, V. A.; Bruce, J. M.; Clarke, J. A.; Pritchard, A. P. and Speak, R. J.: Rapid Commun. Mass Spectrom., 11 (7) 749-752 (1997); Chem. Abstr., 127, 17308v (1997).
5287. Karmarkar, S. S.; Shah, K. H. and Venkataraman, K.: Proc. Indian Acad. Sci., Sect. A; 36A (6) 552-558 (1952).
5288. Deshpande, G. R. and Karmarkar, S. S.: Hindustan Antibiot. Bull., 9 (1) 27-30 (1966); Chem. Abstr., 66, 115388n (1967).
5289. Farooq, M. O.; Rahman, W. and Ilyas, M.: Chem. Ber., 92, 2555-2559 (1959).
5290. Noelting, E. and Kadiera, V.: Ber. Dtsch. Chem. Ges., 39, 2056-2061 (1906).
5291. Fukui, K. and Matsumoto, T.: J. Sci. Hiroshima Univ., Ser. A-II, 28 (1) 47-55 (1964); Chem. Abstr., 62, 9097h (1965).
5292. Pivovarenko, V. G. and Khilya, V. P.: Khim. Prir. Soedin., (2) 220-227 (1993); Chem. Abstr., 124, 56432p (1996).
5293. Jha, H. C.; Zilliken, F.; Offermann, W. and Breitmaier, E.: Can. J. Chem., 59 (15) 2266-2282 (1981).
5294. Katamna, C.: Bull. Soc. Chim. Fr., 2309-2322 (1970).
5295. Gilbert, A. H.; McGooking, A. and Robertson, A.: J. Chem. Soc., 3740-3745 (1957).
5296. Mehta, A. C. and Seshadri, T. R.: J. Chem. Soc., 3823-3825 (1954).
5297. Bonte, J. P.; Lesieur, D.; Lespagnol, C.; Cazin, J. C. and Cazin, M.: Eur. J. Med. Chem., 9 (5) 497-500 (1974).
5298. Lespagnol, C.; Lesieur, D. and Bonte, J. P.: Ger. Offen. 2,429,561 (1975); Chem. Abstr., 82, 139692p (1975).
5299. Learmonth, D. A. and Freitas, A. P.: Bioconjugate Chem., 13 (5) 1112-1118 (2002).
5300. Kitagawa, M.; Mimura, T. and Tanaka, M.: Chem. Pharm. Bull., 39 (9) 2400-2407 (1991).
5301. Kitagawa, M.: Jpn. Kokai Tokkyo Koho JP 63 83,089 [88 83,089] (1988); Chem. Abstr., 109, 128828n (1988).
5302. Kitagawa, M.; Mimura, T. and Tanaka, M.: Chem. Pharm. Bull., 39 (12) 3382 (1991).
5303. Kawai, T.; Shimizu, T. and Chiba, H.: J. Pharm. Soc. Jpn., 72, 660-665 (1956).
5304. Le-Van-Thoï and Nguyen-Van-Hoang: Ann. Fac. Sci., Univ. Saïgon, 1, 19-30 (1963-1964); Chem. Abstr., 65, 3780 (1966).
5305. Yamamoto, J.; Kisida, M.; Takenaka, Y. and Okamoto, Y.: Nippon Kagaku Kaishi, 3, 288-293 (1988); Chem. Abstr., 110, 134837b (1989).
5306. Sharghi, Hashem and Kaboudin, Babak: J. Chem. Res., Synop., (10) 628-629, 2678-2695 (1998).
5307. Martin, R.; Lafrance, J. R. and Demerseman, P.: Bull. Soc. Chim. Belg., 100 (7) 539-548 (1991).
5308. Miquel, J. F.; Muller, P. and Buu-Hoi, N. P.: Bull. Soc. Chim. Fr., 633-636 (1956).
5309. Polyanskaya, N. L.; Goncharenko, G. A.; Panasenko, A. I. and Starkov, S. P.: Zh. Obshch. Khim., 65 (7) 1177-1179 (1995).
5310. Shriner, R. L. and Moffett, R. B.: J. Am. Chem. Soc., 63, 1694-1698 (1941).
5311. Chakravarti, D. and Bera, B. C.: J. Indian Chem. Soc., 21, 44-46 (1944).
5312. Joglekar, S. J. and Samant, S. D.: Synthesis, (10), 830-832 (1988).
5313. Vercier, P.; Molho, D. and Mentzer, C.: Bull. Soc. Chim. Fr., 1248-1253 (1950).
5314. Auwers, K. v.: Ber. Dtsch. Chem. Ges., 53, 2271-2285 (1920).
5315. Xie, M.; Zhang, Y.; Wang, A. and Wong, W.: Beijing Shifan Daxue Xuebao, Ziran Kexueban, 31 (4) 487-490 (1995); Chem. Abstr., 125, 86550p (1996).
5316. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 434-438 (1958).
5317. Blau, E.: Monatsh. Chem., 26, 1149-1164 (1905).
5318. Szegö, L. and Ostinelli, P.: Gazz. Chim. Ital., 60, 677-688 (1930).
5319. Shah, H. A. and Shah, R. C.: J. Indian Chem. Soc., 17, 32-36 (1940).
5320. Pardanani, N. H. and Trivedi, K. N.: J. Indian Chem. Soc., 49 (10) 1035-1039 (1972).
5321. Shah, H. A. and Shah, R. C.: J. Chem. Soc., 245-247 (1940).
5322. Pardanani, N. H.; Shaikh, Y. A. and Trivedi, K. N.: J. Indian Chem. Soc., 52 (1) 45-46 (1975).
5323. Murai, J.: Science Repts. Saitama Univ., 1A, 139-146 (1954); Chem. Abstr., 50, 981f (1956).
5324. Zemplen, G.; Farkas, L. and Sattler, T.: Acta Chim. Acad. Sci. Hung., 22 (4) 449-454 (1960).
5325. Feuer, L.; Farkas, L.; Nogradi, M.; Vermes, B.; Gottsegen, A. and Wolfner, A.: Hung. Teljes 8899 (1974); Chem. Abstr., 82, 125278w (1975).
5326. Ishida, K.; Enomoto, M.; Fujita, S. and Oka, H.: PCT Int. Appl. WO 96 25, 386 (1996); Chem. Abstr., 125, 212679c (1996).
5327. Markham, K. R.; Rahman, W.; Jehan, S. and Mabry, T. J.: J. Heterocycl. Chem., 4 (1) 61-65 (1967).
5328. Paulsen, A.: Medd. Norsk Farm. Selskap, 24 (4) 61-66 (1962); Chem. Abstr., 60, 4048b (1964).
5329. Beger, J.; Binte, H. J.; Brunne, L. and Neumann, R.: J. Prakt. Chem./ Chem.-Ztg., 334 (3) 269-277 (1992).
5330. Baker, W.; Chadderton, J.; Harborne, J. B. and Ollis, W. D.: J. Chem. Soc., 1852-1860 (1953).
5331. Tambor, J.: Ber. Dtsch. Chem. Ges., 43, 1882-1889 (1910).
5332. Bentley, K. W. and Robinson, R.: J. Chem. Soc., 1353-1356 (1950).
5333. Oliverio, A. and Lugli, E.: Gazz. Chim. Ital., 78, 16-20 (1948).
5334. Verma, B. S.; Dhindsa, K. S. and Sangwan, N. K.: Indian J. Chem., Sect. B, 32B (2) 239-243 (1993).
5335. Ahluwalia, V. K. and Mehta, S.: Indian J. Chem., Sect. B: 15B (12) 1097-1099 (1977).
5336. Baker, W. and Robinson, R.: J. Chem. Soc., 152-161 (1929).
5337. Aggarwal, S. K.; Grover, S. K. and Seshadri, T. R.: Indian J. Chem., 7 (10) 1059-1060 (1969).
5338. Jain, P. K.; Pinkey; Makrandi, J. K. and Grover, S. K.: Indian J. Chem., Sect. B: 24B (1) 51-58 (1985).
5339. Makrandi, J. K. and Grover, S. K.: Indian J. Chem., Sect. B, 16B (11) 1118-1119 (1978).
5340. Singh, H.; Jain, P. K.; Makrandi, J. K. and Grover, S. K.: Indian J. Chem., Sect. B, 21B (6) 547-548 (1982).
5341. Khurana, S. K.; Krishnamoorthy, V.; Sanduja, S. K. and Parmar, V. S.: Spectrochim. Acta, Part A, 38A (12) 1325-1328 (1982); Chem. Abstr., 98, 160113r (1983).
5342. Martin, R.: Monatsh Chem., 112, 1155-1163 (1981).
5343. Kauffmann, H. and Grombach, A.: Justus Liebigs Ann. Chem., 344, 30-77 (1906).
5344. Ballio, A. and Pocchiari, F.: Gazz. Chim. Ital., 79, 913-923 (1949).
5345. Beger, J.; Neumann, R.; Vogel, T.; Luecke, L.; Kaestner, G.; Runge, H. J.; Schewe, T.; Schewe, C.; Ludwig, P. and Slapke, J.: Ger. (East) DD 297,155 (1992); Chem. Abstr., 116, 214145p (1992).
5346. Suzuki, T.; Tanemura, K.; Horaguchi, T. and Shimizu, T.: J. Chem. Res., Synop. (3) 132-133 (1996).
5347. Gormley, T. R. and O'Sullivan, W. I.: Tetrahedron, 29 (2) 369-373 (1973).
5348. Martin, R.: Bull. Soc. Chim. Fr., 9-10, 901-905 (1977).
5349. Yamato, M.; Hashigaki, K.; Uenishi, J.; Yamakawa, I.; Sato, N. and Koyama, T.: Chem. Pharm. Bull., 23 (12) 3101-3105 (1975).
5350. Paulsen, A.: Medd. Norsk Farm. Selskap, 24 (4) 45-49 (1962); Chem. Abstr., 60, 4047h(1964).
5351. Bulut, M.: Chim. Acta Turc. (Pub. 1992), 19 (1) 17-26 (1991); Chem. Abstr., 118, 101686p (1993).
5352. Jain, A. C.; Jain, S. M. and Singh, J.: Tetrahedron, 30 (15) 2485-2492 (1974).
5353. Iengar, R.; Mehta, A. C.; Seshadri, T. R. and Varadarajan, S.: J. Sci. Ind. Res., 13B (3) 166-174 (1954).
5354. Grover, S. K.; Jain, A. C. and Seshadri, T. R.: J. Indian Chem. Soc., 39 (5) 301-305 (1962).
5355. Rahman, W. and Nasim, K. T.: J. Org. Chem., 27, 4215-4220 (1962).
5356. Rahman, W. and Nasim, K. T.: Tetrahedron Lett., 18, 628-631 (1961).
5357. Libermann, D. and Moyeux, M.: Bull. Soc. Chim. Fr., 166-171 (1956).
5358. Parmar, V. S.; Khanduri, C. H.; Tyagi, O. D.; Prasad, A. K.; Gupta, S.; Bisht, K. S.; Pati, H. N. and Sharma, N. K.: Indian J. Chem., Sect. 31B (12) 925-929 (1992).
5359. Parmar, V. S.; Prasad, A. K.; Sharma, N. K.; Bisht, K. S.; Pati, H. N. and Taneja, P.: Bioorg. Med. Chem. Lett., 3 (4) 585-588 (1993).
5360. Fukui, K.; Matsumoto, T. and Nakamura, S.: Bull. Chem. Soc. Jpn., 38 (7) 1168-1170 (1965).
5361. Mani, N. V. and Sethna, S.: J. Inst. Chem., Calcutta, 46 (3) 61-65 (1974); Chem. Abstr., 82, 97918j (1975).
5362. Zbiral, E.; Saiko, O. and Wessely, F.: Monatsh. Chem., 95, 512-532 (1964).
5363. Marvell, E. N.; Reed, J. K.; Gänzler, W. and Tong, H.: J. Org. Chem., 42 (23) 3783-3784 (1977).
5364. Nakamura, N. and Oki, M.: Bull. Chem. Soc. Jpn., 45 (8) 2565-2570 (1972).
5365. Feuer, L.; Farkas, L.; Nogradi, M.; Strelisky, J.; Vermes, B. and Wolfner, A.: Fr. Demande 2,162,175 (1973); Chem. Abstr., 80, 26952p (1974).
5366. Feuer, L.; Farkas, L.; Nogradi, M.; Strelisky, J.; Vermes, B. and Wolfner, A.: Brit. 1,374,925 (1974); Chem. Abstr., 83, 27916 (1975).
5367. Khilya, V. P.; Luk'yanchikov, M. S.; Kazarov, A. L. and Gorbulenko, N. V.: Ukr. Khim. Zh., 50 (12) 1301-1306 (1984); Chem. Abstr., 102, 220613s (1985).
5368. Luk'yanchikov, M. S.; Khilya, V. P. and Kazakov, A. A.: Khim. Prir. Soedin., (6) 781-784 (1985); Chem. Abstr., 106, 66952a (1987).
5369. Kitagawa, M.; Yamamoto, K.; Katakura, S.; Kanno, H.; Yamada, K.; Nagahara, T. and Tanaka, M.: Chem. Pharm. Bull., 39 (10) 2681-2690 (1991).
5370. Kametani, T.; Ohkubo, K. and Takano, S.: Yakugaku Zasshi, 89 (8) 1048-1055 (1969); Chem. Abstr., 72, 3472c (1970).
5371. Ishwar-Dass; Narasimhachari, N. and Seshadri, T. R.: Proc. Indian Acad. Sci., 37A (5) 599-610 (1953).
5372. Jain, A. C. and Paliwal, Poona M: Indian J. Chem., Sect. B: 27B (12) 1146-1147 (1988).
5373. Jain, A. C. and Paliwal, Poonam: Indian J. Chem., Sect. B: 27B (11) 985-988 (1988).
5374. Jain, A. C. and Prasad, A. K.: Indian J. Chem., Sect. B, 26B (12) 1143-1147 (1987).
5375. Jain, A. C.; Nayyar, N. K. and Paliwal, P.: Indian J. Chem., Sect. B, 28B (1) 10-14 (1989).
5376. Jain, A. C.; Shrivastava, R. and Tyagi, O. D.: Indian J. Chem., Sect. B: 27B (7) 625-628 (1988).
5377. Bargellini, G. and Martegiani, E.: Atti. Accad. Lincei, 20 (2) 183-190 (1911).
5378. Bargellini, G. and Martegiani, E.: Gazz. Chim. Ital., 41, 603-612 (1911).
5379. Campbell, R. V. M.; Harper, S. H. and Kemp, A. D.: J. Chem. Soc. C, (13) 1787-1795 (1969).
5380. Jain, A. C. and Bambah, P. K.: Indian J. Chem., Sect. B, 26B (7) 628-633 (1987).
5381. Aggarwal, S. K.; Grover, S. K. and Seshadri, T. R.: Indian J. Chem., 10 (8) 804-807 (1972).
5382. Iyer, R. N.; Shah, K. H. and Venkataraman, K.: Proc. Indian Acad. Sci., Sect. A, 33A, 116-126 (1951).
5383. Robertson, A.; Suckling, C. W. and Whalley, W. B.: J. Chem. Soc., 1571-1578 (1949).
5384. Zemplen, G.; Farkas, L. and Schuller, N.: Acta Chim. Acad. Sci. Hung., 19, 277-283 (1959).
5385. Aghoramurthy, K.; Narasimhachari, N. and Seshadri, T. R.: Proc. Indian Acad. Sci., 33A, 257-263 (1951).
5386. Hariramakrishnan, K.; Gandhidasan, R. and Raman, P. V.: Indian J. Heterocycl. Chem., 1 (3) 98 (1991).
5387. Karmarkar, S. S.; Shah, K. H. and Venkataraman, K.: Proc. Indian Acad. Sci., 41A, 192-201 (1955).
5388. Karmarkar, S. S.; Shah, K. H. and Venkataraman, K.: Proc. Indian Acad. Sci., 37A, 660-663 (1953).
5389. Vitanyi Morvai, M.; Simon, K.; Ritz, I.; Eros Takacsy, T. and Hermecz, I.: Acta Pharm. Hung., 65 (6) 203-207 (1995); Chem. Abstr., 124, 241883z (1996).
5390. Feuer, L.; Nogradi, M.; Gottsegen, A.; Vermes, B.; Strelisky, J.; Wolfner, A.; Farkas, L.; Antus, S. and Kovacs, M.: Ger. Offen. 2,166,458 (1974); Chem. Abstr., 82, 16704m (1975).
5391. Feuer, L.; Nogradi, M.; Gottsegen, A.; Vermes, B.; Strelisky, J.; Wolfner, A.; Farkas, L.; Antus, S. and Kovacs, Mrs. Andras: Hung. Teljes 6072 (1973); Chem. Abstr., 79, 92007q (1973).
5392. Feuer, L.; Nogradi, M.; Gottsegen, A.; Vermes, B.; Strelisky, J.; Wolfner, A.; Farkas, L.; Antus, S. and Toth, M. K.: U.S. 4,166,862 (1979); Chem. Abstr., 92, 6415k (1980).
5393. Jain, A. C. and Sharma, A.: J. Chem. Soc., Chem. Commun., (6) 338-339 (1985).
5394. Jain, A. C.; Lal, P. and Seshadri, T. R.: Indian J. Chem., 6 (8) 485-487 (1968).
5395. Shaikh, Y. A. and Trivedi, K. N.: Indian J. Chem., 12 (12) 1262-1263 (1974).
5396. Krishnamurti, M. and Seshadri, T. R.: Proc. Indian Acad. Sci., 39A, 144-152 (1954).
5397. Dhar, M. L.; Pandita, K. and Jain, A. C.: Chromatographia, 12 (5) 299-301 (1979); Chem. Abstr., 91, 67838b (1979).
5398. Van der Schye, C. J.; Dekker, T. G.; Fourie, T. G. and Snyckers, F. O.: Antimicrob. Agents Chemother., 30 (3) 375-381 (1986); Chem. Abstr., 105, 226163d (1986).
5399. Libermann, D. and Moyeux, M.: Bull. Soc. Chim. Fr., 50-54 (1952).
5400. Jain, A. C.; Arya, P. and Nayyar, N. K.: Indian J. Chem., Sect. B, 23B (11) 1030-1035 (1984).
5401. Malik, M. L. and Grover, S. K.: J. Indian Chem. Soc., 57 (2) 208-211 (1980).
5402. Portnykh, N. V., Volodd'kin, A. A. and Ershov, V. V.: Izv. Akad. Nauk SSSR, Ser. Khim., 12, 2243-2244 (1966); Chem. Abstr., 66, 85580z (1967).
5403. Sergovskaya, N. L.; Kornienko, N. I.; Shekhter, O. V. and Tsizin, Yu. S.: Zh. Org. Khim., 18 (10) 2167-2170 (1982).
5404. Denisov, E. T.; Denisova, T. G.; Geletii, Yu. V. and Balavoine, G. G.: Neftekhimiya, 37 (5) 402-412 (1997); Chem. Abstr., 128, 140356g (1998).
5405. Tsizin, Yu. S.; Shekhtner, O. V.; Sergovskaya, N. L. and Pridantseva, E. A.: U.S.S.R. SU 777,889 (1981); Chem. Abstr., 96, 138028d (1982).
5406. Yamahara, J.; Torihara, M. and Tamai, H.: Jpn. Kokai Tokkyo Koho JP 04,356,479 [92,356,479] (1992); Chem. Abstr., 118, 183429u (1993).
5407. Jain, A. C.; Nayyar, N. K. and Gupta, A.: Indian J. Chem., Sect. B, 24B (11) 1133-1136 (1985).
5408. Jain, A. C.; Jain, S. M. and Seshadri, T. R.: Indian J. Chem., 10 (6) 581-584 (1972).
5409. Fontes, E.; Lee, W. K.; Heiney, P. A.; Nounesis, G.; Garland, C. W.; Riera, A.; McCauley, J. P. Jr. and Smith III, A. B.: J. Chem. Phys., 92 (6) 3917-3929 (1990).
5410. Dubois, J. C.; Nguyen Huu Tinh; Zann, A. and Billard, J.: Nouv. J. Chem., 2 (6) 647-651 (1978); Chem. Abstr., 90, 186508h (1979).
5411. Teo, C.-C. and Sim, K.-Y.: Bull. Singapore Natl. Inst. Chem., 22, 69-74 (1994); Chem. Abstr., 123, 313681m (1995).
5412. Adams, R. (ed), Organic Reactions [Russian translation], Vol. 5, Inos. Lit., Moscow (1951), p. 284.
5413. Szabo, V.; Grishko, L. G.; Borbely, S. and Khilya, V. P.: Khim. Geterotsikl. Soedin. (2) 174-179 (1975); Chem. Abstr., 82, 170600f (1975).
5414. Orito, I.: Science Repts. Tohoku Imp. Univ., 1st. Ser. 18, 121-128 (1929); Chem. Abstr., 24, 98 (1930).
5415. Pivovarenko, V. G. and Khilya, V. P.: Khim. Geterotsikl. Soedin., (5) 625-631 (1991); Chem. Abstr., 116, 20893k (1992).
5416. Rani, B. S. U. and Darbarwar, M.: J. Indian Chem. Soc., 64 (9) 555-558 (1987).
5417. Pivovarenko, V. G.; Tuganova, A. V.; Osinskaya, L. F. and Kholodova, Yu. D.: Khim.-Farm. Zh., 31 (3) 14-18 (1997); Chem. Abstr., 128, 140909q (1998).
5418. Pivovarenko, V. G.; Khilya, V. P.; Kovalev, V. N. and Vasil'ev, S. A.: Khim. Prir. Soedin., (4) 511-519 (1988); Chem. Abstr., 111, 7693x (1989).
5419. Vasil'ev, S. A.; Golubushina, G. M.; Kabachnyi, V. I.; Lukyanchikov, M. S.; Molchanov, G. I.; Sokolovskaya, T. I. and Khilya, V. P.: Khim.-Farm. Zh., 24 (9) 38-41 (1990); Chem. Abstr., 114, 81319h (1991).
5420. Valenti, P.; Belluti, F.; Rampa, A. and Bisi, A.: Synth. Commun., 29 (22) 3895-3899 (1999).
5421. Teo, C. C.; Kon, O. L. and Sim, K. Y.: J. Chem. Res., Synop., (1), 4-5, 171-184 (1990).
5422. Libermann, D.: Fr. 1,179,924 (1959); Chem. Abstr., 55, 19870c (1961).
5423. Yamashita, M.: Science Repts. Tôhoku Imp. Univ., 1st Ser. 18, 615-618 (1929); Chem. Abstr., 24, 2443 (1930).
5424. Dutta, N. L. and Bose, J. L.: J. Sci. Ind. Res., 11B (10) 413-415 (1952).
5425. Joshi, P. C. and Venkataraman, K.: J. Chem. Soc., 513-514 (1934).
5426. Crombie, L. and Josephs, J. L.: J. Chem. Soc., Perkin Trans. 1, (21) 2591-2597 (1993).
5427. La Forge, F. B.: J. Am. Chem. Soc., 55, 3040-3048 (1933).
5428. Tokes, A. L. and Bognar, R.: Flavonoids Bioflavonoids, Proc. Hung. Bioflavonoid Symp., 5th 151-158 (1977); Chem. Abstr., 89, 43023q (1978).
5429. Dang, Y. and Geise, H. J.: Bull. Soc. Chim. Belg., 100 (5) 375-380 (1991).
5430. Huang, F.; Galemmo, R. A., Jr. and Campbell, H. F.: U.S. US 4,920,131 (1990); Chem. Abstr., 116, 106117x (1992).
5431. Buu-Hoї, N. P.; Sy, M. and Xuong, N. D.: Bull. Soc. Chim. Fr., 629-632 (1956).
5432. Shopper, C. W.; Craig, J. C. and Lack, R. E.: J. Chem. Soc., 2291-2298 (1961).
5433. Lednicer, D. and Grostic, M. F.: J. Org. Chem., 32 (10) 3251-3253 (1967).
5434. Zincke, T.: Justus Liebigs Ann. Chem., 325, 19-92 (1902).
5435. Kvakovszky, G.; Vicari, r.; Tafesh, A. M.; Juneau, K. N.; Fruchey, O. S.; McDonough, J. A. and Kuila, D.: U.S. US 5,459,266 (1995); Chem. Abstr., 124, 147109e (1996).
5436. Kapil, R. S.; Durani, S.; Dhar, J. and Setty, B. S.: Indian IN 173,337 (1994); Chem. Abstr., 124, 343113r (1996).
5437. Kapil, R. S.; Durani, S.; Dhar, J. D. and Setty, B. S.: Eur. Pat. Appl. EP 470,310 (1992); Chem. Abstr., 117, 90146p (1992).
5438. Seshadri, T. R. and Varadarajan, S.: Proc. Indian Acad. Sci., Sect. A: 37A (6) 784-797 (1953).
5439. Luk, Kin Chun; Stern, Lorraine; Weigele, M.; O’Brien, R. A. and Spirt, N.: J. Nat. Prod., 46 (6) 852-861 (1983); Chem. Abstr., 100, 96557u (1984).
5440. Labrie, F.; Merand, Y. and Gauthier, S.: PCT Int. Appl. WO 96 26,201 (1996); Chem. Abstr., 125, 275650g (1996).
5441. Gauthier, S.; Caron, B.; Cloutier, J.; Dory, Y. L.; Favre, A.; Larouche, D.; Mailhot, J.; Ouellet, C.; Schwerdtfeger, A.; Leblanc, G.; Martel, C.; Simard, J.; Merand, Y.; Belanger, A.; Labrie, C. and Labrie, F.: J. Med. Chem., 40 (14) 2117-2122 (1997).
5442. Jain, A. C. and Nayyar, N. K.: Indian J. Chem., Sect. B, 26B (2) 136-139 (1987).
5443. Yoder, L.; Edmund, W.; Cheng, K. and Burroughs, W.: Proc. Iowa Acad. Sci., 61, 271-277 (1954); Chem. Abstr., 49, 13236f (1955).
5444. Walz, E.: Justus Liebigs Ann. Chem., 489, 118-155 (1931).
5445. Adlercreutz, H.; Bannwart, C.; Wahala, K.; Makela, T.; Brunow, G.; Hase, T.; Arosemena, P. J.; Kellis, J. T., Jr. and Vickery, L. E.: J. Steroid Biochem. Mol. Biol., 44 (2) 147-153 (1993); Chem. Abstr., 119, 2651n (1993).
5446. Farkas, L. and Varady, J.: Chem. Ber., 92, 819-821 (1959).
5447. Labrie, F. and Merand, Y.: U.S. US 5,395,842 (1995); Chem. Abstr., 123, 83209g (1995).
5448. Pelter, A. and Foot, S.: Synthesis, (5) 326 (1976).
5449. Wessely, F.; Kornfeld, L. and Lechner, F.: Ber. Dtsch. Chem. Ges., 66B, 685-687 (1933).
5450. Pelter, A.; Ward, R. S. and Bass, R. J.: J. Chem. Soc., Perkin Trans. 1, (6), 666-668 (1978).
5451. Benton, M. R.; Fryatt, T.; Oldfield, M. F. and Botting, N. P.: Biologically-Active Phytochemicals in Food, 269, 51-55 (2001); Chem. Abstr., 136, 53596g (2002).
5452. Eddarir, S.; Abdelhadi, Z. and Rolando, C.: Tetrahedron Lett., 42 (52) 9127-9130 (2001).
5453. Okano, K. and Beppu, I.: Nippon Nogei Kagaku Kaishi, 15, 645-652 (1939); Chem. Abstr., 34, 429^{4} (1940).
5454. Baker, W.; Harborne, J. B. and Ollis, W. D.: J. Chem. Soc., 1860-1864 (1953).
5455. Okano, K. and Beppu, I.: Bull. Agric. Chem. Soc. Jpn, 15, 110 (1939); Chem. Abstr., 34, 429^{4} (1940).
5456. Seshadri, T. R. and Varadarajan, S.: Proc. Indian Acad. Sci., Sect. A, 37A (4) 514-519 (1953).
5457. Baker, W.; Harborne, J. B. and Ollis, W. D.: Chem. Ind. (London), 1058 (1952).
5458. Shao, Guo-Xian; Mo, Ruo-Ying; Wang, Cun-Ying; Zhang, De-Yong; Yin, Zhong-Zhu; Ouyang, Rong and Xu, Li-Na: Yao Hsueh Hsueh Pao, 15 (9) 538-547 (1980); Chem. Abstr., 94, 174809b (1981).
5459. Baker, W. and Robinson, R.: J. Chem. Soc., 2713-2720 (1926).
5460. Pelter, A.; Ward, R. S. and Ashdown, D. H. J.: Synthesis, (11) 843 (1978).
5461. Pelter, A.; Ward, R. S. and Whalley, J. L.: Environ. Toxicol. Pharmacol., 7 (3) 217-220 (1999); Chem. Abstr., 131, 334253d (1999).
5462. Pelter, A.; Ward, R. S. and Whalley, J. L.: Synthesis, (12) 1793-1802 (1998).
5463. Gazave, J. M.; Rancurel, A. and Grenier, G.: Ger. Offen. 2,501,443 (1975); Chem. Abstr., 83, 188522n (1975).
5464. Diedrich, D. F.; Scahill, T. A. and Smith, S. L.: J. Chem. Eng. Data, 22 (4) 448-450 (1977); Chem. Abstr., 87, 151966s (1977).
5465. Schuda, P. F. and Price, W. A.: J. Org. Chem., 52 (10) 1972-1979 (1987).
5466. Späth, E. and Lederer, E.: Ber. Dtsch. Chem. Ges., 63, 743-748 (1930).
5467. Gorter, K.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 244, 401-405 (1906).
5468. Späth, E. and Schmidt, O.: Monatsh. Chem., 53, 454-470 (1929).
5469. Rangaswami, S. and Sastry, B. V. R.: Proc. Indian Acad. Sci., Sect. A, 57A (3) 135-141 (1963).
5470. Kukla, A. S. and Seshadri, T. R.: Tetrahedron, 18, 1443-1448 (1962).
5471. Jain, A. C. and Prasad, A. K.: Indian J. Chem., Sect. B, 27B (7) 622-624 (1988).
5472. Fukui, K. and Matsumoto, T.: Bull. Chem. Soc. Jpn., 38 (4) 612-616 (1965).
5473. Iyer, R. N.; Shah, K. H. and Venkataraman, K.: Proc. Indian Acad. Sci., Sect. A, 33A, 228-230 (1951).
5474. Kagal, S. A.; Karmarkar, S. S. and Venkataraman, K.: Proc. Indian Acad. Sci., Sect. A: 44A (1) 36-41 (1956).
5475. Kawase, Y.: Bull. Chem. Soc. Jpn., 35 (4) 573-577 (1962).
5476. Whalley, W. B. and Lloyd, G.: J. Chem. Soc., 3213-3224 (1956).
5477. Deshmukh, R. S. K. and Paradkar, M. V.: Synth. Commun., 18 (6) 589-596 (1988).
5478. Vaccaro, W.; Amore, C.; Berger, J.; Burrier, R.; Clader, J.; Davis, H.; Domalski, M.; Fevig, T.; Salisbury, B. and Sher, R.: J. Med. Chem., 39 (8) 1704-1719 (1996).
5479. Kawase, Y.: Bull. Chem. Soc. Jpn., 32 (1) 9-10 (1959).
5480. Martin, R.; Gros, N.; Böhmer, V. and Kämmerer, H.: Monatsh Chem., 111 (1) 81-92 (1980).
5481. Tadros, W.; Ekladnis, L. and Sakla, A. B.: J. Chem. Soc., 2351-2353 (1954).
5482. Finnie, A. A. and Hill, R. A.: J. Chem. Res., Synop. (3) 78-79, 873-894 (1987).
5483. Whalley, W. B.: J. Chem. Soc., 3366-3371 (1953).
5484. Wessely, F. and Lechner, F.: Monatsh. Chem., 57, 395-404 (1931).
5485. Baker, W.; Robinson, R. and Simpson, N. M.: J. Chem. Soc., 274-275 (1933).
5486. Wessely, F.; Lechner, F. and Dinjaski, K.: Monatsh. Chem., 63, 201-209 (1933).
5487. Bradbury, R. B. and White, D. E.: J. Chem. Soc., 3447-3449 (1951).
5488. Whalley, W. B.: J. Chem. Soc., 1833-1837 (1957).
5489. Ji, Q. E. and Wei, Y. L.: Yaoxue Xuebao, 24 (12) 906-912 (1989); Chem. Abstr., 113, 58841t (1990).
5490. Farkas, L.; Olechnowicz-Stepien, V. and Wolner, A.: Magy. Kem. Foly., 78 (5) 252-254 (1972); Chem. Abstr., 77, 34254r (1972).
5491. Farkas, L.; Wolfner, A. and Olechnowicz-Stepien, V.: Acta Chim. Acad. Sci. Hung., 74 (3) 367-370 (1972); Chem. Abstr., 78, 16433q (1973).
5492. Bhandari, P.; Crombie, L.; Daniels, P.; Holden, I.; Van Bruggen, N. and Whiting, D. A.: J. Chem. Soc., Perkin Trans. 1, (7) 839-849 (1992).
5493. Takai, M.; Yamaguchi, H.; Saitoh, T. and Shibata, S.: Chem. Pharm. Bull., 20 (11) 2488-2490 (1972).
5494. Seshadri, T. R. and Varadarajan, S.: Proc. Indian Acad. Sci., Sect. A, 37A (4) 508-513 (1953).
5495. Whalley, W. B.: J. Am. Chem. Soc., 75, 1059-1065 (1953).
5496. Booth, C.; Hargreaves, D. F.; Hadfield, J. A.; McGown, A. T. and Potten, C. S.: Br. J. Cancer, 80 (10) 1550-1557 (1999); Chem. Abstr., 131, 310057s (1999).
5497. Mehta, A. C.; Seshadri, T. R. and Varadarajan, S.: Proc. Indian Acad. Sci., Sect. A, 38A (5) 381-386 (1953).
5498. Seshadri, T. R. and Varadarajan, S.: Proc. Indian Acad. Sci., Sect. A, 37A (4) 526-530 (1953).
5499. Jurd, L.; Stevens, K. and Manners, G.: Phytochemistry, 11 (8) 2535-2540 (1972).
5500. Parmar, V. S.; Singh, S. and Jain, R.: Indian J. Chem., Sect. B, 26B (2) 166-167 (1987).
5501. Shibata, S.; Murata, T. and Fujita, M.: Chem. Pharm. Bull., 11 (3) 382-385 (1963).
5502. Bors, W.; Michel, C. and Saran, M.: Oxy Radicals Their Scavenger Syst., Proc. Int. Conf. Superoxide Superoxide Dismutase, 3rd 1982 (Pub. 1983) 1, 38-43; Chem. Abstr., 99, 193292x (1983).
5503. Jha, H. C.; Zilliken, F. and Breitmaier, E.: Angew. Chem., 93 (1) 129-130 (1981).
5504. Zilliken, F. W.: PCT Int. Appl. 80 02,098 (1980); Chem. Abstr., 95, 41045y (1981).
5505. Zilliken, F. W.: U.S. 4,264,509 (1981); Chem. Abstr., 95, 113769n (1981).
5506. Shriner, R. L. and Hull, C. J.: J. Org. Chem., 10, 288-291 (1945).
5507. Fukui, K. and Matsumoto, T.: Bull. Chem. Soc. Jpn., 38 (6) 887-893 (1965).
5508. Krishnamurti, M. and Seshagiri, S. N.: Indian J. Chem., 15B (3) 238-239 (1977).
5509. Dyke, S. F.; Tiley, E. P.; White, A. W. C. and Gale, D. P.: Tetrahedron, 31 (9) 1219-1222 (1975).
5510. Gopinath, K. W.; Kidwai, A. R. and Prakash, L.: Tetrahedron, 16, 201-205 (1961).
5511. Zhou, Demin; Li, Ruzhang; Yue, Baozhen and Cai, Monshen: Huaxue Tongbao, (5) 42-43 (1997); Chem. Abstr., 127, 81205m (1997).
5512. Iyer, R. N.; Shah, K. H. and Venkataraman, K.: Curr. Sci., 18, 404-406 (1949); Chem. Abstr., 44, 3988e (1950).
5513. Krishnamurti, M. and Seshadri, T. R.: J. Sci. Ind. Res., 14B (6) 258-260 (1955).
5514. Albert, A. I. and Zilliken, F. W.: Eur. Pat. Appl. EP 267,155 (1988); Chem. Abstr., 109, 149354v (1988).
5515. Bhandari, P. R.; Bose, J. L. and Siddiqui, S.: J. Sci. Ind. Res., 8B (12) 217-221 (1949).
5516. Yue, Baozhen; Zhou, Zewei and Cai, Mengshen: Gaodeng Xuexiao Huaxue Xuebao, 11 (1) 99-101 (1990); Chem. Abstr., 113, 78089g (1990).
5517. Unterhalt, B. and Fahrig, M.: Sci. Pharm., 64 (3/4) 679-686 (1996); Chem. Abstr., 125, 293442v (1996).
5518. Grover, P. K. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 38A (2) 122-127 (1953).
5519. Jha, O. P.: J. Indian Chem. Soc., 50 (11) 740-742 (1973).
5520. Arora, S. K.; Jain, A. C. and Seshadri, T. R.: J. Indian Chem. Soc., 38 (2) 61-64 (1961).
5521. Bezuidenhoudt, B. C. B.; Brandt, E. V.; Steenkamp, J. A. and Roux, D. G.: J. Chem. Soc., Perkin Trans. 1, (5) 1227-1235 (1988).
5522. Harper, S. H.; Shirley, D. B. and Taylor, D. A.: Phytochemistry, 15 (6) 1019-1023 (1976).
5523. McMurry, T. B. H. and Theng, C. Y.: J. Chem. Soc., 1491-1498 (1960).
5524. Jain, A. C. and Jain, S. M.: Tetrahedron, 29 (18) 2803-2806 (1973).
5525. Arora, S. K.; Jain, A. C. and Seshadri, T. R.: Indian J. Chem., 4 (10) 430-432 (1966).
5526. Sehgal, J. M. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 42A (1) 36-40 (1955).
5527. Boyd, J. and Robertson, A.: J. Chem. Soc., 174-176 (1948).
5528. Cocker, W.; McMurry, T. B. H. and Staniland, P. A.: J. Chem. Soc., 1034-1037 (1965).
5529. Späth, E. and Schläger, J.: Ber. Dtsch. Chem. Ges., 73B, 1-12 (1940).
5530. Jain, A. C. and Nayyar, N. K.: Indian J. Chem., Sect. B, 25B (5) 481-484 (1986).
5531. Kalra, V. K.; Kukla, A. S. and Seshadri, T. R.: Indian J. Chem., 5 (7) 287-290 (1967).
5532. Dhar, M. I.; Narasimhachari, N. and Seshadri, T. R.: J. Sci. Ind. Res., 14B (2) 73-75 (1955).
5533. Shamma, M. and Stiver, L. D.: Tetrahedron, 25 (17) 3887-3893 (1969).
5534. Jain, A. C.; Tyagi, O. D. and Prasad, A. K.: Proc. Indian Acad. Sci., Chem. Sci., 100 (1) 45-52 (1988).
5535. Narasimhachari, N. and Seshadri, T. R.: Proc. Indian Acad. Sci., Sect. A, 32A (4) 256-263 (1950).
5536. Zemplen, G.; Bognar, R. and Farkas, L.: Ber. Dtsch. Chem. Ges., 76B, 267-272 (1943).
5537. Kotake, M. and Fukui, K.: J. Inst. Polytech. Osaka City Univ. [C] 1 (1) 11-13 (1950); Chem. Abstr., 45, 4719e (1951).
5538. Seshadri, T. R. and Varadarajan, S.: Proc. Indian Acad. Sci., Sect. A, 37A (1) 145-158 (1953).
5539. Chen, Yuh-Lin; Wang, Yei-Shung; Lin, Yun-Lian; Munakata, K. and Ohta, K.: Agric. Biol. Chem., 42 (12) 2431-2432 (1978); Chem. Abstr., 90, 135074 f (1979).
5540. Kalra, V. K.; Kukla, A. S. and Seshadri, T. R.: Tetrahedron, 23 (7) 3221-3225 (1967).
5541. Mitter, P. C. and Maitra, S. S.: J. Indian Chem. Soc., 13, 236-239 (1936).
5542. Neill, K. G.: J. Chem. Soc., 3454-3455 (1953).
5543. Jain, A. C.; Kumar, A. and Gupta, R. C.: J. Chem. Soc., Perkin Trans. 1, (1) 279-280 (1979).
5544. Haworth, R. D.; Mavin, C. R. and Sheldrick, G.: J. Chem. Soc., 1423-1429 (1934).
5545. Parmar, V. S.; Singh, S. and Jain, R.: Indian J. Chem., Sect B, 26B (5) 484-485 (1987).
5546. Narasimhachari, N. and Seshadri, T. R.: Proc. Indian Acad. Sci., 32A, 342-347 (1950).
5547. East, A. J.; Ollis, W. D. and Wheeler, R. E.: J. Chem. Soc. C, 365-374 (1969).
5548. Shriner, R. L. and Hull, C. J.: J. Org. Chem., 10, 228-231 (1945).
5549. Whalley, W. B.: J. Chem. Soc., 105-107 (1955).
5550. Suginome, H.: J. Org. Chem., 23, 1044-1046 (1958).
5551. Castellan, A.; Girard, P. and Vanucci, C.: J. Wood Chem. Technol., 8 (1) 73-90 (1988); Chem. Abstr., 109, 8224r (1988).
5552. Kametani, T.; Ohkubo, K.; Noguchi, I. and Manske, R. H. F.: Tetrahedron Lett., 38, 3345-3349 (1965).
5553. Kurosawa, K. and Araki, F.: Bull. Chem. Soc. Jpn., 52 (2) 529-532 (1979).
5554. Malik, M. L.: Ph. D., Delhi University, Delhi, India (1977).
5555. Narasimhachari, N.; Rajagopalan, D. and Seshadri, T. R.: J. Sci. Ind. Res., 11B (8) 347-348 (1952).
5556. Bokhari, S. A. N. N. and Whalley, W. B.: J. Chem. Soc., 5322-5327 (1963).
5557. Bhatti, S. P.; Singh, O. V.; Garg, C. P. and Kapoor, R. P.: Indian J. Heterocycl. Chem., 7 (2) 89-92 (1997); Chem. Abstr., 128, 114850u (1998).
5558. Mertens, J. J. R.: PCT Int. Appl. WO 94 14,477 (1994); Chem. Abstr., 121, 157298t (1994).
5559. Shaw, S. C.; Srivastava, B. K. and Jha, U.: J. Indian Chem. Soc., 67 (2) 144-147 (1990).
5560. Fukui, K.; Nakayama, M.; Hatanaka, M.; Okamoto, T. and Kawase, Y.: Bull. Chem. Soc. Jpn., 36, 397-399 (1963).
5561. Balakrishna, S.; Ramanathan, J. D.; Seshadri, T. R. and Venkataramani, B.: Proc. R. Soc. London A, 268, 1-20 (1962).
5562. Farkas, L.; Gottsegen, A.; Nogradi, M. and Antus, S.: J. Chem. Soc. (C), (10) 1994-2000 (1971).
5563. Shaw, S. C.; Gupta, A. K. and Kumar, R.: J. Indian Chem. Soc., 68 (11) 615-616 (1991).
5564. Govindachari, T. R.; Nagarajan, K. and Parthasarathy, P. C.: J. Chem. Soc., 548-551 (1957).
5565. Roy, D. and Khanna, R. N.: Indian J. Chem., Sect. B 18B (6) 525-528 (1979).
5566. Kalra, V. K.; Kukla, A. S. and Seshadri, T. R.: Indian J. Chem., 4 (4) 201 (1966).
5567. Kalra, V. K.; Kukla, A. S. and Seshadri, T. R.: Tetrahedron Lett., 23, 2153-2154 (1967).
5568. Kalra, V. K.; Kukla, A. S. and Seshadri, T. R.: Indian J. Chem., 5, 607-609 (1967).
5569. Govindachari, T. R.; Nagarajan, K. and Parthasarathy, P. C.: Tetrahedron, 15 (1-4) 129-131 (1961).
5570. King, F. E. and Neill, K. G.: J. Chem. Soc., 4752-4756 (1952).
5571. Sanduja, R.; Weinheimer, A. J. and Alam, M.: J. Chem. Res., Synop. (2) 56-57 (1985).
5572. Dominguez, E.; Lete, E.; Villa, M.-J.; Igartua, A.; Sotomayor, N.; Arrieta, J. M.; Berisa, A.; Labeaga, L.; Orjales, A.; Germain, G. and Nastopoulos, V.: J. Heterocycl. Chem., 28 (2) 1885-1889 (1991).
5573. Villa, M.-J.; Dominguez, E. and Lete, E.: Heterocycles, 24 (7) 1943-1954 (1986).
5574. SanMartin, R.; Martinez de Marigorta, E. and Dominguez, E.: Tetrahedron, 50 (7) 2255-2264 (1994).
5575. King, F. E.; King, T. J. and Warwick, A. J.: J. Chem. Soc., 96-100 (1952).
5576. Dekker, T. G.; Fourie, T. G.; Nandé, M. U.; Snyekers, F. O. and Van der Schyf, C. J.: S. Afr. J. Chem., 37 (2) 74-75 (1984); Chem. Abstr., 101, 151650s (1984).
5577. Krishnamurti, M. and Seshadri, T. R.: J. Sci. Ind. Res., 13B, 474-475 (1954).
5578. Kalla, A. K.; Dhar, K. L. and Atal, C. K.: Indian J. Chem., Sect. B: 15B (3) 258-259 (1977).
5579. Farkas, L.; Gottsegen, A.; Nogradi, M. and Antus, S.: J. Chem. Soc., Perkin Trans. 1, (2) 305-312 (1974).
5580. Al-Ani, H. A. M. and Dewick, P. M.: J. Chem. Soc., Perkin Trans. 1, (12) 2831-2838 (1984).
5581. Mahal, H. S.; Rai, H. S. and Venkataraman, K.: J. Chem. Soc., 1769-1771 (1934).
5582. Shekhter, O. V.; Sergovskaya, N. L.; Tsizin, Yu. S.; Pridantseva, E. A. and Alekseev, A. N.: U.S.S.R. SU 881,098 (1981); Chem. Abstr., 96, 138025a (1982).
5583. Niyazov, A. N.; Namotov, B. and Atlyev, Kh.: Izv. Akad. Nauk Turkm. SSR Ser. Fiz.-Tekh., Khim. Geol. Nauk, (6) 65-68 (1974); Chem. Abstr., 83, 58366d (1975).
5584. Pavlickova, L.; Koutek, B.; Velek, J. and Soucek, M.: Collect. Czech. Chem. Commun., 39 (5) 1216-1219 (1974).
5585. Cohen, M. P.; Shavel, J., Jr. and Von Strandtmann, M.: U.S. 4,033,845 (1977); Chem. Abstr., 87, 152019x (1977).
5586. Piao, L. Z.; Park, H. R.; Park, Y. K.; Lee, S. K.; Park, J. H. and Park, M. K.: Chem. Pharm. Bull., 50 (3) 309-311 (2002) and Park, J. H.: personal communication, March 31, 2004.
5587. Gramatica, P.; Gianotti, M. P.; Speranza, G. and Manitto, P.: Heterocycles, 24 (3) 743-750 (1986).
5588. Merrill, E. J. and Lewis, A. D.: J. Labelled Compd. Radiopharm., 13 (3) 385-391 (1977); Chem. Abstr., 88, 22536y (1978).
5589. Pichat, L. and Tostain, J.: J. Labelled Compd. Radiopharm., 13 (4) 587-604 (1977); Chem. Abstr., 88, 136255m (1978).
5590. Cascaval, A. and Barboiu, V.: Rom. RO 82,556 (1983); Chem. Abstr., 101, 130680m (1984).
5591. Cascaval, A.: Synthesis, (7) 579-580 (1983).
5592. Mori, K.; Audran, G. and Monti, H.: Synlett, (3), 259-260 (1998).
5593. Klutchko, S.; Cohen, M. P.; Shavel, J. R. and von Strandmann, M.: J. Heterocycl. Chem., 11, 183-188 (1974).
5594. Cohen, M. P.; Shavel, J., Jr. and Von Strandtmann, M.: U.S. 4,018,798 (1977); Chem. Abstr., 87, 23048g (1977).
5595. Cremins, P. J.; Saengchantara, S. T. and Wallace, T. W.: Tetrahedron, 43 (13) 3075-3082 (1987).
5596. Saengchantara, S. T. and Wallace, T. W.: Tetrahedron, 46 (8) 6553-6564 (1990).
5597. Szabo, V. and Kiss, A.: Acta Chim. Hung., 113 (2) 193-199 (1983); Chem. Abstr., 99, 175539d (1983).
5598. Szabo, V.; Kiss, A.; Poka, I. and Szabo, G.: Magy. Kem. Foly., 81 (5) 224-226 (1975); Chem. Abstr., 83, 79030e (1975).
5599. Furuya, H.; Hayakawa, K. and Shimada, H.: Jpn. Kokai Tokkyo Koho JP 02,204,091 [90,204,091] (1990); Chem. Abstr.; 114, 92023h (1991).
5600. Donnelly, D. M. X.; Kielty, J. M.; Cormous, A. and Finet, J. P.: J. Chem. Soc., Perkin Trans. 1, 17, 2069-2073 (1993).
5601. Saengchantara, S. T. and Wallace, T. W.: J. Chem. Soc., Chem. Commun., (21) 1592-1595 (1986).
5602. Hodgetts, K. J.; Maragkou, K. I.; Wallace, T. W. and Wootton, R. C. R.: Tetrahedron, 57 (31) 6793-6804 (2001).
5603. Thea, S. and Cevasco, G.: J. Org. Chem., 53 (17) 4121-4122 (1988).
5604. Matthews, R. S.: PCT Int. Appl. WO 97 18,191 (1997); Chem. Abstr., 127, 50397w (1997).
5605. Anjaneyulu, A. S. R. and Mallavadhani, U. V.: J. Chem. Soc., Perkin Trans. 1, (3) 623-628 (1988).
5606. Torrey, H. A. and Kipper, H. B.: J. Am. Chem. Soc., 30, 837-861 (1908).
5607. Ibrahim, S. S.; Abdel-Halim, A.; Gabr, Y. and Hassan, A. M.: J. Chem. Soc. Pak., 18 (3) 226-232 (1996); Chem. Abstr., 126, 31251g (1997).
5608. Yao, Run-hua; Ma, Rong-Sheng; Chen, Yao-Qing and Huang, Lan-Sun: Yaoxue Xuebao, 19 (3) 228-231 (1984); Chem. Abstr., 103, 123103p (1985).
5609. Royer, R. and René, L.: Bull. Soc. Chim. Fr., (10), 3601-3609 (1970).
5610. Thakar, K. A. and Deshpande, G. D.: Indian J. Chem., 10 (11) 1065-1067 (1972).
5611. Sen, A. B. and Singh, S. B.: J. Indian Chem. Soc., 41 (6) 461-464 (1964).
5612. ICI Australia Ltd.: Brit. 1,569,819 (1980); Chem. Abstr., 94, 30350x (1981).
5613. McGarry, E. J. and Forsyth, B. A.: Pat. Specif. (Aust.) AU 523,158 (1982); Chem. Abstr., 99, 5341r (1983).
5614. Sachchar, S. P. and Singh, A. K.: Indian J. Pharm. Sci., 48 (1) 1-4 (1986); Chem. Abstr., 106, 119394d (1987).
5615. Ariga, M. and Matsumura, E.: Bull. Chem. Soc. Jpn., 60 (3) 1198-1200 (1987).
5616. Amin, G. C.; Chaughuley, A. S. U. and Jadhav, G. V.: J. Indian Chem. Soc., 36 (12) 833-837 (1959).
5617. Amin, G. C. and Chaughuley, A. S. U.: J. Sci. Ind. Res., 12B, 391-392 (1953).
5618. Amin, G. C.; Chaughuley, A. S. U. and Jadhav, G. V.: J. Indian Chem. Soc., 36 (9) 617-621 (1959).
5619. Baker, W.: J. Chem. Soc., 1684-1692 (1934).
5620. Garcia, H.; Miranda, M. A. and Primo, J.: J. Chem. Res., Synop., (3), 100-101 (1986).
5621. Garcia, H.; Martinez-Utrilla, R. and Miranda, M. A.: Tetrahedron, 41 (15) 3131-3134 (1985).
5622. Toyobo Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 59 11,196 [84 11,196] (1984); Chem. Abstr., 101, 3551v (1984).
5623. Borsche, W. and Barthenheier, J.: Justus Liebigs Ann. Chem., 553, 250-259 (1942).
5624. Sangwan, N. K.; Verma, B. S. and Dhindsa, K. S.: Indian J. Chem., 25B (6) 672-674 (1986).
5625. Sangwan, N. K.; Verma, B. S.; Malik, O. P. and Dhindsa, K. S.: Indian J. Chem., Sect. B: 29B (3) 294-296 (1990).
5626. Henning, H. G.; Schwabe, B.; Kernchen, F. and Westphal, G.: J. Prakt. Chem., 326 (3) 491-501 (1984).
5627. Bohlmann, F. and Vorwerk, E.: Chem. Ber., 114 (1) 147-152 (1981).
5628. Bhatt, M. R. and Shah, N. M.: J. Indian Chem. Soc., 33 (5) 318-320 (1956).
5629. Wittig, G. and Schulze, W.: J. Prakt. Chem., 130, 81-91 (1931).
5630. Donnelly, J. A. and Murphy, J. J.: J. Chem. Soc. C, 2596-2598 (1970).
5631. Crombie, L.; Eskins, M.; Games, D. E. and Loader, C.: J. Chem. Soc., Perkin Trans. 1, (2) 478-482 (1979).
5632. Chen, Tian-An; Jen, Alex K.-Y.; Zhang, Yue; Lin, Yue-Jin; Zhang, Xuanqi and Kenney, J.: Polym. Mater. Sci. Eng., 75, 308-309 (1996); Chem. Abstr., 125, 233732e (1996).
5633. Henning, H. G.; Schwabe, B. and Westphal, G.: Z. Chem., 24 (2) 58-60 (1984).
5634. Singh, O. V.; Sangeeta; Khanna, M. S.; Garg, C. P.; Kapoor, R. P.; Kapil, A. and Sharma, S.: Indian J. Chem., Sect. B: 32B (12) 1241-1248 (1993).
5635. Bardamova, M. I.; Myasnikova, R. N. and Kotlyarevskii, I. L.: Dokl. Vses. Konf. Khim. Atselilena, 4th, 1, 241-243 (1972); Chem. Abstr., 79, 31755k (1973).
5636. Zdero, C.; Bohlmann, F. and Niemeyer, H. M.: Phytochemistry, 29 (10) 3247-3253 (1990).
5637. De Pascual, T. J.; Bellido, I. S.; Gonzalez, M. S.; Muriel, M. R. and Hernandez, J. M.: Phytochemistry, 20 (10) 2417-2420 (1981).
5638. Dolzhenko, Yu. I.; Tsukerman, S. V.; Polyakov, V. K.; Shevtsova, R. G. and Lutskii, A. E.: Zh. Obshch. Khim., 50 (10) 2337-2339 (1980).
5639. Abildgaard, J.; Bolvig, S. and Hansen, P. E.: J. Am. Chem. Soc., 120 (35) 9063-9069 (1998).
5640. Kruszewski, J.: Soc. Sci. Lodz., Acta Chim., 17, 157-166 (1972); Chem. Abstr., 78, 42647g (1973).
5641. Kotali, A.: Tetrahedron Lett., 35 (36) 6753-6754 (1994).
5642. Mani, R.; Herbert, L. and Manise, D.: J. Tenn. Acad. Sci., 66 (1) 1-8 (1991); Chem. Abstr., 114, 163805c (1991).
5643. Israelstam, S. S.: J. S. African Chem. Inst., 26, 49-53 (1943).
5644. Anjaneyulu, A. S. R.; Mallavadhani, U. V.; Venkateswarlu, Y. and Prasad, A. V. R.: Indian J. Chem., Sect. B, 26B (9) 823-826 (1987).
5645. Murthy, Y. L. N. and Srinivas, A. S. S. V.: Indian J. Heterocycl. Chem., 1 (2) 91-94 (1991); Chem. Abstr., 116, 214191a (1992).
5646. Dean, F. M. and Robertson, A.: J. Chem. Soc., 1241-1249 (1953).
5647. Desai, R. D. and Ekhlas, M.: Proc. Indian Acad. Sci., 8A, 194-201 (1938).
5648. Limaye, S. D. and Limaye, D. B.: Rasayanam, 1, 109-112 (1937); Chem. Abstr., 32, 20958 (1938).
5649. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 29A, 269-273 (1949).
5650. Desai, R. D. and Mavani, C. K.: J. Sci. Ind. Res. 12B, 236-239 (1953).
5651. Rosenmund, K. W.; Buchwald, R. and Deligiannis, T.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 271, 342-352 (1933).
5652. Baker, W. and Flemons, G. F.: J. Chem. Soc., 2138-2143 (1948).
5653. Morton, R. A. and Stubbs, A. L.: J. Chem. Soc., 1347-1359 (1940).
5654. Kamezawa, M.; Kohara, K. and Tachibana, H.: Nippon Kagaku Kaishi, 1, 138-140 (1985); Chem. Abstr., 103, 53919h (1985).
5655. Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 29 (5) 351-356 (1952).
5656. Desai, R. D. and Radha, K. S.: Proc. Indian Acad. Sci., 12A, 46-49 (1940).
5657. Anjaneyulu, A. S. R. and Isaa, B.: J. Chem. Soc., Perkin Trans. 1, (9) 2089-2094 (1991).
5658. Anjaneyulu, A. S. R.; Mallavadhani, U. V.; Sudharani, G. and Gowri Annapurna, K.: Indian. J. Chem., Sect. B, 27B (3) 233-237 (1988).
5659. Essawy, S. A.; El-Kady, M. Y.; Donia, S. G. and El-Shenawy, A. I.: Egypt. J. Chem., 37 (4) 381-390 (1994); Chem. Abstr., 123, 111808x (1995).
5660. Limaye, D. B. and Nagarkar, V. V.: Rasayanam, 1, 255-257 (1943); Chem. Abstr., 38, 4264^{4} (1944).
5661. Mohan, S. B.; Pal, K. and Murti, V. V. S.: Indian J. Chem., Sect. B: 21B (8) 714-717 (1982).
5662. Sreenivasulu, B. and Sarma, P. N.: Synth. Commun., 26 (18) 3373-3381 (1996).
5663. Srivastava, K. M. and Gupta, P. C.: Chim. Acta Turc., 22 (1) 31-45 (1994); Chem. Abstr., 122, 213880m (1995).
5664. Trivedi, P. L. and Sethna, S.: J. Indian Chem. Soc., 28 (5) 245-251 (1951).
5665. Limaye, D. B.: Rasayanam, 1, 246-250 (1943); Chem. Abstr., 38, 42584 (1944).
5666. Kaegi, B.; Kormany, G. and Luethi, C.: Ger. Offen. 2,839,595 (1979); Chem. Abstr., 91, 6410j (1979).
5667. Sharma, P. V. and Khanna, R. N.: Acta Chim. Hung., 120 (12) 159-162 (1985); Chem. Abstr., 105, 171584j (1986).
5668. Krause, J.; Stoeckli, M. and Schlunegger, V. P.: Rapid. Commun. Mass Spectrom., 10 (15) 1927-1933 (1996); Chem. Abstr., 126, 168615y (1997).
5669. Wajsman, E.; Grabowski, M. J.; Stepien, A. and Cygler, M.: Cryst. Struct. Commun., 7 (2) 233-236 (1978); Chem. Abstr., 89, 34629q (1978).
5670. Wajsman, E.; Grabowski, M. J.; Stepien, A. and Cygler, M.: Cryst. Struct. Commun., 7 (2) 259-262 (1978); Chem. Abstr., 89, 51745s (1978).
5671. Zhang, Dechun; Zhang, Yanqiu and Lu, Chengrong: Wuli Huaxue Xuebao, 14 (1) 63-67 (1998); Chem. Abstr., 128, 243703x (1998).
5672. Langer, P. and Kohler, V.: Chem. Commun. (Cambridge) (17) 1653-1654 (2000).
5673. Heller, G.: Ber. Dtsch. Chem. Ges., 45, 418-427 (1912).
5674. Kokila, M. K.; Nirmala, K. A.; Puttaraya and Shamala, N.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C48 (6) 1133-1134 (1992).
5675. Lee, T. T.; Starratt, A. N. and Jevnikar, J. J.: Phytochemistry, 21 (3) 517-523 (1982).
5676. Lakshmi, C.; Raj, N. G.; Srinivasan, K. S. V. C. and Kumar, K. A.: J. Inst. Chem. (India), 60 (3) 114 (1988); Chem. Abstr., 110, 153838u (1989).
5677. Anjaneyulu, A. S. R.; Prasad, A. V. R. and Reddy, D. S.: Curr. Sci., 48 (7) 300-301 (1979).
5678. Nencki, M.: Ber. Dtsch. Chem. Ges., 32, 2414-2419 (1899).
5679. Dorofenko, G. N. and Tkachenko, V. V.: Khim. Geterotsikl. Soedin, 2, 176-180 (1974).
5680. Eijkman, J. F.: Chem. Zentralbl., 1, 1597 (1904).
5681. Eykman, J. F.: Chem. Weekbl., 31, 453-461 (1904).
5682. Eijkman, J. F.: Bergema, F. and Henrard, I. T.: Chem. Zentralbl., I, 814-817 (1905).
5683. Balasubramanian, A. and Sankaran, P.: Indian J. Chem., 20B, 989 (1981).
5684. Nakazawa, K. and Matsuura, S.: J. Pharm. Soc. Jpn., 74, 69-72 (1954).
5685. Jhaveri, D. B.; Thakor, V. M. and Naik, H. B.: Vidya, B 19 (2) 149-152 (1976); Chem. Abstr., 87, 201001w (1977).
5686. Gardner, P. D.: J. Am. Chem. Soc., 77, 4674-4675 (1955).
5687. Worden, L. R.; Burgstahler, A. W.; Kaufman, K. D.; Weis, J. A. and Schaaf, T. K.: J. Heterocycl. Chem., 6 (1) 191-198 (1969).
5688. Algar, J.; McCarthy, I. B. and Dick, E. M.: Proc. R. Irish Acad., 41, 155-160 (1933).
5689. Eykman, J. F.: Chem. Weekbl., II (4) 59-72 (1905).
5690. Klarmann, E.: J. Am. Chem. Soc., 48, 2358-2367 (1926).
5691. Mahal, H. S. and Venkataraman, K.: J. Chem. Soc., 616-617 (1933).
5692. Baker, W.: J. Chem. Soc., 71-73 (1934).
5693. Norton, P. P.; George, A. D.; Abdulminium, H.; Abdallah, J. W. and Daly, D. U.: J. Med. Chem., 31, 2034-2039 (1988).
5694. Peet, N. P.; Dickerson, G. A.; Abdallah, A. H.; Daly, J. W. and Ukena, D.: J. Med. Chem., 31 (10) 2034-2039 (1988).
5695. Gulati, K. C. and Venkataraman, K.: J. Chem. Soc., 2376-2381 (1931).
5696. Pathak, V. P. and Khanna, R. N.: Synthesis, (11), 882-883 (1981).
5697. Crépieux, M. P.: Bull. Soc. Chim. Fr., (6) 151-161 (1891).
5698. Nakazawa, K.: J. Pharm. Soc. Jpn., 74, 836-839 (1954).
5699. Bollinger, N. G.; Goodson, T. and Herron, D. K.: U.S. US 4,945,099 (1990); Chem. Abstr., 114, 42277y (1991).
5700. Herron, D. K.; Goodson, T.; Bollinger, N. G.; Swanson-Bean, D.; Wright, I. G.; Staten, G. S.; Thompson, A. R.; Froelich, L. L. and Jackson, W. L.: J. Med. Chem., 35 (10) 1818-1928 (1992).
5701. Chattaway, F. D.: J. Chem. Soc., 2495-2496 (1931).
5702. Hemalatha, G.; Merina, A. J.; Venkataraman, V. R. and Nagarajan, S.: Asian J. Chem., 3 (3) 342-343 (1991); Chem. Abstr., 117, 61443c (1992).
5703. Lu, Yixian; Hu, Dun and Cai, Mengshen: Beijing Yike Daxue Xuebao, 22 (4) 287-288 (1990).
5704. Lynch, H. M.; O'Toole, T. M. and Wheeler, T. S.: J. Chem. Soc., 2063-2067 (1952).
5705. Nicolaides, D. N.; Fylaktakidou, K. C.; Bezergiannidou-Balouktsi, C. and Litinas, K. E.: J. Heterocycl. Chem., 31 (1) 173-176 (1994).
5706. Reddy, K. V. V.; Rao, P. S. and Ashok, D.: Synth. Commun., 30 (10) 1825-1836 (2000).
5707. Reddy, S. P.; Ashok, D. and Sarma, P. N.: J. Indian Chem. Soc., 68 (4) 242-243 (1991).
5708. Saraf, A. S. and Simonyan, A. V.: Khim.-Farm. Zh., 26 (7-8) 45-48 (1992); Chem. Abstr., 119, 159802k (1993).
5709. Spyroudis, S. and Tarantilli, P.: Tetrahedron, 50 (39) 11541-11552 (1994).
5710. Claus, A. and Huth, M.: J. Prakt. Chem., 53, 39-42 (1896).
5711. Cheshko, F. F. and Distanov, B. G.: Zh. Obshch. Khim., 27, 2851-2861 (1957).
5712. Ballio, A. and Schiavello, A.: Ricerca Sci., 20, 993-995 (1950).
5713. Schmiz, C. and Eiden, F.: Liebigs Ann. Chem., 12, 2021-2030 (1980).
5714. Healey, M. and Robinson, R.: J. Chem. Soc., 1625-1631 (1934).
5715. Campbell, T. W. and Coppinger, G. M.: J. Am. Chem. Soc., 73, 2708-2712 (1951).
5716. Meikle, T. and Stevens, R.: J. Chem. Soc., Perkin Trans. 1, (11) 1303-1312 (1978).
5717. Göschke, A. and Tambor, J.: Ber. Dtsch. Chem. Ges., 45, 1237-1239 (1912).
5718. Aino, K.; Maki, H.; Shimizu, K.; maekawa, Y.; Akyma, T. and Hayashi, K.: Jpn. Kokai Tokkyo Koho JP 08,268,825 [96,268,825] (1996); Chem. Abstr., 126, 28026g (1997).
5719. Thomashow, L. S.; Bangera, M. G.; Weller, D. M. and Cook, J. R.: PCT Int. Appl. WO 97 01,572 (1997); Chem. Abstr., 126, 167493v (1997).
5720. Yamaki, M.; Miwa, M.; Ishiguro, K. and Takagi, S.: Phytother. Res., 8 (2) 112-114 (1994); Chem. Abstr., 121, 153116 j (1994).
5721. Aarons, S.; Abbas, A.; Adams, C.; Fenton, A. and O'Gara, F.: J. Bacteriol. 182 (14) 3913-3919 (2000); Chem. Abstr., 133, 234887m (2000).
5722. Abbas, A.; Morrissey, J. P.; Marquez, P. C.; Sheehan, M. M.; Delany, I. R. and O’Gara, F.: J. Bacteriol. 184 (11) 3008-3016 (2002).
5723. Bangera, M. G. and Thomashow, L. S.: J. Bacteriol., 181 (10) 3155-3163 (1999).
5724. Bonsall, R. F.; Weller, D. M. and Thomashow, L. S.: Appl. Environ. Microbiol., 63 (3) 951-955 (1997); Chem. Abstr., 126, 260402z (1997).
5725. Broadbent, D.; Mabelis, R. P. and Spencer, H.: Phytochemistry, 15 (11) 1785 (1976).
5726. Cronin, D.; Moenne-Loccaz, Y.; Fenton, A.; Dunne, C.; Dowling, D. N. and O’Gara, F.: FEMS Microbiol. Ecol., 23 (2) 95-106 (1997); Chem. Abstr., 127, 105546b (1997).
5727. Cronin, D.; Moenne-Loccaz, Y.; Fenton, A.; Dunne, C.; Dowling, D. N. and O'Gara, F.: Appl. Environ. Microbiol., 63 (3) 1357-1361 (1997); Chem. Abstr., 126, 273629d (1997).
5728. Duffy, B. K. and Defago, G.: Appl. Environ. Microbiol., 66 (8) 3142-3150 (2000); Chem. Abstr., 133, 265666t (2000).
5729. Duffy, B. K. and Defago, G.: Eff. Miner.-Org.-Microorg. Interact. Soil Freshwater Environ., [Proc. Int. Symp.], 2 nd 1996 (Pub. 1999) 295-304; Chem. Abstr., 133, 281141y (2000).
5730. Duffy, B. K. and Defago, G.: Phytopathology, 87 (12) 1250-1257 (1997); Chem. Abstr., 128, 61058h (1998).
5731. Ligon, J. M.; Hill, D. S.; Hammer, P. E.; Torkewitz, N. R.; Hofmann, D.; Kempf, H.-J. and Van Pee, K.-H.: Pest. Manage Sci., 56 (8) 688-695 (2000); Chem. Abstr., 133, 204096k (2000).
5732. Nakata, K.; Harada, N.; Sumitomo, K. and Yoneda, K.: Biosci., Biotechnol., Biochem., 64 (3) 459-465 (2000).
5733. Nielsen, M. N.; Sörensen, J.; Fels, J. and Pedersen, H. C.: Appl. Environ. Microbiol., 64 (10) 3563-3569 (1998).
5734. Notz, R.; Maurhofer, M.; Dubach, H.; Haas, D. and Défago, G.: Appl. Environ. Microbiol., 68 (5) 2229-2235 (2002).
5735. Raaijmakers, J. M. and Weller, D. M.: Mol. Plant-Microbe Interact., 11 (2) 144-152 (1998); Chem. Abstr., 128, 138692v (1998).
5736. Raaijmakers, J. M.; Weller, D. M. and Thomashow, L. S.: Appl. Environ. Microbiol., 63 (3) 881-887 (1997); Chem. Abstr., 126, 248625y (1997).
5737. Rodriguez, F. and Pfender, W. F.: Phytopathology, 87 (6) 614-621 (1997); Chem. Abstr., 127, 106562r (1997).
5738. Sharifi-Tehrani, A.; Zala, M.; Natsch, A.; Moenne-Loccoz, Y. and Defago, G.: Eur. J. Plant Pathol., 104 (7) 631-643 (1998); Chem. Abstr., 130, 120833y (1999).
5739. Thomashow, L. S.; Bangera, M. G.; Bonsall, R. F.; Kim, D.-S.; Raaijmakers, J. and Weller, D. M.: Biol. Plant-Microbe Interact., Proc. Int. Symp. Mol. Plant-Microbe Interact., 8th, 469-474 (1996); Chem. Abstr., 126, 313564n (1997).
5740. Gardener, B. B. McSpadden; Schroeder, K. L.; Kalloger, S. E.; Raaijmakers, J. M.; Thomashow, L. S. and Weller, D. M.: Appl. Environ. Microbiol., 66 (5) 1939-1946 (2000); Chem. Abstr., 133, 71306e (2000).
5741. Fredenhagen, A.; Kenny, P.; Kita, H.; Komura, H.; Naya, Y.; Nakanishi, K.; Nishiyama, K.; Sugiura, M. and Tamura, S.: Pestic. Sci. Biotechnol., Proc. Int. Congr. Pestic; Chem. 6 th, 101-108 (1986) (Pub. 1987); Chem. Abstr., 107, 215127k (1987).
5742. Kenny, P. T. M.; Tamura, S. Y.; Fredenhagen, A.; Naya, Y.; Nakanishi, K.; Nishiyama, K.; Sugiura, M.; Kita, H. and Komura, H.: Pestic. Sci., 27 (2) 117-131 (1989); Chem. Abstr., 112, 95155x (1990).
5743. Gulati, K. C.; Seth, S. R. and Venkataraman, K.: Org. Synth. Coll. Vol. II, 522 (1943).
5744. Raphael, R. A.; Eyley, S. C. and Coltman, S. C. W.: Eur. Pat. Appl. 30,423 (1981); Chem. Abstr., 95, 169008f (1981).
5745. Eyley, S. C. and Coltman, S. C. W.: Eur. Pat. Appl. EP 52,280 (1982); Chem. Abstr., 97, 144562k (1982).
5746. Anon: Res. Discl., 276, 223 (1987); Chem. abstr., 109, 54378s (1988).
5747. Collie, J. N.: J. Chem. Soc., 85, 971-980 (1904).
5748. Khan, M. S. Y.; Drabu, S.; Chawla, G.; Agarwal, N.; Nasa, M. and Sharma, P.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 34B (9) 839-840 (1995).
5749. Khan, M. S. Y.; Venkatachalam, K.; Khan, M. H.; Javed, K. and Drabu, S.: Indian J. Chem., Sect. B: 29B (11) 1067-1069 (1990).
5750. Bailey, N. A.; Fenton, D. E.; Lay, J.; Roberts, P. B.; Latour, J. M. and Limosin, D.: J. Chem. Soc., Dalton Trans., (12) 2681-2689 (1986).
5751. Bailey, N. A.; Fenton, D. E.; Roberts, P. B. and Walford, A. M.: J. Chem. Soc., Dalton Trans., 8, 1865-1868 (1987).
5752. Mandal, S. K. and Nag, K.: J. Chem. Soc., Dalton Trans., (11) 2429-2434 (1983).
5753. Rosenmund, K. W. and Schulz, H.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 265, 308-319 (1927).
5754. Agarwal, N.: M. Pharm. Thesis, Hamdard University, New Delhi, India (1994).
5755. Rosenmund, K. W. and Schnurr, W.: Justus Liebigs Ann. Chem., 460, 56-98 (1928).
5756. Addison, A. W.: Inorg. Nucl. Chem. Letters, 12, 899-903 (1976).
5757. Archibald, S. J.; Blake, A. J.; Schroder, M. and Winpenny, R. E. P.: J. Chem. Soc., Chem. Commun., (14), 1669-1670 (1994).
5758. Barnes, R. A.; Aguiar, L. S. and Da Costa, R. L.: An. Acad. bras. Cienc., 52 (3) 515-520 (1980); Chem. Abstr., 94, 174522c (1981).
5759. Carlisle, W. D.; Fenton, D. E.; Mulligan, D. C.; Roberts, P. B.; Vigato, P. A. and Tamburini, S.: Inorg. Chim. Acta, 126 (2) 233-235 (1987); Chem. Abstr., 107, 108009b (1987).
5760. Carlisle, W. D.; Fenton, D. E.; Roberts, P. B.; Casellato, U.; Vigato, P. A. and Graziani, R.: Transition Met. Chem. (Weinheim, Ger.), 11 (8) 292-295 (1986); Chem. Abstr., 108, 86708v (1988).
5761. Das, R.; Mitra, S.; Nath, D. and Mukherjee, S.: Indian J. Chem., Sect. A: Inorg., Bio-inorg.; Phys., Theor. Anal. Chem., 34A (11) 850-856 (1995).
5762. Das, R.; Mitra, S.; Nath, D. and Mukherjee, S.: J. Chim. Phys. Phys.-Chim. Biol., 93 (3) 458-481(1996).
5763. Dutta, S. K.; Nanda, K. K.; Floerke, U.; Bhadbhade, M. and Nag, K.: J. Chem. Soc., Dalton Trans., (11) 2371-2379 (1996).
5764. Mandal, S. K. and Nag, K.: J. Chem. Soc., Dalton Trans., (10) 2141-2149 (1984).
5765. Mitra, S.; Das, R. and Mukherjee, S.: Chem. Phys. Lett., 228 (4-5) 393-397 (1994).
5766. Nanda, K. K.; Addison, A. W.; Paterson, N.; Sinn, E.; Thompson, L. K. and Sakaguchi, U.: Inorg. Chem., 37 (5) 1028-1035 (1998); Chem. Abstr., 128, 187813u (1998).
5767. Khanjin, N. A. and Menger, F. M.: J. Org. Chem., 62 (25) 8923-8927 (1997).
5768. Black, D.; Blake, A. J.; Dancey, K. P.; Harrison, A.; McPartlin, M.; Parsons, S.; Tasker, P. A.; Whittaker, G. and Shroder, M.: J. Chem. Soc., Dalton Trans., (23) 3953-3960 (1998).
5769. Golubev, N. S. and Denisov, G. S.: Dokl. Akad. Nauk SSSR, 220 (6) 1352-1355 (1975); Chem. Abstr., 82, 139157t (1975).
5770. Nasa, M.: M. Pharm. Thesis, Hamdard University, New Delhi, India (1994).
5771. Claisen, L.: Justus Liebigs Ann. Chem., 297, 1-98 (1897).
5772. Crombie, L.; Games, D. E. and James, A. W. G.: J. Chem. Soc., Perkin Trans. 1, (2) 464-471 (1979).
5773. Crombie, L.; Games, D. E. and Knight, M. H.: J. Chem. Soc. C, (8) 757-762 (1967).
5774. Sekiya, M.; Morimoto, T. and Suzuki, K.: Chem. Pharm. Bull., 21 (6) 1213-1217 (1973).
5775. Knoevenagel, E.: Ber. Dtsch. Chem. Ges., 36, 2136-2180 (1903).
5776. Crombie, L. and Dove, R. V.: J. Chem. Soc., Chem. Commun., (6) 438-439 (1987).
5777. Crombie, L. and Dove, R. V.: J. Chem. Soc., Perkin Trans. 1, (14) 1695-1698 (1996).
5778. Crombie, L.; Games, D. E. and Knight, M. H.: Tetrahedron Lett., 33, 2313-2317 (1964).
5779. Cram, D. J. and Cranz, F. W.: J. Am. Chem. Soc., 72, 595-600 (1950).
5780. De Luynes, V.: Ann. Chim. Phys., 6, 185-203 (1865).
5781. Saraiya, P. R. and Shah, R. C.: Proc. Indian Acad. Sci., 31, 213-223 (1950).
5782. Desai, R. D. and Vakil, V. M.: Proc. Indian Acad. Sci., 12A, 391-398 (1940).
5783. Belen'kii, L. I.; Gromova, G. P. and Gol'dfarb, Ya. L.: Khim. Geterotsikl. Soedin., 5, 591-596 (1972); Chem. Abstr., 77, 151767w (1972).
5784. Eiden, F. and Teupe, E. G.: Arch. Pharm. (Weinheim, Ger.), 312 (10) 863-872 (1979).
5785. Ahluwalia, V. K.; Kaila, N. and Bala, S.: Indian J. Chem., 25B (6) 663-664 (1986).
5786. Naik, R. M.: Ph. D. Thesis, Bombay University, India (1955).
5787. Sato, S.; Kubota, Y.; Kumagai, H.; Kumazawa, Y.; Matsuba, S.; Onodera, Jun-Ichi and Suzuki, M.: Heterocycles, 53 (7) 1523-1532 (2000).
5788. Mauthner, F.: J. Prakt. Chem., 119, 311-314 (1928).
5789. Bantick, J. R.; Cairns, H.; Chambers, A.; Hazard, R.; King, J.; Lee, T. B. and Minshull, R.: J. Med. Chem., 19 (6) 817-821 (1976).
5790. Hauteville, M. and Chadenson, M.: Bull. Soc. Chim. Fr., 5 (Pt. 2) 1780 (1973).
5791. Dean, F. M.; Goodchild, J.; Houghton, L. E.; Martin, J. A.; Morton, R. B.; Parton, B.; Price, A. W. and Nongyow Somvichien: Tetrahedron Lett., 35, 4153-4159 (1966).
5792. Cairns, H.: Tetrahedron, 28 (2) 359-361 (1972).
5793. Cairns, H. and Minshull, R.: U. S. 3,718,668 (1973); Chem. Abstr., 78, 136255e (1973).
5794. Bolvig, S.; Hansen, P. E.; Morimoto, H.; Wemmer, D. and Williams, P.: Magn. Reson. Chem., 38 (7) 525-535 (2000).
5795. Raju, V. S.; Subbaraju, G. V.; Manhas, M. S.; Kaluza, Z. and Bose, A. K.: Tetrahedron, 48 (39) 8347-8352 (1992).
5796. Chiba, K.; Arakawa, T. and Tada, M.: Chem. Commun. (Cambridge), (15) 1763-1764 (1996).
5797. Takahashi, K. and Takani, M.: Chem. Pharm. Bull., 26 (11) 3585-3587 (1978).
5798. Schöpf, C. and Ross, F.: Justus Liebigs Ann. Chem., 546, 1-40 (1941).
5799. Chiba, K.; Arakawa, T. and Tada, M.: J. Chem. Soc., Perkin Trans. 1, (17) 2939-2942 (1998).
5800. Bertz, S. H.: Synthesis, (9) 708-710 (1980).
5801. Nohara, A.; Umetani, T. and Sanno, Y.: Tetrahedron, 30 (19) 3553-3561 (1974).
5802. Heller, G.: Ber. Dtsch. Chem. Ges., 45, 2389-2392 (1912).
5803. Desai, R. D. and Mavani, C. K.: Curr. Sci., 10, 524 (1941); Chem. Abstr., 36, 41055 (1942).
5804. Heller, G.: Ber. Dtsch. Chem. Ges., 42, 2736-2742 (1909).
5805. Collins, E. and Shannon, P. V. R.: J. Chem. Soc., Perkin Trans. 1, (8) 944-952 (1974).
5806. Eiden, F. and Schaumburg, E. A.: Ger. Offen. 2,250,377 (1974); Chem. Abstr., 81, 37391b (1974).
5807. Connor, D. S. and Krummel, H. K.: Ger. Offen. 2,164,872 (1972); Chem. Abstr., 77, 128512a (1972).
5808. Connor, D. S. and Krummel, H. K.: U.S. 3,699,159 (1972); Chem. Abstr., 78, 15806b (1973).
5809. Eiden, F.; Leister, H. P. and Mayer, D.: Arzneim.-Forsch./Drug Res., 33 (1) 101-105 (1985).
5810. Auwers, K. v.: Ber. Dtsch. Chem. Ges., 48, 90-93 (1915).
5811. Auwers, K. v. and Borsche, E.: Ber. Dtsch. Chem. Ges., 48, 1698-1717 (1915).
5812. Auwers, K. v.; Mürbe, E.; Saurwein, K.; Deines, G. and Schorstein, J.: Fortsch. Chem., Phys., Phys. Chem., 18 (2) 37-77 (1924).
5813. Knoelker, H. J. and Bauermeister, M.: Helv. Chim. Acta, 76 (7) 2500-2514 (1993).
5814. Martin, R.: Thèse Ingénieur CNAM, Paris (1961).
5815. Martin, R. and Coton, G.: Bull. Soc. Chim. Fr., 4, 1438-1442 (1973).
5816. Celli, A. M.; Lampariello, L. R.; Chimichi, S.; Nesi, R. and Scotton, M.: Can. J. Chem., 60 (11) 1327-1332 (1982).
5817. Bobik, A.; Holder, G. M. and Ryan, A. J.: J. Med. Chem., 20 (9) 1194-1199 (1977).
5818. Eiden, F. and Teupe, E. G.: Arch. Pharm. (Weinheim, Ger.) 314 (3) 223-227 (1981).
5819. Tutin, F. and Caton, F.: J. Chem. Soc., 97, 2062-2068 (1910).
5820. Limaye, P. A.: Biovigyanam, 2 (2) 183-185 (1976); Chem. Abstr., 92, 22344s (1980).
5821. Horton, W. J. and Stout, M. G.: J. Org. Chem., 27, 830-833 (1962).
5822. Schäfer, W.; Leute, R. and Schlude, H.: Chem. Ber., 104 (10) 3211-3221 (1971).
5823. Anjaneyulu, A. S. R. and Mallavadhani, U. V.: Indian J. Chem., Sect. B: 25B (5) 515-516 (1986).
5824. Schöpf, C. and Heuck, K.: Justus Liebigs Ann. Chem., 459, 233-286 (1927).
5825. Fisons Ltd.: Jpn. Kokai Tokkyo Koho 80 79,338 (1980); Chem. Abstr., 94, 83776x (1981).
5826. Coltman, S. C. W.; Eyley, S. C. and Raphael, R. A.: Synthesis, (2), 150-152 (1984).
5827. Gould, K. J.; Manners, C. N.; Payling, D. W.; Suschitzky, J. L. and Wells, E.: J. Med. Chem., 31 (7) 1445-1453 (1988).
5828. Fisons, Ltd.: Fr. Demande 2,091,991 (1972); Chem. Abstr., 77, 186604h (1972).
5829. Jain, A. C. and Arya, P.: Indian J. Chem., Sect., B: 24B (10) 1015-1022 (1985).
5830. Anjaneyulu, A. S. R.; Isaa, B. M. and Mallavadhani, U. V.: Indian J. Chem., Sect. B, 26B (12) 1140-1142 (1987).
5831. Anjaneyulu, A. S. R. and Isaa, B. M.: Indian J. Pharm. Sci., 54 (2) 71-73 (1992); Chem. Abstr., 117, 66383t (1992).
5832. Hamed, A. A.; Salem, M. A. I.; Hataba, A. M. and Attia, I. A.: Pol. J. Chem., 59 (10-12) 1161-1166 (1986); Chem. Abstr., 107, 39251k (1987).
5833. Prajapati, S. P. and Sethna, S.: J. Indian Chem. Soc., 53 (3) 300-302 (1976).
5834. Misra, G. C.; Pande, L. M.; Joshi, G. C. and Misra, A. K.: Aust. J. Chem., 25, 1579-1581 (1972).
5835. Kanakalakshmi, B. and Sethna, S.: J. Indian Chem. Soc., 46 (5) 444-450 (1969).
5836. Boon-Long, N.: J. Pharm. Assoc. Siam, 1 (4) 5-18 (1948); Chem. Abstr., 43, 5017i (1949).
5837. Stoughton, R. W.; Baltzly, R. and Bass, A.: J. Am. Chem. Soc., 56, 2007-2008 (1934).
5838. Pakkal, R.; Thomas, II, F. D. and Fernelius, W. C.: J. Org. Chem., 25, 282-283 (1960).
5839. Aswar, A. S. and Bhave, N. S.: J. Indian Chem. Soc., 68 (4) 191-193 (1991).
5840. Khuhawar, M. Y.; Channar, A. H. and Shah, S. W.: Eur. Polym. J., 34 (1) 133-135 (1998); Chem. Abstr., 128, 115319q (1998).
5841. APSimon, J. W.; Corran, J. A.; Creasey, N. G.; Sim, K. Y. and Whalley, W. B.: J. Chem. Soc., 4130-4143 (1965).
5842. APSimon, J. W.; Creasey, N. G.; Marlow, W.; Sim, K. Y. and Whalley, W. B.: J. Chem. Soc., 4156-4163 (1965).
5843. Franck, B. and Baumann, G.: Chem. Ber., 96, 3209-3216 (1963).
5844. Parthasarathy, M. R. and Gupta, Sushma: Indian. J. Chem., Sect. B, 23B (3) 227-230 (1984).
5845. Holland, J. A. and Johnson, D. K.: U.S. US 5,902,831 (1999); Chem. Abstr., 130, 332896w (1999).
5846. Tsuji, N. and Nagashima, K.: Tetrahedron, 25 (15) 3017-3031 (1969).
5847. Takasuka, M. and Matsui, Y.: J. Chem. Soc., Perkin Trans. 2, (12) 1743-1750 (1979).
5848. Hopper, J. W.; Marlow, W.; Whalley, W. B.; Bortwick, A. D. and Bowden, R.: J. Chem. Soc. C, (12) 3580-3590 (1971).
5849. APSimon, J. W.; Corran, J. A.; Creasey, N. G.; Marlow, W.; Whalley, W. B. and Sim, K. Y.: J. Chem. Soc., 4144-4156 (1965).
5850. Eglinton, G.; King, F. E.; Lloyd, G.; Loder, J. W.; Marshall, J. R.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 1833-1842 (1958).
5851. Goni, M. A. and Hedges, J. I.: Geochim. Cosmochim. Acta, 56 (11) 4025-4043 (1992); Chem. Abstr., 118, 258334v (1993).
5852. Ikemoto, T. and Yamashita, Y.: Jpn. Kokai Tokkyo Koho JP 04,255,798 [92,255,798] (1992); Chem. Abstr., 118, 27301z (1993).
5853. Li, Hong-Yu; Nehira, T.; Hagiwara, M. and Harada, N.: J. Org. Chem., 62 (21) 7222-7227 (1997).
5854. Moriyama, S.; Okigawa, M. and Kawano, N.: Tetrahedron Lett., (21) 2105-2108 (1972).
5855. Huang, Pao-Lin; Lu, Chai-Ming; Yen, Ming-Hong; Wu, Ru-Rong and Lin, Chun-Nan: Phytochemistry, 40 (2) 537-541 (1995).
5856. Huang, Pao-Lin; Won, Shen-Jeu; Day, Shiow-Hwa and Lin, Chun-Nan: Helv. Chim. Acta, 82 (10) 1716-1720 (1999).
5857. Lin, Chun-Nan; Huang, Pao-Lin; Lu, Chai-Ming; Yen, Ming-Hong and Wu, Ru-Rong: Phytochemistry, 44 (7) 1359-1363 (1997).
5858. Lin, Chun-Nan; Huang, Pao-Lin; Wang, Jeh-Jeng; Day, Shiow-Hwa; Lin, Hsien-Cheng; Wang, Jih-Pyang; Ko, Ya-Ling and Teng, Che-Ming: Biochim. Biophys. Acta, 1380 (1) 115-122 (1998).
5859. Lin, Yun-Lian; Lin, Tung-Chich and Kuo, Yueh-Hsiung: J. Nat. Prod., 60 (4) 368-370 (1997).
5860. Hwang, Bang Yeon; Kim, Young Ho; Ro, Jai Seup; Lee, Kyong Soon and Lee, Jung Joon: Arch. Pharmacal. Res., 22 (1) 72-74 (1999).
5861. Lee, Mi Kyeong; Yeo, Hosup; Kim, Jinwoong and Kim, Young Choong: J. Pharm. Pharmacol., 52 (3) 341-345 (2000).
5862. Lee, Mi Kyeong; Yeo, Hosup; Kim, Jinwoong; Markelonis, George J.; Oh, Tae H. and Kim, Young Choong: J. Neurosci. Res., 59 (2) 259-264 (2000); Chem. Abstr., 132, 231848t (2000).
5863. Yeo, Hosup and Kim, Jinwoong: Phytochemistry, 46 (6) 1103-1105 (1997).
5864. Nozawa, K.; Seyea, H.; Nakajima, S.; Udagawa, S. and Kawai, K.: J. Chem. Soc., Perkin Trans. 1, (8) 1735-1738 (1987).
5865. Moshfegh, A. A.; Badri, R.; Hojjatie, M.; Kaviani, M.; Naderi, B.; Nazmi, A. H.; Ramezanian, M.; Roozpeikar, A. H. and Hakimelahi, G. H.: Helv. Chim. Acta, 65 (4) 1221-1228 (1982).
5866. Hakimelahi, G. H. and Moshfegh, A. A.: Helv. Chim. Acta, 64 (2) 599-609 (1981).
5867. Moshfegh, A.; Fallab, S. and Erlenmeyer, H.: Helv. Chim. Acta, 40, 1157-1166 (1957).
5868. Russo, U.; Zarli, B.; Zanonato, P. and Vidali, M.: Polyhedron, 10 (12) 1353-1361 (1991).
5869. Nowshad, F. and Ul-Haque, M.: J. Chem. Soc., Perkin Trans. 2, (2) 623-626 (1976).
5870. Strassner, T.: Can. J. Chem., 75 (7) 1011-1022 (1997).
5871. Kulikova, A. E.; Viktorova, E. A.; Zotova, Z. A. and Shadskaya, L. P.: U.S.S.R. 411,101 (1974); Chem. Abstr., 81, 121965z (1974).
5872. Niemann, W.; Böhmer, V.; Evers, H. and Kämmerer, H.: Makromol. Chem., 158, 123-134 (1972).
5873. Prajapati, S. P. and Sethna, S.: J. Indian Chem. Soc., 49 (4) 391-396 (1972).
5874. Cairns, H. and Johnson, P. B.: Ger. Offen. 1,954,266 (1970); Chem. Abstr., 73, 25303w (1970).
5875. Cairns, H.; Fitzmaurice, C.; Hunter, D.; Johnson, P. B.; King, J.; Lee, T. B.; Lord, G. H.; Minshull, R. and Cox, J. S. G.: J. Med. Chem., 15 (6) 583-589 (1972).
5876. Cairns, H. and Johnson, P. B.: Brit. 1,292,602 (1972); Chem. Abstr., 78, 43027s (1973).
5877. Grover, S. K. and Seshadri, T. R.: Indian J. Chem., 4 (6) 290-291 (1966).
5878. Grover, S. K.; Jain, A. C. and Seshadri, T. R.: Tetrahedron, 20 (3) 555-564 (1964).
5879. Goldschmidt, C.: Chem. Ztg., 27, 246 (1903).
5880. Buckman, S. J.; Pera, J. D. and Mercer, G. D.: Ger. Offen. 2,051,921 (1971); Chem. Abstr., 75, 37361t (1971).
5881. Buckman, S. J.; Pera, J. D. and Mercer, G. D.: S. African 70 00,596 (1970); Chem. Abstr., 74, 126850y (1971).
5882. Evers, H.; Niemann, W.; Böhmer, V. and Kämmerer, H.: Makromol. Chem., 175, 2255-2274 (1974).
5883. McGookin, A.; Robertson, A. and Simpson, T. H.: J. Chem. Soc., 2021-2029 (1951).
5884. Dong, Yunfa and Ding, Yunmei: Zhiwu Ziyuan Yu Huanjing, 1 (2) 1-3 (1992); Chem. Abstr., 118, 56152y (1993).
5885. Ding, Yi-Li and Jia, Zhong-Jian: Phytochemistry, 31 (4) 1435-1436 (1992).
5886. Esipov, S. E.; Adanin, V. M.; Baskunov, B. P.; Kiprianova, E. A. and Garagulya, A. D.: Antibiotiki (Moscow), 20 (12) 1077-1081 (1975); Chem. Abstr., 84, 87883w (1976).
5887. Arisawa, M.; Fujita, A.; Hayashi, T.; Hayashi, K.; Ochiai, H. and Morita, N.: Chem. Pharm. Bull., 38 (6) 1624-1626 (1990).
5888. Arisawa, M.; Fujita, A.; Hayashi, T.; Morita, N.; Kikuchi, T. and Tezuka, Y.: Chem. Pharm. Bull., 38 (3) 698-700 (1990).
5889. Arisawa, M.; Fujita, A.; Hayashi, T.; Morita, N.; Kikuchi, T.; Tezuka, Y. and Koshimura, S.: Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 31st, 593-600 (1989); Chem. Abstr., 112, 175572w (1990).
5890. Arisawa, M.; Fujita, A.; Morita, N. and Koshimura, S.: Planta Med., 56 (4) 377-379 (1990); Chem. Abstr., 114, 184k (1991).
5891. Arisawa, M.; Fujita, A.; Morita, N.; Okuyama, T. and Nishino, H.: J. Nat. Prod., 54 (5) 1409-1412 (1991).
5892. Arisawa, M.; Fujita, A.; Saga, M.; Hayashi, T. and Morita, N.: J. Nat. Prod., 49 (2) 298-302 (1986).
5893. Arisawa, M.; Fujita, A.; Suzuki, R.; Hayashi, T.; Morita, N.; Kawano, N. and Koshimura, S.: J. Nat. Prod., 48 (3) 455-459 (1985).
5894. Fujita, A.; Hayashi, T.; Arisawa, M.; Shimizu, M.; Morita, N.; Kikuchi, T. and Tezuka, Y.: J. Nat. Prod., 51 (4) 708-712 (1988).
5895. Nakane, H.; Arisawa, M.; Fujita, A.; Koshimura, S. and Ono, K.: FEBS Lett., 286 (1-2) 83-85 (1991); Chem. Abstr., 115, 126482v (1991).
5896. Arisawa, M.; Fujita, A. and Morita, N.: J. Nat. Prod., 53 (3) 638-643 (1990); Chem. Abstr., 114, 78576j (1991).
5897. Kouno, I.; Shigematsu, N.; Iwagami, M. and Kawano, N.: Phytochemistry, 24 (3) 620-621 (1985).
5898. Shigematsu, N.; Kouno, I. and Kawano, N.: Phytochemistry, 22 (1) 323-325 (1983).
5899. Kotlyarevskii, I. L.; Shergina, S. I.; Sokolov, I. E. and Zanina, A. S.: Izv. Akad. Nauk SSSR, Ser. Khim., (4) 828-833 (1971); Chem. Abstr., 75, 21086w (1971).
5900. Kawabe, Y.; Uenishi, K. and Tan, S.: Eur. Pat. Appl. EP 445,819 (1991); Chem. Abstr., 116, 140130f (1992).
5901. Kawabe, Y.; Sakaguchi, S. and Kokubo, T.: Jpn. Kokai Tokkyo Koho JP 04,296,755 [92,296,755] (1992); Chem. Abstr., 118, 202100y (1993).
5902. Nagashima, A. and Uenishi, K.: Jpn. Kokai Tokkyo Koho JP 03,239,261 [91,239,261] (1991); Chem. Abstr., 118, 136265c (1993).
5903. Uenishi, K.; Kawabe, Y. and Kokubo, T.: Jpn. Kokai Tokkyo Koho JP 01,309,052 [89,309,052] (1989); Chem. Abstr., 113, 68417y (1990).
5904. Zanina, A. S.; Al’t, L. Ya.; Shergina, S. I. and Kotlyaresvskii, I. L.: Izv. Akad. Nauk SSSR, Ser. Khim., (2) 459-461 (1970); Chem. Abstr., 73, 3619b (1970).
5905. Fedenok, L. G.; Myasnikova, R. N. and Shvartsberg, M. S.: Izv. Akad. Nauk SSSR, Ser. Khim. (8) 1836-1839 (1985); Chem. Abstr., 105, 171957h (1986).
5906. Fedenok, L. G. and Shvartsberg, M. S.: Izv. Akad. Nauk SSSR, Ser. Khim., (7) 1668-1670 (1991); Chem. Abstr., 115, 279514g (1991).
5907. Sokolov, E. I.; Zanina, A. S. and Kotlyarevskii, I. L.: Vysokomol. Soedin, Ser. B 14 (4) 311-314 (1972); Chem. Abstr., 77, 48843u (1972).
5908. Kotlyarevskii, I. L.; Zanina, A. S.; Gusenkova, N. M.; Sokola, I. K. and Cherepov, E. I.: Vysokomol. Soedin, Ser. B 9 (6) 468-470 (1967); Chem. Abstr., 67, 82510m (1967).
5909. Crescenzi, E.; Mantegani, A. and Coppi, G.: Farmaco Ed. Sci., 20, 491-498 (1965).
5910. Nowakowska, E.; Daszkiewicz, z. and Kyziol, J. B.: Pol. J. Chem., 72, 1191-1197 (1998).
5911. King, J. and Lord, G. H.: Brit. 1,204,121 (1970); Chem. Abstr., 73, 109683h (1970).
5912. King, J. and Lord, G. H.: Brit. 1,204,122 (1970); Chem. Abstr., 73, 109503z (1970).
5913. King, J. and Lord, G. H.: U.S. 3,720,690 (1973); Chem. Abstr., 79, 32066y (1973).
5914. Zanina, A. S.; Cherepov, E. I.; Golubev, V. S.; Sokolov, I. E. and Kotlyarevskii, I. L.: U.S.S.R. 203,904 (1967); Chem. Abstr., 69, 19812n (1968).
5915. Prajapati, S. P.; Pardanani, J. H. and Sethna, S.: J. Indian Chem. Soc., 54 (10) 971-974 (1977).
5916. Maruyama, K. and Narita, N.: J. Org. Chem., 45 (8) 1421-1424 (1980).
5917. Fisons Pharmaceuticals Ltd.: Neth. Appl. 6,603,997 (1966); Chem. Abstr., 67, 100002d (1967).
5918. Fitzmaurice, C. and Lee, T. B.: Brit. 1,144,906 (1969); Chem. Abstr., 71, 91309n (1969).
5919. Bhattacharya, A. and Keys, B. A.: U.S. US 5,508,451 (1996); Chem. Abstr., 125, 33477p (1996).
5920. Nadkarni, D. R. and Wheller, T. S.: J. Chem. Soc., 589-591 (1936).
5921. Kulkarni, V. G.: J. Indian Chem. Soc., 40 (9) 808-810 (1963).
5922. Merchant, J. R. and Dike, S. Y.: Indian J. Chem., 13 (8) 861-862 (1975).
5923. Jadhav, G. V. and Merchant, J. R.: J. Indian Chem. Soc., 28 (5) 265-267 (1951).
5924. Jadhav, G. V. and Merchant, J. R.: J. Univ. Bombay, Sci., 19 (5) 45-46 (1951); Chem. Abstr., 47, 6375h (1953).
5925. Jadhav, G. V. and Merchant, J. R.: Proc. Indian Acad. Sci., Ser. A, 34A (3) 152-154 (1951).
5926. Sridar, V. and Rao, V. S. S.: J. Photochem. Photobiol., A: Chem., 69, 325-327 (1993).
5927. Neamati, N.; Mazumder, A.; Zhao, H.; Sunder, S.; Burke, T. R., Jr.; Schultz, R. J. and Pommier, Y.: Antimicrob. Agents Chemother., 41 (2) 385-393 (1997); Chem. Abstr., 126, 220325v (1997).
5928. Reichel, L.; Proksch, G. and Tobien, G.: Justus Liebigs Ann. Chem., 10, 1709-1712 (1974).
5929. Martin, R.: Handbook of Hydroxybenzophenones, editor Kluwer, Dordrecht, The Netherlands (2000).
5930. Murphy, M. A.; Kvakovszky, G. and Fritch, J. R.: PCT Int. WO 93 15,063 (1993); Chem. Abstr., 121, 84281v (1994).
5931. Arventiev, B. and Wexler, H.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 18 (2) 159-164 (1972); Chem. Abstr., 78, 58167m (1973).
5932. Garcia, H.; Martinez-Utrilla, R.; Miranda, M. A. and Roquet-Jalmar, M. F.: J. Chem. Res., Synop., (12) 350-351 (1982).
5933. Obara, H.; Onodera, J. and Shirasaki, F.: Chem. Lett., (9) 1095-1098 (1980).
5934. Tada, M.; Takahuwa, T.; Nagai, M. and Yoshii, T.: Agric. Biol. Chem., 54 (11) 3061-3063 (1990); Chem. Abstr., 114, 94636j (1991).
5935. Wexler, H.; Do Cong Dan and Arventiev, B.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1c, 19 (2) 153-159 (1973); Chem. Abstr., 80, 108303s (1974).
5936. Garcia, H.; Miranda, M. A.; Roquet-Jalmar, M. F. and Martinez-Utrilla, R.: Liebigs Ann. Chem., 12, 2238-2243 (1982).
5937. Sangwan, N. K. and Rastogi, s. N.: Indian J. Chem., 20B (6) 480-483 (1981).
5938. Bohlmann, F.; Mahanta, P. K.; Suwita, A.; Suwita, A.; Natu, A. A.; Zdero, C.; Dorner, W.; Ehlers, D. and Grenz, M.: Phytochemistry, 16 (12) 1973-1981 (1977).
5939. Dupre, S.; Grenz, M.; Jakupovic, J.; Bohlmann, F. and Niemeyer, H. M.: Phytochemistry, 30 (4) 1211-1220 (1991).
5940. De Lampasona, M. E. P.; Catalan, C. A. N.; Gedris, T. E. and Herz, W.: Phytochemistry, 46 (6) 1077-1080 (1997).
5941. Bohlmann, F. and Vorwerk, E.: Chem. Ber., 113 (1) 261-266 (1980).
5942. Bohlmann, F. and Grenz, M.: Chem. Ber., 110, 295-300 (1977).
5943. Takasugi, M. and Matsuda, T.: Phytochemistry, 43 (5) 1019-1021 (1996).
5944. Oganesyan, E. T.; Yakovenko, V. I.; Khachatryan, M. M.; Pershkov, S. R. and Cherevatyi, V. S.: Khim.-Farm. Zh., 20 (6) 696-702 (1986); Chem. Abstr., 105, 126832c (1986).
5945. Bohlmann, F.; Wallmeyer, M.; King, R. M. and Robinson, H.: Phytochemistry, 23 (7) 1513-1514 (1984).
5946. Sigstad, E.; Catalan, C. A. N.; Diaz, J. G. and Herz, W.: Phytochemistry, 33 (1) 165-169 (1993).
5947. Bohlmann, F. and Grenz, M.: Chem. Ber., 108, 26-30 (1975).
5948. Balani, R. A. and Sethna, S.: J. Indian Chem. Soc., 45 (5) 390-394 (1968).
5949. Bandyopadhyay, C.; Sur, K. R. and Patra, R.: J. Chem. Res., Synop. (12) 802-803 (1998).
5950. Ciba-Geigy A.-G.: Jpn. Tokkyo Koho 80 12,586 (1980); Chem. Abstr., 93, 195471e (1980).
5951. Gong, S. S.; Liu, C. D.; Liu, S. L.; Du, Y. R.; Kang, W. and Dong, X. Q.: Yaoxue Xuebao, 23 (4) 276-280 (1988); Chem. Abstr., 109, 79560h (1988).
5952. Bhavsar, M. D. and Desai, V. B.: Man-Made Text. India, 31 (12) 529-535, 556 (1988); Chem. Abstr., 112, 7121e (1990).
5953. Hasegawa, Y.; Shinto, S.; Hattori, T.; Ohata, T.; Aga, Aru; Bae, Ho-Rin and Yang, Ka: Jpn. Kokai Tokkyo Koho JP 10 273,464 [98 273,464] (1997); Chem. Abstr., 129, 339873z (1998).
5954. Rybakova, N. A. and Zil'berman, E. N.: Zh. Obshch. Khim., 31 (4) 1272-1275 (1961).
5955. Popova, Z. V.; Yanovskii, D. M.; Zil’berman, E. N.; Rybakova, N. A. and Ganina, V. I.: Zh. Prikl. Khim., 34, 874-881 (1961); Chem. Abstr., 55, 15994a (1961).
5956. Blumstein, J. and Kostanecki, S.: Ber. Dtsch. Chem. Ges., 33, 1478-1483 (1900).
5957. Uenishi, K.; Kawabe, Y. and Kokubo, T.: Eur. Pat. Appl. EP 510,672 (1992); Chem. Abstr., 118, 180065m (1993).
5958. Martin, R.: Handbook of Hydroxyacetophenones, Springer, 2005, vol. II.
5959. Huang, H-C.; Li, J. L.; Garland, D. J.; Chamberlain, T. S.; Reinhard, E. J.; Manning, R. E.; Seibert, K.; Koboldt, C. M.; Gregory, S. A.; Anderson, G. D.; Veenhuizen, A. W.; Zhang, Y.; Perkins, W. E.; Burton, E. G.; Cogburn, J. N.; Isakson, P. C. and Reitz, D. B.: J. Med. Chem., 39 (1), 253-266 (1996).
5960. Emami, S.; Foroumadi, A.; Falahati, M.; Lotfali, E.; Rajabalian, S.; Ebrahimi, S-A.; Farahyar, S. and Shafiee, A.: Bioorg. Med. Chem. Lett., 18 (1), 141-146 (2008).
5961. Kraus, M.; Biskup, E.; Richling, E. and Schreier, P.: J. Label. Compd. Radiopharm., 49 (13), 1151-1162 (2006).
5962. Zhang, K.; Corrie, J. E. T.; Munasinghe, V. R. N. and Wan, P.: J. Am. Chem. Soc., 121, 5625-5632 (1999).
5963. Sipos, G.; Czukor, B. and Dobo, I.: Acta Phys. Chem. Szeged, 9 (1-2), 48-52 (1963).
5964. Sohar, P. and Sipos, G.: Acta Chim. Acad.Sci.Hung., 46, 63-75 (1965).
5965. Julia, M. and Chastrette, F.: Bull. Soc. Chim. Fr., 2255-2261 (1962).
5966. Cai, S. X.; Drewe, J. A.; Zhang, H-Z.; Kasibhatla, S.; Claassen, G.; Sirisoma, N. S. and Kemnitzer, W. E. (Cytovia, Inc., USA): PCT Int. Appl. WO 2008 11,045 (2008); Chem. Abstr., 148, 191966b (2008).
5967. Wager, T. T.; Chandrasekaran, R. Y. and Butler, T. W. (Pfizer Products Inc., USA): PCT Int. Appl. WO 2008 26,046 (2008); Chem. Abstr., 148, 331693n (2008).
5968. Epple, R.; Cow, C.; Xie, Y.; Wang, X.; Russo, R.; Azimioara, M. and Saez, E. (IRM LLC, Bermuda): PCT Int. Appl. WO 2005 116,000 (2006); Chem. Abstr., 144, 36329v (2006).
5969. Comley, J. C. W.; Court, J. P.; Gutteridge, W. E.; Hudson, A. T.; Jenkins, D. C.; Miller, D. D.; Nicol, R. H.; Randall, A. W.; Stables, J. N. and Thornton, R.: Eur. J. Med. Chem., 27 (5), 503-509 (1992).
5970. Mathieson, D. W. and Newbery, G.: J. Chem. Soc., (2), 1133-1137 (1949).
5971. Xue, N.; Yang, X.; Wu, R.; Chen, J.; He, Q.; Yang, B.; Lu, X. and Hu, Y.: Bioorg. Med. Chem., 16 (5), 2550-2557 (2008).
5972. Pirali, T.; Busacca, S.; Beltrami, L.; Imovilli, D.; Pagliai, F.; Miglio, G.; Massarotti, A.; Verotta, L.; Tron, G. C.; Sorba, G. and Genazzani, A. A.: J. Med. Chem., 49 (17), 5372-5376 (2006).
5973. Learmonth, D. A.; Palma, P. N.; Vieira-Coelho, M. A. and Soares-da-Silva, P.: J. Med. Chem., 47 (25), 6207-6217 (2004).
5974. Bachand, C.; Belema, M.; Deon, D. H.; Good, A. C.; Goodrich, J.; James, C. A.; Lavoie, R.; Lopez, O. D.; Martel, A.; Meanwell, N. A.; Nguyen, V. N.; Romine, J. L.; Ruediger, E. H.; Snyder, L. B.; St. Laurent, D. R.; Yang, F.; Langley, D. R. and Hamann, L. G. (BristolMyers Squibb Company, USA): PCT Int. Appl. WO 2008 21,936 (2008); Chem. Abstr., 148, 285477x (2008).
5975. Bachand, C.; Belema, M.; Deon, D. H.; Good, A. C.; Goodrich, J.; James, C. A.; Lavoie, R.; Lopez, O. D.; Martel, A.; Meanwell, N. A.; Nguyen, V. N.; Romine, J. L.; Ruediger, E. H.; Snyder, L. B.; St. Laurent, D. R.; Yang, F.; Langley, D. R.; et al. (Bristol-Myers Squibb Company, USA): PCT Int. Appl. WO 2008 21,928 (2008); Chem. Abstr., 148, 285478x (2008).
5976. Bachand, C.; Belema, M.; Deon, D. H.; Good, A. C.; Goodrich, J.; James, C. A.; Lavoie, R.; Lopez, O. D.; Martel, A.; Meanwell, N. A.; Nguyen, V. N.; Romine, J. L.; Ruediger, E. H.; Snyder, L. B.; St. Laurent, D. R.; Yang, F.; Langley, D. R.; Wan, G. and Hamann, L. G. (Bristol-Myers Squibb Company, USA): PCT Int. Appl. WO 2008 21,927 (2008); Chem. Abstr., 148, 308634k (2008).
5977. Watanabe, K.; Fukunaga, K.; Kohara, T.; Uehara, F.; Hiki, S. and Yokoshima, S. (Mitsubishi Pharma Corporation; Sanofi-Aventis, Japan): PCT Int. Appl. WO 2006 36,015 (2006); Chem. Abstr., 144, 370114m (2006).
5978. Hasegawa, T.; Motoizumi, M. and Kobayashi, M. (Sankyo Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2007 197,369 (2007); Chem. Abstr., 147, 235185g (2007).
5979. Lin, R-H.; Lin, L.; Lin, S-y. and Lee, S-H. (Abgenomics Corporation, Taiwan): PCT Int. Appl. WO 2007 82,178 (2007); Chem. Abstr., 147, 160531f (2007).
5980. Buckman, S. J.; Pera, J. D. and Raths, F. W.: German Patent 1,174,017 (1964); Chem. Abstr., 61, 9987d (1964).
5981. Dehmel, F.; Ciossek, T.; Maier, T.; Weinbrenner, S.; Schmidt, B.; Zoche, M. and Beckers, T.: Bioorg. Med. Chem. Lett., 17 (17), 4746-4752 (2007).
5982. Fujii, H.; Nishimura, Y.; Nitta, A.; Sakami, S.; Nakaki, J. and Kozono, H. (Toray Industries, Inc., Japan): PCT Int. Appl. WO 2007 63,928 (2007); Chem. Abstr., 147, 52810n (2007).
5983. Keith, J. M.; Gomez, L. A.; Wolin, R. L.; Barbier, A. J.; Wilson, S. J.; Boggs, J. D.; Mazur, C.; Fraser, I. C.; Lord, B.; Aluisio, L.; Lovenberg, T. W. and Carruthers, N. I.: Bioorg. Med. Chem. Lett., 17 (9), 2603-2607 (2007)
5984. Perrone, R.; Berardi, F.; Leopoldo, M.; Tortorella, V.; Lograno, M. D.; Daniele, E. and Govoni, S.: J. Med. Chem., 35 (16), 3045-3049 (1992).
5985. Anisimova, V. A.; Spasov, A. A.; Kosolapov, V. A.; Chernikov, M. V.; Stukovina, A. Yu.; El’tsova, L. V.; Larionov, N. P.; Libinzon, R. E. and Vatolkina, O. E.: Pharm. Chem. J., 40 (10), 521-529 (2006).
5986. Herschhorn, A.; Lerman, L.; Weitman, M.; Gleenberg, I. O.; Nudelman, A. and Hizi, A.: J. Med. Chem., 50 (10), 2370-2384 (2007).
5987. Herschhorn, A.; Lerman, L.; Weitman, M.; Gleenberg, I. O.; Nudelman, A. and Hizi, A.: J. Med. Chem., 50 (14), 3402 (2007).
5988. Panella, L.; Broos, J.; Jin, J.; Fraaije, M. W.; Janssen, D. B.; Jeronimus-Stratingh, M.; Feringa, B. L.; Minnaard, A. J. and De Vries, J. G.: Chem. Commun, (45), 5656-5658 (2005).
5989. McDonald, I. A.; Lacoste, J. M.; Bey, P.; Wagner, J.; Zreika, M. and Palfreyman, M. G.: J. Am. Chem. Soc., 106 (11), 3354-3356 (1984).
5990. Azevedo, M. S.; Alves, A. P. L.; Alves, G. B. C.; Cardoso, J. N.; Lopes, R. S. C. and Lopes, C. C.: Quimica Nova, 29 (6), 1259-1265 (2006); Chem. Abstr., 147, 406621c (2007).
5991. Baeschlin, D. K.; Clark, D. E.; Dunsdon, S. J.; Fenton, G.; Fillmore, A.; Harris, N. V.; Higgs, C.; Hurley, C. A.; Krintel, S. L.; MacKenzie, R. E.; Ostermann, N.; Sirockin, F. and Sutton, J. M. (Novartis A.-G.; Novartis Pharma G.m.b.H., Switz.): PCT Int. Appl. WO 2007 71,738 (2007); Chem. Abstr., 147, 118274z (2007).
5992. Gudmundsson, K. S. and Johns, B. A.: Bioorg. Med. Chem. Lett., 17 (10), 2735-2739 (2007).
5993. Kaufmann, D.; Pojarova, M.; Vogel, S.; Liebl, R.; Gastpar, R.; Gross, D.; Nishino, T.; Pfaller, T. and von Angerer, E.: Bioorg. Med. Chem., 15 (15), 5122-5136 (2007).
5994. Xiang, J.; Ipek, M.; Suri, V.; Tam, M.; Xing, Y.; Huang, N.; Zhang, Y.; Tobin, J.; Mansour, T. S. and McKew, J.: Bioorg. Med. Chem., 15 (13), 4396-4405 (2007).
5995. Zhao, L.; Curran, P. J.; Belanger, D. B.; Hamann, B.; Reddy, P. A.; Paruch, K.; Guzi, T. J.; Dwyer, M. P.; Siddiqui, M. A. and Tadikonda, P. K. (Schering Corporation, USA): PCT Int. Appl. WO 2007 58,942 (2007); Chem. Abstr., 147, 9950w (2007).
5996. Bretschneider, H. and Hörmann, H.: Monatsch Chem., 84, 1021-1032 (1953).
5997. Butler, T. W.; Howard, H. R., Jr. and Wager, T. T. (Pfizer Products Inc., USA): PCT Int. Appl. WO 2007 88,462 (2007); Chem. Abstr., 147, 257665r (2007).
5998. Goel, S. and Ghai, P.: Indian J. Heterocycl. Chem., 15 (1), $73-74$ (2005).
5999. Leopoldo, M.; Lacivita, E.; Passafiume, E; Contino, M.; Colabufo, N. A.; Berardi, F. and Perrone, R.: J. Med. Chem., 50 (20), 5043-5047 (2007).
6000. Singleton, F. L.; Mayer, M. J.; Breen, A. W. and Kelsey, R. L. (Hercules Incorporated, USA): PCT Int. Appl. WO 2007 75,682 (2007); Chem. Abstr., 147, 150091y (2007).
6001. Suffert, J.: Science of Synthesis, 26, 869-969 (2004) (Pub. 2005); Chem. Abstr., 144, 191613b (2006).
6002. Tanifuji, S.; Nakamura, D. and Takasaki, S. (Nihon Medi-Physics Co., Ltd., Japan): PCT Int. Appl. WO 2007 125,988 (2007); Chem. Abstr., 147, 522243e (2007).
6003. Turan-Zitouni, G.; Fehrentz, J-A.; Chevallet, P.; Martinez, J.; Kaplancikli, Z. A.; Ozdemir, A.; Aralanyolu, M. and Yildiz, M. T.: Archiv. Pharm. (Weinheim, Ger.), 340 (6), 310-314 (2007).
6004. Ueda, S.; Otaka, A.; Tamamura, H. and Fujii, N. : Peptide Science, 41 st, 599-602 (2004) (Pub. 2005); Chem. Abstr., 144, 293034f (2006).
6005. Watanabe, K.; Uehara, F.; Hiki, S.; Kohara, T.; Fukunaga, K. and Yokoshima, S. (Mitsubishi Pharma Corporation; Sanofi-Aventis, Japan): PCT Int. Appl. WO 2006 28,290 (2006); Chem. Abstr., 144, 292779r (2006).
6006. Zhang, S. J. and Le, Z. G.: Chinese Chem. Lett., 16 (12), 1590-1592 (2005).
6007. Zimmermann, J. and Von Angerer, E.: Steroid Biochemistry and Molecular Biology, 104 (3-5), 259-268 (2007).
6008. Guha, S. K.; Wu, B.; Kim, B. S.; Baik, W. and Koo, S.: Tetrahedron Lett., 47 (3), 291-293 (2006).
6009. Congiu, C.; Cocco, M. T. and Onnis, V.: Bioorg. Med. Chem. Lett., 18 (3), 989-993 (2008).
6010. Goswami, J. and Goswami, A.: J. Indian Chem. Soc., 79 (5), 469-471 (2002).
6011. Brossi, A. and Wenis, E.: J. Heterocycl. Chem., 2, 310-312 (1965).
6012. Ganesh, T.; Kumar, C. H. and Krupadanam, G. L. D.: Synth. Commun., 29 (12), 2069-2078 (1999).
6013. Goswami, A.; Bezbaruah, R. L.; Goswami, J.; Borthakur, N.; Dey, D. and Hazarika, A. K.: Tetrahedron Asymmetry, 11 (18), 3701-3709 (2000).
6014. Goswami, J.; Bezbaruah, R. L.; Goswami, J. and Borthakur, N.: Tetrahedron Asymmetry, 12 (24), 3343-3348 (2001).
6015. McCarthy, K. E.; Miller, S. A.; Chenard, B. L.; Dumont, M. L. and Stemple, J. Z.: J. Lanel. Compd. Radiopharm., 39 (12), 973-986 (1997).
6016. Pfizer Ltd.: DE 2,135,678 (1972); Chem. Abstr., 77, 34126 (1972).
6017. Rudinger-Adler, E. and Buechi, J. Arzneim. Forsch., 29, 1326-1331 (1979).
6018. Aguilar, D.; Araguees, M. A.; Bielsa, R.; Serrano, E.; Navarro, R. and Urriolabeitia, E. P.: Organometallics, 26 (14), 3541-3551 (2007).
6019. Ng, R.; Sui, Z.; Guan, J.; Lanter, J. C.; Alford, V. C., Jr. (Janssen Pharmaceutica N. V., Belg.): PCT Int. Appl. WO 2006 39,215 (2006); Chem. Abstr., 144, 390919f (2006).
6020. Slade, R.; Klimova, Y.; Halter, R. J.; Yungai, A. J.; Weiner, W. S.; Walton, R. J.; Willardsen, J. A.; Anderson, M. B. and Zavitz, K. (Myriad Genetics, Inc., USA): PCT Int. Appl. WO 2006 41,874 (2006); Chem. Abstr., 144, 412361x (2006).
6021. Brusotti, G.; Habermann, J.; Azzolina, O. and Collina, S.: Lett. Org. Chem., 3 (12), 943-947 (2006).
6022. Zhang, J-j. and Li, H-x.: Hebei Ligong Xueyuan Xuebao, 29 (1), 95-96, 101 (2007); Chem. Abstr., 148, 449290g (2008).
6023. Budriesi, R.; Ioan, P.; Locatelli, A.; Cosconati, S.; Leoni, A.; Urgenti, M. P.; Andreani, A.; Di Toro, R.; Bedini, A.; Spampinato, S.; Marinelli, L.; Novellino, E. and Chiarini, A.: J. Med. Chem., 51 (6), 1592-1600 (2008).
6024. Kirsch, S. and Liebert, C.: Eur. J. Org. Chem., (22), 3711-3717 (2007).
6025. Puah, C. M.; Zhu, W.; Li, J.; Chen, L.; Luo, C.; Chen, G.; Zuo, Z.; Luo, X.; Shen, X.; Chen, K. and Jiang, H. (Singapore Polytechnic; Shanghai, Institute of Materia Medica Chinese Academy of Sciences, Singapore): PCT Int. Appl. WO 2007 75,145 (2007); Chem. Abstr., 147, 143278m (2007).
6026. Roth, G. P.; Wallace, G. A.; Georges, D. M.; Grongsaard, P.; Hayes, M. and Breinlinger, E. C. (Abbott Laboratories, USA): PCT Int. Appl. WO 2007 84,728 (2007); Chem. Abstr., 147, 211879k (2007).
6027. Shang, G.; Liu, D.; Allen, S. E.; Yang, Q. and Zhang, X.: Chem. Eur. J., 13 (27), 7780-7784 (2007).
6028. Ashalatha, B. V.; Narayana, B. and Kumari, N. S.: Phosphorus, Sulfur and Silicon and the Related Elements, 181 (12), 2785-2795 (2006).
6029. Ashalatha, B. V.; Narayana, B.; Raj, K. K. V. and Kumari, N. S.: Eur. J. Med. Chem., 42 (5), 719-728 (2007).
6030. Dyachenko, V. D.: Russ. J. Gen. Chem., 75 (3), 447-456 (2005).
6031. Erdtman, H. and Leopold, B.: Acta Chem. Scand., 3, 1358-1374 (1949).
6032. Koufaki, M.; Kiziridi, C.; Nikoloudaki, F. and Alexis, M. N.: Bioorg. Med. Chem. Lett., 17 (15), 4223-4227 (2007).
6033. Jacob, J. N.; Nichols, D. E.; Kohli, J. D. and Glock, D.: J. Med. Chem., 24, 1013-1015 (1981).
6034. Romagnoli, R.; Baraldi, P. G.; Lopez, O. C.; Carrion, M. D.; Cara, C. L.; Preti, D.; Tabrizi, M. A. and Balzarini, J.: Letters in Drug Design \& Discovery, 4 (7), 464-466 (2007); Chem. Abstr., 148, 23763q (2008).
6035. Tanaka, Y.; Takeda, H.; Higashi, H. et al. (Mitsubishi Pharma Corporation, Japan): PCT Int. Appl. WO 2006 28,284 (2006); Chem. Abstr., 144, 312096w (2006).
6036. Howton, D. R.; Mead, J. F. and Clark, W. G.: J. Am. Chem. Soc., 17 (10), 2896-2897(1955).
6037. Madsen, P. ; Knudsen, L. B.; Wiberg, F. C. and Carr, R. D.: J. Med. Chem., 41 (26), 5150-5157 (1998).
6038. Buonsanti, M. F.; Bertinaria, M.; Di Stilo, A.; Cena, C.; Fruttero, R. and Gasco, A.: J. Med. Chem., 50 (20), 5003-5011 (2007).
6039. Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Farruggia, G.; Zini, M.; Stefanelli, C.; Masotti, L.; Radin, N. S. and Shoemaker, R. H.: J. Med. Chem., 51 (4), 809-816 (2008).
6040. Deng, J.; Li, L.; Zhu, J.; Xue, D. and Liao, J. (Chengdu Organic Chemical Co., Ltd., Chinese Academy of Sciences, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,074,207 (2007); Chem. Abstr., 148, 54748r (2008).
6041. Wainer, I. W.; Xiao, R. P.; Zhu, W.; Chakir, K.; Beigi, F. M. and Abernethy, D. R. (United States Dept. of Health and Human Services, USA): PCT Int. Appl. WO 2008 22,038 (2008); Chem. Abstr., 148, 262325e (2008).
6042. Le, T. N. and Cho, W-J.: Bulletin of the Korean Chemical Society, 28 (5), 763-766 (2007).
6043. Romagnoli, R.; Baraldi, P. G.; Sarkar, T.; Carrion, M. D.; Lopez Cara, C.; Cruz-Lopez, O.; Preti, D.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Zonta, N.; Balzarini, J.; Brancale, A.; Hsieh, H-P. and Hamel. E.: J. Med. Chem., 51 (15), 1464-1468 (2008).
6044. Gust, R. and Hoffmann, R. (Freie Universität, Berlin, Germany): PCT Int. Appl. WO 2008 6,626 (2008); Chem. Abstr., 148, 144642h (2008).
6045. Chen, L.; Chu, X-J.; Lovey, A. J. and Zhao, C. (F. Hoffmann-La Roche A.-G., Switz.): PCT Int. Appl. WO 2006 5,508 (2006); Chem. Abstr., 144, 150357c (2006).
6046. Aswale, S. S.; Raghuwanshi, P. B.; Tayade, D. T. and Aswale, S. R.: J. Indian Chem. Soc., 84 (2), 159-164 (2007).
6047. Aswale, S. S.; Raghuwanshi, P. B.; Tayade, D. T. and Aswale, S. R.: Journal of Indian Council of Chemists, 23 (2), 31-34 (2006); Chem. Abstr., 148, 86804z (2008).
6048. Wadodkar, P. N. and Marathey, M. G.: Indian J. Chem., 10 (2), 145-148 (1972).
6049. Lanier, M.; Moorjani, M.; Tellew, J. E. and Williams, J. P. (SB Pharmaco Puerto Rico Inc.; Neurocrine Biosciences Inc., P. R.): PCT Int. Appl. WO 2006 44,821 (2006); Chem. Abstr., 144, 412502u (2006).
6050. Nath A.; Mal, J. and Venkateswaran, R. V.: J. Org. Chem., 61 (13), 4391-4393 (1996)
6051. Ruzicka, L.; Hösli, H and Hofmann, K.: Helv. Chim. Acta, 19, 370-377 (1936).
6052. Perez-Vasquez, A.; Linares, E.; Bye, R.; Cerda-Garcia-Rojas, C. M. and Mata, R.:Phytochemistry, 69 (6), 1339-1347 (2008).
6053. Bream, R. N.; Ley, S. V. and Procopiou, P. A.: Org. Lett., 4 (22), 3793-3796 (2002).
6054. Procopiou, P. A.; Morton, G. E.; Todd, M. and Webb, G.: Tetrahedron Asymmetry, 12 (14), 2005-2008 (2005).
6055. Schmidt, U.; Lieberknecht, A.; Griesser, H., Bokens, H.: Tetrahedron Lett., 23, 4911-4914(1982).
6056. Kang, D. W.; Lee, J. W.; Kim, Y. H.; Kim, H.; Ha, H. J.; Nam, E. J. and Joung, C. M. (Digital Biotech Co., Ltd., S. Korea): PCT Int. Appl. WO 2008 41,826 (2008); Chem. Abstr., 148, 449447p (2008).
6057. Govec, S. P.; Shiau, A. K.; Noble, S. A. and Thomas, D. J. (USA): PCT Int. Appl. WO 2008 6,052 (2008); Chem. Abstr., 148, 144664s (2008).
6058. Doria, G.; Romeo, C.; Corno, M. L. and Cadelli, G.: Farmaco, Ed. Sci., 35 (8), 674-680 (1980).
6059. Leclerc, G.; Bizec, J. C.; Bieth, N. and Schwartz, J.: J. Med. Chem., 23 (7), 738-744 (1980).
6060. Donnelly, D. M. X.; Lawless, R. M. and Wilson, R. K.: Chem. Ind. (London), (47), 1906 (1961).
6061. Gong, B.; Li, D.; Chen, H. and You, Y.: Huaxue Yanjiu Yu Yingyong, 18 (10), 1209-1213 (2006); Chem. Abstr., 148, 472231x (2008).
6062. Zemplen, G. and Bognar, R.: Ber. Dtsch. Chem. Ges., 76B (5), 452-457 (1943).
6063. Casellas, P.; Floutard, D.; Fraisse, P. and Jegham, S. (Sanofi-Synthelabo, Fr.): Fr. Demande FR 2,872,813 (2006); Chem. Abstr., 144, 128967e (2006).
6064. Morkovnik, A. S.; Divaeva, L. N. and Anisimova, V. A.: Izv. Akad. Nauk., Ser. Khim., 6, 1150-1164 (2007); Russ. Chem. Bull., 56 (6), 1194-1209 (2007).
6065. Volod'kin, A. A.; Portnykh, N. V. and Ershov, V. V.: Izv. Akad. Nauk. SSSR, Ser. Khim., (4), 947-948 (1967); Chem. Abstr., 68, 39279b (1968).
6066. Isomura, Y.; Sakamoto, S.; Ito, N.; Homma, H.; Abe, T. and Kubo, K.: Chem. Pharm. Bull., 32 (1), 152-165 (1984).
6067. Anisimova, V. A.; Tolpygin, I. E.; Spasov, A. A.; Kosolapov, V. A.; Stepanov, A. V.; Orlova, A. A. and Naumenko, L. V.: Pharm. Chem. J., 41 (3), 126-130 (2007).
6068. Heinelt, U.; Hofmeister, A. and Czech, J. (Sanofi-Aventis, Fr.): PCT Int. Appl. WO 2008 14,888 (2008); Chem. Abstr., 148, 239207j (2008).
6069. Kamble, V. T.; Davane, B. S.; Chavan, S. A. and Bhosale, R. B.: Aust. J. Chem., 60 (4), 302-304 (2007).
6070. Kosikowski, A. P.; Gaisina, I. N.; Yuan, H.; Petukhov, P. A.; Blond, S. Y.; Fedolak, A.; Caldarone, B. and McGonigle, P.: J. Am. Chem. Soc., 129 (26), 8328-8332 (2007).
6071. Hanson, R. L.; Goldberg, S.; Goswami, A.; Tully, T. P. and Patel, R. N.: Adv. Synth. Catal., 347 (7+8), 1073-1080 (2005).
6072. Singh, J. and Gurney, M. E. (Decode Chemistry, Inc., USA): PCT Int. Appl. WO 2005 123,724 (2005); Chem. Abstr., 144, 88303b (2006).
6073. Hettche, F.; Herzberg, D. and Pletsch, A. (BASF Aktiengesellschaft, Germany): PCT Int. Appl. WO 2007 147,897 (2007); Chem. Abstr., 148, 100379y (2008).
6074. Wang, Y.; Xu, B. and Li, B. (Gede Group Co., Ltd., Tianjin Nankai Univ., Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,554,767 (2004); Chem. Abstr., 144, 50171u (2006).
6075. Xu, Z.; Zhang, D. and Zou, X.: Synth. Commun., 36 (2), 255-258 (2006).
6076. Baker, J. W.: J. Chem. Soc., 135, 1148-1157 (1932).
6077. Huang, X. and Ying, J. Y.: Chem. Commun., (18), 1825-1827 (2007).
6078. Shono, T.; Kise, N.; Yamazaki, A. and Ohmizu, H.: Tetrahedron Lett., 23 (15), 1609-1612 (1982).
6079. Eggenweiler, H-M. and Wolf, M. (Merck Patent G.m.b.H, Germany): Ger. Offen. DE 102,004,049,078 (2006); Chem. Abstr., 144, 370088 (2006).
6080. Katano, K.; Shitara, E.; Shimizu, M.; Sasaki, K.; Miura, T.; Isomura, Y.; Kawaguchi, M.; Ohuchi, S. and Tsuruoka, T.: Bioorg. Med. Chem. Lett., 6 (21), 2601-2606 (1996).
6081. Mangalagiu, I. I.; Balan, A. M. and Florea, O.: Journal of Physics Conference Series, 61, 482-483 (2007); Chem. Abstr., 148, 538239q (2008).
6082. Patlewicz, G.; Dimitrov, S. D.; Low, L. K.; Kern, P. S.; Dimitrova, G. D.; Comber, M. I. H.; Aptula, A. O.; Phillips, R. D.; Niemelae, J.; Madsen, C.; Wedebye, E. B.; Roberto, D. W.; Bailey, P. T. and Mekenyan, O. G.: Regulatory Toxicology and Pharmacology, 48 (2), 225-239 (2007); Chem. Abstr., 147, 420895b (2007).
6083. Roberts, D. W.; Patlewicz, G.; Dimitrov, S. D. ; Low, L. K.; Aptula, A. O.; Kern, P. S.; Dimitrova, G; D.; Comber, M. I. H.; Phillips, R. D.; Niemelae, J.; Madsen, C.; Wedebye, E. B.; Bailey, P. T. and Mekenyan, O. G.: Chemical Research in Toxicology, 20 (9), 1321-1330 (2007).
6084. Hastings, J. M.; Hadden, M. K. and Blagg, B. S. J.: J. Org. Chem., 73 (2), 369-373 (2008).
6085. Zheng, X.; Cao, J. G.; Liao, D. F.; Zhu, B. Y. and Liu, H. T.: Chinese Chem. Lett., 17 (11), 1439-1442 (2006).
6086. Sun, A.; Chandrakumar, N.; Yoon, J-J.; Plemper, R. K. and Snyder, J. P.: Bioorg. Med. Chem. Lett., 17 (18), 5199-5203 (2007).
6087. Barkakaty, B.; Takaguchi, Y. and Tsuboi, S.: Tetrahedron, 63 (4), 970-976 (2007).
6088. Van Hende, E. ; Verniest, G.; Surmont, R. and De Kimpe, N.: Org. Lett., 9 (15), 2935-2937 (2007).
6089. Abdushukurov, A. K.: O'zbekiston kimyo Jurnali, (1), 20-22 (2005); Chem. Abstr., 144, 432524f (2006).
6090. Labaz: FR 2,304,606 (1976); Chem. Abstr., 86, 171257 (1977).
6091. Wang, L.; Yang, D. and Huang, S.: Zhongguo Yaowu Huaxue Zazhi, 14 (3), 154-157 (2004); Chem. Abstr., 144, 432591a (2006).
6092. Bazavova, I. M.; Britsun, V. N.; Esipenko, A. N.; Neplyuev, V. M. and Lozinsky, M. O.: Chem. Heterocycl. Compd. (USSR), 36 (9), 1058-1061 (2000).
6093. Vedula, M. S.; Pulipaka, A. B.; Venna, C.; Chintakunta, V. K.; Jinnapally, S.; Kattuboina, V. A. Vallakati, R. K.; Basetti, V.; Akella, V.; Rajgopal, S.; Reka, A. K.; Teepireddy, S. K.; Mamnoor, P. K.; Rajagopalan, R. R.; Bulusu, G.; Khandelwal, A.; Upreti, V. V. and Mamidi, S. R.: Eur. J. Med. Chem., 38, 811-824 (2003).
6094. Degering, E. F.; Gryting, H. J. and Tetrault, P. A.: J. am. Chem. Soc., 74 (14), 3599-3601 (1952).
6095. Kunckell, F. and Johannssen, F.: Ber. Dtsch. Chem. Ges., 31A, 169-172 (1898).
6096. Peppe, C.; Nobrega, J. A.; Drehmer, L. D. and Martina, M. A. P.: Letters in Organic Chemistry, 3 (8), 597-599 (2006).
6097. Yang, Y.; Liu, B. and Li, W. (University of Science and Technology, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shumingshu CN 101,016,249 (2007); Chem. Abstr., 147, 343787p (2007).
6098. Kakinami, T.; Urabe, Y.; Hermawan, I.; Yamanishi, H.; Okamoto, T. and Kajigaeshi, S.: Bull. Chem. Soc. Jpn., 65 (9), 2549-2551 (1992).
6099. Ando, T.; Namigata, F.; Kataoka, M.; Yachida, K. and Funasaka, W.: Bull. Chem. Soc. Jpn., 40 (5), 1275-1278 (1967).
6100. Bergmann, E. D.; Cohen, S; Hoffman, E. and Rand-Meir, Z.: J. Chem. Soc., 3452-3457 (1961).
6101. Stavber, S.; Jereb, M. and Zupan, M.: Chem. Commun., (14), 1323-1324 (2000).
6102. Eguchi, T.; Aoyama, T. and Kakinuma, K.: Tetrahedron Lett., 33 (38), 5545-5546 (1992).
6103. Bridge, C. F. and O'Hagan, D.: J. Fluorine Chem., 82 (1), 21-24 (1997).
6104. Katoch-Rouse, R.; Pavlova, O. A.; Caulder, T.; Hoffman, A. F.; Mukhin, A. G. and Horti, A. G.: J. Med. Chem., 46 (4), 642-645 (2003).
6105. Drakenberg, T.; Sommer, J. and Jost, R.: J. Chem. Soc., Perkin Trans. 2, 363-369 (1980).
6106. Funabiki, K.; Fukushima, Y.; Sugiyama, T.; Shibata, K. and Matsui, M.: Synlett, (8), 1308-1310 (2001).
6107. Peng, W. and Shreeve, J. M.: J. Org. Chem., 70 (14), 5760-5763 (2005).
6108. Ying, W.; DesMarteau, D. D. and Gotoh, Y.: Tetrahedron, 52 (1), 15-22 (1996).
6109. Fellman, J. H.: Nature (London), 179, 265-266 (1957).
6110. Moughamir, K.; Rolando, C. and Charbonnier, F.: International Electronic Conferences on Synthetic Organic Chemistry, 5th, 6th, Sept. 1-30, 2001 and 2002 [and] 7th, 8th, Nov. 1-30, 2003 and 2004: 2004, 243-249; Chem. Abstr., 144,108053a (2006).
6111. Pravst, I.; Zupan, M. and Stavber, S.: Synthesis, (18), 3140-3146 (2005).
6112. Konno, T.; Takehana, T.; Mishima, M. and Ishihara, T.: J. Org. Chem., 71 (9), 3545-3550 (2006).
6113. Zhang, L.; Li, Y. and Hu, J.; Fluorine Chem., 128 (7), 755-761 (2007).
6114. Hata, H.; Kobayashi, T.; Amii, H.; Uneyama, K. and Welch, J. T.: Tetrahedron Lett., 43 (35), 6099-6102 (2002).
6115. Kobayashi, S.; Tanaka, H.; Amii, H. and Uneyama, K.: Tetrahedron, 59 (9), 1547-1552 (2003).
6116. Brodsky, B. H. and Du Bois, J.: J. Am. Chem. Soc., 127 (44), 15391-15393 (2005).
6117. Gonzalez, J.; Jewell, T. M.; Li, H.; Linton, A. and Tatlock, J. H. (Pfizer Inc., USA): PCT Int. Appl. WO 2006 18,725 (2006); Chem. Abstr., 144, 254144x (2006).
6118. Zhong, W.; Hitchcock, S.; Albrecht, B. K.; Bartberger, M.; Brown, J.; Brown, R.; Chaffee, S. C.; cheng, Y.; Croghan, M.; Graceffa, R.; Harried, S.; Hickman, D.; Horne, D.; Hungate, R.; Judd, T.; Kaller, M.; Kreiman, C.; La, D.; Lopez, P.; Masse, C. E.; Monenschein, H.; Nguyen, T; Nixey, T. et al. (Amgen Inc., USA): PCT Int. Appl. WO 2007 61,670 (2007); Chem. Abstr., 147, 52808t (2007).
6119. Ge, Z.; Tao, Z.; Liu, J.; Fan, L. and Yang, S.: Polymer J. (Tokyo, Japan), 39 (11), 1135-1142 (2007).
6120. Hughes, G.; Devine, P. N.; Naber, J. R.; O’Shea, P. D.; Foster, B. S.; McKay, D. J. and Volante, R. P.: Angew. Chem. Int. Ed., 46 (11), 1839-1842 (2007).
6121. Shi, M.; Liu, X-G.; Guo, Y-W. and Zhang, W.: Tetrahedron, 63 (51), 12731-12734 (2007).
6122. Tanaka, H. and Shishido, Y.: Bioorg. Med. Chem. Lett., 17 (22), 6079-6085 (2007).
6123. Shindo, K.; Nakamura, K.; Osawa, A.; Kagami, O.; Kanoh, K.; Furukawa, K. and Misawa, N.: J. Mol. Catal. B: Enzym., 35 (4-6), 134-141 (2005).
6124. Biencowe, A.; Cosstick, K. and Hayes, W.: New J. Chem., 30 (1), 53-58 (2006).
6125. Bentz, E. L.; Gibson, H.; Hudson, C.; Moloney, M. G.; Seldon, D. A. and Wearmouth, E. S.: Synlett, (2), 247-250 (2006).
6126. Byk-Gulden Lomberg Chemische Fabrik G.m.b.H. (Winterhalder, L. inventor): US 2,786,871 (1955).
6127. Yin; G.; Gao, M.; She, N-f.; Hu, S.; Wu, A. and Pan, Y.: Synthesis, (20), 3113-3116 (2007).
6128. Jereb, M.; Iskra, J.; Zupan, M. and Stavber, S.: Lett. Org. Chem., 2 (5), 465-468 (2005).
6129. Pavlinac, J.; Zupan, M. and Stavber, S.: J. Org. Chem., 71 (3), 1027-1032 (2006).
6130. Byk-Gulden Lomberg Chemische Fabrik G.m.b.H. (Winterhalder, L. inventor): DE 949,288 (1954).
6131. Tutin, F.: J. Chem. Soc., 97, 2495-2524 (1910).
6132. Hu, Y.; Cheng, Y. and He, Q. (Zhejiang University, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,587,261 (2005); Chem. Abstr., 144, 254127u (2006).
6133. Spivak, C. E. and Harris, F. L.: J. Org. Chem., 37, (15), 2494-2497 (1972).
6134. Kimura, T.; Kitazawa, N.; Kaneko, T.; Sato, N.; et al. (Esai R \& D Management Co., Ltd., Japan): PCT Int. Appl. WO 2007 102,580 (2007); Chem. Abstr., 147, 365508a (2007).
6135. Min, J.; Lee, J. W.; Ahn, Y-H. and Chang, Y-T.: J. Comb. Chem., 9 (6), 1079-1083 (2007).
6136. Charier, S.; Ruel, O.; Baudin, J-B.; Alcor, D.; Allemand, J-F.; Meglio, A.; Jullien, L. and Valeur, B.: Chemistry- A European Journal, 12 (4), 1097-1113 (2006).
6137. Cheng, Y.; Hu, YY. and He, Q.: Yaoxue Xuebao, 40 (8), 711-716 (2005); Chem. Abstr., 147, 235068w(2007).
6138. Sugimoto, T.; Yamamoto, K.; Manaka, A.; Ogita, H.; Kurosaka, J.; Kawamura, M.; Kashimura, M.; Sasamoto, N.; Miura, T.; Kanemoto, K.; Ozawa, T.; Chikauchi, K.; Shitara, E. and Kubota, D. (Taisho Pharmaceutical Co., Ltd.; Meiji Seika Kaisha, Ltd., Japan): PCT Int. Appl. WO 2007 91,393 (2007); Chem. Abstr., 147, 301394c (2007).
6139. Xiang, J. S.; McKew, J. C.; Tam, S. Y.; Ipek, M.; Suri, V. and Mansour, T. S. (USA): U.S. Pat. Appl. Publ. US 2006 25,445 (2006); Chem. Abstr., 144, 170793v (2006).
6140. Andersen, S. O. and Roepstorff, P.: Insect. Biochem. Mol. Biol., 37 (3), 223-234 (2007).
6141. Boyer, J. H. and Straw, D.: J. Am. Chem. Soc., 75 (11), 2683-2684 (1953).
6142. Kim, H-O.; Huber, E. W.; Friedrich, D. and Peet, N. P.: Synthesis, 1406-1408 (1994).
6143. Lee, K-J.; Choi, D. O.; Kim, S.; Jeong, J. U and Park, H.: Synthesis, (6), 455-457 (1990).
6144. Widler, L.; Green, J.; Missbach, M.; Susa, M. and Altmann, E.: Bioorg. Med. Chem. Lett., 11 (6), 849-852 (2001).
6145. Fries, K. and Saftien, K.: Ber. Dtsch. Chem. Ges., 59, 1246-1251 (1926).
6146. Edegger, K.; Gruber, C. C.; Poessi, T. M.; Wallner, S. R.; Lavandera, I.; Faber, K.; Niehaus, F.; Eck, J.; Oehrlein, R.; Hafner, A. and Kroutil, W.: Chem. Commun. (Cambridge), (22), 2402-2404 (2006).
6147. Reddy, M. A.; Bhanumathi, N. and Rao, K. R.: Chem. Commun. (Cambridge), (19), 1974-1975 (2001).
6148. Gong, P. K.; Blough, B. E.; Brieaddy, L. E.; Huang, X.; Kuhar, M. J.; Navarro, H. A. and Carroll, F. I.: J. Med. Chem., 50 (15), 3686-3695 (2007).
6149. Fan, X.; Zhang, X. and Zhang, Y.: J. Chem. Res., (11), 750-752 (2005).
6150. Lee, J. C. and Lee, J. S.: Bull. Korean Chem. Soc., 26 (10), 1493-1494 (2005); Chem. Abstr., 144, 191917d (2006).
6151. Gray, J. L. The Procter \& Gamble Company, (USA): PCT Int. Appl. WO 2008 2,570 (2008); Chem. Abstr., 148, 100598u (2008).
6152. Zhong, W.; Su, W.; Zhou, X. and Shi, F. (Zhejiang University of Technology, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,092,395 (2007); Chem. Abstr., 148, 144662q (2008).
6153. Dietlin, F. and Fredj, D. (Pharmatop Scr Fr.): Fr. Demande FR 2,894,154 (2007); Chem. Abstr., 147, 39331n (2007).
6154. Powell, P. M.; Molock, F. F.; Martin, W. A.; Rooney, T. R.; Raja, R.; Grammer, H. L.; Rathore, O.; Mahadevan, S. and Bhat, R. (USA): U.S. Pat. Appl. Publ. US 2006 100,408 (2006); Chem. Abstr., 144, 469275b (2006).
6155. Vega, M. C.; Montero-Torres, A.; Marrero-Ponce, Y.; Rolon, M.; Gomez-Barrio, A.; Escario, J. A.; Aran, V. J.; Nogal, J. J.; Meneses-Marcel, A. and Torrens, F.: Bioorg. Med. Chem. Lett., 16 (7), 1898-1904 (2006).
6156. Vilar, S.; Santana, L. and Uriarte, E.: J. Med. Chem., 49 (3), 1118-1124 (2006).
6157. Bretschneider, H.: Monatsch Chem., 78, 117-128 (1948).
6158. Hu, Y.; Shen, Y.; Sheng, R.; Yang, B.; He, Q. and Zhang, J. (Zhejiang University, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,121,702 (2008); Chem. Abstr., 148, 308057z (2008).
6159. Chem. Fabr. v. Heyden: DE 71312.
6160. Dzierzgowski, S.: Zh. Russ. Fiz. Khim. O-va, 25, 279 (1893).
6161. Dzierzgowski, S.: Ber. Dtsch. Chem. Ges., 26, Band IV, 812 (1893).
6162. Dzierzgowski, S.: Ber. Dtsch. Chem. Ges., 27, 1983-1989 (1894).
6163. Andersen, M. L. and Wayner, D. D.: Acta Chem. Scand., 53 (10), 830-836 (1999).
6164. Fourrey, J-L.; Beauhaire, J. and Yuan, C. W.: J. Chem. Soc., Perkin trans 1, (8) 1841-1843 (1987).
6165. Petry, S.; Tennagels, N.; Kirsch, R.; Baringhaus, K-H. (Aventis Pharma Deutschland GmbH, Germany): PCT Int. Appl. WO 2005 116,003 (2005); Chem. Abstr., 144, 36330p (2006).
6166. Pratt, D. D. and Robinson, R.: J. Chem. Soc., 127, 167-175 (1925).
6167. Pratt, D. D. and Robinson, R.: J. Chem. Soc., 123, 745-758 (1923).
6168. Yan, X-X.; Liang, C-G.; Zhang, Y.; Hong, W.; Cao, B-X.; Dai, L-X. and Hou, X-L.: Angew. Chem. Int. Ed., 44 (40), 6544-6546 (2005).
6169. Bennett, C. J.; Caldwell, S. T.; McPhail, D. B.; Morrice, P. C.; Duthie, G. G. and Hartley, R. C.: Bioorg. Med. Chem., 12 (9), 2079-2098 (2004).
6170. Capillon, J. and Guetté, J. P.: Tetrahedron, 35 (15), 1807-1815 (1979).
6171. Abe, K.; Sakaino, Y.; Kakinuma, J. and Kakisawa, H.: Nippon Kagaku Kaishi, (8), 11971204 (1977); Chem. Abstr., 87, 153403e (1977).
6172. Urgaonkar, S. and Shaw, J. T.: J. Org. Chem., 72 (12), 4582-4585 (2007).
6173. Carola, C.; Toulec, A. and Buchholz, H. (Merck Patent G.m.b.H, Germany): Ger. Offen. DE 102,006,004,327 (2007); Chem. Abstr., 147, 235012y (2007).
6174. Gerard, B.; Cencic, R.; Pelletier, J. and Porco, J. A.: Angew. Chem., Int. Ed., 46 (41), 7831-7834 (2007).
6175. Andrus, M. B. and Ye, Z.: Tetrahedron Lett., 49 (3), 534-537 (2008).
6176. Wang, L.; Huang, X.; Jiang, J.; Liu, X. and Feng, X.: Tetrahedron Lett., 47 (10), 1581-1584 (2006)
6177. Fabbri, C.; Bietti, M. and Lanzalunga, O.: J. Org. Chem., 70 (7), 2720-2728 (2005).
6178. Adler, E.; Lindgren, B. O. and Saeden, U.: Sven. Papperstidn., 55, 245-252 (1952).
6179. Hurrell, L.; Johnston, L. J.; Mathivanan, N. and Vong, D.: Can. J. Chem., 71 (9), 1340-1348 (1993).
6180. Palm, W- U.; Dreeskamp, H.; Bouas-Laurent, H. and Castellan, A.: Ber. Bunsenges., 96 (1), 50-61 (1992).
6181. Baciocchi, E.; Bietti, M.; Gerini, M. F.; Lanzalunga, O. and Mancinelli, S.: J. Chem. Soc., Perkin Trans. 2, (9), 1506-1511 (2001).
6182. Ludwig, C. H.; Nist, B. J. and McCarthy, J. L.: J. Am. Chem. Soc., 86 (6), 1186-1196 (1964).
6183. Barclay, L. R. C.; Cromwell, G. R. and Hilborn, J. W.: Can. J. Chem., 72 (1), 35-41 (1994).
6184. Ahvazi, B. C. and Argyropoulos, D. S.: J. Fluorine Chem., 78 (2), 195-198 (1996).
6185. Chuaqui, C. A.; Rajagopal, S.; Kovacs, A.; Stepanik, T.; Merritt, J.; György, I.; Whitehouse, R. and Ewing, D.: Tetrahedron, 49 (43), 9689-9698 (1993).
6186. Gierer, J. and Soederberg, S.: Acta Chem. Scand., 13 (1), 127-137 (1959).
6187. Maiorova, E. D.; Platonov, A. Y.; Evstigneev, E. I. and Christokletov, V. N.: J. Gen. Chem. USSR, 62 (5.2), 959-963 (1992).
6188. Okano, L. T.; Ovans, R.; Zunic, V.; Moorthy, J. N. and Bohne, C.: Can. J. Chem., 77 (8), 1356-1365 (1999).
6189. Pernemalm, P-A. and Dence, C. W.: Acta Chem. Scand., Ser. B, 28 (4), 453-464 (1974).
6190. Schmidt, J. A.; Berinstain, A. B.; Rege, F.; Heitner, C.; Johnston, L. J. and Scaiano, J. C.: Can. J. Chem., 69 (1), 104-107 (1991).
6191. Yokoyama, S.; Ishii, T.; Takeya, G. and Sakakibara, A. (Hokkaido Univ., Sapporo, Japan): Kogyo Kagaku Zasshi, 72 (1), 346-352 (1969); Chem. Abstr., 70, 116386e (1969).
6192. Chatterjea, J. N.; Sinha, A. K. and Lal, S.: J. Indian Chem. Soc., 56 (5), 508-510 (1979).
6193. Gellerstedt, G. and Gierer, J.: Acta Chem. Scand., 24 (5), 1645-1654 (1970).
6194. Matsunaga, S.; Kumagai, N.; Harada, S. and Shibasaki, M.: J. Am. Chem. Soc., 125 (16), 4712-4713 (2003).
6195. Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai, N. and Shibasaki, M.: J. Am. Chem. Soc., 126 (28), 8777-8785 (2004).
6196. Yoshida, T.; Morimoto, H.; Kumagai, N.; Matsunaga, S. and Shibasaki, M.: Angew. Chem. Int. Ed., 44 (22), 3470-3474 (2005).
6197. Trost, B. M.; Jaratjaroonphong, J. and Reutrakul, V. J. Am. Chem. Soc., 128 (9), 2778-2779 (2006).
6198. Wang, Y-Q.; Yu, C-B.; Wang, D-W.; Wang, X-B. and Zhou, Y-G.: Org. Lett., 10 (10), 2071-2074 (2008).
6199. Farhadi, S.; Afshari, M.; Maleki, M. and Babazadeh, Z.: Tetrahedron Lett., 46 (49), 8483-8486 (2005).
6200. Moriarty, R. M.; Hu, H. and Gupta, S. C.: Tetrahedron Lett., 22 (14), 1283-1286 (1981).
6201. Sugita, M.; Yamaguchi, A.; Yamagiwa, N.; Handa, S.; Matsunaga, S. and Shibasaki, M.: Org. Lett., 7 (23), 5339-5342 (2005).
6202. Gupta, S. K. (Bioderm Research, USA): U.S. Pat. Appl. Publ. US 2006 74,108 (2006); Chem. Abstr., 144, 357726t (2006).
6203. MacDowell, R. H.; Robinson, R. and Todd, A. R.: J. Chem. Soc., (5), 806-809 (1934).
6204. Nair, P. V. and Robinson, R.: J. Chem. Soc., (1), 1611-1614 (1934).
6205. Tang, W-J. and Hu, Y-Z.: Synth. Commun., 36 (17), 2461-2468 (2006).
6206. Sadhu, S. K.; Khan, M. S.; Ohtsuki, T. and Ishibashi, M.: Phytochemistry, 68 (13), 1718-1721 (2007).
6207. Tsuda, T.; Watanabe, M.; Ohshima, K.; Yamamoto, A.; Kawakishi, S. and Osawa, T.: J. Agric. Food Chem., 42 (12), 2671-2674 (1994).
6208. Joshi, K. C.; Pathak, V. N. and Goyal, M. K.: J. Heterocycl. Chem., 18, 1651-1653 (1981).
6209. Sheng, J.; Liu, D.; Liu, X.; Guo, Q.; Yu, H.; Li, J.; Hui, Y.; Wang, Z. and Zhang, X.: U.S. Pat. Appl. Publ. US 2006 85,873 (2006); Chem. Abstr., 144, 405837d (2006).
6210. Chen, J-J.; Cho, J-Y.; Hwang, T-L. and Chen, I-S.: J. Nat. Prod., 71 (1), 71-75 (2008).
6211. Kumar, S.; Kumar, A.; Gupta, R. K. and Kumar, D.: Synth. Commun., 38 (3), 338-345 (2008).
6212. Zuo, P. (University of Hong Kong, Hong Kong, Peop. Rep. China): 2005. No pp., given (Eng). From Diss. Abstr. Int., B 2007, 67 (8), 4446; Chem. Abstr., 147, 288061v (2007).
6213. Baghdadchi, J.; Chan, A. P. and Hutchinson, J. H.: J. Heterocycl. Chem., 25, 973-974 (1988).
6214. Tiffeneau, M.: C. R. Acad. Sci., 150, 1181-1184 (1910).
6215. Sakuragi, H.; Tokumaru, K.; Itoh, H.; Terakawa, K.; Kikuchi, K.; Caldwell, R. A. and Hsu, C-C.: Bull. Chem. Soc. Jpn., 63 (4), 1049-1057 (1990).
6216. Nieuwenhuis, S. A. M.; Vertegaal, L. B. J.; de Zoete, M. C. and van der Gen, A. :Tetrahedron, 50 (46), 13207-13230 (1994).
6217. Nakayama, M.; Hayashi, S.; Tsukayama, M.; Horie, T. and Masumura, M.: Chem. Lett., (1), 87-8 (1974).
6218. Bandara, B. M.; R.; Hewage, C. M.; Karunaratne, V.; Wannigama, G. P. and Adikaram, N. K. B.: Phytochemistry, 31 (6), 1983-1986 (1992).
6219. Banerjeee, S.; Jakupovic, J.; Bohlmann, F.; King, R. M. and Robinson, H.: Phytochemistry, 24 (11), 2681-2684 (1985).
6220. Tsukayama, M.: Bull. Chem. Soc. Jpn., 50 (2) 459-462 (1977).
6221. Marakhovskaya, T. G. and Tyrkov, A. G.: Ekologicheskie Sistemy i Pribory, (9), 53-54 (2005); Chem. Abstr., 144, 331356x (2006).
6222. Bonifacio, M. J.; Palma, P. N.; Almeida, L. and Soares-da-Silva, P.: CNRS Drug Reviews, 13 (3), 352-379 (2007); Chem. Abstr., 148, 111889r (2008).
6223. Ferreira, J. J.; Almeida, L.; Cunha, L.; Ticneanu, M.; Rosa, M. M.; Januario, C.; Mitu, C-E.; Coelho, M.; CorreiaGuedes, L.; Morgadinho, A.; Nunes, T.; Wright, L. C.; Falcao, A.; Sampaio, C. and Soares-de-Silva, P.: Clinical Neuropharmacology, 31 (1), 2-18 (2008).
6224. Karoum, F. (USA): PCT Int. Appl. WO 2006 37,061(2006); Chem. Abstr., 144, 343621t (2006).
6225. Libermann, D. and Moyeux, M.: Bull. Soc. Chim. Fr., (1-2), 50-54 (1952).
6226. Su, B.; Hackett, J. C.; Diaz-Cruz, E. S.; Kim, Y-W. and Brueggemeier, R. W.: Bioorg. Med. Chem., 13 (23), 6571-6577 (2005).
6227. Sekiguchi, M.; Saito, Y. and Toya, Y. (Mitsui Chemicals Inc., Japan): Jpn. Kokai Tokkyo Koho JP 2008 94,777 (2008); Chem. Abstr., 148, 483410f (2008).
6228. van Klink, J. W.; Brophy, J. J.; Perry, N. B.and Weavers, R. T.: J. Nat. Prod., 62 (3), 487-489 (1999).
6229. van Klink, J. W.; Larsen, L.; Perry, N. B.; Weavers, R. T.; Cook, G. M.; Bremer, P. J.; MacKenzie, A. D. and Kirikae, T.: Bioorg. Med. Chem., 13 (24), 6651-6662 (2005).
6230. Kumar, R.; Makrandi, J. K.; Singh, I. and Khatkar, S. P.: Spectrochim. Acta, Part A, 69A (4), 1119-1124 (2008).
6231. Learmonth, D. A. and Alves, P. C.: Synth. Commun., 32 (4), 641-649 (2002).
6232. Weingarten, M. D.; Skudlarek, J. and Sikorski, J. A. (Atherogenics, Inc., USA): PCT Int. Appl. WO 2006 4,903 (2006); Chem. Abstr., 144, 108199c (2006).
6233. Fokialakis, N.; Lambrinidis, G.; Mitsiou, D. J.; Aligiannis, N.; Mitakou, S.; Skaltsounis, A-L.; Pratsinis, H.; Mikros, E. and Alexis, M. N.: Chemistry and Biology, 11 (3), 397-406 (2004); Chem. Abstr., 141, 46860p (2004).
6234. Keung, W. M.; Vallee, B. L. and Gao, G. (The Endowment for Research in Human Biology, Inc., USA): PCT Int. Appl. WO 2004 2,470 (2004); Chem. Abstr., 140, 71053 q (2004).
6235. Stachulski, A. V.; Berry, N. G.; Low, A. C. L.; Moores, S. L.; Row, E.; Warhurst, D. C.; Adagu, I. S. and Rossignol, J-F.: J. Med. Chem., 49 (4), 1450-1454 (2006).
6236. Pivovarenko, V. G. and Khilya, V. P.: Chem. Heterocycl. Compd. (USSR), 28 (5), 497-502 (1992).
6237. Goel, A.; Singh, F. V.; Dixit, M.; Verma, D.; Raghunandan, R. and Maulik, P. R.: Chemistry-An Asian Journal, 2 (2), 239-247 (2007); Chem. Abstr., 148, 191676g (2008).
6238. Chittimalla, S. K.; Chang, T-C.; Liu, T-C.; Hsieh, H-P. and Liao, C-C.: Tetrahedron, 64 (11), 2586-2595 (2008).
6239. Gao, G-Y.; Li, D-J. and Keung, W. M.: Bioorg. Med. Chem., 11 (18), 4069-4082 (2003).
6240. Liu, D. F. and Cheng, C. C.: J. Heterocycl. chem., 28 (6), 1641-1642 (1991).
6241. Xiao, Z-P.; Shi, D-H.; Li, H-Q.; Zhang, L-N.; Xu, C. and Zhu, H-L.: Bioorg. Med. Chem., 15 (11), 3703-3710 (2007).
6242. Joshi, P. C. and Venkataraman, K.: J. Chem. Soc., 513-514 (1934).
6243. Dutta, N. L. and Bose, J. L.: J. Sci. Ind. Res., 10B, 75 (1951).
6244. Jin, Y.; Liu, C.; Dai, Y.; Wu, Q.; Yao, B. and Zhang, D.: Dier Junyi Daxue Xuebao, 25 (1), 111-113 (2004); Chem. Abstr., 144, 114042n (2006).
6245. Hajela, K. and Kapil, R. S.: J. Med. Chem., 32 (2), 135-142 (1997).
6246. Pearl, I. A., Faber, H. B. Jr. and Holman, W. C.: J. Org. Chem., 25, (8), 1449-1450 (1960).
6247. Allen, I., Jr. and Buck, J. S.: J. Am. Chem. Soc., 52 (1), 310-314 (1930).
6248. Kubiczek, G.: Monatsh Chem., 76, 55-64 (1946).
6249. Walker, G. N.: J. Am. Chem. Soc., 76 (15), 3999-4003 (1954).
6250. Makhey, D.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F. and LaVoie, E. J.: Bioorg. Chem. Med., 4 (6), 781-792 (1996).
6251. Crestini, C. and Argyropoulos, D. S.: Bioorg. Med. Chem., 6 (11), 2161-2170 (1998).
6252. Napolitano, E.; Giannone, E.; Fiaschi, R. and Marsili, A.: J. Org. Chem., 48 (21), 36533657 (1983).
6253. Pearl, I. A.: J. Am. Chem. Soc., 74 (18), 4593-4594 (1952).
6254. Learmonth, D. A.; Vieira-Coelho, M. A.; Benes, J.; Alves, P. C.; Borges, N. Freitas, A. P. and Soares-da-Silva, P.: J. Med. Chem., 45 (3), 685-695 (2002).
6255. Chen, C-Y. and Dormer, P. G.: J. Org. Chem., 70 (17), 6964-6967 (2005).
6256. Carril, M.; SanMartin, R.; Tellitu, I. and Dominguez, R.: Org. Lett., 8 (7), 1467-1470 (2006).
6257. Kaneeda, M.; Sugawara, Y.; Kawai, H.; Okano, K. and Adachi, Y. (Toray Industries, Inc., Japan): PCT Int. Appl. WO 01 35,955 (2001); Chem. Abstr., 135, 500u (2001).
6258. Cherkasov, A.; Ban, F.; Santos-Filho, O.; Thorsteinson, N.; Fallahi, M. and Hammond, G. L.: J. Med. Chem., 51 (7), 2047-2056 (2008).
6259. Soedervall, M-L.; Kalapudas, A.; Kangas, L.; Lammintausta, R.; Haerkoenen, P. and Vaeaenaenen, K. (Hormos Medical Oy Ltd., Finland): PCT Int. Appl. WO 01 36,360 (2001); Chem. Abstr., 135, 5441k (2001).
6260. Kumar, S.; Lamba, M. S. and Makrandi, J. K.: Asian J. Chem., 19 (5), 4121-4123 (2007); Chem. Abstr., 148, 537864c (2008).
6261. Bulawa, C. and Fleming, J. (Foldrx Pharmaceuticals, Inc., USA): PCT Int. Appl. WO 2008 58,269 (2008); Chem. Abstr., 148, 554111x (2008).
6262. Adams, H.; Gilmore, N. J.; Muldowney, M. P.; von Reuss, S. H. and Vemula, R.: Org. Lett., 10 (7), 1457-1460 (2008).
6263. Lin, Y.; Jiang, Z.; Ran, X. and Zhou, G. (Guang-dong Xinnandu Feed Science and Technology Co., Ltd., Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,095,462 (2008); Chem. Abstr., 148, 167602j (2008).
6264. Berndtsson, I.; Khanna, B. L. and Lundquist, K.: Acta Chem. Scand., Ser. B, 34 (6), 453-455 (1980).
6265. Pearl, I. A. and Beyer, D. L.: J. Am. Chem. Soc., 76 (8), 2224-2226 (1954).
6266. Chou, H-C.; Chen, J-J.; Duh, C-Y.; Huang, T-F. and Chen, I-S.: Planta Med., 71 (11), 1078-1081 (2005).
6267. Lundquist, K. and Miksche, G. E.: Tetrahedron Lett., (25), 2131-2136 (1965).
6268. Napolitano, E. and Ramacciotti, A.: Gazz. Chim. Ital., 119 (1), 19-22 (1989).
6269. Schouteeten, A.; Jus, S. and Vallejos, J-C. (Clariant Specialty Fine Chemicals (France), Fr.): PCT Int. Appl. WO 2008 12,321 (2008); Chem. Abstr., 148, 191781n (2008).
6270. Grasa, G. A. and Colacot, T. J.: Org. Lett., 9 (26), 5489-5492 (2007).
6271. Jernstedt, H.; Krueger, L.; Rhoennstad, P. and Noeteberg, D. (Kara Bio AB, Swed.): PCT Int. Appl. WO 2008 43,567 (2008); Chem. Abstr., 148, 471704s (2008).
6272. Kupchan, S. M. and Yoshitake, A.: J. Org. Chem., 34 (4), 1062-1065 (1969).
6273. Sinhababu, A. K.; Kawase, M. and Borchardt, R. T.: Synthesis, 710 (1988).
6274. Vanucci, C.; Fornier De Violet, P.; Bouas-Laurent, H. and Castellan, A.: J. Photochem. Photobiol. A, Chem., 41 (2),251-265 (1988).
6275. Kudinova, L. I.; Volod'kin, A. A.; Ershov, V. V. and Prokof'eva, T. I. : Izv. Akad. Nauk. SSSR, Ser. Khim., (7), 1503-1508 (1978).
6276. Nagata, K.: Chem. Pharm. Bull., 17 (4), 661-668 (1969).
6277. Prelog, V.; Hahn, V.; Brauchli, H. and Beyerman, H. C.: Helv. Chim. Acta, 27, 1209-1224 (1944).
6278. Chang, Y-A.; Ares, J.; Anderson, K.; Sabol, B.; Walace, R. A.; Farooqui, T.; Uretsky, N. and Moller, D. D.: J. Med. Chem., 30 (1), 214-218 (1987).
6279. Ishibashi, H.; Takamuro, I.; Mizukami, Y-i.; Irie, M. and Ikeda, M.: Synthetic Commun., 19 (3-4), 443-452 (1989).
6280. Ishibashi, H.; Matsuoka, K. and Ikeda, M.: Chem. Pharm. Bull., 39 (7), 1854-1856 (1991).
6281. Kano, S.; Yokomatsu, T. and Shibuya, S.: J. Org. Chem. 43 (22), 4366-4367 (1978).
6282. Givens, R. S.; Heger, D.; Hellrung, B.; Kamdzhilov, Y.; Mac, M.; Conrad, P. G., II; Cope, E.; Lee, J. I.; Mata-Segreda, J. F.; Schowen, R. L. and Wirz, J.: J. Am. Chem. Soc., 130 (11), 3307-3309 (2008).
6283. Raoul, J. and Vialle, J.: Bull. Soc. Chim. Fr., (1), 108-110 (1960).
6284. Takeda, S.; Kaneko, Y.; Ero, H.; Tokizawa, M.; Sato, S.; Yoshida, K.; Namiki, S. and Ogawa, M.: Chem. Pharm. Bull., 48 (7), 1097-1100 (2000).
6285. Kano, S.; Yokomatsu, T.; Ono, T.; Hibino, S. and Shibuya, S.: Synthesis, (4), 305-307 (1978).
6286. Kunugi, A.; Takahashi, N.; Abe, K. and Hirai, T.: Bull. Chem. Soc. Jpn., 62 (6), 2055-2057 (1989).
6287. Gierer and Alfredsson: Chem. Ber., 90, 1240-1248 (1957).
6288. Lee, K-I. and Lee, D-M. (Korea Research Institute of Chemical Technology, S. Korea): PCT Int. Appl. WO 2008 54,155 (2008); Chem. Abstr., 148, 537929c (2008).
6289. Anderson, K.; Kuruvilla, A.; Uretsky, N. and Miller, D. D.: J. Med. Chem., 24 (6), 683-687 (1981).
6290. Olivato, P. R.; Bonfada, E. and Rittner, R.: Magn. Reson. Chem., 30 (1), 81-84 (1992).
6291. Olivato, P. R.; Wladislaw, B. and Guerrero, S. A.: Phosphorous and Sulfur and the Related Elements, 33, 135-145 (1987).
6292. Bertoncello, R.; Granozzi, G.; Olivato, P. R.; Guerrero, S. A. and Distefano, G.: J. Chem. Soc., Perkin Trans. (2), 143-146 (1989).
6293. MacKenzie, N. E.; Thomson, R. H. and Greenhalgh, C. W.: J. Chem. Soc., Perkin Trans. 1, (12), 2923-2932 (1980).
6294. Mewshaw, R. E.; Zhou, D.; Zhou, P.; Shi, X.; Hornby, G.; Spangler, T.; Scerni, R.; Smith, D.; Schechter, L. E. and Andree, T. H.: J. Med. Chem., 47 (15), 3823-3842 (2004).
6295. Prats, E.; Galindo, J. C.; Bazzalo, M. E.; Leon, A.; Macias, F. A.; Robiales, D. and Jorrin, J. V.: Journal of Chemical Ecology, 33 (12), 2245-2253 (2007).
6296. Abu-Hussen, A. A. A.: Journal of Coordination Chemistry, 59 (2), 157-176 (2006).
6297. Malinski, Z. T.; Burgiel, Z. J.; Waszniewska, M.; Al Amin, I.; Zakrzewski, J. and Karpinska, M.: Przemysl Chemiczny, 86 (6), 496-500 (2007); Chem. Abstr., 147,182906j (2007).
6298. Gruber, W. and Traub, F.: Monatsh. Chem., 77, 414-430 (1947).
6299. Bottiglieri, M. and Keel, C.: Applied and Environmental Microbiology, 72 (1), 418-427 (2006).
6300. de La Fuente, L. (Washington State Univ., Pullman, WA USA): 2005. 163 pp. From Diss. Abstr. Int., B 2007, 67 (11), 6135; Chem. Abstr., 147, 295715q (2007).
6301. Ghate, M. and Kulkarni, M. V.: Indian J. Chem., Sect. B; 44B (8), 1674-1678 (2005).
6302. Ramette, A.; Moenne-Loccoz, Y. and Defago, G.: FEMS Microbiology Ecology, 55 (3), 369-381 (2006); Chem. Abstr., 144, 447814z (2006).
6303. Rotenberg, D.; Joshi, R.; Benitez, M-S.; Chapin, L. G.; Camp, A.; Zumpetta, C.; Osborne, O. A. Dick, W. A. and McSpadden-Gardener, B. B.: Phytopathology, 97 (6), 756-766 (2007).
6304. Slininger, P. J. and Shea-Andersh, A.: Applied Microbiology and Biotechnology, 68 (5), 630-638 (2005).
6305. Wei, H.; Zhou, H.; Zhang, L.; Wang, Y. and Tang, W.: Weishengwu Xuebao, 44 (5), 663-666 (2004); Chem. Abstr., 144, 484451z (2006).
6306. Baehler, E.; Bottiglieri, M.; Pechy-Tarr, M.; Maurhofer, M. and Keel, C.: J. Appl. Microbiol., 99 (1), 24-38 (2005).
6307. Rezzodnico, F.; Zala, M.; Reel, C.; Duffy, B.; Moenne-Locenz, Y. and Defago, G.: New Phytologist, 173 (4), 861-872 (2007).
6308. Someya, N.; Tsuchiya, K.; Yoshida, T.; Noguchi, M. T.; Akutsu, K. and Sawada, H.: Biocontrol Science, 12 (1), 1-6 (2007).
6309. Velusamy, P.; Immanuel, J. E.; Gnanamanickam, S. S. and Thomashow, L.: Can. J. Microbiol., 52 (1), 56-65 (2006).
6310. Weller, D. M.; Landa, B. B.; Mavrodi, O. V.; Schroeder, K. L.; De La Fuente, L.; Bankhead, S. B.; Molar, R. A.; Bonsall, R. F.; Mavrodi, D. V. and Thomashow, L. S.: Plant Biology (Stuttgart, Germany), 9 (1), 4-20 (2007); Chem. Abstr., 147, 380526v (2007).
6311. Mavrodi, O. (Washington State Univ. Pullman, WA USA). 2004. 168 pp. (Eng). Avail. UMI, Order No DA3172349. From Diss. Abstr. Int., B 2005, 66 (4), 1816.; Chem. Abstr., 144, 386163n (2006).
6312. Dean, F. M. and Robertson, A.: J. Chem. Soc., 1241-1249 (1953).
6313. Meikle, T; and Stevens, R.: J. Chem. Soc., Perkin Trans. 1, (11), 1303-1312 (1978).
6314. Suresh, P.; Srimurugan, S.; Babu, B. and Pati, H. N.: Tetrahedron Asymmetry, 18 (23), 2820-2827 (2007).
6315. Nakazawa, K. and Matsuura, S.: Yakugaku Zasshi, 74 (11), 1254-1255 (1954).
6316. Nakazawa, K. and Tsubouchi, S.: Yakugaku Zasshi, 75 (6), 716-719 (1955).
6317. Bjeldanes, L. F. and Geissman, T. A.: Phytochemistry, 8, 1293-1296 (1969).
6318. Igarashi, Y.; Kumazawa, H.; Ohshima, T.; Satomi, H.; Terabayashi, S.; Takeda, S.; Aburada, M. and Miyamoto, K-i.: Chem. Pharm. Bull., 53 (9), 1088-1091 (2005).
6319. Gore, T. S. and Venkataraman, K.: Proc. Indian Acad. Sci., Ser. A, 34A, 368-386 (1951).
6320. Zhang, W.; Shan, L.; Zhang, C.; He, C.; Su, J.; Xiao, L. and Shen, Y. (The Second Military Medical University, The Chinese People's Liberation Army, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101,138,587 (2008); Chem. Abstr., 148, 387176p (2008).
6321. Yin; Z-Q.; Fan, C-L.; Ye, W-C.; Jiang, R-W.; Che, C-T.; Mak, T. C. W.; Zhao, S-X. and Yao, X-S.: Planta Med., 71 (10), 979-982 (2005).
6322. Morton, R. A. and Sawires, Z.: J. Chem. Soc., 1052-1064 (1940).
6323. Battersby, A. R. and Binks, R.: J. Chem. Soc., 2896-2900 (1955).
6324. Elix, J. A.; Engkaninan, U.; Jones, A. J. ; Raston, C. L.; Sargent, M. V. and White, A. H.: Aust. J. Chem., 31 (9), 2057-2068 (1978).
6325. Elix, J. A.; Lajide, L. and Galloway, D. J.: Aust. J. Chem., 35 (11), 2325-2333 (1982).
6326. Russell, A.; Baity, J. H. and Smith, H. E.: J. Am. Chem. Soc., 71 (3), 956-957 (1949).
6327. Shah, H. A. and Shah, R. C.: J. Chem. Soc., 132-134 (1939).
6328. Murata, M.; Yamakoshi, Y.; Homma, S.; Arai, K. and Nakamura, Y.: Biosc. Biotechnol. Biochem., 56 (12), 2062-2063 (1992).
6329. Shah, H. A. and Shah, R. C.: J. Chem. Soc., 949-951 (1939).
6330. Bharate, S. B.; Bhutani, K. K.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Khan, I. A. and Singh, I. P.: Bioorg. Med. Chem., 14 (6), 1750-1760 (2006).
6331. Bharate, S. B.; Chauthe, S. K.; Bhutani, K. K. and Singh, I. P.: Aust. J. Chem., 58 (7), 551-555 (2005).
6332. Bharate, S. B.; Khan, S. I.; Yunus, N. A. M.; Chauthe, S. K.; Jacob, M. R.; Tekwani, B. L.; Khan, I. A. and Singh, I. P.: Bioorg. Med. Chem., 15 (1), 87-96 (2007).
6333. Gupta, V. P.; Gupta, D. and Jain, S. M.: Indian Journal of Pure and Applied Physics, 14 (10), 846-851 (1976).
6334. Robertson, A. and Whalley, W. B.: J. Chem. Soc., 3355-3356 (1951).
6335. Mustafa, K. A.; Kjaergaard, H. G.; Perry, N. B. and Weavers, R. T.: Tetrahedron, 59 (32), 6113-6120 (2003).
6336. Bolte, M. L.; Crow, W. D.; Takahashi, N.; Sakurai, A.; Uji-le, M. and Yoshida, S.: Agric. Biol. Chem., 49 (3), 761-768 (1985).
6337. Smith, H. E.; Russell, C. R. and Schniepp, L. E.: J. Am. Chem. Soc., 73 (2), 793-795 (1951).
6338. Robertson, A.; Whalley, W. B. and Yates, J.: J. Chem. Soc., 3117-3123 (1950).
6339. Simperler, A. and Mikenda, W.: Monatsh. Chem., 133 (10), 1337-1350 (2002).
6340. Ding, Yi-Li and Jia, Zhong-Jian: Phytochemistry, 31 (4) 1435-1436 (1992).
6341. Ahmad, V. U.; Hussain, H.; Hussain, J.; Amir, R.; Bukhari, I. A.; Yasin, A.; Choudhary, M. I. and Dar, A.: Z. Naturforsch., B, 57 (9), 1066-1071 (2002).
6342. Joshi, B. S. and Gawad, D. H.: Indian J Chem., Sect. B 14B (1), 9-13 (1976).
6343. Evans, W. H.; McGookin, A.; Jurd, L.; Robertson, A. Williamson, W. R. N.: J. Chem. Soc., (3), 3510-3523 (1957).
6344. Robertson, A. and Williamson, W. R. N.: J. Chem. Soc., (4), 5018-5019 (1957).
6345. Patel, J. M. and Soman, S. S.: J. Heterocyclic Chem., 44 (4), 945-949 (2007).
6346. Zhao, Y-B.; Shen, Y-M.; He, H-P.; Mu, Q-Z. and Hao, X-J.: Natural Product Research, Part A: Structure and Synthesis, 21 (3), 203-210 (2007); Chem. Abstr., 148, 49816j (2008).
6347. Erdtman, H. and Leopold, B.: Acta Chem. Scand., 2, 1535 (1948).
6348. Bourgeois, J-M. and Stoeckli-Evans, H.: Helv. Chim. Acta, 88 (10), 2722-2730 (2005).
6349. Engel, J.; Bickel, E.; Klingler, K. H. and Schoenenberger, H.: Arch. Pharm. (Weinheim, Ger.), 319 (12), 1113-1116 (1986).
6350. Stasko, A.; Malik, L.; Tkac, A.; Adamcik, V. and Matasova, E.: Collect. Czech. Chem. Commun., 44 (6), 1731-1741 (1979).
6351. Martin, R.: Unpublished results.
6352. Charlot, G.: Les Méthodes de la Chimie Analytique. Analyse Quantitative Minérale. Masson \& Cie, Fourth Edition, page 479 (1961).
6353. Martin, R. and Betoux, J.-M.: Bull. Soc. Chim. Fr., (1), 138-144 (1973).
6354. Shriner, R.; Fuson, Y. and Curtin, D.: The Systematic Identification of Organic Compounds, Wiley (1956).
6355. Krausz, F. and Martin, R.: Bull. Soc. Chim. Fr., 2192-2197 (1965).
6356. Martin, R.: Thèse de Docteur-Ingénieur, Paris, (1964).
6357. Martin, R. and Betoux, J.-M.: Chim. Anal. (Paris), 50 (2), 65-76 (1968).
6358. Martin, R. and Betoux, J.-M.: Chim. Anal. (Paris), 49 (3), 127-141 (1967).
6359. Martin, R. and Betoux, J.-M.: Chim. Anal. (Paris), 50 (9), 464-482 (1968).
6360. Martin, R. and Betoux, J.-M.: Bull. Soc. Chim. Fr., (6), 2079-2088 (1969).
6361. Zomer, G.; Derks, H. J. G. M. and Wynberg, H.: J. Labelled Compd. Radiopharm., 21 (2), 153-159 (1984).
6362. Buu-Hoї, N. P.; Xuong, N. D.; Lavit, D. and Khenissi, M. R.: J. Chem. Soc., 1034-1038 (1954).
6363. Buu-Hoї, N. P.; Sy, M. and Xuong, N. D.: Bull. Soc. Chim. Fr., 629-632 (1956).
6364. Singh, H. and Kapil, R. S.: Indian J. Appl. Chem., 22, 167-168 (1959); Chem. Abstr., 55, 3501i (1961).
6365. Buu-Hoï, N. P.; Lavit, D. and Xuong, N. D.: J. Org. Chem., 19, 1617-1621 (1954).
6366. Patil, B. R.; Bhusare, S. R.; Pawar, R. P. and Vibhute, Y. B.: Tetrahedron Lett., 46 (42), 7179-7181 (2005).
6367. Singh, H.; Verma, J. C. and Sharma, S. C.: J. Indian Chem. Soc., 40 (7), 555-556 (1963).
6368. Dalvi, V. J. and Jadhav, G. V.: J. Indian Chem. Soc., 33 (6), 440-442 (1956).
6369. Buu-Hoï, N. P. and Lavit, D.: J. Chem. Soc., 18-20 (1955).
6370. Christian, C. M. and Amin, G. C.: J. Indian Chem. Soc., 35 (2), 111-114 (1958).
6371. Chien, S. L.; Chung, H. P. and Tai, H. C.: J. Chinese Chem. Soc., 4, 361-369 (1936); Chem. Abstr., 31, 1155^{9} (1937).
6372. Finaru, A.; Cascaval, A. and Prisecaru, M.: Revista de Chimie (Bucharest, Romania), 54 (10), 837-840 (2003); Chem. Abstr., 140, 321203y (2004).
6373. Finaru, A.; Cascaval, A.; Tirisca, I. and Prisecaru, M.: J. Soc. Alger. Chim., 9 (1), 85-90 (1999); Chem. Abstr., 131, 336910q (1999).
6374. Birsa, M. L.; Tiron, R. and Ignat, L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Ser. Chim., 8 (2), 335-340 (2000); Chem. Abstr., 136, 216677a (2002).
6375. Rosenmund, K. W. and Pfroepffer, K.: Chem. Ber., 90, 1922-1928 (1957).
6376. Goldzweig, A. and Kaiser, A.: J. Prakt. Chem., 43, 86-98 (1891).
6377. Ziegler, E.; Schredt, H. and Gitschthaler, K.: Monatsh Chem., 85, 1234-1239 (1954).
6378. Auwers, K.; Pötz, H. and Noll, W.: Justus Liebigs Ann. Chem., 535, 219-251 (1938).
6379. Nguyen-Hoan: C. R. Acad. Sci., 236, 614-616 (1953).
6380. Bobik, A.; Holder, G. M. and Ryan, A. J.: J. Med. Chem., 20 (9), 1194-1199 (1977).
6381. Desai, R. D.; Trivedi, J. J. and Trivedi, J. P.: J. Indian Chem. Soc., 31, 145-148 (1954).
6382. Gnagy, B. H.: J. Am. Chem. Soc., 45, 805-808 (1923).
6383. Brewster, C. M. and Harris, J. C.: J. Am. Chem. Soc., 52, 4866-4872 (1930).
6384. Lukaszczyk, A.; Martin, H.; Diel, P. J.; Fory, W.; Gatzi, K.; Kristinsson, H.; Muller, B.; Muntwyler, R.; Pachlatko, J. P.; et al. (Ciba Geigy A.-G.): Eur. Pat. Appl. 12,158 (1980); Chem. Abstr., 94, 78439k (1981).
6385. Minutolo, F.; Antonello, M.; Bertini, S.; Placanica, G.; Rapposelli, S.; Carlson, K. E.; Katzenellenbogen, J. A. and Macchia, M.: Farmaco, 59 (8), 601-607 (2004).
6386. Harada, H.; Matsushita, Y.; Yodo, M.; Nakamura, M. and Yonetani, Y.: Chem. Pharm. Bull., 35 (8), 3215-3226 (1987).
6387. Chien, S. L. and Yin, L. Y.: J. Chinese Chem. Soc., 7, 40-45 (1939); Chem. Abstr., 34, 1979^{8} (1940).
6388. Cascaval, A.; Radu, C.; Sarbu, C.; Cilianu, S. and Carstea, A.: Farmacia (Bucharest), 34 (2), 109-116 (1986).
6389. Hartung, W. H.; Munch, J. C.; Miller, E. and Crossley, F.: J. Am. Chem. Soc., 53, 4149-4160 (1931).
6390. Tarbell, D. S. and Sato, Y.: J. Am. Chem. Soc., 68, 1091-1094 (1946).
6391. Moon, M. W. and Sharp, J. C. (Upjohn Co.): Ger. Offen. 2,513,652 (1975); Chem. Abstr., 84, 30890s (1976).
6392. Cascaval, A. and Stoica, G. Z. (Institutul Politehnic, Iasi, Rom.): Rom. RO 105,122 (1995); Chem. Abstr., 125, 195175r (1996).
6393. Cascaval, A.: Liebigs Ann. Chem., (5), 669-672 (1980).
6394. Cascaval, A.: Rom. RO 91,541 (1987); Chem. Abstr., 108, 74985v (1988).
6395. Cascaval, A.; Cirstea, A.; Bobulescu, V. and Sarbu, C.: Rom. RO 86,000 (1985); Chem. Abstr., 108, 75225j (1988).
6396. Houtman, T., Jr. (to Dow Chemical Co.): U.S. 2,519, 189 (1950); Chem. Abstr., 45, 3196e (1951).
6397. Strat, G.; Strat, M. and Cascaval, A.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1b, 27, 32-34 (1981); Chem. Abstr., 96, 122064b (1982).
6398. Strat, G.; Strat, M. and Cascaval, A.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1b, 30, 45-48 (1984); Chem. Abstr., 106, 49509u (1987).
6399. Strat, G. and Strat, M.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1b, 27, 55-58 (1981); Chem. Abstr., 96, 122066d (1982).
6400. Strat, G.; Strat, M. and Cascaval, A.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. 1b, 29, 11-15 (1983); Chem. Abstr., 101, 110192a (1984).
6401. Tarbell, D. S. and Fanta, P. E.: J. Am. Chem. Soc., 65, 2169-2174 (1943).
6402. Shi, G. Q.; Dropinski, J. F.; McKeever, B. M.; Xu, S.; Becker, J. W.; Berger, J. P.; MacNaul, K. L.; Elbrecht, A.; Zhou, G.; Doebber, T. W.; Wang, P.; Chao, Y.-S.; Forrest, M.; Heck, J. V.; Moller, D. E. and Jones, A. B.: J. Med. Chem., 48 (13), 4457-4468 (2005).
6403. Buckman, S. J.; Fenyes, J. G. E.; Flanagan, K. J.; Pera, J. D. and Pulido, M. L. (Buckman Laboratories, Inc.): U.S. 3,933,472 (1976); Chem. Abstr., 84, 106378d (1976).
6404. Anteunis, M. and Becu, C.: Synthesis, (1), 23-26 (1974).
6405. Chenard, B. L. and Butler, T. W. (Pfizer Inc., USA): PCT Int. Appl. WO 96 06,081 (1996); Chem. Abstr., 125, 86500x (1996).
6406. Chenard, B. L. and Menniti, F. S. (Pfizer Inc., USA): PCT Int. Appl. WO 96 37,226 (1996); Chem. Abstr., 126, 104016w (1997).
6407. Nelson, K. L.: Ind. Eng. Chem., 47 (9), 1926-1943 (1955).
6408. Pera, J. D.; Buckman, S. J.; Fenyes, G. E.; Flanagan, K. J. and Pulido, M. L. (Buckman Laboratories, Inc.): Fr. Demande 2,174,152 (1973); Chem. Abstr., 80, 120547g (1974).
6409. Zhong, Z.; Snowden, T. S.; Best, M. D. and Anslyn, E. V.: J. Am. Chem. Soc., 126 (11), 3488-3495 (2004).
6410. Ahmad, S. and Hussain, G.: Pak. J. Sci. Ind. Res., 19 (3-4), 101-102 (1976); Chem. Abstr., 88, 136251g (1978).
6411. Giribone, D.; Forino, R.; Barbugian, N. and Fontana, E. (Pharmacia Italia S.p.A., Italy): PCT Int. Appl. WO 2004 56,398 (2004); Chem. Abstr., 141, 106651h (2004).
6412. Enomoto, M.; Nagano, H.; Haga, T.; Morita, K. and Sato, M.: Jpn. Kokai Tokkyo Koho JP 07,145,112 [95,145,112] (1995); Chem. Abstr., 124, 29406b (1996).
6413. Farooq, S.; Zurflueh, R.; Szczepanski, H. and Hall, R. G. (Ciba-Geigy A.-G.): PCT Int. Appl. WO 97 07,103 (1997); Chem. Abstr., 126, 238378z (1997).
6414. Musao, D. L. and Kelley, J. L.: Tetrahedron: Asymmetry, 6 (8), 1841-1844 (1995).
6415. Alanine, A.; Buettelmann, B.; Heitz, N.; Neidhart, M. P.; Jaeschke, G.; Pinard, E. and Wyler, R.: (F. Hoffmann-La Roche A.-G., Switzerland): Eur. Pat. Appl. EP 1,070,708 (2001); Chem. Abstr., 134, 115960r (2001).
6416. Jolidon; S.; Narquizian, R.; Norcross, R. D. and Pinard, E. (Switz.): U.S. Pat. Appl. Publ. US 2006 160,788 (2006); Chem. Abstr., 145, 167096k (2006).
6417. Takami, A.; Iijima, H.; Iwakubo, M. and Okada, Y. (Kirin Beer Kabushiki Kaisha, Japan): PCT Int. Appl. WO 01 56,988 (2001); Chem. Abstr., 135, 180762n (2001).
6418. Covello, M.; Dini, A. and De Simone, F.: Rend. Accad. Sci. Fis. Mat., Naples, 36, 67-71 (1969); Chem. Abstr., 75, 48610z (1971).
6419. Piscopo, E.; Diurno, M. V. and Andreotti, A.: Boll. - Soc. Ital. Biol. Sper., 59 (1), 44-50 (1983); Chem. Abstr., 99, 70338j (1983).
6420. Wilkinson, J. H.; Sheahan, M. M. and Maclagan, N. F.: Biochem. J., 49, 714-718 (1951).
6421. Perrault, M.; Gazave, J. M. and Marin, J.: Thérapie, 12, 231-240 (1957); Chem. Abstr., 51, 16943b (1957).
6422. Covello, M.; Piscopo, E. and Schettino, O.: Rend. Accad. Sci. Fis. Mat., 31, 193-211 (1964); Chem. Abstr., 64, 10598a (1966).
6423. Da Re, P.: Farmaco, Ed. Sci., 11, 662-669 (1956).
6424. Da Re, P.: Farmaco, Ed. Sci., 11, 670-677 (1956).
6425. Hensel, W. and Hoyer, H.: Z. Physik. Chem. (Frankfurt), 36 (5/6), 387-391 (1963).
6426. Gagliardo, E.; Mantegazza, G.; Origgi, P. and Lazzari, E.: J. Chromatogr., 295 (1), 299-303 (1984).
6427. Simonis, H.: Ber. Dtsch. Chem. Ges., 50, 779-786 (1917).
6428. Chakravarti, D. and Majumdar, B.: J. Indian Chem. Soc., 16, 151-159 (1939).
6429. Iorio, M. A.: Ann. Chim. (Rome), 49, 370-381 (1959).
6430. Nguyen-Hoan. and Buu-Hoï, N. P.: C. R. Acad. Sci., 224, 1363-1365 (1947).
6431. Buu-Hoï, N. P.; Xuong, N. D. and Tien, N. B.: J. Org. Chem., 21, 415-418 (1956).
6432. Zsolnai, T.: Biochem. Pharmacol., 5, 1-19 (1960).
6433. Caron, S. and Vasquez, E.: Synthesis, (4), 588-592 (1999).
6434. Caron, S. and Eisenbeis, S. A. (Pfizer Products Inc., USA): PCT Int. Appl.WO 98 50,367 (1997); Chem. Abstr., 130, 3843r (1999).
6435. Sen, A. B. and Parmar, S. S.: J. Indian Chem. Soc., 30 (1), 59-60 (1953).
6436. Klarmann, E.; Gates, L. W.; Shternov, V. A. and Cox, P. H.: J. Am. Chem. Soc., 55, 4657-4662 (1933).
6437. Kindler, K. and Oelschläger, H.: Chem. Ber., 87, 194-202 (1954).
6438. Cross, P. E. and Dickinson, R. P. (Pfizer Ltd., Pfizer Corp.): Eur. Pat. Appl. EP 73,663 (1983); Chem. Abstr., 99, 105247h (1983).
6439. Da Re, P.: Farmaco, Ed. Sci., 11, 684-689 (1956).
6440. Demarne le Florence, H. (CM Industries): Ger. Offen. 2,528,147 (1976); Chem. Abstr., 84, 150352q (1976).
6441. Lochead, A. W.; Navet, M. J. and Hicks, P. E. (Syntex (U.S.A.), Inc.): Eur. Pat. Appl.EP 529,654 (1993); Chem. Abstr., 119, 49235v (1993).
6442. Lochead, A. W.; Navet, M. J. and Hicks, P. E. (Syntex (U.S.A.), Inc.): U.S. US 5,447,943 (1995); Chem. Abstr., 124, 86814g (1996).
6443. Mackenzie, A. R. and Monaghan, S. M. (Pfizer Ltd.; Pfizer Research and Development Co., N.V./S.A.; Pfizer Inc.): PCT Int. Appl. WO 95 04,730 (1995); Chem. Abstr., 122, 265247e (1995).
6444. Mackenzie, A. R. and Monaghan, S. M. (Pfizer Research and Development Co., N.V./S.A.; Pfizer Ltd.; Pfizer Inc.): PCT Int. Appl. WO 94 20,491 (1994); Chem. Abstr., 123, 55885f (1995).
6445. Mapes, C.; Karanewsky, D.; Thompson, A.; Michellys, P.; Ruppar, D. and Chen, J. (Ligand Pharmaceuticals Incorporated, USA): PCT Int. Appl. WO 2005 9,104 (2005); Chem. Abstr., 142, 176557b (2005).
6446. Szabo, V.; Borbely, J. and Borda, J.: Stud. Org. Chem. (Amsterdam), 11 (Flavonoids Bioflavonoids), 19-24 (1981) (Pub. 1982); Chem. Abstr., 97, 162041u (1982).
6447. Szabo, V.; Borbely, J. and Borda, J.: React. Kinet. Catal. Lett., 17 (1-2), 127-131 (1981).
6448. Gaur, V. B.; Shah, V. H. and Parikh, A. R.: Indian J. Heterocycl. Chem., 1 (3), 141-146 (1991).
6449. Gaur, V. B.; Shah, V. H. and Parikh, A. R.: J. Inst. Chem. (India), 63 (5), 171-173 (1991).
6450. Setalvad, J. I. and Shah, N. M.: J. Indian Chem. Soc., 34 (4), 289-298 (1957).
6451. Ghate, R. V.; Sarlashkar, V. D. and Ingle, T. R.: J. Indian Chem. Soc., 50 (9), 598-599 (1973).
6452. Prakash, O.; Sharma, V. and Tanwar, M. P.: Can. J. Chem., 77 (7), 1191-1195 (1999).
6453. Rao, Y. J. and Krupadanam, G. L. D.: Bull. Chem. Soc. Jpn., 67 (7), 1972-1975 (1994).
6454. Buu-Hoї, N. P.: J. Org. Chem., 18, 1723-1729 (1953).
6455. Merck \& Co., Inc.: Neth. Appl. 6,601,140 (1966); Chem. Abstr., 66, 2373y (1967).
6456. Schultz, E. M. (Merck \& Co., Inc.): U.S. 3,431,291 (1969); Chem. Abstr., 71, 49577y (1969).
6457. Martin, R. and Krausz, F.: C. R. Acad. Sci., 258, 5614-5615 (1964).
6458. Merck \& Co., Inc.: Neth. Appl. 6,504,988 (1965); Chem. Abstr., 64, 8085c,d (1966).
6459. Schultz, E. M. and Sprague, J. M. (Merck \& Co., Inc.): U.S. 3,251,064 (1966); Chem. Abstr., 65, 8822h (1966).
6460. Schultz, E. M. and Sprague, J. M. (Merck \& Co., Inc.): U.S. 3,255,241 (1966); Chem. Abstr., 65, 5406b (1966).
6461. Schultz, E. M. and Sprague, J. M. (Merck \& Co., Inc.): Belg. 639,727 (1964); Chem. Abstr., 62, 14577d (1965).
6462. Cragoe, E. J., Jr. (Merck \& Co., Inc.): Fr. 1,525,941 (1968); Chem. Abstr., 71, 70324y (1969).
6463. Schultz, E. M. and Sprague, J. M. (Merck \& Co., Inc.): Belg. 612,755 (1962); Chem. Abstr., 59, 12712a (1963).
6464. Sen, A. B. and Saxena, M. S.: J. Indian Chem. Soc., 35 (2), 136-138 (1958).
6465. Casadio, S.; Pala, G.; Crescenzi, E.; Marazzi-Uberti, E. and Fresia, P.: Arzneim-Forsch., 16, 592-596 (1966).
6466. Martin, R. and Coton, G.: Bull. Soc. Chim. Fr., (4), 1442-1445 (1973).
6467. Mitsui Petrochemical Industries, Ltd.: Jpn. Kokai Tokkyo Koho JP 59 118,730 [84,118,730] (1984); Chem. Abstr., 101, 230146k (1984).
6468. Martin, R.: Bull. Soc. Chim. Fr., (4), 1503-1505 (1968).
6469. Berger, M.; Baeurle, S.; Schaecke, H.; Rehwinkel, H.; Schmees, N.; Buchmann, B.; Krolikiewicz, K. and Mengel, A. (Schering A.-G., Germany): Ger. Offen.DE 102,005,014,089 (2006); Chem. Abstr., 145, 377034q (2006).
6470. Moon, M. W. (Upjohn Co.): U.S. 4,153,707 (1979); Chem. Abstr., 91, 103717x (1979).
6471. Welch, R. M.; Butz, R. F.; Scharver, J. D.; Phillips, A. P.; Mehta, N. B. and Findlay, J. W. A. (to Wellcome Foundation Ltd.): Eur. Pat. Appl. EP 38,071 (1981); Chem. Abstr., 96, 85257u (1982).
6472. Pala, G.: Nature, 204 (4964), 1190-1191 (1964).
6473. Edkins, R. P. and Linnell, W. H.: Q. J. Pharm. Pharmacol., 9, 203-229 (1936).
6474. Demarne, H. and Wagnon, J. (C. M. Industries S. A.): Fr. Demande FR 2,463,765 (1981); Chem. Abstr., 96, 6574u (1982).
6475. Iwaki Seiyaku Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 58,216,156 [83, 216,156] (1983); Chem. Abstr., 101, 72745y (1984).
6476. Yamanaka, T. and Yaoka, O. (Yoshitomi Pharmaceutical Industries, Ltd.): Jpn. Kokai Tokkyo Koho JP 62 33,143 [87 33,143] (1987); Chem. Abstr., 107, 58650f (1987).
6477. Shiozawa, A.; Narita, K.; Izumi, G.; Kurashige, S.; Sakitama, K. and Ishikawa, M.: Eur. J. Med. Chem. Chim. Ther., 30 (1), 85-94 (1995).
6478. Pawar, R. A.: Curr. Sci., 42 (19), 682-683 (1973); Chem. Abstr., 79, 136694t (1973).
6479. Pawar, R. A.; Shingte, R. D. and Gogte, V. N.: Indian J. Chem., 8, 522-525 (1970).
6480. Sen, A. B. and Tiwari, S. S.: J. Indian Chem. Soc., 29 (6), 419-424 (1952).
6481. Schellenbaum, M. (Ciba-Geigy A.-G.): Ger. Offen 2,438,853 (1975); Chem. Abstr., 83, 58420s (1975).
6482. Krausz, F. and Martin, R.: C. R. Acad. Sci., 257, 693-694 (1963).
6483. Borbely, J.; Szabo, V. and Sohar, P.: Tetrahedron, 37 (12), 2307-2312 (1981).
6484. Pawar, R. A. and Borse, A. P.: J. Indian Chem. Soc., 66 (3), 203-205 (1989).
6485. Pawar, R. A. and Gogte, V. N.: Indian J. Chem., Sect. B, 19B (10), 921-923 (1980).
6486. Vibhute, Y. B.; Wadje, S. S. and Jagdale, M. H.: J. Shivaji Univ. Sci., 17, 79-81 (1977); Chem. Abstr., 93, 126301n (1980).
6487. Shah, N. M. and Parikh, S. R.: J. Indian Chem. Soc., 36 (11), 784-786 (1959).
6488. Chakravarti, D. and Majumdar, B.: J. Indian Chem. Soc., 15, 136-138 (1938).
6489. Wittig, G.; Baugert, F. and Richter, H. E.: Justus Liebigs Ann. Chem., 446, 155-204 (1926).
6490. Klarmann, E.; Shternov, V. A. and Gates, L. W.: J. Am. Chem. Soc., 55, 2576-2589 (1933).
6491. Hope, P. and Gray, J. (Kodak Ltd.): Brit. 1,470,665 (1977); Chem. Abstr., 87, 134545m (1977).
6492. Kodak Ltd.: Brit. 1,470,665 (1977); Chem. Abstr., 87, 134545m (1977).
6493. Ichinose, S.; Nishizawa, Y.; Ouchi, A.; Kidena, H. and Hotta, M. (Kao Corporation, Japan): PCT Int. Appl. WO 96 16,956 (1996); 125, 114387m (1996).
6494. Klarmann, E. (to Lehn \& Fink, Inc.): U. S. 2,010,595 (1935); Chem. Abstr., 29, 6607^{9} (1935).
6495. Ogata, M.; Tawara, K.; Ueda, M. and Sato, K. (Shionogi and Co., Ltd.) Eur. Pat. Appl. EP 227,100 (1987); Chem. Abstr., 108, 6009e (1988).
6496. Rajaram, V. and Ramalingam, S.: Transition Met. Chem. (Weinheim, Ger.), 9 (2), 48-51 (1984); Chem. Abstr., 100, 202381u (1984).
6497. René, L. and Royer, R. (Agence Nationale de Valorisation de la Recherche): Fr. 2,151,576 (1973); Chem. Abstr., 79, 91982s (1973).
6498. Weber, K.; Eckhardt, C. and Meyer, H. R. (Ciba-Geigy Corp.): U.S. US 5,326,491 (1994); Chem. Abstr., 122, 317445q (1995).
6499. Weber, K.; Eckhardt, C. and Meyer, H. R. (to Ciba-Geigy A.-G.): Eur. Pat. Appl. EP 395,588 (1990); Chem. Abstr., 114, 209239b (1991).
6500. Davoust, D.; Rebuffat, S.; Molho, D.; Platzer, N. and Basselier, J. J.: Tetrahedron Lett., (33), 2825-2828 (1976).
6501. Patel, R. P. and Patel, R. D.: J. Inorg. Nucl. Chem., 32 (8), 2591-2600 (1970); Chem. Abstr., 73, 70382g (1970).
6502. Bhawal, B. M.; Mayabhate, S. P.; Likhite, A. P. and Deshmukh, A. R. A. S.: Synth. Commun., 25 (21), 3315-3321 (1995).
6503. Mentrup, A.; Schromm, K.; Zeile, K. and Hoefke, W. (Boehringer, C. H., Sohn): Ger. Offen. 1,911,239 (1969); Chem. Abstr., 72, 31419j (1970).
6504. Aicher, T. D.; Benesh, D. R.; Blanco-Pillado, M. J.; Cortez, G. S.; Groendyke, T. M.; Khilevich, A.; Knobelsdorf, J. A.; Marmsater, F. P.; Schkeryantz, J. M. and Tang, T. P. (Eli Lilly and Company, USA): PCT Int. Appl. WO 2006 57,860 (2006); Chem. Abstr., 145, 27860e (2006).
6505. Aicher, T. D.; Cortez, G. S.; Groendyke, T. M.; Khilevich, A.; Knobelsdorf, J. A.; Magnus, N. A.; Marmsater, F. P.; Schkeryantz, J. M. and Tang, T. P. (Eli Lilly and Company, USA): PCT Int. Appl. WO 2006 57,870 (2006); Chem. Abstr., 145, 27715m (2006).
6506. Aicher, T. D.; Cortez, G. S.; Groendyke, T. M.; Khilevich, A.; Knobelsdorf, J. A.; Marmsater, F. P.; Schkeryantz, J. M. and Tang, T. P. (Eli Lilly and Company, USA): PCT Int. Appl. WO 2006 57,869 (2006); Chem. Abstr., 145, 27729u (2006).
6507. Miyagi, Y.; Maruyama, K.; Ishii, H.; Mizuno, S.; Kakudo, M.; Tanaka, N.; Matsuura, Y. and Harada, S.: Bull. Chem. Soc. Jpn., 52 (10), 3019-3026 (1979).
6508. Amin, G. C. and Shah, N. M.: Org. Synth., Coll. Vol., III, 280-281 (1965).
6509. Armstrong, E. C.; Bent, R. L.; Loria, A.; Thirtle, J. R. and Weissberger, A.: J. Am. Chem. Soc., 82, 1928-1935 (1960).
6510. Kurosawa, E.: Nippon Kagaku Zasshi, 78, 312 (1957); Chem. Abstr., 54, 374i (1960).
6511. Chakravarti, D. and Chakravarty, N.: J. Indian Chem. Soc., 16, 144-150 (1939).
6512. Sharma, K. N.; Bhuee, G. S.; Rastogi, S. N. and Singh, J.: Bangladesh J. Sci. Ind. Res., 18 (1-4), 121-126 (1983); Chem. Abstr., 103, 110028 t (1985).
6513. Sharma, K. N.; Bhuee, G. S.; Rastogi, S. N. and Singh, J.: Chim. Acta Turc., 10 (3), 225-231 (1982); Chem. Abstr., 98, 133097g (1983).
6514. Jetley, U. K.; Shukla, M.; Rehman, F.; Rastogi, S. N. and Ringh, J.: Orient. J. Chem., 4 (3), 301-305 (1988); Chem. Abstr., 110, 13662g (1989).
6515. Sharma, K. N.; Rastogi, S. N.; Jetley, U. K.; Shukla, M.; Rehman, F. and Singh, J.: Sci. Phys. Sci., 1 (1), 46-47 (1989); Chem. Abstr., 113, 17116s (1990).
6516. Jin, Fu-qiang; Xu, Yuan-yao and Huang, Wei-yuan: J. Fluorine Chem., 71 (1), 1-4 (1995).
6517. Baeurle, S.; Berger, M.; Jaroch, S.; Krolikiewicz, K.; Nguyen, D.; Rehwinkel, H.; Schaecke, H.; Schmees, N. and Skuballa, W. (Schering Aktiengesellschaft, Germany): PCT Int. Appl. WO 2006 27,236 (2006); Chem. Abstr., 144, 311920y (2006).
6518. Buu-Hoï, N. P.; Xuong, N. D. and Lavit, D.: J. Org. Chem., 18, 910-915 (1953).
6519. Wick, A.; Frost, J.; Gaudilliere, B.; Bertin, J.; Dupont, R. and Rousseau, J. (to Synthelabo S. A.): Fr. Demande FR 2,534,580 (1984); Chem. Abstr., 101, 210992e (1984).
6520. Delorme, D.; Ducharme, Y.; Friesen, R.; Grimm, E. L. and Lepine, C. (Merck Frosst Canada Inc., Can.): PCT Int. Appl. WO 96 13,491 (1996); Chem. Abstr., 125, 114577y (1996).
6521. Högberg, M.; Sahlberg, C.; Engelhardt, P.; Noréen, R.; Kangasmetsä, J.; Johansson, N. G.; Öeberg, B.; Vrang, L.; Zhang, H.; Sahlberg, B.-L.; Unge, T.; Lövgren, S.; Fridborg, K. and Bäckbro, K.: J. Med. Chem., 43 (2), 304 (2000).
6522. Högberg, M.; Sahlberg, C.; Engelhardt, P.; Noréen, R.; Kangasmetsä, J.; Johansson, N. G.; Öeberg, B.; Vrang, L.; Zhang, H.; Sahlberg, B.-L.; Unge, T.; Lövgren, S.; Fridborg, K. and Bäckbro, K.: J. Med. Chem., 42 (20), 4150-4160 (1999).
6523. Lopes, N. P.; De Almeida, B. E. E.; Cavalheiro, A. J.; Kato, M. J. and Yoshida, M.: Phytochemistry, 43 (5), 1089-1092 (1996).
6524. Antonov, D.; Sund, C.; Lindstroem, S. and Sahlberg, C. (Medivir Ab, Sweden): PCT Int. Appl. WO 2004 21,969; Chem. Abstr., 140, 270741n (2004).
6525. Lindstroem, S.; Sahlberg, C.; Wallberg, H.; Kalyanov, G.; Oden, L. and Naeslund, L. (Medivir AB, Sweden): PCT Int. Appl. WO 02 70,516 (2002); Chem. Abstr., 137, 232544f (2002).
6526. Sund, C.; Roue, N.; Lindstroem, S.; Antonov, D.; Sahlberg, C. and Jansson, K. (Medivir AB, Sweden): PCT Int. Appl. WO 2005 66,131 (2005); Chem. Abstr., 143, 153297y (2005).
6527. Joshi, K. C. and Giri, S.: J. Indian Chem. Soc., 39 (3), 185-187 (1962).
6528. Suter, C. M.; Lawson, E. J. and Smith, P. G.: J. Am. Chem. Soc., 61, 161-165 (1939).
6529. Kawamoto, H.; Ito, S.; Satoh, A.; Nagatomi, Y.; Hirata, Y.; Kimura, T.; Suzuki, G.; Sato, A. and Ohta, H. (Banyu Pharmaceutical Co., Ltd.; Japan): PCT Int. Appl. WO 2005 85,214 (2005); Chem. Abstr., 143, 306320c (2005).
6530. Ahluwalia, V. K.; Nayal, L.; Bala, S. and Raghav, S.: Indian J. Chem., Sect. B, 27B (7), 629-632 (1988).
6531. Cronheim, G.: J. Org. Chem., 12, 7-19 (1947).
6532. Da Re, P.; Valenti, P.; Ceccarelli, G. and Caccia, G.: Ann. Chim. (Rome), 60, 215-224 (1970).
6533. Da Re, P.; Verlicchi, L. and Setnikar, I.: J. Med. Pharm. Chem., 2, 263-269 (1960); Chem. Abstr., 54, 22613b (1960).
6534. Katusumata, C. and Seguchi, K.: Nihon Yukagakkaishi, 45 (9), 857-863 (1996); Chem. Abstr., 125, 328002f (1996).
6535. Furka, A. and Szell, T.: Acta Phys. et Chem., Szeged, 4 (1-4), 116-121 (1960).
6536. Szell, T.; Hajas, E. and Sipos, S.: Acta Univ. Szeged, Acta Phys. Chem., 11, 47-50 (1965); Chem. Abstr., 63, 4199f (1965).
6537. Szell, T. and Bajusz, A.: Acta Phys. et Chem., Szeged, 2 (1-4), 137-139 (1956).
6538. Suzuki, T.; Horaguchi, T.; Shimizu, T. and Abe, T.: Bull. Chem. Soc. Jpn., 56 (9), 2762-2767 (1983).
6539. Szell, T.; Furka, A. and Szilagyi, I.: J. Sci. Ind. Res., 18B, 325-328 (1959).
6540. Ellis, G. P. and Thomas, I. L.: J. Chem. Soc., Perkin Trans. 1, (22), 2781-2785 (1973).
6541. Patel, B. H.; Shah, J. R. and Patel, R. P.: J. Indian Chem. Soc., 52 (10), 998-999 (1975).
6542. Patel, C. B.; Shah, J. R. and Patel, R. P.: Indian J. Chem., 13 (4), 417-418 (1975).
6543. Patel, C. B.; Shah, J. R. and Patel, R. P.: Indian J. Chem., 13 (8), 841-842 (1975).
6544. Patel, B. H.; Shah, J. R. and Patel, R. P.: Curr. Sci., 47 (17), 625-626 (1978); Chem. Abstr., 89, 186757t (1978).
6545. Perzyna, A.; Klupsch, F.; Houssin, R.; Pommery, N.; Lemoine, A. and Henichart, J.-P.: Bioorg. Med. Chem. Lett., 14 (9), 2363-2365 (2004).
6546. Gu, S.; Jing, H.; Wu, J. and Liang, Y.: Synth. Commun., 27 (16), 2793-2797 (1997).
6547. Andreani, A.; Bonazzi, D.; Rambaldi, M.; Lelli, G.; Bossa, R. and Galatulas, I.: Arch. Pharm. (Weinheim, Ger.), 317 (7), 583-587 (1984).
6548. Pratesi, P.; Grana, E. and Villa, L.: Farmaco, Ed. Sci., 28 (10), 753-765 (1973).
6549. Brown, F. C.: J. Am. Chem. Soc., 68, 872-873 (1946).
6550. Kulkarni, V. G.: J. Indian Chem. Soc., 40 (9), 808-810 (1963).
6551. Katsura, Y.; Nishino, S. and Takasugi, H.: Chem. Pharm. Bull., 39 (11), 2937-2943 (1991).
6552. Zsolnai, T.: Biochem. Pharmacol., 5, 287-304 (1961).
6553. Ogawa, T.; Nishiyama, H.; Uchida, M. and Sawada, S. (Kabushiki Kaisha Yakult Honsha, Japan): PCT Int. Appl. WO 02 66,416 (2002); Chem. Abstr., 137, 201293u (2002).
6554. Amin, G. C.; Chaughuley, A. S. U. and Jadhav, G. V.: J. Indian Chem. Soc., 36 (9), 617-621 (1959).
6555. Omer, R. E. and Hamilton, C. S.: J. Am. Chem. Soc., 59, 642-644 (1937).
6556. Patel, N. K. B. and Desai, K. K.: Asian J. Chem., 14 (3-4), 1769-1771 (2002); Chem. Abstr., 137, 332477e (2002).
6557. Patel, N. K. B. and Desai, K. K.: Asian J. Chem., 16 (2), 1076-1080 (2004).
6558. Patel, N. B. and Desai, K. K.: Asian J. Chem. 15 (2), 751-754 (2003); Chem. Abstr., 139, 62113m (2003).
6559. Naik, R. M.; Thakor, V. M. and Shah, R. C.: Proc. Indian Acad. Sci., 37A, 765-773 (1953).
6560. Amin, G. C.; Chaughuley, A. S. U. and Jadhav, G. V.: J. Indian Chem. Soc., 36 (12), 833-837 (1959).
6561. Yoshida, S.; Asami, T.; Tsuchihashi, Y.; Uji-Ie, M.; Yoneyama, K. and Takahashi, N.: Agric. Biol. Chem., 53 (1), 229-233 (1989); Chem. Abstr., 110, 130428w (1989).
6562. Hartung, W. H.; Munch, J. C.; Miller, E. and Crossley, F.: Chem. Zentralbl., I, 219-220 (1932).
6563. Miller, E. and Hartung, W. H.: Org. Synth., 13, 90-92 (1933).
6564. Miller, E. and Hartung, W. H.: Org. Synth., Coll. Vol., II, 543-545 (1943).
6565. Szell, T.: J. Chem. Soc., 2041-2044 (1967).
6566. Khadilkar, B. M. and Madyar, V. R.: Synth. Commun., 29 (7), 1195-1200 (1999).
6567. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 2926-2929 (1958).
6568. Simonyi, I. and Tokar, G.: Magyar Kem. Folyoirat, 63 (1), 11-14 (1957); Chem. Abstr., 52, 18297b (1958).
6569. Martin, R. and Coton, G.: Bull. Soc. Chim. Fr., (4), 1438-1442 (1973).
6570. Martin, R.; Betoux, J.-M. and Coton, G.: Bull. Soc. Chim. Fr., (11), 4319-4324 (1972).
6571. Baltzly, R.; Ide, W. S. and Phillips, A. P.: J. am. Chem. Soc., 77, 2522-2533 (1955).
6572. Clerc-Bory, M.; Pacheco, H. and Mentzer, C.: Bull. Soc. Chim. Fr., (2), 1083-1086 (1955).
6573. Hartman, W. W. and Roll, L. J.: Org. Synth., Coll. Vol. II, 543-545 (1959).
6574. Dutton, G. G. S.; Briggs, T. I.; Brown, B. R. and Powell, R. K.: Can. J. Chem., 31, 837-841 (1953).
6575. Farinholt, L. H.; Harden, W. C. and Twiss, D.: J. Am. Chem. Soc., 55, 3383-3387 (1933).
6576. Krausz, F. and Martin, R.: C. R. Acad. Sci., 256, 5594-5595 (1963).
6577. Mitsui Petrochemical Industries, Ltd.: Jpn. Kokai Tokkyo Koho JP 60 04,149[85 04,149] (1985); Chem. Abstr., 102, 203729s (1985).
6578. Nakazawa, K. and Kusuda, K.: J. Pharm. Soc. Jpn., 75, 257-260 (1955).
6579. Dombrovskii, A. V.; Shevchuk, M. I. and Kravets, V. P.: Zh. Obshch. Khim., 32 (7), 2278-2281 (1962); Chem. Abstr., 58, 7857f (1963).
6580. Amargos, J.: Rev. Acad. de Ciencias, 30, 216-247 (1933); Chem. Abstr., 28, 128^{7} (1934).
6581. Torrès, C. and Amargos, J.: An. Soc. Esp. Fis. Quim., 31, 37-47 (1933).
6582. Sandulesco, G.; Girard, A. and Degerholm, M. E.: Bull. Soc. Chim. Fr., (47), 1300-1314 (1930).
6583. Kindler, K.; Oelschläger, H. and Henrich, P.: Arch. Pharm. (Weinheim, Ger.), 287, 210-233 (1954).
6584. Devis, R. and Depovere, P.: Bull. Soc. Chim. Fr., (9), 3185-3190 (1967).
6585. Fischer, E. and Slimmer, M.: Ber. Dtsch. Chem. Ges., 36, 2575-2587 (1903).
6586. Martin, R. and Betoux, J.-M.: C. R. Acad. Sci., 269, 1571-1573 (1969).
6587. Petschek, E. and Simonis, H.: Ber. Dtsch. Chem. Ges., 46, 2014-2020 (1913).
6588. Heywang, R. and Kostanecki, S.: Ber. Dtsch. Chem. Ges., 35, 2887-2891 (1902).
6589. Timpe, H.-J.; Garcia, C. and Küstermann, E.: Z. Chem., 23 (2), 51-52 (1983); Chem. Abstr., 99, 70327e (1983).
6590. Miller, J. A.: J. Org. Chem., 52 (2), 322-323 (1987).
6591. Couturier, M. P. L.: Ann. Chim. (Paris), 10, 559-629 (1938).
6592. Van Tilborg, W. J. M.; Van der Vecht, J. R.; Steinberg, H. and De Boer, T. J.: Tetrahedron Lett., (17), 1681-1684 (1972).
6593. Cimarelli, C. and Palmieri, G.: Tetrahedron, 54 (51), 15711-15720 (1998).
6594. Zhang, L. and Chen, S.: J. Lumin., 40-41, 266-267 (1988); Chem. Abstr., 108, 213666 g (1988).
6595. Veglia, A. V. and de Rossi, R. H.: J. Org. Chem., 58 (18), 4941-4944 (1993).
6596. Alaimo, P. J.; Knight, Z. A. and Shokat, K. M.: Bioorg. Med. Chem., 13 (8), 2825-2836 (2005).
6597. Bacu, E.; Samson-Belei, D.; Couture, A. and Grandclaudon, P.: Rev. Roum. Chim., 48 (2), 119-124 (2003); Chem. Abstr., 140, 199278j (2004).
6598. Desai, K. C. and Desai, C. M.: Indian J. Appl. Chem., 34 (1), 14-16 (1971).
6599. Fuson, R. C.; Bottorff, E. M. and Speck, S. B.: J. Am. Chem. Soc., 64, 1450-1453 (1942).
6600. Gross, W.; Hoeffkes, H. and Oberkobush, D. (Henkel Kgaa, Germany): Eur. Pat. Appl. EP 1,433,469 (2004); Chem. Abstr., 141, 59192x (2004).
6601. Gross, W.; Hoeffkes, H. and Oberkobush, D. (Henkel Kgaa, Germany): Ger. Offen.DE 10,260,881 (2004); Chem. Abstr., 141, 93976r (2004).
6602. Gross, W.; Mausberg, S.; Hoefkes, H. and Oberkobusch, D. (Henkel K.-G.a.A., Germany): Ger. Offen. DE 10,241,076 (2004); Chem. Abstr., 140, 258594j (2004).
6603. Jain, M. and Kwon, Chul-Hoon: J. Med. Chem., 46 (25), 5428-5436 (2003).
6604. Joglekar, S. J. and Samant, S. D.: Synthesis, (10), 830-832 (1988).
6605. Lee, You-Sang; Choung, Won-Keun; Kim, Kyoung Hoon; Kang, Tae Won and Ha, DeokChan: Tetrahedron, 60 (4), 867-870 (2004).
6606. Lindell, S. D.; Ort, O.; Lümmen, P. and Klein, R.: Bioorg. Med. Chem. Lett., 14 (2), 511-514 (2004).
6607. Martin, R.: Thèse d’ Ingénieur CNAM, Paris, (1961).
6608. Mayekar, N. V.; Chattopadhyay, S. and Nayak, S. K.: Synthesis, (13), 2041-2046 (2003).
6609. Minami, N. and Kijima, S.: Chem. Pharm. Bull., 27 (6), 1490-1494 (1979).
6610. Moeller, H.; Gross, W.; Hoeffkes, H.; Oberkobush, D. and Schulze Zur Wiesche, E.: (Henkel Kgaa, Germany): Ger. Offen. DE 10,260,880 (2004); Chem. Abstr., 141, 76352s (2004).
6611. Moeller, H.; Hoeffkes, H. and Oberkobush, D. (Henkel Kgaa, Germany): Ger. Offen.DE 10,261,656 (2004); Chem. Abstr., 141, 76353 t (2004).
6612. Moriconi, A.; Allegretti, M.; Bertini, R.; Cesta, M. C.; Bizzarri, C. and Colotta, F. (Dompe' S.p.A., Italy): PCT Int. Appl. WO 2004 69,782 (2004); Chem. Abstr., 141, 190512u (2004).
6613. Nikitin, K. V. and Andryukhova, N. P.: Can. J. Chem., 82 (5), 571-578 (2004).
6614. Seliger, H.; Happ, E.; Cascaval, A.; Birsa, M. L. and Novitschi, G.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Ser. Chim., 5, 111-122 (1997); Chem. Abstr., 132, 207731d (2000).
6615. Shakil, N. A.; Dhawan, A.; Sharma, N. K.; Kumar, V.; Kumar, S.; Bose, M.; Raj, H. G.; Olsen, C. E.; Cholli, A. L.; Samuelson, L. A.; Kumar, J.; Watterson, A. C.; Parmar, V. S. and Prasad, A. K.: Indian J. Chem., Sect. B.: Org. Chem. Incl. Med. Chem., 42B (8), 1958-1969 (2003).
6616. Terashima, N.: Nippon Mokuzai Gakkaishi, 9 (6), 256-260 (1963); Chem. Abstr., 62, 1548a (1965).
6617. Valenti, P.; Zanelli, P. and Da Re, P.: Arch. Pharm. (Weinheim, Ger.), 309, 1006-1008 (1976).
6618. Williams, A. C. and Camp, N.: Science of Synthesis, 14, 347-638 (2003); Chem. Abstr., 140, 391166n (2004).
6619. Zou, Yang; Liu, Wenlong; Gao, Song; Xie, Jingli and Meng, Qingjin: Chem. Commun. (Cambridge, U. K.), (23), 2946-2947 (2003).
6620. Coulthard, C. E.; Marshall, J. and Pyman, F. L.: J. Chem. Soc., 280-291 (1930).
6621. Wolinski, L. E. and Mighton, H. R.: J. Polymer Sci., 49, 217-223 (1961).
6622. Fluka AG, Buchs, (Switzerland).
6623. Boykin, D. W.; Baumstark, A. L. and Beeson, M.: J. Org. Chem., 56 (5), 1969-1971 (1991).
6624. Al-Rashid, W. A. L. K. and El-Bermani, M. F.: Spectrochim. Acta, Part A, 47A (1), 35-45 (1991).
6625. Santavy, F.; Walterova, D. and Hruban, L.: Collect. Czech. Chem. Commun., 37 (6), 1825-1850 (1972); Chem. Abstr., 77, 100266z (1972).
6626. Seutter, E.: Int. J. Vitam. Nutr. Res., 41 (3), 385-390 (1971); Chem. Abstr., 76, 11374v (1972).
6627. Terashima, N.: Nippon Mokuzai Gakkaishi, 9 (6), 248-255 (1963); Chem. Abstr., 62, 1547 g (1965).
6628. Attygalle, A.; Ruzicka, J.; Varughese, D. and Sayed, J.: Tetrahedron Lett., 47 (27), 4601-4603 (2006).
6629. Szell, T.; Dozsai, L.; Zarandy, M. and Menyharth, K.: Tetrahedron, 25 (4), 715-724 (1969).
6630. Kagawa, S.: Kami Pa Gikyoshi, 26 (11), 550-558 (1972); Chem. Abstr., 78, 112892j (1973).
6631. Gumprecht, D. L. and Schwartzenburg, F. Jr.: J. Chromatogr., 23 (1), 134-141 (1966).
6632. Reio, L.: J. Chromatogr., 4, 458-476 (1960).
6633. Kamat, P. V. and Datar, M. G.: J. Prakt. Chem., 315 (1), 1-7 (1973).
6634. Balundgi, R. H.; Kannan, T. S. and Chakravorty, A.: Inorg. Chim. Acta, 7 (2), 251-255 (1973); Chem. Abstr., 79, 73053k (1973).
6635. Haigh, J. M.: J. Mol. Struct., 23 (2), 281-288 (1974); Chem. Abstr., 81, 162792j (1974).
6636. Kamat, P. V. and Datar, M. G.: J. Indian Chem. Soc., 49 (3), 261-268 (1972).
6637. Kaminsky, D. (Warner-Lambert Co.): U.S. 3,912,760 (1975); Chem. Abstr., 84, 30891t (1976).
6638. Stark, B. P. and Jones, M. E. B. (Ciba-Geigy A.-G.): Ger. 1,495,259 (1973); Chem. Abstr., 79, 19737y (1973).
6639. Jhaveri, L. C.; Patel, G. S. and Thakor, V. M.: Chem. Era, 11 (12), 29-30 (1976); Chem. Abstr., 85, 116243r (1976).
6640. The Merck Index, 13 th edition, Merck \& Co., Inc. (2001).
6641. Mentzer, C.: (to LaRoche-Navarron): US 2,769,015 (1956); Chem. Abstr., 51, 5842c (1957).
6642. Grigg, J.; Collison, D.; Garner, C. D.; Helliwell, M.; Tasker, P. A. and Thorpe, J. M.: J. Chem. Soc., Chem. Commun., (24), 1807-1809 (1993).
6643. Lalia-Kantouri, M.; Hartophylles, M.; Jannakoudakis, P. D. and Voutsas, G. P.: Z. Anorg. Allg. Chem., 621 (4), 645-653 (1995).
6644. Maurin, J. K.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C50 (8), 1357-1359 (1994).
6645. Poissonnet, G.: Synth. Commun., 27 (22), 3839-3846 (1997).
6646. Zondler, H. and Schneider, W. (Ciba-Geigy A.-G.): Ger. Offen. 2,838,306 (1979); Chem. Abstr., 90, 170287z (1979).
6647. Tsuzuki, Y.; Kataoka, S.; Funayama, M. and Satsumabayashi, K.: Bull. Chem. Soc. Jpn., 44 (2), 526-532 (1971).
6648. Wagner, G.: Arch. Pharm. (Weinheim), 290, 625-637 (1957).
6649. Capon, B.; Overend, W. G. and Sobell, M.: J. Chem. Soc., 5172-5176 (1961).
6650. Reichel, L. and Schickle, R.: Justus Liebigs Ann. Chem., 553, 98-102 (1942).
6651. Wang, X.; Zhang, L.; Sun, X.; Xu, Y.; Krishnamurthy, D. and Senanayake, C. H.: Org. Lett., 7 (25), 5593-5595 (2005).
6652. Hirao, I.; Yamaguchi, M. and Hamada, M.: Synthesis, (12), 1076-1078 (1984).
6653. Molho, D.; Brun, J.-C. and Carbonnier, J.: Bull. Soc. Chim., 1741-1746 (1962).
6654. Goszczynski, S. and Crawford, R. L.: J. Labelled Compd. Radiopharm., 29 (1), 35-42 (1991); Chem. Abstr., 114, 163638a (1991).
6655. Schultz, E. M. and Bicking, J. B.: J. Am. Chem. Soc., 75, 1128-1129 (1953).
6656. Wessely, F.; Bauer, A.; Chwala, C.; Plaichinger, I. and Schönbeck, R.: Monatsh. Chem., 79, 596-614 (1948).
6657. Renson, M. and Huls, R.: Bull. Soc. Chim. Belg., 61, 599-608 (1952).
6658. Giovannini, E.; Rosales, J. and de Souza, B.: Helv. Chim. Acta, 54 (7), 2111-2113 (1971).
6659. Bird, T. G. C.; Bruneau, P.; Crawley, G. C.; Edwards, M. P.; Foster, S. J.; Girodeau, J.-M.; Kingston, J. F. and McMillan, R. M.: J. Med. Chem., 34 (7), 2176-2186 (1991).
6660. Kametani, T.; Kigasawa, K.; Hiiragi, M.; Wakisaka, K.; Uryu, T. and Hayashi, E.: Yakugaku Zasshi, 92 (4), 421-430 (1972); Chem. Abstr., 77, 74977k (1972).
6661. Landa, S. and Macak, J.: Chem. Listy, 51, 1851-1857 (1957); Chem. Abstr., 52, 4538g (1958).
6662. Pinhas, H. (Laboratoires Laroche Navarron): U.S. 3,959,359 (1976); Chem. Abstr., 85, 177040u (1976).
6663. Schultz, E. M. (Merck \& Co., Inc.): U.S. 2,778,853 (1957); Chem. Abstr., 52, 2073b (1958).
6664. Schwartz, J.-C.; Arrang, J.-M.; Garbarg, M.; Quemener, A.; Lecomte, J.-M.; Ligneau, X.; Schunack, W. G.; Stark, H.; Purand, K.; et al. (Institut National de la Santé et de la Recherche Médicale, Société Civile Bioprojet, Fr.): PCT Int. Appl. WO 96 29,315 (1996); Chem. Abstr., 126, 18872r (1997).
6665. Reio, L.: J. Chromatogr., 88 (1), 119-147 (1974).
6666. Levitt, M.; Gibb, J. W.; Daly, J. W.; Lipton, M. and Udenfriend, S.: Biochem. Pharmacol., 16 (7), 1313-1321 (1967); Chem. Abstr., 67, 61158n (1967).
6667. Buu-Hoï, N. P.: Recl. Trav. Chim. Pays-Bas, 68, 759-780 (1949).
6668. Markova, Yu. V.; Sycheva, T. P.; Zenkova, L. N. and Shchukina, M. N.: Biol. Aktivn. Soedin., Akad. Nauk SSSR, 51-54 (1965); Chem. Abstr., 63, 17951f (1965).
6669. Meerwein, H.: Ber. Dtsch. Chem. Ges., 66, 411-414 (1933).
6670. Nakazawa, K.; Matsuura, S. and Kusuda, K.: J. Pharm. Soc. Jpn., 74 (5), 495-497 (1954).
6671. Billek, G. and Herrmann, E. F.: Monatsh. Chem., 88, 735-738 (1957).
6672. Bachelet, J. P.; Demerseman, P. and Royer, R.: Bull. Soc. Chim. Fr., (11), 2631-2634 (1974).
6673. Auwers, K. and Betteridge, F. H.: Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 32, 39-45 (1900).
6674. Hartmann, C. and Gattermann, L.: Ber. Dtsch. Chem. Ges., 25, 3531-3534 (1892).
6675. Perkin, W. H.: J. Chem. Soc., 546-549 (1889).
6676. Royer, R.; Bisagni, E. and Hudry, C.: J. Org. Chem., 26 (11), 4308-4311 (1961).
6677. Asikainen, A.; Ruuskanen, J. and Tuppurainen, K.: J. Chem. Inf. Comput. Sci., 43 (6), 1974-1981 (2003); Chem. Abstr., 140, 37153n (2004).
6678. Borzatta, V., Poluzzi, E. and Vaccari, A.: Studies in Surface Science and Catalysis, 145 (Science and Technology in Catalysis 2002), 439-442 (2003); Chem. Abstr., 140, 339000q (2004).
6679. Cizmarikova, R., Dingova, A.; Kozlovsky, J. and Greksakova, O.: Cesk. Farm., 39 (9), 403-408 (1990); Chem. Abstr., 114, 156597h (1991).
6680. Collins, C. A.; Gao, J.; Kym, P. R.; Lewis, J. C.; Souers, A. J.; Vasudevan, A. and Wodka, D. (Abbott Laboratories, USA): PCT Int. Appl. WO 03,105,850 (2003); Chem. Abstr., 140, 42040c (2004).
6681. D’Alo, F.: Farmaco (Pavia), Ed. Pract., 16, 338-343 (1961); Chem. Abstr., 56, 2371c (1962).
6682. Guzel, Y. and Sivritas, K.: Arzneim-Forsch., 54 (6), 348-354 (2004).
6683. Hocking, M. B.; Bhandari, K.; Shell, B. and Smyth, T. A.: J. Org. Chem., 47 (22), 4208-4215 (1982).
6684. Kohda, A. and Kurosaki, T. (Nippon Zoki Pharmaceutical Co., Ltd.): U.S. 4,277,474 (1981); Chem. Abstr., 95, 149960g (1981).
6685. Lefournier, C.; Cohadon, F.; Jullien, I.; Giraud, J. G. and Pinhas, H.: C. R. Acad. Sci., Ser. C, 277 (16), 1675-1677 (1973).
6686. Marhefka, C. A.; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, C.; Dalton, J. T. and Miller, D. D.: J. Med. Chem., 47 (4), 993-998 (2004).
6687. Metzler, M. and Haaf, H.: Xenobiotica, 15 (1), 41-49 (1985).
6688. Miyata, O.; Takeda, N. and Naito, T.: Org. Lett., 6 (11), 1761-1763 (2004).
6689. Nishiyama, A.; Kishimoto, N. and Nagashima, N. (Kaneka Corporation, Japan): PCT Int. Appl. WO 03,104,186 (2003); Chem. Abstr., 140, 41900w (2004).
6690. Nogradi, M.: Sciences of Synthesis, 14, 201-273 (2003).
6691. Paterson, I.; Cowden, C. J. and Woodrow, M. D.: Tetrahedron Lett., 39 (33), 6037-6040 (1998).
6692. Ren, Shijin: Chemosphere, 53 (9), 1053-1065 (2003).
6693. Wei, P. and Wu, Z.: Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 42 (2), 425-426 (2001).
6694. Yao, X. J.; Panaye, A.; Doucet, J. P.; Zhang, R. S.; Chen, H. F.; Liu, M. C.; Hu, Z. D. and Fan, B. T.: Journal of Chemical Information and Computer Sciences, 44 (4), 1257-1266 (2004).
6695. Zarubin, M. Ya. and Kutnevich, A. M.: Khim. Drev., (2), 67-75 (1974); Chem. Abstr., 83, 195503k (1975).
6696. Aulin-Erdtman, G. and Sanden, R.: Acta Chem. Scand., 22 (4), 1187-1209 (1968).
6697. Clemmensen, E.: Ber. Dtsch. Chem. Ges., 47, 51-63 (1914).
6698. Yamaguchi, A.; Hiroi, T. and Miyazaki, M.: Mokuzai Gakkaishi, 15 (6), 256-261 (1969); Chem. Abstr., 72, 132209w (1970).
6699. Gol'man, L. P. and Reznikov, V. M.: Zh. Prikl. Spektrosk., 19 (3), 494-499 (1973); Chem. Abstr., 80, 61252g (1974).
6700. Pearl, I. A.: J. Org. Chem., 24, 736-740 (1959).
6701. Sammul, O. R.; Brannon, W. L. and Hayden, A. L.: J. Assoc. Offic. Agr. Chemists, 47 (5), 918-991 (1964); Chem. Abstr., 61, 14467c (1964).
6702. Seth-Paul, W. A.; De Meyer-Van Duyse, A. and Tollenaere, J. P.: J. Mol. Struct., 19 (2), 811-832 (1973); Chem. Abstr., 81, 62913f (1974).
6703. Lemon, H. W.: J. Am. Chem. Soc., 69, 2998-3000 (1947).
6704. Kollmannsberger, H.; Fricke, G.; Paulus, H. and Nitz, S.: Adv. Food Sci., 22 (1/2), 47-61 (2000).
6705. Smith, B.: Acta Chem. Scand., 16 (4), 843-848 (1962).
6706. Caude, M. and Le Xuan Phan: Chromatographia, 9 (1), 20-29 (1976).
6707. Avrutskaya, I. A.; Belevskii, S. F.; Fioshin, M. Ya. and Nguyen Van Thanh: Elektrokhimiya, 6 (5), 683-687 (1970); Chem. Abstr., 73, 62016a (1970).
6708. Dhar, R. L.; Mathur, A.; Shukla, J. P. and Saxena, M. C.: Indian J. Pure Appl. Phys., 11 (8), 568-570 (1973); Chem. Abstr., 80, 70105p (1974).
6709. Breyer, E. D.; Strasters, J. K. and Khaledi, M. G.: Anal. Chem., 63 (8), 828-833 (1991).
6710. Miyaki, K.; Akao, M. and Kuroda, K.: Chiba Daigaku Fuhai Kenkyusho Kokoku, 21, 73-78 (1968); Chem. Abstr., 71, 79279v (1969).
6711. Higson, F. K. and Focht, D. D.: Appl. Environ. Microbiol., 56 (12), 3678-3685 (1990); Chem. Abstr., 114, 78403a (1991).
6712. Leifertova, I.; Hejtmankova, N.; Hlava, H.; Kudrnacova, J. and Santavy, F.: Acta Univ. Palacki. Olomuc., Fac. Med., 74, 83-101 (1975); Chem. Abstr., 85, 14611s (1976).
6713. Dauksas, V.; Gaidelis, P.; Udrenaite, E.; Labanauskas, L.; Gasperaviciene, G.; Gumbaragite, L.; and Ramanauskas, D.: Khim.-Farm. Zh., 23 (12), 1466-1470 (1989); Chem. Abstr., 112, 210527j (1990).
6714. Neyts, J.; Snoeck, R.; Wutzler, P.; Cushman, M.; Kloecking, R.; Helbig, B.; Wang, P. and De Clercq, E.: Antiviral Chem. Chemother., 3 (4), 215-222 (1992).
6715. Chan, Y. S.; Chiang, T. C.; Cheng, Y. Y.; Choang Tai, K. F. and Chang, H. M.: Zhongguo Yaoli Xuebao, 7 (5), 443-447 (1986); Chem. Abstr., 105, 202735r (1986).
6716. Kanclerz, A.: Hydroxyanisole: Recent Adv. Anti-Melanoma Ther., 195-206 (1984); Chem. Abstr., 103, 153454w (1985).
6717. Huang, L. and Tang, L.: Zhongguo Pige, 21 (7), 10-12 (1992); Chem. Abstr., 120, 167213e (1994).
6718. Yamanaka, Y.; Moritomo, M.; Fujii, K.; Tanaka, T.; Fukuda, Y. and Nishimura, K.: Pestic. Sci., 54 (3), 223-229 (1998); Chem. Abstr., 130, 77405w (1999).
6719. Kahovcova, J.: Czech. CS 270,474 (1991); Chem. Abstr., 116, 53711c (1992).
6720. Pavlov, A. E.; Sokolov, V. M. and Zakharov, V. I.: Russ. J. Gen. Chem., 71 (11), 1811-1814 (2001).
6721. Dominguez, X. A.; Gomez, B.; Slim, J.; Giesecke, D. and Ureta, B. E.: J. Am. Chem. Soc., 76 (20), 5150 (1954).
6722. Gattermann, L.; Ehrhardt, R. and Maisch, H.: Ber. Dtsch. Chem. Ges., 23, 1199-1210 (1890).
6723. Daudel, P.; et al.: Congr. intern. biochim., Résumés communs., 2^{e} Congr., Paris 1952, 466; Chem. Abstr., 48, 5144f (1954).
6724. Awad, W. I.; El-Neweihy, M. F. and Selim, S. F.: J. Org. Chem., 23, 1783-1784 (1958).
6725. Da Re, P. and Cimatoribus, L.: Ann. Chim. (Rome), 52, 506-513 (1962).
6726. Albrecht, M.; Mirtschin, S.; de Groot, M.; Janser, I.; Runsink, J.; Raabe, G.; Kogej, M.; Schalley, C. A. and Froehlich, R.: J. Am. Chem. Soc., 127 (29), 10371-10387 (2005).
6727. Miller, E.; Hartung, W. H.; Rock, H. J. and Crossley, F. S.: J. Am. Chem. Soc., 60, 7-10 (1938).
6728. Awad, W. I.; El-Neweihy, M. F. and Selim, S. F.: J. Org. Chem., 25, 1333-1336 (1960).
6729. Nencki, M. and Schmid, W.: J. Prakt. Chem., 23, 546-550 (1881).
6730. Hantzsch, A.: Ber. Dtsch. Chem. Ges., 39 (2), 3080-3102 (1906).
6731. Wagner, G. and Böhm, M.: Pharmazie, 17 (11), 670-676 (1962).
6732. Johnson, T. B. and Lane, F. W.: J. Am. Chem. Soc., 43, 348-360 (1921).
6733. Coton, G.: Thèse Ingénieur CNAM, Paris (1977).
6734. Cooper, S. R.: Org. Synth., Coll. Vol., III, 761-762 (1955).
6735. Miura, Y.; Kinoshita, Y.; Yamamoto, Y.; Tashiro, K.; Yoshii, T. and Takahashi, K. (Nippon Paint Co Ltd; Matsukusu Fuakutaa Kk): Jpn. Kokai Tokkyo KohoJP 06 56,641 [94 56,641] (1994); Chem. Abstr., 121, 42433r (1994).
6736. Oelschläger, H.: Archiv. Pharm. (Weinheim, Ger.), 288, 102-113 (1955).
6737. Panasenko, A. I.; Polyanskaya, N. L. and Starkov, S. P.: Zh. Obshch. Khim., 64 (4), 673-676 (1994); Chem. Abstr., 122, 55682s (1995).
6738. Nakazawa, K.: J. Pharm. Soc. Jpn., 74 (8), 836-839 (1954).
6739. Mezheritskii, V. V. and Dorofenko, G. N.: Zh. Org. Khim., 5 (3), 515-517 (1969); Chem. Abstr., 71, 12750y (1969).
6740. Price, P. and Israelstam, S. S.: J. Org. Chem., 29 (9), 2800-2802 (1964).
6741. Gulati, K. C.; Seth, S. R. and Venkataraman, K.: Org. Synth., Coll. Vol. II (9th), 522-523 (1959).
6742. Pandit, S. S. and Sethna, S.: J. Indian Chem. Soc., 27 (1), 1-4 (1950).
6743. Canter, F. W.; Curd, F. H. and Robertson, A.: J. Chem. Soc., 1255-1265 (1931).
6744. Israelstam, S. S. and Stephen, H.: J. S. Afr. Chem. Inst., 26, 41-48 (1943).
6745. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 29A, 269-273 (1949).
6746. Chadha, T. C.; Mahal, H. S. and Venkataraman, K.: J. Chem. Soc., 1459-1462 (1933).
6747. Chou, Chyuan and Sheu, Shuenn Jyi: Hua Hsueh, 41 (2), 61-71 (1983); Chem. Abstr., 101, 210670y (1984).
6748. Dainippon Ink Chemicals, Inc. Kawamura Physical and Chemical Research Institute: Jpn. Kokai Tokkyo Koho JP 58 88,337 [83 88,337] (1983); Chem. Abstr., 99, 158672z (1983).
6749. Dave, J. S. and Patel, A. R.: Current Sci. (India), 29, 472 (1960).
6750. Deliwala, C. V. and Shah, N. M.: J. Chem. Soc., 1250-1253 (1939).
6751. Desai, M. N.; Desai, B. M. and Gandhi, M. H.: J. Inst. Chem., Calcutta, 45 (Pt. 1), 21-23 (1973); Chem. Abstr., 79, 13100p (1973).
6752. Desai, R. D. and Ekhlas, M.: Proc. Indian Acad. Sci., 8, 567-577 (1938).
6753. Fuji Photo Film Co., Ltd.: Brit. Amended 1,131,200 (1968); Chem. Abstr., 78, 50552n (1973).
6754. Fujikawa, F.; Nakajima, K.; Tokuoka, A.; Hitosa, Y.; Nakazawa, S.; Omatsu, T. and Sumiyama, T.: J. Pharm. Soc. Jpn., 73, 740-743 (1953).
6755. Heilbron, I. M.; Hey, D. H. and Lythgoe, B.: J. Chem. Soc., 295-300 (1936).
6756. Hiller, G. L. (Eastman Kodak Co.): Ger. Offen. 2,212,302 (1972); Chem. Abstr., 78, 91034p (1973).
6757. Jain, A. C.; Tyagi, O. D. and Saksena, R.: Indian J. Chem., Sect. B, 28B (1), 15-20 (1989).
6758. Jain, A. C.; Tyagi, O. D. and Saksena, R.: Indian J. Chem., Sect. B, 28B (8), 678-679 (1989).
6759. Kapadia, G. J. and Zalucky, T. B.: J. Chromatogr., 15 (1), 76-79 (1964).
6760. Lalitha, P. V. and Ramaswamy, R.: React. Kinet. Catal. Lett., 47 (1), 133-141 (1992); Chem. Abstr., 117, 56804s (1992).
6761. Nicolosi, G.; Piattelli, M.; Sanfilippo, C.: Tetrahedron, 49 (15), 3143-3148 (1993).
6762. Ollis, W. D. and Weight, D.: J. Chem. Soc., 3826-3830 (1952).
6763. Pivovarenko, V. G. and Khilya, V. P.: Khim. Geterotsikl. Soedin., (5), 595-600 (1992); Chem. Abstr., 118, 212822z (1993).
6764. Rao, D. Madhusudhan and Rao, A. V. Subba: Indian J. Chem., Sect. B, 31B (6), 335-337 (1992).
6765. Rao, P. P. and Srimannarayana, G.: Synthesis, (11), 887-888 (1981).
6766. Santini, C.; Berger, G. D.; Han, W.; Mosley, R.; MacNaul, K.; Berger, J.; Doebber, T.; Wu, M.; Moller, D. E.; Tolman, R. L. and Sahoo, S. P.: Bioorg. Med. Chem. Lett., 13 (7), 1277-1280 (2003).
6767. Sarma, J. V. R.; Srimannarayana, G. and Subba Rao, N. V.: Indian J. Chem., 13 (3), 228-229 (1975).
6768. Shah, H. A. and Shah, R. C.: J. Chem. Soc., 245-247 (1940).
6769. Shah, H. A. and Shah, R. C.: J. Indian Chem. Soc., 17, 32-36 (1940).
6770. Srimannarayana, G. and Subba Rao, N. V.: Curr. Sci., 33 (2), 47-48 (1964).
6771. Thakar, K. A. and Bhawal, R. M.: Indian J. Chem., 15B, 1056-1058 (1977).
6772. Buchwald, R.: Dissertation Univ. Kiel, Germany, (1928).
6773. Gumprecht, D. L.: J. Chromatogr., 30 (2), 528-536 (1967).
6774. Desai, M. N.; Desai, B. M.; Patwari, B. S. and Gandhi, M. H.: J. Indian Chem. Soc., 50 (5), 369-370 (1973).
6775. Desai, M. N.; Desai, B. M.; Vora, C. R. and Gandhi, M. H.: Fresenius' Z. Anal. Chem., 258 (2), 127-128 (1972).
6776. Ueno Pharmaceutical Applied Research Laboratory, Fr. 2,072,984 (1971); Chem. Abstr., 77, 47011j (1972).
6777. Mizobuchi, S. and Sato, Y.: Agric. Biol. Chem., 49 (5), 1327-1333 (1985); Chem. Abstr., 103, 51081e (1985).
6778. Dooley, T. P.; Gadwood, R. C.; Kilgore, K. and Thomasco, L. M.: Skin Pharmacol., 7 (4), 188-200 (1994); Chem. Abstr., 121, 221171a (1994).
6779. Harada, M.: Japan. J. Med. Sci. IV. Pharmacol. 10, No. 2/3, Proc. Japan. Pharmacol. Soc., 11, 85-89 (1937); Chem. Abstr., 32, 8585^{4} (1938).
6780. Shapiro, A.; Nathan, H. C.; Hutner, S. H.; Garofalo, J.; McLaughlin, S. D.; Rescigno, D. and Bacchi, C. J.: J. Protozool., 29 (1), 85-90 (1982).
6781. Schaffer, J. M.: U.S. 1,745,507 (1930); Chem. Abstr., 24, 1707^{2} (1930).
6782. Amin, G. C. and Shah, N. M.: J. Indian Chem. Soc., 25 (8), 377-384 (1948).
6783. Sanchez-Viesca, F. and Berros, M.: Rev. Latinoamer. Quim., 29 (2), 73-79 (2001); Chem. Abstr., 137, 232581r (2002).
6784. Rosenmund, K. W. and Lohfert, H.: Ber. Dtsch. Chem. Ges., 61, 2601-2607 (1928).
6785. Boyer, J. L.; Krum, J. E.; Myers, M. C.; Fazal, A. N. and Wigal, C. T.: J. Org. Chem., 65 (15), 4712-4714 (2000).
6786. Vandenberghe, A. and Willems, J. F.: Bull. Soc. Chim. Belges, 74 (9-10), 397-406 (1965).
6787. Högberg, H. E.: Acta Chem. Scand., 26 (7), 2752-2758 (1972).
6788. Kraus, G. A. and Melekhov, A.: Tetrahedron lett., 39 (23), 3957-3960 (1998).
6789. Erickson, R. H.; Natalie, K. J., Jr.; Bock, W.; Lu, Z.; Farzin, F.; Sherrill, R. G.; Meloni, D. J.; Patch, R. J.; Rzesotarski, W. J.; Clifton, J.; Pontecorvo, M. J.; Bailey, M. A.; Naper, K. and Karbon, W.: J. Med. Chem., 35 (9), 1526-1535 (1992).
6790. Erickson, R. H.; Natalie, K. J., Jr.; Pontecorvo, M. J. and Rzeszotarski, W. J. (Nova Pharmaceutical Corp.): S. African ZA 91 03,929 (1992); Chem. Abstr., 118, 6865n (1993).
6791. Erickson, R. H.; Natalie, K. J., Jr.; Pontecorvo, M. J. and Rzeszotarski, W. J. (Scios Nova, Inc.): U.S. US 5,278, 174 (1994); Chem. Abstr., 120, 297212q (1994).
6792. Gupta, H. P.; Kumar, G.; Mathur, I. S.; Bhaduri, A. P. and Gupta, S. K.: Indian J. Microbiol., 18 (1), 49-53 (1978); Chem. Abstr., 90, 197545u (1979).
6793. Hantzsch, A.: Ber. Dtsch. Chem. Ges., 48, 797-816 (1915).
6794. He, Z.; Davis, F. J. and Mitchell, G. R.: Eur. Polym. J., 32 (6), 735-746 (1996).
6795. Kraemer, J.; Freisberg, K. O. and Halpaap, H. (Merck Patent G.m.b.H.): Ger. 1,543,744 (1974); Chem. Abstr., 82, 43176x (1975).
6796. Legrand, L. and Lozac'h, N.: Bull. Soc. Chim. Fr., (8-9), 1130-1133 (1956).
6797. Maruyuma, K. and Miyagi, Y.: Bull. Chem. Soc. Jpn., 47 (5), 1303-1304 (1974).
6798. Sanchez-Viesca, F.; Berros, M. and Gomez, Ma. R.: Heterocycl. Commun., 9 (2), 165-170 (2003).
6799. Palm, A. and Novotny, M. V.: Anal. Chem., 69 (22), 4499-4507 (1997).
6800. Limaye, D. B. and Shenolikar, G. S.: Rasayanam, 1, 93-100 (1937); Chem. Abstr., 32, 20966 (1938).
6801. Shamshurin, A. A. and Revenko, Yu. M.: Izv. Akad. Nauk Moldavsk. SSR, (10), 86-97 (1962); Chem. Abstr., 62, 16102f (1965).
6802. Fisons Pharmaceuticals Ltd., Neth. Appl. 6,411,222 (1965); Chem. Abstr., 63, 1320b (1965).
6803. Russel, A.; Frye, J. R. and Mauldin, W. L.: J. Am. Chem. Soc., 62, 1441-1443 (1940).
6804. Russell, A. and Frye, J. R.: Org. Synth., Coll. Vol., III, 281-285 (1955).
6805. Fitzmaurice, C.; Cairns, H.; Hazard, R. and King, J. (to Benger Laboratories Ltd.):Brit. 1,093,673 (1967); Chem. Abstr., 68, 114437g (1968).
6806. Shah, D. N. and Contractor, S. J.: J. Indian Chem. Soc., 36 (9), 679-681 (1959).
6807. Stealey, M. A.; Shone, R. L. and Miyano, M.: Synth. Commun., 20 (12), 1869-1876 (1990).
6808. Hirowatari, N. and Furuya, Y. (Mitsui Petrochemical Industries, Ltd.): Eur. Pat. Appl.EP 331,422 (1989); Chem. Abstr., 112, 98198z (1990).
6809. Deshpande, G. R. and Karamarkar, S. S.: Hindustan Antibiot. Bull., 9 (1), 27-30 (1966); Chem. Abstr., 66, 115388n (1967).
6810. Schamp, N.; Verhe, R. and De Buyck, L.: Tetrahedron, 29 (23), 3857-3859 (1973).
6811. De Buyck, L.; Seynaeve, D.; De Kimpe, N.; Verhe, R. and Schamp, N.: Bull. Soc. Chim. Belg., 94 (5), 363-370 (1985).
6812. Aoki, Y.; Ebiike, H.; Fujii, T.; Kawasaki, K.; Liu, P.; Masubuchi, M.; Ohtsuka, T. and Tsujii, S. (F. Hoffmann-La Roche A.-G., Switzerland): PCT Int. Appl. WO 00 37,464 (2000); Chem. Abstr., 133, 73930c (2000).
6813. Hongu, M.; Tanaka, T.; Funami, N.; Saito, K.; Arakawa, K.; Matsumoto, M. and Tsujihara, K.: Chem. Pharm. Bull., 45 (1), 22-33 (1998).
6814. Limaye, D. B. and Shenolikar, G. S.: Rasayanam, 1, 217-220 (1941); Chem. Abstr., 36, 1039^{2} (1942).
6815. Murata, A.; Tominaga, M. and Suzuki, T.: Bunseki Kagaku, 23 (11), 1349-1355 (1974); Chem. Abstr., 82, 79975w (1975).
6816. Radeke, H. S.; Casebier, D. S.; Azure, M. T. and Dischino, D. D. (USA): U.S. Pat. Appl. Publ. US 2005 244,332 (2005); Chem. Abstr., 143, 440156g (2005).
6817. Williams, H. W. R. and Young, R. N. (Merck Frosst Canada, Inc.): Eur. Pat. Appl. EP 288,202 (1988); Chem. Abstr., 110, 114450s (1989).
6818. La Manna, A.; Pratesi, P.; Conte, U. and Ghislandi, V.: Farmaco, Ed. Sci., 22 (9), 667-680 (1967).
6819. Buu-Hoï, N. P. and Seailles, J., Jr.: J. Org. Chem., 20, 606-609 (1955).
6820. Buu-Hoї, N. P. and Xuong, N. D.: J. Org. Chem., 26 (7), 2401-2402 (1961).
6821. Zentner, T. G.: Tappi, 36, 517-523 (1953); Chem. Abstr., 48, 361d (1954).
6822. Berlin, K. D. and Nagabhushanam, M.: Tetrahedron, 20 (11), 2709-2716 (1964).
6823. Bruce, J. M.: J. Chem. Soc., 360-365 (1960).
6824. Dauksas, V.; Gaidelis, P.; Udrenaite, E.; Labanauskas, L.; Ramanauskas, D.; Gumbaragite, L. and Gasperaviciene, G.: Khim.-Farm. Zh., 25 (7), 14-16 (1991); Chem. Abstr., 115, 223022c (1991).
6825. Dixon, R. A. F.; Patchett, A. A.; Strader, C. D.; Sugg, E. E. and Sigal, I. S. (Merck and Co., Inc.): Eur. Pat. Appl. EP 453,119 (1991); Chem. Abstr., 117, 41411n (1992).
6826. Katz, R. and Jacobson, A. E.: Mol. Pharmacol., 8 (5), 594-599 (1972).
6827. Lanzarini, G.; Pifferi, P. G. and Zamorani, A.: Phytochemistry, 11 (1), 89-94 (1972).
6828. Moffett, R. B.; Hanze, A. R. and Seay, P. H.: J. Med. Chem., 7 (2), 178-186 (1964).
6829. Ryan, M. D.; Yueh, A. and Chen, Wen-Yu: J. Electrochem. Soc., 127 (7), 1489-1495 (1980).
6830. Shinagawa, Yasuko and Shinagawa, Yoshiya: Int. J. Quantum Chem., 18 (2), 521-526 (1980); Chem. Abstr., 93, 199934 f (1980).
6831. Shinagawa, Yoshiya and Shinagawa, Yasuko: Int. J. Quantum Chem., Quantum Biol. Symp., 5, 269-279 (1978); Chem. Abstr., 90, 117100g (1979).
6832. Tamura, S.; Okubo, H. and Kaneta, H.: Nippon Nôgei-kagaku Kaishi, 28, 4-8 (1954); Chem. Abstr., 51, 14617d (1957).
6833. Wayne, M. G.; Smithers, M. J.; Rayner, J. W.; Faull, A. W.; Pearce, R. J.; Brewster, A. G.; Shute, R. E.; Mills, S. D. and Caulkett, P. W. R. (Zeneca Ltd.): PCT Int. Appl. WO 94 22,834 (1994); Chem. Abstr., 123, 227994j (1995).
6834. Wayne, M. G.; Smithers, M. J.; Rayner, J. W.; Faull, A. W.; Pearce, R. J.; Brewster, A. G.; Shute, R. E.; Mills, S. D. and Caulkett, P. W. R. (Zeneca Ltd., UK): U.S. US 5,652,242 (1997); Chem. Abstr., 127, 190753g (1997).
6835. Yoshikawa, T. and Ushimi, K. (Ube Industries, Ltd.): Japan Kokai 75 95,265 (1975); Chem. Abstr., 84, 90140g (1976).
6836. Ishizu, A.; Takatsuka, C. and Migita, N.: Nippon Gakkaishi, 7, 121-125 (1961); Chem. Abstr., 56, 2610a,c (1962).
6837. Wildenhain, W. and Henseke, G.: Z. Chem., 5 (12), 457-458 (1965); Chem. Abstr., 64, 14910a (1966).
6838. Wildenhain, W. and Henseke, G.: J. Prakt. Chem., 312 (4), 690-700 (1970).
6839. Stone, T. J. and Waters, W. A.: J. Chem. Soc., Part II, 1488-1494 (1965).
6840. Enkvist, T.: Finska Kemistsamfundets Medd., 74 (3), 62-71 (1965); Chem. Abstr., 64, 16118f (1966).
6841. Halmekoski, J. and Hannikainen, H.: Suomen Kem., B36, 24-28 (1963); Chem. Abstr., 59, 8d (1963).
6842. Reio, L.: J. Chromatogr., 47 (1), 60-85 (1970).
6843. Halmekoski, J.: Suomen Kem., B34, 85-88 (1961); Chem. Abstr., 56, 6668i (1962).
6844. Clark, I. T.: J. Chromatogr., 15 (1), 65-69 (1964).
6845. Halmekoski, J. and Majani, C.: Suomen Kem., B36, 14-16 (1963); Chem. Abstr., 59, 98a (1963).
6846. Konya, K.; Varga, Zs. and Antus, S.: Phytomedicine, 8 (6), 454-459 (2001).
6847. Sethi, S. C.; Aggarwal, J. S. and Subba Rao, B. C.: Indian J. Chem., 1 (10), 435-437 (1963).
6848. Strader, C. D.; Gaffney, T.; Sugg, E. E.; Rios Candelore, M.; Keys, R.; Patchett, A. A. and Dixon, R. A. F.: J. Biol. Chem., 266 (1), 5-8 (1991).
6849. Clarkson, A. B., Jr.; Bienen, E. J.; Pollakis, G. and Grady, R. W.: Comp. Biochem. Physiol., B: Comp. Biochem., 94B (2), 245-251 (1989); Chem. Abstr., 112, 69448a (1990).
6850. King, F. E. and Wilson, J. G.: J. Chem. Soc., (1), 1572-1580 (1965).
6851. Bruckner, G. Jr.; Fodor, G.; Kiss, J. and Kovacs, J.: J. Chem. Soc., 885-890 (1948).
6852. Dobrowsky, A.: Monatsh. Chem., 82, 122-134 (1951).
6853. Lavrishcheva, L. N.; et al.: Zh. Org. Khim., 2 (12), 2167-2171 (1966).
6854. Szekeres, L.: Gazz. Chim. Ital., 77, 465-470 (1947).
6855. Huls, R. and Hubert, A.: Bull. Soc. Chim. Belg., 65, 596-602 (1956).
6856. Suter, C. M. and Weston, A. W.: J. Am. Chem. Soc., 61, 232-236 (1939).
6857. Seelkopf, K.: Arzneim.-Forsch., 2 (4), 158-163 (1952); Chem. Abstr., 47, 7455e (1953).
6858. Campbell, T. W. and Coppinger, G. M.: J. Am. Chem. Soc., 73, 2708-2712 (1951).
6859. Campbell, T. W. and Coppinger, G. M.: U. S. Patent 2,686,123 (1954); Chem. Abstr., 49, 4203h (1955).
6860. Badische Anilin und Soda Fabrik: Ber. Dtsch. Chem. Ges., 23, 43-44 (1890).
6861. Badische Anilin und Soda Fabrik: D.R.P. 49149 (1889).
6862. Hart, M. C. and Woodruff, E. H.: J. Am. Chem. Soc., 58, 1957-1959 (1936).
6863. Liao, T. K.; Wittek, P. J. and Cheng, C. C.: J. Heterocycl. Chem., 13 (6), 1283-1288 (1976).
6864. Horsten, B.; Jansen, G. and Slabbinck, P. (Agfa-Gevaert N. V., Belgium): Eur. Pat. Appl. EP 1,006,405 (2000); Chem. Abstr., 133, 24736k (2000).
6865. Prasunamba, K. L.; Sudha, K.; Srimannarayana, G. and Rao, N. V. Subba: Indian J. Chem., Sect. B, 15B (10), 929-932 (1977).
6866. Popa, G. and Dumitrescu, V.: Rev. Chim. (Bucharest), 27 (5), 437-440 (1976).
6867. Dumitrescu, V. and Dumitrescu, N.: Bul. Inst. Politeh. Bucuresti, Ser. Chim., 1984 (Pub. 1985), 46-47, 202-205; Chem. Abstr., 106, 226527w (1987).
6868. Gupta, S. K. (Bioderm Research, USA): U.S. Pat. Appl. Publ. US 2006 74,108; Chem. Abstr., 144, 357726t (2006).
6869. Gupta, S. K. (USA): U.S. Pat. Appl. Publ. US 2005 271,608; Chem. Abstr., 144, 40393d (2006).
6870. Jha, H. C.; Zilliken, F.; Offermann, W. and Breitmaier, E.: Can. J. Chem., 59 (15), 2266-2282 (1981).
6871. Musson, D. G.; Halldin, M. M.; Karashima, D. and Castagnoli, N., Jr.: Biomed. Environ. Mass Spectrom., 13 (6), 287-291 (1986).
6872. Murata, T.; Satoh, H.; Nohara, A.; Ukawa, K.; Sugihara, H.; Kanno, M. and Sanno, Y.: Eur. J. Med. Chem. - Chim. Ther., 12 (1), 17-20 (1977).
6873. Canter, F. W.; Curd, F. H. and Robertson, A.: J. Chem. Soc., 1245-1255 (1931).
6874. Kariyone, T. and Inagaki, I.: J. Pharm. Soc. Jpn., 69, 431-434 (1949); Chem. Abstr., 44, 3457b (1950).
6875. Shinoda, J.: Chem. Centralblatt, (ii), 97 (1927).
6876. Shinoda, J.: Yakugaku Zasshi, 541, 35-36 (1927).
6877. Howells, H. P. and Little, J. G.: J. Am. Chem. Soc., 54 (5), 2451-2453 (1932).
6878. Wang, Lanming: Huagong Shikan, 12 (11), 32-33 (1998); Chem. Abstr., 130, 168055y (1999).
6879. Yao, Run-hua; Ma, Rong-sheng; Chen, Yao-qing and Huang, Lan-sun: Yaoxue Xuebao, 19 (3), 228-231 (1984); Chem. Abstr., 103, 123103p (1985).
6880. Mizobuchi, S. and Sato, Y.: Agric. Biol. Chem., 49 (3), 719-724 (1985); Chem. Abstr., 103, 3520a (1985).
6881. Lin, C.-M.; Huang, S.-T.; Lee, F.-W.; Kuo, H.-S. and Lin, M.-H.: Bioorg. Med. Chem., 14 (13), 4402-4409 (2006).
6882. Bharate, S. B.; Chauthe, S. K.; Bhutani, K. K. and Singh, I. P.: Aust. J. Chem., 58 (7), 551-555 (2005).
6883. Goyal, S. and Parthasarathy, M. R.: Indian J. Chem., Sect. B, 31B (7), 391-395 (1992).
6884. Horio, T.; Kawabata, Y.; Takayama, T.; Tahara, S.; Kawabata, J.; Fukushi, Y.; Nishimura, H. and Mizutani, J.: Experientia, 48 (4), 410-414 (1992).
6885. Inagaki, I.; Hisada, S.; Ogawa, M. and Noro, Y.: Bull. Nagoya City Univ. Pharm. School N° 1, 59-62 (1953); Chem. Abstr., 50, 9607f (1956).
6886. Jain, A. C.; Bambah, P. K. and Misra, S. K.: Indian J. Chem., Sect. B, 25B (5), 478-480 (1986).
6887. Kalena, G. P.; Jain, A. and Banerji, A.: Molecules, 2 (7), 100-105 (1997).
6888. Murata, M.; Yamakoshi, Y.; Homma, S.; Arai, K. and Nakamura, Y.: Biosci., Biotechnol., Biochem., 56 (12), 2062-2063 (1992).
6889. Riedl, W. and Risse, K. H.: Justus Liebigs Ann. Chem., 585, 209 (1954).
6890. Widen, C. J.; Faden, R. B.; Lounasmaa, M.; Vida, G.; Euw, J. and Reichstein, T.: Helv. Chim. Acta, 56 (7), 2125-2151 (1973).
6891. Yamaki, M.; Miwa, M.; Ishiguro, K. and Takagi, S.: Phytother. Res., 8 (2), 112-114 (1994).
6892. Grande, M.; Piera, F.; Cuenca, A.; Torres, P. and Bellido, I. S.: Planta Med., (5), 414-419 (1985).
6893. Aso, Y.; Yoshioka, S. and Kojima, S.: J. Pharm. Sci., 89 (3), 408-416 (2000).
6894. Sakamoto, T.; Hanajiri, R.; Ishibashi, M. and Kojima, S.: Iyakuhin Kenkyu, 31 (12), 671-882 (2000); Chem. Abstr., 135, 262091g (2001).
6895. Pyysalo, H. and Widen, C. J.: J. Chromatogr., 168 (1), 246-249 (1979).
6896. Mikami, E.; Itoh, Y.; Ohno, T. and Hayakawa, J.: Iyakuhin Kenkyu, 27 (9), 626-631 (1996); Chem. Abstr., 125, 257357n (1996).
6897. Yanaura, S.; Shibata, M.; Iwase, H. and Iijima, E.: Hoshi Yakka Daigaku Kiyo, (13), 124-126 (1971); Chem. Abstr., 78, 12312b (1973).
6898. Akutsu, E. and Ichikawa, S.: Showa Igakkai Zasshi, 32 (9), 494-500 (1972); Chem. Abstr., 78, 119243g (1973).
6899. Hamano, S.; Ujiie, A. and Naito, J.: Oyo Yakuri, 21 (5), 731-736 (1981); Chem. Abstr., 96, 15115x (1982).
6900. Fukumoto, Y.; Okita, K.; Watanabe, S.; Harada, T.; Numa, Y.; Andoh, K. and Kodama, T.; Kanzo, 21 (11), 1491-1497 (1980); Chem. Abstr., 95, 18163b (1981).
6901. Van der Schye, C. J.; Dekker, T. G.; Fourie, T. G. and Snyckers, F. O.: Antimicrob. Agents Chemother., 39 (3), 375-381 (1986); Chem. Abstr., 105, 226163d (1986).
6902. Vincent, A.; Backus, C.; Taubman, A. and Feldman, E.: Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 6 (1), 29-36 (2005).
6903. Marrero-Ponce, Y.; Iyarreta-Veitia, M.; Montero-Torres, A.; Romero-Zaldivar, C.; Brandt, C. A.; Avila, P. E.; Kirchgatter, K. and Machado, Y.: Journal of Chemical Information and Modeling, 45 (4), 1082-1100 (2005).
6904. Hashizume, T.: Med. Pharm., 11 (2), 66-70 (1977).
6905. Friscic, T.; Drab, D. M. and MacGillivray, L. R.: Org. Lett., 6 (25), 4647-4650 (2004).
6906. Ejima, A.; Terasawa, H.; Sugimori, M.; Ohsuki, S.; Matsumoto, K.; Kawato, Y.; Yasuoka, M. and Tagawa, H.: Chem. Pharm. Bull., 40 (3), 683-688 (1992).
6907. Baughman, T. A.; Hewitt, B. D. and Henegar, K. E.: Unpublished results.
6908. Henegar, K. E.; Ashford, S. W.; Baughman, T. A., Sih, J. C. and Gu, Rui-Lin: J. Org. Chem., 62 (19), 6588-6597 (1997).
6909. Asahina, Y. (Kyorin Seiyaku Kk, Japan): Jpn. Kokai Tokkyo Koho JP 08,333,369 [96,333,369] (1996); Chem. Abstr., 126, 157492e (1997).
6910. Henegar, K. E. (Pharmacia Corporation, USA): PCT Int. Appl. WO 03 89,413 (2003); Chem. Abstr., 139, 364830x (2003).
6911. Henegar, K. E. and Sih, J. C. (Pharmacia \& Upjohn Company, USA) U.S. US $6,121,451$ (2000); Chem. Abstr., 133, $238166 y$ (2000).
6912. Yoshikazu, A.; Kikoh, O.; Yasuo, O. and Takashi, O. (Kyorin Pharmaceutical Co., Ltd.): Eur. Pat. Appl. EP 471,358 (1992); Chem. Abstr., 117, 70111v (1992).
6913. Aichaoui, H.; Lesieur, I. and Henichart, J. P.: Synthesis, (8), 679-680 (1990).
6914. Katsura, Y.; Nishino, S.; Inoue, Y.; Tomoi, M. and Takasugi, H.: Chem. Pharm. Bull., 40 (2), 371-380 (1992).
6915. Barber, M. and Haslewood, G. A. D.: Biochem. J., 39, 285-287 (1945).
6916. Aichaoui, H.; Poupaert, J. H.; Lesieur, D. and Henichart, J. P.: Tetrahedron, 47 (33), 6649-6654 (1991).
6917. Kunz, K. R.; Taylor, E. W.; Hutton, H. M. and Blackburn, B. J.: Org. Prep. Proced. Int., 22 (5), 613-618 (1990).
6918. Julia, M. and Baillargé, M.: Bull. Soc. Chim. Fr., 639-642 (1952).
6919. Julia, M. and Tchernoff, G.: Bull. Soc. Chim. Fr., (7-8), 779-782 (1952).
6920. Bonte, J. P.; Lesieur, D.; Lespagnol, C.; Cazin, J. C. and Cazin, M.: Eur. J. Med. Chem., -Chim. Ther., 9 (5), 497-500 (1974).
6921. Combs, D. W. (Ortho Pharmaceutical Corp.): Eur. Pat. Appl. EP 272,914 (1988); Chem. Abstr., 109, 190436m (1988).
6922. Combs, D. W. (Ortho Pharmaceutical Corp.): U.S. US 4,721,784 (1988); Chem. Abstr., 108, 221711h (1988).
6923. Lespagnol, C.; Lesieur, D. and Bonte, J. P. (Institut National de la Santé et de la Recherche Medicale): Ger. Offen. 2,429,561 (1975); Chem. Abstr., 82, 139692p (1975).
6924. Wood, S. G.; Fitzpatrick, K.; Bright, J. E.; Inns, R. H. and Marrs, T. C.: Hum. Exp. Toxicol., 10 (5), 365-374 (1991); Chem. Abstr., 116, 50785u (1992).
6925. Zhang, M.; Li, Z. and Zhao, R.: Zhongguo Yiyao Gongye Zazhi, 23 (2), 59-62 (1992); Chem. Abstr., 117, 89900y (1992).
6926. Ford, R. E.; Knowles, P.; Lunt, E.; Marshall, S. M.; Penrose, A. J.; Ramsden, C. A.; Summers, A. J. H.; Walker, J. L. and Wright, D. E.: J. Med. Chem., 29 (4), 538-549 (1986).
6927. Da Re, P.; Sagramora, L. and Reichenbach, G.: J. Prakt. Chem., 35 (1-2), 36-40 (1967).
6928. Karpova, V. V.; Mochalov, S. S. and Shabarov, Yu. S.: Zh. Org. Khim., 18 (2), 310-322 (1982).
6929. Hage, A.; Petra, D. G. I.; Field, J. A.; Schipper, D.; Wijnberg, J. B. P. A.; Kamer, P. C. J.; Reek, J. N. H.; van Leeuwen, P. W. N. M.; Wever, R. and Schoemaker, H. E.: Tetrahedron Asymmetry, 12 (7), 1025-1034 (2001).
6930. Swarts, H. J.; Verhagen, F. J. M.; Field, J. A. and Wijnberg, J. B. P. A.: J. Nat. Prod., 61 (9), 1110-1114 (1998).
6931. Covello, M.; De Simone, F. and Dini, A.: Rend. Accad. Sci. Fis. Mat., Naples, 35, 298-308 (1968); Chem. Abstr., 74, 141695v (1971).
6932. Lounasmaa, M.; Widen, C. J. and Huhtikangas, A.: Acta Chem. Scand., Ser. B, B28 (10), 1200-1208 (1974).
6933. Recordati S. A. Chemical and Pharmaceutical Co.: Brit. 1,343,119 (1974); Chem. Abstr., 80, 120771a (1974).
6934. Mitsumori, N.; Suya, H.; Houda, S. and Nakamura, K. (Nippon Shinyaku Co., Ltd): Japan Kokai 74 80,035 (1974); Chem. Abstr., 82, 156078k (1975).
6935. Sianesi, E. (Recordati S. A. Chemical and Pharmaceutical Co.): Ger. Offen. 2,051,269 (1972); Chem. Abstr., 76, $99356 z$ (1972).
6936. Leonardi, A.; Motta, G.; Riva, C. and Testa, R. (Recordati S.A., Chemical and Pharmaceutical Company, Switzerland): U.S. US 5,605,896 (1997); Chem. Abstr., 126, 225315b (1997).
6937. Budesinsky, Z. and Svab, A.: Chem. Listy, 48, 421-426 (1954); Chem. Abstr., 49, 3879i (1955).
6938. Cox, E. H.: J. Am. Chem. Soc., 52, 352-358 (1930).
6939. Granger, R.; Corbier, M. and Vinas, J.: C. R. Acad. Sci., 234, 1058-1060 (1952).
6940. Coburn, R. A. and Batista, A. J.: J. Med. Chem., 24 (10), 1245-1249 (1981).
6941. Fadia, M. P.; Shukla, V. P. and Trivedi, J. J.: J. Indian Chem. Soc., 32 (9), 117-119 (1955).
6942. Da Re, P.; Colleoni, A. and Verlicchi, L.: Ann. Chim. (Rome), 48, 762-769 (1958).
6943. Lauer, W. M.; Doldouras, G. A.; Hileman, R. E. and Liepins, R.: J. Org. Chem., 26 (12), 4785-4790 (1961).
6944. Starkov, S. P.; Goncharenko, G. A.; Volkotrieb, M. N. and Zhidkova, L. A.: Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 36 (6), 86-89 (1993); Chem. Abstr., 120, 298178v (1994).
6945. Dijkstra, P. J.; Den Hertog, H. J., Jr.; Van Eerden, J.; Harkema, S. and Reinhoudt, D. N.: J. Org. Chem., 53 (2), 374-382 (1988).
6946. Dijkstra, P. J.; van Steen, B. J.; Hams, B. H. M.; den Hertog, H. J. and Reinhoudt, D. N.: Tetrahedron Lett., 27 (27), 3183-3186 (1986).
6947. Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Ser. Chim., 8 (2), 329-334 (2000); Chem. Abstr., 136, 216676z (2002).
6948. Verma, J. K. and Verma, G. S. P.: J. Iraqi Chem. Soc., 9 (1-2), 1-12 (1984); Chem. Abstr., 104, 101198s (1986).
6949. Oki, M.: Bull. Chem. Soc. Japan., 26 (6), 331-336 (1953).
6950. Hartmann, R. W.; Schwarz, W. and Schönenberger, H.: J. Med. Chem., 26 (8), 1137-1144 (1983).
6951. Pond, F. J.; Erb, E. S. and Ford, A. G.: J. Am. Chem. Soc., 24, 327-346 (1902).
6952. Hell, C. and Gärttner, G.: J. Prakt. Chem., 51 (2), 422-434 (1895).
6953. Hell, C. and Hollenberg, A.: Ber. Dtsch. Chem. Ges., 29, 682-690 (1896).
6954. CIBA Ltd.: Belg. 660,218 (1965); Chem. Abstr., 64, 652e (1966).
6955. Sisido, K.; Udo, Y.; Nozaki, H. and Jensen, E. V.: J. Org. Chem., 26 (4), 1227-1230 (1961).
6956. CIBA Ltd.: Belg. 660,217 (1965); Chem. Abstr., 65, 652b (1966).
6957. Quelet, R. and Pineau, R.: Compt. rend., 235, 496-498 (1952).
6958. Mauleon Casellas, D.; Pascual Avellana, J.; Garcia Perez, M. L.; Palomer Benet, A.; Lopez Calahorra, F.; Marti Via, J. and Ballart Carbo, B. (Laboratorios Menarini, S.A., Spain): Span. ES 2,163,986 (2002); Chem. Abstr., 138, 254958s (2003).
6959. Zakis, G. and Neiberte, B.: Khim. Drev., (5), 76-80 (1985); Chem. Abstr., 105, 78602d (1986).
6960. Tripathi, B. N. and Garg, C. L.: Indian J. Chem., 7 (8), 778-779 (1969).
6961. Rosenmund, K. W. and Schnurr, W.: Justus Liebigs Ann. Chem., 460, 56-98 (1928).
6962. Chakravarti, D. and Dutta, N.: J. Indian Chem. Soc., 17, 65-71 (1940).
6963. Naik, H. B.; Patel, G. S. and Thakor, V. M.: J. indian Chem. Soc., 50 (4), 293-294 (1973).
6964. Bharadwaj, P. S. and Naik, H. B.: J. Inst. Chem. (India), 61 (6), 221-222 (1989); Chem. Abstr., 113, 108337f (1990).
6965. Bharadwaj, P. S. and Naik, H. B.: Asian J. Chem., 11 (1), 243-244 (1999); Chem. Abstr., 130, 162443b (1999).
6966. Otsubo, K.; Matsubara, J.; Kitano, K.; Kawano, Y.; Ohtani, T.; Morita, S.; Sato, S.; Oshiro, Y. and Uchida, M.: Chem. Pharm. Bull., 45 (4), 728-732 (1997).
6967. Saksena, R. N. and Panday, K. K.: J. Indian Chem. Soc., 50 (9), 609-610 (1973).
6968. Joshi, K. T.; Pancholi, A. M.; Rai, R. K. and Franco, J.: Orient. J. Chem., 13 (3), 333-335 (1997); Chem. Abstr., 128, 187852f (1998).
6969. Kindler, K.; Oelschläger, H. and Henrich, P.: Chem. Ber., 86, 501-507 (1953).
6970. Rai, R. K.: Ph. D. Thesis, Dahod University, Dahod, India (1994).
6971. Dabhi, H. R.; Patel, J. M.; Rai, R. K. and Franco, J.: Orient J. Chem., 14 (1), 93-96 (1998); Chem. Abstr., 129, 183497s (1998).
6972. Yuldashev, K. Y.: J. Org. Chem. USSR (Engl. Transl.), 16 (9), 1610-1612 (1980).
6973. Richtzenhain, H. and Nippus, P.: Chem. Ber., 82, 408-417 (1949).
6974. Ingle, D. B.; Shingare, M. S. and Patil, V. H.: J. Indian Chem. Soc., 55 (1), 50-51 (1978).
6975. Munavalli, S.; Bhat, G. A. and Viel, C.: Bull. Soc. Chim. Fr., (10), 3311-3318 (1966).
6976. Kaeppler, U.; Stiefl, N.; Schiller, M.; Vicik, R.; Breuning, A.; Schmitz, W.; Rupprecht, D.; Schmuck, C.; Baumann, K.; Ziebuhr, J. and Schirmeister, T.: J. Med. Chem., 48 (22), 6832-6842 (2005).
6977. Kochetkov, N. K. and Dudykina, N. V.: Zh. Obshch. Khim., 30, 3054-3057 (1960); Chem. Abstr., 55, 18652b (1961).
6978. Daeniker, H. U.: Helv. Chim. Acta, 49 (5), 1543-1551 (1966).
6979. Hartmann, R. W.; Heindl, A. and Schönenberger, H.: J. Med. Chem., 27 (5), 577-585 (1984).
6980. Aaron, J. J.; Dubois, J. E.; Krausz, F. and Martin, R.: J. Org. Chem., 38 (2), 300-304 (1973).
6981. Krausz, F.; Martin, R. and Gavard, J. P.: Bull. Soc. Chim. Fr., (2), 640-645 (1966).
6982. Cizmarikova, R., Racanska, E.; Hrobonova, K., Lehotay, J., Aghova, Z. and Halesova, D.: Pharmazie, 58 (4), 237-241 (2003); Chem. Abstr., 139, 133293h (2003).
6983. Cizmarikova, R.; Borovansky, A.; Bederova, E.; Kozlovsky, J.; Dingova, A. and Zdrahalova, Z.: Cesk. Farm., 35 (3), 110-113 (1986); Chem. Abstr., 106, 101817j (1987).
6984. Sohda, S.; Fujimoto; M.; Tamegai, T. and Hirose, N.: J. Med. Chem., 22 (3), 279-286 (1979).
6985. Cizmarikova, R. and Misikova, E.: Czech. CS 276,922 (1992); Chem. Abstr., 120, 269843c (1994).
6986. Da Re, P. and Verlicchi, L.: Ann. Chim. (Rome), 46, 910-919 (1956).
6987. Lindstrom, K.: Papier (Darmstadt), 31 (12), 517-525 (1977); Chem. Abstr., 89, 117107u (1978).
6988. Shcherbakova, I.; Wermuth, C. G.; Jeannot, F.; Ciapetti, P.; Roques, V.; Heaton, W. L.; Breinhoet, J. A. and Conklin, R. L. (NPS Pharmaceuticals, Inc., USA): PCT Int. Appl. WO 2007, 44,796 (2007); Chem. Abstr., 146, 441802p (2007).
6989. Buu-Hoï, N. P.; Xuong, N. D. and Lavit, D.: J. Org. Chem., 19, 1562-1566 (1954).
6990. Sahlberg, C.; Rolf, N.; Högberg, M. and Engelhardt, P. (Medivir AB, Sweden): PCT Int. Appl. WO 99 36,406 (1999); Chem. Abstr., 131, 116153e (1999).
6991. Hensel, W. and Hoyer, H.: Z. Naturforsch., 18b (8), 605-612 (1963).
6992. Burdeska, K.: Synthesis, (11), 940-942 (1982).
6993. Ramsden, C. A.; Knowles, P.; Lewis, E. J.; Lunt, E. and Wright, D. E.: Ger. Offen. 2,846,931 (1979); Chem. Abstr., 91, 74626j (1979).
6994. Parkes, G. D.: J. Chem. Soc., 2143-2146 (1948).
6995. Hasegawa, Y.; Suzuki, Y.; Sato, M.; Yamamoto, N.; Hasumi, K.; Shitara, K.; Miyasaka, K; Mikami, T.; Miyazawa, K.; et al. (Teikoku Hormone Mfg. Co., Ltd.): PCT Int. Appl.WO 92 02,500 (1992); Chem. Abstr., 117, 26337z (1992).
6996. Blair, J. and Newbold, G. T.: J. Chem. Soc., 2871-2875 (1955).
6997. Yamaguchi, M.: Nippon Kagaku Zasshi, 80, 155-159 (1959); Chem. Abstr., 54, 5243h (1960).
6998. Katritzky, A. R.; Chassaing, C.; Toader, D. and Gill, K.: J. Chem. Res., Synop., (8), 504-505 (1999).
6999. Van Dijk, J. and Davies, J. E.: U.S. 3,692,835 (1972); Chem. Abstr., 77, 164242w (1972).
7000. Lora-Tamayo, M.; Aparicio, T. L. and Madronero, R.: Anales real soc. espan. fis. y quim. (Madrid), 54B, 567-576 (1958); Chem. Abstr., 53, 11377b (1959).
7001. Oelschläger, H.: Archiv. Pharm. (Weinheim, Ger.), 290, 587-596 (1957).
7002. Szekeres, L.: Magyar Kém. Folyoirat, 56, 114-120 (1950); Chem. Abstr., 45, 7989e (1951).
7003. Kulkarni, V. G.: J. Indian Chem. Soc., 40 (6), 493 (1963).
7004. Szekeres, L. and Fodor, G.: Acta Chim. Acad. Sci. Hung., 1, 391-394 (1951).
7005. Budesinsky, Z. and Svab, A.: Collect. Czech. Chem. Commun., 19, 959-965 (1954).
7006. Sergeeva, L. L.; Shorygina, N. N. and Lopatin, B. V.: Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, (7), 1295-1302 (1962); Chem. Abstr., 58, 5552d (1963).
7007. Bolte, M. L.; Crow, W. D.; Takahashi, N.; Sakurai, A.; Uji-ie, M. and Yoshida, S.: Agric. Biol. Chem., 49 (3), 761-768 (1985).
7008. Yamanaka, T. and Yaoka, O. (Yoshitomi Pharmaceutical Industries, Ltd.): PCT Int. Appl. WO 86 01,201 (1986); Chem. Abstr., 105, 114721c (1986).
7009. Yaegashi, T.; Sawada, S.; Nagata, H.; Furuta, T.; Yokokura, T. and Miyasaka, T.: Chem. Pharm. Bull., 42 (12), 2518-2525 (1994).
7010. Bigg, D.; Lavergne, O.; Pla Rodas, F.; Pommier, J.; Ulibarri, G.; Harnett, J.; Rolland, A.; Liberatore, A.-M.; Lanco, C.; Cazaux, J.-B.; Le Breton, C. and Manginot, E. (S.C.R.A.S., Fr.): U.S. US 6,339,091 (2002); Chem. Abstr., 136, 85980u (2002).
7011. Martin, R.; Lafrance, J. R. and Demerseman, P.: Bull. Soc. Chim. Belg., 100 (7), 539-548 (1991).
7012. Auwers, K. and Wittig, G.: Ber. Dtsch. Chem. Ges., 57, 1270-1275 (1924).
7013. Kawai, T.; Shimizu, T. and Chiba, H.: J. Pharm. Soc. Jpn., 76, 660-665 (1956).
7014. Legrand, L.: Bull. Soc. Chim. Fr., 1599-1606 (1959).
7015. Amin, K. C. and Amin, G. C.: J. Indian Chem. Soc., 37 (8), 469-472 (1960).
7016. Beri, R. M.; Gakhar, K. L. and Rao, P. S.: Proc. Indian Acad. Sci., 33A, 88-91 (1951).
7017. Kulkarni, V. G. and Jadhav, G. V.: J. Indian Chem. Soc., 33 (4), 266-268 (1956).
7018. Löwe, W. and Braden, T.: Arch. Pharm. (Weinheim, Ger.), 328 (3), 283-285 (1995).
7019. Auwers, K. and Koch, J.: Justus Liebigs Ann. Chem., 439, 151-175 (1924).
7020. Pilkington, J. W. and Waring, A. J.: J. Chem. Soc., Perkin Trans. 2, (12), 1349-1359 (1976).
7021. Baltzly, R. and Bass, A.: J. Am. Chem. Soc., 55, 4292-4294 (1955).
7022. Gerecs, A. and Windholz, M.: Acta Chim. Acad. Sci. Hung., 8, 295-302 (1955); Chem. Abstr., 52, 5356h (1958).
7023. Miquel, J. F.; Müller, P. and Buu-Hoi, N. P.: Bull. Soc. Chim. Fr., 633-636 (1956).
7024. Downey, P. M. and Zerbe, R. O.: U.S. pat. 2,670,382 (1954); Chem. Abstr., 49, 4020b (1955).
7025. Martin, R.: Bull. Soc. Chim. Fr., (11), 3087-3091 (1973).
7026. Martin, R. and Demerseman, P.: Monatsh. Chem., 121, 227-236 (1990).
7027. Polyanskaya, N. L.; Goncharenko, G. A.; Panasenko, A. I. and Starkov, S. P.: Zh. Obshch. Khim., 65 (7), 1177-1179 (1995); Chem. Abstr., 124, 145544u (1996).
7028. Snyder, H. R. and Elston, C. T.: J. Am. Chem. Soc., 77, 364-366 (1955).
7029. Birsa, M. L.: An. Stiint. Univ. "Al. I. Cuza" Iasi, Ser. Chim., 8 (1), 137-140 (2000); Chem. Abstr., 134, 311131k (2001).
7030. Kurosu, Y.; Kanasugi, H.; Sakuraba, Y. and Imamura, S. (Hodogaya Chemical Co., Ltd.): Japan Kokai 78 59,026 (1978); Chem. Abstr., 89, 101972m (1978).
7031. Martin, R. and Demerseman, P.: Synthesis, (1), 25-28 (1989).
7032. Nath, A.; Ghosh, A. and Venkateswaran, R. V.: J. Org. Chem., 57 (6), 1467-1472 (1992).
7033. Auwers, K.; Boennecke, A.; Krollpfeiffer, F. and Peters, G.: Justus Liebigs Ann. Chem., 408, 212-254 (1915).
7034. Prakash, S.; Dutt, Y. and Singh, R. P.: Indian J. Chem., 9 (2), 165-167 (1971).
7035. Preston, J. S. and Luklinska, Z. B.: J. Inorg. Nucl. Chem., 42 (3), 431-439 (1980).
7036. Sen, A. B. and Gupta, S. K.: J. Indian Chem. Soc., 38 (10), 825-828 (1961).
7037. Auwers, K.: Ber. Dtsch. Chem. Ges., 47, 3292-3326 (1914).
7038. Auwers, K.: Ber. Dtsch. Chem. Ges., 36, 3890-3892 (1903).
7039. Hill, A. J. and Graf, L. E.: J. Am. Chem. Soc., 37 (7), 1839-1846 (1915).
7040. Auwers, K.; Lechner, M. and Bundesmann, H.: Ber. Dtsch. Chem. Ges., 58, 36-51 (1925).
7041. Krzyzanowska, E.; Olszanowski, A. and Juskowiak, M. J. Prakt. Chem., 331 (4), 617-630 (1989).
7042. Kuskov, V. K. and Yur'eva, L. P.: Doklady Akad. Nauk S.S.S.R., 109, 319-321 (1956); Chem. Abstr., 51, 2665a (1957).
7043. Auwers, K. and Krollpfeiffer, F.: Ber. Dtsch. Chem. Ges., 47, 2585-2591 (1914).
7044. Iio, H.; Nagaoka, H. and Kishi, Y.: Tetrahedron Lett., 22 (26), 2451-2454 (1981).
7045. Garanti, L.; Zecchi, G. and Pagnoni, U. M.: J. Heterocyclic Chem., 14 (3), 445-448 (1977).
7046. Ardis, A. E.; Baltzly, R. and Schoen, W.: J. Am. Chem. Soc., 68, 591-595 (1946).
7047. Comanita, E.; Popovici, I.; Comanita, B. and Roman, G. H.: Bul. Inst. Politeh. Iasi, Sect. 2: Chim. Ing. Chim., 42 (3-4), 135-140 (1996); Chem. Abstr., 128, 140496c (1998).
7048. Hope, P. and Knight, D. H. (Kodak Ltd.): Brit. 1,469,245 (1977); Chem. Abstr., 87, 102060h (1977).
7049. Kulkarni, V. G. and Jadhav, G. V.: J. Indian Chem. Soc., 33, 812-820 (1956).
7050. Migliori, A.; Ledbetter, H.; Thoma, D. J. and Darling, T. W.: J. Appl. Physics, 95 (5), 2436-2440 (2004).
7051. Srivastava, S. and Singh, D.: Asian J. Chem., 11 (3), 1051-1053 (1999); Chem. Abstr., 131, 214363t (1999).
7052. Auwers, K. and Lämmerhirt, E.: Justus Liebigs Ann. Chem., 421, 1-118 (1920).
7053. Naeimi, H. and Moradi, L.: Bull. Chem. Soc. Jpn., 78 (2), 284-287 (2005).
7054. Betteridge, F. H.: Dissertation, Breslau, Poland (1898).
7055. Auwers, K.: Ber. Dtsch. Chem. Ges., 51, 1116-1124 (1918).
7056. Auwers, K.; Hilliger, E. and Wulf, E.: Justus Liebigs Ann. Chem., 429, 190-246 (1922).
7057. Koziol, A. and Kosturkiewicz, Z.: Pol. J. Chem., 53 (6), 1393-1395 (1979).
7058. Robertson, A.; Waters, R. B. and Jones, E. T.: J. Chem. Soc., 1681-1688 (1932).
7059. Simonis, H.: J. Chem. Soc., 112, 580 (1917).
7060. Simonis, H. and Lehmann, C. B. A.: Ber. Dtsch. Chem. Ges., 47, 692-699 (1914).
7061. Stipanovic, R. D. and Steidl, J.: Synth. Commun., 16 (4), 1809-1813 (1986).
7062. Zbiral, E.; Wessely, F. and Jörg, J.: Monatsh. Chem., 92, 654-666 (1961).
7063. Balint, J.; Hell, Z.; Markovits, I.; Parkanyi, L. and Fogassy, E.: Tetrahedron: Asymmetry, 11 (6), 1323-1329 (2000).
7064. Kulkarni, S. N.; Patil, S. P.; Panchangam, P. V. and Nargund, K. S.: Indian J. Chem., 5 (10), 471-474 (1967).
7065. Cullinane, N. M. and Edwards, B. F. R.: J. Chem. Soc., 434-438 (1958).
7066. Buu-Hoï, N. P.; Hoan, N. and Jacquignon, P.: Recl. Trav. Chim. Pays-Bas, 68, 781-788 (1949).
7067. John, H. and Beetz, P.: J. Prakt. Chem., 149, 164-170 (1937).
7068. Bloom, A. and Niederl, J. B.: U.S. pat. 2,419,516 (1947); Chem. Abstr., 41, 5150 f (1947).
7069. Niederl, V. and Bloom, A. (to Reed \& Carnrick): U.S. pat. 2,500,855 (1950); Chem. Abstr., 44, 5912 f (1950).
7070. Niederl, V.; Siconolfi, C. A.; Bloom, A. and Van Meter, C. T.: J. Am. Chem. Soc., 70, 508-511 (1948).
7071. Dodds, E. C.; Huang, R. L.; Lawson, W. and Robinson, R.: Proc. Roy. Soc. (London), B140, 470-497 (1953).
7072. Fardad, M. A. and Fallahi, M.: Opt. Commun., 163 (1,2,3), 33-37 (1999); Chem. Abstr., 131, 51708t (1999).
7073. Harayama, T.; Cho, H. and Inubushi, Y.: Chem. Pharm. Bull., 26 (4), 1201-1214 (1978).
7074. Laboratoires Laroche Navarron: Japan. 78 14,545 (1978); Chem. Abstr., 89, 146602g (1978).
7075. Misato, T.; Ko, K.; Honma, Y.; Konno, K. and Taniyama, E. (Institute of Physical and Chemical Research): Japan Kokai 76, 110,021 (1976); Chem. Abstr., 86, 38592h (1977).
7076. Patel, J. R.; Sutaria, D. H. and Patel, M. N.: High Perform. Polym., 6 (3), 201-208 (1994); Chem. Abstr., 123, 10080y (1995).
7077. Pinhas, H. (Laboratoires Laroche Navarron): Fr. Demande 2,119,844 (1972); Chem. Abstr., 78, 124282y (1973).
7078. Scrocco, M. and Liberti, A.: Ricerca Sci., 24, 1687-1694 (1954); Chem. Abstr., 49, 7979h (1955).
7079. Grammaticakis, P.: Bull. Soc. Chim. Fr., (7), 527-544 (1940).
7080. Grammaticakis, P.: Bull. Soc. Chim. Fr., (8), 427-444 (1941).
7081. Schultz, M. J. and Sigman, M. S.: J. Am. Chem. Soc., 128 (5), 1460-1461 (2006).
7082. Wolfson, A.; Shapira-Tchelet, A. M.; Shokin, O.; Rao, P. M.; Tavor, D.; Landau, M. V. and Herskowitz, M.: Progress in Catalysis Research, 97-113 (2005); Chem. Abstr., 145, 358688q (2006).
7083. Grammaticakis, P.: Bull. Soc. Chim. Fr., (8), 38-51 (1941).
7084. Mueller, A. L. and Moe, S. T. (NPS Pharmaceuticals, Inc., USA): PCT Int. Appl.WO 98 56,752 (1998); Chem. Abstr., 130, 66268c (1999).
7085. Mueller, A. L.; Moe, S. T.; Balandrin, M. F.; Vanwagenen, B. C.; Delmar, E. G.; Artman, L. D.; Barmore, R. M. and Smith, D. L. (NPS Pharmaceuticals, Inc., USA): PCT Int. Appl. WO 97 46,511 (1997); Chem. Abstr., 128, 61341v (1998).
7086. Sugunan, S.; Jacob, B. and Jose, B.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 38B (10), 1189-1193 (1999).
7087. Mchardy, S. F.; Liras, S. and Heck, S. D. (Pfizer Products Inc., USA): PCT Int. Appl. WO 03 35,622 (2003); Chem. Abstr., 138, 353832c (2003).
7088. Weis, J. U. and Andersen, K. E. (Novo Nordisk A/s, Denmark): PCT Int. Appl. WO 97 17,073 (1997); Chem. Abstr., 127, 121636m (1997).
7089. Unger, F.: Justus Liebigs Ann. Chem., 504, 267-286 (1933).
7090. Ranu, B. C.; Ghosh, K. and Jana, U.: J. Org. Chem., 61 (26), 9546-9547 (1996).
7091. Kawamura, M.; Cui, D.-M. and Shimada, S.: Tetrahedron, 62, 9201-9209 (2006).
7092. Kjallstrand, J. and Petersson, G.: Food Chem., 74 (1), 85-89 (2001).
7093. Joshi, B. P.; Sharma, A. and Sinha, A. K.: Can. J. Chem., 83 (10), 1826-1832 (2005).
7094. Desmurs, J. R.; David, S. and Bigouraux, J. C. (Rhodia Chimie, Fr.): Fr. Demande 2,756,279 (1998); Chem. Abstr., 129, 81578b (1998).
7095. Dhami, K. S. and Stothers, J. B.: Can. J. Chem., 43 (2), 498-509 (1965).
7096. Fabbrini, M.; Galli, C.; Gentili, P. and Macchitella, D.: Tetrahedron Lett., 42, (43), 7551-7553 (2001).
7097. Gaunt, M. J.; Yu, J. and Spencer, J. B.: Chem. Commun. (Cambridge, UK), (18), 1844-1845 (2001).
7098. Klages, F.; Mühlbauer, E. and Lukasdzyk, G.: Chem. Ber., 94, 1464-1469 (1961).
7099. Ma, Y.; Wang, Q. L.; Jiang, W. and Zuo, B.: Appl. Catal. A, 165 (1-2), 199-206 (1997).
7100. Wallach, O. and Pond, F. J.: Ber. Dtsch. Chem. Ges., 28, 2714-2722 (1895).
7101. Baser, K. H. C.; Ozek, T.; Demirci, B. and Saritas, Y.: J. Essent. Oil Res., 12 (4), 424-426 (2000).
7102. Singh, G.; Maurya, S.; de Lampasona, M. P. and Catalan, C.: Journal of Food Science, 70 (4), M208-M215 (2005).
7103. Diaz-Maroto, M. C.; Diaz-Maroto Hidalgo, I. J.; Sanchez-Palomo, E. and Soledad PerezCoello, M.: J. Agric. Food Chem., 53 (13), 5385-5389 (2005).
7104. Tran, Huy Thai; Tran, Minh Hoi and Nguyen, Quang Hung: Tap Chi Duoc Hoc, 44 (10), 12-13 (2004); Chem. Abstr., 143, 31870j (2005).
7105. Le, C.; Lin, Y.; Jiang, G.; Zhou, S.; Guan, L. and Luo, W.: Zhongguo Haiyang Yaowu, 18 (2), 12-14 (1999); Chem. Abstr., 132, 47283d (2000).
7106. Itoh, H.; Konno, M.; Tokuhiro, T.; Iguchi, S. and Hayashi, M.: Brit. UK Pat. Appl. 2,026,480 (1980); Chem. Abstr., 93, 167893a (1980).
7107. Sterling Drug, Inc.: Brit. 1,544,872 (1979); Chem. Abstr., 92, 163686s (1980).
7108. Vottero, C.; Labat, Y. and Poirier, J. M. (Société Nationale Elf Aquitaine SNEA): Eur. Pat. Appl. EP 318,394 (1989); Chem. Abstr., 112, 98189x (1990).
7109. Philion, R. E. (Sterling Drug, Inc.): Ger. Offen. 2,728,641 (1978); Chem. Abstr., 90, 137468m (1979).
7110. Da Re, P. and Cimatoribus, L.: J. Org. Chem., 26, 3650-3653 (1961).
7111. Carter, R. H.; Garson, M. J.; Hill, R. A.; Staunton, J. and Sunter, D. C.: J. Chem. Soc. Perkin Trans. 1, (2), 471-479 (1981).
7112. Buckle, D. R. and Smith, H. (Beecham Group Ltd.): U.S. 4,211,791 (1980); Chem. Abstr., 95, 6904f (1981).
7113. Gammill, R. B.; Judge, T. M. and Morris, J. (Upjohn Co.): PCT Int. WO 90 06,921 (1990); Chem. Abstr., 114, 42797t (1991).
7114. Morris, J.; Wishka, D. G.; Lin, A. H.; Humphrey, W. R.; Wiltse, A. L.; Gammill, R. B.; Judge, T. M.; Bisaha, S. N.; Olds, N. L.; Jacob, C. S.; Bergh, C. L.; Cudahy, M. M.; Williams, D. J.; Nishizawa, E. E.; Thomas, E. W.; Gorman, R. R.; Benjamin, C. W. and Shebuski, R. J.: J. Med. Chem., 36 (14), 2026-2032 (1993).
7115. Murai, Junkichi: Science Repts. Saitama Univ., 1A, 129-137 (1954); Chem. Abstr., 50, 981e (1956).
7116. Alonso, R. and Brossi, A.: Tetrahedron Lett., 29 (7), 735-738 (1988).
7117. Rodighiero, P.; Pastorini, G.; Chilin, A.; Manzini, P. and Guiotto, A.: J. Heterocycl. Chem., 25 (2), 527-533 (1988).
7118. Trivedi, P. L.; Sethna, S. M. and Shah, R. C.: J. Univ. Bombay, 11 (3), 144-150 (1942).
7119. Desai, R. D. and Gaitonde, M. M.: Proc. Indian Acad. Sci., 25A, 364-367 (1947).
7120. Ahluwalia, V. K. and Mukherjee, I.: Indian J. Chem., Sect. B, 23B (3), 272-273 (1984).
7121. Ahluwalia, V. K.; Kumar, D.; Rani, N. and Sunita: Indian J. Chem., Sect B, 15B (4), 328-330 (1977).
7122. Thanawalla, C. B. and Trivedi, P. L.: Curr. Sci., 27, 20 (1958).
7123. Thanawalla, C. B. and Trivedi, P. L.: J. Indian Chem. Soc., 36 (1), 49-53 (1959).
7124. Maruyama, K. and Narita, N.: J. Org. Chem., 45 (8), 1421-1424 (1980).
7125. Desai, R. D. and Mavani, C. K.: Proc. Indian Acad. Sci., 25A, 341-344 (1947).
7126. Desai, R. D. and Gaitonde, M. M.: Proc. Indian Acad. Sci., 25A, 351-352 (1947).
7127. Zakis, G.; Pumpura, L. and Neiberte, B.: Latv. PSR Zinat. Akad. Vestis., Kim. Ser., (5), 627-632 (1970); Chem. Abstr., 74, 42078q (1971).
7128. Parker, K. A. and Petraitis, J. J.: Tetrahedron Lett., 22 (5), 397-400 (1981).
7129. Tsatsas, G. and Margomenou-Leonidopoulou, G.: Bull. Soc. Chim. Fr., (7), 2353-2356 (1967).
7130. Richtzenhain, H.: Ber. Dtsch. Chem. Ges., 77B, 1-6 (1944).
7131. Zhang, W.; Feng, J. and Wu, Y.: Zhongguo Yaowu Huaxue Zazhi, 9 (3), 204-208, 222 (1999); Chem. Abstr., 132, 308096 (2000).
7132. Ahluwalia, V. K.; Prakash, C. and Jolly, R. S.: Gazz. Chim. Ital., 109 (12), 641-646 (1979).
7133. Kumar, R.; Azim, A.; Kumar, V.; Sharma, S. K.; Prasad, A. K.; Howarth, O. W.; Olsen, C. E.; Jain, S. C. and Parmar, V. S.: Bioorg. Med. Chem., 9 (10), 2643-2652 (2001).
7134. Tahara, Y.: Ber. Dtsch. Chem. Ges., 25, 1292-1305 (1892).
7135. Beer, J. S.; Jaquiss, D. B. G.; Robertson, A. and Savige, W. E.: J. Chem. Soc., 3672-3675 (1954).
7136. Poonam; Prasad, A. K.; Azim, A.; Kumar, R.; Jain, S. C.; Parmar, V. S.; Olsen, C. E. and Errington, W.: Tetrahedron, 57 (34), 7395-7402 (2001).
7137. Major, A.; Nagy, Z. and Nogradi, M.: Acta Chim. Acad. Sci. Hung., 104 (1), 85-87 (1980); Chem. Abstr., 94, 121238h (1981).
7138. Boyd, J. and Robertson, A.: J. Chem. Soc., 174-176 (1948).
7139. Da Re, P. and Verlicchi, L.: Ann. Chim. (Rome), 46, 904-909 (1956).
7140. Kostanecki, S. and Lloyd, L.: Ber. Dtsch. Chem. Ges., 34, 2942-2950 (1901).
7141. Sonawane, H. R.; Kulkarni, D. P. and Ayyangar, N. R.: Tetrahedron Lett., 31 (51), 74957496 (1990).
7142. Valenti, P.; Recanatini, M.; Da Re, P.; Cima, L. and Giusti, P.: Arch. Pharm. (Weinheim, Ger.), 316 (5), 421-426 (1983).
7143. Martin, R.: Monatsh. Chem., 112, 1155-1163 (1981).
7144. Auwers, K. and Müller, W.: Ber. Dtsch. Chem. Ges., 50 (2), 1149-1177 (1917).
7145. René, L.; Buisson, J. P. and Royer, R.: Bull. Soc. Chim. Fr., (3-4), 475-476 (1974).
7146. Hutchison, A. J.; de Jesus, R.; Williams, M.; Simke, J. P.; Neale, R. F.; Jackson, R. H.; Ambrose, F.; Barbaz, B. J. and Sills, M. A.: J. Med. Chem., 32, 2221-2226 (1989).
7147. Shulgin, A. T. and Dyer, D. C.: J. Med. Chem., 18 (12), 1201-1204 (1975).
7148. Frossard, H.; Fatome, M.; Royer, R.; Lechartier, J. P.; Guillaumel, J. and Demerseman, P.: Chim. Ther., 8 (1), 32-35 (1973).
7149. Ide, W. S. and Baltzly, R.: J. Am. Chem. Soc., 70, 1084-1087 (1948).
7150. Suzuki, T.; Tanemura, K.; Horaguchi, T. and Shimizu, T.: J. Chem. Res. Synop., (3), 132-133 (1996); M735-M784 (1996).
7151. Schmutz, J.; Hirt, R.; Künzle, F.; Eichenberger, E. and Lauener, H.: Helv. Chim. Acta, 36, 620-626 (1953).
7152. Kim, J. M.; Lee, K. Y. and Kim, J. N.: Bull. Korean Chem. Soc., 24 (8), 1057-1058 (2003); Chem. Abstr., 140, 235455a (2004).
7153. Sinyavskaya, L. P. and Shamshurin, A. A.: Zh. Org. Khim., 3 (12), 2195-2199 (1967); Chem. Abstr., 68, 68604j (1968).
7154. Martin, R.: Bull. Soc. Chim. Fr., (9-10), 901-905 (1977).
7155. Tung, Tzeng-Shou; Chung, Tun,-Shun and Huang, Min-lon: Yao Hsüeh Hsüeh Pao, 6, 164-168 (1958); Chem. Abstr., 53, 14039 f (1959).
7156. Marshall, J. (to Boot's Pure Drug Company Ltd.): Brit. 316,750 (1928); Chem. Abstr., 24, 1937^{7} (1930).
7157. Bazhulina, V. I.; Babushkina, M. P.; Strel’bitskaya, V. V.; Gorbunkova, V. P.; Polyakova, S. G.; Bel’fer, A. G. and Andreev, V. M.: Pishch. Prom-st. (Moscow), (12), 20-22 (1988); Chem. Abstr., 111, 214168v (1989).
7158. Rab, A. and Zarubin, M. Ya.: Izv. Vyssh. Ucheb. Zaved., Les. Zh., 11 (6), 120-123 (1968); Chem. Abstr., 70, 87196k (1969).
7159. Baker, S. M.; Evans, T. H. and Hibbert, H. H.: J. Am. Chem. Soc., 70, 60-63 (1948).
7160. Marshall, J. (to Boot's Pure Drug Company Ltd.): BP 317,194 (1928); Chem. Abstr., 24, 1937^{8} (1930).
7161. Pew, J. C. and Connors, W. J.: J. Org. Chem., 34 (3), 585-589 (1969).
7162. Fodor, G.; Kiss, J. and Szekerke, M.: J. Org. Chem., 15, 227-232 (1950).
7163. Gould, W. A. and LaBudde, J. A. (to Mead Johnson \& Co.): Belg. 614,525 (1962); Chem. Abstr., 59, 512d (1963).
7164. Adler, E. and Hernestam, S.: Acta Chem. Scand., 9 (2), 319-334 (1955).
7165. Vedernikov, D. N.: Khim. Drev., (1), 87-91 (1992); Chem. Abstr., 117, 133139h (1992).
7166. Spiridonova, L. N.; Gorbunov, Yu. A.; Lapan, A. P. and Babkin, V. A.: Khim. Drev., (4), 112 (1979); Chem. Abstr., 91, 174960g (1979).
7167. Kratzl, K.: Chem. Ber., 77B, 717-722 (1944).
7168. Suri, O. P.; Bindra, R. S.; Satti, N. K. and Khajuria, R. K.: Indian J. Chem., Sect. B; 26B (6), 587-588 (1987).
7169. Pearl, I. A.: J. Am. Chem. Soc., 78 (17), 4433-4435 (1956).
7170. Pepper, J. M. and Saha, M.: Can. J. Chem., 42 (1), 113-120 (1964).
7171. Becker, H. D. and Adler, E.: Acta Chem. Scand., 15 (1), 218-219 (1961).
7172. Adler, E.; Becker, H. D. and Ishihara, T.: Holzforschung, 20 (1), 3-11 (1966); Chem. Abstr., 65, 5651f (1966).
7173. Freudenberg, K.; Lautenschlaeger, L. and Tausend, H.: Ann. Chem., 685, 139-141 (1965).
7174. Gierer, J.; Pettersson, I.; Smedman, L. A. and Wennberg, I.: Acta Chem. Scand., 27 (6), 2083-2094 (1973).
7175. Adler, E. and Marton, J.: Acta Chem. Scand., 13, 75-96 (1959).
7176. Adler, E. and Marton, J.: Acta Chem. Scand., 15, 357-369 (1961).
7177. Bronovitskii, V. E.; Kalinskaya, L. L. and Ikramova, D. R.: Izv. Vyssh. Ucheb. Zaved., Les. Zh., 14 (6), 165-168 (1971); Chem. Abstr., 76, 155827t (1972).
7178. Chupka, E. I.; Gvozdev, V. N.; Stromskaya, G. I. and Karklin, V. B.: Khim. Prir. Soedin., (4), 496-500 (1981); Chem. Abstr., 95, 221558b (1981).
7179. Deniau, I.; Derenne, S.; Beaucaire, C.; Pitsch, H. and Largeau, C.: Organic Geochemistry, 35 (2), 91-107 (2004); Chem. Abstr., 140, 346409h (2004).
7180. Dizhbite, T.; Telysheva, G.; Jurkjane, V. and Viesturs, U.: Bioresource Technology, 95 (3), 309-317 (2004); Chem. Abstr., 141, 412599u (2004).
7181. Domburgs, G. and Sharapova, T. E.: Khim. Drev., (5), 76-78 (1983); Chem. Abstr., 99, 196807e (1983).
7182. Fine, P. M.; Cass, G. R. and Simoneit, B. R. T.: Environmental Engineering Science, 21 (3), 387-409 (2004); Chem. Abstr., 140, 411264y (2004).
7183. Gravitis, J. and Erins, P.: J. Appl. Polym. Sci., Appl. Polym. Symp., 1983, 37 (Proc. Cellul. Conf., 9 th, 1982, Part 1), 421-440; Chem. Abstr., 100, 8814x (1984).
7184. Guell, A. J.; Li, C. Z.; Herod, A. A.; Stokes, B. J.; Hancock, P. and Kandiyot, R.: Biomass Bioenergy, 5 (2), 155-171 (1993); Chem. Abstr., 120, 222318v (1994).
7185. Gvozdev, V. N. and Chupka, E. I.: Khim. Prir. Soedin., (4), 492-496 (1981); Chem. Abstr., 95, 221557a (1981).
7186. Kratzl, K.; Heck-Bleckmann, C. and Osterberger, K.: Monatsh. Chem., 80, 271-287 (1949).
7187. Leopold, B.: Acta Chem. Scand., 4, 1523-1537 (1950).
7188. Popova, I. G.; Prokhorchuk, T. I.; Sedykh, V. I.; Yurinova, A. A.; Pranovicl, A. V.; Zhalina, V. A.; Bol'shakov, N. N. and Kiprianov, A. I.: Khim. Tekhnol. Tsellyul. E Proizvodnykh, 75-80 (1985); Chem. Abstr., 107, 9105y (1987).
7189. Savov, K. A.; Kiryushina, M. F. and Zarubin, M. Ya.: Khim. Drev., (2), 19-30 (1984); Chem. Abstr., 101, 173298k (1984).
7190. Selli, S.; Cabaroglu, T.; Canbas, A.; Erten, H.; Nurgel, C.; Lepoutre, J. P. and Gunata, Z.: Food Chemistry, 85 (2), 207-213 (2004) (Pub. 2003); Chem. Abstr., 140, 338102n (2004).
7191. Shevchenko, J. M. and Kuznetov, M. A.: Khim. Drev., (5), 103-104 (1984); Chem. Abstr., 101, 193932r (1984).
7192. Simpson, M. J.; Chefetz, B.; Deshmukh, A. P. and Hatcher, P. G.: Marine Environmental Research, 59 (2), 139-163 (2005) (Pub. 2004); Chem. Abstr., 141, 383886c (2004).
7193. Strel'skii, V. A. and Chupka, E. I.: Khim. Prir. Soedin., (6), 765-768 (1982); Chem. Abstr., 98, 109092f (1983).
7194. Sundholm, F.: Soc. Sci. Fennica, Commentationes Phys. Math., 30 (11), 31 pp. (1965); Chem. Abstr., 63, 4200a (1965).
7195. Ito, J.; Chang, F. R.; Wang, H. K.; Park, Y. K.; Ikegaki, M.; Kilgore, N. and Lee, K. H.: J. Nat. Prod., 64 (10), 1278-1281 (2001).
7196. Wu, T. S.; Yang, C. C.; Wu, P. L. and Liu, L. K.: Phytochemistry, 40 (4), 1247-1249 (1995).
7197. Suga, A.; Takaishi, Y.; Goto, S.; Munakata, T.; Yamauchi, I. and Kogure, K.: Phytochemistry (Elsevier), 64 (5), 991-996 (2003).
7198. Guillen, M. D. and Manzanos, M. J.: J. Agric. Food Chem., 47 (8), 3016-3027 (1999).
7199. Pabst, A.; Barron, D.; Etievant, P. and Schreier, P.: J. Agric. Food Chem., 39 (1), 173-175 (1991).
7200. Wintoch, H.; Krammer, G. and Schreier, P.: Flavour Fragr. J., 6 (3), 209-215 (1991).
7201. Gvozdev, V. N. and Chupka, E. I.: Khim. Prir. Soedin., (4), 516-518 (1983); Chem. Abstr., 99, 214360k (1983).
7202. Abe, E.; Nakatani, Y.; Yamanishi, T. and Muraki, S.: Proc. Jpn. Acad., Ser. B, 54 (9), 542-547 (1978); Chem. Abstr., 90, 85478t (1979).
7203. Melkis, A.; Zakis, G. and Meksa, M.: Khim. Drev., (1), 106-112 (1983); Chem. Abstr., 98, 127925j (1983).
7204. Ashorn, T.: Finska Kemistsamfundets Medd., 69 (1), 1-10 (1960); Chem. Abstr., 55, 5942d (1961).
7205. Sokolova, A. A. and Semakova, L. A.: Khim. Drev., (5), 51-53 (1978); Chem. Abstr., 90, 28597g (1979).
7206. Ashorn, T.: Soc. Sci. Fennica, Commentationes Phys.-Math., 25 (8), 59 pp. (1961); Chem. Abstr., 56, 10423c (1962).
7207. Ishizu, A.; Nakano, J. and Migita, N.: Nippon Mokuzai Gakkaishi, 8, 139-144 (1962); Chem. Abstr., 58, 1628h (1963).
7208. Kratzl, K. and Schweers, W.: Monatsh. Chem., 85, 1046-1054 (1954).
7209. Ferreras, D.; Fernandez, E. and Falqué, E.: Food Sci. Tech. Int., 8 (6), 343-347 (2002); Chem. Abstr., 139, 380447h (2003).
7210. Cadahia, E.; Fernandez de Simon, B. and Jalocha, J.: J. Agric. Food Chem., 51 (20), 5923-5932 (2003).
7211. Seikel, M. K.; Hostettler, F. D. and Niemann, G. J.: Phytochemistry, 10 (9), 2249-2251 (1971).
7212. Tolic, Lj. Pasa; Kovac, B.; Klasinc, L. and Shevchenko, S. M.: Croat. Chem. Acta, 63 (1), 37-53 (1990); Chem. Abstr., 113, 96907b (1990).
7213. Patterson, R. F. and Hibbert, H.: J. Am. Chem. Soc., 65, 1862-1869 (1943).
7214. Strauss, C. R.; Gooley, P. R.; Wilson, B. and Williams, P. J.: J. Agric. Food Chem., 35 (4), 519-524 (1987).
7215. Burtscher, E.; Binder, H.; Concin, R. and Bobleter, O.: J. Chromatogr., 252, 167-176 (1982).
7216. Gottschlich, R. and Metzler, M.: Anal. Biochem., 92 (1), 199-202 (1979).
7217. Luebke, M.; Le Quere, J.-L. and Barron, D.: J. Chromatogr., 646 (2), 307-316 (1993).
7218. McKague, A. B.: J. Chromatogr., 208 (2), 287-293 (1981).
7219. Faix, O.; Meier, D. and Grobe, I.: J. Anal. Appl. Pyrolysis, 11, 403-416 (1987); Chem. Abstr., 108, 52372r (1988).
7220. Hanninen, K. and Niemela, K.: Acta Chem. Scand., 45 (2), 193-199 (1991).
7221. Izumi, A. and Kuroda, K.-I.: Rapid Commun. Mass Spectrom., 11 (15), 1709-1715 (1997).
7222. Terron, M. C.; Fidalgo, M. L.; Gonzalez, A. E.; Almendros, G. and Galletti, G. C.: J. Anal. Appl. Pyrolysis, 27 (1), 57-71 (1993).
7223. Wittkowski, R.; Toth, L. and Baltes, W.: Z. Lebensm.-Unters. Forsch., 173 (6), 445-457 (1981); Chem. Abstr., 96, 67395h (1982).
7224. Gardon, J. L. and Leopold, B.: Pulp Paper Mag. Can., 59 (8), 148-154 (1958); Chem. Abstr., 56, 6216d (1962).
7225. Halmekoski, J.: Suomen Kem., B33 (2), 74-76 (1960); Chem. Abstr., 55, 2539i (1961).
7226. Enkvist, T.: Paperi Puu, 43 (11), 657-662 (1961); Chem. Abstr., 60, 9469f (1964).
7227. Gel'fand, E. D.: Izv. Vysshikh Uchebn. Zavedenii, Lesn. Zh., 6 (4), 126-128 (1963); Chem. Abstr., 60, 5741d (1964).
7228. Gel'fand, E. D.: Izv. Vysshikh Uchebn. Zavedenii, Lesn. Zh., 7 (2), 144-148 (1964); Chem. Abstr., 60, 5741d (1964).
7229. Lundquist, K. and Wesslen, B.: Acta Chem. Scand., 25 (5), 1920-1922 (1971).
7230. Ermakova, M. I.; Kiryushina, M. F. and Zarubin, M. Ya.: Khim. Drev., (5), 23-29 (1984); Chem. Abstr., 101, 232104u (1984).
7231. Bogomolov, B. D. and Gel'fand, B. D.: Izv. Vysshikh Uchebn. Zavednii, Lesn. Zh., 5 (3), 149-154 (1962); Chem. Abstr., 57, 14028f (1962).
7232. Shevchenko, S. M.; Zarubin, M. Ya.; Kovac, B.; Pasa-Tolic, L. and Klasinc, L.: Khim. Drev., (2), 100-103 (1990); Chem. Abstr., 113, 117279r (1990).
7233. Kislitsyn, A. N.; Rodionova, Z. M.; Savinykh, V. I. and II'ina, E. I.: Khim. Drev., 9, 125-130 (1971); Chem. Abstr., 76, 87397a (1972).
7234. Galochkin, A. I.; Cemeris, M. and Vasil'eva, V. P.: Deposited Doc., VINITI 1234-1274, 16 pp. (1974); Chem. Abstr., 86, 188913c (1977).
7235. Bogolitsyn, K. G.; Kosyakov, D. S. and Gorbova, N. S.: Zh. Fiz. Khim., 77 (11), 1943-1945 (2003); Chem. Abstr., 141, 106154y (2004).
7236. Thiery, D.; Bluet, J. M.; Pham-Delegue, Minh Ha; Etievant, P. and Masson, C.: J. Chem. Ecol., 16 (3), 701-711 (1990); Chem. Abstr., 112, 232735c (1990).
7237. Beger, J.; Binte, H. J.; Brunne, L. and Neumann, R.: J. Prakt. Chem./Chem.-Ztg., 334 (3), 269-277 (1992).
7238. Traverso, G.: Gazz. Chim. Ital., 89, 1810-1817 (1959).
7239. Traverso, G.: Gazz. Chim. Ital., 89, 1818-1828 (1959).
7240. Hell, C. and Portmann, B.: Ber. Dtsch. Chem. Ges., 29, 676-682 (1896).
7241. Hell, C. and Portmann, B.: Ber. Dtsch. Chem. Ges., 28, 2088-2093 (1895).
7242. Sakuma, A.: J. Pharm. Soc. Jpn., 71, 724-726 (1951); Chem. Abstr., 46, 2023 f (1952).
7243. Pond, F. J.; Maxwell, O. P. and Norman, G. M.: J. Am. Chem. Soc., 21 (11), 955-967 (1899).
7244. Adler, E.; Delin, S. and Miksche, G. E.: Acta Chem. Scand., 20 (4), 1035-1037 (1966).
7245. Pond, F. J. and Beers, F. T.: J. Amer. Chem. Soc., 19, 825-831 (1897).
7246. Wacek, A.: Année biol., 59 (1), 53-62 (1955).
7247. Takara, K.; Matsui, D.; Wada, K.; Ichiba, T.; Chinen, I. and Nakasone, Y.: Biosci. Biotechnol. Biochem., 67 (2), 376-379 (2003).
7248. Kitajima, J.; Okamura, C.; Ishikawa, T. and Tanaka, Y.: Chem. Pharm. Bull., 46 (12), 1939-1940 (1998).
7249. Härtel, O.; Wacek, A. and Meralla, S.: Holzforschung, 12, 33-36 (1958).
7250. Gautheret, R. J.; Wacek, A. and Meralla, S.: Holzforschung, 12, 97-99 (1958).
7251. Lu, F. and Ralph, J.: J. Agric. Food Chem., 46 (2), 547-552 (1998).
7252. Kratzl, K.; Schaefer, W.; Claus, P.; Gratzl, J. and Schilling, P.: Monatsh. Chem., 98 (3), 891-904 (1967).
7253. Kratzl, K.; Billek, G.; Graf, A. and Schweers, W.: Monatsh. Chem., 87, 60-70 (1956).
7254. Hardegger, E.; Steiner, K.; Widmer, E.; Corrodi, H.; Schmidt, T.; Knoepfel, H. P.; Rieder, W.; Meyer, H. J.; Kugler, F. and Gempeler, H.: Helv. Chim. Acta, 47 (7), 1996-2017 (1964).
7255. Orth, W. A. and Riedl, W.: Liebigs Ann. Chem., 663, 83-95 (1963).
7256. Widen, C. J.: Suomen Kem., B41 (9), 295-298 (1968); Chem. Abstr., 70, 28532u (1969).
7257. Widen, C. J.; Lounasmaa, M.; Vida, G. and Reichstein, T.: Helv. Chim. Acta, 58 (3), 880-904 (1975).
7258. Horner, L. and Geyer, E.: Chem. Ber., 98 (6), 2016-2045 (1965).
7259. Rodriguez-Maroto, J. M.; Garcia, F.; Rodriguez-Mirasol, J.; Cordero, T.; Suau, R. and Rodriguez, J. J.: J. Environ. Sci. Health, Part A, A28 (3), 651-662 (1993); Chem. Abstr., 119, 79260s (1993).
7260. Brockmann, H. and Maier, K.: Justus Liebigs Ann. Chem., 535, 149-175 (1938).
7261. Widen, C. J.; Fraser-Jenkins, C. R.; Lounasmaa, M.; Euw, J. v. and Reichstein, T.: Helv. Chim. Acta, 56 (3), 831-838 (1973).
7262. Widen, C. J.; Lounasmaa, M. and Sarvela, J.: Planta Med., 28 (2), 144-164 (1975).
7263. Oelschläger, H.: Arzneimittel-Forsch., 8, 532-539 (1958).
7264. Moussavi, Z.; Depreux, P.; Lesieur, D.; Cotelle, N.; Sauzieres, J.; Plancke, M. O. and Fruchart, J. C.: Farmaco, 46 (2), 339-355 (1991).
7265. Kalir, A.; Freed, C.; Melmon, K. L. and Castagnoli, N., Jr.: J. Labelled Compd. Radiopharm., 13 (1), 41-58 (1977).
7266. Gammill, R. B.; Judge, T. M. and Morris, J. (Upjohn Co.): PCT Int. WO 91 19,707 (1991); Chem. Abstr., 116, 235438b (1992).
7267. Rao, E. V. S. Bhushana; Kumari, S. Subhadra and Rao, K. S. R. Krishna Mohan: Indian J. Chem., Sect. B, 26B (7), 620-623 (1987).
7268. Amin, K. C.; Patel, G. S. and Patel, S. R.: J. Indian Chem. Soc., 41 (12), 833-836 (1964).
7269. Riva, C.; De Toma, C.; Donadel, L.; Boi, C.; Pennini, R.; Motta, G. and Leonardi, A.: Synthesis, (2), 195-201 (1997).
7270. Collin, D. T.; Hartley, D.; Jack, D.; Lunts, L. H. C.; Press, J. C.; Ritchie, A. C. and Toon, P.: J. Med. Chem., 13 (4), 674-680 (1970).
7271. Kawada, M.; Watanabe, M.; Okamoto, K.; Sugihara, H.; Hirata, T.; Maki, Y.; Imada, I. and Sanno, Y.: Chem. Pharm. Bull., 32 (9), 3532-3550 (1984).
7272. De Paulis, T.; Hall, H.; Kumar, Y.; Rämsby, S.; Ögren, S. O. and Högberg, T.: Eur. J. Med. Chem., 25 (6), 507-517 (1990).
7273. Desai, B. D. and Desai, K. K.: Asian J. Chem., 13 (1), 366-368 (2001); Chem. Abstr., 135, 40075r (2001).
7274. Schroetter, E.; Weuffen, W. and Herudek, D.: Pharmazie, 29 (6), 374-382 (1974).
7275. Mueller, U.; Schroetter, E. and Weuffen, W.: Pharmazie, 31 (4), 247-250 (1976).
7276. Dean, F. M.; Deorha, D. S.; Knight, J. C. and Francis, T.: J. Chem. Soc., 327-340 (1961).
7277. Tiwari, S. S. and Singh, A.: J. Indian Chem. Soc., 35 (10), 749-750 (1958).
7278. Adams, R. and Gross, W. J.: J. Am. Chem. Soc., 64, 1786-1790 (1942).
7279. Termin, A.; Grootenhuis, P.; Wilson, D.; Molteni, V. and Mao, L. (Bristol-Myers Squibb Pharma Company, USA): PCT Int. Appl. WO 03 6,015 (2003); Chem. Abstr., 138, 106705s (2003).
7280. Cassani-Galindo, M.; Madrigal-Bujaidar, E.; Chamorro, G.; Diaz, F.; Tamariz, J. and Espinosa-Aguirre, J. J.: Toxicology in Vitro, 19 (4), 547-552 (2005).
7281. Arora, P. C. and Brassard, P.: Can. J. Chem., 45 (1), 67-73 (1967).
7282. Mizzoni, R. H.; Goble, F.; Konopka, E.; Gelzer, J.; Szanto, J.; Maplesden, D. C.; Brown, J. E.; Boxer, J.; Zaunius, G.; Ziegler, J. B. and deStevens, G.: J. Med. Chem., 13 (5), 870-878 (1970).
7283. Mueller, E. (to Dr. Karl Thomae G.m.b.H.): U.S. 2,987,546 (1961); Chem. Abstr., 56, 414c (1962).
7284. Pedrazzoli, A. and Cipelleti, G. M.: Boll. Chim. Farm., 105 (3), 393-399 (1966).
7285. Martin, R.; Gavard, J. P.; Delfly, M.; Demerseman, P. and Tromelin, A.: Bull. Soc. Chim. Fr., (4), 659-662 (1986).
7286. Butin, A. V.; Smirnov, S. K.; Stroganova, T. A.; Bender, W. and Krapivin, G. D.: Tetrahedron, 63 (2), 474-491 (2007).
7287. Diaz, F.; Munoz, H.; Labarrios, F.; Chamorro, G.; Salazar, M.; Morelos, M. E. and Tamariz, J.: Med. Chem. Res., 3 (2), 101-109 (1993).
7288. Holmes, C. P.; Solas, D. W. and Kiangsoontra, B. (Affymax Technologies N.V.): PCT Int. Appl. WO 94 10,128 (1994); Chem. Abstr., 122, 56574v (1995).
7289. Bernardon, J. M. and Biadatti, T. (Galderma Research \& Development, Fr.): Fr. Demande FR 2,833,258 (2003); Chem. Abstr., 139, 41804x (2003).
7290. Sen, A. B. and Tiwari, S. S.: J. Indian Chem. Soc., 29 (5), 357-362 (1952).
7291. Sen, A. B. and Tewari, S. S.: J. Indian Chem. Soc., 26 (10), 490-492 (1949).
7292. Shiozawa, A.; Ishikawa, M.; Izumi, G.; Sakitama, K.; Narita, K. and Kurashige, S. (Nippon Kayaku Co., Ltd): Eur. Pat. Appl. EP 200,942 (1986); Chem. Abstr., 106, 213576m (1987).
7293. Flynn, D. G. and Robertson, A.: J. Chem. Soc., 215-217 (1936).
7294. Weiss, P. and Niederl, J. B.: J. Am. Chem. Soc., 71, 2647-2649 (1949).
7295. Baddeley, G.: J. Chem. Soc., 273-274 (1943).
7296. Tiwari, S. S. and Tewari, B. N.: J. Indian Chem. Soc., 31 (1), 76-78 (1954).
7297. Baddeley, G.: J. Chem. Soc., 994-997 (1950).
7298. Starkov, S. P.; Panasenko, A. I.; Volkotrub, M. N. and Zhidkova, L. A.: Zh. Obshch. Khim., 63 (2), 406-408 (1993).
7299. Dean, F. M.; Halewood, P.; Mongkolsuk, S.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 1250-1261 (1953).
7300. Le Gac, S.; Monnier-Benoit, N.; Metoul, L. D.; Petit, S. and Jabin, I.: Tetrahedron Asymmetry, 15 (1), 139-145 (2004).
7301. Bollag, W.; Ruegg, R. and Ryser, G. (Hoffmann-La Roche, Inc.): U.S. US 4,656,310 (1987); Chem. Abstr., 107, 198700x (1987).
7302. Niederl, J. B. and Weiss, P.: J. Am. Chem. Soc., 70, 2894-2896 (1948).
7303. Marvell, E. N.; Logan, A. V.; Friedman, L. and Ledeen, R. W.: J. Am. Chem. Soc., 76, 1922-1926 (1954).
7304. Auwers, K. and Janssen, E.: Justus Liebigs Ann. Chem., 483, 44-65 (1930).
7305. Demonchaux, P.; Lenoir, P.; Augert, G. and Dupassieux, P.: Bioorg. Med. Chem. Lett., 4 (20), 2383-2388 (1994).
7306. Becker, H. D., Björk, A. and Adler, E.: J. Org. Chem., 45, 1596-1600 (1980).
7307. Demonchaux, P. and Lenoir, P. (Kali-Chemie Pharma G.m.b.H.): Ger. Offen.DE 4,304,806 (1994); Chem. Abstr., 122, 160681p (1995).
7308. Suzuki, Y.; Hasegawa, Y.; Sato, M.; Yamamoto, N.; Miyasaka, K.; Kenjo, T. and Miyazawa, K. (Teikoku Hormone Mfg. Co., Ltd): Jpn. Kokai Tokkyo Koho JP 62 53,962 [87 53,962] (1987); Chem. Abstr., 107, 134194c (1987).
7309. Mauthner, F.: J. Prakt. Chem., 103, 391-396 (1921).
7310. Miquel, J. F.; Buu-Ної, N. P. and Royer, R.: J. Chem. Soc., 3417-3420 (1955).
7311. Adachi, K. and Taniguchi, N.: Bull. Chem. Soc. Jpn., 55 (5), 1655-1656 (1982).
7312. De Clercq, M. and Buu-Hoï, N. P.: Compt. rend., 227, 1251-1252 (1948).
7313. Liu, Shang-Zhong and Chen, Fu-Heng: Gaodeng Xuexiao Huaxue Xuebao, 19 (4), 568-571 (1998); Chem. Abstr., 128, 282651y (1998).
7314. Gibson, G. P.: J. Chem. Soc., 123, 1269-1277 (1923).
7315. Cason, J.: J. Am. Chem. Soc., 68, 2078-2081 (1946).
7316. Metlesics, W. and Wessely, F.: Monatsh. Chem., 88, 108-117 (1957).
7317. Schromm, K.; Thomae, O.; Mentrup, A.; Zeile, K. and Engelhardt, A. (Boehringer, C. H.; Sohn): Ger. 1,543,359 (1972); Chem. Abstr., 78, 43021k (1973).
7318. Chen, X.; Yu, M. and Wang, M.: J. Chem. Res. Synop., (2), 80-81 (2005).
7319. Buu-Hoï, N. P.; Hoan, N. and Xuong, N. D.: Recl. Trav. Chim. Pays-Bas, 71, 285-291 (1952).
7320. Moe, S. T.; Van Wagenen, B. C.; Delmar, E. G.; Trovato, R. and Balandrin, M. F. (NPS Pharmaceuticals, Inc., USA): PCT Int. Appl. WO 97 41,090 (1997); Chem. Abstr., 128, 13130d (1998).
7321. Merck \& Co., Inc.: US 3,671,636 (1972); Chem. Abstr., 77, 88083c (1972).
7322. Newman, M. S. and Mosby, W. L.: J. Am. Chem. Soc., 73, 3738-3740 (1951).
7323. Krannichfeldt, H.: Ber. Dtsch. Chem. Ges., 46, 4016-4025 (1913).
7324. Perkin, W. H.; Robinson, R. and Turner, M. R.: J. Chem. Soc., 93, 1085-1115 (1908).
7325. Nogami, H.: J. Pharm. Soc. Jpn., 61, 46-51 (1941); Chem. Abstr., 35, 4764^{7} (1941).
7326. Huisgen, R.; Seidl, G. and Wimmer, I.: Justus Liebigs Ann. Chem., 677, 21-33 (1964).
7327. Patil, L. J. and Rao, B. C. S.: Indian J. Chem., 4 (3), 111-117 (1966).
7328. De Paulis, T.; Kumar, Y.; Johansson, L.; Rämsby, S.; Florvall, L.; Hall, H.; Ängeby-Möller, K. and Ögren, S.-O.: J. Med. Chem., 28 (9), 1263-1269 (1985).
7329. Enders, D. and Lohray, B. B.: Angew. Chem., 99 (4), 359-360 (1987).
7330. Jurd, L.: Tetrahedron, 25 (7), 1407-1416 (1969).
7331. Lilienkampf, A.; Johansson, M. P. and Wahala, K.: Org. Lett., 5 (19), 3387-3390 (2003).
7332. Luu Duc, C.; Alary, J. and Boucherle, A.: Chim. Ther., (4), 271-275 (1969).
7333. Moorthy, J. N.; Monahan, S. L.; Sunoj, R. B.; Chandrasekhar, J. and Bohne, C.: J. Am. Chem. Soc., 121 (13), 3093-3103 (1999).
7334. Brown, H. C.; Chandrasekharan, J. and Ramachandran, P. V.: J. Am. Chem. Soc., 110 (5), 1539-1546 (1988).
7335. Johnson, T. B. and Hodge, W. W.: J. Am. Chem. Soc., 35, 1014-1023 (1913).
7336. Jiang, Xikui; Zhao, Chengxue and Gong, Yuefa: Huaxue Xuebao, 46 (9), 900-907 (1988); Chem. Abstr., 110, 192365g (1989).
7337. Lauer, W. M. and Renfrew, E. E.: J. Am. Chem. Soc., 67 (5), 808-810 (1945).
7338. Harwood, L. M.; Hodgkinson, L. C.; Sutherland, J. K. and Towers, P.: Can. J. Chem., 62 (10), 1922-1925 (1984).
7339. Chiche, B. H.; Gauthier, C. and Geneste, P.: Fr. Demande FR 2,592,039 (1987); Chem. Abstr., 108, 152523j (1988).
7340. Ducki, S.; Forrest, R.; Hadfield, J. A.; Kendall, A.; Lawrence, N. J.; Mcgown, A. T. and Rennison, D.: Bioorg. Med. Chem. Lett., 8 (9), 1051-1056 (1998).
7341. Blout, E. R.; Green, M.; Rogers, H. G.; Simon, M. S. and Woodward, R. B. (to Polaroid Corp.): U.S. 3,236,893 (1966); Chem. Abstr., 64, 19853b (1966).
7342. Cooke, R. G. and Dowd, H.: Australian J. Sci. Research, 5A, 760-767 (1952).
7343. Edwards, M. L.; Stemerick, D. M. and Sunkara, P. S.: J. Med. Chem., 33 (7), 1948-1954 (1990).
7344. Izawa, Y.; Takeuchi, M.; Watoh, Y. and Tomioka, H.: Nippon Kagaku Kaishi, (1), 98-103 (1984); Chem. Abstr., 101, 22681d (1984).
7345. Oppolzer, W.; Tamura, O.; Sundarababu, G. and Signer, M.: J. Am. Chem. Soc., 114 (14), 5900-5902 (1992).
7346. Zhang, F.; Xu, Q.; Fu, S.; Ma, X.; Xiao, H. and Liang, X.: Flavour and Fragrance Journal, 20 (3), 318-320 (2005).
7347. Giles, R. G. F.; Rickards, R. W. and Senanayake, B. S.: J. Chem. Soc., Perkin Trans. 1, (22), 3361-3370 (1997).
7348. Shatshurin, A. A. and Revenko, Yu. M.: Zh. Org. Khim., 1 (8), 1439-1442 (1965).
7349. Iwamoto, H. K. and Hartung, W. H.: J. Org. Chem., 9, 513-517 (1944).
7350. Dauksas, V.; Gaidelis, P.; Petrauskas, O.; Udrenaite, E.; Gasperaviciene, G. and Raguotiene, N.: Khim.-Farm. Zh., 21 (5), 569-573 (1987); Chem. Abstr., 107, 190332b (1987).
7351. Haworth, R. D. and Woodcock, D.: J. Chem. Soc., 809-813 (1938).
7352. Baker, B. R.: J. Am. Chem. Soc., 65, 1572-1579 (1943).
7353. Adams, R.; Geissman, T. A.; Baker, B. R. and Teeter, H. M.: J. Am. Chem. Soc., 63, 528-534 (1941).
7354. Lespagnol, A. and Cuingnet, E.: Ann. pharm. franç., 18, 445-453 (1960).
7355. Perry, C. W.; Kalnins, M. V. and Deitcher, K. H.: J. Org. Chem., 37 (26), 4371-4376 (1972).
7356. Schneider, M. R. and Ball, H.: J. Med. Chem., 29 (1), 75-79 (1986).
7357. Kachru, C. N. and Pathak, B.: J. Indian Chem. Soc., 34, 611-618 (1957).
7358. Choudary, B. M.; Sateesh, M.; Kantam, M. L. and Prasad, K. V. R.: Appl. Catal., A, 171 (1), 155-160 (1998).
7359. Jaimol, T.; Moreau, P.; Finiels, A.; Ramaswamy, A. V. and Singh, A. P.: Appl. Catal. A, 214 (1), 1-10 (2001).
7360. Horton, W. J. and Paul, E. G.: J. Am. Chem. Soc., 79, 2264-2266 (1957).
7361. Allah, H. M. F. and Soliman, R.: J. Heterocyclic. Chem., 24 (4), 1745-1748 (1987).
7362. Alesso, E. N.; Tombari, D. G.; Moltrasio Iglesias, G. Y. and Aguirre, J. M.: Can. J. Chem., 65 (11), 2568-2574 (1987).
7363. Merchant, J. R. and Shah, N. J.: Indian J. Chem., 12 (9), 994-995 (1974).
7364. Reichert, B. and Posemann, H.: Arch. Pharm., 281, 189-191 (1943).
7365. Ljunggren, S. and Olsson, A.: Holzforchung, 38 (2), 91-99 (1984).
7366. Zorin, B. Y.; Smetanina, S. S.; Kolesova, N. R. and Kiprianov, A. I.: Khim. Pererab. Drev. Syr'ya, 8-12 (1984); Chem. Abstr., 104, 70525q (1986).
7367. Lorenzo, D.; Loayza, I. and Dellacassa, E.: Flavour Fragr. J., 18 (1), 32-35 (2003).
7368. Zdero, C.; Jakupovic, J. and Bohlmann, F.: Phytochemistry, 29 (4), 1231-1245 (1990).
7369. Wang, X.; Long, C.; Cai, S. and Zhao, Y.: Zhongcaoyao, 31 (12), 888-890 (2000); Chem. Abstr., 134, 323468p (2001).
7370. Fuson, R. C.; Gaertner, R. and Chadwick, D. H.: J. Org. Chem., 13, 489-495 (1948).
7371. Martegiani, E.: Gazz. chim. Ital., 42 (2), 346-350 (1912).
7372. Lu, F. and Ralph, J.: J. Agric. Food Chem., 45 (12), 4655-4660 (1997).
7373. Frei, H. and Schmid, H.: Liebigs Ann. Chem., 603, 169-177 (1957).
7374. Mauthner, F.: J. Prakt. Chem., 107, 103-108 (1924).
7375. Potter, G. A.; Butler, P. C. and Wanogho, E. (Cancer Research Ventures Limited, UK): PCT Int. Appl. WO 01 72,680 (2001); Chem. Abstr., 135, 272794c (2001).
7376. Dorsch, W. and Wagner, H. (Idun Pharmaceuticals): PCT Int. Appl. WO 95 22,323 (1995); Chem. Abstr., 123, 306580z (1995).
7377. Dorsch, W.; Mueller, A.; Christoffel, V.; Stuppner, H.; Antus, S.; Gottsegen, A. and Wagner, H.: Phytomedicine, 1 (1), 47-54 (1994).
7378. Kostanecki, S. and Tambor, J.: Ber. Dtsch. Chem. Ges., 28, 2302-2309 (1895).
7379. Patel, J. R.; Sutaria, D. H. and Patel, M. N.: High Perform. Polym., 6 (2), 123-132 (1994); Chem. Abstr., 122, 162211j (1995).
7380. Patel, J. R.; Sutaria, D. H. and Patel, M. N.: Macromol. Rep., A31 (Suppl. 3-4), 357-370 (1994); Chem. Abstr., 122, 57600n (1995).
7381. Ma, T.; Kojima, T. and Matsuda, Y.: Bull. Chem. Soc. Jpn., 73 (3), 747-748 (2000).
7382. Brown, J. P.; Johnson, D. H.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 2019-2020 (1951).
7383. Rosenmund, K. W.; Buchwald, R. and Deligiannis, T.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 271, 342-352 (1933).
7384. Boigegrain, R.; Brodin, R.; Frehel, D.; Gully, D.; Molimare, J.-C. and Olliero, D. (Elf Sanofi): Eur. Pat. Appl. EP 611,766 (1994); Chem. Abstr., 121, 205337d (1994).
7385. Naik, N. D.: J. Inst. Chem. (India), 59 (5), 241-242 (1987).
7386. Ahluwalia, V. K. and Prakash, C.: Indian J. Chem., Sect. B, 15B (4), 331-334 (1977).
7387. San Feliciano, A.; Miguel del Corral, J. M.; Gordaliza, M. and Castro, M. A.: Fitoterapia, 62 (5), 435-439 (1991).
7388. De Pascual, J.; San Feliciano, A.; Muguel del Corral, J. M.; Barrero, A. F.; Rubio, M. and Muriel, L.: Phytochemistry, 20 (12), 2778-2779 (1981).
7389. Woodward, R. B.: Org. Synth., Coll. Vol., III, 453-455 (1955).
7390. Edwards, J. D., Jr., McGuire, S. E. and Hignite, C.: J. Org. Chem., 29 (10), 3028-3032 (1964).
7391. Fedeli, E.; Fiecchi, A. and Jommi, G.: Gazz. Chim. Ital., 89, 824-833 (1959).
7392. Cizmarikova, R., Borovansky, A.; Cizmarik, J. and Hucklova, M.: Czech. CS 269,565 (1991); Chem. Abstr., 115, 279590 d (1991).
7393. Lounasmaa, M.; Widen, C. J. and Reichstein, T.: Helv. Chim. Acta, 56 (3), 1133-1144 (1973).
7394. Papageorgiou, J.; Doherty, W. O. S.; Walker, B. and Edye, L. A.: Zuckerindustrie (Berlin), 124 (2), 133-138 (1999); Chem. Abstr., 130, 268740m (1999).
7395. Ogiso, A.; Sato, A.; Kashida, I. and Kuwano, H.: Chem. Pharm. Bull., 22 (1), 135-143 (1974).
7396. Ogiso, A.; Sato, A.; Sato, S. and Tamura, C.: Tetrahedron Lett., (30), 3071-3074 (1972).
7397. McOmie, J. F. W. and Robbins, A. I.: Chem. Ind. (London), (22), 888-889 (1978).
7398. Azim, A.; Errington, W. and Parmar, V. S.: Acta Crystallogr., Sect. E: Struct. Rep. Online, E57 (3), 266-268 (2001).
7399. Jones, G. H.; Mackenzie, J. B. D.; Robertson, A. and Whalley, W. B.: J. Chem. Soc., 562-569 (1949).
7400. Müller, A.; Mészaros, M. and Körmendy, K.: J. Org. Chem., 19, 472-484 (1954).
7401. Bargellini, G. and Martegiani, E.: Gazz. Chim. Ital., 41 (4), 445-453 (1911).
7402. Bargellini, G. and Martegiani, E.: Atti. accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 20 (II), 18-25 (1911).
7403. Sergievskaya, S. I. and Kropacheva, A. A.: Zh. Obshch. Khim., 23, 463-466 (1953); Chem. Abstr., 48, 18258 (1954).
7404. Aghoramurthy, K.; Sarngadharan, M. G. and Seshadri, T. R.: J. Indian Chem. Soc., 39 (7), 439-443 (1962).
7405. Mukerjee, S. K.; Seshadri, T. R. and Varadarajan, S.: Proc. Indian Acad. Sci., 35A, 82-88 (1952).
7406. Beck, G.; Bergmann, A.; Kesseler, K. and Wess, G.: Tetrahedron Lett., 31 (50), 7293-7296 (1990).
7407. Ahluwalia, V. K.; Mukherjee, I. and Rani, N.: Indian J. Chem., Sect. B, 20B (10), 918 (1981).
7408. Takehiko, N.; Nobuharu, S.; Kaoru, I.; Yo-ichi, H. and Masami, S.: Helv. Chim. Acta, 88 (10), 2603-2609 (2005).
7409. Brunow, G.: Acta Chem. Scand., Ser. B, B34 (2), 125-128 (1980).
7410. Hunter, M. J. and Hibbert, H.: J. Am. Chem. Soc., 61, $2190-2194$ (1939).
7411. Hunter, M. J.; Cramer, A. B. and Hibbert, H.: J. Am. Chem. Soc., 61, 516-520 (1939).
7412. Richtzenhain, H.: Chem. Ber., 81, 260-265 (1948).
7413. Pearl, I. A.: J. Org. Chem., 22, 1229-1232 (1957).
7414. Miller, G. J. and Quackenbush, F. W.: J. Am. Oil Chemists' Soc., 34, 404-407 (1957); Chem. Abstr., 51, 15147h (1957).
7415. Sudo, K.; Mullord, D. J. and Pepper, J. M.: Can. J. Chem., 59 (7), 1028-1031 (1981).
7416. Zdero, C.; Bohlmann, F.; King, R. M. and Robinson, H.: Phytochemistry, 25 (12), 2841-2855 (1986).
7417. Sheesley, R. J.; Schauer, J. J.; Chowdhury, Z.; Cass, G. R. and Simoneit, B. R. T.: J. Geophys. Res., 108 (D9), AAC 8/1-AAC 8/15 (2003); Chem. Abstr., 139, 201441g (2003).
7418. Vane, C. H.; Drage, T. C. and Snape, C. E.: J. Agric. Food Chem., 51 (4), 947-956 (2003).
7419. Klemola, A.: Suomen Kem., B41 (3), 83-98 (1968); Chem. Abstr., 69, 11552g (1968).
7420. Lustre, A. O. and Issenberg, P.: J. agr. Food Chem., 17 (6), 1387-1393 (1969).
7421. Hwang, B. H. and Sakakibara, A.: Mokuzai Gakkaishi, 25 (10), 647-652 (1979); Chem. Abstr., 92, 43460s (1980).
7422. Kiprianov, A. I.; Prokhorchuk, T. I.; Mitrofanova, L. M. and Kosyukova, L. V.: Khim. Drev., (4), 73-76 (1980); Chem. Abstr., 93, 151931a (1980).
7423. MacNamara, K.; van Wyk, C. J.; Brunerie, P.; Augustyn, O. P. H. and Rapp, A.: South African Journal of Enology and Viticulture, 22 (2), 82-92 (2001); Chem. Abstr., 136, 354481h (2002).
7424. Su, Y.-F.; Guo, D.-A.; Cui, Y.-J.; Liu, J.-S. and Zheng, J.-H.: J. Asian Nat. Prod. Res., 3 (3), 229-233 (2001); Chem. Abstr., 135, 315903g (2001).
7425. Clare, S. I. and Steelink, C.: Tappi, 56 (5), 119-123 (1973).
7426. Evtuguin, D. V.; Neto, C. P.; Silva, A. M. S.; Domingues, P. M.; Amado, F. M. L.; Robert, D. and Faix, O.: J. Agric. Food Chem., 49 (9), 4252-4261 (2001).
7427. Fine, P. M.; Cass, G. R. and Simoneit, B. R. T.: Journal of Geophysical Research, [Atmospheres] 107 (D21), ICC 11/1-ICC 11/9 (2002); Chem. Abstr., 139, 11112c (2003).
7428. Kuroda, K.; Ozawa, T. and Ueno, T.: J. Agric. Food Chem., 49 (4), 1840-1847 (2001).
7429. MacNamara, K.; van Wyk, C. J.; Brunerie, P.; Augustyn, O. P. H. and Rapp, A.: South African Journal of Enology and Viticulture, 23 (1), 37 (2002); Chem. Abstr., 139, 116574h (2003).
7430. Zagorodnov, V. P.: Issled. po Tekhnol. Ryb. Produktov, M., 61-69 (1986). From Ref. Zh., Khim. 1987, Abstr. Nà. 4R326; Chem. Abstr., 107, 22101p (1987).
7431. Simpson, C. D.; Paulsen, M.; Dills, R. L.; Liu, L.-J. S. and Kalman, D. A.: Environ. Sci. Technol., 39 (2), 631-637 (2005).
7432. Del Rio, J. C.; Gutierrez, A.; Hernando, M.; Landin, P.; Romero, J. and Martinez, A. T.: J. Anal. Appl. Pyrolysis, 74 (1-2), 110-115 (2005).
7433. Ikeda, S.; Kanazawa, J.; Gomi, K.; Saito, H. and Ashizawa, T. (Kyowa Hakko Kogyo Co., Ltd., Japan): PCT Int. Appl. WO 96 35,665 (1996); Chem. Abstr., 126, 47095v (1997).
7434. Ikeda, S.; Kimura, U.; Ashizawa, T.; Gomi, K.; Saito, H.; Kasai, M.; Kanazawa, J.; Sasaki, K.; Nukui, E.; Okabe, M. and Sato, S. (Kyowa Hakko Kogyo Co., Ltd., Japan): U.S. US 5,952,355 (1999); Chem. Abstr., 131, 228646z (1999).
7435. Molteni, L.; Trebbi, A.; Vercesi, G. and Signorini, M. (Zabmeletti, Dr. L., S.p.A.): Ger. Offen. 2,344,681 (1974); Chem. Abstr., 81, 3968e (1974).
7436. Domon, L. and Uguen, D.: Tetrahedron Lett., 41 (29), 5501-5505 (2000).
7437. Domon, L.: Ph. D. Thesis, Strasbourg University (1999).
7438. Höfle, G.; Kunze, B.; Zorzin, C. and Reichenbach, H.: Liebigs Ann. Chem., 12, 1883-1904 (1984).
7439. Enders, D.; Geibel, G. and Osborne, S.: Chem.-Eur. J., 6 (8), 1302-1309 (2000); Chem. Abstr., 133, 58649z (2000).
7440. Bellido, I. S.; Pollan, M. S.; Caballero Salvador, E. and Gonzalez, M. S.: Phytochemistry, 24 (11), 2758-2760 (1985).
7441. Gardner, T. S.; Wenis, E. and Lee, J.: J. Org. Chem., 15, 841-849 (1950).
7442. Horie, T.; Tominaga, H.; Kawamura, Y.; Hada, T.; Ueda, N.; Amano, Y. and Yamamoto, S.: J. Med. Chem., 34 (7), 2169-2176 (1991).
7443. Nagao, K. (Osaka Soda Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 62 05,934 [87 05,934] (1987); Chem. Abstr., 107, 58651g (1987).
7444. Nippon Shinyaku Co., Ltd.: Jpn. Tokkyo Koho 81 18,589 (1981); Chem. Abstr., 95, 132516u (1981).
7445. Leonardi, A.; Motta, G.; Riva, C. and Sironi, G. (Recordati Industria Chimica E Farmaceutica Spa; Recordati S. A., Chemical and Pharmaceutical Company, Italy): PCT Int. Appl. WO 01 29,022 (2001); Chem. Abstr., 134, 311230s (2001).
7446. Recordati S. A. Chemical and Pharmaceutical Co.: Brit. 1,343,118 (1974); Chem. Abstr., 80, 120565m (1974).
7447. Takahashi, T. and Oshika, T.: J. Pharm. Soc. Jpn., 74, 48-51 (1954); Chem. Abstr., 49, 1623a (1955).
7448. Buu-Ної, N. P.; Jacquignon, P. and Dufour, M.: Bull. Soc. Chim. Fr., (1), 23-27 (1964).
7449. Brown, G. R.; Eakin, M. A.; Mallion, K. B. and Harrison, P. J. (Harrison Alison; Zeneca Ltd.): PCT Int. Appl. WO 93 20,807 (1993); Chem. Abstr., 120, 163728d (1994).
7450. Marshall, W. S.; Goodson, T.; Cullinan, G. J.; Swanson-Bean, D.; Haisch, K. D.; Rinkema, L. E. and Fleisch, J. H.: J. Med. Chem.; 30 (4), 682-689 (1987).
7451. Baker, W. and Lothian, O. M.: J. Chem. Soc., 274-281 (1936).
7452. Adams, A. D.; Doebber, T. W.; Berger, J. P.; Berger, G. D.; Jones, A. B.; Von Langen, D.; Leibowitz, M. D.; et al. (Merck and Co., Inc.): PCT Int. Appl. WO 97 28,115 (1997); Chem. Abstr., 127, 205350b (1997).
7453. Buckle, D. R. and Smith, H. (Beecham Group Ltd.): U.S. 4,200,577 (1980); Chem. Abstr., 93, 186172f (1980).
7454. Erdtman, H. and Hogberg, H. E.: Tetrahedron Lett., (38), 3389-3392 (1970).
7455. Morris, J.; Wishka, D. G. and Fang, Y.: J. Org. Chem., 57 (24), 6502-6508 (1992).
7456. Dekker, T. G.; Fourie, T. G.; Naude, M. U.; Snyckers, F. O. and Van der Schyf, C. J. (Cent. Res. Lab., Noristan Ltd, Silverton, 0127 S. Afr.): S. Afr. J. Chem., 37 (2), $74-75$ (1984); Chem. Abstr., 101, 151650s (1984).
7457. Fourie, T. G.; Dekker, T. G.; Snyckers, F. O. and Van der Schyf, C. J. (Noristan Ltd.): Eur. Pat. Appl. EP 69,536 (1983); Chem. Abstr., 99, 5339w (1983).
7458. Dekker, T. G.; Fourie, T. G.; Snyckers, F. O. and Van der Schyf, C. J.: Org. Magn. Reson., 22 (9), 607-608 (1984).
7459. Adams, A. D.; Hu, Z.; von Langen, D.; Dadiz, A.; Elbrecht, A.; MacNaul, K. L.; Berger, J. P.; Zhou, G.; Doebber, T. W.; Meurer, R.; Forrest, M. J.; Moller, D. E. and Jones, A. B.: Bioorg. Med. Chem. Lett., 13 (19), 3185-3190 (2003).
7460. Raval, A. A. and Thakor, V. M.: J. Indian Chem. Soc., 38 (7), 421-422 (1961).
7461. Overmyer, C. J.: J. Am. Chem. Soc., 49, 499-509 (1927).
7462. Richtzenhain, H. and Meyer-Delius, M.: Chem. Ber., 81, 81-92 (1948).
7463. Caubere, P. and Guillaumet, G.: C. R. Acad. Sci., Ser. C, 275 (8), 463-465 (1972).
7464. Sawhney, S. N. and Yasin, P. M.: J. Indian Chem. Soc., 42 (5), 312-314 (1965).
7465. Marvell, E. N.; Richardson, B.; Anderson, R.; Stephenson, J. L. and Crandall, T.: J. Org. Chem., 30 (4), 1032-1035 (1965).
7466. Demerseman, P.; Lechartier, J. P.; Reynaud, R.; Cheutin, A.; Royer, R.; Rumpf, P. and Desvoye, M. L.: Bull. Soc. Chim. Fr., (11), 2559-2563 (1963).
7467. Stoughton, R. W.; Baltzly, R. and Bass, A.: J. Am. Chem. Soc., 56, 2007-2008 (1934).
7468. Cousin, S. G. and Lions, F.: J. Proc. R. Soc. N. S. W., 70, 413-427 (1936).
7469. Scammells, P. J.; Baker, S. P. and Beauglehole, A. R.: Bioorg. Med. Chem., 6 (9), 1517-1524 (1998).
7470. Rosenmund, K. W. and Schultz, H.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 265, 308-319 (1927); Chem. Abstr., 21, 1974 (1927).
7471. Wallace, D.; Arrhenius, T.; Russell, A.; Liu, D.; Xing, A.; Tith, S.; Hou, Z. Takahashi, T.; Ono, Y.; Kashiwagi, H.; Shimizu, K. and Ikura, H. (Chugai Seiyaku Kabushiki Kaisha; et al., Japan): PCT Int. Appl. WO 2005 87,700 (2005); Chem. Abstr., 143, 326089n (2005).
7472. De Clercq, M. and Buu-Hoï, N. P.: Compt. rend., 227, 1377-1379 (1948).
7473. Dainippon Pharmaceutical Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 59 44,371 [94 44,371] (1984); Chem. Abstr., 101, 38348m (1984).
7474. Miller, B. and McLaughlin, M. P.: J. Org. Chem., 47 (26), 5204-5207 (1982).
7475. Marshall, W. S.; Sigmund, S. K. and Whitesitt, C. A. (Lilly, Eli, and Co.): U.S. US 4,777,299 (1988); Chem. Abstr., 110, 57310v (1989).
7476. Adams, A. D.; Berger, G. D.; Bergman, J. P.; Berger, J. P.; Han, Wei; Leibowitz, M. D.; Moller, D. E.; Santini, C.; et al. (Merck and Co., Inc., USA): PCT Int. Appl.WO 97 27,857 (1997); Chem. Abstr., 127, 220574w (1997).
7477. Adams, A. D.; Berger, G. D.; Bergman, J. P.; Berger, J. P.; Han-Wei; Leibowitz, M. D.; Moller, D. E.; Santini, C.; Sahoo, S. P.; Tolman, R. L.; Young, J. R. (Merck and Co., Inc., USA): U.S. US 5,859,051 (1999); Chem. Abstr., 130, 124990v (1999).
7478. Adams, A. D.; Berger, J. P.; Berger, G. D.; Fitch, K. J.; Graham, D. W.; Jones, A. B.; Von Langen, D.; et al. (Merck and Co., Inc.): PCT Int. Appl. WO 97 28,137 (1997); Chem. Abstr., 127, 220650t (1997).
7479. Adams, A. D.; Jones, A. B.; Berger, J. P.; Dropinski, J. F.; Elbrecht, A.; Liu, K.; Macnaul, K. L.; Shi, G.-q.; Von, L. D. J. and Zhou, G. (Merck \& Co., Inc., USA): PCT Int. Appl. WO 02 64,094 (2002); Chem. Abstr., 137, 185311r (2002).
7480. Berger, G. D.; Santini, C.; Patchett, A.; Toupence, R. B.; Fitch, K.; Walsh, T. F.; Tolman, R. L.; Sahoo, S. P.; Adams, A.; Von Lagen, D.; Jones, A. B.; Graham, D. W.; Leibowitz, M.; Moller, D. E.; Berger, D. P.: S. African ZA 97 00,824 (1998); (Merck and Co., Inc., USA): Chem. Abstr., 132, 207842r (2000).
7481. Brown, F. J.; Bernstein, P. R.; Cronk, L. A.; Dosset, D. L.; Hebbel, K. C.; Maduskuie, T. P. Jr.; Shapiro, H. S.; Vacek, E. P.; Yee, Y. K.; Willard, A. K.; Krell, R. D. and Snyder, D. W.: J. Med. Chem., 32 (4), 807-826 (1989).
7482. Buckle, D. R.; Outred, D. J.; Ross, J. W.; Smith, H.; Smith, R. J.; Spicer, B. A. and Gasson, B. C.: J. Med. Chem., 22 (2), 158-168 (1979).
7483. Leibowitz, M. D.; Berger, J. P.; Moller, D. E.; Auwers, J.; Berger, G. D.; et al. (Merck and Co., Inc., USA): PCT Int. Appl. WO 97 28,149 (1997); Chem. Abstr., 127, 205566b (1997).
7484. Murai, Junkichi: Science Repts. Saitama Univ., 1A, 139-143 (1954).
7485. Crump, D. R.; Franck, R. W.; Gruska, R.; Ozorio, A. A.; Pagnotta, M.; Siuta, G. J. and White, J. G.: J. Org. Chem., 42 (1), 105-108 (1977).
7486. Knölker, H.-J. and Fröhner, W.: Tetrahedron Lett., 38 (23), 4051-4054 (1997).
7487. Iwamoto, H.; Takuwa, A.; Hamada, K. and Fujiwara, R.: J. Chem. Soc., Perkin Trans. 1, (5), 575-582 (1999).
7488. Berge, D. D. and Kachru, C. N.: J. Indian Chem. Soc., 42 (6), 425-426 (1965).
7489. Funakubo, E. and Murata, K.: J. Chem. Soc. Japan, 63, 1652-1656 (1942); Chem. Abstr., 41, 4122f (1947).
7490. Tanaka, M.; Okita, M.; Miyamoto, M.; Kaneko, T.; Kawahara, T.; Akamatsu, K.; Chiba, K.; Obaishi, H.; Sakurai, H.; Abe, S.; Kobayashi, K. and Yamanaka, T. (Eisai Co., Ltd): Jpn. Kokai Tokkyo Koho JP 09,309,879 [97,309,879] (1997); Chem. Abstr., 128, 88793f (1998).
7491. Tanaka, M.; Okita, M.; Miyamoto, M.; Kaneko, T.; Kawahara, T.; Akamatsu, K.; Chiba, K.; Obaishi, H.; Sakurai, H.; Abe, S.; Kobayashi, S. and Yamanaka, T. (Eisai Co., Ltd): PCT Int. Appl. WO 96 36,608 (1996); Chem. Abstr., 126, 59875n (1997).
7492. Kahar, P. A. and Desai, K. K.: Asian J. Chem., 10 (4), 910-914 (1998); Chem. Abstr., 129, 310083f (1998).
7493. Patel, S. M.; Patel, A. B. and Naik, H. B.: J. Inst. Chem. (India), 53 (1), 49-50 (1981); Chem. Abstr., 94, 202153d (1981).
7494. Desai, A. and Naik, H. B.: J. Inst. Chem. (India), 64 (3), 95 (1992); Chem. Abstr., 119, 84782t (1993).
7495. Desai, A. and Naik, H. B.: J. Inst. Chem. (India), 64 (3), 96 (1992); Chem. Abstr., 119, 84783u (1993).
7496. Desai, A. and Naik, H. B.: J. Inst. Chem. (India), 64 (3), 97 (1992); Chem. Abstr., 119, 108054k (1993).
7497. Forrest, J. E.; Heacock, R. A. and Forrest, T. P.: Can. J. Chem., 52 (22), 3784-3786 (1974).
7498. Martin, H. J.; Drescher, M.; Kählig, H.; Schneider, S. and Mulzer, J.: Angew. Chem. Int. Ed., 40 (17), 3186-3188 (2001).
7499. Mulzer, J.: Personal communication, June 21, 2004.
7500. Kalinin, A. V. and Snieckus, V.: Tetrahedron Lett., 39 (28), 4999-5002 (1998).
7501. Bernardon, J. M. (Galderma Research \& Development, S.N.C., Fr.): PCT Int. Appl.WO 00 26,167 (1998); Chem. Abstr., 132, 334667n (2000).
7502. Kametani, T.; Ogasawara, K.; Kozuka, A. and Nyu, K.: Yakugaku Zasshi, 87 (10), 1189-1194 (1967); Chem. Abstr., 68, 95651d (1968).
7503. Shiue, Gong-Yih; Lin, Shaw-Tao; Kuo, Yueh-Hsiung and Chen, Zong-Shiow: J. Mass. Spectrom., 30 (3), 461-465 (1995).
7504. Cruz, A.; Garduno, L.; Salazar, E.; Jimenez-Vasquez, H. A.; Diaz, F.; Chamorro, G. and Tamariz, J.: Arzneim.-Forsch., 51 (7), 535-544 (2001).
7505. Diaz, F.; Contreras, L.; Flores, R.; Tamariz, J.; Labarrios, F.; Chamorro, G. and Munoz, H.: Org. Prep. Proced. Int., 23 (2), 133-138 (1991).
7506. Högberg, T.; Bengtsson, S.; de Paulis, T.; Johansson, L.; Ström, P.; Hall, H. and Ögren, S. O.: J. Med. Chem., 33 (4), 1155-1163 (1990).
7507. Bargellini, G.: Gazz. Chim. Ital., 41 (1), 43-48 (1911).
7508. Paolini, V.: Gazz. Chim. Ital., 40 (2), 113-116 (1910).
7509. Cruz, A.; Garduno, L.; Salazar, M.; Martinez, E.; Diaz, F.; Chamorro, G. and Tamariz, J.: Med. Chem. Res., 10 (9), 587-595 (2001).
7510. Hu, J. and Feng, X.: Planta Med., 66 (7), 662-664 (2000).
7511. De Oliveira Santos, B. V. and De Oliveira Chaves, M. C.: Biochem. Syst. Ecol., 27 (5), 539-541 (1999).
7512. Joshi, B. P.; Sharma, A. and Sinha, A. K.: Tetrahedron, 61 (12), 3075-3080 (2005).
7513. Batt, D. G.; Goodman, R.; Jones, D. G.; Kerr, J. S.; Mantegna, L. R.; McAllister, C.; Newton, R. C.; Nurnberg, S.; Welch, P. K. and Covington, M. B.: J. med. Chem., 36 (10), 1434-1442 (1993).
7514. Nakazawa, K. and Matsuura, S.: J. Pharm. Soc. Jpn., 74 (11), 1254-1255 (1954); Chem. Abstr., 49, 14669 (1955).
7515. Lafon, L. (Laboratoire L. Lafon): Fr. M2129 (1963); Chem. Abstr., 60, 14439c (1964).
7516. Clark-Lewis, J. W. and Nair, V.: Aust. J. Chem., 20 (10), 2137-2149 (1967).
7517. Huang, C. Q.; Grigoriadis, D. E.; Liu, Z.; McCarthy, J. R.; Ramphal, J.; Webb, T.; Whitten, J. P.; Xie, M. Y. and Chen, C.: Bioorg. Med. Chem. Lett., 14 (9), 2083-2086 (2004).
7518. Mccarthy, J. R.; Xie, Y. F.; Whitten, J. P.; Webb, T. R.; Chen, C.; Ramphal, J. Y.; Grigoriadis, D. E.; Dagnino, R., Jr.; Huang, C. Q.; Liu, Z.; et al. (Neurocrine Biosciences, Inc., USA): PCT Int. Appl. WO 96 39,400 (1996); Chem. Abstr., 126, 131467a (1997).
7519. Magdziarz, T.; Lozowicka, B.; Gieleciak, R.; Bak, A.; Polanski, J. and Chilmonczyk, Z.: Bioorg. Med. Chem., 14 (5), 1630-1643 (2006).
7520. Asahina, Y.; Miyasaka, M. and Sekisawa, T.: Ber. Dtsch. Chem. Ges., 69B, 1643-1646 (1936).
7521. Mauthner, F.: J. Prakt. Chem., 112, 268-272 (1926).
7522. Sharma, A.; Joshi, B. P.; Singh, N. P. and Sinha, A. K.: Tetrahedron, 62 (5), 847-851 (2006).
7523. Biftu, T.; Hazra, B. G. and Stevenson, R.: J. Chem. Soc., Perkin Trans. 1, 2276-2281 (1979).
7524. Azzena, U.; Denurra, T.; Fenude, E.; Melloni, G. and Rassu, G.: Synthesis, (1), 28-30 (1989).
7525. Gutsche, C. D. and Hoyer, F. A.: J. Am. Chem. Soc., 72, 4285-4286 (1950).
7526. American Cyanamid Co.: Neth. Appl. 6,507,692 (1966); Chem. Abstr., 64, 19495i (1966).
7527. Bogert, M. T. and Isham, R. M.: J. Am. Chem. Soc., 36, 514-530 (1914).
7528. Fischer, Hawkins, W. L. and Hibbert, H.: J. Am. Chem. Soc., 62, 1412-1415 (1940).
7529. Barata, L. E. S.; Baker, P. M.; Gottlieb, O. R. and Ruveda, E. A.: Phytochemistry, 17 (4), 783-786 (1978).
7530. Mauthner, F. and Szönyi, G.: J. Prakt. Chem., 92, 194-201 (1915).
7531. Biftu, T.; Hazra, B. G. and Stevenson, R.: J. Chem. Soc., Chem. Commun., (12), 491-492 (1978).
7532. Evstigneyev, E.; Maiyorova, H. and Platonov, A.: J. Wood Chem. Technol., 19 (4), 379-407 (1999); Chem. Abstr., 132, 37133r (2000).
7533. Goyal, S.; Mohakhud, P. K.; Ray, J. A.; Rastogi, V. K. and Parthasarathy, M. R.: Indian J. Chem., Sect. B, 34B (2), 87-92 (1995).
7534. Hadfield, J. A.; Gaukroger, K.; Hirst, N.; Weston, A. P.; Lawrence, A. T. and MdGown, A. T.: Eur. J. Med. Chem, 40 (6), 529-541 (2005).
7535. Hobbs, J. J. and King, F. E.: J. Chem. Soc., 4732-4738 (1960).
7536. Ikeda, S.; Kimura, U.; Ashizawa, T.; Gomi, K. and Saito, H.: (Kyowa Hakko Kogyo Kk, Japan): Jpn. 08,277,242 [96,277,242] (1996); Chem. Abstr., 126, 47091r (1997).
7537. Taylor, H. L. and Hauser, C. R.: J. Am. Chem. Soc., 82, 1960-1965 (1960).
7538. Van Heyningen, E.; Brown, C. N.; José, F.; Henderson, J. K. and Stark, P.: J. Med. Chem., 9, 675-681 (1966).
7539. Zacchino, S. A.; Lopez, S. N.; Pezzenati, D.; Furlan, R. L.; Santecchia, C. B.; Munoz, L.; Giannini, F. A.; Rodriguez, A. M. and Enriz, R. D.: J. Nat. Prod., 62 (10), 1353-1357 (1999).
7540. Instituto de Angeli Societa per Azioni, Fr. M2976 (1965); Chem. Abstr., 62, 14574h (1965).
7541. Bargellini, G.: Gazz. Chim. Ital., 45 (1), 85-90 (1915).
7542. Raychaudhuri, S.; Seshadri, T. R. and Mukerjee, S. K.: Indian J. Chem., 11 (12), 12281230 (1973).
7543. Rizzi, G. P.: Synth. Commun., 13 (14), 1173-1179 (1983).
7544. Shaikh, Y. A. and Trivedi, K. N.: J. Indian Chem. Soc., 50 (6), 434-435 (1973).
7545. Shaikh, Y. A. and Trivedi, K. N.: Indian J. Chem., 12 (12), 1262-1263 (1974).
7546. Horie, N. and Yamamoto, S. (Otsuka Pharmaceutical Factory, Inc.): Jpn. Kokai Tokkyo Koho JP 03,218,369 [91,218,369] (1991); Chem. Abstr., 116, 41190u (1992).
7547. Jain, N.; Gambhir, G. and Krishnamurty, H. G.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 40B (4), 278-283 (2001).
7548. Ayyangar, N. R.; Khan, R. A. and Deshpande, V. H.: Tetrahedron Lett., 29 (19), 2347-2348 (1988).
7549. Baker, W.: J. Chem. Soc., 662-670 (1941).
7550. El-Sayed, M.; Mansour, O. Y.; Selim, I. Z. and Ibrahim, M. M.: J. Sci. Ind. Res., 60 (9), 738-747 (2001); Chem. Abstr., 136, 249208b (2002).
7551. Stasko, A.; Tkac, A.; Malik, L.; Adamcik, V. and Hronec, M.: Chem. Zvesti, 32 (3), 294-301 (1978); Chem. Abstr., 90, 151171r (1979).
7552. Bisht, K. S.; Tyagi, O. D.; Prasad, A. K.; Sharma, N. K.; Gupta, S. and Parmar, V.: Bioorg. Med. Chem., 2 (10), 1015-1020 (1994).
7553. Bisht, K. S.; Tyagi, O. D.; Prasad, A. K.; Sharma, N. K.; Gupta, S. and Parmar, V. S.: Bioorg. Med. Chem., 3 (7), 997 (1995).
7554. Varsanyi, G.; Horvath, G.; Imre, L.; Schawartz, J.; Sohar, P. and Soti, F.: Acta Chim. Acad. Sci. Hung., 93 (3-4), 315-355 (1977); Chem. Abstr., 89, 23271r (1978).
7555. Parmar, V. S.; Khanduri, C. H.; Tyagi, O. D.; Prasad, A. K.; Gupta, S.; Bisht, K. S.; Pati, H. N. and Sharma, N. K.: Indian J. Chem., Sect B, 31B (12), 925-929 (1992).
7556. Dijkstra, P. J.; Den Hertog, H. J., Jr.; Van Steen, B. J.; Zijlstra, S.; Skowronska-Ptasinska, M.; Reinhoudt, D. N.; Van Eerden, J. and Harkema, S.: J. Org. Chem., 52 (12), 2433-2442 (1987).
7557. Buu-Hoї, N. P.; Richert, M. T.; Krikorian, A.; Dufour, M. and Jacquignon, P.: Chim. Ther., (1), 23-25 (1965); Chem. Abstr., 64, 17464h (1966).
7558. Suzuki, Y.; Ito, K.; Sasaki, A.; Ueno, K.; Sakai, M.; Ishihara, H. and Kubota, A. (Eisai Co., Ltd., Japan): PCT Int. Appl. WO 2005 108,389 (2005); Chem. Abstr., 143, 477957v (2005).
7559. Ito, Y.; Kato, H.; Etsuchu, E.; Ogawa, N. and Mitani, K. (Hokuriku Pharmaceutical Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 61 15,880 [86 15,880] (1986); Chem. Abstr., 104, 224780h (1986).
7560. Martin, R. and Betoux, J.-M.: Bull. Soc. Chim. Fr., (10), 3648-3658 (1971).
7561. Martin, R.: Thèse de Docteur-ès-Sciences, Paris, (1972).
7562. Tiwari, S. S. and Singh, A.: J. Indian Chem. Soc., 34 (11), 830-832 (1957).
7563. Tiwari, S. S. and Tripathi, B. N.: J. Indian Chem. Soc., 33 (3), 211-213 (1956).
7564. Dillard, R. D.; Carr, F. P.; McCullough, D.; Haisch, K. D.; Rinkema, L. E. and Fleisch, J. H.: J. Med. Chem., 30 (5), 911-918 (1987).
7565. Whitesitt, C. A.; Simon, R. L.; Reel, J. K.; Sigmund, S. K.; Phillips, M. L.; Shadle, J. K.; Heinz, L. J.; Koppel, G. A.; Hunden, D. C.; Lifer, S. L.; Berry, D.; Ray, J.; Little, S. P.; Liu, X.; Marshall, W. S. and Panetta, J. A.: Bioorg. Med. Chem. Lett., 6 (18), 2157-2162 (1996).
7566. Halbrook, J.; Kesicki, E.; Burgess, L. E.; Schlachter, S. T.; Eary, C. T.; Schiro, J. G.; Huang, H.; Evans, M. and Han, Y. (Icos Corporation, USA): PCT Int. Appl.WO 02 20,500 (2002); Chem. Abstr., 136, 247591x (2002).
7567. Miyamoto, T.; Mohri, T.; Shigeoka, S.; Itoh, H. and Hayashi, M. (Ono Pharmaceutical Co., Ltd.): Eur. Pat. Appl. EP 65,874 (1982); Chem. Abstr., 98, 143114z (1983).
7568. Talati, J. D. and Shah, S. S.: Acta Cienc. Indica, Chem., 27 (2), 63-66 (2001); Chem. Abstr., 137, 114647u (2002).
7569. Talati, J. D. and Shah, S. S.: Asian J. Chem., 8 (3), 443-448 (1996); Chem. Abstr., 125, 264437s (1996).
7570. Kondo, T.; Niimi, M.; Nomura, M.; Wada, K. and Mitsudo, T.: Tetrahedron Lett., 48 (16), 2837-2839 (2007).
7571. Martin, R. and Betoux, J.-M.: C. R. Acad. Sci., 270, 1243-1246 (1970).
7572. Martin, R.; Betoux, J.-M. and Coton, G.: C. R. Acad. Sci., 271, 760-762 (1970).
7573. Sen, A. B. and Kakaji, T. N.: J. Indian Chem. Soc., 29 (12), 950-954 (1952).
7574. Martin, R.: Bull. Soc. Chim. Fr., (5-6), 983-988 (1974).
7575. Martin, R.: Bull. Soc. Chim. Fr., (7-8), 1519-1522 (1974).
7576. Martin, R.: Bull. Soc. Chim. Fr., (7-8), 1523-1527 (1974).
7577. Martin, R.: Organic Preparations and Procedures International (OPPI) 24, 369-435 (1992).
7578. Sen, A. B. and Parmar, S. S.: J. Indian Chem. Soc., 30 (1), 61-63 (1953).
7579. Sen, A. B.; Tiwari, S. S. and Parmar, S. S.: J. Indian Chem. Soc., 29 (6), 407-408 (1952).
7580. Strubell, W.: Acta Chim. Acad. Sci. Hung., 24, 475-478 (1960).
7581. Strubell, W. and Baumgärtel, H.: J. Prakt. Chem., 9, 213-216 (1959).
7582. Weiss, P.: J. Am. Chem. Soc., 70, 3524 (1948).
7583. Royer, R. and Bisagni, E.: Bull. Soc. Chim. Fr., 486-492 (1954).
7584. Schrader, G. and Hammann, I. (Farbenfabriken Bayer A.-G.): Ger. Offen. 2,050,091 (1972); Chem. Abstr., 77, 34147h (1972).
7585. Royer, R.; Cheutin, A.; Routier, C. and Rips, R.: Bull. Soc. Chim. Fr., 1297-1302 (1956).
7586. Rosenmund, K. W. and Wha, C.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 266, 407-411 (1928).
7587. John, H. and Beetz, P.: J. Prakt. Chem., 143, 342-346 (1935).
7588. Royer, R.; Demerseman, P. and Cheutin, A.: Bull. Soc. Chim. Fr., (2), 275-277 (1960).
7589. Scherer, O. and Habicht, H. (to Farbwerke Hoechst A.-G.): U.S. 3,335,164 (1967); Chem. Abstr., 68, 12709e (1968).
7590. Scherer, O. and Habicht, H. (to Farbwerke Hoechst A.-G.): Ger. 1,163,079 (1964); Chem. Abstr., 60, 11315f (1964).
7591. Keumi, T.; Matsuura, K.; Nakayama, N.; Tsubota, T.; Morita, T.; Takahashi, I. and Kitajima, H.: Tetrahedron, 49 (3), 537-556 (1993).
7592. Keumi, T.; Morita, T.; Korome, K.; Ikeda, M. and Kitajima, H.: Nippon Kagaku Kaishi, 11, 1785-1790 (1982).
7593. Suzuki, H.: Nippon Kagaku Zasshi, 91, 484-489 (1970).
7594. Parikh, K. S.: Acta Ciencia Indica, Chemistry, 29 (1), 37-40 (2003); Chem. Abstr., 140, 104013 g (2004).
7595. Talati, J. D. and Shah, S. S.: Acta Cienc. Indica, Chem., 20 (1), 14-18 (1994); Chem. Abstr., 125, 96356u (1996).
7596. Talati, J. D. and Parikh, K. S.: J. Inst. Chem. (India), 65 (3), $84-85$ (1993); Chem. Abstr., 122, 150342q (1995).
7597. Talati, J. D. and Parikh, K. S.: Orient. J. Chem., 10 (3), 205-208 (1994); Chem. Abstr., 123, 159645u (1995).
7598. Talati, J. D.; Patel, P. K. and Parikh, K. S.: Acta Cienc. Indica Chem., 21 (1), 1-6 (1995); Chem. Abstr., 125, 74852a (1996).
7599. Patel, P. K.: J. Inst. Chem. (India), 73 (5), 185-186 (2001); Chem. Abstr., 137, 149415u (2002).
7600. Purohit, K. and Desai, K. K.: Acta Ciencia Indica, Chemistry, 31 (4), 329-331 (2005); Chem. Abstr., 145, 347378n (2006).
7601. Sassa, T.; Aoki, H. and Munakata, K.: Tetrahedron Lett., 54, 5703-5705 (1968).
7602. Kanzaki Paper Mfg. Co., Ltd. Sanko Kaihatsu Kagaku Kenkyusho: Jpn. Kokai Tokkyo Koho JP 59,176,093 [84,176,093] (1984); Chem. Abstr., 102, 103695j (1985).
7603. Sanko Kaihatsu Kagaku Kenkyusho Kanzaki Paper Mfg. Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 59,175,448 [84,175,448] (1984); Chem. Abstr., 102, 113043j (1985).
7604. Labanauskas, L.; Brukstus, A.; Udrenaite, E.; Bucinskaite, V.; Susvilo, I. and Urbelis, G.: Farmaco, 60 (3), 203-207 (2005).
7605. Peng, H.; Zhao, C. and Gong, Y.: Gaodeng Xuexiao Huaxue Xuebao, 14 (10), 1380-1382 (1993); Chem. Abstr., 120, 216848 b (1994).
7606. Johnson, W. S.; Shenvi, A. B. and Boots, S. G.: Tetrahedron, 38 (10), 1397-1404 (1982).
7607. Adler, E. and Stenemur, B.: Chem. Ber., 89, 291-303 (1956).
7608. Cizmarikova, R. and Tumova, I. (Farmaceuticka fakulta UK, Slovakia): SlovakiaSK 278,124 (1996); Chem. Abstr., 126, 157279r (1997).
7609. Cizmarikova, R., Blesova, M. and Cizmarik, J.: Acta Fac. Pharm. Univ. Comenianae, 45, 137-150 (1991); Chem. Abstr., 115, 279534p (1991).
7610. Cizmarikova, R., Borovansky, A.; Kozlovansky, J.; Svec, P.; Bederova, E. and Dingova, A.: Czech. CS 238,983 (1987); Chem. Abstr., 108, 204325t (1988).
7611. Coton, G. and Martin, R.: C. R. Acad. Sci., Ser. C, 282, 1005-1007 (1976).
7612. Beger, J.; Poeschmann, C.; Grupe, R.; Ziska, T.; Faust, G. and Laban, G.: Ger. Offen. DE 4,136,778 (1993); Chem. Abstr., 119, 138878z (1993).
7613. Moir, M. and Thomson, R. H.: Phytochemistry, 12 (10), 2501-2503 (1973).
7614. Kahovcova, J.; Krecek, J.; Hrdy, I.; Romanuk, M.; Bennettova, B. and Nemec, V.: Cezch. CS 252,601 (1988); Chem. Abstr., 110, 57425m (1989).
7615. Parmar, V. S.; Sharma, N. K.; Husain, M.; Watterson, A. C.; Kumar, J.; Samuelson, L. A.; Cholli, A. L.; Prasad, A. K.; Kumar, A.; Malhotra, S.; Kumar, N.; Jha, A.; Singh, A.; Singh, I.; Himanshu; Vats, A.; Shakil, N. A.; Trikha, S.; Mukherjee, S.; Sharma, S. K.; Singh, S. K.; Kumar, A.; Jha, H. N.; Olsen, C. E.; Stove, C. P.; Bracke, M. E. and Mareel, M. M.: Bioorganic \& Medicinal Chemistry, 11 (6), 913-929 (2003).
7616. Cizmarikova, R. and Cizmarik, J.: Czech. CS 269,563 (1991); Chem. Abstr., 115, 279591e (1991).
7617. Dainippon Ink Chemicals, Inc. Kawamura Physical and Chemical Research Institute: Jpn. Kokai Tokkyo Koho JP 58 88,340 [83 88,340] (1983); Chem. Abstr., 99, 122052h (1983).
7618. Dainippon Ink Chemicals, Inc. Kawamura Physical and Chemical Research Institute: Jpn. Kokai Tokkyo Koho JP 58,105,935 [83,105,935] (1983); Chem. Abstr., 99, 194622s (1983).
7619. Dainippon Ink Chemicals, Inc. Kawamura Physical and Chemical Research Institute: Jpn. Kokai Tokkyo Koho JP 58,126,833 [83,126,833] (1983); Chem. Abstr., 100, 22418c (1984).
7620. Bohlmann, F. and Suwita, A.: Phytochemistry, 17 (11), 1929-1934 (1978).
7621. Chen, H. Y.; Dykstra, K. D.; Birzin, E. T.; Frisch, K.; Chan, W.; Yang, Y. T.; Mosley, R. T.; DiNinno, F.; Rohrer, S. P.; Schaeffer, J. M. and Hammond, M. L.: Bioorg. Med. Chem. Lett., 14 (6), 1417-1421 (2004).
7622. Sharma, A. P.; Saeed, A.; Durani, S. and Kapil, R. S.: J. Med. Chem., 33, 3222-3229 (1990).
7623. Draper, R. W.; Hu, B.; Iyer, R. V.; Li, X.; Lu, Y., Rahman, M. and Vater, E. J.: Tetrahedron, 56 (13), 1811-1817 (2000).
7624. Mizobuchi, S. (Kirin Brewery Co., Ltd.): Jpn. Kokai Tokkyo Koho 79 03,030 (1979); Chem. Abstr., 90, 151819h (1979).
7625. Mizobuchi, S. (Kirin Brewery Co., Ltd.): Jpn. Kokai Tokkyo Koho 80 15,443 (1980); Chem. Abstr., 93, 71294e (1980).
7626. De Antoni, J.; Eche, R. and Potherat, J. J. (Laboratoires Bruneau et Cie): Ger. Offen. 2,647,866 (1977); Chem. Abstr., 87, 134495v (1977).
7627. Perrin, C. and Martin, R.: Chim. Anal. (Paris), 53 (12), 772-775 (1971).
7628. Postovskii, I. Ya.; Novikova, A. P.; Chechulina, L. A. and Lyubomudrova, L. N.: Tr. Inst. Khim. Ural. Nauchn. Tsentr, Akad. Nauk SSSR, 37, 24-28 (1978); Chem. Abstr., 92, 128829u (1980).
7629. Power, M. B.; Bott, S. G.; Bishop, E. J.; Tierce, K. D.; Atwood, J. L. and Barron, A. R.: J. Chem. Soc., Dalton Trans., (2), 241-247 (1991).
7630. Klein, H.-F.; Bickelhaupt, A.; Lemke, M.; Sun, H.; Brand, A.; Jung, T.; Roehr, C.; Floerke, U. and Haupt, H.-J.: Organometallics, 16 (4), 668-676 (1997).
7631. Tiwari, S. S. and Tewari, B. N.: J. Indian Chem. Soc., 31 (1), $79-82$ (1954).
7632. Bois, C. and Martin, R.: Acta Cryst., C48, 2060-2061 (1992).
7633. Mueller, H.; Fruhstorfer, W.; Schulte, K.; Gillissen, J.; Enenkel, H. J. and Friebel, H. (Merck Patent G.m.b.H.): Ger. 1,493,961 (1974); Chem. Abstr., 80, 133004c (1974).
7634. Suzuki, Y.; Hasegawa, Y.; Sato, M.; Yamamoto, N.; Hasumi, K.; Shidara, K.; Miyasaka, K.; Kenjo, T.; Miyazawa, K.; et al. (Teikoku Hormone Mfg. Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 03,188,064 [91,188,064]; Chem. Abstr., 115, 279809g (1991).
7635. Edwards, J. D., Jr. and Cashaw, J. L.: J. Am. Chem. Soc., 78 (13), 3821-3824 (1956).
7636. Cairns, H.; Hunter, D.; King, J. and Rogers, N. H.: Tetrahedron, 30 (1), 79-84 (1974).
7637. Cairns, H.; Chambers, A. and Lee, T. B. (Fisons Ltd.): Brit. 1,368,244 (1974); Chem. Abstr., 82, 43056h (1975).
7638. Cairns, H.; Chambers, A. and Lee, T. B. (Fisons Ltd.): Ger. Offen. 2,142,526 (1972); Chem. Abstr., 77, 34338w (1972).
7639. Mani, R.; Herbert, L. and Manise, D.: J. Tenn. Acad. Sci., 66 (1), 1-8 (1991); Chem. Abstr., 114, 163805c (1991).
7640. Sato, K.; Yamamura, H.; Wada, T.; Murakami, Y.; Okada, M. and Takeuchi, M. (Hokko Chemical Industry Co., Ltd.; Chugai Pharmaceutical Co., Ltd.): Japan Kokai 78 18,726 (1978); Chem. Abstr., 89, 101863b (1978).
7641. Aige, H. (Ono Pharmaceutical Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 62 59,209[87 59,209] (1987); Chem. Abstr., 106, 219636c (1987).
7642. Ashraf, M.; Kobayashi, H. and Rahamathulla, P. M.: Am. J. Cardiovasc. Pathol., 2 (4), 351-364 (1989); Chem. Abstr., 111, 146582y (1989).
7643. Cheeseman, K. H.: IRCS Med. Sci., 12 (4), 306-307 (1984); Chem. Abstr., 101, 369f (1984).
7644. Dascombe, M. J.: Therm. Balance Health Dis., 449-454 (1994); Chem. Abstr., 122, 230325b (1995).
7645. Harada, Y. and Katori, M.: Int. Congr. Ser. - Excerpta Med., 623 (Perspect. Prostaglandin Res.), 106-111 (1983); Chem. Abstr., 100, 186408a (1984).
7646. Harada, Y.; Tanaka, K. and Katori, M.: Prostaglandins, 28 (3), 367-381 (1984).
7647. Johshita, H.; Asano, T.; Hanamura, T. and Takakura, K.: Stroke (Dallas), 20 (6), 788-794 (1989); Chem. Abstr., 111, 55188h (1989).
7648. Kin, J.; Sasaya, H. and Inaba, M. (Ono Pharmaceutical Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 63 48,226 [88 48,226] (1988); Chem. Abstr., 110, 82491n (1989).
7649. Kobayashi, H.; Ashraf, M.; Rahamathulia, M.; Kobayashi, K. and Schwartz, A.: Jpn. Circ. J., 51 (4), 421-430 (1987); Chem. Abstr., 107, 228773t (1987).
7650. Matsuda, T.; Onda, M.; Miyashita, M. and Matsuda, N.: Nippon Ika Daigaku Zasshi, 62 (2), 150-160 (1995); Chem. Abstr., 123, 320n (1995).
7651. Ogiso, H.: Tokyo Ika Daigaku Zasshi, 46 (4), 695-702 (1988); Chem. Abstr., 110, 51107n (1989).
7652. Rainsford, K. D.: J. Pharm. Pharmacol., 41 (2), 112-117 (1989).
7653. Shapiro, H. K.: PCT Int. Appl. WO 9501,096 (1995); Chem. Abstr., 123, 102794n (1995).
7654. Cheeseman, K. H. and Forni, L. G.: Biochem. Pharmacol., 37 (21), 4225-4233 (1988).
7655. Aishita, H.; Morimura, T.; Obata, T.; Miura, Y.; Miyamoto, T.; Tsuboshima, M. and Mizushima, Y.: Arch. Int. Pharmacodyn. Ther., 261 (2), 316-327 (1983); Chem. Abstr., 99, 32885c (1983).
7656. Azuma, Y.; Yokoyama, T.; Ozasa, N.; Ogawa, T. and Takagi, N.: Shika Kiso Igakkai Zasshi, 26 (4), 1072-1077 (1984); Chem. Abstr., 102, 142917c (1985).
7657. Kimura, Y.; Iyengar, J.; Engelman, R. M. and Das, D. K.: J. Cardiovasc. Pharmacol., 16 (6), 992-999 (1990); Chem. Abstr., 114, 74948j (1991).
7658. Momma, K. and Takeuchi, H.: Adv. Prostaglandin, Thromboxane, Leukotriene Res., 12, 499-503 (1983); Chem. Abstr., 98, 209691u (1983).
7659. Momma, K. and Takeuchi, H.: Prostaglandins, 26 (4), 631-643 (1983); Chem. Abstr., 100, 17373e (1984).
7660. Rin, K.; Nakagawa, M. and Ijichi, H.: Ketsueki to Myakkan, 18 (3), 232-235 (1987); Chem. Abstr., 108, 68662w (1988).
7661. Maezawa, H.; Spear, R. and Eich, R. H.: Dokkyo J. Med., 17 (2), 85-92 (1990); Chem. Abstr., 115, 105706f (1991).
7662. Higashino, H.; Kumode, M. and Suzuki, A.: Kinki Daigaku Igaku Zasshi, 11 (4, Suppl.), 55-57 (1986); Chem. Abstr., 108, 31665y (1988).
7663. Azuma, Y.; Tokunaga, T.; Yokoyama, T.; Ozasa, N. and Takagi, N.: Shika Kiso Igakkai Zasshi, 26 (4), 1347-1349 (1984); Chem. Abstr., 102, 197670x (1985).
7664. Kitamura, Y.; Nara, S.; Nakagawa, H.; Nakatsu, R.; Nakashima, T.; Soga, S.; Kajita, J.; Shiotsu, Y. and Kanda, Y. (Kyowa Hakko Kogyo Co., Japan): PCT Int. Appl. WO 2005 63,222 (2005); Chem. Abstr., 143, 146661j (2005).
7665. Undavia, N. K.; Dhanani, M. L. and Thaker, K. A.: J. Inst. Chem. (India), 50 (1), 38-40 (1978); Chem. Abstr., 89, 108476m (1978).
7666. Havens, C. B. and Brookens, R. G. (to Dow Chemical Co.): U.S. 3,048,637 (1962); Chem. Abstr., 58, 3359a (1963).
7667. Botros, R. (American Color and Chemical Corp.): Ger. Offen. 2,714,664 (1977); Chem. Abstr., 88, 75300y (1978).
7668. Harris, S. E. and Christiansen, W. G.: J. Am. Pharm. Assoc., 23, 530-536 (1934).
7669. Harris, S. and Pierce, J. S.: J. Am. Chem. Soc., 62, 2223-2225 (1940).
7670. Christiansen, W. G. Harris, S. E. and Lee, J. (to E. R. Squibb \& Sons): U. S. 2,073,683 (1937); Chem. Abstr., 31, 3640^{9} (1937).
7671. Bradsher, C. K.; Brown, F. C. and Porter, H. K.: J. Am. Chem. Soc., 76, 2357-2362 (1954).
7672. Lacey, R. N.: J. Chem. Soc., 3153-3160 (1960).
7673. Havens, C. B. (to Dow Chemical Co.): U.S. 2,977,335 (1961); Chem. Abstr., 55, 17101f (1961).
7674. Buu-Hoї, N. P.; Xuong, N. D. and Van Thang, K.: Recl. Trav. Chim. Pays-Bas, 72, 774-780 (1953).
7675. Trave, R. and Bianchetti, G.: Atti. accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 11 (8), 211-218 (1951).
7676. Auwers, K. and Wittig, G.: J. Prakt. Chem., 108, 99-112 (1924).
7677. Buu-Hoї, N. P. and Sy, M.: J. Org. Chem., 21, 136-138 (1956).
7678. Holzl, W.; Haap, W.; Ochs, D.; Puchtler, K.; Schnyder, M.; Kulkarni, S. U.; Radhakrishna, A. S.; Sawant, M. S. and Mahtre, A. B. (Ciba Speciality Chemicals Holding Inc., Switzerland): Eur. Pat. Appl. EP 1,053,989 (2000); Chem. Abstr., 133, 362617k (2000).
7679. Forestier, S. and Courbiere, C. (L'Oreal, Fr.): PCT Int. Appl. WO 03 2,072 (2003); Chem. Abstr., 138, 78166w (2003).
7680. Forestier, S. and Courbiere, C. (L'Oreal, Fr.): PCT Int. Appl. WO 03 2,078 (2003); Chem. Abstr., 138, 78167x (2003).
7681. Forestier, S. and Courbiere, C. (L'Oreal, Fr.): PCT Int. Appl. WO 03 2,079 (2003); Chem. Abstr., 138, 78168y (2003).
7682. Forestier, S. and Courbiere, C. (L'Oreal, Fr.): PCT Int. Appl. WO 03 2,080 (2003); Chem. Abstr., 138, 78169z (2003).
7683. Forestier, S. and Courbiere, C. (L'Oreal, Fr.): PCT Int. Appl. WO 03 2,081 (2003); Chem. Abstr., 138, 78170t (2003).
7684. Buckle, D. R. and Smith, H. (Beecham Group Ltd.): Ger. Offen. 2,642,248 (1977); Chem. Abstr., 87, 53082f (1977).
7685. Tankred, S.; Hartmut, K.; Rapoport, S. M.; Binte, H. J.; Beger, J.; Slapke, J. and Grupe, R.: Eur. Pat. Appl. EP 149,242 (1985); Chem. Abstr., 104, 129637h (1986).
7686. Buenger, J.; Axt, A. and Horstmann, S. (Merck Patent G.m.b.H., Germany): Eur. Pat. Appl. EP 1,566,175 (2005); Chem. Abstr., 143, 235454m (2005).
7687. Schewe, T.; Kühn, H.; Rapoport, S. M.; Binte, H. J.; Berger, J.; Slapke, J. and Grupe, R.: EP 149,242 (1985); Chem. Abstr., 104, 129637h (1986).
7688. Schewe, T.; Kühn, H.; Berger, J.; Grupe, R.; Rapoport, S. M.; Binte, H. J. and Slapke, J. (Humboldt-Universität zu Berlin): Jpn. Kokai Tokkyo Koho JP 61,229,858 [86,229,858] (1986); Chem. Abstr., 107, 175664z (1987).
7689. Cizmarikova, R. and Miskova, E.: Czech. CS 275,623 (1992); Chem. Abstr., 120, 269842b (1994).
7690. Stephenson, O.: J. Chem. Soc., 1571-1577 (1954).
7691. Da Re, P.; Verlicchi, L. and Setnikar, I.: J. Med. Chem., 10 (2), 266-270 (1967).
7692. Fukuyama, T.; Yamaura, R.; Higashibeppu, Y.; Okamura, T.; Ryu, I.; Kondo, T. and Mitsudo, T.: Org. Lett., 7 (26), 5781-5783 (2005).
7693. Funakubo, E. and Nakada, S.: J. Chem. Soc. Japan, 63, 1639-1645 (1942); Chem. Abstr., 41, 4122d (1947).
7694. Worden, L. R. (Kalamazoo Spice Extraction Co.): Ger. Offen. 2,415,679 (1974); Chem. Abstr., 82, 86128a (1975).
7695. Buu-Hoï, N. P. and Petit, L.: J. Org. Chem., 24, 39-41 (1959).
7696. Kourist, R.; Gonzalez-Sabin, J.; Liz, R. and Rebolledo, F.: Adv. Synth. Catal., 347 (5), 695-702 (2005).
7697. Brockmann, H. and Müller, K.: Justus Liebigs Ann. Chem., 540, 51-72 (1939).
7698. Buu-Hoï, N. P.; Eckert, B. and Demerseman, P.: J. Org. Chem., 19, 726-732 (1954).
7699. Wojahn, H.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 271, 417-431 (1933).
7700. Grasshoff, J. M.; Marshall, J. L.; Minns, R. A.; Ramos, S. M.; Stroud, S. G.; Telfer, S. J.; Yang, H.; Boggs, R. A. and Kolb, E. S. (Polaroid Corporation, USA): PCT Int. Appl. WO 98 24,000 (1998); Chem. Abstr., 129, 74063b (1998).
7701. Grasshoff, J. M.; Marshall, J. L.; Minns, R. A.; Ramos, S. M.; Stroud, S. G.; Telfer, S. J.; Yang, H.; Boggs, R. A. and Kolb, E. S. (Polaroid Corporation, USA): U.S. US 5,914,213 (1999); Chem. Abstr., 131, 52061p (1999).
7702. Marshall, J. L.: (Polaroid Corporation, USA): U.S. US 6,015,907 (2000); Chem. Abstr., 132, 94655 m (2000).
7703. Mullaji, B. Z. and Shah, R. C.: Proc. Indian Acad. Sci., 34A (2), 88-96 (1951).
7704. Rudenko, A. P.; Salfetnikova, Y. N. and Vasil'ev, A. V.: Zh. Org. Khim., 32 (10), 14991521 (1996).
7705. Stevenson, R. and Williams, J. R.: Org. Prep. Proced. Int., 8 (4), 179-183 (1976).
7706. Lindberg, J. J.; Penttinen, K. and Sundholm, F.: Pap. Puu, 51 (11), 823-825, 827-828, 844 (1969); Chem. Abstr., 72, 56873r (1970).
7707. Kreighbaum, W. E. and Comer, W. T. (Mead Johnson and Co.): U.S. US 4,343,940 (1982); Chem. Abstr., 97, 216212w (1982).
7708. Takeda, M.; Yamazaki, Y. and Kigawa, M. (Tsumura \& Co., Japan): PCT Int. Appl. WO 96 38,412 (1996); Chem. Abstr., 126, 89251y (1997).
7709. Nagashima, A. and Uenishi, K. (Fuji Photo Film Co., Ltd.): Jpn. Kokai Tokkyo KohoJP 03,239,261 [91,239,261] (1991); Chem. Abstr., 118, 136265c (1993).
7710. Uenishi, K.; Kawabe, Y. and Kokubo, T. (Fuji Photo Film Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 01,309,052 [89,309,052] (1989); Chem. Abstr., 113, 68417y (1990).
7711. Stasko, A.; Malik, L.; Tkac, A.; Adamcik, V. and Hronec, M.: Org. Magn. Reson., 9 (5), 269-275 (1977).
7712. Martin, R.; Betoux, J.-M. and Coton, G.: Bull. Soc. Chim. Fr., (12), 4694-4698 (1972).
7713. Brunow, G.: Acta Chem. Scand., 23 (7), 2537-2539 (1969).
7714. Cook, C. D. and Gilmour, N. D.: J. Org. Chem., 25, 1429-1431 (1960).
7715. Portnykh, N. V.; Volodd'kin, A. A. and Ershov, V. V.: Izv. Akad. Nauk SSSR, Ser. Khim., (12), 2243-2244 (1966); Chem. Abstr., 66, 85580z (1967).
7716. Suda, H.; Kanoh, S.; Hasegawa, H. and Motoi, M.: Kanazawa Daigaku Kogakubu Kiyo, 15 (1), 71-74 (1982); Chem. Abstr., 97, 197910d (1982).
7717. Moore, G. G. I. (Riker Laboratories, Inc.): U.S. 4,130,666 (1978); Chem. Abstr., 90, 121219 v (1979).
7718. Hamada, J. and Fujisaki, T.: Nippon Kagaku Zasshi, 82, 902-904 (1961); Chem. Abstr., 58, $11256 f$ (1963).
7719. Hamada, J. and Fujisaki, T.: Nippon Kagaku Zasshi, 82, 898-901 (1961); Chem. Abstr., 59, 496h (1963).
7720. Brunow, G. and Karhu, M.: Acta Chem. Scand., Ser. B, B34 (10), 777-778 (1980).
7721. Karhu, M.: J. Chem. Soc., Perkin Trans. 1, (7), 1595-1598 (1980).
7722. Hey, M. E. and Waters, W. A.: J. Chem. Soc., 2753-2755 (1955).
7723. Bannikov, G. F.; Nikiforov, G. A. and Ershov, V. V.: Izv. Akad. Nauk SSSR, Ser. Khim., (6), 1408-1410 (1985); Chem. Abstr., 104, 168070n (1986).
7724. Chabrier De Lassauniere, P.-E.; Harnett, J.; Bigg, D.; Liberatore, A.-M.; Pommier, J.; Lannoy, J. and Thurieau, C.: U.S. Pat. Appl. Publ. US 2004 132,788 (2004); Chem. Abstr., 141, 106475d (2004).
7725. Haga, T.; Fukutani, H.; Nagasaka, H.; Imai, Y. and Nishimura, A. (Mitsubishi Chemical Industries Co., Ltd.): Japan Kokai 74 29,293 (1974); Chem. Abstr., 82, 87117h (1975).
7726. Nikiforov, G. A.; Volod’kin, A. A. and Dyumaev, K. M.: Izv. Akad. Nauk SSSR, Ser. Khim., (9), 1661-1666 (1964); Chem. Abstr., 62, 465 f (1965).
7727. Nishinaga, A.; Shimizu, T.; Toyoda, Y.; Matsuura, T. and Hirotsu, K.: J. Org. Chem., 47 (12), 2278-2285 (1982).
7728. Nishinaga, A.; Yamazaki, S.; Nogusa, H.; Shimoyama, T. and Matsuura, T.; Nippon Kagaku Kaishi, (3), 378-386 (1985); Chem. Abstr., 103, 214929d (1985).
7729. Thorwart, W.; Gebert, U.; Schleyerbach, R. and Bartlett, R. R. (Hoechst A.-G.): Eur. Pat. Appl. EP 276,805 (1988); Chem. Abstr., 110, 75574p (1989).
7730. Thorwart, W.; Gebert, U.; Schleyerbach, R. and Bartlett, R. R. (Hoechst A.-G.): Ger. Offen. DE 3,702,757 (1988); Chem. Abstr., 110, 8223k (1989).
7731. Sandul, G. V.; Kuts, V. S. and Pokhodenko, V. D.: Teor. Eksp. Khim., 8 (3), 340-346 (1972); Chem. Abstr., 78, 15123b (1973).
7732. Krokhin, A. V.; Chizov, O. S.; Mikheeva, N. N.; Ershov, V. V. and Volod'kin, A. A.: Izv. Akad. Nauk SSSR, Ser. Khim., 26 (12), 2686-2693 (1976).
7733. Kanegafuchi Chemical Industry Co., Ltd.: Jpn. Kokai Tokkyo Koho JP 60 54,315[85 54,315] (1985); Chem. Abstr., 103, 147157k (1985).
7734. Geitmann, M.; Unge, T. and Danielson, U. H.: J. Med. Chem., 49 (8), 2375-2387 (2006).
7735. Fujimoto, K.; Mikoshiba, I.; Tanaka, N.; Iwano, Y.; Iijima, Y.; Taki, M. and Kitaoka, M. (Sankyo Co., Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 09,301,915 [97,301,915] (1997); Chem. Abstr., 128, 13147q (1998).
7736. Deng, M.; Yan, Z. and Li, C. (Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai ShuomingshuCN 1,821,203 (2006); Chem. Abstr., 145, 292705j (2006).
7737. Kimura, T.; Kaneko, Y. and Sasaki, T. (Konishiroku Photo Industry Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 61 36,746 [86 36,746] (1986); Chem. Abstr., 105, 162150n (1986).
7738. Johansson, N. G.; Zhou, X.; Wahling, H.; Sund, C.; Walberg, H.; Salvador, L. and Lindstrom, S. (Medivir AB, Sweden): PCT Int. Appl. WO 99 41,275 (1999); Chem. Abstr., 131, 170633z (1999).
7739. Collins, M. and Laws, D. R. J.: J. Chem. Soc., Perkin Trans. 1, (18), 2013-2015 (1973).
7740. Burckhardt, U.; Werthemann, L. and Troxler, R. J. (Ciba-Geigy A.-G.): Ger. Offen. 2,738,588 (1978); Chem. Abstr., 89, 6114z (1978).
7741. Terranova, E.; Daver, S.; Marty, C. and Pascal, J. C. (Galderma Research \& Development, Fr.): Fr. Demande FR 2,878, 245 (2006); Chem. Abstr., 145, 7858g (2006).
7742. Botros, R. (American Color and Chemical Corp.): Ger. Offen. 2,714,745 (1977); Chem. Abstr., 88, 91039a (1978).
7743. Botros, R. (American Color and Chemical Corp.): U.S. 4,066,388 (1978); Chem. Abstr., 88, 106751c (1978).
7744. Oxford, Q. W. and Ellis, F.: U.K. Patent Appl., GB 2058785 B (1981).
7745. Buu-Hoï, N. P.; Hoan, N. and Xuong, N. D.: J. Am. Chem. Soc., 72, 3992-3994 (1950).
7746. Van der Zeeuw, A. (Shell Internationale Research Maatschappij N. V.): Ger. Offen. 2,125,095 (1971); Chem. Abstr., 77, 78146m (1972).
7747. Szymanowski, J.; Voelkel, A.; Beger, J. and Binte, H.-J.: J. Prakt. Chem., 327 (8), 353-361 (1985).
7748. Nielsen, A. T.; Dubin, H. and Hise, K. H.: J. Org. Chem., 32 (11), 3407-3411 (1967).
7749. Tsujihara, K. (Tanabe Seiyaku Co., Ltd., Japan): Eur. Pat. Appl. EP 773,226 (1997); Chem. Abstr., 127, 34472m (1997).
7750. Paul, V. J. and Yeddanapalli, L. M.: Curr. Sci., 23, 265 (1954); Chem. Abstr., 49, 8526c (1955).
7751. Chakravarti, R. N. and Buu-Hoï, N. P.: Bull. Soc. Chim. Fr., 1498-1500 (1959).
7752. Furuya, K.; Nakamura, G. and Sato, K. (Fuji Photo Film Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 01,209, 445 [89,209,445] (1989); Chem. Abstr., 113, 14811d (1990).
7753. Tyman, J. H. P. and Visani, N.: Chem. Phys. Lipids, 85 (2), 157-174 (1997); Chem. Abstr., 126, 238244c (1997).
7754. Stevenson, T. A. (Ciba-Geigy Corporation, USA): U.S. US 5,648,488 (1997); Chem. Abstr., 127, 161839m (1997).
7755. Stevenson, T. A. (Ciba-Geigy Corporation, USA): U.S. US 5,675,004 (1997); Chem. Abstr., 127, 319646h (1997).
7756. Desai, R. D. and Hamid, A.: Proc. Indian Acad. Sci., 13A, 132-136 (1941).
7757. Fries, K. and Schimmelschmidt, K.: Ber. Dtsch. Chem. Ges., 58, 2835-2845 (1925).
7758. Rege, A. V. and Shah, S. V.: J. Indian Chem. Soc., 25 (10), 485-487 (1948).
7759. Brewster, C. M. and Watters, G. G.: J. Am. Chem. Soc., 64, 2578-2580 (1942).
7760. Desai, R. D.; Hamid, A. and Shroff, H. P.: Proc. Indian Acad. Sci., 13A, 33-38 (1941).
7761. Maruyuma, K. and Takuwa, A.: Chem. Lett., 5, 471-474 (1974).
7762. Takuwa, A.: Bull. Chem. Soc. Jpn., 49 (10), 2790-2799 (1976).
7763. Chakravarti, D. and Bagchi, P. N.: J. Indian Chem. Soc., 13, 689-696 (1936).
7764. Komuro, Y. and Momota, J. (Tokuyama Corporation, Japan): Jpn. Kokai Tokkyo Koho JP 2000 26,469 (2000); Chem. Abstr., 132, 130065e (2000).
7765. Crisci, L.; Giroldini, W.; Malatesta, V. and Wis, M. L. (Great Lakes Chemical Italia S.r.l., Italy): PCT Int. Appl. WO 99 01,457 (1999); Chem. Abstr., 130, 117399f (1999).
7766. Malatesta, V.; Salemi-Delvaux, C. and Deniel, M.-H. (Great Lakes Chemical (Europe) G.m.b.H., Switzerland): PCT Int. Appl. WO 00 21,968 (2000); Chem. Abstr., 132, 265295a (2000).
7767. Desai, R. D. and Hamid, A.: Proc. Indian Acad. Sci., 13A, 126-131 (1941).
7768. Chu, E. J-H.; Shen, Z-I. and Chien, T-L.: J. Am. Chem. Soc., 66 (4), 653 (1944).
7769. Stoughton, R. W.: J. Am. Chem. Soc., 57, 202-204 (1935).
7770. O’Mara, M. M.: Ph. D. 1968, Cincinnati (USA); Chem. Abstr., 70, 56939a (1969).
7771. Kobayashi, O. (Sumitomo Chemical Co, Japan): Jpn. Kokai Tokkyo Koho JP 08,333,296 [96,333,296] (1996); Chem. Abstr., 126, 157293r (1997).
7772. Kobayashi, S.; Moriwaki, M. and Hachiya, I.: Bull. Chem. Soc. Jpn., 70 (1), 267-273 (1997).
7773. Kobayashi, S.; Moriwaki, M. and Hachiya, I.: J. Chem. Soc., Chem. Commun., (15), 1527-1528 (1995).
7774. Starkov, S. P.; Panasenko, A. I.; Polyanskaya, N. L. and Volkotrub, M. N.: Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 31 (11), 32-35 (1988); Chem. Abstr., 111, 174182m (1989).
7775. Chapiro, E.: C. R. Acad. Sci., 234 (9), 966-967 (1952).
7776. Hunter, W. H.; Quinton, R. M.; Sherman, P. H.; Worthing, C. R. and Boscott, R. J.: J. Med. Chem., 5, 167-174 (1964).
7777. Nakazawa, K. and Tsubouchi, S.: J. Pharm. Soc. Jpn., 74 (11), 1256-1258 (1954); Chem. Abstr., 49, 14670a (1955).
7778. Kobayashi, S.; Moriwaki, M. and Hachiya, I.: Tetrahedron Lett., 37 (24), 4183-4186 (1996).
7779. Kobayashi, S.; Moriwaki, M. and Hachiya, I.: Synlett, (11), 1153-1154 (1995).
7780. Yoshioka, M.; Nishioka, T. and Hasegawa, T.: Tetrahedron Lett., 32 (11), 1471-1474 (1991).
7781. Al-Omran, F.: Sulfur Lett., 23 (6), 275-286 (2000); Chem. Abstr., 133, 237887x (2000).
7782. Laatsch, H.; Sigel, C. and Kral, A.: Chem. Ber., 127 (2), 393-400 (1994).
7783. Talukdar, S. and Benerji, A.: Synth. Commun., 26 (6), 1051-1056 (1996).
7784. Yoshioka, M.; Nishioka, T. and Hasegawa, T.: J. Org. Chem., 58 (1), 278-281 (1993).
7785. Zhong, T.-S. and Huang, M.-L.: Hua Hsueh Hsueh Pao, 39 (3), 229-235 (1981); Chem. Abstr., 95, 168844p (1981).
7786. Argekar, A. P. and Turel, Z. R.: J. Radioanal. Nucl. Chem., 86 (1), 45-52 (1984).
7787. Argekar, A. P. and Turel, Z. R.: J. Radioanal. Nucl. Chem., 94 (4), 207-213 (1985).
7788. Argekar, A. P. and Turel, Z. R.: J. Radioanal. Nucl. Chem., 96 (1), 41-49 (1985).
7789. El-Kasaby, M. A. and Salem, M. A. I.: Egypt. J. Chem., 23 (2), 123-136 (1980) (Pub. 1981); Chem. Abstr., 96, 142742z (1982).
7790. Sen, A. B. and Bhattacharji, S.: Curr. Sci., 20, 132-133 (1951).
7791. Fuson, R. C. and Chadwick, D. H.: J. Org. Chem., 13, 484-488 (1948).
7792. Gulati, K. C.; Seth, S. R. and Venkataraman, K.: J. Prakt. Chem., 137, 47-52 (1933).
7793. Bisanz, T.: Roczniki Chem., 30, 87-102 (1956).
7794. Hansen, P. E.; Ibsen, S. N.; Kristensen, T. and Bolvig, S.: Magn. Reson. Chem., 32 (7), 399-408 (1994).
7795. Alberola, A.; Alonso Cermeno, F. and Gonzalez, Ortega, A.: An. Quim., Ser. C, 78 (1), 15-22 (1982); Chem. Abstr., 97, 38813h (1982).
7796. Bolvig, S.; Hansen, P. E.; Morimoto, H.; Wemmer, D. and Williams, P.: Magn. Reson. Chem., 38 (7), 525-535 (2000).
7797. Supsana, P.; Tsoungas, P. G.; Aubry, A.; Skoulika, S. and Varvounis, G.: Tetrahedron, 57 (16), 3445-3453 (2001).
7798. Bolvig, S.; Hansen, P. E.; Wemmer, D. and Williams, P.: J. Mol. Struct., 509 (1-3), 171181 (1999).
7799. Cui, C.; Wang, X. and Weiss, R. G.: J. Org. Chem., 61 (6), 1962-1974 (1996).
7800. Sergievskaya, S. I. and Morozovskaya, L. M.: J. Gen. Chem. (USSR), 14, 1107-1125 (1944); Chem. Abstr., 40, 7186^{5} (1946).
7801. Kondo, S.; Sano, K. and Sato, H. (Fuji Photo Film Co., Ltd): Ger. Offen. DE 3,307,770 (1983); Chem. Abstr., 101, 81641p (1984).
7802. Chakraborti, A. K. and Shivani, R. G.: Synthesis, (1), 111-115 (2004).
7803. Davenport, K. G. (Celanese Corp.): U.S. US 4,675,449 (1987); Chem. Abstr., 107, 134046f (1987).
7804. Allegrini, P.; Nodari, N.; Malatesta, V. and Crisci, L. (Ministero dell 'Universitao' della Ricerca Scientifica e Tecnologica): Eur. Pat. Appl. EP 625,518 (1994); Chem. Abstr., 122, 81122d (1995).
7805. Giordano, C.; Castaldi, G.; Uggeri, F. and Cavicchioli, S. (Zambon S.p.A.): Eur. Pat. Appl. EP 158,913 (1985); Chem. Abstr., 104, 148566a (1986).
7806. Momota, J. and Matsuoka, S. (Tokuyama Corp., Japan): Jpn. Kokai Tokkyo KohoJP 08,157,467 [96,157,467] (1996); Chem. Abstr., 125, 195434z (1996).
7807. Picciola, G.; Riva, M.; Ravenna, F. and Gentili, P. (Maggioni-Winthrop S.p.A.): PCT Int. Appl. WO 87 02,666 (1987); Chem. Abstr., 107, 211871a (1987).
7808. Smith, V.; Nigro, A.; Mulvihill, M.; Cesario, C.; Beck, P. A. and Castelano, A. L. (Osi Pharmaceuticals, Inc., USA): PCT Int. Appl. WO 2005 7,631 (2005); Chem. Abstr., 142, 176575f (2005).
7809. Yamamoto, M.; Nakahira, H.; Watanabe, S. and Katsumata, T. (Sumitomo Pharmaceuticals Co., Ltd.): PCT Int. Appl. WO 97 32,837 (1997); Chem. Abstr., 127, 247919z (1997).
7810. Birch, A. J.; Salahud-Din, M. and Smith, D. C. C.: J. Chem. Soc. C, 523-527 (1966).
7811. Tanaka, M.; Chiba, K.; Okita, M.; Kaneko, T.; Tagami, K.; Hibi, S.; Okamoto, Y.; Shirota, H.; Goto, M.; Obaishi, H.; Sakurai, H.; Machida, Y. and Yamatsu, I.: J. Med. Chem., 35 (25), 4665-4675 (1992).
7812. Okita, M.; Shirota, H.; Tanaka, T.; Kaneko, T.; Tagami, K.; Hibi, S.; Okamoto, Y.; Nomoto, S.; Suzuki, T.; et al. (Eisai Co., Ltd.): Eur. Pat. Appl. EP 376,288 (1990); Chem. Abstr., 114, 42284y (1991).
7813. Shestak, O.; Novikov, V. and Paulins, J.: Latv. PSR Zinat. Akad. Vestis, Kim. Ser., (2), 217-220 (1990); Chem. Abstr., 113, 77877a (1990).
7814. Maruyama, K. and Matano, Y.: Bull. Chem. Soc. Jpn., 62 (12), 3877-3885 (1989).
7815. Kobayashi, K.; Yoneda, K.; Uchida, M.; Matsuoka, H.; Morikawa, O. and Konishi, H.: Heterocycles, 55 (12), 2423-2429 (2001).
7816. Oelgemöller, M.; Schiel, C.; Fröhlich, R. and Mattay, J.: Eur. J. Org. Chem., (15), 24652474 (2002).
7817. Kraus, G. A. and Kirihara, M.: J. Org. Chem., 57, 3256-3257 (1992).
7818. Martin Lange: DRP 126199 (1901).
7819. Martin Lange: DRP 129035 (1902).
7820. Takuwa, A. and Kai, R.: Bull. Chem. Soc. Jpn., 63 (2), 623-625 (1990).
7821. Maruyuma, K.; Takuwa, A.; Matsukiyo, S. and Soga, O.: J. Chem. Soc., Perkin Trans. 1, (7), 1414-1419 (1980).
7822. Fukaya, T.; Sugiura, M.; Naito, Y. and Yokoyama, K. (Green Cross Corp.): Jpn. Kokai Tokkyo Koho JP 04,154,736 [92,154,736] (1992); Chem. Abstr., 117, 233627j (1992).
7823. Bensari, A. and Zaveri, N. T.: Synthesis, (2), 267-271 (2003).
7824. Sergievskaya, S. I. and Morozovskaya, L. M.: J. Gen. Chem. (USSR), 15, 319-323 (1945); Chem. Abstr., 40, 7187^{5} (1946).
7825. Brown, R. C.; Hazard, R. and Mann, J. (Fisons, Ltd): Brit. 1,517,154 (1978); Chem. Abstr., 90, 72057e (1979).
7826. Brown, R. C.; Hazard, R. and Mann, J. (Fisons, Ltd): U.S. 4,238,606 (1980); Chem. Abstr., 94, 156755b (1981).
7827. Schönberg, A.; Awad, W. I. and Mousa, G. A.: J. Am. Chem. Soc., 77, 3850-3852 (1955).
7828. Hu, A.; Chen, P.; Yuan, S. and Zhou, Y.: Hecheng Huaxue, 10 (4), 333-334 (2002); Chem. Abstr., 138, 271365p (2003).
7829. Marquet, A. and Jacques, J.: Bull. Soc. Chim. Fr., 90-96 (1962).
7830. Castaldi, G.; Cavicchioli, S.; Giordano, C. and Uggeri, F.: Angew. Chem., 98 (3), 273-274 (1986).
7831. Hu, A.-X.; Yuan, S.; Wu, X.-Y.; Chen, P. and Zhang, Z.-X.: Yingyong Huaxue, 19 (6), 582-584 (2002); Chem. Abstr., 137, 278958x (2002).
7832. Hu, A.; Dong, X.; Cao, S.; Fan, G. and Li, W.: Zhongguo Yaowu Huaxue Zazhi, 11 (2), 102-103, 109 (2001); Chem. Abstr., 136, 216515w (2002).
7833. Wu, F. and Chen, T.: Huaxue Fanying Gongcheng Yu Gonyi, 18 (2), 130-132 (2002); Chem. Abstr., 137, 354658s (2002).
7834. Ye, Jiao; Hu, Ai Xi and Cao, Gas: Acta Cryst., E62 (8), 3384-3385 (2006).
7835. Hsi, Kuo-Liang and Kao, Yee-Sheng: Hua Hsueh Hsueh Pao, 36 (4), 297-306 (1978); Chem. Abstr., 90, 151861r (1979).
7836. Jamie, J. F. and Rickards, R. W.: J. Chem. Soc., Perkin Trans. 1, (21), 2603-2613 (1996).
7837. Jacques, J.: Bull. Soc. Chim. Fr., 271-274 (1951).
7838. Heilbron, I. M.; Hey, D. H. and Lowe, A.: J. Chem. Soc., 1311-1315 (1934).
7839. Giordano, C.; Villa, M. and Annunziata, R.: Synth. Commun., 20 (3), 383-392 (1990).
7840. Kantam, M. L.; Sateesh, M.; Choudary, B. M.; Ranganath, K. V. S. and Raghavan, K. V. (Council of Scientific and Industrial Research, India): Indian IN 191,514 (2003); Chem. Abstr., 145, 210771r (2006).
7841. Gatti, N.: Tetrahedron Lett., 31 (27), 3933-3936 (1990).
7842. Choudhary, V. R.; Jana, S. K. and Patil, N. S.: Tetrahedron Lett., 43 (6), 1105-1107 (2002).
7843. Kantam, M. L.; Sateesh, M.; Choudary, B. M.; Ranganath, K. V. S. and Raghavan, K. V. (Council of Scientific and Industrial Research, India): Jpn. Kokai Tokkyo Koho JP 2001 278,832 (2001); Chem. Abstr., 135, 288592w (2001).
7844. Kolotuchin, S. V. and Meyers, A. I.: J. Org. Chem., 65 (10), 3018-3026 (2000).
7845. Chapiro, E.: C. R. Acad. Sci., 234 (21), 2080-2081 (1952).
7846. Winstein, S.; Jacobs, T. L.; Seymour, D. and Linden, G. B.: J. Org. Chem., 11 (3), 215-222 (1946).
7847. Barba, O.; Dawson, G. J.; Krulle, T. M.; Rowley, R. J.; Smyth, D. and Thomas, G. H. (Prosidion Limited, UK): PCT Int. Appl. WO 2006 85,118 (2006); Chem. Abstr., 145, 211043s (2006).
7848. Curran, D. P.; Weber, S. G.; Nakamura, H.; Linclau, B.; Sun, L.; Ryu, I. and Matsubara, H. (University of Pittsburgh, USA): PCT Int. Appl. WO 02,100,802 (2002); Chem. Abstr., 138, 55661q (2003).
7849. Smith, W. B.; Deavenport, D. L. and Ihrig, A. M.: J. Am. Chem. Soc., 94 (6), 1959-1965 (1972).
7850. Jacques, J.: Bull. Soc. Chim. Fr., 857-865 (1953).
7851. Chatterjee, A.; Raychaudhuri, S. R. and Chatterjee, S. R.: Tetrahedron, 37 (21), 3653-3660 (1981).
7852. Zhang, H.; Yang, J. and Guang, C.: Jingxi Huagong, 18 (8), 485-486 (2001); Chem. Abstr., 136, 202129m (2002).
7853. Rapala, R. T.; Roberts, B. W.; Truett, W. L. and Johnson, W. S.: J. Org. Chem., 27, 3814-3818 (1962).
7854. Haworth, R. D. and Sheldrick, G.: J. Chem. Soc., 864-867 (1934).
7855. Julia, S.: Ann. Chim., 12 (7), 129-181 (1952).
7856. Donati, D.; Giordano, C. and Castaldi, G. (Zambon S.p.A.): Eur. Pat. Appl. EP 203,557 (1986); Chem. Abstr., 106, 84204n (1987).
7857. Hu, A.-X.; Cao, S.-C.; Dong, X.-M.; Cheng, Y.-P. and Tang, Y.-F.: Yingyong Huaxue, 18 (3), 239-240 (2001); Chem. Abstr., 135, 5428m (2001).
7858. Hu, A.-X.; Dong, X.-M.; Lu, Z.-Y. and Li, J.-L.: Yingyong Huaxue, 17 (1), 90-92 (2000); Chem. Abstr., 132, 321711x (2000).
7859. Hu, A.; Yuan, S.; Wang, C. and Cao, S.: Yingyong Huaxue, 19 (2), 149-152 (2002); Chem. Abstr., 136, 355034b (2002).
7860. Hu, A.; Zhou, H.; Wen, Y.; Cao, S.; Hu, Z. and Yuan, S.: Jingxi Huagong, 18 (2), 80-82 (2001); Chem. Abstr., 135, 210811x (2001).
7861. Ma, H. Z.; Wang, B. and Shi, Q. Z.: Chinese Chemical Letters, 13 (6), 505-508 (2002); Chem. Abstr., 137, 384631v (2002).
7862. Veverkova, E.; Meciarova, M.; Gotov, B. and Toma, S.: Green Chemistry, 4 (4), 361-365 (2002).
7863. Gleim, R. D.; Trenbeath, S.; Suzuki, F. and Sih, C. J.: J. Chem. Soc., Chem. Commun., (6), 242-244 (1978).
7864. Wurm, G.; Baumann, J.; Geres, U. and Schmidt, H.: Arzneim.-Forsch., 34 (6), 652-658 (1984).
7865. Mezheritskii, V. V.; Tkachenko, V. V.; Zhukovskaya, O. N.; Elisevich, D. M. and Dorofeenko, G. N.: Zh. Org. Khim., 17 (3), 627-631 (1981).
7866. Mezheritskii, V. V.; Zhukovskaya, O. N.; Tkachenko, V. V. and Dorofeenko, G. N.: Zh. Org. Khim., 15 (1), 196-200 (1979).
7867. Elisevich, D. M.; Okolelova, M. S.; Kazakov, A. L.; Drogovoz, S. M.; Porokhnyak, L. A. and Rogozhin, B. A.: Khim.-Farm. Zh., 21 (4), 431-434 (1987); Chem. Abstr., 107, 147311p (1987).
7868. Schiel, C.; Oelgemoller, M. and Mattay, J.: Synthesis, (8), 1275-1279 (2001).
7869. Hellberg, M. R. and Namil, A. (Alcon, Inc., Switz.): PCT Int. Appl. WO 02 98,400 (2002); Chem. Abstr., 138, 24554c (2003).
7870. Buu-Hoï, N. P. and Lavit, D.: J. Org. Chem., 21, 21-23 (1956).
7871. Bailey, D. M. (Sterling Drug, Inc.): U.S. US 4,327,022 (1982); Chem. Abstr., 97, 38696x (1982).
7872. Matsunaga, N.; Kaku, T.; Ojida, A. and Tasaka, A.: Tetrahedron Asymmetry, 15 (13), 2021-2028 (2004).
7873. Naruta, Y.; Nishigaichi, Y. and Maruyama, K.: J. Org. Chem., 53 (6), 1192-1199 (1988).
7874. Naruta, Y.; Kashiwagi, M.; Nishigaichi, Y.; Uno, H. and Maruyama, K.: Chem. Lett., (11), 1687-1690 (1983).
7875. Naruta, Y.; Uno, H. and Maruyama, K.: J. Chem. Soc., Chem. Commun., (24), 1277-1278 (1981).
7876. Nagaoka, H.; Schmid, G.; Lio, H. and Kishi, Y.: Tetrahedron Lett., 22 (10), 899-902 (1981).
7877. Nakata, M.; Wada, S.; Tatsuta, K. and Kinoshita, M.: Bull. Chem. Soc. Jpn., 58 (6), 1801-1806 (1985).
7878. Nakata, M.; Kinoshita, M.; Ohba, S. and Saito, Y.: Tetrahedron Lett., 25 (13), 1373-1376 (1984).
7879. Beugelmans, R.; Bois-Choussy, M. and Tang, Qian: Tetrahedron, 45 (13), 4203-4212 (1989).
7880. Song, G.-Y.; Kim, Y.; Zheng, X.-G.; You, Y.-J.; Cho, H.; Chung, J.-H.; Sok, D.-E. and Ahn, B.-Z.: Eur. J. Med. Chem., 35 (3), 291-298 (2000).
7881. Song, G.-Y.; Kim, Y.; You, Y.-J.; Cho, H.; Kim, S.-H.; Sok, D.-E. and Ahn, B.-Z.: Arch. Pharm. (Weinheim, Ger.), 333 (4), 87-92 (2000).
7882. Matsuoka, S.; Momota, J. and Hara, T. (Tokuyama Corp, Japan): Jpn. Kokai Tokkyo Koho JP 08,176,139 [96,176,139] (1996); Chem. Abstr., 125, 221584v (1996).
7883. Al-Hamdany, R.; Al-Rawi, J. M.; Ahmed, B. A. and Al-Shahiry, K. F.: J. Prakt. Chem., 329 (2), 337-342 (1987).
7884. Miski, M.; Ulubelen, A. and Mabry, T. J.: Phytochemistry, 22 (10), 2231-2233 (1983).
7885. Saiki, Y.; Saito, T.; Sasaki, H. and Fukushima, S.: Yakugaku Zasshi, 87 (12), 1524-1528 (1967); Chem. Abstr., 68, 81440x (1968).
7886. Endo, H.; Fujimura, T. and Kitaura, T. (Shiono Koryo Kaisha, Ltd., Japan): Jpn. Kokai Tokkyo Koho JP 2006 199,619 (2006); Chem. Abstr., 145, 182246c (2006).
7887. Keil, E. M.; Kurz, G. and Steinwand, M.: LaborPraxis, 15 (3), 146, 148-150, 152 (1991); Chem. Abstr., 115, 78414a (1991).
7888. Hayashi, N.; Ding, J.; Ding, Z.; Chen, Z.; Yi, Y. and Komae, H.: Z. Naturforsch., C: Biosci., 45 (1-2), 32-36 (1990).
7889. Ding, Z.; Chen, J. and Ding, J.: Huaxue Yanjiu Yu Yingyong, 11 (5), 513-514 (1999); Chem. Abstr., 132, 326114 q (2000).
7890. Yang, D.; Yan, R. and Yang, C.: Zhongguo zhongyao Zazhi, 22 (7), 426-428 (1997); Chem. Abstr., 128, 319310q (1998).
7891. Lee, Jung Yeop; Moon, Surk Sik and Hwang, Byung Kook: Pest Management Science, 61 (8), 821-825 (2005); Chem. Abstr., 144, 66934f (2006).
7892. Pan, Jiongguang; Xu, Zhiling; Wang, Guanghui; Yang, Chunshu and Zhang, Jiajun: Zhongyao Tongbao, 9 (4), 175-177 (1984); Chem. Abstr., 101, 216264r (1984).
7893. Kosuge, T.; Yokota, M.; Nukaya, H.; Gotoh, Y. and Nagasawa, M.: Chem. Pharm. Bull., 26 (7), 2284-2285 (1978).
7894. Cai, Shaoqing; Wang, He; Chen, Shizhong and Lou, Zhicen: Beijing Yike Daxue Xuebao, 28 (3), 228-230 (1996); Chem. Abstr., 125, 243117x (1996).
7895. De Diaz, A. M. P. and Gottlieb, O. R.: Planta Med., 35 (2), 190-191 (1979).
7896. Ramos, L. S.; Da Silva, M. L.; Luz, A. I. R.; Zoghbi, M. G. B. and Maia, J. G. S.: J. Nat. Prod., 49 (4), 712-713 (1986).
7897. Oka, Y.; Otsuki, K.; Katagi, M. and Tsuchihashi, H.: Yakugaku Zasshi, 111 (4-5), 234-240 (1991); Chem. Abstr., 115, 78714y (1991).
7898. Ling, Shusen; Fang, Qun; Sun, Weilin; Ding, Fei; Sun, Xiaofang and Yi, Mingguang: Zhongguo Yaoli Xuebao, 6 (3), 217-220 (1985); Chem. Abstr., 103, 205456v (1985).
7899. Da Silva, M. L.; Maia, J. G. S.; Mouras, J. C.; Pedreira, G.; Marx, M. C.; Gottlieb, O. R. and Magalhäes, M. T.: Acta Amazonica (Manaus) 3, 41 (1973).
7900. Galiano Ramos, J. A. and Soria Soria, A.: Span. ES 2,039,161 (1993); Chem. Abstr., 120, $270366 f(1994)$.
7901. Ling, Shusen; Fang, Qun; Zhang, Ja and Sun, Weilin: Zhongcaoyao, 17 (2), 21-23(1986); Chem. Abstr., 104, 199940a(1986).
7902. De Oliveira Santos, B. V. and De Oliveira Chaves, M. C.: Acta Farm. Bonaerense, 19 (1), 45-47 (2000); Chem. Abstr., 134, 61351x (2001).
7903. Harmatha, J. and Nawrot, J.: Entomologia Experimentalis et Applicata, 104 (1), 51-60 (2002); Chem. Abstr., 139, 32067g (2003).
7904. Harmatha, J. and Nawrot, J.: Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wroclaw, 33 (8), 81-86 (1988); Chem. Abstr., 111, 228993x (1989).
7905. Miski, M. and Mabry, T. J.: Phytochemistry, 24 (8), 1735-1741 (1985).
7906. Chen, Neng Yu; Chen, Tao and Shi, Jun: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 36B (1), 107-109 (1997).
7907. Smitalova, Z.; Budesinsky, M.; Saman, D.; Vasickova, S. and Holub, M.: Collect. Czech. Chem. Commun., 49 (4), 852-870 (1984); Chem. Abstr., 101, 126846c (1984).
7908. Smitalova, Z.; Budesinsky, M.; Saman, D. and Holub, M.: Collect. Czech. Chem. Commun., 51 (6), 1323-1339 (1986); Chem. Abstr., 105, 168887e (1986).
7909. Bagirov, V. Yu. and Belyi, M. B.: Khim. Prir. Soedin, (2), 250-251 (1982); Chem. Abstr., 97, 159497s (1982).
7910. Nawrot, J. and Harmatha, J.: Zesz. Probl. Postepow Nauk Roln., 368, 107-111 (1989); Chem. Abstr., 112, 6412p (1990).
7911. Avato, P. and Rosito, I.: J. Essent. Oil Res., 14 (1), 20-22 (2002).
7912. Thakar, K. A.; Dumir, A. B. and Bhawal, B. M.: Curr. Sci., 49 (3), 100-101 (1980); Chem. Abstr., 93, 8065r (1980).
7913. Thakar, K. A.; Dumir, A. B. and Bhawal, B. M.: Curr. Sci., 49 (23), 889-892 (1980); Chem. Abstr., 94, 192197e (1981).
7914. Hara, T. and Momota, J. (Tokuyama Corp. Japan): Jpn. Kokai Tokkyo KohoJP 08,295,690 [96,295,690] (1996); Chem. Abstr., 126, 89395y (1997).
7915. Bhat, V. S. and Joshi, V. S.: Indian J. Chem., 28B (6), 512-513 (1989).
7916. Kobayashi, K.; Ogata, T.; Nakamura, D.; Morikawa, O. and Konishi, H.: Heterocycles, 68 (8), 1709-1714 (2006).
7917. Kumari, S. S.; Rao, K. S. R. M. and Rao, N. V. S.: Indian J. Chem., 11 (6), 541-545 (1973).
7918. Thakar, K. A. and Bhawal, R. M.: J. Indian Chem. Soc., 54 (9), 875-877 (1977).
7919. Kumari, S. S.; Rao, K. S. R. M. and Rao, N. V. S.: Proc. Indian Acad. Sci., 69, 88-93 (1969).
7920. Kuznetsov, Yu. V.; Stolyarova, L. G.; Lezina, V. P.; Kaganskii, M. M. and Smirnov, L. D.: Izv. Akad. Nauk SSSR, Ser. Khim., (8), 1928-1931 (1991); Chem. Abstr., 115, 279905k (1991).
7921. Ramonaite, S.; Dauksas, V. and Abromaitite, D. (USSR): Liet. TSR Aukst. Mokyklu Mokslo Darb., Chem. Chem. Technol., 11, 5-9 (1970). From Ref. Zh. Khim. 1970, Abstr. No. 23G90; Chem. Abstr., 76, 10056 f (1972).
7922. Lee, Kwang Seob; Seo, Seon Hee; Lee, Yong Ha; Kim, Ha Dong; Son, Moon Ho; Chung, Bong Young; Lee, Jae Yeol; Jin, Changbae and Lee, Yong Sup: Bioorg. Med. Chem. Lett., 15 (11), 2857-2860 (2005).
7923. Tomar, S. S. and Dureja, P.: Fitoterapia, 72 (1), 76-77 (2001).
7924. Facundo, V. A. and Morais, S. M.: Biochemical Systematics and Ecology, 31 (1), 111-113 (2003).
7925. Kim, G.-S.; Baek, N.-I.; Seong, J.-D. and Kwack, Y.-H.: Han'guk Nonghwa Hakhoechi, 24 (4), 369-370 (1999); Chem. Abstr., 132, 262634z (2000).
7926. Schneiders, G. E. and Stevenson, R.: J. Org. Chem., 46 (14), 2969-2971 (1981).
7927. Holub, M.; Herout, V. and Sorm, F.: Chem. listy, 52, 2355-2358 (1958).
7928. Holub, M.; Herout, V. and Sorm, F.: Collect. Czech. Chem. Commun., 24, 3926-3933 (1959); Chem. Abstr., 54, 8799b (1960).
7929. Holub, M.; Popa, D. P., Herout, V. and Sorm, F.: Collect. Czech. Chem. Commun., 29 (4), 938-942 (1964).
7930. Holub, M.; Samek, Z.; Herout, V. and Sorm, F.: Monatsh. Chem., 98, 1138-1153 (1967).
7931. Zhu, G. and Zhang, H.: Zhongguo Yaoke Daxue Xuebao, 27 (10), 585-588 (1996); Chem. Abstr., 127, 31547d (1997).
7932. Al-Hazimi, H. M. G.: Phytochemistry, 25 (10), 2417-2419 (1986).
7933. Ibraheim, Z. Z. and Abdallah, O. M.: Bull. Pharm. Sci., Assiut Univ., 19, 15-20 (1996); Chem. Abstr., 126, 268378s (1997).
7934. Appendino, G.; Jakupovic, J.; Alloatti, S. and Ballero, M.: Phytochemistry, 45 (8), 1639-1643 (1997).
7935. Wang, Nianhe; Yuan, Changqi; Baba Kimie; Taniguchi Masahiko and Doi Mitsunobu: Zhiwu Ziyuan Yu Huanjing, 6 (4), 15-18, 49 (1997); Chem. Abstr., 130, 294014x (1999). Correction of CA 128, 203022t.
7936. Wang, Nianhe; Yuan, Changqi; Kimie Baba; Masahiko Taniguchi and Mitsunobu Doi: Zhiwu Ziyuan Yu Huanjing, 6 (4), 15-18, 49 (1997); Chem. Abstr., 128, 203022t (1998).
7937. De Pascual, T. J.; De Pascual, M.; Arias, A.; Hernandez, J. M.; Moran, J. R. and Grande, M.: Phytochemistry, 24 (8), 1773-1778 (1985).
7938. De Pascual, T. J.; Moran, J. R.; Hernandez, J. M. and Grande, M.: Phytochemistry, 24 (8), 1779-1783 (1985).
7939. Mendez, J.: Phytochemistry, 19 (7), 1557-1558 (1980).
7940. Mailliet, P.; Combeau, C.; Bissery, M.-C.; Cherrier, M.-P.; Caulfield, T. and Tiraboshi, G. (Aventis Pharma SA, Fr.): PCT Int. Appl. WO 03 48,106 (2003); Chem. Abstr., 139, 22018c (2003).
7941. Murakami, K.; Satake, T. and Kohara, H. (Kuraray Yuka Co., Ltd.): Japan Kokai 74 108,034 (1974); Chem. Abstr., 82, 170378q (1975).
7942. Holub, M.; Herout, V. and Sorm, F.: Collect. Czech. Chem. Commun., 24, 3934-3937 (1959); Chem. Abstr., 54, 8799b (1960).
7943. Gonzalez, A. G.; Bermejo, J.; Diaz, J. G.; Arancibia, L. and Perez de Paz, P.: J. Nat. Prod., 51 (6), 1140-1147 (1988).
7944. Deshpande, A. R. and Merchant, J. R.: Proc. Indian Acad. Sci., Sect. A, 85 (4), 236-241 (1977).
7945. Shah, N. M. and Shah, P. M.: Chem. Ber., 93, 18-24 (1960).
7946. Hodel, E. and Gysin, H. (J. R. Geigy Akt.-Ges.): Ger. 961,668 (1957); Chem. Abstr., 54, 14563h (1960).
7947. Matsumura, K.: J. Am. Chem. Soc., 57 (2), 496-497 (1935).
7948. Matsumura, K.: J. Am. Chem. Soc., 57 (1), 124-128 (1935).
7949. Rosenmund, K. W. and Karst, G.: Arch. Pharm. Ber. Dtsch. Pharm. Ges., 279, 154-167 (1941).
7950. Shah, N. M. and Shah, P. M.: Chem. Ber., 92 (11), 2933-2937 (1959).
7951. Shaikh, Y. A. and Trivedi, K. N.: J. Indian Chem. Soc., 48 (11), 1041-1045 (1971).
7952. Delépine, M. and Longuet, A.: Bull. Soc. Chim Fr., (39), 1019-1024 (1926).
7953. Thoms, H.: Ber. Dtsch. Chem. Ges., 36, 1714-1721 (1903).
7954. Aburjai, T. and Al-Khalil, S.: Alexandria Journal of Pharmaceutical Sciences, 15 (1), 43-46 (2001); Chem. Abstr., 136, 115408h (2002).
7955. Shah, H. A. and Shah, R. C.: J. Indian Chem. Soc., 17, 41-43 (1940).
7956. Ito, K.; Ikemoto, M.; Kumura, K. and Nakanishi, T. (Kakenyaku Kako Co., Ltd.): Ger. Offen., 2,223,184 (1972); Chem. Abstr., 78, 43256r (1973).
7957. Shaikh, Y. A. and Trivedi, K. N.: J. Indian Chem. Soc., 49 (9), 877-881 (1972).
7958. Pardanani, K. N. H.; Parekh, M. G. and Trivedi, K. N.: J. Indian Chem. Soc., 47 (1), 36-38 (1970).
7959. Pardanani, K. N. H.; Parekh, M. G. and Trivedi, K. N.: J. Indian Chem. Soc., 46 (11), 1014-1018 (1969).
7960. Paradkar, M. V.; Kulkarni, M. S.; Kulkarni, S. A. and Godbole, H. M.: Org. Prep. Proceed. Int., 28 (3), 348-351 (1996).
7961. Suzuki, M.; Nakagawa-Goto, K.; Nakamura, S.; Tokuda, H.; Morris-Natschke, S. L.; Kozuka, M.; Nishino, H. and Lee, K.-H.: Pharmaceutical Biology, 44 (3), 178-182 (2006).
7962. Chatani, N.; Uemura, T.; Asaumi, T.; Ie, Y.; Kakiuchi, F. and Murai, S.: Can. J. Chem., 83 (6-7), 755-763 (2005).
7963. Cutler, H. G.; Majetich, G.; Tian, X. and Spearing, P. (United States Dept. of Agriculture, USA): U.S. US 5,922,889 (1999); Chem. Abstr., 131, 73559x (1999).
7964. Demyttenaere-Kovatcheva, A.; Cronin, M. T. D.; Benfenati, E.; Roncaglioni, A. and LoPiparo, E.: J. Med. Chem., 48 (24), 7628-7636 (2005).
7965. Miller, C. P.; Collini, M. D.; Kaufman, D. H.; Morris, R. L.; Singhaus, R. R. Jr.; Ullrich, J. W.; Harris, H. A.; Keith, J. C., Jr.; Albert, L. M. and Unwalla, R. J. (Wyeth, John, and

Brother Ltd., USA): PCT Int. Appl. WO 03 51,860 (2003); Chem. Abstr., 139, 69143e (2003).
7966. Lancelot, J. C.; Letois, B.; Rault, S.; Huy Dung, N.; Saturnino, C. and Robba, M.: Gazz. Chim. Ital., 121 (6), 301-307 (1991).
7967. Cassis, R.; Scholz, M.; Tapia, R. and Valderrama, J. A.: J. Chem. Soc., Perkin Trans. 1, (12), 2855-2859 (1987).
7968. Hayakawa, I.; Shioya, R.; Agatsuma, T.; Furukawa, H. and Sugano, Y.: Bioorg. Med. Chem. Lett., 14 (13), 3411-3414 (2004).
7969. Beard, R. L.; Duong, T. T.; Takeuchi, J. A.; Li, L.; Tsang, K. Y.; Liu, X.; Vasudevan, J.; Wang, L.; Sinha, S. C.; Yuan, H. and Chandratna, R. A. (Allergan, Inc., USA): U.S. US 6,887,896 (2005); Chem. Abstr., 142, 430137s (2005).
7970. Fortin, M. and Haesslein, J.-L. (Roussel-UCLAF, Fr.): PCT Int. Appl. WO 9608,483 (1996); Chem. Abstr., 125, 86316s (1996).
7971. Srinivas, C. and Rao, C. P.: Indian J. Heterocycl. Chem., 13 (2), 139-142 (2003).
7972. Srinivas, C. and Rao, C. P.: Indian J. Heterocycl. Chem., 11 (3), 249-250 (2002).
7973. Hayashibe, S.; Kanayama, T.; Ohmori, J.; Tobe, T.; Maeno, K.; Shitaka, Y.; Suzuki, J.; Kawabata, S.; Shiraishi, N.; Yamasaki, S.; Suzuki, D. and Hoshii, H. (Astellas Pharma Inc., Japan): PCT Int. Appl. WO 2006 33,318 (2006); Chem. Abstr., 144, 350549d (2006).
7974. Harreus, A.; Wolf, B. and Wild, J. (BASF A.-G.): Ger. Offen. DE 4,027,573 (1992); Chem. Abstr., 116, 214331w (1992).
7975. Huber, H. and Brunner, K.: Monatsh. Chem., 56, 322-330 (1930).
7976. Bastide, J.; Carre, P.; Gomez, F. and Greiner, A.: Pestic. Sci., 27 (1), 33-43 (1989); Chem. Abstr., 112, 32056v (1990).
7977. Enomoto, M.; Nagano, H.; Haga, T.; Morita, K. and Sato, M. (Sumitomo Chemical Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 63,267,779 [88,267,779] (1988); Chem. Abstr., 110, 231324q (1989).
7978. Enomoto, M.; Nagano, H.; Haga, T.; Morita, K. and Sato, M. (Sumitomo Chemical Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 63,275,580 [88,275,580] (1988); Chem. Abstr., 110, 168104a (1989).
7979. Barnes, R. A. and Gordon, L.: J. Am. Chem. Soc., 72, 5308-5309 (1950).
7980. Miyake, H.; Nishimura, A.; Yago, M. and Sasaki, M.: Chem. Lett., 36 (2), 332-333 (2007).
7981. Auwers, K.; Baum, H. and Lorenz, H.: J. Prakt. Chem., 115, 81-106 (1927).
7982. Baum, H.: Dissertation, Marburg (1925).
7983. Ogata, M.; Matsumoto, H.; Takahashi, K.; Shimizu, S.; Kida, S.; Ueda, M.; Kimoto, S. and Haruna, M.: J. Med. Chem., 27 (9), 1142-1149 (1984).
7984. Escher, I.; Mueller, M.; Jeschke, P.; Beck, M. E.; Gaertzen, O.; Malsam, O.; Loesel, P.; Ebbinghaus-Kintscher, U.; Arnold, C. and Haack, K. J. (Bayer CropScience A.-G., Germany): Ger. Offen. DE 102,005,022,384 (2007); Chem. Abstr., 146, 121682r (2007).
7985. Delalande S. A.: Belg. BE 895,464 (1983); Chem. Abstr., 100, 85390h (1984).
7986. Berger, M.; Baeurle, S.; Rehwinkel, H.; Schmees, N.; Schaecke, H.; Mengel, A.; Krolikiewicz, K.; Grossbach, D. and Geisler, J. (Schering A.-G., Germany): Ger. Offen. DE 102,005,018,026 (2006); Chem. Abstr., 145, 454938s (2006).
7987. Krause, M., Rouleau, A.; Stark, H.; Garbarg, M.; Schwartz, J.-C. and Schunack, W.: Pharmazie, 51 (10), 720-726 (1996).
7988. Joshi, S. S. and Singh, H.: J. Am. Chem. Soc., 76, 4993-4994 (1954).
7989. Matsumoto, T.; Yamamoto, M.; Nagabukuro, H. and Mochizuki, M. (Takeda Chemical Industries, Ltd., Japan): PCT Int. Appl. WO 03 29, 199 (2003); Chem. Abstr., 138, 304064v (2003).
7990. Hanabusa, K.; Shirai, H.; Hojo, N.; Kondo, K. and Takemoto, K.: Makromol. Chem., 183 (5), 1101-1111 (1982).
7991. Bernauer, K.; Borgulya, J.; Bruderer, H.; Da Prada, M. and Zurcher, G. (Hoffmann-La Roche, F., and Co. A.-G.): Pat. Specif. (Aust.) AU 603,788 (1990); Chem. Abstr., 115, 49134d (1991).
7992. Legrand, L. and Lozac'h, N.: Bull. Soc. Chim. Fr., 953-958 (1958).
7993. Briggs, T. I.; Dutton, G. G. S. and Merler, E.: Can. J. Chem., 34, 851-855 (1956).
7994. Matsumoto, S.; Kobayashi, H. and Ueno, K.: Bull. Chem. Soc. Jpn., 42 (4), 960-968 (1969).
7995. Bunel, E. E.; Lu, H. S. M.; Moloy, K. G.; Phillips, S. H.; Schwiebert, K. E.; Tam, W. and Radu, N. (E.I. Du Pont de Nemours and Company, USA): PCT Int. Appl. WO 01 21,627 (2001); Chem. Abstr., 134, 252472x (2001).
7996. Cushman, M. and Mathew, J.: Synthesis, (5), 397-399 (1982).
7997. Ogata, Y. and Sawaki, Y.: J. Org. Chem., 37 (19), 2953-2957 (1972).
7998. Sharshira, E. M. and Horaguchi, T.: J. Heterocycl. Chem., 34 (6), 1837-1849 (1997).
7999. Herzog, O. and Kruh, O.: Monatsh. Chem., 21, 1095-1110 (1900).
8000. Bowman, R. S.; Stevens, D. R. and Baldwin, W. R.: J. Am. Chem. Soc., 79, 87-92 (1957).
8001. Amer, M. I.; Booth, B. L.; Noori, G. F. M. and Proença, M. F. J. R. P.: J. chem. Soc., Perkin Trans. 1, (5), 1075-1082 (1983).
8002. Radhakrishnan, T. V.; Sakhalkar, S. S. and Shanbhag, C. R. (RPG Life Sciences Limited, India): PCT Int. Appl. WO 01 44,151 (2001); Chem. Abstr., 135, 61135a (2001).
8003. Gilbert, J.; Fuentes, M.; Ojasoo, T.; Dore, J.-C. and Pons, M.: J. Med. Chem., 40 (7), 1104-1111 (1997).
8004. Hayashi, T.; Iwamura, H. and Fujita, T.: J. Agric. Food Chem., 39 (11), 2029-2038 (1991).
8005. Anderson, D. G.; Davidson, R. S. and Cullum, N. R. (Lambson Fine Chemicals Ltd., UK): PCT Int. Appl. WO 97 49,664 (1997); Chem. Abstr., 128, 102923g (1998).
8006. Bando, S. and Ogawa, A. (Fuji Photo Film Co., Ltd.): Jpn. Kokai Tokkyo KohoJP 04,285,952 [92,285,952] (1992); Chem. Abstr., 120, 257279k (1994).
8007. Baudin, G. and Jung, T. (Ciba Specialty Chemicals Holding Inc., Switzerland): Eur. Pat. Appl. EP 1,072,326 (2001); Chem. Abstr., 134, 132963m (2001).
8008. Brik, I. L.; Brestkin, A. P. and Yakovlev, V. A.: Biokhimiya, 29 (6), 1020-1028 (1964); Chem. Abstr., 62, 6732g (1965).
8009. Elango, V. (Hoechst Celanese Corp.): Eur. Pat. Appl. EP 421,759 (1991); Chem. Abstr., 115, 49142e (1991).
8010. Elango, V. (Hoechst Celanese Corp.): U.S. US 5,179,229 (1993); Chem. Abstr., 118, 212694j (1993).
8011. Gao, Peng; Li, Qun; Wang, Shiyu and Zhang, Pang: Chin. Chem. Lett., 3 (7), 489-492 (1992).
8012. Mel'nikov, N. N.; Maksimova, Z. I.; Shapovalova, G. K.; Shvetsova-Shilovskaya, K. D. and Bocharova, L. P.: U.S.S.R. 148,397 (1962); Chem. Abstr., 58, 8974h (1963).
8013. Mills, S. D. (Zeneca Ltd., UK): U.S. US 5,753,659 (1998); Chem. Abstr., 129, 27961h (1998).
8014. Shvetsova-Shilovskaya, K. D.; Mel’nikov, N. N. and Maksimova, Z. I.: Zh. Obshch. Khim., 33 (7), 2109-2110 (1963).
8015. Wayne, M. G.; Smithers, M. J.; Rayner, J. W.; Faull, A. W.; Pearce, R. J.; Brewster, A. G.; Shute, R. E.; Mills, S. D. and Caulkett, P. W. R. (Zeneca Ltd.): PCT Int. Appl. WO 94 22,835 (1994); Chem. Abstr., 123, 169654k (1995).
8016. Yamanouchi Pharmaceutical Co., Ltd.: Jpn. Kokai Tokkyo JP 81,100,739 (1981); Chem. Abstr., 96, 122432v (1982).
8017. Yarwood, K. J. and Newman, C. P. (Quest International B.V.; Netherlands): PCT Int. Appl. WO 99 55,811 (1999); Chem. Abstr., 131, 327370m (1999).
8018. Dohme, A. R. L.; Cox, E. H. and Miller, E.: J. Amer. Chem. Soc., 48, 1688-1693 (1926).
8019. Cox, E. H.: Recl. Trav. Chim. Pays-Bas, 50, 848-850 (1931).
8020. Reichstein, T.; Oppenauer, R.; Grüssner, A.; Hirt, R.; Rhyner, L. and Glatthaar, C.: Helv. Chim. Acta, 18, 816-830 (1935).
8021. Abe, T. and Shimizu, T.: Nippon Kagaku Zasshi, 91 (8), 753-759 (1970); Chem. Abstr., 73, 120436a (1970).
8022. Prasad, A. K.; Pati, H. N.; Azim, A.; Trikha, S. and Poonam: Bioorg. Med. Chem., 7 (9), 1973-1977 (1999).
8023. Veena, M.; Singh, J.; Malik, O. P. and Gupta, S. P.: Chema Era, 13 (12), 365-367 (1978); Chem. Abstr., 89, 190413v (1978).
8024. Lotta, T.; Taskinen, J.; Backstrom, R. and Nissinen, E.: J. Comput.-Aided Mol. Des., 6 (3), 253-272 (1992); Chem. Abstr., 117, 142869y (1992).
8025. Shinagawa, Yasuko: Jpn. J. Pharmacol., 58 (2), 95-106 (1992); Chem. Abstr., 116, 207320p (1992).
8026. Al-Hamdany, Ra’ad R. and Ali, A. N.: J. Iraqi Chem. Soc., 12 (1), 45-56 (1987); Chem. Abstr., 111, 133672c (1989).
8027. Woodruff, E. H. and Seay, P. H.: U.S. 2,929,848 (1960); Chem. Abstr., 54, 14192b (1960).
8028. Backstrom, R.; Houkanen, E.; Pippuri, A.; Kairisalo, P.; Pystynen, J.; Heinola, K.; Nissinen, E.; Linden, I. B.; Mannisto, P. T.; Kaakkola, S. and Pohto, P.: J. Med. Chem., 32 (4), 841-846 (1989).
8029. Giles, R. E. and Miller, J. W.: J. Pharmacol. Exp. Ther., 156, 201 (1967).
8030. Bryan, L. J.; Fleig, H. and Trendelenburg, U.: Naunyn-Schmiedeberg's Arch. Pharmacol., 322 (1), 6-19 (1983); Chem. Abstr., 99, 947h (1983).
8031. Duncan, P. G. and Douglas, J. S.: Eur. J. Pharmacol., 108 (1), 39-48 (1985).
8032. Ishikawa, H.; Miller, D. D. and Patil, P. N.: Naunyn-Schmiedeberg's Arch. Pharmacol., 354 (6), 765-772 (1996); Chem. Abstr., 126, 220665 f (1997).
8033. Levin, J. A. and Wilson, S. E.: Blood Vessels, 20 (5), 234-244 (1983); Chem. Abstr., 99, 82948w (1983).
8034. Reches, A. and Fahn, S.: Adv. Neurol., 40, 171-179 (1984); Chem. Abstr., 100, 114844s (1984).
8035. Reches, A.; Jiang, De Hua and Fahn, S.: Biochem. Pharmacol., 31 (21), 3415-3418 (1982).
8036. Reches, A.; Jiang, De Hua and Fahn, S.: Funct. Regul. Monoamine Enzymes: Basic Clin. Aspects, Proc. Conf., 2nd, (1981), 683-689; Chem. Abstr., 98, 27702r (1983).
8037. Reches, A.; Jiang, De Hua and Fahn, S.: Naunyn-Schmiedeberg's Arch. Pharmacol., 320 (1), 34-37 (1982); Chem. Abstr., 97, 208183x (1982).
8038. Rice, P. J.; Abraham, S. T.; Huang, Nuo-Yu and Doman, R. J.: Gen. Pharmacol., 29 (3), 437-439 (1997).
8039. Tervo, A. J.; Nyroenen, T. H.; Roenkkoe, T. and Poso, A.: Journal of Computer-Aided Molecular Design, 17 (2), 797-810 (2003) (Pub. 2004).
8040. Nuutila, J.; Kaakkola, S. and Mannisto, P. T.: J. Neural Transm., 70 (3-4), 233-240 (1987); Chem. Abstr., 108, 31914d (1988).
8041. Lloyd, T. and Waldman, C. D.: Life Sci., 31 (19), 2121-2127 (1982).
8042. Lloyd, T.; Boyd, B.; Walega, M. A.; Ebersole, B. J. and Weisz, J.: J. Neurochem., 38 (4), 948-954 (1982).
8043. Abe, K. and Yamamoto, S. (Tanabe Drug Manufacturing Co.): Japan 3774 (1959); Chem. Abstr., 54, 14192b (1960).
8044. Bell, A.; Knowles, M. B. and Tholstrup, C. E. (Eastman Kodak Co.): Brit. 777,812 (1957); Chem. Abstr., 51, 17996 (1957).
8045. Bell, A.; Knowles, M. B. and Tholstrup, C. E. (Eastman Kodak Co.): US 2,759,828 (1956).
8046. Bell, A.; Knowles, M. B. and Tholstrup, C. E. (Eastman Kodak Co.): US 2,848,345 (1958); Chem. Abstr., 53, 2652d (1959).
8047. Eastman Kodak Co.: US 2,848,345 (1954).
8048. Knowles, M. B.; Bell, A.; Tholstrup, C. E. and Pridgen, H. S.: J. Am. Oil Chemists' Soc., 32, 158-160 (1955).
8049. Bell, A.; Knowles, M. B. and Tholstrup, C. E. (Eastman Kodak Co.): Brit. 777,811 (1957); Chem. Abstr., 51, 15975 (1957).
8050. Karrer, P.: Helv. Chim. Acta, 2, 466-481 (1919).
8051. Baigent, D. R. and Bick, I. R. C.: Aust. J. Chem., 26 (9), 2065-2066 (1973).
8052. Karrer, P. and Rosenfeld, S.: Helv. Chim. Acta, 4, 707-714 (1921).
8053. Crombie, L.; Jones, R. C. F. and Palmer, C. J.: Tetrahedron Lett., 26 (24), 2929-2932 (1985).
8054. Riedl, W.: Ger. 941,372 (1956); Chem. Abstr., 52, 17187b (1958).
8055. Riedl, W.: Justus Liebigs Ann. Chem., 585, 38-42 (1954).
8056. Howard, G. A.; Pollock, J. R. A. and Tatchell, A. R.: J. Chem. Soc., 174-181 (1955).
8057. Fung, S. Y.; Brussee, J.; van der Hoeven, R. A. M.; Niessen, W. M. A.; Scheffer, J. J. C. and Verpoorte, R.: J. Nat. Prod., 57 (4), 452-459 (1994).
8058. Reininger, W. and Hartl, A. (Atlantic Research Institute Ltd.): Ger. Offen. 2,519,990 (1976); Chem. Abstr., 86, 171660v (1977).
8059. Chiba, K.; Takakuwa, T.; Tada, M. and Yoshii, T.: Biosci., Biotechnol., Biochem., 56 (11), 1769-1772 (1992).
8060. Meikle, T. and Stevens, R.: J. Chem. Soc., Perkin Trans. 1, (11), 1303-1312 (1978).
8061. Van Klink, J. W.; Brophy, J. J.; Perry, N. B. and Weavers, R. T.: J. Nat. Prod., 62 (3), 487-489 (1999).
8062. Van Klink, J. W.; Larsen, L.; Perry, N. B.; Weavers, R. T.; Cook, G. M.; Bremer, P. J.; MacKenzie, A. D. and Kirikae, T.: Bioorg. Med. Chem., 13 (24), 6651-6662 (2005).
8063. Collins, E.; Donnelly, W. J. G. and Shannon, P. V. R.: Chem. Ind. (London), 353 (3), 120-122 (1972).
8064. Collins, E.; Vivian, P. and Shannon, R. (Brewing Patents Ltd.): Brit. 1,355,236 (1974); Chem. Abstr., 81, 105016k (1974).
8065. Fung, S. Y.; Zuurbier, K. W. M.; Scheffer, J. J. C. and Verpoorte, R.: Monogr. - Eur. Brew. Conv., 22, 14-23 (1994); Chem. Abstr., 122, 183245p (1995).
8066. Hamaguchi, K.; Koda, A.; Yamamoto, H.; Miyake, A.; Isogai, A.; Suzuki, A.; Pei, S.; Li, Y. and Wang, C. (Yamanouchi Pharmaceutical Co., Ltd.; Kunming Institute of Botany): PCT Int. Appl. WO 92 08,712 (1992); Chem. Abstr., 117, 233703f (1992).
8067. Kuhnke, J. and Bohlmann, F.: Tetrahedron Lett., 26 (33), 3955-3958 (1985).
8068. Lounasmaa, M.; Widen, C. J. and Huhtikangas, A.: Acta Chem. Scand., Ser. B, B28 (10), 1209-1218 (1974).
8069. Vrkoc, J. and Sorm, F.: Czech. 161,396 (1975); Chem. Abstr., 85, 78002b (1976).
8070. Wild, J. and Sigg-Gruetter, T. (Givaudan Corp.): U.S. 3,846,498 (1974); Chem. Abstr., 82, 170387s (1975).
8071. Wild, J. and Sigg-Gruetter, T. (Givaudan, L., et Cie. S.A.): Ger. Offen. 2,333,580 (1974); Chem. Abstr., 80, 108189j (1974).
8072. Fung, S. Y.; Zuurbier, K. W. M.; Paniego, N. B.; Scheffer, J. J. C. and Verpoorte, R.: Proc. Congr. Eur. Brew. Conv., 26th, 215-221 (1997); Chem. Abstr., 129, $287182 b$ (1998).
8073. Morita, H.; Takahashi, Y.; Noguchi, H. and Abe, I.: Biochem. Biophys. Res. Commun., 279, 190-195 (2000).
8074. Paniego, N. B.; Zuurbier, K. W. M.; Fung, S.-Y.; Van der Heijden, R.; Scheffer, J. J. C. and Verpoorte, R.: Eur. J. Biochem., 262 (2), 612-616 (1999).
8075. Zuurbier, K. W. M.; Leser, J.; Berger, T.; Hofte, A. J. P.; Schröder, G.; Verpoorte, R. and Schröder, J.: Phytochemistry, 49 (7), 1945-1951 (1998).
8076. Boubakir, Z.; Beuerle, T.; Liu, B. and Beerhues, L.: Phytochemistry, 66 (1), 51-57 (2005).
8077. Sakai, K.; Sato, Y.; Doi, K. and Kitamura, K. (Hoechst Yakuhin Kogyo K. K., Japan): Jpn. Kokai Tokkyo Koho JP 10 316,608 [98 316,608] (1998); Chem. Abstr., 130, 38197k (1999).
8078. Sakai, K.; Satoh, Y.; Doi, K. and Kitamura, K. (Hoechst Yakuhin Kogyo K. K., Japan): PCT Int. Appl. WO 97 43,235 (1997); Chem. Abstr., 128, 3540y (1998).
8079. Bohlmann, F.; Misra, L. N. and Jakupovic, J.: Planta Med., 50 (2), 174-176 (1984).
8080. Jakupovic, J.; Kuhnke, J.; Schuster, A.; Metwally, M. A. and Bohlmann, F.: Phytochemistry, 25 (5), 1133-1142 (1986).
8081. Bohr, G.; Gerhaeuser, C.; Knauft, J.; Zapp, J. and Becker, H.: J. Nat. Prod., 68 (10), 1545-1548 (2005).
8082. Zuurbier, K. W. M.; Fung, S. Y.; Scheffer, J. J. C. and Verpoorte, R.: Phytochemistry, 38 (1), 77-82 (1995).
8083. Norcross, G. and Openshaww, H. T.: J. Chem. Soc., 1174-1178 (1949).
8084. Schüz, R.; Heller, W. and Hahlbrock, K.: J. Biol. Chem., 258, 6730-6734 (1983).
8085. Birch, A. J. and Todd, A. R.: J. Chem. Soc., 3102-3108 (1952).
8086. Schmalreck, A. F.; Teuber, M.; Reininger, W. and Hartl, A.: Can. J. Microbiol., 21 (2), 205-212 (1975).
8087. Lafon, L. (to Orsymonde S.A.): U.S. 3,079,300 (1963); Chem. Abstr., 58, 11176a (1963).
8088. Tada, M.; Chiba, K.; Takakuwa, T. and Kojima, E.: J. Med. Chem., 35 (7), 1209-1212 (1992).
8089. Tada, K.; Chiba, K.; Kojima, H. and Yamaura, T.: Jpn. Kokai Tokkyo Koho JP 04,108,730 [92,108,730] (1992); Chem. Abstr., 117, 143451t (1992).
8090. Woltering, M.; Haning, H.; Schmidt, G.; Pernerstorfer, J.; Bischoff, H.; Kretschmer, A.; Voehringer, V. and Faeste, C. (Bayer Aktiengesellschaft, Germany): PCT Int. Appl. WO 02 22,586 (2002); Chem. Abstr., 136, 263157r (2002).
8091. Schallner, O.; Santel, H. J. Luerssen, K.; Schmidt, R. R. and Vossinkel, R. (Bayer A.-G.): Eur. Pat. Appl. EP 545,206 (1993); Chem. Abstr., 119, 203429v (1993).
8092. Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr.; Gould, N. P.; Pietruszkiewicz, A. M.; Ziegler, C.; Sakurai, Y.; Stokker, G. E.; Anderson, P. S.; Bourke, R. S.; Kimelberg, H. K.; Nelson, L. R.; Barron, K. D.; Rose, J. R.; Szarowski, D.; Popp, A. J. and Waldman, J. B.: J. Med. Chem., 29 (5), 825-841 (1986).
8093. Woltersdorf, O. W., Jr.; de Solms, S. J.; Schultz, E. M. and Cragoe, E. J., Jr.: J. Med. Chem., 20 (11), 1400-1408 (1977).
8094. Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. (Merck and Co., Inc.): Ger. Offen. 2,351,411 (1974); Chem. Abstr., 81, 13323e (1974).
8095. Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. (Merck and Co., Inc.): Ger. Offen. 2,448,395 (1975); Chem. Abstr., 84, 4728a (1976).
8096. Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. (Merck and Co., Inc.): Ger. Offen. 2,522,553 (1975); Chem. Abstr., 84, 105278j (1976).
8097. Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. (Merck and Co., Inc.): Ger. Offen. 2,607,305 (1976); Chem. Abstr., 85, 192535c (1976).
8098. Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. (Merck and Co., Inc.): U.S. 4,012,524 (1977); Chem. Abstr., 87, 39163b (1977).
8099. Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. (Merck and Co., Inc.): U.S. 4,096,267 (1978); Chem. Abstr., 89, 197223s (1978).
8100. Merck \& Co., Inc.: Ger. Offen. 2,365,378 (1974); Chem. Abstr., 82, 4261b (1975).
8101. Herbert, J. M.: J. Labelled Compd. Radiopharm., 48 (5), 317-322 (2005).
8102. Amstutz, E. D.; Fehnel, E. A. and Neumoyer, C. R.: J. Am. Chem. Soc., 68, 349-354 (1946).
8103. Hardcastle, I. R. and Quayle, P.: Tetrahedron Lett., 35 (11), 1749-1750 (1994).
8104. Spasov, A.: Ann. univ. Sofia. II. Faculté phys.-math., 35 (2), 289-293 (in German, 294295), (1938-1939); Chem. Abstr., 34, 23435 (1940).
8105. Sangaiah, R. and Rao, G. S. K.: Indian J. Chem., Sect. B, 21B (1), 13-15 (1982).
8106. Tanaka, J. and Adachi, K.: Bull. Chem. Soc. Jpn., 63 (1), 272-274 (1990).
8107. Nicolaus, R. and Orsini, P. G.: Rend. accad. sci. fis. e mat. (Soc. nazl. sci. Napoli), 20 (4), 127-147 (1953); Chem. Abstr., 49, 8161a (1955).
8108. Eshghi, H.; Rafie, M.; Gordi, Z. and Bohloli, M.: J. Chem. Res. Synop., (12), 763-764, M 1258-1270 (2003).
8109. Auwers, K.: Ber. Dtsch. Chem. Ges., 47, 2334-2350 (1914).
8110. Auwers, K. and Lämmerhirt, E.: Ber. Dtsch. Chem. Ges., 53, 428-443 (1920).
8111. Barton, D. H. R.; Bhati, A.; De Mayo, P. and Morrison, G. A.: J. Chem. Soc., 4393-4398 (1958).
8112. Seto, N. and Morigaki, M. (Fuji Photo Film Co. Ltd.): Jpn. Kokai Tokkyo KohoJP 07,333,797 [95,333,797] (1995); Chem. Abstr., 124, 160292d (1996).
8113. Nakamura, Y.; Mitani, S. and Yoneda, T. (Ishihara Sangyo Kaisha, Ltd., Japan): PCT Int. Appl. WO 2006 16,708 (2006); Chem. Abstr., 144, 207362g (2006).
8114. Bernardinelli, G.; Fernandez, D.; Gosmini, R.; Meier, P.; Ripa, A.; Schupfer, P.; Treptow, B. and Kundig, E. P.: Chirality, 12 (5/6), 529-539 (2000).
8115. Nishimura, T.; Nakajima, M.; Maeda, Y.; Uemura, S.; Takekuma, S.; Takekuma, H. and Yoshida, Z.: Bull. Chem. Soc. Jpn., 77 (11), 2047-2050 (2004).
8116. Ooi, T.; Uraguchi, D. and Maruoka, K.: Tetrahedron Lett., 39 (44), 8105-8108 (1998).
8117. Ooi, T.; Uraguchi, D.; Kagoshima, N. and Maruoka, K.: J. Am. Chem. Soc., 120 (21), 5327-5328 (1998).
8118. Sato, F.; Inoue, M.; Oguro, K. and Sato, M.: Tetrahedron Lett., (44), 4303-4304 (1979).
8119. Lin, S.-T.; Lin, W.-C.; Chao, R. Y.-H. and Huang, C.-L.: J. Chin. Chem. Soc. (Taipei), 47 (4B), 907-912 (2000); Chem. Abstr., 134, 193077x (2001).
8120. Rottendorf, H.; Sternhell, S. and Wilmshurst, J. R.: Aust. J. Chem., 8 (11), 1759-1773 (1965).
8121. Shi, W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou, G.-H. and Zhou, Q.-L.: J. Am. Chem. Soc., 128 (9), 2780-2781 (2006).
8122. Sosa, A.: Ann. Chim., 14, 5-120 (1940).
8123. Kodomari, M.; Suzuki, Y. and Yoshida, K.: Chem. Commun. (Cambridge): (16), 15671568 (1997).
8124. Laporte, C.; Baules, P.; Laporterie, A.; Desmurs, J. R. and Dubac, J.: C. R. Acad. Sci., Ser. IIc: Chim., 1 (2), 141-150 (1998).
8125. Desmurs, J. R.; Labrouillere, M.; Le Roux, C.; Gaspard, H.; Laporterie, A. and Dubac, J.: Tetrahedron Lett., 38 (51), 8871-8874 (1997).
8126. Repichet, S.; Le Roux, C.; Roques, N. and Dubac, J.: Tetrahedron Lett., 44 (10), 20372040 (2003).
8127. Newman, M. S.: J. Am. Chem. Soc., 67, 345 (1949).
8128. Izumi, J. and Mukaiyama, T.: Chem. Lett., (9), 739-740 (1996).
8129. Baciocchi, E.; Bietti, M.; Ferrero, M. I.; Rol, C. and Sebastiani, G. V.: Acta Chem. Scand., 52 (2), 160-164 (1998).
8130. Bayless, P. L. and Hauser, C. R.: J. Am. Chem. Soc., 76, 2306-2308 (1954).
8131. Effenberger, F. and Epple, G.: Angew. Chem. Int. Ed. Engl., 11, 299-300 (1972).
8132. Effenberger, F. and Epple, G.: Angew. Chem. Int. Ed. Engl., 11, 300-301 (1972).
8133. Laporte, C.; Marquie, J.; Laporterie, A.; Desmurs, J. R. and Dubac, J.: C. R. Acad. Sci., Ser. IIc: Chim., 2 (7-8), 455-465 (1999).
8134. Li, J. and Gellerstedt, G.: Nord. Pulp Pap. Res. J., 13 (2), 153-158 (1998); Chem. Abstr., 129, 177053c (1998).
8135. Bloor, S. J.: J. Nat. Prod., 55 (1), 43-47 (1992).
8136. Qin, GuoWei and Xu, Rensheng: Huaxue Xuebao, 44 (2), 151-156 (1986); Chem. Abstr., 104, 203867b (1986).
8137. Shinma, N.; Fujiu, M.; Umeda, I.; Ohtsuka, T.; Ishitsuka, H. and Sugara, Y. (Hoffmann-La Roche, F., und Co. A.-G.): Eur. Pat. Appl. EP 51,819 (1982); Chem. Abstr., 97, 181953j (1982).
8138. Meikle, T. and Stevens, R.: J. Chem. Soc., Perkin Trans. 1, (10), 2563-2573 (1979).
8139. Schiemenz, G. P. and Schmidt, U.: Liebigs Ann. Chem., (8), 1514-1519 (1976).
8140. Ramage, G. R. and Stowe, J. I.: J. Chem. Soc., 425-426 (1940).
8141. Chen, P.; Daugan, A. C.-M.; Gosmini, R. L. M.; Igo, D.; Katrincic, L.; Martres, P.; Nicodeme, E. and Patience, D. (SmithKline Beecham Corporation, USA): PCT Int. Appl. WO 2006 32,470 (2006); Chem. Abstr., 144, 350691u (2006).
8142. Nohr, R. S. and MacDonald, J. G. (Kimberly-Clark Worldwide, Inc., USA): PCT Int. Appl. WO 00 18,750 (2000); Chem. Abstr., 132, 251564a (2000).
8143. Nohr, R. S. and MacDonald, J. G. (Kimberly-Clark Worldwide, Inc., USA): U.S. US 6,265,458 (2001); Chem. Abstr., 135, 107723w (2001).
8144. Gonzalez Valcarcel, I. C.; Mantlo, N. B.; Shi, Q.; Wang, M.; Winneroski, L. L. Jr.; Xu, Y. and York, J. S. (Eli Lilly and Company, USA): PCT Int. Appl. WO 2005 19,151; Chem. Abstr., 142, 279949k (2005).
8145. Nakamura, N. and Oki, M.: Bull. Chem. Soc. Jpn., 45 (8), 2565-2570 (1972).
8146. Trivedi, S. V. and Mamdapur, V. R.: Indian J. Chem., Sect. B, 29B (9), 876-878 (1990).
8147. Corey, E. J. and Suggs, J. W.: Tetrahedron Lett., (31), 2647-2650 (1975).
8148. Boxall, R. J.; Ferris, L. and Grainger, R. S.: Synlett, (13), 2379-2381 (2004).
8149. Semmelhack, M. F.; Clark, G. R.; Garcia, J. L.; Harrison, J. J.; Thebtaranonth, Y.; Wulff, W. and Yamashita, A.: Tetrahedron, 37 (23), 3957-3965 (1981).
8150. Simonato, J.-P. and Lambert, J.-F.: l'Actualité Chimique, 292, 55-56 (2005).
8151. Soffer, M. D. and Donaldson, A.: J. Org. Chem., 23, 308-309 (1958).
8152. Ellwood, S.; Haines, J. T. and Newman, C. P. (Quest International B.V., Neth.): PCT Int. Appl. WO 02 14,243 (2002); Chem. Abstr., 136, 183963k (2002).
8153. Ellwood, S.; Haines, J. T. and Newman, C. P. (Quest International B.V., Neth.): PCT Int. Appl. WO 02 14,253 (2002); Chem. Abstr., 136, 183964m (2002).
8154. Ellwood, S.; Haines, J. T. and Newman, C. P. (Quest International B.V., Neth.): PCT Int. Appl. WO 02 14,255 (2002); Chem. Abstr., 136, 185766x (2002).
8155. Nicolaou, K. C.; Vassilikogiannakis, G.; Simonsen, K. B.; Baran, P. S.; Zhong, Y. L.; Vidali, V. P.; Pitsinos, E. N. and Couladouros, E. A.: J. Am. Chem. Soc., 122 (13), 3071-3079 (2000).
8156. Eilingsfeld, H.; Seefelder, M. and Weidinger, H.: Angew. Chem., 72 (22), 836-845 (1960).
8157. Seefelder, M. (Badische Anilin und Soda Fabrik): Ger. 1,112,982 (1959); Chem. Abstr., 56, 5810f (1962).
8158. Koft, E. R. and Smith, A. B.: J. Am. Chem. Soc., 104 (9), 2659-2661 (1982).
8159. Levine, R. and Sommers, J. R.: J. Org. Chem., 39 (24), 3559-3564 (1974).
8160. Gardner, P. D.: J. Am. Chem. Soc., 76, 4550-4552 (1954).
8161. Kraft, P. and Eichenberger, W.: Eur. J. Org. Chem., (19), 3735-3743 (2003).
8162. Mattson, M. N. and Rapoport, H.: J. Org. Chem., 61 (17), 6071-6074 (1996).
8163. Brenna, E.; Fuganti, C.; Grasselli, P. and Serra, S.: Eur. J. Org. Chem., (7), 1349-1357 (2001).
8164. Holland, H. L.; Gu, J.-X.; Orallo, F.; Camina, M.; Fabeiro, P. and Willetts, A. J.: Pharm. Res., 16 (2), 281-287 (1999).
8165. Schultz, H.: Pharmazie, 22 (1), 19-22 (1967).
8166. Valvo, L.; Alimenti, S.; Alimonti, S.; Raimondi, S.; Foglietta, F. and Campana, F.: J. Pharm. Biomed. Anal., 15 (7), 989-996 (1997).
8167. Haller, H. L. and Schaffer, P. S.: J. Am. Chem. Soc., 61, 2175-2177 (1939).
8168. Adams, R.; MacKenzie, S. Jr. and Loewe, S.: J. Am. Chem. Soc., 70, 664-668 (1948).
8169. Shiu, W. K. P. and Gibbons, S.: Phytochemistry, 67 (23), 2568-2572 (2006).
8170. Riedl, W.: Chem. Ber., 89, 2600-2601 (1956).
8171. Schiemenz, G. P.; Behrens, H.; Ebert, C. P.; Maienschein, K. and Schröder, J.-M.: Z. Naturforsch., B: Anorg. Chem., Org. Chem., 40B (5), 681-692 (1985); Chem. Abstr., 103, 141718x (1985).
8172. Schiemenz, G. P. and Schmidt, U.: Liebigs Ann. Chem., (8), 1509-1513 (1976).
8173. Bolte, M. L.; Bowers, J.; Crow, W. D.; Paton, D. M.; Sakurai, A.; Takahashi, N.; Ujiie, M. and Yoshida, S.: Agric. Biol. Chem., 48 (2), 373-376 (1984).
8174. Li, Liang-Chuan; Cheng, Ya-Ping; Yu, Pei-Lin; Li, Ying; Kai, Yuan-Chu; Wang, Te-Sheng and Chen, I-Sin: Hua Hsueh Hsueh Pao, 36 (1), 43-48 (1978); Chem. Abstr., 89, 146536p (1978).
8175. Lounasmaa, M.: Acta Chem. Scand., Ser. B, B31 (1), 77-80 (1977).
8176. Qin, Guo-Wei; Chen, Zheng-Xiong; Wang, Hong-Cheng and Qian, Ming-Kun: Hua Hsueh Hsueh Pao, 39 (1), 83-89 (1981); Chem. Abstr., 95, 61678k (1981).
8177. Riedl, W. and Mitteldorf, R.: Chem. Ber., 89, 2589-2594 (1956).
8178. Schiemenz, G. P. and Schröder, J.-M.: Z. Naturforsch., B: Anorg. Chem., Org. Chem., 40B (5), 669-680 (1985); Chem. Abstr., 103, 85031d (1985).
8179. Ayras, P. and Widen, C. J.: Org. Magn. Reson., 11 (11), 551-554 (1978).
8180. Ayras, P. and Widen, C. J.: Planta Med., 34 (2), 144-152 (1978).
8181. Hurd, C. D. and Winberg, H. E.: J. Am. Chem. Soc., 64, 2085-2086 (1942).
8182. Küspert, R. and Mannschreck, A.: Org. Magn. Reson., 19 (1), 6-11 (1982).
8183. Djuric, S. W.; Shone, R. L. and Yu, S. S. T. (Searle, G. D., and Co.): Eur. Pat. Appl. EP 292,977 (1988); Chem. Abstr., 110, 173088c (1989).
8184. Srikrishna, A. and Satyanarayana, G.: Tetrahedron, 62 (12), 2892-2900 (2006).
8185. Cheng, Qi and Snyder, J. K.: Z. Naturforsch., B: Chem. Sci., 46 (9), 1275-1277 (1991).
8186. Hems, B. A. and Todd, A. R.: J. Chem. Soc., 1208-1209 (1940).
8187. Penfold, A. R. and Morrison, F. R.: J. Proc. Roy. Soc., New South Wales, 56, $87-89$ (1922); Chem. Abstr., 17, 1006 (1923).
8188. Penfold, A. R. and Simonsen, J. L.: J. Proc. Roy. Soc., New South Wales, 71, 291-296 (1936); Chem. Abstr., 32, 7430^{5} (1938).
8189. Dastlik, K. A.; Ghisalberti, E. L. and Jefferies, P. R.: Phytochemistry, 28 (12), 3543-3544 (1989).
8190. Bowyer, R. C. and Jefferies, P. R.: Aust. J. Chem., 15, 145-149 (1962).
8191. Fujimoto, Y. (Yakugakubu, Nihon Daigaku, Funabashi, Japan 274): Ikagaku Oyo Kenkyu Zaidan Kenkyu Hokobu, 14, 278-282 (1995) (Pub. 1996); Chem. Abstr., 127, 85907q (1997).
8192. Fujimoto, Y.; Usui, S.; Makino, M. and Sumatra, M.: Phytochemistry, 41 (3), 923-925 (1996).
8193. Spoelstra, D. B.: Recl. Trav. Chim. Pays-Bas, 50, 433-440 (1931).
8194. Penfold, A. R.: J. Proc. Roy. Soc., New South Wales, 59, 351-355 (1925); Chem. Abstr., 20, 2721 (1926).
8195. Brophy, J. J. and Lassak, E. V.; Flavour Fragr. J., 7 (1), 27-31 (1992).
8196. Brophy, J. J.; Goldsack, R. J. and Forster, P. I.: J. Essent. Oil Res., 18 (2), 222-230 (2006).
8197. Graham, P. S.; Hellyer, R. O. and Ryan, A. J.: Biochem. Pharmacol., 19 (3), 759-768 (1970).
8198. Hems, B. A. and Todd, A. R.: J. Chem. Soc., 562-566 (1937).
8199. Brophy, J. J.; Goldsack, R. J.; Fookes, C. J. R. and Forster, P. I.: Flavour Fragr. J., 10 (2), 69-73 (1995).
8200. Ireland, B. F.; Goldsack, R. J.; Brophy, J. J.; Fookes, C. J. R. and Clarkson, J. R.: Journal of Essential Oil Research, 16 (2), 89-94 (2004).
8201. Lahey, F. N. and Jones, T. G. H.: Proc. Roy. Soc. Qld., 51, 10-13 (1939).
8202. Menut, C.; Bessiere, J. M.; Hassani, M. S.; Buchbauer, G. and Schopper, B.: Flavour Fragr. J., 17 (6), 459-461 (2002).
8203. Ding, K. and Wang, S.: Tetrahedron Lett., 46 (21), 3707-3709 (2005).
8204. Wang, S.; Ding, K.; Tang, G.; Wang, R.; Yang, C. Y. and Nikolovska-Coleska, Z. (The Regents of the University of Michigan, USA): PCT Int. Appl. WO 2006 99,193 (2006); Chem. Abstr., 145, 356651y (2006).
8205. Bohlmann, F. and Suwita, A.: Phytochemistry, 18 (12), 2046-2049 (1979).
8206. Jakupovic, J.; Zdero, C.; Grenz, M.; Tsichritzis, F.; Lehmann, L.; Hashemi-Nejad, S. M. and Bohlmann, F.: Phytochemistry, 28 (4), 1119-1131 (1989).
8207. Meikle, T. and Stevens, R.: J. Chem. Soc., Chem. Commun., (3), 123-124 (1972).
8208. Drawert, F. and Beier, J.: Phytochemistry, 15 (11), 1695-1696 (1976).
8209. Bohlmann, F. and Mahanta, P. K.: Phytochemistry, 18 (2), 348-350 (1979).
8210. Hänsel, R.; Cybulski, E. M.; Cubukcu, B.; Mericli, A. H.; Bohlmann, F. and Zdero, C.: Phytochemistry, 19 (4), 639-644 (1980).
8211. Bohlmann, F. and Zdero, C.: Phytochemistry, 18 (4), 641-644 (1979).
8212. Bohlmann, F.; Zdero, C.; Abraham, W. R.; Suwita, A. and Grenz, M.: Phytochemistry, 19 (5), 873-879 (1980).
8213. Randriaminahy, M.; Proksch, P.; Witte, L. and Wray, V.: Z. Naturforsch., C: Biosci. 47 (1-2), 10-16 (1992).
8214. Bremner, P. D. and Meyer, J. J. M.: S. Afr. J. Bot., 66 (2), 115-117 (2000); Chem. Abstr., 134, 113006k (2001).
8215. Mutanyatta-Comar, J.; Phale, O. J. K.; Abegaz, B. M. and Croft, K.: Bulletin of the Chemical Society of Ethiopia, 20 (1), 61-68 (2006); Chem. Abstr., 146, 398294k (2007).
8216. Zuurbier, K. W. M.; Fung, S.-Y.; Scheffer, J. J. C. and Verpoorte, R.: Phytochemistry, 49 (8), 2315-2322 (1998).
8217. Cann, M. R. and Shannon, P. V. R.: Chem. Ind. (London), (19), 779-780 (1982).
8218. Cahill, D. M. and Shannon, P. V. R.: J. Chem. Soc. (C), (6), 938-942 (1969).
8219. Byrne, E.; Cahill, D. M. and Shannon, P. V. R.: J. Chem. Soc. (C), (12), 1637-1641 (1970).
8220. Shaw, S. J. and Shannon, P. V. R.: Amer. Soc. Brew. Chem., Proc., 5-13 (1969); Chem. Abstr., 73, 119109q (1970).
8221. Menut, C.; Bessiere, J. M.; Samate, A. D.; Millogo-Rasolodimby, J. and Nacro, M.: Phytochemistry, 51 (8), 975-978 (1999).
8222. Moore, B. D.; Wallis, I. R.; Pala-Paul, J.; Brophy, J. J.; Willis, R. H. and Foley, W. J.: Journal of Chemical Ecology, 30 (9), 1743-1769 (2004).
8223. Man, T.; Milot, G.; Porter, W. J.; Reel, J. K.; Rudyk, H. C. E.; Valli, M. J. and Walter, M. W. (Eli Lilly and Company, USA): PCT Int. Appl. WO 2005 100,301 (2005); Chem. Abstr., 143, 422634g (2005).
8224. Yasui, K.; Segawa, S. and Kurihara, T. (Sapporo Breweries Limited, Japan): PCT Int. Appl. WO 2006 93,202 (2006); Chem. Abstr., 145, 267008b (2006).
8225. Mathekga, A. D. M.; Meyer, J. J. M.; Horn, M. M. and Drewes, S. E.: Phytochemistry, 53 (1), 93-96 (2000).
8226. Meyer, J. J. M. and Mathekga, A. D. M.: PCT Int. Appl. WO 01 23,342 (2001); Chem. Abstr., 134, 261233x (2001).
8227. Su, Y.; Ma, J.; Peng, X.; She, X.; Pan, X. and Gao, J.: J. Chem. Res. Synop., (10), 704-705 (2004).
8228. Chavez, D.; Chai, H.-B.; Chagwedera, T. E.; Gao, Q.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M. and Kinghorn, A. D.: Tetrahedron Lett., 42 (22), 3685-3688 (2001).
8229. Wu, Q. L.; Wang, S. P.; Wang, L. W.; Yang, J. S. and Xiao, P. G.: Chin. Chem. Lett., 9 (5), 469-470 (1998); Chem. Abstr., 131, 197027s (1999).
8230. Nishinaga, A.; Iwasaki, H.; Shimizu, T.; Toyoda, Y. and Matsuura, T.: J. Org. Chem., 51 (12), 2257-2266 (1986).
8231. Nishinaga, A.; Shimizu, T. and Matsuura, T.: Tetrahedron Lett., 22 (52), 5293-5296 (1981).
8232. Everly, C. (Ethyl Corp.): U.S. US 4,405,528 (1983); Chem. Abstr., 100, 22427e (1984).
8233. Hurum, D. C. and Kreilick, R. W.: J. Phys. Chem., 99 (31), 11813-11819 (1995).
8234. Nishinaga, A.; Yano, M.; Kuwashige, T.; Maruyama, K. and Mashino, T.: Chem. Lett., (4), 817-820 (1994).
8235. Upasani, R. B.; Chiang, L. Y. and Goshorn, D. P.: Mater. Res. Soc. Symp. Proc., 173 (Adv. Org. Solid State Mater.), 77-82 (1990); Chem. Abstr., 113, 172827t (1990).
8236. Upasani, R. B.; Chiang, L. Y. and Goshorn, D. P.: Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 31 (1), 605-606 (1990); Chem. Abstr., 113, 115970k (1990).
8237. Watanabe, K.; Fujimoto, S.; Abe, N.; Kitahara, Y. and Sakai, E. (Konica Co., Japan): Jpn. Kokai Tokkyo Koho JP 10 39,525 [98 39,525] (1998); Chem. Abstr., 128, 210826m (1998).
8238. Kang, Sang I. (Henkel Corporation, USA): PCT Int. Appl. WO 99 03,808 (1999); Chem. Abstr., 130, 124892q (1999).
8239. Athanasas, K.; Magiatis, P.; Fokialakis, N.; Skaltsounis, A.-L.; Pratsinis, H. and Kletsas, D.: J. Nat. Prod., 67 (6), 973-977 (2004).
8240. Rios, M. Y. and Delgado, G.: Phytochemistry, 31 (10), 3491-3494 (1992).
8241. Bohlmann, F.; Abraham, W. F.; Robinson, H. and King, R. M.: Phytochemistry, 19 (11), 2475-2477 (1980).
8242. Gamiotea-Turro, D.; Cuesta-Rubio, O.; Prieto-Gonzalez, S.; De Simone, F.; Passi, S. and Rastrelli, L.: J. Nat. Prod., 67 (5), 869-871 (2004).
8243. Collins, E. and Shannon, P. V. R.: J. Chem. Soc., Perkin Trans. 1, (4), 419-424 (1973).
8244. Hubner, H.; Maier, J. and Riedl, W.: Z. physiol. Chem., 325, 224-228 (1961).
8245. Fernandez, C. M.: J. Chem. Soc., Chem. Commun., (23), 1212 (1967).
8246. Drawert, F. and Beier, J.: Phytochemistry, 15 (11), 1689-1690 (1976).
8247. Lloyd, R. O. V.; Shannon, P. V. R. and Shaw, S. J.: J. Inst. Brew., 75 (1), 32-36 (1969); Chem. Abstr., 70, 95424y (1969).
8248. Sigg-Gruetter, T. and Wild, J. (Givaudan, L., et Cie. S.A.): Ger. Offen. 2,539,014 (1976); Chem. Abstr., 85, 78231a (1976).
8249. Turro, N. J.: Molecular Photochemistry, W. A. Benjamin, New York, 1965, p. 139.
8250. Hecht, S.; Kammhuber, K.; Reiner, J.; Bacher, A. and Eisenreich, W.: Phytochemistry, 65 (8), 1057-1060 (2004).
8251. Drawert, F. and Beier, J.: Phytochemistry, 13 (10), 2149-2155 (1974).
8252. Molyneux, R. J. and Wong, Yen-I: Amer. Soc. Brew. Chem., Proc., 71-74 (1973) (Pub. 1974); Chem. Abstr., 81, 36441 (1974).
8253. Van de Velde, N. and Verzele, M.: J. Inst. Brew., 92 (6), 584-587 (1986); Chem. Abstr., 106, 48574z (1987).
8254. Byrne, E. and Shaw, S. J.: J. Chem. Soc. C, (16), 2810-2813 (1971).
8255. Ting, P. L. and Goldstein, H.: J. Am. Soc. Brew. Chem., 54 (2), 103-109 (1996); Chem. Abstr., 124, 315492v (1996).
8256. Tada, M.; Chiba, K.; Yamada, H. and Maruyama, H.: Phytochemistry, 30 (8), 2559-2562 (1991).
8257. Ogata, M.; Matsumoto, H.; Shimizu, S. and Kida, S. (Shinogi and Co., Ltd.): Eur. Pat. Appl. EP 435,322 (1991); Chem. Abstr., 115, 183076q (1991).
8258. Hirose, N. and Oshiba, T. (Konica Co.): Eur. Pat. Appl. EP 615,165 (1994); Chem. Abstr., 123, 22069q (1995).
8259. Backhouse, T. and Robertson, A.: J. Chem. Soc., 1257-1261 (1939).
8260. Whalley, W. B.: J. Chem. Soc., Part I, 105-107 (1955).
8261. Bohlmann, F. and Zdero, C.: Phytochemistry, 19 (1), 153-155 (1980).
8262. Backstrom, R.; Pystynen, J.; Lotta, T.; Ovaska, M. and Taskinen, J. (Orion Corporation, Finland): PCT Int. Appl. WO 02 22,551 (2002); Chem. Abstr., 136, 262997c (2002).
8263. Tius, M. A. and Reddy, N. K.: Synth. Commun., 24 (6), 859-869 (1994).
8264. Mouhtady, O.; Gaspard-Houghmane, H.; Roques, N. and Le Roux, C.: Tetrahedron Lett., 44 (34), 6379-6382 (2003).
8265. Mouhtady, O.; Gaspard-Houghmane, H.; Roques, N. and Le Roux, C.: Tetrahedron Lett., 44 (43), 8037 (2003).
8266. Yoshioka, M.; Sawada, H.; Saitoh, M. and Hasegawa, T.: J. Chem. Soc., Perkin Trans. 1, (4), 1097-1100 (1990).
8267. Yanagawa, T. (Mitsubishi Gas Chemical Co., Inc.): Jpn. Kokai Tokkyo Koho JP 63,132,855 [88,132,855] (1988); Chem. Abstr., 110, 23566t (1989).
8268. Kindler, K. and Li, T.: Ber. Dtsch. Chem. Ges., 74, 321-327 (1941).
8269. Horeau, A. and Jacques, J.: Bull. Soc. Chim. Fr., (14), 58-62 (1947).
8270. Kobayashi, O. and Kawamoto, I. (Sumitomo Chemical Co, Japan): Jpn. Kokai Tokkyo Koho JP 2001 335,528 (2001); Chem. Abstr., 136, 5811b (2002).
8271. Minisci, F.; Recupero, F.; Fontana, F.; Bjorsyik, H.- R. and Liguori, L.: Synlett, (4), 610612 (2002).
8272. Tasaka, A.; Ojida, A.; Kaku, T.; Kusaka, M. and Yamaoka, M. (Takeda Chemical Industries, Ltd., Japan): PCT Int. Appl. WO 01 30,762 (2001); Chem. Abstr., 134, 340505r (2001).
8273. Bohlmann, F.; Zdero, C. and Ziesche, J.: Phytochemistry, 18 (8), 1375-1378 (1979).
8274. Zhao, F.; Watanabe, Y.; Nozawa, H.; Daikonnya, A.; Kondo, K. and Kitanaka, S.: J. Nat. Prod., 68 (1), 43-49 (2005).
8275. Décosterd, L. A.; Dorsaz, A. C. and Hostettmann, K.: J. Chromatogr., 406, 367-373 (1987).
8276. Décosterd, L. A.; Stoeckli-Evans, H.; Msonthi, J. D. and Hostettmann, K.: Helv. Chim. Acta, 70 (7), 1694-1702 (1987).
8277. Décosterd, L. A.; Stoeckli-Evans, H.; Msonthi, J. D. and Hostettmann, K.: Planta Med., 52, 429 (1986).
8278. Hostettmann, K.: Bull. Liaison - Groupe Polyphenols, 15, 196-202 (1990); Chem. Abstr., 115, 131935z (1991).
8279. Ferraz, A. B. F.; Grivicich, I.; von Poser, G. L.; Faria, D. H.; Kayser, G. B.; Schwartsmann, G.; Henriques, A. T. and Da Rocha, A. B.: Fitoterapia, 76 (2), 210-215 (2005).
8280. Gnerre, C.; Von Poser, G. L.; Ferraz, A.; Viana, A.; Testa, B. and Rates, S. M. K.: J. Pharm. Pharmacol., 53 (9), 1273-1279 (2001).
8281. Ferraz, A. B. F.; Bordignon, S. A. L.; Staats, C.; Schripsema, J. and von Poser, G. L.: Phytochemistry, 57 (8), 1227-1230 (2001).
8282. Dall'Agnol, R.; Ferraz, A.; Bernardi, A. P.; Albring, D.; Nor, C.; Schapoval, E. E. S. and von Poser, G. L.: Phytotherapy Research, 19 (4), 291-293 (2005).
8283. Winkelman, K.; San, M.; Kypriotakis, Z.; Skaltsa, H.; Bosilij, B. and Heilman, J.: Z. Naturforsch., C: 58 (7/8), 527-532 (2003).
8284. Shaw, S. J. and Byrne, E.: J. Chem. Soc. C, (5), 950-952 (1971).
8285. Shannon, P. V. R.: Chem. Ind. (London), (22), 720-721 (1968).
8286. Shaw, S. J. and Shannon, P. V. R.: Org. Mass Spectrom., 3 (7), 941-954 (1970).
8287. Byrne, E. and Shannon, P. V. R.: J. Chem. Soc. (C), 1540-1542 (1969).
8288. Collins, M.; Laws, D. R. J.; McGuinness, J. D. and Elvidge, J. A.: J. Chem. Soc. C, (22), 3814-3818 (1971).
8289. Byrne, E.; Cahill, D. M. and Shannon, P. V. R.: Chem. Ind. (London), (26), 875-876 (1969).
8290. Crombie, L.; Jones, R. C. F. and Palmer, C. J.: J. Chem. Soc., Perkin Trans. 1, 317-332 (1987).
8291. Crombie, L.; Games, D. E.; Haskins, N. J. and Reed, G. F.: J. Chem. Soc., Perkin Trans. 1, (18), 2255-2260 (1972).
8292. Yang, H.; Protiva, P.; Gil, R. R.; Jiang, B.; Baggett, S.; Basile, M. J.; Reynertson, K. A.; Weinstein, I. B. and Kennelly, E. J.: Planta Med., 71 (9), 852-860 (2005).
8293. Chakraborty, D. P. and Das, B. C.: Tetrahedron Lett., 5727-5730 (1966).
8294. Crombie, L.; Games, D. E. and McCormick, A.: J. Chem. Soc. (C), (23), 2553-2559 (1967).
8295. Carpenter, I.; McGarry, E. J. and Scheinmann, F.: J. Chem. Soc. (C), (22), 3783-3790 (1971).
8296. Hansen, P. E.; Bolvig, S.; Buvari-Barcza, A. and Lycka, A.: Acta Chem. Scand., 51 (8), 881-888 (1997).
8297. Ban, S.; Sakurai, H.; Hayashi, Y. and Narasaka, K.: Chem. Lett., (8), 699-700 (1997).
8298. Bruce, J. M.; Creed, D. and Dawes, K.: J. Chem. Soc. (C), 2244-2252 (1971).
8299. Malamas, M. S.; Sredy, J.; Gunawan, I.; Mihan, B.; Sawicki, D. R.; Seestaller, D. S. and Flam, B. R.: J. Med. Chem., 43 (5), 995-1010 (2000).
8300. Martin, R.: Bull. Soc. Chim. Fr., (7-8), 373-380 (1979).
8301. Gopalakrishnan, G.; Anandhi, S. and Narasimhan, N. S.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 35B (11), 1197-1198 (1996).
8302. Gopalakrishnan, G.; Anandhi, S. and Narasimhan, N. S.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 35B (11), 1194-1196 (1996).
8303. Buehmann, U.; Huebl, D. and Pieroh, E. A. (Schering A.-G.): Ger. Offen. DE 3,624,349 (1988); Chem. Abstr., 108, 221414p (1988).
8304. Espinal, J.; Leesnitzer, T.; Hassman, A.; Beggs, M. and Cobb, J.: Drug Dev. Res., 35 (3), 130-136 (1995); Chem. Abstr., 123, 187703e (1995).
8305. Fernandez-Monreal, M. C.; Langa, F.; Perez-Ossorio, R. and Saez-Benito, M.: An. Quim., Ser. C, 79 (2), 225-227 (1983); Chem. Abstr., 101, 230073j (1984).
8306. Haller, A. and Bauer, E.: C. R. Acad. Sci., 148, 127-132 (1909).
8307. Boehme, W. R. and Scharpf, W. G.: J. Org. Chem.: 26, 1692-1695 (1961).
8308. Bhide, K. S.; Mujumdar, R. B. and Rama Rao, A. V.: Indian J. Chem., 14B (3), 168-170 (1976).
8309. Klopman, G. and Buyukbingol, E.: Mol. Pharmacol., 34 (6), 852-862 (1988).
8310. Lisa, E.; Ryba, O. and Pospisil, J.: Collect. Czech. Chem. Commun., 37 (10), 3307-3312 (1972); Chem. Abstr., 78, 28901d (1973).
8311. Bruce, J. M.; Heatley, F.; Ryles, R. G. and Scrivens, J. H.: J. Chem. Soc., Perkin Trans. 2, 860-866 (1980).
8312. Bruce, J. M.; Creed, D. and Ellis, J. N.: J. Chem. Soc. (C), 1486-1490 (1967).
8313. Flint, N. J. and Tabner, B. J.: J. Chem. Soc., Perkin Trans. 2, (1), 97-101 (1989).
8314. Boote, V. A.; Bruce, J. M.; Clarke, S. A.; Pritchard, A. P. and Speak, R. J.: Rapid Commun. Mass Spectrom., 11 (7), 749-752 (1997).
8315. Lisa, E. and Pospisil, J.: J. Polym. Sci., Polym. Symp., 40, 223-232 (1973).
8316. Lisa, E.; Kotulak, L.; Petranek, J. and Pospisil, J.: Eur. Polym. J., 8 (3), 501-510 (1972).
8317. Hellwinkel, D.; Lämmerzahl, F. and Hofmann, G.: Chem. Ber., 116 (10), 3375-3405 (1983).
8318. Kakiuchi, F.; Usui, M.; Ueno, S.; Chatani, N. and Murai, S.: J. Am. Chem. Soc., 126 (9), 2706-2707 (2004).
8319. Palmer, B. D.; Boyd, M. and Denny, W. A.: J. Org. Chem., 55 (2), 438-441 (1990).
8320. Tsuji, Y.; Fujio, M. and Tsuno, Y.: Bull. Chem. Soc. Jpn., 63 (3), 856-866 (1990).
8321. Jang, D. O.; Moon, K. S.; Cho, D. H. and Kim, J.-G.: Tetrahedron Lett., 47, 6063-6066 (2006).
8322. Encina, M. V.; Lissi, E. A.; Lamp, E.; Zanocco, A. and Scaiano, J. C.: J. Am. Chem. Soc., 105 (7), 1856-1860 (1983).
8323. Smith, K.; Zhenhua, Z. and Hodgson, P. K. G.: J. Mol. Catal. A: Chem., 134 (1-3), 121-128 (1998).
8324. Smyth, T. P. and Corby, B. W.: J. Org. Chem., 63 (24), 8946-8951 (1998).
8325. Rothstein, E. and Saville, R. W.: J. Chem. Soc., 1950-1954 (1949).
8326. Mori, T.; Takamoto, M.; Wada, T. and Inoue, Y.: Photochem. Photobiol., 2 (11), 1187-1199 (2003).
8327. Kobayashi, K.; Kawakita, M.; Uchida, M.; Nishimura, K.; Mannami, T.; Irisawa, S.; Morikawa, O. and Konishi, H.: J. Org. Chem., 64 (10), 3557-3562 (1999).
8328. Kobayashi, K.; Kawakita, M.; Mannami, T. and Konishi, H.: Tetrahedron Lett., 36 (5), 733-736 (1995).
8329. Nightingale, D. V.; Sublett, R. L.; Carpenter, R. A. and Radford, H. D.: J. Org. Chem., 16, 655-659 (1951).
8330. Degani, I.; Fochi, R. and Regondi, V.: Synthesis, (1), 51-53 (1981).
8331. Cadamuro, S.; Degani, I.; Fochi, R.; Gatti, A. and Regondi, V.: Synthesis, (3), 311-314 (1987).
8332. Baciocchi, E.; Bietti, M.; Gerini, M. F.; Manduchi, L.; Salamone, M. and Steenken, S.: Chem.-Eur. J., 7 (7), 1408-1416 (2001); Chem. Abstr., 135, 45880j (2001).
8333. Harling, J. D.; Orlek, B. S. and Thompson, M. (Smithkline Beecham PLC, UK): PCT Int. Appl. WO 97 48,683 (1997); Chem. Abstr., 128, 102013k (1998).
8334. Orlek, B. S.; Thompson, M. and Ward, R. W. (Smithkline Beecham PLC, UK): PCT Int. Appl. WO 99 52,857 (1999); Chem. Abstr., 131, 286265k (1999).
8335. Erickson, M. and Miksche, G. E.: Acta Chem. Scand., 26 (8), 3085-3096 (1972).
8336. Yasuhara, S.; Niitsuma, S.; Nakamura, T.; Kusunoki, M.; Ishikawa, H.; Yoshizawa, H. and Yamamura, H. (Hokko Chem Ind Co): Jpn. Kokai Tokkyo Koho JP 07, 215,948 [95,215,948] (1996); Chem. Abstr., 124, 29782w (1996).
8337. Finnegan, R. A. and Knutson, D.: Chem. Commun., (6), 172-173 (1966).
8338. Berger, C.; Dieterich, S.; Dilger, U.; Feuenich, D.; Helios, H.; Herges, R.; Kirchmer, P.; Röttele, H. and Schröder, G.: Angew. Chem. Int. Ed., 37 (13/14), 1854-1857 (1998).
8339. Hu, Y.; Zhang, H.; Chen, S. and Zhang, D. (Petrochina Company Limited, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,861,656 (2006); Chem. Abstr., 145, 489696p (2006).
8340. Takeuchi, K.; Kitagawa, T.; Miyabo, A.; Fujii, H.; Okazaki, T.; Mori, T.; Matsudou, M. and Sugie, T.: J. Org. Chem., 62 (4), 888-892 (1997).
8341. Bruce, J. M. and Lloyd-Williams, P.: J. Chem. Soc., Perkin Trans. 1, (21), 2877-2884 (1992).
8342. Kakiuchi, F.; Matsuura, Y.; Kan, S. and Chatani, N.: J. Am. Chem. Soc., 127 (16), 5936-5945 (2005).
8343. Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N. and Murai, S.: J. Am. Chem. Soc., 125 (7), 1698-1699 (2003).
8344. Bush, R. D. (Procter and Gamble Co.): PCT Int. Appl. WO 95 01,157 (1995); Chem. Abstr., 122, 169699h (1995).
8345. Engelhardt, M.; Fruhstorfer, W.; Hesse, R.; Dennler, B. and Baumer, W. (Merck, E., A.-G.): Ger. Offen. 1,811,322 (1970); Chem. Abstr., 73, 55826m (1970).
8346. Maruyuma, K.; Kusukawa, T.; Mashino, T. and Nishinaga, A.: J. Org. Chem., 61 (10), 3342-3349 (1996).
8347. Korn, T. J.; Schade, M. A.; Cheemala, M. N.; Wirth, S.; Guevara, S. A.; Cahiez, G. and Knochel, P.: Synthesis, (21), 3547-3574 (2006).
8348. Korn, T. J.; Schade, M. A.; Wirth, S. and Knochel, P.: Org. Lett., 8 (4), 725-728 (2006).
8349. Korn, T. J.; Schade, M. A.; Cheemala, M. N.; Wirth, S.; Guevara, S. A.; Cahiez, G. and Knochel, P.: Synthesis, (24), 4270 (2006).
8350. Delogu, G.; Fabbri, D.; de Candia, C.; Patti, A. and Pedotti, S.: Tetrahedron: Asymmetry, 13 (8), 891-898 (2002).
8351. Ino, Y.; Kanai, F.; Murakami, S.; Murakata, C.; Akama, T.; Shiotsu, Y.; Yamashita, K.; Akinaga, S. and Tamaoki, T. (Kyowa Hakko Kogyo Co., Ltd.; Japan): PCT Int. Appl. WO 98 09,967 (1998); Chem. Abstr., 128, 244044v (1998).
8352. Hirata, Y.; Imai, K.; Yamada, K. and Matsumoto, M.: Chemical Physics Letters, 423 (4-6), 335-338 (2006).
8353. Zimmer, H. and Eibeck, R. E.: Naturwissenschaften, 11, 263 (1958).
8354. Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J. and Kozlowski, M. C.: J. Org. Chem., 68 (14), 5500-5511 (2003).
8355. Ichiguchi, T. (Kyocera Mita Industrial Co., Ltd., Japan): Jpn. Kokai Tokkyo KohoJP 2006 96,676 (2006); Chem. Abstr., 144, 401128a (2006).
8356. Baudry-Barbier, D.; Dormond, A. and Duriau-Montagne, F.: J. Mol. Catal. A: Chem., 149 (1-2), 215-224 (1999).
8357. Haller, A. and Bauer, E.: C. R. Acad. Sci., 148, 70-74 (1909).
8358. Laatsch, H.; Talvitie, A.; Kral, A.; Ernst, B.-P. and Motemeyer, M.: J. Prakt. Chem./Chem.Ztg., 338 (2), 140-145 (1996).
8359. Bindal, R. D. and Katzenellenbogen, J. A.: J. Org. Chem., 52 (15), 3181-3185 (1987).
8360. Tsatsas, G. A.: Ann. Chim. Phys., 1, 348-352 (1946).
8361. Gorshkova, I. A.; Gorshkov, B. A.; Fedoreev, S. A.; Shrestak, O. P.; Novikov, V. L. and Stonik, V. A.: Comp. Biochem. Physiol., Part C: Pharmacol., Toxicol. Endocrinol., 122C (1), 93-99 (1999); Chem. Abstr., 130, 276233p (1999).
8362. Wurm, G. and Geres, U.: Arch. Pharm.(Weinheim, Ger.), 319 (2), 97-101 (1986).
8363. Wurm, G. and Geres, U.: Arch. Pharm.(Weinheim, Ger.), 318 (7), 664-667 (1985).
8364. Schäfer, W. and Falkner, C.: Liebigs Ann. Chem., (9), 1445-1456 (1977).
8365. Singh, O. V.; Prakash, O.; Garg, C. P. and Kapoor, R. P.: Indian J. Chem., Sect. B, 28B (10), 814-817 (1989).
8366. Israelstam, S. S.: J. S. Afr. Chem. Inst., 26, 49-53 (1943).
8367. Wittig, G. and Richter, H. E.: Ber. Dtsch. Chem. Ges., 59, 116-119 (1926).
8368. Rao, P. S.; Reddy, K. V. V. and Ashok, D.: Indian J. Heterocycl. Chem., 8 (1), 51-54 (1998).
8369. Reddy, K. C. and Srimannarayana, G.: Indian J. Chem., Section B, 26B (8), 766-767 (1987).
8370. Klarmann, E.: J. Am. Chem. Soc., 48, 2358-2367 (1926).
8371. Eiden, F. and Schaumburg, E. A. (Thieman, Dr., G.m.b.H. Chem.-Pharm. Fabrik):Ger. Offen. 2,250,343 (1974); Chem. Abstr., 81, 13506s (1974).
8372. Eiden, F. and Schaumburg, E. A.: Pharmazie, 29 (3), 165-170 (1974).
8373. Murthy, K. S. K.; Rajitha, B.; Rao, M. K.; Komuraiah, T. R. and Reddy, S. M.: Heterocyclic Commun., 8 (2), 179-186 (2002).
8374. Tanwar, M. P.: Ph. D. Thesis, Kurukshetra University, Kurukshetra, India (1994).
8375. Smith Kline \& French Laboratories: Belg. 649,240 (1964); Chem. Abstr., 64, 8088b (1966).
8376. Tada, M.; Takakuwa, T.; Nagai, M. and Yoshii, T.: Agric. Biol. Chem., 54 (11), 3061-3063 (1990).
8377. Kong, X.; Gao, Y.; Yang, H.; Wang, J.; Chen, G. and Nie, Y. (Biology Research Institute of Shandong Academy of Sciences, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,730,455 (2006); Chem. Abstr., 145, 124322p (2006).
8378. Yoneyama, K.; Asami, T.; Crow, W. D.; Takahashi, N. and Yoshida, S.: Agric. Biol. Chem., 53 (2), 471-475 (1989).
8379. Tada, M.; Seta, A.; Kuribayashi, Y. and Kanamori, A. (Fujirebio, Inc.): Jpn. Kokai Tokkyo Koho JP 04, 128,220 [92,128,220] (1992); Chem. Abstr., 117, 163854e (1992).
8380. Tada, M.; Seta, A.; Kuribayashi, Y. and Kanamori, A. (Fujirebio, Inc.): Jpn. Kokai Tokkyo Koho JP 04, 124, 129 [92,124,129] (1992); Chem. Abstr., 118, 52419t (1993).
8381. Kahwa, I. A.; Selbin, J.; Hsieh, T. C. Y. and Laine, R. A.: Inorg. Chim. Acta, 118 (2), 179-185 (1986).
8382. Chan, J. A. and Westley, J. W. (SmithKline Beecham Corp.): PCT Int. Appl.WO 91 09,595 (1991); Chem. Abstr., 116, 34549q (1992).
8383. Nelson, K. L.: Ind. Eng. Chem., 48 (9), 1670-1694 (1956).
8384. Pakkal, R.; Thomas, F. D. and Fernelius, W. C.: J. Org. Chem., 25, 282-283 (1960).
8385. Misra, G. C.; Pande, L. M.; Joshi, G. C. and Misra, A. K.: Aust. J. Chem., 25 (7), 1579-1581(1972).
8386. Bae, Ki Hwan; Seo, Won Jun and Leem, Seung Hee: Yakhak Hoechi, 36 (1), 36-39 (1992); Chem. Abstr., 122, 55661j (1995).
8387. Bhadange, S. G.; Mohod, R. B. and Aswar, A. S.: Indian J. Chem., 40A (10), 1110-1113 (2001).
8388. Mohod, R. B. and Aswar, A. S.: Proc. Nat. Acad. Sci., India, Sect. B, 70 (3), 249-258 (2000).
8389. Kumar, A.: Asian J. Chem., 15 (2), 789-794 (2003); Chem. Abstr., 139, 133888f (2003).
8390. Maeyama, K.; Fujiwara, Y.; Nishimuro, M.; Yoshida, Y. and Yonezawa, N.: Synth. Commun., 36 (5), 603-609 (2006).
8391. Thakar, K. A. and Dumir, A. B.: Indian J. Chem., Sect. B, 15B (11), 1051-1053 (1977).
8392. Orsymonde S. A.: Belg. 630,768 (1963); Chem. Abstr., 63, 8266b (1965).
8393. Dalvi, V. J. and Jadhav, G. V.: J. Indian Chem. Soc., 33 (11), 818-820 (1956).
8394. Aver'yanov, S. F. and Rudenko, A. P.: Zh. Org. Khim., 31 (8), 1197-1207 (1995).
8395. Evstigneyev, E.; Shevchenko, S.; Mayorova, H. and Platonov, A.: Journal of Wood Chemistry and Technology, 24 (3), 263-278 (2004).
8396. Agarwal, U. P. and Atalla, R. H.: ACS Symp. Ser., 2000, 742 (Lignin: Historical, Biological, and Materials Perspectives, 2000), 250-264; Chem. Abstr., 132, 223977u (2000).
8397. Ikemoto, T.; Nakatsugawa, H.; Nishio, H. and Takano, M. (Kanebo Ltd): Jpn. Kokai Tokkyo Koho JP 06 65,037 [94 65,037] (1994); Chem. Abstr., 121, 91331q (1994).
8398. Ikemoto, T.; Nakatsugawa, H. and Taira, A. (Kanebo Ltd): Jpn. Kokai Tokkyo KohoJP 06,135,880 [94,135,880]; Chem. Abstr., 121, 170580y (1994).
8399. Pew, J. C. and Connors, W. J.: Nature, 215 (5101), 623-625 (1967).
8400. Crescenzi, E.; Mantegani, A. and Coppi, G.: Farmaco (Pavia), Ed. Sci., 20 (7), 491-498 (1965).
8401. Puri, H. S.; Widen, C. J. and Widen, H. K.: Planta Med., 33 (2), 177-179 (1978).
8402. Kawabe, Y.; Sakaguchi, S. and Kokubo, T. (Fuji Photo Film Co., Ltd.): Jpn. Kokai Tokkyo Koho JP 04,296,755 [92,296,755] (1992); Chem. Abstr., 118, 202100y (1993).
8403. Nagashima, A. and Uenishi, K. (Fuji Photo Film Co., Ltd.): Jpn. Kokai Tokkyo KohoJP 03,239,260 [91,239,260] (1991); Chem. Abstr., 118, 113173g (1993).
8404. Kai, Y.-C.; Li, Y.; Yu, P.-L.; Cheng, Y.-P.; Wang, T.-S.; Chen, I-S. and Li, L.-C.: Hua Hsueh Hsueh Pao, 36 (2), 143-148 (1978); Chem. Abstr., 89, 197115h (1978).
8405. Li, Liangquan and Gai, Yuanzhu: Huaxue Shiji, 4 (4), 226-227, 235 (1982); Chem. Abstr., 97, 197917m (1982).
8406. Takasaki, M.; Konoshima, T.; Fujitani, K.; Yoshida, S.; Nishimura, H.; Tokuda, H.; Nishino, H.; Iwashima, A. and Kozuka, M.: Chem. Pharm. Bull., 38 (10), 2737-2739 (1990).
8407. Sangwan, N. K. and Rastogi, S. N.: Indian J. Chem., Sect. B, 20B (6), 480-483 (1981).
8408. Singh, O. V.; Garg, C. P.; Kapoor, R. P.; Kapil, A. and Moza, N.: Indian J. Chem., Sect. B, 31B (4), 248-253 (1992).
8409. Sangwan, N. K.; Dhindsa, K. S. and Malik, O. P.: Haryana Agric. Univ. J. Res., 13 (3), 380-384 (1983); Chem. Abstr., 101, 90816b (1984).
8410. Sangwan, N. K.; Dhindsa, K. S.; Malik, O. P. and Malik, M. S.: Chim. Acta Turc., 11 (1), 65-72 (1983); Chem. Abstr., 99, 175651j (1983).
8411. Kumar, N.: Ph. D. Thesis, Kurukshetra University, Kurukshetra, India (1980).
8412. Henning, H. G.; Schwabe, B.; Kernchen, F. and Westphal, G.: J. Prakt. Chem., 326 (3), 491-501 (1984).
8413. Singh, O. V.; Sangeeta; Khanna, M. S.; Garg, C. P.; Kapoor, R. P.; Kapil, A. and Sharma, S.: Indian J. Chem., Sect. B, 32B (12), 1241-1248 (1993).
8414. Singh, O. V.; Khanna, M. S.; Sangeeta; Garg, C. P. and Kapoor, R. P.: J. Indian Chem. Soc., 69 (3), 147-149 (1992).
8415. Da Re, P.; Valenti, P.; Borraccini, A. and Primofiore, G. P.: J. Med. Chem., 15 (2), 198-199 (1972).
8416. Henning, H. G.; Schwabe, B. and Westphal, G.: Z. Chem., 24 (2), 58-60 (1984).
8417. Gao, Y.; Kong, X.; Yang, H.; Wang, J.; Chen, G. and Nie, Y. (Biology Research Institute of Shandong Academy of Sciences, Peop. Rep. China): Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1,730,456 (2006); Chem. Abstr., 145, 145410f (2006).
8418. Bowden, K. and Ross, W. J.: J. Pharm. Pharmacol., 17 (4), 239-242 (1965).
8419. Bowden, K.; Broadbent, J. L. and Ross, W. J.: Brit. J. Pharmacol., 24 (3), 714-724 (1965).
8420. Bhatti, S. P.; Garg, C. P.; Kapoor, R. P.; Kapil, A. and Sharma, S.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 37B (6), 553-557 (1998).
8421. Da Re, P. and Cimatoribus, L.: Experientia, 18, 67-68 (1962).
8422. Khanjin, N. A. and Menger, F. M.: J. Org. Chem., 62 (25), 8923-8927 (1997).
8423. Dean, F. M.; Randell, D. R. and Winfield, G.: J. Chem. Soc., 1071-1077 (1959).
8424. Joshi, K. C. and Gupta, J. S.: J. Indian Chem. Soc., 40 (10), 851-856 (1963).
8425. Högberg, B.; Fex, H.; Bracke, B. F.; Perklev, T. and Veige, S.: Ger. Offen. 2,240,229 (1973); Chem. Abstr., 78, 147556e (1973).
8426. Clavel, J. M.; Guillaumel, J.; Demerseman, P. and Royer, R.: Bull. Soc. Chim. Fr., (1-2, Pt. 2), 131-134 (1976).
8427. Parikh, S. M. and Thakor, V. M.: J. Indian Chem. Soc., 36 (12), 841-844 (1959).
8428. Gao, H. and Kawabata, J.: Biosci. Biotechnol. Biochem., 68 (9), 1858-1864 (2004).
8429. Andersen, L.; Lauren, R.; Penttila, A. and Sundman, J.: Finnish P. 36,690; Chem. Abstr., 69, 43521 (1968).
8430. Andersen, L.; Lauren, R.; Penttila, A. and Sundman, J.: Finnish P. 36,691; Chem. Abstr., 69, 43522 (1968).
8431. Tada, K.; Chiba, K.; Kojima, H. and Yamaura, T.: Jpn. Kokai Tokkyo Koho JP 04,108,729 [92,108,729] (1992); Chem. Abstr., 117, 150603x (1992).
8432. Bogale, M.; Dagne, E.; Izzo, A. A.; Capasso, F. and Mascolo, N.: Phytother. Res., 10 (Suppl. 1), S112-S113 (1996); Chem. Abstr., 126, 139807g (1997).
8433. Fell, A. F.; Woldemariam, T. Z.; Linley, P. A.; Ge, J.; Luque de Castro, M. D. and Valcarcel, M.: Anal. Chim. Acta, 234 (1), 89-95 (1990).
8434. Leichsenring, M.: Arch. Pharm., Ber. Dtsch. Pharm. Ges., 232, 50-65 (1894).
8435. Lobeck, A.: Arch. Pharm., 239, 672-696 (1901).
8436. Lounasmaa, M. and Varenne, P.: Planta Med., 34 (2), 153-159 (1978).
8437. Woldemariam, T. Z.; Linley, P. A. and Fell, A. F.: Anal. Proc. (London), 27 (7), 178-179 (1990).
8438. Woldemariam, T. Z.; Tibebe, Z.; Fell, A. F. and Linley, P. A.: J. Pharm. Biomed. Anal., 8 (8-12), 859-865 (1990).
8439. Woldemariam, T. Z.; Tibebe, Z.; Fell, A. F.; Linley, P. A.; Bibby, M. C. and Phillips, R. M.: J. Pharm. Biomed. Anal., 10 (8), 555-560 (1992).
8440. Yohannes, P. G. and Dagne, E.: Sinet, 6 (1), 31-34 (1983); Chem. Abstr., 101, 107334t (1984).
8441. Pankhurst, R.: Ethiop. Med., 13, 29-34 (1975).
8442. Tamba, G.: Acta Schol. Med. Kioto, 4, 393-407 (1922); Chem. Abstr., 19, 126 (1925).
8443. Parker, W. L.; Flynn, J. J. and Boer, F. P.: J. Amer. Chem. Soc., 90, 4723-4729 (1968).
8444. Parker, W. L. and Johnson, F.: J. Amer. Chem. Soc., 90, 4716-4723 (1968).
8445. Taylor, H. L. and Brooker, R. M.: Lloydia, 32 (2), 217-219 (1969).
8446. Yamaki, M.; Kashihara, M.; Ishiguro, K. and Takagi, S.: Planta Med., 55 (2), 169-170 (1989).
8447. Tada, A.; Katagiri, T. and Kato, T. (Pola Chemical Industries, Inc., Japan): Jpn. Kokai Tokkyo Koho JP 11 335,256 [99 335,256] (1999); Chem. Abstr., 132, 15485e (2000).
8448. Kyo, T.; Kawamura, Y.; Okazaki, T.; Mizogami, K. and Morimoto, S. (Taisho Pharma Co Ltd, Japan): Jpn. Kokai Tokkyo Koho JP 08 03,097 [96 03,097] (1996); Chem. Abstr., 124, 258682f (1996).
8449. Rosa, A.; Deiana, M.; Corona, C. V. G.; Appendino, G.; Bianchi, F.; Ballero, M. and Dessi, M. A.: Free Radic. Res., 379, 1013 (2003).
8450. Arisawa, M.; Fujita, A.; Hayashi, T.; Morita, N.; Kikuchi, T.; Tezuka, Y. and Koshimura, S.: Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 31st, 593-600 (1989); Chem. Abstr., 112, 175572w (1990).
8451. Fujita, A.; Hayashi, T.; Arisawa, M.; Shimizu, M.; Morita, N.; Kikuchi, T. and Tezuka, Y.: J. Nat. Prod., 51 (4), 708-712 (1988).
8452. Arisawa, M.; Fujita, A.; Hayashi, T.; Hayashi, K.; Ochiai, H. and Morita, N.: Chem. Pharm. Bull., 38 (6), 1624-1626 (1990).
8453. Arisawa, M.; Fujita, A.; Morita, N. and Koshimura, S.: Planta Med., 56 (4), 377-379 (1990).
8454. Kouno, I.; Shigematsu, N.; Iwagami, M. and Kawano, N.: Phytochemistry, 24 (3), 620-621 (1985).
8455. Arisawa, M.; Fujita, A.; Saga, M.; Hayashi, T.; Morita, N.; Kawano, N. and Koshimura, S.: J. Nat. Prod., 49 (2), 298-302 (1986).
8456. Arisawa, M.; Fujita, A.; Suzuki, R.; Hayashi, T.; Morita, N.; Kawano, N. and Koshimura, S.: J. Nat. Prod., 48 (3), 455-459 (1985).
8457. Arisawa, M.; Fujita, A. and Morita, N.: J. Nat. Prod., 53 (3), 638-643 (1990).
8458. Arisawa, M.; Fujita, A.; Bai, H.; Nagasaki, A.; Morikoshi, K. and Morita, N.: Shoyakugaku Zasshi, 44 (3), 179-182 (1990); Chem. Abstr., 114, 192355m (1991).
8459. Ishii, R.; Horie, M.; Saito, K.; Arisawa, M. and Kitanaka, S.: Biochimica et Biophysica Acta, 1571 (2), 115-123 (2002).
8460. Ishii, R.; Horie, M.; Saito, K.; Arisawa, M. and Kitanaka, S.: Biochimica et Biophysica Acta, 1620 (1-3), 108-118 (2003).
8461. Hoffmann, E. (Hemoteq G.m.b.H., Germany): PCT Int. Appl. WO 2005 82,434 (2005); Chem. Abstr., 143, 292623q (2005).
8462. Horres, R.; Hoffmann, M.; Faust, V.; Hoffmann, E. and Di Biase, D. (Hemoteq G.m.b.H., Germany): PCT Int. Appl. WO 2005 32,611 (2005); Chem. Abstr., 142, 397825q (2005).
8463. Horres, R.; Linssen, M. K.; Hoffmann, M.; Faust, V.; Hoffmann, E. and Di Biase, D. (Hemoteq G.m.b.H., Germany): PCT Int. Appl. WO 03 94,990 (2003); Chem. Abstr., 139, 399770e (2003).
8464. Orlowski, M.: Ger. Offen. DE 102,004,046,244 (2006); Chem. Abstr., 144, 338238u (2006).
8465. Sellin, L. and Han, B.-S.: Ger. Offen. DE 102,004,038,396 (2006); Chem. Abstr., 144, 338236s (2006).
8466. Sellin, L.; Han, B.-S. and Orlowski, M.: Ger. Offen. DE 102,004,048,265 (2006); Chem. Abstr., 144, 338265a (2006).
8467. Reiter, R.; Tack, J.; Kalbe, J.; Horowski, R.; Sigloch, E. and Palla, H. (Ergonex Pharma G.m.b.H., Switzerland): Ger. Offen. DE 102,005,041,613 (2007); Chem. Abstr., 146, 309367w (2007).
8468. Sellin, L.; Han, B.-S.; Voss, H. D. and Jilinski, J.: Ger. Offen. DE 102,005,039, 126 (2007); Chem. Abstr., 146, 281100c (2007).
8469. Jordan, A.; Waldoefner, N. and Scholz, R. (Magforce Nanotechnologies A.-G., Germany): PCT Int. Appl. WO 2007, 19,845 (2007); Chem. Abstr., 146, 258985m (2007).
8470. Arisawa, M.; Fujita, A.; Hayashi, T.; Morita, N.; Kikuchi, T. and Tezuka, Y.: Chem. Pharm. Bull., 38 (3), 698-700 (1990).
8471. Shian-Ho Tsao Working Group: K'o Hsueh T'ung Pao, 19 (10), 479-480 (1974); Chem. Abstr., 82, 86167n (1975).
8472. Cheng, Chung-Liang; Chu, Ta-Yuan; Wang, Hung-Cheng; Huang, Pao-Shan and Chin, Kuo-Wei: Huaxue Xuebao, 36 (1), 35-41 (1978); Chem. Abstr., 90, 19009 (1979).
8473. Lounasmaa, M.; Widen, C. J. and Huhtikangas, A.: Phytochemistry, 12 (8), 2017-2025 (1973).
8474. Huang, J. and Li, T.: Org. Lett., 7 (26), 5821-5823 (2005).

Molecular Formula Index

Volume 1

$\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{Cl}_{8} \mathrm{O}_{3}$
Bis(2,3,5,6-tetrachloro-4-hydroxyphenyl)methanone, 441
$\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{3}$
(2,3,4,5,6-Pentafluorophenyl)(2,3,5-trifluoro-4,6-dihydroxyphenyl)methanone, 409

$\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{Cl}_{5} \mathrm{O}_{2}$

(2,4-Dichlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 190
(3,4-Dichlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 190
$\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~F}_{5} \mathrm{O}_{2}$
(2-Hydroxyphenyl)(2,3,4,5,6-pentafluorophenyl)methanone, 143
$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{BrCl}_{3} \mathrm{O}_{2}$
(4-Bromophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 191
$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}$
Bis(3-bromo-4-hydroxy-5-nitrophenyl)methanone, 441
$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{3}$
Bis(3,5-dibromo-2-hydroxyphenyl)methanone, 441
Bis(3,5-dibromo-4-hydroxyphenyl)methanone, 442
(3,5-Dibromo-2-hydroxyphenyl)(3,5-dibromo-4-hydroxyphenyl)methanone, 452
$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}$
(2-Chlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 191
(4-Chlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 191
(2,3-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 191
(2,3-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 192
(2,4-Dichloro-6-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 192
(2,4-Dichloro-6-hydroxyphenyl)(2,5-dichlorophenyl)methanone, 192
(2,4-Dichloro-6-hydroxyphenyl)(2,6-dichlorophenyl)methanone, 192
(2,4-Dichloro-6-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 193
(2,5-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 193
(2,5-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 193
(2,6-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 193
(3,5-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 194
(3,5-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 194
(3,6-Dichloro-2-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 194
$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{3}$
Bis(3,5-dichloro-4-hydroxyphenyl)methanone, 442
$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{I}_{4} \mathrm{O}_{3}$
Bis(2-hydroxy-3,5-diiodophenyl)methanone, 442
Bis(4-hydroxy-3,5-diiodophenyl)methanone, 442
$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{12}$
(2,4-Dihydroxy-3,5,6-trinitrophenyl)(4-hydroxy-3-nitrophenyl)
methanone, 480
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}_{2}$
(4-Bromophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone, 194
(4-Bromophenyl)(2,6-dichloro-4-hydroxyphenyl)methanone, 195
(4-Bromophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone, 195
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrF}_{2} \mathrm{O}_{2}$
(4-Bromophenyl)(2,5-difluoro-4-hydroxyphenyl)methanone, 195
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{6}$
(3-Bromo-4,5-dihydroxyphenyl)(3,5-dibromo-2,4,6-trihydroxyphenyl)
methanone, 499
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClFNO}_{4}$
(4-Chlorophenyl)(5-fluoro-2-hydroxy-3-nitrophenyl)methanone, 195
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FO}_{2}$
(2,3-Dichloro-4-hydroxyphenyl)(2-fluorophenyl)methanone, 196
(2,3-Dichloro-4-hydroxyphenyl)(3-fluorophenyl)methanone, 196
(2,3-Dichloro-4-hydroxyphenyl)(4-fluorophenyl)methanone, 196
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FO}_{3}$
(2,3-Dichloro-4,5-dihydroxyphenyl)(2-fluorophenyl)methanone, 410

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{4}$

(5-Chloro-2-hydroxy-3-nitrophenyl)(4-chlorophenyl)methanone, 197
(2,3-Dichloro-4-hydroxyphenyl)(4-nitrophenyl)methanone, 197
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{5}$
(5-Chloro-2,4-dihydroxy-3-nitrophenyl)(4-chlorophenyl)methanone, 410

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$

(2-Chloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 197
(3-Chloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 197
(5-Chloro-2-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 198
(5-Chloro-2-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 198
(2-Chlorophenyl)(2,3-dichloro-4-hydroxyphenyl)methanone, 198
(2-Chlorophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone, 198
(2-Chlorophenyl)(3,5-dichloro-2-hydroxyphenyl)methanone, 199
(2-Chlorophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone, 199
(3-Chlorophenyl)(2,3-dichloro-4-hydroxyphenyl)methanone, 199
(4-Chlorophenyl)(2,3-dichloro-4-hydroxyphenyl)methanone, 199
(4-Chlorophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone, 200
(4-Chlorophenyl)(2,6-dichloro-4-hydroxyphenyl)methanone, 200
(4-Chlorophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone, 200
Phenyl(2,3,5-trichloro-6-hydroxyphenyl)methanone, 43
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{3}$
(5-Chloro-2,4-dihydroxyphenyl)(2,4-dichlorophenyl)methanone, 410
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{NO}_{5}$
(2,6-Difluorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone, 410
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2}$
(2,6-Difluorophenyl)(3-fluoro-4-hydroxyphenyl)methanone, 200

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3}$

Phenyl(2,3,5-trifluoro-4,6-dihydroxyphenyl)methanone, 364
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{I}_{3} \mathrm{O}_{2}$
(3-Hydroxy-2,4,6-triiodophenyl)phenylmethanone, 43
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{9}$
(2,4-Dihydroxy-3,5-dinitrophenyl)(3-nitrophenyl)methanone, 410
(2,4-Dihydroxyphenyl)(2,4,6-trinitrophenyl)methanone, 392
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{2}$
(3-Bromo-4-chlorophenyl)(4-hydroxyphenyl)methanone, 143
(2-Bromophenyl)(5-chloro-2-hydroxyphenyl)methanone, 201
(4-Bromophenyl)(3-chloro-4-hydroxyphenyl)methanone, 201
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{3}$
(3-Bromo-4-chloro-2,5-dihydroxyphenyl)phenylmethanone, 364
(4-Bromo-3-chlorophenyl)(2,5-dihydroxyphenyl)methanone, 392
(3-Bromo-2,5-dihydroxyphenyl)(2-chlorophenyl)methanone, 411
(3-Bromo-2,5-dihydroxyphenyl)(4-chlorophenyl)methanone, 411
(4-Bromophenyl)(4-chloro-2,5-dihydroxyphenyl)methanone, 411
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrFO}_{2}$
(3-Bromo-5-fluoro-4-hydroxyphenyl)phenylmethanone, 43
(4-Bromo-2-fluorophenyl)(4-hydroxyphenyl)methanone, 143
(3-Bromophenyl)(5-fluoro-2-hydroxyphenyl)methanone, 201
(4-Bromophenyl)(2-fluoro-4-hydroxyphenyl)methanone, 201
(4-Bromophenyl)(3-fluoro-4-hydroxyphenyl)methanone, 202
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrNO}_{5}$
(3-Bromo-2,4-dihydroxy-5-nitrophenyl)phenylmethanone, 365
(5-Bromo-2,4-dihydroxy-3-nitrophenyl)phenylmethanone, 365
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$
(3-Bromo-4-hydroxyphenyl)(4-bromophenyl)methanone, 202
(3,5-Dibromo-2-hydroxyphenyl)phenylmethanone, 44
(3,5-Dibromo-4-hydroxyphenyl)phenylmethanone, 44
(2,4-Dibromophenyl)(2-hydroxyphenyl)methanone, 143
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$
Bis(2-bromo-4-hydroxyphenyl)methanone, 443
Bis(3-bromo-4-hydroxyphenyl)methanone, 443
Bis(5-bromo-2-hydroxyphenyl)methanone, 443
(2,4-Dibromo-3,6-dihydroxyphenyl)phenylmethanone, 365
(3,4-Dibromo-2,5-dihydroxyphenyl)phenylmethanone, 366
(3,5-Dibromo-2,4-dihydroxyphenyl)phenylmethanone, 366
(4,6-Dibromo-2,3-dihydroxyphenyl)phenylmethanone, 366
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{CIFO}_{2}$
(2-Chloro-4-fluoro-6-hydroxyphenyl)phenylmethanone, 44
(4-Chloro-2-hydroxyphenyl)(4-fluorophenyl)methanone, 202
(5-Chloro-2-hydroxyphenyl)(2-fluorophenyl)methanone, 202
(5-Chloro-2-hydroxyphenyl)(3-fluorophenyl)methanone, 203
(2-Chlorophenyl)(2-fluoro-4-hydroxyphenyl)methanone, 203
(2-Chlorophenyl)(4-fluoro-2-hydroxyphenyl)methanone, 203
(2-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone, 203
(3-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone, 203
(4-Chlorophenyl)(3-fluoro-4-hydroxyphenyl)methanone, 204
(4-Chlorophenyl)(4-fluoro-2-hydroxyphenyl)methanone, 204
(4-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone, 204
(4-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone- ${ }^{14} \mathrm{C}, 205$
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{3}$
(2-Chloro-4-hydroxyphenyl)(2-fluoro-4-hydroxyphenyl)
methanone, 452
(4-Chlorophenyl)(5-fluoro-2,3-dihydroxyphenyl)methanone, 411
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClIO}_{2}$
(3-Chloro-4-hydroxyphenyl)(4-iodophenyl)methanone, 205
(4-Chloro-3-iodophenyl)(4-hydroxyphenyl)methanone, 144
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$
(5-Chloro-2-hydroxy-3-nitrophenyl)phenylmethanone, 45
(5-Chloro-2-hydroxy-4-nitrophenyl)phenylmethanone, 45
(3-Chloro-4-hydroxyphenyl)(4-nitrophenyl)methanone, 205
(4-Chloro-2-hydroxyphenyl)(3-nitrophenyl)methanone, 205
(4-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone, 205
(5-Chloro-2-hydroxyphenyl)(3-nitrophenyl)methanone, 206
(5-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone, 206
(2-Chloro-4-nitrophenyl)(2-hydroxyphenyl)methanone, 144
(2-Chloro-4-nitrophenyl)(4-hydroxyphenyl)methanone, 144
(2-Chloro-5-nitrophenyl)(2-hydroxyphenyl)methanone, 144
(2-Chloro-5-nitrophenyl)(4-hydroxyphenyl)methanone, 144
(4-Chloro-3-nitrophenyl)(4-hydroxyphenyl)methanone, 145
(2-Chlorophenyl)(2-hydroxy-5-nitrophenyl)methanone, 206
(4-Chlorophenyl)(2-hydroxy-5-nitrophenyl)methanone, 206

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{5}$

(2-Chloro-4-nitrophenyl)(2,5-dihydroxyphenyl)methanone, 392
(2-Chlorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone, 412
(3-Chlorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone, 412
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
(2-Chloro-5-hydroxyphenyl)(4-chlorophenyl)methanone, 207
(3-Chloro-2-hydroxyphenyl)(3-chlorophenyl)methanone, 207
(3-Chloro-4-hydroxyphenyl)(2-chlorophenyl)methanone, 207
(3-Chloro-4-hydroxyphenyl)(4-chlorophenyl)methanone, 207
(4-Chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone, 208
(4-Chloro-3-hydroxyphenyl)(4-chlorophenyl)methanone, 208
(5-Chloro-2-hydroxyphenyl)(2-chlorophenyl)methanone, 208
(5-Chloro-2-hydroxyphenyl)(3-chlorophenyl)methanone, 208
(5-Chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone, 209
(2,3-Dichloro-4-hydroxyphenyl)phenylmethanone, 45
(2,4-Dichloro-6-hydroxyphenyl)phenylmethanone, 46
(2,5-Dichloro-4-hydroxyphenyl)phenylmethanone, 46
(2,6-Dichloro-4-hydroxyphenyl)phenylmethanone, 46
(3,4-Dichloro-2-hydroxyphenyl)phenylmethanone, 46
(3,4-Dichloro-5-hydroxyphenyl)phenylmethanone, 47
(3,5-Dichloro-2-hydroxyphenyl)phenylmethanone, 47
(3,5-Dichloro-4-hydroxyphenyl)phenylmethanone, 47
(4,5-Dichloro-2-hydroxyphenyl)phenylmethanone, 48
(2,4-Dichlorophenyl)(2-hydroxyphenyl)methanone, 145
(2,4-Dichlorophenyl)(3-hydroxyphenyl)methanone, 145
(2,4-Dichlorophenyl)(4-hydroxyphenyl)methanone, 145
(2,6-Dichlorophenyl)(4-hydroxyphenyl)methanone, 146
(3,4-Dichlorophenyl)(3-hydroxyphenyl)methanone, 146
(3,4-Dichlorophenyl)(4-hydroxyphenyl)methanone, 146
(3,5-Dichlorophenyl)(4-hydroxyphenyl)methanone, 147
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$
Bis(2-chloro-4-hydroxyphenyl)methanone, 443
Bis(3-chloro-4-hydroxyphenyl)methanone, 444
Bis(5-chloro-2-hydroxyphenyl)methanone, 444
(2-Chloro-4,5-dihydroxyphenyl)(3-chlorophenyl)methanone, 412
(4-Chloro-2,5-dihydroxyphenyl)(3-chlorophenyl)methanone, 412
(5-Chloro-2,3-dihydroxyphenyl)(4-chlorophenyl)methanone, 413
(5-Chloro-2,4-dihydroxyphenyl)(2-chlorophenyl)methanone, 413
(5-Chloro-2,4-dihydroxyphenyl)(4-chlorophenyl)methanone, 413
(2-Chloro-3-hydroxyphenyl)(4-chloro-3-hydroxyphenyl)methanone, 452
(2-Chloro-5-hydroxyphenyl)(4-chloro-3-hydroxyphenyl)methanone, 453
(2,3-Dichloro-4,5-dihydroxyphenyl)phenylmethanone, 367
(3,4-Dichloro-2,5-dihydroxyphenyl)phenylmethanone, 367
(2,3-Dichloro-4-hydroxyphenyl)(2-hydroxyphenyl)methanone, 423
(2,3-Dichloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 424
(2,5-Dichloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 424
(3,5-Dichloro-4-hydroxyphenyl)(3-hydroxyphenyl)methanone, 424
(3,5-Dichloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 424
(2,4-Dichlorophenyl)(2,4-dihydroxyphenyl)methanone, 392
(2,4-Dichlorophenyl)(2,5-dihydroxyphenyl)methanone, 393
(3,4-Dichlorophenyl)(2,4-dihydroxyphenyl)methanone, 393
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4}$
(2,4-Dichlorophenyl)(2,4,6-trihydroxyphenyl)methanone, 466
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{5}$
(3,5-Dichloro-4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 489
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{4}$
(2-Fluoro-4-hydroxyphenyl)(3-nitrophenyl)methanone, 209
(2-Fluoro-5-hydroxyphenyl)(3-nitrophenyl)methanone, 209
(5-Fluoro-2-hydroxyphenyl)(2-nitrophenyl)methanone, 209
(5-Fluoro-2-hydroxyphenyl)(4-nitrophenyl)methanone, 210
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{5}$
(3,4-Dihydroxy-5-nitrophenyl)(2-fluorophenyl)methanone, 413
(3,4-Dihydroxy-5-nitrophenyl)[2-(fluoro- ${ }^{18} \mathrm{~F}$)phenyl]methanone, 414
(3,4-Dihydroxy-5-nitrophenyl)(3-fluorophenyl)methanone, 414
(3,4-Dihydroxy-5-nitrophenyl)(4-fluorophenyl)methanone, 414
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$
(2,5-Difluoro-4-hydroxyphenyl)phenylmethanone, 48
(3,5-Difluoro-2-hydroxyphenyl)phenylmethanone, 48
(3,5-Difluoro-4-hydroxyphenyl)phenylmethanone, 48
(2,4-Difluorophenyl)(2-hydroxyphenyl)methanone, 147
(3,5-Difluorophenyl)(4-hydroxyphenyl)methanone, 147
(4-Fluoro-2-hydroxyphenyl)(4-fluorophenyl)methanone, 210
(5-Fluoro-2-hydroxyphenyl)(2-fluorophenyl)methanone, 210
(5-Fluoro-2-hydroxyphenyl)(3-fluorophenyl)methanone, 210
(5-Fluoro-2-hydroxyphenyl)(4-fluorophenyl)methanone, 211
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{3}$
Bis(2-fluoro-4-hydroxyphenyl)methanone, 444
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{2}$
(2-Hydroxy-3,5-diiodophenyl)phenylmethanone, 49
(4-Hydroxy-3,5-diiodophenyl)phenylmethanone, 49
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{3}$
Bis(2-hydroxy-5-iodophenyl)methanone, 444
(2,4-Dihydroxy-3,5-diiodophenyl)phenylmethanone, 367
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6}$
(2-Hydroxy-3,5-dinitrophenyl)phenylmethanone, 49
(4-Hydroxy-3,5-dinitrophenyl)phenylmethanone, 49
(3,5-Dinitrophenyl)(4-hydroxyphenyl)methanone, 147
(2-Hydroxy-4-nitrophenyl)(3-nitrophenyl)methanone, 211
(2-Hydroxy-5-nitrophenyl)(4-nitrophenyl)methanone, 211
(4-Hydroxy-3-nitrophenyl)(3-nitrophenyl)methanone, 211
(4-Hydroxy-3-nitrophenyl)(4-nitrophenyl)methanone, 212
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}$
Bis(2-hydroxy-5-nitrophenyl)methanone, 445
Bis(4-hydroxy-3-nitrophenyl)methanone, 445
(2,3-Dihydroxy-4,6-dinitrophenyl)phenylmethanone, 368
(2,4-Dihydroxy-3,5-dinitrophenyl)phenylmethanone, 368
(3,4-Dihydroxy-5-nitrophenyl)(2-nitrophenyl)methanone, 414
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2}$
(3-Bromo-2-hydroxyphenyl)phenylmethanone, 50
(3-Bromo-4-hydroxyphenyl)phenylmethanone, 50
(4-Bromo-2-hydroxyphenyl)phenylmethanone, 50
(5-Bromo-2-hydroxyphenyl)phenylmethanone, 51
(2-Bromophenyl)(2-hydroxyphenyl)methanone, 148
(2-Bromophenyl)(4-hydroxyphenyl)methanone, 148
(3-Bromophenyl)(2-hydroxyphenyl)methanone, 148
(3-Bromophenyl)(3-hydroxyphenyl)methanone, 148
(3-Bromophenyl)(4-hydroxyphenyl)methanone, 149
(4-Bromophenyl)(2-hydroxyphenyl)methanone, 149
(4-Bromophenyl)(3-hydroxyphenyl)methanone, 149
(4-Bromophenyl)(4-hydroxyphenyl)methanone, 150
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3}$
(2-Bromo-4,5-dihydroxyphenyl)phenylmethanone, 368
(3-Bromo-2,5-dihydroxyphenyl)phenylmethanone, 369
(3-Bromo-2,6-dihydroxyphenyl)phenylmethanone, 369
(5-Bromo-2,4-dihydroxyphenyl)phenylmethanone, 369
(2-Bromophenyl)(2,4-dihydroxyphenyl)methanone, 393
(4-Bromophenyl)(2,4-dihydroxyphenyl)methanone, 393
(4-Bromophenyl)(2,5-dihydroxyphenyl)methanone, 394
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFNO}_{2}$
(3-Amino-5-chloro-2-hydroxyphenyl)(4-fluorophenyl)methanone, 212
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-chlorophenyl)methanone, 212
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-chlorophenyl)methanone
(Hydrochloride), 212
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2}$
(2-Chloro-4-hydroxyphenyl)phenylmethanone, 51
(2-Chloro-6-hydroxyphenyl)phenylmethanone, 52
(3-Chloro-2-hydroxyphenyl)phenylmethanone, 52
(3-Chloro-4-hydroxyphenyl)phenylmethanone, 52
(4-Chloro-2-hydroxyphenyl)phenylmethanone, 53
(5-Chloro-2-hydroxyphenyl)phenylmethanone, 53
(2-Chlorophenyl)(2-hydroxyphenyl)methanone, 150
(2-Chlorophenyl)(3-hydroxyphenyl)methanone, 151
(2-Chlorophenyl)(4-hydroxyphenyl)methanone, 151
(3-Chlorophenyl)(2-hydroxyphenyl)methanone, 151
(3-Chlorophenyl)(3-hydroxyphenyl)methanone, 152
(3-Chlorophenyl)(4-hydroxyphenyl)methanone, 152
(4-Chlorophenyl)(2-hydroxyphenyl)methanone, 152
(4-Chlorophenyl)(3-hydroxyphenyl)methanone, 153
(4-Chlorophenyl)(4-hydroxyphenyl)methanone, 153
(4-Chlorophenyl)(4-hydroxyphenyl)methanone- ${ }^{14} \mathrm{C}, 154$
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3}$
(2-Chloro-4,5-dihydroxyphenyl)phenylmethanone, 369
(3-Chloro-2,6-dihydroxyphenyl)phenylmethanone, 370
(5-Chloro-2,4-dihydroxyphenyl)phenylmethanone, 370
(2-Chloro-4-hydroxyphenyl)(2-hydroxyphenyl)methanone, 425
(2-Chloro-4-hydroxyphenyl)(3-hydroxyphenyl)methanone, 425
(2-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 425
(3-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone, 425
(3-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 426
(3-Chloro-4-hydroxyphenyl)(2-hydroxyphenyl)methanone, 426
(3-Chloro-4-hydroxyphenyl)(3-hydroxyphenyl)methanone, 426
(3-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 426
(4-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone, 427
(4-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 427
(5-Chloro-2-hydroxyphenyl)(2-hydroxyphenyl)methanone, 427
(5-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone, 427
(5-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 428
(2-Chlorophenyl)(2,4-dihydroxyphenyl)methanone, 394
(2-Chlorophenyl)(2,5-dihydroxyphenyl)methanone, 394
(2-Chlorophenyl)(2,6-dihydroxyphenyl)methanone, 395
(3-Chlorophenyl)(2,4-dihydroxyphenyl)methanone, 395
(3-Chlorophenyl)(2,5-dihydroxyphenyl)methanone, 395
(3-Chlorophenyl)(2,6-dihydroxyphenyl)methanone, 395
(4-Chlorophenyl)(2,4-dihydroxyphenyl)methanone, 396
(4-Chlorophenyl)(2,5-dihydroxyphenyl)methanone, 396
(4-Chlorophenyl)(2,6-dihydroxyphenyl)methanone, 396
(4-Chlorophenyl)(3,4-dihydroxyphenyl)methanone, 397
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4}$
(2-Chloro-3-hydroxyphenyl)(2,6-dihydroxyphenyl)methanone, 471
(4-Chloro-2-hydroxyphenyl)(2,4-dihydroxyphenyl)methanone, 472
(2-Chlorophenyl)(2,4,6-trihydroxyphenyl)methanone, 466
(3-Chlorophenyl)(2,4,6-trihydroxyphenyl)methanone, 467
(4-Chlorophenyl)(2,3,4-trihydroxyphenyl)methanone, 467
(4-Chlorophenyl)(2,4,5-trihydroxyphenyl)methanone, 467
(4-Chlorophenyl)(2,4,6-trihydroxyphenyl)methanone, 467

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$

(3-Amino-5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone, 213
(3-Amino-5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone
(Hydrochloride), 213
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3}$
(3-Amino-5-chloro-2,4-dihydroxyphenyl)(4-chlorophenyl)methanone, 415
(3-Amino-5-chloro-2,4-dihydroxyphenyl)(4-chlorophenyl)methanone (Hydrochloride), 415
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$
(2-Fluoro-4-hydroxyphenyl)phenylmethanone, 54
(2-Fluoro-5-hydroxyphenyl)phenylmethanone, 55
(3-Fluoro-2-hydroxyphenyl)phenylmethanone, 55
(3-Fluoro-4-hydroxyphenyl)phenylmethanone, 55
(4-Fluoro-2-hydroxyphenyl)phenylmethanone, 55
(5-Fluoro-2-hydroxyphenyl)phenylmethanone, 56
(2-Fluorophenyl)(2-hydroxyphenyl)methanone, 155
(2-Fluorophenyl)(4-hydroxyphenyl)methanone, 155
(3-Fluorophenyl)(3-hydroxyphenyl)methanone, 155
(3-Fluorophenyl)(4-hydroxyphenyl)methanone, 155
(4-Fluorophenyl)(2-hydroxyphenyl)methanone, 155
(4-Fluorophenyl)(3-hydroxyphenyl)methanone, 156
(4-Fluorophenyl)(4-hydroxyphenyl)methanone, 156
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3}$
(2,4-Dihydroxyphenyl)(2-fluorophenyl)methanone, 397
(2,4-Dihydroxyphenyl)(4-fluorophenyl)methanone, 397
(2,5-Dihydroxyphenyl)(2-fluorophenyl)methanone, 397
(2,5-Dihydroxyphenyl)(3-fluorophenyl)methanone, 398
(2,5-Dihydroxyphenyl)(4-fluorophenyl)methanone, 398
(3,5-Dihydroxyphenyl)(4-fluorophenyl)methanone, 398
(2-Fluoro-4,5-dihydroxyphenyl)phenylmethanone, 370
(2-Fluoro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 428
(5-Fluoro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 428
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{4}$
(4-Fluorophenyl)(2,3,4-trihydroxyphenyl)methanone, 468
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{NO}_{2}$
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-fluorophenyl)methanone, 213
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{2}$
(4-Hydroxy-3-iodophenyl)phenylmethanone, 56
(4-Hydroxyphenyl)(4-iodophenyl)methanone, 157
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{3}$
(2,4-Dihydroxy-3-iodophenyl)phenylmethanone,371
(2,4-Dihydroxy-5-iodophenyl)phenylmethanone, 371

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4}$

(2-Hydroxy-3-nitrophenyl)phenylmethanone, 56
(2-Hydroxy-4-nitrophenyl)phenylmethanone, 56
(2-Hydroxy-5-nitrophenyl)phenylmethanone, 57
(3-Hydroxy-4-nitrophenyl)phenylmethanone, 58
(4-Hydroxy-2-nitrophenyl)phenylmethanone, 58
(4-Hydroxy-3-nitrophenyl)phenylmethanone, 58
(2-Hydroxyphenyl)(2-nitrophenyl)methanone, 157
(2-Hydroxyphenyl)(3-nitrophenyl)methanone, 157
(2-Hydroxyphenyl)(4-nitrophenyl)methanone, 158
(3-Hydroxyphenyl)(4-nitrophenyl)methanone, 158
(4-Hydroxyphenyl)(2-nitrophenyl)methanone, 159
(4-Hydroxyphenyl)(3-nitrophenyl)methanone, 159
(4-Hydroxyphenyl)(4-nitrophenyl)methanone, 159
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5}$
(2,4-Dihydroxy-3-nitrophenyl)phenylmethanone, 371
(2,4-Dihydroxy-5-nitrophenyl)phenylmethanone, 372
(2,5-Dihydroxy-4-nitrophenyl)phenylmethanone, 372
(2,6-Dihydroxy-3-nitrophenyl)phenylmethanone, 372
(3,4-Dihydroxy-5-nitrophenyl)phenylmethanone, 373
(3,5-Dihydroxy-4-nitrophenyl)phenylmethanone, 373
(2,4-Dihydroxyphenyl)(3-nitrophenyl)methanone, 399
(2,4-Dihydroxyphenyl)(4-nitrophenyl)methanone, 399
(3,4-Dihydroxyphenyl)(3-nitrophenyl)methanone, 399
(3,4-Dihydroxyphenyl)(4-nitrophenyl)methanone, 399
(4-Hydroxy-3-nitrophenyl)(4-hydroxyphenyl)methanone, 428
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{6}$
(2,4-Dihydroxy-3-nitrophenyl)(2-hydroxyphenyl)methanone, 472
(3,4-Dihydroxy-5-nitrophenyl)(4-hydroxyphenyl)methanone, 472
(2,6-Dihydroxyphenyl)(3-hydroxy-2-nitrophenyl)methanone, 472
(2-Nitrophenyl)(2,4,6-trihydroxyphenyl)methanone, 468
(3-Nitrophenyl)(2,4,6-trihydroxyphenyl)methanone, 468
(4-Nitrophenyl)(2,4,6-trihydroxyphenyl)methanone, 468
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{7}$
(3,4-Dihydroxy-5-nitrophenyl)(3,4-dihydroxyphenyl)methanone, 489
(5-Hydroxy-2-nitrophenyl)(2,4,6-trihydroxyphenyl)methanone, 489
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}_{2}$
(2-Amino-4-chloro-5-hydroxyphenyl)phenylmethanone, 59
(2-Amino-5-chloro-3-hydroxyphenyl)phenylmethanone, 59
(2-Amino-5-chloro-4-hydroxyphenyl)phenylmethanone, 59
(3-Amino-5-chloro-2-hydroxyphenyl)phenylmethanone, 59
(3-Amino-5-chloro-2-hydroxyphenyl)phenylmethanone (Hydrochloride), 60
(2-Amino-5-chlorophenyl)(2-hydroxyphenyl)methanone, 160
(2-Amino-5-chlorophenyl)(3-hydroxyphenyl)methanone, 160
(2-Amino-5-chlorophenyl)(4-hydroxyphenyl)methanone, 160
(2-Amino-5-hydroxyphenyl)(2-chlorophenyl)methanone, 213
(4-Amino-3-hydroxyphenyl)(4-chlorophenyl)methanone, 213
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}_{2}$
(3-Amino-5-fluoro-2-hydroxyphenyl)phenylmethanone, 60
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$
(2-Amino-3-hydroxy-5-nitrophenyl)phenylmethanone, 60
(4-Amino-2-hydroxyphenyl)(4-nitrophenyl)methanone, 214
(4-Amino-3-nitrophenyl)(4-hydroxyphenyl)methanone, 161
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$
(4-Amino-2-hydroxyphenyl)(2-hydroxy-4-nitrophenyl)methanone, 453
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}$
(2-Hydroxyphenyl)phenylmethanone, 3
(3-Hydroxyphenyl)phenylmethanone, 6
(4-Hydroxyphenyl)phenylmethanone, 7
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}$
Bis(2-hydroxyphenyl)methanone, 17
Bis(3-hydroxyphenyl)methanone, 17
Bis(4-hydroxyphenyl)methanone, 18
(2,3-Dihydroxyphenyl)phenylmethanone, 11
(2,4-Dihydroxyphenyl)phenylmethanone, 11
(2,5-Dihydroxyphenyl)phenylmethanone, 14
(2,6-Dihydroxyphenyl)phenylmethanone, 15
(3,4-Dihydroxyphenyl)phenylmethanone, 15
(3,5-Dihydroxyphenyl)phenylmethanone, 16
(2-Hydroxyphenyl)(3-hydroxyphenyl)methanone, 19
(2-Hydroxyphenyl)(4-hydroxyphenyl)methanone, 20
(3-Hydroxyphenyl)(4-hydroxyphenyl)methanone, 21
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4}$
(2,3-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 24
(2,4-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 25
(2,4-Dihydroxyphenyl)(3-hydroxyphenyl)methanone, 25
(2,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 25
(2,5-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 26
(2,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 26
(2,6-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 27
(2,6-Dihydroxyphenyl)(3-hydroxyphenyl)methanone, 27
(2,6-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 27
(3,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 27
(3,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 28
Phenyl(2,3,4-trihydroxyphenyl)methanone, 22
Phenyl(2,3,5-trihydroxyphenyl)methanone, 23
Phenyl(2,4,5-trihydroxyphenyl)methanone, 23
Phenyl(2,4,6-trihydroxyphenyl)methanone, 23
Phenyl(3,4,5-trihydroxyphenyl)methanone, 24
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5}$
Bis(2,3-dihydroxyphenyl)methanone, 28
Bis(2,4-dihydroxyphenyl)methanone, 29
Bis(2,5-dihydroxyphenyl)methanone, 29
Bis(3,4-dihydroxyphenyl)methanone, 30
(2,3-Dihydroxyphenyl)(2,4-dihydroxyphenyl)methanone, 30
(2,3-Dihydroxyphenyl)(2,5-dihydroxyphenyl)methanone, 30
(2,3-Dihydroxyphenyl)(2,6-dihydroxyphenyl)methanone, 30
(2,3-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone, 31
(2,4-Dihydroxyphenyl)(2,5-dihydroxyphenyl)methanone, 31
(2,4-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone, 31
(2,5-Dihydroxyphenyl)(2,6-dihydroxyphenyl)methanone, 32
(2,6-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone, 32
(2-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 32
(2-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 33
(3-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 33
(3-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 33
(4-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 34
(4-Hydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone, 34
(4-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 34
Phenyl(2,3,4,6-tetrahydroxyphenyl)methanone, 28
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$
(2,3-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 35
(2,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 35
(2,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 36
(2,5-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 36
(2,6-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 36
(2,6-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 36
(3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 37
(3,4-Dihydroxyphenyl)(2,3,6-trihydroxyphenyl)methanone, 37
(3,4-Dihydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone, 37
(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 37
(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl-1,3,5- ${ }^{14} \mathrm{C}_{3}$)methanone, 38
(3,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 38
(3,5-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 38
(2-Hydroxyphenyl)(2,3,5,6-tetrahydroxyphenyl)methanone, 39
(4-Hydroxyphenyl)(2,3,4,5-tetrahydroxyphenyl)methanone, 39
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7}$
Bis(2,3,4-trihydroxyphenyl)methanone, 39
Bis(3,4,5-trihydroxyphenyl)methanone, 40
(2,3,4-Trihydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone, 40
(2,3,4-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 40
(2,4,5-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 41
(2,4,6-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 41
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}$
(2-Amino-3-hydroxyphenyl)phenylmethanone, 60
(2-Amino-4-hydroxyphenyl)phenylmethanone, 61
(2-Amino-5-hydroxyphenyl)phenylmethanone, 61
(3-Amino-4-hydroxyphenyl)phenylmethanone, 61
(3-Amino-4-hydroxyphenyl)phenylmethanone (Hydrochloride), 61
(4-Amino-2-hydroxyphenyl)phenylmethanone, 62
(4-Amino-3-hydroxyphenyl)phenylmethanone, 62
(5-Amino-2-hydroxyphenyl)phenylmethanone, 62
(5-Amino-2-hydroxyphenyl)phenylmethanone (Hydrochloride), 63
(2-Aminophenyl)(2-hydroxyphenyl)methanone, 161
(2-Aminophenyl)(2-hydroxyphenyl)methanone (Hydrochloride), 162
(2-Aminophenyl)(3-hydroxyphenyl)methanone, 162
(3-Aminophenyl)(2-hydroxyphenyl)methanone, 162
(4-Aminophenyl)(2-hydroxyphenyl)methanone, 162
(4-Aminophenyl)(4-hydroxyphenyl)methanone, 162
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$
(3-Amino-2,4-dihydroxyphenyl)phenylmethanone, 373
(3-Amino-2,4-dihydroxyphenyl)phenylmethanone (Hydrochloride), 374
(5-Amino-2,4-dihydroxyphenyl)phenylmethanone, 374
(5-Amino-2,4-dihydroxyphenyl)phenylmethanone (Hydrochloride), 374
(4-Amino-3-hydroxyphenyl)(4-hydroxyphenyl)methanone, 428
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4}$
(2-Aminophenyl)(2,3,4-trihydroxyphenyl)methanone, 469
(2-Aminophenyl)(2,4,6-trihydroxyphenyl)methanone, 469
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
(3-Amino-4-hydroxyphenyl)(3-aminophenyl)methanone, 214
(3-Amino-4-hydroxyphenyl)(4-aminophenyl)methanone, 214
(3,4-Diaminophenyl)(4-hydroxyphenyl)methanone, 163
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
(2-Amino-4-hydroxyphenyl)(4-amino-2-hydroxyphenyl)methanone, 453
(2-Amino-4-hydroxyphenyl)(4-amino-2-hydroxyphenyl)methanone (Dihydrochloride), 453
Bis(3-amino-4-hydroxyphenyl)methanone, 445
Bis(4-amino-2-hydroxyphenyl)methanone, 445
Bis(4-amino-2-hydroxyphenyl)methanone (Dihydrochloride), 446
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{2}$
(3-Bromo-2-hydroxyphenyl)cyclohexylmethanone, 513
(3-Bromo-4-hydroxyphenyl)cyclohexylmethanone, 513
(4-Bromo-2-hydroxyphenyl)cyclohexylmethanone, 513
(5-Bromo-2-hydroxyphenyl)cyclohexylmethanone, 514
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}_{2}$
Cyclohexyl(5-fluoro-2-hydroxyphenyl)methanone, 514
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}$
Cyclohexyl(3,4-dihydroxy-5-nitrophenyl)methanone, 519
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
Cyclohexyl(2-hydroxyphenyl)methanone, 514
Cyclohexyl(3-hydroxyphenyl)methanone, 515
Cyclohexyl(4-hydroxyphenyl)methanone, 515
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
Cyclohexyl(2,4-dihydroxyphenyl)methanone, 519
(1-Hydroxycyclohexyl)(4-hydroxyphenyl)methanone, 519
(2-Hydroxycyclohexyl)(2-hydroxyphenyl)methanone, 520
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
Cyclohexyl(2,4,6-trihydroxyphenyl)methanone, 520
$\mathrm{C}_{14} \mathrm{H}_{4} \mathrm{~F}_{8} \mathrm{O}_{3}$
(2,3,4,5,6-Pentafluorophenyl)(2,3,5-trifluoro-6-hydroxy-4-methoxyphenyl)
methanone, 214
$\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~F}_{5} \mathrm{O}_{3}$
(2-Hydroxy-4-methoxyphenyl)(2,3,4,5,6-pentafluorophenyl)methanone, 215

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{O}_{2}$

(5-Chloro-2-hydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 215

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{5}$

(3,4-Dihydroxy-5-nitrophenyl)[2-(trifluoromethyl)phenyl]methanone, 415
(3,4-Dihydroxy-5-nitrophenyl)[4-(trifluoromethyl)phenyl]methanone, 415
$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{O}_{2}$
(5-Fluoro-2-hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 215

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{12}$

(2,4-Dihydroxy-3,5,6-trinitrophenyl)(4-methoxy-3-nitrophenyl)methanone, 416

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{2}$

(4-Bromophenyl)[2-(dibromomethyl)-4-hydroxyphenyl]methanone, 215
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{3}$
(3-Bromo-2-hydroxy-5-methylphenyl)(3,5-dibromo-2-hydroxyphenyl)
methanone, 454
(3-Bromo-2-hydroxy-5-methylphenyl)(3,5-dibromo-4-hydroxyphenyl)methanone, 454
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClF}_{2} \mathrm{O}_{3}$
(3-Chloro-2-hydroxy-4-methoxyphenyl)(2,3-difluorophenyl)methanone, 216
(3-Chloro-2-hydroxy-4-methoxyphenyl)(2,5-difluorophenyl)methanone, 216
(5-Chloro-2-hydroxy-4-methoxyphenyl)(2,4-difluorophenyl)methanone, 216
(5-Chloro-2-hydroxy-4-methoxyphenyl)(2,6-difluorophenyl)methanone, 216
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{4}$
(2,6-Dichlorophenyl)(4-hydroxy-2-methyl-5-nitrophenyl)methanone, 217
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}$
(3-Chloro-4-hydroxy-5-methylphenyl)(2,4-dichlorophenyl)methanone, 217
(3-Chloro-6-hydroxy-2-methylphenyl)(2,5-dichlorophenyl)methanone, 217
(2-Methylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 217
(4-Methylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 218
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{NO}_{5}$
(2,6-Difluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 218
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$
(2-Hydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 163
(3-Hydroxyphenyl)[3-(trifluoromethyl)phenyl]methanone, 163
(3-Hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 163
(4-Hydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 164
(4-Hydroxyphenyl)[3-(trifluoromethyl)phenyl]methanone, 164
(4-Hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 164
[2-Hydroxy-5-(trifluoromethyl)phenyl]phenylmethanone, 63
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3}$
(2,4-Dihydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 400
(2,4-Dihydroxyphenyl)[3-(trifluoromethyl)phenyl]methanone, 400
(2,5-Dihydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 400
Phenyl(3,5,6-trifluoro-2-hydroxy-4-methoxyphenyl)methanone, 63
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrFO}_{2}$
(3-Bromo-2-hydroxy-5-methylphenyl)(3-fluorophenyl)methanone, 218
(3-Bromophenyl)(3-fluoro-2-hydroxy-5-methylphenyl)methanone, 218
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNO}_{4}$
(2-Bromo-5-nitrophenyl)(2-hydroxy-5-methylphenyl)methanone, 218
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNO}_{5}$
(2-Bromo-6-hydroxy-3-methoxy-4-nitrophenyl)phenylmethanone, 63
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}$
(3,5-Dibromo-2-hydroxyphenyl)(4-methylphenyl)methanone, 219
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$
(2,4-Dibromo-6-hydroxy-3-methoxyphenyl)phenylmethanone, 64
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$
(3,5-Dibromo-2,6-dihydroxy-4-methoxyphenyl)phenylmethanone, 374
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{CIFO}_{3}$
(2-Chloro-6-hydroxy-4-methoxyphenyl)(2-fluorophenyl)methanone, 219
(3-Chloro-2-hydroxy-4-methoxyphenyl)(2-fluorophenyl)methanone, 219
(5-Chloro-2-hydroxy-4-methoxyphenyl)(2-fluorophenyl)methanone, 219
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{4}$
[3-Chloro-2,4 (or 2,5)-dihydroxy-5 (or 4)-methoxyphenyl](2-fluorophenyl)
methanone, 416
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{4}$
(2-Chloro-4-nitrophenyl)(2-hydroxy-5-methylphenyl)methanone, 220
(2-Chloro-5-nitrophenyl)(2-hydroxy-5-methylphenyl)methanone, 220

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{5}$

(5-Chloro-2-hydroxy-3-nitrophenyl)(4-methoxyphenyl)methanone, 220
(2-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 220
(3-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 220
(4-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 221
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
(3-Chloro-4-hydroxy-5-methylphenyl)(2-chlorophenyl)methanone, 221
(3-Chloro-4-hydroxy-5-methylphenyl)(4-chlorophenyl)methanone, 221
(5-Chloro-2-hydroxy-3-methylphenyl)(2-chlorophenyl)methanone, 221
(5-Chloro-2-hydroxy-3-methylphenyl)(3-chlorophenyl)methanone, 221
(5-Chloro-2-hydroxy-3-methylphenyl)(4-chlorophenyl)methanone, 222
(5-Chloro-2-hydroxy-4-methylphenyl)(2-chlorophenyl)methanone, 222
(2,3-Dichloro-4-hydroxyphenyl)(2-methylphenyl)methanone, 222
(2,3-Dichloro-4-hydroxyphenyl)(3-methylphenyl)methanone, 222
(2,3-Dichloro-4-hydroxyphenyl)(4-methylphenyl)methanone, 223
(2,4-Dichloro-6-hydroxyphenyl)(2-methylphenyl)methanone, 223
(2,4-Dichloro-6-hydroxyphenyl)(4-methylphenyl)methanone, 223
(2,6-Dichloro-4-hydroxyphenyl)(4-methylphenyl)methanone, 223
(3,5-Dichloro-4-hydroxyphenyl)(2-methylphenyl)methanone, 224
(3,5-Dichloro-4-hydroxyphenyl)(3-methylphenyl)methanone, 224
(3,5-Dichloro-4-hydroxyphenyl)(4-methylphenyl)methanone, 224
(2,3-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 224
(2,4-Dichlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 225
(2,4-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 225
(2,4-Dichlorophenyl)(3-hydroxy-2-methylphenyl)methanone, 225
(2,4-Dichlorophenyl)(4-hydroxy-2-methylphenyl)methanone, 225
(2,4-Dichlorophenyl)(4-hydroxy-3-methylphenyl)methanone, 226
(2,6-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 226
(3,4-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 226
(3,4-Dichlorophenyl)(3-hydroxy-2-methylphenyl)methanone, 226
(3,4-Dichlorophenyl)(4-hydroxy-2-methylphenyl)methanone, 227
(3,4-Dichlorophenyl)(4-hydroxy-3-methylphenyl)methanone, 227

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$

(4-Chloro-2,5-dihydroxyphenyl)(3-chloro-4-methylphenyl)methanone, 416
[5-Chloro-2-hydroxy-3-(hydroxymethyl)phenyl](4-chlorophenyl)methanone, 227
(5-Chloro-2-hydroxy-3-methoxyphenyl)(4-chlorophenyl)methanone, 227
(5-Chloro-2-hydroxy-4-methoxyphenyl)(2-chlorophenyl)methanone, 227
(5-Chloro-2-hydroxy-4-methoxyphenyl)(4-chlorophenyl)methanone, 228
(3,5-Dichloro-2-hydroxy-4-methoxyphenyl)phenylmethanone, 64
(2,3-Dichloro-4-hydroxyphenyl)(4-methoxyphenyl)methanone, 228
(3,5-Dichloro-4-hydroxyphenyl)(4-methoxyphenyl)methanone, 228
(2,3-Dichloro-4-methoxyphenyl)(4-hydroxyphenyl)methanone, 164
(3,5-Dichloro-2-methoxyphenyl)(2-hydroxyphenyl)methanone, 165
(3,5-Dichloro-4-methoxyphenyl)(2-hydroxyphenyl)methanone, 165
(2,4-Dichlorophenyl)(2,5-dihydroxy-3-methylphenyl)methanone, 416
(2,6-Dichlorophenyl)(4,5-dihydroxy-2-methylphenyl)methanone, 417
(2,3-Dichlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 228
(2,4-Dichlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 229
(2,6-Dichlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 229
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{6}$
(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3-chloro-2,4,6-trihydroxyphenyl) methanone, 499

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FNO}_{5}$

(2-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 229
[2-(Fluoro- ${ }^{18} \mathrm{~F}$)phenyl](4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 229
(3-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 230
(4-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 230
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{3}$
(2,6-Difluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 230

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{6}$

(2-Hydroxy-5-methyl-3-nitrophenyl)(3-nitrophenyl)methanone, 230
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{7}$
(4-Hydroxy-3-methoxy-5-nitrophenyl)(2-nitrophenyl)methanone, 231
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{8}$
(2,4-Dihydroxy-3,5-dinitrophenyl)(2-methoxyphenyl)methanone, 417
(2-Hydroxy-4-methoxy-5-nitrophenyl)(4-hydroxy-3-nitrophenyl)methanone, 454
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$
(3-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone, 64
(3-Bromo-4-hydroxy-5-methylphenyl)phenylmethanone, 64
(4-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone, 65
(4-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone, 65
(5-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone, 65
(2-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone, 231
(3-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone, 231
(3-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone, 231
(3-Bromophenyl)(4-hydroxy-2-methylphenyl)methanone, 232
(4-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone, 232
(4-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone, 232
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
(4-Bromo-2-hydroxy-3-methoxyphenyl)phenylmethanone, 65
(5-Bromo-2-hydroxy-4-methoxyphenyl)phenylmethanone, 66
(2-Bromophenyl)(4,5-dihydroxy-2-methylphenyl)methanone, 417
(2-Bromophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 232
(2-Bromophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 233
(4-Bromophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 233
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
(3-Chloro-2-hydroxy-5-methylphenyl)phenylmethanone, 66
(3-Chloro-4-hydroxy-5-methylphenyl)phenylmethanone, 66
(4-Chloro-2-hydroxy-5-methylphenyl)phenylmethanone, 67
(5-Chloro-2-hydroxy-3-methylphenyl)phenylmethanone, 67
(5-Chloro-2-hydroxy-4-methylphenyl)phenylmethanone, 67
(3-Chloro-4-hydroxyphenyl)(2-methylphenyl)methanone, 233
(3-Chloro-4-hydroxyphenyl)(3-methylphenyl)methanone, 233
(5-Chloro-2-hydroxyphenyl)(2-methylphenyl)methanone, 234
(5-Chloro-2-hydroxyphenyl)(3-methylphenyl)methanone, 234
(5-Chloro-2-hydroxyphenyl)(4-methylphenyl)methanone, 234
(2-Chloro-4-methylphenyl)(4-hydroxyphenyl)methanone, 165
(3-Chloro-4-methylphenyl)(4-hydroxyphenyl)methanone, 165
(4-Chloro-2-methylphenyl)(4-hydroxyphenyl)methanone, 166
(4-Chloro-3-methylphenyl)(4-hydroxyphenyl)methanone, 166
[3-(Chloromethyl)-4-hydroxyphenyl]phenylmethanone, 68
[5-(Chloromethyl)-2-hydroxyphenyl]phenylmethanone, 68
(2-Chlorophenyl)(2-hydroxy-3-methylphenyl)methanone, 234
(2-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 235
(2-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 235
(2-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone, 235
(2-Chlorophenyl)(4-hydroxy-3-methylphenyl)methanone, 236
(3-Chlorophenyl)(2-hydroxy-3-methylphenyl)methanone, 236
(3-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 236
(3-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 237
(3-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone, 237
(3-Chlorophenyl)(4-hydroxy-3-methylphenyl)methanone, 237
(4-Chlorophenyl)(2-hydroxy-3-methylphenyl)methanone, 237
(4-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 238
(4-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 238
(4-Chlorophenyl)(3-hydroxy-2-methylphenyl)methanone, 239
(4-Chlorophenyl)(3-hydroxy-4-methylphenyl)methanone, 239
(4-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone, 239
(4-Chlorophenyl)(4-hydroxy-3-methylphenyl)methanone, 240
(4-Chlorophenyl)(5-hydroxy-2-methylphenyl)methanone, 240
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$
(4-Chloro-2,5-dihydroxyphenyl)(4-methylphenyl)methanone, 417
(2-Chloro-6-hydroxy-4-methoxyphenyl)phenylmethanone, 68
(3-Chloro-2-hydroxy-4-methoxyphenyl)phenylmethanone, 68
(5-Chloro-2-hydroxy-4-methoxyphenyl)phenylmethanone, 69
(2-Chloro-4-hydroxyphenyl)(4-hydroxy-2-methylphenyl)methanone, 454
(5-Chloro-2-hydroxyphenyl)(2-methoxyphenyl)methanone, 240
(5-Chloro-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 240
(3-Chloro-4-methoxyphenyl)(4-hydroxyphenyl)methanone, 166
(3-Chloro-4-methylphenyl)(2,5-dihydroxyphenyl)methanone, 400
(2-Chlorophenyl)(2,5-dihydroxy-3-methylphenyl)methanone, 418
(4-Chlorophenyl)(2,5-dihydroxy-3-methylphenyl)methanone, 418
(2-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 241
(2-Chlorophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 241
(2-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 241
(3-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 241
(3-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 242
(4-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 242
(4-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 242

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4}$

[3-Chloro-2,4 (or 2,5)-dihydroxy-5 (or 4)-methoxyphenyl]phenylmethanone, 375
(2-Chloro-4-hydroxyphenyl)(4-hydroxy-2-methoxyphenyl)methanone, 454
(4-Chloro-2-hydroxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 455
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{6}$
(3-Chloro-4,6-dihydroxy-2-methylphenyl)(2,4,6-trihydroxyphenyl)methanone, 496
(2-Chloro-5-hydroxy-4-methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 490
(3-Chloro-2,4,6-trihydroxyphenyl)(2,4-dihydroxy-6-methylphenyl)methanone, 499
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2}$
(5-Fluoro-2-hydroxyphenyl)(2-methylphenyl)methanone, 243
(5-Fluoro-2-hydroxyphenyl)(3-methylphenyl)methanone, 243
(5-Fluoro-2-hydroxyphenyl)(4-methylphenyl)methanone, 243
(3-Fluoro-4-methylphenyl)(3-hydroxyphenyl)methanone, 166
(2-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone, 243
(3-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone, 243
(4-Fluorophenyl)(2-hydroxy-4-methylphenyl)methanone, 244
(4-Fluorophenyl)(4-hydroxy-2-methylphenyl)methanone, 244
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
(2,5-Dihydroxyphenyl)(3-fluoro-4-methylphenyl)methanone, 401
(5-Fluoro-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 244
(5-Fluoro-2-hydroxyphenyl)[4-(methoxy- ${ }^{11} \mathrm{C}$)phenyl]methanone, 244
(2-Fluorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 245
(2-Fluorophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 245
(2-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 245
(3-Fluorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 245
(3-Fluorophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 246
(3-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 246
(4-Fluorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 246
(4-Fluorophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 246
(4-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 247
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
(2-Hydroxy-3-methyl-4-nitrophenyl)phenylmethanone, 69
(2-Hydroxy-3-methyl-5-nitrophenyl)phenylmethanone, 69
(2-Hydroxy-4-methyl-5-nitrophenyl)phenylmethanone, 69
(2-Hydroxy-5-methyl-3-nitrophenyl)phenylmethanone, 70
(2-Hydroxy-5-methyl-4-nitrophenyl)phenylmethanone, 70
(4-Hydroxy-3-methyl-5-nitrophenyl)phenylmethanone, 70
(2-Hydroxy-3-methylphenyl)(3-nitrophenyl)methanone, 247
(2-Hydroxy-3-methylphenyl)(4-nitrophenyl)methanone, 247
(2-Hydroxy-4-methylphenyl)(3-nitrophenyl)methanone, 247
(2-Hydroxy-4-methylphenyl)(4-nitrophenyl)methanone, 248
(2-Hydroxy-5-methylphenyl)(3-nitrophenyl)methanone, 248
(2-Hydroxy-5-methylphenyl)(4-nitrophenyl)methanone, 248
(2-Hydroxy-6-methylphenyl)(4-nitrophenyl)methanone, 249
(4-Hydroxy-2-methylphenyl)(3-nitrophenyl)methanone, 249
(4-Hydroxy-2-methylphenyl)(4-nitrophenyl)methanone, 249
(4-Hydroxy-3-methylphenyl)(3-nitrophenyl)methanone, 249
(4-Hydroxy-3-methylphenyl)(4-nitrophenyl)methanone, 250
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
(2,6-Dihydroxy-4-methoxy-3-nitrosophenyl)phenylmethanone, 375
(3,4-Dihydroxy-5-nitrophenyl)(2-methylphenyl)methanone, 418
(3,4-Dihydroxy-5-nitrophenyl)(4-methylphenyl)methanone, 418
(2,5-Dihydroxyphenyl)(2-methyl-3-nitrophenyl)methanone, 401
(2,5-Dihydroxyphenyl)(3-methyl-4-nitrophenyl)methanone, 401
(2-Hydroxy-3-methoxy-6-nitrophenyl)phenylmethanone, 70
(2-Hydroxy-4-methoxy-5-nitrophenyl)phenylmethanone, 71
(2-Hydroxy-5-methoxy-4-nitrophenyl)phenylmethanone, 71
(2-Hydroxy-4-methoxyphenyl)(3-nitrophenyl)methanone, 250
(2-Hydroxy-4-methoxyphenyl)(4-nitrophenyl)methanone, 250
(2-Hydroxy-5-methoxyphenyl)(4-nitrophenyl)methanone, 250
(4-Hydroxy-3-methoxyphenyl)(2-nitrophenyl)methanone, 251
(5-Hydroxy-2-methoxyphenyl)(4-nitrophenyl)methanone, 251
(2-Hydroxy-5-methylphenyl)(2-hydroxy-5-nitrophenyl)methanone, 455
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{8}$
(3-Hydroxy-6-methoxy-2-nitrophenyl)(2,4,6-trihydroxyphenyl)
methanone, 490

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{CINO}_{2}$

(3-Amino-5-chloro-2-hydroxyphenyl)(4-methylphenyl)methanone, 251
(2-Amino-5-chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 251
(3-Amino-2-hydroxy-5-methylphenyl)(4-chlorophenyl)methanone, 252
(4-Chlorophenyl)[3-hydroxy-4-(methylamino)phenyl]methanone, 252
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3}$
(3-Amino-5-chloro-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 252
(3-Amino-5-chloro-2-hydroxyphenyl)(4-methoxyphenyl)methanone
(Hydrochloride), 252
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}_{2}$
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-methylphenyl)methanone, 253
(3-Amino-2-hydroxy-5-methylphenyl)(4-fluorophenyl)methanone, 253
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}_{3}$
(3-Amino-5-fluoro-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 253
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$
(2-Amino-4-methoxyphenyl)(2-hydroxy-4-nitrophenyl)methanone, 253
(4-Amino-2-methoxyphenyl)(2-hydroxy-4-nitrophenyl)methanone, 253
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
(2-Hydroxy-3-methylphenyl)phenylmethanone, 71
(2-Hydroxy-4-methylphenyl)phenylmethanone, 72
(2-Hydroxy-5-methylphenyl)phenylmethanone, 73
(2-Hydroxy-6-methylphenyl)phenylmethanone, 76
(3-Hydroxy-2-methylphenyl)phenylmethanone, 76
(3-Hydroxy-4-methylphenyl)phenylmethanone, 76
(4-Hydroxy-2-methylphenyl)phenylmethanone, 77
(4-Hydroxy-3-methylphenyl)phenylmethanone, 78
(2-Hydroxyphenyl)(2-methylphenyl)methanone, 166
(2-Hydroxyphenyl)(3-methylphenyl)methanone, 167
(2-Hydroxyphenyl)(4-methylphenyl)methanone, 167
(3-Hydroxyphenyl)(2-methylphenyl)methanone, 168
(3-Hydroxyphenyl)(4-methylphenyl)methanone, 168
(4-Hydroxyphenyl)(2-methylphenyl)methanone, 168
(4-Hydroxyphenyl)(3-methylphenyl)methanone, 169
(4-Hydroxyphenyl)(4-methylphenyl)methanone, 169
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
(2-Hydroxy-5-methylphenyl)(2-mercaptophenyl)methanone, 254
(4-Hydroxyphenyl)[4-(methylthio)phenyl]methanone, 169
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
(2,4-Dihydroxy-3-methylphenyl)phenylmethanone, 375
(2,4-Dihydroxy-5-methylphenyl)phenylmethanone, 376
(2,4-Dihydroxy-6-methylphenyl)phenylmethanone, 376
(2,5-Dihydroxy-4-methylphenyl)phenylmethanone, 377
(2,6-Dihydroxy-4-methylphenyl)phenylmethanone, 377
(3,4-Dihydroxy-5-methylphenyl)phenylmethanone, 377
(2,4-Dihydroxyphenyl)(2-methylphenyl)methanone, 401
(2,4-Dihydroxyphenyl)(3-methylphenyl)methanone, 402
(2,4-Dihydroxyphenyl)(4-methylphenyl)methanone, 402
(2,5-Dihydroxyphenyl)(2-methylphenyl)methanone, 402
(2,5-Dihydroxyphenyl)(3-methylphenyl)methanone, 403
(2,5-Dihydroxyphenyl)(4-methylphenyl)methanone, 403
(2,6-Dihydroxyphenyl)(2-methylphenyl)methanone, 403
(2,6-Dihydroxyphenyl)(3-methylphenyl)methanone, 403
(2,6-Dihydroxyphenyl)(4-methylphenyl)methanone, 403
(2-Hydroxy-3-methoxyphenyl)phenylmethanone, 79
(2-Hydroxy-4-methoxyphenyl)phenylmethanone, 79
(2-Hydroxy-4-methoxyphenyl)phenylmethanone- ${ }^{14} \mathrm{C}, 81$
(2-Hydroxy-5-methoxyphenyl)phenylmethanone, 81
(2-Hydroxy-6-methoxyphenyl)phenylmethanone, 82
(3-Hydroxy-4-methoxyphenyl)phenylmethanone, 83
(4-Hydroxy-2-methoxyphenyl)phenylmethanone, 83
(4-Hydroxy-3-methoxyphenyl)phenylmethanone, 83
(5-Hydroxy-2-methoxyphenyl)phenylmethanone, 84
(2-Hydroxy-3-methylphenyl)(3-hydroxyphenyl)methanone, 429
(2-Hydroxy-4-methylphenyl)(2-hydroxyphenyl)methanone, 429
(2-Hydroxy-4-methylphenyl)(3-hydroxyphenyl)methanone, 429
(2-Hydroxy-4-methylphenyl)(4-hydroxyphenyl)methanone, 429
(2-Hydroxy-5-methylphenyl)(2-hydroxyphenyl)methanone, 429
(2-Hydroxy-5-methylphenyl)(3-hydroxyphenyl)methanone, 430
(2-Hydroxy-5-methylphenyl)(4-hydroxyphenyl)methanone, 430
(3-Hydroxy-4-methylphenyl)(4-hydroxyphenyl)methanone, 430
(4-Hydroxy-2-methylphenyl)(2-hydroxyphenyl)methanone, 430
(4-Hydroxy-2-methylphenyl)(3-hydroxyphenyl)methanone, 431
(4-Hydroxy-2-methylphenyl)(4-hydroxyphenyl)methanone, 431
(4-Hydroxy-3-methylphenyl)(2-hydroxyphenyl)methanone, 431
(4-Hydroxy-3-methylphenyl)(3-hydroxyphenyl)methanone, 431
(4-Hydroxy-3-methylphenyl)(4-hydroxyphenyl)methanone, 432
(2-Hydroxyphenyl)(2-methoxyphenyl)methanone, 170
(2-Hydroxyphenyl)(3-methoxyphenyl)methanone, 170
(2-Hydroxyphenyl)(4-methoxyphenyl)methanone, 171
(3-Hydroxyphenyl)(4-methoxyphenyl)methanone, 171
(4-Hydroxyphenyl)(2-methoxyphenyl)methanone, 171
(4-Hydroxyphenyl)(3-methoxyphenyl)methanone, 172
(4-Hydroxyphenyl)(4-methoxyphenyl)methanone, 172
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
(2-Hydroxy-5-methoxyphenyl)(2-mercaptophenyl)methanone, 254
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
(2,3-Dihydroxy-4-methoxyphenyl)phenylmethanone, 378
(2,4-Dihydroxy-5-methoxyphenyl)phenylmethanone, 378
(2,4-Dihydroxy-6-methoxyphenyl)phenylmethanone, 378
(2,5-Dihydroxy-4-methoxyphenyl)phenylmethanone, 379
(2,6-Dihydroxy-4-methoxyphenyl)phenylmethanone, 379
(3,4-Dihydroxy-2-methoxyphenyl)phenylmethanone, 380
(3,4-Dihydroxy-5-methoxyphenyl)phenylmethanone, 380
(3,6-Dihydroxy-2-methoxyphenyl)phenylmethanone, 380
(2,4-Dihydroxy-3-methylphenyl)(2-hydroxyphenyl)methanone, 473
(2,4-Dihydroxy-3-methylphenyl)(3-hydroxyphenyl)methanone, 473
(2,4-Dihydroxy-3-methylphenyl)(4-hydroxyphenyl)methanone, 473
(2,4-Dihydroxy-5-methylphenyl)(3-hydroxyphenyl)methanone, 473
(2,6-Dihydroxy-4-methylphenyl)(4-hydroxyphenyl)methanone, 474
(2,4-Dihydroxyphenyl)(2-hydroxy-3-methylphenyl)methanone, 474
(2,4-Dihydroxyphenyl)(2-hydroxy-4-methylphenyl)methanone, 474
(2,4-Dihydroxyphenyl)(4-hydroxy-2-methylphenyl)methanone, 474
(2,4-Dihydroxyphenyl)(5-hydroxy-2-methylphenyl)methanone, 475
(2,4-Dihydroxyphenyl)(2-methoxyphenyl)methanone, 404
(2,4-Dihydroxyphenyl)(3-methoxyphenyl)methanone, 404
(2,4-Dihydroxyphenyl)(4-methoxyphenyl)methanone, 404
(2,5-Dihydroxyphenyl)(2-methoxyphenyl)methanone, 405
(2,5-Dihydroxyphenyl)(4-methoxyphenyl)methanone, 405
(2-Hydroxy-3-methoxyphenyl)(2-hydroxyphenyl)methanone, 432
(2-Hydroxy-4-methoxyphenyl)(2-hydroxyphenyl)methanone, 432
(2-Hydroxy-4-methoxyphenyl)(3-hydroxyphenyl)methanone, 433
(2-Hydroxy-4-methoxyphenyl)(4-hydroxyphenyl)methanone, 433
(2-Hydroxy-5-methoxyphenyl)(2-hydroxyphenyl)methanone, 433
(2-Hydroxy-5-methoxyphenyl)(4-hydroxyphenyl)methanone, 434
(4-Hydroxy-3-methoxyphenyl)(4-hydroxyphenyl)methanone, 434
(2-Methylphenyl)(2,3,4-trihydroxyphenyl)methanone, 469
(4-Methylphenyl)(2,3,4-trihydroxyphenyl)methanone, 469
Phenyl(2,4,6-trihydroxy-3-methylphenyl)methanone, 464
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
(2,4-Dihydroxy-6-methoxyphenyl)(3-hydroxyphenyl)methanone, 475
(2,4-Dihydroxy-6-methoxyphenyl)(4-hydroxyphenyl)methanone, 475
(2,5-Dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl)methanone, 475
(2,6-Dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl)methanone, 476
(2,4-Dihydroxy-3-methylphenyl)(2,5-dihydroxyphenyl)methanone, 490
(2,4-Dihydroxy-5-methylphenyl)(2,5-dihydroxyphenyl)methanone, 490
(2,4-Dihydroxy-5-methylphenyl)(3,5-dihydroxyphenyl)methanone, 491
(2,3-Dihydroxyphenyl)(2-hydroxy-6-methoxyphenyl)methanone, 476
(2,4-Dihydroxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 476
(2,4-Dihydroxyphenyl)(4-hydroxy-2-methoxyphenyl)methanone, 476
(2,4-Dihydroxyphenyl)(4-hydroxy-3-methoxyphenyl)methanone, 477
(2,4-Dihydroxyphenyl)(5-hydroxy-2-methoxyphenyl)methanone, 477
(2-Hydroxy-3-methylphenyl)(2,3,4-trihydroxyphenyl)methanone, 491
(2-Hydroxy-4-methylphenyl)(2,3,4-trihydroxyphenyl)methanone, 491
(2-Hydroxy-5-methylphenyl)(2,3,4-trihydroxyphenyl)methanone, 491
(2-Methoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 470
(3-Methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 470
(4-Methoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 470
Phenyl[2,3,4-trihydroxy-5-(hydroxymethyl)phenyl]methanone, 465
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$
(2,4-Dihydroxyphenyl)[4-(methylsulfonyl)phenyl]methanone, 406
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}$
(2,4-Dihydroxy-6-methylphenyl)(2,4,6-trihydroxyphenyl)methanone, 497
(4-Hydroxy-3-methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 492
(5-Hydroxy-2-methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 492
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{7}$
(2,3-Dihydroxy-4-methoxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 498
(3,5-Dihydroxy-4-methoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 498
(2,3,4-Trihydroxy-5-methylphenyl)(3,4,5-trihydroxyphenyl)methanone, 500
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$
(2-Amino-4-hydroxy-6-methylphenyl)phenylmethanone, 84
(3-Amino-2-hydroxy-5-methylphenyl)phenylmethanone, 84
(4-Amino-2-hydroxy-6-methylphenyl)phenylmethanone, 85
(5-Amino-2-hydroxyphenyl)(4-methylphenyl)methanone, 254
(5-Amino-2-hydroxyphenyl)(4-methylphenyl)methanone (Hydrochloride), 254
(2-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone, 255
(2-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone (Hydrochloride), 255
(3-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone, 255
(3-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone (Hydrochloride), 255
(4-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone, 256
(4-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone (Hydrochloride), 256
[3-Hydroxy-4-(methylamino)phenyl]phenylmethanone, 85
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$
(2-Aminophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 256
(4-Aminophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 256
[3-Hydroxy-4-(methylamino)phenyl](4-hydroxyphenyl)methanone, 434
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
(2,4-Diaminophenyl)(2-hydroxy-6-methylphenyl)methanone, 257
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5}$
Cyclohexyl(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 515
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$
Cyclohexyl(2-hydroxy-3-methylphenyl)methanone, 515
Cyclohexyl(2-hydroxy-4-methylphenyl)methanone, 516
Cyclohexyl(2-hydroxy-5-methylphenyl)methanone, 516
Cyclohexyl(4-hydroxy-3-methylphenyl)methanone, 516
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
Cyclohexyl(2-hydroxy-4-methoxyphenyl)methanone, 517
Cyclohexyl(4-hydroxy-3-methoxyphenyl)methanone, 517
$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{O}_{3} \mathrm{~S}_{2}$
[2,4-Dihydroxy-3,5-bis[(trifluoromethyl)thio]phenyl]phenylmethanone, 381
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{O}_{3}$
(3-Chloro-2-hydroxy-4-methoxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 257
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{O}_{2}$
(3,5-Dichloro-2-hydroxy-4,6-dimethylphenyl)(2,4-dichlorophenyl)methanone, 257
(3,5-Dichloro-2-hydroxy-4,6-dimethylphenyl)(3,4-dichlorophenyl)methanone, 257
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{5}$
(4-Hydroxy-3-methoxy-5-nitrophenyl)[2-(trifluoromethyl)phenyl]methanone, 258
(4-Hydroxy-3-methoxy-5-nitrophenyl)[4-(trifluoromethyl)phenyl]methanone, 258
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2}$
(3-Ethynyl-4-hydroxyphenyl)phenylmethanone, 85
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{3}$
1-[3-(4-Chlorobenzoyl)-4-hydroxyphenyl]ethanone, 523
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{2}$
(3-Chloro-6-hydroxy-2,4-dimethylphenyl)(2,4-dichlorophenyl)methanone, 258
(2-Chlorophenyl)(3,5-dichloro-2-hydroxy-4,6-dimethylphenyl)methanone, 258
(2,4-Dimethylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 258
(3,4-Dimethylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 259
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{5}$
(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3,5-dichloro-2,4-dihydroxy-6-methylphenyl)-methanone, 494
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2}$
(2-Hydroxy-5-methylphenyl)[3-(trifluoromethyl)phenyl]methanone, 259
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}$
(2-Hydroxy-4-methoxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 259
(2-Hydroxy-4-methoxyphenyl)[3-(trifluoromethyl)phenyl]methanone, 259
(2-Hydroxy-4-methoxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 260
(4-Hydroxy-3-methoxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 260
(4-Hydroxy-3-methoxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 260
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrIO}_{3}$
[4-(2-Bromoethoxy)phenyl](4-hydroxy-3-iodophenyl)methanone, 260
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{4}$
(3,5-Dibromo-2-hydroxy-4,6-dimethoxyphenyl)phenylmethanone, 85
(3,5-Dibromo-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone, 261
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClFO}_{4}$
(5-Chloro-2-hydroxy-3,4-dimethoxyphenyl)(4-fluorophenyl)methanone, 261
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{4}$
(2-Chloro-4-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone, 261
(3-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone, 261
(3-Chloro-4-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone, 262
(4-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone, 262
(5-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl)methanone, 262
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$
(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-chlorophenyl)methanone, 262
(3-Chloro-6-hydroxy-2,4-dimethylphenyl)(2-chlorophenyl)methanone, 262
(5-Chloro-2-hydroxy-3-methylphenyl)(4-chloro-2-methylphenyl)methanone, 263
(2,3-Dichloro-4-hydroxyphenyl)(2,3-dimethylphenyl)methanone, 263
(2,4-Dichlorophenyl)(3-ethyl-2-hydroxyphenyl)methanone, 263
(2,4-Dichlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 263
(3,4-Dichlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 264
(2,4-Dichlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 264
(3,4-Dichlorophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone, 264
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}$
Bis(2-chloro-4-hydroxy-6-methylphenyl)methanone, 446
(2,6-Dichlorophenyl)(2-hydroxy-4-methoxy-6-methylphenyl)methanone, 264
(2,6-Dichlorophenyl)(5-hydroxy-4-methoxy-2-methylphenyl)methanone, 265
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$
(2,6-Dichlorophenyl)(2,3-dihydroxy-4-methoxy-6-methylphenyl)methanone, 419
(2,6-Dichlorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 265
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{5}$
(3,5-Dichloro-2,4-dihydroxy-6-methylphenyl)(2,4-dihydroxy-6-methylphenyl) methanone, 495
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{7}$
[4-Hydroxy-3-(methoxymethyl)-5-nitrophenyl](2-nitrophenyl)methanone, 265
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8}$
(2,4-Dimethoxyphenyl)(4-hydroxy-3,5-dinitrophenyl)methanone, 265
(2-Hydroxy-4-methoxy-3,5-dinitrophenyl)(2-methoxyphenyl)methanone, 266
(2-Hydroxy-4-methoxy-3,5-dinitrophenyl)(4-methoxyphenyl)methanone, 266
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(3-Benzoyl-2-hydroxyphenyl)ethanone, 523
1-(3-Benzoyl-4-hydroxyphenyl)ethanone, 523
1-(5-Benzoyl-2-hydroxyphenyl)ethanone, 524
(2,4-Dihydroxyphenyl)(4-ethenylphenyl)methanone, 406
1-[2-(2-Hydroxybenzoyl)phenyl]ethanone, 524
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$
[2-(Acetyloxy)-4-hydroxyphenyl]phenylmethanone, 86
[4-(Acetyloxy)-2-hydroxyphenyl]phenylmethanone, 86
[2-(Acetyloxy)phenyl](4-hydroxyphenyl)methanone, 173
1-(3-Benzoyl-2,4-dihydroxyphenyl)ethanone, 525
1-(3-Benzoyl-2,6-dihydroxyphenyl)ethanone, 526
1-(5-Benzoyl-2,4-dihydroxyphenyl)ethanone, 526
1-[2-(2,4-Dihydroxybenzoyl)phenyl]ethanone, 526
1-[2-Hydroxy-5-(2-hydroxybenzoyl)phenyl]ethanone, 527
1-[4-Hydroxy-3-(4-hydroxybenzoyl)phenyl]ethanone, 527
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}$
1-(3-Benzoyl-2,4,6-trihydroxyphenyl)ethanone, 528
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}$
(3-Bromo-2-hydroxy-4,5-dimethylphenyl)phenylmethanone, 86
(3-Bromo-2-hydroxy-5,6-dimethylphenyl)phenylmethanone, 86
(3-Bromo-4-hydroxy-2,5-dimethylphenyl)phenylmethanone, 87
(3-Bromo-6-hydroxy-2,5-dimethylphenyl)phenylmethanone, 87
(4-Bromo-2-hydroxy-3,6-dimethylphenyl)phenylmethanone, 87
(4-Bromo-6-hydroxy-2,3-dimethylphenyl)phenylmethanone, 87
(4-Bromophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 266
(2-Bromophenyl)(2-hydroxy-3,5-dimethylphenyl)methanone, 266
(4-Bromophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 267
(4-Bromophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone, 267

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3}$

[4-(2-Bromoethoxy)-2-hydroxyphenyl]phenylmethanone, 88
[4-(2-Bromoethoxy)phenyl](4-hydroxyphenyl)methanone, 174
[4-(2-Bromoethyl)phenyl](2,4-dihydroxyphenyl)methanone, 406
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{4}$
(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)phenylmethanone, 88
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2}$
(3-Chloro-6-hydroxy-2,4-dimethylphenyl)phenylmethanone, 88
(4-Chloro-2-hydroxy-3,6-dimethylphenyl)phenylmethanone, 88
(4-Chloro-2-hydroxy-5-methylphenyl)(2-methylphenyl)methanone, 267
(5-Chloro-2-hydroxy-3-methylphenyl)(2-methylphenyl)methanone, 267
(5-Chloro-2-hydroxy-3-methylphenyl)(3-methylphenyl)methanone, 268
(5-Chloro-2-hydroxy-3-methylphenyl)(4-methylphenyl)methanone, 268
(5-Chloro-2-hydroxy-4-methylphenyl)(2-methylphenyl)methanone, 268
(3-Chloro-2-methylphenyl)(2-hydroxy-5-methylphenyl)methanone, 268
(2-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 268
(3-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 269
(4-Chlorophenyl)(2-ethyl-4-hydroxyphenyl)methanone, 269
(4-Chlorophenyl)(3-ethyl-2-hydroxyphenyl)methanone, 269
(4-Chlorophenyl)(4-ethyl-2-hydroxyphenyl)methanone, 269
(4-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 270
(2-Chlorophenyl)(2-hydroxy-4,5-dimethylphenyl)methanone, 270
(4-Chlorophenyl)(2-hydroxy-3,5-dimethylphenyl)methanone, 270
(4-Chlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 270
(4-Chlorophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone, 271
(4-Chlorophenyl)(4-hydroxy-3,5-dimethylphenyl)methanone, 271
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$
(3-Chloro-4,5-dimethylphenyl)(2,5-dihydroxyphenyl)methanone, 406
(3-Chloro-2-hydroxy-5-methylphenyl)(2-hydroxy-5-methylphenyl)methanone, 455
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4}$
(5-Chloro-2-hydroxy-3,4-dimethoxyphenyl)phenylmethanone, 89
(5-Chloro-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone, 271
(2-Chlorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 272
(2-Chlorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 272
(4-Chlorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 272
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2}$
(4-Ethyl-2-hydroxyphenyl)(3-fluorophenyl)methanone, 272
(4-Ethyl-2-hydroxyphenyl)(4-fluorophenyl)methanone, 273
(5-Ethyl-2-hydroxyphenyl)(4-fluorophenyl)methanone, 273
(4-Fluorophenyl)(4-hydroxy-2,3-dimethylphenyl)methanone, 273
(4-Fluorophenyl)(4-hydroxy-3,5-dimethylphenyl)methanone, 273
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3}$
(2-Fluorophenyl)(2-hydroxy-4-methoxy-3-methylphenyl)methanone, 274

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4}$

(2-Fluoro-6-methoxyphenyl)(2-hydroxy-6-methoxyphenyl)methanone, 274
(2-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 274
(2-Fluorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 274
(3-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 275
(4-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 275
(4-Fluorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 275
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxyphenyl)methanone, 174
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxyphenyl)methanone, 174
(4-Ethyl-2-hydroxyphenyl)(4-nitrophenyl)methanone, 275
(5-Ethyl-2-hydroxyphenyl)(4-nitrophenyl)methanone, 275
(2-Hydroxy-3,6-dimethyl-4-nitrophenyl)phenylmethanone, 89
(2-Hydroxy-3,6-dimethyl-5-nitrophenyl)phenylmethanone, 89
(3-Hydroxy-4,6-dimethyl-2-nitrophenyl)phenylmethanone, 89
(4-Hydroxy-2,6-dimethyl-3-nitrophenyl)phenylmethanone, 90
(4-Hydroxy-3,5-dimethylphenyl)(4-nitrophenyl)methanone, 276
(2-Hydroxy-4-methyl-5-nitrophenyl)(4-methylphenyl)methanone, 276
(4-Hydroxy-3-methyl-5-nitrophenyl)(2-methylphenyl)methanone, 276
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$
(4-Hydroxy-3-methoxy-5-nitrophenyl)(2-methylphenyl)methanone, 276
(4-Hydroxy-3-methoxy-5-nitrophenyl)(4-methylphenyl)methanone, 277
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6}$
(2,4-Dimethoxyphenyl)(4-hydroxy-3-nitrophenyl)methanone, 277
(3,4-Dimethoxyphenyl)(4-hydroxy-3-nitrophenyl)methanone, 277
(2-Hydroxy-4,6-dimethoxyphenyl)(2-nitrophenyl)methanone, 277
(4-Hydroxy-2,6-dimethoxyphenyl)(2-nitrophenyl)methanone, 278
(2-Hydroxy-4-methoxy-5-nitrophenyl)(2-methoxyphenyl)methanone, 278
(2-Hydroxy-4-methoxy-5-nitrophenyl)(4-methoxyphenyl)methanone, 278
(4-Hydroxy-3-methoxy-5-nitrophenyl)(4-methoxyphenyl)methanone, 279
(5-Hydroxy-4-methoxy-2-nitrophenyl)(4-methoxyphenyl)methanone, 279
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
(2,3-Dimethylphenyl)(4-hydroxyphenyl)methanone, 174
(2,4-Dimethylphenyl)(2-hydroxyphenyl)methanone, 174
(2,4-Dimethylphenyl)(3-hydroxyphenyl)methanone, 175
(2,4-Dimethylphenyl)(4-hydroxyphenyl)methanone, 175
(2,5-Dimethylphenyl)(2-hydroxyphenyl)methanone, 175
(2,6-Dimethylphenyl)(4-hydroxyphenyl)methanone, 175
(3,4-Dimethylphenyl)(3-hydroxyphenyl)methanone, 176
(3,4-Dimethylphenyl)(4-hydroxyphenyl)methanone, 176
(3,5-Dimethylphenyl)(4-hydroxyphenyl)methanone, 176
(3-Ethyl-2-hydroxyphenyl)phenylmethanone, 90
(3-Ethyl-4-hydroxyphenyl)phenylmethanone, 90
(4-Ethyl-2-hydroxyphenyl)phenylmethanone, 90
(5-Ethyl-2-hydroxyphenyl)phenylmethanone, 91
(4-Ethylphenyl)(2-hydroxyphenyl)methanone, 176
(4-Ethylphenyl)(4-hydroxyphenyl)methanone, 177
(2-Hydroxy-3,4-dimethylphenyl)phenylmethanone, 91
(2-Hydroxy-3,5-dimethylphenyl)phenylmethanone, 91
(2-Hydroxy-3,6-dimethylphenyl)phenylmethanone, 92
(2-Hydroxy-4,5-dimethylphenyl)phenylmethanone, 92
(2-Hydroxy-4,6-dimethylphenyl)phenylmethanone, 93
(4-Hydroxy-2,3-dimethylphenyl)phenylmethanone, 94
(4-Hydroxy-2,5-dimethylphenyl)phenylmethanone, 94
(4-Hydroxy-2,6-dimethylphenyl)phenylmethanone, 95
(4-Hydroxy-3,5-dimethylphenyl)phenylmethanone, 95
(5-Hydroxy-2,4-dimethylphenyl)phenylmethanone, 96
(6-Hydroxy-2,3-dimethylphenyl)phenylmethanone, 96
(2-Hydroxy-3-methylphenyl)(3-methylphenyl)methanone, 279
(2-Hydroxy-4-methylphenyl)(3-methylphenyl)methanone, 279
(2-Hydroxy-4-methylphenyl)(4-methylphenyl)methanone, 279
(2-Hydroxy-5-methylphenyl)(2-methylphenyl)methanone, 280
(2-Hydroxy-5-methylphenyl)(3-methylphenyl)methanone, 280
(2-Hydroxy-5-methylphenyl)(4-methylphenyl)methanone, 280
(3-Hydroxy-2-methylphenyl)(2-methylphenyl)methanone, 281
(3-Hydroxy-2-methylphenyl)(4-methylphenyl)methanone, 281
(4-Hydroxy-2-methylphenyl)(3-methylphenyl)methanone, 281
(4-Hydroxy-2-methylphenyl)(4-methylphenyl)methanone, 281
(4-Hydroxy-3-methylphenyl)(2-methylphenyl)methanone, 281
(4-Hydroxy-3-methylphenyl)(3-methylphenyl)methanone, 282
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
Bis(2-hydroxy-4-methylphenyl)methanone, 446
Bis(2-hydroxy-5-methylphenyl)methanone, 446
Bis(4-hydroxy-2-methylphenyl)methanone, 447
Bis(4-hydroxy-3-methylphenyl)methanone, 447
(2,4-Dihydroxy-3-methylphenyl)(2-methylphenyl)methanone, 419
(4,5-Dihydroxy-2-methylphenyl)(2-methylphenyl)methanone, 419
(2,4-Dihydroxyphenyl)(2,4-dimethylphenyl)methanone, 407
(2,4-Dihydroxyphenyl)(2,6-dimethylphenyl)methanone, 407
(2,4-Dihydroxyphenyl)(3,5-dimethylphenyl)methanone, 407
(2,4-Dihydroxyphenyl)(4-ethylphenyl)methanone, 407
(4-Ethoxy-2-hydroxyphenyl)phenylmethanone, 97
(4-Ethoxyphenyl)(4-hydroxyphenyl)methanone, 177
(2-Ethyl-4,5-dihydroxyphenyl)phenylmethanone, 381
(3-Ethyl-2,6-dihydroxyphenyl)phenylmethanone, 381
(4-Ethyl-2,5-dihydroxyphenyl)phenylmethanone, 381
(5-Ethyl-2,4-dihydroxyphenyl)phenylmethanone, 382
(4-Hydroxy-2,3-dimethylphenyl)(4-hydroxyphenyl)methanone, 434
(4-Hydroxy-2,5-dimethylphenyl)(4-hydroxyphenyl)methanone, 435
(4-Hydroxy-2,6-dimethylphenyl)(4-hydroxyphenyl)methanone, 435
(4-Hydroxy-3,5-dimethylphenyl)(2-hydroxyphenyl)methanone, 435
(4-Hydroxy-3,5-dimethylphenyl)(3-hydroxyphenyl)methanone, 435
(4-Hydroxy-3,5-dimethylphenyl)(4-hydroxyphenyl)methanone, 436
[4-Hydroxy-3-(hydroxymethyl)phenyl](3-methylphenyl)methanone, 282
(2-Hydroxy-3-methoxy-5-methylphenyl)phenylmethanone, 97
(2-Hydroxy-3-methoxy-6-methylphenyl)phenylmethanone, 97
(2-Hydroxy-4-methoxy-3-methylphenyl)phenylmethanone, 97
(2-Hydroxy-4-methoxy-5-methylphenyl)phenylmethanone, 98
(2-Hydroxy-4-methoxy-6-methylphenyl)phenylmethanone, 98
(2-Hydroxy-5-methoxy-4-methylphenyl)phenylmethanone, 98
(2-Hydroxy-6-methoxy-4-methylphenyl)phenylmethanone, 99
(4-Hydroxy-2-methoxy-6-methylphenyl)phenylmethanone, 99
(5-Hydroxy-4-methoxy-2-methylphenyl)phenylmethanone, 99
(2-Hydroxy-4-methoxyphenyl)(2-methylphenyl)methanone, 282
(2-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone, 282
(4-Hydroxy-3-methoxyphenyl)(2-methylphenyl)methanone, 283
(4-Hydroxy-3-methoxyphenyl)(4-methylphenyl)methanone, 283
(2-Hydroxy-3-methylphenyl)(4-methoxyphenyl)methanone, 283
(2-Hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone, 283
(2-Hydroxy-5-methylphenyl)(2-methoxyphenyl)methanone, 284
(2-Hydroxy-5-methylphenyl)(3-methoxyphenyl)methanone, 284
(2-Hydroxy-5-methylphenyl)(4-methoxyphenyl)methanone, 284
(4-Hydroxy-3-methylphenyl)(2-methoxyphenyl)methanone, 285
(4-Hydroxy-3-methylphenyl)(4-methoxyphenyl)methanone, 285
[3-(Hydroxymethyl)phenyl](4-Hydroxy-3-methylphenyl)methanone, 285
(4-Hydroxyphenyl)(2-methoxy-5-methylphenyl)methanone, 177
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
(2,6-Dihydroxy-4-methoxy-3-methylphenyl)phenylmethanone, 382
(2,4-Dihydroxy-3-methylphenyl)(2-methoxyphenyl)methanone, 419
(2,4-Dihydroxy-3-methylphenyl)(4-methoxyphenyl)methanone, 420
(2,3-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 177
(2,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 177
(2,4-Dimethoxyphenyl)(3-hydroxyphenyl)methanone, 178
(2,4-Dimethoxyphenyl)(4-hydroxyphenyl)methanone, 178
(2,5-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 178
(2,6-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 179
(3,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 179
(3,4-Dimethoxyphenyl)(4-hydroxyphenyl)methanone, 179
(3,5-Dimethoxyphenyl)(4-hydroxyphenyl)methanone, 180
(4-Ethoxy-2-hydroxyphenyl)(2-hydroxyphenyl)methanone, 436
(2-Hydroxy-3,4-dimethoxyphenyl)phenylmethanone, 99
(2-Hydroxy-4,5-dimethoxyphenyl)phenylmethanone, 100
(2-Hydroxy-4,6-dimethoxyphenyl)phenylmethanone, 101
(4-Hydroxy-2,6-dimethoxyphenyl)phenylmethanone, 102
[2-Hydroxy-4-(2-hydroxyethoxy)phenyl]phenylmethanone, 102
[2-Hydroxy-3-(hydroxymethyl)-4-methoxyphenyl]phenylmethanone, 103
[2-Hydroxy-5-(hydroxymethyl)-4-methoxyphenyl]phenylmethanone, 103
(2-Hydroxy-4-methoxyphenyl)(2-hydroxy-4-methylphenyl)methanone, 455
(2-Hydroxy-3-methoxyphenyl)(4-methoxyphenyl)methanone, 286
(2-Hydroxy-4-methoxyphenyl)(2-methoxyphenyl)methanone, 286
(2-Hydroxy-4-methoxyphenyl)(3-methoxyphenyl)methanone, 286
(2-Hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone, 287
(2-Hydroxy-5-methoxyphenyl)(2-methoxyphenyl)methanone, 288
(2-Hydroxy-5-methoxyphenyl)(3-methoxyphenyl)methanone, 288
(2-Hydroxy-5-methoxyphenyl)(4-methoxyphenyl)methanone, 288
(2-Hydroxy-6-methoxyphenyl)(2-methoxyphenyl)methanone, 289
(5-Hydroxy-2-methoxyphenyl)(4-methoxyphenyl)methanone, 289
(2-Hydroxyphenyl)[2-(methoxymethoxy)phenyl]methanone, 180
(2-Hydroxyphenyl)[4-(methoxymethoxy)phenyl]methanone, 180
Phenyl(2,4,6-trihydroxy-3,5-dimethylphenyl)methanone, 465
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
Bis(2,4-dihydroxy-6-methylphenyl)methanone, 494
Bis[4-hydroxy-3-(hydroxymethyl)phenyl]methanone, 447
Bis(2-hydroxy-4-methoxyphenyl)methanone, 447
Bis(4-hydroxy-3-methoxyphenyl)methanone, 448
(2,3-Dihydroxy-4,5-dimethoxyphenyl)phenylmethanone, 382
(2,4-Dihydroxy-3,5-dimethoxyphenyl)phenylmethanone, 383
(2,5-Dihydroxy-3,4-dimethoxyphenyl)phenylmethanone, 383
(3,6-Dihydroxy-2,4-dimethylphenyl)(2,4-dihydroxyphenyl)methanone, 492
(3,6-Dihydroxy-2,4-dimethylphenyl)(2,6-dihydroxyphenyl)methanone, 492
(2,5-Dihydroxy-4-methoxyphenyl)(2-methoxyphenyl)methanone, 420
(2,5-Dihydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone, 420
(2,6-Dihydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone, 420
(2,4-Dihydroxy-3-methylphenyl)(5-hydroxy-2-methoxyphenyl)methanone, 480
(2,4-Dihydroxy-5-methylphenyl)(5-hydroxy-2-methoxyphenyl)methanone, 480
(2,4-Dihydroxy-6-methylphenyl)(5-hydroxy-2-methoxyphenyl)methanone, 480
(2,4-Dihydroxyphenyl)(3,4-dimethoxyphenyl)methanone, 408
(2,5-Dihydroxyphenyl)(2-hydroxy-4-methoxy-6-methylphenyl)methanone, 477
(4-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 470
(2-Hydroxy-3,4-dimethoxyphenyl)(2-hydroxyphenyl)methanone, 436
(2-Hydroxy-4,6-dimethoxyphenyl)(3-hydroxyphenyl)methanone, 436
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6}$
(2,6-Dihydroxy-4-methoxyphenyl)(2,4-dihydroxy-6-methylphenyl)methanone, 495
(2,5-Dihydroxy-4-methoxyphenyl)(3-hydroxy-4-methoxyphenyl)methanone, 481
(2,6-Dihydroxy-4-methoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone, 481
(2,6-Dimethoxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 471
(2-Hydroxy-4-methoxy-6-methylphenyl)(2,4,6-trihydroxyphenyl)methanone, 493
(4-Hydroxy-2-methoxy-6-methylphenyl)(2,4,6-trihydroxyphenyl)methanone, 493
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{7}$
Bis(2,6-dihydroxy-4-methoxyphenyl)methanone, 494
(2,3-Dihydroxy-4-methoxyphenyl)(3,5-dihydroxy-4-methoxyphenyl)methanone, 495
(3-Hydroxy-2,6-dimethoxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 493
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
(2-Amino-3-hydroxy-4,6-dimethylphenyl)phenylmethanone, 103
[4-(Dimethylamino)phenyl](3-hydroxyphenyl)methanone, 180
[4-(Dimethylamino)phenyl](4-hydroxyphenyl)methanone, 181
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$
[3-Hydroxy-4-(methylamino)phenyl](4-methoxyphenyl)methanone, 289
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$
(2-Aminophenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone, 289
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
Cyclohexyl(2-hydroxy-3,4-dimethoxyphenyl)methanone, 517
$\mathrm{C}_{\mathbf{1 6}} \mathrm{H}_{12} \mathrm{BrClO}_{2}$
(2-Bromophenyl)[5-chloro-2-hydroxy-3-(2-propenyl)phenyl]methanone, 290
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFO}_{2}$
(4-Chlorophenyl)[5-fluoro-2-hydroxy-3-(2-propenyl)phenyl]methanone, 290
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$
[4,5-Dichloro-3-hydroxy-2-(2-propenyl)phenyl]phenylmethanone, 103
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{5}$
(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3,5-dichloro-2-hydroxy-4-methoxy-6-methylphenyl)-methanone, 481
(3-Chloro-6-hydroxy-4-methoxy-2-methylphenyl)(3,5-dichloro-2,4-dihydroxy-6-methylphenyl)-methanone, 482
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}$
(5-Ethyl-2-hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 290
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4}$
(2-Hydroxy-3,4-dimethoxyphenyl)[3-(trifluoromethyl)phenyl]methanone, 290
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{5}$
(3,5-Dibromo-2-hydroxy-4-methoxy-6-methylphenyl)(2,4-dihydroxy-6-methylphenyl)-methanone, 482
(3,5-Dibromo-2-hydroxy-6-methoxy-4-methylphenyl)(2,4-dihydroxy-6-methylphenyl)-methanone, 482
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$
[5-Chloro-2-hydroxy-3-(1-methylethyl)phenyl](4-chlorophenyl)methanone, 291
(5-Chloro-2-hydroxy-3-propylphenyl)(4-chlorophenyl)methanone, 291
(3,5-Dichloro-4-hydroxyphenyl)(2,4,6-trimethylphenyl)methanone, 291
(2,6-Dichlorophenyl)(4-hydroxy-2,3,6-trimethylphenyl)methanone, 291
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$
(2,6-Dichlorophenyl)(2-hydroxy-3,4-dimethoxy-6-methylphenyl)methanone, 292
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{5}$
(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3-chloro-6-hydroxy-4-methoxy-2-methylphenyl)-methanone, 483
(3,5-Dichloro-2,6-dihydroxy-4-methylphenyl)(2-hydroxy-4-methoxy-6-methylphenyl)-methanone, 483
(3,5-Dichloro-2-hydroxy-4-methoxy-6-methylphenyl)(2,4-dihydroxy-6-methylphenyl)-methanone, 483

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{6}$

(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3-chloro-6-hydroxy-2,4-
dimethoxyphenyl)-methanone, 484
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$
[4-Hydroxy-3-(2-propenyl)phenyl]phenylmethanone, 104
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
(3-Benzoyl-2-hydroxy-5-methylphenyl)ethanone, 524
[2,4-Dihydroxy-5-(2-propenyl)phenyl]phenylmethanone, 383
[2,6-Dihydroxy-3-(2-propenyl)phenyl]phenylmethanone, 383
(4-Ethenylphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 292
[2-Hydroxy-4-(1-propenyloxy)phenyl]phenylmethanone, 104
[2-Hydroxy-4-(2-propenyloxy)phenyl]phenylmethanone, 104
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(3-Benzoyl-2-hydroxy-4-methoxyphenyl)ethanone, 524
[2-Hydroxy-4-(oxiranylmethoxy)phenyl]phenylmethanone, 104
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$
[2-(Acetyloxy)-5-methoxyphenyl](2-hydroxyphenyl)methanone, 181
[2-(Acetyloxy)phenyl](2-hydroxy-5-methoxyphenyl)methanone, 292
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$
1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone, 528
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2}$
(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-methylphenyl)methanone, 292
(5-Chloro-2-hydroxy-3-methylphenyl)(3,4-dimethylphenyl)methanone, 293
(5-Chloro-2-hydroxy-3-methylphenyl)(4-ethylphenyl)methanone, 293
(4-Chlorophenyl)(2-hydroxy-3-propylphenyl)methanone, 293
(4-Chlorophenyl)(2-hydroxy-5-propylphenyl)methanone, 293
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3}$
(2-Chlorophenyl)(2,4-dihydroxy-3-propylphenyl)methanone, 421
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{6}$
(3-Chloro-2,6-dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methoxy-6-
methylphenyl)-methanone, 484
(3-Chloro-6-hydroxy-2,4-dimethoxyphenyl)(2,4-dihydroxy-6-methylphenyl) methanone, 484
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{3}$
(4-Fluorophenyl)(2-hydroxy-4-propoxyphenyl)methanone, 294
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3-methylphenyl)methanone, 294
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4-methylphenyl)methanone, 294
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-5-methylphenyl)methanone, 294
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2-methylphenyl)methanone, 294
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-3-methylphenyl)methanone, 295
(2-Hydroxy-3-nitrophenyl)[4-(1-methylethyl)phenyl]methanone, 295
(2-Hydroxy-5-nitrophenyl)[4-(1-methylethyl)phenyl]methanone, 295
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{7}$
(4,5-Dimethoxy-2-nitrophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 295
(3,4-Dimethoxyphenyl)(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 296
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
(2,4-Dimethylphenyl)(2-hydroxy-5-methylphenyl)methanone, 296
(2,4-Dimethylphenyl)(3-hydroxy-2-methylphenyl)methanone, 296
(2,6-Dimethylphenyl)(2-hydroxy-5-methylphenyl)methanone, 296
(5-Ethyl-2-hydroxyphenyl)(2-methylphenyl)methanone, 297
(5-Ethyl-2-hydroxyphenyl)(4-methylphenyl)methanone, 297
(2-Hydroxy-3,4-dimethylphenyl)(4-methylphenyl)methanone, 297
(2-Hydroxy-3,5-dimethylphenyl)(2-methylphenyl)methanone, 297
(2-Hydroxy-3,5-dimethylphenyl)(4-methylphenyl)methanone, 298
(2-Hydroxy-4,5-dimethylphenyl)(2-methylphenyl)methanone, 298
(2-Hydroxy-4,6-dimethylphenyl)(2-methylphenyl)methanone, 298
(2-Hydroxy-4,6-dimethylphenyl)(4-methylphenyl)methanone, 298
[2-Hydroxy-3-(1-methylethyl)phenyl]phenylmethanone, 105
[2-Hydroxy-5-(1-methylethyl)phenyl]phenylmethanone, 105
[4-Hydroxy-3-(1-methylethyl)phenyl]phenylmethanone, 105
(2-Hydroxyphenyl)[4-(1-methylethyl)phenyl]methanone, 181
(4-Hydroxyphenyl)(4-propylphenyl)methanone, 182
(2-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone, 182
(3-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone, 182
(4-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone, 183
(2-Hydroxy-3-propylphenyl)phenylmethanone, 105
(4-Hydroxy-3-propylphenyl)phenylmethanone, 106
(2-Hydroxy-3,4,6-trimethylphenyl)phenylmethanone, 106
(2-Hydroxy-3,5,6-trimethylphenyl)phenylmethanone, 106
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
(4,5-Dihydroxy-2-methylphenyl)(2,6-dimethylphenyl)methanone, 421
(2,4-Dihydroxy-3-propylphenyl)phenylmethanone, 384
(2,4-Dihydroxy-5-propylphenyl)phenylmethanone, 384
(4-Ethyl-2-hydroxy-5-methoxyphenyl)phenylmethanone, 106
(5-Ethyl-2-hydroxy-4-methoxyphenyl)phenylmethanone, 107
(2-Ethyl-4-hydroxyphenyl)(4-hydroxy-2-methylphenyl)methanone, 455
(4-Ethylphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 299
(4-Hydroxy-2,5-dimethylphenyl)(4-hydroxy-3-methylphenyl)methanone, 456
(2-Hydroxy-3,4-dimethylphenyl)(4-methoxyphenyl)methanone, 299
(2-Hydroxy-3,5-dimethylphenyl)(2-methoxyphenyl)methanone, 299
(2-Hydroxy-3,5-dimethylphenyl)(4-methoxyphenyl)methanone, 299
(2-Hydroxy-4,5-dimethylphenyl)(4-methoxyphenyl)methanone, 300
(4-Hydroxy-3,5-dimethylphenyl)(2-methoxyphenyl)methanone, 300
(4-Hydroxy-3,5-dimethylphenyl)(4-methoxyphenyl)methanone, 300
[2-Hydroxy-4-(1-methylethoxy)phenyl]phenylmethanone, 107
(2-Hydroxy-4-methylphenyl)(2-methoxy-4-methylphenyl)methanone, 300
(2-Hydroxy-5-methylphenyl)(2-methoxy-5-methylphenyl)methanone, 301
(4-Hydroxy-3-methylphenyl)(4-methoxy-3-methylphenyl)methanone, 301
(2-Hydroxy-4-propoxyphenyl)phenylmethanone, 107
(2-Hydroxy-5-propoxyphenyl)phenylmethanone, 107
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
(2,4-Dihydroxy-3-propylphenyl)(2-hydroxyphenyl)methanone, 477
(5-Ethoxy-2-hydroxy-4-methoxyphenyl)phenylmethanone, 108
(4-Ethoxy-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 301
(4-Ethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 301
(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)phenylmethanone, 108
(2-Hydroxy-4,6-dimethoxy-5-methylphenyl)phenylmethanone, 108
(2-Hydroxy-3,4-dimethoxyphenyl)(2-methylphenyl)methanone, 302
[2-Hydroxy-4-(2-hydroxypropoxy)phenyl]phenylmethanone, 108
(2-Hydroxy-4-methoxy-3-methylphenyl)(2-methoxyphenyl)methanone, 302
(2-Hydroxy-4-methoxy-3-methylphenyl)(4-methoxyphenyl)methanone, 302
[2-Hydroxy-4-(2-methoxyethoxy)phenyl]phenylmethanone, 109
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
(3,6-Dihydroxy-2,4-dimethylphenyl)(2-hydroxy-6-methoxyphenyl)methanone, 485
(2,4-Dihydroxy-6-methylphenyl)(2-hydroxy-4-methoxy-6-methylphenyl) methanone, 485
(2,4-Dihydroxy-6-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl) methanone, 485
(2,6-Dihydroxy-4-methylphenyl)(2-hydroxy-4-methoxy-6-methylphenyl) methanone, 486
(2,6-Dihydroxy-4-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl) methanone, 486
(2,5-Dihydroxyphenyl)(2,4-dimethoxy-6-methylphenyl)methanone, 408
(2,3-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone, 302
(2,3-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 303
(2,3-Dimethoxyphenyl)(2-hydroxy-5-methoxyphenyl)methanone, 303
(2,3-Dimethoxyphenyl)(4-hydroxy-3-methoxyphenyl)methanone, 303
(2,4-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone, 303
(2,4-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 304
(2,4-Dimethoxyphenyl)(2-hydroxy-5-methoxyphenyl)methanone, 304
(2,4-Dimethoxyphenyl)(2-hydroxy-6-methoxyphenyl)methanone, 304
(2,5-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone, 305
(2,5-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 305
(2,6-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl)methanone, 305
(2,6-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 306
(2,6-Dimethoxyphenyl)(2-hydroxy-6-methoxyphenyl)methanone, 306
(3,4-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 306
(3,4-Dimethoxyphenyl)(4-hydroxy-2-methoxyphenyl)methanone, 307
(4-Ethoxy-2-hydroxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 456
[2-Hydroxy-3,5-di(hydroxymethyl)-4-methoxyphenyl]phenylmethanone, 109
(2-Hydroxy-4,6-dimethoxyphenyl)(4-hydroxy-2-methylphenyl)methanone, 456
(2-Hydroxy-3,4-dimethoxyphenyl)(2-methoxyphenyl)methanone, 307
(2-Hydroxy-4,5-dimethoxyphenyl)(2-methoxyphenyl)methanone, 307
(2-Hydroxy-4,5-dimethoxyphenyl)(3-methoxyphenyl)methanone, 308
(2-Hydroxy-4,5-dimethoxyphenyl)(4-methoxyphenyl)methanone, 308
(2-Hydroxy-4,6-dimethoxyphenyl)(2-methoxyphenyl)methanone, 308
(2-Hydroxy-4,6-dimethoxyphenyl)(3-methoxyphenyl)methanone, 309
(2-Hydroxy-4,6-dimethoxyphenyl)(4-methoxyphenyl)methanone, 309
(4-Hydroxy-3,5-dimethoxyphenyl)(4-methoxyphenyl)methanone, 309
(2-Hydroxy-3-methoxy-5-methylphenyl)(4-hydroxy-3-methoxyphenyl) methanone, 456
(2-Hydroxyphenyl)(2,3,4-trimethoxyphenyl)methanone, 183
(2-Hydroxyphenyl)(2,4,5-trimethoxyphenyl)methanone, 183
(2-Hydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 184
(3-Hydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 184
(4-Hydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 184
(4-Hydroxyphenyl)(3,4,5-trimethoxyphenyl)methanone, 184
(2-Hydroxy-3,4,5-trimethoxyphenyl)phenylmethanone, 109
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6}$
(2,5-Dihydroxy-4-methoxyphenyl)(3,4-dimethoxyphenyl)methanone, 421
(2,6-Dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methoxy-6-methylphenyl) methanone, 486
(3,4-Dihydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 408
(2,4-Dimethoxy-6-methylphenyl)(2,4,6-trihydroxyphenyl)methanone, 471
(2-Hydroxy-4,5-dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 457
(4-Hydroxy-3,5-dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 457
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$
[3-[(Dimethylamino)methyl]-4-hydroxyphenyl]phenylmethanone
(Hydrochloride), 109
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}$
(2-Amino-4,5-dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone
(Hydrochloride), 309
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$
[5-Chloro-2-hydroxy-3-(1-methyl-2-propenyl)phenyl](4-chlorophenyl)
methanone, 310
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$
1-(3-Acetyl-5-benzoyl-2,4-dihydroxyphenyl)ethanone, 527

Bis(5-acetyl-2-hydroxyphenyl)methanone, 525
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6}$
[2,3-Bis(acetyloxy)-4-hydroxyphenyl]phenylmethanone, 110
[3,4-Bis(acetyloxy)-2-hydroxyphenyl]phenylmethanone, 110

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{O}_{5}$

(3-Chloro-6-hydroxy-4-methoxy-2-methylphenyl)(3,5-dichloro-2-hydroxy-4-methoxy-6-methylphenyl)methanone, 457
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}_{4}$
[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl](4-chlorophenyl)methanone, 310
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}$
(3-Butyl-5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone, 310
[5-Chloro-3-(1,1-dimethylethyl)-2-hydroxyphenyl](4-chlorophenyl)methanone, 310
[5-Chloro-2-hydroxy-3-(2-methylpropyl)phenyl](4-chlorophenyl)methanone, 311
(2,4-Dichlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 311
(2,6-Dichlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl]methanone, 311
(3,4-Dichlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 311
(2,4-Dichlorophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone, 312
(3,4-Dichlorophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone, 312
(2,4-Dichlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone, 312
(2,5-Dichlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone, 312
(3,4-Dichlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone, 313
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$
(3,5-Dinitrophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 313
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$
[3-(2-Butenyl)-4-hydroxyphenyl]phenylmethanone, 110
[4-Hydroxy-3-(1-methyl-2-propenyl)phenyl]phenylmethanone, 110
[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]phenylmethanone, 111
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$
[3-(2-Butenyl)-2,4-dihydroxyphenyl]phenylmethanone, 384
[5-(2-Butenyl)-2,4-dihydroxyphenyl]phenylmethanone, 384
[2,4-Dihydroxy-3-(1-methyl-2-propenyl)phenyl]phenylmethanone, 385
(4-Ethenylphenyl)(4-ethoxy-2-hydroxyphenyl)methanone, 313
[2-Hydroxy-6-methoxy-3-(2-propenyl)phenyl]phenylmethanone, 111
[6-Hydroxy-2-methoxy-3-(2-propenyl)phenyl]phenylmethanone, 111
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2}$
[3-Bromo-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl]phenylmethanone, 112
[3-Bromo-6-hydroxy-2-methyl-5-(1-methylethyl)phenyl]phenylmethanone, 112
[4-Bromo-2-hydroxy-6-methyl-3-(1-methylethyl)phenyl]phenylmethanone, 112
(2-Bromophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 313
(3-Bromophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 314
(4-Bromophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 314
(2-Bromophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone, 314
(4-Bromophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone, 314
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2}$
(5-Butyl-2-hydroxyphenyl)(4-chlorophenyl)methanone, 315
[3-Chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 112
[5-Chloro-3-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 113
(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-ethylphenyl)methanone, 315
(5-Chloro-2-hydroxy-3-methylphenyl)[4-(1-methylethyl)phenyl]methanone, 315
(5-Chloro-2-hydroxy-3-propylphenyl)(4-methylphenyl)methanone, 315
[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]phenylmethanone, 113
(4-Chlorophenyl)(3,5-diethyl-2-hydroxyphenyl)methanone, 316
(4-Chlorophenyl)(4,5-diethyl-2-hydroxyphenyl)methanone, 316
(2-Chlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 316
(3-Chlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl]methanone, 316
(4-Chlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl]methanone, 317
(4-Chlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 317
(4-Chlorophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone, 317
(2-Chlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone, 317
(4-Chlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl]methanone, 318
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{5}$
(3-Chloro-6-hydroxy-4-methoxy-2,5-dimethylphenyl)(2,4-dihydroxy-6-methylphenyl)-methanone, 487
(3-Chloro-2-hydroxy-6-methoxy-4-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl)-methanone, 458

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{6}$

(3-Chloro-4,6-dihydroxy-2-methylphenyl)(2,4,6-trimethoxyphenyl)methanone, 421
(3-Chloro-2-hydroxy-4,6-dimethoxyphenyl)(4-hydroxy-2-methoxy-6-
methylphenyl)-methanone, 458
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}$
[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](2-fluorophenyl)methanone, 318
[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](4-fluorophenyl)methanone, 318
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3}$
(4-Butoxy-2-hydroxyphenyl)(4-fluorophenyl)methanone, 318
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{6}$
(2-Fluoro-4,6-dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 319
(3-Fluoro-2-hydroxy-4,6-dimethoxyphenyl)(4-hydroxy-2-methoxy-6-
methylphenyl)-methanone, 459
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,4-dimethylphenyl)methanone, 319
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,5-dimethylphenyl)methanone, 319
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,6-dimethylphenyl)methanone, 319
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4,5-dimethylphenyl)methanone, 320
(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 320
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2,3-dimethylphenyl)methanone, 320
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2,5-dimethylphenyl)methanone, 320
(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-3,5-dimethylphenyl)methanone, 321
[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl]phenylmethanone, 113
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-nitrophenyl)methanone, 321
[2-Hydroxy-6-methyl-3-(1-methylethyl)-4-nitrophenyl]phenylmethanone, 113
[2-Hydroxy-6-methyl-3-(1-methylethyl)-5-nitrophenyl]phenylmethanone, 113
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{2}$
[3-Amino-4-(1,1-dimethylethyl)-2-hydroxyphenyl](4-chlorophenyl)methanone, 321
[3-Amino-4-(1,1-dimethylethyl)-2-hydroxyphenyl](4-chlorophenyl)methanone
(Hydrochloride), 321
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$
(4-Butylphenyl)(4-hydroxyphenyl)methanone, 185
[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 114
[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]phenylmethanone, 114
[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 114
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 115
[4-(1,1-Dimethylethyl)phenyl](2-hydroxyphenyl)methanone, 185
[4-(1,1-Dimethylethyl)phenyl](4-hydroxyphenyl)methanone, 185
(2,4-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl)methanone, 322
(2,5-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl)methanone, 322
(3,4-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl)methanone, 322
(3-Ethyl-2-hydroxy-5-methylphenyl)(4-methylphenyl)methanone, 322
[2-Hydroxy-3-methyl-6-(1-methylethyl)phenyl]phenylmethanone, 115
[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl]phenylmethanone, 116
[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]phenylmethanone, 116
[2-Hydroxy-6-methyl-4-(1-methylethyl)phenyl]phenylmethanone, 117
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl]phenylmethanone, 117
[4-Hydroxy-5-methyl-2-(1-methylethyl)phenyl]phenylmethanone, 117
[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]phenylmethanone, 118
[2-Hydroxy-5-(1-methylethyl)phenyl](2-methylphenyl)methanone, 323
(2-Hydroxy-5-methylphenyl)(2,4,6-trimethylphenyl)methanone, 323
[2-Hydroxy-5-(1-methylpropyl)phenyl]phenylmethanone, 118
[4-Hydroxy-3-(1-methylpropyl)phenyl]phenylmethanone, 119
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
Bis(4-hydroxy-3,5-dimethylphenyl)methanone, 449
(4-Butoxy-2-hydroxyphenyl)phenylmethanone, 119
(5-Butoxy-2-hydroxyphenyl)phenylmethanone, 119
[2,5-Dihydroxy-6-methyl-3-(1-methylethyl)phenyl]phenylmethanone, 385
(2,4-Dihydroxyphenyl)[4-(1,1-dimethylethyl)phenyl]methanone, 408
(2,5-Dihydroxyphenyl)[4-(1,1-dimethylethyl)phenyl]methanone, 409
[4-(1,1-Dimethylethoxy)phenyl](4-hydroxyphenyl)methanone, 185
[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]phenylmethanone, 385
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](2-hydroxyphenyl)methanone, 437
(2,6-Dimethylphenyl)(5-hydroxy-4-methoxy-2-methylphenyl)methanone, 323
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](2-hydroxyphenyl)methanone, 437
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](4-hydroxyphenyl)methanone, 437
(2-Hydroxy-3-methyl-4-propoxyphenyl)phenylmethanone, 120
(2-Hydroxy-6-methyl-4-propoxyphenyl)phenylmethanone, 120
[2-Hydroxy-4-(1-methylpropoxy)phenyl]phenylmethanone, 120
[2-Hydroxy-4-(2-methylpropoxy)phenyl]phenylmethanone, 120
(2-Hydroxy-4-propoxyphenyl)(2-methylphenyl)methanone, 323
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
(4-Butoxy-2-hydroxyphenyl)(2-hydroxyphenyl)methanone, 437
[2,4-Dihydroxy-5-(1,1-dimethylethyl)phenyl](2-hydroxyphenyl)methanone, 478
(2,4-Dihydroxyphenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl] methanone, 478
(2,4-Dimethylphenyl)(4-hydroxy-3,5-dimethoxyphenyl)methanone, 323
(5-Ethyl-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone, 324
(2-Hydroxy-4-methoxy-3-propylphenyl)(2-hydroxyphenyl)methanone, 438
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
Bis(4-ethoxy-2-hydroxyphenyl)methanone, 449
Bis(2-hydroxy-3-methoxy-5-methylphenyl)methanone, 449
Bis(2-hydroxy-4-methoxy-6-methylphenyl)methanone, 449
(2,4-Dimethoxy-6-methylphenyl)(2-hydroxy-5-methoxyphenyl)methanone, 324
(4-Ethoxyphenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 324
(2-Hydroxy-3,4-dimethoxyphenyl)(3-methoxy-4-methylphenyl)methanone, 324
[3-Hydroxy-2-methoxy-6-(methoxymethyl)phenyl](2-methoxyphenyl)
methanone, 325
(2-Hydroxy-4-methoxy-6-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl) methanone, 459
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$
(2,5-Dihydroxy-3,4-dimethoxyphenyl)(4-ethoxyphenyl)methanone, 422
(2,4-Dihydroxy-6-methylphenyl)(2,4,6-trimethoxyphenyl)methanone, 422
(2,3-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone, 325
(2,5-Dimethoxyphenyl)(2-hydroxy-3,6-dimethoxyphenyl)methanone, 325
(2,5-Dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 325
(2,5-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone, 326
(2,6-Dimethoxyphenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 326
(2,6-Dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 326
(3,4-Dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 326
(3,4-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone, 327
(3,5-Dimethoxyphenyl)(2-hydroxy-3,5-dimethoxyphenyl)methanone, 327
(3,5-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone, 327
(4-Hydroxy-2,6-dimethoxyphenyl)(2-hydroxy-4-methoxy-6-methylphenyl) methanone, 459
(4-Hydroxy-3,5-dimethoxyphenyl)(2-hydroxy-3-methoxy-5-methylphenyl) methanone, 460
(4-Hydroxy-3,5-dimethoxyphenyl)(5-hydroxy-4-methoxy-2-methylphenyl) methanone, 460
[2-Hydroxy-4-(2-hydroxyethoxy)phenyl][4-(2-hydroxyethoxy)phenyl]methanone, 327
(2-Hydroxy-3-methoxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 328
(2-Hydroxy-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone, 328
(2-Hydroxy-5-methoxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 328
(3-Hydroxy-4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone, 328
(4-Hydroxy-3-methoxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 329
(2-Hydroxy-3,4,5-trimethoxyphenyl)(2-methoxyphenyl)methanone, 329
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7}$
Bis(4-hydroxy-3,5-dimethoxyphenyl)methanone, 450
Bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]methanone, 450
(2,4-Dihydroxy-3,5-dimethoxyphenyl)(2,5-dimethoxyphenyl)methanone, 422
(3,6-Dihydroxy-2,4-dimethoxyphenyl)(2,5-dimethoxyphenyl)methanone, 423
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
[3-Amino-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 121
[3-Amino-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone
(Hydrochloride), 121
(4-Aminophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 329
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}$
Cyclohexyl[3-(1,1-dimethylethyl)-4-hydroxyphenyl]methanone, 517
Cyclohexyl[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 518
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{2}$
[3-(1,1-Dimethylethyl)-4-hydroxyphenyl][2-(trifluoromethyl)phenyl]
methanone, 330

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{6}$

(3-Chloro-4,6-dimethoxy-2-methylphenyl)(3-chloro-6-hydroxy-2,4-dimethoxyphenyl)- methanone, 330
(3,5-Dichloro-2,6-dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methyl-6-
propoxyphenyl)-methanone, 487
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$
[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]phenylmethanone, 121
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$
[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]phenylmethanone, 385
[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]phenylmethanone, 121
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
[3-(2-Butenyl)-2,4-dihydroxy-6-methoxyphenyl]phenylmethanone, 386
[3-(2-Butenyl)-4,6-dihydroxy-2-methoxyphenyl]phenylmethanone, 386
[2,4-Dihydroxy-6-methoxy-3-(1-methyl-2-propenyl)phenyl]phenylmethanone, 386
[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]phenylmethanone, 386
[2-Hydroxy-4-methoxy-3-(2-propenyl)phenyl](4-methoxyphenyl)methanone, 330
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7}$
[4-(Acetyloxy)-3,5-dimethoxyphenyl](2-hydroxy-4-methoxyphenyl)methanone, 330
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{2}$
(3-Butyl-5-chloro-2-hydroxyphenyl)(4-methylphenyl)methanone, 331
(5-Chloro-3-ethyl-2-hydroxyphenyl)[4-(1-methylethyl)phenyl]methanone, 331
[5-Chloro-2-hydroxy-3-(2-methylpropyl)phenyl](4-methylphenyl)methanone, 331
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{5}$
(3-Chloro-6-hydroxy-4-methoxy-2,5-dimethylphenyl)(2,4-dihydroxy-3,6-dimethylphenyl)-methanone, 487
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{6}$
(3-Chloro-2,6-dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methyl-6-propoxyphenyl)-methanone, 488
(3-Chloro-6-hydroxy-2,4-dimethoxyphenyl)(2,4-dimethoxy-6-methylphenyl) methanone, 331
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{2}$
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl](4-bromophenyl) methanone, 332
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl](4-bromophenyl)
methanone (Hydrochloride), 332
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$
[2-(1,1-Dimethylethyl)-4-hydroxy-6-methylphenyl]phenylmethanone, 122
[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]phenylmethanone, 122
[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl]phenylmethanone, 122
[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](4-methylphenyl)methanone, 332
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-methylphenyl)methanone, 332
[5-(1,1-Dimethylpropyl)-2-hydroxyphenyl]phenylmethanone, 123
[2-Hydroxy-5,6-dimethyl-3-(1-methylethyl)phenyl]phenylmethanone, 123
(2-Hydroxy-4,6-dimethylphenyl)(2,4,6-trimethylphenyl)methanone, 333
(4-Hydroxy-3,5-dimethylphenyl)(2,4,6-trimethylphenyl)methanone, 333
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](4-methylphenyl)methanone, 333
(4-Hydroxyphenyl)(4-pentylphenyl)methanone, 185
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl][4-(methylthio)phenyl]methanone, 333
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$
(4-Butylphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 334
[2,4-Dihydroxy-5-(1,1-dimethylpropyl)phenyl]phenylmethanone, 387
(2,4-Dihydroxyphenyl)[4-(1-methylbutyl)phenyl]methanone, 409
[5-(1,1-Dimethylethyl)-2-hydroxy-4-methoxyphenyl]phenylmethanone, 123
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-methoxyphenyl)methanone, 334
[4-(1,1-Dimethylethyl)phenyl](2-hydroxy-4-methoxyphenyl)methanone, 334
[4-(1,1-Dimethylethyl)phenyl](2-hydroxy-5-methoxyphenyl)methanone, 334
(4-Ethoxy-2-hydroxyphenyl)(4-propylphenyl)methanone, 335
(2-Hydroxy-3,4-dimethylphenyl)(2-methoxy-3,4-dimethylphenyl)methanone, 335
(2-Hydroxy-4,5-dimethylphenyl)(2-methoxy-4,5-dimethylphenyl)methanone, 335
[2-Hydroxy-4-(1-methylbutoxy)phenyl]phenylmethanone, 123
[2-Hydroxy-4-(3-methylbutoxy)phenyl]phenylmethanone, 124
[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl](4-methoxyphenyl)methanone, 335
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](2-hydroxy-5-methylphenyl) methanone, 460
[2-Hydroxy-4-(pentyloxy)phenyl]phenylmethanone, 124
(3-Hydroxyphenyl)[4-methoxy-2-methyl-5-(1-methylethyl)phenyl]methanone, 186
(4-Hydroxyphenyl)[4-methoxy-2-methyl-5-(1-methylethyl)phenyl]methanone, 186
(4-Hydroxyphenyl)[6-methoxy-2-methyl-3-(1-methylethyl)phenyl]methanone, 186
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$
[2,4-Dihydroxy-5-(1,1-dimethylpropyl)phenyl](2-hydroxyphenyl)methanone, 478
(2,4-Dimethoxy-3-propylphenyl)(2-hydroxyphenyl)methanone, 186
[5-(1,1-Dimethylethyl)-2-hydroxy-4-methoxyphenyl](2-hydroxyphenyl)
methanone, 438

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$

(4-Butoxy-2-hydroxyphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 461
(2,6-Dimethoxyphenyl)(3-hydroxy-6-methoxy-2,4-dimethylphenyl)methanone, 336
(5-Ethoxy-2-hydroxy-4-methoxyphenyl)(3-ethoxyphenyl)methanone, 336
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}$
(2,4-Dimethoxy-6-methylphenyl)(2-hydroxy-4,6-dimethoxyphenyl)methanone, 336
(4,5-Dimethoxy-2-methylphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 337
(2,3-Dimethoxyphenyl)[3-hydroxy-2-methoxy-6-(methoxymethyl)phenyl] methanone, 337
(2,4-Dimethoxyphenyl)[3-hydroxy-2-methoxy-6-(methoxymethyl)phenyl] methanone, 337
[2-Hydroxy-4,6-bis(methoxymethoxy)-3-methylphenyl]phenylmethanone, 124
(2-Hydroxy-3-methoxy-6-methylphenyl)(2,4,5-trimethoxyphenyl)methanone, 338
(2-Hydroxy-4-methoxy-6-methylphenyl)(2,4,6-trimethoxyphenyl)methanone, 338
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7}$
(2,3-Dimethoxyphenyl)(2-hydroxy-3,4,5-trimethoxyphenyl)methanone, 338
(2,3-Dimethoxyphenyl)(2-hydroxy-3,4,6-trimethoxyphenyl)methanone, 338
(2,3-Dimethoxyphenyl)(6-hydroxy-2,3,4-trimethoxyphenyl)methanone, 339
(2,5-Dimethoxyphenyl)(2-hydroxy-3,4,5-trimethoxyphenyl)methanone, 339
(2,5-Dimethoxyphenyl)(2-hydroxy-3,4,6-trimethoxyphenyl)methanone, 339
(2,5-Dimethoxyphenyl)(6-hydroxy-2,3,4-trimethoxyphenyl)methanone, 339
(2,6-Dimethoxyphenyl)(2-hydroxy-3,4,6-trimethoxyphenyl)methanone, 340
(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)(4-hydroxy-2,6-dimethoxyphenyl) methanone, 461
(2-Hydroxy-3,4-dimethoxyphenyl)(2,4,5-trimethoxyphenyl)methanone, 340
(2-Hydroxy-3,4-dimethoxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 340
(2-Hydroxy-3,4-dimethoxyphenyl)(3,4,5-trimethoxyphenyl)methanone, 340
(2-Hydroxy-4,5-dimethoxyphenyl)(2,3,4-trimethoxyphenyl)methanone, 341
(2-Hydroxy-4,5-dimethoxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 341
(2-Hydroxy-4,6-dimethoxyphenyl)(2,4,5-trimethoxyphenyl)methanone, 341
(2-Hydroxy-3-methoxyphenyl)(2,3,4,6-tetramethoxyphenyl)methanone, 341
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 124
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone
(Hydrochloride), 125
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$
Cyclohexyl[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]methanone, 520
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$
Cyclohexyl[2-hydroxy-5-(1,1-dimethylpropyl)phenyl]methanone, 518
$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}$
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]cyclohexylmethanone, 518
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]cyclohexylmethanone (Hydrochloride), 518
$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{BrCl}_{2} \mathrm{O}_{3}$
[4-(4-Bromophenoxy)-2-hydroxyphenyl](3,4-dichlorophenyl)methanone, 342
$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{O}_{4}$
(3,5-Dihydroxyphenyl)[4-(phenoxy-3,5- d_{2})phenyl]methanone, 409
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrO}_{2}$
(6-Bromo-5-hydroxy[1,1'-biphenyl]-2-yl)phenylmethanone, 501
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrO}_{3}$
[4-(3-Bromophenoxy)-2-hydroxyphenyl]phenylmethanone, 125
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClO}_{2}$
(4-Chlorophenyl)(4'-hydroxy[1,1'-biphenyl]-4-yl)methanone, 501
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClO}_{3}$
(4-Chlorophenyl)(2-hydroxy-4-phenoxyphenyl)methanone, 342
(4-Chlorophenyl)[4-(4-hydroxyphenoxy)phenyl]methanone, 554
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{FO}_{2}$
(4-Fluorophenyl)(4'-hydroxy[1,1'-biphenyl]-4-yl)methanone, 502
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{5}$
(2,4-Dihydroxyphenyl)(4'-nitro[1,1'-biphenyl]-4-yl)methanone, 508
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}$
[1,1'-Biphenyl]-4-yl(4-hydroxyphenyl)methanone, 502
(2-Hydroxy[1,1'-biphenyl]-3-yl)phenylmethanone, 502
(4-Hydroxy[1,1'-biphenyl]-3-yl)phenylmethanone, 502
(4'-Hydroxy[1,1'-biphenyl]-4-yl)phenylmethanone, 503
(5-Hydroxy[1,1'-biphenyl]-2-yl)phenylmethanone, 503
(6-Hydroxy[1,1'-biphenyl]-3-yl)phenylmethanone, 503
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl(2,4-dihydroxyphenyl)methanone, 508
(3,5-Dihydroxy[1,1'-biphenyl]-2-yl)phenylmethanone, 509
(4,4'-Dihydroxy[1,1'-biphenyl]-3-yl)phenylmethanone, 509
(2-Hydroxy[1,1'-biphenyl]-3-yl)(2-hydroxyphenyl)methanone, 509
(2-Hydroxy-4-phenoxyphenyl)phenylmethanone, 125
[4-(4-Hydroxyphenoxy)phenyl]phenylmethanone, 554
(2-Hydroxyphenyl)(2-phenoxyphenyl)methanone, 187
(3-Hydroxyphenyl)(4-phenoxyphenyl)methanone, 187
(4-Hydroxyphenyl)(4-phenoxyphenyl)methanone, 187
(4'-Hydroxy[1,1'-biphenyl]-4-yl)(3-hydroxyphenyl)methanone, 509
(4'-Hydroxy[1,1'-biphenyl]-4-yl)(4-hydroxyphenyl)methanone, 510
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}$
[3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]phenylmethanone, 387
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}$
[3-(Cyclohexyloxy)-4-hydroxy-5-nitrophenyl](2-nitrophenyl)methanone, 342
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$
[3-(1-Hexynyl)-4-hydroxyphenyl]phenylmethanone, 125
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$
2-(4-Benzoyl-3-hydroxyphenoxy)cyclohexanone, 555
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5}$
Bis(3-acetyl-2-hydroxy-5-methylphenyl)methanone, 525
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClO}_{7}$
[4-(Acetyloxy)-2-methoxy-6-methylphenyl](3-chloro-2-hydroxy-4,6-dimethoxyphenyl)-methanone, 342
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FO}_{7}$
[4-(Acetyloxy)-2-methoxy-6-methylphenyl](3-fluoro-2-hydroxy-4,6-dimethoxyphenyl)-methanone, 343
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$
(5-Chloro-3-hexyl-2-hydroxyphenyl)(4-chlorophenyl)methanone, 343
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$
(3-Cyclohexyl-4-hydroxyphenyl)phenylmethanone, 126
(5-Cyclohexyl-2-hydroxyphenyl)phenylmethanone, 126
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}$
(4-Butoxy-2-hydroxyphenyl)(4-ethenylphenyl)methanone, 343
(5-Cyclohexyl-2,4-dihydroxyphenyl)phenylmethanone, 387
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$
[3-(2-Butenyl)-2-hydroxy-4,6-dimethoxyphenyl]phenylmethanone, 126
[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]phenylmethanone, 387
[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]phenylmethanone, 388
[2,4-Dihydroxy-5-(2-propenyl)-3-propylphenyl](2-hydroxyphenyl)methanone, 478
(2-Hydroxyphenyl)[2-hydroxy-4-(2-propenyloxy)-3-propylphenyl]methanone, 438
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8}$
[3-(Acetyloxy)-6-hydroxy-2,4-dimethoxyphenyl](2,5-dimethoxyphenyl)
methanone, 343

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrO}_{3}$

[2-[(6-Bromohexyl)oxy]phenyl](4-hydroxyphenyl)methanone, 187
[4-[(6-Bromohexyl)oxy]phenyl](2-hydroxyphenyl)methanone, 188

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClO}_{3}$

(2-Chlorophenyl)(5-hexyl-2,4-dihydroxyphenyl)methanone, 423
$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}_{3}$
(4-Fluorophenyl)[4-(hexyloxy)-2-hydroxyphenyl]methanone, 344
$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5}$
(5-Hexyl-2,4-dihydroxyphenyl)(3-nitrophenyl)methanone, 423
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$
[3-(1,1-Dimethylethyl)-2-hydroxy-5,6-dimethylphenyl]phenylmethanone, 126
[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl](4-methylphenyl)methanone, 344
[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](2,4-dimethylphenyl)methanone, 344
(3-Ethyl-2-hydroxy-5-methylphenyl)(4-propylphenyl)methanone, 344
(2-Hydroxy-6-methyl-3-pentylphenyl)phenylmethanone, 127
[4-Hydroxy-3,5-bis(1-methylethyl)phenyl]phenylmethanone, 127
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-hydroxy-3,5-dimethylphenyl)
methanone, 461
(5-Hexyl-2,4-dihydroxyphenyl)phenylmethanone, 388
[4-(Hexyloxy)-2-hydroxyphenyl]phenylmethanone, 127
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$
[5-(1,1-Dimethylbutyl)-2,4-dihydroxyphenyl](2-hydroxyphenyl)methanone, 479
(2,4-Dihydroxy-3,5-dipropylphenyl)(2-hydroxyphenyl)methanone, 479
[4-(Hexyloxy)-2-hydroxyphenyl](2-hydroxyphenyl)methanone, 438
(2-Hydroxy-4-propoxyphenyl)(4-propoxyphenyl)methanone, 345
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$
(3,6-Diethoxy-2-hydroxyphenyl)(2,5-dimethoxyphenyl)methanone, 345
(2,5-Diethoxyphenyl)(2-hydroxy-3,6-dimethoxyphenyl)methanone, 345
(3,4-Dimethoxy-2,6-dimethylphenyl)(2-hydroxy-4,5-dimethoxyphenyl)
methanone, 345
(5-Ethoxy-2-hydroxy-3,4-dimethoxyphenyl)(4-ethoxyphenyl)methanone, 346
(4-Ethoxy-2-hydroxy-5-methoxyphenyl)(3-ethoxy-4-methoxyphenyl)
methanone, 346
(5-Ethoxy-2-hydroxy-4-methoxyphenyl)(3-ethoxy-4-methoxyphenyl)
methanone, 346
(2-Ethyl-4,5-dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 346
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{8}$
(2,3-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl)methanone, 347
(2,5-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl)methanone, 347
(2,6-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl)methanone, 347
(2-Hydroxy-3,4,5-trimethoxyphenyl)(2,3,4-trimethoxyphenyl)methanone, 347
(2-Hydroxy-3,4,5-trimethoxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 348
$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl][4-(methylthio)phenyl] methanone, 348
[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl][4-(methylthio)phenyl] methanone (Hydrochloride), 348

$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{O}_{4}$

(2,4-Dihydroxy-1,3-phenylene)bis[(2,4-dichlorophenyl)methanone, 543
(4,6-Dihydroxy-1,3-phenylene)bis[(2,4-dichlorophenyl)methanone, 534

$\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{5}$

(5-Fluoro-2-hydroxy-1,3-phenylene)bis[(5-fluoro-2-hydroxyphenyl)
methanone, 534
$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}$
[3-[(2,6-Dichlorophenyl)methoxy]-4-hydroxy-5-nitrophenyl](2-nitrophenyl) methanone, 348

$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$

[5-(Benzoyloxy)-3,4-dichloro-2-hydroxyphenyl]phenylmethanone, 127
(4,6-Dihydroxy-1,3-phenylene)bis[(2-chlorophenyl)methanone, 535
$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClO}_{5}$
2-Chloro-4-(2-hydroxybenzoyl)phenyl 2-hydroxybenzoate, 559
2-Hydroxybenzoic acid, 2-chloro-4-(2-hydroxybenzoyl)phenyl ester, 559
$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{FO}_{3}$
[2,3-Dichloro-4-hydroxy-5-(phenylmethoxy)phenyl](2-fluorophenyl)
methanone, 349
[2,3-Dichloro-5-hydroxy-4-(phenylmethoxy)phenyl](2-fluorophenyl)
methanone, 349
$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{NO}_{6}$
(4,6-Dihydroxy-5-nitro-1,3-phenylene)bis[phenylmethanone, 535
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$
[2,3-Dichloro-4-hydroxy-5-(phenylmethoxy)phenyl]phenylmethanone, 128
[2,3-Dichloro-5-hydroxy-4-(phenylmethoxy)phenyl]phenylmethanone, 128
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{7}$
[4-Hydroxy-3-nitro-5-(phenylmethoxy)phenyl](2-nitrophenyl)methanone, 349
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3}$
(2-Benzoylphenyl)(2-hydroxyphenyl)methanone, 532
(2-Benzoylphenyl)(3-hydroxyphenyl)methanone, 533
(4-Hydroxy-1,3-phenylene)bis[phenylmethanone, 533
(5-Hydroxy-1,3-phenylene)bis[phenylmethanone, 529
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4}$
(3-Benzoyl-4-hydroxyphenyl)(2-hydroxyphenyl)methanone, 543
(5-Benzoyl-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 544
[2-(Benzoyloxy)-4-hydroxyphenyl]phenylmethanone, 128
[3-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone, 128
[3-(Benzoyloxy)-4-hydroxyphenyl]phenylmethanone, 129
[4-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone, 129
[5-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone, 129
(2,3-Dihydroxy-1,4-phenylene)bis[phenylmethanone, 535
(2,4-Dihydroxy-1,3-phenylene)bis[phenylmethanone, 544
(2,5-Dihydroxy-1,4-phenylene)bis[phenylmethanone, 544
(3,4-Dihydroxy-1,2-phenylene)bis[phenylmethanone, 545
(4,6-Dihydroxy-1,3-phenylene)bis[phenylmethanone, 536
Phenyl 5-benzoyl-2-hydroxybenzoate, 130
5-Benzoyl-2-hydroxybenzoic acid phenyl ester, 130
1,2-Phenylenebis[(2-hydroxyphenyl)methanone, 536
1,3-Phenylenebis[(4-hydroxyphenyl)methanone, 536
1,4-Phenylenebis[(2-hydroxyphenyl)methanone, 537
1,4-Phenylenebis[(4-hydroxyphenyl)methanone, 537
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{5}$
[4-(Benzoyloxy)-2,6-dihydroxyphenyl]phenylmethanone, 388
4-(2-Hydroxybenzoyl)phenyl 2-hydroxybenzoate, 560
2-Hydroxybenzoic acid 4-(2-hydroxybenzoyl)phenyl ester, 560
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{8}$
(2,5-Dihydroxy-1,3-phenylene)bis[(2,5-dihydroxyphenyl)methanone, 537
$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClO}_{3}$
(4-Chlorophenyl)[2-hydroxy-4-(4-methylphenoxy)phenyl]methanone, 350
$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{5}$
[2-Hydroxy-4-[(4-nitrophenyl)methoxy]phenyl]phenylmethanone, 130
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$
[1,1'-Biphenyl]-4-yl(2-Hydroxy-5-methylphenyl)methanone, 504
(2'-Hydroxy-5'-methyl[1,1'-biphenyl]-3-yl)phenylmethanone, 504
(2'-Hydroxy-5'-methyl[1,1'-biphenyl]-4-yl)phenylmethanone, 504
(5-Hydroxy-3-methyl[1,1'-biphenyl]-2-yl)phenylmethanone, 504
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl(2-hydroxy-4-methoxyphenyl)methanone, 505
[2,4-Dihydroxy-3-(phenylmethyl)phenyl]phenylmethanone, 388
[2,4-Dihydroxy-5-(phenylmethyl)phenyl]phenylmethanone, 389
(5-Hydroxy-2'-methoxy[1,1'-biphenyl]-2-yl)phenylmethanone, 505
[2-Hydroxy-4-(methylphenoxy)phenyl]phenylmethanone, 130
[2-Hydroxy-4-(phenylmethoxy)phenyl]phenylmethanone, 130
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{4}$
(2-Hydroxy-4-methoxyphenyl)(4-phenoxyphenyl)methanone, 350
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{7}$
Phenyl[2,3,4-trihydroxy-5-[(2,4,6-trihydroxyphenyl)methyl]phenyl]methanone, 551
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}$
2-(4-Benzoyl-3-hydroxy-2-methylphenoxy)cyclohexanone, 555
$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrO}_{3}$
[4-[(7-Bromoheptyl)oxy]phenyl](2-hydroxyphenyl)methanone, 188
$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrO}_{5}$
[3-Bromo-6-hydroxy-4-methoxy-5-methyl-2-(1-methylpropyl)phenyl]
(2,4-dihydroxy-6-methylphenyl)methanone, 488
$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClO}_{2}$
(5-Chloro-3-hexyl-2-hydroxyphenyl)(4-methylphenyl)methanone, 350

$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClO}_{5}$

[3-Chloro-6-hydroxy-4-methoxy-5-methyl-2-(1-methylpropyl)phenyl]
(2,4-dihydroxy-6-methylphenyl)methanone, 488
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$
(2-Hydroxy-5,6-dimethyl-3-pentylphenyl)phenylmethanone, 131
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$
(2,4-Dimethylphenyl)[2-hydroxy-4-(pentyloxy)phenyl]methanone, 350
[4-(Heptyloxy)-2-hydroxyphenyl]phenylmethanone, 131
[4-(Heptyloxy)phenyl](2-hydroxyphenyl)methanone, 188
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$
(2-Hydroxy-3,4-dimethoxy-6-methyl)(2,3,5,6-tetramethylphenyl)methanone, 351
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$
(4,5-Dimethoxy-2-propylphenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 351
$\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}_{4}$
(4,6-Dihydroxy-2-methyl-1,3-phenylene)bis[(2,6-dichlorophenyl)methanone, 538
(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis[(2,4-dichlorophenyl)methanone, 538
(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis[(2,6-dichlorophenyl)methanone, 538
$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$
(4-Hydroxy-6-methyl-1,3-phenylene)bis[(2-chlorophenyl)methanone, 533
$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{4}$
(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis[(2-fluorophenyl)methanone, 538
$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{2}$
[4-Hydroxy-3-(phenylethynyl)phenyl]phenylmethanone, 131
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}$
(2-Hydroxy-5-methyl-1,3-phenylene)bis[phenylmethanone, 529
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{4}$
[4-(Acetyloxy)-2-hydroxyphenyl][1,1'-biphenyl]-4-ylmethanone, 505
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{8}$
[4-(Benzoylmethoxy)-3,5-dihydroxyphenyl](2,3,4-trihydroxyphenyl)methanone, 498
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}$
[2-Hydroxy-5-(1-phenylethyl)phenyl]phenylmethanone, 131
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl(4-ethoxy-2-hydroxyphenyl)methanone, 505
[2,4-Dihydroxy-3-(1-phenylethyl)phenyl]phenylmethanone, 389
[2,4-Dihydroxy-5-(1-phenylethyl)phenyl]phenylmethanone, 389
(2-Hydroxy-4-methoxyphenyl)(5-methyl[1,1'-biphenyl]-2-yl)methanone, 506
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4}$
[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(2-hydroxyethoxy)phenyl]methanone, 510
[4,6-Dihydroxy-3-methyl-2-(phenylmethoxy)phenyl]phenylmethanone, 389
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5}$
Phenyl[2,3,4-trihydroxy-5-[(2-hydroxy-4-methylphenyl)methyl]phenyl] methanone, 552
Phenyl[2,3,4-trihydroxy-5-[(4-hydroxy-2-methylphenyl)methyl]phenyl] methanone, 552
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{2}$
(2,4-Dichlorophenyl)[2-hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]methanone, 351
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{3}$
(3,4-Dichlorophenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone, 351

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{7}$

[2-Hydroxy-4,5-dimethoxy-3-(2-propenyl)phenyl](2,4,6-trimethoxyphenyl)
methanone, 352
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrO}_{2}$
[3,5-Bis-(1,1-dimethylethyl)-4-hydroxyphenyl](2-bromophenyl)methanone, 352
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrO}_{3}$
[4-[(8-Bromooctyl)oxy]phenyl](2-hydroxyphenyl)methanone, 188
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClO}_{2}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-chlorophenyl)methanone, 352
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClO}_{3}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-chloro-2-hydroxyphenyl) methanone, 462
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](5-chloro-2-hydroxyphenyl) methanone, 462
(4-Chlorophenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone, 352
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FO}_{2}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-fluorophenyl)methanone, 353
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FO}_{3}$
(4-Fluorophenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone, 353
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}$
[2-Hydroxy-3-nitro-5-(1,1,3,3-tetramethylbutyl)phenyl]phenylmethanone, 132
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$
[2,4-Bis(1,1-dimethylethyl)-6-hydroxyphenyl]phenylmethanone, 132
[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 132
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]phenylmethanone, 133
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl][4-(1,1-dimethylethyl)phenyl]
methanone, 353
[2-Hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]phenylmethanone, 133
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$
Bis[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 450
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxyphenyl)methanone, 439
Bis[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]methanone, 451
[5-(2-Ethylhexyl)-2,4-dihydroxyphenyl]phenylmethanone, 390
[4-(2-Ethylhexyl)-2-hydroxyphenyl](2-hydroxyphenyl)methanone, 439
[4-[(2-Ethylhexyl)oxy]-2-hydroxyphenyl]phenylmethanone, 135
[2-Hydroxy-4-(isooctyloxy)phenyl]phenylmethanone, 134
[2-Hydroxy-4-(octyloxy)phenyl]phenylmethanone, 134
[2-Hydroxy-5-(octyloxy)phenyl]phenylmethanone, 135
(2-Hydroxy-3-octylphenyl)(2-hydroxyphenyl)methanone, 439
(2-Hydroxy-5-octylphenyl)(2-hydroxyphenyl)methanone, 439
(4-Hydroxy-3-octylphenyl)(2-hydroxyphenyl)methanone, 439
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$
(4-Butoxy-2-hydroxyphenyl)(4-butoxyphenyl)methanone, 353
[2,4-Dihydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl](2-hydroxyphenyl) methanone, 479
[2-Hydroxy-4-(octyloxy)phenyl](2-hydroxyphenyl)methanone, 440
[2-Hydroxy-4-(octyloxy)phenyl](4-hydroxyphenyl)methanone, 440
$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]cyclohexylmethanone, 519
$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{5}$
(2-Hydroxy-4,6-dimethyl-5-nitro-1,3-phenylene)bis[phenylmethanone, 530
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3}$
(5-Ethyl-2-hydroxy-1,3-phenylene)bis[phenylmethanone, 530
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{4}$
1,4-Phenylenebis[(2-hydroxy-5-methylphenyl)methanone, 539
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{5}$
(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis[phenylmethanone, 530
(6-Hydroxy-2,4-dimethoxy-1,3-phenylene)bis[phenylmethanone, 530
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6}$
1,4-Phenylenebis[(2-hydroxy-4-methoxyphenyl)methanone, 539
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{8}$
[4-(Benzoylmethoxy)-3,5-dihydroxyphenyl](2,3-dihydroxy-4-methoxyphenyl) methanone, 496
2-[4-(2,3-Dihydroxy-4-methoxybenzoyl)-2,6-dihydroxyphenoxy]-
1-phenylethanone, 496
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}$
(5-Amino-2-hydroxy-4,6-dimethyl-1,3-phenylene)bis[phenylmethanone, 531
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(3-hydroxypropoxy)phenyl]methanone, 510
[6-Hydroxy-4-methoxy-3-methyl-2-(phenylmethoxy)phenyl]phenylmethanone, 135
$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BrO}_{3}$
[4-[(9-Bromononyl)oxy]phenyl](2-hydroxyphenyl)methanone, 189
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](3-methylphenyl)methanone, 354
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-methylphenyl)methanone, 354
(2-Hydroxy-5-isononylphenyl)phenylmethanone, 136
(2-Hydroxy-5-nonylphenyl)phenylmethanone, 136
(2-Hydroxy-5-tert-nonylphenyl)phenylmethanone, 136
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxy-4-methylphenyl) methanone, 462
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxy-5-methylphenyl) methanone, 462
[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl](4-methoxyphenyl)methanone, 354
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-methoxyphenyl)methanone, 354
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-methoxyphenyl)methanone, 355
[2-Hydroxy-3-methyl-4-(octyloxy)phenyl]phenylmethanone, 137
[2-Hydroxy-5-methyl-4-(octyloxy)phenyl]phenylmethanone, 137
[2-Hydroxy-4-(nonyloxy)phenyl]phenylmethanone, 137
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxy-4-methoxyphenyl) methanone, 463
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-hydroxy-5-methoxyphenyl) methanone, 463
(2,4-Dihydroxy-3-methylphenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone, 488
(2,4-Dihydroxyphenyl)(2-hydroxy-5-nonylphenyl)methanone, 479
[2-Hydroxy-4-(octyloxy)phenyl](4-methoxyphenyl)methanone, 355
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{3}$
(3,4-Dichlorophenyl)[4-[4-(1,1-dimethylethyl)phenoxy]-2-hydroxyphenyl] methanone, 355
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl[4-(2-butenyloxy)-2-hydroxyphenyl]methanone, 506
(5-Butyl-2-hydroxy-1,3-phenylene)bis[phenylmethanone, 531
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5}$
(2-Hydroxy-5-methyl-1,3-phenylene)bis[(2-hydroxy-5-methylphenyl)
methanone, 539
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl[4-(1,1-dimethylethoxy)-2-hydroxyphenyl]methanone, 506
[4-(4-Butylphenoxy)-2-hydroxyphenyl]phenylmethanone, 137
[4-(1,1-Dimethylethyl)phenyl](2-hydroxy-4-phenoxyphenyl)methanone, 355
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4}$
(3-Butoxyphenyl)(2-hydroxy-4-phenoxyphenyl)methanone, 355
(4-Butoxyphenyl)(2-hydroxy-4-phenoxyphenyl)methanone, 356
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3}$
[2,4-Dihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]phenylmethanone, 390
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4}$
[2,6-Dihydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl] phenylmethanone, 390
[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone (E) (Z), 465
[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl]phenylmethanone (E), 390
[2-Hydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl]
(4-hydroxyphenyl)-methanone, 440
[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl][4-[(3-methyl-2-butenyl)oxy] phenyl]-methanone, 356
Phenyl[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]methanone, 466
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3}$
(4-Ethenylphenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone, 356
$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrO}_{3}$
[4-[(10-Bromodecyl)oxy]phenyl](2-hydroxyphenyl)methanone, 189
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](3-ethylphenyl)methanone, 356
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-ethylphenyl)methanone, 357
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3}$
[4-(Decyloxy)-2-hydroxyphenyl]phenylmethanone, 138
[2-Hydroxy-4-(isodecyloxy)phenyl]phenylmethanone, 138
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}$
[2-Hydroxy-4-[2-(octylthio)ethoxy]phenyl]phenylmethanone, 138
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-hydroxy-3,5-dimethoxyphenyl) methanone, 463
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5}$
(2,4-Diethoxy-6-hydroxy-1,3-phenylene)bis[phenylmethanone, 531
(4,6-Diethoxy-2-hydroxy-1,3-phenylene)bis[phenylmethanone, 531
$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClO}_{6}$
[3-Chloro-4,6-dimethoxy-2-(phenylmethoxy)phenyl](4-hydroxy-2-methoxy-6-methylphenyl)-methanone, 357
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3}$
[4-(4-Butylphenoxy)-2-hydroxyphenyl](3-methylphenyl)methanone, 357
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4}$
[4-(4-Butoxyphenoxy)-2-hydroxyphenyl](3-methylphenyl)methanone, 357
(4-Butoxyphenyl)[2-hydroxy-4-(3-methylphenoxy)phenyl]methanone, 357
(4-Butoxyphenyl)[2-hydroxy-4-(4-methylphenoxy)phenyl]methanone, 358
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}$
[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]
phenylmethanone, 391
[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2-hydroxy-6-methoxyphenyl]
phenylmethanone (E), 138
$\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrO}_{3}$
[4-[(11-Bromoundecyl)oxy]phenyl](2-hydroxyphenyl)methanone, 189
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3}$
[2-Hydroxy-4-(undecyloxy)phenyl]phenylmethanone, 139
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](3,4,5-trimethoxyphenyl)
methanone, 358
$\mathrm{C}_{25} \mathrm{H}_{11} \mathrm{D}_{7} \mathrm{O}_{4}$
[3-Hydroxy-5-(phenoxy-d5)phenyl][4-(phenoxy-3,5-d2)phenyl]methanone, 358
$\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{NO}_{5}$
[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(4-nitrophenoxy)phenyl]methanone, 506
$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{2}$
[1,1'-Biphenyl]-4-yl(4-hydroxy[1,1'-biphenyl]-3-yl)methanone, 506
$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{3}$
(2,4-Dihydroxyphenyl)[1, $\left.1^{\prime} ; 4^{\prime}, 1^{\prime \prime}\right]$ terphenyl-4"'-yl-methanone, 511
$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{5}$
Bis[4-(4-hydroxyphenoxy)phenyl]methanone, 555
$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{3}$
[4-(4-Aminophenoxy)-2-hydroxyphenyl][1,1'-biphenyl]-4-ylmethanone, 507
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl[4-(cyclohexyloxy)-2-hydroxyphenyl]methanone, 507
$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl[4-(hexyloxy)-2-hydroxyphenyl]methanone, 507
[4-(1,1-Dimethylethyl)phenyl][4-(3,4-dimethylphenoxy)-2-hydroxyphenyl] methanone, 358
$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{BrO}_{3}$
[4-[(12-Bromododecyl)oxy]phenyl](2-hydroxyphenyl)methanone, 189
$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4}$
(5-Dodecyl-2-hydroxy-3-nitrophenyl)phenylmethanone, 139
(4-Dodecylphenyl)(2-hydroxy-3-nitrophenyl)methanone, 359
(4-Dodecylphenyl)(2-hydroxy-5-nitrophenyl)methanone, 359
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2}$
(5-Dodecyl-2-hydroxyphenyl)phenylmethanone, 139
(4-Dodecylphenyl)(2-hydroxyphenyl)methanone, 190
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3}$
[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl][5-(1,1-dimethylethyl)-2-
hydroxyphenyl]-methanone, 463
[5-(1,1-Dimethylethyl)-2-hydroxy-4-(octyloxy)phenyl]phenylmethanone, 139
[4-(1,1-Dimethylethyl)phenyl][2-hydroxy-4-(octyloxy)phenyl]methanone, 359
[4-(Dodecyloxy)-2-hydroxyphenyl]phenylmethanone, 139
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}$
[2,4-Dihydroxy-5-(dodecyloxy)phenyl]phenylmethanone, 391

$\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{4}$

(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis[(2,4-dichlorophenyl)methanone, 549

$\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{6} \mathrm{~S}$

[Sulfonylbis(6-hydroxy-3,1-phenylene)]bis[(2,4-dichlorophenyl)methanone, 557
$\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{4}$
(4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[(3-fluorophenyl)methanone, 549
(4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[(4-fluorophenyl)methanone, 549
$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{4}$
[1,1'-Biphenyl]-4,4'-diylbis[(4-hydroxyphenyl)methanone, 550
(4,4'-Dihydroxy[1,1'-biphenyl]-2, 2'-diyl)bis[phenylmethanone, 550
(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis[phenylmethanone, 550
$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{5}$
(Oxydi-4,1-phenylene)bis(4-hydroxyphenyl)methanone, 555
$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{8} \mathrm{~S}$
[Sulfonylbis(4,6-dihydroxy-3,1-phenylene)]bis[phenylmethanone, 557
$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{3}$
(2-Hydroxy-4-methoxyphenyl)[1, $\left.1^{\prime}, 4^{\prime}, 1^{\prime \prime}\right]$ terphenyl-4"-yl-methanone, 511
$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{3}$
[4-(Dodecyloxy)-2-hydroxyphenyl](4-methylphenyl)methanone, 359
$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4}$
(2,4-Dihydroxy-5-hexyl-1,3-phenylene)bis[phenylmethanone, 545
$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(1-propylbutoxy)phenyl]methanone, 507
$\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{4}$
(4-Dodecylphenyl)(2-hydroxy-3-methyl-5-nitrophenyl)methanone, 359
$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2}$
(4-Dodecylphenyl)(2-hydroxy-3-methylphenyl)methanone, 360

$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3}$

(3-Dodecyl-2-hydroxy-5-methylphenyl)(2-hydroxyphenyl)methanone, 440
$\mathrm{C}_{27} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{O}_{7}$
Bis[5-chloro-3-(5-chloro-2-hydroxybenzoyl)-2-hydroxyphenyl]methanone, 540
$\mathrm{C}_{27} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{O}_{7}$
Bis[5-fluoro-3-(5-fluoro-2-hydroxybenzoyl)-2-hydroxyphenyl]methanone, 540
$\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{5}$
(2,4-Dihydroxy-1,3,5-benzenetriyl)tris[phenylmethanone, 540
$\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{6}$
(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris[phenylmethanone, 541
$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{3}$
[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]phenylmethanone, 140
$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(octyloxy)phenyl]methanone, 507
[[4-(1,1-Dimethylethyl)phenoxy]-2-hydroxyphenyl][4-(1,1-dimethylethyl)phenyl] methanone, 360
$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{4}$
(2-Hydroxy-4-phenoxyphenyl)[3-(octyloxy)phenyl]methanone, 360
(2-Hydroxy-4-phenoxyphenyl)[4-(octyloxy)phenyl]methanone, 360
$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{5}$
[4-(4-Butoxyphenoxy)-2-hydroxyphenyl](4-butoxyphenyl)methanone, 360
$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{3}$
[4-(Dodecyloxy)-2-hydroxyphenyl](4-ethenylphenyl)methanone, 361
$\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{4}$
[4-(Dodecyloxy)-2-hydroxyphenyl](4-hydroxy-3,5-dimethylphenyl)methanone, 464
$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{4}$
[1,2-Ethanediylbis(6-hydroxy-3,1-phenylene)]bis[phenylmethanone, 553
$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{6}$
(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis[phenylmethanone, 550
$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~S}$
[Sulfinylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[phenylmethanone, 556

$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S}$

[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[phenylmethanone, 558

$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{11}$

[5-(Acetyloxy)-2-hydroxy-4,6-dimethoxy-1,3-phenylene]bis[(2,5-
dimethoxyphenyl)-methanone, 532
$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3}$
[2-Hydroxy-4-(4-nonylphenoxy)phenyl]phenylmethanone, 140
$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{4}$
[2-Hydroxy-4-(3-methylphenoxy)phenyl][4-(octyloxy)phenyl]methanone, 361
[2-Hydroxy-4-(4-methylphenoxy)phenyl][4-(octyloxy)phenyl]methanone, 361
[2-Hydroxy-4-[4-(octyloxy)phenoxy]phenyl](3-methylphenyl)methanone, 361
$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3}$
[2-Hydroxy-3,5-bis(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl]
phenyl-methanone, 140
$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{4}$
[2-Hydroxy-3-(3-methyl-2-butenyl)-4,6-bis[(3-methyl-2-butenyl)oxy]phenyl] phenyl-methanone, 140
$\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{5}$
Bis[3-(2-bromobenzoyl)-2-hydroxy-5-methylphenyl]methanone, 541
$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{5}$
Bis(3-benzoyl-2-hydroxy-5-methylphenyl)methanone, 541
$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{4}$
3-Benzoyldiphenylolpropane 4'-monobenzoate, 554
2,2-Bis(3-benzoyl-4-hydroxyphenyl)propane, 554
$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6}$
[Methylenebis(2,4-dihydroxy-5-methyl-3,1-phenylene)]bis[phenylmethanone, 552
[Methylenebis(4,6-dihydroxy-5-methyl-3,1-phenylene)]bis[phenylmethanone, 553
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{2}$
[2-Hydroxy-3,5-bis(1-phenylethyl)phenyl]phenylmethanone, 141
$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl[4-(decyloxy)-2-hydroxyphenyl]methanone, 508
$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{3}$
Bis[3,5-bis(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 451
Bis[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methanone, 451
Bis(2-hydroxy-5-octylphenyl)methanone, 452
[5-(1,1-Dimethylethyl)-4-(dodecyloxy)-2-hydroxyphenyl]phenylmethanone, 141
[4-(Hexadecyloxy)-2-hydroxyphenyl]phenylmethanone, 141
[5-(Hexadecyloxy)-2-hydroxyphenyl]phenylmethanone, 141
[4-(Hexadecyloxy)phenyl](4-hydroxyphenyl)methanone, 190
$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{4}$
[5-(1,1-Dimethylethyl)-4-(dodecyloxy)-2-hydroxyphenyl](2-hydroxyphenyl) methanone, 441
[4-(Dodecyloxy)-2-hydroxyphenyl][5-(1,1-dimethylethyl)-2-hydroxyphenyl] methanone, 464
[2-Hydroxy-4-(octyloxy)phenyl][4-(octyloxy)phenyl]methanone, 361
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{8}$
(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis[(4-methoxyphenyl) methanone, 551
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S}$
[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[(2-methylphenyl) methanone, 558
$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{3}$
(3,4-Dimethylphenyl)[2-hydroxy-4-(4-nonylphenoxy)phenyl]methanone, 362
$\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{5}$
Bis[3-(4-methylbenzoyl)-2-hydroxy-5-methylphenyl]methanone, 541
$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{4}$
[3-(Dodecyloxy)phenyl](2-hydroxy-4-phenoxyphenyl)methanone, 362
[4-(Dodecyloxy)phenyl](2-hydroxy-4-phenoxyphenyl)methanone, 362
[2-Hydroxy-4-(2,4,6-trimethylphenoxy)phenyl][4-(isononyloxy)phenyl] methanone, 362
$\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{4}$
[2-Hydroxy-4-(octadecanoyloxy)phenyl]phenylmethanone, 142
$\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{3}$
(2,4-Dihydroxy-5-octadecylphenyl)phenylmethanone, 391
[2-Hydroxy-4-(octadecyloxy)phenyl]phenylmethanone, 142
$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{3}$
[4-(4-Dodecylphenoxy)-2-hydroxyphenyl](3-methylphenyl)methanone, 362
$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{4}$
[4-(Dodecyloxy)phenyl][2-hydroxy-4-(4-methylphenoxy)phenyl]methanone, 363
$\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{3}$
[2-Hydroxy-4-(nonadecyloxy)phenyl]phenylmethanone, 142
$\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{4}$
[2-Hydroxy-4-(octadecyloxy)phenyl](4-methoxyphenyl)methanone, 363
$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{3}$
[4-[4-(1,1-Dimethylethyl)-2,6-dimethylphenoxy]-2-hydroxyphenyl]
[4-(1,1,3,3-tetramethylbutyl)-phenyl]methanone, 363
$\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{5}$
(2-Hydroxy-4-methoxy-6-methylphenyl)[2-hydroxy-4-(octadecyloxy)phenyl]
methanone, 464
$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{4}$
(4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[[4-(1,1-dimethylethyl)phenyl] methanone, 551
$\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{3}$
[1,1'-Biphenyl]-4-yl[4-(hexadecyloxy)-2-hydroxyphenyl]methanone, 508
$\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{5}$
[2-Hydroxy-4-[4-(octyloxy)phenoxy]phenyl][4-(octyloxy)phenyl]methanone, 363
$\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~S}$
[Sulfonylbis[4-(cyclopentyloxy)-6-hydroxy-3,1-phenylene]]bis[phenylmethanone, 558
$\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{4}$
1,4-Phenylenebis[2-hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]methanone, 542
$\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{6}$
1,4-Phenylenebis[2-hydroxy-4-(octyloxy)phenyl]methanone, 542
$\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{~S}_{2}$
[2-Hydroxy-3,5-bis(3-methyl-2-butenyl)-4,6-bis[[(4-methylphenyl)sulfonyl]oxy] phenyl]phenylmethanone, 142
$\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{O}_{4}$
[4-(Dodecyloxy)-2-hydroxyphenyl][4-(dodecyloxy)phenyl]methanone, 363
$\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{~S}$
[Sulfinylbis[4-(cyclohexyloxy)-6-hydroxy-3,1-phenylene]]
bis[phenylmethanone, 556
$\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~S}$
[Sulfinylbis[4-(benzyloxy)-6-hydroxy-3,1-phenylene]]bis[phenylmethanone, 556
$\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~S}$
[Sulfonylbis[4-(benzyloxy)-6-hydroxy-3,1-phenylene]]bis[phenylmethanone, 559
$\mathrm{C}_{41} \mathrm{H}_{28} \mathrm{O}_{10}$
[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)]tetrakis[phenylmethanone, 553
$\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{~S}$
[Sulfinylbis[6-hydroxy-4-(octyloxy)-3,1-phenylene]]bis[phenylmethanone, 557
$\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{~S}$
[Sulfonylbis[6-hydroxy-4-(octyloxy)-3,1-phenylene]]bis[phenylmethanone, 559
$\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{O}_{3}$
[4-(4-Dodecylphenoxy)-2-hydroxyphenyl](4-dodecylphenyl)methanone, 364
$\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{O}_{4}$
1,4-Phenylenebis[(2-hydroxy-5-dodecylphenyl)methanone, 542
$\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{O}_{6}$
1,4-Phenylenebis[2-hydroxy-4-(dodecyloxy)phenyl]methanone, 543

Volume 1 - Addendum

$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{11}$
Bis(4-Hydroxy-3,5-dinitrophenyl)methanone, 635
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}_{2}$
(3-Bromo-5-chlorophenyl)(5-chloro-2-hydroxyphenyl)methanone, 603
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClF}_{2} \mathrm{O}_{2}$
(5-Chloro-2-hydroxyphenyl)(3,5-difluorophenyl)methanone, 604
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$
(5-Chloro-2-hydroxyphenyl)(2,3-dichlorophenyl)methanone, 604
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClO}_{2}$
(5-Bromo-2-hydroxyphenyl)(4-chlorophenyl)methanone, 604
(2-Bromophenyl)(5-chloro-2-hydroxyphenyl)methanone, 605
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$
(3,5-Dibromo-4-hydroxyphenyl)phenylmethanone, 576
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClIO}_{2}$
(3-Chloro-2-hydroxy-5-iodophenyl)phenylmethanone, 576
(5-Chloro-2-hydroxy-3-iodophenyl)phenylmethanone, 576
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNO}_{4}$
(3-Chloro-4-hydroxyphenyl)(4-nitrophenyl)methanone, 605
(5-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone, 605
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
(2-Chloro-4-hydroxyphenyl)(4-chlorophenyl)methanone, 606
(3-Chloro-4-hydroxyphenyl)(4-chlorophenyl)methanone, 606
(5-Chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone, 607
(2,6-Dichlorophenyl)(4-hydroxyphenyl)methanone, 585
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$
Bis(5-chloro-2-hydroxyphenyl)methanone, 635
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{5}$
(3,4-Dihydroxy-5-nitrophenyl)(2-fluorophenyl)methanone, 629
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$
(2,4-Difluorophenyl)(2-hydroxyphenyl)methanone, 585
(3,5-Difluorophenyl)(4-hydroxyphenyl)methanone, 585
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{5}$
Bis(5-fluoro-2,4-dihydroxyphenyl)methanone, 642
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6}$
(3,5-Dinitrophenyl)(4-hydroxyphenyl)methanone, 585
(4-Hydroxy-3-nitrophenyl)(4-nitrophenyl)methanone, 607
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}$
Bis(4-hydroxy-3-nitrophenyl)methanone, 635
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2}$
(3-Bromo-4-hydroxyphenyl)phenylmethanone, 577
(4-Bromo-2-hydroxyphenyl)phenylmethanone, 577
(2-Bromophenyl)(4-hydroxyphenyl)methanone, 586
(3-Bromophenyl)(3-hydroxyphenyl)methanone, 586
(3-Bromophenyl)(4-hydroxyphenyl)methanone, 586
(4-Bromophenyl)(3-hydroxyphenyl)methanone, 587
(4-Bromophenyl)(4-hydroxyphenyl)methanone, 587
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{3}$
(2-Bromophenyl)(2,4-dihydroxyphenyl)methanone, 627
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{4}$
(5-Bromo-2,3,4-trihydroxyphenyl)phenylmethanone, 637
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2}$
(2-Chloro-4-hydroxyphenyl)phenylmethanone, 577
(3-Chloro-2-hydroxyphenyl)phenylmethanone, 578
(3-Chloro-4-hydroxyphenyl)phenylmethanone, 578
(4-Chloro-2-hydroxyphenyl)phenylmethanone, 578
(5-Chloro-2-hydroxyphenyl)phenylmethanone, 579
(2-Chlorophenyl)(4-hydroxyphenyl)methanone, 587
(3-Chlorophenyl)(4-hydroxyphenyl)methanone, 588
(4-Chlorophenyl)(2-hydroxyphenyl)methanone, 588
(4-Chlorophenyl)(4-hydroxyphenyl)methanone, 588

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{3}$

(2-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 632
(3-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 633
(5-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 633
(2-Chlorophenyl)(2,4-dihydroxyphenyl)methanone, 628
(2-Chlorophenyl)(2,5-dihydroxyphenyl)methanone, 628
(4-Chlorophenyl)(3,4-dihydroxyphenyl)methanone, 628

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$

(2-Fluorophenyl)(2-hydroxyphenyl)methanone, 589
(2-Fluorophenyl)(4-hydroxyphenyl)methanone, 589
(4-Fluorophenyl)(2-hydroxyphenyl)methanone, 589
(4-Fluorophenyl)(4-hydroxyphenyl)methanone, 589
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{3}$
(2,4-Dihydroxyphenyl)(2-fluorophenyl)methanone, 628
(2,5-Dihydroxyphenyl)(2-fluorophenyl)methanone, 629
(3,5-Dihydroxyphenyl)(4-fluorophenyl)methanone, 629
(3,5-Dihydroxyphenyl)(4-fluorophenyl)methanone (Polymer), 629
(5-Fluoro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 634
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{4}$
(4-Fluorophenyl)(2,3,4-trihydroxyphenyl)methanone, 639
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IO}_{2}$
(2-Hydroxy-4-iodophenyl)phenylmethanone, 579
(4-Hydroxyphenyl)(4-iodophenyl)methanone, 590
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{4}$
(2-Hydroxyphenyl)(2-nitrophenyl)methanone, 590
(2-Hydroxyphenyl)(4-nitrophenyl)methanone, 590
(3-Hydroxyphenyl)(4-nitrophenyl)methanone, 591
(4-Hydroxyphenyl)(4-nitrophenyl)methanone, 591
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{5}$
(2,4-Dihydroxy-3-nitrophenyl)phenylmethanone, 624
(3,4-Dihydroxy-2-nitrophenyl)phenylmethanone, 624
(3,4-Dihydroxy-5-nitrophenyl)phenylmethanone, 624
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrNO}_{2}$
(4-Bromo-2-hydroxyphenyl)phenylmethanone (Oxime) (1E), 577
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}_{3}$
(3-Amino-2,4-dihydroxyphenyl)(4-fluorophenyl)methanone, 630
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{INO}_{2}$
(2-Hydroxy-4-iodophenyl)phenylmethanone (Oxime) (1E), 579
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}$
(2-Hydroxyphenyl)phenylmethanone, 563
(3-Hydroxyphenyl)phenylmethanone, 564
(4-Hydroxyphenyl)phenylmethanone, 564
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}$
Bis(2-hydroxyphenyl)methanone, 566
Bis(3-hydroxyphenyl)methanone, 567
Bis(4-hydroxyphenyl)methanone, 567
(2,4-Dihydroxyphenyl)phenylmethanone, 565
(2,5-Dihydroxyphenyl)phenylmethanone, 565
(3,4-Dihydroxyphenyl)phenylmethanone, 565
(3,5-Dihydroxyphenyl)phenylmethanone, 566
(2-Hydroxyphenyl)(4-hydroxyphenyl)methanone, 568
(3-Hydroxyphenyl)(4-hydroxyphenyl)methanone, 568
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4}$
(2,4-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 569
(2,4-Dihydroxyphenyl)(3-hydroxyphenyl)methanone, 570
(2,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 570
(2,5-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 571
(2,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 571
(3,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 571
Phenyl(2,3,4-trihydroxyphenyl)methanone, 568
Phenyl(2,4,6-trihydroxyphenyl)methanone, 569
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5}$
Bis(2,4-dihydroxyphenyl)methanone, 572
Bis(3,5-dihydroxyphenyl)methanone, 573
(2-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 573
(4-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 573
(4-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 573
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{5}, \mathrm{H}_{2} \mathrm{O}$
(4-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone (Monohydrate), 573
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$
(2,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 574
(2,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 574
(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 574
(4-Hydroxyphenyl)(2,3,4,5-tetrahydroxyphenyl)methanone, 574
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{7}$
Bis(2,3,4-trihydroxyphenyl)methanone, 575
(2,3,4-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 575
(4-Hydroxyphenyl)(2,3,4,5,6-pentahydroxyphenyl)methanone, 575
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}$
(3-Amino-4-hydroxyphenyl)phenylmethanone, 579
(4-Aminophenyl)(4-hydroxyphenyl)methanone, 592
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl}$
(3-Amino-4-hydroxyphenyl)phenylmethanone (Hydrochloride), 579
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$
(3-Amino-2,4-dihydroxyphenyl)phenylmethanone, 625
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4}$
(3-Amino-2,4-dihydroxyphenyl)(2-hydroxyphenyl)methanone, 640
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}$
Cyclohexyl(2,4-dihydroxy-3-nitrophenyl)methanone, 625
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
Cyclohexyl(4-hydroxyphenyl)methanone, 643
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
Cyclohexyl(2,4,6-trihydroxyphenyl)methanone, 644
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$
(3-Amino-2,4-dihydroxyphenyl)cyclohexylmethanone, 626

$\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2}$

3-Chloro-5-(5-chloro-2-hydroxybenzoyl)benzonitrile, 607
$\mathrm{C}_{44} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{4}$
(2,5-Difluoro-4-nitrophenyl)(2-fluoro-5-methoxyphenyl)methanone, 644
(2,6-Difluoro-4-nitrophenyl)(2-fluoro-5-methoxyphenyl)methanone, 645

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrCl}_{2} \mathrm{O}_{2}$

(3-Bromo-5-chlorophenyl)(5-chloro-2-methoxyphenyl)methanone, 603

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{CIF}_{2} \mathrm{O}_{2}$

(5-Chloro-2-methoxyphenyl)(3,5-difluorophenyl)methanone, 604

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}$

(5-Chloro-2-methoxyphenyl)(3,5-dichlorophenyl)methanone, 645

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$

(2-Hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 592
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{2}$
2-(2-Hydroxybenzoyl)benzonitrile, 592
4-(2-Hydroxybenzoyl)benzonitrile, 593
4-(4-Hydroxybenzoyl)benzonitrile, 593
$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{7}$
4-(3,4-Dihydroxy-5-nitrobenzoyl)benzoic acid, 630
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{2}$
(3-Chloro-2-fluorophenyl)(4-methoxyphenyl)methanone, 645
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{4}$
(2-Chloro-4-methoxyphenyl)(4-nitrophenyl)methanone, 645
(3-Chloro-4-methoxyphenyl)(4-nitrophenyl)methanone, 605
(5-Chloro-2-methoxyphenyl)(4-nitrophenyl)methanone, 605

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$

(2-Chloro-4-methoxyphenyl)(4-chlorophenyl)methanone, 606
(3-Chloro-4-methoxyphenyl)(4-chlorophenyl)methanone, 606
(5-Chloro-2-methoxyphenyl)(4-chlorophenyl)methanone, 607
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{II}_{2} \mathrm{O}_{2}$
(2-Hydroxy-3,5-diiodo-4-methylphenyl)phenylmethanone, 580
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{6}$
(4-Methoxy-3-nitrophenyl)(4-nitrophenyl)methanone, 607

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$

(4-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone, 580
(4-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone, 580
(5-Bromo-2-hydroxyphenyl)(4-methylphenyl)methanone, 608
(2-Bromo-5-methoxyphenyl)phenylmethanone, 646
(3-Bromo-4-methoxyphenyl)phenylmethanone, 577
(2-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone, 608
(2-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone, 608
(3-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone, 608
(2-Bromophenyl)(4-methoxyphenyl)methanone, 586
(3-Bromophenyl)(3-methoxyphenyl)methanone, 586
(3-Bromophenyl)(4-methoxyphenyl)methanone, 587
(4-Bromophenyl)(3-methoxyphenyl)methanone, 587
(4-Bromophenyl)(4-methoxyphenyl)methanone, 587

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$

(5-Chloro-2-hydroxyphenyl)(4-methylphenyl)methanone, 609
(2-Chloro-4-methoxyphenyl)phenylmethanone, 578
(3-Chloro-4-methoxyphenyl)phenylmethanone, 578
(4-Chloro-2-methoxyphenyl)phenylmethanone, 578
(5-Chloro-2-methoxyphenyl)phenylmethanone, 579
(2-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 609
(2-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 609
(2-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone, 610
(3-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 610
(4-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 610
(4-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 610
(2-Chlorophenyl)(4-methoxyphenyl)methanone, 587
(3-Chlorophenyl)(4-methoxyphenyl)methanone, 588
(4-Chlorophenyl)(2-methoxyphenyl)methanone, 588
(4-Chlorophenyl)(4-methoxyphenyl)methanone, 588
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$
(2-Chloro-6-hydroxyphenyl)(4-methoxyphenyl)methanone, 611
(4-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 611
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2}$
(5-Fluoro-2-hydroxyphenyl)(4-methylphenyl)methanone, 611
(3-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone, 611
(4-Fluorophenyl)(2-hydroxy-4-methylphenyl)methanone, 611
(2-Fluorophenyl)(4-methoxyphenyl)methanone, 589
(4-Fluorophenyl)(2-methoxyphenyl)methanone, 589
(4-Fluorophenyl)(4-methoxyphenyl)methanone, 590
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
(5-Fluoro-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 612
(5-Fluoro-2-hydroxyphenyl)[4-methoxy-($\left.{ }^{11} \mathrm{C}\right)$ phenyl]methanone, 612
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{2}$
(2-Hydroxy-3-iodo-5-methylphenyl)phenylmethanone, 580
(2-Hydroxy-4-iodo-3-methylphenyl)phenylmethanone, 581
(2-Hydroxy-4-iodo-5-methylphenyl)phenylmethanone, 581
(2-Iodophenyl)(4-methoxyphenyl)methanone, 646
(3-Iodophenyl)(4-methoxyphenyl)methanone, 646
(4-Iodophenyl)(4-methoxyphenyl)methanone, 590
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
(2-Hydroxy-4-methylphenyl)(2-nitrophenyl)methanone, 612
(2-Hydroxyphenyl)(3-methyl-4-nitrophenyl)methanone, 594
(2-Methoxyphenyl)(4-nitrophenyl)methanone, 590
(3-Methoxyphenyl)(4-nitrophenyl)methanone, 591
(4-Methoxyphenyl)(3-nitrophenyl)methanone, 646
(4-Methoxyphenyl)(4-nitrophenyl)methanone, 591
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
(3,4-Dihydroxy-5-nitrophenyl)(4-methylphenyl)methanone, 630
(4-Hydroxy-3-methoxy-2-nitrophenyl)phenylmethanone, 581
(2-Hydroxy-4-methoxyphenyl)(3-nitrophenyl)methanone, 612
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$
(3,4-Dihydroxy-5-nitrophenyl)[4-(hydroxymethyl)phenyl]methanone, 631

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrNO}_{2}$

(4-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone (Oxime) (1E), 580
(4-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone (Oxime) (1E), 580
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{INO}_{2}$
(2-Hydroxy-4-iodo-3-methylphenyl)phenylmethanone (Oxime) ($1 E$), 581
(2-Hydroxy-4-iodo-5-methylphenyl)phenylmethanone (Oxime) ($1 E$), 581
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
(4-Hydroxy-3-methylphenyl)phenylmethanone, 581
(2-Hydroxyphenyl)(2-methylphenyl)methanone, 594
(2-Hydroxyphenyl)(3-methylphenyl)methanone, 594
(2-Hydroxyphenyl)(4-methylphenyl)methanone, 595
(3-Hydroxyphenyl)(4-methylphenyl)methanone, 595
(4-Hydroxyphenyl)(2-methylphenyl)methanone, 595
(4-Hydroxyphenyl)(3-methylphenyl)methanone, 596
(4-Hydroxyphenyl)(4-methylphenyl)methanone, 596
(2-Methoxyphenyl)phenylmethanone, 563
(3-Methoxyphenyl)phenylmethanone, 564
(4-Methoxyphenyl)phenylmethanone, 564
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
(2-Hydroxyphenyl)[2-(methylthio)phenyl]methanone, 596
(4-Hydroxyphenyl)[4-(methylthio)phenyl]methanone, 597
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
(4-Hydroxy-3-methoxyphenyl)phenylmethanone, 582
(2-Hydroxy-5-methylphenyl)(4-hydroxyphenyl)methanone, 634
(4-Hydroxy-2-methylphenyl)(4-hydroxyphenyl)methanone, 634
(4-Hydroxy-3-methylphenyl)(4-hydroxyphenyl)methanone, 634
(2-Hydroxyphenyl)(4-methoxyphenyl)methanone, 597
(4-Hydroxyphenyl)(4-methoxyphenyl)methanone, 597
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
(3,4-Dihydroxy-2-methoxyphenyl)phenylmethanone, 626
(2-Hydroxy-4-methoxyphenyl)(2-hydroxyphenyl)methanone, 635
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
(2,4-Dihydroxy-6-methoxyphenyl)(4-hydroxyphenyl)methanone, 640

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$

(3-Amino-4-hydroxy-2-methylphenyl)phenylmethanone, 582
(4-Aminophenyl)(4-methoxyphenyl)methanone, 592
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl}$
(4-Aminophenyl)(4-hydroxyphenyl)methanone (Hydrochloride), 592
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$
(3-Amino-4,5-dihydroxyphenyl)(4-methylphenyl)methanone, 631
(3-Amino-2-hydroxy-4-methoxyphenyl)phenylmethanone, 582
(3-Aminophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 613
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$
(3-Amino-2,4-dihydroxyphenyl)(2-methoxyphenyl)methanone, 631
$\mathrm{C}_{14} \mathrm{H}_{13} \mathbf{N O}_{5} \mathrm{~S}$
(3-Amino-2,4-dihydroxyphenyl)[(4-methylsulfonyl)phenyl]methanone, 631
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{6} \mathrm{~S}$
[3-Amino-4-hydroxy-5-(sulfooxy)phenyl](4-methylphenyl)methanone, 632
$\mathrm{C}_{14}{ }^{13} \mathrm{CH}_{14} \mathrm{O}_{2}$
(4-Methoxyphenyl)(4-methylphenyl)methanone ${ }^{13} \mathrm{C}, 598$
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$
Cyclohexyl(2-hydroxy-4-methylphenyl)methanone, 644
Cyclohexyl(4-methoxyphenyl)methanone, 643
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
(1-Hydroxycyclohexyl)(4-methoxyphenyl)methanone, 644
$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
3-Chloro-5-(5-chloro-2-methoxybenzoyl)benzonitrile, 608
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{O}_{2}$
[2-Fluoro-3-(trifluoromethyl)phenyl](4-methoxyphenyl)methanone, 646
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{O}_{3}$
[2-Fluoro-5-(trifluoromethyl)phenyl](2-hydroxy-4-methoxyphenyl)methanone, 613
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2}$
(2-Methoxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 592
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2}$
4-(2-Methoxybenzoyl)benzonitrile, 593
4-(4-Methoxybenzoyl)benzonitrile, 593
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{Na}$
2-(4-Methoxybenzoyl)benzoic acid (Na salt), 647
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$
(3,5-Dibromo-4-ethoxyphenyl)phenylmethanone, 576
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{3}$
[2-Bromo-4-(bromomethyl)-6-hydroxyphenyl](4-methoxyphenyl)methanone, 613
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClFO}_{3}$
(3-Chloro-2-fluorophenyl)(2,4-dimethoxyphenyl)methanone, 647
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}_{5}$
(3,4-Dimethoxy-5-nitrophenyl)(2-fluorophenyl)methanone, 629
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2}$
(2,3-Difluorophenyl)(4-methoxy-3-methylphenyl)methanone, 647
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3}$
(2,3-Difluorophenyl)(2,4-dimethoxyphenyl)methanone, 647
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{I}_{2} \mathrm{O}_{2}$
(2-Hydroxy-3,5-diiodo-4,6-dimethylphenyl)phenylmethanone, 583
$\mathrm{C}_{15} \mathbf{H}_{12} \mathbf{N}_{2} \mathrm{O}_{7}$
Bis(4-methoxy-3-nitrophenyl)methanone, 636
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$
[3-(Acetyloxy)phenyl](4-hydroxyphenyl)methanone, 598
(4-Methoxy-1,3-benzodioxol-5-yl)phenylmethanone, 647
2-(4-Methoxybenzoyl)benzoic acid, 647
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}$
(3-Bromo-4-ethoxyphenyl)phenylmethanone, 577
(3-Bromophenyl)(4-ethoxyphenyl)methanone, 587
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3}$
(2-Bromo-3,5-dimethoxyphenyl)phenylmethanone, 648
(2-Bromo-4,5-dimethoxyphenyl)phenylmethanone, 648
(2-Bromo-6-hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone, 613
(2-Bromo-4-methoxyphenyl)(3-methoxyphenyl)methanone, 648
(2-Bromo-4-methoxyphenyl)(4-methoxyphenyl)methanone, 648
(2-Bromophenyl)(2,4-dimethoxyphenyl)methanone, 627
(2-Bromophenyl)(2,5-dimethoxyphenyl)methanone, 648
(2-Bromophenyl)(3,4-dimethoxyphenyl)methanone, 649
(2-Bromophenyl)(3,5-dimethoxyphenyl)methanone, 649
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{4}$
[2-Bromo-6-hydroxy-4-(hydroxymethyl)phenyl](4-methoxyphenyl)
methanone, 613

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2}$

(3-Chloro-6-hydroxy-2,4-dimethylphenyl)phenylmethanone, 583
(2-Chloro-4-methoxyphenyl)(4-methylphenyl)methanone, 649
(3-Chloro-4-methoxyphenyl)(4-methylphenyl)methanone, 649
(5-Chloro-2-methoxyphenyl)(4-methylphenyl)methanone, 609
(2-Chlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 614

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$

(2-Chloro-6-hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone, 614
(2-Chloro-4-methoxyphenyl)(4-methoxyphenyl)methanone, 633
(3-Chloro-4-methoxyphenyl)(4-methoxyphenyl)methanone, 633
(5-Chloro-2-methoxyphenyl)(4-methoxyphenyl)methanone, 633
(2-Chlorophenyl)(2,4-dimethoxyphenyl)methanone, 628
(2-Chlorophenyl)(2,5-dimethoxyphenyl)methanone, 628
(2-Chlorophenyl)(3,4-dimethoxyphenyl)methanone, 650
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4}$
[2-Chloro-6-hydroxy-4-(hydroxymethyl)phenyl](4-methoxyphenyl)methanone, 614
(5-Chloro-2-hydroxyphenyl)(3,5-dimethoxyphenyl)methanone, 614
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2}$
(2-Fluorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 615
(4-Fluorophenyl)(2-methoxy-5-methylphenyl)methanone, 650
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3}$
(2,4-Dimethoxyphenyl)(2-fluorophenyl)methanone, 628
(2,5-Dimethoxyphenyl)(2-fluorophenyl)methanone, 629
(3,4-Dimethoxyphenyl)(2-fluorophenyl)methanone, 650
(2-Fluoro-6-hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone, 615
(5-Fluoro-2-methoxyphenyl)(4-methoxyphenyl)methanone, 634
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4}$
[2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl](4-methoxyphenyl)methanone, 615
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$
(2-Methoxyphenyl)(3-methyl-4-nitrophenyl)methanone, 594
(4-Methoxyphenyl)(2-methyl-5-nitrophenyl)methanone, 650
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$
(4-Hydroxy-3-methoxy-5-nitrophenyl)(4-methylphenyl)methanone, 615
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Li}$
(3-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone (Li salt), 619
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Na}$
(3-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone (Na salt), 619
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
(4-Ethoxyphenyl)phenylmethanone, 564
(2-Hydroxy-4,6-dimethylphenyl)phenylmethanone, 583
(2-Hydroxy-3-methylphenyl)(4-methylphenyl)methanone, 616
(2-Hydroxy-4-methylphenyl)(2-methylphenyl)methanone, 616
(2-Hydroxy-4-methylphenyl)(3-methylphenyl)methanone, 616
(2-Hydroxy-4-methylphenyl)(4-methylphenyl)methanone, 616
(2-Hydroxy-5-methylphenyl)(2-methylphenyl)methanone, 617
(2-Hydroxy-5-methylphenyl)(4-methylphenyl)methanone, 617
(4-Hydroxy-2-methylphenyl)(2-methylphenyl)methanone, 617
(4-Hydroxy-2-methylphenyl)(4-methylphenyl)methanone, 617
(4-Hydroxy-3-methylphenyl)(3-methylphenyl)methanone, 618
(4-Methoxy-3-methylphenyl)phenylmethanone, 582
(2-Methoxyphenyl)(2-methylphenyl)methanone, 594
(2-Methoxyphenyl)(4-methylphenyl)methanone, 595
(3-Methoxyphenyl)(4-methylphenyl)methanone, 595
(4-Methoxyphenyl)(2-methylphenyl)methanone, 596
(4-Methoxyphenyl)(3-methylphenyl)methanone, 596
(4-Methoxyphenyl)(4-methylphenyl)methanone, 596
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$
(2-Methoxyphenyl)[2-(methylthio)phenyl]methanone, 597
(4-Methoxyphenyl)[2-(methylthio)phenyl]methanone, 650
(4-Methoxyphenyl)[4-(methylthio)phenyl]methanone, 597
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
Bis(4-hydroxy-2-methylphenyl)methanone, 636
Bis(2-methoxyphenyl)methanone, 567
Bis(4-methoxyphenyl)methanone, 567
(2,4-Dimethoxyphenyl)phenylmethanone, 565
(2,5-Dimethoxyphenyl)phenylmethanone, 565
(3,4-Dimethoxyphenyl)phenylmethanone, 566
(3,5-Dimethoxyphenyl)phenylmethanone, 566
(3-Ethoxyphenyl)(4-hydroxyphenyl)methanone, 598
(2-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone, 618
(2-Hydroxy-5-methoxyphenyl)(4-methylphenyl)methanone, 618
(2-Hydroxy-6-methoxyphenyl)(4-methylphenyl)methanone, 618
(3-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone, 618
(4-Hydroxy-3-methoxyphenyl)(4-methylphenyl)methanone, 619
(2-Hydroxy-4-methylphenyl)(2-methoxyphenyl)methanone, 619
(2-Hydroxy-4-methylphenyl)(3-methoxyphenyl)methanone, 619
(2-Hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone, 620
(2-Hydroxy-5-methylphenyl)(4-methoxyphenyl)methanone, 620
(4-Hydroxy-2-methylphenyl)(2-methoxyphenyl)methanone, 620
(4-Hydroxy-2-methylphenyl)(3-methoxyphenyl)methanone, 620
(4-Hydroxy-2-methylphenyl)(4-methoxyphenyl)methanone, 621
(2-Methoxyphenyl)(4-methoxyphenyl)methanone, 568
(3-Methoxyphenyl)(4-methoxyphenyl)methanone, 568
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
(3,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 599
(4-Hydroxy-2,3-dimethoxyphenyl)phenylmethanone, 583
(3-Hydroxyphenyl)[4-(methoxymethoxy)phenyl]methanone, 599
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
(3-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 639
(4-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 639
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
(3-Amino-4-methoxy-2-methylphenyl)phenylmethanone, 582
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$
(3-Amino-2,4-dihydroxyphenyl)(2,6-dimethylphenyl)methanone, 632
(3-Amino-2,4-dimethoxyphenyl)phenylmethanone, 625

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{6}$

[4-(Acetyloxy)-3-methoxy-2-nitrophenyl]phenylmethanone, 581
[4-(Acetyloxy)-5-methoxy-2-nitrophenyl]phenylmethanone, 651
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{5}$
(3-Fluoro-2,4-dimethoxyphenyl)(3-fluoro-2-hydroxy-4-methoxyphenyl)
methanone, 621
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
(4-Hydroxyphenyl)[3-(2-propenyloxy)phenyl]methanone, 599
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$
[4-(Acetyloxy)-3-methoxyphenyl]phenylmethanone, 582
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$
1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone, 654
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4}$
(2-Bromo-4-methoxyphenyl)(3,5-dimethoxyphenyl)methanone, 651
(2-Bromo-5-methoxyphenyl)(3,5-dimethoxyphenyl)methanone, 651
(4-Bromo-2-methoxyphenyl)(3,5-dimethoxyphenyl)methanone, 651
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2}$
(2-Chlorophenyl)(2-methoxy-4,6-dimethylphenyl)methanone, 614
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3}$
(2-Chloro-6-hydroxy-4-methylphenyl)(4-ethoxyphenyl)methanone, 621
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{4}$
[2-Chloro-6-hydroxy-4-(hydroxymethyl)phenyl](4-ethoxyphenyl)methanone, 621
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{2}$
(2-Fluorophenyl)(2-methoxy-4,6-dimethylphenyl)methanone, 615
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{3}$
(4-Ethoxyphenyl)(2-fluoro-6-hydroxy-4-methylphenyl)methanone, 622

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}$

[4-(Acetylamino)phenyl](4-methoxyphenyl)methanone, 651
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$
(3-Acetamido-4,5-dihydroxyphenyl)(4-methylphenyl)methanone, 632
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
(2,5-Dimethylphenyl)(4-methoxyphenyl)methanone, 652
(4-Methoxy-2-methylphenyl)(4-methylphenyl)methanone, 617
(4-Methoxy-3-methylphenyl)(3-methylphenyl)methanone, 618
(2-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone, 599
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
(4-Ethoxyphenyl)(4-methoxyphenyl)methanone, 598
(2-Methoxy-5-methylphenyl)(4-methoxyphenyl)methanone, 634
(4-Methoxy-2-methylphenyl)(4-methoxyphenyl)methanone, 634
(4-Methoxy-3-methylphenyl)(4-methoxyphenyl)methanone, 635
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
(2,4-Dimethoxyphenyl)(2-methoxyphenyl)methanone, 570
(2,4-Dimethoxyphenyl)(3-methoxyphenyl)methanone, 570
(2,4-Dimethoxyphenyl)(4-methoxyphenyl)methanone, 570
(2,5-Dimethoxyphenyl)(2-methoxyphenyl)methanone, 571
(2,5-Dimethoxyphenyl)(3-methoxyphenyl)methanone, 652
(2,5-Dimethoxyphenyl)(4-methoxyphenyl)methanone, 571
(3,4-Dimethoxyphenyl)(2-methoxyphenyl)methanone, 652
(3,4-Dimethoxyphenyl)(3-methoxyphenyl)methanone, 640
(3,4-Dimethoxyphenyl)(4-methoxyphenyl)methanone, 572
(2-Hydroxy-6-methoxy-4-methylphenyl)(4-methoxyphenyl)methanone, 622
Phenyl[2,3,4-trihydroxy-5-(1-methylethyl)phenyl]methanone, 637
Phenyl(2,4,6-trimethoxyphenyl)methanone, 569
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
[2-Hydroxy-4-(hydroxymethyl)-6-methoxyphenyl](4-methoxyphenyl)
methanone, 622
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$
(2-Amino-4,5-dimethoxyphenyl)(2-methoxyphenyl)methanone, 653
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$
(3-Amino-2,4-dimethoxyphenyl)[(4-methylsulfonyl)phenyl]methanone, 631
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{5}$
Bis(3-fluoro-2,4-dimethoxyphenyl)methanone, 621
Bis(5-fluoro-2,4-dimethoxyphenyl)methanone, 642
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7}$
Bis(4-ethoxy-3-nitrophenyl)methanone, 636
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{3}$
(2-Bromo-3,5-dimethylphenyl)(3,5-dimethoxyphenyl)methanone, 653
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5}$
(2-Bromo-3,5-dimethoxyphenyl)(3,5-dimethoxyphenyl)methanone, 653
(2-Bromo-4,5-dimethoxyphenyl)(3,5-dimethoxyphenyl)methanone, 653
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3}$
(2-Fluoro-6-hydroxy-4-methylphenyl)[4-(1-methylethoxy)phenyl]methanone, 622
(2-Fluoro-6-hydroxy-4-methylphenyl)(4-propoxyphenyl)methanone, 622
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{4}$
[2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl][4-(1-methylethoxy)phenyl] methanone, 623
[2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl](4-propoxyphenyl)methanone, 623
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 584
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
Bis(4-ethoxyphenyl)methanone, 567
Bis(4-methoxy-2-methylphenyl)methanone, 636
(4-Butoxy-2-hydroxyphenyl)phenylmethanone, 584
[4-(1,1-Dimethylethoxy)-2-hydroxyphenyl]phenylmethanone (Polymer with 1,2-ethanediol), 584
(3-Ethoxyphenyl)(4-ethoxyphenyl)methanone, 598
(2-Methoxy-4,6-dimethylphenyl)(2-methoxyphenyl)methanone, 653
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
Bis(2,4-dimethoxyphenyl)methanone, 572
Bis(3,5-dimethoxyphenyl)methanone, 573
(4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone, 654
[3-(Methoxymethoxy)phenyl][4-(methoxymethoxy)phenyl]methanone, 599
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7}$
Bis(4-hydroxy-3,5-dimethoxyphenyl)methanone, 636
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$
[4-[2-(Dimethylamino)ethoxy]phenyl](3-hydroxyphenyl)methanone, 600
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]phenylmethanone, 626
(3-Hydroxyphenyl)[4-(trimethylacetoxy)phenyl]methanone, 600
(4-Hydroxyphenyl)[3-(trimethylacetoxy)phenyl]methanone, 600
Phenyl[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]methanone, 637
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$
[2-(Acetyloxy)-6-methoxy-4-methylphenyl](4-methoxyphenyl)methanone, 622
[(3-tert-Butoxycarbonyloxy)phenyl](4-hydroxyphenyl)methanone, 601
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6}$
[4-[(Acetyloxy)methyl]-2-hydroxy-6-methoxyphenyl](4-methoxyphenyl)
methanone, 623
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$
[2-Hydroxy-4-(pentyloxy)phenyl]phenylmethanone, 584
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$
Phenyl[2,4,6-trihydroxy-3-(3-methylbutyl)phenyl]methanone, 638
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}$
[3-(2-Propenyloxy)phenyl][4-(2-propenyloxy)phenyl]methanone, 599
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$
Phenyl[2,3,4-trimethoxy-5-(1-methylethyl)phenyl]methanone, 637
$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrO}_{6}$
(5-Bromo-1,3-phenylene)bis[(3,5-dihydroxyphenyl)methanone, 655
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{7}$
(3-Chloro-4-methoxyphenyl)(4-nitrophenyl)methanone
(2,4-Dinitrophenylhydrazone), 605
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{5}$
(2-Chloro-4-methoxyphenyl)(4-chlorophenyl)methanone
(2,4-Dinitrophenylhydrazone), 606
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{11}$
[2-Hydroxy-5-(4-methylbenzoyl)-3-nitrophenyl]- β-D-glucopyranosiduronic acid, 623
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{9}$
[3-Amino-2-hydroxy-5-(4-methylbenzoyl)phenyl]- β-D-glucopyranosiduronic acid, 623
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$
[4-(Methoxymethoxy)phenyl][3-(trimethylacetoxy)phenyl]methanone, 601
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$
Phenyl[2,4,6-trimethoxy-3-(3-methyl-2-butenyl)phenyl]methanone, 638
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$
Bis[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 636
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}$
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2,3,4-trihydroxyphenyl)methanone, 641
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{10}$
[3-Acetamido-5-(glucuronyloxy)-4-hydroxyphenyl](4-methylphenyl)
methanone, 624
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$
[3-methoxy-4-(phenylmethoxy)phenyl1(4-methylphenyl)methanone, 619
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{5}$
(4-Phenoxyphenyl)[2,3,4-trihydroxy-5-(1-methylethyl)phenyl]methanone, 641
$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4}$
[4-[2-(Dimethylamino)ethoxy]phenyl](3-hydroxyphenyl)methanone (Pivalic ester), 600
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4}$
Phenyl[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]methanone, 639
[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone (E), 638
[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone (Z), 638
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2}$
[2-(3,7-Dimethyloctyl)phenyl](4-hydroxyphenyl)methanone, 601
[2-[(3R)-3,7-Dimethyloctyl]phenyl](4-hydroxyphenyl)methanone, 601
[3-[(3R)-3,7-Dimethyloctyl]phenyl](3-hydroxyphenyl)methanone, 602
[3-[(3R)-3,7-Dimethyloctyl]phenyl](4-hydroxyphenyl)methanone, 602
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3}$
Bis[5-(1,1-dimethylethyl)-2-methoxyphenyl]methanone, 636

$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrO}_{6}$

(5-Bromo-1,3-phenylene)bis[(3,5-dimethoxyphenyl)methanone, 655

$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrO}_{6}$

5-Bromo- α, α^{\prime}-bis(3,5-dimethoxyphenyl)benzenedimethanol, 655
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}$
[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxy-6-methoxyphenyl]
phenylmethanone $(E), 626$
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2}$
[2-(3,7-Dimethyloctyl)phenyl](4-methoxyphenyl)methanone, 601
[2-[(3R)-3,7-Dimethyloctyl]phenyl](4-methoxyphenyl)methanone, 602
[3-[(3R)-3,7-Dimethyloctyl]phenyl](3-methoxyphenyl)methanone, 602
[3-[(3R)-3,7-Dimethyloctyl]phenyl](4-methoxyphenyl)methanone, 602
[3-[(4R)-4,8-Dimethylnonyl]phenyl](4-hydroxyphenyl)methanone, 602
[4-[(4R)-4,8-Dimethylnonyl]phenyl](3-hydroxyphenyl)methanone, 603
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}$
[3-(3,7-Dimethyloctyl)-2,4-dihydroxy-6-methoxyphenyl]phenylmethanone, 627

$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{5}$

(4-Phenoxyphenyl)[2,3,4-trimethoxy-5-(1-methylethyl)phenyl]
methanone, 641
$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4}$
[3-(3,7-Dimethyl-2,6-octadienyl)-2-hydroxy-4,6-dimethoxyphenyl]
phenylmethanone $(E), 584$
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2}$
[3-[(4R)-4,8-Dimethylnonyl]phenyl](4-methoxyphenyl)methanone, 603
[4-[(4R)-4,8-Dimethylnonyl]phenyl](3-methoxyphenyl)methanone, 603
$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4}$
[3-[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]-2,4,6-trimethoxyphenyl]
phenylmethanone, 627
Phenyl[2,4,6-trimethoxy-3-[5-methyl-2-(1-methylethylidene)-4-hexen-1-yl] phenyl]methanone, 654
$\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{6}$
(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris[phenylmethanone, 656
$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{5}$
[2-(Acetyloxy)-3-(3,7-dimethyl-2,6-octadienyl)-4,6-dimethoxyphenyl]
phenylmethanone $(E), 585$
$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{6}$
[2,4-Bis(acetyloxy)-3-(3,7-dimethyl-2,6-octadienyl)-6-methoxyphenyl] phenylmethanone, 627
$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{5}$
[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)-5-[5-methyl-2-(1-methylethenyl)-5-hexenyl]-phenyl](3-hydroxyphenyl)methanone (-), 641
$\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{5}$
[2,4,6-Trimethoxy-3-(3-methyl-2-butenyl)-5-[5-methyl-2-(1-methylethenyl)-5hexenyl]phenyl] (3-methoxyphenyl)methanone (-), 642
$\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{O}_{7}$
Phenyl[2,4,6-tris(benzoyloxy)phenyl]methanone, 569
$\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{8}$
[2,6-Bis(acetyloxy)-4-methoxy-3-(3-methyl-2-butenyl)-5-[5-methyl-2-(1-methylethenyl)- 5-hexenyl]phenyl][3-acetyloxyphenyl]methanone (-), 642

Volume 2

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{4} \mathrm{O}_{2}$
1-(2,3,4,5-Tetrafluoro-6-hydroxyphenyl)ethanone, 659
1-(2,3,5,6-Tetrafluoro-4-hydroxyphenyl)ethanone, 659
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}_{4}$
1-(3,5-Dibromo-2-hydroxy-4-nitrophenyl)ethanone, 659
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2}$
1-(2,4,6-Tribromo-3-hydroxyphenyl)ethanone, 660
1-(3,4,5-Tribromo-2-hydroxyphenyl)ethanone, 660

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{ClN}_{2} \mathrm{O}_{6}$

1-(4-Chloro-2-hydroxy-3,5-dinitrophenyl)ethanone, 660

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}_{4}$

1-(4,6-Dichloro-2-hydroxy-3-nitrophenyl)ethanone, 660

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2}$

1-(Trichloro-4-hydroxyphenyl)ethanone, 661
1-(3,4,6-Trichloro-2-hydroxyphenyl)ethanone, 660

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{3}$

1-(2,3,6-Trichloro-4,5-dihydroxyphenyl)ethanone, 661
1-(2,4,5-Trichloro-3,6-dihydroxyphenyl)ethanone, 661
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(2,3,5-Trifluoro-4,6-dihydroxyphenyl)ethanone, 661
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2}$
1-(3-Bromo-5-chloro-2-hydroxyphenyl)ethanone, 662
1-(3-Bromo-5-chloro-4-hydroxyphenyl)ethanone, 662

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrFO}_{2}$

1-(3-Bromo-5-fluoro-2-hydroxyphenyl)ethanone, 662
1-(3-Bromo-5-fluoro-4-hydroxyphenyl)ethanone, 662
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrIO}_{2}$
1-(5-Bromo-2-hydroxy-3-iodophenyl)ethanone, 663

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4}$

1-(3-Bromo-2-hydroxy-5-nitrophenyl)ethanone, 663
1-(3-Bromo-4-hydroxy-5-nitrophenyl)ethanone, 663
1-(5-Bromo-2-hydroxy-3-nitrophenyl)ethanone, 663

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{5}$

1-(3-Bromo-2,4-dihydroxy-5-nitrophenyl)ethanone, 664
1-(3-Bromo-2,6-dihydroxy-5-nitrophenyl)ethanone, 664
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}$
1-(2,4-Dibromo-6-hydroxyphenyl)ethanone, 664
1-(2,6-Dibromo-4-hydroxyphenyl)ethanone, 664
1-(3,4-Dibromo-2-hydroxyphenyl)ethanone, 665
1-(3,5-Dibromo-2-hydroxyphenyl)ethanone, 665
1-(3,5-Dibromo-4-hydroxyphenyl)ethanone, 665
1-(4,5-Dibromo-2-hydroxyphenyl)ethanone, 666

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{3}$

1-(2,5-Dibromo-3,6-dihydroxyphenyl)ethanone, 666
1-(3,5-Dibromo-2,4-dihydroxyphenyl)ethanone, 666
1-(3,5-Dibromo-2,6-dihydroxyphenyl)ethanone, 667

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{4}$

1-(2,3-Dibromo-4,5,6-trihydroxyphenyl)ethanone, 667
1-(3,5-Dibromo-2,4,6-trihydroxyphenyl)ethanone, 667

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2}$

1-(3-Chloro-4-fluoro-2-hydroxyphenyl)ethanone, 667
1-(3-Chloro-5-fluoro-2-hydroxyphenyl)ethanone, 668
1-(4-Chloro-2-fluoro-5-hydroxyphenyl)ethanone, 668
1-(4-Chloro-5-fluoro-2-hydroxyphenyl)ethanone, 668
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClIO}_{2}$
1-(3-Chloro-2-hydroxy-5-iodophenyl)ethanone, 668
1-(5-Chloro-2-hydroxy-3-iodophenyl)ethanone, 669

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClIO}_{3}$

1-(5-Chloro-2,4-dihydroxy-3-iodophenyl)ethanone, 669

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4}$

1-(3-Chloro-4-hydroxy-5-nitrophenyl)ethanone, 669
1-(4-Chloro-2-hydroxy-3-nitrophenyl)ethanone, 669
1-(4-Chloro-2-hydroxy-5-nitrophenyl)ethanone, 669
1-(5-Chloro-2-hydroxy-3-nitrophenyl)ethanone, 670
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-(2,3-Dichloro-4-hydroxyphenyl)ethanone, 670
1-(2,4-Dichloro-3-hydroxyphenyl)ethanone, 670
1-(2,4-Dichloro-6-hydroxyphenyl)ethanone, 671
1-(2,5-Dichloro-4-hydroxyphenyl)ethanone, 671
1-(2,6-Dichloro-4-hydroxyphenyl)ethanone, 671
1-(3,4-Dichloro-2-hydroxyphenyl)ethanone, 671
1-(3,5-Dichloro-2-hydroxyphenyl)ethanone, 672
1-(3,5-Dichloro-4-hydroxyphenyl)ethanone, 672
1-(3,6-Dichloro-2-hydroxyphenyl)ethanone, 672
1-(4,5-Dichloro-2-hydroxyphenyl)ethanone, 673

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{3}$

1-(3,4-Dichloro-2,5-dihydroxyphenyl)ethanone, 673
1-(3,5-Dichloro-2,4-dihydroxyphenyl)ethanone, 673
1-(3,5-Dichloro-2,6-dihydroxyphenyl)ethanone, 674
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FNO}_{4}$
1-(4-Fluoro-2-hydroxy-5-nitrophenyl)ethanone, 674
1-(5-Fluoro-2-hydroxy-3-nitrophenyl)ethanone, 674
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{2}$
1-(3,5-Difluoro-2-hydroxyphenyl)ethanone, 674
1-(3,5-Difluoro-4-hydroxyphenyl)ethanone, 675
1-(4,5-Difluoro-2-hydroxyphenyl)ethanone, 675

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{INO}_{4}$

1-(4-Hydroxy-3-iodo-5-nitrophenyl)ethanone, 675

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{INO}_{5}$

1-(2,4-Dihydroxy-3-iodo-5-nitrophenyl)ethanone, 675

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{2}$

1-(2-Hydroxy-3,5-diiodophenyl)ethanone, 676
1-(4-Hydroxy-3,5-diiodophenyl)ethanone, 676
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3,5-diodophenyl)ethanone, 676
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$
1-(2-Hydroxy-3,5-dinitrophenyl)ethanone, 677
1-(2-Hydroxy-4,6-dinitrophenyl)ethanone, 677
1-(3-Hydroxy-2,6-dinitrophenyl)ethanone, 677
1-(4-Hydroxy-3,5-dinitrophenyl)ethanone, 677
1-(5-Hydroxy-2,4-dinitrophenyl)ethanone, 678
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{7}$
1-(2,4-Dihydroxy-3,5-dinitrophenyl)ethanone, 678
1-(2,5-Dihydroxy-3,6-dinitrophenyl)ethanone, 678
1-(2,6-Dihydroxy-3,5-dinitrophenyl)ethanone, 679
1-(3,6-Dihydroxy-2,4-dinitrophenyl)ethanone, 679
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2}$
1-(2-Bromo-4-hydroxyphenyl)ethanone, 679
1-(2-Bromo-6-hydroxyphenyl)ethanone, 679
1-(3-Bromo-2-hydroxyphenyl)ethanone, 679
1-(3-Bromo-4-hydroxyphenyl)ethanone, 680
1-(4-Bromo-2-hydroxyphenyl)ethanone, 680
1-(4-Bromo-3-hydroxyphenyl)ethanone, 681
1-(5-Bromo-2-hydroxyphenyl)ethanone, 681
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$
1-(2-Bromo-3,6-dihydroxyphenyl)ethanone, 681
1-(3-Bromo-2,4-dihydroxyphenyl)ethanone, 682
1-(3-Bromo-2,5-dihydroxyphenyl)ethanone, 682

1-(3-Bromo-2,6-dihydroxyphenyl)ethanone, 682
1-(4-Bromo-2,5-dihydroxyphenyl)ethanone, 683
1-(5-Bromo-2,4-dihydroxyphenyl)ethanone, 683
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4}$
1-(3-Bromo-2,4,6-trihydroxyphenyl)ethanone, 683
1-(5-Bromo-2,3,4-trihydroxyphenyl)ethanone, 684
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$
1-(2-Chloro-3-hydroxyphenyl)ethanone, 684
1-(2-Chloro-4-hydroxyphenyl)ethanone, 684
1-(2-Chloro-5-hydroxyphenyl)ethanone, 684
1-(2-Chloro-6-hydroxyphenyl)ethanone, 685
1-(3-Chloro-2-hydroxyphenyl)ethanone, 685
1-(3-Chloro-4-hydroxyphenyl)ethanone, 685
1-(3-Chloro-5-hydroxyphenyl)ethanone, 686
1-(4-Chloro-2-hydroxyphenyl)ethanone, 686
1-(4-Chloro-3-hydroxyphenyl)ethanone, 687
1-(5-Chloro-2-hydroxyphenyl)ethanone, 687
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3}$
1-(2-Chloro-3,4-dihydroxyphenyl)ethanone, 688
1-(2-Chloro-3,6-dihydroxyphenyl)ethanone, 689
1-(2-Chloro-4,5-dihydroxyphenyl)ethanone, 689
1-(3-Chloro-2,6-dihydroxyphenyl)ethanone, 689
1-(3-Chloro-4,5-dihydroxyphenyl)ethanone, 690
1-(4-Chloro-2,5-dihydroxyphenyl)ethanone, 690
1-(5-Chloro-2,4-dihydroxyphenyl)ethanone, 690
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{4}$
1-(3-Chloro-2,4,6-trihydroxyphenyl)ethanone, 690

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2}$

1-(2-Fluoro-4-hydroxyphenyl)ethanone, 691
1-(2-Fluoro-5-hydroxyphenyl)ethanone, 691
1-(2-Fluoro-6-hydroxyphenyl)ethanone, 691
1-(3-Fluoro-2-hydroxyphenyl)ethanone, 691
1-(3-Fluoro-4-hydroxyphenyl)ethanone, 692
1-(4-Fluoro-2-hydroxyphenyl)ethanone, 692
1-(5-Fluoro-2-hydroxyphenyl)ethanone, 692

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{3}$

1-(3-Fluoro-2,6-dihydroxyphenyl)ethanone, 693
1-(4-Fluoro-2,5-dihydroxyphenyl)ethanone, 693
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2}$
1-(2-Hydroxy-3-iodophenyl)ethanone, 693
1-(2-Hydroxy-4-iodophenyl)ethanone, 694
1-(2-Hydroxy-5-iodophenyl)ethanone, 694
1-(3-Hydroxy-2-iodophenyl)ethanone, 694

1-(3-Hydroxy-4-iodophenyl)ethanone, 695
1-(4-Hydroxy-2-iodophenyl)ethanone, 695
1-(4-Hydroxy-3-iodophenyl)ethanone, 695
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{3}$
1-(2,4-Dihydroxy-3-iodophenyl)ethanone, 696
1-(2,4-Dihydroxy-5-iodophenyl)ethanone, 696

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{3}$

1-(2-Hydroxy-5-nitrosophenyl)ethanone, 696
1-(4-Hydroxy-3-nitrosophenyl)ethanone, 697
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$
1-(2-Hydroxy-3-nitrophenyl)ethanone, 697
1-(2-Hydroxy-4-nitrophenyl)ethanone, 697
1-(2-Hydroxy-5-nitrophenyl)ethanone, 698
1-(3-Hydroxy-2-nitrophenyl)ethanone, 698
1-(3-Hydroxy-4-nitrophenyl)ethanone, 699
1-(3-Hydroxy-5-nitrophenyl)ethanone, 699
1-(4-Hydroxy-3-nitrophenyl)ethanone, 699
1-(5-Hydroxy-2-nitrophenyl)ethanone, 700
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5}$
1-(2,4-Dihydroxy-3-nitrophenyl)ethanone, 701
1-(2,4-Dihydroxy-5-nitrophenyl)ethanone, 701
1-(2,5-Dihydroxy-3-nitrophenyl)ethanone, 702
1-(2,6-Dihydroxy-3-nitrophenyl)ethanone, 702
1-(3,4-Dihydroxy-5-nitrophenyl)ethanone, 703

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{6}$

1-(2,4,6-Trihydroxy-3-nitrophenyl)ethanone, 703
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{2}$
1-(3-Amino-5-bromo-2-hydroxyphenyl)ethanone, 703

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{2}, \mathrm{HCl}$

1-(5-Amino-3-bromo-2-hydroxyphenyl)ethanone (Hydrochloride), 703

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2}$

1-(3-Amino-5-chloro-2-hydroxyphenyl)ethanone, 704
1-(5-Amino-4-chloro-2-hydroxyphenyl)ethanone, 704

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2}, \mathrm{HCl}$

1-(3-Amino-5-chloro-2-hydroxyphenyl)ethanone (Hydrochloride), 704

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{4} \mathrm{~S}$

1-[5-(Aminosulfonyl)-4-chloro-2-hydroxyphenyl]ethanone, 704

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{FNO}_{2}$

1-(3-Amino-5-fluoro-2-hydroxyphenyl)ethanone, 705
1-(5-Amino-4-fluoro-2-hydroxyphenyl)ethanone, 705
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$
1-(3-Amino-2-hydroxy-5-nitrophenyl)ethanone, 705
1-(5-Amino-2-hydroxy-3-nitrophenyl)ethanone, 705

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$

1-(2-Hydroxyphenyl)ethanone, 706
1-(3-Hydroxyphenyl)ethanone, 709
1-(4-Hydroxyphenyl)ethanone, 710
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$
1-(2-Hydroxy-4-mercaptophenyl)ethanone, 713
1-(2-Hydroxy-5-mercaptophenyl)ethanone, 713
1-(2-Hydroxy-6-mercaptophenyl)ethanone, 713
1-(4-Hydroxy-3-mercaptophenyl)ethanone, 713
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
1-(2,3-Dihydroxyphenyl)ethanone, 713
1-(2,4-Dihydroxyphenyl)ethanone (Resacetophenone), 714
1-(2,4-Dihydroxyphenyl)ethanone- ${ }^{13} C_{2}, 716$
1-(2,5-Dihydroxyphenyl)ethanone (Quinacetophenone), 716
1-(2,6-Dihydroxypheny))ethanone (γ-Resacetophenone), 718
1-(3,4-Dihydroxyphenyl)ethanone, 718
1-(3,5-Dihydroxyphenyl)ethanone, 720

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$

1-(2,3,4-Trihydroxyphenyl)ethanone (Gallacetophenone), 720
1-(2,3,6-Trihydroxyphenyl)ethanone, 721
1-(2,4,5-Trihydroxyphenyl)ethanone, 721
1-(2,4,6-Trihydroxyphenyl)ethanone (Phloroacetophenone), 722
1-(3,4,5-Trihydroxyphenyl)ethanone, 723
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5}$
1-(2,3,4,6-Tetrahydroxyphenyl)ethanone, 724
1-(2,3,5,6-Tetrahydroxyphenyl)ethanone, 724
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
1-(2-Amino-3-hydroxyphenyl)ethanone, 724
1-(2-Amino-4-hydroxyphenyl)ethanone, 725
1-(2-Amino-5-hydroxyphenyl)ethanone, 726
1-(3-Amino-2-hydroxyphenyl)ethanone, 726
1-(3-Amino-4-hydroxyphenyl)ethanone, 727
1-(4-Amino-2-hydroxyphenyl)ethanone, 728
1-(4-Amino-3-hydroxyphenyl)ethanone, 728
1-(5-Amino-2-hydroxyphenyl)ethanone, 728

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathbf{H B r}$

1-(3-Amino-2-hydroxyphenyl)ethanone (Hydrobromide), 726
1-(3-Amino-4-hydroxyphenyl)ethanone (Hydrobromide), 727
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{HCl}$
1-(2-Amino-3-hydroxyphenyl)ethanone (Hydrochloride), 725
1-(3-Amino-2-hydroxyphenyl)ethanone (Hydrochloride), 727
1-(3-Amino-4-hydroxyphenyl)ethanone (Hydrochloride), 727
1-(4-Amino-2-hydroxyphenyl)ethanone (Hydrochloride), 728
1-(5-Amino-2-hydroxyphenyl)ethanone (Hydrochloride), 729
$2 \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$
1-(5-Amino-2-hydroxyphenyl)ethanone (Sulfate), 729

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$

1-(5-Amino-2,4-dihydroxyphenyl)ethanone, 729

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}, \mathbf{H C l}$

1-(5-Amino-2,4-dihydroxyphenyl)ethanone (Hydrochloride), 729

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{3}$

1-(2,3,6-Trichloro-4-hydroxy-5-methoxyphenyl)ethanone, 730

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2}$

1-[2-Hydroxy-5-(trifluoromethyl)phenyl]ethanone, 730
1-[4-Hydroxy-3-(trifluoromethyl)phenyl]ethanone, 730
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[2-Hydroxy-5-(trifluoromethoxy)phenyl]ethanone, 730

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$

1-[2,4,6-Trihydroxy-3-[(trifluoromethyl)thio]phenyl]ethanone, 730
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{8}$
1-(3-Hydroxy-5-methyl-2,4,6-trinitrophenyl)ethanone, 731
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2}$
1-[3-Bromo-5-(chloromethyl)-4-hydroxyphenyl]ethanone, 731
1-[3-(Bromomethyl)-5-chloro-2-hydroxyphenyl]ethanone, 731

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{5}$

1-(3-Bromo-2-hydroxy-4-methoxy-5-nitrophenyl)ethanone, 731
1-(3-Bromo-6-hydroxy-2-methoxy-5-nitrophenyl)ethanone, 732
1-(5-Bromo-2-hydroxy-4-methoxy-3-nitrophenyl)ethanone, 732

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$

1-(2,4-Dibromo-6-hydroxy-3-methylphenyl)ethanone, 732
1-(3,5-Dibromo-2-hydroxy-4-methylphenyl)ethanone, 732
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$
1-(3,5-Dibromo-2-hydroxy-6-methoxyphenyl)ethanone, 733
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClIO}_{2}$
1-(5-Chloro-2-hydroxy-3-iodo-4-methylphenyl)ethanone, 733
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-[3-Chloro-5-(chloromethyl)-2-hydroxyphenyl]ethanone, 733
1-[5-Chloro-3-(chloromethyl)-2-hydroxyphenyl]ethanone, 733
1-(2,3-Dichloro-4-hydroxy-6-methylphenyl)ethanone, 734
1-(3,5-Dichloro-2-hydroxy-6-methylphenyl)ethanone, 734

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$

1-(3,5-Dichloro-2,6-dihydroxy-4-methylphenyl)ethanone, 734
1-(2,3-Dichloro-4-hydroxy-5-methoxyphenyl)ethanone, 735
1-(3,5-Dichloro-2-hydroxy-6-methoxyphenyl)ethanone, 735

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4}$

1-(2,6-Dichloro-3,4-dihydroxy-5-methoxyphenyl)ethanone, 735

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{3}$

1-(2-Hydroxy-3,5-diiodo-4-methoxyphenyl)ethanone, 735
1-(2-Hydroxy-3,5-diiodo-6-methoxyphenyl)ethanone, 736
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}$
1-(3-Hydroxy-6-methoxy-2,4-dinitrophenyl)ethanone, 736
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
1-(4-Hydroxy-1,3-benzodioxol-5-yl)ethanone, 736
1-(6-Hydroxy-1,3-benzodioxol-5-yl)ethanone, 736
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$
1-(2-Bromo-6-hydroxy-4-methylphenyl)ethanone, 737
1-(3-Bromo-2-hydroxy-5-methylphenyl)ethanone, 737
1-(3-Bromo-4-hydroxy-5-methylphenyl)ethanone, 738
1-(5-Bromo-2-hydroxy-3-methylphenyl)ethanone, 738
1-(5-Bromo-2-hydroxy-4-methylphenyl)ethanone, 738
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$
1-(3-Bromo-2-hydroxy-4-methoxyphenyl)ethanone, 739
1-(3-Bromo-2-hydroxy-5-methoxyphenyl)ethanone, 739
1-(3-Bromo-2-hydroxy-6-methoxyphenyl)ethanone, 739
1-(3-Bromo-4-hydroxy-5-methoxyphenyl)ethanone, 739
1-(4-Bromo-2-hydroxy-5-methoxyphenyl)ethanone, 740
1-(5-Bromo-2-hydroxy-3-methoxyphenyl)ethanone, 740
1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone, 740
1-(5-Bromo-4-hydroxy-2-methoxyphenyl)ethanone, 741

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4}$

1-(5-Bromo-2,4-dihydroxy-3-methoxyphenyl)ethanone, 741
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$
1-(2-Chloro-6-hydroxy-4-methylphenyl)ethanone, 741
1-(3-Chloro-2-hydroxy-5-methylphenyl)ethanone, 741
1-(3-Chloro-2-hydroxy-6-methylphenyl)ethanone, 742
1-(3-Chloro-4-hydroxy-5-methylphenyl)ethanone, 742
1-(4-Chloro-2-hydroxy-3-methylphenyl)ethanone, 742
1-(4-Chloro-2-hydroxy-5-methylphenyl)ethanone, 742
1-(4-Chloro-2-hydroxy-6-methylphenyl)ethanone, 742
1-(5-Chloro-2-hydroxy-3-methylphenyl)ethanone, 743
1-(5-Chloro-2-hydroxy-4-methylphenyl)ethanone, 743
1-[3-(Chloromethyl)-2-hydroxyphenyl]ethanone, 743
1-[3-(Chloromethyl)-4-hydroxyphenyl]ethanone, 744
1-[4-(Chloromethyl)-2-hydroxyphenyl]ethanone, 744
1-[5-(Chloromethyl)-2-hydroxyphenyl]ethanone, 744
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3}$
1-(3-Chloro-2,6-dihydroxy-5-methylphenyl)ethanone, 744
1-[5-Chloro-2-hydroxy-3-(hydroxymethyl)phenyl]ethanone, 745

1-(2-Chloro-4-hydroxy-3-methoxyphenyl)ethanone, 745
1-(2-Chloro-4-hydroxy-5-methoxyphenyl)ethanone, 745
1-(2-Chloro-6-hydroxy-4-methoxyphenyl)ethanone, 745
1-(3-Chloro-2-hydroxy-5-methoxyphenyl)ethanone, 746
1-(3-Chloro-2-hydroxy-6-methoxyphenyl)ethanone, 746
1-(3-Chloro-4-hydroxy-5-methoxyphenyl)ethanone, 746
1-(3-Chloro-6-hydroxy-2-methoxyphenyl)ethanone, 747
1-(4-Chloro-2-hydroxy-5-methoxyphenyl)ethanone, 747
1-(4-Chloro-2-hydroxy-6-methoxyphenyl)ethanone, 747
1-(5-Chloro-2-hydroxy-4-methoxyphenyl)ethanone, 747
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4}$
1-(2-Chloro-3,6-dihydroxy-5-methoxyphenyl)ethanone, 748
1-(3-Chloro-2,4-dihydroxy-6-methoxyphenyl)ethanone, 748
1-(3-Chloro-2,4,6-trihydroxy-5-methylphenyl)ethanone, 748

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{3}$

1-(3-Fluoro-2-hydroxy-6-methoxyphenyl)ethanone, 748
1-(3-Fluoro-6-hydroxy-2-methoxyphenyl)ethanone, 748

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2}$

1-(2-Hydroxy-3-iodo-5-methylphenyl)ethanone, 749
1-(2-Hydroxy-4-iodo-3-methylphenyl)ethanone, 749
1-(4-Hydroxy-3-iodo-5-methylphenyl)ethanone, 749
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3}$
1-(2-Hydroxy-3-iodo-4-methoxyphenyl)ethanone, 749
1-(2-Hydroxy-3-iodo-6-methoxyphenyl)ethanone, 749
1-(2-Hydroxy-5-iodo-4-methoxyphenyl)ethanone, 750
1-(4-Hydroxy-3-iodo-5-methoxyphenyl)ethanone, 750
1-(6-Hydroxy-3-iodo-2-methoxyphenyl)ethanone, 750

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{4}$

1-(2,4-Dihydroxy-3-iodo-6-methoxyphenyl)ethanone, 751
1-(2,5-Dihydroxy-3-iodo-4-methoxyphenyl)ethanone, 751
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}$
1-(2-Hydroxy-3-methyl-4-nitrophenyl)ethanone, 751
1-(2-Hydroxy-3-methyl-5-nitrophenyl)ethanone, 751
1-(2-Hydroxy-4-methyl-5-nitrophenyl)ethanone, 752
1-(2-Hydroxy-5-methyl-3-nitrophenyl)ethanone, 752
1-(2-Hydroxy-5-methyl-4-nitrophenyl)ethanone, 752
1-(3-Hydroxy-2-methyl-4-nitrophenyl)ethanone, 752
1-(3-Hydroxy-4-methyl-5-nitrophenyl)ethanone, 752
1-(3-Hydroxy-5-methyl-2-nitrophenyl)ethanone, 753
1-(3-Hydroxy-5-methyl-4-nitrophenyl)ethanone, 753
1-(4-Hydroxy-2-methyl-5-nitrophenyl)ethanone, 753
1-(4-Hydroxy-3-methyl-5-nitrophenyl)ethanone, 753
1-(5-Hydroxy-3-methyl-2-nitrophenyl)ethanone, 754

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}$

1-(2,4-Dihydroxy-3-methyl-5-nitrophenyl)ethanone, 754
1-(2,5-Dihydroxy-4-methyl-3-nitrophenyl)ethanone, 754
1-(2-Hydroxy-4-methoxy-3-nitrophenyl)ethanone, 754
1-(2-Hydroxy-4-methoxy-5-nitrophenyl)ethanone, 755
1-(2-Hydroxy-5-methoxy-3-nitrophenyl)ethanone, 755
1-(2-Hydroxy-6-methoxy-3-nitrophenyl)ethanone, 755
1-(4-Hydroxy-2-methoxy-5-nitrophenyl)ethanone, 756
1-(4-Hydroxy-3-methoxy-5-nitrophenyl)ethanone, 756
1-(4-Hydroxy-5-methoxy-2-nitrophenyl)ethanone, 756

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{6} \mathrm{~S}$

1-[2-Hydroxy-5-(methylsulfonyl)-3-nitrophenyl]ethanone, 757
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$
1-[3-(Azidomethyl)-4-hydroxyphenyl]ethanone, 757

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2}$

1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]ethanone, 757
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$
1-(2-Hydroxy-3-methylphenyl)ethanone, 757
1-(2-Hydroxy-4-methylphenyl)ethanone, 758
1-(2-Hydroxy-5-methylphenyl)ethanone, 760
1-(2-Hydroxy-6-methylphenyl)ethanone, 762
1-(3-Hydroxy-2-methylphenyl)ethanone, 763
1-(3-Hydroxy-4-methylphenyl)ethanone, 764
1-(3-Hydroxy-5-methylphenyl)ethanone, 764
1-(4-Hydroxy-2-methylphenyl)ethanone, 765
1-(4-Hydroxy-3-methylphenyl)ethanone, 766
1-(5-Hydroxy-2-methylphenyl)ethanone, 767
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$
1-[2-Hydroxy-5-(methylthio)phenyl]ethanone, 767
1-[4-Hydroxy-3-(methylthio)phenyl]ethanone, 767
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
1-(2,3-Dihydroxy-4-methylphenyl)ethanone, 768
1-(2,3-Dihydroxy-5-methylphenyl)ethanone, 768
1-(2,3-Dihydroxy-6-methylphenyl)ethanone, 768
1-(2,4-Dihydroxy-3-methylphenyl)ethanone, 768
1-(2,4-Dihydroxy-5-methylphenyl)ethanone, 769
1-(2,4-Dihydroxy-6-methylphenyl)ethanone (Orcacetophenone;
β-Orcacetophenone; Orsacetophenone), 769
1-(2,5-Dihydroxy-3-methylphenyl)ethanone, 770
1-(2,5-Dihydroxy-4-methylphenyl)ethanone, 771
1-(2,6-Dihydroxy-3-methylphenyl)ethanone, 771
1-(2,6-Dihydroxy-4-methylphenyl)ethanone (γ - or p-Orcacetophenone), 772
1-(3,4-Dihydroxy-2-methylphenyl)ethanone, 773
1-(3,4-Dihydroxy-5-methylphenyl)ethanone, 773

1-(3,5-Dihydroxy-2-methylphenyl)ethanone, 773
1-(3,5-Dihydroxy-4-methylphenyl)ethanone, 773
1-(3,6-Dihydroxy-2-methylphenyl)ethanone, 774
1-(4,5-Dihydroxy-2-methylphenyl)ethanone, 774
1-[2-Hydroxy-4-(hydroxymethyl)phenyl]ethanone, 774
1-[2-Hydroxy-5-(hydroxymethyl)phenyl]ethanone, 775
1-(2-Hydroxy-3-methoxyphenyl)ethanone (o-Acetovanillone), 775
1-(2-Hydroxy-4-methoxyphenyl)ethanone (Paeonol), 775
1-(2-Hydroxy-5-methoxyphenyl)ethanone, 777
1-(2-Hydroxy-6-methoxyphenyl)ethanone, 778
1-(3-Hydroxy-2-methoxyphenyl)ethanone, 779
1-(3-Hydroxy-4-methoxyphenyl)ethanone (Isocetovanillone), 779
1-(3-Hydroxy-5-methoxyphenyl)ethanone, 780
1-(4-Hydroxy-2-methoxyphenyl)ethanone (Isopaeonol), 780
1-(4-Hydroxy-3-methoxyphenyl)ethanone (Apocynin; Acetovanillone;
Acetoguaiacone), 781
1-(4-Hydroxy-3-methoxyphenyl)ethanone-1- ${ }^{13}$ C, 782
1-(5-Hydroxy-2-methoxyphenyl)ethanone, 782

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$

1-[2,4-Dihydroxy-5-(hydroxymethyl)phenyl]ethanone, 783
1-(2,3-Dihydroxy-4-methoxyphenyl)ethanone, 783
1-(2,3-Dihydroxy-5-methoxyphenyl)ethanone, 784
1-(2,3-Dihydroxy-6-methoxyphenyl)ethanone, 784
1-(2,4-Dihydroxy-3-methoxyphenyl)ethanone, 784
1-(2,4-Dihydroxy-5-methoxyphenyl)ethanone, 785
1-(2,4-Dihydroxy-6-methoxyphenyl)ethanone, 785
1-(2,5-Dihydroxy-3-methoxyphenyl)ethanone, 786
1-(2,5-Dihydroxy-4-methoxyphenyl)ethanone, 786
1-(2,6-Dihydroxy-4-methoxyphenyl)ethanone, 787
1-(3,4-Dihydroxy-2-methoxyphenyl)ethanone, 788
1-(3,4-Dihydroxy-5-methoxyphenyl)ethanone, 788
1-(3,5-Dihydroxy-4-methoxyphenyl)ethanone, 789
1-(3,6-Dihydroxy-2-methoxyphenyl)ethanone, 789
1-(4,5-Dihydroxy-2-methoxyphenyl)ethanone, 789
1-(2,3,4-Trihydroxy-5-methylphenyl)ethanone, 789
1-(2,4,6-Trihydroxy-3-methylphenyl)ethanone, 790

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}$

1-[2-Hydroxy-5-(methylsulfonyl)phenyl]ethanone, 790
1-[4-Hydroxy-3-(methylsulfonyl)phenyl]ethanone, 790
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}$
1-(2,3,6-Trihydroxy-4-methoxyphenyl)ethanone, 791
1-(2,4,6-Trihydroxy-3-methoxyphenyl)ethanone, 791
1-(3,4,6-Trihydroxy-2-methoxyphenyl)ethanone, 791
1-(2,3,4,5-Tetrahydroxy-6-methylphenyl)ethanone, 791
1-(2,3,4,6-Tetrahydroxy-5-methylphenyl)ethanone, 792

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$

1-(2-Amino-3-hydroxy-6-methylphenyl)ethanone, 792
1-(2-Amino-5-hydroxy-3-methylphenyl)ethanone, 792
1-(2-Amino-6-hydroxy-4-methylphenyl)ethanone, 793
1-(3-Amino-2-hydroxy-5-methylphenyl)ethanone, 793
1-(5-Amino-4-hydroxy-2-methylphenyl)ethanone, 793
1-(6-Amino-3-hydroxy-2-methylphenyl)ethanone, 794
1-[3-Hydroxy-4-(methylamino)phenyl]ethanone, 794
1-[5-Hydroxy-2-(methylamino)phenyl]ethanone, 794
$\mathrm{C}_{9} \mathrm{H}_{\mathbf{1 1}} \mathbf{N O}_{2}, \mathbf{H C l}$
1-(2-Amino-3-hydroxy-5-methylphenyl)ethanone (Hydrochloride), 792
1-(3-Amino-5-hydroxy-4-methylphenyl)ethanone (Hydrochloride), 793
1-(4-Amino-3-hydroxy-5-methylphenyl)ethanone (Hydrochloride), 793

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$

1-(2-Amino-5-hydroxy-3-methoxyphenyl)ethanone, 794
1-(3-Amino-2-hydroxy-5-methoxyphenyl)ethanone, 795
1-(3-Amino-2-hydroxy-6-methoxyphenyl)ethanone, 795
1-(5-Amino-2-hydroxy-3-methoxyphenyl)ethanone, 795
1-(5-Amino-2-hydroxy-4-methoxyphenyl)ethanone, 795

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{\mathbf{4}}, \mathbf{H C l}$

1-(3-Amino-2,4,6-trihydroxy-5-methylphenyl)ethanone (Hydrochloride), 796

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$

1-[3-Amino-2-hydroxy-5-(methylsulfonyl)phenyl]ethanone, 796
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$
1-[2,4,6-Trihydroxy-3,5-bis[(trifluoromethyl)thio]phenyl]ethanone, 796
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{8}$
1-[4-(Acetyloxy)-2-hydroxy-3,5-dinitrophenyl]ethanone, 796
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{4}$
1-[4-(Acetyloxy)-5-bromo-2-hydroxyphenyl]ethanone, 797
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{4}$
1-[5-(Acetyloxy)-4-chloro-2-hydroxyphenyl]ethanone, 797
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IO}_{4}$
1-[4-(Acetyloxy)-2-hydroxy-3-iodophenyl]ethanone, 797
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{6}$
1-[5-(Acetyloxy)-2-hydroxy-3-nitrophenyl]ethanone, 797
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}_{5}$
1-(3-Bromo-4-ethoxy-2-hydroxy-5-nitrophenyl)ethanone, 798
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$
1-(3,5-Dibromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 798
1-(3,5-Dibromo-4-hydroxy-2,6-dimethoxyphenyl)ethanone, 798
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-[3,5-Bis(chloromethyl)-2-hydroxyphenyl]ethanone, 798

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}$

1-(2,6-Dichloro-4-hydroxy-3,5-dimethoxyphenyl)ethanone, 798
1-(3,4-Dichloro-6-hydroxy-2,5-dimethoxyphenyl)ethanone, 799
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$
1-[4-(Ethenyloxy)-2-hydroxyphenyl]ethanone, 799
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
1-[2-(Acetyloxy)-3-hydroxyphenyl]ethanone, 799
1-[2-(Acetyloxy)-4-hydroxyphenyl]ethanone, 799
1-[2-(Acetyloxy)-5-hydroxyphenyl]ethanone, 800
1-[2-(Acetyloxy)-6-hydroxyphenyl]ethanone, 800
1-[3-(Acetyloxy)-2-hydroxyphenyl]ethanone, 800
1-[3-(Acetyloxy)-4-hydroxyphenyl]ethanone, 800
1-[4-(Acetyloxy)-2-hydroxyphenyl]ethanone, 801
1-[5-(Acetyloxy)-2-hydroxyphenyl]ethanone, 801
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$
1-[2-(Acetyloxy)-4,6-dihydroxyphenyl]ethanone, 802
1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]ethanone, 802
1-[5-(Acetyloxy)-2,4-dihydroxyphenyl]ethanone, 802
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
1-(5-Bromo-3-ethyl-2-hydroxyphenyl)ethanone, 802
1-(3-Bromo-2-hydroxy-4,5-dimethylphenyl)ethanone, 803
1-(3-Bromo-6-hydroxy-2,4-dimethylphenyl)ethanone, 803
1-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)ethanone, 803
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$
1-(5-Bromo-4-ethoxy-2-hydroxyphenyl)ethanone, 803
1-(3-Bromo-5-ethyl-2,4-dihydroxyphenyl)ethanone, 804
1-(3-Bromo-4-hydroxy-5-methoxy-2-methylphenyl)ethanone, 804
1-(5-Bromo-2-hydroxy-4-methoxy-3-methylphenyl)ethanone, 804
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}$
1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 804
1-(3-Bromo-4-hydroxy-2,6-dimethoxyphenyl)ethanone, 805
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5}$
1-(3-Bromo-2,5-dihydroxy-4,6-dimethoxyphenyl)ethanone, 805
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2}$
1-(3-Chloro-5-ethyl-2-hydroxyphenyl)ethanone, 805
1-(5-Chloro-3-ethyl-2-hydroxyphenyl)ethanone, 805
1-(6-Chloro-3-ethyl-2-hydroxyphenyl)ethanone, 806
1-(3-Chloro-2-hydroxy-4,6-dimethylphenyl)ethanone, 806
1-(3-Chloro-2-hydroxy-5,6-dimethylphenyl)ethanone, 806
1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)ethanone, 806
1-[3-(Chloromethyl)-2-hydroxy-5-methylphenyl]ethanone, 807
1-[4-(Chloromethyl)-2-hydroxy-3-methylphenyl]ethanone, 807
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
1-[5-Chloro-2-hydroxy-3-(methoxymethyl)phenyl]ethanone, 807
1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]ethanone, 807
1-[3-(Chloromethyl)-2-hydroxy-5-methoxyphenyl]ethanone, 808
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}$
1-(2-Chloro-4-hydroxy-3,5-dimethoxyphenyl)ethanone, 808
1-(3-Chloro-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 808
1-(3-Chloro-6-hydroxy-2,4-dimethoxyphenyl)ethanone, 809
1-(3-Chloro-6-hydroxy-2,5-dimethoxyphenyl)ethanone, 809
1-(4-Chloro-2-hydroxy-3,6-dimethoxyphenyl)ethanone, 809
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{4}$
1-(4-Fluoro-2-hydroxy-3,6-dimethoxyphenyl)ethanone, 809
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{3}$
1-(6-Ethoxy-2-hydroxy-3-iodophenyl)ethanone, 809
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{4}$
1-(2-Hydroxy-3-iodo-4,6-dimethoxyphenyl)ethanone, 810
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4}$
1-(5-Ethyl-2-hydroxy-3-nitrophenyl)ethanone, 810
1-(2-Hydroxy-3,6-dimethyl-5-nitrophenyl)ethanone, 810
1-(2-Hydroxy-4,5-dimethyl-3-nitrophenyl)ethanone, 810
1-(6-Hydroxy-2,4-dimethyl-3-nitrophenyl)ethanone, 811
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5}$
1-(4-Ethoxy-2-hydroxy-5-nitrophenyl)ethanone, 811
1-(2-Hydroxy-5-methoxy-4-methyl-3-nitrophenyl)ethanone, 811
1-(4-Hydroxy-2-methoxy-3-methyl-5-nitrophenyl)ethanone, 811
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{6}$
1-(2-Hydroxy-3,4-dimethoxy-5-nitrophenyl)ethanone, 812
1-(2-Hydroxy-3,6-dimethoxy-5-nitrophenyl)ethanone, 812
1-(2-Hydroxy-4,6-dimethoxy-3-nitrophenyl)ethanone, 812
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(2-Ethyl-4-hydroxyphenyl)ethanone, 812
1-(3-Ethyl-2-hydroxyphenyl)ethanone, 813
1-(3-Ethyl-4-hydroxyphenyl)ethanone, 813
1-(4-Ethyl-2-hydroxyphenyl)ethanone, 813
1-(4-Ethyl-3-hydroxyphenyl)ethanone, 814
1-(5-Ethyl-2-hydroxyphenyl)ethanone, 814
1-(2-Hydroxy-3,4-dimethylphenyl)ethanone, 814
1-(2-Hydroxy-3,5-dimethylphenyl)ethanone, 814
1-(2-Hydroxy-3,6-dimethylphenyl)ethanone, 815
1-(2-Hydroxy-4,5-dimethylphenyl)ethanone, 815
1-(2-Hydroxy-4,6-dimethylphenyl)ethanone, 816
1-(3-Hydroxy-2,4-dimethylphenyl)ethanone, 817
1-(4-Hydroxy-2,3-dimethylphenyl)ethanone, 818

1-(4-Hydroxy-2,5-dimethylphenyl)ethanone, 818
1-(4-Hydroxy-2,6-dimethylphenyl)ethanone, 818
1-(4-Hydroxy-3,5-dimethylphenyl)ethanone, 818
1-(5-Hydroxy-2,3-dimethylphenyl)ethanone, 819
1-(5-Hydroxy-2,4-dimethylphenyl)ethanone, 819
1-(6-Hydroxy-2,3-dimethylphenyl)ethanone, 820
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3,5-dimethylphenyl)ethanone (Clavatol), 820
1-(2,4-Dihydroxy-3,6-dimethylphenyl)ethanone, 820
1-(2,5-Dihydroxy-3,4-dimethylphenyl)ethanone, 821
1-(2,5-Dihydroxy-3,6-dimethylphenyl)ethanone, 821
1-(2,6-Dihydroxy-3,4-dimethylphenyl)ethanone, 821
1-(2,6-Dihydroxy-3,5-dimethylphenyl)ethanone, 822
1-(3,6-Dihydroxy-2,4-dimethylphenyl)ethanone, 822
1-(4,6-Dihydroxy-2,3-dimethylphenyl)ethanone, 822
1-(2-Ethoxy-6-hydroxyphenyl)ethanone, 822
1-(3-Ethoxy-4-hydroxyphenyl)ethanone, 823
1-(4-Ethoxy-2-hydroxyphenyl)ethanone, 823
1-(4-Ethoxy-3-hydroxyphenyl)ethanone, 823
1-(5-Ethoxy-2-hydroxyphenyl)ethanone, 823
1-(3-Ethyl-2,4-dihydroxyphenyl)ethanone, 824
1-(3-Ethyl-2,6-dihydroxyphenyl)ethanone, 824
1-(4-Ethyl-2,5-dihydroxyphenyl)ethanone, 824
1-(4-Ethyl-2,6-dihydroxyphenyl)ethanone, 825
1-(5-Ethyl-2,4-dihydroxyphenyl)ethanone, 825
1-(2-Hydroxy-3-methoxy-4-methylphenyl)ethanone, 825
1-(2-Hydroxy-3-methoxy-5-methylphenyl)ethanone, 826
1-(2-Hydroxy-3-methoxy-6-methylphenyl)ethanone, 826
1-(2-Hydroxy-4-methoxy-3-methylphenyl)ethanone, 826
1-(2-Hydroxy-4-methoxy-5-methylphenyl)ethanone, 827
1-(2-Hydroxy-4-methoxy-6-methylphenyl)ethanone (Acetoevernone), 827
1-(2-Hydroxy-5-methoxy-3-methylphenyl)ethanone, 827
1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethanone, 828
1-(2-Hydroxy-6-methoxy-3-methylphenyl)ethanone, 828
1-(2-Hydroxy-6-methoxy-4-methylphenyl)ethanone, 828
1-(4-Hydroxy-2-methoxy-3-methylphenyl)ethanone, 829
1-(4-Hydroxy-2-methoxy-6-methylphenyl)ethanone (Isoacetoevernone), 829
1-(4-Hydroxy-3-methoxy-5-methylphenyl)ethanone, 829
1-(4-Hydroxy-5-methoxy-2-methylphenyl)ethanone, 829
1-(5-Hydroxy-4-methoxy-2-methylphenyl)ethanone, 830
1-(6-Hydroxy-3-methoxy-2-methylphenyl)ethanone, 830
1-[2-Hydroxy-3-(methoxymethyl)phenyl]ethanone, 830
1-[2-Hydroxy-6-(methoxymethyl)phenyl]ethanone, 830
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
1-[2-Hydroxy-6-methoxy-3-(methylthio)phenyl]ethanone, 831

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$

1-(2,3-Dihydroxy-4-methoxy-6-methylphenyl)ethanone, 831
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)ethanone, 831
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)ethanone, 831
1-(3,6-Dihydroxy-2-methoxy-4-methylphenyl)ethanone, 832
1-(3,6-Dihydroxy-4-methoxy-2-methylphenyl)ethanone, 832
1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)ethanone (Pseudoaspidinol-A), 832
1-(2-Ethoxy-3,6-dihydroxyphenyl)ethanone, 833
1-(2-Ethoxy-4,6-dihydroxyphenyl)ethanone, 833
1-(4-Ethoxy-2,3-dihydroxyphenyl)ethanone, 833
1-(4-Ethoxy-2,5-dihydroxyphenyl)ethanone, 834
1-(4-Ethoxy-2,6-dihydroxyphenyl)ethanone, 834
1-(3-Ethyl-2,4,6-trihydroxyphenyl)ethanone, 834
1-(5-Ethyl-2,3,4-trihydroxyphenyl)ethanone, 834
1-(2-Hydroxy-3,4-dimethoxyphenyl)ethanone, 834
1-(2-Hydroxy-3,5-dimethoxyphenyl)ethanone, 835
1-(2-Hydroxy-3,6-dimethoxyphenyl)ethanone, 836
1-(2-Hydroxy-4,5-dimethoxyphenyl)ethanone, 836
1-(2-Hydroxy-4,5-dimethoxyphenyl)ethanone-2- ${ }^{14} \mathrm{C}, 837$
1-(2-Hydroxy-4,6-dimethoxyphenyl)ethanone (Xanthoxylin), 837
1-(3-Hydroxy-2,4-dimethoxyphenyl)ethanone, 839
1-(3-Hydroxy-2,6-dimethoxyphenyl)ethanone, 839
1-(3-Hydroxy-4,5-dimethoxyphenyl)ethanone, 839
1-(4-Hydroxy-2,5-dimethoxyphenyl)ethanone, 839
1-(4-Hydroxy-2,6-dimethoxyphenyl)ethanone, 840
1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (Acetosyringone), 840
1-(5-Hydroxy-2,4-dimethoxyphenyl)ethanone, 841
1-(6-Hydroxy-2,3-dimethoxyphenyl)ethanone, 841
1-[3-Hydroxy-5-(2-hydroxyethoxy)phenyl]ethanone, 841
1-[4-Hydroxy-3-(2-hydroxyethoxy)phenyl]ethanone, 842
1-[2-Hydroxy-4-(methoxymethoxy)phenyl]ethanone, 842
1-[2-Hydroxy-6-(methoxymethoxy)phenyl]ethanone, 842
1-(2,4,6-Trihydroxy-3,5-dimethylphenyl)ethanone, 843
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$
1-[4-Hydroxy-3-[(methylsulfonyl)methyl]phenyl]ethanone, 843
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$
1-(2,3-Dihydroxy-4,5-dimethoxyphenyl)ethanone, 843
1-(2,3-Dihydroxy-4,6-dimethoxyphenyl)ethanone, 843
1-(2,4-Dihydroxy-3,5-dimethoxyphenyl)ethanone, 844
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)ethanone, 844
1-(2,5-Dihydroxy-3,4-dimethoxyphenyl)ethanone, 844
1-(2,5-Dihydroxy-3,6-dimethoxyphenyl)ethanone, 845
1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)ethanone, 845
1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)ethanone, 845

1-(4,6-Dihydroxy-2,3-dimethoxyphenyl)ethanone, 846
1-(2-Ethoxy-3,4,6-trihydroxyphenyl)ethanone, 846
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{6}$
1-(2,4,5-Trihydroxy-3,6-dimethoxyphenyl)ethanone, 846
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
1-(3-Amino-5-ethyl-2-hydroxyphenyl)ethanone, 847
1-[4-(Dimethylamino)-2-hydroxyphenyl]ethanone, 847
1-[5-(Dimethylamino)-2-hydroxyphenyl]ethanone, 847
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$
1-(3-Amino-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 847
1-(3-Amino-6-hydroxy-2,4-dimethoxyphenyl)ethanone, 848
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}, \mathrm{HCl}$
1-(3-Amino-2-hydroxy-4,6-dimethoxyphenyl)ethanone (Hydrochloride), 848
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4}$
1-[4-(Acryloyloxy)-2-hydroxyphenyl]ethanone, 848
1-[2,4-Dihydroxy-6-(2-propynyloxy)phenyl]ethanone, 848
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{2}$
1-[3-Chloro-4-hydroxy-5-(2-propenyl)phenyl]ethanone, 849
1-[5-Chloro-2-hydroxy-3-(2-propenyl)phenyl]ethanone, 849
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{IO}_{3}$
1-[2-Hydroxy-3-iodo-4-(2-propenyloxy)phenyl]ethanone, 849
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$
1-[2-Hydroxy-3-(1-propenyl)phenyl]ethanone, 849
1-[2-Hydroxy-3-(2-propenyl)phenyl]ethanone, 850
1-[3-Hydroxy-2-(2-propenyl)phenyl]ethanone, 850
1-[3-Hydroxy-4-(1E)-1-propenylphenyl]ethanone, 850
1-[3-Hydroxy-4-(2-propenyl)phenyl]ethanone, 851
1-[4-Hydroxy-3-(1-propenyl)phenyl]ethanone, 851
1-[4-Hydroxy-3-(2-propenyl)phenyl]ethanone, 851
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]ethanone, 852
1-[2,4-Dihydroxy-5-(2-propenyl)phenyl]ethanone, 852
1-[2,5-Dihydroxy-4-(2-propenyl)phenyl]ethanone, 852
1-[2,6-Dihydroxy-3-(2-propenyl)phenyl]ethanone, 852
1-[3,6-Dihydroxy-2-(2-propenyl)phenyl]ethanone, 853
1-[2-Hydroxy-4-(2-propenyloxy)phenyl]ethanone, 853
1-[2-Hydroxy-5-(2-propenyloxy)phenyl]ethanone, 853
1-[2-Hydroxy-6-(2-propenyloxy)phenyl]ethanone, 853
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
1-[3-(Acetyloxy)-2-hydroxy-5-methylphenyl]ethanone, 854
1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]ethanone, 854
1-[4-(Acetyloxy)-2-hydroxy-6-methylphenyl]ethanone, 854

1-[5-(Acetyloxy)-2-hydroxy-4-methylphenyl]ethanone, 854
1-[2,3-Dihydroxy-4-(2-propenyloxy)phenyl]ethanone, 855
1-[2,4-Dihydroxy-6-(2-propenyloxy)phenyl]ethanone, 855
1-[2,5-Dihydroxy-4-(2-propenyloxy)phenyl]ethanone, 855
1-[2,6-Dihydroxy-4-(2-propenyloxy)phenyl]ethanone, 855
1-[3,6-Dihydroxy-2-(2-propenyloxy)phenyl]ethanone, 856
1-[2-Hydroxy-4-(oxiranylmethoxy)phenyl]ethanone, 856
1-[2-Hydroxy-5-(oxiranylmethoxy)phenyl]ethanone, 856
1-[2-Hydroxy-6-(oxiranylmethoxy)phenyl]ethanone, 856
1-[2,4,6-Trihydroxy-3-(2-propenyl)phenyl]ethanone, 857
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$
1-[2-(Acetyloxy)-4,6-dihydroxy-3-methylphenyl]ethanone, 857
1-[2-(Acetyloxy)-5-hydroxy-4-methoxyphenyl]ethanone, 857
1-[2-(Acetyloxy)-6-hydroxy-4-methoxyphenyl]ethanone, 857
1-[3-(Acetyloxy)-2-hydroxy-4-methoxyphenyl]ethanone, 857
1-[4-(Acetyloxy)-2-hydroxy-6-methoxyphenyl]ethanone, 858
1-[5-(Acetyloxy)-2-hydroxy-4-methoxyphenyl]ethanone, 858
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3}$
1-(3-Bromo-4-ethyl-2-hydroxy-5-methoxyphenyl)ethanone, 858
1-(5-Bromo-2-hydroxy-4-propoxyphenyl)ethanone, 858
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4}$
1-(3-Bromo-2-hydroxy-4,6-dimethoxy-5-methylphenyl)ethanone, 859
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{5}$
1-(3-Bromo-2-hydroxy-4,5,6-trimethoxyphenyl)ethanone, 859
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}$
1-[4-(Chloromethyl)-3-ethyl-2-hydroxyphenyl]ethanone, 859
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3}$
1-(3-Chloro-2,6-dihydroxy-5-propylphenyl)ethanone, 859
1-[2-(3-Chloropropoxy)-6-hydroxyphenyl]ethanone, 860
1-[4-(3-Chloropropoxy)-2-hydroxyphenyl]ethanone, 860
1-[4-(3-Chloropropoxy)-3-hydroxyphenyl]ethanone, 860
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{4}$
1-(3-Chloro-2-hydroxy-4,6-dimethoxy-5-methylphenyl)ethanone, 860
1-(3-Chloro-6-hydroxy-2,4-dimethoxy-5-methylphenyl)ethanone, 861
1-[3-(Chloromethyl)-2-hydroxy-4,6-dimethoxyphenyl]ethanone, 861
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}_{3}$
1-(3-Fluoro-2,6-dihydroxy-5-propylphenyl)ethanone, 861
1-(5-Fluoro-2,4-dihydroxy-3-propylphenyl)ethanone, 861
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$
1-[2-Amino-4-hydroxy-3-(2-propenyl)phenyl]ethanone, 862
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4}$
1-(2-Hydroxy-3-nitro-5-propylphenyl)ethanone, 862
1-(3-Hydroxy-4,5,6-trimethyl-2-nitrophenyl)ethanone, 862
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$
1-(2-Hydroxy-5-nitro-4-propoxyphenyl)ethanone, 862
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6}$
1-(2-Ethoxy-3,6-dihydroxy-4-methyl-5-nitrophenyl)ethanone, 863
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{2}$
1-[3-Chloro-4-hydroxy-5-[(dimethylamino)methyl]phenyl]ethanone, 863
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
1-(2-Ethyl-6-hydroxy-4-methylphenyl)ethanone, 863
1-(4-Ethyl-2-hydroxy-6-methylphenyl)ethanone, 863
1-(3-Ethyl-2-hydroxy-5-methylphenyl)ethanone, 864
1-(3-Ethyl-2-hydroxy-6-methylphenyl)ethanone, 864
1-(3-Ethyl-4-hydroxy-5-methylphenyl)ethanone, 864
1-(4-Ethyl-2-hydroxy-5-methylphenyl)ethanone, 864
1-(4-Ethyl-5-hydroxy-2-methylphenyl)ethanone, 865
1-(5-Ethyl-2-hydroxy-3-methylphenyl)ethanone, 865
1-(5-Ethyl-2-hydroxy-4-methylphenyl)ethanone, 866
1-(5-Ethyl-4-hydroxy-2-methylphenyl)ethanone, 866
1-[2-Hydroxy-3-(1-methylethyl)phenyl]ethanone, 866
1-[2-Hydroxy-4-(1-methylethyl)phenyl]ethanone, 867
1-[2-Hydroxy-5-(1-methylethyl)phenyl]ethanone, 867
1-[3-Hydroxy-4-(1-methylethyl)phenyl]ethanone, 867
1-[4-Hydroxy-3-(1-methylethyl)phenyl]ethanone, 867
1-(2-Hydroxy-3-propylphenyl)ethanone, 868
1-(2-Hydroxy-4-propylphenyl)ethanone, 868
1-(2-Hydroxy-5-propylphenyl)ethanone, 868
1-(4-Hydroxy-2-propylphenyl)ethanone, 868
1-(4-Hydroxy-3-propylphenyl)ethanone, 869
1-(2-Hydroxy-3,4,5-trimethylphenyl)ethanone, 869
1-(2-Hydroxy-3,4,6-trimethylphenyl)ethanone, 869
1-(2-Hydroxy-3,5,6-trimethylphenyl)ethanone, 870
1-(3-Hydroxy-2,4,5-trimethylphenyl)ethanone, 870
1-(3-Hydroxy-2,4,6-trimethylphenyl)ethanone, 870
1-(4-Hydroxy-2,3,5-trimethylphenyl)ethanone, 870
1-(4-Hydroxy-2,3,6-trimethylphenyl)ethanone, 871
1-(5-Hydroxy-2,3,4-trimethylphenyl)ethanone, 871
1-(6-Hydroxy-2,3,4-trimethylphenyl)ethanone, 871
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(1-methylethyl)phenyl]ethanone, 871
1-(2,3-Dihydroxy-5-propylphenyl)ethanone, 872
1-(2,4-Dihydroxy-3-propylphenyl)ethanone, 872
1-(2,4-Dihydroxy-5-propylphenyl)ethanone, 872
1-(2,5-Dihydroxy-3-propylphenyl)ethanone, 873
1-(2,5-Dihydroxy-4-propylphenyl)ethanone, 873
1-(2,6-Dihydroxy-3-propylphenyl)ethanone, 873
1-(3,6-Dihydroxy-2-propylphenyl)ethanone, 873

1-(2,5-Dihydroxy-3,4,6-trimethylphenyl)ethanone, 874
1-(2,6-Dihydroxy-3,4,5-trimethylphenyl)ethanone, 874
1-(2-Ethoxy-6-hydroxy-4-methylphenyl)ethanone, 875
1-(5-Ethyl-2,4-dihydroxy-3-methylphenyl)ethanone, 875
1-(4-Ethyl-2-hydroxy-5-methoxyphenyl)ethanone, 875
1-(4-Ethyl-2-hydroxy-6-methoxyphenyl)ethanone, 876
1-(5-Ethyl-2-hydroxy-4-methoxyphenyl)ethanone, 876
1-(2-Hydroxy-4-methoxy-3,5-dimethylphenyl)ethanone, 876
1-(2-Hydroxy-4-methoxy-3,6-dimethylphenyl)ethanone, 876
1-(4-Hydroxy-2-methoxy-3,6-dimethylphenyl)ethanone, 877
1-[2-Hydroxy-3-(methoxymethyl)-5-methylphenyl]ethanone, 877
1-[2-Hydroxy-4-(1-methylethoxy)phenyl]ethanone, 877
1-[2-Hydroxy-5-(1-methylethoxy)phenyl]ethanone, 877
1-(2-Hydroxy-4-propoxyphenyl)ethanone, 878
1-(2-Hydroxy-6-propoxyphenyl)ethanone, 878
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$
1-[3-(Ethylthio)-2-hydroxy-6-methoxyphenyl]ethanone, 878
1-[2-Hydroxy-3-(2-hydroxypropyl)-4-mercaptophenyl]ethanone, 878
1-[2-Hydroxy-3-(3-hydroxypropyl)-4-mercaptophenyl]ethanone, 879
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-3-(2-hydroxypropyl)phenyl]ethanone, 879
1-(2,6-Dihydroxy-4-methoxy-3,5-dimethylphenyl)ethanone (Mallophenone), 879
1-[2,4-Dihydroxy-3-(methoxymethyl)-5-methylphenyl]ethanone, 879
1-[3,5-Dihydroxy-4-(1-methylethoxy)phenyl]ethanone, 879
1-[3,6-Dihydroxy-2-(1-methylethoxy)phenyl]ethanone, 880
1-(2-Ethoxy-6-hydroxy-4-methoxyphenyl)ethanone, 880
1-(3-Ethoxy-2-hydroxy-6-methoxyphenyl)ethanone, 880
1-(4-Ethoxy-2-hydroxy-3-methoxyphenyl)ethanone, 880
1-(4-Ethoxy-2-hydroxy-5-methoxyphenyl)ethanone, 881
1-(4-Ethoxy-2-hydroxy-6-methoxyphenyl)ethanone, 881
1-(5-Ethoxy-2-hydroxy-4-methoxyphenyl)ethanone, 881
1-(2-Hydroxy-3,4-dimethoxy-6-methylphenyl)ethanone, 881
1-(2-Hydroxy-3,5-dimethoxy-4-methylphenyl)ethanone, 882
1-(2-Hydroxy-4,5-dimethoxy-3-methylphenyl)ethanone, 882
1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)ethanone, 882
1-(4-Hydroxy-2,6-dimethoxy-3-methylphenyl)ethanone, 883
1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)ethanone (Bancroftinone), 883
1-(6-Hydroxy-3,4-dimethoxy-2-methylphenyl)ethanone, 884
1-[2-Hydroxy-4-(2-hydroxypropoxy)phenyl]ethanone, 884
1-[4-Hydroxy-3-(2-hydroxypropoxy)phenyl]ethanone, 885
1-[2-Hydroxy-5-methoxy-3-(methoxymethyl)phenyl]ethanone, 885
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$
1-[3-[(Ethylsulfonyl)methyl]-4-hydroxyphenyl]ethanone, 885
1-[2-Hydroxy-4,6-dimethoxy-3-(methylthio)phenyl]ethanone, 885
1-[4-Hydroxy-3-[2-(methylsulfonyl)ethyl]phenyl]ethanone, 886
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[2,4-Dihydroxy-6-(2-hydroxyethyl)-3-methoxyphenyl]ethanone, 886
1-(2,5-Dihydroxy-4,6-dimethoxy-3-methylphenyl)ethanone, 886
1-[3-(2,3-Dihydroxypropoxy)-4-hydroxyphenyl]ethanone, 886
1-(2-Ethoxy-3,6-dihydroxy-4-methoxyphenyl)ethanone, 887
1-(3-Ethoxy-2,6-dihydroxy-4-methoxyphenyl)ethanone, 887
1-(4-Ethoxy-2,5-dihydroxy-3-methoxyphenyl)ethanone, 887
1-[2-Hydroxy-3-methoxy-4-(methoxymethoxy)phenyl]ethanone, 887
1-[2-Hydroxy-4-methoxy-6-(methoxymethoxy)phenyl]ethanone, 888
1-[2-Hydroxy-6-methoxy-4-(methoxymethoxy)phenyl]ethanone, 888
1-(2-Hydroxy-3,4,5-trimethoxyphenyl)ethanone, 888
1-(2-Hydroxy-3,4,6-trimethoxyphenyl)ethanone (Xanthoxylone), 888
1-(2-Hydroxy-3,5,6-trimethoxyphenyl)ethanone, 889
1-(3-Hydroxy-2,4,5-trimethoxyphenyl)ethanone, 890
1-(3-Hydroxy-2,4,6-trimethoxyphenyl)ethanone, 890
1-(3-Hydroxy-2,5,6-trimethoxyphenyl)ethanone, 890
1-(6-Hydroxy-2,3,4-trimethoxyphenyl)ethanone, 891
1-[3,4,6-Trihydroxy-2-(1-methylethoxy)pheny1]ethanone, 892
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6}$
1-(2,4-Dihydroxy-3,5,6-trimethoxyphenyl)ethanone, 892
1-(2,5-Dihydroxy-3,4,6-trimethoxyphenyl)ethanone, 892
1-(2,6-Dihydroxy-3,4,5-trimethoxyphenyl)ethanone, 893
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
1-(2-Amino-4-hydroxy-3-propylphenyl)ethanone, 893
1-(3-Amino-2-hydroxy-5-propylphenyl)ethanone, 893
1-(4-Amino-2-hydroxy-3-propylphenyl)ethanone, 893
1-[2-(Dimethylamino)-6-hydroxy-4-methylphenyl]ethanone, 894
1-[2-Hydroxy-4-(propylamino)phenyl]ethanone, 894
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$
1-[2,3-Bis(acetyloxy)-4-hydroxyphenyl]ethanone, 894
1-[2,4-Bis(acetyloxy)-6-hydroxyphenyl]ethanone, 894
1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]ethanone, 895
1-[3,4-Bis(acetyloxy)-2-hydroxyphenyl]ethanone, 895
1-[3,6-Bis(acetyloxy)-2-hydroxyphenyl]ethanone, 895
1-[4,5-Bis(acetyloxy)-2-hydroxyphenyl]ethanone, 895
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClO}_{2}$
1-[3-(2-Butenyl)-5-chloro-4-hydroxyphenyl]ethanone, 896
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{3}$
1-[5-(2-Butenyl)-2,4-dihydroxy-3-iodophenyl]ethanone, 896
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{4}$
1-[2-Hydroxy-3-iodo-6-methoxy-4-(2-propenyloxy)phenyl]ethanone, 896
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2}$
1-(3,5-Dibromo-2,4-diethyl-6-hydroxyphenyl)ethanone, 896
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}$
1-[2-Hydroxy-3-methyl-6-(1-methylethyl)-4,5-dinitrophenyl]ethanone, 897
1-[4-Hydroxy-3-methyl-6-(1-methylethyl)-2,5-dinitrophenyl]ethanone, 897
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$
1-[2-Hydroxy-5-methyl-3-(2-propenyl)phenyl]ethanone, 897
1-[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]ethanone, 897
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[3-(2-Butenyl)-2,4-dihydroxyphenyl]ethanone, 898
1-[5-(2-Butenyl)-2,4-dihydroxyphenyl]ethanone, 898
1-[4-(2-Butenyloxy)-2-hydroxyphenyl]ethanone, 898
1-[2,4-Dihydroxy-3-methyl-5-(2-propenyl)phenyl]ethanone, 898
1-[2,4-Dihydroxy-3-(1-methyl-2-propenyl)phenyl]ethanone, 899
1-[2,4-Dihydroxy-3-(2-methyl-2-propenyl)phenyl]ethanone, 899
1-[3,6-Dihydroxy-2-(2-methyl-2-propenyl)phenyl]ethanone, 899
1-[2-Hydroxy-3-methoxy-5-(2-propenyl)phenyl]ethanone, 899
1-[2-Hydroxy-4-methoxy-3-(2-propenyl)phenyl]ethanone, 900
1-[2-Hydroxy-4-methoxy-5-(2-propenyl)phenyl]ethanone, 900
1-[2-Hydroxy-5-methoxy-3-(2-propenyl)phenyl]ethanone, 900
1-[2-Hydroxy-6-methoxy-3-(2-propenyl)phenyl]ethanone, 900
1-[3-Hydroxy-6-methoxy-2-(2-propenyl)phenyl]ethanone, 901
1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]ethanone, 901
1-[2-Hydroxy-3-methyl-4-(2-propenyloxy)phenyl]ethanone, 901
1-[2-Hydroxy-4-methyl-5-(2-propenyloxy)phenyl]ethanone, 901
1-[2-Hydroxy-4-[(2-methyl-2-propenyl)oxy]phenyl]ethanone, 901
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[4-(Acetyloxy)-2-ethyl-6-hydroxyphenyl]ethanone, 902
1-[4-(Acetyloxy)-2-hydroxy-3,5-dimethylphenyl]ethanone, 902
1-[4-(Acetyloxy)-2-hydroxy-3,6-dimethylphenyl]ethanone, 902
1-[4-(Acetyloxy)-6-hydroxy-2,3-dimethylpheny]ethanone, 902
1-[5-(2-Butenyl)-2,3,4-trihydroxyphenyl]ethanone, 902
1-[2,4-Dihydroxy-3-methoxy-5-(2-propenyl)phenyl]ethanone, 903
1-[2,4-Dihydroxy-5-methoxy-3-(2-propenyl)phenyl]ethanone, 903
1-[3,6-Dihydroxy-4-methoxy-2-(2-propenyl)phenyl]ethanone, 903
1-[2-Hydroxy-3-methoxy-4-(2-propenyloxy)phenyl]ethanone, 903
1-[2-Hydroxy-4-methoxy-5-(2-propenyloxy)phenyl]ethanone, 904
1-[2-Hydroxy-5-methoxy-4-(2-propenyloxy)phenyl]ethanone, 904
1-[2-Hydroxy-6-methoxy-3-(2-propenyloxy)phenyl]ethanone, 904
1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]ethanone, 904
1-[2-Hydroxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 905
1-[2-Hydroxy-5-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 905
1-[4-Hydroxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 905
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[3-[2-(Acetyloxy)ethoxy]-4-hydroxyphenyl]ethanone, 905

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$

1-[3-(Acetyloxy)-2-hydroxy-4,6-dimethoxyphenyl]ethanone, 906
1-[3-(Acetyloxy)-6-hydroxy-2,4-dimethoxyphenyl]ethanone, 906
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BrO}_{2}$
1-(3-Bromo-4,5-diethyl-2-hydroxyphenyl)ethanone, 906
1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 906
1-[3-Bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 907
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{3}$
1-[4-(2-Bromoethoxy)-5-ethyl-2-hydroxyphenyl]ethanone, 907
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}$
1-[3-Chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 907
1-[3-Chloro-5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 907
1-[3-Chloro-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl]ethanone, 907
1-[3-Chloro-6-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 908
1-[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]ethanone, 908
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{3}$
1-[3-Chloro-5-(1,1-dimethylethyl)-2,6-dihydroxyphenyl]ethanone, 908
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{2}$
1-[3-(1,1-Dimethylethyl)-5-fluoro-4-hydroxyphenyl]ethanone, 908
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{IO}_{2}$
1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-iodophenyl]ethanone, 908
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4}$
1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-nitrophenyl]ethanone, 909
1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl]ethanone, 909
1-[2-Hydroxy-3-methyl-6-(1-methylethyl)-5-nitrophenyl]ethanone, 909
1-[4-Hydroxy-5-methyl-2-(1-methylethyl)-3-nitrophenyl]ethanone, 909
1-[2-Hydroxy-5-(1-methylpropyl)-3-nitrophenyl]ethanone, 909
1-[4-Hydroxy-3-(1-methylpropyl)-5-nitrophenyl]ethanone, 910
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$
1-[4-(2-Azidoethoxy)-5-ethyl-2-hydroxyphenyl]ethanone, 910
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
1-(5-Butyl-2-hydroxyphenyl)ethanone, 910
1-(2,4-Diethyl-6-hydroxyphenyl)ethanone, 910
1-(3,5-Diethyl-2-hydroxyphenyl)ethanone, 910
1-(3,5-Diethyl-4-hydroxyphenyl)ethanone, 911
1-(4,5-Diethyl-2-hydroxyphenyl)ethanone, 911
1-[2-(1,1-Dimethylethyl)-4-hydroxyphenyl]ethanone, 911
1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone, 911
1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]ethanone, 912
1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone, 912
1-[4-(1,1-Dimethylethyl)-3-hydroxyphenyl]ethanone, 912
1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone, 912

1-(2-Ethyl-6-hydroxy-3,5-dimethylphenyl)ethanone, 913
1-(3-Ethyl-2-hydroxy-4,5-dimethylphenyl)ethanone, 913
1-(3-Ethyl-2-hydroxy-4,6-dimethylphenyl)ethanone, 914
1-(3-Ethyl-2-hydroxy-5,6-dimethylphenyl)ethanone, 914
1-(3-Ethyl-6-hydroxy-2,5-dimethylphenyl)ethanone, 914
1-(4-Ethyl-2-hydroxy-3,5-dimethylphenyl)ethanone, 914
1-(4-Ethyl-2-hydroxy-3,6-dimethylphenyl)ethanone, 915
1-(4-Ethyl-3-hydroxy-2,6-dimethylphenyl)ethanone, 915
1-[2-Hydroxy-3-methyl-6-(1-methylethyl)phenyl]ethanone, 915
1-[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl]ethanone, 916
1-[2-Hydroxy-5-methyl-3-(1-methylethyl)phenyl]ethanone, 916
1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]ethanone, 916
1-[4-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]ethanone, 917
1-[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 917
1-[4-Hydroxy-3-methyl-2-(1-methylethyl)phenyl]ethanone, 918
1-[4-Hydroxy-3-methyl-5-(1-methylethyl)phenyl]ethanone, 918
1-[4-Hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone, 918
1-[5-Hydroxy-2-methyl-4-(1-methylethyl)phenyl]ethanone, 919
1-[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]ethanone, 919
1-(2-Hydroxy-3-methyl-5-propylphenyl)ethanone, 919
1-(4-Hydroxy-2-methyl-5-propylphenyl)ethanone, 920
1-(4-Hydroxy-3-methyl-5-propylphenyl)ethanone, 920
1-[2-Hydroxy-3-(1-methylpropyl)phenyl]ethanone, 920
1-[2-Hydroxy-5-(1-methylpropyl)phenyl]ethanone, 920
1-[4-Hydroxy-3-(1-methylpropyl)phenyl]ethanone, 921
1-(2-Hydroxy-3,4,5,6-tetramethylphenyl)ethanone, 921
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(2-Butoxy-6-hydroxyphenyl)ethanone, 921
1-(4-Butoxy-2-hydroxyphenyl)ethanone, 921
1-(5-Butoxy-2-hydroxyphenyl)ethanone, 921
1-(3-Butyl-2,6-dihydroxyphenyl)ethanone, 922
1-(5-Butyl-2,4-dihydroxyphenyl)ethanone, 922
1-(3,5-Diethyl-2,4-dihydroxyphenyl)ethanone, 922
1-(3,5-Diethyl-2,6-dihydroxyphenyl)ethanone, 922
1-[2,5-Dihydroxy-6-methyl-3-(1-methylethyl)phenyl]ethanone, 923
1-[2,4-Dihydroxy-3-(1-methylpropyl)phenyl]ethanone, 923
1-[3-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]ethanone, 923
1-[3-(1,1-Dimethylethyl)-2,6-dihydroxyphenyl]ethanone, 923
1-[4-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]ethanone, 924
1-[5-(1,1-Dimethylethyl)-2,3-dihydroxyphenyl]ethanone, 924
1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]ethanone, 924
1-(6-Ethoxy-3-ethyl-2-hydroxyphenyl)ethanone, 924
1-(2-Ethoxy-3-ethyl-6-hydroxyphenyl)ethanone, 925
1-(2-Ethyl-3,6-dihydroxy-4,5-dimethylphenyl)ethanone, 925
1-[4-Hydroxy-3-methoxy-5-(1-methylethyl)phenyl]ethanone, 925

1-(2-Hydroxy-3-methoxy-5-propylphenyl)ethanone, 925
1-(2-Hydroxy-4-methoxy-3-propylphenyl)ethanone, 926
1-(2-Hydroxy-4-methoxy-5-propylphenyl)ethanone, 926
1-(2-Hydroxy-5-methoxy-4-propylphenyl)ethanone, 926
1-(4-Hydroxy-2-methoxy-3-propylphenyl)ethanone, 926
1-(4-Hydroxy-3-methoxy-5-propylphenyl)ethanone, 927
1-(5-Hydroxy-4-methoxy-2-propylphenyl)ethanone, 927
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$
1-(2-Butoxy-3,6-dihydroxyphenyl)ethanone, 927
1-(2,4-Diethoxy-6-hydroxyphenyl)ethanone, 927
1-(2,6-Diethoxy-4-hydroxyphenyl)ethanone, 928
1-(3,4-Diethoxy-2-hydroxyphenyl)ethanone, 928
1-(3,6-Diethoxy-2-hydroxyphenyl)ethanone, 928
1-(4,5-Diethoxy-2-hydroxyphenyl)ethanone, 928
1-(3,5-Diethyl-2,4,6-trihydroxyphenyl)ethanone, 928
1-[5-(1,1-Dimethylethyl)-2,3,4-trihydroxyphenyl]ethanone, 929
1-(3-Ethyl-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 929
1-(3-Ethyl-4-hydroxy-2,6-dimethoxyphenyl)ethanone, 929
1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)ethanone, 929
1-[2-Hydroxy-4-(2-hydroxybutoxy)phenyl]ethanone, 930
1-[2-Hydroxy-3-methoxy-5-(1-methylethoxy)phenyl]ethanone, 930
1-[2-Hydroxy-4-methoxy-6-(1-methylethoxy)phenyl]ethanone, 930
1-[2-Hydroxy-6-methoxy-4-(1-methylethoxy)phenyl]ethanone, 930
1-(2-Hydroxy-4-methoxy-6-propoxyphenyl)ethanone, 931
1-(2-Hydroxy-6-methoxy-3-propoxyphenyl)ethanone, 931
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$
1-[4-Hydroxy-3-[[(1-methylethyl)sulfonyl]methyl]phenyl]ethanone, 931
1-[4-Hydroxy-3-[3-(methylsulfonyl)propyl]phenyl]ethanone, 931
1-[4-Hydroxy-3-[(propylsulfonyl)methyl]phenyl]ethanone, 931
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
1-(2,4-Diethoxy-3,6-dihydroxyphenyl)ethanone, 932
1-[2,4-Dihydroxy-6-(4-hydroxybutoxy)phenyl]ethanone, 932
1-[3,6-Dihydroxy-2-methoxy-4-(1-methylethoxy)phenyl]ethanone, 932
1-[2,4-Dihydroxy-6-(methoxymethoxy)-3,5-dimethylphenyl]ethanone, 932
1-(3-Ethoxy-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 932
1-(4-Ethoxy-2-hydroxy-3,6-dimethoxyphenyl)ethanone, 933
1-(5-Ethoxy-2-hydroxy-3,4-dimethoxyphenyl)ethanone, 933
1-(6-Ethoxy-2-hydroxy-3,4-dimethoxyphenyl)ethanone, 933
1-[6-Hydroxy-3-(2-hydroxyethyl)-2,4-dimethoxyphenyl]ethanone, 933
1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]phenyl]ethanone, 933
1-[3-Hydroxy-4-[(2-methoxyethoxy)methoxy]phenyl]ethanone, 934
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$
1-(4-Ethoxy-2,5-dihydroxy-3,6-dimethoxyphenyl)ethanone, 934
1-[6-Hydroxy-2,4-dimethoxy-3-(methoxymethoxy)phenyl]ethanone, 934

1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]ethanone, 935
1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)ethanone, 935
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$
1-[3-Amino-4-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone, 936
1-[3-Amino-6-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone, 936
1-[3-[(Dimethylamino)methyl]-4-hydroxy-5-methylphenyl]ethanone, 936
1-[2-[(1,1-Dimethylethyl)amino]-5-hydroxyphenyl]ethanone, 937
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathrm{HCl}$
1-[3-Amino-4-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone
(Hydrochloride), 936
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-5-(3-methyl-3-buten-1-ynyl)phenyl]ethanone, 937
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{IO}_{3}$
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-3-iodophenyl]ethanone, 937
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$
1-[4-Hydroxy-3-(3-methyl-1,3-butadienyl)phenyl]ethanone, 937
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxyphenyl]ethanone, 938
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[4-(Acetyloxy)-2-hydroxy-3-(2-propenyl)phenyl]ethanone, 938
1-[2,4-Dihydroxy-5-(3-hydroxy-3-methyl-1-butynyl)phenyl]ethanone, 938
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{3}$
1-[2,4-Dihydroxy-3-iodo-5-(3-methyl-2-butenyl)phenyl]ethanone, 938
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
1-[2-Hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 939
1-[3-Hydroxy-2-(3-methyl-2-butenyl)phenyl]ethanone, 939
1-[4-Hydroxy-3-(3-methyl-1-butenyl)phenyl]ethanone, 939
1-[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 939
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
1-[3-(2-Butenyl)-2-hydroxy-4-methoxyphenyl]ethanone, 940
1-[2,4-Dihydroxy-3-(3-methyl-1-butenyl)phenyl]ethanone, 940
1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 941
1-[2,4-Dihydroxy-5-(3-methyl-1-butenyl)phenyl]ethanone, 941
1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 942
1-[3,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 942
1-[4-Hydroxy-3-(3-hydroxy-3-methyl-1-butenyl)phenyl]ethanone, 942
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone, 942
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (E), 943
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (Z), 943
1-[2-Hydroxy-5-methoxy-4-methyl-3-(2-propenyl)phenyl]ethanone, 943
1-[2-Hydroxy-5-methoxy-6-methyl-3-(2-propenyl)phenyl]ethanone, 944
1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]ethanone, 944
1-[3-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]ethanone, 944
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
1-[3-(Acetyloxy)-6-hydroxy-2,4,5-trimethylphenyl]ethanone, 944
1-[3-(2-Butenyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone, 945
1-[3-(2-Butenyl)-4,6-dihydroxy-2-methoxyphenyl]ethanone, 945
1-[2,4-Dihydroxy-6-methoxy-3-(1-methyl-2-propenyl)phenyl]ethanone, 945
1-[4,6-Dihydroxy-2-methoxy-3-(1-methyl-2-propenyl)phenyl]ethanone, 945
1-[2-Hydroxy-3,4-dimethoxy-5-(2-propenyl)phenyl]ethanone, 946
1-[2-Hydroxy-4,6-dimethoxy-3-(2-propenyl)phenyl]ethanone, 946
1-[3-Hydroxy-4,6-dimethoxy-2-(2-propenyl)phenyl]ethanone, 946
1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 946
1-[2-Hydroxy-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 947
1-[2,3,4-Trihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 947
1-[2,3,4-Trihydroxy-6-(3-methyl-2-butenyl)phenyl]ethanone, 947
1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 947
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}$
1-[2,4-Dihydroxy-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 948
1-[2,6-Dihydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 948
1-[2-Hydroxy-5-methoxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 948
1-[2-Hydroxy-6-methoxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 948
1-[2,4,6-Trihydroxy-3-(tetrahydro-2H-pyran-2-yl)phenyl]ethanone, 949
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{7}$
1-[2-Hydroxy-4-(β-D-xylopyranosyloxy)phenyl]ethanone, 949
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{3}$
1-[2-[(5-Bromopentyl)oxy]-6-hydroxyphenyl]ethanone, 949
1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxy-4-methoxyphenyl]ethanone, 949
1-[4-[(5-Bromopentyl)oxy]-2-hydroxyphenyl]ethanone, 949
1-[4-(3-Bromopropoxy)-5-ethyl-2-hydroxyphenyl]ethanone, 950
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2}$
1-[3-Butyl-4-(chloromethyl)-2-hydroxyphenyl]ethanone, 950
1-[4-(Chloromethyl)-2-hydroxy-3-(2-methylpropyl)phenyl]ethanone, 950
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{3}$
1-[4-(2-Chloroethoxy)-2-hydroxy-3-propylphenyl]ethanone, 950
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$
1-[4-Hydroxy-3-(1-pyrrolidinylmethyl)phenyl]ethanone, 951
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathbf{H C l}$
1-[4-Hydroxy-3-(1-pyrrolidinylmethyl)phenyl]ethanone (Hydrochloride), 951
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$
1-[4-(3-Azidopropoxy)-5-ethyl-2-hydroxyphenyl]ethanone, 951
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
1-(5-Butyl-2-hydroxy-3-methylphenyl)ethanone, 951
1-(2,3-Diethyl-6-hydroxy-4-methylphenyl)ethanone, 951
1-(2,5-Diethyl-6-hydroxy-3-methylphenyl)ethanone, 952
1-(3,4-Diethyl-2-hydroxy-5-methylphenyl)ethanone, 952

1-(4,5-Diethyl-2-hydroxy-3-methylphenyl)ethanone, 952
1-[3,4-Dimethyl-2-hydroxy-5-(1-methylethyl)phenyl]ethanone, 952
1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]ethanone, 953
1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl]ethanone, 953
1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methylphenyl]ethanone, 953
1-[5-(1,1-Dimethylethyl)-4-hydroxy-2-methylphenyl]ethanone, 954
1-[5-(1,1-Dimethylpropyl)-2-hydroxyphenyl]ethanone, 954
1-[3-Ethyl-2-hydroxy-5-(1-methylethyl)phenyl]ethanone, 954
1-[4-Ethyl-2-hydroxy-5-(1-methylethyl)phenyl]ethanone, 954
1-[4-Ethyl-2-hydroxy-6-(1-methylethyl)phenyl]ethanone, 955
1-[6-Ethyl-2-hydroxy-3-(1-methylethyl)phenyl]ethanone, 955
1-(3-Ethyl-2-hydroxy-5-propylphenyl)ethanone, 955
1-[4-Hydroxy-3-(3-methylbutyl)phenyl]ethanone, 955
1-(2-Hydroxy-4-pentylphenyl)ethanone, 955
1-(2-Hydroxy-5-pentylphenyl)ethanone, 956
1-(4-Hydroxy-2-pentylphenyl)ethanone, 956
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(5-Butyl-2-hydroxy-4-methoxyphenyl)ethanone, 956
1-(3,5-Diethyl-2-hydroxy-6-methoxyphenyl)ethanone, 956
1-[2,4-Dihydroxy-3-(3-methylbutyl)phenyl]ethanone, 957
1-[2,4-Dihydroxy-5-(3-methylbutyl)phenyl]ethanone, 957
1-(2,4-Dihydroxy-3-pentylphenyl)ethanone, 957
1-(2,4-Dihydroxy-5-pentylphenyl)ethanone, 957
1-(2,6-Dihydroxy-4-pentylphenyl)ethanone, 958
1-[4-(1,1-Dimethylethyl)-2,3-dihydroxy-6-methylphenyl]ethanone, 958
1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methoxyphenyl]ethanone, 958
1-[5-(1,1-Dimethylethyl)-2-hydroxy-4-methoxyphenyl]ethanone, 958
1-[4-Hydroxy-3-(3-hydroxy-3-methylbutyl)phenyl]ethanone, 959
1-(2-Hydroxy-5-methoxy-4-methyl-3-propylphenyl)ethanone, 959
1-(2-Hydroxy-5-methoxy-6-methyl-3-propylphenyl)ethanone, 959
1-[2-Hydroxy-4-(pentyloxy)phenyl]ethanone, 959
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$
1-(4,6-Diethoxy-2-hydroxy-3-methylphenyl)ethanone, 960
1-(3,5-Diethyl-2,6-dihydroxy-4-methoxyphenyl)ethanone, 960
1-(3,4-Dimethoxy-6-hydroxy-2-propylphenyl)ethanone, 960
1-[2-Hydroxy-3-methoxy-4-(1-methylpropoxy)phenyl]ethanone, 960
1-[2-Hydroxy-4-(methoxymethoxy)-3-propylphenyl]ethanone, 961
1-[2,4,6-Trihydroxy-3-(3-methylbutyl)phenyl]ethanone, 961
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(2,3-Diethoxy-6-hydroxy-4-methoxyphenyl)ethanone, 961
1-(2,4-Diethoxy-6-hydroxy-3-methoxyphenyl)ethanone, 962
1-(3,6-Diethoxy-2-hydroxy-4-methoxyphenyl)ethanone, 962
1-(2,3-Dihydroxy-4,5-dimethoxy-6-propylphenyl)ethanone, 962
1-(3-Ethyl-2-hydroxy-4,5,6-trimethoxyphenyl)ethanone, 962

1-(3-Ethyl-6-hydroxy-2,4,5-trimethoxyphenyl)ethanone, 963
1-[6-Hydroxy-2,4-dimethoxy-3-(2-methoxyethyl)phenyl]ethanone, 963
1-[2-Hydroxy-3,6-dimethoxy-4-(1-methylethoxy)phenyl]ethanone, 963
1-[6-Hydroxy-2,3-dimethoxy-4-(1-methylethoxy)phenyl]ethanone, 963
1-[6-Hydroxy-2,4-dimethoxy-3-(1-methylethoxy)phenyl]ethanone, 964
1-[6-Hydroxy-3,4-dimethoxy-2-(1-methylethoxy)phenyl]ethanone, 964
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$
1-(3,6-Diethoxy-2,5-dihydroxy-4-methoxyphenyl)ethanone, 964
1-(4-Ethoxy-2-hydroxy-3,5,6-trimethoxyphenyl)ethanone, 964
1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-methylphenyl]ethanone, 965
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}$
1-[2-Hydroxy-3,4,6-trimethoxy-5-(methoxymethoxy)phenyl]ethanone, 965
1-[2-Hydroxy-3,5,6-trimethoxy-4-(methoxymethoxy)phenyl]ethanone, 965
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}$
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 965
1-[2-(Diethylamino)-6-hydroxy-4-methylphenyl]ethanone, 966
1-[6-[(1,1-Dimethylethyl)amino]-3-hydroxy-2-methylphenyl]ethanone, 966
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{HCl}$
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone
(Hydrochloride), 966
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrIO}_{3}$
1-(5-Bromo-2-hydroxy-3-iodo-4-phenoxyphenyl)ethanone, 966
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{INO}_{5}$
1-(2-Hydroxy-3-iodo-5-nitro-4-phenoxyphenyl)ethanone, 967
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$
1-(5-Bromo-2-hydroxy[1,1'-biphenyl]-3-yl)ethanone, 967
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
1-(4'-Chloro-2-hydroxy[1,1'-biphenyl]-3-yl)ethanone, 967
1-(4'-Chloro-4-hydroxy[1,1'-biphenyl]-3-yl)ethanone, 967
1-(4'-Chloro-6-hydroxy[1,1'-biphenyl]-3-yl)ethanone, 968
1-(5-Chloro-2-hydroxy[1,1'-biphenyl]-3-yl)ethanone, 968
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$
1-(4-Chloro-3,5-dihydroxy[1,1'-biphenyl]-2-yl)ethanone, 968
1-[5-(4-Chlorophenoxy)-2-hydroxyphenyl]ethanone, 968
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{3}$
1-(2-Hydroxy-3-iodo-4-phenoxyphenyl)ethanone, 969
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
1-(2-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone, 969
1-(4-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone, 969
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
1-(2,6-Dihydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone, 970

1-(2-Hydroxy-3-nitro-5-phenoxyphenyl)ethanone, 970
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(2-Hydroxy[1,1'-biphenyl]-3-yl)ethanone, 970
1-(3-Hydroxy[1,1'-biphenyl]-2-yl)ethanone, 970
1-(3-Hydroxy[1,1'-biphenyl]-4-yl)ethanone, 971
1-(4-Hydroxy[1,1'-biphenyl]-3-yl)ethanone, 971
1-(6-Hydroxy[1,1'-biphenyl]-3-yl)ethanone, 972
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(3,5-Dihydroxy[1,1'-biphenyl]-2-yl)ethanone, 972
1-(4,4'-Dihydroxy[1,1'-biphenyl]-3-yl)ethanone, 972
1-(2-Hydroxy-5-phenoxyphenyl)ethanone, 973
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(3,6-Dihydroxy-2-phenoxyphenyl)ethanone, 973
1-[2-Hydroxy-4,6-bis(2-propynyloxy)phenyl]ethanone, 973
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$
1-[2-Hydroxy-5-(phenylsulfonyl)phenyl]ethanone, 973
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$
1-[3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]ethanone, 974
1-[2-Hydroxy-5-[(4-hydroxyphenyl)sulfonyl]phenyl]ethanone, 974
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$
1-(3-Amino-5-hydroxy[1,1'-biphenyl]-2-yl)ethanone, 974
1-(5-Amino-3-hydroxy[1,1'-biphenyl]-2-yl)ethanone, 974
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{IO}_{4}$
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-3-iodo-6-methoxyphenyl]
ethanone, 975
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$
1-[2-Hydroxy-3,5-bis(2-propenyl)phenyl]ethanone, 975
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3,5-bis(2-propenyl)phenyl]ethanone, 975
1-[2,6-Dihydroxy-3,5-bis(2-propenyl)phenyl]ethanone, 976
1-[2-Hydroxy-6-methoxy-3-(3-methyl-1,3-butadienyl)phenyl]ethanone (Z), 976
1-[2-Hydroxy-3-(2-propenyl)-4-(2-propenyloxy)phenyl]ethanone, 976
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$
1-[2,6-Dihydroxy-3-(2-propenyl)-4-(2-propenyloxy)phenyl]ethanone, 977
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-5-methoxyphenyl]ethanone, 977
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-6-methoxyphenyl]ethanone, 977
1-[2-Hydroxy-4,6-bis(2-propenyloxy)phenyl]ethanone, 977
1-[2-Hydroxy-4-(oxiranylmethoxy)-3-(2-propenyl)phenyl]ethanone, 978
1-[2,4,6-Trihydroxy-3,5-bis(2-propenyl)phenyl]ethanone, 978
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$
1-[2,6-Dihydroxy-3,5-bis(2-propenyloxy)phenyl]ethanone, 978
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{IO}_{4}$
1-[2,4-Dihydroxy-3-iodo-6-methoxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 978

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$

1-(3-Cyclohexyl-4-hydroxyphenyl)ethanone, 979
1-(4-Cyclohexyl-3-hydroxyphenyl)ethanone, 979
1-(5-Cyclohexyl-2-hydroxyphenyl)ethanone, 979
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(5-Cyclohexyl-2,4-dihydroxyphenyl)ethanone, 979
1-[3-(Cyclohexyloxy)-4-hydroxyphenyl]ethanone, 980
1-[4-(Cyclohexyloxy)-3-hydroxyphenyl]ethanone, 980
1-[2,4-Dihydroxy-3-methyl-5-(3-methyl-2-butenyl)phenyl]ethanone, 980
1-[2,4-Dihydroxy-5-(2-propenyl)-3-propylphenyl]ethanone, 980
1-[2-Hydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 981
1-[2-Hydroxy-4-methoxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 981
1-[4-Hydroxy-3-(3-methoxy-3-methyl-1-butenyl)phenyl]ethanone (E), 981
1-[4-Hydroxy-3-methoxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 981
1-[2-Hydroxy-4-(2-propenyloxy)-3-propylphenyl]ethanone, 982
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$
1-[3-(Acetyloxy)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 982
1-[5-(Acetyloxy)-4-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 982
1-[3-(2-Butenyl)-2-hydroxy-4,6-dimethoxyphenyl]ethanone, 982
1-[2-(Cyclohexyloxy)-3,6-dihydroxyphenyl]ethanone, 983
1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 983
1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone (Acronylin), 983
1-[2-Hydroxy-4-methoxy-5-[(3-methyl-2-butenyl)oxy]phenyl]ethanone, 984
1-[2-Hydroxy-4-(oxiranylmethoxy)-3-propylphenyl]ethanone, 984
1-[2,4,6-Trihydroxy-3-methyl-5-(3-methyl-2-butenyl)phenyl]ethanone, 984
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
1-[2,6-Dihydroxy-4-methoxy-3-(tetrahydro- 2 H -pyran-2-yl)phenyl] ethanone, 984
1-[2-Hydroxy-4-methoxy-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]
ethanone, 985
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8}$
1-[2-(β-D-Galactopyranosyloxy)-4-hydroxyphenyl]ethanone, 985
1-[2-(β-D-Galactopyranosyloxy)-6-hydroxyphenyl]ethanone, 985
1-[3-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone, 985
1-[4-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone, 986
1-[5-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone, 986
1-[2-(β-D-Glucopyranosyloxy)-4-hydroxyphenyl]ethanone (Cynanoneside B;
Bungeiside B), 986
1-[2-(β-D-Glucopyranosyloxy)-5-hydroxyphenyl]ethanone (Bungeiside A), 987
1-[2-(β-D-Glucopyranosyloxy)-6-hydroxyphenyl]ethanone, 987
1-[3-(β-D-Glucopyranosyloxy)-4-hydroxyphenyl]ethanone, 987
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]ethanone, 987
1-[4-(β-D-Glucopyranosyloxy)-3-hydroxyphenyl]ethanone (Cynanoneside A), 988
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{9}$
1-[2-(β-D-Glucopyranosyloxy)-4,6-dihydroxyphenyl]ethanone, 988
1-[3-(β-D-Glucopyranosyloxy)-4,5-dihydroxyphenyl]ethanone, 988
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{10}$
1-[2-(β-D-Glucopyranosyloxy)-3,4,6-trihydroxyphenyl]ethanone (Lalioside), 988
1-[3-(β-D-Glucopyranosyloxy)-2,4,6-trihydroxyphenyl]ethanone
(Polygoacetophenoside), 989
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{~S}$
1-[4-[(3-Bromopropyl)thio]-2-hydroxy-3-propylphenyl]ethanone, 989
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{3}$
1-[4-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]ethanone, 989
1-[5-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]ethanone, 989
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}_{3}$
1-[4-(3-Chloropropoxy)-2-hydroxy-3-propylphenyl]ethanone, 990
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
1-[2-(Ethylamino)-5-[1-(ethylimino)ethyl]-4-hydroxyphenyl]ethanone, 990
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$
1-[5-Ethyl-2-hydroxy-4-methyl-3-(1-methylethyl)phenyl]ethanone, 990
1-[6-Ethyl-2-hydroxy-4-methyl-3-(1-methylethyl)phenyl]ethanone, 990
1-(5-Hexyl-2-hydroxyphenyl)ethanone, 991
1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]ethanone, 991
1-(2-Hydroxy-3,5-dipropylphenyl)ethanone, 991
1-(3,4,5-Triethyl-2-hydroxyphenyl)ethanone, 991
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3,5-dipropylphenyl)ethanone, 992
1-[4-Ethoxy-3-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone, 992
1-(5-Hexyl-2,4-dihydroxyphenyl)ethanone, 992
1-[3-(Hexyloxy)-4-hydroxyphenyl]ethanone, 992
1-[4-(Hexyloxy)-2-hydroxyphenyl]ethanone, 993
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[4,6-Dihydroxy-2-methoxy-3-(3-methylbutyl)phenyl]ethanone, 993
1-[2-Hydroxy-4,6-bis(1-methylethoxy)phenyl]ethanone, 993
1-[3-Hydroxy-4,6-dimethoxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 993
1-[2-Hydroxy-4,6-bis(propyloxy)phenyl]ethanone, 994
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$
1-[3,5-Diethyl-2,4-dihydroxy-6-(methoxymethoxy)phenyl]ethanone, 994
1-[3,6-Dihydroxy-2,4-bis(1-methylethoxy)phenyl]ethanone, 994
1-[4,6-Dihydroxy-3-(3-hydroxy-3-methylbutyl)-2-methoxyphenyl]ethanone, 994
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$
1-(2,4-Diethoxy-6-hydroxy-3,5-dimethoxyphenyl)ethanone, 994
1-[2-Hydroxy-3,5,6-trimethoxy-4-(1-methylethoxy)phenyl]ethanone, 995
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{8}$
1-[2-Hydroxy-3,4,6-tris(methoxymethoxy)phenyl]ethanone, 995
$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Si}$
1-[4-[[[1,1-Dimethylethyl)dimethylsilyl]oxy]-2,6-dihydroxyphenyl]
ethanone, 995
$\mathrm{C}_{15} \mathrm{H}_{10} \mathbf{N}_{2} \mathrm{O}_{8}$
1-[4-(Benzoyloxy)-2-hydroxy-3,5-dinitrophenyl]ethanone, 995
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}_{4}$
1-[4-(Benzoyloxy)-5-bromo-2-hydroxyphenyl]ethanone, 996
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{6}$
1-[4-(Benzoyloxy)-2-hydroxy-5-nitrophenyl]ethanone, 996
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrNO}_{5}$
1-[3-Bromo-2-hydroxy-5-nitro-4-(phenylmethoxy)phenyl]ethanone, 996
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}$
1-[2-[(2,4-Dichlorophenyl)methoxy]-6-hydroxyphenyl]ethanone, 996
1-[2-[(3,4-Dichlorophenyl)methoxy]-6-hydroxyphenyl]ethanone, 997
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3}$
1-[4-(2,6-Difluorophenyl)methoxy-3-hydroxyphenyl]ethanone, 997
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$
1-[2-(Benzoyloxy)-4-hydroxyphenyl]ethanone, 997
1-[2-(Benzoyloxy)-5-hydroxyphenyl]ethanone, 997
1-[2-(Benzoyloxy)-6-hydroxyphenyl]ethanone, 997
1-[3-(Benzoyloxy)-4-hydroxyphenyl]ethanone, 998
1-[4-(Benzoyloxy)-2-hydroxyphenyl]ethanone, 998
1-[5-(Benzoyloxy)-2-hydroxyphenyl]ethanone, 998
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}$
1-[2-(Benzoyloxy)-4,6-dihydroxyphenyl]ethanone, 998
1-[4-(Benzoyloxy)-2,6-dihydroxyphenyl]ethanone, 999
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3}$
1-[3-Bromo-2-hydroxy-6-(phenylmethoxy)phenyl]ethanone, 999
1-[5-Bromo-2-hydroxy-4-(phenylmethoxy)phenyl]ethanone, 999
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3}$
1-[2-Hydroxy-3-iodo-4-(phenylmethoxy)phenyl]ethanone, 999
1-[2-Hydroxy-5-iodo-4-(phenylmethoxy)phenyl]ethanone, 1000
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$
1-[2-Hydroxy-5-nitro-4-(phenylmethoxy)phenyl]ethanone, 1000
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
1-(2-Hydroxy-5-methyl[1,1'-biphenyl]-3-yl)ethanone, 1000
1-(4-Hydroxy-4'-methyl[1,1'-biphenyl]-3-yl)ethanone, 1000
1-[2-Hydroxy-5-(phenylmethyl)phenyl]ethanone, 1001
1-[4-Hydroxy-3-(phenylmethyl)phenyl]ethanone, 1001
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$
1-[3-Hydroxy-4-(phenylmethyl)thiophenyl]ethanone, 1001
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]ethanone, 1001
1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]ethanone, 1002
1-(3-Hydroxy-5-methoxy[1,1'-biphenyl]-4-yl)ethanone, 1002
1-(4-Hydroxy-4'-methoxy[1,1'-biphenyl]-3-yl)ethanone, 1003
1-[2-Hydroxy-3-(phenylmethoxy)phenyl]ethanone, 1003
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]ethanone, 1003
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]ethanone-1- ${ }^{14} \mathrm{C}, 1004$
1-[2-Hydroxy-5-(phenylmethoxy)phenyl]ethanone, 1004
1-[2-Hydroxy-6-(phenylmethoxy)phenyl]ethanone, 1004
1-[3-Hydroxy-4-(phenylmethoxy)phenyl]ethanone, 1005
1-[3-Hydroxy-5-(phenylmethoxy)phenyl]ethanone, 1005
1-[5-Hydroxy-2-(phenylmethoxy)phenyl]ethanone, 1005
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-3-[(2-hydroxyphenyl)methyl]phenyl]ethanone, 1006
1-[2,3-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone, 1006
1-[2,4-Dihydroxy-6-(phenylmethoxy)phenyl]ethanone, 1006
1-[2,5-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone, 1006
1-[2,6-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone, 1007
1-[3,6-Dihydroxy-2-(phenylmethoxy)phenyl]ethanone, 1007
1-[2,3,4-Trihydroxy-5-(phenylmethyl)phenyl]ethanone, 1007
1-[2,4,6-Trihydroxy-3-(phenylmethyl)phenyl]ethanone, 1007
1-(3,4',6-Trihydroxy-3'-methyl[1,1'-biphenyl]-2-yl)ethanone, 1008
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$
1-[2-Hydroxy-5-[(4-methylphenyl)sulfonyl]phenyl]ethanone, 1008
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[3,6-Dihydroxy-2-(4-methoxyphenoxy)phenyl]ethanone, 1008
1-(2',3,4',6-Tetrahydroxy-6'-methyl[1,1'-biphenyl]-2-yl)ethanone, 1008
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}$
1-[2,4-Dihydroxy-6-[[(4-methylphenyl)sulfonyl]oxy]phenyl]ethanone, 1009
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
1-[2-Hydroxy-4-methyl-6-(phenylamino)phenyl]ethanone, 1009
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$
1-[4-(3-Butenyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1009
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
1-[4-(Acetyloxy)-2-hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1009
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{3}$
1-[4-(4-Bromobutoxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1010
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$
1-[4-(4-Azidobutoxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1010
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[4-Butoxy-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1010

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$

1-[3-(Cyclohexyloxy)-2-hydroxy-6-methoxyphenyl]ethanone, 1010
1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1011
1-[4-Hydroxy-2,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1011
1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1011
1-[2-Hydroxy-4-(4-hydroxybutoxy)-5-(2-propenyl)phenyl]ethanone, 1011
1-[2-Hydroxy-4-(methoxymethoxy)-5-(3-methyl-2-butenyl)phenyl]ethanone, 1012
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{\text {, }}$
1-[2-(β-D-Glucopyranosyloxy)-6-hydroxy-4-methoxyphenyl]ethanone, 1012
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxyphenyl]ethanone (Annphenone), 1012
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3}$
1-[4-(4-Bromobutoxy)-2-hydroxy-3-propylphenyl]ethanone, 1013
1-[4-[(5-Bromopentyl)oxy]-5-ethyl-2-hydroxyphenyl]ethanone, 1013
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(1-methylhexyl)phenyl]ethanone, 1013
1-(2-Heptyl-4,6-dihydroxyphenyl)ethanone, 1013
1-(4-Heptyl-2,6-dihydroxyphenyl)ethanone, 1014
1-[4-(Heptyloxy)-2-hydroxyphenyl]ethanone, 1014
1-[6-Hydroxy-3-methoxy-2,4-bis(1-methylethyl)phenyl]ethanone, 1014
1-(2-Hydroxy-4-methoxy-3,5-dipropylphenyl)ethanone, 1014
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5}$
1-[6-Hydroxy-3-methoxy-2,4-bis(1-methylethoxy)phenyl]ethanone, 1015
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$
1-[4-[(5-Aminopentyl)oxy]-5-ethyl-2-hydroxyphenyl]ethanone, 1015
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[6-(Benzoyloxy)-2,4-dihydroxy-3-methylphenyl]ethanone, 1015
1-[2-(Benzoyloxy)-6-hydroxy-4-methoxyphenyl]ethanone, 1015
1-[2-Hydroxy-4-(4-methoxybenzoyloxy)phenyl]ethanone, 1016
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}$
1-[5-[[4-(Acetyloxy)phenyl]sulfonyl]-2-hydroxyphenyl]ethanone, 1016
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
1-(5-Hydroxy-3,4'-dimethyl[1,1'-biphenyl]-2-yl)ethanone, 1016
1-[2-Hydroxy-5-methyl-3-(phenylmethyl)phenyl]ethanone, 1016
1-[2-Hydroxy-4-(2-phenylethyl)phenyl]ethanone, 1017
1-[2-Hydroxy-5-(2-phenylethyl)phenyl]ethanone, 1017
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(2,2'-Dihydroxy-5,5'-dimethyl[1,1'-biphenyl]-3-yl)ethanone, 1017
1-[2,4-Dihydroxy-5-(2-phenylethyl)phenyl]ethanone, 1017
1-[2-Hydroxy-4-methoxy-3-(phenylmethyl)phenyl]ethanone, 1018
1-[2-Hydroxy-4-methoxy-5-(phenylmethyl)phenyl]ethanone, 1018
1-[2-Hydroxy-3-methyl-4-(phenylmethoxy)phenyl]ethanone, 1018
1-[2-Hydroxy-6-methyl-4-(phenylmethoxy)phenyl]ethanone, 1018

1-[2-Hydroxy-4-(2-phenylethoxy)phenyl]ethanone, 1019
1-[2-Hydroxy-5-(2-phenylethoxy)phenyl]ethanone, 1019
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-3-methyl-6-(phenylmethoxy)phenyl]ethanone, 1019
1-[2-Hydroxy-3-methoxy-4-(phenylmethoxy)phenyl]ethanone, 1019
1-[2-Hydroxy-3-methoxy-6-(phenylmethoxy)phenyl]ethanone, 1020
1-[2-Hydroxy-4-methoxy-5-(phenylmethoxy)phenyl]ethanone, 1020
1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)phenyl]ethanone, 1020
1-[2-Hydroxy-5-methoxy-4-(phenylmethoxy)phenyl]ethanone, 1020
1-[2-Hydroxy-6-methoxy-3-(phenylmethoxy)phenyl]ethanone, 1021
1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl]ethanone, 1021
1-[3-Hydroxy-4-(4-methoxybenzyloxy)phenyl]ethanone, 1021
1-[2-Hydroxy-6-(2-phenoxyethoxy)phenyl]ethanone, 1022
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
1-[2,4-Dihydroxy-3-[(2-hydroxyphenyl)methyl]-6-methoxyphenyl]ethanone, 1022
1-[2,6-Dihydroxy-3-methoxy-4-(phenylmethoxy)phenyl]ethanone, 1022
1-[3,6-Dihydroxy-2-methoxy-4-(phenylmethoxy)phenyl]ethanone, 1022
1-[3,6-Dihydroxy-4-methoxy-2-(phenylmethoxy)phenyl]ethanone, 1023
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$
1-[2-Hydroxy-4-methyl-6-[(phenylmethyl)amino]phenyl]ethanone, 1023
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$
1-[2-(Acetyloxy)-6-hydroxy-3,5-di-2-propenylphenyl]ethanone, 1023
1-[4-(Acetyloxy)-2-hydroxy-3,5-di-2-propenylphenyl]ethanone, 1023
$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrO}_{3}$
1-[4-[(5-Bromopentyl)oxy]-2-hydroxy-3-(2-propenyl)phenyl]ethanone, 1024
1-[6-[(5-Bromopentyl)oxy]-2-hydroxy-3-(2-propenyl)phenyl]ethanone, 1024
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(pentyloxy)-5-(2-propenyl)phenyl]ethanone, 1024
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$
1-[4-(Ethoxymethoxy)-2-hydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 1024
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9}$
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxy-3-methylphenyl]ethanone, 1025
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2} \mathrm{~S}$
1-[4-[(5-Bromopentyl)thio]-2-hydroxy-3-propylphenyl]ethanone, 1025
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{3}$
1-[4-[(5-Bromopentyl)oxy]-5-ethyl-2-hydroxy-3-methylphenyl]ethanone, 1025
1-[4-[(5-Bromopentyl)oxy]-2-hydroxy-3-propylphenyl]ethanone, 1025
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$
1-[2-Hydroxy-3-nitro-5-(1,1,3,3-tetramethylbutyl)phenyl]ethanone, 1026
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$
1-[2,4-Bis(1,1-dimethylethyl)-6-hydroxyphenyl]ethanone, 1026
1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1026

1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1026
1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl]ethanone, 1027
1-[2-Hydroxy-3,5-bis(2-methylpropyl)phenyl]ethanone, 1027
1-(2-Hydroxy-5-octylphenyl)ethanone, 1028
1-[2-Hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]ethanone, 1028
(2'-Hydroxy-5'-(1,1,3,3-tetramethylbutyl)acetophenone), 1028
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[4,6-Bis(1,1-dimethylethyl)-2,3-dihydroxyphenyl]ethanone, 1028
1-(2-Heptyl-6-hydroxy-4-methoxyphenyl)ethanone, 1028
1-[2-Hydroxy-4-(isooctyloxy)phenyl]ethanone, 1029
1-[2-Hydroxy-4-(sec-octyloxy)phenyl]ethanone, 1029
1-[2-Hydroxy-5-(sec-octyloxy)phenyl]ethanone, 1029
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6}$
1-[2-Hydroxy-4,5-dimethoxy-3,6-bis(1-methylethoxy)phenyl]ethanone, 1029
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[4-(Cinnamoyloxy)-2-hydroxyphenyl]ethanone, 1030
1-[2-Hydroxy-3-(2-propynyl)-4,6-bis(2-propynyloxy)phenyl]ethanone, 1030
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IO}_{3}$
1-[2-Hydroxy-5-iodo-4-phenoxy-3-(2-propenyl)phenyl]ethanone, 1030
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$
1-[2-Hydroxy-5-[(3-phenyl-2-propenyl)oxy]phenyl]ethanone, 1030
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}$
1-[4-[(3-Chlorophenyl)methoxy]-5-ethyl-2-hydroxyphenyl]ethanone, 1031
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3}$
1-[5-Ethyl-4-[(3-fluorophenyl)methoxy]-2-hydroxyphenyl]ethanone, 1031
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$
1-[2-Hydroxy-5-(3-phenylpropyl)phenyl]ethanone, 1031
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-5-(3-phenylpropyl)phenyl]ethanone, 1031
1-(5-Ethoxy-3-hydroxy-2-methyl [1,1'-biphenyl]-4-yl)ethanone, 1032
1-(5'-Ethyl-4-hydroxy-2'-methoxy-[1,1'-biphenyl]-3-yl)ethanone, 1032
1-[2-Hydroxy-5-[1-(4-hydroxyphenyl)-1-methylethyl]phenyl]ethanone, 1032
1-[2-Hydroxy-4-(3-phenylpropoxy)phenyl]ethanone, 1032
1-[2-Hydroxy-5-(3-phenylpropoxy)phenyl]ethanone, 1033
1-[2-Hydroxy-6-(3-phenylpropoxy)phenyl]ethanone, 1033
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
1-[2-Hydroxy-3,4-dimethoxy-5-(phenylmethyl)phenyl]ethanone, 1033
1-[2-Hydroxy-4-methoxy-3-[(2-methoxyphenyl)methyl]phenyl]ethanone, 1033
1-[2-Hydroxy-4-methoxy-3-methyl-6-(phenylmethoxy)phenyl]ethanone, 1034
1-[6-Hydroxy-2-methoxy-3-methyl-4-(phenylmethoxy)phenyl]ethanone, 1034
1-[2-Hydroxy-3-(3-phenoxypropoxy)phenyl]ethanone, 1034
1-[2-Hydroxy-4-[2-(phenylmethoxy)ethoxy]phenyl]ethanone, 1034
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
1-[2-Hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]ethanone, 1035
1-[2-Hydroxy-4,6-dimethoxy-3-(phenylmethoxy)phenyl]ethanone, 1035
1-[5-Hydroxy-2,4-dimethoxy-3-(phenylmethoxy)phenyl]ethanone, 1035
1-[6-Hydroxy-2,3-dimethoxy-4-(phenylmethoxy)phenyl]ethanone, 1036
1-[6-Hydroxy-2,4-dimethoxy-3-(phenylmethoxy)phenyl]ethanone, 1036
1-[6-Hydroxy-3,4-dimethoxy-2-(phenylmethoxy)phenyl]ethanone, 1036
1-(4-Hydroxy-2, $2^{\prime}, 4^{\prime}$-trimethoxy[1, 1'-biphenyl]-3-yl)ethanone, 1036
1-[2,3,4-Trihydroxy-5-[(4-hydroxy-3,5-dimethylphenyl)methyl]phenyl]ethanone, 1037
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$
1-[2,5-Dihydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]ethanone, 1037
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
1-[4'-(Dimethylamino)-5-hydroxy-3-methyl[1,1'-biphenyl]-2-yl]ethanone, 1037
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[4-(5-Hexynyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1038
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[3-(Cyclohexyloxy)-4-hydroxy-5-(2-propenyl)phenyl]ethanone, 1038
1-[4-(5-Hexenyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1038
$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrO}_{3}$
1-[4-[(6-Bromohexyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1038
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[3-(Hexyloxy)-4-hydroxy-5-(2-propenyl)phenyl]ethanone, 1039
1-[4-(Hexyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1039
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]-5-(3-methyl-2-butenyl)phenyl] ethanone, 1039
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{6}$
1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-(3-methyl-2-butenyl)phenyl]ethanone, 1040
$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BrO}_{3}$
1-[4-[(6-Bromohexyl)oxy]-2-hydroxy-3-propylphenyl]ethanone, 1040
$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}$
1-[4-[4-(Dimethylamino)butoxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1040
$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}, \mathrm{HCl}$
1-[4-[4-(Dimethylamino)butoxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone (Hydrochloride), 1040
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$
1-[2,4-Bis(1,1-dimethylethyl)-3-hydroxy-6-methylphenyl]ethanone, 1041
1-(2-Hydroxy-5-nonylphenyl)ethanone, 1041

1-(2-Hydroxy-5-tert-nonylphenyl)ethanone, 1041
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$
1-[5-Ethyl-2-hydroxy-4-[[6-(methylthio)hexyl]oxy]phenyl]ethanone, 1041
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}$
1-(3,5-Dibutyl-2,6-dihydroxy-4-methoxyphenyl)ethanone, 1042
1-[2-Hydroxy-4-[(6-hydroxyhexyl)oxy]-3-propylphenyl]ethanone, 1042
1-[2-Hydroxy-3-propyl-4,6-bis(propyloxy)phenyl]ethanone, 1042
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$
1-[5-Ethyl-2-hydroxy-4-[[6-(methylsulfinyl)hexyl]oxy]phenyl]ethanone, 1042
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}$
1-[5-Ethyl-2-hydroxy-4-[[6-(methylsulfonyl)hexyl]oxy]phenyl]ethanone, 1043
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[5-Ethyl-2-hydroxy-4-[[3-(trifluoromethyl)phenyl]methoxy]phenyl]ethanone, 1043
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$
1-[3-Hydroxy-6-methoxy-2-(2-propenyl)[1,1'-biphenyl]-4-yl]ethanone, 1043
1-[3-Hydroxy-6-methoxy-4-(2-propenyl)[1,1'-biphenyl]-2-yl]ethanone, 1043
1-[2-Hydroxy-4-(phenylmethoxy)-3-(2-propenyl)phenyl]ethanone, 1044
1-[2-Hydroxy-4-(phenylmethoxy)-5-(2-propenyl)phenyl]ethanone, 1044
1-[3-Hydroxy-6-(phenylmethoxy)-2-(2-propenyl)phenyl]ethanone, 1044
1-[6-Hydroxy-3-(phenylmethoxy)-2-(2-propenyl)phenyl]ethanone, 1044
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
1-(2'-Acetoxy-2-hydroxy-5,5'-dimethyl[1,1'-biphenyl]-3-yl)ethanone, 1044
1-[2-Hydroxy-4-(phenylmethoxy)-6-(2-propenyloxy)phenyl]ethanone, 1045
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[4-Hydroxy-3-[(2-methoxy-3-methylphenyl)methyl]-5-methylphenyl]ethanone, 1045
1-(3-Hydroxy-6-methoxy-2-propyl[1,1'-biphenyl]-4-yl)ethanone, 1045
1-(3-Hydroxy-6-methoxy-4-propyl[1,1'-biphenyl]-2-yl)ethanone, 1045
1-[2-Hydroxy-4-(4-phenylbutoxy)phenyl]ethanone, 1046
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$
1-[5-Ethyl-2-hydroxy-4-[[3-(methylthio)phenyl]methoxy]phenyl]ethanone, 1046
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[2-Hydroxy-6-(4-phenoxybutoxy)phenyl]ethanone, 1046
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}$
1-[4-Hydroxy-2-[(4-hydroxy-3-methoxyphenyl)methyl]-3,5-dimethoxyphenyl] ethanone, 1046
1-[2-Hydroxy-3,4,6-trimethoxy-5-(phenylmethoxy)phenyl]ethanone, 1047
1-[2-Hydroxy-3,5,6-trimethoxy-4-(phenylmethoxy)phenyl]ethanone, 1047
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}$
1-[4-Hydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1047
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3,5-bis-(3-methyl-2-butenyl)phenyl]ethanone, 1048
1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone, 1048
1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone (Z), 1048
1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone (E), 1048
1-[5-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone, 1049
1-[5-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone (E), 1049
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)-5-(3-methyl-2-butenyl)phenyl] ethanone (E), 1049
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)-5-(3-methyl-2-butenyl)phenyl] ethanone (Z), 1049
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$
1-[2,6-Dihydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]phenyl] ethanone, 1050
1-[4,6-Dihydroxy-3-(3-methyl-2-butenyl)-2-[(3-methyl-2-butenyl)oxy]phenyl] ethanone, 1050
1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,5-trihydroxyphenyl]ethanone (Z), 1051
1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,5-trihydroxyphenyl]ethanone $(E), 1051$
1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxyphenyl]ethanone (E), 1051
1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl]ethanone (E), 1051
1-[4-Hydroxy-3,5-bis(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (E, Z), 1052
1-[4-Hydroxy-3,5-bis(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (Z,Z), 1052
1-[2,4,6-Trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1052
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6}$
1-[2,4-Dihydroxy-3-(tetrahydro-2H-pyran-2-yl)-6-[(tetrahydro-2H-pyran-2-yl)
oxy]phenyl]ethanone, 1053
1-[2-Hydroxy-4,6-bis[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 1053
1-[2,4,6-Trihydroxy-3,5-bis(tetrahydro-2H-pyran-2-yl)phenyl]ethanone, 1053
$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrO}_{3}$
1-[4-[(7-Bromoheptyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1053
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)-3-(3-methylbutyl)phenyl]ethanone, 1054
1-[4-(Heptyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1054
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$
1-[2-Hydroxy-4-[[6-(methylthio)hexyl]oxy]-5-(2-propenyl)phenyl]ethanone, 1054
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$
1-[5-(Acetyloxy)-2-hydroxy-4-(1,1,3,3-tetramethylbutyl)phenyl]ethanone, 1054
1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)-5-(3-methylbutyl)phenyl]ethanone, 1055
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$
1-[2-Hydroxy-4-[[6-(methylsulfinyl)hexyl]oxy]-5-(2-propenyl)phenyl]ethanone, 1055
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}$
1-[2-Hydroxy-4-[[6-(methylsulfonyl)hexyl]oxy]-5-(2-propenyl)phenyl]ethanone, 1055

$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{BrO}_{3}$

1-[4-[(7-Bromoheptyl)oxy]-2-hydroxy-3-propylphenyl]ethanone, 1055
$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$
1-(4-Butoxy-5-hexyl-2-hydroxyphenyl)ethanone, 1056
1-[4-(Decyloxy)-2-hydroxyphenyl]ethanone, 1056
$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$
1-[2,4,6-Trihydroxy-3,5-bis(3-methylbutyl)phenyl]ethanone, 1056
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{3}$
1-[4-[[4-(Bromomethyl)phenyl]methoxy]-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1056
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[2-Hydroxy-4-[(3-methylphenyl)methoxy]-5-(2-propenyl)phenyl]ethanone, 1057
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[3-Hydroxy-4-methoxy-6-(phenylmethoxy)-2-(2-propenyl)phenyl]ethanone, 1057
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$
1-[4-Hydroxy-2-methyl-5-(1-methylethyl)-3-(phenylmethyl)phenyl]ethanone, 1057
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[4-Hydroxy-3-[(2-methoxy-3,5-dimethylphenyl)methyl]-5-methylphenyl] ethanone, 1057
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}$
1-[6-Hydroxy-3-methoxy-2-(1-methylethoxy)-4-(phenylmethoxy)phenyl]
ethanone, 1058
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7}$
1-[4-Hydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methyl]-3,5-dimethoxyphenyl] ethanone, 1058
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$
1-[2-(3,7-Dimethyl-2,6-octadienyl)-4-hydroxy-6-methoxyphenyl]ethanone, 1058
1-[2-Hydroxy-4-methoxy-3-(3,7-dimethyl-2,6-octadienyl)phenyl]ethanone (E), 1058
1-[2-Hydroxy-4-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1059
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1059
1-[2,4-Dihydroxy-5-methoxy-3-(3,7-dimethyl-2,6-octadienyl)phenyl]ethanone (E), 1059

1-[2,5-Dihydroxy-4-methoxy-3-(3,7-dimethyl-2,6-octadienyl)phenyl]ethanone (E), 1060
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{12}$
1-[2-Hydroxy-4-[(6-O- β-D-xylopyranosyl- β-D-glucopyranosyl)oxy]phenyl] ethanone, (Bungeiside D), 1060
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(octyloxy)-5-(2-propenyl)phenyl]ethanone, 1060
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$
1-[2-Hydroxy-4-[(6-hydroxy-6-methylheptyl)oxy]-5-(2-propenyl)phenyl]
ethanone, 1060
$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BrO}_{3}$
1-[4-[(8-Bromooctyl)oxy]-2-hydroxy-3-propylphenyl]ethanone, 1061
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7}$
1-[2,6-Bis(acetyloxy)-4-hydroxy-3-[(4-methoxyphenyl)methyl]phenyl]ethanone, 1061
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[2-Hydroxy-3-(3-methyl-2-butenyl)-4-(phenylmethoxy)phenyl]ethanone, 1061

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}$

1-[4,6-Dihydroxy-3-(3-methyl-2-butenyl)-2-[[(4-methylphenyl)sulfonyl]oxy] phenyl]ethanone, 1061
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(3-phenylpropoxy)-5-propylphenyl]ethanone, 1062
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$
1-[2-Hydroxy-4,5-dimethoxy-6-(1-methylethoxy)-3-(phenylmethoxy)phenyl] ethanone, 1062
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$
1-[2-Hydroxy-4,5-dimethoxy-3-(3,7-dimethyl-2,6-octadienyl)phenyl]ethanone (E), 1062

1-[2-Hydroxy-4-(methoxymethoxy)-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1063
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{13}$
1-[2-[(4-O- β-D-Galactopyranosyl- β-D-glucopyranosyl)oxy]-4-hydroxyphenyl] ethanone, 1063
1-[4-[(4-O- β-D-Galactopyranosyl- β-D-glucopyranosyl)oxy]-2-hydroxyphenyl] ethanone, 1063
1-[4-[(4-O- β-D-Glucopyranosyl- β-D-glucopyranosyl)oxy]-2-hydroxyphenyl] ethanone, 1064
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{14}$
1-[2,4-Bis-(β^{\prime}-D-galactopyranosyloxy)-6-hydroxyphenyl]ethanone, 1064
$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{BrO}_{3}$
1-[4-[(9-Bromononyl)oxy]-2-hydroxy-3-propylphenyl]ethanone, 1064
$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$
1-(5-Dodecyl-2-hydroxyphenyl)ethanone, 1064
$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$
1-[4-(Dodecyloxy)-2-hydroxyphenyl]ethanone, 1065
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$
1-[3-(Diphenylmethyl)-2,4-dihydroxyphenyl]ethanone, 1065
1-[5-(Diphenylmethyl)-2,4-dihydroxyphenyl]ethanone, 1065
$\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{BrO}_{3}$
1-[4-[(10-Bromodecyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1065
$\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{BrO}_{3}$
1-[4-[(10-Bromodecyl)oxy]-2-hydroxy-3-propylphenyl]ethanone, 1066
$\mathrm{C}_{22} \mathbf{H}_{6} \mathrm{~F}_{30} \mathrm{O}_{4} \mathrm{~S}_{2}$
1-[2,4,6-Trihydroxy-3,5-bis[(pentadecafluoroheptyl)thio]phenyl]ethanone, 1066
$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{6}$
1-[2,4-Bis(benzoyloxy)-6-hydroxyphenyl]ethanone, 1066
1-[3,4-Bis(benzoyloxy)-2-hydroxyphenyl]ethanone, 1066
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{IO}_{4}$
1-[2-Hydroxy-3-iodo-4,6-bis(phenylmethoxy)phenyl]ethanone, 1067
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2}$
1-[2-Hydroxy-6-methyl-3-phenyl-4-(phenylmethyl)phenyl]ethanone, 1067
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3,5-bis(phenylmethyl)phenyl]ethanone, 1067
1-[3-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]ethanone, 1067
1-[5-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]ethanone, 1068
1-[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone, 1068
1-[2-Hydroxy-4-(phenylmethoxy)-5-(phenylmethyl)phenyl]ethanone, 1068
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-6-(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone, 1068
1-[2,4-Dihydroxy-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl]ethanone, 1069
1-[2,4-Dihydroxy-5-[[2-(phenylmethoxy)phenyl]methyl]phenyl]ethanone, 1069
1-[3-(Diphenylmethyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone, 1069
1-[3-(Diphenylmethyl)-4,6-dihydroxy-2-methoxyphenyl]ethanone, 1069
1-[2-Hydroxy-3,4-bis(phenylmethoxy)phenyl]ethanone, 1070
1-[2-Hydroxy-4,5-bis(phenylmethoxy)phenyl]ethanone, 1070
1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl] ethanone, 1070
1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]ethanone- $-1{ }^{13} \mathrm{C}, 1071$
1-[4-Hydroxy-2,6-bis(phenylmethoxy)phenyl]ethanone, 1071
1-[6-Hydroxy-2,3-bis(phenylmethoxy)phenyl]ethanone, 1071
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{5}$
1-[2,5-Dihydroxy-3,4-bis(phenylmethoxy)phenyl]ethanone, 1071
$\mathrm{C}_{22} \mathbf{H}_{26} \mathbf{O}_{12}$
1-[2-Hydroxy-3-[(2,3,4,6-tetra-O-acetyl1 β-D-galactopyranosyl)oxy]phenyl] ethanone, 1072
1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl β-D-galactopyranosyl)oxy]phenyl] ethanone, 1072

1-[2-Hydroxy-5-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]phenyl] ethanone, 1072
1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]phenyl] ethanone, 1073
1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl] ethanone, 1073
1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl] ethanone, 1073
1-[4-Hydroxy-3-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl] ethanone (Tetraacetylpungenin), 1074
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{13}$
1-[2,6-Dihydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl] ethanone, 1074
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$
1-[2-Heptyl-6-hydroxy-4-(phenylmethoxy)phenyl]ethanone, 1074
$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{6}$
1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3,5-bis(3-methyl-2-butenyl)phenyl] ethanone, 1074
$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2}$
1-(2-Hydroxy-5-tetradecylphenyl)ethanone, 1075
$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5}$
1-[3-(Dodecyloxy)-2-hydroxy-4,6-dimethoxyphenyl]ethanone, 1075
1-[4-(Dodecyloxy)-2-hydroxy-3,6-dimethoxyphenyl]ethanone, 1075
1-[4-(Dodecyloxy)-6-hydroxy-2,3-dimethoxyphenyl]ethanone, 1075
$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{6}$
1-[4,6-Bis(benzoyloxy)-2-hydroxy-3-methylphenyl]ethanone, 1076
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[2-(Acetyloxy)-3-(diphenylmethyl)-4-hydroxyphenyl]ethanone, 1076
1-[2-(Acetyloxy)-5-(diphenylmethyl)-4-hydroxyphenyl]ethanone, 1076
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[2-Hydroxy-4-methoxy-3,5-bis(phenylmethyl)phenyl]ethanone, 1076
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4}$
1-[3-(Diphenylmethyl)-2-hydroxy-4,6-dimethoxyphenyl]ethanone, 1076
1-[3-(Diphenylmethyl)-6-hydroxy-2,4-dimethoxyphenyl]ethanone, 1077
1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl]ethanone, 1077
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5}$
1-[2,4-Dihydroxy-6-methoxy-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl] ethanone, 1077
1-[4,6-Dihydroxy-2-methoxy-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl] ethanone, 1078
1-[2-Hydroxy-3-[(2-hydroxyphenyl)methyl]-6-methoxy-4-(phenylmethoxy) phenyl]ethanone, 1078

1-[2,4-Dihydroxy-3-[(2-hydroxyphenyl)methyl]-6-methoxyphenyl]ethanone, monoether with benzenemethanol, 1078
1-[2-Hydroxy-3-methoxy-4,6-bis(phenylmethoxy)phenyl]ethanone, 1078
1-[2-Hydroxy-5-methoxy-3,4-bis(phenylmethoxy)phenyl]ethanone, 1079
1-[6-Hydroxy-2-methoxy-3,4-bis(phenylmethoxy)phenyl]ethanone, 1079
1-[6-Hydroxy-3-methoxy-2,4-bis(phenylmethoxy)phenyl]ethanone, 1079
1-[6-Hydroxy-4-methoxy-2,3-bis(phenylmethoxy)phenyl]ethanone, 1079
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~S}$
1-[6-Hydroxy-3-methoxy-2-[[(4-methylphenyl)sulfonyl]oxy]-4-(phenylmethoxy) phenyl]ethanone, 1080
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{13}$
1-[2-Hydroxy-6-methoxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy] phenyl]ethanone, 1080
$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-6-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]phenyl]ethanone (E,E), 1080
1-[2,6-Dihydroxy-4-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]phenyl]ethanone, 1081
1-[2,6-Dihydroxy-4-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]phenyl]ethanone (E,E), 1081
1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxy-3-(3-methyl-2-butenyl) phenyl]ethanone $(E), 1082$
1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-(3-methyl-2-butenyl) phenyl]ethanone (E), 1082
1-[2-Hydroxy-3-(3-methyl-2-butenyl)-4,6-bis[(3-methyl-2-butenyl)oxy]phenyl] ethanone, 1083
1-[2,4,6-Trihydroxy-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl)phenyl]ethanone, 1083
1-[2,4,6-Trihydroxy-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl)phenyl]ethanone (E,E), 1083
$\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BrO}_{3}$
1-[4-[(12-Bromododecyl)oxy]-2-hydroxy-3-propylphenyl]ethanone, 1084
$\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{2}$
1-(2-Hydroxy-4-pentadecylphenyl)ethanone, 1084
$\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-6-pentadecylphenyl)ethanone, 1084
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6}$
1-[2-Hydroxy-3,5-dimethoxy-4,6-bis(phenylmethoxy)phenyl]ethanone, 1084
$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{3}$
1-[4-(Hexadecyloxy)-2-hydroxyphenyl]ethanone, 1084
$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~S}$
1-[4-[[(2E)-3,7-Dimethyl-2,6-octadienyl]oxy]-2-hydroxy-6-[[(4-methylphenyl) sulfonyl]-oxy]phenyl]ethanone, 1085

1-[6-Hydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl)oxy]-2-[[(4-methylphenyl)-sulfonyl]oxy]phenyl]ethanone, 1085
$\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5}$
1-[4,6-Dihydroxy-3-(methoxymethoxy)-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl) phenyl]ethanone, 1085
$\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(octadecyloxy)phenyl]ethanone, 1086
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(phenylmethoxy)-3,5-bis(phenylmethyl)phenyl]ethanone, 1086
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{4}$
1-[2-Hydroxy-3,4-bis(phenylmethoxy)-5-(phenylmethyl)phenyl]ethanone, 1086
1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone, 1086
1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone-1- ${ }^{13} \mathrm{C}$, 1087
1-[2-Hydroxy-4-(phenylmethoxy)-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl] ethanone, 1087
1-[2-Hydroxy-4-(phenylmethoxy)-5-[[2-(phenylmethoxy)phenyl]methyl]phenyl] ethanone, 1087
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5}$
1-[2-Hydroxy-3,4,6-tris(phenylmethoxy)phenyl]ethanone, 1088
$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{5}$
1-[2-Hydroxy-5-methoxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone, 1088
1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)-3-[[2-(phenylmethoxy)phenyl] methyl]-phenyl]ethanone, 1088
$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~S}$
1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-6-hydroxy-3-(3-methyl-2-butenyl)-2-
[[(4-methyl-phenyl)sulfonyl]oxy]phenyl]ethanone (E), 1088
1-[2-Hydroxy-6-[[(4-methylphenyl)sulfonyl]oxy]-4-[[(2E,6E)-3,7,11-trimethyl-
2,6,10-dodecatrienyl]oxy]phenyl] ethanone, 1089
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{3}$
1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxyphenyl]ethanone, 1089
$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{20}$
1-[2-Hydroxy-4-[(per-O-acetyl- β-D-galactopyranosyl- β-D-glucopyranosyl)oxy] phenyl]ethanone, 1089
$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{3}$
1-[3,5-Bis(diphenylmethyl)-2-hydroxy-4-methoxyphenyl]ethanone, 1090
$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{4}$
1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone, 1090
$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{4}$
1-[2-(Acetyloxy)-3,5-bis(diphenylmethyl)-4-hydroxyphenyl]ethanone, 1090
$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{O}_{5}$
1-[2-Hydroxy-4-[[2-(phenylmethoxy)phenyl]methoxy]-3-[[2-(phenylmethoxy) phenyl]-methyl]phenyl]ethanone, 1090
$\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{22}$
1-[2-Hydroxy-4,6-bis[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]phenyl] ethanone, 1091
$\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{O}_{\text {, }}$
1-[2-Hydroxy-4,6-dimethoxy-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β-D-glucopyranosyl]-phenyl]ethanone, 1091
1 -[6-Hydroxy-2,4-dimethoxy-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β-D-glucopyranosyl]-phenyl]ethanone, 1091
$\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{O}_{\mathrm{o}}$
1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-
(phenylmethyl)- β-D-glucopyranosyl]phenyl]ethanone, 1092
1-[6-Hydroxy-4-methoxy-2-(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)-
β-D-glucopyranosyll]phenyl]ethanone, 1092
$\mathrm{C}_{56} \mathrm{H}_{54} \mathrm{O}_{\text {, }}$
1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)-
β-D-glucopyranosyl]phenyl]ethanone, 1092
1-[6-Hydroxy-2,4-bis(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)-
β-D-glucopyranosyl]phenyl]ethanone, 1092

Volume 2 - Addendum

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$

1-(2,4-Dihydroxy-3,5,6-trinitrophenyl)ethanone, 1095

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2}$

1-(3-Bromo-5-chloro-2-hydroxyphenyl)ethanone, 1095
1-(5-Bromo-3-chloro-2-hydroxyphenyl)ethanone, 1095
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4}$
1-(3-Bromo-2-hydroxy-5-nitrophenyl)ethanone, 1096
1-(5-Bromo-2-hydroxy-3-nitrophenyl)ethanone, 1096

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}$

1-(3,5-Dibromo-2-hydroxyphenyl)ethanone, 1096
1-(3,5-Dibromo-4-hydroxyphenyl)ethanone, 1096
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2}$
1-(4-Chloro-3-fluoro-2-hydroxyphenyl)ethanone, 1097
1-(4-Chloro-5-fluoro-2-hydroxyphenyl)ethanone, 1097
1-(5-Chloro-4-fluoro-2-hydroxyphenyl)ethanone, 1097
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{4}$
1-(5-Chloro-2-hydroxy-3-nitrophenyl)ethanone, 1097
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-(2,4-Dichloro-6-hydroxyphenyl)ethanone, 1097
1-(2,6-Dichloro-4-hydroxyphenyl)ethanone, 1098

1-(3,5-Dichloro-2-hydroxyphenyl)ethanone, 1098
1-(3,5-Dichloro-4-hydroxyphenyl)ethanone, 1098

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{2}$

1-(2,4-Difluoro-3-hydroxyphenyl)ethanone, 1099
1-(3,5-Difluoro-2-hydroxyphenyl)ethanone, 1099
1-(3,5-Difluoro-4-hydroxyphenyl)ethanone, 1099

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{2}$

1-(2-Hydroxy-3,5-diiodophenyl)ethanone, 1100
1-(4-Hydroxy-3,5-diiodophenyl)ethanone, 1100
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$
1-(2-Hydroxy-3,5-dinitrophenyl)ethanone, 1100
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2}$
1-(2-Bromo-4-hydroxyphenyl)ethanone, 1100
1-(2-Bromo-5-hydroxyphenyl)ethanone, 1101
1-(3-Bromo-4-hydroxyphenyl)ethanone, 1102
1-(4-Bromo-2-hydroxyphenyl)ethanone, 1102
1-(5-Bromo-2-hydroxyphenyl)ethanone, 1102

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$

1-(3-Bromo-2,4-dihydroxyphenyl)ethanone, 1103
1-(3-Bromo-2,5-dihydroxyphenyl)ethanone, 1103
1-(5-Bromo-2,4-dihydroxyphenyl)ethanone, 1103

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4}$

1-(5-Bromo-2,3,4-trihydroxyphenyl)ethanone, 1103

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$

1-(2-Chloro-3-hydroxyphenyl)ethanone, 1104
1-(2-Chloro-4-hydroxyphenyl)ethanone, 1104
1-(2-Chloro-5-hydroxyphenyl)ethanone, 1105
1-(2-Chloro-6-hydroxyphenyl)ethanone, 1105
1-(3-Chloro-2-hydroxyphenyl)ethanone, 1105
1-(3-Chloro-4-hydroxyphenyl)ethanone, 1106
1-(4-Chloro-2-hydroxyphenyl)ethanone, 1106
1-(4-Chloro-3-hydroxyphenyl)ethanone, 1107
1-(5-Chloro-2-hydroxyphenyl)ethanone, 1107
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3}$
1-(5-Chloro-2,4-dihydroxyphenyl)ethanone, 1107

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2}$

1-(2-Fluoro-4-hydroxyphenyl)ethanone, 1108
1-(2-Fluoro-6-hydroxyphenyl)ethanone, 1108
1-(3-Fluoro-2-hydroxyphenyl)ethanone, 1108
1-(3-Fluoro-4-hydroxyphenyl)ethanone, 1109
1-(4-Fluoro-2-hydroxyphenyl)ethanone, 1109
1-(4-Fluoro-3-hydroxyphenyl)ethanone, 1110
1-(5-Fluoro-2-hydroxyphenyl)ethanone, 1110

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2}$

1-(2-Hydroxy-4-iodophenyl)ethanone, 1110
1-(2-Hydroxy-5-iodophenyl)ethanone, 1111
1-(3-Hydroxy-2-iodophenyl)ethanone, 1111
1-(4-Hydroxy-2-iodophenyl)ethanone, 1111
1-(4-Hydroxy-3-iodophenyl)ethanone, 1112
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$
1-(2-Hydroxy-3-nitrophenyl)ethanone, 1112
1-(2-Hydroxy-5-nitrophenyl)ethanone, 1112
1-(3-Hydroxy-2-nitrophenyl)ethanone, 1113
1-(3-Hydroxy-4-nitrophenyl)ethanone, 1113
1-(4-Hydroxy-3-nitrophenyl)ethanone, 1113
1-(5-Hydroxy-2-nitrophenyl)ethanone, 1114

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5}$

1-(2,4-Dihydroxy-5-nitrophenyl)ethanone, 1114
1-(3,4-Dihydroxy-2-nitrophenyl)ethanone, 1114
1-(3,4-Dihydroxy-5-nitrophenyl)ethanone, 1114

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{2}$

1-(3-Amino-5-bromo-2-hydroxyphenyl)ethanone, 1115

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{CINO}_{2}$

1-(4-Chloro-2-hydroxyphenyl)ethanone (Oxime), 1106
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$
1-(2-Hydroxyphenyl)ethanone, 1115
1-(3-Hydroxypheny))ethanone, 1116
1-(4-Hydroxyphenyl)ethanone, 1116

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$

1-(2,3-Dihydroxyphenyl)ethanone, 1117
1-(2,4-Dihydroxyphenyl)ethanone, 1118
1-(2,5-Dihydroxyphenyl)ethanone, 1119
1-(2,6-Dihydroxyphenyl)ethanone, 1120
1-(3,4-Dihydroxyphenyl)ethanone, 1120
1-(3,5-Dihydroxyphenyl)ethanone, 1121
$\mathrm{C}_{8} \mathrm{H}_{\mathbf{8}} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}$
1-(3,5-Dihydroxyphenyl)ethanone (Hydrate 1:1), 1121

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$

1-(2,3,4-Trihydroxyphenyl)ethanone, 1121
1-(2,3,5-Trihydroxyphenyl)ethanone, 1122
1-(2,3,6-Trihydroxypheny)ethanone, 1122
1-(2,4,5-Trihydroxyphenyl)ethanone, 1122
1-(2,4,6-Trihydroxyphenyl)ethanone, 1123
1-(3,4,5-Trihydroxyphenyl)ethanone, 1124
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5}$
1-(2,3,4,6-Tetrahydroxyphenyl)ethanone, 1124

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{6}$

1-(Pentahydroxyphenyl)ethanone, 1125

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$

1-(2-Amino-3-hydroxyphenyl)ethanone, 1125
1-(2-Amino-4-hydroxyphenyl)ethanone, 1125
1-(3-Amino-2-hydroxyphenyl)ethanone, 1125
1-(3-Amino-4-hydroxyphenyl)ethanone, 1126
1-(4-Amino-2-hydroxyphenyl)ethanone, 1126
1-(5-Amino-2-hydroxyphenyl)ethanone, 1126

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$

1-(3-Amino-2,4-dihydroxyphenyl)ethanone, 1127
1-(2,3-Dihydroxyphenyl)ethanone (Oxime), 1118
1-(2,4-Dihydroxyphenyl)ethanone (Oxime), 1119
1-(2,5-Dihydroxyphenyl)ethanone (Oxime), 1119

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2}$

1-[2-Hydroxy-6-(trifluoromethyl)phenyl]ethanone, 1127
1-[4-Hydroxy-3-(trifluoromethyl)phenyl]ethanone, 1127
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{2}$
3-Acetyl-4-hydroxybenzonitrile, 1127
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$
1-(2,6-Dibromo-3-methoxyphenyl)ethanone, 1128
1-(3,5-Dibromo-4-methoxyphenyl)ethanone, 1096
1-(4,6-Dibromo-3-methoxyphenyl)ethanone, 1128
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-(2,4-Dichloro-6-methoxyphenyl)ethanone, 1097
1-(2,6-Dichloro-3-methoxyphenyl)ethanone, 1128
1-(2,6-Dichloro-4-methoxyphenyl)ethanone, 1098
1-(3,5-Dichloro-4-methoxyphenyl)ethanone, 1099
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$
1-(2,4-Difluoro-3-methoxyphenyl)ethanone, 1099
1-(2,5-Difluoro-4-methoxyphenyl)ethanone, 1128
1-(3,5-Difluoro-4-methoxyphenyl)ethanone, 1099
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{2}$
1-(3,5-Diiodo-4-methoxyphenyl)ethanone, 1100
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
3-Acetyl-4-hydroxybenzoic acid, 1129
5-Acetyl-2-hydroxybenzoic acid, 1129
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$
1-(3-Bromo-2-hydroxy-5-methylphenyl)ethanone, 1130
1-(2-Bromo-4-methoxyphenyl)ethanone, 1101
1-(2-Bromo-5-methoxyphenyl)ethanone, 1101
1-(3-Bromo-4-methoxyphenyl)ethanone, 1102
1-(4-Bromo-2-methoxyphenyl)ethanone, 1102
1-(5-Bromo-2-methoxyphenyl)ethanone, 1102

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$

1-(3-Bromo-2-hydroxy-5-methoxyphenyl)ethanone, 1130
1-(5-Bromo-2-hydroxy-3-methoxyphenyl)ethanone, 1131
1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone, 1131
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}_{2}$
1-(2,6-Dibromo-3-methoxyphenyl)ethanone (Oxime), 1128
1-(4,6-Dibromo-3-methoxyphenyl)ethanone (Oxime), 1128
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$
1-(3-Chloro-2-hydroxy-5-methylphenyl)ethanone, 1131
1-(3-Chloro-4-hydroxy-5-methylphenyl)ethanone, 1132
1-(5-Chloro-2-hydroxy-4-methylphenyl)ethanone, 1132
1-(2-Chloro-4-methoxyphenyl)ethanone, 1104
1-(2-Chloro-5-methoxyphenyl)ethanone, 1105
1-(3-Chloro-4-methoxyphenyl)ethanone, 1106
1-(4-Chloro-2-methoxyphenyl)ethanone, 1106
1-(4-Chloro-3-methoxyphenyl)ethanone, 1107
1-(5-Chloro-2-methoxyphenyl)ethanone, 1107
1-[3-(Chloromethyl)-4-hydroxyphenyl]ethanone, 1132
1-[5-(Chloromethyl)-2-hydroxyphenyl]ethanone, 1132
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3}$ 1-(3-Chloro-2-hydroxy-5-methoxyphenyl)ethanone, 1133
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2}$
1-(2-Fluoro-4-hydroxy-3-methylphenyl)ethanone, 1133
1-(2-Fluoro-4-methoxyphenyl)ethanone, 1108
1-(3-Fluoro-2-methoxyphenyl)ethanone, 1109
1-(3-Fluoro-4-methoxyphenyl)ethanone, 1109
1-(4-Fluoro-2-methoxyphenyl)ethanone, 1109
1-(4-Fluoro-3-methoxyphenyl)ethanone, 1110
1-(5-Fluoro-2-methoxyphenyl)ethanone, 1110
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{3}$
1-(3-Fluoro-2-hydroxy-4-methoxyphenyl)ethanone, 1133
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2}$
1-(2-Hydroxy-3-iodo-5-methylphenyl)ethanone, 1134
1-(2-Iodo-3-methoxyphenyl)ethanone, 1111
1-(2-Iodo-4-methoxyphenyl)ethanone, 1111
1-(2-Iodo-5-methoxyphenyl)ethanone, 1134
1-(3-Iodo-4-methoxyphenyl)ethanone, 1112
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}$
1-(2-Hydroxy-5-methyl-3-nitrophenyl)ethanone, 1134
1-(3-Methoxy-2-nitrophenyl)ethanone, 1113
1-(3-Methoxy-4-nitrophenyl)ethanone, 1113
1-(4-Methoxy-3-nitrophenyl)ethanone, 1113
1-(5-Methoxy-2-nitrophenyl)ethanone, 1114

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}$

1-(2-Hydroxy-3-methoxy-5-nitrophenyl)ethanone, 1134
1-(4-Hydroxy-3-methoxy-2-nitrophenyl)ethanone, 1135
1-(4-Hydroxy-5-methoxy-2-nitrophenyl)ethanone, 1135

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2}$

1-(2-Bromo-5-methoxyphenyl)ethanone (Oxime), 1101

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{2}$

1-(2-Chloro-4-methoxyphenyl)ethanone (Oxime), 1105
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$
1-(2-Hydroxy-3-methylphenyl)ethanone, 1135
1-(2-Hydroxy-4-methylphenyl)ethanone, 1136
1-(2-Hydroxy-5-methylphenyl)ethanone, 1137
1-(4-Hydroxy-2-methylphenyl)ethanone, 1138
1-(4-Hydroxy-3-methylphenyl)ethanone, 1138
1-(5-Hydroxy-2-methylphenyl)ethanone, 1139
1-(2-Methoxyphenyl)ethanone, 1115
1-(3-Methoxyphenyl)ethanone, 1116
1-(4-Methoxyphenyl)ethanone, 1116
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3-methylphenyl)ethanone, 1139
1-(2,4-Dihydroxy-5-methylphenyl)ethanone, 1139
1-(2,4-Dihydroxy-6-methylphenyl)ethanone, 1139
1-(2,5-Dihydroxy-4-methylphenyl)ethanone, 1140
1-(3,4-Dihydroxy-2-methylphenyl)ethanone, 1141
1-[4-Hydroxy-3-(hydroxymethyl)phenyl]ethanone, 1141
1-(2-Hydroxy-3-methoxyphenyl)ethanone, 1142
1-(2-Hydroxy-4-methoxyphenyl)ethanone, 1142
1-(2-Hydroxy-5-methoxyphenyl)ethanone, 1142
1-(2-Hydroxy-6-methoxyphenyl)ethanone, 1143
1-(3-Hydroxy-4-methoxyphenyl)ethanone, 1143
1-(3-Hydroxy-5-methoxyphenyl)ethanone, 1143
1-(4-Hydroxy-2-methoxyphenyl)ethanone, 1143
1-(4-Hydroxy-3-methoxyphenyl)ethanone, 1143
1-(5-Hydroxy-2-methoxyphenyl)ethanone, 1144
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$
1-(2,3-Dihydroxy-4-methoxyphenyl)ethanone, 1144
1-(2,4-Dihydroxy-6-methoxyphenyl)ethanone, 1144
1-(2,6-Dihydroxy-4-methoxyphenyl)ethanone, 1145
1-(3,6-Dihydroxy-2-methoxyphenyl)ethanone, 1145
1-(2,4,6-Trihydroxy-3-methylphenyl)ethanone, 1145
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$
1-(5-Amino-2-methoxyphenyl)ethanone, 1126
1-(3-Aminomethyl-4-hydroxyphenyl)ethanone, 1146
1-(2-Methoxyphenyl)ethanone (Oxime), 1115

1-(3-Methoxyphenyl)ethanone (Oxime), 1116
1-(4-Methoxyphenyl)ethanone (Oxime), 1117

$\mathrm{C}_{9} \mathrm{H}_{\mathbf{1 1}} \mathbf{N O}_{2}, \mathbf{H C l}$

1-(2-Amino-4-methoxyphenyl)ethanone (Hydrochloride), 1125
1-(5-Amino-2-methoxyphenyl)ethanone (Hydrochloride), 1127
1-(3-Aminomethyl-4-hydroxyphenyl)ethanone (Hydrochloride), 1146
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$
1-(2-Hydroxy-4-methoxyphenyl)ethanone (Oxime), 1142
1-(2-Hydroxy-5-methoxyphenyl)ethanone (Oxime), 1143
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{O}_{2}$
1-[2-Hydroxy-4,6-bis(trifluoromethyl)phenyl]ethanone, 1146
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$
1-(3-Ethynyl-4-hydroxyphenyl)ethanone, 1147
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$
1-[2-Hydroxy-4-methyl-6-(trifluoromethyl)phenyl]ethanone, 1147
1-[6-Hydroxy-3-methyl-2-(trifluoromethyl)phenyl]ethanone, 1147
1-[4-Methoxy-3-(trifluoromethyl)phenyl]ethanone, 1127
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$
1-[2-(Acetyloxy)phenyl]ethanone, 1115
1-[3-(Acetyloxy)phenyl]ethanone, 1116
1-[4-(Acetyloxy)phenyl]ethanone, 1117
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
3-Acetyl-4-methoxybenzoic acid, 1129
5-Acetyl-2-methoxybenzoic acid, 1130
1-(7-Methoxy-1,3-benzodioxol-5-yl)ethanone, 1147
Methyl 3-Acetyl-4-hydroxybenzoate, 1129
Methyl 5-Acetyl-2-hydroxybenzoate, 1130
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
1-(5-Bromo-4-ethyl-2-hydroxyphenyl)ethanone, 1148
1-(3-Bromo-4-methoxy-2-methylphenyl)ethanone, 1148
1-(5-Bromo-4-methoxy-2-methylphenyl)ethanone, 1148
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$
1-(3-Bromo-2,5-dimethoxyphenyl)ethanone, 1131
1-(5-Bromo-2,3-dimethoxyphenyl)ethanone, 1131
1-(5-Bromo-2,4-dimethoxyphenyl)ethanone, 1103
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}$
1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1148
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5}$
1-(5-Bromo-2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone, 1148
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2}$
1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)ethanone, 1149
1-(2-Chloro-4-methoxy-5-methylphenyl)ethanone, 1149

1-(3-Chloro-4-methoxy-5-methylphenyl)ethanone, 1132
1-(5-Chloro-4-methoxy-2-methylphenyl)ethanone, 1149
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
1-(3-Chloro-2,5-dimethoxyphenyl)ethanone, 1133
1-[2-(2-Chloroethoxy)-6-hydroxyphenyl]ethanone, 1150
1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]ethanone, 1150
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2}$
1-(2-Fluoro-4-methoxy-3-methylphenyl)ethanone, 1133
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{3}$
1-(2-Fluoro-3,4-dimethoxyphenyl)ethanone, 1150
1-(3-Fluoro-2,4-dimethoxyphenyl)ethanone, 1133
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{5}$
1-[2,4-Dihydroxy-3-iodo-6-(methoxymethoxy)phenyl]ethanone, 1150
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$
N-(3-Acetyl-4-hydroxyphenyl)acetamide, 1150
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5}$
1-(2,3-Dimethoxy-5-nitrophenyl)ethanone, 1135
1-(4,5-Dimethoxy-2-nitrophenyl)ethanone, 1151
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(2-Ethyl-4-hydroxyphenyl)ethanone, 1151
1-(3-Ethyl-4-hydroxyphenyl)ethanone, 1151
1-(4-Ethyl-2-hydroxyphenyl)ethanone, 1152
1-(4-Ethyl-3-hydroxyphenyl)ethanone, 1152
1-(5-Ethyl-2-hydroxyphenyl)ethanone, 1153
1-(2-Hydroxy-3,5-dimethylphenyl)ethanone, 1153
1-(2-Hydroxy-4,5-dimethylphenyl)ethanone, 1153
1-(2-Hydroxy-4,6-dimethylphenyl)ethanone, 1153
1-(4-Hydroxy-2,3-dimethylphenyl)ethanone, 1154
1-(4-Hydroxy-2,6-dimethylphenyl)ethanone, 1154
1-(4-Hydroxy-3,5-dimethylphenyl)ethanone, 1154
1-(2-Methoxy-3-methylphenyl)ethanone, 1135
1-(2-Methoxy-4-methylphenyl)ethanone, 1136
1-(2-Methoxy-5-methylphenyl)ethanone, 1137
1-(4-Methoxy-2-methylphenyl)ethanone, 1138
1-(4-Methoxy-3-methylphenyl)ethanone, 1138
1-(5-Methoxy-2-methylphenyl)ethanone, 1139
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3,5-dimethylphenyl)ethanone, 1155
1-(2,3-Dimethoxyphenyl)ethanone, 1118
1-(2,4-Dimethoxyphenyl)ethanone, 1118
1-(2,5-Dimethoxyphenyl)ethanone, 1119
1-(2,6-Dimethoxyphenyl)ethanone, 1120
1-(3,4-Dimethoxyphenyl)ethanone, 1120

1-(3,5-Dimethoxyphenyl)ethanone, 1121
1-(2-Ethyl-4,5-dihydroxyphenyl)ethanone, 1155
1-(3-Ethyl-2,6-dihydroxyphenyl)ethanone, 1156
1-(5-Ethyl-2,4-dihydroxyphenyl)ethanone, 1156
1-(2-Hydroxy-4-methoxy-5-methylphenyl)ethanone, 1156
1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethanone, 1156
1-(3-Hydroxy-4-methoxy-5-methylphenyl)ethanone, 1157
1-(4-Hydroxy-2-methoxy-5-methylphenyl)ethanone, 1157
1-[2-Hydroxy-5-(methoxymethyl)phenyl]ethanone, 1157
1-[4-Hydroxy-3-(methoxymethyl)phenyl]ethanone, 1157
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)ethanone, 1157
1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)ethanone, 1158
1-(2-Hydroxy-3,4-dimethoxyphenyl)ethanone, 1158
1-(2-Hydroxy-4,6-dimethoxyphenyl)ethanone, 1158
1-(6-Hydroxy-2,3-dimethoxyphenyl)ethanone, 1158
1-[2-Hydroxy-4-(2-hydroxyethoxy)phenyl]ethanone, 1159
1-[2-Hydroxy-4-(methoxymethoxy)phenyl]ethanone, 1159
1-[2-Hydroxy-5-(methoxymethoxy)phenyl]ethanone, 1159
1-(2,4,6-Trihydroxy-3,5-dimethylphenyl)ethanone, 1159
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)ethanone, 1159
1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)ethanone, 1160
1-[2,4-Dihydroxy-6-(methoxymethoxy)phenyl]ethanone, 1160
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
1-[5-(Dimethylamino)-2-hydroxyphenyl]ethanone, 1160
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$
1-(2-Amino-4,5-dimethoxyphenyl)ethanone, 1160
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{DO}_{4}$
Ethyl 3-Acetyl-2-deuterio-4-hydroxybenzoate, 1161
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2}$
1-[3-Ethyl-6-hydroxy-2-(trifluoromethyl)phenyl]ethanone, 1161
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{6}$
1-[2-(Acetyloxy)-3-methoxy-5-nitrophenyl]ethanone, 1135
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$
1-[2-Hydroxy-3-(2-propen-1-yl)phenyl]ethanone, 1161
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(2-propen-1-yl)phenyl]ethanone, 1161
1-[2,5-Dihydroxy-3-(2-propen-1-yl)phenyl]ethanone, 1162
1-[5-Hydroxy-2-(2-propen-1-yloxy)phenyl]ethanone, 1162
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
1-[5-(Acetyloxy)-2-hydroxy-4-methylphenyl]ethanone, 1162
1-[2-(Acetyloxy)-3-methoxyphenyl]ethanone, 1142

1-[2-(Acetyloxy)-4-methoxyphenyl]ethanone, 1142
1-[2-(Acetyloxy)-5-methoxyphenyl]ethanone, 1142
1-[4-(Acetyloxy)-3-methoxyphenyl]ethanone, 1144
1-(2,3-Dihydro-6-hydroxy-7-methoxy-5-benzofuranyl)ethanone, 1162
Ethyl 3-Acetyl-4-hydroxybenzoate, 1129
1-[2-Hydroxy-5-(1-oxopropoxy)phenyl]ethanone, 1162
1-[5-Hydroxy-2-(1-oxopropoxy)phenyl]ethanone, 1163
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4}$
1-(5-Bromo-2,3,4-trimethoxyphenyl)ethanone, 1104
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{5}$
1-(5-Bromo-2-hydroxy-3,4,6-trimethoxyphenyl)ethanone, 1163
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}$
1-[2-(2-Chloroethyl)-4-methoxyphenyl]ethanone, 1163
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4}$
1-(4-Ethyl-5-methoxy-2-nitrophenyl)ethanone, 1163
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{4}$
1-[2,5-Dihydroxy-3-(2-propen-1-yl)phenyl]ethanone (Oxime), 1162
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
1-(2-Ethyl-4-methoxyphenyl)ethanone, 1151
1-(3-Ethyl-4-methoxyphenyl)ethanone, 1152
1-(4-Ethyl-2-methoxyphenyl)ethanone, 1152
1-(4-Ethyl-3-methoxyphenyl)ethanone, 1152
1-[4-Hydroxy-3-(1-methylethyl)phenyl]ethanone, 1164
1-(2-Hydroxy-4-propylphenyl)ethanone, 1164
1-(4-Hydroxy-2-propylphenyl)ethanone, 1164
1-(2-Methoxy-4,6-dimethylphenyl)ethanone, 1153
1-(4-Methoxy-2,3-dimethylphenyl)ethanone, 1154
1-(4-Methoxy-2,6-dimethylphenyl)ethanone, 1154
1-(4-Methoxy-3,5-dimethylphenyl)ethanone, 1155
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-5-(1-methylethyl)phenyl]ethanone, 1165
1-(2,4-Dimethoxy-5-methylphenyl)ethanone, 1139
1-(2,4-Dimethoxy-6-methylphenyl)ethanone, 1140
1-(2,5-Dimethoxy-4-methylphenyl)ethanone, 1140
1-(3,4-Dimethoxy-2-methylphenyl)ethanone, 1141
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$
1-[2-Hydroxy-3-methyl-4-[(methylthio)methoxy]phenyl]ethanone, 1165
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[2-Hydroxy-4-(methoxymethoxy)-3-methylphenyl]ethanone, 1165
1-(2,4,6-Trihydroxy-3-propylphenyl)ethanone, 1166
1-(2,3,4-Trimethoxyphenyl)ethanone, 1122
1-(2,4,5-Trimethoxyphenyl)ethanone, 1122
1-(2,4,6-Trimethoxyphenyl)ethanone, 1123
1-(3,4,5-Trimethoxyphenyl)ethanone, 1124
$\mathrm{C}_{11}{ }^{(14)} \mathrm{CH}_{12} \mathrm{O}_{5}$
${ }^{14} \mathrm{C}$-3,5-(Diacetoxyphenyl)ethanone, 1121
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$
1-(2-Hydroxy-3,4,5-trimethoxyphenyl)ethanone, 1166
1-(2-Hydroxy-3,4,6-trimethoxyphenyl)ethanone, 1166
1-(6-Hydroxy-2,3,4-trimethoxyphenyl)ethanone, 1167
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
1-(2-Amino-4-ethyl-5-methoxyphenyl)ethanone, 1167
1-(2-Amino-5-ethyl-4-methoxyphenyl)ethanone, 1167
1-[5-(Dimethylamino)-2-methoxyphenyl]ethanone, 1160
1-[3-[(Dimethylamino)methyl]-4-hydroxyphenyl]ethanone, 1167
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{HCl}$
1-[3-[(Dimethylamino)methyl]-4-hydroxyphenyl]ethanone (Hydrochloride), 1168
$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{IO}_{6}$
8-Acetyl-5,7-dihydroxy-3-iodo-6-methoxy-4H-1-benzopyran-4-one, 1168
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(5-Hydroxy-2,3-dimethyl-6-benzofuranyl)ethanone, 1168
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(4,7-Dimethoxy-5-benzofuranyl)ethanone, 1169
1-(6-Hydroxy-7-methoxy-4-methyl-5-benzofuranyl)ethanone, 1169
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$
1-(2,3-Diacetoxyphenyl)ethanone, 1117
1-(2,4-Diacetoxyphenyl)ethanone, 1119
1-(3,4-Diacetoxyphenyl)ethanone, 1121
1-(3,5-Diacetoxyphenyl)ethanone, 1121
1-(6-Hydroxy-4,7-dimethoxy-5-benzofuranyl)ethanone, 1169
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[2-(Cyclopropylmethoxy)-6-hydroxyphenyl]ethanone, 1170
1-[4-Hydroxy-3-(1-hydroxy-3-buten-1-yl)phenyl]ethanone, 1170
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[3-(Acetyloxy)-6-hydroxy-2,4-dimethylphenyl]ethanone, 1170
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$
1-(2,3-Dihydro-6-hydroxy-4,7-dimethoxy-5-benzofuranyl)ethanone, 1171
1-[2-(Acetyloxy)-4,6-dimethoxyphenyl]ethanone, 1158
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{5}$
1-(5-Bromo-2,3,4,6-tetramethoxyphenyl)ethanone, 1163
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}$
1-[3-(2-Chloroethyl)-2,4-dimethyl-6-hydroxyphenyl]ethanone, 1171
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
1-(2-Butyl-4-hydroxyphenyl)ethanone, 1171
1-(4-Butyl-2-hydroxyphenyl)ethanone, 1171
1-(5-Butyl-2-hydroxyphenyl)ethanone, 1172
1-[4-Methoxy-3-(1-methylethyl)phenyl]ethanone, 1164
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(3,4-Diethyl-2,5-dihydroxyphenyl)ethanone, 1172
1-(2,5-Dihydroxy-3-methyl-4-propylphenyl)ethanone, 1172
1-(2,5-Dihydroxy-4-methyl-3-propylphenyl)ethanone, 1172
1-[2,4-Dihydroxy-5-(2-methylpropyl)phenyl]ethanone, 1173
1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]ethanone, 1173
1-(2-Ethyl-4,5-dimethoxyphenyl)ethanone, 1155
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$
1-[2-Hydroxy-3-methyl-4-[2-(methylthio)ethoxy]phenyl]ethanone, 1173
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$
1-[2,3-Dimethoxy-5-(methoxymethyl)phenyl]ethanone, 1174
1-[4-(Ethoxymethoxy)-2-hydroxy-3-methylphenyl]ethanone, 1174
1-(3-Ethyl-4-hydroxy-2,6-dimethoxyphenyl)ethanone, 1174
1-(2,4,6-Trimethoxy-3-methylphenyl)ethanone, 1145
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
1-[4-(Ethoxymethoxy)-2-hydroxy-6-methoxyphenyl]ethanone, 1174
1-(2,3,4,6-Tetramethoxyphenyl)ethanone, 1124
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$
1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]ethanone, 1175
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$
1-[3-[(Dimethylamino)methyl]-2-hydroxy-5-methylphenyl]ethanone, 1175
1-[3-[(Dimethylamino)methyl]-4-methoxyphenyl]ethanone, 1168
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3}$
1-[6-Hydroxy-2-(1-methylethenyl)-5-benzofuranyl]ethanone, 1175
1-[6-Hydroxy-2-(1-methylethenyl)-7-benzofuranyl]ethanone, 1176
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[(2R)-2,3-Dihydro-6-hydroxy-2-(1-methylethenyl)-5-benzofuranyl]ethanone, 1176
1-[6-Hydroxy-2-(1-methylethyl)-5-benzofuranyl]ethanone, 1177
1-(7-Hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone, 1176
1-(5-Methoxy-2,3-dimethyl-6-benzofuranyl)ethanone, 1169
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}$
1-(4-Ethoxy-6-hydroxy-7-methoxy-5-benzofuranyl)ethanone, 1177
1-(7-Ethoxy-6-hydroxy-4-methoxy-5-benzofuranyl)ethanone, 1178
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
1-[3-(1,1-Dimethyl-2-propenyl)-2-hydroxyphenyl]ethanone, 1178
1-[2-Hydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 1178
1-[4-Hydroxy-3-[(2E)-2-methyl-2-butenyl]phenyl]ethanone, 1178
1-[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1179
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(3,4-Dihydro-7-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone, 1179
1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1179
1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 1179
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
1-[3-(Acetyloxy)-6-hydroxy-2,4,5-trimethylphenyl]ethanone, 1180
1-[2-Hydroxy-5-(2,2-dimethylpropanoyloxy)phenyl]ethanone, 1180
1-[2-Hydroxy-6-[(tetrahydro-2H-pyran)-2-yl]phenyl]ethanone, 1180
1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1181
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
1-(5-Butyl-2-methoxyphenyl)ethanone, 1172
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$
1-[4-(Ethoxymethoxy)-2,6-dimethoxyphenyl]ethanone, 1175
1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]-3-methylphenyl]ethanone, 1181
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$
1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-methylphenyl]ethanone, 1181
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$
1-[4-[2-(Dimethylamino)ethoxy]-2-hydroxy-3-methylphenyl]ethanone, 1182
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathrm{HCl}$
1-[4-[2-(Dimethylamino)ethoxy]-2-hydroxy-3-methylphenyl]ethanone
(Hydrochloride 1:1), 1182
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
1-[2-Hydroxy-5-(4-nitrophenoxy)phenyl]ethanone, 1182
1-[5-Hydroxy-2-(4-nitrophenoxy)phenyl]ethanone, 1182
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-5-(phenylazo)phenyl]ethanone (E), 1182
1-[2,6-Dihydroxy-3-(phenylazo)phenyl]ethanone, 1183
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(6-Hydroxy[1,1'-biphenyl]-3-yl)ethanone, 1183
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IO}_{6}$
8-Acetyl-3-iodo-5,6,7-trimethoxy-4H-1-benzopyran-4-one, 1168
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(7-Methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone, 1177
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$
1-(7-Hydroxy-8-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone, 1183
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$
1-(4,7-Diethoxy-6-hydroxy-5-benzofuranyl)ethanone, 1184
1-(6-Hydroxy-4-methoxy-7-propoxy-5-benzofuranyl)ethanone, 1184
1-(6-Hydroxy-7-methoxy-4-propoxy-5-benzofuranyl)ethanone, 1184
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{8}$
Diethyl 5-Acetyl-2,4,6-trihydroxyphenyl-1,3-dicarboxylate, 1184
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$
1-(7-Methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone (Oxime), 1177
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$
1-[3-(Cyclopentyloxy)-2-hydroxy-4-methoxyphenyl]ethanone, 1185
1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1185

1-[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1185
1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1186
1-[2-Hydroxy-3-methyl-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 1186
1-[2-Methoxy-5-(2,2-dimethylpropanoyloxy)phenyl]ethanone, 1180
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
1-[3-[2-(Acetyloxy)ethyl]-4-ethyl-2,5-dihydroxyphenyl]ethanone, 1186
1-[4-[2-(Acetyloxy)ethyl]-3-ethyl-2,5-dihydroxyphenyl]ethanone, 1187
1-(4-(Acetyloxy)-3-ethyl-2,6-dimethoxyphenyl)ethanone, 1174
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$
1-[3-Allyl-5-(dimethylaminomethyl)-4-hydroxyphenyl]ethanone, 1187
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$
1-[4-Hydroxy-3,5-bis(1-methylethyl)phenyl]ethanone, 1187
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$
1-(2,5-Dihydroxy-3,4-dipropylphenyl)ethanone, 1187
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$
1-(2,4,6-Trimethoxy-3-propylphenyl)ethanone, 1166
$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{O}_{3}$
1-[2,4-Dichloro-6-(2,4-dichlorobenzoyloxy)phenyl]ethanone, 1098
$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{3}$
1-[4-Chloro-2-(2,4-dichlorobenzoyloxy)phenyl]ethanone, 1106
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-[2,4-Dichloro-6-(phenylmethoxy)phenyl]ethanone, 1098
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$
1-[2-(Benzoyloxy)phenyl]ethanone, 1115
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}_{5}$
1-(2-Bromo-4-methoxyphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1101
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{5}$
1-(2-Chloro-4-methoxyphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1105
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2}$
1-(6-Chloro-3-hydroxy-5-methyl[1,1'-biphenyl]-2-yl)ethanone, 1188
1-(4'-Chloro-4-methoxy[1,1'-biphenyl]-2-yl)ethanone, 1188
1-[4-Chloro-2-(phenylmethoxy)phenyl]ethanone, 1106
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{O}_{5}$
1-(2-Iodo-4-methoxyphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1112
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
1-[2-Hydroxy-6-(phenylmethyl)phenyl]ethanone, 1188
1-[2-(Phenylmethoxy)phenyl]ethanone, 1115
1-[4-(Phenylmethoxy)phenyl]ethanone, 1117
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]ethanone, 1188
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]ethanone, 1189

1-[2-Hydroxy-5-(phenylmethoxy)phenyl]ethanone, 1189
1-[2-Hydroxy-6-(phenylmethoxy)phenyl]ethanone, 1189
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[6-(Acetyloxy)-2-(1-methylethenyl)-5-benzofuranyl]ethanone, 1176
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$
1-[7-(Acetyloxy)-2,2-dimethyl-2H-1-benzopyran-6-yl]ethanone, 1176
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
1-(5,7-Dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone, 1189
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1190
1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1191
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$
1-(4-Heptyl-2,5-dihydroxyphenyl)ethanone, 1191
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}$
1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-propylphenyl]ethanone, 1191
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$
1-[4-[2-(Diethylamino)ethoxy]-2-hydroxy-3-methylphenyl]ethanone, 1192
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}, \mathrm{HCl}$
1-[4-[2-(Diethylamino)ethoxy]-2-hydroxy-3-methylphenyl]ethanone (Hydrochloride 1:1), 1192
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[2-(Benzoyloxy)-3-methylphenyl]ethanone, 1136
1-[2-(Benzoyloxy)-4-methylphenyl]ethanone, 1136
1-[2-(Benzoyloxy)-5-methylphenyl]ethanone, 1137
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[4-(Benzoyloxy)-3-methoxyphenyl]ethanone, 1144
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}$
1-[4-(Phenylmethoxy)-5-methoxy-2-nitrophenyl]ethanone, 1135
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5}$
1-(2-Ethyl-4-hydroxyphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1151
1-(4-Ethyl-2-hydroxyphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1152
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
1-[2-(Phenylmethoxy)-4-methylphenyl]ethanone, 1136
1-[2-(Phenylmethoxy)-5-methylphenyl]ethanone, 1137
1-[4-(Phenylmethoxy)-3-methylphenyl]ethanone, 1138
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(2',4'-Dimethoxy[1,1'-biphenyl]-4-yl)ethanone, 1192
1-[2-Hydroxy-3-methyl-4-(phenylmethoxy)phenyl]ethanone, 1192
1-[3-(Hydroxymethyl)-4-(phenylmethoxy)phenyl]ethanone, 1141
1-[4-methoxy-3-(phenylmethoxy)phenyl]ethanone, 1143
1-[5-Methoxy-2-(phenylmethoxy)phenyl]ethanone, 1143
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$
1-[6-Hydroxy-4-methoxy-7-(pentyloxy)-5-benzofuranyl]ethanone, 1192
1-[6-Hydroxy-7-methoxy-4-(pentyloxy)-5-benzofuranyl]ethanone, 1193
$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{6}$
1-(3-Acetyl-2-hydroxy-4,5,6-trimethoxyphenyl)-3-(dimethylamino)(2E)-2-propen-1-one, 1193
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$
1-[3-(Acetyloxy)-6-(isopropyloxy)-2,4,5-trimethylphenyl]ethanone, 1180
1-[2,4,6-Trimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1190
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$
1-[2-Hydroxy-4,5,6-trimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1193
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9}$
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxy-3-methylphenyl]ethanone, 1193
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$
1-[2-Hydroxy-4,6-dimethoxy-3-(1-methyl-4-piperidinyl)phenyl]ethanone, 1194
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1194
1-[4-Ethoxy-3,5-bis(1-methylethyl)phenyl]ethanone, 1187
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{7}$
1-(5-Bromo-2,3,4-trimethoxyphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1104
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$
1-(2-Hydroxy-4-propylphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1164
1-(4-Hydroxy-2-propylphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1165
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-methoxyphenyl]ethanone, 1194
1-(2-Hydroxy-5-nonylphenyl)ethanone, 1194
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$
1-[2,4-(Diacetyloxy)-5-(phenylazo)phenyl]ethanone (E), 1182
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5}$
1-[6-Hydroxy-4-methoxy-7-(phenylmethoxy)-5-benzofuranyl]ethanone, 1194
1-[6-Hydroxy-7-methoxy-4-(phenylmethoxy)-5-benzofuranyl]ethanone, 1195
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
1-(6-Hydroxy-4,7-dimethoxy-5-benzofuranyl)ethanone (Phenylhydrazone), 1169
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}$
1-(4-Butyl-2-hydroxyphenyl)ethanone (2,4-Dinitrophenylhydrazone), 1172
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$
1-[3'-(1,1-Dimethylethyl)-2'-hydroxy[1,1'-biphenyl]-4-yl]ethanone, 1195
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
1-[4-Hydroxy-3-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-5-methoxyphenyl] ethanone, 1195
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1195
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1196
1-[2,6-Dihydroxy-4-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1196
1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone (E), 1196
$\mathrm{C}_{20} \mathrm{H}_{16} \mathbf{N}_{4} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3,5-bis(phenylazo)phenyl]ethanone (E), 1197
1-[2,6-Dihydroxy-3,5-bis(phenylazo)phenyl]ethanone (E), 1197
$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$
1-[6-(Benzoyloxy)-4-ethoxy-7-methoxy-5-benzofuranyl]ethanone, 1178
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[4,5-Dimethoxy-2-[(3,4-dimethoxyphenyl)ethyl]phenyl]ethanone, 1197
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}$
1-[6-(Phenylmethoxy)[1,1'-biphenyl]-3-yl]ethanone, 1183
$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{13}$
1-[4-[(6-O-L-Arabinofuranosyl- β-D-glucopyranosyl)oxy]-2-hydroxy-6-methoxy-
3-methylphenyl]ethanone, 1198
$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}$
1-[3-(1-Ethoxy-3-methylbutyl)-4,6-dihydroxy-2-methoxy-5-(3-methyl-
2-butenyl)phenyl]ethanone, 1198
$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{5}$
1-[2,5-Bis(benzoyloxy)phenyl]ethanone, 1119
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrO}_{3}$
1-[5-Bromo-2,4-bis(phenylmethoxy)phenyl]ethanone, 1103
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClO}_{3}$
1-[5-Chloro-2,4-bis(phenylmethoxy)phenyl]ethanone, 1108
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[2,4-Bis(phenylmethoxy)phenyl]ethanone, 1119
1-[2,6-Bis(phenylmethoxy)phenyl]ethanone, 1120
$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[2-(Benzoyloxy)-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1191
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[2,5-Bis(phenylmethoxy)-4-methylphenyl]ethanone, 1140
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$
1-[2,4-(Diacetyloxy)-3,5-bis(3-methyl-2-butenyl)-6-methoxyphenyl]ethanone, 1196
$\mathrm{C}_{24} \mathrm{H}_{20} \mathbf{N}_{4} \mathrm{O}_{5}$
1-[2,4-(Diacetyloxy)-3,5-bis(phenylazo)phenyl]ethanone (E), 1197
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[5-Ethyl-2,4-bis(phenylmethoxy)phenyl]ethanone, 1156
$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3}$
1-[5-(1-Methylethyl)-2,4-bis(phenylmethoxy)phenyl]ethanone, 1165
$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3}$
1-[2,4-Bis(phenylmethoxy)-5-(2-methylpropyl)phenyl]ethanone, 1173
1-[5-(1,1-Dimethylethyl)-2,4-bis(phenylmethoxy)phenyl]ethanone, 1173
$\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{O}_{7}$
1-[2,4,6-Tris(benzoyloxy)phenyl]ethanone, 1123

Volume 3

$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(3,5-Dibromo-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1266

$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Br}_{5} \mathrm{O}_{2}$

2,2,2-Tribromo-1-(3,5-dibromo-2-hydroxyphenyl)ethanone, 1228

$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{O}_{3}$

1-(3,5-Dichloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1266
$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}$
1-(2,4-Dihydroxy-3,5-dinitrophenyl)-2,2,2-trifluoroethanone, 1266
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrF}_{3} \mathrm{O}_{2}$
1-(3-Bromo-4-hydroxyphenyl)-2,2,2-trifluoroethanone, 1267

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrF}_{3} \mathrm{O}_{3}$

1-(5-Bromo-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1267
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{I}_{2} \mathrm{O}_{2}$
2,2-Dibromo-1-(4-hydroxy-3,5-diiodophenyl)ethanone, 1224
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$
2,2-Dibromo-1-(4-hydroxy-3,5-dinitrophenyl)ethanone, 1224
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{3} \mathrm{NO}_{4}$
2,2-Dibromo-1-(3-bromo-4-hydroxy-5-nitrophenyl)ethanone, 1224
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{4} \mathrm{O}_{2}$
2,2-Dibromo-1-(3,5-dibromo-2-hydroxyphenyl)ethanone, 1224
2,2-Dibromo-1-(3,5-dibromo-4-hydroxyphenyl)ethanone, 1225
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{4} \mathrm{O}_{3}$
2,2-Dibromo-1-(3,5-dibromo-2,4-dihydroxyphenyl)ethanone, 1225
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{O}_{3}$
1-(3-Chloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1267
1-(5-Chloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1267
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$
2,2-Dichloro-1-(4-hydroxy-3,5-dinitrophenyl)ethanone, 1254
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{NO}_{4}$
2,2-Dichloro-1-(3-chloro-4-hydroxy-5-nitrophenyl)ethanone, 1255
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}$
2,2-Dichloro-1-(3,5-dichloro-2-hydroxyphenyl)ethanone, 1255

2,2-Dichloro-1-(3,5-dichloro-4-hydroxyphenyl)ethanone, 1255
2,2,2-Trichloro-1-(5-chloro-2-hydroxyphenyl)ethanone, 1259
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{IO}_{2}$
2,2,2-Trifluoro-1-(4-hydroxy-3-iodophenyl)ethanone, 1267
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{NO}_{5}$
1-(2,4-Dihydroxy-5-nitrophenyl)-2,2,2-trifluoroethanone, 1268
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrClIO}_{2}$
1-(3-Bromo-5-chloro-2-hydroxyphenyl)-2-iodoethanone, 1288
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrI}_{2} \mathrm{O}_{2}$
2-Bromo-1-(2-hydroxy-3,5-diiodophenyl)ethanone, 1201
2-Bromo-1-(4-hydroxy-3,5-diiodophenyl)ethanone, 1201
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{O}_{6}$
2-Bromo-1-(4-hydroxy-3,5-dinitrophenyl)ethanone, 1201
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}_{4}$
2,2-Dibromo-1-(4-hydroxy-3-nitrophenyl)ethanone, 1225

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2}$

2-Bromo-1-(3,5-dibromo-2-hydroxyphenyl)ethanone, 1202
2-Bromo-1-(3,5-dibromo-4-hydroxyphenyl)ethanone, 1202
2,2-Dibromo-1-(3-bromo-4-hydroxyphenyl)ethanone, 1225
2,2-Dibromo-1-(5-bromo-2-hydroxyphenyl)ethanone, 1226
2,2,2-Tribromo-1-(2-hydroxyphenyl)ethanone, 1228
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{3}$
2-Bromo-1-(3,5-dibromo-2,4-dihydroxyphenyl)ethanone, 1202
2-Bromo-1-(3,5-dibromo-2,6-dihydroxyphenyl)ethanone, 1202
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CIINO}_{4}$
1-(5-Chloro-2-hydroxy-3-nitrophenyl)-2-iodoethanone, 1288
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{FO}_{2}$
2-Chloro-1-(3-chloro-5-fluoro-2-hydroxyphenyl)ethanone, 1229
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}_{4}$
1-(3,5-Dichloro-2-hydroxyphenyl)-2-nitroethanone, 1395
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2}$
2-Chloro-1-(3,5-dichloro-2-hydroxyphenyl)ethanone, 1229
2-Chloro-1-(3,5-dichloro-4-hydroxyphenyl)ethanone, 1229
2,2-Dichloro-1-(3-chloro-2-hydroxyphenyl)ethanone, 1255
2,2,2-Trichloro-1-(2-hydroxyphenyl)ethanone, 1259
2,2,2-Trichloro-1-(4-hydroxyphenyl)ethanone, 1260
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{3}$
2,2,2-Trichloro-1-(2,4-dihydroxyphenyl)ethanone, 1260
2,2,2-Trichloro-1-(2,5-dihydroxyphenyl)ethanone, 1260
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{2}$
2,2,2-Trifluoro-1-(2-hydroxyphenyl)ethanone, 1268
2,2,2-Trifluoro-1-(4-hydroxyphenyl)ethanone, 1268

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$

1-(2,4-Dihydroxyphenyl)-2,2,2-trifluoroethanone, 1268
1-(2,6-Dihydroxyphenyl)-2,2,2-trifluoroethanone, 1269
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{4}$
2,2,2-Trifluoro-1-(2,3,4-trihydroxyphenyl)ethanone, 1269
2,2,2-Trifluoro-1-(2,4,6-trihydroxyphenyl)ethanone, 1269

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2}$

2-Bromo-1-(3-chloro-4-hydroxyphenyl)ethanone, 1202
2-Bromo-1-(4-chloro-2-hydroxyphenyl)ethanone, 1203
2-Bromo-1-(4-chloro-3-hydroxyphenyl)ethanone, 1203
2-Bromo-1-(5-chloro-2-hydroxyphenyl)ethanone, 1203
1-(5-Bromo-2-hydroxyphenyl)-2-chloroethanone, 1230

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{3}$

1-(3-Bromo-4,5-dihydroxyphenyl)-2-chloroethanone, 1230
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrFO}_{2}$
2-Bromo-1-(2-fluoro-4-hydroxyphenyl)ethanone, 1203
2-Bromo-1-(5-fluoro-2-hydroxyphenyl)ethanone, 1203

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrIO}_{2}$

2-Bromo-1-(3-hydroxy-4-iodophenyl)ethanone, 1204
2-Bromo-1-(4-hydroxy-3-iodophenyl)ethanone, 1204
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4}$
2-Bromo-1-(2-hydroxy-4-nitrophenyl)ethanone, 1204
2-Bromo-1-(2-hydroxy-5-nitrophenyl)ethanone, 1204
2-Bromo-1-(4-hydroxy-3-nitrophenyl)ethanone, 1204
2-Bromo-1-(5-hydroxy-2-nitrophenyl)ethanone, 1205
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{5}$
2-Bromo-1-(3,4-dihydroxy-5-nitrophenyl)ethanone, 1205
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}$
2-Bromo-1-(3-bromo-4-hydroxyphenyl)ethanone, 1205
2-Bromo-1-(4-bromo-3-hydroxyphenyl)ethanone, 1205
2-Bromo-1-(5-bromo-2-hydroxyphenyl)ethanone, 1206
2,2-Dibromo-1-(2-hydroxyphenyl)ethanone, 1226
2,2-Dibromo-1-(4-hydroxyphenyl)ethanone, 1226
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{3}$
2-Bromo-1-(5-bromo-2,4-dihydroxyphenyl)ethanone, 1206
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2}$
2-Chloro-1-(3-fluoro-4-hydroxyphenyl)ethanone, 1230
2-Chloro-1-(5-fluoro-2-hydroxyphenyl)ethanone, 1230
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClIO}_{2}$
1-(5-Chloro-2-hydroxyphenyl)-2-iodoethanone, 1289
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{CINO}_{4}$
2-Chloro-1-(2-hydroxy-5-nitrophenyl)ethanone, 1230
2-Chloro-1-(4-hydroxy-3-nitrophenyl)ethanone, 1231

1-(3-Chloro-2-hydroxyphenyl)-2-nitroethanone, 1395
1-(4-Chloro-2-hydroxyphenyl)-2-nitroethanone, 1395
1-(5-Chloro-2-hydroxyphenyl)-2-nitroethanone, 1396
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2}$
2-Chloro-1-(3-chloro-2-hydroxyphenyl)ethanone, 1231
2-Chloro-1-(3-chloro-4-hydroxyphenyl)ethanone, 1231
2-Chloro-1-(4-chloro-2-hydroxyphenyl)ethanone, 1231
2-Chloro-1-(5-chloro-2-hydroxyphenyl)ethanone, 1232
2,2-Dichloro-1-(2-hydroxyphenyl)ethanone, 1255
2,2-Dichloro-1-(3-hydroxyphenyl)ethanone, 1256
2,2-Dichloro-1-(4-hydroxyphenyl)ethanone, 1256
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{3}$
2,2-Dichloro-1-(2,4-dihydroxyphenyl)ethanone, 1256
1-(3,5-Dichloro-2-hydroxyphenyl)-2-hydroxyethanone, 1369
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{O}_{2}$
2,2-Diiodo-1-(2-hydroxyphenyl)ethanone, 1291
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$
1-(2-Hydroxy-5-nitrophenyl)-2-nitroethanone, 1396
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2}$
2-Bromo-1-(2-hydroxyphenyl)ethanone, 1206
2-Bromo-1-(3-hydroxyphenyl)ethanone, 1207
2-Bromo-1-(4-hydroxyphenyl)ethanone, 1207
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$
2-Bromo-1-(2,3-dihydroxyphenyl)ethanone, 1208
2-Bromo-1-(2,4-dihydroxyphenyl)ethanone, 1208
2-Bromo-1-(2,5-dihydroxyphenyl)ethanone, 1208
2-Bromo-1-(2,6-dihydroxyphenyl)ethanone, 1209
2-Bromo-1-(3,4-dihydroxyphenyl)ethanone, 1209
2-Bromo-1-(3,5-dihydroxyphenyl)ethanone, 1210
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4}$
2-Bromo-1-(2,3,4-trihydroxyphenyl)ethanone, 1210
2-Bromo-1-(3,4,5-trihydroxyphenyl)ethanone, 1210
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{NO}_{2}, \mathbf{H B r}$
1-(3-Amino-4-hydroxyphenyl)-2,2-dibromoethanone (Hydrobromide), 1226
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{4}$
1-(5-Amino-2-hydroxy-4-nitrophenyl)-2-chloroethanone, 1232
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{4}, \mathrm{HCl}$
1-(5-Amino-2-hydroxy-4-nitrophenyl)-2-chloroethanone (Hydrochloride), 1232
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$
2-Chloro-1-(2-hydroxyphenyl)ethanone, 1232
2-Chloro-1-(3-hydroxyphenyl)ethanone, 1233
2-Chloro-1-(4-hydroxyphenyl)ethanone, 1233

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3}$

2-Chloro-1-(2,3-dihydroxyphenyl)ethanone, 1234
2-Chloro-1-(2,4-dihydroxyphenyl)ethanone, 1234
2-Chloro-1-(2,5-dihydroxyphenyl)ethanone, 1235
2-Chloro-1-(3,4-dihydroxyphenyl)ethanone, 1235
2-Chloro-1-(3,5-dihydroxyphenyl)ethanone, 1235
1-(5-Chloro-2-hydroxyphenyl)-2-hydroxyethanone, 1369
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{4}$
2-Chloro-1-(2,3,4-trihydroxyphenyl)ethanone, 1236
2-Chloro-1-(2,4,5-trihydroxyphenyl)ethanone, 1236
2-Chloro-1-(2,4,6-trihydroxyphenyl)ethanone, 1236
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2}$
2-Fluoro-1-(2-hydroxyphenyl)ethanone, 1264
2-Fluoro-1-(4-hydroxyphenyl)ethanone, 1265
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{3}$
1-(2,4-Dihydroxyphenyl)-2-fluoroethanone, 1265
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2}$
1-(2-Hydroxyphenyl)-2-iodoethanone, 1289
1-(4-Hydroxyphenyl)-2-iodoethanone, 1289
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{3}$
1-(2,4-Dihydroxyphenyl)-2-iodoethanone, 1289
1-(3,4-Dihydroxyphenyl)-2-iodoethanone, 1290
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{4}$
2-Iodo-1-(2,3,4-trihydroxyphenyl)ethanone, 1290
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{3}$
1-(4-Hydroxyphenyl)-2-nitrosoethanone, 1396
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$
1-(2-Hydroxyphenyl)-2-nitroethanone, 1396
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{6}$
1-(3,4-Dihydroxy-5-nitrophenyl)-2-hydroxyethanone, 1369
$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{ClNO}_{2}$
1-(3-Amino-4-hydroxyphenyl)-2-chloroethanone, 1237
1-(4-Amino-2-hydroxyphenyl)-2-chloroethanone, 1237
1-(5-Amino-2-hydroxyphenyl)-2-chloroethanone, 1237
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2}, \mathrm{HCl}$
1-(5-Amino-2-hydroxyphenyl)-2-chloroethanone (Hydrochloride), 1237
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
2-Hydroxy-1-(2-hydroxyphenyl)ethanone, 1370
2-Hydroxy-1-(3-hydroxyphenyl)ethanone, 1370
2-Hydroxy-1-(4-hydroxyphenyl)ethanone, 1370
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$
2,2-Dihydroxy-1-(4-hydroxyphenyl)ethanone, 1372
1-(2,3-Dihydroxyphenyl)-2-hydroxyethanone, 1372

1-(2,4-Dihydroxyphenyl)-2-hydroxyethanone, 1372
1-(3,4-Dihydroxyphenyl)-2-hydroxyethanone, 1373
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5}$
2-Hydroxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1374
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
2-Amino-1-(2-hydroxyphenyl)ethanone, 1293
2-Amino-1-(3-hydroxyphenyl)ethanone, 1293
2-Amino-1-(4-hydroxyphenyl)ethanone, 1294
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathbf{H C l}$
2-Amino-1-(2-hydroxyphenyl)ethanone (Hydrochloride), 1293
2-Amino-1-(3-hydroxyphenyl)ethanone (Hydrochloride), 1294
2-Amino-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1295
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$
2-Amino-1-(2,4-dihydroxyphenyl)ethanone, 1295
2-Amino-1-(3,4-dihydroxyphenyl)ethanone, 1296
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}, \mathbf{H C l}$
2-Amino-1-(2,4-dihydroxyphenyl)ethanone (Hydrochloride), 1295
2-Amino-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride), 1296
$\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}$
2-(3,5-Dibromo-2-hydroxyphenyl)-2-oxoethyl thiocyanate, 1543

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrNO}_{2} \mathrm{~S}$

2-(5-Bromo-2-hydroxyphenyl)-2-oxoethyl thiocyanate, 1543
$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{3} \mathrm{ClO}_{2}$
2,2-Dibromo-1-[3-bromo-5-(chloromethyl)-4-hydroxyphenyl]ethanone, 1227

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{3}$

2-Bromo-1-(3,4,5-tribromo-2-hydroxy-6-methoxyphenyl)ethanone, 1210
2,2-Dibromo-1-(3,5-dibromo-2-hydroxy-6-methoxyphenyl)ethanone, 1227
2,2,2-Tribromo-1-(5-bromo-2-hydroxy-4-methoxyphenyl)ethanone, 1228

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClF}_{3} \mathrm{O}_{3}$

1-(5-Chloro-2,4-dihydroxy-3-methylphenyl)-2,2,2-trifluoroethanone, 1269
$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{4}$
2,2,2-Trifluoro-1-(2-hydroxy-5-methyl-3-nitrophenyl)ethanone, 1270
$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{5}$
1-(2,4-Dihydroxy-3-methyl-5-nitrophenyl)-2,2,2-trifluoroethanone, 1270
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{ClO}_{2}$
2-Bromo-1-[3-bromo-5-(chloromethyl)-4-hydroxyphenyl]ethanone, 1211

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{2}$

2-Bromo-1-(3,5-dibromo-2-hydroxy-4-methylphenyl)ethanone, 1211
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$
2,2,2-Trichloro-1-(2-hydroxy-3-methylphenyl)ethanone, 1260
2,2,2-Trichloro-1-(2-hydroxy-4-methylphenyl)ethanone, 1261
2,2,2-Trichloro-1-(2-hydroxy-5-methylphenyl)ethanone, 1261

2,2,2-Trichloro-1-(4-hydroxy-2-methylphenyl)ethanone, 1261
2,2,2-Trichloro-1-(4-hydroxy-3-methylphenyl)ethanone, 1261
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{3}$
2,2,2-Trichloro-1-(2-hydroxy-5-methoxyphenyl)ethanone, 1261
2,2,2-Trichloro-1-(4-hydroxy-2-methoxyphenyl)ethanone, 1262
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{4}$
2,2,2-Trichloro-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone, 1262
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2}$
2,2,2-Trifluoro-1-(2-hydroxy-5-methylphenyl)ethanone, 1270
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3-methylphenyl)-2,2,2-trifluoroethanone, 1270
2,2,2-Trifluoro-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1271
2,2,2-Trifluoro-1-(2-hydroxy-6-methoxyphenyl)ethanone, 1271
2,2,2-Trifluoro-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1271

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}$

1-[2,4-Dihydroxy-5-(methylthio)phenyl]-2,2,2-trifluoroethanone, 1271
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{4}$
1-(2,4-Dihydroxy-3-methoxyphenyl)-2,2,2-trifluoroethanone, 1272
1-(2,4-Dihydroxy-6-methoxyphenyl)-2,2,2-trifluoroethanone, 1272
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrIO}_{2}$
2-Bromo-1-(2-hydroxy-3-iodo-5-methylphenyl)ethanone, 1211

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrIO}_{3}$

2-Bromo-1-(4-hydroxy-3-iodo-5-methoxyphenyl)ethanone, 1211
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{5}$
2-Bromo-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone, 1212
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$
2-Bromo-1-(3-bromo-2-hydroxy-5-methylphenyl)ethanone, 1212
2-Bromo-1-(5-bromo-2-hydroxy-3-methylphenyl)ethanone, 1212
2-Bromo-1-(5-bromo-2-hydroxy-4-methylphenyl)ethanone, 1212
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$
2-Bromo-1-(5-bromo-2-hydroxy-4-methoxyphenyl)ethanone, 1212
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
2-Chloro-1-(3-chloro-4-hydroxy-5-methylphenyl)ethanone, 1237
2-Chloro-1-(4-chloro-2-hydroxy-5-methylphenyl)ethanone, 1238
2-Chloro-1-(5-chloro-2-hydroxy-4-methylphenyl)ethanone, 1238
2,2-Dichloro-1-(2-hydroxy-3-methylphenyl)ethanone, 1256
2,2-Dichloro-1-(2-hydroxy-4-methylphenyl)ethanone, 1256
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$
2-Chloro-1-(3-chloro-4-hydroxy-5-methoxyphenyl)ethanone, 1238
2-Chloro-1-(5-chloro-2-hydroxy-4-methoxyphenyl)ethanone, 1238
2,2-Dichloro-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1257

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$

2,2-Difluoro-1-(4-methoxyphenyl)ethanone, 1266

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{2}$

1-(3-Amino-2-hydroxy-5-methylphenyl)-2,2,2-trifluoroethanone, 1272
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$
2-Bromo-1-(2-hydroxy-4-methylphenyl)ethanone, 1213
2-Bromo-1-(2-hydroxy-5-methylphenyl)ethanone, 1213
2-Bromo-1-(3-hydroxy-4-methylphenyl)ethanone, 1213
2-Bromo-1-(4-hydroxy-2-methylphenyl)ethanone, 1213
2-Bromo-1-(4-hydroxy-3-methylphenyl)ethanone, 1214

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} \mathrm{~S}$

2-Bromo-1-[4-hydroxy-3-(methylthio)phenyl]ethanone, 1214
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$
2-Bromo-1-[4-hydroxy-3-(hydroxymethyl)phenyl]ethanone, 1214
2-Bromo-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1214
2-Bromo-1-(2-hydroxy-5-methoxyphenyl)ethanone, 1215
2-Bromo-1-(2-hydroxy-6-methoxyphenyl)ethanone, 1215
2-Bromo-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1215
2-Bromo-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1215
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4}$
2-Bromo-1-(2,3-dihydroxy-4-methoxyphenyl)ethanone, 1216
2-Bromo-1-(2,6-dihydroxy-4-methoxyphenyl)ethanone, 1216
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4} \mathrm{~S}$
2-Bromo-1-[4-hydroxy-3-(methylsulfonyl)phenyl]ethanone, 1216
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$
2-Chloro-1-(2-hydroxy-3-methylphenyl)ethanone, 1239
2-Chloro-1-(2-hydroxy-4-methylphenyl)ethanone, 1239
2-Chloro-1-(2-hydroxy-5-methylphenyl)ethanone, 1239
2-Chloro-1-(2-hydroxy-6-methylphenyl)ethanone, 1240
2-Chloro-1-(4-hydroxy-2-methylphenyl)ethanone, 1240
2-Chloro-1-(4-hydroxy-3-methylphenyl)ethanone, 1240
2-Chloro-1-(5-hydroxy-2-methylphenyl)ethanone, 1240

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \mathrm{~S}$

2-Chloro-1-[3-hydroxy-4-(methylthio)phenyl]ethanone, 1240
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3}$
2-Chloro-1-(2,4-dihydroxy-3-methylphenyl)ethanone, 1241
2-Chloro-1-(2,4-dihydroxy-5-methylphenyl)ethanone, 1241
2-Chloro-1-(2,4-dihydroxy-6-methylphenyl)ethanone, 1241
2-Chloro-1-(3,4-dihydroxy-2-methylphenyl)ethanone, 1241
2-Chloro-1-(3,4-dihydroxy-5-methylphenyl)ethanone, 1241
2-Chloro-1-(4,5-dihydroxy-2-methylphenyl)ethanone, 1242
2-Chloro-1-(2-hydroxy-3-methoxyphenyl)ethanone, 1242
2-Chloro-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1242

2-Chloro-1-(2-hydroxy-5-methoxyphenyl)ethanone, 1243
2-Chloro-1-(2-hydroxy-6-methoxyphenyl)ethanone, 1243
2-Chloro-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1243
2-Chloro-1-(4-hydroxy-2-methoxyphenyl)ethanone, 1243
2-Chloro-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1244
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4}$
2-Chloro-1-(2,3-dihydroxy-4-methoxyphenyl)ethanone, 1244
2-Chloro-1-(2,4-dihydroxy-3-methoxyphenyl)ethanone, 1244
2-Chloro-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone, 1244
2-Chloro-1-(2,5-dihydroxy-4-methoxyphenyl)ethanone, 1245
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{3}$
2-Fluoro-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1265

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3}$

1-(3,4-Dihydroxy-2-methylphenyl)-2-iodoethanone, 1290
1-(3,4-Dihydroxy-5-methylphenyl)-2-iodoethanone, 1290
1-(2-Hydroxy-4-methoxyphenyl)-2-iodoethanone, 1290
1-(4-Hydroxy-2-methoxyphenyl)-2-iodoethanone, 1291
1-(4-Hydroxy-3-methoxyphenyl)-2-iodoethanone, 1291
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{4}$
1-(2,4-Dihydroxy-3-iodophenyl)-2-methoxyethanone, 1321
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}$
1-(2-Hydroxy-3-methylphenyl)-2-nitroethanone, 1397
1-(2-Hydroxy-4-methylphenyl)-2-nitroethanone, 1397
1-(2-Hydroxy-5-methylphenyl)-2-nitroethanone, 1397
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}$
1-(2-Hydroxy-4-methoxyphenyl)-2-nitroethanone, 1398
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}$
2-Diazo-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1298
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$
2-Azido-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1298
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$
1-(2-Hydroxyphenyl)-2-(methylthio)ethanone, 1543
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
2-Hydroxy-1-(2-hydroxy-4-methylphenyl)ethanone, 1374
2-Hydroxy-1-(2-hydroxy-5-methylphenyl)ethanone, 1375
1-(2-Hydroxyphenyl)-2-methoxyethanone, 1321
1-(3-Hydroxyphenyl)-2-methoxyethanone, 1322
1-(4-Hydroxyphenyl)-2-methoxyethanone, 1322
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$
1-(4,5-Dihydroxy-2-methylphenyl)-2-hydroxyethanone, 1375
2-Hydroxy-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1375
2-Hydroxy-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1376

2-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1376
1-(2,4-Dihydroxyphenyl)-2-methoxyethanone, 1322
1-(2,6-Dihydroxyphenyl)-2-methoxyethanone, 1323
1-(3,4-Dihydroxyphenyl)-2-methoxyethanone, 1323
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}$
1-(2-Hydroxyphenyl)-2-(methylsulfonyl)ethanone, 1544
1-(3-Hydroxyphenyl)-2-(methylsulfonyl)ethanone, 1544
1-(4-Hydroxyphenyl)-2-(methylsulfonyl)ethanone, 1544
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}$
2-Methoxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1323
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$
2-Amino-1-(2-hydroxy-5-methylphenyl)ethanone, 1297
1-(3-Hydroxyphenyl)-2-(methylamino)ethanone, 1298
1-(4-Hydroxyphenyl)-2-(methylamino)ethanone, 1299
$\mathrm{C}_{9} \mathrm{H}_{\mathbf{1 1}} \mathrm{NO}_{2}, \mathrm{HCl}$
2-Amino-1-(2-hydroxy-5-methylphenyl)ethanone (Hydrochloride), 1297
1-(3-Hydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1298
1-(4-Hydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1299
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$
1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone, 1300

$\mathbf{C}_{9} \mathbf{H}_{11} \mathbf{N O}_{3}, \mathbf{H C l}$

1-(2,4-Dihydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1300
1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1301
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClF}_{3} \mathrm{O}_{4}$
1-[2-(Acetyloxy)-5-chloro-4-hydroxyphenyl]-2,2,2-trifluoroethanone, 1272
1-[4-(Acetyloxy)-5-chloro-2-hydroxyphenyl]-2,2,2-trifluoroethanone, 1272
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNO}_{2} \mathrm{~S}$
2-(3-Bromo-2-hydroxy-5-methylphenyl)-2-oxoethyl thiocyanate, 1544
2-(5-Bromo-2-hydroxy-4-methylphenyl)-2-oxoethyl thiocyanate, 1544
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{4}$
2-Bromo-1-[5-(2-bromoacetyloxy)-2-hydroxyphenyl]ethanone, 1216
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{4}$
1-[5-(Acetyloxy)-2-hydroxyphenyl]-2-bromoethanone, 1216
1,1'-(5-Bromo-4,6-dihydroxy-1,3-phenylene)bis-ethanone, 1559
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{5}$
1,1'-(5-Bromo-2,4,6-trihydroxy-1,3-phenylene)bis-ethanone, 1559
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{3}$
2,2-Dibromo-1-(3-bromo-5-ethyl-2,4-dihydroxyphenyl)ethanone, 1227
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{4}$
2,2-Dibromo-1-(3-bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1227
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{3}$
1,1'-(4-Chloro-6-hydroxy-1,3-phenylene)bis-ethanone, 1560

1,1'-(5-Chloro-2-hydroxy-1,3-phenylene)bis-ethanone, 1560
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{4}$
1-[5-(Acetyloxy)-2-hydroxyphenyl]-2-chloroethanone, 1245
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}$
2,2,2-Trichloro-1-(4-hydroxy-2,5-dimethylphenyl)ethanone, 1262
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{3}$
2,2,2-Trichloro-1-(5-ethyl-2,4-dihydroxyphenyl)ethanone, 1262
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{4}$
2,2,2-Trichloro-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone, 1263
2,2,2-Trichloro-1-(4-hydroxy-2,6-dimethoxyphenyl)ethanone, 1263
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{3}$
1,1'-(5-Fluoro-2-hydroxy-1,3-phenylene)bis-ethanone, 1560
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(3-Ethyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1273
1-(5-Ethyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1273
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4}$
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2,2,2-trifluoroethanone, 1273
1-(5-Ethyl-2,3,4-trihydroxyphenyl)-2,2,2-trifluoroethanone, 1273
2,2,2-Trifluoro-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone, 1274
2,2,2-Trifluoro-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1274
2,2,2-Trifluoro-1-(4-hydroxy-2,6-dimethoxyphenyl)ethanone, 1274
2,2,2-Trifluoro-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1274
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{5}$
1,1'-(4-Hydroxy-5-nitro-1,3-phenylene)bis-ethanone, 1560
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{6}$
1,1'-(2,4-Dihydroxy-5-nitro-1,3-phenylene)bis-ethanone, 1561
1,1'-(4,6-Dihydroxy-5-nitro-1,3-phenylene)bis-ethanone, 1561
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}$
2-Bromo-1-(3-bromo-2-hydroxy-4,5-dimethylphenyl)ethanone, 1217
2-Bromo-1-(5-bromo-2-hydroxy-3,4-dimethylphenyl)ethanone, 1217
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$
2-Bromo-1-(3-bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1217
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
2,2-Dichloro-1-(5-ethyl-2-hydroxyphenyl)ethanone, 1257
2,2-Dichloro-1-(2-hydroxy-4,6-dimethylphenyl)ethanone, 1257
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
2,2-Dichloro-1-(2,4-dihydroxy-3,5-dimethylphenyl)ethanone, 1257
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}$
2-Chloro-1-(3-chloro-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1245
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$
1,1'-(2-Hydroxy-1,3-phenylene)bis-ethanone, 1562

1,1'-(4-Hydroxy-1,2-phenylene)bis-ethanone, 1562
1,1'-(4-Hydroxy-1,3-phenylene)bis-ethanone, 1562
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
2-(Acetyloxy)-1-(2-hydroxyphenyl)ethanone, 1383
2-(Acetyloxy)-1-(4-hydroxyphenyl)ethanone, 1383
1,1'-(2,3-Dihydroxy-1,4-phenylene)bis-ethanone, 1563
1,1'-(2,4-Dihydroxy-1,3-phenylene)bis-ethanone, 1564
1,1'-(2,5-Dihydroxy-1,4-phenylene)bis-ethanone, 1565
1,1'-(3,6-Dihydroxy-1,2-phenylene)bis-ethanone, 1565
1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-ethanone, 1566
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$
2-(Acetyloxy)-1-(2,4-dihydroxyphenyl)ethanone, 1384
2-(Acetyloxy)-1-(3,4-dihydroxyphenyl)ethanone, 1384
1,1'-(2,4,5-Trihydroxy-1,3-phenylene)bis-ethanone, 1568
1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-ethanone, 1568
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
2-Bromo-1-(3-ethyl-4-hydroxyphenyl)ethanone, 1217
2-Bromo-1-(4-ethyl-3-hydroxyphenyl)ethanone, 1218
2-Bromo-1-(5-ethyl-2-hydroxyphenyl)ethanone, 1218
2-Bromo-1-(2-hydroxy-4,6-dimethylphenyl)ethanone, 1218
2-Bromo-1-(4-hydroxy-2,5-dimethylphenyl)ethanone, 1218
2-Bromo-1-(4-hydroxy-3,5-dimethylphenyl)ethanone, 1218
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{~S}$
2-Bromo-1-[4-hydroxy-3-(ethylthio)phenyl]ethanone, 1219
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$
2-Bromo-1-[4-hydroxy-3-(2-hydroxyethyl)phenyl]ethanone, 1219
2-Bromo-1-[4-hydroxy-3-(methoxymethyl)phenyl]ethanone, 1219
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}$
2-Bromo-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1219
2-Bromo-1-(2-hydroxy-3,5-dimethoxyphenyl)ethanone, 1220
2-Bromo-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1220
2-Bromo-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1220
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5}$
2-Bromo-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone, 1220
2-Bromo-1-(2,5-dihydroxy-3,4-dimethoxyphenyl)ethanone, 1221
2-Bromo-1-(3,6-dihydroxy-2,4-dimethoxyphenyl)ethanone, 1221
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2}$
2-Chloro-1-(3-ethyl-2-hydroxyphenyl)ethanone, 1245
2-Chloro-1-(3-ethyl-4-hydroxyphenyl)ethanone, 1245
2-Chloro-1-(4-ethyl-2-hydroxyphenyl)ethanone, 1246
2-Chloro-1-(5-ethyl-2-hydroxyphenyl)ethanone, 1246
2-Chloro-1-(2-hydroxy-3,4-dimethylphenyl)ethanone, 1246
2-Chloro-1-(2-hydroxy-3,5-dimethylphenyl)ethanone, 1246

2-Chloro-1-(2-hydroxy-4,5-dimethylphenyl)ethanone, 1247
2-Chloro-1-(2-hydroxy-4,6-dimethylphenyl)ethanone, 1247
2-Chloro-1-(4-hydroxy-3,5-dimethylphenyl)ethanone, 1247
2-Chloro-1-(5-hydroxy-2,4-dimethylphenyl)ethanone, 1247
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
2-Chloro-1-(2,4-dihydroxy-3,5-dimethylphenyl)ethanone, 1248
2-Chloro-1-(5-ethyl-2,4-dihydroxyphenyl)ethanone, 1248
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}$
2-Chloro-1-(5-ethyl-2,3,4-trihydroxyphenyl)ethanone, 1248
2-Chloro-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1248
2-Chloro-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone, 1249
2-Chloro-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1249
2-Chloro-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1249
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{5}$
2-Chloro-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone, 1249
2-Chloro-1-(3,6-dihydroxy-2,4-dimethoxyphenyl)ethanone, 1250
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{5}$
1-(2,4-Dihydroxy-3-iodo-6-methoxyphenyl)-2-methoxyethanone, 1323
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$
1,1'-(4-Amino-6-hydroxy-1,3-phenylene)bis-ethanone, 1569
1,1'-(5-Amino-4-hydroxy-1,3-phenylene)bis-ethanone, 1569
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{CINO}_{2}$
2-Chloro-1-[4-(dimethylamino)-2-hydroxyphenyl]ethanone, 1250
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
2-Ethoxy-1-(4-hydroxyphenyl)ethanone, 1346
2-Hydroxy-1-(2-hydroxy-3,5-dimethylphenyl)ethanone, 1377
1-(2-Hydroxy-6-methylphenyl)-2-methoxyethanone, 1324
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
1-(2-Hydroxy-5-methylphenyl)-2-(methylsulfinyl)ethanone, 1545
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(2,4-Dihydroxy-6-methylphenyl)-2-methoxyethanone, 1324
1-(2,4-Dihydroxyphenyl)-2-ethoxyethanone, 1347
1-(2-Hydroxy-4-methoxyphenyl)-2-methoxyethanone, 1324
1-(2-Hydroxy-5-methoxyphenyl)-2-methoxyethanone, 1325
1-(4-Hydroxy-3-methoxyphenyl)-2-methoxyethanone, 1325
1-(2-Hydroxyphenyl)-2,2-dimethoxyethanone, 1325
1-(4-Hydroxyphenyl)-2,2-dimethoxyethanone, 1326
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$
1-(2,4-Dihydroxy-6-methylphenyl)-2-(methylsulfinyl)ethanone, 1545
1-(2-Hydroxy-3-methoxyphenyl)-2-(methylsulfinyl)ethanone, 1545
1-(3-Hydroxy-4-methoxyphenyl)-2-(methylsulfinyl)ethanone, 1545
1-(4-Hydroxy-3-methoxyphenyl)-2-(methylsulfinyl)ethanone, 1546

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-methoxyethanone, 1326
1-(2,5-Dihydroxy-4-methoxyphenyl)-2-methoxyethanone, 1327
1-(2,6-Dihydroxy-4-methoxyphenyl)-2-methoxyethanone, 1327
2-Ethoxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1347
2-Hydroxy-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1377
2-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1377
2-Methoxy-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1327
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$
1-(4-Hydroxy-3-methoxyphenyl)-2-(methylsulfonyl)ethanone, 1546
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{6}$
1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-2-hydroxyethanone, 1378
2-Methoxy-1-(6-methoxy-2,4,5-trihydroxyphenyl)ethanone, 1328
2-Methoxy-1-(2,4,6-trihydroxy-3-methoxyphenyl)ethanone, 1328
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
2-(Dimethylamino)-1-(2-hydroxyphenyl)ethanone, 1301
2-(Dimethylamino)-1-(4-hydroxyphenyl)ethanone, 1301
2-(Ethylamino)-1-(3-hydroxyphenyl)ethanone, 1302
2-(Ethylamino)-1-(4-hydroxyphenyl)ethanone, 1303
1-(2-Hydroxy-5-methylphenyl)-2-(methylamino)ethanone, 1303
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathrm{HCl}$
2-(Dimethylamino)-1-(2-hydroxyphenyl)ethanone (Hydrochloride), 1301
2-(Dimethylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1302
2-(Ethylamino)-1-(3-hydroxyphenyl)ethanone (Hydrochloride), 1302
2-(Ethylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1303
1-(2-Hydroxy-5-methylphenyl)-2-(methylamino)ethanone (Hydrochloride), 1303
1-(4-Hydroxy-3-methylphenyl)-2-(methylamino)ethanone (Hydrochloride), 1304
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$
1-(3,4-Dihydroxyphenyl)-2-(dimethylamino)ethanone, 1304
1-(3,4-Dihydroxyphenyl)-2-(ethylamino)ethanone, 1305
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{HCl}$
1-(3,4-Dihydroxyphenyl)-2-(dimethylamino)ethanone (Hydrochloride), 1304
1-(3,4-Dihydroxyphenyl)-2-(ethylamino)ethanone (Hydrochloride), 1305
1-(3-Hydroxy-4-methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1305
$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4}$
1-[2-(Acetyloxy)-4-hydroxy-3-methylphenyl]-2,2,2-trifluoroethanone, 1275
1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]-2,2,2-trifluoroethanone, 1275
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{O}_{3}$
1-[4-(3-Bromopropoxy)-2-hydroxyphenyl]-2,2,2-trifluoroethanone, 1275

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrNO}_{2} \mathrm{~S}$

2-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)-2-oxoethyl thiocyanate, 1546
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)bis[2-chloroethanone, 1590
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{4}$
1,1'-(5-Bromo-2,4-dihydroxy-6-methyl-1,3-phenylene)bis-ethanone, 1570
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}_{2}$
2-(3,5-Dibromo-2-hydroxyphenyl)-2-oxoethyl dimethylcarbamodithioate, 1546
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}_{2}$
2-(3,5-Dichloro-2-hydroxyphenyl)-2-oxoethyl dimethylcarbamodithioate, 1547
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(1-methylethyl)phenyl]-2,2,2-trifluoroethanone, 1275
1-[2,4-Dihydroxy-5-(1-methylethyl)phenyl]-2,2,2-trifluoroethanone, 1276
1-(2,4-Dihydroxy-3-propylphenyl)-2,2,2-trifluoroethanone, 1276
1-(2,4-Dihydroxy-5-propylphenyl)-2,2,2-trifluoroethanone, 1276
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4}$
2,2,2-Trifluoro-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl)ethanone, 1276
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$
2-Chloro-1-(3-chloro-2-hydroxy-4,6-dimethoxy-5-methylphenyl)ethanone, 1250
2-Chloro-1-[5-(chloromethyl)-2-hydroxy-3,4-dimethoxyphenyl]ethanone, 1250
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(3-Acetyl-4-hydroxyphenyl)-1-propanone, 1631
1-(5-Acetyl-2-hydroxyphenyl)-1-propanone, 1631
1,1'-(2-Hydroxy-4-methyl-1,3-phenylene)bis-ethanone, 1570
1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1570
1,1'-(4-Hydroxy-2-methyl-1,3-phenylene)bis-ethanone, 1571
1,1'-(4-Hydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1571
1,1'-(4-Hydroxy-6-methyl-1,3-phenylene)bis-ethanone, 1571
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
1,1'-(2,4-Dihydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1572
1,1'-(2,4-Dihydroxy-6-methyl-1,3-phenylene)bis-ethanone, 1572
1,1'-(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1573
1,1'-(2-Hydroxy-4-methoxy-1,3-phenylene)bis-ethanone, 1573
1,1'-(2-Hydroxy-5-methoxy-1,3-phenylene)bis-ethanone, 1574
1,1'-(4-Hydroxy-5-methoxy-1,3-phenylene)bis-ethanone, 1574
1,1'-(4-Hydroxy-6-methoxy-1,3-phenylene)bis-ethanone, 1574
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$
2-(Acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1384
1,1'-[4,6-Dihydroxy-5-(hydroxymethyl)-1,3-phenylene]bis-ethanone, 1574
1,1'-(2,4-Dihydroxy-6-methoxy-1,3-phenylene)bis-ethanone, 1575
1,1'-(4,6-Dihydroxy-5-methoxy-1,3-phenylene)bis-ethanone, 1575
1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1576
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{6}$
1-[6-Hydroxy-2-methoxy-3,4-(methylenedioxy)phenyl]-2-methoxyethanone, 1328
1,1'-(2,4,6-Trihydroxy-5-methoxy-1,3-phenylene)bis-ethanone, 1576

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$

2-Bromo-1-[3-hydroxy-4-(1-methylethyl)phenyl]ethanone, 1221
2-Bromo-1-[4-hydroxy-3-(1-methylethyl)phenyl]ethanone, 1221
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3}$
2-Bromo-1-(4-ethyl-2-hydroxy-5-methoxyphenyl)ethanone, 1221
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3}$
2-Chloro-1-(2,4-dihydroxy-5-propylphenyl)ethanone, 1251
2-Chloro-1-(2-hydroxy-4-methoxy-3,5-dimethylphenyl)ethanone, 1251
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{5}$
2-Chloro-1-(2-hydroxy-4,6-dimethoxyphenyl)-2-methoxyethanone, 1329
2-Chloro-1-(6-hydroxy-2,3,4-trimethoxyphenyl)ethanone, 1251
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{HCl}$
2-(Cyclopropylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride), 1306
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
2-Hydroxy-1-(4-hydroxy-3-propylphenyl)ethanone, 1379
$\mathrm{C}_{11} \mathrm{H}_{44} \mathrm{O}_{4}$
1-(4,6-Dihydroxy-2,3-dimethylphenyl)-2-methoxyethanone, 1329
2-Ethoxy-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1347
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$
1-(2-Hydroxy-4-methoxy-6-methylphenyl)-2-(methylsulfinyl)ethanone, 1547
1-(2-Hydroxy-6-methoxy-4-methylphenyl)-2-(methylsulfinyl)ethanone, 1547
$\mathrm{C}_{11} \mathrm{H}_{44} \mathrm{O}_{5}$
1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-methoxyethanone, 1329
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-methoxyethanone, 1329
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-methoxyethanone, 1330
1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-methoxyethanone, 1331
2-Hydroxy-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl)ethanone, 1379
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6}$
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-2-methoxyethanone, 1331
1-(2,5-Dihydroxy-3,6-dimethoxyphenyl)-2-methoxyethanone, 1331
1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-2-methoxyethanone, 1331
1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-2-methoxyethanone, 1332
1-(4,6-Dihydroxy-2,3-dimethoxyphenyl)-2-methoxyethanone, 1332
2-Hydroxy-1-(6-hydroxy-2,3,4-trimethoxyphenyl)ethanone, 1379
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}$
1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(methylsulfonyl)ethanone, 1547
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{7}$
2-Methoxy-1-(2,4,6-trihydroxy-3,5-dimethoxyphenyl)ethanone, 1332
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
1-(3-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone, 1306
1-(4-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone, 1306

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{HCl}$

1-(3-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride), 1306
1-(4-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride), 1307
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$
1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone, 1307
1-(3,4-Dihydroxyphenyl)-2-(propylamino)ethanone, 1308
2-(Dimethylamino)-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1309
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl}$
1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride), 1308
1-(3,4-Dihydroxyphenyl)-2-(propylamino)ethanone (Hydrochloride), 1309
2-(Dimethylamino)-1-(3-hydroxy-4-methoxyphenyl)ethanone (Hydrochloride), 1309
$\mathbf{C}_{11} \mathbf{H}_{15} \mathbf{N O}_{3}, \mathbf{1 / 2} \mathbf{H}_{2} \mathrm{SO}_{4}$
1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Sulfate), 1308
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}$
1,1'-[2-Hydroxy-4-methyl-6-(trifluoromethyl)-1,3-phenylene]bis-ethanone, 1576
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$
1,1'-[4-(Acetyloxy)-2-hydroxy-1,3-phenylene]bis-ethanone, 1577
1,1',1"-(2,4-Dihydroxy-1,3,5-benzenetriyl)tris-ethanone, 1577
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$
2-(Acetyloxy)-1-[4-(acetyloxy)-2-hydroxyphenyl]ethanone, 1385
1,1'-[4-(Acetyloxy)-2,6-dihydroxy-1,3-phenylene]bis-ethanone, 1577
1,1'-[5-(Acetyloxy)-2,4-dihydroxy-1,3-phenylene]bis-ethanone, 1578
1,1'-[5-(Acetyloxy)-4,6-dihydroxy-1,3-phenylene]bis-ethanone, 1578
1, $1^{\prime}, 1^{\prime \prime}$-(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris-ethanone, 1578
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{7}$
2-(Acetyloxy)-1-[4-(acetyloxy)-2,6-dihydroxyphenyl]ethanone, 1385
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Br}_{3} \mathrm{O}_{2}$
2,2,2-Tribromo-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 1229
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{2}$
2,2-Dichloro-1-[3-chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1257
2,2,2-Trichloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1263
2,2,2-Trichloro-1-[4-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1263
2,2,2-Trichloro-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 1263
2,2,2-Trichloro-1-[4-hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone, 1264
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{3}$
1-(5-Butyl-2,4-dihydroxyphenyl)-2,2,2-trichloroethanone, 1264
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}$
1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2,2-trifluoroethanone, 1277
1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2,2-trifluoroethanone, 1277
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(4-Butoxy-2-hydroxyphenyl)-2,2,2-trifluoroethanone, 1277
1-(5-Butyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1277

1-[2,4-Dihydroxy-3-(2-methylpropyl)phenyl]-2,2,2-trifluoroethanone, 1277
1-[2,4-Dihydroxy-5-(2-methylpropyl)phenyl]-2,2,2-trifluoroethanone, 1278
1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]-2,2,2-trifluoroethanone, 1278
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{4}$
1-[2-Hydroxy-3-iodo-4-(2-propenyloxy)phenyl]-2-methoxyethanone, 1333
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5}$
1,1'-(2-Hydroxy-4,6-dimethyl-5-nitro-1,3-phenylene)bis-ethanone, 1579
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2}$
2-Bromo-1-[3-bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1222
2,2-Dibromo-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 1227
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$
2,2-Dichloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1258
2,2-Dichloro-1-[5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1258
2,2-Dichloro-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 1258
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(5-Acetyl-2-hydroxyphenyl)-1-butanone, 1631
1,1'-(2-Hydroxy-4,6-dimethyl-1,3-phenylene)bis-ethanone, 1579
1,1'-(4-Hydroxy-5,6-dimethyl-1,3-phenylene)bis-ethanone, 1580
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
1,1'-(2,4-Dihydroxy-5,6-dimethyl-1,3-phenylene)bis-ethanone, 1580
1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-2-methoxyethanone, 1333
1,1'-(5-Ethyl-2,4-dihydroxy-1,3-phenylene)bis-ethanone, 1580
1,1'-(5-Ethyl-4,6-dihydroxy-1,3-phenylene)bis-ethanone, 1581
1,1'-(2-Hydroxy-4-methoxy-6-methyl-1,3-phenylene)bis-ethanone, 1581
1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-methoxyethanone, 1333
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[2,4-Dihydroxy-6-(2-propenyloxy)phenyl]-2-methoxyethanone, 1333
2-(2,4-Dihydroxyphenyl)-2-oxoethyl 2-methylpropanoate, 1386
1,1'-(4-Hydroxy-2,6-dimethoxy-1,3-phenylene)bis-ethanone, 1581
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$
1,1'-(2,4-Dihydroxy-5,6-dimethoxy-1,3-phenylene)bis-ethanone, 1582
1,1'-(2,5-Dihydroxy-3,6-dimethoxy-1,4-phenylene)bis-ethanone, 1582
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{2}$
2-Bromo-1-[3-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1222
2-Bromo-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 1222
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}$
2-Chloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1251
2-Chloro-1-[3-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1252
2-Chloro-1-[5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1252
2-Chloro-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 1252
2-Chloro-1-[6-hydroxy-2-methyl-3-(1-methylethyl)phenyl]ethanone, 1252
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{3}$
1-(5-Butyl-2,4-dihydroxyphenyl)-2-chloroethanone, 1253
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$
1,1'-(5-Amino-2-hydroxy-4,6-dimethyl-1,3-phenylene)bis-ethanone, 1582
1,1'-[4-(Ethylamino)-6-hydroxy-1,3-phenylene]bis-ethanone, 1582
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl}$
2-(Cyclobutylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride), 1309
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
2-[(1,1-Dimethylethyl)amino]-1-(4-hydroxy-3-nitrophenyl)ethanone, 1310
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$
1-[3-(Dimethylethyl)-2-hydroxyphenyl]-2-hydroxyethanone, 1380
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$
1-[2-Hydroxy-5-(1-methylethyl)phenyl]-2-(methylsulfinyl)ethanone, 1548
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$
2,2-Diethoxy-1-(4-hydroxyphenyl)ethanone, 1347
2-Ethoxy-1-(4-ethoxy-2-hydroxyphenyl)ethanone, 1348
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$
1-(4-Ethoxy-2-hydroxy-6-methylphenyl)-2-(methylsulfinyl)ethanone, 1548
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
2-Ethoxy-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1348
1-(2-Ethoxy-6-hydroxy-4-methoxyphenyl)-2-methoxyethanone, 1334
1-(4-Ethoxy-2-hydroxy-6-methoxyphenyl)-2-methoxyethanone, 1334
1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-methoxyethanone, 1334
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$
1-(4-Ethoxy-3,6-dihydroxy-2-methoxyphenyl)-2-methoxyethanone, 1335
1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-methoxyethanone, 1335
1-(2-Hydroxy-3,5,6-trimethoxyphenyl)-2-methoxyethanone, 1336
1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-methoxyethanone, 1336
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{7}$
1-(2,5-Dihydroxy-3,4,6-trimethoxyphenyl)-2-methoxyethanone, 1338
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$
2-(Butylamino)-1-(4-hydroxyphenyl)ethanone, 1310
2-[(1,1-Dimethylethyl)amino]-1-(4-hydroxyphenyl)ethanone, 1311
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathrm{HCl}$
2-(Butylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1310
2-[(1,1-Dimethylethyl)amino]-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1311
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}$
2-(Butylamino)-1-(3,4-dihydroxyphenyl)ethanone, 1311
1-(3,4-Dihydroxyphenyl)-2-[(1,1-dimethylethyl)amino]ethanone, 1312
1-(3,4-Dihydroxyphenyl)-2-[(2-methylpropyl)amino]ethanone, 1312
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl}$
2-(Butylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride), 1311
1-(3,4-Dihydroxyphenyl)-2-[(1,1-dimethylethyl)amino]ethanone
(Hydrochloride), 1312

1-(3,4-Dihydroxyphenyl)-2-[(1-methylpropyl)amino]ethanone
(Hydrochloride), 1312
1-(3,4-Dihydroxyphenyl)-2-[(2-methylpropyl)amino]ethanone
(Hydrochloride), 1313
1-(4-Hydroxy-3-methoxyphenyl)-2-[(1-methylethyl)amino]ethanone
(Hydrochloride), 1313
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(3-Cyclopentyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1278
1-(5-Cyclopentyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1279
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(5-Acetyl-2-hydroxyphenyl)-3-methyl-2-buten-1-one, 1632
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$
1,1'-[4,6-Dihydroxy-5-(2-propenyl)-1,3-phenylene]bis-ethanone, 1583
1,1'-[4-Hydroxy-6-(2-propenyloxy)-1,3-phenylene]bis-ethanone, 1583
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}$
1,1'-[2,4-Dihydroxy-6-(2-propenyloxy)-1,3-phenylene]bis-ethanone, 1583
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$
1,1'-[2-(Acetyloxy)-4,6-dihydroxy-5-methyl-1,3-phenylene]bis-ethanone, 1583
1,1'-[4-(Acetyloxy)-2,6-dihydroxy-5-methyl-1,3-phenylene]bis-ethanone, 1584
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{7}$
2-(Acetyloxy)-1-[4-(acetyloxy)-2-hydroxy-6-methoxyphenyl]ethanone, 1385
1,1'-[5-(Acetyloxy)-2,4-dihydroxy-6-methoxy-1,3-phenylene]bis-ethanone, 1584
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}_{2}$
2-(3,5-Dibromo-2-hydroxyphenyl)-2-oxoethyl diethylcarbamodithioate, 1548
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(3-methylbutyl)phenyl]-2,2,2-trifluoroethanone, 1279
1-(2,4-Dihydroxy-3-pentylphenyl)-2,2,2-trifluoroethanone, 1279
1-(2,4-Dihydroxy-5-pentylphenyl)-2,2,2-trifluoroethanone, 1279
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{5}$
1-[2-Hydroxy-3-iodo-6-methoxy-4-(2-propenyloxy)phenyl]-2-methoxyethanone, 1338
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}$
2,2-Dichloro-1-[3-(1,1-dimethylethyl)-2-hydroxy-5-methylphenyl]ethanone, 1258
2,2-Dichloro-1-[3-(1,1-dimethylethyl)-2-hydroxy-6-methylphenyl]ethanone, 1258
2,2-Dichloro-1-[5-(1,1-dimethylpropyl)-2-hydroxyphenyl]ethanone, 1259
2,2-Dichloro-1-[2-hydroxy-5-(1-methylbutyl)phenyl]ethanone, 1259
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}$
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2,2-
trifluoroethanone, 1279

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}, \mathbf{H C l}$

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2,2trifluoroethanone (Hydrochloride), 1280
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
2-Cyclopentyl-1-(2-hydroxyphenyl)ethanone, 1541
2-Cyclopentyl-1-(4-hydroxyphenyl)ethanone, 1541
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(5-Acetyl-2-hydroxyphenyl)-3-methyl-1-butanone, 1632
2-Cyclopentyl-1-(2,4-dihydroxyphenyl)ethanone, 1541
1,1'-(4-Ethyl-2-hydroxy-6-methyl-1,3-phenylene)bis-ethanone, 1584
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
1,1'-[4,6-Dihydroxy-5-(1-methylethyl)-1,3-phenylene]bis-ethanone, 1584
1,1'-(4,6-Dihydroxy-5-propyl-1,3-phenylene)bis-ethanone, 1584
2-(4-Hydroxyphenyl)-2-oxoethyl 2,2-dimethylpropanoate, 1387
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}$
1,1'-[5-(Ethoxymethyl)-4,6-dihydroxy-1,3-phenylene]bis-ethanone, 1585
1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]-2-methoxyethanone, 1338
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}$
1,1'-[2,4-Dihydroxy-6-(2-hydroxypropoxy)-1,3-phenylene]bis-ethanone, 1585
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$
2-Bromo-1-[3-(1,1-dimethylethyl)-4-hydroxy-5-methylphenyl]ethanone, 1222
2-Bromo-1-(2-hydroxy-4-pentylphenyl)ethanone, 1222
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{3}$
2-Chloro-1-(2,4-dihydroxy-5-pentylphenyl)ethanone, 1253
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$
1,1'-(4-Amino-6-hydroxy-5-propyl-1,3-phenylene)bis-ethanone, 1585
2-(Cyclopentylamino)-1-(3,4-dihydroxyphenyl)ethanone, 1313
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl}$
2-(Cyclopentylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride), 1313
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClNO}_{2}$
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-
chloroethanone, 1253

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClNO}_{2}, \mathrm{HCl}$

1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-chloroethanone (Hydrochloride), 1253
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$
1-[3-(Dimethylethyl)-2-hydroxy-6-methylphenyl]-2-hydroxyethanone, 1380
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$
1-[2-Hydroxy-6-methyl-4-(1-methylethoxy)phenyl]-2-(methylsulfinyl)
ethanone, 1548
1-(2-Hydroxy-6-methyl-4-propoxyphenyl)-2-(methylsulfinyl)ethanone, 1549
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(2,4-Diethoxy-6-hydroxyphenyl)-2-methoxyethanone, 1338
2-Ethoxy-1-(2-ethoxy-6-hydroxy-4-methoxyphenyl)ethanone, 1348

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$

1-(2,4-Diethoxy-3,6-dihydroxyphenyl)-2-methoxyethanone, 1339
1-(2-Ethoxy-6-hydroxy-3,4-dimethoxyphenyl)-2-methoxyethanone, 1339
1-(3-Ethoxy-6-hydroxy-2,4-dimethoxyphenyl)-2-methoxyethanone, 1339
2-Ethoxy-1-(6-hydroxy-2,3,4-trimethoxyphenyl)ethanone, 1348
$\mathrm{C}_{13} \mathbf{H}_{18} \mathbf{O}_{7}$
1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)-2-methoxyethanone, 1340
$\mathrm{C}_{13} \mathrm{H}_{19} \mathbf{N O}_{3,} \mathbf{H C l}$
1-(3,4-Dihydroxyphenyl)-2-(1,2-dimethylpropylamino)ethanone
(Hydrochloride), 1314
1-(3,4-Dihydroxyphenyl)-2-(1-ethylpropylamino)ethanone (Hydrochloride), 1314
1-(3,4-Dihydroxyphenyl)-2-(pentylamino)ethanone (Hydrochloride), 1314
$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SSi}$
1-(2-Hydroxyphenyl)-2-[2-(trimethylsilyl)ethylthio]ethanone, 1549
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrFO}_{2}$
1-(3-Bromo-5-fluoro-2-hydroxyphenyl)-2-phenylethanone, 1399
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$
1-(3,5-Dibromo-2,4-dihydroxyphenyl)-2-phenylethanone, 1399
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{2}$
1-(3-Chloro-5-fluoro-2-hydroxyphenyl)-2-phenylethanone, 1400
2-(4-Chlorophenyl)-1-(5-fluoro-2-hydroxyphenyl)ethanone, 1449
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{5}$
2-(4-Chlorophenyl)-1-(3,4-dihydroxy-5-nitrophenyl)ethanone, 1450
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-(3,5-Dichloro-4-hydroxyphenyl)-2-phenylethanone, 1400
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}$
2-(2,4-Dichlorophenoxy)-1-(2,4-dihydroxyphenyl)ethanone, 1355
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$
1-(4-Bromo-2-hydroxyphenyl)-2-phenylethanone, 1400
1-(5-Bromo-2-hydroxyphenyl)-2-phenylethanone, 1400
2-(4-Bromophenyl)-1-(4-hydroxyphenyl)ethanone, 1450
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
1-(3-Bromo-2,4-dihydroxyphenyl)-2-phenylethanone, 1401
1-(5-Bromo-2,4-dihydroxyphenyl)-2-phenylethanone, 1401
2-(4-Bromophenyl)-1-(2,4-dihydroxyphenyl)ethanone, 1450
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{4}$
2-(4-Bromophenoxy)-1-(2,4-dihydroxyphenyl)ethanone, 1356
2-(4-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1451
1-(5-Bromo-2,3,4-trihydroxyphenyl)-2-phenylethanone, 1401
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{5}$
2-(4-Bromophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1356
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$
1-(3-Chloro-2-hydroxyphenyl)-2-phenylethanone, 1401
1-(4-Chloro-2-hydroxyphenyl)-2-phenylethanone, 1402
1-(5-Chloro-2-hydroxyphenyl)-2-phenylethanone, 1402
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \mathrm{~S}$
2-[(4-Chlorophenyl)thio]-1-(2-hydroxyphenyl)ethanone, 1549
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3}$
1-(5-Chloro-2,4-dihydroxyphenyl)-2-phenylethanone, 1402
2-(2-Chlorophenyl)-1-(2,4-dihydroxyphenyl)ethanone, 1451
2-(4-Chlorophenyl)-1-(2,4-dihydroxyphenyl)ethanone, 1451
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{3} \mathrm{~S}$
2-[(4-Chlorophenyl)sulfinyl]-1-(2-hydroxyphenyl)ethanone, 1549
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4}$
1-(5-Chloro-2,4-dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1451
1-(5-Chloro-2-hydroxyphenyl)-2-(2,5-dihydroxyphenyl)ethanone, 1452
2-(4-Chlorophenoxy)-1-(2,4-dihydroxyphenyl)ethanone, 1356
2-(2-Chlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1452
2-(4-Chlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1452
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{5}$
1-(5-Chloro-2-hydroxyphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone, 1452
2-(4-Chlorophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1356
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{2}$
1-(5-Fluoro-2-hydroxyphenyl)-2-phenylethanone, 1403
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
1-(2,4-Dihydroxyphenyl)-2-(2-fluorophenyl)ethanone, 1453
1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenyl)ethanone, 1453
2-(4-Fluorophenoxy)-1-(2-hydroxyphenyl)ethanone, 1356
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{4}$
1-(2,4-Dihydroxyphenyl)-2-(2-fluorophenoxy)ethanone, 1357
1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenoxy)ethanone, 1357
2-(2-Fluorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1453
2-(4-Fluorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1453
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{5}$
2-(4-Fluorophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1357
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{3}$
1-(2,4-Dihydroxyphenyl)-2-(4-iodophenyl)ethanone, 1454
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{5}$
2-(4-Iodophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1357
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
1-(2,4-Dihydroxy-3-nitrophenyl)-2-phenylethanone, 1403
1-(2,4-Dihydroxy-5-nitrophenyl)-2-phenylethanone, 1403
1-(3,4-Dihydroxy-5-nitrophenyl)-2-phenylethanone, 1403

1-(2,4-Dihydroxyphenyl)-2-(3-nitrophenyl)ethanone, 1454
1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1454
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$
1-(2,4-Dihydroxyphenyl)-2-(2-nitrophenoxy)ethanone, 1357
1-(2,4-Dihydroxyphenyl)-2-(3-nitrophenoxy)ethanone, 1358
1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenoxy)ethanone, 1358
2-(3-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1454
2-(4-Nitrophenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1455
2-(4-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1455
1-(2,3,4-Trihydroxy-5-nitrophenyl)-2-phenylethanone, 1404
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{7}$
2-(4-Nitrophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1358
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2}$
2-Chloro-1-[2-hydroxy-5-(1-triazene-3-phenyl)phenyl]ethanone, 1254
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(2-Hydroxyphenyl)-2-phenylethanone, 1404
1-(3-Hydroxyphenyl)-2-phenylethanone, 1405
1-(4-Hydroxyphenyl)-2-phenylethanone, 1406
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
1-(2-Hydroxyphenyl)-2-(phenylthio)ethanone, 1550
1-(4-Hydroxyphenyl)-2-(phenylthio)ethanone, 1550
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
1,2-Bis(2-hydroxyphenyl)ethanone, 1455
1,2-Bis(3-hydroxyphenyl)ethanone, 1455
1,2-Bis(4-hydroxyphenyl)ethanone, 1456
1-(2,3-Dihydroxyphenyl)-2-phenylethanone, 1407
1-(2,4-Dihydroxyphenyl)-2-phenylethanone, 1407
1-(2,5-Dihydroxyphenyl)-2-phenylethanone, 1408
1-(2,6-Dihydroxyphenyl)-2-phenylethanone, 1409
1-(3,4-Dihydroxyphenyl)-2-phenylethanone, 1409
1-(2-Hydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1456
1-(2-Hydroxyphenyl)-2-phenoxyethanone, 1353
1-(4-Hydroxyphenyl)-2-phenoxyethanone, 1353
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
1-(2,4-Dihydroxyphenyl)-2-(phenylthio)ethanone, 1550
1-(3,4-Dihydroxyphenyl)-2-(phenylthio)ethanone, 1551
1-(2-Hydroxyphenyl)-2-(phenylsulfinyl)ethanone, 1551
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(2,3-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1456
1-(2,4-Dihydroxyphenyl)-2-(2-hydroxyphenyl)ethanone, 1457
1-(2,4-Dihydroxyphenyl)-2-(3-hydroxyphenyl)ethanone, 1457
1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1457
1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone-1- ${ }^{13} \mathrm{C}, 1458$

2-(2,5-Dihydroxyphenyl)-1-(2-hydroxyphenyl)ethanone, 1458
1-(3,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1458
2-(3,5-Dihydroxyphenyl)-1-(4-hydroxyphenyl)ethanone, 1458
1-(2,4-Dihydroxyphenyl)-2-phenoxyethanone, 1353
2-Phenyl-1-(2,3,4-trihydroxyphenyl)ethanone, 1410
2-Phenyl-1-(2,4,5-trihydroxyphenyl)ethanone, 1410
2-Phenyl-1-(2,4,6-trihydroxyphenyl)ethanone, 1411

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$

2-(Phenylthio)-1-(2,4,6-trihydroxyphenyl)ethanone, 1551
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
1-(2-Hydroxyphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone, 1459
2-(2-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1459
2-(4-Hydroxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1459
2-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1460
2-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone-1- ${ }^{13} \mathrm{C}, 1460$
2-Phenoxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1354
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}$
2-(3,4-Dihydroxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1460
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$
1-(4-Amino-3-hydroxyphenyl)-2-phenylethanone, 1411
1-(4-Hydroxyphenyl)-2-(phenylamino)ethanone, 1314
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$
1-(3-Amino-4,5-dihydroxyphenyl)-2-phenylethanone, 1411
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$
2-(4-Aminophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1460
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1280
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4}$
1-(5-Cyclohexyl-2,3,4-trihydroxyphenyl)-2,2,2-trifluoroethanone, 1280
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrF}_{3} \mathrm{O}_{3}$
1-(3-Bromo-5-hexyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1280
1-[4-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]-2,2,2-trifluoroethanone, 1281

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{O}_{3}$

1-(3-Chloro-5-hexyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1281
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$
1,1'-[2,4-Dihydroxy-6-methoxy-5-(2-propenyl)-1,3-phenylene]bis-ethanone, 1585
1,1'-[2-Hydroxy-4-methoxy-6-(2-propenyloxy)-1,3-phenylene]bis-ethanone, 1586
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{2}$
2-Bromo-1-(3-cyclohexyl-4-hydroxyphenyl)ethanone, 1223
2-Bromo-1-(4-cyclohexyl-3-hydroxyphenyl)ethanone, 1223
2-Bromo-1-(5-cyclohexyl-2-hydroxyphenyl)ethanone, 1223
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{O}_{3}$
2,2,2-Trichloro-1-(5-hexyl-2,4-dihydroxyphenyl)ethanone, 1264
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(1-methylpentyl)phenyl]-2,2,2-trifluoroethanone, 1281
1-[2,4-Dihydroxy-3-(4-methylpentyl)phenyl]-2,2,2-trifluoroethanone, 1281
2,2,2-Trifluoro-1-(5-hexyl-2,4-dihydroxyphenyl)ethanone, 1282
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5}$
2-Cyclohexyl-1-(3,4-dihydroxy-5-nitrophenyl)ethanone, 1541
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$
2-Cyclopentyl-1-(2-hydroxy-3-methylphenyl)ethanone, 1542
2-Cyclopentyl-1-(2-hydroxy-4-methylphenyl)ethanone, 1542
2-Cyclopentyl-1-(2-hydroxy-5-methylphenyl)ethanone, 1542
2-Cyclopentyl-1-(4-hydroxy-3-methylphenyl)ethanone, 1542
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(5-Acetyl-2-hydroxyphenyl)-1-hexanone, 1633
1,1'-[5-(1,1-Dimethylethyl)-2-hydroxy-1,3-phenylene]bis-ethanone, 1586
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$
1,1'-(5-Butyl-4,6-dihydroxy-1,3-phenylene)bis-ethanone, 1586
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
1,1'-(2,4-Dihydroxy-6-methoxy-5-propyl-1,3-phenylene)bis-ethanone, 1586
1,1'-(4,6-Dihydroxy-2-methoxy-5-propyl-1,3-phenylene)bis-ethanone, 1587
2-(2,5-Dihydroxyphenyl)-2-oxoethyl hexanoate, 1387
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{8}$
2-(β-D-Glucopyranosyloxy)-1-(4-hydroxyphenyl)ethanone, 1351
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{\text {, }}$
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]-2-hydroxyethanone, 1380
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2}$
2-Bromo-1-[4-hydroxy-3,5-bis(1-methylethyl)phenyl]ethanone, 1223
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}_{3}$
2-Chloro-1-(5-hexyl-2,4-dihydroxyphenyl)ethanone, 1254
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}$
2-(Cyclohexylamino)-1-(3,4-dihydroxyphenyl)ethanone, 1315
2-(Cyclohexylamino)-1-(3,5-dihydroxyphenyl)ethanone, 1315
1-(4-Hydroxy-3-methoxyphenyl)-2-(1-methyl-2-pyrrolidinyl)ethanone, 1316
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathbf{H C l}$
2-(Cyclohexylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride), 1315
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$
1-(4-Hydroxyphenyl)-2,2-bis(1-methylethoxy)ethanone, 1351
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$
1-(4-Butoxy-2-hydroxy-6-methylphenyl)-2-(methylsulfinyl)ethanone, 1551
1-[2-Hydroxy-6-methyl-4-(1-methylpropoxy)pheny]-2-(methylsulfinyl)ethanone, 1552
1-[2-Hydroxy-6-methyl-4-(2-methylpropoxy)phenyl]-2-(methylsulfinyl)ethanone, 1552
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$
1-(2,4-Diethoxy-6-hydroxyphenyl)-2-ethoxyethanone, 1349
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$
1-(2,4-Diethoxy-3,6-dihydroxyphenyl)-2-ethoxyethanone, 1349
1-(2,3-Diethoxy-6-hydroxy-4-methoxyphenyl)-2-methoxyethanone, 1341
1-(2,4-Diethoxy-6-hydroxy-3-methoxyphenyl)-2-methoxyethanone, 1341
1-(4,6-Diethoxy-2-hydroxy-3-methoxyphenyl)-2-methoxyethanone, 1342
2-Ethoxy-1-(2-ethoxy-6-hydroxy-3,4-dimethoxyphenyl)ethanone, 1349
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S}$
1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]-6-methylphenyl]-2-(methylsulfinyl) ethanone, 1552
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{7}$
1-(2-Ethoxy-6-hydroxy-3,4,5-trimethoxyphenyl)-2-methoxyethanone, 1342
2-Ethoxy-1-(2-hydroxy-3,4,5,6-tetramethoxyphenyl)ethanone, 1350
$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{O}_{4}$
1-[4-(Benzoyloxy)-3,5-dibromo-2-hydroxyphenyl]-2,2-dibromoethanone, 1228
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{4}$
1-[5-(5-Chloro-2-hydroxybenzoyl)-2-hydroxyphenyl]ethanone, 1638
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]-2,2,2-trifluoroethanone, 1283
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}$
1-[2,4-Dihydroxy-3-[(4-methylphenyl)sulfonyl]phenyl]-2,2,2-
trifluoroethanone, 1283
1-[2,4-Dihydroxy-5-[(4-methylphenyl)sulfonyl]phenyl]-2,2,2-trifluoroethanone, 1284
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3}$
2-(4-Cyanophenoxy)-1-(2-hydroxyphenyl)ethanone, 1358
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{6}$
1-(3-Benzoyl-2,4-dihydroxy-5-nitrophenyl)ethanone, 1627
1-[2-Hydroxy-5-(2-hydroxy-5-nitrobenzoyl)phenyl]ethanone, 1638
1-(4-Hydroxyphenyl)-2-[(2-nitrobenzoyl)oxy]ethanone, 1389
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{3}$
1-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl)-2-phenylethanone, 1412
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{I}_{2} \mathrm{O}_{3}$
1-(2-Hydroxy-3,5-diiodo-4-methoxyphenyl)-2-phenylethanone, 1412
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(3-Benzoyl-4-hydroxyphenyl)ethanone, 1627
1-(4-Benzoyl-3-hydroxyphenyl)ethanone, 1627
1-(5-Benzoyl-2-hydroxyphenyl)ethanone, 1628
1-[2-(2-Hydroxybenzoyl)phenyl]ethanone, 1638
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$
2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxyphenyl)ethanone, 1461
2-(Benzoyloxy)-1-(2-hydroxyphenyl)ethanone, 1389

1-[2-(2,4-Dihydroxybenzoyl)phenyl]ethanone, 1639
1-[2-Hydroxy-5-(2-hydroxybenzoyl)phenyl]ethanone, 1639
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}$
2-(1,3-Benzodioxol-5-yl)-1-(2,4-dihydroxyphenyl)ethanone, 1461
1-(3-Benzoyl-2,4,6-trihydroxyphenyl)ethanone, 1628
2-(Benzoyloxy)-1-(2,4-dihydroxyphenyl)ethanone, 1389
2-(Benzoyloxy)-1-(2,5-dihydroxyphenyl)ethanone, 1389
2-(2-Hydroxyphenyl)-2-oxoethyl 2-hydroxybenzoate, 1390
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6}$
2-(1,3-Benzodioxol-5-yl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1462
2-(1,3-Benzodioxol-5-yl)-1-(2,4,5-trihydroxyphenyl)ethanone, 1462
2-(1,3-Benzodioxol-5-yl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1462
2-(Benzoyloxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1390
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3}$
1-(3-Bromo-2-hydroxy-4-methoxyphenyl)-2-phenylethanone, 1412
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{2}$
1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-phenylethanone, 1412
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$
1-(2-Chloro-6-hydroxy-4-methoxyphenyl)-2-phenylethanone, 1413
1-(4-Chloro-2-hydroxy-6-methoxyphenyl)-2-phenylethanone, 1413
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{~S}$
2-Chloro-1-(2-hydroxy-4-methoxyphenyl)-2-(phenylthio)ethanone, 1552
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4}$
1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-(2,5-dihydroxyphenyl)ethanone, 1462
2-(3-Chlorophenoxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1358
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{5}$
1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone, 1463
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3}$
1-(2-Hydroxy-4-methoxyphenyl)-2-(4-fluorophenyl)ethanone, 1463
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{4}$
2-(4-Fluorophenoxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1359
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3}$
1-(2-Hydroxy-3-iodo-4-methoxyphenyl)-2-phenylethanone, 1413
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$
1-(2-Hydroxy-5-methyl-3-nitrophenyl)-2-phenylethanone, 1414
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}$
1-(3,4-Dihydroxy-5-nitrophenyl)-2-(2-methylphenyl)ethanone, 1463
1-(3,4-Dihydroxy-5-nitrophenyl)-2-(4-methylphenyl)ethanone, 1463
1-(3-Hydroxy-4-methoxy-5-nitrophenyl)-2-phenylethanone, 1414
1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-phenylethanone, 1414
1-(2-Hydroxy-4-methoxyphenyl)-2-(4-nitrophenyl)ethanone, 1464
1-(4-Hydroxy-2-methoxyphenyl)-2-(4-nitrophenyl)ethanone, 1464
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{6}$
1-(3,4-Dihydroxy-5-nitrophenyl)-2-(4-methoxyphenyl)ethanone, 1464
1-(4-Hydroxy-3-methoxyphenyl)-2-(3-nitrophenoxy)ethanone, 1359
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{7}$
2-(4-Nitrophenyl)-1-(2,4,6-trihydroxy-3-methoxyphenyl)ethanone, 1464
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
1-(2-Hydroxy-3-methylphenyl)-2-phenylethanone, 1414
1-(2-Hydroxy-4-methylphenyl)-2-phenylethanone, 1415
1-(2-Hydroxy-5-methylphenyl)-2-phenylethanone, 1416
1-(2-Hydroxy-6-methylphenyl)-2-phenylethanone, 1416
1-(4-Hydroxy-2-methylphenyl)-2-phenylethanone, 1417
1-(4-Hydroxy-3-methylphenyl)-2-phenylethanone, 1417
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$
1-(2-Hydroxyphenyl)-2-[(4-methylphenyl)thio]ethanone, 1553
1-(2-Hydroxyphenyl)-2-[(phenylmethyl)thio]ethanone, 1553
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3-methylphenyl)-2-phenylethanone, 1418
1-(2,4-Dihydroxy-5-methylphenyl)-2-phenylethanone, 1418
1-(2,4-Dihydroxy-6-methylphenyl)-2-phenylethanone, 1419
1-(2,6-Dihydroxy-3-methylphenyl)-2-phenylethanone, 1419
1-(2,4-Dihydroxyphenyl)-2-(4-methylphenyl)ethanone, 1465
1-(2-Hydroxy-3-methoxyphenyl)-2-phenylethanone, 1419
1-(2-Hydroxy-4-methoxyphenyl)-2-phenylethanone, 1419
1-(2-Hydroxy-5-methoxyphenyl)-2-phenylethanone, 1420
1-(2-Hydroxy-6-methoxyphenyl)-2-phenylethanone, 1421
1-(3-Hydroxy-4-methoxyphenyl)-2-phenylethanone, 1421
1-(4-Hydroxy-2-methoxyphenyl)-2-phenylethanone, 1421
1-(4-Hydroxy-3-methoxyphenyl)-2-phenylethanone, 1422
1-(2-Hydroxyphenyl)-2-(2-methoxyphenyl)ethanone, 1465
1-(2-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1465
1-(4-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1466
1-(4-Hydroxyphenyl)-2-(3-methylphenoxy)ethanone, 1359
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$
1-(2-Hydroxy-4-methoxyphenyl)-2-(phenylthio)ethanone, 1553
1-(2-Hydroxyphenyl)-2-[(4-methylphenyl)sulfinyl]ethanone, 1553
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(2,4-Dihydroxy-5-methoxyphenyl)-2-phenylethanone, 1422
1-(2,4-Dihydroxy-6-methoxyphenyl)-2-phenylethanone, 1422
1-(2,5-Dihydroxy-4-methoxyphenyl)-2-phenylethanone, 1423
1-(2,4-Dihydroxy-3-methylphenyl)-2-(4-hydroxyphenyl)ethanone, 1466
1-(2,4-Dihydroxy-6-methylphenyl)-2-(4-hydroxyphenyl)ethanone, 1466
2-(2,5-Dihydroxyphenyl)-1-(2-hydroxy-5-methylphenyl)ethanone, 1467
2-(3,5-Dihydroxyphenyl)-1-(2-hydroxy-4-methylphenyl)ethanone, 1467
1-(2,4-Dihydroxyphenyl)-2-(2-methoxyphenyl)ethanone, 1467

1-(2,4-Dihydroxyphenyl)-2-(3-methoxyphenyl)ethanone, 1467
1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1468
1-(2,5-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1469
1-(2,4-Dihydroxyphenyl)-2-(2-methylphenoxy)ethanone, 1359
1-(2,4-Dihydroxyphenyl)-2-(3-methylphenoxy)ethanone, 1360
1-(2,4-Dihydroxyphenyl)-2-(4-methylphenoxy)ethanone, 1360
1-(2-Hydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1469
1-(4-Hydroxy-2-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1469
1-(2-Hydroxy-4-methoxyphenyl)-2-phenoxyethanone, 1354
1-(2-Hydroxy-5-methoxyphenyl)-2-phenoxyethanone, 1354
1-(4-Hydroxy-3-methoxyphenyl)-2-phenoxyethanone, 1354
1-(2-Hydroxyphenyl)-2-(4-methoxyphenoxy)ethanone, 1360
1-(4-Hydroxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1360
2-(4-Methylphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1469
2-Phenyl-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1423

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1470
1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1470
1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1470
1-(2,4-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethanone, 1470
1-(2,4-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethanone-1- ${ }^{14} \mathrm{C}, 1471$
1-(2,4-Dihydroxyphenyl)-2-(4-hydroxy-2-methoxyphenyl)ethanone, 1471
1-(2,4-Dihydroxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)ethanone, 1471
1-(2,4-Dihydroxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1361
1-(2,4-Dihydroxyphenyl)-2-(3-methoxyphenoxy)ethanone, 1361
1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenoxy)ethanone, 1361
1-(3-Hydroxy-4-methoxyphenyl)-2-(2-hydroxyphenoxy)ethanone, 1361
1-(4-Hydroxy-3-methoxyphenyl)-2-(3-hydroxyphenoxy)ethanone, 1362
1-(2-Hydroxy-5-methylphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone, 1471
2-(2-Hydroxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1472
2-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1472
2-(2-Methoxyphenyl)-1-(2,4,5-trihydroxyphenyl)ethanone, 1472
2-(2-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1473
2-(3-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1473
2-(4-Methoxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1473
2-(4-Methoxyphenyl)-1-(2,4,5-trihydroxyphenyl)ethanone, 1474
2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1474
2-(Phenylmethoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1345
$\mathrm{C}_{15} \mathrm{H}_{44} \mathrm{O}_{6}$
2-(4-Methoxyphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1362
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
1-(3-Amino-2-hydroxy-5-methylphenyl)-2-phenylethanone, 1423
1-[3-Hydroxy-4-(methylamino)phenyl]-2-phenylethanone, 1423
1-(4-Hydroxyphenyl)-2-[(phenylmethyl)amino]ethanone, 1316

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}, \mathrm{HCl}$

1-(4-Hydroxyphenyl)-2-[(phenylmethyl)amino]ethanone (Hydrochloride), 1316
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$
1-(3,4-Dihydroxyphenyl)-2-[(phenylmethyl)amino]ethanone, 1316
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathrm{HCl}$
1-(3,4-Dihydroxyphenyl)-2-[(phenylmethyl)amino]ethanone (Hydrochloride), 1317
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{7}$
1,1'-[2,4-(Diacetyloxy)-6-hydroxy-5-methyl-1,3-phenylene]bis-ethanone, 1587
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(3-Cycloheptyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1284
1-[2,4-Dihydroxy-3-(4-methylcyclohexyl)phenyl]-2,2,2-trifluoroethanone, 1284
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
1,1'-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)-1,3-phenylene]bis-ethanone, 1587
1,1'-[4,6-Dihydroxy-5-(3-methyl-2-butenyl)-1,3-phenylene]bis-ethanone, 1587
1,1'-[4-Hydroxy-2-[(3-methyl-2-butenyl)oxy]-1,3-phenylene]bis-ethanone, 1588
1,1'-[4-Hydroxy-6-[(3-methyl-2-butenyl)oxy]-1,3-phenylene]bis-ethanone, 1588
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$
2-(Acetyloxy)-1-[2,4-dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1386
2-(Acetyloxy)-1-[2,4-dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 1386
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3}$
2,2,2-Trifluoro-1-(5-heptyl-2,4-dihydroxyphenyl)ethanone, 1284
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{9}$
2-(β-D-Glucopyranosyloxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1352
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$
1,1'-[4-(Ethylamino)-6-hydroxy-5-propyl-1,3-phenylene]bis-ethanone, 1588
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}$
2-Ethoxy-1-(2,3-diethoxy-6-hydroxy-4-methoxyphenyl)ethanone, 1350
2-Ethoxy-1-(2,4-diethoxy-6-hydroxy-3-methoxyphenyl)ethanone, 1350
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$
1-(3,4-Dihydroxyphenyl)-2-(heptylamino)ethanone, 1317
$\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Br}_{6} \mathrm{O}_{4} \mathrm{~S}$
1,1'-[Thiobis(5-bromo-6-hydroxy-3,1-phenylene)]bis[2,2-dibromoethanone, 1620
$\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}$
1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis[2,2,2-trifluoroethanone, 1620
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{~S}$
1,1'-[Thiobis(5-Bromo-6-hydroxy-3,1-phenylene)]bis-ethanone, 1621
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$
1,1'-[Thiobis(4-hydroxy-5-nitro-3,1-phenylene)]bis-ethanone, 1621
1,1'-[Thiobis(6-hydroxy-5-nitro-3,1-phenylene)]bis-ethanone, 1621
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$
1,1'-[Sulfonylbis(4-hydroxy-5-nitro-3,1-phenylene)]bis-ethanone, 1623
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$
2-(1,3-Benzodioxol-5-yl)-1-(6-hydroxy-1,3-benzodioxol-5-yl)ethanone, 1474
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{3}$
2-(4-Bromophenyl)-1-[2-(ethenyloxy)-6-hydroxyphenyl]ethanone, 1475
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4}$
1-(4-Hydroxy-3-methoxyphenyl)-2-[3-(trifuoromethyl)phenoxy]ethanone, 1362
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{3}$
1-[2-(Ethenyloxy)-6-hydroxyphenyl]-2-(4-iodophenyl)ethanone, 1475
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{4}$
1,1'-(4-Hydroxy-5-iodo-6-phenoxy-1,3-phenylene)bis-ethanone, 1589
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{7}$
1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(4-nitrophenyl)ethanone, 1475
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(4-Benzoyl-3-hydroxy-2-methylphenyl)ethanone, 1628
1-(4-Benzoyl-5-hydroxy-2-methylphenyl)ethanone, 1628
1-(5-Benzoyl-4-hydroxy-2-methylphenyl)ethanone, 1629
1-[2-(Ethenyloxy)-6-hydroxyphenyl]-2-phenylethanone, 1424
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-phenylethanone, 1424
1,1'-(2,2'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1590
1,1'-(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1591
1,1'-(4,6'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1595
1,1'-(6,6'-Dihydroxy [1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1591
1-[2-Hydroxy-5-(2-hydroxy-5-methylbenzoyl)phenyl]ethanone, 1639
2-(4-Hydroxyphenyl)-2-oxoethyl benzeneacetate, 1387
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$
1,1'-[Thiobis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1621
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$
2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1475
2-(1,3-Benzodioxol-5-yl)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1476
1-[(4-Benzoyloxy)-2-hydroxyphenyl]-2-methoxyethanone, 1342
1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-phenylethanone, 1424
1,1'-[Oxybis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1614
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$
2-(4-Acetoxyphenoxy)-1-(2,4-dihydroxyphenyl)ethanone, 1362
1-[5-(2-Acetyl-3,6-dihydroxyphenoxy)-2-hydroxyphenyl]ethanone, 1614
2-(1,3-Benzodioxol-5-yl)-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone, 1476
2-(1,3-Benzodioxol-5-yl)-1-(2,5-dihydroxy-4-methoxyphenyl)ethanone, 1476
2-(Benzoyloxy)-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone, 1390
2-(Benzoyloxy)-1-(2,6-dihydroxy-4-methoxyphenyl)ethanone, 1390
1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone, 1639
1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(4-hydroxyphenyl)ethanone, 1476
$1,1^{\prime}$-(2,2', 4, 4'-Tetrahydroxy[1, 1^{\prime}-biphenyl]-3,3'-diyl)bis-ethanone, 1591
$1,1^{\prime}$-($2,2^{\prime}, 6,6^{\prime}$-Tetrahydroxy [1, 1^{\prime}-biphenyl]-3,3'-diyl)bis-ethanone, 1592
$1,1^{\prime}-\left(2^{\prime}, 3,6,6^{\prime}\right.$-Tetrahydroxy[1,1'-biphenyl]-2,3'-diyl)bis-ethanone, 1596
1, 1^{\prime}-(2,4',6,6'-Tetrahydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1596
$1,1^{\prime}$-(4,4',6,6'-Tetrahydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1592
$1,1^{\prime}-\left(5,5^{\prime}, 6,6^{\prime}\right.$-Tetrahydroxy[1, 1'-biphenyl]-3,3'-diyl)bis-ethanone, 1592
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}$
1,1'-[Sulfonylbis(4-hydroxy-3,1-phenylene)]bis-ethanone, 1623
1,1'-[Sulfonylbis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1623
2,2'-Thiobis-1-(3,4-dihydroxyphenyl)ethanone, 1641
1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone, 1622
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{7}$
2-(Benzoyloxy)-1-(2,4,6-trihydroxy-3-methoxyphenyl)ethanone, 1391
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{8} \mathrm{~S}$
1,1'-[Sulfonylbis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone, 1624
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3}$
2-(4-Bromophenyl)-1-(5-ethyl-2,4-dihydroxyphenyl)ethanone, 1477
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4}$
1-(3-Bromo-2-hydroxy-4,5-dimethoxyphenyl)-2-phenylethanone, 1425
1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone, 1425
1-(2-Bromo-6-hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1477
2-(4-Bromophenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1477
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3}$
2-(4-Chlorophenyl)-1-(5-ethyl-2,4-dihydroxyphenyl)ethanone, 1477
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{4}$
2-(3-Chlorophenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1478
2-(4-Chlorophenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1478
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}$
2-(4-Aminophenyl)-1-(6-hydroxy-4-methoxy-1,3-benzodioxol-5-yl)ethanone, 1478
1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1478
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6}$
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(4-nitrophenyl)ethanone, 1479
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-nitrophenyl)ethanone, 1479
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{7}$
1-(2,4-dihydroxy-3,6-dimethoxyphenyl)-2-(4-Nitrophenyl)ethanone, 1479
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
1-(2-Hydroxy-3,5-dimethylphenyl)-2-phenylethanone, 1425
1-(2-Hydroxy-4,5-dimethylphenyl)-2-phenylethanone, 1425
1-(2-Hydroxy-4,6-dimethylphenyl)-2-phenylethanone, 1426
1-(4-Hydroxy-3,5-dimethylphenyl)-2-phenylethanone, 1426
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(2-Ethoxy-4-hydroxyphenyl)-2-phenylethanone, 1426
1-(4-Ethoxy-2-hydroxyphenyl)-2-phenylethanone, 1427

1-(5-Ethyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1427
2-Hydroxy-1-[2-hydroxy-4-(2-phenylethyl)phenyl]ethanone, 1380
1-(2-Hydroxy-4-methoxy-3-methylphenyl)-2-phenylethanone, 1427
1-(2-Hydroxy-4-methoxy-5-methylphenyl)-2-phenylethanone, 1427
1-(2-Hydroxy-4-methoxy-6-methylphenyl)-2-phenylethanone, 1428
1-(2-Hydroxy-6-methoxy-3-methylphenyl)-2-phenylethanone, 1428
1-(4-Hydroxy-2-methoxy-5-methylphenyl)-2-phenylethanone, 1428
1-(4-Hydroxy-2-methoxy-6-methylphenyl)-2-phenylethanone, 1428
1-(2-Hydroxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone, 1479
1-(2-Hydroxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1480
1-(2-Hydroxy-5-methylphenyl)-2-(2-methoxyphenyl)ethanone, 1480
1-(2-Hydroxy-5-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1480
1-(4-Hydroxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1480
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$
1-(2-Hydroxy-5-methylphenyl)-2-[(R)-(4-methylphenyl)sulfinyl]ethanone, 1554
1-(2-Hydroxy-5-methylphenyl)-2-[(S)-(4-methylphenyl)sulfinyl]ethanone, 1554
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-phenylethanone, 1429
1-(2,4-Dihydroxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1481
1-(2,4-Dihydroxy-5-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1481
1-(2,4-Dihydroxy-6-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1481
1-(2,6-Dihydroxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1482
1-(2,6-Dihydroxy-4-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1482
1-(2,4-Dihydroxyphenyl)-2-(4-ethylphenoxy)ethanone, 1363
2-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)ethanone, 1482
1-(5-Ethyl-2,4-dihydroxyphenyl)-2-phenoxyethanone, 1355
1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-phenylethanone, 1429
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-phenylethanone, 1429
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone, 1430
1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-phenylethanone, 1430
1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-phenylethanone, 1430
1-(2-Hydroxy-4-methoxyphenyl)-2-(2-methoxyphenyl)ethanone, 1482
1-(2-Hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1483
1-(4-Hydroxy-2-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1484
1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methylphenoxy)ethanone, 1363
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-methoxyethanone, 1343
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(phenylthio)ethanone, 1554
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-2-phenylethanone, 1431
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(4-hydroxyphenyl)ethanone, 1484
1-(2,3-Dihydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1484
1-(2,4-Dihydroxy-3-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1485
1-(2,4-Dihydroxy-5-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1485
1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(2-methoxyphenyl)ethanone, 1485

1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1486
1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1486
1-[2,4-Dihydroxy-(6-phenylmethoxy)phenyl]-2-methoxyethanone, 1343
1-(2,4-Dihydroxyphenyl)-2-(2,4-dimethoxyphenyl)ethanone, 1486
1-(2,4-Dihydroxyphenyl)-2-(2,5-dimethoxyphenyl)ethanone, 1487
1-(2,4-Dihydroxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone, 1487
1-(2,4-Dihydroxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone-1-14 $\mathrm{C}, 1487$
2-(4-Ethoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1487
2-(4-Ethylphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1363
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1488
1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1488
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenoxyethanone, 1355
1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1363
1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methoxyphenoxy)ethanone, 1364
2-(2-Methoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1488
2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1489
1-[2,4,6-Trihydroxy-3-(phenylmethyl)phenyl]-2-methoxyethanone, 1343
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6}$
1-(2,4-Dihydroxy-3-methoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl) ethanone, 1489
2-(2,3-Dimethoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1489
2-(2,4-Dimethoxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1489
2-(2,4-Dimethoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1490
2-(3,4-Dimethoxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1490
2-(3,4-Dimethoxyphenyl)-1-(2,4,5-trihydroxyphenyl)ethanone, 1490
2-(3,4-Dimethoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1490
2-(4-Ethoxyphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1364
2-(4-Methoxyphenyl)-1-(3,4,6-trihydroxy-2-methoxyphenyl)ethanone, 1491
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{7}$
2-(2,4-Dimethoxyphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1365
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl}$
1-(3,4-Dihydroxyphenyl)-2-[2-(phenylethyl)amino]ethanone (Hydrochloride), 1317
1-(3-Hydroxy-4-methoxyphenyl)-2-[(phenylmethyl)amino]ethanone
(Hydrochloride), 1317
1-(4-Hydroxy-3-methoxyphenyl)-2-[(phenylmethyl)amino]ethanone (Hydrochloride), 1318
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$
2-(4-Aminophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1491

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}, \mathrm{HCl}$

2-(4-Aminophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone (Hydrochloride), 1491
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[5-(3,5-Dimethylcyclohexyl)-2,4-dihydroxyphenyl]-2,2,2-trifluoroethanone, 1285

$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4}$

1-[2-(Acetyloxy)-5-hexyl-4-hydroxyphenyl]-2,2,2-trifluoroethanone, 1285
1-[4-(Acetyloxy)-5-hexyl-2-hydroxyphenyl]-2,2,2-trifluoroethanone, 1285
$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(1-methylheptyl)phenyl]-2,2,2-trifluoroethanone, 1285
1-(2,4-Dihydroxy-5-octylphenyl)-2,2,2-trifluoroethanone, 1285
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$
2-(2,5-Dihydroxyphenyl)-2-oxoethyl 2-propylpentanoate, 1387
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-bromoethanone, 1223
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6}$
2-Ethoxy-1-(2-hydroxy-3,4,6-triethoxyphenyl)ethanone, 1351
$\mathrm{C}_{17} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis(5-chloro-2,4-dihydroxy-3,1-phenylene)]bis[2,2,2trifluoroethanone, 1606
$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{5}$
1,1'-[Carbonylbis(5-bromo-2-hydroxy-3,1-phenylene)]bis-ethanone, 1636
$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{5}$
1,1'-[Carbonylbis(5-chloro-2-hydroxy-3,1-phenylene)]bis-ethanone, 1636
$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{5}$
1,1'-[Carbonylbis(5-fluoro-2-hydroxy-3,1-phenylene)]bis-ethanone, 1636
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{4}$
1,1-[Methylenebis(5-bromo-2-hydroxy-3,1-phenylene)]bis-ethanone, 1598
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$
1,1'-[Methylenebis(5-chloro-2-hydroxy-3,1-phenylene)]bis-ethanone, 1598
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{4}$
1,1'-[Methylenebis(5-fluoro-2-hydroxy-3,1-phenylene)]bis-ethanone, 1599
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(3-Acetyl-2,4-dihydroxyphenyl)-3-phenyl-2-propen-1-one, 1633
1-(5-Acetyl-2,4-dihydroxyphenyl)-3-phenyl-2-propen-1-one (E), 1633
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[3-(3-Acetyl-4-hydroxybenzoyl)-2-hydroxyphenyl]ethanone, 1640
1-[3-(3-Acetyl-4-hydroxybenzoyl)-4-hydroxyphenyl]ethanone, 1640
1,1'-[Carbonylbis(2-hydroxy-3,1-phenylene)]bis-ethanone, 1636
1,1'-[Carbonylbis(4-hydroxy-3,1-phenylene)]bis-ethanone, 1637
1,1'-[Carbonylbis[6-hydroxy-3,1-phenylene)]bis-ethanone, 1637
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{7}$
1,1'-[Carbonylbis(2,5-dihydroxy-3,1-phenylene)]bis-ethanone, 1637
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(4-Hydroxy-2,5-dimethylphenyl)-2-[3-(trifluoromethyl)phenoxy]
ethanone, 1365
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$
1,1'-[Carbonylbis(5-amino-2-hydroxy-3,1-phenylene)]bis-ethanone, 1638
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(3-Benzoyl-2-hydroxy-4,6-dimethylphenyl)ethanone, 1629
1-(3-Benzoyl-6-hydroxy-2,4-dimethylphenyl)ethanone, 1629
1-(4-Benzoyl-3-hydroxy-2,5-dimethylphenyl)ethanone, 1629
1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-2-phenylethanone, 1431
1-[2,4-Dihydroxy-5-(2-propenyl)phenyl]-2-phenylethanone, 1431
1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-phenylethanone, 1432
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$
1-[2-[(3-Acetyl-4-hydroxyphenyl)methyl]-5-hydroxyphenyl]ethanone, 1599
1,1'-[Methylenebis(2-hydroxy-3,1-phenylene)]bis-ethanone, 1599
1,1'-[Methylenebis(4-hydroxy-3,1-phenylene)]bis-ethanone, 1599
1,1'-[Methylenebis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1600
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$
1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone, 1491
2-(1,3-Benzodioxol-5-yl)-1-(4-ethoxy-2-hydroxyphenyl)ethanone, 1492
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$
2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1492
2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone, 1492
2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1493
2-(Benzoyloxy)-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone, 1391
2-(Benzoyloxy)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1391
2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-1,3-benzodioxol-5-yl)ethanone, 1493
1-[4-Hydroxy-3-(4-hydroxy-3-methoxybenzoyl)-5-methoxyphenyl]ethanone, 1640
1-(4-Hydroxy-6-methoxy-1,3-benzodioxol-5-yl)-2-(4-methoxyphenyl)ethanone, 1494
1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(2-methoxyphenyl)ethanone, 1494
1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(4-methoxyphenyl)ethanone, 1494
1,1'-[Methylenebis(2,4-dihydroxy-3,1-phenylene)]bis-ethanone, 1600
1,1'-[Methylenebis(2,5-dihydroxy-3,1-phenylene)]bis-ethanone, 1600
1,1'-[Methylenebis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone, 1601
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{7}$
2-(Benzoyloxy)-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone, 1391
1-[3-(3,4-Dihydroxy-5-methoxybenzoyl)-4-hydroxy-5-methoxyphenyl]
ethanone, 1640
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{8}$
2-(Benzoyloxy)-1-(2,4,6-trihydroxy-3,5-dimethoxyphenyl)ethanone, 1392
1, 1^{\prime}-[Methylenebis(4,5,6-trihydroxy-3,1-phenylene)]bis-ethanone, 1601
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5}$
1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1495
1-(5-Bromo-2-hydroxy-3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1495
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}$
2-Chloro-1-(5'-ethyl-4-hydroxy-2'-methoxy[1,1'-biphenyl]-3-yl)ethanone, 1254

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{4}$

1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone, 1495
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3}$
1-(2,4-Dihydroxy-5-propylphenyl)-2-(4-fluorophenyl)ethanone, 1495
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$
O-[3-Hydroxy-4-(phenylacetyl)phenyl] dimethylcarbamothioate, 1432
S-[3-Hydroxy-4-(phenylacetyl)phenyl] dimethylcarbamothioate, 1432
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-5-propylphenyl)-2-phenylethanone, 1432
1-[2-Hydroxy-4-(1-methylethoxy)phenyl]-2-phenylethanone, 1433
1-(2-Hydroxy-3,5-dimethylphenyl)-2-(2-methoxyphenyl)ethanone, 1496
1-(2-Hydroxy-3,5-dimethylphenyl)-2-(4-methoxyphenyl)ethanone, 1496
1-(4-Hydroxy-3,5-dimethylphenyl)-2-(2-methoxyphenyl)ethanone, 1496
1-(4-Hydroxy-3,5-dimethylphenyl)-2-(4-methoxypheny)ethanone, 1496
1-(4-Hydroxy-2,5-dimethylphenyl)-2-(3-methylphenoxy)ethanone, 1365
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
1-(2,4-Dihydroxyphenyl)-2-[4-(1-methylethyl)phenoxy]ethanone, 1365
1-(2,4-Dihydroxyphenyl)-2-(4-propylphenoxy)ethanone, 1366
2-(3,5-Dimethoxyphenyl)-1-(2-hydroxy-4-methylphenyl)ethanone, 1497
1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-2-phenylethanone, 1433
2-(4-Ethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1497
1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1497
1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-phenylethanone, 1433
1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-phenylethanone, 1434
1-(2-Hydroxy-4-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1498
1-(2-Hydroxy-6-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1498
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone, 1498
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1499
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1499
1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone, 1499
1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1500
1-(2,4-Dihydroxyphenyl)-2-(2-ethoxy-5-methoxyphenyl)ethanone, 1500
2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1500
2-(2,5-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1500
2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1501
2-(3,4-Dimethoxyphenyl)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1501
1-[4-(Ethoxymethoxy)-2,6-dihydroxyphenyl]-2-phenylethanone, 1434
2-(2-Ethoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1501
1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1502
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(2-methoxyphenyl)ethanone, 1502
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1502
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(2-methoxyphenyl)ethanone, 1503
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(3-methoxyphenyl)ethanone, 1503

1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1504
1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1504
1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)phenyl]-2-methoxyethanone, 1343
1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl]-2-methoxyethanone, 1344
1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxy-4-methylphenoxy)ethanone, 1366
1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-phenylethanone, 1434
1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-phenylethanone, 1434
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}$
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-[(R)-(4-methylphenyl)sulfinyl]ethanone, 1554
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$
1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1505
1-(2,4-Dihydroxy-5-methoxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone, 1505
1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(2,4-dimethoxyphenyl)ethanone, 1505
1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone, 1505
1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone, 1506
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-2-(phenylmethoxy)ethanone, 1346
1-(2,4-Dihydroxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone, 1506
2-(2,3-Dimethoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1506
2-(2,4-Dimethoxyphenyl)-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1507
1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1366
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7}$
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl) ethanone, 1507
2-(3,4-Dimethoxyphenyl)-1-(3,4,6-trihydroxy-2-methoxyphenyl)ethanone, 1507
1-(2,4,6-Trihydroxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone, 1507
1-(2,4,6-Trihydroxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone, 1508
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
2-(Benzyl-methyl-amino)-1-(2-hydroxy-5-methylphenyl)ethanone, 1318
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{HCl}$
2-(Benzyl-methyl-amino)-1-(2-hydroxy-5-methylphenyl)ethanone
(Hydrochloride), 1318
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$
2-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]-2-oxoethyl 2methylpropanoate, 1388
2-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-oxoethyl 2methylpropanoate, 1388
$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-5-nonylphenyl)-2,2,2-trifluoroethanone, 1286
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$
1-[5-Acetyl-2-hydroxy-3-(1-hydroxy-3-methyl-2-butenyl)phenyl]-3-methyl-1-
butanone, 1633
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-(methylsulfinyl)ethanone, 1555
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-(methylsulfonyl)ethanone, 1555
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$
1,1'-[Sulfonylbis(6-hydroxy-4-methoxy-5-nitro-3,1-phenylene)]bis-ethanone, 1624
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5}$
2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-3-(2-propenyl)phenyl]ethanone, 1508
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}$
1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-phenylethanone, 1435
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{7}$
2-[4-(Acetyloxy)phenyl]-1-(6-hydroxy-4-methoxy-1,3-benzodioxol-5-yl)
ethanone, 1508
1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-(4-hydroxyphenyl)ethanone, 1508
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$
O-[4-(1,3-Benzodioxol-5-ylacetyl)-3-hydroxyphenyl]
dimethylcarbamothioate, 1509
S-[4-(1,3-Benzodioxol-5-ylacetyl)-3-hydroxyphenyl]
dimethylcarbamothioate, 1509
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{9}$
1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-[(4-nitrobenzoyl)oxy]ethanone, 1392
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$
1,1'-(3-Hydroxy-4',5-dimethyl[1,1'-biphenyl]-2,6-diyl)bis-ethanone, 1596
1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]-2-phenylethanone, 1435
1-[4-Hydroxy-3-methoxy-5-(2-propenyl)phenyl]-2-phenylethanone, 1435
1-[2-Hydroxy-3-methyl-4-(2-propenyloxy)phenyl]-2-phenylethanone, 1436
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
1,1'-(2,2'-Dihydroxy-5,5'-dimethyl[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1593
1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-2-(4-methoxyphenyl)ethanone, 1509
1,1'-[1,2-Ethanediylbis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1610
1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]-2-phenylethanone, 1436
1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-(4-methoxyphenyl)ethanone, 1510
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$
1-[3-[(3-Acetyl-4-hydroxyphenyl)methyl]-2-hydroxy-5-(hydroxymethyl)phenyl] ethanone, 1601
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6}$
1, 1^{\prime}-(2, 2^{\prime}-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1593
1,1'-(2,4'-Dihydroxy-2',4-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1597
1,1'-(2,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1597
1,1'-(4,4'-Dihydroxy-2,2'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1593
1,1'-(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1594
1,1'-(6,6'-Dihydroxy-5,5'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1594
1,1'-[1,2-Ethanediylbis[oxy(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1615
1-[4-Hydroxy-3-(4-hydroxy-3-methoxy-5-methylbenzoyl)-5-methoxyphenyl] ethanone, 1640
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}$
1,1'-[Thiobis(2-hydroxy-6-methoxy-3,1-phenylene)]bis-ethanone, 1622
1,1'-[Thiobis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-ethanone, 1622
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7}$
2-(Benzoyloxy)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)ethanone, 1392
2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-4-methoxy-1,3-benzodioxol-5-yl) ethanone, 1510
2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-7-methoxy-1,3-benzodioxol-5-yl) ethanone, 1510
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(6-methoxy-1,3-benzodioxol-5-yl) ethanone, 1510
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(7-methoxy-1,3-benzodioxol-5-yl) ethanone, 1511
1-[4-Hydroxy-3-(4-hydroxy-3,5-dimethoxybenzoyl)-5-methoxyphenyl] ethanone, 1641
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{8}$
1,1'-[Ethylidenebis(4,5,6-trihydroxy-3,1-phenylene)]bis-ethanone, 1610
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{8} \mathrm{~S}$
1,1'-[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-ethanone, 1624
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$
O-[3-Hydroxy-4-[(2-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate, 1511
S-[3-Hydroxy-4-[(2-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate, 1511
O-[3-Hydroxy-4-[(4-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate, 1512
S-[3-Hydroxy-4-[(4-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate, 1512
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$
1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2-phenylethanone, 1436
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$
1-(4-Butoxy-2-hydroxyphenyl)-2-phenylethanone, 1436
1-(5-Butyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1436
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
1-(6-Ethoxy-2,4-dihydroxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone, 1512
2-(2-Ethoxy-5-methoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1513
1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone, 1513
1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone, 1513
1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1514
1-(4-Hydroxy-2,6-dimethoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1514
1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-(2-methoxyphenyl)ethanone, 1515
1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1515
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}$
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2-(2,4-dimethoxyphenyl)
ethanone, 1515
2-(2,6-Dimethoxy-4-methylphenoxy)-1-(4-hydroxy-3-methoxyphenyl)
ethanone, 1366

2-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1516
2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1516
2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone, 1516
2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1517
2-(2,5-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1517
2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1518
2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4,5-dimethoxyphenyl)ethanone, 1518
2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1519
2-(3,4-Dimethoxyphenyl)-1-(4-hydroxy-2,6-dimethoxyphenyl)ethanone, 1519
1-[2-Hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]-2-methoxyethanone, 1344
1-(2-Hydroxy-4-methoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone, 1519
1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1520
1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1520
1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-(phenylmethoxy)ethanone, 1346
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7}$
1-[2,5-Dihydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]-2-methoxyethanone, 1344
1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone, 1520
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{8}$
1-(3,4,6-Trihydroxy-2-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone, 1521
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[5-Acetyl-2-hydroxy-3-(3-methyl-1,3-butadienyl)phenyl]-3-methyl-1-butanone (E), 1634
1-[5-Acetyl-2-hydroxy-3-(3-methyl-2-butenyl)phenyl]-3-methyl-2-buten-1-one, 1634
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$
1-[5-Acetyl-2-hydroxy-3-(3-hydroxy-3-methyl-1-butenyl)phenyl]-3-methyl-1butanone (E), 1634
1,1'-(5-Acetyl-2-hydroxy-1,3-phenylene)bis[3-methylbutanone, 1635
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl]-2hydroxyethanone, 1380
1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxyphenyl]-2hydroxyethanone (E), 1381
$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[4-(Decyloxy)-2-hydroxyphenyl]-2,2,2-trifluoroethanone, 1286
1-[2,4-Dihydroxy-3-(1-methylnonyl)phenyl]-2,2,2-trifluoroethanone, 1286
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$
2-(Acetyloxy)-1-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1386
$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$
1-(4-Hydroxyphenyl)-2,2-bis(3-methylbutoxy)ethanone, 1352
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis(2,4-dihydroxy-5-methyl-3,1-phenylene)]bis[2,2,2trifluoroethanone, 1607

1,1'-[Methylenebis(4,6-dihydroxy-5-methyl-3,1-phenylene)]bis[2,2,2-
trifluoroethanone, 1607
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$
1-(3-Acetyl-2,4-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)-2-propen-1-one, 1635
1-(3-Acetyl-2,6-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)-2-propen-1-one, 1635
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{7}$
1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone, 1521
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClO}_{4}$
2-(4-Chlorophenyl)-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1521
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-2-phenylethanone, 1437
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-methoxyphenyl]ethanone, 1610
1,1'-[2-Hydroxy-5-[1-(4-hydroxyphenyl)-1-methylethyl]-1,3-phenylene]
bis-ethanone, 1610
1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-2-phenylethanone, 1437
1-(2-Hydroxyphenyl)-2-[4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 1521
1,1'-[Methylenebis(4-hydroxy-5-methyl-3,1-phenylene)]bis-ethanone, 1601
1,1'-[(1-Methylethylidene)bis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1611
2-Phenyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1437
1,1'-[1,3-Propanediylbis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1611
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6}$
1-[3-[(5-Acetyl-4-hydroxy-2-methoxyphenyl)methyl]-2-hydroxy-4-
methoxyphenyl]ethanone, 1602
1,1'-[Methylenebis(2,4-dihydroxy-5-methyl-3,1-phenylene)]bis-ethanone, 1602
1,1'-[Methylenebis(4,6-dihydroxy-5-methyl-3,1-phenylene)]bis-ethanone, 1602
1,1'-[Methylenebis(2-hydroxy-4-methoxy-3,1-phenylene)]bis-ethanone, 1602
1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-ethanone, 1603
1,1'-[1,3-Propanediylbis[oxy(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1615
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{7}$
1-[4-[3-(2-Acetyl-3-hydroxyphenoxy)-2-hydroxypropoxy]-2-hydroxyphenyl] ethanone, 1615
$1,1^{\prime}$-[(2-Hydroxy-1,3-propanediyl)bis[oxy(2-hydroxy-4,1-phenylene)]]bisethanone, 1616
1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-2,1-phenylene)]]bisethanone, 1615
$1,1^{\prime}$ - [(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-3,1-phenylene)] $]$ bisethanone, 1616

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8}$

1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(3,4,5-trimethoxyphenyl) ethanone, 1522
2-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-oxoethyl 4-methoxybenzoate, 1393
1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-3,1-phenylene)]bis-ethanone, 1603
1,1'-[Methylenebis(2,4,6-trihydroxy-5-methyl-3,1-phenylene)]bis-ethanone, 1603
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{9}$
1,1'-[(2-Methoxyethylidene)bis(4,5,6-trihydroxy-3,1-phenylene)]bis-ethanone, 1611
$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$
1,1'-[4'-(Dimethylamino)-3-hydroxy-5-methyl[1,1'-biphenyl]-2,6-diyl]bisethanone, 1589
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClF}_{3} \mathrm{O}_{4}$
1-[5-Chloro-2-hydroxy-4-(10-undecenoyloxy)phenyl]-2,2,2-trifluoroethanone, 1286
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-5-pentylphenyl)-2-phenylethanone, 1437
1-[2-Hydroxy-4-(pentyloxy)phenyl]-2-phenylethanone, 1438
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$
1-(5-Ethyl-2,4-dihydroxyphenyl)-2-[4-(1-methylethoxy)phenyl]ethanone, 1522
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$
2-(3,4-Diethoxyphenyl)-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone, 1522
2-(3,4-Dimethoxyphenyl)-1-(4-ethoxymethoxy-2-hydroxyphenyl)ethanone, 1522
2-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl) ethanone, 1523
2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl) ethanone, 1523
2-(2,4-Dimethoxyphenyl)-1-(6-hydroxy-2,4-dimethoxy-3-methylphenyl) ethanone, 1523
1-(4-Hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy] ethanone, 1367
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7}$
1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone, 1524
1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone, 1524
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone, 1524
1-[2-Hydroxy-6-(phenylmethoxy)-3,4,5-trimethoxyphenyl]-2-methoxyethanone, 1344
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}$
1-[6-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,4-dihydroxy-3-methoxyphenyl]-2-
hydroxyethanone, 1381
$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{5}$
1-(3,4-Dihydroxy-5-nitrophenyl)-2,2-diphenylethanone, 1538
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$
1-(2-Hydroxyphenyl)-2,2-diphenylethanone, 1539
1-(4-Hydroxyphenyl)-2,2-diphenylethanone, 1539
$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{8}$
2-[4-(Acetyloxy)phenyl]-1-[2,6-bis(acetyloxy)-4-hydroxyphenyl]ethanone, 1525
1,1-(2,2',4,4'-Tetrahydroxy[1,1'-biphenyl]-3,3',5,5'-tetrayl)tetrakis-ethanone, 1594
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$
2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl] ethanone, 1525
1,1'-[2-Hydroxy-4-(phenylmethoxy)-6-(2-propenyloxy)-1,3-phenylene]
bis-ethanone, 1589
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$
1-(3-Cyclohexyl-2,6-dihydroxyphenyl)-2-phenylethanone, 1438
1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1438
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$
1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-ethoxyphenyl]ethanone, 1612
1-[5-[1-(3-Acetyl-4-hydroxyphenyl)-1-methylethyl]-2-methoxyphenyl]ethanone, 1612
1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1438
1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1439
1-[4-(Ethoxymethoxy)-2-hydroxy-3-(2-propenyl)phenyl]-2-phenylethanone, 1439
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}$
1-[2-Hydroxy-4,6-dimethoxy-3-(2-propenyl)phenyl]-2-[(S)-(4-methylphenyl) sulfinyl]ethanone, 1555
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$
1,1'-[1,4-Butanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1616
1,1'-(2,2'-Diethoxy-4,4'-dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1595
1, 1^{\prime}-(2,4'-Dihydroxy-6,6'-dimethoxy-2',4-dimethyl $\left[1,1^{\prime}\right.$-biphenyl]-3,3'-diyl) bisethanone, 1597
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8}$
1,1'-(2,2'-Dihydroxy-4,4',6,6'-tetramethoxy[1,1'-biphenyl]-3,3'-diyl)
bis-ethanone, 1595
$1,1^{\prime}$-(2,4'-Dihydroxy-2',4,6,6'-tetramethoxy[1, 1^{\prime}-biphenyl]-3,3'-diyl)
bis-ethanone, 1597
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$
1-(5-Hexyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1439
1-[4-(Hexyloxy)-2-hydroxyphenyl]-2-phenylethanone, 1440
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$
2-(3,4-Diethoxyphenyl)-1-(2-ethoxy-4,6-dihydroxyphenyl)ethanone, 1525
1-(3-Ethoxy-6-hydroxy-2,4-dimethoxyphenyl)-2-(4-ethoxyphenyl)ethanone, 1526
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}$
1-(6-hydroxy-2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone, 1526
$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{4}$
1-[2-Hydroxy-3-methyl-4-(10-undecenoyloxy)phenyl]-2,2,2-trifluoroethanone, 1287
$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(3-Cyclododecyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1287
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$
1-[3,4-Dimethoxy-6-[(3,7-dimethyl-2,6-octadienyl)oxy]-2-hydroxyphenyl]-2hydroxyethanone, 1381
$\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(1-methylundecyl)phenyl]-2,2,2-trifluoroethanone, 1287
1-(5-Dodecyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1287
$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{6}$
1-[2-Hydroxy-4-(4-nitrobenzoyloxy)phenyl]-2-phenylethanone, 1440
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{6}$
2-[4-(Benzoyloxy)phenyl]-1-(2,4,6-trihydroxyphenyl)ethanone, 1526
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis(5-ethyl-2,4-dihydroxy-3,1-phenylene)]bis[2,2,2-
trifluoroethanone, 1607
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}$
1-(2-Hydroxy-3-methylphenyl)-2,2-diphenylethanone, 1539
1-(2-Hydroxy-4-methylphenyl)-2,2-diphenylethanone, 1539
1-(2-Hydroxy-5-methylphenyl)-2,2-diphenylethanone, 1540
1-(4-Hydroxy-2-methylphenyl)-2,2-diphenylethanone, 1540
1-(4-Hydroxy-3-methylphenyl)-2,2-diphenylethanone, 1540
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]-2-phenylethanone, 1440
1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]-2-phenylethanone, 1441
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-phenylethanone, 1441
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4}$
2-([1,1'-Biphenyl]-2-yloxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1367
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}$
1-[2-Hydroxy-4-[[(4-methylphenyl)sulfonyl]oxy]phenyl]-2-phenylethanone, 1441
$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}$
1,1', $1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2,4-dihydroxy-5,1,3-benzenetriy1)]tetrakis-ethanone, 1603
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}-[$ Methylenebis (4,6-dihydroxy-5,1,3-benzenetriyl)]tetrakis-ethanone, 1604
$\mathbf{C}_{21} \mathbf{H}_{20} \mathbf{O}_{10}$
1,1', $1^{\prime \prime}, 1^{\prime \prime}-[$ Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)]tetrakis-ethanone, 1604
$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{O}_{6}$
1,1'-[1,5-Pentanediylbis[oxy(5-chloro-6-hydroxy-2,1-phenylene)]]bis-ethanone, 1617
$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5}$
1,1'-[5-[1-(3-Acetyl-4-hydroxyphenyl)-1-methylethyl]-2-hydroxy-1,3-phenylene] bis-ethanone, 1612
1,1'-[4-Hydroxy-2-methoxy-6-(phenylmethoxy)-5-(2-propenyl)-1,3-phenylene]
bis-ethanone, 1589
$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}$
2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-6-methoxy-3-(3-methyl-2-butenyl) phenyl]ethanone, 1527
2-(1,3-Benzodioxol-5-yl)-1-[4,6-dihydroxy-2-methoxy-3-(3-methyl-2-butenyl) phenyl]ethanone, 1527
$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{\mathbf{9}}$
1-[3-Benzoyl-4-(β-D-galactopyranosyloxy)-2-hydroxyphenyl]ethanone, 1630
1-[3-Benzoyl-4-(β-D-glucopyranosyloxy)-2-hydroxyphenyl]ethanone, 1630
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$
1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-isopropoxyphenyl]ethanone, 1612
1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-propoxyphenyl]ethanone, 1613

1,1'-[(1-Ethylpropylidene)bis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1613
1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1442
1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1442
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4-methoxyphenyl) ethanone, 1527
1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4-methoxyphenyl) ethanone, 1528
1-[4-(Ethoxymethoxy)-2-hydroxy-3-(2-propenyl)phenyl]-2-(4-methoxyphenyl) ethanone, 1528
1-[2-Hydroxy-6-methoxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-2-(4methoxyphenyl)ethanone, 1528
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$
1-[4-[[5-(2-Acetyl-3-hydroxyphenoxy)pentyl]oxy]-2-hydroxyphenyl]
ethanone, 1617
1,1'-[1,5-Pentanediylbis[oxy(2-hydroxy-3,1-phenylene)]]bis-ethanone, 1617
1,1'-[1,5-Pentanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-ethanone, 1617
1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1618
1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-3,1-phenylene)]]bis-ethanone, 1618
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{8}$
1,1'-(2-Hydroxy-2',4,4',6,6'-pentamethoxy[1,1'-biphenyl]-3,3'-diyl)bisethanone, 1598
1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]
bis-ethanone, 1604
1,1'-[Methylenebis(6-hydroxy-4,5-dimethoxy-3,1-phenylene)]bis-ethanone, 1605
1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[2-methoxyethanone, 1641
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{9}$
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone, 1529
1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-4-methoxy-2,1-phenylene)]] bis-ethanone, 1618
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{10}$
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]-2-(4-methoxyphenoxy)
ethanone, 1367
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6}$
1-(2,4-Diethoxy-6-hydroxy-3-methoxyphenyl)-2-(4-ethoxyphenyl)ethanone, 1529
1-(2,4-Diethoxy-6-hydroxyphenyl)-2-(3-ethoxy-4-methoxyphenyl)ethanone, 1529
1-(2,4-Diethoxy-6-hydroxyphenyl)-2-(4-ethoxy-3-methoxyphenyl)ethanone, 1530
2-(3,4-Diethoxyphenyl)-1-(2-ethoxy-6-hydroxy-4-methoxyphenyl)ethanone, 1530
2-(3,4-Diethoxyphenyl)-1-(4-ethoxy-2-hydroxy-6-methoxyphenyl)ethanone, 1530
$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$
2-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-oxoethyl
2,2-dimethylpropanoate, 1388
$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{5}$
1-(4-Benzoyl-3-hydroxy-5-methyl-6-nitro[1,1'-biphenyl]-2-yl)ethanone, 1630
$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{7}$
1-[2-Hydroxy-4-(4-nitrobenzoyloxy)phenyl]-2-(4-methoxyphenyl)ethanone, 1530
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{5}$
1-[4-(Benzoyloxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone, 1531
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6}$
2-[2-(Benzoyloxy)-4-methoxyphenyl]-1-(2,4-dihydroxyphenyl)ethanone, 1531
1-(2,4-Dihydroxyphenyl)-2-[4-[2-(2,4-dihydroxyphenyl)-2-oxoethyl]phenyl] ethanone, 1641
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{7}$
2-[2-(Benzoyloxy)-4-methoxyphenyl]-1-(2,4,6-trihydroxyphenyl)ethanone, 1531
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}$
1-(6-Amino-4-benzoyl-3-hydroxy-5-methyl[1,1'-biphenyl]-2-yl)ethanone, 1630
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[2-Hydroxy-4-methoxy-3-(phenylmethyl)phenyl]-2-phenylethanone, 1442
1-[2-Hydroxy-4-methoxy-5-(phenylmethyl)phenyl]-2-phenylethanone, 1442
1-[2-Hydroxy-5-methyl-4-(phenylmethoxy)phenyl]-2-phenylethanone, 1443
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-(4-methoxyphenyl)ethanone, 1531
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S}$
1-[2-Hydroxy-4-[[(4-methylphenyl)sulfonyl]oxy]phenyl]-2-(4-methoxyphenyl) ethanone, 1532
$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2}$
2-[Bis(phenylmethyl)amino]-1-(4-hydroxyphenyl)ethanone, 1318
$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2}, \mathbf{H C l}$
2-[Bis(phenylmethyl)amino]-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1319
$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$
2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl) phenyl]ethanone, 1532
2-(1,3-Benzodioxol-5-yl)-1-[6-hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl) phenyl]ethanone, 1532
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}$
1,1'-[1,6-Hexanediylbis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1613
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5}$
1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4-methoxyphenyl) ethanone, 1533
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$
1,1'-[1,6-Hexanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1618
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-phenylethanone, 1443
1-[4-(1,5-Dimethylhexyl)-2-hydroxyphenyl]-2-phenylethanone, 1443
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$
1-[3,5-Bis-(1,1-dimethylethyl)-4-hydroxyphenyl]-2-phenoxyethanone, 1355
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{8}$
2-(2,4-Dimethoxyphenyl)-1-[4,6-bis(ethoxymethoxy)-2-hydroxyphenyl] ethanone, 1533
$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{8}$
1,1'-[[(3,4-Dichlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)]
bis-ethanone, 1642
$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClO}_{8}$
1,1'-[[(4-Chlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)]
bis-ethanone, 1613
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{6}$
2-(Benzoyloxy)-1-[2-hydroxy-4-methoxy-6-(phenylmethoxy)phenyl]ethanone, 1393
1-[4-Hydroxy-6-(phenylmethoxy)-1,3-benzodioxol-5-yl]-2-(4-methoxyphenyl) ethanone, 1533
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{8}$
1,1'-[(Phenylmethylene)bis(4,5,6-trihydroxy-3,1-phenylene)]bis-ethanone, 1642
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis[2,4-dihydroxy-5-(1-methylethyl)-3,1-phenylene]]bis[2,2,2trifluoroethanone, 1607
1,1'-[Methylenebis[4,6-dihydroxy-5-(1-methylethyl)-3,1-phenylene]]bis[2,2,2trifluoroethanone, 1608
1,1'-[Methylenebis(2,4-dihydroxy-5-propyl-3,1-phenylene)]bis[2,2,2trifluoroethanone, 1608
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5}$
1-[2,6-Dihydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]-2methoxyethanone, 1345
1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]-2-methoxyethanone, 1345
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6}$
1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl]-2-(2-hydroxy-4-methoxyphenyl)ethanone, 1534
$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}$
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime}$-[(1-Methylethylidene)bis(2-hydroxy-5,1,3-benzenetriyl)] tetrakis-ethanone, 1614
$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{8}$
1,1', $1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2-hydroxy-4-methoxy-5,1,3-benzenetriyl)] tetrakis-ethanone, 1605
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6}$
1,1'-[1,5-Pentanediylbis[oxy(2-hydroxy-3-methyl-4,1-phenylene)]] bis-ethanone, 1619
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8}$
1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-4-methoxy-2,1-phenylene)]]
bis-ethanone, 1619
1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-4-methoxy-3,1-phenylene)]]
bis-ethanone, 1619
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{10}$
1,1'-[Methylenebis(2-hydroxy-4,6-dimethoxy-3,1-phenylene)]
bis[2-methoxyethanone, 1642
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-(4-methylphenyl)ethanone, 1534
$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$
1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-(3-methyl-2-butenyl) phenyl]-2-hydroxyethanone $(E), 1382$
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{6}$
1-[3-[(5-Benzoyl-2,4-dihydroxy-3-methylphenyl)methyl]-2,4-dihydroxy-5-methyl-phenyl]ethanone, 1642
1-[6-Hydroxy-2,4-dimethoxy-3-[(phenylacetyl)oxy]phenyl]-2-phenylethanone, 1443
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{7}$
2-(Benzoyloxy)-1-[2-hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl] ethanone, 1393
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{8}$
1,1'-[[(4-Hydroxy-3-methoxyphenyl)methylene]bis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone, 1643
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[2-Hydroxy-6-methoxy-3-methyl-4-(phenylmethoxy)phenyl]-2-(4methoxyphenyl)ethanone, 1534
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6}$
1-[2-Hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl]-2-(phenylmethoxy) ethanone, 1346
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-(2,4,5-trimethoxyphenyl)ethanone, 1535
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6}$
1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-2-[4-[(tetrahydro-2H-pyran-2-yl)oxy]-phenyl]ethanone, 1535
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{8}$
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 1605
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{9}$
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]ethanone, 1606
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$
2-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-oxoethyl benzeneacetate, 1388
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6}$
1,1'-[1,8-Octanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1619
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{10}$
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-5-(2,3-
dihydroxy-3-methylbutyl)-2,4,6-trihydroxyphenyl]ethanone, 1643
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3}$
1-[4-(Decyloxy)-2-hydroxyphenyl]-2-phenylethanone, 1444
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{6}$
1,1'-(2-Hydroxy-4,5,6-trimethoxy-1,3-phenylene)bis[2-phenylethanone, 1590
$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis(5-butyl-2,4-dihydroxy-3,1-phenylene)]bis[2,2,2-
trifluoroethanone, 1608
$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]-2-
phenylethanone, 1444
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{6}$
1,1'-[1,9-Nonanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1620
$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{2}$
1-[(4-Hydroxy-3,5-diphenyl)phenyl]-2-phenylethanone, 1444
1-(4-Hydroxyphenyl)-2,2,2-triphenylethanone, 1540
1-(2'-Hydroxy[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-5'-yl)-2-phenylethanone, 1444
$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{8}$
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-1-butanone, 1643
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone, 1644
$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{\mathbf{9}}$
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-
5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-1-butanone, 1644
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-2-methyl-1-propanone, 1644
$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6}$
1,1'-[1,10-Decanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1620
$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3}$
1-[4-(Dodecyloxy)-2-hydroxyphenyl]-2-phenylethanone, 1445
$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{ClF}_{3} \mathrm{O}_{4}$
1-[5-Chloro-2-hydroxy-4-(octadecanoyloxy)phenyl]-2,2,2-trifluoroethanone, 1288
1-[5-Chloro-4-hydroxy-2-(octadecanoyloxy)phenyl]-2,2,2-trifluoroethanone, 1288
$\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(1-methylheptadecyl)phenyl]-2,2,2-trifluoroethanone, 1288
$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[3-(Diphenylmethyl)-2,4-dihydroxyphenyl]-2-phenylethanone, 1445
1-[5-(Diphenylmethyl)-2,4-dihydroxyphenyl]-2-phenylethanone, 1445
$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{4}$
1-[3-(Diphenylmethyl)-2,4,6-trihydroxyphenyl]-2-phenylethanone, 1445
1-[5-(Diphenylmethyl)-2,3,4-trihydroxyphenyl]-2-phenylethanone, 1446
$\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{6}$
1,1'-[(Phenylmethylene)bis(4-ethoxy-6-hydroxy-3,1-phenylene)]
bis-ethanone, 1645
$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis(2,4-dihydroxy-5-pentyl-3,1-phenylene)]bis[2,2,2trifluoroethanone, 1608
$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3,5-bis(phenylmethyl)phenyl]-2-phenylethanone, 1446
1-[3-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]-2-phenylethanone, 1446
1-[5-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]-2-phenylethanone, 1446
1-[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]-
2-phenylethanone, 1447
1-[2-Hydroxy-4-(phenylmethoxy)-5-(phenylmethyl)phenyl]-2-phenylethanone, 1447
$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-6-(phenylmethoxy)-3-(phenylmethyl)phenyl]-
2-phenylethanone, 1447
1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]-2-phenylethanone, 1448
$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{7}$
2-[2,4-Bis(phenylmethoxy)phenoxy]-1-(2,4,6-trihydroxyphenyl)ethanone, 1367
$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{6}$
1-[3,5-Bis[(5-acetyl-2-hydroxy-3-methylphenyl)methyl]-4-hydroxyphenyl]
ethanone, 1606
$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{FO}_{12}$
2-(2-Fluorophenyl)-1-[2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl) oxy]phenyl]ethanone, 1535
$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{FO}_{13}$
2-(4-Fluorophenoxy)-1-[2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-Dglucopyranosyl)oxy]phenyl]ethanone, 1368
$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6}$
2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-6-(phenylmethoxy)-3-(phenylmethyl) phenyl]ethanone, 1536
2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-bis(phenylmethoxy)phenyl]ethanone, 1536
2-(Benzoyloxy)-1-[2-hydroxy-4,6-bis(phenylmethoxy)phenyl]ethanone, 1393
1,1'-[Methylenebis(2,4-dihydroxy-3,1-phenylene)]bis[2-phenylethanone, 1645
$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{10}$
1,1'-[Methylenebis(2,4,6-trihydroxy-3,1-phenylene)]bis-[2-phenoxyethanone, 1645
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{3}$
1-[2-Hydroxy-4-methoxy-3,5-bis(phenylmethyl)phenyl]-2-phenylethanone, 1448
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5}$
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-[4-methoxy-2-(phenylmethoxy) phenyl]ethanone, 1536
$\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis(5-cyclohexyl-2,4-dihydroxy-3,1-phenylene)]bis[2,2,2trifluoroethanone, 1609
$\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{13}$
1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-2-(4methoxyphenyl)ethanone, 1537
$\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{14}$
1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-2-(4methoxyphenoxy)ethanone, 1368
$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis(5-hexyl-2,4-dihydroxy-3,1-phenylene)]bis[2,2,2trifluoroethanone, 1609
$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{~S}$
1,1'-[Sulfonylbis[4-(benzoyloxy)-6-hydroxy-5-nitro-3,1-phenylene]] bis-ethanone, 1625
$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S}$
1,1'-[Thiobis[4-(benzoyloxy)-6-hydroxy-3,1-phenylene]]bis-ethanone, 1622
$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{10} \mathrm{~S}$
1,1'-[Sulfonylbis[4-(benzoyloxy)-6-hydroxy-3,1-phenylene]]bis-ethanone, 1625
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$
1,1'-[Sulfonybis[6-hydroxy-5-nitro-4-(phenylmethoxy)-3,1-phenylene]] bis-ethanone, 1625
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}$
1,1'-[Thiobis[6-hydroxy-4-(phenylmethoxy)-3,1-phenylene]]bis-ethanone, 1623
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S}$
1,1'-[Sulfonylbis[6-hydroxy-4-(phenylmethoxy)-3,1-phenylene]]bis-ethanone, 1625
$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{5}$
1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]-2-
methoxyethanone, 1345
1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl]-2-(2-methoxyphenyl) ethanone, 1537
1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl]-2-(4-methoxyphenyl) ethanone, 1537
$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{6}$
2-(2,4-Dimethoxyphenyl)-1-[2-hydroxy-4,6-bis(phenylmethoxy)phenyl]
ethanone, 1538
$\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis[2,4-dihydroxy-5-(phenylmethyl)-3,1-phenylene]]
bis[2,2,2-trifluoroethanone, 1609
$\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{O}_{8}$
1,1'-[Methylenebis(5-acetyl-4,6-dihydroxy-3,1-phenylene)]
bis-[3-phenyl-2-propen-1-one (E, E), 1645
$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(phenylmethoxy)-3,5-bis(phenylmethyl)
phenyl]-2-phenylethanone, 1448
$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{4}$
1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)
phenyl]-2-phenylethanone, 1448
$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{6}$
2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl) phenyl]ethanone, 1538
2-(Benzoyloxy)-1-[2-hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone, 1394
2-(Benzoyloxy)-1-[6-hydroxy-2,4-bis(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone, 1394
$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{3}$
1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxyphenyl]-2-
phenylethanone, 1449
$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{4}$
1-[3,5-Bis(diphenylmethyl)-2,4,6-trihydroxyphenyl]-2-phenylethanone, 1449
$\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~F}_{6} \mathrm{O}_{6}$
1,1'-[Methylenebis(5-dodecyl-2,4-dihydroxy-3,1-phenylene)]
bis[2,2,2-trifluoroethanone, 1609

Volume 3 - Addendum

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{O}_{2}$
1-(5-Chloro-2-hydroxyphenyl)-2,2,2-trifluoroethanone, 1671
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrCl}_{2} \mathrm{O}_{2}$
1-(3-Bromo-5-chloro-2-hydroxyphenyl)-2-chloroethanone, 1662
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{FO}_{2}$
2-Chloro-1-(5-chloro-3-fluoro-2-hydroxyphenyl)ethanone, 1662
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2}$
2-Chloro-1-(3,5-dichloro-2-hydroxyphenyl)ethanone, 1662
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{2}$
2,2,2-Trifluoro-1-(2-hydroxyphenyl)ethanone, 1671
2,2,2-Trifluoro-1-(4-hydroxyphenyl)ethanone, 1671
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$
1-(2,3-Dihydroxyphenyl)-2,2,2-trifluoroethanone, 1672

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrClO}_{2}$

2-Bromo-1-(3-chloro-4-hydroxyphenyl)ethanone, 1649
2-Bromo-1-(4-chloro-2-hydroxyphenyl)ethanone, 1649
2-Bromo-1-(5-chloro-2-hydroxyphenyl)ethanone, 1650
1-(5-Bromo-2-hydroxyphenyl)-2-chloroethanone, 1662
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{4}$
2-Bromo-1-(3-hydroxy-4-nitrophenyl)ethanone, 1650
2-Bromo-1-(4-hydroxy-3-nitrophenyl)ethanone, 1650
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{5}$
2-Bromo-1-(3,4-dihydroxy-5-nitrophenyl)ethanone, 1651
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}$
2-Bromo-1-(5-bromo-2-hydroxyphenyl)ethanone, 1651
2,2-Dibromo-1-(4-hydroxyphenyl)ethanone, 1661
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClFO}_{2}$
2-Chloro-1-(5-fluoro-2-hydroxyphenyl)ethanone, 1663

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{2}$

2-Chloro-1-(3-chloro-4-hydroxyphenyl)ethanone, 1663
2-Chloro-1-(5-chloro-2-hydroxyphenyl)ethanone, 1663
2,2-Dichloro-1-(4-hydroxyphenyl)ethanone, 1667
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{2}$
2-Bromo-1-(2-hydroxyphenyl)ethanone, 1651
2-Bromo-1-(3-hydroxyphenyl)ethanone, 1651
2-Bromo-1-(4-hydroxyphenyl)ethanone, 1652

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$

2-Bromo-1-(2,4-dihydroxyphenyl)ethanone, 1652
2-Bromo-1-(2,5-dihydroxyphenyl)ethanone, 1653
2-Bromo-1-(3,4-dihydroxyphenyl)ethanone, 1653
2-Bromo-1-(3,5-dihydroxyphenyl)ethanone, 1654

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{4}$

2-Bromo-1-(2,3,4-trihydroxyphenyl)ethanone, 1654
2-Bromo-1-(3,4,5-trihydroxyphenyl)ethanone, 1654

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$

2-Chloro-1-(3-hydroxyphenyl)ethanone, 1663
2-Chloro-1-(4-hydroxypheny) ethanone, 1663

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3}$

2-Chloro-1-(2,4-dihydroxyphenyl)ethanone, 1664
2-Chloro-1-(3,4-dihydroxyphenyl)ethanone, 1664

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{4}$

2-Chloro-1-(2,4,5-trihydroxyphenyl)ethanone, 1664
2-Chloro-1-(2,4,6-trihydroxyphenyl)ethanone, 1665

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2}$

2-Fluoro-1-(2-hydroxyphenyl)ethanone, 1668
2-Fluoro-1-(4-hydroxyphenyl)ethanone, 1669

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{3}$

1-(3,4-Dihydroxyphenyl)-2-fluoroethanone, 1669

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{2}$

1-(2-Hydroxyphenyl)-2-iodoethanone, 1673
1-(3-Hydroxyphenyl)-2-iodoethanone, 1673
1-(4-Hydroxyphenyl)-2-iodoethanone, 1673

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{3}$

1-(3,4-Dihydroxyphenyl)-2-iodoethanone, 1674

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$

2-Azido-1-(2-hydroxyphenyl)ethanone, 1677
2-Azido-1-(4-hydroxyphenyl)ethanone, 1677

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3}$

2-Azido-1-(3,4-dihydroxyphenyl)ethanone, 1678

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$

1-(4-Hydroxyphenyl)-2-mercaptoethanone, 1713
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
2-Hydroxy-1-(2-hydroxyphenyl)ethanone, 1690
2-Hydroxy-1-(3-hydroxyphenyl)ethanone, 1690
2-Hydroxy-1-(4-hydroxyphenyl)ethanone, 1691

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$

2,2-Dihydroxy-1-(4-hydroxyphenyl)ethanone, 1691
1-(2,4-Dihydroxyphenyl)-2-hydroxyethanone, 1691
1-(3,4-Dihydroxyphenyl)-2-hydroxyethanone, 1691
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
2-Amino-1-(2-hydroxyphenyl)ethanone, 1674
2-Amino-1-(4-hydroxyphenyl)ethanone, 1675

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathbf{H C l}$

2-Amino-1-(2-hydroxyphenyl)ethanone (Hydrochloride), 1675
2-Amino-1-(3-hydroxyphenyl)ethanone (Hydrochloride), 1675
2-Amino-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1675
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$
2-Amino-1-(3,4-dihydroxyphenyl)ethanone, 1676

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FO}_{2}$

2,2-Dichloro-2-fluoro-1-(4-methoxyphenyl)ethanone, 1668

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2}$

1-(3,5-Difluoro-4-methoxyphenyl)-2-fluoroethanone, 1670
2,2,2-Trifluoro-1-(2-methoxyphenyl)ethanone, 1671
2,2,2-Trifluoro-1-(3-methoxyphenyl)ethanone, 1672
2,2,2-Trifluoro-1-(4-methoxyphenyl)ethanone, 1672
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2}$
2-Bromo-1-(2-chloro-4-methoxyphenyl)ethanone, 1655
2-Bromo-1-(3-chloro-4-methoxyphenyl)ethanone, 1649
1-(2-Bromo-5-methoxyphenyl)-2-chloroethanone, 1665

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrFO}_{2}$

2-Bromo-1-(3-fluoro-4-methoxyphenyl)ethanone, 1655

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{4}$

2-Bromo-1-(2-hydroxy-5-methyl-3-nitrophenyl)ethanone, 1655
2-Bromo-1-(3-methoxy-4-nitrophenyl)ethanone, 1650
2-Bromo-1-(4-methoxy-3-nitrophenyl)ethanone, 1650
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$
2-Bromo-1-(3-bromo-2-hydroxy-5-methylphenyl)ethanone, 1655
2-Bromo-1-(4-bromo-2-methoxyphenyl)ethanone, 1655
2-Bromo-1-(5-bromo-2-methoxyphenyl)ethanone, 1651
2,2-Dibromo-1-(4-methoxyphenyl)ethanone, 1661
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{CIFO}_{2}$
2-Chloro-2-fluoro-1-(4-methoxyphenyl)ethanone, 1665
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
2-Chloro-1-(3-chloro-4-methoxyphenyl)ethanone, 1663
2,2-Dichloro-1-(4-methoxyphenyl)ethanone, 1667
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$
2,2-Difluoro-1-(4-methoxyphenyl)ethanone, 1670
2-Fluoro-1-(3-fluoro-4-methoxyphenyl)ethanone, 1670
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{2}$
2,2,2-Trifluoro-1-(3-methoxyphenyl)ethanone (Oxime), 1672
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
2,4-Dihydroxy-3-(1-oxoethyl)benzaldehyde, 1727
2,6-Dihydroxy-3-(1-oxoethyl)benzaldehyde, 1727
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{5}$
2,4,6-Trihydroxy-3-(1-oxoethyl)benzaldehyde, 1728
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{5} \mathrm{H}_{2} \mathrm{O}$
2,4,6-Trihydroxy-3-(1-oxoethyl)benzaldehyde
(Monohydrate), 1728

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$

2-Bromo-1-(2-hydroxy-4-methylphenyl)ethanone, 1656
2-Bromo-1-(2-hydroxy-5-methylphenyl)ethanone, 1656
2-Bromo-1-(4-hydroxy-3-methylphenyl)ethanone, 1657
2-Bromo-1-(2-methoxyphenyl)ethanone, 1651
2-Bromo-1-(3-methoxyphenyl)ethanone, 1652
2-Bromo-1-(4-methoxyphenyl)ethanone, 1652
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$
2-Bromo-1-[4-hydroxy-3-(hydroxymethyl)phenyl]ethanone, 1657
2-Bromo-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1657
2-Bromo-1-(2-hydroxy-5-methoxyphenyl)ethanone, 1657
2-Bromo-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1658
2-Bromo-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1658

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4}$

2-Bromo-1-(2,3-dihydroxy-4-methoxyphenyl)ethanone, 1658

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$

2-Chloro-1-(2-hydroxy-4-methylphenyl)ethanone, 1665
2-Chloro-1-(4-hydroxy-2-methylphenyl)ethanone, 1666
2-Chloro-1-(4-hydroxy-3-methylphenyl)ethanone, 1666
2-Chloro-1-(4-methoxyphenyl)ethanone, 1664
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2}$
2-Fluoro-1-(2-methoxyphenyl)ethanone, 1669
2-Fluoro-1-(3-methoxyphenyl)ethanone, 1670
2-Fluoro-1-(4-methoxyphenyl)ethanone, 1669

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{4}$

1-(3-Fluoro-4-methoxyphenyl)-2,2-dihydroxyethanone, 1692

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2}$

2-Iodo-1-(4-methoxyphenyl)ethanone, 1673
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}$
1-(4-Methoxyphenyl)-2-nitroethanone, 1696
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$
2-Azido-1-(2-methoxyphenyl)ethanone, 1677
2-Azido-1-(3-methoxyphenyl)ethanone, 1678
2-Azido-1-(4-methoxyphenyl)ethanone, 1677

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$

2,4-Dihydroxy-3-(1-oxoethyl)benzaldehyde (Dioxime), 1727

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{HCl}$

2-Amino-1-(4-methoxy-3-nitrophenyl)ethanone (Hydrochloride), 1676

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$

2-Mercapto-1-(4-methoxyphenyl)ethanone, 1714

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$

2-Hydroxy-1-(2-methoxyphenyl)ethanone, 1690
2-Hydroxy-1-(3-methoxyphenyl)ethanone, 1691
2-Hydroxy-1-(4-methoxyphenyl)ethanone, 1691
1-(4-Hydroxyphenyl)-2-methoxyethanone, 1682
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}$
1-(3,4-Dihydroxyphenyl)-2-(methylthio)ethanone, 1714
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$
1-(2,4-Dihydroxyphenyl)-2-methoxyethanone, 1683
1-(3,4-Dihydroxyphenyl)-2-methoxyethanone, 1683

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}$

1-(4-Hydroxyphenyl)-2-(methylsulfonyl)ethanone, 1714

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}$

2-Methoxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1683
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$
2-Amino-1-(2-methoxyphenyl)ethanone, 1675
2-Amino-1-(4-methoxyphenyl)ethanone, 1675
$\mathrm{C}_{9} \mathrm{H}_{11} \mathbf{N O}_{2}, \mathbf{H C l}$
2-Amino-1-(2-methoxyphenyl)ethanone (Hydrochloride), 1675
2-Amino-1-(3-methoxyphenyl)ethanone (Hydrochloride), 1675
2-Amino-1-(4-methoxyphenyl)ethanone (Hydrochloride), 1675
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$
1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone, 1678
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{4}$
Methyl 3-(Bromoacetyl)-4-hydroxybenzoate, 1658
Methyl 5-(Bromoacetyl)-2-hydroxybenzoate, 1659
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{3}$
1,1'-(5-Fluoro-2-hydroxy-1,3-phenylene)bis-ethanone, 1719
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}$
1-[2-Hydroxy-4-[(trifluoromethanesulfonyl)oxy]phenyl]-
2-methoxyethanone, 1684
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$
1-(2-Acetoxyphenyl)-2-azidoethanone, 1677
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}_{5}$
2-Bromo-1-(2,5-dimethoxy-4-nitrophenyl)ethanone, 1659
2-Bromo-1-(3,6-dimethoxy-2-nitrophenyl)ethanone, 1659
2-Bromo-1-(4,5-dimethoxy-2-nitrophenyl)ethanone, 1659
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$
1,1'-(4-Hydroxy-1,3-phenylene)bis-ethanone, 1719
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
5-Acetyl-2-hydroxy-3-methoxybenzaldehyde, 1728
5-Acetyl-3-hydroxy-2-methoxybenzaldehyde, 1728
2-(Acetyloxy)-1-(2-hydroxyphenyl)ethanone, 1693
2-(Acetyloxy)-1-(4-hydroxyphenyl)ethanone, 1693
1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-ethanone, 1720
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$
3-Acetyl-2,6-dihydroxy-4-methoxybenzaldehyde, 1729
3-Acetyl-2,4,6-trihydroxy-5-methylbenzaldehyde, 1729
1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-ethanone, 1720
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
2-Bromo-1-(2-methoxy-4-methylphenyl)ethanone, 1656
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$
2-Bromo-1-(2,4-dimethoxyphenyl)ethanone, 1653
2-Bromo-1-(2,5-dimethoxyphenyl)ethanone, 1653
2-Bromo-1-(3,4-dimethoxyphenyl)ethanone, 1653
2-Bromo-1-(3,5-dimethoxyphenyl)ethanone, 1654
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{5}$
2-Bromo-1-(2,4-dihydroxy-3,6-dimethoxyphenyl)ethanone, 1659
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2}$
2-Chloro-1-(3-methoxy-4-methylphenyl)ethanone, 1666
2-Chloro-1-(4-methoxy-3-methylphenyl)ethanone, 1666
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
2-Chloro-1-(2,4-dimethoxyphenyl)ethanone, 1664
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}$
2-Chloro-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1666
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{3}$
1-(3,4-Dimethoxyphenyl)-2-iodoethanone, 1674
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
2-Azido-1-(3,4-dimethoxyphenyl)ethanone, 1678
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{5}, \mathrm{HCl}$
1-(3,4-Dihydroxy-5-nitrophenyl)-2-(dimethylamino)ethanone
(Hydrochloride), 1678
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
1-(4-Methoxyphenyl)-2-(methylthio)ethanone, 1715
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(4-Methoxyphenyl)-2-methoxyethanone, 1682
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
1-(3,4-Dihydroxyphenyl)-2-(ethylthio)ethanone, 1715
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(3,4-Dimethoxyphenyl)-2-hydroxyethanone, 1692
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$
2-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1692
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$
1-(2-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone, 1715
1-(3-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone, 1716
1-(4-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone, 1716
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{~S}$
[2-(3,4-Dihydroxyphenyl)-2-(oxoethyl)]dimethylsulfonium chloride, 1716
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{IO}_{3} \mathrm{~S}$
[2-(3,4-Dihydroxyphenyl)-2-(oxoethyl)]dimethylsulfonium iodide, 1716
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathbf{H C l}$
1-(2-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride 1:1), 1679
1-(3-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride 1:1), 1679
1-(4-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride 1:1), 1679
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathbf{H C l}$
2-Amino-1-(2,5-dimethoxyphenyl)ethanone (Hydrochloride), 1679
2-Amino-1-(3,4-dimethoxyphenyl)ethanone (Hydrochloride), 1676
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{4}$
1-[4-(Acetyloxy)-3-methoxyphenyl]-2-bromoethanone, 1658
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$
2-Chloro-1-[5-(chloromethyl)-2-hydroxy-3,4-dimethoxyphenyl]ethanone, 1666
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
2-(Acetyloxy)-1-(2-hydroxy-4-methylphenyl)ethanone, 1694
1-(4-Acetyl-3-hydroxyphenoxy)-2-propanone, 1730
2-(Acetyloxy)-1-(2-methoxyphenyl)ethanone, 1693
2-(Acetyloxy)-1-(4-methoxyphenyl)ethanone, 1694
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$
1,1'-(2,4-Dihydroxy-6-methoxy-1,3-phenylene)bis-ethanone, 1720
2-Hydroxy-4,6-dimethoxy-3-(1-oxoethyl)benzaldehyde, 1730
1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1720
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$
2-Bromo-1-(2-methoxy-4,5-dimethylphenyl)ethanone, 1660
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4}$
2-Bromo-1-(2,3,4-trimethoxyphenyl)ethanone, 1654
2-Bromo-1-(2,4,5-trimethoxyphenyl)ethanone, 1660
2-Bromo-1-(3,4,5-trimethoxyphenyl)ethanone, 1654
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{5}$
2-Bromo-1-(2-hydroxy-3,4,6-trimethoxyphenyl)ethanone, 1660
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{4}$
2-Chloro-1-(2,4,5-trimethoxyphenyl)ethanone, 1664
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$
2-(Ethylthio)-1-(4-methoxyphenyl)ethanone, 1717
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$
1-(3,4-Dimethoxyphenyl)-2-(methylthio)ethanone, 1714
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(3,4-Dimethoxyphenyl)-2-methoxyethanone, 1683
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}$
1-(2-Methoxy-5-methylphenyl)-2-[(methylsulfonyl)oxy]ethanone, 1717
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
2-(Ethylmethylamino)-1-(4-hydroxyphenyl)ethanone, 1680
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{5}$
1-(3,5-Diacetoxyphenyl)-2,2-dichloroethanone, 1668
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}_{5}$
2-Bromo-1-(3,4-diacetoxyphenyl)ethanone, 1653
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$
1,1'-[4-(Acetyloxy)-1,3-phenylene]bis-ethanone, 1719
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$
2-(Acetyloxy)-1-[4-(acetyloxy)phenyl]ethanone, 1694
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$
1,1, $1^{\prime} 1^{\prime \prime \prime}$-(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris-ethanone, 1721
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(4-Acetyl-3-hydroxy-2-methylphenoxy)-2-propanone, 1731
2-(Acetyloxy)-1-(2-methoxy-4-methylphenyl)ethanone, 1694
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$
1-[4-(Acetyloxy)-3-methoxyphenyl]-2-(methylthio)ethanone, 1717
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$
1,1'-(4,6-Dihydroxy-2-methoxy-5-methyl-1,3-phenylene)
bis-ethanone, 1721
1,1'-(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis-ethanone, 1721
1,1'-(4-Hydroxy-2,6-dimethoxy-1,3-phenylene)bis-ethanone, 1722
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4}$
5-Acetyl-3-hydroxy-2-methoxybenzaldehyde (Bis-semicarbazone), 1729
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$
1-(3,4-Dimethoxyphenyl)-2-(ethylthio)ethanone, 1715
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
2-Methoxy-1-(3,4,5-trimethoxyphenyl)ethanone, 1684
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6} \mathrm{~S}$
1-[4-Methoxy-3-(methoxymethyl)phenyl]-2-[(methylsulfonyl)oxy]
ethanone, 1717
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{IO}_{3} \mathrm{~S}$
[2-(3,4-Dimethoxyphenyl)-2-(oxoethyl)]dimethylsulfonium iodide, 1716
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$
2-(Diethylamino)-1-(4-hydroxyphenyl)ethanone, 1680
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(2-Acetyl-6-methoxy-5-benzofuranyl)ethanone, 1722
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}$
1-[3,4-Bis(acetyloxy)phenyl]-2-(methylthio)ethanone, 1714
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$
1',1",1'"-(2,4-Dihydroxy-6-methoxy-1,3,5-benzenetriyl)tris-ethanone, 1722
$\mathrm{C}_{13} \mathrm{H}_{15} \mathbf{N O}_{5}, \mathrm{HCl}$
1-(3,4-Diacetoxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1678
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}$
1,1'-(2-Hydroxy-4,5,6-trimethoxy-1,3-phenylene)bis-ethanone, 1723
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$
2-Bromo-1-(5-butyl-2-methoxyphenyl)ethanone, 1660
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$
2,2-Diethoxy-1-(4-methoxyphenyl)ethanone, 1686
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}$
1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]-2-methoxyethanone, 1684
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$
2-Methoxy-1-(3,4,5-trimethoxyphenyl)ethanone
(Semicarbazone), 1684
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNO}_{4}$
1-(5-Bromo-2-hydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1699
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}$
2-(3,4-Dichlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1700
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
2-(4-Bromophenyl)-1-(2,4-dihydroxyphenyl)ethanone, 1700
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{4}$
2-(3-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1700
2-(4-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1700
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FO}_{3}$
1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenyl)ethanone, 1701
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
1-(2-Hydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1701
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5}$
1-(3,4-Dihydroxy-5-nitrophenyl)-2-phenylethanone, 1696
1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1701
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{6}$
2-(3-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1701
2-(4-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1702
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(2-Hydroxyphenyl)-2-phenylethanone, 1696
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
1-(4-Hydroxyphenyl)-2-(phenylthio)ethanone, 1718
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(2,4-Dihydroxyphenyl)-2-phenylethanone, 1697
1-(3,4-Dihydroxyphenyl)-2-phenylethanone, 1697
1-(2-Hydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1702
1-(4-Hydroxyphenyl)-2-phenoxyethanone, 1686
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
1-(3,4-Dihydroxyphenyl)-2-(phenylthio)ethanone, 1718
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1702
2-Phenyl-1-(2,4,6-trihydroxyphenyl)ethanone, 1697
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
1,2-Bis(3,4-dihydroxyphenyl)ethanone, 1702
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$
2-(4-Aminophenyl)-1-(2,4-dihydroxyphenyl)ethanone, 1703
1-(3,4-Dihydroxyphenyl)-2-(phenylamino)ethanone, 1680
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
1-(3,4-Dihydroxyphenyl)-2-(phenylamino)ethanone (Sulfate), 1680
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
1,1'-(2,4,6-Trimethoxy-5-methyl-1,3-phenylene)bis-ethanone, 1721
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}_{3}$
1-[3-(Benzoyloxy)phenyl]-2-bromoethanone, 1652
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{7}$
2-(2-Carboxyphenyl)-1-(3,4-dihydroxy-5-nitrophenyl)ethanone, 1703
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
2-Azido-1-[2-(benzoyloxy)phenyl]ethanone, 1677
2-Azido-1-[3-(benzoyloxy)phenyl]ethanone, 1680
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{5}$
1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-(4-chlorophenyl)ethanone, 1704
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{7}$
2,4-Dihydroxy-3-(1-oxoethyl)benzaldehyde (2,4-Dinitrophenylhydrazone), 1727
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}$
2-(Benzoyloxy)-1-(2,5-dihydroxyphenyl)ethanone, 1695
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6}$
2-(1,3-Benzodioxol-5-yl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1704
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}$
2-Bromo-1-[2-(phenylmethoxy)phenyl]ethanone, 1651
2-Bromo-1-[3-(phenylmethoxy)phenyl]ethanone, 1652
2-Bromo-1-[4-(phenylmethoxy)phenyl]ethanone, 1652
2-(2-Bromophenyl)-1-(4-methoxyphenyl)ethanone, 1704
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3}$
2-[4-(Bromomethyl)phenyl]-1-(2,5-dihydroxyphenyl)ethanone, 1704
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3}$
1-(4-Chloro-2-hydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1705
2-(2-Chlorophenyl)-1-(2,4-dihydroxy-3-methylphenyl)ethanone, 1705
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2}$
2-(4-Fluorophenyl)-1-(4-methoxyphenyl)ethanone, 1705
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$
1-(2-Hydroxyphenyl)-2-(3-methyl-4-nitrophenyl)ethanone, 1705
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
1-(2-Methoxyphenyl)-2-phenylethanone, 1697
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$
1-(4-Methoxyphenyl)-2-(phenylthio)ethanone, 1718
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(2,5-Dihydroxyphenyl)-2-(4-methylphenyl)ethanone, 1705
1-(2-Hydroxy-4-methoxyphenyl)-2-phenylethanone, 1698
1-(4-Hydroxy-3-methoxyphenyl)-2-phenylethanone, 1698

1-(2-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1706
1-(4-Hydroxyphenyl)-2-(2-methoxyphenyl)ethanone, 1706
1-(4-Hydroxyphenyl)-2-(3-methoxyphenyl)ethanone, 1706
1-(4-Methoxyphenyl)-2-phenoxyethanone, 1686
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1706
1-(4-Hydroxy-3-methoxyphenyl)-2-phenoxyethanone, 1686
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$
1-(4-Hydroxyphenyl)-2-[(4-methylphenyl)sulfonyl]ethanone, 1718
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
2-(3-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1707
2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1707
2-(Phenylmethoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1685
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$
2-Acetoxy-1-(7-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone, 1695
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}_{5}$
1-[2-(Benzoyloxy)-5-methyl-3-nitrophenyl]-2-bromoethanone, 1655
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4}$
1-(4-Hydroxy-3-methoxyphenyl)-2-[3-(trifluoromethyl)phenoxy]ethanone, 1687
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{7}$
2-(2-Carboxyphenyl)-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone, 1707
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3}$
2,2-Dibromo-1-[3-(hydroxymethyl)-4-(phenylmethoxy)phenyl]ethanone, 1661
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
1-[3-Acetyl-2,6-dihydroxy-5-(phenylazo)phenyl]ethanone, 1723
1-[5-Acetyl-2,4-dihydroxy-3-(phenylazo)phenyl]ethanone, 1723
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{8}$
3-Acetyl-2,6-dihydroxy-4-methoxybenzaldehyde
(2,4-Dinitrophenylhydrazone), 1729
3-Acetyl-2,4,6-trihydroxy-5-methylbenzaldehyde (2,4-Dinitrophenylhydrazone), 1730
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
1-[2-(Acetyloxy)phenyl]-2-phenylethanone, 1696
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$
2-(4-Acetyl-3-hydroxyphenoxy)-1-phenylethanone, 1731
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$
2-(2-Carboxyphenyl)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1707
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$
1,1'-(2',3,6,6'-Tetrahydroxy[1,1'-biphenyl]-2,3'-diyl)bis-ethanone, 1724
1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone, 1731
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}$
5-Acetyl-3-hydroxy-2-methoxybenzaldehyde (Benzenesulfonate), 1729

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{2}$

2-Bromo-1-[3-methyl-4-(phenylmethoxy)phenyl]ethanone, 1657
2-Bromo-1-[4-methyl-2-(phenylmethoxy)phenyl]ethanone, 1656
2-Bromo-1-[5-methyl-2-(phenylmethoxy)phenyl]ethanone, 1656
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3}$
2-Bromo-1-[3-(hydroxymethyl)-4-(phenylmethoxy)phenyl]ethanone, 1657
2-Bromo-1-[4-methoxy-3-(phenylmethoxy)phenyl]ethanone, 1658
2-Bromo-1-[5-methoxy-2-(phenylmethoxy)phenyl]ethanone, 1658
2-(2-Bromo-5-methoxyphenyl)-1-(4-methoxyphenyl)ethanone, 1708
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{4}$
1-(5-Chloro-2,4-dihydroxyphenyl)-2-(ethoxyphenyl)ethanone, 1708
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{3}$
1-(2,4-Dimethoxyphenyl)-2-(4-fluorophenyl)ethanone, 1701
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{6}$
1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-(4-methoxyphenyl)ethanone, 1708
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-5-methylphenyl)-2-(4-methylphenyl)ethanone, 1708
1-(3,4-Dimethoxyphenyl)-2-phenylethanone, 1697
1-(2-Hydroxy-4-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1709
2-(3-Methoxyphenyl)-1-(4-methoxyphenyl)ethanone, 1709
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$
1-(3,4-Dimethoxyphenyl)-2-(phenylthio)ethanone, 1718
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
1-(3,4-Dimethoxyphenyl)-2-phenoxyethanone, 1686
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone, 1698
1-(2-Hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1709
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
1,2-Bis(4-hydroxy-3-methoxyphenyl)ethanone, 1709
1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1687
1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methoxyphenoxy)ethanone, 1688
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$
1-(3,4-Dimethoxyphenyl)-2-(phenylamino)ethanone, 1680
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}, \mathrm{HCl}$
2-Amino-1-[-4-methoxy-3-(phenylmethoxy)phenyl]ethanone (Hydrochloride), 1676
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2}$
1-[2,6-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-bromoethanone, 1660
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-bromoethanone, 1661
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClO}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-chloroethanone, 1667
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$
2-Azido-1-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1681

$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2}, \mathrm{HCl}$

2-Amino-1-[3,5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone
(Hydrochloride), 1681
$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{5}$
Methyl 2-(Benzoyloxy)-5-(bromoacetyl)benzoate, 1659
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6}$
3-Acetyl-(6-benzoyloxy)-2,4-dihydroxy-5-methylbenzaldehyde, 1731
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4}$
1-(3,4-Dimethoxyphenyl)-2-[3-(trifluoromethyl)phenoxy]
ethanone, 1687
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}$
3-[2-(3,4-Dimethoxy)-2-oxoethoxy]benzonitrile, 1688
4-[2-(3,4-Dimethoxy)-2-oxoethoxy]benzonitrile, 1689
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3}$
1-(3,4-Dimethoxyphenyl)-2-(3-trifluoromethylphenylamino)ethanone, 1681
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$
2-(4-Cyanophenylamino)-1-(3,4-dimethoxyphenyl)ethanone, 1681
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$
2-(4-Acetyl-3-hydroxy-2-methylphenoxy)-1-phenylethanone, 1732
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$
2-(1,3-Benzodioxol-5-yl)-1-(3,4-dimethoxyphenyl)ethanone, 1710
2-(1,3-Benzodioxol-5-yl)-1-(3,5-dimethoxyphenyl)ethanone, 1710
2-(Benzoyloxy)-1-(2,5-dimethoxyphenyl)ethanone, 1696
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(2-methylphenyl)ethanone, 1711
1-(3-Methoxy-5-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1711
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
2-(2,6-Dimethoxyphenyl)-1-(3-methoxyphenyl)ethanone, 1711
2-(2,6-Dimethoxyphenyl)-1-(4-methoxyphenyl)ethanone, 1711
1-(2,5-Dimethoxyphenyl)-2-(phenylmethoxy)ethanone, 1685
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(3,4-Dimethoxyphenyl)-2-(2-hydroxy-3-methoxyphenyl)ethanone, 1712
1-(3,4-Dimethoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethanone, 1712
1-(3,4-Dimethoxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)ethanone, 1712
1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1687
1-(3,4-Dimethoxyphenyl)-2-(3-methoxyphenoxy)ethanone, 1688
1-(3,4-Dimethoxyphenyl)-2-(4-methoxyphenoxy)ethanone, 1689
1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone, 1712
2-Phenoxy-1-(3,4,5-trimethoxyphenyl)ethanone, 1687
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$
1-(3,4-Dimethoxyphenyl)-2-[(2-methoxyphenyl)amino]ethanone, 1682
1-(3,4-Dimethoxyphenyl)-2-[(4-methoxyphenyl)amino]ethanone, 1682

$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{ClO}_{2}$

2-Chloro-1-[2-hydroxy-3-methyl-5-(1-methylheptyl)phenyl]ethanone, 1667
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
2-(Acetyloxy)-1-[4-methyl-2-(phenylmethoxy)phenyl]ethanone, 1695
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$
1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-ethylphenyl)ethanone, 1713
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
1,2-Bis(3,4-dimethoxyphenyl)ethanone, 1703
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}$
2-(2,3-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone, 1689
2-(2,6-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone, 1690
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[2-[[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]oxy]-4,6-dihydroxy]-2-
hydroxyethanone, 1692
1-[4-[[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]oxy]-2,6-dihydroxy]-2-
hydroxyethanone, 1693
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$
1,1'-(4,6-Dimethoxy-2-phenylmethoxy-1,3-phenylene)bis-ethanone, 1722
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6}$
2-(4-Acetyl-2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone, 1732
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8}$
1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-3,1-phenylene)]
bis-ethanone, 1724
1,1'-[Methylenebis(2,4,6-trihydroxy-5-methyl-3,1-phenylene)]bis-ethanone, 1724
$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{ClO}_{2}$
2-Chloro-1-[2-hydroxy-3-methyl-5-(1-methylnonyl)phenyl]ethanone, 1667
$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$
1-(4-Decyl-2-hydroxyphenyl)-2-methoxyethanone, 1685
$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{8}$
1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenyl)ethanone
(2,4-Dinitrophenylhydrazone), 1701
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7}$
1,2-Bis[4-(diacetyloxy)-3-methoxyphenyl]ethanone, 1710
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8}$
1-[3-[(3-Acetyl-4,6-dihydroxy-2-methoxy-5-methylphenyl)methyl]-2,4-dihydroxy-6-methoxy-phenyl]ethanone, 1725
1-[6-(3-Acetyl-2,6-dihydroxy-4-methoxy-5-methylphenoxy)-2-hydroxy-4-methoxy-3-methyl-phenyl]ethanone, 1726
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$
1-(3-Hexyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1698
1-(3-Hexyl-2,6-dihydroxyphenyl)-2-phenylethanone, 1698
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}$
1-(3,4-Dimethoxyphenyl)-2-(2-methoxy-4-propylphenoxy)ethanone, 1690
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-phenylethanone, 1699
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrO}_{3}$
1-[3,5-Bis(phenylmethoxy)phenyl]-2-bromoethanone, 1654
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{\mathbf{9}}$
1,2-Bis[3,4-(diacetyloxy)phenyl]ethanone, 1703
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$
5-Acetyl-3-hydroxy-2-methoxybenzaldehyde (Bis-phenylhydrazone), 1729
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$
1,1'-[1,2-Ethanediylbis(4,5-dimethoxy-1,2-phenylene)]bis-ethanone, 1725
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{8}$
1-[3-(2-Acetyl-3-hydroxy-5-methoxy-4-methylphenoxy)-2,4,6-trimethoxy-5-methyl-phenyl]ethanone, 1726
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-phenylethanone, 1699
$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-cyclohexylethanone, 1699
$\mathrm{C}_{23} \mathrm{H}_{22} \mathbf{N}_{4} \mathrm{O}_{8}$
1-(3,4-Dimethoxyphenyl)-2-(3-methoxyphenoxy)ethanone
(2,4-Dinitrophenylhydrazone), 1688
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8}$
1-[3-(2-Acetyl-3,5-dimethoxy-4-methylphenoxy)-2,4,6-trimethoxy-5methylphenyl]ethanone, 1727
$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}$
1-[3,4-Bis(benzoyloxy)phenyl]-2-(ethylthio)ethanone, 1715
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{9}$
2-(2,3-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone
(2,4-Dinitrophenylhydrazone), 1689
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8}$
1,1'-[Methylenebis(2,4,6-trimethoxy-5-methyl-3,1-phenylene)]
bis-ethanone, 1724
$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{11}$
1-[6-(3-Acetyl-2,6-bis(acetyloxy)-4-methoxy-5-methylphenoxy)-2-(acetyloxy)-4-methoxy-3-methylphenyllethanone, 1726
$\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{7}$
1-[4-Decyl-2-(2,4,5-trimethoxybenzoyloxy)phenyl]-2-methoxyethanone, 1685
$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{5}$
1,2-Bis[3-methoxy-4-(phenylmethoxy)phenyl]ethanone, 1710
$\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{3}$
1,2-Bis(3,5-di-tert-butyl-4-hydroxyphenyl)ethanone, 1713
$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{O}_{12}$
$1,1^{\prime}, 1^{\prime \prime}, 1^{1 \prime \prime}-\left(4,6,10,12,16,18,22,24-\right.$ Octahydropentacyclo[19.3.1.1.1 $\left.{ }^{3,7} \cdot 1^{9 \cdot 13} \cdot 1^{15 \cdot 19}\right]$
octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-5,11,17,23tetrayl)tetrakis[ethanone], 1733

Volume 4

$\mathrm{C}_{4}^{14} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(3-Hydroxy-4-methylphenyl- ${ }^{14} \mathrm{C}_{6}$)-1-propanone, 1737

$\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{D}_{5} \mathrm{O}_{2}$

1-(2-Hydroxyphenyl)-1-propanone-2,2,3,3,3- $d_{5}, 1737$

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2}$

1-(3,5-Dibromo-4,6-dichloro-2-hydroxyphenyl)-1-propanone, 1737

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{ClO}_{2}$

1-(3,5-Dibromo-2-chloro-4-hydroxyphenyl)-1-propanone, 1738
1-(3,5-Dibromo-4-chloro-2-hydroxyphenyl)-1-propanone, 1738

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{2}$

1-(2,3,5-Tribromo-4-hydroxyphenyl)-1-propanone, 1738
1-(2,4,6-Tribromo-3-hydroxyphenyl)-1-propanone, 1738
1-(3,4,5-Tribromo-2-hydroxyphenyl)-1-propanone, 1739

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{D}_{3} \mathrm{O}_{2}$

1-[4-(Hydroxy- d)phenyl]-1-propanone-2,2- $d_{2}, 1739$

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}_{2}$

1-(3-Bromo-5-chloro-2-hydroxyphenyl)-1-propanone, 1739
1-(3-Bromo-5-chloro-4-hydroxyphenyl)-1-propanone, 1739
1-(5-Bromo-3-chloro-2-hydroxyphenyl)-1-propanone, 1740

$\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{BrFO}_{2}$

1-(3-Bromo-5-fluoro-2-hydroxyphenyl)-1-propanone, 1740
1-(3-Bromo-5-fluoro-4-hydroxyphenyl)-1-propanone, 1740
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrIO}_{2}$
1-(5-Bromo-2-hydroxy-3-iodophenyl)-1-propanone, 1740
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{4}$
1-(5-Bromo-2-hydroxy-3-nitrophenyl)-1-propanone, 1741
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{5}$
1-(3-Bromo-2,4-dihydroxy-5-nitrophenyl)-1-propanone, 1741

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$

1-(3,5-Dibromo-2-hydroxyphenyl)-1-propanone, 1741
1-(3,5-Dibromo-4-hydroxyphenyl)-1-propanone, 1742
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$
1-(3,5-Dibromo-2,4-dihydroxyphenyl)-1-propanone, 1742

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClNO}_{4}$

1-(5-Chloro-2-hydroxy-3-nitrophenyl)-1-propanone, 1743

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$

1-(2,4-Dichloro-6-hydroxyphenyl)-1-propanone, 1743
1-(3,4-Dichloro-2-hydroxyphenyl)-1-propanone, 1743
1-(3,4-Dichloro-5-hydroxyphenyl)-1-propanone, 1743
1-(3,5-Dichloro-2-hydroxyphenyl)-1-propanone, 1744
1-(3,5-Dichloro-4-hydroxyphenyl)-1-propanone, 1744
1-(4,5-Dichloro-2-hydroxyphenyl)-1-propanone, 1744
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$
1-(3,5-Dichloro-2,4-dihydroxyphenyl)-1-propanone, 1745

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{D}_{3} \mathrm{NO}_{2}$

1-(2-Amino-5-hydroxyphenyl)-1-propanone-3,3,3- $d_{3}, 1745$
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{FNO}_{4}$
1-(4-Fluoro-2-hydroxy-5-nitrophenyl)-1-propanone, 1745

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}$

1-(2,5-Difluoro-4-hydroxyphenyl)-1-propanone, 1745
1-(3,5-Difluoro-4-hydroxyphenyl)-1-propanone, 1745

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{I}_{2} \mathrm{O}_{2}$

1-(2-Hydroxy-3,5-diiodophenyl)-1-propanone, 1746
1-(4-Hydroxy-3,5-diiodophenyl)-1-propanone, 1746
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6}$
1-(2-Hydroxy-3,5-dinitrophenyl)-1-propanone, 1746
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}$
1-(2-Bromo-4-hydroxyphenyl)-1-propanone, 1746
1-(2-Bromo-6-hydroxyphenyl)-1-propanone, 1747
1-(3-Bromo-2-hydroxyphenyl)-1-propanone, 1747
1-(3-Bromo-4-hydroxyphenyl)-1-propanone, 1747
1-(4-Bromo-2-hydroxyphenyl)-1-propanone, 1747
1-(5-Bromo-2-hydroxyphenyl)-1-propanone, 1748
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$
1-(3-Bromo-2,5-dihydroxyphenyl)-1-propanone, 1748
1-(3-Bromo-2,6-dihydroxyphenyl)-1-propanone, 1748
1-(4-Bromo-2,5-dihydroxyphenyl)-1-propanone, 1749
1-(5-Bromo-2,4-dihydroxyphenyl)-1-propanone, 1749
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4}$ 1-(5-Bromo-2,3,4-trihydroxyphenyl)-1-propanone, 1749
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$
1-(2-Chloro-4-hydroxyphenyl)-1-propanone, 1749
1-(2-Chloro-5-hydroxyphenyl)-1-propanone, 1750
1-(3-Chloro-2-hydroxyphenyl)-1-propanone, 1750
1-(3-Chloro-4-hydroxyphenyl)-1-propanone, 1750

1-(4-Chloro-2-hydroxyphenyl)-1-propanone, 1751
1-(5-Chloro-2-hydroxyphenyl)-1-propanone, 1752

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3}$

1-(2-Chloro-4,5-dihydroxyphenyl)-1-propanone, 1752
1-(3-Chloro-2,4-dihydroxyphenyl)-1-propanone, 1753
1-(3-Chloro-2,6-dihydroxyphenyl)-1-propanone, 1753
1-(4-Chloro-2,5-dihydroxyphenyl)-1-propanone, 1753
1-(5-Chloro-2,4-dihydroxyphenyl)-1-propanone, 1753
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{4}$
1-(5-Chloro-2,3,4-trihydroxyphenyl)-1-propanone, 1754

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$

1-(2,4-Dichloro-6-hydroxyphenyl)-1-propanone
(Oxime), 1743
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2}$
1-(2-Fluoro-3-hydroxyphenyl)-1-propanone, 1754
1-(3-Fluoro-2-hydroxyphenyl)-1-propanone, 1754
1-(3-Fluoro-4-hydroxyphenyl)-1-propanone, 1754
1-(3-Fluoro-5-hydroxyphenyl)-1-propanone, 1754
1-(4-Fluoro-2-hydroxyphenyl)-1-propanone, 1755
1-(5-Fluoro-2-hydroxyphenyl)-1-propanone, 1755

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{3}$

1-(2-Fluoro-4,6-dihydroxyphenyl)-1-propanone, 1755
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{2}$ 1-(4-Hydroxy-3-iodophenyl)-1-propanone, 1755
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3}$
1-(2,4-Dihydroxy-3-iodophenyl)-1-propanone, 1756

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3}$

1-(2-Hydroxy-3-nitrosophenyl)-1-propanone, 1756
1-(3-Hydroxy-4-nitrosophenyl)-1-propanone, 1756
1-(4-Hydroxy-3-nitrosophenyl)-1-propanone, 1756
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}$
1-(2-Hydroxy-3-nitrophenyl)-1-propanone, 1756
1-(2-Hydroxy-4-nitrophenyl)-1-propanone, 1757
1-(2-Hydroxy-5-nitrophenyl)-1-propanone, 1757
1-(3-Hydroxy-4-nitrophenyl)-1-propanone, 1758
1-(3-Hydroxy-5-nitrophenyl)-1-propanone, 1758
1-(4-Hydroxy-3-nitrophenyl)-1-propanone, 1758
1-(5-Hydroxy-2-nitrophenyl)-1-propanone, 1759

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}$

1-(2,4-Dihydroxy-3-nitrophenyl)-1-propanone, 1759
1-(2,4-Dihydroxy-5-nitrophenyl)-1-propanone, 1759
1-(2,6-Dihydroxy-3-nitrophenyl)-1-propanone, 1760

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{6}$

1-(2,4,6-Trihydroxy-3-nitrophenyl)-1-propanone, 1760

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{2}$

1-(4-Chloro-2-hydroxyphenyl)-1-propanone (Oxime), 1752
1-(5-Chloro-2-hydroxyphenyl)-1-propanone (Oxime), 1752

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{3}$

1-(5-Chloro-2,4-dihydroxyphenyl)-1-propanone (Oxime), 1753
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$
1-(2-Hydroxy-5-nitrophenyl)-1-propanone (Oxime), 1758

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$

1-(2,4-Dihydroxy-5-nitrophenyl)-1-propanone (Oxime), 1759
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$
1-(2-Hydroxyphenyl)-1-propanone, 1760
1-(2-Hydroxyphenyl)-1-propanone labelled with carbon-14, 1763
1-(3-Hydroxyphenyl)-1-propanone, 1763
1-(4-Hydroxyphenyl)-1-propanone, 1764
1-(4-Hydroxyphenyl)-1-propanone labelled with carbon-14, 1766
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
1-(2,3-Dihydroxyphenyl)-1-propanone, 1767
1-(2,4-Dihydroxyphenyl)-1-propanone, 1767
1-(2,5-Dihydroxyphenyl)-1-propanone, 1768
1-(2,6-Dihydroxyphenyl)-1-propanone, 1770
1-(3,4-Dihydroxyphenyl)-1-propanone, 1770
1-(3,5-Dihydroxyphenyl)-1-propanone, 1772
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$
1-(2,3,4-Trihydroxyphenyl)-1-propanone, 1772
1-(2,3,5-Trihydroxyphenyl)-1-propanone, 1773
1-(2,3,6-Trihydroxyphenyl)-1-propanone, 1773
1-(2,4,5-Trihydroxyphenyl)-1-propanone, 1773
1-(2,4,6-Trihydroxyphenyl)-1-propanone, 1774
1-(3,4,5-Trihydroxyphenyl)-1-propanone, 1775
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{6}$
1-(Pentahydroxyphenyl)-1-propanone, 1775
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$
1-(2-Amino-5-hydroxyphenyl)-1-propanone, 1775
1-(3-Amino-4-hydroxyphenyl)-1-propanone, 1776
1-(4-Amino-2-hydroxyphenyl)-1-propanone, 1776
1-(4-Amino-3-hydroxyphenyl)-1-propanone, 1776
1-(5-Amino-2-hydroxyphenyl)-1-propanone, 1777
1-(2-Hydroxyphenyl)-1-propanone (Oxime), 1762
1-(4-Hydroxyphenyl)-1-propanone (Oxime), 1766

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathbf{H C l}$

1-(3-Amino-4-hydroxyphenyl)-1-propanone (Hydrochloride), 1776
1-(5-Amino-2-hydroxyphenyl)-1-propanone (Hydrochloride), 1777
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$
1-(5-Amino-2,4-dihydroxyphenyl)-1-propanone, 1777

$\mathbf{C}_{9} \mathbf{H}_{11} \mathbf{N O}_{3}, \mathbf{H C l}$

1-(5-Amino-2,4-dihydroxyphenyl)-1-propanone (Hydrochloride), 1777
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
1-(2-Hydroxyphenyl)-1-propanone (Hydrazone), 1762
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{D}_{5} \mathrm{O}_{2}$
1-(2-Hydroxy-4-methylphenyl)-1-propanone-2,2,3,3,3- $d_{5}, 1777$
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$
4-Hydroxy-3-nitro-5-(1-oxopropyl)benzonitrile, 1778
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}$
5-Hydroxy-4-(1-oxopropyl)-1,3-benzoxathiol-2-one, 1988

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{5}$

5-Bromo-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid, 1778
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{FO}_{2}$
1-(3,5-Dibromo-4-fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2011
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{2}$
1-(2,3,5-Tribromo-4-methoxyphenyl)-1-propanone, 1778
1-(2,4,6-Tribromo-3-methoxyphenyl)-1-propanone, 1779
1-(3,4,5-Tribromo-2-methoxyphenyl)-1-propanone, 1779
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{5}$
5-Chloro-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid, 1779
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}$
2-Hydroxy-3-(1-oxopropyl)benzonitrile, 1779
3-Hydroxy-4-(1-oxopropyl)benzonitrile, 1780
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrClO}_{2}$
1-(3-Bromo-5-chloro-2-hydroxy-4-methylphenyl)-1-propanone, 1780
1-(3-Bromo-5-chloro-4-methoxyphenyl)-1-propanone, 1780

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrFO}_{2}$

1-(3-Bromo-6-fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2011
1-(4-Bromo-5-fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2011
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}_{3}$
1-(5-Bromo-4-methoxy-2-nitrosophenyl)-1-propanone, 1780
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}$
1-(3,5-Dibromo-2-hydroxy-4-methylphenyl)-1-propanone, 1781
1-(3,5-Dibromo-4-hydroxy-2-methylphenyl)-1-propanone, 1781
1-(3,5-Dibromo-2-hydroxyphenyl)-2-methyl-1-propanone, 2012
1-(3,5-Dibromo-2-methoxyphenyl)-1-propanone, 1781
1-(3,5-Dibromo-4-methoxyphenyl)-1-propanone, 1782

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$

1-(3,5-Dichloro-4-hydroxyphenyl)-2-methyl-1-propanone, 2012
1-(3,4-Dichloro-5-methoxyphenyl)-1-propanone, 1782
1-(3,5-Dichloro-2-methoxyphenyl)-1-propanone, 1782
1-(3,5-Dichloro-4-methoxyphenyl)-1-propanone, 1782
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$
1-(3,5-Dichloro-2-hydroxy-4-methoxyphenyl)-1-propanone, 1783
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}_{4}$
1-(4-Fluoro-2-hydroxy-5-nitrophenyl)-2-methyl-1-propanone, 2012
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{2}$
1-(3,5-Difluoro-4-methoxyphenyl)-1-propanone, 1783
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{O}_{2}$
1-(3,5-Diiodo-4-methoxyphenyl)-1-propanone, 1783
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
3-Amino-4-hydroxy-5-(1-oxopropyl)benzonitrile, 1783
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$
2-Hydroxy-3-(1-oxopropyl)benzaldehyde, 2131
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
2,6-Dihydroxy-3-(1-oxopropyl)benzaldehyde, 2131
1-(6-Hydroxy-1,3-benzodioxol-4-yl)-1-propanone, 1988
1-(6-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1988
1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1989
2-Hydroxy-3-(1-oxopropyl)benzoic acid, 1784
2-Hydroxy-5-(1-oxopropyl)benzoic acid, 1784
4-Hydroxy-3-(1-oxopropyl)benzoic acid, 1784
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$
2,4,6-Trihydroxy-3-(1-oxopropyl)benzaldehyde, 2131
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BF}_{2} \mathrm{O}_{3}$
1-[2-[(Difluoroboryl)oxy]-4-hydroxy-6-methylphenyl]-1-propanone, 1785

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrClN}_{3} \mathrm{OS}$

1-(5-Bromo-3-chloro-2-hydroxyphenyl)-1-propanone (Thiosemicarbazone), 1740
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}$
1-(3-Bromo-2-hydroxy-5-methylphenyl)-1-propanone, 1785
1-(3-Bromo-4-hydroxy-5-methylphenyl)-1-propanone, 1785
1-(5-Bromo-2-hydroxy-3-methylphenyl)-1-propanone, 1786
1-(4-Bromo-2-hydroxyphenyl)-2-methyl-1-propanone, 2012
1-(5-Bromo-2-hydroxyphenyl)-2-methyl-1-propanone, 2012
1-(2-Bromo-4-methoxyphenyl)-1-propanone, 1786
1-(3-Bromo-2-methoxyphenyl)-1-propanone, 1786
1-(3-Bromo-4-methoxyphenyl)-1-propanone, 1786
1-(4-Bromo-2-methoxyphenyl)-1-propanone, 1787
1-(5-Bromo-2-methoxyphenyl)-1-propanone, 1787

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$

1-(3-Bromo-4-hydroxy-5-methoxyphenyl)-1-propanone, 1787

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}$

1-(5-Bromo-2,3,4-trihydroxyphenyl)-2-methyl-1-propanone, 2013
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{2}$
1-(2-Chloro-6-hydroxy-4-methylphenyl)-1-propanone, 1788
1-(3-Chloro-2-hydroxy-5-methylphenyl)-1-propanone, 1788
1-(4-Chloro-2-hydroxy-5-methylphenyl)-1-propanone, 1788
1-(5-Chloro-2-hydroxy-3-methylphenyl)-1-propanone, 1788
1-(5-Chloro-2-hydroxy-4-methylphenyl)-1-propanone, 1789
1-(4-Chloro-2-hydroxyphenyl)-2-methyl-1-propanone, 2013
1-(4-Chloro-3-hydroxyphenyl)-2-methyl-1-propanone, 2013
1-(5-Chloro-2-hydroxyphenyl)-2-methyl-1-propanone, 2013
1-(2-Chloro-4-methoxyphenyl)-1-propanone, 1789
1-(3-Chloro-2-methoxyphenyl)-1-propanone, 1790
1-(3-Chloro-4-methoxyphenyl)-1-propanone, 1790
1-(3-Chloro-5-methoxyphenyl)-1-propanone, 1790
1-(4-Chloro-2-methoxyphenyl)-1-propanone, 1791
1-(4-Chloro-3-methoxyphenyl)-1-propanone, 1791
1-(5-Chloro-2-methoxyphenyl)-1-propanone, 1791
1-[3-(Chloromethyl)-4-hydroxyphenyl]-1-propanone, 1791
1-[5-(Chloromethyl)-2-hydroxyphenyl]-1-propanone, 1792
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$
1-(3-Chloro-2,5-dihydroxyphenyl)-2-methyl-1-propanone, 2013
1-(4-Chloro-2,5-dihydroxyphenyl)-2-methyl-1-propanone, 2014
1-(X-Chloro-4-hydroxy-3-methoxyphenyl)-1-propanone, 1792
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
1-(2-Amino-3,4-dichloro-5-methoxyphenyl)-1-propanone, 1792
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{4}$
1-(4-Fluoro-2-hydroxy-5-nitrophenyl)-2-methyl-1-propanone (Oxime), 2012
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2}$
1-(2-Fluoro-6-hydroxyphenyl)-2-methyl-1-propanone, 2014
1-(3-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2014
1-(3-Fluoro-4-hydroxyphenyl)-2-methyl-1-propanone, 2014
1-(4-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2014
1-(5-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2015
1-(2-Fluoro-3-methoxyphenyl)-1-propanone, 1792
1-(2-Fluoro-5-methoxyphenyl)-1-propanone, 1792
1-(3-Fluoro-2-methoxyphenyl)-1-propanone, 1793
1-(3-Fluoro-4-methoxyphenyl)-1-propanone, 1793
1-(4-Fluoro-2-methoxyphenyl)-1-propanone, 1793
1-(4-Fluoro-3-methoxyphenyl)-1-propanone, 1793
1-(5-Fluoro-2-methoxyphenyl)-1-propanone, 1794
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{2}$
1-(2-Hydroxy-3-iodo-5-methylphenyl)-1-propanone, 1794
1-(2-Iodo-4-methoxyphenyl)-1-propanone, 1794
1-(3-Iodo-4-methoxyphenyl)-1-propanone, 1794
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{3}$
1-(4-Hydroxy-3-iodo-5-methoxyphenyl)-1-propanone, 1795
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$
2-Hydroxy-5-(1-oxopropyl)benzamide, 1795
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4}$
1-(2-Hydroxy-3-methyl-5-nitrophenyl)-1-propanone, 1795
1-(2-Hydroxy-5-methyl-3-nitrophenyl)-1-propanone, 1795
1-(4-Hydroxy-2-methyl-5-nitrophenyl)-1-propanone, 1796
1-(4-Hydroxy-3-methyl-5-nitrophenyl)-1-propanone, 1796
1-(2-Hydroxy-5-nitrophenyl)-2-methyl-1-propanone, 2015
1-(4-Hydroxy-3-nitrophenyl)-2-methyl-1-propanone, 2015
1-(2-Methoxy-3-nitrophenyl)-1-propanone, 1796
1-(2-Methoxy-5-nitrophenyl)-1-propanone, 1796
1-(3-Methoxy-2-nitrophenyl)-1-propanone, 1797
1-(3-Methoxy-4-nitrophenyl)-1-propanone, 1797
1-(4-Methoxy-2-nitrophenyl)-1-propanone, 1797
1-(4-Methoxy-3-nitrophenyl)-1-propanone, 1797
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5}$
1-(3,4-Dihydroxy-5-nitrophenyl)-2-methyl-1-propanone, 2015
1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-1-propanone, 1798
2,4,6-Trihydroxy-3-(1-oxopropyl)benzaldehyde 1-oxime, 1798
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$
1-[3-(Azidomethyl)-4-hydroxyphenyl]-1-propanone, 1798
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Na}$
1-(3-Hydroxy-4-methylphenyl)-1-propanone (Sodium salt), 1805
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Na}$
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Sodium salt), 1817
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrNO}_{2}$
1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-1-propanone, 1798

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{OS}$

1-(5-Bromo-2-hydroxyphenyl)-1-propanone (Thiosemicarbazone), 1748
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{2}$
1-[3-(Aminomethyl)-5-chloro-4-hydroxyphenyl]-1-propanone, 1799
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$
1-(5-Chloro-2-hydroxyphenyl)-1-propanone (Thiosemicarbazone), 1752
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FNO}_{2}$
1-(2-Amino-4-fluoro-5-methoxyphenyl)-1-propanone, 1799

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{INO}_{2}$

1-[3-(Aminomethyl)-4-hydroxy-5-iodophenyl]-1-propanone, 1799
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(2-Hydroxy-3-methylphenyl)-1-propanone, 1799
1-(2-Hydroxy-4-methylphenyl)-1-propanone, 1800
1-(2-Hydroxy-5-methylphenyl)-1-propanone, 1802
1-(2-Hydroxy-6-methylphenyl)-1-propanone, 1804
1-(3-Hydroxy-4-methylphenyl)-1-propanone, 1804
1-(4-Hydroxy-2-methylphenyl)-1-propanone, 1805
1-(4-Hydroxy-3-methylphenyl)-1-propanone, 1806
1-(2-Hydroxyphenyl)-2-methyl-1-propanone, 2015
1-(3-Hydroxyphenyl)-2-methyl-1-propanone, 2016
1-(4-Hydroxyphenyl)-2-methyl-1-propanone, 2017
1-(2-Methoxyphenyl)-1-propanone, 1806
1-(3-Methoxyphenyl)-1-propanone, 1807
1-(4-Methoxyphenyl)-1-propanone, 1807
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
1-[2-Hydroxy-5-(methylthio)phenyl]-1-propanone, 1808
1-[4-Hydroxy-3-(methylthio)phenyl]-1-propanone, 1808
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(2,3-Dihydroxy-5-methylphenyl)-1-propanone, 1808
1-(2,4-Dihydroxy-3-methylphenyl)-1-propanone, 1809
1-(2,4-Dihydroxy-5-methylphenyl)-1-propanone, 1809
1-(2,4-Dihydroxy-6-methylphenyl)-1-propanone, 1809
1-(2,5-Dihydroxy-4-methylphenyl)-1-propanone, 1810
1-(2,6-Dihydroxy-4-methylphenyl)-1-propanone, 1810
1-(4,5-Dihydroxy-2-methylphenyl)-1-propanone, 1811
1-(2,3-Dihydroxyphenyl)-2-methyl-1-propanone, 2017
1-(2,4-Dihydroxyphenyl)-2-methyl-1-propanone, 2017
1-(2,5-Dihydroxyphenyl)-2-methyl-1-propanone, 2018
1-(2,6-Dihydroxyphenyl)-2-methyl-1-propanone, 2018
1-(3,4-Dihydroxyphenyl)-2-methyl-1-propanone, 2018
1-(3,5-Dihydroxyphenyl)-2-methyl-1-propanone, 2019
1-[4-Hydroxy-3-(hydroxymethyl)phenyl]-1-propanone, 1811
1-(2-Hydroxy-3-methoxyphenyl)-1-propanone, 1811
1-(2-Hydroxy-4-methoxyphenyl)-1-propanone, 1811
1-(2-Hydroxy-5-methoxyphenyl)-1-propanone, 1812
1-(2-Hydroxy-6-methoxyphenyl)-1-propanone, 1813
1-(3-Hydroxy-4-methoxyphenyl)-1-propanone, 1813
1-(3-Hydroxy-5-methoxyphenyl)-1-propanone, 1814
1-(4-Hydroxy-2-methoxyphenyl)-1-propanone, 1814
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone, 1814
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone-1- ${ }^{14} \mathrm{C}, 1817$
1-(5-Hydroxy-2-methoxyphenyl)-1-propanone, 1818
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(2,4-Dihydroxy-5-methoxyphenyl)-1-propanone, 1818
1-(2,5-Dihydroxy-4-methoxyphenyl)-1-propanone, 1818
1-(2,6-Dihydroxy-4-methoxyphenyl)-1-propanone, 1819
1-(3,4-Dihydroxy-5-methoxyphenyl)-1-propanone, 1819
1-(3,5-Dihydroxy-4-methoxyphenyl)-1-propanone, 1819
2-Methyl-1-(2,3,4-trihydroxyphenyl)-1-propanone, 2019
2-Methyl-1-(2,4,5-trihydroxyphenyl)-1-propanone, 2019
2-Methyl-1-(2,4,6-trihydroxyphenyl)-1-propanone, 2019
1-(2,4,6-Trihydroxy-3-methylphenyl)-1-propanone, 1819
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$
2-Methyl-1-(2,3,4,6-tetrahydroxyphenyl)-1-propanone, 2020
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$
1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-1-propanone (Oxime), 1798
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$
1-(5-Chloro-2-hydroxy-4-methylphenyl)-1-propanone (Hydrazone), 1789
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$
1-[3-(Aminomethyl)-5-chloro-4-hydroxyphenyl]-1-propanone (Oxime), 1799
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{IN}_{2} \mathrm{O}_{2}$
1-[3-(Aminomethyl)-4-hydroxy-5-iodophenyl]-1-propanone (Oxime), 1799
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
1-(3-Amino-2-hydroxy-5-methylphenyl)-1-propanone, 1820
1-(3-Amino-4-hydroxy-5-methylphenyl)-1-propanone, 1820
1-(5-Amino-4-hydroxy-2-methylphenyl)-1-propanone, 1820
1-(2-Amino-5-hydroxyphenyl)-2-methyl-1-propanone, 2021
1-(3-Amino-2-methoxyphenyl)-1-propanone, 1820
1-(3-Amino-4-methoxyphenyl)-1-propanone, 1821
1-[3-Hydroxy-4-(methylamino)phenyl]-1-propanone, 1821
1-(2-Hydroxy-5-methylphenyl)-1-propanone (Oxime), 1804
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}, \mathbf{H C l}$
1-(3-Amino-2-methoxyphenyl)-1-propanone (Hydrochloride), 1820
1-[3-(Aminomethyl)-4-hydroxyphenyl]-1-propanone (Hydrochloride), 1821
$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
1-(2-Hydroxy-5-methylphenyl)-1-propanone (Hydrazone), 1804
$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{D}_{5} \mathrm{O}_{2}$
1-(4-Ethyl-2-hydroxyphenyl)-1-propanone-2,2,3,3,3- $d_{5}, 1821$
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrNO}_{3}$
1-(5-Bromo-6-hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1-propanone, 1990
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$
1-(3,5-Dibromo-4-hydroxyphenyl)-1-propanone (Acetate), 1742
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
1-(8-Hydroxy-5-quinazolinyl)-1-propanone, 1990
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}$
1-(4-Hydroxy-5-benzofuranyl)-1-propanone, 1990
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}$
1-(4,5-Dihydroxybenzo[b]thien-6-yl)-1-propanone, 1990
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}$
5-Hydroxy-4-(2-methyl-1-oxopropyl)-1,3-benzoxathiol-2-one, 2067
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{6}$
2,4,6-Trihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxaldehyde, 2132
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{7}$
4,6-Dihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxylic acid, 1821
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3}$
1-(5-Bromo-6-hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1-propanone (Oxime), 1990
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{5}$
5-Bromo-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester, 1822
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{5}$
5-Chloro-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester, 1822
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{D}_{3} \mathrm{O}_{3}$
1-(3,4-Dimethoxyphenyl)-1-propanone-3,3,3- $d_{3}, 1822$
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{IO}_{4}$
1-[4-(Acetyloxy)-2-hydroxy-3-iodophenyl]-1-propanone, 1822
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$
4-Hydroxy-3-(1-oxopropyl)phenylacetonitrile, 1823
2-Methoxy-3-(1-oxopropyl)benzonitrile, 1823
3-Methoxy-4-(1-oxopropyl)benzonitrile, 1823
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$
1-(2-Hydroxy-5-isocyanatophenyl)-2-methyl-1-propanone, 2021
1-(6-Hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1-propanone, 1990
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$
1-(3,5-Dibromo-2-hydroxy-4,6-dimethylphenyl)-1-propanone, 1823
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{2}$
1-(4-Chloro-2-hydroxy-5-methylphenyl)-1-propanone (Oxime), 1788
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-[3,5-Bis(chloromethyl)-2-hydroxyphenyl]-1-propanone, 1824
1-(2,3-Dichloro-4-methoxyphenyl)-2-methyl-1-propanone, 2021
1-(3,5-Dichloro-4-methoxyphenyl)-2-methyl-1-propanone, 2021
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$
1-(3,5-Dichloro-2-hydroxy-4,6-dimethoxyphenyl)-1-propanone, 1824
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{DFO}_{2}$
1-[2-Fluoro-6-(hydroxy-d) phenyl]-2,2-dimethyl-1-propanone, 2083
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{O}_{2}$
1-(4-Methoxyphenyl-2,6- d_{2})-2-methyl-1-propanone, 2021
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
1-(5-Hydroxy-2-methyl-1H-benzimidazol-4-yl)-1-propanone, 1991
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
1-(6-Hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1-propanone (Oxime), 1991
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(3-Acetyl-4-hydroxyphenyl)-1-propanone, 2132
1-(5-Acetyl-2-hydroxyphenyl)-1-propanone, 2132
1-(2-Hydroxyphenyl)-1-propanone (Acetate), 1763
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(5-Acetyl-2,4-dihydroxyphenyl)-1-propanone, 2133
1-[4-(Acetyloxy)-2-hydroxyphenyl]-1-propanone, 1824
1-[5-(Acetyloxy)-2-hydroxyphenyl]-1-propanone, 1824
1-(2,3-Dihydro-5-hydroxy-1,4-benzodioxin-6-yl)-1-propanone, 1991
1-(2,3-Dihydro-7-hydroxy-1,4-benzodioxin-6-yl)-1-propanone, 1991
2-Hydroxy-5-methyl-3-(1-oxopropyl)benzoic acid, 1825
2-Hydroxy-5-(2-methyl-1-oxopropyl)benzoic acid, 2022
2-Hydroxy-3-(1-oxopropyl)benzoic acid methyl ester, 1825
2-Hydroxy-5-(1-oxopropyl)benzoic acid methyl ester, 1825
4-Hydroxy-3-(1-oxopropyl)phenylacetic acid, 1825
1-(4-Methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1991
1-(6-Methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1992
1-(7-Methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1992
2-Methoxy-5-(1-oxopropyl)benzoic acid, 1826
4-Methoxy-3-(1-oxopropyl)benzoic acid, 1826
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$
1-(3-Acetyl-2,4,6-trihydroxyphenyl)-1-propanone, 2133
1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]-1-propanone, 1826
1-(4-Hydroxy-7-methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1993
2,4,6-Trihydroxy-3-methyl-5-(1-oxopropyl)benzaldehyde, 2133
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$
1-(3-Bromo-2-hydroxy-4,5-dimethylphenyl)-1-propanone, 1826
1-(3-Bromo-4-hydroxy-2,5-dimethylphenyl)-1-propanone, 1827
1-(3-Bromo-6-hydroxy-2,4-dimethylphenyl)-1-propanone, 1827
1-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)-1-propanone, 1827
1-(5-Bromo-4-hydroxy-2,3-dimethylphenyl)-1-propanone, 1828
1-(3-Bromo-2-methoxy-5-methylphenyl)-1-propanone, 1828
1-(5-Bromo-2-methoxyphenyl)-2-methyl-1-propanone, 2022
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3}$
1-(5-Bromo-4-ethoxy-2-hydroxyphenyl)-1-propanone, 1828
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{2}$
1-(5-Chloro-3-ethyl-2-hydroxyphenyl)-1-propanone, 1828
1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)-1-propanone, 1829
1-(2-Chloro-4-methoxy-5-methylphenyl)-1-propanone, 1829

1-(3-Chloro-2-methoxy-5-methylphenyl)-1-propanone, 1829
1-(5-Chloro-2-methoxy-3-methylphenyl)-1-propanone, 1829
1-(5-Chloro-2-methoxy-4-methylphenyl)-1-propanone, 1830
1-(5-Chloro-2-methoxyphenyl)-2-methyl-1-propanone, 2022
1-[5-(Chloromethyl)-2-methoxyphenyl]-1-propanone, 1830
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3}$
1-(2-Chloro-4,5-dimethoxyphenyl)-1-propanone, 1830
1-(4-Chloro-2,5-dimethoxyphenyl)-1-propanone, 1830
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}_{2}$
1-(2-Fluoro-6-hydroxyphenyl)-2,2-dimethyl-1-propanone, 2083
1-(2-Fluoro-6-methoxyphenyl)-2-methyl-1-propanone, 2022
1-(3-Fluoro-4-methoxyphenyl)-2-methyl-1-propanone, 2023
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}_{3}$
1-(2-Fluoro-4,6-dimethoxyphenyl)-1-propanone, 1831
1-(3-Fluoro-2,6-dimethoxyphenyl)-1-propanone, 1831
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$
2-Hydroxy-5-(1-oxopropyl)acetanilide, 1831
3-Hydroxy-4-(1-oxopropyl)acetanilide, 1831
4-Hydroxy-3-(1-oxopropyl)acetanilide, 1831
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4}$
1-(2,3-Dihydro-5-hydroxy-1,4-benzodioxin-6-yl)-1-propanone (Oxime), 1991
1-(5-Ethyl-2-hydroxy-3-nitrophenyl)-1-propanone, 1832
1-(2-Hydroxy-5-methyl-3-nitrophenyl)-2-methyl-1-propanone, 2023
1-(2-Methoxy-5-methyl-3-nitrophenyl)-1-propanone, 1832
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$
1-(2,4-Dimethoxy-5-nitrophenyl)-1-propanone, 1832
1-(4,5-Dimethoxy-2-nitrophenyl)-1-propanone, 1832
1-(6-Ethoxy-2-hydroxy-3-nitrophenyl)-1-propanone, 1833
1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-methyl-1-propanone, 2023
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$
2-[[2,4,6-Trihydroxy-3-(1-oxopropyl)phenyl]methylene]hydrazinecarboxamide, 1833
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}_{2}$
1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-2-methyl-1-propanone, 2023
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}_{3}$
1-(5-Bromo-4-ethoxy-2-hydroxyphenyl)-1-propanone (Oxime), 1828
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
1-(3-Ethyl-4-hydroxyphenyl)-1-propanone, 1833
1-(4-Ethyl-2-hydroxyphenyl)-1-propanone, 1833
1-(5-Ethyl-2-hydroxyphenyl)-1-propanone, 1834
1-(2-Hydroxy-3,4-dimethylphenyl)-1-propanone, 1834
1-(2-Hydroxy-3,5-dimethylphenyl)-1-propanone, 1834
1-(2-Hydroxy-3,6-dimethylphenyl)-1-propanone, 1835

1-(2-Hydroxy-4,5-dimethylphenyl)-1-propanone, 1835
1-(2-Hydroxy-4,6-dimethylphenyl)-1-propanone, 1836
1-(4-Hydroxy-2,3-dimethylphenyl)-1-propanone, 1837
1-(4-Hydroxy-2,5-dimethylphenyl)-1-propanone, 1837
1-(4-Hydroxy-3,5-dimethylphenyl)-1-propanone, 1838
1-(6-Hydroxy-2,3-dimethylphenyl)-1-propanone, 1838
1-(2-Hydroxy-3-methylphenyl)-2-methyl-1-propanone, 2024
1-(2-Hydroxy-4-methylphenyl)-2-methyl-1-propanone, 2024
1-(2-Hydroxy-5-methylphenyl)-2-methyl-1-propanone, 2024
1-(4-Hydroxy-2-methylphenyl)-2-methyl-1-propanone, 2025
1-(4-Hydroxy-3-methylphenyl)-2-methyl-1-propanone, 2025
1-(2-Hydroxyphenyl)-2,2-dimethyl-1-propanone, 2083
1-(3-Hydroxyphenyl)-2,2-dimethyl-1-propanone, 2084
1-(4-Hydroxyphenyl)-2,2-dimethyl-1-propanone, 2084
1-(4-Hydroxyphenyl)-1-propanone (Ethyl ether), 1766
1-(2-Methoxy-3-methylphenyl)-1-propanone, 1839
1-(2-Methoxy-4-methylphenyl)-1-propanone, 1839
1-(2-Methoxy-5-methylphenyl)-1-propanone, 1839
1-(2-Methoxy-6-methylphenyl)-1-propanone, 1840
1-(3-Methoxy-2-methylphenyl)-1-propanone, 1840
1-(3-Methoxy-4-methylphenyl)-1-propanone, 1840
1-(3-Methoxy-5-methylphenyl)-1-propanone, 1840
1-(4-Methoxy-2-methylphenyl)-1-propanone, 1841
1-(4-Methoxy-3-methylphenyl)-1-propanone, 1841
1-(5-Methoxy-2-methylphenyl)-1-propanone, 1841
1-(2-Methoxyphenyl)-2-methyl-1-propanone, 2025
1-(3-Methoxyphenyl)-2-methyl-1-propanone, 2025
1-(4-Methoxyphenyl)-2-methyl-1-propanone, 2026
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(3,6-Dihydroxy-2,4-dimethylphenyl)-1-propanone, 1841
1-(2,3-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2085
1-(2,4-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2085
1-(2,5-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2085
1-(2,6-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2086
1-(3,4-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2086
1-(2,3-Dimethoxyphenyl)-1-propanone, 1841
1-(2,4-Dimethoxyphenyl)-1-propanone, 1842
1-(2,5-Dimethoxyphenyl)-1-propanone, 1842
1-(2,6-Dimethoxyphenyl)-1-propanone, 1843
1-(3,4-Dimethoxyphenyl)-1-propanone, 1843
1-(3,5-Dimethoxyphenyl)-1-propanone, 1844
1-(3-Ethoxy-4-hydroxyphenyl)-1-propanone, 1845
1-(4-Ethoxy-2-hydroxyphenyl)-1-propanone, 1845
1-(4-Ethoxy-3-hydroxyphenyl)-1-propanone, 1846
1-(5-Ethoxy-2-hydroxyphenyl)-1-propanone, 1846

1-(2-Ethyl-4,5-dihydroxyphenyl)-1-propanone, 1846
1-(2-Ethyl-4,6-dihydroxyphenyl)-1-propanone, 1846
1-(3-Ethyl-2,6-dihydroxyphenyl)-1-propanone, 1847
1-(5-Ethyl-2,4-dihydroxyphenyl)-1-propanone, 1847
1-(2-Hydroxy-3-methoxy-5-methylphenyl)-1-propanone, 1847
1-(2-Hydroxy-4-methoxy-3-methylphenyl)-1-propanone, 1848
1-(2-Hydroxy-4-methoxy-6-methylphenyl)-1-propanone, 1848
1-(2-Hydroxy-6-methoxy-4-methylphenyl)-1-propanone, 1848
1-(3-Hydroxy-2-methoxy-5-methylphenyl)-1-propanone, 1849
1-(4-Hydroxy-2-methoxy-6-methylphenyl)-1-propanone, 1849
1-(4-Hydroxy-3-methoxy-5-methylphenyl)-1-propanone, 1849
1-(4-Hydroxy-5-methoxy-2-methylphenyl)-1-propanone, 1849
1-(5-Hydroxy-4-methoxy-2-methylphenyl)-1-propanone, 1850
1-[4-Hydroxy-3-(methoxymethyl)phenyl]-1-propanone, 1850
1-(2-Hydroxy-3-methoxyphenyl)-2-methyl-1-propanone, 2026
1-(2-Hydroxy-4-methoxyphenyl)-2-methyl-1-propanone, 2027
1-(2-Hydroxy-5-methoxyphenyl)-2-methyl-1-propanone, 2027
1-(4-Hydroxy-3-methoxyphenyl)-2-methyl-1-propanone, 2027
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-1-propanone, 1850
1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-1-propanone, 1851
1-(2,4-Dihydroxy-6-methoxyphenyl)-2-methyl-1-propanone, 2027
1-(2,6-Dihydroxy-4-methoxyphenyl)-2-methyl-1-propanone, 2028
1-(3,5-Dihydroxy-4-methoxyphenyl)-2-methyl-1-propanone, 2028
1-(2-Hydroxy-3,4-dimethoxyphenyl)-1-propanone, 1851
1-(2-Hydroxy-4,5-dimethoxyphenyl)-1-propanone, 1852
1-(2-Hydroxy-4,6-dimethoxyphenyl)-1-propanone, 1852
1-(4-Hydroxy-2,6-dimethoxyphenyl)-1-propanone, 1852
1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone, 1853
1-[2-Hydroxy-6-(2-hydroxyethoxy)phenyl]-1-propanone, 1854
2-Methyl-1-(2,4,6-trihydroxy-3-methylphenyl)-1-propanone, 2028
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$
1-(2,3-Dihydroxy-4,6-dimethoxyphenyl)-1-propanone, 1854
1-(2,4-Dihydroxy-3,5-dimethoxyphenyl)-1-propanone, 1855
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-1-propanone, 1855
1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-1-propanone, 1855
1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-1-propanone, 1856
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{AsO}_{6}$
[2,4-Dimethoxy-5-(1-oxopropyl)phenyl]arsonic acid, 1856

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$

1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-2-methyl-1-propanone (Oxime), 2023
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
1-(3-Amino-5-ethyl-2-hydroxyphenyl)-1-propanone, 1856

1-(3-Amino-2-hydroxy-5-methylphenyl)-2-methyl-1-propanone, 2029
1-(2-Amino-5-methoxyphenyl)-2-methyl-1-propanone, 2029
1-[3-(Dimethylamino)-4-hydroxyphenyl]-1-propanone, 1856
1-(4-Hydroxy-3,5-dimethylphenyl)-1-propanone (Oxime), 1838
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$
1-[3-(Aminomethyl)-2-hydroxy-5-(methylthio)phenyl]-1-propanone, 1857
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}, \mathrm{HCl}$
1-[3-(Aminomethyl)-2-hydroxy-5-(methylthio)phenyl]-1-propanone (Hydrochloride), 1857
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$
1-(2-Amino-4,5-dimethoxyphenyl)-1-propanone, 1857
1-(2-Amino-4,6-dimethoxyphenyl)-1-propanone, 1857
1-(5-Amino-2,4-dimethoxyphenyl)-1-propanone, 1857
1-(5-Ethyl-2,4-dihydroxyphenyl)-1-propanone (Oxime), 1847
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}, \mathbf{H C l}$
1-(5-Amino-2,4-dimethoxyphenyl)-1-propanone (Hydrochloride), 1858
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$
1-(2-Hydroxy-4-methylphenyl)-1-propanone (Thiosemicarbazone), 1802
1-(2-Hydroxy-5-methylphenyl)-1-propanone (Thiosemicarbazone), 1804
$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
1-(5-Ethyl-2-hydroxyphenyl)-1-propanone (Hydrazone), 1834
1-(2-Hydroxy-3,5-dimethylphenyl)-1-propanone (Hydrazone), 1835
$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4}$
3,4-Dichloro-7-hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1993
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$
7-Hydroxy-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1993
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}_{3}$
5-Bromo-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran, 1993
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClO}_{3}$
5-Chloro-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran, 1994
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{D}_{5} \mathrm{O}_{2}$
1-[2-Hydroxy-4-(1-methylethyl)phenyl]-1-propanone-2,2,3,3,3- d_{5}, 1858
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$
8-Hydroxy-5-(1-oxopropyl)quinoline, 1994
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{HCl}$
8-Hydroxy-5-(1-oxopropyl)quinoline (Hydrochloride), 1994

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}_{3}$

1-(5-Bromo-3-ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-
1-propanone, 1994
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$
1-[4,5-Dichloro-3-hydroxy-2-(2-propenyl)phenyl]-1-propanone, 1858
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(5-Hydroxy-2H-1-benzopyran-6-yl)-1-propanone, 1994
1-(6-Hydroxy-3-methyl-7-benzofuranyl)-1-propanone, 1995
1-[2-Hydroxy-4-(2-propynyloxy)phenyl]-1-propanone, 1858
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$
1-(4,5-Dihydroxybenzo[b]thien-6-yl)-2-methyl-1-propanone, 2067
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$
2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-benzenedicarboxaldehyde, 2159
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3}$
1-(5-Bromo-3-ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-1-propanone (Oxime), 1994
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$
1-(3-Ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-1-propanone, 1995
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{6}$
1,1'-(2,4-Dihydroxy-5-nitro-1,3-phenylene)bis-1-propanone, 2107
1,1'-(4,6-Dihydroxy-5-nitro-1,3-phenylene)bis-1-propanone, 2107
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2}$
1-(3,5-Dibromo-2-methoxy-4,6-dimethylphenyl)-1-propanone, 1858
$\mathrm{C}_{12} \mathrm{H}_{14} \mathbf{N}_{2} \mathrm{O}_{3}$
1-(3-Ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-1-propanone (Oxime), 1995
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$
1-[2-Hydroxy-3-(1-propenyl)phenyl]-1-propanone, 1858
1-[2-Hydroxy-3-(1-propenyl)phenyl]-1-propanone (E), 1859
1-[2-Hydroxy-3-(2-propenyl)phenyl]-1-propanone, 1859
1-[4-Hydroxy-3-(2-propenyl)phenyl]-1-propanone, 1859
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(2-Acetyl-6-hydroxyphenyl)-2-methyl-1-propanone, 2159
1-(3-Acetyl-2-hydroxy-5-methylphenyl)-1-propanone, 2134
1-[2,4-Dihydroxy-5-(1-methylethenyl)phenyl]-1-propanone, 1859
1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-1-propanone, 1860
1-[2,6-Dihydroxy-3-(2-propenyl)phenyl]-1-propanone, 1860
1-[3,6-Dihydroxy-2-(2-propenyl)phenyl]-1-propanone, 1860
1-(4-Hydroxyphenyl)-1-propanone (Propionate), 1766
1-(2-Hydroxy-5-methylphenyl)-1-propanone (Acetate), 1804
1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-1-propanone, 1860
1-[2-Hydroxy-5-(2-propenyloxy)phenyl]-1-propanone, 1861
1,1'-(4-Hydroxy-1,3-phenylene)bis-1-propanone, 2108
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-methyl-1-propanone, 2029
1-[5-(Acetoxymethyl)-2-hydroxyphenyl]-1-propanone, 1861
1-(5-Acetyl-2-hydroxy-4-methoxyphenyl)-1-propanone, 2134
1-(5-Acetyl-4-hydroxy-2-methoxyphenyl)-1-propanone, 2134

1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]-1-propanone, 1861
1-[2-(Acetyloxy)-5-methoxyphenyl]-1-propanone, 1861
1,1'-(2,4-Dihydroxy-1,3-phenylene)bis-1-propanone, 2108
1,1'-(2,5-Dihydroxy-1,4-phenylene)bis-1-propanone, 2109
1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-1-propanone, 2109
5-Ethyl-2-hydroxy-3-(1-oxopropyl)benzoic acid, 1862
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Acetate), 1817
2-Hydroxy-5-(2-methyl-1-oxopropyl)benzoic acid methyl ester, 2029
1-[2-Hydroxy-5-(1-oxopropoxy)phenyl]-1-propanone, 1862
2-Hydroxy-3-(1-oxopropyl)benzoic acid ethyl ester, 1862
4-Hydroxy-3-(1-oxopropyl)benzoic acid ethyl ester, 1862
2-Methoxy-5-(2-methyl-1-oxopropyl)benzoic acid, 2030
2-Methoxy-6-(2-methyl-1-oxopropyl)benzoic acid, 2030
3-Methoxy-2-(2-methyl-1-oxopropyl)benzoic acid, 2030
2-Methoxy-5-(1-oxopropyl)benzoic acid methyl ester, 1863
4-Methoxy-3-(1-oxopropyl)benzoic acid methyl ester, 1863
1-[2,4,6-Trihydroxy-3-(2-propenyl)phenyl]-1-propanone, 1863
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[2-(Acetyloxy)-4,6-dihydroxyphenyl]-2-methyl-1-propanone, 2030
1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]-2-methyl-1-propanone, 2030
1-(4,5-Dimethoxy-1,3-benzodioxol-6-yl)-1-propanone, 1995
1-(4,7-Dimethoxy-1,3-benzodioxol-5-yl)-1-propanone, 1995
2,4-Dimethoxy-6-(1-oxopropyl)benzoic acid, 1863
3,5-Dimethoxy-2-(1-oxopropyl)benzoic acid, 1864
5-Ethyl-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid, 1864
3-Ethyl-2,4,6-trihydroxy-5-(1-oxopropyl)benzaldehyde, 2134
1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-1-propanone, 2110
1,1'-(4,5,6-Trihydroxy-1,3-phenylene)bis-1-propanone, 2111
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BrO}_{2}$
1-(3-Bromo-6-methoxy-2,4-dimethylphenyl)-1-propanone, 1864
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}$
1-(3-Chloro-4-hydroxy-5-propylphenyl)-1-propanone, 1864
1-(3-Chloro-6-methoxy-2,4-dimethylphenyl)-1-propanone, 1865
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{3}$
1-(5-Chloro-2,4-dihydroxy-3-propylphenyl)-1-propanone, 1865
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{4}$
1-(4-Chloro-2-hydroxy-3,6-dimethoxyphenyl)-2-methyl-1-propanone, 2030
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{2}$
1-(2-Fluoro-6-methoxyphenyl)-2,2-dimethyl-1-propanone, 2086
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{3}$
1-(4-Fluoro-2,6-dimethoxyphenyl)-2-methyl-1-propanone, 2031
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$
4-Hydroxy-3-(2-methyl-1-oxopropyl)acetanilide, 2031

4-Hydroxy-3-(1-oxopropyl)propionanilide, 1865
2-Methoxy-5-(1-oxopropyl)acetanilide, 1865
3-Methoxy-4-(1-oxopropyl)acetanilide, 1865
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{6}$
1-(2,4,6-Trihydroxy-3-nitro-5-propylphenyl)-1-propanone, 1866
1-(3,4,5-Trimethoxy-2-nitrophenyl)-1-propanone, 1866
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
1-(2-Ethyl-6-hydroxy-4-methylphenyl)-1-propanone, 1866
1-(3-Ethyl-4-hydroxy-5-methylphenyl)-1-propanone, 1866
1-(5-Ethyl-2-hydroxy-3-methylphenyl)-1-propanone, 1867
1-(5-Ethyl-2-hydroxyphenyl)-2-methyl-1-propanone, 2031
1-(2-Ethyl-3-methoxyphenyl)-1-propanone, 1867
1-(2-Ethyl-6-methoxyphenyl)-1-propanone, 1867
1-(3-Ethyl-4-methoxyphenyl)-1-propanone, 1867
1-(4-Ethyl-2-methoxyphenyl)-1-propanone, 1868
1-(2-Hydroxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2031
1-(2-Hydroxy-4,5-dimethylphenyl)-2-methyl-1-propanone, 2031
1-(2-Hydroxy-4,6-dimethylphenyl)-2-methyl-1-propanone, 2032
1-(4-Hydroxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2032
1-[2-Hydroxy-4-(1-methylethyl)phenyl]-1-propanone, 1868
1-[2-Hydroxy-5-(1-methylethyl)phenyl]-1-propanone, 1868
1-[4-Hydroxy-3-(1-methylethyl)phenyl]-1-propanone, 1868
1-(2-Hydroxy-4-methylphenyl)-2,2-dimethyl-1-propanone, 2086
1-(2-Hydroxy-5-methylphenyl)-2,2-dimethyl-1-propanone, 2087
1-(4-Hydroxy-3-methylphenyl)-2,2-dimethyl-1-propanone, 2087
1-(2-Hydroxy-5-methylphenyl)-1-propanone (Ethyl ether), 1804
1-(2-Hydroxy-3-propylphenyl)-1-propanone, 1868
1-(2-Hydroxy-4-propylphenyl)-1-propanone, 1869
1-(2-Hydroxy-5-propylphenyl)-1-propanone, 1869
1-(4-Hydroxy-3-propylphenyl)-1-propanone, 1869
1-(2-Methoxy-3,4-dimethylphenyl)-1-propanone, 1870
1-(2-Methoxy-3,5-dimethylphenyl)-1-propanone, 1870
1-(2-Methoxy-3,6-dimethylphenyl)-1-propanone, 1870
1-(2-Methoxy-4,5-dimethylphenyl)-1-propanone, 1870
1-(2-Methoxy-4,6-dimethylphenyl)-1-propanone, 1870
1-(4-Methoxy-2,3-dimethylphenyl)-1-propanone, 1871
1-(4-Methoxy-2,5-dimethylphenyl)-1-propanone, 1871
1-(4-Methoxy-2,6-dimethylphenyl)-1-propanone, 1871
1-(4-Methoxy-3,5-dimethylphenyl)-1-propanone, 1871
1-(2-Methoxy-3-methylphenyl)-2-methyl-1-propanone, 2032
1-(2-Methoxy-4-methylphenyl)-2-methyl-1-propanone, 2033
1-(2-Methoxy-5-methylphenyl)-2-methyl-1-propanone, 2033
1-(3-Methoxy-4-methylphenyl)-2-methyl-1-propanone, 2033
1-(4-Methoxy-2-methylphenyl)-2-methyl-1-propanone, 2033

1-(4-Methoxy-3-methylphenyl)-2-methyl-1-propanone, 2034
1-(2-Methoxyphenyl)-2,2-dimethyl-1-propanone, 2088
1-(3-Methoxyphenyl)-2,2-dimethyl-1-propanone, 2088
1-(4-Methoxyphenyl)-2,2-dimethyl-1-propanone, 2088
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2034
1-(2,4-Dihydroxy-6-methylphenyl)-2,2-dimethyl-1-propanone, 2089
1-(2,6-Dihydroxy-4-methylphenyl)-2,2-dimethyl-1-propanone, 2089
1-(2,4-Dihydroxy-3-propylphenyl)-1-propanone, 1872
1-(2,4-Dihydroxy-5-propylphenyl)-1-propanone, 1872
1-(2,6-Dihydroxy-3-propylphenyl)-1-propanone, 1872
1-(3,6-Dihydroxy-2-propylphenyl)-1-propanone, 1873
1-(2,3-Dimethoxy-5-methylphenyl)-1-propanone, 1873
1-(2,4-Dimethoxy-3-methylphenyl)-1-propanone, 1873
1-(2,4-Dimethoxy-5-methylphenyl)-1-propanone, 1874
1-(2,4-Dimethoxy-6-methylphenyl)-1-propanone, 1874
1-(2,5-Dimethoxy-4-methylphenyl)-1-propanone, 1874
1-(4,5-Dimethoxy-2-methylphenyl)-1-propanone, 1874
1-(2,3-Dimethoxyphenyl)-2-methyl-1-propanone, 2034
1-(2,4-Dimethoxyphenyl)-2-methyl-1-propanone, 2034
1-(2,5-Dimethoxyphenyl)-2-methyl-1-propanone, 2035
1-(2,6-Dimethoxyphenyl)-2-methyl-1-propanone, 2035
1-(3,4-Dimethoxyphenyl)-2-methyl-1-propanone, 2035
1-(3,5-Dimethoxyphenyl)-2-methyl-1-propanone, 2036
1-(3-Ethoxy-4-methoxyphenyl)-1-propanone, 1875
1-[3-(Ethoxymethyl)-4-hydroxyphenyl]-1-propanone, 1875
1-[5-(Ethoxymethyl)-2-hydroxyphenyl]-1-propanone, 1875
1-(4-Ethyl-3-hydroxy-5-methoxyphenyl)-1-propanone, 1875
1-(2-Hydroxy-6-methoxy-3,4-dimethylphenyl)-1-propanone, 1875
1-(4-Hydroxy-3-methoxy-5-methylphenyl)-2-methyl-1-propanone, 2036
1-(2-Hydroxy-6-methoxyphenyl)-2,2-dimethyl-1-propanone, 2089
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Ethyl ether), 1816
1-[2-Hydroxy-4-(1-methylethoxy)phenyl]-1-propanone, 1876
1-(2-Hydroxy-4-propoxyphenyl)-1-propanone, 1876
1-(3-Hydroxy-4-propoxyphenyl)-1-propanone, 1876
1-(4-Hydroxy-3-propoxyphenyl)-1-propanone, 1876
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-methyl-1-propanone, 2036
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2-methyl-1-propanone, 2037
1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-2-methyl-1-propanone, 2037
1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-1-propanone, 1877
1-(2-Hydroxy-3,4-dimethoxy-6-methylphenyl)-1-propanone, 1877
1-(2-Hydroxy-3,5-dimethoxy-4-methylphenyl)-1-propanone, 1877
1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-1-propanone, 1878
1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-methyl-1-propanone, 2038

1-[2-Methoxy-5-(methoxymethoxy)phenyl]-1-propanone, 1878
1-(2,3,4-Trimethoxyphenyl)-1-propanone, 1878
1-(2,4,5-Trimethoxyphenyl)-1-propanone, 1878
1-(2,4,6-Trimethoxyphenyl)-1-propanone, 1879
1-(3,4,5-Trimethoxyphenyl)-1-propanone, 1880
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
1-[2-Hydroxy-5-(2,3-dihydroxypropoxy)phenyl]-1-propanone, 1880
1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-1-propanone, 1881
1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-1-propanone, 1881
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$
1-(2,5-Dihydroxy-3,4,6-trimethoxyphenyl)-1-propanone, 1881
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$
1-(4-Amino-3-ethyl-5-methoxyphenyl)-1-propanone, 1882
1-[3-(Dimethylamino)-4-hydroxy-5-methylphenyl]-1-propanone, 1882
1-(2-Hydroxy-4,5-dimethylphenyl)-2-methyl-1-propanone (Oxime), 2032
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}$
1-[2-Hydroxy-4-(1-methylethoxy)phenyl]-1-propanone (Oxime), 1876
1-(2-Hydroxy-4-propoxyphenyl)-1-propanone (Oxime), 1876
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$
1-(2,4,5-Trimethoxyphenyl)-1-propanone (Oxime), 1879
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$
1-(4-Methoxyphenyl)-2-methyl-1-propanone (Semicarbazone), 2026
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
1-[2-Hydroxy-5-(1-methylethyl)phenyl]-1-propanone (Hydrazone), 1868
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrClO}_{4}$
6-Bromo-3-chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1996
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}$
3,4-Dichloro-7-hydroxy-8-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1996
3,6-Dichloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1996
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}$
5-Hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one-3-carboxylic acid, 1997
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{2}$
1-(3-Bromo-4-hydroxy-1-naphthalenyl)-1-propanone, 1962
1-(4-Bromo-1-hydroxy-2-naphthalenyl)-1-propanone, 1962
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{3}$
1-(7-Bromo-3,4-dihydroxy-2-naphthalenyl)-1-propanone, 1963
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{4}$
3-Bromo-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1997
6-Bromo-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1997
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{5}$
5-Bromo-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid, 1997
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClO}_{2}$
1-(4-Chloro-1-hydroxy-2-naphthalenyl)-1-propanone, 1963
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClO}_{4}$
3-Chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1998
6-Chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1998
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClO}_{5}$
5-Chloro-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid, 1998
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$
1-(3-Hydroxy-4-nitroso-2-naphthalenyl)-1-propanone, 1963
1-(6-Hydroxy-5-nitroso-2-naphthalenyl)-1-propanone, 1964
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4}$
1-(1-Hydroxy-4-nitro-2-naphthalenyl)-1-propanone, 1964
1-(4-Hydroxy-3-nitro-1-naphthalenyl)-1-propanone, 1964
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$
1-(1-Hydroxy-2-naphthalenyl)-1-propanone, 1964
1-(2-Hydroxy-1-naphthalenyl)-1-propanone, 1965
1-(3-Hydroxy-1-naphthalenyl)-1-propanone, 1966
1-(3-Hydroxy-2-naphthalenyl)-1-propanone, 1966
1-(4-Hydroxy-1-naphthalenyl)-1-propanone, 1966
1-(5-Hydroxy-1-naphthalenyl)-1-propanone, 1967
1-(6-Hydroxy-1-naphthalenyl)-1-propanone, 1967
1-(6-Hydroxy-2-naphthalenyl)-1-propanone, 1967
1-(7-Hydroxy-1-naphthalenyl)-1-propanone, 1968
1-(7-Hydroxy-2-naphthalenyl)-1-propanone, 1968
1-(8-Hydroxy-1-naphthalenyl)-1-propanone, 1968
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3}$
1-(1,4-Dihydroxy-2-naphthalenyl)-1-propanone, 1968
1-(1,8-Dihydroxy-2-naphthalenyl)-1-propanone, 1969
1-(3,4-Dihydroxy-2-naphthalenyl)-1-propanone, 1969
1-(6,7-Dihydroxy-2-naphthalenyl)-1-propanone, 1969
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$
1-(2-Acetyl-7-hydroxy-4-benzofuranyl)-1-propanone, 2142
5-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1998
7-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1999
7-Hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1999
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5}$
6-Hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid, 1999

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{3}$

1-[3-Chloro-5-[(3,3-dichloro-2-propen-1-yl)oxy]-2-hydroxyphenyl]-2-methyl-1propanone, 2038
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{D}_{5} \mathrm{O}_{2}$
1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone-2,2,3,3,3- $d_{5}, 1882$
1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone-2,2,3,3,3- $d_{5}, 1882$
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$
8-Hydroxy-2-methyl-5-(1-oxopropyl)quinoline, 2000
8-Hydroxy-5-(2-methyl-1-oxopropyl)quinoline, 2067
1-(1-Hydroxy-2-naphthalenyl)-1-propanone (Oxime), 1965
1-(2-Hydroxy-1-naphthalenyl)-1-propanone (Oxime), 1966
$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{7}$
1-(2,4-Dihydroxy-5-nitrophenyl)-1-propanone (Diacetate), 1759
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(2-Ethyl-7-hydroxy-4-benzofuranyl)-1-propanone, 2000
1-(6-Hydroxy-3,7-dimethyl-5-benzofuranyl)-1-propanone, 2000
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(4,7-Dihydroxy-2,3-dimethyl-6-benzofuranyl)-1-propanone, 2000
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}$
3-[2,4-Dihydroxy-5-(1-oxopropyl)phenyl]-3-methyl-2-propenoic acid $(E), 1882$
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$
1-[2,3-Bis(acetyloxy)-4-hydroxyphenyl]-1-propanone, 1883
1-[2,4-Bis(acetyloxy)-6-hydroxyphenyl]-1-propanone, 1883
1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-1-propanone, 1883
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{7}$
4,6-Dihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxylic acid dimethyl ester, 1884
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$
2-Ethyl-3-methoxy-5-(1-oxopropyl)benzonitrile, 1884
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
1-(1-Ethyl-5-hydroxy-2-methyl-1 H -benzimidazol-4-yl)-1-propanone, 2001
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
1-[2-Hydroxy-5-methyl-3-(2-propenyl)phenyl]-1-propanone, 1884
1-[4-Hydroxy-3-methyl-5-(2-propenyl)phenyl]-1-propanone, 1884
1-[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]-1-propanone, 1885
1-(5,6,7,8-Tetrahydro-1-hydroxy-2-naphthalenyl)-1-propanone, 1970
1-(5,6,7,8-Tetrahydro-3-hydroxy-2-naphthalenyl)-1-propanone, 1970
1-(5,6,7,8-Tetrahydro-4-hydroxy-1-naphthalenyl)-1-propanone, 1970
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(2-Acetyl-6-hydroxyphenyl)-2,2-dimethyl-1-propanone, 2171
1-[3-(Cyclopropylmethyl)-2,4-dihydroxyphenyl]-1-propanone, 1885
1-[2-Hydroxy-4-methoxy-5-(2-propenyl)phenyl]-1-propanone, 1885
1-[2-Hydroxy-5-methoxy-3-(2-propenyl)phenyl]-1-propanone, 1885
1-[2-Hydroxy-6-methoxy-3-(2-propenyl)phenyl]-1-propanone, 1885
1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]-1-propanone, 1886
1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)bis-1-propanone, 2111
1,1'-(4-Hydroxy-5-methyl-1,3-phenylene)bis-1-propanone, 2111
1,1'-(4-Methoxy-1,3-phenylene)bis-1-propanone, 2111
1-[2-Methoxy-4-(2-propenyloxy)phenyl]-1-propanone, 1886
1-[2-Methoxy-6-(2-propenyloxy)phenyl]-1-propanone, 1886

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$

1,1'-(2,4-Dihydroxy-6-methyl-1,3-phenylene)bis-1-propanone, 2112
1,1'-(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis-1-propanone, 2112
1,1'-(4-Hydroxy-6-methoxy-1,3-phenylene)bis-1-propanone, 2112
1-(3-Hydroxy-4-methoxyphenyl)-1-propanone (Propionate), 1813
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Propionate), 1817
1-(5-Hydroxy-2-methoxyphenyl)-1-propanone (Propionate), 1818
4-Hydroxy-3-(1-oxopropyl)phenylacetic acid ethyl ester, 1886
2-Methoxy-5-(2-methyl-1-oxopropyl)benzoic acid methyl ester, 2038
1-[2-Methoxy-5-(1-oxopropoxy)phenyl]-1-propanone, 1887
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}$
2,4-Dihydroxy-6-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)benzaldehyde, 2159
2,6-Dihydroxy-4-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)benzaldehyde, 2160
1-(4,6-Dimethoxy-1,3-benzodioxol-5-yl)-2-methyl-1-propanone, 2067
5-Ethyl-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester, 1887
1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Acetate), 1854
1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-1-propanone, 2113
1-[2,4,6-Trihydroxy-3-(1-oxopropyl)phenyl]-1-butanone, 2135
2,4,6-Trihydroxy-3-(1-oxopropyl)-5-propylbenzaldehyde, 2135
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}$
2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)benzoic acid, 2039 2-[4,5-Dimethoxy-2-(1-oxopropyl)phenoxy] acetic acid, 1887
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$
1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1887
1-[3-Bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-propanone, 1888
1-[5-Bromo-3-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1888
1-[5-Bromo-4-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1888
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2}$
1-[3-Chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1889
1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)-1-propanone (Ethyl ether), 1829
1-[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]-1-propanone, 1889
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$
1-(5,6,7,8-Tetrahydro-1-hydroxy-2-naphthalenyl)-1-propanone (Oxime), 1970
1-(5,6,7,8-Tetrahydro-3-hydroxy-2-naphthalenyl)-1-propanone (Oxime), 1970
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$
1-[2-Hydroxy-4-(4-morpholinyl)phenyl]-1-propanone, 1889
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4}$
1-[2,4-Dihydroxy-3-(iminomethyl)-6-methoxy-5-methylphenyl]-2-methyl-1-
propanone, 2039
1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl]-1-propanone, 1890
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{5}$
1-(4-Butoxy-2-hydroxy-5-nitrophenyl)-1-propanone, 1890
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$
1-(4,5-Dimethoxy-1,3-benzodioxol-6-yl)-1-propanone (Semicarbazone), 1995

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$

1-(3,4-Diethyl-2-hydroxyphenyl)-1-propanone, 1890
1-(3,5-Diethyl-4-hydroxyphenyl)-1-propanone, 1890
1-[2-(1,1-Dimethylethyl)-6-hydroxyphenyl]-1-propanone, 1890
1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1891
1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]-1-propanone, 1891
1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1891
1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1892
1-(2-Ethyl-3-methoxy-5-methylphenyl)-1-propanone, 1893
1-(3-Ethyl-4-methoxyphenyl)-2-methyl-1-propanone, 2039
1-(2-Hydroxy-3,4-dimethylphenyl)-2,2-dimethyl-1-propanone, 2089
1-(2-Hydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone, 2090
1-(2-Hydroxy-4,5-dimethylphenyl)-2,2-dimethyl-1-propanone, 2090
1-(4-Hydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone, 2090
1-[2-Hydroxy-5-(1-methylethyl)phenyl]-2-methyl-1-propanone, 2039
1-[2-Hydroxy-3-methyl-6-(1-methylethyl)phenyl]-1-propanone, 1893
1-[2-Hydroxy-4-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1893
1-[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl]-1-propanone, 1894
1-[2-Hydroxy-5-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1894
1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1895
1-[2-Hydroxy-6-methyl-4-(1-methylethyl)phenyl]-1-propanone, 1895
1-[4-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1896
1-[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl]-1-propanone, 1896
1-[4-Hydroxy-5-methyl-2-(1-methylethyl)phenyl]-1-propanone, 1896
1-[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1897
1-[2-Hydroxy-5-(1-methylpropyl)phenyl]-1-propanone, 1897
1-[4-Hydroxy-3-(1-methylpropyl)phenyl]-1-propanone, 1897
1-(6-Hydroxy-2,3,4-trimethylphenyl)-2-methyl-1-propanone, 2039
1-(2-Methoxy-4,6-dimethylphenyl)-2-methyl-1-propanone, 2040
1-(4-Methoxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2040
1-(2-Methoxy-5-methylphenyl)-2,2-dimethyl-1-propanone, 2091
1-(2-Methoxy-6-methylphenyl)-2,2-dimethyl-1-propanone, 2091
1-(4-Methoxy-2-methylphenyl)-2,2-dimethyl-1-propanone, 2091
1-(4-Methoxy-3-methylphenyl)-2,2-dimethyl-1-propanone, 2092
1-(5-Methoxy-2-methylphenyl)-2,2-dimethyl-1-propanone, 2092
1-(4-Methoxy-2,3,5-trimethylphenyl)-1-propanone, 1898
1-(4-Methoxy-2,3,6-trimethylphenyl)-1-propanone, 1898
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(4-Butoxy-2-hydroxyphenyl)-1-propanone, 1898
1-(5-Butyl-2,4-dihydroxyphenyl)-1-propanone, 1898
1-(2,4-Dihydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone, 2092
1-(3,4-Dihydroxyphenyl)-1-propanone (Diethyl ether), 1771

1-(2,4-Dihydroxy-3-propylphenyl)-2-methyl-1-propanone, 2040
1-(2,4-Dimethoxy-3,5-dimethylphenyl)-1-propanone, 1899
1-(2,3-Dimethoxy-5-methylphenyl)-2-methyl-1-propanone, 2040
1-(3,4-Dimethoxy-2-methylphenyl)-2-methyl-1-propanone, 2040
1-(3,4-Dimethoxy-5-methylphenyl)-2-methyl-1-propanone, 2041
1-(2,4-Dimethoxyphenyl)-2,2-dimethyl-1-propanone, 2092
1-(2,5-Dimethoxyphenyl)-2,2-dimethyl-1-propanone, 2093
1-(3,4-Dimethoxyphenyl)-2,2-dimethyl-1-propanone, 2093
1-[2-(1,1-Dimethylethoxy)-6-hydroxyphenyl]-1-propanone, 1899
1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]-1-propanone, 1899
1-(3-Ethoxy-4-hydroxyphenyl)-1-propanone (Ethyl ether), 1845
1-(2-Ethyl-4,5-dimethoxyphenyl)-1-propanone, 1899
1-(4-Ethyl-2,5-dimethoxyphenyl)-1-propanone, 1900
1-(4-Ethyl-3,5-dimethoxyphenyl)-1-propanone, 1900
1-(5-Ethyl-2,4-dimethoxyphenyl)-1-propanone, 1900
1-[4-Hydroxy-3-methoxy-5-(1-methylethyl)phenyl]-1-propanone, 1900
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Propyl ether), 1817
1-(2-Hydroxy-6-methoxy-3-propylphenyl)-1-propanone, 1901
1-(4-Hydroxy-3-methoxy-5-propylphenyl)-1-propanone, 1901
1-[4-Hydroxy-3-[(1-methylethoxy)methyl]phenyl]-1-propanone, 1901
1-[4-Hydroxy-3-(propoxymethyl)phenyl]-1-propanone, 1901
1-[3-(Hydroxymethyl)-4-methoxyphenyl]-2,2-dimethyl-1-propanone, 2093
1-[3-(1-Hydroxypropyl)-4-methoxyphenyl]-1-propanone, 1902
1-[5-(1-Hydroxypropyl)-2-methoxyphenyl]-1-propanone, 1902
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$
1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2041
1-(2,6-Dihydroxy-4-methoxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2041
2,2-Dimethyl-1-(2,4,5-trihydroxy-3,6-dimethylphenyl)-1-propanone, 2093
1-[4-(2-Ethoxyethoxy)-2-hydroxyphenyl]-1-propanone, 1902
1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-methyl-1-propanone, 2041
1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-methyl-1-propanone, 2042
1-(4-Hydroxy-3,5-dimethoxyphenyl)-2,2-dimethyl-1-propanone, 2094
1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Ethyl ether), 1854
1-[2-Hydroxy-4-(2-hydroxybutoxy)phenyl]-1-propanone, 1902
2-Methyl-1-(2,4,6-trimethoxyphenyl)-1-propanone, 2043
2-Methyl-1-(3,4,5-trimethoxyphenyl)-1-propanone, 2043
1-(2,3,4-Trimethoxy-6-methylphenyl)-1-propanone, 1903
1-(2,3,5-Trimethoxy-4-methylphenyl)-1-propanone, 1903
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(3-Ethoxy-2-hydroxy-4,6-dimethoxyphenyl)-1-propanone, 1903
1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-methyl-1-propanone, 2043
1-(2,3,4,6-Tetramethoxyphenyl)-1-propanone, 1903
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$
1-[2-Hydroxy-4,6-dimethoxy-3-(methoxymethoxy)phenyl]-1-propanone, 1904

1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)-1-propanone, 1904
1-(3-Hydroxy-2,4,5,6-tetramethoxyphenyl)-1-propanone, 1904
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$
1-(4-Butoxy-2-hydroxyphenyl)-1-propanone (Oxime), 1898
1-(4-Ethyl-3,5-dimethoxyphenyl)-1-propanone (Oxime), 1900
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$
1-(3-Ethyl-4-methoxyphenyl)-1-propanone (Semicarbazone), 1867
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$
1-(3,5-Dimethoxyphenyl)-2-methyl-1-propanone (Semicarbazone), 2036
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$
1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-methyl-1-propanone (Semicarbazone), 2038
1-(2,4,5-Trimethoxyphenyl)-1-propanone (Semicarbazone), 1879
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3}$
3,4-Dihydroxy-2-(1-oxopropyl)-1-naphthalenecarbonitrile, 1971
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
1-Hydroxy-4-(1-oxopropyl)-2-naphthoic acid, 1971
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$
3-Acetyl-5-hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 2142
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{2}$
1-(5-Bromo-6-methoxy-2-naphthalenyl)-1-propanone, 1971
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{3}$
1-(7-Bromo-3,4-dihydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2062
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{4}$
3-Bromo-7-hydroxy-4,8-dimethyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 2001
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClO}_{2}$
1-(5-Chloro-6-methoxy-2-naphthalenyl)-1-propanone, 1971
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5}$
1-(6,7-Dihydroxy-5-nitro-2-naphthalenyl)-2-methyl-1-propanone, 2062
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$
1-(2-Hydroxy-3-methyl-1-naphthalenyl)-1-propanone, 1972
1-(1-Hydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2062
1-(2-Hydroxy-1-naphthalenyl)-2-methyl-1-propanone, 2063
1-(4-Hydroxy-1-naphthalenyl)-2-methyl-1-propanone, 2063
1-(6-Hydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2063
1-(1-Methoxy-2-naphthalenyl)-1-propanone, 1972
1-(2-Methoxy-1-naphthalenyl)-1-propanone, 1972
1-(3-Methoxy-2-naphthalenyl)-1-propanone, 1973
1-(4-Methoxy-1-naphthalenyl)-1-propanone, 1973
1-(5-Methoxy-1-naphthalenyl)-1-propanone, 1973
1-(5-Methoxy-2-naphthalenyl)-1-propanone, 1974
1-(6-Methoxy-1-naphthalenyl)-1-propanone, 1974
1-(6-Methoxy-2-naphthalenyl)-1-propanone, 1974

1-(7-Methoxy-1-naphthalenyl)-1-propanone, 1975
1-(8-Methoxy-2-naphthalenyl)-1-propanone, 1975
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(3,4-Dihydroxy-7-methyl-2-naphthalenyl)-1-propanone, 1975
1-(1,4-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2063
1-(1,8-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2063
1-(3,4-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2064
1-(6,7-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2064
1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-1-propanone, 1975
1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-1-propanone, 1975
1-(4-Hydroxy-6-methoxy-1-naphthalenyl)-1-propanone, 1976
1-(8-Hydroxy-4-methoxy-1-naphthalenyl)-1-propanone, 1976
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}$
1-(2-Acetyl-7-methoxy-4-benzofuranyl)-1-propanone, 2142
7-Hydroxy-4,8-dimethyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 2001
7-Hydroxy-2,3-dimethyl-8-(1-oxopropyl)-4H-1-benzopyran-4-one, 2142
7-Methoxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 2001
7-Methoxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 2002
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{5}$
6-Hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid methyl ester, 2002
6-Methoxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid, 2002
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{O}_{3}$
1-[3-Chloro-5-[(3,3-dichloro-2-propen-1-yl)oxy]-2-methoxyphenyl]-2-methyl-1propanone, 2044
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$
1-(1-Methoxy-2-naphthalenyl)-1-propanone (Oxime), 1972
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{NO}_{3}$
1-[3-Chloro-5-[(3,3-dichloro-2-propen-1-yl)oxy]-2-methoxyphenyl]-2-methyl-1propanone (Oxime), 2044
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxyphenyl]-1-propanone, 1904
5-Ethyl-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran, 2002
1-(5-Hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2002
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$
3,4-Dihydro-6,8-dihydroxy-7-methyl-5-(1-oxopropyl)-1(2H)-naphthalenone, 2143
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$
3-[2,4-Dimethoxy-3-(1-oxopropyl)phenyl]-2-propenoic acid, 1905
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6}$
1-(2,5-Dihydroxy-4-methoxyphenyl)-1-propanone (Diacetate), 1819
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{IO}_{3}$
1-(3,4-Dihydro-7-hydroxy-8-iodo-2,2-dimethyl-2H-1-benzopyran-6-yl)-1propanone, 2003

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$

1-[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone, 1905
1-[2-Methoxy-5-methyl-3-(2-propenyl)phenyl]-1-propanone, 1905
1-(5,6,7,8-Tetrahydro-4-methoxy-1-naphthalenyl)-1-propanone, 1976
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
1-[3-(Cyclopentyloxy)-4-hydroxyphenyl]-1-propanone, 1905
1-(3,4-Dihydro-5-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2003
1-(3,4-Dihydro-7-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2003
1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone, 1906
1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]-1-propanone, 1906
1-[2,4-Dimethoxy-3-(2-propenyl)phenyl]-1-propanone, 1906
1-[2,4-Dimethoxy-5-(2-propenyl)phenyl]-1-propanone, 1906
1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-1-propanone, 1907
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$
1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2003
1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-1-propanone, 2004
1-[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-1-propanone, 1907
1,1'-(2,4-Dimethoxy-1,3-phenylene)bis-1-propanone, 2113
1,1'-(4,6-Dimethoxy-1,3-phenylene)bis-1-propanone, 2113
1,1'-(5-Ethyl-2,4-dihydroxy-1,3-phenylene)bis-1-propanone, 2114
1-5-Hydroxy-4-methoxy-2-methylphenyl)-1-propanone (Propionate), 1850
1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-1-propanone, 1907
1-[2-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-1-propanone, 1907
1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone, 1907
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(2-Acetyl-3,5,6-trimethoxyphenyl)-1-propanone, 2135
3-Butyl-2,4,6-trihydroxy-5-(1-oxopropy)benzaldehyde, 2135
1,1'-(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis-1-propanone, 2114
1,1'-(6-Hydroxy-2,4-dimethoxy-1,3-phenylene)bis-1-propanone, 2114
1-[4-Hydroxy-3-[2-(1-oxopropoxy)ethoxy]phenyl]-1-propanone, 1908
1-[2,4,6-Trihydroxy-3-(1-oxopropyl)phenyl]-1-pentanone, 2136
1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis[2-methyl-1-propanone, 2147
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$
2-[4,5-Dimethoxy-2-(1-oxopropyl)phenoxy]propanoic acid, 1908
1-[2-Hydroxy-4,6-dimethoxy-3-(1-oxopropoxy)phenyl]-1-propanone, 1908
Methyl 2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)benzoate,
2044
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2}$
1-[3-Bromo-5-(1,1-dimethylethyl)-4-methoxyphenyl]-1-propanone, 1909
1-[5-Bromo-3-(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone, 1909
1-[5-Bromo-4-(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone, 1909
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$
1-[3-(Aminomethyl)-5,6,7,8-tetrahydro-2-hydroxy-1-naphthalenyl]-
1-propanone, 1976

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}, \mathrm{HCl}$

1-[3-(Aminomethyl)-5,6,7,8-tetrahydro-2-hydroxy-1-naphthalenyl]-1-propanone (Hydrochloride), 1976
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{5}$
1-[2,3,4-Trihydroxy-5-(4-morpholinomethyl)phenyl]-1-propanone, 1910
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$
1-(5,6,7,8-Tetrahydro-4-hydroxy-1-naphthalenyl)-1-propanone
(Semicarbazone), 1970
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$
1-(3,5-Diethyl-4-methoxyphenyl)-1-propanone, 1910
1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]-1-propanone, 1910
1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl]-1-propanone, 1910
1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methylphenyl]-1-propanone, 1911
1-[3-(1,1-Dimethylethyl)-6-hydroxy-2-methylphenyl]-1-propanone, 1911
1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-methylphenyl]-1-propanone, 1911
1-[5-(1,1-Dimethylethyl)-4-hydroxy-2-methylphenyl]-1-propanone, 1912
1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2-methyl-1-propanone, 2044
1-[3-(1,1-Dimethylethyl)-4-methoxyphenyl]-1-propanone, 1912
1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-1-propanone, 1912
1-[2-Hydroxy-5-(1,1-dimethylpropyl)phenyl]-1-propanone, 1913
1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]-2-methyl-1-propanone, 2044
1-[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl]-2-methyl-1-propanone, 2045
1-[4-Hydroxy-3-(1-methylpropyl)phenyl]-2-methyl-1-propanone, 2045
1-[4-Methoxy-2-methyl-5-(1-methylethyl)phenyl]-1-propanone, 1913
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-5-pentylphenyl)-1-propanone, 1913
1-(2,3-Dimethoxy-5-propylphenyl)-1-propanone, 1914
1-[3,4-Dimethoxy-5-(1-methylethyl)phenyl]-1-propanone, 1913
1-(3,4-Dimethoxy-2-methylphenyl)-2,2-dimethyl-1-propanone, 2094
1-[5-(1,1-Dimethylpropyl)-2,4-dihydroxyphenyl]-1-propanone, 1914
1-[2-Hydroxy-4-(3-methylbutoxy)phenyl]-1-propanone, 1914
1-[4-Hydroxy-3-[(1-methylpropoxy)methyl]phenyl]-1-propanone, 1915
1-[2-Hydroxy-4-(pentyloxy)phenyl]-1-propanone, 1915
$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$
1-(3-Butyl-2,4,6-trihydroxyphenyl)-2-methyl-1-propanone, 2045
1-[2,4-Dimethoxy-5-(1-hydroxypropyl)phenyl]-1-propanone, 1915
1-[2,6-Dimethoxy-3-(1-hydroxypropyl)phenyl]-1-propanone, 1915
2,2-Dimethyl-1-(2,4,6-trimethoxyphenyl)-1-propanone, 2094
1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2045
1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Propyl ether), 1854

1-[6-Methoxy-2-(methoxymethoxy)-3,4-dimethylphenyl]-1-propanone, 1916
2-Methyl-1-(2,4,6-trimethoxy-3-methylphenyl)-1-propanone, 2046
1-[2,4,6-Trihydroxy-3-(3-methylbutyl)phenyl]-1-propanone, 1916
1-(2,4,6-Trihydroxy-3-pentylphenyl)-1-propanone, 1916
$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1916
$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}, \mathbf{H C l}$
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone (Hydrochloride), 1917

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrIO}_{3}$

1-(5-Bromo-2-hydroxy-3-iodo-4-phenoxyphenyl)-1-propanone, 1917
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{INO}_{5}$
1-(2-Hydroxy-3-iodo-5-nitro-4-phenoxyphenyl)-1-propanone, 1917
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3}$
1-[4-(Bromoacetyl)-1-hydroxy-2-naphthalenyl]-1-propanone, 2136
1-(3-Bromo-4,6-dihydroxy[1,1'-biphenyl]-2-yl)-1-propanone, 1917
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{~S}$
1-[3-[(4-Bromophenyl)sulfonyl]-4-hydroxyphenyl]-1-propanone, 1918
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{4} \mathrm{~S}$
1-[3-[(4-Chlorophenyl)sulfonyl]-4-hydroxyphenyl]-1-propanone, 1918
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3}$
1-(2-Hydroxy-3-iodo-4-phenoxyphenyl)-1-propanone, 1918
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{4} \mathrm{~S}$
1-[4-Hydroxy-3-[(4-iodophenyl)sulfonyl]phenyl]-1-propanone, 1918
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$
1-(4-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)-1-propanone, 1919
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$
1-[2,4-Dihydroxy-5-[(4-nitrophenyl)azo]phenyl]-1-propanone, 1919
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$
1-(2-Hydroxy[1,1'-biphenyl]-3-yl)-1-propanone, 1919
1-(3-Hydroxy[1,1'-biphenyl]-4-yl)-1-propanone, 1919
1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-1-propanone, 1920
1-(4'-Hydroxy[1,1'-biphenyl]-4-yl)-1-propanone, 1920
1-(6-Hydroxy[1,1'-biphenyl]-3-yl)-1-propanone, 1920
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(2,5-Dihydroxy[1,1'-biphenyl]-4-yl)-1-propanone, 1921
1-(3,6-Dihydroxy[1,1'-biphenyl]-2-yl)-1-propanone, 1921
1-[1-Hydroxy-4-(1-oxoethyl)-2-naphthalenyl]-1-propanone, 2136
1-[4-Hydroxy-3-(1-oxoethyl)-1-naphthalenyl]-1-propanone, 2136
1-(2-Hydroxy-3-phenoxyphenyl)-1-propanone, 1921
1-(2-Hydroxy-4-phenoxyphenyl)-1-propanone, 1922
1-(4-Hydroxy-3-phenoxyphenyl)-1-propanone, 1922
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[4-(Acetyloxy)-3-hydroxy-2-naphthalenyl]-1-propanone, 1977
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$
1-[4-Hydroxy-3-(phenylsulfonyl)phenyl]-1-propanone, 1922
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[5-(Acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1-propanone, 1977
1-[8-(Acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1-propanone, 1977
7-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one (Acetate), 1999
7-Hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one (Acetate), 1999
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{P}$
1-(3,4-Dihydroxyphenyl)-1-propanone 3-phenylphosphonate, 1922
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6}$
5-Hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one-3-carboxylic acid ethyl ester, 2004
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}_{4}$
3-Chloro-6-ethyl-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-
1-benzopyran-2-one, 2004
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
1-[2-Methoxy-6-(2-pyridinyl)phenyl]-1-propanone, 2004
1-[4-Methoxy-2-(2-pyridinyl)phenyl]-1-propanone, 2005
1-[5-Methoxy-2-(2-pyridinyl)phenyl]-1-propanone, 2005
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$
1-(1-Ethyl-6-hydroxy-2-naphthalenyl)-1-propanone, 1977
1-(1-Hydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2100
1-(3-Hydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2100
1-(4-Hydroxy-1-naphthalenyl)-2,2-dimethyl-1-propanone, 2101
1-(2-Methoxy-1-naphthalenyl)-2-methyl-1-propanone, 2064
1-(4-Methoxy-1-naphthalenyl)-2-methyl-1-propanone, 2064
1-(6-Methoxy-1-naphthalenyl)-2-methyl-1-propanone, 2065
1-(6-Methoxy-2-naphthalenyl)-2-methyl-1-propanone, 2065
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(3,4-Dihydroxy-7-methyl-2-naphthalenyl)-2-methyl-1-propanone, 2065
1-(1,4-Dihydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2101
1-(1,4-Dimethoxy-2-naphthalenyl)-1-propanone, 1978
1-(4,6-Dimethoxy-1-naphthalenyl)-1-propanone, 1978
1-(6,7-Dimethoxy-2-naphthalenyl)-1-propanone, 1978
1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-2-methyl-1-propanone, 2066
1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-2-methyl-1-propanone, 2066
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$
6-Ethyl-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 2005
1-(1-Hydroxy-4,8-dimethoxy-2-naphthalenyl)-1-propanone, 1978
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$
5-Ethyl-6-hydroxy-3-methyl-7-(1-oxopropyl)-2-benzofurancarboxylic acid, 2005

6-Hydroxy-3,7-dimethyl-5-(1-oxopropyl)-2-benzofurancarboxylic acid methyl ester, 2006
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{D}_{5} \mathrm{O}_{2}$
1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]-1-propanone-2,2,3,3,3-d $d_{5}, 1923$
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$
1-(1-Methoxy-2-naphthalenyl)-1-propanone (Semicarbazone), 1972
1-(3-Methoxy-2-naphthalenyl)-1-propanone (Semicarbazone), 1973
1-(5-Methoxy-2-naphthalenyl)-1-propanone (Semicarbazone), 1974
1-(8-Methoxy-2-naphthalenyl)-1-propanone (Semicarbazone), 1975
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
1-[2,3-Dihydro-4,6-dihydroxy-2-(1-methylethenyl)-5-benzofuranyl]-2-methyl-1propanone, 2068
1-(5,7-Dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2068
1-(5,7-Dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone, 2068
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(2,3-Dihydroxyphenyl)-2,2-dimethyl-1-propanone (Diacetate), 2085
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$
1,1'-[4,6-Dihydroxy-5-(1-oxopropoxy)-1,3-phenylene]bis-1-propanone, 2114
1, $1^{\prime}, 1^{\prime \prime}$-(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris-1-propanone, 2115
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{3}$
1-[4-(3-Bromopropoxy)-2-hydroxy-3-(2-propenyl)phenyl]-1-propanone, 1923
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{5}$
1-[3-Bromo-2,4,6-trihydroxy-5-(1-oxopropyl)phenyl]-1-hexanone, 2137
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClO}_{4}$
1-[4-(3-Chloro-2-hydroxypropoxy)-2-hydroxy-3-(2-propenyl)phenyl]-1-
propanone, 1923
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$
1-(3-Cyclohexyl-4-hydroxyphenyl)-1-propanone, 1923
1-(5,6,7,8,9,10-Hexahydro-1-hydroxy-2-benzocyclooctenyl)-1-propanone, 1923
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$
1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-1-propanone, 1924
1-[3-(Cyclohexyloxy)-4-hydroxyphenyl]-1-propanone, 1924
1-[4-(Cyclohexyloxy)-2-hydroxyphenyl]-1-propanone, 1924
1-[3-[(Cyclopentyloxy)methyl]-4-hydroxyphenyl]-1-propanone, 1924
1-(3,4-Dihydro-7-hydroxy-2,2,8-trimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2006
1-(3,4-Dihydro-6-methoxy-3,7-dimethyl-1H-2-benzopyran-8-yl)-1-propanone, 2006
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1propanone, 2068
1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1propanone, 2069
1-[2,3-Dihydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-7-benzofuranyl]-2-methyl-1-propanone, 2069

1-[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-2-methyl-1-propanone, 2046
1-[2-Hydroxy-6-(2-methyl-1,3-dioxolan-2-yl)phenyl]-2,2-dimethyl-1-propanone, 2094
2-Methyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone, 2046
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$
1-[2,6-Dihydroxy-4-[(4-hydroxy-3-methyl-2-butenyl)oxy]phenyl]-2-methyl-1propanone (E), 2047
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6}$
4-[3,5-Dihydroxy-4-(2-methyl-1-oxopropyl)phenoxy]-2-methylbutanoic acid, 2047
2-[4,5-Dimethoxy-2-(1-oxopropyl)phenoxy]acetic acid ethyl ester, 1925
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{7}$
1-(2-Hydroxyphenyl)-1-propanone (β-D-Glucopyranoside), 1762
1-(4-Hydroxyphenyl)-1-propanone (β-D-Glucopyranoside), 1766
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{8}$
1-[2-Hydroxy-4-(β-D-glucopyranosyloxy)phenyl]-1-propanone, 1925
1-[4-Hydroxy-2-(β-D-glucopyranosyloxy)phenyl]-1-propanone, 1925
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{3}$
1-[4-(3-Bromopropoxy)-2-hydroxy-3-propyl]-1-propanone, 1925
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClO}_{3}$
1-[5-[(6-Chlorohexyl)oxy]-2-hydroxyphenyl]-1-propanone, 1926
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClO}_{4}$
1-[4-(3-Chloro-2-hydroxypropoxy)-2-hydroxy-3-propylphenyl]-1-propanone, 1926
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{FO}_{2}$
1-(2-Fluoro-4-hydroxy-3,5-dipropylphenyl)-1-propanone, 1926
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$
1-[4-(Cyclohexyloxy)-2-hydroxyphenyl]-1-propanone (Oxime), 1924
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$
1-[2-Hydroxy-4-(2-morpholinoethoxy)phenyl]-1-propanone, 1926
1-[2,3,4-Trihydroxy-5-(1-piperidinylmethyl)phenyl]-1-propanone, 1927
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}, \mathbf{H C l}$
1-[2-Hydroxy-4-(2-morpholinoethoxy)phenyl]-1-propanone (Hydrochloride), 1926
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$
1-[3-(1,1-Dimethylethyl)-2-hydroxy-5,6-dimethylphenyl]-1-propanone, 1927
1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]-2-methyl-1-propanone, 2048
1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone, 2095
1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]-2,2-dimethyl-1-propanone, 2095
1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone, 2095
1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone, 2095
1-[3-(1,1-Dimethylethyl)-2-methoxy-4-methylphenyl]-1-propanone, 1927
1-[3-(1,1-Dimethylethyl)-2-methoxy-6-methylphenyl]-1-propanone, 1927
1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-2-methyl-1-propanone, 2048
1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]-1-propanone, 1928
1-(2-Hydroxy-3,4-dipropylphenyl)-1-propanone, 1928

1-(2-Hydroxy-3,5-dipropylphenyl)-1-propanone, 1928
1-(4-Hydroxy-3,5-dipropylphenyl)-1-propanone, 1928
1-[4-Methoxy-2-methyl-5-(1-methylethyl)phenyl]-2-methyl-1-propanone, 2048
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-3,5-dipropylphenyl)-1-propanone, 1929
1-(2,5-Dihydroxy-3,4-dipropylphenyl)-1-propanone, 1929
1-(2,4-Dihydroxy-5-hexylphenyl)-1-propanone, 1929
1-[3-(1,1-Dimethylethyl)-4,5-dihydroxyphenyl]-2,2-dimethyl-1-propanone, 2096
1-[4-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]-2,2-dimethyl-1-propanone, 2096
1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-1-propanone, 1929
1-[4-Methoxy-3-(3-methylbutoxy)phenyl]-1-propanone, 1929
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$
2,2-Dimethyl-1-(2,3,4-trimethoxy-6-methylphenyl)-1-propanone, 2096
1-(3-Hexyl-2,4,6-trihydroxyphenyl)-1-propanone, 1930
1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Isobutyl ether), 1854
2-Methyl-1-[2,4,6-trihydroxy-3-(3-methylbutyl)phenyl]-1-propanone, 2048
2-Methyl-1-(2,4,6-trihydroxy-3-pentylphenyl)-1-propanone, 2049
2-Methyl-1-(2,4,6-trimethoxy-3,5-dimethylphenyl)-1-propanone, 2049
1-(2,4,6-Trihydroxy-3,5-dipropylphenyl)-1-propanone, 1930
1-(2,4,5-Trihydroxyphenyl)-1-propanone (Triethyl ether), 1774
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}$
1-[3,4-Bis(ethoxymethoxy)-2-hydroxyphenyl]-1-propanone, 1930
$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}$
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1propanone, 2049
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1propanone, (Hydrochloride), 2050
1-[4-[(Dimethylamino)methyl]-2-hydroxy-3-propylphenyl]-1-propanone, 1930
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3}$
1-[3-(4-Fluorobenzoyl)-5-fluoro-2-hydroxyphenyl]-1-propanone, 2137
$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$
1-[2,4-Dihydroxy-5-[(6-nitro-2-benzothiazolyl)azo]phenyl]-1-propanone, 1931
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$
1-[5-Hydroxy-2-(4-hydroxyphenyl)-7-benzoxazolyl]-1-propanone, 2006
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
1-[5-(2-Benzothiazolylazo)-2,4-dihydroxyphenyl]-1-propanone, 1931
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{5}$
1-(3,5-Dibromo-2-methoxyphenyl)-1-propanone (2,4-Dinitrophenylhydrazone), 1781
1-(3,5-Dibromo-4-methoxyphenyl)-1-propanone (2,4-Dinitrophenylhydrazone), 1782
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$
1-[4-[(2,4-Dichlorophenyl)methoxy]-2-hydroxyphenyl]-1-propanone, 1931
1-[4-[(3,4-Dichlorophenyl)methoxy]-2-hydroxyphenyl]-1-propanone, 1931
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$
1-(5-Benzoyl-2-hydroxyphenyl)-1-propanone, 2137
1-(6-Hydroxy-2H-naphtho[1,2-b]pyran-5-yl)-1-propanone, 2006
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[4-(Benzoyloxy)-2-hydroxyphenyl]-1-propanone, 1932
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$
1-[2-(Benzoyloxy)-4,6-dihydroxyphenyl]-1-propanone, 1932
1-[4-(Benzoyloxy)-2,6-dihydroxyphenyl]-1-propanone, 1932
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3}$
1-[3-(2-Bromo-1-oxopropyl)-4-hydroxy-1-naphthalenyl]-1-propanone, 2137
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{5}$
2-Bromo-5,7-dimethoxy-6-methyl-8-(1-oxopropyl)-1,4-naphthalenedione, 2143
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5}$
1-(3-Chloro-2-methoxyphenyl)-1-propanone (2,4-Dinitrophenylhydrazone), 1790
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{2}$
1-(3'-Chloro-2'-methoxy[1,1'-biphenyl]-4-yl)-1-propanone, 1932
1-(5-Chloro-6-methoxy[1,1'-biphenyl]-3-yl)-1-propanone, 1933
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{2}$
1-(5'-Fluoro-2'-methoxy[1,1'-biphenyl]-4-yl)-1-propanone, 1933
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Na}$
1,1'-(1-Hydroxy-2,4-naphthalene)bis-1-propanone (Sodium salt), 2115
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
1-[2,4-Dihydroxy-5-[(2-methoxyphenyl)azo]phenyl]-1-propanone, 1933
1-[2,4,6-Trihydroxy-3-methyl-5-(phenylazo)phenyl]-1-propanone (E), 1933
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-2-methyl-1-propanone, 2050
1-[2-Hydroxy-3-(phenylmethyl)phenyl]-1-propanone, 1934
1-[2-Hydroxy-5-(phenylmethyl)phenyl]-1-propanone, 1934
1-[4-Hydroxy-3-(phenylmethyl)phenyl]-1-propanone, 1934
1-(3-Methoxy[1, 1'-biphenyl]-4-yl)-1-propanone, 1934
1-(3'-Methoxy[1,1'-biphenyl]-4-yl)-1-propanone, 1935
1-(4'-Methoxy[1,1'-biphenyl]-4-yl)-1-propanone, 1935
1-(5-Methoxy[1,1'-biphenyl]-2-yl)-1-propanone, 1935
1-(6-Methoxy[1,1'-biphenyl]-3-yl)-1-propanone, 1935
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]-1-propanone, 1936
1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]-1-propanone, 1936
1,1'-(1-Hydroxy-2,4-naphthalene)bis-1-propanone, 2115
1-(2-Hydroxy-4-phenoxyphenyl)-2-methyl-1-propanone, 2050
1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-1-propanone, 1936
1-[2-Hydroxy-5-(phenylmethoxy)phenyl]-1-propanone, 1936
1-[3-Hydroxy-4-(phenylmethoxy)phenyl]-1-propanone, 1937

1-(2-Methoxy-5-phenoxyphenyl)-1-propanone, 1937
1-(3-Methoxy-5-phenoxyphenyl)-1-propanone, 1937
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$
1-[2,4,6-Trihydroxy-3-(phenylmethyl)phenyl]-1-propanone, 1937
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$
1-[4-Hydroxy-3-[(4-methylphenyl)sulfonyl]phenyl]-1-propanone, 1937
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$
5,7-Dimethoxy-6-methyl-8-(1-oxopropyl)-1,4-naphthalenedione, 2143
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~S}$
1-[4-Hydroxy-3-[(4-methoxyphenyl)sulfonyl]phenyl]-1-propanone, 1938
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}$
1-(5-Hydroxy-2,4-dimethoxy-3-methyl-6-nitroso-1-naphthalenyl)-1-propanone, 1979
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{7}$
1-(2,4-Dihydroxy-5,8-dimethoxy-3-methyl-6-nitro-1-naphthalenyl)-
1-propanone, 1979
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$
1-(1-Ethyl-6-methoxy-2-naphthalenyl)-1-propanone, 1979
1-(6-Hydroxy-1-propyl-2-naphthalenyl)-1-propanone, 1979
1-(2-Methoxy-1-naphthalenyl)-2,2-dimethyl-1-propanone, 2101
1-(3-Methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2101
1-(4-Methoxy-1-naphthalenyl)-2,2-dimethyl-1-propanone, 2101
1-(4-Methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2102
1-(6-Methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2102
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(4,6-Dimethoxy-1-naphthalenyl)-2-methyl-1-propanone, 2066
1-(6,7-Dimethoxy-2-naphthalenyl)-2-methyl-1-propanone, 2066
1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2102
1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2103
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$
1-(1,4-Dihydro-6,8-dimethoxy-7-methyl-1,4-epoxynaphthalene-5-yl)-1-
propanone, 1980
1-(1-Hydroxy-6,7-dimethoxy-3-methyl-2-naphthalenyl)-1-propanone, 1980
1-(8-Hydroxy-2,4-dimethoxy-3-methyl-1-naphthalenyl)-1-propanone, 1980
1-[6-Methoxy-1-(methoxymethoxy)-2-naphthalenyl]-1-propanone, 1980
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(2,4-Dihydroxy-5,8-dimethoxy-3-methyl-1-naphthalenyl)-1-propanone, 1981
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6}$
5-Hydroxy-6-methoxy-2-methyl-4-(1-oxopropyl)-3-benzofurancarboxylic acid ethyl ester, 2007
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$
1-[5,6,7,8-Tetrahydro-3-hydroxy-4-(2-propenyl)-2-naphthalenyl]-
1-propanone, 1981
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(4-hydroxy-1-butynyl)-3-propylphenyl]-1-propanone, 1938
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$
1-(5,7-Dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-
2-methyl-1-propanone, 2070
1-(5-Hydroxy-7-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-
2-methyl-1-propanone, 2070
1-(7-Hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-
2-methyl-1-propanone, 2070
1-(7-Hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone, 2071
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{6}$
1, $1^{\prime}, 1^{\prime \prime}$-(2,4-Dihydroxy-6-methoxy-1,3,5-benzenetriyl)tris-1-propanone, 2115
4-[3,5-Dihydroxy-4-(2-methyl-1-oxopropyl)phenoxy]-2-methyl-2-butenoic acid methyl ester, 2050
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$
1-(5,6,7,8-Tetrahydro-2-hydroxy-3-propyl-1-naphthalenyl)-1-propanone, 1981
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$
1,1'-[5-(1,1'-Dimethylethyl)-4-hydroxy-1,3-phenylene]bis-1-propanone, 2116
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$
1-(3,4-Dihydro-5-hydroxy-7-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2071
1-(3,4-Dihydro-5-hydroxy-7-methoxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-
2-methyl-1-propanone, 2071
1-(3,4-Dihydro-7-hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone, 2071
1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]-
2-methyl-1-propanone, 2050
1-[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl]-
2-methyl-1-propanone, 2051
1,1'-(2,5-Dihydroxy-1,4-phenylene)bis[2,2-dimethyl-1-propanone, 2169
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$
1-[3,4-Dihydro-5,7-dihydroxy-6-(hydroxymethyl)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2072
1,1'-(2,6-Dihydroxy-4-methoxy-5-methyl-1,3-phenylene)bis[2-methyl-1propanone, 2147
1-[2-Hydroxy-3,5-dimethoxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-1-propanone, 1938
1,1'-(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis[2-methyl-1-propanone, 2148
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6}$
2-[4,5-Dimethoxy-2-(1-oxopropyl)phenoxy]propanoic acid ethyl ester, 1938
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{8}$
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (β-D-Glucopyranoside), 1817

$\mathrm{C}_{16} \mathrm{H}_{22} \mathbf{O}$,

1-[2-(β-D-Glucopyranosyloxy)-4,6-dihydroxyphenyl]-2-methyl-1-propanone, 2051
1-[4-(β-D-Glucopyranosyloxy)-2,6-dihydroxyphenyl]-2-methyl-1-propanone, 2051
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{2}$
1-[4-(4-Bromobutyl)-2-hydroxy-3-propylphenyl]-1-propanone, 1939
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrO}_{3}$
1-[4-(4-Bromobutoxy)-2-hydroxy-3-propylphenyl]-1-propanone, 1939
$\mathrm{C}_{16} \mathrm{H}_{23} \mathbf{N O}_{3}, \mathbf{H C l}$
1-[2-Hydroxy-4-(2-piperidinoethoxy)phenyl]-1-propanone (Hydrochloride), 1939
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$
1-[2,6-Dimethoxy-4-(4-morpholinyl)phenyl]-2-methyl-1-propanone, 2052
4-Methoxy-3-methyl-2-(1-oxopropyl)phenyl diethylcarbamate, 1939
4-Methoxy-5-methyl-2-(1-oxopropyl)phenyl diethylcarbamate, 1939
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$
1-[4-(1,1-Dimethylethyl)-2-methoxyphenyl]-2,2-dimethyl-1-propanone, 2096
1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-2,2-dimethyl-1-propanone, 2097
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[3,5-Dimethoxy-4-(2-methylpropyl)phenyl]-2-methyl-1-propanone, 2052
1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-2-methyl-1-propanone, 2052
1-[3-[(Hexyloxy)methyl]-4-hydroxyphenyl]-1-propanone, 1940
1-[2-Hydroxy-4-(4-hydroxybutyl)-3-propylphenyl]-1-propanone, 1940
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$
1-(3-Heptyl-2,4,6-trihydroxyphenyl)-1-propanone, 1940
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$
1-[5-Hydroxy-2-(4-hydroxyphenyl)-7-benzofuranyl]-1-propanone, 2007
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(5-Benzoyl-2-hydroxy-3-methylphenyl)-1-propanone, 2137
1-(5-Benzoyl-2-methoxyphenyl)-1-propanone, 2138
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$
1-(3-Hydroxy-4-methoxyphenyl)-1-propanone (Benzoate), 1814
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Benzoate), 1817
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{7}$
1-[5,8-Bis(acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1-propanone, 1981
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$
1-(6-Hydroxy-1,4-dimethyl-9H-carbazol-3-yl)-1-propanone, 2007
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$
1-[4-Methoxy-3-[(4-nitrophenyl)methyl]phenyl]-1-propanone, 1940
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$
1-[5-[(4-Ethylphenyl)azo]-2,4-dihydroxyphenyl]-1-propanone, 1940
$\mathrm{C}_{17} \mathrm{H}_{18} \mathbf{N}_{4} \mathrm{O}_{5}$
1-(2-Methoxy-5-methylphenyl)-1-propanone (2,4-Dinitrophenylhydrazone), 1840
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$
1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-2,2-dimethyl-1-propanone, 2097
1-[2-Hydroxy-5-(phenylethyl)phenyl]-1-propanone, 1941
1-(4-Methoxy[1,1'-biphenyl]-3-yl)-2-methyl-1-propanone, 2052
1-[4-Methoxy-3-(phenylmethyl)phenyl]-1-propanone, 1941
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(4,5-Dimethoxy[1,1'-biphenyl]-3-yl)-1-propanone, 1941
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Benzyl ether), 1817
1-[2-Methoxy-4-(phenylmethoxy)phenyl]-1-propanone, 1941
1-[3-Methoxy-4-(phenylmethoxy)phenyl]-1-propanone, 1941
1-[4-Methoxy-3-(phenylmethoxy)phenyl]-1-propanone, 1942
1-[5-Methoxy-2-(phenylmethoxy)phenyl]-1-propanone, 1942
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
1-[2-Hydroxy-4-methoxy-5-(phenylmethoxy)phenyl]-1-propanone, 1942
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(4',6-Dihydroxy-3',5-dimethoxy[1,1'-biphenyl]-3-yl)-1-propanone, 1942
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}$
1-[3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]-2,2-dimethyl-1-propanone, 2097
$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7}$
1-[3-[1-(2,4-Dihydroxyphenyl)-2-hydroxyethyl]-2,4,6-trihydroxyphenyl]-1propanone, 1943
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$
$\mathrm{N}-[1,6-$ Dihydroxy-8-methoxy-7-methyl-5-(1-oxopropyl)-2-naphthalenyl]
acetamide, 1982
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$
1-(6-Methoxy-1-propyl-2-naphthalenyl)-1-propanone, 1982
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$
1-(1,4-Dimethoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2103
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[6-Methoxy-3-[(methoxymethoxy)methyl]-2-naphthalenyl]-1-propanone, 1982
1-(1,6,7-Trimethoxy-3-methyl-2-naphthalenyl)-1-propanone, 1982
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}$
1-(1,4,5,8-Tetramethoxy-2-naphthalenyl)-1-propanone, 1982
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{D}_{5} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone-2,2,3,3,3- $d_{5}, 1943$
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$
1-(5,7-Dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2072
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$
1-[7-Hydroxy-5-(methoxymethoxy)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2072
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$
1-[4-[[4-(Acetyloxy)-3-methyl-2-butenyl]oxy]-2,6-dihydroxyphenyl]-
2-methyl-1-propanone (E), 2052
1-[3-[4-(Acetyloxy)-3-methyl-2-butenyl]-2,4,6-trihydroxyphenyl]-
2-methyl-1-propanone (E), 2053
1-[3-[4-(Acetyloxy)-3-methyl-2-butenyl]-2,4,6-trihydroxyphenyl]-
2-methyl-1-propanone, 2053
$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$
1-[2,3-Dihydro-5-hydroxy-3,3-dimethyl-2-(4-morpholinyl)-4-benzofuranyl]-
1-propanone, 2007
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[3,4-Dihydro-7-hydroxy-5-(methoxymethoxy)-2,2-dimethyl-2H-1-benzopyran-
8-yl]-2-methyl-1-propanone, 2072
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1943
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-propanone, 1944
1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl]-1-
propanone, 1945
1-[2-Hydroxy-3,5-di(1-methylpropyl)phenyl]-1-propanone, 1945
1-(4-Hydroxy-3,5-dipropylphenyl)-2,2-dimethyl-1-propanone, 2097
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}$
1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-2,2-dimethyl-1-propanone, 2097
1-[3-(Heptyloxy)methyl-4-hydroxyphenyl]-1-propanone, 1945
1-[2-Hydroxy-4-(octyloxy)phenyl]-1-propanone, 1946
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}$
1-(2,4,6-Trihydroxy-3-octylphenyl)-1-propanone, 1946
$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$
1-[3,5-Dimethoxy-4-(2-methylpropyl)phenyl]-2-methyl-1-propanone (Semicarbazone), 2052
$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}$
1-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2-hydroxy-4,6-dimethoxyphenyl]-1propanone, 1946
$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FO}_{5}$
2-(4-Fluorophenyl)-5,7-dihydroxy-6-(1-oxopropyl)-4H-1-benzopyran-4-one, 2143
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{3}$
3-(4-Chlorophenyl)-1-[2-hydroxy-5-(1-oxopropyl)phenyl]-2-propen-1-one, 2138
3-(4-Chlorophenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one, 2138
3-(4-Chlorophenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one (E), 2138

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{6} \mathrm{~S}$

1,1'-[Thiobis(5-bromo-4,6-dihydroxy-3,1-phenylene)]bis-1-propanone, 2117

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{~S}$

1,1'-[Sulfinylbis(6-chloro-4-hydroxy-3,1-phenylene)]bis-1-propanone, 2117
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{D}_{4} \mathrm{O}_{2}$
1-(4'-Methoxy[1,1'-biphenyl]-2-yl-3,4,5,6- d_{4})-2,2-dimethyl-1-propanone, 2098
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$
1-(4-Hydroxy-3-methyl-6-phenyl-2-benzofuranyl)-1-propanone, 2008
1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one, 2139
1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one, 2139
1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one (E), 2139
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{CIFN}_{3} \mathrm{O}_{3}$
N-(5-Chloro-2-pyridinyl)-N'-[(1R,2R)-2-[6-fluoro-2-hydroxy-3-(1-oxopropyl) phenyl]-cyclopropyl]-urea, 1946
N -(5-Chloro-2-pyridinyl)- N^{\prime}-[(1S,2S)-2-[6-fluoro-2-hydroxy-3-(1-oxopropyl) phenyl]-cyclopropyl]-urea, 1947
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{IO}_{4}$
1,1'-(4-Hydroxy-5-iodo-6-phenoxy-1,3-phenylene)bis-1-propanone, 2116
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
1,1'-(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-1-propanone, 2117
1-[2,4-Dihydroxy-6-[(1E)-2-(4-hydroxyphenyl)ethenyl]phenyl]-2-methyl-1propanone, 2053
1-(4-Hydroxy-5-methoxy-2-methylphenyl)-1-propanone (Benzoate), 1850
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$
1,1'-[Thiobis(6-hydroxy-3,1-phenylene)]bis-1-propanone, 2118
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$
1-[4-(Benzoyloxy)-2,6-dimethoxyphenyl]-1-propanone, 1947
1-(1,8-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone (Diacetate), 2064
1,1'-[Oxybis(4-hydroxy-3,1-phenylene)]bis-1-propanone, 2118
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}$
1,1'-[Sulfonylbis(6-hydroxy-3,1-phenylene)bis]-1-propanone, 2118
1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis-1-propanone, 2119
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{DO}_{2}$
1-(4'-Methoxy[1,1'-biphenyl]-2-yl-3-d)-2,2-dimethyl-1-propanone, 2098
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$
1,1'-[4-Methoxy-2-(2-pyridinyl)-1,3-phenylene]bis-1-propanone, 2116
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{7}$
1-(7-Bromo-2,4,5,8-tetramethoxy-3-methyl-6-nitro-1-naphthalenyl)-1-propanone, 1983
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}$
1-(3-Ethyl-4-methoxyphenyl)-1-propanone (2,4-Dinitrophenylhydrazone), 1867
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$
1-(4'-Methoxy[1,1'-biphenyl]-2-yl)-2,2-dimethyl-1-propanone, 2098
1-(4-Methoxy[1,1'-biphenyl]-3-yl)-2,2-dimethyl-1-propanone, 2098
1-(5-Methoxy[1,1'-biphenyl]-2-yl)-2,2-dimethyl-1-propanone, 2098
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[4,6-Dihydroxy-2-(2-methoxyethyl)[1,1'-biphenyl]-3-yl]-1-propanone, 1947
1-[2,6-Dihydroxy-3-methyl-4-(phenylmethoxy)phenyl]-2-methyl-1-propanone, 2053
1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Benzyl ether), 1853
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
1-[2-Hydroxy-3,4-dimethoxy-6-(phenylmethoxy)phenyl]-1-propanone, 1947
1-[2-Hydroxy-4,6-dimethoxy-3-(phenylmethoxy)phenyl]-1-propanone, 1948
1-[3-Hydroxy-4,6-dimethoxy-2-(phenylmethoxy)phenyl]-1-propanone, 1948
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{~S}$
1-[6-Hydroxy-3,4-dimethoxy-2-[[(4-methylphenyl)sulfonyl]oxy]phenyl]-
1-propanone, 1948
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrO}_{5}$
1-(7-Bromo-2,4,5,8-tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone, 1983
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{7}$
1-(2,4,5,8-Tetramethoxy-3-methyl-6-nitro-1-naphthalenyl)-1-propanone, 1983
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}$
1-[6-Hydroxy-1-(3-methylbutyl)-2-naphthalenyl]-1-propanone, 1984
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$
1-(2,4,5,8-Tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone, 1984
$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5}$
1-(6-Amino-2,4,5,8-tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone, 1984
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$
1-[7-Methoxy-2,2-dimethyl-4-(1-methylethyl)-2H-1-benzopyran-6-yl]-1propanone, 2008
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$
1,1'-(2,5-Dimethoxy-1,4-phenylene)bis[2,2-dimethyl-1-propanone, 2169
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}$
1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-(3-methyl-2-buteny)phenyl]-
1-propanone, 1948
$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{\text {, }}$
1-[4-(β-D-Glucopyranosyloxy)-2,6-dihydroxy-3,5-dimethylphenyl]-2-methyl-1propanone, 2054
$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1-propanone, 2054
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-methyl-1-propanone, 2054
1-[3,5-Bis(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone, 1949
1-[3,5-Bis(1,1-dimethylethyl)-4-methoxyphenyl]-1-propanone, 1949
1-(2-Hydroxy-5-nonylphenyl)-1-propanone, 1949
1-(4-Hydroxy-3-nonylphenyl)-1-propanone, 1949
$\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$
1-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2-hydroxy-3-propylphenyl]-1-propanone, 1949
$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}$
7-Hydroxy-8-methyl-6-(1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2008
$\mathrm{C}_{19} \mathbf{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{3}$
N-(5-Cyano-2-pyridinyl)-N'-[(1R,2R)-2-[6-fluoro-2-hydroxy-3-(1-oxopropyl)
phenyl]-cyclopropyl]-urea, 1950
N -(5-Cyano-2-pyridinyl)-N'-[(1S,2S)-2-[6-fluoro-2-hydroxy-3-(1-oxopropyl)
phenyl]-cyclopropyl]-urea, 1950
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{\mathbf{3}}$
1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one, 2139
1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one, 2140
1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one (E), 2140
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$
1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one, 2140
1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one, 2140
1-[4-Hydroxy-3-(1-oxopropy)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one (E), 2141
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[2-Hydroxy-6-[(1E)-2-(4-hydroxyphenyl)ethenyl]-4-methoxyphenyl]-
2-methyl-1-propanone, 2054
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6}$
1,1'-[Methylenebis(4,6-dihydroxy-3,1-phenylene)]bis-1-propanone, 2119
1,1'-[Methylenebis[oxy(2-hydroxy-4,1-phenylene)]]bis-1-propanone, 2119
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8}$
1,1'-[Methylenebis(2,4,6-trihydroxy-3,1-phenylene)]bis-1-propanone, 2120
1,1'-[Methylenebis(4,5,6-trihydroxy-3,1-phenylene)]bis-1-propanone, 2120
$\mathrm{C}_{19} \mathrm{H}_{22} \mathbf{N}_{2} \mathrm{O}_{6}$
1,1'-[Methylenebis[oxy(2-hydroxy-4,1-phenylene)]]
bis-1-propanone (Dioxime), 2119
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6}$
1-(3,4-Dimethoxy-2-methylphenyl)-2-methyl-1-propanone
(2,4-Dinitrophenylhydrazone), 2041
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$
1-(2,2'-Diethyl-5'-hydroxy[1,1'-biphenyl]-4-yl)-1-propanone, 1950
1-(5'-Hydroxy-2'-methyl-2-propyl[1,1'-biphenyl]-4-yl)-1-propanone, 1950
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$
1-[4,6-Dihydroxy-2-(2-methoxyethyl)[1,1'-biphenyl]-3-yl]-2-methyl-1-propanone, 2055
$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$
2-[1-(N-Isobutyrylimino)-1-isopropyl]-6-methoxynaphthalene, 2065
$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2}$
1-[6-Methoxy-1-(3-methylbutyl)-2-naphthalenyl]-1-propanone, 1984

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$

1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4-hydroxyphenyl]-1-propanone (E), 1951
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$
1-(3,4,9,10-Tetrahydro-5-hydroxy-2,2,8,8-tetramethyl-2H,8H-benzo[1,2-b:3,4-b $]$ dipyran-6-yl)-1-propanone, 2008
1-[2,4,6-Trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]-1-propanone, 1951
$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone, 2098
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2,2-dimethyl-1-propanone, 2099
1-(5-Decyl-2-hydroxyphenyl)-1-propanone, 1951
1-(2-Hydroxy-5-nonylphenyl)-2-methyl-1-propanone, 2055
$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$
1-[4-(Decyloxy)-2-hydroxyphenyl]-1-propanone, 1951
1-[4-Hydroxy-3-[(nonyloxy)methyl]phenyl]-1-propanone, 1952
$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1-propanone (Oxime), 2099
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-methyl-1-propanone
(O-methyloxime), 2054
$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}$
1-[4-(Decyloxy)-2-hydroxyphenyl]-1-propanone (Oxime), 1952
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5}$
7-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one (Benzoate), 1999
7-Hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one (Benzoate), 1999
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}$
1-(4-Hydroxy-3-methyl-6-phenyl-2-benzofuranyl)-2,2-dimethyl-1-propanone, 2103
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$
3-(3,4-Dimethoxyphenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-
2-propen-1-one, 2141
3-(3,4-Dimethoxyphenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one (E), 2141
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$
1,1'-[Thiobis(2-hydroxy-5-methyl-3,1-phenylene)]bis-1-propanone, 2120
1,1'-[Thiobis(4-hydroxy-5-methyl-3,1-phenylene)]bis-1-propanone, 2121
1, 1^{\prime}-[Thiobis(6-methoxy-3,1-phenylene)]bis-1-propanone, 2121
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$
1-[2-Acetyl-5,6-dimethoxy-3-(phenylmethoxy)phenyl]-1-propanone, 2141
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$
1,1'-(6,6'-Dihydroxy-5,5'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)
bis-1-propanone, 2121
1,1'-[1,2-Ethanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1-propanone, 2122
1-(4'-Hydroxy-3',5-dimethoxy-6-propionyloxy[1,1'-biphenyl]-3-yl)-1-propanone, 1952

1-[4-Hydroxy-3-methoxy-5-[2-methoxy-4-(1-oxopropyl)phenoxy]phenyl]-
1-propanone, 2122
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}$
1,1'-[Thiobis(4-hydroxy-6-methoxy-3,1-phenylene)]bis-1-propanone, 2122
$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrN}_{4} \mathrm{O}_{5}$
1-[3-Bromo-5-(1,1-dimethylethyl)-4-methoxyphenyl]-1-propanone
(2,4-Dinitrophenylhydrazone), 1909
1-[5-Bromo-3-(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone
(2,4-Dinitrophenylhydrazone), 1909
1-[5-Bromo-4-(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone
(2,4-Dinitrophenylhydrazone), 1910
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$
1,1'-[1,2-Ethanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1-propanone
(Dioxime), 2122
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}$
1-[3-(1,1-Dimethylethyl)-4-methoxyphenyl]-1-propanone
(2,4-Dinitrophenylhydrazones), 1912
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$
1-[2,6-Dimethoxy-3-(1-hydroxypropyl)phenyl]-1-propanone
(2,4-Dinitrophenylhydrazone), 1915
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$
1-[2'-Ethyl-5'-hydroxy-2-(1-methylethyl)[1,1'-biphenyl]-4-yl]-1-propanone, 1952
1-(2'-Ethyl-5'-hydroxy-2-propyl[1,1'-biphenyl]-4-yl)-1-propanone, 1952
1-[4-Hydroxy-2-methyl-5-(1-methylethyl)-3-(phenylmethyl)phenyl]-
1-propanone, 1953
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$
2,2-Dimethyl-1-($3^{\prime}, 4^{\prime}, 5^{\prime}$-trimethoxy[1, 1^{\prime}-biphenyl]-2-yl)-1-propanone, 2099
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{7}$
3-[[2,4-Dihydroxy-6-methoxy-3-(2-methyl-1-oxopropyl)phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2055
$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6}$
N-[1,4,6,8-Tetramethoxy-7-methyl-5-(1-oxopropyl)-2-naphthalenyl]acetamide, 1984
$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{9}$
1-[5,8-Dimethoxy-2,4-bis(methoxymethoxy)-3-methyl--6-nitro-1-naphthalenyl]-1propanone, 1985
$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$
1-[6-Hydroxy-3-[3-(3-methoxypropoxy)propyl]-2-naphthalenyl]-1-propanone, 1985
$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}$
2-Methyl-1-[5,7,8-trihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-
benzopyran-6-yl]-1-propanone, 2073

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{7}$

1-[5,8-Dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-1-naphthalenyl]-
1-propanone, 1985
$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{7}$
1-[6-Amino-5,8-dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-1-naphthalenyl]-
1-propanone, 1985
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$
1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-yl]-2-methyl-1-propanone, 2073
1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2073
1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone (+), 2073
1-[2,3-Dihydro-4,6-dihydroxy-5-(3-methylbutyl)-2-(1-methylethenyl)-7-benzofuranyl]-2-methyl-1-propanone, 2074
1-[5,7-Dihydroxy-2,2-dimethyl-6-(3-methyl-2-butenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2074
1-[4,6-Dihydroxy-5-(3-methylbutyl)-2-(1-methylethyl)-7-benzofuranyl]-2-methyl-1-propanone, 2074
1-[3-[(2E)-3,7-Dimethyl-2,6-octadienyl]-2,4,6-trihydroxyphenyl]-
2-methyl-1-propanone $(E), 2055$
1-[3-[(2E)-3,7-Dimethyl-2,6-octadienyl]-2,4,6-trihydroxyphenyl]-
2-methyl-1-propanone (Z), 2055
1-[4-[[(2E)-3,7-Dimethyl-2,6-octadienyl]oxy]-2,6-dihydroxyphenyl]-2-methyl-1-propanone, 2056
1-[(4aR,9aR)-2,3,4,4a,9,9a-Hexahydro-6,8-dihydroxy-1,1,4a-trimethyl-1 H -xanthen-7-yl]-2-methyl-1-propanone, 2075
2-Methyl-1-(3,4,6,7-tetrahydro-5-hydroxy-2,2,8,8-tetramethyl-2H,8H-benzo[1,2$b: 5,4-b$]dipyran-10-yl)-1-propanone, 2075
2-Methyl-1-(3,4,9,10-tetrahydro-5-hydroxy-2,2,8,8-tetramethyl-2H,8H-benzo[1,2-b:3,4-b \rceil dipyran-6-yl)-1-propanone, 2076
2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]-1-propanone, 2056
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$
1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methyl-2-butenyl)-7-benzofuranyl]-2-methyl-1-propanone, 2076
1-[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-6-(tetrahydro-2H-pyran-2-yl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2076
1-[2,3,8,9-Tetrahydro-4-hydroxy-2-(1-hydroxy-1-methylethyl)-7,7-dimethyl-7H-furo[2,3-f]-1-benzopyran-5-yl]-2-methyl-1-propanone, 2077
1-[2,3,6,7-Tetrahydro-8-hydroxy-2-(1-hydroxy-1-methylethyl)-5,5-dimethyl-2H-furo[2,3-h]-1-benzopyran-9-yl]-2-methyl-1-propanone, 2077
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$
1-[3,4-Dihydro-5,7-dihydroxy-6-(3-methylbutyl)-2,2-dimethyl-2H-1-benzopyran-8-yll-2-methyl-1-propanone, 2078

1-[3,4-Dihydro-5,7-dihydroxy-8-(3-methylbutyl)-2,2-dimethyl-2H-1-benzopyran-6-yl]-2-methyl-1-propanone, 2078
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}$
1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methylbutyl)-
7-benzofuranyl]-2-methyl-1-propanone, 2079
1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-7-(3-methylbutyl)-
5-benzofuranyl]-2-methyl-1-propanone, 2079
2-Methyl-1-[2,4,6-trihydroxy-3-(3-hydroxy-3,7-dimethyl-6-octenyl)phenyl]-
1-propanone, 2057
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{9}$
1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-1-propanone (Glycoside), 1851
$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$
1-[3-[(Decyloxy)methyl]-4-hydroxyphenyl]-1-propanone, 1953
$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$
2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methylbutyl)phenyl]-1-propanone, 2058
$\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}$
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2,2-dimethyl-1-propanone
(O-methyloxime), 2099
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-5-[[4-(phenylazo)phenyl]azo]phenyl]-1-propanone, 1953
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}$
1-(3'-Hydroxy[1, 1':2', 1"-terphenyl]-4'-yl)-1-propanone, 1953
$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{2}$
1-(3'-Hydroxy[1,1':2',1"-terphenyl]-4'-yl)-1-propanone (Oxime), 1953
$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$
4-[[3-Hydroxy-4-(1-oxopropyl)-2-propylphenyl]methoxy]benzeneacetonitrile, 1954
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$
1-[2-Hydroxy-3-propyl-4-[[4-(1H-tetrazol-5-ylmethyl)phenoxy]methyl]phenyl]-1-propanone, 1954
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$
1,1'-[(Methylethylidene)bis(4-hydroxy-3,1-phenylene)]bis-1-propanone, 2123
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$
1-[2-Hydroxy-4-methoxy-6-[(1E)-2-[4-(methoxymethoxy)phenyl]ethenyl]phenyl]-
2-methyl-1-propanone, 2058
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$
4-[[3-Hydroxy-4-(1-oxopropyl)-2-propylphenoxy]methyl]-3-methoxybenzoic acid, 1954
1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-1-propanone, 2123
1,1'-[1,3-Propanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1-propanone, 2123
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{8}$
1,1'-[Methylenebis(2,4,6-trihydroxy-3,1-phenylene)]bis[2-methyl-1-propanone, 2148
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$
1,1'-[1,3-Propanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1-propanone (Dioxime), 2123
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6}$
1-[4-Methoxy-3-(3-methylbutoxy)phenyl]-1-propanone
(2,4-Dinitrophenylhydrazone), 1930
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$
1-(2'-Ethyl-5'-methoxy-2-propylphenyl[1,1'-biphenyl]-4-yl)-1-propanone, 1954
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$
1-[5-[(1RS,2SR)-1-Ethyl-2-(4-hydroxyphenyl)butyl]-2-hydroxyphenyl]-
1-propanone, 1955
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}$
5,7-Dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-4-propyl-2H-1-benzopyran-2-one, 2079
5,7-Dihydroxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-4-propyl-2H-1-benzopyran-2-one, 2080
1-[5-(1,1-Dimethylethyl)-4',6-dihydroxy-3',5'-dimethoxy[1,1'-biphenyl]-3-yl]-1-propanone, 1955
2,2-Dimethyl-1-(2,2',6,6'-tetramethoxy[1,1'-biphenyl]-3-yl)-1-propanone, 2099
$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$
1-[4-Methoxy-3-(3-methylbutoxy)phenyl]-1-propanone
(4-Nitrophenylhydrazone), 1930
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$
1-(6-Hydroxy-1-octyl-2-naphthalenyl)-1-propanone, 1986
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5}$
1-[5,8-Dihydroxy-7-methoxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-
benzopyran-6-yl]-2-methyl-1-propanone, 2080
$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$
1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-methylphenyl]-2-methyl-1-propanone, 2058
$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2}$
1-(4-Dodecyl-2-hydroxyphenyl)-1-propanone, 1955
1-(5-Dodecyl-2-hydroxyphenyl)-1-propanone, 1955
1-(5-sec-Dodecyl-2-hydroxyphenyl)-1-propanone, 1956
$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3}$
1-[4-(Dodecyloxy)-2-hydroxyphenyl]-1-propanone, 1956
$\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{2}$
1-(4-Dodecyl-2-hydroxyphenyl)-1-propanone (Oxime), 1955
1-(5-sec-Dodecyl-2-hydroxyphenyl)-1-propanone (Oxime), 1956
$\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3}$
1-[4-(Dodecyloxy)-2-hydroxyphenyl]-1-propanone (Oxime), 1956
$\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}$
1-(5-Dodecyl-2-hydroxyphenyl)-1-propanone (Hydrazone), 1956
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3}$
1-(4'-Hydroxy[1,1'-biphenyl]-4-yl)-1-propanone (Benzoate), 1920
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{4}$
1-(7-Hydroxy-2,2-diphenyl-1,3-benzodioxol-5-yl)-1-propanone, 2009
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2}$
1-[4-Hydroxy-3-methyl-2,6-di(phenyl)phenyl]-1-propanone, 1956
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[3-(Diphenylmethyl)-2,4,6-trihydroxyphenyl]-1-propanone, 1956
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}$
1-[6-Hydroxy-1-(3-phenylpropyl)-2-naphthalenyl]-1-propanone, 1986
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4}$
1-[2-Hydroxy-6-methoxy-3-methyl-5-(phenylmethoxy)-1-naphthalenyl]-
1-propanone, 1986
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S}$
1,1'-[Thiobis[6-(acetyloxy)-4-hydroxy-3,1-phenylene]]bis-1-propanone, 2124
$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}$
1-[3-Hydroxy-2-[2-(1-methyl-1H-indol-2-yl)ethenyl]phenyl]-2,2-dimethyl-1-propanone, 2100
$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FNO}_{3}$
1-[2-(4,5-Dihydro-4,4-dimethyl-2-oxazolyl)-4'-fluoro-4-hydroxy-3'-methyl[1,1'-biphenyl]-3-yl]-2-methyl-1-propanone, 2058
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}$
1,1'-[Thiobis(4,6-dimethoxy-3,1-phenylene)]bis-1-propanone, 2124
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{8}$
1-[3-[[2,4-Dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl)phenyl]methyl]-2,4,6-trihydroxy-5-methylphenyl]-1-propanone, 2124
$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$
1-(6-Methoxy-1-octyl-2-naphthalenyl)-1-propanone, 1986
$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{8}$
1-[4-Hydroxy-3-[(2,4,7-trinitro-9H-fluorene-9-ylidene)amino]phenyl]-
2-methyl-1-propanone, 2059
$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{5}$
1-(2,6-Dihydroxyphenyl)-1-propanone (Dibenzoate), 1770
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$
1-[2,4-Dihydroxy-5-[[2-methyl-4-[(2-methylphenyl)azo]phenyl]azo]phenyl]-
1-propanone, 1957
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}$
1-[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]-1-propanone, 1957
$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}$
N -[6-Hydroxy-7-methyl-5-(1-oxopropyl)-4-(phenylmethoxy)-2-naphthalenyl] acetamide, 1986
$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}$
1-[6-Methoxy-1-(3-phenylpropyl)-2-naphthalenyl]-1-propanone, 1987
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FNO}_{3}$
1-[2-(4,5-Dihydro-4,4-dimethyl-2-oxazolyl)-4'-fluoro-4-methoxy-3'-methyl[1,1'-biphenyl]-3-yl]-2-methyl-1-propanone, 2059
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$
1-[2-[2,6-Dihydroxy-3-(3-methyl-2-butenyl)benzoyl]-3-hydroxy-5-methylphenyl]-2-methyl-1-propanone, 2160
$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~S}$
1-[4-[3-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio]propoxy]-2-hydroxy-3-propylphenyl]-1-propanone, 1957
$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{12} \mathrm{Na}$
1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-1propanone (Sodium salt), 1958
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}$
1-[4-[3-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio]propoxy]-2-hydroxy-3-propylphenyl]-1-propanone (Oxime), 1957
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7}$
4-(1-Acetoxypropyl)-5,7-dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-2-one, 2080
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8}$
1-[3-[[2,4-Dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl)phenyl]methyl]-2,4,6-trihydroxy-5-methylphenyl]-1-butanone, 2144
1-[2,6-Dihydroxy-4-methoxy-3-methyl-5-[[2,4,6-trihydroxy-3-methyl-5-(1-oxopropyl)phenyl]-methyl]phenyl]-1-butanone, 2144
1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]-bis-1propanone, 2125
1,1'-[Methylenebis(2-hydroxy-4,6-dimethoxy-3,1-phenylene)]bis-1-propanone, 2125
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{11}$
1-(2-Hydroxyphenyl)-1-propanone (Tetra-O-acetyl- β-D-glucopyranoside), 1763
1-(4-Hydroxyphenyl)-1-propanone (Tetra-O-acetyl- β-D-glucopyranoside), 1766
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{12}$
1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-1propanone, 1957
1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy]phenyl]-1propanone, 1958
$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3}$
1-[5-[(1RS,2SR)-1-Ethyl-2-(4-methoxyphenyl)butyl]-2-methoxyphenyl]-1propanone, 1958
$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}$
1-(1-Dodecyl-6-hydroxy-2-naphthalenyl)-1-propanone, 1987
$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$
4,5-Dichloro-3-hydroxy-6-[[7-hydroxy-5-methoxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-3-yl]oxy]-1,2-benzenedicarbonitrile, 2081
$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{3}$
1-[6-Hydroxy-3-(4-methylphenyl)-2-phenyl-5-benzofuranyl]-1-propanone, 2009
$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4}$
1-[6-Hydroxy-3-(4-methoxyphenyl)-2-phenyl-5-benzofuranyl]-1-propanone, 2009
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
1-[5-Hydroxy-2-phenyl-6-(phenylamino)-4-benzoxazolyl]-2,2-dimethyl-1propanone, 2103
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4}$
1-(2,5-Dihydroxy-4-methoxyphenyl)-1-propanone (Dibenzyl ether), 1818
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{5}$
5,7-Dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2081
5,7-Dihydroxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2081
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{10}$
4-Hydroxy-7-[2-hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2-propylphenoxy] propoxy]-3-nitro-2H-1-benzopyran-2-one, 1958
$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}$
4-Hydroxy-7-[2-hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2-propylphenoxy] propoxy]-2H-1-benzopyran-2-one, 1959
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{7}$
3-[[2,3-Dihydro-4,6-dihydroxy-2-(1-methylethenyl)-5-(2-methyl-1-oxopropyl)-7-benzofuranyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2082
3-[[5,7-Dihydroxy-2,2-dimethyl-6-(2-methyl-1-oxopropyl)-2H-1-benzopyran-8-yl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2082
$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{9}$
1-[2,4,6-Trihydroxy-3-methyl-5-[[2,4,6-trihydroxy-3,5-bis(1-oxopropyl)phenyl] methyl]phenyl]-1-butanone, 2144
$\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~S}$
1-[4-[4-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio]butoxy]-2-hydroxy-3-propylphenyl]-1-propanone, 1959
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}$
1-[4-[4-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio]butoxy]-2-hydroxy-3-propylphenyl]-1-propanone (Oxime), 1959
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{7}$
6-Ethyl-4-hydroxy-5-methyl-3-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-
methyl-1-oxopropyl)phenyl]methyl]-2H-pyran-2-one, 2059
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{12}$
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Tetra-O-acetyl- β-Dglucopyranoside), 1817
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6}$
1-[4,6-Bis(acetyloxy)-3-(3,7-dimethyl-2,6-octadienyl)-2-hydroxyphenyl]-2-
methyl-1-propanone (E), 2059
$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}$
1-(1-Dodecyl-6-methoxy-2-naphthalenyl)-1-propanone, 1987
$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{3}$
1-(2,4-Dihydroxy-6-pentadecylphenyl)-1-propanone, 1959
1-(2,5-Dihydroxy-4-pentadecylphenyl)-1-propanone, 1960
$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{8}$
1,1'-[[(3,4-Dichlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)]bis-1propanone, 2125
$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}$
1-[3-(9-Anthracenyl)-5-hydroxyphenyl]-2,2-dimethyl-1-propanone, 2100
$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClO}_{8}$
1,1'-[[(4-Chlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)]bis-1propanone, 2126
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{8}$
1,1'-[(Phenylmethylene)bis(2,4,6-trihydroxy-3,1-phenylene)]bis-1-propanone, 2126
1,1'-[[Phenylmethylene)bis(4,5,6-trihydroxy-3,1-phenylene)]bis-1-propanone, 2126
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{11}$
1,1'-[[(2,3,4-Trihydroxyphenyl)methylene]bis(2,4,6-trihydroxy-3,1-phenylene)] bis-1-propanone, 2127
$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{4}$
1-[3-(Diphenylmethyl)-2,4,6-trimethoxyphenyl]-1-propanone, 1960
1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl]-2-methyl-1-propanone, 2060
$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{10}$
1,1'-[Methylenebis(5-acetyl-2,4,6-trihydroxy-3,1-phenylene)]
bis[2-methyl-1-propanone, 2160
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime}$-[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)]
tetrakis-1-propanone, 2127
$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}$,
3-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl]
methyl]-2,4,6-trihydroxy-5-(3-methyl-1-oxobutyl)benzaldehyde, 2161
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{6}$
4,9-Dihydro-8-hydroxy-6-methoxy-2,2,4,4-tetramethyl-5-(2-methyl-1-oxopropyl)9 -(2-methylethyl)-1 H -xanthene-1,3(2H)-dione, 2161
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{7}$
3-[[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl) phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2060
3-[[2,4-Dihydroxy-6-methoxy-5-(3-methyl-2-butenyl)-3-(2-methyl-1-oxopropyl) phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2060
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{8}$
4-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl]methyl]-3,5-dihydroxy-2,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2148 1-[3-[[2,6-Dihydroxy-4-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl] methyl]-2,6-dihydroxy-4-methoxy-5-methylphenyl]-2-methyl-1-propanone, 2149 1-[3-[[2,6-Dihydroxy-4-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl] methyl]-4,6-dihydroxy-2-methoxy-5-methylphenyl]-2-methyl-1-propanone, 2149 1-[3-[[4,6-Dihydroxy-2-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl] methyl]-2,6-dihydroxy-4-methoxy-5-methylphenyl]-2-methyl-1-propanone, 2150 1-[3-[[2-Hydroxy-4,6-dimethoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl] methyl]-2,4,6-trihydroxy-5-methylphenyl]-2-methyl-1-propanone, 2150
1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-5-methyl-3,1-phenylene)]bis[2-methyl-1-propanone, 2150
1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]bis[2-methyl-1-propanone, 2151
1,1'-[Methylenebis(4,6-dihydroxy-2-methoxy-5-methyl-3,1-phenylene)]bis[2-methyl-1-propanone, 2151
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2}$
1-[2-Methoxy-6-(8,11-pentadecadiynyl)phenyl]-1-propanone, 1960
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{7}$
4-[1-[2,4,6-Trihydroxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl]2-
methylpropyl]-5-hydroxy-2,2,6,6-tetramethyl-4-cyclohexene-1,3-dione, 2161
$\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4}$
1-[(2R,3S)-3,4-Dihydro-5,7-dihydroxy-2-methyl-3-(3-methyl-2-butenyl)-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone (+), 2082
$\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{3}$
1-(4-Hexadecyl-2,5-dihydroxyphenyl)-1-propanone, 1960
$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{6}$
3,3-Bis[4-hydroxy-3-(1-oxopropyl)phenyl]phthalide, 2127
$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{5}$
5,7-Dimethoxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2082
$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8}$
1-[6-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-5,7-
dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2162
$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{8}$
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-
trihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone, 2162
$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{9}$
1-[6-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-3,4-dihydro-
3,5,7-trihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2163
1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-
trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-2-methyl-1-propanone, 2163 1-[2,4,6-Trihydroxy-3-(2-methyl-1-oxopropyl)-5-[[2,4,6-trihydroxy-3-methyl-5-(1-oxobutyl)-phenyl]methyl]phenyl]-1-butanone, 2164
1-[2,4,6-Trihydroxy-3-methyl-5-[[2,4,6-trihydroxy-3,5-bis(2-methyl-1-oxopropyl) phenyl]-methyl]phenyl]-1-butanone, 2164
$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6}$
4,9-Dihydro-8-hydroxy-6-methoxy-2,2,4,4-tetramethyl-5-(2-methyl-1-oxopropyl)-9-(2-methylpropyl)-1 1 -xanthene-1,3(2H)-dione, 2164
$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7}$
3-[[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl) phenyl]methyl]-6-ethyl-4-methoxy-5-methyl-2H-pyran-2-one, 2060
$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{7}$
4-[1-[2,6-Dihydroxy-4-methoxy-3-(2-methyl-1-oxopropyl)phenyl]-3-
methylbutyl]-5-hydroxy-2,2,6,6-tetramethyl-4-cyclohexene-1,3-dione, 2164
$\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{3}$
1-(3-Hexadecyl-2-hydroxy-5-methoxyphenyl)-1-propanone, 1960
$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{4}$
1,1'-[Methylenebis(1-hydroxy-4,2-naphthalenediyl)]bis-1-propanone, 2128
$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$
1,1'-[Methylenebis(1-hydroxy-4,2-naphthalenediyl)]bis-1-propanone (Dioxime), 2128
$\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{8}$
2-Methyl-1-[2,4,6-trihydroxy-3-[1-(4-hydroxy-6-methoxy-1,3-benzodioxol-5-yl)-2-methylpropyl]-5-(3-methyl-2-butenyl)phenyl]-1-propanone (S), 2061

$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{4}$

1,1'-[(1R)-2,2'-Dimethoxy[1,1'-binaphthalene]-6,6'-diyl]bis-1-propanone, 2128
1-[2-Hydroxy-3-methyl-6,8-bis(phenylmethoxy)-1-naphthalenyl]-1-propanone, 1987
1-[8-Hydroxy-3-methyl-2,4-bis(phenylmethoxy)-1-naphthalenyl]-1-propanone, 1987
$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$
1-[5-[4,6-Bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-2,4-dihydroxyphenyl]-1propanone, 1961
$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{10}$
3,3'-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-phenylene]bis(methylene)] bis[6-ethyl-4-hydroxy-5-methyl-2 H -pyran-2-one, 2061
$\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{BrO}_{8}$
2-[[3-Bromo-5,7-dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2152
$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8}$
2-[[5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-
cyclohexadien-1-one, 2152
$\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{8}$
2-[[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-6-(2-methyl-1-oxopropyl)-2H-1-benzopyran-8-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2153
2-[[3,4-Dihydro-5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2153
3,5-Dihydroxy-4,4-dimethyl-2-(2-methyl-1-oxopropyl)-6-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2,5-cyclohexadien-1one, 2154
$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{12}$
5'-[7-(β-D-Glucopyranosyloxy)-3,4-dihydro-5-hydroxy-6-methyl-4-oxo-2H-1-benzopyran-2-yl]-2,2'-dihydroxy-intramol. 3,6"'-ester [1,1'-biphenyl]-3-carboxylic acid, 1851
5'-[7-(β-D-Glucopyranosyloxy)-3,4-dihydro-5-hydroxy-6-methyl-4-oxo-2H-1-benzopyran-2-yl]-2',4-dihydroxy-intramol. 3,6"'-ester [1, 1^{\prime}-biphenyl]-3-carboxylic acid, 1851
$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{8}$
2-[[5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(3-methyl-1-oxobutyl)-2,5-
cyclohexadien-1-one, 2165
$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{10}$
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime}$-[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)]tetrakis[2-methyl-1propanone, 2154
$\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{7}$
3-[[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxy-5-(2-methyl-1-oxopropyl) phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2061
$\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{8}$
3,5-Dihydroxy-4,4-dimethyl-2-(3-methyl-1-oxobutyl)-6-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2,5-cyclohexadien-1one, 2165
$\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{8}$
1,1'-[Methylenebis(2,4,6-trimethoxy-5-methyl-3,1-phenylene)]bis[2-methyl-1propanone, 2155
$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{4}$
1,1'-[(1R)-2,2'-Dihydroxy[1,1'-binaphthalene]-3,3'-diyl]bis[2,2-dimethyl-1-
propanone, 2170
$1,1^{\prime}$-($2,2^{\prime}$-Dihydroxy [1, 1^{\prime}-binaphthalene]-6,6'-diyl)
bis[2,2-dimethyl-1-propanone, 2170
$\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{9}$
1-[2'-Hydroxy-6-(2-hydroxy-3-methoxy-5-propionylphenoxy)-5,3'-dimethoxy-5'-propionyl-[1,1'-biphenyl]-3-yl]-1-propanone, 2128
Propionic acid $4^{\prime}, 2^{\prime \prime}$-dihydroxy-3,5', $3^{\prime \prime}$-trimethoxy-5,5"'dipropionyl $\left[1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}\right]$ terphenyl-2-yl ester, 2129

$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{10} \mathrm{~S}$

1,1'-[Thiobis[2,4,6-trihydroxy-5-(1-oxopropyl)-3,1-phenylene]]bis-1-hexanone, 2144
$\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{8}$
7-[2-Hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2-(2-propenyl)phenoxy]propoxy]-4-(phenyl-methoxy)-2H-1-benzopyran-2-one, 1961
$\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{5}$
6-[3-Hydroxy-4-(1-oxopropyl)-2-propylphenoxy]hexanoic acid diphenylmethyl ester, 1961
$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{11}$
1-[3-[[2-Hydroxy-4,6-dimethoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl]
methyl]-2,4,6-trihydroxy-5-methylphenyl]-2-methyl-1-propanone (Triacetate), 2150
1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]bis[2-methyl-1-propanone (Triacetate), 2151
$\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{8}$
1,1'-[Methylenebis(3,4-dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6,8-diyl)]bis-[2-methyl-1-propanone, 2155
$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{8}$
$1,1^{\prime}-(1,7 \mathrm{a}, 13 \mathrm{a}, 13 \mathrm{~b}$-Tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-hexamethyl- $2 \mathrm{H}, 13 \mathrm{H}$ -bis-1-benzopyrano[5,4-bc:3', 4^{\prime}-e]pyran-4,11-diyl)bis[2-methyl-1-propanone, (7a $\alpha, 13 \mathrm{a} \alpha, 13 \mathrm{~b} \alpha$), 2155
(7a $\alpha, 13 \mathrm{a} \alpha, 13 \mathrm{~b} \beta), 2155$
$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{12}$
1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-5-methyl-3,1-phenylene)] bis[2-methyl-1-propanone (Tetraacetate), 2151
1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)] bis[2-methyl-1-propanone (Tetraacetate), 2151
1,1'-[Methylenebis(4,6-dihydroxy-2-methoxy-5-methyl-3,1-phenylene)] bis[2-methyl-1-propanone (Tetraacetate), 2152
$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{8}$
2-Methyl-1-[1,7a,13a,13b-tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-hexamethyl-4-(2-methyl-1-oxopropyl)-2H,13H-bis-1-benzopyrano[5,4-bc:3', $4^{\prime}-e$]pyran-11-yl]-1-butanone, 2165
2-Methyl-1-[1,7a,13a,13b-tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-hexamethyl-11-(2-methyl-1-oxopropyl)-2H,13H-bis-1-benzopyrano[5,4-bc:3',4'-e]pyran-4-yl]-1-butanone, 2166
$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{12}$
1-[3,5-Bis[[2,4-dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl)phenyl]methyl]-
2,4,6-trihydroxyphenyl]-1-butanone, 2145
$\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{4}$
1-[3,5-Bis(diphenylmethyl)-2,4,6-trihydroxyphenyl]-1-propanone, 1962
$\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{12}$
1-[3-[(3-Acetyl-2,6-dihydroxy-4-methoxy-5-methylphenyl)methyl]-5-[[2,6-
dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-butanone, 2166
1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-(2-methyl-1-oxopropyl)-5-methylphenyl] methyl]-2,4,6-trihydroxyphenyl]-1-propanone, 2145

$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{12}$

5'-[3,4-Dihydro-5-methoxy-3,6-dimethyl-4-oxo-7-[(2,3,4-tri-O-methyl- β -
D-glucopyranosyl)oxy]-2H-1-benzopyran-2-yl]-2', 4-dimethoxy-, intramol.
3,6"'-ester [1,1'-biphenyl]-3-carboxylic acid, 1851
3-[5-[3,4-Dihydro-5-methoxy-3,6-dimethyl-4-oxo-7-[(2,3,4-tri-O-methyl- β-Dglucopyranosyl) oxy]-2H-1-benzopyran-2-yl]-2-methoxyphenyl]-2-methoxy-1,6'lactone benzoic acid, 1851
$\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{12}$
1,1'-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-phenylene]
bis[methylene(2,4-dihydroxy-6-methoxy-5-methyl-3,1-phenylene)]]bis[2-methyl-1-propanone, 2156
$\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{11}$
3-[[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxy-5-(2-methyl-1-oxopropyl) phenyl]-methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one (Tetraacetate), 2061
$\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{12}$
1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl] methyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-butanone, 2166
1-[3-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl] methyl]-2,4,6-trihydroxy-5-[[2-hydroxy-4,6-dimethoxy-3-methyl-5-(2-methyl-1-oxopropyl)-phenyl]methyl]phenyl]-2-methyl-1-propanone, 2156
$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{4}$
1-[3,5-Bis(diphenylmethyl)-2,4,6-trimethoxyphenyl]-1-propanone, 1962
$\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{O}_{12}$
1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-(2-methyl-1-oxopropyl)-5-methylphenyl] methyl]-2,4,6-trihydroxyphenyl]-1-propanone, 2167
$\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{8}$
1,1'-[(6-Methylheptylidene)bis(3,4-dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6,8-diyl)]bis[2-methyl-1-propanone, 2157
1,1'-[(6-Methylheptylidene)bis[2,4,6-trihydroxy-5-(3-methyl-2-butenyl)-3,1-phenylene]]bis-[2-methyl-1-propanone, 2157
$\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{O}_{12}$
1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-(2-methyl-1-oxopropyl)-5-methylphenyl] methyl]-2,4,6-trihydroxyphenyl]-1-propanone, 2167

$\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{8}$

1-[6-[1-[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]-6-methylheptyl]-3,4-dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-butanone, 2167

Chemical Abstracts Registry Numbers

Volume 1

[82-64-4] (2,4-Dihydroxy-1,3-phenylene)bis[phenylmethanone, 544
[82-67-7] (2,4-Dihydroxy-1,3,5-benzenetriyl)tris[phenylmethanone, 540
[82-69-9] (2,6-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 27
[85-19-8] (5-Chloro-2-hydroxyphenyl)phenylmethanone, 53
[85-24-5] [2-Hydroxy-4-(octyloxy)phenyl](2-hydroxyphenyl)methanone, 440
[85-28-9]
[117-99-7]
(4-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 242
[131-53-3]
[131-54-4]
(2-Hydroxyphenyl)phenylmethanone, 3
[131-55-5]
Bis(2-hydroxy-4-methoxyphenyl)methanone, 447
[131-56-6]
Bis(2,4-dihydroxyphenyl)methanone, 29
[131-57-7]
(2,4-Dihydroxyphenyl)phenylmethanone, 11
[134-92-9]
(2-Hydroxy-4-methoxyphenyl)phenylmethanone, 79
[342-18-7]
[362-47-0]
[365-14-0]
[479-21-0]
(4-Hydroxyphenyl)(4-methylphenyl)methanone, 169
[519-34-6]
[579-15-7]
[606-12-2]
(5-Fluoro-2-hydroxyphenyl)(3-methylphenyl)methanone, 243
(5-Fluoro-2-hydroxyphenyl)phenylmethanone, 56
(3-Fluoro-4-hydroxyphenyl)phenylmethanone, 55
(2,6-Dihydroxy-4-methoxyphenyl)phenylmethanone, 379
(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 37
(3-Bromo-5-fluoro-4-hydroxyphenyl)phenylmethanone, 43
(2-Hydroxyphenyl)(4-hydroxyphenyl)methanone, 20
[611-80-3]
[611-81-4]
Bis(3-hydroxyphenyl)methanone, 17
(3-Hydroxyphenyl)(4-hydroxyphenyl)methanone, 21
[611-99-4]
Bis(4-hydroxyphenyl)methanone, 18
[727-93-5]
[732-55-8]
(5-Fluoro-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 244
[738-15-8]
(4-Hydroxyphenyl)[3-(trifluoromethyl)phenyl]methanone, 164
[784-41-8]
[4-Hydroxy-3,5-bis(1-methylethyl)phenyl]phenylmethanone, 127
[835-11-0]
[837-60-5]
(2-Amino-5-chlorophenyl)(4-hydroxyphenyl)methanone, 160
Bis(2-hydroxyphenyl)methanone, 17
(2,4-Dihydroxyphenyl)(3-hydroxyphenyl)methanone, 25
[1137-42-4]
[1143-72-2]
[1470-57-1]
[1470-79-7]
[1641-17-4]
[1818-24-2]
[1834-88-4]
[1834-89-5]
[1843-05-6]
[2004-55-9]
[2038-92-8]
[2050-37-5]
[2151-17-9]
[2162-63-2]
[2341-94-8]
[2549-87-3]
[2549-90-8]
[2559-64-0]
[2589-80-2]
[2589-81-3]
[2898-51-3]
[2929-45-5]
[2985-59-3]
[2985-79-7]
[2985-80-0]
[3088-11-7]
[3088-15-1]
[3097-56-1]
[3098-18-8]
[3119-86-6]
[3119-88-8]
[3132-42-1]
[3286-88-2]
[3286-91-7]
[3286-93-9]
[3286-95-1]
[3286-96-2]
[3286-97-3]
[3293-97-8]
[3333-96-8]
[3457-13-4]
[3457-17-8]
[3550-43-4]

Phenyl(2,3,4-trihydroxyphenyl)methanone, 22
(2-Hydroxy-5-methylphenyl)phenylmethanone, 73
(2,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 25
(2-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone, 282
(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris[phenylmethanone, 541
(2-Hydroxy-4-nitrophenyl)phenylmethanone, 56
(2-Hydroxy-4-nitrophenyl)(3-nitrophenyl)methanone, 211
[2-Hydroxy-4-(octyloxy)phenyl]phenylmethanone, 134
(4-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone, 183
(4-Bromophenyl)(2-hydroxyphenyl)methanone, 149
(2,5-Dihydroxyphenyl)phenylmethanone, 14
(3-Chloro-2-hydroxy-4,6-dimethoxyphenyl)(4-hydroxy-2-methoxy-6-methyl-phenyl)methanone, 458
[4-(Decyloxy)-2-hydroxyphenyl]phenylmethanone, 138
(2-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone, 203
[2-Hydroxy-4-(2-propenyloxy)phenyl]phenylmethanone, 104
[4-[(2-Ethylhexyl)oxy]-2-hydroxyphenyl]phenylmethanone, 135
(5-Fluoro-2-hydroxyphenyl)(4-fluorophenyl)methanone, 211
1-(5-Benzoyl-2-hydroxyphenyl)ethanone, 524
(4-Hydroxy-1,3-phenylene)bis[phenylmethanone, 533
(5-Hydroxy-4-methoxy-2-nitrophenyl)(4-methoxyphenyl) methanone, 279
(2-Hydroxy-4,6-dimethylphenyl)phenylmethanone, 93
[4-(Dodecyloxy)-2-hydroxyphenyl]phenylmethanone, 139
(4-Chlorophenyl)(2-hydroxyphenyl)methanone, 152
(4-Chloro-2-hydroxyphenyl)phenylmethanone, 53
(2-Hydroxy-4-propoxyphenyl)phenylmethanone, 107
(4,6-Dihydroxy-1,3-phenylene)bis[phenylmethanone, 535
(5-Cyclohexyl-2-hydroxyphenyl)phenylmethanone, 126
(2-Hydroxy-4-methylphenyl)phenylmethanone, 72
(2-Hydroxy-4-methoxyphenyl)[2-(trifluoromethyl)phenyl] methanone, 259
(2-Fluorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 245
(5-Ethyl-2-hydroxyphenyl)phenylmethanone, 91
(4-Bromophenyl)(2,4-dihydroxyphenyl)methanone, 393
(5-Chloro-2-hydroxy-4-methoxyphenyl)phenylmethanone, 69
(5-Bromo-2-hydroxy-4-methoxyphenyl)phenylmethanone, 65
(5-Chloro-2,4-dihydroxyphenyl)phenylmethanone, 370
(3,5-Dibromo-2,4-dihydroxyphenyl)phenylmethanone, 366
(5-Bromo-2,4-dihydroxyphenyl)phenylmethanone, 369
[4-(Hexyloxy)-2-hydroxyphenyl]phenylmethanone, 127
(4-Amino-2-hydroxyphenyl)phenylmethanone, 62
[2-Hydroxy-4-(octadecyloxy)phenyl]phenylmethanone, 142
[4-(Hexadecyloxy)-2-hydroxyphenyl]phenylmethanone, 141
[4-(Heptyloxy)-2-hydroxyphenyl]phenylmethanone, 131
[3555-86-0] [3558-83-6] [3602-47-9] [3733-72-0]
[3811-00-5]
[4072-08-6]
[4072-14-4]
[4072-16-6]
[4072-17-7]
[4072-22-4]
[4072-24-6]
[4072-26-8]
[4084-62-2]
[4090-99-7]
[4142-51-2]
[4211-67-0]
[4369-50-0]
[4520-99-4]
[4646-78-0]
[4650-75-3]
[4998-51-0]
[5298-27-1]
[5326-42-1]
[5336-56-1]
[5423-21-2]
[5436-05-5]
[5464-98-2]
[5623-44-9]
[5623-46-1]
[6079-76-1]
[6131-38-0]
[6131-39-1]
[6178-89-8]
[6279-04-5]
[6279-05-6]
[6279-06-7]
[6280-52-0]
[6280-54-2]

Phenyl(2,4,6-trihydroxyphenyl)methanone, 23
[1,1'-Biphenyl]-4-yl(4-hydroxyphenyl)methanone, 502
(4-Fluorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 246
(2,6-Dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methoxy-6-methylphenyl)-methanone, 486
(3-Chloro-2,6-dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methoxy-6-methyl-phenyl)methanone, 484
(2-Hydroxy-3-methylphenyl)phenylmethanone, 71
(2-Hydroxy-4,5-dimethylphenyl)phenylmethanone, 92
[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl] phenylmethanone, 116
(2-Hydroxy-3,6-dimethylphenyl)phenylmethanone, 92
(2-Hydroxy-3-methyl-4-nitrophenyl)phenylmethanone, 69
(2-Hydroxy-5-methyl-4-nitrophenyl)phenylmethanone, 70
(2-Hydroxy-5-methyl-3-nitrophenyl)phenylmethanone, 70
1,4-Phenylenebis[(2-hydroxy-5-methylphenyl)methanone, 539
[2-Hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl] phenylmethanone, 133
(2,4-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl) methanone, 304
[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl] phenylmethanone, 385
(4-Bromophenyl)(4-hydroxyphenyl)methanone, 150
(2,4-Dihydroxyphenyl)(4-hydroxy-2-methylphenyl)methanone, 474
(2,5-Dihydroxy-3,4-dimethoxyphenyl)phenylmethanone, 383
(2-Hydroxy-4,6-dimethoxyphenyl)(4-hydroxy-2-methylphenyl) methanone, 456
[2-Hydroxy-5-(octyloxy)phenyl]phenylmethanone, 135
(2,4-Dihydroxyphenyl)(4-methoxyphenyl)methanone, 404
(4-Hydroxy-3-methylphenyl)phenylmethanone, 78
(4-Hydroxy-3,5-dimethylphenyl)phenylmethanone, 95
Bis(3-bromo-4-hydroxyphenyl)methanone, 443
1,3-Phenylenebis[(4-hydroxyphenyl)methanone, 536
(4-Hydroxy-3-nitrophenyl)phenylmethanone, 58
Bis(4-hydroxy-3-methoxyphenyl)methanone, 448
(4'-Hydroxy[1,1'-biphenyl]-4-yl)phenylmethanone, 503
[2-Hydroxy-4-(phenylmethoxy)phenyl]phenylmethanone, 130
(2-Hydroxy-4-methoxyphenyl)(4-methoxyphenyl)methanone, 287
(2-Hydroxy-4-propoxyphenyl)(4-propoxyphenyl)methanone, 345
Bis(5-chloro-2-hydroxyphenyl)methanone, 444
(4-Chlorophenyl)(2-hydroxy-3-methylphenyl)methanone, 237
(4-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 238
(4-Chlorophenyl)(4-hydroxy-3-methylphenyl)methanone, 240
(2-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 235
(3-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 237
[6343-00-6]
[6721-06-8]
[6723-04-2]
[6723-07-5]
[6723-09-7]
[6723-13-3]
[6758-89-0]
[6994-36-1]
[6994-37-2]
[6994-40-7]
[7175-89-5]
[7392-62-3]
[7396-89-6]
[7396-90-9]
[7396-92-1]
[7396-96-5]
[7508-29-4]
[7508-32-9]
[10425-05-5]
[10425-07-7]
[10425-09-9]
[10425-11-3]
[13020-57-0]
[13043-37-3]
[13087-18-8]
[13113-73-0]
[13134-93-5]
[13134-94-6]
[13340-61-9]
[13380-65-9]
[14446-07-2]
[14596-74-8]
[14770-96-8
[14770-98-0]
[14894-91-8]
[14898-76-1]
[14938-63-7]
[14963-34-9]
[14963-84-9]
(2-Hydroxy-3-methoxyphenyl)(2,4,6-trimethoxyphenyl) methanone, 328
(4-Bromo-2-hydroxy-3,6-dimethylphenyl)phenylmethanone, 87
(4-Bromo-2-hydroxyphenyl)phenylmethanone, 50
(4-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone, 65
(3-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone, 64
(5-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone, 65
(4-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone, 65
(2-Hydroxy-4-methoxyphenyl)(4-nitrophenyl)methanone, 250
(4-Aminophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 256
(2,4-Dihydroxyphenyl)(4-nitrophenyl)methanone, 399
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]phenylmethanone, 133
(2,4-Dihydroxyphenyl)(2-hydroxy-4-methoxyphenyl) methanone, 476
(2-Hydroxy-4-methoxyphenyl)[3-(trifluoromethyl)phenyl] methanone, 259
(2-Hydroxy-4-methoxyphenyl)[4-(trifluoromethyl)phenyl] methanone, 260
(3,5-Dichloro-2-hydroxyphenyl)phenylmethanone, 47
Phenyl(2,3,5-trichloro-6-hydroxyphenyl)methanone, 43
(4-Chlorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 272
(2-Hydroxy-3,4-dimethoxyphenyl)phenylmethanone, 99
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 115
(4-Hydroxy-2-methylphenyl)phenylmethanone, 77
(2,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 36
(3,4-Dihydroxyphenyl)phenylmethanone, 15
(3-Hydroxyphenyl)phenylmethanone, 6
1-(3-Benzoyl-4-hydroxyphenyl)ethanone, 523
(2,4-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 25
[2,4-Bis(1,1-dimethylethyl)-6-hydroxyphenyl]phenylmethanone, 132
(2-Aminophenyl)(2-hydroxyphenyl)methanone, 161
(4-Aminophenyl)(2-hydroxyphenyl)methanone, 162
(4,6-Dihydroxy-1,3-phenylene)bis[(2,4-dichlorophenyl) methanone, 534
(4-Ethoxyphenyl)(4-hydroxyphenyl)methanone, 177
(2,4-Dihydroxyphenyl)(2-methylphenyl)methanone, 401
(2-Benzoylphenyl)(2-hydroxyphenyl)methanone, 532
(2-Hydroxy-5-methoxyphenyl)phenylmethanone, 81
(2-Hydroxy-3,4-dimethylphenyl)phenylmethanone, 91
Phenyl(2,4,5-trihydroxyphenyl)methanone, 23
[3-(Chloromethyl)-4-hydroxyphenyl]phenylmethanone, 68
(4-Hydroxyphenyl)(3,4,5-trimethoxyphenyl)methanone, 184
(4-Aminophenyl)(4-hydroxyphenyl)methanone, 162
[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl] phenylmethanone, 122

[^18]| [20034-63-3] | (2-Hydroxy-6-methoxyphenyl)phenylmethanone, 82 |
| :---: | :---: |
| [20401-89-2] | [2-Hydroxy-5-(1-methylethyl)phenyl]phenylmethanone, 105 |
| [21084-27-5] | (4-Hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 164 |
| [21084-29-7] | (3-Hydroxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 163 |
| [21112-64-1] | (4-Hydroxy-2-methoxyphenyl)phenylmethanone, 83 |
| [21147-18-2] | (2-Hydroxyphenyl)(2-methoxyphenyl)methanone, 170 |
| [21147-33-1] | (2,6-Dihydroxy-4-methylphenyl)(2-hydroxy-4-methoxy-6-methylphenyl)-methanone, 486 |
| [21147-34-2] | (2,4-Dihydroxy-6-methylphenyl)(2-hydroxy-4-methoxy-6-methylphenyl)-methanone, 485 |
| [21250-79-3] | (3,4-Dichloro-2,5-dihydroxyphenyl)phenylmethanone, 367 |
| [21332-56-9] | (2,4-Dihydroxyphenyl)[4-(1,1-dimethylethyl)phenyl]methanone, 408 |
| [21382-23-0] | (2-Hydroxy-4,6-dimethoxyphenyl)(3-methoxyphenyl)methanone, 309 |
| [21554-73-4] | (2-Hydroxyphenyl)(3-methoxyphenyl)methanone, 170 |
| [21554-76-7] | (2,6-Dihydroxyphenyl)(3-hydroxyphenyl)methanone, 27 |
| [21554-79-0] | (3-Methoxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 470 |
| [22293-32-9] | (2-Hydroxyphenyl)(2-nitrophenyl)methanone, 157 |
| [22293-33-0] | (4-Chloro-2-hydroxyphenyl)(3-nitrophenyl)methanone, 205 |
| [22359-51-9] | (4-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone, 205 |
| [22445-98-3] | Bis(3-amino-4-hydroxyphenyl)methanone, 445 |
| [22546-86-7] | [2-Hydroxy-4-(2-hydroxypropoxy)phenyl]phenylmethanone, 108 |
| [22744-25-8] | Phenyl(2,4,6-trihydroxy-3,5-dimethylphenyl)methanone, 465 |
| [22804-56-4] | (2,3-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl) methanone, 347 |
| [22804-57-5] | (2,5-Dimethoxyphenyl)(6-hydroxy-2,3,4-trimethoxyphenyl) methanone, 339 |
| [22804-59-7] | (2,3-Dimethoxyphenyl)(6-hydroxy-2,3,4-trimethoxyphenyl) methanone, 339 |
| [22804-60-0] | (2,6-Dimethoxyphenyl)(2-hydroxy-3,4,6-trimethoxyphenyl) methanone, 340 |
| [22804-62-2] | (2,6-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl) methanone, 347 |
| [22961-80-4] | (2,5-Dimethoxyphenyl)(2-hydroxy-3,4,5,6-tetramethoxyphenyl) methanone, 347 |
| [23251-65-2] | (2,5-Dimethoxyphenyl)(2-hydroxy-3,4,6-trimethoxyphenyl) methanone, 339 |
| [23299-02-7] | (3-Cyclohexyl-4-hydroxyphenyl)phenylmethanone, 126 |
| [23565-66-4] | (2-Hydroxy-6-methoxy-4-methylphenyl)phenylmethanone, 99 |
| [23565-67-5] | (4-Hydroxy-2-methoxy-6-methylphenyl)phenylmethanone, 99 |
| [23565-77-7] | (3,5-Dichloro-2,6-dihydroxy-4-methylphenyl)(2-hydroxy-4-methoxy-6-methyl-phenyl)methanone, 483 |
| [23565-89-1] | (2,6-Dihydroxy-4-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl)-methanone, 486 |
| [23573-43-5] | (2-Hydroxy-4-methoxy-6-methylphenyl)phenylmethanone, 98 |
| [23573-47-9] | (2,4-Dihydroxy-6-methylphenyl)(4-hydroxy-2-methoxy-6-methylphenyl)-methanone, 485 |

[24018-76-6]
[24242-58-8]
[24248-99-5]
[25138-53-8]
[25148-21-4]
[25446-98-4]
[25576-99-2]
[25577-00-8]
[25577-01-9]
[25577-03-1]
[25913-05-7]
[26271-33-0]
[26733-16-4]
[26880-95-5]
[26880-96-6]
[26880-98-8]
[26880-99-9]
[26881-03-8]
[26940-71-6]
[26955-00-0]
[27065-46-9]
[27065-50-5]
[27404-61-1]
[27404-62-2]
[27404-63-3]
[27847-83-2]
[27992-95-6]
[28178-94-1]
[28363-58-8]
[28440-98-4]
[28440-99-5]
[28441-13-6]
[28818-29-3]
[29372-72-3]
[29627-01-8]
[30381-72-7]
[31127-54-5]
[31188-65-5]

Bis(2-hydroxy-4-methylphenyl)methanone, 446
[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 132
[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 114
(4-Hydroxy-3,5-dimethoxyphenyl)(2-hydroxy-3-methoxy-5-methylphenyl)-methanone, 460
(2-Hydroxy-5-methylphenyl)(4-hydroxyphenyl)methanone, 430
Bis[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 450
(2,6-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone, 32
(2,3-Dihydroxyphenyl)(2-hydroxy-6-methoxyphenyl)methanone, 476
(2,3-Dihydroxyphenyl)(2,6-dihydroxyphenyl)methanone, 30
(3,4-Dihydroxyphenyl)(2,3,6-trihydroxyphenyl)methanone, 37
(4-Fluorophenyl)(4-hydroxyphenyl)methanone, 156
(3-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 33
(3,5-Dibromo-4-hydroxyphenyl)phenylmethanone, 44
(2-Hydroxy-5-methylphenyl)(4-methylphenyl)methanone, 280
(2-Hydroxy-5-methylphenyl)(4-methoxyphenyl)methanone, 284
(2-Hydroxy-5-methylphenyl)(3-methylphenyl)methanone, 280
(2-Hydroxy-5-methylphenyl)(3-methoxyphenyl)methanone, 284
(2-Hydroxy-5,6-dimethyl-3-pentylphenyl)phenylmethanone, 131
(2-Hydroxy-6-methyl-3-pentylphenyl)phenylmethanone, 127
(3,4-Dimethoxyphenyl)(4-hydroxyphenyl)methanone, 179
(2,4-Dibromo-3,6-dihydroxyphenyl)phenylmethanone, 365
(2,4-Dihydroxy-3,5-dinitrophenyl)phenylmethanone, 368
(2-Hydroxy-5-methyl-1,3-phenylene)bis[(2-hydroxy-5-methylphenyl)-methanone, 539
Bis(2-hydroxy-5-methylphenyl)methanone, 446
(3-Chloro-2-hydroxy-5-methylphenyl)(2-hydroxy-5-methylphenyl)-methanone, 455
(2-Hydroxy-4-methoxyphenyl)(2-methylphenyl)methanone, 282
[2-Hydroxy-4-(2-methoxyethoxy)phenyl]phenylmethanone, 109
[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl]phenylmethanone, 117
(2-Amino-5-chloro-3-hydroxyphenyl)phenylmethanone, 59
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl] cyclohexylmethanone, 519
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-methoxyphenyl) methanone, 356
[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-methoxyphenyl) methanone, 354
Bis(3,5-dibromo-4-hydroxyphenyl)methanone, 442
Bis[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methanone, 451
(4-Chlorophenyl)(2,6-dihydroxyphenyl)methanone, 396
Bis[3,5-bis(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 451
(4-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 34
1-(3-Benzoyl-2,4,6-trihydroxyphenyl)ethanone, 528
[31656-23-2]
[31684-63-6]
[31709-42-9]
[31772-30-2]
[31772-32-4]
[32192-52-2]
[32229-35-9]
[32541-14-3]
[32541-20-1]
[32541-21-2]
[32541-22-3]
[32541-23-4]
[32541-24-5]
[33059-05-1]
[33213-89-7]
[33257-86-2]
[33417-57-1]
[33417-58-2]
[33427-60-0]
[33427-62-2]
[33427-67-7]
[33427-72-4]
[33561-92-1]
[33561-94-3]
[33621-48-6]
[33621-54-4]
[33634-16-1]
[33785-66-9]
[33829-50-4]
[34007-64-2]
[34171-56-7]
[34171-57-8]
[34171-58-9]
[34171-59-0]
[34171-60-3]
[34171-61-4]
[34171-62-5]
[34171-63-6]
(2,4-Dichloro-6-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 193
(4-Amino-3-hydroxyphenyl)phenylmethanone, 62
(2,3-Dihydroxy-1,4-phenylene)bis[phenylmethanone, 535
(2-Hydroxyphenyl)[4-(methoxymethoxy)phenyl]methanone, 180
[2-[(6-Bromohexyl)oxy]phenyl](4-hydroxyphenyl)methanone, 187
(4-Fluorophenyl)(4-hydroxy-2-methylphenyl)methanone, 244
(2-Hydroxy-5-methylphenyl)(2-methoxy-5-methylphenyl) methanone, 301
Phenyl(2,3,5-trifluoro-4,6-dihydroxyphenyl)methanone, 364
(2,3,4,5,6-Pentafluorophenyl)(2,3,5-trifluoro-4,6-
dihydroxyphenyl)-methanone, 409
Phenyl (3,5,6-trifluoro-2-hydroxy-4-methoxyphenyl)methanone, 63
(2,3,4,5,6-Pentafluorophenyl)(2,3,5-trifluoro-6-hydroxy-4-methoxyphenyl)-methanone, 214
(2-Hydroxy-4-methoxyphenyl)(2,3,4,5,6-pentafluorophenyl) methanone, 215
(2-Hydroxyphenyl)(2,3,4,5,6-pentafluorophenyl)methanone, 143
[2-Hydroxy-4-(isooctyloxy)phenyl]phenylmethanone, 134
[4-(Heptyloxy)phenyl](2-hydroxyphenyl)methanone, 188
(2-Hydroxy-4-methoxyphenyl)(4-hydroxyphenyl)methanone, 433
Bis(2-hydroxy-3,5-diiodophenyl)methanone, 442
Bis(2-hydroxy-5-iodophenyl)methanone, 444
Bis(5-acetyl-2-hydroxyphenyl)methanone, 525
(2,4-Dihydroxy-3-iodophenyl)phenylmethanone, 371
(2,4-Dihydroxy-3,5-diiodophenyl)phenylmethanone, 367
(2,4-Dihydroxy-5-iodophenyl)phenylmethanone, 371
(4-Chloro-2-hydroxy-5-methylphenyl)phenylmethanone, 67
(4-Chloro-2-hydroxy-3,6-dimethylphenyl)phenylmethanone, 88
(2-Hydroxy-3,4,6-trimethylphenyl)phenylmethanone, 106
[2-Hydroxy-3-(1-methylethyl)phenyl]phenylmethanone, 105
(2-Hydroxy-3,5,6-trimethylphenyl)phenylmethanone, 106
(2-Hydroxyphenyl)(3-methylphenyl)methanone, 167
[2-Hydroxy-3-methyl-6-(1-methylethyl)phenyl]phenylmethanone, 115
Bis(4-hydroxy-3,5-dimethoxyphenyl)methanone, 450
(3-Chloro-6-hydroxy-2,4-dimethylphenyl)(2,4-dichlorophenyl) methanone, 258
(3,6-Dichloro-2-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 194
(4-Chlorophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone, 200
(4-Chlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 191
(3,4-Dichlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl) methanone, 190
(2,4-Dichlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl) methanone, 190
(4-Methylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 218
(4-Bromophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 191

[34171-64-7]	(2-Methylphenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 217
[34174-00-0]	(3,4-Dimethylphenyl)(2,3,5-trichloro-6-hydroxyphenyl) methanone, 259
[34174-01-1]	(2,4-Dimethylphenyl)(2,3,5-trichloro-6-hydroxyphenyl) methanone, 258
[34174-02-2]	(3-Chloro-6-hydroxy-2,4-dimethylphenyl)phenylmethanone, 88
[34174-03-3]	(3-Chloro-6-hydroxy-2,4-dimethylphenyl)(2-chlorophenyl) methanone, 262
[34174-04-4]	(4-Bromophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 267
[34174-05-5]	(2,4-Dichloro-6-hydroxyphenyl)(2,4-dichlorophenyl) methanone, 192
[34174-06-6]	(4-Bromophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone, 194
[34174-07-7]	(2,4-Dichloro-6-hydroxyphenyl)(4-methylphenyl)methanone, 223
[34174-08-8]	(2,4-Dichloro-6-hydroxyphenyl)(2-methylphenyl)methanone, 223
[34174-09-9]	(2,4-Dichloro-6-hydroxyphenyl)(2,5-dichlorophenyl)methanone, 192
[34174-11-3]	(2-Chlorophenyl)(2,4-dichloro-6-hydroxyphenyl)methanone, 198
[34174-12-4]	(2-Chlorophenyl)(2,3,5-trichloro-6-hydroxyphenyl)methanone, 191
[34174-13-5]	(3-Chloro-6-hydroxy-2-methylphenyl)(2,5-dichlorophenyl) methanone, 217
[34174-14-6]	(3,5-Dichloro-2-hydroxy-4,6-dimethylphenyl)(3,4-dichlorophenyl) methanone, 257
[34174-15-7]	(3,5-Dichloro-2-hydroxy-4,6-dimethylphenyl)(2,4-dichlorophenyl) methanone, 257
[34174-16-8]	(2-Chlorophenyl)(3,5-dichloro-2-hydroxy-4,6-dimethylphenyl) methanone, 258
[34182-96-2]	(3-Chloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 197
[34182-97-3]	(4-Chlorophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone, 200
[34182-98-4]	(3,5-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 194
[34182-99-5]	(3-Chloro-4-hydroxy-5-methylphenyl)(2,4-dichlorophenyl) methanone, 217
[34183-00-1]	(2,6-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 193
[34183-01-2]	(2,4-Dichlorophenyl)(4-hydroxyphenyl)methanone, 145
[34183-02-3]	(3,4-Dichlorophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone, 264
[34183-03-4]	(2,5-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 193
[34183-04-5]	(2,5-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 193
[34183-05-6]	(2,3-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 191
[34183-06-7]	(3,5-Dichloro-4-hydroxyphenyl)phenylmethanone, 47
[34183-07-8]	(4-Bromophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone, 195
[34183-08-9]	(3-Chloro-4-hydroxy-5-methylphenyl)phenylmethanone, 66
[34183-09-0]	(3-Chloro-4-hydroxy-5-methylphenyl)(4-chlorophenyl) methanone, 221
[34183-10-3]	(3,5-Dichloro-4-hydroxyphenyl)(4-methylphenyl)methanone, 224
[34183-11-4]	(4-Chlorophenyl)(2,6-dichloro-4-hydroxyphenyl)methanone, 200
[34183-12-5]	(4-Bromophenyl)(2,6-dichloro-4-hydroxyphenyl)methanone, 195
[34183-13-6]	(2,6-Dichloro-4-hydroxyphenyl)phenylmethanone, 46

[34174-15-7] (3,5-Dichloro-2-hydroxy-4,6-dimethylphenyl)(2,4-dichlorophenyl) methanone, 257
methanone, 258(3-Chloro-4-hydroxy-5-methylphenyl)(2,4-dichlorophenyl)methanone, 217(2,4-Dichlorophenyl)(4-hydroxyphenyl)methanone, 145(2,5-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 193(2,3-Dichloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 191(4-Bromophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone, 195(3-Chloro-4-hydroxy-5-methylphenyl)phenylmethanone, 66(3-Chloro-4-hydroxy-5-methylphenyl)(4-chlorophenyl)methanone, 221[3183-11(4-Bromophenyl)(2,6-dichloro-4-hydroxyphenyl)methanone, 195

[34183-14-7]	(2,6-Dichloro-4-hydroxyphenyl)(4-methylphenyl)methanone,
[34183-15-8]	(4-Chlorophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone, 271
[34183-16-9]	(4-Bromophenyl)(4-hydroxy-2,6-dimethylphenyl)methanone, 267
[34183-17-0]	(3,5-Dichloro-4-hydroxyphenyl)(2-methylphenyl)methanone, 224
[34183-18-1]	(2-Chlorophenyl)(3,5-dichloro-4-hydroxyphenyl)methanone, 199
[34183-19-2]	(3-Chloro-4-hydroxy-5-methylphenyl)(2-chlorophenyl) methanone, 221
[34183-20-5]	(3,5-Dichloro-4-hydroxyphenyl)(4-methoxyphenyl)methanone, 228
[34189-57-6]	(3,5-Dichloro-4-hydroxyphenyl)(3,4-dichlorophenyl)methanone, 194
[34189-58-7]	(3-Chloro-4-hydroxyphenyl)(4-chlorophenyl)methanone, 207
[34199-74-1]	(4-Chlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 270
[34199-75-2]	(2,4-Dichloro-6-hydroxyphenyl)phenylmethanone, 46
[34203-52-6]	(2,4-Dichlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 264
[34294-62-7]	(2-Chloro-4-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 197
[34425-64-4]	(2-Hydroxy-4,6-dimethoxyphenyl)phenylmethanone, 101
[34425-65-5]	(2-Hydroxy-4,6-dimethoxyphenyl)(3-hydroxyphenyl)methanone, 436
[34786-96-4]	(2,4-Dichloro-6-hydroxyphenyl)(2,6-dichlorophenyl)methanone, 192
[35040-36-9]	(2,3-Dimethoxyphenyl)(2-hydroxy-5-methoxyphenyl)methanone, 303
[35040-37-0]	(2,3-Dihydroxyphenyl)(2,5-dihydroxyphenyl)methanone, 30
[35040-42-7]	(2,3-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl) methanone, 302
[35042-49-0]	(2,3-Dimethoxyphenyl)(4-hydroxy-3-methoxyphenyl) methanone, 303
[35042-50-3]	Bis(2,3-dihydroxyphenyl)methanone, 28
[35486-63-6]	(3-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone, 255
[35486-64-7]	(3-Aminophenyl)(2-hydroxyphenyl)methanone, 162
[35582-86-6]	(3-Chloro-2-hydroxyphenyl)phenylmethanone, 52
[35697-92-8]	[2-Hydroxy-4-(3-methylphenoxy)phenyl][4-(octyloxy)phenyl] methanone, 361
[35697-93-9]	[4-(4-Butoxyphenoxy)-2-hydroxyphenyl](4-butoxyphenyl) methanone, 360
[35697-94-0]	[2-Hydroxy-4-[4-(octyloxy)phenoxy]phenyl][4-(octyloxy)phenyl] methanone, 363
[35697-95-1]	[4-(4-Dodecylphenoxy)-2-hydroxyphenyl](4-dodecylphenyl) methanone, 364
[35697-96-2]	[4-(4-Butoxyphenoxy)-2-hydroxyphenyl](3-methylphenyl) methanone, 357
[35697-97-3]	[2-Hydroxy-4-[4-(octyloxy)phenoxy]phenyl](3-methylphenyl) methanone, 361
[35697-98-4]	[4-(4-Dodecylphenoxy)-2-hydroxyphenyl](3-methylphenyl) methanone, 362
[35697-99-5]	[4-(1,1-Dimethylethyl)phenyl][4-(3,4-dimethylphenoxy)-2-hydroxyphenyl]-methanone, 358
[35698-00-1]	[4-[4-(1,1-Dimethylethyl)-2,6-dimethylphenoxy]-2-hydroxyphenyl]-[4-(1,1,3,3-tetramethylbutyl)phenyl]methanone, 363

[35698-01-2]	(3,4-Dimethylphenyl)[2-hydroxy-4-(4-nonylphenoxy)phenyl] methanone, 362
[35698-02-3]	(3,4-Dichlorophenyl)[4-[4-(1,1-dimethylethyl)phenoxy]-2-hydroxyphenyl]-methanone, 355
[35698-03-4]	[4-(4-Bromophenoxy)-2-hydroxyphenyl](3,4-dichlorophenyl) methanone, 342
[35698-04-5]	[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)] bis[phenylmethanone, 558
[35698-05-6]	[Sulfonylbis[6-hydroxy-4-(octyloxy)-3,1-phenylene]] bis[phenylmethanone, 559
[35698-06-7]	[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bis[(2-methylphenyl)-methanone, 558
[35698-16-9]	(5-Dodecyl-2-hydroxyphenyl)phenylmethanone, 139
[35698-17-0]	(5-Dodecyl-2-hydroxy-3-nitrophenyl)phenylmethanone, 139
[35698-18-1]	(2-Hydroxy-3-nitrophenyl)[4-(1-methylethyl)phenyl] methanone, 295
[35698-19-2]	(2-Hydroxy-5-nitrophenyl)[4-(1-methylethyl)phenyl] methanone, 295
[35698-22-7]	(4-Dodecylphenyl)(2-hydroxyphenyl)methanone, 190
[35698-23-8]	(4-Dodecylphenyl)(2-hydroxy-5-nitrophenyl)methanone, 359
[35698-24-9]	(4-Dodecylphenyl)(2-hydroxy-3-nitrophenyl)methanone, 359
[35698-28-3]	(4-Dodecylphenyl)(2-hydroxy-3-methylphenyl)methanone, 360
[35698-29-4]	(4-Dodecylphenyl)(2-hydroxy-3-methyl-5nitrophenyl)methanone, 359
[35698-39-6]	(2-Hydroxy-4-phenoxyphenyl)phenylmethanone, 125
[35698-40-9]	(4-Chlorophenyl)(2-hydroxy-4-phenoxyphenyl)methanone, 342
[35698-42-1]	[4-(1,1-Dimethylethyl)phenyl](2-hydroxy-4-phenoxyphenyl) methanone, 355
[35698-44-3]	[[4-(1,1-Dimethylethyl)phenoxy]-2-hydroxyphenyl] [4-(1,1-dimethylethyl)-phenyl]methanone, 360
[35698-46-5]	[2-Hydroxy-4-(methylphenoxy)phenyl]phenylmethanone, 130
[35698-48-7]	(4-Chlorophenyl)[2-hydroxy-4-(4-methylphenoxy)phenyl] methanone, 350
[35698-49-8]	[4-(4-Butylphenoxy)-2-hydroxyphenyl]phenylmethanone, 137
[35698-50-1]	[2-Hydroxy-4-(4-nonylphenoxy)phenyl]phenylmethanone, 140
[35698-51-2]	[4-(3-Bromophenoxy)-2-hydroxyphenyl]phenylmethanone, 125
[35698-52-3]	(4-Butoxyphenyl)(2-hydroxy-4-phenoxyphenyl)methanone, 356
[35698-53-4]	(2-Hydroxy-4-phenoxyphenyl)[4-(octyloxy)phenyl] methanone, 360
[35698-54-5]	[4-(Dodecyloxy)phenyl](2-hydroxy-4-phenoxyphenyl) methanone, 362
[35698-55-6]	(3-Butoxyphenyl)(2-hydroxy-4-phenoxyphenyl)methanone, 355
[35698-56-7]	(2-Hydroxy-4-phenoxyphenyl)[3-(octyloxy)phenyl]methanone, 360
[35698-57-8]	[3-(Dodecyloxy)phenyl](2-hydroxy-4-phenoxyphenyl) methanone, 362

[35698-58-9]	[4-(4-Butylphenoxy)-2-hydroxyphenyl](3-methylphenyl) methanone, 357
[35698-59-0]	(4-Butoxyphenyl)[2-hydroxy-4-(4-methylphenoxy)phenyl] methanone, 358
[35698-60-3]	[2-Hydroxy-4-(4-methylphenoxy)phenyl][4-(octyloxy)phenyl] methanone, 361
[35698-61-4]	[4-(Dodecyloxy)phenyl][2-hydroxy-4-(4-methylphenoxy)phenyl] methanone, 363
[35698-62-5]	(4-Butoxyphenyl)[2-hydroxy-4-(3-methylphenoxy)phenyl] methanone, 357
[35836-41-0]	(2,3-Dihydroxy-4-methoxyphenyl)phenylmethanone, 378
[35839-45-3]	(2-Hydroxyphenyl)[4-(1-methylethyl)phenyl]methanone, 181
[35839-46-4]	[Sulfinylbis(6-hydroxy-4-methoxy-3,1-phenylene)] bis[phenylmethanone, 556
[35839-47-5]	[Sulfinylbis[6-hydroxy-4-(octyloxy)-3,1-phenylene]] bis[phenylmethanone, 557
[35839-48-6]	[Sulfonylbis(4,6-dihydroxy-3,1-phenylene)]bis [phenylmethanone, 557
[36118-66-8]	[2-Hydroxy-4-(2,4,6-trimethylphenoxy)phenyl][4-(isononyloxy) phenyl]-methanone, 362
[36130-57-1]	[1,1'-Biphenyl]-4-yl(2,4-dihydroxyphenyl)methanone, 508
[36130-58-2]	[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(octyloxy)phenyl]methanone, 507
[36130-59-3]	(2,4-Dihydroxyphenyl)(2,4-dimethylphenyl)methanone, 407
[36130-60-6]	(2,4-Dimethylphenyl)[2-hydroxy-4-(pentyloxy)phenyl] methanone, 350
[36130-62-8]	[2-Hydroxy-4-(3-methylbutoxy)phenyl]phenylmethanone, 124
[36130-66-2]	[2-Hydroxy-4-[2-(octylthio)ethoxy]phenyl]phenylmethanone, 138
[36130-67-3]	[4-(Dodecyloxy)-2-hydroxyphenyl](4-methylphenyl)methanone, 359
[36130-68-4]	[2-Hydroxy-4-(octadecyloxy)phenyl](4-methoxyphenyl) methanone, 363
[36412-61-0]	(2-Hydroxyphenyl)(3-nitrophenyl)methanone, 157
[36414-88-7]	(3,4-Dichlorophenyl)[2-hydroxy-4-(octyloxy)phenyl] methanone, 351
[36414-89-8]	[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(1-propylbutoxy)phenyl] methanone, 507
[36414-90-1]	[1,1'-Biphenyl]-4-yl[4-(2-butenyloxy)-2-hydroxyphenyl] methanone, 506
[36414-91-2]	[4-(4-Aminophenoxy)-2-hydroxyphenyl][1,1'-biphenyl]-4ylmethanone, 507
[36414-93-4]	1-[2-(2,4-Dihydroxybenzoyl)phenyl]ethanone, 526
[36414-94-5]	(2,4-Dihydroxyphenyl)(4'-nitro[1,1'-biphenyl]-4-yl)methanone, 508
[36414-95-6]	[1,1'-Biphenyl]-4-yl[4-(cyclohexyloxy)-2-hydroxyphenyl] methanone, 507
[36415-12-0]	[4-(Acetyloxy)-2-hydroxyphenyl][1,1'-biphenyl]-4-yl methanone, 505

[36419-22-4]	[1,1'-Biphenyl]-4-yl[4-(hexyloxy)-2-hydroxyphenyl] methanone, 507
[36419-24-6]	[1,1'-Biphenyl]-4-yl[4-(decyloxy)-2-hydroxyphenyl] methanone, 508
[36419-25-7]	[1,1'-Biphenyl]-4-yl[4-(hexadecyloxy)-2-hydroxyphenyl] methanone, 508
6419-33-7]	(2,4-Dihydroxyphenyl)[4-(methylsulfonyl)phenyl]methanone, 406
[36419-34-8]	(3,4-Dichlorophenyl)(2,4-dihydroxyphenyl)methanone, 393
[36419-35-9]	(2,4-Dihydroxyphenyl)(3,5-dimethylphenyl)methanone, 407
[36419-36-0]	[2-Hydroxy-4-[(4-nitrophenyl)methoxy]phenyl] phenylmethanone, 130
[36419-37-1]	[4-(1,1-Dimethylethyl)phenyl][2-hydroxy-4-(octyloxy)phenyl] methanone, 359
[36469-47-3]	[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(3-hydroxypropoxy)phenyl] methanone, 510
[36469-48-4]	[1,1'-Biphenyl]-4-yl[2-hydroxy-4-(4-nitrophenoxy)phenyl] methanone, 506
[36469-90-6]	[2-Hydroxy-4-(octyloxy)phenyl](4-methoxyphenyl) methanone, 355
[36488-90-1]	[1,1'-Biphenyl]-4-yl[4-(1,1-dimethylethoxy)-2-hydroxyphenyl] methanone, 506
[36896-99-8]	(2-Hydroxy-4,5-dimethoxyphenyl)phenylmethanone, 100
[37567-35-4]	Bis(4-hydroxy-3-nitrophenyl)methanone, 445
[37567-41-2]	(4-Hydroxy-3-nitrophenyl)(4-nitrophenyl)methanone, 212
[37567-42-3]	(3-Amino-4-hydroxyphenyl)(4-aminophenyl)methanone, 214
[37567-45-6]	(4-Hydroxy-3-nitrophenyl)(3-nitrophenyl)methanone, 211
[37567-47-8]	(3-Amino-4-hydroxyphenyl)(3-aminophenyl)methanone, 214
[37570-57-3]	(2,6-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl) methanone, 305
[37728-10-2]	(2,3-Dihydroxyphenyl)(2,4-dihydroxyphenyl)methanone, 30
[37728-15-7]	(2,3-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone, 31
[37883-98-0]	(2-Chloro-5-nitrophenyl)(2-hydroxy-5-methylphenyl) methanone, 220
[37883-99-1]	(2-Chlorophenyl)(2,5-dihydroxyphenyl)methanone, 394
[37884-00-7]	(2,4-Dichlorophenyl)(2,5-dihydroxyphenyl)methanone, 393
[37884-01-8]	(2-Chloro-4-nitrophenyl)(2,5-dihydroxyphenyl)methanone, 392
[38071-50-0]	(2,4-Dimethoxy-6-methylphenyl)(2,4,6-trihydroxyphenyl) methanone, 471
[38304-24-4]	(4-Chlorophenyl)(4'-hydroxy[1,1'-biphenyl]-4-yl)methanone, 501
[38459-58-4]	Cyclohexyl(4-hydroxyphenyl)methanone, 515
[38824-12-3]	(2-Aminophenyl)(3-hydroxyphenyl)methanone, 162
[39000-51-6]	[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 114
[39803-53-7]	Bis(2,4-dihydroxy-6-methylphenyl)methanone, 494
[39803-58-2]	(3,5-Dichloro-2,4-dihydroxy-6-methylphenyl)(2,4-dihydroxy-6-methyl-phenyl)methanone, 495

[39803-63-9]	(3,5-Dichloro-2-hydroxy-4-methoxy-6-methylphenyl) (2,4-dihydroxy-6-methyl-phenyl)methanone, 483
[39803-81-1]	(3,5-Dibromo-2-hydroxy-6-methoxy-4-methylphenyl)
	(2,4-dihydroxy-6-methyl-phenyl)methanone, 482
0444-43-7]	(2,4-Dihydroxyphenyl)(4-methylphenyl)methanone, 402
[40990-66-7]	(2,4-Dibromo-6-hydroxy-3-methoxyphenyl)phenylmethanone, 64
[40990-70-3]	(2,5-Dihydroxy-4-nitrophenyl)phenylmethanone, 372
[40990-72-5]	(2-Hydroxy-5-methoxy-4-nitrophenyl)phenylmethanone, 71
[40990-74-7]	(2-Bromo-6-hydroxy-3-methoxy-4-nitrophenyl) phenylmethanone, 63
[40990-79-2]	(2,4-Dihydroxy-5-nitrophenyl)phenylmethanone, 372
[41123-21-1]	(2-Hydroxy-4-methoxy-5-nitrophenyl)phenylmethanone, 71
[41351-30-8]	(2,4-Dimethoxyphenyl)(4-hydroxyphenyl)methanone, 178
[41351-32-0]	(4-Hydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 184
[41796-26-3]	(3-Chloro-2-hydroxyphenyl)(3-chlorophenyl)methanone, 207
[42019-78-3]	(4-Chlorophenyl)(4-hydroxyphenyl)methanone, 153
[42045-60-3]	(3,4-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl) methanone, 306
[42045-61-4]	(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis [(4-methoxyphenyl)-methanone, 551
[42045-62-5]	(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl) bis[phenylmethanone, 550
[42045-63-6]	(2,5-Dihydroxy-4-methoxyphenyl)(4-methoxyphenyl) methanone, 420
[42204-63-7]	(2-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 32
[42404-41-1]	(3-Amino-4-hydroxyphenyl)phenylmethanone, 61
[42470-88-2]	(2,4-Dihydroxyphenyl)(5-hydroxy-2-methylphenyl) methanone, 475
[42470-91-7]	(3,6-Dihydroxy-2,4-dimethylphenyl)(2,4-dihydroxyphenyl) methanone, 492
[42594-58-1]	(2,6-Dimethoxyphenyl)(3-hydroxy-6-methoxy-2,4dimethylphenyl) methanone, 336
[42594-59-2]	(3,6-Dihydroxy-2,4-dimethylphenyl)(2-hydroxy-6methoxyphenyl) methanone, 485
[42594-60-5]	(3,6-Dihydroxy-2,4-dimethylphenyl)(2,6-dihydroxyphenyl) methanone, 492
[42832-64-4]	(2-Hydroxy-5-methoxyphenyl)(2,4,6-trimethoxyphenyl) methanone, 328
[42833-48-7]	(2-Hydroxy-4,5-dimethoxyphenyl)(2-methoxyphenyl) methanone, 307
[42833-51-2]	(2-Hydroxy-5-methoxyphenyl)(2-methoxyphenyl)methanone, 288
[42833-53-4]	(2,6-Dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl) methanone, 326
[42833-55-6]	(2,6-Dimethoxyphenyl)(2-hydroxy-3,4-dimethoxyphenyl) methanone, 326

[42833-59-0]	(2,5-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl) methanone, 326
[42833-60-3]	(2-Hydroxy-3,4,5-trimethoxyphenyl)(2-methoxyphenyl) methanone, 329
[42833-67-0]	(2-Hydroxy-3,4-dimethoxyphenyl)(2,4,6-trimethoxyphenyl) methanone, 340
[42833-68-1]	(2-Hydroxy-4,5-dimethoxyphenyl)(2,4,6-trimethoxyphenyl) methanone, 341
[42833-83-0]	(2,3-Dimethoxyphenyl)(2-hydroxy-3,4,5-trimethoxyphenyl) methanone, 338
[42833-85-2]	(2-Hydroxy-3,4,5-trimethoxyphenyl)(2,4,6-trimethoxyphenyl) methanone, 348
[42833-88-5]	(2-Hydroxy-3,4,5-trimethoxyphenyl)phenylmethanone, 109
[42833-89-6]	(2,4-Dihydroxy-3,5-dimethoxyphenyl)phenylmethanone, 383
[42833-90-9]	(2,5-Dihydroxy-4-methoxyphenyl)(2-methoxyphenyl) methanone, 420
[42833-95-5]	[2-Hydroxy-4,5-dimethoxy-3-(2-propenyl)phenyl] (2,4,6-trimethoxyphenyl)-methanone, 352
[43221-40-5]	(2,4-Dihydroxy-6-methylphenyl)phenylmethanone, 376
[43221-41-6]	[2,4-Dihydroxy-5-(1-phenylethyl)phenyl]phenylmethanone, 389
[46795-43-1]	(2,4-Dichlorophenyl)(2-hydroxyphenyl)methanone, 145
[46795-44-2]	(2,4-Difluorophenyl)(2-hydroxyphenyl)methanone, 147
[46863-20-1]	(2-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone, 182
[48177-42-0]	(4-Ethenylphenyl)(2-hydroxy-4-methoxyphenyl)methanone, 292
[50454-58-5]	(3-Hydroxy-2-methylphenyl)(2-methylphenyl)methanone, 281
[50537-80-9]	(5-Ethyl-2,4-dihydroxyphenyl)phenylmethanone, 382
[50597-28-9]	(2-Hydroxy-6-methylphenyl)phenylmethanone, 76
[50685-40-0]	(2-Chlorophenyl)(2,4-dihydroxyphenyl)methanone, 394
[50685-41-1]	(5-Chloro-2,4-dihydroxyphenyl)(4-chlorophenyl)methanone, 413
[50685-42-2]	(5-Chloro-2,4-dihydroxyphenyl)(2-chlorophenyl)methanone, 413
[50685-43-3]	(2-Chlorophenyl)(5-hexyl-2,4-dihydroxyphenyl)methanone, 423
[50739-53-2]	[4-(1,1-Dimethylethyl)phenyl](2-hydroxy-4-methoxyphenyl) methanone, 334
[51106-90-2]	(2-Hydroxy-4,5-dimethoxyphenyl)(3-methoxyphenyl) methanone, 308
[51106-93-5]	(5-Ethoxy-2-hydroxy-4-methoxyphenyl)(3-ethoxyphenyl) methanone, 336
[51339-44-7]	(3,5-Dinitrophenyl)(4-hydroxyphenyl)methanone, 147
[51439-89-5]	(4-Hydroxy-3-methoxyphenyl)phenylmethanone, 83
[51787-06-5]	(3,5-Dihydroxy-4-nitrophenyl)phenylmethanone, 373
[51974-19-7]	(2-Hydroxyphenyl)(2-methylphenyl)methanone, 166
[52117-23-4]	(2,4-Dihydroxy-3-methylphenyl)phenylmethanone, 375
[52189-86-3]	(4,4'-Dihydroxy[1,1'-biphenyl]-3-yl)phenylmethanone, 509
[52196-46-0]	[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl] phenylmethanone, 122

[52196-47-1]	[5-Chloro-3-(1,1-dimethylethyl)-2-hydroxyphenyl] phenylmethanone, 113
[52220-71-0]	(2,4-Dihydroxy-5-methylphenyl)phenylmethanone, 376
[52220-72-1]	[2-Hydroxy-3-methyl-4-(octyloxy)phenyl]phenylmethanone, 137
[52220-73-2]	[2-Hydroxy-5-methyl-4-(octyloxy)phenyl]phenylmethanone, 137
[52479-85-3]	(2,3,4-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 40
[52591-10-3]	(4-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 34
[52811-37-7]	(2,5-Dihydroxy-4-methoxyphenyl)phenylmethanone, 379
[52811-38-8]	(5-Ethoxy-2-hydroxy-4-methoxyphenyl)phenylmethanone, 108
[52870-68-5]	(2,3-Dihydroxyphenyl)phenylmethanone, 11
[52980-94-6]	(5-Chloro-2-hydroxyphenyl)(2-methylphenyl)methanone, 234
[52980-95-7]	(5-Chloro-2-hydroxyphenyl)(3-methylphenyl)methanone, 234
[52981-01-8]	(4-Hydroxyphenyl)(2-methylphenyl)methanone, 168
[53250-52-5]	(3,5-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 38
[53250-54-7]	(3,5-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl) methanone, 327
[53271-51-5]	(2-Hydroxy-5-methylphenyl)(2-methoxyphenyl)methanone, 284
[53347-30-1]	(5-Chloro-2-hydroxy-3-methylphenyl)phenylmethanone, 67
[53669-31-1]	(2-Hydroxy-5-methylphenyl)(3-nitrophenyl)methanone, 248
[53669-32-2]	(2-Hydroxy-5-methylphenyl)(4-nitrophenyl)methanone, 248
[54439-82-6]	(3,5-Dihydroxy[1,1'-biphenyl]-2-yl)phenylmethanone, 509
[54439-89-3]	(2-Amino-4-hydroxy-6-methylphenyl)phenylmethanone, 84
[54439-92-8]	(4-Amino-2-hydroxy-6-methylphenyl)phenylmethanone, 85
[54468-79-0]	(2-Hydroxy-4-methylphenyl)(2-methoxy-4-methylphenyl) methanone, 300
[54468-80-3]	(2-Hydroxy-3,4-dimethylphenyl)(2-methoxy-3,4-dimethylphenyl) methanone, 335
[54468-82-5]	(2-Hydroxy-4,5-dimethylphenyl)(2-methoxy-4,5-dimethylphenyl) methanone, 335
[54808-42-3]	[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl] (3,4,5-trimethoxyphenyl) methanone, 358
[54808-43-4]	[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-hydroxy-3,5-dimethoxyphenyl)-methanone, 463
[54808-44-5]	(4-Hydroxy-3,5-dimethoxyphenyl)(4-methoxyphenyl) methanone, 309
[54903-59-2]	[3-Hydroxy-4-(methylamino)phenyl]phenylmethanone, 85
[54921-19-6]	(2-Hydroxy-4,5-dimethylphenyl)(4-methoxyphenyl)methanone, 300
[54923-64-7]	(3,4-Dichloro-2-hydroxyphenyl)phenylmethanone, 46
[55018-96-7]	(2,4-Dihydroxy-6-methylphenyl)(2,4,6-trihydroxyphenyl) methanone, 497
[55044-96-7]	[4-(1,1-Dimethylethyl)phenyl](4-hydroxyphenyl)methanone, 185
[55051-85-9]	(2,6-Dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl) methanone, 476
[55051-89-3]	(2,6-Dihydroxy-4-methoxyphenyl)(4-methoxyphenyl) methanone, 420

[55082-33-2] (5-Bromo-2-hydroxyphenyl)phenylmethanone, 51
[55137-06-9]
[55191-20-3]
[55270-71-8]
[55270-73-0]
[55270-74-1]
[55270-76-3]
[55270-77-4]
[55270-78-5]
[55270-80-9]
[55270-81-0]
[55909-78-9]
[55913-02-5]
[56308-11-3]
[56394-67-3]
[56394-72-0]
[56394-78-6]
[56394-91-3]
[56609-45-1]
[57436-75-6]
[57654-18-9]
[57855-38-6]
[58085-73-7]
[58115-05-2]
[58115-06-3]
[58115-11-0]
[58115-12-1]
[58430-25-4]
[59190-66-8]
[59410-99-0]
[59623-15-3]
[59623-16-4]
[59623-21-1]
[59746-91-7]
[59746-92-8]
[59746-93-9]
(3,6-Dihydroxy-2-methoxyphenyl)phenylmethanone, 380
(3-Chloro-4-hydroxyphenyl)phenylmethanone, 52
(2-Chlorophenyl)(4-hydroxyphenyl)methanone, 151
(2-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone, 231
(2-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone
(Hydrochloride), 255
(2-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone, 243
(3-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone, 231
(3-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone (Hydrochloride), 255
(3-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone, 243
(3-Bromophenyl)(3-fluoro-2-hydroxy-5-methylphenyl) methanone, 218
[2-Hydroxy-4-(isodecyloxy)phenyl]phenylmethanone, 138
[5-(1,1-Dimethylethyl)-2-hydroxy-4-(octyloxy)phenyl] phenylmethanone, 139
(2,4-Dihydroxy-6-methoxyphenyl)(4-hydroxyphenyl) methanone, 475
(4-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 270
(4-Chlorophenyl)(4-ethyl-2-hydroxyphenyl)methanone, 269
(4-Ethyl-2-hydroxyphenyl)(4-fluorophenyl)methanone, 273
(3-Ethyl-2-hydroxyphenyl)phenylmethanone, 90
(3,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 38
(2-Benzoylphenyl)(3-hydroxyphenyl)methanone, 533
(2,4-Dihydroxy-3-methylphenyl)(2-hydroxyphenyl) methanone, 473
(2-Hydroxy-5-methylphenyl)(3-hydroxyphenyl)methanone, 430
(2-Hydroxy-5-nonylphenyl)phenylmethanone, 136
(2,5-Dihydroxy-4-methoxyphenyl)(3-hydroxy-4-methoxyphenyl) methanone, 481
(2,5-Dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl) methanone, 475
(2-Hydroxy-4,5-dimethoxyphenyl)(4-methoxyphenyl) methanone, 308
(4-Hydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone, 34
(4,5-Dichloro-2-hydroxyphenyl)phenylmethanone, 48
(4-Hydroxy-2,6-dimethoxyphenyl)(2-nitrophenyl)methanone, 278
(2-Hydroxyphenyl)[2-(methoxymethoxy)phenyl]methanone, 180
(4-Ethyl-2-hydroxy-5-methoxyphenyl)phenylmethanone, 106
(4-Ethyl-2,5-dihydroxyphenyl)phenylmethanone, 381
(5-Ethyl-2-hydroxy-4-methoxyphenyl)phenylmethanone, 107
(2,4-Dihydroxy-3-nitrophenyl)phenylmethanone, 371
(5-Hexyl-2,4-dihydroxyphenyl)phenylmethanone, 388
(2,4-Dichlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 225
[59746-94-0] (2,4-Dichlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl] methanone, 312
[59746-95-1] (2-Chlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl] methanone, 317
[59746-96-2] (4-Chlorophenyl)[2-hydroxy-5-(1-methylpropyl)phenyl] methanone, 318
[59746-97-3]
[59802-03-8]
[59954-92-6]
[59954-93-7]
[59954-97-1]
[60013-02-7]
[60014-09-7]
[60044-21-5]
[60138-98-9]
[60302-91-2]
[60487-86-7]
[60556-46-9]
[60556-49-2]
[60805-30-3]
[60805-31-4]
[61002-51-5]
[61002-52-6]
[61002-53-7]
[61002-54-8]
[61002-55-9]
[61002-59-3]
[61101-84-6]
[61101-86-8]
[61101-87-9]
[61101-88-0]
[61227-12-1]
[61227-13-2] (2,4-Dihydroxy-3-methylphenyl)(3-hydroxyphenyl) methanone, 473
[61227-14-3] (2,4-Dihydroxy-5-methylphenyl)(3-hydroxyphenyl) methanone, 473
[61227-15-4] (2,4-Dihydroxyphenyl)(5-hydroxy-2-methoxyphenyl) methanone, 477
[61227-16-5] (2,4-Dihydroxy-6-methylphenyl)(5-hydroxy-2-methoxyphenyl) methanone, 480
[61227-17-6] (2,4-Dihydroxy-3-methylphenyl)(5-hydroxy-2-methoxyphenyl) methanone, 480
[61234-44-4] (2,4-Dihydroxyphenyl)(2,5-dihydroxyphenyl)methanone, 31 [61234-45-5]
[61234-46-6]
[61466-88-4]
[61709-37-3]
[61750-29-6]
[61785-35-1]
[61785-36-2]
[61785-37-3]
[61852-15-1]
[61871-78-1]
[62064-85-1]
[62064-88-4]
[62064-89-5]
[62261-95-4]
[62261-96-5]
[62262-03-7]
[62433-26-5]
[62433-27-6]
[61234-68-2] (2,4-Dihydroxy-5-methylphenyl)(3,5-dihydroxyphenyl) methanone, 491
[61445-49-6] $\operatorname{Bis}(3,4$-dihydroxyphenyl)methanone, 30
[61445-50-9] (2,4-Dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone, 31
[61445-51-0] (3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 37
[61445-52-1] (3,4-Dihydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone, 37
[61466-73-7] (4-Chlorophenyl)(2-ethyl-4-hydroxyphenyl)methanone, 269
[61466-78-2] (2,4-Dichlorophenyl)(3-ethyl-2-hydroxyphenyl)methanone, 263
[61466-80-6] (4-Chlorophenyl)(3-ethyl-2-hydroxyphenyl)methanone, 269
[61466-81-7] (4-Chlorophenyl)(2-hydroxy-5-propylphenyl)methanone, 293
[61466-83-9] (2,4-Dichlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 263
[61466-85-1] (3-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 269
[61466-87-3] (3,4-Dichlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 264
[61736-69-4] (2-Nitrophenyl)(2,4,6-trihydroxyphenyl)methanone, 468
[61736-72-9] (2-Aminophenyl)(2-hydroxy-4,6-dimethoxyphenyl) methanone, 298
[61736-75-2] (2-Hydroxy-4,6-dimethoxyphenyl)(2-nitrophenyl)methanone, 277
[61750-25-2] (5-Ethyl-2-hydroxyphenyl)(4-methylphenyl)methanone, 297
[61750-26-3] (4-Chlorophenyl)(4,5-diethyl-2-hydroxyphenyl)methanone, 316
(2,4-Dihydroxy-5-methylphenyl)(2,5-dihydroxyphenyl) methanone, 490
(2,4-Dihydroxy-3-methylphenyl)(2,5-dihydroxyphenyl) methanone, 490
(4-Ethyl-2-hydroxyphenyl)(3-fluorophenyl)methanone, 272
(2,4-Dichlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl] methanone, 311
(5-Ethyl-2-hydroxyphenyl)[4-(trifluoromethyl)phenyl] methanone, 290
(5-Chloro-2-hydroxyphenyl)(2-chlorophenyl)methanone, 208
(5-Chloro-2-hydroxyphenyl)(3-chlorophenyl)methanone, 208
(5-Chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone, 209
(3-Chloro-6-hydroxy-4-methoxy-2,5-dimethylphenyl)
(2,4-dihydroxy3,6-dimethyl-phenyl)methanone, 487
(2-Amino-5-hydroxyphenyl)(2-chlorophenyl)methanone, 213
(4-Hydroxy-3-methylphenyl)(3-methylphenyl)methanone, 282
[3-(Hydroxymethyl)phenyl](4-Hydroxy-3-methylphenyl) methanone, 285
[4-Hydroxy-3-(hydroxymethyl)phenyl](3-methylphenyl) methanone, 282
(2-Hydroxy-4,6-dimethylphenyl)(4-methylphenyl)methanone, 298
(2-Hydroxy-4,6-dimethylphenyl)(2-methylphenyl)methanone, 298
(4-Hydroxy-2,5-dimethylphenyl)phenylmethanone, 94
(4-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone, 204
(5-Fluoro-2-hydroxyphenyl)(2-nitrophenyl)methanone, 209
[62433-28-7] [62433-29-8] [62433-30-1]
[62433-31-2] [62492-57-3] [62492-58-4] [62492-59-5] [62492-60-8] [62495-36-7] [62495-37-8] [62495-38-9]
[62495-39-0]
[62495-40-3]
[62495-41-4]
[62495-45-8]
[62495-96-9]
[62666-37-9]
[62666-38-0]
[62810-39-3]
[62810-42-8]
[62810-45-1]
[62810-46-2]
[62810-47-3]
[62810-48-4]
[62810-49-5]
[62810-50-8]
[62810-52-0]
[62810-53-1]
[62810-54-2]
[62810-55-3]
[62810-56-4]
[62810-57-5]
[62967-10-6]
[62967-12-8]
[63411-81-4]
[63564-99-8]
[63565-01-5]
(3-Bromophenyl)(5-fluoro-2-hydroxyphenyl)methanone, 201
(5-Fluoro-2-hydroxyphenyl)(4-methylphenyl)methanone, 243
(5-Fluoro-2-hydroxyphenyl)(4-nitrophenyl)methanone, 210
(5-Chloro-2-hydroxyphenyl)(3-fluorophenyl)methanone, 203
(2-Amino-5-chlorophenyl)(2-hydroxyphenyl)methanone, 160
(2-Amino-5-chlorophenyl)(3-hydroxyphenyl)methanone, 160
(2-Amino-4-chloro-5-hydroxyphenyl)phenylmethanone, 59
(2-Amino-5-chloro-4-hydroxyphenyl)phenylmethanone, 59
(2-Hydroxy-4-methoxyphenyl)(2-methoxyphenyl)methanone, 286
(2-Hydroxy-4-methoxyphenyl)(3-methoxyphenyl)methanone, 286
(4-Hydroxy-3,5-dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl) methanone, 457
(2-Hydroxy-4-methoxyphenyl)(3,4,5-trimethoxyphenyl) methanone, 328
[4-(Acetyloxy)-3,5-dimethoxyphenyl](2-hydroxy-4-methoxyphenyl)-methanone, 330
(3,4-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl) methanone, 327
(2,5-Dihydroxy-4-methoxyphenyl)(3,4-dimethoxyphenyl) methanone, 421
(2,5-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl) methanone, 305
(4-Fluorophenyl)(2-hydroxyphenyl)methanone, 155
(3-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone, 203
(4-Chlorophenyl)(3-hydroxyphenyl)methanone, 153
(3-Chlorophenyl)(3-hydroxyphenyl)methanone, 152
(2-Chloro-5-hydroxyphenyl)(4-chlorophenyl)methanone, 207
(4-Bromophenyl)(3-hydroxyphenyl)methanone, 149
(4-Fluorophenyl)(3-hydroxyphenyl)methanone, 156
(3-Hydroxyphenyl)[3-(trifluoromethyl)phenyl]methanone, 163
(3-Hydroxyphenyl)(4-methylphenyl)methanone, 168
(3-Bromophenyl)(3-hydroxyphenyl)methanone, 148
(3-Fluoro-4-methylphenyl)(3-hydroxyphenyl)methanone, 166
(2-Chlorophenyl)(3-hydroxyphenyl)methanone, 151
(3,4-Dichlorophenyl)(3-hydroxyphenyl)methanone, 146
(3-Fluorophenyl)(3-hydroxyphenyl)methanone, 155
(2,4-Dichlorophenyl)(3-hydroxyphenyl)methanone, 145
(3,4-Dimethylphenyl)(3-hydroxyphenyl)methanone, 176
(2,3-Dichloro-4-hydroxyphenyl)(4-fluorophenyl)methanone, 196
(2,3-Dichloro-4-hydroxyphenyl)phenylmethanone, 196
(2,6-Dihydroxyphenyl)phenylmethanone, 15
[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl] phenylmethanone, 121
[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl][4-[(3-methyl-2-butenyl)-oxy]phenyl]methanone, 356
[63565-02-6] [63565-03-7]
[63565-04-8]
[63565-06-0]
[63565-08-2]
[64357-90-0]
[64357-91-1]
[64857-83-6]
[64857-84-7]
[65185-33-3]
[65202-31-5]
[65202-37-1]
[65202-42-8]
[65202-46-2]
[65202-49-5]
[65221-06-9]
[65221-07-0]
[65611-78-1]
[65611-79-2]
[65953-50-6]
[66306-91-0]
[66476-03-7]
[66625-08-9]
[66666-07-7]
[66666-08-8] (2-Hydroxy-4-methoxy-3,5-dinitrophenyl)(4-methoxyphenyl) methanone, 266
[66666-17-9] (5-Ethyl-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl) methanone, 324
[66666-25-9] (3,5-Dibromo-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl) methanone, 261
[66787-22-2] (2,4-Dihydroxyphenyl)(4-ethenylphenyl)methanone, 406
[66802-91-3] (2,4-Dihydroxyphenyl)(4-ethylphenyl)methanone, 407
[66832-95-9] 1,4-Phenylenebis[(2-hydroxyphenyl)methanone, 537
[67097-17-0] [3-Bromo-6-hydroxy-4-methoxy-5-methyl-2-(1-methylpropyl) phenyl] (2,4-dihydroxy-6-methylphenyl)methanone, 488
[67217-94-1] (3-Ethyl-4-hydroxyphenyl)phenylmethanone, 90
[67246-02-0] (2,4-Dimethoxyphenyl)(4-hydroxy-3,5-dinitrophenyl) methanone, 265
[67246-03-1] (2,4-Dihydroxy-3,5,6-trinitrophenyl)(4-hydroxy-3-nitrophenyl) methanone, 480
[67246-05-3] (2-Hydroxy-4-methoxy-5-nitrophenyl)(4-hydroxy-3-nitrophenyl) methanone, 454
[67246-06-4] (2-Hydroxy-5-methyl-3-nitrophenyl)(3-nitrophenyl)methanone, 230
[67246-07-5] (2,4-Dihydroxy-3,5,6-trinitrophenyl)(4-methoxy-3-nitrophenyl) methanone, 416
[67286-44-6]
[67548-59-8]
(2,4-Dimethoxyphenyl)(4-hydroxy-3-nitrophenyl)methanone, 277
(3-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 236
[68048-15-7] (3-Chloro-6-hydroxy-2,4-dimethoxyphenyl)(2,4-dimethoxy-6methylphenyl)methanone, 331
[68048-17-9] (3-Chloro-6-hydroxy-2,4-dimethoxyphenyl)(2,4-dihydroxy-6methylphenyl)methanone, 484
[68048-19-1] (3-Chloro-4,6-dihydroxy-2-methylphenyl)
(2,4,6-trimethoxyphenyl)methanone, 421
[68048-21-5] (3-Chloro-4,6-dimethoxy-2-methylphenyl)(3-chloro-6-hydroxy-2,4-dimethoxyphenyl)methanone, 330
[68048-23-7] (3-Chloro-4,6-dihydroxy-2-methylphenyl)(3-chloro-6-hydroxy-2,4-dimethoxy-phenyl)methanone, 484
[68048-30-6] (3-Chloro-4,6-dihydroxy-2-methylphenyl)
(2,4,6-trihydroxyphenyl)methanone, 496
[68048-31-7] (3-Chloro-2,4,6-trihydroxyphenyl)(2,4-dihydroxy-6methylphenyl)methanone, 499
[68048-32-8] (3-Chloro-4,6-dihydroxy-2-methylphenyl)(3-chloro-2,4,6trihydroxyphenyl)methanone, 499
[68223-20-1] (2-Hydroxyphenyl)(4-nitrophenyl)methanone, 158
[68223-56-3] Phenyl(2,4,6-trihydroxy-3-methylphenyl)methanone, 464
[68430-99-9] (2-Hydroxy-4-methyl-5-nitrophenyl)phenylmethanone, 69
[68436-77-1] (2,6-Dihydroxy-4-methylphenyl)phenylmethanone, 377
[68751-90-6] (5-Chloro-2-hydroxy-4-methylphenyl)phenylmethanone, 67
[69169-87-5] (2,4-Dihydroxy-3-nitrophenyl)(2-hydroxyphenyl)methanone, 472
[69210-88-4] Cyclohexyl(2-hydroxy-4-methoxyphenyl)methanone, 517
[69218-66-2] (3-Chloro-2,6-dihydroxy-4-methoxyphenyl)(4-hydroxy-2-methyl-6-propoxy-phenyl)methanone, 488
[69443-76-1] [2,4-Dihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl] phenylmethanone, 390
[69451-08-7] [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-fluorophenyl) methanone, 353
[69471-29-0] (4-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 470
[69471-31-4] (4-Ethoxyphenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 324
[69471-32-5] (2,5-Dihydroxy-3,4-dimethoxyphenyl)(4-ethoxyphenyl) methanone, 422
[69471-33-6] (5-Ethoxy-2-hydroxy-3,4-dimethoxyphenyl)(4-ethoxyphenyl) methanone, 346
[69709-89-3] (3-Chloro-4,6-dihydroxy-2-methylphenyl)(3,5-dichloro-2-hydroxy-4-methoxy-6-methylphenyl)methanone, 481

[69709-91-7]	(3-Chloro-4,6-dihydroxy-2-methylphenyl)(3,5-dichloro-2,4-dihydroxy-6-methyl-phenyl)methanone, 494
[69709-92-8]	(3-Chloro-6-hydroxy-4-methoxy-2-methylphenyl)(3,5-dichloro-2-hydroxy-4-methoxy-6-methylphenyl)methanone, 457
[69795-00-2]	(4-Hydroxy-3,5-dimethylphenyl)(2,4,6-trimethylphenyl) methanone, 333
[70036-74-7]	(4-hydroxy-3,5-Diiodophenyl)phenylmethanone, 49
[70036-75-8]	(3,5-Dichloro-4-hydroxyphenyl)(3-methylphenyl)methanone, 224
[70219-83-9]	[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl] phenylmethanone, 386
[70219-84-0]	Phenyl[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl] methanone, 466
[70219-85-1]	[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl] phenyl-methanone $(E), 390$
[70219-87-3]	[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone (E), 465
[70288-96-9]	(2-Chlorophenyl)(2-hydroxyphenyl)methanone, 150
[71182-85-9]	(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis[phenylmethanone, 550
[71372-37-7]	(4-Hydroxyphenyl)(3-methylphenyl)methanone, 169
[71655-03-3]	(2,4-Dihydroxyphenyl)(4-hydroxy-2-methoxyphenyl) methanone, 476
[72083-16-0]	[2-Hydroxy-5-(trifluoromethyl)phenyl]phenylmethanone, 63
[72083-19-3]	(4-Chlorophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl] methanone, 317
[72089-86-2]	(5-Chloro-2-hydroxyphenyl)(2,4-dichlorophenyl)methanone, 198
[72090-60-9]	(3-Chlorophenyl)(2-hydroxyphenyl)methanone, 151
[72090-61-0]	(4-Hydroxyphenyl)(2-methoxyphenyl)methanone, 171
[72090-62-1]	(4-Hydroxyphenyl)(3-methoxyphenyl)methanone, 172
[72090-63-2]	(4-Hydroxyphenyl)(3-nitrophenyl)methanone, 159
[72090-64-3]	(2-Chloro-4-nitrophenyl)(2-hydroxyphenyl)methanone, 144
[72090-65-4]	(2-Chloro-5-nitrophenyl)(2-hydroxyphenyl)methanone, 144
[72090-66-5]	(2-Chloro-5-nitrophenyl)(4-hydroxyphenyl)methanone, 144
[72103-42-5]	(2-Chloro-4-nitrophenyl)(4-hydroxyphenyl)methanone, 144
[72236-97-6]	(2,4-Dichlorophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl) phenyl]-methanone, 312
[72236-99-8]	(3,4-Dichlorophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl) phenyl]-methanone, 312
[72237-01-5]	(2-Bromophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl] methanone, 314
[72237-03-7]	(4-Bromophenyl)[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl] methanone, 314
[72324-19-7]	(4-Hydroxy-3,5-dimethylphenyl)(4-methoxyphenyl)methanone, 300
[72324-20-0]	(2-Hydroxy-3,5-dimethylphenyl)(4-methoxyphenyl)methanone, 299
[72324-21-1]	(4-Hydroxy-3,5-dimethylphenyl)(2-methoxyphenyl)methanone, 300
[72324-22-2]	(2-Hydroxy-3,5-dimethylphenyl)(2-methoxyphenyl)methanone, 299
[72324-23-3]	(4-Hydroxy-3-methylphenyl)(4-methoxyphenyl)methanone, 285

[72324-24-4]
[72482-00-9]
[72482-07-6]
[72482-10-1]
[72482-16-7]
[72482-27-0]
[72482-30-5]
[72482-40-7]
[72482-75-8]
[72482-80-5]
[72482-84-9]
[72482-89-4]
[72483-03-5]
[72498-54-5]
[72498-72-7]
[72498-76-1]
[72614-88-1]
[73720-57-7]
[73720-75-9]
[74079-07-5]
[74167-86-5]
[74167-87-6]
[74167-88-7]
[74167-89-8]
[74167-90-1]
[74177-55-2
[74627-90-0]
[74627-92-2]
[74627-93-3]
[74628-36-7]
[74628-37-8] (2-Hydroxy-4-methoxy-6-methylphenyl)(2,4,6-trimethoxyphenyl) methanone, 338
[74697-55-5] Bis[4-hydroxy-3-(hydroxymethyl)phenyl]methanone, 447
[75060-50-3] (4-Bromophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl] methanone, 314
[75060-57-0] [5-(1,1-Dimethylethyl)-2-hydroxyphenyl][4-(methylthio)phenyl] methanone, 333
[75060-63-8] [3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] cyclohexylmethanone (Hydrochloride), 518
[75060-64-9] [3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] phenylmethanone (Hydrochloride), 125
[75060-65-0] [3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] (4-bromophenyl)-methanone (Hydrochloride), 332
[75060-69-4] [3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] [4-(methylthio)-phenyl]methanone (Hydrochloride), 348
[75060-98-9] [3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] cyclohexyl-methanone, 518
[75060-99-0] [3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] phenyl-methanone, 124
[75061-00-6] [3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] (4-bromo-phenyl)methanone, 332
[75061-01-7] [3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] [4-(methylthio)-phenyl]methanone, 348
[75440-84-5] $\quad \operatorname{Bis}(2,3,4$-trihydroxyphenyl)methanone, 39
[75629-21-9] (3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl-1,3,5- ${ }^{14} \mathrm{C}_{3}$) methanone, 38
[75731-48-5] (3-Hydroxy-4-methylphenyl)(4-hydroxyphenyl)methanone, 430
[75731-50-9] (4'-Hydroxy[1,1'-biphenyl]-4-yl)(3-hydroxyphenyl) methanone, 509
[75919-94-7] [5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-methylphenyl) methanone, 332
[76013-33-7] (2-Hydroxy-4,6-dimethoxyphenyl)(2,4,5-trimethoxyphenyl) methanone, 341
[76015-48-0] [3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone (Z), 465
[76237-02-0] (5-Chloro-2-hydroxyphenyl)(2-hydroxyphenyl)methanone, 427
[76346-15-1] [3-(Benzoyloxy)-4-hydroxyphenyl]phenylmethanone, 129
[76346-16-2] [1,2-Ethanediylbis(6-hydroxy-3,1-phenylene)] bis[phenylmethanone, 553
[76444-61-6] [2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl] phenyl-methanone, 391
[76631-09-9] (2,4-Dihydroxy-6-methylphenyl)(2,4,6-trimethoxyphenyl) methanone, 422
[76981-50-5] (3-Hydroxyphenyl)(2,4,6-trimethylphenyl)methanone, 182
[76981-53-8] (3-Hydroxyphenyl)(4-phenoxyphenyl)methanone, 187
[76981-57-2] (2,4-Dimethylphenyl)(3-hydroxy-2-methylphenyl) methanone, 296
[76981-65-2] (3,4-Dichlorophenyl)(3-hydroxy-2-methylphenyl)methanone, 226
[77151-84-9] (2,3-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 224
[77347-19-4] [78023-64-0]
[78044-92-5]
[78044-94-7]
[78044-96-9]
[78135-54-3]
[78135-60-1] $\operatorname{Bis}(2-h y d r o x y-4-m e t h o x y-6-m e t h y l p h e n y l) m e t h a n o n e, ~ 449 ~$
[78235-18-4] (2,3-Dichloro-4-hydroxyphenyl)(4-methoxyphenyl) methanone, 228
[78473-49-1] (4-Ethyl-2-hydroxyphenyl)(4-nitrophenyl)methanone, 275
[78473-50-4] (4-Ethyl-2-hydroxyphenyl)phenylmethanone, 90
[78563-16-3] (5-Fluoro-2-hydroxy-1,3-phenylene)bis[(5-fluoro-2-hydroxyphenyl)-methanone, 534
[78563-18-5] (2,5-Dihydroxy-1,3-phenylene)bis[(2,5-dihydroxyphenyl) methanone, 537
[78563-33-4] Bis[5-chloro-3-(5-chloro-2-hydroxybenzoyl)-2-hydroxyphenyl] methanone, 540
[78563-35-6] Bis[5-fluoro-3-(5-fluoro-2-hydroxybenzoyl)-2-hydroxyphenyl] methanone, 540
[78697-41-3] (2,3-Dichloro-4-hydroxyphenyl)(4-hydroxyphenyl) methanone, 424
[78930-16-2] (4-Hydroxyphenyl)(4-phenoxyphenyl)methanone, 187
[78930-23-1] (3-Bromo-4-chlorophenyl)(4-hydroxyphenyl)methanone, 143
[79002-05-4] (4-Hydroxy-3-methylphenyl)(4-methoxy-3-methylphenyl) methanone, 301
[79204-64-1] (2-Hydroxy-4-methoxy-5-nitrophenyl)(2-methoxyphenyl) methanone, 278
[79204-68-5] (2,4-Dihydroxy-3,5-dinitrophenyl)(2-methoxyphenyl) methanone, 417
[79204-71-0] (2-Hydroxy-4-methoxy-3,5-dinitrophenyl)(2-methoxyphenyl) methanone, 266
[79215-32-0]
[79557-81-6]
[79578-62-4]
[79578-67-9]
(2,4-Dihydroxyphenyl)(2-methoxyphenyl)methanone, 404
(2,4-Dihydroxy-3-propylphenyl)phenylmethanone, 384
[4-(2-Bromoethoxy)phenyl](4-hydroxyphenyl)methanone, 174
[4-(2-Bromoethoxy)phenyl](4-hydroxy-3-iodophenyl) methanone, 260
[79616-16-3] Bis(3-chloro-4-hydroxyphenyl)methanone, 444
[79861-83-9] (2,4-Dihydroxy-3-methylphenyl)(4-methoxyphenyl) methanone, 420
[79861-84-0] (2,4-Dihydroxy-3-methylphenyl)(4-hydroxyphenyl) methanone, 473
[79877-07-9] (3-Benzoyl-2-hydroxy-5-methylphenyl)ethanone, 524
[80018-48-0] (2,4-Dimethylphenyl)(2-hydroxy-5-methylphenyl)methanone, 296
[80078-54-2] [3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl](4-methoxyphenyl) methanone, 354
[80167-00-6] (4-Ethenylphenyl)(4-ethoxy-2-hydroxyphenyl)methanone, 313
[80167-01-7] (4-Butoxy-2-hydroxyphenyl)(4-ethenylphenyl)methanone, 343
[80167-02-3] (4-Ethenylphenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone, 356
[80167-03-9] [4-(Dodecyloxy)-2-hydroxyphenyl](4-ethenylphenyl) methanone, 361
[80167-04-0] [4-(2-Bromoethyl)phenyl](2,4-dihydroxyphenyl)methanone, 406
[80427-34-5] (5-Hydroxy-2-methoxyphenyl)phenylmethanone, 84
[80427-35-6] (5-Hydroxy-2-methoxyphenyl)(4-nitrophenyl)methanone, 251
[80427-36-7] (5-Hydroxy-2-methoxyphenyl)(4-methoxyphenyl) methanone, 289
[80427-39-0] (2-Hydroxy-5-methoxyphenyl)(4-nitrophenyl)methanone, 250
[80427-40-3] (2-Hydroxy-5-methoxyphenyl)(4-hydroxyphenyl)methanone, 434
[80501-47-9] [2-Hydroxy-3,5-di(hydroxymethyl)-4-methoxyphenyl] phenylmethanone, 109
[80501-48-0] [2-Hydroxy-5-(hydroxymethyl)-4-methoxyphenyl] phenylmethanone, 103
[80604-76-8] [2-Hydroxy-3-(hydroxymethyl)-4-methoxyphenyl] phenylmethanone, 103
[80988-17-6] (2-Hydroxy-4-methoxyphenyl)(5-methyl[1,1'-biphenyl]-2-yl) methanone, 506
[81066-14-0] (3-Bromo-2-hydroxyphenyl)cyclohexylmethanone, 506
[81066-15-1] (3-Bromo-4-hydroxyphenyl)cyclohexylmethanone, 513
[81066-16-2] (4-Bromo-2-hydroxyphenyl)cyclohexylmethanone, 513
[81066-17-3] (5-Bromo-2-hydroxyphenyl)cyclohexylmethanone, 514
[81374-99-4] (2-Chloro-6-hydroxyphenyl)phenylmethanone, 52
[81375-00-0] (2-Chloro-4-hydroxyphenyl)phenylmethanone, 51
[81375-01-1] (4-Hydroxy-2,6-dimethylphenyl)phenylmethanone, 95
[81490-45-1] [2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl] phenylmethanone, 387
[81490-46-2] [4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl] phenylmethanone, 388
[81525-12-4] (2,4-Dihydroxy-6-methoxyphenyl)phenylmethanone, 378
[81574-66-5] (6-Hydroxy-2,4-dimethoxy-3-methylphenyl)(4-hydroxy-2,6-dimethoxyphenyl)-methanone, 461
[81574-67-6] (2-Hydroxy-4-methoxy-6-methylphenyl)(4-hydroxy-2-methoxy-6-methyl-phenyl)methanone, 459
[81652-53-1] (2-Hydroxy-4-methylphenyl)(4-methylphenyl)methanone, 279
[82506-20-5] [3-[(Dimethylamino)methyl]-4-hydroxyphenyl]phenylmethanone (Hydrochloride), 109
[82520-51-2] (4-Ethylphenyl)(2-hydroxyphenyl)methanone, 176
[82589-26-2] (4-Chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone- ${ }^{14} \mathrm{C}, 205$
[83235-18-1]
(2,5-Dihydroxyphenyl)(2-methylphenyl)methanone, 402
(2,5-Dihydroxyphenyl)(3-methylphenyl)methanone, 403
(2,5-Dihydroxyphenyl)(4-methylphenyl)methanone, 403
(2,5-Dihydroxyphenyl)(4-fluorophenyl)methanone, 398
(2-Hydroxy-5-methoxyphenyl)(2-hydroxyphenyl)methanone, 433
[2-(Acetyloxy)phenyl](2-hydroxy-5-methoxyphenyl) methanone, 292
[83570-59-6] [2-(Acetyloxy)-5-methoxyphenyl](2-hydroxyphenyl) methanone, 181
[83611-01-2] [2,6-Dihydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl) oxy]phenyl]phenylmethanone, 390
[83611-03-4] [2-Hydroxy-3,5-bis(3-methyl-2-butenyl)-4,6-bis[[(4-methylphenyl)sulfonyl]oxy]-phenyl]phenylmethanone, 142
[83803-88-7] (2-Hydroxy-4-methoxy-3-methylphenyl)phenylmethanone, 97
[83885-14-7] (3-Chloro-4-methoxyphenyl)(4-hydroxyphenyl)methanone, 166
[83885-15-8]
[83885-18-1]
[83885-20-5]
[83888-61-3]
[83888-75-9]
[83888-76-0]
[83937-21-7]
(3-Chloro-4-methylphenyl)(4-hydroxyphenyl)methanone, 165
(4-Chlorophenyl)(3-fluoro-4-hydroxyphenyl)methanone, 204
(4-Chloro-3-methylphenyl)(4-hydroxyphenyl)methanone, 166
(4-Hydroxyphenyl)[4-(methylthio)phenyl]methanone, 169
(4-Chloro-3-iodophenyl)(4-hydroxyphenyl)methanone, 144
(4-Ethylphenyl)(4-hydroxyphenyl)methanone, 177
[2-Hydroxy-4-(pentyloxy)phenyl]phenylmethanone, 124
[83938-73-2] [4-Hydroxy-3-(1-methylethyl)phenyl]phenylmethanone, 105
[84394-12-7] (2-Hydroxy-4-methoxyphenyl)(3-hydroxyphenyl)methanone, 433
[84443-36-7] (5-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone, 206
[84627-07-6]
(6-Hydroxy[1,1'-biphenyl]-3-yl)phenylmethanone, 503
[84700-49-2] [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-methylphenyl) methanone, 354
[84700-50-5] [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](3-methylphenyl) methanone, 354
[84700-51-6] [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-ethylphenyl) methanone, 357
[84700-52-7] [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](3-ethylphenyl) methanone, 356
[84700-53-8] [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](4-chlorophenyl) methanone, 352
[84700-54-9] [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2-bromophenyl) methanone, 352
(2,4-Dihydroxyphenyl)(4-fluorophenyl)methanone, 397
(4-Fluorophenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone, 353
(4-Fluorophenyl)(2,3,4-trihydroxyphenyl)methanone, 468

[84875-84-3]	[4-(-2-Ethylhexyl)-2-hydroxyphenyl](2-hydroxyphenyl) methanone, 439
[85052-20-6]	(5-Chloro-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 240
[85052-24-0]	(5-Chloro-2-hydroxy-3-nitrophenyl)(4-chlorophenyl) methanone, 197
[85052-26-2]	(5-Chloro-2-hydroxy-3-nitrophenyl)phenylmethanone, 45
[85052-27-3]	(4-Chlorophenyl)(5-fluoro-2-hydroxy-3-nitrophenyl) methanone, 195
[85052-28-4]	(5-Chloro-2-hydroxy-3-nitrophenyl)(4-methoxyphenyl) methanone, 220
[85052-33-1]	[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl] phenylmethanone, 113
[85052-38-6]	(3-Amino-5-chloro-2-hydroxyphenyl)(4-methoxyphenyl) methanone (Hydrochloride), 252
[85052-41-1]	(3-Amino-5-chloro-2-hydroxyphenyl)(4-chlorophenyl) methanone, 213
[85052-42-2]	(3-Amino-5-fluoro-2-hydroxyphenyl)(4-chlorophenyl) methanone, 212
[85052-43-3]	(3-Amino-5-chloro-2-hydroxyphenyl)phenylmethanone, 59
[85052-44-4]	(3-Amino-5-chloro-2-hydroxyphenyl)phenylmethanone (Hydrochloride), 60
[85052-51-3]	[3-Amino-5-(1,1-dimethylethyl)-2-hydroxyphenyl] phenylmethanone, 121
[85052-68-2]	(3-Amino-5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone (Hydrochloride), 213
[85052-69-3]	(3-Amino-5-fluoro-2-hydroxyphenyl)(4-chlorophenyl)methanone (Hydrochloride), 212
[85052-70-6]	(3-Amino-5-chloro-2-hydroxyphenyl)(4-methoxyphenyl) methanone, 252
[85069-31-4]	[3-Amino-5-(1,1-dimethylethyl)-2-hydroxyphenyl] phenylmethanone (Hydrochloride), 121
[85450-69-7]	(2-Hydroxy-4,6-dimethyl-5-nitro-1,3-phenylene) bis[phenylmethanone, 530
[85450-78-8]	(5-Amino-2-hydroxy-4,6-dimethyl-1,3-phenylene) bis[phenylmethanone, 531
[85525-20-8]	(2-Fluoro-4,5-dihydroxyphenyl)phenylmethanone, 370
[85525-22-0]	(2-Chloro-4,5-dihydroxyphenyl)phenylmethanone, 369
[85558-60-7]	1-(3-Benzoyl-2-hydroxyphenyl)ethanone, 523
[85602-18-2]	Cyclohexyl[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl] methanone, 520
[85602-45-5]	Cyclohexyl(2,4,6-trihydroxyphenyl)methanone, 520
[85636-84-6]	(2,4-Dihydroxy-3-methylphenyl)(2-methoxyphenyl)methanone, 419
[85916-09-2]	(4-Hydroxy-3,5-dimethylphenyl)(4-nitrophenyl)methanone, 276
[86405-16-5]	(4-Chlorophenyl)[4-(4-hydroxyphenoxy)phenyl]methanone, 554
[86415-67-0]	(2-Hydroxy-4-methylphenyl)(2-hydroxyphenyl)methanone, 429

[86432-12-4] (Oxydi-4,1-phenylene)bis(4-hydroxyphenyl)methanone, 555
[86432-13-5] (4'-Hydroxy[1,1'-biphenyl]-4-yl)(4-hydroxyphenyl)methanone, 510
[86914-72-9] (5-Chloro-2-hydroxy-3-methylphenyl)(4-chlorophenyl) methanone, 222
[86914-74-1] (5-Chloro-2-hydroxy-3-methylphenyl)(4-ethylphenyl) methanone, 293
[86914-75-2] (5-Chloro-2-hydroxy-3-methylphenyl)[4-(1-methylethyl)phenyl] methanone, 315
[86914-77-4] (5-Chloro-2-hydroxy-3-methylphenyl)(2-methylphenyl) methanone, 267
[86914-78-5] (2,5-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl) methanone, 322
[86914-79-6] (2-Hydroxy-3,5-dimethylphenyl)(2-methylphenyl)methanone, 297
[86914-80-9] (2,4-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl) methanone, 322
[86914-81-0] (2-Bromophenyl)(2-hydroxy-3,5-dimethylphenyl)methanone, 266
[86914-82-1] (5-Chloro-2-hydroxy-3-methylphenyl)(2-chlorophenyl) methanone, 221
[86914-83-2] (5-Chloro-2-hydroxy-3-methylphenyl)(4-chloro-2-methylphenyl) methanone, 263
[86914-84-3] (4-Chlorophenyl)(2-hydroxy-3,5-dimethylphenyl)methanone, 270
[86914-85-4] (2-Hydroxy-3,5-dimethylphenyl)(4-methylphenyl)methanone, 298
[86914-86-5] (5-Chloro-2-hydroxy-3-methylphenyl)(4-methylphenyl) methanone, 268
[86914-87-6] (5-Chloro-2-hydroxy-3-methylphenyl)(3-chlorophenyl) methanone, 221
[86914-88-7] (3,4-Dimethylphenyl)(2-hydroxy-3,5-dimethylphenyl) methanone, 322
[86914-89-8] (5-Chloro-2-hydroxy-3-methylphenyl)(3,4-dimethylphenyl) methanone, 293
[86914-90-1] (5-Chloro-2-hydroxy-3-methylphenyl)(3-methylphenyl) methanone, 268
[87118-99-8] (5-Chloro-2-hydroxy-4-methoxyphenyl)(4-chlorophenyl) methanone, 228
[87119-01-5] (5-Amino-2,4-dihydroxyphenyl)phenylmethanone, 374
[87119-02-6] (5-Amino-2,4-dihydroxyphenyl)phenylmethanone (Hydrochloride), 374
[87119-03-7] (3-Amino-2,4-dihydroxyphenyl)phenylmethanone, 373
[87119-04-8] (3-Amino-2,4-dihydroxyphenyl)phenylmethanone (Hydrochloride), 374
[87119-05-9] (3-Amino-5-chloro-2,4-dihydroxyphenyl)(4-chlorophenyl) methanone, 415
[87119-06-0] (3-Amino-5-chloro-2,4-dihydroxyphenyl)(4-chlorophenyl) methanone (Hydrochloride), 415
[87750-63-8] (2-Chlorophenyl)(4-fluoro-2-hydroxyphenyl)methanone, 203
[87750-64-9] [87855-75-2] [88133-95-3]
[88331-62-8] [89899-44-5] [90986-69-9] [91197-04-5] [91197-05-6]
[91197-06-7]
[91197-07-8]
[91197-10-3]
[91197-11-4]
[91197-12-5]
[91290-75-4]
[91692-34-1]
[92005-08-8]
[92005-11-3]
[92005-13-5]
[92005-17-9]
[92005-19-1]
[92005-26-0]
[92005-28-2]
[92005-62-4]
[92103-15-6]
[92254-59-6]
[92285-27-3]
[92285-28-4]
[92379-42-5]
[92735-01-8]
[92735-05-2]
[92739-90-7]
[92739-91-8]
[92739-93-0]
[92739-94-1] (5-Chloro-2-hydroxy-3-propylphenyl)(4-methylphenyl) methanone, 315
[92739-95-2] (3-Ethyl-2-hydroxy-5-methylphenyl)(4-methylphenyl) methanone, 322
[93097-75-7] (2-Hydroxy-5-methylphenyl)(2-hydroxyphenyl)methanone, 429 [93332-04-8] (3,5-Dinitrophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl] methanone, 313

[9	(2-Hydroxy-4,5-dimethylphenyl)(2-methylphenyl)methanone, 298
[93575-37-2]	(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-ethylphenyl)methanone, 315
[93575-38-3]	(3-Ethyl-2-hydroxy-5-methylphenyl)(4-propylphenyl) methanone, 344
[93575-39-4]	[5-Chloro-2-hydroxy-3-(1-methylethyl)phenyl](4-chlorophenyl) methanone, 291
[93575-40-7]	(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-methylphenyl) methanone, 292
[93575-41-8]	[5-Chloro-2-hydroxy-3-(1-methyl-2-propenyl)phenyl] (4-chlorophenyl)-methanone, 310
[93575-42-9]	[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl] (4-methylphenyl)-methanone, 344
[93575-43-0]	(5-Chloro-3-ethyl-2-hydroxyphenyl)[4-(1-methylethyl)phenyl] methanone, 331
[93575-68-9]	(5-Chloro-2-hydroxy-3-propylphenyl)(4-chlorophenyl) methanone, 291
[93575-71-4]	(5-Chloro-3-ethyl-2-hydroxyphenyl)(4-chlorophenyl) methanone, 262
[93575-72-5]	[5-Chloro-3-(1,1-dimethylethyl)-2-hydroxyphenyl] (4-chlorophenyl)-methanone, 310
[93575-74-7]	(3-Butyl-5-chloro-2-hydroxyphenyl)(4-chlorophenyl) methanone, 310
[93575-75-8]	[5-Chloro-2-hydroxy-3-(2-methylpropyl)phenyl](4-chlorophenyl) methanone, 311
[93575-76-9]	[5-Chloro-2-hydroxy-3-(2-methylpropyl)phenyl](4-methylphenyl) methanone, 331
[93575-77-0]	(4-Chlorophenyl)[5-fluoro-2-hydroxy-3-(2-propenyl)phenyl] methanone, 290
[93575-78-1]	(2-Bromophenyl)[5-chloro-2-hydroxy-3-(2-propenyl)phenyl] methanone, 290
[93739-92-9]	(5-Chloro-3-hexyl-2-hydroxyphenyl)(4-methylphenyl) methanone, 350
[93885-04-2]	(2,4-Dichlorophenyl)[2-hydroxy-5-(1,1,3,3-tetramethylbutyl) phenyl]-methanone, 351
[93899-05-9]	(4-Hydroxy-2,6-dimethylphenyl)(4-hydroxyphenyl) methanone, 435
[93904-08-6]	(2,4-Dimethoxy-6-methylphenyl)(2-hydroxy-4,6-dimethoxyphenyl)-methanone, 336
[93958-45-3]	(3,4-Diaminophenyl)(4-hydroxyphenyl)methanone, 163
[93958-85-1]	(4-Chloro-3-nitrophenyl)(4-hydroxyphenyl)methanone, 145
[94323-02-1]	Bis(4-hydroxy-3-methylphenyl)methanone, 447
[94323-04-3]	Bis(2-chloro-4-hydroxyphenyl)methanone, 443
[94737-85-6]	(4-Hydroxy-3-nitrophenyl)(4-hydroxyphenyl)methanone, 428
[95263-98-2]	(2-Chlorophenyl)(2-hydroxy-5-nitrophenyl)methanone, 206
[95276-66-7]	[4-(Acetyloxy)-2-methoxy-6-methylphenyl](3-chloro-2-hydroxy-4,6-dimethoxyphenyl)methanone, 342

[95304-54-4]
[95304-56-6]
[95481-60-0]
[95818-93-2]
[96410-70-7]
[96825-03-5]
[96836-07-6]
[96836-08-7]
[96836-11-2]
[96836-12-3]
[96836-13-4]
[96836-14-5]
[96859-90-4]
[97231-21-5]
[97582-40-6]
[97746-14-0]
[97971-72-7]
[97971-73-8]
[97971-74-9]
[97971-75-0]
[98031-50-6]
[98149-22-5]
[98155-72-7]
[98155-73-8]
[98155-74-9]
[98155-75-0]
[98155-76-1]
[98155-77-2]
[98155-78-3]
[98155-79-4]
[98155-80-7]
[98155-81-8]
[98155-82-9]
[98155-83-0]
(5-Chloro-2-hydroxy-3-methoxyphenyl)(4-chlorophenyl) methanone, 227
[5-Chloro-2-hydroxy-3-(hydroxymethyl)phenyl](4-chlorophenyl) methanone, 227
(4-Chloro-2-hydroxyphenyl)(2,4-dihydroxyphenyl)methanone, 472
[1,1'-Biphenyl]-4-yl(4-hydroxy[1,1'-biphenyl]-3-yl)methanone, 506
(3-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 241
[3-(2-Butenyl)-4-hydroxyphenyl]phenylmethanone, 110
[2,4-Dihydroxy-3-(1-methyl-2-propenyl)phenyl] phenylmethanone, 385
[3-(2-Butenyl)-2,4-dihydroxyphenyl]phenylmethanone, 384
[2,4-Dihydroxy-6-methoxy-3-(1-methyl-2-propenyl)phenyl] phenyl-methanone, 386
[3-(2-Butenyl)-2,4-dihydroxy-6-methoxyphenyl] phenylmethanone, 386
[3-(2-Butenyl)-4,6-dihydroxy-2-methoxyphenyl] phenylmethanone, 386
[3-(2-Butenyl)-2-hydroxy-4,6-dimethoxyphenyl] phenylmethanone, 126
[5-(2-Butenyl)-2,4-dihydroxyphenyl]phenylmethanone, 384
Cyclohexyl(2,4-dihydroxyphenyl)methanone, 519
[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]
phenylmethanone, 113
(2-Hydroxy-4,6-dimethoxyphenyl)(4-methoxyphenyl) methanone, 309
[3-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone, 128
(3,4-Dihydroxy-1,2-phenylene)bis[phenylmethanone, 545
[5-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone, 129
(2,5-Dihydroxy-1,4-phenylene)bis[phenylmethanone, 544
(4-Aminophenyl)[5-(1,1-dimethylethyl)-2-hydroxyphenyl] methanone, 329
[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)] tetrakis[phenylmethanone, 553
(4-Hydroxy-2-methylphenyl)(4-hydroxyphenyl)methanone, 431
(4-Hydroxy-2,3-dimethylphenyl)(4-hydroxyphenyl)methanone, 434
Bis(4-hydroxy-2-methylphenyl)methanone, 447
(4-Hydroxy-2,5-dimethylphenyl)(4-hydroxyphenyl)methanone, 435
(4-Chloro-2-methylphenyl)(4-hydroxyphenyl)methanone, 166
(2-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 425
(2,5-Dichloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 424
Bis(2-fluoro-4-hydroxyphenyl)methanone, 444
Bis(2-bromo-4-hydroxyphenyl)methanone, 443
(2-Fluoro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 428
(2-Chloro-4-methylphenyl)(4-hydroxyphenyl)methanone, 165
(2-Chloro-4-hydroxyphenyl)(4-hydroxy-2-methylphenyl) methanone, 454

[99515-47-6]	(2-Bromophenyl)(2-hydroxyphenyl)methanone, 148
[99821-75-7]	[4-Hydroxy-5-methyl-2-(1-methylethyl)phenyl] phenylmethanone, 117
[100334-93-8]	(2-Chlorophenyl)(2,6-dihydroxyphenyl)methanone, 395
[100923-74-8]	(2-Hydroxy-4,6-dimethylphenyl)(2,4,6-trimethylphenyl) methanone, 333
[100923-75-9]	(4-Hydroxy-2,6-dimethyl-3-nitrophenyl)phenylmethanone, 90
[101594-97-2]	[2,5-Dihydroxy-6-methyl-3-(1-methylethyl)phenyl] phenylmethanone, 385
[101744-11-0]	(4,5-Dimethoxy-2-methylphenyl)(2-hydroxy-4,5-dimethoxyphenyl)-methanone, 337
[102160-16-7]	(4,6-Dihydroxy-5-nitro-1,3-phenylene) bis[phenylmethanone, 535
[102331-06-6]	(4-Fluorophenyl)(4-hydroxy-3,5-dimethylphenyl)methanone, 273
[102827-03-2]	[4-(Dimethylamino)phenyl](4-hydroxyphenyl)methanone, 181
[103203-53-8]	(3-Hydroxyphenyl)(4-methoxyphenyl)methanone, 171
[103555-87-9]	(4-Hydroxy-3-methyl-5-nitrophenyl)phenylmethanone, 70
[103555-90-4]	(4-Hydroxy-3-methyl-5-nitrophenyl)(2-methylphenyl) methanone, 276
[103843-56-7]	(2,3-Dichloro-4,5-dihydroxyphenyl)phenylmethanone, 367
[103843-57-8]	(2,3-Dichloro-4,5-dihydroxyphenyl)(2-fluorophenyl) methanone, 410
[103843-59-0]	[2,3-Dichloro-4-hydroxy-5-(phenylmethoxy)phenyl] (2-fluorophenyl)-methanone, 349
[103843-60-3]	[2,3-Dichloro-4-hydroxy-5-(phenylmethoxy)phenyl] phenylmethanone, 128
[103843-64-7]	[2,3-Dichloro-5-hydroxy-4-(phenylmethoxy)phenyl] (2-fluorophenyl)-methanone, 349
[103843-65-8]	[2,3-Dichloro-5-hydroxy-4-(phenylmethoxy)phenyl] phenylmethanone, 128
[105443-50-3]	(4-Methoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 470
[105443-51-4]	(2-Hydroxy-5-methylphenyl)(2,3,4-trihydroxyphenyl) methanone, 491
[105443-52-5]	(3,5-Dichloro-4-hydroxyphenyl)(2,3,4-trihydroxyphenyl) methanone, 489
[105443-53-6]	(3-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 33
[105515-30-8]	(2-Hydroxy-4-methoxyphenyl)(2-hydroxy-4-methylphenyl) methanone, 455
[106612-60-6]	(4-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone, 256
[106647-50-1]	[1,1'-Biphenyl]-4,4'-diylbis[(4-hydroxyphenyl)methanone, 550
[107412-87-3]	(2,4-Dihydroxyphenyl)(2-hydroxy-3-methylphenyl)methanone, 474
[107412-94-2]	(2-Hydroxy-3-methylphenyl)(2,3,4-trihydroxyphenyl) methanone, 491
[107516-91-6]	Bis(4-amino-2-hydroxyphenyl)methanone, 445
[107517-49-7]	(2-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 241

[107518-30-9]	(2-Amino-4-hydroxyphenyl)(4-amino-2-hydroxyphenyl) methanone, 453
7558-23-6]	(4-Hydroxy-2-methylphenyl)(3-nitrophenyl)methanone, 249
[107622-28-6]	(4-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 238
[107623-97-2]	(2-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 235
[107931-09-9]	(4-Hydroxy-2,3-dimethylphenyl)phenylmethanone, 94
[108055-13-6]	(3,4-Dihydroxy-5-methylphenyl)phenylmethanone, 377
[108294-70-8]	(2-Hydroxy-3-propylphenyl)phenylmethanone, 105
[108294-71-9]	(4-Fluorophenyl)(2-hydroxy-4-methylphenyl)methanone, 244
[108294-72-0]	(2-Chlorophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 268
[108294-74-2]	(4-Bromophenyl)(5-ethyl-2-hydroxyphenyl)methanone, 266
[108294-75-3]	(5-Ethyl-2-hydroxyphenyl)(4-fluorophenyl)methanone, 273
[108294-76-4]	(5-Ethyl-2-hydroxyphenyl)(4-nitrophenyl)methanone, 275
[108294-79-7]	(4-Chlorophenyl)(2-hydroxy-3-propylphenyl)methanone, 293
[108294-80-0]	(5-Butyl-2-hydroxyphenyl)(4-chlorophenyl)methanone, 315
[108294-81-1]	1-[3-(4-Chlorobenzoyl)-4-hydroxyphenyl]ethanone, 523
[108294-82-2]	(4-Chlorophenyl)(3,5-diethyl-2-hydroxyphenyl)methanone, 316
[108475-95-2]	(2,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 177
[108478-10-0]	(6-Hydroxy-2,3-dimethylphenyl)phenylmethanone, 96
[108478-27-9]	(2-Hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone, 283
[108974-20-5]	[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl] phenylmethanone, 116
[108974-21-6]	[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl] phenylmethanone, 118
[109067-41-6]	(2-Hydroxy-4-methylphenyl)(2,3,4-trihydroxyphenyl) methanone, 491
[109092-84-4]	(2,5-Dimethoxyphenyl)(2-hydroxy-3,6-dimethoxyphenyl) methanone, 325
[109250-36-4]	[4-Hydroxy-2-methyl-5-(1-methylethyl)phenyl](4-methylphenyl) methanone, 333
[109250-48-8]	(3-Hydroxyphenyl)[4-methoxy-2-methyl-5-(1-methylethyl) phenyl]-methanone, 186
[109250-49-9]	(4-Hydroxyphenyl)[4-methoxy-2-methyl-5-(1-methylethyl) phenyl]-methanone, 186
[109250-50-2]	(4-Hydroxyphenyl)[6-methoxy-2-methyl-3-(1-methylethyl) phenyl]-methanone, 186
[109252-33-7]	[2-Hydroxy-5,6-dimethyl-3-(1-methylethyl)phenyl] phenylmethanone, 123
[110047-51-3]	(3,6-Diethoxy-2-hydroxyphenyl)(2,5-dimethoxyphenyl) methanone, 345
[110049-41-7]	(2,5-Diethoxyphenyl)(2-hydroxy-3,6-dimethoxyphenyl) methanone, 345
[110701-33-2]	[5-(1,1-dimethylpropyl)-2-hydroxyphenyl]phenylmethanone, 123
[110969-51-2]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxyphenyl)methanone, 174
[110969-52-3]	(2,3-Dimethyl-5-nitrophenyl)(4-hydroxyphenyl)methanone, 174

[110969-54-5]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3-methylphenyl) methanone, 294
[110969-55-6]	(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-3-methylphenyl) methanone, 295
[110969-57-8]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4-methylphenyl) methanone, 294
[110969-58-9]	(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2-methylphenyl) methanone, 294
[110969-60-3]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-5-methylphenyl) methanone, 294
[110969-62-5]	(3-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl) methanone, 261
[110969-63-6]	(3-Chloro-4-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl) methanone, 262
[110969-65-8]	(4-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl) methanone, 262
[110969-66-9]	(2-Chloro-4-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl) methanone, 261
[110969-68-1]	(5-Chloro-2-hydroxyphenyl)(2,3-dimethyl-5-nitrophenyl) methanone, 262
[110969-70-5]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,4-dimethylphenyl) methanone, 319
[110969-71-6]	(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2,3-dimethylphenyl) methanone, 320
[110969-73-8]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,5-dimethylphenyl) methanone, 319
[110969-75-0]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-3,6-dimethylphenyl) methanone, 319
[110969-76-1]	(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-2,5-dimethylphenyl) methanone, 320
[110969-78-3]	(2,3-Dimethyl-5-nitrophenyl)(4-hydroxy-3,5-dimethylphenyl) methanone, 321
[110969-80-7]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4,5-dimethylphenyl) methanone, 320
[110993-12-9]	(2,3-Dimethyl-5-nitrophenyl)(2-hydroxy-4,6-dimethylphenyl) methanone, 320
[111277-24-8]	(3,5-Dibromo-2-hydroxyphenyl)phenylmethanone, 44
[111547-84-3]	(2-Hydroxy-5-tert-nonylphenyl)phenylmethanone, 136
[111621-53-5]	Bis(3,4,5-Trihydroxyphenyl)methanone, 40
[112005-09-1]	[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]phenylmethanone, 1
[112005-19-3]	(2,4,6-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 41
[112232-16-3]	(2,6-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 36
[112232-17-4]	(4-Hydroxyphenyl)(2,3,4,5-tetrahydroxyphenyl)methanone, 39
[112232-18-5]	(2,3,4-Trihydroxy-5-methylphenyl)(3,4,5-trihydroxyphenyl) methanone, 500

[112782-46-4] (4-Fluorophenyl)(4'-hydroxy[1,1'-biphenyl]-4-yl)methanone, 502
[112932-43-1] (3-Bromo-2,5-dihydroxyphenyl)phenylmethanone, 369
[113275-52-8] (4-Hydroxyphenyl)(4-iodophenyl)methanone, 157
[113730-38-4] (3,4-Dichloro-5-hydroxyphenyl)phenylmethanone, 47
[113730-42-0] [4,5-Dichloro-3-hydroxy-2-(2-propenyl)phenyl] phenylmethanone, 103
[114415-01-9] (2,3-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 35
[115296-03-2] (2,4-Dimethoxy-3-propylphenyl)(2-hydroxyphenyl)methanone, 186
[115296-04-3] (2,4-Dihydroxy-3-propylphenyl)(2-hydroxyphenyl)methanone, 477
[115296-05-4] (2-Hydroxy-4-methoxy-3-propylphenyl)(2-hydroxyphenyl) methanone, 438
[115296-09-8] (2-Hydroxy-4-methoxy-3-methylphenyl)(2-methoxyphenyl) methanone, 302
[115296-10-1] (2-Chlorophenyl)(2,4-dihydroxy-3-propylphenyl)methanone, 421
[115308-88-8] (2-Hydroxyphenyl)[2-hydroxy-4-(2-propenyloxy)-3-propylphenyl]-methanone, 438
[115834-34-9] 1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl] ethanone, 528
[116173-30-9] (2,4-Dimethylphenyl)(4-hydroxyphenyl)methanone, 175
[116496-22-1] [5-(1,1-Dimethylethyl)-2-hydroxyphenyl](4-methoxyphenyl) methanone, 334
[116544-78-6] (5-Chloro-2-hydroxyphenyl)(4-methylphenyl)methanone, 234
[117574-12-6] (2-Hydroxy-3-methoxyphenyl)(2-hydroxyphenyl) methanone, 432
[119427-60-0] (3,5-Dichlorophenyl)(4-hydroxyphenyl)methanone, 147
[119427-61-1] (2,4,5-Trihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 41
[119798-76-4] (5-Amino-2-hydroxyphenyl)phenylmethanone, 62
[119838-11-8] 1,2-Phenylenebis[(2-hydroxyphenyl)methanone, 536
[120506-54-9] (2-Methylphenyl)(2,3,4-trihydroxyphenyl)methanone, 469
[120506-55-0] (4-Methylphenyl)(2,3,4-trihydroxyphenyl)methanone, 469
[120506-56-1] (2,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 26
[120973-82-2] [5-(Chloromethyl)-2-hydroxyphenyl]phenylmethanone, 68
[121638-96-8] Cyclohexyl(2-hydroxy-3,4-dimethoxyphenyl)methanone, 517
[123172-45-2] (4-Amino-3-hydroxyphenyl)(4-chlorophenyl)methanone, 213
[123172-46-3] (4-Chlorophenyl)[3-hydroxy-4-(methylamino)phenyl] methanone, 252
[123574-94-7] (2,5-Dichloro-4-hydroxyphenyl)phenylmethanone, 46
[123861-93-8] 2-Chloro-4-(2-hydroxybenzoyl)phenyl 2-hydroxybenzoate, 559
[123861-94-9] (3-Chloro-4-hydroxyphenyl)(2-hydroxyphenyl)methanone, 426
[124011-55-8] 4-(2-Hydroxybenzoyl)phenyl 2-hydroxybenzoate, 560
[124071-26-7] (4-Chlorophenyl)(2-hydroxy-5-nitrophenyl)methanone, 206
[124208-60-2] Phenyl 5-benzoyl-2-hydroxybenzoate, 130
[124208-64-6] 1-[4-Hydroxy-3-(4-hydroxybenzoyl)phenyl]ethanone, 527
[124208-66-8] (5-Benzoyl-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 544
[124208-69-1] 1-[2-Hydroxy-5-(2-hydroxybenzoyl)phenyl]ethanone, 527

[124979-04-4]	[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](4-methylphenyl) methanone, 332
[124979-05-1]	(4-Chlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl] methanone, 317
[124979-06-2]	(3-Chlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl] methanone, 316
[124979-07-3]	[4-Hydroxy-3-(1-methylpropyl)phenyl]phenylmethanone, 119
[124979-09-5]	[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](4-fluorophenyl) methanone, 318
[124979-10-8]	Cyclohexyl[3-(1,1-dimethylethyl)-4-hydroxyphenyl] methanone, 517
[124979-11-9]	[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](2-fluorophenyl) methanone, 318
[124979-17-5]	[3-(1,1-Dimethylethyl)-4-hydroxyphenyl][2-(trifluoromethyl) phenyl]-methanone, 328
[124979-18-6]	(2,6-Dichlorophenyl)[3-(1,1-dimethylethyl)-4-hydroxyphenyl] methanone, 311
[125182-23-2]	[2-Hydroxy-5-(1-phenylethyl)phenyl]phenylmethanone, 131
[125182-24-3]	[2-Hydroxy-3,5-bis(1-phenylethyl)phenyl]phenylmethanone, 141
[125182-25-4]	[5-(1,1-Dimethylethyl)-2-hydroxyphenyl](2-hydroxyphenyl) methanone, 437
[125182-26-5]	[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]
	[5-(1,1-dimethylethyl)-2-hydroxy-phenyl]methanone, 463
[125426-75-7]	2-(4-Benzoyl-3-hydroxyphenoxy)cyclohexanone, 555
[125426-85-9]	2-(4-Benzoyl-3-hydroxy-2-methylphenoxy)cyclohexanone, 555
[125628-95-7]	Cyclohexyl(3,4-dihydroxy-5-nitrophenyl)methanone, 519
[125628-96-8]	(3,4-Dihydroxy-5-nitrophenyl)phenylmethanone, 373
[125628-97-9]	(3,4-Dihydroxy-5-nitrophenyl)(2-fluorophenyl)methanone, 413
[125629-26-7]	Cyclohexyl(4-hydroxy-3-methoxyphenyl)methanone, 517
[125629-27-8]	Cyclohexyl(4-hydroxy-3-methoxy-5-nitrophenyl)methanone, 515
[125629-30-3]	(2-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 245
[125629-31-4]	(2-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl) methanone, 229
[126077-53-0]	(2-Hydroxy-4-methoxyphenyl)(3-nitrophenyl)methanone, 250
[126165-40-0]	(5-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 428
[126165-44-4]	(4-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 427
[126165-47-7]	(2-Chloro-4-hydroxyphenyl)(2-hydroxyphenyl)methanone, 425
[126165-53-5]	(3-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone, 425
[126165-56-8]	(2-Chloro-4-hydroxyphenyl)(3-hydroxyphenyl)methanone, 425
[126165-57-9]	(4-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone, 427
[126165-59-1]	(5-Chloro-2-hydroxyphenyl)(3-hydroxyphenyl)methanone, 427
[126165-62-6]	(3-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 426
[126260-47-7]	(5-Chloro-2-hydroxyphenyl)(3-nitrophenyl)methanone, 206
[127024-46-8]	(2-Hydroxy-5-methoxyphenyl)(2-mercaptophenyl)methanone, 254
[127024-47-9]	(2-Hydroxy-5-methylphenyl)(2-mercaptophenyl)methanone, 254

[127724-93-0] (2-Hydroxy-4-methoxyphenyl)(4-phenoxyphenyl)methanone, 350
[128464-15-3] (2-Hydroxy-4-methoxy-6-methylphenyl)[2-hydroxy-4-(octadecyloxy)-phenyl]methanone, 464
[128996-02-1] (2,4-Dihydroxyphenyl)(3,4-dimethoxyphenyl)methanone, 408
[129020-58-2] (3,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 28
[129103-86-2] (2,6-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 179
[129103-87-3] (2,3-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 177
[129103-88-4] (3,5-Dichloro-4-methoxyphenyl)(2-hydroxyphenyl)methanone, 165
[129103-90-8] (2-Hydroxy-6-methoxyphenyl)(2-methoxyphenyl)methanone, 289
[129103-91-9] (2-Hydroxy-3-methoxy-6-methylphenyl)phenylmethanone, 97
[129103-92-0] (2-Hydroxy-3-methoxy-6-methylphenyl)(2,4,5-trimethoxyphenyl) methanone, 338
[129103-93-1] (2,6-Dimethoxyphenyl)(2-hydroxy-6-methoxyphenyl) methanone, 306
[129103-94-2] (2-Fluoro-6-methoxyphenyl)(2-hydroxy-6-methoxyphenyl) methanone, 274
[129103-95-3] (2-Fluoro-4,6-dimethoxyphenyl)(2-hydroxy-4,5-dimethoxyphenyl)-methanone, 319
[129168-52-1] (2,5-Dimethoxyphenyl)(2-hydroxy-3-methoxyphenyl) methanone, 305
[129168-53-2] (2,5-Dimethoxyphenyl)(2-hydroxy-3,4,5-trimethoxyphenyl) methanone, 339
[129168-54-3] [3-(Acetyloxy)-6-hydroxy-2,4-dimethoxyphenyl] (2,5-dimethoxyphenyl)-methanone, 343
[129168-55-4] [5-(Acetyloxy)-2-hydroxy-4,6-dimethoxy-1,3-phenylene]bis[(2,5dimethoxyphenyl)methanone, 532
[129375-12-8] [2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl] (4-methoxyphenyl)methanone, 335
[129726-78-9] (2,3-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 24
[129727-61-3] [4-(Hexadecyloxy)phenyl](4-hydroxyphenyl)methanone, 190
[130556-06-8] (5-Chloro-2-hydroxy-4-methoxyphenyl)(2-fluorophenyl) methanone, 219
[131425-89-3] (3-Chlorophenyl)(2,6-dihydroxyphenyl)methanone, 395
[131425-90-6] (2,6-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 27
[131664-12-5] [5-(Hexadecyloxy)-2-hydroxyphenyl]phenylmethanone, 141
[131946-76-4] (2-Aminophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 256
[131946-77-5] (2-Aminophenyl)(2-hydroxy-5-methylphenyl)methanone, 255
[132555-32-9] (2'-Hydroxy-5'-methyl[1,1'-biphenyl]-3-yl)phenylmethanone, 504
[132555-33-0] (2'-Hydroxy-5'-methyl[1,1'-biphenyl]-4-yl)phenylmethanone, 504
[133386-98-8] (2,4-Dimethoxyphenyl)[3-hydroxy-2-methoxy-6-(methoxymethyl) phenyl]-methanone, 337
[133386-99-9] [3-Hydroxy-2-methoxy-6-(methoxymethyl)phenyl] (2-methoxyphenyl)methanone, 325
[133387-00-5] (2,3-Dimethoxyphenyl)[3-hydroxy-2-methoxy-6-(methoxymethyl) phenyl]methanone, 337

[133721-67-2]	(5
[133721-68-3]	(5-Hydroxy-3-methyl[1,1'-biphenyl]-2-yl)phenylmethanone, 504
[133721-72-9]	(6-Bromo-5-hydroxy[1,1'-biphenyl]-2-yl)phenylmethanone, 501
[133721-73-0]	[2-(1,1-Dimethylethyl)-4-hydroxy-6-methylphenyl)] phenylmethanone, 122
[133721-75-2]	(5-Hydroxy-2'-methoxy[1,1'-biphenyl]-2-yl)phenylmethanone, 505
[134308-13-7]	(3,4-Dihydroxy-5-nitrophenyl)(4-methylphenyl)methanone, 418
[134611-74-8]	(4-Hydroxy-3-methoxyphenyl)[4-(trifluoromethyl)phenyl] methanone, 260
[134611-75-9]	(4-Hydroxy-3-methoxy-5-nitrophenyl)[4-(trifluoromethyl)phenyl]methanone, 258
[134611-76-0]	(3,4-Dihydroxy-5-nitrophenyl)[4-(trifluoromethyl)phenyl] methanone, 415
[134612-32-1]	(3-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 246
[134612-33-2]	(4-Fluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 247
[134612-34-3]	(2,6-Difluorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 230
[134612-35-4]	(2-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 241
[134612-36-5]	(3-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 242
[134612-37-6]	(4-Chlorophenyl)(4-hydroxy-3-methoxyphenyl)methanone, 242
[134612-38-7]	(4-Hydroxy-3-methoxyphenyl)(2-methylphenyl)methanone, 283
[134612-39-8]	(4-Hydroxy-3-methoxyphenyl)(4-methylphenyl)methanone, 283
[134612-41-2]	(4-Hydroxy-3-methoxyphenyl)[2-(trifluoromethyl)phenyl] methanone, 260
[134612-42-3]	(3,4-Dimethoxyphenyl)(4-hydroxy-3-methoxy-5-nitrophenyl) methanone, 296
[134612-43-4]	(3,4-Dihydroxy-5-nitrophenyl)(3-fluorophenyl)methanone, 414
[134612-44-5]	(3,4-Dihydroxy-5-nitrophenyl)(4-fluorophenyl)methanone, 414
[134612-45-6]	(2,6-Difluorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone, 410
[134612-46-7]	(2-Chlorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone, 412
[134612-47-8]	(3-Chlorophenyl)(3,4-dihydroxy-5-nitrophenyl)methanone, 412
[134612-48-9]	(3,4-Dihydroxy-5-nitrophenyl)(2-methylphenyl)methanone, 418
[134612-50-3]	(3,4-Dihydroxy-5-nitrophenyl)[2-(trifluoromethyl)phenyl] methanone, 415
[134612-51-4]	(3,4-Dihydroxy-5-nitrophenyl)(4-hydroxyphenyl)methanone, 472
[134612-52-5]	(3,4-Dihydroxy-5-nitrophenyl)(3,4-dihydroxyphenyl) methanone, 489
[134612-73-0]	(3-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl) methanone, 230
[134612-74-1]	(4-Fluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl) methanone, 230
[134612-75-2]	(2,6-Difluorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl) methanone, 218
[134612-76-3]	(2-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl) methanone, 220
[134612-77-4]	(3-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl) methanone, 220

[134612-78-5] (4-Chlorophenyl)(4-hydroxy-3-methoxy-5-nitrophenyl) methanone, 221
[134612-79-6] (4-Hydroxy-3-methoxy-5-nitrophenyl)(2-methylphenyl) methanone, 276
[134612-80-9] (4-Hydroxy-3-methoxy-5-nitrophenyl)(4-methylphenyl) methanone, 277
[134612-82-1] (4-Hydroxy-3-methoxy-5-nitrophenyl)[2-(trifluoromethyl)phenyl] methanone, 256
[134612-83-2] (3,4-Dimethoxyphenyl)(4-hydroxy-3-nitrophenyl)methanone, 277
[134612-84-3] (4-Chlorophenyl)(3,4-dihydroxyphenyl)methanone, 397
[134994-27-7] (2,3-Dimethylphenyl)(4-hydroxyphenyl)methanone, 174
[136134-35-5] (4-Amino-3-hydroxyphenyl)(4-hydroxyphenyl)methanone, 428
[136134-36-6] [3-Hydroxy-4-(methylamino)phenyl](4-hydroxyphenyl) methanone, 434
[136134-37-7] [3-Hydroxy-4-(methylamino)phenyl](4-methoxyphenyl) methanone, 289
[136741-43-0] (5-Chloro-2-hydroxy-4-methoxyphenyl)(2-chlorophenyl) methanone, 227
[136741-44-1] (5-Chloro-2-hydroxy-4-methoxyphenyl)(4-methoxyphenyl) methanone, 271
[136741-45-2] (5-Chloro-2-hydroxy-4-methoxyphenyl)(2,6-difluorophenyl) methanone, 216
[136741-46-3] (5-Chloro-2-hydroxy-4-methoxyphenyl)(2,4-difluorophenyl) methanone, 216
[136741-50-9] (2-Chloro-6-hydroxy-4-methoxyphenyl)phenylmethanone, 68
[138250-28-9] Phenyl[2,3,4-trihydroxy-5-(hydroxymethyl)phenyl]methanone, 465
[138250-29-0] Phenyl[2,3,4-trihydroxy-5-[(2,4,6-trihydroxyphenyl)methyl] phenyl]-methanone, 551
[140158-57-2] [4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2-hydroxy-6-methoxyphenyl]phenyl-methanone $(E), 138$
[140660-43-1] (2,5-Dihydroxyphenyl)(2-methoxyphenyl)methanone, 405
[140665-22-1] (2-Chlorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 272
[140665-23-2] (2-Fluorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methanone, 274
[140665-35-6] (5-Chloro-2-hydroxy-3,4-dimethoxyphenyl)phenylmethanone, 89
[140665-36-7] (2-Chlorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 272
[140665-37-8] (2-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 274
[140665-38-9] (3-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 275
[140665-39-0] (4-Fluorophenyl)(2-hydroxy-3,4-dimethoxyphenyl)methanone, 275
[140665-40-3] (5-Chloro-2-hydroxy-3,4-dimethoxyphenyl)(4-fluorophenyl) methanone, 261
[140665-41-4] (2-Hydroxy-3,4-dimethoxyphenyl)(2-methylphenyl)methanone, 302
[140665-42-5] (2-Hydroxy-3,4-dimethoxyphenyl)[3-(trifluoromethyl)phenyl] methanone, 290
[140708-51-6] [3-Chloro-2,4 (or 2,5)-dihydroxy-5 (or 4)-methoxyphenyl] phenylmethanone, 375
[140708-53-8] [3-Chloro-2,4 (or 2,5)-dihydroxy-5 (or 4)-methoxyphenyl] (2-fluorophenyl)-methanone, 416
[143815-11-6] (3-Bromo-2-hydroxy-5,6-dimethylphenyl)phenylmethanone, 86
[143815-12-7] (3-Bromo-2-hydroxy-4,5-dimethylphenyl)phenylmethanone, 86
[143815-13-8] (4-Bromo-6-hydroxy-2,3-dimethylphenyl)phenylmethanone, 87
[143815-17-2] [3-Bromo-2-hydroxy-6-methyl-5-(1-methylethyl)phenyl] phenylmethanone, 112
[143824-87-7] (2,4-Dimethylphenyl)(2-hydroxyphenyl)methanone, 174
[145300-05-6] (2-Fluoro-5-hydroxyphenyl)phenylmethanone, 55
[145723-29-1] [2-(Acetyloxy)phenyl](4-hydroxyphenyl)methanone, 173
[145746-55-0] [3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]phenylmethanone, 387
[145747-24-6] [2-(Acetyloxy)-4-hydroxyphenyl]phenylmethanone, 86
[145804-70-2] (2-Hydroxy-5-methylphenyl)(2-hydroxy-5-nitrophenyl) methanone, 455
[147029-76-3] (4-Hydroxy-3-methylphenyl)(2-methylphenyl)methanone, 281
[147029-77-4] (3-Hydroxyphenyl)(4-nitrophenyl)methanone, 158
[147029-78-5] (3-Hydroxyphenyl)(2-methylphenyl)methanone, 168
[147029-79-6] (2-Hydroxy-5-methylphenyl)(2-methylphenyl)methanone, 280
[147167-72-4] (4-Hydroxy-6-methyl-1,3-phenylene)bis[(2-chlorophenyl) methanone, 533
[147188-04-3] (2-Hydroxy-4,6-dimethoxyphenyl)(2-methoxyphenyl) methanone, 308
[147188-05-4] (2-Hydroxyphenyl)(2,4,6-trimethoxyphenyl)methanone, 184
[147188-07-6] (2-Hydroxyphenyl)(2,4,5-trimethoxyphenyl)methanone, 183
[147188-08-7] (2-Hydroxy-3,4-dimethoxyphenyl)(2-methoxyphenyl) methanone, 307
[147188-09-8] (2-Hydroxyphenyl)(2,3,4-trimethoxyphenyl)methanone, 183
[147188-10-1] (2,3-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl) methanone, 303
[147188-11-2] (2,4-Dimethoxyphenyl)(2-hydroxy-6-methoxyphenyl) methanone, 304
[147188-12-3] (2,6-Dimethoxyphenyl)(2-hydroxy-4-methoxyphenyl) methanone, 306
[147321-82-2] (3-Bromo-2-hydroxyphenyl)phenylmethanone, 50
[147809-15-2] (2,4-Dihydroxy-3-methylphenyl)(2-methylphenyl)methanone, 419
[147809-19-6] (2,4-Dihydroxyphenyl)(2,6-dimethylphenyl)methanone, 407
[147904-63-0] (4-Hydroxy-3-methoxyphenyl)(4-hydroxyphenyl)methanone, 434
[148077-95-6] (2-Hydroxycyclohexyl)(2-hydroxyphenyl)methanone, 520
[148253-49-0] (3,5-Difluorophenyl)(4-hydroxyphenyl)methanone, 147
[148253-51-4] (3,5-Dihydroxyphenyl)(4-fluorophenyl)methanone, 389
[148493-08-7] Cyclohexyl(3-hydroxyphenyl)methanone, 515
[151417-67-3] (2,3-Dimethoxyphenyl)(2-hydroxy-4,6-dimethoxyphenyl) methanone, 325
[152383-56-7] (4,6-Dihydroxy-1,3-phenylene)bis[(2-chlorophenyl) methanone, 535
[152383-57-8] (4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis[(2,4-dichorophenyl) methanone, 549
[152383-58-9] (4,6-Dihydroxy-2-methyl-1,3-phenylene)bis[(2,6-dichlorophenyl) methanone, 538
[153167-54-5] (4,6-Dihydroxy-5-methyl-1,3-phenylene)bis[(2,4-dichlorophenyl) methanone, 538
[153167-55-6] (4,6-Dihydroxy-5-methyl-1,3-phenylene)bis[(2,6-dichlorophenyl) methanone, 538
[153167-56-7] [Sulfonylbis(6-hydroxy-3,1-phenylene)]bis[(2,4-dichlorophenyl) methanone, 557
[153167-57-8] (2,4-Dihydroxy-1,3-phenylene)bis[(2,4-dichlorophenyl) methanone, 543
[153411-29-1] (4-Fluoro-2-hydroxyphenyl)(4-fluorophenyl)methanone, 210
[153812-71-6] (2,3,4-Trihydroxyphenyl)(2,4,5-trihydroxyphenyl)methanone, 40
[153907-03-0] (3-Bromo-2,5-dihydroxyphenyl)(2-chlorophenyl)methanone, 411
[153907-04-1] (3-Bromo-2,5-dihydroxyphenyl)(4-chlorophenyl)methanone, 411
[153907-05-2] (2-Chlorophenyl)(2,5-dihydroxy-3-methylphenyl)methanone, 418
[153907-06-3] (2,4-Dichlorophenyl)(2,5-dihydroxy-3-methylphenyl) methanone, 416
[153907-07-4] (4-Chlorophenyl)(2,5-dihydroxy-3-methylphenyl)methanone, 418
[153907-08-5] (2,5-Dihydroxyphenyl)(3-methyl-4-nitrophenyl)methanone, 401
[154700-58-0] (3-Bromo-4-chloro-2,5-dihydroxyphenyl)phenylmethanone, 364
[154700-61-5] (3,4-Dibromo-2,5-dihydroxyphenyl)phenylmethanone, 366
[155645-18-4] (2-Hydroxy-3-methoxyphenyl)(4-methoxyphenyl)methanone, 286
[156333-16-3] (2-Methoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 470
[158547-82-1] (3-Chloro-2-hydroxy-4-methoxyphenyl)phenylmethanone, 68
[158547-83-2] (3,5-Dichloro-2-hydroxy-4-methoxyphenyl)phenylmethanone, 64
[159300-38-6] (5-Fluoro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 428
[159819-70-2] (5-Chloro-2-hydroxyphenyl)(2-methoxyphenyl)methanone, 240
[160720-40-1] (2,5-Dihydroxyphenyl)(4-methoxyphenyl)methanone, 405
[161463-53-2] (4-Bromophenyl)(4-chloro-2,5-dihydroxyphenyl)methanone, 411
[161463-54-3] (4-Bromo-3-chlorophenyl)(2,5-dihydroxyphenyl)methanone, 392
[161463-55-4] (4-Chloro-2,5-dihydroxyphenyl)(4-methylphenyl)methanone, 417
[161463-56-5] (4-Chloro-2,5-dihydroxyphenyl)(3-chloro-4-methylphenyl) methanone, 416
[161463-57-6] (3-Chloro-4,5-dimethylphenyl)(2,5-dihydroxyphenyl) methanone, 406
[161463-58-7] (2,5-Dihydroxyphenyl)(2-methyl-3-nitrophenyl)methanone, 401
[161463-59-8] (3-Chlorophenyl)(2,5-dihydroxyphenyl)methanone, 395
[161463-60-1] (4-Chloro-2,5-dihydroxyphenyl)(3-chlorophenyl)methanone, 412
[161463-61-2] (2,5-Dihydroxyphenyl)(3-fluorophenyl)methanone, 398
[161463-62-3] (2,5-Dihydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 400
[161463-63-4] (2,5-Dihydroxyphenyl)(3-fluoro-4-methylphenyl)methanone, 401
[161581-97-1] (2,6-Difluorophenyl)(3-fluoro-4-hydroxyphenyl)methanone, 200
[161581-98-2] (4-Bromophenyl)(3-fluoro-4-hydroxyphenyl)methanone, 202
[161581-99-3] (4-Bromophenyl)(2-fluoro-4-hydroxyphenyl)methanone, 201
[161582-02-1] (3-Bromo-4-hydroxyphenyl)(4-bromophenyl)methanone, 202
[161582-03-2] (3-Chloro-4-hydroxyphenyl)(4-iodophenyl)methanone, 205
[161582-04-3] (4-Bromophenyl)(3-Chloro-4-hydroxyphenyl)methanone, 201
[161585-22-4] (5-Fluoro-2-hydroxyphenyl)[4-(methoxy- ${ }^{11}$ C)phenyl] methanone, 244
[162657-93-4] (4-Fluorophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 246
[162657-94-5] [4-(1,1-Dimethylethyl)phenyl](2-hydroxy-5-methoxyphenyl) methanone, 334
[162658-01-7] (4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[phenylmethanone, 550
[162658-02-8] (4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[(4-fluorophenyl) methanone, 549
[162658-03-9] (4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[4-(1,1-dimethylethyl) phenyl]-methanone, 551
[169455-12-3] (2,4-Dimethoxyphenyl)(2-hydroxy-5-methoxyphenyl) methanone, 304
[169696-58-6] (2,5-Dihydroxyphenyl)[4-(1,1-dimethylethyl)phenyl] methanone, 409
[169781-83-3] (4-Fluoro-2-hydroxyphenyl)phenylmethanone, 55
[169781-84-4] (2-Chloro-4-fluoro-6-hydroxyphenyl)phenylmethanone, 44
[169781-85-5] (4-Chloro-2-hydroxyphenyl)(4-fluorophenyl)methanone, 202
[169781-86-6] (4-Chlorophenyl)(4-fluoro-2-hydroxyphenyl)methanone, 204
[170630-11-2] (3,5-Dihydroxy-4-methoxyphenyl)(2,3,4-trihydroxyphenyl) methanone, 498
[170744-87-3] (4-Hydroxy-3-iodophenyl)phenylmethanone, 56
[170799-04-9] (5-Chloro-2-hydroxy-4-methylphenyl)(2-methylphenyl) methanone, 268
[170799-15-2] (5-Ethyl-2-hydroxyphenyl)(2-methylphenyl)methanone, 297
[170799-16-3] [2-Hydroxy-5-(1-methylethyl)phenyl](2-methylphenyl) methanone, 323
[170799-17-4] (2-Chlorophenyl)(2-hydroxy-4,5-dimethylphenyl)methanone, 270
[170799-18-5] (4-Chloro-2-hydroxy-5-methylphenyl)(2-methylphenyl) methanone, 267
[172479-19-5] (2-Hydroxy-6-methyl-4-propoxyphenyl)phenylmethanone, 120
[172479-20-8] (2-Hydroxy-3-methyl-4-propoxyphenyl)phenylmethanone, 120
[172479-21-9] (2-Hydroxy-4-propoxyphenyl)(2-methylphenyl)methanone, 323
[172546-74-6] (3,4-Dihydroxy-5-nitrophenyl)[2-(fluoro- ${ }^{18}$ F)phenyl] methanone, 414
[174186-21-1] (2,6-Dichlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 226
[176547-98-1] (2,5-Dihydroxyphenyl)(2-fluorophenyl)methanone, 397
[176548-03-1] (4,4'-Dihydroxy[1,1'-biphenyl]-2,2'-diyl)bis[(3-fluorophenyl) methanone, 549
[176738-21-9] (3,5-Dihydroxyphenyl)[4-(phenoxy-3,5-d2)phenyl]methanone, 409
[176738-22-0] [3-Hydroxy-5-(phenoxy-d5)phenyl][4-(phenoxy-3,5- $d 2$) phenyl] methanone, 358
[177703-29-6] (3,4-Dihydroxy-2-methoxyphenyl)phenylmethanone, 380
[177703-30-9] (2,3-Dihydroxy-4-methoxyphenyl)(3,4,5-trihydroxyphenyl) methanone, 498
[177703-35-4] [3,4-Bis(acetyloxy)-2-hydroxyphenyl]phenylmethanone, 110
[177703-36-5] [2,3-Bis(acetyloxy)-4-hydroxyphenyl]phenylmethanone, 110
[179018-47-4] (2-Fluoro-4-hydroxyphenyl)phenylmethanone, 54
[179018-48-5] (3,5-Difluoro-4-hydroxyphenyl)phenylmethanone, 48
[179018-49-6] (2,5-Difluoro-4-hydroxyphenyl)phenylmethanone, 48
[182499-94-1] (3-Hydroxy-4-nitrophenyl)phenylmethanone, 58
[182499-95-2] (2-Hydroxy-3-nitrophenyl)phenylmethanone, 56
[183013-50-5] (4-Hydroxy-3-propylphenyl)phenylmethanone, 106
[183106-12-9] (3,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 179
[183106-13-0] (2,5-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 26
[183106-14-1] (2,5-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 178
[183106-15-2] (2-Bromophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 232
[183106-19-6] (2-Fluorophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 245
[183106-21-0] (2-Chlorophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 241
[183106-23-2] (2-Bromophenyl)(2-hydroxy-5-methoxyphenyl)methanone, 233
[183106-25-4] (2-Hydroxy-5-methoxyphenyl)(3-methoxyphenyl)methanone, 288
[183280-18-4] Cyclohexyl(5-fluoro-2-hydroxyphenyl)methanone, 514
[183280-19-5] (3-Fluoro-2-hydroxyphenyl)phenylmethanone, 55
[183280-20-8] (3,5-Difluoro-2-hydroxyphenyl)phenylmethanone, 48
[183280-21-9] (5-Fluoro-2-hydroxyphenyl)[4-(trifluoromethyl)phenyl] methanone, 215
[183589-15-3] (3-Ethynyl-4-hydroxyphenyl)phenylmethanone, 85
[183589-17-5] [4-Hydroxy-3-(phenylethynyl)phenyl]phenylmethanone, 131
[183589-20-0] [3-(1-Hexynyl)-4-hydroxyphenyl]phenylmethanone, 125
[183724-10-9] (2,6-Dichlorophenyl)(5-hydroxy-4-methoxy-2-methylphenyl) methanone, 265
[183724-89-2] (2,6-Dichlorophenyl)(4-hydroxy-2,3,6-trimethylphenyl) methanone, 291
[183725-20-4] (2,6-Dichlorophenyl)(2-hydroxy-4,5-dimethoxyphenyl) methanone, 265
[183725-80-6] (2,6-Dichlorophenyl)(2,3-dihydroxy-4-methoxy-6-methylphenyl) methanone, 419
[183725-86-2] (2,6-Dichlorophenyl)(4-hydroxy-2-methyl-5-nitrophenyl) methanone, 217
[183725-95-3] (2-Hydroxy-3,4-dimethoxy-6-methyl)(2,3,5,6-tetramethylphenyl) methanone, 351
[183726-43-4] (2,6-Dichlorophenyl)(2-hydroxy-3,4-dimethoxy-6-methylphenyl) methanone, 292
[183726-73-0] (2,6-Dichlorophenyl)(2-hydroxy-4-methoxy-6-methylphenyl) methanone, 264
[188347-38-8] (2,4-Dihydroxyphenyl)(2,4,6-trinitrophenyl)methanone, 392
[190522-97-5] (4-Hydroxy-3-methoxyphenyl)(2-nitrophenyl)methanone, 251

[190522-98-6]	(4-Hydroxy-3-methoxy-5-nitrophenyl)(2-nitrophenyl) methanone, 231
[190523-00-3]	(3,4-Dihydroxy-5-nitrophenyl)(2-nitrophenyl)methanone, 414
[190585-63-8]	[4-Hydroxy-3-nitro-5-(phenylmethoxy)phenyl](2-nitrophenyl) methanone, 349
[190585-64-9]	[3-(Cyclohexyloxy)-4-hydroxy-5-nitrophenyl](2-nitrophenyl) methanone, 342
[190585-65-0]	[3-[(2,6-Dichlorophenyl)methoxy]-4-hydroxy-5-nitrophenyl] (2-nitro-phenyl)-methanone, 348
[190585-66-1]	[2-(Fluoro-](4-hydroxy-3-methoxy-5-nitrophenyl) F)phenyl methanone, 229
[190728-23-5]	(2,6-Dihydroxy-4-methylphenyl)(4-hydroxyphenyl)methanone, 474
[190728-32-6]	(4-Hydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 164
[190728-33-7]	(4-Butylphenyl)(4-hydroxyphenyl)methanone, 185
[190728-34-8]	(3-Fluorophenyl)(4-hydroxyphenyl)methanone, 155
[192437-36-8]	(4-Bromophenyl)(2,5-difluoro-4-hydroxyphenyl)methanone, 195
[192443-11-1]	(4-Bromo-2-fluorophenyl)(4-hydroxyphenyl)methanone, 143
[192443-53-1]	(4-Bromophenyl)[2-(dibromomethyl)-4-hydroxyphenyl] methanone, 215
[194290-73-8]	(2-Fluoro-5-hydroxyphenyl)(3-nitrophenyl)methanone, 209
[194290-75-0]	(2-Fluoro-4-hydroxyphenyl)(3-nitrophenyl)methanone, 209
[194548-68-0]	(2-Hydroxyphenyl)(2-phenoxyphenyl)methanone, 187
[197169-08-7]	(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)
	bis[phenylmethanone, 530
[197355-26-3]	(2-Hydroxy-3,4,5-trimethoxyphenyl)(2,3,4-trimethoxyphenyl) methanone, 347
[198879-06-0]	Phenyl(2,3,4,6-tetrahydroxyphenyl)methanone, 28
[199735-29-0]	(2-Hydroxy-3-methoxy-5-methylphenyl)(4-hydroxy-3-methoxyphenyl)-methanone, 456
[199735-38-1]	(4-Hydroxy-3,5-dimethoxyphenyl)(5-hydroxy-4-methoxy-2-methylphenyl)-methanone, 460
[200420-24-2]	(1-Hydroxycyclohexyl)(4-hydroxyphenyl)methanone, 519
[203060-34-8]	(4-Hydroxy-2-methylphenyl)(4-nitrophenyl)methanone, 249
[203060-35-9]	(3,4-Dihydroxyphenyl)(4-nitrophenyl)methanone, 399
[203060-36-0]	(3,4-Dihydroxyphenyl)(3-nitrophenyl)methanone, 399
[203448-32-2]	(3-Hydroxy-4-methoxyphenyl)(3,4,5-trimethoxyphenyl) methanone, 328
[203786-32-7]	[3-(1,1-Dimethylethyl)-4-hydroxyphenyl](2,4-dimethylphenyl) methanone, 344
[205319-41-1]	(2-Hydroxyphenyl)[2-(trifluoromethyl)phenyl]methanone, 163
Volume 1 - Addendum	
[85-19-8]	(5-Chloro-2-hydroxyphenyl)phenylmethanone, 579
[85-28-9]	(4-Chlorophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 611
[90-96-0]	Bis(4-methoxyphenyl)methanone, 567

[117-99-7] (2-Hydroxyphenyl)phenylmethanone, 563
[131-53-3]
(2-Hydroxy-4-methoxyphenyl)(2-hydroxyphenyl)methanone, 635
[131-55-5]
Bis(2,4-dihydroxyphenyl)methanone, 572
[131-56-6]
[134-92-9]
[345-89-1]
(2,4-Dihydroxyphenyl)phenylmethanone, 565
(4-Hydroxyphenyl)(4-methylphenyl)methanone, 596
(4-Fluorophenyl)(4-methoxyphenyl)methanone, 590
[519-34-6]
[606-12-2]
[611-80-3]
(3,4-Dihydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone, 574
(2-Hydroxyphenyl)(4-hydroxyphenyl)methanone, 568
Bis(3-hydroxyphenyl)methanone, 567
[611-81-4]
[611-94-9]
[611-99-4]
(3-Hydroxyphenyl)(4-hydroxyphenyl)methanone, 568
(4-Methoxyphenyl)phenylmethanone, 564
[727-93-5]
[792-57-4]
[835-11-0]
Bis(4-hydroxyphenyl)methanone, 567
[837-60-5]
[844-38-2]
[1137-42-4]
(5-Fluoro-2-hydroxyphenyl)(4-methoxyphenyl)methanone, 612
[1143-72-2]
(3,4-Dimethoxyphenyl)(3-methoxyphenyl)methanone, 640
Bis(2-hydroxyphenyl)methanone, 566
(2,4-Dihydroxyphenyl)(3-hydroxyphenyl)methanone, 570
(2,4-Dimethoxyphenyl)(3-methoxyphenyl)methanone, 570
(4-Hydroxyphenyl)phenylmethanone, 564
[1151-15-1]
[1151-94-6]
[1470-79-7]
[1641-17-4]
[1818-24-2]
Phenyl(2,3,4-trihydroxyphenyl)methanone, 568
2-(4-Methoxybenzoyl)benzoic acid, 647
(4-Methoxyphenyl)(4-nitrophenyl)methanone, 591
(2,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 570
(2-Hydroxy-4-methoxyphenyl)(4-methylphenyl) methanone, 618
[2050-37-5]
[2553-04-0]
[2898-54-6]
[2929-45-5]
[2985-79-7]
[2985-80-0]
[3555-84-8]
[3555-85-9]
[3555-86-0]
[3770-80-7]
[4038-13-5]
[4038-14-6]
[4038-15-7]
[4072-28-0]
[4369-50-0]
[4834-72-4]
[4998-50-9]
[5191-70-8]
[5326-42-1]
[5449-69-4]
[6136-67-0]
(2,5-Dihydroxyphenyl)phenylmethanone, 565
(2-Methoxyphenyl)phenylmethanone, 563
(3,4-Dimethoxyphenyl)(4-methoxyphenyl)methanone, 572
(2-Hydroxy-4,6-dimethylphenyl)phenylmethanone, 583
(4-Chlorophenyl)(2-hydroxyphenyl)methanone, 588
(4-Chloro-2-hydroxyphenyl)phenylmethanone, 578
(2,4-Dimethoxyphenyl)phenylmethanone, 565
Bis(2,4-dimethoxyphenyl)methanone, 572
Phenyl(2,4,6-trihydroxyphenyl)methanone, 569
Phenyl(2,4,6-trimethoxyphenyl)methanone, 569
(2,5-Dimethoxyphenyl)phenylmethanone, 565
(3,4-Dimethoxyphenyl)phenylmethanone, 566
(2,4-Dimethoxyphenyl)(4-methoxyphenyl)methanone, 570
(5-Chloro-2-methoxyphenyl)phenylmethanone, 579
(4-Bromophenyl)(4-hydroxyphenyl)methanone, 587
(4-Aminophenyl)(4-methoxyphenyl)methanone, 592
(2-Hydroxy-5-methoxyphenyl)(4-methylphenyl)methanone, 618
Bis(4-methoxy-2-methylphenyl)methanone, 636
(4-Hydroxy-3-methylphenyl)phenylmethanone, 581
(2-Methoxyphenyl)(4-methoxyphenyl)methanone, 568
(3-Methoxyphenyl)phenylmethanone, 564
[6178-89-8] [6279-05-6]
[6280-52-0]
[6280-54-2]
[6723-04-2]
[6723-07-5]
[6758-89-0]
[7396-80-7]
[7469-80-9]
[7469-82-1]
[10425-05-5]
[10425-09-9]
[10425-11-3]
[10547-60-1]
[10547-61-2]
[13020-57-0]
[13087-18-8]
[13102-33-5]
[13389-51-0]
[14963-34-9]
[15131-43-8]
[18733-07-8]
[18920-70-2]
[19390-38-6]
[19434-30-1]
[20112-74-7]
[22293-32-9]
[22996-47-0]
[23346-79-4]
[23886-71-7]
[25148-21-4]
[25446-98-4]
[25913-05-7]
[26733-16-4]
[26880-95-5]
[26880-96-6]
[27645-60-9]
[27645-61-0]
[27982-06-5]
[28137-36-2]
[30090-97-2]
[30457-39-7]
[30457-41-1]
[31127-54-5]
[32938-33-3]

Bis(5-chloro-2-hydroxyphenyl)methanone, 635
(4-Chlorophenyl) (2-hydroxy-5-methylphenyl)methanone, 610
(2-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 609
(3-Chlorophenyl)(2-hydroxy-5-methylphenyl)methanone, 610
(4-Bromo-2-hydroxyphenyl)phenylmethanone, 577
(4-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone, 580
(4-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone, 580
(2,4-Dimethoxyphenyl)(2-fluorophenyl)methanone, 628
Cyclohexyl(4-methoxyphenyl)methanone, 643
(1-Hydroxycyclohexyl)(4-methoxyphenyl)methanone, 644
[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]phenylmethanone, 584
(2,4-Dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone, 574
(3,4-Dihydroxyphenyl)phenylmethanone, 565
(4-Chlorophenyl)(4-hydroxyphenyl)methanone, 588
(3-Chloro-4-methoxyphenyl)phenylmethanone, 578
(3-Hydroxyphenyl)phenylmethanone, 564
(2,4-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 569
Bis(2-methoxyphenyl)methanone, 567
(3-Chlorophenyl)(4-methoxyphenyl)methanone, 588
(4-Aminophenyl)(4-hydroxyphenyl)methanone, 592
(4-Butoxy-2-hydroxyphenyl)phenylmethanone, 584
(2-Hydroxyphenyl)(4-methoxyphenyl)methanone, 597
(4-Hydroxyphenyl)(4-nitrophenyl)methanone, 591
(2,4-Dihydroxyphenyl)(2-fluorophenyl)methanone, 628
(2-Hydroxyphenyl)(4-methylphenyl)methanone, 595
Cyclohexyl(2-hydroxy-4-methylphenyl)methanone, 644
(2-Hydroxyphenyl)(2-nitrophenyl)methanone, 590
(2,5-Dimethylphenyl)(4-methoxyphenyl)methanone, 652
(2-Bromophenyl)(3,4-dimethoxyphenyl)methanone, 649
(4-Methoxyphenyl)(4-methylphenyl)methanone, 596
(2-Hydroxy-5-methylphenyl)(4-hydroxyphenyl)methanone, 634
Bis[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 636
(4-Fluorophenyl)(4-hydroxyphenyl)methanone, 589
(3,5-Dibromo-4-hydroxyphenyl)phenylmethanone, 576
(2-Hydroxy-5-methylphenyl)(4-methylphenyl)methanone, 617
(2-hydroxy-5-methylphenyl)(4-methoxyphenyl) methanone, 620
4-(4-Methoxybenzoyl)benzonitrile, 593
4-(4-Hydroxybenzoyl)benzonitrile, 593
(4-Ethoxyphenyl)phenylmethanone, 564
(2-Methoxyphenyl)(4-methylphenyl)methanone, 595
(4-Methoxy-3-methylphenyl)phenylmethanone, 582
(2-Bromo-4-methoxyphenyl)(4-methoxyphenyl)methanone, 648
(2-Chloro-4-methoxyphenyl)(4-methoxyphenyl)methanone, 633
(4-Hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 573
(2,5-Dimethoxyphenyl)(2-methoxyphenyl)methanone, 571
[33077-87-1] (2,4-Dimethoxyphenyl)(2-methoxyphenyl)methanone, 570
[33785-66-9]
[34007-64-2]
[34174-02-2]
[34189-58-7]
[34450-48-1]
[34702-00-6]
[34702-01-7]
[35582-86-6]
[37567-35-4]
[37567-41-2]
[37883-94-6]
[37883-99-1]
[38009-30-2]
[38459-58-4]
[41204-59-5]
[41295-26-5]
[41295-28-7]
[41295-44-7]
[42019-78-3]
[42204-63-7]
[42404-41-1]
[42495-50-1]
[46795-44-2]
[46863-20-1]
[50685-40-0]
[51339-44-7]
[51439-89-5]
[51974-19-7]
[51974-20-0]
[52479-85-3]
[52591-10-3]
[52886-92-7]
[52980-99-1]
[52981-01-8]
[53039-63-7]
[53948-11-1]
[53948-13-3] [3-(3,7-Dimethyloctyl)-2,4-dihydroxy-6-methoxyphenyl]phenylmethanone, 627
[53948-14-4] [3-[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]-2,4,6-trimethoxyphenyl]-phenylmethanone, 627
[53948-15-5] [2,4-Bis(acetyloxy)-3-(3,7-dimethyl-2,6-octadienyl)-6-methoxyphenyl]phenylmethanone, 627
[53948-16-6] [3-(3,7-Dimethyl-2,6-octadienyl)-2-hydroxy-4,6-dimethoxyphenyl]-phenylmethanone (E), 584
[53948-17-7]
[54118-70-6]
[54118-71-7]
[54118-72-8]
[54118-73-9]
[54118-74-0]
[54118-75-1]
[54118-76-2]
[54118-77-3]
[54118-78-4]
[55191-20-3]
[55270-71-8]
[55270-73-0]
[55270-80-9]
[58878-51-6]
[59142-61-9]
[59142-63-1]
[59746-91-7]
[60080-98-0]
[60972-10-3]
[61002-52-6]
[61002-53-7]
[61002-54-8]
[61785-37-3]
[62064-85-1]
[62433-29-8]
[62507-47-5]
[62666-37-9]
[62810-46-2]
[62810-49-5]
[62810-50-8]
[66938-29-2]
[67601-27-8]
[68223-20-1]
[69471-29-0]
[70219-83-9]
[70219-84-0]
[71372-37-7]
[74697-33-9]
[74697-54-4]
[70219-87-3] [3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone (E), 638
[2-(Acetyloxy)-3-(3,7-dimethyl-2,6-octadienyl)-4,6-dimethoxyphenyl]-phenylmethanone $(E), 585$
(4-Methoxy-3-methylphenyl)(4-methoxyphenyl)methanone, 635
(2-Methoxy-5-methylphenyl)(4-methoxyphenyl)methanone, 634
(4-Methoxyphenyl)[4-(methylthio)phenyl]methanone, 597
(4-Methoxyphenyl)(4-iodophenyl)methanone, 590
(2-Chlorophenyl)(4-methoxyphenyl)methanone, 587
(4-Bromophenyl)(4-methoxyphenyl)methanone, 587
(3-Bromophenyl)(4-methoxyphenyl)methanone, 587
2-(4-Methoxybenzoyl)benzoic acid (Na salt), 647
(4-Methoxyphenyl)(3-nitrophenyl)methanone, 646
(3-Chloro-4-hydroxyphenyl)phenylmethanone, 578
(2-Chlorophenyl)(4-hydroxyphenyl)methanone, 587
(2-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone, 608
(3-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone, 611
(5-Chloro-2-hydroxy-3-iodophenyl)phenylmethanone, 576
(2-Bromo-4,5-dimethoxyphenyl)phenylmethanone, 648
(2-Bromophenyl)(4-methoxyphenyl)methanone, 586
(2,4-Dihydroxy-3-nitrophenyl)phenylmethanone, 624
(2-Bromo-5-methoxyphenyl)phenylmethanone, 646
(5-Fluoro-2-methoxyphenyl)(4-methoxyphenyl)methanone, 634
(3-Chlorophenyl)(4-hydroxyphenyl)methanone, 588
(2,6-Dichlorophenyl)(4-hydroxyphenyl)methanone, 585
(4-Hydroxyphenyl)(4-methoxyphenyl)methanone, 597
(5-Chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone, 607
(4-Hydroxy-3-methylphenyl)(3-methylphenyl)methanone, 618
(5-Fluoro-2-hydroxyphenyl)(4-methylphenyl)methanone, 611
(3-Methoxyphenyl)(4-nitrophenyl)methanone, 591
(4-Fluorophenyl)(2-hydroxyphenyl)methanone, 589
(4-Bromophenyl)(3-hydroxyphenyl)methanone, 587
(3-Hydroxyphenyl)(4-methylphenyl)methanone, 595
(3-Bromophenyl)(3-hydroxyphenyl)methanone, 586
(2-Fluorophenyl)(4-methoxyphenyl)methanone, 589
(2-Chloro-4-methoxyphenyl)phenylmethanone, 578
(2-Hydroxyphenyl)(4-nitrophenyl)methanone, 590
(4-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 639
[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl] phenylmethanone, 626
Phenyl[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl] methanone, 639
(4-Hydroxyphenyl)(3-methylphenyl)methanone, 596
(3-Chloro-4-methoxyphenyl)(4-methoxyphenyl)methanone, 633
(3,4-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 571
[75440-84-5]
[75731-44-1]
[76015-48-0]
[76442-91-6]
[76442-92-7]
[76442-93-8]
[76442-94-9]
[76442-95-0]
[76442-96-1]
[76442-97-2]
[78589-10-3]
[78589-12-5]
[80427-23-2]
[81375-00-0]
[81652-53-1]
[82520-37-4]
[83888-61-3]
[83937-21-7]
[84443-36-7]
[84795-00-6]
[85602-45-5]
[87119-03-7]
[89899-44-5]
[91387-68-7]
[92005-11-3]
[92005-17-9]
[92103-15-6]
[92379-42-5]
[92548-90-8]
[92739-90-7]
[93796-20-4]
[93796-23-7]
[97732-63-3]
[98085-85-9]
[98155-72-7]
[98155-74-9]
[98155-77-2]
[99768-27-1]
[107622-28-6]
[107623-97-2]
[108294-71-9]

Bis(2,3,4-trihydroxyphenyl)methanone, 575
(3-Methoxyphenyl)(4-methoxyphenyl)methanone, 568
[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxyphenyl]phenylmethanone (Z), 638
(3-Chloro-4-methoxyphenyl)(4-nitrophenyl)methanone, 605
(2-Chloro-4-methoxyphenyl)(4-methylphenyl)methanone, 649
(2-Chloro-4-methoxyphenyl)(4-chlorophenyl)methanone, 606
(2-Chloro-4-methoxyphenyl)(4-nitrophenyl)methanone, 645
(5-Chloro-2-methoxyphenyl)(4-methoxyphenyl)methanone, 633
(5-Chloro-2-methoxyphenyl)(4-chlorophenyl)methanone, 607
(5-Chloro-2-methoxyphenyl)(4-nitrophenyl)methanone, 605
(4-Chlorophenyl)(2-methoxyphenyl)methanone, 588
(4-Chloro-2-methoxyphenyl)phenylmethanone, 578
(2,5-Dimethoxyphenyl)(4-methoxyphenyl)methanone, 571
(2-Chloro-4-hydroxyphenyl)phenylmethanone, 577
(2-Hydroxy-4-methylphenyl)(4-methylphenyl)methanone, 616
(3-Methoxyphenyl)(4-methylphenyl)methanone, 595
(4-Hydroxyphenyl)[4-(methylthio)phenyl]methanone, 597
[2-Hydroxy-4-(pentyloxy)phenyl]phenylmethanone, 584
(5-Chloro-2-hydroxyphenyl)(4-nitrophenyl)methanone, 605
(4-Fluorophenyl)(2,3,4-trihydroxyphenyl)methanone, 639
Cyclohexyl(2,4,6-trihydroxyphenyl)methanone, 644
(3-Amino-2,4-dihydroxyphenyl)phenylmethanone, 625
(3-Bromo-4-hydroxyphenyl)phenylmethanone, 577
[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)-5-[5-methyl-2-
(1-methylethenyl)-5-hexenyl]phenyl](3-hydroxyphenyl)methanone (-), 641
(4-Hydroxy-3-methylphenyl)(4-hydroxyphenyl)methanone, 634
(3-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 633
(2-Chlorophenyl)(4-hydroxy-2-methylphenyl)methanone, 610
(2,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 574
(2-Hydroxy-4-methylphenyl)(3-methylphenyl)methanone, 616
(2-Bromophenyl)(5-chloro-2-hydroxyphenyl)methanone, 605
Phenyl[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl] methanone, 637
Phenyl[2,4,6-trihydroxy-3-(3-methylbutyl)phenyl]methanone, 638
[4-(Acetylamino)phenyl](4-methoxyphenyl)methanone, 651
Bis[5-(1,1-dimethylethyl)-2-methoxyphenyl]methanone, 636
(4-Hydroxy-2-methylphenyl)(4-hydroxyphenyl)methanone, 634
Bis(4-hydroxy-2-methylphenyl)methanone, 636
(2-Chloro-4-hydroxyphenyl)(4-hydroxyphenyl)methanone, 632
(3-Chloro-4-hydroxyphenyl)(4-nitrophenyl)methanone, 605
(4-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 610
(2-Chlorophenyl)(2-hydroxy-4-methylphenyl)methanone, 609
(4-Fluorophenyl)(2-hydroxy-4-methylphenyl)methanone, 611
[108478-27-9] (2-Hydroxy-4-methylphenyl)(4-methoxyphenyl)methanone, 620
[109091-08-9] (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone, 654
[112232-17-4] (4-Hydroxyphenyl)(2,3,4,5-tetrahydroxyphenyl)methanone, 574
[112379-67-6] (4-Methoxyphenyl)(4-methylphenyl)methanone ${ }^{13} \mathrm{C}, 598$
[113275-52-8] (4-Hydroxyphenyl)(4-iodophenyl)methanone, 590
[115834-34-9] 1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl]ethanone, 654
[116412-86-3] (3,4-Dimethoxyphenyl)(2-fluorophenyl)methanone, 650
[116544-78-6] (5-Chloro-2-hydroxyphenyl)(4-methylphenyl)methanone, 609
[120506-56-1] (2,5-Dihydroxyphenyl)(4-hydroxyphenyl)methanone, 571
[125628-96-8] (3,4-Dihydroxy-5-nitrophenyl)phenylmethanone, 624
[125628-97-9] (3,4-Dihydroxy-5-nitrophenyl)(2-fluorophenyl)methanone, 629
[126077-53-0] (2-Hydroxy-4-methoxyphenyl)(3-nitrophenyl)methanone, 612
[126165-40-0] (5-Chloro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 633
[126346-90-5] (3-Aminophenyl)(2-hydroxy-4-methoxyphenyl)methanone, 613
[131117-90-3] 4-(2-Methoxybenzoyl)benzonitrile, 593
[131117-91-4] 4-(2-Hydroxybenzoyl)benzonitrile, 593
[131118-03-1] 2-(2-Hydroxybenzoyl)benzonitrile, 592
[131252-46-5] (3,4-Dimethoxyphenyl)(2-methoxyphenyl)methanone, 652
[134308-13-7] (3,4-Dihydroxy-5-nitrophenyl)(4-methylphenyl)methanone, 630
[134612-29-6] [3-methoxy-4-(phenylmethoxy)phenyl](4-methylphenyl) methanone, 619
[134612-39-8] (4-Hydroxy-3-methoxyphenyl)(4-methylphenyl)methanone, 619
[134612-80-9] (4-Hydroxy-3-methoxy-5-nitrophenyl)(4-methylphenyl) methanone, 615
[134612-84-3] (4-Chlorophenyl)(3,4-dihydroxyphenyl)methanone, 628
[137327-31-2] (2-Bromophenyl)(2,5-dimethoxyphenyl)methanone, 648
[138504-32-2] (2-Iodophenyl)(4-methoxyphenyl)methanone, 646
[142256-62-0] (2-Methoxyphenyl)(2-methylphenyl)methanone, 594
[147029-77-4] (3-Hydroxyphenyl)(4-nitrophenyl)methanone, 591
[147029-79-6] (2-Hydroxy-5-methylphenyl)(2-methylphenyl)methanone, 617
[148253-50-3] (3,5-Difluorophenyl)(4-hydroxyphenyl)methanone, 585
[148253-51-4] (3,5-Dihydroxyphenyl)(4-fluorophenyl)methanone, 629
[148253-52-5] (3,5-Dihydroxyphenyl)(4-fluorophenyl)methanone (Polymer), 629
[151239-47-3] (4-Bromophenyl)(3-methoxyphenyl)methanone, 587
[159300-38-6] (5-Fluoro-2-hydroxyphenyl)(4-hydroxyphenyl)methanone, 634
[161585-22-4] (5-Fluoro-2-hydroxyphenyl)[4-methoxy-($\left.{ }^{11} \mathrm{C}\right)$ phenyl] methanone, 612
[176547-97-0] (2,5-Dimethoxyphenyl)(2-fluorophenyl)methanone, 629
[176547-98-1] (2,5-Dihydroxyphenyl)(2-fluorophenyl)methanone, 629
[177703-29-6] (3,4-Dihydroxy-2-methoxyphenyl)phenylmethanone, 626
[183106-10-7] (2-Bromophenyl)(2,4-dimethoxyphenyl)methanone, 627
[183106-11-8] (2,5-Dimethoxyphenyl)(3-methoxyphenyl)methanone, 652
[183106-12-9] (3,4-Dimethoxyphenyl)(2-hydroxyphenyl)methanone, 599
[183106-13-0] (2,5-Dihydroxyphenyl)(2-hydroxyphenyl)methanone, 571
[184090-09-3] Bis(3,5-dimethoxyphenyl)methanone, 573
[194784-86-6] (2-Hydroxy-4-iodo-3-methylphenyl)phenylmethanone, 581
[204853-33-8] [2-Hydroxy-5-(4-methylbenzoyl)-3-nitrophenyl]- β-D-glucopyranosiduronic acid, 623
[210704-39-5] (3-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone (Na salt), 619
[210704-41-9] (3-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone (Li salt), 619
[210704-43-1] (3-Hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone, 618
[212902-63-1] 4-(3,4-Dihydroxy-5-nitrobenzoyl)benzoic acid, 630
[215380-62-4] (5-Bromo-2-hydroxyphenyl)(4-methylphenyl)methanone, 608
[218784-25-9] (3-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone, 608
[251562-02-4] [3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl](2,3,4-trihydroxyphenyl)methanone, 641
[253681-20-8] (3-Amino-2,4-dimethoxyphenyl)phenylmethanone, 625
[253681-30-0] (3-Amino-2-hydroxy-4-methoxyphenyl)phenylmethanone, 582
[254902-29-9] [3-Amino-4-hydroxy-5-(sulfooxy)phenyl](4-methylphenyl) methanone, 632
[254902-30-2] [3-Amino-2-hydroxy-5-(4-methylbenzoyl)phenyl]- β-D-glucopyranosiduronic acid, 623
[254912-15-7] (3,4-Dihydroxy-5-nitrophenyl)[4-(hydroxymethyl)phenyl] methanone, 631
[254912-17-9] (3-Amino-4,5-dihydroxyphenyl)(4-methylphenyl)methanone, 631
[256475-07-7] (2-Methoxyphenyl)[4-(trifluoromethyl)phenyl]methanone, 592
[263395-55-7] (3-Hydroxyphenyl)[4-(methoxymethoxy)phenyl]methanone, 599
[263395-60-4] [3-(Acetyloxy)phenyl](4-hydroxyphenyl)methanone, 598
[263395-62-6] (4-Hydroxyphenyl)[3-(2-propenyloxy)phenyl]methanone, 599
[263395-63-7] (3-Ethoxyphenyl)(4-hydroxyphenyl)methanone, 598
[263395-65-9] [4-[2-(Dimethylamino)ethoxy]phenyl](3-hydroxyphenyl) methanone, 600
[329235-41-8] (2-Fluorophenyl)(2-hydroxyphenyl)methanone, 589
[329235-51-0] (2-Hydroxy-6-methoxyphenyl)(4-methylphenyl)methanone, 618
[329941-82-4] (5-Chloro-2-hydroxyphenyl)(3,5-difluorophenyl)methanone, 604
[329944-55-0] (5-Chloro-2-hydroxyphenyl)(3,5-dimethoxyphenyl)methanone, 614
[329944-59-4] (3-Bromo-5-chlorophenyl)(5-chloro-2-methoxyphenyl) methanone, 603
[329944-61-8] (3-Bromo-5-chlorophenyl)(5-chloro-2-hydroxyphenyl) methanone, 603
[329944-63-0] 3-Chloro-5-(5-chloro-2-methoxybenzoyl)benzonitrile, 608
[329944-65-2] 3-Chloro-5-(5-chloro-2-hydroxybenzoyl)benzonitrile, 607
[335195-30-7] (2-Hydroxy-4-iodophenyl)phenylmethanone, 579
[335195-31-8] (2-Hydroxy-4-iodo-5-methylphenyl)phenylmethanone, 581
[335195-33-0] (4-Bromo-2-hydroxyphenyl)phenylmethanone (Oxime) (1E), 577
[335195-34-1] (4-Bromo-2-hydroxy-5-methylphenyl)phenylmethanone (Oxime) (1E), 580
[335195-35-2] (4-Bromo-2-hydroxy-3-methylphenyl)phenylmethanone (Oxime) (1E), 580
[335195-36-3] (2-Hydroxy-4-iodophenyl)phenylmethanone (Oxime) (1E), 579
[335195-37-4] (2-Hydroxy-4-iodo-5-methylphenyl)phenylmethanone (Oxime) (1E), 581
[335195-38-5] (2-Hydroxy-4-iodo-3-methylphenyl)phenylmethanone (Oxime) (1E), 581
[383382-84-1] (3,4-Dihydroxy-2-nitrophenyl)phenylmethanone, 624
[383382-96-5] [4-(Acetyloxy)-3-methoxy-2-nitrophenyl]phenylmethanone, 581
[383382-97-6] [4-(Acetyloxy)-3-methoxyphenyl]phenylmethanone, 582
[383382-98-7] (4-Hydroxy-3-methoxy-2-nitrophenyl)phenylmethanone, 581
[430459-44-2] Bis(5-fluoro-2,4-dihydroxyphenyl)methanone, 642
[628263-26-3] (3,5-Dimethoxyphenyl)phenylmethanone, 566
[674786-33-5] (3-Ethoxyphenyl)(2,3,4-trihydroxyphenyl)methanone, 639
[680610-53-1] [2-Fluoro-3-(trifluoromethyl)phenyl](4-methoxyphenyl) methanone, 646
[680610-55-3] (3-Chloro-2-fluorophenyl)(4-methoxyphenyl)methanone, 645
[680610-61-1] (2,3-Difluorophenyl)(4-methoxy-3-methylphenyl)methanone, 647
[680610-70-2] (3-Chloro-2-fluorophenyl)(2,4-dimethoxyphenyl)methanone, 647
[680610-71-3] (2,3-Difluorophenyl)(2,4-dimethoxyphenyl)methanone, 647
[746652-03-9] (2-Methoxyphenyl)[2-(methylthio)phenyl]methanone, 597
[750633-46-6] (4-Fluorophenyl)(2-methoxyphenyl)methanone, 589
[750633-66-0] (3-Bromophenyl)(3-methoxyphenyl)methanone, 586
[760192-84-5] (4-methoxyphenyl)[2-(methylthio)phenyl]methanone, 650
[842169-21-5] (5-Chloro-2-hydroxyphenyl)(2,3-dichlorophenyl)methanone, 604
[870652-41-8] (5-Bromo-2,3,4-trihydroxyphenyl)phenylmethanone, 637
[872088-11-4] (5-Chloro-2-methoxyphenyl)(3,5-dichlorophenyl)methanone, 645
[872881-74-8] (4-Methoxy-1,3-benzodioxol-5-yl)phenylmethanone, 647
[872881-75-9] (4-Hydroxy-2,3-dimethoxyphenyl)phenylmethanone, 583
[873220-56-5] $\operatorname{Bis}(3,5-d i h y d r o x y p h e n y l) m e t h a n o n e, ~ 573$
[873220-60-1] 5-Bromo- α, α^{\prime}-bis (3,5-dimethoxyphenyl)benzenedimethanol, 655
[873220-61-2] (5-Bromo-1,3-phenylene)bis[(3,5-dimethoxyphenyl) methanone, 655
[873220-62-3] (5-Bromo-1,3-phenylene)bis[(3,5-dihydroxyphenyl)methanone, 655
[873296-36-7] [4-(Acetyloxy)-5-methoxy-2-nitrophenyl]phenylmethanone, 651
[873987-05-4] (4-Methoxy-3-nitrophenyl)(4-nitrophenyl)methanone, 607
[874889-35-7] (5-Chloro-2-methoxyphenyl)(3,5-difluorophenyl)methanone, 604
[879288-16-1] Bis(5-fluoro-2,4-dimethoxyphenyl)methanone, 642
[880877-63-4] (4-Hydroxyphenyl)(2,4,6-trihydroxyphenyl)methanone (Monohydrate), 573
[882531-40-0] (2-Amino-4,5-dimethoxyphenyl)(2-methoxyphenyl)methanone, 653
[883566-13-0] (2-Hydroxy-3-iodo-5-methylphenyl)phenylmethanone, 580
[883566-14-1] (2-Hydroxy-3,5-diiodo-4-methylphenyl)phenylmethanone, 580
[883566-15-2] (3-Chloro-2-hydroxy-5-iodophenyl)phenylmethanone, 576
[883566-16-3] (2-Hydroxy-3,5-diiodo-4,6-dimethylphenyl)phenylmethanone, 583

[885481-51-6]	[2-Fluoro-5-(trifluoromethyl)phenyl](2-hydroxy-4-methoxyphenyl)-methanone, 613
[887344-78-7]	(2-Hydroxy-3-methylphenyl)(4-methylphenyl)methanone, 616
[908368-59-2]	[2-(3,7-Dimethyloctyl)phenyl](4-hydroxyphenyl)methanone, 601
[908368-60-5]	[2-[(3R)-3,7-Dimethyloctyl]phenyl](4-methoxyphenyl) methanone, 602
[908368-61-6]	[2-[(3R)-3,7-Dimethyloctyl]phenyl](4-hydroxyphenyl) methanone, 601
[908368-62-7]	[3-[(4R)-4,8-Dimethylnonyl]phenyl](4-hydroxyphenyl) methanone, 602
[908368-63-8]	[4-[(4R)-4,8-Dimethylnonyl]phenyl](3-hydroxyphenyl) methanone, 603
[908368-64-9]	[3-[(3R)-3,7-Dimethyloctyl]phenyl](3-hydroxyphenyl) methanone, 602
[908368-68-3]	[2-(3,7-Dimethyloctyl)phenyl](4-methoxyphenyl)methanone, 601
[908368-69-4]	(3-Iodophenyl)(4-methoxyphenyl)methanone, 646
[908368-70-7]	[3-[(4R)-4,8-Dimethylnonyl]phenyl](4-methoxyphenyl) methanone, 603
[908368-73-0]	[4-[(4R)-4,8-Dimethylnonyl]phenyl](3-methoxyphenyl) methanone, 603
[908368-75-2]	[3-[(3R)-3,7-Dimethyloctyl]phenyl](3-methoxyphenyl) methanone, 602
[909255-14-7]	(3-Amino-2,4-dihydroxyphenyl)cyclohexylmethanone, 626
[909255-17-0]	(3-Amino-2,4-dihydroxyphenyl)[(4-methylsulfonyl)phenyl] methanone, 631
[909255-18-1]	(3-Amino-2,4-dihydroxyphenyl)(4-fluorophenyl)methanone, 630
[909255-19-2]	(3-Amino-2,4-dihydroxyphenyl)(2-methoxyphenyl)methanone, 631
[909255-20-5]	(3-Amino-2,4-dihydroxyphenyl)(2,6-dimethylphenyl) methanone, 632
[909255-30-7]	(3-Amino-4-hydroxy-2-methylphenyl)phenylmethanone, 582
[909255-41-0]	Cyclohexyl(2,4-dihydroxy-3-nitrophenyl)methanone, 625
[939382-98-6]	(5-Bromo-2-hydroxyphenyl)(4-chlorophenyl)methanone, 604
[949492-38-0]	(2-Chloro-4-hydroxyphenyl)(4-chlorophenyl)methanone, 606
[950201-80-6]	Phenyl[2,4,6-trimethoxy-3-[5-methyl-2-(1-methylethylidene)-4-hexen-1-yl]phenyl]methanone, 654
[951892-04-9]	(2-Bromophenyl)(3,5-dimethoxyphenyl)methanone, 649
[959472-47-0]	(2,4-Dihydroxy-6-methoxyphenyl)(4-hydroxyphenyl) methanone, 640
[960294-81-9]	(4-Hydroxyphenyl)(2,3,4,5,6-pentahydroxyphenyl)methanone, 575
[1000604-04-5]	(4-Fluorophenyl)(2-methoxy-5-methylphenyl)methanone, 650
[1000990-04-4]	(2-Bromo-4-methoxyphenyl)(3-methoxyphenyl)methanone, 648
[1000990-05-5]	(2-Bromo-4-methoxyphenyl)(3,5-dimethoxyphenyl)methanone, 651
[1000990-06-6]	(2-Bromo-5-methoxyphenyl)(3,5-dimethoxyphenyl)methanone, 651
[1000990-07-7]	(2-Bromo-4,5-dimethoxyphenyl)(3,5-dimethoxyphenyl) methanone, 653

[1000990-08-8] (2-Bromo-3,5-dimethoxyphenyl)phenylmethanone, 648
[1000990-09-9] (2-Bromo-3,5-dimethoxyphenyl)(3,5-dimethoxyphenyl) methanone, 653
[1000990-11-3] (2-Bromo-3,5-dimethylphenyl)(3,5-dimethoxyphenyl) methanone, 653
[1000990-15-7] (4-Bromo-2-methoxyphenyl)(3,5-dimethoxyphenyl) methanone, 651
[1004540-28-6] (2-Hydroxyphenyl)[2-(methylthio)phenyl]methanone, 596
[1005486-58-7] (2-Chloro-6-hydroxyphenyl)(4-methoxyphenyl)methanone, 611
[1005486-64-5] (2-Chloro-6-hydroxy-4-methylphenyl)(4-methoxyphenyl) methanone, 614
[1005486-69-0] [2-Chloro-6-hydroxy-4-(hydroxymethyl)phenyl] (4-methoxyphenyl)-methanone, 614
[1005486-84-9] (2-Chloro-6-hydroxy-4-methylphenyl)(4-ethoxyphenyl) methanone, 621
[1005486-86-1] [2-Chloro-6-hydroxy-4-(hydroxymethyl)phenyl](4-ethoxyphenyl)methanone, 621
[1005486-93-0] (4-Ethoxyphenyl)(2-fluoro-6-hydroxy-4-methylphenyl) methanone, 622
[1005487-98-8] (2-Fluoro-6-hydroxy-4-methylphenyl)(4-propoxyphenyl) methanone, 622
[1005487-99-9] [2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl] (4-propoxyphenyl)-methanone, 623
[1005488-15-2] (2-Fluoro-6-hydroxy-4-methylphenyl)[4-(1-methylethoxy) phenyl]-methanone, 622
[1005488-17-4] [2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl] [4-(1-methylethoxy)-phenyl]methanone, 623
[1005488-48-1] (2-Hydroxy-6-methoxy-4-methylphenyl)(4-methoxyphenyl) methanone, 622
[1005488-49-2] [2-(Acetyloxy)-6-methoxy-4-methylphenyl](4-methoxyphenyl) methanone, 622
[1005488-50-5] [2-Hydroxy-4-(hydroxymethyl)-6-methoxyphenyl] (4-methoxyphenyl)-methanone, 622
[1005488-51-6] [4-[(Acetyloxy)methyl]-2-hydroxy-6-methoxyphenyl] (4-methoxyphenyl)-methanone, 623
[1005488-56-1] (2-Fluoro-6-hydroxy-4-methylphenyl)(4-methoxyphenyl) methanone, 615
[1005488-58-3] [2-Fluoro-6-hydroxy-4-(hydroxymethyl)phenyl]
(4-methoxyphenyl)-methanone, 615
[1005488-89-0] (2-Bromo-6-hydroxy-4-methylphenyl)(4-methoxyphenyl) methanone, 613
[1005488-91-4] [2-Bromo-6-hydroxy-4-(hydroxymethyl)phenyl] (4-methoxyphenyl)-methanone, 613
[1005488-92-5] [2-Bromo-4-(bromomethyl)-6-hydroxyphenyl](4-methoxyphenyl)methanone, 613

[1011708-90-9]	(4-Phenoxypheny methanone, 641
[1011708-91-0]	Phenyl[2,3,4-trihydroxy-5-(1-methylethyl)phenyl]methanone, 637
[1011708-92-1]	(4-Phenoxyphenyl)[2,3,4-trihydroxy-5-(1-methylethyl)phenyl] methanone, 641
[101	Phenyl[2,3,4-trimethoxy-5-(1-methylethyl)phenyl]methanone, 637
[1015414-82-0]	(2,5-Difluoro-4-nitrophenyl)(2-fluoro-5-methoxyphenyl) methanone, 644
[1015414-83-1]	(2,6-Difluoro-4-nitrophenyl)(2-fluoro-5-methoxyphenyl) methanone, 645
[1018451-12-1]	Bis(3-fluoro-2,4-dimethoxyphenyl)methanone, 621
[1018451-13-2]	(3-Fluoro-2,4-dimethoxyphenyl)(3-fluoro-2-hydroxy-4-methoxyphenyl)methanone, 621
018668-99-9]	(2-Hydroxyphenyl)(3-methyl-4-nitrophenyl)methanone, 594
[1019637-56-9]	(2-Chlorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 614
[1019637-57-0]	(2-Fluorophenyl)(2-hydroxy-4,6-dimethylphenyl)methanone, 615
[1019637-58-1]	(2-Chlorophenyl)(2-methoxy-4,6-dimethylphenyl)methanone, 614
[1019637-59-2]	(2-Fluorophenyl)(2-methoxy-4,6-dimethylphenyl)methanone, 615
[1019637-60-5]	(2-Methoxy-4,6-dimethylphenyl)(2-methoxyphenyl)methanone, 653
[1020077-60-4]	[4-(1,1-Dimethylethoxy)-2-hydroxyphenyl] phenylmethanone(Polymer with 1,2-ethanediol), 584
1021955-12-3]	(3-Amino-2,4-dihydroxyphenyl)(2-hydroxyphenyl)methanone, 640
1022080-07-4]	(4-Methoxyphenyl)(2-methyl-5-nitrophenyl)methanone, 650
1023758-39-5]	(4-Hydroxy-2-methylphenyl)(2-methoxyphenyl)methanone, 620
[1023758-40-8]	(4-Hydroxy-2-methylphenyl)(2-methylphenyl)methanone, 617
1023758-41-9]	(2-Hydroxy-4-methylphenyl)(2-methoxyphenyl)methanone, 619
[1023758-42-0]	(2-Hydroxy-4-methylphenyl)(2-methylphenyl)methanone, 616
[1023758-43-1]	(2-Bromophenyl)(2-hydroxy-4-methylphenyl)methanone, 608
[1023758-44-2]	(2-Hydroxy-4-methylphenyl)(2-nitrophenyl)methanone, 612
[1023758-47-5]	(4-Hydroxy-2-methylphenyl)(3-methoxyphenyl)methanone, 620
[1023758-48-6]	(2-Hydroxy-4-methylphenyl)(3-methoxyphenyl)methanone, 619

Volume 2

[50-80-6] 1-(5-Amino-2-hydroxyphenyl)ethanone, 728
[89-84-9] 1-(2,4-Dihydroxyphenyl)ethanone (Resacetophenone), 714
[90-24-4] 1-(2-Hydroxy-4,6-dimethoxyphenyl)ethanone (Xanthoxylin; Brevifolin), 837
[99-93-4] 1-(4-Hydroxyphenyl)ethanone, 710
[118-93-4] 1-(2-Hydroxyphenyl)ethanone, 706
[121-71-1] 1-(3-Hydroxyphenyl)ethanone, 709
[393-62-4] 1-(3-Bromo-5-fluoro-2-hydroxyphenyl)ethanone, 662
[394-32-1] 1-(5-Fluoro-2-hydroxyphenyl)ethanone, 692
[402-84-6] 1-(3-Bromo-5-fluoro-4-hydroxyphenyl)ethanone, 662
[403-14-5] 1-(3-Fluoro-4-hydroxyphenyl)ethanone, 692
[445-38-5]
[480-66-0]
[490-78-8]
[493-33-4]
[498-02-2]
[528-21-2]
[552-41-0]
[577-45-7]
[699-83-2]
[699-91-2]
[699-92-3]
[703-23-1]
[703-29-7]
[703-97-9]
[703-98-0]
[705-15-7]
[708-53-2]
[713-23-5]
[875-59-2]
[876-02-8]
[1132-05-4]
[1197-09-7]
[1198-66-9]
[1450-72-2]
[1450-74-4]
[1450-75-5]
[1450-76-6]
[1481-27-2]
[1632-59-3]
[1634-34-0]
[1634-36-2]
[1634-62-4]
[1818-27-5]
[1834-91-9]
[1836-05-1]
[1836-06-2]
[1990-24-5]
[2476-29-1]
[2478-38-8]
[2652-27-9]
[2657-28-5]

1-(3-Chloro-5-fluoro-2-hydroxyphenyl)ethanone, 668
1-(2,4,6-Trihydroxyphenyl)ethanone (Phloroacetophenone), 722
1-(2,5-Dihydroxyphenyl)ethanone (Quinacetophenone), 716
1-(4-Hydroxy-2-methoxyphenyl)ethanone (Isopaeonol), 780
1-(4-Hydroxy-3-methoxyphenyl)ethanone (Apocynin;
Acetovanillone; Acetoguaiacone), 781
1-(2,3,4-Trihydroxyphenyl)ethanone (Gallacetophenone), 720
1-(2-Hydroxy-4-methoxyphenyl)ethanone (Paeonol), 775
1-(2,4-Dihydroxy-3,5-dimethylphenyl)ethanone (Clavatol), 820
1-(2,6-Dihydroxyphenyl)ethanone (γ-Resacetophenone), 718
1-(2-Hydroxy-3-methylphenyl)ethanone, 757
1-(3-Fluoro-2-hydroxyphenyl)ethanone, 691
1-(2-Hydroxy-6-methoxyphenyl)ethanone, 778
1-(2,4-Dihydroxy-6-methylphenyl)ethanone (Orcacetophenone;
Orsacetophenone; β-Orcacetophenone), 769
1-(3-Chloro-4-fluoro-2-hydroxyphenyl)ethanone, 667
1-(2-Hydroxy-3-methoxyphenyl)ethanone (o-Acetovanillone), 775
1-(2-Hydroxy-5-methoxyphenyl)ethanone, 777
1-(2,3-Dihydroxy-4-methoxyphenyl)ethanone, 783
1-[4-Hydroxy-3-methyl-5-(1-methylethyl)phenyl]ethanone, 918
1-(4-Hydroxy-2-methylphenyl)ethanone, 765
1-(4-Hydroxy-3-methylphenyl)ethanone, 766
1-[4-Hydroxy-3-(2-propenyl)phenyl]ethanone, 851
1-(3,4-Dihydroxyphenyl)ethanone, 718
1-(2-Hydroxy-3,5-dimethylphenyl)ethanone, 814
1-(2-Hydroxy-5-methylphenyl)ethanone, 760
1-(5-Chloro-2-hydroxyphenyl)ethanone, 687
1-(5-Bromo-2-hydroxyphenyl)ethanone, 681
1-(2-Hydroxy-5-nitrophenyl)ethanone, 698
1-(4-Fluoro-2-hydroxyphenyl)ethanone, 692
1-[4-Hydroxy-3-(1-methylethyl)phenyl]ethanone, 867
1-(2,6-Dihydroxy-4-methylphenyl)ethanone (γ or p-orcacetophenone), 772
1-[2-Hydroxy-5-(1-methylethyl)phenyl]ethanone, 867
1-[3-Hydroxy-4-(1-methylethyl)phenyl]ethanone, 867
1-(2,4,5-Trihydroxyphenyl)ethanone, 721
1-(2-Hydroxy-4-nitrophenyl)ethanone, 697
1-(3-Bromo-2-hydroxyphenyl)ethanone, 679
1-(3-Bromo-4-hydroxyphenyl)ethanone, 680
1-(2-Hydroxy-5-propylphenyl)ethanone, 868
1-(4-Amino-2-hydroxyphenyl)ethanone, 728
1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (Acetosyringone), 840
1-[2-Hydroxy-3,4-bis(phenylmethoxy)phenyl]ethanone, 1070
1-(2,4,6-Trihydroxy-3-methylphenyl)ethanone, 790
[2750-25-6] 1-(2-Ethoxy-6-hydroxyphenyl)ethanone, 822
[2887-72-1] 1-(3,5-Dibromo-4-hydroxyphenyl)ethanone, 665
[2892-29-7] 1-(3-Chloro-4-hydroxyphenyl)ethanone, 685
[2977-53-9] 1-(2,3-Dichloro-4-hydroxyphenyl)ethanone, 670
[3162-28-5] 1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)ethanone, 935
[3162-49-0] 1-[2-Hydroxy-3,5,6-trimethoxy-4-(phenylmethoxy)phenyl] ethanone, 1047
[3162-50-3] 1-[2,5-Dihydroxy-3,6-dimethoxy-4-(phenylmethoxy) phenyl]ethanone, 1037
[3162-52-5] 1-[2-Hydroxy-3,6-dimethoxy-4-(phenylmethoxy)phenyl] ethanone, 1035
[3162-54-7] 1-[2-Hydroxy-3,5-dimethoxy-4,6-bis(phenylmethoxy) phenyl]ethanone, 1084
[3226-34-4] 1-(3-Chloro-2-hydroxyphenyl)ethanone, 685
[3321-92-4] 1-(3,5-Dichloro-2-hydroxyphenyl)ethanone, 672
[3328-77-6] 1-(2,4-Dihydroxy-5-nitrophenyl)ethanone, 701
[3361-23-7] 1-(3,5-Dichloro-2,6-dihydroxy-4-methylphenyl)ethanone, 734
[3410-83-1] 1-(3,5-Dibromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 798
[3602-54-8] 1-(2,4-Dihydroxy-6-methoxyphenyl)ethanone, 785
[3934-89-2] 1-(3,4-Dihydroxy-5-methoxyphenyl)ethanone, 788
[4047-24-9] 1-[2-Hydroxy-6-(phenylmethoxy)phenyl]ethanone, 1004
[4223-84-1] 1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethanone, 828
[4223-85-2] 1-(5-Ethyl-2-hydroxy-4-methoxyphenyl)ethanone, 876
[4223-86-3] 1-(2-Hydroxy-3-methoxy-6-methylphenyl)ethanone, 826
[4460-42-8] 1-(5-Ethyl-2,4-dihydroxyphenyl)ethanone, 825
[4502-10-7] 1-(2-Amino-3-hydroxyphenyl)ethanone, 724
[4670-13-7] 1-(2-Heptyl-6-hydroxy-4-methoxyphenyl)ethanone, 1028
[4683-33-4] 1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl] ethanone (Acronylin methyl ether), 1011
[5325-04-2] 1-(4-Hydroxy-3,5-dimethylphenyl)ethanone, 818
[5384-55-4] 1-(2-Hydroxy-3,4-dimethylphenyl)ethanone, 814
[5384-57-6] 1-(4-Hydroxy-2,3-dimethylphenyl)ethanone, 818
[5396-18-9] 1-(2-Hydroxy-3,4-dimethoxyphenyl)ethanone, 834
[5528-13-2] 1-(5-Amino-2,4-dihydroxyphenyl)ethanone, 729
[5896-50-4] 1-(4-Ethyl-2-hydroxyphenyl)ethanone, 813
[6100-74-9] 1-(3-Hydroxy-4-methoxyphenyl)ethanone (Isoacetovanillone), 779
[6212-45-9] 1-(2,5-Dihydroxy-3,6-dimethoxyphenyl)ethanone, 845
[6322-56-1] 1-(4-Hydroxy-3-nitrophenyl)ethanone, 699
[6342-86-5] 1-(3,4-Diethoxy-2-hydroxyphenyl)ethanone, 928
[6540-66-5] 1-(2-Hydroxy-4-methoxy-6-methylphenyl)ethanone (Acetoevernone), 827
[6921-64-8] 1-(2-Hydroxy-4-methylphenyl)ethanone, 758
[6921-66-0] 1-(4-Chloro-2-hydroxyphenyl)ethanone, 686
[6948-37-4] 1-(5-Hydroxy-4-methoxy-2-methylphenyl)ethanone, 830
[6962-57-8] 1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)ethanone, 845

[7191-41-5]	1-(2-Hydroxy-5-iodophenyl)ethanone, 694
[7191-46-0]	1-(2-Hydroxy-3,5-diiodophenyl)ethanone, 676
[7191-55-1]	1-(4-Hydroxy-3,5-diiodophenyl)ethanone, 676
[7253-20-5]	1-(3-Bromo-6-hydroxy-2-methoxy-5-nitrophenyl)ethanone, 732
[7298-21-7]	1-(2,4-Dihydroxy-5-methoxyphenyl)ethanone, 785
[7298-39-7]	1-[2-Hydroxy-4,5-bis(phenylmethoxy)phenyl]ethanone, 1070
[7452-85-9]	1-(2-Hydroxy-3-methoxy-5-methylphenyl)ethanone, 826
[7499-99-2]	1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)ethanone, 844
[7507-88-2]	1-(3-Chloro-2-hydroxy-5-methylphenyl)ethanone, 741
[7507-89-3]	1-(2,6-Dihydroxy-4-methoxyphenyl)ethanone, 787
[7507-98-4]	1-(2-Hydroxy-3,4,6-trimethoxyphenyl)ethanone (Xanthoxylone), 888
[7714-14-9]	1-(2,4,5-Trichloro-3,6-dihydroxyphenyl)ethanone, 661
[7743-16-0]	1-(2,6-Dihydroxy-3,4-dimethylphenyl)ethanone, 821
[10139-84-1]	1-(2,4-Dihydroxy-3-methylphenyl)ethanone, 768
[10299-59-9]	1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)phenyl] ethanone, 1020
[13246-14-5]	1-(4-Hydroxy-2,6-dimethoxyphenyl)ethanone, 840
[13383-63-6]	1-(2,4,6-Trihydroxy-3,5-dimethylphenyl)ethanone, 843
[13494-10-5]	1-(2,3-Dihydroxyphenyl)ethanone, 713
[13667-21-5]	1-(3-Hydroxy-4,5,6-trimethyl-2-nitrophenyl)ethanone, 862
[13667-28-2]	1-(5-Hydroxy-2,3,4-trimethylphenyl)ethanone, 871
[13684-24-7]	1-(2-Hydroxy-4,6-dinitrophenyl)ethanone, 677
[13909-71-2]	1-(4-Hydroxy-2,5-dimethoxyphenyl)ethanone, 839
[14031-80-2]	1-(4-Hydroxy[1,1'-biphenyl]-3-yl)ethanone, 971
[14035-33-7]	1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1026
[14347-14-9]	1-(3-Amino-4-hydroxyphenyl)ethanone (Hydrochloride), 727
[14718-38-8]	1-(2-Hydroxy-6-propoxyphenyl)ethanone, 878
[14764-76-2]	1-[4,6-Dihydroxy-2-methoxy-3-(3-methylbutyl)phenyl] ethanone, 993
[14813-18-4]	1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]ethanone, 953
[14964-98-8]	1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)ethanone (Bancroftinone), 883
[15516-61-7]	1-(2-Hydroxy-5-nitrosophenyl)ethanone, 696
[15994-32-8]	1-(2,4,5-Trihydroxy-3,6-dimethoxyphenyl)ethanone, 846
[16108-50-2]	1-(2-Hydroxy-4,6-dimethylphenyl)ethanone, 816
[16130-28-2]	1-[2-Hydroxy-6-(oxiranylmethoxy)phenyl]ethanone, 856
[16139-53-0]	1-[2-Hydroxy-5-(oxiranylmethoxy)phenyl]ethanone, 856
[16290-04-3]	1-(3,5-Dibromo-2-hydroxy-6-methoxyphenyl)ethanone, 733
[16297-01-1]	1-(2,4,6-Trihydroxy-3-methoxyphenyl)ethanone, 791
[16928-01-1]	1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]ethanone, 912
[17044-70-1]	1-(3,5-Dichloro-4-hydroxyphenyl)ethanone, 672
[17063-43-3]	1-[4-(β-D-Glucopyranosyloxy)-3-hydroxyphenyl]ethanone (Cynanoneside A), 988
[17488-68-5]	1-[2-Hydroxy-6-methoxy-3-(2-propenyl)phenyl]ethanone, 900

[17488-71-0] 1-[2,6-Dihydroxy-3-(2-propenyl)phenyl]ethanone, 852
[17605-00-4] 1-(2-Hydroxy-3,5-dimethoxyphenyl)ethanone, 835
[17820-32-5] 1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]ethanone, 895
[17820-33-6] 1-[2,4-Bis(acetyloxy)-6-hydroxyphenyl]ethanone, 894
[18064-89-6] 1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 804
[18065-05-9] 1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]ethanone, 1070
[18065-06-0] 1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone, 1086
[18086-01-6] 1-(2,4-Diethoxy-6-hydroxy-3-methoxyphenyl)ethanone, 962
[18087-17-7] 1-(4,5-Dihydroxy-2-methylphenyl)ethanone, 774
[18296-18-9] 1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,5-trihydroxyphenyl] ethanone (Z), 1051
[18296-19-0] 1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone (Z), 1048
[18606-50-3] 1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methylphenyl]ethanone, 953
[18606-87-6] 1-[4-(1,1-Dimethylethyl)-3-hydroxyphenyl]ethanone, 912
[18780-96-6] 1-[4-Hydroxy-2,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1011
[19687-48-0] 1-(3,5-Diethyl-2,4,6-trihydroxyphenyl)ethanone, 928
[19825-40-2] 1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 941
[20180-88-5] 1-[2,5-Dihydroxy-4-methoxy-3-(3,7-dimethyl-2,6-octadienyl) phenyl]ethanone (E), 1060
[20212-64-0] 1-[2,4-Dihydroxy-5-methoxy-3-(3,7-dimethyl-2,6-octadienyl) phenyl]ethanone (E), 1059
[20212-65-1] 1-[2-Hydroxy-4,5-dimethoxy-3-(3,7-dimethyl-2,6-octadienyl) phenyl]ethanone (E), 1062
[20212-66-2] 1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,5-trihydroxyphenyl] ethanone (E), 1051
[20212-67-3] 1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone (E), 1048
[20212-68-4] 1-[5-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl]ethanone (E), 1049
[20281-51-0]
1-(6-Hydroxy[1,1'-biphenyl]-3-yl)ethanone, 972
[20628-06-2] 1-(2-Hydroxy-4,5-dimethoxyphenyl)ethanone, 836
[20716-41-0] 1-(4-Hydroxy-3-methoxy-5-nitrophenyl)ethanone, 756
[20951-24-0] 1-[2-Hydroxy-5-(methylsulfonyl)phenyl]ethanone, 790
[21092-94-4] 1-[3-Hydroxy-4-(phenylmethoxy)phenyl]ethanone, 1005
[21222-04-8] 1-[5-(Acetyloxy)-2-hydroxyphenyl]ethanone, 801
[21312-85-6] 1-(3-Amino-5-chloro-2-hydroxyphenyl)ethanone, 704
[21424-82-8] 1-(2-Hydroxy[1,1'-biphenyl]-3-yl)ethanone, 970
[21472-87-7] 1-(2,3-Dichloro-4-hydroxy-6-methylphenyl)ethanone, 734
[21722-31-6] 1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)ethanone, 929
[21919-63-1] 1-[3-(Acetyloxy)-6-hydroxy-2,4-dimethoxyphenyl]ethanone, 906
[21919-65-3] 1-[3-(Acetyloxy)-2-hydroxy-4,6-dimethoxyphenyl]ethanone, 906
[21919-66-4] 1-(2,3-Dihydroxy-4,6-dimethoxyphenyl)ethanone, 843
[22089-12-9] 1-(2,5-Dihydroxy-4-methoxyphenyl)ethanone, 786
[22248-13-1] 1-(6-Hydroxy-2,3-dimethoxyphenyl)ethanone, 841
[22248-14-2] 1-(6-Hydroxy-2,3,4-trimethoxyphenyl)ethanone, 891
[22362-66-9] 1-(3,5-Dibromo-2-hydroxyphenyl)ethanone, 665
[22518-00-9] 1-[2-Hydroxy-4-(hydroxymethyl)phenyl]ethanone, 774
[22526-30-3] 1-(4,5-Dichloro-2-hydroxyphenyl)ethanone, 673
[22633-36-9]
[22934-47-0]
[23053-45-4]
[23053-47-6]
1-(5-Hydroxy-2,4-dinitrophenyl)ethanone, 678
1-(3-Ethyl-4-hydroxyphenyl)ethanone, 813
1-(3-Chloro-6-hydroxy-2,4-dimethoxy-5-methylphenyl) ethanone, 861
[23121-32-6] 1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)ethanone 882
[23133-83-7] 1-(3-Hydroxy-2,4-dimethoxyphenyl)ethanone, 839
[23141-00-6] 1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy] phenyl]ethanone, 1073
[23164-97-8]
[23226-84-8]
[23299-00-5
[23343-03-5]
[23343-04-6]
[23343-08-0]
[23780-60-1]
[24046-00-2]
[24046-01-3]
[24085-05-0]
1-(3-Chloro-5-hydroxyphenyl)ethanone, 686
1-[2-Hydroxy-6-(2-propenyloxy)phenyl]ethanone, 853
1-(3-Cyclohexyl-4-hydroxyphenyl)ethanone, 979
1-(2-Hydroxy-3-methoxy-5-propylphenyl)ethanone, 925
1-[2-Hydroxy-3-methoxy-5-(2-propenyl)phenyl]ethanone, 899
1-(5-Hydroxy-4-methoxy-2-propylphenyl)ethanone, 927
1-(4-Hydroxy-1,3-benzodioxol-5-yl)ethanone, 736
1-(2,2'-Dihydroxy-5,5'-dimethyl[1,1'-biphenyl]-3-yl)ethanone, 1017
1-(2'-Acetoxy-2-hydroxy-5,5'-dimethyl[1,1'-biphenyl]-3-yl) ethanone, 1044
[24126-73-6] 1-[2-Hydroxy-3-methoxy-4,6-bis(phenylmethoxy)phenyl] ethanone, 1078
[24242-55-5
1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone, 911
[24490-25-3]
[24539-92-2
1-(2-Chloro-6-hydroxy-4-methylphenyl)ethanone, 741
[24587-97-1] 1-[2-(β-D-Glucopyranosyloxy)-6-hydroxy-4-methoxyphenyl] ethanone, 1012
[24672-82-0] 1-[2,4-Dihydroxy-3,5-bis-(3-methyl-2-butenyl)phenyl] ethanone, 1048
[24672-83-1] 1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]ethanone, 944
[25205-34-9] 1-(2,6-Dihydroxy-3-nitrophenyl)ethanone, 702
[25892-94-8] 1-[3,6-Dihydroxy-2-methoxy-4-(phenylmethoxy)phenyl] ethanone, 1022
[25892-95-9] 1-[6-Hydroxy-2,3-dimethoxy-4-(phenylmethoxy)phenyl] ethanone, 1036
[26089-54-3] 1-[2-(β-D-Glucopyranosyloxy)-4,6-dihydroxyphenyl]ethanone, 988
[26207-59-0] 1-(2,4-Diethoxy-6-hydroxyphenyl)ethanone, 927
[26216-10-4] 1-(4-Hydroxy-2,5-dimethylphenyl)ethanone, 818
[26674-05-5] 1-[2-(Acetyloxy)-6-hydroxyphenyl]ethanone, 800

[26931-60-2]	1-[4-Hydroxy-3-(3-methoxy-3-methyl-1-butenyl)phenyl]ethanone (E), 981
[26931-61-3]	1-[4-Hydroxy-3-(3-hydroxy-3-methyl-1-butenyl)phenyl]ethanone (E), 942
[26932-05-8]	1-[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 939
[27192-99-0]	1-(6-Hydroxy-2,3,4-trimethylphenyl)ethanone, 871
[27193-00-6]	1-(2,3-Diethyl-6-hydroxy-4-methylphenyl)ethanone, 951
[27364-64-3]	1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl] ethanone (Acronylin), 983
[27364-71-2]	1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 947
[27513-07-1]	1-(5-Ethyl-2-hydroxy-4-methylphenyl)ethanone, 866
[27829-93-2]	1-(3,4-Dihydroxy-2-methoxyphenyl)ethanone, 788
[27865-58-3]	1-[3,4-Bis(acetyloxy)-2-hydroxyphenyl]ethanone, 895
[27865-59-4]	1-[3,4-Bis(benzoyloxy)-2-hydroxyphenyl]ethanone, 1066
[28177-69-7]	1-(2-Hydroxy-3-nitrophenyl)ethanone, 697
[28437-37-8]	1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 942
[28448-83-1]	1-[2-Hydroxy-4-methoxy-5-(3-methyl-2-butenyl)phenyl] ethanone, 981
[28467-11-0]	1-(5-Bromo-2-hydroxy-3-iodophenyl)ethanone, 663
[28480-70-8]	1-(5-Chloro-2-hydroxy-4-methylphenyl)ethanone, 743
[28862-10-4]	1-[2-[(5-Bromopentyl)oxy]-6-hydroxyphenyl]ethanone, 949
[29183-78-6]	1-(2,6-Dihydroxy-3-methylphenyl)ethanone, 771
[29376-65-6]	1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]ethanone, 802
[29376-66-7]	1-[4-(Acetyloxy)-2-hydroxy-6-methoxyphenyl]ethanone, 858
[29682-12-0]	1-[2-Hydroxy-4-(phenylmethoxy)phenyl]ethanone, 1003
[30095-73-9]	1-[5-(Acetyloxy)-2-hydroxy-3-nitrophenyl]ethanone, 797
[30095-74-0]	1-(2,5-Dihydroxy-3-nitrophenyl)ethanone, 702
[30095-76-2]	1-(2-Bromo-3,6-dihydroxyphenyl)ethanone, 681
[30186-15-3]	1-(4,5-Dibromo-2-hydroxyphenyl)ethanone, 666
[30186-18-6]	1-(4-Bromo-2-hydroxyphenyl)ethanone, 680
[30186-22-2]	1-(5-Amino-3-bromo-2-hydroxyphenyl)ethanone (Hydrochloride), 703
[30225-96-8]	1-(2-Hydroxy-3,4,5-trimethoxyphenyl)ethanone, 888
[30299-53-7]	2'-Hydroxy-5'-(1,1,3,3-tetramethylbutyl)acetophenone, 1028
[30299-56-0]	1-[2-Hydroxy-3-nitro-5-(1,1,3,3-tetramethylbutyl)phenyl] ethanone, 1026
[30403-01-1]	1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 983
[30787-43-0]	1-[5-(Chloromethyl)-2-hydroxyphenyl]ethanone, 744
[30879-49-3]	1-(5-Hydroxy-2-nitrophenyl)ethanone, 700
[30954-71-3]	1-(2-Amino-5-hydroxyphenyl)ethanone, 726
[30992-63-3]	1-[2-Hydroxy-5-(phenylmethoxy)phenyl]ethanone, 1004
[30992-64-4]	1-[2-Hydroxy-3-(phenylmethoxy)phenyl]ethanone, 1003
[31273-60-6]	1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-6methoxyphenyl]ethanone, 977

[31405-60-4]	ydroxy-2-methoxyphenyl)ethanone, 782
[31405-63-7]	1-(2-Hydroxy-6-methoxy-4-methylphenyl)ethanone, 828
[31611-90-2]	1-[2-Hydroxy-5-(hydroxymethyl)phenyl]ethanone, 775
[31913-64-1]	1-(3-Chloro-2-hydroxy-4,6-dimethoxy-5-methylphenyl) ethanone, 860
[32101-38-5]	1-(3-Hydroxy[1,1'-biphenyl]-4-yl)ethanone, 971
[32101-40-9]	1-(3-Hydroxy-5-methoxy[1,1'-biphenyl]-4-yl)ethanone, 1002
[32541-10-9]	1-(3,4',6-Trihydroxy-3'-methyl[1,1'-biphenyl]-2-yl)ethanone, 1008
[32546-66-0]	1-($2^{\prime}, 3,4^{\prime}, 6-T e t r a h y d r o x y-6 '-m e t h y l\left[1,1^{\prime}\right.$-biphenyl]-2-yl) ethanone, 1008
[33414-49-2]	1-(3-Hydroxy-4-methylphenyl)ethanone, 764
[33523-62-5]	1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1011
[33537-80-3]	1-[2-(Cyclohexyloxy)-3,6-dihydroxyphenyl]ethanone, 983
[33537-81-4]	1-[3,6-Dihydroxy-2-(phenylmethoxy)phenyl]ethanone, 1007
[33539-20-7]	1-(3,6-Dihydroxy-2-methoxyphenyl)ethanone, 789
[33539-21-8]	1-(2-Ethoxy-3,6-dihydroxyphenyl)ethanone, 833
[33539-22-9]	1-[3,6-Dihydroxy-2-(1-methylethoxy)phenyl]ethanone, 880
[33539-23-0]	1-(2-Butoxy-3,6-dihydroxyphenyl)ethanone, 927
[33539-24-1]	1-[3,6-Dihydroxy-2-(2-propenyloxy)phenyl]ethanone, 856
[33709-29-4]	1-(3,4,5-Trihydroxyphenyl)ethanone, 723
[33857-20-4]	1-(3-Bromo-2,5-dihydroxyphenyl)ethanone, 682
[34176-17-5]	1-[2,5-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone, 1006
[34176-18-6]	1-[2-Hydroxy-5-methoxy-4-(phenylmethoxy)phenyl] ethanone, 1020
[34288-73-8]	1-[6-Hydroxy-3-(2-hydroxyethyl)-2,4-dimethoxyphenyl] ethanone, 933
[34288-74-9]	1-[6-Hydroxy-2,4-dimethoxy-3-(2-methoxyethyl)phenyl] ethanone, 963
[34603-08-2]	1-(2-Chloro-3,6-dihydroxy-5-methoxyphenyl)ethanone, 748
[34987-36-5]	1-[5-Chloro-3-(chloromethyl)-2-hydroxyphenyl]ethanone, 733
[35028-01-4]	1-(4-Ethoxy-2,6-dihydroxyphenyl)ethanone, 834
[35028-02-5]	1-[2,6-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone, 1007
[35028-03-6]	1-[2,6-Dihydroxy-4-(2-propenyloxy)phenyl]ethanone, 855
[35109-98-9]	1-[2-Hydroxy-4,6-dimethoxy-3-(2-propenyl)phenyl]ethanone, 946
[35158-23-7]	1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]ethanone, 991
[35158-27-1]	1-[2-Hydroxy-3,5-bis(2-methylpropyl)phenyl]ethanone, 1027
[35158-31-7]	1-[2-Hydroxy-5-methyl-3-(1-methylethyl)phenyl]ethanone, 916
[35158-35-1]	1-[2-Hydroxy-3,5-bis(2-propenyl)phenyl]ethanone, 975
[35198-96-0]	1-(2-Hydroxy-3,5-dipropylphenyl)ethanone, 991
[35204-45-6]	1-(2-Hydroxy-5-mercaptophenyl)ethanone, 713
[35204-52-5]	1-(2-Hydroxy-4-mercaptophenyl)ethanone, 713
[35205-23-3]	1-[3-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]ethanone, 923
[35205-24-4]	1-[4-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]ethanone, 924
[35292-36-5]	1-(6-Ethoxy-2-hydroxy-3-iodophenyl)ethanone, 809

[35458-19-6]	1-[2,4,6-Trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl] ethanone, 1052
[35816-89-8]	1-[4-Hydroxy-3-(3-methyl-1-butenyl)phenyl]ethanone, 939
[35816-94-5]	1-[4-Hydroxy-3-(3-hydroxy-3-methyl-1-butenyl)phenyl] ethanone, 942
[35817-18-6]	1-[2,3,4-Trihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 947
[35999-23-6]	1-(3-Hydroxy-5-methoxyphenyl)ethanone, 780
[36436-65-4]	1-(2-Hydroxy-4,5-dimethylphenyl)ethanone, 815
[36772-98-2]	1-(3,5-Dibromo-2,4-dihydroxyphenyl)ethanone, 666
[37113-61-4]	1-(3-Bromo-2-hydroxy-5-methoxyphenyl)ethanone, 739
[37113-62-5]	1-(3-Bromo-2-hydroxy-6-methoxyphenyl)ethanone, 739
[37456-29-4]	1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1026
[37467-65-5]	1-(3,5-Diethyl-2,6-dihydroxyphenyl)ethanone, 922
[37467-66-6]	1-[2,6-Dihydroxy-3,5-bis(2-propenyl)phenyl]ethanone, 976
[37467-68-8]	1-(2,6-Dihydroxy-3,5-dimethylphenyl)ethanone, 822
[37467-70-2]	1-(3,5-Diethyl-2-hydroxy-6-methoxyphenyl)ethanone, 956
[37470-42-1]	1-(4-Ethoxy-2-hydroxyphenyl)ethanone, 823
[37847-35-1]	1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 917
[37847-37-3]	1-[4-Hydroxy-5-methyl-2-(1-methylethyl)phenyl]ethanone, 918
[38226-01-6]	1-(2-Hydroxy-6-methoxy-3-nitrophenyl)ethanone, 755
[38778-41-5]	1-[4-Hydroxy-3-[(2-methoxy-3-methylphenyl)methyl]-5methylphenyl]ethanone, 1045
[38778-48-2]	1-[4-Hydroxy-3-[(2-methoxy-3,5-dimethylphenyl)methyl]-5methylphenyl]ethanone, 1057
[38968-45-5]	1-(2-Amino-3-hydroxy-6-methylphenyl)ethanone, 792
[38987-00-7]	1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]ethanone, 852
[38987-01-8]	1-[2,4-Dihydroxy-5-(2-propenyl)phenyl]ethanone, 852
[39503-61-2]	1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone, 740
[39503-62-3]	1-(3-Bromo-2-hydroxy-4-methoxyphenyl)ethanone, 739
[39548-85-1]	1-[2,4-Dihydroxy-6-(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone, 1068
[39548-86-2]	1-[2,4-Dihydroxy-6-(phenylmethoxy)phenyl]ethanone, 1006
[39548-89-5]	1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl] ethanone, 1021
[39548-92-0]	1-[2-Hydroxy-3-methyl-4,6-bis(phenylmethoxy)phenyl] ethanone, 1077
[39548-93-1]	1-[2,4-Dihydroxy-3-methyl-6-(phenylmethoxy)phenyl] ethanone, 1019
[39652-85-2]	1-[2,4,6-Trihydroxy-3-(3-methylbutyl)phenyl]ethanone, 961
[39701-15-0]	1-(3-Bromo-2-hydroxy-4,6-dimethoxy-5-methylphenyl) ethanone, 859
[39730-66-0]	1-(2-Hydroxy-4-iodophenyl)ethanone, 694
[40180-70-9]	1-(5-Hydroxy-2-methylphenyl)ethanone, 767
[40356-82-9]	1-[3-(Chloromethyl)-2-hydroxy-4,6-dimethoxyphenyl] ethanone, 861

[40591-02-4]	1-(2-Hydroxy-4-iodo-3-methylphenyl)ethanone, 749
[40785-72-6]	1-[4-[(5-Bromopentyl)oxy]-2-hydroxyphenyl]ethanone, 949
[40785-92-0]	1-[2-Hydroxy-4-(oxiranylmethoxy)-3-(2-propenyl)phenyl] ethanone, 978
[40786-20-7]	1-[4-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]ethanone, 989
[40786-69-4]	1-(2,4-Dihydroxy-3-propylphenyl)ethanone, 872
[40815-74-5]	1-[2-Hydroxy-4-(2-propenyloxy)phenyl]ethanone, 853
[40815-75-6]	1-[2-Hydroxy-5-(2-propenyloxy)phenyl]ethanone, 853
[40815-79-0]	1-[3,6-Dihydroxy-2-(2-propenyl)phenyl]ethanone, 853
[40815-80-3]	1-[2,4-Dihydroxy-3,5-bis(2-propenyl)phenyl]ethanone, 975
[40903-02-4]	1-[2-Hydroxy-3-(2-propenyl)-4-(2-propenyloxy)phenyl] ethanone, 976
[41085-27-2]	1-(2-Hydroxy-6-methylphenyl)ethanone, 762
[41347-54-0]	1-[2,4-Dihydroxy-5-(3-methyl-1-butenyl)phenyl]ethanone, 941
[41607-43-6]	1-[4-Hydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]ethanone, 1047
[41997-38-0]	1-[3,6-Dihydroxy-4-methoxy-2-(phenylmethoxy)phenyl] ethanone, 1023
[41997-39-1]	1-[6-Hydroxy-3,4-dimethoxy-2-(phenylmethoxy)phenyl] ethanone, 1036
[42059-48-3]	1-[4-(Acetyloxy)-2-hydroxyphenyl]ethanone, 801
[42059-51-8]	1-[4,5-Bis(acetyloxy)-2-hydroxyphenyl]ethanone, 895
[43037-65-6]	$\begin{aligned} & \text { 1-[3-Hydroxy-6-methoxy-2-(2-propenyl)[1,1'-biphenyl]-4-yl] } \\ & \text { ethanone, } 1043 \end{aligned}$
[43037-66-7]	1-[2-Hydroxy-5-methoxy-4-methyl-3-(2-propenyl)phenyl] ethanone, 943
[43037-67-8]	1-[3-Hydroxy-6-methoxy-4-(2-propenyl)[1,1'-biphenyl]-2-yl] ethanone, 1043
[43037-68-9]	1-[2-Hydroxy-5-methoxy-6-methyl-3-(2-propenyl)phenyl] ethanone, 944
[43037-69-0]	$\begin{aligned} & \text { 1-(3-Hydroxy-6-methoxy-2-propyl[1,1'-biphenyl]-4-yl) } \\ & \text { ethanone, } 1045 \end{aligned}$
[43037-70-3]	$\begin{aligned} & \text { 1-(3-Hydroxy-6-methoxy-4-propyl[1,1'-biphenyl]-2-yl) } \\ & \text { ethanone, } 1045 \end{aligned}$
[43037-71-4]	1-(2-Hydroxy-5-methoxy-4-methyl-3-propylphenyl)ethanone, 959
[43037-72-5]	1-(2-Hydroxy-5-methoxy-6-methyl-3-propylphenyl)ethanone, 959
[43113-93-5]	1-(3-Hydroxy-5-methylphenyl)ethanone, 764
[43140-82-5]	1-(2-Hydroxy-5-methoxy-4-methyl-3-nitrophenyl)ethanone, 811
[43140-83-6]	1-(2,5-Dihydroxy-4-methyl-3-nitrophenyl)ethanone, 754
[43140-85-8]	1-(2-Ethoxy-3,6-dihydroxy-4-methyl-5-nitrophenyl)ethanone, 863
[49602-08-6]	1-[2-(Benzoyloxy)-6-hydroxy-4-methoxyphenyl]ethanone, 1015
[49605-14-3]	1-(2,4,6-Tribromo-3-hydroxyphenyl)ethanone, 660
[49619-68-3]	1-[5-(Dimethylamino)-2-hydroxyphenyl]ethanone, 847
[49640-12-2]	1-[4-Hydroxy-3-[(methylsulfonyl)methyl]phenyl]ethanone, 843
[50317-52-7]	1-[5-Chloro-2-hydroxy-3-(hydroxymethyl)phenyl]ethanone, 745
[50317-56-1]	1-[3-(Bromomethyl)-5-chloro-2-hydroxyphenyl]ethanone, 731

[50342-17-1] 1-(5-Bromo-2-hydroxy-4-methylphenyl)ethanone, 738
[50343-12-9] 1-(5-Chloro-2-hydroxy-3-methylphenyl)ethanone, 743
[50343-13-0] 1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)ethanone, 806
[50634-01-0] 1-[2-(Benzoyloxy)-6-hydroxyphenyl]ethanone, 997
[50743-14-1] 1-(5-Butyl-2-hydroxyphenyl)ethanone, 910
[50773-37-0] 1-[2,4-Dihydroxy-3-(3-methylbutyl)phenyl]ethanone, 957
[50773-38-1] 1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)-3-(3-methylbutyl) phenyl]ethanone, 1054
[50773-40-5] 1-[2-Hydroxy-4-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl] ethanone, 1059
[51410-07-2] 1-(4-Amino-2-hydroxyphenyl)ethanone (Hydrochloride), 728
[51832-82-7] 1-[3-Chloro-4-hydroxy-5-(2-propenyl)phenyl]ethanone, 849
[51863-60-6] 1-(3,5-Dihydroxyphenyl)ethanone, 720
[52095-10-0] 1-(3,6-Dihydroxy-2-phenoxyphenyl)ethanone, 973
[52095-11-1] 1-[3,6-Dihydroxy-2-(4-methoxyphenoxy)phenyl]ethanone, 1008
[52095-12-2] 1-(2-Chloro-3,6-dihydroxyphenyl)ethanone, 689
[52099-27-1] 1-(2-Hydroxy-3,6-dimethoxyphenyl)ethanone, 836
[52122-69-7] 1-(2-Hydroxy-4-pentadecylphenyl)ethanone, 1084
[52122-72-2] 1-[4-(Dodecyloxy)-2-hydroxyphenyl]ethanone, 1065
[52129-61-0] 1-(4-Hydroxy-3,5-dinitrophenyl)ethanone, 677
[52129-62-1] 1-(3-Chloro-4-hydroxy-5-nitrophenyl)ethanone, 669
[52189-90-9] 1-(4,4'-Dihydroxy[1,1'-biphenyl]-3-yl)ethanone, 972
[52200-61-0] 1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)ethanone (Pseudoaspidinol-A), 832
[52249-85-1] 1-[2-Hydroxy-3-methoxy-4-(phenylmethoxy)phenyl]ethanone, 1019
[52249-87-3] 1-[6-Hydroxy-2,4-dimethoxy-3-(phenylmethoxy)phenyl] ethanone, 1036
[52249-88-4] 1-[2-Hydroxy-4-methoxy-5-(phenylmethoxy)phenyl] ethanone, 1020
[52376-19-9] 1-(4-Bromo-2,5-dihydroxyphenyl)ethanone, 683
[52601-06-6] 1-[2-Hydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 981
[52751-41-4] 1-[2-(Acetyloxy)-4,6-dihydroxyphenyl]ethanone, 802
[52751-42-5] 1-[2-(Acetyloxy)-4-hydroxyphenyl]ethanone, 799
[52774-08-0] 1-[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl]ethanone, 916
[53000-17-2] 1-[2-Hydroxy-3,4,6-tris(methoxymethoxy)phenyl]ethanone, 995
[53347-06-1]
1-(5-Chloro-3-ethyl-2-hydroxyphenyl)ethanone, 805
[53542-79-3] 1-(2,6-Dihydroxy-3-propylphenyl)ethanone, 873
[53771-23-6] 1-[2-Hydroxy-4,6-bis(2-propynyloxy)phenyl]ethanone, 973
[53771-24-7] 1-[2,4-Dihydroxy-6-(2-propynyloxy)phenyl]ethanone, 848
[53771-25-8] 1-[2-Hydroxy-3-(2-propynyl)-4,6-bis(2-propynyloxy)phenyl] ethanone, 1030
[53771-27-0] 1-[2-Hydroxy-4,6-bis(2-propenyloxy)phenyl]ethanone, 977
[53771-28-1] 1-[2,6-Dihydroxy-3-(2-propenyl)-4-(2-propenyloxy)phenyl] ethanone, 977

[53771-29-2]	hydroxy-3,5-bis(2-propenyl)phenyl]ethanone, 978
[53889-99-9]	1-[4-Hydroxy-3-(1-propenyl)phenyl]ethanone, 851
[53967-72-9]	1-(3-Hydroxy-2-nitrophenyl)ethanone, 698
[54255-50-4]	1-(3-Amino-4-hydroxyphenyl)ethanone, 727
[54299-56-8]	1-[6-Hydroxy-4-methoxy-2,3-bis(phenylmethoxy)phenyl] ethanone, 1079
[54299-57-9]	1-[2-Hydroxy-4,6-dimethoxy-3-(phenylmethoxy)phenyl] ethanone, 1035
[54337-59-6]	1-(3-Ethyl-2,6-dihydroxyphenyl)ethanone, 824
[54439-83-7]	1-(3,5-Dihydroxy[1,1'-biphenyl]-2-yl)ethanone, 972
[54439-90-6]	1-(5-Amino-3-hydroxy[1,1'-biphenyl]-2-yl)ethanone, 974
[54439-91-7]	1-(3-Amino-5-hydroxy[1,1'-biphenyl]-2-yl)ethanone, 974
[54514-40-8]	1-(4-Hydroxy-3-methoxy-5-propylphenyl)ethanone, 927
[54556-95-5]	1-(3-Chloro-4-hydroxy-5-methylphenyl)ethanone, 742
[54698-17-8]	1-(2,5-Dihydroxy-4-methylphenyl)ethanone, 771
[54903-54-7]	1-(4-Amino-3-hydroxyphenyl)ethanone, 728
[54903-57-0]	1-[3-Hydroxy-4-(methylamino)phenyl]ethanone, 794
[54917-82-7]	1-(2,4-Dihydroxy-3,5-dinitrophenyl)ethanone, 678
[54918-24-0]	1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]ethanone, 987
[54918-26-2]	1-[4-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone, 986
[54918-27-3]	1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl) oxy]-phenyl]ethanone, 1072
[54918-29-5]	1-[2-Hydroxy-4-(β-D-xylopyranosyloxy)phenyl]ethanone, 949
[54918-30-8]	1-[4-[(4-O- β-D-Glucopyranosyl- β-D-glucopyranosyl)oxy]-2-hydroxy-phenyl]ethanone, 1064
[55008-15-6]	1-(3-Amino-2-hydroxy-5-methoxyphenyl)ethanone, 795
[55168-29-1]	1-[5-(Acetyloxy)-2,4-dihydroxyphenyl]ethanone, 802
[55168-32-6]	1-(5-Hexyl-2-hydroxyphenyl)ethanone, 991
[55168-33-7]	1-(5-Cyclohexyl-2-hydroxyphenyl)ethanone, 979
[55329-63-0]	1-(2-Hydroxy-4-propoxyphenyl)ethanone, 878
[55380-57-9]	1-[2,4,6-Trihydroxy-3,5-bis(3-methylbutyl)phenyl]ethanone, 1056
[55380-58-0]	1-[2,4,6-Trihydroxy-3-methyl-5-(3-methyl-2-butenyl)phenyl] ethanone, 984
[55483-00-6]	1-[3-(β-D-Glucopyranosyloxy)-4-hydroxyphenyl]ethanone, 987
[55736-04-4]	1-(2-Chloro-6-hydroxyphenyl)ethanone, 685
[55736-69-1]	1-(2-Bromo-6-hydroxyphenyl)ethanone, 679
[55736-71-5]	1-(3,4-Dichloro-2-hydroxyphenyl)ethanone, 671
[55736-72-6]	1-(3,6-Dichloro-2-hydroxyphenyl)ethanone, 672
[55742-65-9]	1-(2,5-Dihydroxy-3,4,6-trimethoxyphenyl)ethanone, 892
[56002-87-0]	1-[2-Hydroxy-3,5,6-trimethoxy-4-(1-methylethoxy)phenyl] ethanone, 995
[56146-52-2]	1-[2,4-Dihydroxy-5-(3-methylbutyl)phenyl]ethanone, 957
[56358-73-7]	1-(2,3-Dihydroxy-6-methoxyphenyl)ethanone, 784
[56358-74-8]	1-(3-Hydroxy-2,6-dimethoxyphenyl)ethanone, 839
[56394-40-2]	1-(4,5-Diethyl-2-hydroxyphenyl)ethanone, 911

[56414-14-3] 1-(5-Ethoxy-2-hydroxyphenyl)ethanone, 823
[56490-43-8] 1-[4-Hydroxy-3-(methylsulfonyl)phenyl]ethanone, 790
[56490-44-9] 1-[4-Hydroxy-3-[2-(methylsulfonyl)ethyl]phenyl]ethanone, 886
[56490-61-0] 1-[4-Hydroxy-3-[3-(methylsulfonyl)propyl]phenyl]ethanone, 931
[56490-62-1] 1-[3-[(Ethylsulfonyl)methyl]-4-hydroxyphenyl]ethanone, 885
[56490-63-2] 1-[4-Hydroxy-3-[(propylsulfonyl)methyl]phenyl]ethanone, 931
[56490-64-3] 1-[4-Hydroxy-3-[[(1-methylethyl)sulfonyl]methyl]phenyl] ethanone, 931
[56504-43-9] 1-(2-Hydroxy-6-methoxy-3-methylphenyl)ethanone, 828
[56581-46-5] 1-(3-Chloro-2,6-dihydroxy-5-methylphenyl)ethanone, 744
[56609-14-4]
[56609-15-5]
1-(2-Hydroxy-5-methyl-4-nitrophenyl)ethanone, 752
1-(3-Bromo-2-hydroxy-5-methylphenyl)ethanone, 737
[56926-34-2] 1-(2-Hydroxy-5-phenoxyphenyl)ethanone, 973
[56961-48-9] 1-(2-Chloro-3,4-dihydroxyphenyl)ethanone, 688
[57051-50-0] 1-(2,4-Dichloro-6-hydroxyphenyl)ethanone, 671
[57051-51-1] 1-(4-Chloro-2-hydroxy-5-methylphenyl)ethanone, 742
[57161-85-0]
[57221-60-0]
[57373-80-5]
[57373-81-6]
[57375-45-8]
[57393-65-4]
[57442-27-0]
[57471-32-6]
[57517-42-7]
[57600-87-0]
[57600-88-1]
[57600-89-2]
[57600-90-5]
[57744-70-4]
[57899-03-3]
1-[2-Hydroxy-4-(oxiranylmethoxy)-3-propylphenyl]ethanone, 984
1-(4-Butoxy-2-hydroxyphenyl)ethanone, 921
1-[2-Hydroxy-5-(1,1,3,3-tetramethylbutyl)phenyl]ethanone, 1028
1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone, 912
1-(2-Hydroxy-5-tert-nonylphenyl)ethanone, 1041
1-(3,5-Dibromo-4-hydroxy-2,6-dimethoxyphenyl)ethanone, 798
1-(5-Bromo-2-hydroxy-4-propoxyphenyl)ethanone, 858
1-(5-Amino-2-hydroxyphenyl)ethanone (Hydrochloride), 729
1-(3-Bromo-4-hydroxy-2,6-dimethoxyphenyl)ethanone, 805
1-[4-(Acetyloxy)-2-hydroxy-6-methylphenyl]ethanone, 854
1-[4-(Acetyloxy)-2-ethyl-6-hydroxyphenyl]ethanone, 902
1-[4-(Acetyloxy)-2-hydroxy-3,6-dimethylphenyl]ethanone, 902
1-[4-(Acetyloxy)-6-hydroxy-2,3-dimethylphenyl]ethanone, 902
1-[2,4,6-Trihydroxy-3-(3-methyl-2-butenyl)-5-(3-methylbutyl) phenyl]ethanone, 1055
[58020-38-5]
[58084-93-8]
[58483-48-0]
[58621-37-7]
[58621-38-8]
[58621-39-9]
1-[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]ethanone, 897
1-(2-Chloro-5-hydroxyphenyl)ethanone, 684
1-(4-Ethoxy-2,5-dihydroxyphenyl)ethanone, 834
1-(3-Chloro-5-ethyl-2-hydroxyphenyl)ethanone, 805
1-[3-Hydroxy-2-(2-propenyl)phenyl]ethanone, 850
1-[3-Hydroxy-4-(2-propenyl)phenyl]ethanone, 851
[58972-39-7]
[59443-15-1] 1-(3-Bromo-5-chloro-2-hydroxyphenyl)ethanone, 662
[59656-68-7] 1-(2-Hydroxy-3-iodo-4,6-dimethoxyphenyl)ethanone, 810
[59862-06-5] 1-(2,3,4-Trihydroxy-5-methylphenyl)ethanone, 789
[59862-07-6] 1-(2,3-Dihydroxy-6-methylphenyl)ethanone, 768
[60441-58-9] 1-(2-Hydroxy-4-pentylphenyl)ethanone, 955
[60441-59-0] 1-(4-Hydroxy-2-pentylphenyl)ethanone, 956
[60640-95-1] 1-[2,4-Dihydroxy-5-(2-phenylethyl)phenyl]ethanone, 1017
[60840-18-8] 1-[2-Hydroxy-3,4,6-tris(phenylmethoxy)phenyl]ethanone, 1088
[60840-21-3] 1-[3,4,6-Trihydroxy-2-(1-methylethoxy)phenyl]ethanone, 892
[60965-25-5]
[60990-39-8]
[61124-56-9]
1-(5-Bromo-2,4-dihydroxyphenyl)ethanone, 683
1-(3-Bromo-2,4-dihydroxyphenyl)ethanone, 682
1-(4-Chloro-3-hydroxyphenyl)ethanone, 687
[61270-14-2] 1-[2-Hydroxy-6-(2-phenoxyethoxy)phenyl]ethanone, 1022
[61270-17-5]
1-[2-Hydroxy-5-(3-phenylpropyl)phenyl]ethanone, 1031
[61270-18-6] 1-[6-[(5-Bromopentyl)oxy]-2-hydroxy-3-(2-propenyl)phenyl] ethanone, 1024
[61270-23-3] 1-[4-[(5-Bromopentyl)oxy]-2-hydroxy-3-(2-propenyl)phenyl] ethanone, 1024
[61270-24-4]
1-[2-Hydroxy-4-(oxiranylmethoxy)phenyl]ethanone, 856
[61270-28-8]
[61300-15-0]
[61405-64-9]
1-(4-Hydroxy-3-propylphenyl)ethanone, 869
1-[2-Hydroxy-5-(phenylmethyl)phenyl]ethanone, 1001
1-(4-Hydroxy-2,3,5-trimethylphenyl)ethanone, 870
[61405-65-0]
[61775-18-6]
[61791-99-9]
[62069-33-4]
[62069-34-5]
1-[4-Hydroxy-3-methyl-2-(1-methylethyl)phenyl]ethanone, 918
1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxyphenyl] ethanone (Annphenone), 1012
[62615-24-1] 1-(4-Hydroxy-3-iodophenyl)ethanone, 695
[62615-25-2] 1-(5-Bromo-2,4-dihydroxy-3-methoxyphenyl)ethanone, 741
[62615-26-3] 1-(2,4-Dihydroxy-3-methoxyphenyl)ethanone, 784
[62615-64-9] 1-(6-Hydroxy-3,4-dimethoxy-2-methylphenyl)ethanone, 884
[63013-36-5] 1-[2-(Acetyloxy)-6-hydroxy-4-methoxyphenyl]ethanone, 857
[63359-84-2] 1-[2-Hydroxy-4-(2-phenylethoxy)phenyl]ethanone, 1019
[63359-85-3] 1-[2-Hydroxy-5-(2-phenylethoxy)phenyl]ethanone, 1019
[63359-86-4]
[63359-87-5]
[63359-88-6]
1-[2-Hydroxy-4-(3-phenylpropoxy)phenyl]ethanone, 1032
1-[2-Hydroxy-5-(3-phenylpropoxy)phenyl]ethanone, 1033
[63411-82-5] 1-(3-Butyl-2,6-dihydroxyphenyl)ethanone, 922
[63411-84-7] 1-(3,5-Dibromo-2,6-dihydroxyphenyl)ethanone, 667
[63411-85-8] 1-[2-[(3,4-Dichlorophenyl)methoxy]-6-hydroxyphenyl] ethanone, 997
[63411-86-9] 1-[2-[(2,4-Dichlorophenyl)methoxy]-6-hydroxyphenyl] ethanone, 996
[63411-87-0] 1-(2,4-Dihydroxy-5-propylphenyl)ethanone, 872
[63411-88-1]
1-(5-Hexyl-2,4-dihydroxyphenyl)ethanone, 992
[63437-82-1]
1-[3-[2-(Acetyloxy)ethoxy]-4-hydroxyphenyl]ethanone, 905
[63437-85-4] 1-[4-Hydroxy-3-(2-hydroxyethoxy)phenyl]ethanone, 842
[63437-86-5] 1-[3-Hydroxy-5-(2-hydroxyethoxy)phenyl]ethanone, 841
[63437-94-5] 1-[4-Hydroxy-3-(2-hydroxypropoxy)phenyl]ethanone, 885
[63438-68-6] 1-(2-Butoxy-6-hydroxyphenyl)ethanone, 921
[63542-37-0] 1-(2-Hydroxy-3,4-dimethoxy-6-methylphenyl)ethanone, 881
[63609-52-9] 1-[5-Hydroxy-2-(methylamino)phenyl]ethanone, 794
[63609-62-1] 1-[2-[(1,1-Dimethylethyl)amino]-5-hydroxyphenyl]ethanone, 937
[63635-39-2] 1-(2,3,4,6-Tetrahydroxyphenyl)ethanone, 724
[63635-41-6] 1-(2-Ethoxy-3,4,6-trihydroxyphenyl)ethanone, 846
[63854-17-1] 1-[2-Hydroxy-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl] ethanone, 947
[63990-67-0] 1-(3,5-Dibromo-2,4,6-trihydroxyphenyl)ethanone, 667
[64648-09-5] 1-[2-Hydroxy-6-methyl-3-phenyl-4-(phenylmethyl)phenyl] ethanone, 1067
[64794-45-2] 1-(2,5-Dihydroxy-3,4,6-trimethylphenyl)ethanone, 874
[65039-99-8] 1-[5-Hydroxy-2,4-dimethoxy-3-(phenylmethoxy)phenyl] ethanone, 1035
[65490-08-6] 1-[2-Hydroxy-4-(methoxymethoxy)phenyl]ethanone, 842
[65490-09-7] 1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]ethanone, 935
[65883-24-1] 1-(2,3-Dibromo-4,5,6-trihydroxyphenyl)ethanone, 667
[66003-50-7] 1-(6-Hydroxy-1,3-benzodioxol-5-yl)ethanone, 736
[66108-30-3] 1-(2-Hydroxy-5-methyl-3-nitrophenyl)ethanone, 752
[66264-55-9] 1-(4-Hydroxy-3-mercaptophenyl)ethanone, 713
[66264-56-0] 1-[4-Hydroxy-3-(methylthio)phenyl]ethanone, 767
[66296-84-2] 1-(3,4-Dihydroxy-2-methylphenyl)ethanone, 773
[66296-85-3] 1-(2,3,4,5-Tetrahydroxy-6-methylphenyl)ethanone, 791
[66625-03-4] 1-[2,4,6-Trihydroxy-3-[(trifluoromethyl)thio]phenyl]ethanone, 730
[66625-04-5] 1-[2,4,6-Trihydroxy-3,5-bis[(trifluoromethyl)thio]phenyl] ethanone, 796
[66842-24-8] 1-(2,6-Dihydroxy-3,4,5-trimethylphenyl)ethanone, 874
[66883-87-2] 1-[3-Chloro-5-(chloromethyl)-2-hydroxyphenyl]ethanone, 733
[66901-79-9] 1-[3-(Acetyloxy)-6-hydroxy-2,4,5-trimethylphenyl]ethanone, 944
[67088-16-8] 1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]ethanone, 1001
[67127-96-2] 1-[2-Hydroxy-3-(1-propenyl)phenyl]ethanone, 849
[67589-15-5] 1-[2-Hydroxy-5-(trifluoromethyl)phenyl]ethanone, 730
[67895-11-8] 1-(2,6-Dihydroxy-4-pentylphenyl)ethanone, 958
[68034-24-2] 1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl] ethanone, 942
[68301-59-7] 1-(2-Chloro-4-hydroxyphenyl)ethanone, 684
[68531-86-2] 1-(3,6-Dihydroxy-4-methoxy-2-methylphenyl)ethanone, 832
[69027-37-8] 1-(2-Hydroxy-3,5-dinitrophenyl)ethanone, 677
[69051-59-8] 1-(3-Ethyl-2-hydroxy-4,6-dimethylphenyl)ethanone, 914
[69079-91-0] 1-[2-Hydroxy-6-(4-phenoxybutoxy)phenyl]ethanone, 1046
[69079-92-1] 1-[2-Hydroxy-3-(3-phenoxypropoxy)phenyl]ethanone, 1034
[69079-93-2] 1-[2-Hydroxy-6-(3-phenylpropoxy)phenyl]ethanone, 1033
[69082-35-5] 1-(2,4-Dihydroxy-3,6-dimethylphenyl)ethanone, 820
[69114-99-4] 1-[2,3-Dihydroxy-4-(phenylmethoxy)phenyl]ethanone, 1006
[69240-96-6] 1-(2-Chloro-3-hydroxyphenyl)ethanone, 684
[69240-97-7] 1-(2-Chloro-4,5-dihydroxyphenyl)ethanone, 689
[69240-98-8] 1-(2-Chloro-4-hydroxy-5-methoxyphenyl)ethanone, 745
[69469-91-6] 1-(2-Hydroxy-4-methoxy-3-methylphenyl)ethanone, 826
[69470-86-6]
[69480-06-4]
[69616-56-4]
[69616-59-7]
[69616-62-2]
[69751-80-0]
[69751-81-1]
[69976-76-7]
[69976-81-4]
[70064-44-7]
[70284-07-0]
[70662-40-7]
[70668-14-3]
1-[5-(Acetyloxy)-2-hydroxy-4-methoxyphenyl]ethanone, 858
1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)ethanone, 831
1-(2,5-Dihydroxy-3,4-dimethoxyphenyl)ethanone, 844
1-(4-Ethoxy-2-hydroxy-3-methoxyphenyl)ethanone, 880
1-(5-Ethoxy-2-hydroxy-3,4-dimethoxyphenyl)ethanone, 933
1-(2,3-Dihydroxy-5-methylphenyl)ethanone, 768
1-(2,3-Dihydroxy-4-methylphenyl)ethanone, 768
1-(6-Amino-3-hydroxy-2-methylphenyl)ethanone, 794
1-(3-Hydroxy-2-methylphenyl)ethanone, 763
1-[3-(2,3-Dihydroxypropoxy)-4-hydroxyphenyl]ethanone, 886
1-(3-Hydroxy-5-nitrophenyl)ethanone, 699
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-5methoxyphenyl]ethanone, 977
[70977-71-8]
[70977-72-9]
1-(2-Hydroxy-5-nitro-4-propoxyphenyl)ethanone, 862
[70977-78-5]
1-(3-Amino-2-hydroxy-5-methylphenyl)ethanone, 793
1-(3-Amino-2-hydroxyphenyl)ethanone, 726
1-(3-Amino-5-ethyl-2-hydroxyphenyl)ethanone, 847
[70977-79-6]
[70977-84-3]
[70977-85-4]
[70977-88-7]
[70978-22-2]
[70978-38-0]
[70978-39-1]
[70978-46-0]
[70978-54-0]
[71002-71-6]
[71243-12-4]
[71452-36-3]
[71582-56-4]
[71582-57-5]
[71582-58-6]
[71582-59-7]
[71815-42-4]
[72018-33-8]
[72018-35-0]
[72018-36-1]
[72018-37-2]
[72422-80-1]
[72424-28-3]
[72511-76-3]
[72545-51-8]
[73034-32-9]
[73051-30-6] 1-[5-(4-Chlorophenoxy)-2-hydroxyphenyl]ethanone, 968
[73239-04-0] 1-(2,5-Dichloro-4-hydroxyphenyl)ethanone, 671
[73239-52-8] 1-(3,4,6-Trihydroxy-2-methoxyphenyl)ethanone, 791
[73239-53-9] 1-[6-Hydroxy-2-methoxy-3,4-bis(phenylmethoxy)phenyl] ethanone, 1079
[73331-27-8] 1-[2,6-Dihydroxy-3,5-bis(2-propenyloxy)phenyl]ethanone, 978
[73473-62-8]
[73640-74-1]
[73869-86-0]
[73869-90-6]
[73898-20-1]
1-[2-Hydroxy-4-(1-methylethoxy)phenyl]ethanone, 877
1-[2-Hydroxy-3-methyl-4-(phenylmethoxy)phenyl]ethanone, 1018
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl]ethanone (E), 943
[73898-21-2]
[73898-22-3]
[73898-23-4]
[74047-32-8]
[74047-33-9]
[74047-37-3]
[74291-78-4]
[74556-32-4]
[74604-19-6]
[74727-08-5]
[75060-91-2]
1-[4-Hydroxy-3-methoxy-5-(3-methyl-2-butenyl)phenyl] ethanone, 981
1-(4-Ethyl-3-hydroxyphenyl)ethanone, 814
1-(4-Cyclohexyl-3-hydroxyphenyl)ethanone, 979
1-(4-Bromo-3-hydroxyphenyl)ethanone, 681
1-(3-Hydroxy-4-iodophenyl)ethanone, 695
1-(2,4-Dihydroxy-3-iodo-6-methoxyphenyl)ethanone, 751
1-[2-Hydroxy-3-iodo-6-methoxy-4-(2-propenyloxy)phenyl] ethanone, 896
1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]ethanone, 904
1-(2,4-Dihydroxyphenyl)ethanone- ${ }^{13} C_{2}, 716$
1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)ethanone, 845
1-(2-Hydroxy-5-octylphenyl)ethanone, 1028
1-[2,4-Dihydroxy-3-methyl-5-(3-methyl-2-butenyl)phenyl] ethanone, 980
[75060-91-2]
1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] ethanone, 965
[75254-93-2] 1-[2-Hydroxy-3,4-dimethoxy-5-(2-propenyl)phenyl]ethanone, 946
[75322-34-8] 1-(2,6-Dichloro-3,4-dihydroxy-5-methoxyphenyl)ethanone, 735
[75452-54-9] 1-(4-Amino-2-hydroxy-3-propylphenyl)ethanone, 893
[75452-86-7] 1-(3-Amino-2-hydroxy-6-methoxyphenyl)ethanone, 795
[75672-59-2] 1-(5-Ethoxy-2-hydroxy-4-methoxyphenyl)ethanone, 881
[75672-62-7] 1-(4-Ethoxy-2-hydroxy-5-methoxyphenyl)ethanone, 881
[76267-82-8] 1-[2-Hydroxy-4-methyl-5-(2-propenyloxy)phenyl]ethanone, 901
[76538-42-6] 1-(4-Chloro-3,5-dihydroxy[1,1'-biphenyl]-2-yl)ethanone, 968
[76554-77-3] 1-(2-Hydroxy-4-methoxy-6-propoxyphenyl)ethanone, 931
[76554-78-4] 1-[2-Hydroxy-4-methoxy-6-(1-methylethoxy)phenyl]ethanone, 930
[76554-79-5] 1-(2-Ethoxy-6-hydroxy-4-methoxyphenyl)ethanone, 880
[76554-80-8] 1-(4-Ethoxy-2-hydroxy-6-methoxyphenyl)ethanone, 881
[76576-61-9] 1-(2,3-Dihydroxy-4,5-dimethoxy-6-propylphenyl)ethanone, 962
[76609-35-3]
[76609-36-4]
[76748-71-5] 1-(4-Hydroxy-3-iodo-5-nitrophenyl)ethanone, 675
[76799-38-7] 1-[4-Hydroxy-2,6-bis(phenylmethoxy)phenyl]ethanone, 1071
[76844-54-7] 1-[2-Hydroxy-3,4,6-trimethoxy-5-(phenylmethoxy)phenyl] ethanone, 1047
[76951-07-0]
[77036-77-2]
[77184-92-0]
[77347-23-0]
[77370-28-6]
[77370-30-0]
[77869-01-3]
1-(4-Ethoxy-2-hydroxy-5-nitrophenyl)ethanone, 811
1-[2-Hydroxy-3-methyl-4-(2-propenyloxy)phenyl]ethanone, 901
1-(2-Hydroxy-4,5-dimethoxyphenyl)ethanone-2- ${ }^{14} C, 837$
1-[3-(Acetyloxy)-2-hydroxy-5-methylphenyl]ethanone, 854
1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)-5-(3-methyl-2butenyl)phenyl]ethanone (Z), 1049
[77869-43-3]
[77893-88-0]
[77893-89-1]
[77936-48-2]
[78268-45-8]
[78269-19-9]
[78274-02-9]
[78646-28-3]
[79557-72-5]
[79557-73-6]
[79557-74-7]
[79557-82-7]
[79557-94-1]
[79558-02-4]
[79755-07-8]
[79950-56-4]
[80190-95-0]
[80547-86-0]
[80938-23-4]
[81053-02-3]
[81053-03-4]
[81325-85-1]
[81325-86-2]
[81325-87-3]
[81325-88-4]
[81325-91-9]
[81325-92-0]
[81325-95-3]
[81468-73-7]
[81511-52-6] 1-(2-Hydroxy-4-methoxy-5-methylphenyl)ethanone, 827
[81515-01-7] 1-(4,6-Dichloro-2-hydroxy-3-nitrophenyl)ethanone, 660
[81591-14-2] 1-(6-Chloro-3-ethyl-2-hydroxyphenyl)ethanone, 806
[81591-15-3] 1-(3-Ethyl-2-hydroxy-5-methylphenyl)ethanone, 864
[81591-16-4] 1-(3-Ethyl-2-hydroxy-6-methylphenyl)ethanone, 864
[81591-17-5] 1-(5-Bromo-3-ethyl-2-hydroxyphenyl)ethanone, 802
[81732-54-9] 1-[3-Hydroxy-5-(phenylmethoxy)phenyl]ethanone, 1005
[81944-40-3]
[82320-47-6]
[82506-14-7]
[82538-73-6]
[82538-74-7]
1-[4-Hydroxy-3-(3-hydroxy-3-methylbutyl)phenyl]ethanone, 959
1-(3-Bromo-2,6-dihydroxyphenyl)ethanone, 682
1-[3-[(Dimethylamino)methyl]-4-hydroxy-5-methylphenyl] ethanone, 936
1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxy-3-iodophenyl] ethanone, 937
[82538-75-8] ethanone, 938
[82538-76-9] methoxy-phenyl]ethanone, 975
1-[2,4-Dihydroxy-3-iodo-6-methoxy-5-(3-methyl-2-butenyl) phenyl]ethanone, 978
[83069-04-9] 1-[5-Hydroxy-2-(phenylmethoxy)phenyl]ethanone, 1005
[83080-88-0] 1-(2-Hydroxy-6-mercaptophenyl)ethanone, 713
[83332-29-0] 1-[2-(Benzoyloxy)-4,6-dihydroxyphenyl]ethanone, 998
[83375-18-2] 1-(2-Heptyl-4,6-dihydroxyphenyl)ethanone, 1013
[83375-19-3] 1-(4-Heptyl-2,6-dihydroxyphenyl)ethanone, 1014
[83459-37-4] 1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)ethanone, 831
[83812-26-4] 1-(2,5-Dihydroxy-3-propylphenyl)ethanone, 873
[84092-45-5] 1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-(3-methyl-2-butenyl) phenyl]ethanone, 1040
[84296-64-0] 1-[5-(1,1-Dimethylethyl)-2,3-dihydroxyphenyl]ethanone, 924
[84296-99-1] 1-[4,6-Bis(1,1-dimethylethyl)-2,3-dihydroxyphenyl]ethanone, 1028
[84297-01-8] 1-[4-(1,1-Dimethylethyl)-2,3-dihydroxy-6-methylphenyl] ethanone, 958
[84297-04-1] 1-[3-(Acetyloxy)-5-(1,1-dimethylethyl)-2-hydroxyphenyl] ethanone, 982
[84653-58-7] 1-(3-Ethyl-2,4,6-trihydroxyphenyl)ethanone, 834
[84744-37-6] 1-(5-Dodecyl-2-hydroxyphenyl)ethanone, 1064
[84942-36-9] 1-[2-Hydroxy-5-(1-methylpropyl)-3-nitrophenyl]ethanone, 909
[84942-37-0] 1-(4-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone, 969
[84942-38-1] 1-(2-Hydroxy-3-nitro-5-phenoxyphenyl)ethanone, 970
[84942-39-2] 1-[2-Hydroxy-5-(1-methylpropyl)phenyl]ethanone, 920
[84942-40-5] 1-(5-Chloro-2-hydroxy-3-nitrophenyl)ethanone, 670
[85128-50-3] 1-(3-Chloro-2-hydroxy-6-methylphenyl)ethanone, 742
[85918-30-5] 1-(2,3,6-Trihydroxyphenyl)ethanone, 721
[86253-71-6] 1-(2,3-Dihydroxy-5-propylphenyl)ethanone, 872
[86608-89-1] 1-(4'-Chloro-4-hydroxy[1,1'-biphenyl]-3-yl)ethanone, 967
[86989-84-6] 1-(5-Ethyl-2,3,4-trihydroxyphenyl)ethanone, 834
[87165-49-9] 1-[3-(Chloromethyl)-2-hydroxyphenyl]ethanone, 743
[87165-50-2] 1-[2-Hydroxy-3-(methoxymethyl)phenyl]ethanone, 830
[87165-59-1] 1-[5-Chloro-2-hydroxy-3-(methoxymethyl)phenyl]ethanone, 807
[87165-62-6] 1-[3-(Chloromethyl)-2-hydroxy-5-methylphenyl]ethanone, 807
[87165-63-7] 1-[2-Hydroxy-3-(methoxymethyl)-5-methylphenyl]ethanone, 877
[87165-70-6] 1-[3-(Chloromethyl)-2-hydroxy-5-methoxyphenyl]ethanone, 808
[87165-71-7]
[87239-37-0]
1-[2-Hydroxy-5-methoxy-3-(methoxymethyl)phenyl]ethanone, 885
1-(4-Chloro-2-hydroxy-6-methylphenyl)ethanone, 742
1-(2-Amino-4-hydroxy-3-propylphenyl)ethanone, 893
1-(3-Chloro-6-hydroxy-2-methoxyphenyl)ethanone, 747
[87953-86-4]
[87953-91-1]
[87953-93-3]
[87953-94-4]
[87953-95-5]
[88086-96-8]
[88086-97-9]
[88086-98-0]
[88086-99-1]
[88087-00-7]
[88087-01-8] 1-[2,4-Bis-(β-D-galactopyranosyloxy)-6-hydroxyphenyl]
[88087-03-0]
[88087-04-1]
[88661-97-6]
[88771-46-4]
1-(3-Chloro-2-hydroxy-6-methoxyphenyl)ethanone, 746
1-(3-Chloro-2,6-dihydroxyphenyl)ethanone, 689
1-(3,5-Dichloro-2-hydroxy-6-methoxyphenyl)ethanone, 735
1-(3,5-Dichloro-2,6-dihydroxyphenyl)ethanone, 674
1-[2-Hydroxy-3-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl) oxy]-phenyl]ethanone, 1072
1-[3-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone, 985
1-[2-Hydroxy-5-[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl) oxy]-phenyl]ethanone, 1072
1-[5-(β-D-Galactopyranosyloxy)-2-hydroxyphenyl]ethanone, 986
1-[2-Hydroxy-4,6-bis[(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl)oxy]-phenyl]ethanone, 1091 ethanone, 1064
[88771-47-5]
[88771-57-7]
[88771-58-8]
1-[2-(Benzoyloxy)-5-hydroxyphenyl]ethanone, 997
1-[2-(β-D-Galactopyranosyloxy)-6-hydroxyphenyl]ethanone, 985
1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl] ethanone, 1048
[88771-59-9]
[88771-63-5]
[88772-48-9]
[89684-58-2]
1-(4-Chloro-2-hydroxy-3,6-dimethoxyphenyl)ethanone, 809
1-(3,6-Diethoxy-2-hydroxyphenyl)ethanone, 928
1-(4-Fluoro-2-hydroxy-3,6-dimethoxyphenyl)ethanone, 809
1-(3-Chloro-6-hydroxy-2,5-dimethoxyphenyl)ethanone, 809
1-(2-Hydroxy-3,6-dimethoxy-5-nitrophenyl)ethanone, 812
1-(3,4-Dichloro-6-hydroxy-2,5-dimethoxyphenyl)ethanone, 799
1-(4-Fluoro-2,5-dihydroxyphenyl)ethanone, 693
1-(2,4-Dihydroxy-3-nitrophenyl)ethanone, 701
[89877-53-2]
[89880-47-7]
[89942-63-2]
[90004-97-0]
[90004-98-1]
[90005-55-3]
[90033-64-0]
[90110-31-9]
[90110-32-0]
1-(3-Hydroxy-2-methyl-4-nitrophenyl)ethanone, 752

1-(3-Ethoxy-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 932
1-(3-Hydroxy-4-nitrophenyl)ethanone, 699
1-(3-Bromo-2-hydroxy-5-nitrophenyl)ethanone, 663
1-(3-Bromo-4-hydroxy-5-nitrophenyl)ethanone, 663
1-(3-Amino-2-hydroxyphenyl)ethanone (Hydrochloride), 727
1-(2-Amino-4-hydroxyphenyl)ethanone, 725
1-(4-Chloro-2,5-dihydroxyphenyl)ethanone, 690
1-(5-Chloro-2,4-dihydroxyphenyl)ethanone, 690
[90377-24-5] 1-(3,6-Dihydroxy-2-methoxy-4-methylphenyl)ethanone, 832
[90564-25-3] 1-(2-Hydroxy-5-methoxy-3-nitrophenyl)ethanone, 755
[90743-02-5] 1-(2-Hydroxy-3,6-dimethylphenyl)ethanone, 815
[90743-03-6] 1-(3-Chloro-2-hydroxy-5,6-dimethylphenyl)ethanone, 806
[90971-91-8] 1-(4-Bromo-2-hydroxy-5-methoxyphenyl)ethanone, 740
[91060-92-3] 1-(4-Hydroxy-2,6-dimethylphenyl)ethanone, 818
[91061-75-5] 1-(5-Hydroxy-2,4-dimethoxyphenyl)ethanone, 841
[91124-33-3] 1-[3-(1,1-Dimethylethyl)-2,6-dihydroxyphenyl]ethanone, 923
[91497-16-4] 1-[2-Hydroxy-5-methoxy-4-(2-propenyloxy)phenyl]ethanone, 904
[91664-14-1] 1-[5-(2-Butenyl)-2,3,4-trihydroxyphenyl]ethanone, 902
[91664-16-3] 1-[3-(2-Butenyl)-2,4-dihydroxyphenyl]ethanone, 898
[91664-17-4] 1-[5-(2-Butenyl)-2,4-dihydroxyphenyl]ethanone, 898
[91664-19-6] 1-[5-(2-Butenyl)-2,4-dihydroxy-3-iodophenyl]ethanone, 896
[91664-20-9] 1-[2,4-Dihydroxy-6-methoxy-3-(1-methyl-2-propenyl)phenyl] ethanone, 945
[91664-21-0] 1-[4,6-Dihydroxy-2-methoxy-3-(1-methyl-2-propenyl)phenyl] ethanone, 945
[91664-22-1] 1-[3-(2-Butenyl)-2,4-dihydroxy-6-methoxyphenyl]ethanone, 945
[91664-23-2] 1-[3-(2-Butenyl)-4,6-dihydroxy-2-methoxyphenyl]ethanone, 945
[91664-24-3] 1-[3-(2-Butenyl)-2-hydroxy-4-methoxyphenyl]ethanone, 940
[91969-72-1] 1-[2-Hydroxy-4-(1-methylethyl)phenyl]ethanone, 867
[92119-05-6] 1-(2,4-Dichloro-3-hydroxyphenyl)ethanone, 670
[92518-06-4] 1-[4-(4-Bromobutoxy)-2-hydroxy-3-propylphenyl]ethanone, 1013
[92518-46-2] 1-[4-[(6-Bromohexyl)oxy]-2-hydroxy-3-propylphenyl] ethanone, 1040
[92831-82-8]
1-[2,5-Dihydroxy-4-(2-propenyloxy)phenyl]ethanone, 855
[93339-98-1]
[93344-48-0]
[93344-49-1]
[93344-50-4]
1-(2-Fluoro-6-hydroxyphenyl)ethanone, 691
1-[2-Hydroxy-4,6-bis(1-methylethoxy)phenyl]ethanone, 993
1-[3,6-Dihydroxy-2,4-bis(1-methylethoxy)phenyl]ethanone, 994
1-[6-Hydroxy-3-methoxy-2,4-bis(1-methylethoxy)phenyl] ethanone, 1015
[93344-52-6] 1-[2-Hydroxy-3,6-dimethoxy-4-(1-methylethoxy)phenyl] ethanone, 963
[93351-16-7] 1-(4-Ethyl-2-hydroxy-5-methylphenyl)ethanone, 864
[93434-27-6] 1-[2-Hydroxy-4-methoxy-5-(phenylmethyl)phenyl]ethanone, 1018
[93578-16-6] 1-(2,4-Dihydroxy-5-methylphenyl)ethanone, 769
[93898-99-8] 1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]ethanone, 1002
[93915-84-5] 1-(2-Hydroxy-3-propylphenyl)ethanone, 868
[94245-10-0] 1-[2-Hydroxy-3-methoxy-4-(1-methylpropoxy)phenyl] ethanone, 960
[94649-69-1] 1-(2,3,6-Trichloro-4-hydroxy-5-methoxyphenyl)ethanone, 730
[94649-70-4] 1-(2-Chloro-4-hydroxy-3,5-dimethoxyphenyl)ethanone, 808
[94649-71-5] 1-(2,6-Dichloro-4-hydroxy-3,5-dimethoxyphenyl)ethanone, 798
[94650-96-1] 1-(Trichloro-4-hydroxyphenyl)ethanone, 661
[95102-24-2] 1-[4-Hydroxy-3-(phenylmethyl)phenyl]ethanone, 1001
[95165-66-5] 1-[2-Hydroxy-3-iodo-4,6-bis(phenylmethoxy)phenyl] ethanone, 1067
[95604-05-0] 1-[4-(Acetyloxy)-2-hydroxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1009
[95832-44-3] 1-[2,4-Dihydroxy-3,5-bis(phenylmethyl)phenyl]ethanone, 1067
[95832-45-4] 1-[2-Hydroxy-4-methoxy-3-(phenylmethyl)phenyl]ethanone, 1018
[95832-46-5] 1-[2-Hydroxy-4-methoxy-3,5-bis(phenylmethyl)phenyl] ethanone, 1076
[96501-84-7] 1-[6-Hydroxy-2,4-dimethoxy-3-(1-methylethoxy)phenyl] ethanone, 964
[96864-14-1] 1-[2-Heptyl-6-hydroxy-4-(phenylmethoxy)phenyl]ethanone, 1074
[97066-04-1] 1-[2-Hydroxy-4-methyl-6-(phenylamino)phenyl]ethanone, 1009
[97066-06-3] 1-[2-(Dimethylamino)-6-hydroxy-4-methylphenyl]ethanone, 894
[97066-07-4] 1-[2-(Diethylamino)-6-hydroxy-4-methylphenyl]ethanone, 966
[97066-15-4] 1-(2-Amino-6-hydroxy-4-methylphenyl)ethanone, 793
[97066-16-5] 1-[2-Hydroxy-4-methyl-6-[(phenylmethyl)amino]phenyl] ethanone, 1023
[97304-17-1] 1-(2,4-Dihydroxy-5-pentylphenyl)ethanone, 957
[97565-35-0] 1-(3-Hydroxy-2,4,5-trimethoxyphenyl)ethanone, 890
[97582-36-0] 1-[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]ethanone, 908
[97582-37-1] 1-[4-(Chloromethyl)-2-hydroxy-3-methylphenyl]ethanone, 807
[97582-38-2] 1-[4-(Chloromethyl)-3-ethyl-2-hydroxyphenyl]ethanone, 859
[97582-41-7] 1-[4-(Chloromethyl)-2-hydroxy-3-(2-methylpropyl)phenyl] ethanone, 950
[97761-88-1] 1-(4-Hydroxy-2-methoxy-3,6-dimethylphenyl)ethanone, 877
[97871-70-0] 1-(4-Hydroxy-3-nitrosophenyl)ethanone, 697
[98619-07-9] 1-(2-Fluoro-4-hydroxyphenyl)ethanone, 691
[99217-72-8] 1-[2-Hydroxy-4-(methoxymethoxy)-5-(3-methyl-2-butenyl) phenyl]ethanone, 1012
[99283-88-2] 1-[2-Hydroxy-4-(octadecyloxy)phenyl]ethanone, 1086
[99370-47-5] 1-[2-Hydroxy-4-(2-propenyloxy)-3-propylphenyl]ethanone, 982
[99370-48-6] 1-[2,4-Dihydroxy-5-(2-propenyl)-3-propylphenyl]ethanone, 980
[99453-85-7] 1-[4-[(5-Bromopentyl)oxy]-2-hydroxy-3-propylphenyl] ethanone, 1025
[99892-62-3] 1-(3-Hydroxy-2,4,5-trimethylphenyl)ethanone, 870
[99892-63-4] 1-(3-Hydroxy-2,4-dimethylphenyl)ethanone, 817
[100245-06-5] 1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl]ethanone, 909
[100612-87-1] 1-[3-Hydroxy-4,6-dimethoxy-2-(2-propenyl)phenyl]ethanone, 946
[101002-29-3] 1-[2-Hydroxy-4-(pentyloxy)phenyl]ethanone, 959
[101002-31-7] 1-(4-Butoxy-5-hexyl-2-hydroxyphenyl)ethanone, 1056
[101140-07-2] 1-[3-(Benzoyloxy)-4-hydroxyphenyl]ethanone, 998
[101140-09-4] 1-[3-Hydroxy-4-[(2-methoxyethoxy)methoxy]phenyl] ethanone, 934
$\begin{array}{ll}\text { [101140-11-8] } & \begin{array}{l}1-[4-H y d r o x y-3-[(2,3,4,6-\text { tetra-O-acetyl- } \beta \text {-D-glucopyranosyl)oxy] } \\ \text { phenyl]ethanone (Tetraacetylpungenin), 1074 }\end{array}\end{array}$
[101161-93-7] 1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxy-6-methoxyphenyl] ethanone, 1090
[101161-94-8] 1-[3-(Diphenylmethyl)-2,4-dihydroxy-6-methoxyphenyl] ethanone, 1069
[101161-95-9] 1-[3-(Diphenylmethyl)-4,6-dihydroxy-2-methoxyphenyl] ethanone, 1069
[101161-96-0] 1-[3-(Diphenylmethyl)-2-hydroxy-4,6-dimethoxyphenyl] ethanone, 1076
[101161-97-1] 1-[3-(Diphenylmethyl)-6-hydroxy-2,4-dimethoxyphenyl] ethanone, 1077
[102056-82-6] 1-[2,4-Dihydroxy-3-[(2-hydroxyphenyl)methyl]-6methoxyphenyl]ethanone, 1022
[102056-83-7] 1-[2-Hydroxy-3-[(2-hydroxyphenyl)methyl]-6-methoxy-4(phenylmethoxy)phenyl]ethanone, 1078
[102104-05-2] 1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)-3-[[2(phenylmethoxy)phenyl]methyl]phenyl]ethanone, 1088
[102297-89-2] 1-(5-Chloro-2,4-dihydroxy-3-iodophenyl)ethanone, 669
[102624-59-9] 1-(3-Chloro-2,6-dihydroxy-5-propylphenyl)ethanone, 859
[102624-71-5] 1-(3-Fluoro-2,6-dihydroxy-5-propylphenyl)ethanone, 861
[102877-53-2] 1-(2-Hydroxy-4-methoxy-5-nitrophenyl)ethanone, 755
[103323-22-4] 1-(3-Ethyl-2-hydroxyphenyl)ethanone, 813
[103440-57-9] 1-(2-Hydroxy-3-iodo-6-methoxyphenyl)ethanone, 749
[103440-59-1] 1-(4-Hydroxy-3-iodo-5-methoxyphenyl)ethanone, 750
[103633-31-4] 1-[2,4-Dihydroxy-6-methoxy-3-[[2-(phenylmethoxy)phenyl] methyl]phenyl]ethanone, 1077
[103633-32-5] 1-[4,6-Dihydroxy-2-methoxy-3-[[2-(phenylmethoxy)phenyl] methyl]phenyl]ethanone, 1078
[103633-36-9] 1-[2,4-Dihydroxy-3-[[2-(phenylmethoxy)phenyl]methyl]phenyl] ethanone, 1069
[103633-37-0] 1-[2,4-Dihydroxy-5-[[2-(phenylmethoxy)phenyl]methyl]phenyl] ethanone, 1069
[103633-38-1] 1-[2,4-Dihydroxy-3-[(2-hydroxyphenyl)methyl]phenyl] ethanone, 1006
[103633-39-2] 1-[2-Hydroxy-4-methoxy-3-[(2-methoxyphenyl)methyl]phenyl] ethanone, 1033
[103633-40-5] 1-[2-Hydroxy-4-(phenylmethoxy)-3-[[2-(phenylmethoxy)phenyl] methyl]phenyl]ethanone, 1087
[103633-43-8] 1-[2-Hydroxy-4-(phenylmethoxy)-5-[[2-(phenylmethoxy)phenyl] methyl]phenyl]ethanone, 1087
[103633-46-1] 1-[2-Hydroxy-4-[[2-(phenylmethoxy)phenyl]methoxy]-3-[[2-(phenyl-methoxy)phenyl]methyl]phenyl]ethanone, 1090
[103653-14-1] 1-(3-Bromo-4-hydroxy-5-methoxyphenyl)ethanone, 739
[103777-42-0] 1-(4,6-Dihydroxy-2,3-dimethoxyphenyl)ethanone, 846
[103777-43-1] 1-[4-(Dodecyloxy)-6-hydroxy-2,3-dimethoxyphenyl]ethanone, 1075
[103777-44-2] 1-[4-(Dodecyloxy)-2-hydroxy-3,6-dimethoxyphenyl]ethanone, 1075

[103777-45-3]	1-(3-Hydroxy-2,4,6-trimethoxyphenyl)ethanone, 890
[103777-47-5]	1-[3-(Dodecyloxy)-2-hydroxy-4,6-dimethoxyphenyl]ethanone, 1075
[103867-84-1]	1-[2-Hydroxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 905
[103867-85-2]	1-[2-Hydroxy-5-methoxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 948
[103867-86-3]	1-[2-Hydroxy-6-methoxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 948
[103867-87-4]	1-[2-Hydroxy-5-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 905
[103867-88-5]	1-[4-Hydroxy-3-(2-methyl-1,3-dioxolan-2-yl)phenyl]ethanone, 905
[104074-07-9]	1-[4-(2-Chloroethoxy)-2-hydroxy-3-propylphenyl]ethanone, 950
[104174-27-8]	1-(4-Hydroxy-2-propylphenyl)ethanone, 868
[104175-18-0]	1-[2-Hydroxy-3-(1-methylethyl)phenyl]ethanone, 866
[104481-00-7]	1-[6-Hydroxy-2,4-dimethoxy-3-(methoxymethoxy)phenyl] ethanone, 934
[104654-33-3]	1-[3,6-Bis(acetyloxy)-2-hydroxyphenyl]ethanone, 895
[104676-26-8]	1-[2-Hydroxy-5-[1-(4-hydroxyphenyl)-1-methylethyl]phenyl] ethanone, 1032
[105277-74-5]	1-[2-(3-Chloropropoxy)-6-hydroxyphenyl]ethanone, 860
[105337-34-6]	1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]ethanone, 916
[105337-35-7]	1-[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]ethanone, 919
[105340-27-0]	1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 906
[105342-70-9]	1-(3-Ethoxy-2,6-dihydroxy-4-methoxyphenyl)ethanone, 887
[105342-72-1]	1-(3,6-Diethoxy-2-hydroxy-4-methoxyphenyl)ethanone, 962
[105485-44-7]	1-[2,3,4-Trihydroxy-5-(phenylmethyl)phenyl]ethanone, 1007
[105485-45-8]	1-[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone, 1068
[105485-46-9]	1-[2-Hydroxy-3,4-bis(phenylmethoxy)-5-(phenylmethyl)phenyl]ethanone, 1086
[105485-47-0]	1-[2-Hydroxy-4-(phenylmethoxy)-3,5-bis(phenylmethyl)phenyl]ethanone, 1086
[105485-48-1]	1-[2-Hydroxy-4-(phenylmethoxy)-5-(phenylmethyl)phenyl] ethanone, 1068
[105485-57-2]	1-[2-Hydroxy-3,4-dimethoxy-5-(phenylmethyl)phenyl] ethanone, 1033
[105533-69-5]	1-(4-Chloro-5-fluoro-2-hydroxyphenyl)ethanone, 668
[106627-20-7]	1-[2-Hydroxy-4-[(6-hydroxyhexyl)oxy]-3-propylphenyl] ethanone, 1042
[106627-33-2]	1-[4-[(7-Bromoheptyl)oxy]-2-hydroxy-3-propylphenyl] ethanone, 1055
[106627-34-3]	1-[4-[(8-Bromooctyl)oxy]-2-hydroxy-3-propylphenyl] ethanone, 1061
[106627-35-4]	1-[4-[(10-Bromodecyl)oxy]-2-hydroxy-3-propylphenyl] ethanone, 1066
[106627-36-5]	1-[4-[(12-Bromododecyl)oxy]-2-hydroxy-3-propylphenyl] ethanone, 1084

[106627-41-2] 1-(3,6-Dihydroxy-2-propylphenyl)ethanone, 873[106929-57-1] 1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-methylphenyl]ethanone, 965
[106987-29-5] 1-[4-(Acetyloxy)-2-hydroxy-3,5-di-2-propenylphenyl] ethanone, 1023
[107070-69-9] 1-[4-(Dimethylamino)-2-hydroxyphenyl]ethanone, 847
[107114-29-4] 1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxyphenyl]ethanone, 1089
[107114-31-8] 1-[3,5-Bis(diphenylmethyl)-2-hydroxy-4-methoxyphenyl] ethanone, 1090
[107114-32-9] 1-[3-(Diphenylmethyl)-2,4-dihydroxyphenyl]ethanone, 1065
[107114-34-1] 1-[3-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl] ethanone, 1067
[107114-35-2] 1-[5-(Diphenylmethyl)-2,4-dihydroxyphenyl]ethanone, 1065
[107114-37-4] 1-[5-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl] ethanone, 1068
[107188-26-1] 1-[5-(Acetyloxy)-4-(1,1-dimethylethyl)-2-hydroxyphenyl] ethanone, 982
[107188-54-5] 1-[5-(Acetyloxy)-2-hydroxy-4-(1,1,3,3-tetramethylbutyl)phenyl]ethanone, 1054
[107223-42-7] 1-[4-(Chloromethyl)-2-hydroxyphenyl]ethanone, 744
[107223-43-8] 1-[3-Butyl-4-(chloromethyl)-2-hydroxyphenyl]ethanone, 950
[107724-60-7] 1-[3-Bromo-5-(chloromethyl)-4-hydroxyphenyl]ethanone, 731
[108129-55-1] 1-(5-Amino-2-hydroxy-3-nitrophenyl)ethanone, 705
[108293-73-8] 1-[2-Hydroxy-5-methyl-3-(2-propenyl)phenyl]ethanone, 897
[108909-47-3] 1-(5-Hydroxy-3,4'-dimethyl[1,1'-biphenyl]-2-yl)ethanone, 1016
[108909-48-4] 1-[4'-(Dimethylamino)-5-hydroxy-3-methyl[1,1'-biphenyl]-2-yl]ethanone, 1037
[109311-05-9] 1-[4-(Benzoyloxy)-2-hydroxyphenyl]ethanone, 998
[109314-52-5] 1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]ethanone, 757
[109661-95-2] 1-[4-(Ethenyloxy)-2-hydroxyphenyl]ethanone, 799
[109661-96-3] 1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]ethanone, 807
[110906-84-8] 1-[3-(β-D-Glucopyranosyloxy)-2,4,6-trihydroxyphenyl]ethanone (Polygoacetophenoside), 989
[111224-13-6] 1-(3-Ethyl-2,4-dihydroxyphenyl)ethanone, 824
[111224-14-7] 1-(2,4-Dihydroxy-3-pentylphenyl)ethanone, 957
[111841-07-7] 1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy] phenyl]ethanone, 946
[112747-62-3] 1-(3-Bromo-2-hydroxy-4,5-dimethylphenyl)ethanone, 803
[112954-19-5] 1-(2-Chloro-6-hydroxy-4-methoxyphenyl)ethanone, 745
[113027-08-0] 1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]ethanone, 912
[114012-82-7] 1-(3-Hydroxy-4,5-dimethoxyphenyl)ethanone, 839
[114412-47-4] 1-(4-Hydroxy-4'-methoxy[1,1'-biphenyl]-3-yl)ethanone, 1003
[115130-46-6] 1-[2-Hydroxy-4,6-dimethoxy-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β-D-glucopyranosyl]-phenyl]ethanone, 1091
[115436-75-4] 1-[3-(Acetyloxy)-4-hydroxyphenyl]ethanone, 800

[115349-97-8]	1-[2-(Ethylamino)-5-[1-(ethylimino)ethyl]-4-hydroxyphenyl] ethanone, 990
[115851-77-9]	1-(2-Hydroxy-5-nonylphenyl)ethanone, 1041
[116265-99-7]	1-(5-Chloro-2-hydroxy-4-methoxyphenyl)ethanone, 747
[116296-35-6]	1-(3-Chloro-4-hydroxy-5-methoxyphenyl)ethanone, 746
[116313-84-9]	1-(3,4-Dihydroxy-5-nitrophenyl)ethanone, 703
[116465-22-6]	1-(3-Bromo-2,4-dihydroxy-5-nitrophenyl)ethanone, 664
[116964-03-5]	1-[2-(β-D-Glucopyranosyloxy)-3,4,6-trihydroxyphenyl]ethanone (Lalioside), 988
[117156-76-0]	1-[2-(Acetyloxy)-6-hydroxy-3,5-di-2-propenylphenyl] ethanone, 1023
[117156-86-2]	1-[2-Hydroxy-4-methoxy-3-(2-propenyl)phenyl]ethanone, 900
[117690-46-7]	1-[2-Hydroxy-4-(octyloxy)-5-(2-propenyl)phenyl]ethanone, 1060
[117690-47-8]	1-[4-(Hexyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1039
[117690-48-9]	1-[4-Butoxy-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1010
[117690-49-0]	1-[2-Hydroxy-4-(pentyloxy)-5-(2-propenyl)phenyl]ethanone, 1024
[117690-52-5]	1-[2-Hydroxy-4-(4-hydroxybutoxy)-5-(2-propenyl)phenyl] ethanone, 1011
[117690-53-6]	1-[4-(3-Butenyloxy)-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1009
[117690-54-7]	1-[4-(5-Hexenyloxy)-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1038
[117690-55-8]	1-[2-Hydroxy-4-(phenylmethoxy)-5-(2-propenyl)phenyl] ethanone, 1044
[117690-76-3]	1-[5-Ethyl-2-hydroxy-4-[[6-(methylsulfonyl)hexyl]oxy]phenyl]ethanone, 1043
[117690-80-9]	1-[4-[(5-Bromopentyl)oxy]-5-ethyl-2-hydroxyphenyl] ethanone, 1013
[117705-59-6]	1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]ethanone, 901
[117705-66-5]	1-[2,4-Dihydroxy-5-(hydroxymethyl)phenyl]ethanone, 783
[117705-90-5]	1-[4-[(5-Aminopentyl)oxy]-5-ethyl-2-hydroxyphenyl] ethanone, 1015
[117706-02-2]	1-[2-Hydroxy-4-[(6-hydroxy-6-methylheptyl)oxy]-5-(2-propenyl) phenyl]ethanone, 1060
[117706-26-0]	1-[4-(3-Azidopropoxy)-5-ethyl-2-hydroxyphenyl]ethanone, 951
[117706-27-1]	1-[4-(2-Azidoethoxy)-5-ethyl-2-hydroxyphenyl]ethanone, 910
[117706-32-8]	1-[4-[4-(Dimethylamino)butoxy]-2-hydroxy-5-(2-propenyl) phenyl]ethanone (Hydrochloride), 1040
[117706-34-0]	1-[2-Hydroxy-4-[[6-(methylthio)hexyl]oxy]-5-(2-propenyl) phenyl]ethanone, 1054
[117706-35-1]	1-[2-Hydroxy-4-[[6-(methylsulfinyl)hexyl]oxy]-5-(2-propenyl) phenyl]ethanone, 1055
[117706-36-2]	1-[2-Hydroxy-4-[[6-(methylsulfonyl)hexyl]oxy]-5-(2-propenyl) phenyl]ethanone, 1055
[117706-37-3]	1-[5-Ethyl-2-hydroxy-4-[[6-(methylthio)hexyl]oxy]phenyl] ethanone, 1041

[117706-38-4]	1-[5-Ethyl-2-hydroxy-4-[[6-(methylsulfinyl)hexyl]oxy]phenyl] ethanone, 1042
[117706-39-5]	1-[4-[(10-Bromodecyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1065
[117706-40-8]	1-[4-[(7-Bromoheptyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1053
[117706-41-9]	1-[4-[(6-Bromohexyl)oxy]-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1038
[117706-42-0]	1-[4-(4-Bromobutoxy)-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1010
[117706-45-3]	1-[2-Hydroxy-4-[(3-methylphenyl)methoxy]-5-(2-propenyl) phenyl]ethanone, 1057
[117706-46-4]	1-[4-[[4-(Bromomethyl)phenyl]methoxy]-2-hydroxy-5-(2propenyl)phenyl]ethanone, 1056
[117706-47-5]	1-[2-Hydroxy-4-(3-phenylpropoxy)-5-propylphenyl] ethanone, 1062
[117706-48-6]	1-[5-Ethyl-4-[(3-fluorophenyl)methoxy]-2-hydroxyphenyl] ethanone, 1031
[117706-49-7]	1-[4-[(3-Chlorophenyl)methoxy]-5-ethyl-2-hydroxyphenyl] ethanone, 1031
[117706-50-0]	1-[4-(5-Hexynyloxy)-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1038
[117706-51-1]	1-[5-Ethyl-2-hydroxy-4-[[3-(trifluoromethyl)phenyl]methoxy] phenyl]ethanone, 1043
[117706-52-2]	1-[5-Ethyl-2-hydroxy-4-[[3-(methylthio)phenyl]methoxy]phenyl] ethanone, 1046
[117706-54-4]	1-[4-(2-Bromoethoxy)-5-ethyl-2-hydroxyphenyl]ethanone, 907
[117706-55-5]	1-[4-(3-Bromopropoxy)-5-ethyl-2-hydroxyphenyl]ethanone, 950
[117706-56-6]	1-[4-(Heptyloxy)-2-hydroxy-5-(2-propenyl)phenyl]ethanone, 1054
[117713-79-8]	1-[2-Hydroxy-4-methoxy-5-(2-propenyl)phenyl]ethanone, 900
[117902-12-2]	1-(3-Fluoro-6-hydroxy-2-methoxyphenyl)ethanone, 748
[117902-13-3]	1-(3-Fluoro-2-hydroxy-6-methoxyphenyl)ethanone, 748
[117902-14-4]	1-(3-Fluoro-2,6-dihydroxyphenyl)ethanone, 693
[118062-86-5]	1-[2,4,6-Trihydroxy-3-(2-propenyl)phenyl]ethanone, 857
[118078-21-0]	1-(2-Hydroxy-3,4,5,6-tetramethylphenyl)ethanone, 921
[118469-76-4]	1-(2-Hydroxy-5-tetradecylphenyl)ethanone, 1075
[118604-45-8]	1-[2,4-Dihydroxy-3-(1-methylethyl)phenyl]ethanone, 871
[118683-88-8]	1-[2-Hydroxy-4-[(2-methyl-2-propenyl)oxy]phenyl]ethanone, 901
[118683-89-9]	1-[2,4-Dihydroxy-3-(2-methyl-2-propenyl)phenyl]ethanone, 899
[118684-00-7]	1-[2-Amino-4-hydroxy-3-(2-propenyl)phenyl]ethanone, 862
[118684-26-7]	1-[2-Hydroxy-4-(propylamino)phenyl]ethanone, 894
[118824-94-5]	1-(2,4-Dihydroxy-3-methyl-5-nitrophenyl)ethanone, 754
[118824-97-8]	1-(4-Hydroxy-2-methoxy-3-methylphenyl)ethanone, 829
[118824-98-9]	1-(4-Hydroxy-2-methoxy-3-methyl-5-nitrophenyl)ethanone, 811
[119136-15-1]	1-[2-Hydroxy-6-methoxy-4-(1-methylethoxy)phenyl] ethanone, 930

[119136-16-2]	1-[3,6-Dihydroxy-2-methoxy-4-(1-methylethoxy)phenyl] ethanone, 932
[119136-17-3]	1-[6-Hydroxy-2,3-dimethoxy-4-(1-methylethoxy)phenyl] ethanone, 963
[119257-53-3]	1-(5-Fluoro-2,4-dihydroxy-3-propylphenyl)ethanone, 861
[119892-31-8]	1-(2,3-Dihydroxy-4,5-dimethoxyphenyl)ethanone, 843
[119994-02-4]	1-(4-Fluoro-2-hydroxy-5-nitrophenyl)ethanone, 674
[120034-10-8]	1-[3-Chloro-5-(1,1-dimethylethyl)-2,6-dihydroxyphenyl] ethanone, 908
[121379-44-0]	1-[2-(3,7-Dimethyl-2,6-octadienyl)-4-hydroxy-6-methoxyphenyl]ethanone, 1058
[121379-45-1]	1-[2,4-Dihydroxy-6-(4-hydroxybutoxy)phenyl]ethanone, 932
[122379-44-6]	1-[2-Hydroxy-4-(2-phenylethyl)phenyl]ethanone, 1017
[123253-31-6]	1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]phenyl] ethanone, 933
[123614-13-1]	1-[4-Hydroxy-3-(4-hydroxy-3-methyl-2-butenyl)phenyl] ethanone (Z), 943
[123999-38-2]	1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl) phenyl]ethanone, 1059
[125249-30-1]	1-(6-Hydroxy-2,4-dimethyl-3-nitrophenyl)ethanone, 811
[125617-25-6]	1-[5-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]ethanone, 989
[125617-43-8]	1-[4-[(3-Bromopropyl)thio]-2-hydroxy-3-propylphenyl] ethanone, 989
[125617-44-9]	1-[4-[(5-Bromopentyl)thio]-2-hydroxy-3-propylphenyl] ethanone, 1025
[126259-76-5]	1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone (E), 1082
[126405-75-2]	1-[2-Hydroxy-3-methoxy-6-(phenylmethoxy)phenyl]ethanone, 1020
[126405-76-3]	1-(3-Ethoxy-2-hydroxy-6-methoxyphenyl)ethanone, 880
[126405-77-4]	1-(2-Hydroxy-6-methoxy-3-propoxyphenyl)ethanone, 931
[126405-78-5]	1-[2-Hydroxy-6-methoxy-3-(2-propenyloxy)phenyl]ethanone, 904
[126405-79-6]	1-[2-Hydroxy-6-methoxy-3-(phenylmethoxy)phenyl] ethanone, 1021
[126405-80-9]	1-[3-(Cyclohexyloxy)-2-hydroxy-6-methoxyphenyl] ethanone, 1010
[126405-81-0]	1-[2-Hydroxy-6-methoxy-3-(methylthio)phenyl]ethanone, 831
[126405-82-1]	1-[3-(Ethylthio)-2-hydroxy-6-methoxyphenyl]ethanone, 878
[126570-32-9]	1-[5-(Acetyloxy)-2-hydroxy-4-methylphenyl]ethanone, 854
[126570-37-4]	1-[5-Hydroxy-2-methyl-4-(1-methylethyl)phenyl]ethanone, 919
[126712-08-1]	1-(3,4,6-Trichloro-2-hydroxyphenyl)ethanone, 660
[126893-27-4]	1-(2-Amino-5-hydroxy-3-methoxyphenyl)ethanone, 794
[127313-62-6]	1-[2-Hydroxy-5-(sec-octyloxy)phenyl]ethanone, 1029
[127313-63-7]	1-[2-Hydroxy-4-(sec-octyloxy)phenyl]ethanone, 1029
[127313-67-1]	1-[2-Hydroxy-4-(isooctyloxy)phenyl]ethanone, 1029

[127371-46-4] 1-[5-(1,1-Dimethylethyl)-2-hydroxy-4-methoxyphenyl] ethanone, 958
[127371-47-5] 1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxy-4-methoxyphenyl] ethanone, 949
[127701-70-6] 1-(5-Hydroxy-2,3-dimethylphenyl)ethanone, 819
[127870-07-9] 1-[3,6-Dihydroxy-2-(2-methyl-2-propenyl)phenyl]ethanone, 899
[127923-55-1] 1-(3-Bromo-4-hydroxy-5-methylphenyl)ethanone, 738
[127940-12-9] 1-(2,3-Dihydroxy-4-methoxy-6-methylphenyl)ethanone, 831
[128546-82-7] 1-(4-Ethyl-2-hydroxy-6-methoxyphenyl)ethanone, 876
[129375-13-9] 1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methyl-5-(1-methylethyl) phenyl]ethanone, 1027
[129399-54-8] 1-(2,6-Dihydroxy-4-methoxy-3,5-dimethylphenyl)ethanone (Mallophenone), 879
[130435-29-9] 1-(3-Chloro-2,4,6-trihydroxyphenyl)ethanone, 690
[130471-75-9] 1-[4-(Benzoyloxy)-2,6-dihydroxyphenyl]ethanone, 999
[130600-90-7] 1-[2-Hydroxy-4,6-bis[(tetrahydro-2H-pyran-2-yl)oxy]phenyl] ethanone, 1053
[131303-37-2] 1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3,5-bis(3-methyl-2butenyl)phenyl]ethanone, 1074
[131359-44-9] 1-(5-Bromo-4-ethoxy-2-hydroxyphenyl)ethanone, 803
[131845-25-5] 1-(5'-Ethyl-4-hydroxy-2'-methoxy-[1,1'-biphenyl]-3-yl) ethanone, 1032
[133186-55-7] 1-(3,5-Difluoro-4-hydroxyphenyl)ethanone, 675
[133393-99-4] 1-[4-Hydroxy-3-methoxy-5-(1-methylethyl)phenyl] ethanone, 925
[134255-78-0] 1-(2-Hydroxy-3,5-dimethoxy-4-methylphenyl)ethanone, 882
[134255-79-1] 1-(2-Hydroxy-4,5-dimethoxy-3-methylphenyl)ethanone, 882
[134700-74-6] 1-(3-Bromo-2-hydroxy-4-methoxy-5-nitrophenyl)ethanone, 731
[134716-11-3] 1-(3-Bromo-4-ethoxy-2-hydroxy-5-nitrophenyl)ethanone, 798
[135936-88-8] 1-[2-Hydroxy-5-(methylthio)phenyl]ethanone, 767
[136257-82-4] 1-[2,4,6-Trihydroxy-3,5-bis(tetrahydro-2H-pyran-2-yl)phenyl] ethanone, 1053
[136257-83-5] 1-[2,4-Dihydroxy-3-(tetrahydro-2H-pyran-2-yl)-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 1053
[136257-85-7] 1-[2,6-Dihydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl] ethanone, 948
[136257-86-8] 1-[2,4-Dihydroxy-6-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl] ethanone, 948
[136258-09-8] 1-[2-Hydroxy-4-methoxy-6-[(tetrahydro-2H-pyran-2-yl)oxy] phenyl]ethanone, 985
[136258-10-1] 1-[2,6-Dihydroxy-4-methoxy-3-(tetrahydro-2H-pyran-2-yl) phenyl]ethanone, 984
[136450-03-8] 1-(3-Amino-2-hydroxyphenyl)ethanone (Hydrobromide), 726
[136608-20-3] 1-[2-Hydroxy-5-(2-phenylethyl)phenyl]ethanone, 1017
[136819-93-7] 1-(3-Hydroxy[1,1'-biphenyl]-2-yl)ethanone, 970
[137170-49-1] 1-[2-Hydroxy-4-(phenylmethoxy)-3-(2-propenyl)phenyl] ethanone, 1044
[138151-67-4] 1-(5-Ethoxy-3-hydroxy-2-methyl [1,1'-biphenyl]-4-yl) ethanone, 1032
[139140-13-9] 1-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2,6dihydroxyphenyl]ethanone, 995
[139545-92-9] 1-[2-Hydroxy-6-methoxy-4-[(2,3,4,6-tetra-O-acetyl- β-Dglucopyranosyl)oxy]phenyl]ethanone, 1080
[140155-06-2] 1-(4-Chloro-2-hydroxy-6-methoxyphenyl)ethanone, 747
[140660-31-7] 1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]ethanone, 924
[140660-34-0] 1-(5-Ethyl-2,4-dihydroxy-3-methylphenyl)ethanone, 875
[140660-35-1] 1-[4-[(5-Bromopentyl)oxy]-5-ethyl-2-hydroxy-3-methylphenyl] ethanone, 1025
[140660-37-3] 1-[4-(4-Azidobutoxy)-2-hydroxy-5-(2-propenyl)phenyl] ethanone, 1010
[140675-42-9] 1-(3,5-Difluoro-2-hydroxyphenyl)ethanone, 674
[141215-43-2] 1-[2-Hydroxy-6-methoxy-3-(3-methyl-1,3-butadienyl)phenyl] ethanone (Z), 976
[142045-74-7] 1-[2,3,4-Trihydroxy-5-[(4-hydroxy-3,5-dimethylphenyl)methyl] phenyl]ethanone, 1037
[142608-87-5] 1-[2-Hydroxy-4-methoxy-5-[(3-methyl-2-butenyl)oxy]phenyl] ethanone, 984
[142905-38-2] 1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone (E), 1082
[142905-39-3] 1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxyphenyl] ethanone (E), 1051
[142905-40-6] 1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl] ethanone (E), 1051
[143286-85-5] 1-[4-(Hexyloxy)-2-hydroxyphenyl]ethanone, 993
[143286-86-6] 1-[4-(Decyloxy)-2-hydroxyphenyl]ethanone, 1056
[143286-87-7] 1-[4-(Hexadecyloxy)-2-hydroxyphenyl]ethanone, 1084
[144152-29-4] 1-[2-(Acetyloxy)-5-hydroxyphenyl]ethanone, 800
[144152-30-7] 1-[2-(Acetyloxy)-5-hydroxy-4-methoxyphenyl]ethanone, 857
[144152-31-8] 1-[2,3-Bis(acetyloxy)-4-hydroxyphenyl]ethanone, 894
[144224-86-2] 1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]ethanone, 854
[144224-87-3] 1-[3-(Acetyloxy)-2-hydroxyphenyl]ethanone, 800
[144406-93-9] 1-[2-(Benzoyloxy)-4-hydroxyphenyl]ethanone, 997
[144691-35-0] 1-(2-Hydroxy-3-iodo-4-phenoxyphenyl)ethanone, 969
[144691-36-1] 1-[2-Hydroxy-5-iodo-4-phenoxy-3-(2-propenyl)phenyl] ethanone, 1030
[145194-40-7] 1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxy-3methylphenyl]ethanone, 1025
[145300-04-5] 1-(2-Fluoro-5-hydroxyphenyl)ethanone, 691
[145489-48-1] 1-(5-Bromo-2-hydroxy-3-iodo-4-phenoxyphenyl)ethanone, 966
[145489-93-6] 1-(2-Hydroxy-3-iodo-5-nitro-4-phenoxyphenyl)ethanone, 967

[^19][152810-05-4] 1-[2-Hydroxy-5-(1-methylethoxy)phenyl]ethanone, 877
[152810-06-5] 1-(5-Butoxy-2-hydroxyphenyl)ethanone, 921
[153356-01-5] 1-[3-Chloro-5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 907
[153356-02-6] 1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-iodophenyl]ethanone, 908
[153356-03-7] 1-[3-(1,1-Dimethylethyl)-5-fluoro-4-hydroxyphenyl]ethanone, 908
[153356-04-8] 1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-nitrophenyl]ethanone, 909
[153356-09-3] 1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methoxyphenyl] ethanone, 958
[153356-10-6] 1-[3-Bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 907
[153399-38-3] 1-[4,6-Dihydroxy-3-(3-methyl-2-butenyl)-2-[(3-methyl-2-butenyl) oxy]-phenyl]ethanone, 1050
[153399-41-8] 1-[4,6-Dihydroxy-3-(3-hydroxy-3-methylbutyl)-2-methoxyphenyl] ethanone, 994
[153404-65-0] 1-(3-Amino-5-chloro-2-hydroxyphenyl)ethanone (Hydrochloride), 704
[154389-63-6] 1-[2-Hydroxy-4,6-dimethoxy-3-(methylthio)phenyl]ethanone, 885
[154520-54-4] 1-[3-Hydroxy-2-(3-methyl-2-butenyl)phenyl]ethanone, 939
[154603-69-7] 1-[3-(Azidomethyl)-4-hydroxyphenyl]ethanone, 757
[154638-85-4] 1-(2,3-Dichloro-4-hydroxy-5-methoxyphenyl)ethanone, 735
[154638-86-5] 1-(3-Chloro-4,5-dihydroxyphenyl)ethanone, 690
[154638-87-6] 1-(2,3,6-Trichloro-4,5-dihydroxyphenyl)ethanone, 661
[155818-27-2] 1-(3-Bromo-2,4,6-trihydroxyphenyl)ethanone, 683
[155982-91-5] 1-[2-(1,1-Dimethylethyl)-4-hydroxyphenyl]ethanone, 911
[156483-08-8] 1-(4-Hydroxy-2,3,6-trimethylphenyl)ethanone, 871
[156499-51-3] 1-[2,4,6-Trihydroxy-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl) phenyl]ethanone, 1083
[156499-52-4] 1-[2,6-Dihydroxy-4-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy] phenyl]ethanone1081
[158013-69-5] 1-[6-[(1,1-Dimethylethyl)amino]-3-hydroxy-2-methylphenyl] ethanone, 966
[158148-88-0] 1-[2-Hydroxy-5-methoxy-3,4-bis(phenylmethoxy)phenyl] ethanone, 1079
[158499-95-7] 1-[4,6-Dihydroxy-3-(3-methyl-2-butenyl)-2-[[(4-methylphenyl) sulfonyl]-oxy]phenyl]ethanone, 1061
[158499-96-8] 1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-6-hydroxy-3-(3-methyl-2-butenyl)- 2-[[(4-methylphenyl)sulfonyl]oxy]phenyl] ethanone $(E), 1088$
[158499-97-9] 1-[6-Hydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl) oxy]-2-[[(4-methylphenyl)-sulfonyl]oxy]phenyl]ethanone, 1085
[158499-98-0] 1-[2,6-Dihydroxy-3-(3-methyl-2-butenyl)-4-[(3-methyl-2-butenyl) oxy]-phenyl]ethanone, 1050
[159848-01-8] 1-[3-Hydroxy-4,6-dimethoxy-2-methyl-5-(1-methylethyl)phenyl]ethanone, 993
[159977-36-3] 1-(5-Cyclohexyl-2,4-dihydroxyphenyl)ethanone, 979
[160246-79-7] 1-(2,6-Dihydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone, 970

[1	1-[2-Hydroxy 6-(methoxymethyl)phenylethano
[162853-19-2]	1-[2-Hydroxy-3-methyl-6-(1-methylethyl)phenyl]ethanone, 915
[162853-20-5]	1-(4-Hydroxy-5-methoxy-2-methylphenyl)ethanone, 829
[163429-79-6]	1-(2-Hydroxy-3,4,6-trimethylphenyl)ethanone, 869
[165186-29-8]	1-[2,4-Dihydroxy-6-(2-hydroxyethyl)-3-methoxyphenyl] ethanone, 886
[167211-56-5]	1-[2,4-Dihydroxy-3-(2-hydroxypropyl)phenyl]ethanone, 879
[167211-59-8]	1-[2-Hydroxy-3-(2-hydroxypropyl)-4-mercaptophenyl] ethanone, 878
[167211-71-4]	1-[2-Hydroxy-3-(3-hydroxypropyl)-4-mercaptophenyl] ethanone, 879
[169130-25-0]	1-[2-Hydroxy-4,5-dimethoxy-3,6-bis(1-methylethoxy)phenyl] ethanone, 1029
[169130-27-2]	1-[2-Hydroxy-4,5-dimethoxy-6-(1-methylethoxy)-3(phenylmethoxy)phenyl]ethanone, 1062
[169566-44-3]	1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenyl-methyl)- β-D-glucopyranosyl]phenyl]ethanone, 1092
[169566-46-5]	1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β-D-glucopyranosyl]phenyl]ethanone, 1092
[169566-54-5]	1-[6-Hydroxy-2,4-dimethoxy-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β-D-glucopyranosyl]-phenyl]ethanone, 1091
[169566-55-6]	1-[6-Hydroxy-4-methoxy-2-(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenyl-methyl)- β-D-glucopyranosyl]phenyl]ethanone, 1092
[169566-56-7]	1-[6-Hydroxy-2,4-bis(phenylmethoxy)-3-[2,3,4,6-tetrakis-O-(phenylmethyl)- β-D-glucopyranosyl]phenyl]ethanone, 1092
[172669-49-7]	1-(3-Hydroxy-2,6-dinitrophenyl)ethanone, 677
[172739-45-6]	1-[4-(3-Chloropropoxy)-2-hydroxyphenyl]ethanone, 860
[173217-34-0]	1-[2-Hydroxy-3,4,6-trimethoxy-5-(methoxymethoxy)phenyl] ethanone, 965
[174901-51-0]	1-[2,5-Dihydroxy-4-(2-propenyl)phenyl]ethanone, 852
[175438-44-5]	1-[2,4-Bis(1,1-dimethylethyl)-3-hydroxy-6-methylphenyl] ethanone, 1041
[175465-97-1]	1-[2,4-Dihydroxy-6-(methoxymethoxy)-3,5-dimethylphenyl] ethanone, 932
[175546-56-2]	1-[4-(Ethoxymethoxy)-2-hydroxy-5-(3-methyl-2-butenyl)phenyl] ethanone, 1024
[175655-10-4]	1-(2-Hydroxy-3-iodo-5-methylphenyl)ethanone, 749
[175655-11-5]	1-(5-Chloro-2-hydroxy-3-iodophenyl)ethanone, 669
[175785-86-1]	1-(3,5-Diethyl-2,6-dihydroxy-4-methoxyphenyl)ethanone, 960
[175785-88-3]	1-(3,5-Dibutyl-2,6-dihydroxy-4-methoxyphenyl)ethanone, 1042
[175785-90-7]	1-[3,5-Diethyl-2,4-dihydroxy-6-(methoxymethoxy)phenyl] ethanone, 994
[176177-16-5]	1-(3,6-Dihydroxy-2-methylphenyl)ethanone, 774
[176662-07-0]	1-[2-Hydroxy-3,5,6-trimethoxy-4-(methoxymethoxy)phenyl] ethanone, 965

[181047-51-8]	1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]-5-(3-methyl-2butenyl)phenyl]ethanone, 1039
[182951-74-2]	1-(2,3,4,5-Tetrafluoro-6-hydroxyphenyl)ethanone, 659
[182951-75-3]	1-(2,3,5-Trifluoro-4,6-dihydroxyphenyl)ethanone, 661
[183143-90-0]	1-[2,4,6-Trihydroxy-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl) phenyl]ethanone $(E, E), 1083$
[183143-91-1]	1-[2,6-Dihydroxy-4-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy] phenyl]ethanone (E, E), 1081
[186693-85-6]	1-[2-Hydroxy-4-methoxy-6-(methoxymethoxy)phenyl] ethanone, 888
[186956-46-7]	1-[5-Chloro-2-hydroxy-3-(2-propenyl)phenyl]ethanone, 849
[186956-47-8]	1-[2-Hydroxy-5-methoxy-3-(2-propenyl)phenyl]ethanone, 900
[186966-69-8]	1-[3-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]ethanone, 944
[186966-70-1]	1-[3,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 942
[187966-38-7]	1-[3-Hydroxy-4-(4-methoxybenzyloxy)phenyl]ethanone, 1021
[188903-79-9]	1-[6-Hydroxy-3-methoxy-2,4-bis(1-methylethyl)phenyl] ethanone, 1014
[188927-29-9]	1-[6-Hydroxy-3,4-dimethoxy-2-(1-methylethoxy)phenyl] ethanone, 964
[188927-30-2]	1-[6-Hydroxy-3-methoxy-2-[[(4-methylphenyl)sulfonyl]oxy]-4-(phenyl-methoxy)phenyl]ethanone, 1080
[188927-31-3]	1-[6-Hydroxy-3-methoxy-2-(1-methylethoxy)-4-(phenylmethoxy) phenyl]ethanone, 1058
[190730-40-6]	1-(2-Hydroxy-3-methyl-4-nitrophenyl)ethanone, 751
[192625-58-4]	1-[3,5-Dihydroxy-4-(1-methylethoxy)phenyl]ethanone, 879
[193333-24-3]	1-[2,4-Dihydroxy-5-(3-hydroxy-3-methyl-1-butynyl)phenyl] ethanone, 938
[193333-25-4]	1-[2,4-Dihydroxy-5-(3-methyl-3-buten-1-ynyl)phenyl] ethanone, 937
[198203-68-8]	1-(2,4-Dihydroxy-3,5-dimethoxyphenyl)ethanone, 844
[198344-86-4]	1-(4-Chloro-2-hydroxy-3-methylphenyl)ethanone, 742
[199586-38-4]	1-(4,5-Difluoro-2-hydroxyphenyl)ethanone, 675
[199793-91-4]	1-(4-Hydroxy-3-methoxyphenyl)ethanone-1- ${ }^{13} \mathrm{C}, 782$
[200129-18-6]	1-[2,4-Dihydroxy-6-[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy] phenyl]ethanone $(E, E), 1080$
[200355-19-7]	1-[2-Hydroxy-4-(methoxymethoxy)-3-propylphenyl]ethanone, 961
[200878-65-5]	1-(3-Chloro-2,4-dihydroxy-6-methoxyphenyl)ethanone, 748
[204590-48-7]	1-[2,6-Dihydroxy-3-methoxy-4-(phenylmethoxy)phenyl] ethanone, 1022
[204781-71-5]	1-(3-Hydroxy-2-methoxyphenyl)ethanone, 779
[207281-53-6]	1-(2-Hydroxy-3,6-dimethyl-5-nitrophenyl)ethanone, 810
[209746-96-3]	1-(4-Ethyl-2,6-dihydroxyphenyl)ethanone, 825
[212494-38-7]	1-(2,4-Dibromo-6-hydroxy-3-methylphenyl)ethanone, 732
[217442-59-6]	1-[2-Hydroxy-4-(methoxymethoxy)-3,5-bis(3-methyl-2-butenyl) phenyl]ethanone, 1063

[219696-56-7]	1-[4-(Heptyloxy)-2-hydroxyphenyl]ethanone, 1014
[220504-99-4]	1-[2-Hydroxy-3-methoxy-4-(methoxymethoxy)phenyl] ethanone, 887
[225088-72-2]	1-[2,4-Dihydroxy-6-[[(4-methylphenyl)sulfonyl]oxy]phenyl] ethanone, 1009
[225088-73-3]	1-[4-[[(2E)-3,7-Dimethyl-2,6-octadienyl]oxy]-2-hydroxy-6-[[(4-methyl-phenyl)sulfonyl]-oxy]phenyl]ethanone, 1085
[225088-74-4]	1-[2-Hydroxy-6-[[(4-methylphenyl)sulfonyl]oxy]-4-[[(2E,6E)- 3,7,11-tri-methyl-2,6,10-dodecatrienyl]oxy]phenyl]ethanone, 1089
[229007-00-5]	1-(4-Hydroxy-4'-methyl[1,1'-biphenyl]-3-yl)ethanone, 1000
[263138-72-3]	1-[6-Hydroxy-3-(phenylmethoxy)-2-(2-propenyl)phenyl] $\text { ethanone, } 1044$
[274259-41-5]	1-(2,5-Dihydroxy-3-methylphenyl)ethanone, 770
[286931-53-1]	1-(3-Chloro-2-hydroxy-5-methoxyphenyl)ethanone, 746
[292144-84-4]	1-(3-Chloro-2-hydroxy-5-iodophenyl)ethanone, 668
[292144-86-6]	1-(5-Chloro-2-hydroxy-3-iodo-4-methylphenyl)ethanone, 733
[292144-89-9]	1-(4-Hydroxy-3-iodo-5-methylphenyl)ethanone, 749
[307520-94-1]	1-[2-Hydroxy-4-[2-(phenylmethoxy)ethoxy]phenyl]ethanone, 1034
[310402-63-2]	1-[2-Hydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 939
[319923-51-8]	1-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)ethanone, 803
[332900-03-5]	1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]ethanone-1- ${ }^{13} \mathrm{C}, 1071$
[333763-54-5]	1-[2,4-Dihydroxy-3-(methoxymethyl)-5-methylphenyl] ethanone, 879
[348616-32-0]	1-(3-Hydroxy-2-iodophenyl)ethanone, 694
[350981-92-9]	1-[2-Hydroxy-5-methyl-3-(phenylmethyl)phenyl]ethanone, 1016
[357409-15-5]	1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl] ethanone-1- ${ }^{13} C, 1087$
[360791-68-0]	1-(2-Hydroxy-5-methyl[1,1'-biphenyl]-3-yl)ethanone, 1000
[360791-69-1]	1-(2-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)ethanone, 969
[396639-83-1]	1-(2-Ethyl-3,6-dihydroxy-4,5-dimethylphenyl)ethanone, 925
[404597-93-9]	1-[2-Hydroxy-6-methoxy-4-(methoxymethoxy)phenyl]ethanone, 888
[418759-58-7]	1-(4-Hydroxy-5-methoxy-2-nitrophenyl)ethanone, 756
[430474-15-0]	1-[3-Hydroxy-4-(1E)-1-propenylphenyl]ethanone, 850
[448949-59-5]	1-[3-(β-D-Glucopyranosyloxy)-4,5-dihydroxyphenyl]ethanone, 988
Volume 2 - Addendum	
[50-80-6]	1-(5-Amino-2-hydroxyphenyl)ethanone, 1126
[89-84-9]	1-(2,4-Dihydroxyphenyl)ethanone, 1118
[90-24-4]	1-(2-Hydroxy-4,6-dimethoxyphenyl)ethanone, 1158
[99-93-4]	1-(4-Hydroxyphenyl)ethanone, 1116
[100-06-1]	1-(4-Methoxyphenyl)ethanone, 1116
[118-93-4]	1-(2-Hydroxyphenyl)ethanone, 1115
[121-71-1]	1-(3-Hydroxyphenyl)ethanone, 1116

[394-32-1] 1-(5-Fluoro-2-hydroxyphenyl)ethanone, 1110
[403-14-5] 1-(3-Fluoro-4-hydroxyphenyl)ethanone, 1109
[455-82-9] 1-(5-Fluoro-2-methoxyphenyl)ethanone, 1110
[455-91-4] 1-(3-Fluoro-4-methoxyphenyl)ethanone, 1109
[480-66-0]
[484-51-5]
1-(2,4,6-Trihydroxyphenyl)ethanone, 1123
[490-78-8] 1-(2,5-Dihydroxyphenyl)ethanone, 1119
[493-33-4]
[498-02-2]
1-(4-Hydroxy-2-methoxyphenyl)ethanone, 1143
[528-21-2]
[532-48-9]
[552-41-0]
[577-45-7]
[579-74-8]
[586-37-8]
[699-83-2]
[699-91-2]
[699-92-3]
[703-23-1]
[703-29-7]
[703-98-0]
[705-15-7]
[708-53-2]
[720-19-4]
[829-20-9]
[832-58-6]
[870-70-1]
[875-59-2]
[876-02-8]
[1131-62-0]
[1136-86-3]
[1197-09-7]
[1198-66-9]
[1201-38-3]
[1450-72-2]
[1450-74-4]
[1450-75-5]
[1450-76-6]
[1481-27-2]
[1632-59-3]
[1634-64-6]
[1818-27-5]
[1818-28-6]
[1836-06-2]
[2040-04-2]

1-(4-Hydroxy-3-methoxyphenyl)ethanone, 1143
1-(2,3,4-Trihydroxyphenyl)ethanone, 1121
1-[6-Hydroxy-2-(1-methylethenyl)-5-benzofuranyl]ethanone, 1175
1-(2-Hydroxy-4-methoxyphenyl)ethanone, 1142
1-(2,4-Dihydroxy-3,5-dimethylphenyl)ethanone, 1155
1-(2-Methoxyphenyl)ethanone, 1115
1-(3-Methoxyphenyl)ethanone, 1116
1-(2,6-Dihydroxyphenyl)ethanone, 1120
1-(2-Hydroxy-3-methylphenyl)ethanone, 1135
1-(3-Fluoro-2-hydroxyphenyl)ethanone, 1108
1-(2-Hydroxy-6-methoxyphenyl)ethanone, 1143
1-(2,4-Dihydroxy-6-methylphenyl)ethanone, 1139
1-(2-Hydroxy-3-methoxyphenyl)ethanone, 1142
1-(2-Hydroxy-5-methoxyphenyl)ethanone, 1142
1-(2,3-Dihydroxy-4-methoxyphenyl)ethanone, 1144
1-[4-Hydroxy-3,5-bis(1-methylethyl)phenyl]ethanone, 1187
1-(2,4-Dimethoxyphenyl)ethanone, 1118
1-(2,4,6-Trimethoxyphenyl)ethanone, 1123
1-(2,3-Dihydroxyphenyl)ethanone (Oxime), 1118
1-(4-Hydroxy-2-methylphenyl)ethanone, 1138
1-(4-Hydroxy-3-methylphenyl)ethanone, 1138
1-(3,4-Dimethoxyphenyl)ethanone, 1120
1-(3,4,5-Trimethoxyphenyl)ethanone, 1124
1-(3,4-Dihydroxyphenyl)ethanone, 1120
1-(2-Hydroxy-3,5-dimethylphenyl)ethanone, 1153
1-(2,5-Dimethoxyphenyl)ethanone, 1119
1-(2-Hydroxy-5-methylphenyl)ethanone, 1137
1-(5-Chloro-2-hydroxyphenyl)ethanone, 1107
1-(5-Bromo-2-hydroxyphenyl)ethanone, 1102
1-(2-Hydroxy-5-nitrophenyl)ethanone, 1112
1-(4-Fluoro-2-hydroxyphenyl)ethanone, 1109
1-[4-Hydroxy-3-(1-methylethyl)phenyl]ethanone, 1164
1-[4-Methoxy-3-(1-methylethyl)phenyl]ethanone, 1164
1-(2,4,5-Trihydroxyphenyl)ethanone, 1122
1-(2,4,5-Trimethoxyphenyl)ethanone, 1122
1-(3-Bromo-4-hydroxyphenyl)ethanone, 1102
1-(2,6-Dimethoxyphenyl)ethanone, 1120
[2475-92-5] 1-(4-Methoxyphenyl)ethanone (Oxime), 1117
[2476-29-1] 1-(4-Amino-2-hydroxyphenyl)ethanone, 1126
[2657-28-5] 1-(2,4,6-Trihydroxy-3-methylphenyl)ethanone, 1145
[2887-72-1] 1-(3,5-Dibromo-4-hydroxyphenyl)ethanone, 1096
[2892-29-7] 1-(3-Chloro-4-hydroxyphenyl)ethanone, 1106
[3226-34-4] 1-(3-Chloro-2-hydroxyphenyl)ethanone, 1105
[3321-92-4] 1-(3,5-Dichloro-2-hydroxyphenyl)ethanone, 1098
[3328-77-6] 1-(2,4-Dihydroxy-5-nitrophenyl)ethanone, 1114
[3602-54-8] 1-(2,4-Dihydroxy-6-methoxyphenyl)ethanone, 1144
[4047-24-9] 1-[2-Hydroxy-6-(phenylmethoxy)phenyl]ethanone, 1189
[4101-30-8] 1-(2-Amino-4,5-dimethoxyphenyl)ethanone, 1160
[4101-32-0]
[4223-70-5]
[4223-84-1]
[4460-42-8]
[4502-10-7]
[4683-33-4]
[5177-98-0]
[5207-55-6]
[5325-04-2]
[5384-57-6]
[5396-18-9]
[5896-50-4]
[6100-74-9]
[6110-38-9]
[6134-79-8]
[6277-38-9]
[6322-56-1]
[6342-63-8]
[6342-64-9]
[6342-75-2]
[6921-64-8]
[6921-66-0]
[6938-22-3]
[6962-57-8]
[7191-41-5]
[7191-46-0]
[7191-55-1]
[7298-67-1]
[7499-99-2]
[7507-88-2]
[7507-89-3]
[7507-91-7]

1-(4,5-Dimethoxy-2-nitrophenyl)ethanone, 1151
1-(5-Methoxy-2,3-dimethyl-6-benzofuranyl)ethanone, 1169
1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethanone, 1156
1-(5-Ethyl-2,4-dihydroxyphenyl)ethanone, 1156
1-(2-Amino-3-hydroxyphenyl)ethanone, 1125
1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1191
1-[2-(Benzoyloxy)-4-methylphenyl]ethanone, 1136
1-[6-Hydroxy-2-(1-methylethyl)-5-benzofuranyl]ethanone, 1177
1-(4-Hydroxy-3,5-dimethylphenyl)ethanone, 1154
1-(4-Hydroxy-2,3-dimethylphenyl)ethanone, 1154
1-(2-Hydroxy-3,4-dimethoxyphenyl)ethanone, 1158
1-(4-Ethyl-2-hydroxyphenyl)ethanone, 1152
1-(3-Hydroxy-4-methoxyphenyl)ethanone, 1143
1-(2,4-Dimethoxy-6-methylphenyl)ethanone, 1140
1-(2,4-Dihydroxyphenyl)ethanone (Oxime), 1119
1-(4-Methoxy-3-nitrophenyl)ethanone, 1113
1-(4-Hydroxy-3-nitrophenyl)ethanone, 1113
1-(2-Bromo-5-methoxyphenyl)ethanone, 1101
1-(5-Chloro-2-methoxyphenyl)ethanone, 1107
1-(2-Methoxy-3-methylphenyl)ethanone, 1135
1-(2-Hydroxy-4-methylphenyl)ethanone, 1136
1-(4-Chloro-2-hydroxyphenyl)ethanone, 1106
1-(2,3-Dihydro-6-hydroxy-4,7-dimethoxy-5-benzofuranyl) ethanone, 1171
1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)ethanone, 1160
1-(2-Hydroxy-5-iodophenyl)ethanone, 1111
1-(2-Hydroxy-3,5-diiodophenyl)ethanone, 1100
1-(4-Hydroxy-3,5-diiodophenyl)ethanone, 1100
N -(3-Acetyl-4-hydroxyphenyl)acetamide, 1150
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)ethanone, 1159
1-(3-Chloro-2-hydroxy-5-methylphenyl)ethanone, 1131
1-(2,6-Dihydroxy-4-methoxyphenyl)ethanone, 1145
1-(5-Bromo-2,3-dimethoxyphenyl)ethanone, 1131

[7507-98-4]	1-(2-Hydroxy-3,4,6-trimethoxyphenyl)ethanone, 1166
[7508-05-6]	1-(2,3,4,6-Tetramethoxyphenyl)ethanone, 1124
[10024-90-5]	1-(4-Methoxy-3-methylphenyl)ethanone, 1138
[10139-84-1]	1-(2,4-Dihydroxy-3-methylphenyl)ethanone, 1139
[13031-43-1]	1-[4-(Acetyloxy)phenyl]ethanone, 1117
[13110-96-8]	5-Acetyl-2-hydroxybenzoic acid, 1129
[13383-63-6]	1-(2,4,6-Trihydroxy-3,5-dimethylphenyl)ethanone, 1159
[13494-10-5]	1-(2,3-Dihydroxyphenyl)ethanone, 1117
[13720-58-6]	1-(2,5-Dimethoxy-4-methylphenyl)ethanone, 1140
[13909-73-4]	1-(2,3,4-Trimethoxyphenyl)ethanone, 1122
[14035-33-7]	1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1194
[16108-50-2]	1-(2-Hydroxy-4,6-dimethylphenyl)ethanone, 1153
[16357-40-7]	3-acetyl-4-hydroxybenzoic acid, 1129
[16475-90-4]	Methyl 5-Acetyl-2-hydroxybenzoate, 1130
[16740-73-1]	1-(5-Bromo-2-methoxyphenyl)ethanone, 1102
[17044-70-1]	1-(3,5-Dichloro-4-hydroxyphenyl)ethanone, 1098
[17086-21-4]	1-[2-Hydroxy-4-(2-hydroxyethoxy)phenyl]ethanone, 1159
[18064-89-6]	1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1148
[18087-17-7]	1-(3,4-Dihydroxy-2-methylphenyl)ethanone, 1141
[18780-97-7]	1-(5,7-Dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-yl) ethanone, 1189
[19013-03-7]	1-(7-Hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone, 1176
[19825-40-2]	1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1179
[20281-51-0]	1-(6-Hydroxy[1,1'-biphenyl]-3-yl)ethanone, 1183
[20628-07-3]	1-(2-Methoxy-5-methylphenyl)ethanone, 1137
[20628-09-5]	1-(7-Methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone, 1177
[20770-16-5]	1-(7-Hydroxy-8-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl) ethanone, 1183
[21009-92-7]	1-(2-Methoxy-4,6-dimethylphenyl)ethanone, 1153
[21491-62-3]	1-[(2R)-2,3-Dihydro-6-hydroxy-2-(1-methylethenyl)-5benzofuranyl]ethanone, 1176
[22106-39-4]	1-(3-Methoxy-4-nitrophenyl)ethanone, 1113
[22233-79-0]	1-(2-Methoxyphenyl)ethanone (Oxime), 1115
[22248-13-1]	1-(6-Hydroxy-2,3-dimethoxyphenyl)ethanone, 1158
[22248-14-2]	1-(6-Hydroxy-2,3,4-trimethoxyphenyl)ethanone, 1167
[22362-66-9]	1-(3,5-Dibromo-2-hydroxyphenyl)ethanone, 1096
[22877-01-6]	1-[2,4-Bis(phenylmethoxy)phenyl]ethanone, 1119
[22934-47-0]	1-(3-Ethyl-4-hydroxyphenyl)ethanone, 1151
[23030-56-0]	1-(5-Bromo-2,3,4-trimethoxyphenyl)ethanone, 1104
[23840-18-8]	1-(7-Methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone (Oxime), 1177
[24085-05-0]	1-[3-(Chloromethyl)-4-hydroxyphenyl]ethanone, 1132
[24186-66-1]	1-(3,4-Dimethoxy-2-methylphenyl)ethanone, 1141
[24539-92-2]	1-(5-Ethyl-2-hydroxyphenyl)ethanone, 1153
[24558-42-7]	1-(2,5-Dihydroxyphenyl)ethanone (Oxime), 1119

[24672-82-0]
[24826-74-2]
[26932-05-8]
[27364-64-3]
[27364-71-2]
[28177-69-7]
[28437-37-8]
[28480-70-8]
[29643-34-3]
[29682-12-0]
[30186-18-6]
[30225-96-8]
[30403-01-1]
[30492-50-3]
[30787-43-0]
[30879-49-3]
[30992-63-3]
[31165-67-0]
[31273-58-2]
[31405-60-4]
[31405-69-3]
[31827-84-6]
[33523-62-5]
[33539-20-7]
[33709-29-4]
[33852-43-6]
[33857-20-4]
[35086-59-0]
[35310-75-9]
[35633-35-3]
[35794-84-4]
[35999-23-6]
[36436-65-4]
[36808-17-0]
[37113-61-4]
[37612-52-5]
[38480-94-3]
[38987-00-7] 1-[2,4-Dihydroxy-3-(2-propen-1-yl)phenyl]ethanone, 1161
[39151-19-4] 1-(3,5-Dimethoxyphenyl)ethanone, 1121
[39235-58-0] 1-[4-Hydroxy-3-(hydroxymethyl)phenyl]ethanone, 1141
[39235-59-1] 1-[3-(Hydroxymethyl)-4-(phenylmethoxy)phenyl]ethanone, 1141
[39503-61-2] 1-(5-Bromo-2-hydroxy-4-methoxyphenyl)ethanone, 1131
[39701-13-8] 1-(2,4,6-Trimethoxy-3-methylphenyl)ethanone, 1145
[39730-66-0] 1-(2-Hydroxy-4-iodophenyl)ethanone, 1110
[40180-70-9] 1-(5-Hydroxy-2-methylphenyl)ethanone, 1139
[41068-29-5] 1-(2-Ethyl-4-methoxyphenyl)ethanone, 1151
[41068-36-4]
[41068-37-5]
1-(2-Chloro-4-methoxyphenyl)ethanone, 1104
[41727-59-7]
[42344-99-0]
1-(2,4-Dichloro-6-methoxyphenyl)ethanone, 1097
1-(3,5-Dichloro-4-methoxyphenyl)ethanone, 1099
1-[2-(Benzoyloxy)-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1191
[42887-67-2] 1-(5-Methoxy-2-nitrophenyl)ethanone, 1114
[49619-68-3] 1-[5-(Dimethylamino)-2-hydroxyphenyl]ethanone, 1160
[50343-13-0] 1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)ethanone, 1149
[50743-14-1] 1-(5-Butyl-2-hydroxyphenyl)ethanone, 1172
[51788-80-8] 1-(4-Fluoro-2-methoxyphenyl)ethanone, 1109
[51863-60-6]
[51864-08-5
1-(3,5-Dihydroxyphenyl)ethanone, 1121
[52200-61-0] 1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)ethanone, 1158
[53967-72-9]
[54255-50-4]
[54337-59-6]
[54556-95-5
[54696-05-8
[54698-17-8]
[54771-60-7]
[55682-75-2]
[55736-04-4]
[56443-69-7]
[56484-63-0]
[56609-15-5]
[56755-88-5]
[57009-12-8]
[57009-53-7]
[57051-50-0]
[58020-38-5
[58110-89-7]
[58621-39-9]
[59443-15-1]
[60207-19-4]
[60402-33-7]
[60609-65-6]
[60965-25-5
[60990-39-8
[60999-76-0]

1-(3-Hydroxy-2-nitrophenyl)ethanone, 1113
1-(3-Amino-4-hydroxyphenyl)ethanone, 1126
1-(3-Ethyl-2,6-dihydroxyphenyl)ethanone, 1156
1-(3-Chloro-4-hydroxy-5-methylphenyl)ethanone, 1132
1-[4-(Phenylmethoxy)phenyl]ethanone, 1117
1-(2,5-Dihydroxy-4-methylphenyl)ethanone, 1140
1-[4-(Acetyloxy)-3-methoxyphenyl]ethanone, 1144
1-[6-Hydroxy-2-(1-methylethenyl)-7-benzofuranyl]ethanone, 1176
1-(2-Chloro-6-hydroxyphenyl)ethanone, 1105
1-[4-(Phenylmethoxy)-3-methylphenyl]ethanone, 1138
1-(4-Chloro-2-hydroxyphenyl)ethanone (Oxime), 1106
1-(3-Bromo-2-hydroxy-5-methylphenyl)ethanone, 1130
1-(3-Chloro-4-methoxy-5-methylphenyl)ethanone, 1132
Methyl 3-Acetyl-4-hydroxybenzoate, 1129
Ethyl 3-Acetyl-4-hydroxybenzoate, 1129
1-(2,4-Dichloro-6-hydroxyphenyl)ethanone, 1097
1-(2-Chloro-5-hydroxyphenyl)ethanone, 1105
1-[4-Methyl-2-(phenylmethoxy)phenyl]ethanone, 1136
1-[2-Hydroxy-3-(2-propen-1-yl)phenyl]ethanone, 1161
1-(3-Bromo-5-chloro-2-hydroxyphenyl)ethanone, 1095
1-(4-Chloro-2-methoxyphenyl)ethanone, 1106
1-[2-Hydroxy-5-(methoxymethyl)phenyl]ethanone, 1157
1-(4-Methoxy-3,5-dimethylphenyl)ethanone, 1155
1-(5-Bromo-2,4-dihydroxyphenyl)ethanone, 1103
1-(3-Bromo-2,4-dihydroxyphenyl)ethanone, 1103
1-(4-Methoxy-2,6-dimethylphenyl)ethanone, 1154
[61124-56-9] 1-(4-Chloro-3-hydroxyphenyl)ethanone, 1107
[61791-99-9] 1-(2-Bromo-4-hydroxyphenyl)ethanone, 1100
[62492-84-6] ${ }^{14} \mathrm{C}-3,5-($ Diacetoxyphenyl)ethanone, 1121
[62615-24-1] 1-(4-Hydroxy-3-iodophenyl)ethanone, 1112
[63635-39-2] 1-(2,3,4,6-Tetrahydroxyphenyl)ethanone, 1124
[63854-17-1] 1-[2-Hydroxy-6-[(tetrahydro-2H-pyran)-2-yl]phenyl]ethanone, 1180
[64287-19-0] 1-(4-Fluoro-3-methoxyphenyl)ethanone, 1110
[65033-20-7] 1-[4-Hydroxy-3-(methoxymethyl)phenyl]ethanone, 1157
[65490-08-6] 1-[2-Hydroxy-4-(methoxymethoxy)phenyl]ethanone, 1159
[65490-09-7] 1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]ethanone, 1175
[66108-30-3] 1-(2-Hydroxy-5-methyl-3-nitrophenyl)ethanone, 1134
[66901-79-9] 1-[3-(Acetyloxy)-6-hydroxy-2,4,5-trimethylphenyl]ethanone, 1180
[66922-69-8] 1-(7-Methoxy-1,3-benzodioxol-5-yl)ethanone, 1147
[67088-16-8] 1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]ethanone, 1188
[68301-59-7] 1-(2-Chloro-4-hydroxyphenyl)ethanone, 1104
[69027-37-8] 1-(2-Hydroxy-3,5-dinitrophenyl)ethanone, 1100
[69240-96-6] 1-(2-Chloro-3-hydroxyphenyl)ethanone, 1104
[69309-25-7] 1-[6-(Acetyloxy)-2-(1-methylethenyl)-5-benzofuranyl] ethanone, 1176
[70977-72-9] 1-(3-Amino-2-hydroxyphenyl)ethanone, 1125
[70977-85-4] 1-(3-Amino-5-bromo-2-hydroxyphenyl)ethanone, 1115
[70978-54-0] 1-(5-Bromo-2-hydroxy-3-nitrophenyl)ethanone, 1096
[71386-98-6] 1-[2,4-Dihydroxy-6-(methoxymethoxy)phenyl]ethanone, 1160
[73096-98-7] 1-[3-[(Dimethylamino)methyl]-4-hydroxyphenyl]ethanone, 1167
[73640-74-1] 1-[2-Hydroxy-3-methyl-4-(phenylmethoxy)phenyl]ethanone, 1192
[73898-20-1] 1-(4-Ethyl-3-hydroxyphenyl)ethanone, 1152
[74457-86-6] 1-(2-Fluoro-4-methoxyphenyl)ethanone, 1108
[75340-36-2] 1-[4-Hydroxy-3-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-5-methoxy-phenyl]ethanone, 1195
[75665-88-2
[75884-10-5
[77179-30-7] 1-[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1185
[77344-69-5] 1-(2-Chloro-5-methoxyphenyl)ethanone, 1105
[78515-06-7] Ethyl 3-Acetyl-2-deuterio-4-hydroxybenzoate, 1161
[78898-63-2] 1-(4-Chloro-3-methoxyphenyl)ethanone, 1107
[79324-77-9] 1-(3-Iodo-4-methoxyphenyl)ethanone, 1112
[79324-79-1] 1-(3,5-Dibromo-4-methoxyphenyl)ethanone, 1096
[81511-52-6] 1-(2-Hydroxy-4-methoxy-5-methylphenyl)ethanone, 1156
[83459-37-4] 1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)ethanone, 1157
[84942-40-5] 1-(5-Chloro-2-hydroxy-3-nitrophenyl)ethanone, 1097
[85276-70-6] 1-(5-Amino-2-methoxyphenyl)ethanone, 1126
[85918-30-5] 1-(2,3,6-Trihydroxyphenyl)ethanone, 1122
[88349-53-5] 1-(4,7-Diethoxy-6-hydroxy-5-benzofuranyl)ethanone, 1184
[88897-94-3] 1-(2,3-Dihydro-6-hydroxy-7-methoxy-5-benzofuranyl) ethanone, 1162
[88897-98-7] 1-(7-Ethoxy-6-hydroxy-4-methoxy-5-benzofuranyl)ethanone, 1178
[89368-12-7] 1-(4-Bromo-2-methoxyphenyl)ethanone, 1102
[89691-67-8] 1-(2-Bromo-4-methoxyphenyl)ethanone, 1101
[89942-32-5] 1-(4-Hydroxy-2-iodophenyl)ethanone, 1111
[89942-63-2] 1-(3-Hydroxy-4-nitrophenyl)ethanone, 1113
[90004-97-0] 1-(3-Bromo-2-hydroxy-5-nitrophenyl)ethanone, 1096
[90033-64-0] 1-(2-Amino-4-hydroxyphenyl)ethanone, 1125
[90110-32-0] 1-(5-Chloro-2,4-dihydroxyphenyl)ethanone, 1107
[90347-63-0] 1-(2-Iodo-4-methoxyphenyl)ethanone, 1111
[91060-92-3] 1-(4-Hydroxy-2,6-dimethylphenyl)ethanone, 1154
[91246-57-0] 1-[3-[(Dimethylamino)methyl]-4-hydroxyphenyl]ethanone (Hydrochloride), 1168
[92905-07-2] 1-(5-Bromo-2,3,4,6-tetramethoxyphenyl)ethanone, 1163
[93201-29-7] 1-[3-[(Dimethylamino)methyl]-2-hydroxy-5-methylphenyl] ethanone, 1175
[93339-98-1] 1-(2-Fluoro-6-hydroxyphenyl)ethanone, 1108
[93578-16-6] 1-(2,4-Dihydroxy-5-methylphenyl)ethanone, 1139
[96756-28-4] 1-(2,4,6-Trihydroxy-3-propylphenyl)ethanone, 1166
[98619-07-9] 1-(2-Fluoro-4-hydroxyphenyl)ethanone, 1108
[101253-53-6] 1-[2,4,6-Trimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1190
[102652-91-5] 1-(2,3-Dimethoxy-5-nitrophenyl)ethanone, 1135
[103039-12-9] 1-(5-Chloro-4-methoxy-2-methylphenyl)ethanone, 1149
[103203-97-0] 3-Acetyl-4-methoxybenzoic acid, 1129
[103323-98-4] 1-(2-Ethyl-4-hydroxyphenyl)ethanone, 1151
[104174-27-8] 1-(4-Hydroxy-2-propylphenyl)ethanone, 1164
[104175-20-4] 1-(2-Hydroxy-4-propylphenyl)ethanone, 1164
[105337-19-7] 1-(4-Butyl-2-hydroxyphenyl)ethanone, 1171
[105337-80-2] 1-(2-Butyl-4-hydroxyphenyl)ethanone, 1171
[105401-93-2] 1-(2-Ethyl-4,5-dimethoxyphenyl)ethanone, 1155
[105533-69-5] 1-(4-Chloro-5-fluoro-2-hydroxyphenyl)ethanone, 1097
[106929-57-1] 1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-methylphenyl] ethanone, 1181
[109314-50-3] 1-(3-Aminomethyl-4-hydroxyphenyl)ethanone (Hydrochloride), 1146
[109661-96-3] 1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]ethanone, 1150
[110718-83-7] 1-(2-Iodo-3-methoxyphenyl)ethanone, 1111
[110718-87-1] 1-(2-Iodo-5-methoxyphenyl)ethanone, 1134
[110743-57-2] 1-(5-Methoxy-2-methylphenyl)ethanone, 1139
[115851-77-9] 1-(2-Hydroxy-5-nonylphenyl)ethanone, 1194
[116313-84-9] 1-(3,4-Dihydroxy-5-nitrophenyl)ethanone, 1114
[119104-31-3] 1-[6-Hydroxy-7-methoxy-4-(phenylmethoxy)-5-benzofuranyl] ethanone, 1195
[120196-22-7] 1-[2,4-Dihydroxy-5-(phenylazo)phenyl]ethanone (E), 1182
[122585-64-2] 1-[3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxy-6methoxyphenyl]ethanone, 1196
[122806-25-1] 1-(3-Methoxyphenyl)ethanone (Oxime), 1116
[123999-38-2] 1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl] ethanone, 1196
[126570-32-9] 1-[5-(Acetyloxy)-2-hydroxy-4-methylphenyl]ethanone, 1162
[133186-55-7] 1-(3,5-Difluoro-4-hydroxyphenyl)ethanone, 1099
[140660-31-7] 1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]ethanone, 1173
[140675-42-9] 1-(3,5-Difluoro-2-hydroxyphenyl)ethanone, 1099
[145194-40-7] 1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxy-3-methylphenyl]ethanone, 1193
[149105-10-2] 1-[4-Methoxy-3-(trifluoromethyl)phenyl]ethanone, 1127
[149105-11-3] 1-[4-Hydroxy-3-(trifluoromethyl)phenyl]ethanone, 1127
[157487-30-4] 1-(2,6-Dichloro-4-methoxyphenyl)ethanone, 1098
[157487-31-5] 1-(2,6-Dichloro-3-methoxyphenyl)ethanone, 1128
[158017-91-5] 1-[4-(Ethoxymethoxy)-2-hydroxy-6-methoxyphenyl]ethanone, 1174
[158017-92-6] 1-[4-(Ethoxymethoxy)-2,6-dimethoxyphenyl]ethanone, 1175
[158641-45-3] 1-(2-Fluoro-3,4-dimethoxyphenyl)ethanone, 1150
[170570-79-3] 1-(3,5-Difluoro-4-methoxyphenyl)ethanone, 1099
[175655-10-4] 1-(2-Hydroxy-3-iodo-5-methylphenyl)ethanone, 1134
[178055-99-7] 1-(2',4'-Dimethoxy[1,1'-biphenyl]-4-yl)ethanone, 1192
[182056-48-0] 1-(5-Bromo-2,4-dimethoxyphenyl)ethanone, 1103
[200726-78-9] 1-[2-Hydroxy-3-methyl-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl] ethanone, 1186
[253791-31-0] 1-[3-(1-Ethoxy-3-methylbutyl)-4,6-dihydroxy-2-methoxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 1198
[267008-03-7] 1-(2-Ethyl-4,5-dihydroxyphenyl)ethanone, 1155
[286931-53-1] 1-(3-Chloro-2-hydroxy-5-methoxyphenyl)ethanone, 1133
[286931-54-2] 1-(3-Chloro-2,5-dimethoxyphenyl)ethanone, 1133
[286931-60-0] 1-(3-Bromo-2,5-dimethoxyphenyl)ethanone, 1131
[295779-86-1] 1-(3-Fluoro-2-methoxyphenyl)ethanone, 1109
[316819-88-2] 1-(2,3,5-Trihydroxyphenyl)ethanone, 1122
[321569-79-3] 1-[2,4-Dihydroxy-3-iodo-6-(methoxymethoxy)phenyl] ethanone, 1150
[331821-10-4] 1-(5-Bromo-3-chloro-2-hydroxyphenyl)ethanone, 1095
[334868-41-6] 1-[3-(Acetyloxy)-6-hydroxy-2,4-dimethylphenyl]ethanone, 1170
[335104-63-7] 1-(2-Amino-4-methoxyphenyl)ethanone (Hydrochloride), 1125
[340816-26-4] 1-[2-Hydroxy-4,5,6-trimethoxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1193
[348616-32-0] 1-(3-Hydroxy-2-iodophenyl)ethanone, 1111
[370565-08-5] 1-(3-Ethynyl-4-hydroxyphenyl)ethanone, 1147
[373603-19-1] 1-(2,4-Difluoro-3-methoxyphenyl)ethanone, 1099
[383382-42-1] 1-(3,4-Dihydroxy-2-nitrophenyl)ethanone, 1114
[405239-70-5] 1-[2-(Cyclopropylmethoxy)-6-hydroxyphenyl]ethanone, 1170
[412021-93-3] 1-(2-Chloro-4-methoxy-5-methylphenyl)ethanone, 1149

[^20]| [881672-75-9] | 1-(Pentahydroxyphenyl)ethanone, 1125 |
| :---: | :---: |
| [883886-04-2] | 1-[4-[(6-O-L-Arabinofuranosyl- β-D-glucopyranosyl)oxy]-2-hydroxy-6-methoxy-3-methylphenyl]ethanone, 1198 |
| 84851-54-1] | 1-[2-Hydroxy-4-methyl-6-(trifluoromethyl)phenyl]ethanone, 1147 |
| [884851-57-4] | 1-[2-Hydroxy-4,6-bis(trifluoromethyl)phenyl]ethanone, 1146 |
| [884851-62-1] | 1-[6-Hydroxy-3-methyl-2-(trifluoromethyl)phenyl]ethanone, 1147 |
| [884851-64-3] | 1-[3-Ethyl-6-hydroxy-2-(trifluoromethyl)phenyl]ethanone, 1161 |
| [886999-22-0] | 1-[2-Hydroxy-4-[(2-methoxyethoxy)methoxy]-3-methylphenyl] ethanone, 1181 |
| [898538-40-4] | 1-(5-Bromo-4-methoxy-2-methylphenyl)ethanone, 1148 |
| [898538-41-5] | 1-(3-Bromo-4-methoxy-2-methylphenyl)ethanone, 1148 |
| [909255-13-6] | 1-(3-Amino-2,4-dihydroxyphenyl)ethanone, 1127 |
| [916916-57-9] | 1-(2,4,6-Trimethoxy-3-propylphenyl)ethanone, 1166 |
| [916916-81-9] | 1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-propylphenyl] ethanone, 1191 |
| [942133-85-9] | 1-[2-Hydroxy-4-(methoxymethoxy)-3-methylphenyl] ethanone, 1165 |
| [942133-87-1] | 1-[2-Hydroxy-3-methyl-4-[(methylthio)methoxy]phenyl] ethanone, 1165 |
| [942133-88-2] | 1-[4-(Ethoxymethoxy)-2-hydroxy-3-methylphenyl]ethanone, 1174 |
| [942133-89-3] | 1-[2-Hydroxy-3-methyl-4-[2-(methylthio)ethoxy]phenyl] ethanone, 1173 |
| [942133-91-7] | 1-[4-[2-(Dimethylamino)ethoxy]-2-hydroxy-3-methylphenyl] ethanone, 1182 |
| [942133-92-8] | 1-[4-[2-(Diethylamino)ethoxy]-2-hydroxy-3-methylphenyl] ethanone, 1192 |
| [942134-13-6] | 1-[4-[2-(Dimethylamino)ethoxy]-2-hydroxy-3-methylphenyl] ethanone (Hydrochloride 1:1), 1182 |
| [942134-14-7] | 1-[4-[2-(Diethylamino)ethoxy]-2-hydroxy-3-methylphenyl] ethanone (Hydrochloride 1:1), 1192 |
| [947691-62-5] | 1-(2-Amino-5-ethyl-4-methoxyphenyl)ethanone, 1167 |
| [947691-65-8] | 1-(4-Ethyl-3-methoxyphenyl)ethanone, 1152 |
| [947691-66-9] | 1-(4-Ethyl-5-methoxy-2-nitrophenyl)ethanone, 1163 |
| [947691-67-0] | 1-(2-Amino-4-ethyl-5-methoxyphenyl)ethanone, 1167 |
| [949159-95-9] | 1-(4-Fluoro-3-hydroxyphenyl)ethanone, 1110 |
| [949900-54-3] | 1-(4-Chloro-3-fluoro-2-hydroxyphenyl)ethanone, 1097 |
| [951163-65-8] | 1-(2,4-Difluoro-3-hydroxyphenyl)ethanone, 1099 |
| [956525-45-4] | 1-[2,5-Dihydroxy-3-(2-propen-1-yl)phenyl]ethanone, 1162 |
| [956525-48-7] | 1-[5-Hydroxy-2-(2-propen-1-yloxy)phenyl]ethanone, 1162 |
| [956525-49-8] | 1-[2,5-Dihydroxy-3-(2-propen-1-yl)phenyl]ethanone (Oxime), 1162 |
| [957864-27-6] | 1-(3,5-Dihydroxyphenyl)ethanone (Hydrate 1:1), 1121 |
| [960592-54-5] | 1-[2-(2-Chloroethyl)-4-methoxyphenyl]ethanone, 1163 |
| [1000781-23-6] | 1-[4-Hydroxy-3-(1-hydroxy-3-buten-1-yl)phenyl]ethanone, 1170 |
| [1001025-04-2] | 1-(6-Chloro-3-hydroxy-5-methyl[1,1'-biphenyl]-2-yl) ethanone, 1188 |

```
[1001056-78-5] 1-[3-(Cyclopentyloxy)-2-hydroxy-4-methoxyphenyl]ethanone, 1185
[1001385-69-8] 1-[5-Ethyl-2,4-bis(phenylmethoxy)phenyl]ethanone, 1156
[1004984-76-2] 1-[2,3-Dimethoxy-5-(methoxymethyl)phenyl]ethanone, 1174
[1004985-99-2] 1-[2-Hydroxy-5-(1-oxopropoxy)phenyl]ethanone, 1162
[1004986-06-4] 1-[5-Hydroxy-2-(1-oxopropoxy)phenyl]ethanone, 1163
[1006063-13-3] 1-[2-Hydroxy-5-(4-nitrophenoxy)phenyl]ethanone, 1182
[1006063-14-4] 1-[5-Hydroxy-2-(4-nitrophenoxy)phenyl]ethanone, 1182
[1010800-85-7] 1-(2,5-Difluoro-4-methoxyphenyl)ethanone, 1128
[1017961-46-4] 1-(6-Hydroxy-7-methoxy-4-methyl-5-benzofuranyl)ethanone, 1169
[1018451-08-5] 1-(3-Fluoro-2-hydroxy-4-methoxyphenyl)ethanone, 1133
[1018451-09-6] 1-(3-Fluoro-2,4-dimethoxyphenyl)ethanone, 1133
[1023278-89-8] 1-[4-Chloro-2-(2,4-dichlorobenzoyloxy)phenyl]ethanone, 1106
[1023278-90-1] 1-[2,4-Dichloro-6-(2,4-dichlorobenzoyloxy)phenyl]ethanone, 1098
[1023279-01-7] 1-[2,4-Dichloro-6-(phenylmethoxy)phenyl]ethanone, 1098
[1023740-57-9] 1-[4-Ethoxy-3,5-bis(1-methylethyl)phenyl]ethanone, 1187
[1024605-96-6] 1-[2-Hydroxy-6-(trifluoromethyl)phenyl]ethanone, 1127
[1025008-57-4] 5-Acetyl-4,7-dimethoxy-6-benzofuranyl
1,1,1-trifluoromethanesulfonate, 1169
[1025008-58-5] 1-(4,7-Dimethoxy-5-benzofuranyl)ethanone, 1169
```

Volume 3
[62-13-5] 1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1301
[99-40-1] 2-Chloro-1-(3,4-dihydroxyphenyl)ethanone, 1235
[99-45-6] 1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone, 1300
[121-28-8] 1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone, 1307
[150-10-7] 1-(3,4-Dihydroxyphenyl)-2-(dimethylamino)ethanone, 1304
[315-44-6] 1-(2,4-Dihydroxyphenyl)-2,2,2-trifluoroethanone, 1268
[343-59-9] 1-(5-Fluoro-2-hydroxyphenyl)-2-phenylethanone, 1403
[487-47-8] 1-(2,4-Dihydroxyphenyl)-2-hydroxyethanone, 1372
[487-49-0]
1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1468
[499-61-6]
[577-54-8]
[584-41-8]
2-Amino-1-(3,4-dihydroxyphenyl)ethanone, 1296
1-(3-Ethyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1273
1-(5-Ethyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1273
[727-71-9]
[787-06-4]
[789-80-0]
[1162-73-8]
2-Phenyl-1-(2,4,6-trihydroxyphenyl)ethanone, 1411
2-Phenyl-1-(2,4,5-trihydroxyphenyl)ethanone, 1410
1-(2,5-Dihydroxy-4-methoxyphenyl)-2-phenylethanone, 1423
2-(Benzoyloxy)-1-(2,4,6-trihydroxy-3-methoxyphenyl) ethanone, 1391
[1167-74-4] 2-(Benzoyloxy)-1-(2,4,6-trihydroxy-3,5-dimethoxyphenyl) ethanone, 1392
[1823-63-8] 2,2,2-Trifluoro-1-(4-hydroxyphenyl)ethanone, 1268
[1855-30-7] 1-(2,4-Dihydroxyphenyl)-2-(2,4-dimethoxyphenyl)ethanone, 1486
[2002-75-7] 2-Chloro-1-(5-fluoro-2-hydroxyphenyl)ethanone, 1230

[2161-85-5]	1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-ethanone, 1566
[2161-86-6]	1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-ethanone, 1568
[2161-87-7]	1,1', $1^{\prime \prime}$-(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris-ethanone, 1578
[2163-12-4]	1,1'-(2,4-Dihydroxy-1,3-phenylene)bis-ethanone, 1564
[2491-31-8]	1-(2-Hydroxyphenyl)-2-phenylethanone, 1404
[2491-32-9]	1-(4-Hydroxyphenyl)-2-phenylethanone, 1406
[2491-34-1]	1-(2-Hydroxy-4-methylphenyl)-2-phenylethanone, 1415
[2491-36-3]	2-Bromo-1-(2-hydroxyphenyl)ethanone, 1206
[2491-37-4]	2-Bromo-1-(3-hydroxyphenyl)ethanone, 1207
[2491-38-5]	2-Bromo-1-(4-hydroxyphenyl)ethanone, 1207
[2491-39-6]	2-Bromo-1-(2,4-dihydroxyphenyl)ethanone, 1208
[2491-40-9]	2-Bromo-1-(2,6-dihydroxyphenyl)ethanone, 1209
[2495-77-4]	1-(2,4-Diethoxy-6-hydroxyphenyl)-2-methoxyethanone, 1338
[2551-38-4]	1,1'-(4,4'-Dihydroxy-2,2'-dimethoxy[1,1'-biphenyl]-3,3'-diyl) bis-ethanone, 1593
[2551-44-2]	$1,1^{\prime}$-(2,2',4,4'-Tetrahydroxy[1, 1'-biphenyl]-3,3'-diyl) bis-ethanone, 1591
[2589-80-2]	1-(5-Benzoyl-2-hydroxyphenyl)ethanone, 1628
[2631-85-8]	2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-4-methoxy-1,3-benzodioxol-5-yl)ethanone, 1510
[2652-17-7]	1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2phenylethanone, 1424
[2746-88-5]	2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4,5-dimethoxyphenyl) ethanone, 1492
[2746-89-6]	2-(1,3-Benzodioxol-5-yl)-1-(2,5-dihydroxy-4-methoxyphenyl) ethanone, 1476
[2746-90-9]	2-(1,3-Benzodioxol-5-yl)-1-(6-hydroxy-1,3-benzodioxol-5-yl) ethanone, 1474
[2828-14-0]	2-(1,3-Benzodioxol-5-yl)-1-(2,4,5-trihydroxyphenyl)ethanone, 1462
[2970-79-8]	2-(Dimethylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1302
[2999-24-8]	1,1'-(2,4,5-Trihydroxy-1,3-phenylene)bis-ethanone, 1568
[2999-42-0]	1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1576
[3098-38-2]	1,1'-(2,4-Dihydroxy-6-methoxy-1,3-phenylene)bis-ethanone, 1575
[3136-47-8]	2-Phenyl-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1423
[3207-38-3]	1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(4hydroxyphenyl)ethanone, 1476
[3207-42-9]	1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(4methoxyphenyl)ethanone, 1494
[3511-69-1]	1,1'-[(1-Methylethylidene)bis(6-hydroxy-3,1-phenylene)]bisethanone, 1611
[3606-32-4]	1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1502
[3669-41-8]	1-(2,4-Dihydroxyphenyl)-2-phenylethanone, 1407
[3669-46-3]	1-(4-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1466

[3669-47-4]	1,2-Bis(4-hydroxyphenyl)ethanone, 1456
[3669-50-9]	1-(4-Hydroxy-2-methylphenyl)-2-phenylethanone, 1417
[4108-04-7]	1-(3-Bromo-5-fluoro-2-hydroxyphenyl)-2-phenylethanone, 1399
[4108-05-8]	1-(3-Chloro-5-fluoro-2-hydroxyphenyl)-2-phenylethanone, 1400
[4324-56-5]	2-Ethoxy-1-(2-ethoxy-6-hydroxy-3,4-dimethoxyphenyl) ethanone, 1349
[4324-58-7]	1-(2,4-Diethoxy-3,6-dihydroxyphenyl)-2-methoxyethanone, 1339
[4324-59-8]	1-(2,4-Diethoxy-6-hydroxy-3-methoxyphenyl)-2methoxyethanone, 1341
[4873-38-5]	1-(4-Hydroxyphenyl)-2,2-diphenylethanone, 1539
[4940-44-7]	1-(2-Hydroxy-4-methoxyphenyl)-2-methoxyethanone, 1324
[4970-24-5]	1-(2-Hydroxyphenyl)-2,2-diphenylethanone, 1539
[5029-61-8]	2-Bromo-1-(4-hydroxy-3-nitrophenyl)ethanone, 1204
[5037-70-7]	2-Bromo-1-(2-hydroxy-5-nitrophenyl)ethanone, 1204
[5071-47-6]	1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)- 2-methoxyethanone, 1340
[5090-29-9]	2-Amino-1-(3,4-dihydroxyphenyl)ethanone, 1296
[5128-46-1]	1-(4,6-Diethoxy-2-hydroxy-3-methoxyphenyl)-2methoxyethanone, 1342
[5128-49-4]	1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1502
[5128-54-1]	1-(2,4-Dihydroxy-5-methoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1485
[5128-56-3]	2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4-methoxyphenyl) ethanone, 1475
[5653-25-8]	2-(1,3-Benzodioxol-5-yl)-1-(2,4-dihydroxyphenyl) ethanone, 1461
[5706-85-4]	2-Hydroxy-1-(4-hydroxyphenyl)ethanone, 1370
[6305-04-0]	2-Chloro-1-(4-hydroxyphenyl)ethanone, 1233
[6344-28-1]	2-Chloro-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1244
[6502-87-0]	2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl) ethanone, 1516
[7294-92-0]	1-(2-Hydroxy-3-methylphenyl)-2-phenylethanone, 1414
[7354-81-6]	1-(4-Hydroxy-3-methylphenyl)-2-phenylethanone, 1417
[7507-92-8]	2-Chloro-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1248
[7622-42-6]	1,2-Bis(2-hydroxyphenyl)ethanone, 1455
[7741-43-7]	1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-methoxyethanone, 1335
[7741-48-2]	2-(Benzoyloxy)-1-(2,4-dihydroxy-3,6-dimethoxyphenyl) ethanone, 1391
[7741-49-3]	2-(Benzoyloxy)-1-(2-hydroxy-3,4,6-trimethoxyphenyl) ethanone, 1392
[10048-37-0]	2-(Benzoyloxy)-1-[2-hydroxy-3,6-dimethoxy-4-(phenylmethoxy) phenyl]ethanone, 1393
[10508-84-6]	1,1'-[Methylenebis(2,4-dihydroxy-3,1-phenylene)] bis-ethanone, 1600
[13043-37-3]	1-(3-Benzoyl-4-hydroxyphenyl)ethanone, 1627

[13340-79-9] 2,2,2-Trifluoro-1-(2,4,6-trihydroxyphenyl)ethanone, 1269
[13444-19-4] 1,1'-(2,4-Dihydroxy-6-methyl-1,3-phenylene)bis-ethanone, 1572
[13539-22-5] 1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1520
[13539-34-9] 1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1486
[13936-92-0] 1-(2,6-Dihydroxyphenyl)-2-phenylethanone, 1409
[13938-28-8] 1, 1'-(4,4'-Dihydroxy[1, 1^{\prime}-biphenyl]-3,3'-diyl)bis-ethanone, 1486
[13938-30-2] 1,1'-(2,2'-Dihydroxy-5,5'-dimethyl[1,1'-biphenyl]-3,3'-diyl)bisethanone, 1593
[14035-39-3] 1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2phenylethanone, 1443
[14290-59-6] 1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-methoxyethanone, 1336
[14386-64-2] 1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2bromoethanone, 1223
[14585-08-1] 2-(Benzoyloxy)-1-[2-hydroxy-4-methoxy-6-(phenylmethoxy) phenyl]ethanone, 1393
[14585-09-2] 2-(Benzoyloxy)-1-[2-hydroxy-4,6-bis(phenylmethoxy)phenyl] ethanone, 1393
[14639-73-7] 1-(3,6-Dihydroxy-2,4-dimethoxyphenyl)-2-methoxyethanone, 1332
[14665-75-9] 2-Amino-1-(3-hydroxyphenyl)ethanone (Hydrochloride), 1294
[14701-83-8] 2-(4-Methoxyphenyl)-1-(3,4,6-trihydroxy-2-methoxyphenyl) ethanone, 1491
[14756-83-3] 2-(2,4-Dimethoxyphenyl)-1-(2,3,4-trihydroxyphenyl) ethanone, 1489
[14771-02-9] 2-Chloro-1-(2,4,5-trihydroxyphenyl)ethanone, 1236
[14965-23-2] 1-(2-Ethoxy-6-hydroxy-3,4-dimethoxyphenyl)-2methoxyethanone, 1339
[15402-24-1] 2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,5-dimethoxyphenyl) ethanone, 1516
[15485-63-9] 1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1454
[15485-64-0] 2-(4-Chlorophenyl)-1-(2,4-dihydroxyphenyl)ethanone, 1451
[15485-65-1] 2-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1460
[15485-66-2] 2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1474
[15485-67-3] 2-(4-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1455
[15485-68-4] 2-(4-Chlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1452
[15485-69-5] 2-(4-Fluorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1453
[15485-70-8] 1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenyl)ethanone, 1453
[15485-71-9] 1-(2,4-Dihydroxy-6-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1481
[15578-05-9] 1-(2-Hydroxy-6-methoxy-3-methylphenyl)-2-phenylethanone, 1428
[15578-06-0] 1-(2,6-Dihydroxy-3-methylphenyl)-2-phenylethanone, 1419
[16129-95-6] 1,1'-[1,4-Butanediylbis[oxy-(6-hydroxy-2,1-phenylene)]] bis-ethanone, 1616
[16130-01-1] 1,1'-[1,5-Pentanediylbis[oxy-(6-hydroxy-2,1-phenylene)]] bis-ethanone, 1618

[16130-02-2]	1,1'-[1,6-Hexanediylbis[oxy-(6-hydroxy-2,1-phenylene)]] bis-ethanone, 1618
[16130-16-8]	1-[4-[3-(2-Acetyl-3-hydroxyphenoxy)-2-hydroxypropoxy]-2-hydroxyphenyl]ethanone, 1615
[16130-20-4]	1-[4-[[5-(2-Acetyl-3-hydroxyphenoxy)pentyl]oxy]-2hydroxyphenyl]ethanone, 1617
[16130-26-0]	1,1'-[1,5-Pentanediylbis[oxy(5-chloro-6-hydroxy-2,1-phenylene)] bis-ethanone, 1617
[16139-26-7]	1,1'-[1,5-Pentanediylbis[oxy(2-hydroxy-3,1-phenylene)]]bisethanone, 1617
[16139-42-7]	1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-3,1-phenylene)]]bisethanone, 1618
[16139-45-0]	1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(2-hydroxy-4,1-phenylene)]]bis-ethanone, 1616
[16139-50-7]	1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-3,1-phenylene)]]bis-ethanone, 1616
[16139-58-5]	1,1'-[1,8-Octanediylbis[oxy-(6-hydroxy-2,1-phenylene)]] bis-ethanone, 1619
[16139-60-9]	1,1'-[1,9-Nonanediylbis[oxy-(6-hydroxy-2,1-phenylene)]] bis-ethanone, 1620
[16139-62-1]	1,1'-[1,2-Ethanediylbis[oxy(6-hydroxy-2,1-phenylene)]] bis-ethanone, 1615
[16149-16-9]	2-(Cyclopentylamino)-1-(3,4-dihydroxyphenyl)ethanone, 1313
[16149-17-0]	2-(Cyclopentylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride), 1313
[16149-18-1]	2-(Cyclohexylamino)-1-(3,4-dihydroxyphenyl)ethanone, 1315
[16149-19-2]	2-(Cyclohexylamino)-1-(3,4-dihydroxyphenyl)ethanone (Hydrochloride), 1315
[16150-42-8]	1,1'-[1,3-Propanediylbis[oxy(6-hydroxy-2,1-phenylene)]]bisethanone, 1615
[16150-44-0]	1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-2,1-phenylene)]]bis-ethanone, 1615
[16258-59-6]	1,1'-[1,10-Decanediylbis[oxy-(6-hydroxy-2,1-phenylene)]]bisethanone, 1620
[16297-02-2]	2-Methoxy-1-(2,4,6-trihydroxy-3-methoxyphenyl)ethanone, 1328
[16475-85-7]	1,1'-(4-Hydroxy-6-methyl-1,3-phenylene)bis-ethanone, 1571
[16899-81-3]	1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride), 1308
[16899-83-5]	1-(3,4-Dihydroxyphenyl)-2-(dimethylamino)ethanone (Hydrochloride), 1304
[17345-68-5]	2-Chloro-1-(2,3,4-trihydroxyphenyl)ethanone, 1236
[17375-96-1]	2-Hydroxy-1-(2-hydroxyphenyl)ethanone, 1370
[17526-21-5]	1-[2-(2-Hydroxybenzoyl)phenyl]ethanone, 1638
[17678-03-4]	1,1'-(2,4,6-Trihydroxy-5-methoxy-1,3-phenylene) bis-ethanone, 1576

[17720-60-4] 1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1457
[17874-42-9] 1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-methoxyethanone, 1330
[18064-88-5] 2-Bromo-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1220
[18064-92-1] 2-Bromo-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1219
[18074-51-6] 1-[2,6-Dihydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]-2methoxyethanone, 1345
[18074-53-8] 1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]-2methoxyethanone, 1345
[18086-25-4] 1-(2,4-Dihydroxyphenyl)-2-(2,5-dimethoxyphenyl)ethanone, 1487
[18086-26-5] 2-(2,5-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl) ethanone, 1500
[18086-36-7] 1-(2,4-Dihydroxyphenyl)-2-(2-ethoxy-5-methoxyphenyl) ethanone, 1500
[18086-37-8] 2-(2-Ethoxy-5-methoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1513
[18167-90-3] 1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy) ethanone, 1366
[18256-48-9] 2-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1376
[18439-96-8] 1-(2-Hydroxy-4-methoxyphenyl)-2-phenylethanone, 1419
[18439-99-1] 1-(2-Hydroxy-4,5-dimethylphenyl)-2-phenylethanone, 1425
[18440-00-1] 1-(2-Hydroxy-4-methoxyphenyl)-2-(2-methoxyphenyl) ethanone, 1482
[18611-32-0] 2-Bromo-1-[3-(1,1-dimethylethyl)-4-hydroxy-5-methylphenyl] ethanone, 1222
[18986-11-3] 2-(Butylamino)-1-(4-hydroxyphenyl)ethanone, 1310
[19278-79-6] 2-Bromo-1-(2,3-dihydroxyphenyl)ethanone, 1208
[19598-24-4] 2-Ethoxy-1-(6-hydroxy-2,3,4-trimethoxyphenyl)ethanone, 1348
[19745-72-3] 2-Amino-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1295
[19816-33-2] 1-(3-Bromo-2-hydroxy-4-methoxyphenyl)-2-phenylethanone, 1412
[19816-35-4] 1-(3-Bromo-2,4-dihydroxyphenyl)-2-phenylethanone, 1401
[19816-38-7] 1-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl)-
2-phenylethanone, 1412
[19816-40-1] 1-(3,5-Dibromo-2,4-dihydroxyphenyl)-2-phenylethanone, 1399
[19816-44-5] 1-(2-Hydroxy-3,5-diiodo-4-methoxyphenyl)-
2-phenylethanone, 1412
[19816-52-5] 1-(2,4-Dihydroxy-3-nitrophenyl)-2-phenylethanone, 1403
[20129-52-6] 1,1'-(2,5-Dihydroxy-1,4-phenylene)bis-ethanone, 1565
[20390-13-0] 1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone, 1524
[20569-19-1] 2-(2,5-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl) ethanone, 1517
[20636-45-7] 1,1'-[(1-Ethylpropylidene)bis(6-hydroxy-3,1-phenylene)]bisethanone, 1613
[20795-69-1] 1,1'-[Carbonylbis[6-hydroxy-3,1-phenylene)]bis-ethanone, 1637
[20816-46-0] 2-(Acetyloxy)-1-(4-hydroxyphenyl)ethanone, 1383

[20834-75-7]	2-Chloro-1-(2-hydroxy-4-methylphenyl)ethanone, 1239
[21213-89-8]	1-(4-Hydroxyphenyl)-2-(methylamino)ethanone, 1299
[21417-76-5]	1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-methoxyethanone, 1329
[21587-55-3]	1-(2-Ethoxy-6-hydroxy-4-methoxyphenyl)-
	2-methoxyethanone, 1334
[21587-57-5]	2-Ethoxy-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1348
[21587-58-6]	2-Ethoxy-1-(2-ethoxy-6-hydroxy-4-methoxyphenyl)ethanone, 1348
[21861-21-2]	2-Chloro-1-(2,4-dihydroxy-3-methylphenyl)ethanone, 1241
[22044-73-1]	2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-4,6-dimethoxyphenyl) ethanone, 1493
[22080-99-5]	1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-
	2-phenylethanone, 1434
[22081-01-2]	1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-(4methoxyphenyl)ethanone, 1515
[22081-04-5]	2-(2,4-Dimethoxyphenyl)-1-(6-hydroxy-2,4-dimethoxy-3methylphenyl)ethanone, 1523
[22110-04-9]	1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1520
[22137-59-3]	1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-phenylethanone, 1434
[22228-86-0]	1,1'-(2-Hydroxy-4,5,6-trimethoxy-1,3-phenylene)bis[2phenylethanone, 1590
[22304-66-1]	1,1'-(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1573
[22307-94-4]	2-Chloro-1-(2-hydroxy-5-methylphenyl)ethanone, 1239
[22307-95-5]	2-Chloro-1-(4-chloro-2-hydroxy-5-methylphenyl)ethanone, 1238
[22307-96-6]	2-Chloro-1-(2-hydroxy-4,5-dimethylphenyl)ethanone, 1247
[22317-35-7]	1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy) ethanone, 1363
[22510-04-9]	2-(Ethylamino)-1-(3-hydroxyphenyl)ethanone (Hydrochloride), 1302
[22510-12-9]	2-(Ethylamino)-1-(3-hydroxyphenyl)ethanone, 1302
[22670-61-7]	2-Chloro-1-(2,4-dihydroxy-6-methylphenyl)ethanone, 1241
[22761-00-8]	2-Phenyl-1-(2,3,4-trihydroxyphenyl)ethanone, 1410
[23053-74-9]	2-Chloro-1-[6-hydroxy-2-methyl-3-(1-methylethyl)phenyl] ethanone, 1252
[23080-48-0]	1,1'-(6,6'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1591
[23080-53-7]	$1,1^{\prime}$-(4, 4', 6, 6^{\prime}-Tetrahydroxy[1, 1^{\prime}-biphenyl]-3,3'-diyl) bis-ethanone, 1592
[23080-58-2]	1,1-(2,2',4,4'-Tetrahydroxy[1,1'-biphenyl]-3,3',5,5'-tetrayl) tetrakis-ethanone, 1594
[23133-81-5]	1,1'-(4-Hydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1571
[23937-51-1]	1,1'-[2,4-Dihydroxy-6-(2-hydroxypropoxy)-1,3-phenylene]bisethanone, 1585
[23937-59-9]	1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-4-methoxy-3,1-phenylene)]]bis-ethanone, 1619
[23937-88-4]	1,1'-[(2-Hydroxy-1,3-propanediyl)bis[oxy(6-hydroxy-4-methoxy- 2,1-phenylene)]]bis-ethanone, 1618

[23937-90-8]	1,1'-[1,5-Pentanediylbis[oxy(6-hydroxy-4-methoxy-2,1-phenylene)]]bis-ethanone, 1619
[24126-91-8]	1-(2,4-Dihydroxy-5-methoxyphenyl)-2-(3,4-dimethoxyphenyl) ethanone, 1505
[24126-94-1]	1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(3,4-dimethoxyphenyl) ethanone, 1506
[24126-98-5]	1-(2,4-Dihydroxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone, 1487
[24195-21-9]	1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(2,4,5-trimethoxyphenyl)ethanone, 1524
[24195-22-0]	2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4,5-dimethoxyphenyl) ethanone, 1518
[24195-23-1]	1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(7-methoxy-1,3-benzodioxol-5-yl)ethanone, 1511
[24195-24-2]	1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(6-methoxy-1,3-benzodioxol-5-yl)ethanone, 1510
[24195-30-0]	1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-(2-methoxyphenyl) ethanone, 1502
[24195-31-1]	1-(2-Hydroxy-4,5-dimethoxyphenyl)-2-phenylethanone, 1429
[24258-63-7]	1-(2-Hydroxy-5-methylphenyl)-2-phenylethanone, 1416
[24483-75-8]	2-Chloro-1-(5-chloro-2-hydroxyphenyl)ethanone, 1232
[24852-33-3]	1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-phenylethanone, 1429
[24852-34-4]	2-(4-Chlorophenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl) ethanone, 1478
[24852-43-5]	1-(5-Bromo-2-hydroxy-3,4-dimethoxyphenyl)-2-(4methoxyphenyl)ethanone, 1495
[24863-50-1]	2-(3-Chlorophenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl) ethanone, 1478
[25015-91-2]	2-Bromo-1-(2,5-dihydroxyphenyl)ethanone, 1208
[25015-92-3]	2-Chloro-1-(2,4-dihydroxyphenyl)ethanone, 1234
[25666-51-7]	2,2,2-Trifluoro-1-(2-hydroxyphenyl)ethanone, 1268
[27171-77-3]	1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-methoxyphenyl] ethanone, 1610
[27171-78-4]	1-[5-[1-(3-Acetyl-4-hydroxyphenyl)-1-methylethyl]-2methoxyphenyl]ethanone, 1612
[27171-79-5]	1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-ethoxyphenyl] ethanone, 1612
[27171-80-8]	1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-propoxyphenyl] ethanone, 1613
[27693-62-5]	1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Sulfate), 1308
[28441-16-9]	2-(Acetyloxy)-1-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl] ethanone, 1386
[28466-42-4]	1,1'-[Methylenebis(2-hydroxy-4-methoxy-3,1-phenylene)]bisethanone, 1602
[28467-08-5]	1,1'-[Oxybis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1614
[28467-22-3]	1,1'-[Methylenebis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1600

[28750-55-2]	1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone, 1425
[28750-74-5]	1-(3-Bromo-2-hydroxy-4,6-dimethoxyphenyl)-2-(4methoxyphenyl)ethanone, 1495
[28836-20-6]	2-(Butylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1310
[29003-58-5]	2,2-Dichloro-1-(2-hydroxyphenyl)ethanone, 1255
[29003-59-6]	2,2-Dichloro-1-(2,4-dihydroxyphenyl)ethanone, 1256
[29378-60-7]	1-(2-Hydroxyphenyl)-2-nitroethanone, 1396
[29477-54-1]	1-(3,4-Dihydroxyphenyl)-2-hydroxyethanone, 1373
[29668-19-7]	1,1'-[1,6-Hexanediylbis(6-hydroxy-3,1-phenylene)] bis-ethanone, 1613
[29668-20-0]	1,1'-[1,3-Propanediylbis(6-hydroxy-3,1-phenylene)] bis-ethanone, 1611
[29784-35-8]	2-Bromo-1-(3-bromo-2-hydroxy-4,6-dimethoxyphenyl) ethanone, 1217
[29799-22-2]	1,1'-(6,6'-Dihydroxy-5,5'-dimethoxy[1,1'-biphenyl]-3,3'-diyl) bis-ethanone, 1594
[30186-16-4]	1,1'-(4-Hydroxy-1,3-phenylene)bis-ethanone, 1562
[30335-99-0]	1,1'-(4-Chloro-6-hydroxy-1,3-phenylene)bis-ethanone, 1560
[30787-44-1]	1-[3-[(3-Acetyl-4-hydroxyphenyl)methyl]-2-hydroxy-5-(hydroxymethyl)-phenyl]ethanone, 1601
[31188-65-5]	1-(3-Benzoyl-2,4,6-trihydroxyphenyl)ethanone, 1628
[31827-97-1]	2-Bromo-1-(4-hydroxy-3,5-diiodophenyl)ethanone, 1201
[32136-81-5]	1-(4-Hydroxyphenyl)-2-methoxyethanone, 1322
[32559-04-9]	2-Bromo-1-(2-hydroxy-3,5-diiodophenyl)ethanone, 1201
[32884-28-9]	2-[2-(Benzoyloxy)-4-methoxyphenyl]-1-(2,4,6-trihydroxyphenyl)ethanone, 1531
[32884-33-6]	1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl]-2-(2-hydroxy-4-methoxyphenyl)ethanone, 1534
[33406-44-9]	2-(Butylamino)-1-(3,4-dihydroxyphenyl)ethanone, 1311
[34036-53-8]	1,1'-[1,2-Ethanediylbis(6-hydroxy-3,1-phenylene)] bis-ethanone, 1610
[34036-60-7]	1-[5-[2-(3-Acetyl-4-hydroxyphenyl)ethyl]-2-isopropoxyphenyl]ethanone, 1612
[34554-37-5]	1,1'-(2,5-Dihydroxy-3,6-dimethoxy-1,4-phenylene)bis-ethanone, 1582
[34715-64-5]	1-(3,4-Dihydroxyphenyl)-2-[(1,1-dimethylethyl)amino]ethanone (Hydrochloride), 1312
[34811-99-9]	2-Ethoxy-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1347
[34969-79-4]	2-Bromo-1-(3,5-dibromo-4-hydroxyphenyl)ethanone, 1202
[35075-32-2]	1,1'-[2,4-Dihydroxy-6-(2-propenyloxy)-1,3-phenylene]bisethanone, 1583
[35134-71-5]	$1,1^{\prime}$-(2,2'-Dihydroxy-4,4',6,6'-tetramethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1595

[35287-64-0] 1,1'-(2,4'-Dihydroxy-2',4-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bisethanone, 1597
[35292-40-1] 1,1'-(2,2'-Diethoxy-4,4'-dihydroxy[1,1'-biphenyl]-3,3'-diyl)bisethanone, 1595
[35486-77-2] 1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-2phenylethanone, 1437
[35817-38-0] 1-[2-Hydroxy-6-methoxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-2-(4-methoxyphenyl)ethanone, 1528
[35817-95-9] 1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4methoxyphenyl)ethanone, 1527
[35817-96-0] 1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4methoxyphenyl)ethanone, 1528
[35928-53-1] 2,2-Dibromo-1-(4-hydroxy-3-nitrophenyl)ethanone, 1225
[35928-54-2] 2,2-Dibromo-1-(3-bromo-4-hydroxy-5-nitrophenyl)ethanone, 1224
[35930-51-9] 1-(2,5-Dihydroxy-4-methoxyphenyl)-2-methoxyethanone, 1327
[36039-26-6] 1-(5-Acetyl-2-hydroxyphenyl)-1-propanone, 1631
[36414-93-4] 1-[2-(2,4-Dihydroxybenzoyl)phenyl]ethanone, 1639
[36754-72-0] 1-(2,4-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl) ethanone, 1470
[37086-37-6] 1,1'-[1,5-Pentanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bisethanone, 1617
[37126-05-9] 1,1'-[2-Hydroxy-4-(phenylmethoxy)-6-(2-propenyloxy)-1,3-phenylene]bis-ethanone, 1589
[37126-08-2] 1,1'-(4,6-Dihydroxy-2-methoxy-5-propyl-1,3-phenylene)bisethanone, 1587
[37126-09-3] 1,1'-[2,4-Dihydroxy-6-methoxy-5-(2-propenyl)-1,3-phenylene] bis-ethanone, 1585
[37126-10-6] 1,1'-(2,4-Dihydroxy-6-methoxy-5-propyl-1,3-phenylene)bisethanone, 1586
[37879-22-4] 1,1'-(2,4'-Dihydroxy-2',4,6,6'-tetramethoxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1597
[37879-23-5] 1,1'-(2-Hydroxy-2',4,4',6,6'-pentamethoxy[1, 1^{\prime} 'biphenyl]-3,3'-diyl)bis-ethanone, 1598
[37904-71-5] 2-Chloro-1-(4-hydroxy-2-methylphenyl)ethanone, 1240
[38319-83-4] 1-(2-Hydroxy-4,6-dimethylphenyl)-2-phenylethanone, 1426
[38412-59-8] 2-(4-Methoxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1473
[38412-65-6] 1-(2,3-Dihydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1484
[38782-67-1] 1,1'-[Methylenebis(4-hydroxy-5-methyl-3,1-phenylene)]bisethanone, 1601
[38782-68-2] 1,1'-[Methylenebis(4-hydroxy-3,1-phenylene)]bis-ethanone, 1599
[38782-69-3] 1-[3,5-Bis[(5-acetyl-2-hydroxy-3-methylphenyl)methyl]-4hydroxyphenyl]ethanone, 1606
[38987-02-9] 1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-2-phenylethanone, 1431
[38987-03-0] 1-[2,4-Dihydroxy-5-(2-propenyl)phenyl]-2-phenylethanone, 1431

[39022-25-8]	1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]-2phenylethanone, 1435
[39066-18-7]	2-Chloro-1-(3-chloro-4-hydroxyphenyl)ethanone, 1231
[39068-36-5]	1-(2-Hydroxyphenyl)-2-(methylsulfonyl)ethanone, 1544
[39125-99-0]	1,1'-(3,6-Dihydroxy-1,2-phenylene)bis-ethanone, 1565
[39126-03-9]	1,1'-(2,3-Dihydroxy-1,4-phenylene)bis-ethanone, 1563
[39548-95-3]	1-[2-Hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]-2-phenylethanone, 1448
[39548-96-4]	1-[2-Hydroxy-4,6-bis(phenylmethoxy)phenyl]-2-phenylethanone, 1448
[39548-97-5]	1-[2,4-Dihydroxy-6-(phenylmethoxy)-3-(phenylmethyl)phenyl]-2phenylethanone, 1447
[39548-98-6]	2-(1,3-Benzodioxol-5-yl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1462
[39548-99-7]	2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-bis(phenylmethoxy)-3-(phenylmethyl)phenyl]ethanone, 1538
[39549-00-3]	2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-bis(phenylmethoxy) phenyl]ethanone, 1536
[39549-01-4]	2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-6-(phenylmethoxy)-3-(phenyl-methyl)phenyl]ethanone, 1536
[39581-98-1]	1-(2,4-Dihydroxy-3-methylphenyl)-2-phenylethanone, 1418
[39604-64-3]	1-(2-Hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1483
[39604-65-4]	1-(2-Hydroxy-4-methoxy-3-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1498
[39604-66-5]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone, 1430
[39604-67-6]	1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-phenylethanone, 1433
[39604-68-7]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1504
[39604-69-8]	2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl) ethanone, 1517
[39604-80-3]	1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-phenylethanone, 1441
[39604-84-7]	2-(2,4-Dimethoxyphenyl)-1-[2-hydroxy-4,6-bis(phenylmethoxy) phenyl]ethanone, 1538
[39878-43-8]	2-Chloro-1-(3,5-dihydroxyphenyl)ethanone, 1235
[39954-75-1]	1-(4-Benzoyl-3-hydroxyphenyl)ethanone, 1627
[39954-81-9]	1-(4-Benzoyl-5-hydroxy-2-methylphenyl)ethanone, 1628
[40131-99-5]	2-Bromo-1-(3,4-dihydroxyphenyl)ethanone, 1209
[40231-09-2]	2-(Acetyloxy)-1-(2-hydroxyphenyl)ethanone, 1383
[40449-66-9]	1,1'-(5-Butyl-4,6-dihydroxy-1,3-phenylene)bis-ethanone, 1586
[40456-49-3]	1-(2,4-Dihydroxyphenyl)-2-(4-hydroxy-3-methoxyphenyl) ethanone, 1471
[40584-06-3]	1-(2-Hydroxy-6-methoxyphenyl)-2-phenylethanone, 1421
[40943-24-6]	2-Chloro-1-(4-hydroxy-3-methylphenyl)ethanone, 1240
[40943-25-7]	2-Chloro-1-(4-hydroxy-3,5-dimethylphenyl)ethanone, 1247

[41489-87-6]
[41877-16-1]
[41877-17-2]
[41877-18-3]
[41877-19-4]
[41978-27-2]
[41978-28-3]
[41978-29-4]
[42868-73-5]
[42923-40-0]
[49619-83-2]
[50561-04-1]
[50695-17-5]
[50775-75-2]
[50775-76-3]
[50775-90-1]
[50776-01-7]
[50879-47-5]
[50901-33-2]
[51117-08-9]
[51149-28-1]
[51233-76-2]
[51317-87-4]
[51323-85-4]
[51846-39-0]
[51846-44-7]
[51846-51-6]
[52093-42-2]
[52122-86-8]
[52129-63-2]
[52159-50-9]
[52250-27-8]
[52501-35-6]
[52727-99-8]
[52728-02-6]
[52728-05-9]
[52945-17-2]
[52945-18-3]
[52945-22-9]

2-[(1,1-Dimethylethyl)amino]-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1311
2-Bromo-1-(4-hydroxy-2-methylphenyl)ethanone, 1213
2-Bromo-1-(4-hydroxy-3-methylphenyl)ethanone, 1214
2-Bromo-1-(3-bromo-4-hydroxyphenyl)ethanone, 1205
2-Bromo-1-(3-chloro-4-hydroxyphenyl)ethanone, 1202
1-[3,5-Bis-(1,1-dimethylethyl)-4-hydroxyphenyl]-2phenoxyethanone, 1355
1-(4-Hydroxy-3-methoxyphenyl)-2-phenoxyethanone, 1354
1-(4-Hydroxyphenyl)-2-phenoxyethanone, 1353
1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy] phenyl]-2-(4-methoxyphenyl)ethanone, 1537
1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-2-methoxyethanone, 1331
2,2-Dibromo-1-(3,5-dibromo-2-hydroxyphenyl)ethanone, 1224
1-[2-Hydroxy-4-(1-methylethoxy)phenyl]-2-phenylethanone, 1433
2-Bromo-1-(5-hydroxy-2-nitrophenyl)ethanone, 1205
1-(4-Butoxy-2-hydroxyphenyl)-2-phenylethanone, 1436
1-[2-Hydroxy-4-(pentyloxy)phenyl]-2-phenylethanone, 1438
1-(2-Ethoxy-4-hydroxyphenyl)-2-phenylethanone, 1426
1-[4-(Hexyloxy)-2-hydroxyphenyl]-2-phenylethanone, 1440
2-Bromo-1-(2-hydroxy-6-methoxyphenyl)ethanone, 1215
1-(6-Hydroxy-4-methoxy-1,3-benzodioxol-5-yl)-2-(3,4,5trimethoxyphenyl)ethanone, 1522
2-Hydroxy-1-(6-hydroxy-2,3,4-trimethoxyphenyl)ethanone, 1379
2-Bromo-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1220
1,1'-(4-Hydroxy-5,6-dimethyl-1,3-phenylene)bis-ethanone, 1580
2-Bromo-1-(2-hydroxy-5-methylphenyl)ethanone, 1213
1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2-(4methoxyphenyl)ethanone, 1533
1-(4-Benzoyl-3-hydroxy-2-methylphenyl)ethanone, 1628
1-(4-Benzoyl-3-hydroxy-2,5-dimethylphenyl)ethanone, 1629
1-(5-Benzoyl-4-hydroxy-2-methylphenyl)ethanone, 1629
1-(3-Hydroxyphenyl)-2-(methylamino)ethanone, 1298
1-(2,5-Dihydroxyphenyl)-2-phenylethanone, 1408
2,2-Dichloro-1-(4-hydroxy-3,5-dinitrophenyl)ethanone, 1254
1-(2-Hydroxy-5-methylphenyl)-2-(methylsulfinyl)ethanone, 1545
2-[2-(Benzoyloxy)-4-methoxyphenyl]-1-(2,4-dihydroxyphenyl)ethanone, 1531
2,2-Dichloro-1-(3-chloro-4-hydroxy-5-nitrophenyl)ethanone, 1255
2-Bromo-1-(5-chloro-2-hydroxyphenyl)ethanone, 1203
2-(Benzoyloxy)-1-(2-hydroxyphenyl)ethanone, 1389
1-(5-Chloro-2-hydroxyphenyl)-2-hydroxyethanone, 1369
1-(3-Hydroxyphenyl)-2-(methylsulfonyl)ethanone, 1544
1-(4-Hydroxyphenyl)-2-(methylsulfonyl)ethanone, 1544
1-(4-Hydroxy-3-methoxyphenyl)-2-(methylsulfonyl)ethanone, 1546

[52945-23-0]	1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(methylsulfonyl) ethanone, 1547
[52977-39-6]	1-[2-[(3-Acetyl-4-hydroxyphenyl)methyl]-5-hydroxyphenyl] ethanone, 1599
[53074-73-0]	2-Chloro-1-(2-hydroxyphenyl)ethanone, 1232
[53084-05-2]	2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl) ethanone, 1501
[53084-06-3]	2-(3,4-Dimethoxyphenyl)-1-(2,4,6-trihydroxyphenyl) ethanone, 1490
[54735-43-2]	2,2-Dibromo-1-(2-hydroxyphenyl)ethanone, 1226
[54794-31-9]	1-(3-Hydroxyphenyl)-2-methoxyethanone, 1322
[54903-53-6]	1-(4-Amino-3-hydroxyphenyl)-2-phenylethanone, 1411
[54917-81-6]	1-(3-Benzoyl-2,4-dihydroxy-5-nitrophenyl)ethanone, 1627
[54917-83-8]	1-[3-Benzoyl-4-(β-D-galactopyranosyloxy)-2-hydroxyphenyl] ethanone, 1630
[54918-25-1]	1-[3-Benzoyl-4-(β-D-glucopyranosyloxy)-2-hydroxyphenyl] ethanone, 1630
[54921-24-3]	1-(3-Bromo-2-hydroxy-4,5-dimethoxyphenyl)-2-phenylethanone, 1425
[54943-18-9]	1-[3-Hydroxy-4-(methylamino)phenyl]-2-phenylethanone, 1423
[54963-60-9]	1-[5-Acetyl-2-hydroxy-3-(3-hydroxy-3-methyl-1-butenyl)phenyl]-3-methyl-1-butanone (E), 1634
[54981-34-9]	1-(5-Bromo-2-hydroxyphenyl)-2-phenylethanone, 1400
[54981-35-0]	1-(4-Bromo-2-hydroxyphenyl)-2-phenylethanone, 1400
[55108-28-6]	1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1570
[55168-30-4]	1,1'-[5-(Acetyloxy)-2,4-dihydroxy-1,3-phenylene] bis-ethanone, 1578
[55313-03-6]	2-Hydroxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1374
[55317-02-7]	2-Methoxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1323
[55338-29-9]	1-(2,4-Dihydroxy-6-methylphenyl)-2-phenylethanone, 1419
[55607-18-6]	1-(2,4-Dihydroxy-6-methoxyphenyl)-2-phenylethanone, 1422
[55607-20-0]	1-[2,4-Dihydroxy-6-methoxy-3,5-bis(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1444
[55607-21-1]	1-[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1438
[55607-22-2]	1-[4,6-Dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1439
[55607-23-3]	1-[2-Hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1442
[55607-25-5]	1-[6-Hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]-2-phenylethanone, 1442
[55607-36-8]	2-(1,3-Benzodioxol-5-yl)-1-(2,4-dihydroxy-6-methoxyphenyl) ethanone, 1476
[55607-37-9]	2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1527

[55607-38-0] 2-(1,3-Benzodioxol-5-yl)-1-[4,6-dihydroxy-2-methoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1527
[55607-39-1] 2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4,6-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1532
[55607-41-5] 2-(1,3-Benzodioxol-5-yl)-1-[6-hydroxy-2,4-dimethoxy-3-(3-methyl-2-butenyl)phenyl]ethanone, 1532
[55742-64-8] 1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-phenylethanone, 1434
[55761-46-1]
[55761-48-3]
[55960-03-7]
[55960-04-8]
[55960-05-9]
[55960-06-0]
2-Chloro-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1243
2-(Dimethylamino)-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1309
2-Hydroxy-1-(2-hydroxy-4-methylphenyl)ethanone, 1374
1-[3-(Dimethylethyl)-2-hydroxyphenyl]-2-hydroxyethanone, 1380
2-Hydroxy-1-(2-hydroxy-3,5-dimethylphenyl)ethanone, 1377
1-[3-(Dimethylethyl)-2-hydroxy-6-methylphenyl]-2hydroxyethanone, 1380
[55960-07-1] 2-Hydroxy-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1375
[56184-10-2] 2-Cyclopentyl-1-(4-hydroxyphenyl)ethanone, 1541
[56184-11-3] 2-Cyclopentyl-1-(2-hydroxy-3-methylphenyl)ethanone, 1542
[56184-12-4]
[56184-13-5]
2-Cyclopentyl-1-(4-hydroxy-3-methylphenyl)ethanone, 1542
[56184-14-6] 2-Cyclopentyl-1-(2-hydroxy-5-methylphenyl)ethanone, 1542
[56234-70-9]
[56307-98-3]
[56307-99-4]
[56308-00-0]
[56308-01-1]
[56308-02-2]
[56308-07-7]
[56308-08-8]
[56308-09-9] 1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-(4methoxyphenyl)ethanone, 1499
[56308-10-2] 1-(2,4-Dihydroxy-5-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1481
[56308-11-3] 1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone, 1470
[56308-12-4] 1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-(4-methoxyphenyl)ethanone, 1514
[56766-87-1] 2-(1,3-Benzodioxol-5-yl)-1-(4-hydroxy-3-methoxyphenyl) ethanone, 1476
[56923-31-0] 1,1'-[Sulfonylbis(6-hydroxy-3,1-phenylene)]bis-ethanone, 1623
[56923-32-1] 1,1'-[Sulfonylbis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone, 1624
[56923-33-2] 1,1'-[Sulfonylbis(6-hydroxy-4-methoxy-3,1-phenylene)]bisethanone, 1624
[56923-34-3] 1, 1^{\prime}-[Sulfonylbis[6-hydroxy-4-(phenylmethoxy)-3,1-phenylene]] bis-ethanone, 1625

[56923-35-4]	1,1'-[Sulfonylbis[4-(benzoyloxy)-6-hydroxy-3,1-phenylene]]bisethanone, 1625
[56923-41-2]	1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone, 1622
[56923-42-3]	$1,1^{\prime}$-[Thiobis(6-hydroxy-4-methoxy-3,1-phenylene)] bis-ethanone, 1622
[56923-49-0]	1,1'-[Thiobis[6-hydroxy-4-(phenylmethoxy)-3,1-phenylene]] bis-ethanone, 1623
[56923-50-3]	1,1'-[Thiobis[4-(benzoyloxy)-6-hydroxy-3,1-phenylene]]bisethanone, 1622
[56982-36-6]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-nitrophenyl) ethanone, 1479
[56986-82-4]	1-(2-Hydroxyphenyl)-2-(methylthio)ethanone, 1543
[57097-17-3]	1-[2-Hydroxy-3-methyl-4-(2-propenyloxy)phenyl]-2phenylethanone, 1436
[57165-58-9]	2-(3,4-Dihydroxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1460
[57272-98-7]	1-(2-Hydroxy-4-methoxyphenyl)-2-(4-nitrophenyl)ethanone, 1464
[57280-73-6]	1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-methoxyethanone, 1333
[57280-75-8]	1-(2,4-Dihydroxyphenyl)-2-methoxyethanone, 1322
[58316-48-6]	$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)] tetrakis-ethanone, 1604
[58451-99-3]	1-(3-Hydroxy-4-methoxyphenyl)-2-phenylethanone, 1421
[58483-49-1]	1-(2,3-Dihydroxyphenyl)-2-hydroxyethanone, 1372
[58483-53-7]	1-(3,5-Dichloro-2-hydroxyphenyl)-2-hydroxyethanone, 1369
[58805-51-9]	1,1'-[5-(Ethoxymethyl)-4,6-dihydroxy-1,3-phenylene]bisethanone, 1585
[58805-52-0]	1,1'-(4,6-Dihydroxy-5-propyl-1,3-phenylene)bis-ethanone, 1584
[58805-53-1]	1,1'-[2-Hydroxy-4-methoxy-6-(2-propenyloxy)-1,3-phenylene] bis-ethanone, 1586
[58805-54-2]	1,1'-[4,6-Dihydroxy-5-(hydroxymethyl)-1,3-phenylene]bisethanone, 1574
[59108-68-8]	2-(4-Methylphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1469
[59108-69-9]	2-Cyclopentyl-1-(2,4-dihydroxyphenyl)ethanone, 1541
[59208-55-8]	1-(2,4-Dihydroxyphenyl)-2-(4-methylphenyl)ethanone, 1465
[59507-91-4]	1-(2-Hydroxy-5-nitrophenyl)-2-nitroethanone, 1396
[59719-58-3]	2-Chloro-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1249
[60011-06-5]	1,1'-[Methylenebis(5-chloro-2-hydroxy-3,1-phenylene)] bis-ethanone, 1598
[60278-33-3]	1-(2-Hydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone, 1469
[60312-44-9]	1,1'-(2,2'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1590
[60312-53-0]	1,1'-[Methylenebis(2-hydroxy-3,1-phenylene)]bis-ethanone, 1599
[60795-08-6]	1-(2-Hydroxy-3-methylphenyl)-2-nitroethanone, 1397
[60795-09-7]	1-(3-Chloro-2-hydroxyphenyl)-2-nitroethanone, 1395
[60795-10-0]	1-(2-Hydroxy-4-methylphenyl)-2-nitroethanone, 1397
[60795-11-1]	1-(4-Chloro-2-hydroxyphenyl)-2-nitroethanone, 1395

[60795-12-2] 1-(2-Hydroxy-4-methoxyphenyl)-2-nitroethanone, 1398
[60795-13-3] 1-(2-Hydroxy-5-methylphenyl)-2-nitroethanone, 1397
[60795-14-4] 1-(5-Chloro-2-hydroxyphenyl)-2-nitroethanone, 1396
[60795-15-5] 1-(3,5-Dichloro-2-hydroxyphenyl)-2-nitroethanone, 1395
[60853-18-1] 2-[(1,1-Dimethylethyl)amino]-1-(4-hydroxyphenyl)ethanone, 1311
[60912-82-5] 2-Chloro-1-(2,5-dihydroxyphenyl)ethanone, 1235
[60965-23-3] 2-Chloro-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1242
[60965-24-4] 2-Bromo-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1214
[61243-78-5] 2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-1,3-benzodioxol-5-yl) ethanone, 1493
[61243-79-6] 2-(3,4-Dimethoxyphenyl)-1-(6-hydroxy-7-methoxy-1,3-benzodioxol-5-yl)ethanone, 1510
[61243-80-9] 1-(2,4-Dihydroxy-3-methoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1485
[61243-85-4] 1-(2,4-Dihydroxy-3-methoxyphenyl)-2-(3-hydroxy-4methoxyphenyl)ethanone, 1489
[61243-86-5] 2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-3,4-dimethoxyphenyl) ethanone, 1518
[61407-16-7] 1-(4,5-Dihydroxy-2-methylphenyl)-2-hydroxyethanone, 1375
[62330-10-3] 1-[2,4-Dihydroxy-6-(2-propenyloxy)phenyl]-2-methoxyethanone, 1333
[62330-14-7] 1-(2,4-Dihydroxy-6-methoxyphenyl)-2-methoxyethanone, 1326
[62330-15-8] 1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]-2-methoxyethanone, 1338
[62458-64-4] 1-(5-Acetyl-2-hydroxyphenyl)-3-methyl-1-butanone, 1632
[62932-90-5] 2-Chloro-1-(3-hydroxyphenyl)ethanone, 1233
[62932-92-7] 2-Bromo-1-(3,5-dihydroxyphenyl)ethanone, 1210
[62932-94-9] 2-Bromo-1-[4-hydroxy-3-(hydroxymethyl)phenyl]ethanone, 1214
[62952-90-3] 1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-
2-methoxyethanone, 1343
[62952-91-4] 1-[2-Hydroxy-6-methoxy-4-(phenylmethoxy)phenyl]-2-methoxyethanone, 1344
[62952-92-5] 1-[2-Hydroxy-4-methoxy-6-(phenylmethoxy)phenyl]-2-methoxyethanone, 1343
[62952-93-6] 1-[2,4-Dihydroxy-(6-phenylmethoxy)phenyl]-2-methoxyethanone, 1343
[62953-05-3] 1-(2-Hydroxy-3,5,6-trimethoxyphenyl)-2-methoxyethanone, 1336
[63124-23-2] 2-(Acetyloxy)-1-(2,4-dihydroxyphenyl)ethanone, 1384
[63124-24-3] 2-(Acetyloxy)-1-[2,4-dihydroxy-5-(3-methyl-2-butenyl)phenyl] ethanone, 1386
[63124-25-4] 2-(Acetyloxy)-1-[2,4-dihydroxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1386
[63124-27-6] 2-(2,4-Dihydroxyphenyl)-2-oxoethyl 2-methylpropanoate, 1386
[63124-28-7] 2-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-oxoethyl 2-methyl propanoate, 1388

[63124-29-8]	2-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]-2-oxoethyl 2-methylpropanoate, 1388
[63186-92-5]	2-(4-Bromophenyl)-1-(4-hydroxyphenyl)ethanone, 1450
[63192-59-6]	1,2-Bis(3-hydroxyphenyl)ethanone, 1455
[63220-58-6]	1-[2-Hydroxy-5-(1-methylethyl)phenyl]-2-(methylsulfinyl) ethanone, 1548
[63411-83-6]	1,1'-(5-Ethyl-2,4-dihydroxy-1,3-phenylene)bis-ethanone, 1580
[63704-55-2]	2-Chloro-1-(2,3-dihydroxyphenyl)ethanone, 1234
[64184-96-9]	1-(2,4-Diethoxy-6-hydroxyphenyl)-2-ethoxyethanone, 1349
[64225-20-3]	2-(4-Aminophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1460
[64349-38-8]	1-(4-Hydroxy-3-methoxyphenyl)-2-methoxyethanone, 1325
[64349-40-2]	1-(3,4-Dihydroxyphenyl)-2-methoxyethanone, 1323
[64554-42-3]	1-(6-hydroxy-2,3,4-trimethoxyphenyl)-2-(3,4,5trimethoxyphenyl)ethanone, 1526
[64640-60-4]	1-(2,4-Dihydroxy-3,6-dimethoxyphenyl)-2-(3-hydroxy-4methoxyphenyl)ethanone, 1507
[64857-81-4]	1,1'-(2-Hydroxy-4-methoxy-1,3-phenylene)bis-ethanone, 1573
[64857-82-5]	1,1', $1^{\prime \prime}$-(2,4-Dihydroxy-1,3,5-benzenetriyl)tris-ethanone, 1577
[65039-95-4]	2-Methoxy-1-(6-methoxy-2,4,5-trihydroxyphenyl)ethanone, 1328
[65134-36-3]	1-[2,4-Dihydroxy-3-(1-methylnonyl)phenyl]-2,2,2trifluoroethanone, 1286
[65134-37-4]	1-[2,4-Dihydroxy-3-(1-methylundecyl)phenyl]-2,2,2trifluoroethanone, 1287
[65220-47-5]	1-(2-Hydroxy-3-methoxyphenyl)-2-(methylsulfinyl)ethanone, 1545
[65233-60-5]	1-(2,4-Dihydroxy-3-methylphenyl)-2,2,2-trifluoroethanone, 1270
[65233-62-7]	1-[2-(Acetyloxy)-4-hydroxy-3-methylphenyl]-2,2,2trifluoroethanone, 1275
[65233-62-7]	1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]-2,2,2trifluoroethanone, 1275
[65233-63-8]	1-(5-Chloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1267
[65233-64-9]	1-[2-(Acetyloxy)-5-chloro-4-hydroxyphenyl]-2,2,2trifluoroethanone, 1272
[65233-64-9]	1-[4-(Acetyloxy)-5-chloro-2-hydroxyphenyl]-2,2,2trifluoroethanone, 1272
[65233-65-0]	1-[5-Chloro-2-hydroxy-4-(octadecanoyloxy)phenyl]-2,2,2trifluoroethanone, 1288
[65233-65-0]	1-[5-Chloro-4-hydroxy-2-(octadecanoyloxy)phenyl]-2,2,2trifluoroethanone, 1288
[65233-66-1]	1-[2-Hydroxy-3-methyl-4-(10-undecenoyloxy)phenyl]-2,2,2trifluoroethanone, 1287
[65233-67-2]	1-[5-Chloro-2-hydroxy-4-(10-undecenoyloxy)phenyl]-2,2,2trifluoroethanone, 1286
[65233-68-3]	2,2,2-Trifluoro-1-(5-hexyl-2,4-dihydroxyphenyl)ethanone, 1282
[65233-69-4]	1-[2-(Acetyloxy)-5-hexyl-4-hydroxyphenyl]-2,2,2trifluoroethanone, 1285

[65233-69-4]	1-[4-(Acetyloxy)-5-hexyl-2-hydroxyphenyl]-2,2,2trifluoroethanone, 1285
[65239-67-0]	1-(2,4-Dihydroxy-5-propylphenyl)-2,2,2-trifluoroethanone, 1276
[65239-68-1]	1-[2,4-Dihydroxy-5-(1-methylethyl)phenyl]-2,2,2trifluoroethanone, 1276
[65239-69-2]	1-(2,4-Dihydroxy-3-propylphenyl)-2,2,2-trifluoroethanone, 1276
[65239-70-5]	1-[2,4-Dihydroxy-3-(1-methylethyl)phenyl]-2,2,2trifluoroethanone, 1275
[65239-71-6]	1-(5-Butyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1277
[65239-72-7]	1-[2,4-Dihydroxy-5-(2-methylpropyl)phenyl]-2,2,2trifluoroethanone, 1278
[65239-73-8]	1-[2,4-Dihydroxy-3-(2-methylpropyl)phenyl]-2,2,2trifluoroethanone, 1277
[65239-74-9]	1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]-2,2,2trifluoroethanone, 1278
[65239-75-0]	1-(2,4-Dihydroxy-5-pentylphenyl)-2,2,2-trifluoroethanone, 1279
[65239-76-1]	1-(5-Cyclopentyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1279
[65239-77-2]	1-[2,4-Dihydroxy-3-(3-methylbutyl)phenyl]-2,2,2trifluoroethanone, 1279
[65239-78-3]	1-(2,4-Dihydroxy-3-pentylphenyl)-2,2,2-trifluoroethanone, 1279
[65239-79-4]	1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1280
[65239-80-7]	2,2,2-Trifluoro-1-(5-heptyl-2,4-dihydroxyphenyl)ethanone, 1284
[65239-81-8]	1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]-2,2,2trifluoroethanone, 1283
[65239-82-9]	1-[2,4-Dihydroxy-3-(4-methylcyclohexyl)phenyl]-2,2,2-trifluoroethanone, 1284
[65239-83-0]	1-[5-(3,5-Dimethylcyclohexyl)-2,4-dihydroxyphenyl]-2,2,2trifluoroethanone, 1285
[65239-84-1]	1-(2,4-Dihydroxy-5-nonylphenyl)-2,2,2-trifluoroethanone, 1286
[65239-85-2]	1-(5-Dodecyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1287
[65239-86-3]	1-(5-Bromo-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1267
[65239-87-4]	2,2,2-Trifluoro-1-(2,3,4-trihydroxyphenyl)ethanone, 1269
[65239-88-5]	1-(2,4-Dihydroxy-3-methoxyphenyl)-2,2,2-trifluoroethanone, 1272
[65239-90-9]	1-[2,4-Dihydroxy-5-(methylthio)phenyl]-2,2,2-trifluoroethanone, 1271
[65239-91-0]	1-(5-Cyclohexyl-2,3,4-trihydroxyphenyl)-2,2,2-trifluoroethanone, 1280
[65239-92-1]	1-(5-Ethyl-2,3,4-trihydroxyphenyl)-2,2,2-trifluoroethanone, 1273
[65239-93-2]	1-(3-Chloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1267
[65239-94-3]	1-(2,4-Dihydroxy-5-octylphenyl)-2,2,2-trifluoroethanone, 1285
[65239-96-5]	1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis[2,2,2trifluoroethanone, 1620
[65240-07-5]	1-[2,4-Dihydroxy-3-(4-methylpentyl)phenyl]-2,2,2trifluoroethanone, 1281

[65240-08-6]	1-(5-Chloro-2,4-dihydroxy-3-methylphenyl)-2,2,2trifluoroethanone, 1269
[65240-09-7]	1-(3,5-Dichloro-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1266
[65240-10-0]	1-(3-Chloro-5-hexyl-2,4-dihydroxyphenyl)-2,2,2trifluoroethanone, 1281
[65240-11-1]	1-(3,5-Dibromo-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1266
[65240-12-2]	1-(3-Bromo-5-hexyl-2,4-dihydroxyphenyl)-2,2,2trifluoroethanone, 1280
[65240-13-3]	1-[2,4-Dihydroxy-5-[(4-methylphenyl)sulfonyl]phenyl]-2,2,2trifluoroethanone, 1284
[65240-14-4]	1-[2,4-Dihydroxy-3-[(4-methylphenyl)sulfonyl]phenyl]-2,2,2trifluoroethanone, 1283
[65240-15-5]	1-(2,4-Dihydroxy-3-methyl-5-nitrophenyl)-2,2,2trifluoroethanone, 1270
[65240-16-6]	1-(2,4-Dihydroxy-5-nitrophenyl)-2,2,2-trifluoroethanone, 1268
[65240-17-7]	1-(2,4-Dihydroxy-3,5-dinitrophenyl)-2,2,2-trifluoroethanone, 1266
[65240-18-8]	1-[2,4-Dihydroxy-3-(1-methylpentyl)phenyl]-2,2,2trifluoroethanone, 1281
[65240-19-9]	1-(3-Cyclododecyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1287
[65240-20-2]	1-(3-Cyclopentyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1278
[65240-21-3]	1-(3-Cycloheptyl-2,4-dihydroxyphenyl)-2,2,2-trifluoroethanone, 1284
[65240-22-4]	1-[2,4-Dihydroxy-3-(1-methylheptyl)phenyl]-2,2,2trifluoroethanone, 1285
[65240-25-7]	1-[4-(Decyloxy)-2-hydroxyphenyl]-2,2,2-trifluoroethanone, 1286
[65240-27-9]	1-(4-Butoxy-2-hydroxyphenyl)-2,2,2-trifluoroethanone, 1277
[65240-29-1]	1,1'-[Methylenebis(5-ethyl-2,4-dihydroxy-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1607
[65240-30-4]	1,1'-[Methylenebis(2,4-dihydroxy-5-methyl-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1607
[65240-31-5]	1,1'-[Methylenebis(2,4-dihydroxy-5-propyl-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1608
[65240-32-6]	1,1'-[Methylenebis(2,4-dihydroxy-5-pentyl-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1608
[65240-33-7]	1,1'-[Methylenebis(5-hexyl-2,4-dihydroxy-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1609
[65240-34-8]	1,1'-[Methylenebis(5-dodecyl-2,4-dihydroxy-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1609
[65240-35-9]	1,1'-[Methylenebis[2,4-dihydroxy-5-(1-methylethyl)-3,1-phenylene]]bis-[2,2,2-trifluoroethanone, 1607
[65240-36-0]	1,1'-[Methylenebis[2,4-dihydroxy-5-(phenylmethyl)-3,1-phenylene]]bis-[2,2,2-trifluoroethanone, 1609
[65240-37-1]	1,1'-[Methylenebis(5-cyclohexyl-2,4-dihydroxy-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1609

[65240-38-2]	1,1'-[Methylenebis[4,6-dihydroxy-5-(1-methylethyl)-3,1-phenylene]]bis[-2,2,2-trifluoroethanone, 1608
[65240-39-3]	1,1'-[Methylenebis(4,6-dihydroxy-5-methyl-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1607
[65240-40-6]	1,1'-[Methylenebis(5-chloro-2,4-dihydroxy-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1606
[65290-78-0]	1,1'-[Methylenebis(5-butyl-2,4-dihydroxy-3,1-phenylene)] bis[2,2,2-trifluoroethanone, 1608
[65568-08-3]	2-(2,4-Dimethoxyphenyl)-1-(2,4,6-trihydroxyphenyl) ethanone, 1490
[65580-31-6]	1-(5-Acetyl-2-hydroxyphenyl)-3-methyl-2-buten-1-one, 1632
[65982-77-6]	2-(Benzoyloxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1390
[66100-54-7]	1-(4-Hydroxy-3-methoxyphenyl)-2-(methylsulfinyl) ethanone, 1546
[66100-55-8]	1-(3-Hydroxy-4-methoxyphenyl)-2-(methylsulfinyl)ethanone, 1545
[66116-74-3]	2-(3,4-Dimethoxyphenyl)-1-(2,4,5-trihydroxyphenyl) ethanone, 1490
[66264-67-3]	2-Bromo-1-[4-hydroxy-3-(methylsulfonyl)phenyl]ethanone, 1216
[66265-63-2]	2-Bromo-1-[4-hydroxy-3-(methylthio)phenyl]ethanone, 1214
[66476-02-6]	1-(4-Hydroxy-3-methoxyphenyl)-2-phenylethanone, 1422
[66541-26-2]	1-[2-Hydroxy-6-methoxy-4-(2-propenyloxy)phenyl]-2phenylethanone, 1436
[66634-65-9]	1,1'-(2-Hydroxy-4,6-dimethyl-1,3-phenylene)bis-ethanone, 1579
[67029-74-7]	2-Bromo-1-(5-bromo-2-hydroxyphenyl)ethanone, 1206
[67029-80-5]	2-Bromo-1-(2-hydroxy-4,6-dimethylphenyl)ethanone, 1218
[67083-58-3]	2-(Acetyloxy)-1-(3,4-dihydroxyphenyl)ethanone, 1384
[67685-29-4]	1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-[4-methoxy-2-(phenyl-methoxy)phenyl]ethanone, 1536
[67828-68-6]	1-(4-Hydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1299
[68176-44-3]	2-(2-Hydroxyphenyl)-2-oxoethyl 2-hydroxybenzoate, 1390
[69127-79-3]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-hydroxyphenyl) ethanone, 1488
[69150-72-7]	1,1'-[4-(Acetyloxy)-2,6-dihydroxy-5-methyl-1,3-phenylene] bis-ethanone, 1584
[69151-93-5]	2-Chloro-1-(2,4-dihydroxy-3-methoxyphenyl)ethanone, 1244
[69638-06-8]	2-Bromo-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1215
[69716-74-1]	1-(4-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride), 1307
[70211-42-6]	1-(2,6-Dihydroxyphenyl)-2,2,2-trifluoroethanone, 1269
[70331-83-8]	1-(3-Chloro-2-hydroxyphenyl)-2-phenylethanone, 1401
[70390-87-3]	1-(2,6-Dihydroxy-4-methoxyphenyl)-2-methoxyethanone, 1327
[70651-70-6]	2-Chloro-1-(2,4-dihydroxy-6-methoxyphenyl)ethanone, 1244
[70779-11-2]	2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl) ethanone, 1500

[70977-83-2]	1-(3-Amino-2-hydroxy-5-methylphenyl)-2,2,2-trifluoroethanone, 1272
[70977-87-6]	1-(3-Amino-2-hydroxy-5-methylphenyl)-2-phenylethanone, 1423
[70978-48-2]	2,2,2-Trifluoro-1-(2-hydroxy-5-methyl-3-nitrophenyl) ethanone, 1270
[70978-50-6]	1-(2-Hydroxy-5-methyl-3-nitrophenyl)-2-phenylethanone, 1414
[70978-57-3]	2,2,2-Trifluoro-1-(2-hydroxy-5-methylphenyl)ethanone, 1270
[71204-07-4]	1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)] bis-ethanone, 1603
[71204-08-5]	1-[3-[(5-Acetyl-4-hydroxy-2-methoxyphenyl)methyl]-2-hydroxy-4-methoxyphenyl]ethanone, 1602
[71204-14-3]	1,1'-[Methylenebis(6-hydroxy-4,5-dimethoxy-3,1-phenylene)] bis-ethanone, 1605
[71204-18-7]	1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)] bis[2-methoxyethanone, 1641
[71204-19-8]	1,1'-[Methylenebis(2-hydroxy-4,6-dimethoxy-3,1-phenylene)] bis[2-methoxyethanone, 1642
[71643-62-4]	1,1'-(5-Chloro-2-hydroxy-1,3-phenylene)bis-ethanone, 1560
[72023-07-1]	2-Phenoxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1354
[72221-04-6]	1,1'-(4-Hydroxy-2,6-dimethoxy-1,3-phenylene)bis-ethanone, 1581
[72235-89-3]	2-Chloro-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl] ethanone, 1252
[72235-91-7]	2,2-Dichloro-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl] ethanone, 1258
[72235-94-0]	2,2-Dibromo-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl] ethanone, 1227
[72481-17-5]	2-Amino-1-(2-hydroxyphenyl)ethanone, 1293
[72511-78-5]	1-(2,4-Dihydroxy-3-iodophenyl)-2-methoxyethanone, 1321
[72511-79-6]	1-[2-Hydroxy-3-iodo-4-(2-propenyloxy)phenyl]-2methoxyethanone, 1333
[72545-40-5]	1-(2,4,6-Trihydroxyphenyl)-2-(2,4,5-trimethoxyphenyl) ethanone, 1507
[72565-72-1]	2-Chloro-1-(3-chloro-2-hydroxy-4,6-dimethoxyphenyl) ethanone, 1245
[72926-21-7]	1-[5-(2-Acetyl-3,6-dihydroxyphenoxy)-2-hydroxyphenyl] ethanone, 1614
[73014-18-3]	1-(2-Hydroxyphenyl)-2-phenoxyethanone, 1353
[73014-19-4]	1-(2,4-Dihydroxyphenyl)-2-phenoxyethanone, 1353
[73023-08-2]	1-(2-Hydroxy-4-methoxyphenyl)-2-phenoxyethanone, 1354
[73023-09-3]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenoxyethanone, 1355
[73048-86-9]	1-(3,5-Dichloro-4-hydroxyphenyl)-2-phenylethanone, 1400
[73048-87-0]	1-[(4-Hydroxy-3,5-diphenyl)phenyl]-2-phenylethanone, 1444
[73048-87-0]	1-(2'-Hydroxy[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-5'-yl)-2-phenylethanone, 1444
[73049-12-4]	1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-phenylethanone, 1430
[73049-13-5]	1-(4-Hydroxy-3,5-dimethylphenyl)-2-phenylethanone, 1426

[73331-41-6] 2-Chloro-1-(2-hydroxy-6-methylphenyl)ethanone, 1240
[73898-24-5] 2-Bromo-1-(3-ethyl-4-hydroxyphenyl)ethanone, 1217
[73898-25-6] 2-Bromo-1-[4-hydroxy-3-(1-methylethyl)phenyl]ethanone, 1221
[73898-26-7]
[73898-29-0]
[73898-30-3]
[73898-31-4]
[73898-32-5]
[73898-33-6
[73898-34-7]
[73898-35-8]
[73898-36-9]
[73937-48-1] 1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-(4-methoxyphenyl)ethanone, 1510
[74047-41-9] 1-[2-Hydroxy-3-iodo-6-methoxy-4-(2-propenyloxy)phenyl]-2methoxyethanone, 1338
[74047-42-0] 1-(2,4-Dihydroxy-3-iodo-6-methoxyphenyl)-2-methoxyethanone, 1323
[74384-31-9] 1-(4-Hydroxy-3-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1480
[74384-32-0] 1-(4-Hydroxy-3,5-dimethylphenyl)-2-(4-methoxyphenyl) ethanone, 1496
[74384-33-1] 1-(2-Hydroxy-3-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1480
[74384-34-2] 1-(2-Hydroxy-5-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1480
[74384-35-3] 1-(2-Hydroxy-3,5-dimethylphenyl)-2-(4-methoxyphenyl) ethanone, 1496
[74384-36-4] 1-(2-Hydroxy-3-methylphenyl)-2-(2-methoxyphenyl) ethanone, 1479
[74384-37-5] 1-(4-Hydroxy-3,5-dimethylphenyl)-2-(2-methoxyphenyl) ethanone, 1496
[74384-38-6] 1-(2-Hydroxy-5-methylphenyl)-2-(2-methoxyphenyl) ethanone, 1480
[74384-39-7] 1-(2-Hydroxy-3,5-dimethylphenyl)-2-(2-methoxyphenyl) ethanone, 1496
[74730-79-3] 2-(Ethylamino)-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1303
[74815-26-2] 2-Bromo-1-(3,5-dibromo-2,6-dihydroxyphenyl)ethanone, 1202
[74815-30-8] 2-Bromo-1-(5-cyclohexyl-2-hydroxyphenyl)ethanone, 1223
[75060-43-4] 2-Chloro-1-[5-(1,1-dimethylethyl)-2-hydroxyphenyl]ethanone, 1252
[75060-51-4] 1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2-phenylethanone, 1436
[75060-56-9] 1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2,2trifluoroethanone, 1277

[75060-68-3]	1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2chloroethanone (Hydrochloride), 1253
[75060-74-1]	1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2,2-trifluoroethanone (Hydrochloride), 1280
[75060-96-7]	1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2chloroethanone, 1253
[75060-97-8]	1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2,2-trifluoroethanone, 1279
[75278-00-1]	1-(2,4-Dihydroxy-6-methylphenyl)-2-methoxyethanone, 1324
[75278-05-6]	1-(2-Hydroxy-6-methylphenyl)-2-methoxyethanone, 1324
[75631-42-4]	1,1'-[4,6-Dihydroxy-5-(2-propenyl)-1,3-phenylene]bis-ethanone, 1583
[75643-06-0]	1,1'-[4,6-Dihydroxy-5-(1-methylethyl)-1,3-phenylene]bisethanone, 1584
[75717-49-6]	2-Chloro-1-(3-chloro-2-hydroxyphenyl)ethanone, 1231
[75717-50-9]	2-Chloro-1-(4-chloro-2-hydroxyphenyl)ethanone, 1231
[75717-51-0]	2-Chloro-1-(2-hydroxy-3-methylphenyl)ethanone, 1239
[75717-52-1]	2-Chloro-1-(2-hydroxy-3-methoxyphenyl)ethanone, 1242
[75717-53-2]	2-Chloro-1-(2-hydroxy-5-methoxyphenyl)ethanone, 1243
[75717-55-4]	2,2,2-Trichloro-1-(2-hydroxyphenyl)ethanone, 1259
[75717-59-8]	2-Chloro-1-(2-hydroxy-6-methoxyphenyl)ethanone, 1243
[76095-38-0]	2-(4-Methoxyphenyl)-1-(2,4,5-trihydroxyphenyl)ethanone, 1474
[76439-46-8]	2-Chloro-1-[5-(chloromethyl)-2-hydroxy-3,4-dimethoxyphenyl] ethanone, 1250
[76569-42-1]	2,2,2-Trichloro-1-(2,4-dihydroxyphenyl)ethanone, 1260
[76716-12-6]	1,1'-(4-Ethyl-2-hydroxy-6-methyl-1,3-phenylene) bis-ethanone, 1584
[76716-15-9]	1,1'-[2-Hydroxy-4-methyl-6-(trifluoromethyl)-1,3-phenylene] bis-ethanone, 1576
[77316-95-1]	2-(4-Hydroxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1459
[77369-38-1]	2-Amino-1-(4-hydroxyphenyl)ethanone, 1294
[78274-03-0]	1,1'-(2-Hydroxy-4-methoxy-6-methyl-1,3-phenylene) bis-ethanone, 1581
[78563-09-4]	1,1'-[Methylenebis(5-fluoro-2-hydroxy-3,1-phenylene)] bis-ethanone, 1599
[78563-10-7]	1,1'-[Methylenebis(2,5-dihydroxy-3,1-phenylene)] bis-ethanone, 1600
[78563-21-0]	1,1'-[Carbonylbis(2,5-dihydroxy-3,1-phenylene)] bis-ethanone, 1637
[78563-23-2]	1,1'-[Carbonylbis(5-amino-2-hydroxy-3,1-phenylene)] bis-ethanone, 1638
[78660-73-8]	1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-2-phenylethanone, 1432
[79010-36-9]	1-(3-Acetyl-4-hydroxyphenyl)-1-propanone, 1631
[79214-30-5]	2-Chloro-1-(3,5-dichloro-2-hydroxyphenyl)ethanone, 1229
[79324-45-1]	1,1'-(4-Amino-6-hydroxy-1,3-phenylene)bis-ethanone, 1569

[79324-47-3]	1,1'-(4-Amino-6-hydroxy-5-propyl-1,3-phenylene) bis-ethanone, 1585
[79324-49-5]	1,1'-[4-(Ethylamino)-6-hydroxy-1,3-phenylene]bis-ethanone, 1582
[79324-51-9]	1,1'-[4-(Ethylamino)-6-hydroxy-5-propyl-1,3-phenylene] bis-ethanone, 1588
[79744-47-1]	1-(2-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1465
[79744-49-3]	2-(2-Methoxyphenyl)-1-(2,4,5-trihydroxyphenyl)ethanone, 1472
[79744-54-0]	1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone, 1470
[79744-55-1]	1-(2,5-Dihydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1486
[79744-57-3]	1-(2,4-Dihydroxy-5-methoxyphenyl)-2-phenylethanone, 1422
[79744-61-9]	1-(2,4,6-Trihydroxyphenyl)-2-(3,4,5-trimethoxyphenyl) ethanone, 1508
[80427-38-9]	1-(2-Hydroxy-5-methoxyphenyl)-2-phenylethanone, 1420
[81116-01-0]	1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-(4methylphenyl)ethanone, 1534
[82817-51-4]	1,1'-(2,4-Dihydroxy-5,6-dimethyl-1,3-phenylene) bis-ethanone, 1580
[83143-04-8]	1,1-[Methylenebis(5-bromo-2-hydroxy-3,1-phenylene)] bis-ethanone, 1598
[83143-05-9]	1,1'-[Carbonylbis(5-fluoro-2-hydroxy-3,1-phenylene)] bis-ethanone, 1636
[83143-06-0]	1,1'-[Carbonylbis(5-chloro-2-hydroxy-3,1-phenylene)] bis-ethanone, 1636
[83143-07-1]	1,1'-[Carbonylbis(5-bromo-2-hydroxy-3,1-phenylene)] bis-ethanone, 1636
[83143-08-2]	1,1'-[Carbonylbis(2-hydroxy-3,1-phenylene)]bis-ethanone, 1636
[83505-27-5]	2-Fluoro-1-(2-hydroxyphenyl)ethanone, 1264
[83768-75-6]	2-Hydroxy-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1377
[84018-72-4]	2-(1,3-Benzodioxol-5-yl)-1-(2,3,4-trihydroxyphenyl)ethanone, 1462
[84018-73-5]	2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxy-3,4-dimethoxyphenyl) ethanone, 1492
[84312-32-3]	1-(3-Benzoyl-2-hydroxy-4,6-dimethylphenyl)ethanone, 1629
[84312-33-4]	1-(3-Benzoyl-6-hydroxy-2,4-dimethylphenyl)ethanone, 1629
[84422-38-8]	$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(4,6-dihydroxy-5,1,3-benzenetriyl)] tetrakis-ethanone, 1604
[84422-44-6]	$\begin{aligned} & \text { 1-(3-Acetyl-2,4-dihydroxyphenyl)-3-phenyl-2-propen-1-one }(E) \text {, } \\ & 1633 \end{aligned}$
[84422-46-8]	$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2,4-dihydroxy-5,1,3-benzenetriyl)] tetrakis-ethanone, 1603
[84422-49-1]	$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2-hydroxy-4-methoxy-5,1,3-benzenetriyl)]tetrakis-ethanone, 1605
[84422-51-5]	1,1'-[Methylenebis(5-acetyl-4,6-dihydroxy-3,1-phenylene)]bis-[3-phenyl-2-propen-1-one (E, E), 1645

[85288-47-7]	xy-2-methoxyphenyl)-2-phenylethanone, 1421
[85288-48-8]	1-(2-Hydroxy-4-methoxyphenyl)-2-(2,4,5-trimethoxyphenyl) ethanone, 1519
[85299-04-3]	2,2-Dichloro-1-(3-hydroxyphenyl)ethanone, 1256
[85450-67-5]	1,1'-(2-Hydroxy-4,6-dimethyl-5-nitro-1,3-phenylene) bis-ethanone, 1579
[85450-70-0]	1-(4-Benzoyl-3-hydroxy-5-methyl-6-nitro[1,1'-biphenyl]-2-yl) ethanone, 1630
[85450-76-6]	1,1'-(5-Amino-2-hydroxy-4,6-dimethyl-1,3-phenylene)bisethanone, 1582
[85450-81-3]	1-(6-Amino-4-benzoyl-3-hydroxy-5-methyl[1,1'-biphenyl]-2-yl)ethanone, 1630
[85465-61-8]	2-Fluoro-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1265
[85602-17-1]	2-Phenyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl] ethanone, 1437
[85602-22-8]	2-(4-Chlorophenyl)-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl) phenyl]ethanone, 1521
[85950-49-8]	2-Methoxy-1-(2,4,6-trihydroxy-3,5-dimethoxyphenyl) ethanone, 1332
[86828-07-1]	1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl] ethanone, 1605
[86828-08-2]	1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl) phenyl]ethanone, 1606
[87538-40-7]	1-(2-Hydroxy-4-methoxy-3-methylphenyl)-2-phenylethanone, 1427
[87538-41-8]	1-(2-Hydroxy-4-methoxy-5-methylphenyl)-2-phenylethanone, 1427
[87669-75-8]	2-(3,5-Dichloro-2-hydroxyphenyl)-2-oxoethyl dimethylcarbamodithioate, 1547
[88092-53-9]	2-Chloro-1-(2-hydroxy-4,6-dimethoxyphenyl)-2methoxyethanone, 1329
[88503-19-9]	2,2-Dibromo-1-(3-bromo-2-hydroxy-4,6-dimethoxyphenyl) ethanone, 1227
[88693-95-2]	2-[Bis(phenylmethyl)amino]-1-(4-hydroxyphenyl)ethanone, 1318
[89019-83-0]	1-(2,4-Dihydroxyphenyl)-2-(3-methoxyphenyl)ethanone, 1467
[89019-84-1]	1-(2,4-Dihydroxyphenyl)-2-(3-hydroxyphenyl)ethanone, 1457
[89019-87-4]	2-(4-Ethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl) ethanone, 1497
[89019-88-5]	1-(4-Hydroxy-2-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone, 1469
[90005-54-2]	2-Amino-1-(3-hydroxyphenyl)ethanone, 1293
[90426-22-5]	2-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1377
[90464-79-2]	1,1'-(4-Hydroxy-1,2-phenylene)bis-ethanone, 1562
[90536-46-2]	2-Hydroxy-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1376
[90971-90-7]	2-Bromo-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1215
[91061-33-5]	2-Ethoxy-1-(4-hydroxyphenyl)ethanone, 1346

[91144-13-7]	1-[6-Hydroxy-2-methoxy-3,4-(methylenedioxy)phenyl]-2methoxyethanone, 1328
[91363-39-2]	2-Bromo-1-[4-hydroxy-3-(methoxymethyl)phenyl]ethanone, 1219
[91498-04-3]	1, 1'-(2,4-Dihydroxy-5,6-dimethoxy-1,3-phenylene) bis-ethanone, 1582
[91555-84-9]	1-(4-Ethoxy-2-hydroxy-6-methoxyphenyl)-2-methoxyethanone, 1334
[92103-22-5]	1-(5-Chloro-2,4-dihydroxyphenyl)-2-phenylethanone, 1402
[92152-59-5]	1-(5-Bromo-2,4-dihydroxyphenyl)-2-phenylethanone, 1401
[92152-60-8]	2-(4-Bromophenyl)-1-(2,4-dihydroxyphenyl)ethanone, 1450
[92435-54-6]	1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-phenylethanone, 1412
[92549-19-4]	1-(2-Hydroxyphenyl)-2-(2-methoxyphenyl)ethanone, 1465
[92549-46-7]	1-(2,4-Dihydroxyphenyl)-2-(2-methoxyphenyl)ethanone, 1467
[92596-96-8]	2,2-Dibromo-1-(4-hydroxyphenyl)ethanone, 1226
[92757-66-9]	1-(5-Acetyl-2-hydroxyphenyl)-1-butanone, 1631
[92757-67-0]	1-(5-Acetyl-2-hydroxyphenyl)-1-hexanone, 1633
[93107-86-9]	1,1'-(4,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl) bis-ethanone, 1594
[93107-87-0]	1,1'-(2,4'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl) bis-ethanone, 1597
[93107-89-2]	1,1'-(2,2'-Dihydroxy-6,6'-dimethoxy[1,1'-biphenyl]-3,3'-diyl) bis-ethanone, 1593
[93107-98-3]	$1,1^{\prime}-\left(2,2^{\prime}, 6,6^{\prime}\right.$-Tetrahydroxy[1, 1^{\prime}-biphenyl]-3,3'-diyl) bis-ethanone, 1592
[93108-00-0]	$1,1^{\prime}-\left(2,4^{\prime}, 6,6^{\prime}\right.$-Tetrahydroxy[1, 1^{\prime}-biphenyl]-3,3'-diyl) bis-ethanone, 1596
[93433-76-2]	1-(2-Hydroxy-3,5-dimethylphenyl)-2-phenylethanone, 1425
[93434-89-0]	1-(2,4-Dihydroxy-3-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1481
[93435-58-6]	2-(3,4-Dimethoxyphenyl)-1-(2,3,4-trihydroxyphenyl) ethanone, 1490
[93899-00-4]	1-(2-Hydroxy-3-methoxyphenyl)-2-phenylethanone, 1419
[94240-17-2]	1-(3-Hydroxyphenyl)-2-(methylamino)ethanone (Hydrochloride), 1298
[94385-86-1]	1-[2-Hydroxy-6-(phenylmethoxy)-3,4,5-trimethoxyphenyl]-2-methoxyethanone, 1344
[94413-26-0]	1-[5-Acetyl-2-hydroxy-3-(3-methyl-2-butenyl)phenyl]-3-methyl- 2-buten-1-one, 1634
[94413-27-1]	1-[5-Acetyl-2-hydroxy-3-(1-hydroxy-3-methyl-2-butenyl)phenyl]-3-methyl-1-butanone, 1633
[94413-28-2]	1,1'-(5-Acetyl-2-hydroxy-1,3-phenylene)bis[3-methylbutanone, 1635
[94683-36-0]	2-(1,3-Benzodioxol-5-yl)-1-[2-hydroxy-4-[(3-methyl-2-butenyl) oxy]-phenyl]ethanone, 1525
[95235-25-9]	2,2-Dichloro-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1257
[95307-71-4]	1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-(4-methoxyphenyl)ethanone, 1531

[95832-50-1]	1-[2,4-Dihydroxy-3,5-bis(phenylmethyl)phenyl]-2phenylethanone, 1446
[95832-51-2]	1-[2,4-Dihydroxy-3-(phenylmethyl)phenyl]-2-phenylethanone, 1440
[95832-52-3]	1-[2,4-Dihydroxy-5-(phenylmethyl)phenyl]-2-phenylethanone, 1441
[95832-53-4]	1-[2-Hydroxy-4-methoxy-5-(phenylmethyl)phenyl]-2phenylethanone, 1442
[95832-54-5]	1-[2-Hydroxy-4-methoxy-3-(phenylmethyl)phenyl]-2phenylethanone, 1442
[95832-55-6]	1-[2-Hydroxy-4-methoxy-3,5-bis(phenylmethyl)phenyl]-2-phenylethanone, 1448
[96643-95-7]	1-(5-Ethyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1427
[96643-96-8]	1-(5-Butyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1436
[96643-97-9]	1-(2,4-Dihydroxy-5-pentylphenyl)-2-phenylethanone, 1437
[96643-98-0]	1-(5-Hexyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1439
[96643-99-1]	2-(4-Bromophenyl)-1-(5-ethyl-2,4-dihydroxyphenyl) ethanone, 1477
[96644-00-7]	2-(4-Chlorophenyl)-1-(5-ethyl-2,4-dihydroxyphenyl) ethanone, 1477
[96644-01-8]	1-(2,4-Dihydroxy-5-propylphenyl)-2-(4-fluorophenyl) ethanone, 1495
[96644-02-9]	1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1478
[96644-03-0]	1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-methoxyphenyl) ethanone, 1497
[96644-04-1]	1-(5-Ethyl-2,4-dihydroxyphenyl)-2-[4-(1-methylethoxy)phenyl]ethanone, 1522
[96661-12-0]	1-(2,4-Dihydroxy-5-propylphenyl)-2-phenylethanone, 1432
[96853-73-5]	1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-1butanone, 1643
[96853-74-6]	1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone, 1644
[97714-79-9]	1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-2-phenylethanone, 1433
[97714-80-2]	1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone, 1513
[97714-81-3]	1-[4-(Ethoxymethoxy)-2,6-dihydroxyphenyl]-2-phenylethanone, 1434
[97829-54-4]	1-(2,4-Dihydroxyphenyl)-2-[4-[2-(2,4-dihydroxyphenyl)-2-oxoethyl]-phenyl]ethanone, 1641
[98149-38-3]	1,1'-(5-Bromo-2,4,6-trihydroxy-1,3-phenylene)bis-ethanone, 1559
[98436-51-2]	2,2,2-Tribromo-1-(3,5-dibromo-2-hydroxyphenyl)ethanone, 1228
[98497-95-1]	1-[3,5-Bis(diphenylmethyl)-2,4-dihydroxyphenyl]-2-phenylethanone, 1449
[98497-96-2]	1-[3-(Diphenylmethyl)-2,4-dihydroxyphenyl]-2-phenylethanone, 1445

[98497-97-3]	1-[5-(Diphenylmethyl)-2,4-dihydroxyphenyl]-2-phenylethanone, 1445
[98498-01-2]	1-[3-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]-
	2-phenylethanone, 1446
[98498-02-3]	1-[5-(Diphenylmethyl)-2-hydroxy-4-methoxyphenyl]-
	2-phenylethanone, 1446
[98569-63-2]	1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-
	5-methyl-3,1-phenylene)]bis-ethanone, 1604
[98592-28-0]	2-Bromo-1-(3,4,5-tribromo-2-hydroxy-6-methoxyphenyl) ethanone, 1210
99075-26-0]	2-(Ethylamino)-1-(4-hydroxyphenyl)ethanone, 1303
[99233-30-4]	1-(2-Hydroxyphenyl)-2-iodoethanone, 1289
[99233-31-5]	1-(4-Hydroxyphenyl)-2-iodoethanone, 1289
[99657-26-8]	2-Bromo-1-(5-bromo-2,4-dihydroxyphenyl)ethanone, 1206
[99783-86-5]	1-(3-Hydroxy-4-methoxyphenyl)-2-(2-hydroxyphenoxy) ethanone, 1361
[99865-77-7]	1,1'-(4-Hydroxy-6-methoxy-1,3-phenylene)bis-ethanone, 1574
[99984-12-0]	1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)
	bis[2-chloroethanone, 1590
[99985-57-6]	1-(4-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone, 1306
[100059-77-6]	1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-2-methoxyethanone, 1331
[100245-07-6]	1,1'-(4-Hydroxy-5-nitro-1,3-phenylene)bis-ethanone, 1560
[100245-11-2]	1,1'-(5-Amino-4-hydroxy-1,3-phenylene)bis-ethanone, 1569
[100866-41-9]	1-(4-Hydroxyphenyl)-2-(phenylamino)ethanone, 1314
[100959-21-5]	1-(5-Bromo-2-hydroxyphenyl)-2-chloroethanone, 1230
[101068-28-4]	2-(2-Fluorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1453
[101094-12-6]	1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone, 1470
[101169-10-2]	1-(4-Hydroxy-2-methoxy-5-methylphenyl)-2-phenylethanone, 1428
[101241-90-1]	1-(3-Hydroxyphenyl)-2-[(1-methylethyl)amino]ethanone (Hydrochloride), 1306
[101386-50-9]	2-Bromo-1-[4-hydroxy-3-(2-hydroxyethyl)phenyl]ethanone, 1219
[101495-49-2]	2,2,2-Tribromo-1-(2-hydroxyphenyl)ethanone, 1228
[102478-26-2]	1-[2-Hydroxy-4-[[(4-methylphenyl)sulfonyl]oxy]phenyl]-2phenylethanone, 1441
[102599-68-8]	1-[2-Hydroxy-4-[[(4-methylphenyl)sulfonyl]oxy]phenyl]-2-(4-methoxy-phenyl)ethanone, 1532
[102706-12-7]	1-[4-(Benzoyloxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl) ethanone, 1531
[102749-29-1]	1-[2-Hydroxy-6-methoxy-3-methyl-4-(phenylmethoxy)phenyl]-2-(4-methoxyphenyl)ethanone, 1534
[102904-17-6]	1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl) phenyl]-1-butanone, 1644
[103040-51-3]	2-Chloro-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1249

[103154-01-4]	1,1'-[Thiobis(2-hydroxy-6-methoxy-3,1-phenylene)] bis-ethanone, 1622
[103262-48-2]	1,1'-(4,6-Dihydroxy-5-nitro-1,3-phenylene)bis-ethanone, 1561
[103264-32-0]	1,1'-(2,4-Dihydroxy-5-nitro-1,3-phenylene)bis-ethanone, 1561
[103323-12-2]	1-(2-Hydroxy-5-methoxyphenyl)-2-methoxyethanone, 1325
[103867-89-6]	1,1'-(2-Hydroxy-1,3-phenylene)bis-ethanone, 1562
[103867-90-9]	1,1'-(2-Hydroxy-5-methoxy-1,3-phenylene)bis-ethanone, 1574
[104236-84-2]	1-(5-Acetyl-2,4-dihydroxyphenyl)-3-phenyl-2-propen-1-one (E), 1633
[104310-93-2]	1-[3,5-Bis(diphenylmethyl)-2,4,6-trihydroxyphenyl]-2phenylethanone, 1449
[104310-95-4]	1-[3-(Diphenylmethyl)-2,4,6-trihydroxyphenyl]-2-phenylethanone, 1445
[104654-31-1]	1,1'-[4-(Acetyloxy)-2,6-dihydroxy-1,3-phenylene] bis-ethanone, 1577
[104654-32-2]	1,1'-[5-(Acetyloxy)-4,6-dihydroxy-1,3-phenylene] bis-ethanone, 1578
[104676-23-5]	1,1'-[2-Hydroxy-5-[1-(4-hydroxyphenyl)-1-methylethyl]-1,3-phenylene]bis-ethanone, 1610
[104676-24-6]	1,1'-[5-[1-(3-Acetyl-4-hydroxyphenyl)-1-methylethyl]-2-hydroxy- 1,3-phenylene]bis-ethanone, 1612
[104676-25-7]	$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[(1-Methylethylidene)bis(2-hydroxy-5,1,3-benzenetriyl)]tetrakis-ethanone, 1614
[104691-67-0]	2-Chloro-1-(4-hydroxy-2-methoxyphenyl)ethanone, 1243
[104783-89-3]	1-(2-Hydroxy-4-methoxy-6-methylphenyl)-2-(methylsulfinyl) ethanone, 1547
[104972-13-6]	2-(4-Fluorophenoxy)-1-(4-hydroxy-3-methoxyphenyl) ethanone, 1359
[105153-11-5]	2-(2,6-Dimethoxy-4-methylphenoxy)-1-(4-hydroxy-3methoxyphenyl)ethanone, 1366
[105174-52-5]	1-(4-Hydroxy-3-methoxyphenyl)-2-iodoethanone, 1291
[105174-59-2]	1-(3,4-Dihydroxyphenyl)-2-iodoethanone, 1290
[105174-62-7]	2-Iodo-1-(2,3,4-trihydroxyphenyl)ethanone, 1290
[105190-52-1]	2-Bromo-1-(2,3,4-trihydroxyphenyl)ethanone, 1210
[105644-17-5]	1-(3,4-Dihydroxyphenyl)-2-[(1,1-dimethylethyl)amino] ethanone, 1312
[106556-47-2]	1-[5-(Diphenylmethyl)-2,3,4-trihydroxyphenyl]-2-phenyl ethanone, 1446
[106737-29-5]	1-(2,4-Dihydroxy-5-methylphenyl)-2-phenylethanone, 1418
[106823-62-5]	1,1'-(5-Fluoro-2-hydroxy-1,3-phenylene)bis-ethanone, 1560
[107044-42-8]	1-[2-Hydroxy-4-(phenylmethoxy)-3-(phenylmethyl)phenyl]-2phenylethanone, 1447
[107044-43-9]	1-[2-Hydroxy-4-(phenylmethoxy)-3,5-bis(phenylmethyl)phenyl]-2-phenylethanone, 1448
[107044-44-0]	1-[2-Hydroxy-4-(phenylmethoxy)-5-(phenylmethyl)phenyl]-2phenylethanone, 1447

5]	1-(2,3-Dihydroxyphenyl)-2-phenylethanone, 1407
[107410-02-6]	1-(3,4-Dihydroxyphenyl)-2-phenylethanone, 1409
[107410-55-9]	1-(4-Chloro-2-hydroxyphenyl)-2-phenylethanone, 1402
[107584-64-5]	1-(4-Hydroxyphenyl)-2-(3-methylphenoxy)ethanone, 1359
[107584-67-8]	1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methylphenoxy) ethanone, 1363
[107584-68-9]	1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methoxyphenoxy) ethanone, 1364
[107584-69-0]	1-(4-Hydroxy-3-methoxyphenyl)-2-[3-(trifuoromethyl)phenoxy] ethanone, 1362
[107584-70-3]	1-(4-Hydroxy-3-methoxyphenyl)-2-(3-nitrophenoxy) ethanone, 1359
[107584-71-4]	1-(4-Hydroxy-3-methoxyphenyl)-2-(3-hydroxyphenoxy) ethanone, 1362
[107584-78-1]	2-Bromo-1-(4-hydroxy-2,5-dimethylphenyl) ethanone, 1218
[107584-79-2]	1-(4-Hydroxy-2,5-dimethylphenyl)-2-(3-methylphenoxy) ethanone, 1365
[107584-80-5]	1-(4-Hydroxy-2,5-dimethylphenyl)-2-[3-(trifluoromethyl) phenoxy]ethanone, 1365
[107602-85-7]	2-(3-Chlorophenoxy)-1-(4-hydroxy-3-methoxyphenyl) ethanone, 1358
[107700-04-9]	2-Bromo-1-[3-bromo-5-(chloromethyl)-4-hydroxyphenyl] ethanone, 1211
[107700-05-0]	2,2-Dibromo-1-[3-bromo-5-(chloromethyl)-4-hydroxyphenyl] ethanone, 1227
[108378-94-5]	1-(2-Hydroxyphenyl)-2-[(4-methylphenyl)thio]ethanone, 1553
[108378-95-6]	1-(2-Hydroxyphenyl)-2-[(4-methylphenyl)sulfinyl] ethanone (\pm), 1553
[108434-12-4]	2-([1,1'-Biphenyl]-2-yloxy)-1-(4-hydroxy-3-methoxyphenyl) ethanone, 1367
[108448-95-9]	1-(2-Hydroxyphenyl)-2-[(4-methylphenyl)sulfinyl]ethanone (R), 1553
[108708-11-8]	1-(5-Amino-2-hydroxyphenyl)-2-chloroethanone, 1237
[108708-12-9]	1-(3-Amino-4-hydroxyphenyl)-2-chloroethanone, 1237
[108708-13-0]	1-(4-Amino-2-hydroxyphenyl)-2-chloroethanone, 1237
[108909-49-5]	1,1'-(3-Hydroxy-4',5-dimethyl[1,1'-biphenyl]-2,6-diyl) bis-ethanone, 1596
[108909-50-8]	1,1'-[4'-(Dimethylamino)-3-hydroxy-5-methyl[1,1'-biphenyl]-2,6-diyl]bis-ethanone, 1589
[109089-92-1]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(3-methoxyphenyl) ethanone, 1503
[109089-93-2]	1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1504
[109091-12-5]	1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(2,4-dimethoxyphenyl) ethanone, 1505

[109092-83-3]	1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(3,4-dimethoxyphenyl) ethanone, 1505
[109250-71-7]	2-(3,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl) ethanone, 1519
[109561-92-4]	1-(2-Hydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1456
[110325-66-1]	1,1'-(2,4'-Dihydroxy-6,6'-dimethoxy-2',4-dimethyl[1, 1^{\prime}-biphenyl]- 3,3'-diyl)-bis-ethanone, 1597
[110333-13-6]	2-Methoxy-1-(2,4,6-trihydroxy-3-methylphenyl)ethanone, 1327
[110865-03-7]	2-Chloro-1-(2,4,6-trihydroxyphenyl)ethanone, 1236
[111011-09-7]	2-Bromo-1-(3,4,5-trihydroxyphenyl)ethanone, 1210
[111191-98-1]	2-(3,5-Dimethoxyphenyl)-1-(2-hydroxy-4-methylphenyl) ethanone, 1497
[111192-02-0]	2-(3,5-Dihydroxyphenyl)-1-(2-hydroxy-4-methylphenyl) ethanone, 1467
[111422-36-7]	2,2,2-Trichloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl] ethanone, 1263
[111422-37-8]	1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2,2trifluoroethanone, 1277
[111474-27-2]	2-(3-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1473
[111809-47-3]	1-(2-Hydroxyphenyl)-2-[(phenylmethyl)thio]ethanone, 1553
[112198-28-4]	1-[2-Hydroxy-5-methyl-4-(phenylmethoxy)phenyl]-2phenylethanone, 1443
[113272-14-3]	2-[(4-Chlorophenyl)thio]-1-(2-hydroxyphenyl)ethanone, 1549
[113272-15-4]	2-[(4-Chlorophenyl)sulfinyl]-1-(2-hydroxyphenyl)ethanone, 1549
[114829-07-1]	2,2-Difluoro-1-(4-methoxyphenyl)ethanone, 1266
[114847-19-7]	2-(3,4-Dimethoxyphenyl)-1-(4-hydroxy-3-methoxyphenyl) ethanone, 1501
[115207-18-6]	1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2(methylsulfinyl)ethanone, 1555
[115781-11-8]	2-(4-Chlorophenoxy)-1-(2,4-dihydroxyphenyl)ethanone, 1356
[115781-49-2]	1-(2-Hydroxy-5-methylphenyl)-2-(2,4,5-trihydroxyphenyl) ethanone, 1471
[115781-50-5]	1-(2-Hydroxyphenyl)-2-(2,4,5-trihydroxyphenyl)ethanone, 1459
[115781-51-6]	1-(5-Chloro-2-hydroxyphenyl)-2-(2,4,5-trihydroxyphenyl) ethanone, 1452
[115781-52-7]	1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-(2,4,5trihydroxyphenyl)ethanone, 1463
[115781-53-8]	2-(2,5-Dihydroxyphenyl)-1-(2-hydroxy-5-methylphenyl) ethanone, 1467
[115781-54-9]	2-(2,5-Dihydroxyphenyl)-1-(2-hydroxyphenyl)ethanone, 1458
[115781-55-0]	1-(5-Chloro-2-hydroxyphenyl)-2-(2,5-dihydroxyphenyl) ethanone, 1452
[115781-56-1]	1-(5-Chloro-2-hydroxy-4-methylphenyl)-2-(2,5-dihydroxyphenyl) ethanone, 1462
[115834-34-9]	1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl] ethanone, 1639

[116046-02-7]	2,2-Dichloro-1-(2-hydroxy-4-methylphenyl)ethanone, 1256
70-07-6]	1-(3-Acetyl-2,4-dihydroxyphenyl)-3-phenyl-2-propen
[116470-10-1]	1-(3-Acetyl-2,6-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)-2-propen-1-one, 1635
[116470-11-2]	1-(3-Acetyl-2,4-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)-2-propen-1-one, 1635
6470-16-7]	1,1'-[4-(Acetyloxy)-2-hydroxy-1,3-phenylene]bis-ethanone, 1577
[116475-72-0]	1-(2-Chloro-6-hydroxy-4-methoxyphenyl)-2-phenylethanone, 1413
[116512-00-6]	2-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-oxoethyl 4-methoxybenzoate, 1393
[116512-01-7]	1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-[(4-nitrobenzoyl)oxy]ethanone, 1392
	2-(2-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1473
[117156-74-8]	1,1'-[4-Hydroxy-6-(2-propenyloxy)-1,3-phenylene]bis-ethanone, 1583
-7	1,1'-(5-Bromo-4,6-dihydroxy-1,3-phenylene)bis-ethanone, 1559
[117374-55-7]	1,1'-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)-1,3-phenylene]bisethanone, 1587
[117374-56-8]	1,1'-[4,6-Dihydroxy-5-(3-methyl-2-butenyl)-1,3-phenylene]bisethanone, 1587
[117421-24-6]	2-(Benzoyloxy)-1-(2,5-dihydroxyphenyl)ethanone, 1389
[117951-88-9]	1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-2-(4-methoxyphenyl)ethanone, 1509
[117951-89-0]	1-[4-(Ethoxymethoxy)-2-hydroxy-3-(2-propenyl)phenyl]-2-(4methoxyphenyl)ethanone, 1528
[117951-95-8]	1-[4-(Ethoxymethoxy)-2-hydroxy-3-(2-propenyl)phenyl]-2phenylethanone, 1439
[117951-99-2]	2-(1,3-Benzodioxol-5-yl)-1-[2,4-dihydroxy-3-(2-propenyl) phenyl]ethanone, 1508
[118788-50-4]	2-Bromo-1-[3-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1222
[120388-18-3]	2-Bromo-1-(4-hydroxy-3,5-dinitrophenyl)ethanone, 1201
[120388-19-4]	2,2-Dibromo-1-(4-hydroxy-3,5-dinitrophenyl)ethanone, 1224
[120936-27-8]	1-(4-Hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2methoxyphenoxy]ethanone, 1367
[121060-02-4]	1-(2,4-Dihydroxyphenyl)-2-(2-fluorophenyl)ethanone, 1453
[121060-06-8]	2-(2-Fluorophenyl)-1-[2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-Dglucopyranosyl)oxy]phenyl]ethanone, 1535
[121361-55-5]	1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenoxy)ethanone, 1361
[121361-56-6]	1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenoxy)ethanone, 1357
[121361-57-7]	1-[2-Hydroxy-4-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy] phenyl]-2-(4-methoxyphenoxy)ethanone, 1368
[121361-58-8]	1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]-2-(4methoxyphenoxy)ethanone, 1367
[121377-35-3]	2-(4-Fluorophenoxy)-1-[2-hydroxy-4-[(2,3,4,6-tetra-O-acetyl- D-glucopyranosyl)oxy]phenyl]ethanone, 1368

[122918-54-1]	1-(4-Hydroxy-3-methylphenyl)-2,2-diphenylethanone, 1540
[123716-19-8]	2,2,2-Trifluoro-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1271
[124208-68-0]	1-[3-(3-Acetyl-4-hydroxybenzoyl)-4-hydroxyphenyl] ethanone, 1640
[124208-69-1]	1-[2-Hydroxy-5-(2-hydroxybenzoyl)phenyl]ethanone, 1639
[125617-37-0]	1-[4-(3-Bromopropoxy)-2-hydroxyphenyl]-2,2,2trifluoroethanone, 1275
[125617-40-5]	1-[4-(3-Bromopropoxy)-2-hydroxy-3-propylphenyl]-2,2,2trifluoroethanone, 1281
[125629-36-9]	2-Bromo-1-(4-hydroxy-3-methoxy-5-nitrophenyl)ethanone, 1212
[126026-30-0]	1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl) phenyl]-2-methyl-1-propanone, 1644
[126260-45-5]	1-(5-Chloro-2-hydroxyphenyl)-2-phenylethanone, 1402
[126262-24-6]	1-(4-Hydroxy-3-methoxyphenyl)-2-(1-methyl-2-pyrrolidinyl)ethanone (-), 1316
[126581-65-5]	2-Bromo-1-(5-fluoro-2-hydroxyphenyl)ethanone, 1203
[127255-97-4]	1-(2-Hydroxyphenyl)-2,2-dimethoxyethanone, 1325
[127354-33-0]	2-Chloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl] ethanone, 1251
[127354-34-1]	2-Chloro-1-[3-(1,1-dimethylethyl)-4-hydroxyphenyl] ethanone, 1252
[127354-36-3]	2-Chloro-1-[4-(dimethylamino)-2-hydroxyphenyl]ethanone, 1250
[127354-38-5]	2,2-Dichloro-1-[3-(1,1-dimethylethyl)-2-hydroxyphenyl] ethanone, 1258
[127354-45-4]	2,2-Dichloro-1-[3-(1,1-dimethylethyl)-2-hydroxy-5-methylphenyl] ethanone, 1258
[127526-42-5]	2-(4-Fluorophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1357
[128040-46-0]	1-(2-Hydroxy-4-methoxyphenyl)-2-(4-fluorophenyl)ethanone, 1463
[128197-51-3]	1,1'-[Ethylidenebis(4,5,6-trihydroxy-3,1-phenylene)] bis-ethanone, 1610
[128672-42-4]	1-(2,6-Dihydroxy-4-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1482
[129207-78-9]	1-(2,4-Dihydroxy-6-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethanone, 1520
[129207-79-0]	1-(3,4,6-Trihydroxy-2-methoxyphenyl)-2-(3,4,5trimethoxyphenyl)ethanone, 1521
[129207-80-3]	2-(3,4-Dimethoxyphenyl)-1-(3,4,6-trihydroxy-2-methoxyphenyl)ethanone, 1507
[130064-19-6]	1-(2-Hydroxyphenyl)-2-[4-[(tetrahydro-2H-pyran-2-yl)oxy] phenyl]ethanone, 1521
[130064-20-9]	1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-2phenylethanone, 1437

[130064-21-0] 1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-2-[4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]ethanone, 1535
[130627-04-2] 1-(4-Hydroxyphenyl)-2-[(2-nitrobenzoyl)oxy]ethanone, 1389
[130778-21-1] 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl) phenyl]-1-butanone, 1644
[131137-70-7] 1-(2-Hydroxyphenyl)-2-(phenylsulfinyl)ethanone, 1551
[131137-71-8] 2-[(4-Chlorophenyl)sulfinyl]-1-(2-hydroxyphenyl)ethanone (\pm), 1549
[131170-16-6] 2,2,2-Trichloro-1-(4-hydroxyphenyl)ethanone, 1260
[131196-70-8] 1-(2,6-Dihydroxy-3-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1482
[131196-74-2] 1-(4-Hydroxy-2,6-dimethoxyphenyl)-2-phenylethanone, 1430
[131341-58-7] 2-Hydroxy-1-(3-hydroxyphenyl)ethanone, 1370
[131836-01-6] 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-5-(2,3-dihydroxy-3-methylbutyl)-2,4,6-trihydroxyphenyl] ethanone, 1643
[131844-78-5] 1,1'-(4,6'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-ethanone, 1595
[131845-71-1] 2-Chloro-1-(5'-ethyl-4-hydroxy-2'-methoxy[1,1'-biphenyl]-3-yl) ethanone, 1254
[131941-97-4] 1,1'-(2-Hydroxy-4-methyl-1,3-phenylene)bis-ethanone, 1570
[131985-77-8] 1-(3,4-Dihydroxyphenyl)-2-(phenylthio)ethanone, 1551
[132020-84-9] 1-(4,6-Dihydroxy-2,3-dimethylphenyl)-2-methoxyethanone, 1329
[132197-47-8] 2-Hydroxy-1-[2-hydroxy-4-(2-phenylethyl)phenyl]ethanone, 1380
[133301-45-8] 2-Bromo-1-(2-hydroxy-4-pentylphenyl)ethanone, 1222
[133859-03-7] 1-(2-Hydroxy-3-methylphenyl)-2,2-diphenylethanone, 1539
[133859-04-8] 1-(2-Hydroxy-4-methylphenyl)-2,2-diphenylethanone, 1539
[133859-05-9] 1-(2-Hydroxy-5-methylphenyl)-2,2-diphenylethanone, 1540
[133859-06-0] 1-(4-Hydroxy-2-methylphenyl)-2,2-diphenylethanone, 1540
[133859-07-1] 1-(4-Hydroxyphenyl)-2,2,2-triphenylethanone, 1540
[134610-95-0] 2-Bromo-1-(3,4-dihydroxy-5-nitrophenyl)ethanone, 1205
[134612-56-9] 1-(3,4-Dihydroxy-5-nitrophenyl)-2-hydroxyethanone, 1369
[136811-82-0] 1,1'-[4-Hydroxy-2-[(3-methyl-2-butenyl)oxy]-1,3-phenylene] bis-ethanone, 1588
[136811-83-1] 1,1'-[4-Hydroxy-6-[(3-methyl-2-butenyl)oxy]-1,3-phenylene] bis-ethanone, 1588
[137524-65-3] 1-(4-Hydroxyphenyl)-2-(phenylthio)ethanone, 1550
[137612-24-9] 1-(2-Hydroxy-5-methoxyphenyl)-2-phenoxyethanone, 1354
[137612-30-7] 2-(4-Fluorophenoxy)-1-(2-hydroxyphenyl)ethanone, 1356
[137937-39-4] 1-(2-Hydroxy-6-methylphenyl)-2-phenylethanone, 1416
[137986-09-5] 1-(4-Chloro-2-hydroxy-6-methoxyphenyl)-2-phenylethanone, 1413
[137987-82-7] 1-(2,4-Dihydroxyphenyl)-2-(2-fluorophenoxy)ethanone, 1357
[137987-83-8] 2-(2,4-Dichlorophenoxy)-1-(2,4-dihydroxyphenyl)ethanone, 1355
[137987-84-9] 1-(2,4-Dihydroxyphenyl)-2-(4-methylphenoxy)ethanone, 1360

[137987-85-0]	1-(2,4-Dihydroxyphenyl)-2-(3-methylphenoxy)ethanone, 1360
887-86-1]	1-(2,4-Dihydroxyphenyl)-2-(2-methylphenoxy)ethano
]	1-(2,4-Dihydroxyphenyl)-2-(3-methoxyphenoxy)ethanone, 136
37987-88-3]	1-(2,4-Dihydroxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1361
37987-89-4]	1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenoxy)ethanone, 1358
[37987-90-7]	1-(2,4-Dihydroxyphenyl)-2-(3-nitrophenoxy)ethanone, 1358
[137987-91-8]	1-(2,4-Dihydroxyphenyl)-2-(2-nitrophenoxy)ethanone, 1357
[137987-93-0]	2-(4-Acetoxyphenoxy)-1-(2,4-dihydroxyphenyl)ethanone, 1362
[138206-45-8]	1-(2-Hydroxyphenyl)-2-methoxyethanone, 1321
[139256-01-2]	1-(2,3-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1456
[139256-02-3]	1-(5-Chloro-2,4-dihydroxyphenyl)-2-(4-hydroxyphenyl) ethanone, 1451
[139256-03-4]	1-(2,4-Dihydroxy-3-methylphenyl)-2-(4-hydroxyphenyl) ethanone, 1466
[139256-04-5]	1-(2,4-Dihydroxy-6-methylphenyl)-2-(4-hydroxyphenyl) ethanone, 1466
39473-80-6]	2-(Acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1384
[142050-40-6]	1-(2,4-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)-ethanone- $1-{ }^{14} C, 1471$
[142050-41-7]	1-(2,4-Dihydroxyphenyl)-2-(3,4-dimethoxyphenyl)ethanone-1${ }^{14} C, 1487$
[142382-28-3]	1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-3,1-phenylene)]bis ethanone, 1603
[142751-36-8]	O-[3-Hydroxy-4-(phenylacetyl)phenyl] dimethylcarbamothioate, 1432
[142751-37-9]	O-[3-Hydroxy-4-[(2-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate, 1511
[142751-38-0]	O-[3-Hydroxy-4-[(4-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate, 1512
[142751-39-1]	O-[4-(1,3-Benzodioxol-5-ylacetyl)-3-hydroxyphenyl] dimethylcarbamothioate, 1509
[142751-40-4]	S-[3-Hydroxy-4-(phenylacetyl)phenyl] dimethylcarbamothioate, 1432
[142751-41-5]	S-[3-Hydroxy-4-[(2-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate, 1511
[142751-42-6]	S-[3-Hydroxy-4-[(4-methoxyphenyl)acetyl]phenyl] dimethylcarbamothioate, 1512
[142751-43-7]	S-[4-(1,3-Benzodioxol-5-ylacetyl)-3-hydroxyphenyl] dimethylcarbamothioate, 1509
[142751-44-8]	2-(1,3-Benzodioxol-5-yl)-1-(2-hydroxyphenyl)ethanone, 1461
[142905-41-7]	1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxyphenyl]-2hydroxyethanone, 1380
[143091-87-6]	2-(Benzoyloxy)-1-(2,4-dihydroxyphenyl)ethanone, 1389
[143287-02-9]	1-[4-(Decyloxy)-2-hydroxyphenyl]-2-phenylethanone, 1444
[143287-03-0]	1-[4-(Dodecyloxy)-2-hydroxyphenyl]-2-phenylethanone, 1445

[143486-72-0] 1-(4-Hydroxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1360
[143527-88-2] 1-(4-Hydroxyphenyl)-2-nitrosoethanone, 1396
[143868-77-3] 1,1'-[(2-Methoxyethylidene)bis(4,5,6-trihydroxy-3,1-phenylene)] bis-ethanone, 1611
[144219-74-9] 2-Bromo-1-(2-hydroxy-4-methylphenyl)ethanone, 1213
[144632-80-4] 1,1'-(4,6-Dihydroxy-5-methoxy-1,3-phenylene)bis-ethanone, 1575
[144757-78-8] 1-(4-Hydroxyphenyl)-2,2-dimethoxyethanone, 1326
[144757-79-9] 1-(4-Hydroxyphenyl)-2,2-bis(3-methylbutoxy)ethanone, 1352
[144757-80-2] 1-(4-Hydroxyphenyl)-2,2-bis(1-methylethoxy)ethanone, 1351
[144978-69-8] 2-Bromo-1-(4-hydroxy-3-iodo-5-methoxyphenyl)ethanone, 1211
[145489-92-5] 1,1'-(4-Hydroxy-5-iodo-6-phenoxy-1,3-phenylene)bis-ethanone, 1589
[145736-97-6] 2-Chloro-1-(3-ethyl-4-hydroxyphenyl)ethanone, 1245
[145747-27-9] 1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-phenylethanone, 1424
[145747-28-0] 1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-(4-methoxyphenyl) ethanone, 1491
[145747-29-1] 1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-phenylethanone, 1435
[145747-30-4] 2-[4-(Acetyloxy)phenyl]-1-[2,6-bis(acetyloxy)-4-hydroxyphenyl] ethanone, 1525
[145818-22-0] 2,2,2-Trichloro-1-(2-hydroxy-3-methylphenyl)ethanone, 1260
[145818-23-1] 2,2-Dichloro-1-(2-hydroxy-3-methylphenyl)ethanone, 1256
[145818-24-2] 2,2,2-Trichloro-1-[4-(1,1-dimethylethyl)-2-hydroxyphenyl] ethanone, 1263
[145818-25-3] 2,2,2-Trichloro-1-(2-hydroxy-5-methoxyphenyl) ethanone, 1261
[145818-26-4] 2,2,2-Trichloro-1-(5-chloro-2-hydroxyphenyl)ethanone, 1259
[145818-27-5] 2,2,2-Trichloro-1-(2,5-dihydroxyphenyl)ethanone, 1260
[146533-78-0] 1, 1^{\prime}-[[(4-Hydroxy-3-methoxyphenyl)methylene]bis(4,6-dihydroxy-3,1-phenylene)]bis-ethanone, 1643
[146935-09-3] 1-[4-(1,5-Dimethylhexyl)-2-hydroxyphenyl]-2-phenylethanone, 1443
[147220-80-2] 2-(4-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1451
[147220-82-4] 1-(2,4-Dihydroxyphenyl)-2-fluoroethanone, 1265
[147437-71-6] 2-(Benzoyloxy)-1-(2-hydroxy-4,6-dimethoxyphenyl) ethanone, 1391
[147747-31-5] 1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-(4-hydroxyphenyl) ethanone, 1508
[147904-65-2] 1-[4-Hydroxy-3-(4-hydroxy-3-methoxybenzoyl)-5methoxyphenyl]ethanone, 1640
[147904-68-5] 1-[4-Hydroxy-3-(4-hydroxy-3-methoxy-5-methylbenzoyl)-5methoxyphenyl]ethanone, 1640
[147904-69-6] 1-[3-(3,4-Dihydroxy-5-methoxybenzoyl)-4-hydroxy-5methoxyphenyl]ethanone, 1640
[148707-32-8] 1-[5-Acetyl-2-hydroxy-3-(3-methyl-1,3-butadienyl)phenyl]-3-methyl-1-butanone (E), 1634

[149312-75-4]	2-(2,4-Dimethoxyphenoxy)-1-(2,4,6-trihydroxyphenyl) ethanone, 1365
[149312-76-5]	2-[2,4-Bis(phenylmethoxy)phenoxy]-1-(2,4,6-trihydroxyphenyl) ethanone, 1367
[149492-41-1]	1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-(3-methyl-2-butenyl)phenyl]-2-hydroxyethanone (E), 1382
[149492-42-2]	1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4,6-dihydroxyphenyl]-2hydroxyethanone (E), 1381
50295-88-8]	1-(3,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1458
[151792-80-2]	2-Chloro-1-[3-hydroxy-4-(methylthio)phenyl]ethanone, 1240
[152306-57-5]	1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxy-4methylphenoxy)ethanone, 1366
[153355-99-8]	2-Bromo-1-[3-bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl] ethanone, 1222
[153432-53-2]	2-Chloro-1-(2-hydroxy-4-methoxyphenyl)-2-(phenylthio) ethanone, 1552
[157014-26-1]	2-Bromo-1-[4-hydroxy-3,5-bis(1-methylethyl)phenyl] ethanone, 1223
2]	2-Bromo-1-(4-hydroxy-3,5-dimethylphenyl)ethanone,
[157068-00-3]	2-Bromo-1-(4-chloro-2-hydroxyphenyl)ethanone, 1203
[159977-40-9]	1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-2-phenylethanone, 1438
[160925-81-5]	2-Chloro-1-(3-chloro-4-hydroxy-5-methoxyphenyl) ethanone, 1238
[161040-30-8]	2-(Cyclohexylamino)-1-(3,5-dihydroxyphenyl)ethanone, 1315
[163980-43-6]	2-Chloro-1-(2,5-dihydroxy-4-methoxyphenyl)ethanone, 1245
[167638-61-1]	2-(β-D-Glucopyranosyloxy)-1-(4-hydroxyphenyl)ethanone, 1351
[168706-29-4]	$1,1^{\prime}-\left(2^{\prime}, 3,6,6^{\prime}\right.$-Tetrahydroxy $\left[1,1^{\prime}\right.$-biphenyl $]-2,3^{\prime}$-diyl)bis-ethanone, 1596
[170802-46-7]	1,1'-(4-Hydroxy-2-methyl-1,3-phenylene)bis-ethanone, 1571
[175546-62-0]	1-(2,4-Dihydroxyphenyl)-2-(4-hydroxy-2-methoxyphenyl) ethanone, 1471
[178959-37-0]	2-(β-D-Glucopyranosyloxy)-1-(4-hydroxy-3-methoxyphenyl) ethanone, 1352
[178978-33-1]	2-Hydroxy-1-(4-hydroxy-3-propylphenyl)ethanone, 1379
[180154-50-1]	2-Bromo-1-(5-ethyl-2-hydroxyphenyl)ethanone, 1218
[183054-34-4]	2-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)ethanone, 1482
[184706-61-4]	2-Hydroxy-1-(2-hydroxy-4,6-dimethoxy-3-methylphenyl) ethanone, 1379
[188194-66-3]	2,2,2-Trifluoro-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1271
[188194-67-4]	2,2,2-Trifluoro-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1274
[191157-34-3]	1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2(methylsulfonyl)ethanone, 1555
[191847-25-3]	1-(2-Bromo-6-hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1477

5]	49
3738-66-8]	2,2,2-Trifluoro-1-(2-hydroxy-6-methoxyphenyl)ethanone, 1271
4226-48-7]	2-Bromo-1-(2-hydroxy-3-iodo-5-methylphenyl)ethanone, 1211
4226-49-8]	2-Bromo-1-(5-bromo-2-hydroxy-4-methylphenyl)ethanone, 1212
[194226-50-1]	2-Bromo-1-(3-bromo-2-hydroxy-5-methylphenyl)ethanone, 1212
[194226-51-2]	2-Bromo-1-(5-bromo-2-hydroxy-3-methylphenyl)ethanone, 1212
[194226-52-3]	2-Bromo-1-(3,5-dibromo-2-hydroxyphenyl)ethanone, 1202
[197447-05-5]	2,2-Dihydroxy-1-(4-hydroxyphenyl)ethanone, 1372
[200420-28-6]	2,2-Diethoxy-1-(4-hydroxyphenyl)ethanone, 1347
[201283-81-3]	1-(2,4-Dihydroxyphenyl)-2-(4-propylphenoxy)ethanone, 1366
[201284-76-6]	1-(2,4-Dihydroxyphenyl)-2-(4-ethylphenoxy)ethanone, 1363
[201284-86-8]	1-(2,4-Dihydroxyphenyl)-2-[4-(1-methylethyl)phenoxy] ethanone, 1365
[201288-73-5]	2-Chloro-1-(3-chloro-2-hydroxy-4,6-dimethoxy-5-methylphenyl)ethanone, 1250
[203004-96-0]	1,1'-[5-(1,1-Dimethylethyl)-2-hydroxy-1,3-phenylene]bisethanone, 1586
[203524-87-2]	2-Bromo-1-(2-hydroxy-5-methoxyphenyl)ethanone, 1215
[204068-63-3]	1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-2-(4-methoxyphenyl) ethanone, 1521
[204648-51-1]	2-Bromo-1-(2-hydroxy-3,5-dimethoxyphenyl)ethanone, 1220
[204648-54-4]	2-Bromo-1-(2,5-dihydroxy-3,4-dimethoxyphenyl)ethanone, 1221
[204648-57-7]	2-Bromo-1-(3,6-dihydroxy-2,4-dimethoxyphenyl)ethanone, 1221
[204648-67-9]	2-Bromo-1-(2,3-dihydroxy-4-methoxyphenyl)ethanone, 1216
[205655-36-3]	2-Bromo-1-[4-hydroxy-2-methyl-5-(1-methylethyl)phenyl] ethanone, 1222
[205880-83-7]	1-(2-Hydroxy-6-methoxy-4-methylphenyl)-2-(methylsulfinyl) ethanone, 1547
[214959-26-9]	2-(3,5-Dibromo-2-hydroxyphenyl)-2-oxoethyl dimethylcarbamodithioate, 1546
[214959-27-0]	2-(3,5-Dibromo-2-hydroxyphenyl)-2-oxoethyl diethylcarbamodithioate, 1548
[215431-54-2]	2,2'-Thiobis-1-(3,4-dihydroxyphenyl)ethanone, 1641
[215653-80-8]	1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl) ethanone-1- ${ }^{13} C, 1458$
[216301-65-4]	2-(2,5-Dihydroxyphenyl)-2-oxoethyl 2-propylpentanoate, 1387
[216301-66-5]	2-(2,5-Dihydroxyphenyl)-2-oxoethyl hexanoate, 1387
[220042-67-1]	1-[2-Hydroxy-5-(2-hydroxy-5-methylbenzoyl)phenyl] ethanone, 1639
[220042-68-2]	1-[5-(5-Chloro-2-hydroxybenzoyl)-2-hydroxyphenyl] ethanone, 1638
[220042-69-3]	1-[2-Hydroxy-5-(2-hydroxy-5-nitrobenzoyl)phenyl] ethanone, 1638
[220131-30-6]	2-Bromo-1-(2-fluoro-4-hydroxyphenyl)ethanone, 1203
[220291-97-4]	2-Chloro-1-(3,5-dichloro-4-hydroxyphenyl)ethanone, 1229

0]	$1,1^{\prime}$-(5,5',6,6'-Tetrahydroxy[1,1'-biphenyl]-3,3'-diyl) bis-ethanone, 1592
30310-20-0]	2-(4-Hydroxyphenyl)-2-oxoethyl benzeneacetate, 1387
[230310-21-1]	2-(4-Hydroxyphenyl)-2-oxoethyl 2,2-dimethylpropanoate, 1387
[230310-23-3]	2-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-oxoethyl benzeneacetate, 1388
[230310-24-4]	2-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-oxoethyl 2,2-dimethylpropanoate, 1388
[243465-50-1]	1,1'-[Methylenebis(2,4,6-trihydroxy-3,1-phenylene)] bis-[2-phenoxy]ethanone, 1645
4346	2-(4-Bromophenoxy)-1-(2,4-dihydroxyphenyl)ethanone, 1356
[243465-56-7]	1-(5-Ethyl-2,4-dihydroxyphenyl)-2-phenoxyethanone, 1355
[243657-59-2]	2-(4-Chlorophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1356
[243657-60-5]	2-(4-Bromophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1356
[243657-61-6]	2-(4-Iodophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1357
[243657-62-7]	2-(4-Ethylphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1363
[243657-65-0]	2-(4-Methoxyphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1362
[243657-66-1]	2-(4-Ethoxyphenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1364
[243657-68-3]	2-(4-Nitrophenoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1358
[247931-29-9]	1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl) ethanone, 1495
[260430-25-9]	2-Bromo-1-(5-bromo-2-hydroxy-3,4-dimethylphenyl) ethanone, 1217
[260430-29-3]	2-(5-Bromo-2-hydroxyphenyl)-2-oxoethyl thiocyanate, 1543
[260430-31-7]	2-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)-2-oxoethyl thiocyanate, 1546
[260435-53-8]	2-Bromo-1-(3,5-dibromo-2-hydroxy-4-methylphenyl) ethanone, 1211
[262591-28-6]	2-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl) ethanone- $1-{ }^{13} C, 1460$
[274925-86-9]	1-(3,4-Dihydroxy-5-nitrophenyl)-2-phenylethanone, 1403
[274925-87-0]	1-(3,4-Dihydroxy-5-nitrophenyl)-2-(2-methylphenyl) ethanone, 1463
[274925-89-2]	2-(4-Chlorophenyl)-1-(3,4-dihydroxy-5-nitrophenyl) ethanone, 1450
[274925-97-2]	1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-phenylethanone, 1414
[294888-77-0]	1,1'-(4-Hydroxy-5-methoxy-1,3-phenylene)bis-ethanone, 1574
[295779-85-0]	2-Fluoro-1-(4-hydroxyphenyl)ethanone, 1265
[303143-05-7]	1-(3-Bromo-4-hydroxyphenyl)-2,2,2-trifluoroethanone, 1267
[303143-06-8]	2,2,2-Trifluoro-1-(4-hydroxy-3-iodophenyl)ethanone, 1267
[319923-52-9]	2-Bromo-1-(3-bromo-2-hydroxy-4,5-dimethylphenyl) ethanone, 1217
[322405-72-1]	2-(Phenylmethoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1345
[332072-68-1]	1-(3-Hydroxyphenyl)-2-phenylethanone, 1405

[371258-72-9]	1-(2-Hydroxy-5-methylphenyl)-2-[(S)-(4-methylphenyl)sulfinyl]ethanone, 1554
[371258-74-1]	1-(2-Hydroxy-5-methylphenyl)-2-[(R)-(4-methylphenyl)sulfinyl]ethanone, 1554
[371258-80-9]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-[(R)-(4-methylphenyl) sulfinyl]ethanone, 1554
[371258-84-3]	1-[2-Hydroxy-4,6-dimethoxy-3-(2-propenyl)phenyl]-2-[(S)-(4methylphenyl)sulfinyl]ethanone, 1555
[400871-10-5]	1-(3,4-Dihydroxy-5-nitrophenyl)-2-(4-methylphenyl)ethanone, 1463
[400871-12-7]	2-Cyclohexyl-1-(3,4-dihydroxy-5-nitrophenyl)ethanone, 1541
[400871-22-9]	1-(3,4-Dihydroxy-5-nitrophenyl)-2,2-diphenylethanone, 1538
[402490-73-7]	2-(3,5-Dihydroxyphenyl)-1-(4-hydroxyphenyl)ethanone, 1458
[438625-16-2]	1-(5-Chloro-2-hydroxyphenyl)-2-iodoethanone, 1289
[440362-23-2]	1-(3,4-Dihydroxy-5-nitrophenyl)-2-(4-methoxyphenyl) ethanone, 1464
[473789-93-4]	1-(3-Hydroxy-4-methoxy-5-nitrophenyl)-2-phenylethanone, 1414
[473790-02-2]	1-(3-Amino-4,5-dihydroxyphenyl)-2-phenylethanone, 1411
[478795-87-8]	1-(2,4-Dihydroxy-6-methylphenyl)-2-(methylsulfinyl)ethanone, 1545
[478795-93-6]	1-(4-Ethoxy-2-hydroxy-6-methylphenyl)-2-(methylsulfinyl) ethanone, 1548
[478795-94-7]	1-(2-Hydroxy-6-methyl-4-propoxyphenyl)-2-(methylsulfinyl) ethanone, 1549
[478795-95-8]	1-[2-Hydroxy-6-methyl-4-(1-methylethoxy)phenyl]-2(methylsulfinyl)ethanone, 1548
[478795-96-9]	1-[2-Hydroxy-6-methyl-4-(2-methylpropoxy)phenyl]-2(methylsulfinyl)ethanone, 1552
[478795-97-0]	1-[2-Hydroxy-6-methyl-4-(1-methylpropoxy)pheny]-2(methylsulfinyl)ethanone, 1552
[478795-98-1]	1-(4-Butoxy-2-hydroxy-6-methylphenyl)-2-(methylsulfinyl) ethanone, 1551

Volume 3 - Addendum

[99-40-1] 2-Chloro-1-(3,4-dihydroxyphenyl)ethanone, 1664
[99-45-6] 1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone, 1678
[350-27-6] 2-Bromo-1-(3-fluoro-4-methoxyphenyl)ethanone, 1655
[402-99-3] 1-(3,4-Dihydroxyphenyl)-2-fluoroethanone, 1669
[487-47-8] 1-(2,4-Dihydroxyphenyl)-2-hydroxyethanone, 1691
[487-49-0] 1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1706
[499-61-6] 2-Amino-1-(3,4-dihydroxyphenyl)ethanone, 1676
[711-38-6] 2,2,2-Trifluoro-1-(4-methoxyphenyl)ethanone, 1672
[727-71-9]
[1204-21-3]
[1823-63-8]
[1835-02-5]
[2002-75-7]
[2161-85-5]
[2161-86-6]
[2161-87-7]
[2196-99-8]
[2491-31-8]
[2491-36-3]
[2491-37-4]
[2491-38-5]
[2491-39-6]
[2632-13-5]
[2729-19-3]
[2967-87-5]
[2999-42-0]
[3098-38-2]
[3122-36-9]
[3133-39-9]
[3141-93-3]
[3669-41-8]
[3883-94-1]
[4136-21-4]
[4254-67-5]
[4783-90-8]
[4927-55-3]
[4974-60-1]
[5000-65-7]
[5029-61-8]
[5086-77-1]
[5438-67-5]
[5706-85-4]
[6305-04-0]
[6595-28-4]
[7249-35-6]
[7298-46-6]
[7507-92-8]
[13664-92-1]
[14035-39-3]
[14386-64-2]

2-Phenyl-1-(2,4,6-trihydroxyphenyl)ethanone, 1697
2-Bromo-1-(2,5-dimethoxyphenyl)ethanone, 1653
2,2,2-Trifluoro-1-(4-hydroxyphenyl)ethanone, 1671
2-Bromo-1-(3,4-dimethoxyphenyl)ethanone, 1653
2-Chloro-1-(5-fluoro-2-hydroxyphenyl)ethanone, 1663
1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-ethanone, 1720
1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-ethanone, 1720
$1,1^{\prime}, 1^{\prime \prime}$-(2,4,6-Trihydroxy-1,3,5-benzenetriyl)tris-ethanone, 1721
2-Chloro-1-(4-methoxyphenyl)ethanone, 1664
1-(2-Hydroxyphenyl)-2-phenylethanone, 1696
2-Bromo-1-(2-hydroxyphenyl)ethanone, 1651
2-Bromo-1-(3-hydroxyphenyl)ethanone, 1651
2-Bromo-1-(4-hydroxyphenyl)ethanone, 1652
2-Bromo-1-(2,4-dihydroxyphenyl)ethanone, 1652
2-Bromo-1-(4-methoxyphenyl)ethanone, 1652
2-(4-Fluorophenyl)-1-(4-methoxyphenyl)ethanone, 1705
2-Fluoro-1-(2-methoxyphenyl)ethanone, 1669
1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-ethanone, 1720
1,1'-(2,4-Dihydroxy-6-methoxy-1,3-phenylene)bis-ethanone, 1720
1,2-Bis[3-methoxy-4-(phenylmethoxy)phenyl]ethanone, 1710
1,1'-(2,4,6-Trimethoxy-5-methyl-1,3-phenylene)bis-ethanone, 1721
1-(3,4-Dimethoxyphenyl)-2-phenylethanone, 1697
1-(2,4-Dihydroxyphenyl)-2-phenylethanone, 1697
2-Amino-1-(4-methoxyphenyl)ethanone (Hydrochloride), 1675
2-Hydroxy-1-(4-methoxyphenyl)ethanone, 1691
2-Bromo-1-[4-(phenylmethoxy)phenyl]ethanone, 1652
2-Chloro-1-(2,4-dimethoxyphenyl)ethanone, 1664
1,2-Bis(3,4-dimethoxyphenyl)ethanone, 1703
2,2-Dichloro-1-(4-hydroxyphenyl)ethanone, 1667
2-Bromo-1-(3-methoxyphenyl)ethanone, 1652
2-Bromo-1-(4-hydroxy-3-nitrophenyl)ethanone, 1650
2-Bromo-1-(3-hydroxy-4-nitrophenyl)ethanone, 1650
1,2-Bis(4-hydroxy-3-methoxyphenyl)ethanone, 1709
2-Hydroxy-1-(4-hydroxyphenyl)ethanone, 1691
2-Chloro-1-(4-hydroxyphenyl)ethanone, 1663
2-Azido-1-(4-methoxyphenyl)ethanone, 1677
2-(4-Acetyl-2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl) ethanone, 1732
2-Bromo-1-(2,4,5-trimethoxyphenyl)ethanone, 1660
2-Chloro-1-(2-hydroxy-3,4-dimethoxyphenyl)ethanone, 1666
2,2-Dibromo-1-(4-methoxyphenyl)ethanone, 1661
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2phenylethanone, 1699
1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2bromoethanone, 1661
[14665-75-9]
[14771-02-9]
[15485-63-9]
[15485-66-2]
[15485-67-3]
[15485-70-8]
[16629-88-2]
[17055-19-5]
[17375-96-1]
[17720-60-4]
[18439-96-8]
[18929-89-0]
[19278-85-4]
[19513-78-1]
[19745-72-3]
[20816-46-0]
[20834-75-7]
[21160-26-9]
[22317-35-7]
[22341-22-6]
[22675-96-3]
[23081-13-2]
[23840-15-5]
[24037-72-7]
[24483-75-8]
[25015-91-2]
[25015-92-3]
[25666-51-7]
[26944-43-4]
[27045-16-5]
[28924-18-7]
[29003-60-9]
[29389-04-6]
[29477-54-1]
[29705-80-4]
[30095-51-3]
[30186-16-4]
[30724-22-2]
[31949-21-0]
[32136-81-5]

2-Amino-1-(3-hydroxyphenyl)ethanone (Hydrochloride), 1675
2-Chloro-1-(2,4,5-trihydroxyphenyl)ethanone, 1664
1-(2,4-Dihydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1701
2-(4-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1707
2-(4-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1702
1-(2,4-Dihydroxyphenyl)-2-(4-fluorophenyl)ethanone, 1701
2,2-Dichloro-2-fluoro-1-(4-methoxyphenyl)ethanone, 1668
1,2-Bis(3,5-di-tert-butyl-4-hydroxyphenyl)ethanone, 1713
2-Hydroxy-1-(2-hydroxyphenyl)ethanone, 1690
1-(2,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1702
1-(2-Hydroxy-4-methoxyphenyl)-2-phenylethanone, 1698
1-(3,4-Dimethoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl) ethanone, 1712
2-Chloro-1-(2,4,5-trimethoxyphenyl)ethanone, 1664
1-(4-Methoxyphenyl)-2-phenoxyethanone, 1686
2-Amino-1-(4-hydroxyphenyl)ethanone (Hydrochloride), 1675
2-(Acetyloxy)-1-(4-hydroxyphenyl)ethanone, 1693
2-Chloro-1-(2-hydroxy-4-methylphenyl)ethanone, 1665
1-(4-Methoxyphenyl)-2-methoxyethanone, 1682
1-(4-Hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy) ethanone, 1687
1-(3,4-Dimethoxyphenyl)-2-methoxyethanone, 1683
1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone, 1687
1-(4-Hydroxyphenyl)-2-mercaptoethanone, 1713
1-(2-Acetyl-6-methoxy-5-benzofuranyl)ethanone, 1722
2-Amino-1-(3-methoxyphenyl)ethanone (Hydrochloride), 1675
2-Chloro-1-(5-chloro-2-hydroxyphenyl)ethanone, 1663
2-Bromo-1-(2,5-dihydroxyphenyl)ethanone, 1653
2-Chloro-1-(2,4-dihydroxyphenyl)ethanone, 1664
2,2,2-Trifluoro-1-(2-hydroxyphenyl)ethanone, 1671
2,2,2-Trifluoro-1-(2-methoxyphenyl)ethanone, 1671
2-Acetoxy-1-(7-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl) ethanone, 1695
1-[3,5-Bis(phenylmethoxy)phenyl]-2-bromoethanone, 1654
2,2-Dichloro-1-(4-methoxyphenyl)ethanone, 1667
2-(2,6-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone, 1690
1-(3,4-Dihydroxyphenyl)-2-hydroxyethanone, 1691
1-(4-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride 1:1), 1679
2-Bromo-1-(2-chloro-4-methoxyphenyl)ethanone, 1655
1,1'-(4-Hydroxy-1,3-phenylene)bis-ethanone, 1719
2,2,2-Trifluoro-1-(3-methoxyphenyl)ethanone, 1672
2-Bromo-1-(2-methoxyphenyl)ethanone, 1651
1-(4-Hydroxyphenyl)-2-methoxyethanone, 1682

[33245-76-0]	2-Bromo-1-(4,5-dimethoxy-2-nitrophenyl)ethanone, 1659
[33470-10-9]	1-(2-Methoxyphenyl)-2-phenylethanone, 1697
[34589-97-4]	2-Amino-1-(2-methoxyphenyl)ethanone (Hydrochloride), 1675
[36256-45-8]	Methyl 5-(Bromoacetyl)-2-hydroxybenzoate, 1659
[36695-28-0]	1-[2-(Benzoyloxy)-5-methyl-3-nitrophenyl]-2-bromoethanone, 1655
[37904-71-5]	2-Chloro-1-(4-hydroxy-2-methylphenyl)ethanone, 1666
[39066-18-7]	2-Chloro-1-(3-chloro-4-hydroxyphenyl)ethanone, 1663
[39548-98-6]	2-(1,3-Benzodioxol-5-yl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1704
[39604-64-3]	1-(2-Hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1709
[39604-66-5]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-phenylethanone, 1698
[39604-68-7]	1-(2-Hydroxy-4,6-dimethoxyphenyl)-2-(4-methoxyphenyl) ethanone, 1712
[39604-80-3]	1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-2-phenylethanone, 1699
[40131-99-5]	2-Bromo-1-(3,4-dihydroxyphenyl)ethanone, 1653
[40231-09-2]	2-(Acetyloxy)-1-(2-hydroxyphenyl)ethanone, 1693
[40513-43-7]	2-Amino-1-(4-methoxyphenyl)ethanone, 1675
[40943-24-6]	2-Chloro-1-(4-hydroxy-3-methylphenyl)ethanone, 1666
[41877-17-2]	2-Bromo-1-(4-hydroxy-3-methylphenyl)ethanone, 1657
[41877-19-4]	2-Bromo-1-(3-chloro-4-hydroxyphenyl)ethanone, 1649
[41978-28-3]	1-(4-Hydroxy-3-methoxyphenyl)-2-phenoxyethanone, 1686
[41978-29-4]	1-(4-Hydroxyphenyl)-2-phenoxyethanone, 1686
[46188-84-5]	1-(4-Methoxyphenyl)-2-(methylthio)ethanone, 1715
[46318-58-5]	1-(4-Methoxyphenyl)-2-nitroethanone, 1696
[50841-50-4]	2-Bromo-1-(3,5-dimethoxyphenyl)ethanone, 1654
[50893-83-9]	1-[4-(Acetyloxy)-3-methoxyphenyl]-2-bromoethanone, 1658
[51317-87-4]	2-Bromo-1-(2-hydroxy-5-methylphenyl)ethanone, 1656
[51490-01-8]	2-Bromo-1-(3,4,5-trimethoxyphenyl)ethanone, 1654
[52117-67-6]	3-Acetyl-2,6-dihydroxy-4-methoxybenzaldehyde, 1729
[52727-99-8]	2-Bromo-1-(5-chloro-2-hydroxyphenyl)ethanone, 1650
[52945-18-3]	1-(4-Hydroxyphenyl)-2-(methylsulfonyl)ethanone, 1714
[55317-02-7]	2-Methoxy-1-(2,4,6-trihydroxyphenyl)ethanone, 1683
[57280-75-8]	1-(2,4-Dihydroxyphenyl)-2-methoxyethanone, 1683
[58518-78-8]	2-(Acetyloxy)-1-(4-methoxyphenyl)ethanone, 1694
[59677-81-5]	3-Acetyl-2,4,6-trihydroxy-5-methylbenzaldehyde, 1729
[60965-24-4]	2-Bromo-1-(2-hydroxy-4-methoxyphenyl)ethanone, 1657
[60965-26-6]	2-Bromo-1-(2,4-dimethoxyphenyl)ethanone, 1653
[61416-34-0]	2-Amino-1-(3,4-dimethoxyphenyl)ethanone (Hydrochloride), 1676
[62018-55-7]	2,4,6-Trihydroxy-3-(1-oxoethyl)benzaldehyde, 1728
[62613-62-1]	2-Chloro-1-(4-methoxy-3-methylphenyl)ethanone, 1666
[62932-90-5]	2-Chloro-1-(3-hydroxyphenyl)ethanone, 1663
[62932-92-7]	2-Bromo-1-(3,5-dihydroxyphenyl)ethanone, 1654
[62932-94-9]	2-Bromo-1-[4-hydroxy-3-(hydroxymethyl)phenyl]ethanone, 1657

[64349-40-2] 1-(3,4-Dihydroxyphenyl)-2-methoxyethanone, 1683
[65447-49-6]
[66186-69-4]
[66476-02-6]
[67029-74-7]
[67139-49-5]
[67489-10-5]
[67639-58-1]
[68984-67-8]
[68984-68-9]
[69638-06-8]
[71620-33-2]
[72221-04-6]
[72327-16-3]
[72327-23-2]
[72481-17-5]
[73744-44-2]
[74786-55-3]
[76439-46-8]
[77263-39-9]
[77369-38-1]
[79214-30-5]
[79744-47-1]
[79881-25-7]
[80336-72-7]
[83505-27-5]
[84203-40-7]
[87154-81-2]
[87428-52-2]
[90426-22-5]
[90725-63-6]
[90971-90-7]
[91335-60-3]
[92152-60-5]
[92596-96-8]
[98540-26-2]
[99057-95-1]

2-Bromo-1-(4-methoxy-3-nitrophenyl)ethanone, 1650
2,2-Diethoxy-1-(4-methoxyphenyl)ethanone, 1686
1-(4-Hydroxy-3-methoxyphenyl)-2-phenylethanone, 1698
2-Bromo-1-(5-bromo-2-hydroxyphenyl)ethanone, 1651
2-Azido-1-(2-hydroxyphenyl)ethanone, 1677
1-(3,4-Dimethoxyphenyl)-2-(methylthio)ethanone, 1714
2-Bromo-1-(5-bromo-2-methoxyphenyl)ethanone, 1651
1-[6-(3-Acetyl-2,6-dihydroxy-4-methoxy-5-methylphenoxy)-2-hydroxy-4-methoxy-3-methylphenyl]ethanone, 1726
1-[3-(2-Acetyl-3-hydroxy-5-methoxy-4-methylphenoxy)-2,4,6-trimethoxy-5-methylphenyl]ethanone, 1726
2-Bromo-1-(4-hydroxy-3-methoxyphenyl)ethanone, 1658
Methyl 3-(Bromoacetyl)-4-hydroxybenzoate, 1658
1,1'-(4-Hydroxy-2,6-dimethoxy-1,3-phenylene) bis-ethanone, 1722
1-(3,4-Dimethoxyphenyl)-2-(3-methoxyphenoxy) ethanone, 1688
2-(2,3-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl) ethanone, 1689
2-Amino-1-(2-hydroxyphenyl)ethanone, 1674
2-Fluoro-1-(4-methoxyphenyl)ethanone, 1669
2-(Acetyloxy)-1-(2-methoxyphenyl)ethanone, 1693
2-Chloro-1-[5-(chloromethyl)-2-hydroxy-3,4-dimethoxyphenyl] ethanone, 1666
[2-(3,4-Dihydroxyphenyl)-2-(oxoethyl)]dimethylsulfonium iodide, 1716
2-Amino-1-(4-hydroxyphenyl)ethanone, 1675
2-Chloro-1-(3,5-dichloro-2-hydroxyphenyl)ethanone, 1662
1-(2-Hydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1706
2-Chloro-1-(3-chloro-4-methoxyphenyl)ethanone, 1663
2-Iodo-1-(4-methoxyphenyl)ethanone, 1673
2-Fluoro-1-(2-hydroxyphenyl)ethanone, 1668
2-Amino-1-[3,5-(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone (Hydrochloride), 1681
2-(Diethylamino)-1-(4-hydroxyphenyl)ethanone, 1680
2-Hydroxy-1-(3-methoxyphenyl)ethanone, 1691
2-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1692
2-Bromo-1-(3-methoxy-4-nitrophenyl)ethanone, 1650
2-Bromo-1-(3-hydroxy-4-methoxyphenyl)ethanone, 1658
2-Bromo-1-(2-hydroxy-3,4,6-trimethoxyphenyl)ethanone, 1660
2-(4-Bromophenyl)-1-(2,4-dihydroxyphenyl)ethanone, 1700
2,2-Dibromo-1-(4-hydroxyphenyl)ethanone, 1661
2-(3-Methoxyphenyl)-1-(4-methoxyphenyl)ethanone, 1709
2-Bromo-1-(3,6-dimethoxy-2-nitrophenyl)ethanone, 1659
[99233-30-4] 1-(2-Hydroxyphenyl)-2-iodoethanone, 1673
[99233-31-5] 1-(4-Hydroxyphenyl)-2-iodoethanone, 1673
[99866-01-0] 2-Hydroxy-4,6-dimethoxy-3-(1-oxoethyl)benzaldehyde, 1730
[100257-47-4] 1-(3,4-Dimethoxyphenyl)-2-(ethylthio)ethanone, 1715
[100622-09-1] 1,2-Bis(3,4-dihydroxyphenyl)ethanone, 1702
[100959-21-5] 1-(5-Bromo-2-hydroxyphenyl)-2-chloroethanone, 1662
[102599-72-4] 1,2-Bis[3,4-(diacetyloxy)phenyl]ethanone, 1703
[103477-58-3] 2-Bromo-1-(2,3,4-trimethoxyphenyl)ethanone, 1654
[104692-98-0] 1-(3,4-Dihydroxyphenyl)-2-(methylthio)ethanone, 1714
[105174-59-2] 1-(3,4-Dihydroxyphenyl)-2-iodoethanone, 1674
[105190-52-1] 2-Bromo-1-(2,3,4-trihydroxyphenyl)ethanone, 1654
[106823-62-5] 1,1'-(5-Fluoro-2-hydroxy-1,3-phenylene)bis-ethanone, 1719
[107410-02-6] 1-(3,4-Dihydroxyphenyl)-2-phenylethanone, 1697
[107584-68-9] 1-(4-Hydroxy-3-methoxyphenyl)-2-(3-methoxyphenoxy) ethanone, 1688
[107584-69-0] 1-(4-Hydroxy-3-methoxyphenyl)-2-[3-(trifluoromethyl)-phenoxy] ethanone, 1687
[109561-92-4] 1-(2-Hydroxyphenyl)-2-(4-hydroxyphenyl)ethanone, 1702
[110146-61-7] 1-(3-Hexyl-2,6-dihydroxyphenyl)-2-phenylethanone, 1698
[110865-03-7] 2-Chloro-1-(2,4,6-trihydroxyphenyl)ethanone, 1665
[111011-09-7] 2-Bromo-1-(3,4,5-trihydroxyphenyl)ethanone, 1654
[111474-27-2] 2-(3-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1707
[112579-47-2] 5-Acetyl-2-hydroxy-3-methoxybenzaldehyde, 1728
[114829-07-1] 2,2-Difluoro-1-(4-methoxyphenyl)ethanone, 1670
[115505-09-4] 2-(Ethylthio)-1-(4-methoxyphenyl)ethanone, 1717
[115834-34-9] 1-[3-(3,6-Dihydroxy-2-methylbenzoyl)-2,4-dihydroxyphenyl] ethanone, 1731
[117421-24-6] 2-(Benzoyloxy)-1-(2,5-dihydroxyphenyl)ethanone, 1695
[129229-41-0] 1-(3,4-Dimethoxyphenyl)-2-(4-methoxyphenoxy)ethanone, 1689
[131341-58-7] 2-Hydroxy-1-(3-hydroxyphenyl)ethanone, 1690
[131985-77-8] 1-(3,4-Dihydroxyphenyl)-2-(phenylthio)ethanone, 1718
[134610-95-0] 2-Bromo-1-(3,4-dihydroxy-5-nitrophenyl)ethanone, 1651
[135625-64-8] 1-(3,4-Dimethoxyphenyl)-2-(4-hydroxy-3-methoxyphenyl) ethanone, 1712
[137524-65-3] 1-(4-Hydroxyphenyl)-2-(phenylthio)ethanone, 1718
[139488-44-1] 2-Mercapto-1-(4-methoxyphenyl)ethanone, 1714
[140455-40-9] 1-(3,4-Dimethoxyphenyl)-2-phenoxyethanone, 1686
[142382-28-3] 1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-3,1-phenylene)]bisethanone, 1724
[142608-19-3] 1-(4-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone, 1716
[142905-41-7] 1-[4-[[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]oxy]-2,6-dihydroxy]-2-hydroxyethanone, 1693
[144219-74-9] 2-Bromo-1-(2-hydroxy-4-methylphenyl)ethanone, 1656
[144660-11-7] 1-(3,5-Diacetoxyphenyl)-2,2-dichloroethanone, 1668
[145964-98-3] 2-Bromo-1-(2-methoxy-4-methylphenyl)ethanone, 1656

2]	2-(4-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1700
[149492-42-2]	1-[2-[[(2E)-3,7-Dimethyl-2,6-octadien-1-yl]oxy]-4,6-dihydroxy]-2-hydroxyethanone, 1692
1425-43-3]	4-[2-(3,4-Dimethoxy)-2-oxoethoxy]benzonitrile, 1689
[154187-44-7]	2,2,2-Trifluoro-1-(3-methoxyphenyl)ethanone (Oxime), 1672
[157068-00-3]	2-Bromo-1-(4-chloro-2-hydroxyphenyl)ethanone, 1649
[165947-83-1]	2-Azido-1-(3,4-dihydroxyphenyl)ethanone, 1678
[168706-29-4]	$1,1^{\prime}$-($2^{\prime}, 3,6,6^{\prime}$-Tetrahydroxy[1,1'-biphenyl]-2,3'-diyl) bis-ethanone, 1724
[16931	2-Azido-1-(4-hydroxyphenyl)ethanone, 1677
[187101-52-6]	2-Azido-1-(3,4-dimethoxyphenyl)ethanone, 1678
[189289-98-3]	1-(2-Hydroxy-4-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1709
[189289-99-4]	1-(4-Chloro-2-hydroxyphenyl)-2-(4-methoxyphenyl) ethanone, 1705
[194226-50-1]	2-Bromo-1-(3-bromo-2-hydroxy-5-methylphenyl)ethanone, 1655
[194787-89-8]	2-Azido-1-(3-methoxyphenyl)ethanone, 1678
[197447-05-5]	2,2-Dihydroxy-1-(4-hydroxyphenyl)ethanone, 1691
[203524-87-2]	2-Bromo-1-(2-hydroxy-5-methoxyphenyl)ethanone, 1657
[204648-67-9]	2-Bromo-1-(2,3-dihydroxy-4-methoxyphenyl)ethanone, 1658
[224321-19-1]	2-Hydroxy-1-(2-methoxyphenyl)ethanone, 1690
[248595-17-7]	1-(4-Acetyl-3-hydroxyphenoxy)-2-propanone, 1730
[252561-75-4]	2-Bromo-1-(4-bromo-2-methoxyphenyl)ethanone, 1655
[252655-15-5]	1-(3,4-Dimethoxyphenyl)-2-[(2-methoxyphenyl)amino] ethanone, 1682
[252655-16-6]	1-(3,4-Dimethoxyphenyl)-2-[(4-methoxyphenyl)amino]ethanone, 1682
[274925-86-9]	1-(3,4-Dihydroxy-5-nitrophenyl)-2-phenylethanone, 1696
[295779-85-0]	2-Fluoro-1-(4-hydroxyphenyl)ethanone, 1669
[302918-18-9]	1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(2-methylphenyl)ethanone, 1711
[315233-59-1]	1-(2,4-Dimethoxyphenyl)-2-(4-fluorophenyl)ethanone, 1701
[322405-72-1]	2-(Phenylmethoxy)-1-(2,4,6-trihydroxyphenyl)ethanone, 1685
[324556-80-1]	2-Bromo-1-[3-(hydroxymethyl)-4-(phenylmethoxy)phenyl] ethanone, 1657
[324556-83-4]	2,2-Dibromo-1-[3-(hydroxymethyl)-4-(phenylmethoxy)phenyl] ethanone, 1661
[328019-93-8]	2-(2-Chlorophenyl)-1-(2,4-dihydroxy-3-methylphenyl) ethanone, 1705
[340959-83-3]	1-(5-Bromo-2-hydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1699
[340959-86-6]	1-(2-Hydroxyphenyl)-2-(4-nitrophenyl)ethanone, 1701
[340959-90-2]	1-(2,5-Dihydroxyphenyl)-2-(4-methylphenyl)ethanone, 1705
[340960-50-1]	2-[4-(Bromomethyl)phenyl]-1-(2,5-dihydroxyphenyl) ethanone, 1704
[341526-35-0]	1-(4-Hydroxyphenyl)-2-(3-methoxyphenyl)ethanone, 1706

[341526-37-2] 1-(4-Hydroxyphenyl)-2-(2-methoxyphenyl)ethanone, 1706
[478972-03-1] 2-(Benzoyloxy)-1-(2,5-dimethoxyphenyl)ethanone, 1696
[501426-62-6] 2-Fluoro-1-(3-fluoro-4-methoxyphenyl)ethanone, 1670
[505094-69-9] 2-Amino-1-(2-hydroxyphenyl)ethanone (Hydrochloride), 1675
[569352-21-2] 1-(3,4-Dimethoxyphenyl)-2-iodoethanone, 1674
[649551-91-7] 1-[2-Hydroxy-4-[(trifluoromethanesulfonyl)oxy]phenyl]-2methoxyethanone, 1684
[655244-07-8] 2-(2-Bromophenyl)-1-(4-methoxyphenyl)ethanone, 1704
[671224-08-1] 2-Amino-1-(2,5-dimethoxyphenyl)ethanone (Hydrochloride), 1679
[685892-02-8] 2-Bromo-1-(2-hydroxy-5-methyl-3-nitrophenyl)ethanone, 1655
[708259-71-6] 1-(5-Chloro-2,4-dihydroxyphenyl)-2-(ethoxyphenyl)ethanone, 1708
[736933-09-8] 1-(2,5-Dimethoxyphenyl)-2-(phenylmethoxy)ethanone, 1685
[784177-15-7] 2-Bromo-1-(5-butyl-2-methoxyphenyl)ethanone, 1660
[851531-99-2] 2-Bromo-1-(2,5-dimethoxy-4-nitrophenyl)ethanone, 1659
[857561-04-7] 2-Bromo-1-[5-methoxy-2-(phenylmethoxy)phenyl]ethanone, 1658
[860782-82-7] 2-Bromo-1-[4-methyl-2-(phenylmethoxy)phenyl]ethanone, 1656
[860782-83-8] 2-(Acetyloxy)-1-[4-methyl-2-(phenylmethoxy)phenyl] ethanone, 1695
[860782-84-9] 2-(Acetyloxy)-1-(2-methoxy-4-methylphenyl)ethanone, 1694
[860806-61-7] 2-(Acetyloxy)-1-(2-hydroxy-4-methylphenyl)ethanone, 1694
[870480-47-0] 1,1'-(2-Hydroxy-4,5,6-trimethoxy-1,3-phenylene)bis-ethanone, 1723
[870789-66-5] 2-Azido-1-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethanone, 1681
[872681-08-8] $\quad 1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}-(4,6,10,12,16,18,22,24-O c t a h y d r o p e n t a c y c l o$ [19.3.1.1 $\left.{ }^{3,7} \cdot 1^{9 \cdot 13} \cdot 1^{15.19}\right]$ octacosa-1(25),3,5,7(28),9,11,13(27), 15,17,19(26),21,23-dodecaene-5,11,17,23-tetrayl)tetrakis [ethanone], 1733
[872968-14-4] 1-(3,5-Difluoro-4-methoxyphenyl)-2-fluoroethanone, 1670
[874992-53-7] 1-(2,3-Dihydroxyphenyl)-2,2,2-trifluoroethanone, 1672
[876487-63-7] 2-(3-Nitrophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1701
[877395-19-2] 2-Amino-1-(4-methoxy-3-nitrophenyl)ethanone (Hydrochloride), 1676
[879559-91-8] 2-(3-Bromophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1700
[883886-03-1] 1-[3-[(3-Acetyl-4,6-dihydroxy-2-methoxy-5-methylphenyl) methyl]-2,4-dihydroxy-6-methoxyphenyl]ethanone, 1725
[896109-71-0] 1-(4-Hydroxyphenyl)-2-[(4-methylphenyl)sulfonyl]ethanone, 1718
[943827-52-9] 1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]-2methoxyethanone, 1684
[948045-82-7] 2-(4-Acetyl-3-hydroxyphenoxy)-1-phenylethanone, 1731
[948045-84-9] 2-(4-Acetyl-3-hydroxy-2-methylphenoxy)-1-phenylethanone, 1732
[948045-85-0] 1-(4-Acetyl-3-hydroxy-2-methylphenoxy)-2-propanone, 1731
[949898-83-3] 1-(2-Bromo-5-methoxyphenyl)-2-chloroethanone, 1665
[958292-64-3] 1-(2-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride 1:1), 1679

292-65-4]	1-(3-Methoxyphenyl)-2-(methylamino)ethanone (Hydrochloride 1:1), 1679
[960591-80-4]	2-(2,6-Dimethoxylphenyl)-1-(3-methoxyphenyl)ethanone, 1711
[960591-81-5]	2-(2,6-Dimethoxylphenyl)-1-(4-methoxyphenyl)ethanone, 1711
[1000375-32-5]	1-(3-Hydroxyphenyl)-2-iodoethanone, 1673
[1002716-64-4]	1-(2,4-Dihydroxy-5-methylphenyl)-2-(4-methylphenyl) ethanone, 1708
[1002716-66-6]	1-(5-Ethyl-2,4-dihydroxyphenyl)-2-(4-ethylphenyl)ethanone, 1713
[1003857-18-8]	2-(1,3-Benzodioxol-5-yl)-1-(3,5-dimethoxyphenyl)ethanone, 1710
[1005418-07-4]	2-(3,4-Dichlorophenyl)-1-(2,4,6-trihydroxyphenyl)ethanone, 1700
[1007089-42-0]	1,1'-[4-(Acetyloxy)-1,3-phenylene]bis-ethanone, 1719
[1009636-07-0]	2-(Ethylmethylamino)-1-(4-hydroxyphenyl)ethanone, 1680
[1018669-07-2]	1-(2-Hydroxyphenyl)-2-(3-methyl-4-nitrophenyl)ethanone, 1705
[1018948-88-3]	1-[4-(Acetyloxy)-3-methoxyphenyl]-2-(methylthio)ethanone, 1717
[1019197-17-1]	1-[2,6-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2bromoethanone, 1660
[1019652-01-7]	2-(2-Bromo-5-methoxyphenyl)-1-(4-methoxyphenyl) ethanone, 1708
[1019854-96-6]	1-(3-Bromo-5-chloro-2-hydroxyphenyl)-2-chloroethanone, 1662
[1019854-97-7]	2-Chloro-1-(5-chloro-3-fluoro-2-hydroxyphenyl)ethanone, 1662
[1019984-29-2]	1-(3-Methoxy-5-methylphenyl)-2-(4-methoxyphenyl) ethanone, 1711
[1023022-17-9]	1-(2-Methoxy-5-methylphenyl)-2-[(methylsulfonyl)oxy] ethanone, 1717
[1023921-91-6]	1-(2-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone, 1715
[1023921-93-8]	1-(3-Methoxyphenyl)-2-[(methylsulfonyl)oxy]ethanone, 1716
[1023922-21-5]	1-[4-Methoxy-3-(methoxymethyl)phenyl]-2-[(methylsulfonyl) oxy]ethanone, 1717

Volume 4

[70-70-2] 1-(4-Hydroxyphenyl)-1-propanone, 1764
[85-90-5] 3-Methyl-4H-1-benzopyran-4-one, 1762
[121-97-1] 1-(4-Methoxyphenyl)-1-propanone, 1807
[342-16-5] 1-(3-Bromo-5-fluoro-2-hydroxyphenyl)-1-propanone, 1740
[350-14-1] 1-(3-Bromo-5-fluoro-4-hydroxyphenyl)-1-propanone, 1740
[443-09-4] 1-(5-Fluoro-2-hydroxyphenyl)-1-propanone, 1755
[479-88-9] 1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-methyl-1propanone, 2041
[480-25-1] 2-Methyl-1-(2,4,6-trimethoxyphenyl)-1-propanone, 2043
[489-48-5] 1-[3-[[2,6-Dihydroxy-4-methoxy-5-methyl-3-(2-methyl-1oxopropyl)phenyl] methyl]-4,6-dihydroxy-2-methoxy-5-methylphenyl]-2-methyl-1-propanone, 2149
[537-33-7]
[568-50-3]
[586-16-3]
[586-22-1]
[610-99-1]
[653-64-5]
[720-66-1]
[829-76-5]
[831-00-5]
[833-53-4]
[833-67-0]
[834-94-6]
[938-45-4]
[938-46-5]
[938-67-0]
[940-04-5]
[941-74-2]
[956-23-0]
[1127-96-4]
[1127-97-5]
[1392-97-8]
[1400-15-3]
[1400-16-4]
[1760-86-7]
[1807-41-6]
[1835-04-7]
[1835-14-9]
[1835-15-0]
[2030-70-8]
[2040-20-2]
[2040-26-8]
[2129-07-9]
[2215-82-9]
[2234-19-7]
[2247-76-9]
[2295-58-1]
[2700-47-2]
[2828-37-7]

4-hydroxy-3,5-dimethoxy-cinnamyl alcohol, 2094
1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-5-methyl-3,1-phenylene)]bis-[2-methyl-1-propanone, 2150
1-(3-Fluoro-4-hydroxyphenyl)-1-propanone, 1754
1-(3-Fluoro-4-methoxyphenyl)-1-propanone, 1793
1-(2-Hydroxyphenyl)-1-propanone, 1760
1-(5-Fluoro-2-methoxyphenyl)-1-propanone, 1794
1-(3,4-Dihydroxyphenyl)-1-propanone (Diethyl ether), 1771
1-(3-Hydroxy-4-methoxyphenyl)-1-propanone, 1813
1-(2,4-Dimethoxyphenyl)-1-propanone, 1842
1-(3-Ethoxy-4-methoxyphenyl)-1-propanone, 1875
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Ethyl ether), 1816
1-(2,4,6-Trimethoxyphenyl)-1-propanone, 1879
1-(2-Hydroxy-5-methylphenyl)-1-propanone, 1802
1-(2,5-Dihydroxyphenyl)-1-propanone, 1768
1-(3-Chloro-2-hydroxyphenyl)-1-propanone, 1750
1-(4-Hydroxy-3-methylphenyl)-1-propanone, 1806
1-(5-Chloro-2-hydroxy-3-methylphenyl)-1-propanone, 1788
1-[2-Hydroxy-5-(2,3-dihydroxypropoxy)phenyl]-1-propanone, 1880
1-(2-Chloro-5-hydroxyphenyl)-1-propanone, 1750
1-(4-Chloro-2-hydroxyphenyl)-1-propanone, 1751
Protokosin, 2167
1-[3-[[2-Hydroxy-4,6-dimethoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl]-methyl]-2,4,6-trihydroxy-5-methylphenyl]-2-methyl-1-propanone, 2150
4-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-
oxopropyl)-phenyl]methyl]-3,5-dihydroxy-2,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2148
2-Hydroxy-5-methyl-3-(1-oxopropyl)benzoic acid, 1825
1-[4-Hydroxy-3-(1-methylethyl)phenyl]-1-propanone, 1868
1-(3,4-Dimethoxyphenyl)-1-propanone, 1843
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone, 1814
1-[3-Methoxy-4-(phenylmethoxy)phenyl]-1-propanone, 1941
1-(5-Methoxy-2-methylphenyl)-2,2-dimethyl-1-propanone, 2092
1-(4-Methoxyphenyl)-2-methyl-1-propanone, 2026
1-(4-Methoxyphenyl)-2,2-dimethyl-1-propanone, 2088
1-(3-Ethyl-4-methoxyphenyl)-1-propanone, 1867
1-(2-Hydroxy-4,6-dimethoxyphenyl)-1-propanone, 1852
1-(4-Methoxy-2-methylphenyl)-2,2-dimethyl-1-propanone, 2091
1-[3-(4-Fluorobenzoyl)-5-fluoro-2-hydroxyphenyl]-1-propanone, 2137
1-(2,4,6-Trihydroxyphenyl)-1-propanone, 1774
1-(6-Methoxy-2-naphthalenyl)-1-propanone, 1974
1,1'-[Methylenebis(2,4,6-trihydroxy-3,1-phenylene)]bis-1propanone, 2120
[2886-52-4]
[2887-55-0]
[2887-56-1]
[2887-65-2]
[2887-68-5]
[2892-15-1]
[2892-16-2]
[2892-20-8]
[2892-21-9]
[2892-22-0]
[2892-25-3]
[2892-27-5]
[2892-30-0]
[2892-33-3]
[2904-86-1]
[2954-63-4]
[2999-19-1]
[2999-20-4]
[3023-09-4]
[3098-43-9]
[3118-35-2]
[3133-29-7]
[3145-11-7]
[3307-02-6]
[3338-15-6]
[3361-71-5]
[3361-72-6]
[3361-73-7]
[3511-70-4]
[3811-86-7]
[3839-58-5]
[3839-97-2]
[3840-02-6]
[3904-18-5]
[3904-19-6]
[3934-94-9]
[4374-36-1]
[4394-54-1]
[4765-46-2]
[5355-81-7]

1-(2-Hydroxy-4-methylphenyl)-1-propanone, 1800
1-(4-Hydroxy-2-methylphenyl)-1-propanone, 1805
1-(5-Bromo-2-hydroxy-3-methylphenyl)-1-propanone, 1786
1-(3,5-Dibromo-4-hydroxyphenyl)-1-propanone, 1742
1-(3,5-Dibromo-2-hydroxyphenyl)-1-propanone, 1741
1-(3-Bromo-5-chloro-2-hydroxyphenyl)-1-propanone, 1739
1-(5-Chloro-2-hydroxyphenyl)-1-propanone, 1752
1-(3,5-Dibromo-2-chloro-4-hydroxyphenyl)-1-propanone, 1738
1-(2-Chloro-4-hydroxyphenyl)-1-propanone, 1749
1-(5-Bromo-3-chloro-2-hydroxyphenyl)-1-propanone, 1740
1-(3-Bromo-5-chloro-4-hydroxyphenyl)-1-propanone, 1739
1-(3-Chloro-4-hydroxyphenyl)-1-propanone, 1750
1-(3-Bromo-2-hydroxy-5-methylphenyl)-1-propanone, 1785
1-(3,5-Dibromo-2-hydroxy-4-methylphenyl)-1-propanone, 1781
1-(3-Bromo-4-hydroxy-5-methylphenyl)-1-propanone, 1785
1-(4-Methoxy-3-methylphenyl)-2-methyl-1-propanone, 2034
1,1'-(2,4-Dihydroxy-1,3-phenylene)bis-1-propanone, 2108
1,1'-(4,6-Dihydroxy-1,3-phenylene)bis-1-propanone, 2109
1-(3,5-Dibromo-4-hydroxy-2-methylphenyl)-1-propanone, 1781
1,1'-(2,4,6-Trihydroxy-5-methyl-1,3-phenylene)bis-1-propanone, 2113
1-(3-Acetyl-2,4,6-trihydroxyphenyl)-1-propanone, 2133
1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis[2-methyl-1-propanone, 2147
1,1'-(2,4,6-Trihydroxy-1,3-phenylene)bis-1-propanone, 2110
1-(4,5-Dimethoxy-2-methylphenyl)-1-propanone, 1874
1-(2-Hydroxy-3-methylphenyl)-1-propanone, 1799
7-Hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1999
1-(2,6-Dihydroxyphenyl)-1-propanone, 1770
1-[2-Hydroxy-6-(2-hydroxyethoxy)phenyl]-1-propanone, 1854
1,1'-[(Methylethylidene)bis(4-hydroxy-3,1-phenylene)]bis-1propanone, 2123
1,1'-(4,5,6-Trihydroxy-1,3-phenylene)bis-1-propanone, 2111
1-(2,5-Dihydroxy-4-methoxyphenyl)-1-propanone, 1818
1-(2-Hydroxy-6-methoxyphenyl)-1-propanone, 1813
1-(2,6-Dimethoxyphenyl)-1-propanone, 1843
1-(2,4,5-Trimethoxyphenyl)-1-propanone, 1878
1-[2-Hydroxy-4-methoxy-5-(phenylmethoxy)phenyl]-1propanone, 1942
1-(3,4-Dihydroxy-5-methoxyphenyl)-1-propanone, 1819
1-(3-Bromo-4-methoxyphenyl)-1-propanone, 1786
1-(3-Chloro-4-methoxyphenyl)-1-propanone, 1790
1-(2-Amino-4,5-dimethoxyphenyl)-1-propanone, 1857
1-(4-Hydroxy-2,3-dimethylphenyl)-1-propanone, 1837
[5384-01-0]
[5384-03-2]
[5384-04-3]
[5384-06-5]
[5384-08-7]
[5384-09-8]
[5384-11-2]
[5384-13-4]
[5384-14-5]
[5384-16-7]
[5384-17-8]
[5384-19-0]
[5384-54-3]
[5384-64-5]
[5384-70-3]
[5466-89-7]
[5471-38-5]
[5551-29-1]
[5561-92-2]
[5570-71-8]
[5570-72-9]
[5650-43-1]
[5658-50-4]
[5792-36-9]
[5792-37-0]
[5803-30-5]
[5880-41-1]
[5880-42-2]
[6026-75-1]
[6270-44-6]
[6618-61-7]
[6640-69-3]
[7091-08-9]
[7376-15-0]
[7451-98-1]
[8068-03-9]
[9005-53-2]
[10080-44-1]
[13103-80-5
[13329-61-8]

1-(2-Hydroxy-3,4-dimethylphenyl)-1-propanone, 1834
1-(5-Bromo-2-hydroxy-3,4-dimethylphenyl)-1-propanone, 1827
1-(2-Methoxy-3,5-dimethylphenyl)-1-propanone, 1870
1-(4-Hydroxy-2,5-dimethylphenyl)-1-propanone, 1837
1-(3-Bromo-4-hydroxy-2,5-dimethylphenyl)-1-propanone, 1827
1-(4-Hydroxy-3,5-dimethylphenyl)-1-propanone, 1838
1-(4-Methoxy-3,5-dimethylphenyl)-1-propanone, 1871
1-(2-Hydroxy-4,5-dimethylphenyl)-1-propanone, 1835
1-(2-Methoxy-4,6-dimethylphenyl)-1-propanone, 1870
1-(3,5-Dibromo-2-hydroxy-4,6-dimethylphenyl)-1-propanone, 1823
1-(3,5-Dibromo-2-methoxy-4,6-dimethylphenyl)-1-propanone, 1858
1-(3-Bromo-6-hydroxy-2,4-dimethylphenyl)-1-propanone, 1827
1-(2-Hydroxy-4,6-dimethylphenyl)-1-propanone, 1836
1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]-2,2-dimethyl-1propanone, 2095
1-[3-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1propanone, 2095
1-(3,4-Dihydroxyphenyl)-2-methyl-1-propanone, 2018
1-(4-Methoxy-1-naphthalenyl)-1-propanone, 1963
1-[4-Hydroxy-3-methyl-5-(2-propenyl)phenyl]-1-propanone, 1884
1-(2-Methoxyphenyl)-1-propanone, 1806
1-(5-Bromo-4-hydroxy-2,3-dimethylphenyl)-1-propanone, 1828
1-(2-Hydroxy-3,5-dimethylphenyl)-1-propanone, 1834
1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone, 1853
1-(3,4,5-Trimethoxyphenyl)-1-propanone, 1880
1-(2,4-Dihydroxyphenyl)-1-propanone, 1767
1-(2,6-Dihydroxy-4-methylphenyl)-1-propanone, 1810
1-(2,5-Dimethoxyphenyl)-1-propanone, 1842
1-(2,4-Dihydroxy-6-methylphenyl)-1-propanone, 1809
2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]-1-propanone, 2056
1-(3-Methoxyphenyl)-2-methyl-1-propanone, 2025
1-(2-Hydroxy-4-methoxyphenyl)-1-propanone, 1811
1-(4-Chloro-2-hydroxyphenyl)-2-methyl-1-propanone, 2013
1-(2-Hydroxyphenyl)-2-methyl-1-propanone, 2015
1-(4-Hydroxy-3,5-diiodophenyl)-1-propanone, 1746
1-(3-Bromo-2-hydroxy-4,5-dimethylphenyl)-1-propanone, 1826
1-(3,4-Dihydroxyphenyl)-1-propanone, 1770
Pepper dioxane lignin, 1815
Lignin, 1815
1-(2-Hydroxy-5-methylphenyl)-1-propanone (Oxime), 1804
1-(3-Hydroxyphenyl)-1-propanone, 1763
1-(2-Chloro-4-methoxyphenyl)-1-propanone, 1789
[13720-53-1] 1-(2,5-Dimethoxy-4-methylphenyl)-1-propanone, 1874
[13720-54-2] 1-(4-Chloro-2,5-dimethoxyphenyl)-1-propanone, 1830
[13936-94-2] 4,6-Dihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxylic acid dimethyl ester, 1884
[14004-66-1] 3-Methoxy-4-(1-oxopropyl)benzonitrile, 1823
[14035-34-8] 1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-propanone, 1944
[14035-36-0] 1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-methyl-1propanone, 2054
[14035-38-2] 1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2,2-dimethyl-1propanone, 2099
[14046-53-8] 1-(4-Hydroxy-3-methoxyphenyl)-2-methyl-1-propanone, 2027
[14046-55-0] 1-(3,4-Dimethoxyphenyl)-2-methyl-1-propanone, 2035
[14164-72-8] 1-[4-Hydroxy-3-methyl-2,6-di(phenyl)phenyl]-1-propanone, 1956
[14194-55-9] 1-(2-Hydroxy-4-methylphenyl)-2,2-dimethyl-1-propanone, 2086
[14446-95-8] 1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2,2-dimethyl-1propanone, (O-methyloxime), 2099
[15212-07-4]
[16648-74-1]
1-(4-Hydroxy-3-methoxyphenyl)-1-propanone-1- ${ }^{14} \mathrm{C}, 1817$
1-[4-Hydroxy-3-(1-methylpropyl)phenyl]-1-propanone, 1897
[16648-76-3] 1-[4-Hydroxy-3-(1-methylpropyl)phenyl]-2-methyl-1-propanone, 2045
[16737-80-7] Propionic acid $4^{\prime}, 2^{\prime \prime}$-dihydroxy-3,5', $3^{\prime \prime}$-trimethoxy-5,5"'dipropionyl $\left[1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}\right]$ terphenyl-2-yl ester, 2129
[16737-81-8] 1-[4-Hydroxy-3-methoxy-5-[2-methoxy-4-(1-oxopropyl)phenoxy] phenyl]-1-propanone, 2122
[16981-20-7] 5,7-Dihydroxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2081
[16981-21-8] 5,7-Dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2081
[17004-75-0] 1-[2-(β-D-Glucopyranosyloxy)-4,6-dihydroxyphenyl]-2-methyl-1propanone, 2051
[17055-42-4] 1-(2-Ethyl-3-methoxyphenyl)-1-propanone, 1867
[17295-05-5] 1-(3-Methoxy-2-naphthalenyl)-1-propanone, 1973
[17488-54-9] 1-[2-Hydroxy-6-methoxy-3-(2-propenyl)phenyl]-1-propanone, 1885
[17488-55-0] 1-(2-Hydroxy-6-methoxy-3-propylphenyl)-1-propanone, 1901
[17488-72-1]
[17488-75-4]
[17764-91-9]
[17764-92-0]
[17764-93-1]
[17765-09-2]
[17765-21-8]
[17765-22-9]
[18060-58-7]
[18158-56-0]
[18158-58-2]

1-[2-Methoxy-6-(2-propenyloxy)phenyl]-1-propanone, 1886
1-[2,6-Dihydroxy-3-(2-propenyl)phenyl]-1-propanone, 1860
1-(3-Bromo-2-hydroxyphenyl)-1-propanone, 1747
1-(4-Bromo-2-hydroxyphenyl)-1-propanone, 1747
1-(5-Bromo-2-hydroxyphenyl)-1-propanone, 1748
1-(2,3,5-Tribromo-4-hydroxyphenyl)-1-propanone, 1738
1-(3,5-Dibromo-4-chloro-2-hydroxyphenyl)-1-propanone, 1738
1-(3,4,5-Tribromo-2-hydroxyphenyl)-1-propanone, 1739
1-(2,3,4-Trimethoxyphenyl)-1-propanone, 1878
1-(3-Hydroxy-4-methylphenyl)-1-propanone, 1804
1-(3-Methoxy-4-methylphenyl)-1-propanone, 1840

[18265-75-3]	1-(2-Hydroxyphenyl)-1-propanone (Oxime), 1762
[18430-72-3]	1-(3-Bromo-4-hydroxyphenyl)-1-propanone, 1747
[18430-73-4]	1-(2-Bromo-4-hydroxyphenyl)-1-propanone, 1746
[18430-74-5]	1-(3,5-Dichloro-2-hydroxyphenyl)-1-propanone, 1744
[18592-97-7]	1,1'-(6,6'-Dihydroxy-5,5'-dimethoxy[1,1'-biphenyl]-3,3'-diyl)bis-1-propanone, 2121
[18592-99-9]	1-(4'-Hydroxy-3',5-dimethoxy-6-propionyloxy[1,1'-biphenyl]-3-yl)-1-propanone, 1952
[18593-00-5]	1-(4',6-Dihydroxy-3',5-dimethoxy[1,1'-biphenyl]-3-yl)-1propanone, 1942
[18593-02-7]	1-[2'-Hydroxy-6-(2-hydroxy-3-methoxy-5-propionylphenoxy)-5,3'-dimethoxy-5'-propionyl[1,1'-biphenyl]-3-yl]-1-propanone, 2128
[18607-90-4]	1-(6-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1988
[18892-91-6]	1-[4,6-Dihydroxy-5-(3-methylbuty))-2-(1-methylethyl)-7-benzofuranyl]-2-methyl-1-propanone, 2074
[18906-66-6]	1-(2-Hydroxyphenyl)-1-propanone copper complex, 1762
[18944-22-4]	1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methylbutyl)-7-benzofuranyl]-2-methyl-1-propanone, 2079
[19647-29-1]	2-[[3-Bromo-5,7-dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2152
[19809-78-0]	3,5-Dihydroxy-4,4-dimethyl-2-(2-methyl-1-oxopropyl)-6-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl) phenyl]methyl]-2,5-cyclohexadien-1-one, 2154
[19809-79-1]	2-[[5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2152
[19809-80-4]	2-[[3,4-Dihydro-5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2153
[19809-81-5]	2-[[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-6-(2-methyl-1-oxopropyl)-2H-1-benzopyran-8-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2153
[19937-86-1]	1-(7-Methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1992
[20683-32-3]	1-[3-(1,1-Dimethylethyl)-4-hydroxyphenyl]-1-propanone, 1891
[20683-42-5]	1-[3-Bromo-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1propanone, 1888
[20800-11-7]	1-[2-Hydroxy-4-(2-morpholinoethoxy)phenyl]-1-propanone 1(Hydrochloride), 1926
[20800-22-0]	1-[2-Hydroxy-4-(2-piperidinoethoxy)phenyl]-1-propanone (Hydrochloride), 1939
[20935-63-1]	1-(2,4-Dimethoxy-3,5-dimethylphenyl)-1-propanone, 1899
[21009-91-6]	1-(2-Hydroxy-4,6-dimethylphenyl)-2-methyl-1-propanone, 2032

-7	5
[22362-62-5]	1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1891
[22362-63-6]	1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1892
[22362-64-7]	1-[3-Bromo-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1propanone, 1887
[22362-65-8]	1-(5-Chloro-2-hydroxy-4-methylphenyl)-1-propanone, 1789
[22362-76-1]	1-(3-Bromo-5-chloro-2-hydroxy-4-methylphenyl)-1-propanone, 1780
2362-84	1-(2,4-Dichloro-6-hydroxyphenyl)-1-propanone, 1743
[22526-24-5]	1-(2-Methoxyphenyl)-2,2-dimethyl-1-propanone, 2088
[22526-25-6]	1-(2-Hydroxyphenyl)-2,2-dimethyl-1-propanone, 2083
[22592-22-9]	3,5-Dihydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-7-isobutyryl-5,5-bis (3-methyl-2-butenyl)-4-(2H)-benzofuranone, 2077
[22592-23-0]	1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methylbutyl)-7-benzofuranyl]-2-methyl-1-propanone, 2079
[22628-86-0]	2-Methyl-1-[2,4,6-trihydroxy-3-(3-methylbutyl)phenyl]-1propanone, 2048
[22665-89-0]	1-[2,4-Bis(acetyloxy)-6-hydroxyphenyl]-1-propanone, 1883
[22760-98-1]	1-(2,3,4-Trihydroxyphenyl)-1-propanone, 1772
[23067-91-6]	2-Methyl-1-(3,4,9,10-tetrahydro-5-hydroxy-2,2,8,8-tetramethyl$2 H, 8 H$-benzo-[1,2-b:3,4-b]dipyran-6-yl)-1-propanone, 2076
[23600-56-8]	1-(3,5-Dibromo-4-methoxyphenyl)-1-propanone (2,4-Dinitrophenylhydrazone), 1782
[23600-63-7]	1-(4-Bromo-2-methoxyphenyl)-1-propanone, 1787
[23600-68-2]	1-(3,4,5-Tribromo-2-methoxyphenyl)-1-propanone, 1779
[23600-74-0]	1-(3,5-Dibromo-2-methoxyphenyl)-1-propanone, (2,4-Dinitrophenylhydrazone), 1781
[23689-23-8]	1-(3-Bromo-2-methoxyphenyl)-1-propanone, 1786
[23689-25-0]	1-(2,3,5-Tribromo-4-methoxyphenyl)-1-propanone, 1778
[23689-31-8]	1-(2,4,6-Tribromo-3-hydroxyphenyl)-1-propanone, 1738
[23689-32-9]	1-(2,4,6-Tribromo-3-methoxyphenyl)-1-propanone, 1779
[24416-46-4]	7-Hydroxy-8-isobutyryl-2,2-dimethyl-6,6-bis(3-methyl-2-butenyl)-5-(6 H)-chromanone, 2078
[24416-48-6]	1-[2,3,6,7-Tetrahydro-8-hydroxy-2-(1-hydroxy-1-methylethyl)-5,5-dimethyl-2H-furo[2,3-h]-1-benzopyran-9-yl]-2-methyl-1propanone, 2077
[24416-50-0]	1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-5-(3-methyl-2-butenyl)-7-benzofuranyl]-2-methyl-1-propanone, 2076
[24490-26-4]	1-(2-Chloro-6-hydroxy-4-methylphenyl)-1-propanone, 1788
[24490-31-1]	1-(1-Hydroxy-2-naphthalenyl)-1-propanone, 1964
[24876-03-7]	1-(3,5-Dibromo-4-methoxyphenyl)-1-propanone, 1782
[24876-04-8]	1-(2-Bromo-4-methoxyphenyl)-1-propanone, 1786
[24876-08-2]	1-(3,5-Dibromo-2-methoxyphenyl)-1-propanone, 1781
[25065-13-8]	4-Hydroxy-3-(1-oxopropyl)benzoic acid, 1784

]	1-(2-Chloro-4,5-dihydroxyphenyl)-1-propanone, 1752
[25441-52-5]	1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone,
[25677-09-2]	2-Methyl-1-(2,4,6-trimethoxy-3,5-dimethylphenyl)-1-propanone, 2049
25801-58-5]	1-(2-Methoxy-1-naphthalenyl)-1-propanone, 1972
[25944-41-6]	7-Hydroxy-8-methyl-6-(1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2008
[25944-43-8]	7-Hydroxy-4,8-dimethyl-6-(1-oxopropyl)-2H-1-benzopyran-2one, 2001
717	1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]-1-propanone, 1826
[28885-62-3]	1-[3,6-Dihydroxy-2-(2-propenyl)phenyl]-1-propanone, 1860
[28885-63-4]	1-(3,6-Dihydroxy-2-propylphenyl)-1-propanone, 1873
[29026-02-6]	1-[2-Hydroxy-5-(2-propenyloxy)phenyl]-1-propanone, 1861
[29048-54-2]	1-(2,4-Dihydroxyphenyl)-2-methyl-1-propanone, 2017
[29048-55-3]	1-(2-Hydroxy-4-methoxyphenyl)-2-methyl-1-propanone, 2027
[29373-18-0]	1-[3,4-Dihydro-5,7-dihydroxy-8-(3-methylbutyl)-2,2-dimethyl-2H-1-benzopyran-6-yl]-2-methyl-1-propanone, 2078
[29525-18-6]	1-[3,4-Dihydro-5,7-dihydroxy-6-(3-methylbutyl)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2078
[29525-19-7]	7-Hydroxy-6-isobutyryl-2,2-dimethyl-8,8-bis(3-methyl-2-butenyl)-5-(8H)-chromanone, 2078
[29525-23-3]	3,3a-Dihydro-4-hydroxy-2-(1-hydroxy-1-methylethyl)-5-isobutyryl-3a,7-bis-(3-methyl-2-butenyl)-6-(2H)-benzofuranone, 2077
[29525-24-4]	1-[2,3-Dihydro-4,6-dihydroxy-2-(1-hydroxy-1-methylethyl)-7-(3-methylbutyl)-5-benzofuranyl]-2-methyl-1-propanone, 2079
[29525-25-5]	1-[2,3,8,9-Tetrahydro-4-hydroxy-2-(1-hydroxy-1-methylethyl)-7,7-dimethyl-7H-furo[2,3-f]-1-benzopyran-5-yl]-2-methyl-1propanone, 2077
[29578-81-2]	1-(5-Methoxy-2-methylphenyl)-1-propanone, 1841
[29578-84-5]	1-(3-Methoxy-5-methylphenyl)-1-propanone, 1840
[29725-94-8]	1-(5-Chloro-2-hydroxyphenyl)-1-propanone (Oxime), 1752
[30314-46-6]	1-(3,4-Dimethoxyphenyl)-2,2-dimethyl-1-propanone, 2093
[30574-34-6]	1-(2-Methoxy-5-methylphenyl)-2-methyl-1-propanone, 2033
[31826-78-5]	1-(2-Hydroxyphenyl)-1-propanone (Tetra-O-acetyl- β-Dglucopyranoside), 1763
[31826-79-6]	1-(2-Hydroxyphenyl)-1-propanone (β-D-Glucopyranoside), 1762
[31826-80-9]	1-(4-Hydroxyphenyl)-1-propanone (β-D-Glucopyranoside), 1766
[31827-85-7]	1-(3,5-Diiodo-4-methoxyphenyl)-1-propanone, 1783
[31867-16-0]	1-(4-Hydroxyphenyl)-1-propanone (Tetra-O-acetyl- β-Dglucopyranoside), 1766
[31918-60-2]	1-[5,7-Dihydroxy-2,2-dimethyl-6-(3-methyl-2-butenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2074
[32154-22-4]	1-[5-Bromo-3-(1,1-dimethylethyl)-2-methoxyphenyl]-1propanone (2,4-Dinitrophenylhydrazone), 1909

[32559-06-1]	1-(2-Hydroxy-3,5-diiodophenyl)-1-propanone, 1746
[32578-12-4]	1-(3-Methoxyphenyl)-2,2-dimethyl-1-propanone, 2088
[32578-14-6]	1-(3-Hydroxyphenyl)-2,2-dimethyl-1-propanone, 2084
[33759-61-4]	2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methylbutyl)phenyl]-1propanone, 2058
[33828-92-1]	1-(6-Hydroxy-2-naphthalenyl)-1-propanone, 1967
[33828-93-2]	1-(2-Hydroxy-1-naphthalenyl)-1-propanone, 1965
[34747-40-5]	1-(2,3-Dihydro-5-hydroxy-1,4-benzodioxin-6-yl)-1-propanone (Oxime), 1991
[34917-91-4]	1-(4-Hydroxyphenyl)-2-methyl-1-propanone, 2017
[35093-14-2]	3-Bromo-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1997
[35093-15-3]	1-(6-Hydroxy-3-methyl-7-benzofuranyl)-1-propanone, 1995
[35093-16-4]	6-Hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid methyl ester, 2002
[35154-05-3]	1-[3-(1,1-Dimethylethyl)-4-methoxyphenyl]-1-propanone, 1912
[35154-06-4]	1-[3-(1,1-Dimethylethyl)-4-methoxyphenyl]-1-propanone, (2,4-Dinitrophenylhydrazone) (Z), 1912
[35154-07-5]	1-[3-(1,1-Dimethylethyl)-4-methoxyphenyl]-1-propanone (2,4-Dinitrophenylhydrazone) (E), 1912
[35154-10-0]	1-[3-Bromo-5-(1,1-dimethylethyl)-4-methoxyphenyl]-1propanone, 1909
[35154-11-1]	1-[3-Bromo-5-(1,1-dimethylethyl)-4-methoxyphenyl]-1propanone, (2,4-Dinitrophenylhydrazone) (Z), 1909
[35154-12-2]	1-[3-Bromo-5-(1,1-dimethylethyl)-4-methoxyphenyl]-1propanone, (2,4-Dinitrophenylhydrazone) (E), 1909
[35154-19-9]	1-[5-Bromo-3-(1,1-dimethylethyl)-2-hydroxyphenyl]-1propanone, 1888
[35154-21-3]	1-[5-Bromo-3-(1,1-dimethylethyl)-2-methoxyphenyl]-1propanone, 1909
[35154-22-4]	1-[5-Bromo-3-(1,1-dimethylethyl)-2-methoxyphenyl]-1propanone (2,4-Dinitrophenylhydrazone), 1909
[35154-28-0]	1-[5-Bromo-4-(1,1-dimethylethyl)-2-hydroxyphenyl]-1propanone, 1888
[35155-00-1]	1-[5-Bromo-4-(1,1-dimethylethyl)-2-methoxyphenyl]-1propanone, 1909
[35155-01-2]	1-[5-Bromo-4-(1,1-dimethylethyl)-2-methoxyphenyl]-1propanone (2,4-Dinitrophenylhydrazone), 1910
[35155-04-5]	1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-1-propanone, 1912
[35364-15-9]	1-(2-Amino-5-hydroxyphenyl)-1-propanone, 1775
[35458-21-0]	2-Methyl-1-(2,4,6-trihydroxyphenyl)-1-propanone, 2019
[35459-97-3]	1-(2,5-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2085
[35460-03-8]	1-[4-(1,1-Dimethylethyl)-2,5-dihydroxyphenyl]-2,2-dimethyl-1propanone, 2096
[35888-89-2]	1-[2-Hydroxy-3-(1-propenyl)phenyl]-1-propanone, 1858

[35888-90-5]
[35888-91-6]
[35888-92-7]
[35888-93-8]
[35932-36-6]
[35932-37-7]
[35932-38-8] 1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2068
[36039-26-6]
[36198-81-9]
[36198-82-0]
[36677-69-7]
[36871-54-2]
[36871-55-3]
[36871-56-4]
[36871-58-6]
[36871-61-1]
[37456-35-2]
[37769-66-7]
[37847-36-2]
[37848-03-6]
[37848-04-7]
[37848-05-8]
[37848-06-9]
[37888-90-7]
[37951-49-8]
[38319-72-1]
[38463-02-4]
[38775-76-7]
[39026-68-1
[39027-10-6]
[39036-20-9] (Glycoside), 1851
5'-[3,4-Dihydro-5-methoxy-3,6-dimethyl-4-oxo-7-[(2,3,4-tri-O-methyl- β-D-glucopyranosyl)oxy]-2H-1-benzopyran-2-yl]-2',4-dimethoxy-, intramol. 3, $6^{\prime \prime \prime}$-ester [1, 1^{\prime}-biphenyl]-3-carboxylic acid, 1851
[39084-13-4] 3-[5-[3,4-Dihydro-5-methoxy-3,6-dimethyl-4-oxo-7-[(2,3,4-tri-O-methyl- β-D-glucopyranosyl)oxy]-2H-1-benzopyran-2-yl]-2-methoxyphenyl]-2-methoxy-1,6'-lactone benzoic acid, 1851

[39262-30-1]	5'-[7-(β-D-Glucopyranosyloxy)-3,4-dihydro-5-hydroxy-6-methyl-4-oxo-2H-1-benzopyran-2-yl]-2',4-dihydroxy-intramol. 3,6"'-ester [1,1'-biphenyl]-3-carboxylic acid, 1851
[39262-31-2]	5'-[7-(β-D-Glucopyranosyloxy)-3,4-dihydro-5-hydroxy-6-methyl-4-oxo-2H-1-benzopyran-2-yl]-2,2'-dihydroxy-intramol. 3,6"'-ester [1,1'-biphenyl]-3-carboxylic acid, 1851
[39544-07-5]	1-(2-Ethyl-7-hydroxy-4-benzofuranyl)-1-propanone, 2000
[39818-42-3]	7-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1999
[39818-44-5]	5-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1998
[39868-14-9]	1-(2,5-Dimethoxyphenyl)-2,2-dimethyl-1-propanone, 2093
[39868-15-0]	1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-2,2-dimethyl-1propanone, 2097
[39868-16-1]	1,1'-(2,5-Dimethoxy-1,4-phenylene)bis[2,2-dimethyl-1propanone, 2169
[39868-19-4]	1,1'-(2,5-Dihydroxy-1,4-phenylene)bis[2,2-dimethyl-1-propanone, 2169
[39874-75-4]	3-Bromo-7-hydroxy-4,8-dimethyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 2001
[39874-76-5]	1-(6-Hydroxy-3,7-dimethyl-5-benzofuranyl)-1-propanone, 2000
[39874-77-6]	6-Hydroxy-3,7-dimethyl-5-(1-oxopropyl)-2-benzofurancarboxylic acid methyl ester, 2006
[40662-81-5]	1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone, 1943
[40662-83-7]	1-[3,5-Bis(1,1-dimethylethyl)-2-methoxyphenyl]-1-propanone, 1949
[40662-88-2]	1-[3,5-Bis(1,1-dimethylethyl)-4-methoxyphenyl]-1-propanone, 1949
[41247-25-0]	1-(4-Hydroxy-3,5-dimethoxyphenyl)-2,2-dimethyl-1-propanone, 2094
[41497-31-8]	1-(3,5-Dimethoxyphenyl)-1-propanone, 1844
[41586-11-2]	1-(2-Hydroxyphenyl)-1-propanone iron complex, 1762
[41586-12-3]	1-(2-Hydroxyphenyl)-1-propanone cobalt complex, 1762
[41586-13-4]	1-(2-Hydroxy-4-methylphenyl)-1-propanone iron complex, 1802
[41586-14-5]	1-(2-Hydroxy-4-methylphenyl)-1-propanone nickel complex, 1802
[41653-56-9]	1-(2-Hydroxy-4-methylphenyl)-1-propanone cobalt complex, 1802
[42541-62-8]	1-(2,6-Dihydroxy-4-methoxyphenyl)-2-methyl-1-propanone, 2028
[42541-64-0]	1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2-methyl-1propanone, 2037
[42593-40-8]	1-(2-Hydroxyphenyl)-1-propanone boron complex, 1762
[49582-12-9]	1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]-bis-1-propanone, 2125

[49582-15-2]	1-[3,5-Bis[[2,4-dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl) phenyl]-methyl]-2,4,6-trihydroxyphenyl]-1-butanone, 2145
[49710-99-8]	1-(2-Hydroxy-5-methoxyphenyl)-1-propanone, 1812
[49812-94-4]	1-(4,7-Dihydroxy-2,3-dimethyl-6-benzofuranyl)-1-propanone, 2000
[50342-15-9]	1-(2-Hydroxy-4,5-dimethylphenyl)-2-methyl-1-propanone, 2031
[50444-94-5]	1,1'-[Sulfinylbis(6-chloro-4-hydroxy-3,1-phenylene)]bis-1propanone, 2117
[50816-73-4]	1-(3-Hydroxy-2,4,5,6-tetramethoxyphenyl)-1-propanone, 1904
[50874-47-0]	1-[2,4,6-Trihydroxy-3,5-bis(3-methyl-2-butenyl)phenyl]-1propanone, 1951
[50916-44-4]	1-(4-Hydroxy-3-nitrophenyl)-1-propanone, 1758
[51233-75-1]	1-(2-Hydroxy-3,6-dimethylphenyl)-1-propanone, 1835
[51233-85-3]	1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-methylphenyl]-1propanone, 1911
[51233-86-4]	1-[3-Chloro-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1propanone, 1889
[51335-40-1]	1-(3,5-Dichloro-4-hydroxyphenyl)-1-propanone, 1744
[51379-76-1]	1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-1-propanone, 1881
[51451-24-2]	1-[5-(1,1-Dimethylethyl)-4-hydroxy-2-methylphenyl]-1propanone, 1912
[51451-25-3]	1-[3-(1,1-Dimethylethyl)-6-hydroxy-2-methylphenyl]-1propanone, 1911
[51451-26-4]	1-(2-Hydroxy-6-methylphenyl)-1-propanone, 1804
[52069-29-1]	1-[3-(1,1-Dimethylethyl)-4-hydroxy-5-methylphenyl]-1propanone, 1911
[52099-20-4]	1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-1-propanone, 1881
[52376-21-3]	1-(4-Bromo-2,5-dihydroxyphenyl)-1-propanone, 1749
[52536-84-2]	1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Acetate), 1854
[52597-50-9]	1,1'-[4,6-Dihydroxy-5-(1-oxopropoxy)-1,3-phenylene]bis-1propanone, 2114
[52749-67-4]	1-(7-Bromo-3,4-dihydroxy-2-naphthalenyl)-1-propanone, 1963
[52856-18-5]	1-(2,6-Dimethoxyphenyl)-2-methyl-1-propanone, 2035
[53107-35-0]	1-(2,3-Dichloro-4-methoxyphenyl)-2-methyl-1-propanone, 2021
[53347-07-2]	1-(5-Chloro-3-ethyl-2-hydroxyphenyl)-1-propanone, 1828
[53773-76-5]	1-(4-Methoxy-2-methylphenyl)-1-propanone, 1841
[54204-29-4]	1-(2-Hydroxyphenyl)-1-propanone uranium complex, 1762
[54204-30-7]	1-(2-Hydroxyphenyl)-1-propanone uranium complex, 1762
[54331-13-4]	1-(2-Hydroxyphenyl)-1-propanone uranium complex, 1762
[54362-59-3]	1,1'-[5-(1,1'-Dimethylethyl)-4-hydroxy-1,3-phenylene]bis-1propanone, 2116
[54437-05-7]	1-[2-Hydroxy-5-(phenylmethoxy)phenyl]-1-propanone, 1936
[54437-06-8]	1-[2-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-1propanone, 1907
[54556-10-4]	1-(2,4,6-Trihydroxy-3,5-dipropylphenyl)-1-propanone, 1930

[54560-82-6]	1-(3-Hydroxy-4-propoxyphenyl)-1-propanone, 1876
[54560-83-7]	1-(4-Hydroxy-3-propoxyphenyl)-1-propanone, 1876
[54696-07-0]	1-(4-Methoxy-2-methylphenyl)-2-methyl-1-propanone, 2033
[54696-08-1]	1-(2-Methoxy-5-methylphenyl)-2,2-dimethyl-1-propanone, 2091
[54903-52-5]	1-(4-Amino-3-hydroxyphenyl)-1-propanone, 1776
[54903-58-1]	1-[3-Hydroxy-4-(methylamino)phenyl]-1-propanone, 1821
[55382-25-7]	4-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)-phenyl]methyl]-3,5-dihydroxy-2,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2148
[55382-30-4]	1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-2-methyl-1propanone, 2037
[55576-64-2]	1-[3-[(3-Acetyl-2,6-dihydroxy-4-methoxy-5-methylphenyl) methyl]-5-[[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1oxopropyl)phenyl] methyl]-2,4,6-trihydroxyphenyl]-2-methyl-1butanone, 2166
[55576-65-3]	1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1oxopropyl) phenyl]methyl]-2,4,6-trihydroxyphenyl]-2-methyl-1butanone, 2166
[55765-53-4]	1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-1-propanone, 1850
[55805-95-3]	1-(2-Hydroxy-5-nitrophenyl)-1-propanone, 1757
[56116-76-8]	1-(4'-Methoxy[1,1'-biphenyl]-4-yl)-1-propanone, 1935
[56481-70-0]	1,1'-(4-Hydroxy-1,3-phenylene)bis-1-propanone, 2108
[57139-00-1]	1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]-1-propanone, 1928
[57209-24-2]	1-[2-Hydroxy-3,5-bis(1-methylethyl)phenyl]-1-propanone-$2,2,3,3,3-d_{5}$ Ion (1^{-}), radical ion (1^{-}), 1923
[57765-48-7]	1-[3-[[2,4-Dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl)phenyl] methyl]-2,4,6-trihydroxy-5-methylphenyl]-1-butanone, 2144
[57765-49-8]	1-[3-[[2,4-Dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl) phenyl]methyl]-2,4,6-trihydroxy-5-methylphenyl]-1-propanone, 2124
[57765-50-1]	1-(2,4,6-Trihydroxy-3-methylphenyl)-1-propanone, 1819
[58402-96-3]	1-(2-Hydroxy-5-nitrophenyl)-1-propanone (Oxime), 1758
[59445-80-6]	1-(2-Acetyl-7-hydroxy-4-benzofuranyl)-1-propanone, 2142
[60278-78-6]	1,1'-(4-Methoxy-1,3-phenylene)bis-1-propanone, 2111
[60278-79-7]	1,1'-(4,6-Dimethoxy-1,3-phenylene)bis-1-propanone, 2113
[60302-89-8]	1,1'-(2,4-Dimethoxy-1,3-phenylene)bis-1-propanone, 2113
[60400-13-7]	1-(2-Hydroxyphenyl)-1-propanone copper complex, 1762
[60401-57-2]	1-(5,6,7,8-Tetrahydro-3-hydroxy-2-naphthalenyl)-1-propanone, 1970
[60401-59-4]	1-[5,6,7,8-Tetrahydro-3-hydroxy-4-(2-propenyl)-2-naphthalenyl]-1-propanone, 1981
[60831-51-8]	1,1'-(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis[2-methyl-1propanone, 2148
[60883-92-3]	1-(2,4-Dihydroxy-6-methylphenyl)-2,2-dimethyl-1-propanone, 2089

[60884-04-0]	1-(2-Hydroxy-6-methoxyphenyl)-2,2-dimethyl-1-propanone, 2089
884-07-3]	1-(2,4-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2085
[60884-08-4]	1-(2,4-Dimethoxyphenyl)-2,2-dimethyl-1-propanone, 2092
[60884-09-5]	1-(2,6-Dihydroxy-4-methylphenyl)-2,2-dimethyl-1-propanone, 2089
1948-26-3]	1-(2-Hydroxy-3,4-dimethoxyphenyl)-1-propanone, 1851
[1983-10-6]	1-(3,4-Dihydroxy-2-naphthalenyl)-1-propanone, 1969
[61983-12-8]	1-(3,4-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2064
[61983-21-9]	3,4-Dihydroxy-2-(1-oxopropyl)-1-naphthalenecarbonitrile, 1971
[61983-31-1]	1-(7-Bromo-3,4-dihydroxy-2-naphthalenyl)-2-methyl-1propanone, 2062
983-39	1-(3,4-Dihydroxy-7-methyl-2-naphthalenyl)-1-propanone, 1975
[61983-40-2]	1-(3,4-Dihydroxy-7-methyl-2-naphthalenyl)-2-methyl-1propanone, 2065
[62545-34-0]	1-[2-(Acetyloxy)-4,6-dihydroxyphenyl]-2-methyl-1-propanone, 2030
[62545-45-3]	1-[4-(Acetyloxy)-2,6-dihydroxyphenyl]-2-methyl-1-propanone, 2030
[63213-30-9]	1-(2,4,5-Trihydroxyphenyl)-1-propanone (Triethyl ether), 1774
[63360-15-6]	1-[4-(3-Chloro-2-hydroxypropoxy)-2-hydroxy-3-(2-propenyl) phenyl]-1-propanone, 1923
[63360-36-1]	7-[2-Hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2-(2-propenyl) phenoxy]-propoxy]-4-(phenylmethoxy)-2H-1-benzopyran-2-one, 1961
338	1-(3,4-Dimethoxyphenyl)-1-propanone-3,3,3-d ${ }_{3}, 1822$
[63411-89-2]	1-(2,4-Dihydroxy-5-nitrophenyl)-1-propanone, 1759
[63411-90-5]	1-(4-Ethoxy-2-hydroxyphenyl)-1-propanone, 1845
[63411-91-6]	1-[2-Hydroxy-4-(pentyloxy)phenyl]-1-propanone, 1915
[63411-92-7]	1-[2-Hydroxy-4-(octyloxy)phenyl]-1-propanone, 1946
[63411-93-8]	1-[4-(2-Ethoxyethoxy)-2-hydroxyphenyl]-1-propanone, 1902
[63411-94-9]	1-[2-Hydroxy-4-(phenylmethoxy)phenyl]-1-propanone, 1936
[63411-95-0]	1-[4-[(3,4-Dichlorophenyl)methoxy]-2-hydroxyphenyl]-1propanone, 1931
[63411-96-1]	1-[4-[(2,4-Dichlorophenyl)methoxy]-2-hydroxyphenyl]-1propanone, 1931
[63437-97-8]	1-[4-Hydroxy-3-[2-(1-oxopropoxy)ethoxy]phenyl]-1-propanone, 1908
[63876-46-0]	1-(2,4-Dihydroxy-3-methylphenyl)-1-propanone, 1809
[63876-51-7]	3,4-Dichloro-7-hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-o 1993
[63876-52-8]	3,4-Dichloro-7-hydroxy-8-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1996
[63909-10-4]	1-(5-Ethyl-2-hydroxyphenyl)-1-propanone, 1834
[64030-63-3]	1-(2-Hydroxy-4-methoxy-6-methylphenyl)-1-propanone, 1848
[64207-03-0]	1-(2-Hydroxy-5-methylphenyl)-2-methyl-1-propanone, 2024

[64603-55-0]	1-(3,5-Dibromo-2,4-dihydroxyphenyl)-1-propanone, 1742
[65208-26-6]	1-(4-Hexadecyl-2 5-dihydroxyphenyl)-1-propanone, 1960
[65282-38-4]	1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone radical ion (1-), 1944
[65282-39-5]	1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone-$2,2,3,3,3-d_{5}$ radical ion (1^{-}), 1943
[65412-09-1]	1-[5-[(4-Ethylphenyl)azo]-2,4-dihydroxyphenyl]-1-propanone, 1940
[65412-10-4]	1-[2,4-Dihydroxy-5-[(2-methoxyphenyl)azo]phenyl]-1-propano 1933
[65412-16-0]	1-[2,4-Dihydroxy-5-[(4-nitrophenyl)azo]phenyl]-1-propanone, 1919
[65412-17-1]	1-[5-(2-Benzothiazolylazo)-2,4-dihydroxyphenyl]-1-propanone, 1931
[65412-18-2]	1-[2,4-Dihydroxy-5-[(6-nitro-2-benzothiazolyl)azo]phenyl]-1propanone, 1931
[65561-66-2]	1-[2,4-Dihydroxy-5-[[4-(phenylazo)phenyl]azo]phenyl]-1propanone, 1953
[65561-67-3]	1-[2,4-Dihydroxy-5-[[2-methyl-4-[(2-methylphenyl)azo]phenyl] azo]phenyl]-1-propanone, 1957
[65908-29-4]	1-[5-Hydroxy-2-phenyl-6-(phenylamino)-4-benzoxazolyl]-2,2-dimethyl-1-propanone, 2103
[66021-78-1]	1-(3,5-Dichloro-2-hydroxy-4,6-dimethoxyphenyl)-1-propanone, 1824
[66021-80-5]	1-(3,5-Dichloro-2-hydroxy-4-methoxyphenyl)-1-propanone, 1783
[66021-81-6]	1-(3,5-Dichloro-2,4-dihydroxyphenyl)-1-propanone, 1745
[66047-39-0]	1,1'-[Methylenebis[oxy(2-hydroxy-4,1-phenylene)]]bis-1propanone, 2119
[66047-41-4]	1,1'-[1,2-Ethanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1propanone, 2122
[66047-42-5]	1,1'-[1,3-Propanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1propanone, 2123
[66047-44-7]	1,1'-[Methylenebis[oxy(2-hydroxy-4,1-phenylene)]]bis-1propanone, (Dioxime), 2119
[66047-46-9]	1,1'-[1,2-Ethanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1propanone, (Dioxime), 2122
[66047-47-0]	1,1'-[1,3-Propanediylbis[oxy(2-hydroxy-4,1-phenylene)]]bis-1propanone, (Dioxime), 2123
[66265-14-3]	1-[4-Hydroxy-3-(methylthio)phenyl]-1-propanone, 1808
[66611-86-7]	3-Hydroxy-4-(1-oxopropyl)acetanilide, 1831
[66655-97-8]	1-[2,6-Dihydroxy-4-methoxy-3-methyl-5-[[2,4,6-trihydroxy-3-methyl-5-(1-oxopropyl)phenyl]methyl]phenyl]-1-butanone, 2144
[66711-55-5]	1-(3-Hexyl-2,4,6-trihydroxyphenyl)-1-propanone, 1930
[66711-57-7]	1-(3-Butyl-2,4,6-trihydroxyphenyl)-2-methyl-1-propanone, 2045
[66711-60-2]	1-(2,4,6-Trihydroxy-3-pentylphenyl)-1-propanone, 1916

[67127-81-5] 5-Ethyl-2-hydroxy-3-(1-oxopropyl)benzoic acid, 1862
[67166-42-1] 1-(X-Chloro-4-hydroxy-3-methoxyphenyl)-1-propanone, 1792
[67460-92-8] 1-(6-Methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2102
[67474-13-9] 1-[4-Hydroxy-3-(phenylsulfonyl)phenyl]-1-propanone, 1922
[67474-14-0] 1-[4-Hydroxy-3-[(4-methylphenyl)sulfonyl]phenyl]-1-propanone, 1937
[67474-15-1] 1-[3-[(4-Chlorophenyl)sulfonyl]-4-hydroxyphenyl]-1-propanone, 1918
[67474-16-2] 1-[3-[(4-Bromophenyl)sulfonyl]-4-hydroxyphenyl]-1-propanone, 1918
[67474-17-3] 1-[4-Hydroxy-3-[(4-iodophenyl)sulfonyl]phenyl]-1-propanone, 1918
[67474-18-4] 1-[4-Hydroxy-3-[(4-methoxyphenyl)sulfonyl]phenyl]-1propanone, 1938
[67752-18-5] 7-Hydroxy-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1993
[67771-05-5] Methyl 2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)-benzoate, 2044
[68047-77-8] 1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-1-propanone, 1975
[68079-14-1] 1-(2,4-Dihydroxyphenyl)-2-methyl-1-propanone (Uranium complex), 2018
[68223-29-0] $1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)] tetrakis-1-propanone, 2127
[68223-31-4] $1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}$-[Methylenebis(2,4,6-trihydroxy-5,1,3-benzenetriyl)] tetrakis-[2-methyl-1-propanone, 2154
[68223-39-2] 1-[2,4,6-Trihydroxy-3-methyl-5-[[2,4,6-trihydroxy-3,5-bis (1-oxopropyl)phenyl]methyl]-phenyl]-1-butanone, 2144
[68223-40-5] 1-[2,4,6-Trihydroxy-3-methyl-5-[[2,4,6-trihydroxy-3,5-bis(2-methyl-1-oxopropyl)phenyl]methyl]phenyl]-1-butanone, 2164
[68223-53-0] 1-[2,4,6-Trihydroxy-3-(2-methyl-1-oxopropyl)-5-[[2,4,6-trihydroxy-3-methyl- 5-(1-oxobutyl)phenyl]methyl]phenyl]-1butanone, 2164
[68241-22-5] 1-(6-Hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1-propanone, 1990
[68241-23-6] 1-(3-Ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-1-propanone, 1995
[68241-40-7] 1-(6-Hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1-propanone (Oxime), 1991
[68241-42-9] 1-(3-Ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-1-propanone (Oxime), 1995
[68597-43-3] 1-(3-Chloro-2-methoxyphenyl)-1-propanone, 1790
[68597-44-4] 1-(5-Chloro-2-methoxyphenyl)-1-propanone, 1791
[68597-45-5] 1-(2-Methoxy-3-methylphenyl)-1-propanone, 1839
[69076-17-1] 4-Hydroxy-7-[2-hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2-propylphenoxy]-propoxy]-3-nitro-2H-1-benzopyran-2-one, 1958
[69076-30-8] 1-[4-(3-Chloro-2-hydroxypropoxy)-2-hydroxy-3-propylphenyl]-1propanone, 1926

$[69076-45-5]$	4-Hydroxy-7-[2-hydroxy-3-[3-hydroxy-4-(1-oxopropyl)-2- propylphenoxy]-propoxy]-2H-1-benzopyran-2-one, 1959
[69299-75-8]	3,5-Dihydroxy-4,4-dimethyl-2-(3-methyl-1-oxobutyl)-6-[[2,4,6- trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)
	phenyl]methyl]-2,5-cyclohexadien-1-one, 2165
[69480-03-1]	2-Methyl-1-(2,4,6-trihydroxy-3-methylphenyl)-1-
	propanone, 2028

[71539-65-6]	1-[4-[[(2E)-3,7-Dimethyl-2,6-octadienyl]oxy]-2,6-dihydroxyphenyl]-2-methyl-1-propanone, 2056
[71539-69-0]	1-(3,4-Dihydro-5-hydroxy-7-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2071
[72008-03-8]	1-[3-[(2E)-3,7-Dimethyl-2,6-octadienyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-propanone $(E), 2055$
[72008-05-0]	1-[3-[(2E)-3,7-Dimethyl-2,6-octadienyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-propanone (Z), 2055
[72008-14-1]	1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2073
[72008-16-3]	1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-yl]-2-methyl-1-propanone, 2073
[72017-59-5]	1-(3,4-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2086
[72051-68-4]	1-(2-Hydroxyphenyl)-1-propanone-2,2,3,3,3- d_{5} ion (1^{-}), radical ion (1^{-}), 1737
[72051-72-0]	1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone radical ion (1^{-}), 1944
[72051-73-1]	1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-1-propanone-2,2,3,3,3- d_{5} ion (1^{-}), radical ion (1^{-}), 1943
[72051-76-4]	1-(2-Hydroxy-4-methylphenyl)-1-propanone radical ion (1-), 1802
[72051-77-5]	1-(2-Hydroxy-4-methylphenyl)-1-propanone-2,2,3,3,3- d_{5} ion (1^{-}), radical ion (1^{-}), 1777
[72051-80-0]	1-(4-Ethyl-2-hydroxyphenyl)-1-propanone ion (1^{-}), radical ion (1^{-}), 1833
[72051-81-1]	1-(4-Ethyl-2-hydroxyphenyl)-1-propanone-2,2,3,3,3- d_{5} ion (1-), 79 radical ion (1^{-}), 1821
[72051-84-4]	1-[2-Hydroxy-4-(1-methylethyl)phenyl]-1-propanone ion (1^{-}), radical ion (1^{-}), 1868
[72051-85-5]	1-[2-Hydroxy-4-(1-methylethyl)phenyl]-1-propanone-2,2,3,3,3- d_{5} ion (1^{-}), radical ion (1^{-}), 1858
[72051-88-8]	1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone ion (1-), radical ion (1^{-}), 1891
[72051-89-9]	1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-1-propanone-$2,2,3,3,3-d_{5}$ ion (1^{-}), radical ion (1^{-}), 1882
[72337-80-5]	1-(6,7-Dimethoxy-2-naphthalenyl)-1-propanone, 1978
[72569-10-9]	1-(4-Hydroxyphenyl)-2,2-dimethyl-1-propanone, 2084
[72569-11-0]	1-(4-Hydroxy-3-methylphenyl)-2,2-dimethyl-1-propanone, 2087
[72569-12-1]	1-(4-Hydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone, 2090
[72569-13-2]	1-(2-Hydroxy-5-methylphenyl)-2,2-dimethyl-1-propanone, 2087
[72569-14-3]	1-(2-Hydroxy-3,4-dimethylphenyl)-2,2-dimethyl-1-propanone, 2089
[72569-15-4]	1-(2-Hydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone, 2090
[72569-16-5]	1-(2-Hydroxy-4,5-dimethylphenyl)-2,2-dimethyl-1-propanone, 2090
[72934-91-9]	2-[[5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(3-methyl-1-oxobutyl)-2,5-cyclohexadien-1-one, 2165

[72934-97-5] 1-(7-Hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone, 2071
[72935-00-3] 1-(3,4-Dihydro-7-hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone, 2071
[72935-01-4] 1-[3,4-Dihydro-7-hydroxy-5-(methoxymethoxy)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2072
[72935-02-5] 1,1'-[Methylenebis(3,4-dihydro-5,7-dihydroxy-2,2-dimethyl- 2 H -1-benzopyran-6,8-diyl)]bis[2-methyl-1-propanone, 2155
[72935-03-6] 1-[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-6-(tetrahydro-2H-pyran-2-yl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2076
[72935-04-7] 4,5-Dichloro-3-hydroxy-6-[[7-hydroxy-5-methoxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-3-yl]oxy]-1,2benzenedicarbonitrile, 2081
[72935-05-8] 1-[7-Hydroxy-5-(methoxymethoxy)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2072
[72935-07-0] 1-(5,7-Dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2068
[72935-08-1] 1-(5,7-Dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone, 2068
[73044-15-2] 1-[2,3,4-Trihydroxy-5-(4-morpholinomethyl)phenyl]-1-propanone, 1910
[73044-16-3] 1-[2,3,4-Trihydroxy-5-(1-piperidinylmethyl)phenyl]-1-propanone, 1927
[73109-77-0] 1-(3,5-Dimethoxyphenyl)-2-methyl-1-propanone, 2036
[73206-57-2] 1-(4-Hydroxy-3-methylphenyl)-2-methyl-1-propanone, 2025
[73213-22-6] 1-(4,6-Dimethoxy-1,3-benzodioxol-5-yl)-2-methyl-1-propanone, 2067
[73860-03-4] 1-(5-Bromo-6-hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1propanone, 1990
[73860-04-5] 1-(5-Bromo-3-ethyl-6-hydroxy-1,2-benzisoxazol-7-yl)-1propanone, 1994
[73860-07-8] 1-(5-Bromo-6-hydroxy-3-methyl-1,2-benzisoxazol-7-yl)-1propanone (Oxime), 1990
[73860-08-9] 1-(5-Bromo-3-ethyl-6-hydroxy-1,2-benzoisoxazol-7-yl)-1propanone (Oxime), 1994
[74048-81-0] 3-[[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxo-propyl)phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl$2 H$-pyran-2-one, 2060
[74477-94-4] 1-(3-Heptyl-2,4,6-trihydroxyphenyl)-1-propanone, 1940
[74477-95-5] 1-(2,4,6-Trihydroxy-3-octylphenyl)-1-propanone, 1946
[74654-51-6] 1-(3-Methoxy-4-methylphenyl)-2-methyl-1-propanone, 2033
[74786-53-1] 1-(2-Methoxyphenyl)-2-methyl-1-propanone, 2025
[74815-88-6] 1-[2,4-Dihydroxy-3-(2-propenyl)phenyl]-1-propanone, 1860

[74948-75-2]	3-[[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxo-propyl)phenyl]methyl]-6-ethyl-4-methoxy-5-methyl-2H-pyran-2-one, 2060
[75060-47-8]	1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-2-methyl-1propanone, 2048
[75060-54-7]	1-[5-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2-methyl-1propanone, 2044
[75060-66-1]	1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1propanone (Hydrochloride), 1917
[75060-72-9]	1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1-propanone (Hydrochloride), 2050
[75060-82-1]	1-[3-(Aminomethyl)-5,6,7,8-tetrahydro-2-hydroxy-1-naphthalenyl]-1-propanone (Hydrochloride), 1976
[75060-88-7]	1-[3-(Aminomethyl)-2-hydroxy-5-(methylthio)phenyl]-1propanone (Hydrochloride), 1857
[75060-89-8]	1-[2-Hydroxy-5-(methylthio)phenyl]-1-propanone, 1808
[75060-92-3]	1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1propanone, 1916
[75060-94-5]	1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1-propanone, 2049
[75061-06-2]	1-[3-(Aminomethyl)-5,6,7,8-tetrahydro-2-hydroxy-1-naphthalenyl]-1-propanone, 1976
[75061-07-3]	1-[3-(Aminomethyl)-2-hydroxy-5-(methylthio)phenyl]-1propanone, 1857
[75089-89-3]	1-[4-(Acetyloxy)-3-hydroxy-2-naphthalenyl]-1-propanone, 1977
[75408-94-5]	1-(2,4-Dichloro-6-hydroxyphenyl)-1-propanone (Oxime), 1743
[75408-96-7]	1-(4-Chloro-2-hydroxyphenyl)-1-propanone (Oxime), 1752
[75408-97-8]	1-(4-Hydroxy-3,5-dimethylphenyl)-1-propanone (Oxime), 1838
[75482-12-1]	1-[5-(1,1-Dimethylethyl)-4',6-dihydroxy-3',5'-dimethoxy[1, 1^{\prime} -biphenyl]-3-yl]-1-propanone, 1955
[75680-05-6]	3-[[2,3-Dihydro-4,6-dihydroxy-2-(1-methylethenyl)-5-(2-methyl-1-oxopropyl)-7-benzofuranyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2082
[75680-08-9]	6-Ethyl-4-hydroxy-5-methyl-3-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2H-pyran-2one, 2059
[75680-22-7]	3,3'-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-phenylene] bis-(methylene)]bis[6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2061
[75859-13-1]	1-(2,5-Dihydroxy-4-methylphenyl)-1-propanone, 1810
[75859-14-2]	1-(4-Chloro-2,5-dihydroxyphenyl)-1-propanone, 1753
[75859-15-3]	1-(1,4-Dihydroxy-2-naphthalenyl)-1-propanone, 1968
[76049-04-2]	1-(2,3-Dimethoxyphenyl)-1-propanone, 1841
[76288-07-8]	1,1'-[Methylenebis(1-hydroxy-4,2-naphthalenediyl)]bis-1propanone, (Dioxime), 2128

[76288-10-3]	1,1'-[Methylenebis(1-hydroxy-4,2-naphthalenediyl)]bis-1propanone, 2128
[76805-57-7]	1-(4-Methoxy-3-methylphenyl)-1-propanone, 1841
[77526-99-9]	2-Hydroxy-5-(1-oxopropyl)benzoic acid methyl ester, 1825
[77697-21-3]	1-(2-Hydroxy-4-propoxyphenyl)-1-propanone (Oxime), 1876
[77820-39-4]	3-[[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxy-5-(2-methyl-1-oxopropyl)-phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran- 2-one (E), 2061
[77942-13-3]	1-(2,4-Dimethoxy-3-methylphenyl)-1-propanone, 1873
[77942-24-6]	1-(2,4-Dimethoxy-5-methylphenyl)-1-propanone, 1874
[78094-43-6]	1-(2-Hydroxy-3-methoxyphenyl)-1-propanone, 1811
[78094-44-7]	2-(2-Ethyl-1,3-dioxolan-2-yl)-6-methoxy-2,5-cyclohexadiene-1,4dione, 2007
[78094-46-9]	5-Hydroxy-6-methoxy-2-methyl-4-(1-oxopropyl)-3-benzof urancarboxylic acid ethyl ester, 2007
[78377-68-1]	3,4-Dihydro-6,8-dihydroxy-7-methyl-1(2H)-naphthalenone, 2143
[78377-69-2]	3,4-Dihydro-6,8-dihydroxy-7-methyl-5-(1-oxopropyl)-1(2H)naphthalenone, 2143
[78377-71-6]	6,8-Dimethoxy-7-methyl-5-(1-oxopropyl)-1,2-naphthalenedione, 1979
[78377-72-7]	1-(5-Hydroxy-2,4-dimethoxy-3-methyl-6-nitroso-1-naphthalenyl)-1-propanone, 1979
[78377-74-9]	N-[1,6-Dihydroxy-8-methoxy-7-methyl-5-(1-oxopropyl)-2naphthalenyl]acetamide, 1982
[78411-76-4]	3-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl) phenyl]-methyl]-2,4,6-trihydroxy-5-(3-methyl-1-oxobutyl) benzaldehyde, 2161
[78417-99-9]	2-Hydroxy-5-(1-oxopropyl)benzoic acid, 1784
[79010-36-9]	1-(3-Acetyl-4-hydroxyphenyl)-1-propanone, 2132
[79387-88-5]	1-(1-Hydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2062
[79558-49-9]	1-(2,4-Dihydroxy-3-propylphenyl)-1-propanone, 1872
[79744-62-0]	1-(2,4,5-Trihydroxyphenyl)-1-propanone, 1773
[79744-64-2]	1-(2,4-Dihydroxy-5-methoxyphenyl)-1-propanone, 1818
[79925-34-1]	1-(2-Hydroxy-4-nitrophenyl)-1-propanone, 1757
[79925-35-2]	1-(5-Amino-2-hydroxyphenyl)-1-propanone, 1777
[80427-25-4]	1-[2-Methoxy-5-(1-oxopropoxy)phenyl]-1-propanone, 1887
[80427-31-2]	1-(5-Hydroxy-2-methoxyphenyl)-1-propanone, 1818
[81336-14-3]	1-(4,6-Dimethoxy-1-naphthalenyl)-1-propanone, 1978
[81336-21-2]	1-(6-Methoxy-1-naphthalenyl)-1-propanone, 1974
[81336-23-4]	1-(4-Hydroxy-6-methoxy-1-naphthalenyl)-1-propanone, 1976
[81389-57-3]	1-[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-2-methyl-1propanone (O-methyloxime), 2054
[81389-67-5]	1-[3-(1,1-Dimethylethyl)-4,5-dihydroxyphenyl]-2,2-dimethyl-1propanone, 2096
[81421-70-7]	1-(2-Hydroxy-3,4-dimethoxy-6-methylphenyl)-1-propanone, 1877

[81421-71-8]
[81484-62-0]
[82053-90-5]
[82350-84-3]
[82490-57-1]
[82620-73-3]
[82623-49-2]
[82667-80-9]
[82846-20-6]
[83016-68-6]
[83294-23-9]
[83569-68-0]
[83569-69-1]
[83674-89-9]
[85052-32-0]

1-(2,3,4-Trimethoxy-6-methylphenyl)-1-propanone, 1903
1-(5-Bromo-4-methoxy-2-nitrosophenyl)-1-propanone, 1780
1-(2-Methoxy-3-methylphenyl)-2-methyl-1-propanone, 2032
1-(4-Hydroxy-3-nitrophenyl)-2-methyl-1-propanone, 2015
1-(6-Hydroxy-2,3,4-trimethylphenyl)-2-methyl-1-propanone, 2039
1-(2-Methoxy-5-methylphenyl)-1-propanone, 1839
1-(2-Methoxy-5-methylphenyl)-1-propanone
(2,4-Dinitrophenylhydrazone), 1840
1-(5-Chloro-2,4-dihydroxyphenyl)-1-propanone (Oxime), 1753
1-(4-Fluoro-3-methoxyphenyl)-1-propanone, 1793
1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1989
1-(4-Amino-2-hydroxyphenyl)-1-propanone, 1776
1-[4-Hydroxy-3-methoxy-5-(1-methylethyl)phenyl]-1-propanone, 1900
1-[3,4-Dimethoxy-5-(1-methylethyl)phenyl]-1-propanone, 1913
1-[4-Methoxy-3-(phenylmethoxy)phenyl]-1-propanone, 1942
1-[5-(1,1-Dimethylethyl)-2-hydroxy-3-nitrophenyl]-1-propanone, 1890
[85131-64-2] 1-(5-Chloro-2,4-dihydroxyphenyl)-1-propanone, 1753
[85602-23-9] 1-[2,4,6-Trihydroxy-3-(2-propenyl)phenyl]-1-propanone, 1863
[86690-30-4]
[86774-65-4]
[87061-00-5]
[87108-26-7]
[87544-99-8]
[87545-01-5]
[88466-30-2]
[88521-75-9]
[88771-65-7]
[88772-49-0]
[88792-61-4]
[89106-18-3]
[89106-39-8]
[89106-46-7]
[89556-60-5]
[89880-48-8]
[89880-49-9]
[90363-43-2]
1-[2-(1,1-Dimethylethyl)-6-hydroxyphenyl]-1-propanone, 1890
1-(2,4-Dimethoxyphenyl)-2-methyl-1-propanone, 2034
1-[2-Hydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-1-propanone, 1907
1-[2-[(3,7-Dimethyl-2,6-octadienyl)oxy]-4-hydroxyphenyl]-1propanone (E), 1951
1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one, 2139
1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one, 2140
2-Hydroxy-3-(1-oxopropyl)benzoic acid methyl ester, 1825
1-(2-Hydroxy-5-nitrophenyl)-2-methyl-1-propanone, 2015
1-(4-Chloro-2-hydroxy-3,6-dimethoxyphenyl)-2-methyl-1propanone, 2030
1-(4-Chloro-2,5-dihydroxyphenyl)-2-methyl-1-propanone, 2014
1-(1-Hydroxy-4,8-dimethoxy-2-naphthalenyl)-1-propanone, 1978
1-(4-Chloro-3-methoxyphenyl)-1-propanone, 1791
1-(3-Chloro-5-methoxyphenyl)-1-propanone, 1790
1-(2-Fluoro-5-methoxyphenyl)-1-propanone, 1792
1-(2,5-Dimethoxyphenyl)-2-methyl-1-propanone, 2035
1-(2,3,4,6-Tetramethoxyphenyl)-1-propanone, 1903
1-(3-Ethoxy-2-hydroxy-4,6-dimethoxyphenyl)-1-propanone, 1903
1-(1,4-Dihydro-6,8-dimethoxy-7-methyl-1,4-epoxynaphthalene-5-
yl)-1-propanone, 1980
[90363-44-3] 1-(8-Hydroxy-2,4-dimethoxy-3-methyl-1-naphthalenyl)-1propanone, 1980
[90363-46-5] [90363-47-6]
[90363-48-7]
[90363-49-8]
[90363-50-1]
[91061-55-1]
[91134-62-2]
[91143-39-4]
[91143-73-6]
[91211-02-8]
[91307-45-8]
[91496-09-2]
[91496-99-0]
[91497-18-6]
[91497-44-8]
[91555-68-9]
[91569-25-4]
[91641-62-2]
[91889-34-8]
[91889-35-9]
[91902-70-4]
[91970-96-6]
[91970-97-7]
[91970-98-8]
[91991-98-9]
[92156-94-0]
[90363-51-2] 1-(7-Bromo-2,4,5,8-tetramethoxy-3-methyl-6-nitronaphthalenyl)-1-propanone, 1983
[90363-52-3] 1-(2,4,5,8-Tetramethoxy-3-methyl-6-nitro-1-naphthalenyl)-1propanone, 1983
[90363-53-4] 1-(6-Amino-2,4,5,8-tetramethoxy-3-methyl-1-naphthalenyl)-1propanone, 1984
[90363-54-5] N-[1,4,6,8-Tetramethoxy-7-methyl-5-(1-oxopropyl)-2naphthalenyl]acetamide, 1984
[90536-26-8] 1-(2,3-Dihydroxyphenyl)-1-propanone, 1767
[90537-41-0] 1-(5-Chloro-2-hydroxy-3-nitrophenyl)-1-propanone, 1743
[90725-67-0] 1-(5-Bromo-2-hydroxy-3-nitrophenyl)-1-propanone, 1741
[90743-04-7] 1-(5-Chloro-2-hydroxyphenyl)-2-methyl-1-propanone, 2013
[90852-26-9] 1-(4-Methoxy-2,3-dimethylphenyl)-1-propanone, 1871
[90922-89-7] 1-(2-Hydroxy-3-methyl-5-nitrophenyl)-1-propanone, 1795
[90922-90-0] 1-(4-Hydroxy-2-methyl-5-nitrophenyl)-1-propanone, 1796
3,5-Dimethoxy-4-methyl-2H-naphtho[1,8-bc]furan-2-one, 1980
2-Bromo-5,7-dimethoxy-6-methyl-8-(1-oxopropyl)-1,4naphthalenedione, 2143
5,7-Dimethoxy-6-methyl-8-(1-oxopropyl)-1,4-naphthalenedione, 2143
1-(7-Bromo-2,4,5,8-tetramethoxy-3-methyl-1-naphthalenyl)-1propanone, 1983
1-(2,4,5,8-Tetramethoxy-3-methyl-1-naphthalenyl)-1-propanone, 1984

1-(2,3-Dihydroxy-5-methylphenyl)-1-propanone, 1808
1-(4,5-Dimethoxy-2-nitrophenyl)-1-propanone, 1832
4-Methoxy-3-(1-oxopropyl)benzoic acid, 1826
1-[4-(Acetyloxy)-2-hydroxyphenyl]-1-propanone, 1824
1-(2-Hydroxy-3,5-dinitrophenyl)-1-propanone, 1746
1-(5-Hydroxy-1-naphthalenyl)-1-propanone, 1967
1-[4-Hydroxy-3-(2-propenyl)phenyl]-1-propanone, 1859
1-(3-Acetyl-2-hydroxy-5-methylphenyl)-1-propanone, 2134
4-Methoxy-3-(1-oxopropyl)benzoic acid methyl ester, 1863
1,1'-(2,5-Dihydroxy-1,4-phenylene)bis-1-propanone, 2109
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)-2-methyl-1propanone, 2036
8-Hydroxy-5-(1-oxopropyl)quinoline, 1994
4-Hydroxy-3-(1-oxopropyl)propionanilide, 1865
1-[4-(Hydroxy-d)phenyl]-1-propanone-2,2- $d_{2}, 1739$
1-(4-Methoxyphenyl)-1-propanone-2,2- $d_{2}, 1807$
1-(3-Hydroxy-2-naphthalenyl)-1-propanone, 1966
1-(2-Hydroxy-3-methoxy-5-methylphenyl)-1-propanone, 1847
1-(4-Hydroxy-3-methoxy-5-methylphenyl)-1-propanone, 1849
1-(5-Hydroxy-4-methoxy-2-methylphenyl)-1-propanone, 1850
1-(2-Hydroxy-3-nitrophenyl)-1-propanone, 1756
1-(2-Ethyl-4,5-dimethoxyphenyl)-1-propanone, 1899

[92189-66-7]	1
301-90-1]	2-Methyl-1-(2,4,6-trimethoxy-3-methylphenyl)-1-propanone, 2046
2554-09-1]	1-(4-Hydroxy-5-nitro[1,1'-biphenyl]-3-yl)-1-propanone, 1919
[92729-83-4]	1-(2-Hydroxy-3,5-dipropylphenyl)-1-propanone, 1928
[92920-81-5]	1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-2-methyl-1-propanone, 2066
[92920-82-6]	1-(1-Hydroxy-5-methoxy-2-naphthalenyl)-2,2-dimethyl-1propanone, 2103
[94190-87-1]	1,1'-(2-Hydroxy-4,6-dimethoxy-1,3-phenylene)bis-1-propanone, 2114
[94190-88-2]	1-[2-Hydroxy-4,6-dimethoxy-3-(1-oxopropoxy)phenyl]-1propanone, 1908
[94190-89-3]	1-(2,3-Dihydroxy-4,6-dimethoxyphenyl)-1-propanone, 1854
[95102-26-4]	1-[5-(1,1-Dimethylethyl)-2,4-dihydroxyphenyl]-1-propanone, 1899
[95102-28-6]	1-[5-(1,1-Dimethylpropyl)-2,4-dihydroxyphenyl]-1-propanone, 1914
95102-29-7]	1-(6-Hydroxy[1,1'-biphenyl]-3-yl)-1-propanone, 1920
[95125-20-5]	1,1'-[Thiobis(6-hydroxy-3,1-phenylene)]bis-1-propanone, 2118
[95185-71-0]	1-(3-Cyclohexyl-4-hydroxyphenyl)-1-propanone, 1923
[95455-11-1]	1-(2-Hydroxy-1-naphthalenyl)-2-methyl-1-propanone, 2063
[95699-99-3]	1,1'-[Sulfonylbis(6-hydroxy-3,1-phenylene)bis]-1-propanone, 21
[95818-32-9]	1-(2,4-Dihydroxy-6-pentadecylphenyl)-1-propanone, 1959
[96552-58-8]	1-[2,3-Dihydro-4,6-dihydroxy-2-(1-methylethenyl)-5-benzofuranyl]-2-methyl-1-propanone (R), 2068
573-29-4]	2,4,6-Trihydroxy-3-(1-oxopropyl)benzaldehyde, 2131
[96573-37-4]	2,4,6-Trihydroxy-3-methyl-5-(1-oxopropyl)benzaldehyde, 2133
[96573-38-5]	3-Ethyl-2,4,6-trihydroxy-5-(1-oxopropyl)benzaldehyde, 2134
[96573-39-6]	2,4,6-Trihydroxy-3-(1-oxopropyl)-5-propylbenzaldehyde, 2135
[96573-40-9]	1-[2,4,6-Trihydroxy-3-(1-oxopropyl)phenyl]-1-butanone, 2135
[96573-42-1]	2,4,6-Trihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxaldehyde, 2132
[96573-44-3]	2,4,6-Trihydroxy-3-(1-oxopropyl)benzaldehyde (1-oxime), 1798
[96573-45-4]	2-[[2,4,6-Trihydroxy-3-(1-oxopropyl)phenyl]methylene] hydrazinecarboxamide, 1833
[96756-26-2]	2-Methyl-1-(2,4,6-trihydroxy-3-pentylphenyl)-1-propanone, 2049
[96756-27-3]	1-[2,4,6-Trihydroxy-3-(3-methylbutyl)phenyl]-1-propanone, 1916
[96853-74-6]	1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone, 2162
[97139-82-7]	1-(2-Hydroxyphenyl)-1-propanone (Acetate), 1763
[97304-06-8]	1-[2,4-Dihydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone, 1906
[97304-11-5]	1-[2,4-Dihydroxy-5-(3-methyl-2-butenyl)phenyl]-1-propanone, 1906

[97761-90-5]	1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-2-methyl-1propanone, 2041
[97921-47-6]	1,1'-[Thiobis(6-methoxy-3,1-phenylene)]bis-1-propanone, 2121
[98017-40-4]	1-[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]-1-propanone, 1885
[98149-24-7]	1,1'-[Methylenebis(5-acetyl-2,4,6-trihydroxy-3,1-phenylene)] bis[2-methyl-1-propanone, 2160
[98149-26-9]	1,1'-[Thiobis[2,4,6-trihydroxy-5-(1-oxopropyl)-3,1-phenylene]] bis-1-hexanone, 2144
[98149-39-4]	1-[3-Bromo-2,4,6-trihydroxy-5-(1-oxopropyl)phenyl]-1-hexanone, 2137
[98192-71-3]	5,7-Dihydroxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-4-propyl-2H-1-benzopyran-2-one, 2080
[98216-05-8]	5,7-Dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-4-propyl-2H-1-benzopyran-2-one, 2079
[98291-44-2]	1-[8-Hydroxy-3-methyl-2,4-bis(phenylmethoxy)-1-naphthalenyl]-1-propanone, 1987
[98291-47-5]	1-(2,4-Dihydroxy-5,8-dimethoxy-3-methyl-1-naphthalenyl)-1propanone, 1981
[98291-48-6]	1-[5,8-Dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-1-naphthalenyl]-1-propanone, 1985
[98291-49-7]	1-[5,8-Dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-6-nitro-1-naphthalenyl]-1-propanone, 1985
[98291-50-0]	1-(2,4-Dihydroxy-5,8-dimethoxy-3-methyl-6-nitro-1-naphthalenyl)-1-propanone, 1979
[98291-51-1]	1-[6-Amino-5,8-dimethoxy-2,4-bis(methoxymethoxy)-3-methyl-1-naphthalenyl]-1-propanone, 1985
[98442-56-9]	1-[2,4-Dihydroxy-3-(iminomethyl)-6-methoxy-5-methylphenyl]-2-methyl-1-propanone, 2039
[98442-62-7]	1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-methyl-1propanone, 2042
[99055-11-5]	1-(3-Chloro-2,6-dihydroxyphenyl)-1-propanone, 1753
[99070-79-8]	1-[5-(Chloromethyl)-2-hydroxyphenyl]-1-propanone, 1792
[99174-40-0]	1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]bis-[2-methyl-1-propanone, 2151
[99174-41-1]	1-[3-[[2,6-Dihydroxy-4-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl]-methyl]-2,6-dihydroxy-4-methoxy-5-methylphenyl]-2-methyl-1-propanone, 2149
[99174-42-2]	1-[3-[[4,6-Dihydroxy-2-methoxy-5-methyl-3-(2-methyl-1-oxopropyl)phenyl]-methyl]-2,6-dihydroxy-4-methoxy-5-methylphenyl]-2-methyl-1-propanone, 2150
[99184-81-3]	2-Hydroxy-3-(1-oxopropyl)benzonitrile, 1779
[99186-85-3]	2-Methyl-1-(2,4,5-trihydroxyphenyl)-1-propanone, 2019
[99283-87-1]	1-[4-(Dodecyloxy)-2-hydroxyphenyl]-1-propanone (Oxime), 1956'
[99548-74-0]	1-(3-Bromo-2,6-dihydroxyphenyl)-1-propanone, 1748

[99814-61-6]	1,1'-[(6-Methylheptylidene)bis(3,4-dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6,8-diyl)]bis[2-methyl-1-propanone, 2157
[99842-69-0]	4-Hydroxy-3-(1-oxopropyl)phenylacetonitrile, 1823
[99842-70-3]	2-Methoxy-3-(1-oxopropyl)benzonitrile, 1823
[99853-35-7]	5-Bromo-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester, 1822
[99854-30-5]	5-Chloro-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester, 1822
[99855-34-2]	4-Hydroxy-3-(1-oxopropyl)acetanilide, 1831
[99860-74-9]	1-[3,5-Bis(chloromethyl)-2-hydroxyphenyl]-1-propanone, 1824
[99964-98-4]	1-(2,4-Dihydroxy-3,5-dimethoxyphenyl)-1-propanone, 1855
[99965-00-1]	1-[2-Hydroxy-3,5-dimethoxy-4-[(3-methyl-2-butenyl)oxy] phenyl]-1-propanone, 1938
[100059-02-7]	1-(2,3-Dihydroxyphenyl)-2,2-dimethyl-1-propanone, 2085
[100117-91-7]	4-Hydroxy-3-(1-oxopropyl)benzoic acid ethyl ester, 1862
[100126-81-6]	1-[5-(Chloromethyl)-2-methoxyphenyl]-1-propanone, 1830
[100246-22-8]	1-(3-Bromo-2,4-dihydroxy-5-nitrophenyl)-1-propanone, 1741
[100257-32-7]	1-[5-(Ethoxymethyl)-2-hydroxyphenyl]-1-propanone, 1875
[100393-42-8]	8-Hydroxy-2-methyl-5-(1-oxopropyl)quinoline, 2000
[100523-86-2]	1-(3,5-Dihydroxyphenyl)-1-propanone, 1772
[100612-28-0]	1-(5,6,7,8-Tetrahydro-1-hydroxy-2-naphthalenyl)-1-propanone, 1970
[100884-41-1]	3-[2,4-Dimethoxy-3-(1-oxopropyl)phenyl]-2-propenoic acid, 1905
[100886-06-4]	1-(6-Hydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2063
[100886-53-1]	7-Hydroxy-2,3-dimethyl-8-(1-oxopropyl)-4H-1-benzopyran-4one, 2142
[100953-75-1]	5-Bromo-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran, 1993
[100972-94-9]	1-(2-Acetyl-3,5,6-trimethoxyphenyl)-1-propanone, 2135
[100976-03-2]	1-(1-Hydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2100
[101002-22-6]	1-[4-(Cyclohexyloxy)-2-hydroxyphenyl]-1-propanone (Oxime), 1924
[101002-26-0]	1-(4-Dodecyl-2-hydroxyphenyl)-1-propanone (Oxime), 1955
[101002-35-1]	1-[4-(Cyclohexyloxy)-2-hydroxyphenyl]-1-propanone, 1924
[101002-16-8]	1-[4-(Decyloxy)-2-hydroxyphenyl]-1-propanone (Oxime), 1952
[101002-30-6]	1-[4-(Decyloxy)-2-hydroxyphenyl]-1-propanone, 1951
[101012-66-2]	5-Bromo-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid, 1778
[101103-44-0]	1-(2,3-Dihydroxyphenyl)-2,2-dimethyl-1-propanone (Diacetate), 2085
[101386-02-1]	1-(2,6-Dihydroxyphenyl)-2-methyl-1-propanone, 2018
[101597-03-9]	1-(5-Benzoyl-2-hydroxy-3-methylphenyl)-1-propanone, 2137
[101724-90-7]	8-Hydroxy-5-(2-methyl-1-oxopropyl)quinoline, 2067
[102020-39-3]	1-(5-Decyl-2-hydroxyphenyl)-1-propanone, 1951
[102092-19-3]	1-(2,4-Dihydroxy-6-methoxyphenyl)-2-methyl-1-propanone, 2027
[102168-44-5]	1-[4-Hydroxy-2-methyl-5-(1-methylethyl)-3-(phenylmethyl) phenyl]-1-propanone, 1953

[102520-04-7]	1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-2-methyl-1propanone, 2054
[102541-32-2]	5-Chloro-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid, 1779
[102553-89-9]	1-[2-Acetyl-5,6-dimethoxy-3-(phenylmethoxy)phenyl]-1propanone, 2141
[102569-09-5]	1-[2-Hydroxy-5-methoxy-3-(2-propenyl)phenyl]-1-propanone, 1885
[103028-92-8]	1-(3-Amino-4-methoxyphenyl)-1-propanone, 1821
[103030-81-5]	1-(3-Amino-2-methoxyphenyl)-1-propanone, 1820
[103048-60-8]	1-(3-Hexadecyl-2-hydroxy-5-methoxyphenyl)-1-propanone, 1960
[103096-89-5]	1,1'-[Thiobis(5-bromo-4,6-dihydroxy-3,1-phenylene)]bis-1propanone, 2117
[103154-02-5]	1,1'-[Thiobis(4,6-dihydroxy-3,1-phenylene)]bis-1-propanone, 2119
[103204-36-0]	1-(3-Methoxy-2-nitrophenyl)-1-propanone, 1797
[103204-39-3]	1-(4-Methoxy-3-nitrophenyl)-1-propanone, 1797
[103205-56-7]	1-(2-Methoxy-3-nitrophenyl)-1-propanone, 1796
[103323-37-1]	1-(3-Hydroxyphenyl)-2-methyl-1-propanone, 2016
[103440-67-1]	1-(2,6-Dihydroxy-3-nitrophenyl)-1-propanone, 1760
[103441-87-8]	1-(2,4-Dihydroxy-3-nitrophenyl)-1-propanone, 1759
[103509-21-3]	1,1'-[Thiobis(4-hydroxy-6-methoxy-3,1-phenylene)]bis-1propanone, 2122
[103653-13-0]	1-(4-Hydroxy-3-iodo-5-methoxyphenyl)-1-propanone, 1795
[103653-15-2]	1-(3-Bromo-4-hydroxy-5-methoxyphenyl)-1-propanone, 1787
[103766-15-0]	2-Methyl-1-[2,4,6-trihydroxy-3-[1-(4-hydroxy-6-methoxy-1,3-benzodioxol-5-yl)-2-methylpropyl]-5-(3-methyl-2-butenyl) phenyl]-1-propanone (S), 2061
[103766-16-1]	3-[[2,4-Dihydroxy-6-methoxy-3-(2-methyl-1-oxopropyl)phenyl] methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2055
[103771-65-9]	1-[6-[1-[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]-6-methylheptyl]-3,4-dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1butanone, 2167
[103771-68-2]	1-[2,6-Dihydroxy-4-methoxy-3-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone, 2051
[103771-70-6]	3-[[2,4-Dihydroxy-6-methoxy-5-(3-methyl-2-butenyl)-3-(2-methyl-1-oxo-propyl)phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl2 H -pyran-2-one, 2060
[103771-72-8]	1,1'-[(6-Methylheptylidene)bis[2,4,6-trihydroxy-5-(3-methyl-2-butenyl)-3,1-phenylene]]bis[2-methyl-1-propanone, 2157
[103771-73-9]	2-Methyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-[6-methyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]- heptyl]phenyl]-1-butanone, 2167
[103771-74-0]	1-[2,3-Dihydro-4,6-dihydroxy-2-(1-methylethenyl)-5-benzofuranyl]-2-methyl-1-propanone, 2068
[103771-77-3]	1-[5,8-Dihydroxy-7-methoxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-yl]-2-methyl-1-propanone, 2080

[103784-19-6] 3-[[5,7-Dihydroxy-2,2-dimethyl-6-(2-methyl-1-oxopropyl)-2H-1-benzopyran-8-yl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2082
[103784-23-2] 2-Methyl-1-[5,7,8-trihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-yl]-1-propanone, 2073
[103858-21-5] 1,1'-[Thiobis(4-hydroxy-5-methyl-3,1-phenylene)]bis-1propanone, 2121
[103863-52-1] 1,1'-[Thiobis(2-hydroxy-5-methyl-3,1-phenylene)]bis-1propanone, 2120
[104008-43-7] 1-(3,5-Diethyl-4-methoxyphenyl)-1-propanone, 1910
[104008-46-0] 1-(3,5-Diethyl-4-hydroxyphenyl)-1-propanone, 1890
[104095-32-1] 5-Chloro-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran, 1994
[104129-04-6] 1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-1-propanone, 1798
[104129-05-7] 1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-1-propanone (Oxime), 1798
[104129-07-9] 1-[3-(Aminomethyl)-4-hydroxy-5-iodophenyl]-1-propanone (Oxime), 1799
[104129-08-0] 1-[3-(Aminomethyl)-5-chloro-4-hydroxyphenyl]-1-propanone (Oxime), 1799
[104129-14-8] 1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-2-methyl-1propanone (Oxime), 2023
[104129-15-9] 1-[3-(Aminomethyl)-5-bromo-4-hydroxyphenyl]-2-methyl-1propanone, 2023
[104216-16-2] 1-(4-Hydroxy-5-methoxy-2-methylphenyl)-1-propanone, 1849
[104216-40-2] 1-(3-Methoxy-2-methylphenyl)-1-propanone, 1840
[104557-28-0] 1-(4-Hydroxy-3-nonylphenyl)-1-propanone, 1949
[105041-56-3] 1-(3-Chloro-6-hydroxy-2,4-dimethylphenyl)-1-propanone, 1829
[105290-18-4] 1,1'-(2-Hydroxy-5-methyl-1,3-phenylene)bis-1-propanone, 2111
[105329-87-1] 1-(2,3-Dimethoxyphenyl)-2-methyl-1-propanone, 2034
[105339-17-1] 5-Ethyl-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid, 1864
[105630-20-4] 1-[3,5-Bis(diphenylmethyl)-2,4,6-trihydroxyphenyl]-1-propanone, 1962
[105630-21-5] 1-[3,5-Bis(diphenylmethyl)-2,4,6-trimethoxyphenyl]-1-propanone, 1962
[105630-22-6] 1-[3-(Diphenylmethyl)-2,4,6-trihydroxyphenyl]-1-propanone, 1956
[105630-23-7] 1-[3-(Diphenylmethyl)-2,4,6-trimethoxyphenyl]-1-propanone, 1960
[105838-23-1] 2-Ethyl-3-methoxy-5-(1-oxopropyl)benzonitrile, 1884
[105905-84-8] 1,1'-(4,6-Dihydroxy-5-nitro-1,3-phenylene)bis-1-propanone, 2107
[105910-12-1] 1,1'-(2,4-Dihydroxy-5-nitro-1,3-phenylene)bis-1-propanone, 2107
[106141-17-7] 1-(2-Hydroxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2031
[106214-15-7] 5-Ethyl-2,4-dihydroxy-3-(1-oxopropyl)benzoic acid methyl ester, 1887
[106379-22-0] 5-Ethyl-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran, 2002
[106477-03-6] 1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]-2-methyl-1propanone, 2044
[106627-30-9] 6-[3-Hydroxy-4-(1-oxopropyl)-2-propylphenoxy]hexanoic acid diphenylmethyl ester, 1961
[106627-40-1] 1-[2-Hydroxy-4-(2-propenyloxy)phenyl]-1-propanone, 1860
[106697-21-6] 1-(3-Hydroxy-4-methylphenyl- $\left.{ }^{14} \mathrm{C}_{6}\right)$-1-propanone, 1737
[106909-28-8] 1-[3-(Chloromethyl)-4-hydroxyphenyl]-1-propanone, 1791
[106909-29-9] 1-[4-Hydroxy-3-(hydroxymethyl)phenyl]-1-propanone, 1811
[106942-90-9] 1-(3-Bromo-2-methoxy-5-methylphenyl)-1-propanone, 1828
[107075-90-1] 1-(4-Methoxy-2,6-dimethylphenyl)-1-propanone, 1871
[107075-91-2] 1-(2-Methoxy-3,4-dimethylphenyl)-1-propanone, 1870
[107075-92-3] 1-(2-Methoxy-3,6-dimethylphenyl)-1-propanone, 1870
[107076-00-6] 1-(4-Methoxy-2,3,5-trimethylphenyl)-1-propanone, 1898
[107076-01-7] 1-(4-Methoxy-2,3,6-trimethylphenyl)-1-propanone, 1898
[107076-02-8] 1-(5-Chloro-2-methoxy-4-methylphenyl)-1-propanone, 1830
[107076-03-9] 1-(5-Chloro-2-methoxy-3-methylphenyl)-1-propanone, 1829
[107076-12-0] 1-(3-Chloro-6-methoxy-2,4-dimethylphenyl)-1-propanone, 1865
[107223-61-0] 1-[2-Hydroxy-3-propyl-4-[[4-(1H-tetrazol-5-ylmethyl)phenoxy] methyl]phenyl]-1-propanone, 1954
[107223-71-2] 1-[4-[(Dimethylamino)methyl]-2-hydroxy-3-propylphenyl]-1propanone, 1930
[107223-72-3] 1-[4-(Chloromethyl)-2-hydroxy-3-propylphenyl]-1-propanone, 1889
[107223-73-4] 4-[[3-Hydroxy-4-(1-oxopropyl)-2-propylphenyl]methoxy] benzeneacetonitrile, 1954
[107621-04-5] 1-[2-Hydroxy-3,5-di(1-methylpropyl)phenyl]-1-propanone, 1945
[107882-48-4] 1-(4,7-Dimethoxy-1,3-benzodioxol-5-yl)-1-propanone, 1995
[108245-61-0] 5-Bromo-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2carboxylic acid, 1997
[108293-74-9] 1-[2-Hydroxy-5-methyl-3-(2-propenyl)phenyl]-1-propanone, 1884
[108293-76-1] 1-[2-Methoxy-5-methyl-3-(2-propenyl)phenyl]-1-propanone, 1905
[108439-90-3] 1-(5-Hydroxy-4-methoxy-2-methylphenyl)-1-propanone (Propionate), 1850
[108439-91-4] 1-(3-Hydroxy-2-methoxy-5-methylphenyl)-1-propanone, 1849
[108439-93-6] 1-(2,3-Dimethoxy-5-methylphenyl)-1-propanone, 1873
[108478-15-5] 1-(3-Hydroxy[1,1'-biphenyl]-4-yl)-1-propanone, 1919
[108540-33-6] 1-[5-(Acetoxymethyl)-2-hydroxyphenyl]-1-propanone, 1861
[108881-73-8] 6-Hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid, 1999
[108994-28-1] 4-Hydroxy-3-(1-oxopropyl)phenylacetic acid ethyl ester, 1886
[109099-37-8] 6-Bromo-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1997
[109103-25-5] 6-Methoxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid, 2002

[109218-76-0]	5-Chloro-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2carboxylic acid, 1998
[109314-49-0]	1-[3-(Aminomethyl)-4-hydroxyphenyl]-1-propanone (Hydrochloride), 1821
[109314-56-9]	1-[3-(Aminomethyl)-4-hydroxy-5-iodophenyl]-1-propanone, 1799
[109314-57-0]	1-[3-(Aminomethyl)-5-chloro-4-hydroxyphenyl]-1-propanone, 1799
[109402-62-2]	6-Ethyl-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2one, 2005
[109402-64-4]	5-Ethyl-6-hydroxy-3-methyl-7-(1-oxopropyl)-2benzofurancarboxylic acid, 2005
[109469-57-0]	1-(4-Hydroxy-5-methoxy-2-methylphenyl)-1-propanone (Benzoate), 1850
[110030-74-5]	6-Chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1998
[110054-61-0]	3-Chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1998
[111039-01-1]	1-(3-Ethyl-4-methoxyphenyl)-2-methyl-1-propanone, 2039
[111122-82-8]	2,2-Dimethyl-1-(2,4,6-trimethoxyphenyl)-1-propanone, 2094
[111122-92-0]	2-(1,1-Dimethylethyl)-2-(2,4,6-trimethoxyphenyl)-1,3benzoxathiole, 2094
[111983-96-1]	1-(5,7-Dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-2-methyl-1-propanone, 2070
[111983-98-3]	1,1'-(1,7a,13a,13b-Tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-hexamethyl- $2 \mathrm{H},-13 \mathrm{H}$-bis[1]benzopyrano[5,4-bc:3', $4^{\prime}-e$]pyran-4,11-diyl)bis[2-methyl-1-propanone (7a $\alpha, 13 \mathrm{a} \alpha, 13 \mathrm{~b} \alpha$), 2155
[112450-17-6]	5-Hydroxy-4-(1-oxopropyl)-1,3-benzoxathiol-2-one, 1988
[112450-18-7]	5-Hydroxy-4-(2-methyl-1-oxopropyl)-1,3-benzoxathiol-2-one, 2067
[112450-27-8]	1-(2,5-Dihydroxyphenyl)-2-methyl-1-propanone, 2018
[112613-99-7]	2-Methyl-1-[1,7a,13a,13b-tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-hexamethyl-4-(2-methyl-1-oxopropyl)-2H,13H-bis-1-benzopyrano[5,4-bc:3', 4'-e]pyran-11-yl]-1-butanone, 2165
[112614-00-3]	2-Methyl-1-[1,7a,13a,13b-tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-hexa-methyl-11-(2-methyl-1-oxopropyl)- $2 \mathrm{H}, 13 \mathrm{H}$ -bis-1-benzopyrano[5,4-bc:3',4'-e]- pyran-4-yl]-1-butanone, 2166
[112709-78-1]	$1,1^{\prime}-(1,7 \mathrm{a}, 13 \mathrm{a}, 13 \mathrm{~b}-\mathrm{Tetrahydro-5,8,10-trihydroxy-2,2,6,9,13,13-}$ hexamethyl-1-2H, 13 H -bis-1-benzopyrano[5,4-bc:3', $4^{\prime}-e$]pyran-4,11-diyl)bis[2-methylpropanone, 2155
[113730-35-1]	1-(2-Amino-3,4-dichloro-5-methoxyphenyl)-1-propanone, 1792
[113730-37-3]	1-(3,4-Dichloro-5-methoxyphenyl)-1-propanone, 1782
[113730-39-5]	1-(3,4-Dichloro-5-hydroxyphenyl)-1-propanone, 1743
[113730-43-1]	1-[4,5-Dichloro-3-hydroxy-2-(2-propenyl)phenyl]-1-propanone, 1858
[114113-06-3]	1-(5-Ethyl-2,4-dihydroxyphenyl)-1-propanone (Oxime), 1847
[114477-31-5]	1-[3-[(Hexyloxy)methyl]-4-hydroxyphenyl]-1-propanone, 1940

[114477-32-6]	1-[4-Hydroxy-3-(propoxymethyl)phenyl]-1-propanone, 1901
[115048-28-7]	4-Hydroxy-3-(1-oxopropyl)phenylacetic acid, 1825
[116074-75-0]	1-[2,3-Dihydro-5-hydroxy-3,3-dimethyl-2-(4-morpholinyl)-4-benzofuranyl]-1-propanone, 2007
[116235-78-0]	1-(4-Hydroxy-3-methoxyphenyl)-1-propanone ion (1-), 1816
[116557-45-0]	1-(2-Hydroxy-4-methylphenyl)-2-methyl-1-propanone, 2024
[116867-95-9]	1-(3-Ethyl-2,6-dihydroxyphenyl)-1-propanone, 1847
[116964-16-0]	1-[6-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2162
[117844-76-5]	1-(3,4-Dihydro-5-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2003
[117844-77-6]	1-(3,4-Dihydro-7-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2003
[117844-79-8]	1-(2,4-Dihydroxy-3-iodophenyl)-1-propanone, 1756
[117844-80-1]	1-(3,4-Dihydro-7-hydroxy-8-iodo-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2003
[117844-90-3]	1-(3,4-Dihydro-7-hydroxy-2,2,8-trimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2006
[117952-43-9]	1-(2,4-Dihydroxy-5-methylphenyl)-1-propanone, 1809
[117970-66-8]	1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)-1-propanone, 1904
[118585-45-8]	1-(5-Hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2002
[118609-36-2]	1-[4-[(1,1-Dimethyl-2-propynyl)oxy]-2-hydroxyphenyl]-1propanone, 1904
[118683-25-3]	4-[[3-Hydroxy-4-(1-oxopropyl)-2-propylphenoxy]methyl]-3methoxybenzoic acid, 1954
[119232-80-3]	1-(2,5-Dihydroxy-3,4,6-trimethoxyphenyl)-1-propanone, 1881
[119257-50-0]	1-(3-Fluoro-2,6-dimethoxyphenyl)-1-propanone, 1831
[119426-01-6]	1-(4-Hydroxy-7-methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1993
[119691-92-8]	1-(2,4,6-Trihydroxy-3-nitrophenyl)-1-propanone, 1760
[119691-98-4]	1-(2,4,6-Trihydroxy-3-nitro-5-propylphenyl)-1-propanone, 1866
[119994-05-7]	1-(4-Fluoro-2-hydroxy-5-nitrophenyl)-2-methyl-1-propanone, 2012
[119994-06-8]	1-(4-Fluoro-2-hydroxy-5-nitrophenyl)-2-methyl-1-propanone (Oxime), 2012
[120072-80-2]	1-(2,4-Dihydroxy-3-propylphenyl)-2-methyl-1-propanone, 2040
[120350-19-8]	1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-1-propanone, 1929
[120350-21-2]	1-[4-(1,1-Dimethylethyl)-2,5-dimethoxyphenyl]-2-methyl-1propanone, 2052
[120716-99-6]	3-Butyl-2,4,6-trihydroxy-5-(1-oxopropyl)benzaldehyde, 2135
[121194-61-4]	1-[2-Hydroxy-6-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1895
[121194-62-5]	1-[2-Hydroxy-4-methyl-5-(1-methylethyl)phenyl]-1-propanone, 1894

[121194-63-6]	1-[2-Hydroxy-6-methyl-4-(1-methylethyl)phenyl]-1-propanone, 1895
[121194-64-7]	1-[3-(1,1-Dimethylethyl)-2-hydroxy-5,6-dimethylphenyl]-1propanone, 1927
[121194-65-8]	1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methyl-5-(1-methylethyl) phenyl]-1-propanone, 1945
[121194-66-9]	1-(6-Hydroxy-2,3-dimethylphenyl)-1-propanone, 1838
[121194-67-0]	1-[6-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1897
[121693-17-2]	1,1'-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-phenylene] bis [methylene(2,4-dihydroxy-6-methoxy-5-methyl-3,1-phenylene)]]bis[2-methyl-1-propanone, 2156
[122585-52-8]	1-[2,6-Dihydroxy-4-[(4-hydroxy-3-methyl-2-butenyl)oxy]phenyl]-2-methyl-1-propanone (E), 2047
[122585-53-9]	1-[4-[[4-(Acetyloxy)-3-methyl-2-butenyl]oxy]-2,6-dihydroxyphenyl]-2-methyl-1-propanone (E), 2052
[122585-57-3]	4-[3,5-Dihydroxy-4-(2-methyl-1-oxopropyl)phenoxy]-2methylbutanoic acid, 2047
[122585-60-8]	4-[3,5-Dihydroxy-4-(2-methyl-1-oxopropyl)phenoxy]-2-methyl-2butenoic acid methyl ester, 2050
[122585-62-0]	1-[3-[4-(Acetyloxy)-3-methyl-2-butenyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-propanone (E), 2053
[123450-85-1]	1-(4-Fluoro-2-hydroxy-5-nitrophenyl)-1-propanone, 1745
[123450-86-2]	1-(4-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2014
[124210-94-2]	1-(4-Hydroxy-5-benzofuranyl)-1-propanone, 1990
[124300-15-8]	1,1'-[Methylenebis(6-hydroxy-4-methoxy-3,1-phenylene)]bis-1propanone, 2123
[124300-17-0]	1-[4-(Ethoxymethoxy)-2-hydroxyphenyl]-1-propanone, 1877
[124300-19-2]	1,1'-[Methylenebis(4,6-dihydroxy-3,1-phenylene)]bis-1propanone, 2119
[124300-24-9]	1,1'-[Methylenebis(4,5,6-trihydroxy-3,1-phenylene)]bis-1propanone, 2120
[124300-26-1]	1-[3,4-Bis(ethoxymethoxy)-2-hydroxyphenyl]-1-propanone, 1930
[124300-29-4]	1,1'-[Methylenebis(2-hydroxy-4,6-dimethoxy-3,1-phenylene)]bis-1-propanone, 2125
[124500-32-9]	1-(4-Chloro-3-hydroxyphenyl)-2-methyl-1-propanone, 2013
[124500-33-0]	1-(4-Methoxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2040
[124500-34-1]	1-(3,5-Dichloro-4-methoxyphenyl)-2-methyl-1-propanone, 2021
[124500-38-5]	1-(3,5-Dichloro-4-hydroxyphenyl)-2-methyl-1-propanone, 2012
[124623-19-4]	1-(2-Amino-4,6-dimethoxyphenyl)-1-propanone, 1857
[124623-37-6]	1-(2-Amino-4-fluoro-5-methoxyphenyl)-1-propanone, 1799
[125575-55-5]	1-(1,6,7-Trimethoxy-3-methyl-2-naphthalenyl)-1-propanone, 1982
[125575-68-0]	1-(1-Hydroxy-6,7-dimethoxy-3-methyl-2-naphthalenyl)-1propanone, 1980

[126026-30-0]	1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-tri-hydroxy-5-(2-hydroxy-3-methyl-3-butenyl) phenyl]-2-methyl-1-propanone, 2163
27498-04-8]	1-(2,5-Dihydroxy-4-pentadecylphenyl)-1-propanone, 1960
[127869-99-2]	1-(6-Hydroxy-2H-naphtho[1,2-b]pyran-5-yl)-1-propanone, 2006
[128291-79-2]	1-(2-Hydroxy-3-methylphenyl)-2-methyl-1-propanone, 2024
[128347-39-7]	1-[3-[1-(2,4-Dihydroxyphenyl)-2-hydroxyethyl]-2,4,6-trihydroxyphenyl]-1-propanone, 1943
28462	1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-1-propanone, 1975
[128462-65-7]	1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-2-methyl-1-propanon 2066
[128462-66-8]	1-(1-Hydroxy-4-methoxy-2-naphthalenyl)-2,2-dimethyl-1propanone, 2102
28462-67-9]	1-(1,4-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2063
[128462-68-0]	1-(1,4-Dihydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2101
[128838-13-1]	1-(3,4-Dihydro-1-hydroxy-2-naphthalenyl)-2-methyl-1-propano 2062
[129078-81-5]	1-(4-Chloro-2-hydroxy-5-methylphenyl)-1-propanone (Oxime), 1788
[129375-02-6]	1-[2-Hydroxy-4-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1893
[129375-03-7]	1-[4-Hydroxy-2-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1896
[129375-04-8]	1-[2-Hydroxy-5-methyl-3-(1-methylethyl)phenyl]-1-propanone, 1894
[129399-53-7]	1-[6-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-3,4-dihydro-3,5,7-trihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2163
138-40-8]	1-(2-Methoxy-1-naphthalenyl)-2,2-dimethyl-1-propanone, 2101
5521-17-4]	2-Hydroxy-5-(1-oxopropyl)acetanilide, 1831
[130521-20-9]	1-(3-Amino-4-hydroxyphenyl)-1-propanone, 1776
[130737-47-2]	1-[4-(Acetyloxy)-2-hydroxy-3-methylphenyl]-1-propanone, 1861
[130737-50-7]	1-[4-(Acetyloxy)-2-hydroxy-3-iodophenyl]-1-propanone, 1822
[131421-22-2]	1-(8-Hydroxy-1-naphthalenyl)-1-propanone, 1968
[131867-27-1]	1-[2-Hydroxy-5-(1-methylpropyl)phenyl]-1-propanone, 1897
[132899-53-7]	1-(2-Hydroxyphenyl)-1-propanone labelled with carbon-14, 1763
[132899-54-8]	1-(4-Hydroxyphenyl)-1-propanone labelled with carbon-14, 1766
[133181-63-2]	1-(4-Hydroxy-1-naphthalenyl)-1-propanone, 1966
[133595-72-9]	1-(4-Hydroxyphenyl)-1-propanone (Oxime), 1766
[133903-09-0]	1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]-1propanone, 1910
[133903-10-3]	1-[3-(1,1-Dimethylethyl)-2-hydroxy-5-methylphenyl]-2-methyl-1 propanone, 2048

[134081-85-9]	1-[6-Hydroxy-3,4-dimethoxy-2-[[(4-methylphenyl)sulfonyl]oxy] phenyl]-1-propanone, 1948
4081	1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-1-propanone, 1855
[134082-01-2]	1-[2-Hydroxy-3,4-dimethoxy-6-(phenylmethoxy)phenyl]-1propanone, 1947
[134610-33-6]	1-(4-Hydroxy-3-methoxy-5-nitrophenyl)-2-methyl-1-propanone, 2023
4610-34-7]	1-(3,4-Dihydroxy-5-nitrophenyl)-2-methyl-1-propanone, 2015
[134643-89-3]	1-(3,4-dihydro-1-hydroxy-2-naphthalenyl)-1-propanone, 1965
[136553-42-9]	1-[2-(4,5-Dihydro-4,4-dimethyl-2-oxazolyl)-4'-fluoro-4-hydroxy-3'-methyl[1,1'-biphenyl]-3-yl]-2-methyl-1-propanone, 2058
[136577-47-4]	1-[2-(4,5-Dihydro-4,4-dimethyl-2-oxazolyl)-4'-fluoro-4-methoxy-3'-methyl[1,1'-biphenyl]-3-yl]-2-methyl-1-propanone, 2059
36715-21-4]	1-[4-Hydroxy-3-(methoxymethyl)phenyl]-1-propanone, 1850
[136715-22-5]	1-[3-(Ethoxymethyl)-4-hydroxyphenyl]-1-propanone, 1875
[136715-23-6]	1-[4-Hydroxy-3-[(1-methylethoxy)methyl]phenyl]-1-propanone, 1901
[136715-26-9]	1-[4-Hydroxy-3-[(1-methylpropoxy)methyl]phenyl]-1-propanone, 1915
715-27-0]	1-[3-(Heptyloxy)methyl-4-hydroxyphenyl]-1-propanone, 1945
[136715-28-1]	1-[4-Hydroxy-3-[(nonyloxy)methyl]phenyl]-1-propanone, 1952
[136715-29-2]	1-[3-[(Decyloxy)methyl]-4-hydroxyphenyl]-1-propanone, 1953
[136950-73-7]	1-(6-Hydroxy-1,4-dimethyl-9H-carbazol-3-yl)-1-propanone, 2007
[137053-39-5]	1-[3-(Cyclopentyloxy)-4-hydroxyphenyl]-1-propanone, 1905
[137053-40-8]	1-[3-(Cyclohexyloxy)-4-hydroxyphenyl]-1-propanone, 1924
[137251-97-9]	1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-methylphenyl]-2-methyl-1-propanone, 2058
[137538-58-0]	1-(5-Hydroxy-2-methyl-1H-benzimidazol-4-yl)-1-propanone, 1991
[137538-60-4]	1-(1-Ethyl-5-hydroxy-2-methyl-1 H-benzimidazol-4-yl)-1propanone, 2001
[137937-37-2]	1-(2-Methoxy-6-methylphenyl)-1-propanone, 1840
[137937-38-3]	1-[3-(1,1-Dimethylethyl)-2-hydroxy-6-methylphenyl]-1propanone, 1910
[137937-49-6]	1,1'-(4-Hydroxy-5-methyl-1,3-phenylene)bis-1-propanone, 2111
[138660-02-3]	1-(4-Hydroxyphenyl)-1-propanone (Potassium salt), 1766
[138690-38-7]	1-(2,6-Dihydroxy-4-methoxy-3,5-dimethylphenyl)-2-methyl-1propanone, 2041
[139590-48-0]	1-(3-Bromo-2,5-dihydroxyphenyl)-1-propanone, 1748
[139955-98-9]	4-[1-[2,6-Dihydroxy-4-methoxy-3-(2-methyl-1-oxopropyl) phenyl]-3-methylbutyl]-5-hydroxy-2,2,6,6-tetramethyl-4-cyclohexene-1,3-dione, 2164
[139979-87-6]	4,9-Dihydro-8-hydroxy-6-methoxy-2,2,4,4-tetramethyl-5-(2-methyl-1-oxopropyl)-9-(2-methylpropyl)-1H-xanthene-1,3(2H)dione, 2164

[140439-50-5] 1-[5-[(6-Chlorohexyl)oxy]-2-hydroxyphenyl]-1-propanone, 1926
[140896-90-8] 1-(4-Bromo-2-hydroxyphenyl)-2-methyl-1-propanone, 2012
[140896-93-1] 1-(4-Bromo-5-fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2011
[141070-41-9] 1-[2-Hydroxy-5-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one, 2139
[141070-42-0] 3-(4-Chlorophenyl)-1-[2-hydroxy-5-(1-oxopropyl)phenyl]-2-propen-1-one, 2138
[141771-81-5] 1-(4-Hydroxy-3-methyl-5-nitrophenyl)-1-propanone, 1796
[141771-82-6] 1-(3-Amino-4-hydroxy-5-methylphenyl)-1-propanone, 1820
[141771-83-7] 1-[3-(Dimethylamino)-4-hydroxy-5-methylphenyl]-1-propanone, 1882
[141771-86-0] 1-[3-(Dimethylamino)-4-hydroxyphenyl]-1-propanone, 1856
[142301-96-0] 1-(5-Amino-2-hydroxyphenyl)-1-propanone (Hydrochloride), 1777
[143286-88-8] 1-[4-(Dodecyloxy)-2-hydroxyphenyl]-1-propanone, 1956
[143428-35-7] 1-(2-Methoxy-4-methylphenyl)-2-methyl-1-propanone, 2033
[143868-75-1] $1,1^{\prime}$-[[(2,3,4-Trihydroxyphenyl)methylene]bis(2,4,6-trihydroxy-3,1-phenylene)]bis-1-propanone, 2127
[144289-53-2] 1-(6,7-Dihydroxy-2-naphthalenyl)-1-propanone, 1969
[144728-32-5] 1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one (E), 2139
[144728-36-9] 3-(4-Chlorophenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one (E), 2138
[144728-37-0] 1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one (E), 2140
[144728-38-1] 1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one (E), 2141
[144728-39-2] 3-(3,4-Dimethoxyphenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one (E), 2141
[144785-83-1] 1-[4,6-Bis(acetyloxy)-3-(3,7-dimethyl-2,6-octadienyl)-2-hydroxyphenyl]-2-methyl-1-propanone (E), 2059
[145746-56-1] 1-[3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]-2,2-dimethyl-1propanone, 2097
[145747-21-3] 1-[2,6-Bis(acetyloxy)-4-hydroxyphenyl]-1-propanone, 1883
[147170-16-9] 1,1'-[(Phenylmethylene)bis(2,4,6-trihydroxy-3,1-phenylene)]bis-1propanone, 2126
[148204-59-5] 1-(3,5-Dihydroxy-4-methoxyphenyl)-1-propanone, 1819
[148204-60-8] 1-(3,5-Dihydroxy-4-methoxyphenyl)-2-methyl-1-propanone, 2028
[148730-78-3] 1-[5-(Acetyloxy)-2-hydroxyphenyl]-1-propanone, 1824
[149454-58-0] 1-[2-Hydroxy-4-(2-hydroxybutoxy)phenyl]-1-propanone, 1902
[149743-47-5] 1-(2-Chloro-4,5-dimethoxyphenyl)-1-propanone, 1830
[150129-35-4] 1-(2-Hydroxy-5-isocyanatophenyl)-2-methyl-1-propanone, 2021
[152719-59-0] 1-[4-Hydroxy-2-methoxy-5-(2-propenyl)phenyl]-1-propanone, 1886
[153756-50-4] 1-(4-Ethyl-2,5-dimethoxyphenyl)-1-propanone, 1900
[154185-29-2] 1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-phenyl-2-propen-1-one, 2139
[154185-30-5] 3-(4-Chlorophenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one, 2138
[154185-31-6] 1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methylphenyl)-2-propen-1-one, 2140
[154185-32-7] 1-[4-Hydroxy-3-(1-oxopropyl)phenyl]-3-(4-methoxyphenyl)-2-propen-1-one, 2140
[154185-33-8] 3-(3,4-Dimethoxyphenyl)-1-[4-hydroxy-3-(1-oxopropyl)phenyl]-2-propen-1-one, 2141
[154603-70-0] 1-[3-(Azidomethyl)-4-hydroxyphenyl]-1-propanone, 1798
[154783-68-3] 1-[3-[(Cyclopentyloxy)methyl]-4-hydroxyphenyl]-1-propanone, 1924
[154921-37-6] 1-[2-[(Difluoroboryl)oxy]-4-hydroxy-6-methylphenyl]-1propanone, 1785
[155969-61-2] 1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (β-DGlucopyranoside), 1817
[157732-52-0] 1-(5-Bromo-2,4-dihydroxyphenyl)-1-propanone, 1749
[158153-03-8] 1-(5-Ethyl-2,4-dimethoxyphenyl)-1-propanone, 1900
[158153-04-9] 1-(5-Ethyl-2,4-dihydroxyphenyl)-1-propanone, 1847
[158897-28-0] 1-(2-Fluoro-6-methoxyphenyl)-2,2-dimethyl-1-propanone, 2086
[158897-29-1] 1-(2-Fluoro-6-hydroxyphenyl)-2,2-dimethyl-1-propanone, 2083
[159186-06-8] 1-(3-Ethoxy-4-hydroxyphenyl)-1-propanone, 1845
[159977-37-4] 1-(5-Cyclohexyl-2,4-dihydroxyphenyl)-1-propanone, 1924
[160308-44-1] 1-(4-Ethoxy-2-hydroxyphenyl)-1-propanone Polymer with 1,4-butanediol, 1846
[161140-14-3] 1-(4-Butoxy-2-hydroxyphenyl)-1-propanone (Oxime), 1898
[161319-29-5] 1-[4-Hydroxy-3-[(2,4,7-trinitro-9H-fluorene-9-ylidene)amino] phenyl]-2-methyl-1-propanone, 2059
[161429-78-3] 1-[3,5-Bis(1,1-dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1propanone (Oxime), 2099
[161450-86-8] 1-(4-Ethoxy-2-hydroxyphenyl)-1-propanone Polymer with 1,2-ethanediol, 1846
[161583-88-6] 1-[2,3-Bis(acetyloxy)-4-hydroxyphenyl]-1-propanone, 1883
[162052-63-3] 1-(2-Methoxy-6-methylphenyl)-2,2-dimethyl-1-propanone, 2091
[162052-64-4] 2,2-Dimethyl-1-(2,3,4-trimethoxy-6-methylphenyl)-1-propanone, 2096
[163706-93-2] 1-(4-Ethoxy-2-hydroxyphenyl)-1-propanone Polymer with 1,3-propanediol, 1846
[164072-22-4] 1-(2-Fluoro-3-hydroxyphenyl)-1-propanone, 1754
[166973-19-9] 1-(2-Amino-5-methoxyphenyl)-2-methyl-1-propanone, 2029
[171609-26-0] 1-[2-Hydroxy-6-(2-methyl-1,3-dioxolan-2-yl)phenyl]-2,2-dimethyl-1-propanone, 2094
[171609-27-1] 1-(2-Acetyl-6-hydroxyphenyl)-2,2-dimethyl-1-propanone, 2171
[171609-28-2] 1-(2-Acetyl-6-hydroxyphenyl)-2-methyl-1-propanone, 2159

[173867-31-7]	1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)-2-methyl-1propanone, 2045
[175226-44-5]	1-(3-Hydroxy-1-naphthalenyl)-1-propanone, 1966
[175226-45-6]	1-(6-Hydroxy-1-naphthalenyl)-1-propanone, 1967
[175226-46-7]	1-(7-Hydroxy-2-naphthalenyl)-1-propanone, 1968
[175226-47-8]	1-(7-Hydroxy-1-naphthalenyl)-1-propanone, 1968
[175413-69-1]	1-[2-[2,6-Dihydroxy-3-(3-methyl-2-butenyl)benzoyl]-3-hydroxy-5-methylphenyl]-2-methyl-1-propanone, 2160
[176642-56-1]	1-(2-Hydroxy-5-methoxyphenyl)-2-methyl-1-propanone, 2027
[176843-49-5]	1-[5-[4,6-Bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-2,4-dihydroxyphenyl]-1-propanone, 1961
[177028-17-0]	1-(1,4-Dimethoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2103
[177028-19-2]	1-(4-Methoxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2102
[178374-78-2]	1-(3,5-Difluoro-4-hydroxyphenyl)-1-propanone, 1745
[178375-14-9]	1-[3-Hydroxy-4-(phenylmethoxy)phenyl]-1-propanone, 1937
[178678-85-8]	1-(7-Hydroxy-2,2-diphenyl-1,3-benzodioxol-5-yl)-1-propanone, 2009
[178693-81-7]	1-(4-Butoxy-2-hydroxyphenyl)-1-propanone, 1898
[179113-58-7]	1-(3-Fluoro-5-hydroxyphenyl)-1-propanone, 1754
[179930-43-9]	1-(6-Methoxy-2-naphthalenyl)-2-methyl-1-propanone, 2065
[181236-19-1]	1-[6-Hydroxy-3-[3-(3-methoxypropoxy)propyl]-2-naphthalenyl]-1-propanone, 1985
[181260-67-3]	1-(4-Methoxy-3-methylphenyl)-2,2-dimethyl-1-propanone, 2092
[182184-03-8]	1-(4-Butoxy-2-hydroxy-5-nitrophenyl)-1-propanone, 1890
[183280-17-3]	1-(5-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2015
[184963-79-9]	1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Ethyl ether), 1854
[184963-80-2]	1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Isobutyl ether), 1854
[184963-81-3]	1-(4-Ethyl-3,5-dimethoxyphenyl)-1-propanone, 1900
[184963-86-8]	1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone (Propyl ether), 1854
[185207-91-4]	1-[6-Methoxy-2-(methoxymethoxy)-3,4-dimethylphenyl]-1propanone, 1916
[185207-93-6]	1-(2-Hydroxy-6-methoxy-3,4-dimethylphenyl)-1-propanone, 1875
[185413-93-8]	1-(2-Hydroxy-3-methyl-1-naphthalenyl)-1-propanone, 1972
[185413-94-9]	1-[2-Hydroxy-6-methoxy-3-methyl-5-(phenylmethoxy)-1-naphthalenyl]-1-propanone, 1986
[185413-95-0]	1-[2-Hydroxy-3-methyl-6,8-bis(phenylmethoxy)-1-naphthalenyl]-1-propanone, 1987
[185413-96-1]	N-[6-Hydroxy-7-methyl-5-(1-oxopropyl)-4-(phenylmethoxy)-2naphthalenyl]acetamide, 1986
[185437-45-0]	1-(8-Hydroxy-5-quinazolinyl)-1-propanone, 1990
[186962-22-1]	1-[5-(1,1-Dimethylethyl)-2-methoxyphenyl]-2,2-dimethyl-1propanone, 2097

[186962-23-2]	1-[5-(1,1-Dimethyl propanone, 2095
[186962-24-3]	1-[4-(1,1-Dimethylethyl)-2-methoxyphenyl]-2,2-dimethyl-1propanone, 2096
[186962-25-4]	1-[4-(1,1-Dimethylethyl)-2-hydroxyphenyl]-2,2-dimethyl-1propanone, 2095
7276-37-5]	1-[2-Hydroxy-3-(1-propenyl)phenyl]-1-propanone (E), 1859
[188435-69-0]	1-(2,5-Difluoro-4-hydroxyphenyl)-1-propanone, 1745
[188527-69-7]	1-[4-Methoxy-2-(2-pyridinyl)phenyl]-1-propanone, 2005
[188579-52-4]	1-[2-Methoxy-6-(8,11-pentadecadiynyl)phenyl]-1-propanone, 1960
[188984-62-5]	1-[4-Methoxy-3-[(4-nitrophenyl)methyl]phenyl]-1-propanone, 1940
[190777-99-2]	1-[2-Hydroxy-6-[(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)oxy] phenyl]-1-propanone, 1958
3693-93-5]	1-(3-Hydroxy-5-nitrophenyl)-1-propanone (Dysprosium salt), 1758
[193693-96-8]	1-(3-Hydroxy-5-nitrophenyl)-1-propanone, 1758
[194608-83-8]	1-[4-(3-Bromopropoxy)-2-hydroxy-3-propyl]-1-propanone, 1925
[194791-95-2]	1-[4-[3-[[2-Chloro-4-(1 H -tetrazol-5-ylmethyl)phenyl]thio] propoxy]-2-hydroxy-3-propylphenyl]-1-propanone, 1957
[194791-97-4]	1-[4-[3-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio] propoxy]-2-hydroxy-3-propylphenyl]-1-propanone (Oxime), 1957
[194791-98-5]	1-[4-[4-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio] butoxy]-2-hydroxy-3-propylphenyl]-1-propanone, 1959
[194791-99-6]	1-[4-[4-[[2-Chloro-4-(1H-tetrazol-5-ylmethyl)phenyl]thio] butoxy]-2-hydroxy-3-propylphenyl]-1-propanone (Oxime), 1959
[194792-34-2]	1-[3-(Cyclopropylmethyl)-2,4-dihydroxyphenyl]-1-propanone, 1885
[194792-37-5]	1-[2-Hydroxy-4-(4-hydroxy-1-butynyl)-3-propylphenyl]-1propanone, 1938
[194792-38-6]	1-[2-Hydroxy-4-(4-hydroxybutyl)-3-propylphenyl]-1-propanone, 1940
[194792-39-7]	1-[4-(4-Bromobutyl)-2-hydroxy-3-propylphenyl]-1-propanone, 1939
[194792-40-0]	1-[4-(3-Bromopropoxy)-2-hydroxy-3-(2-propenyl)phenyl]-1propanone, 1923
[194792-41-1]	1-(4-Hydroxy-3-propylphenyl)-1-propanone, 1869
[194793-05-0]	1-[4-(4-Bromobutoxy)-2-hydroxy-3-propylphenyl]-1-propanone, 1939
[194854-84-7]	1-[4-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2-hydroxy-3-propylphenyl]-1-propanone, 1949
[195729-19-2]	1-(1-Ethyl-6-hydroxy-2-naphthalenyl)-1-propanone, 1977
[195729-50-1]	1-(1-Ethyl-6-methoxy-2-naphthalenyl)-1-propanone, 1979
[195729-54-5]	1-(6-Methoxy-1-propyl-2-naphthalenyl)-1-propanone, 1982
[195729-60-3]	1-(6-Hydroxy-1-propyl-2-naphthalenyl)-1-propanone, 1979

[195729-68-1]	1-[6-Methoxy-1-(3-phenylpropyl)-2-naphthalenyl]-1-propanone, 1987
[195729-70-5]	1-[6-Hydroxy-1-(3-phenylpropyl)-2-naphthalenyl]-1-propanone, 1986
[195729-78-3]	1-[6-Methoxy-1-(3-methylbutyl)-2-naphthalenyl]-1-propanone, 1984
[195729-79-4]	1-[6-Hydroxy-1-(3-methylbutyl)-2-naphthalenyl]-1-propanone, 1984
[195729-85-2]	1-(1-Dodecyl-6-methoxy-2-naphthalenyl)-1-propanone, 1987
[195729-86-3]	1-(1-Dodecyl-6-hydroxy-2-naphthalenyl)-1-propanone, 1987
[195729-92-1]	1-(6-Methoxy-1-octyl-2-naphthalenyl)-1-propanone, 1986
[195729-93-2]	1-(6-Hydroxy-1-octyl-2-naphthalenyl)-1-propanone, 1986
[195730-04-2]	1-[6-Methoxy-1-(methoxymethoxy)-2-naphthalenyl]-1-propanone, 1980
[195730-12-2]	1-[6-Methoxy-3-[(methoxymethoxy)methyl]-2-naphthalenyl]-1propanone, 1982
[195871-76-2]	1-[2-Fluoro-6-(hydroxy-d)phenyl]-2,2-dimethyl-1-propanone, 2083
[198879-05-9]	2-Methyl-1-(2,3,4,6-tetrahydroxyphenyl)-1-propanone, 2020
[199166-83-1]	1-[2-Hydroxy-4,6-bis(methoxymethoxy)-3-(3-methyl-2-buteny) phenyl]-1-propanone, 1948
[199329-92-5]	1-(3-Acetyl-2-hydroxy-5-methylphenyl)-1-propanone (Lithium salt), 2134
[201035-07-6]	1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-1-propanone, 2003
[201035-08-7]	1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-1-propanone, 2004
[201150-91-6]	1-[3-(Hydroxymethyl)-4-methoxyphenyl]-2,2-dimethyl-1propanone, 2093
[203301-19-3]	1-(5-Chloro-2-hydroxy-4-methylphenyl)-1-propanone (Hydrazone), 1789
[204569-03-9]	1-[3-Hydroxy-2-[2-(1-methyl-1H-indol-2-yl)ethenyl]phenyl]-2,2-dimethyl-1-propanone, 2100
[205983-85-3]	1,1'-[4-Methoxy-2-(2-pyridinyl)-1,3-phenylene]bis-1-propanone, 2116
[210104-11-3]	1-(3,6-Dihydroxy-2,4-dimethylphenyl)-1-propanone, 1841
[213470-65-6]	1-(3,5-Dichloro-4-methoxyphenyl)-1-propanone, 1782
[214398-51-3]	1-[2-Hydroxy-4-(1-methylethoxy)phenyl]-1-propanone (Oxime), 1876
[218591-69-6]	1,1'-(4,6-Dihydroxy-5-methyl-1,3-phenylene)bis-1-propanone, 2112
[219661-16-2]	1-(6-Hydroxy-5-nitroso-2-naphthalenyl)-1-propanone, 1964
[219906-66-8]	1-(2-Hydroxy-5-nonylphenyl)-2-methyl-1-propanone, 2055
[229003-30-9]	1-(3,4-Dihydro-6-methoxy-3,7-dimethyl-1H-2-benzopyran-8-yl)-1-propanone, 2006

[231957-52-1]	N -(5-Cyano-2-pyridinyl)- N^{\prime}-[(1R,2R)-2-[6-fluoro-2-hydroxy-3-(1oxopropyl)phenyl]cyclopropyl]urea, 1950
[231957-54-3]	N -(5-Cyano-2-pyridinyl)- N^{\prime}-[(1S,2S)-2-[6-fluoro-2-hydroxy-3-(1oxopropyl)phenyl]cyclopropyl]urea, 1950
[231958-06-8]	1-(4-Fluoro-2-methoxyphenyl)-1-propanone, 1793
[241131-36-2]	1-[4-(β-D-Glucopyranosyloxy)-2,6-dihydroxy-3,5-dimethylphenyl]-2-methyl-1-propanone, 2054
[245052-19-1]	2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3benzenedicarboxaldehyde, 2159
[245407-09-4]	1-(2-Hydroxy-3-iodo-4-phenoxyphenyl)-1-propanone, 1918
[245407-10-7]	1,1'-(4-Hydroxy-5-iodo-6-phenoxy-1,3-phenylene)bis-1propanone, 2116
[245407-11-8]	1-(2-Hydroxy-3-iodo-5-nitro-4-phenoxyphenyl)-1-propanone, 1917
[245407-13-0]	1-(5-Bromo-2-hydroxy-3-iodo-4-phenoxyphenyl)-1-propanone, 1917
[246041-90-7]	1-(3-Methoxy-4-nitrophenyl)-1-propanone, 1797
[247230-90-6]	N -(5-Chloro-2-pyridinyl)- N^{\prime}-[(1R,2R)-2-[6-fluoro-2-hydroxy-3-(1oxopropyl)phenyl]cyclopropyl]urea, 1946
[247230-91-7]	N -(5-Chloro-2-pyridinyl)- N^{\prime}-[(1S,2S)-2-[6-fluoro-2-hydroxy-3-(1oxopropyl)phenyl]cyclopropyl]urea, 1947
[247230-94-0]	1-(4-Fluoro-2-hydroxyphenyl)-1-propanone, 1755
[251463-58-8]	1-[2-(Acetyloxy)-4-hydroxyphenyl]-2-methyl-1-propanone, 2029
[256335-72-5]	1-(3-Hydroxy-4-nitroso-2-naphthalenyl)-1-propanone, 1963
[261928-44-3]	1-[3-[4-(Acetyloxy)-3-methyl-2-butenyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-propanone, 2053
[263010-96-4]	1-(4-Fluoro-2,6-dimethoxyphenyl)-2-methyl-1-propanone, 2031
[263010-97-5]	1-[2,6-Dimethoxy-4-(4-morpholinyl)phenyl]-2-methyl-1propanone, 2052
[266310-09-2]	1-(2-Hydroxy-3-methoxyphenyl)-2-methyl-1-propanone, 2026
[267001-65-0]	2,2-Dimethyl-1-(2,4,5-trihydroxy-3,6-dimethylphenyl)-1propanone, 2093
[267001-71-8]	1-(2,4-Dihydroxy-3,5-dimethylphenyl)-2-methyl-1-propanone, 2034
[267001-74-1]	1-(2,4-Dihydroxy-3,5-dimethylphenyl)-2,2-dimethyl-1-propanone, 2092
[267008-04-8]	1-(2-Ethyl-4,5-dihydroxyphenyl)-1-propanone, 1846
[267410-40-2]	1-(3,4,5-Trihydroxyphenyl)-1-propanone, 1775
[268234-16-8]	1-[2-Methoxy-5-(methoxymethoxy)phenyl]-1-propanone, 1878
[270084-45-2]	1-[2-Hydroxy-4-[(tetrahydro-2H-pyran-2-yl)oxy]phenyl]-1propanone, 1907
[275803-01-5]	1-(1,4,5,8-Tetramethoxy-2-naphthalenyl)-1-propanone, 1982
[276690-11-0]	1-[2-Hydroxy-4,6-dimethoxy-3-(methoxymethoxy)phenyl]-1propanone, 1904
[288401-09-2]	1-(4,5-Dichloro-2-hydroxyphenyl)-1-propanone, 1744

[293744-03-3]	1-[2-Hydroxy-4,6-dimethoxy-3-(phenylmethoxy)phenyl]-1propanone, 1948
[293744-04-4]	1-[3-Hydroxy-4,6-dimethoxy-2-(phenylmethoxy)phenyl]-1propanone, 1948
[293744-05-5]	1-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2-hydroxy-4,6-dimethoxyphenyl]-1-propanone, 1946
[307000-30-2]	1-(2-Hydroxy-3-phenoxyphenyl)-1-propanone, 1921
[307000-32-4]	1-(2-Hydroxy-4-phenoxyphenyl)-2-methyl-1-propanone, 2050
[307000-51-7]	1-(4-Hydroxy-3-phenoxyphenyl)-1-propanone, 1922
[337522-30-2]	1-(6,7-Dimethoxy-2-naphthalenyl)-2-methyl-1-propanone, 2066
[340016-41-3]	1-(4-Methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1991
[344367-93-7]	1-(5-Bromo-4-ethoxy-2-hydroxyphenyl)-1-propanone (Oxime), 1828
[350026-68-5]	1-(2-Hydroxy-1-naphthalenyl)-1-propanone (Oxime), 1966
[352276-34-7]	1-[2-Hydroxy-6-[(1E)-2-(4-hydroxyphenyl)ethenyl]-4-methoxyphenyl]-2-methyl-1-propanone, 2054
[352276-35-8]	1-[2,4-Dihydroxy-6-[(1E)-2-(4-hydroxyphenyl)ethenyl]phenyl]-2-methyl-1-propanone, 2053
[360790-41-6]	1-[8-(Acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1-propanone, 1977
[360790-46-1]	1-[5-(Acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1-propanone, 1977
[360790-49-4]	1-[5,8-Bis(acetyloxy)-1,4-dihydroxy-2-naphthalenyl]-1propanone, 1981
[365947-69-9]	1-(5,7-Dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2072
[365947-74-6]	1-(7-Hydroxy-5-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2070
[365947-78-0]	1-(5-Hydroxy-7-methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)-2-methyl-1-propanone, 2070
[367502-03-2]	1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone β-Dglucopyranoside, 1854
[373388-81-9]	$1,1^{\prime}-\left[(1 R)-2,2^{\prime}\right.$-Dimethoxy[1,1'-binaphthalene]-6,6'-diyl]bis-1propanone, 2128
[383187-35-7]	1-(2-Hydroxy-3,5-dimethoxy-4-methylphenyl)-1-propanone, 1877
[383187-40-4]	1-(2,3,5-Trimethoxy-4-methylphenyl)-1-propanone, 1903
[386704-18-3]	1,1'-(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-1-propanone polymer with 1,3-propanediamine, 2118
[401843-27-4]	1,1'-(4,4'-Dihydroxy[1, 1'-biphenyl]-3,3'-diyl)bis-1-propanone polymer with 1,2-benzenediamine, 2118
[403854-11-5]	1-(4-Amino-3-ethyl-5-methoxyphenyl)-1-propanone, 1882
[404009-42-3]	1-[2-Hydroxy-4-(4-morpholinyl)phenyl]-1-propanone, 1889
[404918-98-5]	1-(2-Amino-5-hydroxyphenyl)-2-methyl-1-propanone, 2021
[404964-71-2]	1-(6,7-Dihydroxy-5-nitro-2-naphthalenyl)-2-methyl-1-propanone, 2062

[40496	1-(6,7-Dihydroxy-2-naphthalenyl)-2-methyl-1-propanone, 2064
[432547-82-5]	1-(4-Hydroxy-3-methoxyphenyl)-1-propanone (Tetra-O-acetyl- β -D-glucopyranoside), 1817
[438490-65-4]	1-[6-Hydroxy-3-(4-methoxyphenyl)-2-phenyl-5-benzofuranyl]-1propanone, 2009
[438490-68-7]	1-[6-Hydroxy-3-(4-methylphenyl)-2-phenyl-5-benzofuranyl]-1propanone, 2009
[449779-73-1]	1-(2,4-Dihydroxy-3,5-dipropylphenyl)-1-propanone, 1929
[449779-75-3]	1-(4-Hydroxy-3,5-dipropylphenyl)-1-propanone, 1928
[449779-85-5]	1-(2-Fluoro-4-hydroxy-3,5-dipropylphenyl)-1-propanone, 1926
[453518-19-9]	1-(5-Hydroxy-2-nitrophenyl)-1-propanone, 1759
[457628-03-4]	1-[2-Hydroxy-4-(2-propynyloxy)phenyl]-1-propanone, 1858
[457628-04-5]	1-(5-Hydroxy-2H-1-benzopyran-6-yl)-1-propanone, 1994
[459124-92-6]	1-[2-Hydroxy-5-(1-oxopropoxy)phenyl]-1-propanone, 1862
[473807-71-5]	1-(2,4-Dihydroxy-5-nitrophenyl)-1-propanone (Oxime), 1759
[475502-03-5]	2,2-Dimethyl-1-(2,2',6,6'-tetramethoxy[1,1'-biphenyl]-3-yl)-1propanone, 2099
[477904-75-9]	1-(1,4-Dimethoxy-2-naphthalenyl)-1-propanone, 1978
[479580-94-4]	1-(2-Hydroxy-4-phenoxyphenyl)-1-propanone, 1922
[488106-61-2]	1-(2-Chloro-4-methoxy-5-methylphenyl)-1-propanone, 1829
[501374-02-3]	1-(5-Methoxy[1,1'-biphenyl]-2-yl)-2,2-dimethyl-1-propanone, 2098
[501374-20-5]	1-(4'-Methoxy[1,1'-biphenyl]-2-yl)-2,2-dimethyl-1-propanone, 2098
[502924-41-6]	1-(5-Bromo-2-methoxyphenyl)-1-propanone, 1787
[502924-43-8]	1-(5-Benzoyl-2-methoxyphenyl)-1-propanone, 2138
[502924-47-2]	1-(2-Methoxy-5-phenoxyphenyl)-1-propanone, 1937
[502924-49-4]	1-(3-Hydroxy-5-methoxyphenyl)-1-propanone, 1814
[502924-51-8]	1-(3-Methoxy-5-phenoxyphenyl)-1-propanone, 1937
[507272-84-6]	1-(7-Methoxy-1-naphthalenyl)-1-propanone, 1975
[540495-19-0]	1-(5'-Hydroxy-2'-methyl-2-propyl[1,1'-biphenyl]-4-yl)-1propanone, 1950
[540495-26-9]	1-(3-Ethyl-4-hydroxyphenyl)-1-propanone, 1833
[540495-32-7]	1-(2,2'-Diethyl-5'-hydroxy[1,1'-biphenyl]-4-yl)-1-propanone, 1950
[540495-37-2]	1-(2'-Ethyl-5'-hydroxy-2-propyl[1,1'-biphenyl]-4-yl)-1-propanone, 1952
[540495-43-0]	1-[2'-Ethyl-5'-hydroxy-2-(1-methylethyl)[1,1'-biphenyl]-4-yl]-1propanone, 1952
[551002-14-3]	1-[5-Hydroxy-2-(4-hydroxyphenyl)-7-benzofuranyl]-1-propanone, 2007
[561046-07-9]	1-[4-Hydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone, 1905
[568600-66-8]	1,1'-(4,4'-Dihydroxy[1,1'-biphenyl]-3,3'-diyl)bis-1-propanone polymer with 3-methoxy-1,2-benzenediamine, 2118
[574001-78-8]	1-(3-Hydroxy-2-naphthalenyl)-2,2-dimethyl-1-propanone, 2100

[574004-35-6]	$1,1^{\prime}-\left[(1 R)-2,2^{\prime}\right.$-Dihydroxy[1,1'-binaphthalene]-3,3'-diyl]bis[2,2-dimethyl-1-propanone, 2170
[612812-31-4]	1-(5-Chloro-2,4-dihydroxy-3-propylphenyl)-1-propanone, 1865
[658702-60-4]	1-[(2R,3S)-3,4-Dihydro-5,7-dihydroxy-2-methyl-3-(3-methyl-
	2-butenyl)-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone (+), 2082
[658702-62-6]	1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone (+), 2073
[682320-25-8]	1-(2-Methoxy-5-nitrophenyl)-1-propanone, 1796
[687184-53-7]	1-(4-Hydroxy-3-methyl-6-phenyl-2-benzofuranyl)-1-propanone, 2008
[687184-57-1]	1-(4-Hydroxy-3-methyl-6-phenyl-2-benzofuranyl)-2,2-dimethyl-1propanone, 2103
[718613-15-1]	1-(2-Amino-5-hydroxyphenyl)-1-propanone-3,3,3-d ${ }_{3}, 1745$
[722457-94-5]	2-Methyl-1-[2,4,6-trihydroxy-3-(3-hydroxy-3,7-dimethyl-6-octenyl)phenyl]-1-propanone (+), 2057
[722457-95-6]	1-[(4aR,9aR)-2,3,4,4a,9,9a-Hexahydro-6,8-dihydroxy-1,1,4a-trimethyl-1 H -xanthen-7-yl]-2-methyl-1-propanone, 2075
[722457-96-7]	1-[3,4-Dihydro-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-yl]-2-methyl-1-propanone (-), 2073
[761459-40-9]	1-(4-Hydroxy-2-methylphenyl)-2-methyl-1-propanone, 2025
[761459-41-0]	1-(4-Hydroxy-1-naphthalenyl)-2-methyl-1-propanone, 2063
[777067-72-8]	1-(3,4-Dichloro-2-hydroxyphenyl)-1-propanone, 1743
[777067-73-9]	1-(3'-Hydroxy[1, 1':2', $1^{\prime \prime}$-terphenyl]-4'-yl)-1-propanone, 1953
[820990-87-2]	1-(2,4,6-Trihydroxyphenyl)-1-propanone (Compound with 4,4'-(1E)-1,2-ethenediylbis[pyridine]), 1775
[842121-75-9]	1-[2,3-Dihydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-7-benzofuranyl]-2-methyl-1-propanone, 2069
[847344-76-7]	1-(5-Ethyl-2-hydroxyphenyl)-2-methyl-1-propanone, 2031
[848734-12-3]	2-(4-Fluorophenyl)-5,7-dihydroxy-6-(1-oxopropyl)-4H-1-benzopyran-4-one, 2143
[851036-32-3]	1-[7-Methoxy-2,2-dimethyl-4-(1-methylethyl)-2H-1-benzopyran-6-yl]-1-propanone, 2008
[852290-70-1]	1-(4'-Methoxy[1,1'-biphenyl]-2-yl-3,4,5,6- d_{4})-2,2-dimethyl-1propanone, 2098
[852290-72-3]	1-(4'-Methoxy[1,1'-biphenyl]-2-yl-3-d)-2,2-dimethyl-1propanone, 2098
[852612-18-1]	1-[2-Hydroxy-4-methoxy-6-[(1E)-2-[4-(methoxymethoxy)phenyl] ethenyl]-phenyl]-2-methyl-1-propanone, 2058
[853577-59-0]	1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-methyl-1-propanone, 2043
[859403-57-9]	1-(2,3-Dihydro-7-hydroxy-1,4-benzodioxin-6-yl)-1-propanone, 1991
[860152-45-0]	$\begin{aligned} & \text { 1-(3-Bromo-4,6-dihydroxy[1,1'-biphenyl]-2-yl)-1-propanone, } \\ & 1917 \end{aligned}$

[860152-81-1] 1-[4,6-Dihydroxy-2-(2-methoxyethyl)[1,1'-biphenyl]-3-yl]-2-methyl-1-propanone, 2055
[860152-82-5] 1-[4,6-Dihydroxy-2-(2-methoxyethyl)[1,1'-biphenyl]-3-yl]-1propanone, 1947
[862666-40-8] 1-(2,3-Dihydroxyphenyl)-2-methyl-1-propanone, 2017
[864287-73-0] 1-(5'-Fluoro-2'-methoxy[1,1'-biphenyl]-4-yl)-1-propanone, 1933
[864866-61-5] 1-(2-Fluoro-4,6-dimethoxyphenyl)-1-propanone, 1831
[864866-62-6] 1-(2-Fluoro-4,6-dihydroxyphenyl)-1-propanone, 1755
[868266-10-8] 1-(4-Methoxy[1,1'-biphenyl]-3-yl)-2,2-dimethyl-1-propanone, 2098
[868266-11-9] 1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-2,2-dimethyl-1-propanone, 2097
[868266-15-3] 1-(4-Methoxy[1,1'-biphenyl]-3-yl)-2-methyl-1-propanone, 2052
[868266-16-4] 1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-2-methyl-1-propanone, 2050
[868606-10-4] 1-(5-Bromo-2-hydroxy-3-iodophenyl)-1-propanone, 1740
[868606-11-5] 1-(2-Hydroxy-3-iodo-5-methylphenyl)-1-propanone, 1794
[868634-82-6] 1-[4-(β-D-Glucopyranosyloxy)-2,6-dihydroxyphenyl]-2-methyl-1propanone, 2051
[868731-80-0] 1-[2-(1,1-Dimethylethoxy)-6-hydroxyphenyl]-1-propanone, 1899
[868853-56-9] 1-[5-Hydroxy-2-(4-hydroxyphenyl)-7-benzoxazolyl]-1-propanone, 2006
[869562-75-4] 1-[2-Hydroxy-4-methoxy-5-(2-propenyl)phenyl]-1-propanone, 1885
[870456-80-7] 1-(4-Methoxyphenyl-2,6- d_{2})-2-methyl-1-propanone, 2021
[870701-66-9] 1-(2,3,5-Trihydroxyphenyl)-1-propanone, 1773
[870701-67-0] 1-(2,3,6-Trihydroxyphenyl)-1-propanone, 1773
[872630-73-4] 1-[2-Methoxy-6-(2-pyridinyl)phenyl]-1-propanone, 2004
[872630-76-7] 1-[5-Methoxy-2-(2-pyridinyl)phenyl]-1-propanone, 2005
[873222-90-3] 1-(2,5-Dihydroxy-3,4-dipropylphenyl)-1-propanone, 1929
[874183-64-9] 1,1'-(2,2'-Dihydroxy[1,1'-binaphthalene]-6,6'-diyl)bis[2,2-dimethyl-1-propanone (racemic), 2170
[874187-24-3] 1,1'-(2,2'-Dihydroxy[1,1'-binaphthalene]-6,6'-diyl)bis[2,2-dimethyl-1-propanone ($1 R$), 2170
[874187-25-4] 1,1'-(2,2'-Dihydroxy[1,1'-binaphthalene]-6,6'-diyl)bis[2,2-dimethyl-1-propanone (1S), 2170
[878555-18-1] 2,2-Dimethyl-1-(3',4',5'-trimethoxy[1,1'-biphenyl]-2-yl)-1propanone, 2099
[879339-62-5] 1-(3-Fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2014
[879339-65-8] 1-(3-Fluoro-4-hydroxyphenyl)-2-methyl-1-propanone, 2014
[879339-67-0] 1-(3-Fluoro-4-methoxyphenyl)-2-methyl-1-propanone, 2023
[879339-86-3] 1-(3-Fluoro-2-hydroxyphenyl)-1-propanone, 1754
[879339-88-5] 1-(3-Fluoro-2-methoxyphenyl)-1-propanone, 1793
[879420-45-8] 4-(1-Acetoxypropyl)-5,7-dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-2-one (-), 2080
[880134-95-2] 1,1'-[Oxybis(4-hydroxy-3,1-phenylene)]bis-1-propanone, 2118
[881190-43-8] 1-(3,5-Dibromo-4-fluoro-2-hydroxyphenyl)-2-methyl-1propanone, 2011
[881190-63-2] 1-(2-Fluoro-6-hydroxyphenyl)-2-methyl-1-propanone, 2014
[881190-64-3] 1-(3-Bromo-6-fluoro-2-hydroxyphenyl)-2-methyl-1-propanone, 2011
[881190-66-5] 1-(2-Fluoro-6-methoxyphenyl)-2-methyl-1-propanone, 2022
[881672-76-0] 1-(Pentahydroxyphenyl)-1-propanone, 1775
[882512-69-8] 1-(2,3-Dimethoxy-5-methylphenyl)-2-methyl-1-propanone, 2040
[882698-66-0] 1-(4-Hydroxy-1-naphthalenyl)-2,2-dimethyl-1-propanone, 2101
[888009-25-4] 1-(2'-Ethyl-5'-methoxy-2-propylphenyl[1,1'-biphenyl]-4-yl)-1propanone, 1954
[888968-47-6] 1-(3-Chloro-2,4-dihydroxyphenyl)-1-propanone, 1753
[903583-32-4] 1-[3-(9-Anthracenyl)-5-hydroxyphenyl]-2,2-dimethyl-1propanone, 2100
[904923-39-3] 1-(5-Methoxy-1-naphthalenyl)-1-propanone, 1973
[908130-90-5] 1-(2-Hydroxy-5-nonylphenyl)-1-propanone, 1949
[912952-35-3] 1-(4,5-Dihydroxybenzo[b]thien-6-yl)-1-propanone, 1990
[912952-37-5] 1-(4,5-Dihydroxybenzo[b]thien-6-yl)-2-methyl-1-propanone, 2067
[918310-93-7] 1-(3-Chloro-2,5-dihydroxyphenyl)-2-methyl-1-propanone, 2013
[918311-03-2] 1-[3-Chloro-5-[(3,3-dichloro-2-propen-1-yl)oxy]-2-hydroxyphenyl]-2-methyl-1-propanone, 2038
[918311-05-4] 1-[3-Chloro-5-[(3,3-dichloro-2-propen-1-yl)oxy]-2-methoxyphenyl]-2-methyl-1-propanone (Oxime), 2044
[934524-36-4] 1-[2-Hydroxy-5-(1-methylethyl)phenyl]-2-methyl-1-propanone, 2039
[934524-37-5] 1-(5-Bromo-2-hydroxyphenyl)-2-methyl-1-propanone, 2012
[934637-29-3] 1-(2-Fluoro-3-methoxyphenyl)-1-propanone, 1792
[936642-84-1] 1-(2-Hydroxy-3,4-dipropylphenyl)-1-propanone, 1928
[936642-85-2] 1-(3,4-Diethyl-2-hydroxyphenyl)-1-propanone, 1890
[936642-86-3] 1-(5,6,7,8,9,10-Hexahydro-1-hydroxy-2-benzocyclooctenyl)-1propanone, 1923

Usual Names Index

Volume 1

Adlone. see to Exifone, 40
Alizarine yellow A. 2,3,4-Trihydroxybenzophenone, 22-23
Anisaldehyde ($\mathbf{0}$, m or p). (2, 3 or 4)-Methoxybenzaldehyde, 240, 325, 405
Anisic acid (o, m or p). (2, 3 or 4)-Methoxybenzoic acid, 173, 283-287, 299-300, 404, 420, 470
Anisole. methoxybenzene, 9, 143, 146-147, 150, 154, 168, 170-171, 175-176, 286-287, 536-537
Anisoyl chloride ($\mathbf{0}, \mathbf{m}$ or p). (2, 3 or 4)-Methoxybenzoyl chloride, 3, 6, 26-27, 34, 145-146, 149, 154, 156, 168, 175-176, 182, 186-187, 240, 284, 287-288, $302,307-308,329,404-405,423,432,434,436,438,470,543,567,570-571$, 573, 586, 598, 603, 652
Anthranil. 2,1-Benzisoxazole and also Benzopseudoxazole, 160
Anthrone. 9(10H)-Anthracenone, 524, 533
Aurin. 4-[Bis(4-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one and also p-Rosolic acid, 19
Baishouwubenzophenone. 3-Acetyl-2,3',6,6'-tetrahydroxy-2'-
methylbenzophenone, 528, 654-655
Benzaurine. Hydroxyfuchsone, 10, 84
Benzenyl chloride. Benzenyl trichloride or (Trichloromethyl)benzene, 139
Benzhydrol. Benzohydrol or diphenylcarbinol, 9, 143, 399
2,1-Benzisoxazole. Anthranil, 61, 160, 251
Benzofuran. Coumarone, 4, 14, 46-47, 50-54, 56-57, 63-72, 76, 79, 87-88, 91-93, 96, 98, 105-107, 112, 116, 122, 126, 173, 242, 261, 278, 282, 284, 286-287, 298-300, 324, 335, 365-366, 368, 372, 404, 417, 514, 532-533, 577, 579-581
Benzoresorcinol. 2,4-Dihydroxybenzophenone, 11
Benzotrichloride. (Trichloromethyl)benzene, 4, 7, 13, 22, 44, 50, 53, 73-74, 77-78, 91, 115, 117-118, 123, 126, 130, 133, 136, 370-371, 382-383, 388-389, 391, 529-531
2-Benzoxazolinone. 2-Hydroxybenzoxazole, 62, 85, 213, 252, 289, 428, 434

Bisphenol A. 4,4'-(1-Methylethylidene)bisphenol, 554
Carvacrol. 2-Methyl-5-isopropylphenol, 78, 118
Cearoin. 2, 5-Dihydroxy-4-methoxybenzophenone, 379
Cellosolve. 2-Ethoxyethanol, 13, 137
Cotogenin. 3',4'-Dihydroxy-2,4,6-trimethoxybenzophenone, 408
Cotoin. 2,6-Dihydroxy-4-methoxybenzophenone, 379-380
Coumarin. 2H-1-Benzopyran-2-one, 15, 27, 100, 369, 381, 395-397
Creosol. 2-Methoxy-4-methylphenol, 75, 99
Cresol (o, m or p). (2, 3 or 4)-Methylphenol, 71-73, 77-78, 218, 224-226, 231-232, 235, 238-240, 244, 252, 257, 268, 283-285, 429, 447, 504, 516, 529, 539, 582, 608-610, 612, 616-617, 619-620, 644
o-Cresotic acid. 2-Hydroxy-3-methylbenzoic acid or 3-methylsalicylic acid, 474, 491
m-Cresotic acid. 2-Hydroxy-4-methylbenzoic acid, 474, 491
p-Cresyl anthranilate. 4-Methylphenyl 2-aminobenzoate, 255
Cumene. (1-Methylethyl)benzene, 95, 181
Cyasorb UV-9. 2-Hydroxy-4-methoxybenzophenone and Oxybenzone, 79
Cyasorb UV-24. 2,2'-Dihydroxy-4-methoxybenzophenone or Dioxybenzone, 432
Cyasorb UV-531. 2-Hydroxy-4-(octyloxy)benzophenone, 134
Dalbergin. 6-Hydroxy-7-methoxy-4-phenylcoumarin, 100
Dastib 242. 2-Hydroxy-4-(2-ethylhexyloxy)benzophenone, 135
Dehydrogriseofulvin. 7-Chloro- 2^{\prime} '4,6-trimethoxy-6'-methylspiro[benzofuran2(3H), 1^{\prime}-[2,5]cyclo-hexadiene-3,4'-dione, 458
Diethylene glycol. 2,2'-Oxybisethanol, 134, 507
Diglycol. Diethylene glycol, 507
Dioxocin. 2H,6H-1,5-Dioxocin [292-95-5], 74, 225-226, 235, 238
Dioxybenzone. 2, 2^{\prime}-Dihydroxy-4-methoxybenzophenone, 432
Disyringylmethane. 4,4'-Dihydroxy-3, $3^{\prime}, 5,5^{\prime}$-tetramethoxydiphenylmethane, 450
Epichlorohydrin. 1-Chloro-2,3-epoxypropane, 104
Ethylcellosolve. Cellosolve or 2-Ethoxyethanol, 13
Everninic acid. 2-Hydroxy-4-methoxy-6-methylbenzoic acid, 482-483
Exifone. 2,3,3',4,4', 5^{\prime}-Hexahydroxybenzophenone, 40, 495-496, 498, 575
9-Fluorenone. 9-Oxofluorene, 5, 57, 149, 167, 280
Fluoresin chloride. 2-(3,6-Dihydroxy-9H-xanthen-9-yl)-benzoic acid chloride, 29
Fuchsone. (4-Diphenylmethylene-2,5-cyclohexadien-1-one), 84
Gallacetophenone. $2^{\prime}, 3^{\prime}, 4^{\prime}$-Trihydroxyacetophenone, 23
Gallic acid. 3,4,5-Trihydroxybenzoic acid, 35-36, 38, 40, 575
Gentisein. 1,3,7-Trihydroxyxanthone, 33
Gentisic acid. 2,5-Dihydroxybenzoic acid, 30
Glyme. 1,2-Dimethoxyethane, 132
Griseofulvin. 7-Chloro-2',4,6-trimethoxy-6'-methylspiro[benzofuran-2(3H), 1^{\prime}-[2] cyclohexene J-3,4'-dione, 497
Griseophenone A. 3-Chloro-2,4'-dihydroxy-2',4,6-trimethoxy-6'methylbenzophenone, 458
Griseophenone B. 3-Chloro-2, $4^{\prime}, 6$-trihydroxy- $2^{\prime}, 4$-dimethoxy- 6^{\prime} methylbenzophenone, 484, 487-488

Griseophenone C. 2,4',6-Trihydroxy-2',4-dimethoxy-6'-methylbenzophenone, 336, 486
Guaiacol. 2-Methoxyphenol, 83
Hydrocotoin. 2-Hydroxy-4,6-dimethoxybenzophenone, 85, 88, 101, 531, 569
Hydroquinone. 1,4-Benzenediol, 14-15, 26, 30, 81, 250, 288, 304-305, 313,
325-326, 339, 345, 361, 393-394, 396, 398, 406, 409, 422, 544, 571
Hydroxyhydroquinone. 1,2,4-Benzenetriol, 37, 326, 337, 467
1,2-Indanedione. α, β-Dioxohydrindene, 532
Iriflophenone. 2,4,4',6-Tetrahydroxybenzophenone, 34, 573
Isocotoin. 2,4-Dihydroxy-6-methoxybenzophenone, 387-388, 391
Isoeugenol. 2-Methoxy-4-propenylphenol, 448
b-Isoeuxanthone. 2,7-Dihydroxyxanthone, 29
Isophthalic acid. 1,3-Benzenedicarboxylic acid, 537
Light absorber HCB. 5-Chloro-2-hydroxybenzophenone, 53-54
Maclurin. 2, 3^{\prime},4, 4^{\prime},6-Pentahydroxybenzophenone, 37, 499
Melanoxoin. 2,3',5-Trihydroxy-4,4'-dimethoxybenzophenone, 481
Mesitoyl chloride. 2,4,6-Trimethylbenzoyl chloride, 183, 333
Mesitylene. 1,3,5-Trimethylbenzene, 182, 401
1-Methylpyrrolidone. 1-Methyl-2-pyrrolidinone or N-Methylpyrrolidone, 134, 137
Mexenone. 2-Hydroxy-4-methoxy-4'-methylbenzophenone, 282
Morin. 2-(2,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, 37
Nitrazepam. 1,3-Dihydro-7-nitro-5-phenyl-2H-1,4-benzodiazepin-2-one, 60
Nizofenone. (2-Chlorophenyl)[2-[2-[(diethylamino)methyl]-1H-imidazol-1-yl]-5-nitrophenyl]methanone, 206
Octabenzone. 2-Hydroxy-4-(octyloxy)benzophenone, 134
Orcinol. 5-Methyl-1,3-benzenediol, 376-377, 482-483, 485-486, 494-495, 497, 499
Orsellinic acid. 2,4-Dihydroxy-6-methylbenzoic acid, 494
o-Orsellinic acid. 2,4-Dihydroxy-6-methylbenzoic acid or 4,6-Dihydroxy-o-toluic acid, 497
$\gamma_{\text {-Orsellinic acid. 2,6-Dihydroxy-4-methylbenzoic acid, } 482}$
Oxybenzone. 2-Hydroxy-4-methoxybenzophenone, 64, 68-69, 79
Paeonol. 2'-Hydroxy-4'-methoxyacetophenone, 524, 526
Phenetole. Ethoxybenzene, 8, 146, 149, 158, 164, 169, 301, 567, 587, 598
Phenstatin. 3'-Hydroxy-3,4,4',5-tetramethoxybenzophenone, 328
Phenyl mesitoate. Phenyl 2,4,6-trimethylbenzoate, 182
Phlorobenzophenone. 2,4,6-Trihydroxybenzophenone, 23, 378, 388, 569
Phloroglucinol. 1,3,5-Benzenetriol, 23, 33-34, 37-38, 101-102, 184, 308, 327, $329,378-379,408,422,464-468,471,475,490,492-493,496-497,520,528$, 541, 569, 656
Prenyl bromide. 4-Bromo-2-methyl-2-butene, 121, 140, 356, 385-386, 440, 466, 639
Protocatechuic acid. 3,4-Dihydroxybenzoic acid, 31, 37
Protocatechuonitrile. 3,4-Dihydroxybenzonitrile, 38

Pyrocatechol. 1,2-Benzenediol, 11, 15-16, 27, 31, 35, 38, 565, 571
Pyrogallol. 1,2,3-Benzenetriol, 22, 32-33, 35, 39-40, 99, 183, 307, 324, 327, 340, 436, 467-470, 489, 491, 517, 568, 573-575
Pyruvic acid. 2-Oxopropanoic acid, 443
Quinbenzophenone. 2,5-Dihydroxybenzophenone, 14
Quinol. 1,4-Benzenediol, 129
Quinoline. Benzo[b]pyridine, 83, 90, 95, 105, 503
Resacetophenone. 2',4'-Dihydroxyacetophenone, 525-526
Resbenzophenone. 2,4-Dihydroxybenzophenone, 11, 83, 86, 88, 97-98, 102, 104, 107, 109, 119-121, 123-124, 127, 129-131, 134-135, 138-142, 366-368, 371-372, 375, 385, 387, 389-390, 526, 555
Resorcinol. 1,3-Benzenediol, 11-12, 25, 29, 31, 36, 79-80, 129, 135, 178, 241-242, 245-246, 259-260, 286, 303-304, 334, 370, 373, 392-397, 399, $401-409,447-448,471-477,492,505,508,519,534-536,538-539,542,544$, 569-570, 572
β-Resorcylic acid. 2,4-Dihydroxybenzoic acid, 14, 26, 29, 35, 476, 479, 572, 574
Rosaniline. Fuchsine, 19
p-Rosolic acid. Aurin, 19
Salicylaldehyde. 2-Hydroxybenzaldehyde, 4, 153, 171, 405
Salicylic acid. 2-Hydroxybenzoic acid, 18, 20, 25-26, 32, 49, 90, 174-175, 432, 472-473
Salicylic acid chloride. 2-Hydroxybenzoyl chloride, 3, 269
Salicyloyl chloride. 2-Hydroxybenzoyl chloride, 181
Salicylonitrile. 2-Hydroxybenzonitrile, 33
Salol. Phenyl salicylate, 17, 20-21, 560
Scleroin. 2,5-Dihydroxy-3,4-dimethoxybenzophenone, 383
Styrene. Ethenylbenzene, 131, 141
Sulfolane. Tetrahydrothiophene 1,1-dioxide, 29, 35, 572
Sumisorb 110. 2-Hydroxy-4-methoxybenzophenone, 79
Tannic acid. Tannin or Gallotannin, 40
Terephthalic acid. 1,4-Benzenedicarboxylic acid, 537
Terephthalonitrile. 1,4-Dicyanobenzene, 537
Terephthaloyl chloride. 1,4-Benzenecarbonyl chloride, 537, 539, 542
Thymol. 5-Methyl-2-isopropylphenol, 77, 93, 116-118, 123, 186, 312
p-Thymol. 3-Methyl-4-isopropylphenol, 118, 186
Tolualdehyde ($\mathbf{0}, \mathbf{m}$ or \mathbf{p}). (2, 3 or 4)-Methylbenzaldehyde, 402-403
Toluic acid ($\mathbf{0}$, m or p). (2, 3 or 4)-Methylbenzoic acid, 168-169, 401-402,
418-419, 469, 493, 497, 610, 616-617
Toluoyl chloride ($\mathbf{0}, \mathbf{m}$ or p). (2, 3 or 4)-Methylbenzoyl chloride, 167-169, 233-234, 279-282, 302, 332, 595-596
Tolyl benzoate ($\mathbf{0}, \mathbf{m}$ or \mathbf{p}). (2, 3 or 4)-Methylphenyl benzoate, 71-75, 77-78, 247-250
Triflic acid. Trifluoromethanesulfonic acid, 151, 154-155, 157, 175, 502, 555-556
Umbelliferone. 7-Hydroxycoumarin, 15, 383, 403

UV 9. 2-Hydroxy-5-methylbenzophenone, 81
UV 12. 2, 2^{\prime}-Dihydroxy-4,4'-dimethoxybenzophenone, 447
Uvinul D-49. 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone , 447
Uvinul D-50. 2,2',4,4'-Tetrahydroxybenzophenone, 29
Uvinul 490. 2, 2'-Dihydroxy-4,4'-dimethoxybenzophenone, 447
Uvinul 400. 2,4-Dihydroxybenzophenone, 11
Uvinul 3049. 2, 2'-Dihydroxy-4,4'-dimethoxybenzophenone, 447
Uvistat 247. 2-Hydroxy-4-n-heptyloxybenzophenone, 131
Vanillonitrile. 4-Hydroxy-3-methoxybenzonitrile, 477, 492
Veratric acid. 3,4-Dimethoxybenzoic acid, 179, 408
Veratrole. 1,2-Dimethoxybenzene, 31, 397, 566, 572, 618-619, 640, 649-650, 652
Veratronitrile. 3,4-Dimethoxybenzonitrile, 329
Veratroyl chloride. 3,4-Dimethoxybenzoyl chloride, 306-307, 326, 408
Vismiaphenone A. 2,4-Dihydroxy-6-methoxy-3,5-diprenylbenzophenone, 391
Xanthone. 9H-Xanthen-9-one, 5, 17, 25, 29, 36, 445, 455, 481, 497, 525
Xylene (o, m or p). (1,2-, 1,3- or 1,4-)Dimethylbenzene, 6, 174-176, 323, 652
Xylenol. Dimethylphenol (6 isomers), 93, 435

Volume 2

Acetophenone. Phenyl methyl ketone, 697, 707, 709, 712
Acetoevernone. 2'-Hydroxy-4'-methoxy-6'-methylacetophenone, 827
Acetoguaiacone. 4'-Hydroxy-3'-methoxyacetophenone, 690, 719, 735, 746, 781, 1120, 1143-1144
Acetopiperone. ($3^{\prime}, 4^{\prime}-$ Methylenedioxy)acetophenone, 719
Acetosyringone. 4^{\prime}-Hydroxy- 3^{\prime},5'-dimethoxyacetophenone, 735, 798, 808, 840
Acetovanillone. 4'-Hydroxy-3'-methoxyacetophenone, 719, 739, 746, 750, 781, 1143
o-Acetovanillone. 2'-Hydroxy-3'-methoxyacetophenone, 775
Acetyldihydrodillapiole. 4-Acetyl-6,7-dimethoxy-5-propyl-1,3-benzodioxole, 962
Acetylhydroquinone. 2',5'-Dihydroxyacetophenone, 673
2-Acetylhydroquinone. $2^{\prime}, 5^{\prime}$-Dihydroxyacetophenone, 689
8-Acetyl-4-methylumbelliferone. 8-Acetyl-7-hydroxy-4-methylcoumarin, 718
2-Acetylorcinol. 2',6'-Dihydroxy-4'-methylacetophenone, 772
8-Acetyl-4-phenylumbelliferone. 8-Acetyl-7-hydroxy-4-phenylcoumarin, 718
2-Acetylresorcinol. $2^{\prime}, 6^{\prime}$-Dihydroxyacetophenone, 667, 822, 1183, 1197
Acronylin. 4',6'-Dihydroxy-2'-methoxy-3'-isopentenylacetophenone, 947, 983, 993, 1011, 1181, 1186
Agehoustin C. 3^{\prime}-Hydroxy-5,6,7,8, $2^{\prime}, 4^{\prime}, 5^{\prime}$-heptamethoxyflavone, 890
Agehoustin D. 5, 3^{\prime}-Dihydroxy-6,7,8, $2^{\prime}, 4^{\prime}, 5^{\prime}$-hexamethoxyflavone, 890
3-Allylresacetophenone. 3^{\prime}-Allyl- 2^{\prime} '4'-dihydroxyacetophenone, 900
4-n-Amylresorcinol. 4-n-Amyl-1,3-benzenediol, 957
Anisole. Methoxybenzene, 776
p-Anisoyl chloride. 4-Methoxy benzoyl chloride, 1016

Annphenone. 1-[4-(β-D-Glucopyranosyloxy)-2-hydroxy-6-methoxyphenyl] ethanone, 1012
Antiarol. 3,4,5-Trimethoxyphenol, 845, 891
Antiarol acetate. 3,4,5-Trimethoxyphenyl acetate, 891
Antiarol benzylether. 3,4,5-Trimethoxyphenyl benzylether, 891
Antiarol ethylether. 3,4,5-Trimethoxyphenetole, 933
Apigenin. 4',5,7-Trihydroxyflavone, 712
Apiin. 4',5,7-Trihydroxyflavone-7-apiosylglucoside, 712
Apocynin. 4'-Hydroxy-3'-methoxyacetophenone, 781
Apocynol. 1-(4-Hydroxy-3-methoxyphenyl)ethanol, 746
Artocarpetin. 5, $2^{\prime}, 4^{\prime}$-Trihydroxy-7-methoxyflavone, 788
Bancroftinone. 6'-Hydroxy-2',4'-dimethoxy-3'-methylacetophenone, 883-884
Bavachinin. 4'-Hydroxy-7-methoxy-6-isopentenylflavanone, 981
Benzotetronic acid. 4-Hydroxycoumarin, 708
2-Benzylresorcinol. 2-Benzyl-1,3-benzenediol, 1002
4-Benzylresorcinol. 4-Benzyl-1,3-benzenediol, 1002
Bisphenol A diacetate. 2,2-Bis(4-acetoxyphenyl)propane, 1032
Bisphenol S diacetate. 4,4'-Diacetoxydiphenyl sulfone, 974, 1016
Brevifolin. 2'-Hydroxy-4',6'-dimethoxyacetophenone, 837
2-Bromohydroquinone diacetate. 2-Bromo-1,4-benzenediol diacetate, 683
5-Bromoresacetophenone. 5'-Bromo- $2^{\prime}, 4^{\prime}$-dihydroxyacetophenone, 740, 966
4-Bromoresorcinol. 4-Bromo-1,3-benzenediol, 683
4-Bromoresorcinol diacetate. 4-Bromo-1,3-benzenediol diacetate, 683
4-Bromoresorcinol dimethylether. 4-Bromo-1,3-dimethoxybenzene, 740
Bungeiside A. 2^{\prime}-(β-D-glucopyranosyloxy)-5'-hydroxyacetophenone, 987
Bungeiside B. $2^{\prime}-\left(\beta\right.$-D-glucopyranosyloxy) 4^{\prime}-hydroxyacetophenone, 986
Bungeiside D. 1-[2-Hydroxy-4-[(6-O- β-D-xylopyranosyl- β-D-glucopyranosyl) oxy]-phenyl]ethanone, 1060
2-tert-Butylhydroquinone. 2-tert-Butyl-1,4-benzenediol, 924
4-n-Butylresorcinol. 4-n-Butyl-1,3-benzenediol, 922
Carbitol. Diethylene glycol monoethylether, 1057
Carvacrol. 2-Methyl-5-isopropylphenol, 915, 918
Carvacryl acetate. 2-Methyl-5-isopropylphenyl acetate, 915, 918
2-Chlorohydroquinone diacetate. 2-Chloro-1,4-benzenediol diacetate, 797
4-Chlororesorcinol. 4-Chloro-1,3-benzenediol, 690
4-Chlororesorcinol dimethylether. 4-Chloro-1,3-dimethoxybenzene, 747
4-Chlorothymol methylether. 4-Chloro-5-methyl-2-isopropylanisole, 743
2-Chlorovanillin acetate. 4-Acetoxy-2-chloro-3-methoxybenzaldehyde, 745
5-Chlorovanillin acetate. 4-Acetoxy-3-chloro-5-methoxybenzaldehyde, 746
6-Chlorovanillin acetate. 4-Acetoxy-2-chloro-5-methoxybenzaldehyde, 745
Clavatol. 2',4'-Dihydroxy-3',5'-dimethylacetophenone, 820
Creosol. 2-Methoxy-4-methylphenol, 768, 830
Creosol acetate. 2-Methoxy-4-methylphenyl acetate, 774, 826, 830
Cumene. Isopropylbenzene, 953
Cynanoneside A. 4'-(β-D-glucopyranosyloxy)-3'-hydroxyacetophenone, 988

Cynanoneside B. $2^{\prime}-(\beta$-D-glucopyranosyloxy)-4'-hydroxyacetophenone, 986
p-Cymene. 4-Isopropyltoluene, 764
Decalin. Decahydronaphthalene, 1051
Deoxyacetohumulone. $2^{\prime}, 4^{\prime}, 6^{\prime}$-Trihydroxy- $3^{\prime}, 5^{\prime}$-diisopentenylacetophenone, 1056
2,4-Diacetyl-5-(allyloxy)resorcinol. 3^{\prime}-Acetyl-4'-allyloxy- $2^{\prime}, 6^{\prime}$ -
dihydroxyacetophenone, 855
2,4-Diacetyl-5-(benzyloxy)resorcinol. 3^{\prime}-Acetyl-4'-benzyloxy- $2^{\prime}, 6^{\prime}$ -
dihydroxyacetophenone, 1007
2,4-Diacetyl-5-ethoxyresorcinol. 3'-Acetyl-4'-ethoxy-2',6'-
dihydroxyacetophenone, 834
2,4-Diacetyl-5-methoxyresorcinol. 3^{\prime}-Acetyl-2',6'-dihydroxy-4'methoxyacetophenone, 787
2,4-Diacetylorcinol. 3^{\prime}-Acetyl-2',6'-dihydroxy-4'-methylacetophenone, 772
2,4-Dibromophloroglucinol. 2,4-Dibromo-1,3,5-benzenetriol, 667
2,3-Dichlorohydroquinone diacetate. 2,3-Dichloro-1,4-benzenediol diacetate, 673
2,4-Diethylphloroglucinol. 2,4-Diethyl-1,3,5-benzenetriol, 929
2,4-Diethylresorcinol. 2,4-Diethyl-1,3-benzenediol, 922
4,6-Diethylresorcinol. 4,6-Diethyl-1,3-benzenediol, 922
Dihydroeugenol acetate. 2-Methoxy-4-propylphenyl acetate, 927
Dihydrousnic acid. 2,6-Diacetyl-3,7,9-trihydroxy-8,9b-dimethyl-1$(4 H, 4 a H, 9 b H)$-dibenzo-furanone, 771
3,5-Dihydroxy-o-xylene. 4,5-Dimethyl-1,3-benzenediol, 822
2,5-Dimethoxyhydroquinone diacetate. 2,5-Dimethoxy-1,4-benzenediol diacetate, 845
2,6-Dimethoxyhydroquinone. 2,6-Dimethoxy-1,4-benzenediol, 845
2,6-Dimethoxyhydroquinone diacetate. 2,6-Dimethoxy-1,4-benzenediol diacetate, 906
2,5-Dimethoxyresorcinol. 2,5-Dimethoxy-1,3-benzenediol, 844
2,5-Dimethoxyresorcinol dibenzylether. 1,3-Dibenzyloxy-2,5-dimethoxybenzene, 1035
2,3-Dimethylhydroquinone. 2,3-Dimethyl-1,4-benzenediol, 821
2,5-Dimethylhydroquinone. 2,5-Dimethyl-1,4-benzenediol, 821
2,6-Dimethylhydroquinone. 2,6-Dimethyl-1,4-benzenediol, 822
3,5-Dimethylphloroacetophenone. $2^{\prime}, 4^{\prime}, 6^{\prime}-$ Trihydroxy- $3^{\prime}, 5^{\prime}-$
Dimethylacetophenone, 929
1,3-Dimethylphloroglucinol. 2,4-Dimethyl-1,3,5-benzenetriol, 843
2,4-Dimethylresorcinol. 2,4-Dimethyl-1,3-benzenediol, 820
4,5-Dimethylresorcinol. 4,5-Dimethyl-1,3-benzenediol, 821
4,6-Dimethylresorcinol. 4,6-Dimethyl-1,3-benzenediol, 822
4,5-Dimethylresorcinol diacetate. 4,5-Dimethyl-1,3-benzenediol diacetate, 821
Diphenylcarbinol. α-Phenylbenzenemethanol, 1065, 1069, 1090
3-(Diphenylmethyl)resacetophenone. $2^{\prime}, 4^{\prime}$-Dihydroxy- 3^{\prime}-(diphenylmethyl) acetophenone, 1067
5-(Diphenylmethyl)resacetophenone. $2^{\prime}, 4^{\prime}$-Dihydroxy-5'-(diphenylmethyl) acetophenone, 1068

Epichlorohydrin. 1-Chloro-2,3-epoxypropane, 856, 978, 984
2-Ethylhydroquinone dimethylether. 2-Ethyl-1,4-dimethoxybenzene, 875
4-Ethylpyrogallol. 4-Ethyl-1,2,3-benzenetriol, 834
2-Ethylresorcinol. 2-Ethyl-1,3-benzenediol, 824
4-Ethylresorcinol. 4-Ethyl-1,3-benzenediol, 825
4-Ethylresorcinol diacetate. 4-Ethyl-1,3-benzenediol diacetate, 825
Farnesyl bromide. 3,7,11-trimethyl-2,6,10-dodecatrienyl bromide, 1081, 1083, 1089
2-Fluorohydroquinone diacetate. 2-Fluoro-1,4-benzenediol diacetate, 693
Formalin. Formaldehyde solution, 733, 847, 863, 936
3-Formylphloroacetophenone. 3^{\prime}-Formyl- $2^{\prime}, 4^{\prime}, 6^{\prime}$-trihydroxyacetophenone, 790
3-Formylresacetophenone. 3^{\prime}-Formyl-2', 4^{\prime}-dihydroxyacetophenone, 721
Gallacetophenone. $2^{\prime}, 3^{\prime}, 4^{\prime}$-Trihydroxyacetophenone, 667, 684, 720-721, 736, $783-784,833,835,855,895,902,929,947,1006,1066,1070,1121-1122,1183$
Gallacetophenone trimethylether. $2^{\prime}, 3^{\prime}, 4^{\prime}$-Trimethoxyacetophenone, 723, 784
Geraniol. 3,7-Dimethyl-2,6-octadien-1-ol, 1051
Geranyl bromide. 3,7-Dimethyl-2,6-octadienyl bromide, 1048-1049, 1059, 1085, 1089
Guaiacol. 2-Methoxyphenol, 779, 781-782, 925
Guaiacol acetate. 2-Methoxyphenyl acetate, 718, 775, 779, 781, 1143
4-n-Hexylresorcinol. 4-n-Hexyl-1,3-benzenediol, 992
Hinokiflavone. 5,7,5", $7^{\prime \prime}, 4^{\prime \prime \prime}$-Pentahydroxy-4'-O-6"'-biflavone, 712, 838
Homoflemingin. 2, 2', 4^{\prime},5-Tetrahydroxy-5'-methoxy-3'-(3,7-dimethyl-2,6octadienyl)chalcone, 1059
Homoveratrole. 3,4-Dimethoxytoluene, 830
Hydroquinone. 1,4-Benzenediol, 716-717
Hydroquinone diacetate. 1,4-Benzenediol diacetate, 716, 801
Hydroquinone monomethylether. 4-Methoxyphenol, 1008
Hydroquinone dimethylether. 1,4-Dimethoxybenzene, 777, 1119
3-Hydroxykynurenine. $\alpha, 2$-Diamino-3-hydroxy- γ-oxobenzenebutanoic acid, 725
Hydroxyquinol. 1,2,4-Benzenetriol, 722
2-Hydroxyseneciophenone. 2'-Hydroxy-3,3-dimethylacrylophenone, 708
6-Hydroxytremetone. 5-Acetyl-6-hydroxy-2-isopropenyl-2,3-
dihydrobenzofuran, 957
5-Iodoacetovanillone. 4'-Hydroxy-5'-iodo-3'-methoxyacetophenone, 840
Iretol. 2-Methoxy-1,3,5-benzenetriol, 791
Isoacetoevernone. 4'-Hydroxy-2'-methoxy-6'-methylacetophenone, 829
Isoacetovanillone. 3'-Hydroxy-4'-methoxyacetophenone, 779, 1143
2-Isoamylphloroglucinol. 2-Isoamyl-1,3,5-benzenetriol, 961
4-Isoamylresorcinol diacetate. 4-Isoamyl-1,3-benzenediol diacetate, 957
Isobavachin. 4',7-Dihydroxy-8-(3,3-dimethylallyl)flavanone, 941
Isocaproaldehyde. 4-Methylpentanal, 1027
Isocreosol. 2-Methoxy-5-methylphenol, 829
Isocreosol acetate. 2-Methoxy-5-methylphenyl acetate, 829
Isopaeonol. 4'-Hydroxy-2'-methoxyacetophenone, 741, 756

Isopentylphloroacetophenone. $2^{\prime}, 4^{\prime}, 6^{\prime}$-Trihydroxy- 3^{\prime}-isopentylacetophenone, 1055
Isopseudocumenol acetate. 2,3,5-Trimethylphenyl acetate, 869
Isosordidone dimethylether. 6-Chloro-5,7-dimethoxy-2,8-dimethylchromone, 861
Isothymol methylether. 4-Methyl-2-isopropylanisole, 919
Isovaleraldehyde. 3-Methylbutanal, 991
Kayaflavone. 5,7,5"-Trihydroxy-4', $7^{\prime \prime}, 4^{\prime \prime \prime}$-trimethoxy-3', $8^{\prime \prime}$-biflavone, 928
Kayaflavone triethylether. 5,7,5"-Triethoxy- $4^{\prime}, 7^{\prime \prime \prime \prime}, 4^{\prime \prime \prime}$-trimethoxy- $3^{\prime}, 8^{\prime \prime}$ -
biflavone, 928
Leptorumol monomethylether. 5-Hydroxy-7-methoxy-6,8-dimethylchromone, 879
Lucidin dibenzyl ether. 5,7-Dibenzyloxy-6,8-dimethoxy-3',4'-
methylenedioxyflavone, 1084
Lucidin dimethyl ether. 5,6,7,8-Tetramethoxy-3'4'-methylenedioxyflavone, 935
Luteolin. 3', 4',5,7-Tetrahydroxyflavone, 719
Mallophenone. $2^{\prime}, 6^{\prime}$-Dihydroxy-4'-methoxy-3',5'-dimethylacetophenone, 879
Mesitol. 2,4,6-Trimethylphenol, 870
Mesitol methylether. 2,4,6-Trimethylanisole, 870
Mesityl acetate. 2,4,6-Trimethylphenyl acetate, 761
2-Methoxyhydroquinone diacetate. 2-Methoxy-1,4-benzenediol diacetate, 786, 858
2-Methoxyphloroglucinol. 2-Methoxy-1,3,5-benzenetriol, 791
3-Methylanthranil. 3-Methyl-2,1-benzisoxazole, 724, 726
Methyldihydrousnic acid. 4,8-diacetyl-3,7-dihydroxy-2,2,9a-trimethyl-
1,9(2H,5aH,6H,9aH) dibenzofuranedione, 771
2-Methylhydroquinone. 2-Methyl-1,4-benzenediol, 771
2-Methylhydroquinone diacetate. 2-Methyl-1,4-benzenediol diacetate, 771, 854
2-Methyl-5-isopropylhydroquinone dimethylether. 1,4-Dimethoxy-2-methyl-5-isopropyl-benzene, 923
2-Methyl-4-nitroresorcinol. 2-Methyl-4-nitro-1,3-benzenediol, 754
Methylphloroacetophenone. $2^{\prime}, 4^{\prime}, 6^{\prime}$-Trihydroxy-3'-methylacetophenone, 748, 984
3-Methylphloracetophenone. $2^{\prime}, 4^{\prime}, 6^{\prime}-$ Trihydroxy-3'-methylacetophenone, 1077
2-Methylphloroglucinol. 2-Methyl-1,3,5-benzenetriol, 790
3-Methylpyrocatechol. 3-Methyl-1,2-benzenediol, 773
3-Methylpyrocatechol diacetate. 3-Methyl-1,2-benzenediol diacetate, 768, 773-774
4-Methylpyrocatechol. diacetate. 4-Methyl-1,2-benzenediol diacetate, 774
3-Methylresacetophenone. $2^{\prime}, 4^{\prime}$-Dihydroxy-3'-methylacetophenone, 820
2-Methylresorcinol. 2-Methyl-1,3-benzenediol, 769
4-Methylresorcinol. 4-Methyl-1,3-benzenediol, 769
4-Methylresorcinol diacetate. 4-Methyl-1,3-benzenediol diacetate, 769
4-Methylumbelliferone. 7-Hydroxy-4-methylcoumarin, 715
5-Nitroresacetophenone. $2^{\prime}, 4^{\prime}$-Dihydroxy-5'-nitroacetophenone, 664, 967
4-Nitroresorcinol. 4-Nitro-1,3-benzenediol, 701-702
4-Nitroresorcinol diacetate. 4-Nitro-1,3-benzenediol diacetate, 702
Olivetol. 5-Amyl-1,3-benzenediol, 958
Ommatin D. Dihydroxanthommatin 5-sulfate ester, 725
Orcacetophenone. 2',4'-Dihydroxy-6'-methylacetophenone, 767-770, 827
β-Orcacetophenone. $2^{\prime}, 4^{\prime}$-Dihydroxy-6'-methylacetophenone, 769-770, 827
$\boldsymbol{\gamma}$-Orcacetophenone. $2^{\prime}, 6^{\prime}$-Dihydroxy-4'-methylacetophenone, 772
p-Orcacetophenone. $2^{\prime}, 6^{\prime}$-Dihydroxy-4'-methylacetophenone, 772, 828
β-Orcinol. 2,5-Dimethyl-1,3-benzenediol, 820
Orcinol. 5-Methyl-1,3-benzenediol, 769-770, 772, 1008
Orcinol diacetate. 5-Methyl-1,3-benzenediol diacetate, 770
Orcinol monomethylether. 3-Methoxy-5-methylphenol, 828-829
Orcinol dimethylether. 3,5-dimethoxytoluene, 770, 827-828, 1140
Orsacetophenone. $2^{\prime}, 4^{\prime}$-Dihydroxy- 6^{\prime}-methylacetophenone, 769
Paeonol. 2'-Hydroxy-4'-methoxyacetophenone, 735, 740, 750, 755, 787, 1142
Paeonol acetate. 2'-Acetoxy-4'-methoxyacetophenone, 740
5-Pentadecylresorcinol. 5-Pentadecyl-1,3-benzenediol, 1084
Phloroacetophenone. $2^{\prime}, 4^{\prime}, 6^{\prime}$-Trihydroxyacetophenone, 667, 683, 690, 722, 730, $786,788,796,802,837,843,848,855,882,895,927,929,935,947-949,973$, 977, 993, 998, 1006-1007, 1052-1053, 1066, 1068, 1070, 1073, 1081, 1083, 1086, 1091, 1123, 1144-1145, 1158, 1175, 1181, 1190
Phloroacetophenone triethylether. $2^{\prime}, 4^{\prime}, 6^{\prime}-$ Triethoxyacetophenone, 927
Phloroacetophenone 4-methylether. $2^{\prime}, 6^{\prime}$-Dihydroxy-4'-methoxyacetophenone, 1020
Phloroacetophenone dimethylether. 2^{\prime}-Hydroxy-4', 6^{\prime}-dimethoxyacetophenone, 810
Phloroacetophenone trimethylether. $2^{\prime}, 4^{\prime}, 6^{\prime}$-Trimethoxyacetophenone, 837, 840
Phloroglucinol. 1,3,5-Benzenetriol, 722-723, 877
Phloroglucinol diethylether. 3,5-Diethoxyphenol, 927-928
Phloroglucinol monomethylether. 5-Methoxy-1,3-benzenediol, 785
Phloroglucinol dimethylether. 3,5-Dimethoxyphenol, 837, 840
Phloroglucinol trimethylether. 1,3,5-Trimethoxybenzene, 838, 1123
Phloroglucinol triacetate. 1,3,5-Benzenetriol triacetate, 723
Picein. 4'-Hydroxyacetophenone-D-glucoside, 712
Prenyl bromide. 4-Bromo-2-methyl-2-butene, 941-942, 944, 948, 983, 1040, 1048, 1050, 1052, 1054, 1083, 1085, 1179, 1190, 1193
2-Propylhydroquinone dimethylether. 1,4-Dimethoxy-2-propylbenzene, 873, 926
2-Propylresorcinol. 2-Propyl-1,3-benzenediol, 872
4-Propylresorcinol. 4-Propyl-1,3-benzenediol, 872
4-Propylresorcinol diacetate. 4-Propyl-1,3-benzenediol diacetate, 872
Pseudoaspidinol A. 4',6'-Dihydroxy-2'-methoxy-3'-methylacetophenone, 832-833
Pseudocumenol acetate. 2,4,5-Trimethylphenyl acetate, 816, 870
Pyrocatechol. 1,2-Benzenediol, 713, 719, 800, 1121
Pyrocatechol monoacetate. 1,2-Benzenediol monoacetate, 714, 719
Pyrocatechol diacetate. 1,2-Benzenediol diacetate, 718
Pyrogallol. 1,2,3-Benzenetriol, 720, 1121
Pyrogallol triacetate. 1,2,3-Benzenetriol triacetate., 720, 895
Pyrogallol 1-methylether. 3-Methoxy-1,2-benzenediol, 783
Pyrogallol 2-methylether. 2-Methoxy-1,3-benzenediol, 783-784
Pyrogallol trimethylether. 1,2,3-Trimethoxybenzene, 834, 1104
Quinacetophenone. 2',5'-Dihydroxyacetophenone, 666, 678, 682, 702, 716-717, 801, 823-824, 853, 877, 1004, 1019, 1030, 1033, 1072, 1119, 1162-1163, 1180, 1182

Quinacetophenone diacetate. $2^{\prime}, 5^{\prime}$-Diacetoxyacetophenone, 801
γ-Resacetophenone. 2',6'-Dihydroxyacetophenone, 718
Resacetophenone. $2^{2}, 4^{\prime}$-Dihydroxyacetophenone, 666, 673, 676, 678, 682-683, 696, 701, 714-715, 769, 775, 801, 807, 820, 823, 826, 842, 848, 853, 856, 860, $878,884,898-899,901,921,924,930,934,938,940-942,944,949,959,969$, 993, 997-998, 1002-1003, 1014, 1019, 1030, 1046, 1048, , 1056, 1063, 10651067, 1069, 1084, 1086, 1089-1090, 1114, 1118-1119, 1150, 1159, 1173, 1179, 1182, 1189, 1195, 1197
Resacetophenone diacetate. $2^{\prime}, 4^{\prime}$-Diacetoxyacetophenone, 715
Resorcinol. 1,3-Benzenediol, 714-716, 801
Resorcinol monoacetate. 1,3-Benzenediol monoacetate, 715
Resorcinol diacetate. 1,3-Benzenediol diacetate, 715, 799
Resorcinol monomethylether. 3-Methoxyphenol, 776, 780
Resorcinol dimethylether. 1,3-Dimethoxybenzene, 776, 824, 1118
Sakuranin. 5,4'-Dihydroxy-7-methoxyflavone-5-D-glucoside, 787
Sciadopitysin. 5,5", $7^{\prime \prime}$-Trihydroxy-7,4',4"'-trimethoxy-3', $8^{\prime \prime}$-biflavone, 838
Sciadopitysin trimethylether. $5,7,4^{\prime}, 5^{\prime \prime}, 7^{\prime \prime}, 4^{\prime \prime \prime}$-Hexamethoxy- $3^{\prime}, 8^{\prime \prime}$-biflavone, 838
Sesamol. 5-Hydroxy-1,3-benzodioxole, 737
Siphulin. 7-Hydroxy-5-heptyl-2-[3',5'-dihydroxy-2-carboxybenzyl]chroman-4one, 1029
Sorbicillin. 1-(2,4-Dihydroxy-3,5-dimethylphenyl)-2,4-hexadien-1-one, 820
Sordidone. 8-Chloro-5,7-dihydroxy-2,6-dimethylchromone, 860
Sordidone dimethylether. 8-Chloro-5,7-dimethoxy-2,6-dimethylchromone, 860
Sotetsuflavone. 5,7,4', 5", $4^{\prime \prime \prime}$-Pentahydroxy- $7^{\prime \prime}$-methoxy-3', $8^{\prime \prime}$-biflavone, 927
Sotetsuflavone pentaethylether. $5,7,4^{\prime}, 5^{\prime \prime}, 4^{\prime \prime \prime}$-Pentaethoxy- $7^{\prime \prime}$-methoxy $3^{\prime}, 8^{\prime \prime}$ biflavone, 927
Swertisin. 4',5-Dihydroxy-7-methoxyflavone-6-C- β-D-glucopyranoside, 884
Swertisin dimethylether. 4',5,7-Trimethoxyflavone-6-C- β-D-glucopyranoside, 884
Tetraacetylpungenin. 1-[4-Hydroxy-3-[(2,3,4,6-tetra-O-acetyl- β - D -
glucopyranosyl)oxy]-phenyl]ethanone, 1074
Tetrahydrodeoxyusnic acid. 2,6-Diacetyl-7,9-dihydroxy-8,9b-dimethyl-1-
(2H,3H,4H,4aH,9bH)-dibenzofuranone, 771
Tetralin. 1,2,3,4-Tetrahydronaphthalene, 1002
p-Thymol. 3-Methyl-4-isopropylphenol, 916
Thymol. 5-Methyl-2-isopropylphenol, 916-917
Thymyl acetate. 5-Methyl-2-isopropylphenyl acetate, 916-917
p-Thymyl acetate. 3-Methyl-4-isopropylphenyl acetate, 917
o-Tolyl acetate. 2-Methylphenyl acetate, 757-758, 760, 766-767
m-Tolyl acetate. 3-Methylphenyl acetate, 758-759, 765
p-Tolyl acetate. 4-Methylphenyl acetate, 760, 762, 765
p-Tolyl borate. 4-Methylphenyl borate, 761
Tremetone. 5-Acetyl-2-isopropyl-2,3-dihydrobenzofuran, 955
Tricin. 4',5,7-Trihydroxy-3',5'-dimethoxyflavone, 838
Triflic acid. Trifluoromethanesulfonic acid, 711, 714, 766
Triglykol. Triethylene glycol, 939

Trimethylhydroquinone. 2,3,5-Trimethyl-1,4-benzenediol, 874, 944, 1180
2,3,5-Trimethylhydroquinone diacetate. 2,3,5-Trimethyl-1,4-benzenediol diacetate, 874
n-Valeraldehyde. Pentanal, 775, 991
Vanillic acid. 4-Hydroxy-3-methoxybenzoic acid, 781
o-Veratraldehyde. 2,3-Dimethoxybenzaldehyde, 775
Wogonin. 5,7-Dihydroxy-8-methoxyflavone, 889
Xanthoxylin. 2'-Hydroxy-4', ' ' $^{\prime}$ dimethoxyacetophenone, 788, 798, 837-838, 1190
Xanthoxylone. 2'-Hydroxy-3' $\mathbf{}^{\prime} 4^{\prime}, 6^{\prime}$-Trimethoxyacetophenone, 888-889

Volume 3

Acetoguaiacone. 4'-Hydroxy-3'-methoxyacetophenone, 1238, 1244
Acetovanillone. 4'-Hydroxy-3'-methoxyacetophenone, 1376
Adrenalone. 1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone, 1300
Afromosin. 7-Hydroxy-6,4'-dimethoxyisoflavone, 1485, 1503
Afromosin 7-methyl ether. 6,7,4'-Trimethoxyisoflavone, 1503
Albizoin. 2-(2,4-Dimethoxyphenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone, 1517
Alnusin. 6-Methoxy-3,5,7-trihydroxyflavone, 1337
Alnusin trimethyl ether. 3,5,6,7-Tetramethoxyflavone, 1337
o-Anisidine. 2-Methoxyaniline, 1237
m-Anisidine. 3-Methoxyaniline, 1237
p-Anisidine. 4-Methoxyaniline, 1237
Anisole. Methoxybenzene, 1233-1234, 1256, 1266, 1406, 1663, 1668-1669, 1704, 1708, 1715, 1718
Antiarol. 3,4,5-Trimethoxyphenol, 1251, 1379, 1434, 1520, 1582, 1590
Apulein. 2',5'-Dihydroxy-3,5,6,7,4'-pentamethoxyflavone, 1337
Apulein diethyl ether. $2^{\prime}, 5^{\prime}$-Diethoxy-3,5,6,7,4'-pentamethoxyflavone, 1337
Apulein dimethyl ether. $3,5,6,7,2^{\prime}, 4^{\prime}, 5^{\prime}$-Heptamethoxyflavone, 1337
Aromadendrin. 3,5,7,4'-Tetrahydroxyflavanone, 1374
Arterenone. 2-Amino-1-(3,4-dihydroxyphenyl)ethanone, 1296
世-Baptigenetin. 2,4-Dihydroxyphenyl 3,4-methylenedioxybenzyl ketone, 1525
Benzotetronic acid. 4-Hydroxycoumarin, 1226, 1228, 1255
Bisphenol A. 4,4'-(1-Methylethylidene)-bisphenol, 1371
Bisphenol A diacetate. 2,2-Bis(4-acetoxyphenyl)propane, 1611, 1614
Bisphenol A diethyl ether. 2,2-Bis(4-ethoxyphenyl)propane, 1611, 1614
Bisphenol A dimethyl ether. 2,2-Bis(4-methoxyphenyl)propane, 1611-1612
Bisphenol S. 4,4'-Dihydroxydiphenyl sulfone, 1623
Bisphenol S diacetate. 4,4'-Diacetoxydiphenyl sulfone, 1623
Bleicherde. Bleaching agent, 1404, 1406
$\boldsymbol{\alpha}$-Bromoacetosyringone. 4-Hydroxy-3,5-dimethoxy- α-bromoacetophenone, 1366
Bromopaeonol. 5'-Bromo-2'-hydroxy-4'-methoxyacetophenone, 1228

Butyrylmallotojaponin. 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)-methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-1butanone, 1643
Calycopterin diethyl ether. 5,4'-Diethoxy-3,6,7,8-tetramethoxyflavone, 1342
Calycopterin dimethyl ether. 3,5,6,7,8,4'-Hexamethoxyflavone, 1340
Calycopterol pentamethyl ether. 1-(2-Hydroxy-3,4,5,6-tetramethoxyphenyl)-2-methoxy-ethanone, 1340-1341
Carvacrol. 2-Methyl-5-isopropylphenol, 1264
Casticin. 5,3'-Dihydroxy-3,6,7,4'-tetramethoxyflavone, 131
α-Chloroacetovanillone. α-Chloro-4'-hydroxy-3'-methoxyacetophenone, 1384
Chlorflavonin. 3^{\prime}-Chloro-5, 2'-dihydroxy-3,7,8-trimethoxyflavone, 1335
Chlorflavonin dimethyl ether. 3'-Chloro-3,5,7,8,2'-pentamethoxyflavone, 1335
Cladrastin. 7-Hydroxy-6, $3^{\prime}, 4^{\prime}$ 'trimethoxyisoflavone, 1505
Cladrin. 7-Hydroxy-3', ''-dimethoxyisoflavone, 1487^{\prime}
Creosol. 2-Methoxy-4-methylphenol, 1242
o-Cresol. 2-Methylphenol, 1239, 1256, 1260-1261, 1304, 1415, 1417, 1542
m-Cresol. 3-Methylphenol, 1239, 1261, 1324, 1359, 1365, 1415, 1417, 1542
p-Cresol. 4-Methylphenol, 1213, 1239, 1261, 1416, 1542, 1570, 1590
Cynandione A. 1, $1^{\prime}-\left(2^{\prime}, 3,6,6^{\prime}-\right.$ Tetrahydroxy[1, 1^{\prime}-biphenyl]-2,3'-diyl)bis-ethanone, 1596, 1724
Daidzein. 7,4'-Dihydroxyisoflavone, 1457
Danielone. 2-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone, 1377-1378
Dehydroougenin dimethyl ether acetate. 5-Acetoxy-6-methyl-7, $2^{\prime}, 4^{\prime}$ -
trimethoxy-isoflavanone, 1515
Demethoxykanugin. 3,7-Dimethoxy-3',4'-methylenedioxyflavone, 1324
Derrustone. 5,7-Dimethoxy-3',4'-methylenedioxyisoflavone, 1493
Diacetylorcinol. 2,4-Diacetyl-3,5-dihydroxytoluene, 1570
3,5-Diacetyl-o-orsellinic acid. 3,5-Diacetyl-2,4-dihydroxy-6-
methylbenzoic acid, 1573
Didemethylpseudoaspidin. 1,1'-[Methylenebis(2,4-dihydroxy-6-methoxy-3,1-phenylene)]bis-ethanone, 1603
Di-O-ethyl-O-methyl oxyayanin-B. 6,3'-Diethoxy-3,5,7,4'-
tetramethoxyflavone, 1340
Dihydrodalbergioidin tetramethyl ether. 5,7,2', 4^{\prime}-Tetramethoxyisoflavanone, 1517
Di-O-methylretusin. 7,8,4'-Trimethoxyisoflavone, 1502
Digicitrine. 5,3'-Dihydroxy-3,6,7,8,4',5'-hexamethoxyflavone, 1340
Digicitrine dibenzyl ether. 5,3'-Dibenzyloxy-3,6,7,8,4', 5^{\prime} -
hexamethoxyflavone, 1344
Digicitrine dimethyl ether. 3,5,6,7,8, $3^{\prime}, 4^{\prime}, 5^{\prime}$-Octamethoxyflavone, 1340
Dihydrokaempferol. 3,5,7,4'-Tetrahydroxyflavanone, 1374
7-O- γ, γ-Dimethylallylpseudobaptigenin. 7- γ, γ-Dimethylallyloxy)- $3^{\prime}, 4^{\prime}$ -methylene-dioxyisoflavone, 1525
Dimethyldegeranylmelicopol. 2-Hydroxy-1-(6-hydroxy-2,3,4-trimethoxyphenyl) ethanone, 1379
Dimethylsulfone. Methyl sulfone, 1544, 1546

Diphenylcarbinol. α-Phenylbenzenemethanol, 1445-1446, 1449
Epichlorohydrin. 1-Chloro-2,3-epoxypropane, 1615-1616, 1618
Eupalitin triethyl ether. 3,5,4'-Triethoxy-6,7-dimethoxyflavone, 1350
Eupatin triethyl ether. 3,5,3'-Triethoxy-6,7,4'-trimethoxyflavone, 1350
Eupatolitin tetraethyl ether. 3,5,3', 4^{\prime}-Tetraethoxy-6,7-dimethoxyflavone, 1350
Eupatoretin diethyl ether. 3, 3^{\prime}-Diethoxy-5,6,7,4'-tetramethoxyflavone, 1348
Ferreirin trimethyl ether. 5,7,2',4'-Tetramethoxyisoflavanone, 1517
Fisetin. 3, $3^{\prime}, 4^{\prime}, 7-$ Tetrahydroxyflavone, 1372
Fisetin tetraethyl ether. 3,7, $\mathbf{3}^{\prime}, 4^{\prime}$-Tetraethoxyflavone, 1348
Fisetin tetramethyl ether. 3,7,3', 4^{\prime}-Tetramethoxyflavone, 1324
Fisetol. 2,2', 4^{\prime}-Trihydroxyacetophenone, 1372, 1385, 1691
Fisetol dimethyl ether. 1-(2-Hydroxy-4-methoxyphenyl)-2-methoxyethanone, 1324-1325
Fisetol triacetate. 2-(Acetyloxy)-1-[2,4-bis(acetyloxy)phenyl]ethanone, 1385
Flavone. 2-Phenyl-4H-1-benzopyran-4-one, 1334
Fluororesveratrol. α-Fluoro-3',4,5'-trihydroxystilbene, 1458
Formononetin. 7-Hydroxy-4'-methoxyisoflavone, 1468
Formononetin methyl ether. 7,4'-Dimethoxyisoflavone, 1483
Gallacetophenone. $2^{\prime}, 3^{\prime}, 4^{\prime}$-Trihydroxyacetophenone, 1578, 1613, 1642
Gardenin. 5-Hydroxy-3,6,8, $3^{\prime}, 4^{\prime}, 5^{\prime}$-hexamethoxyflavone, 1336
Genistein. 5,7,4'-Trihydroxyisoflavone, 1460
Genistein 5,4'-dimethyl ether. 7-Hydroxy-5,4'-dimethoxyisoflavone, 1486
Genistein 5,7-di-methyl ether. 5,7-Dimethoxy-4'-hydroxyisoflavone, 1488
Gnaphaliin. 3,5-Dihydroxy-7,8-dimethoxyflavone, 1332
Gnaphaliin monomethyl ether. 5-Hydroxy-3,7,8-trimethoxyflavone, 1332
Gossypetin hexaethyl ether. 3,5,7,8, $3^{\prime}, 4^{\prime}$-Hexaethoxyflavone, 1351
Gossypetin hexamethyl ether. 3,5,7,8, $3^{\prime}, 4^{\prime}$-Hexamethoxyflavone, 1335
Gossypetol tetramethyl ether. 1-(2-Hydroxy-3,4,6-trimethoxyphenyl)-2-
methoxyethanone, 1335-1336
Gossypitol tetraethyl ether. 2-Ethoxy-1-(2-hydroxy-3,4,6-triethoxyphenyl) ethanone, 1351
Guaiacol. 2-Methoxyphenol, 1215, 1242, 1305, 1366, 1422, 1501, 1687
Herbacetin pentamethyl ether. 3,5,7,8,4'-Pentamethoxyflavone, 1335
Hibiscitrin. 3,5,7,8, $3^{\prime}, 4^{\prime}, 5^{\prime}$-Heptahydroxyflavone, 1336
Homoasaronic acid. 2,4,5-Trimethoxyphenylacetic acid, 1506
Homoveratrole. 3,4-Dimethoxytoluene, 1242
Homoveratroyl chloride. 3,4-Dimethoxyphenylacetyl chloride, 1482, 1518, 1703
Hydroquinone. 1,4-Benzenediol, 1260, 1409
Hydroxyhydroquinone. 1,2,4-Benzenetriol, 1236, 1410, 1462, 1472, 1474, 1490
Ipriflavone. 7-(1-Methylethoxy)-3-phenyl-[4H]-1-benzo-pyran-4-one, 1433
Iretol. 2-Methoxy-1,3,5-benzenetriol, 1328, 1391, 1464, 1576
Iridin. 7-glucopyranosyloxy-5, 3^{\prime}-dihydroxy-6,4',5'-trimethoxyisoflavone, 1526
Irigenin 5,7, 3^{\prime}-Trihydroxy-6, $4^{\prime}, 5^{\prime}$-trimethoxyisoflavone, 1526
Irigenin trimethyl ether. 5,6,7, $3^{\prime}, 4^{\prime}, 5^{\prime}$-Hexamethoxyisoflavone, 1526
Irisolone. 4'-Hydroxy-5-methoxy-6,7-methylenedioxyisoflavone, 1476

Irisolone methyl ether 4',5-Dimethoxy-6,7-methylenedioxyisoflavone, 1494
Isobutyrylmallotojaponin. 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-
methylphenyl)-methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone, 1644
Isogenistein. 5,7,2'-Trihydroxyisoflavone, 1459
Isomallotolerin. 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]- 2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-2-methyl-1propanone, 1644
Isoproterenone. 1-(3,4-Dihydroxyphenyl)-2-[(1-methylethyl)amino]ethanone, 1307-1308
Izalpinin dimethyl ether. 3,5,7-Trimethoxyflavone, 1330
Kaempferide trimethyl ether. 3,5,7,4'-Tetramethoxyflavone, 1330
Kaempferol. 3,5,7,4'-Tetrahydroxyflavone, 1374
Kaempferol tetramethyl ether. 3,5,7,4'-Tetramethoxyflavone, 1330
Kanugin. 3,7,3'-Trimethoxy-4',5'-methylenedioxyflavone, 1324
Kupferbronze. Copper bronze, 1539
Mallotojaponol. 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-5-(2,3-dihydroxy-3-methylbutyl)-2,4,6-trihydroxyphenyl]ethanone, 1643 Mallotolerin. 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-1-butanone, 1606, 1644
Mallotophenone. 1, 1^{\prime}-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)]bis-ethanone, 1604
Melibentin. 3,5,6,7,8-Pentamethoxy-3',4'-methylenedioxyflavone, 1340
Melicopol. 1-[6-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,4-dihydroxy-3-methoxyphenyl]-2-hydroxyethanone, 1381
Meliternatin. 3,5-Dimethoxy-6,7, $3^{\prime}, 4^{\prime}$-bis(methylenedioxy)flavone, 1328
Methenylbisacetylacetone. 1,1,3,3-Tetraacetylpropene, 1571
Methoxyquinol. 2-Methoxyhydroquinone, 1486
Methylenebisacetylacetone. 1,1,3,3-Tetraacetylpropane, 1571
Methyldegeranylmelicopol. 1-(2,6-Dihydroxy-3,4-dimethoxyphenyl)-2hydroxyethanone, 1378-1379
Methylgardenin. 3,5,6,8,3', $4^{\prime}, 5^{\prime}$-Heptamethoxyflavone, 1336
Methylgenistein. 8-Methyl-5,7,4'-trihydroxyisoflavone, 1472
Methylisogenistein. 8-Methyl-5,7,2'-trihydroxyisoflavone, 1472
Methyl isovanillinate. Methyl 3-hydroxy-4-methoxybenzoate, 1545
Methylmelicopol. 1-[3,4-Dimethoxy-6-[(3,7-dimethyl-2,6-octadienyl)oxy]-2-hydroxyphenyl]-2-hydroxyethanone, 1378-1379
Methyl 3-methoxysalicylate. Methyl 2-hydroxy-3-methoxybenzoate, 1545
Methyl mono-O-methyl-p-orsellinate. Methyl 2-hydroxy-6-methoxy-4methylbenzoate, 1547
4'-Methylmyricetin pentaethyl ether. 3,5,7,3',5'-Pentaethoxy-4'-methoxyflavone, 1349
8-O-Methylretusin. 7-Hydroxy-8,4'-dimethoxyisoflavone, 1485
4-Methylumbelliferone. 7-Hydroxy-4-methylcoumarin, 1323
Methyl vanillinate. Methyl-4-hydroxy-3-methoxybenzoate, 1546

Mikanin diethyl ether. 3,5-Diethoxy-6,7,4'-trimethoxyflavone, 1350
Mikanin dimethyl ether. 3,5,6,7,4'-Pentamethoxyflavone, 1337
Morin pentamethyl ether. 3,5,7,2', $\mathbf{4}^{\prime}$-Pentamethoxyflavone, 1330
Munigin dimethyl ether. 5,6,7,4'-Tetramethoxyisoflavone, 1520
Myricetin. 3,5,7,3', $4^{\prime}, 5^{\prime}$-Hexahydroxyflavone, 1334, 1349
Myricetin hexaethyl ether. 3,5,7,3', $4^{\prime}, 5^{\prime}$-Hexaethoxyflavone, 1349
Myricetin hexamethyl ether. 3,5,7,3', $\mathbf{4}^{\prime}, 5^{\prime}$-Hexamethoxyflavone, 1330
Natsudaidain. 3-Hydroxy-5,6,7,8, $3^{\prime}, 4^{\prime}$-hexamethoxyflavone, 1340
Natsudaidain ethyl ether. 3-Ethoxy-5,6,7,8, $3^{\prime}, 4^{\prime}$-hexamethoxyflavone, 1350
Natsudaidain methyl ether. 3,5,6,7,8,3', $\mathbf{4}^{\prime}$ 'Heptamethoxyflavone, 1340
Noradrenalone. 2-Amino-1-(3,4-dihydroxyphenyl)ethanone, 1296
Ononetin. 1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone, 1468
Ononin 7-(β-D-Glucopyranosyloxy)-4'-methoxyisoflavone, 1468, 1529
Onospin. 1-[4-(β-D-Glucopyranosyloxy)-2-hydroxyphenyl]-2-(4-methoxyphenyl)ethanone, 1468, 1484
β-Orcacetophenone. 2^{\prime},4'-Dihydroxy-6'-methylacetophenone, 1572
γ-Orcacetophenone. 2',6'-Dihydroxy-4'-methylacetophenone, 1572
Orcinol. 5-Methyl-1,3-benzenediol, 1241, 1324, 1419, 1466, 1481
Oxyayanin-A triethyl ether. 5,2',5'-Triethoxy-3,7,4'-trimethoxyflavone, 1334
Oxyayanin-B triethyl ether. 5,6,3'-Triethoxy-3,7,4'-trimethoxyflavone, 1341
Oxyayanin-A trimethyl ether. 3,5,7, $2^{\prime}, 4^{\prime}, 5^{\prime}$-Hexamethoxyflavone, 1330
Paeonol. 2'-Hydroxy-4'-methoxyacetophenone, 1573, 1577, 1622
Patuletin hexamethyl ether. 3,5,6,7, $3^{\prime}, 4^{\prime}$-Hexamethoxyflavone, 1337
Patuletin pentaethyl ether. 3,5,7, $3^{\prime}, 4^{\prime}$ 'Pentaethoxy-6-methoxyflavone, 1350
Penduletin dimethyl ether. 3,5,6,7,4'-Pentamethoxyflavone, 1337
O-Pentamethyldihydromelanoxetin. 3,7,8, $3^{\prime}, 4^{\prime}$ -
Pentamethoxyflavanone, 1329
Phenylephrone. 1-(3-Hydroxyphenyl)-2-(methylamino)ethanone, 1298
Phloroglucinol. 1,3,5-Benzenetriol, 1236, 1272, 1326, 1345, 1347, 1354, 13561358, 1362-1363, 1365, 1374, 1390-1391, 1411, 1452-1455, 1460, 1462, 1469, 1473-1474, 1486-1490, 1507, 1526, 1531, 1551, 1568, 1578
Phyllostone. 1-(4-Hydroxy-3-methoxyphenyl)-2-(1-methyl-2-pyrrolidinyl) ethanone (-), 1316
Piloselloidon. 1-[5-Acetyl-2-hydroxy-3-(3-methyl-2-butenyl)phenyl]-3-methyl-2-buten-1-one, 1634
Pivalic acid. 2,2-Dimethylpropanoic acid, 1387-1388
Populnetin tetramethyl ether. 3,5,7,4'-Tetramethoxyflavone, 1330
Propofol. 2,6-Diisopropylphenol, 1223
Pseudo-baptigenetin. 2-(1,3-Benzodioxol-5-yl)-1-(2,4-dihydroxyphenyl)ethanone, 1461, 1475, 1492
Pseudo-baptigenetin monoethyl ether. 2-(1,3-Benzodioxol-5-yl)-1-(4-ethoxy-2hydroxyphenyl)ethanone, 1492
Pseudo-baptigenin. 7-Hydroxy-3',4'-methylenedioxyisoflavone, 1461
Purpurascenin. 3,5,6,7,8, $2^{\prime}, 4^{\prime}, 5^{\prime}$-Octamethoxyflavone, 1340
Pyrocatechol. 1,2-Benzenediol, 1209, 1235, 1361, 1409, 1458, 1669

Pyrogallol. 1,2,3-Benzenetriol, 1210, 1236, 1269, 1410, 1455, 1459, 1462, 1489-1490, 1492
Quercetagetin. 3,5,6,7,3', $\mathbf{4}^{\prime}$-Hexahydroxyflavone, 1337
Quercetagetin hexamethyl ether. 3,5,6,7, $3^{\prime}, 4^{\prime}$-Hexamethoxyflavone, 1337
Quercetagetol tetramethyl ether. 1-(6-Hydroxy-2,3,4-trimethoxyphenyl)-2-methoxy-ethanone, 1336-1337
Quercetin. 3, $3^{\prime}, 4^{\prime}, 5,7-$ Pentahydroxyflavone, 1374
Quercetin pentaethyl ether. 3,5,7, $3^{\prime}, 4^{\prime}$-Pentaethoxyflavone, 1349
Quercetin pentamethyl ether. 3,5,7, $3^{\prime}, 4^{\prime}$-Pentamethoxyflavone, 1330
Quercetin 3,7, $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-tetramethyl ether. 5-Hydroxy-3, 7, $3^{\prime}, 4^{\prime}$ -
tetramethoxyflavone, 1327
Quinacetophenone. 2',5'-Dihydroxyacetophenone, 1616, 1618
Resacetophenone. $2^{\prime}, 4^{\prime}$-Dihydroxyacetophenone, 1202, 1208, 1225, 1564, 1567, 1577, 1592, 1596, 1600, 1616-1617, 1622, 1727, 1730-1731
Resodiacetophenone. 4,6-Diacetylresorcinol, 1559, 1574
Resorcinol. 1,3-Benzenediol, 1208, 1234, 1260, 1268, 1300, 1322, 1347, 1353, 1355-1361, 1363, 1365-1366, 1372, 1384, 1386, 1389, 1407, 1450-1451, 14531454, 1458, 1462, 1464, 1468, 1470-1471, 1486-1487, 1506, 1531, 1541, 1564, 1566, 1700-1701, 1706
Retusin. 7,8-Dihydroxy-4'-methoxyisoflavone, 1502
Sesamol. 5-Hydroxy-1,3-benzodioxol, 1474
Stryphnon. 1-(3,4-Dihydroxyphenyl)-2-(methylamino)ethanone
(Hydrochloride), 1301
Tangeretin. 3,5,6,7,4'-Pentamethoxyflavone, 1337
Tephrosia maxima Pers. $7-\gamma, \gamma$-Dimethylallyloxy)- $3^{\prime}, 4^{\prime}$ -
methylenedioxyisoflavone, 1525
Tetralin. 1,2,3,4-Tetrahydronaphthalene, 1589
Thapsin diethyl ether. 5,4'-Diethoxy-3,6,7,8-tetramethoxyflavone, 1342
Thapsin dimethyl ether, 3,5,6,7,8,4'-Hexamethoxyflavone, 1340
Thymol. 5-Methyl-2-isopropylphenol, 1252, 1258, 1263
p-Thymol methyl ether. 3-Methyl-4-isopropylanisole, 1252
Tlatlancuayin. 5,2'-Dimethoxy-6,7-methylenedioxyisoflavone, 1494
o-Tolyl. 2-Methylphenyl, 1415, 1539
m-Tolyl. 3-Methylphenyl, 1416, 1539-1540
p-Tolyl. 4-Methylphenyl, 1239, 1416, 1540
O-Triethyl-santal 7-Methoxy-5,3',4'-triethoxyisoflavone, 1530
Triflic acid. Trifluoromethanesulfonic acid, 1234, 1575
O-Trimethylsantal. 5,7,3', 4^{\prime}-Tetramethoxyisoflavone, 1519
Umbelliferone. 7-Hydroxycoumarin, 1323
d-Usnic acid. 2,6-Diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-
dibenzofurandione, 1576
Valproic acid. 2-Propylpentanoic acid, 1387
Veratrole. 1,2-Dimethoxybenzene, 1235, 1244, 1703, 1714, 1718
Vogeletin tetramethyl ether. 3,5,6,7,4'-Pentamethoxyflavone, 1337
Xanthoxylin. Phloracetophenone 4,6-dimethyl ether, 1595

Volume 4

3-Acetyl-5-hydroxy-6-propionylcoumarin. 3-A5,7-D-5,5'-dipropionyltriphenyl -2H-1-benzopyran-2-one, 2142
Achyroclinopyrone. 3-[[3-(3,7-Dimethyl-2,6-octadienyl)-2,4,6-trihydroxy-5-(2-methyl-1-oxopropyl)phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one (E), 2061

Agrimol A. 1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl]-methyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-butanone, 2166-2167
Agrimol D. 1-[3-[(3-Acetyl-2,6-dihydroxy-4-methoxy-5-methylphenyl)methyl]-5-[[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2,4,6-trihydroxyphenyl]-2-methyl-1-butanone, 2166
Agrimol G. 1,1'-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-phenylene]bis [methylene-(2,4-dihydroxy-6-methoxy-5-methyl-3,1-phenylene)]]bis[2-methyl-1propanone, 2156
Apodophyllone. 2-Methyl-1-(2,4,6-trimethoxy-3,5-dimethylphenyl)-1propanone, 2049
Aspidinol-iB. 1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-2-methyl-1propanone, 2037
Aspidinol-P. 1-(2,6-Dihydroxy-4-methoxy-3-methylphenyl)-1-propanone, 1850 Auricepyron. 3-[[2,4-Dihydroxy-6-methoxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)-phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2060
Baeckeol. 1-(2-Hydroxy-4,6-dimethoxy-3-methylphenyl)-2-methyl-1-propanone, 2041-2042
Baeckeol methyl ether. 2-Methyl-1-(2,4,6-trimethoxy-3-methylphenyl)-1propanone, 2046
Baihuaqianhuoside. 1-(4-Hydroxy-3-methoxyphenyl)-1-propanone β-Dglucopyranoside, 1817
Bis(3-propionyl-2,4,6-trihydroxyphenyl)methane. 1,1'-[Methylenebis
(2,4,6-trihydroxy-3,1-phenylene)]bis-1-propanone, 2120
6-Bromo-3-chloro-7-hydroxy-4-methyl-8-propionylcoumarin. 6-Bromo-3-chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1996
5-Bromo-6-hydroxy-3-methyl-7-propionylcoumarilic acid. 5-Bromo-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid, 1997
6-Bromo-7-hydroxy-4-methyl-8-propionylcoumarin. 6-Bromo-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1997
Bromouliginosin B. 2-[[3-Bromo-5,7-dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2152
Camfieldone. 2-Methyl-1-(2,4,6-trimethoxy-3,5-dimethylphenyl)-1propanone, 2049
3-Chloro-6-ethyl-7-hydroxy-4-methyl-8-propionylcoumarin. 3-Chloro-6-ethyl-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 2004

4"-Chloro-2,2',3,3',4,4'-hexahydroxy-5,5'-dipropionyltriphenylmethane.
1,1'-[[(4-Chlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)] bis-1-propanone, 2126
5-Chloro-6-hydroxy-3-methyl-7-propionylcoumarilic acid. 5-Chloro-6-hydroxy-3-methyl-7-(1-oxopropyl)benzofuran-2-carboxylic acid, 1998 6-Chloro-7-hydroxy-4-methyl-8-propionylcoumarin. 6-Chloro-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1753, 1998
Conglomerone. 2-Methyl-1-(2,4,6-trimethoxyphenyl)-1-propanone, 2043
Crocatone. 1-(7-Methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1992
Dehydrodipropioguaiacone. $1,1^{\prime}-\left(6,6^{\prime}\right.$-Dihydroxy-5,5'-dimethoxy[1, 1^{\prime}-biphenyl]-3,3'-diyl)bis-1-propanone, 2121
Demethyllatifolon. 1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1989
Deoxycohumulone. 2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl) phenyl]-1-propanone, 2056
4-Deoxycohumulone. 2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl) phenyl]-1-propanone, 2056
Desaspidinol P. 1-(2,6-Dihydroxy-4-methoxyphenyl)-1-propanone, 1819 6-O-Desmethylauricepyron. 6-Ethyl-4-hydroxy-5-methyl-3-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl]methyl]-2H-pyran-2-one, 2059 Desoxycohumulone. 2-Methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methyl-2-butenyl) phenyl]-1-propanone, 2056
$3^{\prime \prime}, 4^{\prime \prime}$-Dichloro-2,2'3,3' $\mathbf{3}^{\prime}, 4^{\prime}$-hexahydroxy-5,5'${ }^{\prime}$-dipropionyltriphenylmethane.
1,1'-[[(3,4-Dichlorophenyl)methylene]bis(4,5,6-trihydroxy-3,1-phenylene)]bis-1propanone, 2125
3,6-Dichloro-7-hydroxy-4-methyl-8-propionylcoumarin. 3,6-Dichloro-7-
hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1996
1-(5,7-Dihydroxy-6-isopentyl-2,2-dimethyl-8-chromanyl)-2-methyl-1-
propanone. 1-[3,4-Dihydro-5,7-dihydroxy-6-(3-methylbutyl)-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2078
1-(5,7-Dihydroxy-8-isopentyl-2,2-dimethyl-6-chromanyl)-2-methyl-1-
propanone. 1-[3,4-Dihydro-5,7-dihydroxy-8-(3-methylbutyl)-2,2-dimethyl-2H-1-benzopyran-6-yl]-2-methyl-1-propanone, 2078
Dihydrouliginosin B-iBiB. 2-[[3,4-Dihydro-5,7-Dihydroxy-2,2-dimethyl-8-
(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4, 4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2153
2,4-Dihydroxy-3-formylpropiophenone. 2,6-Dihydroxy-3-(1-oxopropyl) benzaldehyde, 2131
4,6-Dihydroxy-9,9-dimethyltremeton. 1-[2,3-Dihydro-4,6-dihydroxy-2-(1-methylethenyl)-5-benzofuranyl]-2-methyl-1-propanone, 2068
$4^{\prime}, 2^{\prime \prime}$-Dihydroxy-5,5"-dipropionyl-2-propionoxy-3,5 $\mathbf{5}^{\prime}, \mathbf{3}^{\prime \prime}$-trimethoxyterphenyl. Propionic acid $4^{\prime}, 2^{\prime \prime}$-dihydroxy- $3,5^{\prime}, 3^{\prime \prime}$-trimethoxy-5, $5^{\prime \prime}$-dipropionyl- $\left[1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}\right]$ terphenyl-2-yl ester, 2129
1-(5,7-Dihydroxy-8-isopentyl-2,2-dimethyl-6-chromanyl)-2-methyl-1-
propanone. 1-[5,7-Dihydroxy-8-(3-methylbutyl)-2,2-dimethyl-2H-1-benzopyran-6-yl]-2-methyl-1-propanone, 2078

4,6-Dihydroxy-5-propionylisophthalic acid. 4,6-Dihydroxy-5-(1-oxopropyl)-1,3-benzene-dicarboxylic acid, 1821
4,6-Dihydroxy-5-propionylisophthalic acid dimethyl ester. 4,6-Dihydroxy-5-(1-oxopropyl)-1,3-benzenedicarboxylic acid dimethyl ester, 1884
2,4-Dihydroxy-5-propionyl- β-methylcinnamic acid. 3-[2,4-Dihydroxy-5-(1-oxopropyl)-phenyl]-3-methyl-2-propenoic acid (E), 1882
2,4-Dimethoxy-5-arsonopropiophenone. [2,4-Dimethoxy-5-(1-oxopropyl) phenyl]-arsonic acid, 1856
3,3'-Dimethoxy-2'-hydroxy-5,5'-dipropionylbiphenyl-2-yl 2"'hydroxy-3"-methoxy-5"-propionylphenyl ether. 1-[2'-Hydroxy-6-(2-hydroxy-3-methoxy-5-propionylphenoxy)-5,3'-dimethoxy-5'-propionyl[1,1'-biphenyl]-3-yl]-1propanone, 2128
3,3'-Dimethoxy-4-hydroxy-2'-propionoxy-5'-propionylbiphenyl.
1-(4'-Hydroxy-3',5-dimethoxy-6-propionoxy[1,1'-biphenyl]-3-yl)-1propanone, 1952
2,4-Dimethoxy-3-propionylcinnamic acid. 3-[2,4-Dimethoxy-3-(1-oxopropyl) phenyl]-2-propenoic acid, 1905
2,2-Dimethyl-8-propionylchroman-5,7-diol. 1-(3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl)-1-propanone, 2004
4,4'-Dipropionyl-6,6'-biguaiacol. $1,1^{\prime}$-(6,6'-Dihydroxy-5,5'-dimethoxy $\left[1,1^{\prime}\right.$ -biphenyl]-3,3'-diyl)bis-1-propanone, 2121
Dipropionylorcinol. 1, 1'-(2,4-Dihydroxy-6-methyl-1,3-phenylene)bis-1propanone, 2112
Dipropionylphloroglucinol. 1, 1^{\prime}-(2,4,6-Trihydroxy-1,3-phenylene)bis-1propanone, 2110
4,6-Dipropionylpyrogallol. 1,1'-(4,5,6-Trihydroxy-1,3-phenylene)bis-1propanone, 2111
Ethyl guaiacyl ketone. 1-(4-Hydroxy-3-methoxyphenyl)-1-propanone, 1814
6-Ethyl-7-hydroxy-4-methyl-8-propionylcoumarin. 6-Ethyl-7-hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 2005
FD-549. 1-[2-[2,6-Dihydroxy-3-(3-methyl-2-butenyl)benzoyl]-3-hydroxy-5-methylphenyl]-2-methyl-1-propanone, 2160
Flopropione. 1-(2,4,6-Trihydroxyphenyl)-1-propanone, 1774-1775
4'-Fluoro-5,7-dihydroxy-6-propionylflavone. 2-(4-Fluorophenyl)-5,7-dihydroxy-6-(1-oxopropyl)-4H-1-benzopyran-4-one, 2143
Gallodipropiophenone. 1,1'-(4,5,6-Trihydroxy-1,3-phenylene)
bis-1-propanone, 2111
Guaiacylpropanone. 1-(4-Hydroxy-3-methoxyphenyl)-1-propanone, 1814
Helicerestripyrone-6-O-methyl ether. 1-[5,8-Dihydroxy-7-methoxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-6-yl]-2-methyl-1-propanone, 2080
Helinudifolin. 2-Methyl-1-[2,4,6-trihydroxy-3-[1-(4-hydroxy-6-methoxy-1,3-benzodioxol-5-yl)-2-methylpropyl]-5-(3-methyl-2-butenyl)phenyl]-1-propanone (S), 2061

2-Hexadecyl-5-propionylhydroquinone. 1-(4-Hexadecyl-2,5-dihydroxyphenyl)-1-propanone, 1960

2, $\mathbf{2}^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-Hexahydroxy-5,5'-dipropionyldiphenylmethane.
1,1'-[Methylenebis-(4,5,6-trihydroxy-3,1-phenylene)]bis-1-propanone, 2120
$\mathbf{4}^{\prime}$-Hydroxy- $\mathbf{3}^{\prime \prime \prime}, \mathbf{5}^{\prime}$-dimethoxy- $\mathbf{3}^{\prime}, 4^{\prime \prime \prime}$-oxydipropiophenone. 1-[4-Hydroxy-3-methoxy-5-[2-methoxy-4-(1-oxopropyl)phenoxy]phenyl]-1-propanone, 2122
7-Hydroxy-2,3-dimethyl-8-(1-oxopropyl)chromone. 7-Hydroxy-2,3-dimethyl-8-(1-oxopropyl)-4H-1-benzopyran-4-one, 2142
7-Hydroxy-4,8-dimethyl-6-propionylcoumarin. 7-Hydroxy-4,8-dimethyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 2001
4'-Hydroxy-3'-(4-hydroxy-3-methoxyphenyl)-5'-methoxypropiophenone. 1-(4',6-Dihydroxy-3',5-dimethoxy[1,1'-biphenyl]-3-yl)-1-propanone, 1942
4'-Hydroxy-3'-(4-hydroxy-3-methoxyphenyl)-5'-methoxypropiophenone
4'-propionate. 1-(4'-Hydroxy-3',5-dimethoxy-6-propionoxy[1,1'-biphenyl]-3-yl)-1-propanone, 1952
4^{\prime}-Hydroxy-4"'-(2-hydroxy-3-methoxy-5-propionylphenoxy)-5',5"'-dimethoxy$\mathbf{3}^{\prime}, \mathbf{3}^{\prime \prime \prime}$-bipropiophenone. 1-[2'-Hydroxy-6-(2-hydroxy-3-methoxy-5-propionylphenoxy)-5,3'-dimethoxy-5'-propionyl[1,1'-biphenyl]-3-yl]-1propanone, 2128
2-Hydroxy-5-isobutyrylbenzoic acid. 2-Hydroxy-5-(2-methyl-1-oxopropyl) benzoic acid, 2022
2-Hydroxy-3-methoxy-5-propionyl 2^{\prime}-methoxy-4'-propionylphenyl ether.
1-[4-Hydroxy-3-methoxy-5-[2-methoxy-4-(1-oxopropyl)phenoxy]phenyl]-1propanone, 2122
6-Hydroxy-3-methyl-7-propionylbenzofuran. 1-(6-Hydroxy-3-methyl-7-benzofuranyl)-1-propanone, 1995
6-Hydroxy-3-methyl-7-propionylcoumarilic acid. 6-Hydroxy-3-methyl-7-(1-oxopropyl)-benzofuran-2-carboxylic acid, 1999
5-Hydroxy-4-methyl-6-propionylcoumarin. 5-Hydroxy-4-methyl-6-
(1-oxopropyl)-2H-1-benzopyran-2-one, 1998
7-Hydroxy-4-methyl-6-propionylcoumarin. 7-Hydroxy-4-methyl-6-
(1-oxopropyl)-2H-1-benzopyran-2-one, 1999
7-Hydroxy-4-methyl-8-propionylcoumarin. 7-Hydroxy-4-methyl-8-
(1-oxopropyl)-2H-1-benzopyran-2-one, 1999
2-Hydroxy-4,5-methylenedioxypropiophenone. 1-(6-Hydroxy-1,3-
benzodioxol-5-yl)-1-propanone, 1988-1989
3-Hydroxy-4,5-methylenedioxypropiophenone. 1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1989
4-Hydroxy-5,6-methylenedioxy-2-(1-oxopropyl)benzene. 1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1989
7-Hydroxy-8-methyl-4-phenyl-6-propionylcoumarin. 7-Hydroxy-8-methyl-6-(1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2008
5-Hydroxy-2-oxo-6-propionyl-2H-chromene-3-carboxylic acid ethyl ester.
5-Hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one-3-carboxylic acid ethyl ester, 2004
1-[2-Hydroxy[phenyl-U- ${ }^{14}$ C]]-1-propanone. 1-(2-Hydroxyphenyl)-1-propanone labelled with carbon-14, 1763

1-[4-Hydroxy[phenyl-U-14 C]]-1-propanone. 1-(4-Hydroxyphenyl)-1-propanone labelled with carbon-14, 1766-1767
2-Hydroxy-5-phenylpropiophenone. 1-(4-Hydroxy[1,1'-biphenyl]-3-yl)-1propanone, 1920
7-Hydroxy-8-propionylcoumarin. 7-Hydroxy-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1993
5-Hydroxy-6-propionylcoumarin-3-carboxylic acid. 5-Hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1997
5-Hydroxy-6-propionylcoumarin-3-carboxylic acid ethyl ester.
5-Hydroxy-6-(1-oxopropyl)-2H-1-benzopyran-2-one-3-
carboxylic acid ethyl ester, 2004
3-(4-Hydroxy-3-propionylphenoxy)-1,2-propanediol. 1-[2-Hydroxy-5-(2,3-dihydroxy-propoxy)phenyl]-1-propanone, 1880-1881
2-Hydroxy-5-propionylphenyl hydrogen phenylphosphonate.
1-(3,4-Dihydroxyphenyl)-1-propanone 3-phenylphosphonate, 1922
1-(8-Hydroxy-[5]quinolyl)-2-methylpropan-1-one. 8-Hydroxy-5-
(2-methyl-1-oxopropyl)-quinoline, 2067
1-(8-Hydroxy-[5]quinolyl)propane-1-one. 8-Hydroxy-5-(1-oxopropyl) quinoline, 1994
Hypercalyxone. 1-[(2R,3S)-3,4-Dihydro-5,7-dihydroxy-2-methyl-3-(3-methyl-2-butenyl)-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-8-yl]-2-methyl-1-propanone (+), 2082
Hyperevoline. 1, $1^{\prime}-(1,7 a, 13 a, 13 b-T e t r a h y d r o-5,8,10-t r i h y d r o x y-2,2,6,9,13$, 13-hexamethyl-2H, 13H-bis-1-benzopyrano[5,4-bc:3',4'-e]pyran-4,11-diyl) bis[2-methyl-1-propanone (7a⿱, 13a, $13 b \beta$), 2155-2156
Hyperjovinol A. 2-Methyl-1-[2,4,6-trihydroxy-3-(3-hydroxy-3,7-dimethyl-6-octenyl)phenyl]-1-propanone, 2057
Hyperjovinol B. 1-[(4aR,9aR)-2,3,4,4a,9,9a-Hexahydro-6,8-dihydroxy-1,1, 4a-trimethyl-1H-xanthen-7-yl]-2-methyl-1-propanone, 2075
Isoacoramone. 1-(2,4,5-Trimethoxyphenyl)-1-propanone, 1878-1879
Isobaeckeol. 1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-methyl-1propanone, 2042-2043
o-Isobaeckeol. 1-(6-Hydroxy-2,4-dimethoxy-3-methylphenyl)-2-methyl-1propanone, 2042-2043
Isobutyrylmallotochromanol. 1-[6-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)-methyl]-3,4-dihydro-3,5,7-trihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2163
Isobutyrylmallotochromene. 1-[6-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5methylphenyl) methyl]-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-2-methyl-1-propanone, 2162
Isobutyrylmallotojaponin. 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5methylphenyl) methyl]-2,4,6-trihydroxy-5-(3-methyl-2-butenyl)phenyl]-2-methyl-1-propanone, 2162
Isobutyrylmallotolerin. 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxy-5-(2-hydroxy-3-methyl-3-butenyl) phenyl]-2-methyl-1-propanone, 2163

6-isobutyrylnerolin. 1-(6-Methoxy-2-naphthalenyl)-2-methyl-1-propanone, 2065
Isodihydrouliginosin B-iBiB. 2-[[3,4-Dihydro-5,7-dihydroxy-2,2-dimethyl-6-(2-
methyl-1-oxopropyl)-2H-1-benzopyran-8-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2153
Isomallotolerin. 1-[3-[(3-Acetyl-2,4-dihydroxy-6-methoxy-5-methylphenyl) methyl]-2,4,6-tri-hydroxy-5-(2-hydroxy-3-methyl-3-butenyl)phenyl]-2-methyl-1propanone, 2163
Isomesuol. 5,7-Dihydroxy-6-(3-methyl-2-butenyl)-8-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2081
Isoporiolide. 5'-[7-(β-D-Glucopyranosyloxy)-3,4-dihydro-5-hydroxy-6-methyl-4-oxo-2H-1-benzopyran-2-yl]-2,2'-dihydroxy-intramol. 3,6"'-ester [1, 1^{\prime}-biphenyl]-3-carboxylic acid, 1851
Isoporiolide hexamethyl ether. 3-[5-[3,4-Dihydro-5-methoxy-3,6-dimethyl-4-oxo-7-[(2,3,4-tri-O-methyl- β-D-glucopyranosyl)oxy]-2H-1-benzopyran-2-yl]-2-methoxyphenyl]-2-methoxy-1,6'-lactone benzoic acid, 1851
Kakuol. 1-(6-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1988-1989
α-Kosin. 1,1'-[Methylenebis(2,6-dihydroxy-4-methoxy-5-methyl-3,1-phenylene)] bis-[2-methyl-1-propanone, 2151
β-Kosin. 1-[3-[[2-Hydroxy-4,6-dimethoxy-3-methyl-5-(2-methyl-1-oxopropyl) phenyl] methyl]-2,4,6-trihydroxy-5-methylphenyl]-2-methyl-1-propanone, 2150
Kosotoxin. 4-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)-phenyl]methyl]-3,5-dihydroxy-2,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2148-2149
Latifolone. 1-(7-Methoxy-1,3-benzodioxol-5-yl)-1-propanone, 1992
Lupulone F. 1-[2,3-Dihydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-7benzofuranyl] 2-methyl-1-propanone, 2069
Margaspidin BP. 1-[3-[[2,4-Dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl) phenyl]methyl]-2,4,6-trihydroxy-5-methylphenyl]-1-butanone, 2144
Margaspidin PB. 1-[2,6-Dihydroxy-4-methoxy-3-methyl-5-[[2,4,6-trihydroxy-3-methyl-5-(1-oxopropyl)phenyl]methyl]phenyl]-1-butanone, 2144
Margaspidin PP. 1-[3-[[2,4-Dihydroxy-6-methoxy-5-methyl-3-(1-oxopropyl) phenyl]methyl]-2,4,6-trihydroxy-5-methylphenyl]-1-propanone, 2124
Mesuol. 5,7-Dihydroxy-8-(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-4-phenyl-2H-1-benzopyran-2-one, 2081
Methoxylatifolone. 1-(4,7-Dimethoxy-1,3-benzodioxol-5-yl)-1-propanone, 1995-1996
6-Methoxy-3-methyl-7-propionylcoumarilic acid. 6-Methoxy-3-methyl-7-(1-oxopropyl)-benzofuran-2-carboxylic acid, 2002
Methyl 2-hydroxy-5-isobutyrylbenzoate. 2-Hydroxy-5-(2-methyl-1-oxopropyl) benzoic acid methyl ester, 2029
Methyl 5-propionylsalicylate. 2-Hydroxy-5-(1-oxopropyl)benzoic acid methyl ester, 1825
1-(3,4-Methylenedioxy-5-hydroxyphenyl)-propan-1-one. 1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1989
3,4-Methylenedioxy-5-hydroxypropiophenone. 1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1989

23-Methylitalidipyron. 3, 3^{\prime}-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-phenylene]-bis(methylene)]bis[6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2061
MIV 150. N-(5-Cyano-2-pyridinyl)- N^{\prime}-[(1S,2S)-2-[6-fluoro-2-hydroxy-3-(1oxopropyl) phenyl]-cyclopropyl]-urea, 1950
MSC 197. N-(5-Chloro-2-pyridinyl)- N^{\prime}-[(1R,2R)-2-[6-fluoro-2-hydroxy-3-(1oxopropyl) phenyl]-cyclopropyl]-urea, 1946
MSC 198. N-(5-Chloro-2-pyridinyl)- N^{\prime}-[(1S,2S)-2-[6-fluoro-2-hydroxy-3-(1oxopropyl) phenyl]-cyclopropyl]-urea, 1947
Myrtucommulone B. 4,9-Dihydro-8-hydroxy-6-methoxy-2,2,4,4-tetramethyl-5-(2-methyl-1-oxopropyl)-9-(2-methylethyl)-1H-xanthene-1,3(2H)-dione, 2161
Nor-auricepyrone. 3-[[2,4-Dihydroxy-6-methoxy-3-(2-methyl-1-oxopropyl) phenyl]methyl]-6-ethyl-4-hydroxy-5-methyl-2H-pyran-2-one, 2055
ONO-3144. 1-[3-(Aminomethyl)-5-(1,1-dimethylethyl)-2-hydroxyphenyl]-1propanone (Hydrochloride), 1917
p-Orcipropiophenone. 1-(2,6-Dihydroxy-4-methylphenyl)-1-propanone, 1810
Orcpropiophenone. 1-(2,4-Dihydroxy-6-methylphenyl)-1-propanone, 1810
β-Orcpropiophenone. 1-(2,4-Dihydroxy-6-methylphenyl)-1-propanone, 1810
$\boldsymbol{\gamma}$-Orcpropiophenone. 1-(2,6-Dihydroxy-4-methylphenyl)-1-propanone, 1810
Otogirin. 1-[4-[(3,7-Dimethyl-2,6-octadienyl)oxy]-2,6-dihydroxy-3-methylphenyl]-2-methyl-1-propanone, 2058
Paroxypropione. 1-(4-Hydroxyphenyl)-1-propanone, 1764-1765
Phlorodipropiophenone. 1,1'-(2,4,6-Trihydroxy-1,3-phenylene) bis-1-propanone, 2110
Phloropropiophenone. 1-(2,4,6-Trihydroxyphenyl)-1-propanone, 1774 Poriolide. 5'-[7-(β-D-Glucopyranosyloxy)-3,4-dihydro-5-hydroxy-6-methyl-4-oxo-2H-1-benzopyran-2-yl]-2',4-dihydroxy-intramol. 3,6"'-ester [1,1'-biphenyl]-3carboxylic acid, 1851
Poriolide hexamethyl ether. 5'-[3,4-Dihydro-5-methoxy-3,6-dimethyl-4-oxo-7-[(2,3,4-tri-O-methyl- β-D-glucopyranosyl)oxy]-2H-1-benzopyran-2-yl]-2',4-dimethoxy-, intramol. 3, $6^{\prime \prime \prime}$-ester [1,1'-biphenyl]-3-carboxylic acid, 1851
2-Pronapox. 1-(1-Hydroxy-2-naphthalenyl)-1-propanone Oxime, 1965
Propioguaiacone. 1-(4-Hydroxy-3-methoxyphenyl)-1-propanone, 1814
6-Propionyl-2,5-dihydroxydiphenyl. 1-(3,6-Dihydroxy[1,1'-biphenyl]-2-yl)-1propanone, 1921
3-Propionylhexestrol. 1-[5-[(1RS,2SR)-1-Ethyl-2-(4-hydroxyphenyl)butyl]-2-hydroxyphenyl]-1-propanone, 1955
6-Propionyl-4-methylumbelliferone. 7-Hydroxy-4-methyl-6-(1-oxopropyl)-2H-1-benzopyran-2-one, 1999
8-Propionyl-4-methylumbelliferone. 7-Hydroxy-4-methyl-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1999
2-Propionyl-6-nitrosophenol. 1-(2-Hydroxy-3-nitrosophenyl)-1-propanone, 1756
3-Propionyl-6-nitrosophenol. 1-(3-Hydroxy-4-nitrosophenyl)-1-propanone, 1756
4-Propionyl-2-nitrosophenol. 1-(4-Hydroxy-3-nitrosophenyl)-1-propanone, 1756
4-Propionylpyrocatechol. 1-(3,4-Dihydroxyphenyl)-1-propanone, 1770-1771
5-Propionylsalicylamide. 2-Hydroxy-5-(1-oxopropyl)benzamide, 1795

3-Propionylsalicylic acid. 2-Hydroxy-3-(1-oxopropyl)benzoic acid, 1784
5-Propionylsalicylic acid. 2-Hydroxy-5-(1-oxopropyl)benzoic acid, 1784
8-Propionylumbelliferone. 7-Hydroxy-8-(1-oxopropyl)-2H-1-benzopyran-2-one, 1993
Propiosyringone. 1-(4-Hydroxy-3,5-dimethoxyphenyl)-1-propanone, 1853-1854
Propiovanillone. 1-(4-Hydroxy-3-methoxyphenyl)-1-propanone, 1787, 1814
Propioveratrone. 1-(3,4-Dimethoxyphenyl)-1-propanone, 1843
Protokosin. 1-[3,5-Bis[[2,6-dihydroxy-4-methoxy-3-(2-methyl-1-oxopropyl)-5-methylphenyl]methyl]-2,4,6-trihydroxyphenyl]-1-propanone, 2145, 2167
Pseudoaspidinol-iB. 1-(4,6-Dihydroxy-2-methoxy-3-methylphenyl)-2-methyl-1propanone, 2037-2038
Radiatinol. 1-(7-Hydroxy-1,3-benzodioxol-5-yl)-1-propanone, 1989
Respropiophenone. 1-(2,4-Dihydroxyphenyl)-1-propanone, 1759, 1767-1768
Robustaol A. 3-[[2,6-Dihydroxy-4-methoxy-3-methyl-5-(2-methyl-1-oxopropyl)
phenyl] methyl]-2,4,6-trihydroxy-5-(3-methyl-1-oxobutyl)benzaldehyde, 2161
Robustaol B. 1-(2,4-Dihydroxy-6-methoxyphenyl)-2-methyl-1-propanone, 2027
Semimyrtucommulone. 4-[1-[2,4,6-Trihydroxy-5-methyl-3-(2-methyl-1-
oxopropyl)phenyl]-2-methylpropyl]-5-hydroxy-2,2,6,6-tetramethyl-4-cyclohexene-1,3-dione, 2161
3,4,9,10-Tetrahydro-2,2,8,8-tetramethyl-6-propionyl-2H,8H-benzo[1,2-b;
3,4- b^{\prime} dipyran-5-ol. 1-(3,4,9,10-Tetrahydro-5-hydroxy-2,2,8,8-tetramethyl-2H,8H-benzo-[1,2-b:3,4-b]dipyran-6-yl)-1-propanone, 2008
Tricromyl. 3-Methyl-4H-1-benzopyran-4-one, 1762
2,4,6-Trihydroxypropiophenone-4-0-3,3'-dimethylallyl ether.
1-[2,6-Dihydroxy-4-[(3-methyl-2-butenyl)oxy]phenyl]-1-propanone, 1907
2,2",4'-Triol-3,3",5'-trimethoxy-5,5"-dipropionyl[m-terphenyl] 2-propionate.
Propionic acid $4^{\prime}, 2^{\prime \prime}$-dihydroxy- $3,5^{\prime}, 3^{\prime \prime}$-trimethoxy-5,5'"-dipropionyl-[1, $\left.1^{\prime}: 3^{\prime}, 1^{\prime \prime}\right]$ terphenyl-2-yl ester, 377
Tripseudo-aspidinol iB, iB, iB. 1, 1^{\prime}-[[2,4,6-Trihydroxy-5-(2-methyl-1-oxopropyl)-1,3-phenylene]bis [methylene(2,4-dihydroxy-6-methoxy-5-methyl-3,1-phenylene)]]bis[2-methyl-1-propanone, 2156
Uliginosin A-iBiB. 3,5-Dihydroxy-4,4-dimethyl-2-(2-methyl-1-oxopropyl)-6-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl] methyl]-2,5-cyclohexadien-1-one, 2152
Uliginosin A-iViB. 3,5-Dihydroxy-4,4-dimethyl-2-(3-methyl-1-oxobutyl)-6-[[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-5-(2-methyl-1-oxopropyl)phenyl] methyl]-2,5-cyclohexadien-1-one, 2165
Uliginosin B-iBiB. 2-[[5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(2-methyl-1-oxopropyl)-2,5-cyclohexadien-1-one, 2152
Uliginosin B-iViB. 2-[[5,7-Dihydroxy-2,2-dimethyl-8-(2-methyl-1-oxopropyl)-2H-1-benzopyran-6-yl]methyl]-3,5-dihydroxy-4,4-dimethyl-6-(3-methyl-1-oxobutyl)-2,5-cyclohexadien-1-one, 2165
U-0521. 1-(3,4-Dihydroxyphenyl)-2-methyl-1-propanone, 2018-2019

Common Abbreviations

Volume 1

Common abbreviations used in the dictionary for organic chemistry
$\AA \quad$ Angström units
b.p. \quad Boiling point (for example, b.p..$_{0.1} 100^{\circ}$ means boils at 100° if the pressure is 0.1 mm Hg)
(d) Decomposition
$20^{\circ} \quad 20$ degrees Celsius
d Density (for example, d^{20} specific gravity at $20^{\circ} \mathrm{C}$ referred to water at $4^{\circ} \mathrm{C}$)
DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone
EPR Electron paramagnetic resonance
HMPT Hexamethylphosphoric Triamide
${ }^{13}$ C NMR Nuclear magnetic resonance relative to carbon 13
(E) Geometric stereodescriptor used for compounds having achiral elements resulting from double bonds where the groups of highest priority are on the opposite sides of the vertical reference plane
${ }^{19}$ F NMR Nuclear magnetic resonance relative to fluorine 19
GC Gas chromatography
GC-MS Gas chromatography-mass spectrometry
GLC Gas-liquid chromatography
h Hour
${ }^{1} H$ NMR Nuclear magnetic resonance relative to proton
HPLC High pressure liquid chromatography
IR Infrared (spectra)
iso- Aliphatic hydrocarbon having two methyl groups on the terminal carbon atom of the chain (for example, isoamyl $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$
LDA lithium diisopropylamide
m- Meta-
M Molar (concentration)
min Minute

mol	Molecule
mol.wt.	Molecular weight
m.p.	Melting point
MS	Mass spectra
n-	Normal, as n-butyl
N	Normal (equivalents per liter, as applied to concentration)
NA	Not available
N.B.:	Nota bene
$\mathrm{n}_{\mathrm{D}}{ }^{20}$	Index of refraction ($\mathrm{n}_{\mathrm{D}}{ }^{20}$ for $20^{\circ} \mathrm{C}$ and sodium light)
o-	Ortho-
p-	Para-
Pa	pascal
Pd/C	Palladium on charcoal
$\mathrm{p} K_{\mathrm{a}}$	Log of the reciprocal of the dissociation constant, $1 / \log K_{\mathrm{a}}$
Rh / C	Rhodium on charcoal
r.t.	Room temperature
Sadtler	Sadtler Research Laboratories, Philadelphia (USA)
SDS	Sodium dodecyl sulfate
sec-	Secondary
SM	Starting material
tert-	Tertiary-
TFAA	Trifluoroacetic anhydride
TFMS	Trifluoromethanesulfonic acid
TLC	Thin layer chromatography
UV	Ultraviolet (spectra)
Vol.	Volume
(Z)	Opposite of (E)

Volume 2

Common abbreviations used in the dictionary for organic chemistry
\AA Angström units
$(\alpha)_{\mathrm{D}}^{20} \quad$ Specific optical rotation at $20^{\circ} \mathrm{C}$ for D (sodium) line
b.p. \quad Boiling point (for example, b.p. $0_{0.1} 100^{\circ}$ means boils at 100° if the pressure is 0.1 mm Hg)
d Density (for example, d_{4}^{20} specific gravity at $20^{\circ} \mathrm{C}$ referred to water at $4^{\circ} \mathrm{C}$)
$20^{\circ} \quad 20$ degrees Celsius
DEAD Diethyl azodicarboxylate
dl Racemic
DME 1,2-Dimethoxyethane (glyme)
DMF Dimethylformamide
DMSO Dimethyl sulfoxide

EIMS	Electron impact mass spectra
GC	Gas chromatography
GLC	Gas liquid chromatography
HMPA	Hexamethylphosphoramide (hexamethylphosphoric triamide),
HMPT	Hexamethylphosphorous triamide
HPLC	High performance (pressure, power) liquid chromatography
${ }^{13} \mathrm{C}$ NMR	Nuclear magnetic resonance relative to carbon 13
(E)	Geometric stereodescriptor used for compounds having achiral ele- ments resulting from double bonds where the groups of highest priority are on the opposite sides of the vertical reference plane ${ }^{19}$ F NMR
huclear magnetic resonance relative to fluorine 19	

tert-	Tertiary (as tert-butyl)
TFE	2,2,2-Trifluoroethanol
THF	Tetrahydrofuran
TLC	Thin layer chromatography
UV	Ultraviolet spectra
(Z)	Opposite of (E)

Volume 3

Å
$(\alpha)_{\mathrm{D}}^{20} \quad$ Specific optical rotation at $20^{\circ} \mathrm{C}$ for D (sodium) line
ART 2-Amino-1-(3,4-dihydroxyphenyl)ethanone
b.p. \quad Boiling point (for example, b.p..$_{0.1} 100^{\circ}$ means boils at 100° if the pressure is 0.1 mm Hg)
CAN Ceric ammonium nitrate
m-CPBA m-Chloroperoxybenzoic acid
$20^{\circ} \quad 20$ degrees Celsius
d Density (for example, d^{20} specific gravity at $20^{\circ} \mathrm{C}$ referred to water at $4^{\circ} \mathrm{C}$)
(d) with decomposition

DEAD Diethyl azodicarboxylate
dl Racemic
DME 1,2-Dimethoxyethane (glyme)
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
DMPU 1,3-Dimethyl-3,4,5,6-tetrahydro-2-[1H]-pyrimidinone
DOPKET 1-(3,4-Dihydroxyphenyl)-2-hydroxyethanone
equiv Equivalent
GC Gas chromatography
HMPA Hexamethylphosphoramide (hexamethylphosphoric triamide)
HMPT Hexamethylphosphorous triamide
HPLC High performance (pressure, power) liquid chromatography
${ }^{13} \mathrm{C}$ NMR Nuclear magnetic resonance relative to carbon 13
(E) Geometric stereodescriptor used for compounds having achiral elements resulting from double bonds where the groups of highest priority are on the opposite sides of the vertical reference plane
${ }^{19}$ F NMR \quad Nuclear magnetic resonance relative to fluorine 19
h Hour
HR-MS High resolution mass spectra
${ }^{1}$ H NMR Nuclear magnetic resonance relative to proton
IR Infrared spectra
iso- Aliphatic hydrocarbon having two methyl groups on the terminal carbon atom of the chain (for example, isoamyl $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$

LCEC	Liquid chromatography with electrochemical detection
LDA	Lithium diisopropylamide
m-	Meta-
M	Molar (concentration)
min	Minute
mol	Molecule
mol.wt.	Molecular weight
MOM-	Methoxymethyl-
m.p.	Melting point
MS	Mass spectra
n -	Normal (as n-butyl)
N	Normal (equivalents per litre, as applied to concentration)
N.B.	Nota bene
NBS	N -Bromosuccinimide
$\mathrm{n}_{\mathrm{D}}^{20}$	Index of refraction $\left(\mathrm{n}_{\mathrm{D}}^{20}\right.$ for $20^{\circ} \mathrm{C}$ and sodium light)
N, ${ }^{\prime}$-MBA	$\mathrm{N}, \mathrm{N}^{\prime}$-Methylenebisacrylamide
NPFA	Nitropentafluoroacetone
o-	Ortho-
p-	Para-
Pd/C	Palladium on charcoal
$\mathrm{PdCl}_{2} / \mathrm{C}$	Palladium chloride on charcoal
PdO/C	Palladium oxide on charcoal
pH	Log of reciprocal of hydrogen ion concentration
pK_{A}	Log of the reciprocal of the dissociation constant, $1 / \log \mathrm{K}_{\mathrm{A}}$
$\underset{\Psi}{\mathrm{pK}} \mathrm{~B}_{\mathrm{B}}$	Log of the reciprocal of the dissociation constant, $1 / \log \mathrm{K}_{\mathrm{B}}$ pseudo
psi	per square inch
Pt/C	Platinum on charcoal
r.t.	Room temperature
sec-	Secondary (as sec-butyl)
SM	Starting material
TBAI	Tetrabutylammonium iodide
TEAF	Triethylammonium formate
tert-	Tertiary (as tert-butyl)
TFA	Trifluoroacetic acid
TFE	2,2,2-Trifluoroethanol
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TMS	Tetramethylsilane
UV	Ultraviolet spectra
w/w	per cent "weight in weight" expresses the number of grams of an active constituent in 100 grams of solution or mixture
(Z)	Opposite of (E)

Volume 4

Common abbreviations used in the dictionary for organic chemistry
$(\alpha)_{D}^{20} \quad$ Specific optical rotation at $20^{\circ} \mathrm{C}$ for D (sodium) line
atm atmosphere
b.p. \quad Boiling point (for example, b.p..$_{0.1} 100^{\circ}$ means boils at 100° if the pressure is 0.1 mm Hg)
$\mathrm{BF}_{3} \quad$ Boron trifluoride
$\mathrm{BF}_{3}-\mathrm{OBu}_{2} \quad$ Boron trifluoride-n-Butyl ether complex
$\mathrm{BF}_{3}-\mathrm{OAc} \quad$ Boron trifluoride-acetic anhydride complex
CCL Candida cylindracea lipase
${ }^{13}$ C NMR Nuclear magnetic resonance relative to carbon 13
d Density (for example, d_{4}^{20} specific gravity at $20^{\circ} \mathrm{C}$ referred to water at $4^{\circ} \mathrm{C}$)
(d) with decomposition
$20^{\circ} \quad 20$ degrees Celsius
DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DMA Dimethylacetamide
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
3D QSAR Three-dimensional quantitative structure-activity relationship
(E) Geometric stereodescriptor used for compounds having achiral elements resulting from double bonds where the groups of highest priority are on the opposite sides of the vertical reference plane
equiv Equivalent
ESR Electron spin resonance
EtOH Ethyl alcohol
${ }^{19}$ F NMR Nuclear magnetic resonance relative to fluorine 19
GC Gas chromatography
GLC Gas liquid chromatography
h Hour
HMG-coA 3-Hydroxy-3-methylglutaryl co-enzyme A reductase
${ }^{1}$ H NMR Nuclear magnetic resonance relative to proton
$\mathrm{HNTf}_{2} \quad$ Bis(trifluoromethanesulfonyl)amide
HPLC High performance (pressure, power) liquid chromatography
HRMS High resolution mass spectra
IR Infrared spectra
iso- Aliphatic hydrocarbon having two methyl groups on the terminal carbon atom of the chain (for example, isoamyl $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}$-)
$\mathrm{LD}_{50} \quad$ Median lethal dose, the quantity of a chemical that is estimated to be fatal to 50% of the organisms tested
LDA Lithium diisopropylamide
m- Meta-

$\mu \mathrm{Ci}$	Microcurie
min	Minute
mol	Molecule
mol.	equiv. Molecular equivalent
mol.wt.	Molecular weight
m.p.	Melting point
M	Molar(concentration)
MAO	Monoamine oxidase
MNDO	Modified Neglect of Diatomic Overlap
MS	Mass spectra
n-	Normal (as n-butyl)
N	Normal (equivalents per liter, as applied to concentration)
N.B.:	Nota bene
$\mathrm{n}_{\mathrm{D}}^{20}=$	Index of refraction (n $\mathrm{n}_{\mathrm{D}}^{20}$ for 20 ${ }^{\circ} \mathrm{C}$ and sodium light)
nm	nanometre
NMDA	N-methyl-D-aspartic acid
$\mathrm{o}-$	Ortho-
${ }^{17} \mathrm{O}$	NMR Nuclear magnetic resonance relative to oxygen 17
p-	Para-
PCC	pyridinium chlorochromate
Pd/C	Palladium on charcoal
pH	Log of reciprocal of hydrogen ion concentration
PIDA	Phenyliodonium diacetate
pK	Log of the reciprocal of the dissociation constant, $1 / l o g ~ K ~$
a	

[^0]: [10425-11-3]
 $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}$
 mol.wt. 214.22

 Syntheses

 - Preparation by Fries rearrangement of pyrocatechol dibenzoate,

[^1]: m.p. and Spectra (NA).

[^2]: [129168-54-3]

 $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8} \quad$ mol.wt. 376.36
 Synthesis

 - Obtained (poor yield) by reaction of 2,5-dimethoxybenzoic acid with 2,6-dime-thoxy-1,4-hydroquinone diacetate in the presence of trifluoroacetic anhydride for two weeks at r.t. $(<5 \%)$ [1160].
 m.p. $135-135^{\circ} 5$ [1160]; Spectra (NA).

[^3]: m.p. $\quad 218^{\circ}$ (d) [286]; \quad Spectra (NA).

[^4]: [199735-29-0]

 $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
 Synthesis

 - Obtained by heating a mixture of the 2,4'-dihydroxy-3,3'-dimethoxy-5-methyldiphenylmethane, 2 N sodium hydroxide and nitrobenzene for 2 h at 170° (10\%) [1332,1333].

[^5]: [61101-84-6]

 $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4} \quad$ mol.wt. 264.66
 Synthesis

 - Preparation by adding O,O,O-tris(trimethylsilyl) phloro-glucinol to a solution of o-chlorobenzoyl chloride and stannic chloride in methylene chloride and the resulting solution stirred overnight at r.t. (80\%) [921].
 m.p. $\quad 141-143^{\circ}[921] ; \quad$ Spectra (NA).

[^6]: m.p. and Spectra (NA).

[^7]: [23573-47-9]

 $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \quad$ mol.wt. 288.30
 Synthesis

 - Obtained by reaction of orcinol with 2-meth-oxy-4-O-methoxycarbonyl-6-methylbenzoic acid in trifluoroacetic anhydride, first at 0° for 30 min , then at 20° for $15 \mathrm{~h}(30 \%)$ [754].

[^8]: m.p. and Spectra (NA).

[^9]: m.p. and Spectra (NA).

[^10]: [292144-84-4] $\quad \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClIO}_{2} \quad$ mol.wt. 296.49

 Synthesis

 - Preparation by iodination of 3-chloro-2-hydroxy-acetophenone with iodine $(1 \mathrm{~mol})$ and iodic acid $(1 \mathrm{~mol})$ in ethanol at $35-40^{\circ}$ for $1.5 \mathrm{~h}(75-85 \%)$ [1802].
 m.p. 112° [1802].

[^11]: [23343-04-6]
 $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
 Synthesis

 - Preparation by thermal Claisen rearrangement of 2-(allyloxy)-3-methoxyacetophenone [3329] without solvent at 210° [3330], (77\%) [3330], (38\%) [3329].
 m.p. $43-44^{\circ}$ [3330], 42-43$~[3329] ;$
 ${ }^{1} \mathrm{H}$ NMR [3329], IR [3329], UV [3329].

[^12]: [104691-67-0] $\quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{3} \quad$ mol.wt. 200.62
 Synthesis

 - Preparation by reaction of chloroacetonitrile on resorcinol monomethyl ether (Hoesch reaction) (major product, good yield) [4433].
 m.p. $173-174^{\circ}$ [4433].

[^13]: [39548-95-3]

 $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{4} \quad$ mol.wt. 514.62
 Synthesis

 - Obtained (by-product) by benzylation of 2,4,6-tri-hydroxyphenyl benzyl ketone with benzyl chloride in the presence of potassium carbonate in refluxing acetone for 7 h (6\%) [5408].
 m.p. $131-132^{\circ}$ [5408]; ${ }^{1} \mathrm{H}$ NMR [5408], UV [5408].

[^14]: m.p. $211-212^{\circ}[5423]$.

[^15]: [20569-19-1]

 $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}$
 Synthesis

 - Obtained by Friedel-Crafts acylation of pyrogallol trimethyl ether with 2,5-dimethoxyphenylacetyl chloride in the presence of aluminium chloride in ethyl ether at 0° overnight (39\%) [5568].
 m.p. $153-154^{\circ}$ [5568].

[^16]: [55607-41-5]
 $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$
 mol.wt. 384.43
 Synthesis

 - Obtained by partial methylation of 2,4-dihydroxy-6-methoxy-5-prenylphenyl 3,4-methylenedioxybenzyl ketone with dimethyl sulfate in the presence of potassium carbonate in refluxing acetone for 4 h (96\%) [5352].
 m.p. $83-84^{\circ}$ [5352]; ${ }^{1} \mathrm{H}$ NMR [5352]; TLC [5352].

[^17]: Propionic acid $4^{\prime}, 2^{\prime \prime}$-dihydroxy- $3,5^{\prime}, 3^{\prime \prime}$-trimethoxy-5,5"-
 dipropionyl-[1, $\left.\mathbf{1}^{\prime}: \mathbf{3}^{\prime}, \mathbf{1}^{\prime \prime}\right]$ terphenyl-2-yl ester
 2,2",4'-Triol-3,3",5'-trimethoxy-5,5"-dipropionyl[m-terphenyl] 2-propionate $4^{\prime}, 2^{\prime \prime}$-Dihydroxy-5,5"'dipropionyl-2-propionoxy-3,5', $3^{\prime \prime}$-trimethoxyterphenyl

 $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{9}$
 mol.wt. 536.58
 Syntheses

 - Isolation from the dehydrogenation resin of propioguaiacone through preparative TLC (62\%) (compound 11) $[7161]$.
 - Also obtained by dehydrogenation of propioguaiacone in aqueous solution with hydrogen peroxide (major compound) [8399].
 ${ }^{1} \mathrm{H}$ NMR [7161], IR [7161], UV [7161].

[^18]: [14963-88-3] [3-(1,1-Dimethylethyl)-2-hydroxy-5,6-dimethylphenyl] phenylmethanone, 126
 [15131-43-8]
 (4-Butoxy-2-hydroxyphenyl)phenylmethanone, 119
 [15198-16-0]
 [15517-46-1]
 [15577-13-6]
 [15889-67-5]
 [15889-70-0]
 [16762-04-2]
 [16762-05-3]
 [16762-06-4]
 [16762-34-8]
 Bis(4-hydroxy-3,5-diiodophenyl)methanone, 442
 1,4-Phenylenebis[(4-hydroxyphenyl)methanone, 537
 Bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]methanone, 450
 Bis(4-ethoxy-2-hydroxyphenyl)methanone, 449
 (4-Ethoxy-2-hydroxyphenyl)phenylmethanone, 97
 (2-Hydroxy-5-methoxyphenyl)(4-methoxyphenyl)methanone, 288
 (2-Hydroxy-3,4-dimethylphenyl)(4-methylphenyl)methanone, 297
 (2-Hydroxy-3,4-dimethylphenyl)(4-methoxyphenyl)methanone, 299
 (2-Hydroxy-3,5-dimethylphenyl)phenylmethanone, 91
 [16832-72-7] 1-(3-Acetyl-5-benzoyl-2,4-dihydroxyphenyl)ethanone, 527
 [16846-13-2] [4-Bromo-2-hydroxy-6-methyl-3-(1-methylethyl)phenyl] phenylmethanone, 112
 [16846-17-6] [3-Bromo-6-hydroxy-2-methyl-5-(1-methylethyl)phenyl] phenylmethanone, 112
 [16909-78-7]
 [2-Hydroxy-4-(2-hydroxyethoxy)phenyl]phenylmethanone, 102
 [16928-03-3]
 [17526-21-5]
 [17562-32-2]
 [17603-92-8]
 [17655-53-7]
 [17772-33-7]
 [17892-44-3]
 [18008-38-3]
 [18066-52-9]
 [3-(1,1-Dimethylethyl)-4-hydroxyphenyl]phenylmethanone, 114
 1-[2-(2-Hydroxybenzoyl)phenyl]ethanone, 524
 (2-Amino-5-hydroxyphenyl)phenylmethanone, 61
 (2-Hydroxy-3-methoxy-5-methylphenyl)phenylmethanone, 97
 (2-Hydroxy-4-methoxyphenyl)phenylmethanone- ${ }^{14} \mathrm{C}, 81$
 Bis(2-hydroxy-3-methoxy-5-methylphenyl)methanone, 449
 (5-Ethoxy-2-hydroxy-4-methoxyphenyl)(3-ethoxy-4-methoxyphenyl)-methanone, 346
 (4-Ethoxy-2-hydroxy-5-methoxyphenyl)(3-ethoxy-4-methoxyphenyl)-methanone, 346
 [18190-30-2]
 [18239-10-6]
 [18619-93-7]
 [18619-94-8]
 [18619-95-9]
 [18733-07-8]
 Cyclohexyl(2-hydroxyphenyl)methanone, 514
 (4-Chlorophenyl)[2-hydroxy-4-(octyloxy)phenyl]methanone, 352
 (4-Chlorophenyl)(2,4-dihydroxyphenyl)methanone, 340
 (2-Hydroxy-3-methyl-5-nitrophenyl)phenylmethanone, 69
 (2-Hydroxy-3,6-dimethyl-4-nitrophenyl)phenylmethanone, 89
 (2-Hydroxy-3,6-dimethyl-5-nitrophenyl)phenylmethanone, 89
 (2-Hydroxyphenyl)(4-methoxyphenyl)methanone, 171
 [18738-74-4] Cyclohexyl[5-(1,1-dimethylethyl)-2-hydroxyphenyl]methanone, 518
 [18803-19-5]
 [18803-24-2]
 [18803-25-3]
 [18902-63-1]
 [18920-70-2]
 [19389-82-3]
 [19390-38-6]
 [19434-30-1]
 [20010-69-9]
 (2-Hydroxy-5-nitrophenyl)phenylmethanone, 57
 [4-(Acetyloxy)-2-hydroxyphenyl]phenylmethanone, 86
 [4-(Benzoyloxy)-2-hydroxyphenyl]phenylmethanone, 129
 [4-(2-Bromoethoxy)-2-hydroxyphenyl]phenylmethanone, 88
 (4-Hydroxyphenyl)(4-nitrophenyl)methanone, 159
 [2-Hydroxy-4-(oxiranylmethoxy)phenyl]phenylmethanone, 104
 (2,4-Dihydroxyphenyl)(2-fluorophenyl)methanone, 397
 (2-Hydroxyphenyl)(4-methylphenyl)methanone, 167
 (3-Hydroxy-4,6-dimethyl-2-nitrophenyl)phenylmethanone, 89

[^19]: [145666-17-7] 1-(3,5-Dibromo-2-hydroxy-4-methylphenyl)ethanone, 732
 [145666-18-8] 1-(3,4-Dibromo-2-hydroxyphenyl)ethanone, 665
 [145666-19-9] 1-(3,4,5-Tribromo-2-hydroxyphenyl)ethanone, 660
 [145723-28-0] 1-[2-(Acetyloxy)-3-hydroxyphenyl]ethanone, 799
 [145746-54-9] 1-[3,6-Dihydroxy-2-(phenylsulfonyl)phenyl]ethanone, 974
 [145747-37-1] 1-[2-(Acetyloxy)-3-(diphenylmethyl)-4-hydroxyphenyl] ethanone, 1076
 [145747-38-2] 1-[2-(Acetyloxy)-5-(diphenylmethyl)-4-hydroxyphenyl] ethanone, 1076
 [145747-39-3] 1-[2-(Acetyloxy)-3,5-bis(diphenylmethyl)-4-hydroxyphenyl] ethanone, 1090
 [145747-40-6] 1-[2,6-Bis(acetyloxy)-4-hydroxy-3-[(4-methoxyphenyl)methyl] phenyl]ethanone, 1061
 [145797-51-9] 1-(2,3,5,6-Tetrafluoro-4-hydroxyphenyl)ethanone, 659
 [146575-61-3] 1-[2-Hydroxy-5-(phenylsulfonyl)phenyl]ethanone, 973
 [146575-64-6] 1-[2-Hydroxy-5-(trifluoromethoxy)phenyl]ethanone, 730
 [146954-92-9] 1-[5-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxyphenyl] ethanone, 1049
 [147816-49-7] 1-[5-[[4-(Acetyloxy)phenyl]sulfonyl]-2-hydroxyphenyl] ethanone, 1016
 [147816-50-0] 1-[2-Hydroxy-5-[(4-hydroxyphenyl)sulfonyl]phenyl]ethanone, 974
 [147816-51-1] 1-[2-Hydroxy-5-[(4-methylphenyl)sulfonyl]phenyl]ethanone, 1008
 [147904-71-0] 1-[4-Hydroxy-2-[(4-hydroxy-3-methoxyphenyl)methyl]-3,5dimethoxyphenyl]ethanone, 1046
 [147904-74-3] 1-[4-Hydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methyl]-3,5dimethoxyphenyl]ethanone, 1058
 [148204-58-4] 1-(3,5-Dihydroxy-4-methoxyphenyl)ethanone, 789
 [148254-30-2] 1-(4-Chloro-2-fluoro-5-hydroxyphenyl)ethanone, 668
 [149105-11-3] 1-[4-Hydroxy-3-(trifluoromethyl)phenyl]ethanone, 730
 [149454-53-5] 1-[2-Hydroxy-4-(2-hydroxybutoxy)phenyl]ethanone, 930
 [149454-57-9] 1-[2-Hydroxy-4-(2-hydroxypropoxy)phenyl]ethanone, 884
 [149475-52-5] 1-[2-(β-D-Glucopyranosyloxy)-5-hydroxyphenyl]ethanone (Bungeiside A), 987
 [149475-54-7] 1-[2-Hydroxy-4-[(6-O- β-D-xylopyranosyl- β-D-glucopyranosyl) oxy]phenyl]ethanone (Bungeiside D), 1060
 [149561-88-6] 1-[2-(β-D-Glucopyranosyloxy)-4-hydroxyphenyl]ethanone (Cynanoneside B; Bungeiside B), 986
 [149810-09-3] 1-[4-(Acetyloxy)-2-hydroxy-3-iodophenyl]ethanone, 797
 [149810-10-6] 1-[4-(Acetyloxy)-2-hydroxy-3-(2-propenyl)phenyl]ethanone, 938
 [149876-26-6] 1-[2,3,4-Trihydroxy-6-(3-methyl-2-butenyl)phenyl]ethanone, 947
 [150313-75-0] 1-[4-Hydroxy-3-(1-methylpropyl)-5-nitrophenyl]ethanone, 910
 [151027-43-9] 1-(4-Hydroxy-2-methoxy-3-propylphenyl)ethanone, 926
 [151148-87-9] 1-[2,5-Dihydroxy-3,4-bis(phenylmethoxy)phenyl]ethanone, 1071
 [151340-06-6] 1-(2-Chloro-4-hydroxy-3-methoxyphenyl)ethanone, 745
 [151719-65-2] 1-[4-(3-Chloropropoxy)-3-hydroxyphenyl]ethanone, 860

[^20]: [418759-58-7] 1-(4-Hydroxy-5-methoxy-2-nitrophenyl)ethanone, 1135
 [521273-05-2] 1-[3'-(1,1-Dimethylethyl)-2'-hydroxy[1,1'-biphenyl]-4-yl] ethanone, 1195
 [603110-50-5] 1-[4-Hydroxy-3-[(2E)-2-methyl-2-butenyl]phenyl]ethanone, 1178
 [649551-87-1] 1-(5-Bromo-4-ethyl-2-hydroxyphenyl)ethanone, 1148
 [705963-54-8] 1-[5-Chloro-2,4-bis(phenylmethoxy)phenyl]ethanone, 1108
 [741264-99-3] 1-(3-Hydroxy-4-methoxy-5-methylphenyl)ethanone, 1157
 [747413-68-9] 1-[5-Bromo-2,4-bis(phenylmethoxy)phenyl]ethanone, 1103
 [747414-06-8] 1-[5-(1,1-Dimethylethyl)-2,4-bis(phenylmethoxy)phenyl] ethanone, 1173
 [747414-17-1] 1-[2,4-Dihydroxy-5-(1-methylethyl)phenyl]ethanone, 1165
 [747414-18-2] 1-[5-(1-Methylethyl)-2,4-bis(phenylmethoxy)phenyl] ethanone, 1165
 [784177-14-6] 1-(5-Butyl-2-methoxyphenyl)ethanone, 1172
 [841298-81-5] 1-(4'-Chloro-4-methoxy[1,1'-biphenyl]-2-yl)ethanone, 1188
 [865451-01-0] 1-(5-Chloro-4-fluoro-2-hydroxyphenyl)ethanone, 1097
 [868702-20-9] 1-(4-Hydroxy-2-methoxy-5-methylphenyl)ethanone, 1157
 [870480-17-4] 8-Acetyl-3-iodo-5,6,7-trimethoxy-4H-1-benzopyran-4-one, 1168
 [870480-50-5] 1-(3-Acetyl-2-hydroxy-4,5,6-trimethoxyphenyl)-3-(dimethylamino)(2E)-2-propen-1-one, 1193
 [870480-53-8] 8-Acetyl-5,7-dihydroxy-3-iodo-6-methoxy-4H-1-benzopyran-4one, 1168
 [870652-37-2] 1-(5-Bromo-2,3,4-trihydroxyphenyl)ethanone, 1103
 [870652-73-6] 1-[2-(2-Chloroethoxy)-6-hydroxyphenyl]ethanone, 1150
 [872057-13-1] 1-[2-Hydroxy-4,6-dimethoxy-3-(1-methyl-4-piperidinyl)phenyl] ethanone, 1194
 [872415-44-6] 1-(2-Fluoro-4-methoxy-3-methylphenyl)ethanone, 1133
 [872415-45-7] 1-(2-Fluoro-4-hydroxy-3-methylphenyl)ethanone, 1133
 [873211-41-7] 1-[2-Hydroxy-5-(3-methyl-2-butenyl)phenyl]ethanone, 1178
 [873211-43-9] 1-[3-(1,1-Dimethyl-2-propenyl)-2-hydroxyphenyl]ethanone, 1178
 [873222-85-6] 1-(2,5-Dihydroxy-3,4-dipropylphenyl)ethanone, 1187
 [873222-91-4] 1-(3,4-Diethyl-2,5-dihydroxyphenyl)ethanone, 1172
 [873222-92-5] 1-(2,5-Dihydroxy-4-methyl-3-propylphenyl)ethanone, 1172
 [873222-93-6] 1-(2,5-Dihydroxy-3-methyl-4-propylphenyl)ethanone, 1172
 [873222-94-7] 1-[3-[2-(Acetyloxy)ethyl]-4-ethyl-2,5-dihydroxyphenyl] ethanone, 1186
 [873222-95-8] 1-[4-[2-(Acetyloxy)ethyl]-3-ethyl-2,5-dihydroxyphenyl] ethanone, 1187
 [880479-07-2] 1-(6-Hydroxy-4-methoxy-7-propoxy-5-benzofuranyl) ethanone, 1184
 [880479-08-3] 1-[6-Hydroxy-4-methoxy-7-(pentyloxy)-5-benzofuranyl] ethanone, 1192
 [880479-09-4] 1-[6-Hydroxy-4-methoxy-7-(phenylmethoxy)-5-benzofuranyl] ethanone, 1194
 [880479-11-8] 1-[6-Hydroxy-7-methoxy-4-(pentyloxy)-5-benzofuranyl] ethanone, 1193

