MINISTERUL EDUCAȚIEI AL REPUBLICII MOLDOVA

Фамилия	
Имя	
Отчество	
Учебное заведение	
Место жительства	

КИМИХ

ПРЕДВАРИТЕЛЬНОЕ ТЕСТИРОВАНИЕ ЭКЗАМЕН НА ДИПЛОМ БАКАЛАВРА

Реальный профиль

03 апреля 2012 года Время выполнения: 180 минут.

Необходимые материалы: ручка синего цвета.

Памятка для кандидата:

- Прочитай внимательно и аккуратно выполни каждое задание.
- Работай самостоятельно.

Желаем вам успехов!

Количество	боннов	
количество	Оаллов	

No	Задания	Балл	Балл
1	Обведи кружочком букву В для верного утверждения и букву Н для неверного		
	утверждения.	L	L
	1) В Н Образец железа, содержащий $6.02 \cdot 10^{23}$ атомов, имеет массу 56 г.	0	0
	2) В Н Изотопы углерода отличаются друг от друга числом электронов.	1	1
	3) В Н Электронная конфигурация иона фтора такая же, как у атома неона.	2	2
	4) В Н Относительная плотность гелия по водороду равна 2.	3	3
	5) В Н Соль подвергается гидролизу, если образована сильным основанием	5	5
	и сильной кислотой.	6	6
	6) В H В растворе с рH = 9 среда кислая.		
2	Хлорид кальция применяют как пищевую добавку Е-509 при производстве		
	сыра, творога; добавляют для хруста при консервировании огурцов.	$\begin{bmatrix} L \\ 0 \end{bmatrix}$	<u>L</u>
	Дополни свободные пространства:	1	1
	1) В хлориде кальция реализуется связь, это	3	3
	соединение можно получить при взаимодействии	4 5	<u>4</u> 5
	c	6	6
	2) В периодической системе хлор расположен в периоде, число	7	7
	валентных электронов в атоме хлора, в простом веществе атомы	8 9	8
	связаны связью.	10	10
	3) В ядре атома кальция протонов, нейтронов, электронная		
	конфигурация атома кальция		
	Металлические свойства кальция выражены слабее, чем у		
3	Для выбора оптимальных условий проведения химической реакции необходимо проанализировать ее характеристики по всем критериям классификации.		L 0
	Даны уравнения реакций: а) $4P_{\text{(тв.)}} + 5O_{2(\Gamma.)} = 2P_2O_{5(\text{тв.})} + Q_{[Fe]}$	1 2	1 2
	6) $N_{2(r.)} + 3H_{2(r.)} \rightleftharpoons 2NH_{3(r.)} + Q$	3	3
	$\mathrm{B)}\;\mathrm{N}_{2(\mathrm{r.})}+\mathrm{O}_{2(\mathrm{r.})}\rightleftarrows2\mathrm{NO}_{(\mathrm{r.})}-\mathrm{Q}$	5	5
	А. Выбери из них реакцию, которая соответствует характеристикам: <i>гомогенная, обратимая, экзотермическая</i> (укажи букву)	6	6
	Б. Для выбранной реакции:		
	1) Укажи, как изменить (повысить, понизить или не изменять):		
	а) температуру; б) давление		
	для смещения химического равновесия в сторону продукта реакции.		
	2) Укажи одну область применения продукта реакции:		
	· · · · · · · · · · · · · · · · · · ·		

Оксид азота (I) применяется для улучшения технических характеристик двигателей внутреннего сгорания, а также как компонент препаратов для наркоза. В лаборатории его можно получить согласно схеме реакции:	L 0 1 2 3 4 5 6 7	L 0 1 2 3 4 5 6 7
Одной из актуальных экологических проблем является снижение уровня оксида углерода (IV) в воздухе. Одним из способов решения может быть его удаление химическим путем с помощью оксидов щелочных металлов (принцип, используемый в офисных освежителях воздуха). Реши задачу. Оксид углерода (IV), полученный при сжигании метана объемом 11,2 л (н. у.), был поглощен оксидом лития массой 45 г. а) Вычисли объем кислорода (н. у.), который был израсходован на сжигание метана. б) Аргументируй расчетами, достаточно ли оксида лития для полного поглощения оксида углерода (IV). Дано: Найти: Решение: Ответ: а)	L 0 1 2 3 4 5 6 7 8 9 10 11 12 13	L 0 1 2 3 4 5 6 7 8 9 10 11 12 13

6	прих Напт водо <i>а) ис</i> 1) ре 2) ре <i>б) пр</i> 1) ре	ород — самый распространённый элемент во Вселен кодится около 92 % всех атомов. иши уравнения реакций в соответствии с указанным прод является: еходным веществом ракция соединения	типом, в которых	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
7	Выб	ы органические вещества: А. глицерин; Б. глюкоза; В. этин; Г. бензо ери для каждой характеристики одно вещество из пре шии его название в отведенном пространстве.		L 0 1 2	L 0 1 2
	No	Характеристика вещества	Вещество	3	3
	1	Все атомы углерода находятся в состоянии sp^2 -гибридизации	Бещеетво	4 5	4 5
	2	Относится к гомологическому ряду с общей формулой $C_n H_{2n-2}$		6	6
	3	Является гомологом бутина			
	4	Применяется для получения этанола			
	5	Получают при гидролизе жиров			
	6	Можно идентифицировать с помощью гидроксида меди (II)			
8	• Ве • Ве • Ве	тикетках двух склянок A и Б указана одна и та же моле $_{4}O_{2}$. При исследовании было установлено: щества в склянках A и Б принадлежат к разным классам ществ; щество из склянки A реагирует с <i>гидроксидом натрия, н</i> щество из склянки Б взаимодействует с <i>водой</i> (гидролиз <i>дроксидом натрия</i> (щелочной гидролиз). Для каждого вещества напиши полуструктурную формул	органических <i>атрием, этанолом</i> ;) и	L 0 1 2 3 4 5 6	L 0 1 2 3 4 5 6
	A _	Б			
	II. И для	Используя полуструктурные формулы для органических каждого вещества уравнение реакции с одним из тивов:	х веществ, напиши		
	A: _				
	Б: _				

)	Органические со повседневной жи		именяются в химическом	и синтезе и	L	L
	Дополни свобода Класс	ные пространства таб Полуструктурная	лицы: Название вещества	Конкретная	0	0
	органических соединений	формула вещества	по систематической номенклатуре	область применения вещества	3	3
		CH ₃ -C,			4 5 6	5 6
				Производство синтетических каучуков	8	8
		веществ напиши у е формулы для органі	равнение реакции получеских веществ:	учения, используя		
0	поиске эффектив Реши задачу. Пр катализатора. Пр объемом 11,2 л массой 200 г с ма а) Вычисли объемой На основе	вных катализаторов. сопан подвергли реак содукт реакции пред (н. у.). Эта смесь ассовой долей брома мную долю пропена п	в полученной смеси. ьтата сформулируй вы	рисутствии нового пропана и пропена пет бромную воду	L 0 1 2 3 4 5 6 7 8 9	L 0 1 2 3 4 5 6 7 8 9
	Ответ: а)					

11	Продуктом химической промышленности является 70%-ная уксусная кислота, называемая уксусной эссенцией. Для консервирования овощей ее разбавляют до необходимой концентрации. Реши задачу. Консервный завод потребляет в сутки в среднем по 200 л уксусной кислоты с молярной концентрацией 1,4 моль/л. Вычисли объем раствора уксусной кислоты с массовой долей 70% и плотностью 1,07 г/мл, необходимый для работы завода в течение суток.	L 0 1 2 3 4	L 0 1 2 3 4
	Решение:	5 6	5 6
12	Ответ:	L 0 1 2 3 4 5 6 7 8 9 10	L 0 1 2 3 4 5 6 7 8 9 10 11
	6)		

ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Группы					Τ,				
Периоды	I	П	III	IV	V	VI	VII	,	VIII
	1 водород							2 гелий	
1	H 1,0079							He 4,0026	
	3 литий	4 бериллий	5 бор	6 углерод	7 азот	8 кислород	9 фтор	10 неон	
2	Li 6,941	Be 9,01218	B 10,81	C 12,011	N 14,0067	O 15,9994	F 18,9984	Ne 20,179	
3	11 натрий	12 магний	13 алюминий	14 кремний	15 фосфор	16 cepa	17 хлор	18 аргон	
3	Na 22,98977	Mg 24,305	Al 26,98154	Si 28,0855	P 30,97376	S 32,06	Cl 35,453	Ar 39,948	
	19 калий	20 кальций	21 скандий	22 титан	23 ванадий	24 хром	25 марганец		кобальт 28 никель
4	K 39,0983	Ca 40,08	44,9559 Sc	47,88 Ti	50,9415 V	51,996 Cr	54,938 Mn	55,847 Fe 58,93	32 Co 58,69 Ni
	29 медь	30 цинк	31 галлий	32 германий	33 мышьяк	34 селен	35 бром	36 криптон	
	63,546 Cu	65,38 Zn	Ga 69,72	Ge 72,59	As 74,9216	Se 78,96	Br 79,904	Kr 83,80	
	37 рубидий	38 стронций	39 иттрий	40 цирконий	41 ниобий	42 молибден	43 технеций	44 рутений 45	родий 46 палладий
5	Rb 85,4678	Sr 87,62	88,9059 Y	91,22 Zr	92,9064 Nb	95,94 Mo	[98] Tc		055 Rh 106,42 Pd
)	47 серебро	48 кадмий	49 индий 	50 олово	51 сурьма	52 теллур	53 иод	54 ксенон	
	107,868 Ag	112,41 Cd	In 114,82	Sn 118,69	Sb 121,75	Te 127,60	I 126,9045	Xe 131,29	
	55 цезий	56 барий	57* лантан	72 гафний	73 тантал	74 вольфрам	75 рений		иридий 78 платина
6	Cs 132,9054	Ba 137,33	138,9055 La	178,49 Hf	180,948 Ta	183,85 W	186,207 Re	190,2 Os 192,2	22 Ir 195,08 Pt
0	79 золото	80 ртуть	81 таллий	82 свинец	83 висмут	84 полоний	85 астат	86 радон	
	196,9665 Au	200,59 Hg	Tl 204,383	Pb 207,2	Bi 208,980	Po [209]	At [210]	Rn [222]	
	87 франций	88 радий	89** актиний	104	105	106	107	108 109	110
7	Fr [223]	Ra 226,025	227,028 Ac	резерфордий	дубний	сеаборгий	борий [262] Bh	хассий мейт	Пир [2]
		,	,	[261] Rf	[262] Db	[263] Sg	[262] Bh	[267,13] Hs [168,	14] Mt Oun [?]
					Лантаноид				
		Nd 61 Pm прометий		63 Eu 64 европий гадо	Gd 65 олиний терби	Tb 66 Dy й диспрозий	67 Но гольмий	68 Er 69 Tm эрбий түлий	70 Yb 71 Lu иттербий лютеций
церии	празеодим неод	им прометии	самарий	свропии гадо	линии терои	и диспрозии	тольмии	эроии Тулии	иттероии лютеции

нарий прозодини настини проможий органий головий тарбий пистродий головий ту		71 Lu
церий празеодим неодим прометий самарий европий гадолиний тербий диспрозий гольмий эрбий ту	иттербий	лютеций
140,12 140,9077 144,24 [145] 150,36 151,96 157,25 158,9254 162,50 164,9304 167,26 168	2 173,04	174.967

**Актиноиды

90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96 Cm	97	Bk	98	Cf	99	Es	100	Fm	101	Md	102	No	103	Lr
тор	ий	протакт	иний	ypa	ìН	непту	уний	плутс	ний	амер	оиций	кюрий	бер	кли	калис	pop-	эйншт	ей-	фер	мий	менд	целе-	нобе.	тий	лоурен	нсий
232,0	0381	231,03	359	238,0	389	237,0)482	[24	4]	[2	243]	[247]	й[2	247]	ний [251]	ний [2	52]	[25	[7]	вий [258]	[25:	5]	[260)]

		PACT	BOP	имос	ТЬ В І	водь	Е КИСЈ	IOT, C	СНОЕ	ВАНИЙ	і ис	СОЛЕЙ	Í		
	H^{+}	Na ⁺	K ⁺	NH ₄ ⁺	Cu ²⁺	Ag ⁺	Mg^{2+}	Ca ²⁺	Ba ²⁺	Zn ²⁺	Al ³⁺	Pb ²⁺	Cr ³⁺	Fe ³⁺	Fe ²⁺
Cl -	P	P	P	P	P	Н	P	P	P	P	P	M	P	P	P
Br -	P	P	P	P	P	Н	P	P	P	P	P	M	P	P	P
I -	P	P	P	P	-	Н	P	P	P	P	P	Н	P	-	P
NO ₃	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
CH ₃ COO	P	P	P	P	P	P	P	P	P	P	P	P	-	-	P
S^{2-}	P	P	P	P	Н	Н	P	P	P	Н	-	Н	-	-	Н
SO_3^{2-}	P	P	P	P	Н	Н	Н	Н	Н	Н	-	Н	-	-	Н
$\mathrm{SO_4}^{2}$	P	P	P	P	P	M	P	M	Н	P	P	Н	P	P	P
CO ₃ ²⁻	P	P	P	Р	-	Н	Н	Н	Н	Н	-	Н	-	-	Н
SiO ₃ ²⁻	Н	P	P	-	-	-	Н	Н	Н	Н	-	Н	-	-	Н
CrO ₄ ²⁻	P	P	P	P	Н	Н	Р	M	Н	Н	-	Н	P	-	-
PO ₄ ³⁻	P	P	P	P	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
OH -		P	P	P	Н	-	Н	M	P	Н	Н	Н	Н	Н	Н

^{*}Примечание : Р – растворимое вещество, М – малорастворимое, Н – практически нерастворимое; черта означает, что вещество не существует или разлагается водой.

РЯД ЭЛЕКТРООТРИЦАТЕЛЬНОСТИ

F	0	N	Cl	Br	I	S	C	Se	P	As	H	В	Si	Al	Mg	Ca	K	Na
4,0	3,5	3,07	3,0	2,8	2,6	2,6	2,5	2,5	2,2	2,1	2,1	2,0	1,8	1,6	1,2	1,04	0,9	0,9

РЯД НАПРЯЖЕНИЙ

Li K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H Cu Hg Ag Pt Au