

МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДНЫХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

УТВЕРЖДАЮ
Заместитель Председателя
Государственного комитета РФ
по охране окружающей среды
А.А. Соловьянов
«4» марта 1997 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ ФОСФАТ-ИОНОВ В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД ФОТОМЕТРИЧЕСКИМ МЕТОДОМ ВОССТАНОВЛЕНИЕМ АСКОРБИНОВОЙ КИСЛОТОЙ

ПНД Ф 14.1:2.112-97

МЕТОДИКА ДОПУЩЕНА ДЛЯ ЦЕЛЕЙ ГОСУДАРСТВЕННОГО ЭКОЛОГИЧЕСКОГО КОНТРОЛЯ.

Москва 1997 г.

(издание 2004 г.)

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды $P\Phi$.

В соответствии с требованиями ГОСТ Р ИСО 5725-1-2002 \div ГОСТ Р ИСО 5725-6-2002 и на основании свидетельства о метрологической аттестации № 224.01.03.035/2004 в МВИ внесены изменения (Протокол № 1 заседания НТС ФГУ «ФЦАМ» МПР России от 03.03.2004).

ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий документ устанавливает методику количественного химического анализа проб природных и **очищенных** сточных вод для определения фосфат-ионов при массовой концентрации от 0.05 до $1~{\rm Mr/дm}^3$ PO_4^{3-} фотометрическим методом.

Если массовая концентрация фосфат-ионов в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы таким образом, чтобы концентрация фосфатионов соответствовала регламентированному диапазону.

Мешающие влияния, обусловленные присутствием в пробе сульфидов, сероводорода, хроматов, арсенатов, нитритов и железа, устраняют специальной подготовкой пробы к анализу (п. 9).

1. ПРИНЦИП МЕТОДА

Фотометрический метод определения массовой концентрации фосфат-ионов основан на взаимодействии фосфат-ионов в кислой среде с молибдатом аммония и образованием фосфорно-молибденовой гетерополикислоты, которая восстанавливается аскорбиновой кислотой в присутствии сурьмяно-виннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет. Максимум светопоглощения соответствует длине волны $\lambda = 690$ нм.

2. ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХ

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведенных в таблице 1.

Таблица 1 Значения показателей точности, повторяемости и воспроизводимости методики

Диапазон измерений, мг/дм ³	Показатель точности (границы относительной погрешности при вероятности $P=0,95$), \pm $\delta,\%$	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости) σ_{r_2} %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ_R , %
от 0,05 до 0,50 вкл.	15	4	6
св. 0,5 до 1,0 вкл.	10	2,5	4

Значения показателя точности методики используют при:

- оформлении результатов анализа, выдаваемых лабораторией,
- оценке деятельности лабораторий на качество проведения испытаний;
- оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

3. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ, МАТЕРИАЛЫ, РЕАКТИВЫ

3.1. Средства намерений, вспомогательное оборудование

Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны $\lambda = 690$ нм.

Кюветы с толщиной поглощающего слоя 20 или 50 мм.

Весы лабораторные 2-го класса точности, ГОСТ 24104.

ГСО с аттестованным содержанием фосфат-ионов.

3.2. Посуда

Колбы мерные 2-50 (100, 500, 1000)-2, ГОСТ 1770.

Пипетки мерные 6 (7)-1-5(10);

2-1-25(50), **ΓΟCT 29227**.

Цилиндры 2-250;

1-100, ΓΟСТ 1770.

Воронки В ХС, ГОСТ 25336.

Колбы конические Кн-2-100-18 ТХС, ГОСТ 25336.

Стаканы для взвешивания СВ, ГОСТ 25336.

Бутыли из стекла или полиэтилена с притертыми или винтовыми пробками для отбора и хранения проб вместимостью $500 - 1000 \text{ cm}^3$.

3.3. Реактивы

Серная кислота, ГОСТ 4204.

Аммония молибдат, ГОСТ 3765.

Аскорбиновая кислота, ГОСТ 4815.

Антимонилтартрат калия, ТУ 6-09-803.

Калий марганцевокислый, ГОСТ 20490.

Сульфаминовая кислота, ТУ 6-09-2391.

Комплексен III, ТУ 6-09-2391.

Вода дистиллированная, ГОСТ 6709.

Фильтры обеззоленные, ТУ 6-09-1181.

Бумага индикаторная универсальная, ТУ 6-09-1181.

Все реактивы, должны быть квалификации ч.д.а. или х.ч.

4. УСЛОВИЯ БЕЗОПАСНОГО ПРОВЕДЕНИЯ РАБОТ

- **4.1.** При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.
 - 4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.
 - 4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.
- **4.4.** Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа и изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра.

6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Измерения проводятся в следующих условиях: температура окружающего воздуха (20 ± 5) °C; атмосферное давление (84,0 - 106,7) кПа (630 - 800 мм рт.ст); относительная влажность (80 ± 5) %; напряжение сети (220 ± 10) В; частота переменного тока (50 ± 1) Гц.

7. ОТБОР И ХРАНЕНИЕ ПРОБ ВОДЫ

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

- **7.1.** Пробы воды отбирают в стеклянные или полиэтиленовые бутыли, предварительно ополоснутые отбираемой водой. Объем отобранной пробы должен быть не менее 100 см^3 .
- **7.2.** Пробу анализируют в день отбора или консервируют добавлением 2 4 см³ хлороформа на 1 дм³ воды и хранят при 3 5 °C не более 3 суток.
 - **7.3.** При отборе проб составляется сопроводительный документ, в котором указывается. цель анализа, предполагаемые загрязнители;

место, время отбора;

номер пробы;

должность, фамилия отбирающего пробу, дата.

8. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

8.1. Подготовка прибора

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с руководством по его эксплуатации.

8.2. Приготовление вспомогательных растворов

8.2.1. Приготовление раствора молибдата аммония.

3 г молибдата аммония помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 100 см³ и доводят до метки дистиллированной водой. В случае появления мути раствор следует отфильтровать.

Раствор хранят в полиэтиленовой бутыли.

8.2.2. Приготовление раствора аскорбиновой кислоты.

2,16 г аскорбиновой кислоты помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на $100~{\rm cm}^3$ и доводят до метки дистиллированной водой.

Раствор хранят в холодильнике в течение 3-х недель.

8.2.3. Приготовление раствора антимонилтартрата калия.

0,34 г антимонилтартрата калия помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 500 см³ и доводят до метки дистиллированной водой.

8.2.4. Приготовление раствора серной кислоты.

В мерную колбу на 500 см³ наливают 400 см³ дистиллированной воды и осторожно приливают 70 см³ концентрированной серной кислоты. После охлаждения, раствор доводят до метки дистиллированной водой.

8.2.5. Приготовление смешанного реактива.

В колбе с притертой пробкой смешивают 125 см^3 раствора серной кислоты (п. 8.2.4), 50 см^3 раствора молибдата аммония (п. 8.2.1), 50 см^3 раствора аскорбиновой кислоты (п. 8.2.2) и 25 см^3 раствора антимонилтартрата калия (п. 8.2.3).

Смешанный реактив готовят непосредственно перед использованием.

8.2.6. Приготовление 10 %-го раствора сульфаминовой кислоты.

10 г сульфаминовой кислоты растворяют в 90 см³ дистиллированной воды.

8.3. Приготовление градуировочных растворов фосфат-ионов

8.3.1. Приготовление градуировочного раствора 1.

Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией. В 1 см³ раствора должно содержаться 0,01 мг фосфат-ионов.

Раствор готовят в день проведения анализа.

8.3.2. Приготовление градуировочного раствора 2.

Раствор готовят соответствующим разбавлением градуировочного раствора 1. В 1 см³ раствора должно содержаться 0,001 мг фосфат-ионов

Раствор готовят в день проведения анализа.

8.4. Построение градуировочных графиков

Для построения градуировочных графиков необходимо приготовить образцы для градуировки с массовой концентрацией фосфат-ионов 0,05 - 1,0 мг/дм³. Условия анализа, его проведение должны соответствовать п.п. 6 и 10.

Состав и количество образцов для градуировки приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Таблица 2 Состав и количество образцов для градуировки при анализе фосфат-ионов.

	Массовая концентрация	Аликвотная часть растворов (см ³), помещенных в мерную колбу на 50 см ³		
№ п/п фосфатов-ионов в градуировочных растворах, мг/дм		Раствор 1 с концентрацией 0,01 мг/см ³	Раствор 2 с концентрацией 0,001 мг/см ³	
		График 1 (кювета = 50 мм)		
1	0,00		0,0	
2	0,05		2,5	
3	0,10		5,0	
4	0,20	1,0		
5	0,30	1,5		
6	0,40	2,0		
7	0,50	2,5		
		График 2 (кювета = 20 мм)		
1	0,00	0,0		
2	0,50	2,5		
3	0,60	3,0		
4	0,70	3,5		
5	0,80	4,0		
6	0,90	4,5		
7	1,00	5,0		

Раствор из мерной колбы переносят в коническую колбу и добавляют реактивы по п. 10.

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс - величину концентрации вещества в мг/дм^3 .

8.5. Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят при смене партий реактивов, но не реже одного раза в месяц. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

$$|X - C| \le 1,96\sigma_{R_a}$$

где X - результат контрольного измерения массовой концентрации фосфат-ионов в образце для градуировки;

- ${\it C}$ аттестованное значение массовой концентрации фосфат-ионов в образце для градуировки,
- [©] среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: $\sigma_{R_{\pi}} = 0.84 \sigma_{R}$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения σ_R приведены в таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9. УСТРАНЕНИЕ МЕШАЮЩИХ ВЛИЯНИЙ

- 9.1. Сильнокислые и сильнощелочные пробы предварительно нейтрализуют.
- 9.2. Определению мешают сульфиды и сероводород в концентрациях, превышающих 3 мг/дм³ S². Мешающее влияние можно устранить, прибавляя несколько миллиграммов калия марганцевокислого на 100 см³ пробы и встряхивая 1 - 2 мин, раствор должен оставаться розовым. После этого прибавление реактивов проводят в обратном порядке: сначала приливают раствор аскорбиновой кислоты, перемешивают, затем прибавляют смешанный реактив.
- **9.3.** Определению мешают хроматы в концентрациях, превышающих 2 мг/дм 3 CrO $_4$ 2 -. Это мешающее влияние устраняется прибавлением реактивов в обратном порядке (по п. 9.2).
- 9.3. Определению мешают арсенаты. Их содержание определяют отдельно и вычитают из найденного содержания фосфат-ионов.
- 9.4. Для устранения мешающего влияния нитритов в смешанный реактив добавляют 10 см3 10 %-го раствора сульфаминовой кислоты.
- **9.5.** Определению мешает железо $^{(3+)}$ в концентрации, превышающей 1 мг/дм 3 . Для устранения мешающего влияния железа вводят эквивалентное количество комплексона III.

10. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

К 50 см³ пробы, профильтрованной на месте или в тот же день в лаборатории через плотный бумажный фильтр (синяя лента), или к меньшему объему, доведенному до 50 см³ дистиллированной водой, прибавляют 5.0 см³ смешанного реактива и через короткое время 0,5 см³ раствора аскорбиновой кислоты (как указано в п. 9.2 в присутствии некоторых мешающих веществ реактивы приливают в обратном порядке). Смесь перемешивают. Через 15 мин измеряют оптическую плотность полученного раствора при длине волны 690 нм по отношению к холостому раствору, (холостой раствор готовится на дистиллированной воде с добавлением соответствующих реактивов).

Содержание фосфат-ионов в мг/дм³ находят по градуировочному графику. При анализе проб воды выполняют не менее двух параллельных определений.

Содержание фосфат-ионов (мг/дм³) рассчитывают по формуле:

$$X = \frac{C \cdot 50}{V},$$

11. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

где C - концентрация фосфат-ионов, найденная по градуировочному графику, мг/дм 3 ;

50 - объем, до которого была разбавлена проба, в см 3 ;

V - объем, взятый для анализа, см³.

За результат анализа X_{cp} принимают среднее арифметическое значение двух параллельных определений X_1 и X_2

$$X_{GF} = \frac{X_1 + X_2}{2}$$
.

для которых выполняется следующее условие:

$$|\mathbf{x}_1 - \mathbf{x}_2| \le \mathbf{r}(\mathbf{x}_1 + \mathbf{x}_2)/200,$$
 (1)

где г - предел повторяемости, значения которого приведены в таблице 3.

Таблица 3

Значения предела повторяемости при вероятности Р = 0,95

Диапазон измерений, мг/дм ³	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %	
от 0,05 до 0,50 вкл.	11	
св. 0,5 до 1,0 вкл.	7	

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Таблица 4

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений, мг/дм ³	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %
от 0,05 до 0,50 вкл.	17
св. 0,5 до 1,0 вкл	11

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

12. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АНАЛИЗА

12.1. Результат анализа X_{cp} в документах, предусматривающих его использование, может быть представлен в виде: $X_{cp} \pm \Delta$, P = 0.95,

где Δ - показатель точности методики.

Значение Δ рассчитывают по формуле: $\Delta = 0.01 \cdot \delta \cdot X_{cp}$.

Значение δ приведено в таблице 1.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: $X_{cp} \pm \Delta_n$, P = 0.95, при условии $\Delta_n < \Delta$,

где X_{cp} - результат анализа, полученный в соответствии с прописью методики;

 \pm $\dot{\Delta}_{\scriptscriptstyle J}$ - значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов анализа.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

- количество результатов параллельных определений, использованных для расчета результата анализа;
- способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

12.2. В том случае, если массовая концентрация фосфат-ионов в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы массовая концентрация фосфат-ионов соответствовала регламентированному диапазону.

Результат анализа X_{cp} в документах, предусматривающих его использование, может быть представлен в виде: $X_{cp} \pm \Delta'$, P = 0.95,

где $\pm \Delta'$ - значение характеристики погрешности результатов анализа, откорректированное на величину погрешности взятия аликвоты.

13. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ АНАЛИЗА ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

- оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности)

13.1. Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры K_{κ} рассчитывают по формуле:

$$K_{\kappa} = \left| X_{op}' - X_{op} - C_{o} \right|$$

где X'_{cp} - результат анализа массовой концентрации фосфат-ионов в пробе с известной добавкой - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 11.

 X_{cp} - результат анализа массовой концентрации фосфат-ионов в исходной пробе - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 11.

Норматив контроля K рассчитывают по формуле:

$$\mathcal{K} = \sqrt{\triangle_{A,X_{a_0}^*}^2 + \triangle_{A,X_{a_0}}^2},$$

где $\Delta_{x_{x_{x_{x}}}}$, $\Delta_{x_{x_{x_{x}}}}$ - значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие массовой концентрации фосфат-ионов в пробе с известной добавкой и в исходной пробе соответственно.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения $\Delta_{\pi} = 0.84 \cdot \Delta$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
 (2)

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.2. Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры K_{κ} рассчитывают по формуле:

$$K_{\mathbf{x}} = |C_{\mathbf{c}\mathbf{y}} - C|$$

где C_{cp} - результат анализа массовой концентрации фосфат-ионов в образце для контроля - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 11;

C - аттестованное значение образца для контроля.

Норматив контроля K рассчитывают по формуле:

$$K = \Delta_{n}$$

где $\pm \Delta_{\pi}$ - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_{\pi} = 0.84 \cdot \Delta$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \le K \tag{3}$$

При невыполнении условия (3) контрольную процедуру повторяют. При повторном невыполнении условия (3) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

Приложение (рекомендуемое)

Форма записи результатов анализа

Проба	Наименование компонента	Результат определения	Расхождение между параллельными определениями		Результат
			Фактическое	Допускаемое	анализа
1	2	3	4	5	6
		1.			
		2.			
		среднее.			

СОДЕРЖАНИЕ

- 1. Принцип метода.
- 2. Приписанные характеристики погрешности измерений и ее составляющих.
- 3. Средства измерений, вспомогательное оборудование, материалы, реактивы...
- 4. Условия безопасного проведения работ
- 5. Требования к квалификации операторов
- 6. Условия выполнения измерений
- 7. Отбор и хранение проб воды
- 8. Подготовка к выполнению измерений

- 9. Устранение мешающих влияний
- 10. Выполнение измерений
- 11. Обработка результатов измерений
- 12. Оформление результатов анализа
- 13. Контроль качества результатов анализа при реализации методики в лаборатории.

Приложение. Форма записи результатов анализа.