

ВСТУПИТЕЛЬНЫЕ ЭКЗАМЕНЫ И ОЛИМПИАДЫ ПО ХИМИИ В МОСКОВСКОМ УНИВЕРСИТЕТЕ: 2007

Под общей редакцией проф. Н.Е. Кузьменко и проф. В.И. Теренина

Издательство Московского университета 2008

Авторский коллектив:

- Н.Е. Кузьменко, профессор, докт. физ.-мат. наук
- В.И. Теренин, профессор, докт. хим. наук
- О.Н. Рыжова, доцент, канд. пед. наук
- О.В. Архангельская, доцент, канд. хим. наук
- В.В. Еремин, профессор, докт. физ.-мат. наук
- Н.В. Зык, профессор, докт. хим. наук
- С.И. Каргов, доцент, канд. хим. наук
- Л.И. Ливанцова, доцент, канд. хим. наук
- Г.Н. Мазо, доцент, канд. хим. наук
- И.В. Морозов, доцент, канд. хим. наук
- В.Г. Ненайденко, профессор, докт. хим. наук
- М.В. Обрезкова, доцент, канд. хим. наук
- С.Б. Осин, доцент, канд. хим. наук

Вступительные экзамены и олимпиады по химии в Московском университете: 2007 / Под общей редакцией проф. Н. Е. Кузьменко и проф. В.И. Теренина. – М.: Изд-во Моск. ун-та, 2008. – 106 с.

ISBN 978-5-211-05480-6

Цель данного пособия – подготовка абитуриентов к сдаче письменных вступительных экзаменов по химии в Московский государственный университет им. М. В. Ломоносова. Оно продолжает серию пособий и сборников, которые Московский университет издает ежегодно с 1990 года.

В пособии представлены все варианты экзаменационных билетов по химии, предлагавшиеся на вступительных экзаменах на все факультеты МГУ в 2007 году, а также задания университетской олимпиады «Ломоносов-2007», конкурса «Покори Воробьевы горы-2007» и 41-ой Международной Менделеевской олимпиады школьников по химии. Для каждого варианта приведены подробные решения заданий или же ответы и указания к решению.

Пособие предназначено для школьников старших классов, абитуриентов и учителей химии.

УДК 54 ББК 24

ISBN 978-5-211-05480-6

© Кузьменко Н.Е., Теренин В.И., 2008.

Содержание 3

СОДЕРЖАНИЕ

От редакто	оров
Экзаменац	ционные билеты по химии 2007 г.
	Химический факультет 8 Биологический факультет 12 Факультет фундаментальной медицины 16 Факультет биоинженерии и биоинформатики 20 Факультет почвоведения 24 Факультет наук о материалах 28 Геологический факультет 29 Физико-химический факультет 31
Примеры (олимпиадных заданий 2007 года
	Конкурс «Покори Воробьевы горы». 33 Олимпиада «Ломоносов-2007». 35 Международная Менделеевская олимпиада 39
Решения и	ответы
	Химический факультет 45 Биологический факультет 51 Факультет фундаментальной медицины 59 Факультет биоинженерии и биоинформатики 64 Факультет почвоведения 70 Факультет наук о материалах 74 Геологический факультет 76 Физико-химический факультет 77 Конкурс «Покори Воробьевы горы» 81 Олимпиада «Ломоносов-2007» 85 Международная Менделеевская олимпиада 90
	а вступительных экзаменов по химии для поступающих . М.В. Ломоносова
Рекоменду	у <mark>емая литература </mark>

4______От редакторов

ОТ РЕДАКТОРОВ

Редакторам настоящего пособия часто и в различных аудиториях приходится встречаться со школьниками и абитуриентами, с их родителями, а также с учителями и методистами; отвечать на разнообразные вопросы, связанные не только с теоретическими разделами химии или решением химических задач, но и с правилами приема в МГУ и другие вузы, с проведением вступительных экзаменов. При этом мы нередко сталкиваемся с настороженным отношением старшеклассников и их родителей к возможности поступления в МГУ, в особенности для абитуриентов с периферии¹. Задают вопросы о несоответствии программы вступительных экзаменов («Программа по химии для поступающих в МГУ» представлена в конце книги) и школьного курса химии, о «нерешаемых» задачах на вступительных экзаменах. Чтобы ответить на подобные вопросы и, по возможности, разрушить представления о том, что в МГУ или другие ведущие отечественные вузы поступить невозможно, мы решили написать к настоящему пособию более развернутое предисловие.

Для начала — немного истории. В 2004 году Ученый Совет Московского университета модернизировал традиционные правила приема, что явилось отражением новой политики университета в области привлечения абитуриентов. В качестве стратегической альтернативы единому государственному экзамену (ЕГЭ)² Московский университет предложил развивать *систему предметных олимпиад* различного уровня, победители и призеры которых получают ощутимые преимущества при поступлении в государственные вузы. Так, например, на химический факультет *без вступительных экзаменов* зачисляются победители и призеры заключительного этапа Всероссийской химической олимпиады и Международной Менделеевской олимпиады школьников по химии. Наряду с этим, начиная с 2004 года победителям 3-го (регионального — областного, краевого или республиканского) и 4-го (федерального окружного) этапов Всероссийской химической олимпиады на вступительных экзаменах *по химии* стали *засчитывать высший балл*.

Кроме того, МГУ целенаправленно развивает свою внутриуниверситетскую систему предметных олимпиад и конкурсов как инструмент отбора абитуриентов. Так,

¹ В действительности, кроме москвичей, на всех факультетах МГУ учатся студенты практически из всех регионов России; например, 70% зачисленных на химический факультет в 2007 году составляют периферийные российские, а также иностранные студенты.

.

 $^{^2}$ Московский университет считает стратегию повсеместного внедрения ЕГЭ в нашей стране ошибочной и не засчитывает результаты ЕГЭ в качестве результатов конкурсных испытаний при поступлении в МГУ.

От редакторов 5

начиная с 2005 года, в середине мая проводится многопредметная (в том числе — по математике, химии, физике, литературе и русскому языку) олимпиада «Ломоносов» для школьников выпускных классов, которая юридически приравнена к третьему этапу Всероссийской олимпиады, поэтому победителям по каждому предмету засчитывается максимальная оценка по этой дисциплине на вступительных экзаменах. Проведение олимпиады «Ломоносов» значительно облегчает поступление в наш университет одаренным школьникам со всей России.

В этом году уже четвертый раз подряд реализуется совместный проект МГУ и газеты «Московский комсомолец» – конкурс под названием «Покори Воробьевы горы». По условию этого конкурса, российские школьники из числа выпускников могут, преодолев отборочный заочный тур, приехать в Москву (или в ряд других городов; например в 2007 году кроме Москвы это были Нижний Новгород, Красноярск, Волгоград и Челябинск)³ и принять участие в финальном очном туре. В результате в 2005 году только на химический факультет МГУ были зачислены 10 победителей этого конкурса, в 2006 – 12 победителей, в 2007 году – 13. Все они – выпускники школ из различных регионов России (Камчатка, Калмыкия, Башкортостан, Республика Коми, Краснодарский край, Архангельская, Вологодская, Калужская, Кировская, Московская, Оренбургская, Тамбовская, Тверская, Тульская, Рязанская, Ярославская и Челябинская области).

Таким образом, уже через систему предметных олимпиад и конкурсов большое число выпускников школ, искренне увлеченных химической наукой, имеют реальную возможность поступить в лучшие вузы страны. В настоящем пособии мы приводим образцы заданий олимпиады «Ломоносов-2007», конкурса «Покори Воробьевы горы-2007» и 41-ой Международной Менделеевской олимпиады школьников по химии (Минск, 2007 г.). Для каждого из этих заданий приведены подробные решения и методический разбор.

И, конечно же, кроме олимпиад и конкурсов, в МГУ традиционно в первой половине июля проводятся вступительные экзамены. С 1990 года университет перешел на систему письменных экзаменов по химии и ежегодно публикует экзаменационные задания для всех факультетов в форме методических разработок. Кроме того, авторскими коллективами химического факультета подготовлены и опубликованы учебные пособия [5, 6], в которых представлены все экзаменационные задания с решениями за период с 1990 по 2005 г.

Настоящее пособие продолжает предыдущие и состоит из двух частей. В первой приведены абсолютно все экзаменационные варианты, которые предлагались абитуриентам МГУ в 2007 году. Они сгруппированы по факультетам (химический, биологический, фундаментальной медицины, биоинженерии и биоинформатики, почвоведе-

_

³ Важно отметить, что участие «Московского комсомольца» в этом проекте не ограничивается информационно-рекламной поддержкой. МК финансирует проезд каждого финалиста (а также одного взрослого-сопровождающего) к месту проведения очного тура, проживание и питание.

6 От редакторов

ния, наук о материалах, геологический, физико-химический). Здесь же представлены образцы олимпиадных и конкурсных заданий (задачи олимпиад столь высокого уровня, к которым, безусловно, относится Международная Менделеевская олимпиада, в подобном тематическом сборнике представлены впервые).

Вторая часть пособия содержит решения, ответы и указания. Как правило, решения с подробными комментариями приведены для двух из каждых четырех вариантов. При анализе предлагаемых экзаменационных заданий (в первую очередь это относится к так называемым «цепочкам превращений») надо иметь в виду, что многие задачи допускают несколько решений, поэтому решения, приведенные в пособии, не всегда могут рассматриваться как эталонные и единственные. Именно поэтому при рассмотрении экзаменационных работ абитуриентов принимаются любые химически грамотные ответы, совсем не обязательно совпадающие с решениями, подготовленными составителями задач.

На всех факультетах МГУ экзаменационный билет по химии содержит 10 заданий, охватывающих значительную часть разделов «Программы по химии для поступающих в МГУ». В билете указана максимальная оценка (в баллах) за каждое задание. Это так называемые *технические баллы*, которые затем *трансформируются в десятибалльную оценку* (химический факультет, факультеты биоинженерии и биоинформатики, наук о материалах, почвоведения, биологический и геологический) или *пятибалльную оценку* (факультет фундаментальной медицины). Предлагаемые в экзаменационных билетах вопросы и задачи оцениваются дифференцированно в зависимости от уровня сложности, т.е. числа и характера логических операций, необходимых для получения конечного результата. Как правило, в каждом варианте задания расположены по возрастанию сложности.

Первое задание требует от абитуриента только простого воспроизведения материала, имеющегося в школьных учебниках и включенного в программу для поступающих в вузы. Оно оценивается максимальной оценкой в 1 балл.

Типовые расчетные или «качественные» задания (обычно пункты 2-5 билета) оцениваются максимальной оценкой 2 балла. По уровню сложности они совпадают с теми вопросами, которые предлагаются учащимся в школьных учебниках после усвоения материала, изложенного в том или ином параграфе.

Расчетная задача, состоящая из двух-трех логических операций (как правило, шестой пункт экзаменационного билета) оценивается максимально в 3 балла. Два следующих пункта (7 и 8) имеют такую же оценку. Для ответа на поставленные в этих пунктах вопросы требуется показать знание свойств нескольких классов органических или неорганических соединений, умение их обобщить и на этой основе выбрать правильный и оптимальный алгоритм получения конечного результата.

Два последних пункта экзаменационного билета включают комбинированные задачи, как бы составленные из нескольких типовых задач по неорганической и органической химии. Их максимальная оценка равна 4 баллам.

От редакторов 7

При проверке работ экзаменаторы положительно оценивают каждый «шаг» абитуриента в правильном направлении; так, например, за четырехбалльное задание абитуриент может получить 0; 0.5; 1; 1.5; ... 3.5 или 4 балла. Обратим внимание читателей на *очень важное обстоятельство* — как при пятибалльной, так и при десятибалльной системе выставления окончательной оценки, *максимальная оценка* (5 или 10) может быть получена абитуриентом даже в том случае, если в работе им допущены некоторые неточности или незначительные ошибки.

Если сумма полученных баллов оказывается полуцелой (например, 18.5), то по правилам арифметики она всегда округляется «вверх» до целого числа (19), а значит – в пользу абитуриента!

Предельная сумма технических баллов, которую абитуриент может набрать на экзамене, равна 25. При *пятибалльной* системе высшей оценке «5» соответствуют суммы баллов 23-25, оценке «4» - 18-22, оценке «3» - 13-17, неудовлетворительная оценка «2» - меньше 12 баллов.

В рамках *десятибалльной* системы оценке «10» соответствуют суммы баллов 24-25, оценке «9» - 22-23, оценке «8» - 19-21, оценке «7» - 17-18, оценке «6» - 14-16, оценке «5» - 12-13, неудовлетворительной оценке «2» соответствует сумма баллов 11 и меньше.

И последнее замечание – последнее по порядку, но не по значимости. Для решения письменных экзаменационных заданий необходима хорошая теоретическая подготовка, поэтому кроме школьных учебников вам понадобятся дополнительные пособия и справочники. Наши рекомендации приведены в конце книги.

Искренне желаем всем абитуриентам успехов на конкурсных вступительных экзаменах и уверены, что работа с нашим пособием поможет достижению поставленной цели!

> Н.Е. Кузьменко В.И. Теренин

25 октября 2007 г.

Вариант CO-2007-III-1

- 1. Почему нельзя тушить горящий магний углекислотным огнетушителем? Ответ подтвердите уравнением реакции.
- **2.** В результате каталитической дегидроциклизации некоторого алкена был получен 1,4-диметилбензол. Приведите возможную структурную формулу и название исходного углеводорода.
- **3.** В соединении NY_3X массовая доля азота составляет 8.24%, а в соединении $NY_2X 9.09$ %. Установите формулы этих веществ.
- 4. Напишите четыре уравнения реакций, характеризующих химические свойства молочной (2-гидроксипропановой) кислоты.
- **5.** Образец, полученный после полимеризации $26\ \Gamma$ стирола, содержит $1.018\cdot 10^{21}$ макромолекул. Стирол, не вступивший в реакцию, способен обесцветить $160\ \Gamma$ 3%-ного водного раствора брома. Вычислите среднюю молярную массу полистирола.
- **6.** Реакция выражается уравнением $2NO + Cl_2 \rightarrow 2NOCl$. В замкнутом сосуде смешали 0.1 моль NO и 0.2 моль Cl_2 . Считая реакцию элементарной, определите, как и во сколько раз изменится скорость реакции к моменту времени, когда прореагирует 20% хлора.
- 7. Смесь перманганата калия и нитрата алюминия прокалили. Газообразные продукты пропустили через 250 г 4%-ной азотной кислоты. Не поглотилось 672 мл газов (н.у.), а массовая доля азотной кислоты увеличилась до 6.85%, причем азотистой кислоты в растворе обнаружено не было. Определите массовые доли солей в исходной смеси.
- **8.** Смесь фенола и неизвестного амина массой 15.95 г может прореагировать с 1568 мл (н.у.) хлороводорода или же с 24 г 15%-ного раствора гидроксида натрия. Предложите структурные формулы трех изомеров этого амина.
- **9.** Напишите уравнения реакций, соответствующих следующим превращениям (первой указана степень окисления атома в одном из реагентов, далее в одном из продуктов, который, в свою очередь, является реагентом для последующей стадии):

$$Si^{+4} \rightarrow P^0 \rightarrow Br^{-1} \rightarrow P^{+3} \rightarrow Mn^{+2} \rightarrow Na^+ \rightarrow S^{-2}$$
.

$$C \longleftarrow B \longleftarrow A \longrightarrow$$
 алкен \longrightarrow изомер $B \longrightarrow$ изомер C изомер A

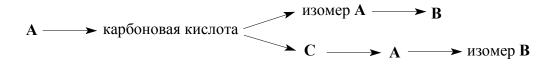
Вариант CO-2007-III-2

- 1. Почему натрий хранят в керосине? Ответ подтвердите уравнением реакции.
- **2.** В результате каталитической дегидроциклизации некоторого алкена был получен 1,2,3-триметилбензол. Приведите возможную структурную формулу и название исходного углеводорода.
- **3.** В соединении PYX_3 массовая доля фосфора составляет 30.39%, а в соединении $PY_3X_4 18.90\%$. Установите формулы веществ.
- **4.** Напишите четыре уравнения реакций, характеризующих химические свойства винной кислоты (1,2-дигидроксиэтандикарбоновая-1,2 или 2,3-дигидроксибутан-диовая кислота).
- **5.** Образец, полученный полимеризацией 10.5 г пропена, содержит $8.827 \cdot 10^{20}$ макромолекул. Пропен, не вступивший в реакцию, способен обесцветить 79 г 6%-ного водного раствора перманганата калия. Вычислите среднюю молярную массу полипропилена.
- **6.** Реакция выражается уравнением $2NO + O_2 \rightarrow 2NO_2$. В замкнутом сосуде смешали 0.4 моль NO и 0.4 моль O_2 . Считая реакцию элементарной, определите, как и во сколько раз изменится скорость реакции к моменту времени, когда прореагирует 25% кислорода.
- 7. Смесь дихромата калия и нитрата железа(II) прокалили. Газообразные продукты пропустили через 250 г 4%-ной азотной кислоты. Все газы поглотились, а массовая доля азотной кислоты увеличилась до 6.85%, при этом азотистой кислоты в растворе обнаружено не было. Определите массовые доли солей в исходной смеси.
- **8.** Смесь n-крезола (4-метилфенола) и неизвестного амина массой 16.52 г может прореагировать с 1792 мл (н.у.) хлороводорода или с 50.4 г 10%-ного раствора гидроксида калия. Предложите структурные формулы трех изомеров этого амина.
- **9.** Напишите уравнения реакций, соответствующих следующим превращениям (первой указана степень окисления атома в одном из реагентов, далее в одном из продуктов, который, в свою очередь, является реагентом для последующей стадии):

$$Ba^{+2} \rightarrow C^{+2} \rightarrow Cu^0 \rightarrow Cl^{-1} \rightarrow H^{+1} \rightarrow N^{-3} \rightarrow S^{+6}.$$

Вариант CO-2007-III-3

- 1. Почему нельзя сушить сероводород пропусканием через концентрированную серную кислоту? Напишите уравнение реакции.
- **2.** В результате каталитической дегидроциклизации некоторого алкена был получен 1,2,4-триметилбензол. Приведите возможную структурную формулу и название исходного углеводорода.
- **3.** В соединении Cl_2Y_2X массовая доля хлора составляет 52.59%, а в соединении $Cl_2YX 59.66\%$. Установите формулы этих веществ.
- **4.** Напишите четыре уравнения реакций, характеризующих химические свойства салициловой (*орто*-гидроксибензойной) кислоты.
- **5.** Образец, полученный после полимеризации 12.5~ г винилхлорида, содержит $7.743 \cdot 10^{20}$ макромолекул. Мономер, не вступивший в реакцию, способен обесцветить 100~ г 3.2%-ного водного раствора брома. Вычислить среднюю молярную массу поливинилхлорида.
- **6.** Реакция выражается уравнением $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$. В замкнутом сосуде смешали 0.5 моль CO и 0.4 моль O_2 . Считая реакцию элементарной, определите, как и во сколько раз изменится скорость реакции к моменту времени, когда прореагирует 40% кислорода.
- 7. Смесь нитрата железа(III) и перманганата калия прокалили. Газообразные продукты пропустили через 150 г 4%-ной азотной кислоты. Не поглотилось 784 мл газов (н.у.), а массовая доля азотной кислоты увеличилась до 9.77%. Азотистой кислоты в растворе обнаружено не было. Определите массовые доли солей в исходной смеси.
- **8.** Смесь *м*-крезола (3-метилфенола) и неизвестного амина массой 15.06 г может прореагировать с 1344 мл (н.у.) хлороводорода или же с 40 г 8%-ного раствора гидроксида натрия. Предложите структурные формулы трех изомеров этого амина.
- **9.** Напишите уравнения реакций, соответствующих следующим превращениям (первой указана степень окисления атома в одном из реагентов, далее в одном из продуктов, который, в свою очередь, является реагентом для последующей стадии):


$$Mg^0 \rightarrow N^{-3} \rightarrow H^{+1} \rightarrow N^{-3} \rightarrow C^{+4} \rightarrow Mg^{2+} \rightarrow N^{+5}.$$

$$\mathbf{B} \longleftarrow \mathbf{A} \longrightarrow$$
 алкен $\longrightarrow \mathbf{C} \longrightarrow \mathbf{D} \longrightarrow$ изомер \mathbf{A}

Вариант СО-2007-ІІІ-4

- 1. Почему в водном растворе ацетата калия лакмус приобретает синюю окраску?
- **2.** В результате каталитической дегидроциклизации некоторого алкена был получен 1,3,5-триметилбензол. Приведите возможную структурную формулу и название исходного углеводорода.
- **3.** В соединении PY_3X_3 массовая доля фосфора составляет 37.8%, а в соединении $PY_3X_2 47\%$. Установите формулы этих веществ.
- **4.** Напишите четыре уравнения реакций, характеризующих химические свойства глутаминовой (2-аминопентандиовой) кислоты.
- **5.** Образец, полученный после полимеризации $5.6\ \Gamma$ этена, содержит $7.227\cdot 10^{20}\$ макромолекул. Этен, не вступивший в реакцию, способен обесцветить $100\ \Gamma$ 3.16%-ного водного раствора перманганата калия. Вычислите среднюю молярную массу полиэтилена.
- **6.** Реакция выражается уравнением $2SO_2 + O_2 \rightarrow 2SO_3$. В замкнутом сосуде смешали 2 моль SO_2 и 3 моль O_2 . Считая реакцию элементарной, определите, как и во сколько раз изменится скорость реакции к моменту времени, когда прореагирует 30% кислорода.
- 7. Смесь дихромата калия и нитрата хрома(II) прокалили. Газообразные продукты пропустили через 150 г 4%-ной азотной кислоты. Все газы поглотились, а массовая доля азотной кислоты увеличилась до 6.38%, причем азотистой кислоты в растворе обнаружено не было. Определите массовые доли солей в исходной смеси.
- **8.** Смесь n-крезола (4-метилфенола) с неизвестным амином массой 23.16 г может прореагировать с 2688 мл (н.у.) хлороводорода или же с 32 г 15%-ного раствора гидроксида натрия. Предложите структурные формулы трех изомеров этого амина.
- **9.** Напишите уравнения реакций, соответствующих следующим превращениям (первой указана степень окисления атома в одном из реагентов, далее в одном из продуктов, который, в свою очередь, является реагентом для последующей стадии):

$$Al^0 \to N^{-3} \to H^{+1} \to S^{+6} \to Br^0 \to I^0 \to Al^{+3}.$$

Вариант БА-2007-1

- 1. Приведите уравнение реакции электролиза раствора соли, при проведении которого на катоде и аноде выделяются газы.
- 2. Ванилин, содержащийся в эфирных маслах многих растений, имеет следующее строение

Приведите два уравнения реакций, характеризующие различные химические свойства этого вещества.

- **3.** Смесь силана, кислорода и азота в объемном соотношении 1:3:1 подожгли и охладили до 20°С. Определите среднюю молярную массу конечной газовой смеси.
- **4.** Установите возможную структурную формулу алкана, если известно, что в нем число связей между атомами углерода на одиннадцать меньше, чем число связей между атомами углерода и водорода, а его хлорирование приводит только к одному монохлорпроизводному.
- **5.** Рассчитайте количество теплоты, которое потребуется для разложения дихромата калия, если в результате реакции образовалось 48 г кислорода. Теплоты образования $K_2Cr_2O_7$, K_2CrO_4 и Cr_2O_3 равны 2063, 1398 и 1141 кДж/моль соответственно.
- **6.** К 200 мл раствора, содержащего смесь двух хлоридов железа, добавили раствор карбоната натрия до прекращения выпадения осадка. Полученный осадок, масса которого составила 22.3 г, отфильтровали и обработали избытком раствора соляной кислоты, при этом выделилось 2.44 л газа (нормальное давление, 25°C). Определите молярные концентрации веществ в исходном растворе.
- **7.** Расшифруйте схему превращений. Напишите уравнения соответствующих реакций, укажите условия их протекания.

$$Cl^{+1}$$
 Cl^{-1} Cl^{-1} Cl^{-1} Cl^{-1}

8. Дана схема превращений:

$$C_8H_8 \rightarrow C_8H_{10}O_2 \rightarrow C_8H_8Br_2 \rightarrow C_8H_6 \rightarrow C_8H_5Na \rightarrow C_8H_6 \rightarrow C_8H_8O.$$

Напишите структурные формулы указанных веществ и уравнения соответствующих реакций.

- **9.** Смесь гидрида лития и фосфида алюминия прореагировала с 212 мл воды. Масса полученного при этом раствора оказалась на 74 г меньше суммы масс исходных твердых веществ и воды, а массовая доля образовавшейся соли составила 25.5%. Определите количества веществ гидрида и фосфида в исходной смеси.
- **10.** Для полного гидролиза навески дипептида, состоящего из природных аминокислот, требуется 20 мл раствора соляной кислоты с молярной концентрацией 2.0 моль/л или 24 г 10%-ного раствора гидроксида натрия. Определите массу навески и возможную формулу дипептида, если известно, что в нем массовая доля углерода в 1.2 раза больше массовой доли кислорода, а массовая доля азота в два раза больше массовой доли водорода.

Вариант БА-2007-2

- 1. Приведите уравнение реакции электролиза раствора соли, при проведении которого образуется четыре вещества.
- 2. Цингиберен, содержащийся в имбире, имеет следующее строение:

Приведите два уравнения реакций, характеризующие различные химические свойства этого вещества.

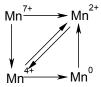
- **3.** Смесь водорода, кислорода и азота в объемном соотношении 1:1:1 подожгли и охладили до 20°C. Определите среднюю молярную массу конечной газовой смеси.
- **4.** Установите возможную структурную формулу алкана, если известно, что в нем число связей между атомами углерода в четыре раза меньше, чем число связей между атомами углерода и водорода, а его хлорирование приводит к двум монохлорпроизводным.
- **5.** Рассчитайте количество теплоты, которое выделится при разложении хлората калия, если в результате реакции образовалось 9.6 г кислорода. Теплоты образования KClO₃ и KCl равны 391 и 437 кДж/моль соответственно.
- **6.** К 200 мл раствора, содержащего смесь хлорида железа(II) и хлорида алюминия, добавили раствор сульфида натрия до прекращения выпадения осадка. Полученный осадок, масса которого составила 12.2 г, отфильтровали и обработали избытком раствора бромоводородной кислоты, при этом выделилось 1.22 л газа (нормальное давление, 25°C). Определите молярные концентрации веществ в исходном растворе.
- 7. Расшифруйте схему превращений, запишите уравнения соответствующих реакций и укажите условия их протекания:

8. Дана схема превращений:

$$C_3H_6 \rightarrow C_3H_8O_2 \rightarrow C_3H_6Cl_2 \rightarrow C_3H_6 \rightarrow C_3H_7Br \rightarrow C_5H_{10}O_2 \rightarrow C_2H_3O_2Na + C_3H_8O.$$

Приведите структурные формулы указанных веществ, запишите уравнения соответствующих реакций.

- **9.** Смесь гидрида калия и фосфида цинка прореагировала с 379 мл воды. Масса полученного при этом раствора оказалась на 87.5 г меньше суммы масс исходных твердых веществ и воды, а массовая доля образовавшейся соли составила 42.2%. Определите количества веществ гидрида и фосфида в исходной смеси.
- **10.** Для полного гидролиза навески дипептида, состоящего из природных аминокислот, требуется 20 мл раствора соляной кислоты с молярной концентрацией 3.0 моль/л или 33.6 г 15%-ного раствора гидроксида калия. Определите массу навески и возможную формулу дипептида, если известно, что в нем массовая доля углерода равна массовой доле кислорода, а массовая доля азота в два раза больше массовой доли водорода.


14

Вариант БА-2007-3

- 1. Приведите уравнение реакции электролиза раствора соли, при проведении которого концентрация соли увеличивается.
- 2. Эвгенол, содержащийся в гвоздичном масле, имеет следующее строение

Приведите два уравнения реакций, характеризующие различные химические свойства этого вещества.

- **3.** Смесь фосфина, кислорода и азота в объемном соотношении 1:3:1 подожгли и охладили до 20°C. Определите среднюю молярную массу конечной газовой смеси.
- **4.** Установите возможную структурную формулу алкана, если известно, что в нем число связей между атомами углерода в три раза меньше, чем число связей между атомами углерода, а его хлорирование приводит только к одному моно-хлорпроизводному.
- **5.** Рассчитайте количество теплоты, которое выделится при разложении дихромата аммония, если в результате реакции образовалось 5.6 г азота. Теплоты образования $(NH_4)_2Cr_2O_7$, Cr_2O_3 и H_2O равны 1808, 1141, и 286 кДж/моль соответственно.
- **6.** К 200 мл раствора, содержащего смесь сульфата железа(II) и сульфата алюминия, добавили раствор сульфита натрия до прекращения выпадения осадка. Полученный осадок, масса которого составила 16.92 г, отфильтровали и обработали избытком раствора соляной кислоты, при этом выделилось 2.2 л газа (нормальное давление, 25°C). Определите молярные концентрации веществ в исходном растворе.
- **7.** Расшифруйте схему превращений. Напишите уравнения соответствующих реакций и укажите условия их протекания:

8. Дана схема превращений:

$$C_3H_6Cl_2 \rightarrow C_3H_4 \rightarrow C_3H_6O \rightarrow C_4H_7ON \rightarrow C_4H_8O_3 \rightarrow C_4H_7O_2Br \rightarrow C_4H_5O_2K.$$

Напишите структурные формулы указанных веществ и уравнения соответствующих реакций.

- **9.** Смесь гидрида цезия и фосфида хрома прореагировала с 236.5 мл воды. Масса полученного при этом раствора оказалась на 86.5 г меньше суммы масс исходных твердых веществ и воды, а массовая доля образовавшейся соли составила 42.17%. Определите количества веществ гидрида и фосфида в исходной смеси.
- **10.** Для полного гидролиза навески дипептида, состоящего из природных аминокислот, требуется 15 мл раствора соляной кислоты с молярной концентрацией 2.0 моль/л или 18 г 10%-ного раствора гидроксида натрия. Определите массу навески и возможную формулу дипептида, если известно, что в нем массовая доля углерода в 3 раза больше массовой доли азота и в 7 раз больше массовой доли водорода.

Вариант БА-2007-4

- 1. Приведите уравнение реакции электролиза раствора соли, при проведении которого на аноде выделяется газ, а на катоде металл.
- 2. Метилсалицилат, содержащийся в коре березы, имеет следующее строение:

Приведите два уравнения реакций, характеризующие различные химические свойства этого вещества.

- **3.** Смесь аммиака, кислорода и азота в объемном соотношении 1:1:1 подожгли и охладили до 20°C. Определите среднюю молярную массу конечной газовой смеси.
- **4.** Установите возможную структурную формулу алкана, если известно, что в нем число связей между атомами углерода в шесть раз меньше, чем число связей между атомами углерода и водорода, а его хлорирование приводит только к одному моно-хлорпроизводному.
- **5.** Рассчитайте количество теплоты, которое выделится при разложении перманганата калия, если в результате реакции образовалось 64 г кислорода. Теплоты образования $KmnO_4$, K_2MnO_4 и MnO_2 равны 829, 1184, и 521 кДж/моль соответственно.
- **6.** К 200 мл раствора, содержащего смесь нитрата железа(II) и нитрата хрома(III), добавили раствор карбоната натрия до прекращения выпадения осадка. Полученный осадок, масса которого составила 30.15 г, отфильтровали и обработали избытком раствора серной кислоты, при этом выделилось 4.4 л газа (нормальное давление, 25°C). Определите молярные концентрации веществ в исходном растворе.
- **7.** Расшифруйте схему превращений, напишите уравнения соответствующих реакций и укажите условия их протекания:

8. Дана схема превращений:

$$C_7H_6Cl_2 \rightarrow C_7H_6O \rightarrow C_7H_9NO_2 \rightarrow C_7H_6O_2 \rightarrow C_7H_5NO_4 \rightarrow C_7H_8NO_2Cl \rightarrow C_7H_6NO_2Na$$
.

Напишите структурные формулы указанных веществ и уравнения соответствующих реакций.

- **9.** Смесь гидрида натрия и карбида алюминия прореагировала с 211.6 мл воды. Масса полученного при этом раствора оказалась на 28.4 г меньше суммы масс исходных твердых веществ и воды, а массовая доля образовавшейся соли составила 5.9%. Определите количества веществ гидрида и карбида в исходной смеси.
- **10.** Для полного гидролиза навески дипептида, состоящего из природных аминокислот, требуется 20 мл раствора соляной кислоты с молярной концентрацией 2.5 моль/л или 28 г 15%-ного раствора гидроксида калия. Определите массу навески и возможную формулу дипептида, если известно, что в нем массовая доля водорода в 9 раз меньше массовой доли углерода и в 1.75 раз меньше массовой доли азота.

- 1. Приведите уравнение реакции, в ходе которой из двух жидких при комнатной температуре веществ получается кислота.
- 2. Запишите уравнение реакции, протекающей в водном растворе между гидросульфитом бария и гидроксидом бария.
- **3.** Изобразите структуру элементарного звена поливинилхлорида. Рассчитайте среднюю степень полимеризации для образца этого полимера, относительная молекулярная масса которого составляет 300000.
- 4. Запишите уравнения реакций, соответствующие следующей схеме превращений:

$$SiO_2 \xrightarrow{Mg} X \xrightarrow{Cl_2} Y \xrightarrow{H_2O} Z \xrightarrow{C} Si$$

Укажите условия протекания всех реакций.

- **5.** Природное душистое вещество 2-гексил-3-фенилпропеналь является одним из компонентов аромата жасмина. Приведите структурную формулу этого соединения и рассчитайте его элементный состав (в масс.%).
- **6.** После пропускания 8.96 л (н.у.) смеси этана и ацетилена в избыток аммиачного раствора оксида серебра было получено 72 г осадка. Рассчитайте массовые доли газов в исходной смеси.
- 7. Элементарная реакция между веществами **A** и **B** описывается уравнением $2\mathbf{A} + \mathbf{B} \to \mathbf{C}$. Начальные концентрации веществ **A** и **B** составляли 0.3 и 0.5 моль/л соответственно. Константа скорости этой реакции при 25°C равна 0.8 $\pi^2/(\text{моль}^2 \cdot \text{мин})$. Рассчитайте начальную скорость реакции и скорость в момент времени, когда концентрация вещества **A** уменьшится на 0.1 моль/л.
- **8.** Получите в несколько стадий не менее шести натриевых солей различных органических кислот, используя в качестве исходного вещества глюкозу и любые неорганические реагенты. Приведите уравнения реакций и условия их протекания.
- **9.** Смесь массой 3.23 г, состоящую из нитрита щелочного металла и оксида меди(I) в равных мольных долях, обработали избытком концентрированной азотной кислоты, в результате чего выделился газ оксид азота(IV) объемом 0.896 л (н.у.). Полученный раствор выпарили, сухой остаток прокалили до постоянной массы. Рассчитайте массовые доли веществ в конечном твердом продукте.
- **10.** На представленной ниже схеме реакции 1, 2 и 3 протекают без изменения степеней окисления элементов, реакции 6, 7 и 8 окислительно-восстановительные, а реакции 4 и 5 произвольного характера:

Определите неизвестные вещества, приведите уравнения соответствующих реакций и условия их протекания

- 1. Приведите уравнение реакции, в ходе которой из твердого и жидкого при комнатной температуре веществ получается кислота.
- **2.** Запишите уравнение реакции, протекающей в водном растворе между сульфитом натрия и оксидом серы(IV).
- **3.** Изобразите структуру элементарного звена политетрафторэтилена. Рассчитайте относительную молекулярную массу для образца полимера, средняя степень полимеризации которого составляет 5000.
- 4. Запишите уравнения реакций, соответствующие следующей схеме превращений:

CO
$$\xrightarrow{\text{KOH}} \mathbf{X} \xrightarrow{\text{HCl(p-p)}} \mathbf{Y} \xrightarrow{\text{KMnO}_4} \mathbf{Z} \xrightarrow{\text{Mg}} \mathbf{CO}$$

Укажите условия протекания всех реакций.

- **5.** Природное душистое вещество 4-(*пара*-гидроксифенил)бутанон-2 является основным компонентом аромата малины. Приведите структурную формулу этого соединения и рассчитайте его элементный состав (в масс. %).
- **6.** После пропускания 6.72 л (н.у.) смеси пропена и бутадиена-1,3 в бромную воду максимальная масса прореагировавшего брома составила 64 г. Рассчитайте массовые доли газов в исходной смеси.
- 7. Элементарная реакция между веществами **A** и **B** описывается уравнением $2\mathbf{A} + \mathbf{B} \to \mathbf{C}$. Начальные концентрации веществ **A** и **B** составляли 0.3 и 0.5 моль/л соответственно, а скорость в начальный момент времени равнялась 0.036 моль/(л·мин). Рассчитайте константу скорости реакции и скорость в момент времени, когда концентрация вещества **B** уменьшится на 0.1 моль/л.
- **8.** Получите в несколько стадий не менее шести различных спиртов, используя в качестве исходного вещества этилен и любые неорганические реагенты. Приведите уравнения реакций и условия их протекания.
- **9.** Смесь массой 6.22 г, состоящую из нитрита щелочного металла и нитрата железа(II) в равных мольных долях, обработали избытком концентрированной азотной кислоты, в результате чего выделился газ оксид азота(IV) объемом 1.344 л (н.у.). Полученный раствор выпарили, сухой остаток прокалили до постоянной массы. Рассчитайте массовые доли веществ в конечном твердом продукте.
- **10.** На представленной ниже схеме реакции 1, 2 и 3 протекают без изменения степеней окисления элементов, реакции 6, 7 и 8 окислительно-восстановительные, а реакции 4 и 5 произвольного характера:

$$\begin{array}{c|c}
X1 & 2 \\
1 & \downarrow & \\
X2 & 3
\end{array}$$
NaOH $\stackrel{4}{\longrightarrow}$ Z $\stackrel{5}{\longrightarrow}$ C₂H₅Cl $\stackrel{6}{\longrightarrow}$ $\stackrel{Y1}{\searrow}$ 8

Определите неизвестные вещества, приведите уравнения соответствующих реакций и условия их протекания.

- 1. Приведите уравнение реакции, в ходе которой из двух газообразных при комнатной температуре веществ получается неорганическая соль.
- 2. Запишите уравнение реакции, протекающей в водном растворе между гидросульфитом калия и гидроксидом калия.
- **3.** Изобразите структуру элементарного звена полистирола. Рассчитайте среднюю степень полимеризации для образца этого полимера, относительная молекулярная масса которого составляет 300000.
- 4. Запишите уравнения реакций, соответствующие следующей схеме превращений:

$$C \xrightarrow{SiO_2} X \xrightarrow{NaOH} Y \xrightarrow{HCl(p-p)} Z \xrightarrow{(KOHII)} CO$$

Укажите условия протекания всех реакций.

- **5.** Природное душистое вещество 4-метоксибензиловый спирт является одним из компонентов аромата аниса. Приведите структурную формулу этого соединения и рассчитайте его элементный состав (в масс. %).
- **6.** После пропускания 13.44 л (н.у.) смеси пропана и пропина в избыток аммиачного раствора хлорида меди (I) было получено 30.9 г осадка. Рассчитайте массовые доли газов в исходной смеси.
- 7. Элементарная реакция между веществами **A** и **B** описывается уравнением $\mathbf{A} + \mathbf{B} \to \mathbf{C}$. Начальные концентрации веществ **A** и **B** составляли 0.3 и 0.5 моль/л соответственно. Константа скорости этой реакции при 25°C равна 0.8 л/(моль·мин). Рассчитайте начальную скорость реакции и определите, чему равнялись концентрации реагентов, когда скорость реакции стала равна 0.002 моль/(л·мин).
- **8.** Получите в несколько стадий не менее шести различных органических сложных эфиров, используя в качестве исходного вещества глюкозу и любые неорганические реагенты. Приведите уравнения реакций и условия их протекания.
- **9.** Смесь массой 7.71 г, состоящую из нитрита щелочного металла и карбоната меди(I) в равных мольных долях, обработали избытком концентрированной азотной кислоты, в результате чего выделилось 3.36 л газовой смеси, состоящей из оксида азота(IV) и оксида углерода(IV) (н.у.). Полученный раствор выпарили, сухой остаток прокалили до постоянной массы. Рассчитайте массовые доли веществ в конечном твердом продукте.
- **10.** На представленной ниже схеме реакции 1, 2 и 3 протекают без изменения степеней окисления элементов, реакции 6, 7 и 8 окислительно-восстановительные, а реакции 4 и 5 произвольного характера:

Определите неизвестные вещества, приведите уравнения соответствующих реакций и условия их протекания.

- 1. Приведите уравнение реакции, в ходе которой из двух твердых при комнатной температуре веществ получается неорганическая соль.
- 2. Запишите уравнение реакции, протекающей в водном растворе между гидрофосфатом натрия и гидроксидом натрия.
- **3.** Изобразите структуру элементарного звена полипропилена. Рассчитайте величину относительной молекулярной массы для образца полимера, средняя степень полимеризации которого составляет 5000.
- 4. Запишите уравнения реакций, соответствующие следующей схеме превращений:

$$C \xrightarrow{CaO} X \xrightarrow{H_2} Y \xrightarrow{KMnO_4} Z \xrightarrow{C} CO$$

Укажите условия протекания всех реакций.

- **5.** Природное душистое вещество 3-фенилпропеналь является одним из компонентов аромата корицы. Приведите структурную формулу этого соединения и рассчитайте его элементный состав (в масс. %).
- **6.** После пропускания 10.5 г смеси пропана и ацетилена в бромную воду максимальная масса прореагировавшего брома составила 48 г. Рассчитайте массовые доли газов в исходной смеси.
- 7. Элементарная реакция между веществами **A** и **B** описывается уравнением **A** + **B** \rightarrow 2**C**. Начальные концентрации веществ **A**, **B** и **C** составляли 0.3, 0.5 и 0 моль/л соответственно, а скорость в начальный момент времени равнялась 0.036 моль/(л·мин). Рассчитайте константу скорости реакции и скорость в момент времени, когда концентрация вещества **C** достигнет 0.1 моль/л.
- **8.** Получите в несколько стадий не менее шести различных спиртов, используя в качестве исходного вещества пропен и любые неорганические реагенты. Приведите уравнения реакций и условия их протекания.
- 9. Смесь массой 9.51 г, состоящую из нитрита щелочного металла и оксида железа(II, III) в равных мольных долях, обработали избытком концентрированной азотной кислоты, в результате чего выделился газ оксид азота(IV) объемом 2.016 л (н.у.). Полученный раствор выпарили, сухой остаток прокалили до постоянной массы. Рассчитайте массовые доли веществ в конечном твердом продукте.
- **10.** На представленной ниже схеме реакции 1, 2 и 3 протекают без изменения степеней окисления элементов, реакции 6, 7 и 8 окислительно-восстановительные, а реакции 4 и 5 произвольного характера:

$$\begin{array}{c|c}
X1 & 2 \\
1 & \downarrow & \\
X2 & 3
\end{array} \quad H_2O \xrightarrow{4} Z \xrightarrow{5} C_2H_6O_2 \xrightarrow{7} \begin{array}{c}
Y1 \\
\downarrow 8 \\
Y2
\end{array}$$

Определите неизвестные вещества, приведите уравнения соответствующих реакций и условия их протекания.

- **1.** Напишите графические формулы соединений Ca(HCO₃)₂ и HClO₃.
- 2. Напишите уравнения следующих реакций:

$$Na_2SO_3 + KMnO_4 + H_2SO_4 \rightarrow ...$$
;
 $C_6H_5CH_3 + K_2Cr_2O_7 + H_2SO_4 \rightarrow ...$.

- **3.** Даны четыре твердых вещества в пробирках без надписей: $CaCO_3$, Na_2SO_4 , KC1 и $NaNO_3$. При помощи каких реагентов можно их различить, используя минимальное число реакций? Напишите соответствующие уравнения.
- **4.** Константа диссоциации муравьиной кислоты составляет $2.05 \cdot 10^{-4}$. Вычислите степень ее диссоциации, если концентрация раствора равна: а) 0.2M; б) 0.4M.
- **5.** Смесь карбида и нитрида кальция растворили в воде, при этом выделился газ в 9.4 раза тяжелее водорода. Определите массовую долю карбида в исходной смеси.
- **6.** Газовую смесь массой 24.0 г и объемом 14.76 л (27°С, 1 атм), состоящую из этана и неизвестного газа, объемная доля которого составляет 25%, пропустили через водный раствор перманганата калия. Определите массу выпавшего осадка.
- 7. Напишите уравнения реакций, соответствующие следующей схеме превращений:

$$C_{7}H_{5}O_{2}Br$$

$$6 5 1 3 4$$

$$C_{7}H_{8}O_{2}NCI \leftarrow C_{7}H_{5}O_{4}N \leftarrow C_{6}H_{5}CO_{2}H \rightarrow C_{7}H_{5}O_{2}Na \rightarrow C_{9}H_{10}O_{2}$$

$$\downarrow 2$$

$$C_{8}H_{8}O_{2}$$

- **8.** В результате обработки смеси нитрита щелочного металла и оксида меди(I) массой 6.46 г с равными мольными долями избытком раствора концентрированной азотной кислоты выделилось 1.792 л оксида азота(IV) (н.у.). Полученный раствор выпарили, сухой остаток прокалили до постоянной массы. Рассчитайте объемные доли газов, выделившихся в процессе прокаливания.
- 9. В левом треугольнике представленной ниже схемы все реакции протекают без изменения степеней окисления элементов, в правом треугольнике все реакции окислительно-восстановительные:

$$A$$

$$CaHPO_4 \xrightarrow{4} B \xrightarrow{5} P_4 \xrightarrow{6} \begin{bmatrix} \Gamma \\ 8 \end{bmatrix}$$

Определите неизвестные вещества и напишите уравнения соответствующих химических реакций.

10. Смесь изомерных спиртов массой 43.2 г нагрели с избытком уксусной кислоты в присутствии следов серной кислоты. В результате реакции получено 52.02 г смеси сложных эфиров. Установите строение спиртов, если известно, что выход одного из эфиров составил 75%, второго – 50%, а масса первого спирта больше массы другого в пять раз.

- **1.** Напишите графические формулы соединений H₃PO₄ и NaHSO₃.
- 2. Напишите уравнения следующих реакций:

$$Cl_2 + SO_2 + H_2O \rightarrow ...$$
;
 $H_2C=CH_2 + KMnO_4 + H_2O \rightarrow ...$.

- **3.** Даны четыре твердых вещества в пробирках без надписей: $NaHSO_3$, NH_4NO_3 , $CaCl_2$ и K_2SO_4 . При помощи каких реагентов можно их различить, используя минимальное число реакций? Напишите соответствующие уравнения.
- **4.** Константа диссоциации уксусной кислоты составляет $1.86 \cdot 10^{-5}$. Вычислите степень ее диссоциации, если концентрация раствора равна: а) 0.1М; б) 0.6М.
- **5.** Смесь карбида и гидрида кальция растворили в воде, при этом выделился газ в 4.7 раза легче кислорода. Определите массовую долю гидрида кальция в исходной смеси.
- **6.** Газовую смесь массой 10.24 г и объемом 4.92 л (27°С, 1 атм), состоящую из пропана и неизвестного газа, объемная доля которого составляет 60%, пропустили через водный раствор перманганата калия. Определите массу выпавшего осадка.
- 7. Напишите уравнения реакций, соответствующих следующей схеме превращений:

$$C_{8}H_{9}Br$$

$$6 5 \uparrow 1 3 4$$

$$C_{8}H_{10}O \leftarrow C_{8}H_{8} \leftarrow C_{6}H_{5}CH_{2}CH_{2}OH \rightarrow C_{8}H_{8}O \rightarrow C_{8}H_{11}O_{2}N$$

$$\downarrow 2$$

$$C_{8}H_{8}O_{2}$$

- **8.** В результате обработки смеси нитрита щелочного металла и оксида железа(II) массой 4.06 г с равными мольными долями избытком раствора концентрированной азотной кислоты выделилось 1.344 л оксида азота(IV) (н.у.). Полученный раствор выпарили, сухой остаток прокалили до постоянной массы. Рассчитайте объемные доли газов, выделившихся в процессе прокаливания.
- **9.** В левом треугольнике представленной ниже схемы все реакции протекают без изменения степеней окисления элементов, в правом треугольнике все реакции окислительно-восстановительные:

Определите неизвестные вещества и напишите уравнения соответствующих химических реакций.

10. Смесь изомерных карбоновых кислот массой 21.12 г нагрели с избытком метанола в присутствии следов серной кислоты. В результате реакции получено 18.36 г смеси сложных эфиров. Установите строение карбоновых кислот, если известно, что выход одного из эфиров составил 80%, второго – 50%, а масса первого эфира больше массы другого в восемь раз.

- 1. Напишите графические формулы соединений Mg(HCO₃)₂ и HClO₄.
- 2. Напишите уравнения следующих реакций:

$$\begin{aligned} Na_2SO_3 + KMnO_4 + H_2O &\rightarrow \dots; \\ CH_3 - HC = CH_2 + K_2Cr_2O_7 + H_2SO_4 &\rightarrow \dots. \end{aligned}$$

- **3.** Дано четыре твердых вещества в пробирках без надписей: NH_4Cl , $Ba(NO_3)_2$, $NaHCO_3$, NaCl. При помощи каких реагентов можно их различить, используя минимальное число реакций? Напишите соответствующие уравнения.
- **4.** Константа диссоциации бензойной кислоты равна $6.6 \cdot 10^{-5}$. Вычислите степень ее диссоциации, если концентрация раствора равна: а) 0.3M; б) 0.7M.
- **5.** Смесь нитрида и гидрида кальция растворили в воде, при этом выделился газ в 2.9 раза тяжелее гелия. Определите массовую долю нитрида кальция в исходной смеси.
- **6.** Газовую смесь массой 7.1 г и объемом 4.89 л (25°С, 1 атм), состоящую из метана и неизвестного газа, объемная доля которого составляет 75%, пропустили через водный раствор перманганата калия. Определите массу выпавшего осадка.
- 7. Напишите уравнения реакций, соответствующие следующей схеме превращений:

- **8.** В результате обработки избытком раствора концентрированной азотной кислоты 20.8 г смеси оксида меди(I) и нитрита, содержащего однозарядный катион (вещества взяты в одинаковых количествах), выделилось 8.96 л оксида азота(IV) (н.у.). Полученный раствор выпарили, сухой остаток прокалили до постоянной массы. Рассчитайте объемные доли газов, выделившихся в процессе прокаливания.
- **9.** В левом треугольнике представленной ниже схемы все реакции протекают без изменения степени окисления элементов, в правом треугольнике все реакции окислительно-восстановительные:

Определите неизвестные вещества и напишите уравнения соответствующих химических реакций.

10. Смесь изомерных карбоновых кислот массой 52.8 г нагрели с избытком метанола в присутствии следов серной кислоты. В результате реакции получено 45.9 г смеси сложных эфиров. Установите строение карбоновых кислот, если известно, что выход одного из эфиров составил 80%, второго – 50%, а масса первой кислоты больше массы другой в пять раз.

- **1.** Напишите графические формулы соединений $(NH_4)_2HPO_4$ и H_2SO_4 .
- 2. Напишите уравнения следующих реакций:

$$\begin{array}{l} H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow \dots \; ; \\ C_6H_5NO_2 + Al + NaOH \rightarrow \dots \; . \end{array}$$

- **3.** Дано четыре твердых вещества в пробирках без надписей: $(NH_4)_2SO_4$, Na_2SO_4 , $CaSO_3$, KNO_3 . При помощи каких реагентов можно их различить, используя минимальное число реакций? Напишите соответствующие уравнения.
- **4.** Константа диссоциации азотистой кислоты составляет $4.5 \cdot 10^{-4}$. Вычислите степень ее диссоциации, если концентрация раствора равна: а) 0.2M; б) 0.4M.
- **5.** Смесь карбидов алюминия и кальция растворили в воде, при этом выделился газ в 1.6 раза легче кислорода. Определите массовую долю карбида алюминия в исходной смеси.
- **6.** Газовую смесь массой 12.0 г и объемом 7.26 л (22°С, 1 атм), состоящую из бутана и неизвестного газа, объемная доля которого составляет 60%, пропустили через водный раствор перманганата калия. Определите массу выпавшего осадка.
- 7. Напишите уравнения реакций, соответствующих следующей схеме превращений:

$$\begin{array}{c} C_{3}H_{5}O_{2}Br\\ \hline 6 & 5 & \uparrow 1 & 3 & 4\\ C_{7}H_{12}O_{4} \leftarrow C_{3}H_{4}O_{4} \leftarrow HO-CH_{2}-CH_{2}-COOH \rightarrow C_{3}H_{5}O_{3}Na \rightarrow C_{4}H_{8}O_{2}\\ \downarrow 2\\ C_{3}H_{4}O_{2} \end{array}$$

- **8.** В результате обработки 15.85 г смеси нитрита щелочного металла и оксида железа(II,III) с равными мольными долями избытком раствора концентрированной азотной кислоты выделилось 3.36 л оксида азота(IV) (н.у.). Полученный раствор выпарили, сухой остаток прокалили до постоянной массы. Рассчитайте объемные доли газов, выделившихся в процессе прокаливания.
- 9. В левом треугольнике представленной ниже схемы все реакции протекают без изменения степеней окисления элементов, в правом треугольнике все реакции окислительно-восстановительные:

Определите неизвестные вещества и напишите уравнения соответствующих химических реакций.

10. Смесь изомерных спиртов массой 18.0 г нагрели с избытком пропионовой кислоты в присутствии следов серной кислоты. В результате реакции получено 25.056 г смеси сложных эфиров. Установите строение спиртов, если известно, что выход одного из эфиров составил 75%, второго – 60%, а масса первого из эфиров больше массы другого в пять раз.

- **1.** Напишите структурные формулы двух межклассовых изомеров, соответствующих формуле $C_4H_8O_2$.
- **2.** Приведите один атом и один анион с электронной конфигурацией $1s^22s^22p^63s^23p^6$.
- 3. Приведите четыре уравнения химических реакций бромоводородной кислоты с неорганическими веществами различных классов.
- **4.** На полное сгорание 6 л неизвестного газа расходуется 15 л кислорода, при этом образуется 12 л оксида углерода(IV) и 6 л водяных паров (все объемы измерены при одинаковых условиях). Установите формулу газа.
- **5.** При сливании 25 мл 2 М раствора HCl и 136.7 мл 4.2%-ного раствора NaOH (пл. 1.045 г/см^3) выделилось 2.8 кДж теплоты. Рассчитайте тепловой эффект реакции нейтрализации (в кДж/моль).
- **6.** В замкнутый сосуд поместили H_2 и I_2 . При некоторой температуре установилось равновесие $I_2(газ) + H_2(газ) \rightleftharpoons 2HI(газ)$, причем в равновесной смеси содержалось 0.4 моль H_2 , 0.5 моль I_2 и 0.9 моль HI. Рассчитайте значение константы равновесия реакции и определите количества исходных веществ.
- 7. Напишите уравнения реакций, соответствующих следующей схеме превращений:

$$NaOH \xrightarrow{CO_2} A \xrightarrow{CO_2, H_2O} B \xrightarrow{H_2SO_4} B \xrightarrow{BaCl_2} \Gamma \xrightarrow{AgNO_3} I \xrightarrow{t^0} E$$

Определите неизвестные вещества A - E, если известно, что все они содержат натрий.

$$C_3H_6O_2 \overset{3}{\longleftarrow} C_2H_4O_2 \overset{2}{\longleftarrow} C_2H_4O \overset{1}{\longleftarrow} C_2H_2 \overset{4}{\longrightarrow} C_6H_6 \overset{5}{\longrightarrow} C_6H_5O_2N \overset{6}{\longrightarrow} C_6H_7N.$$

- **9.** Металл массой 9.6 г растворили в концентрированной азотной кислоте, при этом вся кислота восстановилась до оксида азота(IV) и было получено 150 мл 1 М раствора соли. Определите неизвестный металл и напишите уравнение его реакции с концентрированной серной кислотой.
- **10.** Газ, полученный при растворении 16 г гидрида лития в воде, смешали с 1.4 л бутадиена и 11.2 л пропина (н.у.) и пропустили над нагретым платиновым катализатором (реакция протекает количественно). Рассчитайте объемные доли газов в полученной после реакции смеси и ее среднюю молярную массу.

- **1.** Напишите структурные формулы двух межклассовых изомеров, соответствующих формуле C_5H_{10} .
- **2.** Приведите один атом и один анион с электронной конфигурацией $1s^22s^22p^6$.
- 3. Приведите четыре уравнения химических реакций гидроксида бария с неорганическими веществами различных классов.
- **4.** На полное сгорание 1.5 л неизвестного газа расходуется 4.5 л кислорода и образуется 3 л оксида углерода(IV) и 4.5 л водяных паров (все объемы измерены при одинаковых условиях). Установите формулу газа.
- **5.** При сливании 50 мл 0.6 М раствора КОН и 32.39 мл 6%-ного раствора НВг (пл. 1.042 г/см^3) выделилось 1.4 кДж теплоты. Рассчитайте тепловой эффект реакции нейтрализации (в кДж/моль).
- **6.** В замкнутый сосуд поместили 0.25 моль H_2 и 0.05 моль I_2 . При некоторой температуре установилось равновесие $I_2(\Gamma a3) + H_2(\Gamma a3) \rightleftharpoons 2HI(\Gamma a3)$, причем константа равновесия $K_p = 4$. Определите равновесные количества веществ.
- 7. Напишите уравнения реакций, соответствующих следующей схеме превращений:

Определите неизвестные вещества $\mathbf{A} - \mathbf{E}$, если известно, что все они содержат медь.

$$C_2H_5Cl \xleftarrow{1} C_2H_6 \xrightarrow{2} C_2H_4 \xrightarrow{3} C_2H_6O \xrightarrow{4} C_4H_8O_2 \xrightarrow{5} C_2H_4O_2 \xrightarrow{6} C_2H_3O_2Na.$$

- **9.** Металл массой 0.7 г растворили в разбавленной серной кислоте, при этом получили 250 мл 0.05 М раствора соли. Определите неизвестный металл и напишите уравнение его реакции с разбавленной азотной кислотой.
- **10.** Газ, полученный при растворении 65 г цинковых опилок в избытке раствора щелочи, смешали с 2 л пропена и 5.2 л ацетилена (н.у.) и пропустили над нагретым платиновым катализатором (реакция протекает количественно). Рассчитайте объемные доли газов в полученной после реакции смеси и ее среднюю молярную массу.

- **1.** Напишите структурные формулы двух межклассовых изомеров, соответствующих формуле $C_2H_5O_2N$.
- **2.** Приведите один атом и один катион с электронной конфигурацией $1s^22s^22p^63s^23p^6$.
- 3. Приведите четыре уравнения химических реакций азотной кислоты с неорганическими веществами различных классов.
- **4.** На полное сгорание 6 л неизвестного газа расходуется 21 л кислорода и образуется 12 л оксида углерода(IV) и 18 л водяных паров (все объемы измерены при одинаковых условиях). Установите формулу газа.
- **5.** При сливании 80 мл 2 М раствора НІ и 6.47 мл 10%-ного раствора КОН (пл. 1.082 г/см³) выделилось 0.7 кДж теплоты. Рассчитайте тепловой эффект реакции нейтрализации (в кДж/моль).
- **6.** В замкнутый сосуд поместили 0.05 моль H_2 и 0.025 моль I_2 . При некоторой температуре установилось равновесие $I_2(\text{газ}) + H_2(\text{газ}) \rightleftharpoons 2HI(\text{газ})$, причем к этому моменту прореагировало 20% водорода. Вычислите значение константы равновесия реакции.
- 7. Напишите уравнения реакций, соответствующих следующей схеме превращений:

$$Cr \xrightarrow{\text{HCl}} A \xrightarrow{\text{KOH}} F \xrightarrow{\text{H}_2\text{O}_2} B \xrightarrow{\text{H}_2\text{N}_2, \text{KOH}} \Gamma \xrightarrow{\text{H}_2\text{SO}_4} J \xrightarrow{\text{H}_2\text{SO}_4, \text{K}_2\text{SO}_3} E$$

Определите неизвестные вещества A - E, если известно, что все они содержат хром.

$$C_3H_5O_2Na \xrightarrow{1} C_2H_6 \xrightarrow{2} C_2H_5Cl \xrightarrow{3} C_2H_4 \xrightarrow{4} C_2H_6O \xrightarrow{6} C_4H_{10}O$$

- **9.** Металл массой 26 г растворили в разбавленной серной кислоте и получили 2 л 0.2 М раствора соли. Определите неизвестный металл и напишите уравнение его реакции с концентрированной серной кислотой.
- **10.** Газ, полученный при растворении 48 г магниевых опилок в растворе соляной кислоты, смешали с 11.2 л бутадиена и 14 л этилена (н.у.) и пропустили над нагретым платиновым катализатором (реакция протекает количественно). Рассчитайте объемные доли газов в полученной после реакции смеси и ее среднюю молярную массу.

- **1.** Напишите структурные формулы двух межклассовых изомеров, соответствующих формуле C_2H_6O .
- **2.** Приведите один атом и один катион с электронной конфигурацией $1s^22s^22p^6$.
- 3. Приведите четыре уравнения химических реакций гидроксида калия с неорганическими веществами различных классов.
- **4.** На полное сгорание 10 л неизвестного газа расходуется 30 л кислорода и образуется по 20 л оксида углерода(IV) и водяных паров (все объемы измерены при одинаковых условиях). Установите формулу газа.
- **5.** При сливании 20 мл 1.75 М раствора HNO_3 и 9.2 мл 8%-ного раствора NaOH (пл. $1.087 \, \text{г/см}^3$) выделилось $1.12 \, \text{кДж}$ теплоты. Рассчитайте тепловой эффект реакции нейтрализации (в κ Дж/моль).
- **6.** В замкнутый сосуд поместили 0.01 моль H_2 и 0.005 моль I_2 . При некоторой температуре установилось равновесие $I_2(\text{газ}) + H_2(\text{газ}) \rightleftharpoons 2\text{HI}(\text{газ})$, причем к этому моменту в сосуде было обнаружено 0.004 моль HI. Вычислите константу равновесия реакции.
- 7. Напишите уравнения реакций, соответствующих следующей схеме превращений

$$H_2 + N_2 \xrightarrow{t^0, P} A \xrightarrow{O_2, \text{ Kat.}} F \xrightarrow{O_2} B \xrightarrow{O_2 + H_2O} \Gamma \xrightarrow{A} \mathcal{A} \xrightarrow{t^0} E$$

Определите неизвестные вещества A - E, если известно, что все они содержат азот.

$$C_2H_4 \xrightarrow{\quad 1\quad} C_2H_4Cl_2 \xrightarrow{\quad 2\quad} C_2H_2 \xrightarrow{\quad 3\quad} C_6H_6 \xrightarrow{\quad 4\quad} C_7H_8 \xrightarrow{\quad 5\quad} C_7H_6O_2 \xrightarrow{\quad 6\quad} C_7H_5O_2Na.$$

- **9.** Металл массой 4.32 г растворили в соляной кислоте и получили 800 мл 0.2 М раствора соли. Определите неизвестный металл и напишите уравнение его реакции с разбавленной азотной кислотой.
- **10.** Газ, полученный при растворении 14 г лития в воде, смешали с 5.6 л пропина и 2.8 л этилена (н.у.) и пропустили над нагретым платиновым катализатором (реакция протекает количественно). Рассчитайте объемные доли газов в полученной после реакции смеси и ее среднюю молярную массу.

- 1. Определите массу (в г) наночастицы серебра, состоящей из 700 атомов.
- 2. Приведите пример реакции, с помощью которой можно обнаружить этиленгликоль в присутствии этанола.
- **3.** В результате серии последовательных радиоактивных распадов нуклид 238 U превращается в нуклид 206 Pb. Сколько α и β -распадов включает эта серия ядерных превращений?
- **4.** Как из 3-метил-1-хлорбутана, не используя других органических реагентов, получить 2-метил-2-хлорбутан? Напишите уравнения реакций с указанием условий их проведения.
- **5.** Среди перечисленных веществ выберите по два окислителя и восстановителя: H_2O_2 , H_2S , $K_2Cr_2O_7$, I_2 . Напишите две окислительно-восстановительные реакции с участием выбранных вами веществ, протекающих в водном растворе, причём вещества не должны повторяться.
- 6. Напишите уравнения реакций, соответствующие приведенной схеме. Укажите условия их проведения.

$$P(0, H_2O, t^{\rho})$$
 $P(0) \longrightarrow P(1) \longrightarrow X \longrightarrow H_3PO_4 \longrightarrow K_2HPO_4 \longrightarrow K_4P_2O_7.$

- 7. В водном растворе метиламина CH_3NH_2 количество ионов OH^- в 10^4 раз превышает количество ионов H^+ . Определите pH раствора метиламина и молярную концентрацию этого раствора, если константа диссоциации CH_3NH_3OH составляет $1.4\cdot10^{-4}$ моль/л.
- 8. Дана схема превращений:

$$CH_4 \longrightarrow \mathbf{A} \longrightarrow CH_3CHO \xrightarrow{H_2, t^0 \text{ (Ni)}} \mathbf{F} \longrightarrow CH_3COOH \xrightarrow{P_2O_5} \mathbf{F}$$

Напишите структурные формулы веществ и уравнения соответствующих реакций с указанием условий их проведения.

- **9.** Уксусную кислоту массой 5.40 г поместили в сосуд объемом 5.40 л и нагрели до температуры 200°С. Давление паров при этом составило 43.7 кПа. Определите число молекул димера уксусной кислоты в газовой фазе и константу равновесия реакции димеризации уксусной кислоты.
- **10.** Электрохимическое фрезерование сплава (анодную обработку) проводят методом электролиза в водном растворе электролита. Рассчитайте время, необходимое для образования бороздки длиной 10 см, шириной 2 см и глубиной 0.2 см в латуни при токе 100 А и выходе реакции 50%. Состав латуни: 57% меди и 43% цинка (по молям); плотность латуни 8.16 г/см³.

Вариант ГБ-2007-1

- **1.** Для минерала *буртита* состава $CaSn(OH)_6$ укажите степень окисления олова и приведите графическую формулу.
- **2.** Среди следующих веществ: KBr, NH₄Cl, H₂O, KMnO₄ выберите соединение, обладающее только окислительными свойствами, и подтвердите свой выбор уравнением реакции.
- **3.** Определите массовую долю NaOH в 1.3 М растворе щелочи с плотностью 1.20 г/мл.
- 4. Напишите уравнения следующих реакций:

$$KMnO_4(тв) + HCl(конц) \rightarrow$$

AlBr₃ + $K_2CO_3 + H_2O \rightarrow$

- **5.** Приведите пример соли, из водного раствора которой выпадают осадки при добавлении как раствора щелочи, так и раствора $BaCl_2$. Напишите уравнения соответствующих реакций.
- **6.** Скорость некоторой реакции увеличивается в 3.5 раза при повышении температуры реакционной смеси на 10 градусов. Во сколько раз увеличится скорость реакции при повышении температуры от 30 до 85°C?
- 7. Напишите уравнения реакций, которые позволяют осуществить следующие превращения:

$$C_2H_6 \xrightarrow{Cl_2, h\nu} \mathbf{A} \xrightarrow{Na} \mathbf{B} \xrightarrow{Br_2, h\nu} \mathbf{C}.$$

Определите неизвестные вещества.

8. Приведите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$MnO_2 \rightarrow X \rightarrow KCl \rightarrow X \rightarrow KclO_3$$
.

- **9.** Приведите не менее трех способов получения бутанола-2. Укажите необходимые условия проведения синтеза (агрегатное состояние веществ, растворитель, катализатор, температура, давление).
- **10.** На смесь, состоящую из карбида кальция и карбоната кальция, подействовали избытком соляной кислоты, в результате чего были получены смесь газов с плотностью по воздуху 1.27 и раствор, при выпаривании которого образовался твердый остаток массой 55.5 г. Определите массу исходной смеси и массовые доли веществ в ней.

Вариант ГБ-2007-2

- **1.** В состав минерала *тарбуттита* входит основной фосфат цинка. Приведите его графическую формулу и укажите степень окисления фосфора.
- **2.** Среди следующих веществ: KI, Cl_2 , H_2O , $KMnO_4$ выберите соединение, обладающее только восстановительными свойствами, и подтвердите свой выбор уравнением реакции.
- **3.** Определите массовую долю HCl в 0.1 M растворе соляной кислоты с плотность 1.05 г/мл.
- 4. Напишите уравнения следующих реакций:

Zn+ HNO₃(pa
$$3\delta$$
) \rightarrow
CrCl₃ + KOH \rightarrow

- **5.** Приведите пример соли, из водного раствора которой при добавлении как раствора щелочи, так и раствора $AgNO_3$ выпадает осадок. Напишите уравнения соответствующих реакций.
- **6.** Скорость некоторой реакции увеличивается в 2.5 раза при повышении температуры реакционной смеси на 10° . Во сколько раз увеличится скорость реакции при повышении температуры от 25 до 55° C?
- **7.** Напишите уравнения реакций, которые позволяют осуществить следующие превращения:

$$C_3H_8 \xrightarrow{Cl_2, h\nu} \mathbf{A} \xrightarrow{Na} \mathbf{B} \xrightarrow{Br_2, h\nu} \mathbf{C}.$$

Определите неизвестные вещества.

8. Приведите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$ZnCO_3 \, \stackrel{t^o}{\longrightarrow} \, X_1 \stackrel{C,\,t^o}{\longrightarrow} \, X_2 \rightarrow ZnCl_2 \stackrel{NaOH \, изб.}{\longrightarrow} \, X_3,$$

где $X_1,\, X_2$ и X_3 – вещества, содержащие цинк.

- 9. Приведите не менее трех способов получения уксусной кислоты. Укажите необходимые условия проведения синтеза (агрегатное состояние веществ, растворитель, катализатор, температура, давление).
- **10.** На смесь, состоящую из карбида алюминия и карбоната бария, подействовали избытком азотной кислоты, в результате чего были получены смесь газов с плотностью по неону 0.94 и раствор, при выпаривании которого образовался твердый остаток массой 281.7 г. Определите массу исходной смеси и массовые доли веществ в ней.

1. Напишите уравнения реакций соединения

с бромистым водородом и с гидроксидом натрия.

- **2.** Предложите четыре реакции, в которые вступает сульфит натрия; две из которых реакции обмена, а две окислительно-восстановительные.
- **3.** В системе установилось равновесие $H_2 + Cl_2 \rightleftharpoons 2HCl$. Изменится ли состояние системы а) при увеличении объема, б) при введении дополнительного количества хлора? Ответ поясните.
- **4.** Какие вещества и при каких условиях вступили в реакцию, если в результате их взаимодействия образовались следующие соединения (указаны все продукты реакции без стехиометрических коэффициентов):
 - a) $H_3PO_4 + HI$;
 - 6) $N_2 + Cu + H_2O$;
 - B) $MnBr_2 + H_2O$.
- **5.** Определите формулу соединения, содержащего 29.167% азота, 8.33% водорода, 12.5% углерода и 50% кислорода по массе. Изобразите графическую формулу этого соединения.
- 6. Напишите уравнения реакций, соответствующих схеме превращений:

$$X_1$$
 Cl_2 5 $CuCl_2$ 6 $CuCl_2$

- **7.** В раствор нитрата серебра погрузили цинковую пластинку массой 120 г. Через некоторое время масса пластинки увеличилась на 5.7% и далее не изменялась. Определите массу нитрата серебра в исходном растворе.
- 8. Напишите уравнения реакций, соответствующих следующей схеме превращений:

$$X_1 \xrightarrow{1} X_2 \xrightarrow{2} C_7H_8 \xrightarrow{3} X_3 \xrightarrow{4} X_4 \xrightarrow{5} X_5 \xrightarrow{6} C_6H_{10}N_2Cl_2$$

- 9. К 17 г натриевой соли одноосновной карбоновой кислоты добавили избыток концентрированной серной кислоты. Объем выделившегося газа, измеренный при 0.97 атм и 20°С, составил 6.2 л (пл. 1.13 г/л). Осадок, образовавшийся в результате взаимодействия такого же количества соли с избытком аммиачного раствора оксида серебра, выделили и высушили. Определите исходную соль, молярную массу газа и массу образовавшегося осадка. Напишите уравнения всех протекающих в этих процессах реакций.
- **10.** Фосфор, полученный из 46.5 г фосфата кальция, сожгли в избытке кислорода и к полученному продукту сгорания добавили 295.5 мл 8%-ного раствора гидроксида натрия с плотностью 1.1 г/мл. Определите состав полученного раствора в массовых долях.

1. Напишите уравнения реакций соединения

с хлористым водородом и с гидроксидом калия.

- **2.** Предложите четыре реакции, в которые вступает бромид калия; две из которых реакции обмена, а две окислительно-восстановительные.
- **3.** В системе установилось равновесие $2SO_2 + O_2 \rightleftharpoons 2SO_3$. Изменится ли состояние системы а) при увеличении давления, б) при введении катализатора? Ответ поясните.
- **4.** Какие вещества и при каких условиях вступили в реакцию, если в результате их взаимодействия образовались следующие соединения (указаны все продукты реакции без стехиометрических коэффициентов):
 - a) $CO_2 + NO_2 + H_2O$;
 - б) $H_2SO_4 + HBr$;
 - B) $KNO_3 + H_2O$.
- **5.** Определите формулу соединения, содержащего 28.05% натрия, 3.66% водорода, 29.27% углерода и 39.02% кислорода по массе. Изобразите графическую формулу этого соединения.
- 6. Напишите уравнения реакций, соответствующих схеме превращений:

- **7.** В раствор ацетата серебра погрузили медную пластинку массой 55 г. Через некоторое время масса пластинки увеличилась на 6.9% и далее не изменялась. Определите массу ацетата серебра в исходном растворе.
- 8. Напишите уравнения реакций, соответствующих схеме превращений:

$$X_1 \xrightarrow{1} C_7H_8 \xrightarrow{2} X_2 \xrightarrow{3} X_3 \xrightarrow{4} X_4 \xrightarrow{5} X_5 \xrightarrow{6} C_6H_6$$

- **9.** К 21.84 г калиевой соли одноосновной карбоновой кислоты добавили избыток концентрированной серной кислоты. Выделившийся газ объемом 6.2 л (1 атм, 17°С, пл. 1.1742 г/л) пропустили через нагретую трубку с пероксидом натрия. Определите исходную соль, изменение массы трубки, напишите уравнения всех протекающих реакций.
- **10.** Фосфор, полученный из 63.4 г фосфата кальция, содержащего 12% примесей, сожгли в избытке кислорода. Полученный продукт сгорания добавили к 105 мл 15% раствора гидроксида натрия с плотностью 1.15 г/мл. Определите состав полученного раствора в массовых долях.

Задания заочного тура конкурса «Покори Воробьевы горы» - 2007⁴

- **1.** Напишите по одному уравнению реакций, которые протекают при взаимодействии ионов а) SO_3^{2-} и $Cr_2O_7^{2-}$; б) Cl^- и MnO_4^- .
- **2.** В молекуле алкана содержится x первичных, y вторичных и z четвертичных атомов углерода. Найдите число третичных атомов углерода.
- **3.** Напишите структурные формулы трёх кислородосодержащих органических соединений, которые содержат 40% углерода по массе и имеют разную молекулярную массу.
- **4.** Чему равны средняя молярная масса смеси водорода и азота с равными массовыми долями и масса 50 л этой смеси при температуре 25°C и нормальном давлении?
- **5.** Какие два вещества вступили в реакцию, если в результате их взаимодействия образовались следующие соединения (указаны все продукты реакций без стехиометрических коэффициентов):
 - a) FeCl₂;
 - б) $Cr(OH)_3$;
 - в) $Mg(H_2PO_4)_2$;
 - г) NaCl + HCl;
 - $_{\rm J}$) ${\rm H_3PO_4 + HF}$;
 - e) NaOH + NH₃;
 - ж) $Na_2CO_3 + O_2$;
 - 3) $Na_2S + CO$?

Напишите полные уравнения реакций.

- **6.** При сжигании фосфина в избытке кислорода выделилось 236.0 кДж теплоты. Продукты реакции растворили в 200 мл 1.50 М раствора гидроксида калия (плотность 1.07 г/мл). Рассчитайте массовые доли веществ в полученном растворе. Теплоты образования фосфина, оксида фосфора (V) и жидкой воды равны –5.40, 1492 и 285.8 кДж/моль соответственно.
- 7. В реактор для синтеза метанола поместили 4 моль CO и 1 моль H_2 при температуре 450 °C. Выход реакции составил 20 %. Во сколько раз изменилось давление в реакторе? Сколько моль CO нужно добавить к 1 моль H_2 при той же температуре, чтобы выход реакции составил 25%?
- **8.** Под стеклянным колпаком помещают в открытых сосудах 300 г насыщенного раствора сульфата магния и 30 г безводного раствора сульфата натрия. В результате поглощения паров воды сульфат натрия превращается в кристаллогидрат $Na_2SO_4 \cdot 10H_2O$. Определите массу кристаллогидрата сульфата магния $MgSO_4 \cdot 7H_2O$,

⁴ Для поступающих на факультеты почвоведения и геологический обязательными являлись первые десять заданий. Для поступающих на факультеты химический, биологический, фундаментальной медицины, наук о материалах, биоинженерии и биоинформатики были обязательны все тринадцать заданий.

выпавшего из раствора после окончания гидратации сульфата натрия. Растворимость сульфата магния равна 35.5 г на 100 г воды.

9. Дана схема превращений:

Напишите структурные формулы веществ и уравнения соответствующих реакций. Укажите условия проведения реакций.

- **10.** Электрохимическое никелирование (нанесение никелевого покрытия) проводят методом электролиза в подкисленном растворе сульфата никеля(II) с никелевым анодом. Рассчитайте толщину никелевого покрытия, которое можно нанести на изделие с площадью поверхности 0.05 м² за 15 минут при силе тока 800 A и выходе реакции 60%. Плотность никеля равна 8.9 г/см³. Какие процессы протекают на аноде и катоде?
- 11. Эквимолярную смесь двух изомерных дибромпропанов нагрели со спиртовым раствором щёлочи. Выделившийся газ пропустили в аммиачный раствор оксида серебра, при этом выпало 14.7 г осадка. При обработке такого же количества исходной смеси водным раствором щёлочи получена смесь, которая может прореагировать с 2.45 г свежеприготовленного гидроксида меди(II). Какие дибромпропаны и в каком количестве находятся в исходной смеси?
- 12. Дана схема превращений:

$$\mathbf{A} \xrightarrow{\text{1 моль H}_2} \mathbf{F} \xrightarrow{\text{1 моль Br}_2} \mathbf{B} \xrightarrow{\text{KMnO}_4} \mathbf{\Gamma} \xrightarrow{\text{2 моль NH}_3} \mathbf{\Pi}$$
,

где \mathbf{A} — углеводород, в котором массовая доля углерода составляет 92.308%. Напишите структурные формулы веществ \mathbf{A} — $\mathbf{\mathcal{I}}$ и уравнения соответствующих реакций.

13. Вещества **A**, **Б** и **B** имеют общую формулу $C_4H_8O_3$. При нагревании веществ **A** и **Б** образуются соответственно вещества Γ и Π , являющиеся изомерами, причём вещество Γ обесцвечивает, а вещество Π не обесцвечивает раствор брома в тетрахлориде углерода. При нагревании вещества **B** образуется вещество **E**, имеющее молярную массу вдвое большую, чем вещество Γ . Установите строение веществ **A** – **E**. Напишите уравнения протекающих реакций и объясните их.

Вариант 1

- **1.** Напишите по одному уравнению реакций, в которых газообразный хлор: а) восстанавливается; б) окисляется.
- 2. Напишите уравнение реакции, протекающей при добавлении 0.2 моль азотной кислоты к 0.1 моль фенола.
- **3.** При полном сжигании одного моля серы до оксида серы (IV) выделилось 297 кДж теплоты, а при полном окислении двух молей SO_2 до SO_3 выделилось 198 кДж. Рассчитайте теплоту образования SO_3 из простых веществ (в кДж/моль).
- **4.** В трех пробирках без этикеток находятся водные растворы азотной кислоты, нитрата аммония и нитрата серебра. Как с помощью одного реактива различить эти растворы? Напишите уравнения реакций и укажите их признаки.
- **5.** Реакция между водородом и иодом $H_{2(r)} + I_{2(r)} \rightarrow 2HI_{(r)}$ и обратная ей реакция имеют второй порядок. Как изменятся скорости прямой и обратной реакций, если концентрацию H_2 увеличить в 3 раза, а концентрацию HI B 2 раза? В какую сторону сместится равновесие в этом случае?
- **6.** При сплавлении со щелочью калиевой соли предельной одноосновной карбоновой кислоты образовалось 17.4 г углеводорода **A**, а при электролизе водного раствора такого же количества этой соли образовалось 17.1 г углеводорода **B**. Определите формулы веществ **A** и **B**.
- 7. Напишите уравнения реакций, соответствующих следующим схемам:
 - a) $Cu \rightarrow X \rightarrow Cu(OH)_2$;
 - б) $Cu \rightarrow Y \rightarrow CuO$;
 - B) $Cu \rightarrow \mathbb{Z} \rightarrow [Cu(NH_3)_2]Cl$.

Определите неизвестные вещества X, Y и Z.

8. Напишите уравнения химических реакций, соответствующие следующей схеме, и определите неизвестные вещества:

$$C_n(H_2O)_n \longrightarrow A \xrightarrow{ZnO} C_4H_6 \xrightarrow{Br_2} B \xrightarrow{KOH} C \xrightarrow{H_2} D \longrightarrow C_4H_6O_4.$$

В уравнениях приведите структурные формулы веществ и укажите условия проведения реакций.

- **9.** При термическом разложении 18.0 г органического вещества образовалось 8.96 л смеси газов (в пересчете на н.у.), имеющей плотность по водороду 18.0. После пропускания смеси через известковую воду объем газа уменьшился вдвое. Оставшееся газообразное вещество легче воздуха. При нагревании оно реагирует с железом, образуя летучее соединение, содержащее 28.6% железа по массе. Установите формулы всех перечисленных веществ и напишите уравнения всех реакций.
- **10.** Массовая доля углерода в неизвестном углеводороде **X** равна 94.12%. Этот углеводород, обладающий слабыми кислотными свойствами, способен образовать соль **Y**, в которой массовая доля металла составляет 65.98%. Определите структурные формулы веществ **X** и **Y**. Напишите уравнение превращения **X** в **Y** и уравнение полной каталитической гидратации **X**.

Вариант 2

- **1.** Напишите по одному уравнению реакций, в которых элементарная сера: а) восстанавливается; б) окисляется.
- 2. Напишите уравнение реакции, протекающей при добавлении 0.4 моль азотной кислоты к 0.2 моль толуола в присутствии серной кислоты.
- **3.** При полном окислении одного моля газообразного азота до NO_2 поглотилось 68 кДж теплоты, а при окислении четырех молей NO_2 до N_2O_5 выделилось 110 кДж. Рассчитайте теплоту образования N_2O_5 из простых веществ (в кДж/моль).
- **4.** В трех пробирках без этикеток находятся водные растворы гидроксида калия, фторида натрия и хлорида аммония. Как с помощью одного реактива различить эти растворы? Напишите уравнения реакций и укажите их признаки.
- **5.** Реакция между водородом и иодом $H_{2(r)} + I_{2(r)} \rightarrow 2HI_{(r)}$ и обратная ей реакция имеют второй порядок. Как изменятся скорости прямой и обратной реакций, если концентрацию I_2 увеличить в 2 раза, а концентрацию HI B 1.5 раза? В какую сторону сместится равновесие в этом случае?
- **6.** При сплавлении со щелочью калиевой соли предельной одноосновной карбоновой кислоты образовалось 17.6 г углеводорода **A**, а при электролизе водного раствора такого же количества этой соли образовалось 17.2 г углеводорода **B**. Определите формулы веществ **A** и **B**.
- 7. Напишите уравнения реакций, соответствующих следующим схемам:
 - a) Al \rightarrow **X** \rightarrow Al(OH)₃;
 - б) Al → \mathbf{Y} → Al₂O₃;
 - B) Al \rightarrow **Z** \rightarrow K[Al(OH)₄].

Определите неизвестные вещества X, Y и Z.

8. Напишите уравнения химических реакций, соответствующие следующей схеме, и определите неизвестные вещества:

$$C_n(H_2O)_m \xrightarrow{H_2O, HCl} \mathbf{A} \longrightarrow C_3H_6O_3 \xrightarrow{HBr} \mathbf{B} \xrightarrow{KOH} \mathbf{C} \xrightarrow{H_2SO_4(pa36.)} \mathbf{D} \longrightarrow C_5H_8O_2.$$

В уравнениях приведите структурные формулы веществ и укажите условия проведения реакций.

- **9.** При термическом разложении 19.2 г неорганического вещества образовалось 13.44 л смеси газов (в пересчете на н.у.), имеющей плотность по водороду 13.0. После пропускания смеси над твердым гидроксидом калия объем газа уменьшился в 1.5 раза. Оставшееся газообразное вещество легче воздуха. В определенных условиях оно реагирует с натрием, образуя ионное соединение, содержащее 59.0% натрия по массе. Установите формулы всех перечисленных веществ и напишите уравнения всех реакций.
- **10.** Массовая доля водорода в неизвестном углеводороде \mathbf{X} равна 5.88%. Этот углеводород, обладающий слабыми кислотными свойствами, способен образовать соль \mathbf{Y} , в которой массовая доля металла составляет 17.50%. Определите структурные формулы веществ \mathbf{X} и \mathbf{Y} . Напишите уравнение превращения \mathbf{X} в \mathbf{Y} и уравнение полной каталитической гидратации \mathbf{X} .

Вариант 3

- **1.** Напишите по одному уравнению реакций, в которых белый фосфор: а) восстанавливается; б) окисляется.
- **2.** Напишите уравнение реакции, протекающей при добавлении 0.5 моль азотной кислоты к 0.25 моль бензойной кислоты в присутствии серной кислоты .
- **3.** При фторировании одного моля хлора до ClF_3 выделилось 329 кДж теплоты, а при фторировании одного моля ClF_3 до ClF_5 выделилось 73 кДж. Рассчитайте теплоту образования ClF_5 из простых веществ (в кДж/моль).
- **4.** В трех пробирках без этикеток находятся водные растворы уксусной кислоты, нитрата кальция и сульфата аммония. Как с помощью одного реактива различить эти растворы? Напишите уравнения реакций и укажите их признаки.
- **5.** Реакция между водородом и иодом $H_{2(r)} + I_{2(r)} \rightarrow 2HI_{(r)}$ и обратная ей реакция имеют второй порядок. Как изменятся скорости прямой и обратной реакций, если концентрацию H_2 уменьшить в 4 раза, а концентрацию HI уменьшить в 2 раза? В какую сторону сместится равновесие в этом случае?
- **6.** При сплавлении со щелочью калиевой соли предельной одноосновной карбоновой кислоты образовалось 11.6 г углеводорода **A**, а при электролизе водного раствора такого же количества этой соли образовалось 11.4 г углеводорода **B**. Определите формулы веществ **A** и **B**.
- 7. Напишите уравнения реакций, соответствующих следующим схемам:
 - a) $Cr \rightarrow X \rightarrow Cr(OH)_2$;
 - б) Cr → Y → Cr_2O_3 ;
 - B) $Cr \rightarrow \mathbb{Z} \rightarrow K_3[Cr(OH)_6]$.

Определите неизвестные вещества Х, У и Z.

8. Напишите уравнения химических реакций, соответствующие следующей схеме, и определите неизвестные вещества:

$$C_n(H_2O)_n \longrightarrow A \xrightarrow{ZnO} C_4H_6 \xrightarrow{H_2} B \xrightarrow{Br_2} C \xrightarrow{KOH} D \longrightarrow C_4H_{10}O_2.$$

В уравнениях приведите структурные формулы веществ и укажите условия проведения реакций.

- **9.** При термическом разложении 14.4 г неорганического вещества образовалось 10.08 л смеси газов (в пересчете на н.у.), имеющей плотность по гелию 6.5. После пропускания смеси над твердым оксидом кальция объем газа уменьшился в 1.5 раза. Оставшееся газообразное вещество легче воздуха. В определенных условиях оно реагирует с калием, образуя ионное соединение, содержащее 70.9% калия по массе. Установите формулы всех перечисленных веществ и напишите уравнения всех реакций.
- **10.** Массовая доля углерода в неизвестном углеводороде **X** равна 94.12%. Этот углеводород, обладающий слабыми кислотными свойствами, способен образовать соль **Y**, в которой массовая доля металла составляет 76.60%. Определите структурные формулы веществ **X** и **Y**. Напишите уравнение превращения **X** в **Y** и уравнение полной каталитической гидратации **X**.

Вариант 4

- **1.** Напишите по одному уравнению реакций, в которых оксид серы (IV): а) восстанавливается; б) окисляется.
- 2. Напишите уравнение реакции, протекающей при добавлении азотной кислоты к равному количеству нитробензола в присутствии серной кислоты.
- **3.** При полном окислении одного моля газообразного азота до NO поглотилось 180 кДж теплоты, а при окислении двух молей NO до NO₂ выделилось 114 кДж. Рассчитайте теплоту образования NO₂ из простых веществ (в кДж/моль).
- **4.** В трех пробирках без этикеток находятся водные растворы соляной кислоты, гидроксида кальция и сульфата калия. Как с помощью одного реактива различить эти растворы? Напишите уравнения реакций и укажите их признаки.
- **5.** Реакция между водородом и иодом $H_{2(r)} + I_{2(r)} \rightarrow 2HI_{(r)}$ и обратная ей реакция имеют второй порядок. Как изменятся скорости прямой и обратной реакций, если концентрацию H_2 увеличить в 2.5 раза, а концентрацию HI B 2 раза? В какую сторону сместится равновесие в этом случае?
- **6.** При сплавлении со щелочью калиевой соли предельной одноосновной карбоновой кислоты образовалось 13.2 г углеводорода **A**, а при электролизе водного раствора такого же количества этой соли образовалось 12.9 г углеводорода **B**. Определите формулы веществ **A** и **B**.
- 7. Напишите уравнения реакций по следующим схемам:
 - a) Fe \rightarrow **X** \rightarrow Fe(OH)₂;
 - б) Fe → \mathbf{Y} → Fe(OH)₃;
 - B) Fe \rightarrow **Z** \rightarrow K₄[Fe(CN)₆].

Определите неизвестные вещества Х, У и Z.

8. Напишите уравнения химических реакций, соответствующие следующей схеме, и определите неизвестные вещества:

$$C_n(H_2O)_m \xrightarrow{H_2O,HCl} \mathbf{A} \longrightarrow C_4H_8O_2 \xrightarrow{Cl_2} \mathbf{B} \xrightarrow{KOH} \mathbf{C} \xrightarrow{H_2SO_4(pa36.)} \mathbf{D} \longrightarrow C_6H_{10}O_2.$$

В уравнениях приведите структурные формулы веществ и укажите условия проведения реакций.

- **9.** При термическом разложении 27.0 г органического вещества образовалось 13.44 л смеси газов (в пересчете на н.у.), имеющей плотность по гелию 9.0. После пропускания смеси через известковую воду объем газа уменьшился вдвое. Оставшееся газообразное вещество легче воздуха. При нагревании оно реагирует с хромом, образуя летучее соединение, содержащее 23.6% хрома по массе. Установите формулы всех перечисленных веществ и напишите уравнения всех реакций.
- **10.** Массовая доля водорода в неизвестном углеводороде **X** равна 5.88%. Этот углеводород, обладающий слабыми кислотными свойствами, способен образовать соль **Y**, в которой массовая доля металла составляет 80.12%. Определите структурные формулы веществ **X** и **Y**. Напишите уравнение превращения **X** в **Y** и уравнение полной каталитической гидратации **X**.

Задания 41-ой Менделеевской олимпиады 2007 г.

Дорогие друзья! Когда вы будете знакомиться и анализировать предлагаемые ниже решения заданий Международной Менделеевской олимпиады, вы убедитесь в том, что уровень этих заданий, безусловно, превышает требования школьной программы и даже программы для поступающих в вузы. Это не удивительно, поскольку участие в этом интеллектуальном соревновании принимают победители национальных химических олимпиад среди школьников. Именно поэтому победители и призеры олимпиады столь высокого уровня зачисляются в Московский университет и другие ведущие отечественные вузы без экзаменов. Ежегодно на химический факультет приходят учиться порядка десяти победителей Менделеевской олимпиады. Заинтересованный читатель может ознакомиться с системой заданий Менделеевских олимпиад предыдущих лет в книге [9].

Залача 1

Недавно был открыт новый класс катализаторов — биядерные комплексы переходных металлов, в которых атомы металлов соединены между собой с помощью мостиковых атомов галогенов. Например, представленный на рисунке комплекс \mathbf{I} , в котором \mathbf{A} и \mathbf{B} — переходные металлы, эффек-

тивно катализирует окисление спиртов ацетоном в присутствии K_2CO_3 . Образование комплексов типа **I** происходит в соответствии со следующей схемой:

- **1.** Укажите координационный полиэдр, образуемый вокруг металла **B** в комплексе **I**. Является ли соединение **I** хиральным?
- **2.** Определите металлы **A** и **B**, если молярная масса комплекса **I** составляет 1276.5 г/моль, а массовое содержание хлора в **II** и **III** отличается в 3.129 раза.
- **3.** Выполняется ли для металлов **A** и **B** в составе комплекса **I** правило Сиджвика (d-металл в составе комплексных соединений стремится к заполненной 18-электронной оболочке инертного газа)?
- **4.** Комплекс **II** содержит 1,3,5-триэтилбензол в качестве лиганда. Предложите два способа получения 1,3,5-триэтилбензола из соединений, содержащих не более двух атомов углерода (каждый способ должен включать не более четырех стадий).
- **5.** Лигандом в комплексе **III** является 2,3,4,5-тетрафенилциклопентадиенон, который получают из бензальдегида и этилового эфира фенилуксусной кислоты, причем вначале бензальдегид превращают в бензил(1,2-дифенилэтан-1,2-дион). Предложите схему синтеза 2,3,4,5-тетрафенилциклопентадиенона из указанных соединений.

Задача 2

Навеска бесцветного кристаллического вещества **A** массой 10.2 г была растворена в 1000 мл воды. Аликвота полученного раствора объемом 10.0 мл перенесена в колбу для титрования, содержащую заведомый избыток KBrO₃ и KBr, взятых в моль-

ном соотношении 1:5. После завершения окислительно-восстановительной реакции образовавшуюся смесь оттитровали раствором формиата натрия, при этом было израсходовано 7.5 мл 0.050 М раствора титранта. Еще одну аликвоту раствора \mathbf{A} объемом 10.0 мл перенесли в ячейку и подвергли кулонометрическому титрованию электрогенерируемыми OH^- -ионами. При этом на кривой титрования наблюдался только один скачок.

- **1.** Определите вещество \mathbf{A} , если известно, что при нагревании выше 200°C оно теряет 6.6% начального веса с образованием вещества $\mathbf{A1}$, которое при дальнейшем нагревании выше 600°C теряет 31.5% массы. Напишите уравнения реакций, лежащих в основе титриметрического определения вещества \mathbf{A} , а также его термических превращений.
- **2.** Определите количество электричества, пошедшего на титрование вещества **A**, если выход по току составляет 90% (постоянная Фарадея F = 96500 Кл/моль).
- **3.** Определите константу диссоциации K_a кислотной группы соединения **A**, если известно, что pH его 0.10 M раствора составляет 1.54.
- **4.** Стандартным гравиметрическим методом определения концентрации вещества **A** является осаждение белого кристаллического осадка **B** (произведение растворимости $K_s^0 = 1.3 \cdot 10^{-10}$). Определите соединение **B**, если известно, что его молекулярная масса примерно в 1.7 раза больше молекулярной массы вещества **A**.
- **5.** Рассчитайте растворимость вещества **B** в чистой воде (мг/л).

Задача 3

Концепция групповых колебаний — один из приемов, используемых при изучении строения молекул методом ИК-спектроскопии. Многие функциональные группы поглощают ИК-излучение в узком диапазоне спектра, что вызывает появление характеристических полос, положение которых для группы \mathbf{A} — \mathbf{B} можно вычислить по формуле:

$$\mathbf{v} = (2\pi \cdot c)^{-1} \cdot \left(\frac{kN_{\mathbf{A}}}{\mu}\right)^{1/2},\tag{1}$$

где v – волновое число, см $^{-1}$; $c = 3 \cdot 10^{10}$ см \cdot с $^{-1}$; $\pi = 3.14$; $\mu = M(\mathbf{A}) \cdot M(\mathbf{B}) / [M(\mathbf{A}) + M(\mathbf{B})]$; $N_{\mathbf{A}} = 6.02 \cdot 10^{23}$; k – валентная силовая постоянная (г · с $^{-2}$). Несмотря на то, что k интерпретируют как меру прочности связи, простой зависимости энергии связи (E, Дж/моль) от k не найдено. Вместе с тем, для различных по кратности связей углерод – углерод существует практически линейная зависимость:

$$E = 2.24 \cdot 10^5 + 0.395k. \tag{2}$$

1. Используя уравнения (1–2), заполните пропуски (незакрашенные клеточки) в таблице:

				C = O						
Связь А–В	O-O	C=C	OEO	среднее	кетон	альдегид	α,β- ненасыщенный альдегид	C-O	Ι-0	H-C
$E, \frac{\kappa Дж}{\text{моль}}$	350	603		750				358	460	400
$k \cdot 10^{-5},$ Γc^{-2}					11.89	12.10	11.65		6.8	
v_{cp}, cm^{-1}	951	1646	2099							

2. β , β -Дизамещенные α , β -непредельные альдегиды не удается получать по реакции альдольно-кротоновой конденсации, катализируемой основанием. Синтез этих соединений можно осуществить, исходя из 2-Z-этоксивиниллития (I)

$$I \xrightarrow{CH_3COCH_3} II \xrightarrow{H_3O^+} [III] \longrightarrow IV \xrightarrow{-H_2O} \xrightarrow{H_3C} V$$

Расшифруйте соединения **II**, **III** и **IV**. Объясните неустойчивость **III**, вычислив ΔH° перехода **III** \rightarrow **IV** (для фрагмента, в котором изменяются связи, используйте значения энергии из вышеприведенной таблицы).

3. Соединение **V** легко вступает в реакции 1,2- или 1,4-присоединения, образуя продукты VIa - VIf. Установите структурные формулы продуктов, используя данные таблицы:

Реагент	1.CH ₃ MgBr 2.H ₂ O / H ⁺	$Na/Hg + C_2H_5OH$	NaHSO ₃	H ₂ O/H ⁺	CH ₂ =C=O	С2Н5ОН(изб)/НС1
	VIa	VIb	VIc	VId	VIe	VIf
Данные ИК-	3600-3400	1740-1720	3600-3400	3600-3400	1725-1705	
спектра	1680-1620		1680-1620	1740-1720	1680-1620	
(cm^{-1})						

- **4.** Укажите частоты сигналов в ИК-спектре соединения V.
- **5.** Какой тип присоединения (1,2- или 1,4-) реализуется для соединений **VIa** и **VIc VIf**?

Задача 4

В плодах растений семейства *Amygdalaceae* содержится токсичный гликозид амигдалин (**A**), не дающий пробы Фелинга. При гидролизе **A**, катализируемом ферментом мальтазой, образуются вещества **B** ($C_6H_{12}O_6$) и **C** ($C_{14}H_{17}NO_6$) в эквимолярных количествах. При гидролизе **A**, катализируемом ферментом эмулазой, образуется три продукта, один из которых – бензальдегид.

Фрагменты веществ **B** и **C** связаны в составе **A** β -гликозидной связью. При исчерпывающем метилировании **A** с последующим кислотным гидролизом образуются, наряду с прочими продуктами, 2,3,4-три-O-метил-D-глюкопираноза и 2,3,4,6-тетра-O-метил-D-глюкопираноза.

- 1. Изобразите структурные формулы веществ А С.
- 2. Напишите уравнение реакции гидролиза А, катализируемого эмулазой.
- 3. Биосинтез А исходя из фенилаланина осуществляется по схеме:

Изобразите структурные формулы соединений **D**–**G**. Учтите, что окисление в обоих случаях протекает с внедрением одного атома кислорода в субстрат; NAD^+ и NADH — окисленная и восстановленная формы кофермента никотинамидадениндинуклеотида; UDP-Glc — уридиндифосфатглюкоза (UDP — переносчик гликозильных групп в организме).

4. Единственный асимметрический атом углерода в неуглеводном фрагменте соединения **A** имеет R-конфигурацию. Гидролиз, катализируемый мальтазой, не приводит к изменению абсолютной конфигурации этого стереоцентра. Самбунигрин (**H**) – гликозид, содержащийся в ягодах бузины, является диастереомером **C** с аналогичным

типом гликозидной связи. Исчерпывающий кислотный гидролиз С и Н приводит к одним и тем же продуктам. Изобразите структурную формулу Н с учетом стереохимии.

Указание. Изображайте соединения, содержащие углеводный фрагмент, используя проекции Хеуорса.

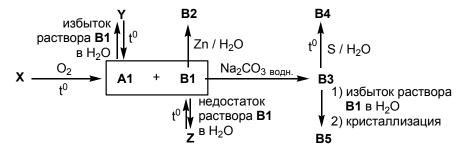
Задача 5

Один из способов измерения возраста геологических объектов основан на радиоактивном распаде калия-40. Этот изотоп превращается параллельно в кальций-40 и аргон-40 с периодами полураспада $T_1 = 1.47 \cdot 10^9$ лет и $T_2 = 1.19 \cdot 10^{10}$ лет соответственно.

- 1. Напишите уравнения обеих ядерных реакций.
- 2. Для измерения возраста горной породы ее плавят в вакууме и измеряют объем выделившегося аргона. Почему для измерения возраста используют аргон, а не кальций?
- 3. При распаде вещества по параллельным направлениям зависимость его массы от времени описывается уравнением:

$$m(t) = m(0) \cdot e^{-(k_1 + k_2)t}$$

где k_1 и k_2 – константы скорости распада по соответствующим направлениям, $e \approx 2.72$ – основание натуральных логарифмов. Константа скорости связана с периодом полураспада T


$$k = \frac{\ln 2}{T}.$$

Рассчитайте общий период полураспада калия-40 по обеим реакциям.

- **4.** В параллельных реакциях доля вещества, распавшегося в определенном направлении, обратно пропорциональна соответствующему периоду полураспада. Сколько из каждых 100 распавшихся атомов калия-40 превращается в аргон?
- **5.** Считая, что возраст Земли равен 5 млрд лет, определите объем аргона (н.у.), выделившегося из калия за все время существования Земли. Сравните с объемом аргона в атмосфере, считая, что концентрация аргона в воздухе равна 1%. Определите, какая доля аргона имеет радиоактивное происхождение. Современная доля радиоактивного калия-40 составляет 0.0119 ат.% от общего количества калия. Массовая доля калия в земной коре составляет 1.5%, общая масса земной коры -5.10^{22} кг. Общий объем атмосферы Земли -40 млрд км³.
- **6.** В 1959 году в ущелье Олдувай Гордж (Танзания) были найдены человеческие останки. Считается, что они принадлежат самому древнему нашему предку. Образец породы, в которой были найдены останки, расплавили. Из 1000 г породы, содержащей 3.24% калия по массе, выделилось 5.9·10¹⁵ атомов аргона. Определите возраст останков.

Залача 6

При обжиге на воздухе 100 мг вещества \mathbf{X} образуется 25.7 мл (н.у.) газа $\mathbf{B1}$ и твердое вещество $\mathbf{A1}$ массой 100 мг. \mathbf{X} кристаллизуется в трех модификациях, изоструктурных вюртциту (гексагональный ZnS), сфалериту (кубический ZnS) и каменной соли (NaCl) соответственно. Некоторые превращения с участием \mathbf{X} (любой из его модификаций) представлены на схеме:

Взаимодействие **A1** и **B1** протекает с образованием только **Y** и **Z**, соотношение которых в конечной смеси зависит от условий проведения реакции. Анион **Y** имеет более сложное строение, чем анион **Z**. Чтобы избавиться от последнего, смесь **Y** и **Z** можно обработать солью бария, при этом выпадает белый осадок, нерастворимый в кислотах, что служит для аналитического определения аниона **Z**.

Любое из соединений на схеме содержит не более трех элементов в своем составе. Элементы $\bf A$ и $\bf B$, содержащиеся в $\bf X-\bf Z$, образуют соединения $\bf A1$ и $\bf B1-\bf B5$ соответственно. Состав анионов $\bf Y$, $\bf B2$, $\bf B4$ и $\bf B5$ отличается только числом атомов кислорода.

- 1. Определите состав неизвестных соединений, представленных на схеме.
- 2. Напишите уравнения реакций, приведенных на схеме.
- **3.** Изобразите строение анионов Y, B2, B4, B5 и ионов, содержащих такое же число атомов B, но большее число атомов кислорода.

Задача 7

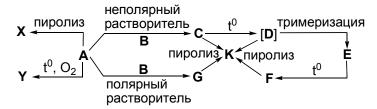
Позитронно-эмиссионная томография (ПЭТ) — новейший метод медицинской визуализации (радиоизотопной диагностики), основанный на использовании неустойчивости ядер короткоживущих изотопов, входящих в состав различных радиофармпрепаратов. Изотопы 11 C и 13 N нашли применение в диагностике онкологических и кардиологических заболеваний с использованием ПЭТ.

- **1.** Напишите уравнения реакций радиоактивного распада изотопов 11 C и 13 N, лежащих в основе метода ПЭТ.
- **2.** Ядерный синтез изотопов 11 С и 13 N осуществляют в циклотроне. Один из изотопов получают, облучая простое газообразное вещество **A**, содержащее в качестве примеси менее 0.5% простого газообразного вещества **B**, протонами, при этом образуется меченный искомым изотопом радиоактивный газ **C**, относительная плотность которого по **A** составляет 1.54. Уравнение протекающей ядерной реакции:

облучаемый изотоп $+ p \rightarrow$ искомый изотоп $+ {}^{4}$ He.

Определите вещества А-С и напишите уравнение данной реакции.

3. Наибольшее распространение в ПЭТ-диагностике получили радиофармпрепараты, содержащие изотоп $^{n}\mathbf{X}$, который можно получить облучением неона дейтронами. Синтез одного из радиофармпрепаратов — соединения \mathbf{Z} , меченного изотопом $^{n}\mathbf{X}$ и содержащего 39.78% углерода по массе, из 1,3,4,6-тетра-O-ацетил-2-трифторметилсульфонил- β -D-маннопиранозы схематично представлен ниже:


$$OAc$$
 OTf ОАс анионообменная смола Y OAc 1. NaOH(изб.) 2. HCl OAc где $Ac = CH_3CO$, $Tf = CF_3SO_2$

Реакция получения Y представляет собой нуклеофильное замещение $S_N 2$. Определите изотоп ${}^n X$ и напишите уравнение ядерной реакции его получения.

- **4.** Изобразите структуры соединения Y в проекции Хеуорса и соединения Z в проекции Фишера, используя принятые выше сокращения.
- **5.** Периоды полураспада изотопов, используемых в ПЭТ-диагностике, достаточно коротки (например, для $^{n}X 110$ мин), поэтому необходимо проводить синтез радиофармпрепаратов в крайне сжатые сроки. Так, в одном из опытов после облучения мишени удельная активность полученного раствора, содержащего анион $^{n}X^{-}$, составила 56 ГБк. Этот раствор был использован для получения соединения \mathbf{Z} . Удельная активность радиофармпрепарата, измеренная сразу после его синтеза, составила 9.4 ГБк (выход продукта составил 24% от теоретического). Рассчитайте, сколько времени (в минутах) занимает синтез радиофармпрепарата \mathbf{Z} по рассмотренной выше схеме.

Задача 8

Газообразное (н.у.) бинарное соединение **А** является родоначальником достаточно обширного класса неорганических соединений:

Соединение **A** самовоспламеняется на воздухе, его горение сопровождается зеленоватым свечением. При термическом разложении **A** без доступа воздуха образуется твердый продукт **X** массой 1.00 г, а при сжигании такого же объема **A** на воздухе масса твердого остатка **Y** составляет 3.22 г. Ковалентное сильнополярное соединение **C** изоструктурно и изоэлектронно этану. В состав ионного соединения **G** входит правильный тетраэдрический анион. Физические свойства **F**, в отличие от химических, характерны для типичных представителей ароматических углеводородов. Для **F** распространены реакции нуклеофильного и электрофильного присоединения, в то время как реакции замещения для него неизвестны. Соединение **K** – единственный твердый продукт соответствующих реакций – носит название «белый графит».

- **1.** Определите состав **A** и изобразите структурные формулы соединений, обозначенных буквами на схеме (для **K** укажите только брутто-формулу).
- 2. Напишите уравнения всех приведенных на схеме реакций.
- 3. Изобразите структурные формулы всех триметилзамещенных производных **F**.
- **4.** Каковы значения физических параметров вещества **F**? Температура кипения: -10, 0, 55 или $180\,^{\rm o}$ C; дипольный момент: от -2.4 до -1.17; от 0.00 до 0.5; от 1.0 до 4.4 или более 23.09 Д?

РЕШЕНИЯ ЗАДАЧ И ОТВЕТЫ

Химический факультет Решения варианта CO-2007-III-1

1. При попытке тушения происходит реакция:

$$2Mg + CO_2 \xrightarrow{t^o} 2MgO + C$$
 (или $Mg + CO_2 \xrightarrow{t^o} MgO + CO$).

2. Искомое вещество – 2,5-диметилгексен-2:

$$\begin{array}{ccc} \mathrm{CH_3} & \mathrm{CH_3} \\ | & | \\ \mathrm{CH_3-C=\!CH-\!CH_2-\!CH-\!CH_3} \end{array}$$

3. Чтобы определить неизвестные элементы, выразим массовые доли азота в двух соединених.

В веществе NY₃X
$$\omega$$
(N) = 0.0824 = $\frac{14}{M_X + 3M_Y + 14}$, в веществе NY₂X ω (N) = 0.0824 = $\frac{14}{M_X + 2M_Y + 14}$.

Решая эти два уравнения, получаем $M_{\rm X}=108$ г/моль (X — серебро), $M_{\rm Y}=16$ г/моль (Y — кислород).

Ответ: AgNO₃ и AgNO₂.

- **4.** Молочная кислота CH₃-CH(OH)-COOH, ее реакции:
 - 1) CH_3 -CH(OH)- $COOH + NaOH \rightarrow CH_3$ -CH(OH)- $COONa + H_2O$;
 - 2) CH_3 -CH(OH)- $COOH + 2Na \rightarrow CH_3$ -CH(Ona)- $COONa + <math>H_2\uparrow$;
 - 3) $CH_3-CH(OH)-COOH + C_2H_5OH \xrightarrow{H_2SO_4(\kappa OH)} CH_3-CH(OH)-COOC_2H_5 + H_2O;$
 - 4) CH_3 -CH(OH)- $COOH + 3O_2 \rightarrow 3CO_2 + 3H_2O$.
- 5. Схема получения полистирола:

$$n \text{ C}_6\text{H}_5\text{--CH}=\text{CH}_2 \to [-(\text{C}_6\text{H}_5)\text{CH}-\text{CH}_2-]_n$$

Всего стирола было $\nu(C_8H_8) = 26 / 104 = 0.25$ моль. С бромной водой реагирует не вступивший в полимеризацию мономер (присоединение по двойной связи):

$$C_6H_5$$
-CH=CH₂ + Br₂ \rightarrow C_6H_5 -CHBr-CH₂Br.

Брома было $v(Br_2) = \frac{160 \cdot 0.03}{160} = 0.03$ моль. Значит, в образовании полимера участвовало

0.25-0.03=0.22 моль стирола или $0.22\cdot 6.02\cdot 10^{23}=1.324\cdot 10^{23}$ молекул стирола.

Средняя степень полимеризации $n = \frac{1.324 \cdot 10^{23}}{1.018 \cdot 10^{21}} = 130.$

Средняя молярная масса $M_{cp} = 130 \cdot 104 = 13520$ г/моль.

Ответ: 13520 г/моль.

6. Скорость данной элементарной реакции $w = k[NO]^2[Cl_2]$. Считая объем системы равным V, выразим начальную скорость:

$$w_0 = k \left(\frac{0.1}{V}\right)^2 \left(\frac{0.2}{V}\right)$$

Прореагировало $0.2 \cdot 0.2 = 0.04$ моль Cl_2 , следовательно, в соответствии с уравнением реакции прореагировало 0.08 моль NO. Осталось 0.2 - 0.04 = 0.16 моль Cl_2 и 0.1 - 0.08 = 0.02 моль NO.

Скорость реакции к этому моменту времени составит:

$$w = k \left(\frac{0.02}{V}\right)^2 \left(\frac{0.16}{V}\right)$$

Значит, скорость уменьшилась в

$$\frac{w_0}{w} = \frac{0.1^2 \cdot 0.2}{0.02^2 \cdot 0.16} = 31.25 \text{ pas.}$$

Ответ: скорость уменьшилась в 31.25 раза.

7. Пусть в исходной смеси было x моль $KMnO_4$ и y моль $Al(NO_3)_3$. В результате прокаливания происходят реакции:

$$2KMnO_{4} \xrightarrow{t^{o}} K_{2}MnO_{4} + MnO_{2} + O_{2}\uparrow;$$

$$x$$

$$4Al(NO_{3})_{3} \xrightarrow{t^{o}} 2Al_{2}O_{3} + 12NO_{2}\uparrow + O_{2}\uparrow.$$

$$y$$

$$3y$$

$$0.75y$$

В результате пропускания полученной газовой смеси через воду образуется азотная кислота:

$$4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$$
3y 0.75y 3y

Непоглощенный газ — это кислород. Соотношение количеств NO_2 и O_2 , необходимое для образования азотной кислоты, соответствует соотношению количеств газов, выделяющихся при разложении нитрата алюминия, поэтому 672 мл — это объем кислорода, выделившийся за счет разложения перманганата:

$$v = 0.5x = \frac{0.672}{22.4} = 0.03 \text{ моль}, \quad x = 0.06 \text{ моль}.$$

Исходный раствор содержал $m = 250 \cdot 0.04 = 10$ г азотной кислоты. Массовая доля азотной кислоты после пропускания газов:

$$\omega(\text{HNO}_3) = \frac{10 + 63 \cdot 3y}{250 + 46 \cdot 3y + 32 \cdot 0.75y} = 0.0685,$$

откуда y = 0.04 моль.

$$m(\text{KMnO}_4) = 0.06 \cdot 158 = 9.48 \ \Gamma, \ m(\text{Al(NO}_3)_3) = 0.04 \cdot 213 = 8.52 \ \Gamma, \ m(\text{смеси}) = 9.48 + 8.52 = 18.0 \ \Gamma.$$

 $\omega(\mathrm{KMnO_4}) = 9.48 \ / \ 18.0 = 0.527$ или 52.7%; $\omega(\mathrm{Al(NO_3)_3}) = 8.52 \ / \ 18.0 = 0.473$ или 47.3%. <u>Ответ</u>: 52.7% KMnO₄, 47.3% Al(NO₃)₃.

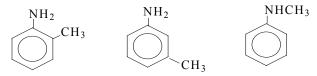
8. С гидроксидом натрия реагирует только фенол: $C_6H_5OH + NaOH \rightarrow C_6H_5ONa + H_2O$.

$$N(C_6H_5OH) = v(NaOH) = m \cdot \omega / M = 24 \cdot 0.15 / 40 = 0.09$$
 моль, $m(C_6H_5OH) = 0.09 \cdot 94 = 8.46$ г.

С хлороводородом реагирует только неизвестный амин: $RNH_2 + HCl \rightarrow RNH_3^+Cl^-$.

$$N(amuha) = v(HC1) = 1.568 / 22.4 = 0.07 \text{ моль,}$$

$$m(\text{амина}) = 15.95 - 8.46 = 7.49 \, \Gamma$$


$$M(\text{амина}) = 7.49 / 0.07 = 107 г/моль.$$

Формула амина $C_x H_v N$, отсюда

$$12x + y + 14 = 107;$$

$$12x + v = 93$$
.

Единственное возможное решение x = 7, y = 9, тогда простейшая формула амина C_7H_9N . Возможные структурные формулы первичных и вторичного аминов:

- 9. 1) $Ca_3(PO_4)_2 + 3SiO_2 + 5C \xrightarrow{t^o} 3CaSiO_3 + 5CO + 2P$;
 - 2) $2P + 3Br_2 \rightarrow 2PBr_3$;
 - 3) $PBr_3 + 3H_2O \rightarrow H_3PO_3 + 3HBr\uparrow$;
 - 4) $5H_3PO_3 + 2KMnO_4 + 3H_2SO_4 \rightarrow 2MnSO_4 + 5H_3PO_4 + 3H_2O + K_2SO_4$;
 - 5) $MnSO_4 + 2NaOH \rightarrow Mn(OH)_2 \downarrow + Na_2SO_4$;
 - 6) $Na_2SO_4 + BaS \rightarrow BaSO_4 \downarrow + Na_2S$.

10.

C
B
A

UЗОМЕР В

UЗОМЕР С

CH₃CH₂CHO

CH₃CH₂CH₂OH

CH₃CH₂CH₂Br

CH₃CH=CH₂

CH₃CHCH₃

CH₃COCH₃;

V

CH₃CHBrCH₃

UЗОМЕР A

$$\mathbf{A}$$
 \mathbf{B} 1) $\mathrm{CH_3CH_2CH_2Br} + \mathrm{NaOH} \xrightarrow{\mathrm{(водн.)}}$ $\mathrm{CH_3CH_2CH_2OH} + \mathrm{NaBr} + \mathrm{H_2O}$

2)
$$CH_3CH_2CH_2OH + CuO \xrightarrow{300^{\circ}C} CH_3CH_2C \stackrel{O}{\swarrow} + Cu + H_2O$$

$$A$$
 алкен 3) $CH_3CH_2CH_2Br + KOH$ $CH_3CH=CH_2 + KBr + H_2O$

4)
$$CH_3CH=CH_2 + H_2O$$
 — H^+ изомер **В** CH_3CHCH_3 OH

5)
$$CH_3CHCH_3 + CuO$$
 $\xrightarrow{300^{\circ}C}$ CH_3CCH_3 $+ Cu + H_2O$ OH

6)
$$CH_3CH=CH_2 + HBr$$
 — изомер **A** $CH_3CHBrCH_3$

Решения варианта CO-2007-III-2

- **1.** На воздухе натрий реагирует с кислородом: $2Na + O_2 \rightarrow Na_2O_2$.
- **2.** Искомое вещество -2,3,4-триметилгексен-2:

3. Чтобы определить неизвестные элементы, выразим массовые доли фосфора в двух соединених

В веществе PYX₃
$$\omega$$
(P) = 0.3039 = $\frac{31}{3M_X + M_Y + 31}$, в веществе PY₃X₄ ω (P) = 0.1890 = $\frac{31}{4M_X + 3M_Y + 31}$.

Решая эти два уравнения, получаем $M_{\rm X}=16$ г/моль (X — кислород), $M_{\rm Y}=23$ г/моль (Y — натрий).

Omeem: NaPO₃ и Na₃PO₄.

- **4.** Винная кислота HOOC-CH(OH)-CH(OH)-COOH, ее реакции:
 - 1) $HOOC-CH(OH)-CH(OH)-COOH + 2NaOH \rightarrow NaOOC-CH(OH)-CH(OH)-COONa + 2H₂O;$
 - 2) HOOC-CH(OH)-CH(OH)-COOH + 4Na \rightarrow NaOOC-CH(ONa)-CH(ONa)-COONa + 2H₂ \uparrow ;
 - 3) HOOC-CH(OH)-CH(OH)-COOH + $2C_2H_5OH \rightarrow H_5C_2OOC$ -CH(OH)-CH(OH)-COOC $_2H_5 + 2H_2O$;
 - 4) $2HOOC-CH(OH)-CH(OH)-COOH + 5O_2 \rightarrow 8CO_2 + 6H_2O$.
- 5. Схема получения полипропилена:

$$nCH_3$$
-CH= $CH_2 \rightarrow [-CH(CH_3)-CH_2-]_n$

Всего пропена было v = 10.5 / 42 = 0.25 моль. С раствором перманганата калия реагирует не вступивший в полимеризацию мономер:

$$2KMnO_4 + 4H_2O + 3CH_3-CH=CH_2 \rightarrow 2MnO_2 \downarrow + 3CH_3-CH(OH)-CH_2(OH) + 2KOH.$$

Перманганата было $\nu(\text{KMnO}_4) = \frac{79 \cdot 0.06}{158} = 0.03$ моль. С ним прореагировало 0.045 моль про-

пена. Значит, в образовании полимера участвовало 0.25-0.045=0.205 моль или $0.205\cdot 6.02\cdot 10^{23}=1.234\cdot 10^{23}$ молекул мономера.

Средняя степень полимеризации $n = \frac{1.234 \cdot 10^{23}}{0.8827 \cdot 10^{21}} = 140.$

Средняя молярная масса: $M = 140 \cdot 42 = 5880$ г/моль.

Ответ: 5880 г/моль.

6. Скорость данной элементарной реакции:

$$w = k[NO]^2[O_2]$$

Считая объем системы равным V, можем выразить начальную скорость:

$$w_0 = k \left(\frac{0.4}{V}\right)^2 \left(\frac{0.4}{V}\right)$$

Прореагировало $0.25 \cdot 0.4 = 0.1$ моль O_2 , следовательно по уравнению реакции прореагировало 0.2 моль NO. Осталось 0.4 - 0.1 = 0.3 моль O_2 и 0.4 - 0.2 = 0.2 моль NO. Скорость реакции к этому моменту времени составила:

$$w = k \left(\frac{0.2}{V}\right)^2 \left(\frac{0.3}{V}\right)$$

Скорость уменьшилась в

$$\frac{w_0}{w} = \frac{0.4^2 \cdot 0.4}{0.2^2 \cdot 0.3} = 5.33$$
 pasa.

Ответ: скорость уменьшилась в 5.33 раза.

7. Пусть в исходной смеси было x моль $K_2Cr_2O_7$ и y моль $Fe(NO_3)_2$.

В результате прокаливания происходят реакции:

$$4K_{2}Cr_{2}O_{7} \xrightarrow{t^{o}} 2K_{2}CrO_{4} + 2Cr_{2}O_{3} + 3O_{2}\uparrow$$

$$x \qquad 0.75x$$

$$4Fe(NO_{3})_{2} \xrightarrow{t^{o}} 2Fe_{2}O_{3} + 8NO_{2}\uparrow + O_{2}\uparrow$$

$$y \qquad 2y \qquad 0.25y$$

В результате пропускания полученной газовой смеси через воду образуется азотная кислота:

$$4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$$

 $2y \quad 0.75x + 0.25y \quad 2y$

Исходный раствор содержал $250 \cdot 0.04 = 10$ г азотной кислоты. Массовая доля азотной кислоты после пропускания газов:

$$\begin{cases} \frac{10+63\cdot 2y}{250+46\cdot 2y+32\cdot (0.75x+0.25y)} = 0.0544\\ 2y = 4(0.75x+0.25y) \text{ (поскольку все газы поглотились)} \end{cases}$$

Откуда x = 0.01 моль, y = 0.03 моль.

$$m(K_2Cr_2O_7) = 0.01 \cdot 294 = 2.94 \, \Gamma,$$

 $m(Fe(NO_3)_2 = 0.03 \cdot 180 = 5.4 \, \Gamma,$
 $m(\text{смеси}) = 2.94 + 5.4 = 8.34 \, \Gamma.$

Отсюда $\omega(K_2Cr_2O_7) = 2.94 / 8.34 = 0.353$ или 35.3%; $\omega(Fe(NO_3)_2 = 5.4 / 8.34 = 0.647$ или 64.7%.

Быстрый вариант решения:

На самом деле, достаточно знать, что <u>все</u> выделившиеся газы поглотились, и поэтому y = 3x. Для определения массовых долей общее количество газовой смеси не имеет значения:

$$\omega(K_2Cr_2O_7) = \frac{294x}{294x + 180y} = \frac{294}{294 + 180 \cdot 3} = 0.353, \ \omega(Fe(NO_3)_2 = \frac{180y}{294x + 180y} = \frac{180 \cdot 3}{294 + 180y} = 0.647.$$

Omeem: 35.3% K₂Cr₂O₇, 64.7% Fe(NO₃)₂.

8. С гидроксидом калия реагирует только крезол:

$$CH_3-C_6H_4-OH + KOH \rightarrow CH_3-C_6H_4-OK + H_2O$$

 $v(C_7H_7OH) = v(KOH) = 50.4 \cdot 0.1 / 56 = 0.09$ моль, $m(C_7H_7OH) = 0.09 \cdot 108 = 9.72$ г. С хлороводородом реагирует амин: RNH₂ + HCl \rightarrow RNH₃Cl.

 $N(RNH_2) = v(HCl) = 1.792 / 22.4 = 0.08$ моль, $m(RNH_2) = 16.52 - 9.72 = 6.8$ г.

 $M(RNH_2) = 6.8 / 0.08 = 85 г/моль.$

Формула амина C_xH_vN . Его масса:

$$12x + y + 14 = 85$$
;

12x + y = 71, единственное решение x = 5, y = 11, отсюда простейшая формула – $C_5H_{11}N$. Возможные структурные формулы циклических вторичных аминов:

9. BaO + 3C
$$\xrightarrow{t^o}$$
 BaC₂ + CO;
CuO + CO $\xrightarrow{t^o}$ Cu + CO₂;
Cu + Cl₂ $\xrightarrow{t^o}$ CuCl₂;
CuCl₂ +2NaOH \rightarrow Cu(OH)₂\ + 2NaCl;
Cu(OH)₂ + 4NH₃ \rightarrow [Cu(NH₃)₄](OH)₂;
[Cu(NH₃)₄](OH)₂ + 3H₂SO₄ \rightarrow CuSO₄ + 2(NH₄)₂SO₄ + 2H₂O.

10.

A

1)
$$CH_3CH_2CHCl_2 + 2NaOH$$

(водн.)

 CH_3CH_2C
 CH_3CH_2C
 CH_3CH_2C
 CH_3CH_2C
 CH_3CH_2C
 CH_3CH_2C
 CH_3CH_2C
 CH_3CH_2C
 CH_3CH_2C

2)
$$CH_3CH_2COH + H_2 \xrightarrow{Ni, t^0} CH_3CH_2CH_2OH$$

А алкин
$$CH_3CH_2CHCl_2 + 2KOH \xrightarrow{\text{(спирт.)}} CH_3C \rightleftharpoons CH + 2KCl + 2H_2O$$

4)
$$CH_3C$$
 — $CH + H_2O$ — Hg^{2+} — $U3OMEP$ **B** CH_3CCH_3 $U3OMEP$ $U3OMEP$

6)
$$CH_3CCH_3 + H_2 \xrightarrow{Ni, t^0}$$
 изомер C CH_3CHCH_3 \mid OH

 \underline{Omsem} : **A** – 1,1-дихлорпропан, **B** – пропаналь, **C** – пропанол-1, изомер **A** – 2,2-дихлорпропан, изомер **B** – пропанон, изомер **C** – пропанол-2, алкин – пропин.

Ответы к варианту СО-2007-ІІІ-3

- 1. $H_2S + H_2SO_4 \rightarrow S \downarrow + SO_2 + 2H_2O$.
- **2.** 2,5-диметилгептен-2.
- **3.** SO₂Cl₂ и SOCl₂.
- **5.** 8750 г/моль.
- 6. Скорость реакции уменьшилась в 12.86 раза.
- 7. 47.7% KMnO₄; 52.3% Fe(NO₃)₃.
- **8.** C_7H_9N , возможные структуры:

$$CH_3$$
 NH_2
 CH_3
 NH_2
 CH_3

9. $Mg^0 \rightarrow Mg_3N_2 \rightarrow NH_3 \rightarrow NH_4NO_3 \rightarrow CO_2 \rightarrow MgO \rightarrow Mg(NO_3)_2$. 10.

B A C D USOMED B USOMED A CH₃CH₂CHO
$$\leftarrow$$
 CH₃CH₂CH₂OH \rightarrow CH₃CH=CH₂ \rightarrow CH₃COOH \rightarrow (CH₃COO)₂Ca \rightarrow CH₃COCH₃ \rightarrow CH₃CHCH₃ OH

Ответы к варианту CO-2007-III-4

- 1. СН₃СООК + КОН ≠ СН₃СООН + КОН (гидролиз с образованием щелочной среды).
- **2.** 2,4-диметилгептен-2.
- **3.** H₃PO₃ и H₃PO₂.
- **5.** 3976 г/моль.
- 6. Скорость реакции уменьшилась в 142 раза.
- 7. 35.8% K₂Cr₂O₇, 64.2% Cr(NO₃)₂.
- **8.** $C_5H_{11}N$, возможные структуры:

9. $Al^0 \rightarrow NH_3 \rightarrow H_2O \rightarrow H_2SO_4 \rightarrow Br_2 \rightarrow I_2 \rightarrow AlI_3$. 10.

изомер
$$A$$
 B $CH_{2}COOCH(CH_{3})_{2} \longrightarrow CH_{3}CHCH_{3}$ OH $CH_{3}-COO-C_{3}H_{7} \longrightarrow CH_{2}COOH$ $CH_{3}COOC_{3}H_{7} \longrightarrow CH_{2}CH_{2}OH$ C A изомер B

Биологический факультет Решение варианта БА-2007-1

1. 2NaCl + 2H₂O
$$\xrightarrow{\text{электролиз}}$$
 H₂↑ + 2NaOH + Cl₂↑.
Катод анод

2. Примеры реакций:

OCH₃ + Br₂ + H₂O
$$\rightarrow$$
 OCH₃ + 3HBr;
OCH₃ OCH₃ OCH₃ OCH₃ OCH₃ OCH₃ OCH₃

3. При поджигании смеси SiH_4 , O_2 и N_2 протекает реакция:

$$SiH_4 + 2O_2 \rightarrow SiO_2 \downarrow + 2H_2O$$
.

При сгорании 1 моль SiH_4 расходуется 2 моль O_2 . В результате по окончании процесса в смеси находится 1 моль O_2 и 1 моль N_2 .

Отсюда
$$M_{cp} = \frac{32 \cdot 1 + 28 \cdot 1}{2} = 30$$
 г/моль.

Ответ: 30 г/моль.

4. Общая формула гомологического ряда алканов C_nH_{2n+2} . Число C-C связей в любом нециклическом алкане равно n-1, а число C-H связей всегда равно числу атомов водорода (2n+2). Тогда по условию (2n+2)-(n-1)=11, отсюда n=8. Условию задачи отвечает алкан следующего строения:

$$\begin{array}{c} {\rm CH_3\,CH_3} \\ {\rm CH_3-C-C-CH_3} \\ {\rm CH_3\,CH_3} \end{array}$$

Ответ: 2,2,3,3-тетраметилбутан.

5. Уравнение реакции термического разложения:

$$4K_2Cr_2O_7 \xrightarrow{t^o} 4K_2CrO_4 + 2Cr_2O_3 + 3O_2\uparrow + Q.$$

По закону Гесса:

$$Q = 4Q_{ofp}(K_2CrO_4) + 2Q_{ofp}(Cr_2O_3) - 4Q_{ofp}(K_2Cr_2O_7) = 4 \cdot 1398 + 2 \cdot 1141 - 4 \cdot 2063 = -378 \text{ кДж.}$$

При выделении 3 моль O_2 поглотилось 378 кДж, а при выделении $v(O_2) = \frac{48}{32} = 1.5$ моль

должно поглотиться x кДж теплоты. Отсюда x = 378 / 2 = 189 кДж.

Ответ: 189 кДж.

6. При прибавлении раствора карбоната натрия к раствору смеси хлоридов железа происходят реакции:

$$FeCl_2 + Na_2CO_3 \rightarrow 2NaCl + FeCO_3\downarrow$$
;

$$2\text{FeCl}_3 + 3\text{Na}_2\text{CO}_3 + 3\text{H}_2\text{O} \rightarrow 6\text{NaCl} + 2\text{Fe}(\text{OH})_3 \downarrow + 3\text{CO}_2 \uparrow$$

а при обработке осадка раствором соляной кислоты:

$$FeCO_3 + 2HCl \rightarrow FeCl_2 + CO_2 \uparrow + H_2O;$$

$$Fe(OH)_3 + 3HCl \rightarrow FeCl_3 + 3H_2O$$
.

Рассчитаем
$$v(CO_2) = \frac{pV}{RT} = \frac{101.3 \cdot 2.44}{8.31 \cdot 298} = 0.1$$
 моль, $v(CO_2) = v(FeCO_3) = v(FeCl_2) = 0.1$ моль. $M(\text{осадка}) = v(\text{FeCO}_3) \cdot M(\text{FeCO}_3) + v(\text{Fe(OH)}_3) \cdot M(\text{Fe(OH)}_3),$ $22.3 = 0.1 \cdot 116 + x \cdot 107$, отсюда $x = 0.1$ моль. $C(\text{FeCl}_2) = \frac{v}{V} = \frac{0.1}{0.2} = 0.5$ М, $C(\text{FeCl}_3) = \frac{0.1}{0.2} = 0.5$ М. $\frac{000}{0.5}$ М.

8.

$$CH-CH_2$$
 + 2 KOH C_2H_5OH $C\equiv CH$ + 2 KBr + 2 H₂O

$$C \equiv CH + H_2O \xrightarrow{Hg^+} O$$

9. Пусть в исходной смеси содержалось x моль LiH и у моль AlP. Тогда:

LiH + H₂O
$$\longrightarrow$$
 LiOH + H₂ \\
 x моль x x
AlP + 3 H₂O \longrightarrow Al(OH)₃ \checkmark + PH₃ \\
 y моль y y

Образующийся амфотерный гидроксид алюминия взаимодействует с LiOH, образуя комплексную соль (тетрагидроксиалюминат лития):

LiOH + Al(OH)₃
$$\longrightarrow$$
 Li[Al(OH)₄] x моль x

Уменьшение массы полученного раствора на 74 г по сравнению с суммой масс исходных веществ произошло за счет выделения газов и осаждения Al(OH)₃ (в случае его избытка):

$$2x + 34y + (y - x) \cdot 78 = 74$$
.

Масса образовавшегося раствора составляет 8x + 58y + 212 - 74 = 138 + 8x + 58y г, поэтому массовую долю Li[Al(OH)₄] можно записать так: $\frac{102x}{138 + 8x + 58y} = 0.255$

Решая систему двух уравнений с двумя неизвестными, находим x = 0.5, y = 1.0. *Ответ*: 0.5 моль LiH, 1.0 моль AlP.

10. По условию на кислотный гидролиз дипептида израсходовано $v(HCl) = 2 \cdot 0.02 = 0.04$ моль, а на щелочной $v(NaOH) = \frac{24 \cdot 0.1}{40} = 0.06$ моль. Так как v(NaOH) больше v(HCl) в 1.5 раза, дипептид содержит либо лишнюю карбоксильную группу, либо фенольный гидроксил. Пусть формула дипептида $C_xH_yN_zO_k$. По условию $\frac{\omega(C)}{\omega(O)} = \frac{12 \cdot x}{16 \cdot k} = 1.2$, отсюда x = 1.6k, $\frac{\omega(N)}{\omega(H)} = \frac{14 \cdot z}{y} = 2$, тогда y = 7z. В молекуле дипептида минимальное количество атомов азота – два, тогда имеем формулу $C_{1.6k}H_{14}N_2O_k$. При k = 5 получаем $C_8H_{14}N_2O_5$. Искомый дипептид – это Ala-Glu или

Так как v(NaOH) = 0.06 моль, v(дипептида) = 0.02 моль, $m(\text{дипептида}) = 0.02 \cdot 218 = 4.36$ г. *Ответ*: Ala-Glu или Glu-Ala, 4.36 г.

Решение варианта БА-2007-2

1. ZnSO₄ + 2H₂O
$$\xrightarrow{\text{электролиз}}$$
 Zn + H₂↑ + H₂SO₄ +O₂↑ катод анод

2.

Glu-Ala.

3. При поджигании смеси $H_2,\, O_2\,$ и N_2 протекает реакция $2H_2+O_2\, \to 2H_2O$

При взаимодействии 1 моль H_2 расходуется 0.5 моль O_2 . В результате по окончании процесса в конечной смеси находится 0.5 моль O_2 и 1 моль N_2 .

Отсюда
$$M_{cp} = \frac{32 \cdot 1 + 28 \cdot 1}{1.5} = 29.33$$
 г/моль.

Ответ: 29.33 г/моль.

4. Общая формула гомологического ряда алканов C_nH_{2n+2} . Число C-C связей равно n-1, а число C-H связей составляет 2n+2. Тогда $\frac{2n+2}{n-1}=4$, отсюда n=3. Условию задачи отвечает пропан C_3H_8 .

Ответ: пропан.

5. Уравнение реакции разложения:

$$2KClO_3 \rightarrow 2KCl + 3O_2\uparrow + Q$$

По закону Гесса

$$Q_{\text{реакции}} = 2Q_{\text{обр}}(KCl) - 2Q_{\text{обр}}(KClO_3) = 2 \cdot 437 - 2 \cdot 391 = 92 \text{ кДж.}$$

При образовании 3 моль O_2 выделилось 92 кДж, а при образовании $\nu(O_2) = \frac{9.6}{32} = 0.3$ моль выделится x кДж. Решив пропорцию, получим x = 9.2 кДж. Ответ: 9.2 кДж.

6. При прибавлении раствора сульфида натрия к раствору смеси хлоридов железа(II) и алюминия происходят следующие реакции:

FeCl₂ + Na₂S
$$\rightarrow$$
 2NaCl + FeS \downarrow
2AlCl₃ + 3Na₂S + 3H₂O \rightarrow 6NaCl + 2Al(OH)₃ \downarrow + 3H₂S \uparrow ,

а при обработке осадка раствором бромоводородной кислоты:

FeS + 2HBr
$$\rightarrow$$
 FeBr₂ + H₂S \uparrow

$$Al(OH)_3 + 3HBr \rightarrow AlBr_3 + 3H_2O$$
.

Рассчитаем
$$\nu(H_2S) = \frac{PV}{RT} = \frac{101.3 \cdot 1.22}{8.31 \cdot 298} = 0.05 \text{ моль}, \ \nu(H_2S) = \nu(\text{FeS}) = \nu(\text{FeCl}_2) = 0.05 \text{ моль}.$$

$$m_{\text{осадка}} = v(\text{FeS}) \cdot M_r(\text{FeS}) + v(\text{Al}(\text{OH})_3 \cdot M_r(\text{Al}(\text{OH})_3,$$

$$12.2 = 0.05 \cdot 88 + x \cdot 78$$
, отсюда $x = 0.1$ моль.

$$C(\text{FeCl}_2) = \frac{0.05}{0.2} = 0.25\text{M}, C(\text{AlCl}_3) = \frac{0.1}{0.2} = 0.5\text{M}.$$

<u>Ombem:</u> $C(FeCl_2) = 0.25M$, $C(AlCl_3) = 0.5M$.

7.
$$2K_2CrO_4 + H_2SO_4 \rightarrow K_2Cr_2O_7 + K_2SO_4 + H_2O$$
;

$$K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4 + H_2O$$
;

$$4K_2Cr_2O_7 \xrightarrow{t^\circ} 4K_2CrO_4 + 2Cr_2O_3 + 3O_2\uparrow;$$

$$Cr_2O_3 + KClO_3 + 4KOH \rightarrow 2K_2CrO_4 + KCl + 2H_2O;$$

$$K_2Cr_2O_7 + 14HCl \rightarrow 2CrCl_3 + 2KCl + 3Cl_2\uparrow + 7H_2O;$$

$$2CrCl_3 + 3H_2O_2 + 10KOH \rightarrow 2K_2CrO_4 + 6KCl + 8H_2O.$$

9. Пусть в исходной смеси содержалось x моль XH и y моль Zn_3P_2 . Тогда:

Образующийся амфотерный гидроксид цинка взаимодействует с КОН, образуя комплексную соль (тетрагидроксицинкат калия)

$$2 \text{ KOH} + \text{Zn(OH)}_2 \longrightarrow \text{ K}_2[\text{Zn(OH)}_4]$$
 х моль 0.5 х 0.5 х

Уменьшение массы полученного раствора на 87.5 г по сравнению с суммой масс исходных веществ произошло за счет выделения газов и оставшегося в осадке $Zn(OH)_2$ (в случае его избытка):

$$2x + 34 \cdot 2y + (3y - 0.5x) \cdot 99 = 87.5.$$

Масса образовавшегося раствора составляет 40x + 257y + 379 - 87.5 = 291.5 + 40x + 257y г, поэтому массовую долю $K_2[Zn(OH)_4]$ можно записать так: $\frac{211 \cdot 0.5x}{291.5 + 40x + 257y} = 0.422$.

Решая систему двух уравнений с двумя неизвестными, находим x = 2, y = 0.5. *Ответ*: 2.0 моль KH, 0.5 моль Zn₃P₂.

10. По условию, на кислотный гидролиз дипептида израсходовано $\nu(\text{HCl}) = 3 \cdot 0.02 = 0.06$ моль, а на щелочной — $\nu(\text{KOH}) = \frac{33.6 \cdot 0.15}{56} = 0.09$ моль. Так как $\nu(\text{KOH})$ в 1.5 раза больше $\nu(\text{HCl})$, дипептид содержит либо лишнюю карбоксильную группу, либо фенольный гидроксил. Пусть формула дипептида $C_x H_y N_z O_k$. По условию $\omega(C) = \omega(O)$, т.е. x = 1.33k, $\frac{\omega(N)}{\omega(H)} = \frac{14 \cdot z}{y} = 2$,

тогда y = 7z. В молекуле дипептида минимальное количество атомов азота — два, в этом случае получаем формулу $C_{1.33k}H_{14}N_2O_k$. При k = 6 получаем $C_8H_{14}N_2O_6$. Искомый дипептид — это Ser—Glu или Glu—Ser.

Так как ν (KOH) = 0.09 моль, ν (дипептида) = 0.03 моль, а m(дипептида) = 0.03 · 234 = 7.02 г. <u>Ответ</u>: исходный дипептид Ser–Glu или Glu–Ser; 7.02 г.

Ответы к варианту БА-2007-3

1.
$$2H_2O \xrightarrow{_{\mathfrak{I}\!\mathsf{A}\mathsf{E}\mathsf{K}\mathsf{BTO}\mathsf{Q}}} 2H_2\uparrow + O_2\uparrow.$$
 Катод анод

2.

- **3.** 30 г/моль.
- **4.** 2,2-диметилпропан.
- **5.** 95.4 кДж.
- **6.** $C(\text{FeSO}_4) = 0.45\text{M}$, $C(\text{Al}_2(\text{SO}_4)_3) = 0.15\text{M}$.
- 7. $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2\uparrow + 2H_2O;$ $MnCl_2 + O_3 + H_2O \rightarrow MnO_2\downarrow + 2HCl + O_2\uparrow;$ $MnO_2 + 2C \xrightarrow{t^\circ} Mn + 2CO\uparrow;$ $Mn + 2HCl \rightarrow MnCl_2 + H_2\uparrow;$ $2KMnO_4 + 16HCl \rightarrow 2MnCl_2 + 2KCl + 5Cl_2\uparrow + 8H_2O;$ $2KMnO_4 \xrightarrow{t^\circ} K_2MnO_4 + MnO_2 + O_2\uparrow.$

8.

- **9.** 0.5 моль CsH, 1.0 моль CrP.
- **10.** Исходный дипептид Gly-Glu или Glu-Gly, 3.06 г.

Ответы к варианту БА-2007-4

1.
$$CuCl_2 \xrightarrow{\mathfrak{I}_{2} \leftarrow mponus} Cu + Cl_2 \uparrow$$
. Катод анод

2.

$$CH_3$$
 $COOCH_3$
 $+ NaOH$
 $+ CH_3OH$
 CH_3
 $COOCH_3$
 $+ HNO_3$
 $COOCH_3$
 $+ COOCH_3$
 $+ COOCH_3$

- 3. 28.57 г/моль.
- **4.** Этан С₂Н₆.
- 5. 94 кДж.
- **6.** $C(Fe(NO_3)_2) = 0.9M$, $C(Cr(NO_3)_3) = 0.45M$.
- 7. $SO_2 + H_2O_2 \rightarrow H_2SO_4;$ $2H_2SO_{4(KOHII)} + Cu \rightarrow CuSO_4 + SO_2 \uparrow + H_2O;$ $4H_2SO_{4(KOHII)} + 6KI \rightarrow 3I_2 \downarrow + S \downarrow + 3K_2SO_4 + 4H_2O;$ $S + O_2 \rightarrow SO_2;$ $3H_2SO_4 + Fe_2O_3 \rightarrow Fe_2(SO_4)_3 + 3H_2O;$ $2Fe_2(SO_4)_3 \xrightarrow{t^\circ} 2Fe_2O_3 + 6SO_2 \uparrow + 3O_2 \uparrow.$

8.

- **9.** 0.1 моль NaH, 0.1 моль Al₄C₃.
- **10.** Исходный дипептид Ala–Tyr или Tyr–Ala, 6.3 г.

Факультет фундаментальной медицины Решения варианта ФФМБ-2007-1

- 1. $SO_3 + H_2O \rightarrow H_2SO_4$.
- **2.** Ba(HSO₃)₂ + Ba(OH)₂ \rightarrow 2BaSO₃ + 2H₂O.
- 3. Элементарное звено поливинилхлорида:

Относительная молекулярная масса звена $M_r(C_2H_3Cl) = 62.5$; отсюда средняя степень полимеризации для данного образца полимера:

$$n = M_r / M_r (C_2 H_3 C1) = 300000 / 62.5 = 4800.$$

Ответ: 4800.

- 4. 1) $SiO_2 + 2Mg \xrightarrow{t^\circ} Si + 2MgO$;
 - 2) $Si + 2Cl_2 \rightarrow 2SiCl_4$;
 - 3) $SiCl_4 + 2H_2O \rightarrow SiO_2 \downarrow + 4HCl$;
 - 4) $SiO_2 + 2C \xrightarrow{t^\circ} Si + 2CO\uparrow$.
- 5. Душистое вещество 2-гексил-3-фенилпропеналь:

Брутто-формула $C_{15}H_{20}O$, молярная масса 216 г/моль.

Элементный состав: $\omega(C) = 12 \cdot 15 / 216 = 0.8333$ или 83.33%;

$$\omega(H) = 20 / 216 = 0.0926$$
 или 9.26% ;

$$\omega(O) = 16 / 216 = 0.0741$$
 или 7.41%.

Omeem: $\omega(C) = 83.33\%$; $\omega(H) = 9.26\%$; $\omega(O) = 7.41\%$.

6. Пусть газовая смесь (v(смеси) = 8.96 / 22.4 = 0.4 моль) состояла из x моль этана C_2H_6 и y моль ацетилена C_2H_2 . С аммиачным раствором оксида серебра реагирует только ацетилен:

$$C_2H_2 + 2[Ag(NH_3)_2]OH \rightarrow Ag-C \equiv C-Ag\downarrow + 4NH_3 + 2H_2O$$
,

а этан не взаимодействует. Тогда $v(C_2Ag_2) = 72 / 240 = 0.3$ моль = y, x = 0.4 - 0.3 = 0.1 моль. Масса смеси $m = 0.1 \cdot 30 + 0.3 \cdot 26 = 10.8$ г. Весовые доли:

 $\omega(C_2H_6) = 3 / 10.8 = 0.2778$ или 27.78%; $\omega(C_2H_2) = 0.7222$ или 72.22%.

Ответ: 27.78% С₂H₆; 72.22% С₂H₂.

7. Скорость элементарной реакции $2\mathbf{A} + \mathbf{B} \to \mathbf{C}$ описывается уравнением $w = k[\mathbf{A}]^2[\mathbf{B}]$.

Подставив в него начальные концентрации реагентов и константу скорости реакции, можно рассчитать величину начальной скорости реакции:

$$w_0 = 0.8 \cdot 0.3^2 \cdot 0.5 = 0.036$$
 моль/(л ·мин).

Когда концентрация вещества \mathbf{A} уменьшилась на 0.1 моль/л, текущие концентрации реагентов в соответствии с уравнением реакции составили:

$$[A] = 0.3 - 0.1 = 0.2 \text{ моль/л}, [B] = 0.5 - 0.1/2 = 0.45 \text{ моль/л}.$$

Скорость реакции в этот момент равнялась $w = 0.8 \cdot 0.2^2 \cdot 0.45 = 0.0144$ моль/(л ·мин). *Ответ*: $w_0 = 0.036$ моль/(л ·мин), w = 0.0144 моль/(л ·мин).

8. Запишем уравнения реакций спиртового, маслянокислого и молочнокислого брожения глюкозы:

$$\begin{array}{c} C_6H_{12}O_6 \xrightarrow{\hspace{0.1cm} \phiepmenm} 2C_2H_5OH + 2CO_2\uparrow, \\ C_6H_{12}O_6 \xrightarrow{\hspace{0.1cm} \phiepmenm} C_3H_7COOH + 2CO_2\uparrow + 2H_2\uparrow, \\ C_6H_{12}O_6 \xrightarrow{\hspace{0.1cm} \phiepmenm} 2CH_3-CHOH-COOH. \end{array}$$

Окислим этанол до уксусной кислоты:

 $5C_2H_5OH + 4KMnO_4 + 6H_2SO_4 \rightarrow 5CH_3COOH + 4MnSO_4 + 2K_2SO_4 + 11H_2O$,

а глюкозу – до глюконовой кислоты:

Четыре натриевые соли вышеперечисленных кислот легко получить реакцией с NaOH, например:

$$C_3H_7COOH + NaOH \rightarrow C_3H_7COONa + H_2O.$$

Взаимодействие молочной кислоты с натрием приведет к образованию еще одной соли:

Возможны различные варианты получения других кислот и их солей. Например, взаимодействием молочной кислоты с $H_2SO_{4(\text{конц})}$ можно получить акриловую кислоту и затем ее натриевую соль, из уксусной кислоты в несколько стадий синтезировать соль глицина.

Можно непосредственно получить органическую соль из неорганических реагентов:

NaOH + CO
$$\xrightarrow{t,p}$$
 HCOONa.

9. Пусть в исходной смеси содержится по x моль MeNO₂ (где Me – искомый щелочной металл с атомной массой M) и Cu₂O. Азотная кислота окисляет оба вещества:

$$\begin{array}{c} \text{MeNO}_2 + 2\text{HNO}_3 \rightarrow \text{MeNO}_3 + 2\text{NO}_2\uparrow + \text{H}_2\text{O}; \\ x & 2x \\ \text{Cu}_2\text{O} + 6\text{HNO}_3 \rightarrow 2\text{Cu}(\text{NO}_3)_2 + 2\text{NO}_2\uparrow + 3\text{H}_2\text{O}. \\ x & 2x & 2x \end{array}$$

В соответствии с условием задачи

$$(M+46)x+144x=3.23.$$

Количество выделившегося NO_2 составляет $\nu(NO_2) = 0.896/22.4 = 0.04$ моль.

Тогда 2x + 2x = 4x = 0.04, откуда x = 0.01 моль. Подставим это значение в уравнение для массы смеси и получим M = 133 г/моль. Ме – это *цезий*.

После прокаливания полученных нитратов

$$\begin{array}{c} 2CsNO_3 \xrightarrow{t^{\circ}} 2CsNO_2 + O_2\uparrow, \\ 0.01 & 0.01 \end{array}$$

$$2Cu(NO_3)_2 \xrightarrow{t^{\circ}} 2CuO + 4NO_2\uparrow + O_2\uparrow \\ 0.02 & 0.02 \end{array}$$

сухой остаток содержит

$$m(\text{CsNO}_2) = 0.01 \cdot 179 = 1.79 \text{ }\Gamma, m(\text{CuO}) = 0.02 \cdot 80 = 1.6 \text{ }\Gamma.$$

Масса остатка m = 1.79 + 1.6 = 3.39 г.

Массовые доли веществ в остатке составляют:

$$\omega(\text{CsNO}_2) = 1.79 / 3.39 = 0.528$$
 или 52.8%, $\omega(\text{CuO}) = 1.6 / 3.39 = 0.472$ или 47.2%.

Ombem: $\omega(\text{CsNO}_2) = 52.8\%$, $\omega(\text{CuO}) = 47.2\%$.

- **10.** 1) $2AgNO_3 + 2KOH \rightarrow Ag_2O \downarrow + 2KNO_3 + H_2O$;
 - 2) $AgNO_3 + 3NH_3 + H_2O \rightarrow [Ag(NH_3)_2]OH + NH_4NO_3$;
 - 3) $Ag_2O + 4NH_3 + H_2O \rightarrow 2[Ag(NH_3)_2]OH$.

В качестве X1 можно выбрать и оксид серебра, и тогда X2 – $AgNO_3$.

Формуле $C_3H_6O_2$ соответствует пропановая кислота, которую можно получить из ее аммонийной соли:

- 4) $CH_3CH_2CHO + 2[Ag(NH_3)_2]OH \rightarrow CH_3CH_2COONH_4 + 2Ag\downarrow + 3NH_3 + H_2O;$
- 5) $CH_3CH_2COONH_4 + HC1 \rightarrow CH_3CH_2COOH + NH_4C1$.

Один из вариантов окислительно-восстановительных реакций 6-8:

- 6) $2CH_3CH_2COOH + Zn \rightarrow (CH_3CH_2COO)_2Zn + H_2$;
- 7) $2CH_3CH_2COOH + 7O_2 \rightarrow 6CO_2 + 6H_2O$;
- 8) $2H_2 + O_2 \rightarrow 2H_2O$.

Ответ: **X1** – AgNO₃; **X2** – Ag₂O; **Y1** – H₂; **Y2** – H₂O; **Z** – CH₃CH₂COONH₄.

Решения варианта ФФМБ-2007-2

- **1.** $P_2O_5 + H_2O \rightarrow 2HPO_3$ (или $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$ при избытке воды).
- 2. $Na_2SO_3 + SO_2 + H_2O \rightarrow 2NaHSO_3$.
- 3. Элементарное звено

$$-CF_2-CF_2-$$

Относительная молекулярная масса звена $M_r(C_2F_4) = 100$; отсюда относительная молекулярная масса полимера $M_r = 100 \cdot 5000 = 500000$. *Ответ*: 500000.

- $\overline{\mathbf{4.}}$ 1) CO + KOH $\xrightarrow{t,p}$ HCOOK;
 - 2) $HCOOK + HCl \rightarrow HCOOH + KCl$;
 - 3) $5HCOOH + 2KMnO_4 + 3H_2SO_4 \rightarrow 5CO_2\uparrow + K_2SO_4 + 2MnSO_4 + 8H_2O_7$
 - 4) $CO_2 + Mg \xrightarrow{t} CO + MgO$.

Ombem: X - HCOOK; Y - HCOOH; Z - CO₂.

5. Душистое вещество 4-(*пара*-гидроксифенил)бутанон-2:

$$HO \longrightarrow CH_2 - CH_2 - C - CH_3$$

Брутто-формула $C_{10}H_{12}O_2$, молярная масса 164 г/моль. Элементный состав:

Элементный состав: $\omega(C) = 12 \cdot 10 / 164 = 0.7317$ или 73.17%;

$$\omega(H) = 12 / 164 = 0.0732$$
 или 7.32%;

 $\omega(O) = 32 / 164 = 0.1951$ или 19.51%.

Ombem: ω(C) 73.17%; ω(H) 7.32%; ω(O) 19.51%.

6. Пусть газовая смесь состояла из x моль бутадиена C_4H_6 и y моль пропена C_3H_6 .

$$v(cmecu) = 6.72 / 22.4 = 0.3 = x + y.$$

Macca смеси составляет 54x + 42y = 13.8 г.

С бромом реагируют и бутадиен, и пропен:

$$C_4H_6 + 2Br_2 \rightarrow C_4H_6Br_4,$$

 $C_3H_6 + Br_2 \rightarrow C_3H_6Br_2.$
 $v(Br_2) = 64 / 160 = 0.4 = 2x + y,$

Решив систему уравнений:

$$\begin{cases} 2x + y = 0.4 \\ x + y = 0.3 \end{cases}$$

получаем x = 0.1, y = 0.2.

$$m(\text{смеси}) = 54 \cdot 0.1 + 42 \cdot 0.2 = 5.4 + 8.4 = 13.8 \text{ }\Gamma.$$

 $\omega(C_4H_6)=5.4$ / 13.8=0.3913 или 39.13%; $\omega(C_3H_6)=8.4$ / 13.8=0.6087 или 60.87%. Ответ: 39.13% C_4H_6 ; 60.87% C_3H_6 .

7. Скорость элементарной реакции $2\mathbf{A} + \mathbf{B} \to \mathbf{C}$ описывается уравнением $w = k[\mathbf{A}]^2[\mathbf{B}]$, отсюда выражение для константы скорости:

$$k = \frac{w}{[A]^2[B]}.$$

Подставив в него начальные концентрации реагентов и скорость реакции, можно рассчитать величину константы скорости реакции:

$$k = 0.036 / (0.3^2 \cdot 0.5) = 0.8 \, \text{m}^2 / (\text{моль}^2 \cdot \text{мин}).$$

Когда концентрация вещества **В** уменьшилась на 0.1 моль/л, текущие концентрации реагентов в соответствии с уравнением реакции составили:

$$[\mathbf{A}] = 0.3 - 2 \cdot 0.1 = 0.1 \text{ моль/л}, [\mathbf{B}] = 0.5 - 0.1 = 0.4 \text{ моль/л}.$$

Скорость реакции в этот момент равнялась $w = 0.8 \cdot 0.1^2 \cdot 0.4 = 0.0032$ моль/(л ·мин). *Ответ*: $k = 0.8 \text{ л}^2$ /(моль²·мин), w = 0.0032 моль/(л ·мин). 8. Прежде всего, получим из этилена этанол и этандиол:

$$C_2H_4 + H_2O \xrightarrow{H^+} C_2H_5OH$$
,

$$3C_2H_4 + 2KMnO_4 + 4H_2O \rightarrow 3HO-CH_2-CH_2-OH + 2MnO_2 \downarrow + 2KOH.$$

Синтезируем бутан по реакции Вюрца, для этого:

$$C_2H_4 + HCl \longrightarrow C_2H_5Cl$$
,
 $2C_2H_5Cl + 2Na \rightarrow C_4H_{10} + 2NaCl$.

Далее хлорированием бутана можно получить 2-хлорбутан, его щелочной гидролиз позволит получить бутанол-2. Кроме того, из 2-хлорбутана по реакции элиминирования получим бутен-2, из которого можно синтезировать бутандиол-2,3:

$$3C_4H_8 + 2KMnO_4 + 4H_2O \rightarrow 3CH_3 - CH(OH) - CH(OH) - CH_3 + 2MnO_2 \downarrow + 2KOH$$
.

Из этанола по реакции Лебедева можно получить бутадиен:

$$2C_2H_5OH \xrightarrow{t,p,\kappa am} CH_2=CH-CH=CH_2+2H_2O+H_2$$
,

окисление которого водным раствором перманганата даст четырехатомный спирт:

$$3CH_2=CH-CH=CH_2 + 4KMnO_4 + 8H_2O \rightarrow 3CH_2(OH)-CH(OH)-CH(OH)-CH_2(OH) + 4MnO_2 \downarrow + 4KOH$$

Имеющийся *н*-бутан можно подвергнуть каталитической изомеризации и получить изобутан, хлорирование на свету которого позволит получить следующее хлорпроизводное:

$$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} + Cl_2 \xrightarrow{h\nu} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} + HCl$$

Гидролиз его водным раствором щелочи приводит к получению трет-бутанола.

Кроме того, действуя на $(CH_3)_3CCl$ спиртовым раствором щелочи, получим метилпропен $(CH_3)_2C$ = CH_2 , окисление которого водным раствором $KMnO_4$ даст соответствующий двухатомный спирт $(CH_3)_2CH(OH)$ – CH_2OH .

9. Пусть в исходной смеси содержится по x моль MeNO₂ (где Me – искомый щелочной металл с атомной массой M) и Fe(NO₃)₂. Азотная кислота окисляет оба вещества:

$$\begin{array}{c} \text{MeNO}_2 + 2\text{HNO}_3 \rightarrow \text{MeNO}_3 + 2\text{NO}_2\uparrow + \text{H}_2\text{O}; \\ x & 2x \\ \text{Fe}(\text{NO}_3)_2 + 2\text{HNO}_3 \rightarrow \text{Fe}(\text{NO}_3)_3 + \text{NO}_2\uparrow + \text{H}_2\text{O}. \\ x & x \end{array}$$

В соответствии с условием задачи

$$(M+46)x+180x=6.22$$
.

Количество выделившегося NO_2 составляет $v(NO_2) = 1.344/22.4 = 0.06$ моль.

Тогда 2x + x = 3x = 0.06 моль, отсюда x = 0.02 моль. Подставим это значение в выражение для массы смеси и получим M = 85 г/моль. Ме – это рубидий.

После прокаливания полученных нитратов

$$\begin{array}{c}
2\text{RbNO}_{3} \xrightarrow{t^{\circ}} 2\text{RbNO}_{2} + \text{O}_{2}\uparrow, \\
0.02 & 0.02
\end{array}$$

$$4\text{Fe}(\text{NO}_{3})_{3} \xrightarrow{t^{\circ}} 2\text{Fe}_{2}\text{O}_{3} + 12\text{NO}_{2}\uparrow + 3\text{O}_{2}\uparrow \\
0.02 & 0.01$$

сухой остаток содержит

$$m(\text{RbNO}_2) = 0.02 \cdot 131 = 2.62 \text{ r},$$

 $m(\text{Fe}_2\text{O}_3) = 0.01 \cdot 160 = 1.6 \text{ r}.$

Масса остатка m = 2.62 + 1.6 = 4.22 г.

Массовые доли веществ в остатке составляют:

$$\omega(\text{CsNO}_2) = 2.62/4.22 = 0.621$$
 или 62.1%, $\omega(\text{Fe}_2\text{O}_3) = 1.6/4.22 = 0.379$ или 37.9%.

<u>Ombem</u>: $\omega(\text{CsNO}_2) = 62.1\%$, $\omega(\text{Fe}_2\text{O}_3) = 37.9\%$.

- 10. 1) $Na_2O + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$;
 - 2) $Na_2O + H_2O \rightarrow 2NaOH$;
 - 3) $Na_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 \downarrow + 2NaOH$.

Хлорэтан C_2H_5Cl можно получить из этана, из этанола, или из этилена. Выберем вариант с этиленом. Тогда реакция получения этилена:

- 4) $C_2H_5Br + NaOH(спирт) \rightarrow CH_2=CH_2 + NaBr + H_2O$.
- 5) $CH_2=CH_2 + HCl \rightarrow C_2H_5Cl$;

Один из вариантов реакций 6-8:

- 6) $2C_2H_5Cl + 2Na \rightarrow C_4H_{10} + 2NaBr$ (реакция Вюрца),
- 7) $C_2H_5Cl + 3O_2 \rightarrow 2CO_2 + 2H_2O + HCl$;
- 8) $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$.

<u>Ответ</u>: $X1 - Na_2O$; $X2 - Na_2SO_4$; $Y1 - C_4H_{10}$; $Y2 - H_2O$; $Z - CH_2 = CH_2$.

Ответы к варианту ФФМБ-2007-3

- 1. $NH_3 + HCl \rightarrow NH_4Cl$.
- 2. KHSO₃ + KOH \rightarrow K₂SO₃ + H₂O.
- **3.** 2900.

- 4. 1) $2C + SiO2 \xrightarrow{t^{\circ}} Si + 2CO\uparrow$;
 - 2) CO + NaOH $\xrightarrow{t^{\circ}, p}$ HCOONa;
 - 3) $HCOONa + HCl \rightarrow HCOOH + NaCl$;
 - 4) HCOOH $\xrightarrow{t^{\circ}, H_2SO_4(\text{KKOHI})} \rightarrow CO\uparrow + H_2O$.
- **5.** ω (C) 69.57%; ω (H) 7.25%; ω (O) 23.18%.

- **6.** 52.38% С₃H₈ и 47.62% С₃H₄.
- 7. $0.12 \text{ моль/(л} \cdot \text{мин}); [A] = 0.012 \text{ моль/л}, [B] = 0.212 \text{ моль/л}.$
- **9.** 30.1% NaNO₂, 69.9% CuO.
- **10.** X1 CuCl₂; X2 NaCl; Y1 CH₃– CHOH–CH₃; Y2 H₂O; Z CH₃–CCl₂–CH₃.

Ответы к варианту ФФМБ-2007-4

- 1. $3\text{CaO} + 2\text{P}_2\text{O}_5 \xrightarrow{t^\circ} \text{Ca}_3(\text{PO}_4)_2$.
- 2. $Na_2HPO_4 + NaOH \rightarrow Na_3PO_4 + H_2O$.
- **3.** 210000.

- 4. 1) $3C + CaO \xrightarrow{t^{\circ}} CaC_2 + CO\uparrow$;
 - 2) CO + 2H₂ $\xrightarrow{t^{\circ}, \kappa am}$ CH₃OH;
 - 3) $5CH_3OH + 6KMnO_4 + 9H_2SO_4 \rightarrow 5CO_2 + 6MnSO_4 + 3K_2SO_4 + 19H_2O$;
 - 4) $CO_2 + C \xrightarrow{t^\circ} 2CO$.
- **5.** ω (C) 81.82%; ω (H) 6.06%; ω (O) 12.12%.

$$CH = CH - C$$

- **6.** 62.86% C₃H₈; 37.14% C₂H₂.
- 7. k = 0.24 моль/(л·мин), w = 0.027 моль/(л·мин).
- **9.** 26.15% KNO₂, 73.85% Fe₂O₃.
- **10.** $X1 Ca(OH)_2$; $X2 Ca(HCO_3)_2$; $Y1 H_2$; $Y2 H_2O$; Z NaOH.

Факультет биоинженерии и биоинформатики Решения варианта БЗКБ-07-1

1. Структурные формулы соединений:

$$C = O$$
 $C = O$
 $C = O$
 $C = O$
 $C = O$
 $C = O$

- 2. $5\text{Na}_2\text{SO}_3 + 2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 \rightarrow 5\text{Na}_2\text{SO}_4 + 2\text{MnSO}_4 + \text{K}_2\text{SO}_4 + 3\text{H}_2\text{O};$ $C_6\text{H}_5\text{CH}_3 + \text{K}_2\text{Cr}_2\text{O}_7 + 4\text{H}_2\text{SO}_4 \rightarrow C_6\text{H}_5\text{-COOH} + \text{Cr}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4 + 5\text{H}_2\text{O}.$
- 3. Последовательность распознавания веществ:
 - 1) $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 \uparrow + H_2O$ (выделение газа лишь в одном случае);
- 2) $Na_2SO_4 + BaCl_2 \rightarrow 2NaCl + BaSO_4$ ↓ (белый осадок лишь с одним из трех оставшихся веществ);
- 3) KCl + AgNO₃ \rightarrow AgCl \downarrow + KNO₃ (творожистый белый осадок с одним из двух оставшихся веществ);
 - 4) Оставшееся вещество NaNO₃.
- **4.** $HCOOH \rightleftharpoons HCOO^- + H^+$

 $K = \alpha^2 \cdot C$ (закон разведения Оствальда). а) $\alpha = (K/C)^{1/2} = (2.05 \cdot 10^{-4} / 0.2)^{1/2} = 0.032$;

6)
$$\alpha = (2.05 \cdot 10^{-4} / 0.4)^{1/2} = 0.021$$
.

5. $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2\uparrow$ $Ca_3N_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2NH_3\uparrow$.

Пусть было x моль C_2H_2 и (1-x) моль NH_3 .

Средняя молярная масса смеси газов $M_{\rm cp} = 9.4 \cdot 2 = 18.8$ г/моль, можно записать соотношение $26x + 17 \cdot (1-x) = 18.8$, отсюда x = 0.2 моль.

$$m(CaC_2) = 0.2 \cdot 64 = 12.8 \ \Gamma,$$

 $m(Ca_3N_2) = 0.4 \cdot 148 = 59.2 \ \Gamma,$
 $m(смеси) = 12.8 + 59.2 = 72 \ \Gamma,$
 $\omega(CaC_2) = 12.8 / 72 \cdot 100\% = 17.8\%.$

Ответ: 17.8% CaC₂.

6. $v(\text{смеси}) = pV/RT = (101.3 \cdot 14.76) / (8.31 \cdot 300) = 0.6 \text{ моль}.$

По условию задачи, $\nu(C_2H_6) = 0.45$ моль,

$$m(C_2H_6) = 0.45 \cdot 30 = 13.5 \ \Gamma,$$

 $\nu(\Gamma a 3 a) = 0.25 \cdot 0.6 = 0.15 \ \text{моль},$
 $m(\Gamma a 3 a) = 24.00 - 13.5 = 10.5 \ \Gamma.$

Отсюда M(газа) = 10.5 / 0.15 = 70 г/моль. Если предположить, что неизвестный газ — это углеводород, то простой подбор (12x + y = 70) дает формулу C_5H_{10} — это или алкен (например, пентен), или циклоалкан. При пропускании через водный раствор перманганата калия именно алкенов происходит образование осадка диоксида марганца:

$$3C_5H_{10} + 2KMnO_4 + 4H_2O \rightarrow 3C_5H_{10}(OH)_2 + 2MnO_2\downarrow + 2KOH;$$

 $\nu(MnO_2) = 0.15 \cdot 2 / 3 = 0.1$ моль,
 $m(MnO_2) = 0.1 \cdot 87 = 8.7$ г.

Ответ: 8.7 г.

COOH
$$+ Br_2 \xrightarrow{AlBr_3} + HBr;$$

- 2) C_6H_5 -COOH + $CH_3OH \xrightarrow{H^+} C_6H_5$ -COOCH₃ + H_2O ;
- 3) $2C_6H_5$ -COOH + $2Na \rightarrow 2C_6H_5$ -COONa + $H_2\uparrow$;
- 4) C_6H_5 -COONa + $CH_3CH_2Br \rightarrow C_6H_5$ -COOC₂ H_5 + NaBr;

5)

COOH COOH
$$+ \text{HNO}_3 \xrightarrow{\text{H}_2\text{SO}_4} + \text{H}_2\text{O};$$

COOH
$$+ 3Fe + 7HCl \longrightarrow NO_2$$
 $+ 3FeCl_2$. NH_3Cl

8. Пусть в исходной смеси содержится по x моль $MeNO_2$ (где Me – искомый щелочной металл) и Cu_2O ; азотная кислота окисляет оба эти вещества:

$$MeNO_2 + 2HNO_3 \rightarrow MeNO_3 + 2NO_2 \uparrow + H_2O;$$

$$Cu_2O + 6HNO_3 \rightarrow 2Cu(NO_3)_2 + 2NO_2 \uparrow + 3H_2O$$
.

$$v(NO_2) = 1.792 / 22.4 = 0.08$$
 моль;

$$v(NO_2) = 4x = 0.08$$
, отсюда $x = 0.02$ моль.

$$v(MeNO_3) = v(Cu_2O) = 0.02$$
 моль.

$$M(Cu2O) = 0.02 \cdot 144 = 2.88 \text{ }\Gamma;$$

$$m(MeNO_3) = 6.46 - 2.88 = 3.58 \text{ }\Gamma.$$

$$M(MeNO_3) = 3.58 / 0.02 = 179 г/моль;$$

$$A(Me) = 179 - 46 = 133$$
 г/моль, это цезий.

При прокаливании смеси нитратов происходят реакции:

$$2CsNO_{3} \xrightarrow{t^{\circ}} 2CsNO_{2} + O_{2}\uparrow$$

$$0.02 \qquad 0.01$$

$$2Cu(NO_{3})_{2} \xrightarrow{t^{\circ}} 2CuO + 4NO_{2}\uparrow + O_{2}\uparrow$$

$$0.04 \qquad 0.08 \qquad 0.02$$

Выделилось 0.08 моль NO_2 и 0.03 моль O_2 , их мольные (объемные) доли составляют:

$$\phi(NO_2) = 0.08 / 0.11 = 0.72$$
 или 72%;

$$\phi(O_2) = 0.03 / 0.11 = 0.28$$
 или 28%.

Ответ: 72% NO₂; 28% O₂.

- 9. 1. $Ca(OH)_2 \xrightarrow{t^*} CaO + H_2O$;
 - 2. $Ca(OH)_2 + H_3PO_4 \rightarrow CaHPO_4 + 2H_2O_5$
 - 3. $CaO + H_3PO_4 \rightarrow CaHPO_4 + H_2O$;
 - 4. $2CaHPO_4 + Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + 2H_2O$;
 - 5. $2Ca_3(PO_4)_2 + 10C + 6SiO_2 \xrightarrow{t^*} 6CaSiO_3 + P_4 + 10CO\uparrow$;
 - 6. $P_4 + 3O_2 \rightarrow 2P_2O_3$;
 - 7. $P_4 + 5O_2 \xrightarrow{t^\circ} 2P_2O_5$;
 - 8. $P_2O_3 + O_2 \xrightarrow{t^\circ} P_2O_5$.

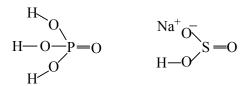
10. Обозначим неизвестные спирты как ROH и R_1 OH (здесь молярные массы изомерных радикалов R и R_1 равны между собой). Реакции этерификации:

$$ROH + CH_3COOH \rightarrow CH_3COOR + H_2O$$
,

$$R_1OH + CH_3COOH \rightarrow CH_3COOR_1 + H_2O.$$

Пусть было 5x моль ROH и x моль R_1 OH. Тогда с учетом выходов реакций этерификации было получено 3.75x моль эфира CH_3COOR и 0.5x моль CH_3COOR_1 .

$$5x(R + 17) + x(R + 17) = 43.2, x = 7.2 / (R + 17),$$


$$3.75x(R + 59) + 0.5x(R + 59) = 52.02$$
, $x = 12.24 / (R + 59)$,

7.2 / (R + 17) = 12.24 / (R + 59), R = 43. Поскольку радикал R – это алкил C_nH_{2n+1} , получаем уравнение 14n + 1 = 43, откуда n = 3. Следовательно, неизвестные спирты – это пропанол-1 и пропанол-2.

Ответ: пропанол-1 и пропанол-2.

Решение варианта БЗКБ-07-2

1.

- 2. $Cl_2 + SO_2 + 2H_2O \rightarrow 2HCl + H_2SO_4$;
 - $3CH_2=CH_2 + 2KMnO_4 + 4H_2O \rightarrow 3CH_2(OH) CH_2(OH) + 2MnO_2 \downarrow + 2KOH$.
- 3. Последовательность распознавания веществ:
 - 1) NaHSO₃ + HCl \rightarrow NaCl + SO₂↑ + H₂O (выделение газа только в одном случае);
- 2) $K_2SO_4 + BaCl_2 \rightarrow 2KCl + BaSO_4 \downarrow$ (образование белого осадка только с одним веществом из трех оставшихся);
- 3) $NH_4NO_3 + NaOH \rightarrow NaNO_3 + NH_3\uparrow + H_2O$ (выделение газа только в одном случае из двух);
- 4) $CaCl_2 + 2AgNO_3 \rightarrow 2AgCl\downarrow + Ca(NO_3)_2$ (образование белого творожистого осадка подтверждает, что оставшееся вещество это нитрат серебра).
- **4.** $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

$$K = \alpha^2 \cdot C$$
 (закон разведения Оствальда).

a)
$$\alpha = (K/C)^{1/2} = (1.86 \cdot 10^{-5}/0.1)^{1/2} = 1.36 \cdot 10^{-2}$$
;

6)
$$\alpha = (1.86 \cdot 10^{-5}/0.6)^{1/2} = 5.57 \cdot 10^{-2}$$
.

5. $\operatorname{CaC}_2 + 2\operatorname{H}_2\operatorname{O} \to \operatorname{Ca}(\operatorname{OH})_2 + \operatorname{C}_2\operatorname{H}_2\uparrow;$

$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2\uparrow$$
.

Пусть было x моль C_2H_2 и (1-x) моль H_2 .

$$M_{\rm cp} = 32 / 4.7 = 6.8 \ {\mbox{г/моль}}$$

$$26x + 2(1-x) = 6.8$$
, отсюда $x = 0.2$ моль.

$$m(CaC_2) = 0.2 \cdot 64 = 12.8 \text{ }\Gamma;$$

$$m(CaH_2) = 0.4 \cdot 42 = 16.8 \text{ r};$$

m(смеси) = 12.8 + 16.8 = 29.6 г, ω (CaH₂) = 16.8/29.6 = 0.5676 или 56.76%.

Ответ: 56.76% СаН₂.

6. $v(\text{смеси}) = pV/RT = (101.3 \cdot 4.92)/(8.31 \cdot 300) = 0.2 \text{ моль};$

По условию задачи, $v(C_3H_8) = 0.08$ моль,

$$m(C_3H_8) = 0.08 \cdot 44 = 3.52 \text{ }\Gamma.$$

$$v(ra3a) = 0.2 \cdot 0.6 = 0.12$$
 моль,

$$m(\Gamma a_3 a) = 10.24 - 3.52 = 6.72 \Gamma$$

M(газа) = 6.72 / 0.12 = 56 г/моль. Если предположить, что неизвестный газ – углеводород, тогда простым подбором (12x + y = 56) найдем формулу С₄H₈ – это или алкен (например,

бутен), или циклоалкан. При пропускании через раствор перманганата калия именно алкены вызывают образование осадка диоксида марганца:

$$3C_4H_8+2KMnO_4+4H_2O \rightarrow 3C_4H_8(OH)_2+2MnO_2\downarrow+2KOH.$$
 $\nu(MnO_2)=0.08$ моль, $m(MnO_2)=0.08\cdot 87=6.96$ г.

Ответ: 6.96 г.

- 7. $1.C_6H_5CH_2CH_2OH + HBr \rightarrow C_6H_5CH_2CH_2Br + H_2O$;
 - 2. $C_6H_5CH_2CH_2OH + 2KMnO_4 + 3H_2SO_4 \rightarrow C_6H_5COOH + CO_2\uparrow + 2MnSO_4 + K_2SO_4 + 5H_2O_5$
 - 3. $C_6H_5CH_2CH_2OH + CuO \rightarrow C_6H_5CH_2CHO + Cu + H_2O$;
 - 4. $C_6H_5CH_2CH_2OH + 2[Ag(NH_3)_2]OH \rightarrow C_6H_5CH_2COONH_4 + 2Ag\downarrow + 3NH_3\uparrow + H_2O;$
 - 5. $C_6H_5CH_2CH_2OH \xrightarrow{t_0, H_2SO_4} C_6H_5CH=CH_2 + H_2O;$
 - 6. $C_6H_5CH=CH_2+H_2O \xrightarrow{H^+} C_6H_5CH(OH)CH_3$.
- **8.** Пусть в исходной смеси содержится по x моль MeNO₂ (где Me искомый щелочной металл) и FeO; азотная кислота окисляет оба эти вещества:

$$MeNO_2 + 2HNO_3 \rightarrow MeNO_3 + 2NO_2\uparrow + H_2O;$$
 $FeO + 4HNO_3 \rightarrow Fe(NO_3)_3 + NO_2\uparrow + 2H_2O.$ $v(NO_2) = 1.344 / 22.4 = 0.06$ моль; $v(NO_2) = 3x = 0.06$, отсюда $x = 0.02$ моль. $v(MeNO_3) = v(FeO) = 0.02$ моль $m(FeO) = 0.02 \cdot 72 = 1.44$ г $m(MeNO_3) = 4.06 - 1.44 = 2.62$ г. $M(MeNO_3) = 2.62 / 0.02 = 131$ г/моль; $A(Me) = 131 - 46 = 85$ г/моль, это рубидий Rb.

При прокаливании смеси нитратов происходят следующие реакции:

$$\begin{array}{ccc}
2RbNO_{3} & \xrightarrow{t^{\circ}} & 2RbNO_{2} + O_{2} \uparrow \\
0.02 & 0.01 \\
4Fe(NO_{3})_{3} & \xrightarrow{t^{\circ}} & 2Fe_{2}O_{3} + 12NO_{2} \uparrow + 3^{\circ}_{2} \uparrow \\
0.02 & 0.06 & 0.015
\end{array}$$

Всего выделилось 0.06 моль NO_2 и 0.025 моль O_2 – их мольные (объемные) доли составляют $\phi(NO_2) = 0.06 / 0.085 = 0.7$ или 70%; $\phi(O_2) = 0.025 / 0.085 = 0.3$ или 30%.

Ответ: 70% NO₂; 30% O₂.

- 9. 1. $2Al(OH)_3 \xrightarrow{t^*} Al_2O_3 + 3H_2O_5$
 - 2. $Al(OH)_3 + KOH \rightarrow K[Al(OH)_4]$;
 - 3. $Al_2O_3 + 2KOH + 3H_2O \rightarrow 2K[Al(OH)_4]$;
 - 4. $K[Al(OH)_4] + CO_2 \rightarrow Al(OH)_3 + KHCO_3$;
 - 5. 2KHCO₃ $\xrightarrow{t^{\circ}}$ K₂CO₃ + CO₂↑ + H₂O;
 - 6. $2H_2O \xrightarrow{\text{электролиз}} 2H_2\uparrow + O_2\uparrow;$
 - 7. $6\text{Fe}(OH)_2 + O_3 + 3H_2O \rightarrow 6\text{Fe}(OH)_3$;
 - 8. $4\text{Fe} + 3\text{O}_2 + 6\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_3$.
- **10.** Обозначим неизвестные изомерные кислоты как RCOOH и R₁COOH:

$$CH_3OH + RCOOH \rightarrow RCOOCH_3 + H_2O;$$

 $CH_3OH + R_1COOH \rightarrow R_1COOCH_3 + H_2O.$

Пусть было 10x моль RCOOH и 2x моль R₁COOH. Тогда с учетом выходов реакций этерификации было получено 8x моль RCOOCH₃ и x моль R₁COOCH₃.

$$10x(R + 45) + 2x(R + 45) = 21.12$$
, $x = 1.76 / (R + 45)$
 $8x(R + 59) + x(R + 59) = 18.36$, $x = 2.04 / (R + 59)$
 $1.76 / (R + 45) = 2.04 / (R + 59)$, $R = 43$, значит, $14n + 1 = 43$, $n = 3$.

Ответ: бутановая и метилпропановая кислоты.

Ответы к варианту БЗКБ-07-3

1.

2. $3Na_2SO_3 + 2KMnO_4 + H_2O \rightarrow 3Na_2SO_4 + 2MnO_2 \downarrow + 2KOH$;

 $3CH_3-CH=CH_2+5K_2Cr_2O_7+20H_2SO_4 \rightarrow 3CH_3-COOH+3CO_2+5Cr_2(SO_4)_3+5K_2SO_4+23H_2O_3$

3.

	реагент	NaHCO ₃	Ba(NO ₃) ₂	NH ₄ Cl	NaCl
1	HC1	CO ₂ ↑	-	-	-
2	Na ₂ SO ₄		BaSO ₄ ↓	-	-
3	NaOH			NH ₃ ↑	-

4. a) $14.83 \cdot 10^{-2}$; б) $9.71 \cdot 10^{-2}$.

5. 86.23% Ca₃N₂.

6. 8.7 г.

$$CH_2$$
= CH - C
 H
+ $2Cu(OH)_2$ \longrightarrow CH_2 = CH - C
 OH
+ $Cu_2O + 2H_2O$;

2)

$$CH_2$$
= CH - C
 H
 $+ HBr$
 $\longrightarrow CH_2$ - CH_2 - C
 H
 $;$

$$CH_2$$
= CH - C
 H + 2[Ag(NH₃)₂]OH \longrightarrow CH_2 = CH - C
 ONH_4 + 2Ag + 3NH₃ + H₂O;

4)

$$CH_2 = CH - C ONH_4 + 2HC1 \longrightarrow CH_2 - CH_2 - CH_2 - CH_2 - CH_3 + NH_4CI;$$

5)

$$CH_2$$
= CH - C $+ H_2O$ $\xrightarrow{H^+}$ CH_2 - CH_2 - CH_2 C

6)

$$CH_2$$
— CH_2 —

8. 16.67% N₂O; 66.67% NO₂; 16.67% O₂.

- 9. 1. $Cu(OH)_2 \xrightarrow{t^\circ} CuO + H_2O$;
 - 2. $Cu(OH)_2 + 2HBr \rightarrow CuBr_2 + 2H_2O$;
 - 3. $CuO + 2HBr \rightarrow CuBr_2 + H_2O$;
 - 4. $CuBr_2 + Na_2S \rightarrow CuS \downarrow + 2NaBr$;
 - 5. $2\text{CuS} + 3\text{O}_2 \xrightarrow{t^\circ} 2\text{CuO} + 2\text{SO}_2$;
 - 6. $SO_2 + 2H_2S \rightarrow 3S \downarrow + 2H_2O$;

7.
$$SO_2 + Cl_2 + 2H_2O \rightarrow H_2SO_4 + 2HCl$$
;

8.
$$3S + 6HNO_3 \xrightarrow{t^\circ} 3H_2SO_4 + 6NO\uparrow$$
.

10. Бутановая и метилпропановая кислоты $C_4H_8O_2$.

Ответы к варианту БЗКБ-07-4

1. $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \rightarrow 5O_2 + 2MnSO_4 + K_2SO_4 + 8H_2O;$ $C_6H_5NO_2 + 2Al + 2NaOH + 4H_2O \rightarrow C_6H_5NH_2 + 2NaAl(OH)_4.$

3.

	реагент	CaSO ₃	$(NH_4)_2SO_4$	Na ₂ SO ₄	KNO ₃
1	HC1	$SO_2\uparrow$	-	-	-
2	NaOH		NH₃↑	-	-
3	BaCl ₂			BaSO ₄ ↓	-

4. a) $4.74 \cdot 0^{-2}$; 6) $3.35 \cdot 10^{-2}$.

5. 52.94% Al₄C₃.

6. 10.44 Γ.

7.

1.
$$CH_2-CH_2-C \stackrel{O}{\bigcirc}OH + HBr = CH_2-CH_2-C \stackrel{O}{\bigcirc}OH + H_2O$$

3.
$$CH_2-CH_2-C O OH OH OH OH$$
 + NaHCO₃ = $CH_2-CH_2-C OOH OH$ + CO₂ + H₂O

4.
$$CH_2$$
- CH_2 - CH_3 + CH_3 Br = CH_2 - CH_2 - CH_3 + NaBr OH

5.
$$CH_2-CH_2-CC_{OH}^{O}$$
 + $KMnO_4$ + H_2SO_4 = $CH_2(COOH)_2$ + $MnSO_4$ + K_2SO_4 + H_2O_4 + H_2O_4

6.
$$CH_2(COOH)_2 + 2 C_2H_5OH \xrightarrow{H^+} CH_2(COOC_2H_5)_2 + H_2O$$

8. 76.596% NO₂; 23.404% O₂.

9. 1. Ba(OH)₂
$$\xrightarrow{t^{\circ}}$$
 BaO + H₂O;

2.
$$Ba(OH)_2 + 2CO_2 \rightarrow Ba(HCO_3)_2$$
;

3. BaO + 2CO₂ + H₂O
$$\rightarrow$$
 Ba(HCO₃)₂;

4.
$$Ba(HCO_3)_2 + 2HNO_3 \rightarrow Ba(NO_3)_2 + 2CO_2 \uparrow + 2H_2O_5$$

5.
$$Ba(NO_3)_2 + FeSO_4 \rightarrow Fe(NO_3)_2 + BaSO_4 \downarrow$$
;

6.
$$4\text{Fe}(\text{NO}_3)_2 \xrightarrow{t^\circ} 2\text{Fe}_2\text{O}_3 + 8\text{NO}_2\uparrow + \text{O}_2\uparrow;$$

7.
$$Fe(NO_3)_2 + Zn \rightarrow Zn(NO_3)_2 + Fe$$
;

8.
$$Fe_2O_3 + 3H_2 \xrightarrow{t^{\circ}} 2Fe + 3H_2O$$
.

10. Пропанол-1 и пропанол-2 C₃H₇OH.

Факультет почвоведения Ответы к варианту ПВ–2007–1

1. Например, бутановая кислота СН₃–СН₂–СООН и этилформиат:

$$CH_3-C< O C_2H_5$$

- **2.** Ar и Cl⁻.
- **3.** Например: HBr + NaOH \rightarrow NaBr + H₂O;

$$HBr + AgNO_3 \rightarrow AgBr \downarrow + HNO_3;$$

$$2HBr+CaO \rightarrow CaBr_2 + H_2O$$
;

$$2HBr + Mg \rightarrow MgBr_2 + H_2\uparrow$$
.

- **4.** C₂H₂.
- **5.** 56 кДж/моль.
- **6.** $\nu(H_2)_{\text{исх.}} = 0.85$ моль; $\nu(I_2)_{\text{исх}} = 0.95$ моль; $K_p = 4.05$.
- 7. $\mathbf{A} \text{Na}_2\text{CO}_3$, $\mathbf{F} \text{NaHCO}_3$, $\mathbf{B} \text{Na}_2\text{SO}_4$, $\mathbf{\Gamma} \text{NaCl}$, $\mathbf{\mathcal{I}} \text{NaNO}_3$, $\mathbf{E} \text{NaNO}_2$.
- 8. 1) $CH = CH + H_2O \xrightarrow{Hg^{2+}, H^+} CH_3CH = O$;
 - 2) $5CH_3CHO + 2KMnO_4 + 3H_2SO_4 \rightarrow 5CH_3COOH + 2MnSO_4 + 3H_2O + K_2SO_4$;
 - 3) $CH_3COOH + CH_3OH \xrightarrow{H^+} CH_3-COOCH_3 + H_2O$;
 - 4) 3СН \equiv СН $\xrightarrow{\text{уголь, 600°C}}$ С₆Н₆;
 - 5) $C_6H_6 + HNO_3$ (конц) $\xrightarrow{H_2SO_4 \text{ конц.}} C_6H_5 NO_2 + H_2O$;
 - 6) $C_6H_5-NO_2 + 2Al + 2KOH + 4H_2O \rightarrow C_6H_5-NH_2 + 2K[Al(OH)_4].$
- **9.** Медь. $Cu + 2H_2SO_4(конц) \xrightarrow{t^o} CuSO_4 + SO_2 \uparrow + 2H_2O$.
- **10.** 4.35% C_4H_{10} ; 34.78% C_3H_8 ; 60.87% H_2 ; 19.0 г/моль.

Решение варианта ПВ-2007-2

1. Пример межклассовой изомерии: пентен-1 СН₂=СН-СН₂-СН₂-СН₃ и циклопентан

- **2.** Ne и F⁻.
- **3.** Например: $Ba(OH)_2 + CO_2 \rightarrow Ba(HCO_3)_2$;

$$Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O;$$

$$Ba(OH)_2 + CuCl_2 \rightarrow Cu(OH)_2 \downarrow + 2BaCl_2;$$

$$Ba(OH)_2 + 2Al(OH)_3 \xrightarrow{t^o} Ba(AlO_2)_2 + 4H_2O$$
 или $Ba(OH)_2 + Al_2O_3 \xrightarrow{t^o} Ba(AlO_2)_2$.

4. Поскольку продуктами горения газа являются только CO_2 и H_2O , газ состоит из углерода, водорода и, возможно, кислорода. Искомая брутто-формула — $C_xH_yO_z$. Запишем уравнение горения, учтя при этом, что объемы газов, измеренные при одинаковых условиях, пропорциональны количеству веществ газов. Отсюда следует, что данные объемы газов можно использовать в качестве коэффициентов в уравнении реакции. Для удобства разделим каждый коэффициент (объем) на 1.5:

$$C_xH_yO_z + 3O_2 \rightarrow 2CO_2 + 3H_2O$$
,

отсюда x = 2; y = 6; z = 4 + 3 - 6 = 1. Следовательно, искомое вещество — C_2H_6O .

Ответ: C₂H₆O

5. Реакция нейтрализации : HBr + KOH \rightarrow KBr + H₂O + Q.

$$v_{KOH} = \frac{0.6 \cdot 50}{1000} = 0.03$$
 моль; $v_{HBr} = \frac{32.39 \cdot 1.042 \cdot 0.06}{81} = 0.025$ моль; следовательно, в недостатке

находится кислота. Теплоту нейтрализации рассчитываем по кислоте:

$$Q = \frac{1.4}{0.025} = 56$$
 кДж/моль.

Ответ: 56 кДж/моль.

6. Поскольку реакция протекает в замкнутом (постоянном) объеме, в расчетах можно вместо концентраций использовать количества веществ.

Пусть к моменту достижения равновесия прореагировало х моль водорода. Тогда:

$$I_2(\Gamma a3) + H_2(\Gamma a3) \rightleftharpoons 2HI(\Gamma a3)$$
 Исходные количества 0.05 0.25 0 Прореагировало x x Pавновесные количества 0.05– x 0.25– x 2 x

$$K_p = \frac{4x^2}{(0.05 - x) \cdot (0.25 - x)} = 4.$$

$$4x^2 = 4(0.0125 + x^2 - 0.3x);$$

$$x = 0.0417.$$

 $\nu(I_2) = 0.05 - 0.0417 = 0.0083$ моль;

$$\nu(H_2) = 0.25 - 0.0417 = 0.2083$$
 моль;

 $\nu(HI) = 0.0834$ моль.

Ответ: $v(I_2) = 0.0083$ моль; $v(H_2) = 0.2083$ моль; v(HI) = 0.0834 моль; $K_p = 4$.

- 7. 1) $CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 \downarrow + Na_2SO_4$;
 - 2) $Cu(OH)_2 + 2HCl \rightarrow CuCl_2 + 2H_2O$;
 - 3) $CuCl_2 + 2AgNO_3 \rightarrow 2AgCl\downarrow + Cu(NO_3)_2$;
 - 4) $2Cu(NO_3)_2 \xrightarrow{t^o} 2CuO + 4NO_2\uparrow + O_2\uparrow$;
 - 5) $3\text{CuO} + 2\text{NH}_3 \xrightarrow{t^o} 3\text{Cu} + \text{N}_2 \uparrow + 3\text{H}_2\text{O};$
 - 6) $Cu + CuCl_2 \rightarrow 2CuCl$.

<u>Ответ</u>: $\mathbf{A} - \mathrm{Cu}(\mathrm{OH})_2$, $\mathbf{F} - \mathrm{Cu}\mathrm{Cl}_2$, $\mathbf{B} - \mathrm{Cu}(\mathrm{NO}_3)_2$, $\mathbf{\Gamma} - \mathrm{CuO}$, $\mathbf{\Pi} - \mathrm{Cu}$, $\mathbf{E} - \mathrm{CuCl}$.

- **8.** 1) $CH_3-CH_3+Cl_2 \xrightarrow{CBET} CH_3-CH_2Cl+HCl$;
 - 2) CH_3 – $CH_3 \xrightarrow{Ni, t^o} H_2C = CH_2 + H_2$;
 - 3) $CH_2=CH_2 + H_2O \xrightarrow{H^+} CH_3-CH_2-OH$;
 - 4) $C_2H_5OH + CH_3COOH \xrightarrow{H_2SO_4 \text{ KOHU.}} CH_3COOC_2H_5 + H_2O;$
 - 5) $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3-CH_2-OH + CH_3COOH$;
 - 6) $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$.
- 9. $v(\text{соли}) = 0.05 \cdot 250 / 1000 = 0.0125$ моль.
- а) Рассмотрим случай одновалентного металла:

$$2Me + H_2SO_4 \rightarrow Me_2SO_4 + H_2\uparrow$$

 $\nu({
m Me}) = 0.025$ моль; $M_{
m Me} = 0.7 \ / \ 0.025 = 28$ г/моль, металла с такой молярной массой нет.

б) Теперь рассмотрим случай двухвалентного металла:

$$Me + H_2SO_4 \rightarrow MeSO_4 + H_2\uparrow$$

v(Me) = 0.0125 моль; $M_{Me} = 0.7 / 0.0125 = 56$ г/моль, это железо Fe. В зависимости от условий (концентрация кислоты, температура) возможны следующие реакции:

Fe + 4HNO_{3(pa36)}
$$\rightarrow$$
 Fe(NO₃)₃ + NO↑ + 2H₂O;
8Fe + 30HNO_{3(pa36)} \rightarrow 8Fe(NO₃)₃ + 3N₂O↑ + 15H₂O;
10Fe + 36HNO_{3(pa36)} \rightarrow 10Fe(NO₃)₃ + 3N₂↑ + 18H₂O;
8Fe + 30HNO_{3(pa36)} \rightarrow 8Fe(NO₃)₃ + 3NH₄NO₃ + 9H₂O.

Ответ: железо.

 $\overline{\mathbf{10. B}}$ ыделение газа: Zn + 2NaOH + 2H₂O \rightarrow Na₂Zn(OH)₄ + H₂↑;

$$v(H_2) = v(Zn) = 65/65 = 1$$
 моль; $V(H_2) = 22.4$ л.

Реакции, происходящие при пропускании смеси газов над катализатором:

CH₃-CH=CH₂ + H₂
$$\xrightarrow{Pt,t^o}$$
 C₃H₈;
CH= CH + 2H₂ $\xrightarrow{Pt,t^o}$ C₂H₆.

По условию, $V(C_3H_8)=2$ л; $V(C_2H_6)=5.2$ л; осталось $V(H_2)=22.4-2-5.2\cdot 2=10$ л; суммарный объем газов после реакции $V_{\Sigma}=2+5.2+10=17.2$ л.

 $\phi(C_3H_8) = 2/17.2 = 0.1163$ или 11.63%; $\phi(C_2H_6) = 5.2/17.2 = 0.3023$ или 30.23%; $\phi(H_2) = 10/17.2 = 0.5814$ или 58.14%.

$$M_{cp} = \frac{2 \cdot 44 + 5.2 \cdot 30 + 10 \cdot 2}{17.2} = 15.35$$
 г/моль.

Ответ: 11.63% C₃H₈; 30.23% C₂H₆; 58.14% H₂; 15.35 г/моль.

Решение варианта ПВ-2007-3

- 1. Нитроэтан СН₃–СН₂–NO₂ и глицин (аминоуксусная кислота) NH₂–СН₂–СООН.
- **2.** Ar и K⁺.
- **3.** Например: $HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$;

 $2HNO_3 + Na_2SiO_3 \rightarrow H_2SiO_3 \downarrow + 2NaNO_3$;

 $4HNO_3 + Cu \rightarrow Cu(NO_3)_2 + 2NO_2 \uparrow + 2H_2O$;

 $2HNO_{3(KOHIL)} + S \rightarrow H_2SO_4 + 2NO\uparrow$.

4. Поскольку продуктами горения газа являются только CO₂ и H₂O, газ состоит из углерода, водорода и, возможно, кислорода. Искомая брутто-формула — $C_x H_\nu O_z$. Запишем уравнение горения, учтя при этом, что объемы газов, измеренные при одинаковых условиях, пропорциональны количеству веществ газов. Отсюда следует, что данные объемы газов можно использовать в качестве коэффициентов в уравнении реакции. В этой задаче разделим для удобства каждый коэффициент (объем) на 3:

$$2C_xH_yO_z + 7O_2 \rightarrow 4CO_2 + 6H_2O$$
.

Отсюда x = 4 / 2 = 2; y = 12 / 2 = 6; z = 6 + 8 - 14 = 0. Следовательно, искомое вещество – это этан С₂Н₆.

Ответ: С₂H₆.

5. Реакция нейтрализации: HI + KOH
$$\rightarrow$$
 KI + H₂O + Q.
$$v_{HI} = \frac{2 \cdot 80}{1000} = 0.16 \quad \text{моль}; \quad v_{KOH} = \frac{6.47 \cdot 1.082 \cdot 0.1}{56} = 0.0125 \quad \text{моль}; \quad \text{следовательно, в недостатке}$$

находится щелочь. Теплоту нейтрализации рассчитываем по щелочи:

$$Q = \frac{0.7}{0.0125} = 56$$
 кДж/моль.

Ответ: 56 кДж/моль.

6. Поскольку реакция протекает в замкнутом (постоянном) объеме, в расчетах можно вместо концентраций использовать количества веществ. Количества прореагировавших Н2 и І2 равны $0.05 \cdot 0.2 = 0.01$ моль, а количество образовавшегося к моменту установления равновесия НІ в два раза больше – 0.02 моль:

$$I_2(\Gamma a3) + H_2(\Gamma a3) \rightleftarrows 2HI(\Gamma a3)$$
 Исходные количества 0.025 0.05 0 Прореагировало 0.01 0.01 Pавновесные количества 0.015 0.04 0.02

$$K_{\rm p} = \frac{0.02^2}{0.04 \cdot 0.015} = 0.67$$

<u>Ответ</u>: $K_p = 0.67$.

- 7. 1) $Cr + 2HCl \rightarrow H_2 \uparrow + CrCl_2$;
 - 2) $CrCl_2 + 2KOH \rightarrow 2KCl + Cr(OH)_2\downarrow$;
 - 3) $2Cr(OH)_2 + H_2O_2 \rightarrow 2Cr(OH)_3\downarrow$;
 - 4) $2Cr(OH)_3 + 3Br_2 + 10KOH \rightarrow 6KBr + K_2CrO_4 + 8H_2O$;
 - 5) $2K_2CrO_4 + H_2SO_4 \rightarrow K_2SO_4 + K_2Cr_2O_7 + H_2O_7$
 - 6) $K_2Cr_2O_7 + 4H_2SO_4 + K_2SO_3 \rightarrow Cr_2(SO_4)_3 + 4K_2SO_4 + 4H_2O$.

Omsem: $A - CrCl_2$, $B - Cr(OH)_2$, $B - Cr(OH)_3$, $\Gamma - K_2CrO_4$, $\Pi - K_2Cr_2O_7$, $E - Cr_2(SO_4)_3$.

- **8.** 1) CH₃-CH₂-COONa + NaOH $\xrightarrow{t^o}$ CH₃-CH₃ \uparrow + Na₂CO₃;
 - 2) $CH_3-CH_3+Cl_2 \xrightarrow{CBET} CH_3-CH_2Cl+HCl$;

- 3) CH_3 - $CH_2Cl + NaOH \xrightarrow{cnupr} CH_2 = CH_2 + NaCl + H_2O$;
- 4) $CH_2=CH_2 + H_2O \xrightarrow{H^+} CH_3-CH_2-OH$;
- 5) $CH_3-CH_2-OH \xrightarrow{H_2SO_4(\kappa OH_4).t>150^{\circ}C} CH_2=CH_2+H_2O;$
- 6) $CH_3-CH_2-OH \xrightarrow{H_2SO_4(\kappa OH_4.) t < 150^{\circ} C} CH_3-CH_2-O-CH_2-CH_3 + H_2O.$
- **9.** ν (соли) = $0.2 \cdot 2000 / 1000 = 0.4$ моль.
- а) Рассмотрим случай одновалентного металла:

$$2Me + H_2SO_4 \rightarrow Me_2SO_4 + H_2\uparrow$$
,

v(Me) = 0.8 моль; $M_{Me} = 26 / 0.8 = 32.5$ г/моль, металла с такой молярной массой нет.

б) Рассмотрим случай двухвалентного металла:

$$Me + H_2SO_4 \rightarrow MeSO_4 + H_2\uparrow$$
,

 $\nu(Me) = 0.4$ моль; $M_{Me} = 26 / 0.4 = 65$ г/моль, это цинк Zn.

$$Zn + 2H_2SO_4(конц) \rightarrow ZnSO_4 + SO_2\uparrow + 2H_2O.$$

Ответ: цинк.

10. Выделение газа: Mg + 2HCl \rightarrow MgCl₂ + H₂ \uparrow .

$$N(H_2) = \nu(Mg) = 48 / 24 = 2$$
 моль, $V(H_2) = 44.8$ л (н.у.).

Реакции, происходящие при пропускании газов над катализатором:

$$H_2C=CH-CH=CH_2 + 2H_2 \xrightarrow{P_{t,t'}} C_4H_{10};$$

$$H_2C=CH_2+H_2 \xrightarrow{Pt,t^o} C_2H_6.$$

По условию, $V(C_4H_{10})=11.2$ л; $V(C_2H_6)=14$ л; осталось $V(H_2)=44.8-2\cdot 11.2-14=8.4$ л; суммарный объем газов после реакции $V_{\Sigma}=33.6$ л.

$$\phi(C_4H_{10}) = 11.2 / 33.6 = 0.3333$$
 или 33.33% ; $\phi(C_2H_6) = 14 / 33.6 = 0.4167$ или 41.67% ; $\phi(H_2) = 8.4 / 33.6 = 0.25$ или 25.0% .

$$M_{\text{ср.}} = \frac{14 \cdot 30 + 11.2 \cdot 58 + 8.4 \cdot 2}{33.6} = 32.33 \text{ г/моль.}$$

 $\underline{\textit{Ответ}}$: 33.33% C₄H₁₀; 41.67% C₂H₆; 25.0% H₂; 32.33 г/моль.

Ответы к варианту ПВ-2007-4

- 1. Этанол СН₃–СН₂–ОН и диметиловый эфир СН₃–О–СН₃.
- **2.** Ne и Na⁺.
- **3.** Например: $KOH + CO_2 \rightarrow KHCO_3$;

$$KOH + HCl \rightarrow KCl + H_2O$$
;

$$2KOH + CuCl_2 \rightarrow Cu(OH)_2 + 2KCl_3$$

$$KOH + Cl_2 \rightarrow KCl + KClO$$
.

- **4.** C₂H₄.
- **5.** 56 кДж/моль.
- **6.** $K_p = 0.67$.
- **7.** $A NH_3$, B NO, $B NO_2$, ΓHNO_3 , $A NH_4NO_3$, $E N_2O$.
- 8. 1) $C_2H_4 + Cl_2 \rightarrow CH_2Cl CH_2Cl$;
 - 2) $CH_2Cl-CH_2Cl+2NaOH \xrightarrow{c \pi \mu p \tau} C_2H_2 + 2NaCl + 2H_2O;$
 - 3) $3C_2H_2 \xrightarrow{\text{уголь, } 600^{\circ} \text{ C}} C_6H_6$;
 - 4) $C_6H_6 + CH_3Cl \xrightarrow{FeCl_3} C_6H_5 CH_3 + HCl$;
 - 5) $5C_6H_5-CH_3+6KMnO_4+9H_2SO_4 \rightarrow 5C_6H_5-COOH+6MnSO_4+3K_2SO_4+14H_2O$;
 - 6) C_6H_5 -COOH + NaOH \rightarrow C_6H_5 -COONa + H_2O .
- 9. Алюминий. Возможные реакции:

$$Al + 4HNO_3(pa36) \rightarrow Al(NO_3)_3 + NO\uparrow + 2H_2O;$$

$$8A1 + 30HNO_3(pa36) \rightarrow 8Al(NO_3)_3 + 3N_2O\uparrow + 15H_2O;$$

$$10Al + 36HNO_3(pa36) \rightarrow 10Al(NO_3)_3 + 3N_2\uparrow + 18H_2O;$$

$$8A1 + 30HNO_3(pa36) \rightarrow 8A1(NO_3)_3 + 3NH_4NO_3 + 9H_2O.$$

10. 33.33% C_3H_8 ; 16.67% C_2H_6 ; 50.0% H_2 . $M_{cp} = 20.67$ г/моль.

Факультет наук о материалах Решения варианта ФНМБ-2007-1

1.
$$\nu(\mathrm{Ag}) = N / N_{\mathrm{A}} = 700 / 6.02 \cdot 10^{23} = 1.16 \cdot 10^{-21}$$
 моль; $m(\mathrm{Ag}) = \nu \cdot M = 1.26 \cdot 10^{-19}$ г.
Ответ: $1.26 \cdot 10^{-19}$ г.

2. Растворение голубого осадка $Cu(OH)_2$ в присутствии этиленгликоля с образованием темносинего раствора:

$$2 CH_2 - CH_2 + Cu(OH)_2 \longrightarrow CU \qquad 2H_2O$$

$$OH \qquad OH \qquad CH_2 - CH_2$$

Для этанола такая реакция не характерна.

3. Суммарное уравнение радиоактивного распада можно записать следующим образом:

$$^{238}_{92}$$
 U= $^{206}_{82}$ Pb + $n_{2}^{4}\alpha$ + $m_{-1}^{0}\beta$

С учетом того, что как сумма зарядов, так и сумма массовых чисел всех частиц в правой и левой частях уравнения должны совпадать (баланс зарядов и материальный баланс), составляем систему уравнений:

$$\begin{cases} 238 = 206 + 4n \\ 92 = 82 + 2n - m \end{cases}$$

Решение этой системы дает n = 8, m = 6.

Ответ: 8 α-распадов, 6 β-распадов.

- 4. $CH_2Cl-CH_2-CH(CH_3)-CH_3 + KOH \xrightarrow{cnupm} CH_2=CH-CH(CH_3)-CH_3 + H_2O + KCl;$ $CH_2=CH-CH(CH_3)-CH_3 + HCl \longrightarrow CH_3-CHCl-CH(CH_3)-CH_3;$ $CH_3-CHCl-CH(CH_3)-CH_3 + KOH \xrightarrow{cnupm} CH_3-CH=C(CH_3)-CH_3 + H_2O + KCl;$ $CH_3-CH=C(CH_3)-CH_3 + HCl \longrightarrow CH_3-CH_2-CCl(CH_3)-CH_3.$
- **5.** 1) $H_2S + I_2 \longrightarrow S + 2HI$ (здесь H_2S восстановитель, а I_2 окислитель);
- 2) $3H_2O_2 + K_2Cr_2O_7 + 4H_2SO_4 \longrightarrow Cr_2(SO_4)_3 + K_2SO_4 + 3O_2\uparrow + 7H_2O$ (в этой реакции H_2O_2 восстановитель, а $K_2Cr_2O_7$ окислитель).
- 6. $4P_{(белый)} + 3KOH + 3H_2O \xrightarrow{t^o} PH_3 + 3KH_2PO_2;$ $2P_{(белый)} + 3Cl_2(недост.) \xrightarrow{t^o} 2PCl_3;$ $PCl_3 + Cl_2 \xrightarrow{t^o} 2PCl_5;$ $PCl_5 + 4H_2O \longrightarrow H_3PO_4 + 5HCl;$ $H_3PO_4 + K_2CO_3 \longrightarrow K_2HPO_4 + CO_2\uparrow + H_2O;$ $2K_2HPO_4 \xrightarrow{t^o} K_4P_2O_7 + H_2O.$
- 7. 1) Пусть концентрация анионов [OH $^-$] составляет x моль/л, тогда [H $^+$] = $10^{-4} \cdot x$ моль/л. $K_{\rm W} = {\rm [OH}^-]{\rm [H}^+] = 10^{-4} \cdot x^2 = 10^{-14}$, отсюда $x = {\rm [OH}^-] = 10^{-5}$ моль/л, [H $^+$] = $10^{-4} \cdot x = 10^{-9}$ моль/л, соответственно pH = $-{\rm lg[H}^+] = 9$.
- 2) $CH_3NH_3OH \rightleftharpoons CH_3NH_3^+ + OH^-$ (или $CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^-$, форма записи не влияет на результат расчета).

$$K_{\text{дис.}} = \frac{[\mathrm{OH}^{\text{-}}][\mathrm{CH_3NH_3}^{+}]}{[\mathrm{CH_3NH_3OH}]} = \frac{x^2}{(c_0 - x)}$$
, отсюда $c_0 = x^2 / K_{\text{дис.}} + x = 1.07 \cdot 10^{-5}$ моль/л.

Ответ: pH = 9; $1.07 \cdot 10^{-5}$ моль/л.

8. $2CH_4 \longrightarrow \frac{1200^{\circ} C}{} C_2H_2 + 3H_2;$

$$C_2H_2 + H_2O \xrightarrow{-Hg^{2+}, H^+} CH_3CH=O;$$

$$CH_3CH=O + H_2 \xrightarrow{t^o, N_i} CH_3CH_2OH;$$

$$5CH_3CH_2OH + 4KMnO_4 + 6H_2SO_4 \longrightarrow 5CH_3COOH + 4MnSO_4 + 2K_2SO_4 + 11H_2O;$$

$$2CH_3COOH + P_2O_5 \longrightarrow (CH_3CO)_2O + 2HPO_3$$
;

$$(CH_3CO)_2O + CH_3CH_2OH \longrightarrow CH_3COOC_2H_5 + CH_3COOH.$$

9. Уксусной кислоты было

$$v_0 = m / M = 5.40 / 60 = 0.09$$
 моль.

В газовой фазе устанавливается равновесие:

$$2CH_3COOH \rightleftharpoons (CH_3COOH)_2 \tag{1}$$

Найдём суммарное количество вещества мономера (М) и димера (D) в газовой фазе:

$$v_1 = pV/RT = (43.7 \cdot 5.40) / (8.31 \cdot 473) = 0.06$$
 моль.

Пусть образовалось x моль димера, тогда осталось (0.09 - 2x) моль мономера:

$$x + (0.09 - 2x) = 0.09 - x = 0.06$$
, отсюда $x = 0.03$ моль, а $0.09 - 2x = 0.03$ моль.

$$N(D) = v(D) \cdot N_A = 0.03 \cdot 6.02 \cdot 10^{23} = 1.81 \cdot 10^{22}$$
 молекул димера находится в газовой фазе.

$$K_{\text{дим.}} = [D] / [M]^2 = (v(D) \cdot V) / v(M)^2 = 0.03 \cdot 5.40 / 0.03^2 = 180.$$

Ответ: 1.81·10²²; 180.

10. $V = l \cdot h \cdot d = 10 \cdot 2 \cdot 0.2 = 4 \text{ cm}^3 - \text{объём вытравленной в латуни бороздки.}$

$$M = V \cdot \rho = 4 \cdot 8.16 = 32.64 \, \Gamma$$
 – масса латуни, удаленной фрезерованием из бороздки.

 $M_{\rm cp} = M_{\rm Cu} \cdot \chi_{\rm Cu} + M_{\rm Zu} \cdot \chi_{\rm Zu} = 64 \cdot 0.57 + 65 \cdot 0.43 = 64.43$ г/моль — средняя молярная масса латуни;

 $v_{\rm M}$ = m / $M_{\rm cp}$ = 32.64 / 64.43 = 0.507 моль – суммарное количество вещества металлов в растворившейся порции латуни;

На аноде: $Cu - 2e \rightarrow Cu^{2+}$ (для Zn -аналогично, оба металла двухвалентны);

 $\nu_e = 2\nu_M = 0.507 \cdot 2 = 1.014$ моль — суммарное количество электронов, пошедшее на окисление латуни;

 $\nu_e(\text{общ}) = \nu_e \, / \, \eta = 1.014 \, / \, 0.5 = 2.028$ моль — общее количество электронов, прошедшее через электролизёр.

$$Q = v_e(\text{общ}) \cdot F = I \cdot t$$
, поэтому

$$t = (v_e(\text{общ}) \cdot \text{F}) / I = 2.028 \cdot 96500 / 100 = 1957.0 \text{ c} = 32.6 \text{ мин} = 0.54 \text{ ч}.$$

Ответ: 0.54 ч.

Геологический факультет Решение варианта ГБ-2007-1

- 1. Sn^{+4} ; $Ca[Sn(OH)_6]$.
- **2.** KMnO₄; 2KMnO₄ + 10KCl + 8H₂SO₄ \rightarrow 5Cl₂ + 2MnSO₄ + 8H₂O + 6K₂SO₄.
- **3.** ω (NaOH) = 1.3 · 40 / (1000 · 1.2) = 0.0433 или 4.33%.
- **4.** 2КMnO₄(тв) + 16HCl(конц) \rightarrow 2КCl + 2MnCl₂ + 5Cl₂↑ + 8H₂O;

 $2AlBr_3 + 3K_2CO_3 + 3H_2O \rightarrow 2Al(OH)_3 \downarrow + 6KBr + 3CO_2 \uparrow.$

5. $CuSO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + CuCl_2$;

 $CuSO_4 + 2KOH \rightarrow Cu(OH)_2 \downarrow + K_2SO_4.$

6. По правилу Вант-Гоффа скорость реакции возрастает с температурой следующим образом:

$$\frac{v_2}{v_1} = \gamma^{\frac{T_1 - T_2}{10}}$$

В нашем случае температурный коэффициент $\gamma = 3.5$, а (85 - 30) / 10 = 5.5; значит, скорость реакции возрастет в $3.5^{5.5} \approx 983$ раза.

Ответ: скорость возрастет в 983 раза.

7. $C_2H_6 + Cl_2 \xrightarrow{hv} C_2H_5Cl + HCl;$

 $2C_2H_5Cl + 2Na \rightarrow C_4H_{10} + 2NaCl$ (реакция Вюрца);

 $C_4H_{10} + Br_2 \xrightarrow{hv} CH_3 - CH_2 - CH(Br) - CH_3 + HBr.$

<u>Omsem</u>: $\mathbf{A} - C_2H_5Cl$; $\mathbf{B} - C_4H_{10}$; $\mathbf{C} - CH_3 - CH_2 - CH(Br) - CH_3$.

8. $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 \uparrow + 2H_2O$;

 $2KBr + Cl_2 \rightarrow 2KCl + Br_2$;

 $2KCl + 2H_2O \xrightarrow{\text{электролиз}} H_2\uparrow + Cl_2\uparrow + 2KOH;$

 $3Cl_2 + 6KOH \xrightarrow{t^o} 5KCl + KClO_3 + 3H_2O.$

Ответ: $\mathbf{X} - \mathrm{Cl}_2$.

- **9.** a) $CH_2=CH-CH_2-CH_3+H_2O \xrightarrow{H^+} CH_3-CH(OH)-CH_2-CH_3$;
 - б) CH_3 –CH(Br)– CH_2 – CH_3 + $NaOH(водн.) \rightarrow CH_3$ –CH(OH)– CH_2 – CH_3 + NaBr;
 - B) $CH_3-C(O)-CH_2-CH_3+H_2 \xrightarrow{\kappa am} CH_3-CH(OH)-CH_2-CH_3$.
- **10.** Состав смеси: x моль CaC_2 и y моль $CaCO_3$. При добавлении к смеси кислоты происходят следующие реакции:

 $CaC_2 + 2HCl \rightarrow CaCl_2 + C_2H_2\uparrow;$

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 \uparrow + H_2O.$$

Полученная газовая смесь (x моль C_2H_2 и y моль CO_2) имеет плотность по воздуху 1.27, т.е.

ее средняя молярная масса $M_{\rm cp} = 1.27 \cdot 29 = 36.83 = \frac{26x + 44y}{x + y}$. В полученном при выпарива-

нии раствора остатке содержится (x + y) моль $CaCl_2$ массой m = 111(x + y) = 55.5 г. Решение системы из двух уравнений дает x = 0.2 моль, y = 0.3 моль. Тогда масса исходной смеси составляла $m(ucx) = 0.2 \cdot 64 + 0.3 \cdot 100 = 42.8$ г;

а массовая доля карбида кальция в смеси равна $\omega(CaC_2) = 0.2 \cdot 64 / 42.8 = 0.2991$ или 29.91%. <u>Ответ</u>: 42.8 г; 29.91% CaC₂.

Ответы к варианту ГБ-2007-2

- 1. $[Zn(OH)]_3PO_4$; P^{+5} .
- **2.** KI.
- **3.** 0.35%.
- **5.** CuCl₂.
- 6. Скорость увеличится в 15.6 раза.
- **7.** A 2-хлорпропан; B 2,3-диметилбутан; C 2-бром-2,3-диметилбутан.
- **8.** $X_1 ZnO$; $X_2 Zn$; $X_3 Na_2[Zn(OH)_4]$.
- **10.** 62.9 г; 31.3% BaCO₃.

Физико-химический факультет Решения варианта І-ФХБ-2007-1

1.

$$HOCH_2CH_2$$
 $OH + HBr \longrightarrow BrCH_2CH_2$ $OH + H_2O$ CH_3 CH_3 $ONa + H_2O$ CH_3 CH_3 $ONa + H_2O$ $ONa + H_2O$

- 3. По принципу Ле-Шателье а) при увеличении объема положение равновесия в этой системе не изменится, б) увеличение концентрации одного из исходных веществ увеличивает выход конечного продукта.
- 4. a) $6P + 5HIO_3 + 9H_2O \rightarrow 6H_3PO_4 + 5HI$;
 - б) $3CuO + 2NH_3 \xrightarrow{t^0} 3Cu + N_2 + 3H_2O;$ в) $2HBr + Mn(OH)_2 \rightarrow MnBr_2 + 2H_2O.$
- **5.** Обозначим неизвестное соединение как $C_x H_y O_z N_k$. Тогда можно выразить соотношение:

$$x: y: z: k = \frac{12.5}{12} : \frac{8.33}{1} : \frac{50.0}{13} : \frac{29.167}{14} = 1.042 : 8.33 : 3.125 : 2.083 = 1 : 8 : 3 : 2.$$

Формула соединения $CH_8O_3N_2$ или $(NH_4)_2CO_3$ – карбонат аммония. *Ответ*: (NH₄)₂CO₃.

6. 1)
$$Cl_2 + H_2 \xrightarrow{hv} 2HCl$$
;

2) Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂ \uparrow ;

3)
$$2\text{FeCl}_2 + \text{Cl}_2 \xrightarrow{t^0} 2\text{FeCl}_34$$

4) $2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3$;

4)
$$2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3$$
;

5)
$$Cl_2 + Cu \xrightarrow{t^0} CuCl_2$$
;

6)
$$2FeCl_3 + Cu \rightarrow 2FeCl_2 + CuCl_2$$
.

 \underline{Ombem} : $X_1 - HCl$, $X_2 - FeCl_3$.

7. Обозначим за x количество вещества цинка, вступившего в реакцию:

$$2AgNO_3 + Zn \rightarrow Zn(NO_3)_2 + 2Ag\downarrow$$
,

тогда изменение массы пластинки можно выразить как $\Delta m = 120 \cdot 0.057 = 6.84$ г; с другой стороны, $\Delta m = (108 \cdot 2 - 65)x = 151x$, отсюда x = 6.84 / 151 = 0.045 моль.

Исходная масса нитрата серебра равнялась $m(AgNO_3) = 170 \cdot 0.045 \cdot 2 = 15.4 \, г.$ Ответ: 15.4 г.

8.

3 CH
$$\equiv$$
CH $\xrightarrow{C, 550^{\circ}C}$ $\xrightarrow{CH_3}$ $\xrightarrow{CH_3}$ + CH₃Br $\xrightarrow{AlBr_3}$ + HBr

CH₃

$$+ 2HNO_{3}$$

$$+ 2HNO_{3}$$

$$+ 2H_{2}O$$

$$+ 2H_{2}O$$

$$+ 6KMnO_{4} + 9H_{2}SO_{4} = 5$$

$$+ 3K_{2}SO_{4} + 6MnSO_{4} + 14H_{2}O$$

COOH
$$NO_{2} + 2KOH \xrightarrow{t^{0}} NO_{2} + K_{2}CO_{3} + H_{2}O$$

$$NO_{2} + NO_{2}$$

$$NO_2$$
 + 6Fe + 14HCl \rightarrow NH_3Cl + 6FeCl₂ + 4H₂O

9.
$$v(\text{газа}) = \frac{pV}{RT} = \frac{101.3 \cdot 0.97 \cdot 6.2}{8.314 \cdot 293} = 0.25$$
 моль;
$$M(\text{газа}) = \frac{V \cdot \rho}{v} = \frac{6.2 \cdot 1.13}{0.25} = 28 \text{ г/моль, следовательно, газ – это CO.}$$

$$M(\text{соли}) = \frac{m(\text{соли})}{v(\text{соли})} = \frac{17}{0.25} = 68 \text{ г/моль. Обозначим неизвестную соль как C}_x \text{H}_y \text{COONa.}$$

Тогда

 $M(C_xH_vCOONa) = 12x + y + 67 = 68$; отсюда 12x + y = 1.

Единственное решение, имеющее смысл: x = 0; y = 1. Следовательно, соль — формиат натрия HCOONa. Действительно, CO можно получить из муравьиной кислоты или формиатов:

2HCOONa +
$$H_2SO_4$$
(конц.) $\xrightarrow{t^0}$ 2CO \uparrow + Na_2SO_4 + 2 H_2O . 0.25

Реакция серебряного зеркала:

2HCOONa + 4[Ag(NH₃)₂]OH
$$\xrightarrow{t^0}$$
 4Ag \downarrow + Na₂CO₃ + (NH₄)₂CO₃ + 6NH₃↑ + 2H₂O.
0.25 0.5

Осадок – это серебро. Масса выделившегося серебра:

$$m(Ag) = M \cdot v = 108 \cdot 0.5 = 54 \text{ }\Gamma.$$

Ответ: НСООНа; СО; 54 г серебра.

10.
$$\nu(\text{Ca}_3(\text{PO}_4)_2) = m / M = 46.5 / 310 = 0.15 \text{ моль}.$$

Количество вещества NaOH в растворе:

$$\nu(\text{NaOH}) = V \cdot \rho \cdot \omega / M(\text{NaOH}) = 295 \cdot 1.1 \cdot 0.08 / 40 = 0.649 \text{ моль}.$$

Реакция получения фосфора:

$$Ca_3(PO_4)_2 + 5C + 3SiO_2 \xrightarrow{t^0} 3CaSiO_3 + 2P + 5CO.$$
0.15

Сжигание фосфора и растворение полученного оксида:

m(конечного раствора) = m(p-pa NaOH) + m(P₂O₅) = 295.5 · 1.1 + 142 · 0.15 = 346.35 г.

В результате реакции фосфорной кислоты со щелочью получим смесь солей:

$$H_3PO_4 + 2NaOH \rightarrow Na_2HPO_4 + 2H_2O$$
0.3 0.6 0.3

 $v(NaOH \ u36.) = 0.649 - 0.6 = 0.049 \ моль.$
 $Na_2HPO_4 + NaOH \rightarrow Na_3PO_4 + H_2O$
0.049 0.049 0.049

 $v(Na_2HPO_4) = 0.3 - 0.049 = 0.251 \ моль.$

Итак, раствор после завершения реакций содержит следующие соли: 0.049 моль Na₃PO₄ и 0.251 моль Na₃PO₄. Рассчитаем массовые доли солей в растворе:

 $\omega(\text{Na}_3\text{PO}_4) = m(\text{соли}) / m(\text{p-pa}) = M \cdot \text{v} / m(\text{p-pa}) = 164 \cdot 0.049 / 346.35 = 0.0232$ или 2.32%; $\omega(\text{Na}_2\text{HPO}_4) = m(\text{соли}) / m(\text{p-pa}) = M \cdot \text{v} / m(\text{p-pa}) = 142 \cdot 0.251 / 346.35 = 0.1029$ или 0.29%.

Ответ: 2.32% Na₃PO₄; 10.29% Na₂HPO₄.

Ответы к варианту І-ФХБ-2007-2

1. Схемы реакций:

2. KBr + AgNO₃
$$\rightarrow$$
 KNO₃ + AgBr \downarrow ;
2KBr + Pb(NO₃)₂ \rightarrow 2KNO₃ + PbBr₂ \downarrow ;
2KBr + Cl₂ \rightarrow 2KCl + Br₂;
2KBr + MnO₂ + 2H₂SO₄ $\xrightarrow{t^0}$ Br₂ + K₂SO₄ + MnSO₄ + 2H₂O.

- 3. а) Равновесие сместится в сторону конечных продуктов, б) внесение катализатора не влияет на равновесие в системе.
- 4. a) $CO + 2HNO_3 \rightarrow 2NO_2 + CO_2 + H_2O_3$;
 - б) $H_2SO_3 + Br_2 + H_2O \rightarrow 2HBr + H_2SO_4$;
 - B) $4NO_2 + 4KOH + O_2 \rightarrow KNO_3 + 2H_2O$.
- **5.** CH₃COONa.
- **6.** 1) $S + H_2 \rightleftharpoons H_2S$;
 - 2) $2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$;
 - 3) $3S + 6NaOH \xrightarrow{t^0} 2Na_2S + Na_2SO_3 + 3H_2O$;
 - 4) $Na_2SO_3 + 2HCl \rightarrow SO_2\uparrow + 2NaCl + H_2O$;
 - 5) $P_2S_5 + 8H_2O \rightarrow 2H_3PO_4 + 5H_2S$;
 - 6) $2P + 5S \xrightarrow{t^0} P_2S_5$.
- **7.** 8.34 Γ.
- **9.** HCOOK; CO; Δm (трубки) = 7.28 г.
- **10.** 9.0% Na₂HPO₄; 21.89% NaH₂PO₄.

Заочный тур конкурса «Покори Воробьевы горы – 2007»

- $K_2Cr_2O_7 + 3K_2SO_3 + 4H_2SO_4 \rightarrow Cr_2(SO_4)_3 + 4K_2SO_4 + 4H_2O.$ $16HCl + 2KMnO_4 \rightarrow 5Cl_2\uparrow + 2MnCl_2 + 2KCl + 8H_2O.$
- **2.** В молекуле алкана C_nH_{2n+2} содержится x групп CH_3 , y групп CH_2 , w групп CH и z четвертичных атомов С. Тогда можно выразить количества атомов углерода и водорода:

$$\begin{cases} n = x + y + w + z; \\ 2n + 2 = 3x + 2y + w. \end{cases}$$

Решение этой системы даёт w = x - 2z - 2.

Ответ: Число третичных атомов углерода равно x - 2z - 2.

- 3. На 1 моль углерода приходится масса соединения 12 / 0.4 = 30 г, что отвечает простейшей формуле СН₂О. Этой формуле соответствуют следующие вещества:
 - 1) CH_2O формальдегид,
 - 2) CH_3COOH уксусная кислота ($C_2H_4O_2$),
 - 3) $CH_3CH(OH)COOH$ молочная кислота ($C_3H_6O_3$).

Omвет: CH₂O, CH₃COOH, CH₃CH(OH)COOH.

4. Пусть смесь содержит $x \, \Gamma \, H_2 \, \mu \, x \, \Gamma \, N_2$, тогда масса смеси m = 2x, а количество вещества в ней составляет $v = \frac{x}{2} + \frac{x}{28}$. Средняя молярная масса смеси равна

$$M = \frac{m}{v} = \frac{2x}{\frac{x}{2} + \frac{x}{28}} = \frac{2 \cdot 2 \cdot 28}{2 + 28} = 3.73$$
 г/моль.

Согласно уравнению Клапейрона–Менделеева, $m = \frac{pVM}{RT} = \frac{101.3 \cdot 50 \cdot 3.73}{8 \cdot 31 \cdot 298} = 7.65 \text{ г.}$

Ответ: 3.73 г/моль, 7.65 г.

- a) $2FeCl_3 + Fe \rightarrow 3FeCl_2$. 5.
 - σ) $2Cr(OH)_2 + H_2O_2 → 2Cr(OH)_3$.
 - B) $Mg_3(PO_4)_2 + 4H_3PO_4 \rightarrow 3Mg(H_2PO_4)_2$;
 - Γ) NaH + Cl₂ \rightarrow NaCl + HCl.
 - д) $PF_5 + 4H_2O \rightarrow H_3PO_4 + 5HF$.
 - e) Na₃N + $3H_2O \rightarrow 3NaOH + NH_3$.
 - ж) $4\text{NaO}_2 + 2\text{CO}_2 \rightarrow 2\text{Na}_2\text{CO}_3 + 3\text{O}_2$.
 - 3) $Na_2SO_4 + 4C \xrightarrow{t^o} Na_2S + 4CO\uparrow$.
- 6. Уравнение реакции сгорания фосфина:

$$2PH_3 + 4O_2 \rightarrow P_2O_5 + 3H_2O$$
.

Тепловой эффект реакции по закону Гесса равен:

$$Q_{\rm r} = Q_{\rm oбp}({\rm P_2O_5}) + 3Q_{\rm oбp}({\rm H_2O}) - 2Q_{\rm oбp}({\rm PH_3}) = 2360.2 \ кДж/моль.$$

$$v(P_2O_5) = Q/Q_r = 236/2360.2 = 0.1 \text{ моль.}$$

$$v(H_2O) = 3 \cdot v(P_2O_5) = 0.3$$
 моль.

$$v(KOH) = 0.2 \cdot 1.5 = 0.3$$
 моль.

Из соотношения $\frac{v(\text{KOH})}{v(P_2O_5)} = 3$ следует, что образовались следующие соли:

$$P_2O_5 + 2KOH + H_2O \rightarrow 2KH_2PO_4$$

 $x 2x 2x$

$$P_2O_5 + 4KOH \rightarrow H_2O + 2K_2HPO_4$$

 $y \qquad 4y \qquad 2y$

Можно составить систему уравнений: $\begin{cases} x + y = 0.1 \\ 2x + 4y = 0.3 \end{cases}$,

откуда x = 0.05, y = 0.05.

$$v(KH_2PO_4) = 2x = 0.1$$
 моль, $v(K_2HPO_4) = 2y = 0.1$ моль.

$$m(p-pa) = m(p-pa \text{ KOH}) + m(P_2O_5) + m(H_2O) = 200 \cdot 1.07 + 0.1 \cdot 142 + 0.3 \cdot 18 = 233.6 \text{ r.}$$

$$\omega(KH_2PO_4) = 136 \cdot 0.1 / 233.6 = 0.0582$$
 или 5.82%.

$$\omega(K_2HPO_4) = 174 \cdot 0.1 / 233.6 = 0.0745$$
 или 7.45%.

<u>Ответ</u>: 5.82% KH₂PO₄, 7.45 % K₂HPO₄.

7. Так как выход реакции равен 20%, то прореагировало 0.2 моль H_2 . Тогда:

CO + $2H_2$ \rightarrow CH_3OH Исходное количество: 4 1 0 $\Sigma = 5$ моль Равновесное количество: 4-0.1 1-0.2 0.1 $\Sigma = 4.8$ моль Равновесная концентрация: $\frac{4-0.1}{V}$ $\frac{1-0.2}{V}$ $\frac{0.1}{V}$

$$K_{\rm c} = \frac{[{\rm CH_3OH}]}{[{\rm CO}] \cdot [{\rm H_2}]^2} = \frac{0.1 \cdot V^2}{(4 - 0.1) \cdot (1 - 0.2)^2} = 0.04 \cdot V^2$$

где V- объём реактора. Давление в реакторе уменьшится в $\frac{5}{4.8}$ = 1.04 раза.

Пусть для того, чтобы выход реакции составил 25%, нужно взять x моль CO. Тогда:

 $CO + 2H_2 \rightarrow CH_3OH$ Исходное количество: x = 1 = 0 Равновесное количество: x = 0.125 = 1-0.25 = 0.125 Равновесная концентрация: $\frac{x - 0.125}{V} = \frac{1 - 0.25}{V} = \frac{0.125}{V}$

$$K_{\rm c} = \frac{[{\rm CH_3OH}]}{[{\rm CO}] \cdot [{\rm H_2}]^2} = \frac{0.125 \cdot V^2}{(x - 0.125) \cdot (1 - 0.25)^2} \ .$$

Константа равновесия сохраняет свое значение, и тогда:

$$\frac{0.125 \cdot V^2}{\left(x - 0.125\right) \cdot \left(1 - 0.25\right)^2} = 0.04 \cdot V^2, \text{ откуда } x = 5.68.$$

Ответ: Давление в реакторе уменьшится в 1.04 раза; 5.68 моль СО.

8. $\nu(\text{Na}_2\text{SO}_4) = 30 / 142 = 0.211$ моль.

Количество поглощённой сульфатом натрия воды $\nu(H_2O) = 10 \cdot \nu(Na_2SO_4) = 2.11$ моль.

Массовая доля MgSO₄ в насыщенном растворе равна $ω(MgSO_4) = \frac{s}{s+100} = \frac{35.5}{135.5} = 0.262.$

Масса MgSO₄ в исходном растворе составляет $m_1(\text{MgSO}_4) = 300 \cdot 0.262 = 78.6 \text{ г.}$

Пусть из раствора выпало x моль MgSO $_4$ · 7H $_2$ O, тогда масса MgSO $_4$ в конечном растворе равна

$$m(MgSO_4) = m_1 - x \cdot M(MgSO_4) = 78.6 - 120x.$$

Массу конечного раствора рассчитаем следующим образом:

m(p-pa) = m(нач.) – m(H₂O) – m(осадка) = $300 - 2.11 \cdot 18 - x \cdot M$ (MgSO₄·7H₂O) = 262 - 246x.

$$\omega$$
(MgSO₄) = $\frac{m(\text{MgSO}_4)}{m(\text{p-pa})} = \frac{78.6 - 120x}{262 - 246x} = 0.262$, откуда $x = 0.179$.

$$m(MgSO_4 \cdot 7H_2O) = 246 x = 44.0 r.$$

Ответ: 44.0 г.

9. Схема превращений:

10. При никелировании изделия на электродах происходят следующие процессы:

Анод:
$$Ni - 2^e \to Ni^{2+}$$
. Катод: $Ni^{2+} + 2^e \to Ni$; (растворение никелевого анода) $2H^+ + 2e \to H_2$.

(осаждение никеля на поверхности изделия и выделение водорода)

Масса осаждённого на катоде никеля:

$$m = \eta \cdot \frac{I \cdot t \cdot M}{z \cdot F} = 0.6 \cdot \frac{800 \cdot 15 \cdot 60 \cdot 59}{2 \cdot 96500} \ = 132 \ \Gamma.$$

Объём осаждённого никеля:

$$V = \frac{m}{\rho} = \frac{132}{8.9} = 14.8 \text{ cm}^3.$$

Толщина никелевого покрытия:

$$h = \frac{V}{S} = \frac{14.8}{500} = 0.03 \text{ cm} = 0.3 \text{ mm}.$$

Ответ: 0.3 мм

11. Из четырех изомерных дибромпропанов условиям задачи отвечают 1,2- и 2,2-дибромпропаны. Со спиртовым раствором щёлочи они образуют пропин:

$$\begin{array}{c} \text{Br} \\ \text{CH}_3 - \overset{\mid}{\text{C}} - \text{CH}_3 + 2\text{KOH} \xrightarrow{C_2\text{H}_5\text{OH}} & \text{CH}_3 - \text{C} \equiv \text{CH} + 2\text{KBr} + 2\text{H}_2\text{O} \\ \text{Br} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_2 - \text{CH} - \text{CH}_3 + 2\text{KOH} \xrightarrow{C_2\text{H}_5\text{OH}} & \text{CH}_3 - \text{C} \equiv \text{CH} + 2\text{KBr} + 2\text{H}_2\text{O} \\ \text{Br} & \text{Br} \end{array}$$

Пропин реагирует с аммиачным раствором оксида серебра:

$$CH_{3}-C \equiv CH + [Ag(NH_{3})_{2}]OH \longrightarrow CH_{3}-C \equiv CAg + H_{2}O + 2NH_{3}$$

$$v(C_3H_3Ag) = 14.7 / 147 = 0.1$$
 моль.

Таким образом, в смеси содержится по 0.05 моль 1,2- и 2,2-дибромпропанов.

При обработке смеси водным раствором щёлочи образуются ацетон и 1,2-пропандиол:

$$CH_3$$
— C — CH_3 + 2KOH — H_2O — CH_3 — C — CH_3 + 2KBr + H_2O — CH_2 — CH — CH_3 + 2KOH — H_2O — CH_2 — CH — CH_3 + 2KBr — CH_3 — CH_3 — CH_3 — CH_3 + 2KBr — CH_3 — CH_3

Реакции продуктов с гидроксидом меди (II):

Ответ: в смеси содержится по 0.05 моль 1,2- и 2,2-дибромпропанов.

12. Простейшая формула углеводорода **A** – это CH. Подходит вариант C_4H_4 (винилаценилен). Уравнения реакций:

$$\begin{split} HC &\equiv \text{C-CH=CH}_2 + \text{H}_2 \rightarrow \text{CH}_2 = \text{CH-CH=CH}_2. \\ \textbf{A} & \textbf{B} \\ \text{CH}_2 &= \text{CH-CH=CH}_2 + \text{Br}_2 \rightarrow \text{BrCH}_2 - \text{CH=CH-CH}_2 \text{Br}. \\ \textbf{B} & \textbf{B} \\ \\ 5\text{BrCH}_2 - \text{CH=CH-CH}_2 \text{Br} + 8\text{KMnO}_4 + 12\text{H}_2 \text{SO}_4 \rightarrow \\ \textbf{B} & \rightarrow 10\text{BrCH}_2 - \text{COOH} + 8\text{MnSO}_4 + 4\text{K}_2 \text{SO}_4 + 12\text{H}_2 \text{O}. \\ \textbf{\Gamma} \end{split}$$

BrCH₂-COOH + 2NH₃
$$\rightarrow$$
 H₂N-CH₂-COOH + NH₄Br.
 Γ

13. Веществами **A**, **Б** и **B** являются соответственно β -, γ - и α -гидроксимасляные кислоты:

Олимпиада «Ломоносов-2007»

Решения варианта 1

- **1.** а) $H_2 + Cl_2 \rightarrow 2HCl x$ лор восстанавливается ($Cl^0 + e \rightarrow Cl^{-1}$); б) $Cl_2 + 3F_2 \rightarrow 2ClF_3 x$ лор окисляется ($Cl^0 3e \rightarrow Cl^{+3}$).
- **2.** Соотношение количеств фенола и HNO₃ 1 : 2, уравнение реакции:

OH OH NO₂
$$+ 2HNO_3$$
 $+ 2H_2O$

3. 2
$$S + O_2 \rightarrow SO_2 + 297 \text{ кДж/моль}$$

1 $2SO_2 + O_2 \rightarrow 2SO_3 + 198 \text{ кДж/моль}$

$$2S + 3O_2 \rightarrow 2SO_3 + Q$$

 $Q = 2 \cdot 297 + 198 = 792 кДж;$
 $Q_{\text{обр}}(SO_3) = 792 / 2 = 396 кДж/моль.$

Ответ: 396 кДж/моль.

4. Реактив – раствор КОН:

HNO₃ + KOH → KNO₃ + H₂O (нет видимых изменений); NH₄NO₃ + KOH → KNO₃ + NH₃↑ + H₂O (выделение газа с характерным запахом); $2AgNO_3 + 2KOH \rightarrow 2KNO_3 + Ag_2O \downarrow + H_2O$ (образование бурого осадка).

Ответ: КОН.

5.
$$H_{2(\Gamma)} + I_{2(\Gamma)} \rightleftharpoons 2HI_{(\Gamma)}$$

Скорость прямой реакции $v_{\rm np} = k_{\rm np}[{\rm H}_2][{\rm I}_2];$

Скорость обратной реакции $v_{\text{обр}} = k_{\text{обр}}[\text{HI}]^2$.

При увеличении [H_2] в 3 раза скорость прямой реакции увеличится также в 3 раза; а при увеличении [HI] в 2 раза скорость обратной реакции увеличится в $2^2 = 4$ раза. Скорость обратной реакции превысит скорость прямой, поэтому равновесие сместится влево, в сторону реагентов.

6. Уравнения протекающих реакций:

RCOOK + KOH
$$\xrightarrow{t^o}$$
 RH \uparrow + K₂CO₃

B

2RCOOK + 2H₂O $\xrightarrow{\text{электролиз}}$ R-R + 2CO₂ \uparrow + H₂ \uparrow + 2KOH.

Поскольку из уравнений реакций v(RH) = 2v(R-R), можно выразить $\frac{17.4}{M(R)+1} = 2\frac{17.1}{2M(R)}$.

Отсюда получаем M \mathbb{R} = 57, что соответствует C_4H_9 . Значит \mathbf{A} – это C_4H_{10} , а \mathbf{B} – C_8H_{18} . <u>Ответ</u>: C_4H_{10} , C_8H_{18} .

- 7. a) $Cu + 2H_2SO_4(конц) \rightarrow CuSO_4 + SO_2\uparrow + 2H_2O;$ $CuSO_4 + 2KOH \rightarrow Cu(OH)_2\downarrow + K_2SO_4.$
 - б) $Cu + 4HNO_3(конц) \rightarrow Cu(NO_3)_2 + 2NO_2\uparrow + 2H_2O;$ $2Cu(NO_3)_2 \xrightarrow{t^o} 2CuO + 4NO_2\uparrow + O_2\uparrow.$
 - B) $Cu + CuCl_2 \rightarrow 2CuCl;$ $CuCl + 2NH_3 \rightarrow [Cu(NH_3)_2]Cl.$

 \underline{Ombem} : $\mathbf{X} - \text{CuSO}_4$; $\mathbf{Y} - \text{Cu(NO}_3)_2$; $\mathbf{Z} - \text{CuCl}$.

8.
$$C_6H_{12}O_6 \xrightarrow{\phi e p M e u m} 2C_2H_5OH + 2CO_2;$$

 $2C_2H_5OH \xrightarrow{\kappa a m, t^{\circ}} CH_2=CH-CH=CH_2 + 2H_2O + H_2;$

CH₂=CH–CH=CH₂ + Br₂ \rightarrow BrCH₂–CH=CH–CH₂Br; BrCH₂–CH=CH–CH₂Br + 2KOH(водн.) \rightarrow HOCH₂–CH=CH–CH₂OH + 2KBr; HOCH₂–CH=CH–CH₂OH + H₂ $\xrightarrow{\kappa am}$ HO(CH₂)₄OH; 5HO(CH₂)₄OH + 8KMnO₄ + 12H₂SO₄ \rightarrow 5HOOC(CH₂)₂COOH + 4K₂SO₄ +

 $+ 8 \text{MnSO}_4 + 22 \text{H}_2 \text{O}.$

<u>Ответ</u>: глюкоза; $\mathbf{A} - C_2H_5OH$; $CH_2=CH-CH=CH_2$; $\mathbf{B} - BrCH_2-CH=CH-CH_2Br$; $\mathbf{C} - HOCH_2-CH=CH-CH_2OH$; $\mathbf{D} - HO(CH_2)_4OH$; $HOOC(CH_2)_2COOH$.

9. Сразу определим, что ν (газов) = 8.96 / 22.4 = 0.4 моль.

Один из газов – это CO_2 (поглощается известковой водой, $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O$). Объем уменьшился вдвое, следовательно $v_1 = v_2 = 0.2$ моль.

Составим уравнение $M_{\rm cp} = \frac{0.2 \cdot 44 + 0.2 M}{0.4} = 36$, из которого найдем $M({\rm газa}) = 28$ г/моль — это

может быть CO, N_2 или C_2H_4 . Из этих трех газов с железом реагирует только CO, образуя карбонил:

$$Fe + nCO \rightarrow Fe(CO)_n$$

Из условия
$$\frac{56}{56+28n} = 0.286$$
 найдем $n = 5$.

При разложении органического вещества из 18.0 г образуется 0.2 моль CO (массой 5.6 г), 0.2 моль CO₂ (массой 8.8 г), остается 18.0 - 5.6 - 8.8 = 3.6 г. Это -0.2 моль H_2O . Разложению подверглась щавелевая кислота:

$$H_2C_2O_4 \xrightarrow{t^o} H_2O + CO + CO_2$$
.

10. Пусть формула углеводорода $\mathbf{X} - \mathbf{C}_x \mathbf{H}_v$. Установим простейшую формулу:

$$x: y = (94.12/12): (5.88/1) = 7.843: 5.88 = 4:3.$$

Простейшей формуле C_4H_3 соответствует истинная формула C_8H_6 (количество атомов H должно быть четным). По условию, этот углеводород содержит, по крайней мере, одну тройную связь на конце цепи, а всего тройных связей – три. При этом концевыми могут оказаться от одной до трех тройных связей. Возможные варианты строения X:

$$CH_3-C=C-C=C-CH_2-C=CH$$

$$HC = C - C = C - CH_2 - CH_2 - C = CH$$

ИЛИ

$$\begin{array}{c} CH \\ \parallel \\ C \\ \mid \\ HC = C - C - C = CH \\ \mid \\ CH_3 \end{array}$$

В зависимости от числа этинильных групп $-C \equiv CH$, на металл может заместиться от одного до трех атомов водорода, и общую формулу соли **Y** можно записать так: $C_8H_{6-n}M_n$, где n – число замещенных атомов водорода. Согласно этой формуле, массовая доля металла равна (A – атомная масса металла)

$$\frac{nA}{8\cdot 12 + (6-n) + nA} = 0.6598,$$

откуда $A = \frac{1.939 \cdot (102 - n)}{n}$. Перебором получаем единственное решение: при n = 3 значение

A = 64 (медь). Следовательно, углеводород имеет три этинильные группы, и его структура соответствует последней из приведенных формул. При действии аммиачного раствора хлорида меди(I) образуется соль:

$$CH_3C(C \equiv CH)_3 + 3[Cu(NH_3)_2]Cl \rightarrow CH_3C(C \equiv CCu)_3 + 3NH_3 + 3NH_4Cl.$$

В результате полной каталитической гидратации образуется кетон:

$$CH_3C(C \equiv CH)_3 + 3H_2O \rightarrow CH_3C(C(O)CH_3)_3$$
.

<u>Ответ</u>: метилтриэтинилметан, $CH_3C(C ≡ CH)_3$, $CH_3C(C ≡ CCu)_3$.

Решения варианта 2

1. a) S + Fe
$$\xrightarrow{t^o}$$
 FeS – сера восстанавливается (S⁰ + 2 $e \to$ S⁻²); б) S + O₂ \to SO₂ – сера окисляется (S⁰ – 4 $e \to$ S⁺⁴).

2. Соотношение количеств толуола и HNO₃ 1 : 2. Уравнение реакции:

$$CH_3$$
 $+ 2HNO_3$
 H_2SO_4
 NO_2
 $+ 2H_2O$

3. 2
$$N_2 + 2O_2 \rightarrow 2NO_2 - 68 \ кДж/моль$$
 $4NO_2 + O_2 \rightarrow 2N_2O_5 + 110 \ кДж/моль$

$$2{
m N}_2+5{
m O}_2
ightarrow 2{
m N}_2{
m O}_5+Q$$
 $Q=2\cdot(-68)+110=-26$ кДж; $Q_{
m oбp}({
m N}_2{
m O}_5)=-26$ / $2=-13$ кДж/моль.

Ответ: -13 кДж/моль.

4. Реактив – раствор $AgNO_3$:

2KOH + 2AgNO₃ → 2KNO₃ + Ag₂O
$$\downarrow$$
 + H₂O (Ag₂O – бурый осадок); NaF + AgNO₃ –/→ (реакция не идет); NH₄Cl + AgNO₃ → AgCl \downarrow + NH₄NO₃ (AgCl – белый осадок).

Oтвет: AgNO₃.

5.
$$H_{2(\Gamma)} + I_{2(\Gamma)} \rightleftharpoons 2HI_{(\Gamma)}$$

Скорость прямой реакции $v_{\rm np} = k_{\rm np}[{\rm H}_2][{\rm I}_2];$ Скорость обратной реакции $v_{\rm oбp} = k_{\rm oбp}[{\rm HI}]^2.$

При увеличении [I_2] в 2 раза скорость прямой реакции увеличится также в 2 раза; при увеличении [HI] в 1.5 раза скорость обратной реакции увеличится в 1.5² = 2.25 раз. Скорость обратной реакции превысит скорость прямой, поэтому равновесие сместится влево, в сторону реагентов.

Поскольку из уравнений реакций $\nu(RH) = 2\nu(R-R)$, можно выразить $\frac{17.6}{M(R)+1} = 2\frac{17.2}{2M(R)}$.

Отсюда M(R) = 43, что соответствует C_3H_7 . Значит \mathbf{A} – это C_3H_8 , а \mathbf{B} – C_6H_{14} . <u>Ответ</u>: C_3H_8 , C_6H_{14} .

- 7. a) $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2\uparrow$; $AlCl_3 + 3NH_3 + 3H_2O \rightarrow Al(OH)_3 \downarrow + 3NH_4Cl$.
 - 6) Al + 4HNO₃ \rightarrow Al(NO₃)₃ + NO↑ + 2H₂O; 4Al(NO₃)₃ $\xrightarrow{t^o}$ 2Al₂O₃ + 12NO₂↑ + 3O₂↑.
 - B) $4Al + 3O_2 \xrightarrow{t^o} 2Al_2O_3;$ $Al_2O_3 + 2KOH + 3H_2O \rightarrow 2K[Al(OH)_4].$

Omeem: $\mathbf{X} - \text{AlCl}_3$; $\mathbf{Y} - \text{Al(NO}_3)_3$; $\mathbf{Z} - \text{Al}_2\text{O}_3$.

8. $C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6;$ глюкоза фруктоза

 $C_6H_{12}O_6 \xrightarrow{\phi epмeнmы} 2CH_3CH(OH)COOH;$

 $CH_3CH(OH)COOH + HBr \rightarrow CH_3CH(Br)COOH + H_2O;$

 $CH_3CH(Br)COOH + 2KOH(спирт.) \rightarrow CH_2=CHCOOK + KBr + 2H_2O;$

 $2CH_2$ =CHCOOK + H_2SO_4 (pa₃6.) \rightarrow $2CH_2$ =CHCOOH + K_2SO_4 ;

 CH_2 = $CHCOOH + C_2H_5OH \rightarrow CH_2$ = $CHCOOC_2H_5 + H_2O$.

<u>Ответ:</u> сахароза; \mathbf{A} – глюкоза $C_6H_{12}O_6$; $CH_3CH(OH)COOH$; \mathbf{B} – $CH_3CH(Br)COOH$; \mathbf{C} – CH_2 =CHCOOK; \mathbf{D} – CH_2 =CHCOOH; CH_2 = $CHCOOC_2H_5$.

9. Сразу найдем ν (газов) = 13.44 / 22.4 = 0.6 моль. Один из газов – CO_2 (поглощается твердым гидроксидом калия, 2KOH + $CO_2 \rightarrow K_2CO_3$ + H_2O). Объем уменьшился в 1.5 раза, следовательно ν (CO_2) = 0.2 моль.

Составим уравнение
$$M_{\rm cp} = \frac{0.2 \cdot 44 + 0.4 M}{0.6} = 26$$
, откуда $M({\rm газa}) = 17$ г/моль – это NH₃.

Найдем молярную массу соединения, образующегося при реакции аммиака с натрием:

23 / x = 0.590, отсюда x = 39 г/моль – это соответствует амиду натрия, NaNH₂.

$$2Na + 2NH_3 \rightarrow 2NaNH_2 + H_2$$
.

При разложении неорганического вещества из 19.2 г образуется 0.2 моль CO_2 (массой 8.8 г), 0.4 моль NH_3 (массой 6.8 г), остается 19.2-8.8-6.8=3.6 г. Это -0.2 моль H_2O . Разложению подвергся карбонат аммония:

$$(NH_4)_2CO_3 \xrightarrow{t^o} 2NH_3 + H_2O + CO_2.$$

10. Пусть формула углеводорода $\mathbf{X} - \mathbf{C}_x \mathbf{H}_y$. Установим его простейшую формулу:

$$x: y = (94.12/12): (5.88/1) = 7.843: 5.88 = 4:3.$$

Простейшей формуле C_4H_3 соответствует истинная формула C_8H_6 (количество атомов H должно быть четным). По условию, этот углеводород содержит, по крайней мере, одну тройную связь на конце цепи, а всего тройных связей – три. При этом концевыми могут оказаться от одной до трех тройных связей. Возможные варианты строения X:

$$CH_3-C=C-C=C-CH_2-C=CH$$

$$HC = C - C = C - CH_2 - CH_2 - C = CH$$

или

$$CH$$

$$C$$

$$C$$

$$C$$

$$C$$

$$C$$

$$C$$

$$CH_{3}$$

В зависимости от числа этинильных групп $-C \equiv CH$, на металл может заместиться от одного до трех атомов водорода, и общую формулу соли **Y** можно записать так: $C_8H_{6-n}M_n$, где n- число замещенных атомов водорода. Согласно этой формуле, массовая доля металла равна (A- атомная масса металла)

$$\frac{nA}{8\cdot 12 + (6-n) + nA} = 0.175,$$

откуда $A = \frac{0.212 \cdot (102 - n)}{n}$. Перебором получаем единственное решение: при n = 3 значение

A = 7 (литий). Следовательно, углеводород имеет три этинильные группы, и его структура соответствует последней из приведенных формул. При действии на него гидрида лития образуется соль:

$$CH_3C(C \equiv CH)_3 + 3LiH \rightarrow CH_3C(C \equiv CLi)_3 + 3H_2.$$

В результате полной каталитической гидратации образуется кетон:

$$CH_3C(C \equiv CH)_3 + 3H_2O \rightarrow CH_3C(C(O)CH_3)_3$$
.

Ответ: метилтриэтинилметан, $CH_3C(C ≡ CH)_3$; $CH_3C(C ≡ CLi)_3$.

Ответы к варианту 3

1. a)
$$2P + 3Ca \xrightarrow{t^o} Ca_3P_2$$
; 6) $2P + 3Cl_2 \rightarrow 2PCl_3$.

2.

COOH COOH + 2HNO₃
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 + 2H₂O NO₂

- 3. 237.5 кДж/моль.
- 4. Реактив раствор КОН.
- 5. Положение равновесия не изменится.
- **6.** C₄H₁₀, C₈H₁₈.
- **7.** $X CrCl_2$; $Y Cr(NO_3)_3$; $Z Cr_2O_3$.
- **8.** Глюкоза; **A** C₂H₅OH; CH₂=CH–CH=CH₂; **B** CH₃CH₂CH₂CH₃; **C** CH₃CH₂CHBrCH₃; **D** CH₃CH=CHCH₃; CH₃–CH(OH)–CH(OH)–CH₃.
- **9.** CO₂; NH₃; амид калия KNH₂; карбонат аммония (NH₄)₂CO₃.
- **10.** Метилтриэтинилметан, $CH_3C(C \equiv CH)_3$; $CH_3C(C \equiv CAg)_3$.

Ответы к варианту 4

1. a)
$$SO_2 + 2H_2S \rightarrow 3S\downarrow + 2H_2O$$
; б) $2SO_2 + O_2 \xrightarrow{\kappa am} 2SO_3$.

2.

$$+ HNO_3 \xrightarrow{H_2SO_4} + H_2O$$

- 3. -33 кДж/моль.
- 4. Реактив лакмус.
- 5. а) Равновесие сместится влево, в сторону реагентов; б) положение равновесия не изменится.
- **6.** C₃H₈, C₆H₁₄.
- 7. $\mathbf{X} \text{FeCl}_2$; $\mathbf{Y} \text{Fe}(\text{NO}_3)_3$; $\mathbf{Z} \text{FeSO}_4$.
- **8.** Сахароза; **A** глюкоза; CH₃CH₂CH₂COOH; **B** CH₃CH₂CH(Cl)COOH; **C** CH₃CH=CHCOOK; **D** CH₃CH=CHCOOH; CH₃CH=CHCOOC₂H₅.
- **9.** CO_2 ; CO; гексакарбонил хрома $Cr(CO)_6$; щавелевая кислота $H_2C_2O_4$.
- **10.** Метилтриэтинилметан, $CH_3C(C \equiv CH)_3$; $CH_3C(C \equiv CCs)_3$.

Решения заданий 41-ой Международной Менделеевской олимпиады 2007 г.

Задача 1 (автор Тимковский И.И., студент химического факультета МГУ)

- **1.** Искаженный октаэдр. Так как **I** не совпадает со своим зеркальным отражением, то является хиральным. Комплекс **I** не содержит никаких элементов симметрии (плоскости, оси или центра симметрии).
- **2.** Из молярной массы комплекса I получаем $M_A + M_B = 204$. Содержание хлора в комплексе II равно $142 / (466 + 2M_B)$, а в комплексе III $71 / (839 + 2M_A)$. Следовательно,

$$71/(839 + 2M_A) \cdot 3.129 = 71/(233 + M_B).$$

Решая эту систему уравнений, получаем $M_{\bf A}=103,\,M_{\bf B}=101.$ Металл ${\bf A}$ – родий, металл ${\bf B}$ – рутений.

3. В комплексе I число электронов составляет:

$$N_e(\text{Ru}) = 6 \cdot 2(\sigma) + 6 = 18$$
 электронов (правило выполняется); $N_e(\text{Rh}) = 3 \cdot 2(\sigma) + 2 \cdot 2(\pi) + 8 = 18$ электронов (правило выполняется).

Рутений имеет степень окисления +2 (электронная конфигурация $4d^6$). Каждый из шести лигандов, окружающих атом рутения, поставляет ему на незаполненные орбитали одну неподеленную электронную пару. Аналогичное объяснение для родия: родий имеет степень окисления +1 (электронная конфигурация $4d^8$). Три атома хлора, окружающие родий, поставляют ему три неподеленных электронных пары; каждая из двойных связей циклопентадиенонового кольца поставляет 2π -электрона.

4. а) В основе всех методов должно лежать создание бензольного кольца. Бензол может быть получен, например, тримеризацией ацетилена на угле:

$$3 \equiv \frac{\ell^0}{\text{C akt.}} \qquad \boxed{\text{EtBr}} \qquad \boxed{\text{Et}}$$

Осуществление первой стадии возможно другим способом – с использованием никелевого катализатора NiX_2 в смеси с трифенилфосфином (эта реакция протекает при значительно более низких температурах). Вторая стадия – этилирование по Фриделю-Крафтсу. Несмотря на низкую селективность алкилирования по Фриделю-Крафтсу, преимущественно образуется наиболее термодинамически стабильный 1,3,5-изомер, поскольку в нем этильные группы максимально удалены друг от друга.

Альтернативные методы включают синтез бутина-1 из ацетилена и его тримеризацию (возможно также образование 1,2,4-изомера, но преобладает 1,3,5-изомер по вышеуказанным причинам) или гидратацию с образованием бутанона-2, который превращают в 1,3,5-триэтилбензол под действием H_2SO_4 .

5. Бензальдегид под действием KCN превращается в продукт бензоиновой конденсации, который затем можно окислить в 1,2-дифенилэтан-1,2-дион:

Легко увидеть, что целевой продукт может быть получен из дибензилкетона и 1,2дифенилэтан-1,2-диона кротоновой конденсацией.

Наиболее сложным, на первый взгляд, является синтез дибензилкетона, но поскольку в условиях в качестве исходного соединения дан этиловый эфир фенилуксусной кислоты, понятно, что на первой стадии он превращается в продукт сложноэфирной конденсации, который после гидролиза сложного эфира и декарбоксилирования дает целевой дибензилкетон.

Задача 2 (автор *Кебец П.А.*, к.х.н., научный сотрудник ООО «Информационный центр по науке и технологиям», Москва)

1. Из условия понятно, что вещество А содержит кислотную группу, поэтому в основе титрования лежат следующие реакции:

$$6H^{+} + 5Br^{-} + BrO_{3}^{-} \rightarrow 3H_{2}O + 3Br_{2}.$$
 (1)

Образующийся Br₂ титруется формиатом, который может окислиться только до CO₂:

$$Br_2 + HCOO^- \rightarrow 2Br^- + CO_2 + H^+.$$
 (2)

В основе кулонометрического определения лежат реакции:

$$2H_2O + 2e \xrightarrow{\text{электрогенерация ттитрант}} = 2OH^- + H_2,$$
 (3)

$$H^+ + OH^- \xrightarrow{\text{титрование}} H_2O.$$
 (4)

Из реакций (1) и (2) получаем, что 10.2 г вещества **A** содержат 0.075 моль протонов, способных к диссоциации. Молекула **A** содержит один такой протон (1 скачок на кривой титрования), поэтому относительная молекулярная масса вещества **A** составляет 136. Потеря 6.6% массы при нагревании выше 200°С уменьшает молекулярную массу на 9, значит, вероятнее всего, происходит отщепление молекулы воды от двух молекул **A** с образованием ангидрида. Тогда относительная молекулярная масса образовавшегося продукта составляет 254. Дальнейшая потеря 31.5% массы уменьшает молекулярную массу на 80.

Высокая термическая стабильность соединения указывает на его неорганический характер, поэтому в качестве вещества $\bf A$ следует рассматривать твердые неорганические кислоты или кислые соли. Твердых неорганических кислот с подобными свойствами не существует. Гидрокарбонат, гидросульфит или гидрофосфат не могут обеспечить протекание реакции (1) ввиду того, что образуемые растворы не кислотны. Растворы гидросульфатов имеют рН < 7 и обеспечивают протекание реакции (1). Рассмотрим вариант MeHSO₄. $M_r({\rm HSO_4}) = 97$, тогда $M_r({\rm Me}) = 39$, что соответствует калию. Таким образом, искомое вещество ${\bf A} - {\rm KHSO_4}$.

Термические превращения KHSO₄ описываются следующими уравнениями:

$$2KHSO_4 \xrightarrow{t^{\circ}} K_2S_2O_7(\mathbf{A1}) + H_2O\uparrow;$$

$$K_2S_2O_7 \xrightarrow{t^\circ} K_2SO_4 + SO_3 \uparrow$$
 (или же $2K_2S_2O_7 \xrightarrow{t^\circ} 2K_2SO_4 + 2SO_2 \uparrow + O_2 \uparrow)$.

2. Для определения количества затраченного электричества воспользуемся законом Фарадея:

$$Q = n \cdot z \cdot F / \varphi$$

где Q — количество электричества, Кл; n — количество вещества, подвергшегося электрохимической реакции, моль; z — число электронов, участвующих в реакции, в расчете на 1 молекулу этого вещества; F — постоянная Фарадея, ϕ — выход по току.

$$Q = (0.00075 \text{ моль} \cdot 1 \cdot 96500 \text{ Кл/моль}) / 0.9 = 80.4 \text{ Кл}.$$

3. В растворе гидросульфата калия наблюдается следующее равновесие:

$$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-};$$

$$K_a = [H^+][SO_4^{2-}] / [HSO_4^-] = [H^+]^2 / (c_{KHSO_4} - [H^+]) =$$

$$= 10^{-2pH} / (c_{KHSO_4} - 10^{-pH}) = 1.17 \cdot 10^{-2}$$

4. В растворе гидросульфата калия гравиметрически может быть определен сульфат-ион, дающий малорастворимый осадок $BaSO_4$ (**B**) при действии Ba^{2+} . Действительно,

$$M_r(\text{BaSO}_4) / M_r(\text{KHSO}_4) \approx 1.7.$$

5. Растворимость сульфата бария может быть рассчитана по формуле:

$$K_s^0 = [\mathrm{Ba^{2+}}][\mathrm{SO_4^{2-}}],$$
 $s(\mathrm{BaSO_4}) = \sqrt{K_s^0} = \sqrt{1.3 \cdot 10^{-10}} = 1.14 \cdot 10^{-5} \; \mathrm{моль/л};$ $s = 1.14 \cdot 10^{-5} \; \mathrm{моль/л} \cdot 233 \; \mathrm{г/моль} = 0.0027 \; \mathrm{г/л} \; \; (\mathrm{или} \; 2.7 \; \mathrm{мг/л}).$

Задача 3 (автор *Швед Е.Н.*, к.х.н., доцент Донецкого национального университета, г. Донецк, Украина)

1. Из уравнения (1)

$$\mathbf{v} = (2\pi \cdot c)^{-1} \cdot \left(\frac{kN_{\mathbf{A}}}{\mu}\right)^{1/2}$$

вычисляем среднее значение волновых чисел для колебаний функциональной группы C=O в зависимости от природы связанных с ней заместителей: для кетона

$$v(C = O) = (2 \cdot 3.14 \cdot 3 \cdot 10^{10})^{-1} \cdot \left(\frac{11.89 \cdot 10^5 \cdot 6.02 \cdot 10^{23}}{12 \cdot 16/(12 + 16)}\right)^{1/2} = 1715 (cc^{-1});$$

для насыщенного альдегида

$$v(C=O) = 1730 \text{ cm}^{-1}$$
;

для α,β-ненасыщенного альдегида

$$v(C=O) = 1697 \text{ cm}^{-1}$$
.

Аналогично рассчитываем

$$v(O-H) = 3501 \text{ cm}^{-1}$$
.

Вычисленные v – средние величины. В реальных соединениях частоты находятся в интервалах 1725–1705; 1740–1720; 1705–1680; 3600–3400 см $^{-1}$ соответственно.

При вычислении энергий связей углерод—углерод вначале по уравнению (1) находим валентную силовую постоянную k, а затем по уравнению (2) — значение E.

$$k = (2\pi \text{cv})^2 \cdot M(\mathbf{A}) \cdot M(\mathbf{B}) / (N_{\text{A}}[M(\mathbf{A}) + M(\mathbf{B})]);$$

$$k(\text{C--C}) = (2 \cdot 3.14 \cdot 3 \cdot 10^{10} \cdot 951)^2 \cdot 12 \cdot 12 / (6.02 \cdot 10^{23} \cdot 24) = 3.20 \cdot 10^5 \text{ r·c}^{-2};$$

$$k(\text{C=-C}) = 9.58 \cdot 10^5 \text{ r·c}^{-2};$$

$$k(\text{C=-C}) = 15.6 \cdot 10^5 \text{ r·c}^{-2};$$

$$E(\text{C=-C}) = 2.24 \cdot 10^5 + 0.395 \cdot 15.6 \cdot 10^5 = 840 \text{ кДж/моль}.$$

Заполненная таблица:

Связь А-В	O-O	C=C	CEC	C = O				С	Н	Н
				среднее	кетон	альдегид	α,β-ненасыщенный альдегид	0-0	0	C
$E, \frac{\kappa Дж}{\text{моль}}$	350	603	840	750				358	460	400
$k \cdot 10^{-5}$, Γc^{-2}	3.2	9.58	15.6		11.89	12.10	11.65		6.8	
v_{cp}, cm^{-1}	951	1646	2099		1715	1730	1697		3501	

2. Синтез β,β-дизамещенных α,β-непредельных альдегидов протекает по схеме:

Расчет ΔH проводят для фрагмента

поскольку остальные связи в переходе $\mathbf{III} \to \mathbf{IV}$ не изменяются:

$$\Delta H^{\circ}$$
= $E(C=C) + E(C=O) + E(O=H) - E(C=H) + E(C=C) - E(C=O) =$
= $603 + 358 + 460 - 400 - 350 - 750 = -79$ кДж/моль.

3. С учетом данных ИК-спектра присоединение дает продукты:

(Via) OH
$$CH_3MgBr$$
 H_2O/H^+ OH CH_3MgBr (Vid)
$$CH_2=C=O$$
 (Vie)
$$C_2H_5OH(\text{\tiny M36.})/HCI$$
 OC $_2H_5$ OC $_2H_5$ (Vif)
$$C_2H_5OH(\text{\tiny M36.})/HCI$$
 OC $_2H_5$ (Vif)

- **4.** Вещество **V** имеет в ИК-спектре полосы при 1697 (1705-1680) см $^{-1}$ и 1646 (1680-1620) см $^{-1}$.
- **5.** Для соединений **VIa**, **VIc-VIf** реализуется следующий тип присоединения:

Реагент	1. CH ₃ MgBr 2. H ₂ O / H ⁺	NaHSO ₃	$\mathrm{H_2O/H}^+$	CH ₂ =C=O	С ₂ Н ₅ ОН _(изб) /НС1
Тип присоединения	1,2-	1,2-	1,4-	1,4-	1,4- + 1,2-

Задача 4 (автор *Головко Ю.С.*, аспирант химического факультета Белорусского государственного университета, г. Минск, Республика Беларусь)

1. Продукты, полученные в результате метилирования исходного гликозида и последующего гидролиза, свидетельствуют, что **A** содержит два (с учетом соотношения продуктов **B** и **C**) остатка D-глюкозы, соединенных 1,6- β -гликозидной связью. Тогда **B** – D-глюкоза, а **C** содержит один остаток D-глюкозы. На оставшуюся часть **C** приходится

$$C_{14}H_{17}NO_6 + H_2O - C_6H_{12}O_6 = C_8H_7NO.$$

Полный гидролиз ${f C}$ приводит к бензальдегиду. Соответственно, ${f C}_8{f H}_7{f N}{f O}-{f C}_7{f H}_6{f O}={f C}{f H}{f N}.$

Окончательно:

2.

3. Анализ цепочки превращений (как в прямом, так и в обратном направлении) приводит к следующим соединениям:

4. Вещества С и Н различаются только абсолютной конфигурацией единственного стереоцентра в неуглеводном фрагменте. Для установления абсолютной конфигурации асимметрического атома следует определить старшинство заместителей. Далее, направив «от себя» самый младший заместитель, определить направление движения для трех оставшихся заместителей в порядке убывания их старшинства. Если данное движение осуществляется по часовой стрелке, то соединение принадлежит к R-ряду, в противном случае – к S-ряду.

Задача 5 (автор Еремин В.В., д.ф.-м.н., профессор химического факультета МГУ)

1. Уравнения ядерных реакций:
$${}^{40}{\rm K} \rightarrow {}^{40}{\rm Ca} + e \qquad \qquad (\beta\text{-распад});$$

$${}^{40}{\rm K} + e \rightarrow {}^{40}{\rm Ar} \qquad \qquad (\beta\text{-захват}).$$

- 2. Кальций, в отличие от аргона, входит в состав горных пород, поэтому точность определения возраста по кальцию будет мала. При расчетах необходимо учитывать возможность захвата воздуха твердой породой.
- 3. Общий период полураспада калия-40:

люд полураенада калия-40.
$$T = \frac{\ln 2}{k_1 + k_2} = \frac{\ln 2}{\frac{\ln 2}{T_1} + \frac{\ln 2}{T_2}} = \frac{T_1 T_2}{T_1 + T_2} = \frac{1.47 \cdot 10^9 \cdot 1.19 \cdot 10^{10}}{1.47 \cdot 10^9 + 1.19 \cdot 10^{10}} = 1.31 \cdot 10^9 \text{ лле}.$$

4. Из каждых 100 распавшихся атомов калия-40 в аргон превращается:

$$\frac{N(K \to Ca)}{N(K \to Ar)} = \frac{T_2}{T_1} = 8.1;$$

$$N(K \to Ar) = \frac{1}{1 + 8.1} \cdot 100 = 11.$$

5. Общее количество калия-40 в земной коре в настоящее время:
$$v(^{40}\text{K}) = \frac{5 \cdot 10^{25} \cdot 0.015 \cdot 0.000119}{40} = 2.2 \cdot 10^{18} \text{ моль} \; .$$

Общее количество калия-40 в начальный момент времени, то есть 5 млрд лет назад:

$$\nu_0(^{40}\text{K}) = \nu(^{40}\text{K}) \cdot \exp((k_1 + k_2)t) = 2.2 \cdot 10^{18} \cdot \exp\left(\left(\frac{\ln 2}{1.47 \cdot 10^9} + \frac{\ln 2}{1.19 \cdot 10^{10}}\right) \cdot 5 \cdot 10^9\right) = 3.1 \cdot 10^{19} \text{ моль}$$

За время существования Земли калия-40 в земной коре распалось:

$$v(^{40}K) = 3.1 \cdot 10^{19} - 2.2 \cdot 10^{18} = 2.9 \cdot 10^{19}$$
 моль,

из них с образованием аргона

$$v(^{40}K) = 2.9 \cdot 10^{19} \cdot 0.11 = 3.2 \cdot 10^{18}$$
 моль,

объем которого

$$V(Ar) = vV_m = 3.2 \cdot 10^{18} \cdot 22.4 \cdot 10^{-3} = 7.2 \cdot 10^{16} \text{ m}^3.$$

Объем аргона в земной атмосфере:

$$V_{\text{aTM}}(\text{Ar}) = 0.01 \cdot 40.10^9 = 4.10^8 \text{ km}^3 = 4.10^{17} \text{ m}^3.$$

Доля аргона, имеющего радиоактивное происхождение, в атмосфере составляет:

$$\omega(Ar) = 7.2 \cdot 10^{16} / 4 \cdot 10^{17} = 0.18$$
 (или 18%).

6. Общее количество калия-40 в образце:

$$v(^{40}K) = \frac{1000 \cdot 0.0324 \cdot 0.000119}{39} = 9.9 \cdot 10^{-5}$$
 моль.

Количество образовавшегося аргона:

$$v(^{40}\text{Ar}) = \frac{5.9 \cdot 10^{15}}{6.02 \cdot 10^{23}} = 9.8 \cdot 10^{-9} \text{ моль.}$$

Общее количество калия, распавшегося за время t:

$$\nu_{\text{расп}}(^{40}\text{K}) = \frac{9.8 \cdot 10^{-9}}{0.11} = 8.9 \cdot 10^{-8} \text{ моль}.$$

Применим закон радиоактивного распада

$$v(^{40}K) = (v_{\text{pacn}}(^{40}K) + v(^{40}K))\exp(-(k_1 + k_2)t) = (v_{\text{pacn}}(^{40}K) + v(^{40}K))\exp(-t\ln(2)/T),$$

с помощью которого можно рассчитать возраст останков

$$t = \frac{T}{\ln 2} \cdot \ln \left(\frac{v_{\text{расп}}(^{40}\text{K}) + v(^{40}\text{K})}{v(^{40}\text{K})} \right) = \frac{1.31 \cdot 10^9}{\ln 2} \cdot \ln \left(\frac{8.9 \cdot 10^{-8} + 9.9 \cdot 10^{-5}}{9.9 \cdot 10^{-5}} \right) = 1.7 \cdot 10^6 \text{ ллет}$$

Это время считается возрастом человеческой расы.

Задача 6 (автор Серяков С.А., аспирант химического факультета МГУ)

1. X – бинарное вещество, поскольку при взаимодействии A1 и B1 образуются только вещества, содержащие три и менее элементов, в числе которых есть и кислород. Тогда с учетом того, что X изоструктурно соединениям, для которых соотношение катион : a нион = 1 : 1 (ZnS и NaCl), можно считать, что вещество X имеет состав AB.

Уравнение реакции сжигания запишется так:

$$\mathbf{AB} + \mathbf{O}_2 \rightarrow \mathbf{AO}_{n/2 \text{ (TB)}} + \mathbf{BO}_{m/2 \text{ (r)}}$$
.

Отсюда следует, что молярная масса **B** равна 8n, где n – степень окисления **A**.

n	1	2	3	4	5	6	7
<i>M</i> (B)	8	16	24	32(S)	40	48	56

Таким образом, ${\bf B}$ – сера, ${\bf B1}$ – ${\rm SO}_2$; тогда молярная масса сульфида ${\bf AB}$ может быть рассчитана по исходной навеске и объему выделившегося ${\rm SO}_2$.

считана по исходной навеске и объему выделившегося
$$SO_2$$
.
$$M_r(\pmb{A}\pmb{B}) = \frac{m(\pmb{A}\pmb{B})}{n(SO_2)} = \frac{0.100 \text{г} \cdot 22.4 \text{п/моль}}{0.0257 \text{п}} \approx 87.16 \text{ г/моль},$$

откуда

$$M_r(\mathbf{A}) = M_r(\mathbf{AB}) - M_r(\mathbf{S}) = 55.16 \text{ г/моль},$$

следовательно, A - Mn (54.94 г/моль), $A1 - MnO_2$.

Значит ${\bf Z}-{\sf MnSO_4}$, так как он образуется в случае недостатка SO_2 , и по условию содержит сульфат-ион (образование осадка под действием Ba^{2^+}). Тогда в избытке восстановителя (SO_2) степень окисления серы в продукте должна быть ниже, чем в ${\sf MnSO_4}$ (+6), но выше чем в SO_2 (+4), есть все основания предположить, что в ${\bf Y}$ степень окисления будет +5, а соединение отвечать формуле ${\sf MnS_2O_6}$.

Взаимодействие SO_2 с водным Na_2CO_3 может привести к $NaHSO_3$ или Na_2SO_3 , поскольку дальнейшие превращения протекают с участием SO_2 , то ${\bf B3}-Na_2SO_3$. Анионы в составе

B4 и **B5** отвечают общей формуле $S_2O_{\mathcal{X}}^{\mathcal{V}_-}$, тогда продукт взаимодействия Na_2SO_3 с серой – тиосульфат натрия $Na_2S_2O_3$, а с $SO_2-Na_2S_2O_5$, в последнем случае протекание окислительновосстановительных реакций невозможно. Цинк, выступающий в роли восстановителя SO_2 ,

будет образовывать дитионит ZnS_2O_4 (**B2**), т.к. анионы $S_2O_X^{y-}$ для x=4 (x<3 нет, а x=3 уже был у **B3**) и y>2 неизвестны.

Соединение	Формула	Соединение	Формула	
X	MnS	B2	ZnS_2O_4	
Y	MnS_2O_6	В3	Na_2SO_3	
${f Z}$	$MnSO_4$	B4	$Na_2S_2O_3$	
A1	MnO_2	B5	$Na_2S_2O_5$	
B 1	SO_2			

2. Уравнения проведенных реакций:

$$MnS + 2O_2 \xrightarrow{t} MnO_2 + SO_2;$$
 $MnO_2 + SO_2$ (недостаток) $\xrightarrow{H_2O} MnSO_4;$
 $MnO_2 + 2SO_2$ (избыток) $\xrightarrow{H_2O} MnS_2O_6;$
 $MnSO_4 \xrightarrow{t} MnO_2 + SO_2;$
 $MnS_2O_6 \xrightarrow{t} MnO_2 + 2SO_2;$
 $Zn + 2SO_2 \xrightarrow{H_2O} ZnS_2O_4;$
 $Na_2CO_3 + SO_2 \xrightarrow{H_2O} Na_2SO_3 + CO_2;$
 $Na_2SO_3 + S \xrightarrow{t, H_2O} Na_2S_2O_3;$
 $Na_2SO_3 + SO_2$ (избыток) $\xrightarrow{H_2O} Na_2S_2O_5.$

3. Структуры анионов $S_2O_3^{2-} - S_2O_8^{2-}$ представлены на рисунке:

Задача 7 (автор *Гарифуллин Б.Н.*, к.м.н., клинический ординатор Башкирского медицинского университета, г. Уфа, Республика Башкортостан)

1. Исходя из названия метода исследования — позитронно-эмиссионная томография — можно предположить, что изотопы 11 C и 13 N претерпевают β^+ -распад:

$$\begin{array}{c} ^{11}_{6} \text{ C} \rightarrow ^{11}_{5} \text{ B} + \beta^{+}; \\ ^{13}_{7} \text{ N} \rightarrow ^{13}_{6} \text{ C} + \beta^{+}. \end{array}$$

Выводы о характере распада изотопов 11 С и 13 N можно сделать также на основании отношения числа протонов и нейтронов (n/p) в ядрах данных изотопов: n/p для них меньше 1, что ведет к превращению «избыточного» протона в нейтрон с эмиссией позитрона и нейтрино.

2. Мы не знаем, какой именно из двух изотопов (11 C и 13 N) получают по данной методике, поэтому возможны два варианта:

$$^{14}_{7}N + ^{1}_{1}p \rightarrow ^{11}_{6}C + ^{4}_{2}He;$$
 (1)

или

$${}_{8}^{16}O + {}_{1}^{1}p \rightarrow {}_{7}^{13}N + {}_{2}^{4}He;$$
 (2)

Соответственно, газ \mathbf{A} – это или $^{14}\mathrm{N}_2$ (M=28 г/моль), или $^{16}\mathrm{O}_2$ (M=32 г/моль). Тогда молекулярная масса газа \mathbf{C} составит 43, если \mathbf{A} – $^{14}\mathrm{N}_2$, или 49, если \mathbf{A} – $^{16}\mathrm{O}_2$. Понятно, что газ \mathbf{C} в случае первой реакции – бинарное соединение, формирующееся по реакции газа \mathbf{B} и уг-

лерода-11 (в ходе синтеза образуется инертный гелий, а азот, выступающий в качестве мишени, малоактивное в условиях опыта вещество). Нетрудно видеть, что в таком случае газ В – кислород 16 O₂, а газ $\tilde{\mathbf{C}}$ – оксид углерода (IV) 11 CO₂, образующийся по реакции: 11 C + O₂ → 11 CO₂.

В случае реакции (2) не все так однозначно (мишень - химически активный кислород). Составим следующую таблицу:

Число атомов азота ¹³ N	Число атомов кислорода 16 О в молекуле С				
в молекуле С	0	1	2		
1	36	20	4		
2	23	7	_		
3	10	_			

Видно, что ни для одного из вариантов молекулярной массы, представленных в таблице и приходящихся на второй/третий элемент, не находится разумного объяснения состава газов **В** и **С**. Поэтому: $\mathbf{A} - {}^{14}\mathrm{N}_2$, $\mathbf{B} - {}^{16}\mathrm{O}_2$ и $\mathbf{C} - {}^{11}\mathrm{CO}_2$.

3. Так как элемент X может существовать в виде моноаниона, то X – галоген (гидрид-ион неустойчив в водном растворе). Реакция получения X из неона и дейтерия (суммарно на двоих всего 11 протонов) однозначно указывает, что это фтор.

Для того чтобы определить число нуклонов n в изотопе X, рассмотрим схему получения соединения **Z**: нуклеофильное замещение трифлатной группы в исходном производном маннозы фторидом с последующим удалением ацетильных групп путем щелочного гидролиза. Значит, конечный продукт имеет формулу $C_6H_{11}O_5^nF$, что позволяет составить следующее уравнение:

$$\frac{72}{163+n} = 0.398. \tag{3}$$

Решив его, получим n = 18, следовательно, искомый изотоп – 18 F.

Уравнение ядерной реакции получения ¹⁸F:

$$^{20}_{10}\text{Ne} + ^{2}_{10}d \rightarrow ^{18}_{9}\text{F} + ^{4}_{2}\text{He}.$$

4. Реакция получения **Y** протекает по механизму $S_N 2$, что подразумевает изменение абсолютной конфигурации атома углерода в положении 2 гексозы. Поэтому продуктом реакции замещения трифторметилсульфонильной группы фторидом будет 1,3,4,6-тетра-О-ацетил-2- $[^{18}F]$ -фтор-2-дезокси-D-глюкоза.

Обработка У раствором щелочи обеспечивает удаление путем гидролиза ацетильных групп с последующей нейтрализацией избытка щелочи соляной кислотой (радиофармпрепарат для внутривенного введения должен обладать pH, близким к 7). Тогда соединение \mathbf{Z} – это $2-[^{18}F]$ -фтор-2-дезокси-*D*-глюкоза.

5. Теоретический выход составляет

$$9.4 \, \Gamma \text{Б} \kappa / 0.24 = 39.2 \, \Gamma \text{Б} \kappa$$
.

Тогда, зная период полураспада изотопа ¹⁸F, можно рассчитать константу скорости распада k и время синтеза радиофармпрепарата:

$$k = \ln 2 / t_{1/2} = 0.693 / 110 \text{ мин} = 6.3 \cdot 10^{-3} \text{ мин}^{-1};$$
 $t_{\text{синтеза}} = \ln (56.0 \text{ ГБк} / 39.2 \text{ ГБк}) / 6.3 \cdot 10^{-3} \text{ мин}^{-1} = 56.6 \text{ мин} \approx 57 \text{ мин}.$

Задача 8 (автор Мажуга А.М., студент факультета наук о материалах МГУ)

1. Твердым продуктом, образующимся при сгорании **A**, будет оксид $\Theta_{n/2}$ одного из элементов, входящих в состав **A**, а продуктом пиролиза будет, вероятно, сам элемент Θ , поскольку твердые простые вещества не образуют между собой газообразных (н.у.) соединений. Пусть молярная масса элемента Θ , образующего твердый оксид $\Theta_{n/2}$, равна Θ . Тогда при пиролизе образовалось Θ 0 и столько же моль Θ 3 входит в состав Θ 1.

Следовательно, молярная масса оксида

$$M(\Theta_{n/2}) = 3.22 / \nu = 3.22 M \Gamma / MOЛЬ.$$

Масса кислорода в одном моле оксида $\Theta_{n/2}$ составляет:

$$m(O_2) = M(O) \cdot n / 2 = 16 \cdot (n / 2) = 8n,$$

Отсюда молярную массу оксида можно выразить как

$$M + 8n = 3.22M$$
 г/моль.

Составим таблицу различных вариантов сочетаний M и n:

n	1	2	3	4	5	6
M	3.60	7.21	10.81	14.42	18.02	21.62

Разумным выглядит вариант с n = 3 и M = 10.81, соответствующий бору, а соединение \mathbf{A} — диборан $\mathbf{B}_2\mathbf{H}_6$ (диборан — крайне ядовитый газ; горение многих соединений бора сопровождается зеленоватым свечением).

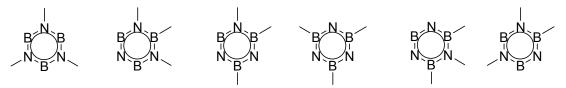
Изоэлектронное этану соединение C получено взаимодействием газов A и B и является единственным продуктом реакции. Следовательно, C содержит 14 валентных электронов и имеет сходную с этаном геометрию; C содержит как минимум восемь атомов. Шесть из них являются атомами водорода (как в этане), тогда два скелетообразующих атома в сумме содержат восемь валентных электронов. Учитывая большой дипольный момент C и агрегатное состояние A и B, можно установить, что $C - H_3BNH_3$, A - диборан, а B - аммиак.

F проявляет ароматические свойства, следовательно, содержит 4n+2 π -электронов. Наиболее вероятным является наличие шести π -электронов (n=1). В случае **F** ароматический цикл состоит из атомов бора и азота, так как **F** – продукт термического разложения **C**. Каждый атом азота поставляет в π -систему два электрона, тогда как атом бора не поставляет ни одного, из этого можно сделать вывод, что **F** содержит в своем составе три атома азота и столько же атомов бора, что подтверждается упоминанием процесса тримеризации **D** при его превращении в **E**. Пользуясь правилами валентности, можно окончательно установить брутто-формулу и структуру соединения **F**, это боразин $B_3N_3H_6$.

 ${f D}$ — неустойчивый продукт термического разложения ${f C}$ (${f H}_3{f B}{f N}{f H}_3$), а ${f E}$ — продукт тримеризации ${f D}$ (при тримеризации простейшая брутто-формула не меняется), дальнейшее нагревание которого приводит к ${f F}$ (${f B}_3{f N}_3{f H}_6$). Логично предположить, что ${f D}$ и ${f E}$ имеют промежуточное количество атомов. Следовательно, структурные формулы соединений ${f D}$ и ${f E}$:

Наиболее сложным в задаче является установление структуры соединения G. Для решения этой задачи проанализируем реакцию между A и B, приводящую к C:

Реакция проводится в малополярных средах и представляет собой (по отношению к диборану) процесс гомолитического расщепления связей в диборане. Реакция между **A** и **B**,


приводящая к ионному соединению G, проводится в полярных средах, следовательно, альтернативно может происходить гетеролитический разрыв связей, что подтверждается присутствием в G тетраэдрического аниона (BH_4^-):

Установим состав соединения \mathbf{K} . В каждой из стадий термического разложения теряется одна молекула H_2 на группировку B–N, следовательно, продуктом, образующимся из \mathbf{F} , будет нитрид бора BN (\mathbf{K}).

2. Уравнения упомянутых на схеме реакций:

$$B_2H_6 + 3O_2 \xrightarrow{t} 3H_2O + B_2O_3;$$
 Неполярный растворитель: $B_2H_6 + 2NH_3 \rightarrow 2BNH_6;$ Полярный растворитель: $B_2H_6 + 2NH_3 \rightarrow [BH_2(NH_3)_2]^+[BH_4]^-;$ $BNH_6 \xrightarrow{t} [BNH_4] + H_2;$ $3[BNH_4] \xrightarrow{\text{тримеризация}} (BNH_4)_3;$ $(BNH_4)_3 \xrightarrow{t} (BNH_2)_3 + 3H_2;$ $[BH_2(NH_3)_2]^+[BH_4]^- \xrightarrow{\text{пиролиз}} 2BN + 6H_2;$ $[BNH_4] \xrightarrow{\text{пиролиз}} 3BN + 2H_2;$ $B_3N_3H_6 \xrightarrow{\text{пиролиз}} 3BN + 3H_2;$ $(BNH_2)_3 \xrightarrow{\text{пиролиз}} 3BN + 3H_2;$ $B_2H_6 \xrightarrow{\text{пиролиз}} 1/6B_{12} + 3H_2.$

3. Возможно шесть пространственных изомеров триметилзамещенных производных \mathbf{F} , их формулы (атомы водорода не указаны):

4. Поскольку боразин по своим свойствам напоминает бензол, можно предположить, что его температура кипения и дипольный момент будут иметь значения, близкие к таковым для бензола. Следовательно, дипольный момент должен быть весьма малым – от 0.0 до 0.5Д, а температура кипения не может превышать температуру кипения воды; поэтому выбираем величину 55.0°C.

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ ПО ХИМИИ ДЛЯ ПОСТУПАЮЩИХ В МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.ЛОМОНОСОВА

Программа по химии для поступающих в Московский государственный университет состоит из двух разделов. В первом разделе представлены основные теоретические понятия химии, которыми должен владеть абитуриент с тем, чтобы уметь обосновать химические и физические свойства веществ, перечисленных во втором разделе, посвященном элементам и их соединениям.

Экзаменационный билет содержит десять заданий с дифференцированной оценкой, охватывающих все разделы программы для поступающих. Продолжительность письменного экзамена равна 4 часам. На экзамене можно пользоваться своими микрокалькуляторами; справочные таблицы («Периодическая система химических элементов», «Растворимость оснований, кислот и солей в воде», «Ряд стандартных электродных потенциалов») раздаются всем абитуриентам перед началом экзамена.

Часть І. ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

Предмет химии. Место химии в естествознании. Масса и энергия. Основные понятия химии. Вещество. Молекула. Атом. Электрон. Ион. Химический элемент. Химическая формула. Относительные атомная и молекулярная массы. Моль. Молярная масса.

Химические превращения. Закон сохранения массы и энергии. Закон постоянства состава. Стехиометрия.

Строение атома. Атомное ядро. Изотопы. Стабильные и нестабильные ядра. Радиоактивные превращения, деление ядер и ядерный синтез. Уравнение радиоактивного распада. Период полураспада.

Двойственная природа электрона. Строение электронных оболочек атомов. Квантовые числа. Атомные орбитали. Электронные конфигурации атомов в основном и возбужденном состояниях, принцип Паули, правило Хунда.

Периодический закон Д.И.Менделеева и его обоснование с точки зрения электронного строения атомов. Периодическая система элементов.

Химическая связь. Типы химических связей: ковалентная, ионная, металлическая, водородная. Механизмы образования ковалентной связи: обменный и донорноакцепторный. Энергия связи. Потенциал ионизации, сродство к электрону, электроотрицательность. Полярность связи, индуктивный эффект. Кратные связи. Модель гибридизации орбиталей. Связь электронной структуры молекул с их геометрическим строением (на примере соединений элементов второго периода). Делокализация электронов в сопряженных системах, мезомерный эффект. Понятие о молекулярных орбиталях.

Валентность и степень окисления. Структурные формулы. Изомерия. Виды изомерии, структурная и пространственная изомерия.

Агрегатные состояния вещества и переходы между ними в зависимости от температуры и давления. Газы. Газовые законы. Уравнение Клапейрона—Менделеева. Закон Авогадро, молярный объем. Жидкости. Ассоциация молекул в жидкостях. Твердые тела. Основные типы кристаллических решеток: кубические и гексагональные.

Классификация и номенклатура химических веществ. Индивидуальные вещества, смеси, растворы. Простые вещества, аллотропия. Металлы и неметаллы. Сложные вещества. Основные классы неорганических веществ: оксиды, основания, кислоты, соли. Комплексные соединения. Основные классы органических веществ: углеводороды, галоген-, кислород- и азотсодержащие вещества. Карбо- и гетероциклы. Полимеры и макромолекулы.

Химические реакции и их классификация. Типы разрыва химических связей. Гомо- и гетеролитические реакции. Окислительно-восстановительные реакции.

Тепловые эффекты химических реакций. Термохимические уравнения. Теплота (энтальпия) образования химических соединений. Закон Гесса и его следствия.

Скорость химической реакции. Представление о механизмах химических реакций. Элементарная стадия реакции. Гомогенные и гетерогенные реакции. Зависимость скорости гомогенных реакций от концентрации (закон действующих масс). Константа скорости химической реакции, ее зависимость от температуры. Энергия активации.

Явление катализа. Катализаторы. Примеры каталитических процессов. Представление о механизмах гомогенного и гетерогенного катализа.

Обратимые реакции. Химическое равновесие. Константа равновесия, степень превращения. Смещение химического равновесия под действием температуры и давления (концентрации). Принцип Ле Шателье.

Дисперсные системы. Коллоидные системы. Растворы. Механизм образования растворов. Растворимость веществ и ее зависимость от температуры и природы растворителя. Способы выражения концентрации растворов: массовая доля, мольная доля, объемная доля, молярная концентрация. Отличие физических свойств раствора от свойств растворителя. Твердые растворы. Сплавы.

Электролиты. Растворы электролитов. Электролитическая диссоциация кислот, оснований и солей. Кислотно-основные взаимодействия в растворах. Протонные кислоты, кислоты Льюиса. Амфотерность. Константа диссоциации. Степень диссоциации. Ионное произведение воды. Водородный показатель. Гидролиз солей. Равновесие между ионами в растворе и твердой фазой. Произведение растворимости. Образование простейших комплексов в растворах. Координационное число. Константа устойчивости комплексов. Ионные уравнения реакций.

Окислительно-восстановительные реакции в растворах. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций.

Стандартные потенциалы окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов. Электролиз растворов и расплавов. Законы электролиза Фарадея.

Часть II. ЭЛЕМЕНТЫ И ИХ СОЕДИНЕНИЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

Абитуриенты должны на основании Периодического закона давать сравнительную характеристику элементов в группах и периодах. Характеристика элементов включает: электронные конфигурации атома; возможные валентности и степени окисления элемента в соединениях; формы простых веществ и основные типы соединений, их физические и химические свойства, лабораторные и промышленные способы получения; распространенность элемента и его соединений в природе, практическое значение и области применения соединений. При описании химических свойств должны быть отражены реакции с участием неорганических и органических соединений (кислотно-основные и окислительно-восстановительные превращения), а также качественные реакции.

Водород. Изотопы водорода. Соединения водорода с металлами и неметаллами. Вода. Пероксид водорода.

Галогены. Галогеноводороды. Галогениды. Кислородсодержащие соединения хлора.

Кислород. Оксиды и пероксиды. Озон.

Сера. Сероводород, сульфиды, полисульфиды. Оксиды серы (IV) и (VI). Сернистая и серная кислоты и их соли. Эфиры серной кислоты. Тиосульфат натрия.

Азот. Аммиак, соли аммония, амиды металлов, нитриды. Оксиды азота. Азотистая и азотная кислоты и их соли. Эфиры азотной кислоты.

Фосфор. Фосфин, фосфиды. Оксиды фосфора (III) и (V). Галогениды фосфора. Орто-, мета- и дифосфорная (пирофосфорная) кислоты. Ортофосфаты. Эфиры фосфорной кислоты.

Углерод и его аллотропные формы. Изотопы углерода. Простейшие углеводороды: метан, этилен, ацетилен. Карбиды кальция, алюминия и железа. Оксиды углерода (II) и (IV). Карбонилы переходных металлов. Угольная кислота и ее соли.

Кремний. Силан. Силицид магния. Оксид кремния (IV). Кремниевые кислоты, силикаты.

Бор. Трифторид бора. Орто- и тетраборная кислоты. Тетраборат натрия.

Благородные газы. Примеры соединений криптона и ксенона.

Щелочные металлы. Оксиды, пероксиды, гидроксиды и соли щелочных металлов.

Щелочноземельные металлы, бериллий, магний: их оксиды, гидроксиды и соли. Представление о магнийорганических соединениях (реактив Гриньяра).

Алюминий. Оксид, гидроксид и соли алюминия. Комплексные соединения алюминия. Представление об алюмосиликатах.

Медь, серебро. Оксиды меди (I) и (II), оксид серебра (I). Гидроксид меди (II). Соли серебра и меди. Комплексные соединения серебра и меди.

Цинк, ртуть. Оксиды цинка и ртути. Гидроксид и соли цинка.

Хром. Оксиды хрома (II), (III) и (VI). Гидроксиды и соли хрома (II) и (III). Хроматы и дихроматы (VI). Комплексные соединения хрома (III).

Марганец. Оксиды марганца (II) и (IV). Гидроксид и соли марганца (II). Манганат и перманганат калия.

Железо, кобальт, никель. Оксиды железа (II), (II)-(III) и (III). Гидроксиды и соли железа (II) и (III). Ферраты (III) и (VI). Комплексные соединения железа. Соли и комплексные соединения кобальта (II) и никеля (II).

ОРГАНИЧЕСКАЯ ХИМИЯ

Характеристика каждого класса органических соединений включает: особенности электронного и пространственного строения соединений данного класса, закономерности изменения физических и химических свойств в гомологическом ряду, номенклатуру, виды изомерии, основные типы химических реакций и их механизмы. Характеристика конкретных соединений включает физические и химические свойства, лабораторные и промышленные способы получения, области применения. При описании химических свойств необходимо учитывать реакции с участием как радикала, так и функциональной группы.

Структурная теория как основа органической химии. Углеродный скелет. Функциональная группа. Гомологические ряды. Изомерия: структурная и пространственная. Представление об оптической изомерии. Взаимное влияние атомов в молекуле. Классификация органических реакций по механизму и заряду активных частиц.

Алканы и циклоалканы. Конформеры.

Алкены и циклоалкены. Сопряженные диены.

Алкины. Кислотные свойства алкинов.

Ароматические углеводороды (арены). Бензол и его гомологи. Стирол. Реакции ароматической системы и углеводородного радикала. Ориентирующее действие заместителей в бензольном кольце (ориентанты I и II рода). Понятие о конденсированных ароматических углеводородах.

Галогенопроизводные углеводородов: алкил-, арил- и винилгалогениды. Реакции замещения и отщепления.

Спирты одно- и многоатомные. Первичные, вторичные и третичные спирты. Фенолы. Простые эфиры.

Карбонильные соединения: альдегиды и кетоны. Предельные, непредельные и ароматические альдегиды. Понятие о кето-енольной таутомерии.

Карбоновые кислоты. Предельные, непредельные и ароматические кислоты. Моно- и дикарбоновые кислоты. Производные карбоновых кислот: соли, ангидриды, галогенангидриды, сложные эфиры, амиды. Жиры.

Нитросоединения: нитрометан, нитробензол.

Амины. Алифатические и ароматические амины. Первичные, вторичные и третичные амины. Основность аминов. Четвертичные аммониевые соли и основания.

Галогензамещенные кислоты. Оксикислоты: молочная, винная и салициловая кислоты. Аминокислоты: глицин, аланин, цистеин, серин, фенилаланин, тирозин, лизин, глутаминовая кислота. Пептиды. Представление о структуре белков.

Углеводы. Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза. Циклические формы моносахаридов. Понятие о пространственных изомерах углеводов. Дисахариды: целлобиоза, мальтоза, сахароза. Полисахариды: крахмал, целлюлоза.

Пиррол. Пиридин. Пиримидиновые и пуриновые основания, входящие в состав нуклеиновых кислот. Представление о структуре нуклеиновых кислот.

Реакции полимеризации и поликонденсации. Отдельные типы высокомолекулярных соединений: полиэтилен, полипропилен, полистирол, поливинилхлорид, политетрафторэтилен, каучуки, сополимеры, фенол-формальдегидные смолы, искусственные и синтетические волокна.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. *Кузьменко Н.Е., Еремин В.В., Попков В.А.* Начала химии. Современный курс для поступающих в вузы. – М.: Экзамен, 2005–2007.

Современное и универсальное отечественное пособие по химии для поступающих в вузы, выдержавшее более 10 изданий. Его содержание основано на учете требований программ вступительных экзаменов по химии ведущих российских вузов (химических, медицинских, биологических, биоинженерных и т.п.).

2. *Кузьменко Н.Е., Еремин В.В.* 2500 задач по химии с решениями для поступающих в вузы. – М.: Мир и образование, 2002-2004: Экзамен, 2005-2007.

В книге представлены школьные, экзаменационные, олимпиадные задачи. Ко всем заданиям даны ответы и указания, а также представлены эталонные решения типичных задач.

3. Химия: Справочные материалы / под ред. Ю.Д. Третьякова. – М.: Просвещение, 1984, 1988, 1993; Астрель, 2002.

Книга, подготовленная коллективом высококлассных специалистов, окажет неоценимую помощь при повторении изученного ранее материала, подготовке к выпускным экзаменам в школе и вступительным экзаменам в вуз.

4. *Еремина Е.А., Рыжова О.Н.* Справочник школьника по химии. 8-11 классы / под ред. Н.Е. Кузьменко, В.В. Еремина – М.: Мир и Образование, 2001-2004: Экзамен, 2006.

Книга содержит все уравнения реакций, предлагаемых на экзаменах по химии в школах и на вступительных экзаменах в вузах. Незаменима как справочное пособие для школьников и абитуриентов.

5. *Кузьменко Н.Е., Еремин В.В., Чуранов С.С.* Сборник конкурсных задач по химии. – М.: Экзамен, 2001-2006.

Книга рассказывает о письменных вступительных экзаменах в МГУ за период с 1990 по 2000 г. В ней представлены все экзаменационные варианты, которые предлагались абитуриентам МГУ за этот период. Для каждого варианта приведены подробные решения заданий или же ответы и указания к решению.

6. *Кузьменко Н.Е., Теренин В.И., Рыжова О.Н. и др.* Химия: формулы успеха на вступительных экзаменах / под ред. Н.Е. Кузьменко и В.И. Теренина. – М.: Издво Моск. ун-та, 2006.

Это издание включает все экзаменационные варианты, предлагавшиеся в 2003-2005 годах на вступительных экзаменах по химии на все факультеты МГУ им. М.В. Ломоносова. Для каждого варианта приведены подробные решения заданий или же ответы и указания к решению.

7. *Еремин В.В., Кузьменко Н.Е., Дроздов А.А., Лунин В.В., Теренин В.И.* Химия: Учебники для 8-11 классов общеобразовательных учреждений. — М.: Оникс 21 век, Мир и Образование, 2003-2006; Дрофа, 2007.

Это — новая серия современных школьных учебников по химии, написанная авторским коллективом МГУ. Главное внимание в них уделяется формированию у школьников элементарных химических навыков, «химического языка» и химического мышления, в первую очередь, на веществах, знакомых из повседневной жизни (кислород, воздух, вода). Стиль изложения материала позволяет вводить и обсуждать химические понятия и термины в живой и наглядной форме. Наглядно демонстрируются междисциплинарные связи химии с естественными и гуманитарными науками. Отличительными особенностями книг являются простота и наглядность изложения материала, высокий научный уровень, большое количество иллюстраций, экспериментов и занимательных опытов.

8. Фримант *М.* Химия в действии. В 2-х ч. – М.: Мир, 1991, 1998.

Одна из лучших книг для всех, кто увлекается химией. Она относится к тем книгам, которые читают «для души». Автор умеет показать читателю, что химия – интересная наука, с которой так или иначе связаны все стороны нашей жизни. Книга изобилует выразительными иллюстрациями. Очень удачно освещены экологические аспекты современной химии.

9. Лунин В.В., Ненайденко В.Г., Рыжова О.Н., Кузьменко Н.Е. Химия XXI века в задачах Международных Менделеевских олимпиад. – М.: Изд-во Моск. ун-та, 2006.

В книге представлены все задания – теоретические и экспериментальные – последних пяти Международных Менделеевских олимпиад школьников по химии. Читателю предоставляется возможность не только охватить в целом всю систему заданий Менделеевских олимпиад, но и получить информацию о направлениях развития современной химической науки и о том, как складываются судьбы людей, посвятивших ей свою жизнь.

Уникальный материал, представленный в этой книге, будет полезен всем, кто интересуется химией: школьникам, студентам, учителям школ и преподавателям вузов.

Учебное издание

ВСТУПИТЕЛЬНЫЕ ЭКЗАМЕНЫ И ОЛИМПИАДЫ ПО ХИМИИ В МОСКОВСКОМ УНИВЕРСИТЕТЕ: 2007

Под общей редакцией проф. Н.Е. Кузьменко и проф. В.И. Теренина

Подписано в печать 25.10.2007. Заказ № от .10.2007 г. Формат $60 \times 90/_{16}$. Уч.-изд. л. 7,0 Тираж 950 экз.

Ордена «Знак Почета» Издательство Московского университета 125009, Москва, ул. Б.Никитская, 5/7.

Отпечатано на ризографе в отделе оперативной печати и информации Химического факультета МГУ. 119992, Москва, Ленинские Горы, д.1, стр. 3