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1
Key Materials for Low-Temperature Fuel Cells:
An Introduction
Bradley P. Ladewig, Benjamin M. Asquith, and Jochen Meier-Haack

The promise of lower temperature fuel cells as versatile, efficient power sources
has been made many times, both in academia and in the corporate world. Their
potential as devices capable of converting chemical energy into electrical energy
at high efficiency has been known for many years; however, despite an enormous
worldwide research effort, they have not achieved mainstream commercial
success.

One of the key impediments that is universally recognized is that there remain a
series of key materials challenges that must be overcome before low-temperature
fuel cells can achieve their full potential. In this book, we present a snapshot of the
current state of the art, critically reviewed, as it relates to the materials challenges
facing low-temperature fuel cells. In terms of what actually constitutes a low-tem-
perature fuel cell, since there is no universal definition, we adopt here the conven-
tion of a fuel cell operating below 200 °C. In most cases, low-temperature fuel cells
operate well below 100 °C; however, given the advances that have been made with
high-performance polymer membranes (in particular, based on polybenzimidazole,
as highlighted in Chapter 5), there now exists the potential to operate some sys-
tems with a vapor-phase feed. Clearly, this takes advantage of the superior reaction
kinetics at elevated temperatures and allows for greater power density devices.

This book does not seek to be an all-encompassing encyclopedia that addresses
every materials aspect of low-temperature fuel cells. Readers seeking a compre-
hensive reference work should consult the excellent handbook edited by Wolf
Vielstich [1]. Rather, we have sought to highlight the key, contemporary chal-
lenges of interest to the fuel cell researcher (and those working in industry).
We have intentionally sought to focus on the emerging areas of interest, with a
particular focus on alkaline exchange (or hydroxide exchange) membrane fuel
cells. These fuel cells are a radical departure from the thousands of research
works published over the past decades that focused exclusively on proton
exchange or cation exchange membrane low-temperature fuel cells (most obvi-
ously because the earlier high-performance membranes, from the chloralkali
industry, were cation exchange membranes). There are critical materials chal-
lenges in advancing alkaline exchange membrane fuel cells, not least of which is
the development of a new suite of polymer membranes that selectively transport

1
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hydroxide ions. There are also more subtle catalyst selection issues, and these are
covered in quite some detail in this book.

Two other specific areas must be mentioned in this introduction: the emerging
fields of microbial fuel cells and microfluidic fuel cells. In some ways these two
new fields can be considered embodiments of low-temperature fuel cells operat-
ing at the extreme size scales – microbial fuel cells have their genesis in the
exploration of wastewater treatment in electrochemical and bioelectrochemical
systems. These proposed applications are by their nature enormous in size, with
reactor volumes measured in the tens of cubic meters (many orders of magni-
tude larger than the conventional low-temperature fuel cells).

In contrast, microfluidic fuel cells are at the opposite end of the size spectrum,
and have come into the realm of fuel cell research in the past decade as the
general field of microfluidics has exploded with interest. This has been driven
not only through the widespread availability of the tools for fabrication of micro-
fluidic devices but also by the possible application of microfluidic fuel cells in
functional devices such as sensors and health care products.

The following chapters address a broad spectrum of topics, and it is hoped that
the reader will recognize and appreciate the underlying theme of this book, which
is to highlight the key materials challenges facing the field of low-temperature fuel
cells, and expertly and concisely review the current state of the art.

Reference

1 Vielstich, W. (2009) Handbook of Fuel
Cells, 6 Volume Set, John Wiley & Sons,
Inc., Hoboken, NJ.
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2
Alkaline Anion Exchange Membrane Fuel Cells
Rhodri Jervis and Daniel J.L. Brett

2.1
Fuel Cells

Fuel cells represent a potentially integral technology in a greener electricity-
based energy economy. Converting chemical energy directly into electricity with
no moving parts and no particulate or greenhouse gas emissions at point of
operation, they can offer higher efficiencies than combustion and greater energy
storage and reduced “charge” times compared with batteries. While they retain
few of the disadvantages of existing electricity generation technologies, a major
barrier to commercialization and widespread use at present is cost. The key
working part of a fuel cell, the membrane electrode assembly (MEA), comprises
a catalyst, usually containing platinum, and an ionic polymer membrane, both of
which contribute significantly to the overall cost of a fuel cell. This chapter will
concentrate on the potential for alkaline anion exchange membrane (AAEM)
fuel cells to provide a route to reduced costs and help realize commercial ubiquity
of fuel cells in various energy sectors. We will first discuss the basic principles of
the more common acidic PEM fuel cells and the thermodynamics and kinetics of
the electrochemical reactions governing their operation, before explaining the
key differences in AAEM fuel cells and how they might provide an advantage
over the more established technology.

This basic idea of the fuel cell goes back to as far as 1839 when Swansea-
born physicist Sir William Gove realized that reverse electrolysis of water was
possible. However, development from this concept was slow and it was not until
the 1960s and the Apollo Space Programme that fuel cells became practicable, in
the form of aqueous alkaline electrolyte fuel cells. Aqueous electrolyte-based fuel
cells have many disadvantages for portability causing recent focus to shift toward
solid electrolytes, in particular toward polymer electrolyte membrane (PEM) fuel
cells. These employ an ionomer, which is a polymer containing an ionic func-
tional group in the monomer, as the electrolyte in order to allow hydrogen ion
transport through a nonaqueous medium. Recent improvements in membrane
technology, and in particular the performance of the industry standard Nafion
membranes, have made PEM fuel cells a major focus of research. The alkaline
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analog of the more common PEM fuel cell uses a hydroxide-conducting mem-
brane in an attempt to exploit the superior cathode kinetics of alkaline systems
and ultimately reduce the catalyst’s contribution to the cost of fuel cells.

2.2
PEM Fuel Cell Principles

The main elemental principle of a fuel cell is the direct electrochemical redox
reaction that produces the electrical current. In the hydrogen/oxygen fuel cell,
the redox reaction is composed of two electrochemical half equations – the
hydrogen oxidation reaction (HOR) at the anode:

H2 � 2H� � 2e� (2.1)

and the oxygen reduction reaction (ORR) at the cathode:

1
2

O2 � 2H� � 2e� �H2O (2.2)

These combine to give the overall redox reaction:

H2 � 1
2

O2 �H2O (2.3)

Hydrogen is fed into the anode and air/oxygen into the cathode through flow-
fields and diffuses through a gas diffusion layer (GDL) to the catalyst layer where
the gas, catalyst, and electrolyte meet in what is called a triple-phase boundary. It
is here where the HOR and ORR occur on the anode and the cathode, respec-
tively, separated by the polymer electrolyte membrane. The protons generated
by the HOR diffuse through the electrolyte to react at the cathode and the elec-
trons generated, impeded by the insulating polymer, travel through the external
circuit creating a current (Figure 2.1).

2.2.1

Equilibrium Kinetics

The HOR and ORR reactions occurring at the electrodes of fuel cells are linked
only through the conservation of charge; the electrons and protons produced at
the anode must be consumed at the cathode. Though the current is identical at
both electrodes, the activation polarization required to generate this current for
each reaction is not. As current is a rate of charge and electrons are produced
and consumed in electrochemical half reactions, the current is a direct measure
of the rate of an electrochemical reaction. If reaction of 1 mol of reactant yields n
mol of electrons, the current i is given by

i � nF
dN
dt

; (2.4)

where dN=dt is the rate of reaction in mol s�1. As these reactions occur at inter-
faces, the current is generally normalized to area such that j � i=A and the
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reaction rate per unit area is ν, where j is called the current density (this also
helps in comparison between different fuel cells of different geometric areas).
Rearranging Equation 2.4 for rate, we get

ν � j
nF

: (2.5)

Reaction rate is a product of the surface concentration and a reaction rate con-
stant, such that

ν1 � Crk1: (2.6)

From statistical mechanics, it can also be shown that the rate constant is a
function of the Gibbs free energy of the transition state because the reactants
must be in the transition state in order to have a probability of reacting. This
rate constant is given by

k1 � kBT
h

e� ΔG1=RT� �; (2.7)

where, kB is the Boltzmann constant, T is the temperature (in Kelvin), h is the
Planck’s constant, R is the molar gas constant, and ΔG1 is the activation
energy for the forward reaction given by the difference in free energy between
the reactants’ free energy and the transition-state free energy, as shown in
Figure 2.2.

However, ν1 is just the rate of the forward reaction of the electrochemical half
reaction. The rate of the reverse reaction, ν2, is given by substituting ΔG1 for
ΔG2, the difference in free energy between the products and the activation

Figure 2.1 Schematic of an acidic PEM fuel cell.
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energy. Then, the overall reaction rate ν is given by ν1 � ν2 and therefore the net
current is

j � nF�ν1 � ν2�: (2.8)

At equilibrium, the rate of the forward reaction and that of reverse reaction
are equal and j, the overall current density, is 0. However, j is composed of the
forward current density, j1 � nFν1, and the reverse current density, j2 � nFν1,
both of which at equilibrium are equal to what is known as the exchange current
density j0. From Figure 2.2b, at equilibrium both the forward and reverse
reactions have the same activation energy ΔG≠. Thus, the exchange current
density is given by

j0 � nFCrf e� ΔG≠=RT� �; (2.9)

where the pre-exponential term of Equation 2.7 has been compressed to f .
The forward and reverse activation energies ΔG≠ are the same in this example
by virtue of the transition state being symmetrical. This is not always the case
however and so a symmetry factor β is used for the general case. β is a measure
of the asymmetry of a transition state in that it measures the fraction of a
change in potential of the electrode that promotes the forward reaction. β takes
a value between 0 and 1 and the fraction of the potential that would promote the
reverse reaction is given by �1 � β�. If, as shown in Figure 2.2, the transition state
is symmetrical, then β is 0.5 and the forward and reverse reactions are promoted
equally by an increase in electrode potential. This is the case with most catalysts
as they promote the oxidation and reduction directions of a half reaction equally
by lowering the activation energy (due to a lowering of the transition state). So it
is a reasonably safe assumption that β is 0.5, except that this applies to only a
single-electron transfer reaction. If there are multiple and sequential electron
transfer reactions in a mechanism, β may still be 0.5 if one step is significantly
slower and thus the rate-determining step; however, this is not always the case.

Figure 2.2 Activation energies for reaction. (a) The products have a lower free energy than
the reactants and the forward reaction is favored. (b) On the buildup of the charge double
layer the potential is equalized and results in electrochemical equilibrium.
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Because of this, β is often replaced by an experimental parameter called the
charge transfer coefficient α, which does not necessarily sum to 1 for the forward
and reverse coefficients, unlike for the symmetry factor β. For this reason, the
experimental value αn is often quoted instead of α2.

Since, from thermodynamics, E � �ΔG=nF and including the charge transfer
coefficient, our expression for the exchange current density becomes

j0 � nFCr f 1e �α1nFE0�=RT� � � nFCp f 2e ��α2nFE0�=RT� �; (2.10)

where α1 and α2 are the charge transfer coefficients for the forward and reverse
reactions, respectively, and E0 is the reversible equilibrium potential for the
given half reaction. By rearranging Equation 2.10 and taking the natural loga-
rithm, it is shown that

E0 � RT
nF

ln
f 1

f 2

� �
� RT
nF

ln
Cr

Cp

� �
; (2.11)

which is the Nernst equation. This is expected as any kinetic theory should
reduce to a thermodynamic one when at equilibrium.

2.2.2

Butler–Volmer Kinetics

At dynamic equilibrium there is no net current flowing; hence, in order to gen-
erate a useful current (or charge transfer rate), the forward, electron-producing
reaction must once again be more favored than the reverse reaction. To do this,
the situation must be forced from the equalized potential created by the charge
double layer to a state where the potential of the products is lower than that of
the reactants (as shown in Figure 2.2). This is achieved by sacrificing some of the
electrode potential to drive a potential difference between the reactants and
products, and hence a current. This is the source of the activation overpotential
(ηact), the voltage sacrificed to overcome the equalizing effect of the charge dou-
ble layer and induce net charge transfer from a state of dynamic equilibrium. If
we consider applying an overpotential of η to an electrochemical half reaction
such that the resulting potential is

E � η � E0; (2.12)

the overall net current density is

j � j1 � j2 � nFCr f 1e �α1nF�η�E0��=RT� � � nFCp f 2e ��α2nF�η�E0��=RT� �: (2.13)

From Equation 2.10 we can see that our two definitions of exchange current
density occur in Equation 2.13, meaning it simplifies to yield

j � j0 e �α1nFη�=RT� � � e ��α2nFη�=RT� �h i
: (2.14)

This is the Butler–Volmer (BV) equation and is widely used to model fuel cell
reactions. It should be noted that all of the above derivations refer to just one
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half reaction at just one of the electrodes and the BV equation should be applied
to each electrode individually. The HOR at the anode and the ORR at the cath-
ode will have different exchange current densities, charge transfer coefficients,
and activation overpotentials, but are linked through the conservation of charge,
meaning that the total cell current is the same as the cathode current as well
as the anode current: icell � ic � ia. Because of this, we can equate the two BV
equations at each electrode:

j0;a e �α;a1nFηa�=RT� � � e ��α2;anFηa�=RT� �h i
� j0;c e �α1;cnFηc�=RT� � � e ��α2;cnFηc�=RT� �h i

:

(2.15)

In this way the overpotential of both the cathode and the anode will adjust to
drive the desired current density from the fuel cell, with the negative polarization
of the cathode and the positive polarization of the anode sacrificing more and
more of the reversible potential of the cell until no more is left and the limiting
current is reached.

2.2.3

Exchange Current Density

The exchange current density is an extremely important parameter that has a
dominating influence on the kinetics of electrochemical reactions. It reflects the
rate of charge transfer, and thus a high j0 is desired for facile electrode kinetics
and therefore minimized activation potential losses. The definition of exchange
current density given in Equation 2.10 is a rather simplistic one, given that it
does not account for changes in the reactant and product concentrations during
reaction and does not explicitly show the effect of temperature on j0. The surface
area and loading of the catalyst can also be accounted for to give a definition of
j0 as follows:

j0 � j00a
Cr

C0
r

� �
e ��E0=RT � 1��T=T0�� �� �; (2.16)

where j00 is a reference exchange current density measured at a reference temper-
ature T0 and a reference concentration C0

r . The parameter a is a roughness
factor given as the ratio between the actual electrochemical surface area of the
catalyst and the geometric surface area of the electrode. From Equation 2.16 we
can see that the exchange current density is an exponentially increasing function
of temperature, and though the BV Equation 2.14 suggests ostensibly that there
should be higher activation losses with higher temperature, in fact the effect of
increasing temperature is to greatly increase j0 and so significantly decrease
kinetic losses, in a highly nonlinear way. Thus, fuel cells operating at higher tem-
peratures will tend to have greatly reduced activation losses.

Though the exchange current density is not an intrinsic property of the cata-
lyst, it is strongly related to the catalyst type. Increasing the j0 of a catalyst/
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reaction is highly desirable for good fuel cell performance and can be achieved in
the following ways:

� Increase the reactant concentration� Decrease the activation energy E0� Increase the temperature� Increase the roughness factor a

Increasing the reactant concentration has a minor effect on the thermo-
dynamics of the reaction (due to the logarithmic form of the Nernst equation),
but it can have a significant benefit on the kinetics of a reaction (linear). For this
reason, fuel cells are often operated on pure oxygen as the partial pressure of
oxygen in air is only 0.2, and so the exchange current density is reduced when
operating with air.

Decreasing the activation energy represents the catalyst’s influence on j0. The
catalyst can do this by offering a favorable surface for reaction and stabilizing the
transition state, giving a lower activation barrier. The strength of bonds between
the catalyst and the adsorbed species is an important consideration when look-
ing for a suitable catalyst. The bond strength needs to be “just right,” in that it is
strong enough to hold the reactant species to the catalyst in the first place, giving
greater chance of reaction, but not so strong that it is difficult to break and form
products, which would mean lots of immovable adsorbed reactants and a reduc-
tion in the number of available sites for reaction. This is often shown by a so-
called volcano plot, with platinum group metals generally having the optimum
intermediate strength bonds (Figure 2.3).

In general, the activation energy is also affected by the complexity of the
reaction, with more complex mechanisms incurring much greater activation
losses than for more simplistic ones. For this reason, the ORR is much slower
than the very facile HOR and usually contributes the majority of the activation
losses in an acidic PEM fuel cell (Figure 2.4).

The HOR in acid solution is considered to proceed through either the Tafel–
Volmer or Heyrovsky–Volmer mechanisms, depending on the nature of the
adsorption step. If it is a purely chemical process, the mechanism is Tafel–
Volmer and if it is a combined chemical and electrochemical process, it is
Heyrovsky–Volmer [3].

H2 � Mcat � 2McatHchem �Tafel� (2.17)

McatHchem �Mcat � H� � e� �Volmer� (2.18)

H2 � Mcat �McatHchem � H� � e� �Heyrovsky� (2.19)

As already discussed, increasing the temperature will increase the exchange
current density. The physical reason for this is that a higher proportion of the
reactant molecules will have sufficient energy to react to give products.
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Increasing the roughness factor a is the equivalent of increasing the electro-
chemical surface area of the catalyst, that is, increasing the number of surface
sites available for reaction. This will obviously increase the exchange current
density as more reactions can take place per second. Roughness factors for
carbon-supported platinum electrodes (a widely used fuel cell catalyst) vary
between 600 and 2000 [4].

2.2.4

The Fuel Cell Polarization Curve

The activation overpotential described in the Butler–Volmer equation can be
thought of as a reduction in the voltage of a fuel cell from its theoretical thermo-
dynamic voltage that must be incurred in order to operate at a useful current

Figure 2.3 Volcano plot of activity of various transition metals for the ORR as a function of
binding energy of the O atom to the catalyst. From Ref. [1].

k1 (+4e–)

k2 (+2e–) k3 (+2e–)

k4

k-2 (-2e–)

diff
O6 H2O2(ads)

H2O

H2O2

k6 k5

O2(ads)

Figure 2.4 The possible reaction mechanistic pathways for oxygen reduction. The direct four-
electron pathway (k1) is desired as it is more efficient and does not generate the potentially
damaging peroxide intermediate. Reproduced from Ref. [2].
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density. It is not the only loss of voltage that occurs during operation of a fuel
cell; there are also losses due to ohmic resistances, mass transport limitations,
and open-circuit losses. The origins of these overpotentials will be described in
more detail elsewhere in the book, but with all the various overpotentials and
voltage losses accounted for, a description of how a fuel cell’s voltage changes
with current density can be formulated, resulting in a fuel cell polarization (or
“polar”) curve. The total cell voltage is given by

Ecell � Ethermo � ηact � ηohm � ηconc � ηOCV; (2.20)

where Ethermo is the thermodynamically predicted potential at the given tempera-
ture and pressure and ηact, ηohm, ηconc, and ηOCV refer to the losses due to activa-
tion, ohmic resistance, mass transport, and internal currents, respectively, as
described in the previous sections. A typical polar curve is shown in Figure 2.5.
It should be noted that although the curve can be roughly segregated into
domains where each of the losses is most influential, losses that are a function of
operating current (ηact, ηohm, and ηconc) have an influence across the full range of
the polar curve.

2.3
Alkaline Fuel Cells

Most of the discussion so far has pertained to acidic PEM fuel cells as they have
been the main focus of low-temperature fuel cell research for the last 20 years

Figure 2.5 An example polar curve, modeled
from the preceding treatment of fuel cell
behavior, showing regions where the decrease
in voltage from the value given by the

enthalpy of formation of H2 have most influ-
ence; entropy, internal currents, kinetic losses,
resistive losses, and mass transport losses,
respectively.
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or so. They have many advantages warranting this focus, but also some disad-
vantages, the major one being the sluggish kinetics of the ORR in acid media.
As the kinetics of the ORR are more facile in alkaline media [5–10], the alkaline
fuel cell (AFC) is seen as a potential way to utilize cheaper, nonprecious metal
cathode catalysts such as Ag [11,12], Au (both unstable in highly acidic media)
[13], or Ni [14,15], or to simply allow lower cathode loading of Pt.

2.3.1

The ORR Mechanism

The key step in the reduction of oxygen at a catalytic surface is the breaking of
the O-O bond that requires four coupled proton and electron transfers, open-
ing up the possibility of many side reactions and products (see Figure 2.4) [6].
The complexity of the ORR and its numerous potential side products means
that it is still relatively poorly understood, although the consensus is that it pro-
ceeds either via a direct four-electron reduction pathway or via a peroxide inter-
mediate in a 2+ 2 “serial” four-electron pathway [16–18].

The direct four-electron pathway (Equation 2.21) requires breaking of the O-O
bond before the first electron transfer can occur (considering the rate-determining
step [12]), and as the dislocation energy of O2 is large, this is only energetically
favorable with a strong Cat–O bond to repay the energy required to break the
initial bond (and incurring a significant overpotential). The energetically favored
pathway is therefore the so-called serial four-electron pathway (Equations 2.22
and 2.23): a two-electron reduction to peroxide and then a further two-electron
reduction of the peroxide to water (as the dislocation energies of the O2

� and
O2

2� anions are lower than that of O2) [11].
Studies by Markovic et al. suggested that the ORR on Pt surfaces in acid pro-

ceeds via the series pathway, but the presence of adsorbed anions and underpo-
tentially deposited hydrogen can prevent the second two-electron reduction of
peroxide from occurring properly, meaning a certain percentage of the reaction
stops at the peroxide intermediate [19–21]. The strongly adsorbed anion reduces
the number of adjacent Pt sites available for O2 adsorption and O-O bond break-
ing [18] and manifests itself in the analysis as n being less than 4 (i.e., some per-
centage of reactant does not proceed fully to four-electron reduction into water).
These multiple steps and the possibility of desorption of peroxide intermediates
mean that the ORR has poor kinetics, with only Pt offering reasonable catalysis.

It is often stated in the literature that the ORR kinetics are more facile in alka-
line media [10,22–25], but it is not fully explained why this might be the case and
is often attributed to anion adsorption effects stemming from electrolyte choice
and experiments in aqueous electrolytes [11,26,27]. As the polymer electrolytes
employed in fuel cells do not have mobile anions, these sorts of fundamental
ORR studies may not be so applicable to a working fuel cell environment [27],
although Srinivasan et al. suggest that the kinetics in AFCs are still faster than in
acidic PEM fuel cells [28]. The morphology and type of Pt catalyst (single crystal,
polycrystalline, or Pt/C) can also have a large effect on the kinetics and reported
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exchange current densities for the ORR [27,29–31], with Pt bulk surfaces show-
ing higher activity for ORR than Pt nanoparticles [32,33]. Nevertheless, although
some studies show a similar activity for Pt in acid and alkaline [34] and suggest
that Pt or Pt/C are still the best catalysts for ORR in alkaline [35], there is poten-
tial for utilization of cheaper cathode catalysts in alkaline fuel cells [5–9].

Blizanac et al. [11,12] studied the pH effect of ORR on silver single crystals
with a rotating ring disk electrode (RRDE) allowing the detection of intermediate
species and found that in alkaline electrolyte, the ORR proceeds almost entirely
through a four-electron pathway with very little peroxide intermediate detected.
In contrast, acidic electrolyte required high overpotentials to prevent the two-
electron pathway (producing peroxide) from dominating, and the onset potential
for the ORR was also higher than in alkaline. ORR on gold is also known to be
significantly better in alkaline solution than acid, with the Au100 surface showing
selectivity for the four-electron pathway [36]. In alkaline, the direct pathway is
given by

O2 � 2H2O � 4e� ! 4OH� (2.21)

and the serial pathway by

O2 � H2O � 2e� ! HO2
� � OH� (2.22)

followed by

HO2
� � H2O � 2e� ! 3OH� (2.23)

Carbon-supported catalysts (e.g., those employed in fuel cell electrodes) can
show potentially very different behavior for the ORR than that of the bulk metal.
Yang et al. [37] showed that Pd/C catalysts in alkaline had high activity for ORR,
and that the carbon support itself is active for the two-electron reduction of
O2 to peroxide (which can then migrate to the Pd particles for subsequent two-
electron reduction to water). It is shown that all carbon materials have some
ORR activity in alkaline solution (but none in acid), normally for the two-
electron reduction to peroxide, although some oxidized carbon surfaces can
complete the serial reduction to water at higher overpotentials [24,38–40].

Thus, the alkaline fuel cell is seen as a way to utilizing much cheaper cathode
catalysts and thereby reducing the cost of fuel cells for commercialization.

2.3.2

The HOR in Alkaline

The kinetics of the hydrogen oxidation reaction in acidic PEM fuel cells above
room temperature are often so fast that they contribute a negligible voltage to
the overall activation overpotential, which is therefore often assumed to be
wholly attributable to the ORR [41]. This allows catalyst loadings on the anode
to be as low as 0.05 mgPt cm�2 without affecting overall fuel cell performance
significantly [42] and means that catalyst development is mainly focused on the
cathode. However, in alkaline media, the HOR on polycrystalline Pt has been
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suggested to have an exchange current density two orders of magnitude lower
than that in acid [43], and so the activation polarization at the anode in alkaline
fuel cells cannot be negated so easily [28]. In fact, in order to take advantage of
the ability to use cheaper cathode catalysts in AFCs, anode HOR catalysis is a
vitally important and oft-neglected area of required improvement [34,44].

The mechanism of HOR is thought to follow a similar Tafel–Volmer or
Heyrovsky–Volmer mechanism, as discussed in Section 1.2.3, except with OH�-
mediated reactions:

H2 � Mcat � 2McatHchem �Tafel� (2.24)

McatHchem � OH� �Mcat � H2O � e� �Volmer� (2.25)

H2 �Mcat � OH� �McatHchem � H2O � e� �Heyrovsky� (2.26)

Single-crystal Pt studies of HOR in alkaline have suggested that the Tafel or
Heyrovsky steps are rate determining [45,46]. It is said that there are two states
of adsorbed H atoms on electrode surfaces: a strongly bound underpotentially
deposited hydrogen HUPD, and the weakly adsorbed reactive intermediate, over-
potentially adsorbed hydrogen HOPD [47]. The reason for the slower HOR in
alkaline has been attributed to the adsorption of OH species that serves to block
H2 adsorption sites and hinder reaction [18,45] and is even suggested to alter the
energetics of the HOPD layer [46].

Sheng et al. [34] recently compared the rotating disk electrode (RDE) studies
of the HOR in acid and alkaline and those for the carbon-supported Pt (Pt/C) for
the first time. RDE studies are used to separate the current into its kinetic- and
diffusion-based constituents, as shown by the Levich–Koutecky equation:

1
i
� 1
ik
� 1
id

� 1
ik
� 1
Bc0ω1=2

(2.27)

where B is a constant given by 0:62nFD2=3ν�1=6, in which D is the diffusion
coefficient and ν is the kinematic viscosity of the electrolyte, c0 is the solubility
of the reactant, and ω is the rotation rate of the disk electrode in rad�1. In this
way, varying the rotation rate of the electrode and plotting the inverse of the
current versus ω�1=2 can give an intercept of the inverse of the kinetically con-
trolled current and, therefore, deconvolute the diffusion-controlled and kineti-
cally controlled currents from the overall current, giving valuable information
about the kinetics of reaction. Sheng et al. [34] showed that for the HOR in acid,
RDE experiments follow the diffusion current very closely (meaning essentially
infinitely fast kinetics) even with high rotation rates (giving high-diffusion limit-
ing currents), meaning that the HOR in acid is too fast to study properly with
RDE and can lead to underestimation of the exchange current densities in litera-
ture [3]. On the other hand, the HOR in alkaline deviated significantly from the
diffusion-only behavior, meaning that the kinetic currents can be elucidated
properly in RDE experiments. These slower kinetics in alkaline were predicted
to contribute significant anode overpotentials of ∼130 mV if the ultralow load-
ing of Pt used on PEM anodes [42] is employed in AFCs, underlining the need
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for anode catalyst development in order to take advantage of potentially cheaper
cathode catalysts in AFCs.

The other studies of nonbulk metal HOR in alkaline come from Cabot et al.
[25,44] who used a Pt-containing gas diffusion electrode (GDE) to closely repre-
sent the electrodes of a fuel cell in their RDE experiments. They concluded that
at low overpotentials (near the OCV), the Tafel reaction is the rate-determining
step in a Tafel–Volmer mechanism, with the diffusion of H2 becoming rate
determining at higher overpotentials. These studies also showed that the
exchange current density for HOR is lower in alkaline media for GDE.

In conclusion, the kinetics of the ORR in alkaline give the advantage of
cheaper cathode catalysts, but the significant overpotential for HOR requires
anode catalyst development in order to fully utilize the potential of the alkaline
fuel cell.

2.3.3

The Aqueous Electrolyte AFC

The superior ORR kinetics of the AFC meant that in the early days of fuel cell
development, it was the dominant technology, with the pioneering work of
Bacon [48] and the use of AFCs in the Apollo space missions. The AFC employs
an aqueous KOH electrolyte, usually around a 30 wt% solution, often contained
in a matrix (Figure 2.6). As with other H2/O2 fuel cells, the HOR occurs at the

Figure 2.6 Schematic of an aqueous electrolyte AFC. Reproduced from Ref. [10].
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anode and the ORR at the cathode, although the half reactions are slightly differ-
ent in alkaline media as they are mediated by the OH� anion and not protons:

H2 � 2OH� � 2H2O � 2e� �HOR� (2.28)

1
2

O2 � H2O � 2e� � 2OH� �ORR� (2.29)

Giving the same overall redox reaction,

H2 � 1
2

O2 �H2O (2.30)

Note that 2 mol of water are generated at the anode and one consumed at the
cathode, as opposed to 1 mol of water being produced at the cathode in acid
systems. This can cause potential flooding and water management issues at the
anode. The aqueous, highly caustic, electrolyte presents obvious hazards and is
also susceptible to the following carbonation reaction in the presence of CO2:

CO2 � 2OH� ! CO3� �2� � H2O (2.31)

The carbonate anion can precipitate out of solution in combination with a
metal cation and cause blockages in the electrodes and reduction in conductivity
of the electrolyte, severely hampering performance, and so only pure, CO2-free
oxygen and hydrogen could be used in these systems. Due to these disadvantages
and the improvements in proton-conducting membrane technology, the AFC
was overtaken by the PEM fuel cell as the main focus of research. Though there
have been recent improvements in AFC technology [49], this chapter concerns
the recent developments in solid polymer electrolyte alkaline technology, and so
further details on AFC progress can be found in Refs [10,23].

2.3.4

The AAEM Fuel Cell

Recent developments in AAEMs have opened up the possibility of an alkaline
analog of the acidic solid polymer electrolyte fuel cell. This could utilize the ben-
efits of the alkaline cathode kinetics and at the same time eradicate the disadvan-
tages of using an aqueous electrolyte. As the AAEM is also a polymer electrolyte
membrane (sometimes abbreviated as PEM), some clarity in abbreviations is
required. In this chapter, PEM refers only to the proton exchange membrane
fuel cells (acidic), AAEM refers to the anion exchange membrane H2/O2 fuel
cells, and AFC exclusively refers to the aqueous electrolyte alkaline H2/O2 fuel
cells. Anion exchange membranes are also employed in alkaline direct alcohol
fuel cells, discussion of which will refer to them as ADMFC/ADEFC (methanol/
ethanol).

2.3.4.1 AAEM Principles
The AAEM fuel cell is based on the same fundamental principles of the PEM
fuel cell: direct electrochemical conversion of H2 to electricity using a solid

16 2 Alkaline Anion Exchange Membrane Fuel Cells



electrolyte, with the key differences being the fundamental half equations (Equa-
tions 2.28 and 2.29) and the hydroxide ion-conducting membrane. The sche-
matic of an AAEM fuel cell is shown in Figure 2.7.

The peripheral components of the AAEM fuel cell can be assumed to be the
same as in PEM fuel cells, performing the same functions. Water management
may be treated differently in AAEM as water is produced on the anode and con-
sumed at the cathode, meaning there is the potential for flooding at the anode
and insufficient humidification of the cathode. This is thought to offer the
potential for more simple humidification, with the anode “self-humidifying,” it
might be the case that only the cathode requires humidification (although an
interesting recent study showed retained performance when using a dry cathode
stream and humidifying the anode stream only, allowing diffusion of water
through the membrane to be the sole source of cathode humidification [50]).

The other major difference from the PEM system is that the membrane con-
ducts hydroxide ions. As diffusion coefficients are roughly four times larger for
H+ than OH�, the ionic resistivity of AAEMs is often significantly higher than
that of Nafion and may require doping of the membrane with KOH solution to
increase conductivity [7].

2.3.4.2 Alkaline Membranes
The use of anion exchange membrane in fuel cells is a relatively nascent technol-
ogy and as such has no Nafion-like industry leader that is ubiquitous in the field
[51]. A recent review of alkaline membranes by Merle [52] highlights the vast
number and variety of alkaline membranes in the literature, and the compara-
tively few commercially available membranes. As AAEMs are solid, they contain

Figure 2.7 The outline of the AAEM alkaline fuel cell (cf. Figure 2.1).
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no mobile cations and so even though carbonates are still formed from the
reaction of CO2 with OH�, there should be little precipitation of solid carbon-
ates in the membrane. The prospect of reduced carbonate issues and lack of
concentrated aqueous electrolyte in AAEMs has driven research into membrane
development and solid alkaline fuel cell technology in recent years (Figure 2.8).

Just as Nafion contains negatively charged sulfonic acid groups to conduct
positively charged protons, AAEMs must contain positively charged groups to
conduct the negative hydroxide ion. As already mentioned, the conductivity of
AAEMs is lower than that of PEMs [53]. One way of increasing the conductivity
is to include more cationic groups in the polymer, but this often has the effect
of reducing the mechanical strength and chemical stability of the membrane.
The most common functional group in AAEMs is the quaternary ammonium
group, R4N+ [54], which can undergo the following E2 elimination reaction
(Hofmann elimination) in the presence of hydroxide (Figure 2.9).

Most work at this point has suggested that this Hofmann elimination is slow
below 60 °C, but much faster at higher temperatures, resulting in significant
degradation to most AAEMs above 60 °C [55]. This is an obvious limitation for

Figure 2.8 The recent increase in alkaline fuel cell publications. Reproduced from Ref. [52].

Figure 2.9 The Hofmann elimination of quaternary ammonium groups.

18 2 Alkaline Anion Exchange Membrane Fuel Cells



current alkaline membranes as the kinetic benefit of operating at higher temper-
atures (PEM fuel cells are mostly operated at 80 °C) is not obtainable. The weak
basicity of R4N+ groups is also thought to contribute to the lower mobility of
hydroxide in AAEMs compared with protons in PEMs. Also, although no solid
carbonate precipitates, the carbonate anion is still formed, which serves to
reduce the concentration of hydroxide in the membrane and may be a contribu-
tory factor to the reduced conductivity [52,56].

There are many examples of anion exchange membranes in the literature, and
of many different types, as summarized in Refs [52,57], but the most promising
membranes for fuel cell applications are formed by radiation grafting of R4N+

groups onto polymer backbones [58–66] or chemical modification of existing
polymers [51,67–70]. A study by Varcoe in 2007 represented the first AAEM
with conductivity over the desired mark of 10 mS cm�1 required for viable solid
alkaline fuel cells, although the membrane required high levels of humidification
to maintain good conductivity [71]. Studies previous to this often had to sub-
merge membranes in KOH solution in order to attain sufficient conductivity
[7,72]. The highest conductivity membrane was reported in 2011 by Tanaka et
al. for use in hydrazine fuel cells, with a maximum conductivity of 114 mS cm�1

at 80 °C [73]. A good AAEM should have the following desirable properties:

� High chemical, mechanical, and thermal stability under operating conditions� High conductivity of OH� ions, >10 mS cm�1

� Low electrical conductivity� Low gas permeability� Low thickness� Good performance under various humidification levels

The electrodes in PEM fuel cells contain a certain amount of Nafion polymer
solution to act as a binder in the ink and also to introduce some H+ conductive
substance to the triple-phase boundary [74]. For AAEM fuel cells, there is a need
for an analogous ionomer solution for use in the catalyst layer [54] and so it is an
important consideration for development of good electrodes for the alkaline fuel
cell [64].

In summary, the improvement of AAEMs is an ongoing area of research and
development. There is no one membrane of choice currently and the conductiv-
ity and stability of some membranes are still an issue. However, there are signs
that good AAEM performance is close and so catalyst development for the
AAEM fuel cell is required to match performance and cost of the current PEM
fuel cell technology.

2.3.4.3 AAEM Fuel Cell Examples
As a new and underdeveloped technology, there is a shortage of examples of
AAEM fuel cells in the literature. Some of the pioneering work in alkaline mem-
branes and AAEM fuel cells come from the University of Surrey and the work of
Varcoe and Slade [8,13,51,58,59,61,62,64–66,71,75–78]. They mainly use

2.3 Alkaline Fuel Cells 19



radiation-grafted quaternary ammonium membranes. Peak power densities of
around 55 mW cm�2 were obtained using platinum cathodes and anodes and
pure O2 as an oxidant (corresponding to roughly 90 mA cm�2 at 0.6 V) [66],
with worse performance when employing Au or Ag cathode catalysts
(Figure 2.10) [8]. Operating a H2/Air fuel cell with a carbonate-tolerant mem-
brane yielded lower power densities of ∼38 mW cm�2, but showed better per-
formance when the membrane was in carbonate form than when it was in
hydroxide form, perhaps due to fact that the ORR proceeds more quickly in
alkaline carbonate than in aqueous KOH solution [75]. A similar trend was
observed for Zhou et al. in 2009, although with very low power densities of only
4 mW cm�2 [79].

Recent improvement in their membrane technology produced peak power densities
of 230 mW cm�2 (Figure 2.11) with Pt cathodes and pure O2 for the thinnest of the
membranes (17μm fully hydrated) [13]. It is thought that the improved performance
on decreasing membrane thickness is due to the increased water crossover from the
anode to the cathode, where it is consumed (Equation 2.29). Au and Ag cathodes
were again tested in this study, giving reduced performance compared with Pt.

They also developed a novel reference electrode for use in an AAEM fuel cell
that allowed decoupling of the cathode and anode polarizations from the overall
cell polarization. It was shown that the anode polarization was significantly
higher than the cathode polarization, contrary to the situation in PEM fuel cells
(Figure 2.12). In addition to the already discussed slower HOR kinetics in alka-
line, it is thought that flooding in the anode of AAEM fuel cells can cause high
mass transport polarization, even at low current densities (note that the thicker

Figure 2.10 Fuel cell polarization curves (filled symbols) and power densities (empty symbols)
of Pt (circles), Ag (squares), and Au (triangles) cathodes using pure oxygen. Reproduced from
Ref. [8].
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80 μm membrane was used in this study). They also demonstrated that as water
is a reactant in the ORR (unlike in PEM), the cathode electrode design is impor-
tant for good performance. Using PTFE-free cathodes, they achieved a power
density of 125 mW cm�2 and showed a small catalytic effect from carbon only in
the alkaline cell [78]. This highlights the need for greater attention to water
management and catalyst layers in AAEM FCs [76–78].

Figure 2.11 Fuel cell polarization curves
(empty symbols) and power densities (filled
symbols) of Pt cathodes in pure oxygen show-
ing the effect of membrane thickness on

performance. The performance improves in
the order 85 μm (diamonds), 46 μm (squares),
and 17μm (circles). Reproduced from Ref. [13].

Figure 2.12 The overall polarization curve (Vcell) and its cathode and anode constituents,
obtained using a novel Pd-coated Pt wire as a reference electrode. The anode polarization is
significantly greater than that of the cathode. Reproduced from Ref. [76].
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Some of the earliest work on AAEM fuel cells was conducted by Agel et al. in
2001 [7]. They used a KOH-doped membrane, carbon-supported Pt on nickel
foam electrodes, and H2/O2 at atmospheric pressure and ambient temperature
to obtain a current density of ∼25 mA cm�2 at 0.6 V. This study demonstrated
the need for good ionic contact between the electrodes and the membrane, as
the performance increased to just under 60 mA cm�2 at 0.6 V when an interfacial
KOH gel was applied between them.

Lu et al. demonstrated the first fully nonplatinum AAEM cell in 2008 by using
a chromium-decorated nickel cathode and a sliver anode [80]. Their quaternary
ammonium polysulfone membrane was dissolved in solvent allowing control of
the thickness of the cast film and impregnation into the electrode layers. The
peak performance of 50 mW cm�2 was achieved using humidified H2/O2 at
60 °C with a backpressure of 1 atm.

Park et al. showed that a high loading of sliver (2.0 mg cm�2) could produce a
similar peak power density of 30 mW cm�2 as a Pt cathode in their aminated
polysulfone membrane fuel cells, using humidified H2/air at 60 °C (Figure 2.13)
[22]. They also observed a high OCV of ∼1.05 V, which, given the discussion in
section, might indicate higher exchange current densities or lower fuel crossover
reducing the voltage loss from OCV (Varcoe also observed a similar effect [8]).

In 2009 Gu et al. used a quaternary phosphonium-containing ionomer solu-
tion in conjunction with a commercially available AAEM to again demonstrate
the importance of good ionic conductivity between the electrode and membrane
layers [54]. A marked difference in performance was seen between MEAs with

Figure 2.13 Polar curves and power densities of AAEM fuel cells with Pt anodes (0.5mg cm�2)
and silver cathodes at 0.5mg cm�2 (green), 1mg cm�2 (blue), and 2mgcm�2 (red) and with a
Pt cathode (0.5mg cm�2) (pink). Reproduced from Ref. [22].

22 2 Alkaline Anion Exchange Membrane Fuel Cells



and without the ionomer solution, with a peak power density of nearly 200 mA
cm�2 obtained at 80 °C with backpressurized H2/O2 gases. Mamlouk et al.
showed a similar effect on their in-house membrane and concluded that the
optimal ionomer content in the catalyst layer depended on several factors
such as thickness of electrode and O2 partial pressure. They also suggested that
due to flooding problems, the anode layer should be thicker than the cathode
layer [81].

A year later in 2010, the best performance from an AAEM fuel cell was dem-
onstrated by Piana et al. [82]. They used a commercially available membrane in
conjunction with a novel in-house ionomer solution as a catalyst binder and
H2/air (CO2-free) at 50 °C. A peak power density of 400 mW cm�2 was obtained
when using Pt on the anode and cathode, and 200 mW cm�2 when using a non-
disclosed transition metal on carbon catalyst as the cathode. They also demon-
strated the very interesting effect of CO2 on the system; at low current densities,
CO2 causes the expected drastic reduction in performance due to reaction with
OH� and subsequent reduction in conductivity. However, at higher current den-
sities, more OH� ions are produced by the electrochemical half reactions that
help to overcome this issue by a so called self-purging mechanism (Figure 2.14).
There is a clear change in the polar curve representing an increase in membrane
conductivity at higher current densities (although by this point a large amount of
operating voltage has been lost). This has implications for the conditioning of
AAEM fuel cells, with Varcoe suggesting that the cells should be quickly brought
to high current densities and then polar curves taken by reducing the load back
to OCV (this method produced better performance than increasing the current
load from OCV) [78].

Figure 2.14 Polar and power density curves
showing the effect of CO2 on the performance
of the membranes. The performance in CO2-
free air (gray) is good, but the carbonate effect
has a drastic effect on performance in

atmospheric air (black). On reaching higher
current densities, this effect is reduced, as
shown by the change in gradient of the black
polar curve to match that of the CO2-free air
polar curve. Reproduced from Ref. [82].
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The most recent work comes from Cao et al. in 2012 [51]. They developed a
poly(methyl vinyl ether-alt-malic anhydride) (PMVMA) membrane by chemical
grafting of ammonium groups to the polymer. The membrane was stable up to
150° and showed increasing ion conductivity from room temperature to 60 °C.
Their peak power density of 155 mW cm�2 was obtained at 35 °C and on H2/O2

and demonstrated a vast improvement over lower temperatures (and hence
higher ohmic resistances) (Figure 2.15).

Some of the most promising work on AAEM fuel cells come from the
Tokuyama Corporation, who are one of the commercial suppliers of alkaline
membranes. Unfortunately, they publish only short conference proceedings with
little details, but the work shows encouraging signs for solid alkaline fuel cells
[9,50,56,63,83–85]. They have produced quaternary ammonium-containing
membranes with good conductivity of ∼40 mS cm�1 and can control the thick-
ness between 10 and 40 μm [63]. They have achieved a peak power density of
325 mW cm�2 using Pt/C anodes and cathodes and CO2-free air as the oxidant
and have also confirmed a similar self-purging effect, as discussed by Piana et al.,
at higher current densities [9,83,86]. Tokuyama were also the first to show ele-
vated operating temperatures in AAEMs, getting improved performance, and
200 h stability from their membranes at 80 °C [84]. In 2011 they demonstrated a
very interesting, and ostensibly counterintuitive, comparative performance when
there was no humidification of the cathode gas stream. As the OOR in alkaline
consumes water as a reactant, it is assumed to need good humidification of
the cathode, but this study showed that water flux from the anode to the cathode
increases when the cathode is dry, compensating for the lack of water. They also
showed the catastrophic effect of not humidifying either gas stream, proving that
the 2 mol of water produced by the anode HOR is not enough in itself to provide

Figure 2.15 The effect of temperature on AAEM resistance and polarization performance.
Reproduced from Ref. [51].
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sufficient humidification for the membrane (Figure 2.16) [50]. The potential for
partially nonhumidified operation is important if AAEMs are to be used in por-
table devices such as automobiles.

2.4
Summary

In summary, solid alkaline fuel cells using hydrogen as a fuel represent a poten-
tial improvement in performance and reduction of cost over acidic PEM fuel
cells. The technology is in the early stages of development, shown by the lack of
studies to date and the variation in techniques and results in these studies, and
requires further research with bespoke methods applied to the alkaline case (as
opposed to trying to apply acid PEM principles to what might be a very different
technology) to attain the performance levels achieved from state-of-the-art PEM
fuel cells.

� Activation losses in a fuel cell are dictated by the exchange current density
of a half reaction, which is a function of the activation energy of the
reaction.

Figure 2.16 The effect of humidification on
the Tokuyama AAEM. Humidification of the
anode stream only (circles) shows comparable
performance with humidification of both

streams (squares). When there is no humidifi-
cation of either gas stream (triangles), the per-
formance is drastically reduced. Reproduced
from Ref. [50].
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� The ORR is faster in the alkaline medium and the HOR is slower, meaning
that the potential for alkaline fuel cells to utilize cheaper cathode catalysts
must be balanced with anode catalyst considerations.� The electrochemical half reactions are different in acid and alkaline media:

� The different half reactions lead to different water management considera-
tions in alkaline fuel cells than in PEM fuel cells.� The use of a solid alkaline membrane negates the dangers of using aqueous
alkaline electrolytes and reduces the impact of the carbonation effect.� Alkaline membranes are not as fully developed as their acid equivalents and
more research is required in order to achieve the same performance as that
of PEMs. However, they represent a potential route to lower cost fuel cells
via deployment of cheaper catalysts.
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3
Catalyst Support Materials for Proton Exchange
Membrane Fuel Cells
Xin Wang and Shuangyin Wang

3.1
Introduction

Proton exchange membrane fuel cell (PEMFC), as an environment-friendly tech-
nology, has been attracting extensive attention as power source for stationary,
transportational, and portable applications [1–3]. In a PEMFC, hydrogen and
various small organic molecules (SOMs) could be used as fuel at the anode side,
whereas oxygen as oxidant is used at the cathode side. The direct electrochemi-
cal conversion of hydrogen/SOMs and oxygen into water and carbon dioxide
(CO2) produces electricity. The electrocatalytic reactions in both anode and
cathode sides occur on the active surface of electrocatalysts. Conventionally,
nanostructured platinum and platinum-based alloy are used as electrocatalysts
in PEMFCs. In fuel cell, only electrochemical reactions that occur within the
three-phase boundary (electrode–electrolyte–fuel/air) contribute to the overall
performance of a PEMFC.

The key factor determining the commercialization of the fuel cell technology
is its cost. The cost is predominantly related to the amount of precious metal
used. Researchers are striving to reduce the precious metal content by designing
better electrocatalyst and improving the overall efficiency. The move from plati-
num black to carbon-supported platinum catalysts has significantly cut platinum
requirements. Typical loading in the electrode today is ∼0.4–0.8 mg platinum
cm�2, which is significantly lower than 25 mg cm�2 with early platinum black
catalysts. The US Department of Energy (DOE) has set targets of 0.3 mg cm�2

for 2010 and 0.2 mg cm�2 for 2015.
It is well known that the activity of a catalyst depends significantly on the size of

the Pt particles and their dispersion pattern over the support structures. It has
been found that the optimal dispersion pattern and Pt particle size can be obtained
by using an appropriate preparation procedure on an ideal supporting material.

The ideal catalysts support should have the following structure and properties:

1) High surface area and good electrical properties
2) Reactant gas access to the electrocatalysts
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3) Good corrosion resistance
4) High chemical and electrochemical stability under fuel cell operating

conditions

In a carbon-supported metal electrocatalyst, the electronic interaction between
metal and carbon support has a significant effect on its electrochemical perform-
ance [4]. For carbon-supported Pt electrocatalyst, carbon could accelerate the
electron transfer at the electrode–electrolyte interface, leading to an accelerated
electrode process. Typically, the electrons are transferred from platinum clusters
to the oxygen species on the surface of a carbon support material and the chemi-
cal bond formation or the charge transfer process occurs at the contacting phase,
which is considered to be beneficial to the enhancement of the catalytic propert-
ies in terms of activity and stability of the electrocatalysts. Experimentally, the
investigation into the electron interaction between metal catalyst and support
materials could be realized by various physical, spectroscopic, and electro-
chemical approaches. The electron donation behavior of Pt to carbon support
materials has been demonstrated by the electron spin resonance (ESR) X-ray
photoelectron spectroscopy (XPS) studies, with the conclusion that the electron
interaction between Pt and carbon support depends on their Fermi level of
electrons. It is considered that the electronic structure change of Pt on carbon
support induced by the electron interaction has positive effect toward the
enhancement of the catalytic properties and the improvement of the stability of
the electrocatalyst system. However, the exact quantitative relationship between
electronic interaction of carbon-supported catalyst and its electrocatalytic per-
formance is still not yet fully established [4].

3.2
Current Status of Support Materials and Role of Carbon as Support in Fuel Cells

Carbon materials are promising catalyst supports in fuel cells, due to their chem-
ical inertness, wide electrochemical windows, and excellent charge mobilities.
The most popular and widely used carbon material for fuel cell electrocatalysts
is carbon black, because of its large specific surface area and low price. There are
various types of carbon blacks, such as Acetylene Black, Vulcan XC-72, and
Ketjen Black, and these are usually manufactured by pyrolyzing hydrocarbons
such as natural gas or oil fractions derived from petroleum processing. Generally,
highly dispersed, supported catalysts cannot be prepared from low-surface-area car-
bon blacks (e.g., Acetylene Black). It has been concluded by Antolini [5] that the
carbon black characteristics have a significant effect on the dispersion of the sup-
ported electrocatalyst metal nanoparticles and on their subsequent electrocatalytic
activity for reactions in fuel cells. It was found that the Pt particle size decreases
with the increase of the specific surface area of carbon black. High-surface-area car-
bon blacks (e.g., Ketjen Black) could support highly dispersed catalyst nanoparticles.
However, Ketjen Black-supported catalysts showed high ohmic resistance and mass
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transport limitation during fuel cell operation. Vulcan XC-72 with a surface area of
∼250 m2 g�1 has been widely used as a catalyst support in fuel cells.

Despite the high surface area of the carbon black particles, the carbon black-
based electrocatalyst support has two main problems: (i) due to its dense struc-
ture, the carbon black-based support has significant mass transfer limitations,
leading to a very low Pt utilization; (ii) carbon black is known to undergo elec-
trochemical oxidation into surface oxides as well as CO2 at the cathode in the
fuel cell. As carbon black corrodes, noble metal nanoparticles (e.g., Pt) on carbon
black will detach from the electrode and possibly aggregate to larger particles,
resulting in Pt surface area loss, which subsequently lowers the performance of
PEM fuel cells [6].

A great deal of effort has also been devoted to seeking new carbon materials,
including ordered mesoporous carbon (OMC), carbon nanofibers (CNFs), carbon
nanotubes (CNTs), carbon nanohorns (CNHs), carbon nanocoils (CNCs), carbon
aerogels (CAGs), and graphene. This chapter begins by briefly describing the
various possible promising alternative catalyst supports employed in PEMFCs.

3.3
Novel Carbon Materials as Electrocatalyst Support for Fuel Cells

3.3.1

Mesoporous Carbon as Support Materials for Fuel Cells

On carbon black, there exist lots of micropores (<2 nm), which makes the supply
of fuel unsmooth and results in limited catalytic activity for fuel cells. Mean-
while, the micropores on carbon black are poorly connected with relatively low
conductivity. Alternatively, mesoporous carbon (MPC) (2–50 nm) has been
developed to support nanoelectrocatalysts in fuel cells. Two categories could be
classified based on their structure and morphology. One is the ordered mesopo-
rous carbon, which is usually prepared via the template strategy. The other one
is disordered mesoporous carbon (DOMC), in which the pore structure is
irregularly interconnected with low conductivity and wide pore size distribution.
Comparing these two kinds of mesoporous carbons, it could be found that OMC
is preferred as electrocatalyst support in fuel cell due to its high surface area,
high conductivity, and facilitated mass transport within the pore channels. The
electrocatalysts supported on OMC have shown excellent performance in
PEMFC electrode reactions. The as-observed improved performance of fuel cell
on OMC-supported electrocatalysts is well understandable, as the OMC as sup-
port materials would lead to the high and uniform dispersion of metal nanopar-
ticles (electrocatalysts) to enhanced mass transport due to the ordered pore
structures of OMC. In a typical electrocatalytic reactions, such as electrode
reactions in fuel cells, reactions occur only at a specific nanoscale zone, named
as triple-phase boundary (TPB), which is accessible to reactants and products,
electrolytes, and electrons. It is difficult for the conventional carbon black as
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support material to form TPB as it contains many microspores, which the
reactants/products and electrolytes are difficult to access. On the other hand,
the macroporous carbon with larger pore size (>50 nm) has relatively low sur-
face area and low conductivity, making it unsuitable as catalyst support material.
Considering its high surface area, large pore volumes, and highly regular intercon-
nected pore structure, OMC could allow a good dispersion of catalyst nanopar-
ticles and an efficient mass transport (reactants/products and electrolytes) [5,7].

The synthesis of OMC involves the use of ordered mesoporous silica (OMS)
template with a specific pore topology [7]. As illustrated in Figure 3.1, the appro-
priate carbon precursor (carbon sources such as sucrose, furfuryl alcohol, acety-
lene gas, pyrrole, and acrylonitrile) is fed into the pores of the template via the
infiltration approach, followed by its carbonization to achieve the silica–carbon
composite and template removal in ethanol–water solution of HF or NaOH to
obtain the mesoporous carbon replica. The structure of the as-obtained OMC
strongly depends on the structure of the used template. Chang et al. [7] have
reviewed the synthesis of OMC as support materials for fuel cell applications.
The rod- and tube-type mesoporous carbon structures can be realized by filling
carbon precursors in the template pores and coating carbon precursors as a thin
film on the pore walls of the template, respectively. In order to get the well-
defined structure of OMC, the template should have three-dimensional inter-
connected pore structure. On the other hand, the carbonization of the carbon
precursors should be confined exclusively within the mesopores of the ordered
mesoporous silica templates with sufficient carbon precursor filling; therefore,
before the pyrolysis process, the carbon source should be converted to a cross-
linked polymer induced by the use of the acid polymerization catalysts [5,7].

Various synthesis methods of mesoporous carbon based on different mesopo-
rous silicate or aluminosilicate templates have been developed [5,7]. The first
report on the synthesis of OMC used mesoporous silica MCM-48 with the
bicontinuous cubic Ia3d symmetry as the template; the as-prepared OMC was
denoted as CMK-1. Thereafter, various OMCs with different pore topologies
have been actively investigated. For these OMCs, the uniform mesopores are
interconnected, resulting in the appearance of distinct X-ray diffraction lines
below 2 theta of 5. Meanwhile, they have a large surface area and high pore vol-
ume. The other structural parameters such as pore diameters, particle morphol-
ogies and sizes, and microstructures of carbon frameworks could be tuned by

Figure 3.1 Schematic representation of the synthesis procedures of OMC from an OMS tem-
plate [7].
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rational experimental design of the synthesis process. Joo et al. [8] successfully
synthesized highly ordered, rigid arrays of nanoporous carbon with uniform and
tunable diameters by using ordered mesoporous silicas as templates, the removal
of which leaves a partially ordered graphitic framework. The as-synthesized
OMC materials were demonstrated to support a high dispersion of platinum
nanoparticles, exceeding that of other common microporous carbon materials,
including carbon black, charcoal, and activated carbon fibers. On this material,
the particle size of Pt electrocatalysts could be controlled to 3 nm with high dis-
persion, resulting in significantly enhanced electrocatalytic activity for oxygen
reduction reaction (ORR) in fuel cell [7].

Ding et al. [9] successfully prepared CMK-3 ordered carbon by use of SBA-15
as silica template (Figure 3.2). Pt nanoparticles were supported on the as-
obtained CMK-3 for fuel cell reaction: oxygen reduction. The electrocatalytic
activity toward ORR of Pt/CMK-3 is much higher than that of the commercial
catalyst. By the replication of mesoporous silica SBA-15(?) template, Mou and
coworkers [10] prepared ordered mesoporous thin-film carbon materials of short
channels vertical to the film followed by the deposition of Pt–Ru nanoparticles.
The advantage of the as-designed structure is demonstrated with the enhanced
electrocatalytic activity for methanol oxidation, resulting from the increased
nanocatalysts’ utilization efficiency with the short nanochannels of the thin-film
carbon structure. The well-dispersed, highly stable Pt–Ru nanoparticles of
∼2–3 nm on carbon mesoporous materials (Pt–Ru–CMMs) were synthesized by
Liu et al. [11] directly using SBA-15 mesoporous silica as the template, furfuryl
alcohol and trimethylbenzene as the primary carbon source, and platinum and
ruthenium acetylacetonates as the cofeeding metal and carbon precursors. All
the TEM images (Figure 3.3) for various Pt–Ru–CMMs exhibit a uniform array
of mesopores with a long-range order. It can be seen that for all the supported
Pt–CMM, Pt–Ru–CMMs, and Ru–CMM catalysts, monometal (Pt and Ru) and
Pt–Ru alloy are uniformly dispersed and studded on the surface of the carbon
rods. Further studies by X-ray absorption spectroscopy confirmed that a highly
alloyed state of the Pt–Ru nanoparticles is responsible for the superior

Figure 3.2 Ordered nanoporous carbon obtained by template synthesis using ordered meso-
porous silica SBA-15 [8].
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electrocatalytic performance observed for the Pt–Ru–CMMs, compared with typ-
ical commercial electrocatalysts. The Pt50Ru50–CMM sample was found to pos-
sess the best electrocatalytic performance and long-term durability and should
appeal to direct methanol fuel cell (DMFC) applications as anodic electrocatalyst.

Yu et al. [12] reported the synthesis of uniform porous carbon replicas with
interesting morphological variation against a colloidal crystal template by induc-
ing different polymerization processes of phenol and formaldehyde as a carbon
precursor. The processes of controlling the morphology in this work were simple
and were well performed just by altering the acid catalyst sites, which control the
initiation sites of the acid-catalyzed condensation reaction from the same pre-
cursor. In particular, these highly ordered uniform porous carbons resulted in
much improved catalytic activity for methanol oxidation as a catalyst support in
a fuel cell. Zhao et al. [13] synthesized ordered graphitic mesoporous carbon
(GMPC) by chemical vapor deposition (CVD) of benzene in the pores of meso-
porous SBA-15 pure silica template without loading any catalytic species. It was
observed that the CVD method affords highly ordered mesoporous carbon with
graphitic pore walls and low carbon shrinkage because of the high degree of
infiltration of pyrolytic carbon. The catalytic performance of the mesoporous
carbon as a support for Pt catalyst in room-temperature methanol oxidation was
examined, showing that the specific activity of Pt nanoparticles on mesoporous
carbon is higher than that of a commercial Pt/C (E-TEK) catalyst. Joo et al. [14]
reported the effect of graphitic character of OMCs on the performance of
OMC-supported catalysts for direct methanol fuel cells. Two OMC samples
with hexagonal mesostructure were prepared from phenanthrene and sucrose by

Figure 3.3 TEM images of (a and b) Pt100–CMM, (c and d) Pt50Ru50–CMM, and (e and f) Ru100–
CMM [11].

38 3 Catalyst Support Materials for Proton Exchange Membrane Fuel Cells



nanoreplication method using mesoporous silica as a template. Structural char-
acterizations revealed that both OMCs exhibited large surface area and uniform
mesopores, while the OMC synthesized from phenanthrene exhibited lower
sheet resistance than the OMC derived from sucrose. The Pt nanoparticles were
supported on both OMCs with very high dispersion. In DMFC single-cell test,
the OMC-supported Pt catalysts exhibited much higher performance than the
commercial catalyst, which may be attributed to the high surface area and uni-
form mesopore networks of OMC. In particular, it was found that the perform-
ance of OMC-supported catalysts can be significantly enhanced by lowering the
resistance of OMC [14]. On the other hand, Yan and coworkers [15] investigated
the durability of graphitic mesoporous carbons, which were synthesized by heat-
treating polymer-templated mesoporous carbon at 2600 °C. The electrochemical
durability of GMPC as Pt catalyst support (Pt/GMPC) is compared with that of
carbon black (Pt/XC-72). Comparisons indicate that the Pt/GMPC is much
more stable than Pt/XC-72.

Carbon aerogels with high pore volumes and high surface areas have been
developed as Pt supports in the MEA cathode of a H2/air PEM fuel cell. It is
shown that carbon aerogels with different initial pore sizes have similar kinetic
activity, but very different diffusion polarization losses: the larger the pore size
of the initial carbon aerogel, the higher the mass transport polarization [16,17].
However, the chemical stability of the catalyst is limited due to the amorphous
property of carbon aerogel.

Nitrogen-doped carbon materials shows good catalysts support in terms of
catalytic activity and stability [18,19]. A graphitic carbon nitride with three-
dimensionally extended highly ordered pore arrays has been reported as a sup-
port for a Pt–Ru alloy catalyst of a DMFC anode. The nanostructured C3N4 has
73–83% higher power density than Vulcan XC-72, a commercial carbon black.
In comparison with OMC, this ordered macroporous C3N4 possesses a lower
surface area, but higher conductivity and better electrocatalytic activity owing
to its improved graphiticity and framework N atom-enhanced electron transfer
rate [20].

The very high stability of conductive boron-doped diamond makes it attractive
as a durable catalyst support for PEM fuel cells. The boron-doped diamond-
supported catalysts have shown excellent stability toward ORR [21] and the elec-
trochemical oxidation of methanol [22]. However, there are still some problems
with doped diamonds as electrocatalyst supports: the low conductivity, the low
surface area, and the poor dispersion of the metal particles. In addition, it is still
difficult to realize a homogeneous and controllable boron doping level in dia-
mond powders [23].

3.3.2

Graphite Nanofibers as Support Materials for Fuel Cells

Graphite nanofibers (GNFs) have generated great interest as support materials
due to their good graphitic structures and high electrical conductivity [6,24].
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Various graphitic nanofibers such as platelet, ribbon, and herringbone have been
used as support materials for fuel cell electrocatalysts. GNFs are usually synthe-
sized by decomposing carbon-containing gases over certain metal surfaces.
In the structure of GNFs, the basal plane is exposed only at the edge regions. On
the other hand, different from the structure of CNTs, there is no hollow cavity in
GNFs. Due to its unique structure, GNF could be directly used to support metal
nanoparticles without any pretreatment, which would normally have detrimental
effect on the perfect structure of graphite fiber, as it is believed that platelets and
herringbone structures of GNFs can present potentially reactive groups for metal
deposition. Various synthesis methods have been developed to support metal
nanoelectrocatalyst on graphite nanofibers for the potential applications in fuel
cells. Gangeri et al. [24] deposited Pt by incipient wetness impregnation on
GNFs. The performances of platinum supported on carbon nanofibers (Pt/
GNFs) as alternative electrodes for PEM fuel cells are compared with those of a
commercial Pt–carbon black. Carbon nanofibers were grown by chemical vapor
deposition on two different types of microshaped carbon supports (felt and
cloth) and then Pt was deposited on these nano/microcomposite carbon sup-
ports. The analysis of the results and in particular of the polarization curves indi-
cate that (i) Pt/GNF materials are better electrocatalyst than the commercial one
and (ii) Pt/GNF materials give the lowest mass transfer losses. The electrochem-
ical analysis pointed out that new electrode material based on both Pt nanoclus-
ters and carbon nanostructures could be very interesting for fuel cells
applications. The studies on the effect of the microscopic structure of graphitic
nanofiber on the electrocatalytic performance of the supported catalysts must be
interesting. The potential of graphite nanofiber-supported platinum catalysts as
an electrode for fuel cell applications was investigated by Bessel et al. [25] using
the electrochemical oxidation of methanol as a probe reaction. Various types of
graphite nanofibers were used and the behavior of supported platinum particles
on these materials was compared with that when the metal was dispersed on
Vulcan carbon (XC-72). Catalysts consisting of 5 wt% platinum supported on
“platelet-” and “ribbon-”type graphite nanofibers, which expose mainly edge sites
to the reactants, were found to exhibit activities comparable with that displayed
by ∼25 wt% platinum on Vulcan carbon. Furthermore, the graphite nanofiber-
supported metal particles were observed to be significantly less susceptible to
CO poisoning than the traditional catalyst systems. This improvement in per-
formance is believed to be linked to the fact that the metal particles adopt spe-
cific crystallographic orientations when dispersed on the highly tailored graphite
nanofiber structures.

Lukehart and coworkers [26] successfully prepared a Pt–Ru/graphitic carbon
nanofiber nanocomposite exhibiting high relative performance as a direct meth-
anol fuel cell anode catalyst. Multistep deposition and reactive decomposition of
a single-source molecular precursor of Pt and Ru metal on herringbone graphitic
carbon nanofibers affords a Pt–Ru/GNF nanocomposite containing Pt–Ru alloy
nanoclusters widely dispersed on the GNF support. The nanocomposite has a
total metal content of 42 wt% with a bulk Pt/Ru atomic ratio of about 1:1 and
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metal alloy nanoclusters having average particle sizes 7 nm as measured directly
from TEM images, as shown in Figure 3.4. XRD and electrochemical analysis of
the nanocomposite as-prepared and stored under ambient conditions reveals the
presence of small amounts of Ru metal and oxidized metal species. Comparative
testing of this nanocomposite and an unsupported Pt–Ru colloid of similar sur-
face area and catalyst particle size as anode catalysts in a working direct metha-
nol fuel cell reveals a 50% increase in the performance for the Pt–Ru/GNF
nanocomposite.

More recently, Kang and coworkers [27] successfully prepared surface-recon-
structed graphite nanofibers as the support for the cathode catalyst of fuel cells.
The GNFs were synthesized by high-temperature graphitization of catalytically
grown carbon nanofibers. In contrast to CNTs, the GNFs show exposed gra-
phitic edges on the surface. Upon graphitization, adjacent graphite edges on the
GNFs would be largely coalesced, which causes the surface reconstruction on
the GNFs. The as-prepared GNFs exhibit both a high degree of graphitization
and a strong interaction with Pt nanoparticles and they produce an improved
cathode performance in DMFCs. As shown by the TEM images in Figure 3.5,
the pristine GNFs exhibit a typical herringbone structure, in which the graphite
layers decline toward the axis of the nanofibers. After graphitization, the graphite
layers became well aligned in the GNFs (Figure 3.5c and d), suggesting a higher
extent of graphitization, Furthermore, from Figure 3.5d, we can see that the
graphite edges exposed on the surface of the pristine GNFs were largely changed
into a number of loops, showing a surface reconstruction during the graphitiza-
tion. These nanoloops were formed by the zipping of adjacent graphite edges to

Figure 3.4 Bright-field TEM micrograph of the Pt–Ru/GNF nanocomposite [26].
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minimize the surface energy, since graphite edges possess carbon dangling bonds
with a higher surface energy. Due to the surface reconstruction on the GNFs,
Pt nanoparticles with a size of ∼3 nm could still be uniformly dispersed on the
highly graphitized GNF support without any further pretreatment. The Pt/GNF
catalyst shows an improved performance in the single DMFC test compared
with the Pt/CNF and Pt/Vulcan catalysts, which could be ascribed to the high
graphitization degree of GNFs that might result in higher electron conduction
and a more hydrophobic surface for water removal of Pt/GNF. The high degree
of graphitization of GNFs also improves the durability of Pt/GNF for long-term
application [27].

3.3.3

Carbon Nanotubes as Support Materials for Fuel Cells

CNTs with unique electrical and structural properties have attracted great inter-
est in applications such as superconductivity, hydrogen storage, field emission,

Figure 3.5 TEM and HRTEM images of GNFs (a–b) and surface-reconstructed GNFs (c and d);
the inset in part (d) shows a magnified image of the formed loops [27].
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and heterogeneous catalysis. CNTs are widely studied as support material for
Pt and Pt alloy catalysts in fuel cells due to their high surface area, excellent
electronic conductivity, and high chemical stability. Since pristine CNTs are
chemically inert, it is necessary to activate the graphitic surface of the nanotubes
in order to anchor and deposit catalytic nanoparticles [28–33]. The deposition,
distribution, and size of metal nanoparticles supported on CNTs depend
strongly on the surface treatment and surface properties of CNTs. The activity
of Pt nanoparticles is also significantly affected by the nature of their interaction
with CNTs and the intrinsic properties of CNTs. Many reviews are available
dealing with the synthesis of CNTs and their characteristics as a novel catalyst
support.

The synthesis of CNTs involves the catalytic decomposition of carbon source
materials either in gas or solid phase [5,33]. The typical techniques for the syn-
thesis of CNTs include CVD, arc discharge, and laser vaporization synthesis. The
as-produced CNTs usually have high molecular weight and strong hydrophobic
surface forming bundles, which usually results in the poor dispersion of metal
particles on CNTs and limits the overall electrocatalytic activity of the CNT-
supported electrocatalysts [5,6,33]. The electrocatalytic activity of metal nanoe-
lectrocatalysts strongly depends on the dispersion and particle size of the
electrocatalyst on carbon support materials. On the other hand, the dispersion,
distribution, and particle size of metal nanoelectrocatalyst supported on CNTs
are significantly affected by the surface properties of CNTs, which could be
modified by various functionalization strategies. Extensive research activities
have been conducted on the surface functionalization of CNTs. Basically, the
surface functionalization could be classified into two categories: covalent and
noncovalent modification. Covalent surface modification of the CNTs involves a
permanent change to the materials surface, such that it is functionalized with
reactive groups that can later form a covalent bond with another molecule.
On the other hand, noncovalent surface modification does not involve the for-
mal chemical bond formation between a molecule and the surface of CNT.
Examples of this type of interaction include van der Waals forces, electrostatic
forces, hydrogen bonding, and other attractive forces [30–33].

As the most commonly used functionalization method, CNTs are usually
functionalized by the harsh oxidative processes, such as refluxing in the concen-
trated mixture of HNO3 and H2SO4 to generate functional groups on the side-
walls and tube tips. As a result of this kind of acid treatment, the perfect
aromatic conjugate ring structure of CNT surface can be destroyed. Correspond-
ingly, the CNTs can be functionalized with functional groups such as hydroxyl,
carboxyl, and carbonyl, which have strong interaction and anchoring ability
toward metal ions and metal nanoparticles. Yu et al. [34] treated CNTs using
mixed acids (HNO3–H2SO4). They proposed a mechanism of Pt deposition on
the CNTs, as shown in Figure 3.6. When CNTs are refluxed with a mixture of
HNO3–H2SO4, the surface graphitic layers would react with the oxidants and
produce a high density of various surface functional groups. When the Pt ions
were introduced into the system, they would interact with and attach to these
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surface functional groups through an ion exchange or coordination reaction and
serve as nucleation precursors. A well-dispersed deposition of the Pt metal nano-
particles on the surface of CNTs was obtained after the reduction of the surface
Pt2+ ions by hydrogen [33,34]. Xu et al. [35] reported the influence of the treat-
ment method on the deposition of Pt nanoparticles. They reported that the
reflux with the mixture of H2SO4 and HNO3 solutions followed by the immer-
sion in the H2O2 solution are effective pretreatment methods for depositing the
Pt nanoparticles on the CNT surface (denoted as hybrid process). Pt nanopar-
ticles with a size of 3 nm can be obtained on the CNT surface using this process.
The nanoparticles produced by this hybrid process exhibit the best catalytic
properties compared with other pure acid treatment, which indicates that they
are relatively small and distributed homogeneously on CNT [33,35].

With the similar acid treatment (surface oxidation) process, the sonochemi-
cally assisted treatment was also developed as an effective method of functional-
izing the CNT surface [33,36]. For example, Xing [36] has shown that Pt
nanoparticles could be uniformly deposited on sonochemically treated CNTs, as
confirmed by the transmission electron microscopy (TEM) images in Figure 3.7.
The as-prepared Pt/CNTs electrocatalyst has a much higher catalytic activity
than those supported on carbon black when used in PEMFCs.

Although covalent fictionalization strategies have been extensively developed,
such chemical oxidation method reduces the electrical conductivity and corro-
sion resistance of CNTs, due to the introduction of a large number of defects
onto the surface of CNTs. Corrosion of carbon or CNT supports has been iden-
tified as one of the main reasons for the loss of the electrochemical active surface
area of Pt electrocatalysts and the reduced durability during fuel cell operation
[30–33]. Therefore, there is a need to develop a better and more effective func-
tionalization method that can not only introduce high density and homogeneous
surface functional groups but also has little or no structural damage to CNTs.
Hsin et al. [37] reported a functionalization method of MWCNTs by an in situ

Figure 3.6 Functionalization of carbon nanotube and the deposition of Pt nanoparticles [34].
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polymerization of PVP as supports to deposit Pt and Pt–Ru nanoparticles.
Others coated CNTs with poly(sodium 4-styrenesulfonate) (PSS) and poly (dia-
llyldimethylammonium chloride) (PDDA) prior to the attachment of charged Au
colloidal nanoparticles, but in order to achieve a better adsorption of polyelec-
trolytes, CNTs are generally treated by acid oxidation prior to the coating of
polyelectrolyte, which inevitably introduces surface defects and causes some
structural damage to CNTs.

Recently, the noncovalent functionalization of CNTs has attracted particular
attention because it enables the properties of the hybrids of nanoparticles and
CNTs to be tailored while still preserving nearly all the intrinsic properties of
CNTs. Wang and coworkers [38] assembled semiconductor and metal nanopar-
ticles on multiwalled carbon nanotubes by use of pyrene-containing molecules
as interlinkers, but in this case, the dispersion of nanoparticles on carbon nano-
tubes is not satisfactory, as indicated by the formation of nanoparticle aggre-
gates. Correa-Duarte et al. [39] used multilayer assembled CNTs of PSS and
PDDA as templates to support silica-coated Au nanoparticles. Sacher and cow-
orkers [40] have successfully functionalized MWCNTs with thiol groups via a
π–π interaction with benzyl mercaptan. As demonstrated in Figure 3.8, the func-
tionalized CNT surface interacts strongly with Pt nanoparticles through the for-
mation of Pt-S bonds and results in a very high Pt nanoparticle loading (both
high dispersion and narrow size distribution). The prepared Pt/MWCNT com-
posite showed higher electrocatalytic activity and enhanced CO tolerance in
comparison with other catalysts. Such a promising synthesis procedure can be
extended to the fabrication of other precious metal catalysts supported on CNT
for fuel cells [32].

Wang et al. [30] used the polyelectrolyte functionalization techniques to
functionalize CNTs. PDDA, a water-soluble quaternary ammonium with posi-
tive charge, was used to wrap CNTs in aqueous solution. This noncovalent
functionalization not only leads to a high density and homogeneous dispersion

Figure 3.7 TEM images of Pt nanoparticles deposited on the sonochemically treated carbon
nanotubes with Pt loading of 10, 20, and 30 wt% shown in parts (a–c), respectively [36].
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of surface functional groups on MWCNTs but also preserves the intrinsic
properties of MWCNTs without damaging their perfect surface structure.
Because of the positive surface charge on MWCNTs, a large amount of
negatively charged Pt precursor can be anchored onto MWCNT surface via
electrostatic interaction. The subsequent reduction by EG with the presence
of these highly functionalized CNTs yields Pt nanoparticles with uniform dis-
tribution and high density.

The further work by Wang et al. [31] demonstrated that this functionalization
strategy could achieve high density of functional groups uniformly introduced
onto the CNT surface, which would allow a high loading of metal nanoparticles
on CNTs. The relationship between the electrocatalytic activity and interconnec-
tivity of Pt nanoparticles on CNT was investigated. It is found that the electro-
catalytic activities of Pt/CNT catalysts are fundamentally correlated with the
interconnectivity of Pt nanoparticles on CNTs. The magnitude of the intercon-
nectivity of Pt nanoparticles is a critical factor influencing their electrocatalytic
activity, and the interconnected Pt nanoparticles are more active than the iso-
lated Pt nanoparticles. The high electrocatalytic activity of highly interconnected
Pt nanoparticles is considered to be related to the increased active intergrain
boundaries, which promote significantly the electrocatalytic activity of Pt nano-
particles. On the other hand, the interconnected Pt nanoparticles would signifi-
cantly weaken their chemical adsorption with oxygen-containing species (i.e.,
COad and OHad), resulting in the promoted electrocatalytic activity for CO and
methanol oxidation and oxygen reduction. The increase of interconnectivity of
Pt nanoparticles also reduces the interface resistance among particles for elec-
tron transfer [31,41].

Similarly, polyelectrolytes with various characteristic functional groups as
interlinkers to anchor Pt nanoparticles were used to functionalize CNTs as Pt
electrocatalyst support. The effect of interlinkers between Pt nanoparticles and
carbon nanotubes on the electrocatalytic activity for methanol oxidation was
investigated, as demonstrated in Figure 3.9 [42]. It was found that polyanions

Figure 3.8 Functionalization of CNTs with benzyl mercaptan and subsequent Pt deposition [41].
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(poly(styrenesulfonic acid) (PSS), poly(acrylic acid sodium) (PAA)) have a benefi-
cial effect on methanol electrooxidation on Pt nanoparticles supported on CNTs
via modifying their electronic structure through charge transfer from polyanions
to Pt sites and supply of oxygen-containing species, as evidenced by X-ray pho-
toelectron spectroscopy (XPS) results. The increased electron density around Pt
sites by the charge transfer from polyanions would cause partial filling of Pt 5d-
bands, resulting in the downshift of d-band center and weaker chemisorption
with oxygen-containing species (e.g., COad). The weakened chemisorption of
CO on Pt nanoparticles would promote the methanol electrooxidation. How-
ever, polycations would have an adverse effect on the electronic structure and
chemisorption properties of Pt nanoparticles. On the other hand, the long-term
stability testing shows that polycations functionalized CNTs as Pt support would
enhance its stability by the stronger interaction between Pt nanoparticles and
CNTs contributed by the electrostatic attraction forces [42].

Recently, bifunctional molecules have also been used to modify the surface of
CNTs as electrocatalyst support [32]. It involves the adsorption of 1-aminopyrene
(1-AP) molecules onto the surface of MWCNTs. 1-AP contains a pyrenyl group
and an amino functional group. The pyrenyl group, being highly aromatic in
nature, is known to interact strongly with the basal plane of graphite via π-stack-
ing. In a similar manner, the pyrenyl group of 1-AP could also strongly interact
with the sidewalls of MWCNTs, immobilizing 1-AP on the MWCNTs. When the
pH of the solution is controlled at slight acidic, the amino groups of 1-AP immo-
bilized on the MWCNT surface are protonated and become weakly positively
charged. This leads to the electrostatic attraction of the negatively charged
PtCl6

2�, followed by the subsequent self-assembly of positively charged Ru3+, on
the 1-AP-MWCNTs. The microwave-assisted polyol treatment in the presence of
ethylene glycol as reducing agent reduces the Pt–Ru precursors, forming Pt–Ru
nanoparticles on MWCNTs. These surface groups may also serve as anchoring

Figure 3.9 (a) The possible effect of the
charged functional groups of polyanions (PSS
and PAA) and polycations (PDDA and PAH) on
the electron donor–acceptor behavior of

Pt NP. (b) Correlation between the adsorption
energy of O and the d-band center of Pt
slabs [42].
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sites for the direct deposition of reduced metal nanoparticles, which are normally
negatively charged. Different from the acid-oxidized MWCNTs, where the harsh
chemical acids are used to produce carboxylic acid sites on the surface, the 1-AP-
functionalization treatment preserves the integrity and the electronic structure of
MWCNTs. As proven in Figure 3.10, fine metal nanoparticles with narrow size
distribution were deposited on 1-AP-CNTs with a uniform distribution, as a
result of the generation of evenly distributed functional groups on the surface of
CNTs. The average particle size is 2 nm, and no aggregation occurs, even at high
Pt–Ru loading. However, on the acid-oxidized CNTs, Pt–Ru nanoparticles tend
to form aggregates of large particle size due to the poor distribution of functional
groups introduced by the harsh acid oxidation. The density of Pt–Ru electrocata-
lysts could be effectively controlled by adjusting the feeding concentration of the
metal precursors. As a result, Pt–Ru nanoparticles on 1-AP-MWCNTs have
higher electrochemical surface area, much better activity, and enhanced stability
for methanol electrochemical oxidation in acid solution than those on AO-
MWCNTs [32].

On the basis of the above examples, we may conclude that the noncovalent
functionalization of CNTs could facilely and effectively equip CNTs with speci-
fied functional groups with high density. These surface groups function as active
sites to anchor metal precursors or metal nanoparticles, resulting in well-

Figure 3.10 TEM images and distribution histograms of Pt–Ru nanoparticles on 1-AP-MWCNTs
(a and b) and AO-MWCNTs (c and d). The Pt–Ru loading was 40 wt% [32].
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dispersed, narrow-distributed, loading-controlled metal nanoparticles/CNT elec-
trocatalysts. In addition to the physical role, that is, affecting the dispersion, size,
and loading of catalyst nanoparticles, the specified functional groups may also
interact with catalyst nanoparticles and affect their intrinsic electrochemical
activities. To date, most strategies to tune the activity have been limited to the
modification of Pt with other metals, while no specific attention has been paid
to the anchoring groups connecting the metal nanoparticles and the support
material, which may be equally important. This direction is certainly worth fur-
ther studying. Thus, the noncovalent functionalization strategy is an attractive
method for the decoration of CNTs with size- and shape-controlled Pt-based
nanoparticles and other nanocatalysts.

Carbon nanocoils, as well as carbon nanotubes, constitute a new class of car-
bon nanomaterials with properties that differ significantly from other forms
of carbon. The structure of a nanocoil is similar to that of MWCNTs, except
helical shape. The catalysts supported on carbon nanocoils exhibited better
electrocatalytic performance compared with the catalyst supported on Vulcan
XC-72 carbon. In particular, the Pt–Ru alloy catalyst supported on the CNC,
which has both good crystallinity and a large surface area, showed a superior
electrocatalytic performance, compared with other CNC catalysts [43]. A fuller-
ene (C60) film electrode was also suggested as a catalyst support for methanol
oxidation after electrodeposition of Pt on these fullerene nanoclusters [44].

3.3.4

Graphene as Support Materials for Fuel Cells

Graphene is an ideal catalyst support, mainly due to its high electrical conductiv-
ity, excellent mechanical properties, high specific surface area, unique graphitic
basal plane structure, and potential low manufacturing cost [45,46]. Yoo et al.
[47] deposited Pt subnanoclusters on graphene nanosheets (GNS), giving rise to
significant modification to the properties of Pt nanocluster electrocatalysts, and
very high activities for methanol oxidation reaction were observed. The Pt/GNS
electrocatalyst also revealed quite a different characteristic for CO oxidation
among the measured catalyst samples. It is found that Pt particles below 0.5 nm
in size are formed on GNS, which would acquire specific electronic structures of
Pt, modifying its catalytic activities. Sharma et al. [48] reported the synthesis of
Pt electrocatalysts supported on reduced graphene oxide by a microwave-
assisted polyol reduction method. Because a variety of oxygen functional groups
(O-moieties) are attached on the edge planes as well as on either side of the basal
planes, well-dispersed nanoclusters on the surface of the reduced graphene
sheets are envisaged. Such anticipation was confirmed by high-resolution TEM
observations (Figure 3.11b). It is worth mentioning that these Pt NPs anchored
onto the RGO surface can also prevent π–π stacking between the layers and cre-
ate functional separation between individual sheets. This system was tested for
potential use as an anode material through the electrooxidation of methanol.
Compared with the commercial carbon-supported Pt electrocatalysts, the Pt/
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RGO showed an unprecedented CO poisoning tolerance, high electrochemical
active surface area, and high catalytic mass activity for methanol oxidation
reaction, demonstrated by increases of 110, 134, and 60%, respectively. It was
found that the high concentration of oxygen functional groups on reduced
graphene oxide plays a major role in the removal of carbonaceous species on the
adjacent Pt sites, underlining a synergetic effect between the oxygen moieties on
graphene support and Pt nanoparticles. The present microwave-assisted synthe-
sis of Pt/RGO provides a new path to prepare electrocatalysts with excellent
electrocatalytic activity and CO tolerance, which is of great significance in
energy-related applications [45].

More recently, Lin and coworkers [49] reported a new method to deposit
metal oxides and metal nanoparticles on graphene and form stable metal–metal
oxide–graphene triple junctions for electrocatalysis applications in fuel cells
(Figure 3.12). They first synthesized indium tin oxide (ITO) nanocrystals directly
on functionalized graphene sheets, forming an ITO–graphene hybrid. Platinum
nanoparticles are then deposited, forming a unique triple junction structure
(Pt–ITO–graphene). Their DFT calculations indicate that the deposition of Pt
nanoparticles is thermodynamically favored and stabilized at the metal oxide–
graphene junctions. The defects and functional groups on graphene also help
improve the stability of the catalysts. Pt–ITO–graphene nanocomposites were
investigated as electrocatalysts for oxygen reduction for potential application in

Figure 3.11 (a) Scheme of synthesis of Pt/RGO hybrids. (b) TEM image of Pt/RGO. (c) HRTEM
image. (d) FFTs of a single Pt NP. (e) Pt NPs size distribution on Pt/RGO [48].
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PEM fuel cells. The ITO–graphene hybrid substrates possess the desired proper-
ties of the metal oxide and graphene sheets. The graphene sheets function as a
scaffold that provides the high surface area and greatly increases the electrical
conductivity. The ITO nanoparticles are evenly dispersed and protect graphene
from corrosion, improving the durability of the substrate. The unique triple
junction structure in the nanocomposite with a high surface area, good metal
dispersion, and good electrical conductivity makes such materials suitable for
PEM fuel cell applications. The electrochemical tests show that the performance
of Pt supported on ITO–graphene hybrid substrates, especially the durability, is
not only better than that of Pt supported on graphene sheets but also better than
the widely used Pt electrocatalysts supported with other carbon materials (e.g.,
Vulcan carbon XC72 and carbon nanotubes) [49].

Wang et al. [45] developed highly effective electrocatalysts for HCOOH oxida-
tion through DFAFCs using simultaneously assembled Pt and Au nanoparticles
on noncovalently functionalized graphene supports. The noncovalent functional-
ization method for carbon nanotubes based on positively charged PDDA is also
very effective for functionalization of graphene without detrimental effects on its
electronic properties. Pt and Au nanoparticles with various ratios are simulta-
neously self-assembled onto PDDA-functionalized graphene with high uniform-
ity and controlled densities and compositions, forming Pt and Au nanoparticle
electrocatalysts on PDDA-functionalized graphene (or Pt–Au/PDDA–G) for
HCOOH oxidation. The principle of the self-assembly of mixed Pt and Au nano-
particles on PDDA-functionalized graphene is shown in Figure 3.13. The results
indicate that the Pt–Au/PDDA–G electrocatalysts show superb electrochemical
activity toward HCOOH oxidation, and the mass-specific current density for
HCOOH oxidation on a Pt1Au8/PDDA–G catalyst (Pt:Au ratio of 1 : 8) is 32
times higher than that on Pt/PDDA–G catalysts [45].

Figure 3.12 TEM images of Pt�ITO�graphene (a) and the cross section TEM images of
Pt�ITO�graphene (b) [49].
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3.3.5

Nitrogen-Doped Carbon Materials

Nitrogen-doped carbon material (e.g., CNTs and graphene) is recognized as a
good support for Pt catalyst. The doping of CNTs with other elements (e.g.,
nitrogen) could be a particularly interesting way to modify their electrical and
mechanical properties. The introduction of N modifies the structure of the
CNT, leading to (i) high surface areas, (ii) a high density of defects, (iii) chemi-
cally active impurity sites, and (iv) narrow tubes (the numbers of walls decrease
with N inclusion) [33].

The doped nitrogen atoms not only provide the anchoring sites for the metal
particles but also act as chemically active sites for fuel cell reactions. The N sites
in N–CNTs are reported to bind strongly to metals, leading to excellent metal
dispersion in metal/N–CNT materials. The surface modifications induced in
CNTs by N doping can thus enhance the reactivity and selectivity of carbon-
supported catalysts in many catalytic applications [33]. Therefore, it should be
possible to avoid functionalization processes that use strong acid treatments, as
it is relatively easy to deposit metal catalysts onto N–CNTs [33].

The nitrogen functionality in the carbon nanotube support determines the
size of Pt by bonding with lone pairs of electrons at the nitrogen site in a sp2

hybridized orbital in the plane of the ring. These N-sites, which predominate in
untreated carbon black, were less negative than oxygen sites. The assumption
was that during catalysis, Pt might bind more strongly to pyridinic sites, thereby
preventing Pt particles from sintering to the extent observed on untreated car-
bons. The increased electron donation from pyridinic N-functionality to Pt might
be responsible for the enhancement in kinetics of methanol oxidation [18,19].

Nitrogen-doped carbon nanotubes (N–CNTs) have recently been reported to
have significant catalytic activity toward ORR in alkaline conditions (Figure 3.14)
[51]. This ORR activity along with the morphology and properties of the

Figure 3.13 Self-assembly of mixed Pt and Au nanoparticles onto PDDA-functionalized
graphene [45].
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N–CNT materials is directly related to the type of nitrogen–carbon precursor
and growth catalyst utilized. This electrocatalytic activity was attributed directly
to the incorporation of nitrogen into the graphitic structure of CNTs, resulting
in enhanced structural and electronic properties. Recently, Chen and coworkers
[52] utilized nitrogen-doped carbon nanotubes as platinum nanoparticle support
materials and elucidated the significant effect of the nitrogen precursor solution
on N–CNT growth. N–CNTs synthesized from a nitrogen-rich ethylenediamine
(ED) precursor solution (ED–CNT) were found to have superior catalytic activity
toward the ORR compared with undoped CNTs. When utilized as platinum
nanoparticle supports, Pt/N–CNTs displayed significantly enhanced electrocata-
lytic activity toward the ORR compared with nitrogen-free Pt/CNTs, with the
increase in performance being attributed to the distinct structural and electronic
enhancements resulting from heterogeneous nitrogen doping. The performance
of Pt/N–CNTs as a cathodic catalyst for proton exchange membrane fuel cell
operation was found to be significantly higher than that of Pt/CNT. Polarization
and power density curves for Pt/N–CNTs and Pt/CNTs in a single-cell H2/O2

MEA system fabricated by a decal method are displayed in Figure 3.15. The
peak power density for Pt/ED–CNTs was 1.04 W cm�2, an increase of ∼16.9%
over that of Pt/CNTs (0.89 W cm�2). At a cell voltage of 0.6 V, Pt/ED–CNTs dis-
played a current density of 1.55 A cm�2, ∼24% higher than Pt/CNTs (1.25 A
cm�2). Pt/ED–CNTs display improved ORR catalytic activity compared with Pt/
CNTs under fuel cell conditions.

Ramaprabhu and coworkers investigated the nitrogen-doped graphene nano-
platelets as the catalyst support of Pt for ORR [53]. In this case, the nitrogen-
doped graphene was made by nitrogen plasma treatment of graphene. The MEA
constructed with Pt/N–graphene as the ORR catalyst showed a maximum power

Figure 3.14 Schematic of possible
bifunctional ORR and MOR mechanisms
involving oxophilic C–N defects near C/Pt cat-
alyst particle interface in the case of low-den-
sity Pt catalyst (not to scale). The adsorbed
oxygen-containing surface species facilitate

reaction of strongly absorbed intermediate
reaction species that would otherwise block
catalyst active sites, thereby increasing the net
turnover frequency of the electrochemical
reaction [50].
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density of 440 mW cm�2, whereas the MEA with Pt/graphene showed a maxi-
mum power density of 390 mW cm�2. The improved performance with Pt/N–
graphene as an ORR catalyst can be attributed to the formation of pentagons
and heptagons and increase in the reactivity of neighboring carbon atoms
because of nitrogen doping. It has been reported that nitrogen doping introduces
disorder in the graphene stacking and these disorder structures and the defects
can act as good anchoring sites for the deposition of Pt particles [53].

3.4
Conductive Metal Oxide as Support Materials

In addition to conventional carbon materials, various conductive metal oxides,
including TiOx, WOx, SnO2, IrO2, ITO, and so on, were also used as support or
cosupport of electrocatalysts. Conducting oxides are corrosion resistant with
good thermal and electrochemical stability in fuel cell environment. The use of
metal oxide as support material has potentially strong metal–support interaction
(SMSI) that allows the tuning of activity in addition to stability. Metal–metal
oxide catalysts are believed to operate via the bifunctional mechanism [54].

The promotion effect of TiO2 nanotubes in the methanol oxidation can be
rationalized on the basis of SMSI as well as OH adsorption on Ti ion site facili-
tating the oxidation of CO on Pt sites, which are otherwise poisons to the metal-
lic sites and thus render these metallic sites unsuitable for methanol oxidation.
A pictorial model of these postulates is given in Figure 3.16 [55].

To improve the electron conductivity, substoichiometric titania (Ti4O7) and Nb-
doped TiO2 were attempted as support and their activities for both the hydrogen
oxidation reaction and the oxygen reduction reaction were compared with that of
Vulcan XC-72-supported Pt catalyst under PEMFC operation [56–60].

Figure 3.15 MEA polarization and power curves for 0.2mgPt cm
�2 Pt/ED-CNT and Pt/CNT

cathodic catalyst loading, with 0.2mgPt cm
�2 commercial Pt/C as anodic catalyst in a single-cell

H2/O2 system with a Nafion 112 PEM [52].
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It has been reported that a Pt/TiO2 catalyst exhibits a higher active surface
area than Pt supported on carbon, and thus improves the activity for oxygen
reduction. Drew et al. [61] showed a boosting of methanol oxidation by Pt–Ru
supported on TiO2 and carbon fiber. Titanium oxide with designed nanostruc-
tures was used to support electrocatalysts for fuel cells. Shanmugam and
Gedanken [62] utilized the carbon-coated anatase titania (CCT) TiO2@C core–
shell structure to support Pt nanoparticles for ORR and MOR. The particles
have a dark TiO2 core surrounded by a faint carbon shell; the size of the com-
posite nanoparticles is around 20–40 nm. The average size of Pt on CCT is
5–8 nm. It is clear from the HRTEM studies that a few carbon layers surround
the anatase TiO2 core. However, the thickness of the shell varies from 2 to 4 nm
on the CCT. It is also observed that as the temperature increases, the carbon
content and the thickness of the carbon layers change. The as-prepared electro-
catalysts showed a higher catalytic activity and improved durability toward both
ORR and MOR compared with the commercial Pt/C electrocatalysts [63].

For example, Kowal et al. [63] successfully synthesized the ternary PtRhSnO2/C
electrocatalyst, effective in splitting the C-C bond of ethanol at room temperature
and causing its predominant oxidation to CO2. The analyses reveal that its catalytic
activity rests on the synergy between the three constituents of the electrocatalyst.
SnO2 by strongly adsorbing water [64,65] and interacting with the Pt and Rh
deposited on its surface apparently precludes the Rh and Pt sites from reacting
with H2O to form metal–OH, making them available for ethanol oxidation. SnO2

with H2O provides OH species to oxidize the dissociated CO at Rh sites, and Pt
facilitates ethanol dehydrogenation. It also modifies the electronic structure of Rh
to afford moderate bonding to ethanol, intermediates, and products, which facili-
tates C-C bond breaking and, therefore, ethanol oxidation. The DFT calculations
demonstrated that the oxidation of ethanol on PtRh/SnO2 proceeds through oxa-
metallacyclic conformation that facilitates the direct cleavage of the C-C bond at a
reasonable rate. The high activity of Pt–Ru for methanol oxidation and the lack of
it for ethanol oxidation seem to be due to a high propensity of Ru to form RuOH
in interaction with H2O at potentials E > 0:0 V. This reaction cannot be sup-
pressed in the OH-OH repulsion with SnOH, as it happens with weakly bonded
RhOH. RuOH does not adsorb ethanol and cannot split the C-C bond. This work
demonstrated the significant role of tin oxide for alcohol oxidation [63].

Figure 3.16 A possible mechanism for the removal of CO poisoning intermediates during
methanol oxidation over TiO2 nanotube-supported Pt catalysts [55].
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Tungsten oxides (WO3�x) have been the subject of interest and have been used
as a support material for fuel cell catalysts [66–69]. It has been reported that cata-
lysts made of Pt nanoparticles supported on WO3 exhibit excellent CO tolerance
and higher catalytic activity. For example, the electrocatalytic activity of a
Pt/WO3-based electrode toward the oxygen reduction reaction in phosphoric acid
was reported to be twice as high as that of Pt on carbon [69]. Sun and coworkers
[69] successfully grew tungsten oxide nanowires (W18O49 NWs) on carbon paper
by chemical vapor deposition. The well-dispersed Pt nanoparticles, with a size dis-
tribution from 2 to 4 nm, were deposited on the surface of W18O49 NWs through
a simple reductive process. The resulting Pt/W18O49 NWs/carbon paper com-
posites formed a three-dimensional electrode structure. In comparison with con-
ventional Pt/C electrocatalyst, the Pt/W18O49 NWs/carbon paper composite
exhibited higher electrocatalytic activity toward the oxygen reduction reaction and
better CO tolerance in a single-cell polymer electrolyte membrane fuel cell.
Pt/Ti0.7W0.3O2 has been proposed as another promising highly stable and CO-tol-
erant electrocatalyst for PEM fuel cells. Initial tests indicated that Pt/Ti0.7W0.3O2 is
more stable than Pt/C and PtRu/C catalysts. After 500 cycles, the loss in the inte-
grated coulombic charge of the CV for the new catalyst was only 5%, while it was
more than 30% in the case of a commercial E-TEK PtRu/C catalyst [70]. Suzuki
et al. [71] reported sulfate zirconia as Pt support for use in PEMFC. The electro-
catalytic activity of Pt/S–ZrO2 was lower than that of the Pt/C.

3.5
Metal Carbides and Metal Nitrides as Catalyst Supports

Tungsten carbides (WCs), exhibited Pt-like catalytic properties because near the
Fermi level, the electronic density of states of tungsten carbides resembles that
of noble metal platinum [72]. Its low price and good CO tolerance make it an
interesting alternative to the noble metal catalyst. Thus, in the last decades,
tungsten carbides have been tested as alternative Pt electrocatalysts for PEMFCs.

Tungsten carbide was found to be more thermally and electrochemically stable
than carbon supports. However, its stability in acid electrolyte is not satisfactory
because WC can be corroded in sulfuric acid [73–75]. Tungsten carbide is not
suitable as cathode catalyst or support for acidic fuel cells, owing to its low cor-
rosion resistance under acidic and oxidative conditions. Titanium diboride
(TiB2) exhibits many superior properties, including high melting point, great
hardness, good electrical and high thermal conductivity, and excellent thermal
stability and corrosion resistance in acidic medium. The stability of Pt/TiB2 is
approximately four times better than that of the commercial Pt/C [76]. Recently,
it was also reported that titanium nitride-supported Pt for PEM fuel cells showed
higher catalytic performance than conventional Pt/C catalysts, but the durability
of TiN as the support material is not clear as yet [77,78]. Further studies are
necessary to understand TiN as a catalyst support and especially evaluate its
durability properties [79].
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3.6
Conducting Polymer as Support Materials for Fuel Cells

Recently, attention has also been given to the use of conductive polymers (CPs)
as electrocatalyst supports and promising results have been obtained [80–82].
By suitably combining conductive polymer and metal nanoparticles, new electro-
catalysts with higher surface areas and enhanced methanol oxidation activity can
be generated. Conducting polymers have received much attention because of
their high accessible surface area, low resistance, and high stability. Given their
conductive and stable three-dimensional structure, CPs can act as suitable sup-
ports for low-temperature fuel cell catalysts. Conducting polymer/metal–nano-
particle composites allow a facile flow of electronic charges through the polymer
matrix during the electrochemical process. CPs with porous structures and high
surface areas are employed as a matrix to incorporate noble metal catalysts for
some electrochemical reactions of importance for application in fuel cells such
as hydrogen and methanol oxidation and oxygen reduction [81]. The main rea-
son for incorporating metallic particles into porous polymeric matrices is to
increase the specific area of the active surface and thereby improve catalytic effi-
ciency. Another reason is the higher tolerance of polymer-supported platinum
particles to poisoning due to the adsorption of CO species, in comparison with
the serious problem of poisoning of bulk and carbon-supported platinum elec-
trodes. Indeed, the catalyst is poisoned by the strong adsorption of CO present
in H2 or of CO-like intermediate species formed during alcohol oxidation, which
block the active Pt sites, lowering its electrocatalytic activity [81,82]. Moreover,
CPs are not only electron-conducting but also proton-conducting materials, so
they can replace Nafion in the catalyst layer of fuel cell electrode and provide
enhanced performance. In this case, theoretically only a two-phase boundary is
necessary for electron and ion transfer during reactions in fuel cells compared
with the three-phase boundary required when carbon is used as support, the
overall catalyst utilization should be significantly increased (Figure 3.17) [82].

Among conducting polymers, conductive polyaniline (PANI) can be consid-
ered as a promising catalyst support material owing to its good electrical con-
ductivity, high environmental stability, and the merit of simple preparation by
both chemical and electrochemical processes. There are different methods
reported in the literature for the synthesis of conducting PANI, and these can be
classified into two methodologies: template-assisted and template-free syntheses.
Extensive work has been carried out on the fabrication and characterization of
PANI. Chen et al. [83] prepared a novel polyaniline nanofiber-supported Pt
nanoelectrocatalyst for DMFCs. Polyaniline nanofibers (PaniNFs) with a 60 nm
diameter are synthesized by a scalable interfacial polymerization without the use
of a template or functional dopant. PaniNF-supported Pt electrocatalyst (Pt/Pan-
iNFs) and carbon black-supported Pt electrocatalyst (Pt/C) are prepared by an
ethylene glycol reduction method. The Pt nanoparticles deposited onto PaniNFs
have a smaller diameter and narrower particle size distribution than the Pt nano-
particles deposited onto carbon black. The Pt/PaniNFs catalyst shows a higher
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electrochemical active surface area (ECSA) and higher methanol oxidation
reaction catalytic activity than the Pt/C [83].

Poly(N-acetylaniline) (PAANI), one of the substituted polyaniline conducting
polymers, was successfully used as a support for fuel cell catalysts [84]. PEDOT/
PSS has also been reported as support material, with activities for oxygen reduc-
tion of Pt/PEDOT/PSS comparable with that obtained with commercial carbon-
supported catalysts. However, long-term stability of PEDOT/PSS has to be
improved and conductivity is still lower compared with carbon materials [85].
Choi et al. electrodeposited Pt–Ru catalysts on poly(N-vinyl carbazole) (PVK)
and poly(9-(4-vinyl-phenyl)carbazole) (P4VPCz). The performance of DMFCs
with carbon-supported Pt–Ru showed better performance than that of the Pt–
Ru/PVK composite due to its low electronic conductivity [86].

3.7
Conducting Polymer-Grafted Carbon Materials

The Pt catalyst is dispersed on a high-surface-area electronically conductive sup-
port, which facilitates the passage of electrons from the catalyst to the external
circuit, but cannot conduct protons. Proton-conducting materials such as
Nafion are often added to facilitate transfer of the protons from the catalyst
layer to the membrane interface. Therefore, proton conduction may depend dra-
matically on the formulation of the thickness of the catalyst layer. Recent advan-
ces in catalyst design have begun to address this limitation. As with electron
conduction, thinner catalyst layers help reduce resistive losses due to proton
conduction. Also, carbon is relatively hydrophobic, and as such the boundary

Figure 3.17 PEM fuel cell catalyst layer illustration of three-phase boundary versus two-phase
boundary [82].
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contact between the reactive gases, water, and the surface of the solid electrodes
made of carbon contributes to high electrical contact resistance and ohmic
power loss in the fuel cell, resulting in lower efficiency of the fuel cell. Further-
more, conducting polymer grafted on the carbon surface to impart protonic
conductivity and the surface chemistry of the catalyst support can be tailored
appropriately, as illustrated in Figure 3.18. However, such changes must be care-
fully performed to minimize any adverse impact on other important features of
the catalyst. Also, the catalyst may lose stability due to sintering of platinum par-
ticles, dissolution of platinum, and corrosion of the carbon support.

Sintering of platinum particles on the carbon support decreases catalytically
active surface areas. The sintering of the catalyst can be reduced by strengthen-
ing the strong metal–support interaction. Grafting of polymer on the carbon
support decreases the sintering of the metal particles. The conducting polymer-
grafted carbon material aids the uniform dispersion and stabilization of metal
particles by anchoring to heteroatoms, namely, N, O, S, and so on, present in
the conducting polymer. The heteroatom (nitrogen or sulfur) in the polymer
backbone acts as a Lewis base that can anchor the platinum particles effectively
and resist the agglomeration and sintering of metal (e.g., platinum (Pt)) crystal-
lite particles [87,88].

3.8
3M Nanostructured Thin Film as Support Materials for Fuel Cells

The 3M nanostructured thin film (NSTF) catalyst support has also been well
developed, which consists of oriented, nanometer-sized crystalline organic
whiskers, synthesized by sublimation and subsequent annealing of an organic

Figure 3.18 Catalysts with surface-modified carbon blacks show enhanced proton and elec-
tron conduction [89].
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pigment material based on a perylene dicarboximide compound [90,91]. This
pigment material gives a monolayer of oriented crystalline whiskers with number
densities. The whiskers have a rectangular cross section of around 30–50 nm and
an average length of 0.5–1 μm. Earlier work by Debe et al. [90,91] demonstrated
the higher stability and durability of NSTF catalysts in comparison with conven-
tional carbon-supported dispersed Pt catalysts. Furthermore, the organic crystal-
line whisker support also epitaxially affects the subsequent nucleation and
growth of Pt whiskerettes on whisker sides, maximizing the amount of Pt(111)
surface facets [92]. In addition to being an excellent catalyst support, the NSTF
support is a good substrate for the rapid screening of a wide range of potential
underlayer materials for fuel cell applications. Underlayer materials that show
promise could feasibly be used on NSTF to modify the dimensions and morphol-
ogy of the catalyst support whisker or on their own as particulate catalysts sup-
ports to replace conventional high-surface-area carbon supports. The NSTF
technology is useful for studying underlayer materials because a wide range of
elements and compounds can be prepared through sputter depositions and
because their high aspect ratio and surface area allow subsequent preparation of
high-surface-area platinum-based catalysts for realistic fuel cell testing under
realistic conditions [90,91].

3.9
Summary and Outlook

Various types of support materials, including carbon materials (i.e., carbon black,
ordered mesoporous carbon, graphitic nanofiber, CNT, and graphene), conduc-
tive metal oxide, and conducting polymers, have been extensively investigated
for fuel cell applications. The catalyst support materials are used to increase the
metal nanoparticle loading and dispersion, which would thus improve the utili-
zation efficiency and durability of the precious metal catalysts. The properties of
support materials exhibit great influence on the catalytic activity, durability, and
even cost of fuel cells. The requirements of suitable support materials for fuel
cell electrocatalysts are high electrochemically accessible surface area, good elec-
tron conductivity, appropriate porosity for mass transport, and good electro-
chemical and thermal stability under fuel cell operation conditions. The most
commonly used catalyst support is carbon black. However, there are several dis-
advantages of carbon black as discussed in this chapter; therefore, the develop-
ment of alternative support materials for fuel cell applications has attracted a lot
of attention in the past decade.

OMC is a promising candidate due to its high surface area, high conductivity,
and facilitated mass transport within the pore channels. The electrocatalysts sup-
ported on OMC have shown excellent performance in PEMFC electrode
reactions. The as-observed improved performance of fuel cell on OMC-supported
electrocatalysts is well understandable, as OMC would lead to uniform dispersion
of metal nanoparticles and enhanced mass transport due to its high surface area
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and interconnected pore structures. Graphite nanofibers have generated great
interest as support materials because of their good graphitic structures, low resist-
ance, and high electrical conductivity. Different from the structure of CNTs, there
is no hollow cavity in GNFs and the basal plane is exposed only at the edge
regions. Due to its unique structure, GNF could be directly used to support metal
nanoparticles without any pretreatment, which would usually destroy the perfect
structure of graphite fiber, as it is believed that platelets and herringbone struc-
tures of GNFs usually present potentially reactive groups for metal deposition.
CNTs are widely studied as support material for Pt and Pt alloy catalysts in fuel
cells due to their high surface area, excellent electronic conductivity, and high
chemical stability. However, the deposition, distribution and size of Pt or Pt alloy
nanoparticles supported on CNTs depend strongly on the surface treatment and
surface properties of CNTs. The activity of Pt nanoparticles is also significantly
affected by the nature of their interaction with CNTs and the intrinsic properties
of CNTs. Since pristine CNTs are chemically inert, it is necessary to activate the
graphitic surface of the nanotubes in order to anchor and deposit catalytic nano-
particles. Various functionalization methods have been developed, including
covalent and noncovalent functionalization. The noncovalent functionalization
strategy could introduce amounts of functional groups onto the surface of CNT
uniformly without any damage to the perfect structure of CNTs. Due to its
unique electronic and mechanical properties, graphene has been attracting more
and more attention. Graphene and chemically modified graphene sheets have
higher conductivity and surface area compared with carbon nanotubes and have
found lots of potential applications. Meanwhile, other different types of support
materials such as metal oxide, conducting polymer, and so on were also discussed.

Although various support materials have been developed to support nanostruc-
tured electrocatalysts for fuel cells, the performance of the as-obtained catalysts is
still far from the research target for large-scale fuel cell commercialization in
terms of activity, durability, and cost. More extensive research work needs to be
done, taking into consideration these three objectives: activity, durability, and cost.
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4
Anode Catalysts for Low-Temperature Direct
Alcohol Fuel Cells
Wenzhen Li

4.1
Introduction

Low-temperature polymer electrolyte fuel cells are promising electrochemical
energy devices that can directly transform the chemical energy stored in a
fuel (e.g., H2 and alcohols) into electrical energy with low emission and high
efficiency [1–8]. This electrochemical process does not obey Carnot cycle
limitation, so higher energy efficiencies can be achieved through fuel cells:
40–50% in electrical energy and 80–85% in total energy (electricity + heat
production) [6]. Hydrogen is considered the most convenient fuel for vehicle
applications, because the kinetics of hydrogen oxidation is very fast and the
product is only water. However, hydrogen itself is merely an energy carrier,
not a natural resource. The production, transportation, and storage of hy-
drogen have encountered huge technical challenges [9]. Compared with
hydrogen, small liquid alcohol fuels have obvious advantages, including
high energy density and thermodynamic energy conversion efficiency, com-
parable electromotive force (thermodynamic potential), and complete
elimination of hydrogen production and storage accessories [1,6,7]. In addi-
tion, many alcohols can be massively obtained from renewable biomass feed-
stocks [10–12]. For example, methanol can be produced from fermentation
of agricultural products from biomass; ethanol is one of the major fuels
obtained from agriculture fermentation (first-generation bioethanol); ethylene
glycol (EG) can be obtained in large quantity by heterogeneous hydrogena-
tion of cellulose; and glycerol is a main by-product of biodiesel production.
They are potentially cheap and abundant, and can be widely distributed by using
the present infrastructures for liquid fuels. Therefore, low-temperature direct
alcohol fuel cells (DAFCs) have emerged as clean and sustainable mobile
power sources for portable electronics, and potentially for transportation
systems.

Table 4.1 shows the thermodynamic properties of selected alcohol fuels at
standard conditions. Although their electromotive forces are slightly lower than
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hydrogen, the thermodynamic energy conversion efficiencies of methanol, etha-
nol, ethylene glycol, and glycerol are in the range of 97–99%, which is higher
than that of hydrogen (83%). The mass and volume energy densities of the alco-
hols are also higher than that of hydrogen.

Despite their attractive thermodynamic advantages and practical system
benefits, current direct alcohol fuel cells have the significant disadvantage of
having lower output power density and efficiency than hydrogen–proton
exchange membrane fuel cells (PEMFCs). Besides the urgent need for the
development of advanced polymer membranes that can reduce both enhanced
ion conductivity and alcohol crossover, the sluggish alcohol reaction kinetics
must be significantly improved for widespread applications of DAFCs. For
instance, the overpotential of methanol oxidation is >0.3 V at 0.5 A cm�2 on
the state-of-the-art PtRu/C catalyst, which is much higher than hydrogen oxi-
dation reaction (only 0.02 V) [4]. The ethanol oxidation has a similar slow
kinetics. More serious, since the C-C bond of ethanol is difficult to break
at low temperatures (e.g., <90 °C), the major electrooxidation products are
acetaldehyde and acetic acid, and CO2 is only <10% on the current PtSn
catalysts [6,13]. The incomplete ethanol oxidation leads to low ethanol utiliza-
tion and energy conversion efficiency.

Efficient direct transformation of chemical energy stored in small organic
molecules into electricity has been a long-term goal for scientists. Significant
research efforts have been made in recent decades to acquire a deep under-
standing of the mechanisms of electrocatalytic oxidation of alcohols, and to
further develop more efficient anode catalysts for DAFCs. This chapter
focuses on anode catalytic materials for low-temperature DAFCs. First, the
acquired knowledge of electrooxidation of alcohols (methanol, ethanol, eth-
ylene glycol, and glycerol) in both acid and alkaline media, and state-of-the-
art anode catalysts are presented. Second, the recently developed catalyst
preparation methods and novel carbon support materials are reviewed.
Finally, the future research challenges and opportunities in this field are
discussed.

Table 4.1 The transferred electrons (Ne), electromotive force (E°), volume energy density (We),
and thermodynamic energy conversion efficiency (εrev) of electrooxidation of selected alcohols
at standard conditions.

Fuel Ne E° (V) We (kWh l− 1) εrev (%)

Hydrogen 2 1.23 2.6 (liquid H2) 83
Methanol 6 1.18 4.8 97
Ethanol 12 1.15 6.3 97
Ethylene glycol 10 1.22 5.9 99
Glycerol 14 1.22 6.3 99
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4.2
Anode Catalysts for Direct Methanol Fuel Cells: Improved Performance of Binary
and Ternary Catalysts

4.2.1

Principles of Direct Methanol Fuel Cells

A typical proton exchange membrane (PEM)-based direct methanol fuel cell
comprises anode, PEM, and cathode. At the anode, methanol is oxidized to pro-
duce CO2; at the cathode, oxygen reacts with protons and electrons to produce
water:

CH3OH � H2O ! CO2 � 6H� � 6e� �0:05 V versus SHE �anode� (4.1)

3=2O2 � 6H� � 6e� ! 3H2O �1:23 V versus SHE �cathode� (4.2)

The total reaction is

CH3OH � 3=2O2 ! CO2 � 2H2O �1:18 V (4.3)

4.2.2

Reaction Mechanisms and Catalysts for Methanol Electrooxidation

In the past decades, a significant number of fundamental investigations have
been carried out in the field of low-temperature electrooxidation of small
organic molecules [14–38]. Electrochemical studies have been carried out in
combination with spectroscopy [21,27,28], mass spectroscopy [25,31], physio-
chemical tools [20,30], as well as theoretical calculations (e.g., DFT) [38] in order
to examine the adsorbed species and reactive intermediates on the electrode sur-
face during the alcohol oxidation, and thus to elucidate the alcohol reaction
pathways.

From a general point of view, at ambient pressure and temperature, all electro-
oxidations of short-chain aliphatic alcohols (in acid) require the presence of the
expensive precious metal Pt. However, as is well known, Pt is readily poisoned by
CO-like intermediate species formed during methanol oxidation at low tempera-
tures. It has been found that Pt-based binary or ternary catalysts, Pt-M1, Pt-M1-
M2 (M=Ru, Sn, etc.) can improve the reaction kinetics of methanol electrooxi-
dation based on the bifunctional effect (promoted mechanism by the second
metal) [17,19,22,24,26] and/or on the tuned electronic properties of Pt (the
intrinsic mechanism) [28,29,36]. The bifunctional effect is illustrated in the fol-
lowing equations:

Pt � CH3OH ! Pt � �CH3OH�ads (4.4)

Pt � �CH3OH�ads ! Pt � �CO�ads � 4H� � 4e� (4.5)

M � H2O ! M � �H2O�ads (4.6)
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M � �H2O�ads ! M � �OH�ads � H� � e� (4.7)

Pt � �CO�ads � M � �OH�ads ! Pt � M � CO2 � H� � e� (4.8)

After methanol adsorption on Pt catalysts, dehydrogenation (C-H bond
cleavage or C-H activation) of methanol proceeds to produce CO(ads). Equa-
tions 4.6 and 4.7 relate to water activation on M. Pt and M cooperate to oxi-
dize CO(ads) to yield CO2 (Equation 4.8). The rate-determining step has long
been thought to be within these steps (4.6)–(4.8). It is worth mentioning that
using DFT and single-crystal model catalyst, Wieckowski and coworkers have
calculated the energetic for CH3OH dehydrogenation steps and elucidated
that methanol dehydrogenation (Equation 4.5) proceeds via the following
reaction path [38]:

CH3OHads ! CH2OHads � Hads ! CHOHads � 2Hads

! COHads � 3Hads ! COads � 4Hads (4.9)

The intrinsic mechanism states that M could modify the electronic properties
of Pt, and as a consequence, change the adsorption of oxygen-containing species
and even the dissociative adsorption of methanol. The CO adsorption on Pt is
stabilized by two simultaneous effects: electron transfer (donation) from the
CO-filled 5σ molecular orbital to the empty dσ band of Pt, and back-donation of
electrons from metal dπ orbital to empty 2π* antibonding orbital of CO. The
generation of an σ-type bond strengthens the p-type bond and vice versa. In the
Pt–M alloys, a modification of the empty electron state density of Pt occurs, with
a shift of the Fermi energy level with respect to the energy of CO molecular
orbital. This generates the synergistic effect to weaken the Pt-CO bond, and
thus facilitates the methanol oxidation kinetics.

Among all the Pt-based alloys, PtRu was found to be the best candidate
catalysts for methanol eletrooxidation [17,18,39–41]. The composition and
structure of PtRu strongly affect the catalytic activity. It has been reported
that 40–60 at.% Ru gives the optimum catalytic activity to methanol oxidation.
In the early study, synthesis of PtRu alloy was emphasized, because Ru sites
are required to locate close to Pt sites to promote oxidation of CO (Equa-
tion 4.10), according to the bifunctional mechanism. In addition, a closer
Pt–Ru interaction will promote electronic effects of Pt, which could lead to
facile removal of COads. With the advancement of research, it was found that
the formation of a PtRu alloy was not an essential requirement for a high
methanol oxidation activity. Rolison et al. found that if Ru existed as hydrous
oxide, the methanol oxidation activity would be greatly improved [42–44]. Ren
et al. also showed that the more RuOxHy content, the better the DMFC per-
formance [45]. The benefits of RuOxHy were attributed to the conductivity of
its electrons and protons and the innate possession of surface OH groups.
Although the preferable Ru form is still under debate, it is encouraging to find
that PtRu-based ternary and quarterly catalysts can further improve methanol
oxidation activity. Experimental and combinational high-throughput methods
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have been employed and it has been found that the “promotional” elements
include W, Mo, Ir, Os, Ni, Co, V, Rh, and so on. Reddington et al. demon-
strated that Pt44Ru41Os10Ir5 is the best composition in both half-cell and sin-
gle DMFC tests among more than 600 Pt–Ru–Os–Ir quaternary catalysts [33].
Kim et al. found that PtRuSn is a better catalyst than PtRu, and ascribed the
enhancement of MOR activity to the synergistic effects of Ru as a water activa-
tor and Sn as an electronic modifier of Pt [46]. It was noted that the third and
fourth element amount should be kept lower than a certain amount, otherwise
its presence will have a negative effect on the catalyst performance. In general,
Pt–Sn catalysts present a higher CO oxidation activity, but lower methanol
oxidation activity, probably due to a decreased methanol adsorption and
dehydrogenation on Pt–Sn. Binary Pt–W, Pt–Ni, and Pt–Co catalysts have
also demonstrated a certain degree of MOR improvement than pure Pt, but
the activity improvement is less than PtRu [47–49].

The development of direct methanol fuel cell technology in the last decades
has achieved very interesting results. The peak power density of a PEM-based
DMFC can reach 500 mW cm�2 and 300 mW cm�2 under oxygen and air feed
operation, respectively. At a fuel cell voltage of 0.5 V, 200 mW cm�2 has been
reported at a temperature close to or above 100 °C under pressured conditions,
with a Pt loading of 1–2 mg cm�2. However, at ambient temperature and passive
air-breathing mode operation, the power density range remains between 10 and
40 mW cm�2 [4]. The high energy density of DMFCs makes them a competitive
replacement of current Li ion batteries for a global portable electronics market
of 6 billion dollars. As a comparison, the alkaline membrane-based DMFC has a
much lower performance than peak power density, that is, ∼80 mW cm�2 for
Pd/multiwalled nanotubes (MWNTs) anode DMFC [50]. Therefore, the alkaline
membranes have more advantages for direct C2+ alcohol fuel cells, as discussed
in the following sections.

4.3
Anode Catalysts for Direct Ethanol Fuel Cells: Break C-C Bond to Achieve
Complete 12-Electron-Transfer Oxidation

Ethanol is a biorenewable molecule. It is manufactured through photosynthesis
causing an agricultural feedstock, such as sugarcane, corn, grain, wheat, cotton,
and many types of cellulose wastes and harvests. Using ethanol as fuel has a big
advantage of reducing CO2 footprints in the atmosphere, because the absorption
of CO2 by living plant matter will be used as the feedstock to produce it [51].
The current utilization of ethanol fuel is as blends of gasoline with denatured
ethanol, that is, E85 is 85% ethanol-mixed gasoline, which has recently appeared
at fueling stations in the United States, mainly in the Midwest. However, all
internal combustion engines are limited by the Carnot cycle. In principle, gener-
ation of electricity through direct ethanol fuel cells is a more efficient way to
utilizing ethanol [6].
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4.3.1

Principles of PEM-Direct Ethanol Fuel Cells

In an acid electrolyte, the anode, cathode, and overall reactions are as follows:

C2H5OH � 3H2O ! 2CO2 � 12H� � 12e� �0:085 V versus SHE �anode�
(4.10)

3O2 � 12H� � 12e� ! 6H2O �1:23 V versus SHE �cathode� (4.11)

C2H5OH � 3O2 ! 2CO2 � 3H2O �1:15 V �overall� (4.12)

The thermodynamic reversible energy efficiency at standard conditions is 97%,
which is defined as the ratio of the electrical energy produced, and the heat of
the combustion at constant pressure. However, under the working conditions,
with a current j, the cell voltage is lower than the equilibrium potential; there-
fore, the practical energy efficiency is lower. For example, for a direct ethanol
fuel cell working at 0.55 V and 100 mA cm�2 with 80% selectivity to CO2 and
20% selectivity to acetic acid, the efficiency is

εcell � εF � εE � εrev � �0:2 � 4=12 � 0:8 � 1� � �0:55=1:15� � 0:97 � 40%

The potential efficiency εE = 48% (0.55/1.15). The Faradic efficiency εF is associ-
ated with the product distribution (catalyst selectivity). For CO2 product, the
Faradic efficiency is 100% (12/12), while for acetic acid product, only four elec-
trons are transferred, and the Faradic efficiency is 33% (4/12). Although higher
current densities are not necessarily associated with complete oxidation of etha-
nol, improving the anode catalyst selectivity to CO2 will increase the overall
DEFC efficiency and fuel utilization.

4.3.2

Reaction Mechanisms and Catalysts for Ethanol Electrooxidation

The complete electrooxidation of ethanol is a complex 12-electron-transfer
reaction and various reaction intermediates can be formed during the ethanol
oxidation process. The electrochemical oxidation of ethanol in acid electrolyte
requires Pt, which is primarily involved in two key steps – cleavage of C-H and
C-C bonds – occurring during the oxidation process.

Based on half-cell and single fuel cell tests, in situ FTIR spectroscopy, and
chromatograph studies, a proposed overall scheme for ethanol oxidation on Pt-
based catalysts is summarized in Figure 4.1 [52]. The first step is the dissociative
adsorption of ethanol through either O-adsorption or C-adsorption (step 1)
[53,54], leading to the formation of adsorbed acetaldehyde (step 2). Acetaldehyde
has been examined at potential <0.6 V versus RHE. It could be readsorbed
according to step 3 and react with adsorbed OH to generate acetic acid through
a bifunctional mechanism as shown in step 4. This step does not break the C-C
bond and often occurs at >0.6 V RHE. The adsorbed CH3CHOH could also
undergo further dehydrogenation (step 5) and react with adsorbed OH to
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produce acetic acid directly (step 6) [6]. There is still some controversy on
whether acetic acid is formed through acetaldehyde or through CH3COH (steps
5 and 6).

Pt is able to break the C-C bond, leading to adsorbed CO species at relatively
low anode potentials: from 0.3 V RHE, the adsorbed peak has clearly been shown
in SNIFTIRS spectrum [55]. One can consider two distinct sequences: steps 7
and 8 or steps 9 and 10. The first sequence assumes that ethanol must be
adsorbed by the C-H bond cleavage in both carbon atoms and the second
sequence assumes that the rupture of the C-H bond of the intermediate formed
after the acetaldehyde adsorption. The COads species thus react with adsorbed
OH to produce CO2 through step 11. Trace amount of CH4 at the potential of
<0.4 V has been detected, thus the following reaction may occur [53,54]:

Pt � �COCH3�ads � Pt ! Pt � �CO�ads � Pt � �CH3�ads; at E > 0:3 V SHE (4.13)

Pt � �CH3�ads � Pt � �H�ads ! 2Pt � CH4; at E < 0:4 V SHE (4.14)

It is interesting to note that only acetic acid, acetaldehyde, and CO2 have been
detected by HPLC from the outlet of the anode compartment of a DEFC with
Pt/C catalyst [56], while depending on electrode potentials, acetaldehyde, acetic
acid, CO2, and trace amounts of CH4 can be found in electrolysis half-cell. It is
also found that acetaldehyde can be exclusively produced at a potential <0.35 V
versus RHE on a Pt catalyst in a long-time electrolysis experiment; no acetic acid
was detected in the potential range [6]. This implies that the alcohol product
distribution depends on electric energy input.

In an acid electrolyte, Pt-based catalysts have shown better EOR activity than
other platinum group metal (PGM)-based ones. However, Pt itself is readily
poisoned by various C1, C2 intermediate species. Binary and ternary Pt-based

Figure 4.1 Proposed mechanisms for ethanol oxidation reaction [52].
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catalysts, including Ru, Sn, Pb, Pd, and so on, have been thoroughly investigated
to improve the kinetics of ethanol oxidation. Sn appeared to be the most promis-
ing one [2,7,57–59]. Xin Lab has examined Pt–M (M=Ru, Sn, Pd, and W) cata-
lysts in single PEM-DEFC and found the activity order to be PtSn>PtRu>
PtPd>Pt. W and Mo were also alloyed with Pt1Ru1 catalysts and still show
inferior EOR activity compared with PtSn [60–65]. Lamy and coworkers studied
PtSn/C(90 : 10, 50 : 50), PtRu/C(90 : 10, 80 : 10), and Pt86Sn10Ru4/C and demon-
strated that PtSn has a much higher EOR activity than Pt [52,56,66,67]. The
product distributions of EOR on PtSn catalysts, however, have been changed
compared with Pt:An increase in the acetic acid yield and a decrease in acetalde-
hyde and CO2 yield. The presence of Sn seems to allow the activation of water
molecules and the oxidation of acetaldehyde species into acetic acid at low
potentials through bifunctional mechanism. At the same time, Sn dilutes the
adjacent Pt atom concentration, thus decreasing the possibility of dissociative
adsorption of ethanol with two carbons, which can directly lead to CO2 produc-
tion. The function of Sn may also include some electronic effects (ligand effect)
on the CO oxidation reaction [68]. Wang et al. studied Pt/C, PtRu/C, and Pt3Sn/
C using in situ FTIR spectroscopy and online DEMS studies, and also found that
the additions of Ru and Sn do not promote C-C bond cleavage, and that the
total CO2 production was <2% contributed to current [13]. Therefore, the previ-
ous work shows that the higher ethanol oxidation current density on the PtSn/C
catalysts results from higher yields of C2 products, not from improved complete
ethanol oxidation to CO2.

The recent research efforts are toward discovering new catalyst compositions
and structures that can simultaneously break C-C bond to achieve complete
EOR and to increase (or at least maintain) the EOR activity. The addition of Rh
to Pt seems to promote the C-C bond breakage, however, the overall EOR
activity is lower than PtSn [69,70]. Adzic and coworkers group recently demon-
strated that a ternary Pt/Rh/SnO2 nanostructured catalyst can better break C-C
bond and promote EOR kinetics [71]. The EOR specific activity on PtRhSnO2/C
was much higher than PtSnO2/C and PtRu/C catalysts. The onset potential of
EOR on PtRhSnO2/C negatively shifted 180 mV (0.330–0.150 V versus SHE)
compared with PtRu/C, as shown in Figure 4.2b. The potential-dependent peak
near 2342 cm�1 for the signature peak asymmetric stretch vibration of CO2

appears at 0.78 V on Pt(111) electrode, but shifts to above 0.30 V on RhSnO2/
Pt(111) electrode, indicating cleavage of the C-C bond in ethanol, as shown in
Figure 4.2c and d. Based on DFT calculations, the dehydrogenation (of β-H) and
C-C breakage steps (16 and 17) are of critical importance for achieving com-
plete decomposition and oxidation of ethanol.

*CH3CH2OH !*CH3CH2O � H* (4.15)

!*CH2CH2O � 2H* (4.16)

!*CH2 �*CH2O � 2H* (4.17)
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Ethanol decomposition on RhPt/SnO2 occurs through an oxametallacyclic
conformation (-CH2CHO). The two steps, Equations 4.16 and 4.17, can be
achieved by incorporating the element Rh with more lying-d band, especially
when it is alloyed with Pt.

4.3.3

Anion Exchange Membrane-Based Direct Ethanol Fuel Cells (AEM-DEFCs)

The kinetics of both oxygen reduction and alcohol oxidation can be more signif-
icantly improved in a high-pH electrolyte than in a low-pH one, due to enhanced
ion transport and facile charge transfer in alkali [72]. The anion exchange mem-
brane direct ethanol fuel cells build upon AEM electrolyte and are directly fed
with ethanol fuel. At the anode, the ethanol reacts with OH� to produce CO2

(complete oxidation), while at the cathode, oxygen reacts with H2O and

Figure 4.2 Current–potential curves compar-
ing the activity of PtRhSnO2/C with that of
several other catalysts for ethanol oxidation.
Electrocatalyst compositions – PtRhSnO2/C:
30 nmol Pt, 8 nmol Rh, and 60 nmol SnO2;
PtSnO2/C: 30 nmol Pt and 60 nmol SnO2 (a);
PtRhSnO2/C: 25 nmol Pt, 5 nmol Rh, and

20 nmol SnO2; PtRu/C: 25 nmol Pt and 25 nmol
Ru. (b) 0.1M HClO4+ 0.2M ethanol, 50mVs.
In situ IRRAS spectra recorded during ethanol
electrooxidation on the Pt(111) electrode (c),
and PtRhSnO2/C in 0.1M HClO4+ 0.2M etha-
nol solution (d) [71].
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electrons to yield OH�. The anode, cathode, and overall reactions and their the-
oretical potentials are shown in Equations 4.18–4.20.

C2H5OH � 12OH� ! 2CO2 � 9H2O � 12e� �0:75 V versus SHE �anode�
(4.18)

3O2 � 6H2O � 12e� ! 12 OH� �0:40 V versus SHE �cathode� (4.19)

C2H5OH � 3O2 ! 2CO2 � 3H2O �1:15 V �overall� (4.20)

The current AEMs are mainly based on quaternary ammonium hydroxide
(QAOH) polymers [73]. They have demonstrated good thermal and chemical sta-
bility. The OH� conductivity of a commercial AEM, such as Tokuyama A201, is as
high as 38 mS cm�1 [74]. These AEMs can be operated at 80 °C without structural
changes. Under such low-temperature operations, undesirable decomposition of
alcohol does not occur. Serious problems traditionally associated with electrolyte
carbonation for liquid alkaline fuel cells can be overcome using a solid AEM elec-
trolyte. There are no mobile cations, that is, K+, in AEMs, so it is not easy to form
precipitations (i.e., K2CO3) that block or destroy an electrolyte and alleviate all
cation-related issues. The anions cross from cathode to anode, thus minimizing
alcohol crossover problem. The AEMFCs also have price advantages over PEMFCs
due to low-cost AEM membrane (hydrocarbon polymer versus poly(perfluorosul-
fonic acid) PEM, that is, Nafion). Owing to a less corrosive basic working environ-
ment, inexpensive non-PGMs, such as Ag and Fe/Co–N have demonstrated very
competitive oxygen reduction reaction (ORR) activity and durability and can be
used as AEMFC cathode catalysts [72,75,76]. All the merits have gained anion
exchange membrane a lot of research attention in recent years.

4.3.4

Anode Catalysts for AEM-DEFCs

Pd has demonstrated the highest EOR activity in high-pH media among all
known single-metal catalysts [5,7]. Pd is more abundant on the Earth’s crust:
200 times higher than Pt (0.6 versus 0.003 ppb). Pd has a lower price than Pt.
The EOR activity on Pd highly depends on pH [77,78]. Liang et al. suggested an
EOR mechanism in high-pH media by using CV study [79]. They showed that
the α-C is first activated on a Pd surface to dehydrate 2 H atoms, and to break
O-H, “ethoxi” (-CH3CO) forms. Ethoxi reacts with adsorbed -OH to produce
acetate, this is the rate-determining step. A subtle balance between the ethanol
and OH� concentrations is required for high oxidation activity because the prev-
alence of either species in solution may hinder the necessary adsorption of both
species, thus resulting in a lower EOR activity.

Pd � OH� ! Pd � �OH�ads � e� (4.21)

Pd � �CH3CH2OH�ads � 3OH� ! Pd � �CH3CO�ads � 3H2O � 3e� (4.22)

Pd � �CH3CO�ads � Pd � �OH�ads ! Pd � �CH3COOH�ads � Pd (4.23)
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DFT calculations on model Pd clusters have shown that dehydrogenation
hardly occurs without the assistance of OH�. Both α-C and H from the hydroxyl
taking part in the ethanol oxidation are facile in the presence of OH�, leading to
the formation of acetaldehyde [78]. However, its oxidation peak has not been
observed in the CV scan.

Binary Pd-M (M=Ru, Au, Sn, Cu, etc.) catalysts have been investigated and they
demonstrated improved EOR activity. Chen et al. found that Pd–Ru shows higher
activity toward methanol, ethanol, and ethylene glycol than Pd, the optimum com-
position being 1 : 1 [80]. PdAu and PdSn catalysts show better tolerance to poison-
ing species than Pt catalyst [81]. The effects of addition of various oxides (NiO,
CeO2, etc.) to carbon-supported Pd have been studied. Among them, NiO showed
the highest peak current density. The possible function of oxide is because OHads

species could be easily formed on the surface of oxide, the formation of OHads can
assist transformation of CO-like poisoning intermediates on the Pd surface to CO2

or other products [82]. It is interesting to note that ternary metal Pd–Ni–Zn cata-
lysts demonstrated the highest EOR activity (its specific activity in half-cell test is
>3600 A gPd

�1) and excellent reaction stability [5,83,84]. The Pd-based catalysts
can accelerate the EOR kinetics, but it is difficult to break the C-C bond in high-
pH media. The products are exclusively carboxylates, especially for primary alco-
hols, that is, ethanol and isopropanol [85]. Although polyols (i.e., glycerol) may
undergo C-C bond scission to form carbonate, it is still a minor reaction path,
the major products being various carbohydrates [86,87].

To date, AEM-DEFCs have exhibited higher performance than PEM-DEFCs [5].
For example, an active AEM-DEFC with the Pd–Ni–Zn/C anode catalyst and Fe–
Co–N/C cathode catalyst (from Acta) shows a peak power density of 200 mW
cm�2 at 80 °C and 2 atm O2 back pressure [83]. For PEM-DAFC, the higher alco-
hols, such as ethanol, ethylene glycol, and glycerol, are difficult to be oxidized even
on Pt and Pt-based catalysts, unless the temperature is increased to >130 °C. The
state-of-the-art PEM-DEFC with a PtSn anode catalyst has a peak power density of
50–70 mW cm�2 [60,64]. However, current AEM-DEFCs need liquid base mixed
with alcohol fuel to provide sufficient OH� for improving its reaction kinetics. The
development of more effective anion exchange ionomer, construction of ordered
electrode architectures, and examination of long-term reaction stability are the
necessary research tasks for developing efficient and durable AEM-DEFCs.

4.4
Anode Catalysts for Direct Polyol Fuel Cells (Ethylene Glycol, Glycerol): Cogenerate
Electricity and Valuable Chemicals Based on Anion Exchange Membrane Platform

4.4.1

Overview of Electrooxidation of Polyols

It has been known that the catalyst activity toward alcohol oxidation reaction can
be significantly enhanced in alkaline electrolyte [2,88]. A recent study by Koper
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and coworkers shows that the first deprotonation step in alcohol oxidation is a
base-catalyzed step, and the second deprotonation depends on the ability of the
electrode materials (i.e., Au or Pt) to abstract the Hβ [87]. Theoretical DFT calcu-
lations further show that the adsorbed OH species are essential to accelerate
many steps in alcohol oxidation, that is, the activation energy of the first depro-
tonation step in the absence of OH� is as high as 204, 116 kJ mol�1 on Au and Pt
catalysts, respectively, while it drops one order of magnitude (22 and 18 kJ mol�1

on Au and Pt) with assistance of adsorbed OH� [89]. These works indicate that
the base catalysis is the main driver behind the high oxidation activity of alcohols
in alkaline electrolyte, but not the catalyst interaction with hydroxide.

Due to the enhanced oxidation kinetics in high-pH media, anion exchange
membrane fuel cells using biomass-derived alcohol fuels (e.g., ethanol and glyc-
erol) have recently attracted increasing attention. Accumulated evidences have
shown that breaking C-C bond of C2+ alcohol on metal catalysts at low temper-
atures is very difficult, especially in high-pH media [5]. For example, the main
products of ethanol oxidation are acetaldehyde and acetic acid (or acetate).
This lowers the Faradic efficiency to 17–33% for direct ethanol fuel cells [6].
The use of polyol fuels can be an interesting alternative, because in the polyols,
each carbon has a hydroxyl (-OH) group that can be fully oxidized to carbonyl
(-CO) or carboxyl (-COOH) group; therefore, more electrons are generated
even without breaking C-C bonds, and the fuel cell’s Faradic efficiency
improves. In addition, ethylene glycol and glycerol have competitive energy den-
sities (5.2 and 5.0 kWh kg�1 for ethylene glycol and glycerol, respectively, versus
6.1 and 8.0 kWh kg�1 for methanol and ethanol, respectively), and they are non-
flammable and nontoxic fuels.

The complete oxidation of two hydroxyl groups of ethylene glycol to oxalate
without breaking C-C bond is as follows, and the Faradic efficiency is 80%.

CH2OH � CH2OH � 14OH� ! 2CO3
2� � 10H2O � 10e� (4.24)

CH2OH � CH2OH � 10 OH� ! �COO � COO�2� � 8H2O � 8e� (4.25)

The complete oxidation of three hydroxyl groups of glycerol to mesoxalate
without breaking two C-C bonds is as follows, and the Faradic efficiency is
71.5%.

CH2OH � CHOH � CH2OH � 20 OH� ! 3CO3
2� � 14H2O � 14e� (4.26)

CH2OH � CHOH � CH2OH � 12 OH� ! �COO � CO � COO�2�
�10H2O � 10e� (4.27)

In addition, incomplete oxidation of polyols leads to production of higher
valued chemicals, such as dihydroacetone, which is a valuable tanning agent,
hydroxypyruvic acid, which is a flavor component and a possible starting mate-
rial for DL-serine synthesis, and tartronic and mesoxalic acids, which are impor-
tant intermediates for novel polymer and pharmaceutical synthesis. Therefore,
research on cogeneration of electricity and higher valued chemicals from polyols
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based on anion exchange membrane fuel cell platform will not only be attractive
for developing electrochemical power sources but will also help to open new
routes for conversion and utilization of biomass resources.

4.4.2

Reaction Mechanisms and Catalysts for Ethylene Glycol Electrooxidation

The oxidation of EG is more complex than that of ethanol due to its two adja-
cent hydroxyl groups. The investigation into EG electrooxidation in alkaline
media started from the mid-1970s. Since the complete oxidation of EG needs up
to 10 electrons, various reactive species and reaction intermediates could be pro-
duced through several consecutive and parallel steps. Figure 4.3 illustrates the
general reaction scheme for electrooxidation of EG [5]. Compounds in boxes
have been detected in anode compartment of DEFCs using HPLC, among them
glyoxylic acid was in trace amount over Pt0.45Pd0.45Bi0.1/C catalyst at 0.58 V for
360 min [90]. The compounds in circles have been exclusively detected in half
cells using IR spectroscopy, and they are the reaction intermediates including
glycolaldehyde and glyoxal. There are two paths for EG oxidation: poisoning and
nonpoisoning paths. The nonpoisoning path stops at oxalate, because oxalate is
very slowly oxidized on electrocatalysts, especially Pd surface. Oxalate is not a
main product and it comes from further oxidation of glycolate (glycolic acid) or
glycoxalate (glyoxalic acid) depending on pH. The poisoning path leads to the
production of C1 products, that is, carbonate, due to C-C bond scission in the
process of further oxidation of glycolate. The applied potential plays a key role in

Figure 4.3 Proposed mechanism for ethylene glycol oxidation [5].
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C-C bond cleavage: no C-C bond cleavage occurs at <400 mV over Pt catalyst,
while the C-C bond of EG was cleaved in EG oxidation at 500 mV, which led to
CO poisoning [91].

The EG electrooxidation kinetics and product distribution are quite different
over Pt and Au. Cyclic voltammetry shows that the onset potential is more posi-
tive, but the peak current is larger on Au than on Pt, which indicates quite dif-
ferent reaction pathways. Weaver group studied the EG electrooxidation
pathways in alkaline electrolytes on Pt and Au. They found that the Au featured
the successive formation of partially oxidized C2 solution-phase species en route
to oxalate and carbonate production, while Pt was able to oxidize EG to carbon-
ate through a sequence of chemisorbed (rather than solution-phase) intermedi-
ates [92]. Au is a very good catalyst for electrooxidation of aldehydes and
alcohols in high-pH media. The electrooxidation of EG on Pd in alkaline media
does not diverge that much compared with that on Pt: glycolate, oxylate, and
carbonate seem to form at the same potential with an increase of oxalate and
carbonate formation at the consumption of glycolate. Low pH favoring C-C
bond scission is because a high OH coverage of the Pd/Pt surface is required for
yielding only carboxylate products.

The activity of EG electrooxidation can be improved using binary or ternary
catalysts either by alloying PGM (i.e., Pt or Pd) with different metals or by mod-
ifying the PGM surface by foreign metal ad-atoms [90,93–95]. Pt-M ad-atom
(M=Bi, Cd, Cu, Pb, Re, Ru, Ti) catalysts have been studied and Pb and Bi were
found to be able to improve the EG oxidation current density close to diffusion-
limited value, attributed to bifunctional theory of electrocatalysts. Coutanceau
and coworkers studied Pt, Pt–Pd, and Pt–Pd–Bi alloy catalysts for EG oxidation
in both liquid alkaline electrolytes and AEM-based direct EG fuel cells. They
found that the addition of Bi could decrease the onset potential by 70 mV, while
Pt–Pd–Bi does not change the onset potential but leads to enhanced current
density. EG is converted to glycolic acid, oxalic acid, and formic acid on Pt/C,
while no formic acid but trace amounts of glyoxalic acid were observed on
PtPdBi/C. They proposed that Bi favors the adsorption of OH species and
depresses the C-C bond cleavage, which is likely due to dilution of surface Pt
atoms [90]. The function of Pd is to only limit the poisoning of Pt sites by chang-
ing the composition of chemisorbed species. Nanostructured Pd–(Ni–Zn)/C and
Pt–(Ni–Zn–P)/C have demonstrated to be much more active than smooth Pd
electrodes up to 3300 A gPd

�1, and have also changed the oxidation product dis-
tributions: mixture of glycolate, oxalate, and carbonate were obtained, while
most glycolate yielded on Pd/C catalyst. This indicates that Pd–(Ni–Zn)/C could
promote C-C bond cleavage for a more complete oxidation [5].

4.4.3

Reaction Mechanisms and Catalysts for Glycerol Electrooxidation

Glycerol can be by-produced in large amounts in the biodiesel production
[10,11]. Glycerol electrooxidation has been studied for its possible use in fuel
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cells. In alkaline media, Pt, Pd, and Au have demonstrated distinct behaviors to
glycerol electrooxidation. Pt/C shows a 150 mV lower onset potential and higher
peak current than Pd and Au, while Au has a higher onset potential but broader
GOR active potential region, which is due to its high redox potential. The Pd–
Au alloy (atomic ratio of Pd–Au: 0.3 : 0.7, 0.5 : 0.5) catalysts presented compara-
tively lower onset potential than monometal Au/C and Pd/C ones, but still
higher than Pt/C [96].

The oxidation products include glyceric acid, tartronic acid, glycolic acid, for-
mic acid, oxalic acid, CO2, and so on, and their distributions depend on the cata-
lyst composition and structure and operation potential (anode overpotential)
[5,50,86–88,96]. For example, an AEM-DGFC with a Pd/carbon nanotube
(CNT) anode catalyst provided stable current for 8.4 h, producing 3070 C and
achieving 28.6% conversion. About 4 mmol of glycerol was consumed to produce
27% glycerate, 23% tartronate, 4% glycolate, 15% oxalate, 9% formate, and 22%
carbonate [50]. An electrolysis cell operated at 0.1 A and 0.6–0.7 V for 15 h in
2 M KOH+ 2 M glycerol produced 35% glycerate, 36% tartronate, 3% glycolate,
14% oxalate, 2.5% formate, and 12.5% carbonate [97]. Based on these results, a
reaction mechanism for glycerol oxidation is proposed, as shown in Figure 4.4.
The primary OH is first oxidized to produce glyceric acid, and then the other
end OH is oxidized to yield tartronic acid, glycolic acid is subsequently produced
due to C-C bond scission. Glycolic and formic acids are further oxidized to pro-
duce oxalic acid, and CO2, respectively.

Recently, Kwon and Koper used a self-designed onsite sample collection and
off-line HPLC analysis system to study the mechanism of glycerol electrooxida-
tion on Pt and Au electrodes [86]. They found a strong correlation between
applied potential, catalyst (Pt and Au), and oxidation product distribution. On
the Pt electrode, only glyceric acid was examined at relatively low potential, that
is, <0.4 V (versus RHE), in 0.1 M NaOH+ 0.1 M glycerol at 25 °C. Beyond this
potential, glycolic acid and formic acid are produced due to C-C bond breaking.
As the potential increases to ∼0.5 V, tartronic acid and oxalic acid were exam-
ined. On the Au electrode, the onset potential of glycerol oxidation (at 0.65 V) is
much higher than that of Pt. The glyceric acid is the only product under poten-
tial of ∼ <0.8 V, while glycolic acid and formic acid were detected at a scan

Figure 4.4 Proposed mechanism of glycerol oxidation on Pd catalysts. Adapted from Ref. [50].
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potential of >0.8 V. No tartronic acid and oxalic acid were observed throughout
the potential range of 1–1.8 V. This approach enables the monitoring of soluble
reaction products during voltammetry with HPLC and allows new insights into
mechanisms of complex multistep electrode reactions.

Controlled partial (selective) oxidation of glycerol using molecular oxygen in
an aqueous-phase heterogeneous catalytic system under moderate conditions
(i.e., 30–80 °C, 3–10 bar) represents a very attractive process for its low environ-
mental impact, especially when compared with current stoichiometric oxida-
tions; therefore, they have been extensively studied in recent years [89,98–105].
It was found that precious metals, such as Pt, Pd, Rh, and Au, are active, selec-
tive, and stable catalysts. The partial oxidation of glycerol can selectively produce
value-added products. It has been found that in low-pH media, DHA can be
produced with a selectivity of 35% on PtBi catalysts, while in high-pH media, the
primary OH will be preferentially oxidized, and diverse products, such as C3 acid
(glyceric acid, tartronic acid), C2 acids (glycolic acid, oxalic acid), and C1 acid
(formic acid) are produced. In heterogeneous catalysis, catalyst size and struc-
ture, the support (C or oxides), reaction conditions (i.e., temperature, O2 pres-
sure, ratio of catalyst to glycerol), and oxidant (O2 or H2O2) are found to be able
to influence the catalyst selectivity. Au is unique in heterogeneous catalytic oxi-
dation of glycerol: The TOF is close to zero (no reaction) in the absence of a
base, but a 100% selectivity to glyceric acid can be obtained at a glycerol conver-
sion of 56% in an optimized high-pH environment [106,107]. High selectivity of
glycolic acid can be achieved using H2O2 as oxidant. The identified electrocata-
lytic oxidation pathways are compared with reported heterogeneous catalytic
oxidation pathways, as shown in Figure 4.5. More experimental and theoretical
research efforts are needed to compare the heterogeneous catalytic oxidation
and electrocatalytic oxidation of polyols, and may lead to the development of
novel electrocatalysts that can efficiently cogenerate higher valued chemicals
and electricity.

The AEM-DGFCs have demonstrated encouraging performance. For example,
an AEM-DGFC with Pd–Ni–Zn/C anode and Fe–Co–N/C cathode catalysts
have shown a maximum power density of 120 mW cm�2, which is competitive to
PEM-based DMFCs and two to three orders of magnitude higher than current
biofuel cell with glycerol fuel (normally <1 mW cm�2) [5]. Higher polyols than
EG and glycerol, such as erythritol and xylitol, have been used as fuels in AEM-
DAFCs with PtRu/C anode catalyst [108]. They showed lower performances than
the AEM-DAFCs with EG and glycerol fuels. The reaction products have not
been carefully examined and detailed mechanisms are required to be understood.

4.5
Synthetic Methods of Metal Electrocatalysts

High-performance practical electrocatalysts are essential to enhancing electroox-
idation of alcohols for direct alcohol fuel cells. The overall electrocatalytic
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functions were found to be determined by local electronic property of the sur-
face metal (d-band shift, electronic effects) [109], availability of presenting spe-
cial geographic plane/facet (geometric effects) [110,111], and surface
arrangements of different metals (ensemble effects) [112]. Research on single-
crystal catalysts combined with theoretical calculations (e.g., DFT) have been
extensively conducted in the past decades, and have provided valuable insights
into the relationships of structure–catalytic functions [110,113]. For example, it
was found that the overpotential for CO oxidation is lowered in the sequence of
Pt (111)<Pt (554)<Pt (553), and the peak potential difference between Pt(553)
and Pt(111) was as high as 0.17 V [114]. A Pt(111)skin-Ni(111) catalyst can
exhibit over 90 times higher oxygen reduction reaction activity due to loose
OH� coverage on Pt skin with the modified electronic structure (optimized
d-band center shift) [109,115]. However, it is still a big challenge to accurately
synthesize real-world catalysts mimicking the single-crystal structures. The cru-
cial considerations for synthesizing practical catalysts include control of the par-
ticle size, size distribution, shape (crystallographic facet), electronic structure
(i.e., core–shell), nominal composition, surface composition, ensemble arrange-
ments, alloying degree, oxide content of catalytic materials, and so on [116–118].
The long-term stability of metal catalyst and support in hostile electrochemical

Figure 4.5 The proposed glycerol electrooxi-
dation pathways using online collection and
off-line HPLC analysis (marked in red arrows)
(adapted from Ref. [87]), and reported

heterogeneous catalytic oxidation of glycerol
pathways (marked in green arrows) (adapted
from Ref. [89]).
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environments is another practical concern [119]. The preparation method thus
becomes a key factor determining the activity, selectivity, and stability of
electrocatalysts.

The synthesis of real-world metal catalysts can be generally classified into
“top-down” physical (from macroscale to nano dimensions) routes and “bottom-
up” chemical (from molecular/atomic scale to nanoscale) routes [120]. The phys-
ical routes proceed with atomization of metals in a vacuum by thermal evapora-
tion or sputtering, and so on [121–123]. The metal catalysts prepared by
physical methods have low contaminations, and can be applied to fundamental
studies. However, physical methods lacks of control over the size, size distribu-
tion, and shape of metallic particles. In contrast to physical methods, chemical
methods are more flexible to precisely control the particle size, shape, and struc-
ture [124]. Recently, wet chemical synthesis approaches have emerged as one of
the most promising methods to accurately control size, shape, structure, and
surface facets of metallic nanostructures [118,124–140]; thus, they hold great
potential for serving as high-performance catalysts. A typical wet chemical syn-
thesis involves chemical reduction of dissoluble metal precursors in aqueous or
organic phase to nucleus, controlled growth to the finally desired metal nano-
particles in the presence/absence of stabilizing agents and deposition on appro-
priate carbon supports. Despite the great progress in electrochemical approaches
(i.e., underpotential deposition) to accurate synthesis of core–shell (skin layer)
metal nanoparticles, the following section focuses only on recent advances in
chemical reduction synthesis of carbon-supported electrocatalysts [141,142].

4.5.1

Impregnation Method

Impregnation method involves soaking up of a dissolved metal precursor into
the pores of carbon support, and subsequently reducing the precursor into
metal nanoparticles using reducing agent such as HCHO, HCOONa, NaBH4,
NH2NH2, H2, and so on at optimized conditions [143–158]. Since the nucleation
formation and particle growth are mainly confined within the carbon-support
pores, the morphology of the porous substrate and the pore size distribution
play a key role in terms of penetration and wetting of the precursor and also
providing confinement for nanoparticle growth. In addition, the reduction kinet-
ics and mass transfer of reducing agent also affect the number of nucleus and
nucleation rate, thus controlling the particle size and particle size distribution.
In order to achieve uniform dispersion of metal particles on carbon support,
ethanol or isopropanol can be employed as solvent, and surface oxidation treat-
ment of carbon support could also improve hosting metal nanoparticles. Under
optimized synthesis conditions, the particle size prepared by the impregnation
method can be controlled within 10 nm. The impregnation method is simple
and easy to scale-up; therefore, it has been the most common method used for
electrocatalyst preparation over the years. The major drawback is the lack of
precise control of particle size, except when the porous substrate has a narrow
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pore size distribution, that is, in highly ordered mesoporous carbon (OMC)
[147]. In addition, it is hard to regulate the shape and structure of catalysts
using the impregnation method. Employing an organic molecule containing
two metals, such as Pt and Ru as precursor, represents a significant progress in
the impregnation technique. Lukehart and coworkers synthesized (η-C2H4) (Cl)
Pt(μ-Cl) (2)Ru(Cl) (η(3): η(3)-2,7-dimethyloctadienediyl) molecule and impreg-
nated it onto XC-72R carbon black, and after a heat treatment under appropriate
gas atmosphere, PtRu/C 16 wt% and PtRu/C 50 wt% catalysts were obtained with
small particle size (3.4 and 5.0 nm, respectively) and good Pt–Ru alloy structures
[146]. Although the PtRu/C catalysts demonstrated higher methanol oxidation
activity than commercial PtRu/C competitors, the extra complex synthesis steps
may not be suitable for a large-scale synthesis.

4.5.2

Colloidal Method

The colloid method is a widely adopted method for preparing metallic nanopar-
ticles with precisely controlled size, shapes, and structures [125–135,137–141].
This method includes preparation of metallic colloids first and subsequent depo-
sition on carbon support. One crucial approach is to prevent colloid aggrega-
tions using stabilizing agents, which include polymer, copolymer, surfactants,
ligands, solvents, long-chain alcohols, organometallics, and so on. Effectively
separating and controlling the nucleation and particle growth steps is essential
for regulating the colloid size. Narrow size distributions are usually achieved
either by steric hindrance of organic molecules on the metal surface or by elec-
trostatic stabilization between nanoparticles. Watanabe et al. invented an elegant
oxide colloid route to prepare PtRu/C. They first prepared colloidal PtRu oxides
in aqueous phase with strict control of pH during adding reaction agents,
and then reduced the oxide colloids by bubbling H2 to obtain high-dispersion
PtRu/C with a small particle size (2–3 nm) [159]. Bönnemann and Richards
developed a delicate organic-phase reduction route to accurately control metal
catalyst particle size and size distribution. NR4BR3H was used to reduce
organic metal precursors in THF [130]. Binary and ternary catalysts such as
PtRu/C, PtRuSn/C, PtRuW/C, and PtRuMo/C have been prepared through the
“Bönnemann” method and showed higher performance than commercial PtRu/C
catalyst [48,160].

4.5.2.1 Polyol Method
Polyol synthesis has been extensively studied for preparation of monometallic
and multimetallic colloids in a polyol or diol (generally ethylene glycol), which
serves as both solvent and temperature-dependent reducing agent (Figure 4.6)
[126,133,139,161–164]. The presence of polyvinylpyrrolidone (PVP) can help
control the particle size, shape, and structures. The key process of this method
involves the reduction of inorganic precursors at an elevated temperature, some-
times close to the boiling point of polyol. It is found that at higher reduction
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rates, the growth process leads to the production of thermodynamic-favored
shape, while at low reduction rates, the nucleation and growth will be kinetically
controlled and the shape of final products deviate from thermodynamic-favored
shapes. Therefore, precise size and shape control can be achieved through ratio-
nally tuning the reaction kinetics, particularly at the seeding stage. Pt nanostruc-
tures, such as nanodendrites [139], nanorods, nanobars [152], and so on, can be
accurately prepared through this method. However, the presence of stabilizers
may cause intrinsic catalytic activity loss, and the postprocess for removal of sta-
bilizers may lead to catalyst particle aggregation or shape/structure changes.

Polyol synthesis method in the absence of PVP was reported by Wang group
to prepare homogeneous Pt, Rh, and Ru colloids with an average particle size of
2–4 nm [165]. Later, supported noble metal or noble metal/transition metal
nanoparticles were prepared [60–65,166–179]. Xin and coworkers synthesized
carbon-supported Pt, PtRu, PtPd, PtIr, PtSn, PtW, and PtFe catalysts with a
sharp particle size distribution of 2–5 nm [60–65,166,168,170–173,175,177].
This method is simple and very easy to scale up. The inorganic compounds such
as H2PtCl6, RuCl3, PdCl2, SnCl2, FeCl2, and so on served as metal precursors.
The water content in the synthesis system was found to be able to control the
particle size and size distribution. The reduction was conducted in an alkaline
environment at 135–150 °C for 3–4 h, and the pH had to be adjusted back to
2–3 to separate the metal colloids from solvent and deposit them onto carbon
support. Good alloy structures could be obtained through this method. It is very

Figure 4.6 Pt and Pt-based electrocatalysts
synthesized using polyol method (in the
absence of PVP). (a) Pt nanoparticle
(D= 2.4 nm [165]. (b) Pt/C (40wt%, D= 2.9 nm
[168]. (c) PtRu/C (20 Ptwt %, D= 1.9 nm [60].

(d) PtSn/C (20 Ptwt %, D= 1.9 nm [62].
(e) PtFe/C (20 Ptwt %, D= 3.4 nm [173]. (f) Pt/
CNTs (30wt%, D= 4.46 nm [174]. (g) Pt/polya-
niline nanofibers (PaniNF, 30wt%, D= 2.1 nm
[176].
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attractive for large-scale synthesis because of the simple procedures and low
material cost. However, it has to some extent failed for the synthesis of noble
metal/transition metal alloy catalysts. Because EG is a weak reducing agent, tran-
sitional metal could not be fully reduced; therefore, its content is low in the final
bimetallic catalysts. That is, the Fe content in the resulted PtFe/C catalyst was
detected only 1/3–1/4 of its setting value [173].

4.5.2.2 Organic-Phase Method
In 2000, Sun et al researchers at IBM reported an elegant organic-phase method
to prepare Fe–Pt magnetic nanoparticles with a diameter of 4–5 nm [129,180].
This approach was quickly adopted by catalysis researchers to prepare metal cat-
alysts [134,135,137,181–188]. In nonpolar organic solvents, precious metal and
transitional metal precursors have more intimate contacts and closer redox
potentials; this can facilitate formation of a homogeneous bimetal nucleus, lead-
ing to the growth of controlled bimetallic nanoparticles. In the synthesis, the
transitional metal precursor can be fully reduced by injecting a strong organic
reducing agent, for example, LiBetH3. Different C18, C16 surfactants (e.g., oleyl-
amine, oleic acid, octadecene, etc.) served as stabilizers that can selectively bond
on specific metal facets, thus not only protecting particles from aggregations but
also guiding the metal nucleus to grow into desired shapes (i.e., nanowires, nano-
rods, and nanoleaves) [134,184,186,188] and structures (e.g., core–shell) [135].

Figure 4.7a briefly illustrates the overall synthesis scheme. Sun et al. first
developed this elegant synthesis route to prepare Fe–Pt magnetic materials with
very narrow size distribution (4–5 nm), as shown in Figure 4.7b. Because metal
precursors in the organic solvent have intimate contacts and closer redox poten-
tials, better multimetallic catalysts can be obtained. PtCr/C, PtCo/CNT, and
PdNi/C catalysts prepared through this method have very narrow size distribu-
tions of 2–5 nm and good alloy structures (Figure 4.7c–e). PdFe nanowires with

Figure 4.7 (a) Schematic illustration of the
organic-phase method. Examples of catalysts
prepared through this method. (b) PtFe nano-
particles [129]. (c) PtCr/C (28wt%, D= 2.3 nm

[187]. (d) PtCo/CNT (20 Ptwt %, D= 2.0 nm
[180]. (e) PdNi/C (20 Ptwt %, D= 2.4 nm [187].
(f) PdFe nanoleaves (D= 1.8 nm, L= 100 nm
[190]. (g) PtFe nanowires (D= 2.7 nm) [188].
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a diameter of 2–3 nm and tunable length of 10–100 nm and Pd (111)-rich sur-
face have been synthesized by changing the ratio of oleylamine and octadecene
(Figure 4.7f). The PdNi/C prepared through this method has demonstrated very
high reactivity to ethanol oxidation reaction in liquid alkaline electrolyte; this
may be due to special interaction between surface Pd and Ni.

However, the surfactants need to be removed for electrocatalytic applications.
It has been reported that surfactants could be removed under thermal treatment
at a moderate temperature of 250 °C for a longer time, for example, 4 h [185]. It
was also found that organic acid treatment and electrochemical tests may facili-
tate surfactant removal and achieve a higher reactivity [187].

4.5.3
Microemulsion Method

The microemulsion method consists of dispersion of two immiscible liquids
containing reducing agent and metal precursors. It offers a unique flexibility in
the simultaneous control of size and composition of mixed metal nanoparticles
[189–196]. The chemical reduction of metal precursors is confined within a
microemulsion, which is a tiny drop of precursor containing liquid engulfed by
surfactant molecules. The microemulsion is uniformly dispersed in a continuous
liquid phase, which is immiscible to the precursor-containing liquid phase. The
size of the microemulsion is on the order of a few to hundreds of nanometers
and is determined by the balance of surface free energy mediated by the surfac-
tant molecules and the free energy difference arising from the immiscibility of
the two liquid phases. The dispersed liquid phase is an oil, and water forms the
continuous medium. The reverse microemulsion is the water-in-oil microemul-
sion. Since chemical steps are conducted within the microemulsion, which
serves as a nanoscale reactor, a narrow particle size distribution (i.e., 2–5 nm)
can thus be obtained. The introduction of a reducing agent, for example, hydra-
zine, NaBH4, into the microemulsion is achieved by stirring. The reaction time is
on the order of minutes. The size and distribution of the metal nanoparticle can
be further controlled by a two-microemulsion method with the reducing agent
also confined in a separate emulsion. It is possible to control the particle size by
varying the water-to-surfactant molar ratio. The additional advantage is the pos-
sible synthesis of bimetal electrocatalysts on carbon support. Normally, a better
alloy structure can be achieved. However, the microemulsion method cannot be
used to control shape. It uses expensive surfactant molecules with extra cleaning
steps and may not be suitable for large-scale synthesis.

4.5.4

Other Methods

Some unconventional synthesis techniques have been adopted in industrial cata-
lyst manufactures. For example, 3 M researchers have developed an elegant PVD
method to prepare nanostructured thin-film catalysts (NTFC) with extraordinary

90 4 Anode Catalysts for Low-Temperature Direct Alcohol Fuel Cells



activity and durability [123]. Spray conversion reaction process was successfully
developed by Cabot company [197]. Droplets containing metal precursors and
carbon support were first generated and thermal decomposed under controlled
temperature and pressure to form uniform disperse catalyst nanoparticles on
carbon. The PtRu/C catalyst has a uniform crystalline size of 2–4 nm and shows
high catalytic activity, excellent durability, and reduced cost.

4.6
Carbon Nanomaterials as Anode Catalyst Support

Catalyst support is an integrated part of an electrocatalyst. Its main functions are
hosting high-dispersion Pt nanoparticles from aggregation and providing contin-
uous electric conduction paths within the three-phase boundary of the electrode.
It was a milestone in the fuel cell catalyst R&D history that one order of magni-
tude of Pt loading in electrode could be reduced by replacing Pt black with
highly disperse Pt nanoparticles supported on carbon black. Appropriate carbon
support should possess excellent electric conductivity, large surface area, reason-
able pore structure, and good electrochemical durability [116]. Carbon black is a
widely used support for low-temperature fuel cell catalysts, and it can be pro-
duced by the oil furnace and acetylene processes. Carbon black has a good com-
promise between the surface area and electric conductivity. Due to its low cost
and abundant availability, oil furnace carbon black, for example, Vulcan XC-72,
has been broadly used for supporting electrocatalysts. It has a surface area of
200–300 m2 g�1, but composed of a large portion of micropores of <2 nm. Sup-
ply of reactant gas may not occur smoothly within a micropore of <2 nm. In
addition, the electrochemical stability of carbon black has been reported to be a
potential problem for real fuel cell operations, the loss of carbon support under
high operation potential could lead to Pt agglomeration and leaching [119,198].
There is a clear need to seek more suitable catalyst support for low-temperature
fuel cells. In recent decades, various carbon nanomaterials such as fullerene
(C60), carbon nanotubes, graphene, and mesoporous carbons have been discov-
ered and synthesized, and further greatly promoted new research areas in nano-
technology and nanomaterials. These nanocarbons have been extensively studied
as next generation of electrocatalyst support materials and many exciting prog-
ress have been made.

4.6.1

Carbon Nanotubes

Since its discovery [199], CNTs have attracted enormous attention as a novel
catalyst material due to their high aspect ratio and unique electronic properties
[166,167,172,174,175,177,178,199–206]. CNT is an allotrope of carbon with a
cylindrical nanostructure made from curved graphite sheets. CNTs can be classi-
fied as single–walled nanotubes (SWNTs), double-walled nanotubes (DWNTs),
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and MWNTs. They can be prepared through arc discharge, chemical vapor
deposition, laser radiation, and so on. The tube diameter ranges from 0.7to
100 nm, and tube length varies from submicrometer to centimeter. CNT is a
unique 1D carbon material and possesses an excellent electric conductivity. The
electric conductivity of MWNTs is 1000–2000 S cm�1, which is much greater
than 4–10 S cm�1 for carbon black XC-72. In addition, there is no micropores in
CNTs compared with about 50% micropores for XC-72.

Che et al. first explored porous alumina template to prepare carbon nanotu-
bule with a diameter of 200 nm and wall thickness of 20 nm (Figure 4.8). After
impregnating PtRu precursors into the CNT, HF was employed to remove
Al2O3 frames. Small and uniform PtRu nanoparticles (1.59± 0.3 nm) were
obtained after 3 h H2 reduction at 580 °C. The carbon nanotubule-supported
PtRu nanoparticles have demonstrated very large and characteristic methanol
oxidation waves in acid electrolyte [200]. Using a similar method, Rajesh et al.
studied the methanol oxidation activity on a series of MWNTs (200 nm in diam-
eter) and found their activity sequence is PtRu/MWNTs>Pt-WO3/MWNTs>
PtRu/XC-72 [203].

Before the synthesis of CNT-supported catalysts, it is necessary to function-
alize the CNT outer wall surface with oxygenate groups in order to anchor the
metal nanoparticles. Li et al. used a H2SO4–HNO3 mixture to surface-treat
MWNTs and various functional groups, such as hydroxyl (-OH), cabonyl
(-CO), and carboxyl (-COOH), could be grafted on the CNT surface. They
used polyol method to prepare 10 wt% Pt/MWNTs cathode catalyst for DMFC
and demonstrated a 43% peak power density enhancement [186,202]. Liu et al.
prepared PtRu/CNTs with a diameter of 2–6 nm using a microwave-promoted
polyol synthesis approach and showed a competitive MOR activity compared
with commercial PtRu/C (E-TEK) in single DMFC test [167]. Single-walled car-
bon nanohorn (SWNHs) is a special type of CNT prepared by Iijima. Pt and
PtRu nanoparticles were deposited on the outer wall of SWNH and showed a
significant enhancement in DMFC performance. The catalytic activity improve-
ments were attributed to high electric conductivity (low internal resistance), high

Figure 4.8 TEM images of carbon nanotubule (a) and PtRu/CNT (b), and cyclic voltammo-
grams of methanol oxidation on A: after deposition of Pt/Ru nanoparticle, and B: before depo-
sition of Pt/Ru nanoparticles, 2M methanol+ 1M H2SO4 (c) [200].
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purity (i.e., low sulfur content in CNTs), and a thinner catalyst layer thickness.
Recently, Li et al. compared three types of CNT (MWNT, DWNT, and SWNT)-
supported PtRu catalysts with similar PtRu particle size (2–5 nm), and achieved
very different MOR activities (Figure 4.9). PtRu/DWNTs show the best MOR
activity. It can reduce precious metal loading by 75%, while still obtain a 68%
power density enhancement, which was attributed to its “pure” metallic property
(unlike SWNTs: a mixture of semiconductor and conductor) and a special metal
support interaction [177]. Detailed investigations are needed to explain this
extraordinary benefit acquired from small-diameter carbon nanotubes.

In order to improve the catalyst utilization and reactant mass transport, some
research efforts have been made to develop techniques that enable to directly
grow CNTs onto gas diffusion layer to obtain ordered electrode structures. Sun
et al. directly grew CNTs on Co-Ni catalysts previously deposited on a carbon
paper, and then supported small Pt nanoparticles (1.2 nm) through ion exchange
method [204]. Yan and coworkers used underpotential deposition method to
deposit Pt nanoparticles on CNTs, which were directly grew on carbon paper

Figure 4.9 (a) TEM image of PtRu/DWNTs (50wt%). (b) SEM image of PtRu/DWNTs thin film.
(c) Polarization curve of methanol oxidation in 0.5M H2SO4+ 0.5M methanol on PtRu/CNT cat-
alysts. (d) Single DMFC with PtRu/CNTs anode catalysts [177].
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substrate using a catalytic chemical deposition approach [205]. Both the CNT-
based electrodes showed improved performance compared with Pt/C catalyst-
based electrodes. Yan and coworkers further developed a filtration method to
make ordered CNT-based electrode. In detail, they employed hydrophilic Nylon
filter to facilitate formation of a hydrophobic CNT catalyst thin film. Pt/
MWNTs thin-film electrode-based MEA demonstrated excellent single fuel cell
performance in mass transport-controlled region, which indicated a better gas
diffusion was achieved inside the ordered electrode [175].

Due to their high graphite structure, the CNTs have shown greater electro-
chemical durability than carbon black. The measured corrosion current
for carbon black was 0.5 mA mg�1, which is higher than that for MWNTs
(0.2 mA mg�1). The electrochemical surface area of Pt/MWNTs dropped 25%
after a durability test under a constant potential of 0.9 V in 0.5 M H2SO4 at
60 °C for 170 h, while that of Pt/CB had dropped 80%. The average particle size
of Pt/MWNTs grew from 2.8 nm to 3.0 nm, while that for Pt/CB grew from 2.5
to 5.0 nm [207]. Higher electrochemical stability makes CNTs very attractive for
fuel cell catalyst supports.

4.6.2

Carbon Nanofibers

Carbon nanofiber (CNF) is an important 1D nanocarbon, which has also been
extensively studied as electrocatalyst support [146,151,203,208–212]. Compared
with expensive CNT, CNFs are cheap, attributed to their large-scale chemical
vapor deposition manufacture route. CNFs can be made in different forms,
such as platelet, ribbon, and herringbone. Bessel et al. employed impregnation
method to prepare Pt/CNFs with small particle size. It was interesting to find
Pt nanoparticles look like plates, which suggested a strong metal–support inter-
action. Five wt% Pt/CNFs showed a similar activity of methanol oxidation as
30 wt% Pt/CB [208]. Lukehart and coworkers prepared 40 wt% PtRu/CNFs with
a particle size of 5–9 nm, and demonstrated a 50% MOR activity enhancement
compared with unsupported PtRu catalysts [146,151]. Recently, Li et al. showed
that CNF-based catalysts can effectively increase the Nafion content in the elec-
trode (from 30 to 50%); this was because 1D CNFs provide continuous electric
conduction paths, which could not be easily cut off by ionic conductor. This
work may open up a new strategy to fabrication of high-performance fuel cell
electrodes by using 1D carbon materials.

4.6.3

Ordered Mesoporous Carbons

OMCs have highly ordered mesoporous structures with very narrow pore size
distributions. Uniform and small metal catalysts can be easily prepared even
using impregnation method. Ordered mesoporous carbons are one type of
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carbon support that have been extensively studied for direct alcohol fuel cell
catalysts [147,213]. The OMC can be synthesized via nanocasting technique
using ordered mesoporous silica materials as the hard template [147,213–216].
Insertion of carbon precursors within the ordered mesopores of the OMS tem-
plates, their carbonization by thermal treatment at high temperatures under
inert conditions, and subsequent removal of the silica templates result in the
synthesis of OMC materials. The physical and chemical properties of OMC,
such as pore size, connectivity, morphology, surface functionality, electric con-
ductivity, and thermal stability, can be well controlled by adjusting OMS tem-
plate, carbon precursor, carbonation temperature, heating environment,
posttreatment, and so on. Soft-templating methods (self-assembly) can also be
employed to directly synthesize OMC via an organic–organic self-assembly
between carbon precursors and organic templates [217–219]. The resulting
OMC have a confined mesopore size, high surface area (700–2000 m2 g�1), and
high pore volume (1–2 cm3 g�1). Very small Pt or PtRu nanoparticles of <3 nm
can be easily controlled, simply through impregnation method, due to the
OMC’s large surface area and unique pore structure. The Pt/OMC cathode
catalyst-based DMFC shows a 104 mW cm�2 at 0.45 V at 50 °C, which can
reduce Pt loading by three times (from 6 to 2 mg cm�2) [220]. Samsung has
demonstrated a small DMFC system with 20 MEAs (25 cm2) could deliver a
power density of 80 mW cm�2 at 8 V using a 0.75 M methanol solution under
ambient operation condition, and it can operate a Notebook for 10 h using
pure 100 ml methanol.

4.6.4

Graphene Sheets

Graphene, a two-dimensional carbon material with single (or a few) atomic
layer, has attracted great attention from both fundamental science and applied
research [221,222]. The combination of the high surface area (theoretical value
of 2630 m2 g�1), high conductivity, unique graphitized basal plane structure,
and potential low manufacturing cost makes graphene sheets a very promising
candidate for fuel cell catalyst support [223–227]. In addition, graphene nano-
sheets (GNS) have been found to be able to modify the properties of Pt clus-
ters supported on them. The Pt/GNS showed four times higher current
density (0.12 mA cm�2) than that of Pt/CB (0.03 mA cm�2). CO oxidation
study indicated that Pt/GNS has a much smaller CO adsorption rate by about
40 times than that of Pt/carbon black. The Pt particles supported on GNS was
smaller than 0.5 nm, which would acquire the specific electronic properties of
Pt, thus modifying its catalytic activities [224]. The Pt-functionalized graphene
sheets (FGS) retained 49.8% of the original electrochemical surface area,
while the commercial catalyst kept only 33.6% after an electrochemical
durability test. Therefore, Pt on FGSs is much more stable than commercial
catalyst under electrochemical durability tests, due to its more graphite struc-
ture [223].
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4.7
Future Challenges and Opportunities

Low-temperature direct alcohol fuel cells have received enormous attention for
future electrochemical power sources. Anode catalyst is one of the most critical
components to determine the overall DAFC performance and lifetime. Extensive
research efforts have been made on understanding the relationships of struc-
ture–catalyst functions, in situ characterizing reaction intermediates, elucidating
electrocatalytic reaction mechanisms, and thus developing novel catalytic mate-
rials. Although great progress has been made in the preparation of highly effi-
cient fuel cell catalysts, a large-scale, accurate synthesis of fuel cell catalysts at
the nano or atomic scale with high activity, durability/reliability, and stability is
yet to be achieved. The synthesis methods should be cost-effective, simple, and
easy to scale up. These catalysts could be heterogeneous nanoarchitectures with
multiple functions supported on durable supports, or directly deposited on elec-
trodes. Restructuring of the nanostructured catalysts (change in surface compo-
sition, facets, ensemble configuration, and electronic structures) under real
electrochemical reactions often occurs and significantly influences the activity
and durability; understanding the catalyst restructuring to gain deep insights
into structure change–catalyst function under real electrocatalytic processes is
essential before their real applications. The fast developed nanotechnology,
in situ characterization techniques, and advanced computation capabilities have
great potential to assist developing advanced catalytic materials.

In order to improve the Faradic efficiency and fuel utilization, the desired final
product of alcohol oxidation is CO2. However, breaking the C-C bonds of alco-
hols for direct C2+ alcohol fuel cells remains a great challenge, especially at low
temperatures (e.g., <90 °C) and low anode overpotentials. For primary alcohol
oxidation, such as ethanol oxidation, nanostructured PtRhSn/C has demon-
strated a strong ability to both improve reaction kinetics and break C-C bond.
Future research efforts using both combinational chemistry methods and theo-
retical calculations may lead to the development of efficient ternary or even
quarterly PtSn-based catalysts for complete alcohol oxidation.

In another aspect, high reaction kinetics is sometimes associated with partial
oxidation of alcohols. Cogeneration of electricity and higher valued chemicals
from biorenewable polyols will make biofuel production more profitable and
attractive. Efficient cogeneration depends on the development of highly selective
electrocatalysts. The catalyst selectivity towards polyols electrooxidation is
related to catalyst kind and structure, operation potential, and reaction condition
[96,228–233]. Their relations should be thoroughly understood by combining
experimental, analysis (e.g., spectroscopy, chromatography), and theoretical
research tools. Heterogeneous catalytic processing of biorenewable compounds
has made significant progress in recent years. Learning the knowledge developed
from selective heterogeneous catalytic oxidation may guide the development of
highly selective electrocatalytic oxidation catalysts for low-temperature alcohol
fuel cells.
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The oxygen reduction reaction at the cathode of a DAFC is a long-term scien-
tific challenge. Its overpotential is over 200 mV even at the open-circuit voltage
on the most active Pt catalysts. The alcohol crossover results in a short-circuit
potential (extra 150–200 mV loss) at the cathode, thus seriously deteriorating
the fuel cell efficiency and fuel utilization. Developing highly active low loading
noble metal anode catalysts and alcohol-tolerant non-PGM cathode catalysts is
in great demand for high-performance DAFCs. Since the anions cross from cath-
ode to anode, the alcohol crossover issue can be significantly minimized through
using AEMFCs. However, big disadvantages of current anion exchange mem-
branes are their low anion conductivity and unsatisfied chemical stability (short
lifetime). Liquid base, such as NaOH or KOH, has to mix with alcohol fuels to
improve the local pH-surrounded catalyst sites in order to improve the DAFC
performance. The penetration of carbonate salts into electrode pores will reduce
reactant gas mass transfer and lead to low fuel cell performance. Development of
novel polymers for high-performance anion exchange membranes should be
regarded as of same important research priority as the electrocatalysts for next-
generation low-temperature low/zero liquid base alcohol fuel cells.
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5
Membranes for Direct Methanol Fuel Cells
Bradley P. Ladewig, Benjamin M. Asquith, and Jochen Meier-Haack

5.1
Introduction

This chapter reviews the current state of the art in membranes for direct
methanol fuel cells (DMFCs), with a particular focus on research developments
(as opposed to commercial products, of which there are few). The focus is exclu-
sively on membranes; however, given the tight integration that is necessary
between membranes and the adjacent fuel/oxidant distribution layers, catalysts,
and support materials, there is some mention of these materials as they must
necessarily be compatible with the selected membrane. Given the difficulty in
finding reliable cost data for most of the membrane materials, a review of the
cost-effectiveness of the membranes is not attempted, although for similar cation
exchange membranes at least a cursory attempt at cost-effectiveness can be
derived from the cost of the membrane precursors and solvents used in the
synthesis [1].

5.2
Basic Principles of Direct Methanol Fuel Cell Operation

Direct methanol fuel cells are a class of polymer electrolyte membrane (PEM)
fuel cells that typically employ a cation exchange membrane to separate the
anode and cathode compartments. To illustrate the basic principles of DMFC
operations, we shall take a typical, liquid-feed cell with a cation exchange mem-
brane (alkaline exchange membranes are an alternative, and these are discussed
later in this chapter). This is depicted in Figure 5.1.

The feed to the cell is methanol in water. The concentration of this solution
may vary over quite a significant range. Highly concentrated feeds are preferred
to minimize the amount of water that must be carried with the system (most
proposed DMFC applications are mobile systems and hence smaller, lightweight
overall systems are preferred), and provide a higher concentration of the reactant
at the anode electrocatalyst. However, there are significant drawbacks of using
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concentrated anode feed solutions, most notably the increased methanol trans-
port through the membrane, which results from the higher concentration gradi-
ent driving force. This is called “methanol crossover” and is one of the top
challenges to be addressed in DMFC research.

The methanol reacts at the anode to form carbon dioxide, protons, and elec-
trons. The protons are transported through the membrane to the cathode, while
the electrons are collected by the current collector and pass through an external
circuit, where they do useful work. At the cathode, the electrons recombine with
the protons and oxygen to produce water, which must be removed from the
cathode.

5.3
Membranes for Direct Methanol Fuel Cells

As outlined in the previous section, the performance requirements for DMFC
membranes are superficially quite straightforward. The membrane should pos-
sess high proton conductivity, while being essentially completely resistant to
electron conduction. At the same time, it should have minimal methanol perme-
ability, which owing to the similarity between methanol and water molecules,
often implies that the membrane also has low water permeability. Both of these
should apply at the desired operational temperature of the fuel cell, and given
the poor electrode kinetics at lower temperatures, it is often desirable to operate
DMFCs at higher temperatures around 100 °C.

Anode
compartment

Cathode
compartment

Methanol/water

CO2 + unreacted 
methanol/water

Air/O2

H2O + air/O2

Electrolyte  
membrane

Anode
catalyst

Cathode
catalyst

e-

H+

Figure 5.1 Schematic of a single cell DMFC.
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These two characteristics alone are sufficient to identify promising candidate
materials for DMFC operation; however, as has been highlighted by numerous
authors [2–4], there are many more characteristics such as chemical and ther-
mal stability, processability, cost, environmental impact, ability to be formed
into MEAs, and so on that impact on the selection of a suitable membrane
material.

5.3.1

Perfluorosulfonic Acid Membranes

The most well-known and well-studied membrane materials for DMFCs are per-
fluorosulfonic acid membranes, such as Nafion (shown in Figure 5.2). These
macromolecules combine two different functionalities in a single macro-
molecule: first, the hydrophobic nature, which impacts the high chemical and
thermal stability, and second, the hydrophilic sulfonic acid regions, which are
responsible for the water update and ion exchange capability. In the presence of
water, these membranes phase separate into hydrophobic and hydrophilic
domains [5], and a significant body of work has been conducted into characteriz-
ing the phase-separated microstructure of perfluorosulfonic acid membranes.
A detailed discussion is beyond the scope of this chapter, but the interested
reader should consult the excellent review by Mauritz and Moore [6].

Perfluorosulfonic acid membranes have several key characteristics that make
them very suitable for DMFCs, including (i) their excellent chemical stability
(owing to the perfluorinated backbone of the molecule), which makes them
resistant to degradation in both oxidative and reductive environments, and
(ii) their high proton conductivity, which may be as high as 0.2 S cm�1 [7]. How-
ever, at elevated temperatures, especially beyond around 90 °C, the performance
of perfluorosulfonic acid membranes falls away due to (i) dehydration of the
membrane, which reduces the available charge carriers and hence the proton
conductivity, (ii) loss of mechanical strength as the polymer softens, and (iii)
crossover of gaseous species, which is primarily a problem in hydrogen PEM
fuel cells but is also undesirable in DMFCs where oxygen and nitrogen at the
cathode may permeate through to the anode.

Figure 5.2 Chemical structure of Nafion.
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A number of companies have produced commercial perfluorosulfonic acid
membranes, with trade names including Nafion, Flemion, Aciplex, Aquivion,
and Fumion [8]. However, since methanol readily transports across these mem-
branes, the efficiency of DMFCs operating with these membranes is rather low,
as the methanol reacts at the cathode to produce carbon dioxide and water
(reducing the coulombic efficiency of the cell). It is, therefore, important to mod-
ify the properties of these membranes to suppress as much as possible the meth-
anol crossover.

An enormous range of modifications have been explored, and a full review of
these is beyond the scope of this chapter. Some of the more successful ones have
included the incorporation of functionalized inorganic nanoparticles [2,3].

5.3.2

Poly(styrene)-Based Electrolytes

Among the styrene-based electrolytes, there are various different classes that
have been considered as potential DMFC membranes. In all cases, the mem-
branes contain sulfonic acid moieties (as shown in Figure 5.3), as in pefluorsul-
fonic acid membranes, although the pKa of the sulfonic acid groups are not as
highly acidic as in perfluorosulfonic acid membranes, where the highly electro-
negative fluorine molecules lead to a highly charged SO3

� group. In any case,
random copolymers (where the distribution of sulfonic acid groups throughout
the polymer chain is randomly distributed depending on the proportions of the
reactants) have been investigated, including sulfonated poly(styrene) [9–12], and
random copolymers of poly(styrene) and poly(styrene sulfonic acid) [13,14]. Sul-
fonated poly(styrene) can be easily synthesized by copolymerizing styrene-based
monomers with sulfonated styrene-based monomers or by postsulfonation of
poly(styrenes) by straightforward sulfonation reactions. The postsulfonation
route is most common, and in this approach, the ion exchange capacity and
hence conductivity of the membrane can be tailored by controlling the reaction
conditions (typically concentration of the sulfonating agent, reaction time, and
temperature).

Figure 5.3 Repeat unit of sulfonated poly(styrene).
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5.3.3

Poly(arylene ether)-Type Polymers

This group of DMFC membrane materials includes poly(arylene ether ether
ketones) and poly(arylene ether sulfones). They are good candidates for DMFC
membranes because of their excellent chemical stability in oxidizing and reduc-
ing environments and the ability to tailor the ionic conductivity by controlling
the proportion of sulfonated units in the polymer. Just as with poly(styrene)-
based membranes, the sulfonation may be achieved by direct copolymerization
of sulfonated (or a mixture of sulfonated and nonsulfonated) monomers or by
postpolymerization modification through an electrophilic aromatic sulfonation.
This postpolymerization approach, while straightforward, leads to materials with
varying properties since it is impossible to achieve tight control of the degree of
sulfonation and the precise location of the sulfonated sites [15]. Indeed, at high
degrees of sulfonation, the polymer will usually degrade or become highly sus-
ceptible to swelling/dissolution in water (Figure 5.4).

5.3.4

Poly(ether ether) Ketone-Type Polymers

Poly(ether ether) ketone (PEEK) and poly(ether ether ketone ketone) (PEEKK)
are highly stable polymers with good potential for application in DMFCs
[10,17,18]. They are semicrystalline and display excellent chemical and thermal
stability. They may be sulfonated through direct polymerization of sulfonated
monomers or by postsulfonation, the latter again leading to materials with less
tightly controlled degree and location of sulfonation, but with the attraction that
it is a simple and low-cost approach [19].

Sulfonated PEEK (referred to as SPEEK and depicted in Figure 5.5) has been
investigated extensively for its potential application in DMFCs, in particular when
made into composite membranes containing other components such as functional-
ized nanoparticles. Several excellent reviews have covered this topic [20].

Figure 5.4 Disulfonated poly(arylene ether sulfone) copolymer synthesized using a direct
copolymerization technique [16].

Figure 5.5 Repeat unit of SPEEK.
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5.3.5

Polybenzimidazoles

Polybenzimidazoles (PBIs, with a typical structure shown in Figure 5.6) have
received considerable interest in the DMFC membrane community because of
their stability and proton conductivity at temperatures higher than most other
polymer systems can tolerate. This is partly due to the fact that PBI-based mem-
branes are themselves basic (pKa ∼ 5.5), and are rendered proton conductive by
soaking them in an acid such as phosphoric acid, whereby they form a single-
phase polymer with good chemical stability and proton conductivity. The fact
that they do not require hydration to become conductive, as, for example, per-
fluorosulfonic acid-type membranes do, means they can be deployed at tempera-
tures of 100–200 °C. This is particularly attractive from a chemical kinetic
perspective, since the anode and cathode kinetics are greatly enhanced at these
elevated temperatures. The drawback however is that such elevated tempera-
tures are not appropriate for many of the portable applications toward which
DMFCs are targeted (e.g., replacement of lithium batteries in electronic devices).
Various PBI and PBI composite membranes have been proposed or tested in
high-temperature PEM and DMFC systems [21–31].

5.3.6

Polysulfones and Polyethersulfones

Polysulfone (PSU) (typical structure shown in Figure 5.7) and polyethersulfone
(PES) (typical structure shown in Figure 5.8) are highly versatile engineering
polymers that have been applied in a variety of applications, including gas sepa-
ration, membrane filtration, pervaporation, and electrodialysis. They have excel-
lent chemical and mechanical stability, a relatively high glass transition
temperature, and are easily cast as films from common aprotic solvents such as
1-methyl-2-pyrrolidone (NMP) [32] and N,N-dimethylacetamide (DMAc) [33].
PSU has most commonly been evaluated for DMFCs as a blend with other

Figure 5.6 Polybenzimidazole.

Figure 5.7 Repeat unit of poly(sulfone).
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polymers or inorganic components [34–41], and despite most PSU composite
membranes displaying lower proton conductivity than Nafion, the DMFC per-
formance, at least with low feed concentrations, is often superior to that of
Nafion-based DMFCs due to the reduced methanol crossover [42].

5.3.7
Polyimides

Polyimides are another class of polymer that have been extensively researched
for DMFC applications due to their high chemical and thermal stability [43–50].
Specifically, the six-membered rings are more stable than five-membered rings
due to decreased ring strain.

5.3.8
Grafted Polymer Electrolyte Membranes

Grafting is an interesting approach to preparing conductive membranes for
DMFCs, because instead of using chemical functionalization approaches as
described in the previous section, a hydrophobic nonconductive polymer is
exposed to a radiation source, which causes the formation of radicals and func-
tional groups, to which other functional groups can be grafted and polymerized,
such as styrene or styrene sulfonic acid monomers.

Utilizing this approach, Pall company has produced commercial membranes
called IonClad, which are composed of poly(styrene sulfonic acid) grafted
onto a perfluorinated polymer backbone. Tricoli et al. evaluated two of these
membranes (IonClad R-1010 and R-4010) for their potential in DMFCs, and
found that although their conductivity was approximately the same as Nafion
117 over the range of 20–60 °C, they had only a quarter of the methanol perme-
ability of Nafion, making them good candidates for application in DMFCs [51].

5.3.9

Block Copolymers

Block copolymers are an attractive approach to the preparation of DMFC
membranes, because their highly controlled polymer architecture means that
the ionic and nonionic domains can be on the same polymer backbone in a
defined sequence. Furthermore, through careful control of the block lengths,
the microphase separation can also be controlled to a certain extent. Kim
et al. prepared partially sulfonated polystyrene-block-poly(ethylene-ran-

Figure 5.8 Repeat unit of poly(ether sulfone).
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butylene)-block-polystyrene (SSEBS) copolymers and evaluated their proton
conductivity and methanol permeability (Figure 5.9). They were able to
achieve proton conductivities similar to Nafion 117 at 34 mol% sulfonation,
where the methanol uptake of the block copolymer was approximately half
that of Nafion 117. The lower methanol uptake was attributed to a more
well-defined microstructure (which is characteristic of block copolymers)
compared with Nafion, as determined by small-angle X-ray scattering [52].

5.3.10

Composite Polymer Membranes

As already pointed out in Section 5.3.1, it is often difficult to achieve the required
membrane properties using a polymer material alone, and so an enormous
amount of effort has been devoted in recent years to enhancing or changing the
properties of polymer membranes by making them into composite materials.

Specifically, in DMFC-focused research, this has often focused on the premise
that incorporating filler materials, such as inorganic nanoparticles, will hinder the
passage of methanol through the membrane, reducing the methanol crossover.
Obviously, such an approach also relies on the proton conductivity not being con-
currently hindered, or at least not to the same extent; however, this is not always
the case. Many membrane materials have been reported that show a significant
reduction in methanol permeability, and yet also display at least some reduction
in proton conductivity. Some notable exceptions are those materials in which the
inorganic filler material is itself proton conductive or has surface acid groups, and
hence play the dual role of hindering bulk molecular transport (i.e., water and
methanol diffusion) while contributing additional proton transport sites [2].

A full review of the entire suite of composite membranes is well beyond the
scope of this chapter; however, interested readers may consult the review of
Neburchilov et al. [8].

5.4
Membrane Properties Summary

Table 5.1 summarizes a selection of DMFC membranes from the literature, clas-
sified by general membrane type. The first entries relate to Nafion 115 and 117

Figure 5.9 SSEBS repeat unit [53].

118 5 Membranes for Direct Methanol Fuel Cells



and serve as baseline results with which many of the others may be compared.
It must be noted that the apparatus and method used to determine proton con-
ductivity and methanol permeability vary somewhat between different groups,
and so absolute comparisons are difficult to make with any validity based on this

Table 5.1 Summary of membrane proton conductivity and methanol permeability perform-
ance data.

Membrane material Proton
conductivity
(mS cm−1)

Methanol
permeability
(cm2 s− 1)× 106

Reference

Nafion
Nafion 117 100 1.76 [51]
Nafion 117 75 0.9 [54]
Nafion 117 67 1.98 [55]
Nafion 115 90 1.04 [56]

Nafion composites
Nafion/functionalized silica
nanocomposite

6.9 0.358 [2]

Nafion/montmorillonite nanocomposite 78 0.1 [57]
Nano-silica-layered Nafion composite 77 0.92 [58]
Nafion/poly(vinyl alcohol) blend 20 0.65 [59]
Nafion/ORMOSILS composite 19 1.75 [60]

Other polymer systems
Sulfonated poly(styrene) 50 0.52 [12]
Sulfonated poly(ether ether ketone) 70 0.3 [10]
Sulfonated poly(arylene ether) copolymer 100 0.81 [61]
Copolyimide membranes BAPS-50 40 0.33 [62]
Copolyimide membranes BAPS-60 50 0.45 [62]
Sulfonated polyphosphazene 35 0.13 [54]
Phosphonated polyphosphazene 55 0.14 [54]
Sulfonated poly(styrene-b-ethylene-r-

butadiene-b-styrene) block copolymer
45 2.6 [52]

Sulfonated polysulfone 5 0.06 [56]
Sulfonated polybenzimidazole doped 0.001 2.5 [63]
Sulfonated polyimide 120 0.57 [11]
Sulfonated polystyrene and sulfonated

poly(2,6-dimethyl-1,4-phenylene oxide)
blend

34 2.35 [9]

Sulfonated poly(ether ether ketone ketone) 40 0.575 [64]
Sulfonated poly(ethersulfone)-Cardo 4 0.210 [65]
Poly(vinylidene fluoride-hexafluoropropy-

lene) copolymer/Nafion blend
2 0.2 [66]

Cross-linked poly(vinyl alcohol)/poly
(2-acrylamido-2-methyl-1-
propanesulfonic

90 0.6 [67]

Sulfonated poly(styrene)/poly
(tetrafluoroethylene) composite

110 0.67 [68]

Adapted from Ref. [4].
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tabulated data alone. The purpose of this table is simply to summarize, in a con-
cise manner, a snapshot of the current state of the art in DMFC membrane
properties.

5.5
Conclusions

In conclusion, a broad range of membranes for direct methanol fuel cells have
been summarized from the perspective of the chemical structure of the polymer
material. While a significant number of materials have been shown in some
respects to surpass the performance of Nafion, there still remain the need for
critical materials research in the area of DMFC membranes. Specifically, mem-
brane materials that do not rely on hydration to be highly proton conductive
need to be developed – this is considered to be the only truly viable means by
which to achieve membranes that do not suffer from unacceptable levels of
methanol crossover. These materials need to be stable and nonswelling in water/
methanol solutions, and electrochemically stable under the operating conditions
of a working DMFC.
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6
Hydroxide Exchange Membranes and Ionomers
Shuang Gu, Junhua Wang, Bingzi Zhang, Robert B. Kaspar, and Yushan Yan

6.1
Introduction

This chapter focuses on an important component of fuel cells: hydroxide-
conducting polymer electrolytes (i.e., hydroxide exchange membranes (HEMs)
and hydroxide exchange ionomers (HEIs)). It summarizes the property require-
ments and fabrications of such membranes and ionomers and also discusses
the general structure–property relationship emphasizing contributions from the
cationic functional group, polymer main chain, and chemical cross-linking. It is
hoped that the establishment of the structure–property relationship can provide
guidance to the future research directions, especially in the design and develop-
ment of high-performance polymer electrolytes for fuel cells. Although the dis-
cussion through most of this chapter is specifically for fuel cells, it should be
generally applicable to other devices such as electrolyzers, flow batteries, and
solar hydrogen generators. In formulating this chapter, the literature cited covers
up to the 2011, mostly from 2001 to 2011.

6.1.1

Definition

An HEM is a membrane-form polymer electrolyte capable of conducting
hydroxide anions (OH�), and an HEI is a binder-form polymer electrolyte capa-
ble of not only conducting hydroxide anions but also creating triple-phase
boundary in the electrode catalyst layer. HEMs and HEIs are already used in
hydroxide exchange membrane fuel cells (HEMFCs) and can also be used in
many other electrochemical energy conservation and storage devices.

6.1.2

Functions

As ionic conductors, HEMs and HEIs substantially control the performance and
durability of HEMFCs through their hydroxide conductivity and chemical/
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physical stability. As supporting electrolytes, they facilitate electrode kinetics and
enable the use of nonprecious metal catalysts.

6.1.3

Features

As with the conventional proton exchange membranes (PEMs) whose chief
application is in proton exchange membrane fuel cells (PEMFCs), HEMs are
thin-membrane polymer electrolytes, and thus HEMFCs can achieve high energy
density and power density. The difference is in the conducting ion: HEMs con-
duct hydroxides; PEMs conduct protons.

HEMs are drastically different from hydroxide-conducting liquid alkaline solu-
tions (e.g., aqueous KOH) whose performance in alkaline fuel cells (AFCs) is
fundamentally limited by carbon dioxide contamination (e.g., from air) [1].
In alkaline solutions, metal cations are freely moving, whereas in HEMs, organic
cations are immobilized in a polymer matrix by covalent bonds. This
immobilization prevents the formation of carbonate precipitates, which is one of
the major drawbacks of liquid-solution electrolytes in AFCs. Although hydroxide
in HEMs can react with carbon dioxide to form carbonate anion (CO3

2�) or
bicarbonate anion (HCO3

�) that lowers ionic conductivity, these counterions
completely revert to hydroxide during fuel cell operation through a self-purging
process [2]. In addition, there is no electrolyte leakage in HEMs simply because
the electrolyte is a solid. As with liquid alkaline solutions, HEMs are known to
be compatible with nonprecious metal catalysts [3,4], indicating that HEMs are
promising next-generation fuel cell electrolytes.

6.2
Requirements

For high-performance HEMFC applications, HEMs and HEIs are required to
have high hydroxide conductivity, excellent chemical stability, sufficient physical
stability, controlled solubility, and other important properties.

6.2.1

High Hydroxide Conductivity

High hydroxide conductivity is the most crucial requirement for high-perform-
ance HEMs, as hydroxide conductivity directly dictates the membrane resistance
at a given membrane thickness (typically 50 μm). A low membrane resistance is
particularly important to mitigate resistance-induced cell voltage loss, especially
at large current densities. HEMs usually have lower ionic (hydroxide) conductiv-
ity than PEMs, largely because hydroxides have intrinsically lower mobility than
protons (20.50 versus 36.25× 10�4 cm2 V�1 S�1 at 25 °C) [5], even though
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hydroxide has the highest ionic mobility among all known anions. In comparison
with ∼100 mS cm�1 of proton conductivity of a typical commercial PEM (Nafion
212, 50 μm) at 20 °C, ∼50 mS cm�1 hydroxide conductivity would be expected
for high-performance HEMs.

Besides increasing hydroxide conductivity, another strategy to lower resistance
of the membrane is to reduce its thickness. HEMFCs can operate with even thin-
ner membranes (e.g., 10/28 μm for Tokuyama Co.’s A901/A201 products [6]),
largely because HEMFCs have, in principle, lower fuel (e.g., H2) crossover than
PEMFCs. In PEMFCs, ions flow from anode to cathode, in the same direction as
fuel crossover; in HEMFCs, ions flow from cathode to anode, in the opposite
direction. Even if its ionic conductivity is only half as high, an HEM that is half
as thick as a PEM will hold the same membrane resistance.

6.2.2

Excellent Chemical Stability

Excellent chemical stability is another important requirement for high-
performance HEMs, as it determines HEMs’ durability and operating conditions
(e.g., cell temperature). The chemical stability required here involves alkaline,
thermal, and oxidative aspects. Alkaline chemical stability is particularly impor-
tant because in HEMs, the hydroxide anion itself is a strong nucleophilic
attacker and has been confirmed to be responsible for membrane degradation
[7]. Sufficient thermal chemical stability is also required for durable HEMs as
cell temperature is preferably elevated (e.g., up to 60–80 °C) for high-performance
HEMFC operation [8]. At the same time, the presence of a strong oxidant (typi-
cally oxygen) and highly active catalysts in HEMFCs also requires HEMs to have
enough oxidative chemical stability. From an engineering perspective, 5000 h of
durability is generally expected for HEMFC applications.

6.2.3

Sufficient Physical Stability

In parallel with chemical stability, sufficient physical stability is also required for
durable high-performance HEMs. Physical stability comprises dimensional and
mechanical aspects. Dimensional stability is a measure of HEMs’ resistance to
size changes in each dimension during dry–wet cycling. Usually, dimensional
stability is represented by the swelling ratio: a low swelling ratio means high
dimensional stability, and vice versa. Sometimes, water uptake can also be used
to describe the dimensional stability. High dimensional stability is required for
durable HEMs because, in practice, HEMFCs are subjected to frequent on-off
cycling. Also, HEMs require sufficient mechanical stability (or mechanical
strength), for example, to be safely incorporated into a membrane–electrode
assembly (MEA) in which high pressure is applied to tighten the interface
between the membrane and the electrodes.
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6.2.4

Controlled Solubility

High solvent resistance is important to increase HEMs’ durability and lifetime,
but specific solubility in low-boiling-point water-miscible solvents (e.g., lower
alcohols, tetrahydrofuran, and acetone) is critical for HEIs’ application and per-
formance [8]. The low boiling point (<100 °C) ensures that the HEI’s organic
solvent will evaporate faster than water, and water miscibility guarantees that
water can be used as a cosolvent in the HEI solution. Both of these requirements
aim to prevent the catalyst from contacting the pure organic solvent, which
would lead to severe safety issues and catalyst poisoning. In addition, good solu-
bility enables the HEIs to create efficient triple-phase boundary to support the
electrochemical reactions in HEMFC electrodes.

6.2.5

Other Important Properties

Low fuel crossover and low gas permeability are also important for high-
performance HEMs. In fuel cells, when the fuel crosses over through the electro-
lyte from anode to cathode (or the oxidant permeates from cathode to anode),
the cathode (or anode) potential is contaminated by fuel oxidation (or oxidant
reduction), which lowers overall cell voltage. Additionally, HEMs must show low
electrical conductivity to minimize internal short-circuiting that occurs when
electrons pass directly through the membrane from anode to cathode without
going through the external circuit.

6.3
Fabrications and Categories

In general, HEMs can be prepared by polymer functionalization, monomer
polymerization, or membrane radiation-grafting methods. Other methods
including chemical cross-linking or physical cross-linking (polymer blending,
pore filling, and van der Waals interaction tuning technique) can also be applied
to prepare reinforced HEMs.

6.3.1

Polymer Functionalization

Currently, polymer functionalization is the most frequently used method to pre-
pare HEMs. A commercial or laboratory-made polymer serves as the starting
material. In general, a haloalkylation (typically, chloromethylation [9]) or halo-
genation (e.g., bromination [10]) reaction is conducted to create haloalkyl groups
in the starting polymer. Next, a cationic functional group (e.g., quaternary
ammonium or quaternary phosphonium) is formed through a quaternization
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reaction with the corresponding precursor (e.g., tertiary amine [9] or tertiary
phosphine [8]). This preparation method is simple and reliable, as well as flexi-
ble: The polymer backbone and cationic functional groups can be chosen almost
entirely independently, granting access to diverse HEMs with distinctive chemi-
cal structures. However, with direct functionalization, it can be difficult to con-
trol precisely the initial degree of haloalkylation (or halogenation) and in turn
the degree of functionalization in the final membrane. The other drawback
is that the functional sites in the polymer matrix are usually limited to those that
are most reactive for the initial haloalkylation/halogenation step.

6.3.2

Monomer Polymerization

Monomer polymerization is an equally important method to prepare HEMs. The
starting material is a monomer that contains either the final cationic functional
group or its precursor. An HEM polymer is then synthesized directly by polym-
erizing the monomer, for example, through unsaturated bonds [11] or aromatic
phenol groups [12]. Usually, the polymerization is achieved by a ring opening or
nucleophilic condensation reaction. The greatest advantage of this method is its
flexibility in designing chemical structures. Furthermore, the degree of function-
alization can be controlled precisely in the polymerization step by tuning the
ratio of monomers with functional groups (or the precursor) and monomers
without. The drawback of this method is the complexity of synthesizing the
monomeric starting material. In addition, the choice of functional groups is lim-
ited because some are incompatible with the polymerization reaction.

6.3.3

Membrane Radiation Grafting

Membrane radiation grafting is another method to prepare HEMs, which was
especially used in the early stages of HEM research. The starting material is a
nonfunctionalized membrane, mostly polymerized fluoroalkylene [13–15]. The
membrane is radiated with gamma rays or electron beams [15] to create polymer
radicals, and then haloalkyl-containing unsaturated monomer (predominantly,
vinylbenzyl chloride) is linked to the polymer matrix via reaction with the radi-
cals. Finally, the polymer is functionalized through the haloalkyl group in the
grafted monomer, as in polymer functionalization. The most noticeable feature
of this method is that it does not require a membrane formation step as the
membrane is already the starting material; membrane thickness can also be eas-
ily tuned in advance. The main drawback of this method is the poor material
stability as the polymerized fluoroaklylene is exclusively used as the polymer –
this is required by the nature of the radiation methods – and C-F bonds are
known to be prone to degradation in alkaline media [16]. Additionally, it is chal-
lenging to control the degree of grafting. Another concern for this method is the
expected high gas permeability caused by radiation damage to the membrane.
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6.3.4

Reinforcement Methods

Chemical cross-linking has been used extensively to prepare chemically
reinforced HEMs with high dimensional stability and excellent solvent resist-
ance. The structure and properties of chemical cross-linking are discussed in
Section 6.6.

Physical methods such as polymer blending [17], pore filling [18], and van der
Waals interaction tuning [19] have also been used to prepare physically
reinforced HEMs. In polymer blending, a reinforcing material (usually a hydro-
phobic and nonionic polymer, for example, polysulfone) is blended with a poly-
mer that contains cationic functional groups. In pore filling, a reinforcing porous
membrane substrate is filled with functionalized polymer. In van der Waals
interaction tuning, a high-electron-density polymer matrix is paired with a high-
dipole-moment functional group (e.g., quaternary phosphonium) to enhance
interactions among polymer chains, increasing the HEM’s dimensional stability
without compromising solubility.

6.4
Structure and Properties of Cationic Functional Group

The cationic functional group has been the central focus in HEM chemical
structure because it dominates hydroxide conductivity through its basicity as
well as its density (i.e., ion exchange capacity, IEC). The intrinsic nature of the
functional group also determines solubility and controls chemical stability. Cur-
rently, two major types of cationic functional groups are available: one type
based on nitrogen atoms and the other type based on phosphorus ones.

6.4.1

Quaternary Nitrogen-Based Cationic Functional Groups

There are nonconjugated (including tetraalkyl and cycloalkyl ammonium) and
conjugated (including pyridinium, guanidinium, and imidazolium) types of
quaternary nitrogen-based cationic functional groups (Table 6.1).

6.4.1.1 Tetraalkyl Ammonium
Tetraalkyl ammonium is the most frequently used cationic functional group in
HEMs and anion exchange membranes (AEMs) [30]. As the simplest tetraalkyl
ammonium structure, trimethyl benzyl quaternary ammonium is the most typi-
cal cationic functional group in HEM polymers, where the trimethyl groups
serve as side groups and the benzyl group is usually from the polymer matrix.
The quaternary nitrogen atom bears one unit of positive charge, which is elec-
tro-balanced by one unit of negative charge on hydroxide.
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The biggest advantage of trimethyl-based cationic functional groups is that
they are the most chemically stable tetraalkyl ammonium cations [7]. The intro-
duction of even longer subgroups (e.g., ethyl or propyl) will lead to severe degra-
dation through the well-known Hoffmann elimination mechanism where
β-hydrogens are available. The basicity of trimethyl benzyl ammonium hydrox-
ide has been found to be moderate in comparison with other cation hydroxides,
leading to mild hydroxide conductivity at a given IEC. For example, the specific
conductivity or the IEC-normalized hydroxide conductivity of trimethyl ammo-
nium-functionalized polymer (19 mS g cm�1 mmol�1 [31]) is about half that of

Table 6.1 Chemical structures of HEMs’ cationic functional groups.

Category Example

Quaternary
nitrogen

Tetraalky
ammonium
[13]

N

CH3

CH3

CH3

Cycloalkyl
ammonium
[20–24]

N NN N CH3NN
H3CH3CH3C

Pyridinium
[25] N CH3

Guanidinium
[26,27]

N

N

N
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H3C

CH3

H3C

H3C
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N N
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CH3H3C
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CH3

Imidazolium
[28,29]

NN CH3

N

N

CH3

CH3
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phosphorus
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trimethoxy
phenyl)
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PH3CO
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the quaternary phosphonium one (39 mS g cm�1 mmol�1 [5]) (Table 6.2), but
about twice that of the imidazolium one (8.4 mS g cm�1 mmol�1 [32]) where
they use the same polysulfone matrix and have the similar homogeneous mem-
brane structure. The tetraalkyl ammonium cationic functional groups have been
observed to have very limited specific solubility in low-boiling-point water-
miscible solvents, preventing them from being used as a high-performance
solubilized ionomer for electrode applications.

6.4.1.2 Cycloalkyl Ammonium
The cycloalkyl ammonium cationic group is another type of ammonium where
one or more cycloalkyl (instead of linear alkyl) subgroups are linked to the
nitrogen atom. Existing cycloalkyl ammonium cationic groups include bicyclo
six-membered ring systems (diazabicyclo-based ammonium [20] and azabicyclo-
based ammonium [21]), monocyclo six-membered ring systems (piperazine-
based ammonium [22]) and monocyclo five-membered ring systems (pyrroli-
dine-based ammonium [23]).

Among all available cycloalkyl ammoniums, the most important one is a bicy-
clo six-membered ring system, 1,4-diazabicyclo-[2.2.2]-octane (DABCO)-
constructed ammonium, because it has been found to have even higher chemical
stability than the traditional trimethyl benzyl ammonium [7]. Some cycloalkyl
ammoniums (e.g., diazabicyclo- and piperazine-based ammoniums) have two
nitrogen atoms that can be quaternized to ammonium, so that it is possible to
perform chemical cross-linking by reacting with two haloalkyl groups from dif-
ferent polymer chains [35]. Generally speaking, the solubility and basicity of
cycloalkyl ammonium hydroxides are similar to those of tetraalkyl ammonium
ones. With the exception of DABCO-based ammonium, cycloalkyl ammoniums
are questionable for HEM applications as some have shown much lower chemical
stability than trimethyl benzyl ammonium.

Table 6.2 Specific solubility and specific conductivity of cationic functional group-based
polymers.

Cationic functional group Specific solubilitya) Specific
conductivityb)

(mS g mmol− 1)

Quaternary nitrogen-based Ammonium N/A 19 [31]
Pyridinium N/A 0.1c) [33]
Guanidinium Lower alcohols 20d) [34]
Imidazolium Tetrahydrofuran (THF) 8.4 [32]

Quaternary phosphorus-based Phosphonium Lower alcohols 39 [5]

a) The solubility in low-boiling-point water-miscible organic solvents.
b) IEC-normalized hydroxide conductivity at room temperature from polysulfone backbone-based

HEM without cross-linking.
c) Polystyrene as backbone.
d) Trifluoride poly(sulfone arylene ether sulfone) as backbone.
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6.4.1.3 Pyridinium
As the simplest conjugated cationic system, pyridinium was one of the first func-
tional groups in both HEMs [25] and AEMs. Methyl pyridinium is the simplest
conjugated cationic functional group used in HEMs. Pyridinium hydroxide is
confirmed to be much less chemically stable than trimethyl benzyl ammonium
hydroxide, limiting its use as a functional group for HEM applications. During
degradation, pyridinium loses its positive charge through either a nucleophilic
ring opening or nucleophilic addition–elimination mechanism [36]. The solubil-
ity of pyridinium hydroxide is similar to that of trimethyl benzyl ammonium,
whereas the basicity of pyridinium hydroxide is considered much lower than
that of trimethyl benzyl ammonium according to the very low hydroxide
conductivity its HEMs offer even at high IEC (0.54 mS cm�1 hydroxide conduc-
tivity with 6.05 mmol g�1 theoretical IEC, or ∼0.1 mS g cm�1 mmol�1 specific
conductivity [33]) (Table 6.2).

6.4.1.4 Guanidinium
Guanidinium is the second conjugated cationic functional group used in HEMs
[26], the simplest form being pentamethyl benzyl guanidinium. Guanidinium-
based HEMs show good solubility in lower alcohols [26]. Lower alcohols are
water miscible and have low boiling points; so, as discussed in Section 6.2.4,
guanidinium-functionalized polymers theoretically can be used as an ionomer
in the electrodes. Guanidinium also offers flexibility in designing chemical
structures as it has five customizable subgroups. Pentamethyl benzyl guanidi-
nium hydroxide has been shown to be quite similar in basicity to trimethyl ben-
zyl ammonium hydroxide, since their HEMs have very close specific
conductivities (20 [34] versus 19 mS g cm�1 mmol�1 [31] for guanidinium versus
ammonium) (Table 6.2). In general, the chemical stability of guanidinium
hydroxide has been found to be lower than that of trimethyl benzyl ammonium
hydroxide.

6.4.1.5 Imidazolium
Imidazolium is another conjugated cationic functional group [28,37], with
methyl benzyl imidazolium as the simplest example. Imidazolium-functionalized
HEMs show good solubility in tetrahydrofuran [28], another low-boiling-point
water-miscible solvent, and at the same time they are insoluble in alcohols
(which are important fuels for HEMFCs). This particularly selective solubility
not only makes imidazolium-functionalized polymers possible to use as ionom-
ers but also allows alcohols to be used as fuels directly in HEMFC applications.
The basicity of methyl benzyl imidazolium hydroxide is around half that of tri-
methyl benzyl ammonium hydroxide (specific conductivity: 8.4 [32] versus
19 mS g cm�1 mmol�1 [31]) (Table 6.2). Generally, imidazolium systems are
believed to be less chemically stable than ammonium ones due to a ring-opening
degradation mechanism driven by the active hydrogen in the ring between the
two nitrogen atoms [38].
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6.4.2

Quaternary Phosphorus-Based Cationic Functional Groups

HEM functional groups are not limited to nitrogen atoms. A unique quaternary
phosphonium system based on tris(2,4,6-trimethoxyphenyl) benzyl phosphonium
has also been demonstrated [5,8,19,39]. While ordinary aliphatic or aromatic
quaternary phosphonium hydroxides have very poor chemical stability, tris
(2,4,6-trimethoxyphenyl) benzyl phosphonium hydroxide has been found to be
very stable, largely because of the substantial charge decentralization offered by
its nine strongly electron-donating methoxyl subgroups [5,8]. The chemical sta-
bility of tris(2,4,6-trimethoxyphenyl) benzyl phosphonium-functionalized HEMs
has been shown to be much higher than that of trimethyl benzyl ammonium
ones (e.g., the phosphonium can sustain much higher concentration of strong
alkaline solution: 10 versus 2 M in a KOH solution treatment test for 2 days) [5].

Phosphonium HEMs were the first to be found to be soluble in low-boiling-
point water-miscible solvents (e.g., lower alcohols) [8], which is necessary for
ionomer applications. Phosphonium-based ionomers have been demonstrated to
drastically improve cell performance in HEMFCs (3.5 times increase in peak
power density) [8].

Tris(2,4,6-trimethoxyphenyl) benzyl phosphonium hydroxide shows the high-
est basicity ever reported. Its HEM has the highest specific hydroxide conductiv-
ity among all reported cationic functional group-based HEMs, typically about
twice that of trimethyl benzyl ammonium and more than four times that of
methyl imidazolium (39 [5], 19 [31], and 8.4 mS g cm�1 mmol�1 [32] respectively,
with the same polysulfone polymer matrix and homogeneous membrane struc-
ture in each case) (Table 6.2).

Tris(2,4,6-trimethoxyphenyl) benzyl phosphonium hydroxide functional group
also has a greater dipole moment (3.07 D) than all other cationic hydroxides
(1.32–2.20 D) [19]. This strong dipole moment is particularly important in
achieving high dimensional stability through polarizing polymer chains, especially
when combined with a high-electron-density polymer matrix (e.g., PPO) [19].

The disadvantage of such a phosphonium system may be that it has a high
molecular weight, limiting the IEC to a moderate level.

6.5
Structure and Properties of Polymer Main Chain

The polymer matrix is the backbone of HEMs, and its chemical and physical
structure profoundly impacts their properties.

6.5.1

Chemical Structure

The polymer matrices used in HEMs can be divided by chemical structure into
two major categories: aromatic main-chain polymers and aliphatic main-chain
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polymers (Table 6.3). Generally speaking, aromatic main-chain polymers are
mechanically strong, chemically stable, and show very low gas/fuel permeability;
whereas aliphatic main-chain polymers are more flexible, and their ability to
reach ultrahigh molecular weights enables higher dimensional stability.

Table 6.3 Chemical structures of HEMs’ polymer matrices.

Category Example

Aromatic
main
chain

Poly(aryl ether
sulfones)
[9,12,34,40–49]

O O S
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O n

O O S
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O n

Poly(aryl ether ketones)
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ON N

O

O C
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Poly(aryl ethers) [10,53]

O
n

O O

F F
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n

(continued )
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Table 6.3 (Continued)

Category Example

Poly(phenylenes) [54]

n

Poly(aryl
benzimidazoles) [29,55]

H
N

N N

H
N

n

H
N

N N

H
N

O
n

Poly(aryl imides) [56]

O O
N N

O

O

O

O

n

Aliphatic
main
chain

Benzene ring-
containing
[25,37,57–61]

CH2 CH
n

CH2 CH
n

CH2 CH
m

CH2Cl

CH2 CH
n

CH2 CH2 CH
p

CH CH CH2
m

Benzene ring-free
[11,13–15,20,21,62–71]

CH2 CH

Cl
n

CH2 CH

OH
n

O CH2 CH

Cl
n

CF2 CF2
n

CF2 CF
m

CF3

CH2 CH2
n

CF2 CF2

CH CH
n

CH CH2
n

CH2 CH2 CHCH2 CH2 CH2
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6.5.1.1 Aromatic Main-Chain Polymers
The aromatic main-chain polymer family includes poly(aryl ether sulfones), poly
(aryl ether ketones), poly(aryl ethers), poly(phenylenes), poly(aryl benzimidazoles),
and poly(aryl imides).

Belonging to the class of high-performance engineering polymers, poly(aryl
ether sulfones) and poly(aryl ether ketones) are the two most frequently used
polymer matrices in HEMs. They have high thermal stability, excellent chemical
stability, outstanding mechanical strength, and good solubility in many organic
solvents (necessary for chemical modification). Poly(aryl ethers) are similar to
poly(aryl ether sulfones) and poly(aryl ether ketones), but they usually have
higher electron density benzene rings owing to strong electron donation
from more ether bonds, which offers better dimensional stability for their HEMs
especially when a functional group with a large dipole moment (e.g., tris(2,4,6-
trimethoxyphenyl benzyl quaternary phosphonium) is used [19]. On the other
hand, their oxidative chemical stability is expected to decrease because of the
activated benzene rings, and sometimes their solubility is also lowered due to
the strong interaction among polymer chains.

By contrast, poly(phenylenes) are stable to chemical oxidation owing to their
inactive benzene rings. However, they have poor flexibility because of the inher-
ent rigidness of all-benzene ring architectures. Poly(aryl benzimidazoles) and
poly(aryl imides) have also been used as polymer matrices in HEMs. Their big-
gest issue is poor chemical stability, because the benzimidazole and imide groups
have been confirmed to hydrolyze irreversibly in alkaline media under certain
conditions. Besides, poly(aryl benzimidazoles) also have very limited solubility in
common solvents, rendering chemical modification difficult.

6.5.1.2 Aliphatic Main-Chain Polymers
The aromatic main-chain polymer family consists of benzene ring-containing
aliphatic main-chain polymers and the benzene ring-free aliphatic main-chain
polymers. Benzene ring-containing aliphatic polymers usually contain phenyl
ethylene segments often derived from styrene. Compared with benzene ring-free
polymers, benzene ring-containing aliphatic polymers offer higher thermal sta-
bility and greater mechanical strength, and the rings provide more options
for chemical structure design. However, the active α-hydrogen in the phenyl
ethylene segment is usually the weakest link in these HEMs, being especially
sensitive to oxidation or substitution reactions, either of which leads to chemical
degradation.

Benzene ring-free aliphatic polymers are more flexible and can reach much
higher polymer molecular weight (helpful for increasing dimensional stability
at a given IEC) than their benzene ring-containing counterparts. However,
completely aliphatic structures yield poor mechanical strength and low thermal
stability, and the large free volume in these membranes is expected to cause high
gas/fuel permeability. Without careful design, attaching a cation to an aliphatic
polymer may result in β-hydrogens on the main chain, which can cause severe
degradation through chemical elimination mechanisms [72].
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6.5.2

Sequential Structure

The polymer matrix can be sequenced in two ways: randomly or in blocks. A
random polymer is made up of (the same or different) repeating units that occur
in a completely random way. By contrast, a block polymer chain consists of dif-
ferent segments (or blocks), where each segment is composed of the same
repeating unit and the segment adjacent to it is composed of a different repeat-
ing unit. In most cases, each type of block varies in hydrophilicity or hydropho-
bicity. Random polymers are more commonly used in HEMs. The random
connection of repeating unit delivers a simple, homogeneous, and dense
membrane.

Block polymers offer control over HEMs’ microphase segregation [73], which
if optimized properly can help increase ionic conductivity and decrease water
uptake [74]. However, the block architecture sometimes brings challenging
incompatibility problems among blocks in HEMs, potentially causing increased
gas/fuel permeability and/or lowered mechanical strength. This incompatibility
can be controlled to some extent by changing the lengths of blocks: increasing
block length leads to deeper phase segregation but also more incompatibility,
and vice versa [75]. Thus, there should be an optimal block length for a given
block polymer system. The number of types of blocks (two for diblock, three for
triblock, and so on) is another characteristic of block polymers. Using more
types will bring more incompatibility problems, but at the same time it may also
allow tuning interactions among different types of blocks.

6.6
Structure and Properties of Chemical Cross-Linking

Chemical cross-linking has been the most powerful method to prepare chemi-
cally reinforced HEMs with improved dimensional stability and solvent resist-
ance. The chemical and physical structure of the linkage heavily impacts the
properties and performance of cross-linked HEMs.

6.6.1
Chemical Structure

There are two types of chemical cross-linking linkages: benzene ring-based link-
ages and non-benzene ring-based linkages (Table 6.4). Aromatic linkages usually
offer high mechanical strength and thermal stability owing to the robustness of
benzene rings. They are compatible with aromatic polymer matrices and also
show high chemical stability, especially when no β-hydrogens are present. On
the other hand, the inclusion of benzene rings inevitably raises the molecular
weight and size and decreases flexibility, which leads to lowered cross-linking
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reactivity and decreased controllability. The rigidness of the introduced benzene
rings may also cause the membrane’s flexibility to decrease.

On the other hand, benzene ring-free linkages provide good flexibility, espe-
cially with a long cross-linking chain. Aliphatic linkages do not compromise IEC
because they introduce relatively little additional molecular weight, and at the

Table 6.4 Chemical structures of HEMs’ chemical cross-linkages.

Category Example

Benzene
ring-based
linkage

Double-connection
[37,55,66] CH2 CH2 CH2

Multiconnection
[27,76]

N

N

N

O O

O O

CHCH

CH

CH2

CH2

CH
OH

CH2

OH

CH2

OH

OH

Non-
benzene
ring-based
linkage

Carbon-based
[10,35,39,48,49,77–81] CH2

n
n = 1, 2, 3, 4, 6 CH2 C

O

Nitrogen-based
[64,82] NH NHCH2

n
n = 1, 2 N CH CH NCH2

2

Oxygen-based
[65,67,83,84] O CH(CH3) CH2 O CH CHCH2

3

O

O

O

O

Sulfur-based
[21,85,86]

S SCH2
6

Silicon-based
[59,87–90]

O Si O

O

O

O Si O

O

O
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same time the flexibility of aliphatic structures provides high cross-linking
reactivity.

6.6.2

Physical Structure

Physical linkage structure impacts the properties and performance of cross-
linked HEMs through the length, connection, and density of the linkage.

Long linkages usually bring good membrane flexibility but also lower
materials compatibility, especially when the cross-linker and polymer chain
are dissimilar in chemical structure. Short linkages provide better compati-
bility, as well as improved chemical stability by increasing the steric barrier
to attack. For example, self-cross-linked HEMs with the shortest possible
linkage, a single methylene, showed improved chemical and thermal stability
[39,82].

The connection of linkage refers to the number of connections per linkage and
the position of the linkage in polymer chain. Simple double-connection linkages,
as well as multiconnection linkages such as triple- and quadruple-connection
linkages, are possible. Double-connection linkages can be achieved by more
accessible chemistry, but multiconnection linkages have an more powerful
impact on HEMs’ dimensional stability.

Within the polymer chain, the linkage may connect either to the polymer
backbone or to the cationic functional group. Connecting directly to the
functional group may improve chemical stability by protecting the cation,
but, on the other hand, it will also restrict the cationic functional group’s
movement, hindering desirable microphase segregation and decreasing
hydroxide conductivity.

Linkage density is an important parameter to practically tune the propert-
ies of cross-linked HEMs. At a given IEC, increasing linkage density trans-
lates directly to improved dimensional stability and mechanical strength, but
it also reduces water uptake, thereby potentially lowering the hydroxide
conductivity.

6.7
Prospective

HEMs will be a central research topic in the field of HEMFCs because their
properties fundamentally impact HEMFCs’ performance and durability. Design-
ing/exploring cationic functional groups with higher basicity and stability is still
of primary importance since they are the bottleneck for the entire HEMFC
system. In addition, developing/deploying better chemical and physical cross-
linking methods will be another critical direction especially for improving
dimensional stability.
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7
Materials for Microbial Fuel Cells
Yanzhen Fan and Hong Liu

7.1
Introduction

A microbial fuel cell (MFC) is a device that uses microbes to convert chemical
energy stored in organic or inorganic matter into electrical energy. For nearly a
century it has been known that bacteria can generate electrical current [1]. How-
ever, it is only within the last decade that MFCs have drawn much research
attention for their potential applications in energy generation from wastewater
[2], bioremediation, and powering remote sensors.

Figure 7.1 illustrates the essential components of an MFC: microbes, anode,
cathode, and optional separator. Microbes oxidize organic or inorganic matter
and release electrons and protons. The electrons flow through the circuit and
combine with protons and oxygen (or other oxidants) on the cathode to form
water and generate electrical current. The protons travel through the electrolyte
solution, typically facilitated by proton carriers, such as phosphate or carbonate
[3] ions, due to the near neutral pH condition required by the microbes.

Increasing power density and decreasing fabrication cost are two major chal-
lenges for the practical applications of MFCs, especially for wastewater treat-
ment. While the electrochemical activity of the microbes is an important factor
affecting power output, the materials of other essential components also play a
critical role in determining the cost as well as the power output of MFCs. The
properties of electrode materials, such as surface area, conductivity, stability,
and hydrophobicity, have significant impact on microbial attachment, electro-
chemical reactions, and electron transfer and collection. Separators can also
greatly affect the performance of MFCs due to the increase of internal resist-
ance [4]. The remainder of this chapter will cover a brief introduction to vari-
ous MFC configurations typically used in MFC studies, as well as common
materials used for anodes, cathodes, and separators, with a focus on potential
application in wastewater treatment. Existing problems with electrode materi-
als in current MFCs are disclosed, and outlooks for future development are
suggested.
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7.2
MFC Configuration

The most common MFC configurations used consist of either one or two
chambers. In a two-chamber, or two-compartment, MFC, the bacteria in the
anode chamber are separated from the cathode chamber by a membrane or a
salt bridge. The cathodic oxidant can be oxygen through air sparging, where air
is bubbled through water to provide dissolved oxygen to the electrode. This
approach not only consumes a fair amount of energy but is also less efficient
due to the low solubility and mass transfer rate of oxygen in water. Other oxi-
dants, such as ferricyanide and permanganate [5], can greatly improve the MFC
performance compared with the use of air [6]. The power generated from this
type of MFC, however, is not sustainable because the oxidants are consumed in
the cathodic reaction and needs to be replenished [7,8]. Oxygen, which is ubiqui-
tous and virtually free, is probably the only oxidant widely available for practical
MFC application.

In the single-chamber MFCs, an air cathode is commonly used with the anode
at the opposite side of the chamber. Alternatively, the anode and cathode can be
on the same side of the chamber if a membrane electrode assembly (MEA) or
cloth electrode assembly (CEA) is used. Single-chamber MFCs can achieve
much better performance than a two-chamber system due to the higher mass
transfer rate and concentration of oxygen in air compared with water [3]. In a
membrane-free single-chamber MFC, with the anode and cathode on opposite
sides of the chamber, the biofilm developed on the cathode can function as a
membrane to minimize oxygen diffusion into the anode chamber while allowing

e-
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Bacteria

Anode
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O2HPO4
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Figure 7.1 Diagram of an MFC, showing the
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efficient transport of protons/ions. Elimination of the membrane not only
reduces the cost and complexity of MFCs but also increases the power density
due to a decrease in internal resistance [3].

7.3
Anode Materials

Unlike the anodes of chemical fuel cells, which require catalysts to speed up the
anodic reaction, the MFC anode mainly serves as current collector while provid-
ing a surface for biofilm development. In this configuration, the biofilm can
function as the catalyst. Therefore, the anode should be constructed of material
suitable for biofilm development as well as current collection.

Carbon-based materials are commonly used for the anode of MFCs due to
their superior conductivity, chemical stability, biocompatibility, and versatility
for creating a large surface area. Various carbon materials, including graphite
rods [2], graphite plates [9], graphite foam [10], woven graphite, graphite felt
[11], graphite granules [12], reticulated vitreous carbon (RVC) [13], granular
activated carbon [14], carbon paper [15], carbon cloth [16], and graphite fiber
brush [17], have been examined as anode electrodes for MFCs.

Non-carbon-based materials have also been explored for MFC anodes, includ-
ing various metals, platinum [18], gold [19], titanium [11], stainless steel (SS)
[20], and copper [13]. In spite of the fact that the conductivity of metals is nor-
mally higher than that of carbon materials, the performance of metal materials
as MFC anodes is generally poor. Poor performance could be due to the rela-
tively low surface area of metal electrodes and the less favorable surface propert-
ies for biofilm development compared with carbon electrodes. The high cost of
Pt and Au materials impedes their large-scale applications. Attention should also
be given to the corrosive nature and poisonous effects of some metals. For exam-
ple, metals such as copper and stainless steel can be reactive as MFC anodes,
which further limits the application of metals as anode materials in MFCs.

7.3.1

Solid Carbon Materials

Solid graphite plates, or rods, are the simplest form of MFC electrodes, which
were commonly used in the early stages of MFC research because they are rela-
tively inexpensive, easy to handle, and have a defined surface area [2]. A graphite
disk anode embedded in marine sediment and a graphite disk cathode in overlying
seawater were used in a sea-floor microbial fuel cell to generate electrical power
in situ [14]. Graphite plates were commonly used in the laboratory in some
pioneer MFC research [12,21]. Liu et al. used eight graphite rod anodes in a
single-chamber air cathode MFC for generating electricity from wastewater [2].
The relatively smooth surface of solid graphite electrode makes it easier to calcu-
late the surface area of the electrode. However, the smooth surface limits the
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surface area available for biofilm development, thus limiting the maximum current
density of the MFC anode. The maximum power density was only 26 mW m�2 for
an MFC using graphite rods as anodes [2].

7.3.2

Granular Carbon Materials

Compared with solid carbon material, the surface area of granular carbon mate-
rials is significantly higher. Two types of granular carbon materials have been
reported as MFC anodes: granular graphite [22] and granular activated carbon
[23,24]. Using graphite as the anode material of a tubular MFC, Rabeay et al.
achieved maximum power outputs of 90 and 66 W m�3 net anodic compartment
for feed streams based on acetate and glucose, respectively [9]. You et al.
reported similar maximum power density of 49 W m�3 with an upflow air cath-
ode MFC using glucose as the substrate [25]. Higher power density (258 W m�3)
was achieved in a 6-MFC stack with sodium acetate as the substrate and potas-
sium ferricyanide as the oxidant [24]. In spite of its higher surface area, granular
activated carbon is less popular than granular graphite, probably due to its lower
conductivity and thus lower maximum power density. The power densities of
MFCs using granular activated carbon [23,26] are about one to two orders of
magnitude lower than those using granular graphite.

7.3.3

Fiber Carbon Materials

Carbon fiber-based electrodes, including carbon fiber, carbon cloth, carbon/
graphite felt, carbon paper, and graphite fiber brush, have arguably the best per-
formance as MFC anodes due to their large surface area ratio, good conductivity,
excellent physical strength and chemical stability, and favorable surface properties
for biofilm development. Reimers et al. first reported the application of carbon
fiber in a benthic microbial fuel cell to harvest energy from the marine
sediment�seawater interface [21]. Liu et al. tested the performance of carbon
paper and carbon cloth in air cathode microbial fuel cells [16,15]. Carbon paper
electrodes exhibited lower performances, compared with carbon cloth, probably
due to the lower surface area available for biofilm development. As a low profile
carbon cloth, carbon mesh materials demonstrated similar or even better perform-
ance than carbon cloth anodes [27]. Carbon/graphite felt has also been widely
used as a MFC anode [28,29]. Carbon felt exhibited higher performance compared
with carbon paper due to a larger surface area, lower resistance, and open network
of interwoven fibers [30]. Logan et al. designed a new graphite brush anode by
winding graphite fibers around a twisted core consisting of two titanium wires
[17]. The design achieved power densities of 73 W m�3 (based on the liquid
volume) and 2400 mW m�2 when inoculated with wastewater. Under similar con-
ditions, MFCs achieved up to 1430 mW m�2 (2.3 W m�3) with a graphite brush
anode compared with 600 mW m�2 with a plain carbon paper electrode.
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To date, the highest power densities that have been generated so far are
6900 mW m�2 [31] and 1550 W m�3 [3] using carbon cloth anodes. The format
of carbon cloth is probably the main reason for the high power density. Com-
pared with the “brick” format of carbon felt or “cylinder” format of graphite
brush, the “sheet” format of carbon cloth makes it easier to reduce the average
distance between anode and cathode, thus greatly reducing the internal resist-
ance [31] and increasing the surface area/volume ratio, producing significantly
higher power densities.

7.3.4

Porous Carbon Materials

Porous carbon materials, including reticulated vitreous carbon, carbon sponge,
and carbon foam, have also been tested in MFCs. RVC is a porous, rigid material
of low density with an open structure and good electrical conductivity. Scott
et al. compared the performance of carbon sponge, carbon cloth, carbon fiber,
and reticulated vitreous carbon [22]. The MFC with the carbon sponge anode
produced maximum power density of 55 mW m�2, which was nearly twice that
achieved with carbon cloth, and a hundred times higher than that with reticu-
lated vitreous carbon (0.2 mW m�2). Further comparison of graphite, sponge,
paper, cloth, felt, fiber, foam, and RVC anode materials also demonstrated the
poor performance of RVC, which might be related to the surface area available
and concentration polarizations caused by the morphology of the material and
the structure of the biofilm [32].

7.3.5

Modification of Anode Materials

Modification of anode materials can alter their surface properties, especially con-
ductivity and biocompatibility, thus altering their performance as MFC anodes.
The attachment of positively or negatively charged compounds to naturally
occurring surfaces such as quartz and sand affects the adhesion of bacteria by
altering the electrostatic attraction of the cells to the surface [33]. The treatment
of a carbon cloth anode with ammonia gas increased the surface charge of the
electrode and improved MFC performance [34]. Park and Zeikus constructed
composites of graphite, metal (e.g., Fe3+ and Mn4+), and mediator compounds
(e.g., neutral red), and reported that current production was enhanced when
an electron mediator (Mn4+ or neutral red) was incorporated into a graphite
anode [35]. Lowy et al. [36] evaluated various modified graphite anodes, includ-
ing graphite modified by adsorption of anthraquinone-1,6-disulfonic acid
(AQDS) or 1,4-naphthoquinone (NQ), a graphite–ceramic composite containing
Mn2+and Ni2+, and graphite modified with a graphite paste containing Fe3O4 or
Fe3O4 and Ni2+. It was found that these anodes possess between 1.5- and 2.2-
fold greater kinetic activity compared with plain graphite.
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The current production by Shewanella putrefaciens on gold electrodes
coated with various alkanethiol self-assembled monolayers, having a carboxylic
acid functional head group, were compared with that produced on glassy car-
bon electrodes [37]. It was revealed that current production correlated with
monolayer molecular chain length and head group, with certain head groups
enhancing electronic coupling to the bacteria, as a result of strong hydrogen
bonding between the carboxylic acid groups and the cytochromes in the bacte-
ria. This covalent linking functioned as an electrical connection between the
bacteria and the electrode and the modified electrode produced significantly
higher currents compared with glassy carbon. Polyethyleneimine was also
used to bind the mediator (9,10-anthraquinone-2,6-disulfate) and Geobacter
sulfurreducens to a graphite felt electrode, which showed a current density of
1.2 mA cm�2 [38].

Enhanced performance was also reported for anode modification with conduc-
tive polymers. A commonly used conductive polymer, polyaniline, can increase
the current densities of MFC anodes. But it is also susceptible to microbial
attack and degradation [39]. Schröder et al. [18] reported that a platinum elec-
trode covered with polyaniline achieved a current density up to 1.5 mA cm�2 in
an MFC. Modification of polyaniline can improve its performance and stability,
such as fluorinated PANI [40], PANI/carbon nanotube (CNT) composite [41],
and PANI/titanium dioxide composite [42].

Nanomaterials have also been used to improve the performance of MFC
anodes. Recent studies have demonstrated that CNT-decorated anodes
enhanced the power generation of MFCs [43,44]. The modification of a glassy
carbon anode with carbon nanotubes increased the current density to
9.70 ± 0.40 μA cm�2, a level 82 times greater than that of bare glassy carbon
electrodes [45]. Graphite anodes decorated with Au nanoparticles produced
current densities up to 20-fold higher than plain graphite anodes by Shewa-
nella oneidensis MR-1, while those of Pd-decorated anodes with similar mor-
phologies were 0.5–1.5 times higher than the control [46]. Multiwall carbon
nanotube (MWNT) and polyelectrolyte polyethyleneimine (PEI) were
employed to modify carbon paper electrodes utilizing a layer-by-layer (LBL)
assembly technique, producing a 20% higher power density than the bare car-
bon paper anodes [47].

7.4
Cathode

The cathode is the main bottleneck of current MFC development. Development
of high-performance, low-cost cathode material is critical for the successful
application of MFC technology, especially for wastewater treatment. A typical
air cathode includes a carbon base layer, a catalyst coating on the water facing
side, and several diffusion layers (DLs) on the air-facing side [48].
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7.4.1

Catalyst Binders

Binding agent, or binder, is often used in the preparation of cathodes to form a
catalyst coating on the surface of the cathode substrate, or base layer. A solution
of Nafion, a perfluroinated proton exchange resin, is widely used with Pt/C pow-
der to form a paste, which is then applied by brushing or spraying onto carbon
the cloth/paper base layer. However, the application of Nafion solution in pre-
paring MFC cathodes should be reconsidered due to the following reasons. First,
the Nafion solution is relatively expensive, which contributes a major portion of
the total cost of MFC cathode. Second, the proton is mainly transported by
anions, or pH buffer carriers, in the neutral condition of MFCs. Nafion as a pro-
ton, or cation, exchange resin may increase the ion mass transfer resistance, or
polarization resistance, of the cathode. Simply replacing the Nafion solution with
water improved the performance of the cathodes [49], although the long-term
performance of a binder-free catalyst coating is not clear. The adverse effect of
cation exchange functional groups was also demonstrated in a recent study [50].
The unsulfonated poly(phenylsulfone) binder, a nonionic hydrophobic polymer,
showed the highest current in linear sweep voltammetry (LSV) tests and the low-
est charge transfer resistance. The increase of sulfonate groups in the poly(phe-
nylsulfone) binder from ion exchange capacities 0 to 2.54 meq/g resulted in a
decreased current response in LSV tests and an increased charge transfer resist-
ance from 8 to 23 Ω. It is proposed that the presence of sulfonate groups in the
cathode binder impeded the oxygen reduction activity of the cathodes by adsorp-
tion of the sulfonate to catalytic sites and by impeding proton diffusion to the
catalyst surface. These results suggest that the use of a nonionic binder is advan-
tageous in an MFC cathode to facilitate charge transfer and stable performance
in the neutral pH conditions found in MFCs [51]. The replacement of the Nafion
binder with polytetrafluoroethylene (PTFE), however, reduced the maximum
power densities [52]. Further tests showed that the increase of Nafion percentage
in Nafion–PTFE mixture (from 0 to 100%) as catalyst binders increased the max-
imum power density (from 549 to 1060 mW m�2) [53]. The relatively poor per-
formance of PTFE as a binder might be due to its hydrophobicity. Increasing the
hydrophilicity of polystyrene-b-polyethylene oxide binders enhanced the electro-
chemical response of the cathode and MFC power density by ∼15%, compared
with the hydrophobic PS–OH binder. The performance of an inexpensive hydro-
philic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was
initially (after two cycles) worse (1360 and 630 mW m�2 for 0.5 and 0.05 mg
Pt cm�2, respectively) than that of hydrophilic sulfonated Nafion binder (1980
and 1080 mW m�2 for 0.5 and 0.05 mg Pt cm�2, respectively). However, after
long-term operation (22 cycles, 40 days), power production of each cell was sim-
ilar (∼1200 and 700–800 mW m�2 for 0.5 and 0.05 mg Pt cm�2, respectively)
likely due to cathode biofouling that could not be completely reversed through
physical cleaning [54].
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7.4.2

Diffusion Layers

PTFE is widely used in diffusion layers to allow air breathing while preventing
water leakage in air cathodes. A new and simplified approach for making cath-
odes for microbial fuel cells was developed by using metal mesh current collec-
tors and inexpensive carbon/polymer, poly(dimethylsiloxane) (PDMS), diffusion
layers [55]. The PDMS can limit oxygen transfer through the cathode and
improve coulombic efficiency of MFCs. The low-cost design produced compara-
ble power output and a much higher coulombic efficiency (80 versus 57% for
carbon cloth cathode) [56].

7.4.3

Current Collector

Due to the relatively low current density in MFCs, there are normally no current
collectors employed in cathodes using carbon cloth or carbon paper as a base
material. Carbon cloth current collectors made of stainless steel can be inte-
grated into MFC cathodes constructed of a reactive carbon black and Pt catalyst
mixture and a poly(dimethylsiloxane) diffusion layer. It is shown here that the
mesh properties of these cathodes can significantly affect performance. Cathodes
made from the coarsest mesh (30 mesh) achieved the highest maximum
power of 1616± 25 mW m�2 (normalized to cathode projected surface area;
47.1± 0.7 W m�3 based on liquid volume), while the finest mesh (120 mesh) had
the lowest power density (599± 57 mW m�2). Electrochemical impedance spec-
troscopy showed that charge transfer and diffusion resistances decreased with
increasing mesh opening size. In MFC tests, the cathode performance was pri-
marily limited by reaction kinetics, and not mass transfer. Oxygen permeability
increased with mesh opening size, accounting for the decreased diffusion resist-
ance. At higher current densities, diffusion became a limiting factor, especially
for fine mesh with low oxygen transfer coefficients. These results demonstrate
the critical nature of the mesh size used for constructing MFC cathodes [57].

7.4.4

Cathode Fouling

Due to biofilm development and the complexity of medium solutions used in
MFCs, the fouling of the cathode is a more serious issue than that for chemical
fuel cells.

Kiely et al. operated microbial fuel cells for more than a year with individual
endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid,
succinic acid, or ethanol) to investigate the long-term cathode performance and
bacterial communities. Cathode performance degraded over time, as shown by
an increase in power of up to 26% when the cathode biofilm was removed, and
118% using new cathodes [58]. For submerged air cathodes in two-chamber
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MFCs, cathodic biofilm development and chemical scale accumulation can
reduce oxygen diffusion through the cathode as well as the proton mass transfer,
leading to a decrease in power generation during the long term. Thus, it is
important to properly control the formation of chemical scale and biofilm on
the cathode during long-term operation to obtain stable power generation in
two-chamber MFCs [40].

7.4.5

Cathode Catalysts

Platinum is widely used in laboratory MFC systems as a cathode catalyst due to
its high catalytic activity for oxygen reduction reaction. However, the high cost
of platinum reduces the appeal of this approach. The near neutral pH condition
also strongly affects the cathode performance and limits the power generation of
MFCs. Extensive research efforts have been focused on improving the per-
formance and reducing the cost of cathode materials [44,59,60].

7.4.5.1 Pt Cathode Modified with Nanomaterials
Nanomaterials, especially CNT, have been used to improve the performance of
Pt cathodes. Thanks to the unique properties of CNTs, the performance of Pt
cathodes can be greatly enhanced.

The current density of a single-wall carbon nanotube sheet electrode, with
infused platinum nanoparticles as the cathode in a microbial fuel cell, was
approximately an order of magnitude higher than that with an e-beam-evapo-
rated platinum cathode. The enhancement of catalytic activity can be associated
with the increase of the catalyst surface area in the active cathode layer [61]. In
another study, MFCs with carbon nanotube mat cathodes produced a maximum
power density of 329 mW m�2, more than twice of that obtained with carbon
cloth cathodes (151 mW m�2) [62]. A similar twofold improvement was obtained
by electrochemically depositing Pt nanoparticles on a CNT textile cathode for
aqueous cathode MFCs, with only 19.3% Pt loading of a commercial Pt-coated
carbon cloth cathode [63].

7.4.5.2 Cathode with Non-Pt Metal Catalyst
Various metals have been explored to replace Pt, including Fe, Co, Mn, and
Pb. Among these metals, cobalt and iron are often used with tetramethoxy-
phenylporphyrin (TMPP) or phthalocyanine (Pc) to form metal macrocyclic
complexes, which demonstrate performance comparable with Pt in neutral
pH conditions. FePc supported on KJB carbon (FePc-KJB) produced a power
density of 634 mW m�2, which is higher than 593 mW m�2 of Pt cathode and
other cathodes with metal macrocyclic complexes, including CoTMPP,
FeCoTMPP, CoPc, and FeCuPc [64]. The comparison of FePc and CoTMPP
with platinum-based system demonstrated the potential of transition metal-
based materials for substitution of the traditional cathode materials in micro-
bial fuel cells [65]. Cheng et al. also demonstrated that the performance of
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cathodes with CoTMPP is comparable with Pt cathodes, especially at current
density above 0.6 mA cm�2 [52]. With a loading of 2 mg cm�2, the maximum
power density of MFCs with FePc-based cathode was 550–590 mW m�2,
which is comparable with that using a Pt-based carbon cloth cathode con-
taining 0.5 mg Pt cm�2 [66]. The performance of metal macrocyclic complex
catalysts is also affected by the chemical environment in microbial fuel cells.
The limiting current density of pyrolyzed FePc and CoTMPP in galvanody-
namic polarization experiments decreases from 1.5 to 0.6 mA cm�2 (pH 3.3,
Ecathode = 0 V) when the buffer concentration is decreased from 500 to
50 mM [67]. High concentration of chloride ions may reduce the perform-
ance of Pt catalysts, while improving the performance of cathodes with
CoTMPP [64].

Aelterman et al. demonstrated that it is possible to replace ferricyanide with
an iron ethylenediaminetetraacetic acid (Fe-EDTA) catholyte [68]. Although
the maximum power was 50% lower, no replenishment of the Fe-EDTA cath-
olyte was needed. Simply pyrolyzing carbon mixed iron-chelated ethylenedia-
minetetraacetic acid (PFeEDTA/C) in an argon atmosphere may greatly
improve its performance, with quaternary N-iron as the possible active site for
the oxygen reduction reaction [48]. The MFC with a PFeEDTA/C cathode
produced a maximum power density of 1122 mW m�2, which was close to that
with a Pt/C cathode (1166 mW m�2) and which was stable during an operation
period of 31 days.

Other non-Pt metal catalysts, including PbO2 [69], MnO2 [51,70], and Co [71],
were also studied. However, their maximum power densities (normalized to the
projected cathode surface area) were only about 100 mW m�2 or less, which is
less than 10% of the power density that can be produced by high-performance
air cathodes with Pt cathodes.

7.4.5.3 Carbon Cathodes
Carbon material, such as graphite plate and graphite felt, can be directly used as
a cathode without any additional catalyst. Considering cathodes with high-per-
formance Pt catalyst still limit the performance of MFCs, the current density of
plain carbon cathodes is generally much lower than that with a catalyst. How-
ever, some recently developed carbon cathodes demonstrated performance com-
parable with that of Pt-catalyzed cathode.

Recent developments demonstrated the great potential of activated carbon as
low-cost cathode material, which can be formed by cold pressing-activated car-
bon with a PTFE binder around a Ni mesh current collector. Such a cathode
structure avoided the need for carbon cloth or a metal catalyst, and produced a
cathode with high activity for oxygen reduction at typical MFC current densities
[72]. Tests with the AC cathode produced a maximum power density of
1220 mW m�2, compared with 1060 mW m�2 obtained by Pt-catalyzed carbon
cloth cathode. Other carbon material, including activated carbon fiber felt [56]
and HNO3-treated carbon powder (Vulcan XC-72R) [73], also demonstrated
good performance for oxygen reduction reaction in MFCs.
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7.4.5.4 Conductive Polymers
Conductive polymers, such as ploypyrrole (PPy)/polyaniline (PANI) and media-
tor composites, show promising performance for the oxygen reduction reaction
in MFCs. Modification of the anode and cathode of a dual-chamber MFC with
PPy/anthraquinone-2,6-disulfonate (AQDS) composite boosts the maximum
power density one order of magnitude to 823 mW cm�2, which also increased
the rate of H2O2 generation in the cathode chamber [74]. In another study, Prus-
sian blue/polyaniline (PB/PANI)-modified cathode exhibited good electrocatalyt-
ical activity for oxygen reduction in an acidic electrolyte, demonstrating
performance comparable with that of a ferricyanide cathode [75]. A cathode
with polypyrrole/anthraquinone-2-sulfonate (PPy/AQS) conductive polymer on
stainless steel mesh produced a maximum power density of 575 mW m�2 in a
membraneless MFC [76].

7.4.5.5 Biocathodes
Laccase has been commonly used in cathodes of enzyme-based biofuel cells.
Only recently, it was discovered that bacteria can also catalyze the oxygen
reduction reaction in MFCs. Biocathode here refers to bacteria-based
cathode.

Relatively low power/current density is the major obstacle for the application of
biocathodes. Mass transfer calculations show that the transfer of oxygen poses a
serious limitation to the use of dissolved oxygen as an electron acceptor in MFCs
[77]. This limiting current density was calculated to be 0.848 A m�2 for a graphite
plate biocathode, which is a factor of three times higher than the measured cur-
rent density and an order of magnitude lower than what can be achieved by a Pt
air cathode. However, a maximum current density of ∼4 A m�2 was achieved
using a tubular biocathode with carbon felt as the cathode material [78], corre-
sponding to a maximum power density of 117 W m�3 (obtained by polarization at
a 1 mV s�1 scan rate) or 83 W m�3 (obtained by changing external resistance). The
cathode material and the fast catholyte flow rate (6 l h�1, hydraulic retention time
<0.4 min) might be the reasons for the improved oxygen mass transfer and the
achievement of such a high current density. Slightly lower 68.4 W m�3 (obtained
by polarization at a 1 mV s�1 scan rate) at a current density of 178.6 A m�3 was
obtained by an MFC with a graphite fiber brush as the cathode material [79]. An
MFC with an algae-grown cathode (Chlorella vulgaris) produced a maximum
power density of 5.6 W m�3 [80]. A maximum current density of 1.0 mA m�2 was
produced in another MFC using C. vulgaris at the cathode [81].

Although much work remains to be done to increase current density, biocath-
odes have drawn substantial research attention due to the low-cost and sustain-
able nature. Moreover, biocathodes can be used not only for oxygen reduction
but also for many oxidized contaminates [82]. For example, Cr(VI) can be biologi-
cally reduced to Cr(OH)3 precipitate in an MFC with a biocathode [83]. A maxi-
mum Cr(VI) reduction rate of 0.46 mg Cr(VI) g�1 VSS h�1 was achieved, which
resulted in a current and power density of 123.4 mA m�2 and 55.5 mW m�2,
respectively.
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7.5
Separators

The separator is an important component in a MFC, which physically separates
the anode and cathode. A variety of separators have been explored for MFCs,
including a salt bridge, cation exchange membrane (CEM), anion exchange
membrane (AEM), bipolar membrane (BPM), microfiltration (MF) membrane,
ultrafiltration (UF) membrane, and porous fabrics and porous materials.

In chemical fuel cells, membranes or other ion-conductive separators are
needed to avoid fuel crossover while allowing charge carrying ion exchange
between electrodes. In microbial fuel cells, however, the fuel crossover is no lon-
ger an issue because anodes and cathode use totally different catalysts, and thus
fuel/substrate cannot be consumed at the cathode. Cation exchange membranes
are still needed in two-chamber MFCs using ferricyanide as an electron acceptor
to avoid the diffusion of toxic ferricyanide into the anode chamber while allow-
ing the transfer of protons or other cations to the cathode chamber. For MFCs
other than those using ferricyanide, anion [84] or bipolar [85] exchange mem-
branes, nanoporous polymer filters [86], ultrafiltration membranes [84], and
even J-cloth [87] could be better choices because they result in a relatively stable
anolyte pH, which is critical for biological activity.

The main functions of separators in MFCs are to avoid the direct electric con-
tact (short circuit) of anodes and cathodes and to reduce unwanted crossover of
oxygen and other substances, while maintaining efficient proton mass transport
through the separator. It is possible to replace/eliminate this expensive and com-
plicated membrane system [87,15]. In a membrane-free air cathode microbial
fuel cell system, the biofilm developed on the cathode can function as a mem-
brane to minimize oxygen diffusion into the anode chamber while allowing effi-
cient transport of protons/ions. The elimination of the membrane not only
reduces the cost and complexity of MFCs but also increases the higher power
density due to a decrease in internal resistance [3]. The active consumption of
oxygen by the aerobic biofilm on the cathode can effectively reduce the oxygen
diffusion through the biofilm. However, the biofilm also consumes substrate that
results in low coulombic efficiency. The possible short circuit and increased oxy-
gen diffusion limit the minimum electrode spacing to about 1–2 cm [88]. The
relatively large electrode spacing not only contributes to the high internal resist-
ance but also limits the ratio of the electrode surface area/volume and in turn
the maximum volumetric power density. Therefore, separator is still needed if
further reduction in electrode spacing is necessary.

7.5.1

Cation Exchange Membranes

Nafion membrane is widely used in MFC research, probably due to the popular-
ity in PEM fuel cells. Nafion membrane is also called a proton exchange mem-
brane for its preferential conduction of proton over other ions under acidic
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condition. However, the charge balance in an MFC with Nafion or other CEM is
achieved by the transportation of predominant cations, such as Na+ and K+, as
the concentrations of these cations are typically 105 times higher than that of
proton [89]. Due to the low efficiency in proton transportation through the
membrane, the anodic pH increases while the cathodic pH decreases, which not
only decreases the voltage output of the MFC but also inhibits the activity of
anodic microbes and leads to cathode fouling. A low-cost alternative to Nafion
membrane is CMI-7000 (Membranes International Inc.), which is also less per-
meable to oxygen than Nafion due to its thickness.

7.5.2

Anion Exchange Membranes

AEM generally perform better than CEM in MFCs because anions, such as phos-
phates and carbonates, can facilitate proton transport. In an MFC with AEM, pH
buffers also work as proton carriers. The concentration of pH buffers used in
MFCs is on the order of 0.1 M, which is 106 times higher than that of protons.
The relatively higher concentration of proton carriers results in more efficient
proton transfer through separators and higher power density [3]. Kim et al.
reported higher maximum power density for AEM (610 mW m�2) than by the
Nafion (514 mW m�2) and CEM (480 mW m�2) [84]. The power density was
further increased to 728 mW m�2 with AEM cathode and 200 mM PBS in a
tubular MFC [90].

7.5.3

Biopolar Membranes

A bipolar membrane is a cation exchange membrane laminated together with an
anion exchange membrane, through a catalytic intermediate layer (the “junction”
layer) to accelerate the splitting of water into protons and hydroxide ions. Bio-
polar membranes were first applied in MFCs to combine with ferric iron reduc-
tion on a graphite electrode as an efficient cathode system [85]. Compared with
AEM and CEM, BPM can suppress the transport of ions other than protons and
hydroxide ions and thus reduce the pH difference between anode and cathode
chambers. However, water splitting would increase polarization potential loss
across the membrane. The loss was much larger than those of CEM and AEM
(0.71 versus 0.27 and 0.32 V, respectively) in a bioelectrochemical system run-
ning on wastewater, in spite of the increased ability to transport protons and
hydroxyl ions and to prevent pH increase in the cathode chamber [91].

7.5.4

Filtration Membranes

Filtration membranes, including UF and MF membranes, can be used as separa-
tors in MFCs. In addition to low cost, compared with ion exchange membrane,
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the advantage of UF and MF membranes is that most of the ions can freely pass
through the relatively large pores of the membranes, thus reducing the associ-
ated internal resistances and enhancing the MFC performance [92–95]. One
major issue for the application of membranes in MFCs is oxygen crossover,
especially for MFCs with membrane electrode assemblies [96]. An ideal separa-
tor should have the capacity to control oxygen crossover while facilitating pro-
ton transfer to the cathode. Oxygen crossover can be reduced by using
membranes with a smaller pore size [97,98] or thicker membranes [99].
Unfortunately, materials that reduce oxygen crossover also decrease proton
transport, reducing power generation.

7.5.5
Porous Fabrics

Porous fabrics can also accomplish the main functions of separators in MFCs,
preventing short circuit and reducing oxygen diffusion. Thanks to the porous
structure, fabrics allow efficient mass transfer of charge carrying ions, reducing
internal resistance and enhancing power generation. In principle, any porous,
nonconductive materials can be used as separators in MFCs. Basic require-
ments for the materials are nonconductive, durable, low-cost, high anion per-
meability and low oxygen permeability [87]. The oxygen crossover can be
effectively suppressed by a simple cloth layer and developed biofilm, thus
improving the coulombic efficiency. The coulombic efficiency improved by two-
fold compared with cathodes without the cloth layer (71 versus 35%) [87]. The
cloth layer can also electrically isolate the anode from cathode, thus making it
possible to reduce the electrode spacing to less than 1 mm and form a cloth
electrode assembly structure. The CEA structure makes it possible to greatly
reduce the internal resistance [31] and increase the surface/volume ratio, thus
increasing the volumetric power density, of the MFC. A power density as high
as 1550 W m�3 (2770 mW m�2) was achieved in an MFC with double CEAs
using 0.2 M bicarbonate as buffer [3]. Thanks to its low cost and large variety,
the balance between oxygen permeability and internal resistance can be opti-
mized. However, the development of the biofilm should be well controlled to
maintain its long-term stability.

7.6
Outlook

Although low power density and high material cost are still limiting the applica-
tion of MFC technology, the power density of MFCs has been increased by
several orders of magnitude in less than a decade [100]. Further improvement in
power density and reduction in material cost are expected as a result of intensive
research activities in this area.
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With the rapid increase in the world population, about 7 billion today, water
and energy are now growing expensive and are soon to be overwhelmed by insa-
tiable demand. Microbial fuel cell technology, which uses microorganisms to
catalyze the direct generation of electricity from biodegradable organic matter,
provides a completely new approach for energy generation from wastewater and
accomplishing wastewater treatment at the same time [101]. It has been known
for nearly a century that bacteria can generate electrical current [1]. But only in
the last few years, MFCs have drawn much attention and extensive research,
especially after the demonstration of direct harvesting of electricity from waste-
water [2].

Intensive research activities led to rapid improvement in MFC performance in
the past decade. The power density of MFCs has been increased several orders of
magnitude in <10 years. Until now, the highest reported power densities are on
the order of 1 W m�2 and 1 kW m�3, which are still about two to three orders of
magnitude lower than those of chemical fuel cells. Further improvement in
power density is necessary to make MFC technology competitive and commer-
cially viable, which requires breakthroughs in low-cost and high-performance
materials for MFCs.

The anode is a nonlimiting factor in the current stage of MFC development.
Carbon cloth anode with mixed culture bacteria can at least produce a current
density of 3 mA cm�2 while the current density for MFCs with equal sized elec-
trodes is normally <1 mA cm�2. The current commercial price for carbon cloth
is about a few dozen dollars, which is expected to be reduced when large-scale
application of this material in MFCs is possible. Further development of anode
material should further reduce cost.

The cathode is a major limiting factor of MFCs, both in performance and
in cost. Platinum is too expensive to be used in large-scale application. It is
possible to find some cathode materials suitable for the neutral pH and rela-
tively low current density. Activated carbon provides a good example of low-
cost high-performance cathode materials. Special attention should be paid to
searching high-performance oxygen reduction catalysts at a higher current
density, for example, 2–3 mA cm�2, to match the possible current density of
anode.

Separators are often overlooked in MFC research, both in its cost and in its
contribution to internal resistance. Ion exchange membranes are about a few
hundred US dollars per square meter. The high cost and mediocre performance
limit their potential commercial application in MFCs. While producing
the highest reported volumetric power density, the cost of porous fabrics can be
<1 US$ m�2. Further optimization of thickness and control of biofilm develop-
ment is needed.

Breakthroughs in MFC materials often lead to breakthroughs in reactor archi-
tecture and performance. New designs also call for new materials. The develop-
ment of low-cost and high-performance electrode materials will greatly expand
the application of MFCs.
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8
Bioelectrochemical Systems
Falk Harnisch and Korneel Rabaey

8.1
Bioelectrochemical Systems and Bioelectrocatalysis

A bioelectrochemical system (BES) exploits biological catalysts for anode and/or
cathode reactions, or both. In this regard, “bioelectrocatalysts” can be defined as
moieties of biological origin leading to an increase of the rate constant of a given
electrode reaction and a corresponding decrease of its overpotential. As depicted
in Figure 8.1, three different classes of bioelectrocatalysts can be distinguished,
ranging from single enzymes (e.g., dehydrogenases [1]) or enzyme arrays and
organelles (e.g., mitochondria [2,3]) to entire living microbial cells. The latter,
referred to as microbial bioelectrocatalysts, have attracted increasing attention
in the past years, as they offer appealing advantages: They are self-reproducing,
can catalyze multielectron reaction steps often with high specificity, and are able
to transform complex substrates or mixtures thereof. This chapter will focus on
these microbial bioelectrocatalysts.

First we will discuss the similarities and differences between conventional
chemical and microbial bioelectrocatalysts. Subsequently, the principal mecha-
nisms of the extracellular electron transfer (EET) and the technology aiming at
their exploitation will be introduced. Finally, the biological and electrochemi-
cal methods that allow the analysis of the microbial electron transfer and iden-
tification of the respective mediators, proteins, and microorganisms will be
addressed.

8.2
On the Nature of Microbial Bioelectrocatalysis

Microbial bioelectrocatalysts are living cells. As a consequence, they need a certain
amount of energy for their maintenance and proliferation. Cells use energy
gained to produce ATP and NAD(P)H, the two main energy carriers. In order to
generate these, they need to build up internal potential gradients, which exter-
nally lead to a loss of useful potential. In the context of bioelectrocatalysis, this
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share of energy is usually extracted from a part of the energetic difference
between electron donor and electron acceptor of the catalyzed reaction. This
will be discussed using the example of an anodic, acetate oxidizing biofilm. In a
typical anodic biofilm, operated at 0.400 V (provided versus SHE, as all potentials
in this chapter, if not indicated otherwise) and dominated by Geobacter species,
the net reaction of the acetate oxidation is as follows:

C2H4O2 � 2H2O ! 2CO2 � 8H� � 8e� (8.1)

(Note that reaction (8.1) and all following reactions and derived equations are,
for simplicity reasons, based on the neutral species.)

The biological standard potential of the acetate/CO2–redox couple is
E0´ � �0:290 V; it needs to be noted that potentials may vary substantially
based on the local concentrations of the substrate and the oxidation/reduction
products [4]. Thus, the maximum extractable voltage difference, ΔE, for the
described scenario is 0.690 V, which is equivalent to an energy difference of max-
imum 66.6 kJ mol�1 of transferred electrons (ΔGmax � 66:6 kJ mol�1

e� according
to ΔG � �nFΔE). However, the microorganisms do not transfer the electron at
a potential of �0.290 V to the anode, but at roughly �0.150 V (versus SHE,
equivalent to �0.350 V versus Ag/AgCl). As a consequence, the potential differ-
ence between the terminal electron shuttle and the anode is maximal 0.550 V.
The real maximum energy gain per electron for the microbial bioelectrocatalytic
acetate oxidation is thus ΔGreal � 53:1 kJ mol�1

e� . From the microorganism per-
spective, the remaining energy share is ΔGmicrobio � 13:5 kJ mol�1

e� per electron
and this can potentially be exploited for growth. All known microbial bioelectro-
catalysts extract a certain share of the energy difference between electron donor
and acceptor, which is actually the driving force for their setup from the biologi-
cal perspective. Thus, strictly speaking, the term “bioelectrocatalysis” might not
be entirely correct, but it is conveniently used in literature and in this chapter.

When comparing the microbial bioelectrocatalyst with a conventional, noble
metal-based electrocatalyst for low-temperature fuel cells, it appears that the
aforementioned energetic disadvantage could be compensated by a number of
advantages (Table 8.1).

Figure 8.1 Types of bioelectrocatalysts (a) enzymes, (b) organelles, and (c) microorganisms.
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8.3
Microbial Electron Transfer Mechanisms

As already discussed, microorganisms extract a certain share of energy for their
living from the maximum theoretically exploitable energetic difference. In case of
anodic bioelectrocatalysis, the energy difference is situated between the microbial
substrate, that is, the fuel, and the potential of the terminal electron transfer site.
Furthermore, and like in conventional electrocatalytic systems [5], several ener-
getic losses at the bioelectrocatalyst–electrode interface occur (Figure 8.2).

Table 8.1 Operating conditions of a microbial bioelectrocatalyst and an electrocatalyst in a
low-temperature fuel cell.

Parameter Conventional
electrocatalyst

Microbial bioelectrocatalyst

Operating
temperature

Room temperature to
high temperatures

Observed 15–75 °C

Fuel,
“substrate”

Simple molecules, for
example, H2, methanol

From simple to complex, mixed substrates

Purity Pure substrates required No purity required
Longevity Limited, corrosion Self-regenerating
Costs Considerable Negligible
Process rate Fast (several A m�2 level) Medium (A m�2 level)
Catalyst
volume

Small (nm size) Considerable (single cells micrometer level,
biofilms 10–50 μm)

Medium
requirements

Typically pure water or
solvent

Water-based mixture containing nutrients (N, P,
trace elements) and vitamins

Selectivity Often low Potentially high, up to 100%

Figure 8.2 Polarization curve of a microbial bioanode. The deviation between biological stan-
dard potential and the measured formal potential at open circuit is indicated as well as the
different losses during electrode polarization from open circuit to maximum current.
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As shown in Figure 8.2, these losses include thermodynamic as well as kinetic
losses, losses due to the microbial metabolism, and the electron transfer kinetics
at the electrode interface; see for example, Refs [6,7] for a detailed treatise. In the
following, the electron transfer pathways between microorganisms and electro-
des will be discussed. Noteworthy, this discussion will mainly focus on bioelec-
trocatalytic anodes, that is, the electrode is used as an electron acceptor, as only
very little is known about the mechanisms at microbial biocathodes [8].

From its first description in 1911 by Potter [9] until the mid-1990s, it was
believed and generally acknowledged that exogenous, artificial redox substances
are needed to facilitate reversible electron shuttles between the microorganism
and the electrode. These mediators were often toxic organic dyes like neutral
red [10] or methylene blue. However, the addition of these endogenous sub-
stances is not necessary [11], and we are now starting to understand both the
mechanisms of direct electron transfer (DET) (see Section 8.3.1) and mediated
electron transfer (MET) based on primary and secondary metabolites rather
than via addition of redox mediators (MET) (see Section 8.3.2).

8.3.1

Direct Electron Transfer

Common to DET mechanisms is the necessity of some form of physical contact
between the microorganism and the terminal electron acceptor. As Figure 8.3
shows, two possibilities of DET can be distinguished: DET via membrane-bound
redox proteins and DET via bacterial pili – so-called “nanowires.” Recent
research indicates that these options likely occur in conjunction, and are mutu-
ally dependent to achieve high electron transfer rates.

Figure 8.3 Sketch of DET via membrane-bound DET proteins and nanowires to the electrode
and between the bacteria.
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Direct transfer via membrane proteins at first glance appears to be the most
straightforward electron transfer pathway, the whole bacterial cell is positioned
adjacent to the anode and tunnels its electrons through the bacterial membrane.
DET using membrane-bound enzymes is ascribed to a number of microorgan-
isms, most prominently Geobacter [12] and Shewanella species. Whereas Geo-
bacter species carry a wide variety of c-type cytochromes with limited individual
potential bandwidth and which can be expressed under different circumstances
to achieve this electron transfer [13], Shewanella oneidensis appears to mainly
use a multiheme complex MtrCAB that has a broad potential range (a good
overview on this complex can be found in Ref. [14]). Interestingly, considerably
higher current densities are achieved with Geobacter relative to other described
species, demonstrating that its approach makes it ideally suited for microbial
bioelectrocatalysis. Interestingly, whereas for only monolayer biofilm forming
species like Rhodoferax the current densities seem to be severely limited (e.g.,
3 μA cm�2) [15], other species can produce significant higher current densities
and this relates to the fact that biofilms containing many layers of cells form on
anodes. This highlights that direct electron transfer is only one of the means for
current formation.

In 2005, it was first described that microorganisms express pili or pilus-like
structures in conditions relevant for EET. It was shown that these structures,
“nanowires,” are conductive in the transversal direction [16,17] and more
recently in the longitudinal direction [18,19]. These nanowires would allow the
microorganism to connect its membrane-bound terminal electron shuttle (e.g., a
cytochrome) via conductive pili to the terminal electron acceptor (see Figure 8.3)
[16,17]. This strategy was reported to increase the achievable current density by
orders of magnitude compared with the above-described DET using membrane-
bound proteins, with the presently maximum achieved geometric current density
of 3 mA cm�2 (see also Table 8.2) [20]. Many mechanistic questions on this elec-
tron transfer pathway and on the role of the complex biofilm matrix remain to
be addressed [21]. It is important to note here that current density depends not
just on the presence of the nanowires but is also intricately linked to the expres-
sion of cytochromes both associated with the bacterial membrane and released
in the biofilm [22,23]. It is possible that these cytochromes allow electron trans-
fer from the nanowires to the electrode, whereas the nanowires provide the
transport from the cell to the electrode surface.

Whereas the mediated electron transfer, for example, via the oxidation of
primary metabolites, can be realized with cell suspensions (see later) without
any direct interaction of the living cell and the electrode material, an attach-
ment of the bacterial cells (or its appendices) to an electrode surface is com-
pulsory for the direct electron transfer. This attachment is not necessarily
permanent, some bacterial species possess a directed motility toward prospec-
tive electron acceptors such as electrodes allowing a DET of suspended cells
[24]. Furthermore, there is growing evidence that the matrix of exopolymeric
substances (EPS) may also play an important role in the microbial electron
transfer [25].
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8.3.2

Mediated Electron Transfer (MET)

Mediated electron transfer can be realized either by primary or by secondary
microbial metabolites [26], both concepts are summarized in Figure 8.4.
Whereas the latter substances are used for a reversible shuttling of electrons,
primary metabolites are mostly irreversibly oxidized. Depending on the origin
of the shuttling compounds, one can distinguish endogenous and exogenous
shuttles.

Table 8.2 Selected studies on different electrode materials and the associated maximum cur-
rent densities per projected surface area at maximum power.

Anode material Microbial source Substrate jmax

(μAcm− 2)
Reference

Glassy carbon Geobacter Acetate 100 [56]
Graphite fiber brush Preacclimated

MFC
Acetate 800 [57]

Polycrystalline carbon Wastewater Acetate 920 [55]
Carbon paper Wastewater Acetate 1350 [55]
Polyaniline on graphite
felt

Rice paddy field
soil

Starch, peptone,
and fish extract

2400 [58]

Electrospun carbon
fiber mats

Wastewater Acetate 3000 [20]

The actual operation conditions, for example, temperature, differ among the studies.

Figure 8.4 MET mechanisms.
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8.3.2.1 MET Based on Secondary Metabolites
Whereas artificially added exogenous redox shuttles were used at the onset of
EET research [27], the electron transfer via microbially synthesized secondary
metabolites is increasingly studied. Secondary metabolites are synthesized by the
bacteria not using the main catabolic metabolic pathways, therefore, their syn-
thesis is an energetic investment of the bacteria. These compounds, for example,
pycocyanine [28] or 2-amino-3-carboxy-1,4-naphthoquinone [29], allow the
electron transfer within thicker biofilms (and even between planktonic cells and
the anode) and thus lead to an increase of the performance of microbial fuel cell
(MFC) anodes. This electron transfer pathway has been reported for a few single
species (e.g., Pseudomonas sp.) [30] and for microbial biofilms from natural ino-
culi. Interestingly, there is increasing evidence that distinct shuttle compounds
can not only be used by microorganism of the same species they were synthe-
sized by but also (and even more effective) by other microbial species [30]. In
this context of complex bacterial interaction, it is further observed that the elec-
tron shuttle compounds may also act as signaling substances for microbial com-
munication, for example, quorum sensing [31]. Finally, it can be considered that
some compounds, such as humic substances, can be the result of microbial deg-
radation and used by a lots of other organisms in the natural environment and in
the laboratory in the context of EET [32].

8.3.2.2 MET Based on Primary Metabolites
Primary metabolites are directly linked to the microbial catabolic (in case of
anodic biofilms) metabolism and thus mainly derive from microbial anaerobic
respiration as well as fermentation, with key examples being hydrogen and sul-
fide. These compounds are mostly “waste products” from the microorganism’s
perspective and serve the purpose of adjusting the intracellular redox balance.
For their exploitation at the anode of microbial BESs, these compounds have to
be oxidized at an electrocatalytic electrode surface. This anode concept has been
used for the oxidation of hydrogen produced during glucose fermentation on a
platinum polymer-based sandwich electrode. In a subsequent step, these noble
metal-free materials were replaced by noble metal-free electrode electrocatalysts
allowing the oxidation of not only H2 but also low-molecular organic acids such
as formate and lactate [33–35]. Furthermore, the exploitation of sulfur species
[36–38] can be classified within this electron transfer concept, although it needs
to be noted that sulfur species can be reversibly cycled over sulfide/sulfur in
BESs [39].

8.4
From Physiology to Technology: Microbial Bioelectrochemical Systems

Based on the initial findings of Potter [9,40], the possibility to produce electricity
from microbial decomposition was intermittently studied during the twentieth
century. The first increase in research efforts was at the time of the NASA
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Apollo program, focusing on the exploitation of human feces and urine [41,42].
The attention, however, decreased after photovoltaics provided an excellent elec-
tric energy source for space ships. Initiated by Wilkinson, bioelectrocatalytic
electricity generation for autonomous robots, so-called gastrobots, was investi-
gated in the 1990s [43]. Based on the discovery of self-formation of electrocata-
lytic biofilms from even complex natural sources such as wastewater [11,44,45]
and driven by the awareness that the systems allow the exploitation of low-value
biomasses (see Section 8.4.1 for details) [26], the research efforts were acceler-
ated. For a long time, the sole application purpose of these systems was as MFCs
(see Figure 8.5a) [46]. One of the most important developments of the past
period was the introduction of new application goals starting with the
redirection of microbial fermentations [47,48] and microbially assisted hydrogen
production in 2005 [49]. Since then, numerous application concept and
niches, including bioremediation cells [50], microbial desalination cells [51],
photobioelectrochemical cells [52], and many more [7] evolved. These are now
summarized as microbial bioelectrochemical systems [53]. A new avenue is
microbial electrosynthesis [54]. Here microorganisms are used not only at the
anode, as already described but also at the cathode for the upgrading and synthe-
sis of value-added chemicals; the principal of a microbial electrosynthesis cell is
depicted in Figure 8.5b.

In most cases, BESs make use of biofilms attached to the electrodes to achieve
the bioelectrocatalysis. Thus, the electrode plays a dual role, as substrate for bio-
film formation as well as suitable surface for electron exchange with the cells or
terminal electron shuttles. Consequently, its microbially accessible surface area –

Figure 8.5 Example sketches of (a) a microbial fuel cells and (b) a microbial electrosynthesis
cell to convert wastewater at the anode and produce biochemicals at the cathode.
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which is neither equivalent with its geometric area nor its real surface area deter-
mined by gas-absorption [55] – predetermines the overall biofilm formation.
To date, there has been no precise determination of this biologically relevant
surface. Table 8.2 gives an overview of selected electrode materials and the
respectively achieved maximum geometric current densities using electroactive
microbial biofilms.

Noteworthy, from a wastewater engineering point of view, the coulombic effi-
ciency and related organics removal is often considered the more relevant
parameter relative to optimized geometric current densities. Therefore, 3D elec-
trode materials such as graphite granules are often used in this context [59]. In
this regard, the usage of volumetric current densities, for example, in A per cubic
meter reactor volume, rather than per electrode, surface area is convenient.
However, any reporting should still include the surface-based conversion as the
key cost of a system is determined by the membrane electrode assembly (MEA)
it requires [60].

8.5
Application Potential of BES Technology

BESs have seen a tremendous increase in possible applications in the past years.
The key focus until 2005 was on energy generation via MFCs [26,61]. As energy
is a low-value commodity, except from niche applications, such as remote power
production, bringing MFCs to practice will require (very) low-cost reactor sys-
tems with still adequate performance and within acceptable reactor volumes
[62]. Furthermore, it will require that the wastewater is effectively treated with
lower sludge production, in a configuration that also considers the need to
remove nutrients. Exept from these cost considerations are systems such as sedi-
ment fuel cells powering remote applications [63], as well as MFCs deployed at
forward-operating bases from the military.

Considering the value of electrical energy, pathways that produce value-added
products appear to deliver a better return. Hydrogen gas brings moderate values
[64], while products such as caustic soda [65] and hydrogen peroxide [66] allow
more sophisticated reactor systems while still remaining competitive and with-
out requiring full wastewater treatment. The future prospect of producing bio-
chemicals further opens up new opportunities particularly for medium-value
commodities within the biorefinery market [54]. Nevertheless, the cost of the
systems will in many cases require secondary benefits such as salt removal to be
competitive [51].

Wholly different cases are BESs for bioremediation and biosensing. In the con-
text of bioremediation, BESs have delivered hereto unseen control of degrada-
tion or immobilization processes, for example, nitrobenzene [67] and uranium
[68]. Similarly, BESs can simultaneously provide sensing abilities and power sup-
ply for remote sensors.
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8.6
Characterization of BESs and Microbial Bioelectrocatalysts

The characterization of microbial bioelectrocatalysts and development of meth-
ods and techniques are therefore one of the most active and vital fields. One
might distinguish two different types of methods (i) electrochemical methods
(see Section 8.5.1) and (ii) biological methods (see Section 8.5.2). Whereas the
former generally focus on the identification and characterization of the electron
transfer, the latter are devoted to the identification, analysis, and spatial distribu-
tion of the bioelectrocatalytic cells and their environment.

8.6.1

Electrochemical Methods

8.6.1.1 Polarization Curves
One of the most widespread electrochemical techniques is the use of polariza-
tion curves on individual electrodes or entire BESs. This has been particularly
popular for microbial fuel cells as a means to establish maximum power.
Figure 8.6 shows an exemplary polarization curve of the cell potential of a
microbial fuel cell as well as the derived power curve. From the engineering per-
spective, these polarization and power curves can provide important information
on the limitation and bottlenecks within a certain BES device, for example,
its total internal resistance and maximum power point. However, as shown in
Figure 8.2, polarization curves of individual electrodes may provide further infor-
mation on the bioelectrocatalysis and potential bottlenecks. Very important
when recording these polarization curves is to adopt an appropriate scan rate to
avoid power or current overshoots.

Figure 8.6 Fuel cell polarization and power curve. Characteristic points and generally derived
information are indicated.

176 8 Bioelectrochemical Systems



8.6.1.2 Voltammetry
In order to analyze the bioelectrocatalytic microbial electron transfer mecha-
nisms in detail, voltammetric techniques can be exploited. These include,
among other methods such as squarewave voltammetry, mostly cyclic voltam-
metry [69–71]. Figure 8.7 shows the non-turnover and turnover cyclic voltam-
metric curves of an anodic, Geobacteraceae-dominated [72] biofilm fed with
acetate as electron source. Figure 8.7a shows the cyclic voltammetric curve of
this anodic biofilm for non-turnover, that is, substrate-depleted conditions.
One can clearly identify four oxidation–reduction couples, representing possi-
ble electron transfer sites. The respective formal potentials of these are indi-
cated in the figure and denominated Ef

1 to Ef
4. The corresponding CV for

turnover conditions, that is, in the presence of the electron donor acetate,
shows a typical (bio)electrocatalytic s-shape (Figure 8.7b). Interestingly, the
first derivative (shown in the inset of Figure 8.7b) reveals clearly that only Ef

2

and Ef
3 are associated with the bacterial electron transfer, whereas Ef

1 and Ef
4

are not related to the bioelectrocatalytic activity. This means that the electrons
gained from acetate are transferred to the anode at a potential of about
�0.350 V (versus Ag/AgCl, equal to �0.150 V versus SHE) (see Section 8.2).
It has to be mentioned that the in-depth kinetic and thermodynamic analysis
of electrochemical data, including rate constant and so on, need new models
and procedures (see Ref. [73] for kinetics), as due to the high complexity of
these biofilms, “traditional models” from molecule or enzyme electrochemistry
cannot readily be applied.

Figure 8.7 (a) CV of a Geobacter biofilm
grown at 0.2 V versus Ag/AgCl on a graphite
rod electrode in substrate depleted (non-
turnover) conditions Ef1 to Ef4 indicates formal
potentials of the four detected redox couples
of the biofilm. (b) CV of the same biofilm in

the presence of acetate (turnover conditions);
the inset shows the first derivative of the CV
curves and clearly reveals that only Ef2 and Ef3
are associated with the bacterial electron
transfer (scan rate in all cases 1mV s�1). Data
according to Ref. [69].
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8.6.1.3 Spectroelectrochemical and Further Techniques
As already discussed, dynamic electrochemical techniques, such as cyclic vol-
tammetry, can be exploited for the thermodynamic and – in a so far limited
frame – kinetic analyses of bioelectrocatalytic electrodes. However, the identifi-
cation of the underlying redox species is not possible by pure electrochemical
means. Whereas mediators might be identified by purification from solution and
subsequent spectroscopic characterization [28], this is often not possible for
mediators, present only in low concentrations, and even more for direct electron
transfer proteins. Here a combined spectroscopic and electrochemical analyses –
the so-called spectroelectrochemistry – can provide the desired information.
First, spectroelectrochemcial experiments on electroactive microorganism were
performed on suspended cells of Geobacter using attenuated total reflectance
surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) [74], fol-
lowed by studies using UV/vis evanescent field wave spectroscopy [75], both
allowing the general identification of cytochromes as redox active proteins.
The first spectroelectrochemical study on living anodic biofilms (in situ), using
surface-enhanced Raman resonance scattering (SERRS), allowed the exact iden-
tification of the catalytic center of the transmembrane protein of Geobacter-
denominated biofilms as a six-coordinated low-spin heme with two histidine
groups serving as axial ligands [76].

Further techniques that are exploited for full BES and individual electrode
studies include electrochemical impedance spectroscopy [77], current interrupt
method [78], Tafel plots [79], and others.

8.6.2

Biological Methods

Over the years, a vast array of microbial and molecular biotechnological meth-
ods have been applied particularly to the study of anodic biofilms. Due to the
high diversity of methods and rapid progress in their development, no compre-
hensive overview can be provided, hence in the following a snapshot on the lat-
est results will be shown for illustration.

For the analysis of microbial communities on electrode surfaces, many
approaches exist and the method used evidently depends on the questions asked.
It is not unreasonable to state that high-throughput sequencing-based methods
provide the best level of information; however, at this point the cost may not
always be justified by the questions. Once the community data are collected,
more information can be derived than simple composition by calculating diver-
sity-related parameters as outlined in Ref. [80]. It is important to note that a
DNA-based analysis does not provide information on activity, and that typical
16SrRNA gene-based community analyses do not provide effective information
on metabolic, and thus bioelectrocatalytic, potential of a certain microbial spe-
cies or mixed culture. Here, the combinations of transcriptomics and proteo-
mics, potentially in conjunction with deletion mutants or in situ imaging via for
example, NanoSIMS, are required in future.
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A key point to highlight is that biofilms on electrodes are three-dimensional
structures of many micrometers thickness, and should be studied as such. While
typical molecular analyses provide pooled information on the biofilm composi-
tion/activity, it is clear that the conditions vary along the biofilm leading to strat-
ification [81]. This stratification can be evident through different types of
organisms in mixed population systems, or through changes in transcriptome/
proteome for pure culture systems. For microbial populations, analyses such as
confocal laser scanning microscopy (CLSM) in combination with fluorescence
in situ hybridization (FISH) are thus an essential part of community analysis
[82]. For pure cultures, in situ imaging of specific genes or even biofilm subsam-
pling is necessary to understand stratification [83].

Within the realm of these approaches, immunogold labeling can be of great
value to address questions about electron transfer. For example, it was established
that cytochromes can be associated with nanowires [17], and that in Geobacter
biofilms OmcZ is a released cytochrome accumulating near the electrode surface
[84]. From this it was hypothesized that it performed the role of a catalyst for
transferring electrons from the nanowire to the electrode surface.

In a broader context, the importance of nowadays commonplace imaging tech-
niques such as SEM and TEM cannot be underestimated to understand the archi-
tecture of electroactive biofilms. The required sample preparation – and thus
possible destruction of the native biofilm state – has to be approached very carefully.

8.7
Conclusions

The field of BESs is rapidly expanding, leading to a vast array of applications in
bioenergy, bioproduction, bioremediation, and biosensing. Due to the multidisci-
plinary nature of this technology, new developments need to integrate tech-
niques from various disciplines while still providing the necessary quality for
data reporting in every particular subfield. The following are the critical bottle-
necks toward further development:

1) A better understanding and engineering of the electrode–cell interface.
2) The development of novel, cost-effective materials (electrodes, mem-

branes, etc.) enabling to sustain electroactive biofilms.
3) The establishment of appropriate process parameters and characteristics

(e.g., reactor geometries) to reach sufficient production, and respectively
the removal levels.

4) The study and engineering of the microbial electrocatalyst toward
increased versatility, robustness, and effectivity.

Besides providing perspectives for application, this chapter will also lead to a
better understanding of the functioning of microorganisms in the natural and
engineered environment.
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9
Materials for Microfluidic Fuel Cells
Seyed Ali Mousavi Shaegh and Nam-Trung Nguyen

9.1
Introduction

The demand for ever-increasing capabilities and longer run times for portable
electronic devices has led to the recent surge of research and development of
high energy density power sources. Numerous investigations have focused only
on batteries to increase the power density. But the recent progress in battery
technology cannot fill the so-called power gap between the power sources and
power consumers, which is expected to grow faster in the coming years [1].

In addition, the emergence of the networks of wireless and off-the-grid sen-
sors, which can be deployed for biological, environmental, military, and security
monitoring, has opened a new market for robust and reliable power sources with
long empowering times. Moreover, realization/development of new devices such
as small unmanned aerial vehicles (UAVs) or intelligent insect-sized robots and
smart bugs [2] is tied to existence of small power sources.

The energy density of metal hydrides, for example, NaBH4, methanol, and
most hydrocarbon fuels, are higher than the competitive battery technologies
[3]. Microfuel cell technology can be considered as a suitable power source for
the applications already mentioned. Micro fuel cells can be implemented in a
hybrid system in connection to a rechargeable (secondary) battery to improve
the flexibility and reliability of the whole system. A micro fuel cell system is gen-
erally comprised of a fuel cell engine, auxiliary systems, a fuel tank, and an oxi-
dant container. These cells can outperform batteries if the ratio of fuel to fuel
cell engine volume is maximized and the power consumption of their auxiliary
devices for fuel or oxidant delivery and regulating the engine power is signifi-
cantly reduced [3].

Because of the higher energy density and better safety of liquid fuels compared
with gaseous hydrogen, the types of fuel cell under active development usually
includes direct methanol fuel cells (DMFCs) [4], direct formic acid fuel cells
(DFAFCs) [5], proton exchange fuel cells (PEMFCs) run by hydrogen generated
from metal hydride [6], and membraneless microfluidic fuel cells [7].
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To downsize the conventional PEM fuel cells into micro PEM fuel cells several
design and operational considerations must be taken into account. Proton
exchange membrane, usually made of Nafion, as the heart of the PEM fuel cells
needs specific conditioning to provide enough water for proton conductivity.
The dynamic conditions of cell operation add further complexity to fuel cell
engine and auxiliary systems. In addition, membrane swelling and shrinkage,
due to the water uptake and retention of the nanoporous structure of Nafion,
can be problematic for fuel cell packaging. Furthermore, the current fabrication
technologies for micro fuel cells are a combination of microfabrication tech-
niques for making channels or electrodes such as laser machining on PMMA
[8], silicon etching [9], and conventional methods and materials for making
membrane electrode assembly (MEA). Therefore, there is a mismatch between
the required material and the fabrication processes, as well as between the micro
feature size of the micro fuel cells and the available technologies. Many investi-
gations were carried out to address this mismatch by introducing new materials
to fabricate the fuel cell in a monolithic platform. An example is making a pro-
ton conductive membrane in porous silicon, which is compatible with microfab-
rication technologies [1,10,11].

In parallel to the microelectromechanical systems (MEMS)-based approaches
for miniaturizing of conventional power sources, micro/nanofluidics can provide
new approaches for energy conversion systems [12] and take advantage of the
specific phenomena that emerge by downsizing the fluidic systems.

The absence of instability due to the convective mass transport in laminar
flows at low Reynolds numbers allows many streams containing different
substances with dissimilar concentrations flow through a microchannel in a
side-by-side configuration. Depending on the Péclet number, an indication of
relative importance of convection to diffusion, liquid streams can travel down
the channel separately. Diffusive mixing of two streams across the liquid–liquid
interface results in a concentration gradient. By exploiting the property of such
controlled microfluidic interface, different applications such as extraction and
separation of molecules [13–15], microfabrication and patterning at the inter-
face of the streams in a microchannel [16], and micro-optofluidic lenses have
been achieved [17].

Ferrigno et al. [18] proposed the concept of membraneless fuel cell based on
the lamination of two streams in a microchannel. As shown in Figure 9.1, the
two streams of oxidant and fuel are introduced into a microchannel with inte-
grated electrodes as active area for electrochemical reactions and current collec-
tion. Both anolyte and catholyte have supporting liquid electrolyte to facilitate
ion conduction across the channel. Ions from oxidized fuel or reduced oxidant
travel across the channel by migration and concentration gradient, while the
electrons reach the cathode side through an external circuit (Figure 9.1).

Since fuel and oxidant streams flow down the channel in a parallel manner,
the necessity for the presence of a membrane as a separator of two streams is
eliminated [18]. Interdiffusion zone between two streams is restricted to an
interfacial width at the center of the channel. To avoid the effects of fuel and
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oxidant crossover, the electrode-to-electrode spacing should be optimized while
ohmic losses across the channel and pumping energy through the channel are
kept minimum.

In this chapter, the fundamentals of the membraneless laminar flow-based fuel
cells (LLFCs) operation are first explained. Then, design and exploited fabrica-
tion technologies of membraneless LFFCs and the effect of flow architectures of
electrodes and their arrangements on cell performance are discussed. Subse-
quently, reader can find more details about the proposed fuels, oxidants, and
electrolytes for membraneless LLFCs. Finally, some discussions on material con-
straints and selections are provided.

Investigations have proved that membraneless LFFCs can provide an appro-
priate platform for biofuel cells [20]. Biofuel cells are beyond the scope of this
chapter, but they can benefit from the technology development explained here.
To gain more knowledge about the design considerations and performance-lim-
iting factors of membraneless LFFCs, readers are advised to study available
review articles [7,20].

9.2
Fundamentals

Membraneless LFFCs follow the basic electrochemical principles of membrane-
based fuel cells. The main difference is that the role of membrane as a charge

Figure 9.1 Flow-over designs. (a) Schematic
sketch of LFFC with side-by-side streaming in
a Y-shape channel. (b) A–A cross section of the
channel, schematic sketch of configuration of
both electrodes at bottom wall. (c) Cross sec-
tion of channel showing depletion boundary
layers over anode and cathode and interdiffu-
sion zone at the liquid–liquid interface with

vertical electrodes on side walls. (d) Cross sec-
tion of channel with top–bottom electrodes
configuration. (e) Cross section of channel
with both electrodes on bottom wall in a
grooved channel. (f) Cross section of channel
with graphite rods as electrodes. Reproduced
with permission from Ref. [19]. Copyright
2011, Elsevier.
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transport media and as a separator of electrodes is represented by creating a
confined liquid–liquid interface in a microchannel. Usually, microchannels are
defined as channels with characteristic dimension <1 mm and >1 μm [21], and
fluid manipulation inside microchannels is known as microfluidics. Fundamen-
tals and applications of microfluidics can be found in [22].

With a scale factor of R, the ratio of surface to volume is �R2=R3� � R�1
� �

,
which decreases with miniaturization. Microfluidic systems can harness the scale
dependence of interface properties to exploit a broad series of applications [23].
As fluidic systems are reduced in size, laminar flow regime at low Reynolds
numbers is established. In this case, surface-based effects, including surface
tension or viscosity, can dominate over volume-based effects, offering new
microscale phenomena, for instance, confined liquid–liquid interface in a micro-
channel with colaminar streams can be achieved.

Due to the continuum and laminar nature of liquids in microchannels [21],
mass conservation for fluid flows obeys the continuity equation:

@ρ

@t
� r ? ρ~u� � � 0 (9.1)

while fluid density (ρ) is constant, it leads to the incompressible flow condition,
r ?~u � 0. The Navier–Stokes equations can be solved to determine the three-
dimensional velocity field (~u):

ρ
@~u
@t

�~u ?r~u
� �

� �rp � μr2~u �~f (9.2)

where p is the representative of pressure and~f includes the body forces per unit
volume.

As shown in Figure 9.1a, after two separate streams including fuel and oxidant
are introduced into the channel, they come into contact to create a parallel cola-
minar flow in the channel with a liquid–liquid interface. This interface takes
action as a separator of fuel and oxidant streams. Current collectors and electro-
des with appropriate catalyst layer on the surface are fabricated on channel walls
where the electrochemical reactions take place. To obtain charge transport
between two electrodes, both fuel and oxidant solutions should contain ionic
conductivity, which is obtained by adding supportive electrolyte to both streams.
The supporting electrolyte contains hydroxide or hydronium ions such as
diluted solutions of potassium hydroxide or sulfuric acid.

For a fuel–oxidant configuration shown in Equation 9.3 at a given temperature
and pressure, the theoretical equilibrium open-circuit potential of a given oxida-
tion–reduction reaction within the cell is determined by Equation 9.4 known as
Nernst equation:

vAA � vBB $ vcC � vDD (9.3)

E0 T ;P� � � E0 � RuT
nF

ln
ava

Aa
vB
B

avc
c a

vD
D

� �� �
(9.4)
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where E0 is the equilibrium potential at standard state and a is the activity of
each species. For aqueous species, activity is estimated by the concentration.
Since there is no membrane between the fuel and oxidant streams, pH of the
two streams can be modified individually to increase the half-cell potentials. The
theoretical cell potential is degraded by the anodic and cathodic activation losses
(ηa;a, ηa;c), ohmic losses (ηr), anodic and cathodic mass transport losses (ηm;a,
ηm;c), and other losses ηx:

Ecell � E0�T ;P� � ηa;a � ηa;c

�� �� � ηr � ηm;a � ηm;c

�� �� � ηx (9.5)

Here, ηx represents the crossover effect of fuel/oxidizer through the electrolyte
to the opposite electrode or internal short circuits in the cell that is responsible
for more departure of theoretical equilibrium open-circuit potential from Nernst
equilibrium voltage.

Due to the sluggish electrooxidation reactions of aqueous liquids such as for-
mic acid and methanol, the activation losses are generally higher than a hydro-
gen-fed PEM fuel cell and the cell potential drops more rapidly.

Ohmic losses are mainly attributed to the electrolyte ionic resistivity (Relectro-

lyte) and the external resistance of electrodes and connections (Rexternal) when
current (i) is drawn from the cell:

ηr � i ? Relectrolyte � Rexternal
� �

(9.6)

Ohmic resistance of the supporting electrolyte for charge transport between
electrodes depends on anode-to-cathode spacing as charge transport length (d),
cross-sectional area of charge transport (A), and the ionic conductivity (σ):

Relectrical � d
σA

(9.7)

Typical bulk through-plane conductivity of Nafion as proton exchange mem-
brane is around 0.1 S cm�2 at 100% relative humidity (RH) and room tempera-
ture [24] with typical membrane thickness of 50–200 μm. In contrast, the
conductivity of 0.5 M sulfuric acid as a common supporting electrolyte is on the
order of 0.2 S cm�2. Anode to cathode spacing in a membraneless LFFC gener-
ally ranges from 0.5 to 1.5 mm, which results in higher total ohmic losses rather
than PEM fuel cells.

Low concentration of oxidant or fuel is the main source of mass transfer
losses. Mass transfer losses have significant role in degradation of cell potential
at high current densities while a cell is operating at low flow rates due to slow
replenishment of depletion layer over the electrodes.

While the electrochemical reactions occur, fuel and oxidant are consumed
over the corresponding electrodes to generate current. Current density distribu-
tion is estimated for simulations by Butler–Volmer equation as a function of
volumetric exchange current of a given electrode (i0) at reference concentration
(Ci,ref):

J0 � i0
Ci

Ci;ref

� �βi

exp
αaFη
RuT

� �
� exp � αcFη

RT

� �� �
(9.8)
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Here, Ci is the species concentration “i” that refers to fuel or oxidant, and βi is
the reaction order of species for the elementary charge transfer step. αa and αc

are the anodic and cathodic charge transfer coefficients, R is the universal con-
stant, and T is the operating temperature. F is the Faraday’s constant and η is the
surface overpotential:

η � ϕs � ϕe � E0 T ;P� � (9.9)

where φs and φe are the potential of electrode and electrolyte. The species con-
centration distribution over the electrodes is governed by diffusion–convection
transport, and can be calculated by solving mass conservation equation:

r: �DirCi � Ci~u� � � Si (9.10)

where Di is the diffusion coefficient of species “i” and Si is the net rate of change
of species “i” by electrochemical reactions over anode and cathode, and repre-
sents the rate of consumed species per cubic meter:

Si � J0

nF
(9.11)

Increasing flow rate of fuel/oxidant accelerates the replenishment of the deple-
tion zone over the electrodes and develops the maximum cell current and power
density at the expense of low fuel utilization. Fuel utilization is defined as

εfuel � J
nFvfuel

(9.12)

where vfuel represents the rate at which fuel is supplied to the fuel cell with a unit
of mol s�1. Low fuel utilization may dictate the implementation of a recycling
fuel/oxidant system for practical applications, which makes the whole fuel cell
system complicated.

9.3
Membraneless LFFC Designs and the Materials in Use

The interface between two streams with supporting electrolytes represents a vir-
tual membrane by providing (i) an ion conductive media with (ii) effective con-
trolled mixing of reactants across the cell. In brief, membraneless LFFCs can
benefit from the following advantages of microfluidics:

a) Membrane is eliminated, thus reducing the size of the cell and enhancing
the flexibility in cell design and fabrication including miniaturization
[18,25].

b) Since both streams flow through a single channel, some design considera-
tions for fuel and oxidant delivery systems are eliminated, simplifying seal-
ing and packaging requirements. Furthermore, the composition of fuel and
oxidant streams can be tailored individually to maximize reaction kinetics
at anode and cathode [26].
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c) Membrane-related issues such as water management, membrane fouling,
and damaging partially disappear [18,27]. Unlike the PEMFCs, there is no
Pt dissolution in polymeric membranes. Since both streams contain liquid
electrolyte, the precise establishment of the interface among the electron
conductor, charge transport media, and pathways for reactants feeding,
which is known as the triple-phase boundary, is easier than PEMFCs.

d) Membraneless LFFC as a power source is compatible with other microflui-
dic systems such as lab-on-chip devices.

Flow architecture of streams has significant effects on the performance of
membraneless LFFC. Depending on the architecture/structure of the imple-
mented electrodes, membraneless LFFC are categorized into (i) flow-over type
with planar electrodes, (ii) flow-through type with three-dimensional porous
electrodes, and (iii) membraneless LFFC with air-breathing cathode. All designs
exploit common fuels and oxidants and can be fabricated by conventional fabri-
cation methods with the same level of precision. All designs can use either alka-
line or acidic electrolytes.

Table 9.1 lists the materials and electrocatalysts used for the fabrication of
fuel cells. Different materials and processing considerations must be taken
into account to fabricate a reliable fuel cell. The design considerations are as
follows [28]:

a) Carrier substrate to form the channel and the desired geometry.
b) Structure of the catalyst and its deposition method on the supporting sub-

strate of the catalyst.
c) Assembly method of the electrodes and channel structures to provide a

liquid-tight sealed cell with interfaces to instrumentation and fuel/oxidant
delivery systems.

As shown in Figure 9.1, a membraneless LFFC basically consists of a main
microchannel that can be capped between liquid-tight support structure(s). The
colaminar flows in the channel come into contact in two configurations: side-
by-side streaming and vertically layered streaming. For side-by-side streaming
with vertical fuel–oxidant interface and vertically layered streaming with hori-
zontal liquid–liquid interface, electrodes are positioned on bottom walls
(Figure 9.1b), side walls (Figure 9.1c), and top and bottom walls (Figure 9.1d). In
addition, the electrodes can be positioned in grooved channels (Figure 9.1e) to
control bubble generation or an array of electrodes can be implemented in a
single channel (Figure 9.1f).

As shown in Figure 9.1, flow-over designs generally provide streaming of fuel
and oxidant over planar electrodes. Only a fraction of fuel and oxidant streams
adjacent to the catalyst layer participate in electrocatalytic reactions. Due to the
lack of effective convective mass transport, a depletion boundary layer with low
concentration of reactant grows over both electrodes. To enhance fuel utilization
in flow-over designs, an improved design of electrodes was implemented in the
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channel to provide more active area for electrochemical reactions, as shown in
Figure 9.1f. The graphite rods at the center of the channel are electrically insu-
lated [27].

9.3.1

Flow Architecture and Fabrication of Flow-Over Design

Generally, electrodes including the catalyst and current collectors are imple-
mented at two sides of a channel. In some designs of membraneless LFFCs with
side-by-side colaminar flows, the channel structure is fabricated using poly
dimethylsiloxane (PDMS) replica molding and then sealed to a solid substrate
with electrodes [47,48]. PDMS molding takes advantage of soft lithography-
based procedures [51]. Soft lithography is a direct pattern transfer techniques.
The term “soft” refers to an elastomeric stamp with patterned relief structures
on its surface. Soft lithography includes two basic techniques for transferring the
micropatterns: microcontact printing and replica molding. Replica molding is
generally used for making the microchannels. This technique starts with the
deposition of a thin layer of photoresist such as SU8 on silicon wafer or glass
slide using spin coating. The thickness of a photoresist layer with a given viscos-
ity is determined by the rotational speed and the extent of spin coating. The
thickness layer defines the channel depth on PDMS. To stabilize the photoresist
on the substrate, it is baked on a hot plate or in an oven at moderate tempera-
ture (70–90 °C). The pattern of the channel should be printed on a mask made
of plastic or glass depending on the finest feature size. This photomask and the
substrate are aligned and then exposed to UV light for a certain exposure time.
For a negative photoresist like SU8, during the UV exposure, the exposed parts
are cross-linked and then stabilized for the duration of postexposure bake. Then,
the substrate is immersed in a developing solution and the unexposed parts are
removed and a master is remained on the wafer, which can be used for several
replica molding. A soft polymer such as PDMS, a mixture of base resin and cur-
ing agent, is poured on the master, followed by degassing in a vacuum chamber
and baking in an oven or over a hot plate for several hours. After baking, the
channel structure is removed from the master. The channel open area can be
sealed by bonding glass or PDMS reversibly or irreversibly. O2 plasma treatment
of the channel and glass or PDMS as sealing substrate results in an irreversible
bond. In addition, O2 plasma treatment makes both surfaces hydrophilic and
improves the wetability of the channel.

Several characteristics make PDMS useful for making microfluidic devices,
including easy fabrication (rapid prototyping, sealing, and interfacing with the
user), transparency in the UV-visible regions, chemical inertness, low polarity,
low electrical conductivity, and elasticity and low-cost fabrication [52].

Due to the relatively high solubility and permeability of hydrogen and oxygen in
PDMS (DH2 � 1:4 � 10�4 cm2 s�1 and DH2 � 34 � 10�5 cm2 s�1 at 35 °C) [53], gas
reactants can be supplied through thin layers of PDMS to a pair of electrodes sepa-
rated by a channel containing sulfuric acid or sodium hydroxide as electrolyte
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[37,38]. Using this concept, the achieved power densities of the cells running on
dissolved hydrogen/oxygen [38] and hydrogen/air [37] were around 0.7 mW cm�2

as restricted by permeation rate of dissolved hydrogen through PDMS.
Graphite can be used as substrate to make the channel. Choban et al. [26]

used graphite as substrate to serve three functions: current collector, catalyst
support structure, and edificial element. As shown in Figure 9.2a, the graphite
plates are placed side-by-side with a specific spacing that determines the width
of the channel. Before assembling, the catalyst ink is applied to the graphite
plates. To seal the channel, 1 mm thick polycarbonate slabs with thin films of
PDMS were used as gasket.

Polymethylmethacrylate (PMMA) is another polymeric material frequently
employed for microfluidics and micro fuel cells [4]. PMMA is one of the thermo-
plastic polymers that is usually linearly linked and can be softened by applying
heat at above the glass transition temperature [8]. PMMA has a noncrystalline
structure with 92% light transmittance in the visible spectrum. This material
also has other excellent properties such as low frictional coefficient, high chemi-
cal resistance, and good electrical insulation. All these features and properties
make PMMA a good substrate for microfluidic devices, especially for those
involved in chemical applications [8].

A PMMA substrate can be micromachined in many ways, such as X-ray expo-
sure and subsequent developing, hot embossing, and laser machining [8]. For
laser machining, the cross section of the microchannel depends on the shape of
the laser beam, its moving speed, the laser power, and the thermal diffusivity of
substrate material. The energy of the laser beam has a Gaussian distribution that
creates a Gaussian-shaped channel cross section in PMMA as a substrate [8].

Figure 9.2 Carrier substrate with configura-
tion of different layers of membraneless LFFCs.
(a) Vertical electrodes with vertical liquid–
liquid interface. (b) PMMA-based membrane-
less LFFC with horizontal electrodes.

(c) Silicon-based microchannel for membrane-
less LFFC with horizontal flow-over electrodes.
Reproduced with permission from Ref. [19].
Copyright 2011, Elsevier.

198 9 Materials for Microfluidic Fuel Cells



Li et al. [39] used infrared CO2 laser to engrave channels in PMMA to fabri-
cate a membraneless fuel cell. Three PMMA sheets were used to create the
channel (Figure 9.2b). A slit is produced in the 1 mm middle sheet using laser
and is sandwiched between the top and bottom PMMA stencils using an adhe-
sive layer. The bottom layer works as the electrode support and liquid sealing
plate. A 100 nm gold layer was sputtered on the surface of the PMMA sheet to
reduce the contact resistance. This gold layer acts as the current collector. The
surface of the PMMA sheets was mechanically treated with fine sandpaper (1200
grit) to improve the surface roughness and to improve the adhesion of the gold
layer to the substrate. Outlet and inlet holes were machined on the top PMMA
piece. Pt-Ru and Pt catalyst ink were wet sprayed on the gold layer to make
anode and cathode, respectively, with a loading of 4.5 mg cm�2.

Rigid microchannels are also fabricated in silicon using a photolithography
process [28,43]. Since silicon is stable against thermal deformation, silicon chan-
nels and substrates can be used to investigate temperature-dependent fuel cell
oxidation and performance [28]. As shown in Figure 9.3c, platinum was depos-
ited on the metallic adhesion layer using E-beam evaporation technique. The
conductivity of the deposited metallic thin film as current collector depends on
the thickness and the deposition process and the rate of deposition. To find a
deeper understanding of thin-film materials and the corresponding processes for
microfabrication, readers can refer to Ref. [54]. By exploiting the standard pho-
tolithography for silicon processing, the design can benefit from the ease of fab-
rication where parameters can be varied and optimization of microchannel
dimension can be carried out precisely [28]. However, the whole fabrication pro-
cess may be more expensive than other polymer-compatible processes.

Figure 9.3 Numerical simulation of formic
acid concentration in a membraneless LFFC
with flow-over anode with inlet concentration
of 1M. (a) Q1= 500 μl min�1, with maximum
current density of 68mA cm�2. (b) Q2=

100 μl min�1, with maximum current density of
58mA cm�2. (c) Q3= 10 μl min�1, with maxi-
mum current density of 40mA cm�2. Repro-
duced with permission from Ref. [40].
Copyright 2010, IOP.
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To fabricate the channel in silicon, the pattern of the channel is transferred on
the silicon wafer that was covered by a layer of photoresist to make a sacrificial
layer. The undesired parts of the sacrificial layer are removed in the developing
process. The open area allows silicon etching to create the channel. It is worthy
to note that silicon is compatible with a variety of fabrication processes, includ-
ing epitaxy, sputtering, chemical, and physical vapor deposition, to deposit
desired layers on silicon or make thin-film current collectors and electrodes. Dry
and wet chemical etchings can be used to make complex channel geometries,
and electrochemical etching can be used to make porous silicon. Readers are
encouraged to refer to Refs [54,55] to find more details about silicon-based fabri-
cation processes.

Because of the ongoing electrooxidation of fuel and electroreduction of oxi-
dant over anode and cathode, fuel and oxidant concentrations through the chan-
nel decrease. Due to the lack of convective mass transport to replenish fresh
reactants to the catalytic active area, a depletion boundary layer over the cata-
lyst-covered electrodes is formed [40], as shown in Figure 9.3.

If effective replenishment of the depletion layer does not exist, the reactant
concentration over the active area of electrodes drops dramatically. In this case,
only the first few millimeters of the electrode contribute the most to current col-
lection [56] limiting the electrode length. In addition, to control diffusive mixing
and consequent parasitic losses, the length of the channel must be restricted [57].

The idea of passive control of depletion layer to develop the maximum current
density without using additional power-triggered investigations on the effect of
multiple consecutive electrodes on the current density and fuel utilization
[58,59]. Lim et al. [58] proposed that each electrode can be made of an array of
microelectrodes. Splitting the length of an electrode into two or more sections to
make shorter electrodes with spacing equal to three times of their length can
avoid the continuous increase in thickness of the depleted layer. Thus, a 25%
increase in maximum power density in comparison with a single-electrode
device with identical active area was achieved.

9.3.2

Flow Architecture and Fabrication of Flow-Through Design

In a flow-through design, the reactant streams pass through a three-dimensional
porous electrode including the catalytic active area, as shown in Figure 9.4.
Salloum et al. [49] proposed a convective flow membraneless LFFC with porous
disk electrodes (Figure 9.4a). The carrier substrate was fabricated using PMMA.
Formic acid in sulfuric acid as fuel stream was introduced through an inlet from
the center of the disk and made to undergo oxidation through the carbon paper
covered by catalyst nanoparticles as its porous anode. Oxidant stream, potassium
permanganate in sulfuric acid, was introduced concentrically through a ring of
inlets. Oxidant was reduced and then mixed with the oxidized fuel, and a 2 mm
gap between the anode and the cathode prevented short circuit due to backflow
of oxidant.
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Ion transport induced by convective transport effects increases the fuel utiliza-
tion up to 58% and enables control of fuel and oxidant flow rate independently.
Experimental results indicated that by increasing the fuel flow rates, fuel utiliza-
tion is decreased from 58% at 100 μl min�1 to 4% at 5 ml min�1. Increasing the
concentration of sulfuric acid as supporting electrolyte increases the maximum
power density from ∼1.5 to ∼3 mW cm�2 due to decreasing charge transport
losses.

The concept of the so-called “multiple inlets” was developed in Sinton’s group
[30]. A flow-through design was proposed without imposing fluidic networks of
inlets for adding fresh reactants. The whole cell is fabricated in PDMS. As sche-
matically shown in Figure 9.4b, hydrophilic porous fiber-based carbon paper,
with the main application for making gas diffusion media in PEMFC, was cut in
strip shape and placed in two compartments. High porosity of carbon paper,
∼78% (HGP-H 90 from Toray), provides large surface area for electrochemical
reactions and enhanced the fuel utilization due to the improved diffusive/con-
vective mass transport [30]. Running the cell on all-vanadium redox species,
peak power density of 131 mW cm�2 was obtained at a flow rate of 300 μl min�1.

9.3.3

Flow Architecture and Fabrication of LFFC with Air-Breathing Cathode

Mass transfer and diffusivity of dissolved oxygen as an oxidant in aqueous media
(2× 10�5 cm2 s�1) limit the performance of membraneless LFFCs running on dis-
solved oxygen. In addition, low concentration of dissolved oxygen in aqueous
media (2–4 mM) cannot sufficiently provide reactant for replenishment of deple-
tion boundary layer over the cathode. Exploiting a gas diffusion electrode (GDE)
on a side wall of the channel facilitates the cell to access the high concentration
of oxygen in air (10 mM) with a diffusivity four order of magnitude higher than
that in aqueous media (0.2 cm2 s�1).

Proof of concept of membraneless LFFC with air-breathing cathode was pro-
posed by Kenis’ research group in 2005 [32]. As shown in Figure 9.5a and b,
GDE, made of Toray carbon paper covered by catalyst ink containing platinum

Figure 9.4 Flow-through designs. (a) Radial flow architecture for a membraneless LFFC. (b) 3D
porous electrodes with so-called “multiple inlets” concept. Reproduced with permission from
Ref. [19]. Copyright 2011, Elsevier.
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black nanoparticles, was implemented at the top wall as air-breathing cathode.
The channel was made by PMMA, which is glued to a graphite plate covered
with palladium black nanoparticles as a flow-over anode.

Since the oxidant stream is eliminated in this design, a stream of electrolyte is
needed to separate fuel stream from direct exposure to the cathode, thus avoid-
ing fuel crossover losses and catalyst poisoning. 1 M formic acid was used as fuel
while 0.5 M sulfuric acid available in both fuel and electrolyte streams facilitated
proton conduction across the channel. In this case, a peak current density of
130 mA cm�2, a power density of 26 mW cm�2, and a maximum power output
of 16 mW were achieved for 300 ml min�1 at a fuel-to-electrolyte flow rate ratio
of 1:1. Anode and cathode potentials obtained using a reference electrode
revealed that oxygen concentration is not the source of limiting performance for
an air-breathing membraneless LFFC [33].

Tominaka et al. [25] reported a monolithic design for running on methanol.
The whole cell, which is a reservoir with open top, was fabricated in silicon as a
monolithic structure that omits the electrolyte stream to separate fuel stream
from the cathode. Palladium–cobalt (Pd–Co) alloy was electrodeposited on a
thin layer of gold and worked as the electrode/current collector. In this design
with full passive fuel and oxidant delivery systems, oxygen is taken through
a porous cathode. A 2 M methanol solution containing a sulfuric acid as sup-
porting electrolyte is dropped onto the end of the microchannel. Open-circuit
voltage and net maximum power of this fuel cell reached 0.5 V and 1.4 μW,
respectively.

Figure 9.5 Membraneless LFFCs with air-
breathing cathodes. (a) Schematic illustration
for the arrangement of fuel and electrolyte
streams in the channel. Adapted from
Ref. [32]. (b) Cross section and carrier

substrate of the channel depicted in part
(a). (c) Monolithic design with air-breathing
cathode. Reproduced with permission from
Ref. [19]. Copyright 2011, Elsevier.

202 9 Materials for Microfluidic Fuel Cells



9.3.4

Performance Comparison

To provide a quantitative performance comparison, performance of different
membraneless LFFCs based on the three electrode designs is reviewed in
Tables 9.2 and 9.3.

Since fuel type has significant effects on cell kinetics, only membraneless LFFCs
running on formic acid or methanol is discussed for comparison. Table 9.2 pro-
vides some design features of the maximum power density of three different flow
architectures running on formic acid or methanol.

Table 9.3 shows that the order of magnitude for the power density of mem-
braneless LFFCs running on formic acid or methanol for flow-over design ranges
from 0.1 to 1 mW cm�2, and for flow-through design from 1 to 10 mW cm�2.
The low performance of flow-over designs is mainly attributed to low oxidant
concentration at catholyte and the growth of depletion layer over electrodes.
The development of performance for flow-through design is associated with
enhancement of catalytic reaction through porous and 3D electrodes with effec-
tive replenishment of reactant over active sites. The main reason for higher per-
formance of membraneless LFFCs with air breathing is the higher rate of oxygen
transport to cathode from ambient air. Since oxygen is provided from air
through GDE, the oxygen concentration over the active site of the cathode is
almost constant, thus enhancing the current generation.

9.4
Fuel, Oxidant, and Electrolytes

9.4.1

Fuel Types

Membraneless LFFCs have a wide range of fuel options. With respect to fuel and
oxidant selection, there are many fuels available including hydrogen (H2)
[37,43,60], methanol (CH3OH) [26,33], ethanol (C2H5OH) [34], formic acid
[28,46], hydrogen peroxide (H2O2) [45], vanadium redox species [18,29], sodium
borohydride (NaBH4) [34], and hydrazine (N2H4) [34].

Among such aqueous fuels, formic acid and methanol with energy densities of
2.08 and 4.69 kWh l�1 attracted more attention for the use in membraneless
LFFCs due to the ease of access and well-studied electrocatalysis. A formic acid/
O2 fuel cell has a high theoretical electromotive force of 1.45 V, while the corre-
sponding value of methanol is 1.2 V.

Cohen et al. [28] tested a membraneless LFFC run by formic acid as fuel with
platinum as catalyst to oxidize formic acid in combination with dissolved oxygen:

HCOOH ! 2H� � 2e� � CO2; E0 � 0:22 V (9.13)

4H� � O2 � 4e� ! 2H2O; E0 � 1:23 V (9.14)
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However, there are some disadvantages of using formic acid, for example, CO
poisoning of the Pt catalyst; the system is easily controlled and the cell has a
large open-circuit potential and high electrochemical efficiency [28].

Usually, vanadium redox couples dissolved in a supporting electrolyte, such as
sulfuric acid, V2+/V3+ as anolyte and VO2

+/VO2+ as catholyte, are used to form
all-vanadium fuel/oxidant system for membraneless LFFCs [18,27,30,61]. A
membraneless LFFC can operate based on the following anodic and cathodic
redox reactions and the standard electrode potential [30]:

V3� � e� � V2�; E0 � �0:496 V versus SCE (9.15)

VO�
2 � 2H � e⇄VO2� � H2O; E0 � 0:750 V versus SCE (9.16)

The advantages of this redox combination for microfluidic fuel cells [20,30]
are (i) providing the well-balanced electrochemical half-cells in terms of reaction
rates and transport characteristics, (ii) having high solubility and ability of having

Table 9.3 Design features of three different flow architecture with maximum running by
formic acid or methanol.

Reference Maximum power
density (mWcm− 2)

Design features and comments

Flow-over electrode
Choban et al. [26] 12 at flow rate of

3 ml min�1 per inlet
flow

Side-by-side streaming, Y shape, channel
length= 29 mm, channel height= 1 mm,
and channel width= 0.75 mm, Pt/Ru and
Pt black nanoparticles in Nafion-based ink
solution applied to graphite plate as anode
and cathode, fuel utilization <10%

Flow-through electrode
Kjeang et al. [48] 52 at 0.4 V and flow

rate of 60 μl min�1

per inlet

Side-by-side streaming, T shape, channel
length= 12 mm, channel height= 0.3 mm,
channel width= 3 mm, electrodeposited Pd
and Au on carbon paper strips to make
flow-through anode and cathode, fuel utili-
zation of 85% at peak power density and
100% at lower voltages

Air-breathing electrode
Hollinger et al. [36] 70 at flow rate of

0.3 ml min�1 per inlet
Vertically layered streaming, T shape,
channel length= 48 mm, channel width
= 3.3 mm, Pt/Ru and Pt nanoparticles in
Nafion-based ink solution brushed on car-
bon paper as electrodes, graphite plates as
current collectors, implementing of nano-
porous separator at the fuel–electrolyte
interface, running at 80 °C with O2 supply
of 50 sccm, hot-pressed thin film of Nafion
over cathode to alleviate fuel crossover
effects

Reproduced with permission from Ref. [19]. Copyright 2011, Elsevier.
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relatively high redox concentration up to 5.4 M, (iii) having a high open-circuit
voltage (up to ∼1.7 V at uniform pH) due to the presence of large difference in
formal redox potentials, and (iv) utilization of bare carbon electrodes without
precious metal catalyst to facilitate the reactions.

The energy density of a vanadium redox fuel cell is limited by the solubility of
the vanadium redox species. To address this situation, a new alkaline microflui-
dic fuel cell was demonstrated by Kjeang et al. [48], based on formic acid and
hypochlorite oxidant. The reactant solutions are obtained from formic and
sodium hypochlorite, both of which are available and stable as highly concen-
trated liquids, leading to a fuel cell system with high overall energy density. For-
mate (HCOO�) oxidation and hypochlorite reduction were established in
alkaline media on porous Pd and Au electrodes, respectively. The results indicate
the rapid kinetics at low overpotentials while preventing gaseous CO2 formation
by carbonate absorption.

Brushett et al. [34] utilized 3 M hydrazine as fuel with 0.5 M of sulfuric acid as
electrolyte in an air-breathing flow architecture. For this hydrazine membrane-
less LFFC, maximum power density of 80 mW cm�2 was achieved at room tem-
perature, while the anode catalyst loading was 1 mg cm�2 supported by Pt and
the fuel/electrolyte flow rate was 0.3 ml min�1. Moreover, with the same operat-
ing conditions as mentioned earlier, hydrazine was tested with oxygen delivery
method at a flow rate of 50 sccm instead of quiescent air. No considerable
improvement was achieved in peak power density and maximum current den-
sity, which indicates that this membraneless LFFC configuration is not restricted
by oxygen transport.

This direct hydrazine acidic membraneless LFFC can be a promising micro-
scale power source for applications where the safety is not a major concern. The
theoretical open-circuit potential of a hydrazine/O2 fuel cell is 1.56 V. In addi-
tion, the end products of complete electrooxidation of hydrazine/O2 are nitrogen
gas and water, which can enable the hydrazine fuel cells to be eco-friendly zero-
emission energy convertors [34]. Also, Brushett et al. [34] used 1 M sodium
borohydride in 1 M KOH as fuel on Pt anode. However, sodium borohydride
with energy density of 9.29 kWh kg�1 is unstable in acidic media, but highly sta-
ble in alkaline media. Peak power density of 101 mW cm�2 was recorded when
both fuel and electrolyte stream (1 M KOH) flow at 0.3 ml min�1 with air-breath-
ing cathode. This high performance is mainly credited to the improved electro-
catalytic activity of Pt toward the oxidation of the borohydride anions.

9.4.2

Oxidant Types

Oxidants can be dissolved oxygen in aqueous form [26,39,42,62], air [25,32–35],
hydrogen peroxide [45,47], vanadium redox species [18,27,29], potassium per-
manganate [46,49], and sodium hypochlorite [48].

Basically, the cathodic half-cell electrokinetics is slower than the anodic one.
The oxygen reduction reaction (ORR) is sluggish. Completion of ORR requires
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many individual steps and significant molecular reorganization, so the majority
of activation overvoltage loss takes place at the cathode. At standard tempera-
ture and pressure (298 K, 1 atm) the exchange current densities (i0) for ORR on
Pt is six orders of magnitude lower than that of the hydrogen oxidation reaction
(HOR). When the dissolved oxygen is used as oxidant, the slow electrokinetic
reactions in the cathode are coupled with low oxygen concentration resulting in
low power density. For improving the mass transport limitation of dissolved oxy-
gen in electrolyte, alternative oxidants soluble at higher concentration than dis-
solved oxygen can be used.

The few fuel cell designs using liquid oxidants have generally more power out-
put. Choban et al. [62] replaced oxygen saturated in 0.5 M sulfuric acid by
0.144 M potassium permanganate as oxidant and used 2.1 M formic acid as fuel.
The results showed that the cell operation using potassium permanganate devel-
ops a current density with one order of magnitude higher due to the higher solu-
bility of potassium permanganate in aqueous media [41].

Li et al. [39] utilized saturated oxygen in 0.1 M H2SO4 solution as oxidant with
0.5 M HCOOH in 0.1 M H2SO4 solution as fuel. The maximum power density of
0.58 mW cm�2 was caused by insufficient supply of oxygen from oxidant stream
to the cathode.

Also, gaseous air was used as oxidant in air-breathing configurations [32–
34,40]. Since the concentration of oxygen in air (0.2 cm2 s�1) is four orders of
magnitude higher than in aqueous media (2× 10�5 cm2 s�1) [32], the air cathode
designs can provide higher maximum power density and power output.

9.4.3

Electrolyte Types

In most membraneless LFFC designs, fuel and oxidant are dissolved in electro-
lyte and then usually introduced into the channel using syringe pumps. The
main reason for adding electrolyte to streams is to enhance the ionic conduction
to decrease the ohmic losses across the distance between the anode and cathode.
As an example, by adding sulfuric acid to both streams in a membraneless LFFC,
a source of protons closer to cathode is provided and because of the proton con-
sumption at cathode a gradient of protons is maintained [62]. Experimental
results of Choban et al. [62] revealed that by using 0.5 M sulfuric acid as sup-
porting electrolyte, a maximum current density of 0.9 mW cm�2 was obtained,
while the maximum current density of the LFFC with water as electrolyte was
just 0.2 mW cm�2 at the maximum volumetric flow rate of 0.8 ml min�1.

Lack of the membrane allows the cell to operate in both acidic and alkaline
media, as well as under “mixed-media” where the cathode is in acidic and anode
is in alkali media, or vice versa [26]. This media flexibility enables the designer to
tailor the composition of cathode and anode streams individually to optimize the
individual electrode kinetics as well as the overall cell potential [26]. Further-
more, one has the freedom to run the membraneless LFFC in all-acidic, all-alka-
line, or in a mixed-media mode.
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The pH of the electrolyte is effective on the reaction kinetics at the individual
electrodes and the electrode potential at which oxidation or reduction takes
place [26]. Electrolyte is typically a strong acid or a strong base, such as sulfuric
acid or potassium hydroxide, which include highly mobile hydronium or hydrox-
ide ions, respectively [20]. Typically, operation of fuel cell in alkaline media can
develop the electrooxidation of the catalyst-poisoning carbon monoxide species
on the anode and the kinetics of ORR is improved at the cathode [26]. However,
in membrane-based fuel cells, due to the potential of carbonate formation result-
ing in clogging the membrane, the long-term stability is restricted and limits the
use of these alkali-compatible membranes for liquid fuel cell operations [26].

Bruhsett et al. [34] examined the performance of air-breathing membraneless
LFFC operated with ethanol and methanol under acidic (H2SO4) and alkaline
(KOH) conditions. Methanol and ethanol showed improved open-circuit poten-
tial and maximum power density in alkaline media (1.2 and 0.7 V, 17.2 and
12.1 mW cm�2) compared with acidic conditions (0.93 and 0.41 V, 11.8 and
1.9 mW cm�2). The improved performance in alkaline media was the result of
the enhanced alcohol oxidation kinetics and oxygen reduction kinetics compared
with acidic media.

Choban et al. [26] investigated the acidic (H2SO4), alkaline (KOH), and acidic/
alkaline media on the cell potential and power output of a membraneless LFFC
running on 1 M methanol and dissolved oxygen. The results indicate that the
process in both acidic and alkaline media is cathode limited, which can be attrib-
uted to the low oxygen concentration in solution. The oxygen solubility in acidic
media is about 1 mM, while the oxygen solubility in alkaline media is approxi-
mately 25% lower, resulting in earlier drop in performance in the I–V curve
[26]. Also, there is no issue with carbonate formation in their work due to the
immediate removal of any formed carbonates from the system by the flowing
streams.

In the case of acidic anode stream combined with an alkaline cathode stream,
the maximum theoretical OCP is 0.38 V, but an OCP <0.1 V is observed due to
the overpotentials on the cathode and anode. In other words, the energy liber-
ated in the methanol oxidation and oxygen reduction reactions is mostly used
by water ionization reaction. In this configuration, the electrolytic reaction com-
bined with a galvanic reaction is incapable of producing a large amount of
energy [26].

In the case of alkaline anode and acidic cathode, the combination of two galvanic
reactions in this configuration yields a desirable high theoretical OCP of 2.04 V.
However, the practical OCP is 1.4 V due to the slow kinetics of oxygen reduction
and methanol oxidation. Also the power density of mixed media is higher than
those obtained for all-acidic and all-alkaline membraneless LFFC experiments.

Most of the observed extra power density for the mixed media configuration is
supplied by the electrochemical acid–base neutralization reaction where protons
are reduced on the cathode and hydroxide ions are consumed, in methanol oxi-
dation at the cathode. So, the consumption of H2SO4 and KOH must be taken
into account while comparing the different membraneless LFFC configurations.
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While the cell runs under alkaline anode with acidic cathode conditions, both
OH� and H+ are consumed at the anode and cathode at a rate of six for each mole-
cule of methanol. The maximum theoretical energy density (based on the reaction of
1 M of methanol with ambient oxygen, consuming 6 equiv of H2SO4 and KOH) is
495 Wh kg�1, much lower than the theoretical value for the all-alkaline and all-acidic
LFFC in which only methanol is consumed (6000 Wh kg�1) [26].

Hasegawa et al. [45] utilized the mixed media approach to operate a microfluidic
fuel cell on hydrogen peroxide as both fuel and oxidant, in alkaline (NaOH) and
acidic (H2SO4) media, respectively. This design produced relatively high power
densities up to 23 mW cm�2. The drawback of this design is the spontaneous
decomposition of hydrogen peroxide on the cathode and associated bubble genera-
tion due to oxygen gas evolution that may disturb the colaminar flow interface.

The overall reaction of this design is

H2O2�aq� � HO2
��aq� � 2H��aq� � OH��aq� ! O2 � 3H2O (9.17)

which involves the disproportionation reaction of H2O2 together with the com-
bination of H+ and OH� ions. SO4

2� ion neutralizes Na+ ion electrically at the
acidic/alkaline bipolar electrolyte interface so that the reaction of 9.17 proceeds
continuously. Consequently, the products of this fuel cell type are water, oxygen,
and salt.

9.5
Conclusions

This chapter discusses the design, fabrication technology, and performance of
membraneless LFFCs. Innovative designs including new flow architectures and
electrode arrangements in the channel using new materials are under develop-
ment to increase the performance of single cell and the fuel utilization in single
pass. To generate enough power for practical applications, stacking is inevitable.
Commercialization aspects, including cost and durability, reveal a huge research
potential for the development of alternative materials besides the innovative
fluidic design and optimization for stacking of membraneless LFFCs. Optimal
choice of fuel and oxidant should be addressed as well. Novel electrodes and
current collectors with high electrical conductivity and long-term durability
must be developed and explored according to acidic or basic medium of the cell.
Also, the combined area-specific resistivity (ASR) of the cell components, includ-
ing electrolyte, anode, and cathode, should be decreased to provide high power
densities. Graphite is resistant to corrosion unlike most metallic materials, but
its micromachining may increase the total cost. In terms of electrocatalyst, mem-
braneless LFFCs can generally benefit from the advancements in electrocatalyst
materials for instance poisoning tolerant nanocatalysts for direct liquid fuel cells.
The whole fuel cell system should be run on very low power consumption of in a
passive scheme. Microfabrication and microfluidic technologies can provide pas-
sive or very low power consumption fuel/oxidant delivery systems.
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10
Progress in Electrocatalysts for Direct Alcohol Fuel Cells
Luhua Jiang and Gongquan Sun

10.1
Introduction

Proton exchange membrane fuel cells (PEMFCs) attract more and more interest
as promising power sources for automobiles and stationary and portable applica-
tions owing to its inherent properties such as quietness, being environmentally
benign, compact system, easy start-up and shutdown, and high power density
[1–5]. If the anode of a PEMFC is fed with alcohols, it is called direct alcohol
fuel cell (DAFC). DAFCs have been developed since 1960s [6] owing to its
advantages in fuel storage, transport, and so on. Among all the investigated pos-
sible liquid fuels [7–16], methanol and ethanol are the most potential ones
for their relatively simple structure and higher oxidation activity. Until now,
focus has been mainly on methanol because it does not require a C-C bond
cleavage. An excellent methanol oxidation catalyst is characterized by both
dehydrogenation at low temperatures and removal of the methanol oxidation
residues such as CO-like species. In order to improve the activity of Pt, different
promoters such as Ru [17–20], Sn [21–25], W [26,27], and Mo [28,29] have been
adopted to enhance the activity of Pt toward methanol oxidation reaction
(MOR) and weaken CO-like species produced on Pt active sites. Until now,
PtRu alloy is considered to be the most effective one as explained by the famous
bifunctional mechanism [18]. For ethanol, the complete electrooxidation is rela-
tively difficult because it includes the cleavage of C-C bond. So a good ethanol
oxidation catalyst has to perform multifunctions, including dehydrogenation,
removal of CO-like species, and cleavage of C-C bond at relatively low temper-
atures. This places the ethanol electrocatalyst to a more important position. In
the case of cathode electrocatalysts, considering not only the electrocatalytic
activity to oxygen reduction but also the tolerance to methanol permeated
from anode to cathode, Fe, Co, Ni, and V have been used to decorate platinum
[30–33] and some non-noble metal catalysts have also been prepared and used
[34–37]. However, a new challenge appeared when the non-noble metals were
used as the cathodes, that is, the non-noble metals would leach out in the acidic
working environment.
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In this chapter, a systematic research on the electrocatalysts toward oxygen
reduction reaction (ORR), MOR, and ethanol oxidation reaction (EOR) at DICP
in the past decade is reviewed.

10.2
Developing an Effective Method to Prepare Electrocatalysts

Particle size, morphology, and structure have strong influence on the activities of
catalysts, so it is important to develop a simple but effective method to be capa-
ble of controlling the particle size and even the microstructure of nanoparticles.
Several preparation methods, including impregnation–reduction method (form-
aldehyde was used as the reducing agent) [38], hydroperoxide oxidation decom-
position method [39–41], and the modified polyol method [42–44], were
attempted in our laboratory.

10.2.1

Carbon-Supported Platinum

Platinum is the most often used electrocatalyst for the ORR. To enhance the dis-
persion of Pt, Pt nanoparticles are usually dispersed on carbon. In this chapter,
Vulcan XC 72 was used as the support. For a practical fuel cell catalyst, the Pt
loading is sometimes as high as 60% in weight to decrease the thickness of the
catalyst layer so as to lessen the diffusion resistance of electrodes. At such high Pt
loadings, the conventional methods, such as impregnation–reduction method
using gaseous hydrogen or liquid reducing agents, such as NaBH4 or HCHO,
failed to produce small and uniform Pt nanoparticles [45–47]. Figure 10.1a and b
are transmission electron microscopy (TEM) images of 20 wt% Pt/C prepared by
an aqueous impregnation method with formaldehyde as a reducing agent and a
polyol process (denoted as 20% Pt/C-HCHO and 20% Pt/C-EG, respectively)
[45,46]. The TEM image of the 20% Pt/C-EG reveals that the Pt nanoparticles are
highly dispersed on carbon and the mean particle size is around 2 nm; in contrast,
the Pt nanoparticles for the 20% Pt/C-HCHO are slightly aggregated and the
mean particle size is around 5.3 nm, much larger than that of Pt/C-EG. Further-
more, we prepared a series of Pt/C catalysts with a varied Pt loading of 10–60 wt%
employing the polyol method and the TEM images are shown in Figure 10.1c–g.
For all the samples prepared by the polyol method, Pt nanoparticles are distrib-
uted uniformly on carbon. Figure 10.1h shows the average Pt particle sizes. It can
be seen that the particle size is <5 nm even if the Pt loading is as high as 60%.

More importantly, it was found that the particle size is sensitive to the water
content in the solvent for the polyol method [48]. By simply controlling the
amount of water content in the solvent, particle size and distribution of electro-
catalysts could be controlled finely at nanoscale. Figure 10.2 is the TEM images
of 20% Pt/C with different particle sizes. The particle size of Pt/C increases from
2.0 to 3.0 nm with the increasing water content.
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10.2.2

Carbon-Supported Platinum–Ruthenium

PtRu is the effective electrocatalyst for methanol oxidation reaction and the disper-
sion of the metal particles is of great importance for the utilization and activity, so
we also compare several methods for the preparation of carbon-supported PtRu cat-
alyst. Similar to the reasons mentioned in Section 10.2.1 for Pt/C, high metal load-
ings are required for the PtRu/C catalyst. We use 20 wt Pt% ∼10 wt % Ru/C as an
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Figure 10.1 TEM images for (a) 20% Pt/C-HCHO, (b) 20% Pt/C-EG, (c) 10% Pt/C-EG, (d) 30% Pt/
C-EG, (e) 40% Pt/C-EG, (f) 50% Pt/C-EG, (g) 60% Pt/C-EG, and (h) metal particle size versus metal
loadings.

Figure 10.2 TEM images of 20% Pt/C with different particle size. (a) dmean= 2.0 nm,
(b) dmean= 2.6 nm, (c) dmean= 3.0 nm.
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example. Table 10.1 summarizes the TEM and X-ray diffraction (XRD) data of the
catalysts prepared by the three preparation methods, namely, impregnation–
reduction method, hydroperoxide method, and the polyol method. The data for the
commercial PtRu/C (Johnson Matthey Inc.) are also included in Table 10.1 for com-
parison. It can be seen that PtRu/C catalyst produced by the polyol method presents
a smaller mean particle size than those prepared by other methods and the lattice
parameter of Pt in PtRu/C shortens compared with that of Pt (3.923 Å). The latter
phenomenon suggests that a stronger interaction exists between Pt and Ru. How-
ever, in the case of PtRu/C prepared by the impregnation–reduction method, the
corresponding lattice parameter is similar to that of Pt/C. This means a weak inter-
action exists between Pt and Ru. Furthermore, PtRu/C prepared by hydroperoxide
method has the lattice parameter similar to the commercial one. It can also be found
from Table 10.1 that the specific surface areas of all samples obtained from XRD are
slightly higher than those from TEM. This deviation due to the different techniques
is reasonable because XRD technique is more suitable for bulk crystals.

The polyol method is suitable for preparing both monometallic and bimetallic
high-dispersive electrocatalysts with high metal loadings. Employing this method,
bimetallic electrocatalysts including PtFe, PtRu, PtSn, and PtPd were also prepared.

10.3
Electrocatalysts for ORR

10.3.1

Highly Active PtFe Electrocatalysts for ORR

As far as the oxygen reduction is concerned, Pt-based electrocatalysts are always
used as cathode catalysts in direct methanol fuel cells. We have already studied

Table 10.1 The XRD and TEM characterization results of PtRu/C prepared by different
methods.

PtRu/C sample XRD TEM

Lattice
parameter
(Å)

Mean
particle
size (nm)

Specific
surface area
(SXRD, m

2 g− 1)a)

Mean
particle
size (nm)

Specific
surface area
(STEM, m

2 g− 1)b)

Commercial-JM 3.890 2.4 136.1 2.7 120.9
Impregnation–
reduction method

3.906 2.7 120.9 3.5 96.1

Hydroperoxide
method

3.899 2.5 130.7 2.8 116.7

Polyol method 3.883 1.9 171.9 2.0 163.4

a) SXRD and
b) STEM are calculated according to the average particle diameter from XRD patterns and TEM

images, respectively.
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the Pt–Fe/C system for the ORR [49]. PtFe/C catalysts were prepared by the
modified polyol method and then were heat treated under H2/Ar (10 vol%) at
moderate temperature (300 °C, PtFe/C300) or high temperature (900 °C, PtFe/
C900). As comparison, PtFe/C alloy catalyst was prepared by a two-step method
(PtFe/C900B). X-ray diffraction and transmission electron microscopy images
(Figure 10.3) show that the particle size of the catalyst increases with increasing
treatment temperature. PtFe/C300 catalyst has a mean particle size of 2.8 nm
(XRD) and 3.6 nm (TEM), and PtFe alloy was partly formed in this sample.
PtFe/C900B catalyst has the biggest particle size of 6.2 nm (XRD) and the best
PtFe alloy form. Cyclic voltammetry (CV) (not shown here) shows that
PtFe/C300 has larger electrochemical surface area than other PtFe/C and the
highest utilization ratio of 76% among these Pt-based catalysts. DMFCs with the
above Pt–Fe/C as the cathode catalysts were fabricated and the results showed
that PtFe/C300 exhibits higher ORR activity and better performance than other
PtFe/C or Pt/C catalysts when employed for cathode in direct methanol single
cell tests (Figure 10.4). The enhancement of the cell performance is logically
attributed to its higher ORR activity, which might be due to more Pt0 species
existing after Fe ion corrosion from the catalyst.

10.3.2

Methanol-Tolerant PtPd Electrocatalysts for ORR

For DMFC, methanol crossover is one of the main obstacles to its development.
Several efforts have been made to avoid or reduce the effect of methanol cross-
over on the DMFC’s cathode performance [50–55], including the development
of methanol-tolerant catalysts such as macrocycles or chalcogenides [34–37]
and modification of Pt catalyst by adding another metal such as Fe, Co, Ni, and

Figure 10.3 XRD patterns of the Pt–Fe/C catalysts and TEM image of Pt–Fe/C-300 [49]. Repro-
duced with permission from Elsevier.
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Pd to decrease the effect of permeated methanol from the anode on the Pt cath-
ode catalysts. In the former case, although it is known that they are good oxygen
reduction electrocatalysts and inactive to methanol molecules, their unstability
in acid media, especially at the operation temperatures ranging from 60 to 90 °C,
limits their wide application in DMFC. PtFe seems to be a promising one as
already discussed, but the issue is the loss of Fe due to the acidic operation envi-
ronment in the long-term operation.

A novel carbon-supported Pd-rich Pd3Pt1 was developed, which showed a
better direct methanol fuel cell performance than Pt/C [56]. For the ORR polar-
ization curves in 0.5 mol l�1 HClO4 with or without methanol (shown in Fig-
ure 10.5), judging from the half-wave potential, Pd3Pt1/C exhibits the ORR
performance comparable with Pt/C in the absence of methanol. However, in the
presence of methanol, it is interesting to find that for Pt/C, the peak for metha-
nol oxidation is so big that its activity to ORR is decreased significantly in the
potential range from 500 to 900 mV; nevertheless, the methanol oxidation peak
does not appear for the Pd3Pt1/C in the ORR polarization curve. This suggests
that Pd3Pt1/C exhibits a superior ORR selectivity to Pt/C in the presence of
methanol. Accordingly, in the fuel cell operation mode, when Pd3Pt1/C was
used as the cathode catalyst, the negative effect of methanol crossover on the
cathode performance will be inhibited at least partially in comparison with Pt/C.
The DMFC single cells with Pd3Pt1/C or Pt/C as the cathode catalysts were
tested and compared. Figure 10.6 presents the single fuel cell test results. It can

Figure 10.4 Comparison of single-cell polar-
ization curves for the DMFC in the presence of
Pt/C, PtFe/C300, PtFe/C900, PtFe/C900B cath-
ode catalysts (1.0mgPt cm�2); anode: PtRu/C
(20wt% Pt, 10wt% Ru, Johnson Matthey
Corp.; catalyst loading: 2.0mg PtRu cm�2);

electrolyte membrane: Nafion-115 (DuPont)
membranes; operation temperature: 90 °C;
methanol concentration: 1.0M CH3OH; flow
rate: 1.0mlmin�1, oxygen pressure: 0.2MPa
[49]. Reproduced with permission from
Elsevier.
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be clearly seen that in all the current density range, single DMFC with Pd3Pt1/C
shows a better performance than that with Pt/C as the cathode catalysts.
The single fuel cell test results are in good agreement with the RDE results.
The improved ORR activity of Pd3Pt1/C could be attributed to its inactivity to
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methanol oxidation reaction, but similar activity to oxygen reduction reaction as
Pt/C. In conclusion, palladium-rich Pd3Pt1/C catalyst enhanced DMFCs cathode
performance for its selective ORR activity in the presence of methanol and
may be an alternative methanol-tolerant cathode in DMFCs. Further theoretical
calculation (density function theory (DFT)) studies on the adsorption and disso-
ciation of O2 on PtPd clusters indicate that, in addition to the advantage of
methanol inert property, the presence of Pd atoms facilitates the dissociation of
O2 on Pt sites [57].

10.4
Electrocatalysts for MOR

10.4.1

Composition Screening for Electrocatalysts toward MOR

In the case of direct methanol fuel cells, compared with oxygen reduction, meth-
anol oxidation accounts for the main activation loss because this process
involves six-electron transfer per methanol molecule and catalyst self-poison
when Pt alone was used from the adsorbed intermediate products such as COads.
From the thermodynamic point of view, methanol electrooxidation is driven due
to the negative Gibbs free energy change in the fuel cell. On the other hand, in
the real operation conditions, its rate is obviously limited by the sluggish
reaction kinetics. In order to speed up the anode reaction rate, it is necessary to
develop an effective electrocatalyst with a high activity to methanol electrooxida-
tion. Carbon-supported (XC-72C, Cabot Corp.) PtRu, PtPd, PtW, and PtSn were
prepared by the modified polyol method as already described [58]. Pt content in
all the catalysts was 20 wt%.

The DMFC single cell tests with these as-prepared Pt-based catalysts as the
anode catalysts are shown in Figure 10.7. For comparison, Pt/C as the anode
catalyst is also shown in Figure 10.7. The cathode catalyst is Pt/C (20 wt%,
Johnson Matthey Inc.). The geometric electrode area is 2.0× 2.0 cm2. The mem-
brane electrode assembly (MEA) preparation procedure has already been
reported in detail [59].

It can be seen from Figure 10.7 that in the case of Pt/C as the anode catalyst,
single DMFC exhibits the poorest performance. The open-circuit voltage (OCV)
is only 0.56 V, and this value is far away from the theoretical value (1.18 V),
which is mainly due to the slow reaction kinetics and methanol crossover. It can
also be seen from Figure 10.7 that the maximum discharge current density is
about 165 mA cm�2 and the peak power density is only 17.5 mW cm�2 at
120 mA cm�2. From these experimental results, it can be concluded that Pt/C
alone is not a suitable electrocatalyst for methanol oxidation. It is necessary to
enhance the activity of Pt with other additives.

The addition of Pd, Ru, Sn, and W to Pt can overall improve the single DMFC
performance. Among them, PtPd/C presents only slight improvement in the
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DMFC performance in comparison with Pt/C. The OCV and peak power density
are increased to about 0.58 V and 27.9 mW cm�2 at 171 mA cm�2, respectively.
PtSn/C gives the highest OCV in all the investigated catalysts; however, the fact
is that the cell voltage with PtSn as anode decreases quickly along with the cur-
rent density increment. This is probably due to the poor electronic conductivity
of PtSn/C catalyst, which results from the Sn oxides in different valence in the
catalyst [60]. Especially in the higher current density range, the ohmic effect
becomes more serious, leading to quicker cell voltage drop. On one hand, W is
considered to be able to provide abundant O-containing species and the change
between its different valences can accelerate the removal of the adsorbed inter-
mediates such as COads. On the other hand, from the single DMFC test results, it
shows inferior performance to PtRu/C. Based on these results, PtRu appears to
be the most effective anode electrocatalyst for direct methanol fuel cells, which is
the same result as the well-accepted idea that PtRu is the most effective electro-
catalyst for methanol oxidation until now.

10.4.2

Carbon-Supported Platinum–Ruthenium for MOR

In order to clarify the relations between the microstructure of PtRu/C catalyst
and the corresponding performance, HRTEM and HR-EDS experiments
were carried out on particles employing the PtRu/C prepared by impregnation–
reduction method (denoted as PtRu-IM) and modified polyol method (denoted
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Figure 10.7 Cell performances of single
DMFC with different anode catalysts.
Tcell= 90 °C. Anode: Pt-based catalysts (Pt:M
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Pt cm�2 when Pt/C was used as the anode
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as PtRu-EG). Figure 10.8 shows the HRTEM images of PtRu-IM and PtRu-EG.
From the HRTEM images, it can be seen that the metal particles of PtRu-IM are
not uniform, and some of the small particles agglomerate into larger particles.
For PtRu-EG, the particles disperse on the support uniformly. For a clear com-
parison, the summary data of HRTEM and HR-EDS are listed in Table 10.2.
PtRu-1 and PtRu-2 have a similar mean particle size, while the particle
size distribution of PtRu-IM, ∼1–6 nm, is much broader than that of PtRu-EG
(1.5–2.5 nm). The results of HR-EDS on particles clearly show that the distribu-
tion of Pt and Ru in the PtRu-IM sample is not uniform. For the larger particles,
the atomic ratio of Pt to Ru is 8.8:1, while for the smaller particles, the corre-
sponding value is 1:8.0. This result means that the larger particles are Pt-rich,
while the smaller particles are Ru-rich. For PtRu-EG, the atomic ratio of Pt to
Ru is much more uniform. For larger particles, the atomic ratio of Pt to Ru is
1.2:1 and for smaller particles the corresponding value is ∼0.7:1, which is close
to the nominal ratio.

To enhance the alloy degree of PtRu, the as-prepared PtRu/C-EG catalyst was
heat treated in nitrogen at 200 °C [61]. TG and online MS results indicate that
abundant adsorbed species exist on the electrocatalyst surface, which can be
effectively removed by heat treating at 200 °C under nitrogen atmosphere for
2 h. TEM and XRD results (Figure 10.9) show that the particle size of the

(b) (a) 

20 nm 

Figure 10.8 TEM images of (a) PtRu/C-IM and (b) PtRu-EG.

Table 10.2 Summary of HRTEM and HR-EDS results.

Sample Mean particle size (nm) HR-EDS results (Pt/Ru atomic ratio)

Small particles Large particles

PtRu/C-IM 3.5 (±2.5) 1/8.0 8.8/1
PtRu/C-EG 2.5 (±0.5) 0.7/1 1.2/1
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electrocatalyst increases slightly after heat treatment, but the particles retain
good dispersion on the carbon support. The diffraction peak position for the
PtRu/C-EG after heat treatment shifts toward higher angle and the lattice
parameters for Pt shorten (Table 10.3), indicating that the interaction between
Pt and Ru increases. Electrochemical and DMFC single cell testing results
(Figure 10.10) indicate that the catalytic activity of PtRu/C for methanol electro-
oxidation is greatly improved after the heat treatment process.
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Figure 10.9 TEM images and XRD patterns of PtRu/C-EG electrocatalysts before (a) and after
(b) heat treatment.

Table 10.3 XRD calculation results of PtRu/C-EG electrocatalyst.

Before heat treatment After heat treatment

Average particle size (nm) 2.1 2.6
(220)Peak position (°) 68.4 68.6
Lattice parameter (nm) 0.388 0.386
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Figure 10.10 Comparison of DMFC single cell performance with PtRu/C-EG as anode electro-
catalyst before (1) and after (2) heat treatment.
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According to bifunctional mechanism proposed by Watanabe and Motoo [62],
the dehydrogenation of methanol occurs on the Pt active sites as a result of pro-
ducing CO-like species. The Ru species could decompose water at a lower
potential than Pt to produce -OH species, which could react with the CO-like
species on Pt active sites and detoxify them. On the premise of this mechanism,
the model catalyst should be described as good PtRu alloy (atomic ratio Pt/Ru
= 1:1) with the two elements mixing at atomic scale (Figure 10.11).

On the basis of this model, Pt and Ru should be mixed at atomic scale in order
to remove the CO-like species smoothly. From the aforementioned HRTEM and
HR-EDS analyses, the PtRu-EG has uniform particle size (2.5± 0.5 nm) with
sharp distribution and the distribution of Pt and Ru is uniform at atomic scale.
This structure is favorable for removing CO-like species according to bifunc-
tional mechanism. The PtRu-IM, which is characterized by broad particle size
distribution (3.5± 2.5 nm) and uneven distribution of Pt and Ru at atomic scale,
could not eliminate the poison smoothly. The cumulated poisons would lead to
Pt active sites deactivating gradually.

10.5
Electrocatalysts for Ethanol Electrooxidation

In order to extend the practical application of low-temperature fuel cells and to
facilitate their penetration into the transport market, it is also desirable to
increase the number of liquid fuels that can be employed in these devices.
Among all the possible fuels, ethanol is the most promising because it is a natu-
rally available and renewable fuel, thus having positive impact on both economy
and environment [63,64]. Moreover, ethanol has higher energy density in com-
parison with methanol (8.01 versus 6.09 kWh kg�1). Therefore, ethanol is more
attractive and appears to fulfill most of the requirements of the fuel for low-
temperature fuel cells [65,66].

Compared with methanol electrooxidation, ethanol electrooxidation seems to
be a more complicated process because it involves 12-electron transfer per etha-
nol molecule and cleavage of C-C bond. In order to speed up DEFC’s develop-
ment, it is necessary and important to develop a novel electrocatalyst with a high
activity to ethanol electrooxidation.

Figure 10.11 PtRu model catalyst for methanol electrooxidation.
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10.5.1

Composition Screening for Electrocatalysts toward EOR

Carbon-supported PtPd, PtW, PtRu, and PtSn had been prepared by the modi-
fied polyol method and evaluated as ethanol oxidation electrocatalysts [44,67].
Figure 10.12 shows the results of CV experiments with different carbon-
supported Pt and PtM catalysts. There are two oxidation peaks when the ethanol
CV is carried out on the Pt/C catalyst. The first one appears at around 0.76 V
(versus SCE) and the second one appears at a higher potential. Only the first
oxidation peak is reported in the present work and the applied upper potential is
not allowed to exceed 1.0 V versus SCE to prevent the dissolution of assistant
metals. The addition of the second metal to Pt results in the negative shift of the
first ethanol electrooxidation peak. The first oxidation peak on Pt1Ru1/C appears
at the most negative potential, at ∼0.53 V (versus SCE), and the peak potential
is ∼0.23 V lower than that on Pt/C catalyst. The first electrooxidation peak of
ethanol on Pt1Pd1/C is ∼0.65 V (versus SCE), higher than that on Pt1Ru1/C. The
current density at the first peak of the ethanol electrooxidation on Pt1Ru1/C
is higher than that on Pt1Pd1/C, but less than those on Pt1Sn1/C, Pt1W1/C, and
Pt/C, respectively. The Pt1Sn1/C catalyst has the highest electrocatalytic activity
toward ethanol oxidation in terms of the current density for the first peak, but
also has a higher overpotential (0.71 versus SCE). Pt1W1/C catalyst also exhibits
a higher current density than those of Pt/C, Pt1Ru1/C, and Pt1Pd1/C, but has a
overpotential (0.75 versus SCE) similar to Pt/C. It seems that Pt1Sn1/C is the
best electrocatalyst for ethanol oxidation from the viewpoint of current density.
Pt1Ru1/C has the lowest overpotential to ethanol electrooxidation among the
electrocatalysts already discussed, which indicates that Pt1Ru1/C is also a prom-
ising catalyst for ethanol electrooxidation.

Figure 10.12 The CV results of different anode catalysts for ethanol electrooxidation. Opera-
tion temperature: 25 °C. Scan rate: 10mV s�1. Electrolyte: 1.0M EtOH+ 0.5M H2SO4 [67]. Repro-
duced with permission from Elsevier.
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From a practical viewpoint, every potential electrocatalyst should be ultimately
investigated in fuel cells. The above five catalysts were evaluated as anode cata-
lysts for ethanol electrooxidation by the single DEFC test. Figure 10.13 exhibits
the performance differences between the single fuel cell with different anode cat-
alysts operated at 90 °C. When Pt/C is used as anode catalyst for ethanol, the
performance of the single fuel cell is poor. The OCV is only around 0.55 V, far
less than the standard electromotive force (1.145 V), which is mainly attributed
to the poor catalytic activity to ethanol electrooxidation and ethanol crossover
from anode to cathode. The maximum output power density is only 10.8 mW
cm�2. The performance of the single DEFC has no obvious improvement when
Pt/C is replaced with Pt1Pd1/C as anode catalyst, and the two single cells have
similar current density–voltage (I–V) curves. The single cell with Pt1W1/C
as anode catalyst exhibits an improved performance compared with that with
Pt/C and Pt1Pd1/C, respectively, especially in the intrinsic resistance-controlled
region and mass transfer region. The maximum output power density is close
to 16.0 mW cm�2 at 90 °C. The single cell using either Pt1Ru1/C or Pt1Sn1/C

Figure 10.13 Comparison of the fuel cell
characteristics of a direct ethanol fuel cell with
different anode catalysts operated at 90 °C. (□)
Pt/C, 2.0mgPt cm�2; (▼) Pt1 Pd1/C, 1.3mgPt
cm�2; (★) Pt1W1/C, 2.0mgPt cm�2; (•) Pt1Ru1/
C, 1.3mgPt cm�2; (⋄) Pt1Sn1/C, 1.3mgPt cm�2;

Nafion 115 was used as electrolyte; ethanol
concentration and flow rate: 1M and 1.0ml
min�1, respectively; cathode catalyst and
metal loading: 1.0mgPt cm�2 (20 Ptwt%,
Johnson Matthey Co.) [67]. Reproduced with
permission from Elsevier.
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exhibits performance superior to those with Pt/C, Pt1Pd1/C, and Pt1W1/C. Both
the OCV and the maximum power density increase when Pt1Ru1/C or Pt1Sn1/C
is used. The OCV of single cell with Pt1Ru1/C is 0.67 V, ∼0.12 V higher than that
with Pt/C, and the maximum power density is 28.6 mW cm�2 at 90 °C. When
Pt1Sn1/C is adopted as the anode catalyst, the OCV of single fuel cell approaches
to ∼0.81 V, ∼0.14 mV higher than the fuel cell with Pt1Ru1/C as anode catalyst.
The maximum power density of the cell with Pt1Sn1/C is 52.0 mW cm�2, nearly
twice as that of the single cell with Pt1Ru1/C catalyst. The single cell results
identify evidently that Pt1Sn1/C is more suitable to DEFC operated at 90 °C.

Although Pt1Ru1/C is the best catalyst for methanol electrooxidation in
DMFCs, it is not proved to be the best anode catalyst for ethanol electrooxida-
tion. The addition of W and Mo can increase ethanol electrooxidation activity
on the Pt1Ru1/C catalyst. The I–V characteristics of single direct ethanol fuel
cells show clearly that the Pt1Sn1/C is a better anode catalyst than Pt1Ru1/C and
other carbon-supported bimetallic Pt-based catalysts for DEFCs. From a practi-
cal point of view, Pt1Sn1/C is the best electrocatalyst for DEFCs among these
anode catalysts investigated here.

10.5.2

PtSn/C for Ethanol Electrooxidation

Based on the fact that Pt1Sn1/C proved to be a very active anode catalyst for the
EOR, additional work has been done to investigate the effect of Pt/Sn atomic
ratio [44]. The mean particle size and lattice parameter of the PtSn/C catalyst
obtained from XRD patterns and TEM images are summarized in Table 10.4.
Figure 10.14 shows the performances of the single fuel cells with different PtSn/
C catalysts as the anode catalyst.

In the subsequent research, great endeavor has been made to control the com-
ponent of PtSn/C catalyst at atomic scale. Now we can obtain a uniform compo-
nent of PtSn catalyst by modifying the preparation conditions. Figure 10.15 is the
HRTEM image and HR-EDS analysis of Pt3Sn/C nanoparticles. It can be seen

Table 10.4 XRD and TEM results of carbon-supported Pt and Pt-bimetallic catalysts [44].

Catalyst Mean particle size (nm) Lattice parameter (Å)

TEM XRD

Pt1Sn1/C 2.3 2.1 3.987
Pt3Sn2/C 2.2 1.9 3.973
Pt2Sn1/C 3.0 2.6 3.956
Pt3Sn1/C 2.2 1.9 3.953
Pt4Sn1/C 2.3 1.9 3.938

Reproduced with permission from Elsevier.
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that the metal particles are uniform with a mean particle size of 3 nm. HR-EDS
analysis was carried out for a random linear area and the result showed that the
distribution of Pt is consistent with that of Sn. This indicates that the distribu-
tion of Pt and Sn is uniform in all of the particles.

Figure 10.14 Performances of single direct
ethanol fuel cells with different PtSn/C cata-
lysts as anode catalysts at 90 °C. Anode is
PtSn/C with different Pt/Sn atomic ratio
(1.33mgPt cm�2). Solid electrolyte is

Nafion 115 membrane. Ethanol aqueous solu-
tion is 1.0mol l�1 and its flow rate is 1.0ml
min�1; cathode contains Pt/C (Johnson Mat-
they Co.) with 1.0mgPt cm�2 [44]. Reproduced
with permission from Elsevier.

Figure 10.15 HRTEM image (a) and HR-EDS analysis (b) of Pt3Sn/C nanoparticles.
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Our primary research indicated that tin oxide could be the active component
for ethanol electrooxidation [60,68–70]. Here our focus is to study the effects of
the chemical state of tin and the component of PtSn/C catalysts on the perform-
ance of DEFCs. For comparison, two PtSn/C catalysts with tin oxide and PtSn
alloy were prepared, respectively. For the former, tin oxide with a diameter of
1 nm was prepared first in ethylene glycol, and then platinum was reduced on
the surface or near the tin oxide (denoted as PtSn-1). For the latter, first the
precursor of Pt and Sn were mixed together, and then they were reduced in EG
(denoted as PtSn-2).

The XRD patterns of PtSn-1 and PtSn-2 are shown in Figure 10.16. It can be
seen that apart from the diffraction peaks of Pt(111), Pt(200), Pt(220), and Pt
(311), there appear diffraction peaks of SnO2(101) and SnO2(211) at around 34°
and 52° (PCPDF#411445), respectively, for PtSn-1. Both PtSn-1 and PtSn-2 have
the same particle size of ∼2.3 nm, calculated by Scherrer formula. The lattice
parameters of PtSn-1 and PtSn-2 were 3.928 and 3.946 Å, respectively, according
to Vegard’s law. Compared with the lattice parameter of Pt, which is 3.923 Å, the
crystalline lattice of Pt in PtSn-2 sample is dilative prominently, while that of
PtSn-1 displays little dilatation. In general, the dilatation of crystalline lattice
reflects the alloy degree of two metals. To clarify the microstructure of PtSn cat-
alysts, HRTEM images of PtSn-1 and PtSn-2 are shown in Figure 10.17. In the
HRTEM image of PtSn-1, SnO2 nanoparticles were found in the vicinity of Pt
particles. The nominal 0.264 nm spacing of the SnO2(101) plane is indicated by
the arrow in Figure 10.17a. The nominal 0.228 and 0.198 nm spacings of the
Pt(111) and Pt(200) planes, respectively, of the fcc lattice of a typically faceted
particles are also indicated by the arrows in Figure 10.17a. In Figure 10.17b, only
Pt(111) plane was found with a spacing of 0.234 nm and no separate SnO2 phase
was found near the Pt particles. Based on these details, it can be concluded that
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Figure 10.16 XRD patterns of (a) PtSn-1 (b) PtSn-2 [70]. Reproduced with permission from
Elsevier.
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partial Sn exists in tin oxide and partial Sn alloy with Pt in the PtSn-1 sample,
while most of Sn alloy with Pt in the PtSn-2 sample.

Cyclic voltammetry is a practical and simple method to characterize the elec-
trocatalytic activity of catalysts. Figure 10.18 shows the C–V curves for PtSn
electrode in 0.3 M HClO4 + 1 M EtOH solution. The initial potentials of the
EOR (at 0.2 mA) on PtSn-1 and PtSn-2 are 0.033 and 0.124 V, respectively. In all
of the sweeping ranges, the ethanol electrooxidation current on PtSn-1 electrode
is higher than that on PtSn-2 electrode. This indicates that PtSn-1 is a better
catalyst for ethanol than PtSn-2.

(b) (a) 

0.234 nm 
Pt (111) 

0.264 nm 
0.228 nm 

0.198 nm 

SnO2 (101) 

Pt (111) Pt 

Figure 10.17 HRTEM images of (a) PtSn-1 and (b) PtSn-2 [70]. Reproduced with permission
from Elsevier.
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Figure 10.18 Cyclic voltammograms of PtSn electrodes in 0.3M HClO4+ 1M EtOH solution at
room temperature [70]. Reproduced with permission from Elsevier.
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Figure 10.19 shows the I–V curves of DEFCs with PtSn-1 and PtSn-2 as the
anode catalysts, respectively. It can be seen that the DEFC with PtSn-1 as the
anode catalyst showed much higher performance than that with PtSn-2 as
anode. The maximum power density and the maximum discharge current of the
DEFCs with PtSn-1 and PtSn-2 as the anode catalysts are 81 mW cm�2 (200 mA
cm�2) and 47 mW cm�2 (240 mA cm�2), respectively. In our previous research
[60], we concluded that tin oxide could offer oxygen-containing species at lower
potential than platinum. The oxygen-containing species could react with the
CO-like poisons resulting from the ethanol electrooxidation. Herein, according
to the detailed research, PtSn-1 includes PtSn alloy and tin oxide nanoparticles,
while in PtSn-2, most of tin alloys with platinum as a result of dilating the lattice
parameter of Pt. In the study of MOR on PtSn catalysts, it is believed that the
dilatation of lattice parameter of Pt inhibits the ability of Pt to adsorb methanol
and dissociate C-H bonds [71]. Similarly, the adsorption and dissociation of
ethanol may be inhibited due to the complete alloying of Pt and Sn. Our previ-
ous research indicated that suitable dilatation of Pt crystalline lattice constant is
favorable for ethanol adsorption [58]. Ethanol molecules adsorbed on the active
sites of Pt are dehydrogenated to produce CO-like species. For the PtSn-2 sam-
ple, the ethanol electrooxidation residues could not be removed from Pt active
sites smoothly because no oxygen-containing species are around them. However,
for PtSn-1, the electrooxidation residues could react with the oxygen-containing
species resulting from tin oxide in the vicinity of Pt particles to free Pt active
sites. On the basis of this discussion, an ideal PtSn electrocatalyst for ethanol
electrooxidation may be Pt alloy with Sn to a suitable degree and partial Sn
exists in oxide.

Further studies on the EOR products over PtSn-1 with different Pt/Sn atomic
ratios were investigated in a three-electrode system by differential electrochemical
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Reproduced with permission from Elsevier.
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mass spectroscopy (DEMS) [72]. The results show that acetic acid and formalde-
hyde are the two main products and the CO2 yield is lower than 5% on PtSn-1 or
PtSn alloy catalyst; however, the acetic acid yield over PtSn-1 is higher than that
over PtSn alloy, suggesting that the production of acetic acid requires dual-active
sites – one (Pt) for dehydrogenation and another (SnOx) for providing OH
species for aldehyde to form acetic acid. It is totally different when testing the
PtSn-1 catalyst in a real fuel cell. It was reported that the CO2 current efficiency
of the EOR shows a strong increase with increasing catalyst loading and tempera-
ture. The CO2 current efficiency exceeds 75% at 90 °C, 0.1 M ethanol, and 5 mg
cm�2 Pt catalyst loading [73]. It is reasonable to consider that the CO2 yield
increases with temperature and in the thick porous catalyst layer the EOR inter-
mediates have a large possibility to be readsorbed and reoxidized further.

10.5.3

IrSn/C for Ethanol Electrooxidation

Carbon-supported Ir3Sn/C and Ir/C catalysts were simply prepared with NaBH4

as a reducing agent under the protection of ethylene glycol at room temperature
[74]. TEM and XRD data showed that the catalysts with small particle size
exhibited the typical fcc structure of Ir. Their electro-catalytic activities in com-
parison with Pt/C and Pt3Sn/C catalysts were characterized by linear sweep vol-
tammetry (Figure 10.20). The results indicated that Ir-based catalysts showed
superior electrocatalytic activity toward ethanol oxidation to Pt/C and Pt3Sn/C
catalysts, mainly in the low-potential region. During single cell tests at 90 °C
(Figure 10.21), Ir-based catalysts as anodes performed better compared with Pt/
C catalyst. The overall performance of Ir3Sn/C comparable withPt3Sn/C makes it
a promising alternative choice of anode catalyst for DEFCs.

Figure 10.20 Linear sweep voltammograms of ethanol oxidation on Ir/C, Pt/C, Ir3Sn/C, and
Pt3Sn/C catalysts in 0.5M H2SO4 with 1M ethanol at room temperature with a scan rate of
10mV s�1 [74]. Reproduced with permission from Elsevier.
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10.6
Conclusions

The research activities and developments in the field of electrocatalysts for direct
alcohol fuel cells at DICP in the past decade are reviewed. In summary, the prog-
ress includes the following: (i) A convenient and environment-friendly polyol
process was developed to prepare catalysts with controllable metal particle size,
high dispersion, and uniform composition even at high metal loadings. (ii) PtFe/
C and PtPd/C present promising activity toward ORR and PtPd is inert to the
MOR that endows PtPd as an effective methanol-tolerant ORR catalyst.
(iii) PtRu/C is identified as the most effective catalyst for the MOR, and further
heat treatment can enhance the PtRu alloy degree as a result to improve the
MOR activity. (iv) PtSn presents higher activity to ethanol electrooxidation than
other Pt-based catalysts. Tin exists in oxides offering OH species that facilitate
the formation of acetic acid, while PtSn alloy ethanol is more facile to transform-
ing to formaldehyde.
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