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Publisher’s Foreword

Understanding Voltammetry: Problems and Solutions is a companion volume to the
textbook Understanding Voltammetry 2nd Edition, by Richard G. Compton and
Craig E. Banks, published in 2011. The structure of this volume follows that of the
textbook.

Understanding Voltammetry considers how to go about designing, explain-
ing and interpreting experiments centred around various forms of voltammetry,
including cyclic, microelectrode and hydrodynamic, amongst others.

The book gives clear introductions to the theories of electron transfer and of
diffusion in its early chapters. These are developed to interpret voltammetric exper-
iments at macroelectrodes before considering microelectrode behaviour. A subse-
quent chapter introduces convection and describes hydrodynamic electrodes. Later
chapters describe the voltammetric measurement of homogeneous kinetics, the
study of adsorption on electrodes and the use of voltammetry for electroanalysis.

v
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Glossary of Symbols and
Abbreviations

Roman symbols

A area m2

A Debye-Hückel constant = 0.509 mol− 1
2 kg

1
2

ai activity of species i
ci concentration of species i mol dm−3

ci,0 surface concentration of species i mol dm−3

c∗ bulk concentration mol dm−3

D diffusion coefficient (c)m2 s−1

E cell potential V
E� reduction potential under standard conditions V
E�

f formal reduction potential V
F the Faraday constant = 96485.3 C mol−1

G Gibbs energy J
�G� change in Gibbs energy under standard conditions J mol−1

�G‡ activation energy J mol−1

�H� change in enthalpy under standard conditions J mol−1

h height or half-height of a cell m
I current passed A
Ipf forward peak current A
I ionic strength mol kg−1

J flux mol m−2 s−1

K equilibrium coefficient

xiii
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K dimensionless rate constant
Ka acid dissociation constant
Keq equilibrium coefficient (in follow-up kinetics)
Ksp solubility product
k0 heterogeneous rate constant (c)m s−1

k rate constant
mi molality of species i mol kg−1

n number of electrons transferred
p pressure as a multiple of standard pressure bar
pKa ≡ −log10 Ka

Q reaction quotient
Q charge transferred C
qrev reversible heat transferred J mol−1

q charge C
R the gas constant = 8.31447 J K−1 mol−1

Re the Reynolds number
r radius or radial coordinate m
re electrode radius m
�S� change in entropy under standard conditions J K−1 mol−1

T temperature K
t time s
ti transport number of species i
Vf volume flow rate m3 s−1

v voltammetric scan rate V s−1

W rotation speed s−1

w electrode width m
x linear space coordinate m
zi charge number of species i

Greek symbols

α Butler–Volmer transfer coefficient for reduction
β Butler–Volmer transfer coefficient for oxidation
� surface coverage mol (c)m−2

γi activity coefficient of species i m3 mol−1

δ Nernst diffusion layer thickness m
ε0 the permittivity of free space = 8.854 × 10−12 F m−1

εs relative permittivity or dielectric constant of a solvent
	 the Matsuda–Ayabe parameter
λ Marcus reorganisation energy J
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µi chemical potential of species i J mol−1

νi stoichiometric coefficient of species i
ν kinematic viscosity m2 s−1

ρ density kg m−3

τ Shoup–Szabo time coordinate ≡ (4Dt/r2
e )

φ potential V
φM potential of a (metal) electrode V
φs potential of the solution phase V
�φOD ohmic drop V
� fractional surface coverage
� dimensionless potential ≡ φ × (F/RT )
θ dimensionless overpotential ≡ (F/RT ) × (E − E�

f )

Abbreviations
BDD boron-doped diamond
BPPG basal-plane pyrolytic graphite
EMF electromotive force
EPPG edge-plane pyrolytic graphite
erf(x) the error function
erfc(x) the complementary error function, ≡ 1 − erf (x)
HOPG highly ordered pyrolytic graphite
TBAP tetra-n-butylammonium perchlorate
[i] concentration of species i
[i]0 surface concentration of species i
� standard state
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1

Equilibrium Electrochemistry
and the Nernst Equation

1.1 Cell Thermodynamics

Problem

The measured electromotive force (EMF) for the cell

Pt(s)|H2(g,p=1 atm)|H+
(aq,a=1)||Cu2+

(aq,a=1)|Cu(s)

is +0.337 V. Write down the cell reaction and calculate the value of �G� for this
reaction.

Solution

The potential determining equilibria are as follows:
Right-hand electrode

1

2
Cu2+

(aq) + e− � 1

2
Cu(s) (1.1)

Left-hand electrode

H+
(aq) + e− � 1

2
H2(g)

Note these are written as reductions involving one electron. We therefore subtract
to obtain a cell reaction:

1

2
Cu2+

(aq) + 1

2
H2(g) � 1

2
Cu(s) + H+

(aq) (1.2)

for which
�G� = −FE�

1
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2 Understanding Voltammetry: Problems and Solutions

All the species in Eq. 1.2 are present at unit activity, either as explicitly stated in the
problem or implicitly in the case of copper since it is a pure solid and so must also
be at unit activity. Note we assume that in the case of hydrogen at one atmosphere
pressure that the gas will be sufficiently close to ideality that the effects of gas
imperfections can be neglected.

It follows that

�G� = −F × 0.337 V

= −32.5 kJ mol−1

which is favourable. We conclude that hydrogen gas can thermodynamically reduce
aqueous Cu(II) to metallic copper and, consequently, that the metal will not dis-
solve in acid solutions to form Cu2+.

1.2 The Nernst Equation

Problem

For the following cell,
Cu(s)|Cu2+

(aq)||Ag+
(aq)|Ag(s)

at 298 K:

(i) State the cell reaction.
(ii) Give the Nernst equation for the cell.

(iii) Calculate the cell EMF when the ions are present at activities of
(a) 1.0 and (b) 0.1.

The standard electrode potentials are:

E�
Ag|Ag+ = +0.80 V

E�
Cu|Cu2+ = +0.34 V

Solution

(i) The potential determining equilibria are:
Right-hand electrode

Ag+
(aq) + e− � Ag(s)

Left-hand electrode
1

2
Cu2+

(aq) + e− � 1

2
Cu(s)

Subtracting gives the cell reaction

Ag+
(aq) + 1

2
Cu(s) � Ag(s) + 1

2
Cu2+

(aq)
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Equilibrium Electrochemistry and the Nernst Equation 3

(ii) The Nernst equation for the cell is:

E = E� + RT

F
ln


 aAg+

a
1
2

Cu2+


 (1.3)

where

E� = E�
Ag|Ag+ − E�

Cu|Cu2+

= 0.80 V − 0.34 V

= 0.46 V

Note the absence of Cu(s) and Ag(s) from Eq. 1.3 since these are pure solids
and hence have unit activity.

(iii) (a) Substituting
aAg+ = aCu2+ = 1

into Eq. 1.3 gives
E = 0.46 V

(b) Similarly for
aAg+ = aCu2+ = 0.1

we find
E = 0.43 V

1.3 The Nernst Equation

Problem

For the following hypothetical cell,

Al(s)|Al3+
(aq)||Cu2+

(aq), Cu+
(aq)|Pt(s)

at 298 K:

(i) State the cell reaction.
(ii) Give the Nernst equation for the cell.

(iii) Calculate the cell EMF when
(a) aAl3+ = aCu2+ = aCu+ = 1.0
(b) aAl3+ = aCu2+ = aCu+ = 0.1

The standard electrode potentials are:

E�
Cu+|Cu2+ = +0.15 V

E�
Al|Al3+ = −1.61 V
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4 Understanding Voltammetry: Problems and Solutions

Solution

(i) The potential determining equilibria are:
Right-hand electrode

Cu2+
(aq) + e− � Cu+

(aq)

Left-hand electrode
1

3
Al3+

(aq) + e− � 1

3
Al(s)

Subtracting gives the cell reaction

Cu2+
(aq) + 1

3
Al(s) � Cu+

(aq) + 1

3
Al3+

(aq) (1.4)

(ii) The Nernst equation is:

E = E� + RT

F
ln


 aCu2+

aCu+ · a
1
3

Al3+


 (1.5)

where

E� = E�
Cu+|Cu2+ − E�

Al|Al3+

= 0.15 V − (−1.61 V)

= 1.76 V

Note that in Eq. 1.5 we have taken aAl = 1. Further note that the activity aAl3+
is raised to the power ( 1

3 ), reflecting the stoichiometric coefficient of Al3+ in
Eq. 1.4.

(iii) (a) When all the solution phase species are present at unit activities:

E = E� = 1.76 V

(b) When the activities of the three ions are all 0.1:

E = 1.76 V + RT

F
ln

0.1

0.1 × (0.1)
1
3

= 1.76 V + 8.314 × 298

96485
ln

0.1

0.1 × (0.1)
1
3

= 1.76 V − 0.02 V

= 1.74 V

Note that although calculations can be made on this ‘hypothetical’ cell, the
physical realisation of high concentrations of A13+ and Cu+ in aqueous solu-
tion is unrealistic.
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1.4 The Nernst Equation

Problem

Draw a diagram of an electrochemical cell for which the Nernst equation is

E = E� − RT

2F
ln

aPb2+

aCd2+

Solution

A suitable cell is based on the following potential determining equilibria:
Right-hand electrode

1

2
Cd2+

(aq) + e− � 1

2
Cd(s)

Left-hand electrode
1

2
Pb2+

(aq) + e− � 1

2
Pb(s)

and the corresponding cell reaction is

1

2
Cd2+

(aq) + 1

2
Pb(s) � 1

2
Cd(s) + 1

2
Pb2+

(aq)

The associated Nernst equation is

E = E� + RT

F
ln

a
1
2

Cd2+

a
1
2

Pb2+

(1.6)

where aPb = aCd = 1 and so are omitted from Eq. 1.6. Rewriting Eq. 1.6 we see

E = E� − RT

2F
ln

aPb2+

aCd2+

as required. The appropriate cell is therefore

Pb(s)|Pb2+
(aq,aPb2+)||Cd2+

(aq,aCd2+)|Cd(s)

1.5 Theory of the Nernst Equation

Problem

(i) How is electrical potential defined?
(ii) The chemical potential µi of a species i in a non-ideal solution may be written:

µi = µ0
i + RT ln ai (1.7)
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where R is the gas constant, T is temperature, and ai is the activity of i, which
is related to its concentration ci by the expression ai = γi ci , where γi is the
activity coefficient. Considering additionally the contribution of electrical
potential to the Gibbs energy of i, give an expression for the electrochemical
potential of a solution species.

(iii) Considering the above, and the requirement of equality of chemical potentials
at equilibrium, derive the Nernst equation.

(iv) Why does the ratio of reactant and product activities in the Nernst equation
take the form of an equilibrium coefficient?

(v) The gas constant, R, appears in the Nernst equation. Why is the gas constant
relevant to electrochemistry?

Solution

(i) Electrical potential may be defined as the electrical potential energy of a charge
in an electric field, per unit charge. Electrical potential has units of volts (V),
or equivalently joules per coulomb (J C−1). It is the energy required to bring
a unit test charge from infinity to a particular point in space.

(ii) Since the electrical potential is energy per charge, the energy may be given
as potential, φ, multiplied by charge; if we multiply by charge per mole (ziF)
we recover an electrochemical potential. Additionally, the logarithm may be
expanded, so:

µi = µ0
i + RT ln ci + RT ln γi + ziFφ

(iii) Consider a one electron reaction∑
i

νi ci + e− �
∑

j

νj cj

where νi is the stoichiometric coefficient of i.
Then at equilibrium ∑

i

νiµi + µe =
∑

j

νjµj

Writing the potential at the electrode as φM and that at the adjacent solution
as φs: ∑

i

νiµ
0
i + RT ln

(∏
γ

νi
i

)
+ RT ln

(∏
cνi

i

)

+ Fφs

∑
i

νi zi + µ0
e − FφM

=
∑

j

νjµ
0
j + RT ln

(∏
γ

νj

j

)
+ RT ln

(∏
c
νj

j

)

+ Fφs

∑
j

νj zj
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and rearranging, noting that
∑

j νj zj − ∑
i νi zi = −1:

F(φM − φs) = �µ0 + RT ln

(∏
γ

νi
i∏

γ
νj

j

)

+ RT ln

(∏
cνi

i∏
c
νj

j

)

and

φM − φs = (φM − φs)
0 + RT

F
ln

(∏
γ

νi
i∏

γ
νj

j

)

+ RT

F
ln

(∏
cνi

i∏
c
νj

j

)

Writing these potential differences as E and recognising that the formal reduc-
tion potential E�

f is that where all concentrations are unity, it follows that

E = E�
f + RT

F
ln

(∏
cνi

i∏
c
νj

j

)
(1.8)

(iv) An equilibrium coefficient naturally arises because the Nernst equation is
a statement of equilibrium, but set up per unit charge for convenience in
measurement. Multiplying through by F , we find:

FE� = RT ln K

where K is an equilibrium coefficient with its normal definition as a reaction
quotient. Recognising that FE� = −�G� for a one-electron reduction, this
is a conventional thermodynamic statement of equilibrium.

(v) The gas constant is a molar quantification of the contribution of entropy to an
equilibrium. The entropy of a mixed solution is maximised by equalising the
concentrations of different components as much as possible. So, unequal con-
centrations provide a driving force for a reaction to take place. This entropic
effect contributes to the reduction potential as a term in the Nernst equation
proportional to R.

1.6 The Debye–Hückel Limiting Law

Problem

In Problem 1.5, the role of activity and activity coefficients in the Nernst equation
was demonstrated. Most electrolytic solutions are non-ideal, such that γi �= 1 for
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an ion. At low concentrations, the Debye–Hückel limiting law applies, which states
that

log10 γi = −A z2
i

√
I

where A is a constant equal to 0.509 mol− 1
2 kg

1
2 for aqueous solution, zi is the

charge number of the ion, and I is the ionic strength, defined

I = 1

2

∑
j

z2
j mj

for all ions j with molality mj (mol kg−1) in the solution.

(i) What approximations are used in the derivation of the Debye–Hückel limiting
law? Why is it inaccurate even at modest electrolyte concentrations?

(ii) With reference to Eq. 1.7, show that ions are stabilised by increasing ionic
strength according to the Debye–Hückel limiting law. How may this be
explained physically?

(iii) Assuming the Debye–Hückel limiting law to hold for all ions, what is the
difference in formal potential for the oxidation of ferrocene to ferrocenium
if the supporting electrolyte (TBA+ClO−

4 ) concentration is elevated from
5 mmol kg−1 to 10 mmol kg−1? You may ignore the influence of ferrocenium
on the ionic strength. Explain the sign of the calculated change.

Solution

(i) The Debye–Hückel limiting law is derived by solving the Poisson–Boltzmann
equation under certain simplifying assumptions. Specifically, ion–ion elec-
trostatic interactions are considered the dominant cause of non-ideality, and
ion–solvent interactions are ignored. The complete dissociation of the elec-
trolyte is also assumed, and the ions are treated as point charges.

Inaccuracies arise at modest electrolyte concentrations because the concen-
trations of ions predicted within an ionic atmosphere are unrealistic if a finite
ionic radius is not considered. The assumption of a finite ionic radius leads
to the extended Debye–Hückel limiting law. This is still inaccurate for con-
centrated ionic solutions because the depletion of solvent molecules due to
solvation shells makes the assumption of zero ion-solvent interaction highly
inaccurate. Only empirical formulas such as the Robinson–Stokes or Pitzer
equations are able to address this issue. Most well-supported electrolyte solu-
tions have behaviours in this latter regime.

(ii) Since Az2
i

√
I is necessarily positive, log10 γi < 0. This implies that ai < ci .

Since the contribution of activity to the electrochemical potential is RT ln ai

according to Eq. 1.7, it is clear that incorporation of non-ideality due to
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ion–ion interactions reduces electrochemical potential. This is equivalent to
lowering energy and so the effect is stabilising.

This may be understood because the attractive force between oppositely
charged ions causes these ions to ‘encounter’ one another in solution on
average more often than the repulsive encounter between ions of like charge.
Consequently, the time-averaged strength of attractive Coulombic forces in
an ionic solution outweighs the strength of repulsive forces, leading to a net
stabilisation of all ions present.

(iii) In Problem 1.5 it was shown that:

E�
f = (φM − φs)

0 + RT

F
ln

(∏
γ

νi
i∏

γ
νj

j

)

where the species i are being reduced to species j. For the case of the fer-
rocene/ferrocenium couple:

E�
f = (φM − φs)

0 + RT

F
ln

(
γFc+

γFc

)

Because ferrocene is uncharged, it is unaffected by non-ideality due to
Coulombic forces, and so we can approximate γFc = 1. Then:

E�
f = (φM − φs)

0 + RT

F
ln γFc+

Substituting in the Debye–Hückel equation and taking care with logarithm
bases:

E�
f = (φM − φs)

0 + RT

F
ln 10 log10 γFc+

= (φM − φs)
0 − RT

F
ln 10 A

√
I

For a change from I1 to I2:

�E�
f = RT

F
ln 10 A (

√
I1 − √

I2)

and substituting in the values given, taking note that ionic strength and molal-
ity are equivalent for a monovalent binary electrolyte such as TBAClO4:

�E�
f = 0.0257 × 2.303 × 0.509 × (

√
0.005 − √

0.01)

= −0.881 mV

Note that this is a very small change.
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The change is negative because an elevation in ionic strength will stabilise the
charged ferrocenium cation, but will not stabilise neutral ferrocene. Therefore,
reduction of ferrocenium to ferrocene is less energetically favourable at higher
ionic strength, so the formal reduction potential becomes more negative.

1.7 Cell Reaction and Equilibrium Constant

Problem

At 298 K, the EMF of the cell shown below is +0.84 V.

Pt(s)|Fe2+
(aq,a=1), Fe3+

(aq,a=1)||Ce4+
(aq,a=1), Ce3+

(aq,a=1)|Pt(s)

(i) Define what is meant by the standard EMF of the cell.
(ii) Write down the cell reaction and the Nernst equation for the cell.

(iii) Calculate the equilibrium constant for the cell reaction at 298 K.

Solution

(i) The ‘standard’ EMF of the cell is that measured when all of the chemical
species in the cell are present at unit activity. Thus in the question aFe3+ =
aFe2+ = aCe4+ = aCe3+ = 1, so that E� = +0.84 V.

(ii) The potential determining equilibria are as follows:
Right-hand electrode

Ce4+
(aq) + e− � Ce3+

(aq)

Left-hand electrode
Fe3+

(aq) + e− � Fe2+
(aq)

and so, subtracting, the reaction is

Ce4+
(aq) + Fe2+

(aq) � Ce3+
(aq) + Fe3+

(aq) (1.9)

The corresponding Nernst equation is

E = E� + RT

F
ln

{
aCe4+ · aFe2+

aCe3+ · aFe3+

}

= 0.84 V + RT

F
ln

{
aCe4+ · aFe2+

aCe3+ · aFe3+

}

(iii) The equilibrium constant Kc for Reaction 1.9 is related to E� via

−�G� = +FE� = +RT ln Kc

∴ ln Kc = FE�

RT
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= 96485 × 0.84

8.314 × 298

Kc = 1.61 × 1014

1.8 Cell Reaction and Equilibrium Constant

Problem

Consider the electrochemical cell

Zn|ZnSO4(aq,aZn2+ )||CuSO4(aq,aCu2+ )|Cu

for which the standard EMF is E� = +1.10 V.

(i) Write down the cell reaction and the Nernst equation for the cell.
(ii) Calculate the standard Gibbs energy and the equilibrium constant for the cell

reaction at 298 K.

Solution

(i) The potential determining equilibria are as follows:
Right-hand electrode

1

2
Cu2+

(aq) + e− � 1

2
Cu(s)

Left-hand electrode
1

2
Zn2+

(aq) + e− � 1

2
Zn(s)

So from subtraction the cell reaction is

1

2
Cu2+

(aq) + 1

2
Zn(s) � 1

2
Cu(s) + 1

2
Zn2+

(aq) (1.10)

and the corresponding Nernst equation is

E = E� + RT

F
ln




a
1
2

Cu2+

a
1
2

Zn2+




= 1.10 V + RT

2F
ln

{
aCu2+

aZn2+

}
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(ii) �G� for Reaction 1.10 is given by

�G� = −FE�

= −96485 × 1.10 V

= −106 kJ mol−1

The equilibrium constant Kc for Reaction 1.10 is given by

ln Kc = −�G�

RT
= +FE�

RT

= 96485 × 1.10

8.314 × 298

Kc = 4.02 × 1018

1.9 Cell Reaction and Solubility Product

Problem

From the following standard electrode potential data, calculate the solubility prod-
uct (Ksp) of AgI at 298 K.

AgI(s) + e− � Ag(s) + I−(aq) E� = −0.152 V

Ag+
(aq) + e− � Ag(s) E� = +0.800 V

Solution

The standard electrode potentials are reported relative to the standard hydrogen
electrode:

Pt(s)|H2(g,p=1atm), H+
(aq,a=1)||I−(aq,a=1)|AgI(s)|Ag(s)

E� = −0.152 V

Pt(s)|H2(g,p=1atm), H+
(aq,a=1)||Ag+

(aq,a=1)|Ag(s)

E� = +0.800 V

The cell reactions associated with these can be readily deduced to be

1

2
H2(g) + AgI(s) � H+

(aq) + I−(aq) + Ag(s)
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for which

�G� = −FE� = −96485 × (−0.152)

= +14.7 kJ mol−1

and

1

2
H2(g) + Ag+

(aq) � H+
(aq) + Ag(s)

�G� = −96485 × 0.800

= −77.2 kJ mol−1

It follows that the reaction

AgI(s) � Ag+
(aq) + I−(aq)

can be written as the difference of the two reactions above, so that for the dissolution
of AgI

�G� = −RT ln Ksp

= +14.7 − (−77.2)

= 91.9 kJ mol−1

Hence
Ksp ≈ 7.8 × 10−17

1.10 Cell Reaction and pKa

Problem

The following electrochemical cell was studied at 298 K

Pt|H2(g,p=1atm)|H+
(a=1)||HA(a=1)|H2(g,p=1atm)|Pt

where HA is an organic acid.
If the acid dissociation constant (Ka) of HA is 0.27, determine the EMF of the

cell.

Solution

The potential determining equilibrium is

H+
(aq) + e− � 1

2
H2(g,p=1 atm)
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for both half-cells. If the activity of H+ arising from the dissociation of HA

HA(aq) � H+
(aq) + A−

(aq)

is aH+ , then the cell reaction is

H+
(aq,aH+ ) � H+

(aq,aH+=1)

where
aH+ · aA−

aHA
= Ka

Taking aH+ = aA− and aHA = 1,

aH+ = √
Ka

The Nernst equation for the cell is:

E = E� + RT

F
ln

{
aH+

right

aH+
left

}

where E� = 0 V because both half-cells are hydrogen electrodes, and aH+
left

= 1.
Hence,

E = RT

2F
ln Ka

= −0.017 V

1.11 Cell Thermodynamics and Temperature

Problem

For the electrochemical cell

Pt|H2(g,p=1atm)|HCl(aq,a=1)|AgCl(s)

the EMF at temperatures near 298 K obeys the following equation:

E�/V = −0.00558 + 2.6967 × 10−3T − 8.2299 × 10−6T 2

+ 5.869 × 10−9T 3

where T is the absolute temperature measured in K. Calculate �G�, �H�
and �S� for the reaction at 298 K.
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Solution

The cell reaction is

AgCl + 1

2
H2(g,p=1) � Ag(s) + H+

(aq,a=1) + Cl−(aq,a=1)

For this reaction

�G� = −FE�

= −F(−0.00558 + (2.6967 × 10−3 × 298)

− (8.229 × 10−6 × 2982) + (5.869 × 10−9 × 2983))

= −F × 0.223

= −21.5 kJ mol−1

Also

�S� = −∂�G�

∂T
= F

∂E�

∂T

= F(2.6967 × 10−3 − (2 × 8.2299 × 10−6 T )

+ (3 × 5.869 × 10−9 T 2))

where the expression for E�(T ) has been explicitly differentiated with respect to
temperature. At T = 298 K

�S� = F(2.6967 × 10−3 − (2 × 8.2299 × 10−6 × 298)

+ (3 × 5.869 × 10−9 × 2982))

= −62.2 J K−1 mol−1

The negative standard entropy change reflects the loss of gaseous hydrogen in the
cell reaction. Finally,

�H� = �G� + T�S�

= −21500 − (298 × 62.2)

= −40 kJ mol−1

1.12 Cell Thermodynamics and Temperature

Problem

The cell
Ag(s)|Ag2SO4(s)|Hg2SO4(aq,sat)|Hg2SO4(s)|Hg(l)|Pt(s)
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has an EMF of 0.140 V at 298 K. Close to 298 K, the EMF varies with temperature
by 1.5 × 10−4 V K−1. Calculate �G�, �S� and �H� for the cell reaction.

Solution

The potential determining equilibria are as follows:
Right-hand electrode

1

2
Hg2SO4(s) + e− � Hg(l) + 1

2
SO2−

4(aq)

Left-hand electrode

1

2
Ag2SO4(s) + e− � Ag(s) + 1

2
SO2−

4(aq)

so that the cell reaction is

1

2
Hg2SO4(s) + Ag(s) � Hg(l) + 1

2
AgSO4(s)

where all the species are present in their standard states. It follows that

�G� = −F × 0.140 V

= −13.5 kJ mol−1

�S� = F
∂E�

∂T

= F × 1.5 × 10−4

= +14.47 J K−1 mol−1

�H� = �G� + T�S�

= −13500 + (298 × 14.47)

= −9.19 kJ mol−1

1.13 Cell Energetics

Problem

Consider the cell shown in Problem 1.12. How much heat is absorbed by the cell
if it discharges isothermally and reversibly? How much heat (q) is absorbed if it
discharges at constant external pressure, doing only reversible pV work (that is, no
electrical work)?

Solution

If the cell operates reversibly and isothermally

qrev = T�S� = 4.31 kJ mol−1
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If the cell operates doing no work but with constant external pressure, then

q = �H�

= −9.19 kJ mol−1

1.14 Cell EMF and pH

Problem

Consider the cell
Pt(s)|H2(g)|HCl(aq)|AgCl(s)|Ag(s)

for which E� = 0.2225 V at 298 K. If the concentration of HCl is such that the
measured cell potential is 0.385 V when the pressure of H2 gas is one atmosphere,
what is the pH of the solution?

Solution

The cell reaction is

1

2
H2(g) + AgCl(s) � H+

(aq) + Cl−(aq) + Ag(s)

and the associated Nernst equation is

E = E� + RT

F
ln

p
1
2
H2

aH+ · aCl−

where E� = 0.2225 V at 298 K. Also, pH2 = 1 and in the solution [H+] = [Cl−].
Since the ions have the same absolute charge we can assume that the activity
coefficients are similar and so approximate aH+ = aCl− . It follows that

0.385 = 0.2225 − 2RT

F
ln aH+

Hence
ln aH+ = −3.164

so that

pH = − log10 aH+

= − ln aH+

ln 10

= 1.37
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1.15 Cell Reaction and Equilibria

Problem

Derive cells that can be used to

(i) obtain the solubility product (Ksp) of Cu(OH)2, and
(ii) obtain the equilibrium constant (Kc) for the reaction

Zn(s) + 4H+
(aq) + PbO2(s) � Pb2+

(aq) + Zn2+
(aq) + 2H2O(l)

Solution

(i) The required reaction is

1

2
Cu(OH)2(s) � 1

2
Cu2+

(aq) + OH−
(aq)

This can be written as the difference of two redox processes:

1

2
Cu(OH)2(s) + e− � Cu(s) + OH−

(aq)

1

2
Cu2+

(aq) + e− � 1

2
Cu(s)

The required cell is

Cu(s)|Cu2+||OH−
(aq)|Cu(OH)2(s)|Cu(s)

and if the EMF is measured under standard conditions

aCu2+ = aOH− = 1

then
�G� = −FE� = −RT ln Ksp

so that

Ksp = exp

(
FE�

RT

)

(ii) The net reaction can be written as the difference of the redox reactions

1

2
PbO2(s) + 2H+

(aq) + e− � 1

2
Pb2+

(aq) + H2O(l)

1

2
Zn2+

(aq) + e− � 1

2
Zn(s)

so that the required cell is

Zn(s)|Zn(NO3)2(aq)||HNO3(aq), Pb(NO3)2(aq)|PbO2(s)|Pb(s)
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for which the cell reaction is

1

2
PbO2(s) + 2H+

(aq) + 1

2
Zn(s) � 1

2
Pb2+

(aq) + 1

2
Zn2+

(aq) + H2O(l)

so that if standard conditions (unit activity for Zn2+ and Pb2+) are used in
the cell, the measured EMF is

E� = RT

F
ln K ′

c

where K ′
c is the equilibrium constant for the cell reaction as written above.

Note that the stoichiometry for this reaction as given in the problem differs by
a factor of 2 so

Kc = (K ′
c)2 = exp

(
2FE�

RT

)

1.16 Cell Reaction and Kw

Problem

For the reduction of ClO−
4 to ClO−

3 the standard electrode potential under alkaline
conditions is +0.37 V, while under acidic conditions it is +1.20 V. Write a balanced
half-cell reaction for each reduction and deduce the value for the ionic product of
water, Kw.

Solution

Under alkaline conditions

1

2
ClO−

4 + 1

2
H2O + e− � 1

2
ClO−

3 + OH−

whereas in acid

1

2
ClO−

4 + H+ + e− � 1

2
ClO−

3 + 1

2
H2O

It follows that the reaction

H2O � H+ + OH−

can be found by subtracting the latter reaction from the former, and that for the
dissociation of water, as above:

�G� = −F(0.37 − 1.20) = 80 kJ mol−1

= −RT ln Kw
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so

Kw = aH+ · aOH−

= exp

( −80000

8.314 × 298

)

� 10−14

1.17 Cell Reaction and Disproportionation

Problem

Calculate the equilibrium constant for the disproportionation (Kdisp) of MnOOH
to Mn2+ and MnO2 at pH 3, given:

1

2
MnO2(s) + 2H+

(aq) + e− � 1

2
Mn2+

(aq) + H2O(l) E�
1 = 1.23 V (1.11)

MnOOH(s) + 3H+
(aq) + e− � Mn2+

(aq) + 2H2O(l) E�
2 = 1.5 V (1.12)

Solution

First, we write a balanced equation for the required equilibrium:

MnOOH(s) + H+
(aq)

Kdisp
� 1

2
Mn2+

(aq) + 1

2
MnO2(s) + H2O(l)

This equation is the difference of Eqs. 1.11 and 1.12. So:

�G�
disp = (�G�

2 − �G�
1 )

= 2F(E�
1,pH=3 − E�

2,pH=3)

We know from the Nernst equation (see also Problem 1.26) that:

∂E

∂ pH
= −mRT

F
ln 10

where m is the number of protons transferred. Hence

E1,pH=3 = 1.23 − 2RT

F
ln 10 × 3

= 0.875 V

and similarly

E2,pH=3 = 1.5 − 3RT

F
ln 10 × 3

= 0.968 V
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Hence

�G�
disp = F(0.875 − 0.968)

= −8.98 kJ mol−1

From thermodynamics we know that

�G� = −RT ln K

so

Kdisp = [Mn2+][MnO2][H2O]2

[MnOOH]2[H+]2
= 36.8

1.18 Fuel Cell Energetics

Problem

In a fuel cell, hydrazine, N2H4, is oxidised to nitrogen, and oxygen is reduced to
water. The standard electrode potentials for the reduction of N2 to N2H4 and of
O2 to H2O at 298 K are −1.155 V and +0.401 V, respectively, both under alkaline
conditions.

(i) Write a balanced equation for both of the half cell reactions under alkaline
conditions. For the cell reaction where the hydrazine electrode is on the left,
calculate the standard EMF of the cell at 298 K.

(ii) In a practical cell the concentrations of N2H4 and OH− are 0.5 M and 1.0 M,
respectively, and the pressures of O2 and N2 are 0.2 bar and 0.8 bar, respectively.
Use the Nernst equation to estimate the cell EMF at 298 K, assuming all activity
coefficients are unity.

Solution

(i) The half-cell reactions are

1

4
N2(g) + H2O(l) + e− � 1

4
N2H4(aq) + OH−

(aq)

and
1

4
O2(g) + 1

2
H2O(l) + e− � OH−

(aq)

The cell reaction is therefore

1

4
N2H4(aq) + 1

4
O2(g) � 1

2
H2O(l) + 1

4
N2(g)
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The Nernst equation for the cell is

E = E� + RT

F
ln


 [N2H4] 1

4 · p
1
4
O2

aH2O ·p
1
4
N2




where

E� = 0.401 − (−1.155)

= +1.556 V

(ii) For the concentrations and pressures specified

E = 1.556 + RT

4F
ln

{
0.5 × 0.2

0.8

}
= 1.543 V

1.19 Fuel Cell Energetics

Problem

The overall cell reaction occurring in a ‘direct methanol’ fuel cell is

1

6
CH3OH + 1

4
O2 → 1

3
H2O + 1

6
CO2

�G� = −117 kJ mol−1

�H� = −121 kJ mol−1

(i) Write an equation describing how the cell potential varies with temperature.
What is the cell potential for this reaction at 100◦C?

(ii) What drawbacks arise from operating a fuel cell at low temperatures?

Solution

(i) The two half-cell reactions are

1

4
O2 + e− + H+ � 1

2
H2O

1

6
CO2 + e− + H+ � 1

6
CH3OH + 1

6
H2O

For this question we must assume that �S� and �H� are independent of
temperature. From thermodynamics we know

�G� = −FE� (1.13)
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∂�G�

∂T

∣∣∣∣
p

= −�S� (1.14)

Substituting Eq. 1.13 into Eq. 1.14 we get

∂E�

∂T

∣∣∣∣
p

= �S�

F

Integration gives

E(T ) = E� + �S�

F
(T − T �) (1.15)

where T � = 25◦C.
At standard conditions the cell potential is

E� = �G�

−F

E� = −117000

−96485
= 1.21 V

and

�S� = �H� − �G�

T

= −4000

298
= −13.4 J K−1 mol−1

Hence through the use of Eq. 1.15 we get, at 100◦C.

E�
100 = 1.20 V

(ii) Both methanol oxidation and oxygen reduction exhibit slow kinetics. Con-
sequently, operation of the cell at low temperatures leads to lower current
densities. Overcoming this requires either using large amounts of platinum or
the development of more active catalysts.

1.20 The Influence of Temperature on the Self-Ionisation of
Water

Problem

(i) What pH would you expect a solution containing 0.1 M HCl to be? In your
answer define pH and explain what an activity coefficient is.

(ii) The pKa of water is 15.66 at 298 K and the standard entropy of ionisation
(�S�) is ≈ −80 J K−1 mol−1. How would you expect the pH of pure water to
vary with temperature?
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Solution

(i)

pH = − log aH+

aH+ = γ±[H+]
The activity coefficient (γ±) may be viewed as a measure of how far the solution
deviates from ideality. This value is often approximated as being unity (i.e.
the solution is assumed to be ideal). In 0.1 M HCl, the activity coefficient of
a hydronium ion is actually 0.76 [H.S. Harned, J. Am. Chem. Soc. 38 (1916)
1986]; consequently, a solution of 0.1 M HCl will have a pH of 1.1, rather than
exactly 1.

(ii)

H2O � OH− + H+

Keq = [OH−][H+]
[H2O]

The van’t Hoff equation as given below describes how the equilibrium constant
varies with temperature.

∂ ln Keq

∂T
= �H�

RT 2

The pKa of water is 15.66

�G� = −RT ln Keq

and so �G� is positive. Hence from the equation below and given the mag-
nitude of �S�, �H� is positive.

�G� = �H� − T�S�

Consequently, it can be seen that increasing the temperature will increase the
value of Keq. An increase in Keq leads to an increase in the proton concen-
tration, and hence as we increase the temperature of pure water, its pH will
decrease.

1.21 Cell Reaction and Complexation

Problem

Calculate the standard electrode potential for the aqueous couple

[Fe(ox)3]3−
(aq)/[Fe(ox)3]4−

(aq)
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from the following data (298 K), where ox2− refers to the oxalate anion, C2O2−
4 :

Fe3+
(aq) + e− � Fe2+

(aq) E� = +0.770 V

Fe2+
(aq) + 3ox2− � [Fe(ox)3]4−

(aq) K = 1.7 × 105

Fe3+
(aq) + 3ox2− � [Fe(ox)3]3−

(aq) K = 2.0 × 1020

Solution

The standard electrode potential required can be found from �G� for the reaction

[Fe(ox)3]3−
(aq) + 1

2
H2(g) � [Fe(ox)3]4−

(aq) + H+
(aq)

From the data given

Fe3+
(aq) + 1

2
H2(g) � Fe2+

(aq) + H+
(aq)

�G�
1 = −0.770F

= −74.3 kJ mol−1

Fe2+
(aq) + 3ox2− � [Fe(ox)3]4−

(aq)

�G�
2 = −RT ln K

= −29.8 kJ mol−1

Fe3+
(aq) + 3ox2− � [Fe(ox)3]3−

(aq)

�G�
3 = −RT ln K

= −115.8 kJ mol−1

Then

�G� = �G�
1 + �G�

2 − �G�
3

= −74.3 − 29.8 − ( − 115.8) kJ mol−1

= +11.7 kJ mol−1

Hence the sought standard potential is

E� = −�G�

F

= −11700

96485

= −0.121 V
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1.22 Reference Electrodes

Problem

(i) The calomel and silver/silver chloride electrodes are commonly used in aque-
ous solution voltammetry. Identify the potential determining equilibria and
the associated Nernst equation for each electrode. Comment on any implica-
tions of the latter.

(ii) Suggest a reference electrode suitable for voltammetry in non-aqueous solu-
tions. Can the calomel and Ag/AgCl redox couples be used in these media?

Solution

(i) For the calomel electrode

1

2
Hg2Cl2(s) + e− � Hg(l) + Cl−(aq)

and

EHg|Cl−|Hg2Cl2 = E� − RT

F
ln aCl−

Similarly for the Ag/AgCl electrode

AgCl(s) + e− � Ag(s) + Cl−(aq)

and

EAg|Cl−|AgCl = E� − RT

F
ln aCl−

In both cases the reference electrode potential depends on the activity (con-
centration) of chloride ions present. It follows that a fixed (and known) con-
centration of the latter must be present in the reference electrode. Often solid
KCl is added to the solution present in the reference electrode so as to ensure
a saturated solution of KCl (see Fig. 1.1). Note however that the potential of
such a saturated calomel (or Ag/AgCl) electrode will differ from a standard
electrode, where aCl− = 1.

(ii) A suitable reference electrode in non-aqueous solution, which is commonly
employed in acetonitrile, is

Ag+
(CH3CN) + e− � Ag(s)

for which

EAg/Ag+ = E� + RT

F
ln aAg+

Again the concentration of Ag+ in the reference electrode must be known and
fixed. Typically, 0.01 M AgNO3 is used.
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Fig. 1.1 A saturated calomel reference electrode (SCE). Reproduced from R.G. Compton
et al., Understanding Voltammetry, 2nd ed., with permission from Imperial College Press.

Note that the Ag/AgCl reference couple is unsuitable in most non-aqueous,
aprotic solvents since AgCl has a high solubility in these media, partly as a
result of complex formation such as

AgCl + Cl− � AgCl−2

Similarly the calomel reference couple is not used in organic solvents since
Hg2Cl2 tends to disproportionate (forming Hg and Hg(II)) in these solvents.

1.23 Formal Potentials

Problem

The standard electrode potential of Ce(H2O)4+
6 /Ce(H2O)3+

6 couple is +1.72 V. The
following formal potentials for the Ce(IV)/Ce(III) couple have been measured in
different media: +1.28 V (1 M HCl), +1.44 V (1 M H2SO4), +1.60 V (1 M HNO3),
+1.70 V (1 M HClO4). Comment.

Solution

The standard potential quoted relates to the potential determining equilibrium

Ce(H2O)4+
6(aq) + e− � Ce(H2O)3+

6(aq)

The implication of the term ‘standard’ is that the value relates to the condition of
unit proton activity. Although protons do not feature in the above equilibrium, the
Ce(IV) and Ce(III) species are prone to hydrolytic equilibria such as

M(H2O)n+
6(aq) � M(H2O)5(OH)(n−1)+

(aq) + H+
(aq)
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as well as polymerisation and coordination with other anions present in solution.
It is thought that the Ce(H2O)4+

6 ion only exists as such in concentrated perchloric
acid solution. Note that the formal potential in this medium is close to the standard
electrode potential. In solutions of other acids there is coordination of anions. This
accounts for the dependence of the formal potential on the composition of the acid
solution. It is noteworthy that since the standard potential of the reaction

1

4
O2(g) + H+

(aq) + e− � 1

2
H2O(l)

is E� = +1.23 V, solutions of Ce(IV) are capable of (slowly) oxidising water; such
solutions are unstable and, although used widely in ‘wet’ analysis, need regular
replacement.

1.24 Formal Potentials

Problem

The standard electrode potential of the Fe(H2O)3+
6 /Fe(H2O)2+

6 couple is +0.77 V.
The following formal potentials for the Fe(III)/Fe(II) couple have been measured
in different media: +0.46 V (2 M H3PO4), +0.68 V (1 M H2SO4), +0.71 V (0.5 M
HCl), +0.73 V (1 M HClO4), +0.01 V (1 M K2C2O4, pH 5). Comment.

Solution

Fe3+ in solution tends to hydrolyse, polymerise and to form complexes:

Fe(H2O)3+
6 � [Fe(H2O)5OH−]2+ + H+

K � 9 × 10−4

[Fe(H2O)5OH−]2+ � [Fe(H2O)4(OH−)2]+ + H+

K � 5 × 10−4

2Fe(H2O)2+
6 � [Fe(H2O)4(OH−)2Fe(H2O)4]2+ + 2H+

K � 10−3

In HClO4, HCl and H2SO4 media the pH is sufficiently low to prevent most (but
not all) of these reactions and so the formal potential is not too far removed from
the standard electrode potential.

At higher pH (1M K2C2O4, pH 5) hydrolysis and polymerisation will occur and
this is reflected in the huge discrepancy between the standard and formal potentials.
In addition, both Fe2+ and Fe3+ can form couples with the oxalate anion (see
Problem 1.17) and these effects also contribute to the large observed difference.
In H3PO4 there is likely complexation of both Fe2+ and Fe3+ with the anions.
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1.25 Standard Potentials and pH

Problem

The ‘quinhydrone electrode’ is sometimes used to measure pH. Quinhydrone is an
easily prepared, slightly soluble, equimolar (one-to-one) mixture of benzoquinone,
C6H4O2, and hydroquinone, C6H4(OH)2. The reduction of the quinone shows
fast (‘reversible’) electrode kinetics.

1

2
C6H4O2 + H+ + e− � 1

2
C6H4(OH)2

E� = 0.700 V

In practice the potential is reported with respect to a saturated calomel electrode
(SCE).

(i) Show that the potential of the quinhydrone electrode gives the pH directly.
(ii) Suppose that a cell potential of +0.160 V is measured (vs SCE) for an unknown

solution. What is the pH of the solution given that the E� for the SCE is
+0.240 V?

(iii) The quinhydrone electrode is not usable above pH 9. Speculate why.

Solution

(i) The potential of the quinhydrone half-cell reaction measured against a stan-
dard hydrogen electrode is

E = 0.700 + RT

F
ln




a
1
2
C6H4O2

· aH+

a
1
2
C6H4(OH)2




For an equimolar mixture of benzoquinone and hydroquinone and assuming
that their activity coefficients are similar

aC6H4O2

aC6H4(OH)2

≈ 1

so

E = 0.700 + RT

F
ln aH+

But

pH = − log10 aH+

= − ln aH+

ln 10
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so that

E = 0.700 − 2.303RT

F
· pH

Measurement of E thus provides a direct measure of pH, scaled by the factor
(2.303RT/F) ≈ 59 mV.

(ii) If the standard hydrogen electrode is replaced by a SCE,

E = 0.460 − 2.303RT

F
· pH

If the measured EMF is

E = +0.160 V

then

0.300 = 2.303RT

F
· pH

so that

pH = 5.1

(iii) The first acid dissociation constant of hydroquinone:

C6H4(OH)2 � C6H4(OH)(O−) + H+

has a value of Ka1 = 1.2×10−10 (pKa1 = 9.9). Thus for pH > 9 the response of
the quinhydrone electrode is less than expected on the basis that the molecule
is fully protonated and in the C6H4(OH)2 form. The second dissociation
constant is pKa2 � 17 so that above pH 11 the following equilibrium will hold

1

2
C6H4O2 + 1

2
H+ + e− � 1

2
C6H4(OH)(O−)

and

E = E� − 2.303RT

2F
· pH

where

E� = 0.700 +
{
−2.303RT

2F
pKa1

}

1.26 Standard Potentials and pH

Problem

Anthraquinone monosulphonate, A, is a reversible 2e−, 2H+ redox system. Use
the Nernst equation to describe how the equilibrium potential will shift with pH
in aqueous media below pH 7. This is below the pKas associated with the reduced
form, such that the reaction always involves the transfer of two protons and two
electrons.
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Solution

The reaction is
A + 2e− + 2H+ � AH2

where AH2 is the di-reduced di-protonated form of the anthraquinone species.
Hence

E = E�
f − RT

2F
ln

[AH2]
[A][H+]2

pH = − log aH+ � − log[H+]
E = E�

f + 2RT

2F
ln[H+] − RT

2F
ln

[AH2]
[A]

Then

E = E�
ref − RT

2F
ln

[AH2]
[A]

where

E�
ref = E�

f − RT

F
ln 10 · pH

Therefore

∂E

∂ pH
= −RT

F
ln 10

= −0.059 V at 298 K

1.27 Standard Potentials and pH

Problem

The electroreduction of anthraquinone monosulphonate, A, is a reversible 2H+,
2e− process below pH 7.

(i) Derive a general expression to describe how the equilibrium potential for this
process will vary across the full pH range (0–14). Note that this must recognise
the two pKa values associated with the fully reduced form.

(ii) The equilibrium potential for this species has been measured as a function of
pH (between pH 4 and 13), as given in the table below. Using your answer for
(i) determine the pKa values associated with the reduced species (this is best
achieved through the use of numerical fitting software).

pH 4 5.01 6.06 6.99 7.95

Eeq /V −0.304 −0.363 −0.417 −0.465 −0.521

pH 9.01 9.99 11 11.91 12.73

Eeq /V −0.554 −0.586 −0.605 −0.614 −0.611
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Solution

(i) The variation of the (reversible) equilibrium potential with pH is described by
the Nernst equation. The following chemical and electrochemical steps must
be considered:

A + 2e− � A2− E1

AH− � A2− + H+ K1

AH2 � AH− + H+ K2

where AH2 is the dihydroanthraquinone. Note that the acid–base equilibria
have been written as deprotonations such that

K1 = [A2−][H+]
[AH−] (1.16)

K2 = [AH−][H+]
[AH2] (1.17)

In order to proceed, [A2−] needs to be expressed in terms of [AH2]tot, where

[AH2]tot = [A2−] + [AH−] + [AH2] (1.18)

Rearranging Eq. 1.18 and substituting in Eq. 1.17 gives

[A2−] = [AH2]tot − [AH−]
(

1 + [H+]
K2

)
followed by substituting in Eq. 1.16 gives

[A2−] = [AH2]tot − [A2−]
(

K2[H+] + [H+]2

K1K2

)
Rearrangement leads to

[A2−] = [AH2]totK1K2

K1K2 + K2[H+] + [H+]2
(1.19)

The Nernst equation for the redox process is

E = E1 − RT

2F
ln

[A2−]
[A]

Substitution of Eq. 1.19 into the Nernst equation leads to the following equa-
tion which describes the equilibrium potential of the redox couple across the
full pH range:

E = E1 − RT

2F
ln

[AH2]tot

[A] K1K2

+ RT

2F
ln (K1K2 + K2[H+] + [H+]2) (1.20)
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Fig. 1.2 The variation of the equilibrium potential for the AQMS system as a function of
pH. The line is the theoretical result given by Eq. 1.20. Adapted from C. Batchelor-McAuley
et al., J. Phys. Chem. B 114 (2010) 4094, with permission from the American Chemical
Society.

(ii) In order to fit Eq. 1.20 to the experimental data given, it is necessary to assume
that the activity coefficient for H+ is unity so that

pH ≈ − log[H+]
Figure 1.2 shows the best fit of Eq. 1.20 to the experimental data given, where
the values of K1 and K2 are found to be 1.2×10−11 and 2.0×10−8, respectively.
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2

Electrode Kinetics

2.1 Faraday’s Laws of Electrolysis

Problem

The British physicist Michael Faraday was one of the principal early investigators
of electrochemistry. His conclusions may be summarised in what are now known
as Faraday’s laws of electrolysis, which describe bulk electrochemical reactions:

1. The quantity of charge transferred at an electrode is directly proportional to the
mass of material reacted at that electrode.

2. The constant of proportionality between charge quantity and reaction mass is
itself proportional to the molar mass of the reactant so that, with the convention
of reductive charge being negative:

m = −Q

nF
Mr

where m is the reaction mass in kg; Q is the charge passed in C; n is an integer
constant; F is described as the Faraday constant and has units C mol−1; and Mr is
the molar mass of the reactant in kg mol−1.

(i) Consider the process of bulk electrolysis in terms of the concepts of conserva-
tion of mass and conservation of charge. Explain the origin of Faraday’s laws
and define the constants n and F .

(ii) How might the Faraday constant be measured experimentally?

35
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Solution

(i) Any electrochemical reaction may be written in terms an arbitrary reactant
species A gaining n electrons to form an arbitrary product B. n is necessarily
an integer as each molecule can only exchange discrete numbers of electrons:

A + ne− � B

This is a balanced equation and defines n as the number of electrons gained
per molecule of A; if n is negative, −n is equally the number of electrons lost.

Therefore, if one mole of A reacts, then n moles of electrons are consumed.
The charge that is passed is then −nF , charge being negative for a reduction,
when F is defined as the charge on one mole of electrons. F is the Faraday
constant; it is equal to the Avogadro constant (6.022 × 1023 mol−1) multiplied
by the charge on a single electron (1.602 × 10−19 C), and has the value ≈
96 485 C mol−1. It is evident that −Q/nF is the number of moles of A reacted,
and so the mass reacted is related to this quantity by the molar mass of A.

(ii) The Faraday constant is calculated by measuring the charge passed when a
known number of moles is reacted to completion. This is typically performed
by electrodepositing silver onto an electrode under conditions of controlled
current:

Ag+
(aq) + e− � Ag(s)

Here, n = 1. If the current passed, I , is constant, then Q = It , with t the time
in seconds of deposition. Since the electrodeposited silver can be weighed, and
the atomic weight of silver is known (≈108 g mol−1), F is easily inferred from
Faraday’s laws of electrolysis.

2.2 Electrodeposition

Problem

A British penny is manufactured by electroplating of copper onto mild steel.
Figure 2.1 shows data for the deposition of Cu on a steel surface. The current, I ,
passed at the electrode is measured amperometrically and plotted against experi-
ment time.

(i) How can the quantity of material deposited be calculated from such a plot?
(ii) A steel coin with diameter (2r) 2 cm and thickness (h) 1.5 mm is electroplated

with copper using a solution of Cu2+. A reductive charge of 29.4 C is passed.
What thickness, d , of Cu has been deposited, given that the density of Cu is
8930 kg m−3 and its molar mass is 63.5 g mol−1?
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Fig. 2.1 Electroplating of Cu onto a steel surface, measured amperometrically.

(iii) The underpotential deposition of silver from Ag+ onto a thymine-modified
gold Au(111) surface was reported in the recent literature [A. Vollmer
et al., J. Electroanal. Chem. 605 (2007) 15]. The first deposition peak was
integrated and it was determined that electrodeposition took place with
Q ≈ 200 µC cm−2. Given that the atomic radius of Ag is ≈144 pm, is this
consistent with deposition of a single monolayer?

Solution

(i) Charge and current are still related even where current is observed rather than
controlled and so is not a constant. Current is defined:

I = ∂Q

∂t

and so

Q(t ) − Q(0) =
∫ t

0
I (t ) dt

In an experimental situation, this integration can be performed numerically
using a data analysis program. The quantity (in moles) of material deposited
can then be deduced directly from the charge passed, provided n is known.

(ii) From the charge passed, we can calculate the mass of Cu deposited:

m = −Q

nF
Mr = 29.4

2 × 96485
× 63.5

1000
= 9.67 × 10−6 kg
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From the density we can determine the volume of Cu:

V = m

ρ
= 9.67 × 10−6

8930
= 1.08 × 10−9 m3

so that dividing by the surface area, A = 2πr2 + 2πrh, for a cylinder:

rCu = V

A
= 1.08 × 10−9

2π × 0.01 × (0.01 + 0.0015)
= 1.5 × 10−6 m

Hence the thickness of the electroplating is 1.5 µm.
(iii) Assuming that an Ag monolayer is close-packed and that the atoms are spher-

ical and in contact, the centre of each atom is separated by 288 pm and the
unit cell of one Ag atom is a rhombus with side 288 pm (Fig. 2.2).

Hence the area of one unit cell is (2882 × (
√

3/2)) pm2, and so the area per
molecule can be inferred:

� = 2√
3

× 1

(288 × 10−12)2

= 1.392 × 1019 moleculesm−2

Dividing by the Avogadro constant

� = 2.31 × 10−5 mol m−2

Since the reduction of Ag+ to Ag is a one-electron process, the charge passed
per unit area is found by multiplying by the Faraday constant, so that

Q = 2.31F × 10−5 = 2.23 C m−2 = 223 µC cm−2

Hence the observed Q = 200 µC cm−2 is consistent with deposition of an
ideal monolayer to within 11%, which is good agreement considering the
crude geometric model and experimental error. It is therefore reasonable to
assume that a single monolayer is deposited in this peak.

Fig. 2.2 Close-packed monolayer of Ag (ideal geometry).
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2.3 Tafel Analysis: One-Electron Processes

Problem

For a fully electrochemically irreversible one-electron system, show how analysis of
the voltammetry may yield information about the transition state for the process.

Solution

For the process
A + e− � B

the Butler–Volmer equation (as given below, Eq. 2.1) describes parametrically how
the current associated with a redox process depends upon the electrode potential
when the electron transfer is rate-limiting.

I = −FAk0
(

exp

[−αF

RT
(E − E�

f )

]
[A]0 − exp

[
(1 − α)F

RT
(E − E�

f )

]
[B]0

)
(2.1)

where F is the Faraday constant, A is the area of the electrode, k0 is the standard
electrochemical rate constant and [i]0 designates the concentration of species i at
the electrode.

When E � E�
f or E � E�

f , the Butler–Volmer equation reduces to the one-
term Tafel equation as the first or second exponential term, respectively, may be
approximated as zero. Consequently, a plot of ln |I | vs E − E�

f for the region
highlighted in Fig. 2.3 (often called the Tafel region) should yield a straight line
of gradient αF/RT , so allowing measurement of the transfer coefficient (α). α (as
shown in Eq. 2.1) is known as a transfer coefficient and is a measure of the position
of the transition state between the oxidised and reduced species. Typically it has a
value of around 0.5.

Note that the data nearer the voltammetric peak reflect both electrode kinetics
and diffusional depletion, thus explaining the choice of data used to find α.

2.4 Tafel Analysis: Electrochemically Reversible Processes

Problem

For a fully reversible one-electron reduction, what gradient will be obtained for a
plot of ln |I | vs E? Assume that the redox species is confined to a thin layer such
that

[A]0 + [B]0 = [A]bulk (2.2)

and that the diffusive flux may be treated as proportional to the concentration
difference ([A]0−[A]bulk).
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Fig. 2.3 The cyclic voltammetric response for an irreversible one-electron reduction process,
with the region required for Tafel analysis highlighted. The inset shows the Tafel plot for the
forward scan highlighted is the required linear region. The voltage scan starts at 0.0 V and
sweeps negatively to −0.5 V before returning to 0.0 V (small arrows indicate scan direction).

Solution

If the reduction is reversible, the concentrations of species A and B are determined
by the Nernst equation:

[A]0

[B]0
= exp (θ) (2.3)

where

θ = F

RT

[
E − E�

f ,A/B

]
Substitution of Eq. 2.2 into Eq. 2.3, followed by rearrangement gives

[A]0 = 1

1 + exp ( − θ)
[A]bulk

The current is given by

I = FAJ

∝ ([A]0 − [A]bulk)

= [A]bulk
−1

1 + exp (θ)
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where A is the electrode area and J is the diffusive flux. In the Tafel region (low
overpotential, large θ for a reduction)

I ∝ −1

1 + exp (θ)

≈ − exp ( − θ)

so
∂ ln |I |

∂θ
→ −1

and hence in the Tafel region

∂ ln |I |
∂E

= −F

RT

The gradient of the plot is then −F/RT and the apparent α is unity, for a reversible
process.

2.5 Tafel Analysis: Mass Transport Correction

Problem

Using the Nernst diffusion layer model, derive an equation which describes how
the flux (JA) varies with overpotential for a one-electron reduction,

A + e− � B

Assuming that the electron transfer is fully electrochemically reversible and that
the diffusion layer thickness is constant at all potentials, what would the gradient
be for a plot of ln[ Ilim

I − 1] vs E?

Solution

The flux of A across the Nernst layer may be described by

JA = D
[A]0 − [A]bulk

δ
(2.4)

where [A]0 is the concentration of species A at the electrode surface, [A]bulk is the
bulk concentration of A in solution, δ is the diffusion layer thickness and D is the
diffusion coefficient of species A.

We will assume the diffusion coefficients for species A and B to be equal. The
law of conservation of mass then requires that

[A]0 + [B]0 = [A]bulk
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where [B]0 is the concentration of B at the electrode surface. If, as may be experi-
mentally expected, the concentration of B in the bulk solution is zero, then we may
write

JA = −JB = −D
[B]0

δ
(2.5)

From the Butler–Volmer equation we know,

JA = −k0(exp[−αθ][A]0 − exp[(1 − α)θ][B]0) (2.6)

Substitution of Eqs. 2.4 and 2.5 into Eq. 2.6 gives

JA = −k0 exp[−αθ][A]bulk

1 + δk0
D exp[−αθ] + δk0

D exp[(1 − α)θ] (2.7)

Equation 2.7 may be simplified for a the case of a reversible electron transfer where
koδ/D � 1 so that,

JA = − D[A]bulk

δ(1 + exp[θ]) (2.8)

It should also be noted that at high reductive overpotential, exp[(1 − α)θ] → 0.
This reduces Eq. 2.7 to that given below, and thus provides an expression for the
limiting current

JA,lim = −D
[A]bulk

δ
(2.9)

Substituting Eq. 2.9 into Eq. 2.8 gives,

JA = JA,lim

(1 + exp[θ])
We know that I = FAJA for a reduction, and hence a plot of ln[ Ilim

I − 1] vs E would
yield a straight line of gradient F/RT .

2.6 Tafel Analysis: Two-Electron Processes

Problem

The mechanism for a two-electron process is shown below:

A + e− � B Ef ,A/B

B + e− � C Ef ,B/C

In cases where the voltammetry of a two-electron process exhibits a single reductive
wave (Ef ,A/B ≤ Ef ,B/C), what gradient would be obtained from a Tafel plot (ln |i|
vs E) in each of the following cases?
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(i) The first electron transfer (Ef ,A/B) is the rate-determining step.
(ii) The second electron transfer (Ef ,B/C) is the rate-determining step, following

a pre-equilibrium.
(iii) Both electron transfers are fully reversible.
Comment on your answers, highlighting why these are useful results for the mech-
anistic analysis of electrochemical systems.

Solution

If the transfer coefficients (α1, β1) and (α2, β2) refer to the one-electron transfers
from ‘A to B’ and ‘B to C’, respectively, the fluxes of all three species can be written
as

JA = −k0
A/B exp

[−α1F

RT

(
E − E�

f ,A/B

)]
[A]0

+ k0
A/B exp

[
β1F

RT

(
E − E�

f ,A/B

)]
[B]0

JB = +k0
A/B exp

[−α1F

RT

(
E − E�

f ,A/B

)]
[A]0

− k0
A/B exp

[
β1F

RT

(
E − E�

f ,A/B

)]
[B]0

− k0
B/C exp

[−α2F

RT

(
E − E�

f ,B/C

)]
[B]0

+ k0
B/C exp

[
β2F

RT

(
E − E�

f ,B/C

)]
[C]0

JC = +k0
B/C exp

[−α2F

RT

(
E − E�

f ,B/C

)]
[B]0

− k0
B/C exp

[
β2F

RT

(
E − E�

f ,B/C

)]
[C]0

So that the overall current for the process is

I = −FA(JB + 2JC)

From conservation of mass

JA + JB + JC = 0

hence,

I = −FA(JC + (JB + JC))

I = −FA(JC − JA)
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(i) When the first step is rate-determining, all B produced will be immediately
consumed; hence [B]0 = 0. Further, the rate of production of C will be
opposite and equal to the rate of loss of A (JA = −JC):

I = −FA (−2JA)

= −2FA k0
A/B exp

[−α1F

RT

(
E − E�

f ,A/B

)]
[A]0

Tafel analysis yields the following result,

ln |I | = −α1FE

RT
+ constant

(ii) For the case where the second step is rate-determining and irreversible, by
assuming a pre-equilibrium, A � B, we can say that the flux of A is negligible
(jA ≈ 0) so that:

I = −FA (JC)

= −FA k0
B/C exp

[−α2F

RT

(
E − E�

f ,B/C

)]
[B]0

From the Nernst equation we know

[B]0

[A]0
= exp

[−F

RT

(
E − E�

f ,A/B

)]

hence,

I = −FA k0
B/C exp

[−α2F

RT

(
E − E�

f ,B/C

)]

× exp

[−F

RT

(
E − E�

f ,A/B

)]
[A]0

So that

ln |I | = − (1 + α2)FE

RT
+ constant

(iii) When both electron transfers are fully reversible we can extend the answer
given in Problem 2.4 to account for more than one electron. From the Nernst
equation we have

[C] = [A] exp

[−2F

RT

(
E − E�

f

)]
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Analogously to Problem 2.4

I ∝ exp

(−2F

RT

(
E − E�

f

))

As such a plot of ln |I | vs E will yield a straight line of gradient −2F/RT , in
the Tafel region.

The above results demonstrate how Tafel analysis provides a readily available
method to assess which electron transfer is rate-limiting. More generally, the gra-
dient of the plot is proportional to n′ + αrds where n′ is the number of electrons
transferred prior to the rate-limiting step and αrds is the transfer coefficient asso-
ciated with the rate-limiting electron transfer. A simple but descriptive example
of such a system is found with the hydrogen evolution reaction, where the rate-
determining step changes with the electrode material used (see Problem 2.8). For
more information on the theory behind Tafel analysis see the work of S. Fletcher
[J. Solid State Electrochem. 13 (2009) 537].

2.7 The Butler–Volmer Equation and the Nernst Equation

Problem

Show how the Butler–Volmer equation (as given below) reduces to the Nernst
equation for a reversible one-electron process:

I = FAk0
(

exp

[−αF

RT

(
E − E�

f

)][A]0 − exp

[
βF

RT

(
E − E�

f

)][B]0

)

where I is the current at a uniformly accessible macroelectrode, F is the Faraday
constant, A is the area of the electrode, k0 is the standard electrochemical rate
constant and [i]0 is the concentration of species i at the electrode surface.

Solution

In the case of a reversible electrochemical process the standard electrochemical
rate constant (k0) is large, such that FAk0 � I , and therefore I/FAk0 	 0. Conse-
quently,

exp

[−αF

RT
(E − E�

f )

]
[A]0 = exp

[
βF

RT
(E − E�

f )

]
[B]0

Note that for a one-electron transfer, α + β = 1. Rearrangement then leads to the
Nernst equation as given below:

[B]0

[A]0
= exp

[−F

RT
(E − E�

f )

]
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2.8 The Hydrogen Evolution Reaction

Problem

A proposed mechanism for the hydrogen evolution reaction (2H+ + 2e− → H2)
is given below,

H+
(aq) + e− � H·

(ads) (2.10)

H·
(ads) + H+

(aq) + e− � H2(ads) (2.11)

or

2H·
(ads) � H2(ads) (2.12)

H2(ads) � H2(g) (2.13)

Using this mechanism, explain why the current density for the reduction of H+
varies widely with the nature of the metal electrode. For example, the rate on a
Pt electrode is nine orders of magnitude higher than on a Hg electrode, and five
orders of magnitude higher than on a Ta electrode. Explain these observations.

Solution

Problem 2.6 demonstrated that for the Tafel analysis of a multi-electron system
we expect to measure a gradient which is proportional to n′ + αRDS, where n′ is
the number of electrons transferred prior to the rate-determining step and αRDS

is the transfer coefficient for the rate-determining step, note that if all electron
transfers are reversible and highly driven then the gradient is proportional to n
(the number of electrons).

(i) Case A (Hg): the first electron transfer is the rate-determining step (Eq. 2.10).
Such systems yield a Tafel plot with a gradient of 	 0.5. Further reaction of
the H·

(ads) species may proceed via either Eqs. 2.11 or 2.12.
(ii) Case B (Pt, Ta): the second electron transfer is the rate-determining step

(Eq. 2.11). Such systems yield a Tafel plot of gradient 	 1.5.
(iii) Case C: here, α is found to be 	 2. This case is specific to palladium and is

found where the rate-determining step is Eq. 2.12.

The rates of electron transfer associated with each metal and the cause of the
change in mechanism may be understood through studying the estimated enthalpy
of adsorption of H· on the metal surfaces.

For metals upon which the adsorption of H· is weak, Eq. 2.10 is the rate-
determining step. As the strength of the binding increases the rate of the first
electron transfer increases and hence the current density increases. As the strength
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Fig. 2.4 Current density for electrolytic hydrogen evolution versus strength of intermedi-
ate metal-hydrogen bond formed during the electrochemical reaction. Reprinted from S.
Trasatti, J. Electroanal. Chem. 39 (1972) 163, with permission from Elsevier.

of the bonding increases further, Eq. 2.11 becomes the rate-determining step and
further increases lead to a decrease in the overall rate of electron transfer. This
information is well summarised in a ‘volcano plot’ as shown in Fig. 2.4.

2.9 Requirement for Supporting Electrolyte

Problem

(i) Discuss the necessity of supporting electrolyte for conventional voltammetry,
with reference to: a) the double layer; b) electric fields in bulk solution; c) the
non-ideality of an electrolytic solution.

(ii) Under what conditions might the addition of excess supporting electrolyte be
inappropriate or impossible?

Solution

(i) Supporting electrolyte is conventionally added to a solution when perform-
ing voltammetry in order to elevate the conductivity of the solution and to
suppress electric fields. This is particularly important at the interface with the
electrode where electron transfer actually takes place.

The charge placed on the electrode to drive a potential difference with
respect to the solution is compensated by a double layer in which there is an
excess of ions of opposite charge, as is discussed in more detail in Chapter 10.
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Fig. 2.5 Different potential distributions at varying supporting electrolyte concentration,
showing the limited driving force at weak support (low electrolyte concentrations).

This double layer is narrower for a more conductive solution, allowing electron
tunnelling to take place from outside the double layer, and thus ensuring
that the full potential difference applied between the working and reference
electrodes is ‘felt’ by a molecule approaching the working electrode. The driven
Faradaic current then reflects the applied potential.

Figure 2.5 demonstrates the difference in driven potential between a well-
supported and weakly supported solution. The consequent difference in the
perceived rate of reaction is given by the Frumkin correction as calculated
from the difference in driving forces (indicated in the figure), as well as
altered concentrations in the double layer. The derivation is discussed in
Problem 2.10.

The screening of bulk electric fields by the addition of supporting elec-
trolyte is useful since it prevents migration due to electrostatic attractions
from influencing the voltammetric current and allows the use of a simpler
‘diffusion-only’ theory based on Fick’s laws (see Chapter 3). What is more,
passing current through a resistive solution generates a potential difference
known as ‘ohmic drop’, since its value can be understood from Ohm’s law:

	φOD = IRs

where 	φOD is ohmic drop, I is the driven current and Rs is the solution
resistance. By lowering the solution resistance with supporting electrolyte, Rs

is minimised and therefore the ohmic drop remains small. Where ohmic drop
is large, further overpotential is required to drive a given current, thereby
distorting voltammetric features (see Chapter 10).
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Lastly, the uniformity of ionic strength provided to a solution by the presence
of ample supporting electrolyte limits effects due to the non-ideality of the
solution. According to the Debye–Hückel theory, the presence of electrostatic
interactions between ions causes solution non-ideality because these forces
are on average stabilising. Therefore, activity, the quantity appearing in the
Nernst equation, differs from concentration by a factor known as the activity
coefficient, γi , in a manner which for a dilute (<0.01 M) solution is given by a
simplified formula:

log γi ≈ −Az2
i

√
I

where A is a characteristic coefficient, zi is the ionic charge number and I is
here the ionic strength.

The addition of supporting electrolyte generally elevates concentrations to
regimes where the Debye–Hückel formula does not apply, but it also ensures
that non-ideality is uniform across the solution and therefore gradients of
non-ideality do not contribute to mass transport. Note that because a well-
supported solution is non-ideal, the exact value of the formal potential, E�

f , of
a redox couple is sensitive to the concentration of supporting electrolyte.

(ii) The addition of supporting electrolyte is problematic for the voltamme-
try of biological molecules, since such molecules are typically sensitive in
their conformation and reactivity to salt concentration. Additionally, in cer-
tain less polar solvents it may be impossible to dissolve adequate supporting
electrolyte to avoid Frumkin corrections (see Problem 2.10) and fully sup-
press ohmic drop. Lastly, as is discussed in Chapter 10, the addition of sup-
porting electrolyte sometimes masks interesting voltammetric features that
may provide mechanistic insights beyond those available from diffusion-only
voltammetry.

2.10 Frumkin Corrections

Problem

Suppose that due to insufficient supporting electrolyte being present, an uncom-
pensated potential difference 	φPET exists between the plane of electron transfer
(PET) and the outer edge of the double layer. Suppose additionally that within the
double layer, the concentration of the electroactive species A is equilibrated, and
hence obeys the Boltzmann equation:

cA = cA,0 exp

(
− zAF

RT
(φ − φ0)

)

with reference to the concentration cA,0 and potential φ0 at the outer edge of the
double layer.
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(i) If A undergoes an irreversible one-electron reduction according to a Tafel law,
how will this equation be modified by 	φPET, considering both the change in
perceived overpotential and the change in the concentration of A at the PET?

(ii) Hence determine an expression for the observed heterogeneous rate constant
k0

app as a function of the actual k0 and of 	φPET.
(iii) k0 has been measured to be 0.1 cm s−1 but 	φPET is estimated to be +50 mV.

Given that α = 0.5 and zA = 1, apply the Frumkin correction formula you
have determined to estimate the true value of k0.

Solution

(i) A generic Tafel law is:

JA = k0 exp (−αθ) cA,PET

Now the overpotential is altered as

θ = F

RT
(E − E�

f − 	φPET)

as indicated by the difference in driving forces in Fig. 2.5. The concentration
at the PET can be expressed using the Boltzmann equation as

cA,PET = cA,0 exp

(
− zAF

RT
	φPET

)

Therefore

JA = k0 exp

(
− αF

RT
(E − E�

f − 	φPET)

)
× exp

(
− zAF

RT
	φPET

)
cA,0

(ii) The apparent k0 is that given by the Tafel law on the assumption that
	φPET = 0:

JA = k0
app exp

(
− αF

RT
(E − E�

f )

)
cA,0

By comparing the two expressions, it is clear that

k0
app = exp

(
αF

RT
	φPET

)
exp

(
− zAF

RT
(φ − φ0)

)
k0

which simplifies to:

k0
app = exp

(
(α − zA)

F

RT
	φPET

)
· k0
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(iii) Substituting in the values given, we find:

k0 ≈ k0
app exp

(
(zA − α)

F

RT
	φPET

)

= 0.1 × exp ((1 − 0.5) × 38.94 × 0.05)

= 0.1 × exp (0.974)

= 0.265 cm s−1

2.11 Marcus Theory and Standard Electrochemical
Rate Constants

Problem

Describe the basic principles involved in Marcus theory and hence rationalise
qualitatively the heterogeneous standard electrochemical rate constants (k0) for the
following one-electron reductions of metal ions in aqueous solution:

Species k0/m s−1 (25◦C)

Ru(NH3)3+
6 10−2

V3+ 4× 10−5

Co(NH3)3+
6 5 × 10−10

Solution

From Marcus theory we know that electron transfer proceeds through the thermal
activation of a reactant to a ‘transition state’. This ‘transition state’ (‡) is depicted
in Fig. 2.6 and shows it to be the point at which the two potential energy curves for
the reactant (R) and product (P) cross over.

Once the molecule is at the cross-over point it is possible for electron tunnelling
to take place and the product is formed in a highly excited vibrational level. The
amount of energy required to reach this transition state (	G(‡)) controls the rate
of electron transfer as given by Eq. 2.14,

k0 = κelKpνN exp

[−	G(‡)

RT

]
(2.14)

where Kp is the equilibrium constant, νN is a nuclear frequency factor and κel is
the electronic transmission coefficient (κel = 1 for an adiabatic process). 	G(‡)
has two major contributions,

	G(‡) = 	Ginner(‡) + 	Gouter(‡)
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Fig. 2.6 Schematic for the potential energy curves for an electrochemical reaction.

where 	Ginner(‡) is the activation energy arising from the distortion of the inner
coordination shell and 	Gouter(‡) arises from the energy required to rearrange the
dipoles associated with other solvent molecules. With this knowledge we can qual-
itatively explain the observed variation in rate constants for the metal complexes:

(i) Ru(NH3)3+
6

The ion exhibits a high electrochemical rate constant, hence suggesting that
there is little rearrangement of either the outer (water) or inner (NH3) co-
ordination spheres on reduction.

(ii) V3+
Vanadium is a first row transition metal. Consequently, its d-orbitals are more
contracted, leading to the ion being more ionic in character than Ru(NH3)3+

6 .
This ionic character means there is a relatively large change in the orientation
of the solvent molecules (outer-sphere) upon reduction, and, consequently,
the electrochemical rate constant is smaller.

(iii) Co(NH3)3+
6

The Co(NH3)3+
6 ion is a low spin d6 complex. Reduction leads to a high

spin d7 complex — such a transition is spin-forbidden and hence the rate of
electron transfer is far lower.

2.12 Marcus Theory and Butler–Volmer Kinetics

Problem

The Gibbs energy change between the reactant and the transition state, 	G(‡),
(as discussed in Problem 2.11) may be described in terms of the reorganisation
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energy λ:

	G(‡) = λ

4

(
1 + 	G

λ

)2

(2.15)

where the quantities 	G(‡), 	G and λ are defined in Fig. 2.6. In terms of α (the
transfer coefficient), describe the relationship between Marcus theory and Butler–
Volmer kinetics for a one-electron reduction.

Solution

For a one-electron reduction, 	G = F(E − E�
f ), and the rate of electron transfer

(k) is given in terms of 	G(‡) as shown below:

k = a exp

(−	G(‡)

RT

)

where a is a constant.
We know from Butler–Volmer kinetics that

α = −RT

F

∂ ln |I |
∂E

= −RT

F

∂ ln |k|
∂E

= 1

F

∂	G(‡)

∂E

where in the Tafel regime, 	G(‡) ∝ αFE .
Hence from substitution of the expression for 	G into Eq. 2.15

	G(‡) = λ

4

(
1 + F(E − E�

f )

λ

)2

such that on differentiation

α = 1

F

∂	G(‡)

∂E

= 1

2

(
1 + F(E − E�

f )

λ

)

= 1

2

(
1 + 	G

λ

)

This result is important: it shows us that α is predicted by Marcus theory to be
	 0.5 for a one-electron process if λ � 	G, i.e. if the reaction is irreversible.
Of further importance is the fact that 	G as discussed above is not a standard
Gibbs energy since it is dependent upon the electrode potential. Consequently, ‘α’
is not constant and this may lead to curved Tafel plots if α is measured over a wide
potential range.
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2.13 Marcus Theory and the Role of Solvent

Problem

A high-speed channel electrode was used to measure the rates of electron transfer
(k0) for 9,10-diphenylanthracene (DPA) in a variety of solvents. The oxidation
of DPA is an outer-sphere one-electron process. It was found that the measured
values of k were influenced by the reorientation dynamics of the solvent.

Below is a table which shows the measured rate constants for the oxidation and
the longitudinal dielectric relaxation times (tL) for the solvents [A.D. Clegg et al.,
J. Am. Chem. Soc. 126 (2004) 6185].

(i) Explain what is meant by ‘outer-sphere heterogeneous electron transfer’.
(ii) How will νN (the nuclear frequency factor) vary with tL for an outer-sphere

electron transfer, assuming that the rearrangement of the inner sphere is
negligible and the electronic coupling is small between the reactant and the
electrode?

(iii) Suggest a suitable plot which will show that the data below are in agreement
with your proposed answer for part (ii).

Solvent k0/cm s−1 (25◦C) tL /ps

MeCN 0.94 ± 0.16 0.20
EtCN 0.61 ± 0.12 0.31
PrCN 0.32 ± 0.07 0.52
BuCN 0.23 ± 0.03 0.74

Solution

(i) In an outer-sphere electron transfer reaction, the integrity of the ion and its
solvation shell is maintained and so there is no direct interaction between the
ion and the electrode surface. This is in contrast with inner-sphere electron
transfer, where the ion penetrates the outer Helmholtz plane and is in direct
contact with the electrode surface.

(ii) The rate of electron transfer for an outer-sphere electron transfer is governed
by

k0 = κelKpνN exp

[−	G‡

RT

]
(2.16)

where k0 is the standard rate constant, κel is the electronic transmission coef-
ficient, νN is the nuclear frequency factor and 	G(‡) is the energy required to
reach the transition state. The nuclear frequency factor represents the rate at
which reacting species close to the transition state are converted into products.
This has contributions from bond vibrations and solvent motions. However,
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when the energy barrier for rearranging the inner sphere is small, the dynam-
ics of the solvent will dominate:

νN = t−1
L

(
	G‡

4πRT

) 1
2

(iii) From the discussion above it can be seen that k0 is proportional to t−1
L ; hence,

a plot of k0 versus t−1
L yields a straight line.

2.14 Marcus Theory and the Inverted Region

Problem

(i) With reference to Marcus theory, what is the ‘inverted region’?
(ii) It is not possible to observe the inverted region with heterogeneous electron

transfer at a metallic electrode. Why?
(iii) What type of electrode materials may exhibit an inverted region?

Solution

(i) For homogeneous electron transfers the variation in 	G(‡) is described by

	G(‡) = λ

4

(
1 + 	G

λ

)2

As shown in Eq. 2.16, the rate of electron transfer is dependent upon this value
of 	G(‡). As the driving force for the reaction increases (an increase in 	G)
the rate of electron transfer increases up to a maximum where 	G = −λ. At
even more negative values of 	G the activation energy increases and hence
the rate of electron transfer decreases. This decrease in the rate of electron
transfer with increasing driving force (i.e. increasingly negative 	G) is known
as the ‘inverted region’.

(ii) It is not possible to observe the inverted region for heterogeneous electron
transfer at a metallic electrode. This is due to the fact that the above discussions
on Marcus theory (Problems 2.11 and 2.12) are based on the assumption
that the electron is being transferred to and from a narrow range of states
(from the electrode’s Fermi level to the molecule). Metallic electrodes have
a wide distribution of states from which an electron may be transferred.
Consequently, it is possible for an electron to be transferred from an electronic
state below the Fermi level, so the inverted region is not observed.

An alternative approach, the Marcus–Hush formalisation, is based upon
assessing the overlap of the electronic states in the electrode and the molecule
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present in solution, and accurately predicts that for high overpotentials a
limitation in the rate of electron transfer (k) will be observed at a metallic
electrode. For more information, see S.W. Feldberg [Anal. Chem. 82 (2010)
5176].

(iii) The electronic structure of semiconductors is markedly different from that of
metals. Semiconductors exhibit band gaps such that there is a zero density of
states at the Fermi level. The application of a potential to a semiconducting
electrode may result in the population of the conducting band with electrons.
These electrons are restricted to a narrow range of states, leading to a donor-
acceptor type situation, whereby it is possible to observe the inverted region.
Recent work by N.S. Lewis et al. [Chem. Phys. 326 (2006) 15] has experimen-
tally demonstrated that it is possible to observe the inverted region on ZnO
electrodes.
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3

Diffusion

3.1 Fick’s Laws of Diffusion

Problem

Fick’s second law for one linear dimension (x) is

∂c

∂t
= D

∂2c

∂x2

where x is distance, t is time and D is the diffusion coefficient of the diffusing
species. If electrolysis leads to a concentration c0 of a species at an electrode surface
(located at x = 0) and the bulk concentration of the species becomes zero at a
distance x = δ from the electrode surface, show that under steady-state conditions
the concentration decreases linearly away from the electrode, and determine an
equation for the steady-state distribution of c .

Solution

At steady state
∂c

∂t
= 0

so

D
∂2c

∂x2
= 0

or
∂2c

∂x2
= 0

57
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Integrating
∂c

∂x
= A

where A is a constant independent of x ; hence the concentration profile is linear.
Integrating again

c = Ax + B

where B is another constant. When x = 0, c = c0 so that

B = c0

Also when x = δ, c = 0 so that

A = − c0

δ

Hence

c = c0

(
1 − x

δ

)
and the concentration of c changes linearly from c0 to zero between x = 0 and
x = δ. This model is the basis of the Nernst diffusion layer, where the concentration
of the electroactive species is presumed to be maintained at or near its bulk solution
value for x ≥ δ due to natural convection.

3.2 Fick’s Laws of Diffusion

Problem

The concentration of a species undergoing steady-state electrolysis at an electrode is
often approximated as changing linearly between the concentration at the electrode
surface (x = 0, c = c0) and the bulk concentration value at the edge of a diffusion
layer (x = δ, c = c∗) so that

c = c0 + (c∗ − c0)
x

δ
0 < x < δ

Assuming steady-state conditions:

(i) Show that the above expression satisfies Fick’s second law, and
(ii) Determine an expression for the flux to the electrode.

Solution

(i) Fick’s second law shows that at steady state

∂c

∂t
= 0 = D

∂2c

∂x2
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From the expression given, differentiating

∂c

∂x
= (c∗ − c0)

δ

and differentiating once more

∂2c

∂x2
= 0

as required to satisfy Fick’s second law.
(ii) Fick’s first law states

J = −D
∂c

∂x
so that

J = −D
(c∗ − c0)

δ

where the negative sign implies that the flux is in the direction of decreasing x ,
and hence towards the electrode. Therefore both increased bulk concentration
and decreased electrode surface concentration will increase the flux, as would
be expected.

3.3 Diffusion Distances

Problem

The statistical (Einstein) view of diffusion is a random walk process, which suggests
that the root-mean-square distance diffused by a species in time t is

d ≈ √
2Dt

where a small molecule in aqueous solution typically has a diffusion coefficient
D ≈ 10−5 cm2 s−1. Approximately how far would such a molecule diffuse in
(i) one second and (ii) one day? Comment on any implications for electrochemical
experiments.

Solution

(i) For D ≈ 10−5 cm2 s−1 and t = 1 s,
√

2Dt ≈ 5 × 10−3 cm

≈ 50 µm

(ii) For D ≈ 10−5 cm2 s−1 and t = 24 × 60 × 60 s,
√

2Dt = 1.3 cm
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The implication is that diffusion is a slow process in solution. Thus if bulk elec-
trolysis is attempted, stirring or other forms of convection will be needed to ensure
rapid and efficient conversion of the cell contents. Another implication is that with
voltammetric experiments lasting a few seconds, the electrolysis is confined to a
spatial layer of solution adjacent to the electrode, of the order of tens of microns
in size.

3.4 The Cottrell Equation

Problem

A potential step experiment was carried out in a solution containing 0.05 M
ferrocyanide ([Fe(CN)6]4−) dissolved in a solution containing a large excess of
inert electrolyte. Care was taken to ensure that there was no stirring of the solution
during the experiment. The potential was stepped from a value where there was no
reaction to a potential at which the [Fe(CN)6]4− was oxidised to [Fe(CN)6]3− at a
mass transport controlled rate, and the following currents were recorded:

t /s 0.1 0.2 0.4 0.8 1.2

I /mA 6.9 4.9 3.4 2.4 2.0

(i) Explain why it is necessary to have a large excess of inert electrolyte present
for the experiment.

(ii) Why is it important to make sure that there is no stirring of the solution
during the experiment?

(iii) Make a sketch of the concentration of [Fe(CN)6]4− as a function of distance
away from the electrode immediately before the potential step and at two
different times after the potential step.

(iv) Given that the area of the electrode was 0.3 cm2, calculate the diffusion coef-
ficient for [Fe(CN)6]4− in the solution.

(v) Why is the time scale of the experiment limited to around a second?

Solution

(i) The presence of the supporting electrolyte suppresses electric fields and
ensures that the mass transport in the solution is exclusively via diffusion.

(ii) The absence of stirring is ensured to allow the current-time response to be
described by a purely diffusional model, specifically the Cottrell equation:

I = nFAc∗
√

D

πt

where D is the diffusion coefficient and c∗ the bulk concentration.
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Fig. 3.1 Concentration profiles at varying times after a potential step into the diffusion-
controlled region (a) D = 5 × 10−5 cm2 s−1 and (b) D = 5 × 10−6 cm2 s−1. Reproduced
from R.G. Compton et al., Understanding Voltammetry, 2nd ed., with permission from
Imperial College Press.

(iii) The concentration profiles are shown in Fig. 3.1 for D = 5 × 10−5 cm2 s−1

and 5 × 10−6 cm2 s−1, and times of 0.001, 0.01, 0.1 and 1 s.
(iv) The Cottrell equation suggests that the data be analysed by plotting a graph

of I vs 1/
√

t which should, and does, give a straight line through the origin
of

gradient = nFAc∗
√

D

π
= 2.2 × 10−3 A s

1
2

where for the one-electron oxidation of ferricyanide, n = 1. Accordingly

D = 7.2 × 10−6 cm2 s−1
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(v) After tens of seconds, natural convection will develop so that transport will no
longer be purely diffusional and the Cottrell equation will become inaccurate.
For this reason, only one second of experimental data is considered.

3.5 Derivation of the Cottrell Equation

Problem

The Cottrell equation was developed in 1903 by solving a simple model system for
chronoamperometry at a large electrode and at high overpotential [F.G. Cottrell,
Z. Physik. Chem. 42 (1903) 385].

The equation can be solved by the method of Boltzmann transformation, as in
Understanding Voltammetry, or alternatively by a mathematical method known as
Laplace transformation, in which an integral transform is used to convert a partial
differential equation into an ordinary differential equation. The transformation is:

L{f (t )} = f̄ (s) =
∫ ∞

0
f (t ) · exp(−st ) dt

(i) Show that:

(a) L{k} = k/s, where k is constant.
(b) L{∂f /∂t } = sf̄ − f (0).
(b) L{∂2f /∂x2} = ∂2 f̄ /∂x2.

(ii) Hence solve the Cottrell problem, which is to solve the diffusion equation
under the conditions:

c(x , 0) = c∗

c(∞, t > 0) = c∗

c(0, t > 0) = 0

and determine the corresponding diffusion-limited current. Note that

L{erf (a/2
√

t )} = 1

s
(1 − exp ( − a

√
t )) (3.1)

(iii) How would the solution to part (ii) be changed if we require that the Nernst
equation relates concentrations of reactant and product (reversible electron
transfer), rather than assuming total reactant depletion? You may treat all
diffusion coefficients as equal.

(iv) Hence calculate the overpotential required for the Cottrell equation to be
accurate to <1% and <0.1%.
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Solution

(i) (a)

L{k} =
∫ ∞

0
k · exp(−st ) dt

= k

∫ ∞

0
exp(−st ) dt

= k[−(1/s) exp(−st )]∞0
= k/s

(b)

L{∂f /∂t } =
∫ ∞

0

∂f

∂t
· exp(−st ) dt

= [f exp(−st )]∞0 −
∫ ∞

0
−fs exp(−st ) dt

= −f (0) + s

∫ ∞

0
f exp(−st ) dt

= sf̄ − f (0)

(c)

L{∂2f /∂x2} =
∫ ∞

0

∂2f

∂x2
· exp(−st ) dt

=
∫ ∞

0

∂2

∂x2
(f exp(−st )) dt

= ∂2

∂x2

∫ ∞

0
f exp(−st ) dt

= ∂2 f̄

∂x2

(ii) The diffusion equation states that:

∂c

∂t
= D

∂2c

∂x2

We can take the Laplace transform of both sides:

sc̄ − c∗ = D
∂2c̄

∂x2
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and rearrange:
∂2c̄

∂x2
− s

D
c̄ = − c∗

D

which is an inhomogeneous second-order differential equation with the
solution:

c̄ = c∗

s
+ A(s) exp

(
x

√
s

D

)

+ B(s) exp

(
−x

√
s

D

)

We can Laplace transform the boundary conditions as well, so c̄ = 0 at
x → ∞ and so A(s) = 0. Then from the electrode boundary condition:

c̄(0, s) = B(s) + c∗

s
= 0

so B(s) = −c∗/s and

c̄ = c∗

s

(
1 − exp

(
−x

√
s

D

))

which on inverse transformation yields (using Eq. 3.1):

c = c∗erf

(
x

2
√

Dt

)

Since

I = nFAD
∂c

∂x

∣∣∣∣
x=0

we can derive the Cottrell equation

I = nFADc∗ 1

2
√

Dt

2√
π

exp(0)

I = nFAc∗
√

D

πt

(iii) If we require the Nernst equation to hold, we may follow the same logic until
the point of applying the electrode boundary condition to determine the
unknown function B(s). If all diffusion coefficients are equal, cOx + cRed = c∗
everywhere. Then the Nernst equation for a one-electron reduction is:

F

RT
(E − E�

f ) = ln

(
c0

c∗ − c0

)
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which rearranges to

c0 = c∗

1 + exp
(− F

RT (E − E�
f )

)
Therefore in finding B(s), recalling that the Laplace transform of a constant
k is k/s:

c̄(0, s) = B(s) + c∗

s
= c∗

s

1

1 + exp
(− F

RT (E − E�
f )

)
and so

B(s) = − c∗

s

1

1 + exp
( F

RT (E − E�
f )

)
Following forward:

c̄ = c∗

s


1 −

exp
(
−x

√
s
D

)
1 + exp

( F
RT (E − E�

f )
)



Hence, because both differentiation and inverse Laplace transformation are
linear operations, we can note without further effort that

I = ICottrell · 1

1 + exp
( F

RT (E − E�
f )

)

(iv) For 1% tolerance, we require

I

ICottrell
= 1

1 + exp
( F

RT (E − E�
f )

) > 0.99

and hence

ln (0.01/0.99) = −4.595 > F/RT (E − E�
f )

So, E < E�
f − 4.595(RT/F), i.e. an overpotential of 118 mV from the formal

reduction potential, at 298 K. If 0.1% tolerance is required, the same analysis
reveals a required overpotential of 177 mV.

Of course, this all assumes that the electron transfer is fast. The analysis for
slow electron transfer and unequal diffusion coefficients is equally feasible, but
rather more involved; it is a recommended exercise in voltammetric theory
which exceeds the scope of this book.
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3.6 Diffusion and Root-Mean-Square Displacement

Problem

For a molecule with diffusion coefficient D travelling in one dimension (x), the
root-mean-square displacement in time t is given:√

〈x2〉 = √
2Dt

What is the corresponding expression
√〈r2〉 for a molecule moving in three dimen-

sions (x , y and z)?

Solution

Since, by Pythagoras,
r2 = x2 + y2 + z2,

it follows that

〈r2〉 = 〈x2〉 + 〈y2〉 + 〈z2〉
= 2Dt + 2Dt + 2Dt

= 6Dt

Hence √
〈r2〉 = √

6Dt
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4

Cyclic Voltammetry
at Macroelectrodes

4.1 Cyclic Voltammetry: Electrochemically Reversible
Voltammetry

Problem

Figure 4.1 shows the cyclic voltammetry associated with the reversible reduction
of a solution phase species according to the equation below:

A + e− � B

(i) Describe and explain the shape of the voltammogram.
(ii) How would the voltammogram differ if the species exhibited irreversible

electron transfer kinetics?
(iii) What equation is used to parametrically describe the peak current of a voltam-

mogram?

Solution

(i) The voltammogram shown in Fig. 4.1 is for a one-electron reduction of A to
B where initially only species A is present in solution. The value of E�

f ,A/B for
this reaction has been set as equal to 0 V. During the experiment the potential
has been swept linearly from +0.3 V to −0.3 V, after which the scan direction
has been reversed (at −0.3 V) and the potential has been swept linearly back
to +0.3 V. The arrows shown in Fig. 4.1 indicate the scan direction.

67
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Fig. 4.1 Cyclic voltammogram for the reduction of A to B. Arrows indicate the scan direc-
tion; the start potential is +0.3 V.

For the forward scan, three distinct regions are observed:

• Between +0.3 V and ≈+ 0.15 V, no current is passed as there is insufficient
driving force (overpotential) for A to be reduced to B.

• As the potential is further decreased the rate of reduction of A to B increases.
The measured current increases approximately exponentially. Since the
electron transfer kinetics are ‘fast’ in nature (i.e. the species is electro-
chemically reversible) the concentrations of species A and B at the electrode
surface obey the Nernst equation (Eq. 4.1).

[A]0

[B]0
= exp (θ) (4.1)

where

θ = F

RT

[
E − E�

f ,A/B

]
Accordingly, at zero overpotential, as marked on Fig. 4.1 by the dashed line,
the concentrations of species A and B at the electrode surface are equal.

• As the potential is further decreased, the absolute current goes through
a maximum (at −0.03 V) due to depletion of A at the electrode surface.
At more negative potentials the measured current is now limited by the
diffusion of species A to the electrode surface.

On reversing the potential, the concentrations of species A and B continue to
obey the Nernst equation and hence scanning in the positive direction, a peak
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is observed at +0.03 V. This is associated with the reoxidation to species B to
A and the resulting depletion of B at the electrode surface.

The interpretation of a voltammogram is usually done on the basis of the
measurement of the peak current for the forward scan and the voltammetric
peak-to-peak separation of the forward and reverse scans. For a reversible one-
electron redox system the peak-to-peak separation should ideally be 57 mV
(at 25◦C), but due to the finite size of the potential window it is usually slightly
elevated to 59–60 mV even for reversible kinetics.

(ii) As the standard electrochemical rate constant is decreased, the most notable
change in the observed voltammetry is the increase in the peak-to-peak sep-
aration. Further, the peak current will also be less than that found for a fully
reversible redox system. This latter point is explored in Problem 4.8.

(iii) The peak current of a voltammogram is described parametrically by the
Randles–Ševčík equation. The form given below is for a reversible n electron
redox species:

Ipf = (2.69 × 105)n
3
2 Ac∗D

1
2 v

1
2 (4.2)

where Ipf (A) is the peak current associated with the forward scan, n is the
number of electrons transferred, A (cm2) is the geometric area of the elec-
trode, c∗ (mol cm−3) is the bulk concentration of species A, D (cm2 s−1) is
the diffusion coefficient of species A and v (V s−1) is the experimental scan
rate.

Note that care must be taken when using this equation to ensure that all
values are expressed in consistent units (lengths in either m or cm), specifically
noting that in the above form concentration is expressed in terms of moles per
cubic centimetre. As a further caveat we emphasise that use of this equation
is not suitable for analysing the peak in the reverse scan.

4.2 Cyclic Voltammetry: Electrochemically Irreversible
Voltammetry

Problem

Figure 4.2 depicts a cyclic voltammogram for the one-electron irreversible reduc-
tion of species A to B, where the electrochemical rate constant (k0) equals 10−6 cm
s−1 and the transfer coefficient (α) is 0.5. Problem 4.1 discussed the salient fea-
tures of a reversible cyclic voltammogram; with reference to this, explain the major
differences between the two cases. Specifically refer to reasons:

• why the peak-to-peak separation is greater for the irreversible case.
• why the reverse peak current for the irreversible case is substantially less than the

forward peak current.
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Fig. 4.2 Cyclic voltammogram for the irreversible reduction of A to B. Arrows indicate the
scan direction. The current has been plotted against overpotential

(
E − E�

f ,A/B

)
.

Solution

As with the reversible case, the forward wave may be described by three distinct
regions:

• At low overpotential, zero current is passed as there is insufficient driving force
(overpotential) for A to be reduced to B.

• As the potential is further decreased the rate of reduction increases in accordance
with the Butler–Volmer equation:

I = −F Ak0
(

exp

[−αF

RT
(E − E�

f )

]
[A]0 − exp

[
(1 − α)F

RT
(E − E�

f )

]
[B]0

)
(4.3)

where I is the current, F is the Faraday constant, α is the transfer coefficient
(≈0.5), A is the area of the electrode, k0 is the standard electrochemical rate
constant and [i]0 is the concentration of species i at the electrode.

• As the potential decreases further, the current goes through a maximum (at
−0.47 V) due to depletion of A at the electrode surface. At this point and at more
negative potentials, the current is limited by the flux of A to the electrode surface,
due to diffusion.

Because the redox couple exhibits a low k0, the concentrations of species A and
B are no longer directly related by the Nernst equation. Rather, as stated above,
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the current may be described in terms of the Butler–Volmer equation. Hence it is
necessary for a relatively large overpotential to be applied to the electrode in order
for the reduction to occur at a measurable rate. It is the need for this overpotential
to drive electron transfer, and hence the delay in depletion of the electroactive
species at the surface, which leads to the large peak-to-peak separation.

Further, as a result of this large peak-to-peak separation, the reduced species
B which is produced during the forward scan is better able to diffuse away from
the electrode without being prone to reoxidation – the diffusion occurs because
the concentration of B is zero in the bulk solution. As such, on returning to the
overpotential required for the reoxidation of B to A, a significant decrease in the
concentration of B adjacent to the electrode has occurred. This leads to the mag-
nitude of the reverse peak being less than that of the forward.

4.3 Reversible vs Irreversible Voltammetry

Problem

When analysing a voltammogram it is important to consider whether the electron
transfer rate is reversible or irreversible in nature. Discuss the main features of a
voltammogram that can be readily used to qualitatively decide whether a voltam-
mogram indicates ‘reversible’ or ‘irreversible’ electron transfer.

Solution

Consideration of three main features allows an experimentalist to assess if a voltam-
mogram is exhibiting reversible electron transfer or not. These are as follows:

(i) The peak-to-peak separation: for a one-electron transfer at 25◦C the peak-
to-peak separation should approach 57 mV in the fully reversible limit.
A value greater than 60 mV suggests that the electron transfer is either quasi-
irreversible or irreversible.

Further, the peak-to-peak separation for a voltammogram will vary as a
function of scan rate for non-reversible electron transfer. The separation will
be much larger for the irreversible case.

(ii) The peak current: in both cases the peak current varies with the square root of
scan rate, but the constant of proportionality of this variation differs. This is
clearly exemplified through consideration of the forms of the Randles–Ševčík
equation.
For a reversible one-electron process:

|Ipf | = (2.69 × 105)Ac∗D
1
2 v

1
2 (4.4)
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and for an irreversible one electron-process:

|Ipf | = (2.99 × 105)α
1
2 Ac∗D

1
2 v

1
2 (4.5)

where Ipf (A) is the peak current associated with the forward scan, n is the
number of electrons transferred, A (cm2) is the geometric area of the elec-
trode, c∗ (mol cm−3) is the bulk concentration of the redox species, D (cm2

s−1) is the diffusion coefficient of the redox species, v (V s−1) is the experi-
mental scan rate and α is the transfer coefficient.

(iii) The waveshape: the forward peak waveshape for an irreversible redox system
differs distinctly from that of a reversible voltammogram. The waveshape for
a reversible redox couple appears ‘sharper’ than that for an irreversible redox
couple. This may be quantified through considering the difference in potential
between the peak current and the half-peak current.

Tafel analysis of the voltammetric wave will provide the same information.
From Problems 2.3 and 2.4, we know that for a one-electron irreversible
wave, Tafel analysis yields a line of gradient equal to αF/RT , whereas for
a reversible one-electron wave the gradient is equal to F/RT , such that the
exponential portion (Tafel region) of the voltammogram is steeper in the
reversible case.

4.4 Voltammetric Diagnostics

Problem

The peak current of a voltammogram is a readily measurable quantity for diagnos-
tic purposes. Specifically, the Randles–Ševčík equations as defined in Problem 4.3
are used to parametrically define this measurement. Explain why in the follow-
ing cases these equations are not applicable, and ‘peak current’ is a misleading
parameter:

(i) The analysis of the back peak of a voltammogram.
(ii) The analysis of the forward peak on the second scan of a voltammogram.

Solution

The Randles–Ševčík equations are derived from the assumption that the concen-
tration of the species at the electrode surface at the beginning of the linear voltam-
metric scan is equal to that in bulk. This is correct for a forward scan, but is not
correct for the two cases outlined above because electron transfer has already taken
place. In this case, a diffusion layer has already been developed and so the system
is perturbed.
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Fig. 4.3 A simulated voltammogram of a one-electron reduction, highlighting the influence
of the switching potential upon the height of the back peak.

The observed voltammetry is then a superposition of currents from different
Faradaic processes and so care must be taken in discussing ‘peak currents’. These are
not usually meaningful when compared to a baseline of zero current. Hence, the use
of the Randles–Ševčík equations to analyse peak currents in either of the above cases
will result in significant errors. As a further point, it should be noted that the size
and potential of the reverse peak vary as a function of the switching potential, as
highlighted in Fig. 4.3 (unless, for a reversible redox couple, the switching potential
is beyond a certain threshold).

4.5 Voltammetry and Scan Rate Effects

Problem

Cyclic voltammetry (as shown in Fig. 4.4 where the current has been normalised
with respect to the square root of the scan rate) was recorded for a compound A
(with D = 10−5 cm2 s−1) at a large electrode, at scan rates ranging from 2 mV s−1

to 2 V s−1. Account for the observed change in voltammetry. Is it possible to infer
any kinetic information from these data?

Solution

At the lowest scan rates, the voltammetry is unaltered with scan rate, except for

the current scaling by v
1
2 . The scan rate is sufficiently slow that the kinetics of
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Fig. 4.4 Cyclic voltammetry at four scan rates for the one-electron oxidation of 1 mM of
species A (D = 10−5 cm2 s−1) on a 1 cm radius disc electrode.

the electrolysis process are not outrun, and so Nernstian (reversible) behaviour
is observed. At faster scan rates, an increase in peak-to-peak separation is noted
because the scan is now fast enough that the electrode kinetics become rate-
limiting.

The Matsuda–Ayabe parameter, �, quantifies kinetic reversibility for an elec-
trochemical process:

� = k0( FDv
RT

) 1
2

At the point of transition between reversible voltammetry and quasi-reversibility,
� � 15. Therefore for the lower two scan rates, we can infer that � ≥ 15. For
the faster two scan rates, the behaviour is quasi-reversible so we expect that the
Matsuda–Ayabe parameter is <15.

Given that the transition occurs at approximately 50 mV s−1, by substitution:

k0( F
RT (10−5 × 0.05)

) 1
2

≈ 15

k0 ≈ 0.07 cm s−1

This is a necessarily approximate result and a more detailed study would be nec-
essary to determine k0 precisely; in particular, numerical simulation might be
employed. However, the result is accurate to within an order of magnitude.
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4.6 Ferrocene Voltammetry

Problem

The peak current for a 1 mM solution of ferrocene in acetonitrile was measured as
a function of scan rate on an electrode with an area of 0.1 cm2. The table below
gives the experimentally measured values. What is the diffusion coefficient for this
species?

Scan rate v/mV s−1 Peak current Ipf /µA

25 21.3
50 30.0

100 42.5
200 60.2
400 85.1

Solution

Ferrocene is a fully reversible redox species at these scan rates. Hence the following
form of the Randles–Ševčík equation must be used to assess the diffusion coeffi-
cient:

Ipf = (2.69 × 105)n
3
2 AD

1
2 c∗v

1
2

where Ipf is the peak current in amperes, A is the area of the electrode surface
in cm2, D is the diffusion coefficient of the species in cm2 s−1, c∗ is the bulk
concentration of the species in mol cm−3 and v is the scan rate in V s−1.

A plot of peak current versus v
1
2 yields a straight line with a gradient propor-

tional to the square root of the diffusion coefficient of the species. From a plot

of the data above, the gradient is 134.6 µA V− 1
2 s

1
2 . The diffusion coefficient of

ferrocene is hence found to be 2.5 × 10−5 cm2 s−1.

4.7 Ferrocene Voltammetry

Problem

Discuss critically the statement that the ferrocene/ferrocenium redox couple is fully
electrochemically reversible in acetonitrile solution at a platinum electrode.

Solution

Electrochemical reversibility requires that the electron transfer kinetics are fast
relative to the prevailing rates of mass transport. As such the notion of ‘reversiblity’
is not simply a property of the redox couple but also of the conditions, especially
mass transport, under which it is measured.
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N.V. Rees et al. [J. Electroanal. Chem. 580 (2005) 78] showed that for Fc/Fc+
in CH3CN at 25◦C, k0 ≈ 1 cm s−1 at a platinum electrode. The mass transport
coefficient to an electrode of radius re is:

km = D

re

so since D � 2 × 10−5 cm s−1, electrodes of the radius re ≤ 1µm will show
quasi-reversible behaviour.

4.8 Features of Cyclic Voltammograms

Problem

Account for the following features of cyclic voltammograms:

(i) Why is it expected that peak current is proportional to the square root of scan
rate?

(ii) Why is the peak current less in the limit of slow electrode kinetics?
(iii) Why does altering the diffusion coefficient of the product (DB) for a given

diffusion coefficient of the reactant (DA) affect the forward peak potential but
not the forward peak current?

(iv) Why, in practice, does a plot of Ipf vs. c∗ often not go through the origin?

Solution

(i) The peak current occurs when the electroactive species becomes depleted at
the electrode surface. The thickness of the diffusion layer is related to the time
in which depletion has taken place by the Einstein equation: xD ∝ √

Dt . So
xD ∝ v−1/2.

The current is related to the flux across the electrode surface by Fara-
day’s laws; for a fixed concentration drop – bulk to zero – this flux is then
inversely proportional to diffusion layer thickness. Hence I ∝ x−1

D ∝ v1/2. In
effect, the diffusion layer becomes narrower in proportion to the square root
of scan rate, and so the flux is elevated in the same proportion.

(ii) The peak current represents the rate of electron transfer when mass trans-
port becomes rate-determining. In the absence of mass transport effects, a
reversible reaction will increase its rate in proportion to the thermodynamic
driving force, i.e. ∝ exp (nvFt/RT ). For slow electrode kinetics, by compar-
ison, the rate varies only as quickly as the activation energy, �G‡, can be
lowered. According to the Butler–Volmer theory of electrode kinetics, this
takes place as exp (vαFt/RT ) where 0 ≤ α ≤ n.

Therefore, the rate of electron transfer for quasi-reversible kinetics does
not increase with the swept potential as quickly as if �G‡ is sufficiently low
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as to be irrelevant. Consequently, the rate of electron transfer at the point of
depletion of material at the electrode surface is lower than in the reversible
case, and correspondingly the peak current in a quasi-reversible case is less.

(iii) The forward peak current arises at the point where the supply of material to
the electrode becomes rate-determining, in place of the electrode kinetics. The
rate at which this supply takes place depends only on the diffusion coefficient
of the reactant, DA, and so it is unaffected by DB. The diffusion coefficients
also do not affect the electrode kinetics which depend on the electrochemical
couple and the interface, as quantified by k0 and α.

By contrast, the potential at which this limit occurs can be altered because
a faster DB causes more efficient dispersion of the product from the electrode.
Then further reaction is driven, i.e. the equilibrium is shifted according to
Le Chatelier’s principle. So, a correspondingly faster reaction occurs at lower
overpotentials. Therefore DB does affect the forward peak potential in an
apparently electrocatalytic manner.

(iv) In a real electrochemical setup, it is common to encounter a capacitive current
which arises due to the response of the electrical double layer to the swept
potential (see also Problem 10.6). As the potential changes, the charge on the
electrode also changes and so ions in solution will move in response to this
charge by virtue of their attraction or repulsion from the surface, even if they
are not oxidised or reduced. This induces a measurable current, recorded by
the potentiostat, which is not due to electrolysis.

Only the Faradaic current resulting from the electrolysis process varies lin-
early with c∗; the capacitive current generally tends to depend on the total salt
concentration which is dominated by the supporting electrolyte. Therefore
the overall peak current, Ipf , is a linear function of c∗ but is not zero in the
absence of a redox-active species since a capacitive current is still present.
When interpreting experimental data it is important to carefully choose a
baseline from which the Faradaic current may be measured and hence allow
analytically useful data to be obtained.

4.9 Derivation of the Randles–Ševčík Equation

Problem

Unlike chronoamperometry, exact solutions do not exist for cyclic voltammetry
problems. Mathematical methods can lead to useful results, however.

(i) How is a cyclic voltammetry problem described mathematically?
(ii) Show that the surface concentrations at any point during a cyclic voltam-

mogram can be expressed as a function of the current. Assume species A to
undergo an n-electron reduction to species B.
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(iii) Hence show that if the Nernst equation holds at the surface, the current is
proportional to some potential-dependent function χ(E).

(iv) In the textbook form of the Randles–Ševčík equation, the cathodic peak cur-

rent of a reversible cyclic voltammogram is Ipf = −2.69 × 105 n
3
2 AD

1
2

A c∗v
1
2 ,

with all symbols defined as for Eq. 4.2. Determine the maximum value of the
function χ(E).

Solution

(i) A cyclic voltammetry problem is treated mathematically by solving the
diffusion equation (Fick’s second law) for each chemical species present.
For a macroelectrode, we can ignore the electrode edge and solve in one-
dimensional planar space, just as in deriving the Cottrell equation, which is
generally simpler than a radially symmetric or multi-dimensional solution.
This assumes that sufficient electrolyte has been added to screen electric fields,
and that the solution is not stirred or subject to natural convection.

Two boundary conditions are required for each species: one in bulk and
one at the electrode. Conventionally the concentrations are set to their initial
values in bulk, and at the electrode either the Nernst equation or Butler–
Volmer equation is applied to describe the electrode kinetics. These equations
have the general form f (ci,0, E) = 0, where the applied potential E is a linear
function of time. Conservation of mass also requires that the fluxes of reactant
A and product B are equal and opposite at the electrode surface.

(ii) The transport equations for species A and B are:

∂cA

∂t
= DA

∂2cA

∂x2

∂cB

∂t
= DB

∂2cB

∂x2

with cA = c∗ and cB = 0 at t = 0 and x = ∞. Additionally, from conservation
of mass we know that at x = 0:

DA
∂cA

∂x
= −DB

∂cB

∂x

The transformations c ′
i = ci/c∗, D′

i = Di/DA and τ = DAt are immedi-
ately useful as they relegate two of the parameters to scaling factors. Then if
we Laplace transform all the equations from the coordinate τ to a Laplace
coordinate s:

sc̄A − 1 = ∂2c̄A

∂x2

sc̄B = ∂2c̄B

∂x2
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in which we have denoted c̄ = L{c ′}. With application of the outer boundary
conditions these readily solve to:

c̄A = 1

s
+ λA(s) exp ( − x

√
s)

c̄B = λB(s) exp

(
−x

√
s

D′
B

)

with λi(s) being as yet unknown functions.
Differentiating the above and substituting in x = 0, and then considering

the boundary condition for conservation of mass, it follows that:

λA
√

s = −D′
BλB

√
s

D′
B

and therefore
λA = −

√
D′

B · λB

On substitution of x = 0 into the expressions for c̄i , we note that this implies:

c ′
A,0 = 1 −

√
D′

B · c ′
B,0

and so the two surface concentrations are related at all times.
We also recognise that for a reduction

j(t ) = −I (τ)

nFADAc∗ = ∂cA

∂x

∣∣∣∣
x=0

and therefore

L{j(τ)} = √
s · λA(s) = √

s L{c ′
A,0 − 1}

so

c ′
A,0 = 1 + L−1

{L{j(τ)}√
s

}
Here we need the convolution theorem which identifies the inverse Laplace
transform of a product as being a convolution:

L−1{f̄ (s)ḡ (s)} =
∫ τ

0
f (τ − τ′)g (τ′)dτ′

and so for the above example simply:

cA,0 = 1 +
∫ τ

0

j(τ′)√
τ − τ′ dτ′

Together with the above, both c ′
i,0 can now be written as (integral) functions

of the current I (τ).
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(iii) From the Nernst equation, we know that for a reduction:

E = E�
f + RT

nF
ln

cA,0

cB,0

and so

cA,0 = cB,0 exp

(
nF

RT

(
E − E�

f

))

1 +
∫ τ

0

j(τ′)√
τ − τ′ dτ′ = −1√

D′
B

(∫ τ

0

j(τ′)√
τ − τ′ dτ′

)
× exp

(
nF

RT
(E − E�

f )

)

and rearranging∫ τ

0

j(τ′)√
τ − τ′ dτ′ = −1

1 + 1√
D′

B

exp
( nF

RT

(
E − E�

f

))
We note that the expression on the right varies in time only as a function of

nF

RT
E = nF

RT
Ei + nFvt

RT

= ln a + στ

where a is a constant and σ = nF
RT

v
DA

. The integral on the left may be written
in terms of u = στ:∫ τ

0

j(τ′)√
τ − τ′ dτ′ =

∫ u

0

j(u′)√
u−u′

σ

du

σ

=
∫ u

0

j(u′)√
σ√

u − u′ du

= −1

1 + a√
D′

B

exp (στ)
(4.6)

Therefore j(στ)/
√

σ has some solution χ(E) defined by the above integral
equation, and so:

I (E) = −nFADAC∗σ1/2χ(E)

= −n3/2FAD1/2
A c∗

√
Fv

RT
χ(E)

where χ(E) can be determined by numerical solution of its defining integral
equation (Eq. 4.6).

(iv) Our result from part (iii) evidently resembles the Randles–Ševčík equation
closely. It follows that where χ(E) is maximal,

√
F 3/RTχ(E) = 2.69 × 105.

Dividing by
√

F 3/RT we find that χ(E) � 0.447 at its maximum.
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4.10 Reversible Two-Electron Transfer

Problem

For the following mechanism

A + e− � B E�
f ,A/B

B + e− � C E�
f ,B/C

sketch and explain the observed voltammetric response when

(i) E�
f ,B/C � E�

f ,A/B
(ii) E�

f ,B/C � E�
f ,A/B

Assume fast electron transfer kinetics.

Solution

Figure 4.5 shows the voltammetric response for the two-electron reductions of A
to C. In both cases E�

f ,A/B = 0.0 V.

Fig. 4.5 Simulated cyclic voltammograms for a two-electron reduction: where (i) the second
electron transfer occurs at a more positive potential than the first

(
E�

f ,B/C � E�
f ,A/B

)
;

and (ii) the second electron transfer occurs at a more negative potential than the first(
E�

f ,B/C � E�
f ,A/B

)
.
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In case (i), where the second electron transfer occurs at a more positive potential
than the first (E�

f ,B/C = +0.25 V), only one voltammetric wave is observed. This
corresponds to the overall two-electron reduction of A to C.

In case (ii), the second electron transfer occurs at a more negative potential than
the first (E�

f ,B/C = −0.25 V). Here, two separate voltammetric signals are observed.
The first wave corresponds to the reduction of A to B and the second corresponds
to the reduction of B to C.

It is interesting to note that in case (i) the reduction of A to C occurs at
a potential greater than E�

f ,A/B, i.e. above 0.0 V. This is due to the presence of
the second electrochemical step, which is more favourable and so drives the first
electrochemical step by consumption of the product B. The voltammetry is under
thermodynamic control so that the apparent value of E�

f for the overall process is
given by

(
E�

f ,A/B + E�
f ,B/C

)
/2.

4.11 The Influence of pH on Cyclic Voltammetry

Problem

For the following reaction schemes, describe how the voltammetric response for
the redox reactions will vary as a function of pH over the full aqueous pH range
(0–14). Assume that the rate of electron transfer is fast, such that the electrode
kinetics are fully reversible, and that the protonation/deprotonation steps are so fast
as to be equilibrated throughout. Note that the chemical steps have been written
as deprotonations so that the equilibrium constants are readily related to the pKa

of the species.

(i)

A + e− � A− E�
f ,A/A− = 0.0 V

AH � A− + H+ (Ka2)

where

Ka2 = [A−][H+]
[AH] = 10−11

(ii)

AH+ � A + H+ (Ka1)

AH+ + e− � AH E�
AH+/AH = +0.473 V

where

Ka1 = [A][H+]
[AH+] = 10−3
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Solution

Given that the electron transfer is assumed to be fully reversible, the midpoint
potential will be equal to the formal potential for the reduction (assuming that
all diffusion coefficients are equal). Hence the voltammogram will shift with the
formal potential for the reduction as a function of pH. Through following an
analogous methodology to that in Problem 1.26, we can derive the following equa-
tions to describe the shifts in the formal potentials.

(i)

E�
f ,A/A− = E�

A/A− − RT

F
ln

[AH]tot

[A] + RT

F
ln

(
1 + [H+]

Ka2

)

(ii)

E�
f ,AH+/AH = E�

AH+/AH − RT

F
ln

[AH]
[A]tot

− RT

F
ln

(
1 + Ka1

[H+]
)

where

[AH]tot = [A−] + [AH]
[A]tot = [A] + [AH+]

Figure 4.6 plots how these formal potentials vary as a function of pH.
For system (i), below pH 11 the reaction involves the transfer of one proton and

one electron, as the A− formed is protonated to give AH. Hence the voltammetric
peaks will shift with approximately 59 mV per pH (at 25◦C). Above pH 11 the
reaction does not involve proton transfer as A− is not protonated at these pH
values. Consequently, the peak position is invariant with pH.
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Fig. 4.6 Plots of the midpoint potential versus pH for the reactions (i) and (ii).
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For system (ii), below pH 3 species A is protonated in solution. Hence the
voltammogram shows the reduction of AH+ to AH. No protons are transferred
during the electrochemical process and hence the peak does not shift with pH.
Above pH 3, species A is present in solution and hence for it to be reduced, it
must first be protonated. Consequently, the voltammetric peak will shift with
approximately 59 mV per pH (at 25◦C).

4.12 The Scheme of Squares

Problem

The scheme of squares is used to describe mechanistic pathways involving electron
and proton transfers, and was first proposed by J. Jacq [J. Electroanal. Chem. 29
(1971) 149]. The scheme is based upon the assumption that the reactions occur in
a stepwise manner. Figure 4.7 depicts a simple one-proton one-electron scheme.
In the following, assume E1 = 0.0 V, E2 = +0.473 V, pKa1 = 3 and pKa2 = 11.

Although the values given above are only hypothetical, a large number of
organic and inorganic electrochemical processes are found to follow a square
scheme.

(i) Assuming reversible electron transfer, sketch how the voltammetric midpoint
potential will shift as a function of pH over the full aqueous pH range (0–14).

(ii) In a number of systems it has been suggested that the proton and electron are
not transferred in a stepwise mechanism, but rather that both transfer in a
concerted manner. How may it be possible to verify experimentally whether or
not the protons and electrons are being transferred in a concerted or stepwise
manner, for a given electrochemical reaction?

AH

A A

AH

Ka1 Ka2

E1

E2

-

+

Fig. 4.7 A one-electron one-proton scheme of squares.
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Solution

(i) The scheme of squares outlined in Fig. 4.7 may be viewed as being a result of
the combination of the two reaction mechanisms outlined in Problem 4.11,
parts (i) and (ii). At pH below 3, the voltammetric response will correspond to
the one-electron reduction of AH+ to AH. Hence no protons are transferred
and the peak position will be insensitive to pH.

At pH values above three but below 11, the overall reaction will be the
one-proton one-electron reduction of species A to AH. Consequently, the
voltammetric signal will be found to shift in potential with approximately
59 mV per pH (at 25◦C), irrespective of whether electron transfer or proton
transfer occurs first.

Above pH 11, the reaction corresponds to the reduction of species A to A−
without proton transfer. Accordingly the peak position will not vary with pH.
This result is shown within Fig. 4.8.

(ii) If the electron and proton are transferred in a concerted manner, then the
rate of electron transfer should exhibit a kinetic isotope effect, as evidenced by
a change in the peak-to-peak separation. Accordingly, if the proton–electron
redox reaction is performed in a solution of D2O, the rate of electron transfer
should be slower. This concerted mechanism is thought to be highly important

Fig. 4.8 The variation of the midpoint potential for the scheme of squares, as outlined in
Fig. 4.7.
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in a number of biological redox processes. For a recent review on the area see
C. Costentin et al. [Acc. Chem. Res. 43 (2010) 1019].

4.13 The EE-Comproportionation Mechanism

Problem

Two-electron transfers (EE) in which the second electron transfer is less favourable
than the first are very commonly encountered in voltammetry. If we denote the
species involved as A, B and C, respectively, then the comproportionation reaction
is favourable:

A + e− � B

B + e− � C

A + C
Kcomp
� 2B

(i) Use Hess’s law to determine how the equilibrium constant Kcomp is related to
the reduction potentials for the heterogeneous reactions. If E�

f ,A/B � E�
f ,B/C,

will this reaction be favourable?
(ii) Demonstrate that if DA = DB = DC and the electrochemical reaction is

reversible, the current is blind to the kinetics of the comproportionation
reaction, irrespective of the voltammetric waveform.

(iii) Various researchers have used diverse methods to determine the rate of com-
proportionation for mechanisms of this type. Examine the following articles
and discuss how the problem is tackled in each case:

(a) C.P. Andrieux et al., J. Electroanal. Chem. 28 (1970) 339.
(b) Z. Rongfeng et al., J. Electroanal. Chem. 385 (1995) 201.
(c) S.R. Belding et al., Angew. Chem. Intl. Ed. 49 (2010) 9242.

Solution

(i) The comproportionation is a combination of the reduction of A to B and the
oxidation of C to B. Therefore:

�G�
comp = −FE�

comp = −F
(
E�

f ,A/B − E�
f ,B/C

)
and using the common relation of Gibbs energy change to the equilibrium
coefficient:

Kcomp = exp

(−�G�
comp

RT

)
= exp

(
F

RT

(
E�

f ,A/B − E�
f ,B/C

))
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If E�
f ,A/B � E�

f ,B/C, it is clear that Kcomp � 1 and so the comproportionation
is thermodynamically favoured.

(ii) The mathematical formulation of the problem for species A, B and C will be:

∂cA

∂t
= DA

∂2cA

∂x2
− kcompcAcC + kdispc2

B

∂cB

∂t
= DB

∂2cB

∂x2
+ 2kcompcAcC − 2kdispc2

B

∂cC

∂t
= DC

∂2cC

∂x2
− kcompcAcC + kdispc2

B

where kcomp and kdisp are the second-order rate constants for the homoge-
neous reaction, and so Kcomp = kcomp/kdisp.
If the reaction is reversible, the Nernst equation relates the concentrations of
A, B and C at the electrode surface, and these are also related by conservation
of mass. Hence at x = 0:

cA = exp

(
F

RT

(
E − E�

f ,A/B

))
cB

cB = exp

(
F

RT

(
E − E�

f ,B/C

))
cC

DA
∂cA

∂x
+ DB

∂cB

∂x
+ DC

∂cC

∂x
= 0

If DA = DB = DC = D, we can make the substitutions σ = cA + cB + cC

and u = 2cA + cB, thus cancelling the homogeneous reaction terms from the
transport equations:

∂σ

∂t
= D

∂2σ

∂x2

with σ = c∗ as x → ∞ and ∂σ/∂x = 0 at x = 0, which implies trivially that
σ = c∗.

Equally,
∂u

∂t
= D

∂2u

∂x2

In bulk u = 2c∗; at x = 0 it follows from substitution that the Nernstian
relationships that cB and cC can be expressed as functions of cA, and so since
σ = c∗:

cA

(
1 + exp

(
− F

RT

(
E − E�

f ,A/B

))

+ exp

(
− 2F

RT

(
E − 1

2

(
E�

f ,A/B + E�
f ,B/C

))))
= c∗
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and hence

u = c∗
(

2 + exp

(
− F

RT
(E − E�

f ,A/B)

))/(
1 + exp

(
− F

RT
(E − E�

f ,A/B)

)

+ exp

(
− 2F

RT

(
E − 1

2
(E�

f ,A/B + E�
f ,B/C)

)))

Therefore u is completely described by equations which do not contain kcomp

or kdisp, and since the current is given:

I = −FAD

(
∂cA

∂x

∣∣∣∣
x=0

− ∂cC

∂x

∣∣∣∣
x=0

)

= −FAD

(
2

∂cA

∂x

∣∣∣∣
x=0

+ ∂cB

∂x

∣∣∣∣
x=0

)

= −FAD

(
∂u

∂x

∣∣∣∣
x=0

)

i.e. as a function of u only, the current too is independent of these parame-
ters. Consequently, under these conditions the voltammetry is ‘blind’ to the
presence or absence of the homogeneous reaction.

(iii) If comproportionation is significant, the species C will not accumulate in
solution; rather, it will react with any available A to generate B. The further
reduction of B to C at the electrode is rate-limiting, and B will exist in large
quantities in the reaction layer. If comproportionation is not significant, B will
be rapidly reduced to C and therefore will not exist at a high concentration.
The initial reduction of A becomes rate-limiting for the two-electron process.
This is made clear in the two concentration profile schematics shown in
Fig. 4.9.

Hence, if the presence of B can be determined by an analytical technique, or
if it can be determined whether the mass transport of A or B to the electrode
is rate-limiting, it is possible to determine whether or not the compropor-
tionation process is active.

(a) C.P. Andrieux et al. examined the oxidation of neutral 1,2-ene-diamines
in acetonitrile and concluded that comproportionation contributed sig-
nificantly as they were able to detect the presence of the cation radical by
EPR spectroscopy at a potential where its oxidation was fast. If compro-
portionation was not active, the cation radical would have quickly been
consumed by further oxidation and would not have been observable by
EPR; as its signal was observed, its regeneration due to the compropor-
tionation reaction was assumed.
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Fig. 4.9 Comparison of concentration profile schematics for an EE mechanism where the
comproportionation reaction is fast (top) or inactive (bottom).

(b) Z. Rongfeng et al. studied the reduction of neutral tetracyanoquin-
odimethane in acetonitrile where the diffusion coefficients of the different
species A, B and C differ significantly enough for the above analysis to
be incorrect. The different diffusion coefficients mean that the limiting
current due to rate-limiting diffusion of B is distinguishable from that
due to rate-limiting diffusion of A.

Using numerical simulation the experimental voltammetry was com-
pared with the predictions for zero and rate-limiting comproportiona-
tion, and it was found that the latter gave a superior fit to the experiment.

(c) S.R. Belding et al. studied the possible comproportionation of
anthraquinone (AQ) in acetonitrile solution. The diffusion coefficients of
AQ, its radical anion and its dianion were too similar to permit determi-
nation of comproportionation by the above method, within experimental
error. The problem was resolved by comparing voltammetry recorded
with ample electrolytic support to that recorded under weakly supported
conditions.

Under weakly supported conditions, electric fields arising in the solu-
tion due to electrolysis are not completely screened and therefore migra-
tion contributes to mass transport (see Chapter 10). Since the reduction
makes the diffusion layer negative, a species such as neutral AQ is unaf-
fected but AQ·− is repelled.

If comproportionation is active, mass transport of AQ·− is rate-
limiting, and so the current will be lower due to repulsive migration than
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if mass transport of AQ is rate-limiting. Again, numerical simulation was
used to fit the experimental data, indicating that comproportionation was
indeed active. Here, the substantial difference in charges on the differ-
ent species provided much clearer evidence than the subtle differences in
diffusion coefficients.
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5

Voltammetry at Microelectrodes

5.1 Steady-State Concentration Profile in Spherical Space

Problem

Prove or verify that for a spherical or hemispherical microelectrode of radius re

under steady-state conditions, the concentration (c) profile of an electroactive
species undergoing transport limited electrolysis is

c = c∗ (
1 − re

r

)
where c∗ is the bulk concentration of the species being electrolysed. Hence derive
an expression for the transport-limited current to the electrode, for a one-electron
oxidation.

Solution

The steady-state diffusion equation for a spherical or hemispherical microelectrode
is

∂c

∂t
= 0 = D

(
d2c

dr2
+ 2

r

dc

dr

)
(5.1)

The relevant boundary conditions are

r = re c = 0

r → ∞ c → c∗

To prove the required result we write ρ = dc/dr , so that

0 = dρ

dr
+ 2

r
ρ

91
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or

dρ

ρ
= −2

r
dr

ln ρ = ln

(
1

r2

)
+ ln A

where A is a constant. Hence

ρ = dc

dr
= A

r2

Integrating

c = −A

r
+ B

where B is another constant. Applying the boundary condition c → c∗ as r → ∞
requires B = c∗. Also, c = 0 at r = re requires A = c∗re. Hence

c = c∗ (
1 − re

r

)
Alternatively, the result may be verified by evaluating

dc

dr
= c∗re

r2

and
d2c

dr2
= −2c∗re

r3

Substitution into Eq. 5.1 verifies that the suggested concentration profile is indeed
a solution to the equation. It also obeys the required boundary conditions.

The transport-limited current for a one-electrode oxidation is

I = FAD
dc

dr

∣∣∣∣
r=re

where the electrode area A = 4πr2
e (sphere) or 2πr2

e (hemisphere). Evaluating the
above expression for dc/dr at r = re gives

dc

dr

∣∣∣∣
r=re

= c∗

re
(5.2)

This result shows that the steady-state flux increases with decrease of the electrode
radius in accordance with our expectations of convergent diffusion. It follows that

I = 4πFc∗Dre (sphere)

= 2πFc∗Dre (hemisphere)

Note that the current scales with electrode radius, not area.
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5.2 Current Transients at a Spherical Electrode

Problem

Following a potential step to a potential where electron transfer is transport-
limited, the diffusion-controlled flux J , as a function of time, to a spherical electrode
of radius re is given by

J = Dc∗
[

1√
Dπt

+ 1

re

]

where c∗ is the bulk concentration of the electroactive species, and D is its diffusion
coefficient.

(i) Sketch how J varies with t in the microelectrode and macroelectrode limits.
(ii) Derive an expression for the time required for the current at a spherical elec-

trode to reach 1% of its steady-state value, and comment on how this varies
with re.

Solution

(i) For a macroelectrode the term (1/re) is tiny and can be neglected, so the current
decays to zero according to

J = c∗
√

D

πt

which is the Cottrell equation for a planar electrode (corresponding to
re → ∞). In contrast, for a microelectrode the term (1/re) is significant so
that the current decays to a finite steady-state value. The curves are illustrated
in Fig. 5.1.

(ii) When the current is within 1% of its steady-state value

Dc∗
[

1√
πDt

+ 1

re

]
= 1.01

Dc∗

re

∴ 1√
πDt

= 0.01
1

re

Hence

t = r2
e × 104

πD

It follows that the larger the microelectrode, the longer it takes for a steady-
state current to be established. For a macroelectrode with re = 1 mm and
D = 10−5 cm2 s−1 (a typical value), t ≈ 1 month! Natural convection is likely
to influence electrochemical responses after around 20s, so the steady-state
regime is never observed for large electrodes.
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Fig. 5.1 Comparison of macroelectrode and microelectrode chronoamperometric tran-
sients.

5.3 Linear vs Convergent Diffusion

Problem

Show that the ratio of diffusion-limited currents between a spherical electrode of
radius re and a planar electrode of the same area is given by:

Isphere

Iplanar
= 1 +

√
πDt

re

where D is the diffusion coefficient of the electroactive species and t is time.
Comment on the physical significance of the result for a spherical electrode.

Solution

The diffusion-limited current to a planar electrode is given by the Cottrell equation:

Iplanar = nFA
√

Dc∗
√

πt

where A is the electrode area and c∗ is the bulk concentration of the electroactive
species. n is the number of electrons transferred per electrolytic event.

The corresponding expression for a spherical electrode is

Isphere = nFADc∗
(

1√
Dπt

+ 1

re

)
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Dividing the equations
Isphere

Iplanar
= 1 +

√
πDt

re

as required.
The physical significance of the result is as follows. For short times where

πDt � r2
e , the size of the spherical electrode greatly exceeds that of the diffusion

layer, and hence the former experiences effectively planar diffusion (Fig. 5.2).
On the other hand, when πDt � r2

e , the current at the spherical electrode
approaches steady state due to convergent diffusion. The size of the diffusion
layer greatly exceeds that of the electrode. Note that the ratio of currents tends
to infinity as the time gets longer, since whereas convergent diffusion sustains a
steady-state current at the spherical electrode, the current at the planar electrode,
which necessarily experiences only planar diffusion, collapses to zero.

5.4 Dissolution of Microparticles

Problem

Small particles of calcite (calcium carbonate, CaCO3) dissolve in acidic solution
by means of the following mechanism:

H+
(aq) + CaCO3(s)

k1−→ Ca2+
(aq) + HCO−

3(aq)

HCO−
3(aq) + H+

(aq) � H2CO3(aq)

H2CO3(aq) → H2O(l) + CO2(g)

The following rate law has been measured [R.G. Compton et al., Freshwater Biology
22 (1989) 285] for the reaction of protons at the calcite surface:

JCa2+/mol cm−2 s−1 = k1[H+]0 (5.3)

where k1 = 0.043 cm s−1 at 25◦C.

Fig. 5.2 Schematic of convergent and linear types of diffusion towards spherical electrodes
of different sizes.
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Explain the form of the rate equation and suggest an explanation for the
observation that while large (>100 µm) particles of calcite dissolve with a rate
controlled by the diffusion of protons to the calcite surface, for much smaller
particles the surface controlled reaction quantifed by Eq. 5.3 is found to apply.
Assume a value of 7.5×10−5 cm2 s−1 for the diffusion coefficient of H+ in aqueous
solution.

Solution

The rate equation shows that the flux, JCa2+ , of dissolving Ca2+ ions depends
on the concentration of protons, [H+]0, adjacent to the particle surface (hence
the subscript 0 on the concentration), in a first-order manner. Given the units of
flux are mol cm−2 s−1 and those of concentration are mol cm−3, the units of the
first-order rate constant k1 are cm s−1.

Whether the dissolution reaction will be controlled by diffusion or by the
surface reaction kinetics depends on the relative rates of the two processes. If
we assume the CaCO3 particles to be approximately spherical then (using Eq. 5.2)
the diffusion-controlled flux of protons to the surface can be calculated from

D
∂[H+]

∂r

∣∣∣∣
r=re

= D

re
[H+]bulk

where re is the particle radius. The quantity

kMT = D

re

is a mass transport coefficient with units of cm s−1. If k1 � kMT then the reaction
will be diffusion controlled, whereas if k1 � kMT, it will be surface controlled.

Setting kMT = k1, we see that

kMT = D

re
= k1

re = D

k1
= 7.5 × 10−5

0.045

≈ 2 × 10−3 cm

≈ 20 µm

Thus for particles of radius 20 µm, we would expected ‘mixed’ kinetics with the
surface and mass transport processes operating at similar rates. For CaCO3 particles
larger than 100 µm the processes will be essentially transport controlled, whereas
for re � 10 µm the surface reaction will control the overall kinetics.
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Calculations of this type are important in gauging the size of CaCO3 particles
used for adding to freshwater systems to alleviate the effects of ‘acid rain’ (so-called
‘lake liming’).

5.5 Steady-State Limiting Current at a Microdisc

Problem

The incident transport-limited flux at any radius, r , on the surface of a microdisc
electrode under steady-state diffusion conditions is given by

J = 2

π

c∗D√
r2

e − r2

where re is the disc radius, c∗ is the bulk concentration of the electroactive species
and D is its diffusion coefficient.

Use this equation to predict the steady-state limiting current at the microdisc
electrode for an n-electron process. Comment on any possible limitations of the
expression for J .

Solution

The current is given by

I = nF

∫ re

0
2πr J dr

= 4nFc∗D

∫ re

0

r dr√
r2

e − r2

Substituting r = re sin θ and dr = re cos θdθ

I = 4nFc∗Dre

∫ π
2

0

sin θ cos θ dθ√
1 − sin2 θ

= 4nFc∗Dre

∫ π
2

0
sin θ dθ

= 4nFc∗Dre[− cos θ]
π
2
0

= 4nFc∗Dre

The expression for J is derived by assuming a zero concentration of the electroac-
tive species on the disc surface, corresponding to diffusion control. However, the
expression predicts the flux to become infinite at the disc edges:

J → ∞ as r → re
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In practice, this is physically unrealistic since finite electrode kinetics must restrict
the flux to a finite value in the vicinity of the disc edge.

5.6 Microdisc vs Planar Electrode

Problem

Consider a microdisc electrode of radius re = 1 µm under steady-state conditions
for the electrolysis of a species of bulk concentration c∗ and diffusion coefficient
D = 10−5 cm2 s−1.

If the same system were electrolysed at a large planar electrode under diffusion-
controlled conditions, at what time after the start of electrolysis would the same
average flux be observed on the planar electrode as at steady state on the microdisc
electrode?

Solution

The steady-state diffusion-controlled current at the microdisc electrode is given by

I = 4nFc∗Dre

where n is the number of electrons transferred. The corresponding (transient)
current at a planar electrode is given by the Cottrell equation:

I = nFA
√

Dc∗
√

πt

where t is time and A is the electrode area. Setting A = πr2
e and equating, we

find for D = 10−5 cm2 s−1 and re = 10−4 cm that t = 2 × 10−4 s. This time is
too short to be observed under usual voltammetric conditions at planar electrodes
since double layer charging effects are likely to mask the current. It can be appreci-
ated that remarkably high fluxes (current densities) are established at steady state
under convergent diffusion conditions, as compared to linear diffusion at planar
electrodes.

5.7 The Shoup–Szabo Equation

Problem

The Shoup–Szabo expression gives the current transient at a microdisc electrode
of radius re resulting from a step from a potential at which no current
flows to a potential where the n-electron electrolysis of a species is diffusion



November 29, 2011 9:53 spi-b1239 Understanding Voltammetry: Problems and Solutions b1239-ch05

Voltammetry at Microelectrodes 99

controlled, the species having bulk concentration c∗ and diffusion coefficient D.
It is:

I = 4nFc∗Dre f (τ)

where τ = 4Dt/re and

f (τ) = 0.7854 + 0.8862 τ− 1
2 + 0.2146 exp

( − 0.7823τ− 1
2
)

Find and comment on (i) the short and (ii) the long time limits of this expression.

Solution

(i) As τ → 0:

f (τ) → 0.8862τ− 1
2

and

I → nFc∗Dre × 4 × 0.8862

(4t/r2
e )

1
2

→ nFc∗Dπr2
e√

t
× 2 × 0.8862

π

But (2 × 0.8862) = √
π, so that

I → nFA
√

Dc∗
√

πt

where A = πr2
e is the disc area. This equation is the Cottrell equation describ-

ing linear diffusion to the disc surface at very short times, before the develop-
ment of any convergent diffusion to the microdisc electrode.

(ii) As τ → ∞:

f (τ) → 0.7854 + 0.2146

→ 1

as the exponential term in the expression for f (τ) becomes unity in the long
time limit:

exp
( − 0.7823 τ− 1

2
) → exp(0) = 1

Hence

I → 4nFc∗Dre

which is the expected steady-state current for a microdisc under convergent
diffusion.
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5.8 Steady-State Electrolysis

Problem

Calculate the transport-limited current at a microdisc electrode of radius 10 µm
due to the one-electron oxidation of 1 mM ferrocene in acetonitrile/0.1 M
tetrabutylammonium perchlorate at 25◦C, where the ferrocene has a diffusion
coefficient of 2.3 × 10−5 cm2 s−1. If the electrode radius were halved, how would
the limiting current change, and why? If the cell contained 100 mL of solution,
what duration of electrolysis would be required to oxidise 10% of the ferrocene in
the cell?

Solution

The transport-limited current to a microdisc electrode of radius re is given for a
one-electron oxidation by

I = 4Fc∗Dre

where D is the diffusion coefficient of the electroactive species, c∗ its bulk concen-
tration and F is the Faraday constant (96485 C mol−1). Hence for the solution in
question:

I = 4 × 96485 × 10−6 × 2.3 × 10−5 × 10−3

where we have used 1 mM = 10−6 mol cm−3 and 10 µm = 10−3 cm.
Evaluating:

I = 8.9 × 10−9A

= 8.9 nA

If the electrode radius is halved then the limiting current is also halved, since the
current scales with the electrode radius and not with the electrode area. The reason
for this lies in the non-uniform current density across the disc electrode surface
with a much greater current density at the circumference of the disc than near the
disc centre.

To evaluate the time taken for 10% electrolysis of the cell contents, we first
note that 100 mL of a 1 mM solution contains 10−4 moles of ferrocene. For 10%
oxidation we need to calculate the time to electrolyse 10−5 moles. The required
quantity of charge is

10−5 × F = 0.96485 C

Hence the required time for 10% electrolysis is

t = 0.96485

8.9 × 10−9

= 1.1 × 108s
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This corresponds to 3.5 years! Of course this neglects convection effects, but it is
nonetheless true that although diffusional rates and current densities are large at
microelectrodes, absolute currents are small and the electrolysis essentially does
not perturb the cell contents. If electrosynthesis is to be attempted, a large electrode
(and probably large concentrations) are essential.

5.9 Effect of Unequal Diffusion Coefficients

Problem

For an electrochemically reversible wave measured at a microdisc electrode for the
process

Red − ne− � Ox

the half-wave potential, E1/2, is related to the formal potential, E	
f , by the

expression

E1/2 = E	
f + RT

nF
ln

DRed

DOx

where DRed and DOx are the diffusion coefficients of Red and Ox, respectively.
For the ferrocene/ferrocenium couple in the room temperature ionic liquid
[C4mpyrr][NTf2], DRed = 2.31 × 10−7 cm2 s−1 and DOx = 1.55 × 10−7 cm2 s−1.

Calculate (E1/2 − E	
f ) and comment on the significance of this result.

Solution

E1/2 − E	
f = +RT

F
ln

2.31 × 10−7

1.55 × 10−7
= 0.010 V

= 8 mV

The difference of 10 mV is significant since the ferrocene/ferrocenium redox couple
is often used as a redox marker in non-aqueous electrochemistry (acting as an
internal reference electrode), including that using room temperature ionic liquids
as solvents. The correction for the difference in diffusion coefficients is necessary
to give a valid reference scale.

5.10 Temperature Effects on Steady-State Currents

Problem

The transport-limited current for an n-electron process at a microdisc electrode
of radius re is given by

I = 4nFc∗Dre
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where D is the diffusion coefficient of the electroactive species and c∗ is its bulk
concentration. F is the Faraday constant.

Does the transport-limited current depend on temperature? If so, why?

Solution

Although temperature does not appear explicitly in the equation, a change of
temperature will indirectly influence three parameters in the equation:

• The concentration of the solution may change slightly as the solution expands
(increases its volume) with increasing temperature;

• The radius of the electrode may change slightly with temperature as the metal
expands; and

• The diffusion coefficient, D, will alter markedly with temperature.

The strong dependence of D on the absolute temperature T (K) derives from the
following Arrhenius-type expression:

D = D∞ exp

(−Ea

RT

)

where D∞ is the hypothetical diffusion coefficient at infinite temperature, and
Ea is an activation energy for the diffusion process. For ferrocene, Ea has
been measured as 6.9 kJ mol−1 in acetonitrile, and 14.4 kJ mol−1 in dimethyl
formamide [S.R. Jacob et al., J. Phys. Chem. B 103 (1999) 2963]. For
N,N,N′,N′-tetramethylphenylenediamine (TMPD) in water, Ea was measured as
19.0 kJ mol−1.

Tables 5.1, 5.2 and 5.3 show how the diffusion coefficients for ferrocene in
acetonitrile and in DMF (supported by tetra-n-butylammonium perchlorate
(TBAP)), and for TMPD in water (supported by KCl), will change with tempera-
ture, as reported by S.R. Jacob et al., in the above-cited article.

The high sensitivity of diffusion coefficients to temperature is one reason
why electrochemical and electroanalytical experiments are carried out under ther-
mostated conditions. Another reason is that electrochemical rate constants also
change with temperature, as do formal electrode potentials.

Table 5.1 Ferrocene in acetonitrile (0.1 M TBAP); error
± 1.3 × 10−6.

T /◦C 24 30 40 50 60
D/10−5 cm2 s−1 2.37 2.51 2.72 2.98 3.20
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Table 5.2 Ferrocene in DMF (0.1 M TBAP); error
± 0.6 × 10−6.

T /◦C 24.8 30 35 40 45
D/10−5 cm2 s−1 1.07 1.18 1.30 1.43 1.55

Table 5.3 TMPD in water (0.1 M KCl); error ± 0.7 × 10−6.

T /◦C 30 40 50 60 70 80
D/10−6 cm2 s−1 6.32 7.94 9.99 12.2 14.9 18.6

5.11 ECE Mechanism at a Microdisc Electrode

Problem

For an ECE mechanism

A + e− � B

B
k−→ C

C + e− � products

which is studied at a microdisc electrode of radius re, the effective number of
electrons transferred, neff , is very approximately given by the following expression
[M. Fleischmann et al., J. Electroanal. Chem. 177 (1984) 115]:

1

neff − 1
=

[
4

π

(
D

k

) 1
2 · 1

re

]
+ 1

where D is the diffusion coefficient of species A and k is the first-order rate constant
for the conversion of B to C.

(i) How and why does neff vary as re changes from a small to a large value?
(ii) For the reduction of m-iodonitrobenzene in acetonitrile solution, the fol-

lowing data were obtained for the transport-limited current as a function
of microdisc electrode radius [R.G. Compton et al., Electroanalysis 8 (1996)
214]:

re / µm 5.6 13.6 30.0 60.0
I /nA 2.9 8.9 19.0 41.0

Assuming a value of D = 2.1 × 10−5 cm2 s−1, estimate a value for k and
suggest a mechanism for the electrode reaction.
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Solution

(i) As r → 0, 1
(neff −1) → ∞ and so neff → 1.

In the other limit, r → ∞, 1
(neff −1) → 1 and so neff → 2.

The variation arises since for a very small electrode the convergent/
divergent diffusion to and from the electrode is extremely effective, and so
species B is removed from the electrode before there is time for the species to
undergo reaction to form C and then gain a second electron. Hence in the
re → 0 limit, neff ≈ 1.

In contrast, for a very large electrode the diffusional transport is much less
effective and so B can remain near the electrode long enough to undergo
decomposition into C and hence further reduction; and so in the limit of
re → ∞, neff → 2.

(ii) The data can be analysed by trial and error using a spreadsheet. First, the
equation above can be used to find neff for various values of the ratio (D/k)
for the different electrode sizes. Second, the absolute current can be calculated
using

I = 4neff Fc∗Dre (5.4)

and compared with experiment. Using the value for D given, the rate constant
k = 0.30 s−1 gives the following currents:

re/µm 5.6 13.6 30.0 60.0
I /nA 3.1 8.1 19.7 41.1

which are in good agreement with experiment.
Alternatively, a graphical approach can be taken in which the experimental

current values are converted into neff using Eq. 5.4 and then (neff − 1)−1 is
plotted against r−1

e . The straight line graph intersects the y-axis close to unity

and has a slope of (4/π)(D/k)
1
2 , allowing the determination of k.

A likely mechanism is

I−C6H4NO2 + e− � [I−C6H4NO2]·−
[I−C6H4NO2]·− → ·C6H4NO2 + I−

·C6H4NO2 + HS → C6H5NO2 + S·

C6H5NO2 + e− � [C6H5NO2]·−

where HS denotes the solvent and/or supporting electrolyte.
Note that digital simulation of the full voltammetric waves has superseded

the use of approximate equations in electrochemical research.
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5.12 EC′ Mechanism at a Microdisc Electrode

Problem

The simple catalytic (EC′) mechanism follows the scheme below:

Red − ne− � Ox

Ox + Z
k−→ Red + products

For the case of a microdisc equation the following very approximate equation has
been derived for the effective number of electrons transferred, neff , as a function of
the electrode radius, re, under steady-state conditions. Ox and Red are assumed to
have the same diffusion coefficient D and the homogeneous kinetic step is assumed
to show pseudo-first-order kinetics with a rate constant k ′ / s−1 = k[Z].

neff = n

(
1 + π

4
re

(
k ′

D

) 1
2

)

The method was used to study the oxidation of ferrocyanide (0.41 mM) in
the presence of amidopyrine (2 mM) in aqueous KOH [M. Fleischmann et al.,
J. Electroanal. Chem. 177 (1984) 97]. The following data were determined:

neff 1.04 1.22 1.42
re/µm 0.25 2.5 5.0

Using a value of D = 6×10−6 cm2 s−1, estimate a value for k and explain physically
why neff increases as the electrode gets larger.

Solution

A graph of neff vs. re is a straight line to within experimental error. The intercept
corresponds to neff = 1, consistent with the simple E reaction

[Fe(CN)]4−
6 − e− � [Fe(CN)]3−

6

The gradient of the graph is

π

4

(
k ′

D

) 1
2 = 0.08 µm−1

= 800 cm−1

so that

k = k ′

[amidopyrine] =
(
800 × 4

π

)2 × 6 × 10−6

2 × 10−3

≈ 3 × 103 M−1s−1
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The effective number of electrons transferred increases with the electrode size
since the efficiency of transport via convergent/divergent diffusion to or from
the electrode decreases. Hence, the species Ox spends more time close to the
electrode than is the case when the electrode is very small. Accordingly, there is
more time available for the reaction with Z to produce Red that will be able to react
further at the electrode, and hence a greater catalytic activity.

Note that the above theoretical treatment is highly approximate; the modern
approach to data analysis would be via digital simulation allowing for depletion
of Z and for variable diffusion coefficients, as well as for providing a rigorous
(rather than approximate) solution of the coupled diffusion–kinetic equations
involved.

5.13 Size Effects on Half-Wave Potentials

Problem

For an electrochemically irreversible reduction at a microdisc or microsphere elec-
trode of radius re, the variation of the voltammetric half-wave potential, E1/2,
under steady-state conditions can be shown to vary as

∂E1/2

∂ ln re
= RT

αF

where α is the transfer coefficient [F.W. Campbell et al., J. Phys. Chem. C 113 (2009)
9053]. The following data were obtained for the reduction of hydrogen peroxide
at isolated silver nanoparticles supported on an inert but conducting substrate
electrode:

rNP/nm 15 30 50
Epf /V −1.575 −1.503 −1.453

Explain physically why the peak shifts with the particle radius and estimate a value
of α. If the substrate were covered with a monolayer of the silver nanoparticles,
explain qualitatively what would be seen.

Solution

The peak shifts with the particle radius such that a greater overpotential is required
for transport-limited reduction as the particle shrinks in size. This is because the
convergent/divergent regime of mass transport to and from the particle becomes
more effective and dominates as the particle shrinks. Accordingly, a greater poten-
tial has to be applied to attain the peak current, as faster electrode kinetics are
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required to compete with mass transport. Hence, Epf shifts to more negative values
as rNP decreases.

To find a value of α, plot a graph of Epf vs log10 rNP. A straight line is seen with
a slope of

∂Epf

∂ log10 rNP
= 2.3RT

αF
= 233 mV

from which it may be inferred that α ≈ 0.25. Interestingly, this value is close to
that measured at silver macroelectrodes for the reduction of hydrogen peroxide.

If the substrate electrode were fully covered with silver nanoparticles then the
entire surface would behave as a macroelectrode with essentially planar diffusion.
As a result of the much less effective (planar, not convergent) diffusion, the half-
wave potential and peak potential would shift to less negative values.

5.14 Extracting Parameters from Microdisc
Chronoamperometry

Problem

A 10 mM aqueous solution of hydrazine, N2H4, was studied in pH 4.8 acetate
buffer using a platinum microdisc electrode of radius 13.8 µm. Chronoamper-
ometric transients were recorded in which the potential was stepped from a
value corresponding to no current flow to one corresponding to the transport-
limited current for the oxidation of N2H4. The following short-time data were
recorded:

t /ms 5.5 10.5 15.5 20.5
I /10−7 A 6.84 5.2 4.53 4.15

t /ms 25.5 30.5 35.5 40.5
I /10−7 A 3.91 3.72 3.58 3.44

At long times a steady-state current of 1.96 × 10−7 A was measured. Calculate the
number of electrons transferred in the oxidation of hydrazine.

Solution

Since the concentration of the hydrazine is known to be 10 mM, the current-time
data and the steady-state current allow us to find two unknowns, namely n, the
number of electrons transferred in the oxidation, and D, the diffusion coefficient
of N2H4.
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For the steady-state current

Ilim = 4nFc∗Dre

from which it follows that

nD = Ilim

4Fc∗re

= 1.96 × 10−7

4 × 96485 × 10−5 × 1.38 × 10−3

= 3.68 × 10−5 cm2 s−1

where c∗ and re have been converted to cm units.
The short-time data presented are in the range 5–40 ms, which are long enough

times, in aqueous solution, for double layer charging effects to have decayed to a
negligible value, but are short enough that linear rather than convergent diffusion

to the electrode prevails. Thus if a plot is made of current against t− 1
2 , a Cottrellian

slope can be expected.
Note this plot is not expected to go through the origin, because of the decay

to a constant value at a microelectrode, although the slope will be Cottrellian at
short enough times. The limiting current value is not small enough compared to
the current values reported in the table of data for the intercept of a Cottrell plot
to be near zero.

The Cottrellian slope is:

gradient = nFAc∗D
1
2 π− 1

2

where A is the electrode area; for a disc, A = πr2
e .

A graph of I vs t− 1
2 shows a straight line of gradient 3.95×10−8 A s

1
2 . Therefore

nD
1
2 = gradient

Fπ
1
2 r2

e c∗

= 3.99 × 10−8

96485 × π
1
2 × (1.38 × 10−3)2 × 10−5

= 0.0121 cm s−
1
2

Clearly

D =
(

nD

nD
1
2

)2

=
(

3.68 × 10−5

1.21 × 10−2

)2

= 9.21 × 10−6 cm2 s−1

and hence n = (36.8/9.21) = 4.00 (= 4 to within experimental error).
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It follows that the oxidation of hydrazine is a four-electron process.

N2H4(aq) − 4e− → N2(g) + 4H+
(aq)

5.15 Extracting Parameters from Microdisc
Chronoamperometry

Problem

The electroreduction of an approximately 2 mM solution of nitrobenzene in
acetonitrile/0.1 M tetrabutylammonium perchlorate was studied using a plat-
inum microdisc electrode of radius, re, 24 µm. A steady-state limiting current of
−4.05 × 10−8 A was observed at long time, while at short times the following
current (I )-time (t ) data were collected.

t /10−2 s 1 2 3 4 5
−I /10−8 A 9.70 6.86 5.59 4.86 4.35

t /10−2 s 6 7 8 9 10
−I /10−8 A 3.94 3.67 3.43 3.22 3.06

Assuming that the reduction is a one-electron process forming the nitrobenzene
radical anion, calculate the diffusion coefficient D of nitrobenzene and obtain an
accurate value for the concentration studied.

Solution

The steady-state current for a reduction is given by:

Ilim = −4nFc∗Dre

and so if n = 1:

c∗D = −Ilim

4Fre

= 4.05 × 10−8

4 × 96485 × 24 × 10−4

= 4.37 × 10−11 mol cm−1 s−1

where again D, re and c∗ are in cm units.

A plot of −I vs t− 1
2 for the short-time data has a slope of 9.71 × 10−9 A s

1
2 .

This should be equal to the Cottrellian value:

gradient = nFAc∗D
1
2 π− 1

2
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where n = 1 and A = πr2
e , and so

c∗D
1
2 = gradient

Fπ
1
2 r2

e

= 9.71 × 10−9

96485 × π
1
2 × (24 × 10−4)2

= 9.86 × 10−9 mol cm−2 s−
1
2

As before we can combine our results to determine

D =
(

c∗D

c∗D
1
2

)2

=
(

4.37 × 10−11

9.86 × 10−9

)2

= 1.97 × 10−5 cm2 s−1

and hence c∗ = 2.22 × 10−6 mol cm−3 = 2.22 mM.
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6

Voltammetry at Heterogeneous
Surfaces

6.1 Graphitic Electrodes

Problem

Carbon comes in a variety of allotropes which exhibit a wide range of different
properties; graphite is one of the most common of these forms. A recent review
by R.E. McCreery [Chem. Rev. 108 (2008) 2646] provides a good overview on a
number of carbon-based materials and their use in electrochemistry.

(i) What is the physical structure of graphite? What is its electronic structure?
(ii) Why are the electron transfer kinetics for a redox species generally slower

on graphitic electrodes as compared to metallic electrodes? Further, why is
a difference in electrochemical activity observed for different planes of the
graphite?

(iii) Based on your knowledge of the graphite structure, when fabricating a
graphite electrode how may we control its reactivity?

Solution

(i) Experimentally it is common to use graphite which has been synthetically
produced. This graphite is known as highly ordered pyrolytic graphite (HOPG).
It is used as it has a high purity and its structure has a high degree of three-
dimensional ordering. A schematic representation of the structure of HOPG
is shown in Fig. 6.1.

111
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Step

Edge Plane

Basal Plane

Graphite Layer

Fig. 6.1 Schematic representation of highly ordered pyrolytic graphite. Reproduced from
C.E. Banks et al., Chem. Commun. (2005) 829, with permission from the Royal Society of
Chemistry.

Structurally, graphite is comprised of layers: these layers are two-
dimensional sheets of hexagonally arranged carbon atoms where the carbon
atoms may be described as being sp2 hybridised. These layers are stacked on
top of each other with an interlayer spacing of 3.35 Å. Due to the carbon
being sp2 hybridised, each carbon atom has a half filled p-orbital which lies
perpendicular to the layers. It is the overlap of these p-orbitals which leads
to the electrons being delocalised in the interlayer regions. These delocalised
electrons are ‘free’ to move within each layer but there is no direct contact
between the layers, and, consequently, the electrical properties of graphite are
anisotropic.

Electronically, graphite may be described as a semi-metal. This is as a result
of its substantially lower density of states, as compared to that of a metal.
Graphite does not exhibit a band gap as there is overlap between the conduc-
tion and valence bands, and hence there is a non-zero density of states at the
Fermi level.

(ii) The rate of electron transfer is described by the Marcus–Hush formalisation
for electron transfer. Through utilisation of Fermi’s ‘golden rule’, this formal-
isation has been extended to being fully quantum mechanical in nature. Such
extended forms highlight how the rate of electron transfer is in part deter-
mined by the overlap integral between the molecular orbitals of the redox
species and the electronic energy levels present within the electrode. The den-
sity of states for graphite is substantially lower than that of a metallic material,
and so the overlap integral for a graphitic electrode is lower and hence the
rate of electron transfer is commonly observed to be slower. Recent work by
N.S. Lewis et al. [J. Phys. Chem. B 110 (2006) 19433] has focused on the dif-
ference in rates of electron transfer at metallic and graphitic electrodes from
a fundamental standpoint.

As mentioned above, the electronic structure of graphite is anisotropic, and
this anisotropy is reflected in the differing electrical resistance of the material
perpendicular and parallel to the carbon layers. Further, as a result of this
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anisotropy the ‘edge’ and ‘basal’ plane sites (as indicated in Fig. 6.1) exhibit
significantly different electrochemical properties. The rate of electron transfer
is generally accepted to be orders of magnitude greater at the edge plane sites;
for more information, see the work of C.E. Banks and R.G. Compton [Analyst
131 (2006) 15].

(iii) As has been described in parts (i) and (ii) of this problem, carbon is
anisotropic, with the ‘edge’ and ‘basal’ plane sites exhibiting significantly dif-
ferent electrochemical responses. Consequently,when fabricating an electrode
the experimentalist may choose the alignment of the graphitic material, and
as such may produce an electrode which has either a higher surface cover-
age of either ‘basal’ or ‘edge’ plane sites. As a point of caution, although the
material may be aligned differently the resulting electrodes will not be purely
‘edge’ or ‘basal’ in character, due to inherent defects present. This is explored
further in Problem 6.3.

6.2 Carbon Nanotubes and Their Reactivity

Problem

Since their rediscovery in 1991 by S. Iijima [Nature 354 (1991) 56], carbon nan-
otubes have been the focus of a huge amount of research.

(i) A number of varieties of carbon nanotubes are available; briefly summarise
their structures.

(ii) The electrochemical response of carbon nanotubes are regularly compared to
macroscopic graphite. Explain the concepts behind these analogies making
reference to both the edge and basal plane sites present on graphite.

(iii) Carbon nanotubes have been experimentally observed to be ‘electrocatalytic’
for the oxidation and reduction of a vast number of species. Explain how
metallic impurities present within the carbon nanotubes may influence the
observed voltammetry.

Solution

(i) Carbon nanotubes may be divided into two main groups: single-walled car-
bon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT).
MWCNTs come in a number of forms, including hollow, bamboo and her-
ringbone. The structures of these three are shown schematically in Fig. 6.2.
SWCNTs may be understood as being a single sheet of graphene which has
been rolled into a tube.

(ii) A comparison is often made between macroscopic graphite and multi-walled
carbon nanotubes in order to help to qualitatively explain the observed
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Hollow Herringbone Bamboo

Fig. 6.2 Schematic representation of the cross-section of the three main forms of multi-
walled carbon nanotubes.

voltammetry at carbon nanotubes, where the sidewalls of the carbon nan-
otubes are seen as being analogous to the basal plane sites on graphite, and
the tube ends are viewed as being comparable to the edge plane sites. This
simplification leads to a qualitative explanation for the observed voltammetry,
but it should be noted that there are limitations to this analogy due to the fact
that the energies associated with the carbon nanotubes will be significantly
altered from those for macroscopic graphite, and further the density of states
for carbon nanotubes will be significantly different.

(iii) Carbon nanotubes may be synthesised via a number of different methods,
but one of the most common routes for their production is through the
use of chemical vapour deposition (CVD). CVD uses a nanoparticulate metal
such as iron (or a combination of metals including cobalt and nickel) to
catalyse their growth. These metallic nanoparticles, or nanoparticles of the
corresponding metal oxides, may then become occluded within the carbon
nanotube. Consequently, the observed ‘electrocatalytic’ effect of the carbon
nanotubes may in a number of cases be simply due to the occluded metal
and not the nanotube itself. For further reading on this subject see C.E.
Banks et al. [Angew. Chem. 45 (2006) 2533] or M. Pumera et al. [TrAC 9
(2005) 177].

6.3 Highly Ordered Pyrolytic Graphite
and the Influence of Defects

Problem

Through the use of highly ordered pyrolytic graphite (HOPG) it is possible to pro-
duce an electrode which is predominantly ‘basal’ in character, but even with such
a surface, edge plane defects will be present in the form of ‘steps’ (as indicated in
Fig. 6.1). Careful preparation can lead to a surface where these edge plane defects
are up to 1–10 µM apart.

(i) From your knowledge of the electrochemistry of carbon surfaces, explain how
these edge plane steps can dominate the observed voltammetry.

(ii) Suggest why, when modelling such systems, the use of a one-dimensional
diffusion model is inappropriate.
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Solution

(i) As discussed in Problem 6.1, the electrochemical activity of the basal and
edge plane sites is significantly different: the edge plane sites generally exhibit
far higher rates of electron transfer. As a consequence of these higher rates
of electron transfer, the observed voltammetry is dominated by the surface
coverage of the edge plane defects see C.M. Neuman et al. [Chem. Eur. J. 17
(2011) 7320].

(ii) A one-dimensional model requires that the rate of electron transfer is uniform
across the whole of the electrode, but this is clearly not the case. At first sight,
we might assume that the average rate of electron transfer (kobs) could be
described by the following equation,

kobs = �edgekedge + �basalkbasal

where �i and ki are, respectively, the fractional surface coverage and rate of
electron transfer for the site i. However, such an approximation would be
sufficient only if strictly linear diffusion is occurring to the electrode surface,
which is not the case. Rather, as a result of the relatively large spacing between
the edge plane defects, non-linear diffusion will play a significant role in
transport to the more active edge plane defects (steps) on the surface.

Consequently, the use of a two- or three-dimensional simulation is required
to successfully model this system. Further reading on this subject can be found
in the work of C.E. Banks et al. [Chem. Comm. 7 (2005) 829].

6.4 Advantages of Arrays

Problem

Why might it be advantageous to use a microelectrode array in place of either a
single microelectrode or a macroelectrode of the same material?

Solution

Compared to a single microelectrode, a microelectrode array has the obvious
advantage that the current scales with the number of electrodes, provided the elec-
trodes are diffusionally independent. For analytical purposes, the signal strength
of a microelectrode array is therefore much larger and so lower concentrations can
be detected accurately. So long as the array is well designed, in terms of the size and
spacing of electrodes (as discussed in Problem 6.5), it will retain the advantageous
convergent diffusion of a microelectrode, and so will exhibit a steady-state current
and fast rates of diffusion.

As discussed in Chapter 5, these properties facilitate the determination of fun-
damental parameters such as diffusion coefficients or rate constants, as compared
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to a macroelectrode. What is more, the electroactive area of a microelectrode array
is much less than that of a macroelectrode, and so the capacitive current is markedly
reduced. The signal is dominated by Faradaic processes (electrochemical reactions),
thereby facilitating data analysis.

The reduced electroactive area of a microelectrode array is also economical.
Frequently, electrode materials are noble metals such as platinum or gold, since
these are stable over a wide potential window and frequently exhibit fast electrode
kinetics or catalysis towards common analytes. These metals are necessarily very
expensive, but by using a microelectrode array in place of a macroelectrode, the
required quantity of the electrode material can be greatly reduced, in addition to
the electroanalytical advantages noted above.

6.5 Diffusional ‘Cases’

Problem

The work of T.J. Davies et al. [J. Solid State Electrochem. 9 (2005) 797] identified
four diffusional cases which arise at microelectrode arrays. As time passes and
diffusion layers grow, the behaviour changes from one to the next. The cases are:

Case 1: Predominantly planar diffusion to isolated electrodes.
Case 2: Predominantly convergent (radial) diffusion to isolated electrodes.
Case 3: Limited overlap between diffusion layers to neighbouring electrodes.
Case 4: Near complete overlap between diffusion layers to neighbouring elec-

trodes; overall planar diffusion layer to the array.

(i) For each case, explain what a typical voltammogram will look like and
what equations, if any, may be used to analyse chronoamperometry
and cyclic voltammetry at this timescale.

(ii) Why, in practice, is ideal Case 4 behaviour sometimes not observed
even at a densely packed array?

Solution

(i) Case 1: If the electrode is isolated and the timescale is sufficiently short that
diffusion can be considered planar, then the analysis in Chapter 4 applies.

The Cottrell equation can be used for chronoamperometry (I ∝ t− 1
2 ) and

the Randles–Ševčík equation can be used for cyclic voltammetry (Ipf ∝ v
1
2 ),

in which the area, A, in these equations is the total electroactive area of the
array. We expect the voltammetry to be ‘peak shaped’.

Case 2: If the electrode is isolated but the timescale is long enough that
diffusion is convergent, the analysis in Chapter 5 applies. Therefore, a chrono-
amperometric transient tends to a steady-state current (Iss = 4nFc∗Dre
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for a microdisc), and the voltammogram will be sigmoidal with negligible
hysteresis, tending to an equivalent steady-state current at high overpotential.

Case 3: If diffusion layers overlap, neighbouring electrodes will shield each
other’s diffusion zones. Therefore, the current at each electrode will be
less than predicted by the steady-state equation for Case 2. Additionally,
the voltammetry is slightly peak-shaped, since depletion at the boundaries
between diffusional zones associated with each electrode will limit diffusion-
controlled current. No simple analytical expressions exist for this regime,
and therefore numerical simulation is essential.

Case 4: Once overlap is total between diffusion layers, the behaviour of an
individual electrode no longer impacts upon the voltammetry. Rather, diffu-
sion occurs to the array as a whole. Since the array is typically macroscale,
we can use the Cottrell equation and Randles–Ševčík equations as in Case 1.
However, the area is now the total array area Aarray rather than just the area
of the electroactive components.

Additionally, the apparent heterogeneous rate constant is altered in Case 4,
since the size and distribution of the electrodes where the reaction is taking
place does not correlate directly to the overall planar electrode assumed with
a one-dimensional theory. According to the theory due to C. Amatore et al. [J.
Electroanal. Chem. 147 (1983) 39], the apparent k0 on the basis of assuming
a homogeneous surface is given by k0

eff = k0(1 − �) where � is the surface
coverage.

(ii) Case 4 behaviour requires that the electrodes in a dense array are quite reg-
ularly distributed and that they are electroactive. If, as may often occur in
practice, the electrodes have been clustered in a random array due to a poor
lithographic manufacturing technique, or ‘dead’ (unconnected) electrodes
occur in blocks rather than in a random distribution, there may be signifi-
cant areas in which no electroactive sites exist, even if the overall coverage is
relatively high.

In this case, the gaps between electroactive sites will not be filled by expand-
ing diffusion layers as quickly as in areas where all electrodes are active, and
so the current is proportionally reduced from that predicted by Case 4 theory.
See also the discussion on partially blocked electrodes (Problem 6.8).

6.6 Geometry of a Regular Array

Problem

Suppose that a microdisc array consists of a hexagonal array of microdiscs separated
by insulating material, each disc having radius re = 1 µm, and a line-of-centres
separation between discs of 10 µm.
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(i) Calculate the area of one unit cell.
(ii) What is the proportional coverage of electrode material?

(iii) Using the diffusion domain approximation, at what radius in a cylindrical
simulation space should a symmetry boundary be applied?

(iv) Assuming a diffusion coefficient of D = 10−5 cm2 s−1, on what timescales
might each of the behaviours of diffusional Cases 1 to 4 be expected?

Solution

(i) Each unit cell is a hexagon with a centre-to-edge distance of h = 5 µm (or,
equivalently, the rhombic unit cell in Fig. 2.2). The area of the unit cell is six
times the area of an equilateral triangle with this height and base b:

Acell = 6 × bh

2
= 6 × 1

2
× h ×

(
2h tan

(π

6

))
= 2

√
3 × h2

= 86.6 µm2 = 8.66 × 10−11 m2

(ii) The coverage, �, is the ratio of electroactive surface area to total surface area,
or, equivalently, the area of one disc electrode to the area of its unit cell. Since
the area of the disc electrode is simply Ael = πr2

e , the coverage is:

� = π × 12

86.6
= 0.036

i.e. about 3.6% of the total surface area is electroactive.
(iii) Taking into account distance perpendicular from the electrode array (the z-

axis), the unit cell is a hexagonal prism which does not have a symmetry that
can be simulated by just a two-dimensional plane. Therefore, the diffusion
domain approximation is used to approximate this unit cell to a cylinder with
an equivalent basal area. If the diffusion domain has a radius rDD:

πr2
DD = Acell

and so

rDD =
√

Acell

π

= 5.25 µm

If we apply a zero-flux boundary at r = rDD, it is approximately equivalent to
simulating an infinite hexagonal array described as above, but the simulation
involves a two-dimensional space rather than a three-dimensional space, and
therefore is much faster. Extensive studies have shown this approximation to
be accurate for the purpose of analysing many experiments.
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(iv) The transition from Case 1 to Case 2 occurs when the radial term in diffusion
becomes dominant. According to the theories set out in Chapter 5, this arises
when

t � r2
e

D
≈ 1 ms

Therefore, Case 1 behaviour (the Cottrell/Randles–Ševčík regime) is only
significant for this example at timescales less than a millisecond, as would be
expected for a microdisc electrode.

The transition from Case 2 to Case 3 occurs with diffusion layer overlap,
which will occur after diffusion layers from each electrode have extended
about 5.25 µm and therefore encountered each other and begun to shield each
other’s diffusion zones. Since the mean diffusion layer extent in any direction
is xdiff ≈ √

2Dt , to diffuse a characteristic distance of 5.25 µm requires:

t ≈ x2
diff

2D
≈ 14 µs

Therefore, a true Case 2 behaviour (steady-state voltammetry to an isolated
microdisc) is not likely to be observed, since diffusion layers will interact for
this array after only tens of microseconds.

When diffusion layers overlap by a large amount, an overall planar response
will be expected, but with a characteristic area equivalent to the total array
surface area rather than just the electroactive surface area. Hence, the Case 4
current will be (1/�) times larger than the Case 1 current. This will occur
when xdiff � d where d is the separation of the individual microdiscs. There-
fore, Case 4 behaviour arises at t � 0.1 s. This will therefore be the domi-
nant behaviour for cyclic voltammetry at normal scan rates at this particular
array. With chronoamperometry, short timescales are accessible and so Case
3 behaviour may also be observed.

6.7 Analysis of Diffusion to Electrode Arrays

Problem

(i) I. Streeter et al. studied BPPG electrodes modified with palladium-covered car-
bon microspheres [J. Phys. Chem. C 111 (2007) 17008]. The results showed that
for a fractional coverage of � = 0.445, voltammetry at the array obeyed the
Randles–Ševčík equation exactly, but for � = 0.115 and below, the Randles–
Ševčík equation was obeyed only for scan rates less than 50 mV s−1.
Explain these results.

(ii) In their study of the activity of highly ordered pyrolytic graphite electrodes
(see Problem 6.3), C.E. Banks et al. showed that for voltammetry at a basal
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plane HOPG electrode, a ‘best fit’, using the one-dimensional diffusion pro-
gram DigiSim, underestimated the diffusional tail of the forward peak and
overestimated the magnitude of the reverse peak. It was proposed that this
showed that only nanoscale ‘edge plane’ sites separating the basal planes were
electroactive – how does this explain the observed voltammetry?

Solution

(i) When a BPPG electrode is modified with a high coverage of electroactive
palladium-covered carbon microspheres, which may be assumed to be ran-
domly distributed, the spacing between neighbouring electroactive sites is
short with respect to the distance diffused by the reactant in a typical cyclic
voltammetry experiment. Therefore, individual diffusion zones do not impact
on the voltammetry, and the diffusion layer is approximately planar due to
overlap of diffusion zones from neighbouring microspheres. This is Case 4
behaviour – the Randles–Ševčík equation is obeyed.

For lower coverages at fast scan rates, the overlap between neighbouring
diffusion zones is not total because these are more distantly spaced than for
high coverage. Therefore, the diffusion layer is not ideally planar and a lower
current is observed than expected from the Randles–Ševčík equation since
some material between the electrodes will not react. At slower scan rates,
however, the diffusion zone is larger since the experimental timescale is longer,
and so fuller overlap is attained. Therefore we see a scan rate dependent
transition from Case 3 to Case 4 behaviour.

(ii) The enhanced diffusional tail in the forward peak arises because the active edge
plane sites are much smaller than the electrode itself, as would be simulated
in DigiSim. Therefore, DigiSim does not consider the elevated rate of mass
transfer to the very small edge plane sites, in which convergent diffusion is
much faster than the planar diffusion towards the electrode as a whole. As a
consequence, the kinetics of the electron transfer process may become rate-
limiting at the edge plane sites themselves. This leads to overall irreversibility
and an altered waveshape from the best fit using DigiSim.

The loss of current in the reverse peak reflects Case 4 behaviour: some
material is likely to be lost to the region between edge plane sites during
the scan, and because electroactive material is not present across the entire
electrode, it is possible that some of this material is not converted back to
starting material during the scan. Additionally, the change in shape of the
voltammogram as a whole may reflect a distribution of diffusion domain
sizes: there may be some which are very close together and some which are
sparse, and so the summation of voltammetry reflecting different diffusional
behaviours distorts the voltammetry.
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The correctness of the edge plane activity model for HOPG electrode kinet-
ics is best justified by the close correlation of experiment and two-dimensional
simulated voltammetry, using the diffusion domain approximation.

6.8 Partially Blocked Electrodes

Problem

(i) How may the problem of a partially blocked electrode (PBE) be compared
to that of a microelectrode array? What conditions are there on the distri-
bution of a blocking adsorbate to ensure that it does not affect experimental
voltammetry?

(ii) The diffusion domain approximation was introduced by H. Reller et al.
[J. Electroanal. Chem. 138 (1982) 65] to analyse partially blocked electrodes.
Explain how this approximation simplifies the task of simulating such an
electrode.

(iii) Almost all electrode surfaces are ‘rough’ at some length scale. Why is a rough
electrode similar to a partially blocked electrode? Why might we expect that
roughness on the scale of a few nanometres will not affect the observed cyclic
voltammetry?

Solution

(i) For both an array and a PBE there exist regions of electroactivity separated by
regions of insulating material. So long as the separation between neighbouring
sites of electroactivity is short compared to the distance which the electroactive
species can diffuse on the experimental timescale, the presence of insulator
does not constrain the ability of this species to reach a site of electrolysis, and
therefore the current is largely unaffected.

This criterion means that the behaviour of a PBE is critically controlled by
the distribution of the blocking adsorbate. If the blocking adsorbate is con-
centrated in a macroscale region, the current will be significantly diminished
since this region cannot be diffused across during the experiment, and there-
fore any electroactive species near it at the beginning of the experiment will
not be able to react. By contrast, if blocking adsorbate is distributed in regions
with dimensions of the order of microns, the electroactive species initially
adjacent to it is not prevented from reaction, since it can diffuse towards an
electroactive site during the experiment.

(ii) The diffusion domain approximation assumes that the partially blocked elec-
trode can be simulated like an array of microdiscs, and so each electrode has a
recognised ‘domain’ of solution closer to it than any other electrode. Then an
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extended array can be simulated by recognising that since each domain within
the array behaves equivalently, the flux of any species across the boundary
between neighbouring domains must be zero.

Therefore, it suffices to model a single domain and to multiply the result
by the number of domains on the electrode surface. The simulation is further
simplified by the associated approximation that the domain can be treated
as a cylinder with equal basal area to the actual domain, so only a two-
dimensional ‘slice’ needs to be simulated, which is much easier than the full
three-dimensional problem.

(iii) D. Menshykau et al. [J. Phys. Chem. C 112 (2008) 14428] discussed the the-
ory of electrode roughness. A rough electrode is comparable to a partially
blocked electrode since some regions – wells and troughs – are less accessible
to the electroactive species than peaks on the surface. However, so long as
the roughness occurs on nanometre length scales, as is typical, the diffusional
Case 4 applies at almost all timescales since diffusional distances are large with
respect to defect size. Therefore, the cyclic voltammetry is independent of the
roughness and only reflects diffusion to the overall electrode area.
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Cyclic Voltammetry: Coupled
Homogeneous Kinetics

and Adsorption

7.1 EE Mechanism and Comproportionation

Problem

Consider the following mechanism:

A + e− � B E�
f ,A/B

B + e− � C E�
f ,B/C

A + C
kf� 2B Keq

(i) Derive an expression for Keq as a function of the formal potentials E�
f ,A/B and

E�
f ,B/C.

(ii) Assuming E�
f ,A/B � E�

f ,B/C, how will the value of the forward rate constant (kf )
for the chemical step affect the measured voltammetric response? Assume that
all the diffusion coefficients are equal, the diffusion is linear and semi-infinite
and the electron transfer rate is fast (i.e. reversible).

Solution

(i) We know that

Keq = exp

[
−�G�

RT

]

123
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for the case in question

�G� = �G�
1 − �G�

2

where

�G�
1 = −FE�

f ,A/B

�G�
2 = −FE�

f ,B/C

Thus we can write

Keq = exp

[
− F

RT

(
E�

f ,B/C − E�
f ,A/B

)]

Given that E�
f ,A/B � E�

f ,B/C, this means that the comproportionation step will
be highly favourable, since in this case Keq � 1.

(ii) Under the conditions outlined in the problem the effects of the compropor-
tionation process are not observable in a voltammetric experiment. For a
mathematical proof of this point the reader should refer to Problem 4.13.

7.2 EE mechanism: The Reduction of [(η6-C6Me6)2Ru][BF4]2

Problem

The reduction of [(η6−C6Me6)2Ru][BF4]2 is known to be a two-electron process in
acetonitrile with 0.5 M Bu4NPF6 at a platinum electrode. Simulated voltammetry
for this system is depicted in Fig. 7.1; the values for this simulation were taken from
D.T. Pierce and W.E. Geiger [J. Am. Chem. Soc. 111 (1989) 7636]. At low scan rates,

Fig. 7.1 Simulated voltammetry for the reduction of (η6−C6Me6)2Ru2+ at a Pt electrode
at low (0.2 V s−1) and high (10 V s−1) scan rates.
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one near-reversible voltammetric feature is observed which corresponds to the
two-electron reduction of (η6−C6Me6)2Ru2+ to (η6−C6Me6)(η4−C6Me6)Ru. At
high scan rates, two peaks are seen in both the forward and reverse scans.

(i) Explain the observed change in the voltammetry. What does this tell us about
the structural change associated with the reduction? Write down chemical
equations associated with these electron transfers.

(ii) In order to fully describe this system it is necessary to include the dispropor-
tionation step. The rate of disproportionation has been measured to have a
relatively low value of 6 × 104 M−1 s−1. In the absence of the disproportiona-
tion step, the oxidation peak Ox1 decreases in height and the oxidation peak
Ox2 increases in height; these peaks are indicated in Fig. 7.1. Note that the
conditions outlined in Problem 7.1 do not hold here as the electron transfers
are not both fully reversible (at high scan rate) and the diffusion coefficients
for the oxidised and reduced species differ. Explain this observation and write
an equation for the disproportionation mechanism.

(iii) What would the voltammetry look like for this system, if the rate of dispro-
portionation were far larger (i.e. diffusionally controlled, ∼ 1010 M−1 s−1).

Solution

(i) At high scan rates the voltammetric wave for the reduction of the ruthenium
complex splits into two peaks. This results from the rate of the second electron
transfer being substantially lower than that of the first.

This experiment is significant for two reasons. First, it provides direct evi-
dence that the electron transfer should be viewed as occurring in two discrete
steps, and not in a concerted manner.

Second, that the reduction of the monocation species to the neutral species
is substantially slower than the first electron transfer strongly implies that the
transfer of the second electron results in a large conformational change. It is
at this point that one of the arene ligands changes its bonding from η6 to η4,
where the term η refers to the hapticity of the ligand. This means that the
bonding changes such that four rather than six p-orbitals on carbon atoms are
involved in bonding to Ru. Accordingly the heterogeneous electron transfer
steps are:

(η6−C6Me6)2Ru2+ + e− � (η6−C6Me6)2Ru+

(η6−C6Me6)2Ru+ + e− � (η6−C6Me6)(η4−C6Me6)Ru

(ii) In the reverse scan of the voltammogram, the peak Ox1 corresponds to the
one-electron oxidation of the monocation, (η6−C6Me6)2Ru+, to the dication,
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(η6−C6Me6)2Ru2+. Peak Ox2 corresponds to the two-electron oxidation
of the neutral species, (η6−C6Me6)(η4−C6Me6)Ru, to the dication. In the
absence of a chemical step during the forward scan, all of the electroactive
material at the electrode has been reduced to the neutral species, and hence no
peak is observed at Ox1. It is not until Ox2 that the oxidation of the neutral
species may occur due to the overpotential associated with the slow oxidation
of (η6−C6Me6)(η4−C6Me6)Ru to (η6−C6Me6)2Ru+.

The disproportionation reaction is:

2(η6−C6Me6)2Ru+ � (η6−C6Me6)2Ru2+

+ (η6−C6Me6)(η4−C6Me6)Ru

In the case where this reaction occurs, the concentration of (η6−C6Me6)2Ru+
becomes non-zero, and hence a peak is observed at Ox1.

(iii) Where the disproportionation step is fast, a single voltammetric wave will
be observed even at high scan rates. On the forward scan, the monocation
formed by the first reduction may undergo rapid disproportionation to form
the neutral and dication species. This recovered dication may then undergo
further reduction. Overall this results in the process being a two-electron
reduction of the dication.

On the reverse scan the neutral species produced is able to undergo com-
proportionation with the dication species, forming the monocation which is
more rapidly reduced at the electrode surface than the neutral species. Again
this results in an overall two-electron process.

7.3 EC2 Mechanism: The Reduction of the 2,6-Diphenyl
Pyrylium Cation

Problem

Figure 7.2 depicts simulated voltammetry for the reduction of 2,6-diphenyl
pyrylium (DPP+) in an acetonitrile solution at various scan rates, ranging from
102 to 105 V s−1. This system is described as being an EC2 process.

(i) What do the terms E and C2 stand for?
(ii) Explain the observed change in the voltammetric wave as a function of scan

rate. How would you expect its shape to change as a function of the concen-
tration of DPP+?
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Fig. 7.2 The simulated voltammetry for the reduction of 2,6-diphenyl pyrylium at various
scan rates.

Solution

(i) The reaction is described as being an EC2 mechanism, which means that it
involves an electron transfer step (E) which is followed by a bimolecular chem-
ical step (C2), according to the notation due to A.C. Testa and W. Reinmuth
[Anal. Chem. 33 (1961) 1320].

(ii) The reduction of DPP+ is known to proceed via the following mechanism:

DPP+ + e− � DPP·

2DPP· k−→ (DPP)2

Using this mechanism we may explain the observed voltammetry. At scan rates
which are slow compared to the chemical step (100 V s−1), as the DPP+ is
reduced it is able to undergo the chemical step and form the species (DPP)2.
As (DPP)2 is not electroactive within the experimental potential window, no
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peak is observed on the reverse scan leading to an irreversible voltammetric
signal.

As the scan rate increases, the chemical process becomes relatively slow
on the timescale of the experiment. Consequently, at very high scan rates
(105 V s−1) the chemical step is outrun by the voltammetric scan, and a reverse
peak is observed. Because the DPP· is not consumed by the chemical reaction
in the course of the scan, this reverse peak corresponds to the reoxidation of
DPP· to DPP+.

The simulated data shown are for a 1 mM solution of DPP+. It should be
noted that the chemical step is bimolecular in nature. Hence, if the concen-
tration of DPP+ were lowered, this would lead to a proportionally lower rate
of formation of (DPP)2 and as such one would expect to observe a peak on
the reverse scan at lower scan rates. Conversely, if the concentration of the
species were increased, this would lead to an increase in the rate of formation
of (DPP)2 and hence one would expect to see an irreversible voltammetric
wave at higher scan rates.

7.4 Analysis of an Unknown Reaction Mechanism

Problem

Species A was studied using cyclic voltammetry at a range of scan rates. The first
step is known to be a one-electron oxidation:

A � B+ + e−

The resulting voltammetry is shown in Fig. 7.3.

(i) How does the scan rate dependence of the voltammetry suggest possible
follow-up kinetics?

(ii) On the assumption that the mechanism is EC or EC2, how might the order of
the chemical step be determined voltammetrically?

(iii) How might the possible influence of adsorption be discounted?

Solution

(i) The disappearance of the back peak at low scan rates indicates that the product
of the oxidation of A is being consumed by a chemical reaction, such that it
is no longer present in solution near to the electrode in order to be reduced
in the reverse sweep.

The consumption of the product also accelerates the initial electron transfer
reaction by Le Chatelier’s principle, thereby explaining the slight shift of the



November 29, 2011 9:53 spi-b1239 Understanding Voltammetry: Problems and Solutions b1239-ch07

Cyclic Voltammetry: Coupled Homogeneous Kinetics and Adsorption 129

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8
I

A
-1

v-1
/2

/

µA
m

-2
V

-1
/2

s1/
2

E - E
0

f
/ V

[A]
0

= 1 mM

v = 25 mV s-1

v = 250 mV s-1

v = 2.5 V s-1

Fig. 7.3 Appropriately normalised voltammetry for the species A under analysis, showing
the influence of follow-up kinetics.

forward peak to a lower potential. The variation of the size of the back peak
with scan rate indicates that the chemical kinetics of this chemical step are
comparable to the timescale of the voltammetric experiment.

(ii) Because the EC2 process has second-order kinetics in the chemical step, the
absolute concentration of the electroactive species will affect the voltammetric
response, other than by scaling. In an EC2 process, an increased concentration
of A yields an increased concentration of the product B, and hence since the
rate of B depletion is proportional to [B]2, this depletion will occur more
rapidly at elevated initial concentration, [A]0.

This can be demonstrated by dimensional analysis of the rate equations.
Suppose:

∂[A]
∂t

= −k1[A]
or

∂[A]
∂t

= −k2[A]2

Introducing a normalised time τ = (F/RT ) vt and a normalised concentra-
tion c = [A]/[A]0:

∂c

∂τ
= −K1c

or
∂c

∂τ
= −K2c2
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where

K1 = k1 × RT

Fv

K2 = k2 × [A]0 × RT

Fv

thus clarifying that the EC2 voltammetry depends on [A]0 (in a manner other
than just scaling the current).

Hence if the mechanism is EC2, the size of the back peak relative to the
forward peak will vary with concentration; this is not the case for an EC
process.

(iii) Adsorptive processes tend to have somewhat different waveshapes due to the
different interplay of exhaustion of electroactive material with increasing rate

of reaction at the electrode surface. In particular, Ipf ∝ v rather than Ipf ∝ v
1
2

is characteristic of adsorption of A, as is total collapse of current at high
overpotential due to complete exhaustion of the electroactive material. Of
course, numerical simulation is the best way to compare different mechanisms
in this way, since experimental voltammetry can be compared with a variety
of mechanisms and ‘best fit’ can be used to infer the likely mechanism.

7.5 EC Mechanism: Diethyl Maleate

Problem

Figure 7.4 depicts the simulated voltammetric response for the reduction of diethyl
maleate (DEM) at three different scan rates. It should be highlighted that in order to
allow direct comparison of the voltammograms, the current has been normalised
with respect to the square root of the scan rate. DEM consists of a double bond
where the ester groups are situated cis to each other. The stereoisomer of DEM is
diethyl fumarate (DEF) where the ester groups are situated trans to each other, as
shown in Fig. 7.5. The reduction potential for DEF is known to be less negative
than that of DEM.

(i) Explain the observed shift in the reverse peak position as a function of scan
rate.

(ii) Explain the observed increase in the forward peak height and its shift to a less
negative potential at low scan rates.

(iii) How many voltammetric peaks would you expect to observe (at 0.1 V s−1) if
a second scan was run directly after the first scan? Sketch your answer.
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Fig. 7.4 The simulated cyclic voltammograms at various scan rates for the reduction of
DEM at a macroelectrode. The current has been normalised with respect to the square root
of scan rate.

H CO2Et

CO2EtH

DEM

H CO2Et

HEtO2C

DEF

Fig. 7.5 Chemical structures for DEM and DEF.

Solution

The reduction of DEM is known to proceed via the following mechanism:

DEM + e− � DEM·− E�
f = −1.58 V

DEM·− k−→ DEF·−

where the one-electron reduction of DEM is followed by a chemical step in which
the radical anion is able to freely rotate around the central carbon–carbon bond,
and hence is able to form the less sterically hindered isomer (DEF). The DEF·−
that is produced may be reoxidised at a less negative potential:

DEF + e− � DEF·− E�
f = −1.38 V

Using this mechanism we may now explain the observed voltammetry shown in
Fig. 7.4.
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(i) At high scan rates (e.g. 1000 V s−1) the chemical step is relatively slow on
the timescale of the experiment, such that only one voltammetric signal is
observed. This reversible wave corresponds to the direct reduction of DEM
to its radical anion and the reoxidation of this species on the reverse scan.

As the scan rate is lowered, the DEM·− is able to isomerise to form DEF·−.
The oxidation of DEF·− corresponds to the voltammetric peak at −1.36 V
on the reverse scan, and hence at the intermediate scan rate (10 V s−1) a
mixture of products is formed by partial isomerisation, leading to two peaks
being observed on the reverse scan.

At low scan rates (0.1 V s−1) the majority of the DEM·− is converted to its
isomer DEF·− before the reverse sweep, and so only one voltammetric feature
is observed on the reverse scan, situated at −1.36 V.

(ii) The influence of the chemical step upon the electrochemical reduction of
DEM has both thermodynamic and kinetic implications. Thermodynami-
cally the presence of the chemical step lowers the formal potential of the
redox system. This may be exemplified through consideration of the Nernst
equation:

E = E�
f − RT

F
ln

[DEM·−]
[DEM] (7.1)

The DEM·− formed is consumed by the chemical step such that, at equilib-
rium, we can write

[DEM·−] = [DEF·−]
Keq

where Keq is the equilibrium constant for the chemical step. Inclusion of this
into the Nernst equation given in Eq. 7.1 gives

E = E�
f − RT

F
ln

[DEF·−]
Keq[DEM]

Inspection of this equation allows us to see that as the equilibrium constant for
the chemical step increases the associated equilibrium potential for the redox
couple will become less negative, i.e. the species becomes easier to reduce
leading to a positive shift in the voltammetric peak position.

The above discussion is based upon the system being at equilibrium. Kinet-
ically speaking, the reduction of DEM is reversible and so the flux measured
on the forward scan may be described by the following equation:

J = k0 exp

[−αF

RT
(E − E�

f )

]
[DEM]0

− k0 exp

[
(1 − α)F

RT
(E − E�

f )

]
[DEM·−]0
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Fig. 7.6 Simulated first and second cyclic voltammograms for the reduction of DEM at a
macroelectrode at 0.1 V s−1.

where J is the flux, k0 is the standard electrochemical rate constant, E�
f is the

formal electrochemical potential for DEM and [i]0 is the concentration of
species i at the electrode. Due to k0 being large, both terms will contribute
to the net flux. At slower scan rates the concentration of DEM·− is lowered
due to the presence of the chemical process (isomerisation). This leads to an
increase in the net flux and subsequently the normalised peak current (with
respect to square root of scan rate) is increased.

(iii) On the first cycle of the low scan rate voltammogram (at 0.1 V s−1), a signifi-
cant quantity of DEF has been formed at the electrode surface. Consequently,
if a second cycle is performed, one would expect to see two peaks in the for-
ward scan: one due to the reduction of DEF adjacent to the electrode that
was generated in the first cycle, and the other from the reduction of further
DEM diffusing towards the electrode from bulk solution. Figure 7.6 shows the
simulated voltammograms for the first and second cycles for the reduction of
DEM at a scan rate of 0.1 V s−1.

7.6 ECE Mechanism: p-chlorobenzonitrile

Problem

An ECE mechanism is similar to that in Problem 7.3, except the product of
the chemical step is electroactive and is able to undergo a further electron
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transfer. An example of this is found with the reduction of p-chlorobenzonitrile
(Cl–C6H4–CN) which is able to undergo the following mechanism:

Cl–C6H4–CN + e− � Cl–C6H4–CN·− E�
f = −1.96 V

Cl–C6H4–CN·− + H· → C6H5–CN + Cl−

C6H5–CN + e− � C6H5–CN·− E�
f = −2.32 V

where H· is abstracted from the solvent. The chemical step is highly thermody-
namically driven and its kinetics are fast.

Sketch the voltammetry for the reduction of Cl–C6H4–CN at high, medium
and low scan rates (relative to the rate of the chemical step).

Solution

Figure 7.7 shows three simulated voltammograms for the reduction of Cl–C6H4–
CN various scan rates. At a high scan rate (Fig. 7.7(a)), only one reversible voltam-
metric wave is observed, at ≈ −1.96 V. This corresponds to the reduction and
reoxidation of the Cl–C6H4–CN species. Due to the high scan rate, the rate of the
chemical step is slow on the timescale of the experiment, such that none of the
Cl–C6H4–CN·− formed on the forward scan reacts via the chemical process to
form C6H5–CN.

In contrast, at relatively low scan rates (Fig. 7.7(c)) the forward reductive
scan exhibits two reductive peaks situated at ≈ −1.96 V and ≈ −2.32 V. The first
voltammetric wave corresponds to the reduction of the Cl–C6H4–CN species to
Cl–C6H4–CN·−. Due to the relatively low scan rate this species is able to fur-
ther react within the voltammetric scan, to form C6H5–CN. Hence the C6H5–CN
now present adjacent to the electrode may be further reduced to C6H5–CN·− at
≈ −2.32 V. On the reverse scan the C6H5–CN·− is reoxidised leading to a peak.

(a) (b) (c)

Fig. 7.7 Simulated voltammetry for the reduction of Cl–C6H4–CN at (a) fast (b) medium
and (c) low scan rates, where the scan rates have been described relative to the rate of the
chemical step.
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No peak is observed on the reverse scan for the oxidation of Cl–C6H4–CN·−.
This is because the chemical step is both irreversible and fast (on the timescale of
the experiment), and hence any Cl–C6H4–CN·− present has been consumed to
form C6H5–CN.

At intermediate scan rates (Fig. 7.7(b)), both redox couples are observed. This
arises due to the fact that the chemical step is unable to go to completion over the
timescale of the experiment. Hence after the forward scan both C6H5–CN·− and
Cl-C6H4–CN·− are present in solution close to the electrode.

7.7 ECE vs DISP 1: Voltammetry of Fluorescein

Problem

The ECE (Eq. 7.2) and DISP 1 (Eq. 7.3) mechanisms for the reduction of fluorescein
(F) are as follows [R.G. Compton et al., J. Chem. Soc. Faraday Trans. 1, 84 (1988)
2057]:

F + e− � F·−

F·− + H+ → FH· (7.2)

FH· + e− � FH−

F + e− � F·−

F·− + H+ → FH· (7.3)

F·− + FH· � F + FH−

(i) Given that E�
f is more negative for the reduction of F than for the reduction

of FH·, justify that the disproportionation reaction in the DISP 1 mechanism
is thermodynamically favoured.

(ii) Explain qualitatively why the voltammetry of these two processes is almost
equivalent, if the protonation step is rate-determining.

(iii) Double potential step chronoamperometry has been employed to explore the
mechanism. The first step is to a potential sufficient to drive the two-electron
reaction, and the second step was to a potential intermediate between the two
reduction potentials.

Explain why double potential step chronoamperometry is able to distin-
guish between the two mechanisms. Include a sketch of the concentration
profiles immediately before the second step.

Solution

(i) We can write the homogeneous reaction as the sum of the oxidation of F·−
to F (denoted as reduction (1) below), and the reduction of FH· to FH−
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(denoted as reduction (2) below).

�G� = −�G�
1 + �G�

2 = nFE�
f ,1 − nFE�

f ,2

= F(E�
f ,1 − E�

f ,2)

If E�
f ,1 < E�

f ,2, �G� is negative, and so the reaction is thermodynamically
favoured.

(ii) In both mechanisms, the rate-determining step is the generation of FH· by
the protonation of the fluorescein radical anion. This protonation will occur
at a rate proportional to the concentration of the radical anion and, assuming
a roughly uniform proton concentration in the solution, will take place across
the developing diffusion layer of the radical anion. Therefore, the voltammetry
in either case will depend on the rate at which FH· is generated, since this
species is rapidly reduced once present in solution close to the electrode
surface.

In either the ECE or DISP 1 case, the generation of FH· is rate-limiting.
The current is therefore controlled by the transport of F to the surface and its
protonation, but not by the exact mechanism by which the second electron is
transferred. This is because in a potential sweep experiment it is impossible
to probe the potential region between the reduction potential of FH· and the
reduction potential of F, under conditions where FH· is present in solution.

(iii) This latter difficulty can be resolved using a chronoamperometric method.
If FH· reacts principally by heterogeneous electron transfer at the electrode

surface (ECE), its concentration will be depleted there, but depending on the
rate at which it is generated, some of the radical anion may have diffused
away from the electrode before protonation. Therefore, FH· is also generated
further from the electrode and will diffuse back towards it to react.

By comparison, if the disproportionation reaction between F·− and FH· is
fast (DISP 1), the radical FH· will be consumed as soon as generated whether
close to the electrode or not, since the presence of F·− is a pre-condition for
its formation, and therefore it will rapidly disproportionate with a further
molecule once formed.

Consequently, at some short time after a potential step to a potential where
the reduction of fluorescein is fast, there is likely to be some FH· present
in solution if the disproportionation reaction is inactive (ECE), but not if
this reaction is fast (DISP 1). On a further potential step to an intermediate
potential where the reduction of FH· is still driven, but now the oxidation of
F·− back to F is driven, the current will be purely oxidative in the absence
of FH·, but will be compensated by some reductive current if this species is
present.
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Fig. 7.8 Schematic concentration profiles following a potential step to a potential where
the full conversion from F to FH− is driven, under an ECE (top) and a DISP 1 (bottom)
mechanism.

Sketches shown at Fig. 7.8 show how the radical intermediates are retained
in ECE since the overall F to FH− transition only occurs at the electrode,
whereas in DISP 1, FH· is depleted everywhere by its fast reaction with F·−.

This allows the cases to be distinguished as the absolute currents will be
more negative in the DISP 1 case. In practice, it is sensible to use a simulation
program to compare experimental data with the simulated chronoampero-
gram to assess whether the difference is significant to within experimental
error.

7.8 Reduction of Anthracene in DMF

Problem

The reduction of anthracene (abbreviated A, C14H10, Fig. 7.9) in the aprotic solvent
dimethylformamide (DMF) has been studied by B.S. Jensen et al. [J. Am. Chem. Soc.
97 (1975) 5211]. The comparative voltammetry in the presence of differing con-
centrations of phenol has been discussed by J.-M. Savéant in Elements of Molec-
ular and Biomolecular Electrochemistry [(2006) John Wiley and Sons]. Exemplar
voltammetry is given in Fig. 7.10.
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Fig. 7.9 Anthracene.
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Anthracene in dry DMF
+ excess phenol
Anthracene in dry DMF

Fig. 7.10 Cyclic voltammetry of anthracene in dry DMF in the presence and absence of
excess phenol. Note that current and potential are plotted on a negative axis, i.e. the forward
wave is cathodic.

(i) Discuss why the presence of phenol in an otherwise aprotic solvent can cause
such drastic changes in the voltammetry.

(ii) C. Amatore et al. [J. Electroanal. Chem. 107 (1980) 353] explored a possible
DISP 1 mechanism in the presence of phenol using the double potential step
chronoamperometry method discussed in Problem 7.7. What thermodynam-
ically favoured disproportionation reaction might compete with the direct
reduction of AH·?

(iii) Why would one expect the formal reduction potentials of A and AH· to be
ordered such that this disproportionation is favourable?

Solution

(i) In an aprotic solvent, the reaction mechanism is straightforward:

A + e− E�
f ,1� A·−

A·− + e− E�
f ,2� A2−

where A is anthracene, A·− is the anthracene radical anion and A2− is
the anthracene dianion. Each reduction is successively less favourable, such
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that E�
f ,2 � E�

f ,1. Therefore, two widely separated reversible electrochemical
waves are observed, as expected for an EE mechanism. It is possible that the
favourable comproportionation reaction between A and A2− may contribute,
although this would not be observable in the voltammetry, as discussed in
Problem 4.13.

The addition of phenol provides a source of protons and therefore disrupts
the EE mechanism by introducing possible irreversible follow-up kinetics. In
particular, the anthracene radical anion is prone to protonation:

A·− + PhOH → AH· + PhO−

The resulting AH· radical is more easily reduced than anthracene, and there-
fore is rapidly reduced and protonated again to yield AH2. The initial proto-
nation is rate-determining for the overall two-electron transfer, and so both
electron transfers are observed in a single voltammetric wave, which may be
shifted to more positive potentials by accelerating the protonation process,
e.g. by elevating the concentration of phenol.

Because the product AH2 (Fig. 7.11) is neither acidic nor electroactive in
the potential range studied, its formation is electrochemically irreversible. In
the presence of phenol, no peaks are observed in the reverse sweep of the
voltammogram, indicating that electroactive product materials such as A·−
are fully depleted by the coupled homogeneous chemistry.

(ii) The protonation of the radical anion A·− generates a radical AH· which can
undergo disproportionation with that anion:

A·− + AH· � A + AH·−

As discussed in Problem 7.7, conventional voltammetry cannot distinguish
this reaction from the case where AH· reacts heterogeneously to gain an
electron at the electrode surface, followed by further protonation to form
AH2. The disproportionation is thermodynamically favoured if E�

f ,A < E�
f ,AH·.

Fig. 7.11 9,10-dihydroanthracene.
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Fig. 7.12 9-hydroanthracene radical.

The results from the double potential step chronoamperometry experi-
ments indicated unequivocally that DISP 1 is fast for the case of anthracene
in DMF.

(iii) The disproportionation is favourable if the reduction of AH· occurs at a
higher formal reduction potential (more easily) than the reduction of A. It
is clear that this should be the case if we consider that anthracene contains a
14πe− system of delocalised electrons, which is aromatic and hence stabilised
according to the 4n + 2 Hückel rule. The addition of an electron causes the
loss of aromaticity in the system and hence is strongly thermodynamically
disfavoured.

By comparison, the radical species AH· already exists in a non-aromatic
13πe− form; the resonance structure of two separated 6πe− systems
(Fig. 7.12) and a localised radical on an sp2 carbon is also relatively stabilised
and therefore should predominate. The addition of a further electron to this
relatively localised orbital does not significantly alter the aromaticity of the
molecule or the general geometry and is therefore much less thermodynami-
cally disfavoured than anthracene reduction, such that its formal potential is
more positive.

Hence, the energy gained by oxidising the anthracene radical anion is
sufficient to reduce AH· and the disporportionation is thermodynamically
favoured.

7.9 CE Mechanism

Problem

Figure 7.13 depicts the voltammetric response for the reduction of a species which
proceeds by the following mechanism:

A
Keq
� B

B + e− � C
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Fig. 7.13 Simulated voltammetry for a CE mechanism where the value of Keq varies from

1 to 10−4.

Assume that the electrochemical reduction of B to C is fully reversible, and further
that the forward rate constant for the chemical step is very large, to ensure that
the species A and B are always at equilibrium on the timescale of the experiment.
Explain why the reversible voltammetric wave shifts negatively as the value of Keq

is decreased from a value of 1 to 10−4.

Solution

The shift in the voltammetric feature is mirroring the change in the equilibrium
potential of the reduction of B to C as a function of Keq. This may be shown
mathematically through consideration of the Nernst equation for the reduction of
B to C.

E = E�
f − RT

F
ln

[C]
[B]

where the concentration of B at equilibrium may be described by

[B] = Keq[A]

hence

E = E�
f − RT

F
ln

[C]
Keq[A] (7.4)

From Eq. 7.4, as the value of Keq is decreased, the apparent equilibrium potential
for the reduction of B to C becomes more negative.
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7.10 EC′ Mechanism

Problem

The following scheme defines an EC′ mechanism,

A + e− � B

B + X � A + Y

where A undergoes a one-electron reduction to form B, and B may then be reoxi-
dised to A by the species X. As such we may describe the overall system as being the
‘electrocatalytic’ reduction of X to Y, which is mediated by the A/B redox couple.

With the aid of sketches, describe how the voltammetric response of this system
will differ in the presence and absence of an excess of species X.

Solution

Figure 7.14 depicts the voltammetric response for the reduction of A to B both
in the presence and absence of species X. In the absence of the species X, the
voltammetric response is that for a reversible one-electron reduction (solid line).
In the presence of an excess of species X a large, irreversible voltammetric wave is
observed.

The increase in the peak current is due to the reoxidation of B to A by species X.
During the forward scan the A/B redox system cycles around such that it is possible
for any one molecule to be reduced at the electrode surface multiple times. The
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Fig. 7.14 Simulated voltammetry for an electrocatalytic reduction mechanism, in a potential
window from E − E�

f = +0.3 V to E − E�
f = −0.3 V.
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lack of a back peak is also explained by the re-oxidation of B to A by species X, so
that on the reverse scan the concentration of species B is nearly zero, and thus no
oxidation occurs at the electrode.

7.11 EC′ Mechanism: Cysteine and Ferrocyanide

Problem

The simulated voltammetry shown in Fig. 7.15 is for the catalytic oxidation of
cysteine to cystine at a boron-doped diamond (BDD) electrode, mediated by aque-
ous ferricyanide (1 mM Fe(CN)3−

6 ). The concentration of cysteine has been varied
between 0 and 0.5 mM. The mechanism for this system is shown below:

Fe(CN)4−
6 � Fe(CN)3−

6 + e−

Fe(CN)3−
6 + cysteine

k2−→ Fe(CN)4−
6 + 1

2
cystine

Numerical values for the simulation have been taken from the work by
O. Nekrassova et al. [Electroanalysis 14 (2002) 1464].

(i) Why does the ferro/ferricyanide redox couple exhibit slow kinetics on the
BDD electrode?

(ii) How may this system be used analytically?
(iii) Why, as the concentration of cysteine increases, does the magnitude of the

forward peak increase and that of the back peak decrease (as indicated by the
arrows on Fig. 7.15)?

Solution

(i) The electrochemical behaviour of BDD exhibits a number of unusual features.
Of prime importance is the fact that the material is a semiconductor, and,
consequently, the density of states available for electron transfer is substan-
tially less than that for a metallic electrode. From Marcus theory it is known
that the rate of electron transfer is proportional to the density of electronic
states in the electrode material [N.S. Lewis et al., Chem. Phys. 326 (2006) 15],
and hence, in general, far lower rates of electron transfer are observed with
BDD electrodes.

Another significant point is that adsorption to BDD is often very weak
or even non-existent, and, consequently, any electron transfer which usually
involves adsorption (i.e. an inner sphere mechanism) will exhibit low rates
of electron transfer. A final point should be made that the BDD surface may
be modified to be either hydrogen or oxygen terminated. An example of how
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Fig. 7.15 Simulated voltammetry of the electrocatalytic oxidation of cysteine mediated by
ferrocyanide. Arrows indicate how the voltammetry changes as the concentration of cysteine
is increased from 0 to 0.5 mM.

this affects the observed voltammetry can be found in the work of C.M.A.
Oliveira and A.M. Oliveira Brett [J. Electroanal. Chem. 648 (2010) 60].

In regards to ferro/ferricyanide, the oxidation of ferrocyanide is known to
be surface sensitive and with the above points in mind it is unsurprising that
low rates of electron transfer are observed for the redox couple.

(ii) The forward peak current will scale with the concentration of cysteine present
in the solution. A plot of peak current versus cysteine concentration will
yield a calibration plot from which it would be possible to determine the
unknown concentration of cysteine in a solution. A similar methodology has
been successfully applied to the detection of hydrogen sulphide.

(iii) In the absence of cysteine the voltammogram measured is that for ferricyanide
in isolation, which can be reduced to ferrocyanide and reoxidised on a reverse
scan. As cysteine is added to the solution the oxidative peak increases as the
ferricyanide is reduced via the homogeneous chemical step to ferrocyanide,
which may then be reoxidised to ferricyanide at the electrode. Hence, this
results in a steady increase in the forward peak.

Due to the consumption of the ferricyanide by the homogeneous chemical
process, on the reverse scan the concentration of ferricyanide is substantially
depleted, and, consequently, the peak measured on the reverse scan is reduced
from that expected for the ferro/ferricyanide redox couple in the absence of
cysteine.
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7.12 EC′ Mechanism: Oxygen and Anthraquinone

Problem

The catalytic reduction of oxygen (1.24 mM) was investigated at a BDD electrode
under conditions where the electron transfer is mediated by the reduction of
anthraquinone monosulfonate (AQ, 50 µM). The process is thought to be a 2H+,
2e− system, where overall the oxygen is reduced to hydrogen peroxide.

AQ + 2e− + 2H+ � AQH2

AQH2 + O2 � AQ + H2O2

Figure 7.16 depicts a representative voltammogram for this system.

(i) Why is the direct reduction of oxygen not observed at the BDD electrode?
(ii) On the reverse scan a significant increase in the reductive current is observed

at ≈ −0.55 V. Give a plausible suggestion as to how this feature may occur, in
terms of the mechanism.

Solution

(i) As discussed in Problem 7.11, the rate of electron transfer at a BDD electrode
tends to be substantially lower, as compared to other electrodes. This is in part
a result of the material being a semi-conductor, and hence there is a far lower
density of electronic states in the material than for a metallic electrode.

Potential / V
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u

rr
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t 
/µ

A

Fig. 7.16 Experimental voltammetry for the catalytic reduction of oxygen (1.24 mM) at
a BDD electrode mediated by anthraquinone monosulfonate (50 µM). The scan rate is
800 mV s−1; arrows indicate scan direction.
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The reduction of oxygen is typically irreversible in aqueous solution for
a metallic electrode. Accordingly this process is very slow indeed on a BDD
electrode, and as such, due to the large overpotential associated with the
process, the reduction of oxygen is not observed within the electrochemical
window for a BDD electrode.

In contrast, the reduction of anthraquinone monosulfonate is found to
be nearly reversible on an Au electrode. Its reduction on a BDD electrode is
found to be slower, as expected, and exhibits a larger peak-to-peak separation.
For the case in question, this lowering of the rates of electron transfer is useful
as it allows us to directly electrochemically probe the rate of reaction between
the reduced anthraquinone and oxygen.

(ii) The ‘inverse’ peak observed on the reverse scan is a highly unusual feature. In
order to explain this response it is necessary to note that oxygen is massively
in excess of the anthraquinone species, such that the rate-limiting step is the
reaction of the reduced anthraquinone with oxygen.

The reduction of anthraquinone involves the transfer of two electrons:
although the two transfers are close in potential in aqueous media, the second
electron transfer occurs at marginally more negative potential than the first.
As a consequence, at low overpotentials significant quantities of the mono-
reduced anthraquinone will be formed at the electrode. As the overpotential
is further increased the concentration of the monoreduced form decreases as
it is reduced futher. On the return scan, as the overpotential is decreased, the
concentrations of the monoreduced form will again increase.

It is plausible that monoreduced anthraquinone can drive a one-electron
reduction of oxygen to superoxide:

AQ + e− � AQ·−

AQ·− + O2 → AQ + O·−
2

Superoxide is highly reactive and will readily disproportionate to form hydro-
gen peroxide and oxygen. Further, the one-electron reduction of oxygen
has a faster rate constant than the two-electron reduction. Hence, it is this
effective increase and decrease in the concentration of the monoreduced
anthraquinone at the electrode surface, as a function of overpotential, that
leads to the observed ‘inverse’ peak.

7.13 Chronoamperometry of Adsorbed Species

Problem

Derive an equation that describes how the current varies as a function of time
in a chronoamperometric experiment with a surface-bound redox species. Hence
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suggest a suitable plot to assess the magnitude of the electron transfer rate associ-
ated with the process.

Solution

The kinetics of electron transfer for a surface-bound species at a fixed potential
essentially follow those of a first-order rate law. Consider the reaction:

A + ne− � B

where the rate of electron transfer has a value k (s−1), the surface coverage (�) is
measured in mol cm−2 and the total surface coverage is described by

�tot = �A + �B

Since the current, I , is the time derivative of charge passed, Q, which is proportional
to the number of moles reacted

I = dQ

dt
= nFA

d�A

dt

where F is the Faraday constant and A is the area of the substrate.
If a first-order rate law is obeyed:

d�A

dt
= −d�B

dt
= −k�A

Integrating

ln �A = −kt + ln �tot

�A(t ) = �tot exp (−kt )

I = nFAk�tot exp (−kt )

on the assumption that at the beginning of the experiment, only A is adsorbed and
so �A(t = 0) = �tot.

As such, a plot of ln |I | vs t should yield a straight line, where the gradient is
equal to −k.

7.14 Voltammetry of an Ideal Adsorbed Species

Problem

(i) For a linear sweep voltammetric experiment, derive an equation which
describes how the current varies as a function of scan rate and the applied
potential for the n-electron reduction of A to B:

A + ne− � B

where both A and B are surface-bound.
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Assume that:

• the rate of electron transfer is fast enough that a Nernstian distribution of
species is maintained at all times

• all adsorption sites are equal
• there are no interactions between the adsorbed species
• the surface activity is equivalent to the surface coverage
• the total surface coverage is independent of the applied potential.

(ii) A typical cyclic voltammogram for an ideal surface-bound species is depicted
in Fig. 7.17. Comment on the main features observed.

(iii) From your answer in part (i), derive a parametric expression for the peak
height for a surface-bound species. Comment on the major differences
between this equation and the Randles–Ševčík equation, which describes the
peak height for the voltammetric response of a diffusing species.

Solution

(i) The assumptions made above allow us to derive the voltammetric response
for an ideally adsorbed species. If �i is the surface coverage of species i, we
can write

�tot = �A + �B (7.5)
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Fig. 7.17 The cyclic voltammogram of an ideally adsorbed surface species, showing
reversible electron transfer kinetics.
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The surface coverages are determined by the Nernst equation

�A

�B
= exp (−nθ) (7.6)

where

θ = F

RT
(E − E�

f ,A/B)

which represents the normalised overpotential applied to the electrode.
Substitution of Eq. 7.5 into Eq. 7.6, followed by rearrangement, gives

�A = exp (nθ)

1 + exp (nθ)
�tot

The current is given by
I

nFA
= −∂�A

∂t

where A is the electrode area. The applied potential varies with

E = Einit − vt

noting that we use the negative sign as we are performing a reduction and
hence scanning in a negative direction. Consequently, through differentiation
we get to the required answer

I

nFA
= nFv

RT
�tot

exp (−nθ)

(1 + exp (−nθ))2
(7.7)

Equation 7.7 has been derived for linear sweep voltammetry; the reverse scan
in the cyclic voltammetric experiment is symmetrical about the zero current
axis.

(ii) The main features of the cyclic voltammogram of the surface-bound species
are:

• the forward and backward peaks are symmetrical
• in the reversible limit (as is depicted) the peak-to-peak separation is zero
• at high overpotentials the current is zero due to all of the electroactive

species having been consumed
• the peak width at half peak height is 90.6/n mV (where n is the number of

electrons transferred).

(iii) The maximum in Eq. 7.7 occurs when θ = 0, and hence the peak current (Ipf )
is given by

|Ipf | = n2F 2v

4RT
A �tot
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The Randles–Ševčík equation for a reversible diffusional redox species is given
by

Ipf = (2.69 × 105)n
3
2 AD

1
2 C∗v

1
2

where the symbols used are described in Problem 4.6. For the experimental
electrochemist these two equations and their dependency on scan rate is of
significance. For a surface-bound species a plot of Ipf vs scan rate should yield
a straight line, whereas in the diffusional case species a plot of Ipf vs the square
root of scan rate should yield a straight line. Hence, through this analysis
it can be readily ascertained whether the electroactive species of interest is
surface-bound or diffusional.

7.15 Non-Ideal Adsorbed Species

Problem

The voltammetry of surface-bound species is often found to exhibit non-ideal
behaviour, in which the peak width at half peak height is not 90.6/n mV. Even
under conditions where the peak position is not influenced by the scan rate, the
peak-to-peak separation may still be non-zero. A large number of models have
been proposed to explain these experimentally observed non-idealities (see M.J.
Honeychurch and G.A. Rechnitz, Electroanalysis 10 (1998) 285).

(i) Assuming Frumkin type adsorption, derive an equation which describes the
peak current for a surface-bound species which may undergo a reversible
n-electron reduction. Assume that the activity coefficients (γi) for the surface-
bound species may be described by

γA = exp

(
−2aAA

�A

�tot
− 2aAB

�B

�tot

)

γB = exp

(
−2aBB

�B

�tot
− 2aAB

�A

�tot

)

where aij is the interaction energy between species i and j.
(ii) Use your answer from part (i) to explain how the peak height for the surface-

bound species varies with a where

a = aAA + aAB − 2aAB

For what value of a will the surface-bound species behave ideally?
(iii) Another model for a cause of non-ideality relates to the interfacial potential

distribution. Give a brief explanation of the physical origins of interfacial
potential distribution.
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Solution

(i) For the equilibrium
A + ne− � B

the following holds
γA�A

γB�B
= exp (−nθ) (7.8)

where the symbols are the same as were used in Problem 7.14, except that
now we are no longer assuming that the activity of a surface-bound species is
equal to its surface coverage. Note that Eq. 7.8 is the Nernst equation.
Through the use of �A + �B = �tot we can rearrange Eq. 7.8 as

�A = �tot
exp (nθ)

γA
γB

+ exp (nθ)

We next use the quotient rule to find the derivative d�A/dt , remembering
that we are doing a reduction and so E = Einit − vt , as in Problem 7.14:

∂�A

∂t
= �tot

g ′(t )h(t ) − g (t )h′(t )

h(x)2

where

g (t ) = exp (nθ)

g ′(t ) = nFv

RT
exp (nθ)

h(t ) = γA

γB
+ exp (nθ)

h′(t ) = ∂
γA
γB

∂t
+ nFv

RT
exp (nθ)

noting that γA
γB

is time dependent. Now considering the expressions for γA and
γB and with some straightforward calculation:

∂
γA
γB

∂t
= − 2a

�tot
· γA

γB
· ∂�A

∂t

and rearranging we get

∂�A

∂t
= �tot

g ′(t ) γA
γB(

h(t )2 − 2a exp (nθ) γA
γB

)
from

I = nFA
∂�A

∂t
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and further given that at the peak current, exp (nθ) = 1 due to the symmetry
implied by the Nernst equation, we can write

Ipf = n2F 2v

RT
A �tot ·

γA
γB(

γA
γB

+ 1
)2 − 2a γA

γB

If we assume that γA
γB

≈ 1 then we achieve a simplified expression:

Ipf = n2F 2v

RT
A�tot · 1

4 − 2a

= Ipf ,ideal · 2

2 − a
(7.9)

(ii) Where a < 0, i.e. the interaction energy between different molecules (aAB)
is greater than that between like molecules (aAA and aBB), the peak current
will be lower than that found for the ideal case. Alternatively, when a > 0
the peak will be higher than that expected for the ideal case. In cases where
a = 0 the expression in Eq. 7.9 reduces to that found in Problem 7.14 for
a ideal surface-bound species. Figure 7.18 depicts the influence of a upon
the observed cyclic voltammetry, demonstrating how the peak height but also
peak width varies with a.

Fig. 7.18 Voltammetric peaks at 25◦C in the case of a Frumkin isotherm. Reproduced from
E. Laviron, J. Electroanal. Chem. 100 (1979) 263, with permission from Elsevier.
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Fig. 7.19 A diagram showing the change in potential as a function of the distance from the
electrode. The molecules of the redox species are situated on the plane of electron transfer.

(iii) A common method for anchoring a redox species to an electrode surface is
through the use of a linker group. An excellent example of this is the use of
redox-functionalised alkanethiols, which are used with gold electrodes. As a
result of these tethering groups, in many experiments the redox species is not
situated directly at the electrode interface but is at a finite distance from the
surface.

Consequently, there is a drop in potential between the electrode and the
redox species as indicated in Fig. 7.19. Here it is assumed that the vol-
ume between the electrode and the redox species is not accessible to solvent
molecules, and so potential drops approximately linearly across this region. A
mathematical model of this effect was first provided by C.P. Smith and H.S.
White [Anal. Chem. 64 (1992) 2398].

7.16 Irreversible Electron Transfer
and Adsorbed Redox Species

Problem

Problems 7.14 and 7.15 have assumed that the coverages of the reduced and
oxidised surface-bound species can be described through the use of the Nernst
equation. In the case of a surface-bound species where the electron transfer is slow
(irreversible), this approximation no longer holds.
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Fig. 7.20 The cyclic voltammogram of an ideally adsorbed surface species, showing irre-
versible electron transfer kinetics.

Figure 7.20 depicts the voltammetric response for a surface-bound redox species
with irreversible electron transfer kinetics. Comparing this voltammogram with
that in Fig. 7.17 we can see a number of important differences, including that
the peak-to-peak separation is now non-zero and the peak shape is no longer
symmetrical.

(i) Derive an equation which describes the current as a function of the applied
potential for the one-electron reduction of a surface-bound species:

A(ads) + e− → B(ads)

given that the forward rate constant (kf ) is

kf = k0 exp

(
− αF

RT
(E − E�

f )

)
(7.10)

Note that as we are dealing with an irreversible electron transfer we may ignore
the reverse process (i.e. the oxidation of B to A).

(ii) Use your answer to part (i) to derive an equation which describes how the
peak position varies as a function of scan rate.

(iii) Using your answer from part (ii), suggest a suitable plot from which you might
measure the transfer coefficient (α).
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(iv) The above parts of this equation have been based on the assumption that
the reduction is a one-electron process. How would your answers for parts
(i) and (ii) differ for a multi-electron process (see also Problem 2.6)?

Solution

(i) As in Problem 7.14, we can express the current as

I = FA
∂�A

∂t
(7.11)

But because the Nernst equation does not apply, we cannot express �A as
a function of t directly. Rather, in order to find the variation in the surface
coverage of A with respect to time, it is necessary to solve the following
differential equation:

∂�A

∂t
= −kf �A (7.12)

subject to condition that at t = 0 the surface coverage of A is initially �tot.
For a reduction the voltammogram is swept in a negative direction such

that E = E1 − vt and so∫ �A

�tot

d�′
A

�′
A

= −k0
∫ t

0
exp

(
− αF

RT
(E − E�

f )

)
dt (7.13)

Integration of the right-hand side of this equation is simpler if we make a
substitution. Let

u = − αF

RT
(E − E�

f )

and therefore

du = αFv

RT
dt

such that we can rewrite Eq. 7.13 as

∫ �A

�tot

d�′
A

�′
A

= −k0 RT

αFv

∫ u

u(0)
exp (u′)du′

If we assume that the voltammogram is started at a point where no current is
being passed, i.e. exp (u(0)) = 0, then

ln
�tot

�A
= k0 RT

αFv

(
exp

(
− αF

RT
(E − E�

f

))

= RT

αFv
kf
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Rearrangement gives

�A = �tot exp

(
−RT kf

αFv

)
(7.14)

It should be noted that as kf is not constant with time, this imparts a time
dependency upon Eq. 7.14 such that at high overpotentials (where t is large)
the surface coverage of A will be zero.
Consequently, using Eqs. 7.11, 7.12 and 7.14, the variation of the current as a
function of the applied potential is given by

I = FAkf �tot exp

(
−RTkf

αFv

)
(7.15)

where kf is as defined in Eq. 7.10.
(ii) In order to find the peak position for the current described by Eq. 7.15 we

must find the point at which
∂I

∂t
= 0

Differentiation of Eq. 7.15 requires the use of product rule where

1

FA�tot

∂I

∂t
= f ′(t )g (t ) + g ′(t )f (t )

where according to the relations above

f (t ) = kf

f ′(t ) = αFv

RT
kf

g (t ) = exp

(
−RTkf

αFv

)

g ′(t ) = −kf exp

(
−RTkf

αFv

)

From the above information it clearly follows that when

∂I

∂t
= 0

we can write

−k2
f exp

(
−RTkf

αFv

)
+ αFv

RT
kf exp

(
−RTkf

αFv

)
= 0

and therefore

kf = αFv

RT
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Expanding this using Eq. 7.10:

k0 exp

(
− αF

RT
(Epf − E�

f )

)
= αFv

RT

where Epf is the peak potential. Rearrangement gives

Epf = E�
f − RT

αF
ln

(
αFv

RTk0

)
(7.16)

This result shows that, for an irreversible surface-bound species, as the scan
rate increases the overpotential (Epf ) of the peak current increases in magni-
tude (for a reduction as is the case in this question, the value of Epf becomes
more negative).

(iii) From inspection of Eq. 7.16 it can be seen that a plot of Epf vs ln v should
yield a straight line of gradient −RT/αF . This equation only holds in the
irreversible limit, so it is required that the peak-to-peak separation (�Epp) is
greater than (200/n) mV.

(iv) Where multiple electrons are transferred in a single electrochemical step, then
α in the above equations is replaced by α = (n′ + αRDS) where n′ is the
number of electrons transferred prior to the rate-determining step and αRDS

is a transfer coefficient associated with the rate-determining electron transfer
(see also the discussion in Problem 2.6).

7.17 Voltammetry of Ferrocyanide/Ferricyanide

Problem

The anions [Fe(CN)6]4− (ferrocyanide) and [Fe(CN)6]3− (ferricyanide) are fre-
quently used redox species.

(i) Of the two species above, which will have the more labile ligands?
(ii) What consequence does this have for their use in electrochemistry?

Solution

(i) [Fe(CN)6]4− has Fe in the +2 oxidation state and so has a low spin d6 config-
uration, whereas [Fe(CN)6]3− has Fe in the +3 oxidation state and so is low
spin d5. Hence, [Fe(CN)6]4− has the greater ligand field stabilisation energy
and as such has less labile CN− ligands.

Most cyanide salts are highly toxic due to the possibility of the release of
cyanide. Considering the above, [Fe(CN)6]3− is significantly more toxic than
its reduced counterpart.
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(ii) The lability of the cyanide ligands is significant for electrochemists due to the
ability of ferrocyanide and ferricyanide to complex together to form Prussian
blue. Prussian blue is insoluble and forms upon electrode surfaces, causing the
electrode to become less electroactive. This problem is circumvented through
regular polishing of the electrode.
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Hydrodynamic Electrodes

8.1 Channel Electrodes and Limiting Currents

Problem

Calculate the transport-limited current for the one-electron oxidation of a 1 mM
aqueous solution of ferrocyanide, Fe(CN)4−

6 , at a macro-channel electrode of size
4.0 mm × 4.0 mm in a flow cell of cross-section dimensions 6 mm × 0.4 mm at
flow rates (Vf ) of 10−3 and 10−1 cm3 s−1. Assume a value of 6×10−6 cm2 s−1 for
the diffusion coefficient of ferrocyanide.

Solution

The transport-limited current for a one-electron oxidation process at a channel
electrode is given by

Ilim = 0.925 Fc∗ wx
2
3

e D
2
3

(
Vf

h2d

) 1
3

where c∗ is the bulk concentration of ferrocyanide, w is the electrode width
(0.4 cm), xe is the electrode length (0.4 cm), d is the flow cell width (0.6 cm) and h
is the half-height of the flow cell (0.02 cm). The other quantities are

D = 6 × 10−6 cm2 s
−1

c∗ = 10−6 mol cm−3

F = 96485 C mol−1

in which cm units have been used throughout.

159
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It follows that

Ilim = 0.925 × 96485 × 10−6 × 0.4 × (0.4)
2
3

× (6 × 10−6)
2
3

(
Vf

(0.02)2 × 0.6

) 1
3

= 1.03 × 10−4 × V
1
3

f A

So for Vf = 10−3 cm3 s−1, Ilim = 10.3 µA. Similarly, for Vf = 10−1 cm3 s−1,
Ilim = 47.8 µA.

8.2 Channel Electrodes and Reynolds Number

Problem

For the channel electrode described in Problem 8.1, calculate for both of the flow
rates 10−3 and 10−1 cm3 s−1:

(i) the linear velocity, V0, at the centre of the channel.
(ii) the Reynolds number characterising the flow. Comment on the Reynolds

number in each case.

Solution

(i) The volume solution flow rate, Vf (cm3 s−1) and the centre-line velocity, V0

(cm s−1) are related via the equation,

Vf = 4

3
V0hd

where h (0.02 cm) is the half-height of the flow cell and d (0.6 cm) is the
channel width. Thus

V0 = 3

4
× Vf

0.02 × 0.6
cm s−1

= 62.5 Vf cm s−1

Therefore when Vf is 10−3 cm3 s−1

V0 = 0.0625 cm s−1

and when Vf is 10−1 cm3 s−1,

V0 = 6.25 cm s−1
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(ii) The dimensionless Reynolds number, Re, characterising the flow is:

Re = 2hV0

ν

where ν (cm2 s−1) is the kinematic viscosity of the solution, which is the ratio
of the viscosity to the fluid density. For water at 25◦C, ν � 10−2 cm2 s−1.
Hence for the slower flow

Re = 2 × 0.02 × 0.0625

10−2

= 0.25

and for the faster flow

Re = 2 × 0.02 × 6.25

10−2

= 25

The Reynolds number characterises the transition from laminar to turbulent
(chaotic) flow. Both Reynolds numbers are sufficiently small that the flow will
be laminar in character and not turbulent.

8.3 Flow to Rotating Discs and in Channels

Problem

The transport-limited current at a rotating disc electrode depends on the kine-
matic viscosity of the solution, whereas the corresponding equation for the channel
electrode shows no dependence on this quantity. Comment.

Solution

The solution flow in a channel electrode under laminar conditions is steady with a
parabolic velocity distribution. The streamlines describing the flow at any height
in the cell are constant in size, and are always directed along the axis of the cell. In
contrast, at a rotating disc the solution is pulled first towards the electrode surface,
rotated, and then flung out radially so that the streamlines are changing size and
direction as they approach the surface. It is this changing nature of the flow which
leads to a dependency of the transport-limited current on the solution kinematic
viscosity in the case of the rotating disc, whereas no dependency is seen for the
channel electrode.
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(a) (b)

Fig. 8.1 Schematic diagrams for the solution flow in both a) a channel cell electrode and b) a
rotating disc electrode. Reproduced from R.G. Compton et al., Understanding Voltammetry,
2nd ed., with permission from Imperial College Press.

8.4 Channel Electrodes and ECE Processes

Problem

The reduction of m-iodonitrobenzene in acetonitrile solution at a platinum chan-
nel electrode is thought to follow an ECE mechanism [L. Nei et al., Electroanalysis
8 (1996) 214]:

m-IC6H4NO2 + e− → m-IC6H4NO·−
2

m-IC6H4NO·−
2

k−→ I− + ·C6H4NO2

·C6H4NO2 + HS
fast−−→ C6H5NO2 + ·S

C6H5NO2 + e− → C6H5NO2
·−

where HS refers to any H atom available for radical abstraction in the solvent-
supporting electrolyte system. The reduction was studied using a channel cell of the
following geometry: cell height, 2h = 0.077 cm, cell width, d = 0.60 cm, electrode
length, xe = 0.40 cm and electrode width, w = 0.405 cm. The following flow
rate/neff data were obtained:

Vf /cm3 s−1 neff

2.3 × 10−3 1.41
3.7 × 10−3 1.35
5.2 × 10−3 1.31
6.1 × 10−3 1.27
6.8 × 10−3 1.25
1.1 × 10−2 1.23
1.5 × 10−2 1.11
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where neff is the effective number of electrons transferred in the electrode process.
The following equations [J.A. Cooper and R.G. Compton, Electroanalysis 10 (1998)
141] show how neff depends on the dimensionless rate constant K where

K = k

(
4x2

e h4d2

9DV 2
f

) 1
3

(8.1)

K < 0.59 neff = 1 + 0.552K − 0.309K 2 + 0.150K 3 . . . (8.2)

0.59 < K < 3.96 neff = 1.358 + 0.483 log10 K . . . (8.3)

K > 3.96 neff = 2 − 0.736K −1/2 + 0.0613K −2 . . . (8.4)

By constructing a suitable ‘working curve’, find a value for the rate constant (s−1)
for the loss of iodide from the radical anion of m-iodonitrobenzene. You may
assume a value for the mean diffusion coefficient, D, of 2.1×10−5 cm2 s−1.

Solution

Equations 8.2, 8.3 and 8.4 can be used to construct a working curve showing neff

as a function of K . This is sigmoidal in shape varying from neff = 1 for small K to
neff = 2 for large K . The working curve is shown in Fig. 8.2. The working curve

Fig. 8.2 Working curve for neff versus K for an ECE reaction. Reproduced from R.G.
Compton et al., Electroanalysis 8 (1996) 214, with permission from Wiley.
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Fig. 8.3 Analysis of channel electrode current-flow rate data meaured for the reduction
of m-iodonitrobenzene in terms of an ECE mechanism. Reproduced from R.G. Compton
et al., Electroanalysis 8 (1996) 214, with permission from Wiley.

can then be used to infer the following values:
neff K

1.41 1.29
1.35 1.01
1.31 0.84
1.27 0.66
1.25 0.61
1.23 0.54
1.11 0.23

Equation 8.1 shows that, if an ECE mechanism operates, a plot of K vs. V −2/3
f

will be a straight line through the origin of gradient equal to k(4h4x2
e d2/9D)

1
3 .

Figure 8.3 shows the plot and that k � 0.30 s−1.

8.5 Channel Electrodes and ECE Processes

Problem

Show that for a simple ECE reaction:

A + e− � B

B
k−→ C

C + e− � D
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occurring at a macro-channel electrode constructed such that the Lévêque approx-
imation may be used, the effective number of electrons transferred, neff , in
steady-state voltammetry depends on a simple parameter K which is a dimension-
less rate constant. Identify any approximations made.

Solution

For a macro-channel electrode, axial diffusion may be ignored so that the steady-
state mass transport equations for species A, B and C are:

D
∂2[A]
∂y2

− vx
∂[A]
∂x

= 0

D
∂2[B]
∂y2

− vx
∂[B]
∂x

− k[B] = 0

D
∂2[C]
∂y2

− vx
∂[C]
∂x

+ k[B] = 0

where we have assumed that the diffusion coefficients of A, B and C are equal
and take the value D. Additionally, the chemical step has been assumed to be
irreversible. x is a coordinate parallel to the cell axis, y is a coordinate normal to
the electrode surface (see Fig. 8.4) and vx is the solution velocity in the x-direction.

We make the Lévêque approximation,

vx = 2v0y

h

where v0 is the centre line velocity (cm s−1) and h is the half-height of the flow cell
(see Fig. 8.4). We also introduce the dimensionless coordinates,

χ = x

xe

ξ =
(

2v0

hDxe

) 1
3

y

Fig. 8.4 A typical channel flow cell, with the conventional x , y and z axes indicated. Repro-
duced from N.V. Rees et al., J. Phys. Chem. 99 (1995) 7096, with permission from the
American Chemical Society.
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and so

∂2[A]
∂ξ2

− ξ
∂[A]
∂χ

= 0

∂2[B]
∂ξ2

− ξ
∂[B]
∂χ

− k

(
h2x2

e

4v2
0 D

) 1
3

[B] = 0

∂2[C]
∂ξ2

− ξ
∂[C]
∂χ

+ k

(
h2x2

e

4v2
0 D

) 1
3

[B] = 0

We introduce the dimensionless rate constant,

K = k

(
h2x2

e

4v2
0 D

) 1
3

so that

∂2[B]
∂ξ2

− ξ
∂[B]
∂χ

− K [B] = 0

and

∂2[C]
∂ξ2

− ξ
∂[C]
∂χ

+ K [B] = 0

Inspection of the above equations suggests that the concentration profiles of A, B
and C in χ and ξ are a function of K . The effective number of electrons, neff , is
defined as follows:

neff =
Fw

[∫ xe
0 D ∂[A]

∂y

∣∣∣
y=0

+ D ∂[C]
∂y

∣∣∣
y=0

dx

]

Fw
∫ xe

0 D ∂[A]
∂y

∣∣∣
y=0

dx

where w is the electrode width and xe is the electrode length (see Fig. 8.4). Alter-
natively we can write

neff =
∫ 1

0
∂[A]
∂ξ

∣∣∣
ξ=0

+ ∂[C]
∂ξ

∣∣∣
ξ=0

∂χ∫ 1
0

∂[A]
∂ξ

∣∣∣
ξ=0

dχ
(8.5)

= neff (K )

Since in Eq. 8.5, ξ is put equal to zero (the electrode surface) and χ is integrated
over the electrode length (from χ = 0 to χ = 1), neff is solely a function of K . This
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assumes that sufficient overpotential is applied that the reaction at the electrode is
mass transport controlled.

It is therefore possible to summarise the response of a channel electrode of
arbitrary geometry at any flow rate by a working curve which plots theoretical
values of neff as a function of the normalised rate constant K .

8.6 Channel Electrodes and Entry Length

Problem

For the channel flow cell and flow rates in Problems 8.1 and 8.2, estimate the
distance required for full parabolic flow to be established from the point of entry
within the cell. Comment on any implications.

Solution

For a suitably small Reynolds number, Re, to establish laminar flow, the transition
from plug flow (on entry) to parabolic flow is established over an entry length of

le � 0.1h Re

For the cell in question, h = 0.02 cm and the two flow rates of 10−3 and
10−1 cm3 s−1 correspond (see Problem 8.2) to Reynolds numbers of 0.25 and 25,
respectively, so that

le = 5 × 10−4 cm (Vf = 10−3 cm3 s−1)

and

le = 0.05 cm (Vf = 10−1 cm3 s−1)

In experimental practice, flow rates are usually unlikely to exceed 1 cm3 s−1, so that
in designing a practical chemical flow cell, an entry length upstream of the working
electrode of approximately 0.5 cm should ensure that the appropriate flow profile
is established in the vicinity of the channel electrode.

8.7 Channel Electrodes and Diffusion Coefficients

Problem

The oxidation of 1.15 mM ferrocene in the solvent dimethylformamide (DMF) has
been studied using a fast flow channel electrode [N.V. Rees et al., J. Phys. Chem. 99
(1995) 7096]:

Cp2Fe − e− � Cp2Fe+
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Data for the transport-limited current (Ilim/µA) as a function of flow rate
(Vf /cm3 s−1) were obtained, as shown in Fig. 8.5. Use the Levich equation to deter-
mine the diffusion coefficient of ferrocene in DMF given that the cell geometry
(Fig. 8.4) was d = 0.20 cm, w = 0.20 cm, 2h = 1.16 × 10−2 cm and xe = 12 µm.

Solution

The Levich equation predicts that the transport-limited current is given by:

Ilim = 0.925F [Cp2Fe]bulk x
2
3

e D
2
3 w

(
Vf

h2d

) 1
3

The data shown in Fig. 8.5 are consistent with this equation, in that Ilim scales lin-

early with V
1
3

f . The gradient of the plot measured from the figure is approximately

6 × 10−6 A cm−1 s
1
3 . Since

F = 96485 C mol−1

[Cp2Fe] = 1.15 × 10−6 mol cm−3

xe = 12 × 10−4 cm

Fig. 8.5 Transport-limited current (Ilim/µA) versus flow rate (Vf /cm3 s−1) data obtained
from the oxidation of ferrocene (1.15 mM). Reproduced from N.V. Rees et al., J. Phys. Chem.
99 (1995) 7096, with permission from the American Chemical Society.
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and d , 2h and w are as given in the question:

6 × 10−6 = 0.925 × 96485 × 1.15 × 10−6 × 0.20

×
(

12 × 10−4

0.58 × 10−2

) 2
3

× D
2
3

(0.20)
1
3

for which
D = 1.08 × 10−5 cm2 s−1

8.8 Channel Electrodes and Current Distribution

Problem

The Levich equation for the transport-limited current at a channel electrode
predicts

Ilim ∝ x
2
3

e V
1
3

f

where xe is the electrode length and Vf is the solution flow rate (volume per second).
How does the current density vary with distance (x) along the electrode? What is
the current density at x = 0?

Solution

Suppose that the diffusive flux, j(0), varies with x , the distance downstream from
the upstream edge of the electrode, as follows:

j(x) ∝ xn

It follows that

Ilim ∝
∫ xe

0
j(x) dx

∝
[

xn+1

n + 1

]xe

0

∝ xn+1
e

Since the Levich equation shows

Ilim ∝ x
2
3

e

it follows that

j(x) ∝ x− 1
3
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Thus the current density (flux) is predicted to be infinite at the upstream edge of
the electrode. In reality, this would not be attained, since finite electrode kinetics
preclude the passage of an infinite current. Nevertheless, the flux would be very
large at x = 0.

8.9 Wall-Jet Electrodes and Current Distribution

Problem

The transport-limited current, Ilim, at a wall-jet electrode of radius re shows the
following dependency:

Ilim ∝ r
3
4

e V
3
4

f

where Vf is the volume flow rate. How does the current density (or flux) vary
radially over the surface of the electrode?

Solution

We write j(r) as the the flux normal to the electrode surface at the radial coordi-

nate r . Since the total limiting current scales with r
3
4

e it follows that

Ilim ∝
∫ re

0
2πr j(r) dr ∝ r

3
4

e

from which it can be seen that

r j(r) ∝ r− 1
4

j(r) ∝ r− 5
4

showing that the flux is infinite at the centre of the electrode (although an actual
infinite flux is precluded by finite electrode kinetics) and that the wall-jet is highly
non-uniformly accessible. For a full derivation of the expression for Ilim see the
work of W.J. Albery and C.M.A. Brett [J. Electroanal. Chem. 148 (1983) 201].

8.10 Wall-Jet Electrodes and Diffusion Coefficients

Problem

The one-electron reduction of a 1 mM solution of benzoquinone (BQ) in acetoni-
trile containing 0.5 M tetrabutylammonium perchlorate as supporting electrolyte,

BQ + e− � BQ·−
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Fig. 8.6 The linear dependence of Ilim on V
3
4
f for the reduction of BQ in acetonitrile at

a mercury working electrode in a wall-jet cell. Reproduced from R.G. Compton et al., J.
Electroanal. Chem. 277 (1990) 83, with permission from Elsevier.

was studied at a wall-jet electrode and the limiting current found to scale with the
volume flow rate to the power (3/4)

Ilim ∝ V
3
4

f

as shown in Fig. 8.6. The wall-jet had the following geometry: electrode radius,
re = 0.075 cm; nozzle diameter, a = 0.09 cm. The kinematic viscosity, ν, of ace-
tonitrile at the temperature of the experiment (25◦C) is 4.425 × 10−3 cm2 s−1.
Estimate the diffusion coefficient (D) of benzoquinone in acetonitrile.

Solution

The transport-limited current for a one-electron reduction is given by

Ilim = 1.35FD
2
3 ν− 5

12 a− 1
2 r

3
4

e V
3
4

f [BQ]bulk

The gradient of the graph in Fig. 8.6 is 4.3 × 10−4 A cm− 9
4 s

3
4 . Hence, substituting

values for F (96485 C mol−1), ν, a, re and [BQ]bulk (10−6 mol cm−3) gives

D = 1.9 × 10−5 cm2 s−1
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8.11 Wall-Jet Electrode and a DISP 1 Process

Problem

The reduction of 1 mM fluorescein in aqueous solution has been studied at a
wall-jet electrode. At pH 13 a simple one-electron reduction is known to occur:

O O-O

R

+

O-O O-

R

e-

R=

CO2
-

F S

Figure 8.7 shows that the transport-limited current at this pH varies directly

with the volume flow rate to the power 3/4 (V
3
4

f ), as expected for an electrode
process uncomplicated by coupled homogeneous kinetics. The wall-jet electrode
had a radius (re) of 0.403 cm and a nozzle diameter (a) of 0.0345 cm; the kinematic
viscosity of water is 0.01 cm2 s−1 at 25◦C.

Fig. 8.7 The variation of Ilim with flow rate for the reduction of 1 mM fluorescein (in 0.5 M
KCl/0.1 M NaOH) at a mercury wall-jet electrode at (a) pH = 13 (×), and (b) pH = 9.65 (◦).
Reproduced from R.G. Compton et al., J. App. Electrochem. 20 (1990) 586, with permission
from Springer.
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Use the pH 13 data to calculate the diffusion coefficient of fluorescein in aque-
ous solution. Also shown in Fig. 8.7 are data obtained at pH 9.65 using a carbon-
ate/bicarbonate buffer. Suggest, qualitatively, a reason for the altered behaviour and
increased currents, as compared to the data at pH 13.

Solution

Using the expression for Ilim in the solution to Problem 8.10 and the respective val-
ues for F , ν, a, R and [F] (=10−6 mol cm−3) together with the measured gradient
of Fig. 8.7, a value of

D = 5.6 × 10−6 cm2 s−1

is obtained.
The data shown for a pH of 9.65 is seen to follow the simple one-electron

behaviour at very fast flow rates, but tends towards two-electron behaviour at low
flow rates. Thus the effective number of electrons transferred, neff , changes in a
manner expected of an ECE or DISP type process where the one-electron product
(S·) is rapidly removed from the electrode at fast flows. At low flow rate it is able
to react further, leading to the second electron transfer.

It is thought that a DISP 1 process operates in this system:

F + e− � S·−

S·− + H+ slow−−→ SH·

SH· + S· → F + LH

where

O-O O-

R

LH=

H

Note that the protonation of S· will be faster at a higher proton concentration
(lower pH), thus explaining the change in behaviour between pH 13 and pH 9.65.

8.12 Wall-Jet Electrode and EC Processes

Problem

Consider an EC process at a wall-jet electrode:

A + e− � B

B
k−→ products
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The convection–diffusion equations relevant to the EC mechanism in the wall-jet
electrode geometry under steady-state conditions are as follows:

vr
∂[A]
∂r

+ vz
∂[A]
∂z

= D
∂2[A]
∂z2

(8.6)

vr
∂[B]
∂r

+ vz
∂[B]
∂z

= D
∂2[B]
∂z2

− k[B] (8.7)

where r and z are cylindrical coordinates and D is the diffusion coefficient of A and
B (assuming these to be equal). The convective solution velocity is described by
the two components: vr for radial velocity, and vz for the velocity normal to the
electrode surface. Close to the electrode, the following approximations can be made
[W.J. Albery and C.M.A. Brett, J. Electroanal. Chem. 148 (1983) 201]:

vr ,η→0 � 2

9

(
15M

2νr3

) 1
2

η

vz ,η→0 � 7

36

(
40Mν

3r5

) 1
4

η2

where ν is the kinematic viscosity and η is a dimensionless coordinate:

η =
(

135M

32ν3r5

) 1
4

z

and M = k4
c V 3

f /2π3a2 where Vf is the volume flow rate, a is the nozzle diameter
and kc is a constant determined to be close to 0.90 in many wall-jet systems.

Use the following substitutions

ξ =
(

r

re

) 9
8

χ = Az

r
7
8

where A is a convenient collection of constants:

A =
(

9C

8D

) 1
3

r
− 3

8
e

and re is the electrode radius and C = ([5M ]3/216ν5)− 1
4 to reduce Eqs. (8.6)

and (8.7) to the following dimensionless forms:

∂2[A]
∂χ2

= χ

(
∂[A]
∂ξ

)
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and
∂2[B]
∂χ2

− K ′ ξ
14
9 [B] = χ

(
∂[B]
∂ξ

)
and find an expression for the normalised rate constant K ′. Comment on the
physical significance of the latter expression.

Solution

First we will substitute η into the expressions for vr ,η→0 and vz ,η→0 and express
these quantities in terms of C . This is a laborious process of cancelling the rational
fractions with the result:

vr ,η→0 = C
z

r
11
4

vz ,η→0 = 7

8
C

z2

r
15
4

From the definitions of ξ and χ we can substitute into Eq. (8.6), so long as we take
care in determining the correct substitutions for the derivatives:

d[A] =
(

∂[A]
∂χ

)
ξ

dχ +
(

∂[A]
∂ξ

)
χ

dξ

and so (
∂[A]
∂z

)
r

=
(

∂[A]
∂χ

)
ξ

(
∂χ

∂z

)
r
+

(
∂[A]
∂ξ

)
χ

(
∂ξ

∂z

)
r

= A

r
7
8

(
∂[A]
∂χ

)
ξ

and (
∂[A]
∂r

)
z

=
(

∂[A]
∂χ

)
ξ

(
∂χ

∂r

)
z
+

(
∂[A]
∂ξ

)
χ

(
∂ξ

∂r

)
z

= 9

8

(
r

r9
e

) 1
8
(

∂[A]
∂χ

)
ξ

− 7

8

(
Az

r
15
8

) (
∂[A]
∂χ

)
ξ

Also
∂

∂z
= A

r
7
8

∂

∂χ

so

∂2[A]
∂z2

= ∂

∂z

[
∂[A]
∂z

]
= ∂

∂z

[
A

r
7
8

(
∂[A]
∂χ

)
ξ

]

= A2

r
7
4

(
∂2[A]
∂χ2

)
ξ
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Now, substituting for vr , vz , ∂[A]
∂r , ∂[A]

∂z and ∂2[A]
∂z2 into Eq. (8.6) gives

C
z

r
11
4

9

8

(
r

r9
e

) 1
8 ∂[A]

∂ξ
− C

z

r
11
4

7

8

Az

r
15
8

∂[A]
∂χ

+ 7

8
C

z2

r
15
4

A

r
7
8

∂[A]
∂χ

= D
A2

r
7
4

∂2[A]
∂χ2

The two terms in (∂[A]/∂χ) cancel, so, multiplying through by A r
7
4 :

D A3 ∂2[A]
∂χ2

= C
Az

r
7
8

9

8

1

r
9
8

e

∂[A]
∂ξ

Substituting the expression for A3 and recognising that χ appears on the right-hand
side:

D
9

8

C

D

1

r
9
8

e

∂2[A]
∂χ2

= C χ
9

8

1

r
9
8

e

∂[A]
∂ξ

∂2[A]
∂χ2

= χ
∂[A]
∂ξ

as required.

Note that overall we have multiplied by r
7
4 /(A2D) to remove dimensionality,

after making the substitutions. So for Eq. (8.7)

∂2[B]
∂χ2

− kr
7
4

A2D
[B] = χ

∂[B]
∂ξ

∂2[B]
∂χ2

− k

A2D
r

7
4

e ξ
14
9 [B] = χ

∂[B]
∂ξ

Hence

K ′ = k

A2D
r

7
4

e

= kr
5
2

e

D

(
8D

9C

) 2
3

= kr
5
2

e

(
64

81C2D

) 1
3

The physical significance of K ′ is that each normalised current/voltage plot in the
form of I/Ilim vs θ (= F/RT (E − E�

f ) where E is the potential) is a function only
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of K ′. In the case of an EC reaction, the effects of the chemically irreversible step
after a reversible electron transfer is to shift a reduction to a more positive potential.
Thus the shift F/RT (E1/2 − E�

f ) between the observed half-wave potential and the
formal potential is solely a function of the normalised parameter K ′.

8.13 Sono-Voltammetry

Problem

A solution of 0.5 mM ferrocene (Fc) in acetonitrile was studied at a platinum elec-
trode of diameter 3 mm in the presence and absence of ultrasound. The ultrasound
was provided by a sonic horn positioned opposite to the electrode, which could
provide power of up to 60 W cm−2.

Under silent conditions, a peak-shaped voltammogram was obtained, whereas
under sonication very much larger currents flowed and the voltammogram became
sigmoidal and steady state in character, with some spiking seen on the limiting
current plateau.

Comment on this, and estimate the approximate diffusion layer thickness
under insonation if a limiting current of 314 µA was observed in the sono-
voltammogram. The diffusion coefficient of ferrocene in acetonitrile is 2.3 ×
10−5 cm2 s−1 at 25◦C.

Solution

In quiescent solution, a familiar peak-shaped voltammogram is seen as expected
for a macroelectrode under planar diffusion-only transport. In contrast, insonation
establishes a strong convective flow as a result of acoustic streaming such that
mass transport to the electrode is enhanced significantly. Under the latter condi-
tions, applying the simple Nernst diffusion layer model gives an expression for the
limiting current:

Ilim = FAD[Fc]
δ

where A is the electrode area and δ is the diffusion layer thickness.
Putting F = 96485 C mol−1, A = π

4 × (0.3)2 cm2, D = 2.3 × 10−5 cm2 s−1

and [Fc] = 0.5 × 10−6 mol cm−3, we find that for I = 314 µA,

δ = 2.5 µm

This value is very small compared to the diffusion layer seen at macroelectrodes
under silent conditions.

In addition to the strong convection induced by acoustic streaming, if the
ultrasound power is above a critical threshold, then cavitation can occur at the
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electrode–solution interface. This gives rise to the ‘spiking’ of the observed current
as a result of tiny bubble implosions on the electrode.

8.14 Rotating Disc Electrodes and Reynolds Number

Problem

Calculate the Reynolds number for a rotating disc of 5 mm diameter spinning in
water and acetonitrile at i) 5 Hz and ii) 25 Hz. Comment on the implication of the
values you calculate. The kinematic viscosities of water and acetonitrile at 25◦C are
0.01 cm2 s−1 and 4.4 × 10−3 cm2 s−1, respectively.

Solution

For a rotating disc the Reynolds number is defined as

Re = Wr2
e

ν

where W /Hz is the rotation speed, re is the disc radius and ν is the kinematic
viscosity.
For water at 5 Hz

Re = 5 × ( 0.5
2

)2

0.01
� 31

whereas at 25 Hz

Re = 25 × ( 0.5
2

)2

0.01
� 156

For acetonitrile at 5 Hz

Re = 5 × ( 0.5
2

)2

4.4 × 10−3
� 71

and at 25 Hz

Re = 25 × ( 0.5
2

)2

4.4 × 10−3
� 355

In all cases, Re is well below the threshold for the onset of turbulence. Accordingly,
the hydrodynamics of the solution will follow a description assuming laminar flow.

8.15 Wall-Jet and Rotating Disc Electrodes

Problem

The one-electron reduction of 3 mM fluoranthene, Fl, to its radical anion was
studied in acetonitrile solution containing 0.1 M tetrabutylammonium perchlo-
rate as supporting electrolyte, using a mercury-plated rotating disc electrode of
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Fig. 8.8 The variation of the transport-limited current, Ilim, with the square root of the
disc rotation speed, W , for the reduction of fluoranthene. Reproduced from R.G. Compton
et al., J. Chem. Soc., Faraday Trans. 1 84 (1988) 2013, with permission from the Royal Society
of Chemistry.

diameter 0.692 cm. The limiting current was shown to scale linearly with the
square root of the disc rotating speed (W /Hz) as shown in Fig. 8.8. Calculate
the diffusion coefficient of fluoranthene, given that the gradient of the graph in

Fig. 8.8 is 2.2 × 10−4 A s
1
2 .

Solution

The Levich equation for the transport-limited current, Ilim, at a rotating disc elec-
trode is given by

Ilim = 1.554nF AD
2
3 ν− 1

6 [Fl]bulk

√
W

where n is the number of electrons transferred, A is the electrode area
(= π × 0.6922/4), D is the diffusion coefficient of Fl, ν is the kinematic viscosity
of acetonitrile (4.4 × 10−3 cm2 s−1 at 25◦C) and [Fl]bulk is the bulk concentration
of Fl (3 × 10−6 mol cm−3).

Hence D can be estimated as 1.2 × 10−5 cm2 s−1.
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8.16 Rotating Disc Electrodes and ECE Processes

Problem

Consider an ECE process

A + e− � B

B
k−→ C

C + e− � products

taking place at a rotating disc electrode, and suppose both that the A/B process
is electrochemically reversible and that species B is so short-lived (unstable) that
it is confined to a very thin ‘reaction layer’ of thickness δk immediately adjacent
to the disc surface. In particular, assume δk 	 δd where δd is the diffusion layer
thickness.

Hence obtain an expression for δk under steady-state conditions. Also, find an
expression for the current–potential waveshape for the ECE process.

Solution

Under the assumption that the reaction layer is much thinner than the diffusion
layer, the transport equation for B can be simplified to

∂[B]
∂t

= D
∂2[B]
∂z2

− k[B]

where D is the diffusion coefficient of B and z is the coordinate normal to the
electrode. This approximation arises since B does not travel far enough from the
electrode to experience convection. This is the ‘reaction layer’ approximation.

Putting ∂[B]/∂t = 0 for steady state, it follows that

[B] = [B]z=0 exp

(
− z

δk

)
(8.8)

where

δk =
(

D

k

) 1
2

which is the first result required.
To obtain the voltammetric waveshape we note first that the electrochemical

reversibility of the A/B couple implies

[B]0 = [A]0 exp ( − θ) (8.9)
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where []0 indicates the concentration at z = 0 and

θ = F

RT
(E − E�

f ,A/B)

and E�
f ,A/B is the formal potential of the A/B couple; E is the applied electrode

potential. Moreover, provided all of the species (A, B, C and products) have the same
diffusion coefficient (D), conservation of mass at the electrode surface dictates

[A]0 + [B]0 + [products]0 = [A]∗ (8.10)

where [A]∗ is the bulk concentration of A; we have assumed only A to be present in
bulk solution. Note that [C]0 is absent from Eq. (8.10) since the electrode reaction
of C to products is assumed to be fully driven to the products at the potentials
required to reduce A to B.

By Fick’s first law the current at a rotating disc electrode is given by

I

πr2
e FD

= ∂[A]
∂z

∣∣∣∣
0
− ∂[products]

∂z

∣∣∣∣
0

(8.11)

where re is the disc radius. Also

∂[A]
∂z

∣∣∣∣
z=0

= [A]∗ − [A]0

δd
(8.12)

and

∂[products]
∂z

∣∣∣∣
z=0

= [products]0

δd
(8.13)

where δd = 0.643ν
1
6 D

1
2 W − 1

2 and W /Hz is the disc rotation speed and ν/cm2 s−1

is the kinematic viscosity of the solution. Further

∂[A]
∂z

∣∣∣∣
z=0

= − ∂[B]
∂z

∣∣∣∣
z=0

so that from Eqs. (8.8) and (8.9) we find:

∂[A]
∂z

∣∣∣∣
z=0

= [B]0

δk
= [A]0 exp ( − θ)

δk

and hence from Eq. (8.12) we find that

[A]0 = [A]∗
1 + exp ( − θ) · δd

δk

(8.14)

From Eqs. (8.9) and (8.10) we have

[products]0 = [A]∗ − [A]0 (1 + exp ( − θ))
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and hence from Eqs. (8.11) and (8.14) we find

I

πr2
e FD

= [A]∗ − [A]0 − [products]0

δd

= exp ( − θ)

δd
[A]0

= [A]∗
δd

1

exp (θ) + δd
δk

For very negative potentials

θ → −∞, I → Ilim

so that
Ilim

πr2
e FD

= [A]∗ δk

δ2
d

and hence
Ilim

I
= δk

δd

(
exp (θ) + δd

δk

)
so

Ilim

I
− 1 = exp (θ)

δk

δd
(8.15)

which is the equation describing the current-voltage curve for an ECE process
under fast (k → ∞) chemical kinetics, where the A/B step is electrochemically
reversible.

It follows from Eq. (8.15) that a mass transport corrected Tafel plot of E versus
log[I−1 − I−1

lim ] will have a gradient of 2.303RT/F V per decade.
Finally we emphasise the approximate nature of Eq. (8.15) and stress that in

modern work, numerical simulation is used to determine the behaviour of ECE
and other reaction mechanisms at rotating disc electrodes without recourse to the
reaction layer approximation.
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9.1 Electrochemical Sizing of Gold Surfaces

Problem

Figure 9.1 shows a typical TEM image of a gold nanoparticle modified carbon
nanotube. These modified nanotubes may be suspended in solvent. Around 20 µL
of this suspension was deposited onto an electrode and the solvent allowed to
evaporate. This method of modifying electrodes is known as ‘casting’.

Assume that for the nanoparticles the number of gold atoms per cm2 is the same
as that found for a macroscopic polycrystalline gold surface (1.25 × 1015 atoms
cm−2). Describe a simple method by which the surface area of gold nanoparticles
present on an electrode may be measured voltammetrically. Critically assess your
suggestion.

Solution

A cyclic voltammetric experiment run from +0.0 to +1.6 V (vs SCE) in 0.1 M
H2SO4 allows the oxidation of gold to be clearly resolved, with the gold oxide
reduction peak occurring at +0.85 V (vs SCE). We assume, as stated in the question,
that there are 1.25 × 1015 atoms per cm2 on the surface of the gold nanoparti-
cles. The oxidation of polycrystalline gold has been suggested to follow multiple
pathways, but overall the process may be viewed as involving a two-electron trans-
fer. The integral of the reduction peak gives a charge which is proportional to
the total surface area of gold present. The conversion ratio is ≈390 µC cm−2 [H.
Angerstein-Kolowska et al., Electrochimica Acta 31 (1986) 1061]. Figure 9.2 depicts
a voltammogram which clearly shows the large gold oxide reduction peak.

183
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Fig. 9.1 A typical TEM image of a Au nanoparticle modified carbon nanotube. Reproduced
from L. Xiao et al., Anal. Chim. Acta 620 (2008) 44, with permission from Elsevier.

Fig. 9.2 Cyclic voltammetry of AuCNTs-GC in 0.1 M H2SO4 with scan rate of 100 mVs−1

with different AuCNTs loadings: (a) blank GC electrode, (b) electrode modified with
20 µL of 0.02 mg mL−1 of AuCNTs solution, (c) 20 µL of 0.2 mg mL−1 and (d) 40 µL of
0.2 mg mL−1. Reproduced from L. Xiao et al., Anal. Chim. Acta 620 (2008) 44, with permis-
sion from Elsevier.
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This analysis, although easy to perform, only provides an estimate of the actual
surface area present. This is primarily due to the fact that the surface density of gold
atoms on the nanoparticles is likely to be significantly different from that found
for macroscopic polycrystalline gold. It has also been implicitly assumed that all
the gold nanoparticles are electroactive.

9.2 Differential Pulse Voltammetry

Problem

Linear sweep voltammetric methods often result in poor limits of detection. Pulse
voltammetry is frequently used to improve these (see C.M.A. Brett and A.M.
Oliveira Brett, Electroanalysis (1998) Oxford University Press).

(i) Sketch the potential waveform which is applied to the working electrode
during a differential pulse voltammetry (DPV) experiment and give typical
values for the pulse amplitudes and times.

(ii) At what points on the potential waveform is the current sampled, and how is
the current plotted?

(iii) Explain how DPV allows lower limits of detection to be attained. Your answer
should include information on the time scale for the decay of both the Faradaic
and capacitive currents.

Solution

(i) Figure 9.3 shows a schematic diagram of the potential waveform applied
to a working electrode during a DPV experiment. The potential amplitude
of the pulse (�Epulse) is typically of the order of 50 mV and the potential
step (�Estep) is generally 10 mV or less. The timescale of the pulse (tpulse) is
≈5–100 ms and the duration of the whole step (tstep) is ≈ 0.5–5 s.

(ii) The current is sampled at points 1 and 2, as indicated in Fig. 9.3. From this
the voltammogram is plotted as �I / A (= I2 − I1) vs potential.

(iii) DPV greatly reduces the contribution of non-Faradaic current to the mea-
sured voltammetric response. This is possible because capacitive currents in
general relax far more quickly than Faradaic processes, specifically within
one or two milliseconds. This difference in lifetimes of the two currents
may be easily exemplified by considering the capacitive charging of a RC
(series resistor-capacitor) circuit as a model of the electrode–solution inter-
face, where Icap ∝ e− t

RC . This is in contrast to the time dependence of a
Faradaic reaction involving a solution phase species (as given by the Cottrell

equation for a macroelectrode) where If ∝ t− 1
2 .
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time, t
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Fig. 9.3 Schematic waveform for the potential applied to a working electrode during a DPV
experiment.

9.3 Square-Wave Voltammetry

Problem

(i) Sketch the potential waveform which is applied to the working electrode
during a square-wave voltammetry (SWV) experiment. Give typical values
for the pulse amplitudes and times. Indicate on the waveform the points at
which the current is sampled. How is an SWV voltammogram plotted?

(ii) How does SWV differ from DPV and why does it in general achieve lower
limits of detection?

Solution

(i) Figure 9.4 shows a schematic diagram of the potential waveform applied to a
working electrode during an SWV experiment. �ESW is the amplitude of the
pulse (≈25 mV), �Estep is the staircase height (≈10 mV) and t is the cycle
period (≈5 ms). It is common for the cycle period to be reported as a frequency
where f = 1/t ; consequently, the ‘effective’ scan rate is then veff = f �Estep.
The voltammogram is sampled twice each cycle, at points 1 and 2 as marked
on Fig. 9.4. The voltammogram is plotted as �I /A (= I1 − I2) vs potential.

(ii) SWV is a large amplitude pulse technique. Due to this large amplitude it
is possible that the reverse pulse can reoxidise the product of the forward
pulse (or re-reduce depending upon the scan direction). Consequently, the
enhanced sensitivity of SWV results because the net current (�I ) is larger
than either of the currents measured at point 1 or 2.
As with DPV, one of the major advantages of SWV is its ability to cancel non-
Faradaic currents as a result of the capacitance being effectively constant at
both points 1 and 2. A further advantage of SWV over other pulse techniques
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Fig. 9.4 Schematic waveform for the potential applied to a working electrode during a SWV
experiment.

is the far faster scan rates that are possible; this is due to the effectively constant
capacitance at both points 1 and 2.

9.4 Square-Wave Voltammetry and Dissolved Oxygen

Problem

Through the use of SWV, how is it possible to selectively minimise some Faradaic
currents? In particular, how is it possible to reduce the size of an oxygen signal
from an SWV voltammogram recorded in aqueous solution, without degassing?

Solution

As described in Problem 9.3 part (ii) the increased sensitivity of SWV arises due to
the possibility that the analyte of interest can be reoxidised (or re-reduced) on the
reverse pulse. Consequently, not only is there an increase in net current, but the
reoxidised analyte may then undergo further reduction on the next pulse. This is
only possible for analytes which exhibit chemically and electrochemically reversible
electron transfer. Consequently, SWV is more sensitive to such species.

The reduction of oxygen in aqueous solutions is irreversible in nature in terms
of both the chemical and electrochemical processes involved, and hence it is not
reoxidised on the reverse pulse, such that the voltammetric wave as measured is not
enhanced. Thus in a solution containing a reversible species of interest and oxygen
(where both react electrochemically at similar potentials), the use of SWV may
allow analytically useful voltammetric data to be obtained without degassing of the
solution. As a caveat, it should be noted that although it is possible to measure an
analytically useful voltammetric response in the presence of oxygen, the chemistry
occurring within the solution may be altered by its presence.
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9.5 Stripping Voltammetry

Problem

(i) Describe how a stripping voltammetry experiment works. Why is it possible
to achieve low detection limits (≈ 10−10 M)?

(ii) How is it possible to differentiate between different metals contained within
one solution?

(iii) What are the advantages and disadvantages of using a mercury-based
electrode?

Solution

(i) A stripping analysis consists of two basic stages. There is first an accumulation
stage, and second a voltammetric stripping step induced by sweeping the
potential anodically.
For a simple anodic stripping experiment the potential is held at a negative
potential so that the metal is reduced onto the working electrode

Mn+
(aq) + ne− → M(s)

After a suitable accumulation time the potential is swept in a positive direction
so as to oxidise all of the different accumulated metals. The voltage required
for the stripping depends on the standard potential for the M/Mn+ couple and
the corresponding electrode kinetics. The magnitude of the stripping peak is
then a function of both the concentration of metal ions contained within the
solution and the length of the accumulation time. Low detection limits can
then be achieved by extending the period of accumulation.

(ii) If a solution contains a mixture of two or more metal ion species, and assuming
that they are both deposited onto the electrode during the accumulation stage,
then as the electrode is swept positively the metals will be oxidised at their
respective potentials. Hence it is possible to identify different metals from the
potential at which they are stripped (oxidised) in the voltammetric scan.
Problems may arise when two metals oxidise at similar potentials, so that their
voltammetric peaks overlap. If a solid electrode is used, then alloy formation
may also present problems. Various methodologies have been developed to
overcome this problem: a prime example is the use of mercury film electrodes
as opposed to using a hanging mercury drop electrode.

(iii) A huge amount of literature has focused upon the study of stripping analysis,
with the majority of work employing a mercury electrode. Mercury electrodes
display a number of advantages, including their extended cathodic range in
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aqueous solution and the fact that upon deposition, the metal may dissolve
reversibly into the mercury to form an amalgam, hence allowing far higher
levels of accumulation than at a solid electrode.
A major disadvantage is the limited anodic range available, due to the relatively
facile oxidation of mercury. A further issue is the known toxicity of mercury
and its compounds. In some countries there are stringent controls on its use.
As a result of this, there is increasing interest in finding alternative electrode
materials. One such example is the use of bismuth (see, for example, J. Wang,
Electroanalysis 17 (2005) 1341).

9.6 Analysis of DNA

Problem

Adsorptive stripping differs from either cathodic or anodic stripping voltammetry
in that the accumulation step for the former does not involve a Faradaic process.
Adsorptive stripping voltammetry has helped to increase the range of possible ana-
lytes available for detection, including a variety of biomolecules. Pioneering work
in the 1960s by E. Paleček developed the use of adsorptive stripping voltammetry
for detecting nucleic acids [Nature 188 (1960) 656].

(i) How are the nucleic acids voltammetrically detected? How would the proce-
dure differ if you were using a carbon-based electrode as opposed to a mercury
electrode?

(ii) What is: a) DNA hybridisation; and b) a single nucleotide polymor-
phism?

(iii) Mercury electrodes are highly sensitive to DNA (limits of detection below
0.1 µg mL−1). Why are they of limited use for the detection of DNA hybridi-
sation, and how has this issue been overcome?

Solution

(i) Nucleic acids may be voltammetrically detected either through the oxida-
tion or the reduction of the bases. A mercury electrode in aqueous solution
has an extended cathodic voltammetric window, but the oxidation of mer-
cury has its onset around +0.1 V vs SCE. Consequently, the oxidation of the
nucleic acids occurs at far too positive potentials for it to be measured at a Hg
electrode.
In contrast, a graphite electrode has an electrochemical window between
about −1 V and +1 V (vs SCE) and as such it is more suited for the measure-
ment of the oxidation of the DNA bases.
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Fig. 9.5 Schematic diagram of a common methodology for the detection of DNA
hybridisation.

(ii) (a) DNA hybridisation is the binding of two complementary single strands
of DNA. Detection of the hybridisation event is the aim of most electro-
chemical DNA sensors.

(b) A single nucleotide polymorphism is a common form of genome
variation where there is a single alteration to the base pair sequence. This
single variation is enough to cause an individual to have an increased
risk of disease.

(iii) The detection of DNA hybridisation is commonly achieved by modifying an
electrode surface with single-stranded DNA. The electrode is then exposed to
either a complementary or non-complementary strand of DNA. The hybridi-
sation event may be detected by the increase in the voltammetric signal
upon hybridisation. This scheme is outlined in Fig. 9.5. For information
on other methodologies of DNA detection, see the work of C. Batchelor-
McAuley and R.G. Compton [Biosensors and Bioelectronics 24 (2009)
3183].
DNA has a high affinity for mercury. As such the single-stranded DNA
may bind non-specifically to the electrode, leading to false positive results.
This problem may be circumvented through the use of magnetic beads
such that the hybridisation event occurs on the surface of the beads. The
beads may be easily transferred to another solution where the hybrid DNA
is dissociated from the magnetic beads. The concentration of DNA in this
resulting solution may then be measured using adsorptive stripping voltam-
metry at a Hg electrode. For more information on the use of magnetic
beads for biosensing see the work of E. Paleček and M. Fojta [Talanta 74
(2007) 276].
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9.7 The Clark Cell

Problem

(i) Describe the Clark sensor used for the amperometric sensing of gaseous
oxygen.

(ii) Show that the steady-state limiting flux (mol cm−2 s−1) to the cathode of a
Clark cell is given by

jlim = pO2(
de
Pe

)
+

(
dm
Pm

) (9.1)

where Pm and Pe are the oxygen permeabilities in the membrane and
electrolyte layer, respectively, and pO2 is the prevailing partial pressure of
oxygen in the sample. de and dm are the thicknesses of the electrolyte and
membrane layers, respectively. Note that the permeability, P , is defined as
P ∝ αD, where α is the oxygen solubility and D is the oxygen diffusion
coefficient.

(iii) In a typical practical example, dm = 20 µm, de = 5 µm, Pm = 8 × 10−11 mol
m−1 s−1 atm−1 and Pe = 2.7 × 10−9 mol m−1 s−1 atm−1 [C.E.W. Hahn,
Analyst 123 (1998) 57R]. How can Eq. 9.1 be simplified? Comment on the
implications for the practical use of Clark sensors.

Solution

(i) The basis of the Clark sensor is shown in Fig. 9.6. The sensor is built around a
working electrode which brings about the reduction of oxygen either to water
or to hydrogen peroxide, depending on the nature of the electrode material.
In the case of a Pt cathode, water will be formed. An Ag/AgCl electrode acts as
a reference electrode and as the counter electrode. The electrolyte is typically
an aqueous buffer solution to which Cl− ions have been added; a pH near 7 is
generally chosen. A gas-permeable membrane separates the electrolyte from
the oxygen sample.

(ii) Consider a coordinate, x , normal to the electrode surface where x = 0 is the
cathode, x = de is the electrolyte/membrane boundary and x = de + dm is
the membrane/sample boundary.
Since the cathode is held at a potential corresponding to the diffusion-
controlled reduction of oxygen, the concentration of oxygen at x = 0 is c = 0.
Let c ′

2 be the oxygen concentration in the electrolyte at x = de, c2 be the
corresponding value at x = de in the membrane, and c3 the concentration at
x = de + dm inside the membrane. Accordingly, when

x = dm + de, c3 = αmpO2
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Fig. 9.6 Schematic outline of the Clark pO2 sensor. Reproduced from C.E.W. Hahn, Analyst
123 (1998) 57R, with permission from the Royal Society of Chemistry.

and

x = de,
c ′

2

c2
= αe

αm

The flux, j , is given by

jlim = Dm

dm
(c3 − c2) (membrane)

= De

de
(c ′

2) (electrolyte)

where the equality is required by conservation of mass across the membrane–
electrolyte boundary.
Solving the above equations, and eliminating c3 and c ′

2, we see

c2 = c3

1 + Deαe
Dmαm

dm
de

= c3

1 + Pedm
Pmde

Hence

jlim = Dm

dm
(c3 − c2)
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= αmpO2

Dm

de

(
1

1 + Pmde
Pedm

)

= pO2(
de
Pe

)
+

(
dm
Pm

)
as required.

(iii) Considering the parameters given, it is clear that (dm/Pm) � (de/Pe) in a
typical situation. Hence, the equation for the flux simplifies to

jlim � Pm

dm
· pO2

indicating that transport through the membrane, rather than the electrolyte,
is the slower step.
Practically speaking, this has the undesirable consequence that the sensor
response is highly sensitive to the membrane thickness (dm) and membrane
properties (Pm). Calibration of the sensor is thus essential.

9.8 Calibration and Limits of Detection

Problem

(i) Describe a general methodology by which a voltammetric sensor can be used
to determine the concentration of an analyte without prior calibration.

(ii) Define the term ‘limit of detection’.
(iii) The anodic stripping voltammetry of consecutive additions of Pb(II)

(2 µg L−1) to a degassed 0.1 M acetate buffer solution was recorded at an
edge-plane pyrolytic graphite electrode. From the following data, find the
limit of detection of Pb(II) for this system.

Concentration/µg L−1 Peak Area/µC

2.0 1.24
4.0 3.19
6.0 4.96
8.0 6.57

10.0 8.67
12.0 10.20
14.0 12.20
16.0 14.20
18.0 16.20
20.0 19.00
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Solution

(i) Assuming there is a linear response between the concentration of the analyte
and the voltammetric signal, a sample of unknown concentration may be
readily analysed through the use of the standard addition method.
First, the voltammetric response of a solution of unknown concentration
is measured. This solution is then repeatedly spiked with a known concen-
tration of the analyte and the voltammetric response recorded after each
addition. From the intercept of a plot of the response versus the addi-
tional concentration of the solution, the initial solution concentration can be
found. An example of such a plot is shown in Fig. 9.7, where the intercept
(as indicated on the graph) shows that the initial analyte concentration was
3 mM.

(ii) The limit of detection is the minimum concentration of an analyte which
results in a significantly different response from that of a blank signal. There
are a number of ways of calculating this value, but a common procedure is
to calculate the standard deviation (y-residuals) of a calibration plot and the
limit of detection (3σ) is taken as being equal to three times the standard
deviation divided by the gradient of the plot.

(iii) Figure 9.8 shows the required plot of concentration versus peak area. From
this it is possible to find the line of best fit (as shown). The standard deviation
of the y-residuals from this line of best fit is found to be 0.34 µC and the

Fig. 9.7 Example of a standard addition plot for the determination of an unknown
concentration of analyte.
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Fig. 9.8 Calibration plot for the anodic stripping voltammetry of Pb(II) at an edge-plane
pyrolytic graphite electrode. Reproduced from M. Lu et al., Electroanalysis 23 (2011) 1089,
with permission from Wiley.

gradient of the line of best fit is 0.96 C g−1 L.

Limit of detection = 3σ

gradient

= 3 × 0.36

0.96

Hence the limit of detection of Pb(II) is found to be 1.1 µg L−1.

9.9 Enzyme Electrodes

Problem

Enzyme electrodes are the focus of a huge amount of research, partially due to their
innate selectivity and sensitivity towards a specific analyte. An enzyme catalysed
reaction may be simply described as below

E + S
k1�

k−1
ES

k2−→ E + P (9.2)

where E is the enzyme, S is the substrate, P is the product and ES is an intermediate
complex. Derive an equation which describes how the rate of reaction varies with
the concentration of the analyte S. Comment on what implications your result has
for using enzyme electrodes for analytical purposes.
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Solution

The derivation in question is the commonly used Michaelis–Menten equation.
This requires us to assume that the total concentration of the intermediate ES is at
steady state such that

d[ES]
dt

= k1[E][S] − k−1[ES] − k2[ES] = 0

The rate of formation of the product is given by

d[P]
dt

= k2[ES]

In order to solve this we must additionally appreciate that the total concentration
of the enzyme is constant, so

[E]tot = [ES] + [E]
This allows us to find an expression for the concentration of [ES]

[ES] = [S][E]tot

KM + [S]
where

KM = k−1 + k2

k1

Consequently,
d[P]
dt

= k2[ES] = k2
[S][E]tot

KM + [S]
so

d[P]
dt

= Vm[S]tot

KM + [S] (9.3)

where
Vm = k2[E]tot

KM is the Michaelis–Menten constant, and Vm is the maximum rate of the reaction.
Equation 9.3 shows us that there is only a limited range of substrate concentrations
for which the enzyme electrode will be analytically useful (as shown in Fig. 9.9).

9.10 Glucose Biosensors

Problem

One of the major successes of electroanalytical chemistry is the development and
production of glucose biosensors. These devices have had a huge impact upon
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Fig. 9.9 Dependence of the enzyme catalysed reaction rate with substrate concentration [S].

the everyday management of diabetes for those able to afford the purchase of
the sensors. A recent review on the subject can be found in the work of J. Wang
[Chem. Rev. 108 (2008) 814].

(i) Describe how the original first-generation glucose sensors operate.
(ii) Why are these sensors sensitive to the oxygen concentration?

(iii) Discuss how the so-called second-generation glucose sensors avoid issues
associated with oxygen.

Solution

(i) The detection of glucose is based upon the following reaction:

glucose + O2
glucose oxidase−−−−−−−−→ gluconic acid + H2O2

The original glucose sensor was based upon measuring the concentration
of oxygen consumed by the above reaction. This measurement is achieved
through the use of a Clark cell (see Problem 9.7). This methodology was fur-
ther improved by electrochemically monitoring the production of hydrogen
peroxide via its oxidation at a platinum electrode.

(ii) Due to the above-described sensors being reliant on the indirect sensing of
glucose via detection of oxygen, they are also susceptible to errors arising
from fluctuations in the oxygen concentration. This problem is further com-
pounded by the fact that the oxygen concentration in a sample can be far
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Fig. 9.10 Schematic diagram showing the redox processes involved in a second-generation
glucose sensor.

lower than that of glucose. Hence the sensors may become oxygen deficient,
and as such an incorrectly low level of glucose concentration is measured.

(iii) A number of approaches have been proposed in order to help avoid the issues
associated with using oxygen as a mediator. The most prominent is the use of
non-physiological electron acceptors such as ferrocene or its derivatives. These
electron acceptors shuttle the electrons between the glucose under analysis
and the electrode, as shown schematically in Fig. 9.10. It should be noted
that it is not possible for glucose oxidase to directly transfer electrons to the
electrode, due to the redox centre being buried within the enzyme.

9.11 Detection of Vitamin B12

Problem

Figure 9.11 (trace A) shows voltammetry for vitamin B12 in aqueous buffer at a
basal-plane graphite electrode. The wave corresponds to the two-electron reduction
of the Co(III) centre in vitamin B12 to Co(I):

Co(III)L(aq) + 2e− → Co(I)L(aq)

The electrode was then modified by depositing tiny droplets of water-insoluble
1,2-dibromocyclohexane (DBCH) on the electrode. The altered voltammetry is
shown in Fig. 9.11 (trace C); in the absence of vitamin B12 in solution no voltam-
metric response from DBCH is seen (trace B).

(i) What is a basal-plane graphite electrode? Comment on why this substrate
might have been selected for the experiment.

(ii) Explain the voltammetric response in trace C. Comment on the sites of
electron transfer in the scheme you propose.
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Fig. 9.11 Basal-plane pyrolytic graphite electrode in vitamin B12r at a scan rate of 0.5 V s−1

for (a) unmodified BPPG in 1.2 mM vitamin B12r solution, (b) modified BPPG with DBCH
in buffer solution, and (c) modified BPPG in vitamin B12r solution. Reproduced from
P. Tomčik et al., Anal. Chem. 76 (2004) 161, with permission from the American Chemical
Society.

(iii) How might the experiment be adapted to provide an analytical method for
the quantification of vitamin B12 in pharmaceutical products and biological
matrix media?

Solution

(i) Basal-plane pyrolytic graphite (BPPG) electrodes and edge-plane pyrolytic
graphite (EPPG) electrodes are fabricated from highly ordered pyrolytic
graphite (HOPG), as shown in Fig. 6.1. The latter consists of layers of graphite
with an interlayer spacing of 3.35 Å. If the graphite crystal is cut parallel to the
graphite sheets, a BPPG electrode results, whereas cutting in a perpendicular
direction gives an EPPG electrode. Of course, although the BPPG surface is
flat relative to an EPPG surface it is not perfectly flat; there are steps on the
surface separating terraces of basal-plane graphite.
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The choice of a BPPG electrode for the experiment described is partly since
the material needs to be inactive with respect to the reduction of DBCH. The
reduction of allylbromides has a high overpotential on carbon electrodes as
compared to, say, silver electrodes. Additionally, the flat surface allows droplets
of the oily DBCH to be formed on the electrode surface.

(ii) Trace C shows that the reduction peak in the voltammetry of Co(III)L is
greatly increased in the presence of the modifying DBCH, but that the reverse
peak (re-oxidation of Co(I)L) is markedly diminished. This is typical of elec-
trocatalytic behaviour (EC′) and suggests that the following net chemical step
is involved:

2Co(I)L(aq) + RBr2(oil)
2H+−−→ 2Co(II)L(aq) + 2Br−

(aq) + R′
(oil)

where RBr2 is DBCH, R′ is cyclohexane and Co(II)L is Vitamin B12. At the
potential of the forward voltammetric wave,Co(II)L will be reduced to Co(I)L,
so completing the catalytic cycle.
Considering the sites of electron transfer, the reactions

Co(III)L(aq) + e− → Co(II)L

and

Co(II)L + e− → Co(I)L

must occur on the remaining exposed basal plane terraces (not covered by the
DBCH droplets), whilst the catalytic reaction must take place on the surface
of the droplets, with the Co(II)L species diffusing back to the basal plane to
complete the catalytic cycle.

(iii) Analytically, a carbon paste electrode can be made with the DBCH acting
as the paste binder and a reactive material facilitating the electrocatalytic
detection of the target. The paste is formed by mixing carbon powder with
DBCH and empirically optimising the relative amounts for optimal analytical
performance [P. Tomčik et al., Anal. Chem. 76 (2004) 161].

9.12 The Anodic Stripping Voltammetry
of Industrial Effluent

Problem

The detection of metals in industrial effluents is important for environmental
monitoring. One approach for the detection of copper(II) ions is through the use
of anodic stripping voltammetry (ASV). Figure 9.12 shows ASV voltammograms
performed in an effluent of pH 2.1, with a chemical oxygen demand (COD) of
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Fig. 9.12 Linear sweep voltammograms detailing the copper stripping responses at a bare
glassy carbon electrode after ultrasonically enhanced deposition and after conventional
silent deposition. Deposition time: 30 s, scan rate: 50 mV s−1. Reproduced from J. Davis,
Analytical Letters 34 (2001) 2375, with permission from Taylor & Francis.

1963 mg L−1 and containing 22.6 ppm pesticide, 6.7 ppm herbicide, trace acetone,
methanol and xylene. Copper was pre-concentrated on a glassy carbon electrode at
a voltage of −1.0 V (vs SCE) after the addition of concentrated KCl to the effluent.
After a period of 30 seconds of deposition, the potential was scanned in a positive
direction to produce the trace shown in Fig. 9.12. The responses shown are those
seen under silent conditions and under insonation.

(i) Explain the principles of ASV as applied in this experiment.
(ii) Suggest a reason for the addition of excess chloride ions.

(iii) Why are much larger signals seen under insonation than under silent condi-
tions?

(iv) How might signals such as these in Fig. 9.12 be used to give analytically useful
data?

Solution

(i) ASV is a two-step procedure. In the first step, the Cu(II) analyte is preconcen-
trated as Cu(0) on the electrode by reduction at −1.0 V:

1

2
Cu2+

(aq) + e− � 1

2
Cu(s)

After 30 seconds, when a significant deposit of Cu(s) has built up on
the glassy carbon electrode, the potential is then scanned towards positive
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values, so bringing about the reoxidation of the copper in the second step
of ASV.
The size of this ‘stripping’ signal is used to quantify the amount of material
deposited on the electrode, and hence the amount of Cu(II) in solution.

(ii) Excess chloride ion (Cl−) is added, as KCl, to provide a controlled chlo-
ride concentration environment since Cu(II) and Cu(I) both form com-
plexes with Cl− ions, e.g. CuCl2−

4 , CuCl−2 , etc. Accordingly, the stripping
signal can change both in size and potential under varying concentrations of
chloride. By adding a large excess of KCl, reproducible stripping signals are
seen.

(iii) Under silent conditions, components in the effluent adsorb on the electrode
surface, thus preventing the deposition of the metallic copper. Most probably
it is the organic material in the effluent which is responsible. Insonation leads
to the in situ cleaning of the electrode: cavitational collapse at the surface tem-
porarily removes adsorbate so allowing the deposition of copper. In addition,
the very strong convection promoted by the insonation greatly enhances the
rate at which Cu(II) is brought to the electrode surface for deposition. This
improves the sensitivity of the ASV technique by greatly increasing the extent
of pre-concentration.

(iv) In order to extract analytically useful data, standard additions — known small
volumes of fixed Cu(II) concentration — would be added to the sample and
the increase in the peak current or area (C) would be plotted against the
added Cu(II) concentration (in the sample) as shown in Fig. 9.13. The inter-
cept on the x-axis corresponds to the unknown Cu(II) concentration in the
sample.

9.13 Adsorptive Stripping Voltammetry at Carbon Nanotube
Modified Electrodes

Problem

Explain the technique of adsorptive stripping voltammetry (AdSV). Carbon
electrodes are often modified with a layer of carbon nanotubes to increase the
sensitivity of AdSV. Suggest a reason why, and discuss the types of analytical targets
that might most usefully benefit from this approach.

Solution

In the AdSV technique, the analytical target is first pre-concentrated on the elec-
trode surface by allowing the electrode to stand in the analytical solution, either
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Fig. 9.13 ‘SonoASV’ determination of copper within sample 1. Deposition time: 30 s, scan
rate: 50 mV s−1. Inset: corresponding standard addition calibration. Reproduced from
J. Davis, Analytical Letters 34 (2001) 2375, with permission from Taylor & Francis.

at open circuit or at a well-defined potential, for a period of tens of seconds
or minutes. This allows the target to adsorb onto the surface. After a period of
time, usually experimentally optimised, the electrode potential is swept in either
an oxidising or reducing direction to obtain a Faradaic signal from the adsorbed
analyte. The signal size (peak current and/or peak area) is then used to infer the
quantity of material in the original sample, either by the method of standard addi-
tions or by using electrodes with well-defined adsorption properties so that a single
scan can be used to generate a quantitative signal without the need for standard
addition.

Multi-walled carbon nanotubes (MWCNTs) are electronically conductive and
also show a very large surface area per unit length. Accordingly, casting these onto
an electrode surface greatly increases the surface area for adsorption whilst retain-
ing electrical contact between the nanotube surface and the underlying electrode.
As a result the sensitivity (current per unit concentration) is significantly and use-
fully increased. Electrodes made of screen-printed carbon nanotubes can be used
similarly.
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Fig. 9.14 Mechanism for the electrochemical oxidation of 4-hexylresorcinol. Reproduced
from R.T. Kachoosangi et al., Electroanalysis 20 (2008) 1714, with permission from Wiley.

Fig. 9.15 Mechanism for the electrochemical oxidation/reduction of capsaicin. Reproduced
from R.T. Kachoosangi et al.,Analyst 133 (2008) 888, with permission from the Royal Society
of Chemistry.

Adsorption onto the MWCNTs is favoured strongly by π − π interactions
between the aromatic surface of the CNTs and any aromatic moieties in the target
molecule. Two examples of the use of MWCNTs for adsorption stripping voltam-
metry are as follows:

(i) 4-hexylresorcinol in pharmaceutical products [R.T. Kachoosangi et al.,
Electroanalysis 20 (2008) 1714] where the target is oxidised via the mechanism
shown in Fig. 9.14 and the associated Faradaic current detected.

(ii) The detection of capsaicin and hence the ‘heat’ of chilli peppers.
Figure 9.15 shows the mechanism and the electrochemistry underly-
ing the Faradaic response [R.T. Kachoosangi et al., Analyst 133 (2008)
888].
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9.14 Surface Modified Electrodes

Problem

Electrodes are often surface modified in an attempt to improve their
‘electroanalytical responses’. Comment critically on the implications of modifying
a macroelectrode in each of the following ways:

(i) Modification with a monolayer of adsorbed material which mediates electron
transfer to or from an analyte.

(ii) Modification with a partial coverage of nanoparticles.
(iii) Modification with a porous layer of either C60 or carbon nanotubes.

Solution

(i) If the electrode is modified with a monolayer, or less, of adsorbed molecules,
then the transport to the electrode will be essentially unmodified and, in the
case of a macroelectrode, will be described by simple semi-infinite planar
diffusion. The effect of the monolayer mediating the electron transfer will
be to change the overall electrode kinetics of the oxidation or reduction of
the analytical target at the interface, ideally with the effect of accelerating the
process.

Fig. 9.16 Simulation of one-electron oxidation process. α = β = 0.5, DA = DB =
10−5 cm2 s−1, E�

f = 0 V, v = 0.1 V s−1, A = 0.0707 cm2, C∗
A = 1 mM. k0 ranges from 1 cm

s−1 to 10−10 cm s−1. Reproduced from B.R. Kozub et al., Sens. and Actuators B 143 (2010)
539, with permission from Elsevier.
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That said, the effect on the size of the analytical signal will not be significant if
linear sweep voltammetry (LSV) is used to identify the presence of the target.
Figure 9.16 shows the effect of changing electrode kinetics from very slow to
very fast corresponding to the electrochemically fully irreversible to the fully
reversible limit. The peak current changes, but not significantly. In fact the
ratio of the peak currents for a one-electron reduction is given by the ratio of
the corresponding Randles–Ševčík equations for LSV at a macroelectrode:

Ip,rev

Ip,irrev
= 2.69 × 105Ac∗D

1
2 v

1
2

2.99 × 105α
1
2 Ac∗D

1
2 v

1
2

= 2.69

2.99α
1
2

where A is the electrode area, c∗ is the analyte concentration, D is the diffusion
coefficient and v is the voltammetric scan rate. For the case of α = 0.5

Ip,rev

Ip,irrev
= 2.69

2.99α
1
2

= 1.27

so that the measured effect of accelerating the electrode kinetics is a maximum
of 30%, although, of course, the peak potential moves to lower overpotentials
which may be analytically useful in removing the effects of some interfering
species. Note, however, that if pulse techniques are used rather than LSV, then
the acceleration of electrode kinetics from irreversible to reversible behaviour
can lead to a greater improvement in analytical signal.

(ii) The effect of partially covering an electrode surface with a random array
of nanoparticles depends on the degree of coverage of the surface. At very
low coverages, and assuming that electrolysis occurs only on the surface of
the nanoparticles and not at the underlying electrode surface, then diffusion
occurs to essentially independent nanoparticles so that a sigmoidal voltam-
mogram with a constant limiting current is observed at low scan rates, turning
into a peak-shaped response at faster scan rates. The signal size (current)
reflects the number of nanoparticles present.
As the coverage increases, there is increasing overlap of the diffusion fields
(Fig. 9.17) of the nanoparticles and eventually a signal is observed that is very
close to that expected if the entire geometric area of the electrode were active.
Note that not all of the electrode needs to be covered by nanoparticles for this
to occur.
The different possible diffusional cases are summarised in Fig. 9.17 and are
discussed in Chapters 6 and 11 in more detail. In Case 4 there is effectively
linear diffusion to the entire geometric area covered by the nanoparticles, and
so the peak-shaped voltammetry reflects the area of the underlying electrode
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Fig. 9.17 Diffusion at a nanoparticle array. Case 1: almost planar diffusion at an isolated
nanoparticle where the diffusion layer thickness is small compared to the nanoparticle
radius. Case 2: convergent diffusion to diffusionally independent nanoparticles. Case 3: par-
tially overlapping diffusion layers between adjacent nanoparticles. Case 4: heavily overlap-
ping diffusion layers leading to effectively linear diffusion to the array as a whole. Reproduced
from Y.G. Zhou et al., Chem. Phys. Lett. 497 (2010) 200, with permission from Elsevier.

supporting the nanoparticles. Accordingly, the maximum current that can
be obtained by linear diffusion to this area is achievable with only partial
coverage of the electrode surface with nanoparticles. Hence the method is
very useful for economising on the cost of expensive metals such as platinum,
gold or palladium.
The above discussion assumes implicitly that the nanoparticles have simi-
lar electrochemical behaviour to the corresponding bulk metal. In fact, the
changing surface and electronic structures between the bulk material and
nanoparticle means that there may be qualitatively altered electroreactivity;
at least in principle some reactions may not proceed at the nanoscale, or
vice versa (see also Chapter 11).

(iii) Covering the electrode with a porous layer of C60 or carbon nanotubes causes
a change in mass transport regime from semi-infinite linear diffusion to
quasi ‘thin-layer’ voltammetry. Larger currents are often seen in the linear
sweep voltammetry from this effect alone, as explained in greater detail in
Problem 11.6. In principle, the C60 or carbon nanotubes may mediate an
electron transfer at a different rate from that due to direct transfer from the
underlying electrode, but this is difficult to prove (or disprove) on the basis
of voltammetry using layers of C60 or nanotubes, because of the significant
mass transport effects described above. This is discussed in more detail in
Problem 11.6.
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9.15 Electron Transfer Rates at Carbon Electrodes

Problem

The extent of the electrochemical reversibility of analyte signals at carbon elec-
trodes varies from one type of electrode to another: edge-plane pyrolytic graphite
(EPPG), basal-plane pyrolytic graphite (BPPG), glassy carbon (GC) and boron-
doped diamond (BDD) all show different responses. What are the analytical
benefits of varying (and optimising) the electrode materials for a particular task,
assuming detection via linear sweep voltammetry?

Solution

By altering the rate of electron transfer, the signals for the analytes can be made
to occur closer to the formal potential for the reaction of interest, as the electrode
kinetics become faster. If the voltammetric signal changes from electrochemically
irreversible to reversible there will be a small increase in the peak current (see Prob-
lem 9.14) for linear sweep voltammetry but the most important consequence is
the decreased overpotential at which current can be driven. Hence, less extreme
potentials are required for the analysis.

Examples include the reduction of chlorine

1

2
Cl2(aq) + e− � Cl−(aq)

Fig. 9.18 Cyclic voltammograms for the reduction of chlorine in 0.1 M nitric acid solution
using EPPG (0.196 cm2), GC (0.07 cm2), BPPG (0.196 cm2), and BDD (0.07 cm2) elec-
trodes. All scans were recorded at 100 mV s−1, vs. SCE. Reproduced from E.R. Lowe et al.,
Anal. Bioanal. Chem. 382 (2005) 1169, with permission from Springer.



November 29, 2011 9:53 spi-b1239 Understanding Voltammetry: Problems and Solutions b1239-ch09

Voltammetry for Electroanalysis 209

C
u

rr
en

t 
D

en
si

ty
 /

 A
 c

m
-2

Potential / V

-0.2 0.2 0.6 1.0 1.4 1.8 2.2

800

400

0

-400

Edge

Basal

GC
BDD

Fig. 9.19 The electrochemical oxidation of bromide (1 mM) at EPPG (dotted line), BPPG,
GC and BDD electrodes, in a 0.1 M nitric acid solution. All scans recorded at 100 mV s−1,
vs. SCE. Reproduced from E.R. Lowe et al., Electroanalysis 17 (2005) 1627, with permission
from Wiley.

as shown in Fig. 9.18 and the oxidation of bromide

Br−
(aq) � 1

2
Br2(aq) + e−

as shown in Fig. 9.19. In each case it can be seen that EPPG shows the fastest
electrode kinetics and hence least overpotential for the reactions of interest.

In general, optimisation of electrode materials for analytical tasks is desirable
and worthwhile, while noting that sensitivity in terms of peak current (but not
peak potential) in linear sweep voltammetry is essentially controlled by the rate of
diffusion to the electrode and hence, provided a signal is seen at some potential,
relatively insensitive to the electrode material.
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Voltammetry in Weakly Supported
Media: Migration and Other Effects

10.1 Coulomb’s Law

Problem

Coulomb’s law states that the electrostatic force, |F|, acting on two charges q1 and
q2 separated by a distance r is given by:

|F| = 1

4πεsε0

q1q2

r2

(i) How does this law indicate that opposite charges attract and like charges repel?
(ii) Define ε0 and εs .

(iii) In water at 298 K, the constant of proportionality is:

1

4πεsε0
= 1

4π × 78.54 × 8.854 × 10−12
= 1.14 × 108 J m C−2

Hence calculate the attractive force on a proton, H+, due to a chloride ion,
Cl−, at a displacement of 1 nm.

(iv) The potential energy on the proton associated with this attractive force is
given by integration of Coulomb’s law as:

U = 1

4πεsε0

q1q2

r

Calculate the energy per mole associated with this interaction. Assess its
magnitude.

211
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Solution

(i) If the charges are opposite, the sign of the force will be negative, and therefore
the force will act to accelerate the charges in the direction of decreasing r ,
according to Newton’s second law. Since r indicates the separation of the
charges, decreasing r brings the charges towards each other, and hence they
attract. If both charges have the same sign, the force acts in the direction of
increasing r , which is repulsion.

(ii) ε0 is the permittivity of free space. It indicates the strength of electrostatic
interactions as a proportion of the interacting charges.

εs is the relative permittivity of the medium as a proportion of ε0, some-
times called the ‘dielectric constant’ of the medium. It indicates the extent
to which electrostatic interactions are screened by the inherent polarity of a
medium, as compared to vacuum. In water, which is a highly polar solvent,
it has the value 78.54 at 298 K, indicating that electrostatic attractions are
approximately eighty times weaker in water due to screening by the solvent
than is the case in vacuum.

(iii) Substituting into the equation, and denoting the charge on an electron as e:

|F| = 1.14 × 108 × 1 × −1 × e2

(10−9)2

= −1.14 × 1026 × e2

= 2.94 × 10−12 N

(iv) The energy is r times the force, so over 1 nm distance this is 2.94 × 10−21 J.
Multiplying by the Avogadro constant to determine the energy per mole,
we find

U × NA = 2.94 × 10−21 × 6.022 × 1023 = 1.77 kJ mol−1

Note that at 298 K, RT is approximately 2.4 kJ mol−1. Therefore, Coulom-
bic attractions have considerable magnitude over nanoscale distances. This
explains why an understanding of electrodynamics is particularly vital to the
study of electrochemistry at the nanoscale (see also Chapter 11).

10.2 The Nernst–Planck Equation

Problem

Ignoring the effects of non-ideality, the electrochemical potential, µi , of an ion in
solution may be defined:

µi = µ0
i + RT ln ci + ziFφ
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where µ0
i is the electrochemical potential at a chosen standard state, R is the gas

constant, T is temperature, ci is concentration, zi is the charge of the ion, F is the
Faraday constant and φ is potential.

(i) Given that

|F| = −dµi

dx

determine the force, |F|, acting on a mole of ions as a function of the local
concentration and potential.

(ii) If the frictional force is proportional to velocity with a constant of propor-
tionality fi , derive an expression for the limiting velocity vi . Show that the
flux corresponding to this velocity is given by the Nernst–Planck equation
(Eq. 10.1), for a linear direction.

J = −Di

(
dci

dx
+ ziF

RT
ci

dφ

dx

)
(10.1)

(iii) By defining the mobility, ui , as the ratio of the limiting speed to the applied
electric field (with no concentration gradients), determine the relationship
between ui and the diffusion coefficient Di .

(iv) Determine an expression for ∂ci/∂t , given that in a linear space conservation
of mass requires:

∂ci

∂t
= −∂Ji

∂x

Solution

(i) From the equation given, we see that force is the negative first derivative of
energy with respect to a space coordinate. This is because ‘force’ describes a
tendency to travel down an energy gradient to a point of minimum energy.
Since the chemical potential is defined as the Gibbs energy per mole, the force
per mole is the first derivative of the chemical potential:

|F| = −dµi

dx
= −RT

d ln ci

dx
− ziF

dφ

dx

(ii) A limiting velocity means that acceleration is zero, and so overall force is
zero according to Newton’s second law. Therefore, the frictional force on a
single molecule must exactly balance the force due to the chemical potential
gradient:

−1

NA

(
RT

d ln ci

dx
+ ziF

dφ

dx

)
− fivi = 0
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therefore, rearranging

vi = −1

NAfi

(
RT

d ln ci

dx
+ ziF

dφ

dx

)

The flux J through a plane is the product of the velocity of the ions undergoing
transport, and the concentration of ions:

J = vici

= −
(

RT

NAfi
ci

d ln ci

dx
+ ziF

NAfi
ci

dφ

dx

)

= −
(

RT

NAfi

dci

dx
+ ziF

NAfi
ci

dφ

dx

)

which is recognisably similar to the Nernst–Planck equation. If we express the
diffusion coefficient as the ratio

Di = RT

NAfi

then we can derive the more common form:

J = −Di

(
dci

dx
+ ziF

RT
ci

dφ

dx

)

as was given in Eq. 10.1.
(iii) The electric field, E, is −dφ/dx . Therefore if the concentration gradient is

zero:

ui = vi

− dφ
dx

= ziF

NAfi

Typically, |zi | is used such that absolute speed rather than velocity (implying
a direction) is considered. Hence from the definition of Di we can confirm
that:

ui = Di
|zi |F
RT

which is often referred to as the Einstein relation.
(iv) Care must be taken in differentiating the expression for J since both φ and ci

are dependent on the space coordinate and so the product rule must be used.
The correct derivative is:

∂ci

∂t
= − ∂J

∂x
= Di

(
∂2ci

∂x2
+ ziF

RT

(
ci

∂2φ

∂x2
+ ∂ci

∂x

∂φ

∂x

))
(10.2)
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Clearly this equation is cumbersome by comparison to Fick’s second law,
which is the special case where ∂φ/∂x = 0 everywhere.

Most importantly, the Nernst–Planck equation is non-linear, whereas Fick’s
second law is linear. Both analytical theory and simulation using the full
Nernst–Planck equation are hence much more demanding than diffusion-
only theory, thus indicating one good reason why excess supporting electrolyte
is often used to remove the influence of electric fields in a system.

10.3 Migration and the Electric Field

Problem

In a generalised geometry, the Nernst–Planck equation is given for a species i as

Ji = −Di

(
∇ci + ziF

RT
ci ∇φ

)

where ∇ indicates the gradient operator and Ji is a flux vector.
On the right-hand side, the first term describes diffusion and the second term

describes migration.
(i) What is migration?

(ii) The electric field is defined as:

E = −∇φ

By considering the Nernst–Planck equation, discuss the meaning of the con-
cept of ‘electric field’.

(iii) Gauss’s law states that

∇ · E = − ρ

εsε0

where ∇· is the divergence operator, ρ is the charge density, and εsε0 is the
absolute permittivity of the medium.

Use this equation to relate φ to the ion concentrations.
(iv) Why is the relation derived here necessary, in addition to the Nernst–Planck

equation (Eq. 10.2), in order to describe migrational processes?
(v) Why is Coulombic attraction or repulsion not observed in fully supported

solutions, even though there is a much higher concentration of ions than in
weakly supported solutions?

Solution

(i) Migration is the organised movement of an ionic species in response to
Coulombic forces, i.e. by attraction to or repulsion from other ions or
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a charged surface. Since opposite charges attract, migration will tend to
compensate the development of charge separation in a solution. Because the
cause for migration is Coulombic attraction, it can be seen as a tendency
towards local equilibrium by minimisation of energy, by maximising ionic
attraction. By contrast, diffusion is a random process by which the system
tends to local equilibrium by maximisation of entropy.

The contributions of diffusion and migration are described respectively by
the two terms in the right-hand side of the Nernst–Planck equation derived
above (Eq. 10.1).

(ii) An electric field (given as a vector E) is a mathematical formulation of the
average Coulombic force acting on an ion at a point, due to the spatial dis-
tribution of other charges. The direction of the electric field is given such
that a positive ion will travel down the field, while a negative ion will travel
up the field. As well as arising from ion distribution, applying a charge to an
electrode surface will cause an electric field in the vicinity, since ions will be
attracted to that charge.

(iii) The electric field due to a charge distribution is described mathematically by
Gauss’s law, one of Maxwell’s equations:

∇ · E = − ρ

εsε0

This law is equivalent to Coulomb’s law above, but is written in terms of a
charge density rather than in terms of the locations of individual ions, so it is
much easier to work with when the number of ions is large.

In an ionic solution, the ions are typically the only source of charge density,
and so this charge density is the sum of the charge density due to each ion.
This charge density is the product of the ionic charge, which is a multiple zi of
the electron charge e, and the ionic number densities, denoted ni :

ρ = e
∑

i

zini

= F
∑

i

zi ci

where F is the Faraday constant (=NAe) and ci is a concentration. Since the
electric field can be described as the negative gradient of a potential, φ, such
that E = −∇φ, we can write:

∇2φ = − F

εsε0

∑
i

zi ci

which is commonly called the Poisson equation. This describes the potential
field arising from a certain charge distribution.
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(iv) One Nernst–Planck equation applies for every species in the solution. If we
are to solve the equations for n species, these contain n + 1 unknowns, which
are the n concentrations ci and the potential φ. An additional relation is
therefore required to solve this set of equations. This relation is often chosen
to be the Poisson equation, since this is derived from Maxwell’s equations
and therefore relates potential and concentration in a manner that is self-
consistent and which agrees with Coulomb’s law.

Historically, another common choice for a further constraint has been the
electroneutrality approximation. This uses the small absolute value of ε0 to
approximate that: ∑

i

zi ci = 0

Note that this approximation is not accurate at short timescales or across
short distances, where ‘short’ means nanoscale, in practice.

(v) Note that migration refers to organised motion due to Coulombic forces. An
individual ion will instantaneously be subject to Coulombic forces in one
direction, as ions move with respect to each other, but these forces are averaged
to zero over a very short timescale. Especially if the concentration of ions
in solution is large, the repulsive and attractive forces in different directions
will cancel each other out. Therefore, there is no lasting force acting in one
direction, so on average an ion is unaffected by these forces. Migration is
therefore not observed when the ionic strength is high, unless an electric field
has been applied to the solution.

10.4 Transport Numbers and Liquid Junction Potentials

Problem

(i) Explain the term transport number as applied to an electrolyte Mz+Xz−, and
explain why a liquid junction potential arises at the boundary between two
liquids containing different concentrations of MX, if the cation and anion
have different transport numbers.

(ii) Show how the following concentration cell with transport can be used to find
the transport number of Cu2+

(aq) ion:

Pb(s)|PbSO4(s)|CuSO4(aq, 0.2 M)|CuSO4(aq, 0.02 M)|PbSO4(s)|Pb(s)

for which the cell emf is +0.0118 V. Assume that the activity coefficients
of SO2−

4 in 0.2 M and 0.02 M solution are 0.110 and 0.320, respectively
[J.D.R. Griffiths and P.J.F. Thomas, Calculations in Advanced Physical Chem-
istry (1971) Arnold].



November 29, 2011 9:53 spi-b1239 Understanding Voltammetry: Problems and Solutions b1239-ch10

218 Understanding Voltammetry: Problems and Solutions

Solution

(i) An electrochemical current in bulk solution is carried by both the cation
(Mz+) and anion (Xz−). These generally move at different speeds under the
influence of an electric field, so that it is useful to introduce the concept of
transport numbers, t+ and t−, which are the fraction of current carried by
the cation and by the anion, respectively. In terms of the molar conductivities,
�+ and �−

t+ = �+
�+ + �−

t− = �−
�+ + �−

where by definition t+ + t− = 1.
A liquid junction potential arises at the interface because in the case that

t+ �= t−, the different rates of diffusion of the two ions from high to low con-
centration generates a charge separation at the interface and hence a potential
difference known as a liquid junction potential, ELJP. According to the clas-
sical theory of liquid junction potentials [P. Henderson, Z. Physik. Chem. 59
(1907) 118], for a salt Mz+ and Xz−, this has a limiting magnitude of

ELJP = (t+ − t−)
RT

zF
ln

aLHE

aRHE

where ai is the activity on the side i of the junction, and the potential difference
is measured as the difference between the right- and left-hand electrodes (RHE
and LHE).

(ii) In the case of the concentration cell with transport, the measured potential
can be viewed as the sum of the reversible concentration cell with potential,
Ercc, and the liquid junction potential. The former can be established by
considering the processes at the two electrodes:

RHE

1

2
PbSO4(s) + e− � 1

2
SO2−

4(aq, 0.02 M) + 1

2
Pb(s)

LHE

1

2
PbSO4(s) + e− � 1

2
SO2−

4(aq, 0.2 M) + 1

2
Pb(s)

Net

1

2
SO2−

4(aq, 0.2 M) � 1

2
SO2−

4(aq, 0.02 M)
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So that

Ercc = −RT

F
ln

a1/2

SO2−
4 , RHE

a1/2

SO2−
4 , LHE

= −RT

2F
ln

aSO2−
4 , RHE

aSO2−
4 , LHE

and

ELJP = −(t+ − t−)
RT

2F
ln

aSO2−
4 , RHE

aSO2−
4 , LHE

= (1 − 2t+)
RT

2F
ln

aSO2−
4 , RHE

aSO2−
4 , LHE

where we have used the relation that t+ + t− = 1.
Hence

E = Ercc + ELJP

= ( − 1 + 1 − 2t+)
RT

2F
ln

aSO2−
4 , RHE

aSO2−
4 , LHE

= t+
RT

F
ln

aSO2−
4 , LHE

aSO2−
4 , RHE

= t+
RT

F
ln

0.20 × 0.110

0.02 × 0.320

= 0.0118 V

It follows that

t+ = 0.0118F

RT

1

ln 0.20×0.110
0.02×0.320

= 0.4951

1.235

= 0.372

and so t+ ≈ 0.37 (and t− ≈ 0.63).
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10.5 Transport Numbers and the Hittorf Method

Problem

A solution of lithium chloride was electrolysed for a long period in a cell of two
components – a cathode compartment and an anode compartment – separated
with a glass frit so that there was transport between the two solutions across the
interface defined by the frit (a ‘cell with transport’). Each compartment contained
a platinum electrode; at the anode, chloride anions were oxidised, whereas at the
cathode, water was reduced.

(i) Explain how analysis of the chloride content of the anode compartment
before and after electrolysis can be used to find the transport number of Cl−
(and hence Li+). This is the classical ‘Hittorf ’ method for finding transport
numbers.

(ii) In an experiment the passage of 0.05 F in charge caused the mass of LiCl in the
anode compartment to decrease by 0.708 g. Estimate the transport numbers
of Li+ and Cl−. The molecular mass of LiCl is 42.394 g mol−1.

Solution

(i) In the anode compartment, electrolysis oxidises a certain amount of chloride
ion corresponding to a charge, +Q, passed through the cell. So, nel = Q/F
moles of chloride are lost at the electrode. Equivalently, the reduction of water
in the cathode compartment passes a corresponding charge −Q.

This transfer is mediated by the passage of an ionic current across the
cell. An amount of Cl− corresponding to this charge (t−nel) moves from
the cathode compartment to the anode compartment; at the same time an
amount of Li+ (t+nel) moves from the anode compartment to the cathode
compartment, as shown in Fig. 10.1 for the hypothetical case of t+ = 0.75
and t− = 0.25.

In the anode compartment, t+nel moles of Li+ are lost; equally nel moles of
Cl− are consumed by electrolysis, but this is replenished by a current carrying
t−nel moles of Cl−, so the overall change in Cl− molarity is

(1 − t−)nel = −t+nel

which is the same as the change in Li+ molarity. This makes sense because
electroneutrality must be maintained in both compartments.

Hence, after the electrolysis, the loss of LiCl in the anode compartment
corresponds to t+nel, which is the proportion of the charge passed that is
carried by the ionic current of Li+. If this loss is denoted �nLiCl, then

t+ = �nLiCl

nel
= �nLiCl

Q/F
(10.3)
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Fig. 10.1 Measurement of transport numbers via the Hittorf method.

(ii) A mass of 0.708 g corresponds to (0.708/42.934) moles of LiCl. This evaluates
as 1.67 × 10−2 moles. The charge of 0.05 F corresponds to 5 × 10−2 moles
which have undergone electrolysis.
Using the expression for t+ at Eq. 10.3

t+ = 1.67 × 10−2

5 × 10−2
= 0.334

Hence t+ ≈ 0.33, and t− ≈ 0.67 for the salt LiCl.

10.6 The Gouy–Chapman Equation

Problem

In Understanding Voltammetry, the problem of the diffuse double layer as conceived
in the Gouy–Chapman theory is posed as:

∂2�

∂χ2
= sinh � (10.4)

where � is a normalised potential and χ is a normalised length scale.
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(i) In order to describe a diffuse double layer at the surface of an electrode
charged to a potential �0, what boundary conditions apply? Explain the terms
‘potential of zero charge’ and ‘ideally polarisable electrode’.

(ii) Use the Nernst–Planck equation at steady state to find steady-state concentra-
tion profiles of a binary salt A+X− in a diffuse double layer with a potential
function �(χ). Explain your result physically.

(iii) Using the identity

∂2�

∂χ2
= 1

2

∂

∂�

(
∂�

∂χ

)2

determine the function �(χ). The following double angle formulae for hyper-
bolic functions will also be helpful:

sinh (2x) = 2 sinh x cosh x

cosh (2x) = 2 sinh2 x + 1

(iv) Show that this corresponds to a potential decaying exponentially away from
the electrode, when �0 � 1.

Solution

(i) If the surface of the electrode is at χ = 0, then � = �0 at this bound-
ary. In bulk solution, which occurs at χ → ∞, � = 0, since we may
choose bulk solution to have a reference potential which is arbitrarily zero.
The potential difference between the electrode and bulk is caused by the
potentiostat applying a charge to the electrode and hence changing its Fermi
level. If the reference electrode is ideal, a change to the potential difference
applied between the working and reference electrodes will correspond exactly
to the change in potential difference between the working electrode and bulk
solution.

The ‘potential of zero charge’ of the electrode is the potential differ-
ence between the working and reference electrodes at which the potential
difference between the working electrode and bulk solution is zero, such
that the working electrode is uncharged. An ‘ideally polarisable electrode’
(IPE) is one where altering this charge does not induce any Faradaic cur-
rent (a reaction) or adsorption, but simply induces migration of ions in
solution.

(ii) At steady-state in linear space, conservation of mass requires that:

−∂Ji

∂χ
= ∂ci

∂t
= 0
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Hence, the flux Ji of any species i is constant through space. Since for an ideally
polarisable electrode, the flux of any species into or out of the electrode must
be zero (since the species does not absorb, adsorb or react at this boundary),
Ji = 0 everywhere. Therefore from the Nernst–Planck equation

∂ci

∂χ
+ zici

∂�

∂χ
= −Ji = 0

If ci is non-zero in bulk, we can assume that it is not zero anywhere, and
therefore it is valid to divide through both sides of the equation by ci :

1

ci

∂ci

∂χ
= ∂ ln ci

∂χ
= −zi

∂�

∂χ

As χ → ∞, ci → c∗ and � → 0. Therefore:

∫ ∞

χ

∂ ln ci

∂χ′ dχ′ = −zi

∫ ∞

χ

∂�

∂χ′ dχ′

[ln ci]
χ=∞
χ=χ′ = −zi [�]

χ=∞
χ=χ′

ln c∗ − ln ci = −zi(−�)

ci = c∗ exp (−zi�)

This is another way of deriving the Boltzmann distribution.
The elevation of the concentration of negative ions at an electrode of pos-

itive potential occurs because the positive charge on the electrode attracts
anions and repels cations, thus forming an equilibrated double layer where
the net negative charge on this layer exactly cancels the positive charge on the
electrode.

The exponential nature of the accumulation of oppositely charged ions
means that Gouy–Chapman theory predicts local concentrations which are
much larger than that in bulk if the potential difference applied between the
electrode and the solution greatly exceeds RT/F . In practice, the Stern layer
of adsorbed solvent molecules and the specific adsorption of ions mediates
the potential perceived by the diffuse component of the double layer to a great
extent.

(iii) Substituting the identity given above into the equation to be solved:

1

2

∂

∂�

(
∂�

∂χ

)2

= sinh �
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Clearly this is integrable. We can identify that since � → 0 as χ → ∞,
∂�/∂χ → 0 in the same limit, and so, marking variables of integration with′:

∫ (
∂�
∂χ

)2

0
d

(
∂�

∂χ

)′2
= 2

∫ �

0
sinh �′ d�′

(
∂�

∂χ

)2

= 2
[
cosh �′]�

0

= 2( cosh � − 1)

From the double angle formula for cosh x , and noting that cosh � =
cosh (2(�/2)):

(
∂�

∂χ

)2

= 4 sinh2
(

�

2

)

∂�

∂χ
= ±2 sinh

(
�

2

)

This is separable and so can be integrated to determine � as a function of χ.
We will integrate towards the inner boundary (χ = 0), where � is known:

∫ �

�0

d�′

2 sinh
(

�′
2

) = ±
∫ χ

0
dχ

= ±χ

The integral on the left can be solved by using the double angle formula for
sinh x , then multiplying top and bottom by cosh (�/4) and integrating by an
appropriate substitution. This works because the substitutions make it clear
that we are integrating the ratio of a function to its antiderivative, a common
pattern.

∫ �

�0

d�′

2 sinh
(

�′
2

) =
∫ �

�0

d�′

4 sinh
(

�′
4

)
cosh

(
�′
4

)

=
∫ �

�0

cosh
(

�′
4

)
d�′

4 sinh
(

�′
4

)
cosh2

(
�′
4

)

=
∫ �

�0

sech2
(

�′
4

)
d�′

4 tanh
(

�′
4

)
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Now if u = tanh (�/4), du = 1
4 sech2(�/4) d�:

∫ tanh
(

�
4

)
tanh

(
�0
4

) du

u
= [ln u]

tanh
(

�
4

)
tanh

(
�0
4

)

= ln


 tanh

(
�
4

)
tanh

(
�0
4

)



Therefore,
tanh

(
�
4

)
tanh

(
�0
4

) = exp (±χ)

The sign is resolved by recognising that as χ → +∞, � → 0 and therefore
tanh (�/4) → 0. Therefore, the sign must be negative:

tanh

(
�

4

)
= tanh

(
�0

4

)
exp (−χ)

as required.
(iv) If �0 � 1, and recognising that |�| ≤ |�0|, it is appropriate to expand

tanh (�/4) using its Taylor series about � = 0, which to the first order is:

tanh x ≈ x

Hence

�

4
≈ �0

4
exp (−χ)

� ≈ �0 exp (−χ)

which is an exponentially decaying potential outwards from χ = 0.

10.7 Ohmic Drop

Problem

Voltammetry for the oxidation of ferrocene in increasingly weakly supported solu-
tions of acetonitrile is shown at Fig. 10.2. The scan rate is 200 mV s−1 and the
electrode radius is 0.3 mm. Answer the following about the voltammetry.

(i) Why does the peak-to-peak separation increase with lower support ratio?
(ii) Why does the formal potential for the redox couple of ferrocene and ferro-

cenium appear to shift to positive potential at lower support ratio?
(iii) Why do we expect no significant change to forward peak currents due to

migration at low support?
(iv) Would you expect such a dramatic effect with a microelectrode?
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Fig. 10.2 Simulated cyclic voltammetry for the oxidation of 3 mM ferrocene at a 0.3 mm
radius Au hemisphere in different concentrations of supporting electrolyte (tetra-n-
butylammonium perchlorate) in acetonitrile.

Solution

(i) As the support ratio is reduced, the conductivity of the solution is
lowered, and therefore the solution is more resistive. Hence, to drive an equiv-
alent current, a greater overpotential is required. Therefore, the overpotential
required to drive sufficient current for mass transport to become rate-limiting
is increased, compared to fully supported voltammetry.

This is reflected in the voltammetry by each peak being more separated
from the formal potential, and so the overall peak-to-peak separation is larger
at lower support.

(ii) Recall that the formal potential contains a term equal to:

RT

F
ln

∏
i

γ
νi
i

as was shown in Chapter 1 in the derivation of the Nernst equation. The γi

are the activity coefficients of the respective species. For charged species, such
as the ferrocenium cation in the ferrocene–ferrocenium couple, γi is a strong
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function of the ionic strength due to the interaction of the ion with an ionic
atmosphere provided by the other ions in solution.

At low concentrations of supporting electrolyte, the Debye–Hückel limiting
law (see also Problem 1.6) is appropriate for determining the magnitude of
γi , but at ionic strengths as large as required for fully supported voltammetry,
other effects such as electrostriction begin to become important, and it is
difficult to predict the variation of γi with concentration. Nonetheless, an
ionic strength dependency is expected, and is observed.

(iii) In a transport-limited current regime, where migration would be significant,
the current is controlled by the transport of the electroactive ferrocene species
to the electrode surface. Since ferrocene is neutral, it is not subject to Coulom-
bic forces and therefore its transport is unaffected by migration, irrespective
of the electric field.

(iv) At a microelectrode, the currents are considerably lower. Therefore, the IR
term associated with ohmic drop is much smaller. At low current, the quantity
of charge injected into solution is negligible compared to the ease of transport
of the supporting species. The voltammetry is then less strongly affected by
support ratio, although of course at very low support we still expect micro-
electrode voltammetry to be distorted due to the presence of electric fields.

10.8 The Zero-Field Approximation

Problem

(i) What is the ‘zero-field approximation’ in the study of weakly supported
voltammetry? Explain why the zero-field approximation is likely to be correct
for a microelectrode, and why it is useful.

(ii) Why is the zero-field approximation unlikely to be accurate for a nanoelec-
trode?

Solution

(i) We have already seen that at steady state, the double layer accumulates a charge,
by migration of ions, that exactly opposes the charge on the electrode itself.
Therefore, from a point outside the double layer in a spherically symmetric
space, the charge on the electrode is fully screened and no Coulombic forces
act on ions outside the double layer in the absence of any further impetus for
charge separation.

So, the electric field at the outer boundary of the double layer is zero; this is
formalised by Gauss’s law (given by Eq. 10.5 in a hemispherically symmetric
space) which states that the electric field across a surface is proportional to
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the charge enclosed within the surface. When the net enclosed charge is zero,
so is the field.

∂φ

∂r
= −qenc

2πεsε0r2
(10.5)

where φ is potential, r is the radial coordinate, qenc is the enclosed charge, and
εsε0 is the absolute permittivity of the medium.

Since the potential decays roughly exponentially in a double layer, the dou-
ble layer is only a few Debye lengths thick. If the double layer is very small on
the relevant diffusional scales of the system, i.e. if the Debye length is much
shorter than the size of the electrode, then the radius of the ‘outside’ of the
double layer is coincident with the electrode radius to a good approximation.

Since the Debye length is of the order of tens of nanometres even at weak
support, this is certainly the case for a microelectrode with re ≥ 1 µm. There-
fore, weakly supported voltammetry can be simulated using the Poisson equa-
tion to describe the electric field, with the boundary condition ∂φ/∂r = 0 at
the electrode surface. This is useful since we can simulate the problem without
recourse to electroneutrality, but also without any detailed knowledge of the
double layer structure.

(ii) The zero-field approximation is not appropriate for weakly supported voltam-
metry at nanoelectrodes since in this case it is no longer true that the Debye
length is much smaller than the diffusion layer thickness. Therefore, the dou-
ble layer and diffusion layer from the electrochemical reaction are likely to be
convoluted in such a manner that the zero-field approximation can no longer
be accurately applied at the boundary r = re.

10.9 Self-Supported Reduction of the Cobaltocenium Cation

Problem

(i) How does the ohmic drop between an electrode and bulk solution affect the
term for ‘overpotential’ that appears in both the Nernst and Butler–Volmer
equations?

(ii) Using this, and employing the electroneutrality approximation that∑
i zi ci = 0 for all species i in a system, determine the steady-state ohmic

drop as a function of overpotential for the reduction of a cobaltocenium salt
(AX where A+ is cobaltocenium and X− is its counter-ion) at a hemispherical
electrode in the absence of any supporting electrolyte. Assume that all ions
have equal diffusion coefficients. The relevant reaction is

A+ + e− � B0

(iii) Hence determine the steady-state current at high overpotential, and comment
on its magnitude.
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Solution

(i) The effect of ohmic drop is to resist the passage of current, and hence it
reduces the overpotential ‘perceived’ by the working electrode. The relevant
overpotential, Eobs, which is the driving force for a reaction, is the potential
difference between the working electrode, φM, and the solution at the plane
of electron transfer, φs,PET, measured versus a reference potential difference,
�φref :

Eobs = (φM − φs,PET) − �φref

The potential difference applied, however, is the potential difference to bulk
solution, measured versus a reference potential difference:

E = (φM − φs,bulk) − �φref

So long as the solution is well supported, an alteration to E produces an equiv-
alent alteration to (φM − φs,bulk). If there is a significant potential difference
between the plane of electron transfer and bulk solution, however, then:

Eobs = (φM − φs,PET) − �φref

= E + (φs,bulk − φs,PET)

= E − �φOD

where �φOD is the potential difference between the plane of electron transfer
and bulk solution, i.e. the ohmic drop. Therefore, in all equations involving
E , it should be substituted by (E − �φOD) to account for the resistance due
to the ohmic drop.

(ii) We shall use the normalised concentration ci where the real concentration is
normalised to bulk concentration. We also use the normalised potential θ =
(F/RT ) φ, and a radial coordinate R = r/re. Therefore, initially cA = cX = 1
and cB = 0.
We need to solve a set of steady-state Nernst–Planck equations:

dcA

dR
+ cA

dθ

dR
= 1

DA

JA

R2

dcB

dR
= 1

DB

JB

R2

dcX

dR
− cX

dθ

dR
= 1

DX

JX

R2

where the fluxes Ji have been defined into the electrode.
From the electroneutrality approximation

cA − cX = 0

and therefore cA = cX everywhere.
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At steady state the fluxes Ji must be constant in R, and so since at R = 1
(the electrode surface) X is inert, JX = 0 there and everywhere. Equally, from
conservation of mass, JA = −JB at the electrode and so the same is true
everywhere.

Then if all diffusion coefficients are equal, DA = DB = DX = D, we can
sum the Nernst–Planck equations:

∂(cA + cB + cX)

∂R
+ (cA − cX)

∂θ

∂R
= 1

D

(
JA − JA + 0

R2

)

therefore

∂(cA + cB + cX)

∂R
= 0

cA + cB + cX = γ

where γ is a constant. From bulk concentrations, γ = 2, and since cA = cX

everywhere:

2cA + cB = 2

cB = 2(1 − cA)

Also, from the Nernst–Planck equation in cX and the requirement cA = cX it
follows that

cA = exp(θ)

as was shown above (Problem 10.6, part ii.).
The Nernst equation requires that at R = 1:

cA,0 = cB,0 eθ−θ0

where θ ≡ (F/RT )(E − E�
f ) and θ0 = (F/RT ) �φOD.

Substituting

cA,0 = 2(1 − cA,0) eθ−θ0

eθ0 = 2(1 − eθ0 ) eθe−θ0

and rearranging
e2θ0 + 2eθeθ0 − 2eθ = 0

We can let x = eθ0 and so

x2 + 2eθx − 2eθ = 0

Since x > 0 by definition, since θ0 must be real:

x = eθ0 =
√

e2θ + 2eθ − eθ
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Therefore,
θ0 = ln

(√
e2θ + 2eθ − eθ

)
(iii) We can also determine cB by integrating its Nernst–Planck equation which is

linear and separable, since B is neutral:

cB = JA

R

therefore,

cA = 1 − JA

2R

and

cA,0 = eθ0 = 1 − JA

2

Substituting the expression for eθ0 above, and rearranging:

JA = −2
(√

e2θ + 2eθ − eθ − 1
)

= 2
(

1 + eθ −
√

e2θ + 2eθ
)

As θ → −∞, eθ → 0 and so JA → 2, as compared to the limiting value of
1 at full support. This reflects attractive migration contributing to the steady-
state current: the reduction of A+ creates a layer of uncompensated negative
charge close to the electrode, which attracts further A+ and so elevates the
mass transport-limited current.
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Voltammetry at the Nanoscale

11.1 Debye Length vs Diffusion Layer Thickness

Problem

As was discussed in Chapter 5, diffusion towards a spherical electrode will attain a
steady state at long times after a potential step. The expression for the concentration
profile, following a potential step to a potential where electron transfer is rapid, is
as follows:

c = c∗
(

1 − re

r
erfc

(
r − re√

4Dt

))

where c∗ is the bulk concentration, re is the electrode radius, and D is the diffusion
coefficient.

(i) Assess the typical size of the diffusion layer as time, t , tends to infinity, as a
function of re.

(ii) The Debye length, the length over which electric fields are screened by a double
layer, is given

r D =
√

RTεsε0

2F 2I

where R, T and F take their usual meanings, εs is the relative permittivity
of the medium (≈ 78.5 for water at 25◦C), ε0 is the vacuum permittivity
(= 8.854 × 10−12 F m−1) and I is the ionic strength. Hence calculate Debye
lengths for aqueous solutions of 0.1 M and 1 M binary electrolyte AX (such
as a typical supporting electrolyte), at 298 K.

(iii) At what electrode sizes are the diffusion layer thickness and the Debye length
similar in magnitude? Why is this significant for nanoscale electrochemistry?

233
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Solution

(i) Where t is large, the expression within the erfc function tends to zero, and
hence, since erfc(0) = 1:

c

c∗ →
(

1 − re

r

)
Therefore, when c/c∗ attains some critical fraction α, implying a certain
degree of transition from the diffusion layer to bulk solution, 1 − (re/r) = α.
Hence

r = re

(1 − c
c∗ )

so for α = 0.9, where bulk solution is almost attained, this point occurs
at r = 10re. From this, we can determine that the size of the steady-state
(long-time) diffusion layer scales proportionally to the electrode radius.

From the special case α = 0.5, we note that where c = (c∗/2), r = 2re.
Hence, over the distance of one electrode radius away from the electrode
surface, the concentration rises from total depletion to one half of the bulk
value.

If the electrode has a radius of the order 10 nm, the diffusion layer is
concentrated within a few tens of nanometres away from the electrode surface.
This is in contrast to a microelectrode where the diffusion layer will be microns
thick, or a macroelectrode where the steady-state diffusion layer is so large that
the steady-state limit is not achieved on an experimental timescale. Instead, the
diffusion layer continues to grow at a rate proportional to

√
Dt , throughout

the course of an experiment.
(ii) For a binary electrolyte, the concentration of electrolyte and the ionic strength

are equivalent. Hence:

r D =
√

RTεsε0

2F 2

1√
1000 × c∗

where c is given in M and the factor of 1000 converts to mol m−3. Substituting
in the physical constants provided:

r D = 9.617 × 10−9 × 1√
1000 × c∗

Hence when c∗ = 0.1, r D = 0.9617 nm, and when c∗ = 1, r D = 0.3041 nm.
For a well-supported aqueous solution, the Debye length is approximately one
nanometre or less.

(iii) The Debye length becomes similar in magnitude to the steady-state diffu-
sion layer thickness only for electrodes with dimensions of approximately
1 nm (unless the solution is weakly supported), but it may correspond to a
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significant fraction of the diffusion layer thickness for electrodes smaller than
about 50 nm.

In these cases, the double layer and the diffusion layer are no longer straight-
forwardly decoupled, and so electric fields, altered overpotentials and popu-
lation differences in the double layer are likely to affect the voltammetry in
a manner which would not occur for electrochemistry at a larger electrode.
Therefore, nanoscale electrochemistry requires consideration of the double
layer and is theoretically more demanding to interpret, as well as opening
the door to a number of interesting phenomena.

11.2 Altered Electrode Kinetics and Reactivity
at the Nanoscale

Problem

It has been observed for silver nanoparticles that k0 and α values are altered at nano-
electrodes from their values for the bulk material, as is the case for 4-nitrophenol
reduction in water, as compared to the reaction at bulk silver [F.W. Campbell et al.,
ChemPhysChem. 11 (2010) 2820].

Further, the electrochemistry may be entirely changed, such as the altered
mechanism of peroxide reduction in acidic media between nanoparticles and bulk
material [F.W. Campbell et al., J. Phys. Chem. C 113 (2009) 9053].

(i) Explain why nanoparticles can exhibit such altered behaviour, especially when
adsorption is involved in the electrochemical reaction.

(ii) What features of the voltammetry of nanoparticles supported on an unreactive
substrate make the use of numerical simulation essential in the analysis of
such voltammetry?

Solution

(i) Nanoparticles exist in constrained geometries due to their small size. As a
consequence, a range of different crystal planes are exhibited at the surface,
including those that may not be encountered in the bulk material. Addition-
ally, no single surface plane will be particularly extensive due to the curvature
of the surface of a nanoparticle, and therefore boundaries and defects are likely
to be more common than for the bulk material. The exception to the above
is the case of highly ordered nanoparticles which retain precise cubic or pris-
matic structures, despite their small size.

Where the surface structure of a nanoparticle differs from the bulk material,
different adsorption kinetics are expected. This can be sufficient to alter the
mechanism of a reaction where adsorption is significant, such as the reduction
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of peroxide in acidic media. The difference in solvation structure, such as
an alteration of the compact portion of the double layer, and the possible
difference in band structure of the electrode can lead to a change in the nature
of the potential energy surface associated with electron transfer, and hence a
change in the k0 and α parameters of the Butler–Volmer equation.

(ii) While mass transport to an individual nanoparticle might be described using
simple theories assuming a hemispherical nanoelectrode, it is rarely the case
that an individual nanoparticle is studied – the current drawn would typically
be too small compared to system noise. When nanoparticles are deposited
onto a substrate by a method such as evaporation of a droplet of a nanopar-
ticle suspension, a large number of nanoparticles will be distributed across
the surface. The system therefore corresponds to a random array of nano-
electrodes, and hence numerical simulation is required to describe effects
resulting from diffusion layer overlap; the diffusion domain approximation
discussed in Chapter 6 is often invoked.

In fact, nanoparticles often cluster, rather than distributing in a perfectly
random manner. An alteration to the distribution used in weighting different
diffusion domains may be able to account for this. It is necessary to examine
the electrode by a surface sensitive technique such as STM or AFM in order
to accurately assess the distribution and coverage of nanoparticles, and hence
to accurately describe the diffusional regime.

11.3 Nanoparticles: Case 4 Behaviour

Problem

(i) How is the diffusional Case 4 characterised (see Chapter 6 of this text and
of Understanding Voltammetry)? Why do many nanoparticle arrays exhibit
diffusional Case 4 behaviour?

(ii) Figure 11.1 shows voltammograms recorded at v = 1 V s−1 for a one-electron
oxidation of 1 mM analyte at a) an array with a 1% coverage of 1 µm elec-
troactive discs on a substrate, and b) for a 1% coverage of 10 nm nanoparticles
on a substrate (approximated as having the same geometry, i.e. a regular array
of discs). Discuss the differences in the voltammetry in the context of the
relative particle sizes.

Solution

(i) The diffusional Case 4 is the case in which active sites of electron transfer,
such as nanoparticles, are separated by a very short distance compared to the
distance over which a particle can diffuse during the experiment. Therefore,



November 29, 2011 9:53 spi-b1239 Understanding Voltammetry: Problems and Solutions b1239-ch11

Voltammetry at the Nanoscale 237

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-4

-2

0

2

4

6

8

I A-1 / A m-2

E - E0
f / V

1% coverage of 1 µm discs
1% coverage of 10 nm NPs

Fig. 11.1 Simulated voltammetry for a one-electron oxidation of 1 mM analyte at two arrays,
with current density IA−1 given with reference to substrate area. D is 10−5 cm2 s−1.

diffusion layers resulting from electrolysis overlap extensively, and an overall
diffusion layer exists which is roughly planar, reflecting the geometry of the
substrate rather than of any individual nanoparticle.

Because of the dominance of planar diffusion, voltammetry resembles that
at a macroelectrode. Distinct forward and backward peaks are observed, and
the peak current will scale with the square root of scan rate according to the
Randles–Ševčík equation. However, the current reflects the geometric area of
the substrate, not of the nanoparticles themselves, even though only a tiny
fraction of this area is electroactive.

Many nanoparticle arrays exhibit diffusional Case 4 behaviour because the
nanoparticles are deposited in sufficient density on the substrate that their
diffusion layers overlap extensively. If the nanoparticles are being exploited
for their catalytic properties, this is highly economical by comparison to the
use of a macroelectrode of a catalytic metal, since only a very small quantity
of the catalyst is required to achieve an equivalent current.

(ii) While the microdisc array shows Case 2/3 voltammetry (sigmoidal), the
nanoparticle array shows Case 4 voltammetry with a distinct forward peak
and marked peak-to-peak separation due to the relatively slow kinetics of
the system. This can be understood since the small size of the nanoparticles
means that individual sites of electron transfer are separated by much shorter
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distances than for the microdisc array, even though the proportional coverages
are the same.

At 1 V s−1, the forward sweep of the voltammogram lasts about 0.15 s.
In this time, a mean diffusional distance is

√
2Dt from the Einstein equation,

which is about 17 µm. For a coverage of 1%, the diffusion domain radius is
10 re. Hence, the overlap of the diffusion layers is only partial in the case of
re = 1 µm, and so the voltammetry exhibits Case 3 diffusional behaviour,
whereas for re = 10 nm the overlap is complete and Case 4 behaviour is
observed.

Note that the current density is measured here in terms of the substrate
area rather than the electroactive area, and hence is maximised in Case 4 when
all available material is oxidised, rather than there existing zones between
electrodes where electroactive material does not react as in Cases 2/3.

11.4 ‘Coulomb Staircase’ Effects

Problem

The charging of very small nanoparticles has been known to exhibit a ‘Coulomb
staircase’ behaviour, where individual quantised electron transfers are observable.

Consider a double layer with a typical interfacial capacitance (per unit area) of
CDL = 50 µF cm−2.

(i) If this double layer describes the ideal capacitive charging at the surface of
a hemispherical nanoelectrode which is driven to a potential of 25 mV vs its
potential of zero charge, what size of electrode corresponds to a charge of
a) 100 electrons and b) 10 electrons?

(ii) Hence describe the likely appearance of the capacitive charging transient as
the potential is swept away from the potential of zero charge at a 5 nm radius
electrode, with the interfacial capacitance properties given above.

Solution

(i) An ideal capacitor obeys the relation:

C = q

E

where C is capacitance, q is charge separation and E is applied potential.
Therefore,

q = CE

= 50 × 10−6 × 104 × 2π × r2
e × 0.025 C

= 0.07854 r2
e C
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where 2πr2
e gives the area of the double layer as the surface area of the

hemispherical nanoelectrode, and the factor of 104 converts CDL into metre
units. Now, dividing by the charge on an electron and rearranging

ne− = 0.07854 r2
e

1.602 × 10−19

re =
√

ne− × 1.602 × 10−19

0.07854

= √
ne− × 1.428 nm

For 100 electrons, the required size is 14.28 nm; for 10 electrons, the required
size is 4.516 nm.

(ii) For a 5 nm radius electrode that charges ideally at low voltage and has a
capacitance given as 50 µF cm−2, approximately 10 electrons are added as
excess charge per 25 mV separation from the potential of zero charge. The
spacing between discrete (quantised) electron transfers is then approximately
2.5 mV. In place of the familiar capacitive current ramp, current peaks are
expected with a 2.5 mV spacing; on integration, discrete steps of increasing
electrode charge may be discernable.

11.5 Ultrafast ‘Single Molecule’ Voltammetry

Problem

In a series of voltammetric experiments on nanoscale dendrimers, C. Ama-
tore et al. discussed interesting nanoscale effects in single molecule voltammetry
[ChemPhysChem 2 (2001) 130]. Fourth-generation PAMAM (polyamidoamide)
dendrimers modified with 64 Ru(II) redox sites at their surface were adsorbed onto
a platinum substrate: the dendrimer molecule has a radius of approximately 5 nm
(see Fig. 11.2).

(i) To study very short length scales, megavolt-per-second voltammetry was
employed. Why is ohmic drop particularly problematic when the scan rate is
extremely fast?

(ii) Give an expression for the diffusion layer thickness as a function of scan rate,
v , considering some region of the potential sweep of length �E over which
the diffusion layer is growing.

(iii) If �E ≈ 100 mV and electron hopping between redox sites on the dendrimer
surface exhibits an apparent diffusion coefficient of D = 5 × 10−6 cm2 s−1,
why might megavolt-per-second scan rates cause voltammetric behaviour
which differs from that of an ideally adsorbed redox species?
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Fig. 11.2 Simplified schematic of a Ru(II)-bisterpyridyl modified fourth-generation
PAMAM dendrimer adsorbed onto a Pt substrate. ‘Ru(II)’ indicates the Ru-containing
functional group.

Fig. 11.3 Plot of Ipf v− 1
2 vs v

1
2 for fast voltammetry at the dendrimer-modified Pt electrode,

indicating a change in diffusional regime. Note that the plot is near linear at low v , indicating
Ipf ∝ v . Adapted from C. Amatore et al., ChemPhysChem 2 (2001) 130, with permission
from Wiley.

(iv) Positive feedback ohmic drop compensation was used to record voltammetry
for the system. Peak currents are shown in Fig. 11.3. Discuss the trend(s)
exhibited.
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Solution

(i) For both the voltammetry of adsorbed and diffusing species, current increases
with scan rate, since the consumption of the immediately available material
at the electrode surface is driven over an increasingly short time.

According to Ohm’s law, the potential difference arising from driving a
current I through a medium with resistance Rs is IRs. Hence the overpotential
associated with overpotential increases with driven current, and so with scan
rate. At megavolt-per-second scan rates, specialised equipment is required
to disentangle useful information given by Faradaic currents from current
distortions due to resistive and capacitive effects.

(ii) From the Einstein equation, we can describe the mean diffusion layer thickness
as

xdiff = √
2Dt

where

t = �E

v

Therefore

xdiff =
√

2D�E

v

(iii) Substituting into the expression above:

xdiff =
√

2 × 5 × 10−10 × 0.1

v

=
√

10−10

v
m

Hence if v = 1 MV s−1, it follows that

xdiff =
√

2 × 10−10

2 × 106
= 10−8 m = 10 nm

The mean diffusion layer thickness in this case is almost exactly the diameter
of the dendrimer molecule. It therefore follows that the oxidation of all redox
sites will not be complete because a ‘diffusion layer’ of oxidation achieved by
successive electron hopping across the dendrimer surface is not yet complete.

At faster scan rates this effect will be more extreme; at slower scan rates,
in the kilovolt-per-second range, the ‘diffusion layer’ associated with this D
for electron hopping is sufficiently large that all redox sites are equilibrated
with the potential applied to the substrate, and so the voltammetry appears
as normal for an adsorbed species.
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(iv) This plot shows the transition from ideal adsorbed species voltammetry, where
Ipf ∝ v , to diffusional voltammetry where the ‘diffusion process’ is electron
hopping between redox sites on the surface of the dendrimer. The latter regime

is characterised by Ipf ∝ v
1
2 , as discussed in Chapter 4, and this is observed

in the data. Note that in the original research, these data were used together
with a more rigorous model of the ‘electron diffusion’ to derive the value of
D = 5 × 10−6 cm2 s−1 for electron tunnelling quoted above.

11.6 Thin-Layer Effects in Nanoscale Voltammetry

Problem

It has been shown [M.C. Henstridge et al., Sensor. Actuat. B 145 (2010) 417] that
the effect of a porous thin layer on cyclic voltammetry can be easily confused with
electrocatalytic behaviour, since both effects cause a shift of peak potential to lower
overpotentials. Such a thin layer may exist in, for instance, a multi-walled carbon
nanotube (MWCNT)-modified electrode where the MWCNTs form a dense mesh
across the substrate, a system which is also often associated with electrocatalysis.

(i) Why is the voltammetry of an electroactive species dissolved in a thin layer
(compared to mean diffusion distance during the scan) adjacent to the elec-
trode very similar to that for an adsorbed species?

(ii) Hence, explain why the peak potential will occur at lower overpotential than
for diffusional voltammetry in such a system.

(iii) How does the MWCNT-modified electrode behave like a thin layer?
(iv) How might it be possible to identify whether the effect causing a peak potential

shift arises from kinetics or diffusion?

Solution

(i) Both a thin layer of solution and an adsorbed layer have in common that
only a finite quantity of material is available for electrolysis reaction. What is
more, in both cases there is effectively no delay in replenishing material at the
surface. Whereas in the adsorbed case the material is strictly confined to the
electrode surface, a porous thin layer implies that diffusion across the layer
is extremely fast compared to the timescale of the experiment. Therefore, the
concentration is quickly equilibrated such that it is uniform through the layer.

So, diffusion does not contribute to the observed voltammetry; the forward
peak in the voltammetry arises due to the depletion of available material for
reaction and is ideally at E = E�

f if the electrode kinetics are fast, as was
discussed in Chapter 6.
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(ii) In diffusional voltammetry with an ample supply of bulk solution, the peak
potential arises because of depletion of material at the electrode arising as the
rate of reaction at the electrode surface exceeds the rate of incident diffusion.
However, this diffusion allows the current to increase until past the formal
potential of the reaction, since a certain quantity of material is able to be
replenished in the course of the voltammetric wave.

This is not so for thin-layer voltammetry – as with the voltammetry of an
adsorbed species, the finite quantity of solution and the rapid equilibration of
concentration in that layer means that there is no significant replenishment of
the surface concentration of the electroactive species. As such, rate-limiting
depletion becomes significant more quickly and the peak potential will occur
at lower overpotential.

(iii) The MWCNT-modified electrode resembles a thin layer because the deposited
nanotubes form a dense but porous mesh on the substrate surface. The solu-
tion will permeate this mesh, and therefore a much larger quantity of the
dissolved electroactive species begins the experiment in close proximity to an
electroactive surface than is the case for a non-porous geometry.

As the overpotential becomes sufficient to drive a reaction, this material
is quickly consumed and the concentration becomes uniform between the
closely neighbouring nanotubes, as in a thin layer. Once the material within
the thin layer is exhausted, reaction can only continue by diffusion from
bulk, which is much slower. Therefore, the current reaches a peak at a lower
overpotential than would be the case if the electroactive material were non-
porous. This is demonstrated by simulated voltammetry at Fig. 11.4.

(iv) Note that the shifting of a peak to lower overpotential is also associated with
increased k0, i.e. electrocatalysis, a property which certainly is exhibited by
many nanomaterials. The confusion of these effects is particularly likely if
experiments are conducted only at a single scan rate.

Adsorption or thin-layer processes can be characterised by a peak current
dependence on scan rate which is linear: Ipf ∝ v . Diffusional processes, by
contrast, are characterised in the Case 4 limit by a square-root dependence:

Ipf ∝ v
1
2 . By comparison of the scan rate dependence of experimental peak

current to these equations, across a wide range of scan rates, it is possible to
ascertain if the voltammetry is diffusional or depends on surface effects such
as adsorption or the formation of a thin layer.

Unfortunately, the role of adsorption is not straightforwardly disentangled.
This is especially true if the adsorption is reversible. If not, the presence of an
adsorbed layer might be determined by transferring the electrode to a clean
solution and repeating the experiment, as was discussed in M.C. Henstridge
et al. (see above).
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Fig. 11.4 Apparent ‘electrocatalytic’ effect on forward peak potential as thin layer diffusion
begins to dominate conventional diffusion. Voltammetry has been normalised to peak cur-
rent for clarity. Reproduced from M.C. Henstridge et al., Sens. Actuators B 145 (2010) 417,
with permission from Elsevier.

11.7 Voltammetry in a Nanochannel

Problem

M.A.G. Zevenbergen et al. have reported voltammetry performed in a 50 nm high
nanochannel [J. Am. Chem. Soc. 131 (2009) 11471]. At both top and bottom of the
nanochannel are Pt electrodes, which are planar and extend a much larger distance
than the height of the channel in the other two dimensions. The applied potential
may be set separately at each electrode.

(i) On the assumption that the device rapidly attains steady state, as should
be expected given its size, what is the maximum flux for the oxidation of
1 mM Fc(MeOH)2 that may be drawn with one electrode at a highly oxidising
potential and one at a highly reducing potential? You may take the diffusion
coefficient of Fc(MeOH)2 as 6 × 10−6 cm2 s−1 and you may assume that the
solution is well supported (only diffusional transport).

(ii) Hence calculate the incident velocity of material towards the working
electrode, and suggest the largest k0 that can be resolved.
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(iii) From this velocity, determine the mean time required for a diffusing molecule
to traverse the channel from top to bottom. At a scan rate of 10 mV s−1, how
many times might such a molecule move back and forth in the course of a
scan across 100 mV?

(iv) Under various conditions, ‘redox cycling’ was shown to markedly elevate the
current. Discuss what is meant by redox cycling. Why is redox cycling depen-
dent on a potential difference being applied vs a reference at both electrodes?
What factors may limit the current drawn by redox cycling?

Solution

(i) The geometry of the nanochannel allows us to neglect transport in all
directions other than perpendicular to the electrode, which we denote x .
At steady state, where ∂c/∂t = 0, the following equation describes the con-
centration profile according to Fick’s second law:

d2c

dx2
= 0

Hence
c = Ax + B

If the electrode at x = 0 oxidises Fc(MeOH)2 rapidly, c = 0 here. Equiva-
lently, if the electrode at x = �x reduces Fc(MeOH)+2 rapidly, c = c∗ here.
Therefore:

c = c∗

�x
x

From Fick’s first law

J = −D
dc

dx
= −Dc∗

�x
where the negative value indicates flux towards the electrode at x = 0. Sub-
stituting in the known values for these parameters, and converting to metre
units in all cases

|Jlim| = 6 × 10−10 × 1

5 × 10−8
= 0.012 mol m−2 s−1

(ii) Note that the limiting flux is dependent on the concentration of the solution.
We can determine a critical velocity of transport towards the surface as:

v = J

c∗ = 0.012m s−1

Therefore the diffusional transport in the nanochannel compares to typical
‘fast’ k0 values of 1 cm s−1 = 0.01 m s−1. In fact, somewhat faster kinetics
can still be observed, since the diffusional rate remains within an order of
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magnitude of the kinetic rate. The experimental results of M.A.G. Zeven-
bergen et al. indicated clear and reproducible experimental distinction of k0

values up to 15 cm s−1 for the Fc(MeOH)2 system.
(iii) We can crudely define

tdiff = �x

v

= 5 × 10−8

0.012

≈ 4 µs

One can then imagine a single molecule undertaking a series of 8 µs back-
and-forth trips between the electrodes, of which a little over one million are
hence possible in the 10 s required to sweep 100 mV at the given rate.

(iv) The calculation above gives some idea of how such large fluxes can be achieved
within a very small volume of solution. If the top electrode is disconnected,
the current is limited because the nanochannel then behaves as a thin layer
and the material available for oxidation is rapidly exhausted. The current is
then rate-limited by the rate of diffusion into the channel, which is very small.

If, however, reduction of the product species is driven by applying a poten-
tial at the top electrode, vs an independent reference electrode, the material
available for oxidation at the bottom electrode is replenished.

‘Redox cycling’ describes such a cycle for a single molecule, which is oxi-
dised, diffuses a short (nano-) distance, is reduced, and diffuses back to be
oxidised again (see Fig. 11.5). By achieving multiple electron transfers per
molecule, currents can be large even with a limited volume of solution and a
limited electrode area. F.-R.F. Fan et al. achieved this effect by using a sharp tip
with an insulating sheath to trap single molecules in a nanovolume between
the oxidising tip and a reducing substrate [Science 267 (1995) 871].

The advantage of the nanochannel method is that due to the relatively
large size of the channel in the other two directions, a large number of
molecules may simultaneously undergo redox cycling, yielding relatively easily

Fig. 11.5 Schematic of redox cycling in a 50 nm nanochannel.
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measurable nanoamp currents, rather than picoamp currents as with the
single molecule studies. Note that molecules are still undergoing lateral dif-
fusion, however, so that some molecules may leave the active volume of the
channel and cease to undergo redox cycling. This loss will limit the efficiency
of the redox cycling process.
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electron hopping, 239

Fick’s laws, 57, 58, 215

layer, 233

linear, 94, 98

protons, 95

steady-state, 57, 58, 91, 93, 97,
98, 101

thin layer, 242

Diffusion domain approximation,
118, 121

Disproportionation, see
Mechanism, disproportionation

DNA, 189

Double layer, 47, 221, 227, 233

E, EE, ECE, etc., see Mechanism

Edge plane site, see Carbon, edge
plane site

Einstein relation

diffusion, 59, 66

ionic mobility, 213

Electric field, 213, 215

Electrocatalysis, 113

Electrochemical cell, see
Thermodynamics, potential
determining equilibria

Electrochemical rate constant, see
Rate constant, electrochemical

Electrode kinetics, see
Butler–Volmer equation, Marcus
theory, etc.

Electrodeposition, 36

Electrolysis, 100

Faraday’s laws, 35

Electron paramagnetic resonance
(EPR), 88

Electroneutrality approximation,
217, 228, 229

Enzyme electrode, 195, 196

Faradaic current, 185, 186

Faraday constant, 35

Ferricyanide, 143, 157

Ferrocene, 75, 101, 167, 177, 225

Ferrocyanide, 157, 159

Fick’s laws of diffusion, see
Diffusion, Fick’s laws

Fluoranthene, 178
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Fluorescein, 135, 172

Formal reduction potential, see
Thermodynamics, formal
potential

Forward peak current, see Cyclic
voltammetry, peak current

Frumkin correction, 48, 49

Fuel cell, 21, 22

Gauss’s law, 215, 227

Glucose, 196

Gold, 183

Gouy–Chapman equation, 221

Hittorf method, 220

Hydrazine, 21, 107

Hydrogen evolution reaction, 46

Ideally polarisable electrode (IPE),
222

Interfacial potential distribution,
150

Inverted region, see Marcus theory,
inverted region

Ionic liquid, 101

Ionic product, see Self-ionisation of
water

Kinematic viscosity, 161

Laminar flow, 167

Laplace transformation, 62, 78

Lévêque approximation, 165

Levich equation

channel electrode, 159, 167,
169

rotating disc electrode, 178

Limit of detection, 193

Limiting current, see Steady-state
current

Liquid junction potential, 217

Lithium chloride, 220

Marcus theory, 51, 52, 112

inverted region, 55

solvent effects, 54

Matsuda–Ayabe parameter, 74

Mechanism

CE, 140

comproportionation, 86, 123

DISP 1, 135, 137

disproportionation, 20, 125,
135

EC, 128, 130, 173

EC′, 105, 142, 143, 145

EC2, 126, 128

ECE, 103, 133, 135, 162, 164,
180

EE, 123, 124, 136

protonation, 136

Mercury, 189

Methanol, 22

Michaelis–Menten equation, 196

Microband array, see Array,
microband

Microdisc, see Chronoamperometry

Microdisc array, see Array,
microdisc

Microelectrode voltammetry, 227

Migration, 215, 227, 231

m-iodonitrobenzene, 103

Mobility, 213

Monolayer, 37

Nanochannel voltammetry, 244

Nanoelectrode

voltammetry, 227, 235, 236

Nanoparticle, 183, 205, 235, 236
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Nernst equation, 2, 3, 5, 10, 11, 13,
17, 21, 26, 30, 31, 40, 45, 68, 87,
132, 141, 149, 151

Nernst layer, 41, 58

Nernst–Planck equation, 212, 215,
222, 229

Nitrobenzene, 109

Non-aqueous solutions, 26

Nuclear frequency factor, 54

Ohmic drop, 48, 225, 228, 239

Outer-sphere electron transfer, 54

Oxalate, 25

Oxygen, 145, 187

detection, 191

Partially blocked electrode, 121

p-chlorobenzonitrile, 133

Peak current, see Cyclic
voltammetry, peak current

Peak-to-peak separation, see Cyclic
voltammetry, peak-to-peak
separation

Permittivity, 212, 233

Peroxide, 235

pH, 17, 20, 23, 29–31, 82, 84

pKa, see Acid dissociation constant

pKw, see Self-ionisation of water

Plane of electron transfer, 49

Poisson equation, 216

Poisson–Boltzmann equation, 8

Potential

electrochemical, 212

of zero charge, 222, 238

Proton transfer, 83, 84

Quinhydrone electrode, 29

Randles–Ševčík equation, 69, 71, 72,
75, 116, 119, 206, 237

Randles–Ševčík equation

compared to adsorption, 148

derivation, 77

Rate constant

electrochemical, 45, 51, 69, 75

Reaction layer approximation, 180

Reference electrode

internal, 101

saturated calomel electrode
(SCE), 26, 29

silver/silver chloride, 26

standard hydrogen electrode
(SHE), 12, 29

Reorganisation energy, 52

Reynolds number, 160, 167, 178

Root-mean-square displacement,
59, 66

Rotating disc electrode, 161, 178, 180

‘Rough’ electrode, 121

Ruthenium

(η6−C6Me6)2Ru2+, 125

Saito equation, see Steady-state
current, microdisc

Scheme of squares, 84

Self-ionisation of water, 23

Semiconductors, 56

Shoup–Szabo equation, 98

Silver nanoparticles, 106

Single molecule voltammetry, 239

Solubility product, 12, 18

Sonication, see Ultrasound

Square-wave voltammetry, 186, 187

Standard addition, 194

Steady-state current

hemisphere, 92

microdisc, 97, 98, 100, 107, 109

sphere, 92, 94

Steady-state diffusion, see Diffusion,
steady-state
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Stripping voltammetry
adsorptive, 189, 202
anodic, 188, 193, 200

Supporting electrolyte, 47

Tafel analysis
irreversible, 39, 71
mass transport correction, 41
multiple electrons, 42, 46
relation to Marcus theory, 52
reversible, 39, 71

Tafel region, 39
Temperature, 14, 15, 22, 23, 101
Testa–Reinmuth notation, 127
Thermodynamics

activity, 2, 3, 7, 14, 15, 22, 29
electrical potential, 5
equilibrium constant, 10, 11, 18
formal potential, 27, 28
potential determining

equilibria, 1–3, 5, 10, 11, 16

reversible work, 16
standard EMF, 10, 11, 18

Transfer coefficient, 39, 43, 46, 53,
106, 154

Transport number, 217, 220

Ultrasound, 177
Underpotential deposition, 37

Vitamin B12, 198

Wall-jet electrode, 170, 172, 173
Weakly supported voltammetry, 89,

215, 225, 227, 228
Working electrode

graphite, 111
highly ordered pyrolytic

graphite, 111, 114

Zero-field approximation, 227
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