УДК 547.78:543.54:543.42

ИССЛЕДОВАНИЕ СОСТАВА ПРОДУКТОВ ДЕГРАДАЦИИ МОНОЭТАНОЛАМИНА ПРИ АБСОРБЦИОННОЙ ОЧИСТКЕ ТЕХНОЛОГИЧЕСКИХ ГАЗОВ

В.П.Талзи

Институт проблем переработки углеводородов СО РАН

При совместном исследовании методами ЯМР и хромато-масс-спектрометрии состава водных растворов моноэтноламина (МЭА), используемых в процессе абсорбционной очистки технологических газов от кислых примесей H_2S , CO_2 , SO_2 , CO_3 ,

дин из главных путей разложения МЭА на установках очистки технологических и топливных газов действительно связан с окислительной конденсацией МЭА с образованием 4-(2-гидроксиэтил)пиперазина-2-она, как было недавно установлено методом хромато-масс-спектрометрии.

Абсорбционному методу очистки технологических газов от кислых компонентов: H2S, CO_2 , SO_2 , COS, CS_2 с помощью водных растворов этаноламинов, давно и повсеместно применяемому на предприятиях нефтегазовой промышленности и энергетики, пока нет и не предвидится альтернативы при низких концентрациях примесей [1].

Проблемы разложения этаноламинов в процессе эксплуатации установок газоочистки и корректного определения состава абсорбентов до сих пор актуальны, несмотря на меры, разработанные для снижения вредного воздействия продуктов разложения на эффективность газоочистки, и использование современных методов анализа. Среди этаноламинов наиболее распространен моноэтаноламин (МЭА). Его разложение приводит к значительным экономическим потерям не только за счет прямого перерасхода абсорбента, но и в результате вспенивания растворов, снижения их абсорбционной емкости и ускоренной коррозии оборудования [1].

Сравнительно недавно для анализа состава

образцов МЭА, отобранных в условиях производства и полученных в лаборатории при насыщении абсорбентов кислыми газами и кислородом, были применены методы ядерного магнитного резонанса углерода-13 (ЯМР¹ЗС) [2, 3] и хромато-масс-спектрометрии (ГЖХ/МС) [4–6]. Результаты, опубликованные в статьях [3] и [4], которые посвящены главным причинам и направлениям разложения МЭА, оказались противоречивыми. Десятки минорных компонентов, идентифицированных только методом ГЖХ/МС [5, 6], также не добавляют ясности в общую картину.

Цель настоящей статьи — уточнение идентификации главных продуктов разложения МЭА, а также основных причин и маршрутов деградации абсорбентов при одновременном использовании методов ГЖХ/МС и ЯМР ¹³С.

Главные целевые реакции МЭА с кислыми компонентами очищаемых технологических газов могут быть представлены следующим образом [1, 2]:

Схема 1

$$CO_2 + 2NH_2CH_2CH_2OH \Longrightarrow$$

$$= [HOCH_2CH_2COO_-][NH_3CH_2CH_2OH]$$

$$I$$

$$COS + 2NH_2CH_2CH_2OH \Longrightarrow$$

$$= [HOCH_2CH_2COS_-][NH_3CH_2CH_2OH]$$

$$II$$

^{*}E-mail: vtalsi@ihcpl.oscsbras.ru

$$CS_2 + 2NH_2CH_2CH_2OH$$

$$= [HOCH_2CH_2CSS-][NH_3CH_2CH_2OH]$$

$$III$$

$$H_2S + NH_2CH_2CH_2OH \Longrightarrow HS^[NH_3CH_2CH_2OH]^+$$

$$IV$$

$$SO_2 + NH_2CH_2CH_2OH + H_2O \Longrightarrow$$

$$HSO_3^-[NH_3CH_2CH_2OH]^+$$

$$V$$

Причины разложения МЭА связаны с необратимостью приведенных на схеме 1 реакций и сложными окислительно-восстановительными процессами, катализируемыми ионами железа, которые попадают в абсорбент в результате коррозии оборудования [1]. Карбамат I, как правило, является основным компонентом насыщенных (4%) и регенерированных абсорбентов (1%), используемых обычно в виде ~15% водных растворов. Обратимое образование гидросульфида IV сопровождается окислением сероводорода, которое может приводить к появлению поверхностно-активных сульфидов железа, в основном и вызывающих, как считают, нежелательное вспенивание абсорбента [1].

На рисунке 1 приведена хроматограмма образца МЭА, отобранного на установке УПС Омского НПЗ. Как оказалось, интенсивность сигнала, отвечающего двуокиси серы, который

перекрывается с поглощением МЭА, практически не изменяется после регенерации абсорбента. Получение сульфита V при взаимодействии МЭА с двуокисью серы — один из вероятных путей потери абсорбента за счет образования солей, устойчивых при температуре десорбции (120°C).

Давно установленным маршрутов деградации МЭА является конденсация, ведущая к получению N,N'-(2-гидроксиэтил) мочевины VI. В работе [4] приведен традиционный механизм образования мочевины VI, несмотря на опубликованные результаты анализа состава абсорбентов методом ЯМР ¹³С [3], свидетельствующие о том, что вероятность первой из двух реакций на приведенной ниже схеме 2 крайне низка. Что не удивительно, учитывая, какое высокое давление требуется для производства мочевины из аммиака и двуокиси углерода (12–25 МПа) по причине кинетической лабильности связи NH-CO₂- в карбамат-ионах.

Там же, в статье [3] было продемонстрировано, что соединения VI и оксазолидон-2 (VII), напротив легко образуются при нагревании или длительной выдержке раствора МЭА, насыщенного карбонилсульфидом (COS). Причем соединение VII, которое упорно считают важным продуктом деградации МЭА, в промышленных образцах не обнаружено. Кроме

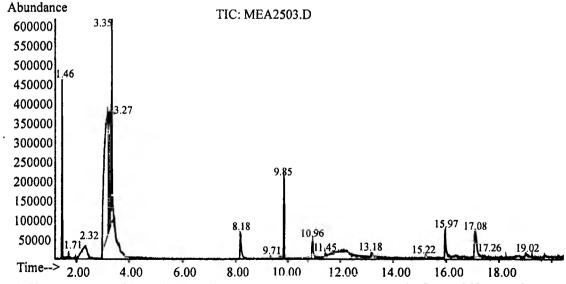


Рис. 1. Хроматограмма (полный ионный ток масс-селективного детектора) образца МЭА, отобранного на установке УПС. Отнесение пиков (достоверность >90%): 1.46 CO₂ и H₂S, 2.32 CO₂; 3.23 МЭА; 3.36 SO₂, 8.18, 9.86, 11.45 примеси, не связанным с разложением МЭА; 10.4 XI; 10.96 соединение VII, образующееся при разложении мочевины VI в процессе хроматографического анализа; 12.0 (уширенный пик) не идентифицированное соединение, масс-спектр которого близок спектру N-метилформамида; 13.18 XV; 15.22 XII 15.97 VIII; 17.08 XVI, 19.02 XIV.

Cxema 2

$$\begin{bmatrix} HO & H_{2N} & OH \\ & & &$$

того, и в пробах, насыщенных СОS в лаборатории, сигналы вещества VII в спектрах ЯМР ¹³С быстро исчезают при кипячении растворов (~110°C,~ 0.25 ч) [2].

На рисунке 1 соединению VII, тем не менее, отвечает один из сравнительно интенсивных сигналов среди хроматографических пиков примесей в абсорбенте. Если предположить, что вещество VII образуется при разложении мочевины VI в условиях хроматографического

анализа, причина несоответствия данных ЯМР и ГЖХ/МС легко объясняется.

Таким образом, образование мочевины VI при моноэтаноламинной газоочистке в условиях НПЗ обоснованно было представлено в статьях [2, 3] исключительно как результат превращения тиокарбамата II, получаемого при взаимодействии МЭА с COS, а также, вероятно, в результате изображенного ниже гидролиза дитиокарбамата III.

Схема 3

$$[HOCH_2CH_2NHCSS-][NH_3CH_2CH_2OH]^* \xrightarrow{+H_2O} [HOCH_2CH_2NHCOS-][NH_3CH_2CH_2OH]^* \\ -H_2S \qquad [I]$$

Структурная формула соединения VII на приведенной ниже схеме 4 из статьи [3] заключена в квадратные скобки, так как в условиях

производства оно, по-видимому, либо быстро превращается в мочевину VI, либо подвергается гидролизу до МЭА и CO₂.

На реакцию, изображенную на схеме 4, накладывается автокаталитический по выделяющемуся сероводороду гидролиз, аналогичный приведенной выше реакции 3 [1, 2, 7]. В резуль-

тате, в отличие от авторов монографии [1] мы считаем, что взаимодействие МЭА с COS или CS_2 не всегда сопровождается необратимой потерей абсорбента.

$$\begin{bmatrix} HO & NH & O \\ S & II \end{bmatrix} \begin{bmatrix} H_3N^{+} & OH \end{bmatrix} \xrightarrow{Cxema 5} \begin{bmatrix} HO & NH & O \\ -H_2S & HO \end{bmatrix} \begin{bmatrix} H_3N^{+} & OH \end{bmatrix}$$

Результаты идентификации продуктов дальнейших превращений соединения VI в условиях промышленной газоочистки, полученные методами ЯМР 13С и ГЖХ/МС, в целом со-

гласуются [3-5]. Нет принципиальных возражений и по поводу схемы 6 соответствующих реакций.

Один из наиболее интенсивных и легко идентифицируемых сигналов на рисунке 1, на котором приведена хроматограмма образца МЭА, отобранного на промышленной установке УПС, принадлежит 1-(2-гидроксиэтил) имидазолидону-2 VIII.

N-(2-гидроксиэтил)этилендиамин IX был достоверно определен ранее, в том числе методом ЯМР в качестве одного из конечных продуктов превращений МЭА [1–3]. Методом ГЖХ/МС обнаружить диамин IX не удалось, вероятно, по причине низкой концентрации примесей в абсорбенте, используемом в настоящее время на Омском НПЗ.

В лабораторных условиях ранее соединения VIII, IX пытались получить, нагревая 15% раствор МЭА, насыщенный карбонилсульфидом [2, 3]. Конечным продуктом этой операции, как правило, была мочевина VI, последующих превращений которой в соответствие со схемой 6 методом ЯМР ¹³С не наблюдали. При анализе аналогичных растворов методом ГЖХ/МС фиксируются дополнительно только очень слабые сигналы соединения VIII и 4-(2-гидроксиэтил)-2-пиперазинона, рассмотренного ниже. По-видимому, дегидратация мочеви-

ны VI с образованием вещества VIII (схема 6), на самом деле представляет собой некий вариант гидроаммонолиза, катализируемого ионами железа [8]. По крайней мере, по данным ГЖХ/ МС с заметной конверсией и воспроизводимо превращение мочевины VI в соединение VIII происходит при кипячении промышленных образцов МЭА, которые содержат железо, попадающие в абсорбент в результате коррозии оборудования.

В статьях [2, 3] приведены спектры регенерированных растворов МЭА, отобранных на установках АГФУ и УПС Омского НПЗ (рис. 2). Рисунок 2б иллюстрирует ситуацию, когда мочевина VI в составе абсорбента полностью превратилась в вещества VIII, IX, а на рис. 2a сигналы соединений VIII, IX вовсе не наблюдаются, и мочевина VI имеет максимальное содержание после МЭА и карбамата I. При этом в спектре на рис. 26 по сравнению со спектром на рис. 2а значительно выше интенсивность сигналов с химическими сдвигами 42.50 и 60.37 м.д., которые были ранее отнесены к амиду щавелевой кислоты Х [3], образующемуся в результате предполагаемых реакций окисления и амидирования, изображенных на схеме 7.

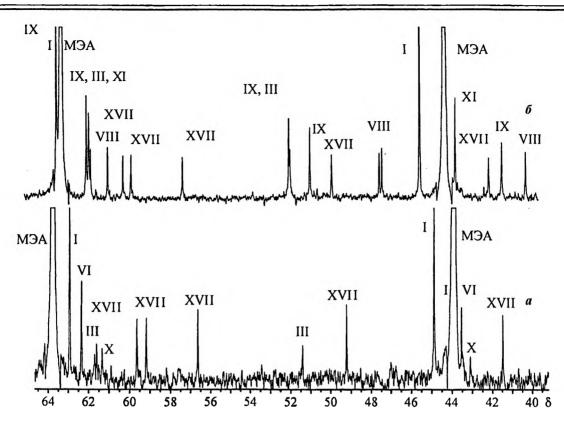


Рис. 2. а) Фрагмент спектра ЯМР ¹³С образца водного раствора МЭА после регенерации. (УПС). 6) Фрагмент спектра ЯМР ¹³С образца регенерированного абсорбента, (АГФУ). Отнесение сигналов дано в таблице 1.

Нет причин пересматривать отнесение характерного сигнала в спектрах ЯМР¹³С абсорбентов с химическим сдвигом 174 м.д. к щавелевой кислоте. В тоже время, методом ГЖХ/МС не удалось подтвердить правильность предложенного в статье [3] отнесения сигналов к ее амиду X, зато был надежно идентифицирован в том числе и в работах других авторов [4—6] аналогичный амид уксусной кислоты.

Как отмечено в статье [3], рост интенсивности сигналов, отнесенных к амиду X (42.5, 60.5 м.д.), сопровождается не показанным на представленном фрагменте спектра (рис. 26) появлением соответствующих сигналов двух метильных групп – (24, 25 м.д.) и карбонильного углерода (180 м.д.). Эти сигналы были ошибочно отнесены в статье [3] к довольно необычным метилсульфониевым соединениям. На самом деле, упомянутые выше данные ГЖХ/МС предполагают гораздо более естественное отнесение обсуждаемых метильных (24, 25 м.д.), метиленовых (42.5, 60.5 м.д.) и карбонильного (180 м.д.) сигналов уксусной кислоте и N-(2-гидроксиэтил)ацетату XI. С этим выводом так-

же согласуется величина химических сдвигов характерных синглетов в соответствующих спектрах ЯМР 1Н, отвечающих метильным углеродам ацетат иона и амида XI (1.8, 1.9 м.д.) [3]. Причину отмеченного выше одновременного увеличения вероятности образования веществ VIII и XI можно только предполагать. Вероятно, роль играет одна и та же каталитическая окислительно-восстановительная система, включающая ионы железа и активные комплексообразователи, образующиеся при разложении МЭА [1].

В статьях [2, 3] был предложен новый маршрут деградации МЭА — реакция трансал-килирования, в результате которой МЭА дает диэтаноламин (ДЭА) и аммиак. Но методом ГЖХ/МС ни в одном анализируемом образце абсорбентов ДЭА обнаружить не удалось, несмотря на то, что введение на анализ пробы соответствующего реактива неизменно дает характерный хроматографический сигнал и масс-спектр. Ранее [2] было отмечено, что сигналы ДЭА в спектре ЯМР ¹³С очень трудно отличить от поглощения дитиокарбамата III, так

Соединение	Отнесение сигналов ЯМР ¹³ С, δ мд		
	NCH ₂	CH ₂ OH	COX, X = O, S
МЭА	43.89	63.57	
I	44.93	63.00	166.1
II	44.70	60.41	185.3
III	51.34	60.21	213.2
VI	43.59	62.41	161.8
VII	40.52	66.71	163.3
VIII	38.34, 46.82, 47.03	60.02	165.9
IX	50.75, 51.23, 39.05	60.30	
XI	42.50	60.37	169.3
XVII	39.52, 49.20, 56.48 59	58.93, 59.13	167.3

Таблица 1. Отнесение сигналов в спектрах ЯМР ¹³С промышленных абсорбентов на основе водных растворов МЭА (15%), приведенных рис. 2a,б.

как сигнал тиокарбонильного углерода соединения III (213 м.д.) при низкой концентрации анализируемых примесей не наблюдается, а химические сдвиги соответствующих метиленовых углеродов ДЭА и дитиокарбамата III очень близки.

Часть сигналов в спектрах ЯМР¹³С абсорбентов, отобранных на Омском НПЗ, была отнесена к N,N'-(2-гидроксиэтил)тиомочевине XII и 1-(2-гидроксиэтил)имидазолидин-2-тиону XIV, образующимся в результате представленных на схеме 8 реакций дитиокарбамата III, которые аналогичны соответствующим реакциям тиокарбамата II (схемы 4, 6).

Схема 8 в целом оказалось верной, несмотря на то, что сигналы, отнесенные к веществам XII, XIV, как оказалось, принадлежат 4-(2-гидроксиэтил)-2-пиперазинону (см. ниже) [3]. Концентрации соединений XII, XIV на самом деле настолько невелики (<0.1%), что из всех содержащих серу продуктов в спектрах ЯМР ¹³С абсорбентов наблюдается только поглощение, ошибочно отнесенное раньше к ДЭА, и в действительности отвечающее дитиокарбамату III. Хотя соединения III, XII не удалось зафиксировать методом ГЖХ/МС, об их наличии в составе абсорбентов говорят сигналы серосодержащих компонентов XIII, XIV.

$$\begin{array}{c} \text{Cxema 8} \\ \text{[HOCH}_2\text{CH}_2\text{NHCSS}^-][\text{H}_3\text{N}^+\text{CH}_2\text{CH}_2\text{OH}]} \\ \text{III} \\ \text{S=C(NHCH}_2\text{CH}_2\text{OH})_2 \\ \text{XII} \\ \text{-H}_2\text{N} \\ \text{-H}_2\text{N} \\ \text{-H}_2\text{O} \\ \text{-H}_2\text{N} \\ \text{-H}_2\text{N} \\ \text{-H}_2\text{O} \\ \text{-H}_2\text{-H}_2\text{O} \\ \text{-H}_2\text{O} \\ \text{-H}_2\text{-H}_2\text{O} \\ \text{-H}_2\text$$

Кроме поглощения МЭА и соединений (I, III, VI, VIII, IX, X, XI), спектры ЯМР ¹³С (рис. 2а,б) содержат ещё пять сравнительно интенсивных сигналов ~39, 49, 56, 58, 59 м.д., которые, как было отмечено еще в статьях [2, 3], одновременно присутствуют в большинстве изученных образцов абсорбентов Омского НПЗ, отобранных на различных установках газоочистки, за исключением тех, которые включены в систему гидроочистки.

По данным ГЖХ/МС наибольшую концентрацию в составе большинства образцов, имеет соединение с молекулярным весом 144, однозначно идентифицированное в работе [4] как 4-(2-гидроксиэтил)-пиперазин-2-он XV. Химические сдвиги всех пяти приведенных выше сигналов в спектрах ЯМР¹³С и соответствующий им более слабый и поэтому обычно не наблюдаемый сигнал карбонильного углерода в области 167 м.д., полностью согласуются с расчетным спектром соединения XV. Таким образом, отнесение рассматриваемых характерных пяти сигналов к двум соединениям XII, XIV [3] было неправильным. В действительности, все они принадлежат одному соединению XV, которое раньше было идентифицировано только в кубовых фракциях, полученных в процессе очистки МЭА методом дистилляции [4].

В статье [4] предложен и обоснован изображенный на схеме 9 механизм образования вещества XV.

Схема 9

Более естественным из общих химических соображений нам представляется несколько

иной механизм, изображенный на схеме 10.

Схема 10

Одним из наиболее нежелательных компонентов рассматриваемых абсорбентов, повышающих вероятность аварийного разрушения оборудования в результате коррозии, со сравнительно недавних пор считают N,N-(2-гидроксиэтил)глицин – XVI (бицин) [9]. Предлагаются даже специальные методы адсорбционной очистки растворов МЭА от вещества XVI с помощью ионообменных смол [9]. Присутствие в образцах МЭА, отобранных на Омском НПЗ, в качестве одного из основных компонентов соединения XV обеспечивает реальный потенциальный путь образования бицина XVI в результате реакций, приведенных на схеме 11. В образцах МЭА, отобранных на Омском НПЗ, бицин обнаружен не был. Скорее всего не подходит используемая простейшая методика анализа, и требуется концентрирование проб.

Косвенным аргументом в пользу изображенного на схеме 11 механизма является наличие по данным ГЖХ/МС в составе раствора МЭА, используемого для очистки топливных газов на одной из городских абсорбционных установок, помимо основного компонента XV еще и 4-(2-гидроксиэтил)морфолин-2-она XVII.

Как раньше сообщалось [2, 3], образцы МЭА, используемые для очистки газов на установках сероочистки Омского НПЗ, содержат сравнительно мало продуктов разложения абсорбентов. Несколько сигналов, обнаруживаемых на пределе чувствительности в спектрах ЯМР ¹³С рассматриваемых растворов, могут быть отнесены к карбамату I и дитиокарбамату III. Методом ГЖХ/МС никаких продуктов деградации МЭА в данных абсорбентах также не было зафиксировано.

Экспериментальная часть

Спектры ЯМР ¹Н¹³С сняты на ЯМРспектрометре АС-200 фирмы Bruker.

Хромато-масс-спектры были получены на хромато-масс-спектрометре 6890/5973N фирмы Agilent Technologies при использовании неполярной хроматографической колонки марки HP-5MS.

Образцы промышленных абсорбентов были отобраны на различных узлах газоочистки Омского НПЗ и непосредственно без каких-либо обработок поступали на анализ. В лабораторных условиях процесс газоочистки моделировали на обычной установке по получению и поглощению газов. Карбонилсульфид получали действием серной кислоты на роданистый аммоний. Сероводород, сероуглерод, МЭА — товарные химически чистые вещества.

В заключении автор выражает благодарность Елене Николаевне Кудря за предоставленные хромато-масс-спектры.

Библиография

- 1. Коуль А. Л., Ризенфельд Ф. С. Очистка газа. М.: Недра, 1968. 392 с.
- Талзи В.П., Игнащин С.В. // ЖПХ. 2002. Т. 75. Вып. 1. С. 80–85.
- 3. Талзи В.П. // ЖПХ. 2004. Т. 77. Вып. 3. С. 437–441.
- Strazisar B. R., Anderson R. R., White C. M. // Energy Fuels. 2003. V. 17. N.4. C. 1034– 1039.
- Bello A., Idem R.O. // Ind. Eng. Chem. Res. 2005. V. 44. P. 945–969.
- Chi S., Rochelle G. T. // Ind. Eng. Chem. Res. 2002. V. 41. N. 17. P. 4178–4186.
- 7. Глазырин А.Б..Талзи В.П, Денисов Е.Н., Имашев У.Б. // ЖПХ. 1985. Т. 18. Вып. 10. Р. 2300–2304.
- 8. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. М.: Химия. 1988. С. 45 46.
- Лупарт М.С., Бекон Т.Р., Эдвардс Д.Дж. // Нефть, газ и нефтехимия за рубежом. 1993.
 № 12. С. 38–42.