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Preface

This 30th Anniversary Volume brings the series to a close. The intent of the series
as initiated by F.R.N. Nabarro was to feature incisive position papers and to extend
the treatment of dislocations to new materials. The success of the series in doing so
is extended in the present volume. New materials addressed for the first time
include the chapters on minerals by Barber et al. and the chapter on dislocations in
colloidal crystals by Schall and Spaepen. The latter was an area of interest for
Nabarro late in his career. Moriarty et al. extend the first principles calculations of
kink configurations in bec metals to high pressures, including the use of flexible
boundary conditions to model dilatational effects. Rabier et al. clarify the issue of
glide-shuffle slip systems in diamond cubic and related III-V compounds.
Metadislocations, discussed by Feuerbacher and Heggen, represent a new type of
defect in multicomponent metal compounds and alloys. Thus, as with other recent
volumes in the series, this volume includes chapters on a wide range of topics, all at
the leading edge of new research in the dislocation area.

J.P. Hirth
L. Kubin
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1. Introduction

The intriguing possibility of modeling across length scales all the way from the
atomic level to the continuum level to achieve a physics-based multiscale
description of mechanical properties such as plasticity and strength has attracted
widespread research interest in the last decade [1-8]. To be sure, the predictive
multiscale materials modeling of plasticity and strength requires an in-depth
theoretical understanding and quantum-based calculation of fundamental disloca-
tion and other defect processes at the atomic length scale [9-19] as essential input
into higher length scale simulations such as 3D dislocation dynamics (DD) of single-
crystal plasticity at the microscale [20-31]. Especially important is the accurate
atomistic modeling of the structure, motion, and interaction of individual
dislocations, as well as the accurate modeling of the relevant aspects of elasticity,
including elastic moduli and the limits of elastic stability. To accomplish this task
fully, one not only needs to understand the underlying qualitative mechanisms that
control plastic deformation, but also needs to be able to calculate the quantitative
parameters that will allow a predictive description of plasticity and strength
properties in real materials under various conditions. The latter is particularly
important in regimes where experimental data are scarce or nonexistent such as
under the extreme conditions of pressure, temperature, strain, and strain rate of
current interest to many modern applications. Especially interesting in this regard is
the regime of high pressure, a regime in which dislocation-driven plasticity has been
heretofore largely unexplored from a fundamental perspective. The objective of the
present paper is to help fill that void. Specifically, we elaborate here a predictive
multiscale description of dislocation behavior and single-crystal plasticity in bcc
transition metals over a wide range of pressures, ranging from ambient all the way
up to many hundreds of gigapascals (GPa). In this process we build upon and
greatly extend the multiscale dislocation work on these materials previously
reported by the present authors and their collaborators [13,14,16,19].

In recent years since the mid-1990s, there has been considerable renewed interest
in understanding dislocation behavior and plastic deformation in bce metals [1-6,
9-19,21-23,27-32], where even at ambient pressure much remains unknown at the
atomistic level about the fundamental mechanisms and quantitative parameters of
dislocation motion. The numerous studies published on these materials over the
years, especially the pioneering papers by Vitek and Duesbery [32-36], have
identified many of the basic characteristics of dislocation behavior in bec metals and
have laid the groundwork for our investigations. In particular, at ambient pressure
the low-temperature and high-strain-rate plastic behaviors of these metals are
controlled by the intrinsic core properties of screw dislocations with Burgers vector
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b=a/2{111), where a is the bec lattice constant. Unlike the highly mobile edge
dislocations in bcc metals, the motion of the a/2{111) screw dislocations is
severely restricted by the nonplanar atomic structure of its core, resulting in low
intrinsic mobility, the formation of thermally activated kinks on the dislocation line
at finite temperature, and a temperature-dependent yield stress. Since these unique
qualitative characteristics are closely tied to the bcc structure itself, we expect them
to remain in effect at high pressure as well. We will, therefore, concentrate here on
pressure-dependent a/2{111) screw dislocation behavior in the bcc lattice and the
single-crystal plasticity that it drives.

At the same time, an important general consideration is the identification and
separation of purely generic behavior representative of bcc metals as a whole from
materials-specific behavior representative of chemical differences and environmental
factors such as high pressure. The historical perspective has been to assume that bec
dislocation behavior and plasticity is highly generic in character. The expectation of
possible materials-specific behavior under high pressure, however, underscores the
importance of chemical bonding, in addition to crystal symmetry, in elaborating
dislocation and strength properties. In bcc metals, chemical bonding ranges from
nondirectional, nearly free-electron sp bonding in the alkali metals (e.g., Na, K) to
directional d-electron bonding in transition metals (e.g., Ta, Mo, Fe). The latter also
depends strongly on pressure-sensitive d-electron occupation, which can vary
significantly within nonmagnetic group-VB (e.g., V, Ta) and group-VIB (e.g., Mo,
W) elements, as well as between these elements and magnetic group-VIII elements
(e.g., Fe). Here we will focus on a small subset of the nonmagnetic materials as
prototypes, namely V, Ta, and Mo, and examine in detail how their mechanical
properties vary under the influence of high pressure. These materials have different
ranges of bcc stability, as well as different high-pressure elastic behavior. While Ta is
predicted to remain stable in the bec phase up to at least 1000 GPa [37], Mo and V
undergo high-pressure phase transitions, which are predicted above 500 GPa in the
case of Mo [38,39] and observed near 69 GPa in the case of V [40]. The latter
transition has also been confirmed theoretically [41]. The phase transitions in Mo
and V are closely coupled, respectively, with the elastic softening of the C’ and the
Cy44 shear modulus in the compressed bece lattice prior to the transitions.

Large-scale computer simulation is the enabling tool of multiscale modeling and
is at the heart of the present investigation. This approach is not entirely unique,
however, and involves a number of important strategic, physical, and computational
issues and choices. Here we have adopted an information passing strategy to the
multiscale modeling of single-crystal plasticity across three overlapping length
scales: electronic, atomic, and micro- or mesoscopic. Crystal elastic moduli and the
basic core properties of dislocations at the electronic length scale are governed by
the laws of quantum mechanics, which can be implemented from first principles via
modern density functional theory (DFT) [42-44] in both full-potential (FP) and
pseudopotential (PP) electronic-structure methods [37-39,44-48]. We use DFT
electronic-structure calculations to establish the pressure dependence of certain key
mechanical properties, including the shear elastic moduli, the ideal shear strength,
and the generalized stacking-fault (y) energy surface. On the other hand, one can
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study the structure, motion, and interaction of individual dislocations in much
greater detail at the atomic length scale through static and dynamic atomistic
simulations, using suitable quantum-based interatomic potentials that encode the
necessary quantum information. For transition metals, DFT-based generalized
pseudopotential theory (GPT) [49] provides a rigorous approach to obtain the
required potentials. In our present multiscale strategy, we perform additional DFT
electronic-structure calculations to establish a large database of fundamental
pressure-dependent properties of the zero-temperature becc phase of each metal of
interest, and then use this database to constrain and validate simplified model GPT
(or MGPT) multi-ion potentials [50], which in turn permit efficient atomistic
simulations with full quantum realism. In particular, the MGPT potentials encode
the fundamental directional bonding of central transition metals through explicit
three- and four-ion angular-dependent terms, and can be used to make predictive
calculations of high-pressure dislocation properties.

Atomistic simulations of point and extended defects are performed on a specified
finite collection of atoms contained within a chosen computational cell of variable
shape and size to which specific boundary conditions and other constraints such as
temperature, stress, and strain rate are applied. Both molecular statics (MS)
techniques, which seek to minimize the total energy of the system at zero
temperature, and finite-temperature molecular dynamics (MD) techniques can be
used. The simulation of individual dislocations requires special treatment due to the
long-ranged (~ 1/r) elastic field associated with them. Traditionally, fixed boundary
conditions have been most often used in such dislocation simulations, where
exterior atoms are frozen at their bulk lattice positions, and distant atomic positions
in the computational cell are established by the conditions of linear anisotropic
elasticity. This requires very large simulation cells in practice, but this method is
always problematic with respect to force buildup between fixed and relaxed atomic
regions. An elegant and practical solution to the latter problem is to use the so-
called flexible boundary conditions. In particular, Rao et al. [51,52] have developed
an advanced Green’s function version of such conditions for both 2D and 3D
dislocation simulations, denoted as Green’s function boundary conditions (GFBC).
In this method, a buffer layer is introduced between the fixed outer and inner
relaxed atomistic regions of the simulation cell, allowing one to dynamically update
the boundary conditions of the simulation, while dramatically reducing the size of
the atomistic region. Using the GFBC approach, we subsequently developed a
specialized Green’s function atomistic simulation method to implement multi-ion
MGPT potentials and calculate the pressure-dependent properties of a/2{111)
screw dislocations through MS and MD simulations [13]. These properties include
the core structure and energy, the kink-pair formation energy, and the Peierls stress
7p, as well as the full activation enthalpy below 7p and the phonon-drag mobility
above tp needed to describe dislocation motion in DD microscale simulations.

At the microscale, dislocation dynamics simulations implement the equations of
continuum elasticity theory to track the motion and interaction of individual
dislocations under an applied stress, leading to the development of a dislocation
microstructure and single-crystal plastic deformation. In our multiscale modeling



6 Lin H. Yang et al. Ch. 92

strategy for bce transition metals, the primary atomistic input supplied to the DD
simulations is the dislocation mobility of individual a/2{111) screw dislocations.
For a given material, this input takes the form of an activation enthalpy versus shear
stress curve and phonon-drag coefficients calculated for each pressure under
consideration. Here full activation enthalpy curves have been calculated at selected
pressures in Ta, Mo, and V, and phonon drag has been studied as a function of
pressure and temperature in the case of Ta. These results have been fitted and
modeled in suitable analytic forms to interface smoothly with the DD simulation
codes. Detailed DD simulations have then been carried out in Ta and Mo as a
function of pressure, temperature, and strain rate. Our DD simulations have been
performed in part with the pioneering lattice-based serial code developed for bce
metals [21,22] but even more extensively with the general node-based Parallel
Dislocation Simulator (ParaDiS) code recently developed at the Lawrence
Livermore National Laboratory [27-30].

2. Computational approach

We begin by introducing and briefly discussing the specific computational methods
we have used in the present work to implement our multiscale modeling strategy for
bee transition metals.

2.1. First-principles electronic-structure methods

The first-principles DFT electronic-structure results used below to constrain and
validate MGPT potentials, and to calculate basic high-pressure properties have
been obtained with either the full-potential linear muffin-tin orbital (FP-LMTO)
method [37-39,44,45,47] or the plane-wave pseudopotential method [44-46,48]. The
FP-LMTO method was used previously to study basic structural and mechanical
properties in Ta to 1000 GPa (10 Mbar) [37], as well as in Mo [38,39] and V [47] to
600 GPa (6 Mbar). These data are used here in establishing the zero-temperature
equation of state (cold EOS or pressure vs. volume curve) and the high-pressure
shear elastic moduli. The FP-LMTO and PP methods were also used previously to
study vacancy-formation energetics in bec metals including Ta, Mo, and V [45].
Together with the cold EOS and shear elastic moduli, FP-LMTO and PP data on
the vacancy formation energy are used to constrain the MGPT potentials. To help
further validate the potentials at high pressure for the present dislocations studies,
entirely new PP results have been obtained here on the ideal shear strength and
high-symmetry features of the {110} and {211} y surfaces to 400 GPa in Ta and Mo,
and 140 GPa in V.

The FP-LMTO and PP methods have been implemented from first principles
within the DFT and require only the atomic number and an assumed functional
form for the exchange and correlation energy of the electrons as input. Historically,
the latter functional has been treated within both the standard local-density
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approximation (LDA) [43,44] and the more modern generalized gradient
approximation (GGA) [44]. In general, the GGA is believed to provide the more
accurate treatment for central transition metals and has been used in all of the FP-
LMTO and PP results discussed here. In both the FP-LMTO and PP approaches,
the electron charge density and potential are allowed to have any geometrical shape
and are calculated self-consistently. In the FP-LMTO method all electrons are
treated, including tightly bound inner-core, loosely bound outer-core, and itinerate
valence electrons, to ensure that their rapidly changing character under pressure is
fully accommodated. One incorporates non-sphericity to the charge density and
potential by representing the crystal with nonoverlapping spheres (of a variable,
optimum size) surrounding each atomic site and a general-shaped interstitial region
between the spheres. Inside the spheres, the wave functions are represented as
Bloch sums of linear muffin-tin orbitals and are expanded by means of structure
constants. The kinetic energy is not restricted to be zero in the interstitial region
and the wave function expansion contains Hankel or Neumann functions
(depending on sign of the kinetic energy) together with Bessel functions. Also in
the FP-LMTO method, all relativistic terms, including the spin—orbit coupling, can
be included in the Hamiltonian as necessary, and this has been done in the results
used here in the case of Ta. The metals V and Mo have been treated in a semi-
relativistic fashion without the spin—orbit coupling.

In the PP method applied to transition metals one normally treats only the
valence s, p, and d electrons, which total five per atom in V and Ta, and six per atom
in Mo. Here special pseudopotentials in the Troullier—-Martins form [48] have been
constructed from scalar-relativistic atomic calculations to be accurate in the
pressure range below 400 GPa. An important advantage of the PP method is that it
provides accurate forces so that fully relaxed atomic configurations can be
considered. We have used this capability here to obtain accurate relaxed {110}
and {211} y surfaces for Ta, Mo, and V. It is also possible to use relaxed PP
configurations to perform validating FP-LMTO calculations on relaxed defects and
v surfaces, as was done previously at ambient pressure [13.45].

2.2. Quantum-based interatomic potentials

Within DFT quantum mechanics, first-principles GPT provides a fundamental basis
for ab initio interatomic potentials in metals and alloys. In the GPT applied to
transition metals [49], a mixed basis of plane waves and localized d-state orbitals is
used to self-consistently expand the electron density and total energy of the system
in terms of weak sp pseudopotential, d—d tight-binding, and sp—d hybridization
matrix elements, which in turn are all directly calculable from first principles. For a
bulk transition metal, one obtains the real-space total-energy functional

1 . 1 . 1 .
Eio(Ri ... RN) = NEwi(Q) +5 D valljs Q) +2 > va(iiki Q) +5,> - 'valijkl: Q).
L ij.k ijk,l

(1)
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Fig. 1. Present advanced generation MGPT multi-ion potentials v,, v;, and v4 for Ta, Mo, and V
calculated at their respective equilibrium volumes.

The leading volume term in this expansion, E,., as well as the two-, three-, and
four-ion interatomic potentials, v,, v3, and v,4, are volume-dependent, but structure-
independent quantities and thus transferable to arbitrary bulk ion configurations. The
angular-force multi-ion potentials v3 and v, reflect directional-bonding contributions
from partially filled d bands and are important for mid-period transition metals. In
the full GPT, however, these potentials are multidimensional functions, so that v;
and v, cannot be readily tabulated for application purposes. This has led to the
development of a simplified MGPT, which achieves short-ranged, analytic potential
forms that can be applied to large-scale atomistic simulations [50].

The MGPT is derived from the GPT through a series of systematic
approximations applicable to central transition metals. Canonical d bands are
introduced to express the d-state components of v, and the multi-ion potentials v;
and v, analytically in terms of a single radial function and three universal angular
functions that depend only on d symmetry and apply to all transition metals and all
volumes. To compensate for the approximations introduced into the MGPT, the
d-state potential coefficients in v,, v3, and v, together with E,, are constrained by
fundamental theoretical and/or experimental data. In our current preferred scheme
for bcc metals, we fit a combination of first-principles DFT calculations and
experimental data on the cold equation of state, shear elastic moduli, unrelaxed
vacancy formation energy, and Debye temperature over a prescribed volume or
pressure range. Advanced generation MGPT potentials have been so obtained in
Ta to 1000 GPa [13,14], in Mo to 400 GPa [16,53], and in V to 230 GPa [53].
Representative results for these three metals are displayed in Fig. 1 at their
respective equilibrium volumes.

2.3. Green’s function atomistic simulation
Previously, the flexible GFBC method of Rao et al. [51,52] for dynamically

updating the boundary conditions used in atomistic simulations was implemented
for MGPT potentials and applied to study Ta dislocation properties at ambient
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pressure [13]. This same approach has been used here to study a/2{111)
dislocation core structure and mobility at high pressure in Ta, Mo, and V. The
GFBC approach extends the 2D lattice Green’s function boundary relaxation
method originated by Sinclair et al. [54] for treating rigid, straight dislocations to 3D
simulations, including kink and kink-pair formation. The boundary conditions for
2D and 3D defect simulations cells are evaluated using line [55] and point [56] force
distributions, respectively. In the flexible GFBC method, the simulation cell is
divided into three regions, denoted as atomistic, Green’s function (GF), and
continuum. In the outer continuum region, the atomic positions are initially
determined according to the anisotropic elastic displacement field [55] for a
dislocation line defect at the center of the atomistic region, and then are relaxed by
GF methods according to the forces in GF region. Complete atomistic relaxation is
performed in the atomistic region according to the interatomic forces generated
from Eq. (1). Forces developed in the GF region, as relaxation is achieved in the
atomistic region, are then used to relax those atoms in all three regions by the 2D or
3D elastic and lattice GF solutions for line or point forces. The atomistic and GF
relaxations are iterated until all force components on each atom are sufficiently
small (10~*eV/A or less), and the final few steps must also be performed by direct
atomistic relaxation for the atomistic and GF regions to ensure there is no force
buildup in these two regions.

In our GFBC/MGPT simulation code, a spatial domain decomposition scheme is
implemented for all three calculational regions, as illustrated schematically in Fig. 2.
The small domain cells defined in this scheme are connected via a cell-linked-list
method such that each cell has a fixed number of neighboring cells. This reduces the
number of unnecessary interatomic separations considered in evaluating the MPGT
potentials, which is crucial to their efficient application. In general, there are three
major computational issues that need to be addressed: (1) the geometry of the
simulation cell, which is purely cylindrical for a straight dislocation and in the form
of a series of displaced cylindrical disks for a kink; (2) the fact that there are three
regions in the full simulation cell, so that a connectivity algorithm for information
passing between different regions is therefore necessary; and (3) the large effective
cutoff radius R.,; = 4.25Rws for the MGPT potentials, which means there is a large
overhead associated with the number of atoms per cell if the conventional domain-
cell partition is considered (i.e., if each cell covers a volume R}, which then
contains about 16 atoms). To solve these problems, a so-called layered-cake
decomposition is used to split the three regions in the full simulation cell, so that
each region has its own domain-cell-linked list. To reduce the overhead associated
with the number of atoms per cell, the cell sizes are reduced by a factor of eight,
therefore the average number of atoms per cell is about two. In addition, this
approach allows a better description of the cylindrical geometry involved in the
simulation when a cubic domain decomposition is used. As shown previously [13],
the performance of our GFBC/MGPT simulation code is thereby increased by an
order of magnitude as compared to conventional domain decomposition methods.

To take advantage of the scalable architectures of modern state-of-the-art
computer platforms, a mapping algorithm was also developed for massively parallel
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Fig. 2. Schematic representation of the domain decomposition scheme used to implement flexible Green’s
function boundary conditions in our GFBC/MGPT atomistic simulation code for dislocation calculations.
(a) The three main computational regions separated into a layered-cake structure for a cylindrical
coordinate system such that each region has its own domain decomposition. (b) To ensure the connectivity
between regions and compatibility with parallel computing platforms, the domain cells are mapped into
three one-dimensional arrays with cell-linked pointers between the cells and overlap regions.

computers. A 3D to 1D mapping list is built at the beginning of the simulation. This
mapping list ensures the connectivity between different regions, so that no
information is lost during the simulation. The logic behind this algorithm is that our
simulation is always performed in a 1D computational domain regardless of the
physical geometry involved. This is particularly useful when dealing with
complicated geometries such as kinked dislocation structures or dislocation—
dislocation interactions.

2.4. Dislocation dynamics simulation

DD simulation methods provide a numerical tool to directly connect the physics of
individual dislocations to the strength properties of a crystalline material. These
methods simulate explicitly the motion, multiplication, and interaction of collective
dislocation lines in response to an applied load. A number of DD simulation
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methods have been developed and reported over the past two decades [20-26].
Although they differ in their detailed approach, these methods share common basic
features of dislocation motion and interaction. In this paper, we focus mainly on a
general new node-based DD method developed at Lawrence Livermore National
Laboratory called ParaDiS that allows efficient large-scale DD simulations on
parallel computing platforms [27-30]. This approach complements the original
lattice-based method for bcc metals of Tang et al. [21,22] and here we have
performed DD simulations with atomistic input using both methods.

In ParaDiS, the dislocation lines are discretized by an assembly of nodes with
straight-line dislocation segments connecting individual nodes [30]. The driving
force for dislocation motion is calculated at each node. The force comes from
various contributions including the dislocation self-energy change, dislocation—
dislocation interaction forces, the external loading, and surface traction forces when
applicable [31]. The dislocation—dislocation interactions are treated by isotropic
linear elasticity theory and the latest development of non-singular stress expressions
[29] has been implemented. A fast multiple method has also been implemented to
gain computational efficiency for the force calculations. A detailed description of
the ParaDiS method can be found in Ref. [30].

With the nodal forces determined, we calculate the nodal velocities by specifying
the response of the nodes to the driving forces through the individual dislocation
mobility functions. These mobility functions are very material and environment
specific. They require specific parameters obtained from the lower length scale
atomistic calculations performed at the single dislocation level. The mobility func-
tions also depend on the character of the dislocations. In the case of bec transition
metals, the screw and edge mobility functions are defined differently. The screws
move primarily by a thermally activated kink mechanism, and the edges move
primarily by a phonon-drag mechanism. The specific functional forms and
parameters of the mobility functions used in our DD simulations are discussed in
Section 5.1 In the earlier lattice-based DD method, only screw and edge dislocation
segments are considered. This method does not provide an accurate description of
the dislocation line motion in general, and is only valid for conditions when the
screws move much faster than the edges, as occurs in bcc metals at low and
moderate temperature. In the current ParaDiS method, on the other hand, we have
general line segments connecting the nodes with segment character of all types
including screw, edge, and mixed segments. The mobility of the mixed segments is
derived from that of both screw and edge.

The major material inputs to the DD simulations include the elastic constants and
the Burgers vector at the chosen pressure and temperature conditions, as well as the
pressure-dependent parameters used in the mobility functions. All of these
quantities are explicitly calculated at the atomistic level, as described in Sections
3 and 4 of this paper. The loading condition for the DD simulations is typically
constant strain rate. The major outputs are stress—strain response and the
dislocation density changes. In Section 5.2, we discuss the details of the simulation
of high-pressure yield strengths for Ta and Mo single crystals.
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3. Salient high-pressure mechanical properties of bcc transition metals

We next discuss some important basic high-pressure mechanical properties of bcc
transition metals that underpin our treatment of both dislocations and plasticity,
and that can be obtained directly from first-principles electronic-structure
calculations. These properties include the bulk and shear elastic moduli, the ideal
shear strength, and generalized stacking-fault or y energy surfaces. The pressure-
dependent elastic moduli of a material establish the detailed character of the
elasticity field in which individual dislocations move and interact, as well as serve as
fundamental constraints on our MGPT interatomic potentials. The ideal shear
strength provides a fundamental upper bound on material strength in the absence
of dislocations and is a basic validation test of the potentials. The relevant low-
energy vy surfaces for the {110} and {211} slip planes of interest in bec plastic flow
impose general constraints on dislocation character and are very useful validation
tests for the MGPT potentials.

3.1. Bulk and shear elastic moduli

In our treatment of high-pressure mechanical properties, we assume that the bcc
solid is subject to a stress tensor of the general form

Sij = —Po; + 1, (2)

where P is the uniform isotropic pressure in the material and 7;; is a small additional
applied deviatoric stress. In this regard, we assume that the loading path is such that
the material is first uniformly compressed to pressure P through either static (e.g.,
diamond-anvil cell) or dynamic (e.g., shock) means, and then 7 is applied in some
unspecified manner. In transition metals, the pressure P = P(Q, T) has a strong
dependence on the atomic volume Q of the metal, but a relatively weak dependence
on temperature 7. For the purposes of this paper, it is adequate to replace P with
the zero-temperature equation of state Py(Q). Calculated MGPT results for Py(Q)
and the pressure dependence of the corresponding bulk modulus,

0Py(QY)

By(P) = —Q ,
A p_py@)

)
for Ta, Mo, and V up to 400 GPa are displayed in Fig. 3. By construction, these
results are consistent with both room-temperature experimental data [40,57-59]
and high-pressure FP-LMTO calculations [37,38,47]. At the observed room-
temperature equilibrium volume ), Py(€)y) is necessarily slightly negative
(~—1GPa), as indicated in Table 1 for Ta, Mo, and V, since the compensating
positive thermal pressure is neglected. In some of our later results we will refer to
Py(€p) as ambient pressure. Also up to 400 GPa in Ta and Mo, and 200 GPa in V,
the bulk modulus By is nearly linear in pressure, so that B, = 0B /0P is approxi-
mately constant over the pressure ranges of interest in this paper. Consistent with
the above assumptions and with the usual convention in high-pressure physics,
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Fig. 3. Present calculated zero-temperature equations of state for Ta, Mo, and V. (a) Pressure versus
atomic volume and (b) bulk modulus versus pressure.

Table 1
Observed equation of state (EOS) and elasticity properties in Ta, Mo, and V at their respective
equilibrium volumes [58], with volume in atomic units (a.u.) and stress values in GPa

Quantity Ta Mo \%
EOS
Q 121.6 105.1 93.23
Po(Qp) -1.1 -1.2 -1.1
By 196 263 157
B, 3.77 4.44 4.26
Elasticity
Cyy 82.5 109.0 43.4
C 525 152.0 55.4
G 62.5 137.8 514
A 1.57 0.72 0.78

Note: These data are fully reflected in the present MGPT potentials.

we define individual elastic moduli C;; as stress—strain relations relative to the
current compressed state [60]. The corresponding MGPT-calculated shear elastic
moduli C' = (Cy; — C1)/2 and Cyy are displayed in Fig. 4 for Ta to 1000 GPa, Mo
to 400GPa, and V to 250GPa together with constraining FP-LMTO and
experimental data, with equilibrium values listed in Table 1. The experimental
data include ultrasonic measurements of the moduli and their pressure derivatives
at ambient conditions [58] and high-resolution inelastic X-ray scattering (HRIXS)
measurements at 37 GPa in Mo [59]. The shear moduli generally increase with
increasing pressure, except for C’ in Mo above 300 GPa and C44 in V above 20 GPa.
The latter behavior reflects nearby phase transitions: bec to close-packed phases
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Fig. 4. Present MGPT-calculated high-pressure shear elastic moduli in Ta, Mo, and V together with
constraining FP-LMTO and experimental data.

above 500 GPa in Mo [38,39] and bcc to a rhombohedral phase at 69 GPa in V [40].
In the case of V, C4y becomes negative and the bcc structure is mechanically
unstable above 120 GPa.

Of special interest here to bec screw dislocation motion is the effective shear
modulus along the (111) slip direction,

2C' +C
G = %, 4)
and the corresponding anisotropy ratio,
A= Cu (5)

c’
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anisotropic ratio A [panel (b)] for Ta, Mo, and V.

where a value of A =1.0 would denote an elastically isotropic solid. MGPT-
calculated results on the pressure dependence of these quantities for Ta, Mo, and V
up to 400 GPa are displayed in Fig. 5. Over this pressure range, Gy, is nearly linear
in pressure for the case of Ta, but has a more complex behavior for Mo and V due to
the proximity of the noted phase transitions in these metals. The pressure depen-
dence of A over the same range also shows somewhat complex behavior, with a mini-
mum of about 1.2 in the case of Ta near 140 GPa, a substantial increase with pressure
from a value of 0.72 at ambient to about 1.6 at 400 GPa in Mo, and a very rapid
decrease with pressure from a value of 0.78 at ambient to zero near 120 GPa in V.

3.2. Ideal shear strength

The next fundamental mechanical property we consider is the ideal shear strength
of a bec metal, as defined by Paxton et al. [61] and as previously discussed in the
case of Ta [13,37]. At constant pressure, the ideal strength of the uniformly
compressed perfect crystal is identified with the maximum shear stress 7. required
for a continuous homogeneous deformation of the crystal into itself via the
observed twinning mode. For bcc metals, this mode can be specified by a shear
direction n =[111] and a normal plane K = (112). In the absence of tensile
relaxation normal to K, which has been shown to be small for bcc transition metals
[61,62], the atomic positions during the deformation can be directly related to the
relative amount of shear x/s along the twinning path, where s = 1/+/2 is maximum
shear displacement along 7 per unit length along the [112] direction. In particular,
the unrelaxed ideal strength calculation may be carried out entirely using a single
atom per unit cell and periodic boundary conditions, allowing for easy application
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of full DFT electronic-structure methods. Previously for Ta, self-consistent FP-
LMTO calculations of the unrelaxed ideal shear strength were performed at a few
selected volumes in the 0~1000 GPa pressure range [37] and also later repeated at
the observed equilibrium volume Qg for comparison with corresponding MGPT
calculations [9]. In the present work we have supplemented these results with
extensive PP and MGPT calculations as a function of pressure over the range of
0-400 GPa in Ta and Mo, and 0-100 GPa in V.

In all cases we calculate a symmetric energy barrier along the twinning path at
constant volume,

Eorlx, Q] — Eir[0,9]
N , (6)

where the barrier height is W, at x = s/2. The corresponding stress along this path is
given by

W(x,Q) =

10W(E,Q)
Q ox

The ideal shear strength is then defined as the maximum calculated stress along
the twinning path, . = 7(x., Q), where x. is the critical shear separating regimes of
elastic and plastic deformation of the crystal. In the present PP calculations, W(x, Q)
has been calculated at intervals of x/s = 0.025 in the range 0 <x < s/2 and the
curve extended to x =s by symmetry. The result has then been fitted and
differentiated analytically to obtain t(x, Q) via Eq. (7). In the present MGPT
calculations, W(x, Q) has been calculated at smaller intervals of 0.01 over the full
range 0 < x <, and then a smooth t(x, Q) curve has been obtained directly from
numerical differentiation. The present PP and MGPT results for Ta at Q = Q, are
plotted and compared in Fig. 6. Present and previous calculated values of the
barrier height W, critical stress t., and relative critical shear x./s at ambient
pressure are listed and compared in Table 2. The overall agreement among the PP,
FP-LMTO, and MGPT results is reasonable and adequate for the present purposes,
although the MGPT values of W, and t. are systematically larger than the
corresponding DFT electronic-structure values, and for Mo and V in better
agreement with the FP-LMTO results than the PP results.

Under high pressure, the MGPT potentials for Ta, Mo, and V also fully capture
the qualitative behavior of the ideal strength in these metals, with approximately
the same level of quantitative agreement with the DFT electronic-structure
calculations as at ambient pressure. In the left panel of Fig. 7, we compare MGPT,
FP-LMTO, and PP results for the critical stress 7. in Ta as a function of pressure to
400 GPa. All three results show an approximate linear dependence of 7. on
pressure, as one expects from the linear variation of Gyy; with pressure for Ta
displayed in Fig. 5. The MGPT-calculated scaling behavior of t./G11; with pressure
for Ta and Mo to 400 GPa, and V to 100 GPa is plotted in the right panel of Fig. 7.
In contrast to the case of Ta, where t./G1; remains nearly constant at a value of
about 0.12, t./Gy1; for Mo and V shows a noticeable decrease with increasing
pressure. In part this reflects the nonlinear variation of Gy, with pressure for these

7(x, Q) = (7)
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MGPT methods. (a) Symmetric energy barrier W(x, Qo) and (b) corresponding shear stress t(x, Q).

Table 2
Calculated ideal shear strength properties of Ta, Mo, and V at their observed equilibrium volumes, as
obtained with the MGPT, FP-LMTO, and PP methods

Metal Method W, (eV) Xc/s 7. (GPa)

Ta MGPT 0.20 0.26 8.0
FP-LMTO? 0.18 0.26 6.5
PP 0.17 0.30 6.9

Mo MGPT 0.46 0.27 21.6
FP-LMTO" 0.42 0.26 19.2
PP 0.34 0.25 16.0

\Y MGPT 0.15 0.28 7.9
FP-LMTO" 0.15 0.26 73
PP 0.09 0.30 5.0

aRef. [13].

Ref. [61].

metals (Fig. 5), although in both Mo and V the variation with pressure is clearly
somewhat different for 7. and Gy,;. At the same time, the variations in t./G; from
one material to another as well as under high pressure for a given material are
confined to the small range from 0.12 to 0.16 for all three metals.

3.3. Generalized stacking-fault (y) energy surfaces

For accurately modeling bec screw dislocation behavior, an even more important
validation test concerns the generalized stacking-fault or y energy surfaces for the
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obtained with the MGPT, FP-LMTO, and PP methods and (b) relative stress 7./G11; for Ta, Mo, and V,
as obtained with the MGPT method.

{110} and {211} slip planes. As first defined by Vitek [33], the y surface is an energy
profile of two semi-infinite blocks of bulk crystal rigidly displaced relative to each
other by a vector u in a chosen fault plane, with atomic relaxation allowed only
perpendicular to the plane. One can calculate high-pressure y-surface energies at
constant atomic volume using an appropriate computational super-cell with
periodic boundary conditions. If desired, this can be done using two fault surfaces
per super-cell, so that the full translational symmetry of the bulk crystal is
preserved. Alternately, one can use one fault surface per triclinic super-cell with
two constant lattice translation vectors and a variable vector inclined along the
displacement direction u. In this way, the number of atoms needed to define the
super-cell is reduced by half, making first-principles DFT electronic-structure
calculations of high-symmetry features of the y surface much more tractable. As
previously done in the case of Ta at ambient pressure [13], we follow here the latter
approach and use a super-cell consisting of at least 12 atomic planes perpendicular
to the fault surface and with one half of the cell shifted by the displacement
vector u. In the (111) direction, u = ab, where 0 < o < 1.0. The same approach
can then be applied to MGPT, FP-LMTO, or PP calculations at any pressure.
Complete {110} and {211} y surfaces calculated for bcec Ta at its equilibrium
volume with the present MGPT potentials are displayed in Fig. 8. Super-cell size is
not a limitation in the MGPT calculations, and larger cells consisting of 32 planes
(96 atoms) for the {110} surface and 96 atomic planes (96 atoms) for the {211}
surface were used to ensure full convergence. Qualitatively, the calculated y
surfaces display the well-known general features expected for bcc metals [33].
In particular, the {110} surface is fully symmetric, while the {211} surface reveals
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Fig. 8. Calculated vy surfaces for Ta at its equilibrium volume Q = Q, obtained by the MGPT method.
Left panel: the {110} surface; right panel: the {211} surface.

the well-known twinning—anti-twinning asymmetry along the {111 direction
characteristic of bcc materials. No stable stacking faults in the form of local minima
are found on either surface, and all extrema are either maxima or saddle points.
These same qualitative features are also maintained in Ta at high pressure to at
least 400 GPa, as well as in Mo to 400 GPa and V to 100 GPa.

In order to validate the MGPT potentials quantitatively for high-pressure
dislocation studies, we have calculated high-symmetry slices of the {110} and {211}
v surfaces along the {111} direction in Ta, Mo, and V using both the MGPT and
PP methods. In particular, such calculations along {111} provide a very sensitive
test of the quality of the MGPT potentials because the stacking-fault energies
involved are small and similar in magnitude to those encountered in the formation
and motion of a/2{111) screw dislocations. Calculated MGPT and PP results at
selected pressures for Ta, Mo, and V are shown in Figs 9-11, respectively. Here the
displacement parameter o can be conveniently written as x/b, where b is the
magnitude of the Burgers vector. In the cases of Ta and Mo, the maxima in these
curves at x = b/2, which is commonly defined as the unstable stacking-fault energy
Yus, iNCrease monotonically with pressure. This is shown more directly in Fig. 12(a)
where complete MGPT results for y!1% and y2!! are plotted as a function of pressure
up to 400 GPa. At each of the selected pressures in Figs 9 and 10, the MGPT curves
conform to the PP points very closely and the quantitative agreement is everywhere
within 7%. In this regard, on the {211} y surface of Mo the expected twinning—anti-
twining asymmetry is clearly evident in both the MGPT and PP results, and is very
accurately predicted by the MGPT potentials. We conclude, therefore, that the
present MGPT potentials should be reliable for the calculation of the a/2{111)
screw dislocation properties for Ta and Mo up to at least 400 GPa.

The case of V shows somewhat more complicated behavior. In this metal the
calculated PP and MGPT stacking-fault energies increase monotonically with
pressure only up to about 80 GPa such that above that point the y surface actually
lies lower in energy than that at 53 GPa. This is shown more clearly in Fig. 12(a),
where the complete set of MGPT unstable stacking-fault energies y.l? and 2! for V
up to 230 GPa are plotted. In addition, up to at least 53 GPa, the calculated PP
stacking-fault energies are systematically higher than those obtained with the
MGPT potentials by 10-25%, as shown in Fig. 11. This makes the MGPT
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calculation of a/2{111) dislocation properties in V somewhat less certain
quantitatively than in either Ta or Mo.

Fig. 12(a) further shows that the {110} unstable stacking-fault energy yll% is
systematically smaller than the {211} fault energy y2!! for all pressures up to
400 GPa in Ta and Mo, and up to 230 GPa in V. This has important implications for
the motion of a/2<{111) screw dislocations on {1 10} and {211} slip planes. At all
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(a) Energies y1° and y2!' for the {110} and {211} y surfaces, respectively and (b) scaled energy

7119 /(Gy11b) for the {110} surface.

pressures considered here, the screw dislocations in Ta, Mo, and V prefer to move
on {110} planes although, as previously discussed [13], this can happen in
more than one way, such that at larger length scales slip may effectively appear to
occur on either {110} or {211} planes. Also the scaled fault energy y11°/(G111b)
displays scaling properties similar to those found for the scaled ideal strength
1/G111, except that the roles of Ta and Mo are reversed, as shown in Fig. 12(b).
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In particular, the scaled unstable stacking-fault energy is nearly constant as a
function of pressure in the case of Mo, but clearly decreases with pressure for
Ta and V.

4. a/2{111) screw dislocation properties at high pressure

As first pointed out by Hirsch [63], the mobility of an a/2<{111) screw dislocation
in a bec lattice is severely restricted by the atomic structure of its core. Around a
given (111) direction, the bcc structure has three-fold symmetry. Each such
{111) zone contains three {1 10} and three {112} planes that are potential slip
planes in the bcc structure, as well as admitting the possibility of a three-
dimensional spreading of the core structure along {112 directions on the {110}
planes when the screw dislocation is formed. Detailed descriptions of extended core
structures in bce metals have been obtained from many previous atomistic studies
[9-19,32-36,64] and have indicated a core extension of a few Burgers vectors in
length and a high Peierls stress associated with its movement under an applied load.
In this section, we discuss our atomistic simulations of basic a/2<{111) screw
dislocation core properties at both ambient and high pressures in bcc Ta, Mo, and
V, using the MGPT potentials and Green'’s function methodology discussed above.
Our focus will be on the zero-temperature calculation of core properties that are
fundamental to an understanding of dislocation structure and mobility. The
properties considered include the atomic structure and energy of the equilibrium
dislocation core in the absence of any additional shear stress, the nature and
energetics of isolated kinks and mobile kink pairs that can be formed from this core
in the low shear stress limit, and the magnitude and orientation dependence of the
Peierls stress required to move the rigid dislocation in the high shear stress limit. To
link directly to corresponding DD simulations of plasticity, we also consider the full
activation enthalpy associated with activated screw dislocation motion as a function
of applied shear stress, as well as dislocation motion above the Peierls stress in the
phonon-drag regime.

4.1. Equilibrium core structure and energy

The a/2{111) screw dislocation has one or more stable core configurations located
at the center of gravity of three {(111) atomic rows forming a triangular prism.
Around these three rows the near-neighbor atoms are located on a helix that winds
up in a clockwise or counterclockwise manner, depending on the location of the
elastic center and the sign of the Burgers vector, so that two different types of core
configurations can be obtained [9]. One configuration is isotropic and of high
energy, and may or may not be stable. This is usually referred to as the “hard” core.
The other configuration is of low energy and is normally the stable ground-state
structure. This is the so-called “‘easy’ core. In general, the “easy’ core can exhibit
three-fold (112)/{110} directional spreading in two geometrically distinct, but
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energetically equivalent ways, resulting in a doubly degenerate ground-state core
structure with two possible orientations. Under certain circumstances, however, this
directional spreading may vanish and an isotropic nondegenerate core with a
higher, but still three-fold, symmetry results. In the present work, we have studied
the pressure dependence of the “easy” core ground-state in bcc Ta, Mo, and V up
to very high pressure.

As done previously [13,14,16,19], we have simulated the stable ground-state
screw dislocation core structure using a two-dimensional GFBC/MGPT technique
in cylindrical geometry, with periodic boundary conditions and a period of b =
V/3a/2 along the z-axis ({111 direction) at constant atomic volume Q = a2 in
the bec structure. In this procedure, an infinite a/2{111) screw dislocation is first
introduced by displacing all atoms in the simulation according to anisotropic
elasticity solutions using Stroh’s sextic formalism [55]. The atomic positions of the
core atoms are then allowed to relax within the GFBC simulation cell. Radially
outward from the cylinder axis, the inner atomistic region of the simulation cell is
surrounded by GF and continuum regions (see Fig. 2) each with a shell thickness of
Ryt = 4.25R\ys, the effective cutoff radius for the MGPT potentials. A radius for
the atomistic region of about 20b is needed to accurately characterize the fully
relaxed core structure.

The qualitative aspects of the calculated core structures are most easily displayed
and discussed using the standard differential displacement method of Vitek [33].
In this method, the (111) screw components of the relative displacement of
neighboring atoms due to the dislocation (i.e., the total relative displacement in the
z direction less that in the perfect lattice) is represented by an arrow between the
two atoms. The calculated screw-component differential displacement maps for Ta
at two widely different pressures are shown in Fig. 13. The left panel of that figure
displays the nearly isotropic core structure of Ta that we calculate at ambient
pressure, while the right panel shows the strong directional spreading obtained in
the same metal at a pressure of 1000 GPa. In both cases, the length of the arrows is
normalized by b/3, the magnitude of the separation of neighboring atoms along
the {111} direction. A corresponding differential displacement map can also be
constructed for the edge components of the dislocation as well, but the magnitude
of the edge displacements is found to be 10-100 times smaller than that of the screw
components [13], and we do not consider these further in this paper.

Qualitatively, the core structures displayed in Fig. 13 are representative of the
isotropic and the spread core structures we have obtained for Ta, Mo, and V. The
degree of three-fold directional spreading of the core can be directly quantified by
its so-called polarization p, which measures the simultaneous translation of the
three central atoms nearest to the core center [64,65]. This translation is parallel to
the dislocation line but in the opposite sense for the two different core orientations,
usually denoted as positive p and negative n. By symmetry, the magnitude of p can
only vary from zero to b/6. At p =0, the two core configurations coincide and a
fully symmetric or isotropic core structure with a higher three-fold symmetry is
obtained. At p = b/6, on the other hand, a fully polarized core is obtained with a
maximum three-fold spreading along <(211) directions. Our calculated core
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Fig. 13. Differential displacement maps of the relaxed core structures of Ta at low and high pressures as
calculated with GFBC/MGPT atomistic simulations. Left panel: isotropic core structure at ambient
pressure; right panel: spread core structure at 1000 GPa.
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Fig. 14. Calculated volume and pressure dependence of the core polarization for Ta and Mo, as obtained
from the present GFBC/MGPT atomistic simulations.

polarization as function of atomic volume and pressure is plotted in Fig. 14 for Ta
and Mo to 400 GPa, and in Fig. 15 for V to 75 GPa. In the cases of Ta and Mo
near equilibrium (Q = Q)) and at expanded volumes corresponding to negative
pressures, the calculated core polarization is less than 0.025/6, the approximate
level of accuracy of our results, and thus consistent with a nondegenerate isotropic
core structure. Under compression, however, the polarization rises rapidly in both
cases and attains a value of 0.5b/6 near pressures of 400 GPa. In contrast to Ta and
Mo, the dislocation core of V is already significantly polarized near equilibrium and



§4.1 Dislocations and Plasticity in bcc Transition Metals at High Pressure 25

Pressure (GPa)

75 25 0 -20
04 T T T
I \ ]
03 r B
G I ]
3 I Qq ]
g L 4
% 02 ¢ B
N r 1
§ L 4
[e]
Q k 4
(0]
5 01 B
O k 4
0.0
1 L 1 N 1 L 1 N 1 L |
70 80 90 100 110 120

Atomic volume (au)

Fig. 15. Calculated volume and pressure dependence of the core polarization for V, as obtained from the
present GFBC/MGPT atomistic simulations.

p rises only to a maximum of about 0.275b/6 near 32 GPa and then descends rapidly
toward zero close to the bcc —rhombohedral phase transition observed at 69 GPa
[40]. As in Ta and Mo, at sufficiently expanded volumes and negative pressure in V,
the polarization p does tend toward zero. In all three metals, the transition between
an isotropic core with p = 0 and a spread core with finite p appears to be continuous
and not a first-order phase transition. Calculated values of p at Q = Q, for Ta, Mo,
and V are listed in Table 3.

The above results show clearly that the screw dislocation core structure in bcc
metals is a materials-specific property that depends on both chemical element and
environmental factors such as pressure. Near ambient pressure, our predictions of a
nearly isotropic core structure in Ta and Mo are consistent with recent first-
principles DFT electronic-structure calculations of core structure using small
computational cells and a variety of boundary conditions [10,11,17,66], as well as
with quantum-based bond-order potential (BOP) calculations on Mo using fixed
boundary conditions [18]. In contrast to our results for Mo and V, an earlier
systematic study of the group-VB and -VIB metals using empirical radial-force
potentials [29] found isotropic cores for the VB metals, including V and Ta, and
three-fold spread cores for the VIB metals, including Mo. Our present result for Mo
at ambient pressure is also in contrast to previous results [9,12], which found a
strong three-fold spreading of the core structure using the earlier generation 1994
MGPT potentials for that metal [S0].

In addition to its atomic structure, it is also of interest to calculate the effective
size and energy associated with the equilibrium core, as done previously for Ta at
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Table 3
Basica/2{111) screw dislocation properties in bcc Ta, Mo, and V at their respective equilibrium atomic
volumes [58]

Quantity Ta Mo \'%
Structure
Qo (A3 18.02 15.57 13.82
a (A) 3.303 3.146 3.023
b (A) 2.861 2.725 2.618
p (b/6) 0.007 0.018 0.144
Energy
R.b 175 175 2.0
Eore (eVIA) 0.22 030 0.1
Actasiic (€V/A) 0.25 0.50 0.17
Mobility
Ef, (eV) 0.96 115 0.68
p (GPa) 0.577 0.860 0.360
/G 0.00923 0.00625 0.00701

Note: Included quantities are the atomic volume €, bec lattice constant a, magnitude of the Burgers
vector b, core polarization p, core radius R, core energy Eime, elastic energy Ajastic, Kink-pair formation
energy Efkp, and Peierls stress 7p.

ambient pressure [13]. In continuum elasticity theory, the formation energy Egcrew

of a screw dislocation (per unit length) in a cubic crystal is a linear function of
In(R/R.), where R is the outer radius of a cylinder that contains the dislocation core
at its center and R, is the core radius. The formation energy E. ., includes the core
energy stored inside R., E' .» plus the elastic energy stored in the region between

COr
R. and R, such that

R
Egcrew = Ef:ore + Aelastic 1n (R_> > (8)
c

where the elastic energy coefficient A.psic can be directly calculated from the
elastic moduli of the material [9]. The main unknown in Eq. (8) is the minimum
core radius R, that will satisfy that equation. One can find by iteration, starting with
a trial value of R, and calculating E' _ and E! . via atomistic simulation as a
function of R. An essentially equivalent procedure that is sometimes useful in the
context of GFBC/MGPT simulations is to define R. to be the minimum radius at
which the 2D elastic and lattice Green’s functions become equal [13]. Either
procedure results in some uncertainty in determining optimum values of R,
but here we have used the former approach and thereby calculated E. . for
selected pressures in Ta, Mo, and V. In all three metals, we determine R./b
to be in the range 1.75-3.0, with R. increasing with increasing pressure up
to 400 GPa. Our calculated results for Ef  and Agjagic are plotted in Fig. 16

core
with the ambient-pressure results for R./b, Eiore, and Agpasic given in Table 3.
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Fig. 16. Core and elastic contributions to the screw dislocation formation energies [Eq. (8)] in Ta, Mo,

and V as function of pressure. (a) Core formation energy Egm as obtained from GFBC/MGPT atomistic

simulations and (b) elastic coefficient A¢j,gic determined from MGPT elastic moduli.

As seen in Fig. 16, the uncertainty in R, results in some fluctuations in the calculated
values of Ef

core*

4.2. Low shear stress limit: kink-pair formation energy

At finite temperature, the motion of the screw dislocations in the bcc lattice normally
occurs by the thermally assisted formation and migration of kink pairs. For low shear
stress conditions, the individual kinks in a kink pair are well separated and weakly
interacting, so kink-pair formation can be modeled by just looking at isolated left-
and right-kink formation. In this limit, the nature and atomic structure of the
possible kinks is closely related to the unstressed dislocation core, which we assume
here is of doubly degenerate form. As we have discussed above, the doubly
degenerate core structure of the rigid a/2{111) screw dislocation can have two
energetically equivalent configurations with opposite polarizations denoted as
positive p and negative n. As a result, there are different possible kinks and kink-
pair configurations involving p and n segments that can be formed. In addition,
p and n segments can coexist on the same dislocation line in the form of a so-called
anti-phase defect (APD). This further increases the multiplicity of possible kinks and
kink pairs, as we have previously elaborated in the case of Ta [13].

Here we assume that an isolated left (/) or right (r) kink of a kink pair consists of
two semi-infinite segments of p or n orientation separated by a kink height /. The
symmetry of the bec lattice allows six distinct and nondegenerate kinks [34]. These
are of character niln (degenerate with plp), nrn (degenerate with prp), nip, nrp, pin,
and prn. As previously demonstrated in the case of Ta [13], the lowest energy kink
pair in the absence of a preexisting APD has the character p/n-nrp. In Ta at
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ambient pressure and zero applied shear stress, this kink pair has a calculated
formation energy Eﬁp of 0.96 eV, which is in close agreement with the empirically
derived zero-stress activation enthalpy of 1.02eV used in microscale DD
simulations to account for the observed yield stress [21]. For this reason, we have
adopted the pln—nrp kink pair as the appropriate model for kink-pair formation in
bece transition metals, and used it here for Ta, Mo, and V at both ambient and high
pressures.

To model an isolated pln or nrp kink accurately, we work at constant volume and
set up the GFBC simulation cell in the form of a long compliant cylinder made up
of unit disks of width b and radius 20b (for the atomistic region), and a total length
60-80b centered on the dislocation line. A transition region of 10-15b is allowed
across the kink height s, where the kink is fully relaxed in the GFBC/MGPT
simulation. To form a closed 3D cage, the two ends of the cylinder are capped with
GF and continuum regions. The z-axis of the compliant cylinder is taken parallel to
a [111] dislocation line direction, while the y-axis is taken parallel to [1 1 0] and the
x-axis to [1 1 2]. The smallest repeat translation vector for the rigid screw dislocation
core in the bce lattice is (a/3)[112] on a {110} plane, and this defines the
elementary kink height 4 with magnitude +/6a/3. We have considered only kinks
formed within this geometry. Kinks formed on other planes such as {211} have
significantly larger kink heights and therefore either are unstable or have much
larger kink-formation energies [9,67].

We further assume that the process of kink-pair formation is limited by the
isolated kink-formation energies E[f,ln and Eflrp, as opposed to the competing
process of kink migration, which is controlled by the secondary Peierls stresses
needed to move the left- and right-hand kinks. As shown previously in the case of
Ta at ambient pressure [13], the secondary Peierls stresses are one to two orders
of magnitude smaller than the corresponding Peierls stress for the rigid screw
dislocation itself, so both kinks are expected to be mobile with the left kink moving
faster than the right kink. Consequently, we expect the dislocation velocity at low
shear stress 7 to be controlled by the kink-pair formation energy Ef(p rather than
any small kink migration barriers. In the T = 0 limit, the former is calculated as a
sum of left- and right-kink-formations energies:

f _ pf
Ekp - Epln

+E. )

The individual left- and right-kink-formation energies are most efficiently
calculated by summing the unit disk contributions in our GFBC compliant cylinder
across the transition region in the kink. That is, in each unit disk we subtract from
the atomistic total energy with the kink present the corresponding total energy for
the perfect straight dislocation. This procedure provides a cancellation of total-
energy errors and leads to kink-formation energy values that are typically accurate
to 0.05-0.10eV or 5-10%. We have so calculated Ef(p at selected pressures in Ta,
Mo, and V. These results are plotted in Fig. 17(a) with ambient-pressure values
listed in Table 3. As expected, Efkp is monotonically increasing with pressure, but
in a significantly nonlinear way in each case. The scaled kink-formation energy
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Fig. 17. Pressure dependence of the pln—nrp kink-pair formation energies for Ta, Mo, and V, as
calculated from GFBC/MGPT atomistic simulations. (a) Full energy Ef(p and (b) scaled energy
Ey,/(Giib).

Ef(p /(Gi11b%) displays a somewhat soother and slowly varying pressure dependence
in the cases of Ta and Mo, as shown in Fig. 17(b). In any case, the calculated values
of Ef(p constrain the low shear stress limit of the full stress-dependent activation
enthalpy for dislocation motion, which is considered below in Section 4.4.

4.3. High shear stress limit: Peierls stress

Next we turn to the high stress limit and the calculation of the Peierls stress p for
the rigid a/2<{111) screw dislocation. Bcc metals are known to slip predominantly
on {110} and/or {112} planes at low temperatures, but this slip does not follow the
familiar Schmid law [68] and, in fact, a rather complex orientation dependence of
the slip geometry and the yield stress is experimentally observed [69]. Conse-
quently, one expects that there is a strong dependence of the critical resolved shear
stress (CRSS) needed to move the rigid screw dislocation on the orientation of the
applied stress. In the context of GFBC/MGPT simulations, this orientation
dependence was previously investigated in bcc Ta at ambient pressure [13] by
applying both pure glide shear stresses and selected shears with a uniaxial stress
component. For applied stresses either on a {1 10} plane or in the twinning direction
of a {112} plane, it was found that the addition of a uniaxial stress component in
either compression or tension always raises the CRSS. For this reason, we have
confined our attention here to only applied shear stresses and have examined the
CRSS in both Ta and Mo at ambient pressure. For our present purposes we identify
the Peierls stress tp with the minimum CRSS as a function of shear stress
orientation and then calculate the pressure dependence of tp for that orientation.
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In order to determine the Peierls stress in a self-consistent and accurate manner,
our GFBC/MGPT simulations of the CRSS have been performed at conditions of
constant stress, rather than constant volume, and start from the relaxed equilibrium
core structure as determined above. The simulations do utilize periodic boundary
conditions along the screw axis, however, so they are strictly 2D zero-temperature
calculations. For a given applied stress orientation, the CRSS is assumed to be
reached when the dislocation moves at least one lattice spacing on the maximum
resolved shear stress plane. In a bcc crystal along a given (111) direction, there
are three {110} planes and three {112} planes, mutually intersecting at every 30°.
Because of the twinning—anti-twinning asymmetry in the bcc lattice, unique values
of the CRSS can exist on different planes ranging in orientation from y = —30°
(twinning orientation on {211}) to y = 30° (anti-twinning orientation on {211}),
with y being the angle measured from a given {1 10} slip plane. The CRSS over this
orientation range has been calculated in Ta and Mo at ambient pressure, and the
results are presented in Fig. 18. In the case of Ta, these results are the same as those
reported previously [13] except at y =0, where the CRSS is calculated slightly
lower in value. Both Ta and Mo display a significant twinning—anti-twinning
asymmetry with the minimum CRSS occurring at y = 0°. These latter results are
our defined values of tp at ambient pressure and are also listed in Table 3.

Also plotted for comparison in Fig. 18 are experimental estimates of the CRSS or
Peierls stress based on the observed yield stress at the indicated stress orientations
[70-72]. In the case of Ta at y = —10° and Mo at y = —30°, our calculated CRSS
values are nearly a factor of two greater than the experimental estimates, while in
Mo at y = 0° our result is only about 20% higher. However, experiment here does
not represent a direct measurement of the Peierls stress, and consequently, the
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Fig. 18. Orientation dependence of the critical resolved shear stress (CRSS) in Ta and Mo at ambient
pressure, as calculated with the present MGPT potentials and compared with experimental estimates
based on the observed yield stress [70-72].
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relationship between theory and experiment remains an open and somewhat
controversial question [13,16]. Also in this regard, other recent quantum-based
calculations of the same CRSS in Ta and Mo produce generally higher values than
ours [15,16,18]. These include small-cell DFT calculations using Green’s function
boundary conditions [15] as well as larger-cell BOP calculations with fixed boundary
conditions [18]. Whether or not these differences represent a sensitivity of the
calculations to cell size and/or boundary conditions also remains an open question.

We have obtained the pressure dependence of the Peierls stress by performing
GFBC/MGPT simulations of the y = 0° CRSS for selected pressures to 1000 GPa in
Ta, 400 GPa in Mo, and 53 GPa in V. The resulting scaled Peierls stress tp/G111 s
plotted for Ta and Mo in Fig. 19, and for V in Fig. 20. Shown for comparison in
these figures are the corresponding average values of tp/Gyqy, which are 0.0102 in
Ta, 0.0059 in Mo, and 0.0068 in V. Although there are significant fluctuations from
these constant values in Ta and Mo at pressures below 150 GPa, overall they are
fairly representative over the entire pressure range in each case. Also shown in
Figs 19 and 20 are the corresponding values of the scaled ideal strength t./G111,
which is more than an order of magnitude larger for each metal.

4.4. Activation enthalpy

The pressure- and shear-stress-dependent activation enthalpy AH(P,t) for
dislocation motion provides the necessary connection between the T = 0 kink-pair
formation energy E]f(p and the high shear stress t = 7p limit where the rigid screw
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Fig. 19. Pressure dependence of the scaled Peierls stress tp/G111 in Ta and Mo, as calculated from GFBC/

MGPT atomistic simulations (solid square points) and compared with a constant average (solid line

below). Also shown for comparison is the corresponding scaled ideal strength t/Gy1; (solid circles and
solid line above).
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Fig. 20. Pressure dependence of the scaled Peierls stress tp/Gy1; in V, as calculated from GFBC/MGPT
atomistic simulations (solid square points) and compared with a constant average (solid line below). Also
shown for comparison is the corresponding scaled ideal strength 7./G1; (solid circles and solid line above).

dislocation moves without kink formation. The calculation of AH(P, t) requires an
atomistic simulation of kink formation under both pressure and shear stress, which
is convenient to perform at constant atomic volume rather than constant total stress.
To do so, we first consider the thermodynamic enthalpy of N simulation atoms at
zero temperature, H = N(E + PQ), and manipulate the required enthalpy change
into a useful form for constant-volume calculations. In this regard, Hirth has argued
[73] that at high pressure there should be an explicit contribution to the activation
enthalpy at constant pressure arising from the “PQ” term in H, but as we show
below such a contribution drops out in a constant-volume formulation.

We begin in the t = 0 limit, where the change in enthalpy to form either a kinked
or unkinked screw dislocation at constant pressure P can be written as

AH(P) = N[ExQ:) — E1(@1) + PAQ), (10)

with E the average energy per atom and AQ = Q, — Q;. Here the subscript “1”
refers to the initial state and the subscript “2” to the final state. While the total
volume change NAQ may be significant if N is large, the average change in atomic
volume AQ is small, so that one may perform a Taylor series expansion of the term
E>Q, about the volume Q:
O0EL(Q
Ex(@) = Ex(Q) + %AQ 4o
= E(Q) — PAQ + - - (11)
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To obtain the second line of Eq. (11), we have re-expanded the derivative term in
the first line about Q, and noted that at constant pressure

_ OEi(Qy) OBy ()
P="20 =" - (12

Using Eq. (11) in Eq. (10), one finds that the pressure terms cancel and one is left
with the result, correct to first order in AQ,

AH(P) = NAE(Q)) = N[E>(Q) — E(@))]. (13)

The leading correction to this result is of the order (AQ)? and negligible.

Eq. (13) can be immediately connected with the two important limiting cases
already considered above. First, in the formation of the rigid screw dislocation from
the perfect bec lattice, we identify NAE with the formation energy at constant
volume E. ., in Eq. (8). Second, in the formation of an isolated pair of kinks on the
screw dislocation line, we identify NAE with the kink-pair formation energy at
constant volume Elf(p in Eq. (9). In the latter case, we may generalize Eq. (13) to the
case of two attractively interacting kinks separated by a distance 4 and held in
(unstable) equilibrium under an applied shear stress t to obtain the desired total

activation enthalpy:
AH(P,7) = Ej(Q) + Eini(4) — ©(2)hb, (14)

where Eip remains the constant-volume kink-pair formation energy at infinite
separation and Ej, is the additional interaction energy at separation A. In the small
shear stress limit 7 <0.27p, the kink—kink separation A is larger than the kink width
(~7b for Ta), and Ej, (/) varies as 2~ ' and 7(1) varies as =" [13], making it
possible to evaluate the final two terms in Eq. (14).

For larger shear stresses t>0.2tp, a special atomistic simulation procedure has
been developed to evaluate AH(P,7). In the procedure, a self-consistent 3D
atomistic model of kink-pair formation and migration is constructed involving three
new steps in our GFBC/MGPT simulations: First, a straight a/2<{111) screw
dislocation is constructed and is then fully relaxed under a trial applied shear stress.
The straight screw dislocation line is lifted in energy above the valley of the Peierls
potential, and the degree of lifting depends on the magnitude of the applied shear
stress. Next, a 3D kink-pair model is constructed from this reference configuration.
In this construction, the kink separation distance 4 is treated as a fixed parameter,
which is chosen to approximate the separation distance at which the kink pair is just
balanced by the applied stress. Under the constraint of fixed A, the kink-pair
configuration is then fully relaxed. The total energy is calculated by summing over
the atom-to-atom energy difference between the relaxed 3D configuration and the
straight screw dislocation under the same applied shear stress. This produces the
sum of the first two terms on the right-hand side of Eq. (14). Finally, the shear stress
t for kink-pair formation at the separation 4 and the work done by that stress is
calculated from the trapezoid model of Koizumi et al. [74]. This gives the final term
in Eq. (14). This approach has been successfully applied here to calculate AH(P, 1)
for shear stresses up to 0.97p.



34 Lin H. Yang et al. Ch. 92

L e e e e LA B e e e L e e e e e e e LA B e e e e

10 1 16
= Ta = Ta
> r >
L 08+ 4 & 1.2 | il
> t >
[o% . o
© [ (a) ambient © (b) 204 GPa
< r e
S 06} 4 E
() | [}
S 8 08r ]
§ oaf H 13
i3] L 3]
IS IS
‘© b ‘® 0.4 R
[oR
< 02¢ 1 £
£ r £
¥ ¥4

00 L 1 1 1 1 1 1 ] OO [ 1 1 1 1 1]

00 02 04 06 08 1.0 00 02 04 06 08 1.0
Relative stress t/tp Relative stress t/tp

Fig. 21. Activation enthalpy for Ta at two selected pressures, as calculated from GFBC/MGPT atomistic
simulations (solid points) and from an analytic fit [Eq. (15)] to these data (solid lines). (a) Ambient
pressure and (b) P = 204 GPa.

Using this procedure, we have calculated a full kink-pair activation enthalpy
curve at a total of four selected pressures in Ta, and three pressures each in Mo
and V. Representative results for Ta and Mo are displayed in Figs 21 and 22,
respectively. In these figures we have plotted both individual points obtained from
GFBC/MGPT atomistic simulations and smooth analytic fits to the results. The
latter provide a means to directly input atomistic activation enthalpy data into DD
plasticity and yield strength simulations, and is discussed further below in Section
5.2. The individual simulation points at shear stresses above 0.2tp have significant
error bars of up to 0.1 eV, but the high stress part of the curve is well constrained by
the requirement that AH(P, t) vanishes at 7 = 7p, so quite regular fits can be
obtained.

4.5. Dislocation mobility near and above the Peierls stress

At finite temperature, a dislocation moves under the influence of thermal
fluctuations and as the temperature rises the possibility of forming kink pairs is
increased [75]. When the applied shear stress is high and approaches tp, multiple
kinks begin to be formed and it actually becomes possible to see them in dynamic
atomistic simulations. To investigate this phenomenon in bcc transition metals, we
have preformed a large-scale finite-temperature MD GFBC/MGPT simulation of
al2<{111) screw dislocation motion in Ta under pure shear loading at a stress level
about 10% below the Peierls stress. Here the simulation cell was constructed in
a cylindrical geometry with periodic boundary conditions along the (111)
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dislocation line direction. The atomistic region of the cell had a radius of 40b and
was 2000 in length, containing over 1.3 million atoms. The simulation was performed
at 300K and ambient pressure with the shear stress applied on a (1 1 0) plane in a
{111) direction. Our simulation results indeed reveal kink formation along the
screw dislocation line, and a snapshot of the kink structure is displayed in Fig. 23.

For shear stresses > tp, the resistance to dislocation motion comes entirely from
thermal vibrations and the screw dislocation velocity v¢(P, T, t) becomes linear in
the applied stress with a phonon-drag mobility that depends on pressure and
temperature. To study dislocation motion above the Peierls stress at a given
pressure and temperature, similar large-scale MD GFBC/MGPT simulations have
been performed in Ta as a function of applied shear stress. The cylindrical
simulation cell geometry used was the same as just described above, except that the
atomistic region of the cylinder was chosen to be somewhat larger with a radius of
50b and length of 400b, so that about 4 million atoms were simulated in each case.
In these simulations the screw dislocation was initially placed at the center of the
simulation box. The simulation cell was then pre-strained at the plastic strain
corresponding to the applied shear stress 7, so that the simulation could be run at
constant volume rather than constant total stress [67]. The molecular dynamics was
carried out by integrating Newton’s equations of motion for the atoms in the
atomistic region using a time step of 1fs at constant temperature, which was
maintained using a Nosé-Hoover thermostat [76,77]. The displacements of the
atoms in the Green’s function region of the simulation cell were updated every 10
MD time steps while the atoms in the continuum region were kept fixed.
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Fig. 23. A snapshot of kink formation on a (111) screw dislocation along the (112) direction on the
(110) plane in Ta at 300 K, ambient pressure, and an applied shear stress © = 0.9tp, as obtained with an
MD GFBC/MGPT simulation.

Using this computational scheme, we have focused our MD GFBC/MGPT
simulations on bcc Ta within the applied stress range from 1.057p to 1.257p and the
pressure range from ambient to 400 GPa. Within these ranges we found that the
phonon-drag mobility was approximately linear in the scaled temperature, 7/T,,(P),
where Tp,(P) is the pressure-dependent melt temperature as determined from
previous MGPT calculations on Ta [14]. Consequently, at each pressure treated
we considered only temperatures of approximately 0.37,(P) and 0.67T,,(P) in our
MD simulations. The actual temperature values were 900 and 1800 K at ambient
pressure, 1545 and 3090 K at 50 GPa, and 2580 and 5200 K at 230 GPa. The results
of these simulations for v4(P, T, 7) are plotted in Fig. 24 together with least-squared
linear analytic fits to the simulation data. In these simulations the screw dislocation
was found to glide on a {110} plane at all pressures, temperatures, and applied
stress levels considered. The analytic fits in Fig. 24 show that the velocity data are
well represented by a form that is linear in the pressure P as well as in 7/T,(P)
and t/tp. These fits will be discussed further in Section 5.1 below and used to
provide an analytic form of the phonon-drag mobility suitable for DD simulations.

5. Multiscale modeling of single-crystal plasticity

As a practical matter, all computational dislocation dynamics methods require a
robust analytic representation of the mobility of individual dislocation segments.
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Fig. 24. Screw dislocation velocity above the Peierls stress in the phonon-drag regime for Ta, as
calculated by MD GFBC/MGPT simulations (points) with linear analytic fits [Eqs (20)-(21)] to the
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In this section we first consider appropriate analytic forms to represent the atomistic
results for a/2<{111) screw dislocations discussed above in Section 4 within both
the legacy lattice-based DD code [21,22] and the modern node-based ParaDiS code
[27-30]. Using these analytic functions, we then discuss atomistically informed DD
simulations of yield stress and plasticity for Ta and Mo as a function of pressure,
temperature, and strain rate to complete our multiscale modeling of these materials.

5.1. Analytic representations of dislocation velocity

As shown in Fig. 21 for Ta and Fig. 22 for Mo, the activation enthalpy for a/2
{111) screw dislocation motion below the Peierls stress in the thermally activated
regime is accurately represented by the following well-known analytic form:

T

AH(P,7) = AHo(P) [1 - (—)p]q, (15)
P

where AHy(P) and tp are calculated atomistic quantities, and p and ¢ are additional
parameters that have been determined by a least-squares fit to the atomistic
simulation data for AH(P, ). As can be inferred from Eq. (14), AHy(P) is just the
kink-pair formation energy at t = 0:

AH((P) = E;,(Q) (16)

P=Py(@)’

Values of the parameters AHy(P), tp, p, and g are listed in Table 4 for the 10
cases for which full activation enthalpy curves for Ta, Mo, and V have been
calculated.
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Eq. (15) is used in both the lattice-based and ParaDiS DD codes although with
different treatments of the internal parameters AHy(P), tp, p, and g. In the lattice-
based code, the parameters in Table 4 have been used directly, except for 7p in Ta,
which has been scaled by a factor of 0.5 to account for the apparent overestimate of
the Peierls stress relative to experiment noted in Fig. 18. In ParaDiS, however,
additional modeling has been introduced to smooth the pressure dependence of the
internal parameters. First, p and g are assumed to be universal constants, which
have been fixed in our ParaDiS simulations at p = 0.50 and g = 1.23. In addition,
AHy(P) and 1p are assumed to obey the high-pressure scaling laws

AHy(P) = ayG111(P)[b(P)]’, 17)
and
7p = boG111(P), (18)

where the constants ag and by are determined at ambient pressure from our
atomistic results, with the caveat that 7p in Ta is again scaled by a factor of 0.5.
Specifically, we have taken a, to be 0.11 eV/GPa A? in Ta and 0.066 eV/GPa A® in
Mo, and bq to be 0.0051 in Ta and 0.0062 in Mo.

In the lattice-based DD code, the screw dislocation velocity below the Peierls
stress in the thermally activated regime is calculated as

(19)

vs(P, T, 1) = vo(P) exp |:_ %} ,

where vy(P) is a constant velocity computed in terms of the pressure-dependent
Debye frequency and Burgers vector of the bcc lattice, and the length of the screw
dislocation [21]. In this case, dislocation motion above the Peierls stress is not
treated explicitly, so for t>tp one takes vy = v.

Table 4
Calculated (AH,, tp) and fitted (p, ¢) parameters entering the activation enthalpy AH(P, 1) of Ta, Mo,
and V, as represented by Eq. (15)

Metal P (GPa) AH, (eV) P q tp (GPa)
Ta Ambient 0.96 0.71 1.10 0.577
51 1.22 0.85 1.34 1.283
204 1.43 0.81 1.27 2.158
354 1.89 0.84 1.31 3.139
Mo Ambient 1.15 0.84 1.06 0.860
55 1.69 0.93 1.14 1.349
225 2.10 0.97 1.23 2.035
\% Ambient 0.68 0.74 1.12 0.360
9.7 0.90 0.78 1.10 0.369

53 1.06 0.82 1.14 0.633
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In the ParaDiS code, on the other hand, a modified form of Eq. (19) is used in the
thermal activation regime, as described below, and above the Peierls stress in the
phonon-drag regime, the screw dislocation velocity is modeled by the linear
equations used to fit the Ta data in Fig. 24, which have the form

vs(P, T, 1) = My(P,T) (Ai - B>, (20)
Tp
where
T
MyP,T) = Co(l — CT——i—DP). (21)

where Cj is the shear sound speed at ambient pressure, and A, B, C, and D are
constants determined by the least-squares fit to the Ta data. The latter have values
A =1.525, B =1.28625, C = 0.20323, and D = 1.627 x 10"*GPa™"', and here these
values have been used for both the Ta and Mo DD simulations with ParaDiS
discussed in Section 5.2. Regarding the material-dependent shear sound speed, in
Ta we have used Cy = 2048 m/s and in Mo we have used C, = 3496 m/s.

The modified form of Eq. (19) used in ParaDiS for the screw dislocation velocity
in the thermally activated regime below tp is of the form

_AH(P, f)}

V(P T, %) = My(P, T)(A — ﬁB)% exp{ W

(22)
where the pre-exponential terms have been chosen to provide approximate
continuity of v and its first stress derivative across the Peierls stress tp with Eq. (20)
for the phonon-drag contribution. The choice f =1 in Eq. (22) gives continuity
of v¢ at 7 = 1p, but a discontinuity in the first derivative. However, by matching
Eqgs (20) and (22) at a shear stress 1 slightly below 7p, one can maintain continuity of
both vy and its first derivative for a value of f near 1.

In addition to a velocity function for the screw dislocations, a velocity function for
the edge dislocations is also required in the DD codes. Here simplifying
assumptions are made without any specific guidance from atomistic calculations
[21,22,27-30]. In the lattice-based DD code, these functions are used directly for the
screw and edge dislocation segments. In ParaDiS, after the basic segment velocity
functions are established, the code utilizes the screw and edge segment mobilities to
obtain a general velocity at each dislocation node by mixing the two mobility
functions. The details of this mixing and the resulting nodal velocity are given in
Ref. [30].

5.2. Temperature- and pressure-dependent plastic flow

Using the ParaDiS simulation code and the above described velocity functions, we
have carried out DD simulations in Ta and Mo for a range of pressure and
temperature conditions. In the case of Ta, we have also carried out the simulations
at different strain rates, as well as simulations with the lattice-based DD code over a
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wider range of pressures. The simulations focus on the initial yield behavior rather
than later stage strain hardening. The ParaDiS simulations start with an initial
dislocation configuration consisting of screw lines with the total density of
5x10”m™ in a cubic 5-pum simulation box with periodic boundary conditions
along all directions. The simulations are carried out under a constant strain rate.
The flow stress response is initially elastic until dislocations start to move. When the
plastic strain rate reaches the applied strain rate, the flow stress shows a steady state
behavior, as shown in the stress—strain response curves. The yield stress is thus
obtained at the end of the simulations when the flow stress reaches a nearly steady
value. The loading is uniaxial tension and the orientation is along [12 3]. Under this
single slip orientation, the Schmid factor is 0.467. The resolved yield stress is
obtained from the flow stress multiplied by the Schmid factor.

The simulated ParaDiS stress—strain curves for Ta are shown in Fig. 25 at
ambient pressure and at 30 GPa, for temperatures of 300, 600, and 1000 K, and at
strain rates of 1 and 1000s~'. All simulated responses show an initial elastic
behavior, then plastic deformation when the flow stress is high enough to move the
dislocations. The dislocation densities also go through orders of magnitude increase
in these simulations. The corresponding resolved yield stress values obtained are
shown in Fig. 26. The resolved yield stresses clearly show a strong dependence on
strain rate, pressure, and temperature. The higher the strain rate, the higher the
pressure, and the lower the temperature, the higher the yield stress. This is expected
for plastic deformation process dominated by thermally activated dislocation
motion. The pressure dependence comes from the fact that both the activation
enthalpy and the Peierls stress are higher at higher pressures. The temperature

500 T T T
1600 8
[N Ta: rate = 1/s Ta: rate = 1000/s
400 7
= ' < 1200 - 1
s 300 s
£ g 800 200000 K
g 200 1 ; 300 K
<) ) 600 K
o [ 1000 K
100 r . 400 _ —— ambient ]
j 30 GPa
0 1 L L L 0 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0 0.01 0.02 0.03
Total strain Total strain

Fig. 25. Simulated stress—strain curves of single-crystal Ta, as obtained with the ParaDiS DD code. The

left panel shows the results at a strain rate of 1s~!, and the right panel results at a strain rate of 1000s '

For each strain rate, the simulations were performed at two pressures values, ambient and 30 GPa, and

for temperatures of 300, 600, and 1000 K. The nearly steady state flow stress values at the end of the
simulations are used to obtain the resolved yield stress values in Fig. 26.
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Fig. 26. The resolved yield stress values for single-crystal Ta corresponding to the stress—strain curves

in Fig. 25. The solid square symbols are values at 30 GPa, and the solid circles values at ambient

pressure. The upper curves are results obtained at a strain rate of 1000s~', while the lower curves
were obtained at 157",

dependence is direct through the dislocation velocity functions [Eqgs (20) and (22)].
As for the strain rate dependence, higher stress is required to move the dislocations
with a higher deformation rate. The dislocations multiply faster and also move
faster at higher strain rate. The simulations show that the dislocation density at
yield for the higher strain rate is about 25 times the density at the lower strain rate.
This means the main effect responding to the high strain rate is through the velocity
speedup rather than density multiplication alone.

In the case of Ta, calculations of the temperature dependence of the yield stress
have also been performed over a wider pressure range using the lattice-based DD
code. These results are plotted in Fig. 27 and cover pressures as high as 204 GPa.
These simulations were performed at a quasi-static strain rate of 10™>s~", which for
ambient pressure allows a close comparison with accurate experimental data [78].
While our factor of two scaling down of the Peierls stress was motivated in part by a
desire to normalize to experiment at one point on the ambient-pressure curve, the
full temperature dependence of the experimental data is nonetheless well captured
by our simulation. Using ParaDiS, we performed verification simulations at ambient
pressure using the same parameters and loading conditions and obtained reason-
able consistency when compared with the results obtained using the lattice-based
DD code.

We have also carried out ParaDiS simulations for single-crystal Mo at ambient
pressure for temperatures of 300, 600, and 1000 K, and at 225 GPa for temperatures
of 600 and 1000 K. These simulations were all carried out at a strain rate of 15"
and the simulated stress—strain curves are shown in Fig. 28. An attempt to simulate
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Fig. 27. Temperature dependence of the resolved yield stress at three pressures in single-crystal Ta, as
obtained using the legacy lattice-based DD code at a quasi-static strain rate of 10~>s~'. Experimental

data at ambient pressure and the same strain rate (solid squares) are from Ref. [78].

Flow stress (MPa)

Fig. 28. Simulated stress—strain curves for single-crystal Mo at a strain rate of 1s
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, as obtained with the

ParaDiS DD code. The solid lines are results obtained at ambient pressure for temperatures of 300, 600,
and 1000 K. The dashed lines are results obtained at 225 GPa for temperatures of 600 and 1000 K. As in
the case of Ta, the nearly steady state flow stress values at the end of the simulations were used to obtain
the resolved yield stresses plotted in Fig. 29.
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the additional point at 225 GPa and 300 K was made, but due to the extremely large
activation enthalpy and low temperature, the DD time step required was too small
to obtain meaningful results. We have, however, estimated the resolved yield stress
for this point in the following manner. Using the rate equation, ¢ = pbvs = constant,
we first used the simulated dislocation density p at 225 GPa and 600 K to estimate its
value at 300K. Then combining this rate equation and the velocity function in
Eq. (22) we obtained an estimate of the resolved yield stress. This value, together
with the resolved yield stresses obtained directly from the stress—strain curves in
Fig. 28, is shown in Fig. 29. Again, one sees a strong dependence on pressure and
temperature in these results. For comparison we also show in Fig. 29 ambient
pressure and temperature experimental data for the resolved yield stress in Mo
from the Seeger group in Germany [70,71] and from the Aono group in Japan [79].
We note, however, that these data were measured at quasi-static strain rates as
opposed to the 1s™! strain rate in our simulations. Since the resolved shear stress
value is expected to decrease with decreasing strain rate, the data should be lower
in magnitude than the simulation, which they are. However, the two experimental
data points themselves have a rather large discrepancy. This shows the sensitivity of
the experimental measurement to sample conditions.
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o I | ]
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@ . . ]
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> a00 | 1
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> .
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Fig. 29. Resolved yield stresses of single-crystal Mo obtained at ambient pressure (solid circles and solid
lines) and at 225 GPa (solid squares and dashed lines). Except for the estimated point at 225 GPa and
300K (see text), the remaining results were obtained from the stress—strain curves in Fig. 28 obtained at a
strain rate of 1s~!. For comparison, ambient temperature and pressure experimental data points
from the Seeger group [70,71] and the Aono group [79] at lower quasi-static strain rates are also shown.
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6. Summary and conclusions

In this paper we have successfully combined first-principles PP and FP-LMTO
electronic-structure calculations, quantum-based GFBC/MGPT atomistic simula-
tions, and atomistically informed lattice-based and ParaDiS dislocation dynamics
simulations at the microscale to study the fundamental properties of a/2{111)
screw dislocations and the plasticity that they drive in the bcc transition metals Ta,
Mo, and V over a wide range of pressure. Within this information-passing approach
to the multiscale modeling of mechanical properties, the electronic-structure
calculations have allowed us to accurately calculate the material-specific high-
pressure elasticity and range of bcc mechanical stability in these metals, and to
provide fundamental bec data on the equation of state, ideal strength, and v surfaces
needed to validate multi-ion MGPT interatomic potentials. In particular, we have
shown that the present MGPT potentials for Ta and Mo predict very accurately the
{110} and {211} y surfaces relevant to screw dislocation structure and motion over
pressures ranging from ambient to 400 GPa. With the GFBC/MGPT atomistic
simulations, we have studied in detail the pressure-dependent properties of the a/2
{111} screw dislocations, including the core structure and energy, the Peirels stress
tp and its orientation dependence, the kink-pair formation energy Elf(p and the
activation enthalpy AH(P, 1) for dislocation motion below 7p, and the dislocation
velocity vg(P, T, t) in the phonon-drag regime above tp. These properties exhibit a
complex blend of both material-specific and generic scalable behavior. The core
structure is materials specific and varies qualitatively with material and pressure,
while the Peierls stress tp is always minimized for {111 shear stresses on {11 0}
slip planes and scales reasonable well with the Gy, shear modulus to 1000 GPa in
Ta, 400 GPa in Mo, and 53 GPa in V. The kink-pair formation energy Ekp is less
robust in its scaling properties but varies approximately as G115° at high pressure.
The activation enthalpy AH(P, t) and phonon-drag velocity vy(P, T, 7) lend
themselves to analytic fits as a function of pressure, temperature, and shear stress
that can be used directly in the DD simulations to quantify the motion of individual
dislocation segments. Using these analytic functions, we have successfully performed
predictive lattice-based and ParaDiS simulations of flow stress and resolved yield
stress in Ta and Mo as a function of pressure, temperature, and strain rate.
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1. Introduction

The study of dislocations in semiconductors is strongly connected to the advent and
development of the electronics industry. Indeed, it was very soon observed that
the presence of crystalline defects, including dislocations, was detrimental to the
processing and service life of devices. Thus, the very early research focused on the
link between dislocation properties and their influence on the potential applications
of semiconductors.

Silicon is obtained from silica, the main component of the Earth’s crust; it was
quickly used in electronics due to its natural abundance. As a consequence, many
efforts were devoted to understanding the nature and properties of defects in this
material. In addition, silicon appeared as, and is still nowadays, a model material for
plasticity investigations because it is an elemental material with a crystal structure
that is rather common among semiconducting materials. This material is also
obtained as single crystals with zero dislocation content, which allows one to study
dislocation nucleation.

This chapter aims at giving a comprehensive view about the structure and
properties of dislocations obtained at high stress in silicon, which have been proved
to have a different core structure from what was believed before.

Although many review papers or book chapters have been published on
structures and properties of dislocation in semiconductors (see, e.g., [1-6]), the first
part is devoted to present the context, ideas, and milestones that are necessary for
understanding the subject of this chapter. The second part deals with the
experimental works that have contributed to point out that different dislocation
mechanisms and dislocation core structures are found at high stress in silicon:
results of recent experiments are reported together with those of early experiments.
These results, which reveal the existence of a different dislocation core structure at
high stress, have promoted core structure analysis and numerous atomistic
computations that are the subject of the third part. Finally, the results of
experiments and computations are confronted in order to obtain a comprehensive
view of the high-stress deformation regime existence. The transition between the
two deformation regimes is also discussed.

1.1. Crystal structure and dislocations in silicon

Studies of the plasticity of semiconductors started at the beginning of the 1950s,
with experiments on germanium and silicon, which were reported to be ductile
above approximately 500 and 900°C, respectively [7,8]. Seitz [8] explained
Gallagher’s measurements of plastic flow in germanium and silicon [7] in terms of
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the theory of dislocations: the dislocations move by glide in {1 11} planes and have a
Burgers vector equal to the {110 )-type translations in these planes. Besides, Seitz
considered as improbable a dissociation of the dislocations into partials.

Shockley [9] was the first to describe the diamond-cubic structure of silicon and
possible dislocations in this structure, followed by Hornstra [10], Haasen and
Seeger [11], and Hirth and Lothe [12]. The structure is characterized by a
tetrahedral environment of each atom. It can be represented as two face-centered
cubic (fcc) sublattices shifted with respect to each other by a quarter of the (111
diagonal (Fig. 1).

Representing the atoms of one sublattice by capital letters and those of the other
sublattice by small letters, one can describe the structure as an alternating stacking
of close-packed layers of both types, ... AaBbCcAaBbCc.... Fig. 2 shows a classical
representation of the structure in projection along (110). In this figure, and by
analogy with the fcc structure where the glide planes are {111} planes and the
shortest translation vector of the lattice is 1/2{110 ), there are two possible ways to
produce a shear and, thus, for a dislocation to move (Fig. 2): between two widely
spaced planes (e.g., Bb) of type I, or between two narrowly spaced planes (e.g., bC)
of type II. Later, Hirth and Lothe [12] called these planes the shuffle set and the
glide set, respectively. According to this terminology, which is still in use,
dislocations lying on these planes are called shuffle dislocations and glide
dislocations.

Hornstra [10] discussed several possible structures of dislocations in the diamond-
cubic lattice. Starting from the fact that “an arbitrary direction in the crystal may be
considered as the sum of steps in {110 directions,”” he considered that “‘the only
simple dislocations that need to be studied are those along (110) directions.”
Then, it appears that the dislocation segments can be of type screw, edge, or 60°
[Figs 3(a) and 3(b)].

Dash’s observations [13] of Frank-Read sources in silicon, revealed by the copper
decoration technique, showed that the dislocations have a pronounced tendency to

Fig. 1. The diamond structure. (a) The nodes of the two sublattices correspond to the white and black
atoms, respectively and (b) view along {110).
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Fig. 2. The diamond structure viewed in projection along [1 10]. The (111) glide plane is horizontal, and
the two possible shear locations I (shuffle set) and II (glide set) are indicated.

Fig. 3. Perfect dislocations in the diamond structure (after Hornstra [10]). (a) Screw dislocation and
(b) 60° dislocation.

be predominantly of screw or 60° character. Later on (see, e.g., [1,14]), it was
observed that, after a significant plastic deformation, dislocations are curved at high
temperatures, but are aligned along the low-energy <{110) directions when the
temperature decreases and/or the stress increases.

Till the end of the 1960s, dislocations were thought to glide as perfect dislocations
between the planes of type I (shuffle set). Indeed, the movement of a perfect
dislocation in the shuffle set requires the breaking of one bond per atom, whereas
three bonds must be broken in the glide set. In addition, the generally accepted
view according to which shear is favored by a larger distance between slip planes is
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consistent with a lower Peierls stress in the shuffle set and dislocations lying in
this set.

1.2. The dissociation of dislocations

The dissociation of a perfect dislocation in its glide plane into partial dislocations of
the 1/6 {112 Shockley-type was also an important domain of investigation. It was
shown that the dissociation modes between two planes of type I or type II exhibit
marked differences (Figs 4 and 5; see, e.g., Refs [12,15,16] for a detailed discussion).
In short, the dissociation between planes of type II (glide set) leads to the formation
of an intrinsic stacking fault and the distortions of the bonds remain confined in the
cores of the partial dislocations. A glissile dissociation between planes of type I
cannot be envisaged because the bonds between atoms in the stacking fault would
be severely distorted.

Although the dissociation of a shuffle dislocation is unlikely stricto sensu, a
dissociation involving shuffle dislocations was studied from a theoretical viewpoint
by different authors [10-12,15]. This dissociation leads to a stacking fault between
type II planes, bounded at one end by a glissile Shockley dislocation and at the

a) b)

Fig. 4. 60° dislocation in the type I glide plane (shuffle set), after Amelinckx [16]. (a) Undissociated and
(b) dissociated with formation of an intrinsic stacking fault. In that case, the stacking fault is of type II and
is associated to a dislocation dipole at its right end (see Ref. [16]).

A

Fig. 5. 60° dislocation in the type II glide plane (glide set), after Amelinckx [16]. (a) Undissociated and
(b) dissociated with formation of an intrinsic stacking fault.
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other end by a sessile partial dislocation. The motion of this last partial requires a
nonconservative atomic rearrangement. This type of rearrangement is called a
shuffling and, for that reason, Hirth and Lothe [12] called the set of type I planes
the shuffle set and the dislocations lying in these planes shuffle dislocations.

The dissociated shuffle dislocation, called “‘extended shuffle dislocation” by
Alexander [1], can be described in two ways: either as a stacking-fault ribbon
bounded by two Shockley dislocations of opposite sign associated with a shuffle
dislocation, or as a dissociated glide (DG) dislocation that has emitted or absorbed
a line of vacancies or interstitials in the core of one of its partials.

An essential contribution to the knowledge of dislocation cores in semiconduc-
tors was brought by the weak-beam technique, which was developed by the end
of the 1960s (see Refs [17-19] for the case of Si). This transmission electron
microscopy (TEM) technique allowed obtaining a finer image of the region of the
crystal close to the actual position of dislocations. In silicon, the dislocations
generated by deformation at 850 and 1200 °C were found to be dissociated in the
(111) plane according to the reaction:

a - a - - a -
5[110]—>6[211]+8[121] (1)

These observations confirmed previous observations of extended nodes in silicon
made by Aerts et al. [20]. Dislocation dissociation was also observed in germanium
using the same technique [19]. Later, Meingast and Alexander [21], showed that
dislocations also moved in dissociated form in germanium thin foils locally heated
in the electron microscope. Regarding the (110) low-energy directions, the
perfect screw dislocation is dissociated into two 30° partial dislocations, and the 60°
perfect dislocation is dissociated into a 30° partial dislocation and a 90° partial
dislocation (Fig. 6).

From the observation of the dissociation of dislocations, both at rest and moving,
it was concluded that dissociated dislocations belong to the glide set. In principle,
TEM examinations of edge-on dislocation lines at high resolution and of the associ-
ated simulated contrasts should allow one to distinguish the dissociation modes.

Fig. 6. (a) A 60° dislocation dissociated in the glide set into 30° (P;) and 90° (P,) partial dislocations.

(b) Same configuration projected on the (111) glide plane. Partial dislocations are not reconstructed.

(c) Partial dislocations are reconstructed. A reconstruction defect (soliton) is shown on each partial.
After George and Rabier [2].
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In practice, the occurrence of defects along the dislocation lines (kinks, jogs, point
defects, ...) makes the interpretation of high-resolution micrographs difficult and
hazardous.

Although most of the dislocations are seen to be dissociated at the scale of
transmission electron microscopy, constrictions were also observed on dislocation
segments in silicon [19] as well as in germanium [22,23]. These constrictions are
particularly numerous after high-temperature deformation, around 520°C for
germanium and 800°C for silicon. Packeiser and Haasen [22,23] showed, in
germanium, that they are formed on jogs with a height larger than the spacing
between glide planes. The same explanation could apply to silicon. A link between
point defects and local modifications of dislocation splitting observed by TEM
was suggested in order to explain that jogs were able to move along the dislocation
lines. They were assumed to do so by an exchange of point defects between the
dislocation and the lattice [1]. Moreover, it was not excluded that these constricted
segments could belong to the shuffle set [15]. This can be related to the work of
Louchet and Thibault-Desseaux [24], who discussed the possible coexistence of
glide and shuffle partial dislocations. These authors considered that dissociation is
not restricted to the glide set and that the core structure is not unique along a given
partial. Partial dislocations have complex cores with an average glide character but
they contain a number of shuffle sites due to point defects, the nature of which
depends on the character of the dislocations.

1.3. Bond reconstruction in the dislocation cores

The possible occurrence of bond reconstruction in the dislocation cores became
quickly an open issue, in particular for researchers working in the electronics
industry. Shockley [9] was the first to notice that the unsaturated bonds appearing at
edge dislocation cores in semiconductors could form a one-dimensional energy
band partially filled with electrons. After this seminal work, other authors showed
that acceptor and recombination centers were introduced during plastic deforma-
tion. This effect was presumably connected to dangling bonds present in dislocation
cores, the carrier lifetime being inversely proportional to the dislocation density.
For more details, the reader is referred to a recent and well-documented historical
summary published by Figielski [5] on dislocations considered as electrically active
centers. At the same time microstructural studies were devoted to electrical and
optical properties of dislocations, using different techniques like electronic
paramagnetic resonance (EPR), deep level transient spectroscopy (DLTS),
electron beam induced current (EBIC), and photo- or cathodo-luminescence. The
influence of dislocations on electrical properties, namely the density, mobility, and
lifetime of electrical carriers was studied as a subject of basic research as well as a
critical point to obtain reliable devices.

Most of these studies were performed on samples deformed between 650 and
850 °C, which are temperatures easily accessible in laboratory and for which silicon
still presents some ductility. The Alexander group in Koln [25,26] and the Ossipyan
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group in Chernogolovka [27] investigated the dislocation cores using EPR. Indeed,
this technique is sensitive to unpaired electrons in the core of dislocations and thus
to the presence of dangling bonds. EPR spectra are different according to the
deformation temperature between 850 and 420 °C, and more resonance peaks are
observed at high temperature. However, the existence of a recombination center
not associated with a particular type of dislocation seemed to indicate that the
movement of dislocations is correlated with the existence of point defects in the
dislocation cores. This point is still a matter of debate, and it is not clear whether
point defects are dragged by dislocations during their motion or left behind by the
dislocations. The recent observation of dislocation trails revealed by selective
chemical etching and possibly associated with EBIC and DLTS signals stirred up
a renewal of interest to this question [28]. Besides, EPR experiments showed that
the number of dangling bonds is small as compared to the number of sites on the
dislocation line, less than 5%. Thus, most of the dislocations should be
reconstructed.

Because of the strong covalent bonding, one can imagine that relaxation
involving bond rearrangements can occur and dislocation cores should be
reconstructed. A 60° dislocation dissociates into 30° and 90° partials with dangling
bonds almost parallel to the slip plane [Figs 6(a) and 6(b)]. Those dangling bonds
may disappear pairwise by core reconstruction. The calculations of reconstructed
core structures in silicon were essentially made on the 30° and 90° partials. The full
reconstruction of a 30° partial leads to the unique possibility of a double-period
(DP) core [Fig. 6(c)]. On the other hand, a 90° partial can be reconstructed in two
ways, leading to a single-period (SP) core [Fig. 6(c)] or a DP core. The SP
reconstruction was independently proposed by Hirsch [29] and Jones [30], and
further discussed by Bennetto et al. [31]. The DP reconstruction proposed in Ref.
[31] doubles the period along the dislocation line. Calculations using various
approaches and potentials slightly favor this DP core reconstruction [32]. However,
the occurrence of defects along the dislocation line (impurities, reconstruction
defects, or solitons, vacancies, interstitials, ...) could affect locally the reconstruc-
tion mechanism. Energy values associated to these defects were calculated and can
be found in Ref. [32].

1.4. Dislocation mobility

The mobility of the dislocations was for a long time another important theoretical
and experimental topic. Dislocation motion can be assisted by temperature and the
external stress. The critical stress for the movement of a dislocation at 0 K is defined
as the Peierls stress. At finite temperatures, the motion of a dislocation from a low-
energy valley to the next one occurs by the local nucleation of short segments, the
kink pairs, which cross the energy barrier in the direction of dislocation motion.
Then, each kink propagates sideways along the dislocation line, which transfers the
latter as a whole into the neighboring low-energy valley. These two elementary
mechanisms are associated with an energy barrier. The energy necessary to
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overcome a Peierls potential of the first kind and nucleate a kink pair is 2Fy, where
Fy is the formation energy of a single kink. Wy, the migration energy, is the energy
to overcome the Peierls potential of the second kind, which allows a kink to
propagate along the line. Contrary to “usual” fcc metals, where Wy, is negligible,
both energies could be high and of the same order in semiconductors. These
mechanisms of kink pair nucleation and kink migration were studied by Hirth and
Lothe [12] in crystals with a high Peierls relief, taking into account the number of
nucleation sites and the length of the free segments. The mean free path of a kink
along the dislocation line is limited by the presence of another kink of opposite sign,
with which it annihilates, or by the presence of a pinning obstacle. In steady-state
conditions, a dislocation moves with a constant velocity, which implies that each
pinning or annihilation event is compensated by a nucleation event. This kink-
diffusion model leads to two regimes: a regime where the dislocation velocity
depends on the length of segments because the kink can propagate all along the
line, and a regime where the dislocation velocity is independent from the length of
segments because of the kink—kink collisions.

The reconstruction of core bonds leads to the existence of various types of kinks
according to the nature of the partial (30° or 90°) and the position of the kink, at the
right or left side of its companion. The different types of kinks were classified and
analyzed by atomistic simulations for determining their energy and their probability
of occurrence. In the case of a 90° partial, the unreconstructed configuration is
symmetric and both right and left kinks are identical. Due to the reconstructed
nature of the dislocation core, many different topological kinks can be formed. In
the case of the 30° partial the number of reconstructed kinks is even more
important since, there are two different kink structures in the unreconstructed
configuration due to the intrinsic left-right asymmetry of a kink pair [33].

The partial reconstruction of bonds can occur along the line as well as at a kink,
leading to the existence of reconstruction defects, or solitons, as mentioned above.
The formation of these reconstruction defects is thermically activated and their low
migration energy makes them highly mobile. This description is the basis of the
model initially proposed by Jones [34] and Heggie and Jones [35], which was further
developed by Bulatov et al. [33]. Solitons facilitate the nucleation and the migration
of the kink pairs by locally restoring the covalent bonding. Within the framework of
this model, it seems reasonable to think that the energies associated to the first and
second kinds of Peierls potentials are of the same order.

Attempts to determine experimentally the values of Fy and W, were carried out
using various techniques: internal friction [36,37], deformation under load pulse
sequence [38], and TEM. There are very few internal friction experiments on
semiconductors. The reason is the brittleness of these materials and the need to
work at very low frequencies in order to get a relaxation peak at moderate
temperatures. The direct observation of kink motion was realized by TEM, either
by studying the relaxation of out-of-equilibrium dissociated dislocations [39], by
in situ deformation [40], or by using forbidden reflections in the high-resolution
mode [41,42]. These various experiments were analyzed within the framework of
the kink-diffusion model of Hirth and Lothe [12], which does not take into account
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the dissociation of the dislocations. The applied stress can lead to different Peach—
Koehler forces on the partials, so that the dissociation width depends on the applied
stress. Thus, under low stresses, the nucleation of kink pairs on both partials can be
correlated. Using atomic-resolution electron microscopy, Kolar et al. [42] analyzed
recordings of kinks moving on partial dislocations and obtained the values
F,=0.73eV and W, = 1.24eV at 600 °C. The various results obtained by different
techniques show that, in contrast to the case of metals, the Peierls potential of the
second kind is important with a value of W, around 1.2eV. This is in agreement
with the first calculations of Jones [43]. The Hirth and Lothe model predicts the
occurrence of a transition between the length-dependent and the kink-collision
regimes characterized by a change in the kink formation energy. The two regimes of
kink motion were observed by TEM [39,40], with a critical segment length of about
0.4 um at the transition, but without any change in activation energy. The entropy
term contribution, which is not taken into account in the model, should exhibit
unrealistically high values to yield a good agreement between theory and
experiment. It appears, thus, that the length-independent regime found experi-
mentally should not be a kink-collision regime. This is also supported by other
experimental results obtained by intermittent pulse loading [38] or by monitoring
the motion of a threading dislocation in strained thin films [44]. Then, kink motion
may be limited by obstacles like point defects along the dislocation lines.

The dislocation velocities can also be measured on macroscopic specimens.
Double etch pits and X-ray topography are the most common techniques used for
this purpose. The dislocation velocities v were measured by different authors as a
function of temperature T and stress t; the results were analyzed using the
phenomenological law:

a3 n(-8).

where v, and 7, are constants, k is the Boltzmann’s constant, the exponent m is
usually between 1 and 2, and Q is the total activation energy. In the most explored
range of intermediate stress and temperature values, 1-50 MPa and 600-800 °C,
respectively, experimental results on pure silicon lead tom = 1 and Q ~2.2eV. This
seems to confirm that only one of the two predicted regimes is observed.

To summarize this brief history of dislocations in silicon, it appears that some
points are well established. In particular, at high and medium temperatures, which
are the best documented domains, dislocations lie in the glide set where they are
dissociated both at rest and when they move. They have to overcome high Peierls
potentials of the first and second kinds. However, several questions remain a matter
of debate: what is the mean free path of kinks? What is the density of localized
obstacles along the dislocation lines? What is the role of point defects on dislocation
mobility?

In 1996, Duesbery and Joos [45] determined that in ‘“‘usual stress conditions,”
dislocations should belong to the glide set. Using Peierls barriers deduced from
atomistic computations, these authors calculated the kink pair activation energies
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for perfect shuffle (PS) screw dislocations and for the 30° glide partial. The
activation energy for screw shuffle dislocations was the highest in the whole stress
range, but the difference was found to decrease with increasing stress. Extrapolat-
ing these results to high stresses, it was predicted that a transition should occur from
plastic deformation carried out by glide dislocations to plastic deformation carried
out by shuffle dislocations around t/u = 0.01 (p is the shear modulus). This has
constituted the motivation for revisiting the plastic deformation of silicon at high
stress, both experimentally and theoretically. The results of these investigations are
described in the following parts of this chapter.

2. High-stress deformation: experimental features

Low-temperature high-stress deformation tests in silicon allowed investigating
extreme mechanical conditions such as those encountered in the machining of
wafers, in deformation regimes controlled by decorrelated partial motion or
mechanical twinning, and in the deformation mechanisms involved in the brittle
to ductile transition (BDT). The effect of electronic doping was also investigated,
since it is expected to be more important when the deformation temperature is low.
Indeed, the BDT temperature was found to depend on doping, in good agreement
with the dependence of dislocation velocities on dopant concentration [46,47].
Furthermore, renewed interest on high-stress deformation mechanisms was
stimulated in the last decade by investigations of the plastic properties of
nanostructured materials. These small-scale objects exhibit a high strength that is
due to size effects. For example, it was shown that silicon nanopillars could sustain
stresses that are much higher than the ones encountered in bulk materials at the
BDT [48]. In this context, understanding the nucleation of dislocations as well as
the elementary deformation mechanisms at high stress not only is a challenge in
defects physics but becomes a critical issue for nanostructural engineering.

In order to achieve such high stresses in low temperature deformation regimes,
two main techniques can be used, which superimpose a hydrostatic component to
an applied shear stress: microindentation and deformation under a confining
pressure. The hydrostatic component limits cracks extension and induces a shift in
the BDT toward low temperatures. Microindentation (or nanoindentation) tests are
very easy to perform but they suffer from two main drawbacks: the stress tensor is
not known and the plastic region is confined to a very small volume of the specimen,
which makes TEM observations of the deformation substructure quite difficult.

Deformation under hydrostatic pressure is less easy to carry out, but it allows one
to perform TEM observations in larger areas. Although the hydrostatic pressure
can be controlled quite accurately, the main drawback — that depends on the
experimental setup — can be the measurement of the uniaxial stress. In the range of
pressures suited for studying the plasticity of silicon, this problem can now be solved
using deformation apparatuses devised to function in synchrotron beamlines (see
Section 2.3.2).
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In what follows, we report on experiments on the deformation of silicon, which
were designed to shed light into the main features of high-stress dislocation
mechanisms.

2.1. Deformation experiments at high stress

2.1.1. Dislocation microstructures after indentation

Indentation techniques were widely used for a long time to investigate the plasticity
of silicon at low temperature. However, a difficulty arises because silicon shows a
phase transition from diamond-cubic structure to B-Sn metallic Si at a pressure of
about 12 GPa [49]. As the shear stress increases during an indentation test, the
hydrostatic component simultaneously increases and the critical pressure for the
phase transition can be reached. In such conditions, the hardness values and
dislocation microstructures cannot be representative of dislocation-induced
plasticity mechanisms. Indeed, the occurrence of the phase transition under
indentation was found to explain the observed saturation of hardness values below
400°C ([50,51]; see also Fig. 8). Dislocations were nevertheless observed after
indentation at temperatures lower than 400 °C, but their possible connection with
the phase transition was not investigated.

After indentation at room temperature, dislocations are not mobile and stay in
the close vicinity of the indentation site. This results in a very high local density of
dislocations, which are difficult to resolve individually [52,53]. For that reason, most
of the observations of dislocations were performed after indentation at a medium
temperature or after a room temperature anneal of the microstructure, in order to
promote dislocation nucleation or the propagation of the dislocations at some
distance from the imprints (see, e.g., [52]). After anneals at typically 400 °C, the
dislocation configurations are similar to the ones found in usual conditions, that is,
dislocations with {110) Burgers vectors, {111} glide planes, and glide dislocation
loops exhibiting a hexagonal shape with segments lying along the (110)
directions. In one of the many works performed on silicon indentation, Hill and
Rowcliffe [53] were able to derive original results from the observation of
dislocations after indentation at room temperature and at 300 °C. These authors
noticed that “indentation at room temperature produces shear loops composed of
long 30° dislocations and short 60° dislocations segments.”” Specimens indented at
300 °C contained the same type of dislocations but the 30° dislocations were not
straight anymore. Hill and Rowcliffe [53] concluded that the types of dislocations
and their arrangements differ considerably from those observed in silicon at
elevated temperature. They proposed a mechanism in which the theoretical shear
strength being locally exceeded, the dislocations resulted from the accommodation
of displacements by non-dislocation-mediated block slip.

2.1.2. High-stress plastic deformation under a confining pressure up to 1.5 GPa
The first work on the deformation of silicon under hydrostatic pressure as a way to
reach high stresses was performed by Castaing et al. [54], using a Griggs apparatus



§2.1 Dislocations in Silicon at High Stress 61

dedicated to the deformation of minerals under pressure. In this experimental
setup, confining pressures are produced by a solid confining medium. The accuracy
of applied stress measurements suffers from the friction stress exerted by the
solid confining medium on the moving deformation rams. Single crystals of silicon
with (123 (oriented for single slip) and {(100) compression axes were
deformed under a pressure of 1.5 GPa between 450 and 275 °C at imposed strain
rates ranging from 2x107° to 2x107°s”!. Without prestrain, the lowest
temperature at which plastic deformation occurred under a strain rate of
2x107°s™! was 450°C. At the same strain rate and after a prestrain at 450 °C,
the lowest temperature at which macroscopic plasticity could be obtained was
275°C.

Fig. 7 shows a stress—strain curve obtained at low temperature on a virgin silicon
crystal [54,55]. The yield point usually found at medium temperatures is still
present. This behavior is characteristic of a low initial dislocation density followed
by a multiplication stage and an overshoot of the dislocation density after the
multiplication stage.

The temperature dependence of the yield stress was analyzed using the rate
equation:

.. AG
7 =70 €Xp (— ﬁ), (3)

where j and 7, are, respectively, the resolved imposed strain rate and a reference
strain rate. The stress dependence of the activation free energy was determined
by stress relaxation tests and was found to be logarithmic. The temperature
dependence of the yield stress can then be written in the form:

In(7) = In(to) + BT, 4
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Fig. 7. Stress-strain curve of a (123) Si crystal deformed at 7'=425°C under a strain rate of
2x107°s7! and a confining pressure of 700 MPa. After Demenet [55].
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where the strain rate dependence is accounted for by the coefficient . The flow
stress extrapolated at 0K, 7y, is between 100 and 200 GPa, that is, it is comparable
to the shear modulus. A large value was found for the ratio AG/kT = ¢ (¢ = 36);
this value is surprising since ¢ should in principle lie between 20 and 30 [56]. These
two unexpected experimental results imply that either the above analysis is
questionable or there are several controlling deformation mechanisms in the small
temperature interval investigated (250-450 °C).

The temperature dependence of the yield stress obtained in Si down to 275 °C
was compared with microhardness data obtained down to room temperature
(Fig. 8) [51]. In contrast to microhardness data, the yield stress values do not level
off below 400 °C, which is consistent with the occurrence under the microindenter
of the phase transition mentioned in Section 2.1.1 [50,52]. In the compression tests,
the pressure was kept below the critical value for the onset of this transition.

The temperature dependencies of the yield stresses are similar for samples
deformed along the (123) and <100) compression axes [54,55,58]. However, the
deformation microstructures look very different. This feature is related to the
resolved applied stresses on the active slip planes. These stresses are such that, for
dissociated glide dislocations, they increase the dissociation width for the (123
loading axis and decrease it for the (100) loading axis.
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Fig. 8. Hardness (H) as a function of temperature (from Suzuki and Ohmura [51]). The temperature
dependence of the yield stress is also schematically drawn (from Castaing et al. [54]). After Rabier and
Demenet [57].
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Fig. 9(a) shows the microstructure obtained after deformation of a (123)
sample; when observed in the primary glide plane, it consists of dissociated
dislocations. There is a tendency for the screw segments to be longer than the other
ones. However, this microstructure is not very different from what is found at
higher temperatures under standard deformation conditions. Moreover, although
the stress tensor favors the narrowing of the stacking fault, no perfect dislocations
are obtained. The deformation microstructure of samples deformed along the
{100) compression axis is quite different. It consists of extended stacking faults
that point at a deformation mechanism controlled by the movement of decorrelated
partials [Fig. 9(b)].

Although the deformation microstructures are different in these two orientations,
the analysis of surface source nucleation mechanisms in silicon led to the conclusion
that the activation energies for the movement of decorrelated partials and of
dissociated dislocations should be the same at high stresses, in agreement with the
apparent macroscopic response [57].

These experiments under hydrostatic pressure allowed the study of silicon
plasticity under high stresses in the absence of a phase transition. However,
although stresses as high as 2 GPa were reached in the plastic regime, the disloca-
tion microstructures were not found to significantly differ from those found in usual
low-stress deformation conditions where dissociated dislocations control plasticity.
This may relate to the prestrain that was needed to increase substantially the range
of experimental conditions leading to plastic behavior (see Ref. [57] for more detail
and discussion).

Fig. 9. Dislocation microstructures in silicon crystals after high-stress deformation. (a) {123 crystal

deformed up to the upper yield stress (t = 800 MPa) at T = 425 °C under a strain rate of 2 x 10™°s~" and

a confining pressure of 700 MPa (after Demenet [55]). (b) <100 crystal deformed at 7" = 450 °C under
a strain rate of 2 x 107®s™! and a confining pressure of 1.5 GPa (after Castaing et al. [54]).
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2.2. Evidence of the nucleation of perfect dislocations at high stresses

2.2.1. Plastic deformation under 5 GPa

In order to obtain plasticity at lower temperatures and larger yield stresses, an
increase of the confining pressure is required, especially for dislocation-free
materials. Yet, the confining pressure has to be maintained below 12 GPa in order
to avoid the phase transition artefacts encountered during indentation below 400 °C
(Section 2.1.2). Since the highest pressure that can be achieved with a standard
Griggs apparatus is 1.5 GPa, experiments at higher pressures require another
deformation setting that is routinely used in the field of geophysics: the multi-anvil
apparatus. This deformation machine makes it possible to apply pressures up to
25 GPa on “large” volumes of materials, but in this type of experiments the yield
stress cannot be measured during the mechanical test. A multi-anvil apparatus
dedicated to plastic deformation, in which the confining medium was designed to
produce an additional uniaxial stress during pressure application [59], was used by
Rabier et al. [60,61] to deform virgin Si single crystals. Plastic deformation could be
obtained under a hydrostatic pressure of 5 GPa at temperatures as low as room
temperature and 150 °C. The applied pressure around the sample was raised at a
rate of 1 GPa/h. As a consequence of the design of the solid confining medium, a
uniaxial stress also builds up during the pressure application. In such conditions, the
deformation rate can be roughly estimated to be 5 x 10~°s™" and a permanent strain
of several percent is obtained in these tests.

The analysis of the deformed samples shows that the macroscopic deformation
results from crack generation as well as from dislocation nucleation and motion.
TEM investigations of the deformation microstructure show dislocations that were
nucleated at the lateral surfaces of cracks and others that propagated in the bulk
material and accumulated in areas with very high dislocation densities. The
dislocation loops emitted from the crack surfaces are elongated along specific
crystallographic directions [Fig. 10(a)] and so are the dislocation loops that

I\ (8)

Fig. 10. Deformation microstructures containing perfect dislocations (the confining pressure is 5 GPa).

(a) Deformation temperature: T = 293 °C; (101) foil plane, weak-beam dark field (4.1g, g = 20 2). The

dislocations nucleated at crack edges are of 1/2[1 0 i](l 11) type. These half-loops are elongated along

the [321] direction (after Rabier and Demenet [62]). (b) In the bulk, the same dislocations tend to be

aligned along several Peierls valleys: <112)/30°, (123)/41°, and screw orientation (after Rabier et al.

[62]). (¢) Deformation temperature: 7'= 150 °C. Same Peierls valleys as at room temperature; some
strong pinning points are indicated by arrows (after Rabier et al. [61]).
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propagated in the bulk of the sample [Fig. 10(b)]. Strong pinning points are
evidenced together with wavy, unstable orientations that result from the presence
of very short segments with different orientations [Fig. 10(c)]. Weak-beam dark
field contrast studies revealed, that these dislocations are perfect dislocations with
the usual 1/2<110) Burgers vectors and {1 11} glide planes. The straight segments
were found to lie along the screw orientation, as well as along {(112)/30° and
{1235>/41° which can be assumed to be Peierls valleys. These Peierls valley
directions were not reported before and differ from the usual {(110) ones that
characterize dissociated glide dislocations. The density of pinning points was found
to be the largest at the deformation temperature of 150 °C [Fig. 10(c)].

These observations were made in samples deformed in compression along the
{123 orientation, for which one usually finds dissociated glide dislocations with a
small dissociation width (Section 2.1.2). In order to confirm the occurrence of
perfect dislocations, a compression axis with a {100 orientation was selected to
check whether or not extended stacking faults are nucleated under large stresses.
In contrast to what is found at higher deformation temperatures (Section 2.1.2),
extended stacking faults were not evidenced. Instead, the microstructure was of
same type as in the (123) samples and contained perfect dislocations. This result
confirmed the occurrence of a new deformation mechanism involving perfect
dislocations, in a stress range where dissociated glide dislocations would no longer
have a stable, finite dissociation width. Owing to the apparently perfect nature of
the dislocations, cross slip is expected to be an efficient relaxation mechanism.
Evidence of this mechanism was looked for in TEM samples, but, surprisingly, it
was quite difficult to find any trace of cross slip at this scale of observation.

In this context, various high-stress deformation conditions were tested, with the
aim of producing other deformation microstructures containing perfect dislocations.
The results are discussed in the next section.

2.2.2. Plastic deformation in the metallic phase

Since a phase transformation as well as dislocations can be evidenced simulta-
neously after indentation tests at room temperature, the deformation of silicon
under a pressure of 15 GPa, that is, in the B-Sn metallic phase, was investigated at
293K using the same device as in previous tests [62]. In such conditions, silicon
deformed along (100) showed an exceptional ductility: a macroscopic strain of
more than 20% was obtained without major failure. The postmortem observations
showed silicon high-pressure phases (Si III, Si XII). These phases were
characterized by their Raman spectra on the surfaces of sections extracted from
the specimen (unpublished) and by TEM on grains of the different phases. No
amorphous phase was evidenced. In addition to these high-pressure phases, a large
fraction of the specimen recovered the diamond-cubic phase Si I after the
deformation test. TEM observations of this recovered phase showed evidence for
an intense plastic activity. Perfect dislocations were found, emerging from dense
glide bands, as well as isolated defects in less dislocation-dense areas [Figs 11(a) and
11(b)]. Deformation bands containing mechanical twins were also evidenced
(J. Rabier et al., unpublished data). The characteristic features of isolated
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Fig. 11. Silicon deformed in the metallic phase (confining pressure: 15 GPa, T = 293 °C). Deformation
microstrutures in the diamond-cubic Si I phase. (a) Glide bands with a high dislocation density and
isolated perfect dislocations. Weak-beam dark field 2g, g = 040. (b) Isolated perfect dislocations with
{123)/41° orientation (straight lines) and unstable 1/2[110] screw segments. After Rabier et al. [62].

dislocations escaping from dense dislocation bands were investigated [62]. The
dislocation lines contained segments with average screw orientation and {1235/
41° segments. The screw orientation appeared to be unstable and was composed of
{1235/41° segments. Segmented small loops built up with these segments were
found to result from dislocation dipole annihilations [62].

2.2.3. Dislocation microstructure resulting from surface scratches

Scratching at room temperature followed by annealing at about 800 °C under a
bending stress was widely used to nucleate dislocations in silicon. As an example,
small densities of large dislocation loops suited for X-ray topography observations
could be produced by this method in order to study dislocation mobility as a
function of stress and temperature [63,64]. However, although extensive work was
performed using this technique for dislocation characterization and properties,
analyses are lacking on the nature of dislocations nucleated at scratch sites at room
temperature and without subsequent annealing treatment.

Fig. 12 shows the microstructure of a Si sample resulting from a scratch on a
{001} surface along a {110} direction, with an applied load of 0.45N [61,65]. No
additional stress was applied and no subsequent annealing was performed on that
sample. Usually, after annealing, such a scratch orientation is found to produce
glide set dislocations mainly on the two {111} planes having a common direction
perpendicular to the scratch. Thin foils parallel to one of these planes were
extracted from the specimen in order to study the deformation microstructure
generated by a room temperature scratch. Large perfect glide loops with 1/2{111)
Burgers vectors were found in the two {111} glide planes. They consisted of
segments aligned along directions varying between (112)>/30° and <{123)/41°,
plus a few screw segments. When expanding in the glide plane, these loops kept
these two low-energy directions, so that the resulting segments with average 60°
and 90° orientations exhibited irregular sawtooth shapes. The junctions between
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Fig. 12. Microstructure resulting from a scratch at room temperature. Note the roughness of the
dislocation lines. Dislocations are aligned along (112) and {123 directions. One segment (arrowed)
has a screw orientation. After Rabier et al. [65].

two (112)/30° segments located in two Peierls valleys at an angle of 60° acted as
strong pinning points.

2.2.4. Deformation substructure in Si indented at low temperature

Asaoka et al. [66] recently revisited the indentation of silicon with the aim of
deforming it plastically below room temperature. These authors indented silicon at
77K and showed that it can be deformed plastically. TEM observations of the
microstructure showed dislocations aligned along the <(110) and {112)
directions. Weak-beam dark field showed these dislocations were perfect ones
and had a/2{110) Burgers vectors. A HREM observation was also performed
on a dislocation seen edge-on, which was shown to have an undissociated core.
The exact location of this core, in a glide plane or a shuffle plane, could not be
determined.

2.3. What is the transition stress?

Since it appears that two types of dislocations are nucleated in two very different
temperature and stress regimes, it is of interest to derive the transition stress at
which the nature of the nucleated dislocations change from dissociated to perfect.
For that purpose, it is necessary to compare deformation tests performed in very
different experimental conditions. In particular, the deformation conditions that
produce deformation microstructures containing undissociated dislocations are such
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that it is usually difficult to measure the uniaxial yield stress. Thus, two types of
stress measurements were performed using TEM and X-ray diffraction.

2.3.1. Stress measurements using TEM

Postmortem TEM characterization of the deformation substructures can be
performed after any type of mechanical tests. Such characterizations can be used
to determine the stresses experienced by dislocations that were frozen in at the end
of a test. In the local line tension approximation and for elastically isotropic
materials, the dislocation curvature R under a stress t can be derived from [67]:

T(Cij, o)
T=—7-"

bR ©)

where T is the line tension that depends on the elastic constants C; and the
character « of the dislocation line. Gottschalk [68] showed that this expression could
be used in the case of dislocations experiencing high Peierls potentials. In such
conditions, the information relevant to the measure of the applied stress is localized
in the bends connecting two straight segments that are lying in different Peierls
valleys. The curvature radii of these bends are inversely proportional to stress,
which makes measurements all the more difficult as the stress is high. This method
was applied to different deformation microstructures containing glide dislocations
and perfect dislocations. The deformation conditions investigated were chosen in
such a way that dislocations were nucleated during mechanical testing without any
prestrain. In some tests, the applied stress was measured by usual methods during
deformation and a high temperature test was used to check the calculation
parameters. For each test several curvature radii were measured and the local stress
was estimated using eq. (5). The average curvature radii of dislocations and the
resulting stresses are given in Table 1.

From the results given in Table 1, one can see the nature of the observed
dislocations is changing for an applied stress value within the interval from 560 to
1100 MPa. Obviously, these data are very scarce and more deformation tests have
to be performed to further reduce this stress interval.

Table 1
Stress measurements from curvature radii of dislocations under various deformation conditions of
confining pressure (CP) and testing temperature

T, CP 7 (MPa) applied R (nm) measured T (MPa) calculated Nature of dislocations
700°C, (1) 50 800 X DG
450°C, 1.5GPa (2) 700 75 560 DG
150°C,5GPa (3) ? 40 1100 PD
20°C, 5GPa (3) ? 25 1600 PD

Note: DG: dissociated glide dislocation; PD: perfect dislocation. (1) Standard test [55], (2) Griggs
apparatus [70], and (3) multi-anvil apparatus [60,61].
Source: After Ref. [69].
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2.3.2. Stress measurements using X-ray diffraction

More recently, it became possible to obtain stress—strain curves under pressure in
the range of deformation controlled by perfect dislocations and at the transition
[71]. This was performed using a deformation apparatus (called D-DIA) that is
designed to operate in a synchrotron beamline and allows applying separately the
confining pressure and the applied stress [72]. In this experimental setup, the
specimen length is monitored by X-ray radiography using platinum foils placed at
the specimen ends that are opaque to the X-ray beam. The applied stresses are
measured through the shift of X-ray diffraction peaks of polycrystalline alumina
rams. Yield stresses were then measured between room temperature and 425 °C
under an average strain rate of 2 x 107s~'. Plotting the obtained resolved yield
stress versus temperature together with data extracted from several other
experimental studies one generates a master curve (Fig. 13), which clearly exhibits
an inflection. This inflection is correlated with the occurrence of a deformation
controlled by perfect dislocations and occurs at a stress of about 1.5GPa and a
temperature of about 300 °C.

Interestingly, an extrapolation of the yield stresses controlled by dissociated glide
dislocations leads to a yield stress 7o = 15+5GPa (0.3+0.1x) at 0K [51], whereas
an extrapolation of the data obtained in the domain controlled by perfect
dislocations yields a flow stress 79 = 1.5 +0.4 GPa (0.03+0.008u) at 0 K.

2.3.3. The transition stress

TEM experiments allow one to measure the local stress the dislocations were
submitted to when the microstructure was frozen in at the end of the deformation
test. Yield stresses can be measured during the tests but, then, they include not only
the local stress but also the internal stress. One concludes that perfect dislocations
are nucleated at stresses larger than 1.1-1.5 GPa, which corresponds to temperatures
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Fig. 13. Logarithm of the resolved yield stress as a function of temperature for Si single crystals, showing
a transition around 300 °C. (@) Rabier et al. [71], (¢ and A ) Castaing et al. [54], (< and A) Omri [73],
and ([J) Demenet [55]. After Rabier et al. [71].
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lower than 300 °C. An extrapolation of the data of Duesbery and Jods [45] to high
stresses predicts that the transition between the deformation mechanisms controlled
by dissociated glide dislocations and perfect shuffle dislocations should occur at a
stress far lower than the measured ones: about 680 MPa (close to 0.01x). Such
stresses were reached in experiments on virgin materials (see the stress—strain curve
at 450°C in Fig. 7) and dissociated glide dislocations were evidenced. Thus,
Duesbery and Joos correctly predicted a change in mechanism at high stresses, but
the value of the transition stress should be reconsidered in the light of experimental
results.

2.4. The dislocation microstructures at high stress

2.4.1. The signature of low temperature, high-stress deformation

The previous sections clearly show that the low temperature, high-stress
deformation microstructures nucleated under resolved shear stresses larger than
1 GPa have particular signatures as compared to usual ones. At the resolution of the
weak-beam dark field images, dislocations are found to be perfect ones and they
lie in uncommon Peierls valleys like (1125/30° and <{123}/41°. Strong pinning
points are also found along their lines. These features bring evidence of the
nucleation of dislocations with different core structures at high stress and low
temperature.

The nature of the dislocations not depends only on the applied stress but also on
other thermomechanical conditions imposed to the material. Indeed, the same
resolved shear stress (about 2 GPa) induces the formation of largely dissociated
dislocations when reached after a prestrain ([54]; see Section 2.1.1) and of
perfect dislocations when applied to virgin crystals below 400 °C. In these two cases,
the dislocations were submitted to stresses larger than the stress for partial
decorrelation, since decorrelated partials were observed after a prestrain. This is in
agreement with the fact that the perfect dislocations found at high stresses and low
temperatures are not glide set dislocations.

2.4.2. The signature of low temperature, high-stress deformation: revisiting
previous works

Keeping in mind the striking features of high-stress dislocations, which clearly
emerge from the investigations reported above, we reexamine relevant studies
published some time ago in a different context.

Hill and Rowcliffe reported dislocations features of the high-stress type after
indentation at 300 °C, as can be seen in Fig. 6 of Ref. [53]. These dislocations were
not thought to be associated to the deformation process itself; they were assumed to
be geometrically required at the ends of block slip displacements of the material
under large stresses, close to the theoretical shear stress value. Similar dislocation
types were also found by another group after room temperature indentation in
the 1970s, but they were assumed to be irrelevant (V.G. Eremenko, private
communication).
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Most of the high-stress dislocations features can be found in the TEM pictures of
published research works on the micromachining of silicon surfaces. Although the
mechanism of material removal in the ductile mode must be related to the
formation of an amorphous phase, dislocations with average properties looking like
those of perfect dislocations were observed in some grinding conditions (see, e.g.,
[74]). Using cross-sectional TEM, Johansson et al. [75] were also able to image
perfect dislocations, besides the presence of cracks, in the vicinity of silicon surfaces
polished with 6 um diamond paste. Their published micrographs show dislocations
exhibiting the same original characteristics as those discussed above.

This rapid overview shows that perfect dislocations are systematically present in
high-stress dislocation deformation processes. Saka et al. [76] also found out a large
dislocation activity resulting from some fatigue process at room temperature.
However, the TEM micrographs do not allow one to draw a conclusion about the
nature of these dislocations.

2.5. Dislocation core structure and transformation

Since two types of dislocations exist in silicon, namely dissociated and undissociated
ones, it is of interest to determine whether they are nucleated in separate
temperature and stress domains, or could result from a transformation from one
form to the other upon switching from one stress and temperature domain to the
other one.

The various authors who observed perfect dislocations assumed that they were
located in the shuffle set, as follows from the calculations of Duesbery and Joos [45].
However, there is yet no direct experimental evidence about the nature of the
plane, glide, or shuffle, in which the core of these perfect dislocations is located.

Several experiments were conducted in order to check the ability of the
dislocation cores to undergo transformations. These experiments consist in
nucleating dislocations of one type under their specific nucleation conditions and
submitting this microstructure to experimental conditions where the other type of
core is observed.

2.5.1. From dissociated glide dislocations to perfect dislocations

A specific experiment was designed to check whether dissociated glide dislocations
could be transformed into undissociated dislocations [77]. A sample was deformed
at room temperature after having been previously deformed in the athermal regime
at 1050°C. It is well known that such a high temperature prestrain leads to a
microstructure of weakly dissociated dislocations, mainly of edge character, but that
does not contain straight crystallographic segments [78].

The microstructure obtained after room temperature deformation is complex.
Nevertheless, several features can be evidenced. In some areas of the thin foil, the
microstructure is not different from what is observed in an initially dislocation-free
sample. It consists of undissociated dislocations with a/2<{110) Burgers vectors
elongated along the (123) direction. However, the more frequently observed
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Fig. 14. Dissociated dislocations in the (111) glide plane of a crystal prestrained at 1050 °C and further

deformed at 293 °C under 5 GPa. There are two slip systems, A and B. (a) Weak-beam dark field (2.2g,

g =220); A and B are in contrast. (b) Weak-beam dark field (7.1, g = 1 1 1); the stacking fault of A is

in contrast, B is in contrast. (c) Weak-beam dark field (3.1g, g =202); A is out of contrast, B is in
contrast. After Rabier and Demenet [77].

microstructure is made of hexagonal loops of partial dislocations or widely
dissociated dislocations. Extra diffraction spots associated to twin bands can also
be evidenced in some areas. Examples of hexagonal dislocation loops are shown in
Fig. 14. Two glide systems A and B are associated to these loops, which are lying in
{111} planes and are composed of {110) segments. Contrast analysis (Fig. 14)
shows that slip system A contains only one type of partial dislocations, with Burgers
vector a/6[121]. These partial dislocations arise from the dissociation of
dislocations with a/2[110] Burgers vector into a/6[121]+4a/6[211]. The
dislocations found in_slip system B have a Burgers vector a/2[011] and are
dissociated into a/6[1 2 1] 4+ a/6[1 1 2]. Hence, there is a large difference in splitting
widths between the two systems.

Clearly, the hexagonal loops, widely dissociated half-loops, and twin bands are
related to dislocations created during the high temperature prestrain. From their
initial dissociated configurations, these dislocations moved under the high stress
applied at room temperature and were blocked into {(110) Peierls valleys. The
latter are the signature of dissociated dislocations of the glide set [2,14].
Furthermore, the application of a high stress can lead to the motion of uncorrelated
partials, partial dislocation sources as well as to twinning. These results show that it
is also difficult to transform dissociated glide dislocations into perfect dislocations.
In short, at room temperature and under high stress, mobile dislocations of the
glide set have the same (110) Peierls valleys as at high temperature and remain
dissociated.

2.5.2. From perfect dislocations to dissociated glide dislocations

Rabier and Demenet [69] performed in situ annealing in a transmission electron
microscope in order to promote the transformation of perfect dislocations into
dissociated glide dislocations. A low-deformation microstructure was obtained at
room temperature and under a pressure of 5GPa in the conditions described in
Section 2.2.1. It contained perfect dislocations with their usual character, like
{1125/30°, as well as cracks. This sample was annealed in the heating stage of a
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Fig. 15. Snapshots taken during an in situ anneal of undissociated dislocations up to 685 °C in the TEM.
After Rabier and Demenet [69].

JEOL 200CX electron microscope at temperatures up to 685 °C. The evolution of
the microstructure was recorded with a video camera.

Fig. 15 shows snapshots of a recording that was taken during an annealing time of
90 min. Evidently, there is no major evolution in the shape of the perfect dislocation
glide loops. Only the front of the loops moves, dislocation segments staying locked
in the (112)/30° and screw Peierls valleys. This shape evolution provides no
evidence of a transformation. However, in an area of the same thin foil that initially
looked free of dislocations (but not of cracks), the annealing treatment induced the
nucleation at crack edges of glide loops with hexagonal shapes characteristic of the
glide set dislocations (Fig. 16).

This experiment reveals no evidence of a massive transformation of preexisting
perfect dislocations. It rather shows nucleation events of glide dislocations from
lateral crack surfaces, where undissociated dislocations are nucleated at room
temperature and under high stresses.

Asaoka et al. [66] also performed TEM in situ annealing on thin foils cut from
indented samples at 77 K. Annealing the microstructure of perfect dislocations at
673 K produced no change in the dislocation configurations. At 973 K, different
dislocation configurations were evidenced, in which dislocations were dissociated
and the lines were either curved or lying along (110) directions. These
dislocations of the glide set were connected to perfect dislocations that were
assumed to be shuffle dislocations. In parallel, the initial microstructure of shuffle
dislocations was not significantly modified. The authors concluded that shuffle
dislocations are still immobile at 973 K.

Saka et al. [76] used a FIB-machined sample designed in such a way as to be
saturated with interstitials, in order to study the possible shuffle to glide



74 J. Rabier et al. Ch. 93

Fig. 16. Nucleation of dislocations having the signature of glide set dislocations from lateral surfaces of
cracks during in situ annealing. After Rabier and Demenet [69].

transformation in the presence of point defects. A transformation started after
annealing at around 400 °C and seemed to be initiated at, or at least near, sharp
bends of the preexisting shuffle set dislocations. In the place of perfect dislocations,
which had moved away, faint contrast effects were found that were attributed to
debris or dislocation loops.

Hill and Rowcliffe [53] have annealed in situ a sample indented at room
temperature and found analogous features. The effect of annealing could be
distinguished after 30 min at 550 °C, but became substantial only after 1 h at 600 °C.
These annealing experiments show that 30° dislocations do not move at high
temperature under the residual stress present in indented samples. Rather, bowed-
out non-screw segments are seen to move rapidly, trailing long screw segments.

2.5.3. Conclusions about the evidences of dislocation core transformations
These experiments, which were aimed at changing the nature of the core structure
of dislocations, provide the following evidence:

- Dissociated glide dislocations do not transform into perfect dislocations at low
temperature and high stress. The dissociation widths increase under the
application of a high stress, which prevents the occurrence of any transforma-
tion. In the case where the applied stress induces a narrowing of the splitting
width, Demenet [55] and Grosbras et al. [79] demonstrated that it is impossible
to recombine a dissociated configuration.
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- Perfect dislocations resulting from high-stress deformation do not move
significantly in the temperature range where glide dislocation usually nucleate.

- There is no massive transformation of perfect dislocations. Rather, some
nucleation events occur, from which glide dislocation can move away and
multiply contribute to relax the initial microstructure. In these experiments, no
external stress was applied: the driving forces were either the residual
mechanical stresses resulting from the previous treatments or the chemical
forces built up from a supersaturation of interstitials.

2.6. Physical signatures associated to perfect dislocations

More insight about the actual core structure of perfect dislocations can be obtained
from their influence on the physical properties of the material. For these reasons,
physical characterizations of samples deformed at high stress and low temperature
were performed.

Experiments were designed to compare by means of positron annihilation the
defect populations after plastic deformation at high and low temperatures, which
are expected to contain different populations of point defects [80]. After room
temperature deformation, rather stable vacancy clusters appear and no evidence is
found for positron capture by dislocations. In contrast, after high-temperature
deformation (800°C), positrons are trapped in large vacancy clusters and
dislocations acting as combined traps. These point defects signatures show clearly
that the deformation mechanisms depend on temperature and stress. However, the
way the different dislocation structures formed during high-stress deformation at
room temperature influence point defect generation is an open question.

The physical properties of perfect dislocations, which are assumed to be shuffle
ones, were mainly probed through photoluminescence (PL) measurements. Pizzini
et al. [81] performed PL measurements on samples that were deformed following
the procedures reported in Section 2.2.1.

Typical PL spectra of samples deformed at room temperature and 150 °C are
shown in Fig. 17. They are rather different from those typical of glide dislocations.
The canonical emission related to glide dislocations, which consists of a quartet of
lines conventionally labeled D1-D4, at about 0.807, 0.877, 0.945, and 1.00eV [82], is
in fact absent. The PL spectrum of the sample deformed at room temperature
presents instead a broad emission at about 0.8-0.9 eV, whose shape is influenced by
the detector cutoff, and three narrow peaks at 0.973, 1.003, and 1.023eV that
emerge from the background.

In the sample deformed at 150 °C [Fig. 17(b)], the narrow peak intensities are
strongly reduced and an additional contribution to the background is observed
around the Si free-exciton emission at 1.1 eV. In addition, an asymmetric and broad
emission peaked at 1.029 eV is replacing the sharp peak at 1.023 eV that is observed
in the sample deformed at room temperature [Fig. 17(a)]. It was suggested that the
peak at 1.029eV is the superimposition of two different spectral contributions.
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Fig. 17. Photoluminescence spectra of deformed silicon. (a) At room temperature, under 5 GPa and
(b) at 150 °C, under 5 GPa. After Pizzini et al. [81]. See text for detail.

Since the PL spectra do not show any evidence of specific emissions associated to
shuffle dislocations, Pizzini et al. [81] concluded that perfect dislocations present a
reconstructed core, and their generation is accompanied by the introduction of
point defects and point defect clusters. A broad band around 1eV is the only PL
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feature that could be directly related to perfect dislocations; it was explained by the
conjecture that gap changes are induced by the dislocation strain fields.

Steinman et al. [83] used samples analogous to those investigated in Ref. [81].
The samples were subjected to isochronous anneals at and above 300 °C. Fig. 18
shows PL spectra of the sample after deformation at room temperature under a
hydrostatic pressure of 5 GPa and a subsequent anneal at 300 and 400 °C. After
annealing at 300 °C, the PL intensity increases significantly. This can be interpreted
as unresolved dislocation-related luminescence (DRL) due to the presence of
typical features at D1-D4 line positions. In parallel, the intensity of the band
exhibiting a maximum at 1.02eV rapidly decreases. Further annealing at 400 °C
leads to an increase of DRL and a significative increase in the resolution of D4 and
D3 bands. As these bands are usually attributed to straight segments of dissociated
60° dislocations, this change in DRL after annealing of a microstructure of perfect
dislocations is consistent with the PL signature attributed to dissociated dislocations
of the glide set.

These PL experiments indicate some trends about the atomic structure of the
perfect dislocations:

- They are likely to be reconstructed.
- Their signatures are convoluted with that of point defects.

As far as core modifications or nucleation of glide dislocation are concerned, it
appears that a transition in the signature of PL spectra after annealing gives a
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Fig. 18. Photoluminescence spectra of deformed silicon: annealing effects. See text for detail. After
Steinman et al. [83].
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transition temperature lower than the one found by in situ TEM annealing. Two
explanations can be put forward for explaining this discrepancy. TEM is able to
show up local events with no statistical significance, whereas PL spectra are sensitive
to modifications in the bulk material or to premonitory mechanisms associated to the
nucleation of glide dislocations. In addition, the PL signatures attributed to perfect
dislocations disappear as soon as the transformation occurs, which is not consistent
with TEM observations. This could be explained by some modifications in the
signatures of perfect dislocations as a function of temperature (see Ref. [81]).

3. The core structure and mobility of perfect dislocations

Understanding the plastic properties and the nucleation of dislocations at high
stress requires knowledge of the actual core structure of perfect dislocations. The
major problem is to determine the location of those perfect dislocations, that is,
whether they are lying in a shuffle plane or a glide plane. Although one expects
perfect shuffle dislocations to be found at high stress, from an extrapolation of the
calculations by Duesbery and Jods [45], the apparent agreement of experiments
with these calculations needs to be confirmed. However, establishing unambigu-
ously the shuffle or glide nature of dislocations proved to be very difficult even for
the “usual” dislocations. This fed in the past the debate on the actual core structure
of dislocations in silicon. The straightforward method for core structure
determination is high-resolution electron microscopy (HREM). For usual disloca-
tions, it was necessary to resolve the (110) dumbbells for a dislocation aligned
along (110) Peierls valleys, that is, to discriminate between two atoms 0.14 nm
apart in the crystal projection. Although corrected HREM can nowadays achieve
this resolution quite routinely on perfect crystals, the actual structure of dissociated
dislocations in silicon has not been revisited and this problem is still open. The same
kind of HREM needs to be carried out on undissociated <112 »/30° dislocations,
which control the high-stress, low-temperature plastic deformation of silicon. The
challenge appears to be far more difficult since {(112) dumbbells need to be
resolved, which are composed of two atoms 0.078 nm apart in projection. Recently,
such a resolution was achieved on a perfect silicon crystal using a corrected STEM
[84], but high-stress dislocated crystals have not yet been investigated by this
technique. In this context, and as was previously done for dissociated glide
dislocations, only indirect methods are available to check whether those perfect
dislocations are in the shuffle set or not.

Analyzing the core geometry is a first step that can also provide useful
information on the low-energy configuration of perfect dislocations. Indeed, this
was already performed long ago by Hornstra [10], but these results have to be
revisited in view of the new data obtained on high-stress microstructures.
Furthermore, most of the work done since the advent of the weak-beam technique
(see Section 1) has focused on dissociated dislocations in the glide set.

In addition, atomistic studies were performed to calculate how stable core
configurations and Peierls stresses of perfect dislocations depend on the atomic
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location of the core. Such calculations were also performed to study the nucleation
of dislocations from a surface step. Atomistic calculations of dislocation cores in
silicon, using interatomic potentials and ab initio methods, benefited from most of
the simulation techniques available to date. Long-range deformation fields
associated to dislocations were tackled using either periodic or cluster-like
conditions.

Not only were calculations done for looking at the structural properties of
straight dislocations, but elementary kinks of atomic dimension were also
investigated. Peierls stresses were determined either by applying a stress on the
dislocation core or by using methods like the nudged elastic band (NEB), which are
useful for determining transition configurations and energies. These techniques and
their limitations are discussed in several papers (see, e.g., [32,85]).

3.1. General features of perfect dislocations in the shuffle plane: a geometrical
analysis

The lowest energy partials of the glide type contain lines of atoms with dangling
bonds lying almost in the {1 11} glide plane and allowing for easy reconstruction. In
contrast, shuffle dislocations — besides screw dislocations that are discussed in
Section 3.2.1.1 — exhibit dangling bonds, which are parallel and normal to the glide
plane. This geometry is a priori unfavorable for the pairing of bonds. This is the
reason why it is of interest to check the density of dangling bonds along dislocations
as a function of their line orientation in the shuffle plane. Hornstra was the first to
perform this analysis [10]; he found out that the density of dangling bonds increases
from <(112)/30° to {(110>/60° and <112>/90° for perfect dislocations with 1/2
(110> Burgers vector. This simple analysis is in good agreement with the
observation of high-stress microstructures built with {(112)/30° perfect disloca-
tions.

However, the variability of dislocation orientations found in experiments
between {(112)»/30° and (123)/41° lines has prompted one of us to consider
the geometry of kinks on {112)/30° and the ability for reconstruction of dangling
bonds in the dislocation cores [86]. Since the dangling bond density on the {112/
30° dislocation is low, the dangling bonds are far apart and their reconstruction is
unlikely. Then, in order to overcome the conflict between a low dangling bond
density and reconstruction, such reconstructions could occur on <1125/30°
dislocations showing geometrical kinks. Indeed, a dislocation built with {1125/
30° and <110)/60° segments can achieve both a dislocation line with a low
dangling bond density and the possibility for those dangling bonds to reconstruct.
Then a stable {123)/41° segment is obtained, consistent with the observation of
such a Peierls valley at high stress (see Fig. 19). Furthermore, the lattice distortions
associated with such a reconstruction could be minimized at kink sites.

Such dangling bond geometry appears on {1 11} cleaved surfaces, which exhibit a
(2 x 1) reconstruction as was proposed by Pandey [87]. In this surface reconstruc-
tion, dangling bonds attach to in nearest neighbors and share m bonding. This
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[112)/30°

(a) b

Fig. 19. (111) glide plane viewed in the shuffle set and showing dangling bonds. The edge of the

supplementary plane of a dislocation is indicated. (a) <112)/30° dislocation and (b) <112)/30°

dislocation with (110 kinks; this allows for bond pairing and results in a {123 )/41° dislocation. After
Rabier [86].

surface reconstruction is metastable and is irreversibly transformed into the (7 x 7)
stable configuration by annealing at 600 °C. Such a (2 x 1) reconstruction was also
recently found in ab initio calculations [88] during the propagation of a crack in
silicon. A reconstruction of this type is exemplified in the case of a (110)/60°
dislocation segment located at a kink site in which dangling bonds were put in
nearest neighbor positions, as in the case of {111} surfaces (see Fig. 20). Then a ©
bond can be formed; this is accompanied by a deformation of the lattice
perpendicular to the dislocation line. If such a configuration could be obtained in
the case of the (110)/60° dislocation, other line directions would not favor
dangling bonds in nearest neighboring positions. However, the strained and
“dangling” bonds present in the core of unreconstructed segments could permit the
trapping of impurities and intrinsic defects, which may be relevant to the
observation of strong pinning points.

3.2. Atomistic calculations

Atomistic computations were performed for 60° and screw dislocations, which are
of interest since perfect dislocations of this type appear to be very mobile and are
likely to be important in the glide loops development and location. <112)/30° and
{1233/41° dislocations were not investigated yet, mainly because calculations are
difficult owing to the low periodicity along the dislocation lines.

3.2.1. Perfect dislocation structure and stability

3.2.1.1. Screw dislocations. 1t is often assumed that screw dislocations govern the
plastic behavior in materials with high Peierls stresses, because of their usually low
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(b

Fig. 20. Possible reconstruction at kinks. (a) Perfect 60° shuffle dislocation with dangling bonds in 1 and 2.

(b) Perfect 60° shuffle with a © bond. Dangling bonds have been exchanged between 2 and 3 positions,

and pairing of bonds has occurred between 2 and 1. This reconstruction is expected to be feasible at kink
sites. After Rabier [86].

mobility related to their ability to dissociate in a sessile way. Their ability to cross
slip can also favor a change in core location, for example, between glide and shuffle
sets. This explains why several previous investigations were devoted to the structure
and stability of the screw dislocation core. From the analysis of the diamond-
cubic structure, Hornstra first proposed two possible core structures for the
undissociated screw dislocation, located either in a shuffle plane or in a glide plane
[10]. The shuffle core was relaxed using first-principles calculations by Arias and
Joannopoulos [89]. Another study based on first-principles calculations confirmed
that a shuffle core was energetically favored [90]. However, more recently, it was
suggested that a glide core reconstructed along the dislocation line is the most
stable configuration [91]. Finally, we mention that a new configuration, with a mixed
shuffle—glide core at the intersection of the glide and shuffle sets, was proposed by
Koizumi et al. on the basis of interatomic potential calculations [92]. Fig. 21 shows
all these possible core structures.

The shuffle configuration (A) is characterized by the conservation of the original
coordination for atoms in the vicinity of the core, though at the expense of strong
bond distortions. For instance, bonds close to the core and linking atoms on both
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Fig. 21. Possible core configurations for a non-dissociated screw dislocation: shuffle (A), mixed

shuffle/glide (B), simple period glide (C;), and double-period glide (C,). Thicker dark gray bonds

show a Burgers circuit; the dislocation line along (110) is marked by a dashed line in each case.

Atoms located in the immediate vicinity of the core are represented by black spheres. After Pizzagalli

et al. [90]. The A, B, C positions for a screw dislocation are shown in the insert on the left side
of the figure.

sides of shuffle planes are disoriented by about 20° compared to the bulk [89,90].
The mixed shuffle-glide core (B) involves the breaking of bonds along the
dislocation line, apparently resulting in a double row of dangling bonds. As already
remarked by Hornstra, such a configuration is likely to be unstable due to symmetry
considerations [10]. The simple period glide configuration (C;) corresponds to a
core composed of 3-coordinated atoms, with coplanar bonds and bond-bond angles
of approximately 120°, pointing to sp” hybridized states. The computed distance
between two 3-coordinated atoms is 0.216 nm, to be compared with 0.235 nm, the
bulk nearest neighbor distance [93]. Finally, the double-period glide configuration
(C,) allows recovery to a core with only 4-coordinated atoms, after some atomic
rearrangements starting from the C; glide configuration. The dislocation core is
made up of two (110) rows of dimers, with a dimer length of 0.247 nm, both rows
being connected by bonds having a length equal to 0.237 nm.

The relative stabilities of the possible core configurations obtained with different
computational methods are reported in Table 2. All performed calculations suggest
that the most stable core for a non-dissociated screw dislocation is located in the
glide set, with a double period along the dislocation line. The shuffle core A is the
second best solution. Electronic structure calculations all indicate that the B core is
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Table 2
Relative stabilities of possible core configurations for a non-dissociated screw dislocation (in eV/Burgers
vector), computed with different methods

Screw Methods

core
Stillinger—Weber Tersoff EDIP Tight binding First principles Tight First principles
potential potential DFTB [94]  [91] binding [91] [90]

A 0.19 0.31 0.07  0.60 0.54 0.62 0

B 0.05 1.39 030 x X X 0.32

G 1.81 0.85 081 x X X 0.86

G, 0 0 0 0 0 0 X

Note: For each column, the zero energy reference is the lowest energy configuration. x means that the
value is not available or the considered configuration was found unstable.

unstable, as originally predicted [10]. This casts some doubts on the validity of
classical potentials results, especially Stillinger—Weber, for which B is the second
best solution, very close to C,.

Obviously, it is difficult to explain these results by considering the relaxed
core structures. Originally, the shuffle core A was thought of as the best option,
since the dislocation center is as far as possible from lattice atoms, thus minimizing
the deformation. Nevertheless, the reconstruction leading to the glide configuration
C, apparently allows obtaining a narrow dislocation core with weaker bond
distortions.

3.2.1.2. 60° dislocations. The other non-dissociated dislocation that is apparently
found to be very mobile during plastic deformation of zinc-blende materials is the
60° dislocation. In his seminal work, Hornstra proposed a possible structure for the
60° dislocation with a core centered in a shuffle plane [10]. This configuration
named S; here and represented in Fig. 22 has the particularity to include a
3-coordinated atom, with a dangling bond oriented along a (111 direction. This
dislocation core appears to have a high mobility compared to the screw dislocation;
it was identified in previous theoretical works with either classical potentials or
ab initio calculations [95-97]. Nevertheless, the situation is maybe more complex
since other possible configurations are stable with a lower core energy. In Fig. 22,
we show two of those, obtained from interatomic potential or tight-binding
calculations. The glide core G has a very low energy, making it the most stable. The
other shuffle core, named S,, is less stable than the glide core, but still with a lower
energy than S;.

3.2.2. Dislocation mobility

3.2.2.1. Perfect screw dislocation: Peierls stress and energy. There were several
early attempts to calculate the Peierls stress of the non-dissociated screw dislocation
in silicon [92,98,99]. Empirical potential computations give values ranging from
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Fig. 22. Three possible core configurations for a non-dissociated 60° dislocation: one glide G (left) and
two shuffle, S; (middle) and S, (right).

0.013 to 0.048eV/A® (0.03u to 0.11y). This large range highlights the difficulty in
obtaining accurate values from interatomic potentials in the case of silicon and
points at the necessity of using first-principles methods. However, as shown
previously, the latter only can be employed in association with small computational
systems, for which a careful treatment of boundaries is required. This problem is
even more crucial for Peierls stress determination since approaches developed to
take boundaries into account are not well suited for treating the displacement of
dislocations.

In fact, applying an increasing stress progressively shifts the dislocation, therefore
modifying the surface—dislocation interaction in the case of a cluster calculation, or
the dislocation—dislocation interaction in the case of periodic boundary conditions.
These undesirable effects have to be accounted for if one aims to obtain an accurate
value of the Peierls stress in small systems.

This issue has been tackled in the case of the shuffle screw dislocation in silicon
[100]. The computed Peierls stress, corrected for spurious boundary interactions, is
equal to 0.026eV/A® or 0.07u. This value is much lower than measured Peierls
stresses for partial dislocations [101]; it can be compared to the Peierls stress of the
glide core C,, which has also been recently computed with a value of about 0.04 eV/
A3, that is, 0.11x [91]. The glide configuration appears more difficult to displace
under applied stress than the shuffle configuration, possibly because of the presence
of reconstructed bonds in its core.

Besides the Peierls stress, a related and interesting quantity for characterizing the
mobility of dislocations is the Peierls energy, which is simply the energy barrier to
overcome for displacing a straight, infinite dislocation in the lattice. This energy is
difficult to compute using standard relaxation techniques, since it is necessarily
associated with an unstable dislocation structure. Attempts to extract the relevant
information from molecular dynamics simulations have been made [102]. However,
the proposed method is tricky and appears more suited for interatomic potentials than
for first-principles calculations. Recently, it was proposed to combine both the nudged
elastic band method [103] and first-principles calculations performed with periodic
boundary conditions, in a way that allows to determine the energy and structure of a
dislocation for any migration path [85]. In the case of the non-dissociated screw in
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Fig. 23. Variation of dislocation energy (top), its first derivative, that is, the force exerted on the

dislocation by the lattice (middle), and dislocation core width (bottom) as a function of the position of a

non-dissociated shuffle screw dislocation. The calculations are performed along two possible paths that
are indicated in the middle figure. After Pizzagalli et al. [85].

silicon, the computed energy variation as a function of the dislocation position along
two possible paths is shown in Fig. 23. The one with the lowest Peierls energy
corresponds to the displacement direction previously obtained from calculations using
an imposed shear strain [100,104]. The derivative of the calculated energy variation as
a function of the dislocation position is the force on the dislocation due to the lattice
(Fig. 23). The maximum along the path corresponds to the maximum resistance of
the lattice to the dislocation displacement. Converting this force into stress is
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straightforward and leads to a value of about 0.025eV/A® in close agreement with
previous Peierls stress determinations [100]. Although the computational cost is high
due to the use of NEB, there is no need to use boundary corrections with this
technique. Another advantage is the possibility to explore high-energy directions for
displacing dislocations such as A—C;— A, which are not accessible when using
imposed shear strain calculations [100].

Finally, information on the structure of a dislocation can be gained from
combined NEB and first-principles calculations. For instance, the displacements of
core atoms leading to the dislocation migration can be monitored. In the case of the
shuffle screw dislocation, the variation of the core width during the displacement
was investigated and is represented in Fig. 23. Clearly, the dislocation core expands
when the dislocation is centered in an unstable configuration. A possible explana-
tion is that the system gains energy by spreading out atomic displacements, thus
minimizing deformation in the dislocation center. Investigations of higher moments
of the displacements distribution should provide additional information on the
dislocation geometry, such as core asymmetry.

3.2.2.2. Perfect screw dislocation: mobility by formation and migration of
kinks. Partial dislocations are known to move at high temperature by the
formation and migration of kink pairs, both being thermally activated processes
[12]. Non-dissociated perfect dislocations are obtained at lower temperatures and
for higher stresses, but since the lattice resistance to dislocation motion is large in
silicon, thermal activation is also expected to play a nonnegligible role in that case.
Nevertheless, there were very few theoretical studies of kinks on perfect
dislocations and those exclusively concern the screw dislocation. Hence, Koizumi
and Suzuki investigated the kink velocity as a function of the applied stress and the
energy dissipated during kink motion [105]. Their use of a high-energy core
configuration does not allow extracting quantitative data regarding the energetics
and structure of a single kink.

Recently, Pizzagalli et al. used both interatomic potentials (EDIP, Lenosky) and
first-principles methods to study the formation and migration of a kink pair on a
perfect shuffle screw dislocation [106,107]. Dislocations and kinks were modeled
using silicon clusters (large for potentials, small and passivated with hydrogen
atoms for first-principles calculations), one or two kinks being included in the
simulation system (Fig. 24). In this work, an unbiased and exhaustive search for all
possible configurations of a kink was made initially thanks to the dimer method
[108]. This method is particularly useful for studying structural defects with complex
reconstructed cores, for which many nonintuitive configurations may exist such as,
kinks on partial dislocations in silicon [33]. Thereafter, the migration and formation
mechanisms were determined using the nudged elastic band technique. Interest-
ingly, few stable kink configurations were obtained, in contrast with the situation
prevailing for partials [33]. This might be explained by the fact that the core of the
shuffle screw dislocation is not reconstructed.

Fig. 25 shows two possible structures of a kink. Both are degenerate in energy, at
least at the level of the accuracy of first-principles calculations. The first one, called
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Fig. 24. Ball and stick representation of kinks on a non-dissociated shuffle screw dislocation. Gray atoms
indicate screw core atoms while kinks are marked by black atoms. After Pizzagalli et al. [106].

the narrow kink in Ref. [106], is characterized by a 5-coordinated atom in its center,
whereas in the second one, called the dangling bond (DB) kink, the central atom is
3-coordinated. Both cores have in common distorted and stretched bonds, with a
bond length increasing by 7-13% and an angular deviation greater than 30°.
Following a procedure that allows one to obtain the energetics of a single kink in
small clusters, the single kink formation energy F, was determined to be 1.36eV.
With interatomic potentials and EDIP, the narrow kink structure is found to
favored. Instead, the Lenosky potential gives the DB kink structure as the most
stable configuration. The formation energy of a single kink computed with EDIP

is b =091eV.
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Fig. 25. Ball and stick representations of two possible kink structures shown along two different
orientations (left and right). (a and b) Narrow kink and (c and d) DB kink. After Pizzagalli et al. [106].

Nudged elastic band and dimer calculations were also carried out by the same
authors in order to investigate the migration of a kink along the shuffle screw
dislocation line [106,107]. Fig. 26 shows the migration mechanism corresponding to
the displacement of a single DB kink separating from a symmetric kink, using first-
principles calculations. Migration of the kink requires first the formation of a bond
between the 3-coordinated atom and one of its neighbors, which then becomes 5-
coordinated. This configuration is the narrow kink. After the breaking of one bond,
the structure recovers the original DB kink configuration, shifted by a Burgers
vector b along the dislocation line. Because bonds in the center of the kinks are
largely distorted and stretched, the energy variations for forming and breaking
bonds are small, yielding a low kink migration energy. Extrapolating values for an
infinite kink-kink separation, the first-principles kink migration energy Wy, is
estimated to be lower than 50meV. The kink migration mechanism determined
with the Lenosky potential is similar, with almost identical migration energy [107].
With EDIP, a slightly different process is obtained since the initial state is the
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Fig. 26. NEB calculation of excess energy versus reaction coordinate (middle graph) corresponding to
the migration of one kink, for two different kink—kink separations, and ball and stick representations of
the successive structures (a) to (e) for a separation varying from 5.5b to 6.5b. After Pizzagalli et al. [106].

narrow kink configuration. During migration, an intermediate stable configuration
including three 5-coordinated atoms is formed [106]. However, this migration
mechanism appears globally close to the previous ones, with a low associated
energy barrier W, of about 160 meV.

Another important mechanism to be determined relates to the formation of a
kink pair. Its theoretical determination brings additional issues, compared to the
calculation of kink migration. In fact, it is necessary to consider a system that
encompasses two kinks, with a separation distance large enough to prevent
spontaneous kink recombination. First-principles NEB simulations of such a system
is out of reach of computational facilities for the time being. However, this
limitation vanishes for interatomic potential calculations, and the formation
mechanism of a kink pair on a shuffle screw dislocation was investigated using
both EDIP [106] and the Lenosky potential [107]. In both cases, the results show
that the formation occurred following a sequence of structural rearrangements
involving the breaking and formation of several bonds. Obviously, the computed
mechanisms are somewhat different since the most stable configuration for a kink is
different with EDIP and the Lenosky potential. However, the calculated energy
barriers for the formation of a kink pair of width 3b are in very good agreement,
with 1.25eV for EDIP and 1.19¢eV for the Lenosky potential.

Besides thermal activation, the second parameter to take into account for
understanding dislocation mobility is stress. In fact, non-dissociated perfect



90 J. Rabier et al. Ch. 93
dislocations are observed in the low temperature, high-stress regime. Large shear
stresses, estimated to about one to several GPa, are then required for displacing
dislocations. This is very different from the situation occurring for partial
dislocations, where thermal activation is the key factor. Despite its importance,
very few investigations focused on the effect of the shear stress on kink formation
and migration. The only study again concerns the shuffle screw dislocation [106].
The effect of the shear stress on the formation and migration of kinks was
computed using the EDIP potential. Fig. 27 represents the energy variation due to
the formation and subsequent separation of a kink pair on a perfect shuffle screw
for an increasing shear strain. The repeating patterns clearly visible on each curve
correspond to the energy variations due to the kink migration. Neglecting the
migration, the energy variation as a function of the kink—kink distance d and the
shear strain can be fitted by the following elastic expression [12]:

AE = — g +2Fy — tbhd, (6)

where K is an elastic coefficient, / the height of one kink, and 7 is the applied shear
stress. In case of no applied strain, the energy increases continuously toward the
asymptotic value 2Fy. As expected, a shear stress is required to decrease the energy
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Fig. 27. Kink pair energy as a function of the kink-kink separation d (in Burgers vector unit) for various
shear strain values (full lines). Fits from elasticity theory are reported as dashed lines. After Pizzagalli
et al. [106].
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and for preventing the spontaneous recombination of the two formed kinks. More
importantly, the energy barrier to the formation of the stable kink pair, that is the
maximum energy on each curve, is strongly dependent on the shear strain. Accurate
determinations, taking into account the additional energy barrier due to migration,
yield energy barriers of 1.20eV for a strain of 0.5% (i.e., about 0.28 GPa) and only
0.65eV for 1.5% (i.e., about 0.85 GPa) [106]. The last value is low enough to suggest
that, in silicon, shuffle screw dislocations should be mobile in the range of low
temperatures and high stresses involved in the deformation experiments reported in
Section 2.

3.2.2.3. Mobility of 60° dislocations. As far as we know, there is little information
available regarding the mobility of the various 60° dislocation cores represented in
Fig. 22. Using the Stillinger—Weber potential, Li et al. determined a Peierls stress of
approximately 1 GPa for the S; core [95], confirming that the 60° dislocation is more
mobile than the screw dislocation. However, additional investigations of the
structural and mobility properties of the 60° dislocation would be welcome. Both
core configurations appear to be less mobile than S; and additional calculations are
needed for a better understanding of the competition between core stability and
mobility.

3.2.3. Effect of pressure on the core structure of perfect dislocations

Because perfect dislocations are observed in high-stress conditions where a
hydrostatic component is present in the stress tensor, it is of interest to check the
effect of such a hydrostatic pressure on their core structure configuration and
mobility. One can expect three kinds of effects due to pressure: (i) the material is
usually stiffer (this is the case for silicon), with an increase of elastic constants that
affect the strain field around the core, (ii) the core structure and its stability could
be modified, and (iii) pressure could favor dislocation core mobility along certain
directions. One may then wonder whether theoretical investigations of non-
dissociated perfect dislocations are really representative of experiments.

One first step toward an improved modeling would consist in taking into account
an applied pressure. To our knowledge, there were few investigations of pressure
influence on dislocation core properties. Durinck et al. [109] determined how
pressure would modify the Peierls stress in olivine, an important compound for
geophysicists. These authors showed that in the presence of a pressure of 10 GPa,
some slip systems would harden whereas others would become softer, a result that
cannot be fully explained by elastic effects. Pressure effects were also considered
in the case of screw dislocation in bec metals such as tantalum ([110]; see also
Chapter 92 by Yang et al. in the present volume). It was shown that the structure of
a screw dislocation core could be significantly modified upon the application of a
10 MPa pressure. However, no pressure dependence of the Peierls stress, scaled by
the shear modulus, was found. Regarding semiconductors, Umeno and (v?ern}'f [111]
recently computed the theoretical shear stress as a function of an applied pressure
in diamond, silicon, germanium, and two different silicon carbide polytypes, using
first-principles calculations. These authors showed that in silicon, the ideal shear
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strength is decreased by compression. This finding cannot be understood with a
simple hard-sphere model, for which compression results in the squeezing of the
spheres and a larger resistance against shear, a picture well suited for metals.
Recently, we investigated the effect of an applied pressure on the stability and
mobility properties of the non-dissociated screw dislocation in silicon [94]. A given
pressure is applied by homogeneously straining computational cells before the
system is relaxed and core energies are calculated. The variations of core energies
for two stable core configurations, the glide C, and the shuffle A, are shown in
Fig. 28. While the presence of an applied pressure tends to increase the core energy
of C,, it lowers the A core energy. This result indicates that pressure can have either
a positive or a negative impact on dislocation stability. It is very tempting to
interpret these variations in view of an analysis of the core geometry. In fact, the A
configuration is characterized by four largely stretched and distorted bonds.
Applying a pressure brings atoms closer together, thus lowering the amplitude of
bond stretch and distortion, which decreases the core energy. This would mean that
under zero pressure conditions, the shuffle A core is in a tensile state. However, it is
difficult to understand why pressure tends to increase the core energy of the C,
configuration simply in terms of the core geometry. As a consequence, the effect of
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Fig. 28. Dislocation core energies of a screw dislocation as a function of an applied pressure, for

shuffle A and glide C, cores. Values were determined from tight-binding DFTB (full lines) and

DFT-GGA (dashed line) calculations, assuming that the core radius is equal to one Burgers vector b.
After Pizzagalli et al. [94].
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pressure on dislocation core stability is hardly predictable using simple arguments
and atomistic calculations are mandatory for its determination.

The pressure tends to favor the shuffle core A for the screw dislocation.
However, it remains energetically less favorable than the glide core C,. Assuming
that core energies vary linearly as a function of pressure, one expects a phase
transition for an applied strain of about 7%, that is, a pressure of 20 GPa. This is
much higher than the pressure corresponding to the phase transition from the
cubic-diamond to the B-tin structure, suggesting that the glide core C, is the most
stable configuration in all the available pressure ranges.

The core energy determination as a function of pressure requires a careful
treatment. In the case of dislocation calculations using periodic boundary
conditions, the total energy E of the relaxed system including N dislocations can
be written

E= Ebulk + Einter + NECs (7)

where Eyy is the total energy of the same system but with no dislocations, Ej,er
the interaction energy between dislocations, and E. the core energy of a single
dislocation. E, Epyy, and Ej,; all depend on pressure, and have to be correctly
determined for an accurate calculation of E.. The largest part of the energy
increases in £ and Ey,y is due to the applied strain. Both terms are obtained using
systems with same geometry, thus leading to the cancellation of errors associated
with total energy calculations. The last term, Ejner, is usually computed in the
framework of anisotropic elasticity theory. In the presence of pressure, one has to
consider that (i) interactions between dislocations are modified due to the reduction
of distances between them and (ii) the elastic constants change as a function of
pressure. Ei,., has to be computed with the appropriate corrections, otherwise
errors in core energies variations can be dramatically large [94].

The influence of an applied pressure on the mobility of the core of the non-
dissociated screw dislocation was recently studied. Two possible paths were
considered: (i) along a (112 direction for which the dislocation moves in {111}
shuffle planes and visits alternatively A and B configurations and (ii) along (110,
the dislocation moving in a {001} plane and passing through A and C,
configurations. The dislocation core mobility was determined from computations
of energy barriers for cores displacement along the selected directions, using the
approach described in Section 3.2.2. The results reported in Fig. 29 show two
opposite behaviors. For the first displacement direction, along ABA, an applied
pressure leads to a progressive reduction of the Peierls energy. Conversely, the
other displacement direction along ACA is increasingly energetically expensive.
Therefore, this result indicates that for a given dislocation, slip directions could be
hardened or softened in the presence of pressure. As for dislocation core stability, it
is difficult to predict whether energy barriers will increase or decrease under
pressure without the help of numerical simulations.

The presence of pressure leads to a noticeable modification of the properties of
dislocation cores. In fact, both the stability and the mobility of the cores are
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Fig. 29. Screw dislocation gliding along two different directions (see text), as a function of an applied
strain. Maximum energies along the MEP are the Peierls energies; they are reported in the inset graph
for clarity. After Pizzagalli et al. [94].

modified, either positively or negatively. Although silicon becomes stiffer with
pressure, dislocation cores could be more mobile along specific directions. In the
specific case of silicon, both the stability of the shuffle core structure A is enhanced
and the dislocation displacement in shuffle planes is made easier. This is in
agreement with experimental results, which suggest that dislocations are located in
shuffle planes.

3.2.4. Nucleation of non-dissociated dislocations

In Section 2.2.1 we showed that in the low temperature, high-stress regime, non-
dissociated dislocations were located in the neighborhood of micro-crack surface
edges. Defects on these surfaces (steps, ledges) likely act as dislocation sources.
Furthermore, dislocation nucleation in silicon deserves a study since there are no
preexisting dislocations in virgin crystals and the nucleation and multiplication
stages are the signature of macroscopic plasticity.

Compared to investigations of stability and mobility of dislocations, many fewer
efforts have been devoted to nucleation. One reason is the extreme difficulty to
study experimentally the onset of plasticity, essentially because of the short
timescale. Nevertheless, theoretical approaches can allow one to obtain comple-
mentary information in that case. From numerical simulations focused on metals,
the following conclusions were obtained [112]: (i) the formation of a dislocation
from a perfect surface is very unlikely, due to a high-energy barrier and (ii) the
presence of a simple defect like a step largely reduces this energy barrier by
localizing stresses. Several parameters are expected to have an influence on the
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nucleation mechanism, such as the structure of the surface defect (step structure,
height), stress orientation, and temperature.

Regarding silicon, investigations of the possible dislocation formation from a
surface step were performed by Godet et al. [96,97], from many interatomic
potentials and first-principles calculations. Fig. 30 shows how a perfect 60°
dislocation is nucleated from a surface step and glides in the shuffle plane passing
through the step when the system is uniaxially strained by 13.6%; the stress
direction is contained in the surface, at an angle of 22.5° with the step normal. The
core of the dislocation is in the S; configuration (middle structure in Fig. 22), in
agreement with the fact that 60° dislocations are supposed to be more mobile than
screw dislocations. The influence of several parameters was studied, leading to the
following results:

- 60° dislocations were obtained under both tension and compression, always in
shuffle planes.

- No screw dislocations were nucleated.

- The latter point can be explained by considering the Schmid factors and the
Peierls stresses for the screw and 60° dislocations.

- In contrast to metals, there is no localized shear in planes close to the step
before the onset of plasticity.

[100]L

foin

Fig. 30. Successive stages of the formation and propagation of a 60° dislocation from a strained surface,
starting from a surface step. (a) Unstrained, and strains of (b) 10.4%, (c) 11.5%, and (d—f) 13.6%.
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- The step geometry plays an important role on the nucleation mechanism.
That the passivation of silicon surface with hydrogen prevents dislocation
formation.

- Higher steps tend to make dislocation formation easier, with lower critical
strains.

In the previous calculations, reduced dimensions do not allow for the 3D
formation of a dislocation half-loop. This limitation was overcome by Izumi and Yip
[113], who examined the nucleation mechanism of a half-loop dislocation from a
sharp corner in silicon. These authors performed classical molecular dynamics
simulations in high stress, low temperature conditions, which resulted in the
formation and propagation in a shuffle plane of a dislocation half-loop composed of
two 60° segments and one screw segment. The dislocation core structures were not
described, but it is likely that the screw dislocation is in a B configuration, while a S;
core is obtained for the 60° dislocation, since the Stillinger—Weber potential is used
in this work. Configurations extracted from these simulations were then used for
determining minimum energy path (MEP) with the NEB method. More recently,
Godet et al. performed molecular dynamics simulations of the three-dimensional
formation of a dislocation half-loop from a {111} ledge, considering different stress
orientations and temperatures [114]. In the low temperature range, the outcome,
shown in Fig. 31, looks very similar to the results of Izumi and Yip [113]. In fact, a
half-loop located in a shuffle plane and including two 60° segments and one screw
segment is obtained. The dislocation core structures are in agreement with bulk
calculations.

Fig. 31. Dislocation half-loop nucleated from a surface step in silicon at 600 K using the Stillinger—Weber
potential. AB and BC are two 60° segments. CD and DE are two screw segments separated by a kink.
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In their study, Izumi and Yip [113] indicated that the resolved shear strain for
nucleation is 5.1%. In the work by Godet et al. [114], the strain value applied on the
system at the onset of plasticity was 13.6%, which corresponds to a resolved shear
strain of about 6.2% in the glide plane. The difference between the two values may
come from the different geometry of the system, a {1 00} sharp corner in one case
[113] and a {111} ledge in the other one [114]. Nevertheless, both values suggest
that dislocation nucleation from surfaces requires large stresses, seemingly way too
large compared to experimental results. However, two important points have to be
considered here. First, the deformation rate in numerical simulations is several
orders of magnitude higher than in experiments. It was recently shown that such a
difference has a strong effect on critical stresses for dislocation nucleation [115],
leading to a reduction by 50% at 300 K. Second, in numerical simulations, the
dimensions of the considered systems are at best of several tens of nanometers. At
this scale, it was shown experimentally in the case of nanowires and nanopillars that
plasticity processes involve stresses substantially larger than in bulk materials.

4. Discussion

Recent experiments reported in Section 2 showed that, in silicon, perfect
dislocations control plastic deformation at high stress. Fingerprints of such a
regime were also found in some early experimental publications. This evidence
motivated theoretical works using atomistic computations, reported in Section 3, in
order to sort out core configurations and other properties of such perfect
dislocations. The results of these two approaches are compared in this part in
order to obtain a comprehensive view of this deformation regime. The transition
between this regime and the other one ruled by dissociated dislocations is also
discussed, together with the actual location of the dislocation cores.

Results obtained on other semiconductors are finally mentioned for discussing
whether a plastic deformation regime controlled by perfect dislocations is a generic
property of diamond-cubic semiconductors.

4.1. Summary of experimental and numerical results

4.1.1. Results
What was learnt from both experiments and calculations can be summarized as
follows:

1. Non-dissociated dislocations clearly play an important role in the plastic
deformation of silicon at low temperature, as shown by many high-stress
experiments. This includes deformation experiments under a confinement
pressure greater than 1.5 GPa, and scratch and indentation tests. Signatures of
such dislocations can also be found during micromachining of silicon surfaces.
This regime is definitely different from the high temperature one, where
dislocations are dissociated and move under low applied stresses. The stress
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required for displacing or nucleating non-dissociated dislocations is estimated
to be larger than 1 GPa at room temperature.

2. These non-dissociated dislocations are characterized by a/2{110) Burgers
vectors and glide in {111} planes. Several kinds of dislocations were observed.
Typical characters are 30°, 41°, and screw, but short 60° segments were also
reported. In one experiment, wavy dislocations, exhibiting an average screw
orientation, were found to be constituted of short 41° segments. Very little else
is known about the physical signatures of these dislocations, although a few
works suggest that these signatures are convoluted with those of point defects.

3. Apparently, partial dislocations obtained by high temperature deformation
cannot be transformed into perfect dislocations. Conversely, the transforma-
tion of perfect dislocations into dissociated dislocations was observed, but only
at a limited rate and in specific regions.

4. There exist several possible stable structures for both the screw and 60° non-
dissociated cores, which are located in either glide or shuffle set planes. Glide
set configurations seem to have the lowest energies in both cases. No
information is available regarding the atomic structure of the 30° and 41°
dislocation cores.

5. Regarding mobility, most of the available data concern the non-dissociated
screw dislocation. The Peierls stress is known to be 4 and 6 GPa for the shuffle
and glide cores, respectively. In the presence of an applied pressure, the
mobility of the shuffle screw dislocation is enhanced. From the investigation
of kink formation, one expects thermal activation to play a nonnegligible
role in the mobility of the shuffle screw dislocation in the high stress,
low temperature regime. For the 60° dislocation, the Peierls stress is estimated
to be about 1GPa for the shuffle core, while the undissociated glide core is
not glissile.

6. Non-dissociated dislocations can be nucleated from surfaces in the shuffle set
under high-stress conditions. The dislocation that is formed the most easily
has a 60° orientation. Conversely, at high temperature, partial dislocations are
obtained.

Usually, experiments and numerical simulations are rather complementary and it
may be difficult to make meaningful comparisons. Nevertheless, there are two cases
where this can be done. The first one is related to the mobility of non-dissociated
dislocations. The computed Peierls stress for the non-dissociated shuffle screw
dislocation is 4 GPa, in good agreement with the order of magnitude of the
extrapolation at 0K of flow stress measurements below 300 °C (Section 2.3.2).
In addition, the extrapolation at 0K of yield stress measurements performed
in the medium temperature range fits quite well the computed values of the
Peierls stress for glide dislocations. Numerical simulations revealed that the
thermally activated motion of non-dissociated screw dislocations was possible at
300 °C under an applied stress of 1.5 GPa, as reported from yield stress measure-
ments (Section 2.3.2). The second case concerns the nucleation of dislocations.
Molecular dynamics simulations of the dislocation nucleation from surface steps
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suggest that the two types of dislocations, partial or non-dissociated ones, can be
generated depending on the applied stress and temperature. This defines two
regimes, in agreement with experimental findings.

4.1.2. Current limitations

In spite of numerous studies dedicated to non-dissociated dislocations, there are still
many open issues. In fact, there are several limitations to both experiments and
numerical simulations, which tend to hinder progress in this domain. Regarding
experiments, several limitations are either intrinsic to the techniques or due to the
specificity of deformation experiments. First, dislocation observations are
performed postmortem. Therefore, one may wonder whether the dislocations
participating in plastic flow do not experience some modifications before being
observed by TEM. In other words, are the dislocations at rest the same as the
moving dislocations? In situ experiments seem difficult to perform because of
complications associated with high-stress requirements. Secondly, although atomic-
scale resolution can be achieved by TEM, the determination of the atomic structure
of dislocation cores is hardly feasible in silicon using this technique. Finally, non-
dissociated dislocations are obtained in a high-stress regime, which usually results in
highly damaged samples, containing cracks, point defects, and various micro-
structural defects. This makes the analysis all the more difficult.

Numerical simulations suffer from other limitations. Accurate first-principles
calculations are very limited in size, as they include usually only a few hundreds of
atoms. Given the complexity of dislocation cores and the associated long-range
stress fields, first-principles calculations are then restricted to infinite straight
dislocations, or to very simple defects along the dislocation lines. Moreover,
calculations are essentially static, because computational costs prevent performing
dynamical simulations. Another option is the use of classical interatomic potentials,
which allow simulating large systems and performing dynamical studies. This
provides a way for investigating realistic situations like the thermally activated
propagation of curved dislocation segments. However, the reliability of the
obtained results is questionable because of the inability of the available potentials
for silicon to model reconstructed cores accurately. Tight-binding calculations could
be a third viable option, with a good accuracy and a considerable speedup
compared to first-principles methods.

4.2. Transition between two regimes: a core structure transformation?

The calculations of Duesbery and Joos [45] fed most of the interpretations about
the existence of perfect dislocations at high stress in silicon. This regime can be
explained by the fact that perfect shuffle dislocations are the more mobile ones at
high stresses. These calculations rely upon dislocation modeling with the Peierls—
Nabarro model, using as input gamma surfaces calculated from atomistic
computations. Yet, the position of the transition stress is very sensitive to the
gamma surface input and to the assumed shape of the kink pairs. Thus, these
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calculations cannot be considered as giving reliable transition stress values
(P. Carrez, private communication). Furthermore, recent atomistic calculations
[116,117] show that a perfect shuffle screw is more mobile than a 30° glide partial in
the whole range of stresses. This makes questionable the hypothesis of an intrinsic
mechanism responsible for such a transition, unless the mobility of perfect {112/
30° dislocations has to be considered instead that of the screw ones.

Extrinsic factors could also be put forward to explain this transition. Indeed,
experimental observations show numerous pinning points on perfect dislocations,
whose density increases with temperature. Such pinning points could slow down
progressively perfect dislocations to the benefit of partial dislocations.

A point to be clarified is whether the nucleation of partial glide dislocations is
assisted when perfect shuffle dislocations preexist. Then, one would have to
consider possible mechanisms for core transformation.

The core of PS and DG dislocations can be transformed from one to the other
through several elementary mechanisms. The two basic mechanisms that allow
dislocations moving over one atomic distance to switch from one set to the other are
cross slip and climb (Fig. 32). Some mechanisms that can be involved in such
transformations are similar to those proposed in the frame of composite models of
dislocation core structures, in which a dissociated dislocation can ‘“move” from
glide set to shuffle set in its dissociated form (see, e.g., [1]). However, in composite
models, the transformation mechanisms are relevant to the movement of partial
dislocations from glide to shuffle positions and a constriction of the parent
dislocations is not required. In the present case, the transformation mechanism
concerns the change from perfect to dissociated dislocations (as well as the reverse
transformation), and a different mechanism can also be involved, namely cross
slip [57].

Mechanisms involving the nucleation of fresh dislocations in the stress field of
dislocations of another type can also be considered but will not be discussed here.
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Fig. 32. Transformation from a perfect shuffle dislocation into a dissociated glide dislocation. The perfect
dislocation has moved by one interplanar spacing into the glide set by: (a) stress-assisted (shear stress a;;)
cross slip and (b) climb under the action of a chemical force (F,,). After Rabier [86].
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Cross slip is a conservative mechanism that occurs under stress with the help of
thermal activation. Climb requires point defect annihilations at the dislocation cores
and can also be stress-assisted, but to a lesser extent. This indicates that cross slip
can be operative at lower temperatures than climb, and points at the core structure
of perfect screw dislocations as an important factor determining the stability of
perfect shuffle dislocations.

Cross slip is initiated when a critical part of the parent dislocation deviates in the
cross slip plane. If the parent dislocation is a perfect one, this can be achieved
through local stress concentrations. In the case of a dissociated dislocation, a local
constriction of the stacking-fault ribbon is required in a first step to allow for a
deviation. Thus, cross slip may be easier from PS to DG than from DG to PS.

Dislocation climb proceeds by point defect absorption or emission at jogs. In the
same way, climb mechanisms, which allow transforming a DG into a PS, are less
efficient in the presence of a stacking fault. However, point defect absorption can
take place either on a preexisting constriction or on one of the glide partials,
transforming it into a partial located in the shuffle plane. In this last case, this can
help forming a constriction. As compared to previous mechanisms, the transforma-
tion PS-DG is trivial: a PS segment climbs over one atomic distance into the glide
set; it can then dissociate and form a DG segment.

Thus, mechanisms allowing the transformation from dissociated glide dislocations
to perfect shuffle ones are possibly more difficult than the reverse ones. The results
of atomistic computations reported in Section 3.2.2 show that it is impossible to
move a perfect shuffle dislocation out of its glide plane under the action of a shear
stress. Hence, cross slip cannot be considered as a viable mechanism to move a
screw dislocation from the shuffle set to the glide set. A climb mechanism is then
expected for such a transformation, but it requires a sufficient point defect mobility
and concentration.

What was described above about core transformations is relevant to a change of
the location of a perfect dislocation core from the shuffle set to the glide set.
Another subsequent limiting factor in obtaining a dissociated dislocation in the
glide set could be the dissociation process itself. Indeed, starting from a perfect
dislocation in the glide set, the incipient partial dislocations are submitted to a
Peierls stress in the dissociation (slip) plane. This Peierls stress can be so large as to
prevent any gain in elastic energy during the splitting process, unless thermal
activation assists the motion of the partial dislocations. Takeuchi [118,119]
calculated that a Peierls stress on partial dislocations of the order of 0.02u to
0.04u, which is realistic in the case of silicon, could prevent dissociation in the
absence of thermal activation.

Following the conclusions of Takeuchi, one may ask whether the transition from
a perfect to a dissociated core in silicon could be relevant to the dissociation of a
perfect dislocation located in the glide set, which dissociates as soon as temperature
and stress allow for the partial dislocations to move. This hypothesis can be ruled out,
however, on the basis of the atomistic calculations on dislocation nucleation
(Section 3.2.4), where dislocations were found to be nucleated as perfect ones in the
shuffle set at high stress and in a dissociated form in the glide set at high temperature.
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Are they two different and independent deformation microstructures depending
on the thermomechanical conditions? Experimentally, no massive transformation
was evidenced from preexisting perfect dislocations to dissociated ones. The
interpretations proposed by Rabier and Demenet [69] and Saka et al. [76] seem to
be very different, that is, there is no transformation but nucleation of dissociated
dislocations, apparently with no relation to preexisting perfect defects [69], or there
is a core transformation [76]. The two experiments were performed in very different
conditions, but a common interpretation could be that a small critical nucleus of
transformed core can provide a source for a new dislocation population [86],
leaving unaffected most of the parent dislocation microstructure.

4.3. Are non-dissociated dislocations in the glide or the shuffle set?

Since the pioneering works of Shockley [9] and Hornstra [10], it was always
assumed that non-dissociated dislocations would have a shuffle core. In fact, it
appeared easier (and less energetically expensive) to break a single bond to form a
shuffle core than to break three bonds to form a glide core. However, we know that
the covalent nature of silicon bonding tends to favor reconstruction, as is the case
for partial dislocation cores. Thus, one may wonder whether the early assumption is
still valid in the view of recent results. Considering experimental observations first,
it is extremely difficult to reach certainty on this matter although, in principle, it
could be possible to perform direct observations of dislocation cores at the atomic-
scale level, using for instance corrected HREM.

Numerical simulations should be more appropriate for determining the core
structures. All calculations suggest that for screw and 60° orientations, the most
stable dislocation cores exhibit a glide character. However, considering first the
screw dislocation, the Peierls stress of the reconstructed glide core is 50% larger
than that of the shuffle core. Also, due to reconstruction, the kink migration energy
is likely to be higher for the glide core than for the shuffle one. Therefore, the glide
screw dislocation is expected to be less mobile than the shuffle core, and one may
wonder whether the most stable dislocation cores are those that really matter for
plastic deformation. This issue is even more critical in the case of the 60°
dislocation. The glide core appears to be much more stable than the shuffle core,
but it is sessile with a very high Peierls stress. Atomistic simulations also raise
another point. The denominations shuffle or glide are related to the type of {111}
plane the center of the dislocation core is located in. In the case of a dislocation core
with a complex reconstructed structure, or encompassing two adjacent {111} planes
(see, for instance, the core S; for the 60° dislocation), it might be difficult to settle
the question in terms of shuffle or glide.

4.4. Other semiconductor materials

From the results obtained about perfect dislocations at high stress in silicon, the
question arises of whether this feature is specific to silicon or is generic to



§4.4 Dislocations in Silicon at High Stress 103

semiconductor materials. As far as the ductile to brittle transition is concerned, the
macroscopic behavior of most semiconductors is analogous to that of silicon. This
transition was experimentally observed and analyzed on several materials such as,
for instance, GaAs [120] and SiC [121]. High-stress microstructures were studied in
III-V compounds (GaAs, InSb, InP, ...) and in group IV materials.

Using a solid confining pressure of 1.2 GPa, it was possible to extend the usual
plastic domain of plasticity and to deform GaAs, InP, and InSb down to 77 K [122].
This increase in the investigated plastic range led to the observation of a hump in
the stress versus temperature curves. Furthermore, a transition appeared clearly in
a plot of the logarithm of the resolved shear stress as a function of the inverse of
temperature. The microstructures, which consisted mainly of perfect screw
dislocations below the transition temperature, were interpreted as resulting from
a glide to shuffle transition. However, no calculations have been done yet in I1I-V
compounds to confirm the occurrence of this transition. Very recently, indentations
on InSb were performed both at room and liquid nitrogen temperatures by Kedjar
[123] and Kedjar et al. [124]. At room temperature, the microstructure is made up
of partial dislocations, while at 77K it is made up of perfect screw dislocations.
However, no segment was found lying along the <112) or {123} directions. This
is in agreement with results presented in Ref. [122]. The case of III-V compounds
appears to be close to that of silicon, but with some differences in the dislocation
microstructures at high stress.

Compression tests at constant strain rate were conducted on 6H- and 4H-SiC, two
of the most common polytypes of this material; the plot of the logarithm of the
resolved shear stress as a function of the inverse of temperature exhibits a transition
associated with two well-defined microstructures [125,126]. At high temperature,
dislocations are dissociated into leading-trailing pairs of partials, whereas at low
temperature only the leading partial with silicon core is observed together with its
associated stacking fault. Other observations on 4H-SiC deformed under a
confining pressure of 5 GPa at room temperature and 150 °C, using an anisotropic
multi-anvil apparatus, show that the microstructure is composed of both widely
dissociated dislocations and undissociated perfect dislocations [127]. The very high
density of dislocations after deformation prevented making a fine analysis of the
microstructure. It would be of interest to perform high-stress experiments on cubic
silicon carbide, which is now available in bulk dimensions.

In Ref. [93], the authors examined the various possible configurations of a perfect
screw dislocation in group IV materials by means of first-principles calculations. It
appears that the stable screw dislocation is located in the shuffle set for Ge and in
the glide set for diamond. No experimental observations were reported yet in Ge.
Preliminary experiments on diamond deformed under a pressure of 5GPa in a
multi-anvil apparatus show a high density of dislocations without apparent
dissociation, but this result has to be confirmed [128]. In addition, in plastically
deformed natural type Ila brown diamonds after high pressure, high temperature
annealing, Blumenau et al. [129] found that although most 60° dislocations are
found to be dissociated, some appear to be undissociated. This is providing
evidence of the existence of two types of dislocations cores.
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In conclusion, several semiconductors exhibit the same behavior as silicon under
very high stress. This could be a general feature for all semiconducting materials,
but with specificities for each material depending on the structure and the covalent
versus ionicity balance of the bonding.

4.5. Perspectives

Regarding the issue of glide versus shuffle dislocation cores, experiments are
needed to determine the exact location of the perfect dislocations and to establish
a correlation between their actual core structures and their physical properties.
The investigation of the core structure of dislocations has to be performed using
corrected HREM. Clearly, the main difficulty arises from the preparation of an
adequate specimen with edge-on dislocations, whose core is not affected by kinks,
impurities, or any defect that may blur the structure determination. As far as
electron microscopy is concerned, in situ nanoindentation experiments can be
useful provided this technique can be extended down to atomic scale. This is a
technical challenge.

Spatially resolved photoluminescence could help understanding the shuffle-
glide transition since it was shown that perfect dislocations have different sig-
natures than dissociated glide dislocations. It would be interesting to follow
locally the change in signature of dislocations and, in particular, to check whether
some transient core structures or premonitory events are associated to the
transition.

Currently, there is a lack of EBIC experiments devoted to the electrical
properties of dislocations in silicon. Experiments such as scanning transmission
electron beam induced current (STEBIC) could be used to reinvestigate these
electrical properties, especially those of perfect dislocations.

EPR is a technique that has been widely used in the determination of the
structure of dissociated dislocations (see Section 1.3); this technique would be of
interest for determining whether dangling bonds are present in the core of a perfect
dislocation.

Concerning numerical simulations, atomistic computations of <{112%/30° and
{123)/41° dislocations are lacking. Understanding why they are controlling the
low temperature deformation microstructures is one of the key issues: the
determination of their core configurations and of the structure and mobility of
kinks on these dislocations is needed. Nucleation of new dislocations in the stress
field of perfect dislocations should also be investigated by atomistic computations.
This could shed light on the transition between the two modes of deformation in
silicon. The influence of the nature and availability of nucleation sites on dislocation
nucleation should also be checked.

Finally, some macroscopic properties should be revisited. As an example, the
brittle to ductile transition could be investigated in the light of the existence of
perfect dislocations. HREM and TEM experiments should be devoted to examine
the very first steps of dislocation nucleation at crack tips. Passivation treatments
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should also be used on Si samples in the range of high stress in order to check their
influence on mechanical properties, as was done in the other deformation regime
(see, e.g., [130]). This could provide information on dislocation mobility as well as
on the issue of dangling bonds within the core of perfect dislocation. Finally, the
transition between perfect and dissociated dislocations could be reinvestigated by
determining the influence of stress and temperature.

4.6. Concluding remarks

In 1996, in their paper dedicated to the mobility of dislocations in silicon, Duesbery
and Joos [45] stated that: “Theoretical arguments, without exception, predict that
slip should occur on the shuffle planes. With equal unanimity experimental
observations indicate that slip does occur on the glide planes.” However, a review
of the scientific literature clearly indicates that perfect dislocations exist at high
stress, bringing back consistency to the former theoretical analyses of the 1950s.
Following this argument, the perfect dislocations should glide on the shuffle set
planes. Although indirect evidence exists to support this hypothesis, the current
state of knowledge does not allow one to draw a clear and definite conclusion on
this last point. More has to be done to understand the actual core structure of
dislocations in silicon, and the transition between high- and low-stress deformation
regimes.
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1. Introduction

The micrograph shown in Fig. 1(a) was taken in 1998 in the framework of a
transmission electron microscopy (TEM) study on the e,g-phase in the system
Al-Pd-Mn [1]. The eg-phase has very large lattice parameters and contains about
1500 atoms in its unit cell. According to the high degree of complexity of the
structure, the material is referred to as a complex metallic alloy (CMA).

In the micrograph, a structural defect is seen, which has a remarkable similarity
to an edge dislocation in a conventional simple structure. Fig. 1(b), as a typical
example, shows a high-resolution TEM micrograph of an edge dislocation in
BaTiOs [2], imaged in end-on orientation. The dislocation core is in the center of
the micrograph (arrow) and terminates an inserted halfplane, which extends to the
right-hand side. Around the core, the lattice planes are bent on a nanometer scale
due to the presence of the dislocation strain field. The defect in the CMA [Fig. 1(a)]
shows noticeable similarities, but there are also clear differences. The most obvious
one is in the length scale. The lateral extension of the defect in the CMA is larger by
about one order of magnitude, and correspondingly a high number of atoms per
unit layer, of the order of 10, is involved in the defect structure. Also, there are six
planar structural features, which apparently terminate at the core (arrow) of the
defect.

Defects as shown in Fig. 1(a) are the subject of the present chapter. They are
referred to as metadislocations, and occur in numerous structurally complex
metallic materials. The concept of metadislocations addresses a central problem
in the plasticity of materials with large lattice parameters: In these materials,
conventional dislocation-based deformation mechanisms are prone to failure. This
is a direct consequence of the elastic strain energy, which, per unit length of
dislocation, is given by

2
ub R
Eg=—fIn|— 1
¢l 47 n(r())’ ( )

where b is the length of the dislocation Burgers vector and u the shear modulus [3].
R and ry are the outer and inner cutoff radii for the integration of the strain field,
and fis a geometrical factor of the order of unity, which depends on the character
of the dislocation. In a typical crystal, R/roa 10* and hence In(R/ry) ~ 9.2, so that the
energy is approximately ub” per unit length [4]. As a result of the proportionality
of elastic energy and the square of the Burgers vector length, dislocations with
large Burgers vectors are generally energetically unfavorable. Accordingly, in
structures with lattice parameters exceeding, say 1.0nm perfect dislocations are
unlikely to form.
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Fig. 1. High-resolution transmission electron micrographs. (a) A metadislocation in the complex metallic
alloy (CMA) phase &,5-Al-Pd-Mn [1] and (b) an edge dislocation in BaTiO; [2] (courtesy of C.L. Jia),
both imaged in end-on orientation. The arrows indicate the dislocation cores.

In 1950, Frank [5] approached the problem of dislocations in large-unit-cell
structures by introducing the concept of hollow dislocations. He demonstrated that
for a dislocation of large Burgers vector, there exists an equilibrium state in which
the dislocation core is an empty tube. The idea is that the heavily strained region of
matter around the dislocation core is removed, which requires the introduction of
internal surfaces. In particular situations outlined by Frank [5], the internal surfaces
are energetically less costly than the strained volume and hence the total energy of
the system is reduced. Hollow dislocations, with Burgers vector length of 1.5 nm and
larger, were experimentally observed in a number of materials, for example in
carborundum [5] and SiC [6].

Another system in which perfect dislocations with large Burgers vectors are
found are Cgp crystals. Cgo crystallizes in a fcc structure with 1.41nm lattice
constant, and perfect dislocations with Burgers vector length of about 1.0 nm were
experimentally observed [7]. The structure of these crystals, however, can be
understood as a face-centered assembly of Cgy molecules, that is an upscaled one-
to-one replacement of fcc-arranged atoms by Cgy molecules, connected by van der
Waals forces. In these crystals, internal surfaces are of low energy and the shear
modulus is very small. Accordingly, in this particular case, the formation of large
Burgers vectors is not surprising. This concept, as well as that of hollow dislocations,
does not apply to metallic materials with large lattice parameters.

In recent years, CMAs emerged as a novel field in materials science [8]. These
materials are intermetallic phases, which possess a highly complex atomic structure.
The most prominent feature of CMA phases is that they have large lattice
parameters, typically ranging from one up to tens of nanometers. With the advent
of this research field, new interest in defects and plasticity of large lattice parameter
materials emerged. Indeed, deformation processes involving novel mechanisms and
defect types were discovered in CMAs.

Metadislocations, the subject of the present chapter, are among the conceptually
most stunning types of defect discovered in CMAs. Their construction is closely
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related to the so-called phason defects, which, after a brief recall of the
characteristic structural features of CMA materials in Section 2, is introduced
in Section 3. The concept of metadislocations is introduced in Section 4. We
describe the essential features from the example of a ““basic”” metadislocation, the
metadislocation with six associated phason halfplanes in the “basic’ g¢-phase, and
then proceed to other types that are based on the same concept. In Section 5, we
address the question of how metadislocations are involved in plastic deformation
mechanisms and finally, in Section 6, we briefly discuss metadislocation types in
other crystal structures and generalize their construction principle.

2. Complex metallic alloys
2.1. Structural features

The atomic structure of most CMAs is characterized by the following features,
which can be taken as a working definition for this class of materials:

e The lattice parameters are large, exceeding, say, 1.0nm. Correspondingly, the
unit cells are of large volume (frequently referred to as ‘“‘giant unit cells”) and
contain many tens up to several thousands of atoms.

e The atoms are locally arranged in a cluster substructure, in which icosahedral
coordination plays a prominent role.

e A substantial amount of disorder is present in the ideal structure, that is, the
structure contains inherent disorder.

These criteria are mutually dependent.

2.1.1. Lattice parameters

In metallic systems, the icosahedral atom arrangement due to the high packing
density is favorable (see below) but locally involves fivefold rotational axes, which
are not compatible with translational periodicity [9,10]. Hence, this type of local
order is unfavorable to form in structures with small unit cells, when the lattice
parameters are close to or smaller than the diameter of the icosahedral
coordination shells. Argued the other way round, if for a given composition of
metallic elements the formation of icosahedral clusters is particularly favorable
(regarding the atomic radii, the number ratios of atomic species, etc.), long-range
order will preferably organize in the form of a structure with large lattice
parameters. Indeed, if modulated structures are excluded, the vast majority of
phases in metallic systems with large lattice parameters possess an icosahedral-
symmetric cluster substructure. In very particular cases, that is, in suitable alloy
systems and within limited compositional ranges, the lattice parameters may
approach macroscopic dimensions and the translational symmetry is replaced by a
scaling symmetry. Such structures, referred to as quasicrystals [11], can hence be
formally regarded as special cases of CMAs with infinitely large lattice constants.
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2.1.2. Cluster substructure

The tendency to form a cluster substructure is due to a fundamental structural
principle for metals and alloys: Generally each atom wants to surround itself by as
many neighbors as possible at a maximum packing density. This requirement can be
satisfied by atom coordination according to polyhedra of the icosahedral group [12].
These polyhedra include fivefold rotational axes, which are arranged on a periodic
lattice with only slight deformation. Icosahedral arrangements of 12 spheres around
a central one provide a “closer packing than closest packing” [13], that is, closer
packing than is possible with spheres of the same size. In the icosahedral
configuration, a central atom can be surrounded by 12 atoms of slightly larger
diameter (up to 10%) still making contact with it. According to Samson [14], the
complexity of the structure probably arises from the difficulty of fitting polyhedra
with fivefold axes into a periodic crystal.

In CMAs, the majority of atom coordinations are icosahedrally symmetric.
Frequently, one finds a decoration of certain atomic positions with concentric shells
of icosahedral polyhedra around a central position. These arrangements are
referred to as cluster substructure or clusters in short. Three types of cluster
substructure, based on Bergman, Mackay, and Friauf polyhedra, are found
particularly often in CMAs and can be used for a classification of the latter [15].

The Bergman cluster is an icosahedral symmetric arrangement of 116 atoms on 5
concentric shells around one central position. It was firstly identified by Bergman,
Waugh, and Pauling [16] in the cubic phase Mgs,(Zn,Al),, which has a lattice
constant of 1.416 nm and a unit cell comprising 162 atoms. In the Bergman cluster, a
central atom is surrounded by an icosahedron of 12 slightly larger atoms. This group
of 13 atoms is surrounded by 20 atoms on the corners of a pentagonal
dodecahedron. The next 12 atoms lie on the corners of an icosahedron, which is
surrounded by a 60-atom shell. The corresponding polyhedron is frequently
referred to as a “‘soccer ball,” a truncated icosahedron, which has 20 hexagonal and
12 pentagonal faces. Twelve additional atoms, located out of 12 of the 20 hexagonal
faces complete the Bergman cluster.

In the Mackay cluster [17], a central position is surrounded by three concentric
shells, an icosahedron, an icosidodecahedron and another, larger icosahedron.
These define 12430+ 12 = 54 atom positions. The Mackay cluster is a basic
structural element, for instance of the cubic a-Al-Mn-Si [18]. Clusters referred to
as Mackay-type are closely related to Mackay clusters, but may show slight
deformation or differing site occupation, in particular of the inner shell, which is
frequently not fully occupied due to steric constraints. The e-phases, which will be
discussed extensively below (Section 2.2), are based on Mackay-type clusters.

The Friauf polyhedron consists of a truncated tetrahedron, which has four
triangular and four hexagonal faces, around a central position. The next shell is a
regular tetrahedron with atom positions out of the hexagonal faces such that the
outer shell has 28 triangular faces and 16 corners [12]. Friauf polyhedra are
prominent structural elements in the cubic B-Al;Mg, phase, which has a lattice
constant of 2.82 nm and 1168 atoms per unit cell [14]. In this structure, the central
position is occupied by a Mn atom, the truncated tetrahedron is occupied by 12 Al
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atoms and the regular tetrahedron by Mg. Five Friauf polyhedra sharing hexagonal
faces can form a larger 47-atom cluster, referred to as the VF-polyhedron [19].

Due to the presence of icosahedral clusters the irrational number of the golden
mean plays an important role in CMAs. It is given by t = 1/2(+/5 4 1), which
numerically amounts to about 1.6180 ... (see Appendix). Icosahedral coordination
is closely related to the golden mean since the latter is equal to the ratio of next-
neighbor and second-next-neighbor distances in a regular pentagon. Also, it can be
expressed as T = 2 - cos(n/5), which involves the angle of 36°, a prominent angle in
pentagonal and icosahedral arrangements.!

2.1.3. Disorder

The presence of inherent disorder in CMA structures is closely related to the
presence of a cluster substructure. Configurational disorder results from statistically
altering orientations of a particular subcluster inside a given cage of atoms. A
prominent example is c,-Al-Pd-Fe [20]. Primary structural building blocks of this
structure are edge-sharing icosahedral cages filled by two different cluster motifs.
These occur in five different orientations, such that the average structure of the
different cube arrangements forms a regular dodecahedron.

Chemical or substitutional disorder results from fractional occupancy of certain
lattice sites by different elements of similar metallic radius. This causes a variable
amount of these elements in the structure and extends the stability range of the
corresponding phase in the phase diagram. In Mgs,(Al,Zn)49, for example, three
atom sites can be occupied by either Al or Zn atoms, leading to an extension of the
stability range in the Al-Mg-Zn system over a wide spread of values at almost
constant Mg content.

Displacement disorder and fractional site occupation arise from steric constraints.
High amounts of these types of disorder occur for example in f-AlzMg, from
incompatibilities in the packing of Friauf polyhedra. Split occupation is also caused
by geometrical hindrances. In this case, two lattice sites are too close to be occupied
simultaneously. Locally, only one site can be occupied, while the other remains
empty, which in the average structure corresponds to an occupation factor of 0.5 for
both sites.

The presence of disorder can lead to a significant increase of the energetically
favored icosahedral coordinated sites. In f-AlsMg,, for example, the disorder is the
result of the tendency to maximize the number of icosahedral coordination shells
that is compatible with the coordination requirements of the Mg atoms. Introducing
disorder by splitting certain Al and Mg sites into such of partial AI/Mg occupancy
leads to a gain of 48 icosahedra per unit cell (corresponding to an increase of almost
8%) [14].

L At this point, let us make a comment on the phase p-Al-Mg. The exact stoichiometry of this phase is
not Al;Mg,, as it is commonly referred to. A close look at the phase diagram shows that the composition
at the congruent melting point is Alg; sMgsss, which closely corresponds to the result of the structure
model, Al;;0Mgyss [12]. The number ratio between Al and Mg atoms hence amounts to 1.61, and is
therefore much closer to the golden mean than to 3/2.
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2.1.4. Degree of complexity

The most straightforward means to specify the degree of complexity of a given
structure is through the number of atoms in the unit cell. In these terms, the
complexity range of CMA phases spreads over several orders of magnitude. The
lower limit (which is not rigidly defined) is marked by structures such as cubic
AITMy, (TM = Mo, W, Mn, Tc, Re), which have a lattice constant of 0.75 nm and
26 atoms per unit cell, or hexagonal ¢-Al;(Mn; (lattice constants a = 0.75 nm and
¢ = 0.79nm, 28 atoms per unit cell) based on interpenetrating Mackay clusters in
different orientations. Among the most complex structures known to date are the
cubic B-Al;Mg, phase, which has a lattice constant of 2.82nm and 1168 atoms
per unit cell [14], and &g-Al-Pd-Mn (C2mm, lattice constants a = 2.389 nm,
b =1.656nm and ¢ = 5.80nm [21], about 1480 atoms per unit cell).

As seen from the examples given in this section, a wealth of CMA phases exists in
Al-based systems. In AI-TM systems (TM = Fe, Mn, Co, Ir, Os, Rh, Re, ... ) as well
as in some Ti-based systems, there are many CMAs with a local structure based on
Mackay and Bergman clusters. Various types of CMAs were also found in Zn/Mg-
based and Ti-based systems [15].

2.2. Example: the structure of ¢,-Al-Pd-Mn and the e-phase family

CMA phases frequently exist in close relationship to other phases of similar
structure, close or identical composition, which are based on the same cluster
substructure but with different lattice parameters. We refer to such groups of
related phases as “phase families.” A prominent example is the e-phase family,
which is based on the phase g4-Al-Pd—Mn.

The gg-phase has a composition around Al;4Pd,;Mny and is a ternary extension
of the binary phase Al;Pd. The structure of the latter was firstly solved by Taylor
[22], refined by Hiraga [23] and a modified structure model for gs-Al-Pd—Mn, which
will be discussed in the following, was presented by Boudard et al. [24]. c-Al-Pd-
Mn has an orthorhombic structure (space group Pnma) and possesses all features
typical of a CMA material. The cell parameters are large and amount to
a=2.389nm, b =1.656nm, ¢ = 1.256nm, and the unit cell contains about 318
atoms. The unit cell is shown in Fig. 2(a) in a perspective view, and in projection
along the [010] and [00 1] directions in Figs 2(b) and 2(c), respectively. The phase
exhibits a substructure, which is based on Mackay-type clusters (Section 2.1.2). The
central position is occupied by a Mn atom and is surrounded by an incomplete Al
shell (which in the average structure forms a dodecahedron), an Al icosidodecahe-
dron (30 atoms), and a Pd icosahedron (12 atoms). The cluster, which is frequently
referred to as Pseudo-Mackay cluster [25], contains, depending on the occupation
of the inner shell, about 52 atoms [Fig. 2(d)].

The structure of &c-Al-Pd-Mn can be described by an arrangement of
flattened hexagons, on the vertices of which the Mackay-type clusters are arranged
(Section 2.3). Adjacent clusters in a layer share three edges. This description
comprises about 90% of the atoms in the structure.
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Fig. 2. Structure of &5-Al-Pd-Mn. (a) Unit cell in perspective view. (b) Projection along [010].
(c) Projection along [001]. (d) Mackay-type cluster.

Perpendicular to the [01 0] direction [Fig. 2(c)], the structure can be described as
a stacking of eight layers of three different types: A flat layer (F) which is a mirror
plane in the structure, a puckered layer (P) and a slightly puckered layer (/)
containing the inversion center. Applying the symmetry operations of the Pnma
space group, the stacking of layers along the [010] direction is completed by the
respective mirror and inversion images F;, P;, P*, I, and P [25]. The subscript “i”
stands for inversion images of the respective layers with respect to the inversion
center, and the asterisk denotes the mirror images of the respective layers with
respect to the F and F; layers.

The structure of g4-Al-Pd-Mn contains a substantial amount of inherent
disorder, which in the structure model [24] is reflected by the presence of a high
amount of atomic sites with low occupation factors. Of the 48 independent atom
positions in the unit cell, only 18 have occupation factors of 100%. While the Mn
positions are fully occupied, of the 11 Pd sites, three possess Al/Pd substitutional
disorder. Of the Al atoms in the [ layers, three have a partial occupation factor.
These correspond to interpenetrating icosidodecahedra and form radial pairs
between next-neighboring clusters. All Al sites in the P-layers have partial
occupancy factors; most of them correspond to the inner Al shells around the
cluster centers, which are partially occupied due to steric constraints.

The g4-phase and the described cluster substructure form the basis of the other
members of the e-phase family. A sequence of related orthorhombic phases is
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referred to as g with /=6, 16, 22, 28, 34 according to the index of the strong
diffraction spot (00/), which corresponds to the interplanar spacing of about 0.2 nm
occurring in all phases. These phases have identical lattice parameters a and b, and
varying c-lattice parameters amounting to 3.24 nm (g1¢), 4.49 nm (g5;), 5.80 nm (&53),
and 7.01 nm (g34) in the Al-Pd-Mn system [26,27]. Note that the orthorhombic
e-phases in the literature are betimes referred to using alternative notations. The
€¢- and gyg-phases are denoted &' and W [see 24,28]: others refer to the &q-, £16-, and
&rg-phases as &', &'_1, and &' 3 [29] or as &/, &, and &), [30].

A further orthorhombic member of the e-phase family is the &-phase. It has
lattice parameters a = 1.9902 nm, b = 1.6612nm and ¢ = 1.4460 nm and can coexist
with the other orthorhombic e-phases taking well-defined orientation relationships
[28]. As for &g, the structure of the &-phase can be described by Mackay-type
clusters on the vertices of a lattice of flattened hexagons. However, while flattened
hexagons in two alternating orientations are used for the gg-phase, for the &-phase
only hexagon tiles of a single orientation are used, which are arranged in parallel
(see Section 2.3).

Further members of the e-phase family are monoclinic phases, which can be
described as local modulations of orthorhombic phases. These were extensively
described and classified by Heggen et al. [31].

Phases of the e-family are found in the alloy systems Al-Pd—(Mn, Fe, Rh, Re, Ru,
Co, Ir) and Al-Rh—(Ru, Cu, Ni) [26,32]. The monoclinic and the &-structures are
found as metastable phases in the AI-Pd-Mn as well as in the Al-Pd-Fe system.

2.3. Tiling description

A highly useful tool for depicting structural features, defects, phase boundaries, etc.
in CMAs is the representation in the form of a tiling. A tiling is a two-dimensional
projection of a given structure along a specific direction in terms of an area-filling
arrangement of polygons, which corresponds to characteristic structural features.
A simple (but trivial) example of a tiling is the unit-cell projection, which then,
depending on structure type and projection direction, leads to a space-filling pattern
of rectangles or rhombohedra.

A straightforward way to construct a useful tiling for a given CMA structure is to
connect the centers of its characteristic clusters. This is shown in Fig. 3 for the case
of g4-Al-Pd-Mn. Fig. 3(a) is a high-resolution transmission electron micrograph
along the [010] direction taken at an overfocus of about 30nm. Under these
conditions, the large spatial frequencies are emphasized, such that the cluster
centers are imaged as bright spots while smaller structural features are imaged at
weak contrast. A hexagon pattern corresponding to the positions of the cluster
centers can directly be seen. Connecting the cluster centers leads to the
characteristic tiling shown in the upper right part of the micrograph and in Fig. 3(b).

The tiling consists of flattened hexagons, which are arranged in two different
orientations. Neighboring hexagon rows have alternating orientations and equally
oriented hexagons are stacked in rows along [001]. The sequences of alternately
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Fig. 3. (a) High-resolution transmission electron micrograph of g5-Al-Pd-Mn along the [01 0] direction
with superposed hexagon tiling. (b) Hexagon tiling.

oriented hexagons along the [100] direction form puckered (001) planes with
a thickness of one c-lattice constant (the unit-cell projection is shown in gray in
Fig. 3(b)). These are referred to as hexagon planes in the following.

For a given structure, different tilings may be constructed. For gs-Al-Pd-Mn
viewed along the [010] direction, for example, an alternative representation in
terms of a rhomb tiling [33] was developed. Which tiling is chosen depends on
the structural features under investigation and on the methods applied. For the
description of defects in g¢-Al-Pd—Mn, the hexagon tiling is particularly well suited.
It can directly and unambiguously be derived from high-resolution TEM
micrographs as shown in Fig. 3(a), and it reproduces all characteristic features of
the different defects involved.

The phases related to g4-Al-Pd—Mn, that is, the other members of the e-phase
family and the &-phase, can be similarly described by tilings. Fig. 4(a) depicts the
erg-phase. For its description, in addition to the hexagon tiles, two other tiles are
required — a banana-shaped nine-edge tile and a pentagon. The latter are
alternately arranged along the [100] direction and form (001) planes regularly
stacked perpendicular to the [00 1] direction, forming a face-centered lattice. The
unit-cell projection is shown in light gray and the lattice directions are parallel
to those of the gg-phase [Fig. 3(b)]. Fig. 4(b) shows the &;4-phase, which can be
described utilizing banana-shaped polygons and pentagons only. The lattice is also
face-centered. Fig. 4(c) shows the &-phase, which is represented by a parallel
arrangement of only one type of hexagon. As indicated by the unit-cell projection,
this structure is tilted with respect to the gg-phase. Note that the &-phase as well as
the €j¢-phase can alternatively be described in terms of a monoclinic unit cell
(dotted). Fig. 4(d) depicts a phase boundary between the &- and the gg-phase. At the
position of the arrow the pattern of parallel hexagons changes to an antiparallel
arrangement.
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Fig. 4. Tiling representation of (a) the gyg-phase, (b) the g-phase, and (c) the &-phase. (d) Phase
boundary (arrow) between the &-phase and the gs-phase.

Fig. 5. Atomic decoration of the hexagon tile for the /, F, and P layers.

There exists a one-to-one correspondence between the tiling description and the
atomic positions. Similarly to a unit cell, each tile possesses a defined atomic
decoration. Fig. 5 shows the decoration of the hexagon tile for the F, /, and P layers.
The corresponding tiles for the [/ * P, F, P, and P layers are related to those
shown through the respective symmetry operations (Section 2.2). The correspond-
ing alternately oriented hexagon is obtained via clockwise rotation by 72°.
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Hence, with a given atomic decoration, the atom positions in the portion of
structure described by a tiling can be unambiguously reconstructed.

3. Phason lines and phason planes

Phason lines and phason planes can assume a dual function in e-type phases. On the
one hand, they are structural defects, for instance in the phases g4-Al-Pd—Mn and
&-Al-Pd—Mn. On the other hand, phason lines and phason planes can arrange
regularly, forming a related e-type phase with larger c-lattice constant, and hence
become elements of a new ideal structure. Phason lines and phason planes are
pivotally connected to metadislocation formation and movement, as well as in
phase transitions and formation of e-phases.

3.1. Phason lines

By means of TEM, Klein et al. [33] first observed a novel defect type in g5-Al-Pd-
Mn, which they identified as one-dimensional with a [010] line direction. The new
defect has some similarities to phason defects in quasicrystals: If the positions of the
atomic structure are described in terms of a higher-dimensional cut-and-projection
formalism, all atom displacements associated to the phason line are entirely located
in the spatial dimensions perpendicular to the physical real space [25]. According to
this analogy, Klein et al. termed this defect ““phason line.” In a tiling representation,
a phason line is depicted by a banana-shaped nine-edge tile with an attached
pentagon, which is, as a whole, frequently referred to as ““banana pentagon.” Fig. 6
shows a phason line, shaded in gray, in a g5-Al-Pd-Mn lattice.

Note, however, that phason lines cannot be embedded into an otherwise perfect
€6-Al-Pd-Mn. The area above the phason line in Fig. 6 contains two hexagon
columns, which are turned into their alternate position with respect to the
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Fig. 6. Phason line (gray) in an g5-Al-Pd-Mn tiling.
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corresponding hexagon columns below the banana pentagon. Consequently, the
area above the banana pentagon contains two boundaries between hexagon
columns of parallel orientation (thick lines). These boundaries do not occur in the
ideal gg-structure, and hence are to be considered planar faults in the latter. The
presence of two “wrong” hexagon columns is directly related to the mechanism
of phason-line movement, which is described in Section 3.1.2.

Note that phason lines, even though they are linear defects, are not disloca-
tions. Analyzing them in terms of ideal tile edges (“modified Burgers circuit,” see
Section 4.3) reveals that they do not possess a Burgers vector.

3.1.1. Atomic decoration of a phason line

Like the flattened hexagons, the tiles representing the phason lines possess a
defined atomic decoration. Fig. 7 shows the atomic decoration in the I, F, and P
layer. The decoration was developed according to the following criteria:

e Preservation of local order and coordination as in the ideal structure. In each
layer the structure, and accordingly the decoration of the hexagon tiles, displays
certain preferred local arrangements. This particularly concerns the vertices of
the hexagon lattice, i.e. the corners of the hexagon tiles, which correspond to
[010] columns of Mackay-type clusters.

e Compatibility with the model of phason-line movement by Beraha et al. [25]. This
model is based on the structure solution by Boudard et al. [24]. It employs shifts
in perpendicular space in a higher-dimensional crystallographic approach, as used
for quasicrystalline structures, to model the individual atom jumps that make up a
vertex flip (Section 3.1.2).

e Compatibility with high-angle annular dark-field (HAADF) images obtained in
high-resolution scanning TEM [34]. Applying this technique, one finds that the
image intensity is proportional to the square of the atomic number [35]. Hence,
the positions of the heavy atoms in the tiling can be directly compared with the
model. Fig. 8(a) shows a HAADF micrograph of a phason line in gc-Al-Pd-Mn
with a superposed banana pentagon. In Fig. 8(b), the same image is seen with
superposed projected atom positions for columns containing Pd and/or Mn of all

Fig. 7. Atomic decoration of the tile representing a phason line for the /, F, and P layers.
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Fig. 8. High-resolution HAADF micrograph of a phason line in 5-Al-Pd-Mn. (a) With a superposed
phason-line tile. (b) With superposed positions of columns containing Pd and/or Mn atoms (circles).

layers including mirror and inversion images (circles). Clearly, all essential
features of the experimental image are well reproduced by the model.

Despite the (00 1) mirror symmetry of the tiles representing the phason line, its
atomic decoration is not fully symmetric. Small deviations occur for some Al
positions in the P layer, which are due to the required compatibility with the
hexagon tiles. However, according to the structure model [24] the hexagon tiles in
the P layer by themselves are not symmetric with respect to their long axis (Fig. 5)
and the corresponding atom positions exhibit low occupancy factors.

3.1.2. Movement of a phason line

Phason lines can move in the crystal lattice of the gs-phase along the [001]
direction. A tiling representation of the mode of movement is given in Fig. 9.
Fig. 9(a) shows a phason line in an gg-lattice. In this initial position, there are two
hexagon planes above the banana pentagon. In Fig. 9(b), the vertex marked by an
open circle jumps to the position marked with a solid circle. The hexagon lattice can
be redrawn, and a complete hexagon appears at the position given by the dotted
line, while the remaining part of the initial banana pentagon together with the
hexagon, the corner position of which has moved, form a new banana pentagon
[Fig. 9(c)]. The new banana pentagon is located at a lower position along the [00 1]
direction, and it has an orientation opposite to that in Fig. 9(a). In a subsequent
similar step, the phason line can move to the position shown in Fig. 9(d). There are
now three hexagon planes above the banana pentagon, that is, the phason line has
moved downwards along the [001] direction by one c-lattice constant. Repeating
this sequence, the phason line can move over long distances. Analogously, the
phason line can move upwards by reverse vertex jumps.

As described in Section 2.3, the hexagon tiling is constructed by drawing lines
connecting neighboring cluster centers. This still holds for each individual position
of the phason line shown in Figs 9(a)-9(d). However, this does not imply that a
vertex jump corresponds to the movement of a complete cluster from the initial to
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Fig. 9. Tiling representation of the successive steps of phason-line movement along the [001] direction
(see text).

the new vertex position. Physically, only a few atoms move to new positions, which
then, together with the present atomic environment at the final position, form a new
cluster at the new vertex position. The individual atom movements have been
worked out in detail by Beraha et al. [25] for all atomic species and all layers. Fig. 10
illustrates this scenario for the case of the [ layer in the g4-Al-Pd—Mn structure. The
cluster positions before and after the jump are indicated by dotted circles. All Al
jumps take place within the / layer. The Mn atom in the center of the cluster does
not directly move from the initial to the final position, but jumps from the initial
position to a neighboring P or P; layer, while another Mn atom jumps from the
neighboring P or P; layer to the final position. This indirect mechanism reduces the
jump distances of the individual atoms to distances of 0.296 nm and below, while
the distance between the initial and final cluster position amounts to 0.479 nm.
Obviously, the number of atoms involved in the vertex jump (thicker outline) is
considerably smaller than the number of atoms being part of the cluster.

In Fig. 6, we have seen that a phason line is connected to two hexagon columns,
which are turned into their alternate position with respect to the ideal lattice.
Further downwards movement of the phason line as shown in Fig. 9 will lead to
elongation of the alternately oriented columns. In other words, passing of a phason
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Fig. 10. Individual atomic jumps involved in the 7 layer of €5-Al-Pd—Mn during one step of phason-line
movement.

line through the ideal gq-structure results in the creation of two slabs of twinned
g-structure, and, accordingly, to two (100) planar faults in its wake.

3.1.3. Kinks in phason lines

Phason lines are linear defects with a [010] line direction, which can move along
the [00 1] direction. It is unlikely, however, that phason lines move as a whole, that
is, that the complete line performs a vertex jump in one single step. Although this
has not been investigated in detail, it is a plausible assumption that phason lines
move by a mechanism involving sequential jumps of small portions of the line, that
is, by the formation of kinks and their subsequent movement along the line. This is
in full analogy to the Peierls model, which describes dislocation motion by a kink-
pair mechanism [36].

Accordingly, it is expected that in a static situation, deviations from the ideal line
direction occur. This can indeed be observed in TEM micrographs. Fig. 11 depicts
TEM micrographs taken under imaging conditions such that the clusters are imaged
as bright spots encircling a dark center. The superposed tiling is constructed
by connecting the latter. Fig. 11(a) shows a phason line without a kink. It is
represented by a banana pentagon (thick white line) as schematically depicted in
Fig. 6. The phason line in Fig. 11(b), on the other hand, cannot be described by a
single banana pentagon. In the interior of the defect two overlapping cluster
fragments of low contrast are seen, which is interpreted as a phason line with a kink
or kink pair. Along the [010] direction, a part of the phason line has performed
a vertex jump, while another part has not. This situation can, therefore, be
understood as an intermediate situation between Figs 9(b) and 9(c). Fig. 11(c)
accordingly shows a phason line with two kinks or kink pairs.

In TEM practice, it becomes increasingly difficult to find straight phason lines as
shown in Fig. 11(a) in thicker specimen areas. One occasionally finds phason lines,
which strongly deviate from their ideal line direction, such that no clear inner
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Fig. 11. TEM micrographs and superposed tiling representation of phason lines with different numbers
of kinks along the [010] direction. (a) No kink. (b) One kink. (c) Two kinks.
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vertices can be observed over distances up to several nanometers along the [001]
direction.

3.2. Phason planes

If phason lines are present at a certain density in a ge-structure, they tend to align
along the [100] direction and form (001) planes, which are referred to as phason
planes.

Fig. 12(a) is a high-resolution HAADF image of a phason plane in g5-Al-Pd—Mn
and Fig. 12(b) shows the corresponding tiling representation. Since each individual
phason line connects two-neighboring hexagon columns with their alternately oriented
version (Section 3.1), the phason plane is a (00 1) mirror. Accordingly, phason planes
can be considered as twin boundaries or inversion boundaries in the gg-structure.

Deviations of a phason plane from the (001) orientation can occur due to the
mobility of the individual phason lines along the [001] direction. Fig. 13 depicts a
tiling representation of a tilted phason plane. The [00 1] displacement of the phason
lines leads to an increase of the fault area and, if the mutual displacement is larger
than one c-lattice constant, to the occurrence of local (100) faults (thick line).
Hence, alignment of the phason plane along (00 1) minimizes the total fault energy
and is accordingly considered as the ideal orientation.

Deviations of the phason planes from the ideal orientation may occur in
situations where the structure is not fully equilibrated or in internal stress fields,
for example, in the vicinity of dislocations or other defects. Fig. 14(a) is a low-
resolution bright-field Bragg-contrast TEM image taken along the [01 0] direction.
Under these conditions, the phason planes are seen edge on and are imaged as dark
lines on the light g5-Al-Pd-Mn background. The phason planes obviously deviate
from their ideal (00 1) orientation and can assume substantial curvatures, like in the
lower right corner. Fig. 14(b) shows a TEM micrograph at a level of magnification
intermediate between that of Figs 12 and 14(a). In the upper left corner is an area of
ge-structure, in which the alternating hexagons are resolved. The phason lines are
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Fig. 12. Phason planes in &-Al-Pd-Mn. (a) High-resolution HAADF image. (b) Corresponding tiling
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representation (gray).

[100]-

Fig. 13. Tiling representation of a tilted phason plane. Locally, (100) faults occur (thick line).

imaged as almost rectangular dark areas and the composition of phason planes by
individual phason lines is seen. The phason planes show sizeable deviation from
their ideal (001) orientation, and the individual phason lines deviate from their
ideal [010] orientation.
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Fig. 14. TEM micrographs along the [010] direction of tilted phason planes. (a) Under low-resolution
bright-field conditions. (b) At higher magnification.

Fig. 15. Phason halfplanes in the gq-lattice. Offset ds along the [001] direction due to the insertion of
(a) a single and (b) two phason halfplanes.

3.2.1. Phason-plane strain field

Fig. 15(a) schematically depicts a phason halfplane, that is, a semi-infinite phason
plane terminated in the bulk of the otherwise ideal g¢-structure as represented by
the alternating hexagon lattice. A comparison of the position of the upper limit of
the structure at the leftmost and the rightmost parts of the figure reveals an offset
ds. This offset results from the difference in thickness (i.e., the extension along
the [001] direction) of the ideal portion of the structure (left) and the part
containing the phason halfplane (right). The offset can be quantified in terms of
the edges of the hexagon lattice and amounts to —c/2t%(001) [37]. Fig. 15(b) shows
the structure with two phason halfplanes inserted, the second one being ‘“‘shorter”
by one hexagon column. The upper right part of the structure is now again
identically oriented as the initial structure and the total offset 2d, = 2¢/2t* can
directly be seen.
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Comparing the numbers of (001) hexagon planes in the left and right parts of
Fig. 15(b), one sees that two phason planes can be understood as a compacted
combination of three hexagon planes. Since the thickness of the part containing the
two phason halfplanes is smaller by 2d;, the thickness of a phason plane, d,,, can be
calculated as 2d, = 3d,—2d,, where dy, = c is the thickness of a hexagon plane.
With d, = ¢/27%, we obtain d, = ct?/2 (see Appendix), which, with ¢ = 1.256 nm for
£6-Al-Pd-Mn, takes a value of 1.644 nm.

The offset dy introduced by a phason plane can be interpreted as the vertical
component of the phason-plane strain field. Since the phason plane turns hexagon
columns into their alternate orientation, its strain field has in addition a lateral
component corresponding to a translation of half a lattice constant along the [100]
direction. The total phason-plane strain field can then be described by the
displacement vector 7 =1/2(1 0 — 1/7%), which was experimentally verified by
means of fringe-contrast analysis in TEM [37].

3.2.2. Related phases and phase transitions in terms of phason planes

In Section 2.2, we have introduced the fact that the ge-phase is the basic structure
of a family of related phases, the e-phase family. Fig. 4 shows examples of
corresponding hexagon tilings. The gyg-phase [Fig. 4(a)] is represented by a tiling
which consists of hexagons and banana pentagons. The latter are thus structural
elements of the gg-phase, while they are defects in the gg-phase.

The g5-phase can be considered as a structure consisting of a periodic stacking
of phason planes. Other e-phases consist of phason planes stacked with different
periodicities, that is, with different amounts of hexagon rows between the
phason planes. Generally, between the members of the e-phase family, we can
discriminate between phases with and without phason lines as structural elements.
The phases ¢ and & fall into the first category and the phases €4, €22, and &g
into the second one. This concept can be expanded to include related monoclinic
phases [31].

Phase transitions between e-phases can be continuous, that is, of second order.
For example, the transition from &g to €, can occur by inserting a high density of
phason lines and stacking the corresponding phason lines such that a periodicity
of 5.80 nm results. Transitions from &¢ to & occur via repetitive translation of phason
lines with intermediate states of higher phason-line density [33]. Fig. 16 shows an
example of a continuous transition from &g to €. The situation in Fig. 16(a) can
be best interpreted as an gg-matrix with some phason-plane faults. The density
of phason planes can be calculated according to p = A/V = lt/a.a,t = I,/a.ay,
where A is the total phason-plane area in the specimen volume V considered, [, is
the total length of phason planes in the image area ay,-a,, and ¢ is the specimen
thickness. Figs 16(a)-16(d) show an increasing phason-plane density of p = 2.83,
6.63, 158 and 295 x 10°m ™", respectively. The phason planes in Fig. 16(d) are quite
regular and dense; they correspond to a lattice constant of about 10.2nm. The
phason-plane density of the ideal eg-phase is about twice as high as in Fig. 16d.
It corresponds to p = 3/cpg = 517 10° x m™!, where c,5 = 5.80nm is the c-lattice
constant of the &g-phase.
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Fig. 16. Continuous transition from the gs-phase to the &xg-phase. Scale bars: 200nm (a, b) and 10nm
(c, d).

4. Metadislocations
4.1. History and basic features

Direct observation of metadislocations is possible by means of TEM through high-
resolution or Bragg-contrast imaging. Fig. 1(a) depicts the first TEM micrograph
ever taken of a metadislocation [1]. The metadislocation shown is imaged end-on,
that is, the viewing direction in the electron microscope is parallel to the line
direction. The metadislocation is embedded in the &3-Al-Pd-Mn phase, which is
recognizable by the periodic stacking of phason planes in the outer image regions.
At a distance from the metadislocation, the phason planes are approximately
straight and perpendicular to the [00 1] direction. The metadislocation itself consists
of a core (arrow), which is surrounded by a certain number of phason halfplanes.
The present example has six associated phason halfplanes, which extend from the
dislocation core to the right-hand side of the image. On the other side of the core,
the metadislocation shows a region of pure gg-structure. The surrounding phason
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planes bend around the core and, with increasing distance from the latter, narrow
down the width of the pure gs-region, such that it takes a roughly triangular shape.

The overall appearance of the metadislocation resembles a dislocation in a simple
metal but the differences are obvious: the apparent extension of the strain field
of the metadislocation is larger by more than one order of magnitude, and the
associated phasons are not inserted halfplanes like those of an edge dislocation in a
simple metal, but consist of a locally transformed area. Historically, the first observed
metadislocations in &;5-Al-Pd-Mn were interpreted as defects in a structure of
defects (Section 3.2) and were, therefore, termed “metadislocations” [1].

Fig. 17 shows a group of metadislocations in gyg-Al-Pd-Mn at lower
magnification in two-beam Bragg contrast. In Fig. 17(a), the metadislocations are
imaged using a (0006) reflection close to the (120) zone axis, at an angle of about
35° from their end-on orientation. Their linear character can clearly be seen.
Fig. 17(b) shows the same group of metadislocations, imaged using the same

Fig. 17. Group of metadislocations in &s-Al-Pd-Mn. (a) At lower magnification in two-beam Bragg

contrast using the (006) reflection for imaging close to the (120) axis and (b) close to the (010) zone

axis. (¢) Imaged under bright-field Laue conditions at the (010) zone axis. (d) Boxed area in (c) at higher
magnification. Scale bars. 100nm (a, b, ¢) and 10nm (d).
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reflection close to the (010) zone axis. They are now seen very close to the end-on
orientation, and hence they appear as dark spots. Under Bragg conditions in
Figs 17(a) and 17(b), the metadislocation contrast is very similar to that of normal
dislocations in simple metals (see [38]). In Fig. 17(c), the metadislocations are
shown under bright-field Laue conditions, that is using a symmetrical arrangement
of reflections for imaging. Evidently, each dislocation position is decorated by a
small bright contrast area. Fig. 17(d), finally, shows the boxed area in Fig. 17(c) at a
higher magnification. The typical appearance of the metadislocation can now be
seen [cf. Fig. 1(a)].

Fig. 18 depicts a metadislocation in gs-Al-Pd-Mn. The matrix structure entirely
consists of flattened hexagons in alternating orientation. In this example, the six
associated phason halfplanes stretch out to the right-hand side.

First characterizations of the Burgers vector of metadislocations were carried out
by means of Bragg-contrast analysis [39]. Their Burgers vector direction was
determined as parallel to the [00 1] direction. Since the line direction is parallel to
the [010] direction, metadislocations are pure edge dislocations.

TEM micrographs of metadislocations in gs-Al-Pd-Mn at lower resolution are
shown in Fig. 19. Fig. 19(a) is imaged under bright-field Laue conditions along the
(010) zone axis. The metadislocation is seen on the left-hand side of the
micrograph and terminates six phason halfplanes, imaged as dark lines on the light-
gray background, which extend to the right-hand side. The lattice structure is not
resolved and is seen as gray background. Fig. 19(b) shows the same sample area
under two-beam bright-field conditions using the (006) reflection imaged close to
the (120) zone axis. Under these conditions, the associated phason planes show
fringe contrast.

Fig. 18. Metadislocation with six associated phason halfplanes in gs-Al-Pd-Mn.
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Fig. 19. Metadislocations in g5-Al-Pd—Mn at a low magnification. (a) Under bright-field Laue conditions
along the (010) zone axis. (b) Under two-beam bright-field conditions using the (00 6) reflection imaged
close to the (120) zone axis.
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Fig. 20. Tiling representation of the metadislocation in Fig. 1(a). The metadislocation core is represented
by a dark-gray tile. Six phason halfplanes are terminated at the right-hand side of the core.

4.2. Tiling description

Fig. 20 is a tiling representation of the metadislocation in Fig. 1(a). The
metadislocation core is represented by a dark-gray tile. On the right-hand side,
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one can see six phason halfplanes ending in the vicinity of the core. On the left-hand
side of the core is an ideal gg-region, represented by alternating hexagons.
As in the experimental image, the exterior phason planes bend around the
dislocation core.

The tiling representation is very close to the experimental image and reproduces,
besides the essential features, additional details such as the curvature of the phason
planes. The latter, due to the mobility of the phason lines along the [00 1] direction,
is rather arbitrary. The individual banana pentagons of the surrounding phason
planes can be drawn in slightly different positions without changing the basic
construction principle and, indeed, the curvature in the experimental image is
smoother and extends over a larger distance along [100] than in the schematic
representation.

The tiling representation shown includes non-essential features of the metadislo-
cation, and in this sense it is held at a low degree of abstraction. Fig. 21(a) is a tiling
representation of the metadislocation in the eg-structure at a higher degree of
abstraction. The curvature of the phason planes is neglected but the essential
features of the metadislocation, that is, the core tile, the six inserted phason
halfplanes, and the surrounding &,g-structure are present.

Fig. 21(b) is a tiling representation of a metadislocation in the gg-structure at
the same level of abstraction. The essential features here are the core tile, the six
inserted phason halfplanes, and the surrounding eg-structure. A comparison of
figures reveals two essential facts: first, the construction principles of the
metadislocation in the gs- and in the gyg-structure are identical. The only difference
is the surrounding matrix structure. Second, the metadislocations in the g5 and &g
structures are complementary in character: one can consider the metadisloca-
tion in g4 [Fig. 21(b)] as being associated to a slab of &g in an ge-matrix and
the metadislocation in g3 [Fig. 21(a)] as being associated to a slab of g in an
£rg-matrix.

Fig. 21. Tiling representation at a higher degree of abstraction. (a) Metadislocation in the es-structure.
(b) Metadislocation in the g4-structure.
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4.3. Burgers vector

Because metadislocations are connected to a number of associated phason
halfplanes, their Burgers vector cannot be determined by means of a regular
Burgers circuit [40]. The phason planes are not an element of the ideal structure of
the eg-phase, and hence a comparison circuit for the metadislocation in ideal &g
cannot be performed. The same holds for the metadislocation in &g, since the
associated slab of g4 is not present in the ideal g,g-structure.

However, the hexagon tiling provides a set of vectors characteristic of the ideal
structure, which can be used to perform a modified Burgers circuit. Fig. 22(a) shows
a set of vectors in the (010) plane, which correspond to the edges of a regular
pentagon and represent all edges present in the hexagon tiling. The vectors can be
expressed as
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where the factor ay is the edge length of the hexagons. Fig. 22(b) depicts a circuit
around the tile representing the core of a metadislocation with six associated
phason halfplanes, using the vectors d; to ds. Obviously, the circuit does not close.
The closure failure indicated by the gray arrow corresponds to the Burgers vector.
In terms of the vectors in eq. (2), the circuit reads b + ds + 3d, + dy4 + 3ds = 0,
which yields

S 0 0
b= —a (21 B 3) = —ay (r‘3> (see Appendix).

+ &
T -

Fig. 22. (a) Basis vectors in the (010) plane. (b) Burgers vector determination by a circuit around the tile
representing the core of a metadislocation with six associated phason halfplanes.

a
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Hence, in the coordinate system of the gg-structure, the Burgers vector of the
metadislocation is b = —c/t*[001]. With the lattice constant ¢ = 1.256nm for
€6~ and &g-Al-Pd-Mn, we obtain a Burgers vector length of 0.183 nm.

Two facts are noteworthy at this point. First, the Burgers vector of the
metadislocation is a fraction of the lattice constant, that is the metadislocation is
a partial dislocation in the g and &g structures. The length of the Burgers
vector is of the same order as typical values found for simple metals, such as
0.29 and 0.26 nm in aluminum and copper, respectively. Hence, the elastic strain
energy of the metadislocation is energetically acceptable, while the energy
of a corresponding perfect dislocation would be unphysically high. Second, the
ratio of the Burgers vector length and the lattice constant is irrational (recall that
©=1/2(v/5+1) is the irrational number of the golden mean). Therefore, unlike
partials in simple metals, the Burgers vectors of which are always rational fractions
of lattice distances, it is impossible to add up metadislocations in order to obtain an
integer number of lattice translations. In Fe;Al, for example, plastic deformation
takes place by quadruplets of 1/4{111) partials [41]. Accordingly, the lattice
translation adding up after the passing of four individual partials adds up to one
lattice constant, such that the lattice becomes undistorted again. With metadisloca-
tions, this is only possible if networks including different metadislocation types
are formed [42].

4.4. Metadislocation series

In simple metals, usually only one Burgers vector length exists for a given type of
dislocation. This length is given by the distance of two minima in the corresponding
gamma surface [43]. The gamma surface is basically determined by the lattice
periodicity and structural details in the lattice planes. In CMAs, there are different
length scales, which are related by irrational numbers. For example, the distance
between the cluster centers (which is identical to the hexagon-tiling edge length a)
is related to the c-lattice constant by ap = ¢/t. A result of this particular structural
feature is that for a given Burgers vector direction, there are various local minima
in the gamma surface. Hence, dislocations with different Burgers vector lengths
can form.

In e-Al-Pd-Mn, five different Burgers vector lengths for [00 1] metadislocations
are experimentally found, which range from 0.070 to 0.480 nm [44]. Each Burgers
vector length is associated with a certain number of phason halfplanes. Fig. 23
displays corresponding TEM micrographs, all taken along the [010] lattice
direction. Fig. 23(a) is a low-resolution micrograph of a metadislocation with two
associated phason halfplanes in g4-Al-Pd—Mn. The metadislocation is seen on the
left-hand side of the micrograph and terminates two phason halfplanes, imaged as
dark lines on the light-gray background, which stretch out to the right-hand side.
The corresponding Burgers vector length is 0.489 nm. Fig. 23(b) is a micrograph of a
metadislocation with four associated halfplanes. The associated phason halfplanes
are not perpendicular to the [001] direction but are tilted downwards by 20-30°.
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Fig. 23. Metadislocation series. TEM micrographs of metadislocations with (a) 2, (b) 4, (c) 6, (d) 10, and
(e) 16 phason planes.

Table 1
Experimentally observed metadislocations with [001] Burgers vectors in g¢- and &5-Al-Pd-Mn

N blc b (nm)
2 —12 —0.480
4 +173 +0.296
6 — —0.183
10 +17° +0.113
16 - ° —0.070

Note: N, number of associated phason halfplanes; b, Burgers vector length in terms of the c-lattice
constant and actual value in the in g5- and &,g-lattice.

The corresponding Burgers vector length amounts to 0.296 nm. Figs 23(c)-23(e)
show metadislocations with 6, 10, and 16 associated phason halfplanes, with Burgers
vector lengths of 0.183, 0.113 and 0.070 nm, respectively. In Table 1, all members of
the metadislocation series, along with the corresponding Burgers vector lengths, are
listed.

Tiling representations for the metadislocations with two, four, and ten associated
phason halfplanes in g5-Al-Pd-Mn are displayed in Figs 24(a)-24(c), respectively.
Each metadislocation core is represented by a characteristic tile, the area of which
increases with increasing number of associated phason halfplanes.
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Fig. 24. Tiling representation of metadislocations with (a) ten-, (b) four-, and (c) two associated phason
halfplanes in gs-Al-Pd-Mn.

Regarding the series of [001] metadislocations, the following facts are
noteworthy:

e The numbers of associated phason halfplanes in the series take twice the values
of the Fibonacci numbers 1, 2, 3, 5, and 8 (see Appendix).

e The Burgers vector lengths are related to each other by factors of —z. The
negative sign of the factor results from Burgers circuits according to Fig. 22
around the characteristic tiles representing the core; this is discussed in Section
4.52.

e The sequences of associated phason halfplanes and Burgers vector lengths are
opposed: with an increasing number of phason halfplanes, the Burgers vector
lengths are decreasing.

e Experimentally, one finds that the different members of the metadislocation
series are not evenly distributed but their number distribution shows a broad
maximum. In deformed and undeformed e-Al-Pd-Mn, most metadislocations
found have six associated phason halfplanes. Metadislocations with ten halfplanes
are observed almost as often, while those with four phason halfplanes are found
considerably less frequently. Metadislocations with 16 phason halfplanes are even
less frequently found and species with two halfplanes were only observed in very
few occasions during an extensive number of experimental investigations. The
frequency of occurrence of different metadislocation types considering their
energy is discussed in Section 4.5.3.
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4.5. Construction principles

We have seen in the previous sections that metadislocations are associated with a
certain number of phason halfplanes. The latter are required to accommodate the
core into the crystal lattice. In the following, we describe two different ways to
construct metadislocations in terms of a tiling representation. This will enable the
reader to comprehend the relation between the number of associated phason
halfplanes and the Burgers vector length, as well as further characteristic properties
of the individual metadislocations within the series.

4.5.1. Hexagon column arrangement

Fig. 25(a) shows the tile representing the core of a metadislocation with six
associated phason halfplanes inserted in the ge¢-tiling. On the left and right of the
core tile, the hexagons columns are arranged in an alternating sequence, which
corresponds to the ideal gg-lattice. If we label the columns as shown in the figure,
that is the columns with hexagons pointing downwards are labeled “a” and those
with hexagons pointing upwards are labeled “b,” the ideal gq-lattice corresponds to
a column sequence given by a—b—a—b—a—b— .... The shape of the core tile requires
that three columns of equal orientation are located above and below the core.
Continuing our labeling throughout the figure, we have three » columns above the
core and three a columns below (boxes). These sequences deviate from the ideal
tiling and represent the structural defects necessarily connected to the core tile if
phason planes are not involved. Now consider the effect of the insertion of a phason
halfplane into the gq-tiling [Fig. 25(b)]. The column sequence above the phason
halfplane contains two-neighboring a columns followed by an alternating order,
while below, the sequence corresponds to the ideal gg-structure. Hence, a phason
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Fig. 25. Hexagon-column arrangement in the g¢-tiling with the presence of (a) a metadislocation core,
(b) a single phason plane, and (c) a combined arrangement of the latter (see text).
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halfplane in the lattice has the effect of turning two equally oriented hexagon
columns at its termination point into the correct order. Now consider a combination
of Figs 25(a) and 25(b) and employ phason halfplanes to turn the columns at the
core tile back into the correct order, such that, at a distance from the latter, the
column sequence assumes the correct order of the ideal g¢-structure. Since there are
three equally oriented columns on each side of the core tile, six phason halfplanes
are required in total to restore the correct order. Finding the required arrangement
of phason halfplanes is an interesting geometrical puzzle, the solution of which is
shown in Fig. 25(c) and corresponds to a metadislocation with six associated phason
halfplanes. The latter is displayed here in compact form, with no hexagon rows
between the phason halfplanes. This, however, does not change the principle.
Arbitrary distances between the associated phason halfplanes can be chosen: As
long as the lateral arrangement of phason halfplanes is maintained, the column
sequence corresponding to the ideal gg-structure is obtained above and below the
metadislocation.

The other metadislocations of the [00 1] series can be constructed in full analogy.

4.5.2. Construction via a modified Volterra process

In Section 3.2.1, we have quantified the strain field of a phason plane. This
knowledge can be employed to develop a modified Volterra process for the
construction of metadislocations. A conventional Volterra process for the
construction of an edge dislocation, as employed in structurally simple crystals,
involves cutting the crystal along a plane, which ends in the volume of the crystal,
inserting or removing an atomic halfplane and subsequently relaxing the structure
elastically. The modified Volterra process for metadislocations, on the other hand,
comprises the removal of a slab of material of several nanometers in thickness
rather than a single atomic halfplane. Subsequently, the gap is filled by another slab
of structurally different material, which is closely related to the bulk material.

Fig. 26 illustrates this construction principle for a metadislocation with four
associated phason planes in the gg-phase. From the ideal gg-structure (a), five
hexagon halfplanes (gray) are removed (b). Then the gap is filled by four phason
halfplanes (c). This slightly overcompensates the gap and hence leads to overlap of
the tilings (arrow) since the four phason planes are slightly “thicker’ than the five
hexagon planes. Then the structure is elastically relaxed (d), which leads to some
elastically distorted hexagon tiles and a central area that cannot be filled by regular
tiles (dotted lines), where the dislocation core is located [cf. Fig. 24(b)]. Note that
the overcompensation of the gap means that the net effect corresponds to the
insertion of a thin layer of matter.

The Burgers vector of the so-constructed metadislocation is obtained by
balancing the removed hexagon against the inserted phason halfplanes, which
yields —5d,+4d,,. With d;, = cand d, = ¢1?/2 (Section 3.2.1), we obtain the Burgers
vector ¢/t°. Analogously, we can construct the metadislocation with six associated
phason halfplanes by removing eight hexagon and inserting six phason halfplanes,
which yields —c/z*. This exactly corresponds to the Burgers-vector length of a
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Fig. 26. Construction of a metadislocation with four associated phason halfplanes in the ge-phase by a
modified Volterra process (see text).

Table 2
Parameters of Eq. (3) for the construction of metadislocations according to a modified Volterra process

S
=

b, (nm)

—0.480
+0.296
—0.183
+0.113
—0.070

== O RN
— W o L W

0 1
6 2

The constructed Burgers vector lengths b, for - and &,3-Al-Pd-Mn correspond to the experimental
values (Table 1).

metadislocation associated to six phason halfplanes. The negative sign is due to the
net removal of a thin layer of matter.
The process can be generalized as

bp=c<§p—h), (3)

where 4 is the number of hexagon halfplanes removed and p is the number of
phason halfplanes, the metadislocation is associated with. Each member of the
metadislocation series is represented by a doublet of numbers p and h, which
constitutes its Burgers vector. The full series of metadislocations as experimentally
observed is listed in Table 2 along with the corresponding parameter A.
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As discussed in Section 4.4, the experimentally observed metadislocations
correspond to double Fibonacci numbers p =2, 4, 6, 10, 16. The numbers of
corresponding hexagon planes is also a series of Fibonacci numbers & = 3, 5, 8, 13,
21. The construction correctly reproduces the sequence of Burgers vectors lengths,
as well as the opposed sequence of numbers of associated phason halfplanes.
The sign of the Burgers vectors alternately changes along the series; this is a direct
consequence of the construction, as the inserted phason halfplanes alternately
overcompensate or partially compensate the removed hexagon halfplanes.

Generally, the modified Volterra process is not limited to Fibonacci and double
Fibonacci numbers. In principle, it can be performed with p/2 and m being any
natural number. According to the large lattice parameters of the gg-structure,
however, this may create huge lattice mismatches, connected to large Burgers
vectors and high elastic energies (see Section 5.2).

4.5.3. Hyperspace projection

Engel and Trebin demonstrated [30] that all e-phases (referred to as ZE-phases in
their paper) can be constructed by means of a projection formalism on the basis of a
three-dimensional hyperspace. The result of the projection is a two-dimensional
tiling in the (010) plane. These authors were able to reproduce the lattices of all
e-phases and their structural defects of phasonic type, that is, phason lines and
phason planes.

Engel and Trebin performed an alternative Volterra construction in the three-
dimensional hyperspace and a subsequent relaxation in the two-dimensional
physical space, which leads to a metadislocation in the corresponding projected
e-phase. Fig. 27 shows a constructed metadislocation with six associated phason

Fig. 27. Metadislocation with six associated phason halfplanes constructed by projection from a
five-dimensional hyperspace (courtesy of M. Engel).
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halfplanes, which perfectly corresponds to the experimental observations
[Fig. 1(a)]. The other members of the metadislocation series (Section 4.4) can be
obtained by varying the Burgers vector of the dislocation in hyperspace.
Moreover, the authors showed that there are metadislocation types with
minimum total energy within the series. As shown in Table 1, the increasing
number of associated phason halfplanes in a series is connected to an opposed
sequence of Burgers vector lengths. Both attributes are connected to a certain
energy cost — the length of the Burgers vector determines the elastic line energy of
the dislocation according to eq. (1), and each phason halfplane is connected to
an energy cost proportional to its area. Hence, there necessarily exists a type of
metadislocation within the series, which is energetically preferred, that is, for which
the elastic line energy and the phason-plane contribution balance to yield a
minimum total energy. Engel and Trebin [30] demonstrated that this minimum
depends on the ratio of the material-specific elastic constants cphon and cppas for the
phonon and phason contribution, respectively. From the experimental fact that
metadislocations with six associated phason halfplanes are most frequently
observed in g-Al-Pd-Mn [45], they concluded that cphon/Cphas = 710~ 123.

5. Further aspects
5.1. Metadislocations as carriers of plastic deformation

5.1.1. Metadislocation loops

Dislocations are one-dimensional structural defects representing the boundary of
an area over which a given displacement has occurred. Hence, a dislocation line
evidently cannot end within an otherwise perfect region of crystal. It must terminate
for instance at a free surface, another dislocation line, or a grain boundary [3].
Generally, a dislocation in a perfect and infinite crystal is a closed loop. Isolated
segments observed experimentally are parts of loops arbitrarily cut out by the
specimen surfaces. All current reports on metadislocations are focused on [010]
segments. However, the above considerations hold for metadislocations as well, and
hence the question for the remaining segments closing metadislocation loops has to
be approached in order to obtain a complete view.

Fig. 28 is a two-beam bright-field TEM image of a &y3-Al-Pd-Mn single crystal
deformed to 8% strain. The micrograph was taken close to the (103) zone axis,
which makes an angle of 90° with the [01 0] direction and of 32.5° with the [001]
direction. The image shows a high density of elongated dislocation loops.

The habit planes of the dislocation loops are (001) planes. The long segments
(black arrow) are parallel to the [010] direction and the short segments (white
arrow) to the [100] direction.

The loops were identified as metadislocations loops [46]. Metadislocations,
usually imaged along the [010] direction [see Fig. 1(a)], correspond to end-on
observations of the long [010] segments. The loops are however completed by
additional [100] segments. The aspect ratio of the [0 10] and [1 00] segments is very
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Fig. 28. Elongated dislocation loops in deformed &s-Al-Pd-Mn viewed along the [103] zone axis
showing long [010] segments (black arrow) and short [100] segments (white arrow).

Fig. 29. Metadislocation loops in gs-Al-Pd-Mn sharing six and ten associated phason halfplanes.

large: The lengths of the short segments are of the order of 100nm. This is
consistent with the observation that these segments are usually not observed
experimentally when images are taken along the [010] direction.

The loop nature of metadislocations can also be seen in images along the [010]
direction. Fig. 29 is a TEM image of gc-Al-Pd-Mn. In the center of the image,
two metadislocations are seen, which share six associated phason halfplanes.
Obviously, the two metadislocations terminating the phason planes are
segments of a loop, which has a habit plane close to (001). In the lower right
corner, a smaller example of a metadislocation loop with ten associated phason
planes is seen.

The important fact to note at this point is that, since metadislocation loops have
[001] Burgers vectors, they are pure edge loops, also referred to as prismatic loops
[3], that is, they possess only edge-type and no screw type segments.
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5.1.2. Mode of metadislocation motion

In the previous section, we have identified metadislocations as loops with (001)
habit planes and [00 1] Burgers vectors. They are pure edge loops, which can only
expand and contribute to strain, if their segments move by climb. Glide motion of
the segments would merely lead to unaltered movement of the loop along its glide
cylinder, which does not contribute to strain.

So far, no direct observation of metadislocation motion, for instance by
in situ tensile tests in a transmission electron microscope, has been reported.
Therefore, there is as yet no direct experimental confirmation of whether
metadislocations motion takes place by glide or climb. However, besides the
strong evidence in favor of climb motion given above, there is also a potent
argument against glide.

Consider a new tiling for the description of the phason lines. Fig. 30(a) depicts a
metadislocation with six associated phason halfplanes [cf. Fig. 21(b)], but now the
two tiles representing the phason lines, the banana and the attached pentagon, are
replaced by three irregular hexagons (hatched area). This tiling is not very well
suited to represent the structure of the material itself, since the additional vertices
do not reflect positions of cluster centers but, on the other hand, it does have the
advantage that the movement of every single vertex of the hexagon lattice can be
traced during movements of phason lines or metadislocations.

Expressed in this new tiling, Fig. 30(b) shows a glide step (upward movement
along [001]) of the metadislocation by one c-lattice constant. The initial position of
all tiles is given by the black lattice [which is identical to that in Fig. 30(a)] and the
tile representing the initial metadislocation-core position is shaded gray. The final
positions are given by the gray lattice. Only those tiles of the final lattice, the
position or shape of which is altered, are shown. Clearly, a very high number of

Fig. 30. (a) Metadislocation with six associated phason halfplanes represented by an alternative phason-
line tiling (hatched area). (b) Glide step by one c-lattice constant. (c) Climb step by one a-lattice constant.
Initial and final tile positions are shown in black and gray, respectively.
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vertex flips is necessary to proceed from the initial to the final position. In fact,
the number of vertex flips is approximately proportional to the area of the phason
planes and hence diverges in an infinite crystal. This is simply due to the fact that,
during glide motion, the associated phason halfplanes have to be dragged through
the material along with the core.

Fig. 30(c) shows a climb step (movement along [100] to the left) of a
metadislocation by one a-lattice constant. Again, the initial and final tiles are drawn
in black and gray lines, respectively. For a climb step, a much smaller number of
vertex jumps is necessary. The number of necessary vertex jumps is now limited to
the core region and it is now finite, no matter how far the associated phason planes
are extended. Since each vertex jump physically represents a number of local
atomic movements (Section 3.1.2), climb motion obviously is connected with much
less atomic rearrangement than glide motion.

However, long-range atomic transport is nevertheless required for the climb
process because it is a non-conservative mode of dislocation motion. Depending on
the direction of motion, either atoms or vacancies have to be moved to the
dislocation-core region.

The need for atomic transport is not a principal objection against climb motion.
Climb motion requires long-range atomic motion no matter whether it takes place
in a CMA, a simple metal or even a quasicrystal. For the latter two types of
materials, it has been demonstrated that climb takes place and can represent the
primary mode of dislocation motion [47-49]. According to the above considera-
tions, the condition for the preference of climb motion in the present material
is apparent: Climb should be preferred if long-range atomic transport from or
to the metadislocation core is energetically less costly than the numerous
local atomic jumps necessary for the movement of the associated phason planes.
Since the material is only ductile at high temperatures, where diffusive motion is
greatly facilitated, this condition may readily be fulfilled. On the basis of these
arguments, it is concluded that metadislocation motion takes place by pure climb
[46].

The positive climb process requires long-range transport of matter and
consumes vacancies. Continuous deformation will hence lead to a depletion of
vacancies and eventually limit the effectiveness of the mechanism. Roitsch et al. [50]
showed that besides the metadislocation loops, a second set of dislocations is
involved in the deformation mechanism, which compensates the depletion of
vacancies. The second set of dislocations consists of loops on (00 1) habit planes
with [010] Burgers vectors [51]. These dislocations move by pure negative climb,
that is, the expansion of the loops is connected to a production of vacancies, and
hence the systems acts as a vacancy source. The interaction of the two loop systems
in the form of vacancy exchange ensures continuous operation of the deformation
mechanism.

This process, referred to as complementary climb systems [52] is conceptually
identical to the mechanisms of basal-plane deformation in the hexagonal simple
metals Zn and Be [47] and in decagonal Al-Ni—-Co [53].
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5.2. Elastic energy

In Section 4.5.2, a general construction scheme for metadislocations was introduced,
which can be used to calculate the Burgers vector of any type of metadislocation,
be it experimentally observed or hypothetical. In this section, we discuss the
corresponding elastic strain energies estimated as E ~ ub* (Section 1). With a shear
modulus of 30 GPa [54], we obtain about 10~ J/m for a metadislocation with six
phason halfplanes, which is comparable to that of a Shockley partial in copper
(1.5 x 107°J/m). On the other hand, a perfect [001] dislocation in the es-phase
would have a very high elastic energy of 4.7 x 1075 J/m.

Fig. 31 shows the elastic energies for experimentally observed and hypothetical
metadislocations with p/2 and / being natural numbers. The grayscale of each box
represents the logarithm of the elastic energy of the metadislocation corresponding
to a (p, h) doublet, where the darkest gray corresponds to the lowest energy. We
find a valley of low-energy values along a line, which is approximately diagonal in
Fig. 31. Experimentally observed metadislocations are indicated by boxes with solid
white outline. The boxes with broken white outline represent metadislocations that
also possess relatively low energy, but which are not observed experimentally (e.g.,
those with 8, 12, or 14 associated phason halfplanes). In Fig. 32(a), the energies of
metadislocations represented by boxed (p, #) doublets in Fig. 31 are shown in a bar
graph. The gray bars represent the elastic energy of hypothetical metadislocations
and the black bars represent the energy of those experimentally observed. Among
the latter, the metadislocation with two associated phason halfplanes apparently has
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Fig. 31. Elastic strain energy of metadislocations represented by the parameters p and 4. Experimentally

observed metadislocations are marked by boxes with solid white outline, other hypothetical
metadislocations are marked by boxes with broken white outline.
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Fig. 32. Bar-graph representation of the energy of metadislocations represented by boxed (p, &) doublets

in Fig. 31. Black bars represent the energy of metadislocations that were experimentally observed, gray

bars represent other hypothetical metadislocations. (a) Elastic energy contribution. (b) Elastic energy

plus fault-plane contribution. The solid and dotted arrows indicate metadislocation splitting and
dissociation, respectively.

the highest elastic energy, even exceeding that of the hypothetical metadislocations
with 12 and 14 phason planes. The metadislocations with higher numbers of
associated phason halfplanes seem to be energetically favorable. This is due to the
smaller Burgers vectors of the latter, which directly leads to a smaller elastic
line energy. However there are additional energy factors which have not been
accounted for in the above consideration, the most evident of which is the cost of
the phason halfplanes associated with the metadislocation.

In Fig. 32(b), a corresponding contribution was taken into account, in a first
approximation, as an additive energy term proportional to the number of associated
phason halfplanes. Due to the lack of experimental data, the energy contribution of
the additive term was adjusted such that the total energy reflects the experimental
number-density distribution. Metadislocations with six phason planes, which are
experimentally most frequently observed, have the lowest energy. Less frequently
observed metadislocations with 16 and two phason planes have the highest elastic
energies among the experimentally observed metadislocations. We furthermore
find that the total energy of metadislocations with 12 and 14 phason halfplanes is
very close or even smaller than that of the metadislocation with two phason
halfplanes. The fact that they are nevertheless not experimentally observed may
be due to reactions: metadislocations with 14 phason halfplanes, for example, may
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dissociate into metadislocations with 10 and 4 phason halfplanes. This process is
indicated in Fig. 32(b) by dotted arrows. This figure shows that the energy of two
metadislocations with 10 and 4 phason halfplanes is lower than that of a
metadislocation with 14 phason halfplanes at constant total number of phason
halfplanes. On the other hand, metadislocation splitting increases the number of
phason halfplanes and is indicated by solid arrows in Fig. 32(b). This process is
discussed in detail in Section 5.3.

5.3. Metadislocation reactions

Splitting of perfect dislocations into partials is a phenomenon, which is commonly
observed in various crystalline materials. Since metadislocations are partial
dislocations per se, it may seem surprising that splitting of metadislocations into
partials having smaller Burgers vectors is often observed, as well [42,55].

Fig. 33(a) shows a micrograph of two metadislocations associated with ten (1)
and six phason planes (2), respectively which are mutually connected by six phason
planes. Four phason planes are remaining; one is visible in the upper part of the
micrograph and three are visible in the lower part. The situation is schematically
depicted in Fig. 33(b) using triangles and lines representing metadislocations and
phason planes, respectively. The number of phason planes associated to a
metadislocation is denoted in the corresponding triangle, and an arrow indicates
the length and direction of its Burgers vector. According to the opposite line
directions of the metadislocations in Fig. 33(b), their Burgers vectors are oriented in
the same direction and add up to (0.113—(—0.183)) nm = 0.296 nm (Table 1), which
corresponds to the Burgers vector of a metadislocation with four phason halfplanes
[Fig. 33(c)]. Therefore, this situation can be interpreted in terms of metadislocation
splitting: A metadislocation with four phason halfplanes has split into an equally
oriented metadislocation with ten phason halfplanes and an inversely oriented
metadislocation with six phason halfplanes. Due to the process of metadislocation
splitting, the local elastic strain energy near the metadislocation cores is reduced.
According to Frank’s rule [40] b3 > b3 + b3, where b, is the Burgers vector length of
the initial dislocation and b, and b3 are those of the products, the splitting is
energetically favorable. Fig. 32(a) shows that the elastic energy of a metadislocation
with four associated phason halfplanes is higher than the sum of those for
metadislocations with six and ten phason halfplanes. On the other hand, splitting
requires the creation of six local phason planes. This introduces additional fault-
plane energy, which has to be balanced against the energy gain due to splitting.

Fig. 34 shows a more complex case of splitting into three metadislocations.
A metadislocation with ten phason halfplanes (1) is connected with two
metadislocations, each with six phason halfplanes (2 and 3). Two phason halfplanes
leave the metadislocations at the right-hand side (4 and 5). Two additional
phason planes seen in the micrograph (6 and 7) are not connected to the
metadislocation arrangement. The net Burgers vector of the arrangement is
(=0.113-2 x 0.183) nm = —0.480nm, which is equal to the Burgers vector of a
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Fig. 33. Two metadislocations associated with ten (1) and six phason halfplanes (2), which are mutually

connected by six phason planes. (a) TEM micograph. (b) Schematic representation in terms of triangles

and lines, representing metadislocations and phason planes, respectively. The numbers in the triangles

denote the number of associated phason halfplanes, the arrows indicate the lengths and directions of the

Burgers vectors. (c) Corresponding schematic representation of a metadislocation with four associated
phason halfplanes.

o0 nm:

Fig. 34. Complex splitting into three metadislocations (see text).
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Fig. 35. Complex metadislocation network formed via the mutual interconnection by phason planes. The
type and Burgers vector orientation of the metadislocations are indicated.

metadislocation associated with two phason halfplanes. Thus, Fig. 34 shows the
splitting of a metadislocation associated with two phason halfplanes into three
metadislocations with higher numbers of associated phason halfplanes, but shorter
Burgers vectors. Metadislocation splitting into even higher numbers of partials is
possible. For example, a metadislocation with two associated phason halfplanes
may split into two metadislocations with 16 phason halfplanes, and three inversely
oriented metadislocations with 10 phason halfplanes. Two extending phason
halfplanes are left and the corresponding net Burgers vector has the length
(2 x —=0.070-3 x 0.113) nm = —0.480 nm.

Fig. 34 discloses a further unique feature of metadislocations: The associated
phason halfplanes can be connected to two or more other metadislocations and
accordingly large networks of metadislocations can form. Fig. 35 shows a complex
metadislocation network, formed by the mutual interconnection of metadisloca-
tions via their associated phason halfplanes. The type and Burgers vector
orientation of the metadislocations are indicated. Notably, the Burgers vectors of
most metadislocations are oriented in the same direction and add up to 2.781 nm,
which corresponds to more than twice the c-lattice constant. Hence, metadislocation
networks possess large net Burgers vectors, and their movement mediates high
amounts of strain [55]. Therefore, they are highly effective means of plastic
deformation.

5.4. Metadislocation-based phase boundaries

In some specific cases and orientations, the construction of phase boundaries
between e-phases is trivial since the corresponding lattice planes are congruent.
This is the case, for example, for the (100) phase boundary between the g4- and
&-phase [Fig. 4(d)], or (001) phase boundaries between any of the orthorhombic
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Fig. 36. (100) phase boundaries between the gq-structure and the eyg-structure. (a) Tiling representation
of a hypothetical direct boundary. (b) Construction by a periodic stack of identical metadislocations.

e-phases (except the &-phase). The structure of (100) phase boundaries between
orthorhombic e-phases, however, involves metadislocations.

Let us consider a (100) phase boundary between g and &5 phases. The lattice
constants differ by a factor 3+t and the corresponding (100) planes are congruent
over small distances of maximum 4c¢ along the [001] direction [Fig. 36(a)]. In
Section 4.2, we have seen that the phason halfplanes associated to a metadislocation
can be regarded as a slab of inserted phase of a closely related structure. For
example, for a metadislocation in the gq-structure, the associated phason halfplanes
consist of a slab of &g-structure in an gg-matrix [Fig. 21(b)].

Accordingly, metadislocation arrangements can be used to construct a boundary
between e-phases with and without phason lines as structural elements. The
simplest way to construct such a phase boundary is to arrange metadislocations of
the same type periodically along the [00 1] direction, with all halfplanes stretching
out to the same direction as schematically depicted in Fig. 36(b). The strain
produced by a regular stack of metadislocations with 10 phason halfplanes can be
expressed as ¢ = byo/l1g, where by is the Burgers vector of a metadislocation with
10 phason planes and [y is its extension in the c-direction. With /o = Sc¢(3+1)
according to Fig. 24, we obtain a strain at the interface of ¢ = 0.39%. If a phase
boundary comprises different metadislocation types, that is different members of
the metadislocation series (Section 4.4), the interface strain can be minimized since
consecutive members of a metadislocation series have opposite Burgers vectors.
For metadislocations of equal line direction (i.e., with phason halfplanes stretching
out in the same direction), the interface strain caused by a given type of
metadislocation can be compensated by including an appropriate number of other
metadislocation types with opposite Burgers vector. Consider, for example, a phase
boundary comprising metadislocations with six and ten associated phason
halfplanes. Then the interface strain is given by & = (ngbg+niob10)/l, where [ is
the length of the interface perpendicular to the line direction of the constituent
metadislocations, and »; and b; (i = 6, 10), are the number and the Burgers vector
length of the corresponding metadislocations, respectively. Since by = b¢/t, the
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interface stress is fully compensated if,
nyo = . 4)

This relation can, of course, be straightforwardly generalized to the case of more
than two metadislocation types in the boundary.

Fig. 37 is a TEM micrograph of a phase boundary between &s- (upper left) and
€3-Al-Pd-Mn (lower right). The boundary consists of metadislocations with six
(white arrows) and ten (black arrows) phason planes, all extending to the lower
right direction and aligned at a slight angle to the [001] direction. In the area
shown, we find, n9/ng = 11/6 = 1.83, which is close to the value of t. In the limited
image area full compensation according to eq. (4) cannot be fully achieved since ©
iIs an irrational number. The actual interface strain in the micrograph, which
comprises an interface length of about 450 nm, amounts to 0.03%.

Note that, for the sake of simplicity, we have argued that the structure in the
lower right-hand side of the image is €,3-Al-Pd—-Mn. A closer inspection of this area
reveals, however, that the phason-line density is lower than for &,g, which indicates
that a related phase with larger c-lattice constant exists here (Section 3.2.2).
However, as long as the area contains a phase with phason lines as structural
elements, this does not change the line of argumentation. Naturally, the distances
between the metadislocation cores forming the boundary determine the c-lattice
constant of the corresponding phase.

Fig. 37. TEM micrograph of a phase boundary between es-Al-Pd-Mn (upper left) and e;5-Al-Pd—-Mn
(lower right). The boundary consists of metadislocations with six (white arrows) and ten (black arrows)
associated phason halfplanes.
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6. Metadislocations in different crystal structures

The metadislocations discussed in the previous chapters were described in terms of
the structure of orthorhombic e-type phases, such as g4- and g,3-Al-Pd-Mn. Indeed
this particular type of metadislocation is critically related to characteristic structural
features such as the distances and angles between the constituting clusters.
Orthorhombic e-phases derive from the basic binary Al;Pd structure type [56],
which has extensions into numerous ternary systems. Besides the system Al-Pd-Mn
discussed above, in which the e-phases have a stability range of up to about 6 at.%
Mn [57], such phases also exist in the systems Al-Pd-Fe and Al-Pd—(Rh, Re, Ru,
Co, Ir) ([32] and references therein). Furthermore, an isostructural phase exists in
the system Al-Rh [58], which extends into the ternary systems with Cu and Ni ([32]
and references therein). In all these systems, the structural conditions are such that
metadislocations potentially exist. So far, their existence was experimentally
confirmed in Al-Pd-Mn and, for Fe contents below about 3 at.%, in Al-Pd-Fe [59].
In Al-Rh-Ni, phason lines and phason planes were observed by Sun et al. [60]. To
the best of our knowledge, corresponding microstructural investigations have not
been undertaken as yet in all other e-phase forming systems.

In the following section, it is shown that metadislocations exist is a wide range of
CMA s other than e-phases. To start with, we discuss metadislocations in monoclinic
e-phases. These are closely related to the orthorhombic e-phases, and so are their
metadislocations. In Sections 6.2 and 6.3, we proceed to structures more distantly
related, for which the existence of metadislocations was theoretically predicted [46].
We show that metadislocations indeed exist in these systems, albeit in a different
form than expected. In particular, the associated defects are not phason planes but
different types of planar fault, which leads to a more general view of the
characteristic features of metadislocations.

6.1. Metadislocations in &- and monoclinic g-phases

Fig. 38(a) is a transmission electron micrograph of a metadislocation in
Aly, oPdy; sFes,. The metadislocation core is located in the lower left part of the
image. It is associated with three planar defects extending to the upper right (dark
contrast), which can be identified as phason planes.? The surrounding host structure
is formed by a parallel arrangement of flattened hexagons and hence can be
identified as a &-phase [Fig. 4(c)]. In the basis of the &-structure, the associated
phason halfplanes are oriented approximately parallel to the (001) planes.
Fig. 38(b) shows a tiling representation of the metadislocation. The host structure
is given by parallel hexagons, representing the &-phase seen along the [010]
direction. A Burgers circuit in terms of edges of the hexagon tiles around the

% Note that here the term “phason plane” is used in a more general sense than introduced in Section 3.1.
The term is now used to refer to any lineup of phason lines that, to the eye, forms a continuous planar
arrangement.
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Fig. 38. Metadislocation in Aly, oPdy, sFes, associated with three planar defects in a &-host structure.
(a) TEM micrograph. (b) Corresponding idealized tiling representation.

metadislocation core (Section 4.3) reveals a closure failure of 1/2t*[101] in terms
of the &-lattice, which corresponds to the metadislocations Burgers vector. The
Burgers vector length is 0.179 nm.

The tiling representation in Fig. 38(b) is slightly idealized: the phason lines were
ordered such that the phason planes are parallel to the (00 1) planes of the &-lattice.
The group of phason planes can then be identified as a slab of monoclinic (1, —1)
phase (where the nomenclature of Heggen et al. [31] is used). The corresponding
unit-cell projection is shown in Fig. 38(b). Comparing the tiles representing the
metadislocation cores in the &-structure and of the metadislocation with six
associated phason halfplanes in the gg-structure [Figs 38(b) and 20, respectively],
one sees that the same polygon is used. In both cases the Burgers vector length,
in terms of the edge length a, of the hexagons, is given by ag/c”. The difference in
Burgers vector length for &-Al-Pd-Fe and e4-Al-Pd-Mn (0.179 and 0.183 nm,
respectively) is merely due to the slightly different lattice parameters of these
phases. Accordingly, one expects that the metadislocation core structures in these
phases are very similar.

Fig. 39(a) is a TEM micrograph of a metadislocation in a sample region of
Aly, oPdy, sFes, with a high density of phason planes. The host structure can be
identified as the monoclinic (1,—1) variant of the ey,-structure with additional
local modulations [31]. The metadislocation core terminates three phason planes
extending to the upper right part of the image. Below the core, a small region
showing parallel flattened hexagons, that is of -structure, is observed. The phason
planes surrounding the metadislocation core are marked by white lines as a guide to
the eye. Comparing Figs 38(b) and 39(b), one sees that for these metadislocations
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Fig. 39. Metadislocation in Aly, oPdy, gFes, in a sample region with a high density of phason planes.

The host structure is the monoclinic (1,—1) variant of the &,-structure. (a) TEM micrograph.

(b) Corresponding idealized tiling representation. The crystallographic directions are indexed in the basis
of the &-structure.

there is a complementarity similar the one found for metadislocations in the g4- and
exg-structures (Section 4.2).

In complete analogy with the case of metadislocations in gs-Al-Pd-Mn
(Section 4.4), series of metadislocations with other numbers of associated phason
halfplanes can be constructed. Fig. 40 is a transmission electron micrograph
showing two metadislocations in a sample region similar to that of Fig. 39(a). The
left metadislocation is associated with five phason halfplanes and that on the right
with eight phason halfplanes. In the areas directly below both metadislocation
cores, regions of &-structure are identified.

The tiling representation of metadislocations with five associated phason
halfplanes is shown in the E-structure [Fig. 41(a)] and in a region with a high
density of phason planes [Fig 41(b)]. The tile representing the metadislocation core
is identical in both cases and corresponds to that of a metadislocation with 10
associated phason planes in &5-Al-Pd-Mn [Fig. 24(a)]. The Burgers vector is
—1/27°[101] in terms of the basis of the &-lattice, corresponding to a length of ay/t*.
Analogously, metadislocations with one, two, and eight associated phason
halfplanes can be constructed. The corresponding Burgers vectors are given in
Table 3.

Thus, one can construct a sequence of metadislocations with increasing numbers
of associated phason halfplanes. As in gs-Al-Pd—Mn, the Burgers vector lengths of
the metadislocations in the sequence are related by factors of —t, and with
increasing number of associated phason halfplanes, the Burgers vector length
decreases. However, in the &-structure, the sequence of associated phason
halfplanes is 1, 2, 3, 5, 8, ... and it follows a Fibonacci sequence, whereas in &g
the sequence is 2, 4, 6, 10, 16, ..., which follows a series of twice the Fibonacci
numbers.
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Fig. 40. Two metadislocations in a sample region similar to that of Fig. 39(a). The left metadislocation is
associated with five phason halfplanes and the right one with eight phason halfplanes. The
crystallographic directions are indexed in the basis of the &-structure.

SR
=3

QR
2580
!3 «S3e 8,

Fig. 41. Tiling representation of metadislocations with five associated phason halfplanes. (a) In the &-
structure. (b) In a region with a high density of phason planes.
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Table 3
Metadislocations in the &-structure

N b b/ay b (nm)
1 +1/27%[101] +1/z +0.470
2 —1/27[101] —1/7? —0.290
3 +1/27%101] +1/7° +0.179
5 —1/25[101] —1/* —0.111
8 +1/2:°[101] +1/7° +0.068

Note: N, number of associated phason halfplanes; B, Burgers vector in the basis of the &-structure; and b,
Burgers vector length in terms of hexagon edge length a, and absolute value.

The tiling representation of the associated phason halfplanes in Fig. 41 is
different. While in Fig. 41(a) the respective area corresponds to a slab of monoclinic
(1,—1) phase, the area in Fig. 41(b) corresponds to the orthorhombic &4 phase.
This is merely a matter of representation and does not change the construction
principle since phason lines can freely move along the [001] direction via local
atomic jumps (Section 3.1.2).

There are obvious similarities between the metadislocations introduced in this
section and those discussed before (Sections 4 and 5). However, a clear criterion to
discriminate between the two types can be fixed via the structure type of the
surrounding material: The metadislocations previously discussed form in orthor-
hombic structures like €5 and &,g5, while those introduced in this section form in
structures that are monoclinic or possess an alternative monoclinic representation.
The latter holds for & and &4, both of which can be described in terms of a
monoclinic unit cell having half the volume of the orthorhombic alternative.
Therefore, in the following, we refer to the previously discussed metadislocations
and those introduced in this section as metadislocations in orthorhombic and
monoclinic structures, respectively.

6.2. Metadislocations in Taylor phases

Taylor phases are based on binary Al;Mn, the structure of which was firstly solved
by Taylor [22]. The phase has ternary extensions into several systems (e.g., Pd, Ni,
Fe) [61], all of which are referred to as Taylor- or T-phases. Binary AlzMn is a high-
temperature phase, transforming to a triclinic variant below about 900 °C [62].
Addition of the third element Pd, Fe, or Ni stabilizes the T-phase, and hence the
existence ranges of the ternary extensions extend to much lower temperatures.
T-Al-Mn-Pd has an orthorhombic structure with lattice parameters a = 1.47 nm,
b =1.25nm, ¢ = 1.26 nm [22,23,63], and 156 atoms per unit cell. Fig. 42(a) shows
a projection of its unit cell along the [010] direction. The structure can be
represented by a tiling consisting of flattened hexagons. Like the phase e4-Al-Pd—
Mn, the T-phase structure is described in terms of tiles arranged in rows of
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Fig. 42. (a) Projection of the unit cell of T-Al-Mn-Pd along the [0 1 0] direction and corresponding tiling

description. (b) Tiling representation of the R-phase. (c) Phason lines (gray) forming (001) planes

(broken lines). (d) Metadislocation with six associated phason halfplanes in the T-phase. The dark-gray
tile represents the metadislocation core.

alternating orientation. Atomic columns containing Mn and Al are located at the
vertices; edges and columns containing predominantly Pd and Mn are located in
the hexagon centers. Fig. 42(b) represents the tiling of the R- or Robinson phase,
which is structurally closely related to the T-phase [63,64] and can be represented
by parallel rows of flattened hexagons. The dashed rectangle represents the
orthorhombic unit cell. A monoclinic unit cell (dotted parallelogram) can, however,
also be defined and can be interpreted in terms of a T-phase orthorhombic cell
“sheared” along the [00 —1] direction. Fig. 42(c) shows phason lines (gray tiles) in
a T-phase structure [65]. A single phason line exchanges the orientation of
neighboring hexagon rows from B,A to A,B. Individual phason lines can line up
along the [100] direction and form (00 1) phason planes [Fig. 42(c)]. As shown in
Ref. [46], metadislocations in the T-phase can be constructed in full analogy with
the e-phases (Section 4.5). Fig. 42(d) shows a metadislocation in the T-phase with
six associated phason halfplanes. The dark-gray tile represents the core of the
metadislocation. Its Burgers vector is b=—c /7*[0 0 1], which exactly corresponds
to that of a metadislocation in gs-Al-Mn—-Pd. Like for metadislocations in &-type
structures, a sequence of metadislocations with 2, 4, 6, 10, and 16 associated phason
halfplanes can be constructed.

Plastically deformed single-crystalline T-Al-Mn-Pd samples exhibit a high
density of metadislocations with a [010] line direction terminating planar defects
with (100) habit planes. Fig. 43 shows a HAADF image of a (100) planar defect,
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Fig. 43. High-resolution HAADF micrograph of a (100) planar defect in edge-on orientation located
between the dashed lines, and superposed tilings for the T- and R-phases.

located between the dashed lines, in edge-on orientation. Bright dots correspond to
atomic columns preferentially occupied by heavier atoms, that is, mainly Pd and
Mn, and the micrograph can directly be compared to the tiling representation of
T-Al-Mn-Pd (Fig. 42). In the upper and lower parts, the micrograph can be
matched with the tiling representing the ideal T-phase, while the central part
between the dashed lines requires a parallel arrangement of flattened hexagons,
which corresponds to a slab of R-phase.

Fig. 44(a) shows a HAADF micrograph of a metadislocation in T-Al-Mn-Pd.
The planar defect at the right-hand side, that is the slab of R-phase, is visible
between the dashed lines. The metadislocation core is indicated by a polygon, which
directly corresponds to the predicted polygon representing a metadislocation core
[cf. Fig. 42(d)]. In addition three phason defects are visible at the left-hand side of
the metadislocation core. Fig. 44(b) shows a full tiling representation of the defect.

It is obvious that the core structure of the experimental [Figs 44(a) and 44(b)] and
predicted [Fig. 42(d)] metadislocation are represented by the same tile. Hence they
both have the same Burgers vector. However, they are connected to different types
of planar defects. While the metadislocation in Fig. 42(d) is associated with six
phason planes, the metadislocation in Fig. 44(b) is associated with a slab of
R-phase. The phason elements on the left-hand side of the metadislocation core
change the stacking sequence of the ideal T-phase structure A,B,A,B,A to a
sequence A,A,A,B,B. These additional defects are required to accommodate the
symmetrical metadislocation core into the structure and have to move along with
the latter. In other words, the three phason lines act as escort defects to the
metadislocation core, which move ahead and clear the way for the latter. Upon
movement, the metadislocation locally transforms the T-phase structure, leaving a
slab of modified R-phase in its wake. Different types of metadislocations in T- and
R-phase structures and their modes of motion are discussed in Section 6.4.
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Fig. 44. Metadislocation in T-Al-Mn-Pd. (a) High-resolution HAADF micrograph. Dashed lines
indicate the location of the slab of R-phase. The metadislocation core and three phason lines are
highlighted. (b) Tiling representation of the defect.

6.3. Metadislocations in orthorhombic Al;3;M, phases

The group of orthorhombic Al;3M, phases comprises 0-Al;3Co, and o-AljsFey.
0-Al15Coy is an orthorhombic phase with space group Pmn2; and lattice parameters
a=0.82nm, b =1.23nm and ¢ = 1.45nm [66]. The main structural features are
pair-connected pentagonal-prismatic channels extending along the [100] direction
[66]. Within the (100) plane, the structure can be matched by a tiling consisting of
regular pentagons and rhombs [46], as depicted in Fig. 45(a) where the rhombs are
arranged in an antiparallel manner. The edges of the tiles correspond to atomic
columns, which are predominately occupied by cobalt atoms. The orthorhombic
unit cell is superimposed onto the tiling.

The structure of monoclinic m-Al;3Co, is homeotypic to that of monoclinic
AljsFey and structurally closely related to that of 0-Alj3Co, [66-69]. The tiling
description of m-Al;3Co, [Fig. 45(b)] is characterized by a parallel arrangement of
the pentagon and rhomb elements. Phason lines [light-gray tiles in Fig. 45(c)] can be
constructed by introducing an additional tile, a boat-shaped heptagon. The phason
lines can arrange along the [010] direction, forming (001) planes [Fig. 45(c)].
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Fig. 45. (a) Projection of the unit cell of the o0-Al;3Co, phase along the [100] direction and

corresponding tiling description. (b) Tiling representation of the m-Al;3Co, phase. (c) Phason lines

(gray) forming (010) planes (broken lines). (d) Metadislocation with four phason planes. The dark-gray
tile represents the metadislocation core.

The phason planes can be used to construct a new type of metadislocation in
Al3My [46]. Fig. 45(d) shows a hypothetical metadislocation with four associated
phason planes. Its core is given by the dark-gray tile. The Burgers vector can be
calculated as b = b/7’[010]. In analogy with the case of e-type and T-phase
structures, a sequence of metadislocations can be constructed.

In experimental investigations of plastically deformed Al;3Co, crystals, planar
faults possessing (010) habit planes are not observed and phason planes, as
depicted in Fig. 45(c), are not present. Instead, planar defects with (001) habit
planes are found in high density [70] [Fig. 46(a)]. In the TEM micrograph, the
planar defects are seen as parallel stripes covering the entire image area. The
arrowhead in Fig. 46(a) points at a metadislocation terminating a planar defect.
Most of the observed metadislocation line directions are parallel to [1 00]. Contrast-
extinction experiments reveal that the metadislocation Burgers vectors and the
displacement vectors of the associated planar defects are both parallel to the [01 0]
direction. This shows that metadislocation glide on (001) planes is the basic
mechanism of plastic deformation in Al;3Coy. Fig. 46(b) is a HAADF micrograph
of planar defects in edge-on orientation (arrows). Bright dots in the micrograph
correspond to atom columns that are preferentially occupied by cobalt atoms and
can be matched by the 0-Al;3Co, tiling. As in the T-phase, the planar defects are
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Fig. 46. (a) Bright-field TEM micrograph showing a high density of planar defects (parallel stripes) in

a deformed 0-Al;3Co4 sample. The arrowhead points at a metadislocation terminating a planar defect.

(b) High-resolution HAADF micrograph of planar defects in edge-on orientation (arrows) with
superposed tilings for the o- and m-Al;3Coy, structures.

slabs of the structurally related phase represented by a parallel tile arrangement.
In this case, the latter correspond to the m-Al;;Co, phase.

Fig. 47(a) shows a high-resolution TEM micrograph of a metadislocation (central
part of the image) in end-on orientation. The metadislocation terminates a (001)
planar defect, that is, a structurally modified slab of m-Al;;Co,4 extending to the
right-hand side of the image. The outline of the 0-Al;3Co, unit cells is depicted by
white rectangles. Rhomboids representing the unit cell of the monoclinic Al;;Coy
phase are used to cover the structurally modified slab. Figs 47(b) and 47(c) show
tilings corresponding to the arrangement of unit cells of o- and m-Al;3Co4. In
Fig. 47(b), the metadislocation-core tile is directly obtained as the area that cannot
be filled using the regular tiles for o- or m-Al;3Co,4 and it is asymmetric. The core
can be made mirror-symmetric by slight rearrangement of the tiles and the addition
of an escort defect. Which tiling corresponds to the real structure cannot be decided
on the basis of the available TEM micrographs. Both solutions however show that,
again, this metadislocation differs from the predicted form [Fig. 45(d)] in the way it
is associated with planar defects. It is not associated with phason planes but with
a slab of a monoclinic m-Al;3Co, phase. However, the core structures of both
metadislocations are described by tiles corresponding to the same Burgers vector.

6.4. Comparison of different types of metadislocations

In this section, different types of theoretically predicted and experimentally
observed metadislocations are compared and their mode of motion is analyzed.
Fig. 48 depicts the experimentally observed metadislocations in orthorhombic
and monoclinic e-phases, Al;3sMy- and T-phases. Their cores are represented by
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Fig. 47. Metadislocations in 0-Al;3Coy. (a) High-resolution TEM micrograph. The metadislocation
terminates a (00 1) slab of m-Al;3Coy4 extending to the right-hand side of the image. White rectangles and
rhombs represent the unit cell of the o- and m-Al;3Coy4 phases, respectively. Tilings of metadislocation
core structures (b) without and (c) with escort defect. Both are compatible with the experimental image.

dark-gray polygons and their associated planar defects are shown in light gray.
Their Burgers vectors are indicated by arrows. Figs 48(a) and 48(b) show
metadislocations of the e- and &-type, respectively. They are associated to six and
three phason planes, which have (001) habit planes. The metadislocations move
along the +[100] direction (cf. Section 5.1.2). Their Burgers vectors are 1/7*[001]
and 1/2¢*[001], that is, the es-type metadislocation moves by pure climb and,
assuming movement in the habit plane of the associated phason halfplanes, the
&-type metadislocation moves by a mixed glide and climb process. Fig. 48(c) shows a
metadislocation in 0-Al;3Coy, which is associated to a (00 1) planar defect, that is, a
slab of m-Al;3Coy. This metadislocation moves along the [0 —1 0] direction, which is
parallel to its Burgers vector, that is, the Al;3Co,-type metadislocation moves by
pure glide. The same holds for the metadislocation in T-Al-Mn-Pd [Fig. 48(d)].
Upon movement, a slab of a modified phase is created in both cases. This
mechanism resembles that of a shear transformation as observed in Laves phases,
where moving dislocations introduce structurally modified slabs [71-73]. In the C14
Laves phase Cr,Hf, for instance, dislocation motion creates a slab of the cubic C15
Laves phase within the C14 matrix [73]. The analysis of defect structures in T- and
AljsMy-phases reveals that metadislocations are not necessarily associated to
phason planes, but to a local structural transformation in a more general sense.
In the case of T- and Al;3Coy4, the metadislocation mediates the local transforma-
tion to the closely related monoclinic R- and m-Al;3Co4-phase, respectively.
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Fig. 48. Tiling representation of experimentally observed metadislocations in (a) orthorhombic e-phases,
(b) monoclinic e-phases, (c) Al;sMy- and (d) T-phases. The Burgers vectors are indicated by arrows
(not to scale).

This generalization also includes the metadislocations in orthorhombic and mono-
clinic e-phases, since the group of inserted phason halfplanes can, as demonstrated
in Section 3.2.2, also be regarded as a slab of related e-phase. In these terms, the
metadislocation in the e¢-phase [Fig. 21(b)] mediates the local transformation from
€6 t0 &g, and in the complementary situation, the metadislocation in the &,g-phase
[Fig. 21(a)] mediates the local transformation from &5 to &s. Similarly, as already
discussed in Section 6.1, the metadislocations in the monoclinic e-phases mediate
local transformations from & to any of the e-phases possessing phason lines as
structural elements, or vice versa for the complementary case.

Fig. 49 presents different types of metadislocations with and without phason
planes and demonstrates the generality of the construction principles. Figs 49(a)-
49(d) show metadislocations in the T- and R-phase and Figs 49(e)-49(h) show
metadislocations in the g4- and &-phase, respectively. On the left [Figs 49(a), 49(c),
49(e), and 49(g)], metadislocations with associated phason halfplanes are shown; on
the right [Figs 49(b), 49(d), 49(f), and 49(h)], metadislocations associated with slabs
of a structurally related phase (i.e., the R- and &-phases) are shown. Obviously, for
this particular Burgers vector (as represented by the core tile) the number of
associated planar defects depends on the host structure. In the present example, for
the orthorhombic hosts g5 and T we find six associated planes (phason planes for g4
and layers of R-phase for T) and generally, for the members of the corresponding
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Fig. 49. Tiling representation of various possible metadislocations arrangements in different host
structures. (a, b) In the T-phase. (c, d) In the R-phase. (e, f) In the gg-phase. (g, h) In the &-phase. The
Burgers vectors are indicated by arrows (not to scale).

metadislocation series, double Fibonacci numbers. For the monoclinic hosts & and
R, we find three associated planes (phason planes or layers of twinned structure)
and generally single Fibonacci numbers for the corresponding metadislocation
series. We find similar relations for orthorhombic and monoclinic Al;zM, (not
shown).

The broad variety of constructible and observed metadislocations suggests a
definition independent of their mode of motion and the type of associated planar
defect: A metadislocation is a line defect with a Burgers vector corresponding to a
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17" (n=1,2,3, ...) fraction of the corresponding lattice constant, mediating a local
transformation to a phase that is structurally related to the matrix and accom-
modates the irrational Burgers vector to the lattice. The metadislocation core
region comprises structural features of both phases. This definition includes the
experimentally observed dislocations in several CMAs like Alj3Coy, g6- and gg-Al-
Pd-Mn [1,42,44,46,55], &- and &,,-Al-Pd-Fe [59], as well as several other e-type
phases [31.45].
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Appendix. Arithmetics of the golden mean t

The golden mean, also referred to as golden ratio, is defined as follows: Two
quantities are in the golden mean, if the ratio of the larger and the smaller one is
equal to the ratio of their sum and the larger one, that is

a a-+b
= . Al
5= 2 (A1)

Now, arbitrarily setting a =t and b =1, we directly obtain the constituting
relation

?=1+1. (A2)

Solving this equation for 7 yields © = 1/2(1 £ +/5), the positive solution of which
numerically amounts to about 1.6180. Eq. (A2) is also the generating polynomial of
the Fibonacci recursion F, ,, = F,,1+F,, which defines the Fibonacci sequence.
The first Fibonacci numbers F,, for n =0, ..., 8, are 0, 1, 1, 2, 3, 5, 8, 13, and 21.
The ratio of consecutive Fibonacci numbers converges and the limit for n— oo
approaches .

Eq. (A2) is a fundamental relation for the arithmetics of the golden mean.
It has the consequence that a polynomial equation containing any power of t
can be reduced to a linear equation. The following relations, implying this property,
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are highly convenient for calculating lattice distances, Burgers vectors, etc., in
e-type structures.

Obviously, the coefficients on the right-hand sides of the equations follow a
Fibonacci sequence, and their relation upon multiplication or division by 7 can be
generally expressed as

mt+myr=m+m)yr+n (A3)
and
netm_ mt + (n — m), (A4)
respectively.
Another useful relation for calculating Burgers vectors in e-type structures is
W3 —1t=+14+2, (AS)

the validity of which can be easily verified by the reader using Eq. (A1).

References

[1] H. Klein, M. Feuerbacher, P. Schall, K. Urban, Phys. Rev. Lett. 82 (1999) 3468.
[2] C.L. Jia, private communication (2008).
[3] J.P. Hirth, J. Lothe, Theory of Dislocations, Krieger Publishing, Malabar, FL, 1972.
[4] R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering, Butterworth-
Heinemann, Oxford, 1999.
[5] F.C. Frank, Acta Crystallogr. 4 (1951) 497.
[6] J. Heindl, W. Dorsch, H.P. Strunk, St. G. Miiller, R. Eckstein, D. Hofmann, A. Winnacker, Phys.
Rev. Lett. 80 (1998) 740.
[7] S. Muto, G. van Tendeloo, S. Amelinckx, Philos. Mag. B 67 (1993) 443.
[8] K. Urban, M. Feuerbacher, J. Non-Cryst. Solids 334 & 335 (2004) 143.
[9] J. Kepler, Harmonices Mundi 2 (1619).
[10] C. Janot, Quasicrystals: A Primer, Clarendon Press, Oxford, 1992.
[11] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53 (1984) 1951.
[12] F.C. Frank, J.S. Kasper, Acta Crystallogr. 11 (1958) 184.
[13] L. Pauling, Am. Sci. 43 (1955) 285.
[14] S. Samson, Acta Crystallogr. 19 (1965) 401.
[15] N. Tamura, Philos. Mag. 67 (1997) 337.
[16] G. Bergman, J.L.T. Waugh, L. Pauling, Acta Crystallogr. 10 (1957) 254.



Metadislocations 169

[17] A.L. Mackay, Acta Crystallogr. 15 (1962) 916.

[18] M. Cooper, K. Robinson, Acta Crystallogr. 20 (1966) 614.

[19] S. Samson, Mater. Sci. Forum 22-24 (1987) 83.

[20] F. Edler, V. Gramlich, W. Steurer, J. Alloys Compd. 269 (1998) 7.

[21] F. Edler, Ph.D. thesis no. 12384, ETH Zuerich, Switzerland, 1997.

[22] M.A. Taylor, Acta Crystallogr. 14 (1961) 84.

[23] K. Hiraga, M. Kaneko, Y. Matsuo, S. Hashimoto, Philos. Mag. B 67 (1993) 193.

[24] M. Boudard, H. Klein, M. DeBoissieu, M. Audier, H. Vincent, Philos. Mag. A 74 (1996) 939.

[25] L. Beraha, M. Duneau, H. Klein, M. Audier, Philos. Mag. A 76 (1997) 587.

[26] M. Yurechko, B. Grushko, T.Y. Velikanova, K. Urban, in: T.Y. Velikanova (Ed.), Phase Diagrams
in Materials Science, Materials Science International Services, Stuttgart, Germany, 2004.

[27] H. Klein, Ph.D. thesis, Inst. Nat. Polytech. de Grenoble, France, 1997.

[28] H. Klein, M. Durand-Charre, M. Audier, J. Alloys Compd. 296 (2000) 128.

[29] N. Shramchenko, F. Denoyer, Eur. Phys. J. B 29 (2002) 51.

[30] M. Engel, H.-R. Trebin, Philos. Mag. 85 (2005) 2227.

[31] M. Heggen, M. Engel, S. Balanetskyy, H.-R. Trebin, M. Feuerbacher, Philos. Mag. 88 (2008) 507.

[32] S. Balanetskyy, B. Grushko, T.Y. Velikanova, Z. Kristallogr. 219 (2004) 548.

[33] H. Klein, M. Audier, M. Boudard, M. de Boissieu, L. Beraha, M. Duneau, Philos. Mag. 73 (1996) 309.

[34] M. Heggen, L. Houben, M. Feuerbacher, 2009 (in preparation).

[35] P.D. Nellist, S.J. Pennycook, Ultramic 78 (1999) 111.

[36] R.E. Peierls, Proc. R. Soc. 52 (1940) 23.

[37] M. Feuerbacher, Acta Mater. 53 (2005) 3833.

[38] P.B. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin
Crystals, Krieger Publishing, Malabar, FL, 1977.

[39] D.B. Williams, C.B. Carter, Transmission Electron Microscopy, Plenum Press, New York, 1996.

[40] D. Hull, D.J. Bacon, Introduction to Dislocations, Pergamon Press, Oxford, 1984.

[41] A. Brinck, C. Engelke, H. Neuhéuser, G. Molénat, H. Rosner, E. Langmaack, E. Nembach, Mater.
Sci. Eng. 258 (1998) 32.

[42] M. Heggen, M. Feuerbacher, Mater. Sci. Eng. 400401 (2004) 89.

[43] V. Vitek, Cryst. Latt. Def. 5 (1974) 11.

[44] H. Klein, M. Feuerbacher, Philos. Mag. 83 (2003) 4103.

[45] M. Engel, H.-R. Trebin, Philos. Mag. 86 (2006) 979.

[46] M. Feuerbacher, M. Heggen, Philos. Mag. 86 (2006) 985.

[47] G. Edelin, J.P. Poirier, Philos. Mag. 28 (1973) 1203.

[48] D. Caillard, G. Vanderschaeve, L. Bresson, D. Gratias, Philos. Mag. A 80 (2000) 237.

[49] M. Feuerbacher, P. Schall, Scr. Mater. 49 (2003) 25.

[50] S. Roitsch, Ph.D. thesis, RWTH Aachen, Aachen, 2008.

[51] M. Feuerbacher, D. Caillard, Acta Mater. 54 (2006) 3233.

[52] M. Feuerbacher, S. Roitsch, M. Heggen, 2009 (in preparation).

[53] P. Schall, M. Feuerbacher, K. Urban, Phys. Rev. B 69 (2004) 134105.

[54] M. Feuerbacher, H. Klein, K. Urban, Philos. Mag. Lett. 81 (2001) 639.

[55] M. Heggen, M. Feuerbacher, Philos. Mag. 86 (2006) 935.

[56] Y. Matsuo, K. Hiraga, Philos. Mag. Lett. 70 (1994) 155.

[57] M. Yurechko, B. Grushko, T. Velikanova, K. Urban, Phase Diagrams in Materials Science, MSI
GmbH, 2002, p. 92.

[58] M. Yurechko, B. Grushko, T.Y. Velikanova, et al., Powder Metall. Met. Ceram. 40 (2001) 374.

[59] M. Feuerbacher, S. Balanetskyy, M. Heggen, Acta Mater. 56 (2008) 1849.

[60] W. Sun, Y.H. Chen, Z. Zhang, Philos. Mag. 87 (2007) 2815.

[61] S. Balanetskyy, G. Meisterernst, M. Heggen, M. Feuerbacher, Intermetallics 16 (2008) 71.

[62] A.J. McAlister, in: T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, American Society for
Metals, Metals Park, OH, 1986.

[63] H. Klein, M. Boudard, M. Audier, M. de Boissieu, H. Vincent, L. Beraha, M. Duneau, Philos. Mag.
Lett. 75 (1997) 197.



170 M. Feuerbacher, M. Heggen

64] K. Robinson, Acta Crystallogr. 7 (1954) 494.

| L. Beraha, M. Duneau, H. Klein, M. Audier, Philos. Mag. A 78 (1998) 345.

] J. Grin, U. Burkhardt, M. Ellner, K. Peters, J. Alloys Compd. 206 (1994) 243.

] R.C. Hudd, W.H. Tailor, Acta Crystallogr. 15 (1962) 441.

8] J. Grin, U. Burkhardt, M. Ellner, K. Peters, Z. Kristallogr. 209 (1994) 479.

9] B. Grushko, R. Wittenberg, K. Bickmann, C. Freiburg, J. Alloys Compd. 233 (1996) 279.
70] M. Heggen, D. Deng, M. Feuerbacher, Intermetallics 15 (2007) 1425.

71] C.W. Allen, K.C. Liao, Phys. Status Solidi A 74 (1982) 673.

72] P.M. Hazzledine, P. Pirouz, Scr. Metall. 28 (1993) 1277.

73] MLF. Chisholm, S. Kumar, P. Hazzledine, Science 307 (2005) 701.

6
6
6
6

=X

[
[
[
[
[
[
[
[
[
[



CHAPTER 95

Dislocations in Minerals

DAVID J. BARBER

Physics Centre, University of Essex, Colchester CO4 3SQ; Wolfson Centre for Materials Processing,
Brunel University, Uxbridge, Middlesex UB8 3PH, UK

HANS-RUDOLF WENK
Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA

GREG HIRTH
Department of Geological Sciences, Brown University, Providence, RI 02912, USA
and

DAVID L. KOHLSTEDT
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA

© 2010 Elsevier B.V. All rights reserved Dislocations in Solids
1572-4859, DOI: 10.1016/S1572-4859(09)01604-0 Edited by J. P. Hirth and L. Kubin



Contents

1. Introduction 173
2. Dislocation microstructures in different environments 175
2.1. Dislocations and other defects introduced during growth and crystallization 175
2.2. Deformation, slip, slip system analysis, Burgers vector 176
2.3. Hardening 178
2.4. Climb and recovery 178
2.5. Recrystallization 182
2.6. Preferred orientation 183
3. Dislocations in various minerals 184
3.1. Halides 184
3.1.1. Lithium fluoride 185
3.1.2. Fluorite 185
3.1.3. Halite 186
3.2. Carbonates 187
3.2.1. Occurrences and structures of carbonate minerals 187
3.2.2. Calcite 188
3.2.3. Dolomite 189
3.2.4. Aragonite 190
3.3. Oxides 191
3.3.1. Corundum 192
3.3.2. Hematite 193
3.3.3. Ilmenite 193
3.3.4. Periclase and wiistite (see also Section 3.8.1) 193
3.3.5. Magnetite 195
3.3.6. Spinel 195
3.3.7. Perovskite (see also Section 3.8.5) 197
3.3.8. Rutile 197
3.4. Quartz 198
3.5. Olivine 200
3.6. Other silicates 203
3.6.1. Garnet (see also Section 3.8.2) 203
3.6.2. Orthopyroxene 204
3.6.3. Clinopyroxenes 204
3.6.4. Amphiboles 206
3.6.5. Mica 207
3.6.6. Sillimanite, Mullite 207
3.6.7. Feldspars 207
3.7. Sulfides 209
3.7.1. Iron sulfides — general 209
3.7.2. Pyrite 210
3.7.3. Chalcopyrite 211
3.7.4. Galena 211
3.7.5. Sphalerite 213
3.7.6. Pyrrhotite 214



3.8. High-pressure minerals 214

3.8.1. Magnesiowiistite (see also Section 3.3.4) 214
3.8.2. Majorite Garnet (see also Section 3.6.1) 215
3.8.3. Wadsleyite 215
3.8.4. Ringwoodite 215
3.8.5. MgSiO; perovskite and post-perovskite 216
3.8.6. Coesite 216
3.8.7. Stishovite 216

4. Simulations 216

5. Dislocation densities and strain energy 217

6. Conclusions 219

Acknowledgments 220

References 221



1. Introduction

Minerals are naturally occurring, macroscopically homogeneous chemical compounds
with a regular crystal structure that form by a geological process. There are over 4000
different mineral species. In about 100 of these, dislocation structures have been
studied in some detail. Minerals compose rocks. They also are synthesized for
industrial applications. Dislocations and microstructures constitute a record of the
various processes that formed and modified rocks and other geological materials.
Study of the constituent minerals by geologists can constrain the conditions that have
been experienced, for example, pressure, temperature, stresses. Understanding the
rheology of crustal rocks is dependent on knowledge of the deformation behavior of
their minerals. Correspondingly, the rheology of the zones in the mantle is strongly
dependent on the plasticity of the high-pressure minerals in them [1,2]. In both cases,
the chemical environment (especially water content) has an important influence on
deformation behavior and anisotropy (e.g., fabric development).

Owing to space limitations, what follows is not a comprehensive review of what is
known about dislocations in minerals; we are obliged to be selective and to feature
mainly highlights. We also assume that readers will consult suitable texts concerning
both the theory of dislocations (see [3] and see [4] for a more advanced treatment)
and their characterization (see [5.,0]).

The strain and contrast associated with large numbers of dislocations causes tell-
tale broadening of X-ray diffraction peaks (see Section 5 in Ref. [7]) but techniques
of much greater resolution are needed to image dislocations and microstructures
directly. Probably, the first images of dislocations ever obtained were from a
geological material — the mineral, halite (NaCl). These were obtained in 1905 when
Seidentopf [8] examined naturally colored rock salt with an optical microscope. His
observations (of dislocations decorated with sodium metal) predated the theoretical
concept of a dislocation in an elastic medium [9] and the ideas that dislocations
might play an important role in plastic deformation [10-13]. Thus, the significance
of Seidentopf’s results was not recognized. Much later, Rexer [14] inadvertently
decorated dislocation lines in rock salt crystals with colloidal sodium. His work gave
rise to the decoration methods used successfully to study dislocation behavior in
alkali halides [15,16]). Fig. 1(a) shows an extensive decorated network. Decoration
methods are of limited value in revealing dislocation microstructures, however,
because a thermal treatment is usually required and this causes recovery.
Exceptions are the print out effect in silver halides [18], the first direct observation
of dislocations where they were properly identified, and olivine [19-21]. Olivine
requires heat for the dislocations to become decorated but apparently at
temperatures and times for which climb (see Section 2.4) is minimal. For an
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Fig. 1. (a) Dark-field optical micrograph of an extensive dislocation network in halite revealed by the

decoration of the dislocations with colloidal silver [16]. (b) Optical phase image of growth steps, one unit

cell high (0.79 nm) on the prism surface of a beryl crystal. The inner step joins a pair of opposite-handed
screw dislocations, which are imaged as dots. The c-axis is almost parallel to the straight steps [17].

excellent report of early work on dislocations in many materials, including some
minerals, see Amelinckx [5].

Growth twins in minerals, for example in calcite, have been known for centuries;
observation of mechanical twinning also has a long history. But the dislocations
often associated with both types of twinning remained undiscovered. The link
between twinning and dislocations only emerged in the 1950s, after thin metal foils
were first examined in the transmission electron microscope (TEM) by Hirsch et al.
[22] and Bollmann [23]. Thereafter, the association was found in minerals that are
well known for their twinning, like calcite (see [24]).

Although results from TEM studies on metals forged ahead of those from
minerals prior to the widespread adoption of the ion-milling method [25,26],
mineral crystals played key roles in earlier work. For example, Griffin [17]
recognized groups of monomolecular surface steps on beryl crystals as indicative of
the emergence of screw dislocations [Fig. 1(b)]. Some 20 years earlier, Honess [27]
described various surface features that we now recognize as associated with
dislocations, for example, tails or “‘beaks” extending from etch pits into the interiors
of many mineral crystals (caused by dissolution following impurity atmospheres or
decorating particles along dislocations). Dislocations in minerals can be preserved
and locked against movement through geological times by the pinning of impurities
or the segregation of a second phase [28]. In general, new dislocations must be
nucleated for plastic deformation to proceed.

The study of dislocations by etch pitting was useful in early studies of plastic
deformation. One of the best illustrations is the work of Gilman and Johnston [29]
on synthetic lithium fluoride. Successful etch-pitting reagents were also devised for
other minerals, such as halite [30] and olivine [31], but by then X-ray topography
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[32] and TEM had emerged as preferable techniques because of their potential for
obtaining images capable of providing 3-D information.

The first TEM studies of defects in minerals were mostly carried out on layer-
structured crystals that could easily be cleaved to electron transparent thicknesses.
These included mica [33], graphite [34], molybdenite [35,36], and talc [37]. The
study of dislocation networks in talc [38] is an early milestone in dislocation
analysis. Thereafter, the ion-milling method (and, more recently, the FIB (focused
ion beam) technique) made it possible to investigate dislocations and other defects
in a wide range of minerals, crustal rocks, and extraterrestrial materials.

The lunar samples returned by the Apollo 11 mission first demonstrated the value
of ion-milling in TEM investigations of minerals. The resulting investigations helped
convince geologists of the importance of detailed studies of microstructures and
dislocations for the interpretation of the deformational and thermal history of
geological materials. Various studies on lunar rock specimens (see [39-42]) made
geologists, who already used SEM and EPMA, suddenly aware of the power of
the TEM to analyze mineral microstructures, cosmic ray tracks, etc., leading to the
acquisition of ion-milling equipment and TEMs by numerous laboratories. There
followed a very active period during which many TEM papers were published
detailing the relationships between microstructures, macroscopic properties, and
mineral behavior. Although much progress was made [6], the boom in such studies
was soon over and today only a few earth science laboratories work with the TEM,
perhaps a reflection of the time-consuming nature of specimen preparation and
the rigorous analytical approach required. There remains some interest in high-
resolution imaging (HRTEM). Although, the latter supplies valuable information
about stacking disorder, grain boundary structure, polytypism, and phase transfor-
mations [43], it seldom informs about dislocation behavior other than dissociation.

2. Dislocation microstructures in different environments
2.1. Dislocations and other defects introduced during growth and crystallization

Minerals form by various processes, embracing a wide range of temperatures.
Those of sedimentary and low-temperature origin tend to start as poorly crystalline
and often disordered solids. Unsurprisingly, dislocations are not usually observed in
minerals in this state (e.g., geologically young dolomites). More equilibrated low-
temperature minerals such as clays often show stacking defects but in general
are not noted for significant numbers of dislocations. However, ancient calcian
dolomites and other rhombohedral carbonates that exhibit compositional fluctua-
tions producing lattice strain often contain collections of dislocations.

Mineral grains formed at higher temperatures by crystallization from melts, by
phase transformations, or by reactions, generally contain “grown-in”’ dislocations.
The densities of such dislocations are typically low to moderate (i.e., below about
10*cm™?), unless special factors apply. Recrystallized grains are often dislocation-
free. Most high temperature (HT) minerals have cooled over geologic times,
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enabling equilibration, which favors low dislocation densities in the absence of
subsequent deformation. An additional source of dislocations in any mineral that
has cooled very rapidly can be the collapse of the lattice around clusters of point
defects, especially vacancies.

Many minerals have ordered structures and they may exist in both ordered and
disordered states. Ordering can occur when two different atomic species A and B
utilize the same lattice sites and order is achieved when the two types of atoms
occupy alternate adjacent sites, that is, ABABABA. Typically at high temperatures
the site occupancy is random; ordering commences as the mineral cools. Because
the ordering usually starts at many places simultaneously antiphase boundaries
frequently occur where ordered domains impinge, for example, ABABA|ABABA
(see p. 211 in Ref. [44]). Igneous rocks generally contain ordered minerals, whereas
unmetamorphosed sedimentary rocks tend to contain disordered minerals.
Generally speaking, order—disorder transitions do not appear to cause changes
in the numbers of dislocations. Ordered structures, however, allow for a new type
of dislocation, a superdislocation, which is a line defect of the both the A and B
sublattices. Superdislocations in some structures are able to dissociate into
superpartials.

An antiphase boundary (APB) is a type of stacking fault. Stacking faults also
occur in materials that do not order, the simplest example being a fault in the
normal close-packed layering in face-centered cubic metals, like copper, repre-
sented by CABCAB|ABCABC. Stacking faults, formed during crystal growth or as
a result of deformation (slip), are bounded by partial dislocations.

2.2. Deformation, slip, slip system analysis, Burgers vector

Deformation is the main source of dislocations in rocks and minerals, although what
is observed may have been modified subsequently. If the original deformation is
brittle in nature there will be much cataclasis, but this may also generate
dislocations because of the high stresses present at advancing crack tips. The
detailed analysis of such cataclastic materials can be difficult even if subsequent
annealing has occurred. Laboratory deformation of single crystal minerals has often
been used to elucidate slip systems. The results must be applied with care when
interpreting natural rock deformation because normally this has taken place at
strain rates several orders of magnitude below those obtainable experimentally.
Other considerations apply when interpreting natural shock deformation but here
too laboratory experiments have played a useful role. Shock deformation effects in
terrestrial and meteoritic minerals have been reviewed [45,46].

Plastic deformation creates many dislocations, possibly accompanied by effects
such as twinning and kinking, grain boundary sliding, and competition from climb
(see below). The first two processes can themselves add to the production of
dislocations. Depending on the symmetry of the mineral, slip may proceed on one
or on several planes. The slip planes in simple structures are close-packed planes or,
in more complex structures, planes for which the breaking of bonds is relatively
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easy and/or does not bring oppositely charged ions into closer proximity. The
choice of slip direction is also governed by several structural considerations. In any
case, too much energy is required for slip to occur simultaneously over a large area
of slip plane and so instantaneously the slip is of limited extent — the boundary
between slipped and unslipped material defines a dislocation in the atomic structure
[44]. Slip occurs incrementally by the glide of dislocations across the slip planes. The
motion of a dislocation out of its original slip plane can occur either by cross-slip
onto an intersecting slip plane (provided there is a common slip direction) or by
climb (if the diffusion of point defects is possible). Dislocations are typically curved,
not straight, expanding from a small source under the action of applied stress.
Where a dislocation is perpendicular to the direction of slip it is said to have edge
character, where it is parallel it is screw-like (see [3] for an explanation); where it is
neither, the dislocation is of mixed character. A slip system is specified in terms of a
slip plane {h k 1} and either a slip direction {uvw ) or the associated Burgers vector,
if it is known. Table 1 lists the slip data for many important minerals and they will
be discussed in later sections.

A dislocation is characterized by its Burgers vector, b. This is a measure of the local
displacement of the lattice after a dislocation has passed through it. The Burgers
vector is a translation vector of the unit cell. It determines whether, or how, a
dislocation will interact with other dislocations. To analyze microstructures, to
understand how they have formed and how they relate to macroscopic properties like
texture, strength, etc., it is crucial to have complete information about dislocations
(and other defects), slip systems, and Burgers vectors. Diffraction methods enable
dislocations to be imaged, their properties identified and their Burgers vectors
determined. X-ray topography and TEM are both suitable for this work; by
comparing the visibility of dislocations in images recorded using several Bragg
reflections in turn, one can ascertain Burgers vectors. TEM is the more widely
applicable diffraction contrast method [158]: the conditionsg-b=0and g-b x u =0,
where g is the diffraction vector and u is the direction of the dislocation, apply when a
dislocation becomes invisible. Fig. 2 shows dark-field images of quartz with some
dislocations in and out of contrast, depending on which g is used [151]. Analyzing
dislocation strain fields by this method is dependent upon setting up ‘“‘two-beam
conditions” for imaging. This requires that there is only one strong electron reflection
(only one reciprocal lattice vector g operating). Achieving and/or recognizing out-of-
contrast conditions for a dislocation in a mineral is often not straightforward because
(i) anisotropy in elastic properties may forbid complete invisibility and give residual
contrast; (ii) crystal symmetry considerations can make it impossible to achieve two-
beam conditions in certain crystal orientations with respect to the electron beam;
(iii) radiation damage may decorate dislocations and this effect will be seen even
when the dislocation’s strain field does not interact with the electron beam [Fig. 2(b)].
Less widely used TEM techniques for characterizing Burgers vectors without any a
priori assumptions are large angle convergent beam electron diffraction (LACBED),
as first demonstrated by Carpenter and Spence [159] and Ishida fringes [6].

The characteristics of stacking faults and other defects can also be found using
both diffraction contrast [6] and convergent beam techniques [160]. Simple stacking



Table 1

The main slip systems and Burgers vectors for major minerals

%

Mineral Main slip systems Known Burgers vectors Reference(s)
(*is the shortest)
Low temperature High temperature
Carbonates
Calcite r{1014)<2021), ¢ (0001)¢2110), r {1014} 12021y, 11011y, [47-51]
£ {1012}<1011) <2021y, £ {1012})<1011) L21toy
Dolomite ¢ (0001)¢2110), ¢ (0001)¢2110),r <1014} I211o0y+ 12021y, [52-55]
£ {1012}<1011) <2021y, £ {1012)<1011> K1olily
Aragonite {100}[001], {110}[001] {100}[001], {110}[001] [001]* [56]
Felspars g
Plagioclase - (010)[001], (001)¢(110Y, [001]*, [100] [57-62] g
(001)[100], (010)[100] g
Alkali felspar - (010)[001], (010)[101], [001]% L¢110) [63-68] §
(001)[110] ¥
S
Halides §'
Halite (rock salt) {110}<110> {110}<110),{100}<011>, 110y [69-71] §
{111}<110)
High-pressure phases
Coesite - (010) [001] [001], [100]*, [110] [72]
Majorite - - I¢111y%, (100> [73,74]
Magnesiowiistite - {001)<110),{110}<110> 1110y [75,76]
Post-perovskite - - - [77,78]
Ringwoodite - {111)<110),{100}<011> 1(110y* [79-81]
Stishovite - (001)<100%, {010}<100), {100, [001]*, <110, [82-84]
{100}<001, {110}<110) 1o0t)
Wadsleyite - {101)<111, (010)[100], <111y, [100]* [79,85,86]

{011)[100]

6L1



Table 1. (Continued )

081

Mineral Main slip systems Known Burgers vectors Reference(s)
(*is the shortest)
Low temperature High temperature
Olivine (010)[001], {110}[001] {0k1)[100], (010)[100] [001]*, [100] [87-93]
Sulfides
Chalcopyrite {112}<311),(001) (112)<111) 311y, Ica1ny [94-97]
<110)
Pyrite - {100}<010%, {100}<011) <010y [98-101]
Galena {001}<110} {001}<110), {110}<110) I<110)* [102-105]
Sphalerite {111)<110) {111)<110) 3110y (106] S
Pyroxenes ~
Orthorhombic - (100)[001] [001]*, [010] [107-112] g
Monoclinic - (100)[001], {110}[001] [001]* [113-119] g
Oxides §
Corundum (0001)<1120> (0001)<1120),{1011}<0111) K1120y*1co111) [120-126] =
Hematite 0001)¢1120), 0001)¢1120, {1120} <1120y <1100y [106,127,128]

Periclase, wiistite
Perovskite

Rutile

Spinel

Magnetite
Quartz

{1120)<1100)
{110}<110)

{111)<110), ({110}<110)

(1100
{110}<110),{001}<110>
{110}<110)
{101}<101), {110}[001]
{110}<110)

when nonstoichiometric)

0001)¢1120)

(111)<110)
(0001)<1120),{1010}[0001],
{10T0)[1210],{1010}[121 3]

1110 )
1¢110)% [010]
[001]*
1¢110)*

I¢110)*
1120

[129,75,130-134]
[135]

[136-139]
[140-149]

[127,150]
[151-157]

Note: A dash means that either there is no activity or that there is no reliable data.

S6 'UO
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(@) (b)

Fig. 2. Transmission electron micrographs of slip dislocations in quartz: (a) All in contrast, (b) some out
of contrast (note spotty electron beam damage, typical of (‘‘wet”) quartz after irradiation) [151].

Fig. 3. Dislocations in carbonates: (a) Dark-field TEM image showing dislocations and stacking faults
on the (2110) planes generated by basal slip in a dolomite single crystal deformed at 420°C [52].
(b) Dislocations associated with crossing mechanical twins in calcite (TEM, bright field) [161].

faults and other, more complex, planar faults commonly occur as a result of slip in
minerals. Because the strain energy of a dislocation is proportional to |b|%, it can be
energetically favorable for a dislocation to dissociate into two partials, b; and by,
separated by a ribbon of stacking fault. Dissociation is favored in minerals where
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cations in identical sites have large separations. Fig. 3(a) illustrates this behavior in
experimentally deformed dolomite slipping on the basal plane, according to
12110)>41100)+%(1010).

In addition to slip, mechanical twinning may occur as a deformation mechanism.
Twin boundaries are often decorated with dislocations to relieve local strain

[Fig. 3(b)].

2.3. Hardening

Much less is known about the hardening of minerals caused by plastic deformation
than is the case for metals and alloys [162]. This is attributable to (i) the long-
standing importance of understanding and optimizing the mechanical properties of
metals, (ii) the poorly known and complex geological settings and conditions that
pertained when rocks were deformed, and (iii) the comparatively few laboratory
studies of mineral deformation. Nonetheless, we know from the stress—strain curves
of minerals and rocks plastically deformed at low-to-moderate temperatures to
moderate strains that the effect of strain is to increase resistance to further
deformation, that is, to strengthen and harden the material. This hardening is
largely due to (a) increased dislocation densities, formation of tangles of disloca-
tions, etc., making the passage of newly nucleated dislocations more difficult and
(b) a lack of activatable slip planes and slip systems. In the more ductile minerals
strained to a few percent, cellular dislocation microstructures can develop that are
similar to those seen in the stage III work hardening of metals [see p. 167 and
Figs 11(b) and 12(b) in Ref. [163]]. Thus there are similarities in behavior, so
mineralogists and geologists can look to the large literature on metals for help in
understanding the microscopic behavior of minerals and rocks. Complications arise
with minerals, however, because of the inability of many minerals to conform to the
von Mises [164] criterion because of a symmetry-related lack of slip systems and
hence their tendency to fracture. Nicolas and Poirier [165] give a good description
of various hardening mechanisms and the role of climb and other processes in
softening minerals, together with a discussion on how dislocation substructures
relate to applied stress. Note that flow laws and hardening behavior have been
quantified for only a few minerals.

2.4. Climb and recovery

Below temperatures where point defects are mobile, an edge dislocation and a
mixed dislocation with an edge component are unable to move out of their glide
planes (screws have no glide plane and so are not similarly confined). Interactions
are therefore limited, being restricted to dislocations in a given glide plane unless a
process like cross-slip is possible. But if point defects are mobile they can interact
with a dislocation and gradually change its position: edges may move out of their
glide plane; screws may become helices. Such effects are manifestations of a process
called climb. Climb is the rearrangement and interaction of dislocations to reduce
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(a) (b)

Fig. 4. Dislocations in naturally deformed quartz: (a) Micrograph showing sub-boundaries resulting from
dislocation climb [166]. (b) Recrystallization with nucleation in regions of high dislocation density [167].

the stored elastic energy — i.e., it is partial equilibration. Climb only occurs at
temperatures above ~0.5 7T, where T}, is the melting point in degrees Kelvin.
Climb is only possible if all the relevant point defect species are mobile.

Annealing allows high-energy configurations of dislocations created by deforma-
tion to reduce their energies — by mutual annihilation, reactions, and climb. The
dislocation density is reduced but all the dislocations are not eliminated; many will
persist in the form of networks and other types of low-energy sub-boundaries and
dislocation arrays. Fig. 4(a) illustrates the effect of climb in quartz.

2.5. Recrystallization

Recrystallization implies that a crystal or an existing grain structure is replaced with
another. It is a solid-state process, driven by a need to reduce energy stored in the
assembly and so it can proceed by more than one mechanism. The strain energy is
directly proportional to the dislocation density [168,169]. Recrystallization occurs
during diagenesis and metamorphism (a reduction of chemical free energy). The
replacement of heavily deformed grains by new undeformed grains of the same
type (giving a reduction of strain energy) is also known as recrystallization — short
for strain-induced recrystallization. This process is a more drastic equilibration than
can be achieved by climb. A wave of atomic rearrangement passes systematically
through each heavily deformed grain, sweeping out any dislocations and
generally leaving most grains free of dislocations and other extensive defects.
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Where a completely new grain structure is formed the grain boundaries are almost
all high angle (>10°).

Static recrystallization is triggered when a heavily strained material is rapidly
raised to a critical temperature. New dislocation-free grains are nucleated and
swiftly grow by consuming heavily deformed material until they impinge on their
neighbors. The resulting grain size depends on the relative successes of the two
competing mechanisms, nucleation and growth. The equilibration to a new grain
structure is catastrophic and primary recrystallization, the initial stage of generating
the new grain structure, is complete within seconds if all the material is at the same
temperature. Grain growth and secondary recrystallization take the form of some
grain enlargement at the expense of much smaller grains, thus reducing total
grain boundary area (and energy), together with some grain boundary flattening,
equilibration at triple junctions, etc.

Although massive submicroscopic rearrangement has occurred, the macroscopic
process described above is called static recrystallization, to distinguish it from
dynamic recrystallization. The latter occurs while a material is under stress and
being deformed at an elevated temperature, such that point defects are mobile and
usually other stress-reducing mechanisms are also active (e.g., cross-slip, grain
boundary sliding). Dynamic recrystallization causes some softening to mitigate the
effects of the hardening that usually accompanies plastic deformation. It does so by
providing new grains with relatively low-defect densities [165]. In metals, these are
often elongate in the direction of the macroscopic deformation [170]; the same
effect is seen in ductile minerals, for example, halite and calcitic marbles. Fig. 4(b)
illustrates nucleation in regions of high dislocation densities in quartz [167].
The degree of softening during dynamic recrystallization is dependent on the strain
rate and other factors because the new grains deform and acquire dislocations as
they grow (e.g., see the case of olivine — [171,172]).

2.6. Preferred orientation

The macroscopic effects of the processes of pervasive deformation (and
recrystallization) are the development of anisotropy in properties, due to preferred
orientation or texture. Clearly, texture development is closely linked to movement
of dislocations on slip planes and Taylor [173] introduced the first comprehensive
theory to model texture development by slip that is still widely used. Interestingly,
there is no mention of dislocations or slip systems in Sander’s [174] famous treatise
on fabric analysis. It was only through the classical “Yule marble studies” of
Griggs and Turner that metallurgical concepts to link microscopic mechanisms with
macroscopic properties, that is, the linkage of dislocations and texture patterns,
became accepted in structural geology and have played a dominant role ever since
(see [47,48]). The role of this micro-macro linkage is twofold: firstly, if slip systems
of constituent minerals in rocks are known, we can predict the evolution of texture
patterns during tectonic deformation in the crust (see [175]) or convection in the
mantle (see [176,177]) and then use texture to interpret geological history or seismic
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anisotropy. Secondly, if slip systems are not known, for example, because ultrahigh
pressure phases cannot be quenched and studied by TEM, experimental texture
patterns recorded in situ at highest pressures with diamond anvil cells can be used to
infer slip systems (see, [178]). Not just deformation textures but also recrystalliza-
tion textures can be related to dislocation structures, in terms of individual grain
deformation that controls nucleation and growth [179]. There is no space here to
discuss preferred orientation in minerals and several reviews exist [42,180,181].
In the next sections, we will look at dislocations in a variety of mineral systems
and their variation with physical conditions, mainly temperature, strain rate, and
pressure.

3. Dislocations in various minerals

Dislocations have been studied in many minerals of both geological and materials
science interest. We review investigations on some mineral systems in considerable
detail, without trying to achieve completeness. Slip systems and Burgers vectors of
important minerals are summarized in Table 1. Many advances have been made
since earlier reviews by Christie and Ardell [152] and McLaren [6]. Minerals are
discussed in order of chemical groups, except for high-pressure minerals relevant
for the deep earth; these are the subjects of the last section. We must mention
briefly results that have relevance in other disciplines. For example, diamond and
other various forms of carbon are very important technologically; a concise
summary of relevant findings is given by Bernaerts and Amelinckx [182]. Ceramic
materials are polymineralic and the microstructures of the constituent grains can
strongly influence bulk properties [183]. Extraterrestrial materials, especially
meteorites, embrace a wide range of minerals, sometimes with unique or unusual
microstructures [184]. Recently, considerable attention has been given to disloca-
tion structures in ice [185].

3.1. Halides

The susceptibility of halides to radiation damage and, for some also, to atmospheric
attack, has meant that there are few direct observations of dislocations within
them. Much of our knowledge comes from optical observations of surface slip
traces, etch pits, and decorated dislocations. For a review of plastic deformation and
dislocations in ionic crystals, see Castaing [186]. The highly ionic nature of halides
imbues them with the interesting possibility of their dislocations being charged.
Despite this, there has not been much research into the subject of charged
dislocations since the earliest days and so there are relatively few definite results
(but see 3.7.5). The most important halide minerals are cubic in structure. Only
halite (NaCl), fluorite (CaF,), and lithium fluoride (LiF) will be considered here,
and the latter only because of early work that was very influential in the study of
defects in nonmetals. For this reason, LiF is briefly considered first.



186 D.J. Barber et al. Ch. 95

3.1.1. Lithium fluoride

Lithium fluoride is unimportant from the geological viewpoint but it has great value
for optical components: lenses, prisms, windows, which transmit from the vacuum
ultraviolet to the infrared and, when doped, as a laser material. Like halite, the LiF
structure is cubic and has two interpenetrating face-centered cubic lattices, one of
cations and one of anions. Studies of synthetic lithium fluoride using the etch-pitting
method [187,188] were amongst the first to reveal the behavior of dislocations
during plastic deformation. This ground-breaking work proved the main slip system
to be {110}(110); it also demonstrated the glide and climb of dislocations, the
expansion of surface half-loops under stress as well as the blocking of dislocations
on one slip system by an orthogonal one.

3.1.2. Fluorite

The crystal structure of fluorite is most easily visualized as a primitive cubic lattice
of fluorine ions with calcium ions at alternate body centers. Granular fluorite
aggregate is a source for the chemical industry and large pure crystals have
applications in modern optics.

Unlike the main minerals with the rock salt structure, fluorite cleaves on {111}
planes and slips on {100} in the (0 1 1) direction [189]. Above 200 °C, slip on {110}
(1 10) is also possible. Above 320 °C, polycrystalline plasticity is observed with the
{100} planes providing three independent slip systems and the {110} planes giving
two more [190]. Dislocations in fluorite have been studied by etch-pitting methods,
and by TEM [191] but the latter is not without difficulty, since the mineral rapidly
damages under electron and ion irradiation. A cubic symmetry void superlattice can
be formed in TEM if the radiation flux is not restricted [192].

Possible core structures for dislocations gliding during {111} slip have been
considered with a view to possible charge effects [193,194]. A model of jogged
dislocations with alternate positively and negatively charged segments to achieve
overall neutrality was proposed [195]. Straight and jogged edge dislocations lying in
{100} have no intrinsic charge when moving; the anions must move normal to the
Burgers vector, that is, along the dislocation [196,197]. A core model assumes a
uniformly neutral edge dislocation at rest and atomistic movements that could
operate to accommodate charge balancing during the glide of various types of
dislocation. This has some similarities with the synchroshear mechanism for
sapphire [198]. Straight edge and screw dislocations in the {110} planes of the
fluorite structure are uncharged [199]. Brantley and Bauer [197] examined various
dislocation configurations in the fluorite structure for the presence of long-range
electrostatic charge, assuming slip systems of the {001} (110> type. They
concluded that neither pure edge or screw dislocations, nor jogs and kinks on edge
or screw dislocations necessarily give rise to charge. A long-range charge could be
produced by adsorption or desorption of anions and cations. They also considered
the possible effects on dislocation glide and the likelihood of charge transport by
dislocations. Stacking fault energies for the {100}, {110}, and {1 11} planes in CaF,
were calculated and in all cases the energy was high so that only weak dissociation is
to be expected [200].
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Further ideas about the behavior of dislocations in fluorite can possibly be
derived from the literature on oxides and oxide fuels [201], because some of these
materials have the fluorite structure and they have been more widely researched
than fluorite.

3.1.3. Halite

Halite (rock salt), NaCl, with the same cubic structure as LiF, deforms by slip easily
and single crystals can sustain large strains provided failure by cleavage is
suppressed. Halite has been studied extensively owing to its importance as a
component of fault zones and oil traps in sedimentary basins, nuclear waste
repositories, and a pressure medium for high-pressure experiments. Early studies
often attributed deformation to twinning or kinking, but Pratt [69] showed that slip
was the dominant mechanism. At low temperatures, {110} (1 10) is the principal
slip system, with ${110) as the Burgers vector. Each of the {110} planes contains
only one slip direction, so there are only two independent slip systems and the
von Mises [164] criterion for plasticity in polycrystals is not met unless other systems
are activated [70]. To a considerable degree, the mechanical properties of KCl
(sylvite) are like those of halite.

Deformation and etch-pitting experiments on rock salt crystals have shown that
both {100} and {111} slip can occur although electrostatic considerations make
these planes less favored than {110}. Carter and Heard [71] deformed single
crystals with various orientations at temperatures up to 500 °C at several strain rates
and found that at room temperature {110} slip was greatly favored but already at
300°C {100} and {111} slip became equally active. The stress—strain curves and
hardening behavior of pure halite resemble those of single crystals of fcc metals,
with the three typical distinct stages [165, p. 225]. Duplex slip, glide polygonization
and the creation of deformation bands characterize stage II. Cross-slip and the
formation of dislocation tangles occur in stage III. X-ray topography was used to
study the nature of deformation bands formed in stage II [202]. Possible hardening
mechanisms have been investigated for several NaCl-type crystals, pure and doped
[203]. The finding that the flow stress for the onset of stage III is thermally activated
[204] led to the proposal and theoretical evidence that screw dislocations can
dissociate in the {110} planes and that cross-slip into {1 00} requires stress-assisted,
thermally activated recombination [205,206]. This suggests that cross-slip should be
favored by increase in hydrostatic pressure [207].

As mentioned previously, the direct observation of dislocations in NaCl poses
problems, although as mentioned in Section 1, the very first observations of
dislocations were made using halite crystals some 100 years ago. About 50 years
later, decorated dislocations in doped and thermally treated crystals provided much
information [15,208]. Frank [209] studied theoretically the geometries of regular
dislocation networks in the rock salt structure using Thomson’s notation [210],
while Amelinckx [5] found ways to analyze less regular networks. In the following
years, most dislocation studies relied on the etch-pitting and stress-birefringence
methods, which obviate the need for annealing. Fig. 5(a) shows {110} (11 0) slip
bands in a lightly bent bar of halite, as revealed by the etch-pitting method. The
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(b)

Fig. 5. Etch-pits marking the emergence sites of dislocations in halite: (a) Slip bands in a bent single
crystal with glide polygonization in the bands (i.e., alignment perpendicular to the slip direction). The
crystal was etched before and after bending; the larger etch-pits define where grown-in dislocations
emerged at the surface. (b) Mostly tilt sub-boundaries formed by the annealing of a bent single crystal.
The apices of the “vees” are aligned along the neutral axis of the bar (Barber, unpublished data).

dislocation density is locally very variable but it is approximately 10° cm 2. Fig. 5(b)
shows the etch-pit pattern due to edge dislocations arranged in low-angle tilt
subgrain boundaries formed by the annealing of a strongly bent bar of halite. There
is evidence for negatively charged dislocations in pure NaCl and positively charged
OH-doped NaCl, after deformation by bending [211] with a Bauschinger effect,
which is associated with the movement of charged dislocations.

The only report of TEM images of dislocations in deformed alkali halide crystals is
by Hobbs and Goringe [212], who used special thin-sample preparation techniques, a
TEM fitted with a liquid-He cooled stage and fast-emulsion photographic plates, the
latter exposed using very low electron flux densities. Their diffraction contrast images
lack any obvious signs of radiation damage and show <(110) screw and (100)
edge dislocations and tangles in KCI crystals deformed to 15% strain and {110)
screws, and dipoles and debris in NaCl deformed to 10%.

3.2. Carbonates

3.2.1. Occurrences and structures of carbonate minerals

Rock-forming carbonate minerals at room temperature are rhombohedral (e.g.,
calcite and dolomite) or orthorhombic (e.g., aragonite). Calcite, CaCO3, and the
ordered double carbonate, dolomite, CaMg(COs), predominate. High-temperature
forms are often associated with rotational disorder of the carbonate groups [213].
Biogenic carbonates are predominately high magnesium calcite, dolomite, and
aragonite. They importantly occur as very strong but lightweight protective
constructions in the phyla mollusca and echinodermata. The fracture toughness
of nacre is more than tenfold that of geological calcium carbonate [214]. Such
biological constructions have, therefore, received attention from scientists inter-
ested in designing and making novel synthetic materials. Biogenic carbonates are
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not considered here because of their diversity of both occurrence and structure
and the current evidence that they lack grown-in dislocations and deform a brittle
mode (their complex microstructures probably inhibit the nucleation of dislocations
and hence their strength). B

Calcite has trigonal symmetry, R3c. The four-digit Miller-Bravais crystal-
lographic indices used for calcite in this section refer to hexagonal axes and a
(true) hexagonal structural cell. For this cell the calcite cleavage planes {r} have
indices {1 0 1 4} and the commonest twin planes {e} are {1 0 1 8}. Use of a true cell
enables one to properly assign all reflections observed in X-ray and electron
diffraction patterns to sets of planes with integer indices. Older literature mostly
employs a thombohedral cell, often the morphological (cleavage) cell containing
2CaCOj3 molecules, which is not a true cell. Dolomite crystallizes in the point group
R3. Aragonite is the orthorhombic (Pcmn) polymorph of calcium carbonate. It is
only a stable phase at high pressure, but notwithstanding this, the mineral occurs
widely in marine sediments and in marine organisms, both skeletally and as nacre.
For an earlier review of microstructures in carbonates see Wenk et al. [166].

3.2.2. Calcite

The plastic deformation of calcite usually involves both slip and twinning; both
generate dislocations. Slip and twinning in rhombohedral carbonates have a
preferred sense, that is, a definite direction of shear.

TEM results from the grains in naturally deformed calcites usually indicate that
two or more deformation systems have operated, leading to complicated arrange-
ments or tangles of dislocations. Even single crystals experimentally deformed to
low strains generally contain complex dislocation configurations that defy analysis.
A further handicap is the tendency of most calcite specimens to suffer electron
beam damage, making it impossible to analyze dislocation properties from a set of
images under various diffraction conditions. The eventual proof that the basal slip
system can operate [49], subsequent to a long-held suspicion [50], necessitated the
torsion at high temperature of a single crystal orientated to suppress the activation
of all other slip systems.

Studies of limestones and marbles from various geological settings [215,216])
showed a fairly good correlation between the microstructures, metamorphic grade,
and geologic history. For example, very high dislocations densities (~10°cm ™2
were found in a deformed low-grade fine-grained limestone, whereas rocks of high
metamorphic grade generally had lower dislocation densities. Greenschist facies
samples could be distinguished from those of amphibolite facies on the basis of their
microstructures. However, recovery was in evidence even in low-grade samples; as
a consequence, the densities varied greatly between the grains in a fine-grained
mylonite with a complex history. Dislocations in calcitic rocks clearly could move
at much lower temperatures than in quartz rocks so that calcite was not suitable as
an indicator of conditions in major tectonic events because of ease of subsequent
recovery.

Analysis of TEM images of dislocations, together with structural considerations,
indicate that the Burgers vectors for r-, f-, and e-slip are, respectively, %(2 021),
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%(1 011), and %(2 110). There is no evidence for basal dislocations in calcite and
marbles deformed at low temperatures. Activity on (0001) (2110) in high-
temperature samples is characterized by many long straight screw dislocations. Slip
on r in the negative sense occurs over a wide range of temperatures, as shown for
single crystals [47] and for polycrystals [48,51]. Slip on f is also important, especially
when twinning is less favored. The dislocations generated by both r- and f-slip do
not have well-defined geometries. Those produced by r-slip are not crystal-
lographically controlled; they tend to be strongly curved, are unregimented and
seldom adhere strictly to their slip planes or form slip bands (this is in strong
contrast to the situation for dolomite). The Burgers vectors are long (0.77 nm for
r-slip and 0.81nm for f-slip, but only 0.49nm for e-slip). Despite the theoretical
possibility of dissociation in the r-planes to partials with (202 1) Burgers vectors
and the creation of a stacking fault in the COj lattice, there is no evidence for it.

Deformation twinning on both the e- and r-planes can produce several types of
interaction and the generation of microcracks [161]. Twinning in calcite usually
creates numerous dislocations, explaining why repeated twinning and detwinning is
not possible [217,218]. Dislocations typically occur in the twin boundaries, within
the twins and also external to them, especially when one twin impinges on another
twin or an obstacle. Crossing twins [219] occur readily, producing rhombohedral
channels, as first reported by Rose [220], after whom they are named. Stopping
twins (these do not taper to a point) are common in polycrystals where many
obstacles to propagation exist. Their terminations are important sites for dislocation
nucleation and the initiation of microcracks (which themselves may create more
dislocations).

In highly deformed calcite rocks e-twinning is usually profuse, which is consistent
with their thermal history. Stress relief by twinning decreases as the temperature
increases and in calcitic marbles deformed under suitable geological conditions, it is
possible to find grains completely free of twins but with cell-like dislocation
microstructures [Fig. 3(b)], resembling those observed in work-hardened metals.

3.2.3. Dolomite
The characteristics of dislocation configurations seen by TEM in dolomite are
markedly different from those for calcite. In comparison, active slip systems for
dolomite are more easily identified in deformed and unrecovered samples because
dislocations tend to keep to their slip planes and frequently are geometrical in
shape. Slip bands are common in experimentally deformed specimens. Because
dolomite is an ordered mineral with a superlattice of both cations and anions (CO;
groups), perfect dislocations in the structure are, senso strictu, superdislocations.
Examples of grown-in dislocations are found in ancient calcian dolomites and
calcian ankerites. These minerals frequently exhibit fine-scale modulated micro-
strostructures with wavelengths commonly between 7.5 and 20nm [221]. The
modulations arise directly during growth, have been attributed to compositional
or ordering fluctuations and superstructures [222,223], and are usually associated
with a fine-scale growth banding closely perpendicular to the modulations [221].
The latter is a manifestation of plane concentric zoning and probably reflects small
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compositional changes during growth [224]. The dislocations in these ancient
dolomites and ankerites are oriented perpendicular to the growth zoning and thus
roughly parallel to the modulations (Fig. 10-3 in Ref. [221]). They probably
nucleated at the growing interface and being unable to terminate, traverse the
growth sector.

Metamorphic dolomites can contain quite high dislocation densities, between
10° and 10°cm™2. Evidence of recovery in the form of dislocation networks is
commonly seen (see [225]). Generally speaking, there is a correlation of disloca-
tion density with metamorphic grade: Crevola marble, a medium- to high-grade
amphibolite facies rock [226] has a low dislocation density and is, therefore, suitable
for deformation experiments [52]. To judge both from both experimental specimens
and rocks, recovery does not appear to occur as readily as in calcite and so dolomite
should be a better indicator of tectonic conditions. Fig. 5 illustrates microstructures
in experimentally deformed single crystals. At low-temperature, dislocations are
concentrated in bands [Fig. 6(a)]. At higher temperature, climb produces more
open microstructures with loops [Fig. 6(b)].

Dolomite is much less prone to electron damage than calcite and so it is easier
to determine Burgers vectors using diffraction contrast methods. The vectors
for perfect dislocations are %(2 110) and %(2 20 1). However, dislocation dissocia-
tion is also possible in dolomite; when it occurs in the basal planes, pairs of

Fig. 6. TEM images of microstructures in experimentally deformed dolomite single crystals [52]:
(a) At low-temperature dislocations are concentrated in slip bands. (b) At higher temperature climb and
dislocation interactions produce dislocation loops.
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superpartials separated by region of stacking fault are formed [53,225]. The Burgers
vector of the basal partial dislocations is (1 0 1 0). Long ribbons of stacking fault
can result from this dissociation in experimentally deformed dolomites [Fig. 3(a)].
The basal slip system is considered to be responsible for the unusual increase of
strength with temperature demonstrable with single crystals [54,55]. Strengthening
apparently occurs due to inability of basal dislocations to overcome obstacles
because a mechanism (e.g., cross-slip) is lacking.

Dislocation dissociation accompanying slip on the f-planes presents more
complex possibilities [53]. The slip directions and Burgers vectors lie along the
intersection of two f-planes and therefore a superdislocation with a Burgers vector
3(2201) can glide on two planes simultaneously in a vee-like configuration, or
alternatively, as a closed rhombohedron-shaped loop using two planes of each
orientation (this is known as pencil glide). If an f-slip dislocation dissociates to give
partials of type %(2 2 0 1) the passage of such a partial gives a fault in both the cation
and COj sublattices, resulting in what is normally called an APB. The diffraction
contrast properties of such faults in practice, however, are not those expected for
APBs. Therefore, they have been called complex stacking faults [53]. Usually many
dislocation dipoles and small loops result from f-slip at moderate temperatures, on
account of various interactions and the ease of cross-slip. When f-slip can occur, as
in most grains in polycrystalline dolomite, it masks the increasing strength-with-
temperature behavior associated with e-slip.

3.2.4. Aragonite

There are very few reports of observations of dislocations in either geological or
biogenic aragonites although the slip systems are known (see Table 1) and {110}
twinning occurs in both types. Studies of the aragonite — calcite transformation
have shown that dislocation tangles and twins can serve as nucleation sites for
calcite [227]. In an in situ TEM study of the transformation [228], there was no
evidence of a martensitic mechanism [229] but the moving interphase boundary was
seen to sweep away dislocations and twins. Recent interest in biomimetic materials
has led to studies of the plasticity and microindentation of nacre. The results have
provided new information about aragonite slip systems [56], but to date, no direct
data about dislocation behavior.

3.3. Oxides

Several oxides that occur as significant minerals in nature are also important as
ceramics or as components of ceramics, or as technological materials. Such materials
are mostly synthesized for reasons of obtaining appropriate volume, mechanical
properties or special geometry, control over impurities, and crystal defects, achieving
functional doping, etc. These aspects of oxides will not be considered here. Bretheau
et al. [129] carried out a comprehensive review (in French with an English summary)
covering the properties and behavior of several technologically important oxides.
The review points out that dislocation glide in oxides is not well documented and that
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interpretations of observations from different oxides are often contradictory.
Dislocation climb is the mechanism of interest at the elevated temperatures that
are relevant to ceramics. To test possible theories, data about diffusing species
are required and models of dislocation cores and jogs are necessary. Some methods
of making core models have been proposed (see [230,231]), but generally these
are lacking.

3.3.1. Corundum

Corundum, aluminum oxide (sapphire), a-Al,O3, has a crystal structure in which
oxygen ions are close-packed and the aluminum ions occupy two-thirds of the
octahedral interstices. The mineral is trigonal (R3c) and the close-packed oxygen
plane is basal, i.e. (0001).

The extreme plastic anisotropy of sapphire was first reported by Wachtman and
Maxwell [120] who detected basal creep in tensile specimens at 900 °C but found
that when specimens with a c-axis were stressed in tension, no creep occurred until
the temperature exceeded 1600 °C. The earliest TEM observations of dislocations
in Al,Oj3 [232,233] used chemically thinned pure and doped synthetic sapphire and
imaged various dislocations: sections of low-angle sub-boundaries and regular
networks were seen in undeformed specimens while helices and loose networks
were seen in specimens deformed in creep. Subsequent optical and TEM results
established that slip is in the (1 1 2 0) close-packed direction and the Burgers vector
of the basal dislocations is 1(1 12 0). It was suggested that basal dislocations would
need to glide by a mechanism of synchroshear involving dissociation of dislocations
into quarter partials and the cooperative movements of anions and cations [198].
Further work showed that important additional slip systems for high temperatures
are {1120}(1100) [121,122] and {1011}{0111), with a Burgers vector of
X1101) [123-125]). Slip on {1012}(1011), and possibly on {1011}(1210)
was also reported. TEM studies of the dislocations arrays around room temperature
indentations showed that slip can also take place on the pyramidal planes {11 2 3}
in the (1100) direction, with the Burgers vector (1 100) [126]. Basal twinning
[126,234] and rhombohedral twinning are additional deformation mechanisms
[235-237]. Both can occur at room temperature and rhombohedral twinning
has been observed in deformation up to 1700 °C. Thermal shock often causes
rhombohedral twinning.

Pletka et al. [238] examined various possible strengthening mechanisms in
sapphire. The early stage of work hardening in pure samples deforming by basal
slip is due to the formation of obstacles to dislocation glide in the form of many
edge dipoles created by the trapping of dislocations on parallel planes [Fig. 7(a)].
As deformation proceeded further the dipoles were seen to break up by climb,
forming small loops. When the rate of dipole accumulation became equal to the rate
of their annihilation the rate of work hardening became zero. Several studies
investigated the role of dislocations in the plastic deformation of Cr- and Ti-doped
sapphire [238-241]. The effect of chromium concentration has little effect on
dislocation multiplication mechanisms and dislocation velocities during basal slip
between 900 and 1500 °C [242].
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Fig. 7. Dislocation in oxides: (a) Bright field TEM image of dislocation microstructure consisting of

long %(1 120 edge dipoles, multipoles and debris of numerous small loops formed at the early stage of

work hardening in corundum (sapphire), compressed at 1400 °C and deforming by basal slip; basal foil,

g =73030/[238]. (b) Weak beam dark-field TEM image of a region in a spinel crystal deformed at 400 °C

and slipping on {111} planes. The field is dominated by cross-slip of the %(1 01) screw dislocations

(vertical) on (010). All the dislocations are dissociated out of the primary slip plane but their widths vary
(all the inserts have the same magnification) [146].
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The slight dissociation possible for some dislocations in Al,O; has been
illustrated by several authors; two examples are: (a) the two arms of a [1 12 0]
dipole are each dissociated into two partials, the adjacent inner partials then
annihilate to leave a wider ribbon of stacking fault, bounded by %(1 01 0) partials
[243]; (b) the dissociation of a dislocation with b =[0 1 1 0] into three partials that
recombine where there is a change in angle [244].

3.3.2. Hematite

Hematite, a-Fe,;Os, is a major ore mineral. It is isostructural with corundum and it
seems reasonable to expect that it would slip on similar systems. There have been
few deformation experiments on single crystals, however, and even fewer direct
observations of dislocations in hematite.

At room temperature, the only easy deformation mechanisms in hematite appear
to be twinning on the basal and pyramidal planes, {0112}. Prismatic slip,
{1120}{1100), was shown to occur at 200 °C and above [106], although brittle
fracture can still occur in tension at about 1200 °C in the absence of confining
pressure [127]. At low strain rates, 25-700°C and under confining pressure,
hematite tested in compression was made to slip on (0001)(1120) and
{1120}(1100) [128]. There is TEM evidence for dislocations at twin interfaces
and basal slip [245]. High-resolution TEM has been used to study symmetry and
twinning in hematite [246,247] and intergrowths of hematite and magnetite
[248,249] [Fig. 8(a)].

3.3.3. Illmenite

Ilmenite, FeTiOs, is also isostructural with corundum. Cations are ordered in
alternate layers parallel to the close-packed oxygen layers, that is (000 1). Ilmenite
is an important ore mineral for titanium. One might expect the same slip systems for
ilmenite as with corundum. But similarly, slip on any plane transverse to the basal
plane would require a perfect dislocation to have a large Burgers vector. Otherwise
such slip would proceed by means of partials, generating regions of antiphase
stacking, which would be likely only at high temperature. The mechanisms of plastic
deformation of ilmenite have not been studied.

The interfaces between finescale exsolution lamellae of ilmenite in hematite have
been investigated and most were shown to be coherent and dislocation free [251].
Due to differences in lattice parameters, dislocation arrays decorate the interface
[Fig. 8(b)]. Contrast analysis revealed a hexagonal grid of rhombohedral disloca-
tions [250] rather than dislocations with basal Burgers vectors [252]. The ordering
phase transition in ferrian ilmenite from the high-temperature R3c disordered
structure to a R3 lower-temperature ordered structure results in the creation of twin
domains [253,254]. No dislocations were involved.

3.3.4. Periclase and wiistite (see also Section 3.8.1)

Periclase, MgO, has the rock salt structure. It is rare in the Earth’s crust but is
thought to be a major component in the lower mantle in a solid solution with FeO
(magnesiowiistite). As with NaCl, the easy glide plane at low temperature is the
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(a)

Fig. 8. TEM micrographs of dislocations in hematite intergrowths: (a). Magnetite-hematite intergrowth

with zonal dislocation structures [249]. (b) Exsolution of ilmenite platelets in hematite. Ilmenite is

decorated with a network of misfit dislocations to account for lattice strain caused by differences in lattice
parameters [250].

electrically neutral plane, {110} and dislocations in MgO have Burgers vector
1{110). At higher temperature, glide also occurs on {001}<110) and {111}
{110). Dislocation structures formed during creep of MgO single crystals were
investigated by etch-pitting [130,131]. Later work has relied more on TEM for the
interpretation of microstructures [129]. Most of the plasticity of fine-grained
polycrystalline MgO above 1000°C was attributed to diffusional processes
except for some evidence of dislocation glide [132,133]. Single crystal MgO shows
plasticity due to slip on {110}(110) from below room temperature to moderate
temperatures. Above 1200 °C, the {001}<110) system is activated [134].
Wiistite, Fe;_,O, with x commonly lying between 0.05 and 0.15, occurs as a phase
in iron scale. The primary slip system is {1 10}(1 1 0), as in NaCl. A steady state can
be attained in deformation experiments of polycrystalline FeO above 1000 °C and
strain rates are proportional to the fourth power of stress, indicating that dislocation
climb is active [127]. Diffusion creep is observed at yet higher temperatures.
High strain experiments were performed in torsion and under confining pressure
on magnesiowiistite aggregates by Heidelbach et al. [75] to investigate texture
development and associated changes in mechanical behavior. The initial deforma-
tion texture was compatible with (110) dislocation glide on all three possible
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slip systems: {111}, {110}, and {001} and this was confirmed by TEM results. The
microstructure evolved into one of subgrains at a relatively low homologous
temperature (<0.57,,), which was possibly promoted by cross-slip between the
active systems. Rotation of the subgrains ultimately led to a recrystallization
texture. Dislocation creep and strain partitioning of olivine-wiistite aggregates
deformed to large strains has been studied by Bystricky et al. [255].

3.3.5. Magnetite

Magnetite, Fe;Oy, crystallizes in the inverse spinel-structure (cubic), with Fe*" in
the tetrahedral sites and both Fe*™ and Fe*" in the octahedral sites (space group
Fd3m). Many cationic substitutions occur. It is an important iron ore and occurs in
many geological environments, as aggregates, veinlets, and inclusions.

There is relatively little information about dislocations in massive magnetite.
Small crystals are usually dislocation-free: magnetosomes in magnetotactic bacteria
are perfect single crystals [256]; the magnetites in the carbonates in the Martian
meteorite, ALH84001, are also dislocation-free [257,258]. Preferred orientation
measurements on magnetite ores deformed at 300°C suggest the action of
{1111 10) slip [150]. This mechanism was shown to be active at least up to
1000 °C [127].

3.3.6. Spinel

There is a large range of spinels, including magnetite as discussed above, but the
most important, is the magnesium aluminate MgO(AL,O3),,. Slip systems for this
mineral have been researched thoroughly [140]. In stoichiometric samples (n = 1,
i.e., MgAlL,O,4) deformed at high temperature (1800 °C), slip occurs on {1 11}(110)
(glide of dislocations on the close-packed plane and direction) as predicted [141],
and includes dissociation of {110 dislocations into quarter partials [198]. One
can deform spinel at temperatures below 0.57, if a uniaxial compressive stress
is applied in the presence of a confining pressure [142]. Even deformation at room
temperature is possible under special conditions [143]. Dislocation configurations
associated with indentations made on spinel at room temperature have been
studied by TEM [144,145].

Veyssiere and Carter [146] deformed a stoichiometric single crystal of spinel
along <110 to cause primary slip on {1 11} with cross-slip occurring onto a {001}
plane. Weak-beam imaging indicated that all dislocations associated with the
primary slip plane were dissociated out of that plane, no matter what their character
[Fig. 7(b)]. Deformation proceeded by gliding of the partials on parallel planes.
The accompanying stacking faults have to migrate; this is achieved by a local
shuffling of cations. Weak beam images of screw dislocations gave a stacking fault
energy of 530 + 90 mJ/ m? for conservative dissociation on {001} at 400 °C.

The effect of cation vacancies in alumina-rich samples is to change the slip plane
from {111} to {110}, with glide still in the (110) direction [140,147-149]).
Dissociation into quarter partial dislocations is again observed but with a larger
separation [147].



198 D.J. Barber et al. Ch. 95

3.3.7. Perovskite (see also Section 3.8.5)
Perovskite, CaTiOj; is one of a large group of minerals with formula AA’'BB"O3
owing to the ease of substitution of the cation species. The structure is unique in
having a large cation site in 12-fold coordination. Perovskites have a cubic or cube-
octahedral structure but symmetry is often reduced to tetragonal or orthorhombic
by ordering or distortion [259]. There are many ‘‘perovskites” of scientific curiosity
or industrial importance for devices (e.g., the ferroelectric tetragonal oxide BaTiO3
and tetragonal/rhombohedral Pb(Ti, Zr)O3). The perovskite structure also attracts
much attention because of its associations with high-temperature superconductivity
in compounds such as YBa,Cu;Og. For geosciences, the perovskites (Mg, Fe)SiO3
and CaSiO; are thought to be the main constituents of the lower mantle and control
its rheology. Dislocations in these silicate perovskites will be discussed in the
section on high-pressure minerals. B

The easy glide systems in pseudo-cubic CaTiO;z are {110}(110) and {010}
{100 [135]. Other slip systems can also be activated under special conditions, for
example, {001}<{110) and {110}<001). There is very little information about
dislocations and microstructures in CaTiO3 [260] but a large amount about them in
other perovskites such as SrTiOj3. Dislocations in perovskites, including SrTiOs, are
widely observed to dissociate. Also a very marked flow stress anomaly in SrTiO3
suggests that dislocations in the cubic perovskite structure may possess several core
structures [261].

3.3.8. Rutile

The structure of rutile, TiO,_,, is tetragonal, with a pseudo-hexagonal packing of
oxygen ions in the (00 1) plane (space group P4,/mnm). Rutile is commonly oxygen
deficient. It is an ore for titanium and occurs in quartz veins in metamorphic rocks
and as placer deposits.

The plastic behavior of rutile is surprising at first sight: (00 1) is not a slip plane at
low to moderate temperatures and does not feature in the primary system at high
temperatures, which is {101}(1 01) [136,137]. The secondary higher-temperature
system is {11 0}[001]. Dissociated (1 0 1) dislocations and long stacking faults have
been observed [138] but dislocations with [00 1] Burgers vectors are not dissociated
[139]. The amount of dissociation appears to be associated with stoichiometry.
Suzuki et al. [262] studied dislocation dissociations in rutile and isostructural SnO,
by HRTEM and confirmed that [00 1] dislocations did not dissociate, while {101
dislocations did. Furthermore, they observed edge dislocations with b = {(100}.
These were found to dissociate on the {1 0 1} plane into sessile types by the reaction
[100]— J101]+4101].

3.4. Quartz

Quartz (SiO,) is one of the most abundant minerals in the Earth’s crust. Owing
to its ubiquitous occurrence in zones of high strain tectonic deformation, its
rheological properties are commonly used to model the mechanical behavior of
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continental regions (see [263]). In addition, dislocation glide mechanics in quartz
(specifically kink pair nucleation) have been applied to model the rheological
evolution of grain scale asperities on faults during earthquakes [264].

The low-temperature polymorph (a-quartz) is trigonal (P3;21). The high-
temperature polymorph (B-quartz; transition at 573 °C, increasing to ~900°C at
a pressure of 1.5GPa) is hexagonal (P622). Low quartz is elastically very
anisotropic, with a direction perpendicular to the negative rhomb {02 2 1} almost
twice as stiff as the direction perpendicular to the positive thomb {2 02 1}. High
quartz is fairly isotropic.

Dislocation imaging in quartz has a long history, but it was only with the
development of ion beam thinning that dislocation microstructures could be
quantified with TEM analysis [265]. Dominant slip systems in quartz have been
studied by analysis of dislocations in deformed single crystals as well as
experimentally and naturally deformed quartz rocks (quartzites). One of the first
determinations of Burgers vectors identified r = 4[2 11 0] [151]. Contrast analysis is
complicated by the fact that quartz undergoes rapid beam damage. Slip takes place
mainly in a, ¢, and {c+a) directions on numerous low index planes containing
these directions, but dominant under most conditions are (0001) and {1010}
planes [152]. Creep tests on wet synthetic crystals conducted at room pressure
suggest a dominance of e-slip at low temperatures [153]. Furthermore, extrapolation
of the temperature dependence for ¢ and a slip to higher temperature indicates a
transition from e¢- to a-slip (Fig. 9). Evidence for a-slip in quartz single crystals at
lower temperatures has been reported (e.g., [154,155]) but the data are not
unambiguous [153]. Recent high-pressure (P =1.5GPa) experiments on wet
synthetic crystals do suggest that slip on (0001) %(1 120) is easier than {101 0}
[0001] at 600°C, and that the activity of ¢- and a-slip become similar at 900 °C,
consistent with transitions in texture patterns observed in quartzite [156].

The effect of temperature on the microstructures and dominant slip systems
determined from textures are similar for both experimentally and naturally
deformed quartzites (see [266-269]). Inferences about slip systems from textures
are not unequivocal, especially because many texture studies rely only on c-axis
orientations and not the full orientation distribution. There are very few
TEM investigations identifying dislocation geometries in natural quartzites. The
newer studies are consistent with the concept that (0001) 1[21 1 0] slip dominates
at lower temperatures, with a transition to {1010} %(1 120) slip at inter-
mediate temperatures (~900°C in the laboratory, 500-600°C in the Earth) and
finally {1010} [0001] slip at temperatures above 600-700°C in the Earth [267].
Slip on the rhombohedral planes in a and ¢ directions is also observed. The different
transition temperatures observed for experiments and rocks recovered from natural
settings are interpreted to reflect a kinetic trade-off between the temperature
and strain rate. Experimental samples creep at rates 10°-107 times faster than
deformation occurs in the Earth.

Experimental data suggest that the displacive o—f transition may not strongly
influence the dominant slip systems. This is not unexpected because the main basal
and prismatic slip systems have ‘“hexagonal” symmetry. However, textures are
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Fig. 9. Axial creep rates for wet synthetic quartz single crystals deformed in orientations to promote
prism <¢) slip and {a) slip [153].

distinctly trigonal in most natural quartz rocks, with very different orientation
distributions for positive and negative rhombs (see [270]). The trigonal textures
may arise for various reasons: conceivably rhombohedral slip systems are important.
They may be due to mechanical Dauphiné twinning, which is geometrically a 180°
rotation about the c-axis but achieved through slight structural distortions [271-273].
However, twins are rarely observed in natural quartzites in a wide range of conditions
[263]. Interestingly, in situ heating experiments in the TEM documented the role of
dislocations for the propagation of twins in the vicinity of the o—f transformation
[274] [Fig. 10(a)]. Most natural quartzites are recrystallized, rather than plastically
deformed and recrystallization under stress of this highly anisotropic material may
induce the trigonality of the preferred orientation pattern [276-279].

The stress required for dislocation slip in quartz depends strongly on water
fugacity. Under dry conditions, quartz is extremely strong, owing to the strongly
covalent Si-O bonding. Dry gem-quality single crystals support stresses in excess of
1.0 GPa at a temperature of 1300°C (~0.8 7/T,,) and confining pressure of 0.3 GPa.
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(a) (b)

Fig. 10. TEM images of dislocation structures in quartz. (a) In situ heating experiment near the o—f3
phase transition with arrays of Dauphiné twins that are pinned by dislocations [274]. (b) Water bubbles in
(“wet”) quartz are associated with dislocations, especially loops [275].

At these conditions, strain is accommodated dominantly by microcracking, and
dislocation glide is largely isolated to crack tip regions [280]. By contrast,
hydrothermally synthesized quartz crystals exhibit yield stresses in the range of
140 MPa at 750 °C [153,281,282]. The effect of water content on dislocation creep
has also been documented for quartz aggregates, where creep rate is observed to
increase approximately linearly with increasing water fugacity [283,284].

While the effects of water are well documented, and further substantiated by
measurements of enhanced diffusion and dislocation recovery at high water fugacity
[285,286], the mechanisms by which water (or hydrogen) influence dislocation
mobility are still not well understood [287,288]. Some water is in the form of
bubbles associated with dislocations [Fig. 10(b)] [275]. Microstructural evidence for
enhanced dislocation climb, as well as rapid rates of dislocation recovery, suggest
dislocation mobility is increased by enhanced diffusion rates under hydrous
conditions [284,289,290]. However, climb was inhibited in deformation experiments
on water-poor quartz, tested under P, T conditions that kept the residual water
dissolved in the lattice and only basal and (c+a)-slip were rendered active, glide
being aided by dislocation dissociation [157]. Enhanced diffusion rates under
hydrous conditions are interpreted to result from an increase in the concentration of
H-related defects with increasing pressure [290,291]. Such a process explains
differences in the behavior of wet quartz at different water fugacities. However, the
drastic changes in the behavior of dry quartz and quartz with ~500 H/10°Si may
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represent true ‘‘hydrolytic weakening,” where Si-O-Si bonds are hydrolyzed
to form weaker Si-O-H-H-O-Si, lowering the Peierls barrier to dislocation
glide [282].

Various TEM studies of quartz rocks illustrate systematic changes in micro-
structures with metamorphic grade and deformation conditions. Average disloca-
tion densities range from <10"cm™> in high-temperature environments to
>10”cm ™ in heavily deformed cold-worked material (see [167,269,292,293]).

3.5. Olivine

Olivine, (Mg;_,Fe,),SiOy, is the primary mineral in Earth’s upper mantle with
x~0.1. The olivine crystal structure is orthorhombic in space group Pbnm.
Deformation of olivine has been of long-standing interest, because this mineral is
the major component of the Earth’s upper mantle and controls its rheology.
Furthermore, preferred orientation of olivine attained during mantle deformation
by dislocation creep results in high and systematic seismic anisotropy [294,295],
an observation that has been exploited by geophysicists to investigate the dynamics
and kinematics of mantle convection.

The dominant slip systems in olivine at high temperatures (low differential
stresses) are (010)[100] and (001)[100] with (010)[001] and (100)[001] playing
a greater role at lower temperatures (high differential stresses) [87-89] (Fig. 11).

(a) (b)

Fig. 11. Dislocation structures in experimentally deformed olivine. (a) Crystal deformed at 800 °C with
[001] screws. (b) Dislocation loops in a crystal deformed at 100 °C. Also here b = [001], ref. [152].
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However, TEM observations have revealed dislocations with [0 1 0] Burgers vectors
as components of low-angle tilt boundaries [90], and high-resolution lattice fringe
images demonstrated their dissociation into three or four partial dislocations [91]
(Fig. 12). The transition between [100] and [00 1] dominated slip also occurs with
increasing pressure [296]. At high temperatures, climb provides a portion of the
strain as evidenced by analyses of the change of shape of single crystals deformed in
compression [297] and by the kinetics of formation of low-angle tilt boundaries [90].

A substantial number of laboratory studies of the rheological behavior of olivine
have been undertaken, both on single crystals and on polycrystalline samples
[297-301]. These experiments demonstrate that the strength of olivine is sensitive
not only to temperature and pressure but also to Fe content, oxygen fugacity, and
water fugacity. In samples deformed under anhydrous conditions, four distinct
deformation regimes have been identified: grain boundary diffusion creep,
dislocation-accommodated grain boundary sliding, dislocation creep, and lattice
friction creep. For samples deformed under hydrous conditions, the dislocation-
accommodated grain boundary sliding regime appears to be absent, possibly
because of the enhanced role of dislocation climb. In addition to temperature and
pressure, “‘water” has a major effect on the strength of olivine. The water-
weakening effect is associated with the introduction of hydrogen ions into olivine
grains, analogous to doping a semiconductor material because olivine can be
treated as a wide band gap semiconductor [298,302,303].

Transitions between slip systems have also been reported as a function of
water fugacity. Five different regimes in stress — water fugacity space have been
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Fig. 12. HRTEM image of a dissociated dislocation with b = [010] in olivine grain from the Uenzaru

peridotite in Japan [91]. The partial dislocations lie along [100]. Offsets in the lattice fringes are best

viewed by observing the electron micrograph at an oblique angle. The schematic drawing illustrates

(020) and (001) lattice fringes. The stacking faults lie on (010) and {021} planes. The dissociation
reduces the elastic strain energy by a factor of ~3.
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reported [92]: (010)[100] at low stress, low water content; (001)[100] at low
stress, intermediate water content; (100)[001] at intermediate stress, high water
content; (010)[001] at high stress, high water content; {0 k/}[100] at high stress,
low water content. The relative roles of stress, water content, temperature, and
pressure in the transitions between dominant slip systems is complex as it is not
possible to vary one of these parameters without varying another. For example, to
reach high water contents, it is necessary to go to high pressures [93]. Deformation
at low stresses requires high temperatures, while deformation at high stresses
requires high confining pressures and generally low temperatures.

3.6. Other silicates

3.6.1. Garnet (see also Section 3.8.2)

Garnets are cubic minerals with a wide range of chemical substitutions that occur
in metamorphic rocks from the Earth’s crust and as a volumetrically significant
fraction of the upper mantle. Some end-members are almandine Fe§+A12(SiO4)3,
grossular Caz;Aly(SiOy4)s, pyrope MgzAly(SiOy);, and majorite MgzMgSi(SiOy)s.
Some synthetic garnets are also important technologically. Gadolinium gallium
garnet (GGG) thin films and yttrium aluminum garnet, YAG (the latter with various
dopants, e.g., neodymium), have applications in magnetic bubble devices, and optical
laser devices and waveguides, respectively. Some reports about growth-induced
dislocations in these materials (see [304,305]) may have relevance to mineral garnets.

One of the earliest reports about dislocations in a natural garnet is that of
Carstens [306] who studied Norwegian and Czech pyrope-rich garnets by etching
them with hydrofluoric acid. Long etch channels extending from the surfaces,
similar to those observed earlier [27], were attributed to deformation-induced
dislocations. Tangled arrangements and cell structures were interpreted as
indicators of dislocation creep.

TEM was used to elucidate the characteristics of dislocations in naturally
deformed silicate garnets and olivines in garnet peridotites and silicate garnets in
eclogites [307]. It was found that (i) dislocation densities in garnets from garnet-
peridotites were always almost an order of magnitude less than those in the
coexisting olivines; (ii) dislocation densities of garnets in eclogites that were within
garnet peridotites were almost ten times greater than those in the garnets
surrounding garnet peridotites. The Burgers vector, b was predominantly (100)
for garnets with dislocation densities of 10°-10°cm™2 but b was %(111} for
dislocation densities of 10’10 cm ™.

Two very different but characteristic microstructures were identified in eglogites
from the Alps [308]. One is indicative of only local microplasticity but overall brittle
behavior, consisting largely of microfractures. The other, occurring more widely,
was a dislocation microstructure that is the result of dislocation creep associated
with dynamic recovery in the form of climb. Slip systems found to be operative were
{110}3111),{112} 5111),{123} 5(111),{010}100), and {01 1}(100).
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Several analytical methods, including electron backscatter imaging and diffrac-
tion, were used to study elongate natural garnets that were deduced to have
deformed at ~700°C [309]. In low strain regions, subgrains with small misorienta-
tion between neighbors were observed; boundary misorientations increased when
approaching areas of higher strain. A polygonal microstructure was present in high
strain areas.

With HRTEM, dissociations in a completely stoichiometric garnet were observed
[310], contrary to the notion that dissociation is linked to traces of impurities.
Parallel and narrow }—t< 111) partial dislocations were separated by stacking faults
that corresponded to a low-energy configuration resulting from the occupancy of
previously vacant dodecahedral and tetrahedral lattice sites.

3.6.2. Orthopyroxene

Enstatite-hypersthene, (Mg,Fe)Si,Og, the second most abundant mineral in upper
mantle rocks, is orthorhombic (Pbca). Pyroxenes are chain silicates, with SiO;
chains extending along the c-axis. Dislocations with [00 1] Burgers vectors dominate
deformation with glide on the (100) and (010) planes [107-112]. There are also
(100)[01 0] dislocations with a [100] line direction [311,312] [Fig. 13(a)]. The critical
resolved shear stress (CRSS) for the (100)[001] slip system is significantly smaller
than for (010)[001]. With a limited number of slip systems, it is inferred that climb

Fig. 13. (a) HRTEM image of a [010] edge dislocation in enstatite [311,312]. (b) TEM image of helix
formation due to cross-slip of [001] screw dislocations in hornblende [313].
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and grain boundary sliding must also be important deformation mechanisms in
orthopyroxene rocks [314].

3.6.3. Clinopyroxenes

The clinopyroxenes are monoclinic: diopside CaMgSi,Og, augite Ca(Mg,Fe)Si,Og,
and spodumene LiAlSi,Og crystallize in space group C 2/c, pigeonite (Ca, Mg,
Fe)Si;Og and clinoenstatite MgSiO; in space group P2;/c and omphacite
(Ca, Na) (Mg, Fe, Al)Si,Og in P2/n.

Based on TEM analyses of experimentally deformed diopside, plastic deforma-
tion takes place by mechanical twinning on (100)[001] and (001)[100] with
dislocation glide on (100)[001], (100)[010], and (010)[100] at temperatures of
<500 °C [113-119]. At higher temperatures, slip is activated on (100)[001], {110}

! 10), {110}[001], (010)[001], (100)[010], and (010) 1101] [115,119,311,
312 315] The easiest slip system appears to be (100)[001] at temperatures
500° < T<800°C, which alters to {110} (1 10) and {110}[001] for T > 800°C
[296,315].

Burgers vector and dislocation line analysis of naturally deformed augite-enstatite
crystals indicate activation of many slip systems such as (100)[001], {110}
1{110), {110} 1<112), (100)[010], (010)[100], (010)<101), and {110}
{111, the first two being the most active [311,312]. The study demonstrates that
most dislocations are dissociated and stacking faults are produced that can be
interpreted based on the complex structure of these chain silicates. In naturally
deformed augite from a pyroxenite with lamellar exsolution 1[101] dislocations
in (010) combine single to double chains, yielding so-called chain multiplicity
faults [316].

An interesting role of dislocations is in the stress-induced phase transformation of
orthoenstatite to clinoenstatite [317-319].

As with other nominally anhydrous silicate minerals, the addition of a small
amount of hydrogen in clinopyroxene results in a significant decrease in high-
temperature viscosity, both in the diffusion creep regime and in the dislocation
creep regime [119,320-322]. Compared to olivine, the dependence of creep rate
on water fugacity is similar to that reported for olivine with an approximately
linear relationship between creep rate and water fugacity [322]. However, in the
dislocation creep regime, the dependence of creep rate on water fugacity is signifi-
cantly larger for clinopyroxenes, for which creep rate increases roughly as the third
power of water fugacity [321].

Omphacite is a clinopyroxene that can be disordered, but is rarely disordered in
nature because it typically occurs in eglocite facies (metamorphic) rocks as a main
phase with garnet. Mg and Al cations order convergently on the M1 positions of the
monoclinic structure, leading to omphacite with the space group P2/n. The }[110]
translational symmetry is lost in the ordering transition so that antiphase domains
(APDs) with the displacement vector R = 3[110] can form [323,324].

Omphacite samples have been found to contain a range of crystal defects: free
dislocations, deformation twin lamellae on (100), chain multiplicity faults parallel
to (010), noncrystallographic faults terminating in dislocations, APDs, low-angle
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grain boundaries, recrystallizing grains, exsolution lamellae [325]. Apart from the
APDs and exsolution lamellae, all these defects result from deformation followed
by or contemporaneous with recovery. The first determinations of the Burgers
vectors of dislocations in omphacite were made by TEM by Van Roermund and
Boland [326]. They identified the Burgers vectors [001], 1{110), and 1¢(112)
(the latter at dislocation nodes) and concluded from the presence of many sub-
boundaries that plastic deformation had been dominated by dislocation creep.
These results and conclusions have been investigated in more detail in naturally
deformed omphacites [327-330] and in experimentally deformed disordered (C2/c)
omphacites [331].

Spodumene the lithium clinopyroxene has a Burgers vector {010} and a glide
plane (100) [332]. In addition (100) twinning has been documented.

3.6.4. Amphiboles

Clinoamphiboles are monoclinic (C2/m) hydrous double-chain silicates that are
common in metamorphic rocks. Dislocation structures have been studied in
hornblende ((Ca, Na, K),_3(Mg, Fe, Al)s(OH, F),(Si, Al),SisO»,) and glaucophane
(Nap;Mg; Al (OH,F),SisOy0).

Mechanical (1 0 1) [1 0 1] twins have been identified in experimentally deformed
hornblende single crystals, as well as dislocations on the (100)[001] slip system
[333,334]. In hornblendes from naturally deformed rocks dislocations on {hk 0}
planes were documented, mainly [00 1] screws [335-338]. A systematic investiga-
tion of dynamically recrystallized hornblende from a high-temperature shear zone
discovered microstructures typical of dislocation creep, with subgrain boundaries
and free dislocations [313]. The primary slip system is (100)[001] consistent with
experimental results. Secondary, slip systems are (010)[100] and {1105<110).
There is evidence for cross-slip of [001] screws producing helical microstructures
[Fig. 13(b)]. Amphibole structures are intermediate between pyroxenes and
sheet silicates and indeed ‘“‘chain multiplicity faults” have been described [339]
and transitional structures may be facilitated by movement of partial dislocations
[340].

Studies of glaucophane from high-pressure-low-temperature metamorphic rocks
reveal a variety of slip systems: (100)[001], {110}[001], (010)[100], {1101<110),
and (001)1<110) [341].

3.6.5. Mica

Micas are some of the earliest minerals where dislocations have been studied
[33,342] using multiple beam interferometric techniques and imaging screw
dislocations in the basal plane (001) of dioctahedral muscovite (C2/c) (KAl,
(OH,F),AlSiz0,(). Burgers vectors were determined with TEM [343,344]) and
X-ray transmission topography [345]: 3[110], §[110], and [100]. Dislocation
microstructures play an important role in recrystallization of mica [346,347])
(Fig. 14). Experimental deformation of trioctahedral biotite (C2/m) (K(Mg,Fe);
(OH,F),AlSi3019) confirmed 1<(110) and [100] as Burgers vectors [348].
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Fig. 14. (a) Weak beam dark-field image of dislocations in biotite. The trace of the slip plane (S) is
indicated as well as dislocations bowing out (X). [346]. (b) Dark-field image of screw dislocations in
sillimanite [350].

Mica minerals are also of industrial interest because of their unique electrical and
thermal properties and dislocations are important [349].

3.6.6. Sillimanite, Mullite

Sillimanite and mullite are silicates with Si—Al tetrahedral chains. They occur in
high-temperature metamorphic rocks and mullite is an important ceramic material.
TEM analyses identify [00 1] as Burgers vector in sillimanite [350,351]. Dislocations
are generally of screw type in the [001] direction [Fig. 14(b)] and sometimes are
dissociated [352]. Dislocation-assisted high-temperature deformation has been
documented in mullite [353]. The influence of dislocations and strain on the
aluminosilicate phase transformations were investigated for kyanite [354].

3.6.7. Feldspars

Feldspars are the most abundant mineral in the Earth’s crust and probably on the
crusts of the Moon, Venus, and Mars as well. Feldspar compositions vary within
two solid solutions, the alkali feldspars (KAISi3Os-NaAlSiz;Og) and plagioclase
feldspars (NaAlSi;Og-CaAl;Si,Og). Feldspars have two excellent cleavages, (001)
and (010); these have also been identified as slip planes. All feldspars have low
symmetry: C2/m for the high-temperature alkali feldspars high sanidine with
complete disorder of Si and Al in tetrahedral sites above approximately 1000 °C
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and partially ordered low-sanidine (orthoclase). Lower-temperature alkali feldspars
albite and microcline are triclinic in the C1 space group. (A centered unit cell is
chosen to conform with the traditional morphologic unit cell and more or less parallel
axes in all feldspar structures. Miller indices in this section all refer to the ¢ = 0.7 nm
albite unit cell unless indicated.) The Ca end member of plagioclase (anorthite) is in
space group P1 at temperatures below ~250°C, and transforms to I1 at higher
temperatures due to positional disorder [355]. Feldspar structures of intermediate
composition are extremely complex due to the competing forces of ordering (Al-Si)
and exsolution (Na-K and Na-Ca). Many feldspars display complex microstructures
with fine exsolution lamellae (perthite, peristerite, labradorite, bytownite), antiphase
boundaries (anorthite) and pervasive twinning (microcline). There is a large
literature on TEM studies of these microstructures. The investigations of dislocations
are more sporadic and work has been reviewed by Tullis [57] and Gandais and
Willaime [58]. While feldspars are major components of a large majority of igneous
and metamorphic rocks they are generally quite undeformed and occur as
porphyroclasts in a matrix of highly deformed quartz, calcite, and pyroxenes.

Experimental and microstructural studies of granitic rocks demonstrate that
feldpars are stronger than quartz [286]. By contrast, plagioclase feldspar becomes a
weak and interconnected phase controlling the rheology of more mafic gabbroic
rocks [263], which are common in the lower continental crust and oceanic crust.

Analyses of dislocations in experimentally and naturally deformed feldspars by
TEM indicate that the dominant slip plane is (010). The (010) plane may be
favorable due to its low density of largely covalent Si(Al)-O bonds (2 per unit cell,
[57-59]). With this criterion, other possible slip systems include (001), (110), and
(101) (with 4 Si(Al)-O bonds per unit cell), (100), and (11 1) (with six 4 Si(Al)-O
bonds per unit cell). [001] is the dominant Burgers vector, which is supported by
TEM analyses of experimentally and naturally deformed samples (see [60-62] but
many other dislocations have also been identified.

Experimental studies of alkali feldspars in Westerley granite with ordered
microcline [63,64] and disordered sanidine [65-68] show that (010)[001] slip is
active in both. Other dislocations derive from (010)[101] [Fig. 15(a)], (001)3[110],
and (121)[101] slip. In naturally deformed alkali feldspars, subgrain formation
was observed, indicative of climb [357-360]. It has been suggested that shear-
induced mechanical Albite and Pericline twinning in potassium feldspar may
facilitate ordering [361] but this has been disputed [362]. Dislocations have no effect
on diffusion in alkali feldspar [363].

There is a considerable literature on dislocations in plagioclase but only few
experimental studies. In single crystals deformed in orientations with high Schmid
factor for both (010)[001] and (001)<110) slip [356], dislocations from both
systems are equally abundant [Fig. 15(b)]. This agrees with work by Marshall and
McLaren [364,365]. High-temperature deformation of anorthite aggregates has
been conducted at conditions near the transition from diffusion creep to dislocation
creep mainly produces microstructures typical of diffusion creep [366-368];
intriguingly, samples deformed dominantly in the diffusion creep regime develop
significant preferred orientation [369].
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Fig. 15. (a) BF image of (010)[101] dislocations in experimentally deformed sanidine [58]. (b) Weak
beam dark-field images of dislocations in experimentally deformed plagioclase favorably oriented for
(010)[001] slip; b = [001] dislocations exhibit long screw components [356].

Many slip systems have been observed in naturally deformed plagioclase: in
amphibolite (010)[100], (010)[101], (010)[2 1 0], (001) 3[110], (111) J[110],
(001) 110}, (111) J[110], A11)4112], and (110) 4[111] [60,370], gabbro
(010)[001], (001) 4110] [371], albite schist [100] [372]. Similar results were
obtained in other studies (see [61,373]). TEM analysis of Burgers vectors in inter-
mediate I1 plagioclase (with ¢ = 1.4nm) shows dissociation of [100] dislocations:
[100]—1[100]+4[100]; these partials would be unit dislocations in the C1 structure
(¢ = 0.7nm).

Texture analysis and subgrain misorientations in both naturally and experimen-
tally deformed plagioclase feldspar are also consistent with (010)[001] as an easy
slip system [59,62,369,371,373-375]. Other studies suggested additional (010)[100]
and (001)[100] slip (see [376-378]). Obviously, a polycrystalline aggregate cannot
deform ductilely on a single slip system and other mechanisms including mechanical
twinning, dynamic recrystallization, climb or grain boundary sliding have been
observed to occur [379]. Subgrain misorientation axis data in porphyroclasts
suggest a dominance of (010)[001] slip in porphyroclasts with dominant slip on
(010)[100] and (001)[100] in matrix plagioclase. The relative importance of the
[001] or [100] Burgers vectors may be a function of temperature, strain rate, H,O
activity, or confining pressure [376,367]. There is experimental evidence for
mechanical twinning on the Albite and Pericline systems in plagioclase [380-382]
but the significance for natural plagioclase is not clear [57].

3.7. Sulfides

Early investigations of the deformation modes of various sulfide minerals observed
both plastic and brittle behavior [383-386]. Considerable subsequent work
established slip and twinning mechanisms in several important sulfide ore
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minerals [106]. We consider here only what is known about dislocations and related
phenomena in the most important sulfides.

3.7.1. Iron sulfides — general

The crystal structures of iron sulfides are straightforward in principle but various
aspects of some structures and their behavior are still uncertain. We emphasize that
iron sulfides and iron oxides in natural rocks are often not in equilibrium.

3.7.2. Pyrite

The structure of pyrite, FeS, can be considered as a modified NaCl structure (cubic,
Pa3): Fe atoms occupy fcc lattice positions; S-S covalently bonded pairs are also
centered on fcc positions but they alternate in directionality. This alternation
destroys the overall face-centered symmetry. Pyrite is stable up to 743 °C at which
temperature it breaks down to pyrrhotite and sulfur [387]. The phase relationship
between pyrite and the orthorhombic (Pmnn) polymorph, marcasite, is still
enigmatic [388]. In marcasite, S-S pairs point in the same direction in each layer.
This causes a distortion from cubic to orthorhombic. The b dimension of the
marcasite unit cell is almost identical with the lattice parameter of pyrite. In the
transformation of marcasite to pyrite an orientation relationship {00 1}p//{10 1}y,
with {100 >p//[010]y is observed [389]. For the reverse transformation of pyrite
to marcasite the similar atomic arrangement in pyrite {001} and marcasite {101}
planes was mentioned [390].

Pyrite is usually considered to be hard and brittle, deforming by cataclasis up to
400 °C and 600 MPa confining pressure [391]. However, glide bands were revealed
by metallographic methods on the surfaces of some natural samples [392,393],
indicating plastic deformation. Van Goethem et al. [98] studied by TEM what they
believed were translation faults in pyrite and concluded from their diffraction
contrast analyses that the glide elements were {100}<011 ). Plastic deformation
can occur under confining pressure at elevated temperatures, predominately by
slip on the {100}<010) system [99-101]. The resulting dislocations tend to be
dissociated into partials with colinear Burgers vectors of type 1[010]. Planar
defects formed in pyrite during growth lie parallel to the {100} planes [394].
The faults were interpreted either as APBs with a displacement vector, R of type
1[110] [98], or as stacking faults with R = +0.29 [110] [394]. In natural pyrites
perfect dislocations with a{100) Burgers vectors were identified. The Burgers
vectors of partials bordering growth stacking faults are out of the defect plane, with
the form b = +R+a{100), where R, the fault displacement vector, is a[0, 0.27,
0.5] [395].

The growth faults may correspond to marcasite lamellae in the pyrite [395,396].
Indeed HRTEM and electron diffraction revealed them as single (101) layers
of marcasite inserted between (002) layers of pyrite [397]. Dislocation loops
formed during the growth of pyrite also have the a[0, 0.27, 0.5] fault vector [101].
This translation was predicted as the most probable in a coincidence-site-lattice
study [398].
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A deformation mechanism map for pyrite in the range 0-743 °C [399] shows that
pressure solution [102] and cataclastic flow are the dominant mechanisms operating
at geological strain rates under low-grade metamorphic conditions. Diffusion creep
occurs under high-grade conditions. Dislocation glide and power-law creep only
occur at higher stresses, above ~400 °C and at fairly high strain rates. Table 1 lists
the known slip systems for pyrite.

3.7.3. Chalcopyrite

Chalcopyrite (ccp) is a common accessory mineral in metamorphic and igneous
rocks and is found in many types of ore deposits. It is tetragonal and can be
envisaged as an ordered sphalerite structure. Both texture determinations and
optical studies of deformed samples (see [103]) provided the first information about
deformation mechanisms in chalcopyrite. Experimental deformation of chalcopyr-
ite single crystals to low strains at 200 °C indicated slip on {112}, {100}, and (001)
[94-96].

A comprehensive study of dislocation behavior established the existence of
various slip systems (see Table 1) by applying stresses to crystals in different
directions at different temperatures [97]. Deformation twinning according to
{112}<111) also occurred, with high densities of screw-character twinning
dislocation in the boundaries. At 200°C {11 2}(3 11) slip was the main mode of
deformation, with perfect dislocations having (31 1) Burgers vectors, whereas at
400 °C the main slip system was {1 12}<111), Wlth a Burgers vector of 1 ;<111) for
a perfect dislocation [Fig. 16(a)]. A marked change in slip mechamsms occurs in
moving from 200 to 400 °C: coarse {112}<311) slip bands predominated at the
lower temperature whereas homogeneously distributed dislocations were char-
acteristic of deformation at 400 °C. Dislocations with %< 111) Burgers vectors were

(b)

Fig. 16. (a) TEM image of dlslocapgn_s in experimentally deformed chalcop_yrite at 400 °C. Several screw
dislocations are in contrast: b = 4[11 1] in (1 12) planes (N 45°W), b = 4[1 1 1] in (112) planes (N 65°E)
and b =1[1 10] (N 10°E) [97]. (b) Weak-beam dark-field TEM image of [100], [010], and [001]

dislocations in stishovite deformed in a multianvil apparatus at 14 GPa and 1300 °C [84].
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able to cross-slip by means of (110) planes. All the types of perfect dislocation were
found to dissociate and many different dislocation reactions were also noted.

3.7.4. Galena

Galena, PbS, crystallizes in the cubic NaCl structure. The deformation of
polycrystalline galena has been studied experimentally at temperatures up to
500 °C and strain rates down to 10~®s™! [102-105,400-402]. Atkinson [403] derived
flow laws and calculated deformation maps for polycrystalline galena. According to
the latter, dislocation glide is the predominant mechanism at low temperatures and
high stresses. The slip systems are two of those found for NaCl, but unlike for NaCl,
{001}<110) is the primary system for galena whereas the primary system
for NaCl, {110}{110), is secondary for galena. These systems have different
CRSSs and very different dependences on temperature up to 400 °C [106]. When
compression was applied along (111) to achieve nonzero Schmid factors for
{001}<(110) slip, dislocation glide was activated at low stresses, corresponding
to CRSSs of 5-10MPa at room temperature [104]. The strain in deformed
polycrystalline specimens is usually distributed inhomogeneously, being largely
concentrated in kink and deformation bands [404].

TEM studies of dislocations in deformed natural and synthetic galena show that
Burgers vector of perfect dislocations is usually %{ 110}, as in NaCl. Up to 200 °C,
slip on the {001} planes mostly involves edge dislocation dipoles and dislocations
lying at 45° to their Burgers vector [405]. The density of dipoles increases as the test
temperature is decreased. The numbers of “45° dislocations” is largest at low
temperatures, which is consistent with the difficulty of activating {110}<110) slip.
Dislocation segments inclined to the planes of the TEM specimens were observed
to glide in {001}, {110}, and also {111} planes under thermally induced stresses
[406], which can be attributed to the commonality of the Burgers vector for all three
types of plane. This behavior is probably confined to elevated temperatures in bulk
specimens. That the dissociation of dislocations is possible in galena is suggested by
high-resolution TEM images of dislocations, lying in both {001} and {110} planes,
separated by distances of 1 and 0.6 nm, respectively [407].

Many dislocation interactions occur when multiple slip systems operate, as in
milled samples, variously resulting in dislocation annihilation, elimination of
dipoles, new segments of dislocation and networks [408]. Some of the complex
arrangements observed, for example, dislocation bundles winding around nodes,
were attributed to the special conditions created during milling. Cross-slip was
observed on {110} and {111} planes, giving rise to segments in the {00 1} planes and
superjogs. Galena that had been naturally work hardened by tectonic events and
then softened by annealing shows that rates of softening (due to both recovery
and recrystallization) are temperature dependent and related to the amount of
deformation [409].

3.7.5. Sphalerite
Sphalerite (zinc blende) is the cubic polymorph of zinc sulfide, ZnS, a 1I-VI
semiconductor. The sulfur atoms form an fcc array and the zinc atoms fill half of the
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tetrahedral interstices. Glide and dislocations in sphalerite have been researched
both directly and indirectly, the latter because several important semiconductors
like GaAs (III-V) and CdS (II-VI) are isomorphous with cubic ZnS. Many studies
of defects in the III-V compounds have been carried out and so, by inference at
least, various aspects of the behavior of the mineral sphalerite can be anticipated.

Sphalerite consists of alternate planes of Zn and S, stacked in a sequence
represented by AaBbCcAa ...., etc. Slip occurs on the {111} planes, which are
parallel to the stacking layers of atoms, and in the close-packed directions {110}.
The other deformation mode is {111}<{112) twinning. Slip on the {111} planes
causes a flow of charge in the direction of slip [410], thought to occur because the
dislocations are charged. Charged dislocations were predicted in ionic crystals many
years ago; the electrical effects associated with dislocation motion in ZnS are strong
evidence for such defects.

Sphalerite deformed at temperatures up to 500 °C and strain rates between 10>
and 107°s~! produced no twins in Fe-rich sphalerite [411,412] but abundant
twinning in purer specimens [412], together with slip under all test conditions. The
annealing of naturally and experimentally deformed sphalerites suggests that
static recovery is possible above 300 °C and proceeds rapidly above 500 °C [412].
Recrystallization produces new grains with numerous growth twins.

The plastic deformation of ZnS indicates that dislocations glide between planes
of aB type stacking and not between planes of Aa type [413]. This was determined
from the direction of the current generated by slip in relation to the known absolute
orientation of the crystal. Dislocation mobility in covalent semiconductors like
ZnS is controlled by the high-friction Peierls regime [414]. As a consequence,
dislocations with a %{110) Burgers vector lie along (110) atom rows of the
{111} glide planes and a dislocation glide loop consists of two types of segment,
screw and 60°. In compound semiconductor one can also identify two types of 60°
dislocation, depending on the nature of the atom species ending the associated
extra half plane; these are o or B dislocations in the usual semiconductor
terminology [415]. Dislocations are usually dissociated into two %<1 12) partials
that bound a stacking fault; these partials are either 30 or 90° in character.

Because of the high lattice friction, dislocation glide in compounds like ZnS
involves two steps [4]: the nucleation of a kink pair on the dislocation and the
migration of these kinks along the line. Thereby the line is able to move smoothly.
There are only small differences between the velocities of the various types of
dislocations in ZnS [416], which contrasts with the findings for III-V semiconduc-
tors [417]. The dislocation mobility in ZnS is found to be greatly enhanced by
electron radiation [416] although the Peierls regime still operates [418]. Apparently,
the enhancement is due to the nonradiative recombination of charge carriers at
electronic energy levels associated with the dislocations. The height of the Peierls
barrier and the flow stress depends on the charge on dislocations; the latter is
increased by illumination [419]. For this reason, ZnS shows a positive photoplastic
effect, that is, there is an increase in the flow stress when the sample is illuminated.
An after-effect is also found — the flow stress continues to increase after the
illumination ceases [420].
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3.7.6. Pyrrhotite

There is little information about dislocations in pyrrhotite, a mineral that can occur
in several polymorphs, including monoclinic and hexagonal forms. Deformation
experiments [103,391,412] at temperatures up to 500 °C to establish flow laws and to
study textures have incidentally identified basal glide in hexagonal NC pyrrhotite.
Fracturing contributes to deformation at low temperatures but decreases with
temperature; twinning occurs above 200 °C.

3.8. High-pressure minerals

Samples of the Earth to a depth of about 400 km occur at the surface as xenoliths
brought up from depth by volcanic eruptions. Minerals in the deeper interior are
inaccessible to direct observation, but we know broadly about their conditions from
geophysical data. One now can reproduce the high-pressure (>300 GPa) and high-
temperature conditions (>5000K) in the laboratory. With multianvil equipment,
we can perform deformation experiments at pressures 25 GPa on a sample with a
volume of about Smm? and a fair degree of control over the sample environment.
At higher pressures, diamond anvil cells are used; and the diamond anvils not only
exert pressure but also a compressive stress that deforms the material at pressure.
Heat can be applied to a diamond anvil cell with a resistance furnace or laser
irradiation [79]. Some materials can be quenched and investigated ex situ with the
TEM. High-pressure minerals such as stishovite, majorite, and MgSiO; perovskite
have been studied this way. But other minerals such as post-perovskite MgSiO;
(a phase of the lowermost mantle) or e-iron (composing the Earth’s inner core) can
only be examined in situ by optical, spectroscopic and X-ray diffraction techniques.
The determination of slip systems can be inferred from texture patterns that
develop during diamond anvil compression [421]. An alternative method is to
predict deformation activity from first principles based on the Peierls—Nabarro
model [422-424]. We review here briefly what is known about deformation
mechanisms of minerals in the lower mantle [425].

3.8.1. Magnesiowiistite (see also Section 3.3.4)

Magnesiowiistite (MggsFe(,0) is thought to be the second most abundant phase in
the lower mantle and probably the weakest. Dislocation creep experiments
produced textures consistent with slip on both {001} and {110} slip planes in the
{110} direction [76]. The microstructures formed indicated that recovery rate was
fast because dislocations were highly mobile and climbed rapidly. Subsequent high
strain deformation experiments on aggregates to shear strains as large as y = 15.5
produced first a deformation texture, compatible with dislocation glide in the
{110) direction on all three probable slip systems {111}, {110}, and {001} and
then transformed into a recrystallization texture [75]. Study of the dislocation
microstructure by TEM confirmed the assignment of slip systems. It appeared that
the formation of subgrains at relatively low homologous temperatures (<0.57),)
was promoted by cross-slip of dislocations between the different glide planes.
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3.8.2. Majorite Garnet (see also Section 3.6.1)

(Mg, Fe)SiO; garnet, that is majorite — a high-pressure phase of pyroxene, is
believed to be a major constituent of the transition zone of the mantle. Majorite
also occurs in impact melt veins in heavily shocked ordinary chondrites [426].
Majorite in shocked meteorites is cubic, apparently because they cool very quickly.
Synthetic majorite transforms at around 1950°C from the cubic phase to a
tetragonal structure during its cooling [427]. Studies of majorite in the Tenham
meteorite [73] and in the Acfer 90072 (shock grade S6) meteorite [74] have
provided important indications about the origins of dislocations in the majorite
grains. Dislocations with %( 111) and (100) Burgers vectors may be largely the
results of growth and not plastic deformation. Twin and tweed microstructures seen
in synthesized majorite at 20 GPa and 1950-2000 °C are believed to form due to the
cubic-tetragonal transition during quenching [427].

3.8.3. Wadsleyite

Wadsleyite (B-Mg,SiOy) is a high-pressure polymorph of forsterite. In wadsleyite
deformed at pressures of 14 GPa and 1450 °C, dislocations with [100] Burgers
vectors were identified, many in tangles, although creep had caused numerous
dislocations to form walls [428]. In wadsleyite synthesized from forsterite in a
multianvil apparatus and deformed in compression in another multi-
anvil apparatus at 15-19 GPa and temperatures ranging from room temperature
to 1800-2000°C, TEM and LACBED studies identify [100], $<111), [010],
{101), and [001] dislocations [85], the lattermost resulting from dislocations
reactions, not slip. Wadsleyite is elastically almost isotropic but slip occurs
predominately on planes that do not break Si—O bonds (e.g., (010) and (001))
and dislocation dissociation is crucial [86].

3.8.4. Ringwoodite

Ringwoodite, y-Mg,SiOy, another high-pressure polymorph of olivine with spinel-
structure is found in shocked meteorites [429] and believed to be present in the
mantle transition zone. Like wadsleyite, f-Mg,SiOy, ringwoodite is a high-pressure
phase of forsterite. Peierls-Nabarro modeling of dislocations at 20 GPa and 0°K
suggest that the Burgers vector for both {110} and {111} slip is 3{110) [80].
This is compatible with in sifu texture information at 6-10 GPa compared with
polycrystal plasticity simulations [81]. The curvature of glide dislocations can be
used as a method of estimating the resolved shear stress [430] in ringwoodite in
multianvil deformation experiments.

3.8.5. MgSiOj; perovskite and post-perovskite

Two important lower mantle minerals are MgSiO5 perovskite and post-perovskite,
the latter being a layered CalrOs-structured mineral [431] and thought to be the
most important phase in the lowermost region (D”-layer). The slip planes for
MgSiO; perovskite are {010} according to experiment [77] and theory [78].
For post-perovskite, theory suggests that the slip plane is {110} [78], but in situ
experiments suggest that slip on (100) or (110) is dominating [178]. Simulations
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based on the Peierls—Nabarro model provide models for the structure of disloca-
tions cores in perovskite [432] as well as in post-perovskite [231].

3.8.6. Coesite

Coesite is a monoclinic silica mineral that exists at pressures above a few GPa
and transforms to stishovite above about 10 GPa. Coesite was first identified as a
natural phase at Meteor Crater, AZ [433] and coesite can assist in the recognition
of meteorite impacts. The mineral occurs as a shock-induced phase in meteorites
and tektites. It also is found in some high-pressure metamorphic rocks as in the
Dora Maira massif of the Western Alps. A TEM study found Burgers vectors
[100], [001], and [110], which correspond to a and a+c [72]. Twinning occurs on
(021) [434].

3.8.7. Stishovite

Stishovite is the tetragonal silica polymorph with a rutile structure, stable at
pressures in excess of 10 GPa. It was found in both terrestrial and meteoritic
shocked samples and studied by TEM (see [432,435,436]). In experimentally
deformed stishovite, Burgers vectors are (100>, <001)>, <110}, and <101)
[82] comparable to rutile (Section 3.3.8). Stishovite experimentally deformed at
14 GPa and 1300 °C [83] shows evidence for slip in the (100} directions on the
(001), {010}, and {021} planes, and slip in the [001] direction (corresponding
to the shortest Burgers vector) on {100}, {110}, and {210}, and in the direction
{110) on {110} [84] (Fig. 16b).

4. Simulations

Most dislocation studies in minerals rely on observations with the TEM as described
in previous sections. These observations are used to determine the disloca-
tion geometry, slip systems, and microstructural configurations. But simulations
increasingly complement observations. These simulations are on two levels: To
predict slip systems, atomistic simulations of generalized stacking faults (e.g., with
density functional theory) are combined with a continuum-based description of the
dislocation core within the framework of the Peierls-Nabarro model [422,423,437].
To investigate microstructural changes during deformation, for example, during
hardening, a discrete dislocation dynamics model has been developed by metallur-
gists [438]. Both of these approaches are still restricted to single crystals and do not
take dislocation interactions across grain boundaries into account.

The Peierls—Nabarro model has been used to determine properties of dislocation
cores, the misfit energy and particularly changes with pressure. This is based on the
assumption of a planar core which is the most able to glide. It has direct implications
for slip systems. In order to move, a dislocation must overcome an energy barrier
under an applied stress. The Peierls—Nabarro model has been used to constrain
dislocation core sizes and Peierls stresses in several oxides and silicates relevant to
the Earth’s mantle, particularly periclase [439], olivine [440,441], ringwoodite [80],
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Fig. 17. Map of the interaction between dislocations in MgO as function of angles that define the
orientation relative to the intersection of slip planes. Gray shades display interaction force (white
attraction, black repulsion). (a) Lomer lock, (b) Hirth lock [443].

silicate perovskite [432], and silicate post-perovskite [442]. For olivine, the Peierls
modeling explained why pressure affects some slip systems more than others [424].

Dislocation dynamics has been recently applied to minerals such as periclase
[443] (Fig. 17) to explore the hardening in this material through interactions and
reactions between dislocations gliding in noncoplanar slip systems and olivine [424].
Such simulations may in the future become important tools to predict plasticity
based on dislocation geometry for a variety of conditions that cannot be explored
experimentally.

5. Dislocation densities and strain energy

It is not easy to obtain an accurate estimation of dislocations densities from
TEM images. X-ray topography is more reliable but is only applicable to materials
with low dislocation densities. Fortunately, X-ray diffraction provides a way of
estimating and monitoring dislocation densities and other defining parameters
of microstructure. For example, a cellular dislocation microstructure gives an
asymmetry in diffraction profiles according to Wilkens [444]. In recent years,
analysis of diffraction peak profiles and line broadening [445,446] has emerged as a
powerful tool for the determination of such parameters, although so far mostly
applied to metals and composites (see [447,448]). The effect of dislocation contrast
on line broadening has also been investigated [7].

As a result of this research, it is now recognized that various different properties
of diffraction peak profiles address several microstructural parameters by modeling
crystallite size and strain. These profile properties are peak broadening, asymmetric
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peak shape, peak shift, and anisotropic broadening [449,450]. The method has been
applied to the characterization of diamond/graphite [451] and forsterite [452] and it
can be expected to be used increasingly.

The effect of dislocations on the reactivity of minerals has been investigated
mainly for quartz with a few studies on feldspar and calcite, both experimentally
and theoretically. The strain energy in a crystal lattice caused by dislocations
can be described using ideal elastic behavior [4,453,454]. The increase in the
internal energy of quartz caused by dislocations can be calculated by the following
equation [453]:

2 22 2
_ ,ub rh + d . 2 ,ub Vv
AE =D <8nK) ln< 7 ) with r, = Sr2KAH. (1)

and where symbols are (with values for quartz in parentheses): D, dislocation
density (cm™2); u, shear modulus (44.4 GPa); V, molar volume (22.688 cm>®/mol);
AH,,, enthalpy of melting (8.159 kJ/mol); b, magnitude of Burgers vector (0.4913—
0.7304nm); d, mean distance between dislocations (1/D)"?%; K, constant related to
the Burgers vector orientation, where K =1 for a screw dislocation and K = 1—v
for an edge dislocation, where v is Poisson’s ratio (0.007).

The internal energy is also dependent on the orientation of the dislocation
relative to the Burgers vector. The equation assumes that the dependence is small,
and is represented by the constant K [455]. Substituting the values into Eq. (1), one
can calculate the increase in energy of quartz caused by a particular dislocation
density on a particular slip system containing a certain type of dislocation. This
equation indicates, even for a dislocation density as high as 10''cm ™2, that the
energy contributed to quartz is only 6% of the dissolution energy.

Dislocations may not contribute much to the bulk energy increase of a mineral,
but they may nevertheless affect the reactivity by providing favorable areas for
chemical processes such as precipitation and dissolution to occur. The local strain
energy is more concentrated around the dislocations themselves, and is not
distributed through the bulk crystal. Frank [456] has shown that the large amount of
energy released locally at a dislocation site during dissolution decreases or
eliminates the energy barrier (caused by the change in free surface energy) that
prevents the removal of atoms. This may lead to regions where the reactivity is
enhanced, potentially allowing also reactions other than dissolution to occur at
higher rates [453,457]. For dissolution, it corresponds to etch pits, dissolution
spirals, or hollow cores at dislocations.

An increase by 2 to 3 orders of magnitude in dislocation density has been shown
to increase the dissolution rate by as much as a factor of 3 and this is highly
significant for the stability and dissolution of quartz [458,459], of feldspars [363,460]
and of carbonates [461]. Based on strain energy produced by dislocations in
subgrain boundaries, Twiss [462] developed a theory to use the recrystallized grain
size as a paleopiezometer.

Dissolution properties of minerals have some significant industrial applications.
Concrete produced with highly deformed aggregate rocks such as mylonites, where
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Fig. 18. Plot of the average 30-day expansion value of concrete samples with increasingly deformed
granitic rock aggregate as function of average dislocation density in quartz [293].

quartz has high dislocation densities, are subject to the deleterious alkali silica
aggregate reaction [293,463]. As the dislocation density increases by an order of
magnitude, the expansion becomes threefold (Fig. 18). This causes ultimate fracture
of the structure.

6. Conclusions

In spite of the enormous structural complexities, from triclinic plagioclase feldspar
to piezoelectric trigonal quartz, from plasticity of ice at ambient conditions to post-
perovskite deforming at highest pressures and temperatures in the lowermost
mantle, from simple salt rocks to a polyphase material such as gneiss, dislocations in
minerals are remarkably similar to those in metals and similar descriptions and
interpretations apply. As in metals, dislocations are most relevant in the under-
standing of deformation processes. They provide the mechanism for deformation by
slip that produces on the macroscopic scale preferred orientation and anisotropy.
Dislocation microstructures are a driving force for recrystallization. They also play
important roles in chemical reactions as well as in dissolution. Minerals compose
rocks, and rock deformation is a key ingredient to understanding the dynamic earth,
both mountain building and shearing in the crust as well as convection in the deep
earth. Similar flow laws apply to metals and rocks because mechanisms are similar,
even though timescales are entirely different. Geologic times and slow strain rates
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compensate for the much slower dislocation mobility in minerals. Based on
Orowan’s equation, long-term deformation associated with mantle convection
and flow in the crust is accommodated by dislocations with velocities in the range of
107"2-10" " mys.

But minerals are not just significant in the context of geologic history. They are
also important raw materials: most ceramics or their constituents are minerals:
alumina, silica, perovskite, spinel. Cement minerals are extremely complex
compounds and their strength and stability is of enormous technical importance.
We are convinced that a close interaction between materials scientists, mineral
physicists, and structural geologists will continue as an extremely stimulating
endeavor. The investigation of dislocations remains an exciting field of research.
Advanced experimental techniques allow for sophisticated imaging at all scales.
Modeling of dislocation movements and dislocation interactions has become
possible with high-speed computers.

This chapter of the last volume of Dislocations in Solids has been dedicated to
dislocation in minerals. As we have shown, minerals were among the first materials
in which dislocations were observed and with the advent of TEM and sample
preparation techniques in the early 1960s a wide range of studies were undertaken
to describe and quantify dislocation microstructures in the wide diversity of
minerals. While compiling this review, what was perhaps the most striking
revelation is what we still do not know: for example, the Burgers vectors in the
common mineral-quartz, hardening behavior while undergoing high strains, the
actual mechanism of recrystallization in many deformed rocks and the deformation
of polymineralic aggregates, to name just a few. With such a rich background we
are sure that future researchers will be inspired to continue investigating the roles
of dislocations in minerals.
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1. Introduction

Dislocations occur in lattices other than those of atomic-scale crystals. The best
known examples, no doubt, are those in the experiments of Bragg and Nye with
rafts of soap bubbles [1]. Their work illustrated the geometry and kinematics of the
edge dislocations in these two-dimensional hexagonal lattices, and vividly revealed
how macroscopic plastic deformation of crystals is effected by the motion of large
numbers of such dislocations. Ahead of the definitive identification of moving
dislocations in atomic crystals by electron microscopy [2], Bragg and Nye’s
experiments had convinced many of the reality and the potential of what had
initially been a purely theoretical concept [3-5].

On a scale a thousand times smaller, particles in dense colloidal suspensions also
form two- or three-dimensional lattices, both of which can contain dislocations.
There is a fundamental difference between dislocations in two- and three-
dimensional lattices. In the former case, dislocations are point defects, which can
be in thermodynamic equilibrium and can lead to phase transformations. Their
appearance into the hexagonal close-packed crystal leads to the loss of translational
order and the formation of the hexatic phase. Their subsequent dissociation
into disclinations leads to loss of the oriental order and formation of the liquid
phase [6-8]. Colloidal systems are well suited for experimental exploration of two-
dimensional dynamic systems [9,10], and the results have played an important role
in the development of this field [11,12].

In this article, however, we discuss recent studies of dislocations in three-
dimensional colloidal crystals. Such dislocations either are nonequilibrium growth
defects, misfit dislocations, or are produced during plastic deformation. The first
ones to observe and characterize such dislocations were Pieranski and coworkers
[13,14]. Since then, the availability of new experimental tools, such as microlitho-
graphy and confocal microscopy, has greatly expanded our capability to create and
study three-dimensional colloidal crystals in three dimensions. One can now grow
large single crystals on microlithographically prepared templates. Confocal
microscopy has made it possible to track each individual particle in a colloidal
system in space and time. As a result, these systems can be used as ‘“‘analog
computers” to simulate and study the dynamics of complex phenomena in crystals,
liquids, and glasses. In this paper we review our recent study of the geometry,
nucleation, and propagation of dislocations in large colloid single crystals. Even
though our colloidal particles are hard spheres, the observed geometries can be
described well by classic mechanics and even the kinetics correspond surprisingly
well to those in atomic systems.
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2. Colloids

Colloidal systems are suspensions of small particles, made of silica or a polymer,
such as polymethylmetacrylate (PMMA) or polystyrene, in a fluid [15]. The fluid is
usually a mixture prepared to match either the index of refraction or the density
of the particles. The particles must be sufficiently small, so that their motion is
primarily thermal in origin (Brownian motion) rather than due to, for example,
gravity or convection. In the experiments discussed in this article, silica particles
(diameter 1.55 um, density 2.0 g/cm?®, and mass 3.9 x 10~ '°kg) are suspended in a
water—62.8 vol.% dimethylsulfoxide (DMSO) solution that matches the index of
refraction of the silica and has a density of 1.10g/cm®. The average velocity of
Brownian motion is given by:

3kgT
(vB) = /| ——, (1)

m

where kg is Boltzmann’s constant, 7 the temperature, and m the mass of the
particle. For our case, this gives (vg) =2 x 10> m/s. The gravitational settling
velocity of the particle is given by

e — Ve Apg
ST Tenry

)

where Vp and r are, respectively, the volume and radius of the particle, Ap is
the density difference between particle and fluid, and 7 is the viscosity of the
fluid, which is about 1072 Pas. This gives in our case vg = 10~° m/s, which satisfies
the condition for a colloidal particle. The index match makes the system
optically transparent, which allows investigation by optical microscopy at large
distances into the sample. Contrast between particle and solution is achieved by
means of fuoroscein dye added to the solution. The index match also minimizes
the van der Waals forces between the particles, which interact therefore like hard
spheres.

Thermodynamically, an assembly of colloidal particles in the thermal bath of the
solution has an equation of state similar to that of the ideal gas

Il = pkpTZ, 3)

where IT is the osmotic pressure, p the density of the particles, and Z a
compressibility factor that depends on the packing fraction (Z =1 at low density
and diverges at the densest packing fraction) [16,17]. Since the particles interact
with a central (spherically symmetric) potential, they form phases similar to those
formed by atoms interacting with central potentials. In a hard-sphere system,
the temperature is no longer a phase-controlling parameter, as can be seen from
the following argument. To form a phase, the hard spheres must be confined to
a finite volume. The controlling potential at constant volume is the Helmholtz
free energy

F=U-TS, (4)
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where U and § are the energy and the entropy, respectively. Since the hard spheres
only have kinetic energy, the internal energy of the system is

3
U= ERT’ (5)
and hence the Helmholtz free energy becomes
F= (%R—S) T. (6)

Minimization of F, therefore, occurs by maximization of the entropy; temperature
is not a controlling variable. The entropy, in turn, is controlled by the packing
fraction of the particles. Fig. 1 shows a schematic phase diagram.

Computer simulations [18] and experiments on monodisperse colloids [19]
established that volume fractions of coexisting liquid and crystalline phases are,
respectively, 0.494 and 0.545. The liquid can be overcompressed to form a glass
once it reaches a packing fraction of 0.58 [20]. That crystallization of hard spheres is
also driven by maximization of entropy may seem paradoxical. To understand this,
we consider a hard-sphere glass at its maximum packing fraction of 0.636 [21]. All
spheres are jammed under this condition: none of them have any degree of freedom
for motion. Although the structure is disordered, its positional entropy is small [22],
and the entropy associated with local motion is zero. Since the packing fraction of
the glass is well below that of a close-packed crystal (0.740), crystallization of the
glass at constant volume produces a structure with zero positional entropy but with
considerable local entropy.

3. Colloidal crystals

Colloidal crystals can have a large variety of structures that depend on the nature of
the colloids (hard sphere, charged, mixed sizes, and charges) [23]. The equilibrium
crystalline phase of single-sized hard spheres has the face-centered cubic structure.
Its energy is only about 10 >kgT lower than that of the hexagonal close-packed
crystal [24]. Equivalently, the stacking faults on the close-packed planes in both

liquid-crystal crvstal
liquid coexistence 4
> > € >
] ] |
! | 1 voluTne
9%  54% 63% 74% fraction
LB N B B J ﬂ
metastable glass
liquid

Fig. 1. Phase stability as a function of volume fraction for hard-sphere colloids.
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e

Fig. 2. PMMA template used for growth of face-centered cubic hard-sphere colloids in the (100)
orientation.

structures have negligibly small energies. As a result, close-packed crystals grown in
the laboratory by homogeneous nucleation from the liquid [25] or by sedimentation
on a featureless plane surface consist of close-packed planes stacked randomly in
the A, B, and C positions [see Fig. 3(D)]. Growth of single crystals requires special
constraints, such as patterned templates [26]. Fig. 2 shows an example of a (100)
template, microfabricated out of PMMA. Sedimentation onto this template occurs
by growth of alternating layers aligned with the dimple positions (A) and the
interstitial positions (B), which, ideally, produces a perfect single crystal [see
Fig. 3(A)]. Occasionally, the crystals contains large stacking faults, as illustrated in
Figs 3(B) and 3(C).

4. Observation of dislocations
4.1. Confocal microscopy

In a laser scanning confocal microscope [28], light is focused through a microscope
objective where it excites fluorescence in the sample. The emitted light is retraced
through the microscope and passed through a pinhole in the conjugate focal plane
of the lit spot in the sample. This allows only light from that spot to pass; light from
all other directions, for example from multiple scattering, is blocked. The light
intensity is recorded by a detector and stored as the spot is scanned through the
sample. The stored information can then be displayed directly as a three-
dimensional image or can be processed into a reconstructed image, in which
computer graphics is used to redraw the spheres. When the refractive index of the
fluid is matched to that of the spheres, light can penetrate quite deeply into
the sample with little scattering, so that tens of planes of a crystal can be imaged.
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Fig. 3. Reconstructed confocal images of colloidal close-packed crystals. (A) Face-centered cubic crystal grown by sedimentation onto a (100) template. &
(B) Single crystal with stacking faults (between the gray spheres). (C) Just the gray spheres from part B: the stacking faults extend through the volume
(from Schall et al. [27]). (D) Three consecutive, somewhat defective hexagonal close-packed layers in a small crystal nucleated from the liquid (from
Gasser et al. [25]).
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Fig. 4. Reconstructed image of a (11 0) plane in an fcc crystal (light shaded in the unit cell schematic

on the right) intersected by a stacking fault on the (111) plane (dark shaded on the right), which ends

in a Shockley dislocation with Burgers vector 1/6a[1 12] (along the intersection of the two planes).
After Schall et al. [27].

The lateral resolution (perpendicular to the optical axis) is about 200 nm, typical for
optical microscopy. Because of limitations of the optics, the vertical resolution is
only 500 nm. Application of image analysis techniques [29,30] improves the resolu-
tion for the location of the center of the particles by about an order of magnitude.
A typical time to scan a stack of planes through a sample is a few seconds.

Dislocations can be identified in a 3D reconstructed image by the standard
tracing of a Burgers circuit. Fig. 4 gives an example. The end of the stacking fault
is a Shockley dislocation, the Burgers vector of which is 1/6a[1 1 2], as identified by
the closure failure of the circuit in the figure.

Dislocations can also be identified from the local coordination of the particles.
Fig. 5 gives an example, taken during indentation of a crystal with a sewing needle,
as an analog to nanoindentation of an atomic crystal. This leads to the nucleation of
dislocations below the indenter, a full discussion of which is given in Section 8. The
coordination of a particle is characterized by considering alignment of the vectors
between it and its nearest neighbors. In the fcc structure, these form six aligned
pairs; particles with this coordination are eliminated in Fig. 5. In the hcp structure,
there are only three aligned pairs (in the basal plane). Particles with this
coordination are the dark ones in Fig. 5. When they form two adjacent close-
packed planes, they mark a stacking fault [also in Figs 3(C) and 3(D)]. Particles that
fit neither coordination are the light ones in Fig. 5. When they line up at the edge of
the stacking fault they demarcate the core of the partial dislocation line that has
nucleated under the tip and has the stacking fault at its center.

4.2. Laser diffraction microscopy

In atomic crystals, dislocations were first imaged by the change in the diffraction
conditions associated with their strain field. Because interatomic distances are on
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40 50 1)

Fig. 5. Identification of a dislocation loop in a reconstructed image from a series taken during

indentation of a (100) single crystal. Particles with fcc coordination have been removed. The dark

particles have the hcp coordination, characteristic of the stacking fault. The light particles have neither

of these coordinations. The light particles at the edge of the stacking fault trace out a nucleated
dislocation loop. After Schall et al. [31].

the order of 0.1 nm, diffraction requires hard X-rays, as used in topography [32] or
high-energy electrons, as in transmission electron microscopy [2]. The same can be
done with colloidal crystals [27,33]. Since the interparticle distance is on the order of
1 um, optical light can be used in a setup that is conceptually similar to that of an
electron microscope. A quantitative difference, of course, is the relative curvature
of the Ewald sphere: the ratio of the wavelength to the interparticle spacing is
around unity for the colloids, whereas in the electron microscopy it is on the order
of 0.01 (“flatter” Ewald sphere). A schematic diagram of the laser diffraction
microscope (LDM) is shown in Fig. 6.

A He—Ne laser beam (1 = 632 nm), with wave vector kg, is aimed along the [100]
direction of a single crystal grown on a (100) template with slightly mismatched
(1.5%) lattice parameter. When the beam is exactly perpendicular to the template,
a symmetric (100) diffraction pattern is observed. In Fig. 6, the sample is tilted
slightly, so that the intensity of the (22 0) reflection, with wave vector k, increases.
When with the aid of a pair of lenses this reflection is projected onto a screen, a
sharp image of the crystal is produced. Fig. 6(a) shows set of dark lines in the (1 10)
direction, perpendicular to the scattering vector q = k—ko, with q = gy, the
reciprocal lattice vector of the reflection. When the sample is tilted slightly, so that q
deviates from g by the excitation vector s = q—g, the contrast of the image inverts,
which demonstrates that the lines in the images indeed result from lattice
distortions. When the (2 2 0) reflection is for imaging, these lines disappear and a
new, perpendicular set appears [see Figs 9(c) and 9(d)]. Since lattice distortions are
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Laser beam ko
Colloidal 5, Screen
Crystal E Projector
Objective VW lens
O‘ lens
&,
a Diffraction pattern

Fig. 6. Laser diffraction microscope (LDM) and images of dislocations in an fcc colloidal crystal.
(a) Schematic diagram of the microscope. A laser beam with wave vector kg passes through the crystal.
A diffracted beam, with wave vector k is imaged on the screen with an objective and projector lens.
(b and ¢) LDM images of dislocations. The upper left insets show the diffraction pattern (°: transmitted
beam; arrow: the (220) diffraction spot used for imaging). These insets show the relation between the
scattering vector q = k—Kk( and the reciprocal lattice vector g. In (c), the sample is tilted to produce an
excitation error s = q—g that produces an inversion of the diffraction contrast. From Schall et al. [27].

visible only if they have a component in the direction of the scattering vector, the
disappearance of the lines shows that the displacement fields are perpendicular
to the lines and hence the lines represent edge dislocations. They are, in fact, misfit
dislocations in the interface between the crystal and the template. These are
discussed in more detail in Section 6.

When the particle positions in the strained lattice around a dislocation are known
from confocal microscopy, one can test the contrast of the lines quantitatively, as
illustrated by the example of Fig. 7. The amplitude of a point P in the image plane
below a crystal is given by:

A= exp(—2mi(k — Ko)x,), (7)
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Fig. 7. Simulation of laser diffraction images of a dislocation. (a and b) Orientation of the incoming and
scattered wave vectors with respect to the particle column, which contains a dislocation similar to that of
Fig. 4 that runs along the xdirection. (¢ and d) Images with zero excitation error calculated under
conditions (a) and (b), respectively. (f and g) Images with excitation error s = 0.12 calculated under
conditions (a) and (b), respectively. (e) Experimental image taken along a crystal orientation that
maximizes the (220) diffracted intensity. (f) Experimental image taken for a crystal orientation slightly
away from that of (e). (i-n) x-averaged intensity profiles of (c)-(h), respectively; for (c)—(e), the

averaging is over the length between the arrows. From Schall and Spaepen [33].
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where x,, are the positions of all particles in an imaging column parallel to k,
centered around P. The wave vector of the diffracted beam is given by:

k=ko+g+s, (8)

where the reciprocal lattice vector is g = (1/dy)(220) and the excitation error
s = (1/dy)(00s), with d, the lattice constant. Fig. 7 shows two cases: one in which
the diffracted beam is along the z-axis and the other in which it makes a 22.8° angle
with this axis, in which case the incoming and diffracted beams make equal angles
with the z-axis.

When the excitation error, s, is small, the presence of the dislocation is revealed
in the image as a dark line [Figs 7(c) and 7(d)]. These lines do not appear if
g=(1/dy)220) is used for the diffraction condition. This shows that the
displacements of the dislocation strain field, which give rise to the contrast, are
indeed perpendicular to the dislocation line, as expected for the Shockley partial
dislocation of Fig. 4. The calculated images correspond closely to the experimental
one [Fig. 7(e)], as illustrated also by the averaged intensity distributions of
Figs 7(1)-7(k).

As the excitation increases, the contrast of the images inverts. Figs 7(f) and 7(g)
show the images calculated for s =0.12, which gives the strongest contrast
inversion. Again, there is close correspondence with the experimental image of
Fig. 7(h), as also illustrated by the averaged intensity distributions of Figs 7(1)-7(n).

The confocal and laser diffraction microscopies complement each other. The
former has a resolution that allows a direct view of the particles, but its scope is
limited in time and space (a 60 um x 60 um x 30 um volume in 2s). The latter
resolves only the strain field of the dislocations, but does so instantaneously for an
area of 1 mm x 1 mm and arbitrary thickness.

5. Elasticity of dense colloidal systems

Dense colloidal systems, such as liquids and glasses, are considered ‘‘soft”” (or more
accurately ‘“‘compliant’”) matter: they have small but nonzero elastic moduli.
Consider for simplicity first the equation of state, eq. (3), at low packing fraction,
where it becomes that of an ideal gas:

MV = kT, )

where V is the volume per particle. Under isothermal conditions, the variations in
osmotic pressure and volume are coupled by:

MdV + V dIl =0, (10)

which gives for the bulk modulus:

== (11)
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Another way to look at this result is to consider the modulus as an energy density;
in a hard-sphere colloidal system the only energy is kg7 (on the order of 107%' J at
room temperature) and the only volume is the volume per particle (on the order of
107" m? for densely packed, micrometer-size particles). As an aside: the moduli
of “hard” (or more accurately “stiff”’) materials are on the order of 10'! Pa, which
corresponds to an energy density of the cohesive energy (on the order of a few
electron volts, or 107'°J) per atomic volume (on the order of a few cubic
angstroms, or 107" m?>).

For dense colloidal systems, such as crystals and glasses, however, in which the
particle itself takes up most of the volume, a correction must be made. Simply put,
the volume available that the particle can sample by Brownian motion, and that
hence determines its entropy and free energy, is its free volume, i.e., the volume
above that in its densest packed state. The packing fractions of colloidal crystals and
glasses are usually a few percent below those of the closest packed crystal or glass
(respectively 0.74 and 0.6366 for monodisperse systems). The appropriate volume
to be used in the calculation of the energy density therefore is on the order of
102°m?®, which gives values for the bulk modulus on the order of 0.1-1Pa.
Accurate values for the modulus are obtained by using the compressibility factor Z,
defined in eq. (3) [16,17].

Colloidal crystals and glasses are also “‘solids”, in the sense that they have
nonzero shear moduli. This can be seen by considering that the shear modulus, g, is
equal to the second derivative of the Helmholtz free energy density, F/V, with
respect to the shear strain, y:

16°F
==—. 12
H=vap (2
In a hard-sphere system, according to eq. (6), this reduces to:
78S
=———. 1
It Vo (13)

Since in equilibrium, the entropy is at a maximum, its second derivative with
respect to strain perturbations must be negative, which corresponds to stability with
respect to shear and a positive shear modulus. A simple quantitative estimate of the
entropy change in shear (i.e., at constant volume!) is difficult to make. Suffice it to
say that, dimensionally, the energy density argument applies here as well and
therefore a magnitude similar to that of the bulk modulus is expected.

Experiments bear this out. For example, the rheometric measurements of
Mason and Weitz [34] of the frequency-dependent viscoelastic moduli of colloidal
glasses give values on the order of 0.1-1Pa for the storage moduli at low
frequencies (static shear moduli). The methods discussed in this article also allow
determination of the elastic moduli, albeit more indirectly. In Section 6 it is
shown how a value of the shear modulus can be determined from the propagation
of misfit dislocations. The calibration of such a measurement is based on the
viscosity of the suspension fluid. It is also possible to determine the moduli from
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Fig. 8. Thermally induced strain fluctuations in a colloidal glass measured by confocal microscopy.
(A and B) Distributions of the shear strain component &,. in a 3um thick x—y layer measured over
two consecutive 2.5min intervals. The arrows indicate regions in which the strain changed sign,
demonstrating the presence of fluctuations. (C) Array of 3 um x 3 pm squares, showing the incremental
strain in 3 um x 3 pm x 3 um cells for the layer shown in (B). Each cell contains about nine particles.
(D) Distribution of the normalized strain energies E/ukgT, calculated from the strain values in (C). The
squares at 23nPa~! (n =0, 1, 2, ...) represent the relative frequency of the energy values in the range
[23n, 23(n+1)] Pa~". The error bars arise from the experimental uncertainty on the particle positions.
The slope of the straight-line fit is —0.028 Pa. From Schall et al. [35].

the amplitude of thermal fluctuations (‘‘phonons”) in a system in equilibrium [35],
as described in the next paragraph. In that case, the calibration is from the thermal
energy, kgT.

Fig. 8 shows the local strain distribution in a slice through a colloidal glass as a
function of time. The local time-dependent strain in a glass is calculated by
following the particle trajectories and determining their relative displacements.
First, the nearest neighbors of each particle are identified as those separated by
a distance less than the first minimum in the pair distribution function. For each
particle with center at r(f), the vectors to the nearest neighbors j at time ¢,
d;() = r(t)—r;(t), are compared to their corresponding values at time —At, d;(t—At).
The best affine deformation tensor, a, that transforms these nearest neighbor
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vectors from the earlier time to ¢ is determined by minimizing the mean square
difference Y_;[d;(t—At)—ad;(r)]* [36]. The symmetric part of a is the strain tensor of
the particle under consideration. Fig. 8 shows the distribution of the shear
component ¢,.. The light and dark regions correspond to regions of positive and
negative strains, respectively. Note that regions extend over several particles.
Fluctuations are observed as the reversal of the sign of the shear in a region in
consecutive measurements [Figs 8(A) and 8(B)]. That these are indeed thermal
fluctuations can be checked by the relative frequency of their elastic energies. For
this purpose, the strains in the slice of Fig. 8(B) were averaged (“‘coarse-grained”)
over cells of @ =3 pm on a side. The contribution of this strain component to the
elastic energy of each cell is, normalized by the shear modulus:
1
% =5 (4e; ). (14)

Fig. 8(D) shows that these energies obey an exponential distribution, as expected
from thermal fluctuations:

F(U) = exp (—u#k%) (15)

The slope of the straight-line fit to the data corresponds to the shear modulus.
That its value, u = 0.028 Pa, is in line with other measurements and estimates
confirms that indeed thermal fluctuations are being observed.

6. Misfit dislocations
6.1. Lattice mismatch

The lattice parameter of a colloidal hard-sphere crystal formed by sedimentation on
a template depends on the size of the particles and the thickness of the crystal [27].
For example, silica particles with a diameter of 1.55pum and a size spread
(“polydispersity’) of less than 3.5% form a perfect crystal on a (100) template with
nearest neighbor distance dy= 1.63um (which corresponds to an fcc lattice
parameter a = 2.31 um). The lattice spacing decreases slightly with increasing
thickness due to the increasing pressure head.

When a crystal is grown on a template with a spacing different from the preferred
lattice spacing, the mismatch is accommodated by a set of misfit dislocations. Fig. 9
shows the two perpendicular sets of edge dislocations, along the [110] and [1 1 0]
directions, formed on a (100) template with a spacing that is ¢y = 1.5% greater
than that of the crystal. Confocal microscopy shows that they are Shockley partial
dislocations like those of Fig. 4, with Burgers vectors b =a/6{112). The
in-plane component of these Burgers vectors, which accommodates the misfit, is
b cosa, with o = 54.73° and coso =1,7,/3"



248 P. Schall, F. Spaepen Ch. 96

Fig. 9. Misfit dislocations at the interface of a colloidal crystal grown onto a (100) template with a lattice

parameter that is 1.5% larger than that of the crystal. The images were made with the laser diffraction

microscope (LDM), in bright (a and c) and dark (b and d) field contrasts. By changing the diffraction
condition (insets), two perpendicular sets of dislocations are revealed. From Schall et al. [27].

6.2. Critical thickness

When the crystal grows on the template, no misfit dislocations are observed until it
reaches a critical thickness 4. = 22 um. The physical basis of this critical thickness is
well understood: only when sufficient strain energy is built up in the growing defect-
free crystal does it become energetically favorable to trade off this energy against
the line energy of the dislocations. The widely used one-dimensional, isotropic
continuum models for epitaxial growth of thin films [37,38] can be applied to these
colloidal crystals as well.
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Consider a crystal of thickness £ that contains a set of parallel misfit dislocations
spaced A apart. The amount of strain relieved by these dislocations is

b cos o
= . 16
=" (16)
The elastic energy per unit area in the partially strain-relieved crystal is
1
Ug = iEaglh, (17)

where ¢, = ¢p—¢ and E is Young’s modulus. The energy per unit area associated
with the dislocations is

1 ub? R

Uig=——"" In=
R PG R

(18)
where u is the shear modulus, v the Poisson’s ratio, R the range of the elastic field of
the dislocation (taken to be the crystal thickness, /), and r, the effective core radius
(taken to be b/4) [39]. When the total energy, Uq+ Uy is minimized with respect to
the dislocation spacing, this yields:

1 €0 1 w 1 1 4h

- - Lal St 1
A b coso 4n(1—v)Ecoszochnb (19)

The critical thickness corresponds to an infinite spacing between the disloca-
tions, or

1w b 1. 4he

he=———-——-In—. 20
“T4n(l— v Ecosah b (20)
In an elastic isotropic continuum
E
m =2(1+v). (21)

These colloidal crystals are similar to their atomic counterparts, in that their
Poisson ratio is close to 1/3 [24]. It can easily be checked that eq. (20) is satisfied by
the experimentally observed value of A, = 22 pm.

6.3. Dislocation density

When the crystal exceeds its critical thickness, misfit dislocations nucleate and their
density depends on the crystal thickness according to eq. (19). The crystal under
consideration here was grown to a thickness of 30 um, for which eq. (19), with the
parameters used for the calculation of the critical thickness, yields a dislocation
spacing A =152pum. This is considerably higher than the observed value
A =53+10pum. Most likely, this discrepancy is the result of a decrease of the
lattice parameter in the thicker crystal due to the increased pressure head. This
increases the mismatch between the crystal and the template, and hence the strain



250 P. Schall, F. Spaepen Ch. 96

energy and the number of dislocations. An increase of 0.005 in the misfit strain
suffices to explain the discrepancy.

6.4. Dislocation offset

As shown in the confocal image of Fig. 4, the core of the misfit dislocation is not
located right at the interface, but a few particle layers (~3 um) above it. This is the
result of a balance between the attraction of the dislocation to the interface to
relieve the strain in the crystal and the repulsion from an image dislocation that
arises from the zero-displacement boundary condition at the interface.

Since the elastic energy, per unit area, in the crystal below the dislocations,
located at a height z is

1
Ueg = iEggz, (22)
there is a force on each dislocation towards the interface equal to the vertical
energy gradient:

1
Fo = EAEgg. (23)
An image dislocation, located at —z with the same in-plane Burgers vector,
cancels the in-plane displacements at z = 0. The vertical repulsive force between
the dislocations is

w(b cos )
Frop=—"——. 24
P 4n(1 —v)z (24)
The balance of these forces gives the offset distance:
b cos o)’
2 ( %) u (25)

S 2n(1 —vAGE’

With the measured dislocation spacing, A = 53 um, and the parameters used in
Section 6.2, this gives zo = 2.1 um, in good agreement with the observations.

6.5. Dislocation dynamics

Fig. 10 shows a sequence of laser microscopy images taken during the nucleation
and growth of misfit dislocations. The starting time, f, for the observations was 14 h
after the addition of a dose of particle to grow the crystal from its critical thickness
of 22-30 um. A number of dislocations are marked and their length as a function of
time is plotted in Fig. 11(a). Note that dislocations 3 and 4 are not present at the
beginning and hence their nucleation is observed.

The mechanism for the spreading of the dislocations is illustrated by the
schematic of Fig. 11(b). Spreading is driven by the Peach-Koehler force on



§6.5 Dislocations in Colloidal Crystals 251

1

Aot 3.amin

Fig. 10. The laser diffraction images taken at various times during the growth of misfit dislocations. The

time f, corresponds to 14 h after the addition of a dose of particles to grow the crystal from 22 um (critical

thickness) to 30 um. The numbers correspond to the dislocations whose length is plotted in Fig. 11(a).
After Schall et al. [27].

the screw segment of the dislocation and is counteracted by the line tension of the
dislocation being put down as well as the drag force on the screw segment.
The strained crystal is under a biaxial stress

o2ty (26)

(1=

where ¢ is the elastic strain, given by ¢y—e, with ¢ equal to the strain relieved by the
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Fig. 11. (a) Length of four of the misfit dislocations as a function of time. (b) Schematic representation of

the formation of the misfit dislocation at the interface. (c) Replotting of the data of (a) with respect to

nucleation time and final length. The line is a fit to the prediction of the model, eq. (36), and the time axis
has been rescaled with respect to the time constant of the model. From Schall et al. [27].

dislocations, as given by eq. (16). The Peach—-Koehler force exerted by this stress on
the screw segment of the dislocation of length / is then:

2u(1 +v)

Fpg =——¢ . 2

PK (1 — V) ?elb cos ah ( 7)

The line tension has the classic form [39]
2
ub R

Fi=————In—. 28

" i —v) (28)
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The drag force is the result of the particles having to move through a medium
with viscosity 1, which makes it strictly /inear with the dislocation velocity, v [14]:

Fd =7 v, (29)

sin o
where the geometric factor arrives from the length of the dislocation and 7, the drag
coefficient, is a geometrically scaled viscosity:

_ b’

= . 30
47[)’% (30)

v
The strain rate associated with the motion of the screw dislocations is given by

the Orowan equation:

de

dr = PserewD €OS 00V, (31)

where pgcrew 1S the number of mobile screw dislocations per unit area of the film.
The velocity v is found from the force balance
Fpp = F+ Fy, (32)

and inserted into eq. (31). This equation is integrated to give the time-dependent
strain produced by the dislocations:

t
WFﬂMP—Md—ﬁ} (33)
where the asymptotic strain is
Einf = &0 ! b K (34)

— n — .
8n(l4+v)h cosoa ry
and the time constant is

()
T=—s> - .
Eb” cos? o Sin o pyyreyy

(35)

Since the length, L, of edge dislocation deposited at the interface is proportional
to the strain produced, its time dependence is the same as that of eq. (33), or

L(t) = Lins [1 — exp(— %)], (36)

where L, is the asymptotic length of the misfit dislocation.

In Fig. 11(c), the data of Fig. 11(a) are replotted to test the above result. By using
a common origin and by normalizing the length to the asymptotic value, all the data
can be collapsed onto a master curve. A fit of eq. (36) to this curve gives the time
constant T = 1304+40s. This value can be used in eq. (35) to calculate the elastic
modulus. The viscosity of the fluid is known [40], n = 0.003 Pas, a typical value for
simple fluids. The density of mobile screw dislocations was determined by counting
the number of dislocations that was expanding, multiplying by two, and dividing
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by the area of observation. This gave pgcrew = 3 X 1074 urnfz. With these values,
eq. (35) yields E = 0.3 Pa, consistent with other measurements of the stiffness of
colloidal crystals.

Note that the critical thickness [eq. (20)] and the standoff distance [eq. (25)]
depend on the ratio of two moduli, E/u. The time constant for the spreading
[eq. (35)], however, depends only on one modulus, which can be determined by
knowledge of the viscosity of the fluid.

7. Nucleation of dislocations
7.1. Indentation experiment

Fig. 12 shows an experiment [31], analogous to nanoindentation of atomic crystals,
in which an indenter is driven into a colloidal single crystal, grown on a (100)
template, to observe the resulting dislocation dynamics by both confocal and laser
diffraction microscopies. The indenter is simply a commercial sewing needle, which
is produced with a hemispherical tip with a diameter of 40 um. The ratio of the tip
and particle radii is similar to that in nanoindentation experiments. The needle is
attached to a piezoelectric drive and is moved at a rate of 3.4 um/h.

The strain fields of the dislocations in Fig. 12 are revealed as dark images on a
bright background in laser diffraction microscopy, as discussed in Section 4.2.
Fig. 12(b) shows two fluctuations: they appear at 160 min and disappear at 220 min.
Fig. 12(c) shows a dislocation loop that nucleates near the needle and eventually
becomes detached from it [Fig. 12(d)]. The final configuration structure [Fig. 12(e)]
is quite complex and needs to be analyzed on the particle scale.

Fig. 13 shows confocal images of the dislocations on the particle scale. As
expected in a hard-sphere crystal, the defects that nucleate are stacking faults on
{111} planes, each bounded by a Shockley partial dislocation. The fluctuations
that lead up to the nucleation of the defect can be observed directly: the defect in
Figs 13(b) and 13(e) disappears after about 5min, and four more of these
fluctuations are observed before the nucleation is successful and grows into a large
dislocation loop [Figs 13(c and d) and 13(f and g)].

Fig. 13(i) shows the size of a subcritical (r~5um) and a supercritical (r~7 um)
dislocation loop. The critical radius for this loop is therefore r.~ 6 pm.

7.2. Strain distribution

The strain in the crystal that results from the deformation can be calculated by a
method [36] similar to that of Section 5, by minimizing the quantity > ,(d,—aD;)%,
where d; are vectors between a particle and its 12 nearest neighbors, D; are these
vectors in the perfect fcc lattice, and a is the optimal affine transformation tensor.
The local strain tensor ¢ is the symmetric part of a. This tensor can be transformed
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a Sewing

Colloidal Crystal

1230 min

Fig. 12. Laser diffraction images of dislocations generated during indentation of a colloidal crystal with a

sewing needle at 3.4 pm/h. (a) Schematic drawing of the indentation geometry. The line of sight makes a

36° angle with the template and corresponds to a {111) direction of the crystal. The dark regions

indicated by arrows in (b) appeared at 160min and persisted till 200 min. The arrows in (c) and

(d) indicate a dislocation loop that became detached from the needle. (e) Final dislocation structure.
From Schall et al. [31].

to a new coordinate system to give the resolved shear strains on a particular slip
plane and along a particular direction.

Figs 14(a) and 14(b) show the resolved shear distribution during one of the
subcritical fluctuations. The highest strain occurs 10 um below the tip of the indenter.
This value corresponds to about 0.8 times the contact radius of the needle at that
stage, which is the location of maximum shear strain predicted by continuum theory
[41,42]. A similar observation has been made in the indentation of a two-dimensional
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Fig. 13. Nucleation of dislocations in a colloidal crystal under a needle indenter, observed on the particle
level by confocal microscopy. (a) Schematic diagram of the position of the needle with respect to the
crystal imaged in (b)—(i). The x, y, and z-axes are, respectively, along the [110], [110], and [00 1]
directions of the fcc lattice. (b-d) Confocal images of the defects, taken in a plane perpendicular to and
15 pm below the indenter. The defect indicated in (b) disappeared after a number of minutes. The defect
indicated in (c) grew to that in (d). (e-g) Reconstructed images of the defects observed in (b)—(d).
The particles are represented as in Fig. 5, which is the same as (g), with the position of the indenter
marked as well. The dashed lines indicate the plane of the images. The arrows indicate the Shockley
partials that bound a stacking fault on the (1 11) plane. (h) Reconstructed image of a second stacking
fault, which nucleated on the intersecting (1 1 1) plane at r = 154 min. (i) Traces of the dislocation lines
that bound the stacking faults of (e)—(g). The lightest dots correspond to the subcritical defect in (e). The
darker dots correspond to the two positions of the dislocation in (f) and (g) that nucleated successfully.
These positions were determined from stacks of raw confocal images, such as those in (b)-(d).
From Schall et al. [31].

bubble raft [43]. The shape of the region of highest strain in Fig. 14(a) has two lobes,
and resembles that observed with the laser diffraction microscope in Fig. 12(b).
Nucleation of the dislocations occurs entirely in this region.

After the dislocation nucleates, the strain distribution changes drastically. As
Fig. 14(c) shows, the passage of the dislocation adds a negative strain, which makes
nucleation of a second dislocation of this type unlikely until the indenter has
produced more strain. On the intersecting glide plane, however, the resolved shear
strain remains high [Fig. 14(d)], which can lead to the nucleation of a different
dislocation loop, such as the one in Fig. 13(h).
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Fig. 14. Strain distribution during dislocation nucleation under an indenter. The grayscale indicates the
level of the local resolved shear strain, y = 2¢;, the sign of which is indicated by the arrows. In (a)—(c), the
resolved shear stress is on the (11 1) plane along the [1 1 2] direction; in (d)itis on the (1 11) plane in the
[112] direction. (a) and (b) correspond to a subcritical fluctuation at r = 91 min. (a) x—z plane (vertical),
centered below the indenter tip at y = 29 pm. (b) y—z plane (horizontal), located 10 um below the needle
at z =10pum. (c) and (d) correspond to a just-nucleated dislocation loop at r = 119 min; both are y-z
planes (vertical) at x = 33 um, which intersect the loop diametrically. (e) Plot of the resolved shear strain
along the dashed line at z = 23 pm in (c), for all particles within 1.6 um of the line. From Schall et al. [31].

The distribution of the negative strain induced by the dislocation shown in
Fig. 14(c) allows the dislocation line to be located with some precision. Fig. 14(e) is
a plot of this strain along a line through the strain minima. The strain diverges
on both sides of the dislocation and passes through zero at the dislocation core. The
intersections are at y = 7um and y = 45 pm, exactly where the cores are located
according to the confocal measurements of Fig. 13(i).
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7.3. Nucleation kinetics

The energy required to create a dislocation shear loop of radius r is

2
VLN
Utoop = A {m (b) n B}, (37)
where A = 5/4 is a constant that accounts for the mixed edge-screw character of the
loop and B = 1.4 [39]. The slip of the area inside the loop by the Burgers vector b
allows the local shear stress t that was present prior to nucleation to do work in the
amount

W = nr’br. (38)

The total energy to be overcome in the nucleation process, U = Uoop—W, has a
maximum, U, at the critical radius

Al v
= ob[n(%) + B+ 1], 39
re= g . niy )t B+ (39)
where the local elastic strain is introduced as y = 7/u. Insertion of experimental
value of the critical radius, r. = 6 pm, in this equation gives y = 0.065, in agreement
with the average value of the high-strain region in Fig. 14(d). This corresponding
value of the critical energy is

=4 (5)[m) +5-1). (o)

which for the experimental critical radius gives a value of 4.5. The value of U, can
also be derived from the nucleation frequency

1= fomex (- %) (1)

where m is the number of particles in the high-stress region where the nucleation
can occur, and f; is the frequency with which the particles attempt the transforma-
tion. From the observed time between fluctuations the nucleation frequency is
estimated at J =2 x 107*s™!. The attempt frequency can be estimated from the
time it takes a particle to move from the center to the edge of its free volume cage,
estimated at 0 = 0.08 pm. The time needed for a sphere of radius a to move
diffusively over this distance through a viscous medium is [44]:

mmad®
T=—,
kgT

where 7 =3 x107>Pa is the viscosity of the medium. This gives t~0.01s or
fo~100s~". The number of particles in the high-stress region is estimated, from
Fig. 14(d), to be those in a cube of five particles on a side, or m = 125. This gives
from eq. (41), U. = 16kgT. Using the value for Young’s modulus discussed in
Section 6.5, E = 0.3Pa, and a Poisson ratio v = 0.33, the shear modulus can be
estimated as u = E/[2(14v)] = 0.11Pa, which gives UJub® =0.7. Given the

(42)
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simplicity of both the nucleation theory and the estimation of the parameters, close
agreement with the theory would fortuitous. The most important uncertainties that
could account for factor of 6 discrepancy are the precise value of the shear modulus
and the value of the attempt frequency.

8. Conclusions and prospects

That the classical theories and methods for observing and analyzing dislocations
in atomic crystals can be carried over to a large extent to dislocations in colloidal
crystals not only is intellectually satisfying, but also gives us confidence that these
systems can be used to study complex processes in the deformation of crystals and
glasses on a level that is otherwise hard to achieve. Indentation is such a complex
process, and only the colloids allow direct observation of the attempts and eventual
success of dislocation nucleation.

Other complex processes present themselves: the interaction of dislocations with
each other and other crystal defects. Fig. 15 shows an example of twin boundary
that can be grown on a specially designed template. Such boundaries are known to
be very effective in the strengthening of materials [45], and colloidal crystals again
offer an opportunity to observe the interaction between boundary and dislocation
(pileup, decomposition, transmission, ...) in a unique, direct fashion. Perhaps the
most complex plastic deformation is that of amorphous materials. Here, the hard-
sphere colloidal glasses allow direct observation of the local shear transformations
that govern the plastic flow of these materials. That hard spheres make such

Fig. 15. Confocal microscopy image of a layer perpendicular to the £3 boundary between two twinned
fce crystals. The crystals were created by sedimentation onto a template composed of two {110} planes
(C. Friedsam, D.A. Weitz, and F. Spaepen, unpublished data).
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effective modeling systems is because many of the local rearrangements are
governed by steric hindering, which is well modeled by the hard-sphere repulsion.
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