1 Lorentz Transformations and Lorentz Groups

1.1 Lorentz transformations
1.1.1 Introduction

Einstein’s starting point: the speed of light in all inertial systems is con-
stant. Consider the two coordinate systems O and O’ with O’ moving along
the +x axis with the speed v:

Y Ay’

<V
xV

Z 2'

Figure 1.1: The coordinate systems O and O’

TLet x =2 fort =¢ = 0. Then

y =y

Z/:Z

, T — vt

T = —— (1.1)

V1—0v%/c?

, t—vz/c
V1—v2/c?

The inverse transformation is obtained by changing the sign of v:

x4+ vt

B V1 —v2/c?
b /2 (1.2)
/e
V1—2v2/c?
Assuming that a light signal from O obeys
22 4+ y? 4 22 = AP (1.3)
we find indeed that
33/2 4 y/2 4 Z/2 — CQt/Q (14)
The speed of light is the same in O and O’.



— Recall the Michelson-Morley experiment (1887).

— Eq. (1.1) was first introduced by H. A. Lorentz (1892, 1895). Its use
in relativity is due to Einstein.

— Recall Fitzgerald (1895): lengths change! (Lorentz: mass changes).

The distance between points 1 and 2:

Az, =20 2@ =123
! ! (1.5)
At =1 — ()
In the coordinate system O:
3
D (Axy)? = (AP =0 (1.6a)
i=1
In the coordinate system O’:
3
D (Az))? - (A2 =0 (1.6b)
i=1

A coordinate transformation O < O’ obeying (1.6) is called a Lorentz
transformation.
Defining
l=ct

T4 =il = ict

we can write

Az? + Az + Az — AP =0 (1.6¢c)

Az? + Aas + Azk + Axd =0 (1.6d)
More generally one can consider the transformation

Az? + Ax3 + Azi 4 Axd = s (1.7)

The transformations with s # 0 lie outside the "light cone”.

The general linear transformation becomes!

), = ay 4 buato (1.8)

'From now on Greek indices, a, 3, ... i, v means the indices run from 1-4, while Latin
indices i, 7, . . . run from 1-3. If the same index (for example «) appears twice a summation
(3>-,) is to be understood.



1.1.2 Rotations and translations of the four-dimensional space

Theorem : For pure rotations, a, = 0, the transformation (1.8) will satisfy
(1.7) iff (if and only if )*

b;wzbua = baubau = 5#” (19)

Proof: For the the light cone, s? = 0, (1.6) =

D @)= (@)

I

"
=
3 At = S o = S -
12 1% I
doaaD = afbay? (1.10)
H I3

Inserting (1.8) on the RHS (right hand side), we get

Z(Z buaxg}))(z buﬁxg)) = Z(Z buabpﬂ)frg})x(;)
I B ®

ap
LHS Y 2(Da®

o

This must hold for all x&l), x(;) =

Z buabus = dag O
n

As z1—x3 are real and x4 is pure imaginary, all other a, and b, are real,
except aq, ba1, bao, bag, b14, bog and bgy which are pure imaginary.

1.1.3 Lorentz transformations as rotations

For a rotation through ¢ around s,

2The ¢ denotes Kronecker’s delta



Figure 1.2: Rotation through ¢

'a:'l = ] COS ¢ — x2sin ¢

a:'2 = x1 8in ¢ + T3 cos ¢

Similarly, the Lorentz transformation (1.1) becomes

;o (1.11)
Ty = T3
\ -7521 = T4
(2} = m1 cost) — z4sin
/
Ty =2
2 (1.12)
T3 = T3

2y = w1 sinv + 24 cos

Now % is imaginary, sin is imaginary and cos) is real. (For real v, set

l=ct=—ixy, z4=1l)
2} = x1 cosv — il sin
1= cosy v (1.13)
I'=—ix1siny + lcos ¢
For the origin O'(x] = ... =1 = 0) we get
xlzvt:vézglzﬁl
c c
Hence (1.13a) =
L L TN
cos Y
B =itany (1.14)
) 1 1 —ip
siny = = =
1+ cot? e V1-p2 1-p32 (1.15)
1 1 '
cosp = =

V 1+ tan?

S P



Inserting (1.15) in (1.13), we get

(x/ . T —il(—iﬁ) _ I — vt
VIR 1P
I — ot — *iﬂ?l(*iﬂ) +1 _ l*,ﬁ%l
VR Vi (1.16)
t,_t—xlv/c2
Vi

in agreement with (1.1). The invariance of ¢ yields (1.1) !

1.1.4 Addition of velocities

For two subsequent Lorentz transformations, corresponding to velocitites vy
and vy, we get

. . tan); + tan s
=1t =
) 11 + tan )y tan o

_ Bt (1.17)
L+ 5152
Here 3; = v;/c. For u = u' + v, we have
/
vty (1.18)

v 14 u'5c?

cf. eq. (1.9) in Pyykko (1975). Classically we would simply have u = v/ + v,

but with (1.18) we see that for v" — c¢,u — lfwc = c. Even if we would
have v — ¢ at the same time, we get u — 10;2?0 = ¢. The speed of light is

not exceeded.

1.1.5 Perpendicular motion

Let now O’ move in the z-direction and a body move in the y-direction:

1§

Figure 1.3: O and O, again



Consider two different times, ¢} and t,. Then the velocity in the O
frame becomes

A/ R,
/ Yy _ Yo 1 (119)

u, = =
VTAY Tty —th

With eq. (1.1) we get
Yo—U1=Y2—
ty —t1 — (w2 —x)v/2 At — Ax(v/c?) (1.20)
J1- 32 J1- 32
Ay' _ Ayy1-p2 Ay y1-p? (1.21)
At At —Ax(v/c?) At 1 — B2y /c2 ‘
11— 32
o = V1= (1.22)
Yol —wug(v/c?)

By changing the sign of v and primed/unprimed quantities, we can write

ug/ 1—32

YT TR (/)

th—t =

(1.23)

1.1.6 The relativistic mass transformation

Consider an elastic collision between two bodies having the mass m. Let
frame O have uz4 = 0 and let O’ be the centre-of-mass frame.

Small letters before impact,
Capital letters after impact

Frame 0O Frawme 0'

U
BN Uxg i—y:. i

’ {
. ” UXB Uxa UYB
Uy N w,-f . i
7 \—-!\ ’ uy(l . {f ng

l \y/’ [ . ‘\J/
/ / R s
Qé u/ <J‘“
ia—yA '—% N
A Ua

Figure 1.4: v =5 = —ul 4



From (1.22), in the c.m. coordinates,

u/ _uyB\/l_/B2

YB 1 —uppu/c? (1.24)

U;A =uyav1-— 32 (as uga = 0)

In the c.m. system ]y;Al = |y;B| =

uyB

=97 1.25
1 —uzpv/c? (1.25)

Uy A

The laws of nature have to be the same in all inertial frames. Putting
the relativistic momentum changes equal in the O frame,

2mauya = 2mpuyp (1.26)
we get

Uy A _ ma
uyp 1 —uzpv/c?

mp = ma (1.27)
Note that the two masses are allowed to be different. As

/ UypyB — U
= = = 1.28
v UzB 1 fuva/CQ ( )

vl dGv vt =0,
2 2 2
v= by f(m )22 = E [1— 1—(“””3)2]. (1.29)
Uz B UxrB UrB C
Inserting this in (1.27), and letting uya, uyp — 0,
ma ma
e = Uz B c? Uz B \2 - 1 — (%—B)Q
1—02%—3[1— 1—(0)} :
___mA (1.30)
Vi- 3
In three dimensions,
C (1.31)

p=mp—————
= V1—u2/c?

According to Einstein, The Meaning of Relativity, p. 45, H. A. Lorentz
used I’ = dp/dt with this p. F # ma.



1.1.7 Derivation of E = mc?

The kinetic energy, T, is the work done by a force, F, in accelerating a
particle to the speed u:

T—/ Fdx—/ —(mu)d:n—/ d(mu)—x
0 u=0 dt u=0 dt

u=

= / B (mdu—l—udm)u:/ B (mudu + u*dm) (1.32)
u=0 u=0

Recalling that

mo

V1—u?/c? -

m2c? — m*u? = m3c?

and differentiating

omcdm — m? - 2udu — u® - 2mdm = 0 ’ 1 2m

cdm = mudu + u*dm (1.33)

which is the integrand (1.32)! =

u=u m=m
T= / cAdm = 62/ dm = mc* — moc? (1.34)
u=0 m=mg
Equivalently,
1
T = moc? [7 — 1] (1.35)
V1—u2/c?

Denoting the total energy mc? by E,
E=mo? +T (1.36)
where moc? is the rest energy
— Classical mechanics: The energy is defined apart from a constant.

— Relativistic mechanics: This constant is mgc?.

1.1.8 Connection between T and p

From (1.35),

1% _(mee?)? (1.37)



v e (moc?)?
(T+m0c2)2

=
p = mou = mo C ]_ J— M
V1-u2/c? \/1—u2/62 (T+moc?)?
(1.37) (moc2)2 T4moc?
= mocy/1— (T+moc2)? moc?

= LT+ m,®)? — (moc2)? =

p*c? = (T +moc?)? — (moc?)* =

E? = (T +mo?)* = p*c* + m3c*
1.2 Lorentz matrices

Consider the vector

:E_,U, - (xly xT2,X3, ‘T4)
with z1 = x, 20 = y,x3 = 2, x4 = ixg = ict. Introducing
1

Gl e
_077_m

we can write the transformation (1.16) as

/ .
T = —— = y(r1 +ifxy4
iR e
xh = T9
a:g =3
t —av/c?
/ . ) . .
Ty =ict = ic—— = y(x4 — P21
: Jimg i

Using the Einstein summation notation,

/
T, = QuTy

we have
v 00is
P 0 10 0
et 0O 01 O
—iy300 ~

We observe that

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)



a. The length of the vector remains invariant:

), = YA (21 +if2s)? + 23 4 25 + V(24 — 1811)?
2172 (1= %) +a® + af + iy (1 - 5%)
—_———
1

(1.46)

= Tuly

b. The reality properties of the components are preserved: xi, 2,3
are real and x4 is imaginary.
Definition: a,, is a homogenous Lorentz transformation if
xL = Gy (1.47)

leaves x,,x, invariant and preserves the reality properties of z,.
We saw on page 3 that a,, is orthogonal,

AupGry = dux

(1.48)
Auyap) = (51/)\
its rows and columns are orthogonal.
Corollary:
deta = +1 (1.49)

Example 1: Rotations in the 3-D space are Lorentz transformations:
Ty = apT, Th=1T4 (1.50)
Here zpxj, remains invariant (rotation!).

Definition: Lorentz transformations with aq4 > 0 are called orthochronous.
Orthochronous Lorentz transformations with

deta = +1 (1.51)
are called proper Lorentz transformations

Example 2: For the particular case (1.45),

10



v 00iy3

0 10 0
det a = det 0 01 0
—iyB00 ~
100 0 10
=~[010/—iv3| 0 01]=+2+ (iv8)?
00~ —iv6 00
= (1-p)=1 (1.52)

aq4 =7y >1= ais aproper LT.

Example 3: The inversion
auy = 1 (1.53)

is an orthochronous but improper LT: agq > 0, deta = —1.

1.3 Infinitesimal Lorentz transformations
Consider the transformations
:U:J = QuuTy, Ou = Opy + €u (1.54)

where the €, are infinitesimal quantities. The orthogonality requirement
(1.48) =

(5;“/ + Euu)((su)\ + GMA) =y (155)

Writing out the above multiplication, we get:

5#115#)\ +(5w,6“)\ +6uy5u,\ + e = O
—_—— e N — N——

Sun €L Exy ~0

= €, = —€)p (1.56)

where we have assumed the product of two infinitesimals to be negligible.
The reality properties demand that

* * * 2
€ = €iky €44 = €44, €34 = —€i4, €5 = —€4k (1.57)

Hence the € matrix becomes

11



0 w3 —wo i)
—Wws3 0 w1 i/\Q

v = wy —wi 0 iXg (1.58)
—iA] —iAg —iA3 O
The vectors
w = (wi,wa,w
@ = (1, w, w5) (1.59)
A= (A1, A2, A3)
are real and infinitesimal but otherwise arbitrary.
Example 4: Let w = (w1,w2,ws), A=(0,0,0) =
1 w3 —wy 0
o —Wws3 1 w1 0
Quy = Wy —wy 1 0 (160)
0 0 0 1

This is a three-dimensional (3-D) rotation where wy,ws,ws are the rotation
angles about the three axes.

Example 5: Let w = (0,0,0), A= (A,0,0) =

1 00i\
o _|o1o00
w=1 0 010

—iA; 00 1

(1.61)

Suppose that v1/c < 1. Then, recalling (1.45), for
ajy =iyp

v/c v1 V1

~i— + O((?)?’) (1.62)

VW=l =i
P V1—0v%/c? c

Thus (1.61) is of the form (1.45), we have a translational Lorentz transfor-
mation in the z-direction.

The generators of infinitesimal Lorentz transformations are the six ma-

12



trices

0O 0 0 O 0O 0—-1 O 0 1 0 O
0O 0 1 0 0O 0 0 O -1 0 0 O
=10 0 0 2T 100 0 BT 000 0
0O 0 0 O 0O 0 0 O 0 0 O
(1.63)
0 0 0 1 0O 0 0 O 0 0 0 O
0O 0 0 O 0O 0 0 1 0O 0 0 O
M=o 00 0] M o0 0 ol M 00 01
-1 0 0 O 0-1 0 O 0 0-1 0
(1.64)
Then we can express
6;LV:£'Q+1A‘A (165)
Theorem : The commutators
[QZ‘, Qk] = Qsz — Qsz; ete. (166)
obey
[, Q] =618
[Aiy Ak] ==6iriU (1.67)
[As, Q] =iy

where the permutation symbol

+1, if ¢, k,1 all different, (ikl) even permutation
Oikt = {8 —1, if 4, k, 1 all different, (ikl) odd permutation (1.68)

0, otherwise

Proof: Explicit calculation. E.g.

0000 0100
1000 0000
=100 2B =0000]
0000 0000
0-1 0 0
1 0 0 0
[91792} = O 0 0 0 = —Qg, (123) even O
0 0 0 0

13



In a more concise form we can express (1.67) for the six generators
Is = (1,92,03, A1, Mg, A3) (1.69)

as
[, 1] = CLIL, (1.70)

where the C?, are called structure constants.

1.4 The Lorentz group

The six generators 21, 29, Q3, A1, Ao, A3 generate the proper Lorentz group,
a continuous group, whose elements are

Bs = (w1, w2, ws,iA1,1A2,1A3) (1.71)
The 3D rotations (1.60) form a subgroup. Adding the inversion
-1
—1
Apy = 1 (1.72)
1

we get the orthocronous Lorentz group. Adding to it the time inversion

1
Ay = 1 (1.73)
-1

we get the full Lorentz group (with eight generators in all).

14



2 Relativistic Fields

2.1 Definition

A wave function spanning a representation of the proper Lorentz group is
called a relativistic field. The only thing required is that

(I, 1] = CL.I, [1.70]

must hold
In other words, ¥, () is a relativistic field if it transforms according to

Uo(2') = [1+w-Q+i) - Alagyp(@) (2.1)
For pure (3D) rotations,

W) =[1+w-Q ¥(z) (2.2)
—— =

nXxXn matrix nD vector

The value of n is so far open.
On the other hand, the wave function for a particle with spin S trans-
forms under a rotation w of the coordinate axes as

(@) = 1+ 1w () (2.3)
Hence the spin angular momentum
S = —ihQ) (2.4)

for whatever 2 is chosen.
A wave equation transforming according to a given representation of the
Lorentz group describes a particle with a given spin.

2.2 Scalar fields

For one-component wave functions, the Q and A are 1 x 1 matrices. Eq.
(1.70) = ngg — Qgﬂl =0= Qg = O, cycl. Thus

Q=A=0 (2.5)
(2.1) =
¥'(a') = ¢(x) (2.6)
(24) =
S=0 (2.7)

Thus a scalar (one-component) field describes a spin-zero particle.

15



2.3 An S =1 field
Consider a four-component wave function A, transforming as
A (2) =1 +w-Q+iX- Al A (2) (2.8)

with the 4 x 4 representation in (1.63). Eq. (2.4)=

/0 1 1
4 ~1 0 —1
S=-h 3 + 1 + 0
- 0 0 0
1
= 2K? L ) =2hr%1 (2.9)
1
S(S+1)=2=5=1 (2.10)

S, = —1,0,1. This is the self-representation of the proper Lorentz group.

2.4 Two-component spinor fields

Can we find six 2 x 2 matrices, satisfying (1.67)7 Try the Pauli matrices o,
which satisfy
[0i, 0%] = 210;x107 (2.11)

An explicit representation is

o1 = (? (1)> 09 = <? _é> 03 = <(1) _(D (2.12)

Choose
Q= o (2.13)
A= :l:%g (2.14)
We can verify that (1.67) holds
1 i
[, Q] = — Z[Uiagk] = —§5ik101 = =i
1 i
[Ai, Ap] = — Z[Ui,dk] = _§5iklal = =0l (2.15)
i )
[Ai, Q] = Foi, 0] = ¢§5¢sz1 = —0;f\;, indeed.
Eq. (24) =
h
S=-ih2=o (2.16)

16



3 1
SS+1)=-=85=— (2.17)
4 2
Consider then the inversion
1
p= L [1.70]
= . .
-1
For the matrices ER1.62(1.64)
[P,Q] =0 (2.18)
{P,A} = PA+AP=0 (2.19)
Example 1:
-1
—1 1 —1
Pth = -1 —1 !
1
1 = [P, Ql] =0
1 -1 -1
hP=1_ -1 !
1 Vs
-1 1 -1
-1
PA = 1 =
1 -1 -1 (PA =0
= {P, A} =
1\ /-1 1 ! H
-1
AP = 1 =
-1 1 1

Now , for the two-component case, either @ = A or Q = —A (eq. (2.14))
and we cannot satisfy simultaneously both (2.18) and (2.19). Therefore a
two-component S = % field cannot be found.

17



2.5 Four-component spinor fields

Consider now a four-component function transforming as

(@) =1 +w-Q+iX- A(z) (2.20)
with
to
Q= ( %g>, (2.21)
i
_ (22 .
A= ( —%g) (2.22)
These 2 and A satisfy (1.67).
The corresponding angular-momentum operator
. . h a0 _ h /
1
3 1 1
2 2
_ 2 == 2.24
S 4h L | =8 5 (2.24)
1
Introduce the four new matrices
0 ic
= (—ig O> (2.25)
01
These matrices are Hermitian,
'yZL =Yy (2.27)
and their anti-commutators satisfy
{’7#7’71/} = 25uu (2.28)
Example 2:
10\° 1
01 1
{747’74} =2 10 =2 1 ) OK
01 1

18



01 0 —i 0 —i 01

10 i 0 i 0 10
b= 0i T oo 0 -1
1 0 0 0 1 0
0 i 0
0i 0 —i
= Siof T i o =0 OK
0i 0 —i

The present A and © in (2.21-2.22) can be expressed as

(=)
Il

5 (72735 371, 7172) (2.29)

[=>
Il
— N =

5 (174,727, 7374)- (2.30)
In this representation the space inversion is
P =ny. (2.31)
This ©, (2.29), commutes with P,

[P,Q] = 0. (2.32)

Example 3:

1
[P, ] = 5( Y423 —Y27374) = 0.
——
—727473
—
+72Y374

This A anticommutes with P,
{PA} =0 (2.33)

Thus the states in this representation can have a well defined parity. The
counterparts of our later Dirac matrices are

a =iy = (3 %) (2.34)
f=m= <(1) ?) (2.35)

The v, matrices obey an Algebra.
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3 Relativistic wave equations

3.1 Klein-Gordon

The Schrédinger equation
oY
ih— =H 1
ih—, 0 (3.1)

P

H= am +V (3.2)
contains first derivatives with respect to time, ¢, and second derivatives with
respect to (xyz). We now wish to handle all four coordinates (x1z9x324) on
equal footing.

The Klein-Gordon equation was introduced by Fock (1926ab), Gordon
(1926), Klein (1926-1927), Kudar (1926) and Schrédinger (1926). We wish
to satisfy

E% =2p +m2et (3.3)
(Compare with (1.40), m = my).
Taking the square root, we would get

H=\/cp?> +m?ct+V (3.4)

but the problem would be to actually take the square root.
Reorganizing, we get

(B —V)p = V& T mZcy (3.5)
Squaring (operating twice)

(E = V) = (B* = 2EV + V) = (p* + m*c")y | : 2me® (3.6)

p Lo 1 2 2 2
L E* - 2FE =0 E=
o 2 g VAVl =0] B=mc+e
2
1
[§—m + §mc2 ~ 5 (m2ct + 2emc® + €2 — 2mcV — 26V + V)] =0
2
p 1 2}
b e — U = .
[2m+———v < 2mc2(6 V) ! 37

hm (mass-velocity) of Pauli

hp, is often expressed as
4
b
8m3c2
The external electromagnetic field A,V can be included through the
minimal substitution p — p — 2A, q being the charge of the particle. For

e = le|, (3.6) becomes, for electrons,

hpm, =

(B=V)* = [(p+ ZAP +m']y (3.8)

21



[This is valid in the Gauss-cgs system of units or in atomic units. In SI, use

p—p—q4]
For a free particle, replacing

E — ih% (3.9)
and introducing the d’Alembert operator
1 92
O0=V?- == 1
\Y 292 (3.10)
2 0° 24 312,272 2 2
[—h@—mc + VY =0 | : ke
m?c?
O- 3 Jb=0 (3.11)

The equation (3.7) is good for a pionic atom, se e.g. K-C Wang et

al. PRA22(1980), 1072. It gives a wrong answer for the fine structure of

electronic atoms®.

Multiply now (3.11) from left by ¢*:

o

m02

O- 5l =0 | -

P*(Oy) — (Op*)y =0 (3.12)
Using the definition of [J
. 1 02 102 ,
VIV = 5am)Y = (V= 5aa9T]v =0 (3.13)
As
VW) = ()" = [0 — ()] (3.14)
and
PH(V2P) — p(VP*) = V - [V — (V)] (3.15)
we get the continuity equation
op .
where
_ b 0y OYY)
pl,t) = 55 (V' S = =52 0) (3.17)
ih
Jrt) = =5 (6" Ve = (Vo)) (3.18)

3The proof is left as an exercise for the reader
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reduce to the right non-relativistic limit (see e.g. Kvantkemi I, p. 20-21).
Now the p is still real, but not necessarily positive definite. Replace in (3.17)
ihg — F =

E

WWJP. Now, if E <0, p<0 (3.19)

p:

3.2 Dirac

We are searching for an equation of the form
iﬁ2¢ = Hy (3.20)
ot '

Because of the first derivative %, we would like to have first derivatives 8%
etc. as well. Note that the series expansion of the square root in

(E = V)i =mc*\/1+ p2/c2

would contain all powers of (p?/c?).
Suppose now that the Hamiltonian is linear in all % and that the wave
function ¥ has N components,

L
v = : (3.21)
(N
Then the most general free-particle wave equation is
9 N
i Uy = > leay - p+ Bumc®|¥; (3.22)
=1
where n runs from 1... N, and
. 0 0 0
Qp P = _lh[(anl)x% + (O‘nl)ya_y + (anl)za (3.23)
In terms of the N x N matrices a and 3,
0 . 2
1ha\1' = [—ihca - V + fmc*|¥ = hp¥ (3.24)
with the Dirac Hamiltonian
hp =ca-p+ Bmc? (3.25)

The D in hp stands for Dirac.
The components of « are the N x N matrices (N > 4, see below) o, oy
and a,. In order for hp to be Hermitian, o and § must be Hermitian:

ol =a, p=8 (3.26)

23



For all points in space-time to be equivalent, o and 3 must be constant
and dimensionless. Consequently they commute with r and p.
We still want to satisfy

E? = 2p® + m2

for all components ¥ ...y

2
—hQ%q: = [-h2AV2 + m2c (3.27)
Then the Dirac equation
., 0

will connect the different components while every individual component, ;,
will satisfy the Klein-Gordon (K-G) equation (3.27).

3.2.1 Why must N > 47

Starting from

Ba; = —a;8 ‘5 X
o= —B a;f (as B =1)
~ N~
A B

we see that

Tr AB = Tr BA
Tra; = —Tr (B)3 |32 =1
= —Tr (67
=0

The o; were ==1. We have the same number of both = N must be even. On
page 17 it was shown that 2 was too small = N > 4. g

3.2.2 Properties of Dirac matrices

Multiply now

0
(ihg — hp)¥ =0

from the left by the operator ih% +hp =

(—h23—2 —h3)¥ =0
oz "PIT
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in other words

82

2 _ 2.2\3 1 92
—h @\I} = [— hec Zi,j:l 5(0@'013' + ajai)@riaxj
—ihe Y0y (Bou + i) o + m2ct 2] @ (3.28)
where we have used the fact that | 8?51_, % =0.

From (3.27),

82
fh2@\ll = [-h2AV? + m2

Qo + ooy = 25”1
ﬁozi + Oliﬁ = 0 (3.29)
g1

I being the N x N unit matrix. Because « and § were Hermitian, their
eigenvalues are real. According to (3.29), the squares of these eigenvalues
equal 1. Hence the eigenvalues are £1. Dirac noticed that (3.29) is satisfied
by

8 = (I _I> (3.30)
a= @ %) (3.31)

where

(0 () () () o

3.3 Some properties of the Dirac equation
3.3.1 Solutions with +F

For a free particle,
[hp,p] =0 (3.33)

and hence the two operators have simultaneous eigenfunctions ¥(p, x):

pv =p¥
hp¥ = E(p)¥ (3.34)
Operating again with hp,
hHU = E(p)*V (3.35)
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with the solutions

hpVi = +E(p)¥y, (3.36)
E(p) = v/ c2p? +m2ct

corresponding to "electron-like” and ”positron-like” solutions, respectively.
If only one of them existed, hp would be a multiple of I, and commute with
all matrices.

As (3.29) =

{a.8} =0=
[, 8] = aB — Ba = —2Ba =
[hD,B] = —2cfa-p#0=
36 so that [hg, 0] # 0= hp #al = 3I+FE and —F

3.3.2 Inclusion of electromagnetic fields

Use again the minimal substitution =
hp = ca - (p - EA) +V + Bmc? (3.37)
= ¢

[In Gauss-cgs. In SI, use p — eA. Now e < 0.] The non-relativistic ”dia-
magnetic” term is recovered here in 2"9-order perturbation theory with in-
termediate positron-like states. Using the closure,

> b, =1 (3.38)
AE = 2mc?

we get
E® = 3" [t holv )12/ (B - By)
= AT |A ) 2me (339

the usual diamagnetic term. (Recall that 5—(p—¢A)? — the term 5- i—;AQ.)

3.3.3 Free-particle solutions

In atomic units (e = m. = h = 4wep = 1, ¢ = 137.036),
hp = cg-]g—i—cQ,B (3.40)

Using the Ansatz _
U = u(p)el™ (3.41)
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the Dirac equation hpV¥ = EV gives

—E+¢ 0 cps c(pz —ipy)] [w
0 —E+¢ clpe+ipy)  —cp- us
. =0 (342
CPz C(px - lpy) —E —¢? 0 us ( )
C(px + ipy) —CPy 0 —-E—c? Ug
This linear, homogenous equation has solutions if det [| = 0 =
(B2 =t —c*p?)?=0 (3.43)
E=4c\/(p*+ %) =+E, (3.44)
Denoting E, + ¢? by A, the spinors become (0,= the spin):
(E,02)
Uj (EZH%) (Epa_%) (_Epa%) (_Epa_%)
Uy 1 0 —cp./A —c(py —ipy) /A
U2 0 1 _C(pw + ipy)/A sz/A
U3 cpz/A c(pe —ipy) /A 1 0
ug | c(pa +ipy)/A  —cp:/A 0 1
(3.45)

The normalised spinors become

E,+c?
u(p, By) =\ S5 <c(ap> ) \/ (3.46)
Ep+02
o Up)
ulp, —Ep) =/ F5 - | & +C"’ (3.47)

where (g) is either ((1)) or ((1))

The ratio of the norms for E, > 0,

¢_§ 22 p? 1( D ¢

1 2
2o ELER . @ep - atmd il (3.48)

for small v/c. Therefore ¥ and 1, are called the large and small compo-
nents, respectively.

For electrons in light atoms, v ~ 1 a.u. and this plane-wave estimate
gives



3.3.4 Probability density

For W, satisfying
0
iha = —ihca - VU 4 Bmc?¥  |Uix

where the Hermitian conjugate

ot = (y5, 03, 0%, %)

satisfies 5
—iha\ﬂ = ihe(VE) - a +mPUT3 | x ¥

Performing the two multiplications and subtracting, we get

10
- (v (UTa®) =0
L (U10) + V- (Vaw)
Comparing with the classical continuity equation
dp
Liv.i=0
ot VL

we identify

p =010 = (ly + 9l +..)
j=cUiaw

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
(3.56)

From j = pu, the velocity operator (local velocity of the Dirac electron)

v=a

3.4 The Pauli limit

By substituting £ = mc? + ¢, the Dirac equation becomes

[ca-p+ (B—1) me® +V]T =e¥
= N——

10

In terms of the two-spinors

ca - pyo + Vi = ey
co - pY1 + (—2mc? + Vapy = etpy =

28
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co-p

mw (3.60)
—dn (3.61)

2me

Yo =

(Note that (3.60) is still exact.) Using the above approximation with 1 =
Yur, <¢1W}1> =1=

(U|W) = (Y1]ir) + (Y2]1)2)
=1+ <w21w2> p-olo-p=pi

= 1+ s W) (3.62)
Then the expectation value of hp becomes

e = (V|hp[¥) /()
= (Vea p+ (6 = L)me® + V) /(¥|¥)

= [<¢1|CQ - plb2) + (P2leo - plibr) — 2mc® (a|eo)
+ (alVin) + <w2mwz>}/ 1+ <w2|w2>]

1
- [%<¢1\P2W1> <¢1\P |th1) — 4 262 <¢1]p 1)

1
mwl\g-pwy-pwn}/mm
2
e = [l Zfun) + GV In) + gy Ginle - pV - plon)]

1
X [1 — mwl Ip?|v1) | + O(c™ ) — 1/c and higher order terms neglected
m2c

+ (Y1 VY1) +

1
=é€nr — W@bl \p2\w1><¢1 ‘pzwl>

1
Tz V) (¥ p?[¢1)
1

-4
+ i pVa - pln) + 0(c™)
(3.63)
Trick 1:
P
(% + V)d}l = enr1,
p?
Vﬂ)l = (Enr - %)'¢1 (364)
1 2
€= — g aCur (V1P|
1
+ e (ila - pVe - pln) (3.65)
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Trick 2:
00 = 10;,0% + 0ij, (3.66)
g-pVa-p=oipiVo;p;
= 10;5k0kPiV Dj + DrV Dk
= k0% [(0iV)pj + V pipj | + piVor
>

= ha - (VV x p) + prVpr (3.67)
[Note: p;p; = 0 as i and j run over all combinations (summation); p;p; —
pipi = 0]
Here

1
Ve = = [pkVor + piV k]

2
1 1
=3 (Vp® +p*V] + 5 [PV = pi(p1V)] (3.68)
where the first term becomes
1 T1 1
SV + Vo) B el — s ilptlen) (369)

and the second term becomes (0 = %)

%(7#1 |(p& V) ok — P (1 V) |01)

= %<¢1|(ka)|l?k?/)1> - %(PWH(MV)WH ’pk = —ihdy
hQ
- _E[ / Vi (OV) (D) + / (1) (OkV )11
2
=S wowe)* - [@wn@wiv - [viavie
+ [ @@y}
= SRV (o) =0 (370

Assembling the pieces in (3.65), (3.67), (3.69) and (3.70):
1 2
€ = &nr — W 5nr<wl‘p ‘w1>
1
[(Wilha - (VV x plun)

+4m2c2
(t1|p*[1b1)

1
+enr (Y1 |p°91) — m
SRV )

= Enr + <hm + hSO + hd> + O(C_4> (371)
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1 .

(hm) = Ty (¥1]p*en) (mass-velocity)

_h

4m2c?

h2

ha) = ——

(ha) 8m?2c?
Returning to (3.65), in terms of 1o,

E=enr — Enr + (1/J2|VW2) (373)

For the Coulomb potential of a point charge Z,

1
—)=4nZi(r) = (3.74)
r ~—~—

3-D d-func

(hso) = (o - (VV x p)l) (spin-orbit) (3.72)

(1| V2V ]ghr) (Darwin)

ViV = —ZV%(

h2
(ha) = < (1] (47 2)6(0) )

Th?Z
= WWI(O)\Q (3.75)

Example 1: For the 1s state of a hydrogenic atom, in a.u.,

73
s = V —e_er
s

(p—T
= 5 (B V)
. [ ]

1
— _4z4 —27r d — _4z4 * — 2
/0 e rdr = ( )(2Z)2 ,

2 0!

V%) = 423/ 2 (2) e =428 = 22
(V) = + ; e o) rdr 57 ,
1.l 5
() = =55 24§~ 14 2)= ~ 52

(hso) =0
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Summing up,
zt, 5 4 z4
Eiel = (hyy + hyq) = ?(—— +-o)=—— (3.76)

3.5 Central fields

We now return to the full Dirac equation with a local potential V' (r) = V().
As

[L, hD] = dcaxp#0 (3.77)
[g, hD] = —lcaxp#0 (3.78)

neither [ or s can have simultaneous eigenstates with Ap but their sum
J=1l+s (3.79)

can because
[j,hp] =0 (3.80)

Details:

l=r
L8] =0, [LV]=0, [La-p|#0

Consider the component [:

(1, - p| = o [l1, p1] +aa(ly, po] + as[ly, p3]
0

o~
I

I~
X

s
I
A

=l = —i(y0, — 20y)

S B
@Q.’QQ o
Qe ow

8

[, p2] = (=1)°[y0: — 20y, 9y
0? 0? 0? 0?
- _<y8y8z _28—y2 — 0 _yayﬁz +Z6—y2>

0 i l. =
= — =1ips, cycl.
92 3, CY

[l1,a - p| = aoipz — agip2 = i(a x p)1, cycl. =
la-pl=iaxp g
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Similarly for [o, « - p] (=with spin),

ol = <(61 091) (g(')zz g5£> B <Q(-]£ g5£> <%1 fﬁ)

As [o1, 09] = 2i03, cycl.,

01,0 -p] = o1(01p1 + o2p2 + 03p3)
—(o1p1 + 02p2 + 03p3)01
= p1+0102p2 + 0103p3
—P1 — 0201p2 — 0301P3
= [o1,02] p2 — |03, 01] p3
2io3 2io2
= 2i[o3p2 — 02p3] = 2i(p203 — p302)
= 2i(p x g), cycl. =
lo,a-pl =2ipxa=-2iaxp g

Define
= (3.79)

As a further detail, consider the operator
K=Vo-l+1)p
We shall show that

[K,j] =0
[K,hp] =0

In other words, K, hp, 12 and j, can have simultaneous eigenstates.

Theorem a:

(3.81)

For two vectors A and B which commute with ¢ but not necessarily with

each other,
(¢-A)(e-B)=A-B+ig-(Ax B)
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Proof:

The o matrices simultaneously satisfy

(03, 0k) = 040 — 030 = 26110,
{oi, 01} = oio) + o0y = 20

=1 (i = k)

P =

oo = i0ipo; (i # k)

= AE—{—Z 0i0; (AZB] —AjBi)
—_——

g 10510k (AxB)y,

= A-B+ic-AxB

The equation holds for both two- and four-component o

Theorem b:

Proof:

(a-A)(a-B)=(a-A)(c- B)

oA 0 o-B\ [(c-Aoc-B 0
0 c-B 0 ) 0 cg-Ac
=(¢* A)(c* B) o

o* denotes a four dimensional o.

Theorem c:

where

(@-A)(a-B)=—yA-B+ia-(AxB),

Y5 = Y1727374-
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Proof:
We use the representation

1 0
V5 = BZ(O_1>

Then, recalling that i* = —i,
_ 0 —oy 0 —oo 0 —o3\ (1 O
=" 0 ) e 0 o3 0 ) \0 -1
. <—O’10’2 0 > <O 0'3>
= —i
—0109 g3 0

0

0 010203 ’ .
01092 — 103

010203 0

_ ((1’ (1)> (3.92)

Then
_ 01 0o _ g0 4
Be="\10)\c0o)” o) T 7%
(3.93)
a__()g 01 __g() 4
V5 = g0 10) 0o =g,
4_ 01 g0 _ 0c _
B ="1o0)\oeg) " \co) ¢
(3.94)
L a0 01 . 0o o
B ="\og)\10) 7 \go) ™ ¢
Multiplying Theorem a, (3.85), from left by —vs:
(—vs¢*A)(e-B) = —5A-B+i(—5¢*) - Ax B o
~—— N——
Theorem d:
Because
l:ZXB (J-I_j)7
p-l=1-p=0. (3.95)
Furthermore,
Ixp+pxl=2ip (3.96)



Proof:

(L X B'i‘B X Dz = [lyapz] - [lzwpy]
0 g, 0 0., 0 0
- _[(Z% - x&)(&) - (5)(2% - x&)]
0 J.,0 0 0 0
+[(l’a—y - y%)(a—y) - (8_y)(x8_y - y%)]
= 5o T 5y = Hpay cyelg

Then the anticommutator

{o-Lap} = (¢ Da-p+(a-pla-l)
B illep+peL+ia - (L x p+px D)
~ =~ —
=0 =0 2ip
= —2a-p (3.97)
Theorem e:
[K,a-p]=[Bo-La p]+[3a-p
Because
_Qﬁ = ﬁg7
—a-ppo-l=pBa-po-l=
[K,a-p] = f{o-l,a p}+28a-p=0 (3.98)
———
—2a-p
Theorem f:
As
[8,8]=0, [K,8]=0. (3.99)
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Theorem e+f =
[K,hp] =0 (3.100)

It remains to show that [K, j] = 0.

Theorem g:
From theorem a, (3.85), taking B as an arbitrary vector, commuting

with A,
(c-A)g=A+ioc x A, (3.101)

where we used
c-AxB=gx A-B.

Similarly, letting A be arbitrary,
o(c-B)=B+iB x 0. (3.102)
Letting then A = B = [ and subtracting (3.101)-(3.102),

lc-lo] =icxl—-ilxo
= 2o x| (3.103)

Theorem h:
Let A commute with [. Then

3 3
[A-L1 =Y [Adilydy — i Aili)
i=1 j=1
=Y Ay (Ll — 1li]
i\j —
’ 0ijkilk=—185;lk

= —iA x| (3.104)

Letting A = o,
[o-1,1] =—ig x1 (3.105)

Theorem i:
The desired commutator (note: [K, ] = 0)

[Kal] - [5Q'LL+ Q]

o N

= B(—io x ) + 50ie x ) =0 0 (3.106)
Summarizing,
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K, j] = [K,hp] = [j,hp] =0 (3.107)

Denote the eigenvalues of K by —x:
KX = —rx), (3.108)
where the o (in K) are 2-component ones, and the 2-component spinors
Xt = |lsjm) (3.109)
The quantum number x carries both j and I:

1
—l—1, j=1+5 (state’l)
K = 2 ) (3.110)

1
l, j=101- 3 (state 'I*” or D).

The lowest values are

k = -1 1 -2 2 -3 3 -4
S1/2 P2 P32 dz2 dspp fsp2 frp - (3.111)
s p* p a4 o f
From
J=1l+s,
=042 545 =
1
l-s= 5[12 — 12— 57 (3.112)
Consequently
K=o-1+1

12 224
Kx"'=Kllsjm)=[jG+1)—1(l+1)—s(s+1)+1]x7"
——

=[G+ )~ 10+ DI

_ m
= KXk >

whence

m:l(l+1)—(j+%)2, (3.113)

as can be verified from Table (3.111).
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For the 4-component case we introduce the Ansatz

ver= ()= (one) = Hlaone,) o

for which, indeed

Ko™ = (g.LOJr 1 . -OL— 1) Ci;) — (3.115)

This V¥ is an eigenfunction to hp, K, 12 and j,.

3.5.1 The radial Part

From
Ax (BxC) = (A-C)B—(A-B)C,
(A-B)C=(A-C)B—Ax (Bx(C), (3.116)
with
A=B=i=(ijk), C=V,
V==8frV)—7fx(#xV)
.0 e
= €TE — 1? X L (3117)

Here é, is the unit vector along the radius (and [ = r x p). Consequently
the kinetic energy term

1
Q'Q:—IQT% ;g-fxé. (3.118)
Denoting
c=oct= a0
and using
a-Aa-B=A-B+ic-AxB 3.88-3.89]
for A=7and B =1,
a- ) a-l)=7-1+og -7 xl 3.119
(__)(__);_67___ (3.119)

(-1 =0 as the angular momentum has no radial components.) Multiplying
by ivs and recalling that o = —v50,

iysar(a-l) = —vs0-r x1
isor(a-l) =a-rxL (3.120)



. 1.
= 1750, - ;1’)/50-7‘(Q : D

12
S

or
=i 0[2——0 ] (3.121)
= ol T e '
Thus the Dirac Hamiltonian
hp = ca - p+ Bme® + V(r)

0 1
= icys0y [E - 4 + Bmc* +V (r). (3.122)

with

=08K —1, (3.123)

hp = icysoy % +1- BK } + pme + V(r) (3.124)

Theorem a:
o2 =1 (3.125)

(like in the cartesian case, 02 = 1)
Proof:

Z azx—I—ayy—l—az z)

A

0 = fraclr? Z 1295 +inxj (oicj+oj0i)| =1 0
—_—

i>j ~
Theorem b:
{K 0/} =0 (3.126)
Proof:
K=p(c-1+1)
[B,a-1]=0
[ﬂa UT] =0



(3.85) =

(c-D(a-

(c-7)(c-

==
1
1= 1~
l~ =
+ +
SES)
=N
<>
—
I

{K,o.} ={B(c-1+1),0-7}
=fic-(IX7F+7x1)+280 -7
2ir

Theorem c:

O'TXZL = _XTKL (3127)

Proof:
K(orxi') = —or(KX)
= k(orXy) (3.128)
Thus the eigenvalue of o, X' is x, while
Kx' = —kxy [3.108]

whence

O-TXZL = _XTK; D

Recalling now that

01 1 0
(3.124) becomes

. 01 O 1 1/1 0\ 4\ /1 0\
llc(—) <1 0> o (E—F;—; (0 _1> K )—i—(o _1> mc’+V—F

where K* denotes the four-dimensional K-operator. Recalling

af 9xe \ _, yf 9Xx
i) =)

41
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. (01 9  IN( 9xx 1 9gx«
- <1 0) o [(E ) <if><—n) G <if><—n)]

2 9Xk 9Xk
+”“:(—dfx_n)*'“/_‘E)<ux>ﬁ>

Then operate with o, using (3.127):

(Y[ )1 0)

2 9Xk 99Xk .
e <_ian> TV -F) (ifx)

. 0 1 ifXK ic if/{XK
() (o) =5 (Lo )
o 9Xk gxe \
me (—ux;%)'+<v__E>(ux>n)"0

For the two components

ic(% + (1{$}/€)%> (;JZ’Z) + [{i}mCQ +V - E] <iﬁ§;> =0

Dividing by the angular part and i we get

—c<a +1_R)f—|—(mc2+V—E)g =0

ot
0 1+k 9 B
C(E—i_ " )g—i—(—mc +V-E)f =0
Introducing
P=rg
{erf’
P _ g (dg_1ap P
dr Tdr:> dr  rdr r2
iQ_, 174 _1de g
dr d dr  rdr 12
1,dQ  Q Q —V\P
(G- T =)+ (pmer ==) 7 =0
1,dP P P —E\Q
(G raenT) s (pmes )5 =0

(3.129)

(3.130)

(3.131)

(3.132)

(3.133)



gt (e R o=
i—Q—ﬁQ+(—mc+E_V>P:0
r r c

3.5.2 Non-relativistic limit

Let the potential |V | < E ~ mc?. For the E > 0 states

V-E
—mc + ~ —2mc =
1 ,dP P
Q=5 (g )=
@ _ 1

_——F’EP—EQ
dr 2mece ( + r r2

Denoting E = mc? + ¢, for bound states € < 0,

1W+5P—%P—fx(ﬂ+m£)
T T T T
24 v
-+@m@(—mc+ﬁfé%i——)P:o.

1
P//_H(L:)P—i—Qm(g—V)P:O.
r

-1—1 (=l —=1)(=1)
m:{ :>/<o(/<c+1):{ 0+ 1) =1l(l+1)

I(1+1)

P// o
7"2

P+2m(e— V)P =0,

the usual non-relativistic equation.

3.6 The Dirac-Coulomb Problem
(Darwin 1928, Gordon 1928). Consider

Z
v=-2

r

For normalized bound states

/OO r2dr(f? 4 ¢*) = /OO dr(P2+Q* =1

0 0
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(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)



(3.134) =

dP P Z1 E
—+Khk—+|-mc———— Q=0

dr r cr ¢ (3.142)
d Z1 E ’
—Q—Hg—i—(—mc—i-—— —)P:O

r r cr ¢

d

So far A = 1. Let now m = ¢ = 1, as well. Then the unit charge
e =a = 1/137.036. Furthermore denote

A=+ -E? (3.143)
xr = 2\r (3.144)

and introduce the new functions ¢; and ¢s for which

Q=V1-Ee (¢ — ) ‘
Then
% =Vi+Ee™ [—/\@51 + ¢2) + % + %}
@*\/ﬁe‘”[—x(qﬁ _¢)+%_%} (3.146)
dr ! 2 dr dr

Straightforward algebra on Eq. (3.142) gives:

d d
VITE eV [-M(@1 +2) + ok 4 2] =

_ §\/1 T Ee (¢ + do) + [E n % n 1} VIZEe ™M (61 — bo)

Dividing the top equation by v/1 + Ee~*" and the bottom one by /1 — Ee™*"
and noting that % = 2)\8% we get

—A(¢1+¢2)+2)\<%+%) =
A —
—§(¢1 + ¢2) + [E+ % + 1}\/ %@1 — $2)
d d
(1)
K 2\Z 1+ F
\ ;(¢1—¢2)— [E+7—1}\/ﬁ(¢1+¢2)
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Dividing now by 2\, gives

207

B + & :%(qﬁ + ¢2) — g(¢l + ¢2)

1 1-F

(61 — ¢2)

+ B+ =241

2¢/(1

TE(1-E)V1+E

1
P — ¢ :§(¢1 — ¢2) + g(¢1 — ¢2)

207 1 1+ F
- [B+== 1] N +
( [ x 2/(1+E)(1- E) gt
Now, remembering the definition of A, (3.143), the above can be reorganized
to
1 & FE4+2Z41
/ e 4=z -
¢1+¢2_¢1[2 T 20+ B
1 E+2Z 4
_|_¢2|:__E_—‘T}
2 =z 2(1+ E)
1 x E+2Z_
Il — 42—z -
1~ 92 ¢1[2+x 21— E)
E+ 2z _
_|_¢2|:___E_—95
2 2(1 - E)
Writing down the sum and difference of the above { (sum at top, difference
at bottom):
( oAZ\1/ 1 1 1/ 1 1
204 =01+ (P+ —2)5 (55— 17=5) T35 o5)
or=er| 1+ (EF+ o\ive 1-8/2\ixe " 1-E
+ o 2/1+(E+2)\Z>—1< 1 4 1 ) 1( 1 1
2 v /) 2\1+E 1-E) 2\1+E 1-
2K 2072\ 1 1 1 1 1 1
o[ 2+ (22 L L)+ s )
& ¢1[ : T\t )ty ToE) TRty E T
2072\ 1 1 1 1 1 1
(2 ) e )
+ 92 * 2\ixE 1-B) 2\ixE "1-F
(3.147)
As
1 1 —2E  —2E
1+E 1-E 1-E2 X2
AR (3.148)
I+E 1-EFE 1-E2 )%’
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/

20} =¢1 1+(E+2)\TZ)<# +—

(3.149)

(3.150)
¢y = ¢1 [—— +—

Introducing the series

m=0 (3.151)

m=0 (3.152)

The coefficients for every power, 277~! must vanish for the expansion to
be true:

am('}’ + m) = Om—1 — O‘m? - ﬁm(/’i + %)
7 7B (3.153)
B+ ) = m (= + ) + B

If -1 is known, these equations gives (ayy, Bm) For m = 0 (a1 = 0 is

assumed),
=l 28) (1
YBo = a (-Fd + %) + ﬂo%-

(3.154)
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This linear, homogenous pair has solutions if

v+ ZEIN K+ Z/\
kK—Z/XN v—ZE/X

(5 () o

=0

A A
N2
’YQ—F(X) (1—E2)—H2:0
,)/2 —k2_ 72
It turn out that
7:+,//{2_Z2

is the acceptable solution and

N =—K2— 72

(3.155)

(3.156)

(3.157)

the irregular one (which can’t be normalized). Recall that Z included the

proton charge e, = o = 1/137.036. For integer Z’,
v =+VK2— (aZ')?
The Eq. (3.153b) =

Bm K+ Z/A k= Z/A
am mA+y—ZE/N  n'—m

Y

In terms of a new quantity

A substitution to (3.153a) gives

= Qm-1

7+m+¥+(ﬁ+§)“7—z/)\

n —m

Qm
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(3.158)

(3.159)

(3.160)

(3.161)



Here

’y+m+Z—E+<H+§)H_Z/)\

A A/ —m
ZE  Kk?—(Z/)\)?
=y +my T
A n' —m
1 ZE ZE\ | )
= |t ) (rmme )+ R -2
_ 1 —<72 +2'ym—i—m2> + (ZEJN)? + K? — (Z/))?
n' —m
1 E* -1
=— —K24+ 2% —2ym —m? + k2 + 72 5
n' —m A
i =1
2
n' —m
o —__mom (3.162)
T m(2y +m) m-l '
n—m)...(n —1
= ()
ml(2y+m)...(2y+1)
1-n)2-n")... -’
_d=m)@-n). . (m=n) - (3.163)
m!(2y+1)...(2y+m)
(3.159) =
B K= Z/A
ay  n—m N
,Bmfl_ K*Z/)\
a1 N —m+1
B ' —m+1 ay
Bt W —m amo
(W —=m+1)...(n)
= (o)™ : 3.164
h (=) m!(2’y+1)...(2'y+m)ﬁ0 ( )
(3.154b) =
Z ZFE
co(=w+3) =m(r-F) =

ay y—ZE/X n’
— = = ) 3.165
Bo —k+Z/N K—Z/X ( )
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Comparing the coefficients (3.163)-(3.164) with those of a confluent hyper-
geometrical function,

1 2
1F1(a;c;m):1+gm+mx—+"' ) (3.166)
c c

(c+1) 2!

¢1 = gz 1 F1(1—n';2y+1;2)

¢2 = Poa”1 F1(—n';2y + 1) (3.167)
k—Z/A
/

agz 1y (—n; 27y + 1; ).
For z — o0, 1 Fi(a;c; ) — e because

/
- 1
lim %M — i (3.168)
M—00 QU1 m—00 m(2’7 + m) m

Therefore the series must terminate, That happens for ¢o with
n' =0,1,2,... (3.169)

(n’ = 0 is the ground state, n’ = 1 the 15 excited state, etc.) Thus n’ is the
number of nodes in ¢y (or in g)
For n'1 = 0, the coefficients of ¢; have

(I=n)...(m—n)
m!(2y+1)...(2yv+m)
1
m!(2y+1)...(2y+m)

Oy = ap

o,

which converges.
Introduce the principal quantum number

n=n'+ |kl (3.170)
Then the definition of n/, (3.160), gives

- :n/_i_ﬂy

22 (1 o E2)Z(2n/+,y)2 .
(n’+7)2} (n' +7)?

}_1/2 (3.171)

2
Fux = 1+ G
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The k occurs only in v = VK% — Z2, +|k| and —|k| are degenerate for
the same n! For instance for n = 2,

E251/2 = E2p1/2 < E2p3/2. (3.172)
(Note though that with QED accounted for Eog, 2 > Eap, /2!) An expansion
in powers of Z? gives (we still have ¢ = 1)
1z2 74 { 3 1
2n2  n3l8n  2lk|

Enk —1=¢px=— } + O(ZG) (3173)

Qualitative conclusions:

a. Largest stabilization for |k| = 1.
b. States with same [ (and n) but different j are spin-orbit split.

c. For |s| = 1, both f and g diverge at the origin like r7~!. They remain
normalized. The isomer or isotope shifts, proportional to p(0), grow
by a factor of 13 for U.

d. The radial density, P? + @2, has no nodes.

e. The radial electron density suffers a relativistic contraction.

=

Normalization is no problem

Continuum, also positron-like can be solved.

Fom

Integrals, properties, solvable.

e

Literature: See Table 2.3 of RTAM I-IIT (1986, 1993, 2000)

3.7 Virial theorems

Literature: See RTAM I-III, Table 2.5.
Fock (1930b), Gupta (1932), Rose & Welton (1952), March (1953), Kim
(1967), McKinley (1971), M. Brack (1983).

3.7.1 Non-relativistic case

Let
7,/
r—r'=M |r= Y (3.174)
H=T+V = —%V2—|—Cr”
1

A2 f§v’2) + oA ) (3.175)
E(\) = M(T) + X7™(V) (3.176)

aE —n—1 o
> = [2)\<T> — A (V)]A:1 ~0 (3.177)
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2(Ty =n(V) | Coulomb: n =1

Because F(\) has to be a minimum at A = 1,

aQE —n—2
(W)Azl - [2<T> +nln+ 1)\ <v>L:1 >0
=
n(Vy+nn+1)(V)y >0, (V)<O0
24+ n)n(V) >0
—2<n<0
3.7.2 Dirac
hp® = Ed
hp = ca - QOﬁmc2 +V(r),
V(r)=Cr"

Bound states considered:

_[9a _ _
. ( ¢B), 0l6) = 1, (Al4) + (BB) =1

Again, let r — 7/ = Ar, dr — A\~ 1dr’.

®(r) — A20(r)
hp — cha - p+ Bmc® + X"V (r).

(@'|ca - p|®') = X\(P|ca - p|P)
(®'|Bmc®|®") = mc*(Na — Np)
(@')r7"|®") = ATH(@|r " |P)

E(\) = Mea - p) + A™(V) + mc*(Na — Np)

For n = —1,

(3.178)

(3.179)

(3.180)

(3.181)
(3.182)
(3.183)

(3.184)

(3.185)
(3.186)

(3.187)

(3.188)

(3.189)

(3.190)



2
(55)a =

(V)<0=nn+1)<0=
-1< n <0.

[n(n+ DA 2V)],_, >0

Forn = —1,
E = (T)+ (V) +mc*(Na — Np)
E = mc*(Ny — Np).

E = me(3)

0 0-025 0050 5075 TI00
rw

Figure 1.

)

Figure 4.

(3.191)

(3.192)

(3.193)

(3.194)

Figure 3.1: Radial electron densities for the 1s, 2s, 2p and 3s states in
a hydrogen-like atom with Z = 80. The dotted curve denotes the non-
relativistic density and the solid curve the relativistic density. Reproduced
with permission from V.M. Burke and I.P. Grant, Proc. Phys. Soc. (London)
90 (1967) 297-314.

From Figure (3.1) it is seen that the relativistic contraction is of the

52

order for the states 1s, 2s, 2p; /o and 3p, whereas the contraction of 2p3; is
considerably lesser. The figures 2 and 4 (inside (3.1)) show that 2s and 3s
are procentually contracted as much as 1s is. The same conclusion can be
drawn for all s-electrons up to the valence shell in a many-electron atom.
The p-shells also contract in the same way, but not as much.



4 Dirac-Fock

4.1 The energy-expression

Subtracting the rest energy mc? from E, the one-electron Dirac Hamiltonian

Z
hi = ca; - p, +mc*(B; — I) — — (4.1)

and the Dirac-Fock Hamiltonian

H=Y hi+> r (42)

1<j
The total wave function is the Slater determinant
U = (N 2hy (1)eha(2) ... 9hn (V)] (4.3)

where the one-electron wave functions

_ r_ann (T)Xmm(197 b, U)
Yiuwm = (irlczw)x%w, " a)) (44

Then the total energy

E = (U|H|")
1 1
= ;Wﬂh’%) + ; {WW;‘!EWWﬁ - <wz‘¢j’@‘¢j¢i>
=D L+ ) [~ Ky, (4.5)
: i<j

in terms of the one-electron integrals I, Coulomb integrals J and exchange
integrals K.

Eq. (3.129) =
I = (ip|h]a)
= ((9Xr> =1 X—r|X
e+ L (00 ) (0 ey (2]
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e r 0 k-1
2
= d - Vv
[ rarfele(g - ) v
r 0 k+1 9
—|—f_c( ot )g—l—(—2mc +V)f]}
> (. dQ f f
= dr{ Plcl——+ = — =+ — VP
/0 T{ _C< dr+r * Q)+ }
r(dP g g 2
+Q _c(a -t —P) + (—2mc” + V)Q]}
e dP &k dQ & 9 9 99
= —+ —P) —cP|(— —— P -2 =
/0 dT{CQ<dr+r ) c (dr TQ)—FV(T‘)( +Q7) — 2mc Q 0
(4.6)
P , 1, P 1dP 1
- —p - _ 4.7
I= 975 2 rar 7 (4.7)
We see that I, is independent of m.
Consider next the general two-electron integral
1
(Yarhp| —1betba) = (ablv|cd)
12
* * 1
= [ar, [ anwivi@)vWva (4.9
using the expansion
ok k
— = c"(1)-C"(2
12 kzo rlfrl @)
k k
Z i 1)ICk1)C* (2). (4.9)
k q—fk
Here
47
k— I _k<q<k. 4.1
Cf=\lgp ¥ —F<a<h (4.10)
Then the angular parts
1/2
(k| CElR'm') = (=)™ 3] (2j + )27 +1)] © %
ik Jj i kg /
(16 7) g ) sttt
= d(j'm, jm) (4.11)
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and the radial Slater integrals

fe'e) 00 ,r/z
Rk(abcd) :/O dT‘l /0 drg@ [Pa(l)Pc(l) + Qa(l)Qc(l)]
x [Py(2)Pa(2) + Qb(2)Qa(2)]
_ /O LVi(ae, ) [B2)Pa2) + Qo(2)Qu(2)]dra  (412)

T2
where
00 Tk
Yz (ac, o) :7‘2/0 rkil [Pa(1)Pe(1) + Qa(1)Qc(1)]dry (4.13)
=
(ablv|cd) :Z(—)qu(abcd)(a!C§|c><b\qu|d>. (4.14)

kq

The 3-5 symbols fulfil

isms) = (243 + 1)1/2 _—j1+j2—m3<j1 j2 j3> AP
ljams) = (23 + 1) mlzmz( ) My My —ms [j1ma)|jama)

(4.15)
In other words,

C(j1jajs; mimamg) = (=) 1F27ma (255 4 1)1/2 <jl o ) » (416)

mi1 mo —Ms3
g2 s (=)1772773 (245 4+ 1) 7V2C (1 jags; mima — ms).
mi ™Mo ms ’
(4.17)

The 3-7 symbols are tabulated by Rotenberg et al. For their symme-
tries, see p. 107 of Kvantkemi I. They can be calculated by a simple program.
In the special case j1 =1, jo = %, C(l%j;mlmsm) is:

Mg
. 1
J 2 —3
141 \/z+m+§ \/Z—m+%
2 20+1 2041
I 1 \/lfer% \/l+m+%
2 2041 2041

m;=m — msg.

Returning to Eq. (4.11), if the quantum numbers m and m’ are fixed,
only one value ¢ = m — m/ survives.
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From

{(ablvlcd) :Z(—)qR(abcd)(a]Cf\@<b]CEq\d>, [4.14]
k
(ab|v|ab) :i(—)m(abab)<a|o§ya><b|cﬁqyb>
kq
=057 A (jamna, jama)d* (o, jyms) F* (a, b)
k
=" " (jama, o) F*(a, b), (4.18)
k
where
¥ (jama, jomp) = d* (jama, jama)d" (jome, joms) (4.19)
and
F*(a,b) = R*(abab) (4.20)

This was the Coulomb integral. The exchange part

(ablvlba) = ()1 R(abba){a|CF[b)(b|C* |a)

kq
:Zbk<jamaajbmb)Gk(avb) (421)
k
with
bF (jm; j'm’) = [d* (jm; j'm))? (4.22)
and
G*(a,b) = R*(abba). (4.23)

Using the symmetry rules of the 3-j symbols,

J g2 33| _ (=)’ Ji J3 J2 ‘J =j1+J2+7J3
_ (_)J jl j2 j3 (4.24)
—myp —Mmgy —Ms3
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and noting that ¢ is fixed by ¢ = m — m/,

d*('m; jm) = (<) [(25 + 125 + 1)]'/?

kg’ i kJ
0—3 —m qm’

= (—)m+% [(2j+1)(2j’-|- 1)]1/2 j ki J )
0

(I N

~303) \f g -m
. . ik g ko
= (=)™ 2+ 1) + 1] J J)
101 -m' qgm
= (=) @ Gy 5'm) (4.25)
=
d* (jama; o) = (=)7d* (jom; jama)- (4.26)
For one electron outside a filled shell, j,
> a*(jmsi'm’) = (25 + 1)8(k, 0). (4.27)

Thus the k > 0 Coulomb terms vanish in case the potential is spherical. The
exchange in this case,

S 1.
> 0 Gmsgm') = 5 (25 + Dy (4.28)
m
with
2

ik j

L1

2 2

The total energy for a closed-shell atom becomes

E = E°+ E°, (4.30)
E° = qal(A), qa=2ja+1, (4.31)

A

B¢ = Y- {Jaalaa — V(A 4)
A

a.
1 qga — 1 . 1
—544 ( ¥ ) > (2a+ 1)§F1AijFk(Aa A)}
JA 7 >0
b. C.

1 1
+5 > qagei FU(A,B)=> Tk, G* (A, B) | (4.32)
2A,B A#B { d". k 2 }

€.
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a. k = 0 part of the intrashell repulsion

b. 1 for a full shell, 0 for one electron

c. Exchange of one j4 electron with the filled shell A

d. k£ = 0 intershell part (the only Coulomb term)

e. The exchange of one j4 electron with the average shell B electron

Example 11 The intrashell interactions of one p3 /5 shell:

All radial integrals are identical. The angular parts (m m’) become

Fam o ot
at( — )hah(G — ) (4.33)
SRR
(S — )+ — o) (4.34)

Note that there are no self-interacting terms, ak(% %) etc.

Case a: k=0

k=0= q=0= m=m'. No self-interaction = the exchange term
b0 (jm, jm’) = 0.

There are six a’(m,m’) in (4.34). Their value equals 1. See I.P. Grant,

Proc. Roy. Soc. Lond. A 262 (1961) 555, Tables 1-3 or use (4.19)+(4.25).
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E.g.

31 3333 3131
0 0 0
2Oy 022 2922 22
53 =4G5397G533)
3 3 3 3
:(_)%+%(2§+1) 50 3 5035
2 19g_1)\_3p3
2 2 2 2
3 30 3 303
(—)%+%(2§+1) (20 2 (202 (4.35)
Lg_1 _1lqgl
2 2 2 2
2
_ e 430 ( po) (3 %o
11 1 1 3 3
—330/ \3 30/ \3-30
12, 1.1
= —16-(—5)"(~5)5  |See KK I, p. 109

(Grant, op.cit., Table 2, same result). 6 x 1 = 6. The first term of £, eq.
(4.32), gives

1 1
5q(q —1) = 3 4(4—1) =6 = 6F"(A, A). (4.36)
Case b: k=2
Similarly,
St
31 31 3 3 11 1 3 1 3
22 ~ 202 2,2 2/ = 2/~ 2 2, - 9
1 1 L1 L 1 1
25 25 25 25 25 25
2
__ = 4.
5 (4.37)
Symmetries:
a*(jmij'm') = a*(G'm'sjm) = a*(j —m; g —m)
= d"(j —m;j'm’) = a"(jm; ' —m') (4.38)
b (jm; j'm') = bE(j'm’; jm) = 6" (j —m; i —m) (4.39)
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The coefficients b* are given in Table 4 of Grant. Here,

-

31 3 1 3 3 1 1 1 3 1 3
2 2 2 2 2 2
S W T U T4 T T W N
e +0 2 4
25 25 25 25
8
= — 4.4
25 (440)
The radial parts R(abab) = R(abba) = R(aaaa). Adding,
2 8 2
2 2
- — (- (2y=_2 4.41
202 0 =(g5) ~ (55) = 5 (4.41)
In eq. (4.32),
1 ¢g—-1 ) 1 1 4-1 1 1 2
()@ gy = 5 4 g =g (442)
~~

Grant, Table 5, p. 570

4.2 The Dirac-Fock equations
The two-electron energy (4.32) equals

5O :% ; A /OOO % [Pj(r) + Qi(r)} x (4.43)
{<qA v [T as[Phe) + Q)] a
+ B%;qugr /000 %ds [Pf;(s) + QQB(S)} b

o

qa—11, . ook
- 0t [ [P+ @400

>

1 E E 1F /00 d /OO d le d
- = =1 ks r S .
B qAa4B 5 jakjB 0 0 ,r§+1

A#B k

x [ Pa(s)P(s) + Qa(s)Q5(9)| | P Po(r) + Qa(rQa(r).

When introducing the variation, AQ, a factor of 4 will appear in each of the
four terms, from:

a. A(Q?) = 2QAQ, both AQ(r) and AQ(s)
b. A(Q?) =2QAQ, A=ior B=i
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c. As a.

d. Q(r)or Q(s), A=ior B=i
(4.44)

In terms of the variations AP and AQ, the variation of the two-electron
energy becomes

EC =24, /O - % [PAAPA 10 AAQG} x (4.45)
{<qA — v [ s [P + @A)

£ g /0 " Las[Ph(s) + Q30)
k

ga—11 . o r
— - _(2]A+1)FjA/€jAT/ kt1
k>0 2]A 2 0 >

- Z QAQBZF]AIC]B/ dr/ ds

B£A

PA(s) + Q45)] ds}

x| Pa(s)Pa(s) + Qa(s)Qs(s)| | Po(r)PAPA + Qu(r)AQa.

We introduce the auxiliary function

Yo(A,r) == (qa — 1)Yo(A, A1) = ) qBYo(B, B;r)

B#A
QA_ 2 Ja+ Dk Ye(A, Asr), (4.46)
k>0
where
o) rli
Yi(ac;r) =r /0 1 [P P + Qu(9)ul)] s [4.13]
>

could be interpreted as an effective electronic charge, containing both inner
and outer screening.
Orthogonality leads to the Lagrange coefficients e, whose variation

Ae = [ ZQAEAANAA - Z quBSABNAB] (4.47)
A#£B

where

Nap :/ (PAPB + QAQB)dT. (4.48)
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Introducing 4 = mc? — Ex, eq. (3.134) gives

c(P'+EP)+(—mc2—|—V—m02—s)Q:0 ‘+Q><
.. (4.49)

c(Q’—;Q)—i—(—ch—V—i-ch—l—s)P:() ’—Px

S(P2+Q?) = C[QP/ n gQP —PQ + SPQ} — omQ?
+VI[P? + Q7]
— C[QP/ —PQ + QTHPQ} —2meQ? + VIP? + Q2].(4.50)

The variation of this one-electron term,

Acy IQA/OOO { C[AQP'-FQAPI—APQI—PAQ/‘FQTH(PAQ+QAP)

—42QAQ + 2V (PAP + QAQ)}dr. (4.51)
From AP = AQ = 0 we get by partial integration

/0 N /0 N -

/ PAQ'dr = — / P'AQdr
0 0

Hence the variation of the one-electron energy

Acy = 2ch/ { AQuP) + APYQ'y + ;(PAAQA + QaAPY)
0
1
~20QaAQa + ~V(PaAPs + QAAQA)}dr.

(4.53)

Adding to this the variation of the two-electron energy, AE®, eq. (4.45),
and subtracting the Lagrange multiplier terms for normalization and orthog-
onality, we get
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*° K
/ QQAC{AQAPA — APAQ + TA(PAAQA + QaAPy) (4.54)
0

1
— 20Q4AQ4 + ZVa(PaAPA + QaAQu) } a.
< dr
—2QA/ - [PAAPA + QAAQA] Yo (A, ) b.
dr
- QAQBZFjAij/ —Yi(4, B 7)[PpAPA + QpAQa]c.
BZA
—QQAEAA/ (PAAPAs + QaAAQ)dr d.
0
-2 Z QAC]B5AB/ (APyPp + AQ4Qp)dr = 0. e.
B#A 0

a. one-electron

b. use (4.46)

c. (4.45), inter-shell exchange
d. normalization

e. orthogonality

In the last term (e.), a factor of 2 comes from the possibilities " A” = A
and ”B” = A. Dividing (4.54) by 2qac the coefficient of AQ 4 and —APy
become

K 1 1
PA + —APA + _[_262 + Vi — ;Yn(A’ r) —caalQa

1
+ E QB[ E F]Aij w(A,B;r) — —EABé(HAaHB)}QB =0
BZA
1
QA+—QA+ [ Vi + Y (A, 1) +c44]Pa

1
+ Z qB [ZFJAIWBQ A B: 7") + EAB(S(HA,FLB)}PB =0
BZA %

(4.55)
These are the Dirac-Fock equations for a closed-shell atom. We may set

%Y(A, r) = —Vi + %Yn(A, r) = %[z Y (4, )] (4.56)
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4.2.1 The relativistic Koopmans theorem

Multiply (4.55a) by ¢Qa, (4.55b) by —cP4, add, integrate and suppose
EAB = 0:

/O [cQA (Ph+ZPa) = cPa(Q = =2Qu) —28°Q4 (4.57)
F V(PR +Q2) — ean(Ph+ Q2 + (PR + @) (—Ya(Am)

1
+c Z q8(QaQp + PaPp) ZFJAk]B Yi(A, B;r)|dr =0.

B#£A

aq = /oo [CQA(PA + §PA) — cPA(Q’A _ ;@A> —22QY + Vn} I

0

qA —

o(A, Ar) + S CanYo(B, B:r)|[4.46

B#A

+/0 dr(P% + Q%) |+

—-11, .
_ZqA_ —(2]A+1>FjAijYk(A7A§71)

= 2541 2
te Y a5(Qa(r)Q(r) + PaGIPs(r) o Tk 5
BZA k
[e's) Tk
. /0 SEIPAG)PB() + Qa()Qn(lds 1113
- IA + (QA - 1)FO(A7A) + Z QBFO(A? B)
B#A
-3 % qa — 2 ja+ DT, 05, FF(A, A)
k>0
-y 7 Zrmm B). (4.58)
BZA

A comparison with the total energy, (4.32) shows this to be the difference
E(qa) = E(qga—1) o

4.2.2 Multiconfiguration treatment, a simple example

(C. Briangon, J.P. Desclaux, Phys. Rev. A 15 (1976) 2157)
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The total energy for a p (J 2) configuration. At the LS-limit,

°Py) = 7 [ )+ ‘ﬁpgﬂ
(4.59)
Do) = [ %) — V2l
Generally,
T =2) = alp®p?) + V1 - a?|pp?), (4.60)
with the total energy
Er = a2Eav(72 2) + (1 - a2)Eav(pp3)
4 9.9 3 N D
75a-F (p,p) + £5(1 = a”)G7(p,p)
+%\/§a V31— a2R2(ﬁ?ﬁ7p7p)' (461)

4.2.3 ” Average-of-configuration” treatment

Assume that all [jm) states of the one-electron states are equally probable
in the many-electron wave function.

Example 21 Iodine, 5p°.
The hole can be in the 5p or the 5p shell. They have 4 and 2 m;-states,
respectively. Therefore the statistical weights are % and %, respectively.

Example 32 Ground state of uranium, 5f36d.
a) f-configuration.

17
1=3, fiyj=3+-=5, 2j+1=8
, fu=3t5=5 2+
. 1 5
j=3--=5, 2j+1=6
[ 5 =5 2+
config P 2 fr? f 2
weight | 854 =20 | 53. 8 =120 | §-&T =168 | 55 =56 | 364
- — 30 _ 42 _
91 91 91 91

Note that you have to include the permutation of electrons, n!, in the
weight calculation.

b) d-configuration

=2,

SH
<

Il
b
4

. 2j+1=6

SN
Il
)
|
N =N =
|
MO W | Ot

. 2j+1=4

D
ot



SW
ISH
]

config
weight 4 6 10

[S2{1 )

Altogether eight jj-coupled configurations:

config | df® | df*f | dff? | df?
2 30 | 2 42

591 | 5 91
weight x455 10 60 84 28

config | df® | af?f | dff? | af®

: 3 30 3 42 3

weight x455 15 90 126 42

Sfen

weight % .

[S11[JV)
Slen

4.3 Numerical solution of the Dirac-Fock equations

Choosing the variable
t=Inr (4.62)

and the step length h = At = 0.05, one usually obtains a precision of about
9 figures (for Ep). About 200 radial grid points, r;, are needed between
the first point and the practical infinity. All wave functions P4, @4 and
potentials 2Y'(A,r) and 1 2524 4B Dk Ljakjs Ye(A, B; R) are expressed at
the Ts.

The integrations outwards are started by the series expansion

{ P(r) =17 (po + pir + par’+ ... (4.63)

Qr) =r"(qgo + qr + @r*+ ...).

After sufficiently many points are obtained, a five-point Adams predictor-
corrector method or some other numerical method is used. Consider

o = rwuit) +g(0) (4.64)

=35 =

The new, (n + 1):th point is obtained by combining the predictor

h
Pl =Yn + o5 [1901y,, — 2774y, _; + 2616y,,_o — 1274y, 5 + 251y,,_,]
(4.65)
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and the corrector

h
cn + 1 =yn + == [251p), .1 + 646y, — 264y,,_; + 106y],_5 — 19y, _5]

720
(4.66)
to
1
Yot1 = 75 [473¢n41 + 29pnta] + O(R7) (4.67)
The outwards integration becomes unstable after the (effective, radial)
potential, V(r) = =1V (A, r) crosses the eigenvalue, &

V()

Figure 4.1: The instability of the integration depicted

Similarly, the inwards integration becomes unstable after this point. The
solution is to fit the two integrations at this point.

In ”Method 2” one solves both the original inhomogeneous differential
equations and the homogeneous ones with ) 5 24 =0T hen every linear
combination of the two solutions is a solution.

The coefficients of the homogeneous solution, «, follow from

P}@{(rl) + OéRpllpi(TI)

) 4.
Qiy(rt) + anQA (), (69

{ Pi(r) + aLPf(TI)
Q1 (r1) + aL @t (1)

at the matching point, r1. Here i=inhomogeneous, h=homogeneous, L="1eft”
(r < rp), R="right” (r > ry).

This solution fulfills the boundary conditions but may not be normal-
ized. Normalization by a constant is not allowed because the equation is
inhomogeneous = the eigenvalue of €44 is chosen to obtain normalization.
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Actually it suffices if we converge towards a normalized solution. Let
€ =ea4. Then

/ooouﬂ +Q%)dr + 258/;0(13 %—f - Q%—gﬁ’“ - e

By first differentiating the original Dirac-Fock equations,

i(50) +75 +105. = 50
i(f)_@) 9Q or _ 1

dt \ 9e -

(4.70)
— g t9(r) g =5 P,

these derivatives can be solved by the same subroutines as P and () them-
selves. Then (4.69) =

1— fOOO(Pj + Q%)dr
(P 1 0r )

Oe 4 Oe A

= (4.71)

In the old Dirac-Fock One-Center Expansion (DF-OCE) method, four
numerical methods could be used:

1. e (Calculate only ¢1§{, put P, = Pfi{ + ozRPF%.
e Fit Q) by changing e.

e Finally normalize by force (inner shells) or by using 0P/0e (molecules).

2. Previous method. Normalize by adding to P some amount of de x
(OP/0e). If the number of nodes requires it, change €. The continuity
is guaranteed.

o Fit ¢ by (4.71)
3. Use both ar, and agr. Use (4.71). For wrong number of nodes,

4. change ¢ to get the right number of nodes.

4.3.1 Specific features of the DF-OCE method

e Each MO consists of a dominant AO and other AOs. Example: For
the I'y MO of CHy, 2p3/5 +4d + 4f.

e Use for the dominant component Method 1 and for the others Method
3 or, if necessary, Method 4.

e Then the dominant component fixes € (which is not changed in Method
3 for the other components).
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e After treating the entire MO, set the common

EMO = Z N(AO)eao (4.72)
AO
(SOLDMO, lines 175-177)
Then correct it by setting
1— N; 0P;
Li (4.73)

Di =
zpz + qu’b) 851'
(SOLDMO, lines 178, 180)

EMO — €MO T+
22 fo(

e After treating the entire MO, normalize it by the coefficient [, N;] ~1/2.
(SOLDMO, lines 157, 204-211)

Some results:

Desclaux and Pyykko (1974):  the bond-length contraction
D&P (1976): the Ag/Au difference
D&P (1976):  p bonding in T1H.
D&P (1977a):  TiHs—(104)Hy. Trends.
D&P (1977b):  (114)H, > PbH,.
D&P (1978):  MoHg/WHg. R, D, ko; oxidation state.
P (1979b): MHT, MH,, Groups 2 and 12.
P (1979c): LnH, AnH.

[See Table 7.3 of RTAM 1]

The iterations can be speeded up (by roughly a factor of 2) by using a

convergence factor a.

Let Pl Q! and P! Q! be the initial and final values during the n:th

iteration. Choose

{ Priz+1(7“)
Q%H(’")

= BlaP, + (1 -
= Blo@, +

)P,

. 4.74
(1= a)@y] T

Here 3 is a normalization factor and « is restricted to

0.1 <a<0.9

and is calculated every time from the change

AR,, = max[P.(r) —

P (r), @ (r) = Qn(r)].
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5 Symmetry

5.1 Rotation Operators

Consider a scalar field f(r).

Example 1: The temperature at point r
After a rotation of the coordinate system, the same field is described by
the new function f/(r'), with

r'=Rr (5.1)

Here the operator R acts on the coordinates. Introduce now the operator
Pr, which acts on the function f in Hilbert space, making it follow the
rotation of the coordinate system:

f'(e') = Prf(r)) = f(r) (5:2)

Active interpretation: In the left-hand equation, f'(r') = Prf(r'), the
operator Pr changes the function f into f’.

Passive interpretation: In the right-hand equation, rewritten as f(r’) =

Py Ly (r), the operator does not change the function but acts on the coordi-
nates r, changing them to r’

Example 2: Let f(¢) = ¢ and Rp = ¢/ = ¢ — a, a positive rotation
through a:

\ /
\ ' X
X7

\J

$X

Figure 5.1: Positive rotation through «a
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Then
eim(¢’+a) — oima eimd)’ — oimé
P N I
f(¢") Pr f(¢')  f(o)

(5.3)

5.1.1 The Euler Angles

Consider a right-handed coordinate system Oxyz and positive rotations (like
in fig. (5.1), R, pushing a right-handed screw towards +z). Introduce the
rotations

(i) Rotation R,(a) through a around O, (O, — O,)
(ii) Rotation R,/(3) through [ around O, (O, — O,»)
(iii) Rotation R, () through ~ around Oz//(oy/ = Oy// — Oy///)

Then eq. (5.3) = (replacing m by the operator j,)

f/(tl) _ eiajzlf(z/) (5.4)
(") = e )

_ e1,8]yu elajz// f(fll) (5.5)

fm(f”/) _ eiWJZ’/’ f”(fu)
_ ei’yjz/// ei,@jy/// eiajz/// f//(zl//) (56)

in the active interpretation using temporary coordinates O, O;-
The Pr operator of the type (5.2)-(5.3) becomes

Pr(apy) = evizelfiveiad: (5.7)

With this operator, the same coordinates must be used on both sides.
If fixed rotation axes, Ozyz, are used, one should replace (yBa) by (a37)
in the operator Pg.

Rotations Axes Operations
1.(z) 2.(y) 3.(2)
Active Fixed ~ I} Q
Active Temporary Q I} ~
Passive Fixed —a -0 —y
Passive  Temporary | —vy -0 —«

5.1.2 Rotation of Spherical Harmonics.

In the active, temporary picture, the rotated function becomes

Z’(ﬂ/gf),) — e—i’yjzleiﬂjy/eiajzlYlm(19/¢/)

(5.8)
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In the passive, temporary representation
Ylm(ﬁ/(ﬁ/) — e*iajze*iﬁjye*i’szYlm(ﬁgb)
m/

Here the rotation matrices ( Wigner matrices)
D!, = (Im/|e71%9=e iy e=15h=| 1) (5.10)

The temporary rotations 1.c, 2.3, 3.y bring Oxyz to Oz'y'2’.

5.1.3 Rotation of |jm) Functions

Because the |jm) functions, with half-integer j, obey the same commutation
rules as those with integer j, we may simply substitute [ for j:

Pyl ljm) =y Dl ()] jm) (5.11)

5.1.4 The 2-to-1 Homomorphism from SU(2) to SO(3)

The special unitary group, SU(2), consists of all unitary (UT = U™!),
unimodular (det U = 1) 2 x 2 matrices. We may regard it as the group of
all three-dimensional rotations, spanned by the spin vectors

!11>

22 (5.12)
B |1 1)
==

A Pauli matrix o; transforms under the rotation U to

x7y7Z

UO’Z‘UT == Z UjAji (513)
J

The matrix A is real, orthogonal (ATA = 1) and unimodular and belongs
hence to the special orthogonal group SO(3) (consisting of 3 x 3 matrices),
isomorphic to the group R(3) of all three-dimensional rotations.

Rm;RY =Y " m;Aj; (5.14)
J

where the vectors m; form a cartesian basis.

Consider now two elements, U and V, of SU(2) and two elements, A
and B, of SO(3), — R(A) and R(B). A comparison of (5.13) and (5.14)
yields the mapping

U— A (5.15)
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Letting V — B, (5.13) =
(UV)oy(VIUT) = Uo;Bj; (5.16)
Hence (5.15) is a homomorphism. In particular, as
Uo; U = (-U)oi(-U)' = 0jAj; = U — A, (5.17)

it is a 2-to-1 homomorphism, exactly two elements of SU(2) is mapped to
exactly one element of SO(3).

As the angular momentum j = ¢g/2 for SU(2), the matrix operator for
a rotation through ¢ around n becomes (recall (5.3)):

U(n, ¢) = c'l@n)d/2 — cosg +i(g-n) sin% (5.18)

Hence
U(n,27) = -1 (5.19)
U(n,4m) = 1 (5.20)

5.2 Double Groups
5.2.1 Non-relativistic Case with Spin

Let G be the non-relativistic or simple group. Its elements, like the pure
rotations, R;, commute with H,

[H,R;] =0 (5.21)

The spin space is entirely decoupled from coordinate space. The total sym-
metry group is the direct product

Gfu]] =G X SU(Q) (5.22)
For a Coulomb potential, Gg,y is larger still (Fock (1936)).

5.2.2 Relativistic Case

Now the space and spin variables are coupled. Only those U; € SU(2) which
correspond to an R; (by (5.15)) can be included in

G* = {:ERZUZ} C G x SU(Q) (5.23)
The two signs correspond to those of (5.17). Let K be the set of all such

Uii
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K and G* are isomorphic, K = G*. The relations between the four groups
are seen in figure (5.2).

SO @)

e

K (23 G

So(3)

Figure 5.2: Group relations

5.2.3 Improper Rotations

The improper groups, G’, are either direct products
G'=GxC; (5.25)

where C; = {F, I} contains the inversion, I, or isomorphic to G. In the first
case G’ contains 1.

Example 3:
Th =T x C; = {F,3C,4C5,3C; ' YU{I, 30,45 *, 456} (5.26)

5.2.4 The Group O(3)

All improper groups, G’, are subgroups of the group O(3), which is obtained
from SO(3) by adding the improper rotation with det A = +1.

-1

If the inversion is included, it commutes with all other elements, 1

being a multiple of I = 1
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5.2.5 The Double Group is a Symmetry Group of the Dirac Equa-

tion.
Consider
hp =ca-p+ pmc® +V (5.27)
with
0= (0% =t 0 (5.28)
o; 0 0 —1I

and define the transformation matrix for the ! rotation as

UP = Ui 0 (5.29)
0 Uy
Consider the group
Gy = {+R,;UP} = g~ (5.30)
This rotation transforms the kinetic energy to
.I.

®UP)aprUPY = O Y ryRt 5

Uo, U 0

= Ppm A Amk = Ompm = a - p
Thus the kinetic energy remains invariant under the double group opera-
tions.
5.2.6 The Element F

Bethe (1929) arrived at the double-group concept by including in the group
the new element F, corresponding to rotations through 27, for which

E*=E (5.32)
Example 4:
Cy ={E,Cs}, C5={E,Cy E,Cy=FECs} (5.33)
In general
A=FEA (5.34)



5.2.7 Elements of Double Groups

In the multiplication table of a double group the new, barred, operations
are mixed with the others. For rotations around the same axis

Rj, forO<R; <7
CoR; = (5.35)
R;, for—7m<R; <0
Ca
=<
Ca -
Z—n
Y Cy
C_—I
© Ceo
E E
- -t
Cg Cé
Cy cy
c -
3 1 c3
Ca

Figure 5.3: Multiplication of rotations in a double group. From Koster et
al. (1963).

The properties of the inversion are

II=E, II=E, II=E, IR;=8S;, IR;=S5; (5.36)
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Op = ICQ
we get
onCo=IC3=IE=T#T1!
o0 = (ICy)(ICy) =C3 =F
06 =00FE =EE=FE =
ocl=5!
Also,

{E,c}®{E, E} :{E,O‘,E,Q[_l/}
o
oo '=F
oE=¢&
Eo'=Es=EFoc=o0

For a rotation C,,

Ch=E, CI"=E=

n

EC, = C"C\ = C,C" = CoE

Furthermore,

CR, — Rj, forO<R; <7
S R;, for—7<R; <0

Si, fOI‘O<R¢<7T

R, =IC3R; =
OhTi 2t {Si, for—m<R; <0

5.2.8 Irreducible Representations (”irreps”)

(5.42)

(5.43)
(5.44)

(5.45)

[5.35]

(5.48)

The order of the double group, #G* = 2(#G) = 2g. Hence its irreps must

satisfy

r

Z n? = 2g
i=1

r being the number of irreps for G*.

Example 5:
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Both Cy), and Cayy have g = 4. They satisfy (5.49) by

Con: (12412 + 1241 4+(12 + 12+ 12+ 1%)=38 (5.50)
Oy : (12 + 12 +12412)4 22 =8 (5.51)
r, ... Ty T;

Thus all relativistic molecular orbitals of Cs, belong to the same irrep, I's.
Note that, for an even number of electrons, the total electronic symmetry
still belongs to I'y — —T'4, J being an integer (for higher symmetries, when
applicable).

The reps of G are also reps of G*

We have a 2-to-1 mapping from G* to G and a n-to-1 mapping from G
to reps {I'}. Thus we have a 2n-to-1 mapping from G* to a single matrix of
the representation I'.

The original irreps of G have basis functions, |jm), with integer j. For
their characters

XV(A) =x"(A) (5.52)

The additional irreps of G* have basis functions |jm) with half-integer j.
For them

X(A) = —xD(A) (5.53)

Here i is the irrep in question.

5.2.9 Classes

The number of classes equal the number of irreps,
kE=r (5.54)

The character of the rep, spanned by the functions |jm), m = —j,..., 7,
becomes
_sin(j + Hw

D |
Sin 2w

X9 () (5.55)
For w = 7 and half-integer j, x\Y(7) = 0. Therefore x\) (7 + 27) =
—xU)(7) = 0, as well. Thus x(Cz) = x(C2) = Cy and Cy may or may
not belong to the same class.

For n > 2, one always has x(Cp,) = —x(C,) and here C,, and C,, belong

to different classes.
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5.2.10 Theorem of Opechowski

Opechowski (1940): C,, and C,, belong to to different classes if n > 2. For
n =2, Cy and Cy belong to the same class if and only if the group contains
another C9, perpendicular to the Cs considered, or if it contains a symmetry
plane, o, containing the Cy considered.

Similarly, Sy and So belong to different classes except if there is a o,
containing the Cy axis, or another Cs perpendicular to it.

The reflections ¢ and & belong to different classes, except if there exists

another o, perpendicular to it, or a Cy in the plane o.

Example 6:
Character table and basis functions for the group D3 :

— — — C/ .

Dy |E E 7' 205 205 255 25 . 5 T Bases

r, /11 1 1 1 1 1 1 1 a p

|1 1 1 1 1 1 1 -1 -1 a g,

3 (1 1 -1 1 1 -1 -1 1 -1 a g

r,/1 1 1 1 1 -1 -1 -1 1 a .,

s |2 2 2 -1 -1 1 1 0 0 a %),
-(S4-1Sy)

I 2 2 2 -1 -1 -1 -1 0 0 a I3 x I's
1 1

r; |22 0 1 -1 v3 -3 0 0 c 23

I's | 2 -2 0 1 -1 -3 V3 0 0 ¢ I,xIy
3 3

ry|2-2 0 -2 2 0 0 0 0 c 9553
?(5,5)

We observe that: Dsy, = {E;2C5;3C5; oy; 2S3; 30y }

a. The order of Dg}, is 12. The representations I'7—T'g satisfy (5.49) by

22422422 =12

b. The elements o and &, belong to the same class because the Co axes
lie in the oy, plane. The ”vertical” o, and &y belong to the same class
both because of the Co and because of o,. Cy and C5 belong to the
same class because of either

O} O one Oy.

c. By Opechowski’s theorem, C3 and C3 belong to different classes. So
do S3 and S3. The element E forms its own class. This gives the three

classes, imposed by k =7, eq. (5.54).
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5.3 Construction of Relativistic MO:s
5.3.1 Projection Operators

The functions gZ)I;, belonging to row A of irrep k£ can be projected out from
an arbitrary function by using the projection operator

n
W = gy 2T (A) 04 (5.56)
A

Here g = #G, np= dimension if irrep k, g(k) (A) is the representation matrix
for group element A in the irrep k& and O4 is the symmetry operation A.

k)

One can first operate on an arbitrary function, 1, by P§ ) obtaining
k
¢k = PMy (5.57)
One then obtains the partners of q§§ by

ok = P gk (5.58)

Suppose now that the basis functions in our LCAO-MO consist of atomic
spinors,

1 P(T)X'lm(197 ¢)
Yjim = = < ’ 9.99
i1 = i) 3y 9. ) 39
The bispinors xjim = |l% jm) transform under the rotations according to

D7 (o).
As noted by Rosén and Ellis (1979), then the result of the projection
operator becomes

2g
PV)\ Xjlm = 2_k Z Z X]lm lTaDJ (04/6’}/) (560)
A:

m/=—j
Here 74 = 1 if A contains the inversion operator I and 74 = 0 otherwise.
Note that, outside the symmetry center, the result of O 4t iim T0AY be shifted
from the atom t to other, symmetry-equivalent atoms.

Example 7:

(Pyykké and Toivanen 1977): Relativistic symmetry orbitals for the
double group Dsp. The origin is situated at the symmetry center. The
variable s is +1 for k < 0 and -1 for x > 0.
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irrep even [ odd [

1 )
UJ§> \ZJ'§>
T
7 1 5
3|l.7'§> '3‘l35>
) 1
UJ'§> \l]§>
T's 5 |
SUJ§> 'SUJ'§>
.3 .3
UJ§> UJ'§>
T
9 3 3
'SUJ'§> SVJ§>

Latest program: J. Meyer et al. (1996).

5.3.2 Coupling Constant Method

For the required coupling constants, see Koster et al. (1963) or Altmann
and Herzig (1994). One now first constructs the non-relativistic MO:s, u},
and then couples them with the spin functions,

; 1 1
=133 =B
-1/2 9
SR (5.61)
i b1
191/2 - |§7 §> = Q,
using the coupling constants or Clebsch-Gordan coefficients uf\ijV:
Qﬁl; = Z ui\]jnuuz)\vi (5.62)
Ap

The non-relativistic funcitons uf are expressed in the |Im;) representa-
tion. From that |lml%ms> representation, (5.62), one can pass to \l%jmﬁ
representation using the Clebsch-Gordan coefficients

j
M [+ % [ — %
\/l+m+% \/ l—m+3

2141 - 20+1
\/l—m-i—% \/H—m-ﬁ-%

2041 20+1

This method will automatically give the correct phase between the j =
[+ % components.

N[—= N[
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5.4 Time Reversal
5.4.1 Non-relativistic Case
Time reversal is obtained by complex conjugating the wave function,
Ty =" = K. (5.63)
Let T'= K (complex conj.), [H,T] = 0.

(ih%)w = Hy = (ih Yot =T(H¢) = H(TY) = Hy* (5.64)

9(-t)

5.4.2 Inclusion of Spin

Now
Ty(r, s) = (=1)*¢(r, —s)*. (5.65)
This operator T is antilinear,
T(CL1¢1 + a21/12) = CLTT(ﬁl + a;ng, (5.66)
and antiunitary,
(TYn|T2) = (a2lthr). (5.67)

5.4.3 n-electron Wave Functions

We now can write 7' as the product of (antiunitary) operator K and a
unitary operator U. Possible choices are

T =01y02y...0ny K, oy = (5.68)
N———— :
u

or

TY(ry, 81, Ty 8n) = (=1)2(s1 4. .+ 82)0(11, =815+, Ty, —50) . (5.69)

5.4.4 Kramers’ Theorem

For a system with an odd number of electrons, 1) and T are orthogonal.
In general, for arbitrary ¢ and ¢,

(TY|Te) = (UKGUKS) = (Ky|K) = (o) (5.70)
= @ply "X (rpre) [T = —y
= (TY| - ) = —(TY[g) =0 (5.71)

Note that the equivalence used, 721 = —1), only holds for an odd number
of electrons!

In the absence of magnetic field, all energy levels of such systems are at
least doubly degenerate.
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5.4.5 The Cases (a), (b) and (c) of Wigner (1932)

Consider the representation matrices, L', of a group G*. The operator T
either does or does not give new, degenerate functions, spanning the repre-
sentation matrices ['*. The following possibilities exist:

a. [ may be real.

b. I is complex and non-equivalent to L['*

o
1=

is complex and equivalent to L'
Then:

a. The degeneracy is doubled (from n for I' to 2n. The functions ¢ and
T belong to the same irrep.

b. The degeneracy is doubled. If ¢ spans the irrep I', ¥* spans another
irrep I'*.

c. The degeneracy remains n.

According to the Frobenius-Schur criterion,

2n 29, case (a)
> x(4?) = 0, case (b) (5.72)
A=1 —2g, case (b)

5.4.6 Further Examples

Some other examples of time inversion are considered below.

Momentum
T(p) = T((-ihV)w) = (i9)y* = —(pTv (5.73)
Tp = —pT, the sign of p is inverted! (5.74)
TpI=" = —p (5.75)

Angular momentum

X p ’(5.74), p changes sign under time inversion

T (5.76)
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Spin-orbit Hamiltonian

2

Rosch: T = 0-1 =
1 0

Ta=p
T6=—-«
Eschrig;:
01 1
o) = | 10 0 T
01 v\
-10 c(ps + ipy)/A
0
= _1 e—l}_?f = —e IEE
—c(ps — ipy) /A
cp, /A
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2 (¢ x VV)-p |both ¢ and p change sign,

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)



Compare the above with (3.45). Still, 7% = —1

Ezxternal electromagnetic fields
Invert the currents,

j——j, A—-A (5.82)

5.5 Quaternions
For complex numbers z = x + iy = (z,y) both addition:
(z,y) +(X,)Y)=(x+ X,y +7Y) (5.83)
and multiplication:
(z,y)(X,Y) = (X — yY,2Y + yX) (5.84)
are defined. The multiplication is
a. commutative, 2129 = 2221
b. associative, a(bc) = (ab)c
c. norm-conserving, |z129] = |21||22], |2|> = 2 + ¢?

Question: Can (a)-(c) be satisfied for more than two ordered compo-
nents?

Answer: Hamilton and Cayley (1843): For quaternions ¢ = (a,b, c,d),
with |¢|? = a? + % + ¢ + d?, a non-commutative product with (c) can be
found.
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6 Molecular Orbital Methods

6.1 Semiempirical methods
As a general philosophy, the purpose of semiempirical calculations is to

produce good insight, not to produce bad numbers.

6.1.1 Extended Hiickel Methods

Include all valence electrons. Diagonalize an effective, one-electron Hamil-

tonian
hay = (K Sab/2)[haa + b (6.2)
hao = aq (6.3

K is the Wolfsberg-Helmholz constant and has a value of 1.75.
The overlap matrix S us evaluated using (single- or multiple-¢) Slater
orbitals:

Sap = (alb) (6.4)
The total energy is approximated by the eigenvalue sum

occ

Br=)_E (6.5)
=1

Carry out Mulliken population analysis. Can be made charge-iterative.

Historical origins:

e Mulliken 1949, Wolfsberg and Helmholz 1952; Eq. (6.2)
o Longuet-Higgins et al. 1954, Lipscomb et al. 1961

e Hoffmann 1963

Use in "quasirelativistic mode”:

e Hoffmann school, including band structures.

For a review on relativistic semiempirical methods, see Pyykko (1988b).
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6.1.2 Zero Differential Overlap Approximation

Include all valence electrons. Start from the Hartree-Fock equations

Fip1 = [T+ V, + Ve + Voo

= Ei + > _ Eijthy (6.6)
i

and set systematically all products of two AOs,
PaPy = vy (6.7)

in the potentials V. and V., and in S.
The total energy is calculated as

Er = (0|F|w) (6.8)
with the single-determinant wave function

U= [ (1)¢1(2). .| (6.9)

Various versions

e CNDO (Complete Neglect of Differential Overlap): Include only the
integrals

(aa(Dbp()|ry lec(2)dp(2))
= 04B0abdcDIcd(aalcc) (6.10)

e INDO (Intermediate NDO): Add all one-center integrals. Exchange
introduced.

Quasirelativistic ZDO models

e Boca 1987-, R6sch/Zerner et al. 1987—. Use relativistic data.

e M. J. S. Dewar et al. (1985): Empirical MNDO or AM1 parame-
ters for Hg, Pb. See review by J. J. P. Stewart, J. Computer-Aided
Mol. Design 4 (1990) 1-105.

e See Table 7.7 of RTAM III (2000).

e Thiel and Voityuk (1996): MNDO for d-orbitals, Cl-I, Zn-Hg.
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6.1.3 Inclusion of Spin-Orbit Splitting

Many calculations since late 1960’ies, see refs. 69-102 in P. Pyykko, Methods
in Comp. Chem. 2 (1988) 137-226. Simplest alternative: include the one-
center SO term,

centers

hso= Y (gl-s (6.11)
g

This obviously doubles the Hamiltonian matrix (for o and [ spin).

ZDO Methods with SO Splitting

Boca (1989, 1990ab): Relativistic CNDO/1. Applications on di- and
triatomics, Aug+, .

Bohm et al. (1989): Relativistic ZDO. Fe,, n =12 — 14.

Kotzian et al. (1989, 1991, 1992), Kotzian and Résch (1991, 1992):
Relativistic INDO/S — CI (’S’ for spectroscopic). Diatomic hydrides
and oxides. LnO. [Ce(H20)g]3+.

Jahns et al. (1992): INDO/1 (1’ for ground state) [(Cp3;M)2CeHa],
M = Sc, Lu. Agostic M. ..H attraction reproduced.

Minaev et al. (1989): Relativistic MINDO/3 — CI. Diatomic hydride
systems. Intensity borrowing.

Roszak and Lipinski (1992): INDO. Triplet — singlet lifetimes of
pyridine etc.

6.1.4 Relativistic Extended Hiickel (REX)

Introduce |lsjm) basis with separate energy parameters, «, and radial
parameters (, for the SO-split atomic states.

Derive these parameters from ab initio atomic calculations, thus ex-
trapolating them to the molecular domain (Lohr and Pyykké 1979).
R/NR!

Rosch (1983) treated the Kramers degeneracy algebraically (QATREX)
Larsson and Pyykko (1986): Charge iterations added (ITEREX)

Original default parameters (in 'DEFPAR’) acceptable for main-group
elements. Realistic parameters for the actinides in Pyykko, Laakkonen
and Tatsumi, Inorg. Chem. (28) (1989) 1801.

Always carry out a sensitivity study with respect to parameters or try
to confirm the ideas found by better methods.
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Some Results by REX

e Implement the relativistic theory of nuclear spin-spin coupling con-
stants. New terms. See Pyykko and Wiesenfield (1981).

e Symmetry rules for the spin-spin coupling tensor, J, A. D. Bucking-
ham et al. (1982).

e Transparent interpretation of the heavy-atom chemical shift in '"HX
NMR, Pyykko, Gorling and Résch (1987). "HAHA” (1987).

e The 6p-hole theory of actinyl NQCC, Larsson and Pyykko (1986).

e Colors of BiPhs and PbClg_ attributed to the relativistic stabilization
of the 6s a; LUMO (Schmuck et al. (1990), El-Issa et al. (1991)).

e The SO splitting of the OsO4 valence 3te MO attributed to 5p semicore
character, in most models. Pyykko, Li, Bastug, Fricke and Kolb
(1993).

6.2 One-Electron Molecules

6.2.1 The Hamiltonian

7 Z
h=T+V, V=-"1_22 (6.12)
™ T2

6.2.2 Possible Coordinate Systems

§=(r+m)/R, 1<&<o00
{”ZOH—WMR,—Jgngl (6.13)
L= §(§+n)
R (6.14)
r2 =5 (€~ n)

Constant &: ellipses, constant 7: hyperbolas.
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Third variable: ¢.

dV = %3@2 —n?)dédnde (6.14)
Then
hip = Exp (6.15)
W =™ f(&,n) (6.16)
R — - (6.17)

R(E+n) R(E—n)
The Schrodinger equation:

2 0 g 0 0
e >Qég‘)% 5*‘”’%
g 7)) + Ve~ BlfEm =0 (633)

@. Burrau, Mat. fys. Medd. 7 (1927)

D. R. Bates, K. Ledsham, A. L. Stewart, Phil. Trans. RSL 246 (1953)
215.

See L. Laaksonen et al. (1983a).

Eq. (6.18) separates,
f(&m) = LE)M(n) (6.19)

The eigenvalues E are obtained from the truncation of the series for L(§).

b) The variable q:
n=1—Nlng, 0<¢g<1 (6.20)

c)The variable t:
t=In¢ (6.21)

d)Prolate spheroidal:

The 2D-program uses the variables (u, v):

=coshpu, 0<pu<
{ § = coshp =Hs (6.22)
7 = CcosV, 0<v<m
1
r1 = —R(cosh i + cosv)
2 (6.23)

1
ro = §R(Coshu — cos V)
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dV = %3 sinh yusin v(cosh? yu — cos® v)dudrde (6.24)
Y= " f (1, v) 2 o)

Z”jﬁ - R2(cosh? ,j — cos?v) [38—112 * COthM% + %
+ cot u% _ m2(sin}112u + snlw)]f(’“" V) (6.26)

e)Kolb’s coordinates (s,t):

See C. Diisterhoft, L. Yang, D. Heinemann, D. Kolb, Chem. Phys. Lett.
229 (1994) 667.
n = 4sinh*s + 1, 0<s< o0
1., (6.27)
fzcost[l+§sin t], 0<t<m

[Already in L. Yang et al., Chem. Phys. Lett. 178 (1991) 213]

6.2.3 Transformation of the Dirac Equation

D. Sundholm, P. Pyykkd, L. Laaksonen, Phys. Scripta 36 (1987) 400.
D. Sundholm, Chem. Phys. Lett. 223 (1994) 469.

Consider the Dirac hamiltonian

= | vV cr (6.28)
co-pV —2 2
a-p= Dz Pz — 1Py (6.29)
Dz + ipy —Pz
Let
elm=2OpL (11, )
i(m+2)é, /L
U = (ZL> — e' j ¢2 (N» V) (630)
5 iel(m=2)0y3 (1, v)
ie'(m+%)¢¢§(% V)
The lower equation from (6.28) gives
co - pyL + (V — 2% )ps = Evpg =
T 6.31
= e vt (6.31)
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This can be substituted in the upper equation,

(V= E)Yr = —ca - pys

= —ca- 9(202 +E-V) o pYL (6.32)
Letting
62
flr) =5z TR (6.33)
lo-pf(r)a-p+V — EJgr =0 (6.34)
p=-iV, p*=-V ip=V
Recalling

(¢-A)(e-B)=A-B+ic-(Ax B) [3.88]

I
=
=
IS

+
19
<
&H

X
=

+
&h
Y
=
)
=

= [P+ (pf) -p+ic- (pf xp)
= —fV2-Vf-V—ig-(VfxV) (6.35)

In an orthogonal coordinate system,

of . 1of . 10f
hidq1 | “hydgy " hsOgs

(The distance, ds; = h;dg;). Here

hy =h, = g\/(cosh2 p — cos? )
(6.37)
hg = g sinh p sin v

where all the hs are weight functions.
Then

1afoy 1ofoy 1 fo

VY S T uon T Wovar 10600
_ 4 (9100 05 0%,
R2(cosh? pu — cos2v) "Opu o Ov dv
4 af

— - 6.38
R2sinh? psin? v 0¢ 0¢ ( )
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4f 0?> coshyu 0
R2(cosh? j1 — cos2v) [Q—/ﬂ + sinh @
9> cosv @  cosh®p —cos?v 92
2 sinv v sinh? psin? v @]

—fV? = —

(6.39)

What, then, is —ig - (Vf x V) ?
———

On one hand,

VfxVy= 9L of of (6.40)

M o

oz Oy 0z

(all hs equal 1 in cartesian coordinates)

On the other hand, denoting f, = gi )

VEXVY = | fy o s (6.41)
L@Z),u h_lulbu h—l%
= (fqub f¢¢u) + ey (quw,u f,u¢¢)

)—‘&

We will need the cartesian components of this determinant,

D = D1é1 + Dyés + Dség (6.42)

for the scalar product with

0 = 0161 + 09€9 + 03€3 (6.43)
1 ox dy 0z
Ou hu(a$a +O—?Ja to au)
1 ox oy 0z
Oy h—l/(O'xE +O'y$ —I—O'z%) (644)
o i(U oz +o 9% + %)
L7 " hg F09 " YOg " TFog




—ia-(fow)—

i ox dy
_huhyh¢ ( au+0y8 +UZ )(fl/w(b fqﬂ/]V)
ox oy
+ (02 * 5, + $ry + Uz )(fw/’u futbe) (6.45)
Ox oy
+ ( a¢+oya¢ gb)(flﬂ/}V wall)
From
T = gsinh,usinucosgb
Y= gsinh,usinysingt (6.46)
2= coshpcosv (zis in the molecular axis direction)
Jdr R ox
2 2 cosh usi g _ v
a2 cosh psin v cos ¢, 5 — 2 sinh p cos v cos ¢,
g—z = gsinhusinusinaﬁ
0 R
@ _ = cosh psin v sin ¢, @ = E sinh p cos v sin ¢,
on 2 o 2 (6.47)
@ = E sinh 4 sin v cos ¢ '
96~ 2 W sin v cos
% _ B inh v % =— R h 4 si
o 2 sinh p cos v, 5y — g coshusiny,
0z
Z -9
\ ¢
iR/2
D= .
Te D= (6.48)

(05 cosh psinv cos ¢ + oy cosh psinvsin ¢ + o, sinh ppcos v)(fuhy — fotby)
+(0 sinh p cos v cos ¢ + oy sinh pcos vsin ¢ — o, cosh psinv)(fothu — futbg)
+(—0g sinh psin v sin ¢ + oy sinh psinv cos ¢ + 0)(futby — futhy)]
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Ox

R
2
Ryhohe

_UIDI = —

[coshusinyc

+ sinh p cos v cos ¢(f¢wu

R
2%y

—og. D, = —
TV T o hyhy

[ cosh p sin v si

+ sinh p cos v sin ¢( fythu

R
202

hyhohes

_UZDZ = —

Recall that

0 1
Oy = y Oy =
iR/2
—ig-D = —
T T by

sinh pcos v(fu1y — faibu)
—cosh psinv(fy, — futbe)

cosh psinv cos ¢(fuhy — fotbv)
+ sinh p cos v cos ¢(fotby — futde)
—sinh psinvsin ¢(fu, 10, — futby)

+i [ cosh psinv sin ¢(fu by — fotbw)
(f¢>¢u - f/ﬂ%)
+ sinh psin v cos ¢( f, 10, — flﬂ,b#)}

+ sinh p cos v sin ¢

0s ¢(fll¢¢ - f(ﬂ/}l/)

— futbg) — sinh psin v sin ¢( f1h, — fuwu)}

2t qs(fl/l;z)(i) - f(i)wl/)

— f/ﬂ%) — sinh p sin v cos gb(fm/h/ - fu%z)u)}

[sinhu cosv(futhg — fotby)
— cosh psinv(fehu — f/ﬂ%)}

(6.49)

cosh psinv cos ¢(fuihg — foibu)

+sinh prcos v cos ¢ fy — futbs)
— sinh psin v sin ¢( fu 1y — fuidp)
—i| cosh psinvsin ¢(frihg — fotby)
(f¢¢u - fu@%)

+ sinh psin v cos ¢( 1y — fuT/Ju)]

+sinh g cosvsin ¢

—sinh pcos v(futhy — fotbn)
+ cosh usinv(fothy — fuibe)

It can be noted that the matrix in the above equation is of the form

(u +ile]
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iR/2

cosh? p1 — cos? v) sinh psin v

_ " (6.50)
7 (

cosh psinv(cos ) —isin@)(futhy — fotbn)

+ sinh p cos v(cos ¢ — isin @) (fothy — futhe)

—sinh psin v(sin ¢ +icos @) (futhy — futhu)

—sinh pcosv(fuihy — faibu)
+ cosh psinv( fothy — futbg)

sinh p cos v( fuhy — fotbu)
— cosh usinv(fgth, — fute)

cosh psinv(cos ) +1isin @) (futhy — fotbn)
+ sinh pcos v(cos ¢ +isin @) (fehu — futhe)
— sinh prsin v(sin ¢ — icos @) (futhy — futby)

Now note that

A(—1) oV A(—1) ov
Ju= (2c2+E—V)2<_a_/,L)’ Jv= (2c2+E—V)2(_E)’ (6:51)
ov
Jo ox 96 0,
e ¢ T
cosp Fising=< ., singticos¢ = , (6.52)
el? —iel?
4i c?
—Ioc-D=— 6.53
= R2(cosh? y1 — cos? v) sinh y sin v . 22+ E-V)? . (6.53)
oV cosh psinv e—i¢g_v¢¢
sinh p1cos v——1) _ v
ov : —ig ov
ov —sinh ycosv e %1%
Feoshpn VEW) — sinh psin v(ie?) (8_‘/2 - a—Vg)z/J
a 8 0v  Ov o
) iV
cosh psinv €' ——1)y
v . ov
OV — sinh p cos l/a—w¢
—sinh pcosv el¢—1/)¢ v
On — cosh p sin ua—v¢¢
o (OV 0 0V 0 0
. iy (V0 oV O 1
+sinh psinv(ie )(au " By 8H>¢

97



Recalling the Ansatz (6.30),

P =
1el(m_5)¢d)§(,u, v)
1(m+l)¢ S
e’z Y
¥y (1, v) (6.54)
i(m — $)elm =Dyl (1, 1)
gy = | 10+ DTN ) | 0%
i(m_1
—(m = H)e DS () | O
—(m+ 3)e "Dy (u,v)
the operation —ig - D gives for the upper row:
ov 1 .
Ai{ [sinhu cos Vo~ + cosh p sin l/g—:ﬂ i(m — §)w%e‘(m_%)¢
+ [cosh psin l/g—‘: — sinh y cos yg—‘;} e i(m + %)ei(mJF%)%/}%
o 9
— sinh psinv je~iPei(m+3)é (6—‘;% — ?9_‘: %) %}
4c?
A=— 6.56
R2(cosh? pu — cos? v) sinh usinv(2¢2 + E — V)2 (6.56)
and for the lower row:
1917 avV 1, . 1
. . Yy o s 1¢. - 1(m——)¢ L
Al{ [cosh,usmuay smh,ucosuau}e i(m 2)e 291
+sinhﬂsinviei¢ei(m5)¢(g—‘;% - ?9_‘:%) I (6.57)

_ [sinh,ucos uaa—‘: + cosh psin Vg—‘;} i(m+ %)ei(m+§)¢¢%}
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Dividing away the e'®-factors

= —ig-D =
{ smhucosy— —i—cosh,usmyg—‘;] (m— %) I
[ cosh p sin 1/—1/ — sinh p cos Vg—‘;)(m + %)
—sinhusiny<g—‘;6% - g—‘:%)}¢%}
_A{ [(cosh,usinu%—‘: — sinh p cos Vg—‘;) (m— %)
i (02 )
_ [Sjnh,ucos l/aa—‘: + cosh psin Vaa_"ﬂ (m + %)d}%}

Using the definition of A, (6.56),

4 f
—ig-D =
s +R2(cosh2,u—c0821/) 224+ E -V
cosv OV coshpu OV 1, L
(S22 0+ 2 - 2
sinv Jv  sinhp Ou 2
coshp OV cosv OV 1
+[<sinhu Qv sinv 8_u>(m+ 5)
ov.o o0V o
~(Gwow ~ aw )%

Kcosh,u oV cosv a_v>(
sinhpy v sinv Ov

ov.o o0V o
(G~ o)

cosv OV coshpu OV

[smy v sinh p @}(

1
L)k

X

(6.58)

(6.59)

Combining this result with the diagonal kinetic energy terms (6.38)—

(6.39) and (V' — E)v, noting that in (6.38)

—Vf-Vip=— 4 !

R2(cosh? pi — cos2v) 2¢2 + E —
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the upper equation finally becomes

4f 0> coshu O 0>  cosv 0
_R2(cosh2u—cos2z/) +(9—/12+ sinh p 8_,M+W+E$
2 2
_co§h éL .CO28 Y — })2
sinh® p sin“ v 2
oo _ovoy
ou O Ov Ov

1
+2C2+E—V[

(

(e * o 3!
(
)

h
coshpy OV cosv 8—V>(m

1
_202+E—V[ sinhpy dv  sinv Ou

ﬂé_ﬁﬁm}
+(V - E)yr =0

and the lower equation becomes

Af

R2(cosh? j1 — cos2v

5)

)"
{ 262+E V{(cosh,u oV cosv 8_V>(m_1
(5

sinh v sinv ou 2
ov.o 0V 9
opaw o aﬂﬂwl
1 cosv OV coshpu OV 1
+202+E—V[(+smy Ov  sinhp 8—,u>(m+§) (6.61)
ov.o oV 0o
+<8u ou T ov 8u>}w2
+[8_2+cosh,ug 8_2+cosyi
ou?  sinhp Op  Ov?  sinv v

2

cosh? pu — cos? v 1
- = (m + 5)?}%}

sinh? psin® v

+HV -—E}Wt=0
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7 Pseudopotentials

7.1

Introduction

Heavy elements are the nightmare of theoreticians.

e Many electrons

e Many orbitals

e Relativistic dynamics

Solution: Find a pseudopotential with a ground state which is the lowest
needed valence orbital.

7.2

e Local PP (the same for all values of [)

e Semi-local PP (different radial part for different values of 1):,

W = '-Pl‘/l(r)iplv (71)

!
Pr=Y_ [Im)(im]. (7.2)

m=—1

Works.

A bit of history
H. Hellmann, ”Quantenchemie” (1937), p. 111- . The Zusatzpoten-

tial for alkali metals

Ulr)=—=+=e 27 (7.3)

P. Gombas, Z. Phys. 94 (1935) (7) 473,479.
”Pseudopotentiale”, Springer, Wien (1967).
”Ein Besetzungsverbotpotential”.

A historical wandering: Phillips-Kleinman, Phys. Rev. 116 (1959)
287.

(T + V)b = ey, (7.4)
(& = T)i(r)
Vi) = S, (7.5)

Right &;, wrong norm of .

Fix: shape-consistent PP, norm-conserving PP. A discussion
about which term was in use first is reproduced in figure (7.1) (P.
Pyykkd, private communication to R. Nieminen, May 13, 1994).

101



e An own pseudo-potential for the spin-orbit interaction:

[
22 9AV
VEO(r) = > 5 _ll_(I)‘PlL-giPl. (7.6)
AVi(r) = Vi1 (r) = Vi_a(r) (7.7)
=3 Adyem (7.8)
k

P.A. Christiansen, Y.S. Lee, K.S. Pizer J. Chem. Phys. 71 (1979)
4445.
P. Hafner, W.H.E. Schwarz Chem. Phys. Lett. 65 (1979) 537.

e The electric polarizability of the ionic core, and the core-valence cor-
relation energy.

Vepp = —% > ()’ (7.9)
A

Here ay is the polarizability of core A and fy the electric field seen by
the core A.

P. Fuentealba, Thesis, Stuttgart (1984)

W. Miiller, J. Flesch, W. Meyer, J. Chem. Phys. 80 (1984) 3297,
3311.

7.3 Where to get pseudopotentials
e USA:

— K.S. Pitzer

— Los Alamos (Hay & Wadt)
— P.A. Christiansen

— W. Ermler

— W.J. Stevens (ECP=PP)

e Canada, Sweden, Spain: Huzinaga, Wahlgren, nodal model poten-
tials.

e Germany: Stuttgart (Dolg, Stoll, Schwerdtfeger, ...) ”Energy con-
sistent PP”.

www.theochem.uni-stuttgart.de

e France: Toulouse (Daudley, Teichteil, ...)
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pyykko@cc.helsinki.fi
rnieminen@csc.fi

13 May, 1994

History of pseudopotentials

oA

Dear Risto,

As you may recall we had some time ago a friendly

"who was first" discussion on the history of the
"shape-consistent" or "norm-conserving" pseudopotentials.

The former name is used in chemistry and the latter in physics;
the common feature of both is that the pseudo wave function
reproduce the full wave function in the valence region. (1)

At the workshop of Pseudopotentials of the REHE

programme of ESF in Toulouse on

Monday, I asked the members of the conference how they thought
that these ideas were originally developed.

Apparently the first article was /1/ in 1975. The idea (i) is
clearly stated in Fig. 2 and pp. 288-.

According to Walter Ermler, who was at Berkeley in the late
1970’ies, there was communication between the chemists, like him
and the physicists, like Dr. A. Zunger, working with M. Cohen.
Anecdotally, "we were rather shouting at each other than
collaborating", though.

The first paper from Berkeley/Chemistry seems to be /2/. It quotes /1/.
The Acknowledgement of /2/ thanks A. Zunger for a preprint of /3/,

"in the revision to final form of this manuscript", and

also L. Kahn for private communications on his work.

Thus the first papers /2, 3/

and the Physics and Chemistry efforts indeed seem entirely parallel.
None of the papers /1-3/ uses any particular name for the idea.

In his review /4/ Kahn quotes for the ’shape-consistent’
idea (i), his eq. (33), also /5, 6/. Kahn et al. /7/ also clearly
discuss the idea (i) in their II.B.ii, without quoting /1/.

Hamann et al. /6/ have the title ’Norm-conserving pseudopotentials’
and quote /3, 5/ but not /1, 7/.

Conclusion: The work in the references /1, 7 5/ seems to preceed
that in ref. /3, 6/. The name ’norm-conserving’ form 1979 may be
older than the name ’shape-consistent’, whose exact origin I have not
found. I believe that it was used in the Los Alamos workshop on the
subject in 1981.

1. Ph. Durand and J.-C. Barthelat, Theor. Chim. Acta 38 (1975) 283-202.

2. P.A. Christiansen, Y.S. Lee and K.S. Pitzer, J. Chem. Phys. 71 (1979)
4445-4450.

3. A. Zunger, J. Vac. Sci. Technol. 16 (1979) 1337-1438.

. L. Kahn, Int. J. Quantum Chem. 25 (1984) 149-183.

5. A. Redondo, W.A. Goddard III and T.C. McGill, Phys. Rev. B 15 (1977)
5038-5048. Check ref. 6-7 there.
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Figure 7.1: e-mail, May 13, 1994
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8 On QED

8.1 Introduction

Underpinning the Dirac-level theory we have quantum electrodynamics, QED.
It is the theory on virtual photon processes. The two simplest terms are de-
noted by the Feynman diagrams

—

Figure 8.1: Vacuum polarization

Figure 8.2: Self-energy

The lowest-order vacuum polarization (VP) term can be expressed in
analytical form (Uehling 1935). It is independent of the nuclear charge, a
property of the vacuum. Furthermore, it is attractive. The self energy (SE)
is larger than the VP and of opposite sign. Both can be related (to lowest
order) to |¥(0)[2. The QED is a covariant theory.
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8.2 Some formulas for vacuum polarization

Vel () — —%1 +S(r) = Vi + Vi, (8.1)

50 =22 [Tew( -2 (14 )X e )

The Uehling function S(r) can be fitted to the two-parameter expression

S(r) =« {exp(—dlrQ)C’l In(a/r) — Cs]

1 exp(—2r/a
+(1 — exp(—di7?)) <?3> dg(;))o(ﬁ - {51.5 (8.3)

Here the free parameters d; = 0.678 - 10” and dy = 1.4302. The three

constants are
2 5
Ci=—, Co==+4C, C3:4\/E (8.4)
21 6
Also see figure (8.3).
1e-05 . . .
Analytical fit
-+ Numerical calculation
1e-06 }
1e-07 }
1e-08 s : . .
le-06 1e-05 00001 0001 001 0.1

r/a.u.

Figure 8.3: The Uehling function rS(r)
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8.3 Some formulas for self-energy (vacuum fluctuation)

For light elements one can use the density formula

ESE = 3 In

4703 n 1 2Ky
(aZ)? (aZ)?

+ 2oy (8.5)

Alternatively the total Lamb shift is obtained to lowest order from the den-
sity as

473 1 2K,0 19 9
Ep, = 1 —1 — w0 8.6
LT3 [“(aZ)z Bz tao)lPO (8.6)

For heavy elements, evaluate Egg from the 2s SE/VP ratio of Johnson and
Soff (1985), The total valence-electron Lamb shift becomes

(Esg + Evp)

EL - <VUe> EVP

(8.7)

For the valence electrons the order-of-magnitude of the Lamb shift re-
mained unknown, beyond lithium, until the two papers

[1] P. Pyykko, M. Tokman, L.N. Labzowsky, Phys. Rev. A 57 (1998) R
689

[2] L. Labzowsky, I. Goidenko, M. Tokman, P. Pyykko, Phys. Rev. A 59
(1999) 2707

[1] used the density-based or the "ratio” methods. It also introduced a
semiempirical ” A-model” (A’ for the nuclear A-value). In [2], using spline-
functions in a local model potential, the Feynman diagrams were actually
calculated for the ns valence electrons of alkali and coinage metals. The
results were very similar: For Z Z 50, the Lamb shift is about -1% of the
Dirac-level effects. Figures (8.4) and (8.5) give an idea of the size of the
effects.

For lighter elements it is, relatively speaking, larger. A simple way to
estimate it is to scale the Darwin term, as suggested in

[3] P. Pyykko, K.G. Dyall, A.G. Csaszér, G. Tarczay, O.L. Polyansky
and J. Tennyson, Phys. Rev. A 63 (2001), 024502, 1-4

S8a 19

ELamb EDarwin — ——[_9] N—InX 8.8
/ [~ 2W(02) - X + ] (83
; 20F (Za) 8«
ELamb EDarwm — _ .
/ T 157 (8.9)
- 8a 1
ELamb EDarWln | 1
/ = n() (5.10)

Equation (8.10) was introduced by Bjorken and Drell (1964). The results
of using the above three equations can be studied in figure (8.6).
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—— ns orbital energy
-->¢-- Relativistic contribution
-->¥K -- Breit interaction
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..... E Lamb shift
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Figure 8.4: Dirac-Fock contributions for coinage metals. From P. Pyykko,
M. Tokman and L.N. Labzowsky, Phys. Rev. A 57 (1998) R689

Recall the Pauli Hamiltonian
2 2 2

hy = _%34 - %Wv - %g. (VV x p) (8.11)
where for a Coulomb potential
V2V = —4Zm6(r) (8.12)
X is related to the Bethe logarithm K,q:
X =2K,0/(aZ)?* ~ 11.77,16.64,15.93, ... (8.13)
for 1s, 2s, 3s, ...

The F(aZ) is used to express the exact self energy as

EYY = o’ ZF(aZ)(8(r)) (8.14)
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Figure 8.5: Ratios of the Lamb shift to the relativistic contribution. From
L. Labzowsky, I. Goidenko, M. Tokman, P. Pyykko, Phys. Rev. A 59 (1999)
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0.1 T T |||||||Eq(8I8)I_|_I ]
B Eq.(89) X 2
N Eq. (8.10) -~ ]
. X n
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A
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e
g
= Lk
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0.01 —
B 1
1

Figure 8.6: The ratio EFlamb/gDarwin  Eyom P, Pyykké et al. , Phys. Rev. A
63 (2001), 024502, 1-4

110



181 2

Binding energy Ep (point nucleus) -93459.89
Corrections:

Finite nuclear size 49.13
Self energy (order «) 196.68
VP: Uehling contribution -41.99
VP: Wichmann-Kroll contribution 1.79
Total vacuum polarization (order o) -40.20

SESE (2" order SE) (a) (b) (c)
VPVP (2" order VP) (a) (ladder diagrams) -0.07
VPVP (b) (Kéllén-Sabry contribution + h.o.) -0.05
VPVP (c) (Kéallén-Sabry contribution) -0.29
SEVP (a) (b) (c) 0.42
S(VP)E 0.05
Radiative recoil (estimate) 0.00
Reduced mass 0.26
Relativistic recoil 0.08
Total recoil 0.34
Nuclear polarization (bottleneck for accuracy!) -0.02
Sum of corrections 205.99
Resulting total binding energy -93253.90
Lamb shift (theory) 205.73
(experimental) 202(8)
Figure 8.7: One-electron Lamb shift contributions for '97Au"* (hydrogen-

like gold). Energy values are given in eV. From T. Beier et al., Phys. Lett. A
236 (1997) 329-338
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9 On Transformed Hamiltonians

9.1 General

If the four-component Dirac equation is approximated by some two-component
form, certain savings can be obtained. Typically, the small components are
eliminated and two separate equations are introduced for atomic j =1 + %
states. For molecules, one typically divides the Hamiltonian into a quasirel-
ativistic (spin-orbit averaged) part and the spin-orbit part, diagonalized at
some stage. Special attention must be given to variational stability.

One can follow these developments in Table 2.2 of RTAM I-1II and the
applications in Table 7.3 of RTAM III. For reviews, see Hess and Marian
(2000a).

9.2 The Foldy-Wouthuysen transformation

Foldy and Wouthuysen (1950) presented a systematic procedure for de-
coupling the large and small components of the Dirac equation,

hp = ca- (p—eA) + Bmc* + e® (9.1)

= fBmc®*+ 0+ €
(with @ the Coulomb field) where the "odd”, O, and ”even”, €, parts satisfy

O=ca-(p—ed), {8,0} = 0,

& =ed, 3,&8] = (9:2)

Any operator H can be separated to

0= L(H - BHP)
2 (9.3)
&= §(H+ﬂﬂﬁ)

We shall annihilate the ”odd” part up to some power of 1/mc? through the
transformation

O =Yy (9.4)
A good choice is
—i80 LT
5= 2me? i 2me (9:5)

where 7 is represents the generalized momentum.

113



A third order FW Hamiltonian becomes

1
R =mc* el + 2—7‘(’2 (9.6a)
m
- Xps-B (9.6D)
m
1
- m}fl (mass-velocity) (9.6¢)
+ ﬁ B (Darwin) (9.6d)
m2e
- %ﬁ -Exp (spin-orbit) (9.6e)
m3c =
eh 1 9
- EW(S -B)m® (rel. corr. to Zeeman) (9.6f)

e is the charge of the particele, i =1, s = %0’. [See Bjorken-Drell (1964),
eq. (4.5), Moss (1973), eq. (9.75)].

This expression can be used in 1st-order perturbation theory like the
Pauli one. It is not useful in variational calculations as both the mass-

velocity term h,, = —#p‘l and the Darwin term hp = #Vﬂ Y —g?é(r)

are strongly singular. One could just as well use them to first order, O(c™2).
Contracted basis sets could however allow variational use.

9.3 The Cowan-Griffin equation

Cowan and Griffin (1976) or Wood and Boring (1978) as well as other
authors use the 2nd-order equation of Dirac (1928a), putting all the norm
in the large component.

v

P+ 5P+ (—me+ Q=0
D o7

Q'—;Q+(—mc+ )P =0

C K

=— (P'4+-=P .
@ mc2—|—E—V( +7“) (08)
Q= (P P L) (P )P 09)
me2+E -V r 2 (me2+E—-V)? '



c K K K c K
- = (P 4+Zp - - - -  (PP+Z=P
m02+E—V( i 7"2) rmc2—|—E—V( +r)
v’ K —mc? +E -V
+(mc2+E_V)2(P’+;P)+fP:0 |E=mc®+¢
2 !

ny bp _Fp Fp K Y (piE
P+7“P 'rQP TP 72 +2m02+5—V(P+rP)

g (ome e~ V) (e~ V)P =0

+1) Vv’ K
P”—K(LP 2 ~V)P+——-——— (P +-P
r2 +2mfe ) +2m02—|—£—V( 5 )
ha+hso
1
+5(E-V)?*=0 (9.10)
- h
k(k+1)=1(+1) (9.11)

Quasirelativistic usage: put fooo P2dr = 1! (This is the only approx-
imation!)
Dirac (1928) [PRSL A 117 (1928) 610]: Exact 2"d-order equation.

For the non-relativistic case,

1(1+1 P

r—0: P’/:—(“; )p = Por't, Ro— =7 (9.12)
r T

r—oo: P'=-2meP = Poxe, =+v—2me (9.13)

For the relativistic case,

por’, y= ”H2_(§)2 (9.14)

9.4 Douglas-Kroll-Hess

Instead of expanding in powers of 1/c one can rather expand in powers of
the coupling strength, Zach (Douglas and Kroll 1974, Hess 1986, Jansen
and Hess 1989). This leads to operators which are bound from below and
can be used variationally.

The DK formalism, which is an all electron method, is based on a series
of unitary transformations Uy, Uy, ... of which the lowest is the free-particle
FW-transformation defined by

{ Up = A(1 + BR)

Uyl =(RB+1)A (9.15)
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where we have

E, + mc?
A= ”pi 1
2F, (9.16)

- =2 9.17
- E,+mc? (9-17)

E, = c\/p? + m2c? (9.18)
Applying Uy to hp = ca-p+ (8 — 1)me? +V gives
UohpUy ' = BE, + & + 01 = Hy (9.19)

with

E1=AV +RVR)A
(9.20)
0, =p0ARV —VR)A

For chemical purposes one more transformation is needed. One uses

Up=/1+WE+W; (9.21)

with Wy anti-hermitian, WIT = —Wj. Performing the transformation through
Uy and expanding the square root in powers of Wy,

U H\U' = BE, — [BE,, W] + &1 + Oy
1 1
+§ﬁEpW12 + waﬁEp — WABE,W;
—I—[Wl, (91] + [Wl, 81] + ... (9.22)
omitting higher order terms. The first-order odd term is eliminated by

setting
[BEp, Wi] = 01 (9.23)

and solving for Wj. It’s momentum space integral operator is
Wib(p) = [ &5 W(p. () (9:24)
with a kernel

Vip,p')

Wi(p,p)) = AR — R)A'——==_
i) = Al M E +E,

(9.25)

V(p, p') is the Fourier transform of the external potential. The primed quan-
tities are expressed in terms of the variable p’. The final result is

1
Hdecoupled ~ ﬂEp + 81 _ 5[W1EPW1 + §[W12’ Ep]] . (926)
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The spin-orbit terms can be separated using
(¢-A)(c-B)=A-B+ig-(AxB) (9.27)

see Hess et al. (1995). The final result becomes

el. nuc.

. A;
Ht. = 2z, Lia
SO Zze E+m (Ti XEZ)E +m
AiA;
2 Tij
— 2 9.28
6z:E—Hn r” xp) (J+QJ)E+m (9:28)
A series expansion in powers of ¢~2 becomes
A, 1 3p?
L= R (9.29)

E;4+mc?2  2mc?  16m3ct

The DK Hamiltonian has now been implemented in a large number of
programs, to mention a few: MAGIC, MOLCAS, PARAGAUSS and those by
Hess himself.

For calculating properties, the operator has to be transformed as well, if
transformed Hamiltonians are used. This could be quite tedious.

9.5 Zero Order Regular Approximation, ZORA
The previous elimination procedures treated ?n;;/ as a small parameter.

Sufficiently near the nucleus this is not true. Here

w(r) = (1—V_E1) :i}(V_E)n (9.30)

2mc? 2mc?

will only converge when ]‘2/7;5

| < 1. By rewriting the expression as

2mc? E ) -1
Vv

= 1
w(z) 2mec2 -V ( + 2mc? —

(9.31)

we obtain an expression in
1

2me? -V
which will converge. This leads to the Zero (or higher) Order Regular Ap-
proximation, ZORA (E. van Lenthe et al. 1993-).
The ZORA-level approximation was already given by Chang, Pélissier
and Durand (1986) or by Heully et al. (1986).
One problem with ZORA is the electric gauge invariance but this can

be approximately remedied (E. van Lenthe, Baerends, Snijders 1994, van
Wiillen 1998).
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The scalar scaled ZORA equation is (Faas et al. 2000)

1
g [p- Bp + V. — Kyy ]y = €5edy, (9.32)

with the scaling factor

1
S =1+ (¥p- C—2B2Q|\I/i> (9.33)

CQ

Ve = Ve + szp

J and K are the usual Coulomb and exchange operators, respectively. Van
Wiillen’s idea was to set B = By = ¢2/(2¢2—Vp), Vo depending on the atoms
only.

ZORA has been implemented in packages as GAMESS-UK, ADF and DIRAC.

F. Wang et al. (2000) include spin-orbit effects at DFT level in

2
e 82026—_‘/02 p+V]p==E¢ (9.35)

The separated SO operator becomes

.
hso = ig - [p % X 0 (9.36)

302 V)Y

9.6 Direct Perturbation Theory, DPT

The wave function and its metric will have to be an analytic function at the
limit ¢=! — 0.

The Direct Perturbation Theory (DPT) has been developed by Sewell
(1949), Titchmarsh (1962), Rutkowski (1986-), Kutzelnigg (1989-).
See also Franke (1994).

Instead of the original Dirac equation

V-F co - p (o
co-p —2mc*+V - E (/s

=0 (9.37)

one now writes

=0 (9.38)
a-p —2m+t(V-E)/?) \c-
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with the parameter ¢ = 0 and ¢ = 1 corresponding to the non-relativistic and
relativistic cases respectively. The NR case corresponds to the Lévy-Leblond
(1967) equation. Both E and

U — (2
e

are expanded in powers of ¢ (or ¢72). A key paper on the subject is Kutzel-
nigg (1996).

9.7 Further examples
9.7.1 RESC

Hirao (see Nakajima et al. 1999, 2000) start from the inconvenience of
having the energy in the 2nd-order equation

62

[V+(g.2)2m02—v+E

(¢-p)]yr = By (9.39)

WLl +atzlp) =1, s = Xy,
They suggest replacing

E—-V =T =m2c + p2c — mc? (9.40)

which is independent of the eigenvalue FF. The Hamiltonian can again be
separated into spin-free and spin-dependent parts.

Barysz (2000) has analyzed this family of RESC (Relativistic scheme
for Eliminating Small Components) Hamiltonians. Although they can show
signs of variational collapse already at moderate Z (=~ 80), the result for
valence electrons can be close to Douglas-Kroll ones.

9.7.2 AMFI

The Atomic-Mean-Field-Integral method eliminates the spin-other-orbit terms
in terms of an effective one-electron, one-centre potentials. (Hess et al. 1996,
Marian and Wahlgren 1996, Schimmelpfennig et al. 1998ab, Tatchen and
Marian 1999).

An average over the two-electron terms is taken for the valence shell,
and thus large two-electron integral files can be avoided.
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