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Chapter 1 

 
 
 

General Introduction 

 
 
Part of the phenomena in the chemistry and physics of atoms and molecules find their origin in the finite 
speed of light and need to be described in the framework of relativistic quantum mechanics. Relativity 
reveals itself for instance in the fine details of spectra of molecules and atoms and can nowadays be 
accessed by very accurate measurements, even for the elements in the upper region of the periodic 
system. If one wants to understand the chemistry and physics of substances containing heavy elements, 
for which the electrons close to the atomic nuclei acquire velocities approaching the speed of light, one 
needs a relativistic quantum mechanical description from the outset. In this chapter an introduction will 
be given on the importance of relativity in chemistry with a brief historical overview that puts my field of 
research, relativistic quantum chemistry, in perspective. Finally, the goals of this thesis and an outline of 
its contents are presented.  
 
 
1.1 Relativity in chemistry 

The ab initio study of molecules and crystals that contain heavy elements is a growing field of research. 
Most of the interesting chemical properties of light molecules can be satisfactorily explained on the basis 
of the Schrödinger equation or, in other words, in the framework of non-relativistic quantum mechanics. 
This was also the opinion of the founder of relativistic quantum mechanics, P.A.M. Dirac, as one can 
read in the first two lines of his paper1 in 1929 on "Quantum Mechanics of Many-Electron Systems". 
However, if one wants to obtain very accurate results, even for systems as light as the H2 molecule, one 

has to consider relativistic contributions. Properties that depend on electron spin such as the well-known 
yellow 2D emission line in the spectrum of the sodium atom, can in fact only be properly explained by 
extending the Schrödinger equation with relativistic terms.  
Relativity has a considerable and sometimes dominating influence on the properties of molecules or 
crystals containing heavy elements. Theoretically, relativity can be accounted for either by introducing 
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relativistic corrections into non-relativistic models or, more fundamentally, by the use of a relativistic 
quantum mechanical model from the outset. The latter approach is used in this thesis.  
In every day life there are several phenomena that are intimately connected to relativity. The difference 
in color between the noble metals gold and silver is a conspicuous example. The color arises from an 
optical transition in which electrons are excited from a filled d-band to the Fermi level of mainly s-
character. In silver this transition lies in the ultraviolet, but in gold a relativistic shift to the optical region 
occurs leading to the observed yellowish color. We will return to the origin of this shift later in this 
section. The extent to which relativity determines the catalytic properties2,3 of platinum, of interest to the 
chemical industry, is a subject of study. Another interesting example is the lead battery that would not 
work in a non-relativistic world. The so-called "6s inert pair effect" (see for references 3) inhibits the 
oxidation of Pb2+ to Pb4+ which profoundly effects the redox reactions that drive the battery. 
In addition to these general examples there are many more special scientific phenomena that require 
relativity for their explanation. Spectra showing "forbidden" transitions or spin-orbit induced avoided 
crossings of potential energy curves are well-known examples. As said before, these features are not 
restricted to molecules containing heavy atoms but also occur in systems with only light atoms. A recent 
example of the importance of relativity for the properties of light systems is the study of the chemical 
bonding in AlH2

4. Other aspects of relativity in chemistry are the preference of certain reaction paths 

and certain coordination numbers of heavy atoms in molecules and solids. For a further discussion of the 
influence of relativity in chemistry the reader is referred to the references at the end of this section. 
Careful readers might have noticed that up to now the often used term "relativistic effects" has been 
avoided. Relativity is not something that causes effects that can be studied experimentally by switching it 
on and off. It is one of the fundaments of physics that is always present. Whenever the term "relativistic 
effects" is used, a difference is meant between the properties as they would appear in the non-relativistic 
Schrödinger world, in which the speed of light is implicitly assumed to be infinite, and in the (real) world, 
where the speed of light is finite. The latter is described to a very good approximation by Dirac's 
relativistic quantum mechanics5, in agreement with Einstein's theory of special relativity6, where the 
speed of light is a fundamental constant of nature.  
In the study of atoms and molecules it is customary to separate these differences in "direct" and 
"indirect" effects. The best known direct effect arises from the coupling between the spin and orbital 
angular momenta of electrons. This so-called spin-orbit interaction leads to a breakdown of optical 
selection rules that follow from the ad hoc introduction of spin in the non-relativistic description. In a 
relativistic description for example, spin-forbidden singlet-triplet transitions7 are allowed and also 
observed in spectra like the excitation spectra of the copper halides in chapter 3. Spin-orbit interaction 
not only affects spectroscopy but also has an effect on the chemical bonding properties of molecules. 
The interaction splits the shells with an angular momentum l > 0 into two subshells, which differ in 
energy, with a total angular momentum of j = l - 1/2 and j = l + 1/2. In valence shells both subshells are 
required to participate in bond formation. The p1/2 and the p3/2 subshells for example are a linear 
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combinations of px, py and pz functions and in a linear molecule both subshells are required to form a σ-
bond. For heavy elements the energy separation between the two subshells can be large so that the 
splitted orbitals may no longer be involved in bonding to the same extent with great effect on the 
bonding properties. An example is the ground state of the iodine molecule which is discussed in chapter 
5.  
A second direct effect is the contraction of the s and p shell orbitals which is a direct consequence of the 
fact that the mass of a particle increases with its velocity in the theory of special relativity. When 
electrons occupy the inner s orbitals they approach the atomic nuclei very closely and obtain higher 
average velocities than when they occupy the outer orbitals. Consequently their masses increase and 
their average distance from the nucleus decreases with respect to that expected from the non-relativistic 
description. Also the ionization potentials associated with these electrons are larger than one would 
obtain non-relativistically. All s orbitals have to be orthogonal to each other leading to an increase of the 
ionization potentials also for the outer (or valence) s-shells. The valence s and p orbitals also show a 
radial contraction which, however, is caused by direct as well as indirect effects (for a more detailed 
discussion see references 8 and 9). The origin of the color of gold mentioned before lies in the 
stabilization of the outer 6s shell (and to a lesser extent in the destabilization of the 5d shell).  
 

 
 
Figure 1.1. Non-relativistic and relativistic electron density plot10 of the 7γ6g spinor in UF6.  

 
The influence of this contraction on the bonding properties in a molecule is visualized for the uranium 6s 
in uranium hexafluoride (UF6), a molecule that is discussed later in this thesis. In a non-relativistic 

calculation one finds a bond between the uranium 6s and the surrounding fluorine 2s orbitals. However, 
this bond practically disappears due to the relativistic contraction (see the yellow regions in figure 1.1). 
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For electrons in p shells a similar contraction is found but the effect is smaller. Besides this contraction 
there is also a spin-orbit effect for the p shells leading to the two subshells p1/2 and p3/2. Combining 
spin-orbit coupling and radial contraction leads for the p3/2 subshell to a near cancellation of the 
relativistic effects whereas the two effects reinforce each other for the p1/2, leading to a contraction and 

an increase of the ionization potential comparable to the s-shell with the same principle quantum number. 
The indirect effect is caused by the relativistic contraction of the s and p shells. As a result of this 
contraction a better screening of the nuclear charge occurs leading to radial expansion and smaller 
binding energies of the d- and f-shells.  
It can be concluded that relativistic effects can have a considerable influence on the properties of atoms 
and molecules which explains the interest in the development and  applications of relativistic quantum 
chemistry. More extensive reviews dealing with the influence of relativity on chemistry can be found in 
the literature3,7,11-13. 
 
1.2 Relativistic quantum chemistry 

Chemistry is concerned with the formation and breaking of chemical bonds between atoms. These 
bonds arise from relatively subtle changes that can occur in the behaviour of electrons when atoms or 
molecular fragments approach each other. Since the behaviour of electrons is governed by quantum 
mechanics, the study of the chemical bond or, more generally, the study of the electronic states of 
molecules as a function of the positions of the constituting atoms is called quantum chemistry. The basis 
for the quantum mechanical treatment of electrons is the Schrödinger equation including the spin in the 
electronic degrees of freedom and imposing the Pauli principle on the wave function. Yet, because it is 
not based on relativistic mechanics this equation has fundamental flaws and fails for instance in 
describing spectroscopic phenomena, like for example the so-called "duplexity phenomenon", and the 
chemical bonding properties of heavy atoms. Relativistic quantum chemistry is based on the Dirac 
equation that correctly describes the quantized relativistic motion of one-electron systems. Dirac5,14 
linearized the relativistic free-particle energy expression (E2 = m2c4 + c2p2), exploring the relation 
(σ.p)(σ.p) = p2, and came with his relativistic analogue of the Schrödinger equation. His equation was 
able to explain from first principles phenomena like the duplexity problem and the anomalous Zeeman 
effect. When analyzing his Hamiltonian in the presence of an arbitrary electromagnetic field, Dirac found 
that its properties could indeed be interpreted as describing an electron with a spin 1/2 as a degree of 
freedom and carrying a magnetic spin moment. 
In chemistry one rarely works with one-electron systems which means that the one-electron Dirac 
equation is not sufficient. A generalization to the many-electron equation can be made starting from the 
Quantum Electro Dynamics (QED) framework. The two-electron interaction, obtained from QED, 
consists of a series expansion of the  interaction where the zeroth-order and largest term is the Coulomb 
repulsion, similar to the non-relativistic electron-electron interaction. Of the remaining terms one 
generally includes the Breit interaction15, which Breit already derived in 1929 from classical relativistic 
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mechanics. At this point it is convenient to separate the nuclear and electronic motion by the Born-
Oppenheimer16 approximation. This gives a many-electron Dirac-Coulomb equation where the 
electrons move in a fixed frame of nuclei. The general method to solve this electronic equation is to use a 
relativistic analogue of the Hartree-Fock approximation which turns the many-electron equation into an 
effective one-electron equation. In 1935 Swirles17 was the first to derive the Dirac-Hartree-Fock 
(DHF) equations for an atom. Nowadays there are very good and fast computer programs18,19 for 
atomic systems that go beyond the Hartree-Fock level and even include higher order Quantum Electro 
Dynamic effects like the Breit interaction15, electron self-energy and vacuum polarization (the last two 
make up what one calls the Lamb-shift20). 
If one wants to study molecules rather than atoms with the DHF approach one has to use approximate 
techniques similar to those employed in non-relativistic molecular quantum chemistry. The main 
methodology is to use a basis set expansion to approximate the one-electron orbitals. A relativistic 
analogue, however, is not quite straightforward and much effort has been put in solving the Dirac 
equation by basis set expansion, that can provide the proper balance between the large and small 
component basis sets. The first DHF calculations were flawed because the necessary relations between 
the large and small component wave functions could not be realized in the basis set used for the 
expansion of the wave function. Analysis of the problem resulted in concepts as kinetic21-26 and atomic 
balance27-29 that are nowadays used to construct adequate basis sets. As a results also other more 
fundamental problems, like the  so-called "Brown-Ravenhall disease"30, are now better understood.  
In the last 20 years a large number of molecular codes have been developed31-37 within the relativistic 
framework. The program we will use to perform accurate relativistic ab initio quantum chemistry 
calculations is MOLFDIR (MOLecular Fock DIRac), developed in our group at the University of 
Groningen. Patrick Aerts26 started the development of this molecular Dirac-Hartree-Fock program in 
1981 after attending a NATO Advanced Study Institute on "Relativistic Effects in Atoms, Molecules 
and Solids". The first closed shell version was ready in 1984. To overcome the restrictions of closed 
shell systems and to be able to handle more complex open-shell systems Olivier Visser38 adapted the 
closed shell DHF to include one open shell, based on Roothaan's average of configuration energy 
expression. He also constructed a configuration interaction (CI) program to obtain the individual states 
of the averaged open-shell manifold. To further improve accuracy one needs to include electron 
correlation effects. Luuk Visscher39 therefore implemented a general multi-reference CI (MRCI) and a 
singles and doubles Coupled Cluster (CCSD) method40. A very recent development is the addition of 
codes to calculate various properties and to study the response of properties41 to external perturbations 
within the Random Phase Approximation (RPA).  
Computer programs based on the Dirac equation are more expensive, in terms of required computer 
resources, then their non-relativistic counterparts. Various levels of fundamental42-51 and numerical 
approximations have been developed over the years. At the end of chapter 2 we will discuss an 
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important numerical approximation in the evaluation of the electron-electron interaction of the small 
component wave functions. 
 
1.3 Aim and structure of this thesis 

In the past 15 years relativistic quantum chemistry theory and computer codes have evolved to a high 
level of physical accuracy. The current MOLFDIR code enables us to study the properties of various 
chemical systems and to address the influence and importance of relativity in chemistry. Except for some 
further developments and fine tuning of the MOLFDIR program package, discussed in chapter 2, this 
research and thesis are devoted to the calculation of chemically and physically interesting properties of 
chemical compounds which are significantly influenced by relativity, and to try to understand these from 
theoretical analysis of the calculated wave functions. 
There are two reasons to do these calculations. The first has to do with the fact that a large number of 
methods has been developed and applied that account for relativity in approximate ways. Calculations 
that are performed within a fully relativistic framework can serve as a benchmark for these methods. 
However, benchmark calculations are just a small part of the work that can be done with a fully 
relativistic approach. There are many phenomena, as core-hole spectroscopy, indirect spin-spin 
coupling (NMR) and electric field gradients (EFG), that can be studied with approximate computational 
methods but can (or need to) be improved upon in order to get an accurate description of the relativistic 
effects. We will see for example for the interhalogen compounds that even for rather light systems it is 
difficult to include relativistic effects in approximate methods for the calculation of electric dipole and 
quadrupole moments. The chapters 3 to 7 discuss a variety of chemical systems and also a variety of 
chemical properties that have been studied within the fully relativistic framework. These chapters are 
based on previously published articles (see the list of publications at the end of this thesis). Finally, we 
will end with a summary in chapter 8.  
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Chapter 2 

 
 
 

Theory and Methodology 

 
 
The calculations presented in this thesis are performed within a relativistic framework. The starting point 
is the one-electron Dirac Hamiltonian. First we will go into the basic theory of the Dirac Hamiltonian and 
its extension to many electrons. Then, by gradually introducing more and more well defined standard 
quantum chemistry approximations, we will arrive at the relativistic quantum chemistry model that is 
implemented in the MOLFDIR program package. We will go in some detail into the methodology that is 
used in the program package. Finally an overview of the MOLFDIR program package is given. 
 
 
2.1 Basic theory 

In 1928 Dirac proposed5,14 a one-electron equation that was in accordance with both quantum 
mechanics and the laws of special relativity. The time-dependent equation (2.1) represents an electron 
(with charge -|e|) moving in an arbitrary electromagnetic field described by the scalar potential φ and the 
vector potential (Ax, Ay, Az). 

 

[c αx px + ec Ax  + c αy py + ec Ay  + c αz pz + ec Az  + 

           
- eφ + β  mc2  . 14 ] ψ= ih Ž

Žt
 ψ

   (2.1) 
 
where 14 is a 4x4 identity matrix and the matrices α  and β  are given as 

 

αx = 
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  αy = 
0 0 0 -i
0 0 i 0
0 -i 0 0
i 0 0 0

  αz = 
0 0 1 0
0 0 0 -1
1 0 0 0
0 -1 0 0

  β  = 
1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

   (2.2) 
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The Dirac equation is a 4-component set of coupled first order differential equations with 4-component 
solutions ψ 
 

ψ = 

ψα
L

ψβ
L

ψα
S

ψβ
S

          (2.3) 

 
The labels L, S, α and β , not to be confused with the α and β  matrices of (2.2), that are used here will 
be discussed in section 2.1.1. 
The 4-component equation can also be written as a 2-component equation of 2-component spin-
orbitals or spinors with the α  and β  matrices written as   
 

αx = 02 σx
σx 02

  αy = 02 σy
σy 02

  αz = 02 σz
σz 02

  β = 12 02
02 12

    (2.4) 

 
in terms of the Pauli52 spin matrices 
 
σx = 0 1

1 0   σy = 0 -i
i 0   σx = 1 0

0 -1        (2.5) 

 
and 12 and 02 are the two dimensional identity and null matrix respectively. 

We will use time independent potentials so that the time dependent part can be split of and we are left 
with the time-independent equation 
 

mc2 - e φ  . 12 c σ⋅ p + e σ⋅ A

c σ⋅ p + e σ⋅ A -mc2 - e φ  . 12
 

ψL

ψS
 = ε 

ψL

ψS
     (2.6) 

 
Here σ.p and σ.A represent the inner product of a vector of three Pauli spin matrices (σx, σy, σz) with 
the vector of the momentum operator (px, py, pz) and the vector of the vector potential (Ax, Ay, Az) 

respectively. This form of the time-independent Dirac Hamiltonian is most widely used for computational 
purposes. We will first discuss some aspects of the one-electron Dirac Hamiltonian. 
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2.1.1 The Dirac equation 

The Dirac equation for a free particle in the two-component notation reduces to 
 

mc2⋅ 12 c σ. p

c σ. p - mc2⋅ 12
 

ψL

ψS
 = ε 

ψL

ψS
      (2.7) 

 
Solving equation (2.7) yields two separate sets of solutions, the positive energy solutions with ε ε mc2 
and the negative energy solutions with ε ≤ −mc2. So the positive and negative energy solutions are 
separated by a 2mc2 gap. 
In the Born-Oppenheimer16 approximation the field that the electron moves in is represented by a static 
potential φ of the nuclear framework 
 

mc2 - eφ ⋅ 12 c σ.p

c σ.p - mc2 - eφ ⋅ 12
 

ψL

ψS
 = ε 

ψL

ψS
     (2.8) 

 
Solving equation (2.8) gives us, besides positive and the negative energy solutions outside the 2mc2 gap, 
bound energy solutions which lie inside the gap. Our main interest is in the positive energy solutions 
where the amplitude of the lower component (ψS) is much smaller than the amplitude of the upper 
component (ψL), while for the negative energy solutions it is the other way around. Therefore, the upper 
component of ψ is labelled L for "large amplitude" and the lower component by S for "small amplitude". 
The inclusion of relativity in (2.8) is limited to the electrons of this Hamiltonian. In principle one should 
treat the nuclei as relativistic particles as well, to obtain a consistent treatment of all particles in the 
molecular system. However, it has been shown53 that the relativistic effect is small enough to neglect in 
our calculations. In our approach we also neglect the nuclear spins and thereby neglect all hyperfine 
effects.  
For an easier comparison with non-relativistic energies, and for technical reasons, we shift the spectrum 
downwards with the rest mass energy of the electron (mc2). Herewith the bound electron like solutions 
lie roughly in the same energy domain as one would find using a non-relativistic Hamiltonian 
 

- eφ ⋅ 12 c σ.p

c σ.p - 2mc2 - eφ ⋅ 12
 

ψL

ψS
 = ε 

ψL

ψS
     (2.9) 

 
where the new ε now is the difference with the rest mass energy. 



Relativistic Quantum Chemistry Applied 

10 

Let us now consider the solution of the Dirac equation in (2.9). As a potential we consider a hydrogen 
like system where an electron is moving in an attractive Coulombic potential of a point charge Z (φ = 
eZ/r). A graphical representation of the spectrum of solutions from this equation is given in figure 2.1. 
 
 

Electronlike continuum

Bound electron like
states

0

-2mc2

Positronlike continuum
 

 
Figure 2.1. Graphical representation of the spectrum of a hydrogen like atomic system. 
 
One can see from figure 2.1 that the spectrum is not bounded from below. The continuum states lie 
below -2mc2 and above 0, whereas the bound electron like states lie close to the upper continuum. If 
we take a repulsive instead of an attractive Coulombic potential than the bound states lie close to the 
lower continuum.  
The positive continuum and the bound electron like states are analogous to those that would be found 
when the Schrödinger equation was solved. There is however a fundamental problem with the 
occurrence of the negative continuum. One cannot discard these negative energy solutions, because this 
would violate the completeness assumption of the solution space of the Schrödinger theory. On the 
other hand not discarding them results in an unstable lowest positive energy state, because it is no longer 
the ground state. Dirac proposed a solution for this problem by postulating a new vacuum where all 
negative eigenvalues are already occupied. The Pauli exclusion principle now forbids additional 
occupation of the negative eigenvalues, hence the electron will now occupy a bound electron like state. 
Dirac's postulate has even further implications. One can excite an electron from the negative continuum 
which leaves a positively charged hole in the vacuum, which is generally called a positron. This means 
that one can create an electron-positron pair but for this an energy of approximately 2mc2 is required, 
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far above the energies that are involved in ordinary chemistry. Another problem connected with the filled 
negative continuum is that the vacuum is infinitely charged and that even the hydrogen problem becomes 
an infinitely many-body problem. This problem can be approached by adopting the Quantum Electron 
Dynamics (QED) picture. QED also introduces additional interactions like vacuum polarization 
(electron-vacuum interaction) and self energy (an electron interacting with itself). For this work it is 
sufficient to know that the Dirac equation can be embedded in a proper fundamental framework (QED). 
This framework is, however, not necessary for our practical purposes. 
We will now show that there is a relation between the Dirac and Schrödinger equation. In this process 
we will also establish a relation between large and small component part of the wave function. This 
relation will be used in the discussion about solutions of the Dirac equation using a basis set expansion. 
We can write the matrix form as two coupled 2-component equations where we have used the second 
equation to express ψS in terms of ψL   
 
- eφ⋅ 12  ψL + c σ.p ψS = ε ψL       (2.10.a) 

 
ψS = 2mc2 + eφ + ε -1. 12  c σ.p ψL      (2.10.b) 

 
If we combine (2.10.a) and (2.10.b) one can eliminate ψS. 
 
- eφ⋅ 12 + c σ. p 2mc2 + eφ + ε -1⋅ 12  c σ.p  ψL = ε ψL    (2.11) 

 
We rewrite as 
 

- eφ⋅ 12 + σ.p 2m 1 + 
eφ + ε
2mc2

-1

. 12  σ.p  ψL = ε ψL    (2.12) 

 
and expand the denominator. To zeroth order this yields the expression 
 
- eφ⋅ 12 + 1

2m
 σ.p 2  ψL = ε ψL       (2.13) 

 
The operator (σ.p)2 is equal to p2.12 which gives us the Schrödinger equation in 2-component form 

where each of the two components represents one of the two possible spin states α and β . This now 
also explains the α and β  notation of the 4-component wave function that was given in (2.3). Similarly 
we can express ψS in terms of ψL and from this derivation we will find an equation for a positron, an 
electron with opposite charge. So, in the non-relativistic limit the electron and positron space are again 
completely separated.  
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2.1.2 The many-electron approach 

In this thesis we consider mainly systems that contain more than one electron. So we have to take the 
interaction between the electrons into account. The Hamiltonian for the complete electron-electron 
interaction can be obtained from QED15,22,54. This complete interaction can, however, not be written in 
closed form and can only be obtained from time-dependent perturbation theory22. Restricting the 
expansion to the lowest order of electron-electron interaction yields, in the so-called low-frequency 
limit, the Coulomb term and the Breit15 term. The many-electron Hamiltonian is given by 
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hi is the one-electron Hamiltonian for electron i which is given in (2.9). The Hamiltonian presented in 
(2.14) is called the Dirac-Coulomb-Breit Hamiltonian. In a first approximation we can neglect the Breit 
interaction and only include the Coulomb term which is the dominant part of the electron-electron 
interaction. This gives the Dirac-Coulomb Hamiltonian 
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ĥĤ          (2.15) 

  
The last two terms in (2.14) together, already derived in 1929, form the Breit15 term. We have included 
the first term of the Breit interaction, the Gaunt55 term, in our Hamiltonian  
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The Dirac-Coulomb-Gaunt Hamiltonian obtained in this way will be used as a starting point of our 
calculations. 
There has been a discussion about the validity of the Dirac-Coulomb Hamiltonian which we derived 
above. Brown and Ravenhall30 argued that one cannot find stable stationary states for this Hamiltonian. 
If electron-electron interaction is turned on as a perturbation, one can construct an infinite number of 
degenerate states which consist of electrons as well as positrons. The final states will therefore be 
completely delocalized. This "problem" is referred to as the "Brown-Ravenhall disease" or "Continuum 
Dissolution". However, from QED one can derive a many-electron relativistic Hamiltonian that has 
bound states56-58. Brown and Ravenhall proposed to restrict the Hamiltonian to positive energy states 
(electron like solutions) by surrounding it with projection operators, i.e. we will have a fixed number of 
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electrons. There are a number of ways to construct the projection operators56,57,59,60 but we will make 
use of the projection method of Mittleman58, sometimes called the "fuzzy" picture56. We will come back 
to this projection method in section 2.2.3 where we will deal with the generation of one-electron wave 
functions. 
The Hamiltonian of the molecular system in the Born-Oppenheimer approximation consists of the 
electronic Hamiltonian (2.14 - 2.16) and the nuclear Hamiltonian, where the latter reduces to a simple 
addition to the total energy. 
 
2.1.3 Symmetry aspects 
The inclusion of molecular point group symmetry into the calculations reduces the computational costs 
considerably and helps the interpretation of the results. Non-relativistically we only have to deal with the 
point group symmetry operations which act on the spatial coordinates of the molecule. Whereas the 
Schrödinger Hamiltonian is invariant under these symmetry operations the Dirac Hamiltonian (2.16) is 
not. In fact the symmetry operations which leave the Dirac Hamiltonian invariant are a product of spatial 
and spin operations. The inclusion of this extra operations on top of the symmetry operations for the 
spatial coordinates doubles the number of operations in the symmetry group and hence these groups are 
therefore called double groups. The theory of double group symmetry was first derived by Bethe61. 
Besides the  boson irreducible representations (irreps), that are used in non-relativistic theory, one now 
also gets fermion irreps which describe the one-electron functions of the Dirac Hamiltonian.  
The point double groups that will be used by us are those of Oh* (where the asterix denotes the double 

group) and its subgroups. A part of these double groups are Abelian, giving only one-dimensional 
representations that allow for a unique labelling of one-electron spinors. However we also work on 
chemical systems with non-Abelian point double groups which have also degenerate representations. In 
the additional correlation calculations we will restrict ourselves to Abelian point double group symmetry. 
To use the Abelian symmetry one requires an additional transformation of the one-electron spinor basis. 
We have chosen to use a group chain26 to decompose the higher group into a group of Abelian 
symmetry. For this chain we define a series of groups G1 > G2 > .. where the second group will be a 

subgroup of the first group, etc. The last group in the chain will be an Abelian group. If we now choose 
the one-electron spinor such that it transforms according to all the groups in the chain then one can 
assign a unique label to this spinor. This decomposition now defines the rows of the degenerate 
representations in the higher group. This approach allows us to exploit the full point double group 
symmetry for the generation of one-electron spinors whereas we can use Abelian symmetry in the 
subsequent correlation calculations, without transformation of the spinor basis. The symmetry notation 
that we use is defined by Bradley and Cracknell62. 
The inclusion of point double group symmetry will block diagonalize the Dirac matrix and hence reduce 
the computational effort. However the elements in the matrices and the integrals are still complex 
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numbers and we can also not use spin α and β  to further reduce the calculations, as is done in non-
relativistic theory. However, there is another symmetry operation that can be used to block diagonalize 
the matrices even further and to make matrices real in certain cases. This symmetry operation is called 
time-reversal (TR) operator and it is defined as 
 

T = -i σy 0
0 σy

 K         (2.17) 

 
where σy is one of the Pauli spin matrices, defined before, and K is the complex conjugation operator. 

This operator is not contained in the point double groups but it can be shown that the Dirac Hamiltonian, 
as it is defined in (2.16), commutes with this anti-unitary operator leaving double degenerate one-
electron functions, called Kramers63 pairs. This degeneracy disappears, however, if we want to study 
molecules in external magnetic fields, i.e. when a vector potential is introduced.  
The combination of time-reversal symmetry and double group symmetry, in an effort to further reduce 
the computational effort, gives us three different cases depending on the distribution of the Kramers 
pairs over the fermion irreps: 
 
Case 1. The components of a Kramers pair belong to different rows of a doubly degenerate irrep. 
Case 2. The components of a Kramers pair belong to different one-dimensional irreps which together 

form a doubly degenerate reducible representation. 
Case 3. The components of a Kramers pair belong to the same singly degenerate irrep. 
 
Saue34 uses quaternion algebra, on the so-called binary double groups (D2h* and it's subgroups), to 

include both point double group and time-reversal symmetry. They showed for the Dirac Hamiltonian 
defined in (2.16) that the spinor matrix elements are real for Case 1 and that the one-electron matrices 
are block diagonal in the Kramers components. The binary double groups belonging to this case are 
D2h*, D2* and C2v*. For Case 2, which includes the double groups C2h*, C2 and Cs, the spinor matrix 

elements are complex but the one-electron matrices are still block diagonal. In Case 3, to which the 
double groups C1* and Ci* belong, the spinor matrix elements are complex and the one-electron 

matrices are not block diagonal anymore. It is, however, possible to make the one-electron matrices 
block diagonal by a quaternionic transformation34. 
In our program package we only take advantage of the complex to real reduction in Case 1 using an 
approach developed by Visscher64. The one-electron spinors are constructed as Kramers pairs by 
introducing appropriate phase factors. This leads to real one- and two-electron integrals for double 
groups belonging to Case 1 and allows us to get computational savings. 
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2.2 Methodology 

In section 2.1.2 we derived the Hamiltonian which we want to use to solve a N-electron wave-equation 
 
H Ψ r1, r2,... rN  = E Ψ r1,r2,... rN         (2.18) 
 
From this point on we will follow the same route that is used in the non-relativistic approach to arrive at 
expressions that can be solved by more or less the standard quantum chemistry techniques.   
The N-electron wave function Ψ can be expanded in all possible Slater determinants Φ that can be 
generated from the complete set of one-electron wave functions ψ corresponding to the solutions of the 
Hamiltonian 
 

( ) µ
µ

µN21 FC,...rr,r? ∑=         (2.19) 

 
Φµ r1,r2,... rN  = 1

N!
 Det ψµ1(r1)ψµ2(r2)... ψµN(rN)      (2.20) 

 
The simplest way to approximate the N-electron wave function is by restricting the expansion of Slater 
determinants to just one determinant which we will denote with Φ0.  
We now want to find a set of one-electron wave functions, or spinors, {ψi} such that the determinant 
Φ0 formed from these spinors is the best possible approximation to the solution of the N-electron 

system described by the Hamiltonian H. The approach that we use to solve this equation is the 
relativistic analogue of the Hartree-Fock approximation or the Dirac-Hartree-Fock (DHF) 
approximation. A closed shell DHF formalism was first proposed by Malli65. The basic assumption of 
the Hartree-Fock approximation is that any one of the electrons moves in a static potential generated by 
the nuclei and an average potential of all other electrons. In this way the many-electron equation can be 
replaced by a set of one-electron equations (one for each electron that is described). The average 
potential in this one-electron equation, generated by all other electrons, depends on the one-electron 
wave functions of the other electrons, i.e. each one-electron equation depends on the results of the other 
one-electron equations. This means that the Hartree-Fock equations are non-linear and need to be 
solved iteratively. In every iteration one uses the new one-electron wave functions to obtain new 
average potentials until self-consistency is obtained in which the average potentials, and thereby the 
spinors, do not change anymore. This procedure to solve the Hartree-Fock equations is hence called 
the self-consistent-field or SCF method.  
The variational theorem for Hamiltonian operators that are bounded from below, on which the 
procedure above is based, does not apply to our Dirac Hamiltonian because the states of interest, the 
electron like states, are excited states in the spectrum of the Hamiltonian. However, variational theory 
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also applies to stationary states and hence is still applicable in Dirac-Hartre-Fock theory. In particular 
LaJohn and Talman66 pointed out that one can find the electron like spinors by using the so-called 
minimax principle where the energy is minimized with respect to rotations into the virtual electron-like 
spinor space, the optimization process used in the non-relativistic approach, and maximized with respect 
to rotations in the positron spinor space. The optimization procedure we use is in fact a process 
searching for a stationary value instead of a minimalization process.  
 
2.2.1 Basis set considerations 

So far we have discussed the Dirac-Hartree-Fock approach in terms of a general set of spinors. We 
have to define the form of these spinors in order to do the actual calculations. A standard way to 
approximate the 4-component spinors ψ is by expanding them into a finite basis set. Due to the nuclear 
framework one can also introduce point group symmetry by adapting the basis to the appropriate 
double group symmetry. We will use separate double group symmetry adapted basis sets for the upper 
two (Large) and for the lower two components (Small) of the 4-component wave function 
 

ψa
L = 

ψa
Lα

ψa
Lβ

0

0

    and   ψb
S = 

0

0

ψb
Sα

ψb
Sβ

       (2.21) 

 
where each of the four components is a linear combination of scalar basis functions χ (atomic basis 

functions) with the transformation coefficients dia
LX

 and dib
SX

 (which generally are complex) 
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The set of Large and Small scalar basis functions consists of two separate sets of primitive Cartesian 
Gaussian basis functions, usually centered on each of the nuclear positions  
 
χi

L = gi
L = Ni

L xui
L yvi

L zwi
L e-αi

Lr2  and  χj
S = gj

S = Nj
S xuj

S yv j
S zwj

S e-αj
Sr2   (2.23) 

 
or as contracted sets of scalar basis functions with different exponents α 
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In the contraction defined above all the primitive functions defined in (2.23) can contribute to all 
contracted scalar functions. This scheme is called the general contraction scheme67. The contraction 
leads to a significant reduction of the basis set size while keeping high quality. 
In (2.21) - (2.24) we have defined two separate basis sets, one for the large component and one for the 
small component, but they should not be chosen independently. The differential equation (2.10.b) links 
the large and small component part of the wave function for each solution. This relation must be 
expressible by the basis set, at least for the solutions one wants to find. Neglecting this relationship can 
cause the so-called "variational collapse"68 or "basis set disease"69. In our many-electron Dirac-
Hartree-Fock calculations the potential φ and the energy ε are not known on forehand and therefore we 
have to use an approximate form of the operator in (2.10.b) to define our basis set. The simplest 
approximation is the kinetic balance21-26 relation 
 
ψS ≈  1

2mc
 σ.p ψL         (2.25) 

 
In this kinetic balance relation the potential φ and the energy ε are assumed to be much smaller than 
2mc2. The generation of small component basis functions from large component basis functions by this 
relation is nowadays used as concept for the construction of uncontracted basis sets. In practise, we will 
use a Gaussian basis function rl e-αr2 in the large component and we use the kinetically balanced 
Gaussian basis functions rl-1 e-αr2 (if l > 0) and rl+1 e-αr2 in the small component. This means that for a 
p-type large component function a s-type and a d-type function will be included in the small component 
basis.  
The uncontracted basis sets will become large if one wants to describe the interactions in molecules with 
a high level of accuracy, similar to non-relativistic basis sets. To reduce the computational effort one can 
make use of contracted basis sets. We use the same primitive set for both spin-orbit split components 
which generally have a different radial behaviour. A consequence of this approach is that the number of 
large component contracted functions is doubled compared to a non-relativistically contracted function.  
Erroneous results are obtained if one constructs a contracted small component basis directly from the 
contracted large component basis using the kinetic balance relation (2.25). These errors are caused by 
the singular character of the large component in the innermost atomic orbitals25-28 1s1/2 and 2p1/2. The 
exact hydrogen-like solution of the large component 1s1/2 function has the form  
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D(r) = rγ-1 e-λr    with    γ = 1- Z
2

r2
       (2.26) 

 
The kinetically balanced small component function diverges then as rγ-2 which, when numerically 
approximated by a basis set, necessary leads to a diverging proces. One can try to overcome the error 
made in applying (2.25) by decontracting functions in the core-region25-28,70, increasing the variational 
freedom of the innermost spinors, or by not contracting after all (the latter option is common practice in 
atomic calculations). However, for molecules an alternative approach is to obtain a better approximation 
of the exact relation between the large and small component (2.10.b) in the first place. Already in 1991 
our group developed the so-called atomic balance27,28 procedure that is applied in general contracted 
basis sets. It should be noted that Watanabe and Matsuoka29 proposed a similar procedure more 
recently. 
The atomic balance procedure consists of two steps: 
 
1. An atomic calculation is performed using uncontracted basis functions where the small component is 

generated from the large component using the kinetic balance relation. 
2. A new set of large and small component contracted basis functions is constructed from the 

uncontracted basis combined with the expansion coefficients from this atomic calculation.  
 
A good description of the exact relation (2.10.b) is obtained although our results will depend on the 
potential φ and the energy ε. This is not a real problem because the atomic potential and the molecular 
potential in the core-region will be very similar.  
We have talked about the contraction but we did not yet define the exponents needed for the primitive 
basis functions in (2.20). To a first approximation one could use non-relativistic primitives to define the 
large component basis functions, deriving the small component functions using the kinetic balance 
procedure. This will lead to a reasonable basis for the lighter atoms but will lead to poor sets for the 
heavier elements. As already discussed in chapter 1 the s and p functions have in general smaller radii 
whereas for example the d and f functions have larger radii compared to the radii one would find using a 
non-relativistic framework. This difference in radial behaviour, but also in nodal behaviour, is the 
strongest for functions close to the nuclei. For most heavy elements it is sufficient to add a few extra 
functions with high exponents to the large component basis, consisting of non-relativistically optimized s 
and p basis functions, to describe the inner part of the 1s1/2 and 2p1/2 radial functions. However, in 

superheavy elements the addition of some extra functions is often insufficient and one should use 
relativistically optimized basis sets instead. To obtain relativistically optimized exponents for our 
calculations we need to optimize the exponents using the Dirac-Coulomb Hamiltonian. A numerical 
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program that can handle this optimization is the GRASP19 program. It was recently adapted71 to 
generate (general) contracted, atomically balanced, basis sets. 
To reduce the computational effort we introduce the use of common subsets of functions, also called 
"family" basis sets. In the large component basis set the exponents for the (l+2) functions are chosen as 
a subset of the exponents for the l functions, for example the exponents of the d function are a subset of 
the s exponents. This gives us, for the large component, two interleaving families of exponents for even 
and odd l functions each where the (l+2) and l large component functions have a common set of small 
component basis functions of type (l+1). The subset strategy leads to smaller basis sets for the small 
component basis functions but also leads to a lower flexibility in the exponents of the large component 
basis.  
Dyall and Fægri72 suggest an alternative definition of the exponents for the large component basis 
functions. They group the functions on the basis of their j quantum number instead of the angular 
quantum number l. In this case one uses one set of exponents to describe the s1/2 and p1/2 functions 
and another set to describe the p3/2 and d3/2, etc. This approach is favorable for superheavy elements 
where the p1/2 and the p3/2 function have a considerably different radial behaviour. 
 
2.2.2 Nuclear model 
Another problem that should be addressed is related to the weak singularity (2.26) at the nucleus. This 
weak singularity arises from a fractional power of r, as a result of the finite speed of light, in the radial 
solution from the 1s1/2 (and the 2p1/2) wave function. The weak singularity can be described by a 

Gaussian basis set but there are a large number of steep functions required to obtain a good description. 
Another and better approach, which is now commonly used in calculations, is to make use of a finite 
nucleus. A nucleus with a finite dimension is a better physical description than the point charge model 
anyway and only slightly more complicated to work with. The most widely used model to describe the 
interaction between a nucleus and an electron is a Gaussian distribution 
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with  NM = 
ξM
π

3/2

         (2.28) 

 
This potential form is used in the one-electron part of the Dirac-Coulomb Hamiltonian defined in (2.16). 
One has to find a way to relate the Gaussian exponent ξ to the measured properties of the atomic 
nucleus. In this thesis two definitions are used for the Gaussian exponent using the charge ZM and the 
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nuclear mass WM or atomic mass number AM as parameters. The first definition makes use of the 

expression 
 
ξM = 3.88*10-9 WM

-2/3         (2.29) 

 
whereas the second uses 
 
ξM = 3

2 rnuc2
       with    rnuc2  = 0.836 AM

1/3  + 0.570  / 52917.7249   (2.30) 

 
to generate the exponent. The exponent that is derived with the model in expression (2.29) is an older 
model73 that is used in chapter 6. In 1995 on a REHE meeting in "Il Ciocco" (near Pisa in Italy) 
Visscher and Dyall74 suggested a standardization of the model used to obtain the Gaussian exponent. 
This is the model presented in formula (2.30). The standardization makes it possible to compare the 
results of different program packages. Visscher and Dyall therefore calculated the atomic properties for 
all the elements up to 109 which can be used as a reference. More about this model can also be found 
on the WWW pages of Visscher75. The second model is used for all calculations except those in 
chapter 6, as mentioned before. 
 
2.2.3 The Dirac-Hartree-Fock-Roothaan approach 

In section 2.2.1 we have shown that one can approximate the one-electron wave functions by 
expanding them in a finite set of (spatial) basis functions (2.21-2.24). When we combine this expansion 
with the Dirac-Hartree-Fock (DHF) approach, sketched at the beginning of section 2.2, matrix 
eigenvalue equations for the expansion coefficients are obtained. These equations are generally called 
the Roothaan equations. We use the so-called open-shell Hartree-Fock-Roothaan equations76 to obtain 
the one-electrons spinors. With these equations one can handle molecules with open and closed shells 
(denoted with O and C respectively). The relativistic analogue77 for the corresponding energy 
expression, for an average of configurations78, is defined as 
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with  f = n
d

               a = d (n - 1)
n (d - 1 )

               Qij  = Jij  - Kij      (2.31.b) 

 
hi is the diagonal matrix element of the one-electron Dirac operator (2.9) and Jij and Kij are the 

Coulomb and Exchange integrals. The indices i and j denote spinors with occupation one and the indices 
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k and l are used to label the open-shell spinors with a fractional occupation. The variables n and d 
denote the number of electrons and the number of spinors respectively. We can derive the DHF 
equations by putting 
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i

=
∂
∂

          (2.32) 

 
under the constraint that the spinors ψi, that make up the determinantal wave function Ψ, form an 

orthonormal set. The derivation, and the exact form of the working formulas used can be found in 
various articles37-39,77,79 and will not be repeated here. Nowadays a number of computer codes, based 
on the DHF approach, are available33-36,80,81. 
The electron and positron like solutions are well separated and easily identifiable and one can easily 
select the electron like solutions. This selection of electron like solutions corresponds to the iterative 
projection method proposed by Mittleman58, as was discussed at the end of section 2.1.2.   
 
2.2.4 The correlated approach 

The spinors obtained with the DHF approximation, defined in 2.2.3, are generated in an average field of 
all the other electrons. In reality the motion of the electrons will depend on the instantaneous positions of 
all the other †electrons in the system, hence the motion of the electrons is "correlated". This lack of 
correlation in the DHF method is the reason why the error in the energy is called the correlation energy. 
First, it is convenient to describe the Hamiltonian in a second quantized formalism based on spin-orbitals 
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where h is the Dirac one-electron Hamiltonian and g represents the electron-electron interaction 
(Coulomb and Gaunt). The operators ai† and ai are creation and annihilation operators of one-particle 

spinors obtained by solving the DHF equations. Here the creation of electron-positron pairs will be 
neglected, so the sums of i, j, k and l will run over electron like spinors only, and therefore this second 
quantized Hamiltonian has a similar form as the non-relativistic Hamiltonian for spin orbitals, i.e. we are 
using the no-pair approximation57.  
Various methods have been developed to include electron correlation effects. Two of these methods are 
implemented and used in our calculations, (Multi-Reference) Configuration Interaction (MRCI) and 
Coupled Cluster Singles Doubles (CCSD). 
The correlation methods mentioned deal with dynamical correlation which is due to short range 
electron-electron interaction. Non-dynamical correlation, which is mainly due to near-degeneracies and 
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can generally be described with a few determinants requires an relativistic analogue of the MCSCF 
method82. We include non-dynamical correlation using the average of configuration DHF approach. 
This method, which gives us one set of spinors for the whole manifold of states in the open-shell system, 
is expected to show a balanced, global picture of the manifold with not too much emphasis on a 
particular state. After the Dirac-Hartree-Fock (DHF) calculation a CI can be performed in the open-
shell spinor space in order to project out the different states that arise from the open-shell manifold if 
these are required. The combination of an DHF calculation and a full CI within the open-shell manifold 
will be called a COSCI calculation. 
For the (Multi-Reference) CI approach we consider first a general expansion of the many-electron 
wave function into a basis of determinants, as defined in (2.19). Combining this expansion with the 
Hamiltonian gives us a matrix representation of the Hamiltonian which is a sum of one- and two-electron 
molecular integrals multiplied with one- and two-electron coupling constants 
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where the different terms are defined as 
 
hij  = i  h  j                        ij | kl  = ij  g  kl       (2.35.a) 

 
Aij

µν = µ  eij   ν                Bijkl
µν  = µ  eij  ekl  -  eil  δjk  ν      (2.35.b) 

 
A and B are the one-electron and two-electron coupling coefficients written in term of generators of the 
unitary group (eij = ai†aj). The size of this matrix, which is defined by the number of determinants in the 

expansion, is generally too large to store all the matrix elements. To circumvent this problem we make 
use of the direct diagonalization technique of Davidson83 to find the eigensolution of the many-electron 
wave function. In this method a subspace of m trail (or basis) functions is constructed that spans the 
space of the required eigensolutions. This subspace is than extended, in an iterative procedure, with new 
expansion functions to improve the wave function expansion Cµ and its eigenvalue 

 
Cµ

m+1 = Cµ
m + 1

Em - Hµµ
 σµ - Em Cµ

m        (2.36) 

 
where Em is the energy evaluated using vector Cm. We will not derive the final expressions because this 
is already done in several articles about the MOLFDIR program package37,39,79. However, we will 
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stand still at the most difficult and time-consuming step in the construction process, the evaluation of the 
so-called sigma vector, the first term in the summation in (2.36) 
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It is possible to write the two-electron coupling coefficient B in terms of one-electron coupling 
coefficients by including the resolution of the identity where we can restrict the sum of this resolution to 
the N determinants in the CI space we are considering 
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This restriction is valid exactly because we use the RAS type expansion of the CI wave function84. We 
will come back to this expansion after deriving the final expression for the sigma vector 
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It should be noted that the final formula for the sigma vector, as it was printed in previous papers37,39,79, 
contains some small errors and that the expression given here is the correct formula.  
We will now return to the RAS formalism used to define the reference wave function in the CI 
expansion space. In the Restricted Active Space formalism we divide the space of active spinors into 
three classes. The first class contains spinors that are occupied and is generally called RAS1. In the 
second class, RAS2, contains the spinors with a variable occupation. If we have an open-shell DHF 
wave function as a starting point for our calculations than these open-shell spinors, i.e. the COSCI wave 
function, can be defined as RAS2. The third class (RAS3) contains spinors that are unoccupied, or 
virtuals. The RAS CI expansion space is now defined by allowing a certain number of electrons to be 
excited from the occupied RAS1 spinors and by allowing a defined number of electrons to occupy the 
virtuals in RAS3.  
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One can define various CI expansions and we will take a closed shell molecule (where the RAS2 space 
contains no spinors) as an example, allowing a maximum of two electrons in the virtual space. This 
expansion is known as the single reference CISD wave function 
 
ΨCISD = 1 + T1 + T2 Φ0        (2.40) 
 
where Φ0 is the closed shell reference wave function. The operators T1 and T2 are excitation operators 

defined as 
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where the t's are called the cluster amplitudes or CI-coefficients depending on whether we are talking 
about CI or Coupled Cluster expansions. The indices i and j label the occupied spinors whereas the 
indices a and b label the spinors that are unoccupied in the reference wave function.  
The example chosen in (2.40) is not an accidental choice. It allows us to compare the CI wave function 
expansion with the Coupled Cluster approach, the second correlation method that has been 
implemented. Whereas the CISD wave function is a linear expansion, for the Coupled Cluster approach 
the expansion of the closed shell reference wave function Φ0 is written as an exponential expansion of 

the operators T 
 
ΨCCSD = Exp T1 + T2  Φ0        (2.42) 
 
One can include higher order excitation operators T but here we have restricted the expansion to the 
single and double excitations, hence this expansion is called the Coupled Cluster Singles Doubles wave 
function. Whereas we can use a multi-reference wave function as a start in the CI calculation a single 
determinantal wave function is required in a CCSD calculation. Although CCSD theory has its 
restrictions concerning the reference wave function it has the advantage of being a size-extensive 
theory85, i.e. the correlation energy scales linearly with the number of atoms or molecules in the system, 
this in contrast to CI theory.   
The Coupled Cluster program86 in our package can be used to perform closed shell40 CCSD. In the 
derivation of the CCSD equations we end up with an energy expression that contains the amplitudes ti

a
 

and tij
ab

. The expressions required for the evaluation are more demanding and are therefore not written 
down in this thesis. The reader is referred to the literature40,87 given in this section for the explicit form 
of the expressions. The latest version can handle open-shell87 systems, as long as they are single 
reference, and also includes the next higher corrections, the (perturbative) triple excitations88-90. With 
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the implementation used we can also derive the MP2 energy. MP2 is the highest level of correlation 
currently implemented in other four-component codes81,91. Both the CCSD program and the (MR)CI 
code do not exploit the Kramers symmetry. 
 
2.2.5 Property calculations 
The advantage of optimizing the wave function explicitly and also the combination with an analytic 
approach is the ease of obtaining virtually any electronic property, not just the energies. From the 
calculated energies one can obtain spectroscopic properties, like the equilibrium bond length, the 
harmonic frequency and dissociation energy, which can be compared with, or used to explain, 
experimental data.  
Recently an even larger variety of properties, other than the spectroscopic properties mentioned before, 
is calculated. A large group of these properties can be evaluated as expectation values using the 
corresponding (relativistically formulated) operator and the calculated wave function.  
Another group of properties that can be studied is the response of a wave function (state), or properties 
from this wave function, to an external perturbation. One general approach to calculate these response 
properties is by using propagator theory92. It allows us to study the response of the molecule to a static 
or an oscillatory perturbation (the latter with a certain frequency ω). We will limit ourselves to the linear 
response which, in the so-called superoperator formalism, can be written as 
 
A;B ω = A ω1 - H -1  B         (2.43) 

 
where A and B are property operators and H and 1 are the Hamiltonian (2.16) and the identity matrices 
respectively. The linear response function describes the change in the expectation value of operator A if 
a perturbation operator B, with a frequency ω, is applied to the molecule in a reference state and is 
correct to first order in the perturbation B. We introduce the resolution of identity (twice) by inserting a 
complete excitation operator manifold. In our calculations we will work in the random phase 
approximation (RPA) where we take a closed-shell Hartree-Fock determinant as the reference state 
and restrict the operator manifold, introduced by the resolution of identity, to single excitations. This 
RPA approximation is also known as time-dependent Hartree-Fock (TDHF). The final expression93, in 
matrix representation, can be written as 
 

A;B ω = A -Ad  
ω 1 - C -D†

-D -ω 1 - C†
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with 
 
Aai = i A a     Aia

d  = a A i     Bai  = i B a     Bia
d  = a B i      (2.44.b) 
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Aai,bj  = aj||ib  + εa - εi  δabδij      Bia,bj  = ji||ab      (2.44.c) 

 
where the indices {i, j} refer to occupied and {a, b} to unoccupied DHF molecular spinors. The final 
expression is an eigenvalue problem, with in general large matrices, that can be solved in the same 
iterative approach83 used for large CI problems94. Visscher41 has implemented the RPA equations in a 
modified version of RELCCSD. This implementation allows us to calculate the response property for 
certain frequencies and to find the lowest eigenvalues of the matrix eigenvalue problem.  
We require property integrals for the calculation of response functions and expectation values. The 
necessary property integrals are obtained from the HERMIT95 integral code via the DIRAC91 program 
and subsequently used by our property codes.   
 
2.3 The MOLFDIR program package 

The methodology described in section 2.2 has been implemented in MOLFDIR over the last twelve 
years. The MOLFDIR program package96 consists of 14 separate modules that communicate by 
means of data files. There is only one input file required because the modules use NAMELIST type 
input. The modules are written in about 60,000 lines of Fortran 77 code and (a few) C-routines. Figure 
2.2 gives an graphical overview of the organisation of the program package. 
The package can be divided in four major sections. The first section, consisting of four modules, solves 
the DHF equations and generates a wave function that can be used in subsequent calculations. The 
DHF wave function can be analyzed or we can improve the wave function by subsequent correlation 
calculations. In the case of atomic calculations, one can also use the generated wave function to 
construct general contracted basis sets. Table 2.1 gives a very brief description of the functionality of the 
modules in our program package. 
The program package can be used to do non-relativistic calculations (using a two-component 
formalism) though one still has to work in the double group symmetry.  
The required property integrals, needed for the calculation of response functions and expectation values, 
are obtained from the HERMIT95 integral code via the DIRAC91 program and subsequently used by 
our property codes. Basis set generation is nowadays done with an adapted version71 of the numerical 
GRASP19 program.  
More information about the MOLFDIR program package can be found in various articles26,37-

39,41,77,79,80,87,98. The references to these articles and also various other articles, including chemical 
applications, can be found on the WWW pages99. 
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Figure 2.2. Graphical overview of the MOLFDIR program package 
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Table 2.1. Overview functionality modules in MOLFDIR. 
 

Program section Module Function 

Dirac-Fock-Gaunt MOLFDIR Generation of double group symmetry adapted basis 
functions 

 RELONEL Generation of all required 1-electron integrals  
 RELTWEL Generation of all required 2-electron integrals 
 MFDSCF Solves open or closed shell DHF equations 

Correlation TMOONE Generates effective 1-electron molecular integrals 
 ROTRAN Generates 2-electron molecular integrals 
 GOSCIP Solves full CI equation for a small set of spinors 
 DIRRCI Solves RASCI type equations 
 RELCCSD86 Solves CCSD -T/+T/(T) equations 

Analysis PROPAN Spinor analysis using the Mulliken97 scheme 
 CALDENS Generates for a set of spinors the electron density on 

grid 
 PRTRAN Calculates expectation values and generates molecular 

property integrals  
 RPA-code Solves linear response equations within RPA 

Basis set generation GENBAS Generates general contracted basis sets using the 
atomic and/or kinetic balance procedure 

 
2.4 Approximations within the 4-component approach 

In the four-component Dirac-Hartree-Fock-Gaunt formalism there are four classes of integrals labelled 
with L for a large and S for a small component basis function. The (LL|LL), (LL|SS) and (SS|SS) 
classes are used for the description of the Coulomb interaction whereas the (SL|SL) class occurs in the 
Gaunt term. For most molecular systems the Gaunt term will have a small effect on molecular valence 
properties, like bond lengths and excitation energies, and therefore it is often neglected.  
Of the three classes that are left the number of (SS|SS) integrals is around 70% of the total amount of 
integrals that has to be calculated. A large speed-up of the DHF calculations would be found if we 
could perform our calculations without this large set of integrals. The (SS|SS) class of integrals arises 
from the small component part of the wave function and contributes formally to order α4 to the 
electronic energy. Although the contribution of these integrals is formally small they still have a significant 
effect on the molecular properties like the bond length, vibrational frequency and dissociation energy if 
they are just left out of the calculation. The reason for this is that we neglect electronic repulsion energy 
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between the small component densities which are build up from the (SS|SS) class of integrals. We can 
try to define a correction procedure for the missing (SS|SS) class of integrals by analyzing the one-
center and a multi-center contribution of these integrals to the electronic energy100,101. The one-center 
contribution has a large energy contribution but is essentially the same as in an atom and will not 
influence the shape of the potential energy surface. This contribution, which is not distance dependent, 
can therefore easily be obtained as the difference between an atomic calculation with or without the 
(SS|SS) class of integrals. The multi-center contribution consists of a Coulomb and Exchange 
contribution. However, the small component densities are highly localized close to their respective nuclei 
and will have an almost zero overlap. Therefore we can neglect the Exchange contribution and 
approximate the multi-center contribution by a Coulombic repulsion between the small component 
densities. We have chosen to represent this contribution as a Coulomb repulsion between the small 
component charges on the respective nuclei  
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where qsA the total charge associated with the small components of the spinors of atom A. The 

approximation is called "Simple Coulomb Correction" or SCC. 
The values for qsA can be obtained from atomic DHF or numerical atomic calculations. As an example 

we will present some results of calculations on the iodine molecule. For the iodine atom a charge of 
0.1895 electrons is found in an atomic DHF calculation. We have checked this approach by calculating 
the charge associated with the small components of the molecular spinors obtained at the end of the 
DHF process.  
 
Table 2.2. Comparison of full calculation with a calculations with (SS|SS) integrals omitted and a SCC 
corrected calculation. 
 

Method DHF MP2 CCSD(T) 
 re (Å) ωe (cm-1) re (Å) ωe (cm-1) re (Å) ωe (cm-1) 

Full with 5s, 5p 2.682 228.6 2.688 221.1 2.717 205.8 
Without (SS|SS) 2.676 230.7 2.682 223.5 2.710 208.4 
SCC 2.682 228.5 2.688 221.1 2.717 205.7 

Full with 4d, 5s, 5p --- --- 2.667 227.0 2.699 210.5 
Without (SS|SS) --- --- 2.661 229.3 2.692 213.4 
SCC --- --- 2.667 227.0 2.699 210.8 



Relativistic Quantum Chemistry Applied 

30 

 
This charge was indeed found to be equal to the atomic value of 0.1895 electrons confirming the locality 
of the small component density. Numerical data, from calculations on the iodine molecule, substantiating 
the above are displayed in table 2.2. 
For the ground state of iodine eight points of the potential energy curve are calculated. In the SCC 
calculations the (SS|SS) class of integrals is neglected. This leads to a 74% reduction in the number of 
integrals that need to be calculated, handled and stored to disk. An overall CPU-time reduction of 67% 
is found for correlated calculations. The largest reductions are found for the DHF step, which now only 
has to handle 26% of the integrals per iteration (compared to the calculation with the (SS|SS) class of 
integrals), and the four-index integral transformation. Correlation is introduced using the MP2, the 
CCSD and the CCSD(T) method. Two different sets of correlation calculations are performed, the first 
includes the 5s, 5p and the full virtual space and the second also contains the 4d spinors. The SCC 
results and the calculations with a full set of integrals are in close agreement. 
A more extensive discussion of the SCC approximation including a larger series of test calculations can 
be found in reference 101. 
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Copper Halides 

 
 
In this chapter the excited states of the copper halides CuCl, CuBr and CuI are investigated within the 
presented relativistic framework. The so-called ionic excited states are best described by starting from 
the states arising from a Cu+(3d94s1) X-(ns2np6) configuration. In particular the spin-orbit splittings that 
arise from the Cu+(3d94s1) configuration can clearly be recognized throughout the whole copper halide 
series, although a considerable mixing occurs due to spin-orbit interaction. Spin-orbit splittings in the so-
called neutral states, arising from the Cu(3d104s1) X(ns2np5) configuration, are caused by the splitting in 
the halide atoms X(np5) and lead to a reordering of certain states going from CuCl to CuI. The neutral 
states, however, are found well above the ionic states. These findings are in contrast with allocations in 
CuI from previous theoretical work. 
 
 
3.1 Introduction 

Our interest concerns the properties of CuCl, CuBr and CuI in the solid state. Changes in the ionization 
spectra along the series CuCl, CuBr to CuI have been ascribed to a substantial increase of covalency in 
these compounds102. If such an increase in covalency occurs, one would expect to find a similar 
increase already in the diatomic molecules. Ramírez-Solís103 performed calculations, in which relativistic 
effects were included, on the CuF, CuCl and the CuI molecule and they found a small increase in 
covalency. Extensive non-relativistic calculations performed by Sousa et al. 104,105, however, reveal a 
slight increase in covalency as might be expected, but not nearly enough to explain the trends in the 
ionization spectra. We therefore performed fully relativistic calculations to examine the influence of 
relativity on the relative positions of the neutral and ionic states.  
There are many experimental spectra available for the ionic states of the copper halides. The spectra of 
the lightest halide, CuF, can be fully understood on basis of experimental106-109 and theoretical work110-

114. And although some of the bands in the spectra of the heavier halides could be assigned to particular 
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excitations, there is no consensus on the interpretation of these spectra. In more recent work Delaval et 
al. 107,115,116 measured, from fluorescence decay, radiative lifetimes of the excited states of CuCl, CuBr 
and CuI thus allowing insight in the singlet and triplet character of the states. The measured transitions 
are between the ground state X 1Σ+, coming from the configuration Cu+(3d10) X-(ns2np6), and the ionic 
excited states from the configuration Cu+(3d94s1) X-(ns2np6). Here X is the respective halide and n the 
principle quantum number of the valence shell, i.e. 3 for Cl, 4 for Br and 5 for I.  
Some theoretical work has been done for the excited states of the CuCl molecule but there is hardly any 
theoretical data available on the excited states of CuBr and CuI. Nguyen et al. 112 studied the ground 
state and low-lying excited states of CuCl using SCF calculations and subsequent Møller-Plesset 
perturbation theory. Ramírez-Solís et al. 117 performed MCSCF calculations and subsequent MRCI 
calculations on CuCl and included scalar relativistic effects. Winter and Huestis118 performed SCF 
calculations on the CuCl molecule and included spin-orbit interaction semi-empirically using an atoms-
in-molecules technique. Ramírez-Solís et al. 119 also performed MCSCF calculations and MRCI 
calculations on the CuI molecule and including scalar relativistic and spin-orbit effects. In these 
calculations the neutral states, arising form the Cu(3d104s1) X(ns2np5) configuration, appear in the same 
energy region as the ionic states, even without the inclusion of spin-orbit interaction. Our calculations on 
the ionic states will be used to discuss the assignment of the measured bands. 
 
3.2 Computational model 
In the calculation of the excitation spectra the experimental equilibrium distances120 are used of the 
respective molecules, 3.878 Bohr for CuCl, 4.107 Bohr for CuBr and 4.419 Bohr for CuI. A standard 
Gaussian distribution (see chapter 2.2.2) is used to represent the spatial extent of the nuclei in both the 
relativistic and non-relativistic calculations. C4v* double group symmetry is used in the calculations.  

To start the relativistic calculations we optimized the primitive basis set exponents of Cu within the 
Dirac-Hartree-Fock formalism using GRASP19. The small component basis is related to the large 
component by kinetic balance. Subsequently an atomic balance procedure is used to generate a 
contracted basis set for use in the molecule.  
 
Table 3.1. Basis set size for copper. 
 

 Large Component Small Component 

 Uncontracted Contracted Uncontracted Contracted 

Non-relativistic 21s16p10d3f 7s6p5d3f -- -- 
Relativistic 21s16p10d3f 7s9p6d3f 16s31p16d10f3g 7s12p9d6f3g 
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The size of the basis set for Cu is described in table 3.1 and its primitive exponents are listed in 
appendix I. The basis sets of Cl, Br and I are described in chapter 4 where we present results of 
calculations on interhalogens.  
For the ionic excited states, arising from a Cu+(3d94s1) X-(ns2np6) configuration, the basis of spinors is 
optimized for the weighted average of all states121 derived from the basic configuration Cu2+(3d9) X-

(np6) of the CuX+ ionized systems. Subsequently, a CI is performed in which all states arising from a 
Cu+(3d94s1) X-(ns2np6) configuration are included. For the neutral states, coming from a Cu(3d104s1) 
X(ns2np5) configuration, the basis of spinors is optimized for the Cu+(3d10) X(np5) configuration and 
followed by a CI calculation including all states based on the Cu(3d104s1) X(ns2np5) configuration. In 
both cases the spinors are optimized without including the Cu(4s1). Including the 4s introduces two 
open shells of the same symmetry. This cannot be handled yet in the present version of the MOLFDIR 
program package. However, in our calculations the Cu 4s virtual is rather localized and we expected the 
spinors to give a reasonable description of the relative energies of the ionic and neutral excited states.  
In non-relativistic calculations we can assign the molecular states using Λ−Σ coupling. In our relativistic 
calculations we work with intermediate coupling so only the ω and Ω quantum numbers apply. To 
connect to previous discussions on the assignment of states we have analyzed the calculated states in 
terms of Ω components of Λ−Σ states. This analysis is facilitated by comparing with a non-relativistic 
calculation in a two-component spinor basis (using the non-relativistic option of MOLFDIR). We 
analyze which Ω components of the Λ−Σ states contribute to a particular relativistic state by comparing 
the determinantal compositions of the (non-relativistic) Λ−Σ states, which are also calculated in double 
group symmetry, with those of the relativistic Ω states. The molecular states are then labelled on the 
basis of the dominant Λ−Σ state. 
 
3.3 Ionic states 

The ionic states we consider are those that arise from the Cu+(3d94s1) X-(ns2np6) configuration. For 
these states the halogen is closed shell and spin-orbit coupling will arise basically from the atomic 
Cu+(3d94s1) splitting (into 3D3, 3D2 and 3D1) which is about 2000 cm-1. This effect, however, is 

expected to be the same for all three species. However, besides the splitting of the d-orbitals there is 
also an spin-orbit interaction between states of the same Ω symmetry which allows them to mix. Both 
spin-orbit effects are implicitly included in our calculations. 
In order to get a correct offset for comparison with previous, non-relativistic calculations by Sousa et 
al. 104 we performed a non-relativistic calculation with MOLFDIR. Our non-relativistic results, denoted 
with HF / CI, presented in table 3.2 are in reasonable agreement with the CASSCF results of Sousa et 
al. The width of the calculated spectrum is somewhat smaller than what is found in CASSCF 
calculations and there is a small deviation in the relative positions of the ∆ states relative to the Σ and 
Π states, but the singlet-triplet splittings show a close agreement with those of a CASSCF. We find the 
singlet-triplet splitting of the Σ state to be slightly smaller. The differences can be explained by the 
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following factors. Firstly, the Cu 4s is not included in our HF calculation which will have some effect on 
the form of the generated orbitals. Secondly, we use orbitals averaged over all states whereas the 
orbitals in a CASSCF are state optimized. Also in the CASSCF a larger orbital space, two sets of d-
orbitals plus the 4s orbital are included, is used. A smaller CASSCF space gives a singlet-triplet splitting 
which is comparable to our results122. So the discrepancies between the two non-relativistic methods 
can be accounted for, and as long as singlet-triplet splittings are concerned the non-relativistic starting 
point is accurate enough for later comparisons. 
 
Table 3.2. Relative energies (in cm-1) of the lowest ionic excited states obtained from a non-relativistic 
calculation. The CI expansions include all states derived from Cu+(3d94s1) X-(np6). The singlet-triplet 
splitting is given in parenthesis. 
 

Molecule State HF / CI CASSCF104 

CuCl 3Σ+ 0  0  
 3Π 1187  1580  
 3∆ 3098  3777  
 1Σ+ 3623 (3623) 4020  (4020) 
 1Π 3897  (2710) 4305 (2725) 
 1∆ 5013 (1915) 5849 (2072) 

CuBr 3Σ+ 0  0  
 3Π 815  1212  
 3∆ 2310  3058  
 1Σ+ 3402 (3402) 3733 (3733) 
 1Π 3447 (2632) 3902 (2690) 
 1∆ 4127 (1817) 5066 (2008) 

CuI 3Σ+ 0  0  
 3Π 508  872  
 3∆ 1525  2279  
 1Σ+ 3060 (3060) 3395 (3395) 
 1Π 3113 (2605) 3504 (2632) 
 1∆ 3213 (1688) 4175 (1896) 

 
We will now turn to the relativistic results and compare them with experimental results. In table 3.3 the 
results of the relativistic calculations, denoted with DHF / CI, are presented and compared with 
experimental and other theoretical work. In table 3.4 the spin-orbit induced mixing of the states is given.  
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Table 3.3. Relative energies (in cm-1) of the lowest ionic excited states obtained from a relativistic 
calculation compared with experiment. The CI expansions include all states derived from Cu+(3d94s1) 
X-(np6). The triplet and singlet components of Π1 and of ∆2 are mixed and denoted with 3,1 or 1,3. 

Experimental values in parenthesis have not been assigned. The assignment of Lefebvre et al. 116 and 
Delaval et al. 115 is given instead. The experimental error bounds are smaller than 25 cm-1.  
 

Molecule  State DHF / CI Experiment107,115,116,123 

CuCl 3Σ0-
+

 0  
 3Σ1

+
 97 0  

 3Π2 943  
 3,1Π1 1575 1451 
 3Π0+ 1616 1613 
 3Π0- 2514  

 3∆3 2579  
 3,1∆2 3180  
 3∆1 4085 (6291) 

 1Σ0+
+

 4823 4032 

 1,3Π1 5035 (3952) 

 1,3∆2 5880  

CuBr 3Σ0-
+

 0  
 3Σ1

+
 94 0 

 3Π2 649                          
 3,1Π1 1344 669 
 3Π0+ 1338  
 3Π0- 2362 3209 

 3∆3 1915  
 3,1∆2 2510  
 3∆1 3556 3632 

 1Σ0+
+

 4687  

 1,3Π1 4599 5087  

 1,3∆2 5127  
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Table 3.3.  Continued 
 

Molecule  State DHF / CI Experiment107,115,116,123 

CuI 3Σ0-
+

 0  
 3Σ1

+
 76 0 

 3Π2 386  
 3,1Π1 1152  
 3Π0+ 1087 2133 
 3Π0- 2283  

 3∆3 1232  
 3,1∆2 1812  
 3∆1 3002  

 1Σ0+
+

 4501 4266 

 1,3Π1 4196 (3223) 

 1,3∆2 4300  

 
 
 
Table 3.4. Mixing of the ionic states as a result of spin-orbit coupling. The triplet and singlet component 
of Π1 and of ∆2 are mixed and denoted with 3,1 or 1,3. 

 

State CuCl CuBr CuI 

3Σ0-
+

 6% 3Π0- 10% 3Π0- 15% 3Π0- 
3Σ1

+
 9% 3,1Π1 16% 3,1Π1 27% 3,1Π1 

3Π2 1% 3,1∆2 2% 3,1∆2 3% 3,1∆2 
3,1Π1 9% 3Σ1+1% 3,1∆1 15% 3Σ1+2% 3,1∆1 25% 3Σ1+5% 3,1∆1 

3Π0+ 29% 1Σ0+
+

 30% 1Σ0+
+

 32% 1Σ0+
+

 
3Π0- 6% 3Σ0-

+
 10% 3Σ0-

+
 15% 3Σ0-

+
 

3∆3 -- -- -- 
3,1∆2 1% 3Π2 2% 3Π2 3% 3Π2 
3∆1 48% 1,3Π1 35% 1,3Π1+1% 3Σ1

+
 26% 1,3Π1+1% 3Σ1

+
 

1Σ0+
+

 29% 3Π0+ 30% 3Π0+ 32% 3Π0+ 
1,3Π1 47% 3∆1 30% 3∆1 23% 3∆1 
1,3∆2 -- -- -- 
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Most of the states can still be directly related to the corresponding non-relativistic state. However, in 
relativistic theory the spin- and angular momenta are coupled and therefore we cannot distinguish 
between the singlet and triplet states of the Π1 and the ∆2 by mere labelling. Therefore 3,1 (and 1,3) is 

used as a superscript for the spin.  
In all three molecules a small spin-orbit splitting, of less than 100 cm-1, is found for the 3Σ+ states. The 
splitting in 3Π increases slightly going from CuCl to CuI, being 1571 cm-1 for CuCl, 1713 cm-1 for 
CuBr and 1897 cm-1 for CuI. Non-relativistically the 3Π and the 3Σ+ states lie closer together going 

from CuCl to CuI and leads to an increased mixing of the 3Π0- and the 3Σ0-
+

 state shifting the 3Π0-  state 

up relative to the other 3Π states. The relative position of the 3Π0+ state is affected by a mixing with the 
1Σ0+

+
 state. This mixing is similar in all three molecules. For the 3∆ splitting we also see an increase, from 

1506 cm-1 for CuCl, 1641 cm-1 for CuBr to 1770 cm-1 for CuI. Here the 3∆ and 1Π state, non-
relativistically, have an increasing separation when going from CuCl to CuI leading to a smaller mixing 
between the 3∆1 and the 1,3Π1 state. In CuCl the 3∆1 shifts towards the other 3∆ states whereas this 

shift becomes smaller in the CuI molecule. The mixing due to spin-orbit coupling will also affect the 

relative position of the 1Σ0+
+

 and 1,3Π1 states in the spectrum. The 1,3Π1 state becomes around 1100 

cm-1 higher for all molecules whereas the 1Σ0+
+

 state shifts up between 1200 and 1450 cm-1, relative to 
the non-relativistic results.  
The transition energies and radiative lifetimes of the low-lying states in CuCl molecule have been 
measured and assigned by Delaval et al. 107,115. A theoretical study was performed by Winter and 
Huestis118 who suggest a different assignment of the measured states, compared to Delaval et al. The 

results of Winter et al. are in fact in close agreement with our results except for the 1Σ0+
+

 state which lies 
900 cm-1 higher in our case. They find, however, a reversed ordering of the two spin-orbit components 
of the 3Σ+. A similar relativistic mixing of states is found in both calculations.  
For the CuBr molecule we can compare our results with the experimental data of Lefebvre et al. 116 

and Kowalczyk et al. 123. The lowest state, on 19820 cm-1 relative to the ground state X 1Σ0+
+

, was 

measured by Kowalczyk et al. and assigned to a 3Σ1
+
 which was later confirmed by rotational 

analysis124. Surprising is the short lifetime (12 µs) compared to the lifetime of this state in CuCl (60 µs). 

This is probably due to the increased mixing of the 3Σ1
+
 with the 3,1Π1 compared to CuCl. Lefebvre et 

al. measured the transitions and lifetimes of four other bands. The bands at 20489 cm-1 and 23452  cm-

1 are assigned to a 3,1Π1 and a 1Σ0+
+

 respectively, based on their lifetimes. Experimentally the 3,1Π1 

state lies 669 cm-1 above the 3Σ1
+
 whereas we find a splitting that is twice as large. Non-dynamical 

correlation effects due to charge transfer will reduce this calculated splitting104.  
A theoretical study on the CuI molecule was performed by Ramírez-Solís et al. 119 and experimental 
excitation energies and lifetimes of four bands were measured by Lefebvre et al. 116. Lefebvre et al. did 
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not assign the lower two bands appearing at 19734 and 21867 cm-1 although they were able to 
determine the spin-orbit components of both which are Ω=1 and Ω=0 respectively, and the lifetimes 
1.9 and 1.0 µs respectively. Ramírez-Solís et al. assigned these states to a mixture of singlet and triplet 
Π neutral states, arising from the Cu(3d104s1) X(ns2np5) configuration, and the second arises mainly 
from the Ω=0 component of the ionic 3Σ+ state with a mixture of the 1Σ+ state. The neutral states, 
however, lie much higher in energy as will be shown in section 3.4. We therefore assign the measured 
bands to states arising from the ionic configuration. We confirm the assignment of the +

+0
1S  at 24002 

cm-1. Assuming that the spin-orbit components of the two unidentified bands are indeed Ω=1 and Ω=0, 
the lower experimental band can be assigned to the Ω=1 component of the 3Σ+ state. The second 
band, with spin-orbit component Ω=0, could be assigned to a 3Π state which presents a mixture with a 
1Σ+ state and that can explain the low lifetime, 1.0 µs.  
Up to now we have not discussed the assignment of the 3∆1 and the 1,3Π1 state. In CuCl the 3∆ states 

appear too low in energy in comparison with the assignment of the experimental results by Delaval et 
al107,115. Our calculations and those of Winter and Huestis118 place these 3∆ states in the lower part of 
the spectrum. A strong mixing between the highest two Ω=1 states 3∆1 and 1,3Π1 is found in our 

relativistic calculations which can explain the large value of the transition dipole moment found for the 
pure 1Π electronic state in comparison with experiment104. 
For the CuBr molecule Lefebvre et al. 116 find two Ω=1 states at 23029 cm-1 and 24907 cm-1 of 
which the lower was assigned to a 1Π1 based on the short lifetime. The short lifetime also implies that 

this state has dominantly singlet character. Our calculations suggest that these two states are heavily 
mixed and that the lower Ω=1 state has mainly 3∆1 character whereas the other is dominantly 1Π1.  
In CuI the band at 22957 cm-1 was assigned to a 1Π1 by Lefebvre et al. 116. Our calculations again 
would suggest this state to be dominantly 3∆1. 
In all our calculations we find the 3∆1 below the 1Π1 suggesting an opposite ordering compared to the 

experimental assignments. However, the relative positions of the final states strongly depends on the 
ordering and the magnitude of the energy differences between the two electronic states at the non-
relativistic level. If the states lie close together a large mixing will be found whereas the dominant 
contribution to the character of the final states dependents on the relative ordering of the 3∆ and the 1Π. 
Extensive correlation calculations of Sousa et al. 104 show that charge-transfer effects can bring the 1Π 
below the 3∆, which is the opposite of what is found by us and by Winter et al. 118. We have not 
included these correlation effects in our calculations and therefore cannot give a definite conclusion on 
the ordering and mixing of these two states. In the future extensive electron correlation calculations 
should be performed to elucidate the influence of change-transfer effects on the ordering of the 3∆ and 
1Π states. 
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3.4 Neutral states 
The neutral states come from the Cu(3d104s1) X(ns2np5) configuration. Here the halogen is formally an 
open shell, in contrast to the ionic excited states, hence the spin-orbit effects arise from the halogen. In 
the case of ionic excited states the spin-orbit effects are constant, arising 
  

Table 3.5. Energies (in cm-1), relative to the ionic 3Σ+ (and 3Σ0-
+

 ) state, of the lowest neutral states 
obtained from non-relativistic and relativistic calculations. The CI expansions include all states derived 
from Cu(3d104s1) X(np5). The triplet and singlet components of the Π1 are mixed and denoted with 3,1 

or 1,3. 

Molecule Non-relativistic Relativistic 

 State HF / CI CASSCF104 State DHF / CI 

CuCl 3Π 24645 25604 3Π2 27241 
    3,1Π1 27482 
    3Π0− 27941 
    3Π0+ 27950 

 1Π 25568 26790 1,3Π1 28700 

 3Σ+ 27380 30422 3Σ0-
+

 30313 

    3Σ1
+
 30318 

 1Σ+ 31585 36186 1Σ0+
+

 35008 

CuBr 3Π 20572 21822 3Π2 22266 
    3,1Π1 22658 
    3Π0− 24118 
    3Π0+ 24571 

 1Π 21515 23013 1,3Π1 24628 

 3Σ+ 24231 26123 3Σ0-
+

 27879 

    3Σ1
+
 27997 

 1Σ+ 28833 31975 1Σ0+
+

 32674 

CuI 3Π 16672 17677 3Π2 16103 
    3,1Π1 16559 
    3Π0− 18755 
    3Π0+ 20286 

 1Π 17685 18930 1,3Π1 19143 

 3Σ+ 21265 20889 3Σ0-
+

 25693 

    3Σ1
+
 25926 

 1Σ+ 25952 26684 1Σ0+
+

 30146 
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from the Cu atom, but here the spin-orbit effect rapidly increases with the atomic number of the halogen. 
The atomic spin-orbit splittings are 874, 3758 and 7603 cm-1 for Cl, Br and I respectively. Thus, in the 
neutral states the diagonal spin-orbit coupling can already have an important effect specially for the 
heaviest molecule CuI. 
We will first compare our results with those of Sousa et al. 104. A reasonable agreement is found for all 
the states except the 1Σ+ states in CuCl, and in a lesser extent, in CuBr. These differences should be 
attributed to the different computational models used. The neutral excited states all lie far above the ionic 
excited states, presented in section 3.3 although a monotonic decrease of the neutral excitation energies 
is clearly seen. For CuI our results are in great contrast with those of Ramírez-Solís et al. 119 who 
placed the neutral Π states between the lower ionic states.    
In the last two colums of table 3.5 we present the results of the relativistic calculations. The states can 
be related to the corresponding non-relativistic state except for the Π1 state because we cannot 

distinguish between its singlet and triplet character. Just as for the ionic states we will use 3,1 (and 1,3) as 
a superscript for the spin. It was found that the spin-orbit induced mixing between the Π and Σ states 
was small (less than 3% for all states). 
The spin-orbit splitting for the 3Π states turned out to be around 700 cm-1 for CuCl, 2300 cm-1 for 
CuBr and more than 4000 cm-1 for CuI. For CuI this leads to a reordering of the spin-orbit split Π 
states. If we now compare the relative energies of the neutral states to those of the ionic states then it is 
clear that even after inclusion of spin-orbit coupling these states lie far above in energy than the ionic 
states. In CuCl and CuBr the splitting between the highest ionic state and the lowest neutral state 
increases when relativity is included. For the CuI molecule a decrease is observed but the lowest neutral 
state still lies 12000 cm-1 above the highest ionic state. This is in contradiction with the results of 
calculations by Ramírez-Solís et al. 119. More extensive theoretical work and experimental evidence is 
required to understand these discrepancies for the neutral states. 
 
3.5 Conclusions 

The lowest excited states of CuCl, CuBr and CuI have been studied by four-component calculations 
which account for spin-orbit coupling and scalar relativistic effects. For all molecules the lowest excited 
states are best described starting from the ionic Cu+(3d94s1) X-(ns2np6) configuration. The calculations 
show that for the ionic excited states spin-orbit coupling comes basically from the Cu+(3d94s1) atomic 
splitting. However, spin-orbit interactions do not affect the relative ordering of the low-lying ionic 
excited states of these molecules. The 3∆1 and 1Π1 state have a large spin-orbit induced mixing which is 

strongly dependent on the relative positions of these states. Sousa et al. 104 showed that charge-transfer 
correlation effects can lead to a reordering of these two states. This will also give an opposite 
assignment compared to what is found in the calculations presented here.  
The neutral excited states, arising form the configuration Cu(3d104s1) X(ns2np5), lie far above the ionic 
states. For these states spin-orbit coupling has been shown to be important, specially for CuI where the 
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spin-orbit splitting due to the 3Π neutral states is around 4000 cm-1. In the case of CuI it even leads to a 
different ordering of the states, compared to the ones of CuCl and CuBr. Nevertheless, even after 
inclusion of spin-orbit coupling these states appear much higher in energy than the ionic states. This 
result is in contradiction with previous theoretical results of Ramírez-Solís et al. 119. Based on our 
calculations, the lowest two bands of the CuI spectrum can be assigned to the Ω=1 spin-orbit 
component of the 3Σ+ state and to the Ω=0 component of the ionic 3Π state respectively.  
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Chapter 4 

 
 
 

Interhalogens 

 
 
In this chapter the effect of relativity on the properties of the interhalogens ClF, BrF, BrCl, IF, IBr and 
IBr is studied by comparing relativistic and non-relativistic calculations. Bond lengths, harmonic 
frequencies and dissociation energies show that the bond is weakened in the relativistic formalism. 
Relativity increases the electric dipole moment whereas the electric quadrupole moment and dipole 
polarizability display an irregular behaviour. The relativistic contributions to the electric dipole and 
quadrupole moment of the iodine containing molecules are 10-20% of the total value whereas the 
contributions in the other molecules cannot be neglected. The value of the electric quadrupole moment is 
dominated by the relativistic contributions. 
 

 
4.1 Introduction 

In two previous papers125,126, hereafter called paper I and paper II, the influence of relativity and 
correlation effects on spectroscopic constants in the series X2 and HX (with X = F, Cl, Br, I, At) were 

studied. The methods used were Hartree-Fock (HF), second order Møller-Plesset perturbation theory 
(MP2), Configuration Interaction with Single and Double excitations (CISD), Coupled Cluster with 
Single and Double excitations (CCSD) and the latter method perturbatively corrected for the effect of 
triple excitations (CCSD(T)). This gives a range of correlation treatments, from no electron correlation 
in the HF method to a fairly high level  of correlation in the CCSD(T) method. 
In this paper we complete the previous work with a study on the spectroscopic properties of the 
interhalogen series XY (with X = F, Cl, Br, I). The influence of relativity and correlation on the 
spectroscopic properties are investigated at the correlated levels MP2, CCSD and CCSD(T). Hardly 
any previous theoretical work is available on the spectroscopic properties, but much theoretical work 
has been done on the electric dipole moments. In these calculations relativistic effects were disregarded 
or approximated neglecting the spin-orbit interaction. Here we study the relativistic effects on the 
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electric dipole and quadrupole moments and the dipole polarizability within a fully relativistic framework. 
Correlation effects for these properties are estimated by means of CISD calculations.  
 
4.2 Computational model 
All calculations on the spectroscopic properties are performed using MOLFDIR. The property integrals 
needed to calculate the expectation values of the electric properties are obtained from the HERMIT95 
part of the DIRAC91 program. The dipole polarizibility is evaluated as a response property using the 
propagator method92 within the Random Phase Approxima-tion41,93. A gaussian distribution is used to 
represent the spatial extent of the nucleus in both the relativistic and the non-relativistic calculations (for 
the exponents see Table I of paper II). The speed of light is taken to be 137.0359895 au. Basis sets for 
the halogens are described in paper II and will be denoted by apVDZ and apVTZ. 
In the MP2, CC and CISD calculations the halogens are treated as 7 valence electron atoms, 
correlating only the valence s- and p-electrons. In the correlated calculations of the spectroscopic 
properties the highest virtuals (with energies above 10 atomic units) are left out. In the CISD 
calculations on the electric properties all virtuals are included. 
All molecular calculations are performed using C4v symmetry. The atomic calculations are carried out in 
Oh. To prevent spurious discrepancies between the non-relativistic and relativistic dissociation energies, 

we calculate both the non-relativistic and the relativistic atomic asymptotes in a basis of spinors 
optimized for the average energy of the 5p1/2)2 5p3/2)3 configuration.  

Spectroscopic constants are obtained by fitting the potential energy curves to a 4th order polynomial in 
the internuclear distance. The electric properties are calculated at the experimental bond length. The 
quadrupole moment is computed relative to the center of mass of the molecule (considered for this 
purpose as two spherical symmetric atoms, separated by the equilibrium bond distance) using the 
masses 18.99840, 34.96885, 78.91834 and 126.90448 au. from Ref. 127 for F, Cl, Br and I, 
respectively.  
We calculate the electric properties as an expectation value of the CISD wave function. Since the 
Hellmann-Feynman128,129 theorem is not fullfilled130,131 in a CISD calculation our results will differ from 
a more rigorous energy derivative formulation. Kucharski et al. 132 compared these two approaches 
and found only small differences for the dipole moment of IF calculated with the MBPT(4) method.  
 
4.3 Spectroscopic properties 

The calculated spectroscopic properties for the six interhalogen molecules ClF, BrF, BrCl, IF, ICl and 
IBr are presented in table 4.1-4.6 whereas the relativistic effects, defined as x(relativistic) - x(non-
relativistic), on these properties are summarized in table 4.7.   
The dissociation energy (De) shows a relativistic decrease for all interhalogen molecules. This decrease, 

arising from the spin-orbit coupling in the valence p-shell, is also seen in the homonuclear diatomic 
molecules (see paper I). In these molecules the molecular spin-orbit coupling is almost completely 
quenched for elements up to iodine, while the atomic asymptotes are lowered for each atom by 1/3 of 
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the 2P atomic ground state splitting. Assuming complete quenching in the present series of molecules 
gives an estimated SO-effect (hereafter called ASO-only and given in table 4.7) on the De of 1/3 of the 

atomic spin-orbit splitting from both atoms. 
Relativity destabilizes the molecular bond leading to a longer equilibrium bond length (re) and a decrease 
of the harmonic frequencies (ωe). This destabilization can be understood by looking at the molecular 

orbital formation by the valence p orbitals. The six atomic valence p orbitals combine to anti-bonding 
and bonding or molecular spin orbitals which can be labelled as σ1/2, π1/2, π3/2, π1/2*, π3/2*, σ1/2*. 
Spin-orbit coupling lifts the degeneracy of the π-orbitals introducing σ-character in the π1/2 and π1/2*. 

The weakening of the chemical bond is caused by the introduction of anti-bonding character from the 
unoccupied σ1/2* into the bonding π1/2 orbital.   

The size of the relativistic effects is similar to that in the homonuclear diatomics in paper I. The 
magnitude of the Gaunt interaction correction for the interhalogens is small which suggests that higher-
order two-electron relativistic effects will be small as well.  
We will now compare our results with experimental data after which a comparison will be made with the 
few available theoretical results. Our re are longer than the experimental values, varying from less then 
0.01 Å for the lighter to 0.05 Å for the heaviest molecules. The errors in the ωe are generally smaller 
than 10 cm-1. The De values are systematically too low by 5 kcal/mol. However, for the iodine molecule 

we have shown133 that extensive core-valence correlation and the addition of a g-type basis function 
reduces the re with around 0.04 Å and increases the ωe and De with 10 cm-1 and 5.5 kcal/mol 

respectively. 
There are hardly any theoretical results available for the spectroscopic properties of the interhalogens. 
Straub and McLean134 performed a systematic study on these molecules at the Hartree-Fock level 
within the non-relativistic framework. Their findings are in close agreement with our non-relativistic NR-
HF results, except for IBr where they had to use a basis set of lower quality due to the limited 
computational resources at the time. 
For the ClF molecule we can compare our results with other theoretical work, the CISD+Q calculations 
of Pettersson et al. 135 and the CPF calculations of Scharf and Ahlrichs136, both in a non-relativistic 
framework. The results in these papers agree very well with our non-relativistic correlated work. 
Balasubramanian137 calculated the ICl molecule using averaged relativistic effective potentials (AREP), 
followed by CI calculations to include spin-orbit effects. We find large discrepancies between his results 
and the ones presented here. 
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Table 4.1. Properties of ClF calculated at various levels of theory. 
 

 re (Å) ωe (cm-1) De (kcal mol-1) 

Method apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 1.619 1.590 907 918 10.5 17.1 
DC-HF 1.620 1.590 905 915 9.0 15.2 
DC-HF+G  1.590  915  15.2 
NR-MP2 1.676 1.637 780 809 57.3 68.1 
DC-MP2 1.677 1.637 780 808 55.9 66.4 
NR-CCSD 1.674 1.632 782 814 48.6 56.1 
DC-CCSD 1.674 1.633 783 814 47.3 54.7 
NR-CCSD(T) 1.685 1.645 751 781 52.3 61.1 
DC-CCSD(T) 1.685 1.645 751 780 51.0 59.4 
       
NR-HF15  1.585 912  
NR-CISD+Q135  1.653  49.6 
NR-CPF136 1.636  55.3 
       
Experiment120 1.628 786 66.3 

 
Table 4.2. Properties of BrF calculated at various levels of theory. 
 

 re (Å) ωe (cm-1) De (kcal mol-1) 

Method apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 1.744 1.716 772 777 14.3 20.1 
DC-HF 1.746 1.718 765 771 9.9 14.9 
DC-HF+G  1.719  771  15.0 
NR-MP2 1.797 1.759 674 699 60.7 70.1 
DC-MP2 1.799 1.762 668 693 57.0 66.3 
NR-CCSD 1.793 1.754 679 705 52.1 59.1 
DC-CCSD 1.795 1.757 673 699 48.3 54.5 
NR-CCSD(T) 1.804 1.765 655 679 55.6 63.1 
DC-CCSD(T) 1.806 1.769 649 673 51.8 59.1 
       
NR-HF134  1.719 770  
       
Experiment120 1.759 671 64.7 
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Table 4.3. Properties of ClBr calculated at various levels of theory. 
 

 re (Å) ωe (cm-1) De (kcal mol-1) 

Method apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 2.157 2.129 466 487 18.0 26.1 
DC-HF 2.157 2.130 463 483 13.4 21.1 
DC-HF+G  2.131  483  21.2 
NR-MP2 2.188 2.143 427 458 44.4 55.1 
DC-MP2 2.189 2.144 424 455 40.3 50.9 
NR-CCSD 2.202 2.156 413 446 39.9 48.1 
DC-CCSD 2.203 2.157 410 443 35.8 43.2 
NR-CCSD(T) 2.212 2.165 399 433 42.7 51.2 
DC-CCSD(T) 2.213 2.166 395 429 38.6 46.9 
       
NR-HF134  2.137 482  
       
Experiment120 2.136 444 52.1 

 
 
 
Table 4.4. Properties of IF calculated at various levels of theory. 
 

 re (Å) ωe (cm-1) De (kcal mol-1) 

Method apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 1.904 1.876 698 703 24.6 30.1 
DC-HF 1.914 1.886 675 680 16.3 20.7 
DC-HF+G  1.887  680  20.9 
NR-MP2 1.954 1.916 622 645 69.2 78.1 
DC-MP2 1.965 1.928 601 624 62.4 70.5 
NR-CCSD 1.947 1.910 631 654 60.9 66.1 
DC-CCSD 1.959 1.921 610 632 53.8 58.8 
NR-CCSD(T) 1.956 1.920 613 634 64.1 70.5 
DC-CCSD(T) 1.969 1.932 590 611 57.1 63.1 
       
NR-HF134  1.86 711  
       
Experiment120 1.910 610 67.3 
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Table 4.5. Properties of ICl calculated at various levels of theory. 
 

 re (Å) ωe (cm-1) De (kcal mol-1) 

Method apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 2.355 2.319 408 424 21.5 29.1 
DC-HF 2.362 2.326 395 411 13.9 20.9 
DC-HF+G  2.327  411  21.0 
NR-MP2 2.384 2.330 379 405 46.1 56.1 
DC-MP2 2.392 2.338 366 392 39.4 49.1 
NR-CCSD 2.397 2.341 368 395 42.0 49.1 
DC-CCSD 2.406 2.349 355 383 35.3 41.7 
NR-CCSD(T) 2.406 2.349 358 385 44.5 52.3 
DC-CCSD(T) 2.416 2.359 344 372 38.0 45.2 
       
NR-HF134  2.33 421  
RCI137 2.53 327  
       
Experiment120 2.321 384 50.2 

 
 
Table 4.6. Properties of IBr calculated at various levels of theory. 
 

 re (Å) ωe (cm-1) De (kcal mol-1) 

Method apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 2.508 2.472 284 295 18.4 25.7 
DC-HF 2.510 2.475 276 287 8.0 14.5 
DC-HF+G  2.476  287  14.6 
NR-MP2 2.537 2.483 264 283 40.2 50.5 
DC-MP2 2.541 2.486 256 275 30.9 40.4 
NR-CCSD 2.552 2.497 255 275 37.2 44.0 
DC-CCSD 2.557 2.501 246 266 28.0 34.1 
NR-CCSD(T) 2.562 2.506 247 267 39.5 47.1 
DC-CCSD(T) 2.568 2.511 237 258 30.4 37.4 
       
NR-HF134 2.29 342  
       
Experiment120 2.469 269 42.3 
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Table 4.7. Relativistic effects on the properties at different levels of theory. 
 

  ∆re (Å) ∆ωe (cm-1) ∆De (kcal mol-1) 
Molecule Method apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

ClF HF 0.001 0.000 -2 -2 -1.5 -1.5 
 HF + G  0.000  -3  -1.5 
 MP2 0.000 0.001 0 -1 -1.3 -1.4 
 CCSD 0.000 0.001 0 -1 -1.3 -1.4 
 CCSD(T) 0.000 0.001 0 -1 -1.3 -1.4 
 ASO-only     -1.3 

BrF HF 0.002 0.003 -7 -6 -4.3 -4.6 
 HF + G  0.003  -6  -4.5 
 MP2 0.002 0.003 -6 -6 -3.7 -4.0 
 CCSD 0.002 0.003 -6 -6 -3.8 -4.1 
 CCSD(T) 0.002 0.003 -6 -6 -3.7 -4.0 
 ASO-only     -4.0 

BrCl HF 0.000 0.001 -3 -3 -4.6 -4.9 
 HF + G  0.001  -4  -4.8 
 MP2 0.001 0.001 -3 -3 -4.1 -4.5 
 CCSD 0.001 0.001 -3 -4 -4.1 -4.4 
 CCSD(T) 0.001 0.001 -4 -4 -4.0 -4.3 
 ASO-only     -4.5 

IF HF 0.010 0.010 -23 -23 -8.3 -8.8 
 HF + G  0.011  -23  -8.7 
 MP2 0.012 0.011 -21 -21 -6.9 -7.4 
 CCSD 0.011 0.011 -21 -21 -7.2 -7.6 
 CCSD(T) 0.012 0.012 -23 -23 -7.0 -7.4 
 ASO-only     -7.8 

ICl HF 0.008 0.007 -13 -13 -7.6 -8.2 
 HF + G  0.008  -13  -8.1 
 MP2 0.009 0.008 -13 -12 -6.6 -7.4 
 CCSD 0.009 0.009 -13 -13 -6.6 -7.2 
 CCSD(T) 0.010 0.010 -14 -13 -6.5 -7.1 
 ASO-only     -8.3 

IBr HF 0.003 0.003 -8 -8 -10.5 -11.2 
 HF + G  0.004  -8  -11.0 
 MP2 0.004 0.004 -8 -8 -9.3 -10.1 
 CCSD 0.005 0.004 -9 -8 -9.2 -9.8 
 CCSD(T) 0.006 0.005 -10 -9 -9.1 -9.7 
 ASO-only     -11.0 
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4.4 Electric properties 

In contrast to the spectroscopic properties much theoretical attention has been given to the electric 
properties, especially to the dipole moment µz. Most of the calculations are performed within a non-

relativistic framework whereas in some calculations relativistic corrections are included either by the use 
of a Cowan-Griffin (CG) 138 or a Douglas-Kroll (DK) 43,44 Hamiltonian, both without spin-orbit 
coupling. In table 4.8-4.10 the results of the electric property calculations for respectively the dipole 
moment, quadrupole moment and static dipole polarizability, are given. We have summarized the 
relativistic effects, defined as x(relativistic) - x(non-relativistic), on these properties in table 4.11. 
 
4.4.1 Electric dipole moment 
The electric dipole moment, (µz) presented in table 4.8, shows a relativistic increase for all molecules. 

We find that the relativistic contribution becomes increasingly important when going to the heavier 
interhalogens. For the iodine containing molecules this contribution is 10-20% of the total value. The 
increase of the electric dipole moment can be understood by considering that relativistic effects reduce 
the ionization potential especially for the heaviest atom in the molecule which leads to a more ionic 
molecule139. Our relativistic correlated µz overestimates the experimental values by 0.020 to 0.044 au 

which is an error of 5 to 9 %. Our relativistic results (DC-HF) for the ClF molecule are similar to those 
of Sadlej140 and Perera and Bartlett141. However, for the other molecules significant differences are 
found and these differences increase for heavier molecules. The smaller relativistic corrections of Sadlej 
and Perera and Bartlett (table 4.11) are probably due to absence of spin-orbit interaction in the 
Cowan-Griffin Hamiltonian. Fowler et al. 142 included relativistic effects in their calculations on the BrCl 
molecule using the one-component form of the Douglas-Kroll approximation. Here the spin-orbit 
coupling is also neglected and the resulting relativistic effects are comparable to those of Sadlej and 
Perera and Bartlett.  
In contrast to the results obtained for the other molecules there are large differences between the DZ 
and TZ results of µz for the iodine containing molecules. This suggests that in comparison with the other 

atoms the basis sets for the iodine atom lacks the necessary flexibility to reproduce this property well. 
Our NR-HF results are in close agreement with those of Sadlej140 and Perera and Bartlett141. For the 
three lightest molecules the results with the basis sets of Sadlej are comparable to our double zeta (DZ) 
results whereas in the iodine containing molecules they lie closer to the triple zeta (TZ) results. There are 
discrepancies between our results and those of Straub and McLean134 and Kucharski et al. 132 which 
are probably caused by basis set deficiencies in these calculations. Fowler et al. 142,143 performed 
calculations on the BrCl molecule and their non-relativistic results are in close agreement with 
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Table 4.8.a. Calculated dipole moment µz (au) for the molecules ClF, BrF and BrCl. The positive sign 

means polarity X+Y-. 
 

 ClF BrF BrCl 

Methoda apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 0.446 0.438 0.653 0.644 0.197 0.201 
DC-HF 0.452 0.444 0.688 0.680 0.230 0.234 
NR-SDCI 0.372 0.378 0.561 0.569 0.185 0.194 
DC-SDCI 0.377 0.383 0.593 0.601 0.215 0.224 
       
NR-HF134   0.355 0.567 0.231 
NR-HF140 
CG-HF140 
CG-MBPT(4) 140 

0.446 
0.451 
0.359 

0.652 
0.679 
0.556 

0.205 
0.229 
0.198 

NR-HF143   0.206 
NR-HF132 
NR-MBPT(4) 132 

0.479 
0.350 

0.715 
0.550 

0.266 
0.222 

NR-HF141 
CG-HF141 
CG-CCSD(T) 141 

0.446 
0.451 
0.354 

0.658 
0.685 
0.560 

0.204 
0.228 
0.199 

NR-HF142 
DK-HF142 
DK-CCSD(T) 142 

  0.196 
0.221 
0.183 

NF-HF135 
NR-CISD+Q135 

0.409 
0.346 

  

NR-CPF136 0.334   
       
Experiment 0.3494 ± 

0.0079144 
0.346 ± 0.008145 

0.559 ± 0.006146 0.204 ± 0.002147 

a: CG (Cowan-Griffin Hamiltonian used to include relativistic effects), DK (Douglas-Kroll Hamiltonian used to include 

relativistic effects). 

 
our data. Pettersson et al. 135 studied the ClF molecule and their non-relativistically calculated µz is 

significantly lower than our value and that of the other authors. 
Our correlation contributions are smaller than those of Sadlej140 and Kucharski et al. 132, both using 
MBPT(4), and Perera and Bartlett141, using CCSD(T). Pettersson et al. 135 included correlation 
contributions using CISD for the ClF molecule and their results are similar to our  



Relativistic Quantum Chemistry Applied 

52 

Table 4.8.b. Calculated dipole moment µz (au) for the molecules IF, ICl and IBr. The positive sign 

means polarity X+Y-. 
 

 IF ICl IBr 

Methoda apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 0.865 0.790 0.488 0.425 0.292 0.243 
DC-HF 0.978 0.900 0.616 0.548 0.395 0.340 
NR-SDCI 0.776 0.709 0.470 0.405 0.283 0.226 
DC-SDCI 0.878 0.810 0.586 0.518 0.373 0.313 
       
NR-HF134   0.570  0.254 
NR-HF140 
CG-HF140 
CG-MBPT(4) 140 

0.814 
0.891 
0.753 

0.442 
0.514 
0.454 

0.258 
0.305 
0.263 

NR-HF132 
NR-MBPT(4) 132 

0.930 
0.735 

0.563 
0.472 

0.334 
0.274 

NR-HF141 
CG-HF141 
CG-CCSD(T) 141 

0.813 
0.890 
0.756 

0.442 
0.514 
0.443 

0.257 
0.296 
0.264 

       
Experiment 0.766 ± 0.008148 0.49 ± 0.01149 

0.475 ± 0.001150 
0.290 ± 0.004151 
0.286 ± 0.011152 

a: CG (Cowan-Griffin Hamiltonian used to include relativistic effects), DK (Douglas-Kroll Hamiltonian used to include 

relativistic effects). 

  
calculated correlation effects. It is clear that more extensive correlation calculations are required to get 
closer agreement with the experimental results. 
 
4.4.2 Electric quadrupole moment  
We find large relativistic effects for the IF and ICl molecule. In the case of the IF molecule the 
relativistic effects dominate the magnitude of the Θzz value and at the HF level of theory the sign is even 
reversed. The Θzz of the two lightest molecules ClF and BrF are within the wide error bars of the 
experimental data. Our relativistic contributions to the Θzz differ considerably from those calculated by 

Sadlej140 for all molecules except the lightest, ClF. Sadlej found small relativistic effects for all molecules 
except for IBr where our relativistic correction is only half of the correction calculated by Sadlej.  
The Θzz shows basis set dependencies for all molecules except for the two lightest molecules ClF and 

BrF. On the other hand, the relativistic effects do not seem to be basis set dependent. 
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Table 4.9.a. Calculated quadrupole moment Θzz (au) for the molecules ClF, BrF and BrCl. 

 

 ClF BrF BrCl 

Methoda apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 0.901 0.828 0.514 0.382 3.043 2.515 
DC-HF 0.911 0.836 0.483 0.349 3.058 2.533 
NR-SDCI 0.977 0.912 0.706 0.557 2.974 2.535 
DC-SDCI 0.987 0.922 0.688 0.534 2.998 2.560 
       
NR-HF134 0.950 0.503 2.617 
NR-HF140 
CG-HF140 
CG-MBPT(4) 140 

0.947 
0.958 
1.102 

0.519 
0.514 
0.833 

2.845 
2.883 
2.875 

NR-HF143,b   2.797 
       
Experimentc 1.00 ± 0.74 

0.65 ± 0.74 
0.68 ± 0.74 
0.91 ± 0.74 

 

a: CG (Cowan-Griffin Hamiltonian used to include relativistic effects). 

b: Bond length of 2.141 Å is used. 

c: Ref. 145. Results are for two different isotopes of Cl and Br. 

 
 
 
Table 4.9.b. Calculated quadrupole moment Θzz (au) for the molecules IF, ICl and IBr. 

 

 IF ICl IBr 

Methoda apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 0.250 0.059 3.026 2.313 4.611 3.696 
DC-HF -0.003 -0.189 2.803 2.123 4.657 3.772 
NR-SDCI 0.443 0.255 2.926 2.352 4.485 3.722 
DC-SDCI 0.235 0.045 2.749 2.196 4.568 3.815 
       
NR-HF134 0.639  3.361 
NR-HF140 
CG-HF140 
CG-MBPT(4) 140 

0.199 
0.124 
0.483 

2.584 
2.597 
2.635 

4.165 
4.361 
4.272 

a: CG (Cowan-Griffin Hamiltonian used to include relativistic effects). 
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The NR-HF results of Sadlej140 for the three lighter systems are comparable to our apVDZ results 
whereas those for the iodine containing molecules lie closer to the apVTZ results. This trend is similar to 
the one found for the µz. The results of Straub and McLean134 for the first two molecules ClF and BrF 

are similar to our double zeta results which is somewhat surprising because of the large discrepancies 
found for the dipole moments of these molecules. The BrCl and IBr results lie close to, or even below, 
the apVTZ values whereas the results for IF molecule show large deviations.  
Not only the size but also the sign of the correlation corrections change when going from apVDZ to 
apVTZ quality basis sets. For the molecules BrCl, ICl and IBr, molecules with a large Θzz, the sign of 
the corrections changes from negative to positive yielding a larger Θzz in the triple zeta calculation. The 

correlation contributions of Sadlej140 do not show a systematic behaviour either and differ from our 
corrections as well. More extensive correlated calculations and analysis of the correlation contributions 
are needed to get a better understanding of the correlation effects on this property.   
 
4.4.3 Dipole polarizability 
No experimental values are available for the αzz. Significant relativistic effects are found for the four 

heaviest molecules BrCl, IF, ICl and IBr with the largest relativistic effects on IBr. Relativity leads to an 
increase of the αzz except for the IF molecule where a significant decrease is found. Our relativistic 
effect on the αzz of BrCl is larger than the values obtained by Sadlej140 and Fowler et al. 142 whereas 

the value of Sadlej for the IF molecule is in close 
 
Table 4.10.a. Calculated dipole polarizability αzz (au) for the molecules ClF, BrF and BrCl. 

 

 ClF BrF BrCl 

Methoda apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 21.63 22.18 27.72 27.97 50.81 51.55 
DC-HF 21.66 22.20 27.72 27.96 51.09 51.82 
       
NR-HF140 
CG-HF140 
CG-MBPT(4) 140 

22.48 
22.51 
22.71 

27.82 
27.80 
27.44 

51.50 
51.65 
50.92 

NR-HF142 
DK-HF142 
DK-CCSD(T) 142 

  51.76 
51.89 
51.23 

a: CG (Cowan-Griffin Hamiltonian used to include relativistic effects), DK (Douglas-Kroll Hamiltonian used to include 

relativistic effects). 



4. Interhalogens 

55 

Table 4.10.b. Calculated dipole polarizability αzz (au) for the molecules IF, ICl and IBr. 

 

 IF ICl IBr 

Methoda apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

NR-HF 31.25 36.3 59.34 64.98 74.82 78.85 
DC-HF 30.93 35.85 60.06 65.49 76.56 80.38 
       
NR-HF140 
CG-HF140 
CG-MBPT(4) 140 

36.54 
36.07 
37.79 

65.30 
65.30 
65.26 

78.96 
79.24 
77.96 

a: CG (Cowan-Griffin Hamiltonian used to include relativistic effects), DK (Douglas-Kroll Hamiltonian used to include 

relativistic effects). 

 
agreement with our result. Large discrepancies in the relativistic effects are found for the heavier 
molecules ICl and IBr. 
Our NR-HF results are in close agreement with the results of Sadlej140 and Fowler et al. 142, as can be 
seen in table 4.10. We have not performed correlated calculations. The results of Sadlej in table 4.10 
give small effects for most of the molecules. 
 
4.5 Additivity 
Our results for the spectroscopic properties re and ωe in table 4.8 show that for all practical purposes 

the relativistic and the correlation effects in the studied interhalogens are additive contributions. Some 
small combined relativistic-correlation contributions are seen for the ∆De. We also find a small 
combined effect of relativity and correlation for the µz of the iodine containing molecules (table 4.11). 

These effects are similar to those found by Perera and Bartlett141. The combined effect of relativity and 
correlation for the Θzz is somewhat larger than what we observe in calculations on the µz. 

 
4.6 Conclusions 

The effect of relativity on the spectroscopic and electric properties of the interhalogens has been studied 
comparing non-relativistic with relativistic all-electron calculations. The effect of the Gaunt correction, 
the higher-order two-electron relativistic correction is found to be negligible. The inclusion of relativity 
leads to a weakening of the bond which results in an increase of the re and a decrease of the ωe. This 

weaker bond is caused by an increase of the anti-bonding character of the occupied valence spin 
orbitals. The relativistic effect on the dissociation energy is primarily due to the lowering by spin-orbit 
splitting of the 2P atomic asymptote.  
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Table 4.11. Relativistic effects on electric properties. 
 

  ∆µz (au) ∆Θzz (au) ∆αzz (au) 

Molecule Method apVDZ apVTZ apVDZ apVTZ apVDZ apVTZ 

ClF HF 0.006 0.006 0.010 0.009 0.03 0.02 
 SDCI 0.005 0.005 0.011 0.010   
 HF140 0.005 0.011 0.03 
 HF141 

CCSD141 
0.005  
0.004 

  

BrF HF 0.036 0.036 -0.031 -0.033 0.00 -0.01 
 SDCI 0.032 0.032 -0.018 -0.023   
 HF140 0.028 -0.005 -0.02 
 HF141 

CCSD141 
0.027 
0.023 

  

BrCl HF 0.033 0.033 0.015 0.018 0.29 0.27 
 SDCI 0.031 0.030 0.024 0.025   
 HF140 0.023 0.038 0.15 
 HF141 

CCSD141 
0.023 
0.019 

  

 HF142 
CCSD142 

0.025 
0.019 

  

IF HF 0.113 0.111 -0.253 -0.248 -0.32 -0.46 
 SDCI 0.102 0.101 -0.208 -0.210   
 HF140 0.077 -0.075 -0.47 
 HF141 

CCSD141 
0.077 
0.065 

  

ICl HF 0.127 0.123 -0.224 -0.191 0.71 0.51 
 SDCI 0.116 0.112 -0.177 -0.156   
 HF140 0.072 0.013 0.00 
 HF141 

CCSD141 
0.072 
0.057 

  

IBr HF 0.102 0.097 0.046 0.076 1.74 1.53 
 SDCI 0.091 0.087 0.084 0.093   
 HF140 0.047 0.196 0.28 
 HF141 

CCSD141 
0.039 
0.033 
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Relativistic effects increase the electric dipole moment (µz) of the interhalogens. This effect is largest for 

the iodine containing molecules, where an increase of 10-20% is found. Similar relativistic corrections 
are found for the Θzz. The electron correlation contribution decreases the µz and is underestimated at 
the CISD level of theory. The relativistic effects on the electric quadrupole moment (Θzz) are important 
but do not show a clear trend. We find that the value of Θzz in IF is dominated by the relativistic 
contribution. Our DHF results for the Θzz are in close agreement with other theoretical predictions, but 

the correlation contribution is not converged with basis set size and shows an irregular behaviour. 
Relativistic effects increase the dipole polarizability (αzz), except for the IF molecule where a significant 
decrease is found. Our non-relativistic results for the αzz are in close agreement with the available 

theoretical results but considerable differences are found when relativistic effects are included in the 
calculation.  
For all practical purposes the relativistic and correlation effects on the spectroscopic properties yield 
additive contributions for the molecules studied here. However, the calculations on the electric dipole 
and quadrupole moment show somewhat larger deviations from additivity.   
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Chapter 5 

 
 
 

The ground, excited and ionized states of iodine 

 
 
In this chapter the electronic structure, spectroscopic and bonding properties of the ground, excited and 
ionized states of iodine are studied. The experimentally determined properties of the 1Σg+ ground state 

are well reproduced by our results calculated at the CCSD(T) level of theory. Relativistic effects and 
core-valence correlation need to be included in order to get reliable results but the Gaunt interaction can 
be neglected. The photoelectron spectrum and the potential energy curves of the ionized and excited 
states are calculated using relativistic configuration interaction and coupled cluster methods. The 
calculated properties of the excited states are generally in good agreement with the experimental data as 
well as with earlier theoretical results of Teichteil and Pelissier. An alternative assignment of some 
recently measured, low lying, ionized states is proposed.  
 
 
5.1 Introduction 
The spectroscopic properties of the iodine molecule have been the subject of many experiments153-181 
and theoretical studies182-196 yet our understanding of these properties is still incomplete. Crucial in the 
understanding of these properties is the effect of relativity. In particular the spin-orbit interaction, which 
leads to severe mixing of excited states, has profound implications for the interpretation of spectroscopic 
data. The most important relativistic effect here is the spin-orbit interaction which leads to mixing of the 
bonding σg spinor with the anti-bonding πg,1/2 and similar to the mixing of the anti-bonding σu spinor 
with the bonding πu,1/2 (see figure 5.1). This mixing lifts the degeneracy of π  spinors and weakens the 
bond due to mixing in of anti-bonding σu character into occupied spinors. The inclusion of spin-orbit 

interactions also leads to severe mixing between excited states and has profound implications for the 
interpretation of spectroscopic data.   
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Figure 5.1. Non-relativistic and relativistic bonding schemes for the valence 5p spinors of iodine (For 
relativistic case the bonding of each type of spinor is shown only once). 
 
 
The most studied excited state is the B 3Πu (0u+), responsible for the visible absorption spectrum, a 
state that dissociates into 2P3/2 + 2P1/2 atomic states and thereby crosses repulsive or very weakly 
bound states originating from 2P3/2 + 2P3/2 atomic states. These crossings give rise to a number of 

predissociation effects that have been observed. Predissociation of the B state is now more or less 
understood156,157,190. Other excited states are, however, much less well characterized. Early theoretical 
work was done by Mulliken182 who constructed a theoretical spectrum based on one-electron 
arguments and empirical  corrections. Tellinghuisen160-162,164 constructed potential energy curves on the 
basis of experimental data. State-of-the-art theoretical calculations can nowadays be used to confirm 
the form and positions of the proposed curves.  
Most of the theoretical work is done on the molecular ground state. The majority of the calculations are 
valence electron calculations where the core is represented by a relativistic pseudopotential183,184,186-

188,193. To improve the calculated spectroscopic properties core-valence correlation effects can be 
included in the pseudopotentials. Another type of calculation applied to the iodine molecule189 is the 
Zeroth Order Regular Approximation (ZORA) 48 method, used in combination with density functional 
theory. 
Some calculations were performed on the excited states of the iodine molecule. All these calculations 
make use of relativistic pseudopotentials. Das and Wahl187 have determined a few excited states using 
the MCSCF method with empirical  corrections for the relativistic effects. Li and Balasubramanian193 
and Teichteil and Pelissier183 calculated the excited states by a MCSCF method followed by spin-orbit 
(SO) CI calculations. The curves obtained by Li and Balasubramanian differ from those calculated by 
Teichteil and Pelissier leading to two different theoretical pictures for the assignment of the I2 spectra 

and the interpretation of spectroscopic phenomena like predissociation.  
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For the ionized states of iodine there is only a limited amount of experimental172-176,180 and theoretical 
data available193,194. Li and Balasubramanian193 calculated potential energy curves and spectroscopic 
properties for the ionized states of iodine. Given the discrepancies between their work and that of 
Teichteil and Pelissier for the excited states of the neutral molecule, and in the light of the recent ZEKE 
experiments on the ionized states180, another theoretical investigation is of interest. 
In this paper the influence of relativity and correlation, including core-valence correlation effects, on the 
spectroscopic properties of the ground state are studied using the all electron Dirac-Fock method 
followed by CCSD(T) calculations. All relativistic effects are hence included from the outset. 
The potential energy curves for all excited states that dissociate into the 2PJ + 2PJ (J = 3/2 or 1/2) 

atomic states are calculated using the average of configurations Dirac-Hartree-Fock approach121, 
followed by a complete active space CI calculation. This approach allows us to assess the influence of 
spin-orbit coupling on the spectroscopic properties and makes it possible to assign the observed states. 
In order to obtain information about the accuracy of the calculated spectra additional MRCISD 
calculations are performed.  
Four low lying states of the ionized molecule I2+ (2Πg,3/2, 2Πg,1/2, 2Πu,3/2 and 2Πu,1/2 respectively) 

are studied including correlation effects up to the CCSD(T) level of theory. In a second set of 
calculations the complete spectrum of all ionized states that dissociate into I + I+ is calculated using the 
same approach as for the curves of the excited states. The assignment of the recently measured "a" state 
to a 4Σ-u,3/2 state by Cockett et al. 180 is discussed. 

 
5.2 Computational Model 
The molecular spinors of open-shell systems are generated using an average of configurations DHF121. 
Subsequently a full CI is performed in the open-shell spinor space in order to project out the different 
states that arise from the open-shell manifold. This approach, which is denoted Complete Open Shell 
Configuration Interaction (COSCI) gives us a balanced description of all states in the manifold and their 
interaction. Correlation effects are studied at different levels of theory depending on the reference wave 
function. For the multireference RAS-CI84 we use the COSCI states as the reference wave functions. 
For closed shell systems and systems with a single reference determinant the RELCCSD program86, a 
relativistic Coupled Cluster Singles Doubles (CCSD) program40, is used. The next higher order terms, 
the triple excitations, are included using a non-iterative correction labeled (T) 88. 
 
 
Table 5.1. Basis set sizes. 
 

 Large Component Small Component 

Non-relativistic 20s16p12d1f / 7s6p4d1f  
Relativistic 21s17p12d1f / 7s8p4d1f 17s33p18d12f1g / 6s11p10d5f1g 
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For the non-relativistic calculations a point-nucleus model is used whereas for the relativistic calculations 
the nucleus is represented by a gaussian charge distribution with an exponential value of  
0.1845238916E+09. The speed of light is taken to be 137.0359895 atomic units. 
The iodine basis is the contracted pVTZ basis taken from Visscher125. The primitives are of triple zeta 
quality in the valence region and the contracted functions are generated using a modified71,72 version of 
GRASP19. The size of the basis is given in table 5.1. 
There are three classes of two-electron repulsion integrals in the DHF calculation, the (LL|LL) class of 
integrals which are comparable to the non-relativistic integrals, the (LL|SS) class which represents the 
two-electron spin-orbit interaction and the (SS|SS) class of integrals. This last class of integrals arises 
from the small component part of the wave function and contributes formally to order α4 to the 
electronic energy. Since the small component density is mainly located in regions close to the respective 
nuclei this contribution has very small effect on the calculated valence properties. In fact it can be 
shown100,101 that the interatomic contribution of the (SS|SS) class of integrals can be represented by the 
Coulomb repulsion between the small component densities of the different atoms in the molecule. In 
calculating potential energy curves (sections 5.4.1 and 5.5.2) this large class of integrals can therefore 
be omitted and replaced by a small repulsive (electrostatic) contribution101 qS1qS2/R at each distance R, 
where qS1 and qS2 are the small component densities on atom 1 and 2 respectively. The omission of 

these integrals in the iterative SCF process has only a small effect on the core-spinors and no significant 
effect on the valence spinors. For more thorough discussion of this approach we refer to section 2.4. 
For the non-relativistic calculations a point-nucleus model is used whereas for the relativistic calculations 
the nucleus is represented by a gaussian charge distribution74 with an exponential value of  
1.845238916E+09.  
The iodine basis is the contracted pVTZ basis taken from Visscher125. The primitives are of triple zeta 
quality in the valence region and the contracted functions are generated using a modified71,72 version of 
GRASP19.  
The point groups D4h, Oh and their double groups (D4h* and Oh*) are used in the calculations for the 
I2 molecule and the I atom respectively.  
Equilibrium bond lengths (Re) and vibration frequencies (ωe) resulting from the single reference 

calculations on the ground state and the lowest ionized states are determied by a 4th order polynomial fit 
to at least 8 points of the potential energy curve. The polynomial obtained is used to calculate  the 
anharmonicity constant with the MOLCAS197 program VIBROT. The VIBROT program is also used 
to derive the spectroscopic properties of the potential energy curves of the excited and ionized states 
calculated with the COSCI approach. The dissociation energy of the ground state is calculated relative 
to the energy of the 2P3/2 atomic state. The latter energy is obtained by optimizing the average energy of 
the 5p1/2)2 5p3/2)3 configuration. 
The notation σg, πu, πg and σu is used for the molecular orbitals that can be formed as linear 

combinations of the six atomic 5p orbitals. The molecular spinor combinations are labelled by their 



5. The ground, excited and ionized states of iodine 

63 

dominant character σg,1/2, πu,1/2, πu,3/2, πg,1/2, πg,3/2 or σu,1/2.  The other filled orbitals are not listed 

explicitly. In non-relativistic calculations we can assign the molecular states using Λ−Σ coupling. In our 
relativistic calculations we work with intermediate coupling so only the ω and Ω quantum numbers 
apply. To connect to previous discussions on the assignment of states, and because the molecular 
spinors have relatively pure σ or π-character, we have tried to analyze the calculated states in terms of 
Ω components of Λ−Σ states. This analysis is facilitated by comparing with a non-relativistic calculation 
in a two-component spinor basis (using the non-relativistic option of MOLFDIR). In this case we obtain 
pure σg,1/2, πu,1/2, πu,3/2, πg,1/2, πg,3/2 and σu,1/2 spinors. We can then analyze which Ω components 

of the Λ−Σ states contribute to a particular relativistic state by comparing the determinantal 
compositions of the (non-relativistic) Λ−Σ states, which are also calculated in double group symmetry, 
with those of the relativistic Ω states. The molecular states are then labelled on the basis of the dominant 
Λ−Σ state. When the spinors do not have clear σ or π-character this analysis cannot be carried out and 
only the Ω label is used. When there is no dominant contribution from a particular Λ−Σ state we will 
label the state only by its Ω quantum number. 
 
5.3 The iodine ground state 
In this section results of calculations on the ground state properties of the iodine molecule are shown. 
The spinors are obtained by DHF calculations on the closed shell configuration σg2πu4πg4σu0. 

Relativistic as well as non-relativistic calculations are performed to study the influence of relativity on the 
spectroscopic properties of the ground state. Electron correlation is included using the CCSD(T) 
method and core-valence effects are studied by including excitations from the 4s, 4p, 4d and 5s spinors. 
A summary of the results is presented in table 5.2. The inclusion of relativistic effects results in a 
decrease in dissociation energy (De), which is mainly due to the spin-orbit splitting of the 2P + 2P 

dissociation asymptote. The spin-orbit interaction is not completely quenched in the molecule, where a 
Mulliken population analysis gives a mixing of 2% of the anti-bonding 
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Table 5.2. Overview of calculated spectroscopic properties for the iodine ground state. The calculated 
results are compared with experimental data and other theoretical work. All calculations have spin-orbit 
effects included. 

 
Methoda CVb Re (Å) De (eV) ωe (cm-1) ωexe (cm-1) 

NR-HF -- 2.681 1.03 237 0.39 
NR-HF + CCSD(T) 2 2.695 1.91 221 0.49 

DHF -- 2.682 0.40 229 0.42 
DHF + Gaunt -- 2.683 0.40 229 0.42 

DHF + CCSD(T) 1 2.717 1.28 206 0.61 
 2 2.699 1.39 210 0.59 
 3 2.698 1.39 212 0.58 

DHF + CCSD(T) + g-func.c 3 2.685 1.53 217 0.58 

RECP, HF, MP2186  2.733 1.17 202 -- 
RECP, CASSCF, FOCI193  2.770 1.45 210 -- 
PP,  MCSCF187  2.699 1.66 230 -- 
PP, MCSCF, MRCISD183  2.769 0.76 185 0.80 
PP+CPP, CISD184  2.687 1.35 -- -- 
PP+CPP, CCSD(T) 188  2.668 1.57 215 -- 
DFT+GGC, ZORA189  2.719 1.58 197 -- 

Experimental120  2.666 1.55 214.5 0.61 
a. NR-HF (Non-relativistic Hartree-Fock), DHF (Dirac-Hartree-Fock), RECP (Relativistic effective core potential), PP 

(Pseudopotential), CPP (Core polarisation potential), DFT+GGC, ZORA  (Density functional plus gradient correction 

using the ZORA method) 

b. Active space used in the correlation calculations: 

    1: 5s core, 5p valence and full virtual space 

    2: 4d and 5s core, 5p valence and full virtual space 

    3: 4s, 4p, 4d and 5s core, 5p valence and full virtual space 

c. Basis extended with one g-function, see discussion at end of section 5.5.3. 

  
σu,1/2 spinor into the occupied bonding πu,1/2 spinor. The weakened molecular bond is, however, not 

accompanied by a substantial bond length expansion because scalar relativistic effects contract the 
spinors and almost cancel the spin-orbit effect on the Re. The effect of the Gaunt term on the 

spectroscopic properties is negligible. 
Core-valence correlation effects are studied by adding, in a number of stages, core spinors to the 
CCSD calculation. The inclusion of core spinors in the correlation calculation results in a shortening of 
the Re by 0.02 Å and an increase of the De by 0.1 eV. Schwerdtfeger et al. 184 and Dolg188 have 
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performed calculations using relativistic pseudopotentials (PP) in which the core-valence effects are 
accounted for by a (semi-empirical) core polarization term (CPP). They found effects of 0.03 Å and 
0.06 eV and 0.03Å and 0.09 eV respectively upon including core-valence correlation. The size of the 
core-valence effect calculated in this paper hence is in close agreement with the PP results.  
There remains some discrepancy between the experimental and our calculated Re and De. A better 

agreement with experimental data is obtained in the highly correlated calculations of Dolg188. Dolg 
performed HF and CCSD(T) calculations with a large uncontracted basis set, using a Douglas-Kroll-
Hess43,44 transformed Hamiltonian, where the spin-orbit (SO) term was included afterwards. The 
HF+SO results from his calculations are in close agreement with the DHF results presented in this 
paper. His correlated results are better as a result of a larger basis set which includes higher l-functions. 
Dolg198 also studied basis set effects by performing a series of PP calculations with an uncontracted 
basis set where functions with increasing l-values, up to g-functions, were included. In these calculations 
it was found that the inclusion of g-functions gives a contraction of the Re by 0.02 Å at the CCSD(T) 

level. The basis set effects were also discussed by Teichteil and Pelissier183 and they observed that the 
inclusion of a g-function has a larger effect than the inclusion of a second f-function. We performed an 
additional set of calculations where one diffuse g-function, with a judiciously chosen but not optimized 
exponential value of 0.22, was included. The CCSD(T) results show a reduction of Re by 0.014 Å. 
Increases of 0.14 eV and 5 cm-1 are found for De and ωe respectively.  

We conclude that the small discrepancies with experiment can be resolved by the extension of the basis 
set and the inclusion of core-valence effects. For the work reported here such an  extension of the basis 
set is impractical at present due to the large number of calculations necessary to obtain the potential 
energy curves of the excited and ionized states. 
 
5.4 The excited states of iodine 
Potential energy curves of all states resulting from the σgkπulπgmσun configurations, where 

k+l+m+n=10, are calculated with the COSCI method using the average of configurations DHF spinors, 
with 10 electrons in 12 spinors.  
The potential energy curves are calculated relativistically as well as non-relativistically, using the non-
relativistic option in the MOLFDIR program package. For the non-relativistic case 24 states, of which 
12 states dissociate into I+ and I-, are calculated. There are 43 states in the relativistic case with 20 
states dissociating into ion-pair states. The results are presented and discussed in section 5.4.1. In 
section 5.4.2 their accuracy is assessed by comparing them with the results of additional MRSDCI 
calculations, with the COSCI states as references. 
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Figure 5.2. Non-relativistic (left page) and relativistic (right page) potential energy curves for the 
excited states of I2. (States dissociating in two 5p5, 2P iodine atoms are shown). 

 
5.4.1 Potential energy curves 
The potential energy curves of the valence excited states which dissociate into the 2PJ + 2PJ (J = 3/2 or 

1/2) atomic states are derived from COSCI calculations at about 50 different bond distances. The 
resulting curves are presented in figure 5.2.  
The De of the ground state (0.71 eV) obtained from the COSCI calculation is too small in comparison 

to the experimental value (1.55 eV) but larger than the single reference closed shell result (0.40 eV) of 
section 5.3 because of the interaction with anti-bonding configurational states in the open-shell manifold 
that assure proper dissociation behaviour. Potential curves of excited states that are known from 
experiment to be bonding are also found to be less bonding and sometimes even non-bonding. Using 
COSCI orbitals instead of state optimized orbitals to calculate the De for a closed shell wave function of 

the ground state 
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yields results that are very similar to those reported in section 5.3. In line with what is generally 
observed when anti-bonding configurational states are included in the wave function (non-dynamical 
correlation) the COSCI bond length of 2.76 Å for the ground state is larger than the single reference 
bond length of 2.68 Å. Core-valence correlation is probably the main ingredient necessary to shorten 
the Re towards the experimental value of 2.66 Å. This is expected to improve the bond distances of the 

excited states, which are also found 0.1 Å too long, as well.  
The splitting of the calculated states due to spin-orbit interaction agrees well with the observed splittings 
(see table 5.3). The important non-dynamical correlation effects are apparently sufficiently described by 
a COSCI calculation in the spinor space spanned by the 5p spinors. The relative splitting of the states 
describing dissociated neutral atoms (2PJ + 2PJ with J = 1/2 or 3/2) is also in good agreement with 

experimental data.  
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The calculated potential energy curves and their spectroscopic properties can be compared with two 
other theoretical calculations in which the relativistic effects are introduced using relativistically optimized 
pseudopotentials. A two configurations MCSCF approach is employed by Teichteil and Pelissier183 to 
calculate the ground state using the configurations σgkπu4πg4σun with k+n=2. Subsequently they 

generate one set of orbitals (using improved virtual orbitals) as a basis for an additional MRCI 
calculation that includes spin-orbit matrix elements between the 23 states that dissociate into neutral 
atoms. Another route to calculate the potential energy curves and spectroscopic properties is taken by 
Li and Balasubramanian193. Here all states are generated in a CASSCF calculation with partially 
occupied 5s and 5p orbitals. Dynamical correlation is accounted for by means of additional MRCI 
calculations. The resulting potential energy curves are finally corrected for the effect of spin-orbit 
splitting by a limited MRCISD calculation using ground state orbitals.  
The main features of the COSCI potential energy curves and their associated properties should be 
comparable to the results of these two methods discussed above. Especially, differences in the spin-
orbit splitting of states should be minor. However, while our relativistic potential energy curves show a 
close resemblance to the curves generated by Teichteil and Pelissier, they differ from the curves 
calculated by Li and Balasubramanian.  
A possible reason for this is the smaller CI space employed by Li and Balasubramanian. Teichteil and 
Pelissier perform a CI in a space that contains all states that dissociate into the neutral atoms (23 states). 
This CI space is identical with that of the COSCI calculations presented in this paper. In the spin-orbit 
MRCI calculations of Li and Balasubramanian, according to table II of their paper, the configurations 
σg2πu3πg3σu2, σg2πu2πg4σu2 and the 1g and 2g components of σg2πu4πg2σu2 are not included in 

the CI reference space. Since some of these configurations give rise to low lying states it may well be 
that omission of these configurations has a significant effect on the potential energy curves. 
 
5.4.2 Vertical excitation energies 
In table 5.3 the calculated, relativistic and non-relativistic, vertical excitation energies are given at the 
experimental Re of the ground state. The vertical excitation energies of states dissociating into neutral 

atoms, third column in table 5.3, are in reasonable agreement with experimental data. The vertical 
excitation energies of the ion-pair states (not included in table 5.3) are found to be 1.65 eV too high 
compared to experimental data. This shift is caused by the use of the configurational average DHF 
approach.  
MRCISD calculations were performed to improve the vertical excitation energies and to examine the 
accuracy of the calculated spectrum. The  5s-like spinors were placed in the RAS1 space to allow for 
some core-valence correlation. The 12 active spinors were included in the 
Table 5.3. Calculated non-relativistic and relativistic vertical excitation energies (eV), at the 
experimental ground state equilibrium bond length, compared with experimental and other theoretical 
data. The notation klmn, used for the main configurations, is based on σgkπulπgmσun. 
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Non-relativistic  Relativistic Exp. Ref. 183 Ref. 182 

Λ−Σ 

states  

COSCI Ω−ω 

states  

COSCI MR-

CISD 

Dominant 

configurations 

 Teichteil 

and 

Pelissier 

Mulliken 

 

1Σg+ 0.00 (1) 0g+ 0.00 0.00 2440 0.00 0.00 0.00 

 

 
3Πu  

 

 

 

2.25 

(1) 2u 

(1) 1u 

(1) 0u- 

(1) 0u+ 

1.78 

1.95 

2.34 

2.50 

1.75 

1.91 

2.30 

2.43 

2431 

2431 

2431 

2431 

1.69a,e 

1.84a 

2.13a,e 

2.37b 

1.65 

1.82 

2.18 

2.34 

1.66 

1.79 

2.34 

2.37 
1Πu  2.92 (2) 1u 2.72 2.62 2431 2.49a,f 2.57 2.38 

 

 
3Πg  

 

 

 

4.17 

(1) 2g 

(1) 1g 

(2) 0g+ 

(1) 0g- 

3.62 

3.71 

4.21 

4.33 

3.59 

3.69 

4.17 

 4.25 

2341 

2341 

2341 → 2422 d 

2341 

 3.45 

3.56 

4.09 

4.08 

3.2 

3.4 

4.1 

4.1 
1Πg  4.53 (3) 1g 4.49 4.41 2341  4.27 4.1 

 
3Σu+  

 

4.71 

(2) 0u- 

(3) 1u 

4.64 

4.71 

4.64 

4.67 

1441 

1441 

 

4.57c 

4.54 

4.58 

4.5 

4.57 

 
3Σg-  

 

5.03 

(3) 0g+ 

(2) 1g 

4.36 

4.84 

 4.29 

4.71 

2422 → 2341 d 

2422 

 4.19 

4.65 

3.9 

3.8 
1∆g  5.30 (2) 2g 5.07 4.98 2422  4.98 4.2 
1Σg+  5.54 (4) 0g+ 5.79 5.64 2422 + 2242 d  5.65 4.4 
1Σu-  5.87 (3) 0u- 5.02 5.10 2332  4.93 5.4 

 
3∆u  

 

5.95 

(1) 3u 

(2) 2u 

(4) 1u 

5.00 

5.66 

6.34 

5.11 

5.73 

6.38 

2332 

2332 

2332 

 4.91 

5.57 

6.24 

4.7 

5.3 

5.9 

 
3Σu+  

 

6.04 

(5) 1u 

(4) 0u- 

5.76 

6.35 

5.81 

6.36 

2332 

2332 

 5.64 

6.25 

5.5 

5.6 

a: Ref. 161. b: Ref. 162. c: Ref. 120. d: see discussion in section 5.4.2.  

e: Values estimated by Tellinghuisen. 

f: The experimental value corresponds to a maximum absorption and is not strictly comparable to our vertical 

excitation energy. 

 
RAS2 space and the virtuals with energies < 2.5 Hartree were placed in the RAS3 space. This gives a 
configuration space of 8 million determinants that is reduced to 1 million determinants by using Abelian 
point group symmetry. The resulting vertical excitation energies are summarized in column 5 of table 5.3. 
No large differential effects are found in comparison to the DHF results.  
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In table 5.3 the calculated vertical excitation energies are compared with those of Teichteil and 
Pelissier183, Mulliken's182 predictions and available experimental data. An assignment is given to the 
states based on their main character at the ground state Re. The ordering of the states is consistent with 

the ordering found by Teichteil and Pelissier but differs from the one reported by Li and 
Balasubramanian193. For example, Li et al. find a reverse ordering for the 1g and 2g component of the 
low-lying 3Πg, and the 0u- component of the 3Σu+ state (configuration 1441), which is found close to 

the 1u component of this state, is not present in their results. 
There are also some differences in the ordering of the higher excited states when the results, presented 
here, are compared with those of Mulliken. We agree with Teichteil and Pelissier on the ordering of the 
states resulting from the 2422 and 1441 configurations and the differences found for the ungerade states 
could be a result of underestimated interactions between the ω-ω states of the different configurations in 
the work of Mulliken.    
Vertical excitation energies of the states A' 2u (3Πu) and B' 0u- (3Πu) were estimated from 

experimental data by Tellinghuisen161. The excitation energy of the A' state is in close agreement with 
the calculated value but the B' state is found too low in comparison with the results of Teichteil and 
Pelissier and those presented here. Comparing the differences between our vertical excitation energies 
and the experimentally estimated ones with those of Teichteil and Pelissier we expect the experimental 
vertical excitation energy of the B' state to lie in between the value of Teichtel and Pelissier and our 
result. 
The character of the a' (2) 0g+ state has been discussed in various studies. We find an avoided crossing 
between a' (2) 0g+ and (3) 0g+ at the ground state Re where the two states interchange 3Πg 
(σg2πu3πg4σu1) and 3Σg- (σg2πu4πg2σu2) character. This confirms the assignment of Teichteil and 
Pelissier. At shorter distances the a' (2) 0g+ state has mainly 3Πg character and at longer distances it is 
dominated by the 3Σg-  state. At the ground state Re the contribution of both states is found to be 50%.  

 
5.4.3 Improved potential energy curves 
The calculated vertical excitation energies of the states dissociating into neutral atoms agree rather well 
with the experimental data. The deviations are systematic, the calculated transition energies being all 
about 0.1 eV larger than the measured data. As noted in section 5.4.1, the calculated bond lenghts are 
also all systematically too large by about 0.1 Å. The De and ωe on the other hand show less regular 

discrepancies when compared with the experimental data. The CCSD(T) results for the ground state 
show that extending the COSCI calculations such as to 
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Figure 5.3. Improved relativistic potential energy curves for the excited states of I2. (States dissociating 
in two 5p5 2PJ (J = 3/2, 1/2) iodine atoms are shown) 

 
account for dynamical correlation could lead to substantial improvement. Such an extension e.g. by a 
multi-reference CI method is, however, impractical to carry out for all excited states at all points of their 
potential energy curves. Following Teichteil199 improvement can be pragmatically obtained by a simple 
empirical correction to the ground state potential energy curve. An empirical RKR ground state is 
constructed166 and the differences ∆E(R) between this curve and the calculated one are determined.  
Table 5.4. Spectroscopic properties for the excited states of iodine (improved potential energy curves 
based on COSCI results). Experimental values and their references are given in parenthesis. 
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State:   
Ω-ω (Λ-Σ) 

Dissociation  
products 

De  

(eV) 

Te  

(eV) 

re  

(Å) 

ωe  

(cm-1) 

ωexe 

(cm-1) 

X: 0g+ (1Σg+)  

 

2P3/2 + 2P3/2  

(ref. 120,166) 
1.556 0.000 2.666 214.5 0.65 

A': 2u (3Πu)  

 

2P3/2 + 2P3/2  

(ref. 200) 
0.316 

(0.311) 
1.241 

(1.245) 
3.123 

(3.079) 
100.9 

(108.8) 
0.85 

(1.28) 

A: 1u (3Πu) 

 

2P3/2 + 2P3/2  

(ref. 201) 
0.205 

(0.203) 
1.351 

(1.353) 
3.190 

(3.129) 
84.9 

(88.3) 
1.07 

(1.55) 

B': 0u- (3Πu) 

 

2P3/2 + 2P3/2  

(ref. 159) 
0.057 

(0.045) 
1.499 

(1.511) 
3.648 
(4.2) 

30.9 
(20.5) 

1.20 
(0.29) 

a: 1g (3Πg) 

 

2P3/2 + 2P3/2  

(ref. 165) 
0.045 

(0.037) 
1.511 

(1.505) 
4.162 

(4.311) 
25.2 

(23.6) 
0.45 

(0.48) 

B": 1u (1Πu) 2P3/2 + 2P3/2  

(ref. 164) 
0.032 

(0.022) 
1.525 

(1.534) 
4.031 
(4.2) 

21.2 
(19.8) 

0.35 
 

2g (3Πg) 2P3/2 + 2P3/2  0.031 1.525 4.226 21.6 0.49 

3u (3∆u) 2P3/2 + 2P3/2  0.013 1.543 4.756 13.9 0.79 

a': (2) 0g+ 

 

2P3/2 + 2P3/2  

(ref. 165) 
0.012 

(0.017) 
1.544 

(1.539) 
4.681 

(4.641) 
15.1 

(17.7) 
0.85 

(0.43) 

(2) 0u- 2P3/2 + 2P3/2  0.006 1.550 4.803 10.9 0.67 

B: 0u+ (3Πu) 

 

2P3/2 + 2P1/2  

(ref. 166) 
0.517 

(0.543) 
2.009 

(1.955) 
3.070 

(3.024) 
119.3 

(125.7) 
0.65 

(0.76) 

(3) 0g+ 

 

2P3/2 + 2P1/2  

(ref. 202) 
0.114 

(0.107) 
2.412 

(2.391) 
3.563 

(3.645) 
72.9 

(64.4) 
1.02 

(1.23) 

1g (1Πg) 2P3/2 + 2P1/2  

(ref. 181) 
0.070 

(0.058) 
2.457 

(2.441) 
3.913 
(4.05) 

32.1 
(29.6) 

0.58 
 

0g- (3Πg) 2P3/2 + 2P1/2  0.058 2.468 3.851 32.7 0.60 

b': 2u (3∆u) 

 

2P3/2 + 2P1/2  

(ref. 163) 
0.040 

(0.037) 
2.486 

(2.461) 
4.183 
(4.25) 

25.7 0.61 

1g (3Σg-) 2P3/2 + 2P1/2  0.032 2.495 4.273 22.1 0.54 

(3) 0u- 2P3/2 + 2P1/2   0.029 2.497 4.319 20.7 0.48 

C: 1u (3Σu+) 2P3/2 + 2P1/2  0.029 2.497 4.322  20.8 0.51 

2g (1∆g) 2P3/2 + 2P1/2  0.022 2.504 4.415 18.3 0.42 

1u (3Σu+) 2P3/2 + 2P1/2  0.008 2.518 4.673 12.6 0.93 

Table 5.4. Continued from previous page. 
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State:   
Ω-ω (Λ-Σ) 

Dissociation  
products 

De  

(eV) 

Te  

(eV) 

re  

(Å) 

ωe  

(cm-1) 

ωexe 

(cm-1) 

0g+ (1Σg+) 2P1/2 + 2P1/2   0.054 3.442 3.928 33.8 0.91 

(4) 0u- 2P1/2 + 2P1/2   0.053 3.444 3.918 33.3 0.95 

1u (3∆u) 2P1/2 + 2P1/2 0.045 3.452 3.991 28.2 0.68 

 
The calculated energies at each point R of all excited states are then shifted by ∆E(R) and again fitted to 
a curve as described before. The resulting corrected potential energy curves are shown in figure 5.3 
together with their assignment.  
Table 5.4. displays the spectroscopic properties derived from these curves and it is seen that there is 
good agreement with the experimental data that is available for some of the states. 
Much experimental work concerns the predissociation of the B 0u+ state. The potential energy curves of 

states, responsible for the predissociation processes, should be nearby or crossing the B state. The B' 
(1) 0u- state, which can be assigned as a 3Πu, lies below the curve of the B state. States that cross the 
potential energy curve of the B (3Πu) state, and that can contribute to predissociation of the B state, are 
the B" 1u, a 1g, a' 0g+ and the (2) 0u- respectively. These four states all cross the B curve at low 

vibrational level. We will now discuss the position, relative to the B state, and the character of these four 
states. The B" 1u, which has 1Πu character crosses the inner limb of the B curve around the vibrational 

quantum numbers ν = 4, 5 which is in agreement with the experimental findings167. The potential energy 
curve of the a 1g (3Πg) state crosses the B state at the outer limb close to the equilibrium distance (ν = 
0). The 3Πg (2g) state lies close to the a 1g (3Πg) state and crosses this state below the crossing with 
the B state. The curves of the a' 0g+ and the (2) 0u- state cross the outer limb of the B state curve at 
vibrational numbers around ν = 2 and ν = 3, 4 respectively. The character of the a' 0g+ state, which is 
mainly 3Σg- (σg2πu4πg2σu2) at the crossing point, has been discussed at the end of the previous 
section. Teichteil and Pelissier discussed the character of the (2) 0u- state and the interaction with the 
(3) 0u- and (4) 0u- states, resulting from the configurations σg2πu3πg3σu2 (1Σu-, 3Σu+) and 
σg1πu4πg4σu1 (3Σu+). At short distances the (2) 0u- state has 3Σu+ (σg1πu4πg4σu1) character 
whereas the other two states have σg2πu3πg3σu2 (1Σu-, 3Σu+) character. Around 2.78 Å an avoided 
crossing between the (2) 0u- state and the (3) 0u- state occurs where the two states exchange their 
character. The (2) 0u- state shows mainly σg2πu3πg3σu2 (1Σu-, 3Σu+) character at the crossing with the 

B state and at longer distances. These results are comparable with the ones found by Teichteil and 
Pelissier. An analysis of the singlet or triplet character of the two 0u- states resulting from the 
configuration σg2πu3πg3σu2, 
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Figure 5.4. Close up of the weakly bound states B" 1Πu, a 1g, a' (0g+) and (2) 0u-. 

 
as was performed by Teichteil and Pelissier, is not straightforward to obtain due to the implicit 
interaction between the states in a relativistic description. 
Tellinghuisen162 performed experiments on a number of weakly bound states, B' 3Πu (0u-), B" 1Πu 
(1u), a 3Πg (1g) and a' 0g+, and generated potential energy curves for the lower parts of these states. 

Only parts of the curves are known, other parts are estimated by extrapolation. Figure 5.4 shows a 
magnified picture of our calculated potential energy curves. These curves are in good agreement with the 
findings of Tellinghuisen. The crossings of the B" 1u state with the a 1g state and the a' 0g+ state are 

found to be around vibrational number ν = 5, 6 and ν = 1, 2 respectively.  
Experimental data are available for a number of other states of which the assignment will now be 
discussed. The assignment of the b' 2u state to a 3∆u by Tellinghuisen163 is confirmed by the 

calculations presented here. Ishiwata et al. 202 found a weakly bound state which can be assigned to the 
(3) 0g+ state. Its character has been discussed before in combination with the assignment of the a' state. 
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Viswanathan and Tellinghuisen159 measured the spectroscopic properties of the B' 0u- state (3Πu 

character). They used a rough estimate for Re to fit simulations of the experimental data which differs 

somewhat from the one calculated in this work. Jewsbury et al. 181 determined spectroscopic 
properties for the c 1g state and also discussed the character of this state. The character of the c 1g 
state is mainly 1Πg which is in agreement with the experimental findings. 

 
5.5 The ionized states of iodine 
Experimental spectroscopic data are available for the three lowest states of I2+, the ground states (X) 
2? g (3/2g) and 2? g (1/2g) and the first excited state (A) 2? u (3/2u). Assignment and interpretation of 

experimental data for the higher lying states is found to be more difficult due to the complexity of the 
spectrum. Of the higher lying states, only the vertical excitation energies of the A state 2? u (1/2u) and B 
state 2? g+ (1/2g) have been identified. Very recently Cockett et al. 180 determined the spectroscopic 

properties of a new state which they assigned to a 4Σu- (3/2) on basis of the only set of theoretically 

calculated potential energy curves available. To date there is only one set of theoretically calculated 
potential energy curves available193. Unfortunately this set shows rather large discrepancies with other 
experimental data. 
We first present spectroscopic data for the lowest states calculated with a single-reference approach. 
The first four states are described as single determinants with a hole in the πg,1/2, πg,3/2, πu,1/2 or πu,3/2 

molecular spinor respectively, the highest occupied spinors in their corresponding representations. The 
2? g+ (1/2 g) state is obtained by removing an electron from the highest occupied σg,1/2 spinor. The 

spinors resulting from DHF calculations on each of these states are used in subsequent CCSD(T) 
calculations in order to account for dynamical correlation corrections. The results of these calculations 
are discussed in section 5.5.1. 
Experimental data show that the higher lying states are thoroughly mixed by spin-orbit interaction similar 
to what we have met in treating the neutral excited states. In section 5.5.2 we therefore use the COSCI 
approach which allows us to study the mixing of the states in a balanced way. In the average of 
configurations open-shell DHF all configurations resulting from all possible distributions of 9 electrons 
over the σgkπulπgmσun (where k+l+m+n=9) set of molecular spinors are taken into account. This 

means that the high-lying states, which dissociate to a double cation (I2+) and an ion (I-), are included in 
the calculation. The data from the COSCI calculations are used to generate the potential energy curves 
of the ionized states. At the ground state equilibrium distance we have also carried out additional 
MRSDCI calculations, with the states from the COSCI calculation as references. 
 
5.5.1 State-optimized calculations 
The potential energy curves for the four 2Π states and the 2Σ state are obtained by fitting the results of 
calculations on grids of at least nine points to a fourth-order polynomial. For the correlation calculations 
a total of 136 spinors is used consisting of 103 virtual spinors (some high-energy solutions were not 
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included) and 33 occupied spinors representing the 5s and 4d cores and the occupied 5p spinors. All 
calculations are performed relativistically as well as non-relativistically. The results of calculations on the 
vertical ionization energy, ωe and De are summarized in table 5.5 where they are compared with the 

available experimental data and other theoretical work. Correlation has a large effect on properties like 
the ωe and the Re but the effect on the spin-orbit splitting is small. 

 
Table 5.5. Calculated vertical ionization energy (Iv), ωe and Re for the four lowest states of I2+, 

compared with experimental and other theoretical data. 
 

Property  2? g (3/2) 2? g (1/2) 2? u (3/2) 2? u (1/2) 2? g+ 

Iv (eV)a NR-HF 9.36 11.54 12.12 

 DHF 8.94 9.51 (0.57) 11.10 (2.16) 11.85 (2.91) 12.18 (3.24) 

 DHF + CCSD(T) 9.13 9.74 (0.62) 10.97 (1.84) 11.65 (2.52) 12.77 (3.64) 

 Li et al. 193 8.62 9.38 (0.76) 10.19 (1.57) 10.82 (2.20) --- 

 Experiment176 9.31 9.95 (0.64) --- ---     --- 

 Experiment175 9.34 9.98 (0.64) 10.96 (1.62) 11.81 (2.47) 12.95 (3.61) 

ωe (cm-1) NR-HF 277 211 124 

 DHF 270 233 199 207 174 

 DHF + CCSD(T)b 238 227 140 156 --- 

 Li et al. 193 217 208 132 112 72 

 Experiment176,180 240 (±1) 230 (±2)      138 (±2) --- --- 

 Experiment175 220 (±8) 214 (±8) Average 128 (±8) --- 

Re (Å) NR-HF 2.575 2.805 3.043 

 DHF 2.571 2.604 2.820 2.804 2.921 

 DHF + CCSD(T)b 2.613 2.626 2.949 2.910 --- 

 Li et al. 193 2.69 2.69 3.09 3.11 3.62 

 Experiment174 2.58 2.58 2.99 2.98 --- 

a. Relative energies are given in parenthesis. 
b. Correlated potential energy curve of 2Σg+ state has large mixing with other states and cannot be studied with the 

CCSD(T) method. Calculated spectroscopic properties for the four lowest states of I2+, compared with experimental 

and other theoretical data. 

 
We will now discuss our results for the three spectroscopic properties presented and compare them 
with the available experimental data and other theoretical results. The vertical ionization energies are 
calculated at the experimental ground state Re. The spin-orbit splittings of the 2Πg (3/2) and 2Πg (1/2) 
states agree well with the experimental data. The splitting of the 2Πu states is larger than the splitting of 
the 2Πg states but smaller than the measured values. This larger spin-orbit splitting of the 2Πu states 
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was partially explained by Dyke et al. 194. They attribute the difference to the off-diagonal spin-orbit 
interaction between the π1/2 and σ1/2 spinors for gerade and ungerade states, an interaction that is 

inherently accounted for in a fully relativistic approach. The differences between the calculated and 
measured spin-orbit splittings must therefore be attributed to multi-reference effects (see end of this 
section). Li and Balasubramanian193, using a multi-reference approach, however, find the spin-orbit 
splitting of the 2Πu states smaller than the splitting of the 2Πg states (0.63 eV and 0.76 eV 

respectively). 
The ωe calculated for the 2Πg states and the 2Πu (3/2) state compare well with the accurate ZEKE-
PFI experiments of Cockett et al. 176,180.  No ωe for the 2Πu (1/2) state is deduced from these 

experiments. From threshold photoelectron spectroscopy175 only an averaged frequency for the two 
2Πu states is available . The frequencies reported for the gerade states are lower than found in the 

newer ZEKE-PFI results. Li et al. arrive at a frequency for the 2Πu (1/2) state that is 20 cm-1 smaller 

than that of the 2Πu (3/2) state, which is similar to the results of Boerrigter et al. 203 for the Br2+ 

molecule.This shift is attributed to the spin-orbit allowed mixing with nearby states, for example the large 
mixing of the 2Πu (1/2) with a 2Σu+ (1/2) state. Such mixing cannot be accounted for in single reference 

CCSD(T). 
The calculated Re are presented in the last part of table 5.5. Based on the bonding character of the 
orbitals of the neutral molecule the bond lengths of the four Π states are expected to be ordered as 2Πg 
(3/2g) < 2Πg (1/2g) << 2Πu (1/2u) < 2Πu (3/2u). Through spin-orbit interaction the bonding πu,1/2 
spinor acquires anti-bonding character by mixing in of the σu,1/2, whereas the πu,3/2 remains a pure 
bonding spinor. Therefore the 2Πu (1/2) will have a shorter Re then the 2Πu (3/2) state. The anti-
bonding πg,1/2 spinor gets some bonding character from the σg,1/2 spinor yielding a longer Re for the 
2Πg (1/2) state compared to the 2Πg (3/2). This ordering is indeed found (see table 5.5) and is in 

agreement with bond lenghts estimated from experimental data.  
We mentioned earlier that the properties of the 2Πu (1/2) state will be affected by non-dynamical 

correlation in a way similar to that discussed for Br2+ by Boerrigter et al. 203. The 2Σg+ state, which lies 

even higher in the spectrum, is expected to be heavily influenced by these effects and it has therefore not 
been discussed as yet. From CCSD correlation calculations information on the growing importance of 
non-dynamical correlation can be estimated using the T1 diagnostic value204. For the two 2Πg states  
and the 2Πu (3/2) state the diagnostic values are small whereas the values of the 2Πu (1/2) state 

reaches the critical values proposed in various papers. The T1 diagnostic values of the (B) 2Σg+ state 

become very large 
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Figure 5.5. Non-relativistic (left page) and relativistic (right page) potential energy curves for the lowest 
ungerade states of I2+. Relativistic dissociation limits: D1 = 2P3/2 + 3P2; D2 = 2P3/2 + 3P0, 2P3/2 + 3P1 
and 2P1/2 + 3P2; D3 = 2P1/2 + 3P0, 2P1/2 + 3P1 and 2P3/2 + 1D2. 

 
 
(0.05-0.06) when going to distances longer than the ground state equilibrium distance and the calculated 
correlated results are hence unreliable. For this reason the correlated results of the relativistically 
calculated ωe and Re are not presented here. When non-dynamical correlation becomes important one 

requires a multi-reference description from the start. In section 5.5.2 the effects of a multi-reference 
description will be studied using an average of configuration approach in which all the states are 
explicitly included in the calculations. 
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5.5.2 The potential energy curves of ionized iodine 
The non-relativistic and relativistic potential energy curves of the states that dissociate into the atom and 
its cation (I+I+) are obtained from COSCI calculations for about 50 different bond distances. In figures 
5.5 and 5.6 the non-relativistic and relativistic potential energy curves for the lowest ionized states are 
presented, grouped by their parity. Extensive configuration interaction, due to spin-orbit coupling, is 
found, which makes it difficult to assign Λ-Σ state characters to the potential energy curves. The low 
lying states can still be identified but the  
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Figure 5.6. Non-relativistic (left page) and relativistic (right page) potential energy curves for the lowest 
gerade states of I2+. Relativistic dissociation limits: D1 = 2P3/2 + 3P2; D2 = 2P3/2 + 3P0, 2P3/2 + 3P1 
and 2P1/2 + 3P2; D3 = 2P1/2 + 3P0, 2P1/2 + 3P1 and 2P3/2 + 1D2. 

 
 
complexity increases when one goes to states higher up in the spectrum. Hunds case (c) notation will be 
used except for those states that have clear Λ-Σ character. 
The relative energies of the calculated dissociation limits for the states dissociating into the neutral atom 
and its cation are in close agreement with numerical atomic calculations (errors less then 0.05 eV). To 
discuss the assignment of experimentally determined states the spectroscopic properties of the potential 
energy curves are calculated. These properties show discrepancies from experimental data similar to 
those discussed for the excited states of the neutral molecule and here too improvement is obtained by 
applying a simple empirical 
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correction to the lowest potential energy curve (see section 5.4.3). No RKR curve is known for the 
2Πg (3/2) ionized state and therefore a Morse potential, based on the experimental data of Cockett et 

al. 176,180, is used for the correction. The properties of some of these improved curves, calculated using 
the VIBROT program of the MOLCAS197 package, and the vertical excitation energies are collected in 
table 5.6. These properties are expected to be less accurate than those calculated for the excited states 
of the neutral molecule because of the simple Morse form used for the correction. 
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Table 5.6. Relative vertical ionization energies of some selected low lying states of the I2+ molecule. 

For a number of states also other properties are given. The notation klmn, used for the main 
configurations, is based on σgkπulπgmσun. 

 

State Relative vertical ionization energy (eV)        

symm. 

Ω-ω 

COSCI MRCISD Exp. 175 Li et al. 

193 

De 

(eV) 

ωe 

(cm-1) 

ωexe 

(cm-1) 

Main configurations 

and assignment 

3/2g 0.00 0.00 0.00 0.00 2.70 240 0.69 X:  2430 (2Πg) 

1/2g 0.65 0.63 0.64 0.76 2.03 230 0.76 X:  2430 (2Πg) 

1/2u 1.64 1.68   1.38 137 0.29 a:  2421 (4Σu-) 

 

3/2u 

 

1.71 

 

1.68 

 

1.62 

 

1.57 

 

1.26 

 

141 

 

0.32 

A:  2340 (2Πu) + 

2421 (4Σu-) 

 

3/2u 

 

2.09 

 

2.06 

   

0.85 

 

133 

 

0.37 

a:  2421 (4Σu-) + 

2340 (2Πu) 

1/2g 2.44 2.50   1.23 242   2331 

 

1/2u 

 

2.55 

 

2.44 

 

2.47 

 

2.22 

 

0.56 

 

117 

 

0.38 

A:  2340 (2Πu) + 

2421 

3/2u 2.57 2.56   0.62 120 0.38  2421 (2∆u) 

1/2g 2.68 2.81       2331 

1/2g 3.69 3.67       2331 

 

1/2g 

 

3.85 

 

3.88 

      2331 + 

1440 (2Σg+) 

 

1/2g 

 

3.97 

 

3.76 

 

3.61 

 

3.46 

   B:  1440 (2Σg+) + 

2331 

 
The vertical ionization energies are calculated at the experimental Re of the ground state. MRCISD 

calculations are performed to study the effects of dynamical correlation and relaxation on the vertical 
ionization energies and thereby on the position of the potential energy curves. The CI contains the anti-
bonding 5s spinor in RAS1, the 5p spinors in RAS2 (i.e. the states from the COSCI calculation) and 96 
virtual spinors in RAS3. The latter number encompasses all virtuals except for those with energies higher 
than 4 Hartree. Determinants resulting from all single and double excitations between the different 
spaces are included. This results in a CI space of 9 million determinants which is reduced to 1 million by 
using Abelian point group symmetry. The calculated vertical ionization energies of the four low lying Π 
states as well as the spin-orbit splitting are in close agreement with the experimental findings. Only small 
correlation effects are found for the two (X) 2Πg states and their spectroscopic properties are in close 
agreement with the single reference results of section 5.5.1. For the (A) 2Πu states considerable 

admixture of states from different configurations is found. This mixing does not affect the properties of 
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the 2Πu (3/2) state, which are still close to the results of the single reference calculation of section 5.5.1, 
but it has a large influence on the ωe of the 2Πu (1/2) state. This quantity is now 24 cm-1 smaller than 
the value found for the 2Πu (3/2) state which is in better agreement with the multi-reference approach of 

Li et al. 193.  
With the calculated data one can now discuss the assignments of these states as they were made by 
Cockett et al. 180 and in the theoretical work of Li and Balasubramanian. We will first discuss the 
assignment of the ungerade states (A) 2Πu (3/2), (A) 2Πu (1/2) and a 2Πu (1/2) and after that we will 

consider the gerade states including the ground state. Boerrigter et al. 203 attributed the large difference 
in the ωe of the two 2Πu states for the Br2+ molecule to the difference, induced by spin-orbit coupling, 

in the configuration interaction with states from the σg2πu4πg2σu1 configuration i.e. between the 2Σu+ 
(1/2) and the 2Πu (1/2) states on the one hand and the 2∆u (3/2) and 2Πu (3/2) states on the other. A 
similarly large difference between the ωe of the two 2Πu states is found in our calculations on I2+ and 
was also reported by Li et al. 193. However, we find that the properties of the 2Πu (1/2) state are 

influenced by the 2Σu+ (1/2) state whereas these authors find an interaction with the 4Σu- (1/2) state. 
They also find that the 2Πu (3/2)  state is unperturbed while our calculations show a strong interaction 

with the 4Σu- (3/2) state. This interaction was suggested earlier, based on experimental data, by 
Jungen196, Leach173 and Mason and Tuckett174. At larger bond lengths (above 2.9Å) the 2Πu (3/2) 

state starts to interact with the 2∆u (3/2) state, as found in the Br2+ molecule by Boerrigter et al.  

Cockett et al. measured two ungerade states, "a" and "A" with ionization energies that differ only by 
0.05eV, which they assigned to 4Σu- (3/2) and 2Πu (3/2) respectively. We find the lowest ungerade 

state to be 4Σu- (1/2) with a state of 3/2u symmetry just 0.07eV above it. A second state of this 

symmetry is found at 0.38eV above the 4Σu- (1/2) state. Both states are mixtures of 2Πu (3/2) and 
4Σu- (3/2) at the ground state Re with the lowest 3/2u state having a somewhat larger 2Πu (3/2) 

character. The character of the two 3/2u states reverses when going to longer distances, giving a lower 
state with more 4Σu- (3/2) character and the higher 3/2u state now also has considerable contributions 
from the 2∆u (3/2) state.  
The calculated De and ωe are in reasonable agreement with the experimental data of Cockett et al., 

considering the approximations that were made. On the basis of the relative positions of the potential 
energy curves and the agreement with the calculated spectroscopic properties (table 5.6), we assign the 
"a" state, measured by Cockett et al., to 4Σu- (1/2). The measured A state is assigned to a mixed state 

of 2Πu (3/2) and 4Σu- (3/2) character. 
We will now turn to the three measured states with gerade symmetry, the two (X) 2Πg states and the 

(B) 2Σg+ state. From the calculated properties of the improved potential energy curves that agree 

closely with experimental results one can easily assign the 2Πg states. The (B) 2Σg+ state, resulting from 
the σg1πu4πg4 configuration, non-relativistically (figure 5.6) dissociates into the atomic states 1D + 2P. 

In the non-relativistic calculations an avoided crossing with a 2Σg+ state from the σg2πu4πg2σu1 

configuration is found at short distance where these states exchange their character. The potential energy 
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curve of the B state crosses a large number of states which could interact with this state through spin-
orbit coupling. Extensive mixing is indeed found in the relativistic calculations. The vertical excitation 
energy of the B 2Σg+ state is 0.35 eV higher than the experimental value. Some improvement is found 

when a MRCISD calculation is performed on top of the COSCI calculations but the value is still 0.15 
eV above the experimental value. Extensive correlation calculations on the whole potential energy curve 
of the B state, and most of the higher lying ionized states, are required to be able to discuss the detailed 
form of the potential energy curve presented by Leach. Li et al. found a global maximum at longer 
distances, one of the features of the potential energy curve suggested by Leach. This global maximum is 
also found in our empirically improved potential energy curve(s) but we cannot exclude that the missing 
large correlation corrections may considerably influence the form and position of the potential energy 
curve.  
 
5.6 Conclusions 

The spectroscopic properties and potential energy curves of the ground state and the most important 
excited and ionized states of I2 are calculated within a 4-component relativistic framework. For the 

ground state relativity and correlation must be included in order to get results that are in close agreement 
with experimental data. It is shown that the remaining differences between the experimental and 
calculated relativistic values can be attributed to basis set effects and core-valence correlation effects. 
Core-valence correlation, by including excitations from the 4s, 4p, 4d and 5s spinors, results in a bond 
length contraction of 0.02 Å, comparable to the 0.03 Å that was obtained from semi-empirical 
corrected pseudopotentials.  
The spectroscopic properties of the set of excited states that dissociate into neutral atoms are well 
described when the calculated potential energy curves are collectively subjected to a simple empirical 
correction proposed by Teichteil199. Our calculated vertical excitation energies agree closely with those 
of Teichteil and Pelissier183 but differ from the results of Li and Balasubramanian193. We have analyzed 
the position and character of the states B" 1u, a 1g, a' 0g+ and 0u- that are responsible for the 
predissociation of the B state. The character of the a' state at the crossing point is 3Πg but at shorter 
bond distances this state has 3Σg- character due to an avoided crossing. For the (2) 0u- state we also 
find an avoided crossing resulting in σg1πu4πg4σu1 (3Σu+) character at short bond distances and 
σg2πu3πg3σu2 (1Σu-, 3Σu+) character at longer distances that include the crossing point with the B 

state. These results corroborate the findings of Teichteil and Pelissier. The potential energy curves of 
some weakly bound states are in close agreement with the deductions from experiment of 
Tellinghuisen162. 
For the ionized states, the spectroscopic properties of the two (X) 2Πg states are well reproduced by 

our calculations. Non-dynamical correlation effects must be included in order to obtain good results for 
the properties and the spin-orbit splitting of the two (A) 2Πu states. We find that the 2Πu (3/2) state 

strongly interacts with the 4Σu- (3/2) state arising from the configuration σg2πu4πg2σu1, whereas the 
2Πu (1/2) state mixes with the 2Σu+ (1/2) state of this configuration. This differs from the analysis of Li 
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et al. A new state measured by Cockett et al. 180 is reassigned to the (unperturbed) 4Σu- (1/2) based 
on the calculated spectroscopic properties. The first "A" state is assigned to a mixed state of 2Πu (3/2) 

and 4Σu- (3/2). Extensive correlation treatment and multi-configuration calculations are required to 

obtain good potential energy curves for higher ionized states, like the (B) 2Σg+, of iodine. 
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Chapter 6 

 
 
 

Relativity and the chemistry of UF6 

 
 
In this chapter calculations are presented on the electronic structure and bonding of UF6 and UF6-. A 

stronger bonding but more ionic molecule is found if one compares the relativistic with the non-
relativistic results. The first peak in the photo electron spectrum of Karlsson et al. is assigned to the 
12γ8u component of the 4t1u orbital in agreement with other theoretical and experimental results. Good 

agreement is found between the experimental and theoretical 5f spectrum of UF6-. Some properties, 

like the dissociation energy and electron affinity, are calculated and the necessity of a fully relativistic 
framework is shown. The Breit interaction has effect on the core spinors and the spin-orbit splitting of 
these spinors but the influence on the valence spectrum is negligible.  
 
 
6.1 Introduction 

Properties of actinide elements, like uranium, and of molecules that contain these elements are heavily 
influenced by relativity. The main effects are due to spin-orbit interaction and mass-velocity and Darwin 
terms, which result in a substructure and in a contraction or expansion of the electronic shells. This 
affects the total electronic structure, reactivity and bonding properties of molecules that contain heavy 
elements from a practical and chemical point of view. Uranium hexafluoride (UF6) is of great interest for 

the enrichment process of uranium by for example molecular laser isotope separation205. For these 
reasons the molecule is the subject of a considerable amount of experimental206-215 and theoretical216-

228 work.  
The methods that are used for electronic calculations on UF6 are various but, except for the Relativistic 

Effective Core Potential (RECP) plus spin-orbit corrections approach222,223, no rigorous ab initio 
methods have been used. For the first calculations on UF6 a non-relativistic Xa scattered wave method 

has been used216,217,219,229. Koelling et al. 220 used the Dirac equation as the physical starting point in 
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their calculations with the Dirac-Slater (DS) discrete variational method. The relativistic effects showed 
their importance for the properties of the UF6 molecule and Rosén221 demonstrated that the relativistic 

DS method reproduced experimental data better than the non-relativistic methods. Hay et al. 222,223 
use a non-relativistic ab initio approach that is extended with relativistic corrections like the RECP, 
which will handle the contraction and expansion of the inner shells due to the mass-velocity and Darwin 
terms, and spin-orbit operators. To date, no attempts were made to use a fully relativistic ab initio 
method, such as a 4-component Dirac-Hartree-Fock (DHF) approach with correlation, on such a 
molecule. Programs to perform such calculations are hardly available and the computational effort 
required is considerably larger than that in approaches mentioned above. 
In this chapter a study of the relativistic and correlation effects on the electronic structure and the 
chemical bonding of UF6 is made using the 4-component DHF plus configuration interaction (CI) 

method. In section 6.3 results for the uranium atom are presented. Results of the calculation on the 
ground state of UF6 are given in section 6.4. The influence of relativity on the chemical bonding of 

uranium and fluorine is discussed on the basis of a Mulliken population analysis. An assignment of the 
photo electron spectrum is made on the basis of the calculated results and a comparison is made with 
other computational results. In section 6.5 results are presented of calculations on the electronic 
spectrum of UF6-. The electron affinity is calculated and compared with other theoretical and 

experimental data. 
 
6.2 Computational model 
The UF6 molecule has been measured in the gasphase and has octahedral symmetry. Therefore all the 
calculations, including the atomic calculations and those on the, are performed using the Oh point group 

symmetry. In the relativistic calculations the 4-component spinors hence span the representations of the 
octahedral (Oh*) double-group. In this chapter these representations will be labelled as γ6g, γ6u, γ7g, 
γ7u for the two-dimensional and γ8g, γ8u for the four-dimensional representations. 

The uranium basis was derived from a non-relativistically optimized 24s18p14d12f Gaussian basis230 
with a finite nucleus approximation. This basis was reoptimized under the constraint that the d-exponents 
form a subset of the s-exponents. The advantage of this constraint is that the primitive basis for the small 
component p-functions, as obtained by kinetic balance, is already contained in the small component 
functions that arise from the large component s-exponents which reduces the total number of primitives 
significantly. The f-exponents were reoptimized with a similar constraint to form a subset of the p-
exponents. For the reoptimization the non-relativistic ASCF program231 was used because a relativistic 
exponent optimization program was not yet available. It is "expected" that the exponents will get higher 
values in the core region and that the exponents representing the 5f and 6d would get a more diffuse 
character in the valence region. 
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Table 6.1. Basis set sizes. 
 

  Large component Small component 

  Primitive Contracted Primitive Contracted 

U basis rel. 

non-rel. 

24s21p16d13f 

24s21p16d13f 

10s13p11d8f 

10s8p7d6f 

21s24p21d16f13g 8s17p18d11f8g 

 

F basis rel. 

non-rel. 

10s6p 

10s6p 

5s4p 

5s4p 

 6s10p6d 4s5p4d 

 
Exponents derived from a non-relativistic optimization give quite reasonable results apart from a 
deficiency in the basis for the p1/2 spinors which need some additional steep basis functions. This 

deficiency was removed by adding two extra tight p-exponents. These exponents were determined by 
logarithmic extrapolation of the original set of exponents. No tight s-exponent was needed because a 
finite nucleus model (a Gaussian charge distribution) was used. 
An atomic DHF calculation was done using the uncontracted large component basis and  small 
component basis functions generated from it by kinetic balance. The large component basis was 
subjected to general contraction using the spinor coefficients from the uncontracted atomic DHF 
calculation and the small component basis was generated using the atomic balance relation. For both 
basis sets different contraction coefficients were used for spinor pairs with j = l ± 1/2, but an overlap 
criterion was used to reduce the resulting number of contracted functions. Diffuse functions, three of the 
s-,  p- and d-type and four of the f-type, were added to the large component basis to give more 
variational freedom in the valence region. These functions were also introduced in the small component 
basis using kinetic balance.  
The exponents for the fluorine basis were taken from recent calculations performed by Visscher232. A 
contracted basis was constructed in a similar way as described above.  An overview of the contracted 
basis sets can be found in table 6.1 and the primitives used are tabulated in Appendix II. 
 
6.3 The uranium atom 

The electronic spectrum of the uranium atom is complex due to the large number of states of which the 
assignment is still difficult. The first six states are assigned to the 5f36d17s2 configuration and the next 
group of lines is assigned to the 5f36d27s1 configuration. A J = 6 state is found to be the ground state 
and is designated as the 5L6 state with odd parity. In section 6.3.1 a comparison is made between the 

finite basis DHF results and numerical results obtained with the GRASP atomic code19.   
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Table 6.2. Total (in parenthesis) and spinor energies (in hartrees) from numerical and finite basis 
calculations on the (5f5/2, 5f7/2)3 (6d3/2, 6d5/2)1 7s2 configurational average of the uranium atom. 

 

Spinor Numerical DHF Finite basis DHF Finite basis HF 
 (-28049.696 857) (-28048.979 953)  

ε (1s1/2)    -4278.1195                                               -4278.1065 -3716.1152 
ε (2s1/2)   -805.9727 -805.9781 -650.8961 
ε (2p1/2)    -776.3649  -776.1816  -629.0471 
ε (2p3/2) -635.5773 -635.5900 -629.0471 
ε (3s1/2) -206.5656 -206.5696 -166.6487 
ε (3p1/2) -193.0974  -193.0502  -155.9458 
ε (3p3/2) -160.3246 -160.3302 -155.9458 
ε (3d3/2) -139.0204  -139.0166  -136.1731 
ε (3d5/2) -132.4206 -132.4253 -136.1731 
ε (4s1/2) -54.3122 -54.3148 -43.5145 
ε (4p1/2) -48.1936  -48.1823  -38.5167 
ε (4p3/2) -39.5420 -39.5451 -38.5167 
ε (4d3/2) -29.7343  -29.7344  -29.2595 
ε (4d5/2) -28.1312 -28.1339 -29.2595 
ε (4f5/2) -15.2051  -15.2077  -16.4087 
ε (4f7/2) -14.7928 -14.7956 -16.4087 
ε (5s1/2) -12.5934 -12.5955 -10.0589 
ε (5p1/2) -10.1278  -10.1267  -8.0332 
ε (5p3/2) -8.0930 -8.0954 -8.0332 
ε (5d3/2) -4.3516  -4.3532  -4.4426 
ε (5d5/2) -4.0419 -4.0441 -4.4426 
ε (6s1/2) -2.1374 -2.1378 -1.6820 
ε (6p1/2) -1.3431  -1.3443  -1.0360 
ε (6p3/2) -0.9848 -0.9865 -1.0360 
ε (5f5/2) -0.3472  -0.3494  -0.6349 
ε (5f7/2) -0.3197 -0.3219 -0.6349 
ε (6d3/2) -0.1928  -0.1925  -0.2652 
ε (6d5/2) -0.1833 -0.1829 -0.2652 
ε (7s1/2) -0.2023 -0.2025 -0.1667 
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6.3.1 Atomic spinors 

In table 6.2 the contracted basis set results for uranium are compared with those from numerical 
calculations. There is very good agreement in the valence region. A small error is found for the 2p1/2 

spinor which can be resolved by adding an extra tight basis function. It should be pointed out that the 
core levels, especially the 1s1/2 and 2p1/2 spinors, are influenced by the nuclear model that is used. The 

version of the numerical package, used for these calculations, makes use of a uniformly charged sphere 
and in the basis set calculations a Gaussian distribution is employed.  
In the last column of table 6.2 the non-relativistic HF orbital energies are given. Comparing the DHF 
and HF results shows that all the shells, except for the 6p3/2, the 5f and the 6d spinors, go down in 
energy. For the radial expectation values a contraction is found for the shells from 1s up to the 6p1/2 
spinor whereas the spinors 6p3/2, the 5f and the 6d get expanded. The upward shift of the 5f spinors is 

large and has a large influence on the charge distribution in the molecule. The upward shifts can be 
explained by the larger screening of the nucleus due to the contraction of the inner-shell orbitals. 
 
6.3.2 Atomic spectrum 

The first 10 lines of the uranium atomic spectrum arising from the 5f36d17s2 configuration are given in 
table 6.3. These results are compared with the numerical results from GRASP. Again there is good 
agreement between the numerical and finite basis DHF results showing the adequacy of the basis set.   
 
Table 6.3. Spectrum of the uranium atom. Figures in eV, relative to the J = 6 ground state. 
 

Nr. J /   Numerical Basis set Basis set Basis set 
 Parity Experiment (Ref. 233) 

 
DHF DHF DHF 

+ Gaunt 
CI 
(36 virt.) 

1 6- 5L6   0.000 0.000 0.000 0.000 0.000 
2 5- 5K5   0.077 0.129 0.129 0.126 0.116 
3 7- 5L7   0.471 0.420 0.422 0.409 0.415 
4 6- 5K6   0.530 0.508 0.510 0.495 0.496 
5 8-   0.858 0.862 0.835 0.849 
6 3-   0.872 0.873 0.871 0.817 
7 7-   0.885 0.888 0.862 0.872 
8 5-   0.906 0.909 0.899 0.873 
9 4-   1.023 1.027 1.018 0.982 
10 6-   1.041 1.043 1.032 1.010 
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Comparison with the experimental data shows rather poor agreement. The inclusion of the Gaunt 
interaction has large influences on the core spinors but the influence on the valence spectrum is small as 
can be seen in table 6.3. A CI-SD calculation allowing excitations from  the 5f and 6d spinors (RAS2 
space) to 36 virtuals (RAS3 space) yields little improvement. 
Experimentalists find a line at 0.480 eV with a label J = 3. Our first transition state with this label is 
found at 0.873 eV at the DHF level and at 0.817 eV at the CI level. A better description of the 
spectrum would be found when other important configurations, like 5f37s16d2, are introduced. It is 
difficult to introduce these configurations in the DHF calculation with our average of configurations 
approach. The only possible average that contains the configurations 5f37s26d1 and 5f37s16d2 would be 
5f3(7s6d)3 but in this way an unwanted high energy configuration 5f37s06d3 configuration is also 
introduced. This difficulty can only be resolved by carrying out state-specific MCSCF calculations. 
 
6.4 Calculations on UF6 
The closed-shell ground state of the neutral UF6 molecule is calculated and the influence of relativity on 
the bonding is investigated by Mulliken234 population analysis. The molecular geometry of UF6 was 
assumed to be of Oh symmetry with a U-F bond length of 1.999 Å taken from experiment206 and the 
relativistic calculations are performed in the octahedral (Oh*) double-group symmetry. In an additional 

CI-SD calculation excitations are allowed from all occupied valence spinors into the virtual spinors 
dominated by the 5f, 6d and 7s basis spinors.  
In 1976 Karlsson et al. 210 presented a photo electron spectrum of UF6. The first peak was assigned to 
the 12γ8u component of the t1u orbital. This assigment was confirmed later by more sophisticated 

calculations. There was a consensus about the assigment until 1983 when Mårtensson et al. 213,214 
recorded a new spectrum using a higher energy source. They suggested that the first peak in both 
spectra should be of t1g character notwithstanding the theoretical results. In this section an attempt is 

made to find the correct assignment for the two spectra and to reconcile the calculated and experimental 
results. 
 
6.4.1 The UF6 spinors 
A comparison is made between the non-relativistic (HF) and relativistic (DHF) results. The energies of 
the valence spinors is graphically presented in figure 6.1. The valence spinors obtained from the DHF 
calculation are analysed by Mulliken population and overlap analyses (table 6.4). The populations found 
here are comparable with the results obtained by Onoe et al. 228. 
The 9a1g orbital, which was the HOMO in the HF calculation and has 5% s1/2 character, shifts down in 
energy due to the contraction of the uranium s1/2 and p1/2 shells. In the DHF calculations the HOMO is 
found to be the four-component spinor of the 10t1u orbital. This spinor is also found to be the highest 

occupied in other calculations.  
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Figure 6.1. Comparison of HF and DHF valence spinors of UF6. 

 
Another detail that should be noticed is the large spin-orbit splitting of the 10t1u orbital. The splitting is 

important for the assigment of the photo electron spectrum. A more detailed discussion on the assigment 
of this spectrum can be found in section 6.4.2. 
The large splitting of the 10t1u orbital  into the 10γ6u and 12γ8u spinors can be explained. The t1u 

orbital contains a large amount of U6p character and the U6p orbital has the largest spin-orbit splitting 
(9.74 eV in the neutral uranium atom) among the valence levels (0.75 eV for U5f and 0.26 eV for 
U6d). There are more t1u orbitals, besides the one discussed here, that show such a large splitting (see 

table 6.4).   
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Table 6.4. Population (left page) and overlap (right page) analyses for UF6 (a HOMO,  
b LUMO). Not listed are the core-spinors, for U up to n=5 shell and for F the 1s. 
 

Spinor Energy  Population of spinors (in %) 

Sym. spinor 
(hartree) 

U s U p U d U f F s  F p 

7γ6g -2.5225 96.3    1.9 1.8 
7γ6u -1.8016   58.6     38.9 2.5 
8γ8u -1.6962   13.8     84.3 1.8 
8γ8g -1.6500   0.8  98.0 1.2 
8γ6g -1.6249 0.8    98.6 0.7 
8γ6u -1.5200  38.0   62.0  
9γ8u  -1.2453  75.1  0.7 16.6 7.7 
9γ8g -0.7782   14.4  3.2 82.3 
10γ8g -0.7598   11.9   88.1 
4γ7g -0.7587   11.2   88.8 
9γ6u -0.7346    12.8 1.0 86.2 
10γ8u -0.7318    14.3 0.9 84.8 
3γ7u -0.7176    8.6  91.4 
11γ8u  -0.7167    8.7  91.3 
9γ6g -0.7083 6.0    1.4 92.6 
11γ8g -0.6804      100.0 
10γ6u -0.6789  6.6  4.2 0.5 88.7 
10γ6g -0.6781      100.0 
12γ8ua -0.6360  11.2  9.0  79.8 

4γ7ub -0.0891    99.0  1.0 
13γ8u  -0.0685   0.9   89.8  9.4 
5γ7u -0.0569    96.0  4.0 
14γ8u  -0.0312   1.7   85.9  12.4 
11γ6u -0.0201   1.4   86.9   11.7 
11γ6g 0.0476 96.8    0.4 2.8 
5γ7g 0.0809   96.4   3.6 
12γ8g 0.0810   96.6   3.4 
13γ8g 0.0849   91.2  0.8 7.9 
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Spinor Energy  Overlap populations 

Sym. spinor 
(hartree) 

5f-2s 5f-2p 6s-2s 6s-2p 6p-2s 6p-2p 6d-2s 6d-2p U-F 

7γ6g -2.5225   0.04 0.06     0.10 
7γ6u -1.8016 -0.01    0.23 0.05   0.27 
8γ8u -1.6962 -0.04 0.01   0.35 0.06   0.37 
8γ8g -1.6500       -0.01 0.02 0.01 
8γ6g -1.6249   -0.19 -0.02     -0.22 
8γ6u -1.5200     -0.37    -0.37 
9γ8u  -1.2453 0.03    -0.79 0.29   -0.47 
9γ8g -0.7782       -0.17 0.69 0.51 
10γ8g -0.7598        0.52 0.52 
4γ7g -0.7587        0.25 0.25 
9γ6u -0.7346 -0.03 0.23       0.20 
10γ8u -0.7318 -0.06 0.47   0.01    0.43 
3γ7u -0.7176  0.19       0.19 
11γ8u  -0.7167  0.38       0.37 
9γ6g -0.7083    -0.05     -0.05 
11γ8g -0.6804         0.00 
10γ6u -0.6789  0.08    -0.09   0.00 
10γ6g -0.6781         0.00 
12γ8ua -0.6360  0.19    -0.78   -0.59 

4γ7ub -0.0891  -0.06       -0.06 
13γ8u  -0.0685 -0.06 -0.47   -0.05 -0.11   -0.68 
5γ7u -0.0569  -0.17       -0.17 
14γ8u  -0.0312 -0.17 -0.52   -0.10 -0.23   -1.01 
11γ6u -0.0201 -0.10 -0.27   0.02 -0.08   -0.42 
11γ6g 0.0476   -0.11 -0.95     -1.06 
5γ7g 0.0809        -0.35 -0.35 
12γ8g 0.0810        -0.71 -0.71 
13γ8g 0.0849       0.06 -1.18 -1.12 
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Table 6.5. Comparison of U-F overlap populations. 
 

  Non-relativistic Relativistic 

  F F 

  2s 2p 2s 2p 

 5f -0.09 1.40 -0.12 1.55 
U 6s -0.35 -0.63 -0.15 -0.02 
 6p -0.72 -0.47 -0.56 -0.48 
 6d -0.18 1.39 -0.19 1.49 

Total U-F bond overlap 
population 

+0.36 +1.53 

 
If one looks at the total overlap populations in the U-F bond, presented in table 6.5, then it is clear that 
the bonding gets stronger (from 0.36 to 1.53). On the other hand, from the total populations in table 6.6 
one can see that the molecule gets a more ionic character. The dominant contribution in increasing bond 
strength  is the contraction of the U6s orbital. The non-relativistic molecular orbitals that have a large 
U6s contributions are strongly anti-bonding. Due to the relativistic contraction this U6s orbital will form 
a non-bonding atomic like U6s spinor and no longer contributes to the molecular bonding. One can use 
the same arguments for the U6p spinors but here the effects are smaller. The net population of the U6p 
spinors increases due to the inward shift of the 6p1/2 and in combination with the reducing overlap an 

increased gross population is found. 
 
Table 6.6. Total (gross) populations for UF6 spinors. 

 

  Spinor populations 

 Spinors Non-relativistic Relativistic 

U 5f 2.94 1.82 
 6s 2.00  2.00 
 6p 5.63 6.00 
 6d 1.18 1.31 
 7s 0.02 0.06 

U effective charge  2.22 2.72 

F 2s 2.00 2.00 
 2p 5.34 5.42 

F effective charge  -0.37 -0.45 
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The U5f and U6d get more diffuse, in the relativistic calculation because of the increased screening of 
the nucleus by the contracted inner-shell orbitals. There is a large energy shift of the U5f spinors and a 
much smaller one for the U6d (table 6.2). These shifts are reflected in the net populations of the spinors 
where the population of U6d goes from 0.58 to 053 in the relativistic case and the population of U5f 
goes from 2.29 to 1.11. A CI-SD calculation was performed allowing the virtual 5f, 6d and 7s spinors 
to become occupied. The 5f character increases from 1.84 to 2.06 leading to a lower effective charge 
for the uranium atom. There are no major changes found in the overlap populations and the other gross 
populations.  
 
Table 6.7. Overview of calculated photo electron spectra. 
 

Spinor Energies in eV relative to 12γ8u 

Sym. DHF 

this work 

DHF+Ga 

this work 

RECP 

(ref. 222) 

DV-DS 

(ref. 228) 

DV-DS 

(ref. 220) 

MS-Xα 

(ref. 218) 

DV-DSb 

(ref. 220) 

MS-Xαb 

(ref. 218) 

12γ8u 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
10γ6u 1.16 1.16 1.23 1.13 1.08 1.10 1.03 1.21 
10γ6g 1.14 1.17 0.69 0.98 1.09 1.07 1.04 1.02 
11γ8g 1.20 1.23 0.67 0.95 1.06 1.04 1.01 0.99 
9γ6g 1.96 1.96 1.85 1.90 1.87 1.77 1.79 1.73 
11γ8u  2.19 2.22 1.77 1.93 1.91 1.84 1.85 1.78 
3γ7u 2.22 2.25 1.75 1.93 1.91 1.83 1.85 1.77 
10γ8u 2.60 2.64 2.21 2.36 2.41 2.33 2.36 2.28 
9γ6u 2.68 2.70 2.28 2.38 2.40 2.45 2.36 2.38 
4γ7g 3.34 3.36 2.67 2.83 2.54 2.42 2.35 2.30 
10γ8g 3.36 3.39 2.71 2.83 2.63 2.48 2.45 2.36 
9γ8g 3.87 3.88 2.86 2.94 3.28 3.51 3.22 3.51 
9γ8u  16.58 16.50 17.32 12.82    12.87 
8γ6u 24.05 23.97 24.07 18.30    18.32 
8γ6g 26.91 26.92 26.62 20.03    19.73 
8γ8g 27.59 27.61 26.83 20.53    20.35 
8γ8u 28.85 28.86 28.16 21.84    21.04 
7γ6u 31.72 31.62 30.68 25.31    23.64 
7γ6g 51.33 51.19 53.04 42.04     
a: DHF + Gaunt interaction.  

b: Transition state procedure. 
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6.4.2 Photoelectron spectrum of UF6 

An approximate photoelectron spectrum can be obtained from the binding energies of the spinors using 
Koopmans' theorem or the frozen orbital approximation. The spectrum is presented, relative to the 
outermost peak, and compared with other theoretical results in table 6.7.  
The assignment of the outer most peak to the fourfold degenerate component 12γ8u of the 4t1u is found 
in all the relativistic calculations. There is agreement in the ordering of the spinors 10γ8u to 7γ6g although 
not in the actual energy values. For the spinors 9γ6g, 11γ8u and 3γ7u there are slight differences. In 

most of the calculations the three spinors are found very close together. The present calculations place 
the spinor 9γ6g a little bit lower in energy (0.2 eV) than the other two spinors but the difference is still 

small. 
For the first four spinors there is no agreement on the ordering and interpretation of the spectra. 
Mårtensson et al. 213,214 recorded the photo electron spectrum of UF6 and they suggested that the ion 
ground state was of t1g symmetry. One of the main reasons for this assignment was the intensity of the 
4t1u that was calculated using the population analysis of Hay et al. 222 and the atomic photo ionisation 

cross-sections of Scofield235. The population analysis that Hay et al. presented was based on a non-
relativistic calculation using a relativistic ECP. After the HF step the spin-orbit interaction is introduced 
in a CI calculation but its effect on the charge distribution is not represented in the population analysis, 
Mårtensson et al. assumed that both components of the non-relativistic t1u orbital, which split 1.23 eV 

due to spin-orbit interaction, would have the same form and that they could be described using the HF 
population analyses. The populations analyses presented in table 6.4 show that the two components of 
the t1u orbital, the spinors 12γ8u and 10γ6u, are different and this will give the two peaks a different 

intensity. This is also confirmed by the population analyses of Onoe et al. 228. If one uses the population 
analyses presented in this chapter for the first four spinors that were calculated by Hay et al. then an 
intensity ratio of approximately 1 :  1 : 3 for the spinors 10γ6u, 10γ6g together with the 11γ8g and 10γ6u 

respectively is found. A similar structure as that of Hay et al. can be obtained if one uses the results of 
Onoe et al. 
The results presented in this chapter place the t1g components close together with the twofold 
component of the t1u orbital which is comparable to the results of Koelling et al. 220 and Boring and 

Wood218. This will give only two peaks, as wanted, instead of the three from Hay et al. and Onoe et 
al., but the second peak in the spectrum will get the same intensity as the outer most peak, as suggested 
by Mårtensson et al. When one looks at the differences between the population analysis of the DHF 
calculation and the additional CI one can see that the 5f contribution changes. These 5f spinors are 
mainly responsible for the intensity of the first peak. Two different correlation calculations were 
performed to check the influence of  
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Table 6.8. Population analysis of the 4 outer most valence spinors of the UF6 molecule. 

Spinor DHF SDCI  

5f, 6d and 7s as virtuals  

SDCI  
58 virtuals in E1u,E2u 

and Fu symmetry 

 U 6p U 5f F 2p U 6p U 5f F 2p U 6p U 5f F 2p 
4t1u γ8u 

γ6u 
0.11 

0.07 

0.09 

0.04 

0.80 

0.89 

0.25 

0.12 

0.22 

0.02 

0.53 

0.86 

0.22 

0.13 

0.20 

0.03 

0.58 

0.81 

1t1g γ6g 
γ8g 

  1.00 

1.00 

  1.00 

1.00 

  1.00 

1.00 

 
correlation on the intensity of the peaks. From the resulting natural spinors a population analysis was 
made (table 6.8). 
The numbers in table 6.8 show that the contribution of the 5f-spinors increases from 9% to 20%. The 
intensity of the outermost peak may therefore increase by more than a factor of two. So if one includes 
correlation in the calculations one finds two peaks with an intensity ratio varying from 1 : 2 for the large 
CI to 1 : 2.5 for the small CI where the intensities are calculated as the sum of spinors 10γ6u, 10γ6g and 
11γ8g and the HOMO 12γ8u respectively.  

 
Table 6.9. Photo electron spectrum for UF6 using Koopmans' theorem (eV). 

Spinor Orbital DHF  DHF + Gaunt Experimental  

  Calculated Shifted 
3.14 eV 

Calculated Shifted 
3.14 eV 

result214 

12γ8u 4t1u 17.31 14.17 17.28 14.14 14.14 
10γ6u 
10γ6g 
11γ8g 

4t1u 
1t1g 

 

18.47 
18.45 
18.51 

15.33 
15.31 
15.37 

18.45 
18.45 
18.51 

15.31 
15.31 
15.37 

 
15.30 

9γ6g 

11γ8u 
3γ7u 

3a1g 

1t2u 

 

19.27 
19.50 
19.53 

16.13 
16.36 
16.39 

19.24 
19.50 
19.53 

16.10 
16.36 
16.39 

 
16.20 

10γ8u 
9γ6u 

3t1u 

 
19.91 
19.99 

16.77 
16.85 

19.92 
19.98 

16.78 
16.84 

16.71 

4γ7g 
10γ8g 

9γ8g 

1t2g 

 
2eg 

20.65  
20.67 
21.18 

17.51 
17.53 
18.04 

20.64 
20.67 
21.16 

17.50 
17.53 
18.02 

 
17.36 
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Figure 6.2. Comparison of the experimental214 and calculated spectrum. Intensities based on spinor 
populations and photo-ionization cross-sections. 
 
These peaks fit very well to the first two in the experimental spectra. An assignment of the outermost 
peak to the 12γ8u component of the t1u orbital can hence be made without difficulty following the 
reasoning of Mårtensson et al.. The next three spinors, 10γ6u, 10γ6g and 11γ8g, together form the 
second peak. The next three peaks should then be assigned to the spinors 9γ6g down to 9γ8g.The 
intensity of spinor 9γ6g, is very low and will probably not be found in the spectrum. The spinors 11γ8u 
and 3γ7u form the third peak with the right intensity. One can then assign the fourth peak to the spinors 
10γ8u and 9γ6u. The three spinors 4γ7g to 9γ8g should be placed in the region around the fifth peak. 

This peak in the spectrum of  Mårtensson et al. is very broad. A more detailed spectrum should give 
better insight. The assigment that is suggested here is presented in table 6.9 and figure 6.2. 
It is in reasonable agreement with the various theoretical results and also in good agreement with the 
experimental data of Karlsson et al. 220. 
The first ∆SCF ionization potential is found by a DHF calculation on UF6+ with the hole placed in the 
highest occupied 12γ8u component of the 4t1u orbital. An ionization energy of 16.6 eV is obtained 

which is too large compared to the experimental value of 14.14 eV. The difference can be mainly 
ascribed to differential correlation effects.  
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Table 6.10. Comparison of the uranium core level spin-orbit splitting (in eV). 

n l DHF UF6 DHF UF6 DHF atom DHF atom Experiment 

  + Gaunt  + Gaunt UF6a U metalb 

2p 3825 3785 3826 3784 -- 3782 
3p 890 882 890 881 -- 878 
3d 179 176 179 176 -- 176 
4p 235 233 235 232 -- 229 
4d 43.6 42.9 43.6 42.8 42.5  42.1a 
4f 11.3 10.9 11.2 10.9 10.8 11.1a 
5p 55.7 55.2 55.3 54.7 -- 55.1 
5d 8.7 8.6 8.4 8.3 8.9 8.6a 
6p -- -- 9.7 9.6 -- 10.0a 
5f -- -- 0.75 0.73 -- 0.76 
6d -- -- 0.26 0.26 -- 0.24 
a: Ref. 214. b: Ref. 236. 

 
Some properties of the molecule can be extracted from the calculated results. Spin-orbit splittings are 
calculated from the core level DHF spinors. They are compared with the splittings found in the atomic 
calculation and experimental data in table 6.10. The spin-orbit splittings of the uranium core levels are 
not influenced by the fluorine atoms in the UF6 molecule. Especially for the deeper core levels, better 

agreement between the theoretical and experimental data is obtained by taking the Gaunt interaction into 
account. One has to keep in mind that the description of the 2p1/2 spinor can be improved by adding an 

extra tight p function to the basis set. This will then improve the spin-orbit interaction for the 2p and the 
3p spinors as well. 
Another property is the energy that is needed to let the molecule dissociate into seven atoms.  
 
Table 6.11. Calculated total (hartrees) and atomization (eV) energies. 

Calculation Uranium atom 
(averaged) 

Fluorine atom UF6 molecule Atomization 
energy 

Hartree-Fock -25662.617823 -99.402999 -26259.365671 9.0 
Dirac-Fock -28048.979953 -99.495166 -28646.799549 23.1 
Dirac-Fock + 
Gaunt interact. 

-28006.979389 -99.483255 -28604.714328 22.7 
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The atomization energies, calculated at the experimental bond length, for the non-relativistic HF, the 
relativistic DHF and the DHF plus Gaunt interaction are presented in table 6.11. Notice that for the 
uranium atom the average energy for the 5f36d17s2 configuration is used. 
The results in table 6.11 indicate that the bonding between the uranium and fluorine atoms gets stronger 
when relativity is taken into account, because it is not expected that the non-relativistic corrections will 
be much larger than the relativistic ones. This expectation is substantiated by the fact that the 
experimental atomization energy is 31.9 eV237. An explanation of the stronger bonding can be found in 
section 6.4.1.  
 
6.4.3 Bond length of UF6 

A bond length optimization was performed on the HF and DHF level. From a 7 point fit  a bond length 
of 1.994 Å is found for the DHF calculation and the HF bond length is found to be 1.995 Å. The 
experimental bond length is 1.999 (± 0.003) Å206. An explanation might be given on the basis of the 
population analyses but it is hard to do this in a quantitative way. 
 
6.5 UF6- calculations 

The UF6- ion is found in the CsUF6 rhombohedral crystal structure. Reisfeld et al. 238 recorded an 

optical absorption spectrum from this lattice. Their analysis is based on a octahedral ion, although the 
structure is somewhat distorted, and they find the five states that result from the crystal-field splitting in 
combination with spin-orbit interaction. Hay et al. 222 and Koelling et al. 220 performed a calculation 
using the octahedral UF6-  ion. In this chapter the same calculation is done using the DHF method and 

the influence of the Gaunt interaction is examined. The spinors of UF6- are generated by putting the 

extra electron in the unoccupied 5f-like spinors and carrying out  an average DHF calculation. The 
ground state (2A2u) and the four other states in the 5f electronic spectrum are then calculated by a 

complete open shell CI calculation. An additional CI is performed allowing some relaxation of the 5f-
spinors. In the CI calculation single and double excitations are allowed from the fluorine 2p and uranium 
6s, 6p to the uranium 5f-, 6d- and 7s-like spinors.  
 
6.5.1 Electronic states of UF6-  

The electronic 5f spectrum is calculated and the results of the CI calculation are comparable to the 
RECP plus CI results of Hay et al.. There are two major reasons for the difference between the DHF 
results and experiment. First, an average open-shell calculation is performed on the 5f-spinors which 
results in an equal occupation of these spinors and allows the higher states to influence the spinor 
optimization process.  
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Table 6.12. Electronic 5f spectrum of UF6-. Comparison of theoretical and experimental results. 

 

 Excitation energy (eV) 

State 
(J-value) 

Exp. 

(ref. 238) 

DF 

(this work) 

DF+G 

(this work) 

CI 

(this work) 
RECP 

(ref. 222) 

DV-DS 

(ref. 220) 

Γ7u (1/2) 0.00 0.00 0.00 0.00 0.00 0.00 
Γ8u (3/2) 0.57 0.74 0.74 0.71 0.67 1.00 
Γ7u (1/2) 0.86 0.94 0.91 0.91 0.97 1.13 
Γ8u (3/2) 1.58 1.97 1.95 1.90 1.80 2.51 
Γ6u (1/2) 1.77 2.16 2.14 2.09 1.95 2.69 

 
Relaxation and introduction of charge-transfer states, by means of a CI calculation, improves the 
calculated spectrum as can be seen in table 6.12. Second, the spectrum is measured in the CsUF6 

lattice which has a rhombohedral structure. This means that the UF6- ion is slightly distorted and that the 

electronic structure of the ion will be influenced by the rest of the crystal. For the calculations presented 
here an octahedral UF6- cluster is used. 

 
6.5.2 Electron affinity of UF6 

The electron affinity is calculated on the Dirac-Hartree-Fock level and a second calculation is 
performed where the Gaunt interaction is introduced as a perturbation to the DHF spinors. One can see 
from the DHF and DHF + Gaunt results in table 6.13 that the influence of the Gaunt interaction is small. 
The introduction of correlation, by means of CI-SD, makes the energy gap smaller. The good 
agreement  between the calculated and experimental electron affinities is probably fortuitous however. 
 
6.6 Conclusions 

A basis set was constructed for the uranium atom. The one-electron energies and the valence spectrum 
calculated with this set show good agreement with the numerical DHF results. When the valence 
spectrum is compared with experimental data large discrepancies are found. These discrepancies can be 
ascribed to the fact that a single determinant approach is used instead of a multi determinantal one.  
For the spin-orbit splitting, in the atom as well as in the molecule, good agreement is found with 
experimental results. It is shown that the Gaunt interaction is needed to get good agreement between the 
experimental and theoretical results for the deeper core levels. The Gaunt interaction has only small 
effects on the valence spectrum. The spin-orbit splitting of the core p functions can be improved when 
the basis set is extended with tight p functions and when higher order corrections to the two-electron 
interaction are introduced. 
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Table 6.13. Theoretical and experimental electron affinities of UF6. 

 

Calculation Total energy (hartree) Electron affinity 

 UF6 (1A1g) UF6- (2A2u)  

HF -26259.365671 -26259.692941 8.9 eV 
DHF -28646.799549 -28647.034758 6.4 eV 
DHF + Gaunt -28604.714328 -28604.951897 6.5 eV 
CI-SD -28646.875721 -28647.072045 5.3 eV 
    

Reference Type of calculation  

Hay et al. 222 RECP + spin-orbit coupling and CI 7.1 eV 
   

Reference Type of experiment  

R.N.Compton239 Na + UF6 → Na+ + UF6-  ≥ 5.1 eV 

J.L.Beauchamp240 BF3 + UF6- → BF4- + UF5 

SF6 + UF6- → SF6- + UF6 
4.9 ± 0.2 
8.1 

 
Comparing non-relativistic and relativistic results a much stronger bonding is found when the molecule is 
studied within a relativistic framework. The stronger bonding can be assigned to the contraction of the 
inner shells of the uranium atom up to the 6s1/2 spinor which reduces the anti-bonding properties of the 

molecule. As a result of the inner-shell contraction the uranium 5f and 6d spinors expand. The 
contraction and the expansion result in a more ionic charge distribution. 
The photo-electron spectrum of Mårtensson et al. is assigned and the outer most peak is found to be 
the 12γ8u component of the 4t1u orbital. The 4t1u orbital, that will give one peak if a non-relativistic 

approach is used, will split in two components in a relativistic framework. This is in agreement with other 
theoretical results and the experimental data of Karlsson et al. Correct intensity ratios can be found 
when the method of Mårtensson et al., intensities based on population analyses and atomic photo-
ionization cross sections, is used. A CI calculation is needed to get good agreement with the 
experimental results.  
The relativistic bond length, that was found in the optimization procedure, lies just below the 
experimental value. The non-relativistic bond length was found to be only 0.001Å longer. The very small 
contraction of the bond length in spite of the larger bonding energy found in the relativistic calculation is 
consistent with the discussion of the bonding properties given in section 6.4.1. 
For the UF6- ion reasonable agreement with the experimental 5f spectrum is found. The differences 

between the theoretical and experimental results can be reduced by larger CI calculations. Another thing 
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that has to be taken into account is the fact that the ion has no octahedral symmetry  and that the ion is 
surrounded by other ions in the crystal structure. The calculated electron affinity is in good agreement 
with the experimental data.  
The Gaunt interaction has only a small influence on the valence properties of the molecule and the ion. 
This interaction will be more important for core properties as is shown for the spin-orbit interaction in 
the atom. 
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Chapter 7 

 
 
 

The uranyl ion 

 
 
In this chapter the bonding of the uranyl ion ([UO2]2+) is studied, non-relativistically as well as 

relativistically. A bond length expansion is found and the presence of a so-called "U(6p) core-hole" and 
the U(5f) contribution are hereby found to be important. A different ordering of the valence spinors is 
found compared to previous work but it is confirmed that the HOMO has σu character and has a large 

U(5f) contribution. The electric field gradient (EFG) at the uranium nucleus is calculated and it is shown 
that the U(6p) core-hole has also a large influence on the size of the EFG. The non-relativistic EFG 
value is found to be much larger than the relativistic value. This difference is due to different 
contributions of the core and U(5f) valence orbitals. The inclusion of a charged environment has a 
significant effect on the EFG value. 
 

 
7.1 Introduction 

In the past 25 years a considerable amount of theoretical work226,241-258 has been devoted to 
understand the structure, bonding and various other properties of the uranyl ion [UO2]2+ on the basis of 

quantum chemical methods. These calculations were based on approximate relativistic methods or 
density functional approaches (mainly Xα) but no full four-component Dirac-Hartree-Fock methods 
have been used to study this molecule. A review concerning the uranyl ion can be found in Ref. 259.  
The uranyl ion has a linear O-U-O structure and exists as a free ion in aqueous solutions with pH below 
2.7. The ion accepts ligands at higher pH and in crystals. These ligands lie in or close to the equatorial 
plane through the uranium atom at bond distances that are much larger than the U-O bond lengths in the 
uranyl ion itself. The U-O bond distance can be tuned from 150 pm to 200 pm by varying type and 
coordination of the equatorial ligands. Whereas the uranyl has a linear structure, all its isoelectronic 
counterparts, like ThO2, are found to have a bent structure. The linearity of the uranyl ion has been the 

subject of various papers and there are a number of interpretations. Wadt248 attributes the linearity to 
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the U(5fπ)-O(2pπ) bonding and finds that the role of the U(6p) orbital is of no importance. On the other 
hand, Tatsumi and Hoffman246 find that the interplay between the U(6pπ)-O(2pπ) orbitals and U(5fσ) 

orbitals determine the linear structure. This interpretation, generally known as "pushing from below" of 
the U(6p) 244,246, is supported by various other calculations226,244,245,250,258. The origin of the relative 
short bond length of [UO2]2+ is attributed to strong bonding interactions of the U(5f) orbitals226,249. 

Another question is the symmetry and character of the HOMO and related to this the ordering of the 
occupied valence orbitals. On the basis of optical absorption spectra, Denning et al. 260,261 argue that 
the HOMO is a σu and this is confirmed by most of the theoretical calculations. There is some 

controversy251 among experimentalists on the amount of U(5f) character of the HOMO, i.e. to what 
extend the U(5f) contributes to the molecular bonding. Veal et al. 262 found from their XPS data no 
evidence for U(5f) participation in the bonding whereas Cox263 comes to the opposite conclusion based 
on the relative intensities in the spectra of similar experiments. In previous calculations241,244-

246,250,256,257 a significant contribution of the U(5f) to the HOMO is found. The πu and σu orbitals are 

found close together in theoretical calculations and one can expect that spin-orbit interaction will lead to 
a HOMO with a mixed π-σ character. The ordering of the orbitals below the HOMO varies from 
calculation to calculation. 
To understand the linearity of the uranyl ion and the character of the HOMO a good description of the 
valence region of the molecule is needed. The valence configuration of uranium is 6s26p65f36d17s2 
whereas the oxygen valence shell consists of 2s and 2p orbitals. In a purely ionic picture uranium would 
have an oxidation state of 6+ and the U(6d) and U(5f) orbitals would not contribute to the bonding. 
However, theoretical results suggest241,244-246,250,256,257 that the HOMO will have a significant 
contribution of the U(5f) orbital. Previous calculations also suggest that the semi-core U(6p) orbitals 
form bonds with the O(2s) and O(2p) leading to the so-called "U(6p) core hole". There are 
experimental data from XPS spectra262 on uranyl compounds that can be interpreted by assuming 
strong U(6p)-O(2s) mixing. Most of the computational studies are performed within an approximate 
relativistic framework. In particular, a large number of the calculations neglect spin-orbit coupling. In this 
chapter we will use a fully relativistic framework to study the uranyl ion.  
In this chapter we will also study the electric field gradient (or EFG) at the uranium nucleus. Nuclei with 
spin > 1/2 have a nuclear quadrupole moment (NQM) which can interact with the EFG generated by 
the charge distribution of the molecule. The 3 x 3 EFG tensor will have different principal values for 
molecules with less than tetrahedral symmetry. For such an asymmetric electric field gradient a nucleus 
with a nuclear quadrupole moment will hence have different energy levels depending on the orientation. 
These differences can be observed as a hyperfine structure by various experimental techniques, like for 
example nuclear magnetic resonance spectroscopy. The Hamiltonian for the energy of the interaction 
between a nuclear quadrupole and an electric field gradient is defined by  
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where Q is the NQM, qzz the tensor component of the EFG directed along the principal axis of the 
molecule and I the nuclear spin. In experiments on molecular systems one measures the quantity eQqzz, 
the so-called nuclear quadrupole coupling constant (NQCC). The qzz can be calculated with ab initio 

methods. The simplest method is to calculate the property as an expectation value which is equivalent to 
an energy derivative formulation if the Hellmann-Feynman128,129 theorem is fulfilled. For the uranyl ion, 
with the uranium atom at the origin, the formula for the qzz at the uranium site is 
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where ZiU is the component along the nuclear axis of the distance RiU between electron i and the 
uranium nucleus, ZOx the nuclear charge of the oxygen atom and RU-O the U-O bond length. The first 

term is the expectation value for the electronic contribution and the second term describes the 
contribution of the other nuclei, here the two oxygen atoms. The EFG depends on the electron 
distribution around a given nucleus. If Q is known from experiments on the respective atom, the fine 
structure spectra contain information about electron distribution via qzz and visa versa.  
The NQCC on the uranium site is measured264 for the uranyl ion in [(UO2)Rb(NO3)3] and has the 

value 8.14*1018 V/cm2 or 8.4 au., and the NQM is known from experiment265 to be 10.19*10-24 cm2. 
The structure of this complex is sketched in figure 7.1.  
The U-O bond length of the central uranyl ion is 178 pm whereas the next-nearest oxygen's in the 
nitrate groups lie at a distance of 272 pm from the uranium atom (see Ref. 264 and references therein). 
Comparison of the experimental value of the EFG with the theoretically calculated one allows us to get 
some insight in the accuracy of the calculated electronic wave function. Previously Larsson and 
Pyykkö226 performed a qualitative analysis of the EFG on uranium and attributed the large value to the 
occurrence of a U(6p) core-hole, as before. However, they solely attributed the value to this core-hole 
and did not consider the contributions of the other orbitals. Here we calculate the EFG on uranium in the 
uranyl ion and analyze the various contributions to it of all occupied molecular orbitals. Another aspect 
that will be considered is the influence of the charged environment, i.e. the three nitrate groups, on the 
electron distribution in the valence region of the uranyl ion.   
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Figure 7.1. Sketched structure of [(UO2)Rb(NO3)3].  

 
 
7.2 Computational model 
The spectroscopic properties and the EFG are studied with the programs MOLFDIR and DIRAC91. 
The EFG integrals defined in (7.2) are calculated by the HERMIT95 part of the DIRAC program. The 
molecular calculations in MOLFDIR are done in D4h* double group symmetry whereas in the DIRAC 
calculations we use D2h* double group symmetry. A Gaussian distribution as described in chapter 2.2.2 

is used to describe the spatial extent of the nucleus in the non-relativistic as well as in the relativistic 
calculation. The primitive exponents for uranium are determined by optimizing the relativistic energies of 
the atomic ground state with an adaptation of the atomic code GRASP19. For uranium we use family 
basis sets, i.e. the d-exponents are a subset of the s-exponents and the f-exponents are a subset of the 
p-exponents, whereas the exponents of Dunning's cc-pVTZ basis266 are used for the oxygen atom. The 
general contracted basis is constructed using the atomic balance procedure (see chapter 2.2.1). 
Additional diffuse functions are added to the final basis set in order to assure sufficient variational 
freedom in the valence region. Both the uncontracted and contracted basis sets of uranium differ from 
the ones used for the UF6 molecule in chapter 6. The primitive exponents can be found in table A.3 of 

the appendix and the sizes of the contracted basis sets are given in table 7.1. 
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Table 7.1. Basis set sizes for uranium and oxygen. 
 

  Large Component Small Component 

Atom Type Primitive Contracted Primitive Contracted 

U Rel. 26s21p17d12f 10s13p11d6f 21s26p21d17f12g 8s15p14d11f6g 
 Nonrel. 26s21p17d12f 10s8p7d4f   
O Rel. 11s7p2d 5s5p2d 7s13p7d2f 4s7p5d2f 
 Nonrel. 11s7p2d 5s4p2d   

 
In our calculations on the spectroscopic properties as well as the EFG we excluded the (SS|SS) class of 
integrals in order to make the calculations feasible. This was accounted for by Visscher's101 correction 
to the total energy, described in chapter 2.4.  
The uranyl ion is studied in its closed shell ground state 1Σg+. In the CCSD(T) calculations 24 electrons 

are correlated and the virtual space consists of 176 spinors. The spectroscopic properties are obtained 
by fitting the calculated points of the potential energy curve to a 4th order polynomial in the inter nuclear 
distance.  
We will analyze the wave function at a RU-O=172 pm so that we can compare our results with previous 

calculations. 
The EFG calculations are performed at the DHF level of theory using the contracted basis described 
above. The experimental264 RU-O=17 pm of the [(UO2)Rb(NO3)3] complex (figure 7.1) is used. The 
distance to the next-nearest six oxygen's of the equatorial ligands NO3 is 272 pm. In order to get an 

estimate of the influence of the charged environment on the electron distribution in the uranyl ion some of 
the calculations included 4 point charges of -0.75 electrons in the equatorial plane at a distance of 272 
pm. By taking four point charges instead of three we can continue working in D4h* symmetry which has 

significant computational advantages. We will study the influence of the Gaussian nucleus model on the 
electron distribution close to the nucleus by performing a similar calculation with a point nucleus. The 
effect of the neglected (SS|SS) class is calculated by explicitly including them in a direct SCF calculation 
using the DIRAC program. 
 
7.3 Bonding in the [UO2]2+ molecule 

The equilibrium bond length (re) and symmetric U-O stretching frequency in [UO2]2+ are studied non-

relativistically as well as relativistically at both the uncorrelated and correlated level using CCSD(T). Our 
results are summarized in table 7.2 where they are compared with other theoretical results. 
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Table 7.2. Non-relativistic and relativistic bond length and symmetric stretching frequency (ωe). The 

relativistic effect ∆ is defined as x(relativistic) - x(non-relativistic). 
 

Methodc re (pm) ωe (cm-1) 

HF contracted 159.9 1368 
HF + CCSD(T) 167.5 1015 
DHF uncontractedb 165.1 1239 
DHF contracteda 165.0 1240 
DHF + CCSD(T) 171.0 974 

HFS250 167.4 -- 
HFS + Quasi relativistic effects250 170.0 -- 
HF + R-PP + CCSD253 169.7 -- 
HF + R-PP254 162.5 1216 
HF + R-PP + MP2254 173.2 922 
HF+ RECP252 166.3 1183 
HF+ RECP + MP2252 178.3  933 
Exp. Cs2UO2Cl4267 181.0 831 
Exp. [(UO2)Rb(NO3)3] 264 178.0 -- 

∆ HF 5.2 -128 
∆ CCSD(T) 4.1 -41 
a. Contracted basis with MOLFDIR.          b. Uncontracted basis with DIRAC. 

c. HFS (Hartree-Fock-Slater), R-PP (Relativistic Pseudo Potential), RECP (Relativistic effective core potential). 

 
There are no experimental data on the bond length and symmetric stretch for the free uranyl ion. 
Measurements in molecular systems containing the uranyl ion give a wide range of bond lengths. Two of 
the molecular systems are given in table 7.2 for comparison. The correlated results are comparable to 
the experimental data of a uranyl ion in a larger molecular system. Our relativistic results are comparable 
with the results of other calculations. It is clear that correlation effects have a significant effect on the 
spectroscopic properties studied here.  
A longer bond length and a large decrease of the symmetric stretch is found when relativity is included. 
A somewhat smaller bond length expansion of 2.6 pm was previously found by Wezenbeek et al. 250 
We will come back to the origin of the bond lengthening later on in this section. 
In figure 7.2 the non-relativistic and relativistic valence orbitals are compared in order to have a clear 
picture of the relativistic effects. The molecular orbitals presented here include the uranium 5f, 6s, 6p, 
6d, 7s orbitals and the oxygen 2s and 2p orbitals. The results of a non-relativistic and relativistic 
Mulliken population analysis at a bond distance of 172 pm are  
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Figure 7.2. Comparison of the occupied non-relativistic and relativistic valence spinors. The uranium 
orbitals up to 5d and the O(1s) orbitals are not included in the analysis. 
 
summarized in table 7.3 and 7.4. The spinors of the relativistic calculation are denoted with their 
respective parity and the quantum number ω as a subscript. With the calculated data we will now 
discuss the issues raised concerning the bonding of the uranyl ion. 
Relativistic effects have a large influence on the ordering of the spinors, as can be seen in figure 7.2. The 
non-relativistic 1σg and 2σg molecular orbitals show some mixing of the U(6s) with the O(2s). Due to 

relativistic scalar contraction the U(6s) no longer mixes with O(2s) and becomes a non-bonding spinor.  
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Table 7.3. Mulliken population analysis of the non-relativistic calculation at 172 pm. The uranium 
orbitals up to 5d and the O(1s) orbitals are not included in the analysis. 
 

Orbital Energy Composition of orbital (in %) 

 (hartree) Us Upπ  Upσ Ud Uf Os Opπ   Opσ Od 
1σg -2.2996 73     22  5  
1σu -2.0544   20  1 68  10 1 
2σg -1.7463 17   4  79    
1πu -1.5728  95     4   
2σu -1.3844   35  2 38  25 1 
3σu -1.1549   11  74   15  
1πg -1.0964    16   82  2 
2πu -1.0905  3   30  66   
3σga -1.0736 9   18    73  

Gross population 2.00 3.94 1.33 1.06 2.74 4.11 6.12 2.57 0.13 
a. HOMO 

 
Table 7.4. Mulliken population analysis of a relativistic calculation at 172 pm. The uranium spinors up to 
5d and the O(1s) spinors are not included in the analysis. 
 

Spinor Energy Composition of spinor (in %) 

 (hartree) Us Upπ  Upσ Ud Uf Os Opπ   Opσ Od 
1g1/2 -2.8448 93     5  2  
1u1/2 -2.1523  20 37   33  8 1 
2u1/2 -1.8736  71 1  1 25 1 2  
2g1/2 -1.7844    3  96  1  
1u3/2 -1.6425  97     3   
3u1/2 -1.4203  7 33  4 45 1 12  
3g1/2 -1.0700    19   78 1 2 
1g3/2 -1.0668    18   80  2 
4u1/2 -1.0522   3  35  43 17 1 
4g1/2 -1.0458 5   15  1 1 78  
2u3/2 -1.0331  2   22  75   
5u1/2a -1.0281  1 7  42  33 17  

Gross population 1.93 3.99 1.60 1.10 2.07 4.16 6.30 2.73 0.12 
a. HOMO 
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The large shift downwards of the 1σg is also found in other calculations that include relativistic 
effects244,247,250. This relativistic contraction is also observed in calculations on UF6 (see chapter 6). In 
fact the bonding picture seen for the uranyl ion is similar to that of the UF6 molecule. 
The U(6pσ) is strongly mixed with the ungerade combination of the O(2s) and also has some O(2p) 
character. We also observe a considerable mixing of the O(2pπ) orbitals with the U(6d) and U(5f). 

These strong interactions lead to the so-called "U(6p) core-hole" as discussed earlier by Larsson and 
Pyykkö226, Pyykkö and Laaksonen245 and Wezenbeek et al. 249,250. We find that  in the non-
relativistic calculation 0.7 electrons are squeezed out of the U(6pσ) due to this mixing, whereas the 

"hole" is much smaller in the relativistic calculation (0.4 electrons). This can be attributed to the more 
compact nature of the U(6p1/2), which gives the largest contribution to the U(6pσ) in the 1u1/2 spinor, in 

the relativistic calculations. Van Wezenbeek et al. 249,250 find a "hole" of 0.5 electrons (at a bond 
distance of 172 pm) but find no decrease when they account for relativistic effects. This is probably 
caused by the absence of spin-orbit coupling in their calculation. We observe a considerable mixing, due 
to spin-orbit interaction, between the 1σu and the ω=1/2 component of the 1πu. 
The 3σu orbital, which is dominantly U(5f), shifts up and even becomes the HOMO at the relativistic 
level of theory. We find that the HOMO is dominantly σu with some πu character due to mixing in of 
the ω=1/2 component of the 2πu with the 3σu orbital as a result of spin-orbit interaction. The HOMO 

has around 40% U(5f) character which is similar to what is found in other ab initio 
calculations241,244,250,256,257 but smaller than the 80% suggested by Pyykkö245,258. The considerable 
amount of U(5f) character in the HOMO agrees with the conclusions made by Cox263 on the basis of 
experimental XPS spectra. Hence, the large upward shift of the 3σu orbital confirms the idea of 

"pushing from below" of Tatsumi and Hoffmann246, DeKock et al. 244 and Jørgensen251. 
 
Table 7.5. Gross populations (per atom) of non-relativistic and relativistic wave functions at 172 pm 
and 178 pm. The uranium orbitals up to 5d and the O(1s) orbitals are not included in the analysis. 
 

r (pm) Type U s U p U d U f O s O p O d q U q O 

172  Nonrel. 2.00 5.27 1.06 2.74 2.06 4.35 0.06 +2.93 -0.47 
 Rel. 1.93 5.59 1.10 2.07 2.08 4.51 0.06 +3.31 -0.65 

178  Nonrel. 1.98 5.35 1.05 2.73 2.06 4.32 0.06 +2.89 -0.44 
 Rel. 1.93 5.66 1.11 2.03 2.07 4.50 0.06 +3.27 -0.67 
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Table 7.6. Comparison of the highest six molecular spinors. 
 

Reference Year Typea Ordering of spinors 

Ref. 242 1975 DS 4u1/2  2u3/2  3g1/2  1g3/2  4g1/2  5u1/2  

Ref. 241 1976 DS 4u1/2  2u3/2  3g1/2  1g3/2  4g1/2  5u1/2 

Ref. 247 1978 DS 4u1/2  3g1/2  2u3/2  5u1/2  4g1/2  1g3/2 

Ref. 256 1981 QR-MS 3g1/2  4u1/2  4g1/2  2u3/2  1g3/2  5u1/2  

Ref.  244 1984 RHFS 3g1/2  1g3/2  4u1/2  2u3/2  4g1/2  5u1/2  

Ref.  245 1984 REX 3g1/2  1g3/2  4g1/2  4u1/2  2u3/2  5u1/2 

Our results 1997 DHF 3g1/2  1g3/2  4u1/2  4g1/2  2u3/2  5u1/2 

a. DS (Dirac-Slater), QR-MS (Quasi Relativistic Multiple Scattering method), RHFS (Hartree-Fock-Slater + scalar 

relativistic and spin-orbit effects), REX (Relativistic Extended Hückel), DHF (Dirac-Hartree-Fock). 

 
Inclusion of relativistic effects leads to a more ionic molecule similar to what was found previously for 
the UF6 molecule in chapter 6. This increase is due to a smaller U(5f) contribution in the bonding but is 

partially compensated by the increase of the number of electrons in U(6p), i.e. the "hole" becomes 
smaller. The ionicity and the size of the "hole" does not vary much with the bond length, as can be seen 
in table 7.5, but the inclusion of relativity, on the other hand, leads to significant changes. 
There is no agreement in the literature on the ordering of the highest four orbitals 3σg, 2πu, 3σu, 1πg 

and their six relativistic counterparts. In table 7.6 we compare our results with relativistic calculations 
that include spin-orbit coupling. Other, more recent, calculations are not directly comparable because 
they do not include the large spin-orbit effects. 
Our calculations give a spinor ordering which again differs from the previous calculations although a 
closer agreement is found with the more recent calculations. The differences between our results and the 
older Dirac-Slater calculations are large. There is a general agreement that the HOMO is 5u1/2. The 
two components of the 1πg are found below the other four spinors and this is similar to what was found 

in the most recent calculations of Pyykkö et al. 245 and DeKock et al. 244. Our ordering of the three 
remaining spinors differs from the other calculations. However, these spinors lie in a range smaller than 1 
eV and the ordering can be affected by the relativistic approach used.  
Our calculations show a substantial bond length expansion when relativistic effects are included (table 
7.2). Van Wezenbeek et al. 250 attribute the expansion to a loss of mass-velocity stabilization due to a 
decreasing population of the U(6p) core-hole and large off-diagonal mass-velocity matrix elements with 
the U(6p) and not to the expansion of the U(5f) orbitals. However, they find a depopulation of the 
U(6p) which is the same for the non-relativistic and the relativistic calculation. Our calculations clearly 
show a smaller depopulation of the U(6p) when relativity is included. The bonding contribution of the 
U(5f) decreases significantly when relativity is included. The decrease in the U(5f) occupation was also 
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observed by van Wezenbeek249. Van Wezenbeek249 attributes the short bond length of the uranyl ion 
to the strong bonding interaction of the U(5f) and O(2p) which is counteracted by the repulsive 
interaction of the U(6p) and the O(2s). Other contributions are found to be considerably smaller. This 
explanation is supported by calculations of Larsson and Pyykkö226 and Wadt248. We agree that the 
short bond length is caused by these interactions. However, our relativistic calculations show that not 
only the U(6p) contribution but also the U(5f) contribution change considerably and are therefore both 
responsible for the bond length expansion. 
The last issue that will be discussed in this section is the linearity of the uranyl ion. Tatsumi and 
Hoffmann246 attribute the linearity to the strong σ-type U(5f)-O(2p) bonding interaction. Wadt248 and 
Pyykkö and Lohr258 relate the linearity to the strong U(5fπ) contribution to the bonding. Our 

calculations show a bonding between the π-type orbitals of the U(5f) and O(2p) in the non-relativistic 
case whereas in the relativistic case also the σ-type orbitals contribute due to spin-orbit interaction. The 
relativistic approach therefore merges both suggested bonding interactions.   
 
7.4 The electric field gradient on uranium 

At a bond length of 178 pm we obtain a value for the EFG of 2.7 au. in a relativistic calculation. This 
value is much smaller than the experimentally264 determined value of 8.4 au. Non-relativistically we find 
a value of 9.3 au. which lies close to the experimental value. The large difference between the relativistic 
and non-relativistic value shows the impact of relativity on this property.  
The results given here are based on calculations on a free uranyl ion. However, the measurements are 
done on a uranyl ion in the [(UO2)Rb(NO3)3] complex where the uranium atom is surrounded by three 
NO3- groups in the equatorial plane (see figure 7.1). As a first (crude) approximation we have simulated 

this charged environment by including four point charges of -0.75 electrons in the equatorial plane, 
keeping D4h* point group symmetry, at a distance of 272 pm. In addition the nuclear contributions of 

the nitrate groups and the Rb atom (approximately 0.7 au.) are included. Non-relativistically we find a 
value for the EFG of 13.8 au. and relativistically we obtain 6.6 au. This brings the relativistic result 
closer to experiment whereas the non-relativistic value becomes much too large. The large increase of 
the electronic contribution (relativistic 3.9 au. and non-relativistic 4.5 au.) is a consequence of the 
additional deformation of the electronic density in the uranyl ion induced by the lower symmetry. Hence, 
we may assume that the effect will be even larger if we include a more accurate description of the 
environment.  
We will now analyze the EFG contributions in the free uranyl ion. The molecular spinor contributions are 
summarized in table 7.7. We have grouped the valence orbitals according to their atomic orbital 
character as defined by the population analysis in table 7.3 and 7.4. The group containing U(6p) is build 
up from four large contributions which cancel each other. Our calculations are performed in a closed 
shell molecule which means that the spinors of the same symmetry can arbitrarily rotate among each 
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other. For these reasons we will from now on use the grouping of the valence orbitals as given in the last 
column of table 7.7 A more detailed analysis of the core region is presented in figure 7.2.  
The largest contribution to the EFG comes from the molecular spinor with U(6p) and O(2s) character. 
Larsson and Pyykkö226 analyzed the contribution of the U(6p) in a qualitative way and attributed the 
EFG to the core-hole arising from the interaction of the U(6p) with the O(2s) and O(2p). However, 
from table 7.7 and figure 7.3 we can conclude that the contributions of the other valence spinors also 
have a large effect, i.e. they partially cancel the U(6p) core-hole contribution. For example, the 
contribution of the U(5f)-O(2p) molecular spinor is half of the U(6p) core-hole contribution.  
 
Table 7.7. Analysis of the molecular orbital contributions to the EFG on uranium at 178 pm. Notation 
of orbitals and spinors is the same as in section 7.3. The core region includes all uranium orbitals up to 
U(5d) and O(1s). 
 

Non-relativistic Relativistic Character 
Orbitals EFG (au.) Spinors EFG (au.) spinors 

Core  1.16  -2.93 -- 
1σg 

2σg 
-0.05 
-0.88 

1g1/2 

2g1/2 
-0.18 
-1.41 

U(6s) 
O(2s) 

1σu 

1πu 

 
2σu 

-25.88 
46.51 
46.51 

-47.89 

1u1/2 

2u1/2 

1u3/2 

3u1/2 

-56.06 
82.33 
70.56 

-76.40 

U(6p) 
+ O(2s) 
+ O(2p) 

1πg 

 
3σg 

-0.64 
-0.64 
-2.48 

3g1/2 

1g3/2 

4g1/2 

-0.98 
-0.70 
-2.82 

O(2p) 
+U(6d) 

3σu 

2πu 

 

-9.65 
1.22 
1.22 

4u1/2 

5u1/2 

2u3/2 

-9.34 
-2.66 
2.46 

U(5f) 
+ O(2p) 

Sum Valence +7.33  +4.81  
Core + Valence +8.49  +1.88  
Nuclear contr. +0.84  +0.84  
Total EFG +9.33  +2.72  
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Figure 7.3. Contributions to the electronic part of the EFG for a non-relativistic (white) and a relativistic 
(black) wave function derived at a bond distance of 178 pm.  
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Figure 7.4. Total electronic EFG contribution ( ), and U(6p) core-hole contribution ( ) and 
U(6p) core-hole size ( ) versus the U-O bond length. All results come from relativistic calculations. 



Relativistic Quantum Chemistry Applied 

120 

It is clear that the contribution of the core-region in uranium, i.e. orbitals up to the 5d cannot be 
neglected. The O(1s) core-orbital screens a part of the nuclear charge of the oxygen atom and its 
contribution to the EFG (-0.2103 au.) can therefore be modelled by assuming a point charge of -2 at 
the oxygen position. The total core contribution is found to be much larger than the nuclear contribution 
arising from the oxygen atoms. In the relativistic case the contribution of the core region is larger than in 
the non-relativistic case, in fact the sign of the core contribution changes going from a non-relativistic to 
a relativistic calculation.  
Larsson and Pyykkö226 related the electronic contribution of the EFG to the size of the U(6p) core-hole 
and the bond length. In figure 7.4 we see a similar relation between the bond length, the U(6p) core-
hole and the EFG. The U(6p) core-hole contribution to the EFG value is much larger than the total 
electronic EFG value itself. Also, the results in table 7.8 suggest that this picture is somewhat misleading 
because no large core-hole effect is found in the non-relativistic calculation.  
The size of the U(6p) core-hole changes only a little when going to longer bond lengths for the non-
relativistic as well as the relativistic calculation. On the other hand, table 7.8 shows a large change in the 
EFG for the relativistic calculation when going to longer bond lengths whereas the slope in non-
relativistic calculation is much smaller. In figure 7.5 we compare the distance dependence of the various 
orbital contributions at two different bond lengths. 
 
Table 7.8. Dependence of EFG on the size of the U(6p) core-hole, a comparison of non-relativistic and 
relativistic electronic contributions at 159 pm and 178 pm. 
 

 Non-relativistic Relativistic 

Bond length U(6p) core-hole qzz (au) U(6p) core-hole qzz (au) 

159 pm 0.77 8.9 0.51 11.0 
178 pm 0.65 8.5 0.34 1.9 

 
Up to the O(2s) bonding orbital no significant changes are found when changing the bond length. The 
U(6p)-O(2s) molecular spinor shows in the relativistic case a larger distance dependence than in the 
non-relativistic case. In the non-relativistic case the contribution of the U(5f)-O(2p) molecular spinors 
cancels the change in the U(6p)-O(2s) contribution which leads to a similar value for the EFG at both 
distances. This is not the case for the relativistic calculations where the U(5f)-O(2p) spinors do not 
show a distance dependence and the change in the EFG value arises entirely from the U(6p) containing 
molecular spinors. Hence, the distance dependence of the EFG can in the relativistic case indeed be 
attributed to the U(6p) core-hole, as suggested by Larsson and Pyykkö226, but in the non-relativistic 
case the 
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Figure 7.5. Comparison of cumulative contributions to the EFG for non-relativistic (NR) and relativistic 
(Rel) wave functions at the bond distances 159 pm and 178 pm. U(6p) core-hole is given in 
parenthesis. 
 
contributions of the other valence spinors also change with the distance and largely cancel the change in 
the core-hole contribution. 
Our calculated value at 178 pm is considerably smaller than the experimental value, even when we take 
the environment into account. We will now investigate whether this discrepancy is due to computational 
defects. The results are summarized in table 7.9. 
The EFG becomes slightly smaller when we use an uncontracted basis set instead of a contracted basis. 
Also the inclusion of a polarization function has a minor influence suggesting that this property is not very 
sensitive to improvements of the basis set used. In our calculations we used a finite nucleus. However, 
this finite nucleus will affect the form of the wave function close to the nucleus and therefore we have 
tested the influence by performing a similar calculation using a point nucleus. The effect of a finite nucleus 
is found to be small. Another approximation made in the calculations presented here is the omission of 
the (SS|SS) class of integrals but we see that this also has only a small effect.  
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Table 7.9. Overview of various aspects in the computational model which could affect the EFG on 
uranium at 178 pm. 
 

Type of contribution Contribution to EFG (in au.) 

Uncontracted instead of contracted basis -0.33 
Adding g-function to large component -0.07 
Using point nucleus instead of Gaussian -0.11 
Including (SS|SS) class of integrals +0.07 

 
 
7.5 Conclusions 

The bonding properties and the electric field gradient on the uranium site are studied within a fully 
relativistic framework. The short bond length of the uranyl ion is attributed to a strong U(5f)-O(2p) 
bonding interaction counteracted by a repulsive interaction of the U(6p) with the O(2s). A bond length 
expansion is found when relativistic effects are included in the calculation. This expansion can be 
explained by a relativistic change in the repulsive U(6p) and bonding U(5f) interactions with respect to 
the non-relativistic situation. A strong mixing between the U(6p), the O(2s) and O(2p) leads to the so-
called "U(6p) core-hole". The HOMO has a large U(5f) contribution and is dominantly σu. This is in 

agreement with most of the other (approximate) relativistic calculations. Our ordering of the highest six 
spinors is slightly different from the most recent calculations of Pyykkö et al. 245 and DeKock et al. 244. 
However, the energetic differences between the orbitals are small and in these calculations the relativistic 
effects are included in an approximate way. The linearity can be attributed to the strong σ and π  
bonding interactions between the U(5f) and the O(2p). 
We have analyzed the various contributions to the electric field gradient (EFG) at the U nucleus. The 
bonding of the U(6p) has a profound effect on the size of the EFG, as was suggested by Larsson and 
Pyykkö. However, the contributions of the other orbitals largely cancel the effect of the U(6p) and 
therefore cannot be neglected. The contribution of the U(6p) is the same for the non-relativistic and the 
relativistic EFG value. We find that the differences between the non-relativistic and the relativistic result 
arise from different contributions of the core region and the other occupied valence orbitals. The 
inclusion of the environment, which was approximated by including point charges, has a large effect on 
the size of the EFG and has to be taken into account. 
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Chapter 8 

 
 
 

Summary 

 
 
Relativity has a significant influence in chemistry. This is not only the case for chemical systems with 
elements in the lower regions of the periodic system but also for molecules with only elements from the 
upper regions of the periodic system, as will be shown in this thesis.  
In chapter 1 we introduced the reader to the relativistic effects and their influence in chemistry. The main 
goal of this thesis research was to calculate properties of chemical systems including relativity and to 
interpret experimental data. We have chosen to study these chemical systems within an ab initio 
relativistic framework with the Dirac Hamiltonian as a starting point. In chapter 2 the many-electron 
generalization of the Dirac Hamiltonian is introduced and, by gradually allowing more and more well 
defined standard quantum chemistry approximations, we will arrive at the relativistic quantum chemistry 
model that was implemented in the MOLFDIR program package. This code was then applied to a 
variety of molecules. 
In chapter 3 we studied the relativistic effects on the so-called ionized and neutral excited states of the 
copper halide series CuX (with X = Cl, Br, I). The ionized excited states, which are described by states 
arising from a Cu+(3d94s1) X-(ns2np6) configuration, are found to be strongly affected by mixing of the 
states due to spin-orbit interaction. These spin-orbit effects arise from the copper atom and are similar 
throughout the whole copper halide series. On the other hand, the spin-orbit effects in the neutral 
excited states, arising from the Cu(3d104s1) X(ns2np5) configuration, are caused by the spin-orbit 
splitting on the halides and become more important when going to the heavier halides. 
MOLFDIR is an ideal tool for relativistic benchmark calculations due to the various correlation 
methods, available in the program package, and its fully relativistic framework. In chapter 4 we 
performed benchmark calculations on the spectroscopic properties bond length, harmonic frequency 
and dissociation energy of the interhalogen series ClF, BrF, BrCl, IF, ICl and IBr. For all molecules 
studied in this chapter a weakening of the bond was found which was attributed to spin-orbit interaction. 
We found that for these fairly light systems the relativistic and correlation effects are largely additive. A 
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huge amount of theoretical work has been done on the calculation of the electric dipole moment of the 
interhalogens but all with approximate relativistic approaches. We calculated the electric dipole moment 
and electric quadrupole moment as expectation values. The electric dipole polarizability was studied 
within the random phase approximation41. The relativistic effects were found to have a significant effect 
on these properties. 
The ground, excited and ionized states of the iodine molecule have been studied in chapter 5. Our 
calculated results for the ground state were found to be in close agreement with experimental data. 
Core-valence correlation and basis functions with higher angular momenta were found to be important 
to obtain results in agreement with experiment. The potential energy curves of the excited and low-lying 
ionized states have been calculated and their respective spectroscopic properties were determined. 
Relativistic effects, and in particular spin-orbit coupling between states, were found to be extremely 
important. Our results for the excited states are in close agreement with experiment and with the results 
of Teichteil and Pelissier183. The spectroscopic properties of the low-lying ionized states are in close 
agreement with experimental data. We have reassigned a recently measured ionized state on the basis of 
our calculations. 
In chapter 6 we studied the uranium hexafluoride (UF6) molecule. The uranium atom is a heavy element 

and hence requires a relativistic model in order to understand its properties. We showed that relativity 
reorders the valence spinors and changes the character of the HOMO which is now in good agreement 
with experiment. The photoelectron spectrum of UF6 could be reproduced by our calculations. 
Calculations on the excited states of the UF6 cation and the electron affinity also give results that are in 

agreement with experiment. 
The bonding properties of the uranyl ion ([UO2]2+) were studied within a fully relativistic framework and 

presented in chapter 7. We observed the so-called "U(6p) core-hole" which has a influence on the 
bonding properties of the molecule. The ordering of the valence spinors differs from previous theoretical 
predictions but we agree that the HOMO has σu character and has a large U(5f) contribution. The 

electric field gradient (EFG) on the uranium site was evaluated and we showed that the U(6p) core-hole 
and relativistic effects have a large influence on the size of the EFG. The influence of other effects, in 
particular that of the environment of the uranyl cluster was found to be significant. 
From our fully relativistic ab initio quantum chemical calculations on various chemical systems we 
conclude that relativity often has a significant effect on the calculated properties of the systems studied. 
For the molecules containing elements from the upper region of the periodic system the most important 
relativistic effect is the spin-orbit interaction. For the heavier elements also the scalar relativistic effects 
become important.  
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In de scheikunde bestudeert men chemische reacties en de chemische en fysische eigenschappen van 
stoffen op het moleculaire niveau. Stoffen en moleculen worden gevormd uit atomen die op hun beurt 
weer zijn opgebouwd uit kernen en elektronen die zich om de kernen bewegen. De eigenschappen van 
stoffen worden bepaald door de interactie tussen de kernen en elektronen en de elektronen onderling. 
Als we de eigenschappen willen verklaren zullen we een model of theorie moeten gebruiken die deze 
interacties kan beschrijven. Wanneer we deeltjes met heel kleine afmetingen willen beschrijven moeten 
we gebruik maken van het kwantummechanische model waarin de deeltjes worden beschreven met een 
zogenaamde golffunctie. De kwantummechanica is een natuurkundige theorie, die men vorm heeft 
gegeven in een aantal wiskundige formules. Eén van de belangrijkste kwantum-mechanische formules is 
de Schrödinger-vergelijking.  
Op het eerste gezicht lijkt de kwantummechanica een onbelangrijk iets in onze macroscopische wereld 
maar de invloed van deze theorie op het alledaagse is bijzonder groot. Zonder de kwantummechanica 
zijn we niet in staat om eigenschappen als magnetisme en elektrische geleiding echt te begrijpen. Enkele 
andere tastbare voorbeelden zijn de ontwikkeling van lasers en de elektrische schakelingen (chips). 
Voor het ontwikkelen van nieuwe materialen, het begrijpen en verbeteren van de werking van 
medicijnen, snellere elektrische schakelingen, nieuwe en verbeterde reactieprocessen (waaronder 
katalysatoren), maar ook voor het begrijpen van fenomenen zoals supergeleiding, is een gedegen inzicht 
nodig in de kwantum-mechanische aspecten van de eigenschappen van stoffen. 
Het is niet eenvoudig om de chemie te beschrijven met behulp van alleen een kwantum-mechanisch 
model. De formules voor het veel-deeltjes probleem dat voortkomt uit de Schrödingervergelijking is 
moeilijk op te lossen en vereist grootschalige rekenarbeid. Om toch de uitgebreide experimentele kennis 
te kunnen interpreteren en te kunnen gebruiken in nieuwe technologische ontwikkelingen probeert men 
op basis van de kwantummechanica gemakkelijkere hanteerbare modellen op te stellen betreffende de 
opbouw van atomen en moleculen en de samenhang hiervan met allerlei chemische en fysische 
eigenschappen van materialen. Op basis van experimentele gegevens, bijvoorbeeld spectroscopische 
technieken, probeert men zo eenvoudig mogelijke kwantummechanische beschrijvingen te vinden voor 
de gemeten eigenschappen. Men neemt daarvoor bepaalde modelvoorstellingen aan voor de 
golffuncties waardoor het mogelijk is om bepaalde experimentele grootheden te parameteriseren. Met 
deze vereenvoudigde modellen kan men proberen om de uitkomsten van nieuwe experimenten te 
voorspellen en  kan men gemeten trends interpreteren. Toch zijn er grenzen aan deze zogenaamde semi-
empirische aanpak. Vereenvoudigde modellen werken vaak goed voor bepaalde eigenschappen en 
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voor bepaalde klassen van materialen. Wanneer men een andere klasse van materialen of andere 
eigenschappen wil bestuderen moet men vaak het model aanpassen of zelfs uitbreiden. Naast de 
grenzen van een eenvoudig model zijn er ook grenzen aan wat experimenteel mogelijk is. Men kan hier 
bijvoorbeeld denken aan het werken met zeer giftige, radioactieve of op een andere manier gevaarlijke 
stoffen. Het is niet altijd mogelijk om de (zeer kort) levende tussenprodukten in het verloop van een 
chemisch reactieproces te meten waardoor enkele schakels in de interpretatie ontbreken.   
Een andere invalshoek is die van de ab initio kwantumchemie, een onderdeel van de theoretische 
chemie. Deze tak binnen de kwantumchemie houdt zich bezig met het zo exact mogelijk oplossen van 
de kwantummechanische bewegingsvergelijkingen, de Schrödinger-vergelijking, van de kernen en de 
elektronen. Met dit model kunnen in principe alle eigenschappen van materialen, individuele moleculen, 
interacties tussen en reacties van moleculen worden voorspeld door het uitvoeren van berekeningen. In 
deze tak probeert men zo min mogelijk gebruik te maken van experimentele informatie, de enige 
experimentele kennis die men gebruikt zijn de fundamentele fysische natuurconstanten. Deze tak van 
wetenschap begon zich pas echt te ontwikkelen rond 1960 na de ontwikkeling van grootschalige reken- 
en dataverwerkingsmogelijkheden, het begin van het computertijdperk. Door uit te gaan van alleen een 
fundamenteel kwantummechanisch model, wordt een beter inzicht verkregen in de basis van de chemie 
maar kan men ook informatie over chemische systemen verkrijgen die niet (of nog niet) experimenteel 
beschikbaar zijn, oftewel we kunnen proberen eigenschappen te voorspellen. We zijn (nog) niet in staat 
om de veel-deeltjes Schrödingervergelijking op te lossen. Dit betekent dat ook binnen de ab initio 
kwantumchemie een aantal (conceptuele) benaderingen moeten worden gemaakt welke in de limiet 
zullen leiden tot een exacte oplossing van het veel-deeltjes probleem. De formules die overblijven 
vormen op zichzelf nog steeds een groot rekenprobleem. De huidige beschikbare rekenkracht is op dit 
moment de beperkende factor wat betreft de chemische probleemstellingen die kunnen worden 
bestudeerd, we moeten ons veelal beperken tot een klein aantal atomen. Veel eigenschappen van een 
stof hebben een lokale oorsprong, enkele atomen of een klein cluster van atomen, en kunnen worden 
beschreven met een klein deel van de stof, al dan niet met een benaderd omgevingsmodel.  
We moeten de ab initio kwantumchemie zien als één in een lange rij van experimentele technieken. Ze 
kan worden gebruikt als hulpmiddel voor de verklaring, bevestiging en het modelleren van de 
interpretatie van experimentele gegevens. Tevens kan de kwantumchemie dienen als numeriek 
experiment om inzichten te verkrijgen in processen en materialen die niet met experimentele technieken 
kunnen worden vergaard.  
Het oplossen van de (benaderde) Schrödingervergelijking levert in veel gevallen een voldoende 
nauwkeurige beschrijving van de chemische en fysische eigenschappen van een molecuul. Toch faalt de 
kwantummechanica op basis van de Schrödingervergelijking wanneer deeltjes die met een zeer hoge 
snelheid bewegen moet worden beschreven (dit is het geval bij zware elementen zoals uranium). Voor 
deze snel bewegende deeltjes is een verbeterde versie van de kwantummechanica nodig waarbij 
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rekening wordt gehouden met een andere natuurkundige theorie, Einstein's speciale relativiteitstheorie. 
In deze theorie is de lichtsnelheid een fundamentele natuurconstante (snelheid 300000 km/s), dit in 
tegenstelling tot de Schrödingervergelijking waarin in feite een oneindige lichtsnelheid wordt 
aangenomen. Dit heeft vooral directe consequenties voor de electronen dicht bij een zware kern welke 
zich met grote snelheid voortbewegen, maar indirekt ook voor de electronen die zich verder van de 
kern bevinden. Een model dat rekening houdt met de kwantummechanica en met Einstein's speciale 
relativiteitstheorie werd in 1928 gepostuleerd door Dirac, de relativistische kwantum-mechanica. 
Relativiteit heeft een significante invloed op de chemie. De invloed beperkt zich niet alleen tot chemische 
systemen met elementen uit de onderste regionen van het periodiek systeem, maar strekt zich ook uit tot 
moleculen met alleen elementen uit de bovenste rijen van het periodiek systeem. Enkele voorbeelden 
van deze invloed in de chemie zijn de verklaringen voor de kleur van goud en het licht van 
straatlantaarns. 
Het werk dat in dit proefschrift wordt gepresenteerd gaat uit van relativistische kwantum-mechanica 
zoals die is geformuleerd in de Diracvergelijking. Het rekengereedschap dat hiervoor wordt gebruikt is 
het MOLFDIR programma pakket dat in onze groep aan de Rijksuniversiteit Groningen is en wordt 
ontwikkeld. Het proefschrift kan ruwweg in twee secties worden opgedeeld, een theoretische sectie en 
een sectie met resultaten van berekeningen aan een aantal chemische systemen. In hoofstuk 1 wordt een 
algemene inleiding gegeven over relativiteit en de relativistische effecten in de chemie. Hoofdstuk 2 
behandelt, in het kort, de theorie en zijn implementatie in MOLFDIR.  
In het hoofdbestanddeel van het proefschrift, de hoofdstukken 3 t/m 7, wordt de MOLFDIR 
programmatuur toegepast op een aantal chemische vraagstukken waarbij relativistische effecten van 
belang zijn of zouden kunnen zijn. We zullen zien dat niet alleen moleculen met zware elementen maar 
ook moleculen met lichte elementen significant worden beïnvloed door relativiteit. In hoofdstuk 3 
worden de relativistische effecten op de zogenaamde geïoniseerde en neutrale aangeslagen toestanden 
van de koperhalogenen (CuCl, CuBr en CuI) bestudeerd. Het belangrijkste relativistische effect dat 
deze toestanden sterk beïnvloed is de spin-baan interactie tussen de verschillende toestanden. 
Een relativistische berekening aan een bepaald chemisch rekenprobleem is vele malen groter dan 
wanneer we het rekenprobleem met niet-relativistische methoden bestuderen. Daarom laat men vaak de 
relativistische effecten weg of probeert men deze te beschrijven met behulp van benaderende modellen. 
Om de correctheid en nauwkeurigheid van deze modellen te kunnen analyseren is het nodig om volledig 
relativistische berekeningen uit te voeren. De resultaten van deze berekeningen kunnen dan dienen als 
referentiekader voor de benaderende methoden. In hoofdstuk 4 worden de resultaten van referentie 
berekeningen aan interhalogeen moleculen (ClF, BrF, BrCl, IF, ICl en IBr) gepresenteerd. 
Verschillende spectroscopische en elektrische eigenschappen en het relativistische effect op deze 
eigenschappen zijn berekend. 
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In hoofdstuk 5 is naar de spectroscopische eigenschappen van het twee-atomige jodium molecuul 
gekeken. Naast de grondtoestand zijn ook de geëxciteerde toestanden van het systeem bestudeerd. De 
resultaten zijn in goede overeenstemming met de experimentele gegevens en de eigenschappen van 
enkele, nog niet gemeten, toestanden zijn voorspeld. Tenslotte is er gekeken naar de geïoniseerde 
toestanden van het molecuul. De hier gepresenteerde resultaten hebben geleid tot een andere 
interpretatie van recente experimentele data en een nieuwe toekenning van een gemeten toestand. 
De hoofdstukken 6 en 7 beschrijven de resultaten van berekeningen aan moleculen die uranium 
bevatten, een element uit de onderste regionen van het periodiek systeem. In hoofdstuk 6 zijn de 
eigenschappen van het uraniumhexafluoride molecuul bestudeerd. Het ionisatiespectrum, het 
excitatiespectrum van het kation en de electronenaffiniteit van het molecuul zijn berekend. De 
rekenresultaten zijn in goede overeenstemming met de beschikbare experimentele gegevens. In 
hoofdstuk 7 worden resultaten gepresenteerd van berekeningen aan het uranyl ion. De 
bindingseigenschappen van het molecuul, zoals de korte bindingslengte en de lineariteit van het molecuul, 
zijn bestudeerd en vergeleken met resultaten van berekeningen op basis van benaderende methoden. 
Zowel de spin-baan wisselwerking als de scalaire relativistische effecten hebben een grote invloed op de 
eigenschappen van dit molekuul. Er is ook gekeken naar de gradiënt van het  elektrische veld op de 
uranium positie in het molecuul. De elektrische veld gradiënt wordt gegenereerd door de 
ladingsverdeling in het molecuul en een combinatie van experimentele en theoretische resultaten levert 
dus direct informatie op over deze ladingsverdeling en met name die van de electronen. De 
relativistische effecten zijn belangrijk voor deze eigenschap maar ook de omgevingseffecten leveren een 
belangrijke bijdrage. 
In het algemeen kunnen we concluderen dat de spin-baan wisselwerking het belangrijkste effect is 
wanneer we kijken naar moleculen bestaande uit lichte elementen. Wanneer we moleculen met zware 
elementen willen bestuderen moeten ook de scalaire relativistische effecten worden meegenomen om 
een nauwkeurige beschrijving van het molecuul te krijgen. 
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Yn 'e skiekunde wurde gemyske reaksjes en de gemyske en fysyske eigenskippen fan stoffen op it 
molekulêre nivo bestudearre. Stoffen en molekulen wurde foarme út atomen dy't op har beurt wer 
opboud binne út kearnen en elektroanen dy't har om 'e kearnen bewege. De eigenskippen fan stoffen 
wurde bepaald troch de ynteraksje tusken kearnen en elektroanen en de elektroanen ûnderling. As wy 
dy eigenskippen ferklearje wolle, sil in model (of teory) brûkt wurde moatte dat dy ynteraksje 
beskriuwe kin. Wannear't wy hiele lytse dieltsjes beskriuwe wolle, moatte wy gebrûk meitsje fan it 
kwantummeganyske model dêr't de dieltsjes yn beskreaun wurde mei in saneamde weachfunksje. De 
kwantummeganika is in natuerkundige teory, dy't foarm jûn is yn in tal wiskundige formules. Ien fan de 
wichtichste kwantummeganyske formules is de Schrödinger-ferliking. 
Op it earste each liket de kwantummeganika yn ús makroskopyske wrâld ûnbelangryk, mar de ynfloed 
derfan op it deistich libben is tige grut. Sûnder de kwantummeganika binne wy net by steat om 
eigenskippen as magnetisme en elektryske lieding goed te begripen. Oare taastbere foarbylden binne de 
ûntwikkeling fan lasers en de elektryske skeakelings (chips). Foar it ûntwikkeljen fan nije materialen, it 
begripen en ferbetterjen fan de wurking fan medisinen, fluggere elektryske skeakelings, nije en ferbettere 
reaksjeprosessen (b.g. katalysatoaren), mar ek foar it begripen fan ferskynsels lykas superlieding, is in 
deeglik ynsjoch nedich yn de kwantummeganyske aspekten fan de eigenskippen fan stoffen. 
It is net ienfâldich om de gemy te beskriuwen mei help fan allinnich in kwantummeganysk model. De 
formule foar it hiel wat dieltsjes-probleem dat fuortkomt út de Schrödinger-ferliking is slim op te lossen 
en freget grutskalich rekkenwurk. Om dochs de wiidweidige eksperimintele kennis ynterpretearje te 
kinnen en brûke te kinnen yn nije technologyske ûntwikkelings wurdt besocht om op basis fan de 
kwantummeganika maklik te hantearjen modellen op te stellen oangeande de opbou fan atomen en 
molekulen en de gearhing dêrfan mei allerhande gemyske en fysyske eigenskippen fan materialen. Op 
basis fan eksperimintele gegevens, bygelyks spektrokopyske techniken, wurdt besocht om sa ienfâldich 
mooglike kwantummeganyske beskriuwings te finen foar de eigenskippen dy't fûn wurde. Dêrta wurde 
foar de weachfunksjes beskate modelfoarstellings nommen en sa is it mooglik om beskate 
eksperimintele grutheden te parameterisearjen. Mei dy ferienfâldige modellen kin besocht wurde om te 
sizzen hoe't de útkomsten fan nije eksperiminten wêze sille en kinne trends dy't oantroffen wurde 
ynterpretearre wurde. Dochs binne der grinzen oan sa'n saneamde semy-empiryske oanpak. 
Ferienfâldige modellen wurkje faak goed foar beskate eigenskippen en foar beskate klassen fan 
materialen. Wannear't in oare klasse fan materialen bestudearre wurdt of oare eigenskippen, moat faak 
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it model oanpast wurde of sels útwreide. Njonken de grinzen fan in ienfâldich model binne der ek 
grinzen oan wat eksperiminteel mooglik is. Dêrby kin bygelyks tocht wurde oan it wurkjen mei hiel 
giftige, radio-aktive of oars gefaarlike stoffen. It is net altyd mooglik om de (hiel koart) libjende 
tuskenprodukten yn it ferrin fan in gemysk reaksjeproses te mjitten. Dêrtroch misse guon skeakels yn 'e 
ynterpretaasje. 
In oare ynfalshoeke is dy fan de ab initio kwantumgemy, in part fan de teoretyske gemy. Dy tûke 
binnen de kwantumgemy hâldt him dwaande mei it sa eksakt mooglik oplossen fan de 
kwantummeganyske bewegingsferlikings, de Schrödinger-ferliking, fan de kearnen en de elektroanen. 
Mei dat model kinne yn prinsipe alle eigenskippen fan materialen, yndividuele molekulen, ynteraksjes 
tusken en reaksjes fan molekulen foarsein wurde troch it dwaan fan berekkenings. Yn dy tûke wurdt 
besocht om sa min mooglik gebrûk te meitsjen fan eksperimintele ynformaasje. De iennichste 
eksperimintele kennis dy't brûkt wurdt is dy fan de fûnemintele fysyske natuerkonstanten. Dizze tûke fan 
wittenskip begûn him earst echt te ûntwikkeljen om 1960 hinne nei de ûntwikkeling fan grutskalige 
rekken- en dataferwurkingsmooglikheden, it begjin fan it kompjûtertiidrek. Troch út te gean fan allinnich 
mar in fûneminteel kwantummeganysk model krije wy in better ynsjoch yn 'e basis fan de gemy, mar wy 
kinne sa ek ynformaasje krije oer gemyske systemen dy't net (of noch net) eksperiminteel beskikber 
binne, oftewol wy kinne besykje eigenskippen te foarsizzen. Wy binne (noch) net by steat om de 
withoefolle dieltsjes út 'e Schrödinger-ferliking op te lossen. Dat betsjut dat it ek binnen de ab initio 
kwantumgemy ferskillend (konseptu- eel) oanpakt wurde moatte sil, wat úteinlik liede moatte sil ta in 
eksakte oplossing fan it hiel wat dieltsjes-probleem. De formules dy't oerbliuwe foarmje op harsels noch 
hieltyd in grut rekkenprobleem. De hjoeddeiske beskikbere rekkenkrêft is op dit stuit de behinderjende 
faktor wat de gemyske probleemstellings dy't bestudearre wurde kinne oangiet. Wy moatte ús 
meastentiids beheine ta in lyts tal atomen. In protte eigenskippen fan in stof hawwe in lokale oarsprong, 
guon atomen of in lyts kluster fan atomen, en kinne beskreaun wurde mei in lyts part fan de stof, al of 
net mei in benei kommen omjouwingsmodel. 
Wy moatte de ab initio kwantumgemy sjen as ien lange rige fan eksperimintele techniken. It kin brûkt 
wurde as helpmiddel foar it ferklearjen, befestigjen en modellearjen fan de ynterpretaasje fan 
eksperimintele gegevens. Tagelyk kin de kwantummeganika tsjinje as numeryk eksperimint om ynsjoch 
te krijen yn prosessen en materialen dy't net mei eksperimintele techniken garre wurde kinne. It 
oplossen fan de (benei kommen) Schrödinger-ferliking smyt yn in protte gefallen in beskriuwing fan de 
gemyske en fysyske eigenskippen fan in molekule op dy't sekuer genôch is. Dochs lit de 
kwantummeganika op basis fan de Schrödinger-ferliking it sitte wan- near't dieltsjes dy't mei gâns faasje 
bewege beskreaun wurde moatte (dat is it gefal by swiere eleminten sa as uranium). Foar sokke 
dieltsjes is in ferbettere ferzje fan de kwantummeganika nedich wêrby't rekken hâlden wurdt mei in oare 
natuerkundige teory, Einstein syn spesjale relativiteitsteory. Yn dy teory is de ljochtsnelheid (300.000 
km/s) in fûnemintele natuerkonstante, soks yn tsjinstelling ta de Schrödinger-ferliking dêr't feitliks in 
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ûneinige ljochtsnelheid yn oannommen wurdt. Dat hat benammen direkte konsekwinsjes foar de 
elektroanen ticht by in swiere kearn dy't mei gâns faasje foarút geane, mar yndirekt ek foar de 
elektroanen dy't fierder fan de kearn ôf sitte. In model dat rekken hâldt mei de kwantummeganika en 
mei Einstein syn spesjale relativiteitsteory waard yn 1928 postulearre troch Dirac: de relativistyske 
kwantummeganika. Relativiteit hat in sinjifikante ynfloed op 'e gemy. Dy ynfloed beheint him net allinnich 
ta gemyske systemen út de ûnderste regioanen fan it periodyk systeem, mar omfettet ek molekulen mei 
allinnich eleminten út de boppeste rigen fan it periodyk systeem. Inkele foarbylden fan dy ynfloed op 'e 
gemy binne de ferklearrings foar de kleur fan goud en it ljocht fan strjitlantearnen. 
Dit proefskrift giet út fan de relativistyske kwantummeganika sa't dy formulearre is yn 'e Dirac-ferliking. 
It rekkenark dat dêrfoar brûkt is it MOLFDIR programmapakket dat yn ús groep oan de 
Ryksuniversiteit Grins ûntwikkele is en wurdt. It proefskrift kin rûchwei yn twa seksjes ferdield wurde, 
in teoretysken-ien en in seksje mei resultaten fan berekkenings fan in tal gemyske systemen. Yn haadstik 
1 wurdt in algemiene ynlieding jûn oer relativiteit en de relativistyske effekten yn 'e gemy. Haadstik 2 
behannelet yn 't koart de teory en syn ymplemintaasje yn MOLFDIR. 
Yn it wichtichste part fan it proefskrift, de haadstikken 3 o/m 7, wurdt de MOLFDIR programmatuer 
tapast op in tal gemyske fraachstikken dêr't relativistyske effekten by fan belang binne of wêze kinne 
soene. Wy sille sjen dat net allinnich molekulen mei swiere eleminten, mar ek molekulen mei lichte 
eleminten sinjifikant beynfloede wurde troch relativiteit. Yn haadstik 3 wurde de relativistyske effekten 
op de saneamde ionisearre en neutrale oansleine tastannen fan de koperhalogenen (CuCl, CuBr en CuI) 
bestudearre. It wichtichste relativistyske effekt dat dy tastannen sterk beynfloedet is de spin-baan 
ynteraksje tusken de ferskillende tastannen. 
In relativistyske berekkening fan in beskaat gemysk rekkenprobleem is gâns grutter as wannear't wy it 
rekkenprobleem mei net-relativistyske metoaden bestudearje. 
Dêrom wurde de relativistyske effekten faak weilitten of der wurdt besocht om dy te beskriuwen mei 
help fan benei kommen modellen. Om de krektens en sekuerens fan dy modellen analisearje te kinnen is 
it nedich om folslein relativistyske berekkenings út te fieren. De resultaten fan dy berekkenings kinne dan 
tsjinje as referinsjekader foar de benei kommen metoaden. Yn haadstik 4 wurde de resultaten fan 
referinsjeberekkenings oan ynterhalogeen molekulen (ClF, BrF, BrCl, IF, ICl en IBr) presintearre. 
Ferskillende spektroskopyske en elektryske eigenskippen en it relativistyske effekt op dy eigenskippen 
binne berekkene.  
Yn haadstik 5 is nei de spektroskopyske eigenskippen fan de twa-atomige joadium molekule sjoen. 
Njonken de grûntastân binne ek de eksitearre tastannen fan it systeem bestudearre. De resultaten 
komme aardich oerien mei de eksperimintele gegevens en de eigenskippen fan guon, noch net metten, 
tastannen kinne foarsein wurde. By einsluten is sjoen nei de ionisearre tastannen fan de molekule. De 
resultaten dy't dêr presintearre wurde hawwe laat ta in oare ynterpretaasje fan resinte eksperimintele 
data en in nije takenning fan in metten tastân. De haadstikken 6 en 7 beskriuwe de resultaten fan 
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berekkenings oan molekulen dy't uranium befetsje, in elemint út de ûnderste regioanen fan it periodyk 
systeem. Yn haadstik 6 binne de eigenskippen fan de uraniumheksafluoride molekule bestudearre. It 
ionisaasjespektrum, it eksitaasjespektrum fan it kation en de elektroane-affiniteit fan 'e molekule binne 
berekkene. De rekkenresultaten slute moai oan by de beskikbere eksperimintele gegevens. Yn haadstik 
7 wurde resultaten presintearre fan berekkenings fan it uranyl ion. De biningseigenskippen fan 'e 
molekule, sa as de koarte biningslingte en de lineêriteit fan de molekule, binne bestudearre en ferlike mei 
resultaten fan berekkenings op grûn fan benei kommen metoaden. Sawol de spin-baan wikselwurking 
as de skalêre relativistyske effekten hawwe in grutte ynfloed op de eigenskippen fan dy molekule. Der is 
ek sjoen nei de gradiïnt fan it elektryske fjild op de uranium posysje yn 'e molekule. De elektryske fjild-
gradiïnt komt fuort út de ladingsferdieling yn 'e molekule en in kombinaasje fan eksperimintele en 
teoretyske resultaten smyt dus fuortdaliks ynformaasje op oer dy ladingsferdieling en benammen dy fan 
de elektroanen. De relativistyske effekten binne wichtich foar dy eigenskip, mar de omjouwingseffekten 
leverje ek in wichtige bydrage. 
Oer it generaal kinne wy konkludearje dat de spin-baan wikselwurking it wichtichste effekt is wannear't 
wy sjogge nei molekulen besteande út lichte eleminten. Wannear't wy molekulen mei swiere eleminten 
bestudearje wolle, moatte ek de skalêre relativistyske effekten meinommen wurde om in krekte 
beskriuwing fan 'e molekule te krijen. 
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Appendix: Basis sets 

 
 
Table A.1. Exponents of the primitive gaussian functions of the copper atom used in chapter 3. 
 

copper atom 

s 16975223.97 p 55087.22545 d 298.0572268  
s 2229083.124 p 9154.993633 d 88.27690472 
s 451233.5370 p 2426.988136 d 33.59803108 
s 116016.9513 p 817.6915021 d 14.21976902 
s 35105.37331 p 317.9030688 d 6.407230311 
s 11965.62551 p 135.8057792 d 2.920998907 
s 4468.734581 p 61.92221963 d 1.300012489 
s 1794.255638 p 29.41445943 d 0.552561855 
s 763.8598886 p 14.37677217 d 0.216248770 
s 341.1184458 p 7.042800079 d 0.056551844 
s 158.3351783 p 3.368116513   
s 75.13960818 pf 1.554999693   
s 33.35477105 pf 0.679622252   
s 16.62441340 pf 0.173495280   
s 8.269010341 p 0.076901022   
s 3.720272551 p 0.030755227   
s 1.772824927     
s 0.806029497     
s 0.194180439      
s 0.084767799     
s 0.036117812     
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Table A.2. Exponents of the primitive gaussian functions of the uranium and fluorine atoms used in 

chapter 6. 
 

uranium atom fluorine atom 

s 20937545.7 p 2150385.00 s 18648.5000 p 63.1253000 
s 4399173.86 p 509250.000 s 2790.77000 p 14.5012000 
s 1188162.75 p 120600.789 s 633.258000 p 4.38233000 
s 375430.038 p 28560.6010 s 178.599000 p 1.45355000 
s 132390.271 p 9273.75607 s 57.7896000 p 0.46323700 
s 50702.2549 p 3625.56475 s 20.4555000 p 0.12657800 
s 21550.4994 p 1579.24376 s 7.58796000   
s 9622.86247 pf 731.690718 s 1.99213000   

sd 4244.49864 pf 353.214877 s 0.74985400   
sd 1872.07341 pf 175.883590 s 0.24184500   
sd 843.025290 pf 88.1160134     
sd 378.155889 pf 45.8983269     
sd 180.415319 pf 23.7975245     
sd 88.7130122 pf 12.2465165     
sd 44.6224785 pf 6.29068100     
sd 22.2546744 pf 3.12602146     
sd 11.0982028 pf 1.50427276     
sd 5.44343523 pf 0.68712565     
sd 2.63036288 pf 0.29073227     
sd 1.19652164 pf 0.10975364     
sd 0.41247948 p 0.04200000     
sd 0.12837666       
sd 0.08160996       
sd 0.02473572       
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Table A.3. Exponents of the primitive gaussian functions of the uranium and oxygen atoms used in 

chapter 7. 
 

uranium atom oxygen atom 

s 53568256.79 p 19827019.11 s 15330.0 p 196.388 
s 13449948.46 p 3818229.478 s 2299.00 p 34.4600 
s 4189157.736 p 901789.0290 s 522.400 p 7.74900 
s 1413577.926 p 242155.6332 s 147.300 p 2.28000 
s 510089.7847 p 72353.25334 s 47.5500 p 0.71560 
s 193138.3122 p 23663.02464 s 16.7600 p 0.21400 
s 76249.72122 p 8424.924339 s 6.20700 p 0.05974 
s 31009.78871 p 3254.911046 s 1.75200   

sd 12853.68436 p 1353.809558 s 0.68820   
sd 5422.858883 pf 598.0845752 s 0.23840 d 0.64500 
sd 2343.749113 pf 277.0748003 s 0.07376 d 0.21400 
sd 1041.930412 pf 132.3495565     
sd 476.4979255 pf 64.93591778     
sd 226.6376008 pf 32.28975663     
sd 111.5168789 pf 16.04994303     
sd 56.45122403 pf 7.882601863     
sd 28.80075360 pf 4.094163512     
sd 14.60559738 pf 1.977573498     
sd 7.430625464 pf 0.883350010     
sd 3.591933346 pf 0.396960407     
sd 1.706811777 pf 0.157279744     
sd 0.754165254       
sd 0.312220229       
sd 0.112264515       
sd 0.038913147       
s 0.009978248       
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