А. И. Лесникович Д. В. Свиридов

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ НЕОРГАНИЧЕСКОЙ ХИМИИ

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМППЕКС

А. И. Лесникович Д. В. Свиридов

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ НЕОРГАНИЧЕСКОЙ ХИМИИ

Учебно-методический комплекс для студентов химического факультета, обучающихся по специальности 1-31 05 01 «Химия (по направлениям)»

УДК 546 (075.8) ББК 24.1я73 Л50

Рекомендовано советом химического факультета 21 мая 2012 г., протокол № 4

Рецензенты:

доктор химических наук, профессор А. И. Кулак; доктор химических наук, профессор П. Н. Гапоник

Лесникович, А. И.

Л50 Теоретические основы неорганической химии : учеб.-метод. комплекс для студентов хим. фак., обучающихся по спец. 1-31 05 01 «Химия (по направлениям)» / А. И. Лесникович, Д. В. Свиридов. — Минск : БГУ, 2012. — 131 с.

ISBN 978-985-518-748-7.

Учебно-методический комплекс содержит примерный учебно-тематический план и программу курса «Теоретические основы неорганической химии», конспект лекций, вопросы к семинарским занятиям, тестовые задания, а также задачи и упражнения, темы рефератов и список литературы. Рассмотрены особенности строения, структуры и реакционной способности различных классов неорганических соединений, закономерности протекания химических реакций с их участием.

Предназначено для студентов химического факультета, обучающихся по специальности 1-31 05 01 «Химия (по направлениям)».

УДК 546 (075.8) ББК 24.1я73

© Лесникович А. И., Свиридов Д. В., 2012 © БГУ. 2012

ПРЕДИСЛОВИЕ _____

Понимание теоретических основ неорганической химии — теории строения и реакционной способности неорганических соединений, природы химической связи, движущих сил и механизмов неорганических реакций — является одним из отправных пунктов химического образования.

Преподавание неорганической химии в Белорусском государственном университете ведется на I курсе химического факультета, что не позволяет в течение первого года обучения студентов, опираясь на современные теоретические представления и экспериментальные методы исследования, подробней рассмотреть богатый и сложный материал этой дисциплины.

В связи с этим учебный курс «Теоретические основы неорганической химии», читаемый на V курсе химического факультета, призван восполнить данный пробел. Основная задача данного курса — помочь студентам в освоении конкретных расчетных схем, критическом понимании их реальных возможностей и ограничений. От студента требуется не только усвоение общих идей и принципов, но и их активное применение, приложение к актуальным, в том числе еще не полностью решенным, задачам теоретической и экспериментальной неорганической химии.

В состав учебно-методического комплекса (УМК) вошли программа курса, вопросы для самоконтроля студентов, конспект лекций, темы семинарских занятий, а также задачи, упражнения и тестовые задания по курсу, темы рефератов и список рекомендуемой литературы.

Программа курса учитывает последние достижения в развитии теоретических исследований и экспериментально-методической

базы. Согласно программе в первом разделе курса рассматриваются основы строения неорганических соединений, во втором — реакционная способность неорганических соединений и механизмы неорганических реакций в водных растворах.

Конспект лекций соответствует программе и включает две основные части. В первой лекционной части курса анализируются объективные трудности построения классификационных систем, формулировки определений и принципы рационального выделения определенной группы соединений на примере координационных соелинений.

Значительное внимание уделяется изучению теории кристаллического поля, требующей знания теории групп и строения атома. Ограниченность теории кристаллического поля и ее недостатки раскрываются при последующем рассмотрении строения молекул с позиции теории молекулярных орбиталей.

Во второй части курса изложены последние достижения в области реакционной способности неорганических соединений и механизмов неорганических реакций в водных растворах (механизм твердофазных реакций рассматривается в отдельном курсе) с учетом того, что студенты уже имеют хорошую подготовку по химической термодинамике, кинетике, знакомы с современными представлениями о строении вещества. Показано различие между термодинамической и кинетической устойчивостью, а также дается определение понятию «механизм реакции», требующее подробного описания того, как изменяется структура и химические связи в реагентах в ходе каждого отдельного этапа химического превращения, анализируются различные подходы к описанию и исследованию механизмов реакции.

Приводится классификация неорганических реакций, и детально рассматриваются механизмы важнейших типов реакций в водных растворах, включая реакции замещения, окислительно-восстановительные реакции, стереохимические превращения, а также комбинированные реакции окислительно-восстановительного присоединения-элиминирования. Особое внимание уделено рассмотрению возможности управления механизмами реакций в растворе при решении химико-синтетических задач и осуществлении практически важных процессов (каталитических, фиксации азота и др.).

Темы семинарских занятий соответствуют разделам курса по основам теории строения и реакционной способности неорганических соединений. В состав УМК включены также вопросы к семинарским занятиям, цель которых — самостоятельный контроль знаний студентов в процессе изучения дисциплины. Этой же цели служат задачи, упражнения, тестовые задания и контрольные работы. В списке литературных источников приведены доступные издания, содержащие необходимую информацию по данному курсу.

ПРИМЕРНЫЙ УЧЕБНО-_ТЕМАТИЧЕСКИЙ ПЛАН___

No		Количество часов		
п/п	Тема	лекции	семинарские занятия	
1	Химия как наука. Категории в химии. Валентность	2	_	
2	Классификация неорганических соединений	2	_	
3	Строение атома	2	_	
4	Теория групп	2	2	
5	Теория химической связи	2	_	
6	Теория кристаллического поля	2	2	
7	Молекулярные орбитали комплексных соединений	2	_	
8	Механизмы неорганических реакций	2	2	
9	Реакции замещения в четырехкоординационных реакционных центрах	2	2	
10	Реакции замещения в пятикоординационных реакционных центрах	2	_	
11	Реакции замещения в октаэдрических комплексах	2	2	
12	Стереохимические превращения	2	_	
13	Окислительно-восстановительные реакции	2	2	
14	Окислительно-восстановительные реакции с изменениями во внешней сфере. Реакции присоединения, элиминирования, замещения	2	_	
	Итого	28	12	

1. СТРОЕНИЕ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ВВЕДЕНИЕ

Система категорий в химии. Гносеологические проблемы и историческая реконструкция. Валентность как категория в химии. Проблема гипервалентных связей и ее современное решение.

МНОЖЕСТВО ХИМИЧЕСКИХ СОЕДИНЕНИЙ И ОБЪЕКТИВНЫЕ ТРУДНОСТИ ИХ КЛАССИФИКАЦИИ

Простые и комплексные соединения. Сравнение понятий «донорноакцепторная» и «координационная» связь. Ониевые и обратно-ониевые соединения как пример простой и полезной классификации. Аддукты. Комплексы с переносом заряда.

СТРОЕНИЕ АТОМА

Узловые точки радиальной части волновой функции, субнодальные максимумы электронной плотности и их роль: орбитальные радиусы и энергия орбиталей. Симметрия орбиталей, концепция кайносимметрии и ее химические проявления (валентность, гипервалентность, правило четности и вторичная периодичность). Эффективный заряд ядра. Обменная энергия. Предельная короткопериодная форма Периодической системы элементов. Энергетические состояния многоэлектронного атома.

ХИМИЧЕСКИЕ АСПЕКТЫ ТЕОРИИ ГРУПП

Точечные группы симметрии и диполь молекул, их хиральность. Приводимые и неприводимые представления, прямое произведение представлений и определение возможности перекрывания орбиталей. Классификация колебательных степеней свободы молекулы по неприводимым представлениям и их проявления в ИК- и КР-спектрах. Подгруппы и классификация молекулярных орбиталей (МО) по неприводимым представлениям группы и ее подгрупп.

теория химической связи

Гибридизация атомных орбиталей, ограниченность теории валентных связей и представлений о σ -, π - и δ -связях.

Классификация волновых функций термов по неприводимым представлениям группы симметрии молекул. Инверсионная эквивалентность дырочных и электронных состояний. Наглядные элементы теории кристаллического поля. Расщепление d-орбиталей в поле тетраэдра, куба, октаэдра, тетрагональной бипирамиды, квадрата. Соотношение величин Δ для полей различной симметрии. Ион конфигурации d^n в слабом поле. Наглядное объяснение расщепления 3F -терма. Состояния и их энергии для ионов d^n -конфигурации в слабом поле октаэдра. Диаграммы Оргела.

Сильное поле. Термы d^2 -конфигурации в сильном поле октаэдра. Корреляция диаграмм термов в сильном и слабом поле. Качественные диаграммы термов в зависимости от Δ . Спектрохимический ряд. Электронная конфигурация в сильных и слабых полях октаэдра и квадрата. Стабилизация кристаллическим полем. Влияние расщепления d-орбиталей на устойчивость валентных состояний и форму молекул. Диаграммы Танабе и Сугано. Границы применимости теории кристаллического поля. Модифицированная теория кристаллического поля. Нефелоауксетический эффект и отношение β . Характеристика степени ковалентности связи по величине β . Нахождение нефелоауксетического отношения из опытных данных. Нефелоауксетический ряд.

Другие следствия расщепления d-орбиталей кристаллическим полем: оптические и магнитные свойства, изменение ионных радиусов, термодинамические следствия.

Эффект Яна — Теллера и его влияние на физико-химические свойства вещества.

Теория молекулярных орбиталей.

Групповые орбитали октаэдрической молекулы. Аналитическая форма волновых функций МО. Диаграммы МО октаэдрических и тэтраэдрических молекул с σ - и π -связями. Основные особенности МО лигандов на примере монооксида углерода. Влияние образования π -связей на параметр спектроскопического расщепления Δ .

Соединения с различными координационными числами. Сравнение неприводимых представлений групповых орбиталей и орбиталей центрального атома и объяснение возможности образования квадратных молекул переходными металлами. Роль d-орбиталей в образовании октаэдрических молекул. Обоснование участия f-орбиталей в образовании химической связи и их влияния на геометрию молекул. Возможность увеличения координационного числа за счет участия f-орбиталей.

Особенности химических связей p-элементов. Современные представления о природе химической связи.

2. РЕАКЦИОННАЯ СПОСОБНОСТЬ, КИНЕТИКА И МЕХАНИЗМ РЕАКЦИЙ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ВОДНЫХ РАСТВОРАХ

ВВЕДЕНИЕ

Пути и энергетика химической реакции. Термодинамический и кинетический контроль. Структурные, термодинамические и стереохимические особенности реакций. Поверхность потенциальной энергии и динамика химических реакций. Реакционно-способная и нереакционно-способные траектории.

Кинетика реакции. Скорость реакции. Схема реакции. Элементарные стадии. Скорость определяющая стадия. Порядок и молекулярность реакции. Переходное состояние и промежуточное соединение (интермедиат). Правила симметрии в химических реакциях.

Исследование механизмов реакций. Идентификация продуктов реакции. Кинетические доказательства. Изотопные эффекты. Идентификация промежуточных соединений. Стереохимические доказательства.

Основные типы реагентов. Кислоты и основания Бренстеда, Льюиса. Нуклеофильные и электрофильные реагенты. Окислители, восстановители.

ХИМИЧЕСКИЕ СОЕДИНЕНИЯ И РЕАКЦИИ В РАСТВОРЕ

Формы существования ионов металлов и неметаллов в водных растворах. Сольватация (гидратация). Сольватированные (гидратированные) ионы и электроны. Внешнесферные и внутрисферные комплексы.

Особенности химических реакций, протекающих в водных растворах. Влияние растворителя на скорость и механизм реакции. Электростатическое и донорно-акцепторное взаимодействие растворенного вещества с молекулами растворителя.

ТИПЫ НЕОРГАНИЧЕСКИХ РЕАКЦИЙ В ВОДНЫХ РАСТВОРАХ

Неоднозначность и трудности классификации реакций в растворах. Классификация реакций по типу частиц (реакции переноса атома, электрона, протона), молекулярности элементарной стадии (моно- и бимолекулярные), по способу разрыва связи (гомолитические и гетеролитические), по способу реорганизации атомов в реагенте (присоединения, замещения, элиминирования, перегруппировки).

Классификация реакций в химии координационных соединений. Реакции, приводящие к изменению состава координационной оболочки (реакции присоединения, элиминирования, замещения; особые случаи реакций замещения: реакции обмена лигандов и координированных молекул растворителя, реакции комплексообразования, реакции изомеризации и рацемизации, реакции внедрения). Реакции, приводящие к изменению геометрии комплексных частиц, и внутримолекулярные перегруппировки. Реакции, приводящие к изменению степени окисления (внутрисферные и внешнесферные реакции, окислительное присоединение и восстановительное элиминирование). Реакции координированных лигандов (протолитические реакции, шаблонные (template) реакции, реакции с переносом электрона, реакции миграции и внедрения лигандов).

РЕАКЦИИ ЗАМЕЩЕНИЯ

Стехиометрический и интимный механизмы реакций замещения. Диссоциативный (D), взаимообменный (I), присоединительный (A) стехиометрические механизмы. Механизмы типа I_a , I_d . Влияние различных факторов на кинетику и механизм реакций замещения. Влияние свойств растворителя, незамещаемых лигандов (стерический, хелатный, цис- и трансэффекты), влияние замещаемого и входящего лигандов, рН среды. Влияние электронной структуры центрального атома на скорость

и механизм реакции с позиции теории валентных связей и кристаллического поля. Стереохимия реакций замещения.

Реакции замещения в комплексах различной симметрии. Реакции в тетраэдрических комплексах. Реакции в плоскоквадратных комплексах. Ассоциативный механизм: факторы, определяющие реакционную способность плоскоквадратных комплексов. Трансвлияние. Мономолекулярный (диссоциативный) механизм. Реакции в пятикоординированных комплексах. Реакции в октаэдрических комплексах. Аквакомплексы ионов металлов. Кинетика и механизм реакций аквакомплексов ионов металлов. Механизм реакций обмена координированных молекул растворителя и реакции комплексообразования. Реакции обмена лигандов в лабильных и инертных комплексах. Влияние электронной структуры иона металла на кинетику реакций обмена. Механизм реакций аквации, анации, лигации. Геометрия переходного состояния и промежуточного соединения.

СТЕРЕОХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ

Структурно-нежесткие комплексы. Стереохимически и электроннонежесткие комплексы. Реакции изомеризации, рацемизации и внутримолекулярные перегруппировки в комплексах различной симметрии. Политопные перегруппировки. Пирамидальная инверсия трикоординированных структур. Плоская инверсия дикоординированных структур. Тетраэдрическая инверсия тетракоординированных структур. Псевдовращение Берри в пентакоординированных структурах.

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Окислительно-восстановительные реакции во внешней и внутренней сферах. Принцип Франка — Кондона. Энергия внешнесферной реорганизации. Энергия внутрисферной перестройки. Различия между внутрисферным и внешнесферным механизмами. Образование мостиковой связи и перенос электронов в мостиковом промежуточном соединении как лимитирующие стадии. Медленный разрыв мостиковой связи в продуктах окисления-восстановления. Перенос электрона к мостиковой связи. Влияние лигандов, не образующих мостики.

Адиабатическая теория Маркуса — Хаша. Уравнение Маркуса и его применительность. Реакции с переносом одного и двух электронов. Комплементарные и некомплементарные реакции. Реакции переноса атомов. Внешнесферный перенос электронов внутри стабильных донорно-акцепторных комплексов. Реакции окислительно-восстановительного присоединения-элиминирования.

Реакции фиксации азота in vitro и in vivo.

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОГО ПОВТОРЕНИЯ ПО ЛЕКЦИОННЫМ КУРСАМ «СТРОЕНИЕ ВЕЩЕСТВА» И «НЕОРГАНИЧЕСКАЯ ХИМИЯ»

- 1. Основополагающие понятия химии. Вещество, химический элемент, химическая связь, ее виды, валентность.
- 2. Классификация химических соединений. Простые, сложные и комплексные соединения.
- 3. Основы строения атома. Одноэлектронные состояния и электронные конфигурации атомов. Периодическая система химических элементов, варианты ее табличного представления и отражение в них физических и химических свойств элементов.
 - 4. Многоэлектронный атом и его энергетические состояния.
- 5. Основы теории групп. Точечные группы симметрии. Представления групп.
 - 6. Основы теории кристаллического поля.
 - 7. Основы теории молекулярных орбиталей.
- 8. Основные особенности химического взаимодействия; механизм образования химической связи; основные типы и свойства химической связи.
- 9. Концепция гибридизации атомных орбиталей и пространственное строение молекул и ионов.
- 10. Локализованные и делокализованные химические связи. Трехи многоцентровые связи.
- 11. Концепция поляризации ионов. Трактовка полярных связей согласно концепции поляризации ионов.
- 12. Химическая связь в комплексных соединениях и особенности их строения. Типичные комплексообразователи; типичные лиганды. Факторы, определяющие способность молекул и ионов выступать в качестве лигандов. Изменение координационных чисел атомов элементов по группам Периодической системы. Пространственная конфигурация комплексных ионов.
 - 13. Основы химической кинетики и катализа.
- 14. Особенности протекания химических реакций в газовой, жидкой и твердой фазах. Кинетика и механизм реакций в растворах.

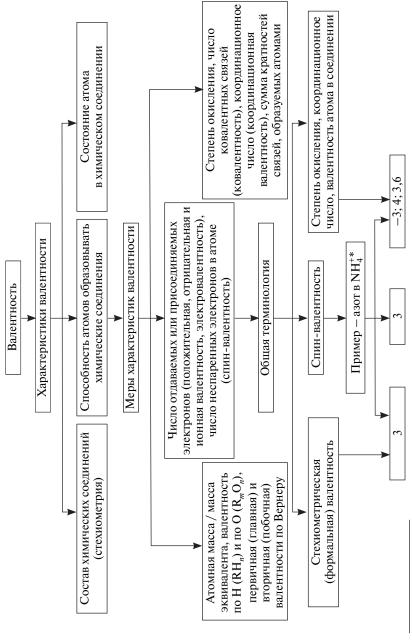
КОНСПЕКТ ЛЕКЦИЙ В СХЕМАХ, ГРАФИКАХ, ФОРМУЛАХ И ОПРЕДЕЛЕНИЯХ

1. СТРОЕНИЕ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

1.1. РЕКОНСТРУКЦИЯ НЕКОТОРЫХ ФУНДАМЕНТАЛЬНЫХ ПОНЯТИЙ ХИМИИ, КАСАЮЩИХСЯ СТРОЕНИЯ ВЕЩЕСТВА

Объективные трудности четкой формулировки определений и классификаций

Гносеологические причины:


- а) неформализованный характер химических теорий;
- б) контекстуальный характер определений и классификаций;
- в) несколько уровней абстракции точности и формальности;
- г) вероятностный стиль научного мышления (диффузные понятия, нечеткие множества);
 - д) объективное отсутствие четких границ между классами объектов;
 - е) полиморфность языка и его особенности.

Категории в химии

Научная категория определяется как предельно общее понятие, результат абстрагирования от особенных признаков предметов, фиксирующий минимум наиболее существенных фундаментальных признаков охватываемых предметов. Прототипы химических категорий: материя, качество, количество, явление.

Химическое вещество — совокупность валентно и/или невалентно (вандерваальсовыми силами) связанных частиц (атомов, молекул, ионов). Такое вещество — предмет изучения химии как науки.

Вариант систематизации некоторых понятий и терминов валентности

* См. также табл. 1.1.

Химический элемент — категория индивидуализации и систематизации атомных частиц по одинаковой величине заряда ядра; заложена в основе Периодического закона.

Валентность — способность (свойство) атомов присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи.

Химическая связь представляет собой явление (неуловимое взаимодействие), обусловленное принципом неопределенностей и ядерными притяжениями, физическая природа которого все еще недостаточно изучена.

Химия изучает *химическое вещество*, образованное атомами одного и более *химических элементов*, связанными в соотношениях, определяемых их *валентностью*, и его превращения.

Tаблица 1.1 Другие примеры соединений азота

Характеристики валентности	N ₂ H ₄	N ₂ O	NO	NO ₂ (N ₂ O ₄)	NH ₃	NH ₄ ⁺	HNO ₂	HNO ₃	N ₂
Спин-валентность	3	3	2	3	3	3	3	3	3
Стехиометрическая валентность	3	3; 5	2	4	3	3	3	5	3
Степень окисления	-2	+1	+2	+4	-3	-3	+3	+5	0
Сумма кратностей связей	_	2,1; 3,8	2,54	_	3	3,6	_	_	3

Комплексные соединения

Теория Вернера

Основные положения:

- 1. Центричное строение комплексного соединения (к. с.).
- 2. Наличие главной и побочной валентности (расширение представлений о валентности).
- 3. Направленность в пространстве побочной валентности (основы стереохимии).

Координационная и донорно-акцепторная связь: сравнение двух понятий

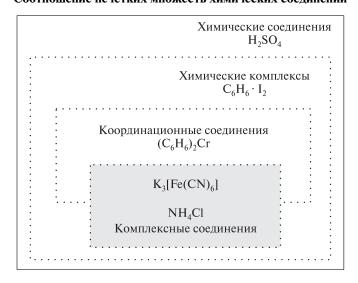
Координационная связь

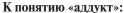
Основные особенности:

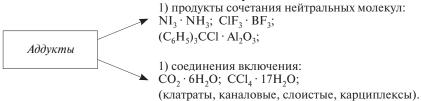
- 1) трехмерная делокализация со стороны центрального атома (ц. а.);
- 2) нехарактеристичность;
- 3) особенности, связанные с участием d- и f-орбиталей в образовании связи.

Некоторые определения

Комплекс (от лат. *complexus* — связь, сочетание, совокупность) — центральный атом или ион, связанный с одним или несколькими лигандами (L) CH_4 , PCl_3 , SO_4^{2-} , PO_4^{3-} и др.

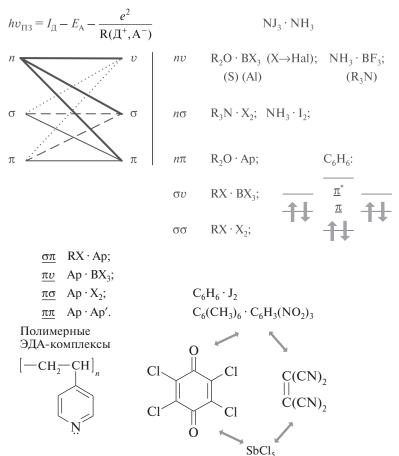

Химический комплекс — химическое соединение, в котором можно выделить *конечные* группы атомов, ионов или молекул, образованные не по правилам стехиометрической *валентности* (в обычных условиях):


$$\langle \rangle$$
 · I₂; K₄[Fe(CN)₆].


Комплексное соединение — химический комплекс с координационным центром, отличающийся неполной диссоциацией по гетеролитическому типу $(NH_4^+ \leftrightarrows NH_3 + H^+)$.

Координационное соединение — химический комплекс с координационным центром и трехмерно делокализованной химической связью.

Соотношение нечетких множеств химических соединений



Молекулярные комплексы

Молекулярные комплексы (комплексы с переносом заряда), или электронодонорно-акцепторные (ЭДА) комплексы.

Внешнесферные комплексы

$$[(\text{CoL}_n)^{3+}(\text{SO}_4^{2-})_m]^{(2m-3)-}$$

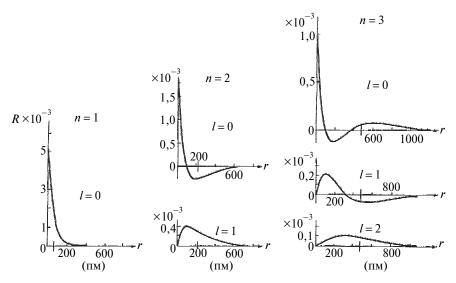
Таблица 1.2

Ониевые и обратноониевые соединения

Ониевые соединения	Обратноониевые соединения
Аммониевые $N(CH_3)_3 + CH_3Cl \rightarrow [N(CH_3)_4]Cl$ $[\ni R_4]^{\dagger}X^{-}(\ni = N, P, As, Sb)$	(am-комплексы, комплексы Виттига) $R_3B + RNa \rightarrow R_4B^-Na^+$
Оксониевые $H_2O + HClO_4 \rightarrow H_3OClO_4$ $ROR + RX \rightarrow [R_3O]X$ $[O(HgCl_3)]^+$	NaBH ₄
галогенониевые $HF + HClO_4 \rightarrow FH_2^+ClO_4^-; [(C_6H_5)_2Cl]^+X^-$	
карбониевые $(C_6H_5)_3CH + NaNH_2 \rightarrow NH_3 + (C_6H_5)_3C^-Na^+ $ $(C_6H_5)_3CCI + AlCl_3 \rightarrow (C_6H_5)_3C^+ [AlCl_4]^-$	

1.2. СТРОЕНИЕ АТОМА

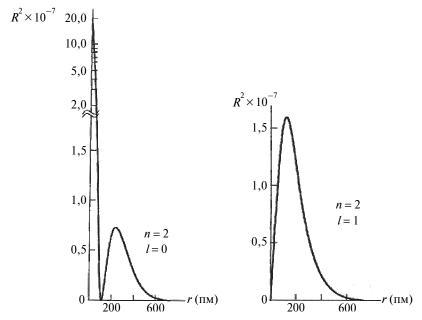
1.2.1. Радиальная часть волновой функции ф


Число узловых точек:

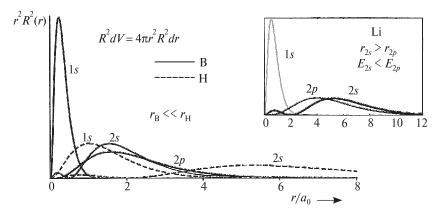
$$\psi=R_{n,l}(r)\cdot Y_{l,m}(\theta,\phi);$$

$$R_{n,l}=K_{n,l}(r)\cdot e^{\dfrac{Zr}{na_0}};$$

$$r=2-\dfrac{Zr}{a_0}$$
 при $r=\dfrac{2a_0}{Z}\!
ightarrow R_{n,l}=0.$


Число узловых точек в случае $n=2,\ l=0;$ в общем случае оно равно n-l-1.

Влияние на энергию орбиталей:


$$E_{\text{орб.}}$$
 $3s < 3p < 3d$ узлов 2 1 0 $E_{\text{орб.}}$ $3p < 4s < 3d$ узлов 1 3 0

 $Puc.\ 1.1.\$ Радиальная часть $R_{n,\ l}\left(r
ight)$ волновой функции

Puc. 1.2. Радиальная плотность вероятности $R_{n,l}^2(r)$

 $Puc.\ 1.3.\$ Примеры функции r^2R^2 $(r)\ (a_0$ — радиус Бора)

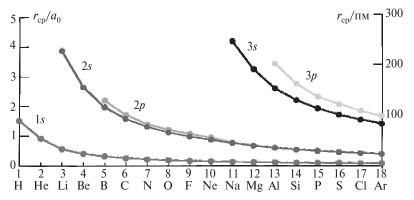


Рис. 1.4. Среднее расстояние электрона от ядра для занятых орбиталей

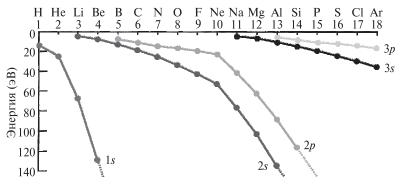
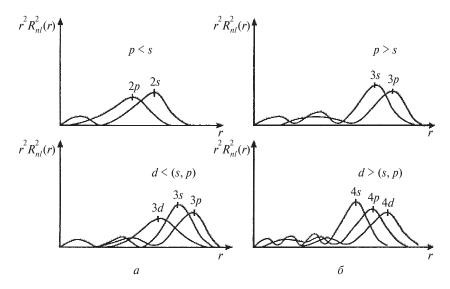
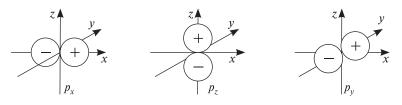
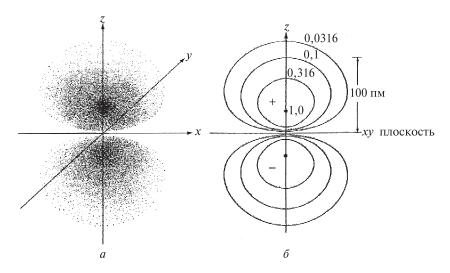


Рис. 1.5. Энергии занятых орбиталей

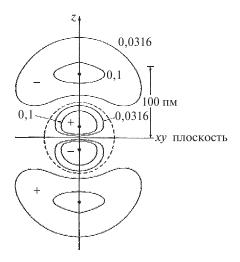



Рис. 1.6. Соотношение орбитальных радиусов внешних электронов с одним и тем же главным квантовым числом в атомах элементов-кайносимметриков (а) и их последователей (б)

1.2.2. Угловая часть волновой функции $Y_{l,m}$ (θ , ϕ)


 Таблица 1.3

 Действительные угловые части в декартовых координатах


S	p_x	d_{z^2}	$d_{x^2-y^2}$	
$\frac{1}{\sqrt{4\pi}}$	$\sqrt{\frac{3}{4\pi}} \cdot \frac{1}{r} \cdot x$	 $\sqrt{\frac{5}{16\pi}} \cdot \frac{1}{r^2} \cdot (3z^2 - r^2)$	$\sqrt{\frac{15}{16\pi}} \cdot \frac{1}{r^2} \cdot (x^2 - y^2)$	

 $Puc.\ 1.7.\ Пространственная ориентация угловой части волновой функции <math>p$ -электрона

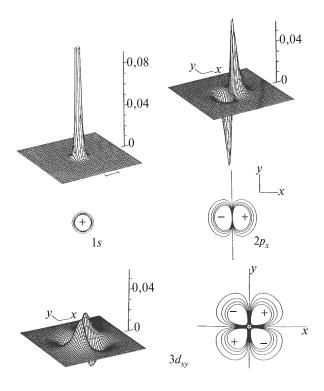
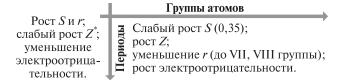


Рис. 1.8. Статистическое распределение (a) и контурное изображение (δ) электронной плотности $2p_z$ -электрона

 $\it Puc.~1.9.~{
m Kohtypb}$ электронной плотности для $\it 3p_z$ водородоподобной орбитали

 $Puc.\ 1.10.\$ Трехмерный график для полной волновой функции ψ 1 $s, 2p_x, 3d_{xy}$ (по вертикали — значения ψ в форме сечения)

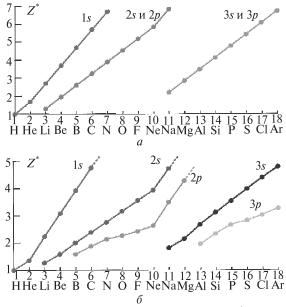

1.2.3. Экранирование заряда ядра электронами

В многоэлектронном атоме величина заряда ядра, действующего на данный электрон, может уменьшаться:

$$Z^* = Z - S$$
.

где Z^* — эффективный заряд ядра; Z — заряд ядра; S — константа экранирования.

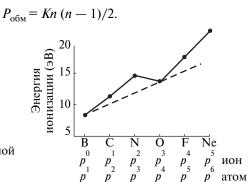
Представим схематично влияние экранирования на свойства атомов:


 Z^* можно оценить по правилам Слетера; r — атомный радиус.

Правила Слетера:

- 1. Внешние электроны не экранируют внутренние.
- 2. Электроны того же ns-, np-слоя дают коэффициент 0,35 на каждый электрон.
 - 3. Каждый n-1 электрон дает коэффициент 0,85.
 - 4. n 2 и менее коэффициент 1,0.
- 5. Для nd и nf справедливо 1,0 вместо 0,85, как в п. 3, т. е. d- и f-электроны экранированы сильнее s- и p-электронов.

Пример для
$$_{30}$$
Zn $_{30}$ (1s) $_{30}$ (2s, 2p) $_{30}$ (3s, 3p) $_{30}$ (3d) $_{30}$ (4s, 4p) $_{30}$ (4d) $_{30}$ (4f) $_{30}$ (5s, 5p) ... $_{30}$ (1s) $_{30}$ (2s, 2p) $_{30}$ (3s, 3p) $_{30}$ (3d) $_{30}$ (4s) $_{30}$ (4s) $_{30}$ (2s, 2p) $_{30}$ (3d) $_{30}$ (3d) $_{30}$ (4s) $_{30}$ (3d) $_{30}$ (4s) $_{30}$ (4s)


Правила Слетера не учитывают различную проникающую способность некоторых электронов. На рис. 1.11 проиллюстрированы расхождения в Z^* по Слетеру (a) и при более строгом расчете (δ).

Puc. 1.11. Сравнение с расчетными Z^* : $a - Z^*$ по Слетеру; δ — расчетные Z^*

1.2.4. Обменная энергия

Энергия спаривания электронов состоит из энергии отталкивания двух электронов на одной орбитали и обменной энергии, которую надо затратить, чтобы электроны с параллельными спинами сменили их на антипараллельные. Обменная энергия пропорциональна числу электронов n с параллельными спинами:

Puc. 1.12. Вклад обменной энергии в энергию ионизации атома

1.2.5. Разные формы Периодической системы химических элементов

Наиболее полно химические свойства элементов отражает короткопериодная форма Периодической системы (рис. 1.13).

H								He
Li	Be	В	C	N	0	F		Ne
Na	Mg	Al	Si	P	S	Cl		Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe Co Ni	
Cu	Zn	Ga	Ge	As	Se	Br		Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru Rh Pd	
Ag	Cd	In	Sn	Sb	Te	I		Xe
Cs	Ba	La	Ce	Pr	Nd	Pm		
Sm	Eu	Gd	Tb	Dy	Но	Er		
Tu	Yb	Lu	Hf	Ta	W	Re	Os Ir Pt	
Tu Au	Yb Hg	Lu Tl	Hf Pb	Ta Bi	W Po	Re At	Os Ir Pt	Rn
			_				Os Ir Pt Pu Am	Rn
Au	Hg	Tl	Pb	Bi	Po	At		Rn
Au	Hg	Tl Ac	Pb Th	Bi Pa	Po U En	At Np		Rn
Au	Hg Ra	Tl Ac Cm	Pb Th Bk	Bi Pa Cf	Po U	At Np Fm	Pu Am	Rn 118
Au Fr Md	Hg Ra No	Tl Ac Cm Lr	Pb Th Bk Rf	Bi Pa Cf Db	Po U En Sg	At Np Fm Bh	Pu Am	
Au Fr Md 111	Hg Ra No 112	Ac Cm Lr 113	Pb Th Bk Rf 114	Bi Pa Cf Db 115	Po U En Sg 116	At Np Fm Bh 117	Pu Am	
Au Fr Md 111 119	Hg Ra No 112 120	Tl Ac Cm Lr 113 121	Pb Th Bk Rf 114 122	Bi Pa Cf Db 115	Po U En Sg 116 124	At Np Fm Bh 117 125	Pu Am	

Рис. 1.13. Предельная короткопериодная (менделеевская) форма Периодической системы элементов

Таблица 1.4 Экспериментально установленные положительные

степени окисления (N) лантаноидов и актиноидов (выделены наиболее устойчивые формы)

Элемент	N	Элемент	N
La	3	Tb	3, 4
Ce	3, 4	Dy	2, 3
Pr	3, 4	Но	3, 4
Nd	3	Er	3
Pm	3	Tu	2, 3
Sm	2, 3	Yb	2, 3
Eu	2, 3	Lu	3
Gd	3		
Ac	2, 3	Bk	3, 4
Th	2, 3, 4	Cf	2, 3, 4
Pa	2, 3, 4, 5	Es	2, 3
U	2, 3, 4, 5, 6	Fm	2, 3
Np	2, 3, 4, 5, 6, 7	Md	1, 2, 3
Pu	2, 3, 4, 5, 6, 7	No	2, 3
Am	2, 3, 4, 5, 6, 7	Lr	3
Cm	3, 4		

1.2.6. Многоэлектронные состояния и термы

Для учета межэлектронного взаимодействия в гамильтониан добавляется оператор $H_k \approx \sum_{r=1}^\infty \frac{e^2}{r}$, отражающий это взаимодействие.

Схема Рассела — Саундерса (LS-схема), $Z \le 30$

$$\vec{L} = \sum_{i} \vec{l}; \qquad |\vec{L}| = \hbar \sqrt{L(L+1)}; \qquad \vec{S} = \sum_{i} \vec{s}_{i};$$

$$L; \qquad M_{L} = \sum_{i} m_{i}; \qquad S; \qquad M_{s} = \sum_{i} m_{s_{i}};$$

$$(2L+1) \qquad (2S+1)$$

Атомный терм — совокупность состояний с одинаковыми L и S. Атомный терм включает (2L+1) (2S+1) состояний.

Микросостояния d^2 -конфигурации

Примеры квантовых чисел, соответствующих рисункам:

$$\begin{array}{cccc} & & & & & \downarrow & & & \downarrow & & \downarrow \\ M_L = \pm 4; & & & M_S = -1; & & 2^+, 0^- \\ m = \pm 2 & & & m = 2; m = 0. \end{array}$$

Межэлектронное взаимодействие

Энергия межэлектронного взаимодействия характеризуется параметрами Слетера — Кондона или параметрами Рака.

Параметры Слетера — Кондона: F_0 , F_2 , F_4 .

Параметры Рака: А, В, С.

$$A = F_0 - 49F_4;$$
 $B = F_2 - 5F_4;$ $C = 35F_4;$

Например:

$$E_{3p} - E_{3p} = F_0 + 7F_2 - 84F_4 - F_0 + 8F_2 + 9F_4 = 15F_2 - 75F_4 = 15B$$
.

Спин-орбитальное взаимодействие

Оператор, отражающий спин-орбитальное взаимодействие:

$$H_{S0} = \xi(r)(\vec{l} \cdot \vec{s}),$$

где
$$\xi(r) = \mathrm{const} \cdot \frac{Z}{r^3}; \; \zeta_{n,l} = \hbar^2 \int\limits_0^\infty R^2_{n,l}(r) r^2 dr$$
 — константа спин-орбитального взаимодействия характеризует его энергию.

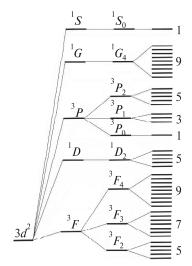
Например:

$$\zeta_{n,l} \approx \frac{Z^4}{n^3 l(l+1/2)(l+1)}; \qquad \zeta_{3d} = 1,44 \cdot 10^{-2} Z^4 \text{ (cm}^{-1}).$$

Для многоэлектронного атома оператор H_{50} имеет следующий вид:

$$H_{S0} = \sum_{i} \xi(r_i)(\vec{l}_i \cdot \vec{s}_i) = \lambda(\vec{L} \cdot \vec{S});$$

 λ — константа спин-орбитального взаимодействия для атома или иона:


$$\lambda = \pm \frac{\zeta_{n,l}}{2S}.$$

Полный момент количества движения $\vec{J} = \vec{L} + \vec{S}$ характеризуется квантовым числом J, которое изменяется через единицу от $L + S \dots |L - S|$.

Правило интервалов Ланде

$$E = E(L, S) + 1/2\lambda [J(J+1) - L(L+1) - S(S+1)];$$

$$\Delta E_{I, I-1} = \lambda J.$$

Правило позволяет найти значение λ.

Рис. 1.14. Энергетические состояния d^2 -конфигурации

1.3. ОСНОВЫ ТЕОРИИ ГРУПП (ХИМИЧЕСКИЕ АСПЕКТЫ)

1.3.1. Элементы и операции симметрии

Точечные группы симметрии определяются набором операций симметрии:

- 1) ось вращения C_n , C'_n , $(n = 360/\theta)$;
- 2) центр инверсии i;
- 3) плоскость симметрии σ_v , σ_h , σ_d ;
- 4) зеркально-поворотная ось S_n ;
- 5) тождественное преобразование I.

Операторы симметрии — преобразование координат, эквивалентное операции симметрии. Представляются матрицами.

Произведение операций — их последовательное применение.

Пример некоммутирующих операторов

$$\sigma_v \times C_3 = \sigma_v'$$
 $C_3 \times \sigma_v = \sigma_v''$

1.3.2. Точечные группы симметрии

Выявление всех элементов симметрии означает установление *группы* симметрии.

Точечных групп симметрии 18.

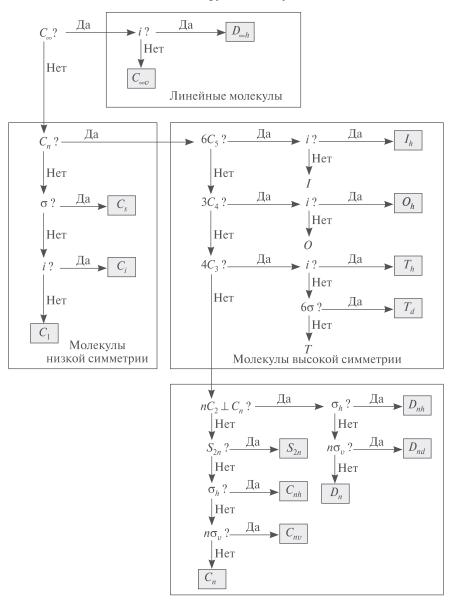
Примеры:

$$C_1$$
; C_s ; C_i ; C_n ; S_n ; C_{nv} (C_{2v} H₂O; C_{3v} NH₃); C_{nh} ;

 D_n ; D_{nh} (D_{4h} — плоские квадратные молекулы ${
m XeF}_4$);

 D_{nd} ; T_d (тетраэдр, $\mathrm{Ni}(\mathrm{CO})_4$); O_h (октаэдр и куб);

 $I_h; K_h$ (сфера); O (группа вращения октаэдра) и др.

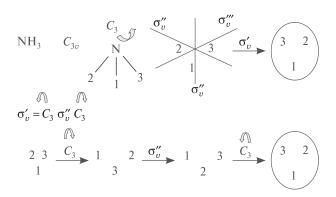

Порядок группы — число операций симметрии в группе.

Группы, для которых дипольный момент разрешен по симметрии

C_1	C_s	C_n	C_{nv}
-------	-------	-------	----------

Наличие i, nC_n (n > 1), σ_h «запрещает» дипольный момент.

Таблица для определения точечной группы молекулы



Точечные группы хиральных молекул

C_1	C_n, D_n
Асимметричные	\mathcal{L} иссимметричные (отсутствие S_n)
C, N, S, P	При отсутствии σ — молекула не обязательно оптически активна. При наличии σ — неактивна

Классы групп симметрии

Условие сопряжения $A = X^{-1} \cdot B \cdot X$

 $Puc.\ 1.15.\$ Группа C_{3v} , классы $I,\ 2C_3,\ 3\sigma$

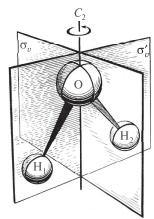
Свойства математических групп

- 1. Произведение операций симметрии дает операцию симметрии той же группы.
 - 2. Выполняется закон ассоциативности:

$$A(BC) = (AB)C.$$

3. Имеется единичный элемент:

$$IA = AI = A$$
.


4. Каждому элементу A группы есть обратный A^{-1} :

$$AA^{-1} = A^{-1}A = I.$$

Пример выполнения п. 1. для молекулы H_2O :

Таблица умножения (Квадрат Кэли)

C_{2v}	I	C_2	σ_v	σ_v'
I	I	C_2	σ_v	σ_v'
C_2	C_2	Ι	σ_v'	σ_v
σ_v	σ_v	σ_v'	Ι	C_2
σ_v'	σ_v'	σ_v	C_2	I

Puc. 1.16. Молекула H₂O и ее симметрия

1.3.3. Представления групп

Представим преобразования *p*-орбиталей:

$$\psi_{p_z} = f(r)\frac{z}{r}, \qquad \psi_{p_x} = f(r)\frac{x}{r}, \qquad \psi_{p_y} = f(r)\frac{y}{r}$$

$$\psi_{p_x} = f(r) \frac{x}{r},$$

$$\psi_{p_y} = f(r) \frac{y}{r}$$

и d-орбиталей:

$$\psi_{d} = f(r)xy$$

$$\Psi_d = f(r)xz$$

$$\psi_{d_{xy}} = f(r)xy, \qquad \qquad \psi_{d_{xz}} = f(r)xz, \qquad \qquad \psi_{d_{yz}} = f(r)yz,$$

$$\psi_{d_{z^2-y^2}} = f(r)(x^2 - y^2), \qquad \qquad \psi_{d_{z^2}} = f(r)(3z^2 - r^2).$$

$$\psi_{d_{,2}} = f(r)(3z^2 - r^2).$$

Преобразование р-орбиталей в группе C_{2n}

Запись преобразования с помощью матриц

$$\hat{I} \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} x \\ y \\ z \end{vmatrix}$$

$$\hat{C}_{2}^{(z)} \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} -x \\ -y \\ z \end{vmatrix}$$

$$\hat{\sigma}_{v} \begin{vmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \qquad \qquad \hat{\sigma}'_{v} \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

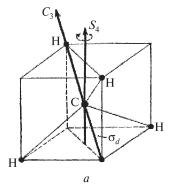
 $\Pi pedcmaвление группы — группа матриц, изоморфная группе операций.$ E a s u c — набор функций, с помощью которых получено представление группы.

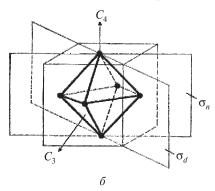
Представление группы C_{2v} в базисе d-функций

Приведем это представление к другому виду:

119	пведем эт	о предел	ublicitie i	х другом,	у Биду.	•			
C_{2v}	I	C_2	σ_v	σ'_v			-	водимь павлені	
xy xz	xy xz	xy -xz	-xy -xz	-xy xz		I	C_2	σ_v	σ_v'
yz $x^2 - y^2$	yz .2 .2	-yz	<i>yz</i>	-yz		(1)	(1) (-1)	(-1) (-1)	(-1) (1)
$\begin{array}{c} x - y \\ z^2 \end{array}$	$\begin{vmatrix} x^2 - y^2 \\ z^2 \end{vmatrix}$	$\begin{vmatrix} x^2 - y^2 \\ z^2 \end{vmatrix}$	$\begin{vmatrix} x^2 - y^2 \\ z^2 \end{vmatrix}$	$\begin{array}{ c c } x^2 - y^2 \\ z^2 \end{array}$		(1)	(-1)	(1)	(-1)
χ	5	1	1	1		(1)	(1)	(1)	(1)
	\hat{I}	($\hat{\mathcal{C}}_2$		$\hat{\sigma}_v$			$\hat{\sigma}_v'$	

Свойства неприводимых представлений (НП):


- 1) характер χ матрицы I равен размерности l представления;
- $2) \sum_{i} l_i^2 = h;$
- 3) х матрицы операций одного класса одинаковы для данного НП;
- 4) число НП = числу классов;


5)
$$\sum_{R} \chi_{R}^{(i)} \chi_{R}^{(j)} = h \delta_{ij}, \quad \delta = \begin{cases} 1, & i = j, \\ 0, & i \neq j; \end{cases}$$

6)
$$\sum_{i} \chi_{i}^{(R_{k})} \chi_{i}^{(R_{l})} = \frac{h}{m} \delta_{R_{k}R_{l}};$$

- 7) среди НП имеется полносимметричное, все $\chi = 1$;
- 8) х прямого произведения равны произведению х перемножаемых представлений.

Нахождение таблицы характеров НП для группы T_d

 $Puc.\ 1.17.\$ Кубические группы: a- группа тетраэдра $T_d; 6-$ группа октаэдра O_h

$$I 8C_3 3C_2 6S_4 6\sigma_d$$

$$h = 24 H\Pi \rightarrow 5$$

$$\begin{bmatrix} \sum_{i=1}^{5} l_i^2 = 24 \\ & A E T \end{bmatrix}$$

$$1 \cdot 1 \cdot 1 + 8 \cdot 1 \cdot 1 + 3 \cdot 1 \cdot 1 + 6 \cdot 1 \cdot (-1) + 6 \cdot 1 \cdot (-1) = 0.$$

$$\sum_{i} \chi_{C_3}^2 = \frac{24}{8} = 3$$
$$\sum_{i} \chi_{i}^{(I)} \chi_{i}^{(C_3)} = 0$$

$$\sum_{i} \chi_{C_3}^2 = \frac{24}{8} = 3$$

$$\sum_{i} \chi_{i}^{(I)} \chi_{i}^{(C_3)} = 0$$

$$1^2 + 1^2 + x^2 + y^2 + z^2 = 3,$$

$$1 \cdot 1 + 1 \cdot 1 + (-1) \cdot 2 + 0 \cdot 3 + 0 \cdot 3 = 0.$$

T_d	I	8C ₃	$3C_2$	6 <i>S</i> ₄	$6\sigma_d$	f_i
A_1	1	1	1	1	1	S
A_2	1	1	1	-1	-1	
E	2	-1	2	0	0	$z^2; x^2 - y^2$
T_1	3	0	-1	1	-1	
T_2	3	0	-1	-1	1	x, y, z, xy, xz, yz

Таблица характеров НП группы $C_{2\nu}$

C_{2v}	I	C_2	σ_v	σ_v'	f_i
A_1	1	1	1	1	$s, z, x^2 - y^2, z^2$
A_2	1	1	-1	-1	xy
B_1	1	-1	1	-1	y, yz
B_2	1	-1	-1	1	x, xz

Разложение приводимого представления (ПП) на НП

$$\Gamma_{(p)} = A_1 + B_1 + B_2;$$

$$\Gamma_{(d)} = 2A_1 + A_2 + B_1 + B_2;$$

$$n^{(i)} = \frac{1}{h} \sum_{R} \chi_R^{(i)} \chi_R,$$

где $n^{(i)}$ — число, которое показывает, сколько раз входит данное i-е НП в разложение $\Pi\Pi$; h — порядок группы; R — операции симметрии группы; $\chi_R^{(i)}$ — характер *i*-го НП; χ_R — характер ПП.

Прямое произведение представлений

Если два базиса представлений Γ_n и Γ_m заданы функциями $\phi_1, \phi_2, ...,$ φ_n и $\psi_1, \psi_2, ..., \psi_m$, то базис прямого произведения $\Gamma_m \times \Gamma_n = \Gamma_{mn}$ задается полным набором произведений функций $\phi_i \psi_i$, а характеры $\chi \left(\Gamma_{mn} \right) =$ $= (\Gamma_m) \times \chi(\Gamma_n).$

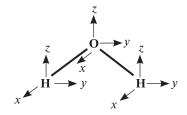
Пример использования прямого произведения в группе C_{3n} для определения возможности перекрывания орбиталей ψ_a и ψ_b , т. е. неравенства нулю интеграла перекрывания этих орбиталей.

$$\chi(E \times E) = \chi(E) \times \chi(E) = \{4, 1, 0\}$$

$$\begin{array}{c|ccccc} C_{3v} & I & 2C_3 & 3\sigma_v \\ \hline A_1 & 1 & 1 & 1 \\ A_2 & 1 & 1 & -1 \\ E & 2 & -1 & 0 \\ \hline \end{array}$$

$$n^{A_1} = \frac{1}{6}(1 \cdot 1 \cdot 4 + 2 \cdot 1 \cdot 1 + 3 \cdot 1 \cdot 0) = 1$$

 $E \times E = A_1 + A_2 + E$ — перекрывание возможно, $A_2 \times A_1 = A_2$ — перекрывание запрещено по симметрии.


Вывод: равенство Γ_{mn} НП A_1 или наличие A_1 в разложении Γ_{mn} на НП снимает запрет по симметрии на перекрывание орбиталей.

К нахождению приводимого представления

$$C_n = 1 + 2\cos\frac{360}{n}$$

$$S_n = -1 + 2\cos\frac{360}{n}$$


Пример: вклад одного атома в $\Pi\Pi$ для 3N степеней свободы молекулы H_2O

C_{2v}	I	C_2	$\sigma_v^{(xz)}$	$\sigma_v^{(yz)}$	f_i
A_1	1	1	1	1	z, x^2, y^2, z^2
A_2	1	1	-1	-1	R_z , xy
B_1	1	-1	1	-1	x, R_y, xz
B_2	1	-1	-1	1	y, R_x, yz

C_{2v}	I	C_2	σ^{xz}	σ^{yz}
Число атомов	3	1	1	3
Вклад одного атома	3	-1	1	1
Γ	9	-1	1	3

Из таблицы
$$\chi$$
 НП $\Gamma=3A_1+A_2+2B_1+3B_2$ $-\Gamma_{\rm транc}=-(A_1+B_1+B_2),$ как x,y,z $-\Gamma_{\rm Bp}=-(A_2+B_1+B_2),$ как R_x,R_y,R_z $\Gamma_{\rm rot}=2A_1+B_2$

 $XeF_4 3N - 6 = 9 \rightarrow 4_{Ball} + 5_{ned}$

$$\rm MK - 3:123;586~cm^{-1}...$$
 $\rm KP - 3:502;543~cm^{-1}...$ $\it Bывод$ для $\rm XeF_4$: $\it D_{4h}$, а не $\it T_{d^*}$

Характер ПП для операций вращения

$$\begin{split} Y_{l\ m} &= f(\theta)e^{im\phi} \qquad \hat{C}_{2\pi/2}(e^{im\phi}) = e^{mi(\phi+\alpha)} = e^{mi\phi} \cdot e^{mi\alpha} \\ R_{\alpha} \begin{pmatrix} e^{-i\phi} \\ e^{i\phi} \\ 1(e) \\ e^{-i\phi} \\ e^{-2i\phi} \end{pmatrix} = \begin{pmatrix} e^{-i\phi} & 0 & 0 & 0 & 0 \\ 0 & e^{i\alpha} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & e^{-i\alpha} & 0 \\ 0 & 0 & 0 & e^{-2i\alpha} \end{pmatrix} \begin{pmatrix} e^{-i\phi} \\ e^{i\phi} \\ 1 \\ e^{-i\phi} \\ e^{-2i\phi} \end{pmatrix}, \\ \chi_{R_{\alpha}} &= \frac{\sin(2L+1)\frac{\alpha}{2}}{\sin\frac{\alpha}{2}}. \end{split}$$

1.3.4. Подгруппы

Иерархия в группе O_h :

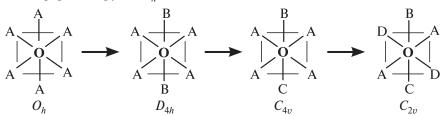


Таблица характеров группы T_d на ее подгруппе $C_{2\upsilon}$

T_d C_{2v}	I	C_2	σ_v	σ_v'	f_i	
(A_1)	1	1	1	1	S	
(A_2)	1	1	-1	-1		$MX_4 \to MX_2Y_2$ $T_d \to C_{2v}$
(E)	2	2	0	0	$z^2, x^2 - y^2$	$I_d \rightarrow C_{2v}$
(T_1)	3	-1	-1	-1		
(T_2)	3	-1	1	1	x, y, z, xy, xz, yz	

1.3.5. Ограниченность понятий о о-, л-связях и орбиталях

$$C_{\infty v}$$
 $D_{\infty h}$ $A-B$ $A-B-C$ $A-B-A$

$C_{\infty v}$	Ι	$2R_{(\varphi,z)}$	$2R_{(2\varphi,z)}$	 $\infty \sigma_v$	f_i
Σ^+	1	1	1	 +1	s, z, z^2
Σ^-	1	1	1	 -1	
П	2	2cosφ	2cos2φ	 0	x, y, xz, yz
Δ	2	2cos2φ	2cos3φ	 0	xy, x^2-y^2
Φ				 	

Только у молекул $C_{\infty v}$ и $D_{\sim h}$ орбитали строго классифицируются по σ - и π -неприводимым представлениям.

1.4. ТЕОРИЯ КРИСТАЛЛИЧЕСКОГО ПОЛЯ

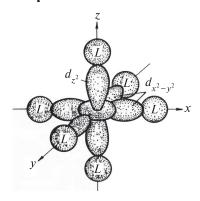
1.4.1. Основы теории

Для учета эффекта влияния поля окружающих атомов на данный атом в его гамильтониан добавляется соответствующий член υ :

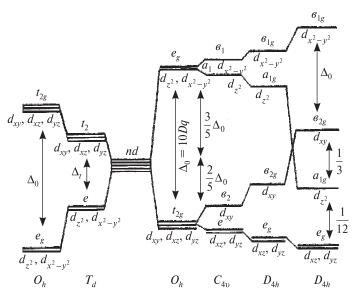
$$H = -\frac{\hbar^2}{2m} \sum_{i} \nabla_i^2 - \sum_{i} \frac{Ze^2}{r_i} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{r_{ij}} + \sum_{i} \xi_i(r) \vec{l_i} \vec{s_i} + v.$$

В зависимости от величины υ различают три варианта:

- 1) $v < \xi(r)\vec{l} \cdot \vec{s}$ комплексы редкоземельных элементов;
- 2) $\xi(r)\vec{l} \cdot \vec{s} < v < \frac{e^2}{r_{ii}}$ слабое поле;
- 3) $v > \frac{e^2}{r_{ij}}$ сильное поле.


Пример применения теории групп

$$\chi_{R_{\alpha}} = \frac{\sin \frac{5}{2}\alpha}{\sin \frac{\alpha}{2}};$$

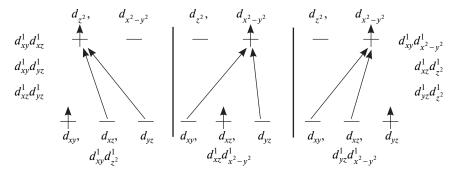

$$h = 1 + 8 + 3 + 6 + 6 = 24;$$

 $n^{(i)} = \frac{1}{h} \sum_{R} \chi_R^{(i)} \chi_R;$

$$n^{(a_{1g})} = \frac{1}{24} (1 \cdot 1 \cdot 5 + 1 \cdot 8 \cdot (-1) + 1 \cdot 3 \cdot 1 + 1 \cdot 6 \cdot (-1) + 1 \cdot 6 \cdot 1) = 0.$$

1.4.2. Наглядные элементы теории кристаллического поля

Puc. 1.18. d-Орбитали в октаэдрическом окружении


Puc. 1.19. Расщепление *d*-орбиталей в полях различной симметрии

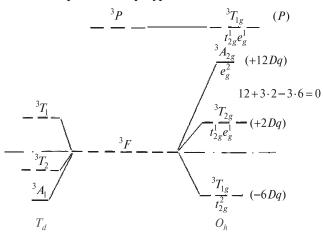
$$\Delta_t = \frac{4}{9}\Delta_0; \ \Delta_k = \frac{8}{9}\Delta_0; \ 10Dq = \frac{5e^2Zr^4}{3a^5}; \ D = \frac{35e^2Z}{4a^5}; \ q = \frac{2r^4}{105},$$

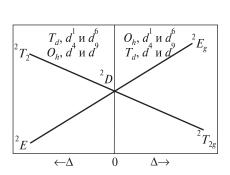
где r — среднее расстояние электрона от ядра; a — расстояние центральный атом — лиганд.

1.4.3. Слабое поле

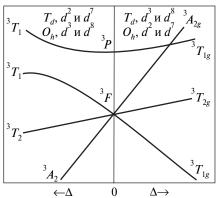
Варианты электронных конфигураций в поле O_h для двух d-электронов:

Термы d^2 -конфигурации в слабом поле




Таблица 1.5 Термы d^n -конфигурации в слабом поле

-111		_	
d^n	Основной терм	Пример	Состояние в поле O_h и энергии (Dq)
d^1	^{2}D	Ti ³⁺	$^{2}T_{2g}(-4), ^{2}E_{g}(+6)$
d^2	^{3}F	V ³⁺	$^{3}T_{1g}(-6), ^{3}T_{2g}(+2), ^{3}A_{2g}(+12)$
d^3	4F	Cr ³⁺	${}^{4}A_{2g}(-12), {}^{4}T_{2g}(-2), {}^{4}T_{1g}(+6)$
d^4	⁵ D	Mn ³⁺	$^{5}E_{g}(-6), ^{5}T_{2g}(+4)$
d^5	⁶ S	Fe ³⁺	$^{6}A_{1g}(0)$
d^6	⁵ D	Co ³⁺	$^{5}T_{2g}(-4), ^{5}E_{g}(+6)$
d^7	4F	Co ²⁺	$^{4}T_{1g}(-6), ^{4}T_{2g}(+2), ^{4}A_{2g}(+12)$
d^8	^{3}F	Ni ²⁺	$^{3}A_{2g}(-12), ^{3}T_{2g}(-2), ^{3}T_{1g}(+6)$
d^9	^{2}D	Cu ²⁺	$^{2}E_{g}(-6), ^{2}T_{2g}(+4)$
d^{10}	^{1}S	Zn ²⁺	$^{1}A_{1g}(0)$


Правила для определения термов в слабом поле:

- 1) для одинаковых d^n тип и число состояний в полях O_h и T_d одинаковы, но порядок — обратный; при этом $(Dq)_{T_d} = \frac{4}{9}(Dq)_{O_h};$
 - 2) $d^n \leftrightarrow d^{10-n}$:
 - 3) мультиплетность исходного терма сохраняется; 4) $d^n \leftrightarrow d^{5-n}$ (при выполнении п. 3).

Диаграммы Оргела

Puc. 1.20. Диаграмма Оргела для конфигураций $d^{1,4,6,9}$

Puc. 1.21. Диаграмма Оргела для конфигураций $d^{2,3,7,8}$

1.4.4. Сильное поле

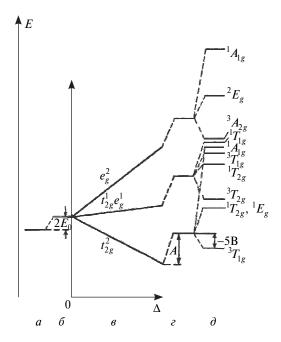


Рис. 1.22. Термы конфигурации d^2 в октаэдрическом поле лигандов:

a — уровень d-электронов; δ — сдвиг, вызванный симметричной частью поля лигандов; ϵ — расщепление в поле лигандов как функция Δ ; ϵ — сдвиг, вызванный симметричной частью межэлектронного взаимодействия; δ — расшепление, вызванное межэлектронным взаимодействием

Пример применения теории групп для t_{2g}^2 -конфигурации:

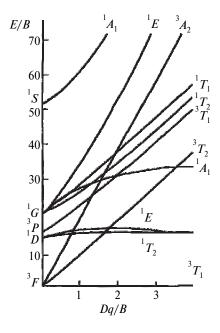
$$\chi(A \times B) = \chi(A)\chi(B);$$

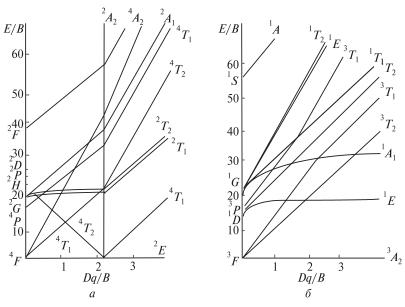
$$\chi(T_{2g} \times T_{2g}) = \{9 \ 0 \ 1 \ 1 \ 1\};$$

$$T_{2g} \times T_{2g} = T_{1g} + T_{2g} + E_g + A_{1g};$$

$$(\pm)\chi = \frac{1}{2}(\chi_R^2 \pm \chi_{R^2}).$$

1.4.5. Диаграммы Танабе — Сугано для полей ${\it O_h}$





Рис. 1.23. Энергетическая диаграмма для конфигурации d^2 (B — параметр Рака)

Спектрохимический ряд

$$I^- < Br^- < CI^- < F^- < RCO^{2-} < OH^- < C_2O_4^{2-} \sim H_2O < NCS^- <$$

 $< py \le NH_3 < en < NO_2^- < CN^- \sim CO$

Puc. 1.24. Энергетические диаграммы: a- для конфигурации $d^3; 6-$ для конфигурации d^4

Puc. 1.25. Энергетические диаграммы: a-для конфигурации $d^7; 6-$ для конфигурации d^8

1.4.6. Электронные конфигурации в сильных и слабых полях

Энергия расщепления кристаллическим полем:

1.5. НЕКОТОРЫЕ ПРИМЕНЕНИЯ ТЕОРИИ КРИСТАЛЛИЧЕСКОГО ПОЛЯ

1.5.1. Оптические спектры

Правила отбора:

- 1) запрет по мультиплетности;
- 2) запрет переходов $u \rightarrow u, g \rightarrow g \ (d \rightarrow d, p \rightarrow p);$
- 3) запрет на многоэлектронные переходы.

Разрешенные переходы:

- 1) интралигандные $(n \to \sigma^*, \pi \to \pi^*, \text{ но не } n \to \pi^* \text{ в CO}, \text{ гипсохромный и батохромный сдвиги);}$
 - 2) ридберговские;
 - 3) с переносом заряда;
 - 4) $d \rightarrow d$ (при отсутствии центра инверсии).

Ширина полос

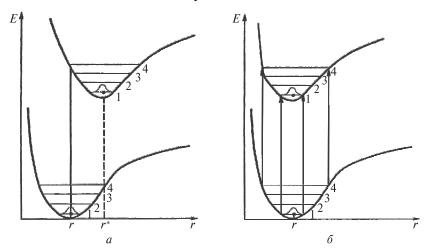
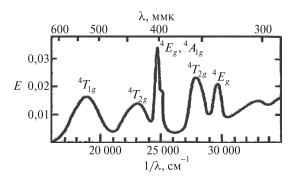



Рис. 1.26. Адиабатические потенциалы, колебательные уровни и «вертикальные» электронные переходы: a — при возбуждении с перераспределением электронов на связывающих и разрыхляющих орбиталях; δ — без такого перераспределения

Puc. 1.27. Спектр поглощения водного комплекса Mn^{2+}

Электронные конфигурации, соответствующие полосам поглощения ${\rm Mn}^{2+}$

$$\begin{array}{c}
1) {}^{6}A_{1g} \rightarrow {}^{4}T_{1g} \\
2) {}^{6}A_{1g} \rightarrow {}^{4}T_{2g}
\end{array} \right\} t_{2g}^{3} e_{g}^{2} \rightarrow t_{2g}^{4} e_{g}^{1}$$

3)
$${}^{6}A_{1g} \rightarrow {}^{4}E_{g}$$
4) ${}^{6}A_{1g} \rightarrow {}^{4}A_{1g}$
5) ${}^{6}A_{1g} \rightarrow {}^{4}T_{2g}$
6) ${}^{6}A_{1g} \rightarrow {}^{4}E_{g}$

1.5.2. Лазерный эффект

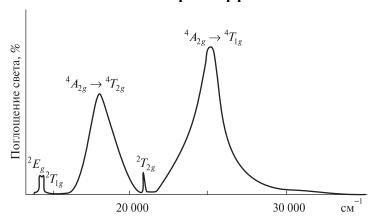
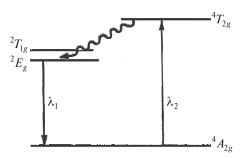
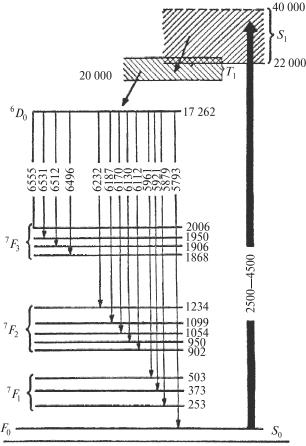




Рис. 1.28. Спектр поглощения рубина

При мощной световой накачке с длиной волны λ_2 заселенность возбужденного состояния 2E_g за счет безызлучательного перехода становится больше, чем основного ${}^4A_{2g}$, и при действии света с длиной волны λ_1 система будет больше излучать, чем поглощать.

Рис. 1.29. Уровни энергии и переходы в рубиновом лазере (в пределах ц. а.)

Puc. 1.30. Уровни энергии и переходы в лазерной системе бензоилацетоната европия (в системе центральный атом — лиганды)

1.5.3. Экстрастабилизация (б)

Энергия экстрастабилизации сопоставима с энергией химической связи:

$$\begin{split} \delta = 80 - 200 \; \frac{\text{кДж}}{\text{моль}}; \\ \delta_0 = n_{t_{2g}} \cdot \frac{2}{5} \Delta_0 - n_{e_g} \cdot \frac{3}{5} \Delta_0 - np; \qquad \delta_t = n_e \cdot \frac{3}{5} \Delta_t - n_{t_2} \cdot \frac{2}{5} \Delta_t - np. \end{split}$$

Степени окисления д-элементов

Конфигурация	Степени окисления			
d^0	Элементы II—VII групп в высшей степени окисления*			
d^1	VO^{2+} V^{4+} , Cr^{5+} , Mn^{6+} (T_d , рост Δ и устойчивости)			
d^2	$O_h V^{3+}, Cr^{4+}, Mn^{5+}, Fe^{6+} T_d$			
d^3 V^{2+} , Cr^{3+} , Mn^{4+}				
d^4	Cr ²⁺ , Mn ³⁺			
d^5	$\mathbf{Mn^{2+}}$, $\mathbf{Fe^{3+}}$ (рост $Z^{3\Phi}$ и обменного взаимодействия)			
d^6	(Mn ¹⁺), Fe ²⁺ , Co ³⁺ (рост Δ , сильное поле)			
d^7	Co ²⁺ , Ni ³⁺			
d^8	Ni ²⁺			
d^9	Cu ²⁺			
d^{10}	Cu ¹⁺			

^{*} Высоких степеней окисления во второй половине d-ряда нет, так как растет ионизационный потенциал атома.

1.5.4. Прямые и обратные шпинели. Заселенность пустот в прямых шпинелях

$${
m A^{II}B_2^{III}O_4}$$
 ${
m MgAl_2O_4}$ ${
m MgAl_2O_4}$ ${
m (Zn^{2^+})~(Cr^{3^+})}$ ${
m (\lambda=0)}$ ${
m 1}$ ${
m 4}$ ${\it O_h}$ — пуст. / 1 форм. ед. ${
m 1}$ ${$

Предпочтение к
$$\textit{O}_{\hbar}$$
-позиции: $\text{Cr}^{3+} > \text{Ni}^{2+} > \text{Mn}^{3+} > \text{вакансия} > \text{Cu}^{2+} > \text{Al}^{3+} > \text{Li}^{1+} > \text{Mg}^{2+} > \text{Fe}^{3+} > \text{Cu}^{1+} > \\ > \text{Fe}^{2+} > \text{Co}^{2+} > \text{V}^{3+} > \text{Mn}^{2+} > \text{Ga}^{2+} > \text{Ag}^{1+} > \text{Ti}^{3+} > \text{Cd}^{2+} > \text{Ca}^{2+} > \text{Zn}^{2+} > \text{In}^{3+}$

1.5.5. Другие эффекты кристаллического поля

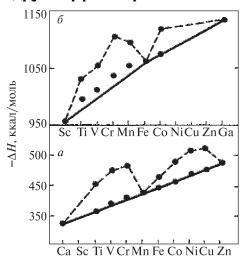
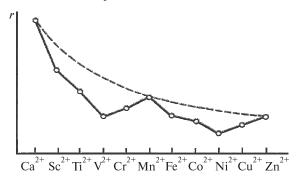
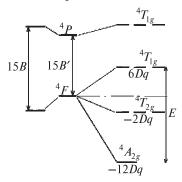



Рис. 1.31. «Двугорбая» зависимость теплот образования ΔH водных комплексов двухвалентных (a) и трехвалентных (δ) переходных металлов

Puc. 1.32. Изменение радиусов ионов в ряду Ca^{2+} — Zn^{2+}

Нефелоауксетический эффект

Параметр Рака B свободного атома и атома в поле лигандов отличаются:


$$E_{3_P} - E_{3_F} = 15B;$$
 $E_{3_{T_{1g}(P)}} - E_{3_{T_{1g}(F)}} = 15B' + 2 \cdot 6Dq,$

причем $\beta = B'/B < 1$.

Нефелоауксетический ряд

 $F^- > H_2O > NH_3 > en > C_2O_4^{2-} > SCN^- > CI^- > CN^- > Br^- > I^-$ (β уменьшается)

${\bf K}$ определению ${\pmb B}'$

$$E_{{}^4A_{2g}} - E_{{}^4T_{2g}} = -10Dq = -\Delta_0, \qquad \begin{vmatrix} 6Dq - E & 4Dq \\ 4Dq & 15B' - E \end{vmatrix} = 0.$$

Эффект Яна — Теллера

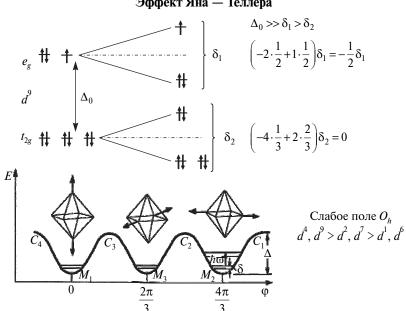
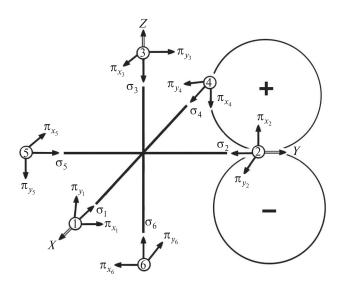


Рис. 1.33. Три минимума адиабатического потенциала для Е-терма

1.6. МОЛЕКУЛЯРНЫЕ ОРБИТАЛИ КОМПЛЕКСОВ *d-*ЭЛЕМЕНТОВ

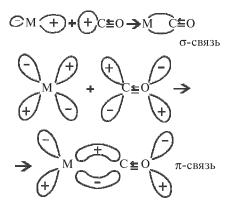
Общее выражение для MO, преобразующейся по неприводимому представлению Γ :

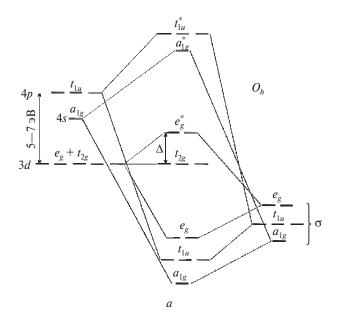

$$\Psi_{(\varGamma)} = \alpha \psi(\varGamma) + \beta \sum_i (\alpha_i \psi_i)(\varGamma).$$

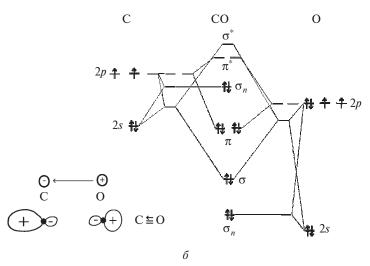
Классификация МО по НП проводится с помощью теории групп. Для октаэдрического комплекса получим:

	I	8C ₃	$3C_2$	6C ₄	6C' ₂	i	8 <i>S</i> ₆	$3\sigma_h$	6 <i>S</i> ₄	$6\sigma_d$
χσ	6	0	2	2	0	0	0	4	0	2
χ_{π}	12	0	-4	0	0	0	0	0	0	0

$$\sigma \qquad a_{1g} \qquad e_{g} \qquad t_{1u} \ \pi \qquad t_{1g} \qquad t_{1u} \qquad t_{2g} \qquad t_{2u}$$


$$\psi^{(i)} = \frac{f_i}{h} \sum_{R} \chi_R^{(i)} \hat{R} \psi$$


Puc. 1.34. Общая и локальные системы координат для октаэдрического комплекса


 ${\it Таблица} \ 1.7$ Аналитическая форма групповых орбиталей лигандов

	Орбитали	Групповые орбитали						
ΗП	ц. а.	σ-типа	π-типа					
a_{1g}	S	$\frac{1}{\sqrt{6}}(\sigma_1 + \dots + \sigma_6)$	_					
	p_{x}	$\frac{1}{\sqrt{2}}(\sigma_1 - \sigma_4)$	$\frac{1}{2}(\pi_{y_2} + \pi_{x_3} - \pi_{y_6} - \pi_{x_5})$					
t_{1u}	p_y	$\frac{1}{\sqrt{2}}(\sigma_2 - \sigma_5)$	$\frac{1}{2}(\pi_{x_1} + \pi_{y_3} - \pi_{y_4} - \pi_{x_6})$					
	p_z	$\frac{1}{\sqrt{2}}(\sigma_3-\sigma_6)$	$\frac{1}{2}(\pi_{x_2} + \pi_{y_1} - \pi_{x_4} - \pi_{y_5})$					
	d_{z^2}	$\frac{1}{3\sqrt{2}}(2\sigma_3+2\sigma_6-\sigma_1-\sigma_2-\sigma_4-\sigma_5)$	_					
e_g	$d_{x^2-y^2}$	$\frac{1}{2}(\sigma_1+\sigma_4-\sigma_2-\sigma_5)$						
t_{2g}	d_{xy}	-	$\frac{1}{2}(\pi_{y_2} + \pi_{x_1} + \pi_{y_4} + \pi_{x_5})$					
	d_{xz}	_						
	d_{yz}	_						

Puc. 1.35. Наглядные элементы орбиталей CO

 $\it Puc.~1.36$. Диаграмма энергий MO: $\it a-MO$ $\it \sigma-$ типа для октаэдрического комплекса переходного металла; $\it \delta-MO$ лигандов на примере CO

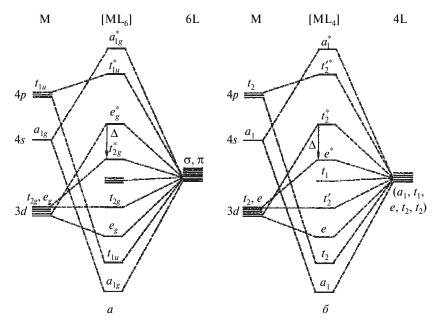
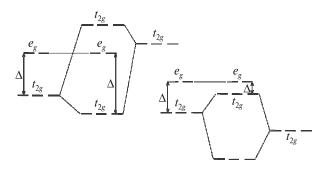



Рис. 1.37. Типовые диаграммы МО октаэдрического (а) и тетраэдрического (б) комплексов

Puc. 1.38. Влияние π -связей на Δ

В заключение отметим, что усвоение теоретических основ неорганической химии в части строения вещества существенно облегчается при использовании схем и рисунков благодаря тому, что задействуется зрительная память. По этой причине в данном пособии основной акцент сделан на иллюстративный материал, который поможет студентам легче запоминать и усваивать теоретический курс.

2. РЕАКЦИОННАЯ СПОСОБНОСТЬ, КИНЕТИКА И МЕХАНИЗМ РЕАКЦИЙ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ВОДНЫХ РАСТВОРАХ

2.1. ОСНОВЫ КИНЕТИКИ ГОМОГЕННЫХ ХИМИЧЕСКИХ РЕАКЦИЙ

2.1.1. Основные положения

Учение о *кинетике и механизме химических реакций* с участием неорганических веществ наряду с учением о строении атомов, молекул и конденсированных фаз, Периодическим законом, теорией химической связи лежит в основе теории неорганической химии.

Скорость v элементарного химического процесса в конденсированной фазе определяется как изменение активности одного из реагирующих веществ (a_i) в единицу времени (t).

$$v_i = \frac{da_i}{dt}$$
.

Согласно закону действующих масс скорость реакции на каждой отдельной стадии пропорциональна концентрациям участвующих в реакции веществ. Так, для реакции

$$A + B \rightarrow продукты$$

скорость выражается соотношением

$$\frac{-dA}{d\tau} = \frac{-dB}{d\tau} = k[A][B].$$

Если уравнение j-го элементарного акта реакции имеет вид

$$\gamma_{i1}A_1 + \gamma_{i2}A_2 + ... + \gamma_{im}A_m = продукты,$$

где $A_1, A_2, ..., A_m$ — реагирующие вещества; $\gamma_{i1}, \gamma_{i2}, ..., \gamma_{im}$ — стехиометрические коэффициенты, то скорость его равна

$$v_j = k_j \prod_i a_i^{\gamma_{ij}} = k_j a_1^{\gamma_{1j}} a_2^{\gamma_{2j}}, ..., a_m^{\gamma_{mj}},$$

где a_i — активность вещества A_i ; k_i — константа скорости.

В таком случае молекулярность реакции, равная общему числу моле-

кул, участвующих в реакции, может быть найдена как $\sum_{i=1}^{m} \gamma_{ij}$.

В мономолекулярной реакции (или стадии химического процесса) участвует только одна молекула, в которой может происходить либо перегруппировка, либо распад на части.

Пример 1

Мономолекулярная перегруппировка бензельного иона в тропилиевый может быть описана уравнением

$$\leftarrow$$
 CH₂ \rightarrow \leftarrow

Дифференциальное кинетическое уравнение в данном случае имеет следующий вид:

$$-\frac{d[C_6H_5CH_2^+]}{dt} = k[C_6H_5CH_2^+].$$

В ходе бимолекулярной реакции (стадии) должно, очевидно, произойти столкновение двух частиц, прежде чем произойдет превращение.

Пример 2

Экспериментально доказанное бимолекулярное превращение:

$$CH_4^+ + C_2H_6 \rightarrow CH_5^+ + C_2H_5.$$

Дифференциальное кинетическое уравнение для такого процесса:

$$-\frac{d[C_2H_6]}{dt} = k[CH_4^+][C_2H_6].$$

Очень редко обнаруживаются *тримолекулярные* химические превращения.

Пример 3

Можно предположить, что реакция

$$2NO + Br_2 \rightarrow 2NOBr$$

является тримолекулярной.

В таком случае экспериментальное кинетическое уравнение должно иметь вид

$$\frac{d[\text{NOBr}]}{dt} = k[\text{NO}]^2[\text{Br}_2].$$

Однако в реальности реакция протекает через последовательность бимолекулярных стадий:

$$NO + Br_2 \xrightarrow{k_1 \atop k_2} NOBr_2$$
, $NO + NOBr_2 \xrightarrow{k_3} 2NOBr$.

Дифференциальное кинетическое уравнение в этом случае примет вид

$$\frac{d[\text{NOBr}]}{dt} = \frac{k_1 k_3}{k_2} [\text{NO}]^2 [\text{Br}_2] = k[\text{NO}]^2 [\text{Br}_2].$$

Порядок реакции соответствует показателю степени концентрационного члена в дифференциальном кинетическом уравнении.

Пример 4

Для реакции

$$2IC1 + H_2 \rightarrow 2HC1 + I_2$$

скорость выражается дифференциальным уравнением:

скорость = const[ICI][H₂] =
$$-\frac{d[ICI]}{dt}$$
 = $-2\frac{d[H_2]}{dt}$ = $\frac{d[HCI]}{dt}$ = $2\frac{d[I_2]}{dt}$.

Реакция имеет общий второй порядок, первый порядок по хлористому иоду и первый порядок по водороду.

Простейшее кинетическое уравнение первого порядка:

$$-\frac{d[A]}{dt} = k[A].$$

Если скорость реакции подчиняется уравнению первого порядка, то это позволяет предположить (но не доказывает), что скорость определяющая сталия имеет вид

$$A \rightarrow продукты.$$

Если a — начальная концентрация вещества A (при t = 0), x — количество вещества A, прореагировавшего к моменту времени t, то

$$[A] = a - x$$
.

Следовательно,

$$-\frac{d(a-x)}{dt} = k(a-x) = \frac{dx}{dt}.$$

В интегральном виде

$$\ln \frac{a}{a-x} = kt.$$

Кинетическое уравнение второго порядка:

$$-\frac{d[\mathbf{A}]}{dt} = k[\mathbf{A}]^2 \text{ или } -\frac{d(a-x)}{dt} = k(a-x)^2 = \frac{dx}{dt}.$$

Интегральное уравнение может быть представлено в виде

$$\frac{x}{a(a-x)} = kt$$
 или $\frac{1}{t} = a^2 k \left(\frac{1}{x}\right) - ak$.

Такое уравнение указывает на следующую скорость определяющую сталию:

$$A + A \rightarrow продукты.$$

Пример 5

Примером реакции типа

$$A + A \rightarrow продукты,$$

кинетика которой подчиняется уравнению второго порядка, может служить процесс

$$HI + HI \rightarrow H_2 + I_2$$
.

Другая форма кинетического уравнения второго порядка:

$$-\frac{d[A]}{dt} = k[A][B],$$

что соответствует следующей скорость определяющей стадии:

$$A + B \rightarrow продукты.$$

Пример 6

Примером реакции типа

$$A + B \rightarrow продукты,$$

кинетика которой подчиняется уравнению второго порядка, может служить процесс

$$CH_3COCH_3 + H^+ \rightarrow CH_3C (COH) + CH_3$$
.

Для суммарной реакции

$$A + nB \rightarrow продукты$$

получаем

$$-\frac{d(a-x)}{dt} = k(a-x)(b-nx).$$

В интегральном виде

$$\frac{1}{na-b}\ln\frac{b(a-x)}{a(b-nx)} = kt = \frac{1}{na-b}\ln\frac{b}{a}\frac{[A]}{[B]}$$

при $na \neq b$ (если na = b, то уравнение становится неопределенным).

Кинетическое уравнение третьего порядка:

$$-d[A]/dt = k[A]^2[B];$$

$$-\frac{d(a-x)}{dt} = k(a-2x)^2(b-x) = \frac{dx}{dt},$$

что соответствует стехиометрическому суммарному уравнению

$$2A + B \rightarrow продукты.$$

В реальных условиях химический процесс обычно реализуется при помощи нескольких параллельно или последовательно протекающих элементарных актов. В таком случае скорость всего химического процесса может быть найдена согласно выражению

$$V = \sum_{i=1}^{n} v_i.$$

Если протекают *обратные реакции*, то их скорости с учетом знака также должны быть внесены в сумму. Если процесс многоступенчатый и нет параллельных реакций, то общая скорость реакции определяется скоростью самой медленной стадии.

Скорость химической реакции зависит не только от концентрации реагирующих веществ, но и от температуры. При кинетическом исследовании принято поддерживать постоянными все переменные, кроме одной, влияние изменения которой изучают. Во многих случаях зависимость константы скорости от температуры может быть выражена в виде, известном как уравнение Аррениуса:

$$k = Ae^{-\Delta E_{\text{akt}}/RT}$$
.

Типичные экспериментальные методы изучения скорости реакции — это химический анализ, УФ-, видимая и ЯМР-спектроскопии, эксперименты в ударных трубах, изменение показателя преломления, давления и плотности.

 $Puc.\ 2.1.\$ Изменение потенциальной (свободной) энергии взаимодействующих частиц в ходе реакции без образования интермедиата (a) и с образованием интермедиата (b)

Механизм гомогенной реакции — это природа, количество и последовательность элементарных актов и промежуточных стадий, через которые протекает химический процесс. Механизм указывает временной и пространственный путь реакции и объясняет экспериментально установленные кинетические и другие закономерности. Описание механизма реакции имеет, как правило, дедуктивный характер.

Для объяснения механизмов гомогенного химического взаимодействия обычно используют две теоретические модели: *теорию эффективных столкновений* (предполагает соударение реагирующих частиц, константа скорости реакции при этом является мерой частоты и эффективности соударений) и *теорию переходного состояния* (при взаимодействии двух молекул вначале образуется активированный комплекс (переходное состояние, рис. 2.1), который затем разлагается с образованием конечных продуктов).

2.1.2. Кинетические исследования

Алгоритм кинетического исследования (выявление механизма на основании результатов кинетического исследования) включает определенный порядок действий:

- 1. Нахождение какого-либо свойства системы, изменение которого было бы пропорционально изменению концентрации одного из реагирующих веществ.
 - 2. Определение скорости химической реакции.
 - 3. Определение кинетического уравнения.
- 4. Нахождение кинетических характеристик процесса (скорость, константа скорости, молекулярность, порядок и др.).
- 5. Соотнесение полученных кинетических данных с предполагаемой совокупностью элементарных стадий изучаемой реакции.
 - 6. Обоснование механизма реакции.

Для полного описания механизма реакции необходимо:

- 1) выделить отдельные этапы протекания реакции и равновесные стадии;
- 2) охарактеризовать промежуточные продукты и оценить время их жизни;
- 3) получить описание (состав, геометрия, представления о сольватации, энергетика) переходного состояния для каждого этапа реакции;
- 4) получить полное описание процессов, предшествующих каждому переходному состоянию и следующих за ним, на основе представлений об энергетических уровнях (электронных, колебательных, вращательных и т. д.) в основном и возбужденном состояниях.

Приемлемый механизм должен:

- 1) при суммировании всех стадий давать стехиометрическое уравнение;
- 2) содержать только электронно и геометрически приемлемые частицы;
- 3) полностью соответствовать энергетике реакции и результатам исследования с помощью меченых атомов;
- 4) давать теоретическое дифференциальное кинетическое уравнение, совпадающее с полученным экспериментально.

Пример 7

Для реакции

$$3I^- + S_2O_8^{2-} \rightarrow 2SO_4^{2-} + I_3^-$$

экспериментально найденное кинетическое уравнение

$$d[I_3^-]/dt = k[I^-][S_2O_8^{2-}]$$

указывает на то, что механизм реакции может быть представлен следующим образом:

$$\begin{split} &I^- + S_2 O_8^{2-} \to I S_2 O_8^{3-} \text{ (скорость определяющая стадия);} \\ &I S_2 O_8^{3-} \to 2 S O_4^{2-} + I^+ \text{ (быстро);} \\ &I^+ + I^- \to I_2 \text{ (быстро);} \\ &I_2 + I^- \to I_3^- \text{ (быстро).} \end{split}$$

Пример 8

Для реакции

$$H_2+Br_2 \rightarrow 2HBr$$

справедлив следующий механизм:

$$Br_{2} \xrightarrow{k_{1}} 2Br;$$

$$Br + H_{2} \xrightarrow{k_{2}} HBr + H;$$

$$H + Br_{2} \xrightarrow{k_{3}} HBr + Br.$$

Скорость процесса в целом определяется выражением:

$$\frac{d[HBr]}{dt} = 2\left(\frac{k_1}{k_{-1}}\right)^{1/2} k_2[H_2][Br_2]^{1/2} \left(1 + \frac{k_{-2}[HBr]}{k_3[Br_2]}\right).$$

Пример 9

Реакция

$$2HBr \rightarrow H_2 + Br_2$$

протекает по цепному механизму и не предполагает столкновения двух молекул НВг:

$$HBr + hv \rightarrow H + Br; H + HBr \rightarrow H_2 + Br; 2Br \rightarrow Br_2.$$

Кинетическое исследование с помощью метода изолирования

Сущность *метода изолирования* заключается в нахождении характера зависимости скорости от концентрации каждого реагента в отдельности при условии постоянства концентраций остальных реагентов. Таким образом находят зависимость

$$\frac{d[\text{продукты}]}{dt} = k[A]^m.$$

Этот прием можно повторить для каждого реагента и получить полное кинетическое уравнение.

Исследование с помощью меченых атомов

Использование меченых атомов (изотопных меток) позволяет получить представление о механизме реакции независимо от кинетических исследований. Сущность их состоит в том, что в качестве исходного в реакции используется вещество, в составе которого есть какой-либо изотоп, содержание которого анализируют в продуктах реакции, на основании чего делаются соответствующие заключения о механизме исследуемого процесса.

Пример 10

Для процесса изотопного обмена

$$*Cr^{3+}_{(BOJH)} + CrO^{2-}_{4(BOJH)} \rightarrow *CrO^{2-}_{4(BOJH)} + Cr^{3+}_{(BOJH)}$$

где *Cr — изотоп хрома; кинетическое уравнение имеет вид скорость прямой реакции = $k[Cr(III)]^{4/3}[Cr(VI)]^{2/3}$.

Такому кинетическому уравнению удовлетворяет следующий механизм:

*Cr(III) + 2Cr(VI)
$$\xleftarrow{k_1}{k_2}$$
 2Cr(V) (один атом хрома меченый),

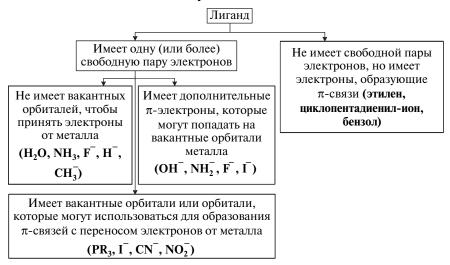
$$K = \frac{k_1}{k_2} = \frac{[Cr(V)]^3}{[Cr(III)][Cr(VI)]^2}.$$

$$Cr(V) + *Cr(III) \xrightarrow{k_3} Cr*Cr(в среднем IV) \xrightarrow{\text{медленно}} Cr(III) + *Cr(V),$$
 $Cr(V) + Cr(VI) \xrightarrow{6 \text{ыстро}} Cr(VI) + Cr(V),$ из первого уравнения получим
$$[Cr(V)] = K^{1/3} \left[*Cr(III) \right]^{1/3} \left[Cr(VI) \right]^{2/3}.$$

Таким образом, скорость прямой реакции равна

$$k_3[Cr(V)] [*Cr(III)] = k_3[*Cr(III)]^{4/3}/[Cr(VI)]^{2/3}.$$

2.2. РЕАКЦИОННАЯ АКТИВНОСТЬ ХИМИЧЕСКИХ СОЕЛИНЕНИЙ


2.2.1. Классификация и устойчивость соединений

Наиболее универсальными в теории неорганической химии являются представления, основанные на *понятиях координационной химии*, в рамках которых предполагается, что химическое соединение в растворе имеет центральный атом, окруженный лигандами, образующими координационную сферу.

Согласно электронной теории, химические соединения можно рассматривать как продукты взаимодействия кислот и оснований Льюиса (комплексообразователь (атом или ион металла) — акцептор электронов (кислота по Льюису), лиганд — донор электронов (основание по Льюису)).

Априори предполагается, что все ионы металлов стремятся к образованию координационных соединений (эта тенденция усиливается с увеличением сродства к электрону у атома металла). Все молекулы и ионы, имеющие, по крайней мере, одну свободную пару электронов, стремятся к взаимодействию с ионами металлов с образованием комплексов.

Классификация лигандов

Концепция жестких и мягких кислот и оснований

Концепция жестких и мягких кислот и оснований Пирсона представляет собой систематизацию на качественном уровне центральных атомов и лигандов по устойчивости образуемых ими соединений (используется

для предсказания устойчивости комплексов). Комплексообразователи, по Пирсону, принадлежат к группе кислот; лиганды — к группе оснований. Жесткие реагенты, как кислоты, так и основания, — это небольшие частицы со слабой поляризуемостью, а мягкие кислоты и основания — большие по размерам и хорошо поляризуемые частицы. Жесткие кислоты предпочтительно связываются с жесткими основаниями, а мягкие кислоты — с мягкими. Любую кислоту или основание можно отнести к разряду мягких или жестких в зависимости от их сравнительной способности к взаимодействию с мягкими или жесткими реагентами (табл. 2.1).

 Таблица 2.1

 Классификация кислот и оснований по их жесткости и мягкости

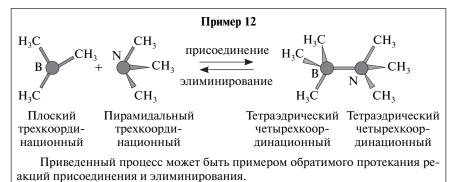
Кислоты	Основания				
жесткие					
H ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺	NH ₃ , N ₂ H ₄ , RNH ₂				
Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺	H ₂ O, OH ⁻ , O ²⁻ , ROH				
La ³⁺ , Sc ³⁺ , UO ₂ ²⁺ , U ⁴⁺	CH ₃ COO ⁻ , CO ₃ ²⁻ , NO ₃				
Ti(IV), Zr(IV), Cr ³⁺ , Cr(IV), VO ²⁺ , MoO ³⁺ , WO ⁴⁺	PO ₄ ³⁻ , SO ₄ ²⁻ , ClO ₄ ⁻ , F ⁻ , Cl ⁻				
Ga ³⁺ , In ³⁺ , Sn(IV), As(III), Mn ²⁺ , Mn(VII), Fe ³⁺ , Co(III)					
промежуточные					
Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺	NO ₃ ⁻ , NO ₂ ⁻ , SO ₃ ²⁻ , Br ⁻				
Rh ³⁺ , Ir ³⁺ , Ru ³⁺ , Os ²⁺ , Sn ²⁺ , Pb ²⁺ , Sb(III), Bi ³⁺					
мягкие					
Pd ²⁺ , Pt ²⁺ , Pt(IV), Cu ⁺ , Ag ⁺ , Au ⁺ , Cd ²⁺ , Hg ²⁺	C ₂ H ₄ , C ₆ H ₆ , CN ⁻ , CO, SCN ⁻ , RSH, I ⁻				

Пример 11

Определить относительную жесткость основания ${\bf B}$ можно, проанализировав равновесие реакции

$$\mathbf{B}\mathbf{H}^+ + \mathbf{C}\mathbf{H}_3\mathbf{H}\mathbf{g}^+ \rightleftharpoons \mathbf{C}\mathbf{H}_3\mathbf{H}\mathbf{g}\mathbf{B}^+ + \mathbf{H}^+.$$

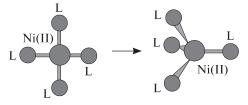
Если равновесие реакции сдвинуто влево, то основание ${\bf B}$ является жестким, если вправо — мягким.


2.2.2. Классификация неорганических реакций

Согласно представлениям координационной химии химические реакции можно разделить:

- 1) на реакции, в процессе которых изменяется координационная оболочка:
- 2) реакции, в процессе которых изменяется степень окисления (окислительно-восстановительные);
 - 3) реакции, в которых происходит изменение в строении лигандов.

Реакции, сопровождающиеся изменениями в координационной оболочке, можно разделить на следующие типы:


- 1) сопровождающиеся увеличением координационного числа (реакции присоединения);
 - 2) уменьшением координационного числа (реакции элиминирования);

3) изменением геометрии координационной сферы;

Пример 13

Переход комплексов Ni(II) с плоской координационной оболочкой (диамагнитное соединение) в тетраэдрическую координационную оболочку (парамагнитное соединение) может быть примером изменения геометрии координационной сферы:

4) изменением относительного расположения лигандов в координационной сфере (возникает либо в результате замещения, сопровождаемого изменением конфигурации, либо является следствием «временного» изменения геометрии).

Реакции, сопровождающиеся изменением степени окисления, могут быть разделены:

1) на процессы с переносом электронов, не вызывающие изменений в строении координационных оболочек;

Пример 14

Реакция

$$[Fe(CN)_6]^{4-} + [Fe(phen)_3]^{3+} \rightarrow [Fe(CN)_6]^{3-} + [Fe(phen)_3]^{2+}$$

представляет собой процесс с переносом электронов, не вызывающий изменений в строении координационных оболочек.

процессы с участием лиганда, выполняющего роль мостика для переноса электрона.

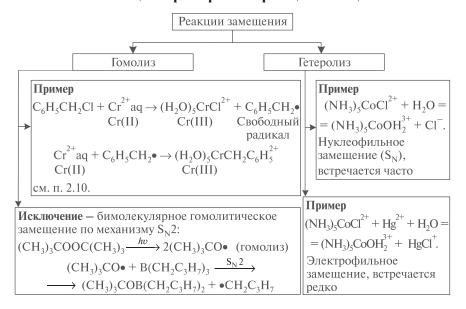
Пример 15

Реакцию

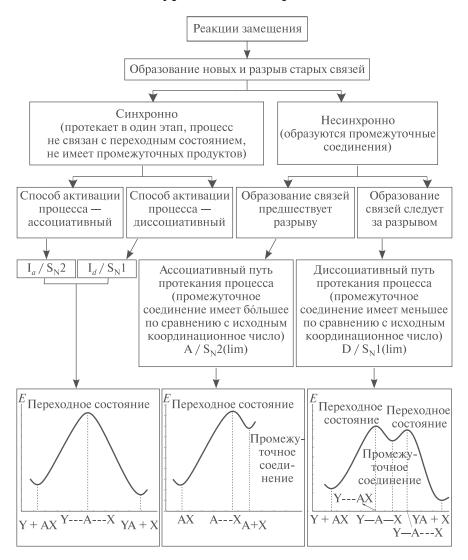
$$SO_3^{2-} + OCl^- \rightarrow SO_3O^{2-} + Cl^-$$

можно рассматривать как реакцию окисления-восстановления с одновременным переносом мостикового кислорода от хлора к атому серы или как нуклеофильную атаку кислорода сульфитной группой, приводящую к вытеснению хлорид-иона.

Наиболее важные из реакций с участием лигандов:

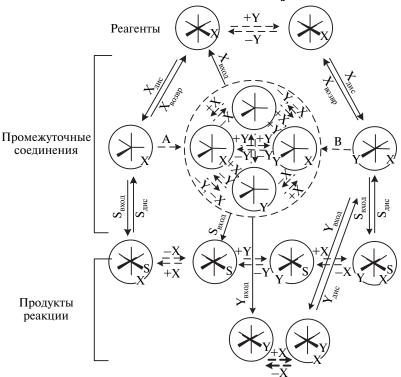

- 1) реакции с блокировкой реакционного центра (координация лигандов препятствует возможности реакции в месте, наиболее благоприятном для прохождения ее в свободном лиганде);
- 2) реакции с поляризацией (сопровождающиеся изменением в распределении электронной плотности в координированной молекуле лиганда по сравнению с некоординированной, под действием чаще всего протона или иона металла, играющего роль временного заместителя, который вызывает поляризацию реакционного центра в лиганде и тем самым стимулирует реакцию);
- 3) реакции с ориентацией лиганда (группируя лиганды в координационной оболочке иона металла, можно получать такие виды комбинаций, которые в других условиях маловероятны статистически);
- 4) реакции с переносом электронов (ион металла может служить источником или акцептором электронов, восстанавливая или окисляя

координированный лиганд, или ион металла может выполнять роль переносчика электронов и способствовать взаимодействию между двумя координированными лигандами);


5) реакции миграции и внедрения лигандов.

2.3. РЕАКЦИИ ЗАМЕЩЕНИЯ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РАСТВОРАХ

2.3.1. Общая характеристика реакций замещения



2.3.2. Механизм замещения в координационных соединениях

Скорость реакции не зависит от природы входящей группы, если она протекает по *диссоциативному механизму*, и, напротив, зависит в случае протекания реакции по *ассоциативному механизму* (рис. 2.2).

Отличие диссоциативного механизма D и механизма диссоциативной активации I_d

 $\it Puc.~2.2.$ Схема замещения по механизмам $\rm I_{\it d}$ и D: $\rm X_{\rm диc}-\rm X$ диссоциирует; $\rm X_{\rm возвр}-\rm X$ возвращается; $\rm X_{\rm вход}-\rm X$ входит

2.3.3. Взаимосвязь кинетики и механизма реакций замещения лигандов в комплексах

Диссоциативный (D) механизм

Процессы, сопровождающие замещение, могут быть представлены как:

$$\begin{array}{ll} {\rm MX}_n{\rm L} \to {\rm MX}_n + {\rm L}, & v_1 = -k_1 \, [{\rm MX}_n{\rm L}]; \\ {\rm MX}_n + {\rm Y} \to {\rm MX}_n{\rm Y}, & v_2 = -k_2 \, [{\rm MX}_n] \, [{\rm Y}]; \\ {\rm MX}_n + {\rm L} \to {\rm MX}_n{\rm L}, & v_3 = -{\rm k}_3 \, [{\rm MX}_n] \, [{\rm L}]. \end{array}$$

Тогда

$$\frac{d[MX_n]}{dt} = -v_1 + v_2 + v_3 = k_1[MX_nL] - (k_2[Y] + k_3[L])[MX_n].$$

Если v_2 — велико, то можно пренебречь $d[\mathrm{MX}_n]/dt$ и получить стационарную концентрацию MX_n :

$$[MX_n]_{crau} = \frac{k_1[MX_nL]}{k_2[Y] + k_3[L]}.$$

Измеряемая скорость разрушения МХ, L составляет

$$v = \frac{d[MX_nL]}{dt} = v_1 - v_3 = k_1[MX_nL] + k_3[MX_n][L] =$$

$$= -k_1[MX_nL] \frac{k_2[Y]}{k_2[Y] + k_3[L]} = \frac{-k_1[MX_nL]}{1 + \frac{k_3[L]}{k_3[Y]}}.$$

Пусть [Y] = const. Тогда, объединяя константы, получаем

$$v = -\frac{k_1[\mathbf{MX}_n \mathbf{L}]}{1 + k_4[\mathbf{L}]},$$

где $k_4 = k_3/k_2$ [Y].

Экспериментальное кинетическое уравнение имеет в пределе первый порядок.

Если
$$k_4$$
 [L] $<< 1$, то $v = -k_1$ [MX_nL].

Ассоциативный (А) механизм

Процессы, сопровождающие замещение, могут быть представлены как:

$$\begin{array}{ll} \mathbf{M}\mathbf{X}_{n}\mathbf{L}+\mathbf{Y}\rightarrow\mathbf{M}\mathbf{X}_{n}\mathbf{L}\mathbf{Y}, & v_{1}=-\mathbf{k}_{1}\left[\mathbf{M}\mathbf{X}_{n}\mathbf{L}\right]\left[\mathbf{Y}\right]; \\ \mathbf{M}\mathbf{X}_{n}\mathbf{L}\mathbf{Y}\rightarrow\mathbf{M}\mathbf{X}_{n}\mathbf{Y}+\mathbf{L}, & v_{2}=-\mathbf{k}_{2}\left[\mathbf{M}\mathbf{X}_{n}\mathbf{L}\mathbf{Y}\right]; \\ \mathbf{M}\mathbf{X}_{n}\mathbf{L}\mathbf{Y}\rightarrow\mathbf{M}\mathbf{X}_{n}\mathbf{L}+\mathbf{Y}, & v_{3}=-\mathbf{k}_{3}\left[\mathbf{M}\mathbf{X}_{n}\mathbf{L}\mathbf{Y}\right]. \end{array}$$

Положим, что $v_1 + v_2 + v_3 = 0$, тогда

$$[MX_nLY] = \frac{k_1}{k_2 + k_3} [MX_nL][Y].$$

Экспериментально измеряемая скорость ($v = v_1 - v_3$) равна

$$v = -k_1[MX_nL][Y] + k_3 \frac{k_1}{k_2 + k_3}[MX_nL][Y] = -k_4[MX_nL][Y].$$

Экспериментальное кинетическое уравнение имеет второй порядок.

С учетом того, что

$$[(MX_nL)Y] = k[MX_nL][Y],$$

получаем

$$v_1 = -k_1[MX_nL][Y].$$

Если концентрация [(MX_nL)Y] мала, то [ML] \rightarrow [MX_nL] и $v_1 = -k_1$ К[ML] [Y].

Если доля частиц (MX_nL)Y близка к единице, то [ML] \rightarrow [(MX_nL)Y] и $v_1 = -k_1$ [ML].

Экспериментальное кинетическое уравнение в этом случае имеет в пределе первый порядок.

 Таблица 2.2

 Сопоставление механизмов замещения

Промежуточный комплекс	Доказано образование промежуточного комплекса с меньшим коорди-	Отсутствуют какие- либо доказатель- ства образования промежуточного		Доказано образование промежуточного комплекса с большим коорди-	
	национным числом	комп.	лекса	национным числом	
Стехиометрический механизм	D	I		A	
Тонкий механизм	D	I_d	I_a	A	
Механизм по Ин- гольду	S _N 1 (lim)	S _N 1	S _N 2	S _N 2 (lim)	
Зависимость скорости от природы входящей группы	Не зависи	Не зависит Зависит			

Таблица 2.3 Взаимосвязь механизма реакций замещения с геометрией комплекса

Координаци- онное число	Геометрия комплекса	Типичный механизм
4	Тетра- эдрическая	Зависит от электронной конфигурации, например, D, I_d , I_a — для C; I_a , A — для Si, Ge; D, I_a , A — для P; D, I_d — для переходных элементов с низкими степенями окисления; I_a , A — для высоких степеней окисления

Координаци- онное число	Геометрия комплекса	Типичный механизм
4	Плоская	A
5	Пирами- дальная	Для систематического рассмотрения данных недостаточно
6	Октаэдри- ческая	D, I_d, I_a
7 и выше		Мало изучен

2.4. РЕАКЦИИ ЗАМЕЩЕНИЯ В КООРДИНАЦИОННОМ ПОЛИЭДРЕ-ТЕТРАЭДРЕ

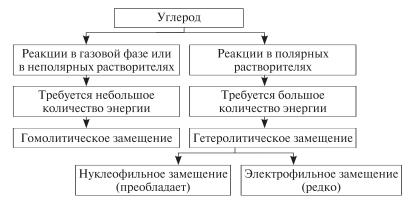
2.4.1. Распространенность тетраэдрической четырехкоординационной геометрии

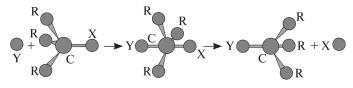
(H)						Н	He		
Li	Be	В	C	N	0	F	Ne		
Na	Mg	Al	Si	P	S	Cl	Ar		
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni
Cu	Zn	Ga	Ge	As	Se	Br	Kr		
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pb
Ag	Cd	In	Sn	Sb	Те	I	Xe		
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt
Au	Hg	Tl	Pb	Bi	Po	At	Rn		
Fr	Ra	Ac	Th					•	
	_			<u> </u>				_	

Рис. 2.3. Элементы, для соединений которых характерна тетраэдрическая четырехкоординационная геометрия: 1 — типична; 2 — только d^{10} -конфигурация;

3 — встречается редко; 4 — не характерна

2.4.2. Общая характеристика реакций замещения с участием *р*-элементов в качестве центральных атомов различной природы

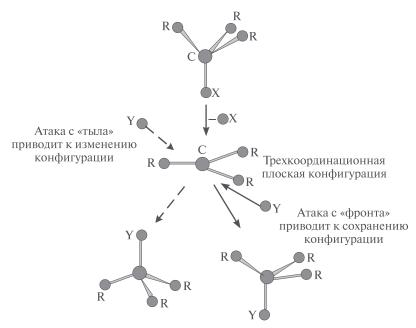



 Таблица 2.4

 Типичные реакции замещения у тетраэдрического атома углерода

Нуклеофильные реакции						
$(CH_3)_3CBr + H_2O \longrightarrow (CH_3)_3COH + H^+ + Br^-$	S _N 1					
$(CH_3)_2CHBr + H_2O \longrightarrow (CH_3)_2CHOH + H^+ + Br^-$	S _N 1					
$CH_3CH_2CI + I^- \xrightarrow{\text{ацетон}} CH_3CH_2I + CI^-$	S _N 2					
$(CH_3)_3CCH_2Br + I^- \xrightarrow{\text{ацетон}} (CH_3)_3CCH_2I + Br^-$	S _N 2					
Электрофильные реакции						
$CH_3HgBr + *HgBr_2 \longrightarrow CH_3*HgBr + HgBr_2$ S_{E^i} (S_{E^2} с цик						
$CH_2Mn(CO)_5$ CH_2Hg^+ $+ Mn(CO)_5$ $+ $						
HN^{+} $CH_2Mn(CO)_5 + H_2O \longrightarrow HN^{+}$ $CH_3 + Mn(CO)_5OH$ S_E1 (S_N1 у атома марганца)						

Стереохимия нуклеофильного замещения у тетраэдрического атома углерода


Бимолекулярное нуклеофильное замещение (ассоциативный механизм) у тетраэдрического атома углерода (рис. 2.4) приводит к обращению конфигурации

Конфигурация тригональной бипирамиды

Рис. 2.4. Реакция S_N 2-замещения у атома углерода, приводящая к изменению конфигурации

В ходе диссоциативного процесса образуются равные количества двух энантиомеров (рис. 2.5).

Рис. 2.5. Реакция S_N 1-замещения у атома углерода

Возможные пространственные пути протекания реакций замещения у тетраэдрического атома углерода

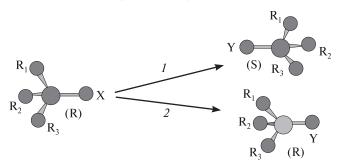

у тетраэдрического атома углерода

 Таблица 2.5

 Стереохимия нуклеофильного замещения

Реагирующее вещество	Нуклео- фильный агент	Продукт	Механизм	Степень со- хранения кон- фигурации, %	Степень об- ращения кон- фигурации,%
$(CH_3)(C_6H_{13})(H)CC1$	I-	$(CH_3)(C_6H_{13})(H)C*I$	$S_N 2$	0	100
$(CH_3)(C_6H_{13})(H)CC1$	OC ₂ H ₅	$(CH_3)(C_6H_{13})(H)COC_2H_5$	$S_N 2$	0	100
$(CH_3)(C_6H_{13})(H)CBr$	OH ⁻	$(CH_3)(C_6H_{13})(H)COH$	S _N 2	0	100
$(CH_3)(C_6H_{13})(H)CBr$	H ₂ O	$(CH_3)(C_6H_{13})(H)(COH)$	$S_N 1$	17	83
$(CH_3)(C_6H_{13})(H)CBr$	C ₂ H ₅ OH	$(CH_3)(C_6H_{13})(H)COC_2H_5$	S _N 1	13	87
$(CH_3)(C_6H_5)(H)CCI$	OCH ₃	$(CH_3)(C_6H_5)(H)CH_3$	S _N 2	0	100
$(CH_3)(C_6H_5)(H)CCI$	H ₂ O	$(CH_3)(C_6H_5)(H)COH$	S _N 1	41	59
$(O_2C)(CH_3)(H)CBr^-$	OH ⁻	$(O_2C)(CH_3)(H)COH^-$	S _N 2	0	100
(O ₂ C)(CH ₃)(H)CBr ⁻	H ₂ O	(O ₂ C)(CH ₃)(H)COH ⁻	$S_N 1$	100	0

Изучение стереохимии процесса замещения

 $Puc.\ 2.6.$ Пути пространственного протекания реакции замещения в тетраэдрической системе с четырьмя монодентантными лигандами: I — конфигурация меняется; 2 — конфигурация сохраняется

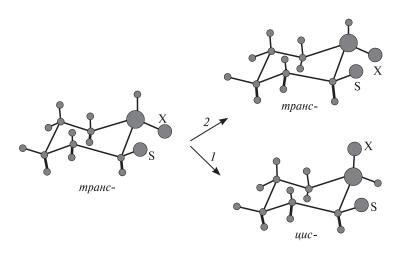
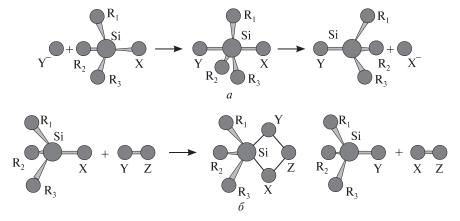
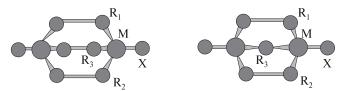



Рис. 2.7. Использование «меток» для изучения стереохимии процесса замещения в хелатной (циклической) тетраэдрической системе. «Метится» (S) соседний атом. Цис- и транс-формы можно различить и идентифицировать по их ЯМР-спектрам


Реакции замещения с участием комплексов кремния, германия, олова

Puc.~2.8. Атака на тетраэдрический атом кремния с «фронта» и с «тыла»: a — сильно электроотрицательная уходящая группа; реакция замещения сопровождается обращением конфигурации с образованием тригональной бипирамиды, где X и Y занимают аксиальные положения; δ — слабая уходящая группа; реакция замещения протекает с сохранением конфигурации вследствие того, что атака с «фронта» «помогает» X отделиться в четырехцентровом переходном состоянии

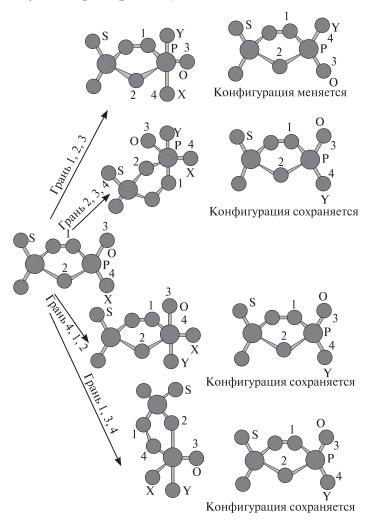
Реакции замещения на узловом атоме мостика

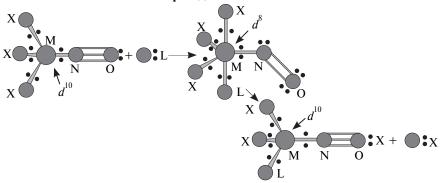
 $\it Puc.~2.9.~$ В данном случае реакционный центр — узловой атом мостиковой связи. Бимолекулярная атака с «тыла» невозможна. В таких комплексах $R_1,~R_2$ и R_3 не могут находиться в одной плоскости с реакционным центром

Реакции замещения с участием комплексов фосфора

Реакции замещения с участием циклических соединений фосфора

Малые кольца, входящие в состав циклических соединений фосфора, как правило, благоприятствуют сохранению конфигурации, а *большие* — способствуют инверсии (рис. 2.10).




Рис. 2.10. Промежуточные комплексы, образующиеся в результате нуклеофильной атаки на фосфолан

Реакции замещения с участием *d*-элементов

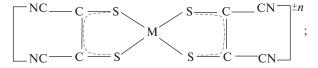
Таблица 2.6 Характеристика реакций замещения с участием переходных элементов в качестве центральных атомов комплексов различной природы

Тип комплекса	Пример	Характеристика реакций замещения
Простые те-	CoCl ₄ ²⁻ , CoCl ₃ py ⁻ (py-	скорость замещения, как правило, про-
траэдрические	пиридин), $CoCl_2py_2$,	порциональна концентрации лигандов;
комплексы	$CoCl_2 (2-CH_3py)_2$,	характерен ассоциативный механизм;
	CoCl ₂ (HMPA) ₂	могут наблюдаться параллельные реак-
	(НМРА — гексаме-	ции, протекающие по диссоциативно-
	тилформамид)	му пути
Тетраэдричес-	$CrO_4^{2-}, MnO_4^-, VO_3^-$	скорость обычно высока и зависит
кие анионы		от концентрации и природы входяще-
и их оксипро-		го лиганда;
изводные		наиболее вероятен ассоциативный ме-
		ханизм
Ковалентные	Ni(CO) ₄ и его произ-	происходит через стадию образования
молекулы,	водные	обычного промежуточного соединения
подчиняющие-		со скоростью, не зависящей от концен-
ся правилу		трации и природы входящей группы;
«18 электро-		характерен диссоциативный механизм
нов», напри-	Co(CO) ₃ NO,	характерен ассоциативный механизм
мер Ni(CO) ₄	$Fe(CO)_2(NO)_2$	(рис. 2.11)
	$Mn(CO)(NO)_3$,	
	Cr(NO) ₄	

Процессы замещения с изменением электронной конфигурации в переходном состоянии

 $Puc.\ 2.11.$ Окислительное присоединение в ходе бимолекулярной реакции замещения в формально d^{10} -комплексе нитрозила. Вокруг атома металла (M) сохраняется 18-электронная оболочка (на рисунке заряды опущены)

2.5. РЕАКЦИИ ЗАМЕЩЕНИЯ В ЧЕТЫРЕХКООРДИНАЦИОННЫХ ПЛОСКИХ КОМПЛЕКСАХ


2.5.1. Распространенность плоской координации с координационным числом 4

(H)						Н	He		1
Li	Be	В	С	N	0	F	Ne		2
Na	Mg	Al	Si	P	S	Cl	Ar		3
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni
Cu	Zn	Ga	Ge	As	Se	Br	Kr		
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pb
Ag	Cd	In	Sn	Sb	Те	I	Xe		
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt
Au	Hg	Tl	Pb	Bi	Po	At	Rn		
Fr	Ra	Ac	Th					-	

Рис. 2.12. Элементы, для соединений которых характерна плоская координация с координационным числом 4: I — типична; 2 — плоские четырехкоординационные комплексы только со специфическими лигандами (например, дитиоленами, фталоцианинами и др.); 3 — не характерна

Плоская координация чаще всего реализуется:

- 1) в соединениях p-элементов, содержащих 4 пары связывающих и 2 пары несвязывающих электронов (например, ICl_4^- , XeF_4);
- 2) в комплексных ионах переходных металлов, в которых лиганды требуют четырехкоординационного плоского расположения (например, $\mathit{бuc}$ -дитиолен):

- 3) в комплексах с плоскими тетрадентантными лигандами (например, фталоцианин, порфирин, коррин);
- 4) в комплексах ионов с конфигурацией d^4 , d^9 (короткоживущие комплексы с высокой реакционной способностью);
 - 5) в низкоспиновых комплексах d^8 (табл. 2.7).

Таблица 2.7

Элементы и характерная степень окисления для их атомов с электронной конфигурацией d^8

Cr (-2)	Mn (-1)	Fe (0)	Co (+1)	Ni (+2)	Cu (+3)
Mo (-2)	Tc (-1)	Ru (0)	Rh (+1)	Pd (+2)	Ag (+3)
W (-2)	Re (-1)	Os (0)	Ir (+1)	Pt (+2)	Au (+3)

2.5.2. Пример установления вероятного механизма реакций замещения в плоских четырехкоординационных комплексах

2.5.3. Стереохимия замещения в плоских четырехкоординационных комплексах

Как правило, замещение в четырехкоординационных комплексах происходит по *ассоциативному механизму* (рис. 2.13).

Промежуточное состояние представляет собой тригональную бипирамиду или тетрагональную пирамиду и характеризуется координационным числом 5.

После реакции замещения наблюдается полное сохранение конфигурации.

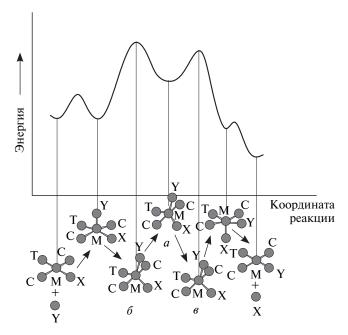
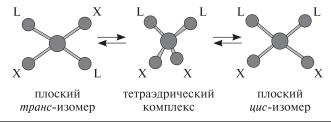


Рис. 2.13. Графическое изображение реакции замещения А-типа в плоском четырехкоординационном комплексе: a — промежуточный комплекс; δ — переходное состояние стадии образования связи; ϵ — переходное состояние стадии разрыва связи

В ряде случаев замещение приводит к пространственным изменениям.

Пример 17


Многоступенчатая реакция, каждый этап которой связан с сохранением конфигурации, может привести к пространственным изменениям в процессе протекания замещения в плоских четырехкоординированных комплексах.

Так, *цис-транс*-изомеризация [Pd am_2 Cl₂], катализируемая избытком амина (am), протекает следующим образом:

$$\begin{array}{c|cccc}
Cl & am & am \\
 & & | & | \\
am - Pd - Cl + am \longrightarrow am - Pd - Cl^{+} \xrightarrow{+Cl^{-}} Cl - Pd - Cl + am \\
 & | & | & | \\
 & am & am & am \\
 & +Cl^{-}
\end{array}$$

Пример 18

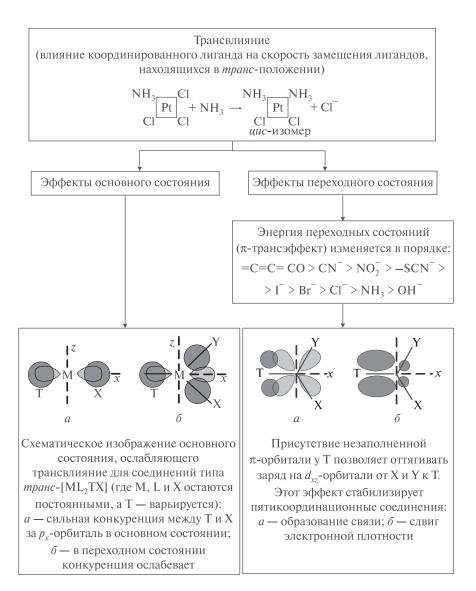
K пространственным изменениям приводит внутримолекулярная *транс* \rightleftharpoons *цис*-изомеризация в четырехкоординированных плоских соединениях, протекающая через тетраэдрическое переходное состояние:

Пример 19

Внутримолекулярная изомеризация в промежуточном состоянии с координационным числом 5 приводит к пространственным изменениям.

К такого рода процессам можно отнести изомеризацию и замещение, обусловленные быстрым «псевдовращением» в $Fe(CO)_5$, $[Pt(Et_3P)_2Cl_2]$ и PF_5 .

Пример 20


K пространственным изменениям приводит диссоциативное замещение с образованием трехкоординированного промежуточного соединения (изомеризация μuc -[Pt(PEt₃) (o-tolyl)Cl] до mpahc-изомера).

2.5.4. Реакционная способность четырехкоординационных плоских комплексов

Влияние природы входящей группы (на примере реакции mpanc-[Ptpy₂Cl₂] + Y $^ \rightarrow$ mpanc-[Ptpy₂ClY] + Cl $^-$).

- 1. Доноры, содержащие «легкие элементы» (N, O, F), менее эффективны, чем их аналоги ($R_3P > R_3As > R_3N$).
- 2. Гидроксид-анион (хороший нуклеофил) неэффективен (этот факт до сих пор не нашел объяснения).
 - 3. Нуклеофильность галогенидов изменяется в ряду:

$$F^- < Cl^- < Br^- < I^-$$
.

Ряд усиления трансвлияния

$$H_2O \sim HO^- \sim NH_3 \sim$$
 амины $F^- < C\Gamma^- \sim Br^- < SCN^- \sim \Gamma^- \sim NO_2^- \sim C_6H_5^- < CH_3^- \sim SC \ (NH_2)_2 < фосфины ~ арсины ~ ~ H^- ~ тиоэфиры < олефины ~ CO ~ CN^-$

Влияние природы уходящей группы определяется сочетанием лабильности самого лиганда и лабилизирующего влияния на него со стороны других лигандов в комплексе.

2.6. РЕАКЦИИ ЗАМЕЩЕНИЯ В ПЯТИКООРДИНАЦИОННЫХ СИСТЕМАХ

2.6.1. Распространенность пятикоординационной геометрии

Пятикоординированные соединения р-элементов:

- 1) соединения с пятью связывающими парами электронов, например PF_5 , $P(CH_3)_2F_3$;
- 2) соединения с шестью связывающими парами электронов (включая две пары, образующие двойную связь), например SOF₄, TeOF₄;
- 3) соединения с семью парами связывающих электронов (с одной тройной или двумя двойными связями), например ClO₂F₃, IO₂F₃;
- 4) 12-электронная валентная оболочка с пятью парами связывающих электронов и одной неподеленной парой, например IF_5 , TeF_5^- .

Пятикоординированные соединения д-элементов:

- 1) соединения первых переходных элементов, по своим свойствам напоминающих p-элементы, например VF_5 ; $VO(acac)_2$, где acac aue-тилацетонат;
- 2) пятикоординационные комплексы, образующиеся в тех случаях, когда центральный атом имел электронную конфигурацию d^8 ;
- 3) соединения с полидентантными лигандами, например tripod с тетрадентантным лигандом трис-(o-дифенилфосфинофенил) фосфин (или OP): [Pt(QP)Br]ClO₄ (рис. 2.14).

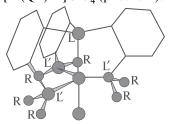
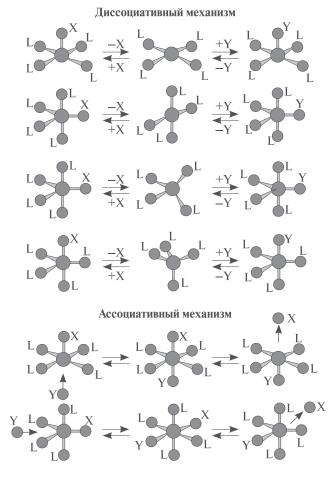



Рис. 2.14. Комплекс QAS конфигурации тригональной бипирамиды с тетрадентантным лигандом. Рисунок показывает, как тригональная симметрия лиганда навязывается конфигурацией комплекса

$$L = L' = As, R = C_6H_5$$

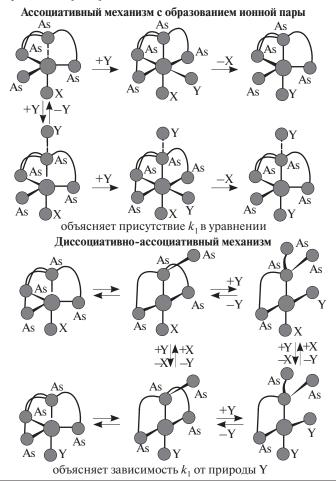
2.6.2. Механизм реакции замещения в пятикоординационных комплексах

Для пятикоординированных реакционных центров возможен как ассоциативный, так и диссоциативный механизм (тип механизма определяется степенью координационной ненасыщенности комплексообразователя, доступностью состояний с более высокими или низкими координационными числами, типом нуклеофильного агента, природой уходящей и входящей групп и т. д.) (рис. 2.15).

Puc. 2.15. Варианты возможных путей реакции замещения в пятикоординационных комплексах

Пример 21

Для процессов замещения в пятикоординированных комплексах с тетрадентантным лигандом:


$$[MLX]^+ + Y \rightarrow [MLY]^+ + X,$$

где M = Ni, Pd, Pt, а L — тригонально-симметричный лиганд, такой как трис-(o-дифениларсинофенил) арсин (QAS на рис. 2.14).

Найдено уравнение скорости реакции:

скорость =
$$(k_1 + k_2 [Y]) \cdot [MLX^+]$$
.

Следовательно, возможны два альтернативных механизма реакций на примере превращения в [VLX]⁺:

2.7. ЗАМЕЩЕНИЕ В ШЕСТИКООРДИНАЦИОННЫХ РЕАКЦИОННЫХ ЦЕНТРАХ

2.7.1. Распространенность октаэдрической конфигурации

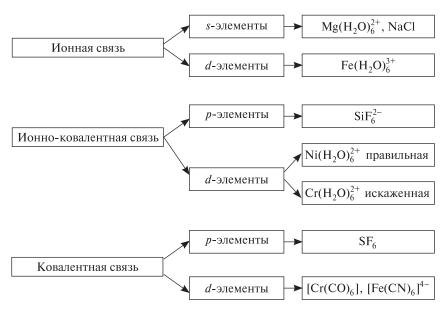


Таблица 2.8 Валентные состояния центрального иона, обеспечивающие образование октаэдрических комплексов

V(I)	Cr(0)	Mn(I)	Fe(II)	Co(III)	Ni(IV)
Nb(I)	Mo(0)	Tc(I)	Ru(II)	Rh(III)	Pd(IV)
Ta(I)	W(0)	Re(I)	Os(II)	Ir(III)	Pt(IV)

2.7.2. Механизм реакций замещения в координационном октаэдре

- 1. $\ \ \, \mathcal{L}$ иссоциативный механизм более вероятен, чем ассоциативный (типичным является механизм I_d).
 - 2. В кинетике процесса большую роль играет растворитель.

Кинетика и механизм реакций замещения в координационном октаэдре с участием сольватированных ионов металлов

Таблица 2.9 Константы скорости и энтальпии активации обмена одной молекулы воды в высокоспиновых гексааквокатионах переходных металлов

Электронная конфигурация <i>d</i> -оболочки	Me k_1, c^{-1}	Me k_1 , c^{-1}	Me k_1 , c^{-1}
<i>a</i> -ооолочки <i>d</i> ⁰	ΔH , ккал/моль Sc^{3+} $2 \cdot 10^7$	ΔΗ, ккал/моль	ΔΗ, ккал/моль
d^{1}			
d^2		V^{3+} $3 \cdot 10^3$	
d^3	$ \begin{array}{c} V^{2+} \\ 1,2 \cdot 10^2 \\ 15,3 \\ Cr^{2+} \end{array} $	$ \begin{array}{r} 3 \cdot 10^{3} \\ \text{Cr}^{3+} \\ 5 \cdot 10^{7} \\ 26,7 \end{array} $	
d^4	Cr ²⁺ 8,3 · 10 ⁹ Mn ²⁺		
d ⁵	Mn ²⁺ 3,1 · 10 ⁶ 8,1 Fe ²⁺	Fe ³⁺ $2,6 \cdot 10^3$	
d ⁶	$3 \cdot 10^6$	Co ³⁺ 10 ³	Rh ³⁺ 4 · 10 ⁸ 33
d^7	Co ²⁺ 2,5 · 10 ⁶ 11,5 Ni ²⁺		
d 8	Ni ²⁺ 3,6 · 10 ⁴ 12,3 Cu ²⁺		
d 9	Cu ²⁺ 7,4 · 10 ⁹		
d 10	Zn^{2+} $2 \cdot 10^{7}$	Ga^{3+} $2 \cdot 10^{3}$ $6,3$	In ³⁺ 2 · 10 ⁵

Пример 22

Механизм реакций комплексообразования с участием сольватированных ионов металлов на примере $\operatorname{FeCl}(H_2O)_5^{2+}$: 1) $\operatorname{Fe}(H_2O)_6^{3+} + \operatorname{Cl}^- \rightleftarrows \operatorname{Fe}(H_2O)_6^{3+} \dots \operatorname{Cl}^-$ (быстрое образование внешнесфер-

- ного комплекса); 2) $Fe(H_2O)_6^{3+} ... Cl^- \rightleftharpoons Fe(H_2O)_5 Cl^{2+} ... H_2O$ (медленный процесс взаимно-
- го обмена).

Кинетика и механизм реакций замещения в координационном октаэдре в относительно инертных системах. Реакции сольволиза

$$R_5MX + S \stackrel{\text{сольволиз}}{\underset{\text{анация}}{\longleftarrow}} R_5MS + X$$

- 1. Реакции сольволиза обычно обратимы.
- 2. Положение равновесия очень сильно зависит от природы S, X, M и даже R.
 - 3. Вода обычно способствует реакции сольволиза.
- 4. На положение равновесия очень сильное влияние оказывает природа уходящей группы и центрального иона металла, а также другие лиганды комплекса.

Зависимость реакционной способности комплексов в реакциях сольволиза от природы центрального атома металла

Уменьшение реакционной способности в целом соответствует увеличению энергии активации и изменяется в ряду:

$$Co(III)(d^6) \sim Cr(III)(d^3) > Ru(III)(d^5) > Rh(III)(d^6) >> Ir(III)(d^6)$$

Таблица 2.10

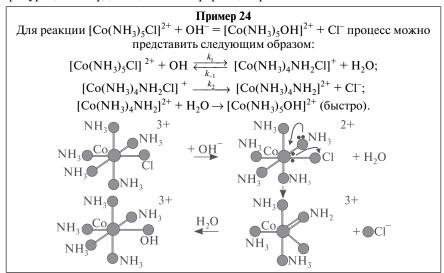
Константы скорости первого порядка (измеренные при 25 °C или экстраполированные до этой температуры) и энтальпии активации реакции аквотации в водных растворах некоторых комплексов

Металл (Ме)	$[Me (NH_3)_5Cl]^{2+}$		цис-[1	Me en ₂ Cl ₂] ⁺	$mpaнc$ -[Me en $_2$ Cl $_2$] $^+$		
	$10^7 k, c^{-1}$	ΔН [≠] , кДж/моль	$10^7 k, c^{-1}$	ΔН [≠] , кДж/моль	$10^7 k, c^{-1}$	ΔН [≠] , кДж/моль	
Co(III)	17	96	2500	92	320	113	
Cr(III)	73	100	3300	88	220	96	
Ru(III)	8	96	450	88	_	_	
Rh(III)	0,6	100	10	_	0,9	105	
Ir(III)	0,001	_	_	_	0,005	121	

Зависимость реакционной способности комплексов в реакциях сольволиза от природы уходящей группы

$$\begin{aligned} HCO_3^->> NO_3^-> I^- \sim H_2O \sim Br^-> CI^- \sim SO_4^{2-} > CSN^-> F^-> \\ > CH_3COO^-> NCS^-> NO_2^-> NH_3> OH^-> CN^-. \end{aligned}$$

Реакции анации (реакции, обратные сольволизу)


Пример 23

Типичным представителем реакций анации является реакция замещения воды в комплексе $\left[\text{Co}(\text{NH}_3)_5\text{H}_2\text{O}\right]^{3+}$ (механизм I_d):

Со
$$(NH_3)_5H_2O^{3+} + X^{n-} \rightleftarrows [Co(NH_3)_5H_2O^{3+} ... X^{n-}]$$
 (быстро);
«внешнесферный комплекс»
[Co $(NH_3)_5H_2O^{3+} ... X^{n-}] \to Co (NH_3)_5X^{(3-n)+} + H_2O$.
взаимный обмен

Основной гидролиз

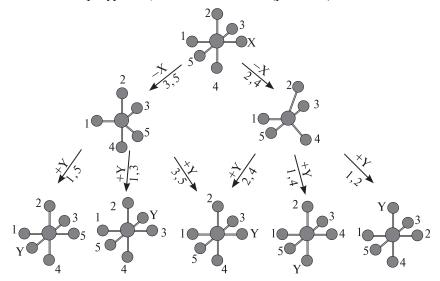
- 1. Скорость описывается выражением
 - -d [комплекс] /dt = k [комплекс] [OH $^-$].
- 2. Типичный диссоциативный процесс (часто обозначают $S_N 1$).
- 3. Основный гидролиз связан со значительными изменениями конфигурации координационной сферы центрального атома.

Реакции в неводных растворителях

Тип растворителя, а также его сольватирующая сила заметно сказываются на кинетике реакций сольволиза и криптосольволиза (*криптосольволиз* — процесс, в ходе которого один лиганд замещается другим через реакцию сольволиза с последующей анацией):

$$R_5MX + S \rightleftharpoons R_5MS + X \xrightarrow{+Y} R_5MY + S.$$

В ходе процесса наблюдается наличие ряда равновесных состояний, каждое из которых приводит к соединениям с собственной константой скорости взаимного обмена:


Общее выражение скорости принимает вид

$$k_{\text{\tiny SKCII}} = \frac{k_0 + k_1 K_1[Y] + k_2 K_1 K_2[Y]^2 \dots}{1 + K_1[Y] + K_1 K_2[Y^2] \dots},$$

где k — константа скорости химического процесса; K — константа равновесия.

2.7.3. Стереохимия замещения в координационном октаэдре

Почти во всех октаэдрических комплексах замещение протекает при полном сохранении конфигурации. Реакции, сопровождающиеся изменением в конфигурации, немногочисленны (рис. 2.16).

Puc. 2.16. Замещение, приводящее к образованию исходной или обращенной конфигурации; промежуточное соединение имеет конфигурацию тригональной бипирамиды

2.8. СТЕРЕОХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ

2.8.1. Типы стереохимических превращений

Стереохимические превращения можно разделить:

 на превращения, являющиеся прямым результатом замены лигандов:

mpaнc-[Coen₂Cl₂] + H₂O → 30% *цис*- +
$$+ 70\%$$
 mpaнc-[Coen₂H₂OCl]²⁺ + Cl⁻;

- 2) превращения, которые могут быть результатом замещения (превращения в ряду аквакомплексов типа μuc - μuc -
- 3) превращения, происходящие без замещения, но возможно с разрывом связи металл лиганд (например, переход в подкисленном метаноле uuc-[Co(diars) $_2$ Cl $_2$] $^+$ в mpanc-форму без обмена хлора; переход mpanc-[Coen $_2$ OHNH $_3$] $^{2+}$ без обмена ОН- или NH $_3$ -групп) (рис. 2.17);

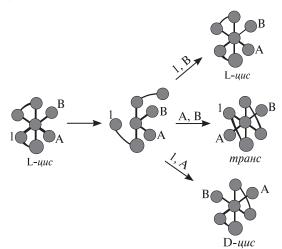
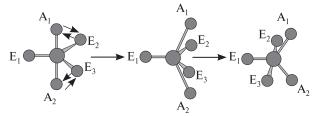
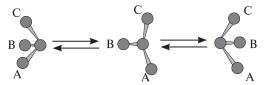
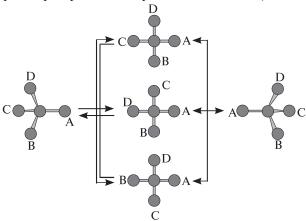
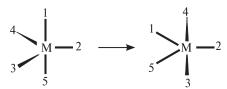



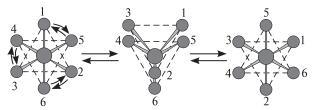
Рис. 2.17. Изомеризация молекулы $M(AA)_2AB$ путем диссоциации; промежуточное состояние имеет конфигурацию тригональной бипирамиды. Если A и B связаны, как в молекуле $M(AA)_3$, путь A, B невозможен, а другие два пути приведут к $D \rightleftharpoons L$ -превращениям


4) превращения, происходящие без какого-либо разрыва связи металл — лиганд (псевдовращение) (рис. 2.18).

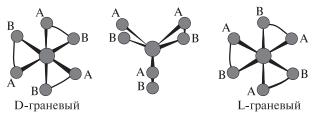

Рис. 2.18. Механизм псевдовращения Берри в пятикоординационных соединениях. Центр вращения — лиганд E_1

2.8.2. Особенности механизма стереохимических превращений в комплексах с различными координационными числами

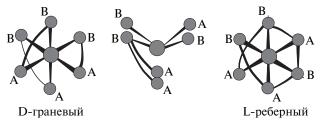

1. Инверсия в трехкоординационных системах через тригональное плоское промежуточное состояние:


2. Инверсия и псевдовращение в четырехкоординационных (тетраэдрических) системах через дополнительное тетрагональное плоское переходное состояние (в свою очередь, плоские комплексы могут изомеризоваться через тетраэдрическое переходное состояние):

- 3. Псевдовращение в пятикоординационных системах:
- механизм скручивания Берри предполагает, что один из лигандов является центром вращения, и поэтому процесс превращения $15 \frac{2}{3} 34$ можно записать следующим образом:



4. Псевдовращение в шестикоординационных системах (тригональное скручивание вокруг оси третьего порядка в октаэдре):



Типичные механизмы скручивания применительно к молекуле М(АВ)3:

• механизм скручивания Бейлара (происходит изомеризация $D \rightleftharpoons L$, но не проявляется граневый (иис-) \rightleftharpoons реберный (транс-механизм)):

• механизм скручивания Рея и Дата (изомеризация $D \rightleftharpoons L$ и граневый \rightleftharpoons реберный механизм проявляются одновременно):

2.9. РЕАКЦИИ ОКИСЛЕНИЯ И ВОССТАНОВЛЕНИЯ

2.9.1. Изучение механизма реакций окисления и восстановления

- 1. Проведение реакции с «захватом» реакционно-способного промежуточного соединения.
- 2. Исследование химических свойств и характеристик реагентов и соотнесение полученных данных с информацией по схожим процессам, специфичным к определенному реагенту.
 - 3. Анализ кинетических характеристик.

2.9.2. Окислительно-восстановительные реакции во внешней сфере

В случае окислительно-восстановительных реакций во внешней сфере скорость восстановления-окисления больше, чем у любого процесса замещения, протекающего с участием окислителя и восстановителя.

Пример 25

Типичными примерами окислительно-восстановительных реакций во внешней сфере могут быть:

$$[{\rm Fe(Me_2bipy)_3}]^{2+}+[{\rm Fe(phen)_3}]^{3+} \to [{\rm Fe(Me_2bipy)_3}]^{3+}+[{\rm Fe(phen)_3}]^{2+},$$
 где ${\rm Me_2bipy}-44'$ -диметил-22'дипиридил; phen — 1,10-фенантролин (констан-

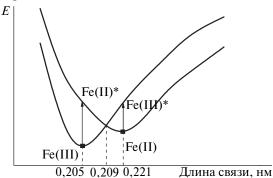
та скорости второго порядка больше 10^8 моль/л · с).

$$\begin{split} [Mn^{VII}O_4]^- + [Mn^{VI}O_4]^{2-} &\rightleftarrows [Mn^{VI}O_4]^{2-} + [Mn^{VII}O_4]^-, \\ [Fe^{III}(CN)_6]^{3-} + [Fe^{II}(CN)_6]^{4-} &\rightleftarrows [Fe^{II}(CN)_6]^{4-} + [Fe^{III}(CN)_6]^{3-}. \end{split}$$

Процессы переноса электронов должны протекать в соответствии с *принципом Франка* — *Кондона*, согласно которому для непосредственного акта переноса электронов требуется период времени много меньший (примерно 10-15 с), чем тот, в течение которого ядра могут изменить свое положение (>10-13 с).

Выводы из принципа Франка — Кондона:

1. В ходе акта переноса электронов не может произойти переноса углового момента ни к переходному состоянию, ни от него, причем на изменение в спиновом угловом моменте также будут наложены ограничения:


$$[\text{Co(phen)}_3]^{2+} + [\text{Co(phen)}_3]^{3+} \rightleftarrows [\text{Co(phen)}_3]^{3+} + [\text{Co(phen)}_3]^{2+}$$

$$t_{2g}^6 e_g^1 \qquad t_{2g}^6 \qquad t_{2g}^6 e_g^1$$

2. Необходима реорганизация и окислителя, и восстановителя перед актом переноса электрона таким образом, чтобы и энергия в переходном состоянии была одинаковой. Например, для реакции

$$Fe(H_2O)_6^{2+} + Fe(H_2O)_6^{3+} \rightleftharpoons Fe(H_2O)_6^{3+} + Fe(H_2O)_6^{2+}$$

зависимость потенциальной энергии от длины связи Fe—O имеет вид, показанный на рис. 2.19.

Рис. 2.19. Зависимость потенциальной энергии от длины связи Fe—O

2.9.3. Окислительно-восстановительные реакции во внутренней сфере

Пример 26

Типичный пример окислительно-восстановительных реакций во внутренней сфере:

$$Co(NH_3)_5Cl^{2+}+Cr(H_2O)_6^{2+} \xrightarrow{H^+} Co^{2+}_{(aq)} + 5NH_4^+ + Cr(H_2O)_5Cl^{2+}.$$
 Со(III)-инертный Сr(II)-лабильный Сr(III)-инертный

Механизм реакции можно представить в виде ряда последовательных стадий:

- (I) $Red'_{(1)} + X Ox \rightarrow Red'_{(1)} X Ox$ (образование мостиковой связи);
- (I') $Red'_{(1)}$ —X + Ox \rightarrow $Red'_{(1)}$ —X—Ox (очень нетипично);
- (II) $Red'_{(1)}$ —X— $Ox_{(2)} \to Ox_{(1)}$ —X— $Red'_{(2)}$ (перенос электрона);
- (III) $Ox_{(1)}$ —X— $Red'_{(2)}$ \to $Ox_{(1)}$ —X + $Red'_{(2)}$ (разрыв мостиковой связи); или $Ox_{(1)}$ + X— $Red'_{(2)}$, или $Ox_{(1)}$ + $Red'_{(2)}$ + X.

Процессы, определяющие скорость реакции во внутренней сфере

- 1. Стадия образования мостиковой связи.
- 2. Перенос электронов в мостиковом промежуточном соединении:

$$\operatorname{Red}'_{(1)} + X - \operatorname{Ox}_{(2)} \xleftarrow{k} \operatorname{Red}'_{(1)} - X - \operatorname{Ox}_{(2)} \text{ (быстро)};$$
 $\operatorname{Red}'_{(1)} - X - \operatorname{Ox}_{(2)} \xrightarrow{k} \operatorname{Ox}_{(1)} - X - \operatorname{Red}'_{(2)} \text{ (медленно)};$
 $\downarrow \text{ (быстро)}$
продукты реакции.

- Медленный разрыв мостиковой связи в продукте реакции окисление-восстановление.
 - 4. Перенос электрона к мостиковой связи.

Пример 27

Реакции, в которых роль мостикового лиганда играет изоникотинамид, являются типичными процессами, в которых лимитирующей стадией является перенос электрона к мостиковой связи.

$$(NH_3)_5CoN \longrightarrow C = O + Cr_{aq}^{2+} \rightarrow Cr_{aq}^{2+} + 5NH_3 + N \longrightarrow C = OCr(H_2O)_5^{3+}$$

$$NH_2 \longrightarrow NH_2$$

2.9.4. Катализ некомплементарных реакций

1. Катализ, осуществляемый потенциальными мостиковыми лигандами.

Пример 28

Реакция взаимодействия Co(III) и Pb(IV) в ледяной уксусной кислоте — типичный пример катализа, осуществляемого потенциальными мостиковыми лигандами.

$$\begin{aligned} & 2\text{Co(II)} \rightleftarrows \text{Co}_2^{\text{II}}, \\ & \text{Co}_2^{\text{II}} + \text{Pb}(\text{IV}) \rightarrow 2\text{Co(III)} + \text{Pb}(\text{II}). \end{aligned}$$

В этом случае одноэлектронный компонент реакции образует в предравновесном состоянии мостиковый димер, который рагирует с двухэлектронным компонентом.

2. Катализ посредством другой окислительно-восстановительной пары.

Пример 29

В реакции окисления Cr(III) до Cr(IV) с помощью $S_2O_8^{2-}$ роль катализатора выполняет $AgNO_3$.

$$Ag(I) + S_2O_8^{2-} \rightarrow Ag(III) + 2SO_4^2$$
, $Ag(III) + Ag(I) \rightarrow 2Ag(II)$ (быстро).

Затем Ag(II) реагирует как одноэлектронный окислитель.

$$Cr(II) + Ag(II) \rightarrow Cr(IV) + Ag(I),$$

 $Cr(IV) + Ag(II) \rightarrow Cr(V) + Ag(I),$
 $Cr(V) + Ag(II) \rightarrow Cr(VI) + Ag(I).$

2.10. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ ПРИСОЕДИНЕНИЯ, ЭЛИМИНИРОВАНИЯ И ЗАМЕЩЕНИЯ

Таблица 2.11 Электронная конфигурация, степень окисления и координационное число для некоторых *d*-элементов

Конфи- гурация	Примеры	Координационное число
d^{10}	Pd(0), Pt(0), Au(I)	2, 3, 4
d^8	Ru(0), Os(0), Rh(I), Ir(I), Pd(II), Pt(II)	4, 5
d^6	Ru(II), Os(II), Rh(III), Ir(III), Pd(IV), Pt(IV)	6

2.10.1. Окислительно-восстановительные реакции присоединения (окислительного присоединения)

$$PtCl_4^{2-} + Cl_2 \rightarrow PtCl_6^{2-} (d^8 \rightarrow d^6),$$

 $[Ir^{I}(CO)Cl(PPh_{3})_{2}]$ (комплекс Васка) + XY \rightarrow $[Ir^{III}(CO)Cl(PPh_{3})(X)(Y)]$, где XY = H₂, CH₃—I, HCl, Br₂, I₂ и др.

$$2[Cr(H_2O)_6]^{2+} + X - Y \rightarrow Cr(H_2O)_6X^{2+} + Cr(H_2O)_6Y^{2+}$$

Механизм окислительного присоединения

Варианты протекания процессов окислительного присоединения

1. Реакция второго порядка:

скорость =
$$k \cdot [\text{реагент 1}] \cdot [\text{реагент 2}].$$

2. Возможен механизм с предварительной диссоциацией комплекса:

$$[Ir(CO)H(PPh_3)_3] \rightleftarrows [Ir(CO)H(PPh_3)_2] + PPh_3;$$

$$[Ir^{I}(CO)H(PPh_{3})_{2}] + XY \rightarrow [Ir^{III}(H)(X)(Y)(CO)(PPh_{3})_{2}].$$

3. Присоединение — перегруппировка:

$$L_nM + XY \to L_nM(XY) \to L_nM \xrightarrow{X} \to L_nM \xrightarrow{X} Y$$

4. Вариант нуклеофильного замещения:

A-Co^I(L₄): + CH₃X
$$\rightarrow$$
 A-Co^{III}(L₄)-CH₃ + X⁻;
 d^8 d^6
Pt^{II}(CN)₄²⁻ + Br₂ \rightarrow Pt^{IV}(CN)₄BrH₂O⁻ + Br⁻.
 d^6

2.10.2. Восстановительное элиминирование

Варианты протекания восстановительного элиминирования

1. Мономолекулярный процесс, в котором два лиганда соединяются с образованием молекулы, которая затем элиминируется из комплекса:

$$\begin{array}{c|c}
X & PR_3 \\
Ir(III) & PR_3
\end{array}$$

$$\begin{array}{c}
PR_3 \\
Ir(I) - X + H_2 \\
PR_3
\end{array}$$

2. Бимолекулярная реакция, в которой происходит атака на координированный лиганд и последующее выделение комплекса низшей степени окисления:

$$As As^{2+} As^{2+} As As^{2+}$$

$$CI \longrightarrow Pt(IV) \longrightarrow CI + SCN^{-} \longrightarrow NCSCI + Pt(II) + CI^{-}$$

$$As As As As$$

3. Реакция восстановительного элиминирования с участием гидридных комплексов, содержащих более одного гидрид-иона:

семикоординационный шестикоординационный
$$OsH_2Cl_2(Pet_3Ph)_3 + L \rightarrow OsCl_2(L)(Pet_2Ph)_3 + H_2,$$
 $d^4Os(IV)$ $d^6Os(II)$

где L = CO или $PmePh_2$.

4. Обратимые реакции, лежащие в основе способов химической фиксации азота:

шестикоординационный пятикоординационный

$$CoH_3(PPh_3)_3 + N_2 \rightarrow Co(N_2)H(PPh_3)_3 + H_2.$$

 $d^6Co(III)$ $d^8Co(I)$

2.10.3. Окислительно-восстановительное замещение

Типы реакций окислительно-восстановительного замещения

1. Временное изменение степени окисления центрального атома в процессе получения комплекса, который гораздо более лабилен к реакциям замещения, чем исходное соединение:

Пример 30

В присутствии Fe²⁺механизм реакции

$$AuCl_4^- + Cl^{*-} \rightleftharpoons AuCl_3Cl^{*-} + Cl^-$$

приобретает цепной характер и сопровождается одноэлектронным восстановлением до лабильного Au(II):

$$\begin{split} Au^{III}Cl_4^- + Fe^{2+} &\to Au^{II}Cl_4^{2-} + Fe^{3+} \text{ (медленное инициирование)}; \\ &Au^{II}Cl_4^{2-} + 4Cl^{*-} \to Au^{II}Cl_4^{*2-} + 4Cl^-; \\ Au^{II}Cl_4^{*2-} + Au^{III}Cl_4^- \to Au^{III}Cl_4^{*-} + Au^{II}Cl_4^{2-} \text{ (быстрый рост цепи)}; \\ 2Au^{III}Cl_4^{2-} \to Au^{III}Cl_4^- + Au^ICl_4^- + 2Cl^- \text{ (медленный обрыв цепи)}. \end{split}$$

Замещение как результат переноса мостиковой связи в реакции окисления-восстановления.

Пример 31

Катализируемая Co(II) реакция замещения NH_3 -группы на CN^- в ионе $Co(NH_3)_5Cl^{2+}$ заканчивается образованием $Co(CN)_5Cl^{3-}$:

$$\begin{split} \text{Co}_{\text{aq}}^{2+} + 5\text{CN}^{-} &\to \text{Co}(\text{CN})_{5}^{3-}; \\ \text{Co}(\text{CN})_{5}^{3-} + \text{Cl-Co}(\text{NH}_{3})_{5}^{2+} &\to \text{Co}(\text{CN})_{5}\text{Cl}^{3-} + \text{Co}_{\text{aq}}^{2+} + 5\text{NH}_{3}. \end{split}$$

Пример 32

Катализируемая Cr(II) реакция аквотации путем замещения одного из хлорид-ионов в $CrCl_2(H_2O)_4^+$:

$$\begin{split} (H_2O)_4ClCr^{III}Cl^+ + & Cr_{aq}^{2+} \xrightarrow{\quad \ \ \, } [(H_2O)_4ClCr^{II}]^+ + ClCr^{III}(H_2O)_5^{2+}; \\ & [(H_2O)_4ClCr^{II}]^+ \to Cr_{aq}^{2+} + Cl^-. \end{split}$$

Пример 33

Реакция $PtenCl_2^{2+} + NO_2^- \rightarrow Pten_2NO_2Cl^{2+} + Cl^-$ катализируется $Pten_2^{2+}$ путем окислительно-восстановительного процесса во внутренней сфере:

$$Pten_2^{2+} + NO_2^- \rightarrow Pten_2NO_2^+$$
 (быстро);
 $NO_2en_2Pt^+ + Cl-Pten_2Cl^{2+} \rightarrow NO_2en_2PtCl^{2+} + Pten^{2+} + Cl^-$.

Поскольку NO_2^- в этой реакции является гораздо менее эффективным мостиковым агентом, то вытеснить второй ион хлора по этому механизму не представляется возможным:

$$NO_2en_2Pt^+ + Cl-Pten_2NO_2^{2+} \rightarrow NO_2en_2PtCl^{2+} + Pten^{2+} + NO_2^{-}$$
.

3. Замещение путем обратимого окислительного присоединения.

Пример 34

Реакция взаимодействия $PtCl_6^{2-}$ и иодид-иона протекает через стадию образования двух промежуточных соединений $PtCl_4I_2^{2-}$ и $PtCl_2I_4^{2-}$:

$$PtCl_6^{2-} + I^- \rightarrow PtCl_4^{2-} + ICl;$$

 $ICl + I^- \rightleftarrows I_2 + Cl^-$ (быстро, равновесие сдвинуто вправо);

$${\rm PtCl_4^{2-}} + {\rm I_2} \rightarrow {\rm PtCl_4I_2^{2-}}$$
 (быстро).

Пример 35

В тех случаях, когда менее электроотрицательный галоген замещается более электроотрицательным, могут наблюдаться «лишние» промежуточные соединения:

$$\begin{split} PtI_6^{2^-} + Br^- &\to PtI_4^{2^-} + IBr;\\ IBr + Br^- &\rightleftarrows I^- + Br_2 \text{ (быстро, но равновесие сдвинуто влево);}\\ PtI_4^{2^-} + IBr &\to PtI_5Br^{2^-} \text{ (быстро)}. \end{split}$$

Пример 36

Реакция замещения водорода на дейтерий в mpanc-[PtHCl(PEt₃)₂] катализируется кислотой и очень сильно зависит от природы иона:

$$mpanc$$
-[PtHCl(PEt₃)₂] + DCl \rightleftharpoons Pt^{IV}(PEt₃)₂HDCl₂;
PtIV(PEt₃)₂HDCl₂ \rightleftharpoons $mpanc$ -[Pt(PEt₃)₂DCl] + HCl.

ТЕМЫ СЕМИНАРСКИХ ЗАНЯТИЙ

- 1. Валентность и гипервалентность. Валентные правила. Донорно-акцепторная, координационная и гипервалентная связи. Вопросы классификации химических соединений.
- 2. Некоторые особенности волновой функции и их влияние на химические свойства элементов. Термы многоэлектронного атома.
 - 3. Теория групп в строении вещества.
 - 4. Теория кристаллического поля.
- 5. Теория молекулярных орбиталей в применении к комплексным соединениям.
- 6. Общая характеристика и классификация неорганических реакций, особенности их протекания. Кинетика неорганических реакций. Взаимосвязь механизма и кинетики неорганических реакций.
- 7. Общая характеристика реакций замещения. Реакции замещения в тетраэдрических комплексах.
- 8. Кинетика и механизм реакций замещения в четырехкоординационных плоских, а также в пяти- и шестикоординационных реакционных центрах.
 - 9. Механизм стереохимических превращений.
- 10. Основные характеристики и виды окислительно-восстановительных превращений с участием неорганических соединений. Механизм окислительно-восстановительных реакций присоединения, элиминирования и замещения.

ВОПРОСЫ К СЕМИНАРСКИМ ЗАНЯТИЯМ,

СЕМИНАР 1

- 1. Приведите и сравните различные определения понятия «валентность», встречающиеся в учебной литературе. В чем недостатки отдельных определений и как их можно устранить?
- 2. Связь валентности со стехиометрией, строением атома, состоянием атома в химическом соединении: стехиометрическая валентность, спинвалентность, степень окисления, координационное число, валентность атома в соединении (сумма кратностей связей).
- 3. Примеры определения характеристик валентности в различных соединениях.
- 4. Какие валентные правила вы знаете? Приведите примеры их выполнения и невыполнения.
- 5. Гипервалентная связь и гипервалентные соединения. Дайте толкование этим терминам и приведите примеры таких связей и соединений.
- 6. Донорно-акцепторная связь в сравнении с другими связями на конкретных примерах.
- 7. Вопросы классификации химических соединений (проблемы и варианты).

СЕМИНАР 2

- 1. Волновая функция и ее графическое представление. Смысл узловых точек и субнодальных максимумов, их влияние на энергию орбиталей.
- 2. Парадокс принципа заполнения орбиталей. Электронные конфигурации атомов и влияние на них обменной энергии. Химические проявления устойчивости заполненных и полузаполненных орбиталей.
 - 3. Экранирование ядра электронами, методы его расчета.

- 4. Концепция кайносимметрии и кайносимметрики. Особые свойства кайносимметриков.
 - 5. Менделеевское правило четности. Вторичная периодичность.
- 6. Периодическая система химических элементов Д. И. Менделеева и ее предельный вариант.
- 7. Межэлектронное и спин-орбитальное взаимодействия в много-электронном атоме на конкретном примере.

СЕМИНАР 3

- 1. Элементы, операции и группы симметрии.
- 2. Свойства математических групп.
- 3. Представления групп. Базис представления. Нахождение приводимого представления. Свойства неприводимых представлений и их использование.
- 4. Структура и применение таблиц характеров неприводимых представлений.
- 5. Прямое произведение представлений и его использование в квантовой химии.
- 6. Подгруппы, иерархия подгрупп, взаимосвязь представлений в подгруппах.
 - 7. Ограниченность понятий о σ -, π -связях и орбиталях.

СЕМИНАР 4

- 1. Теоретический подход к решению вопроса о влиянии поля лигандов на орбитали и термы центрального атома.
- 2. Наглядные представления о расщеплении орбиталей и термов центрального атома в полях различной симметрии.
- 3. Правила и диаграммы, позволяющие определить, как расщепляются основные термы иона любой d^n -конфигурации в слабых полях октаэдра и тетраэдра.
 - 4. Корреляция термов в сильных и слабых полях лигандов.
 - 5. Диаграммы Танабе Сугано и их применение.
 - 6. Комплексы сильных и слабых полей.
- 7. Экстрастабилизация и ее влияние на свойства химических элементов и их соединений.
 - 8. Модифицированная теория кристаллического поля.

СЕМИНАР 5

- 1. Основные положения теории молекулярных орбиталей.
- 2. Применение теории групп при определении набора молекулярных орбиталей (МО) для молекулы заданной группы симметрии.

- 3. Наглядное конструирование групповых орбиталей лигандов для октаэдрического комплекса.
- 4. Примеры MO лигандов и характеристика их свойств на основе схемы MO.
 - 5. МО октаэдрического и тетраэдрического комплексов.
- 6. Связь теории МО с теорией валентных связей и теорией кристаллического поля.
- 7. Объяснение изменений величины параметра спектроскопического расщепления в теории МО.
- 8. Степень участия d-орбиталей в образовании комплексов различной конфигурации.

СЕМИНАР 6

- 1. Охарактеризуйте общепринятые классификации неорганических соединений. Насколько оправданным является представление неорганических соединений в растворе в виде комплексов?
- 2. Охарактеризуйте используемые в настоящее время классификации центральных атомов и лигандов; обоснуйте состоятельность и области применения каждой из них.
- 3. Опишите основные положения концепции жестких и мягких кислот и оснований. С какой целью была сформулирована данная концепция?
- 4. Каково влияние валентного состояния центрального иона на лабильность (инертность) комплексного соединения?
- 5. Приведите известные вам классификации неорганических реакций. На какие основные типы могут быть разделены химические процессы с участием неорганических соединений?
- 6. Что такое кинетическое исследование? Каковы основные этапы кинетического исследования? Какие основные характеристики химических реакций, а также участвующих в них химических соединений можно получить в результате кинетического исследования? Опишите алгоритм кинетического исследования, целью которого является выявление механизма химической реакции.
- 7. Какие основные типы механизмов неорганических реакций можно выделить? Дайте каждому из них краткую характеристику.

СЕМИНАР 7

- 1. Дайте общую характеристику реакциям замещения, протекающим с участием неорганических соединений.
- 2. Какие можно выделить основные типы реакций замещения? Приведите примеры реакций замещения, сопровождающихся гомо- и гетеролитическим разрывом связи. Какие факторы определяют тип разрыва

связи в ходе реакций замещения? Охарактеризуйте промежуточные соединения, образующиеся в ходе гетеро- и гомолитического разрыва связи.

- 3. Какие типы механизмов могут быть реализованы в ходе реакций замещения с участием неорганических соединений?
- 4. Дайте краткую характеристику и укажите отличительные особенности ассоциативного и диссоциативного механизмов замещения. Чем отличается классический диссоциативный механизм от механизма диссоциативной активации? Приведите основные кинетические уравнения для каждого из указанных механизмов. Каков общий вид энергетической диаграммы протекания неорганической реакции в случае каждого из механизмов?
 - 5. Каковы основные стереохимические аспекты реакций замещения?
- 6. Опишите и обоснуйте распространенность тетраэдрической четырехкоординационной геометрии среди различных классов соединений химических элементов.
- 7. Дайте общую характеристику и опишите механизм реакций замещения в тетраэдрических комплексах на примере соединений углерода, кремния, германия, олова, фосфора, а также *d*-элементов.

СЕМИНАР 8

- 1. Приведите примеры элементов и укажите степени окисления центрального атома для комплексных соединений, для которых характерна плоская координация с координационным числом 4. Каковы общие принципы, позволяющие описать связь между степенью окисления центрального атома, координацией образованного им комплекса и геометрией последнего?
- 2. Какой механизм реакций замещения наиболее характерен для четырехкоординационных плоских комплексов? Охарактеризуйте геометрию переходных состояний и промежуточных соединений, а также перечислите основные факторы, определяющие реакционную способность четырехкоординационных плоских комплексов.
- 3. Какие явления получили названия цис- и трансвлияние? В чем их суть и какова взаимосвязь указанных эффектов со структурой получаемых в результате реакций замещения продуктов (рассмотрите вопрос на примере синтеза цисплатина)?
- 4. Дайте характеристику распространенности пятикоординационной геометрии среди основных типов соединений химических элементов.
- 5. На примере замещения в комплексных соединениях Ni(II), Pd(II), Pt(II) охарактеризуйте механизм реакций замещения с участием пятикоординационных комплексов.

- 6. Охарактеризуйте распространенность октаэдрической конфигурации среди соединений химических элементов.
- 7. Опишите кинетику и механизм реакций замещения в шестикоординационных комплексах на примере реакций с участием сольватированных ионов металлов, реакций анации, реакций основного гидролиза, а также реакций в неводных растворителях.

СЕМИНАР 9

- 1. Приведите и охарактеризуйте основные виды стереохимических превращений с участием неорганических соединений.
- 2. Дайте общую характеристику процессов псевдовращения и происходящим вследствие этого изменениям в топологии комплексных соелинений.
- 3. Возможна ли инверсия в трехкоординационных системах? Через какой тип промежуточного состояния может быть реализована такая инверсия? Рассмотрите на примере инверсии молекулы аммиака возможность так называемого просачивания атомов лиганда из одного положения в другие.
- 4. Каковы особенности псевдовращения в четырехкоординационных и пятикоординационных системах (рассмотрите на примере соответствующих соединений никеля и фосфора)?
- 5. Перечислите основные особенности механизма скручивания Берри. Приведите пример механизма скручивания типа 15——34.
- 6. Опишите основные этапы псевдовращения в шестикоординационных системах на примере тригонального скручивания вокруг оси третьего порядка.
- 7. В чем заключается механизм скручивания Бейлара? Как на практике можно провести различия между механизмами скручивания и раскрытия кольца?

СЕМИНАР 10

- 1. Охарактеризуйте окислительно-восстановительные реакции, протекающие с участием неорганических соединений. Чем определяется протекание и от каких факторов зависит скорость и механизм окислительно-восстановительных реакций?
- 2. В чем различие между редокс-процессами во внешней и внутренней сфере? Перечислите основные факторы, влияющие на скорость переноса электронов от восстановителя к окислителю в ходе оксилительно-восстановительного превращения.

- 3. Что такое комплементарные и некомплементарные реакции (приведите примеры)? В чем сущность катализа некомплементарных реакций?
- 4. Опишите механизм окислительного присоединения на примере реакций с участием комплексов иридия, платины и палладия.
- 5. Назовите и опишите механизм восстановительного элиминирования и окислительно-восстановительного замещения.
- 6. Охарактеризуйте перспективы практического использования достижений теоретической неорганической химии для совершенствования уже существующих и разработки новых химических процессов (на примере процесса фиксации атмосферного азота, синтеза новых лекарственных препаратов и др.).

ЗАДАЧИ, ВОПРОСЫ И УПРАЖНЕНИЯ

- **1.** Сравните валентности элементов по правилу октета и по числу электронов, участвующих в образовании химических связей, в следующих ионах и молекулах: SO_4^{2-} , H_2SO_4 , SO_2 , SF_4 , SF_6 , CO_3^{2-} , H_2CO_3 . Объясните различия.
- **2.** Используя правила Слетера, проведите расчеты эффективных зарядов ядер, действующих на s-, p- и d-электроны, для элементов главной подгруппы пятой группы Периодической системы. Как изменяются физические и химические характеристики атомов с изменением эффективных зарядов ядер?
- **3.** Почему Li и Be относят к кайносимметрикам? Приведите примеры химических соединений s-, p-, d- и f-элементов, подтверждающие различные валентные возможности кайносимметриков и их последователей.
- **4.** Проиллюстрируйте и объясните менделеевское правило четности на примере фторидов фосфора, серы, хлора, ксенона. Какие элементы следуют этому правилу? Можно ли объяснить правило четности с привлечением представлений об экстравалентности, гипервалентности?
- **5.** Как проявляется вторичная периодичность в свойствах химических элементов? Чем объясняется повышенная инертность 2*s*-, 4*s*-, 6*s*-электронов? Почему она растет в приведенном ряду?
 - 6. Примените схему Рассела Саундерса для конкретного случая.
- 7. Объясните смысл параметров Слетера Кондона и параметров Рака.
 - 8. Сформулируйте правило Хунда.
 - 9. Что дает правило интервалов Ланде?
 - 10. Приведите примеры абелевых групп симметрии.
 - 11. Сформулируйте свойства математических групп.
- **12.** Объясните, что такое представление группы, характер представления, базис представления. Какие свойства неприводимых представлений вы знаете?

- **13.** Приводимое представление в группе O_h задано характерами $\{5; -1; 1; -1; 1; 5; -1; 1; -1; 1\}$. Разложите его на неприводимые.
- **14.** Как осуществить переход от представлений группы к представлениям ее подгруппы?
- **15.** Разложите представление в базисе d-орбиталей в группе O на неприводимые представления.
- **16.** От каких величин зависит параметр спектроскопического расщепления?
- **17.** Запишите основные термы для ионов d-элементов с числом электронов от 1 до 10.
 - **18.** Раскройте физический смысл правил $d^n d^{5-n}$ и $d^n d^{10-n}$.
- **19.** Чем отличаются подходы к анализу энергетических состояний центрального атома в приближении сильного и слабого полей?
- **20.** Как объяснить наличие или отсутствие изломов на диаграммах Танабе Сугано?
- **21.** В каких случаях могут реализоваться низкоспиновые комплексы, а в каких не могут?
 - 22. Сформулируйте правила отбора для оптических переходов.
- **23.** Схематически изобразите оптический спектр октаэдрического комплекса Co^{2^+} и укажите природу его полос поглощения.
- **24.** Во сколько раз экстрастабилизация в поле октаэдра больше, чем в поле тетраэдра для иона с двумя d-электронами?
- **25.** Объясните типичные степени окисления, проявляемые d-элементами.
 - **26.** Чем и почему отличается строение шпинелей Mn_3O_4 и Fe_3O_4 ?
- **27.** Как объяснить закономерность в изменении ионных радиусов ионов 3d-элементов, имеющих одинаковый заряд?
- **28.** Почему изменяется параметр Рака при вхождении иона в поле лигандов?
- **29.** В чем суть адиабатического приближения и в каких случаях оно неприменимо?
- **30.** Объясните физический смысл понятия «адиабатический потенциал».
- **31.** Каковы недостатки интерпретации эффекта Яна Теллера в терминах неустойчивости?
- **32.** Вибронное вырождение как интерпретация эффекта Яна Теллера.
- **33.** Почему из данных электронного парамагнитного резонанса и оптической спектроскопии можно сделать противоречивые выводы о наличии или отсутствии эффекта Яна Теллера?
 - 34. В чем особенность орбиталей линейных молекул?

- **35.** Можно ли говорить о гибридизации орбиталей в теории молекулярных орбиталей?
- **36.** В чем преимущества теории молекулярных орбиталей перед теорией валентных связей и теорией кристаллического поля?
- **37.** Что такое скорость химической реакции, кинетическое уравнение, порядок, молекулярность и механизм химической реакции?
- **38.** Приведите кинетические уравнения первого, второго и третьего порядков.
- **39.** Опишите алгоритм экспериментального получения полного кинетического уравнения для химического процесса с помощью метода изолирования.
- **40.** Укажите причины несовпадения уравнения, полученного согласно закону действующих масс, исходя из уравнения протекания химической реакции, с экспериментально полученным кинетическим уравнением. Ответ обоснуйте и подкрепите примерами.
- **41.** Экспериментально найденное кинетическое уравнение для реакции $3I^- + S_2O_8^{2-} \rightarrow 2S_2O_4^{2-} + I_3^-$ имеет вид $d[I_3^-]/dt = k[I_3^-][S_2O_8^{2-}]$. Запишите уравнение скорость определяющей стадии данного процесса, сделайте предположение о структуре промежуточного соединения, формирующегося в процессе протекания данной реакции и обоснуйте предположительное время его жизни.
- **42.** Приведите пример исследования механизма химической реакции с помощью меченых атомов.
- **43.** Объясните, почему в сильных полях инертными являются ионы с конфигурацией центрального атома d^3 , d^4 , d^5 , а в слабых полях с конфигурацией d^3 , d^8 .
- **44.** Сформулируйте основные положения теории эффективных соударений и теории переходного состояния. Определите их особенности, достоинства и недостатки, а также области и границы применимости.
- **45.** Используя энергетическую диаграмму, показанную на рисунке, определите стадийность, возможность формирования относительно устойчивого интермедиата, величину энергии активации и теплового эффекта реакции, которой она соответствует.

46. Кинетическое уравнение для химического процесса

$$nA + mB \rightarrow продукты$$

имеет вид

$$v = Ae^{-\Delta E_{\text{aktr}}/RT} [A]^n [B]^m.$$

Укажите стадийность данного процесса, полный порядок реакции, а также порядок по каждому из реагентов.

- 47. Приведите примеры моно-, би- и тримолекулярных реакций.
- **48.** Объясните тот факт, что фосфины R_3P и тиоэфиры R_2S проявляют тенденцию к координированию с атомами Hg(II), Pd(II), Pt(II), а для аммиака, аминов (R_3N) , воды и фторид-иона предпочтительными являются Be(II), Ti(IV), Co(III).
- **49.** Укажите из предложенных частиц жесткие кислоты и основания, мягкие кислоты и основания по Пирсону:

$$H^+, Sr^{2+}, NO_3^-, Hg^{2+}, Ti(IV), C_2H_4, F^-, CI^-.$$

- **50.** К какому типу кислот, по классификации Пирсона, жесткому или мягкому следует отнести ионы переходных металлов с шестью и более d-электронами. Ответ обоснуйте с точки зрения теории поляризуемости.
- **51.** Как можно объяснить исключительную устойчивость цианидных комплексов переходных металлов? К какому типу лигандов могут быть отнесены цианид-анионы? Какого типа связи они могут образовывать с атомом-комплексообразователем?
 - 52. К какому типу можно отнести следующие химические реакции:

$$\begin{split} (NH_3)_5 CoCl^{2+} + Hg^{2+} + H_2O &\rightarrow (NH_3)_5 CoOH_2^{3+} + HgCl^+; \\ [Fe(CN)_6]^{4-} + [Fe(phen)_3]^{3+} &\rightarrow [Fe(CN)_6]^{3-} + [Fe(phen)_3]^{2+}; \\ SO_3^{2-} + OCl^- &\rightarrow SO_3O^{2-} + Cl^-; \\ (CO)_5 MnCH_3 + L &\rightarrow (CO)_4 LMn(COCH_3); \\ (NH_3)_5 CoCl^{2+} + H_2O &\rightarrow (NH_3)_5 CoOH_2^{3+} + Cl^-. \end{split}$$

- **53.** Приведите примеры гомо- и гетеролитического разрыва химической связи.
- **54.** Как принято обозначать механизм бимолекулярного гомолитического замещения?
- **55.** Приведите энергетические диаграммы, соответствующие классическому синхронному механизму, несинхронному диссоциативному механизму и несинхронному ассоциативному механизму нуклеофильного замещения.

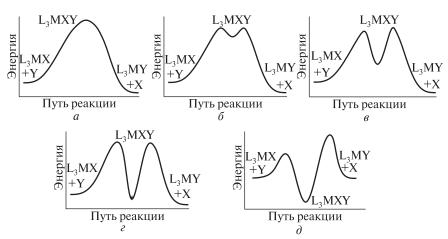
- **56.** Представьте основные стадии реакций замещения, идущих по механизму D и I_d .
- **57.** О чем свидетельствует факт формального совпадения кинетического уравнения для реакций, идущих по механизму A и D?
- **58.** В пользу какого механизма может свидетельствовать тот факт, что скорость химического процесса замещения оказывается зависящей от характера входящей группировки?
 - 59. Каково пространственное строение следующих частиц:

$$SF_6, TiCl_4, MnCl_4^{2-}, ClO_2F_3, [Fe(CN)_6]^{4-}, MnO_4^-, CrO_4^{2-}, \\ Co(NO)(CO)_3, IO_2F_3, Pt(PPh_3)_4, Ni(H_2O)_6^{3+}?$$

- **60.** Реакция $(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + H^+ + Br^-$ идет по механизму S_N 1. Напишите элементарные стадии данного процесса.
- **61.** Известно, что нуклеофильное замещение у тетраэдрического атома углерода приводит к изменению конфигурации. Предложите механизм для данного превращения и изобразите ход реакции с учетом стереохимических превращений.
- **62.** Известно, что в процессе нуклеофильного замещения у атома кремния, находящегося в тетраэдрическом окружении, происходит обращение исходной конфигурации с образованием тригональной бипирамиды. Сделайте предположение о характере уходящей при этом группировки и прокомментируйте стереохимический ход реакции замещения.
- **63.** Методом ядерного магнитного резонанса показано, что скорость нуклеофильного замещения в тетраэдрических комплексах Fe(II), Co(II), Ni(II) пропорциональна концентрации входящих лигандов. Предложите механизм реакции замещения и объясните его с учетом возможной координационной ненасыщенности центрального атома.
- **64.** Объясните, почему для структур, подчиняющихся правилу «18 электронов», таких как [Ni(CO)₄], характерен диссоциативный механизм реакций замещения, в то время как для их структурных аналогов, таких как $Co(CO_3)NO$, $Fe(CO)_2(NO)_2$, $Mn(CO)(NO)_3$, $Cr(NO)_4$, характерен ассоциативный механизм. Изобразите механизм указанных превращений.
- **65.** Известно, что нуклеофильное замещение в плоском четырехкоординационном комплексе [$Ptpy_2Hal_2$] происходит с сохранением исходной конфигурации, причем промежуточное состояние является пятикоординационным. Предложите механизм данного превращения и изобразите его графически (с учетом стереохимических особенностей). Сделайте предположение относительно реакционной способности исходного комплекса в зависимости от природы уходящей группировки и других лигандов в комплексе.

66. Напишите продукты реакции и ее уравнение с учетом стереохимических особенностей:

$$[Pt(NH_3)Cl_3]^- + NH_3 \rightarrow$$
.


67. Предскажите продукты реакции и запишите уравнения для каждого типа лигандов, находящихся в *транс*-положении относительно уходящей группировки:

$$\begin{array}{c}
NH_{3} \\
-M-Cl + py \longrightarrow, \\
Cl
\end{array}$$

где $L = C_2H_4$, Br^- , Cl^- , NO_2^- ; ру-пиридин.

Расположите лиганды в порядке относительного снижения скорости реакции. Предположите характер изменения энергии активации в рассмотренных реакциях.

68. Исходя из рисунка, сделайте заключение об особенностях протекания реакции замещения, ее механизме, а также об относительной стабильности промежуточного комплекса. Приведите примеры химических соединений, реакции замещения в которых соответствуют приведенной диаграмме.

- **69.** Объясните факт повышения скорости реакции μuc -Pt(Pet₃)₂LCl с пиридином в связи с изменением L в ряду $CH_3^- > C_6H_5^- > Cl^-$.
 - 70. Расположите следующие лиганды по мере усиления трансвлияния:

71. Расположите частицы по мере уменьшения π -трансэффекта:

- 72. Объясните и подтвердите примерами, почему для пятикоординационных комплексов при прохождении реакций замещения доминирует ассоциативный механизм, а в случае октаэдрических комплексов диссоциативный механизм.
- **73.** Приведите примеры окислительно-восстановительных реакций присоединения, элиминирования, замещения.

КОНТРОЛЬНЫЕ РАБОТЫ ___

РАБОТА № 1

ВАРИАНТ 1

- 1. Валентность как категория в химии. Приведите примеры невыполнения правила октета.
- 2. Перечислите химические элементы, относящиеся к кайносимметрикам.
- 3. Докажите, что в ${\rm CrO_4^{2-}}$ орбитали p_y кислорода и d_{xy} могут перекрываться.

ВАРИАНТ 2

- 1. Проблемы классификации химических соединений. Почему NH_4^+ целесообразно относить к комплексным ионам, а SO_4^{2-} нет? Приведите примеры комплексов с переносом заряда.
 - 2. Приведите и объясните формулы фторпроизводных ксенона.
- 3. Приводимое представление в группе тетраэдра задано характерами {6, 0, 2, 0, 2}. Разложите его на неприводимые представления.

ВАРИАНТ 3

- 1. Гипервалентные молекулы и связи (с примерами).
- 2. Определите число максимумов радиальной электронной плотности у калия.
- 3. С использованием свойств неприводимых представлений постройте таблицу характеров неприводимых представлений для группы C_{3v} .

ВАРИАНТ 4

- 1. Вторичная периодичность свойств химических элементов (причины и примеры).
- 2. Найдите значение эффективного заряда ядра для валентного электрона в атоме кислорода.

3. Определите, как трансформируются орбитали t_2 - и e-типа, если в тетраэдрическую молекулу ${\rm MX_4}$ ввести один заместитель ${\rm Y}$ вместо одного ${\rm X}$.

РАБОТА No 2

ВАРИАНТ 1

- 1. Взаимосвязь кинетики и механизма химического процесса. Теоретические и экспериментальные методы определения механизма химического превращения.
- 2. Геометрия переходных состояний и промежуточных соединений в процессах замещения в четырехкоординационных плоских комплексах.
- 3. Приведите примеры реакций сольволиза, анации и криптосольволиза, опишите их механизм и особенности протекания в зависимости от характеристик участвующих в реакциях реагентов.

ВАРИАНТ 2

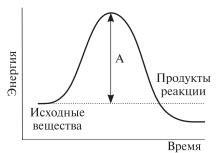
- 1. Связь структуры и строения со стабильностью и инертностью химических соединений, а также с особенностями протекания химических процессов с их участием.
- 2. Стереохимия нуклеофильного замещения у тетраэдрического атома углерода.
- 3. Приведите примеры механизмов скручивания: по Берри, Бейлару, а также по Рею и Дату.

ВАРИАНТ 3

- 1. Классификация химических реакций и особенности механизма их протекания.
 - 2. Реакции замещения в октаэдрических системах.
- 3. Приведите примеры окислительно-восстановительных реакций во внешней сфере и внутрисферных окислительно-восстановительных реакций. Опишите различия в механизме их протекания. Какие из данных реакций являются комплементарными и некомплементарными?

ВАРИАНТ 4

- 1. Молекулярность и порядок химических процессов. Кинетические уравнения первого, второго и третьего порядков.
- 2. Классификация и особенности протекания стереохимических превращений.
- 3. Что такое цис- и трансвлияние? Ответ проиллюстрируйте примерами конкретных химических превращений. Опишите механизм приведенных химических реакций.


ТЕСТОВЫЕ ЗАДАНИЯ ___

- 1. Дополните утверждение. Симметрия это:
- а) пространственное расположение связанных атомов;
- б) проекция геометрической конфигурации молекул на плоскость ху;
- в) то же, что и сингония;
- г) понятие, применимое лишь к изомерам.
- 2. Дополните утверждение. Брегги показали:
- а) ошибочность воззрений Кекуле на понятие «структура»;
- б) применимость теории кристаллического поля к комплексным соединениям;
- в) невозможность распространения теории поля лигандов на широкий круг неорганических комплексов;
- г) возможность интерпретации дифракции рентгеновских лучей в кристаллах ионных соединений на основе представлений о пространственном расположении ионов.
 - 3. Дополните утверждение. Молекулярность реакции:
 - а) равна общему числу молекул, участвующих в реакции;
- б) равна сумме показателей степеней при концентрации реагирующих веществ, входящих в выражение для скорости реакции;
- в) соответствует порядку элементарного акта реакции, имеющего наибольшую скорость;
- Γ) тождественна сумме коэффициентов, стоящих перед продуктами в уравнении реакции.
- **4.** Дополните утверждение. Зависимость скорости реакции от температуры для большинства химических реакций может быть описана с помощью:
 - а) закона Рогинского Зельдовича;
- в) закона Генри;

б) уравнения Аррениуса;

г) уравнения Яндера.

- 5. Укажите, какая ошибка было допущена при утверждении: «Вещество А — стабильно»:
- а) не было указано количество изомеров вещества А, и не проанализирована их стабильность;
 - б) не было указано строение вещества А;
 - в) не была указана структура вещества А;
 - г) не было указано, по отношению к каким реакциям.
- 6. Укажите теоретическую модель, используемую для объяснения механизма взаимодействия частиц:
 - а) теория поля лигандов;
- в) теория эффективных столкновений;
- б) теория возмущений;
- г) теория кристаллического поля.
- 7. Дополните утверждение. Величину А на энергетической схеме хода реакции (см. рисунок) принято называть:
 - а) изменением энтальпии реакции; в) энергией активации;
 - б) свободной энергией реакции: г) потенциальной энергией.

8. Укажите молекулярность одностадийной реакции

$$N_2O_5 \rightarrow NO_2 + NO + O_2$$
:

- а) мономолекулярная реакция; в) тримолекулярная реакция;
- б) бимолекулярная реакция;
- г) тетрамолекулярная реакция.
- 9. Дополните утверждение. На существование дополнительных стадий, предшествующих скорость определяющей стадии, указывает:
- а) дробный порядок в эмпирически найденном кинетическом уравнении;
 - б) дробная величина значения молекулярности реакции;
 - в) величина молекулярности реакции свыше трех;
 - г) аномально высокие значения энергии активации.

- 10. Укажите интегральную форму кинетического уравнения второго порядка.
 - a) $\ln \frac{a}{a-x} = kt$;

- B) $\frac{x}{a(a-x)} = kt$;
- 6) $-\frac{d(a-x)}{dt} = k(a-x) = \frac{dx}{dt}$; $\Gamma \frac{d(a-x)}{dt} = k(a-x)^2 = \frac{dx}{dt}$.
- 11. Укажите ряд, в котором согласно теории Пирсона перечислены только мягкие основания:
 - a) CN⁻, CO, SCN⁻, I⁻;
- B) Rh³⁺, In³⁺, Ru³⁺, Os²⁺;
- $O(10^{3-}, SO_4^{2-}, CIO_4^{-}, F^{-};$ Γ) Sn(IV), As(III), Mn(VII), Co(III).
- 12. К какому типу можно отнести реакцию

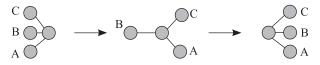
$$SO_3^{2-} + OCl^- \rightarrow SO_3O^{2-} + Cl^-$$
?

- а) реакции, идущие с уменьшением координационного числа;
- б) реакции присоединения;
- в) реакции элиминирования;
- г) реакции, сопровождающиеся переносом электрона через мостик, образованный лигандами.
- 13. Выберите название, наиболее полно характеризующее процесс, изображенный на схеме: $A: B \to A^+ + : B^$
 - а) гомолиз;
- в) механизм $S_N 2$;
- б) гетеролиз;
- Γ) механизм $S_N 1$;
- 14. Дополните утверждение.

Реакция $(NH_3)_5CoCl^{2+} + H_2O \rightarrow (NH_3)_5CoOH_2^{3+} + Cl^-$ относится:

- а) к нуклеофильному замещению;
- б) электрофильному замещению;
- в) нуклеофильному присоединению;
- г) электрофильному элиминированию.
- 15. В каком случае процесс замещения носит ассоциативный характер?
- а) промежуточное соединение имеет меньшее координационное число по сравнению с исходным соединением;
- б) промежуточное соединение имеет большее координационное число по сравнению с исходным соединением;
- в) промежуточное и исходное соединения имеют одинаковые координационные числа;
- г) промежуточное и конечное соединения имеют одинаковые координационные числа.

- 16. Дополните утверждение. Одностадийный процесс, образование связей в котором либо предшествует их разрыву, либо следует за ним, и где образуется промежуточное соединение, называется:
 - а) синхронный; в) последовательный;
 - б) несинхронный: г) параллельный.
- 17. Укажите, какому типу реакции соответствует энергетическая схема, изображенная на рисунке:
 - а) реакции, идущей без образования интермедиата;
 - б) реакции, идущей с образованием интермедиата;
 - в) многостадийной реакции;
 - г) реакции, порядок которой равен дробному числу.



- **18.** Известно, что кинетические уравнения для механизмов I_a и I_d практически идентичны. Объясните, что на практике позволяет различить указанные механизмы:
 - а) зависимость скорости реакции от характера входящей группировки;
 - б) размерность частотного фактора;
 - в) величина константы диссоциации;
 - г) различить указанные механизмы невозможно.
- 19. Укажите типичный механизм для тетраэдрических комплексов германия:
 - a) I_a , D; 6) I_d , D; B) I_a , A; Γ) I_d , A.

 - **20.** Укажите конфигурацию иона Cr^{3+} : а) d^5 ; б) d^4 ; в) d^6 ; г) d^3 .

- 21. Укажите ряд, в котором приведены только изоэлектронные соединения:
 - a) Fe(CO)₂(NO)₂, Cr(NO)₄, Ni(CO)₄;
 - 6) $Cu(OH)_4^{2-}$, $Co(NH_3)_6^{3+}$, CaC_2O_4 ;
 - B) $Cu(CN)_4^{3-}$, $Fe(CN)_6^{3-}$, $CaCO_3$;
 - r) $Ag(NH_3)_2^+$, $Co(CN)_6^{3-}$, $Fe(CN)_6^{4-}$.
- 22. Укажите ряд ионов, для каждого из которых характерно образование четырехкоординационных плоских комплексов:

 - a) Co(III), Ni(IV), Pt(IV);
 b) Mn(I), Ni(III), Pt(IV);
 δ) Ni(II), Pt(II), Pd(II);
 Γ) Mo(V), W(II), Re(I).
- 23. Дополните определение. Криптосольволиз это:
- а) процесс, в ходе которого один лиганд замещается другим через реакцию сольволиза с последующей анацией;
 - б) процесс, обратный реакции анации;
- в) процесс, при котором один комплексообразователь замещается другим через реакцию анации с последующим сольволизом;
 - г) процесс, обратный гидролизу.
 - 24. Определите механизм процесса, изображенного на рисунке:
 - а) инверсия в трехкоординационной системе:
 - б) псевдовращение в четырехкоординационной системе;
 - в) иис-транс-изомерия;
 - г) изменение координационного числа.

- 25. Выберите из предложенных реакцию окислительного присоединения:
 - а) реакция анации;
 - б) $Co(III) + Cr(II) \rightarrow Co(II) + Cr(III)$;
 - B) $PtCl_4^{2-} + Cl_2 \rightarrow PtCl_6^{2-}$;
 - Γ) $(CH_3)_3B + N(CH_3)_3 \rightarrow (CH_3)_3BN(CH_3)_3$.

26. Дополните утверждение.

Реакция $CoH_3(PPh_3)_3 + N_2 \rightleftharpoons Co(N_2)H(PPh_3)_3 + H_2$ интенсивно изучается:

- а) в целях поиска эффективных способов фиксации атмосферного азота:
- б) для дальнейшего расширения представлений химиков-исследователей о механизмах неорганических реакций;
- в) для подтверждения существования механизма восстановительного элиминирования;
 - г) для создания перспективных систем водородной энергетики.
- **27.** Известно, что реакция [Pt dien I] $^+$ + $H_2O \rightarrow$ [Pt dien H_2O] $^{2+}$ + I^- (dien диэтилентриамин) может идти по диссоциативному механизму. Укажите состав промежуточного соединения.

.ТЕМЫ РЕФЕРАТОВ____

- 1. Причины протекания химических реакций и физико-химических процессов.
- 2. Валентные состояния атомов и конфигурация их химических соединений.
 - 3. Периодический закон и строение атома.
 - 4. Теории происхождения химических элементов.
 - 5. Феномен Д. И. Менделеева и его открытия.
 - 6. Электронные спектры и строение многоатомных молекул и структур.
 - 7. Современная квантовая химия: представления о строении молекул.
- 8. Современные представления об электронном строении соединений инертных газов.
- 9. Ядерный магнитный резонанс и его роль в химических (кинетических и структурных) исследованиях.
- 10. Современные представления о строении, структуре и свойствах кислородсодержащих соединений иода.
- 11. Фториды кислорода и диоксигенильные соединения: особенности строения, структуры и свойств.
- 12. Корреляция между электронным строением центрального атома и стереохимией реакций с участием комплексных соединений.
- 13. Дипольные моменты молекул и классификация химических связей по типам и видам.
 - 14. Современные представления о валентности.
 - 15. Химическая связь.
 - 16. Особенности водородной связи.
- 17. Современные представления о соединениях, содержащих группировки из атомов переходных металлов.
 - 18. Квантовая теория сопряженных систем.
- 19. Теория молекулярных орбиталей для комплексов переходных элементов.

- 20. Молекулярные орбитали, химическая связь и ее спектроскопические проявления.
 - 21. Проявления законов сохранения в химических превращениях.
 - 22. Современные модели строения атома.
 - 23. Свойства химических связей: длины, энергии, полярность.
 - 24. Модель делокализованных электронов.
 - 25. Металлы и их соединения.
 - 26. Модели строения кристаллов и аморфных тел.
 - 27. Современная кристаллография.
 - 28. Особенности механизма реакций в твердой фазе.
- 29. Поверхностные и объемные процессы в реакциях твердых веществ.
 - 30. Структура поверхности: новые методы и приемы ее исследования.
 - 31. Соединения переходных металлов и их каталитические свойства.
 - 32. Современное состояние теории жидкостей: квантовые жидкости.
 - 33. Молекулярная теория растворов: прошлое и настоящее.
- 34. Современная физическая химия неводных растворов: кинетика протекания реакций в неводных растворителях.
 - 35. Искусственные трансурановые элементы.
- 36. Свойства, характеристики и химические проявления сольватированного электрона.
 - 37. Кинетика и термодинамика ферментативного катализа.
- 38. Взаимосвязь химических проявлений ферментативного катализа и функций мозга: моделирование и перспективы.
 - 39. Молекулярное движение и динамические равновесия.
- 40. Экспериментальные и теоретические основы химической кинетики.
 - 41. Химические равновесия реакций комплексообразования.
- 42. Современная теория естественной оптической активности: целенаправленный синтез оптически-активных энантиомеров.
- 43. Теоретический аппарат, экспериментальные приемы и методы современной химической кинетики.
 - 44. Сверхбыстрые реакции в растворах и газовой фазе.
- 45. Структура химических соединений и направление протекания химических реакций с их участием.
 - 46. Электронное строение молекул и их реакционная способность.
 - 47. Квантовая теория химических реакций в полярных растворителях.
- 48. Методы практических расчетов в современной кинетике химических реакций.
- 49. Общие принципы процессов фиксации атмосферного азота в растворах в присутствии комплексов переходных металлов.

ЛИТЕРАТУРА.

Басоло, Φ . Механизмы неорганических реакций / Φ . Басоло, Р. Пирсон. М. : Мир, 1971.

Бек, М. Исследование комплексообразования новейшими методами / М. Бек, И. Надыпал. М.: Мир, 1989.

Берсукер, И. Б. Строение и свойства координационных соединений / И. Б. Берсукер. 4-е изд. Л.: Химия, 1988.

Гурьянова, Е. Н. Донорно-акцепторная связь / Е. Н. Гурьянова, И. П. Гольдштейн, И. П. Ромм. М. : Химия, 1973.

Киселев, Ю. М. Химия координационных соединений / Ю. М. Киселев, Н. А. Добрынина. М.: Изд. центр «Академкнига», 2007.

Координационная химия / В. В. Скопенко [и др.]. М.: ИКЦ «Академия», 2007. Корольков, Д. В. Основы теоретической химии / Д. В. Корольков, Г. А. Скорогобатов. М.: Изд. центр «Академия», 2004.

Коттон, Ф. Современная неорганическая химия / Ф. Коттон, Дж. Уилкинсон. М.: Мир, 1969.

Лесникович, А. И. Избранные главы неорганической химии. Атом. Молекула. Вещество: учеб. пособие / А. И. Лесникович, В. А. Красицкий. Минск: БГУ, 2006. *Пирсон, Р.* Правила симметрии в химических реакциях / Р. Пирсон. М.: Мир, 1979.

Салем, Л. Электроны в химических реакциях / Л. Салем. М.: Мир, 1985. Теоретические основы общей химии / А. И. Горбунов [и др.]. М.: Изд-во МГТУ им. Н. Э. Баумана, 2001.

Терни, Т. Механизмы реакций окисления-восстановления / Т. Терни. М.: Мир, 1968.

Тоуб, М. Механизмы неорганических реакций / М. Тоуб. М.: Мир, 1975.

Xаускрофт, K. Современный курс общей химии: в 2 т. / K. Хаускрофт, Э. Констебел. M.: Mир, 2002; изд-во «задачник», 2005. 2 т.

Хьюз, М. Неорганическая химия биологических процессов / М. Хьюз. М. : Мир, 1983.

Хьюи, Дж. Неорганическая химия: Строение вещества и реакционная способность / Дж. Хьюи. М.: Химия, 1987.

Шрайвер, Д. Неорганическая химия : в 2 т. / Д. Шрайвер, П. Эткинс. М. : Мир, 2004. 2 т.

Keeler, J. Chemical Structure and Reactivity: an integrated approach / J. Keeler, P. Wothers. Oxford: Oxford University Press, 2008.

_____СОДЕРЖАНИЕ _____

ПРЕДИСЛОВИЕ	3
ПРИМЕРНЫЙ УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН	6
ПРОГРАММА КУРСА	7
1. Строение неорганических соединений Введение	7 7 7 7 8 8
2. Реакционная способность, кинетика и механизм реакций неорганических	•
Типы неорганических реакций в водных растворах	9 10 10 10 11
Вопросы для самостоятельного повторения по лекционным курсам «Строение вещества» и «Неорганическая химия»	12
КОНСПЕКТ ЛЕКЦИЙ В СХЕМАХ, ГРАФИКАХ, ФОРМУЛАХ И ОПРЕДЕЛЕНИЯХ	13
1.1. Реконструкция некоторых фундаментальных понятий химии, касающихся строения вещества	13 13 18 29

1.4. Теория кристаллического поля	38
1.5. Некоторые применения теории кристаллического поля	45
1.6. Молекулярные орбитали комплексов <i>d</i> -элементов	52
2. Реакционная способность, кинетика и механизм реакций неорганических	
соединений в водных растворах	56
2.1. Основы кинетики гомогенных химических реакций	56
2.2. Реакционная активность химических соединений	64
2.3. Реакции замещения неорганических соединений в растворах	68
2.4. Реакции замещения в координационном полиэдре-тетраэдре	73
2.5. Реакции замещения в четырехкоординационных плоских	
комплексах	81
2.6. Реакции замещения в пятикоординационных системах	86
2.7. Замещение в шестикоординационных реакционных центрах	89
2.8. Стереохимические превращения	94
2.9. Реакции окисления и восстановления	97
2.10. Окислительно-восстановительные реакции присоединения,	
элиминирования и замещения	100
ТЕМЫ СЕМИНАРСКИХ ЗАНЯТИЙ	105
	100
ВОПРОСЫ К СЕМИНАРСКИМ ЗАНЯТИЯМ	106
ЗАДАЧИ, ВОПРОСЫ И УПРАЖНЕНИЯ	112
КОНТРОЛЬНЫЕ РАБОТЫ	119
ТЕСТОВЫЕ ЗАДАНИЯ	121
ТЕМЫ РЕФЕРАТОВ	127
ЛИТЕРАТУРА	129

Учебное излание

Лесникович Анатолий Иванович **Свиридов** Дмитрий Вадимович

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ НЕОРГАНИЧЕСКОЙ ХИМИИ

Учебно-методический комплекс для студентов химического факультета, обучающихся по специальности 1-31 05 01 «Химия (по направлениям)»

Редактор А. Г. Купцова Художник обложки Т. Ю. Таран Технический редактор Т. К. Раманович Компьютерная верстка С. Н. Егоровой Корректор М. А. Подголина

Подписано в печать 21.12.2012. Формат $60 \times 84/16$. Бумага офсетная. Печать офсетная. Усл. печ. л. 7,67. Уч.-изд. л. 5,92. Тираж 200 экз. Заказ 62.

Белорусский государственный университет. ЛИ № 02330/0494425 от 08.04.2009. Пр. Независимости, 4, 220030, Минск.

Республиканское унитарное предприятие «Издательский центр Белорусского государственного университета». ЛП № 02330/0494178 от 03.04.2009. Ул. Красноармейская, 6, 220030, Минск.